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Abstract

Real-time systems, especially the hard real-time systems, exccute under stringent time constraints as they
are scheduled to finish tasks on ime, i.e. , before the next interrupt comes; otherwise, degrading the system
performance to the point of a partial or the complete system failure. To satisfy timing requirements, it is
necessary to test and evaluate such systems under all conditions. Conventional tools and testing methods
have been proven to be inaccurate, inadequate and time consuming.

Recently, there has been a development in the area of source level timing that tries to predict the
execution iime directly from the source code. This thesis outlines one such scheme and presents an
implementation of a timing tool — the Source Level-Oriented Timing Tool (SLOTT). Our approach
extends the scope of an already existing development system by adding the timing functionality to the
compiler. The main advantage of using the timing tool is in obtaining the timing valucs immediatcly after
the compilation is finished.

The tool consists of two parts, onc that gathers the timing information, the other that analyzes it. The
former is implemented as a part of the GNU C compiler. It collects the timing information of cach
instruction that is generated by the compiler, records it in the appropriate structure and outputs the timing
values into an intermediate file. The second part, the timing analyzer, then reads the intermediate file and
produces the timing output. The analyzer is implemented on its own and can be customized.

The tool can time any part of the source code. The code size can range from a single line to the whole
function. The tool recognizes several markers that identify boundarics for the timed code, bound lcops and
specify program flow. These markers are ignored by the compilers that do not implement SLOTT.

The thesis describes the timing methodology of SLOTT, its design, implementation, testing and

evaluation.
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Chapter 1

Introducticn

This chapter gives a brief background and motivation of the thesis, presents basic terms and definitions of
real-time computing, describes why timing is of crucial importance for the design of real-time systems, and

outlincs the goals of the thesis.

1.1 Background and Motivation

Since the appearance of the first microprocessor in the early seventies there has been a continuous trend
toward designing capable and "clever" electromechanical computer controlled devices and systems. However,
as the technology is getting more powerful, computer controlled systems are also becoming more complex.
Issucs, never considered before, arise as new intricate hardware and software concepts are introduced. It thus

becomes increasingly more important to keep the technology under control.

A computer controlled car runs people over when it unexpectedly accelerates, a fly-by-wire state of the art
aircraft refuscs to release control to a human pilot and the aircraft crashes and a software error causes a
stationary robot to move suddenly out of its pre-programmed bounds and a nearby worker is crushed to
death, These are just a few examples of how technology can inadvertently change our admiration to
cynicism and distrust [Burns90].

The questions of hardware and software efficiency, versatility, flexibility and reliability are becoming
increasingly important. The true control of technical processes, also referred to as real-time systems
{Halang91}, puts a lot of responsibility on the programmer's shoulders. Consequently the last two decades
have seen the birth of a new computing sciences discipline called software metrics. It deals with measuring



software quality, performance testing and optimization [Gilb77). The research focus of the rcal-time design
during the last decade has been the performance guarantee and reliability of systems, i.e., the guarantec that
the real-time tasks finish within defined limits that arc imposed by the system.

1.2 Basic Issues of Real-time Computing

1.2.1 Real-time Systems

A real-time system is one which has to respond to cxiernally gencrated input stimuli within a finite and
specified period [Young82]. A fundamental property of a real-time system is that some or all of its inputs
come from the outside world asynchronously with respect to any work that the program is alrcady
performing. The program must be able to interrupt its current activity, respond and resume the previous
activity. In general sense, this definition covers a very wide range of computer applications and it is oftcn
desirable to distinguish the real-time systems by another property - the task scheduling deadline.

Hard real-time systems (HRT) are those where it is absolutcly neicssary that responses occur within the
specified deadlinc [Buns90]. The time at which each task must finish a round of processing must be
estimated and the design must pay close attention to the execution timing of each proccss and task. For an
HRT system a late tesponse due to the insufficient execution time is as unacceptablc as an incorrect
response. Improper design of an HRT system may result in the degraded or unacceptable performance
sometimes in a partial or a complete system failure. However, not all real-time systems demand such strict
constraints.

A system in which the response time is important but task deadlines can be occasionally missed
without affecting its functionality is referred to as the soft real-time (SRT) system [Ripps89).

A data acquisition system and a UNIX operating system arc typical examples of soft rcal-time systcms; a
flight control system, a nuclear reactor process control system and a production robot manipulator arc
typical examples of hard real-time systems,

1.2.2 Execution Time and Response Time

Execution time and response time and their measurement is of crucial importance when designing cither
SRT or HRT systems and tasks. Unfortunately, given the nature of the problem, it is difficult to design
systems which will guarantee that all timing requirements will be met under all possible loading and under
all internal and extemal conditions.



To meet the time constraints real-time systems are often constructed using processors and hardware with
considerable spare computing capacity, so that the worst-case can be handled. However, to achieve the
system rcliability various software or hardware tools must be used to test and perfect the system.

1.3 Thesis Objective

The thesis will outline tools and schemes that have been used to gather timing information about real-time
programs. Morcover, the thesis will focus on one such tool and its methodology that help to determine the
exccution time of a program — the Source Level Oriented Timing Tool (SLOTT), operating appropriately
at the source level. A number of diffcrent test procedures, that evaluate SLOTT, will be implemented. The
results of thesc testing procedures will be analyzed to measure SLOTT's accuracy. To demonstrate the tool's
flexibility, adaptability and modularity, the thesis will describe and test its implementation on the 680X0
clnss hardware.

1.4 Thesis Outline

Chapter 2 starts with an overview of languages used for real-time programming and outlines conventional
methods and tools for software development, debugging, and troubleshooting. The chapter concludes with
the review of the latest developments in the performance and reliability guarantee analysis research.

Chapter 3 presents the theoretical aspects of collecting the timing data, and all language structures that have
to be considercd. SLOTT's features and structures are discussed along with the process that describes how
SLOTT gathers the timing information.

Chapter 4 goes into implementation details with regards to any compiler. It gives an introduction to
compilcrs by describing how their individual components work, and what modifications have to be
performed to incorporate SLOTT inside the compiler. Additionally, compiler independent tool parts will be
described. Also, implementation aspects, that relate to a widely available C compiler ~ the GNU C

compiler, will be given,

Chapter 5 presents the evaluation results of SLOTT that have been gathered by running several test
programs. These programs are aimed at certain groups of CPU instructions and specific CPU properties;
consequently, they are very specific to what they are trying to accomplish. As real tests, several of real-time



and of general nature procedures have been tested and then compared with the actual execution time values.

Furthermore, a number of the procedures were tested on a different hardware system to demonstrate the
flexibility of SLOTT.

Chapter 6 concludes this thesis by outlining several issues that have not been covered in this work. It
shows further steps that might be undertaken in the future to enhance the timing utility.



Chapter 2

Reliability Guarantee of
Real-time Systems

The purpose of this chapter is to introduce some real-time systems that have been used by the scientific
community and industry, identify their common deficiency — the lack of timing aspects and schedulability
analysis , and present tools that have been used to compensate for this deficiency of time evaluatioft. The
schedulability analysis is a term introduced by Stoyenko [Stoyenko87], [Klingerman89], [Halang91). A
program is said to be schedulability &nalyzable if the program deadlines can be determined at compile-time.
The tools can be classified into two categories — (1) those that arrive at the timing values by testing the
program and (2) those that predict the execution time directly from the source code. The Source Level
Oriented Timing Tool (SLOTT) is an example of the latter group.

2.1 Languages Used for Real-time Programming

Real-time languages are differentiated from other programming languages in several aspects. They must be
reliable (or secure), and should allow multiprogramming and synchronization of several processes. They
should also present themselves as maintainable programming environments, able to handle large projects.
Since the rcal-time programs manipulate and control hardware, they should have easy access to the hardware
they handle. The real-time programs are designed to run for the lifetime of the systems they control.
Conscquently, it is not surprising that the most important aspect of any real-time system is the knowledge
whether the tasks can exccute within the specified time constraints, To obtain this information, the
programs must be fully tested or they must be designed on systems that allow time analysis.



Real-time languages can be divided #nto several categories: the early real-lime languages, process
control languages and concurvent languages. Even though some languages are not classified as real-time,
they lend themselves as good envisronmetits for designing some real-time applications.

2.1.1 Predecessors of Real-time Languages

Initially, the real-time systems were programmed in low level assemibly languages because they were the
only practical way of achieving efficiency. Early real-time applications often ran with "ad hoc” programs
developed for one specific purpose [Ripps89]. Cooling[1991] points out that Sequential languages
(FORTRAN, COBOL, ALGOL) were the first widely used high level languages but they have generally
been ignored for real-time work.

The mass production of microprocessors prompted the development of high-level languages aimed at
the direct microprocessor programming and easy "ROM-ability” [Leigh88). Microprocessor manufacturers
developed their own languages designed specifically for their line of microprocessors such as PL/M and
MPL [Cooling91).

The special problems of real-time programming were not fully appreciated until the 1960's when the

first real-time languages appeared. Since then, many real-time languages have been developed in a scarch for
the "ultimate” language.

2.1.2 Early Real Time Languages

The early real-time languages were concerned with the real-time aspects like concurrency, security, hardware
access while they tried to retain some of the features of other current languages like modularity and
maintainability. They also strived for efficiency. However, none have been concerned with the timing
aspects.

The earliest real-time language was JOVIAL created in 1959 as a standard for the U.S. Air Force. It is
largely based on ALGOL. Unlike ALGOL, it supports assembly coding, arrays and records. However, it
lacks: (1) exception handlers, (2) multitasking, (3) modularity and (4) provisions for schedulability analysis
[Halang91].

Another language that borrows from ALGOL is CORAL 66 which became the standard defense
language in the UK [Cooling91]. Similarly to JOVIAL, it does not support modularity and schedulability.

RTL/2 (Real Time Language Two), developed in the early 1970's, was considered by many a major
improvement over CORAL 66. Based on ALGOL-68, it was designed for industrial process control. Even
though it supports some concurrency and modularity, it is weakly typed, and has no provision for



schedulability [Halang91]. RTL/2 was used mainly within the chemical industry, but otherwise it has not
made a significant impact on other real-time applications {Cooling91].

Currently, there is little future for the above languages since they are being replaced by more advanced
languages like Ada, Modula, PEARL and even C.

2.1.3 Process Control Languages

Process control systems are sometimes referred to as "command and control” systems. The primary
objective of such systems is to monitor the sensory input from the outside world, evaluate the information
and react accordingly by controlling the external components [Yourdon72]. The main characteristic of such
systems is their fast response time. Even though there have been many languages designed for process
control, this section will outline only two, one that shows the most potential, the other that stands on its

own.

2.1.3.1 PEARL

PEARL (Process and Experiment Automation Real-time Language) was designed in the early 1970's by a
group of German rescarchers and is now widely used throughout German industry. It was designed by a team
of clectrical, chemical and process control engineers based on their practical experience in industrial
automation [Halang91].

PEARL is a Pascal-like language which provides low level peripheral constructs, 2oncurrent features
for task scheduling and the expression of time constrained behavior. Unfortunately, £ RL has a number
of shortcomings: (1) the lack of well-structured synchronization primitives, (2) unstructured exception
handling facilities, (3) no means to interrogate tasks and resource states (4) and insufficient provisions for
schedulability analysis. Halang[1991] indicates that recent research is underway to enhance PEARL to
PEARL 90 thereby eliminating many of the above deficiencies.

2.1.3.2 Forth

Devcloped in the late 1960's and commercially available since the early 1970's, Forth has been described
"a language apart” [Dettmer88). Forth is a language, an operating system, a set of tools, and a philosophy
[Brodie82]. It was created because as the author, Charles H. Moore, put it - "the traditional languages were
not providing the power, ease, or flexibility” he wanted [Brodie81]. Forth became quite popular and is nsed
in a number of process control applications. Forth differs from other real-time languages in that it is a stack
oriented language of interpreted nature'. It is very easy to use for prototyping small real-time systems that

! Forth uses vectored exccution and incremental compiling to speed up the run-time execution.



do not require complex coding. It allows direct memory access. The disadvantage is that it is not modular,
does not support any higher-language constructs, has basic cxcepticn handling and no provisions for
schedulability analysis.

2.1.4 Concurrent Languages

Concurrent programming is the name given to programming notation and techniques for expressing
potential parallelism and solving the resulting synchronization and communication problems [Ben-Ari82).
Several concurrent languages have been developed, most notably, Modula-2 and Ada.

2.1.4.1 Modula and Modula-2

Although Modula, later upgraded to Modula-2, takes many of its basic features from Pascal, it was not
intended to be Pascal's successor. Modula is designed to run on a bare machine with no operating systcm
support [Young82]. A stated aim of Modula was to allow onc write programs entircly in Modula, without
resorting to assembler. Modula does not have a formal standard? and it is viewed by some as a stepping
stone toward Ada [Cooling91]. Modula is well structured with strong type checking, allows direct hardware
access and synchronizes its processes via wails and signals. Never: ‘3less, it lacks some real-time
characteristics, namely, language-level exception and ervor handling and provision for schedulability analysis
{Halang91].

2.1.4.2 Ada

Ada is not an outgrowth of any existing programming language but its development was influenced by
Pascal, ALGOL, Simula, PL/1 and to a lesser degree by FORTRAN, BASIC and COBOL [Katzan84]. Ada
is a large and complex language whose importance is stressed by its mandate from the U.S. military and
defense agencies. It is a typical "design-by-committee” product whic’ includes just about every conceivable
feature in a modern language. Ada is hard to learn and requires & farge amount of run-time support which
makes it difficult to produce efficient code. Furthermore, Ads makes few provisions for schedulability
analysis {Halang91).

2.1.5 Non Real-time Languages

When Kemighan and Ritchie designed C in i%¥1 :eir purpose was to give the programmer a lot of
flexibility at both the higher and lower leve? - using higher level language constructs. C is rapidly

2 However, a BSI/ISO standard is in its final approving stages [Cooling,91].



becoming onc of the most important and popular programming languages [Cooling91]. C's popularity is
duc 10 its efficiency, compactness, expressiveness, modern control structures, access to low level, absence
of restrictions®, advanced development environments and availability of design tools {Cooling91],
[Harbison84), [Kemighan88].

Stroustrup's C++ is an object-oriented language that is based the C language. There is no doubt that
C++ will become a major force in certain programming areas [Cooling91]. Major computer manufacturers
(iBM, Apple) have made serious commitmemts to C++ for designing future operating systems. RTC++ is
an atiempt (0 add real-time features to C++ [kshikawa90].

2.1.6 Survey Summary

Even though not every possible language has been surveyed, the evaluation demonstrates that none of the
languages give any provisions for schedulability analysis (except Real-time Euclid that will be described
later). They do not provide any means for determining the execution time of the source code, or limiting its
execution 1o 2 certain, pre-specified amount of time. There are two ways a programmer can be assured of the
time bounds: (1 subject the code to operate under real conditions and measure the running time with hi-tech
electronic eguipment, or (2) use one of the timing tools described in section 2.2

Unfortinately, there is not one "best" real-time language and, as a result, the choice has been narrowed
to a handful of forerunners - C, Ada, PEARL and Forth.

2.2 Time Evaluation and Design Tools

Due to the nature of real-time systems, programmers in this area always needed more hardware and software
support than their colleagues in traditional sequential programming. Many tools have been developed over
the years specifically to support this task - debuggers, monitors, counters, event stream loggers,
performance analyzers, profiless and simulators - the last two being of most significance for real-time.

The conventional tools are not effective for testing and timing of the time-critical part of the code because
they exhibit an inherent weakness, analogous to the Heisenberg uncertainty principle in physics, that by
altempting to measure a phenomenon one changes the very nature of the phenomenon [Yewrdon72]. Each
tool or service, by using some portion of the CPU time or other system resource (¢.g. memory), can
influence or even disrupt the internal balance of the system. For real-time systems this disturbance means
that the timing of execution and response times can be significantly affected by the timing tool itself.

3C supports type definitions, but they are left to the programmer’s discretion and thus are not an impediment for
an experienced programmer.
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Next two sections will cover two tools that require programs to be rin in order to determine the

execution time. The last group, presented in the last section, works at source level, gathering timing
information directly from the source code.

2.2.1 Profilers

A profiler is a software tool that records how much time each function or procedure takes to execute.
Depending on its design, profiler calls are inserted into all or selected functions. During exccution,
whenever a profiler call is encountered, a local hardware timer or a timing service is called. Information
about the calling function and duration of execution is recorded into the memory block reserved by the
profiler before program execution [Horspool86). The timing units vary for each implementation with
resolution in order of milliseconds on a typical UNIX systems down to 1 microsecond wher. hardware
timers are available on a single user system.

On a single user system the profiler can record how many times each procedure was called, the
percentage of profiling period spent in the procedure and minimum, maximum and average time spent in
each profiled procedure. The summary is processed and displayed after the program completes its exccution.

Although profilers are useful tools for identifying software bottlenecks their interference with the program
execution flow can be objectionable in some applications. The more profiling data is gathered and saved, the
more overhead is generated. The trace option (available through some profilers) generates a call-tree of
procedure calls which can be especially overwhelming for most programs [MIPS89).

Further difficulties arise with profiling programs on time-sharing systems where time-slicing makes
time measurement particularly complicated. Profiling then has to resort to statistical distribution of samples
taken during execution. This means that in order to represent distribution of sampled data correctly, the
program must run long enough. However, if sampling is done t00 often the intcrruptions to program flow
will either overwhelm the program or defeat the purpose of profiling. To alleviate the situations some
simplifying assumptions, such as calls to a specific routinc require the same amount of time to cxecute, are
usually made.

To test the program properly under different conditions, all or most important combinations of the

whole range of input parameters must be profiled. This process in itself can be a difficult and time
consuming task,
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2.2.2 Simulation

For at lcast 25 ycars, simulators have been the most powerful analytical tools available. A simulation
program cnables a user to test and debug programs on a computer other than the target machine [Liu91]. It
is a program (a mathematical model) which imitates the actions of the real system (a physical model),
usually a new design or a part of the new design [Head64]. The simulation program is written to run on an
cxisting computer and simulates generation of interrupts and performs Input/Output functions in real-time.
Special packages such as SCERT or languages designed for simulation (SIMULA, SIMSCRIPT, GPSS III,
SPL) arc usually used {Yourdon72]).

A typical input to the simulation program might include the size and speed of the proposed CPU,
memory allocation, layout and speed of the communication paths, loading peaks, priorities, etc.
Simulation programs are not only able to reproduce the sequence of events expected in real systems, but
also they can scrutinize normal, as well as abnorinal, behavior of any part of the system [Burns90).

Design usually becomes an interactive and iterative process. The process allows both the user and the
simulation program to cooperate and share the task of performing the simulation {Buxton68]. Repetition of
simulations with different input parameters results in a redesign effort or revision of componeats. The new
configuration is submitted for further simulation and the process is repeated until satisfactory results are
achicved.

As wonderful as this approach looks, there are formidable practical drawbacks — simulation is simply too
cxpensive! Simulation, of all but very simple systems, is a non-trivial process requiring a team of
specialists, expensive hardware and software resources® [Burns90). Since simulators are real-time systems,
they themsclves must be thoroughly tested. Input data must be presented in the form required for the
simulation to avoid the well known axiom "garbage in, garbage out”. High hopes and faith that the real-
time researchers have been putting into simulation are slowly disappearing — simulation programs just are
not very useful when it comes to real-time {Ganssle92).

2.2.3 Source-level Time Analyzing Tools

Real-time research of the last decade has been focusing on improving performence of systems and finding
methods which would guarantee performance requested by the design specifications. This need came as a
direct consequence of the inability of conventional methods and tools to provide such assistance for the real-
time designer.

4The NASA shiittle project simulators cost more than the real-time software itself, However, the money turned out
to be well spent - many system errors were found during simulations {Bums,90).
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Real-time software must be guaranteed to meet its timing constraints. Stoyenko{ 1987], Klingerman([1989},
Halang[1991) believe that a real-time language must be designed such that its programs can be
schedulability analyzable. The result of this research effort is a new experimental real-time system and a
language called Real-time Euclid . This language provides most features that arc required from real-time
lenguages: security, concurrency, modularity, hardware access, maintainability, efficiency, and most of alt,
schedulability.

The knowledge about the maximum execution iime (MAXT) is of utmost importance in rcal time systems.
A brief introduction to the subject, definition of MAXT as well as problems associated with the MAXT
calculation are discussed by Puschner[1989). The MAintainable Real-time System (MARS), developed by a

research group at the Technical University in Vienna, is a real-time design environment based on the
MAXT calculation.

A Source-Level Timing Schema (SLTS), based on a belicf that the software timing propertics should be
specified and verified at the source-level rather than at the assembly or machine levels, has been devcloped at
the University of Washington [Shaw89, Park91),

2.2.3.1 Details of RT Euclid, MARS-C and SLTS

All three above approaches use the source level code and a compiler, or part of a compiler, to determine the
timing information. AH approaches require that a certain limitation be imposed on bounding loops,
recursion, pointers to functions and thc GOTO statements.

Real-time Euclid is a language designed specifically to accommodate schedulability analysis by using
special real-time constructs such as the noLongerThan statement. The schedulability analyzer determines the
process frames from the token file produced by the compiler.

MARS-C uses special language timing constructs (language extensions} called markers, scopes and loop
sequences. They are embedded in the MARS-C programming language. The calculation of the MAXT is
done in three phases. First stage saves iniformation about the program structure in an intermediate file by
parsing the pre-compiled MARS-C soutce code. An intermediate file containing information about program
structure is created along with a C source code. Then a C compiler is run that in tumn creates an assembly
file. The second part aligns the saved constructs with the assembly instructions, calculates the MAXT as
the sum of partial MAXT's of all primitives, sequences, alternatives, loops and subroutines and saves the
data in another intermediate file. The third stage analyzes the timing data.
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SLTS is based on the time prediction derived from the deterministic bounds of execution times of
clementary expressions (called atomic blocks), comtrol structures, statements and procedures. The timing
tool consists of a preprocessor and a language analyzer. The preprocessor interprets user commands and
preparcs compiled assembly code with atomic block markess of the source program. The language analyzer
includes the parser of the GNU C compiler modified by adding several lines of code which allows the parser
of the timing tool to mark the atomic blocks. When an atomic block is identified the tool predicts what the
object code will most likely be, and the corresponding execution time is looked up in the target machine
timing table. Even though SLTS exists on its own, it can be used to predict the timing information only

for thc compiler and the compiler settings that the atomic blocks have been calibrated for.

2.2.3.2 Comparison of RT Euclid, MARS-C and SLTS

Park's and Shaw's schema has some, arguably considerable, language limitations such as the lack of the
floating point calculations and the lack of support for important language constructs (such as FOR, DO,
SWITCH). Even though RT Euclid excludes floating point operations (MARS-C does not deal with this
issuc), RT Euclid can be extended to support the floating point operations once a floating co-processor is
added into the hardware and compiler is extended. SLTS, on the other hand, is inherently restricted in its
design to allow any operations that would require library calls. Addition of an FPU into SLTS will result in
morc complicated prediction strategy that will fead to larger range of errors.

MARS-C loop markers add extra overhead in order of 2%. Even though SLTS uses WHILE loops, the
actual interpretation of this loop resembles the FOR loop since all loops have to be bound during the
analysis step. Both RT Euclid and MARS-C system accept only bounded loops. While RT Euclid bounds
loops only to a number of iterations, MARS-C allows iteration or time bounding.

RT Euclid and MARS-C do not allow recursive function calls. Since the authors of SLTS do not
clarify this issuc, it can be assumed that SLTS cannot deal with the recursion either. Examples given by
Park{1991] demonstrate only non-recursive functions.

Only RT Euclid can determine timing values of an optimized code (provided the compiler supports
optimization). SLTS and MARS-C are inherently limited to consider any global optimization. For
example, SLTS cannot predict atomic block content of potentially optimized code, and MARS-C might not
be able to align generated code with the source-level markers, especially if some constructs are removed,
their conventional structure changed, or if instructions are re-organized. For the same reasons, MARS-C
could not be uscd with RISC architectures that rearrange the code in order to suit RISC code generation
stratcgy.

RT Euclid and MARS-C arc proprietary systems, still under development, and this significantly limits
their accessibility for experimental and academic research. Moreover, MARS-C can bz used only with

compilcrs that gencrate an assembly language file as an intermediate output.



Chapter 3

Timing Tool Basics

This chapter will describe the basic approach of SLOTT, its timing mcthodology, its featurcs and
restrictions and steps that are involved in predicting the exetution time. All source code cxamples will refer
to the C language constructs.

3.1 Methodology of the Timing Tool

After reviewing the tools, we have concluded that it is important the timing methodology is
language/compiler independent; the tool is casily modifiable for other hardware, gencrates timing
information that is precise and accurate and reflects the generated code. The tool should not try (o predict
the execution time by guessing the generated code. It should allow precisc alignment between constructs
and corresponding instructions and should not exists as a preprocessor and post-processor to the compiler
like in the MARS-C approach to avoid any misalignment problems. Knowing all these requircments and
essentials, it is easy to conclude that the tool has to be implemented as a part of the compiler. In fact it has
to be an integral part of it. The implementation should be similar to that of Stoyenko's[1987] approach in
which the timing data gathering part is designed as one of many compiler's units.

3.1.1 General Aspects

Since the tool is being implemented as a part of the compiler, its implementation should be transparent
to the compiler itself, i.e., the tool should not hamper or even alter in any way the compilation process. The
tool can just observe the compiler-specific data without changing them in any way, while the tool-specific

data should be separate in their scope, context and meaning from the compiler data. However, in order to
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communicate with the compiler, the tool must use the same types and structures the compiler defines and
uscs. Among other requirements, the tool's presence should not force the user to restrict his choice in
picking out proper constructs from the language's selection. In other words, the user should be allowed to
usc all the language's constructs. It is only the time critical parts of the code that need most attention from
the user. Here the programming style should be limited to only those options supplied by the tool if the
timing valuc nceds to be determined.

Figure 3.1 demonstrates the basic layout of SLOTT and its integration into the compiler. As the figure
indicates, SLOTT does not constrain the compiler's actions in any way, rather it expands the compilers
functionality. Notice that SLOTT produces output independent of the compiler’s output — the intermediate
timing file. This file is later used by the second, and compiler independent, part to generate the timing
output. Also, if some of the loops are not bound after the compilation process, the analyzer will either ask
the uscr for the bounds, or produce a formula that describes the timing,

Source »| Compiler Compiled
Block "1 Output
Y
SLOTT | ermediet® ] | Tiing Timing
Block F“:g Analyzer Output

Modified Compiler

Figure 3.1 - Incorporation of SLOTT it a compiler.

3.1.2 Program Markers

The timing tool provides markers, much like in MARS.C, that direct program flow and set up iteration
bounds on loops and other structures directly by the programmer within the source code. This approach is
more user-friendly than the timing schema approach where the limits have to be defined each time the tool
is run. Contrary to MARS-C markers, these markers are defined in such a way that they do not cause any
problems when compiled on a compiler that does not have this tool built in, i.e., if the markers are not
recognized by the compiler, they are simply ignored during the compilation process.

These marker: in C are provnded inside #pragma statements. By definition, anythmg declared inside
the #pragma statement is assumed to be compiler specific. Thus if the compiler can recogmze the
meaning of the #pragma contents, it will perform appropriate action; if the meaning is unknown to the
compiler, it will skip the whole #pragma statement.

15



The implementation of these markers resembles a procedure call with the values specified in
parentheses. Both strings and numbers are passed without any delimiting charactcrs, and there can be more
than one marker specified within one #pragma statement; these, though, have to be separated by a comma
or a semicolon. The placement of #pragma statement is very important since the information of the
markers refers to the structure that is being defined next. The markers are not case sensitive, thus max_ic
is the same as Max_IC.

3.1.3 Timing Blocks

A timing block is a structure that collects the timing information. The length of a timing block can
range from one line to a whole function definition. A timing block is defined by two markers - stiming
and et iming - used in conjunction with #pragma command. The first marker creates it, the second one
ends it. Timing blocks can be nested but they cannot overlap each other. The timing block can be ended
only on the same nesting level it has been defined. SLOTT guards against accidental misplacement or lack
of the et iming marker. If such a situation occurs, SLOTT will either ignore the marker or finish the
timing block when the nesting level terminates, respectively. Therefore, it is acceptable to omit the
etiming marker for the timing block that spans a whole function, or lasts until the end of the nesting level
on which it is defined.

Another approach to define a timing block is to use a ncwly defined reserved word, like STIMING.
This method insures that the compiler will keep the proper nesting level for each timing block and will
disallow overlapping definitions, i.e., each timing block will be treated as a statement or a compound
statement. Ergo, it is not necessary to define a reserved word for ending the timing block since the block
boundaries are delimited by symbols that are used for bracketing compound statements. Despite its
struciural approach, this technique renders itself incompatible with the language standard. Consequently, to
compile a SLOTT code on a non-SLOTT compiler will require commenting out or deleting all the
occurrences of the STIMING reserved word. In addition, if a timing block needs to span a whole function,
most compilers have to be informed of the start of the timing block before the function definition.

Therefore, reserved word approach will not be able to time out the whole function, just the function body.

3.1.4 Bounding of Looping Constructs and Recursive Function Calls
3.14.1 The Need for Loop Bounding

All tools described in section 2.2.3 consider iteration-bound loops. The Shaw's and Park's WHILE
loops are bounded by the maximum number of iterations — these numbers have o be interactively entered
during the timing tool execution [Park91]. Stoyenko's analyzer has only FOR loops that must be iteration-
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bound before the compilation phase [Stoyenko87}, and Koza's and Puschner's MARS-C system uses
iteration or time bounds for their loops [Puschner89]. Loop bounding is appropriate for real-time
procedures since onc must know beforehand what the maximum iteration count or time will be. However,
this should not be the only option left for the programmer. Thus in our approach, if tiiis upper bound i not
specified, the user will be later asked for the value during the evaluation/analysis phaée. This option might
even be favorable in some cases since the user can omit the loop iteration bound in order to study the “what
if" situations later during the time analysis phase.

3.1.4.2 SLOTT Bounding Markers

Loop markers allow a programmer to define the upper and the total (or exact) bounds of any structures
inside loop(s) or loops themselves. There are two markers that bound the loops: max_ic and total_ic,
both taking a number that specifies the upper bound and total iteration count for the given structure that
immediately follows the #pragma statement.

There is also a difference in the usage of max_ic and total_ic markers. This difference is defined
not for SLOTT compiler part but for the evaluation tool which will reconstruct the execution time from the
timing data. The max_ic marker sets the upper bound for loops; the total_ic marker specifies the total
(exact) iteration loop count that is defined by the current and outside loops. Thus a loop that is marked by
the max_ic will have its bound updated by the bounds of each outside loop. On the other hand, loops
bounded by the total_ic marker will be treated as a unit outside the loops they are defined in. As an

example consider the following source fragment:

for (i=1; i<=100; i++) { /* Outside loop */
#pragma max_ic (1000) /* Maximum number of iterations determined
empirically before the program execution */
while (true) { /* WHILE loop bounded by max ic */

}

fpragma total_ic (5050)
for (j=0; j<i; j++) { /* FOR loop bounded by total ic */

}

The WHILE loop will be bounded by 100*1000 = 100,000 iterations, by both the WHILE and the outer
FOR loop iteration bounds. The second FOR loop, though, is treated as a scparate entity as if it did not
belong to the outside FOR loop. Consequently, the iteration count will be defined as a number calculated

using this simple formula:

Q)+ a4+ .. 8y = 2i0;=((a; + 3)*n)2

17



Therefore the itesation count is (100+1)*100/2 = 5050, and it is no longer affected by the outside loop
counts. The total_ic marker is then used to bound loops whose iteration count is not defincd as a
constant value, but rather as a variable that is dependent on outside factors that can be resolved only by the
programmer.

3.1.4.3 Bounding Execution Time

In some cases it is also possible to know the maximum number of repetitions a specific piece of code
will be executed inside a loop. This means that the code is executed only during some loop iterations when
a certain condition is satisfied. The calculated exccution time will be more accurate since only those
iterations that satisfy the condition will be considered. As an example, consider the following FOR loop
with the IF-THEN statement in C:

for (i=0; i<1000; i++) {

if (i < 500) {
ees /* Some code in IF-THEN statement */
}

/* FOR loop ends here */

Without taking into account the maximum number of iterations for the [F-THEN statcment we would have
to use the same number for the IF-THEN statement as for the whole FOR loop; however, knowing the

“upper bounq we can now determine the execution time of the FOR loop more accurately. In this example,
the improvement is almost two fold (if we do not consider the testing and updating of variable 1).

Currently, the iteration bound of selection structures (IF/ELSE and SWITCH) is restricted only to the
total_ic marker. The total_ic defines the total iteration count the body of the structure will be used.
Thus the previous example could be written with the markers in the following way:

for (i=0; i<1000; i++) {
#pragma total_ic (500)
if (i < 500) ¢
e /* Some code in IF-THEN statement ¢/
}
/* FOR loop ends here */

This feature has been described only in Koza and Puschner's MARS-C timing tool [Puschner87). The other
twols do not consider it at all. Since our design already takes into account the maximum number of loop
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iterations, the éxtension for the other constructs, like IF-THEN-ELSE and SWITCH/CASE statements, isa
straightforward addition.

3.1.4.4 Recursive Function Calls

Although all aforementioned tools forbid the use of recursive function calls, this feature is important
and thus it should not be climinated from the programmer’s options. It should depend on the designer to
make sure the recursive function calls are bounded especially in the time critical code that is to be timed.
As Koza and Puschner{1989] mentioned in their paper, it is possible to eliminate recursive function calls
using iterative techniques [Darlington78). However, this is very close to the problem of defining iteration
count for loops. Thus, if one can resolve a recursive function call as a looping construct bounded by the
upper limit for iterations, it is also possible to upper-bound a recursive function. Therefore, in this
implementation it will be possible to specify upper bounds on directly recursive function calls. Notice that
it is difficult to determine or even predict recursive nature of indirectly recursive function calls (ie.,
function A calls B which in tum recursively calls A).

The bounding of recursive function calls reserables loop iteration bounding, Bothmax_ic and total_ic
markers arc supported. Since C allows function calls within function definitions, it is important the
recursive function not include any functions in place of its arguments. Otherwise, the bounding value will
apply to the first function that is called as an argument. The following cxample will bound the
traverse_tree () recursive procedure to the maximum of 100 recursive function calls. Again this
value has been cmpirically determined be the programmer to be the maximum value. However, if this value
is unknown, or is affected by other factors, then the #pragma statement should be left out, and the
bounding should be performed during the timing analysis phase.

#pragma max_ic (100)
traverse tree (root); /* Recursively traverse the binary tree*/

3.1.4.5 SLOTT's Automatic FOR Loop Bounding

Onc of the SLOTT's strong features being implemiented as part of a compiler is the possibility to gather the
individual data during the compilation process. This means that we can track not only all variables that are
defined, but also the values that are assigned to these variables and the operations that are performed on
them. As a result, it is possible to determine the iteration count of some simple FOR loops. In fact, the FOR
loop structure is totally suited for automatic bounding since all the necessary operations are present in the
FOR loop definition: initialization, update, and end condition of the counter variable. Since C's FOR loops
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can vary in their complexity, we have to specify the conditions that must be met in order to determine the
loop iteration count:

(1) Within the FOR loop definition, the counter variable has to be initialized, tested and updated
only to constants.

2) The counter variable cannot be modified within the statements of the FOR loop body.

)] Only the b~sic operations are allowed for the variable update, i.e., addition, subtraction,
multiplication and division. However, the use of multiplication and division should be limited
since the result cannot be obtained if the multiplicr/divisor is negative, zero, or one; if the
bounding values do not have the same sign or one of them has a zcro value.

@) Both integer and float types are supported. Using floats should be restricted since the
calculated iteration count might not reflect the actual count due to the uncertain precision and
rounding problems of the float types used for predicting and actual execution.

() The counter variable can be a part of a structure or a union.

© The loop's terminating condition can contain only simple reiational expressions; expressions
having the AND or the OR logical operator will not be evaluated. Future version may deal
with more complicated expressions.

If any of (1), (2), (3) and (6 points cannot be satisfied, SLOTT will not be able to determine the loop's
iteration count. Total icund max_ic markers override the automatic FOR loop bounding.

3.1.5 Program Flow Statements

Special attention must be given to instructions that transfer contro! flow of a program outside the
current level. These instructions in C are BREAK, CONTINUE, RETURN and GOTO statcments.
Although their difference will be described later, it should be mentioned that only those control flow
instructions with predictable results will be considered, i.e., BREAK, CONTINUE and RETURN, in this
implementation of the timing tool. This leaves the GOTO statement out since it is hard to analyze a
program in which the execution path can jump all over the ptace. With sound programming techniques that
adhere to structured programming, it is possible to avoid the GOT!) statements altogether.

The BREAK statement affects loops and the SWITCH statement. It causes an unconditional jump (or
exit) out of the innermost loop or SWITCH statement. The CONTINUE statement is used only in loops
since it transfers the program control to the beginning of the enclosing loop. In the WHILE and DO loops,
it means that the program jumps to the loop's test condition; in the FOR loop, the control passes to the
update step. The RETURN statement simply exits the current function with the value that is specified in the



RETURN statement [Kemighan88a). Section 3.3.4 prt < u6kis mmes w2 . +bemt low SLOTT deals with
these control statements.

3.1.6 Informing SLOTT of Program Flow

Sometimes it is obvious what selection from the IF-THEN-ELEY «nd the » " TCH/CASE statements
has to be considered or omitted during the analysis phase. In mos: ¢ : ‘Siese circumszances the selection
applies to an error condition which under & normal situation wili not ixppen. Thus if the programmer is
allowed to climinate or fully consides one of the conditional statements, the extent of info"ovation needed
for evaluation and analysis is that much smalier. As an example consider an IF statemznt that </:-cks foran
error condition and if it is satisfied, the program teturns without any additional code ¢xetution:

if (anError) return (anErrxcr}:

Most, or all, of the time this condition should evaluate to FALSE and thus the return should not be
considered in the analysis step. Having markers that specify this kind of situation will simplify the timing
analysis and presentation of the results.

To specify the program flow, two markers have been implemented: node_skip and node_sel. The first
one eliminates the section from being considered, thus leaving the other altematives as the only choices for
the analysis. The second one uses that segment all the time; therefore, eliminating all other possibilities
from being considered during the analysis step. The selections are specified by a number starting from 1.
The IF-THEN part is 1; the ELSE part is 2. For the SWITCH statement, the numbers apply to the individual
CASE statements in the order they are defined.

Using the previous example:

#pragma node_skip (1)
if (anError) return (anError);

this one will not consider the TRUE condition of the IF statement in the time analysis step.
None of the aforementioned source-level timing tools describe this option. Even though it is not as

important as the possibility of bounding loops, its: usefulness becomes obvious in fine-tuning the exact
program flow, thus eliminating unnecessary information and calculating more precisely the execution time.
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3.1.7 Inline Assembly

In some situations it is necessary to use the inline assembly language to produce more compact and faster
code. This is particularly required in real-time systems that try to utilize every feature of their hardware.
Thus if the hardware contains an FPU, the programs should be able 1o exploit the FPU instructions for all
floating point operations rather than to use library calls. Some compilers though cannot produce FPU
instructions for transcendental and trigonometric instructions. Consequently, inline assembly instructions
must be used to compensate for this deficiency. Our implementation of SLOTT is abie to register every
assembly instruction - of either compiler or user origin.

This need for inline assembly has not been addressed in any of the source-level timing tools. However, this
feature might be adopted in RT Euclid and MARS-C if the compilers support the inline assembly. The
timing schema on the other hand would have to be modified to directly recognize not only the C language
instructions, but also assembly language instructions.

3.2 Theoretical Approach to the Execution Time Prediction

In order to predict the execution time of a function or even a part of a function, one needs to understand the
structures of the high-level language. Sequential languages such as Pascal, C, Ada, Modula-2, eic. share
certain basic constructs, although they may take different forms.

3.2.1 Basic Constructs of a Procedural Language

The basic constructs can be divided into these categories: simple statements, compound statements,
conditional statements (or alternatives), loops and individual functions [Puschner89). Unlike MAXT!, a
term that has been defined by [Puschner89], a similar term will zefer to the Predicied Execution Time
(PET) value. PET can refer to any user-defined option: minimum or maximum.

3.2.1.1 Simple and Compound Statements, and Functions

Simple statements ara 4ty Mstructions that cannot be broken down by the parser into simpler units.
These can include simple constructs or expressions. The execution time of such an expression is just'the
sum of all CPU/FPU instructibtis that have to be generated to execute the expression:

PET (simple) = t (simple) (1)

Y Maximum Execution Time.



where 7 (exp) refers to the time value of all assembly instructions that make up the expression exp.

Compound statements contain any number of simple statements. Again the execution time is just a

straightforward addition of exccution time values of individual simple statements:
PET (compound) = 2; PET (construct;). 2)

A function can be divided into three sections: epilogue, body and prologue. The prologue sais up the
local frame pointer and saves important registers while the epilogue restores the registers and the stack
pointer. The body represents all instructions defined by the programmer. The execution time of thé finction
is the cxccution time of the instructions that make up the three blocks:

PET (function) = PET (prologue) + PET (body) + PET (epilogue). 3]

3.2.1.2 Conditional Statements

Conditional statements are composed of a conditional expression and a statement or a compound
statement that follows the expression. In C/Pasca? these constructs are represeated by the IF-THEN-ELSE,
and the SWITCH/CASE statements respectively.

The execution time of a conditional, the IF-THEN-ELSE statement, can be calculated in two ways. In
the first case, the timing value Tcs is just an addition of the execution time of the conditional expression
Teons and one of two alternatives (Tyr or Tgrsp):

o Tes = Teons + (Typor Tese)

The other option assumes only the time of each alternative, leaving the ¢conditional time to be considered
outside the execution time of the whole conditional statement:

Tes = op(Trr , Terse)
where op is the max or min operator.

Since it is not important how we keep track of execution time of conditional statements, the latter approach
is more compact — the execution time of any conditional statement will be expressed just by timing
information of the selected branch leaving the timing information of the conditional.expression to be
considered outside the conditional statement. Additionally, the implementation is much simpler since the
steps in gathering the timing information follow the compilation process. If the minimum/maximum
execution time is desired then the time is just the min/max time value of all the alternatives.



Some compilers perform short-circuiting in the evaluation of a conditional expression. In other words
if the truth value of the conditional expression can be satisfied without evaluating all sub-cxpressions, a
jump is taken to the appropriate conditional staiement. This feature leads to a faster execution. Some
compilers; however, have to evaluate all conditional sub expressions. For example, if a programmer were to
test a field of a dynamically allocated structure, he would have to check for the presence of that structure by
examining its pointer first before any testing of that structure's field. In non-short-circuiting conditionals,
this would have to be accomplished with two IF-THEN statements, while in short-circuiting versions, one
conditional statement would be sufficient with two sub-expressions in the conditional expression.

Since time evaluation can consider short circuiting only if the values of all variables involved in the
conditional expression are known, the non-short circuiting has to be assumed. Therefore, the timing valuc
of the conditional will be calculated for the whole expression. This also wouid have to be assumed for the
worst case evaluation anyway.

The PET value of the conditional is then defined as:

PET (conditional) = op (PET (stmt,), PET (stmty), ..., PET (stmt,)) [4]
where
op defines either maximum or minimum PET value of selection statements ] through n;
PET (condition) is considered inside the construct that defines the conditional.
3.2.1.3 Loops

Loops dre similar to conditional statements with an additional jump instruction that transfers program
flow back to the conditional expression (WHILE, FOR loops), or to the beginning of the loop depending on
 the evaluated condition (DO-WHILE/REPEAT-UNTIL loops). Contrary to conditional statements, the
execution time of a loop is the sum of the time taken for the evaluation of the conditional and all statements
inside the loop multiplied by the number of loop iterations. Some loops include the initialization of
variables, like the FOR loop, so these initialization instructions must be included in the overall calculation
of the execution time. Even though present as the part of a loop, the initialization part has to t¢ ex:luded
from the leop's execution time. Rather it has to be defined as a part of the code in which the loop is defined.
The following FOR loop

FOR (i=0, j=1, .<etc.>; <conditional>; <updat:e>) {
/* Statements inside the loop*/
}

is the same as;

24



i=20;

j=1;

<etc.>

FOR (/* empty */; <conditional>; <update>) {
/* Statements inside the loop*/

}

In order to determine the execution time of a loop exactly, we must know how many iterations a loop will
execute. Even though we are calculating the worst case execution time, the best case will have to include
minimum loop count. The minimum loop count of both the WHILE and FOR loops is defined as zero,
while the DO loop is defined as one. Thus there will be two definitions for loops; one for WHILE and FOR

loops:

PET (loop) = PET (condition) + ic * (PET(condition) + PET (loop_body)) {51
and the other for a DO loop:
PET (looppe) = ic * (PET(condition) + PET (loop_body)) [6]
where
ic is the loop's iteration count.

3.2.1.4 Execution Time Constructs Summary

This summary is presented in a Table 3.1 that describes the execution time of all the previously described
constructs in their mathematical form,

Constmgt/ Predicted Execution Time (PET)

- _ | PET (slmgle) T (simple)
compound PET (compound) = Y, PET (construct;)

conditional PET (conditional) = EPET (condition)]* + op(PET (stmty), pet (stmt,),....PET (stmt,))
RO {oop PET (looppo) = count * (PET (condition) + PET (loop_body))*

FOR/WHILE | PET (loop) = PET (condition) + count * (PET (condition) + PET (loop_body))*
[ loop

funcism PET (function) = PET gmloguez +PET gmz + PET gegilogue)

Table 3.1 - Constructs of a procedural language and their timing formulas.

Notes:
t(cxp) is the time of individual assembly instructions generated for exp.
op is either minimum or maximum operator.
stmty,.. .stmtnlsamlmclldmghnusedasadxoxceﬁomallopumsm:hecondmoml Py -
1 the execution time of this conditional is added to the construct in which the current conditional is deﬁned md
thus it is not considered as part of the conditional.
$ the iteration count for DO loops is defined to start from 1; other loop types start from 0.



3.3 Timing Process

The timing process is identical to the Real-time Euclid and MARS-C system, where both systems record
execution time of each instruction that is produced by the compiler. However, the two systems are different
in their approach to gather the timing information. Our approach resembles the Real-time Euclid in that
SLOTT has been implemented as part of a compiler. Before engaging oursclves in the process description,

we have to introduce structures that are used for recording timing information — timing dlocks and timing
nodes.

3.3.1 Structure of Timing Blocks and Modes

A timing block describes a chunic of code rhiat the user wants o time. The code length that the block can
record spans from one instruction to the v/hole function. Each block is defined by two #pragma markers
stiming and etiming (or a resecved word STIMING). Hence, each block knows its starting point,
ending point, name and what constructs belong to the block. More than one block can be defined for one
function; however, they have to be nested, i.e., they cannot overlap. The rcason for restricting the blocks to
resemble nesting of constructs is to prevent ambiguities such as this one:

ipragma stiming (time_blk) /* art timing block outside I¥ statemeny

if (cond) {
#pragma etiming (time_blk) /* Should end outside the IF statement */

b,
else {

}

where timing is defined for the IF-THEN statement but not for the ELSE statement! SLOTT makes sure
that bounding markers, for the timing block, are defined on the same level. The block's name is specified
with the st iming marker; it does not hav:: to be used with the et iming marker, If the st iming marker
is specified before the function definition, the whole function is timed. In this case the block's name docs
not have to be specified with the st iming marker if the block's and function's names arc intended to be
the same. Since timing block definitions can span at most one function, the et iming marker is not needed
at the end of the function definition because SLOTT automatically terminates all unfinished timing blocks.
As mentioned in section 3.1.3, the et iming marker can be left out whenever the timing block spans the
whole nesting level.



The timing node structurc maintains the timing information that is specific to one construct — either a loop,
conditional (sclection) statement or a function call. Each timing node holds timing information only for
those statements that are present inside the corresponding construct and that can be represented as simple
.expressions (table 3.1). This means that if the construct contains other complex expressions, i.e., other
constructs, then cach of them will be assigned a new timing node which will contain timing information
specific o that construct. Besides the timing information, the timing ndde also contains fields for accessing
other nodes on the same level, child level and parent level. If a timing block contains one or more timing

nodes, the first and last one are recorded in the proper fields of the timing block (Figure 3.2).

Timing Block Structure Timing Node Structure
*name *name
timing_infot timing_infot
*first_node type
*last_node max_ic
*next_block total_ic

*parent_node

*child_node

*next_node

t The size of the timing_info ficlds depends on the CPU/FPU configuration.

Figure 3.2 - Timing structures used by SLOTT.

Each timing block can access all the constructs defined in the block through its two fields — the
first_node and the last_node. These fields point at the timing nodes of the first and last constructs
defined on the same nesting level as the timing block. These fields are NIL if no construct has been
encountered so far during the compilation process. If there is only one construct, both fields contain the

same address value of the corresponding node.

The next_node field of a timing node points at the following node on the same level, and the
child node points at the first construct that is defined in the current construct. Each node can point only
at the first child; however, every child points at its parent node through the parent_node field. Thus the
rest of the children can be accessed through the first chifd and the next_node pointers of the child's

siblings.

Both the timing block and the node contain fields ior storing their names. The block’s name corresponds to
the symbol that has been defined with the st imit.g masker.at the beginning of the block's definition.
The node's name describes the current construct and all constructs that embody it, i.e., the name is built

up from construct abbreviations and numbers. Sach numbers indicate the order of the construct’s occurrence

27



on the lével it is defined. To demonstrate the formation of the nodes' names, consider the skelcton of the a

C function func () :

func ()

{
do { /* DO-WHILE 1*/

i.;hile ():

if () { /* IF 2 */
while () { /* WHILE 1 */
}
for () { /* FOR 2 */
if () /* IF 1 x/
continue;
switch () { /* SWITCH 2 */
casel: /* CASE 1 */
case2: /* CASE 2 */
break;
case3: /* CASE 3 *x/
return;
}
}
}
else { /* ELSE 3 */

The numbers in the comment fields represent the sequence of constructs defined on the same level. Thus IF
1 is the first construct defined in the FOR loop, and SWITCH 2 is the second one. All CASE statements
belong to one SWITCH statement and their numbering starts from 1. The name of each construct is the
concatenation of individual outer constructs starting from the outermost one. For our example, the names
will be defined as follows (listed in the order of appearance): dl, i2, i2wl, i2f2, i2f2il, i2f2s2, i2f252cl,
i2252¢2, i2f252c3, e3; where d, w and f stand for DO, WHILE and FOR loops respectively; i, e, s and ¢
stand for IF, ELSE, SWITCH and CASE statements. The nesting level is maintained for all constructs

during the compilation process even if no timing block has becn defined.

3.3.2 Maintenance of Timing Structures during Timing Process

Before the dynamics of the timing process, along with the creation and maintenance of timing structures,

are defined, several global variables must be defined: the ts_ptr, fts_ptr and cur_node. These
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variables arc pointers that support the timing blocks and nodes. ts_ptr and £ts_pt r are the timing
block pointers; the first one points at the link list of timing blocks whose constructs are just being parsed
through. The second one points o all those timing blocks whose constructs have been finished. Each new
timing block is inserted into the link list such that the ts_pt r points to the newly created block, i.e., the
pointer always points to the timing block that is the most current one. This scheme allows effective re-
linking becausc we do not have to be concemned with overlapping timing blocks that would require more
claborate design. This approach resembles FIFO method of the stack that is suited for maintaining nested
constructs. When the construct terminates, its timing block is re-linked in reverse order from the ts_ptr
link list and inserted into the link list pointed to by the £ts_pt r pointer.

The cux_node pointer points at the timing node whose corresponding construct is being traced
through. If the generated instructions are on the same level as the outermost timing block definition, the
cur_node pointer is initialized to NIL. If the construct finiskes, the cur_node is re-linked to point at the
parent node. This re-linking is accomplished by the parent_node fields of the timing node structures.

3.3.3 Steps of the Timing Process

The timing process consists of the following steps, not necessarily executed in the numerical order:

(1) For each timing block allocate the timing block structure and insert it into the link list pointed
to by the ts_ptr pointer.

2 Recognize cach construct, allocate a timing node for it and update the cur_node pointer.

(3) -+ Record the execution time of each instruction in (i) the timing node pointed to by the
cur_node if the pointer is not NIL; and in (ji) any timing blocks whose nesting level
corrésponds to the current parsing level (i.., the timing blocks that do not have any nested
constructs at the current parsing stage). .

@) As constructs terminate, the cur_node pointer is re-linked from the current node to its
parent node. If the parent node, thus cur_node, becomes NIL, then the timing information is
recorded only in the timing block structure (corresponds to the situation of step 3ii).

5) When the timing block terminates, re-link its pointer from the ts_ptr to the £ts_ptr link
list.

6) At the end of the function definition, terminate all timing blocks, write out the timing
information into the intermediate file, deallocate all structures and re-initialize the global

variables.



To illustrate this process, consider the following C code that outlines construct declarations in £nc ()

function and the accompanying Figure 3.3 that shows how these structures are created and maintained (the

letters in the comment fields correspond to the figure parts):

/* a */
#pragma stiming (£nc) /* b */

fne () {
i£ 0 d /% e %/
} /* d */
for { /* e */
#pragma.”stiming (if_else) /* £ %/
if 0 | /* g */

}
else | /* h =/

}
#pragma etiming () /* 1 */
} /* 3

}

/* k %/

The following are the comments that apply to the £nc () function:

(@
®)

)

(@

©

®

Before the function is parsed, all global variables are initialized to NIL.

As soon as the stiming marker is encountered, 2 new timing block structure is allocated and the
ts_ptr issetto point at it. The name of the block is set to fac. This layout will last throughout the
function definition until the first construct is encountered. During this staghs the timing information
is recorded inside the fic timing block.

This step marks the first occurrence of a construct where'a timing node is allocated. Both the
first_node and the 1ast_ncde along with the cur_node are set to point at the newly
created node.

Once the IF statement is finished, the cur_node is linked to the parent_node of the i node,
which in this case is NIL. Hence, all timing information is again recorded in the fnc block.

Another timing block is allocated for the FOR loop construct. The cur_node, next_node of the
il timing node and the 1ast_node of the finc block are all updated to point at the new f2 node.
This stage encounters another st iming marker. A new timing block is allocated; it is inserted in
front of the fnc block, and its name is set to if_else. The time gathering process will satisfy both
conditions (i and ii) of step (3) mentioned above, i.e., the information will be stored in both the
node pointed to by the cur_node and the if _else timing block.
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is encountered which will force the if_else timing block to be relinked from ts_ptrto fts_ptr,and cur_node
pointer 1o point at FOR loop (3). Section (j) shows the part when the FOR loop is teminated and the cur_node is set to
NlLuneenootherumamefollmtheFORhop.ﬂcwholeﬁnmﬁmMmdd’innicn(k)mdlheummbloekfot

the whole function fuc is re-linked from ts_ptrlofts_ptr.Au!ulpwllbcummgdmueolleuedfmnlbemnm
blocks and nodes. Finally, all structures are discarded and the global pointers are reset to NIL.



(g) The IF statement brings about allocation of a new timing node f2i1. This time the f2i] is created as
the child of the f2 node. Since the f2i1 node is defined on the same nesting level as the if_else block,
both the first_node and the 1ast_node of the if_else block will point at it. The cur_node is
also updated.

(h) The ELSE part of the IF statement is treated in the same way as the IF-THEN part meaning a new
node structure is allocated and named f2¢2.

(i) This part ends the if_else timing block. The corresponding structure is re-linked from ts_ptr to
fts_ptr. Since the ELSE has already finished, the cux_node is updated to point to the f2 node
of the FOR loop.

() By finishing the FOR loop, the cur_node is set to NIL.

(k) Finally, all timing blocks are removed from the ts_ptr link list and placed on the fts_ptr list
(k). The timing information is written into the intermediate timing file, all structures are freed and
the global variables are initialized to NIL, i.e., to resemble the first (a) state.

3.3.4 Treatment of Control Statements

When a control statement like BREAK, CONTINUE or RETURN is encountered, the time gathering
process is suspended immediately without terminating any node or block. This is necessary to avoid any
confusion when a code mistakenly follows the control statement. This means that SLOTT recognizes the
instructions and constructs, but it does not accumulate the timing information. The only situation when
SLOTT can discard any statements and constructs is after the RETURN statcment that appears in the
outermost layer.

3.4 Execution Time Analyzer

Once all the timing information has been assembled in the intermediate file(s), the second part of
SLOTT - the execution time analyzer - can be used to determine the final exccution time values of all
timing blocks and present them in more meaningful and understandable forms.

34.1 Reasons for Compiler Independent Implementation

It might not be that obvious, but the analyzer implementation that is independent of the compiler is not only
a very useful, practical and beneficial approach, but also a necessity and requirement.



The benefits include machine and compiler independent implementation, that permits analysis of programs
designed for different hardware configurations. Hence, the analyzer does not have to be implemented in a
specific language like C, but rather, it can be designed in any language and the timing information can even
be imported into programs like databases and spreadsheets.

Being implemented as a separate unit from the compiler, the analyzer is very easy to modify and to suit
any user's needs. Anybody can change the analyzer's code without actually touching any part of the
compiler. Moreover, the compiler carries a huge baggage of source code that is very time-consuming and
space-requiring to compile. In most cases, the source code is unavailable to the user for proprietary,
licensing or other reasons.

More importantly, the reason for splitting the analyzer from the compiler is to calculate the execution
time of timing blocks from the timing data. For example, a timing block can contain functions that are
defined before or after the current timing block, or even in a different file. In order to determinc the
exccution time of the block, we need to know the execution times of all the functions that are used inside
the block. Consequently, we would have to suspend the calculation of the block's execution time until we
gathered the timing information for all involved functions. Moreover, if any of the functions were defined
in a different file and have not been encountered during the compilation, then the compiler would have to
scarch for the corresponding function in all project files and forcibly recompile that file again in order to
obtain the necessary timing data. This would require very complex compiler modifications that would lead
10 time-consuming recompilations of already compiled source files. By having intermediate files containing
timing information, we can leave the compilation process and time gathering process for the compiler,

while the calculation process of the timing blocks is left to the analyzer.

»

3.4.2 Analyzer's Output

The analyzer can analyze liming data for different hardware. It is informed about the hardware
configuration from the intermediate file in order to decide whether it can deal with the specified hardware

and to know how many fields are defined to store the timing information.

If all timing blocks arc bounded, i.e., we can calculate execution time of every construct defined in the
blocks, then the analyzer's output for each block is a CPU/FPU count along with the time in seconds that is
derived from the corresponding count and frequency. However, if some of the constructs are not or cannot
be bound, then the analyzer can (1) iteratively ask the user about the bounds and thus produce immediate
answers (the “what if" situation analysis); or it can (2) generate a formula that will reflect the execution

time as a function of the unbound variables (iteration count).



To illustrate the analyzer's output when the loops are not bound, consider the following
SimpleStrMatch () procedure similar to the one that has been used in our evaluation process:

#pragma stiming()

SimpleStrMatch (tstr, pstr, tlen, plen)
char *tstr, *pstr;

int tlen, plen;

{
int i' j' k;

i=Fj=km=0;
while (j < tlen && k < plen) {

if (tstr[j] == pstrik]) {
j++;
k++;
}
else {
it+;
j = i
k = 0;
}

}
if (k > plen) return i;
else return j;

Since the while loop is not bound, the analyzer cannot determine the total number of CPU cycles. Instead, it
can produce the following output, that describes the timing information of the SimpleStrMatch time
block in terms of three functions. Each function represents a formula that describes execution time in terms
of CPU instruction timing table used and all the constructs involved in a timing block. Since MC68020 data
book gives three different timing values for every instruction - best, cache and worst - we have three

functions to'represent all three cases.

Program Structure and its variables:
WHILE: nl
IF: bl
ELSE: b2
IF: b3
ELSE: b4

best: 41 + nl(42 + ([b1*23] or [b2*17])) + ({b3*6] or [b4*6])

cache: 59 + n1(92 + ([bl1*24] or [b2*23])) + ([b3*13] or [b4*13}])

worst: 80 + nl(122 + ([b1*33] or (b2*34])) + ((b3*18) or [b4*18])
where n1 is the iteration count of the WHILE loop; b1 through b4 are Boolean variables having value 0 or
1. The selection of the Booleans is reflected by having one Boolean variable equal to 1, while the other
Boolean variables in the same expression are equal to 0. .

Given the WHILE loop iteration count, we can calculate the number of CPU cycles for the best and
worst program paths. The worst path of a program is obtained by choosing a selection of the



IF/ELSE/SWITCH statements with the most CPU cycles. If the loop is bound to 500 iterations then the
worst case count of the worst path is (i.e., n1=500, b1=0, b2=1, b3=1,b4=0):
80 + 500(122 + 34) + 18 = 78098 CPU cycles

which is exactly the same number when max_ic () marker is used to bound the loop to 500 iterations.
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Chapter 4
Implementation of SLOTT

SLOTT consists of two separate parts ~ one is implemented as the integral part of a compiler, the other as
an analyzer. The compiler part can be further divided into two parts - the compiler specific part and the
tool specific part. This discussion will concentrate on both compiler parts. First, the modifications that need
to be done on a C compiler will be described. Then more details about the changes that are compiler
specific will be presented. More precisely, particular aspects that pertain to the modification of the GNU C
compiler (GCC) will be given,

41 Compiler Modifications

As indicate(; before, the timing information is gathered during the compilation process. This means that the
recording part of the timing information has to be implemented as part of a compiler.

Before we specifically describe modifications pertaining to certain parts of a compiler that need (o be
modified, we have to take a closer look at the compiler itself, its basic blocks and how they are connected
to form one uniform structure — a compiler. We will try 10 be as non-specific as possible; however, in most
cases when we present an example we will refer to C definitions and constructs. The next section will deal
With the basics of a compiler and compilation process. It has been included here only 10 make our
implementation clear.

4.1.1 Compiler Fundamentals

The compiler is a program that accepls an input program, usually written in higher-level language, and
generates output in the form of another program — a low-lcvel language such as sasembly language or
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machine object code. A compiler can be divided into several distinct blocks. These are lexical analyzer,
parser, intermediate code generator, code optimizer, and code generator (Fig 4.1). Additionally, any errors
are handled globally by the error handler and the parser itself that tracks any syntactic errors in the source

program. The intermediate code generator and code optimizer are optional, since a simple compiler can be

designed without them.,
Input o
] 7 Intermediate Assembly
e 1> exen | [parser [ Code > Generator [ Binar
rogram yae Generator Output

Figure 4.1 - Basic blocks of a compiler.

4.1.1.1 Compilation Process

Compilation is a complex process that cannot be described in one or two sentences. Therefore rather
than giving a detailed description, we refer the reader to some of the references: [Aho72], [Aho77],
(Barrc179], (Bauer76], [Fisher88], [Polak81), [Pollack72]. Let us just mention a couple of points that
summarize the compilation process as we introduce each compiler block. More detailed description will be
presented when appropriate.

One of the main parts of a compiler is the lexical unalyzer, or scanner, that reads the source, extracts
the words and categorizes them into tokens. The meaning of the tokens is known to the parser, or syntax
analyzer, that reconstructs the tokens into a parse tree (Fig 4.3) according to the grammar rules specific for
the target language!. As the grammar rules are satisfied, the parser execules compiler specific routines that
are particular either to code generation or intermediate code generation. Single-pass compiiers produce the
output code (assembly or binary) as soon as the rule is satisfied, leaving very litde for code optimization.
The only code optimization (done at code generation) is of a local type and accounts for the reduction of
loads or stores if a known variable is present in a CPU/FPU register. However, multi-pass compilers
employ other parts that do not exist in single-pass compilers — an intermediate code generator and
oplimizer. The intermediate code generator is necessary for optimization purposes and construction of
multi-platform compilers. The optimization is performed over several passes, in which each pass handles a
class of instructions such as jumps, loops and register allocation.

VThese language-specific rules are encoded into the parser, so any modifications to the grammar rules must be
accompanicd by appropriate changes of the parser rules.
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Only the parsing stage is the most common among different compilers; the other processes like
intermediate language generation, optimization and cods generation arc very specific (o cach differcnt
compiler implementation. Hence the parsing process will be described in more detail than the code
generation phase.

4.1.1.2 Parsing Process

Some compilers use LR parsers for compilation. These parsers scan the input from Left-to-right and
construct a Rightmos. derivation in reverse [Aho77]. An LR parser consists of two parts, a driver routine
and a list of all grammar rules or a parsing table. The parser generator constructs a parser by translating
grammar rules and expresses them in terms of a parsing table and a driver routine (Fig 4.2):

Input: Quiput:

Grammar Parser Parsing | Driver

Rules v Generator g Table >| Routine
Parser

Figure 4.2 - Parser generation from the grammar rules.

As mentiontd in the previous section, the parser works closcly with the lexical analyzer to construct the
parse tree from tokens (Fig 4.3). Each time the parscr needs a ncw token, it asks the lexical analyzer for it.
A token, which is in the form of a numeric code, represents a sequence of characters that is treated as a
logical entity. Tokens consist of reserved words (IF, THEN, ELSE, eic.), identifiers, constants, operators
and punctuation symbols. Once one or more tokens can be combined according 10 a grammar rule, compiler
specific routines are invoked. Depending on the type of the compiler, these procedures cither produce
intermediate code or directly call code-generating routines.

Knowing the basic functions of each compiler unit, we can now concentrate on the modifications that need
to be performed on compiler blocks, specifically, the parser, lexical analyzer and code generator. The
following section will outline the modified compiler areas.
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Source
Input
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Analyzer > Parser

L

Parse Tree

Figure 4.3 - Parser in action producing a parse tree of tokens.

4.1.2 Outline of Compiler Modifications

The main compiler blocks that have to be modified are: the lexical analyzer, parser and the code generator.

Figurc 4.4 shows these parts along with the machine analyzer that exists on its own. The machine analyzer

is a hardware dependent part since it records the timing information of a specific hardware.

Modified Compiler
Lexical Intermediate
Input Analyzer Parser | | Code Generator Cgmpll:d
> > — —b v u
| Optimizer | tp
1 2 L B
, Compiler Parts:
Common Compiler Part
[ : - ] Implementation Specitic Compller Part

Timing Tool Part E Machine Intermediate

; Amlyzer »| Timing File

1 - Deflinc a new reserved word. 3 - Interface 1o Machine Anal

- Recognirze new dpragma
markers.

4 - Recognize instruction and
sdressing mods of its op

2 - Recognize the new reserve word, L & e
« Track function definitions. * Record imruction time i
- Track langusge constructs. . RW i ':“wm““ fonin
- Bound FOR loaps. the /ntermediate Timing File.

Figure 4.4 - Parts involved in the modification of 2 compiler.

Even though the modified parts are shown in separate blocks as being parts of the lexical analyzer, the
parser and the code generator, they actually can be separated into more layers which can communicate *

between each other without the need to involve the compiler. As an example, the lexical analyzer's SLOTT

layer communicates with the parser's counterpart without the need of using the compiler parts.
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4.1.3 Lexical Analyzer Modifications

The lexical analyzer has to be modificd in order to understand the new #pragma markers and to carry out
the appropriate actions. Also, if a new reserved word approach is used to demarcate the timing blocks, then
the functionality of both the lexical analyzer and the parser has to be extended.

4.13.1 #pragma Approach

Adding new #pragma markers depends largely on the lexical analyzer support for other #pragma
markers. If the compiler already recognizes some markers, then the procedure that recognizes them has to
be modified to include our new markers: stiming, etiming, max_ic, total_ic, sel_node and
skip_node. Additionally, an appropriate function must be called when the marker is recognized to
inform the compiler about the user value passed through the marker. If the compiler docs not recognize any

#pragma markers, then we have to insert the procedure that will identify all our markers.

4.1.3.2 Reserved Word Approach

The reserved word approach extends the parser's functionality since it allows the parser to treat each timing
block as a construct. This means that the timing block can be defined by using only onc word - stiming
— much like a WHILE loop with the while reserved word. A timing block of any length can then be
delimited in the same way as any other compound construct is delimited — by curly brackets. The
advantages.of using this approach are (1) no need to use the sccond bounding marker, (2) the parser
automatically checks the nesting level of constructs. The disadvantage of using the reserved word is in
generating non-standard code that can only be compiled on the compiler that recognizes the reserved word.
Additionally, the reserved word approach cannot time the whole function, only the function body.

The lexical analyzer modification involves inserting the new reserved word into the list of all reserved

words so that the lexical analyzer can recognize it and pass the appropriate ID number to the parser.

4.1.4 Parser Modifications

The parser modifications represent changes to the grammar rules (section 4.1.1.2). Each rule of the parser is
composed of terminal and non-terminal symbols and user-defined procedures arrariged in a very particular
pattern. The procedures follow the C calling conventions and they allow the usec of individual symbols as

their arguments. Thus, if more functionality is desired, we have o either insert new functions into the rules,
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or define new rules with their own functions. The placement of tokens and the function blocks is important

since it determines the correctness of the parser.

The two most important parser modifications are those that track (1) the function definitions and (2) the
construct declarations. The first modification is required so that we know when each function starts and
when it ends. At the beginning of the function definition we initialize all the variables (like ts_ptr,
fts_ptr and cur_node). At the end of function definition we need to collect all the timing information,
print it in the intermediate file and deallocate all SLOTT structures.

The second modification is necded to record each construct of the source code, i.e., the tool must know
where cach construct begins and where it ends so that it knows what instructions belong to the defined
constructs. The modification actually consists of two function call insertions for each construct. The first
insertion is done at the beginning of the construct definition, the second at the end — just like the first
modification to the function definition.

The third modification consists of inserting a furiction into the FOR loop rule. The function is added
into the code of user functions anywhere after the definition of all three FOR loop sub-expressions since the
function has to know what the sub-expressions look like. More precisely, SLOTT has to know what the
counter variable is, what the initial, update and final values are, what the final condition is and what the

update operation is.

Finally, if the lexical analyzer recognizes the new reserved word, then the parser should include a rule that
will recognize the token and properly start and end a timing block. This rule resembles any other rule fora
similar construct like WHILE, DO, SWITCH.

4.1.5 Code Generator Modifications

The last modification has to be carried out on the code generator — the final block in the compilation
process. This unit reads the information either from the parser or from the optimizer and produces the
binary or assembly output. As mentioned before in section 4.1.1.1, some local optimizations are also

carricd out during this process.

These modifications are compiler specific. However, there are some basic points that have to be taken care
of. First, the utility has to intercept each instruction as it is generated and written out. The utilily has to
obtain information not only about instructions but also about their operands, Some compilers ﬁrovide a
numeric code for both the instructions and the addressing modes of their operands; others provide the final
or partial string of the instructior along with the encoded information for the operands. In any case, the
part that decodes and records the timing of instructions has to be specifically designed for the compiler. If
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the numeric code for the instructions is not available, then a scanner and a string comparator has 10 be built
that will decode the instruction. In that case, the best approach is to design a hashing table that would
produce the match on the first try. To reduce the number of entries in one table, it is advisable to separate
co-processcr instructions from the main CPU iastructions, i.e., produce a completely new table for FPU
instructions if it is possible. This approach does not oaly introduce modularity into the design, but also it is
more flexible and produces smaller hashing tables especially if the CPU and FPU instructions can be easily
differentiated?. Since the code generator is compiler specific, the modifications will have to be tailored for
it. The best and least intruding approach is to insert the fewest number of SLOTT instructions into the code

generator and mimic the output function of the code generator to obtain the assembly instructions and their
operands.

Another modification involves recovering the information about the program struciure, i.e., the program's
constructs; otherwise, the machinc analyzer will not know where the gencrated instruction is to be recorded.
If the code is generated directly from the parsed nodes, the modification is very minimal; on the other hand,
if any intermediate code is produced, the code generator has to recognize those special markers that have
. been saved during the parsing phase.

The following modifications are not necessary for SLOTT execution; however, they iraprove its usefulness
and functionality. The code generator can be modified to: (1) record function names stored in registers, and
(2) determine the value of constants used for immediate addressing modes. Since all of these additions arc

compiler specific, every unique compiler requires distinct modifications.

4.2 Machine Analyzer

The basic function of this unit is to record the timing information of each instruction that is received from
the modified part of the code generator. Even though the idea is very simple, the actual implementation is
hardware specific and may vary in its complexity. Consequently, we will describe the basic approach for

determining the timing values rather than present one particular implementation,

4.2.1 Instruction Execution Timing Calculations

Machine analyzer consists mainly of tables and appropriate procedures that access these tables. The tables
are hardware (i.e., CPU/FPU) specific. Thus, the procedures are particularly designed to retrieve the

2 All FPU instructions in 68000 family start with an 'f character.



information from these tables. Within this context we will refer to low-level machine instructions as

instructions.

The format that is used to store the timing information may vary quite substantially between different CPU
and FPU types, even for units within the same family. For example, the non-cache CPUs, like 63000 and
68010, dcfine only one timing value for each instruction [Motorola84}; while the cached types, 68020 and
68030, definc more than one value. This is because the execution time of both CPUs is affected by the
instruction cache, prefetching and overlap. Additionally, the timing value is influenced by the operand
misalignment and the bus controller/sequencer concurrency of the instruction pipe [Motorola020-89],
{Motorola030-89). The 68030 timing values are also affected by the presence of the data cache and the on-
chip MMU.

The simplest and basic formula used for calculation execution time of any instruction that is not affected by

the cache and instruction overlap is:

Toree = Tinen + Tea (N

where: T, is the execution time of the CPU instruction,
T i execution time attributed to performing the instruction only,
Tga is the time required to calculate the Effective Address of the operand(s).

Formula [7] is directly applicable to the 63000 and 68010 CPUs. 1t is also used for the 68020 CPU even
though the manufacturer defines three execution values — best (BC), cache (CC) and worst case (WC) - for
both the instruction and effective address. The execution time for the timed code is then the sum of proper

combination of these three cases. Even the [Motorola020-89] user manual recognizes this limitation:

"... it is difficult to predict which timing table entry is used, since the influence of instruction overlap
may or may not improve the BC/WC, or CC timings... it is also difficult to determine which
combination of BC/CC/WC timing is required. Just how the instruction stream will fit and run with
cache enabled, how instructions are positioned in memory, and the degree of instruction overlap are
factors that arc impossible to be accounted for in all combinations of the timing tables.”
Since it is very difficult to accurately predict the correct combination that would be observed when
executing an instruction stream, the tables can only. be used to predict the best-case and worst-case time
bounds? [Motorola020-89).

3This is not absolutely true, though, as we will see in Chapter 5.
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The 68030 CPU takes into account the instruction prefetching and overlap more closely. The CPU manual
elaborates how the timing information is gathered during the cached execution of an instruction stream.
This calculation process considers the time information not only of the currert instruction, but also, of the
previous instruction. Consequently, two additional values are defined for each instruction: the head and tail
time. This is reflected in the formula used for CC instruction execution time calculation {Motorola030-89):

CC, + [CC, - min(H,, T,)] + [CC; - min(H,, Ty)] + ... I

where:  CC, is the instruction cache case time for an instruction n,
H, is the head time for an instruction n,

T, is the tail time for an instruction »,

min (a,b) is the minimum of parameters a and b.

To complicate the calculation even further, the CC instruction time for most instructions is composed of the
CC instruction time for the effective address calculation (CCea) overlapped with the CC instruction time
for the operation (CCop). Then the more specific formula is (Motorola030-89]:

CCea, + [CCop, - min(Hop,, Tea,)] + [CCea, - min(Hea,, Top,)] +
[CCop, - min(Hop,, Tea,)] + [CCea; - min(Hea,, Topy)} + ... 9}

where:  CCea, is the effective address time for the instruction-cache,
CCop, is the instruction-cache time for the operation portion of an instruction,
* Hop,/Top, is the head/tail time for the operation portion of an instruction,
Hea,/Tea,, is the head/tail time for the effective address of an instruction,
min (a,b) is the minimum value of parameters a and b.

In our calculations we will use formula [7] that applics also to the 68020 CPU since formulas [8) and (9]
apply to the 68030 CPU. The (8] and {9] formulas are mentioned only to show the complexity of cache
time prediction. However, it is better to use more complex formulas than [7) since they describe the
execution time more accurately especially if factors like cache and instruction overlap are involved. As we
will see in chapter 5, it would have been more useful if Motorola had defined the execution time of 68020
in a similar way as they had defined the values for the 68030 CPU. Consequently, we will express the
predicted execution time for 68020 with three values — best, cache and worst.

Some instructions’ execution time depends largely on the value in their operand(s). These instructions are

MOVEM (move multiple registers into and out of memory for register saving and restoration), ASL/ASR
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and LSL/LSR (arithmetic and logical shift left/right), DIV (division) and MUL (multiplication). Some data
books give the formula that describes the execution time in terms of operand values. In some cases these
values are known to SLOTT (i.e., the operand is a constant), thus it is possible to predict the execution
value accurately. In most cases this value may be hidden in a register ¢¢ # memory location. Thus SLOTT
has to assume a certain value. Knowing the size of the operand, we can calculate the maximum execution
time given the worst case scenario. However, it is not the maximum execution value that we will consider,
but rather the average value that is derived from the minimum and maximum execution value. This way the
calculated value will more closely predict the real execution time since the error magnitude will be smaller
for minimum and maximum cases, and the overestimation and underestimation errors will have greater

chance of canceling each other.

4.2.2 Recording Process

Although we refer 1o the effective address (EA) calculation as Tg,, the CPU may define several tables, each
of which is used for particular classes of instructions. For example, fetch immediate address time is used
with immediate instructions like ADDI, SUBI, ANDI eic., and jump effective address time is used in
conjunction with JMP and JSR instructions. In addition to these tables, the 68020 has three more EA
wables: fetch effective address, calculate effective address and calculate immediate effective address.

Instructions that use one or two operands usually define more than one execution value. Each value is
specific for certain addressing modes of its operand(s), i.e., one value may be defined for register-to-
register opo;rands, another for register-to-memory operands, and another for memory-to-register operands.

All these different values must be included in the timing tables.

The actual calculation process is done in several steps that must be executed in an orderly way:

(1) Find the appropriate instruction time table (ITT).

) Deteimine the effective address (EA) of the operand(s).

3) If ITT has entrics that refer to the EA(Ss) of instruction's operands, then determine the index
into ITT from the operand EAs.

4) Given the index, access the proper entry in ITT and assign it t0 Ty,

(5) Retrieve the value from the effective address table for each of its operands and add thein sito
the Tg, variable,

6) Compute the predicted execution time using formula [7].

Figure 4.5 illustrates this process. We use a very simple assembly instruction that adds a value froua the DO

register to a local variable.
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(1) Determine the Instruction Time Table from the type of the instruction.

(2) Determine the addressing modes of all operands.

(3) Find out the proper index to the Instruction Tsme Table from the addressing modes.

(4) Look up the timing values from the Instruction Time Table.

(5) Depending on the type of addressing modes, if need be, consult appropriatc
Effective Address Time Table using the proper index.

(6) Look up the timing values from the Effective Address Time Table.

Figure 4.5 - Calculating the ¢xecution time of an instruction from the table values.

We can reduce the size of the timing tables by comparing the execution time of the instructions. The CPU
instructions are grouped into several categories. Each category represents one class of instructions that
perform sim‘ilar operations and use the same number of operands. Morcover, some of these instructions in
one class need the same number of CPU cycles. As a result, we can put such instructions into onc group
and use the same table entry for all those instructions in that group, i.e., ADD, SUB, AND, OR and EOR
instructions can use the same arithmetic-logic instruction (ALI) table to obtain the exccution time. Thus in

our previous example we would access the ALI table instead of the ADD table.

4.3 GCC Modification Aspects

The purpose of this section is to describe the required modifications to the GNU C compiler (GCC).
We have modified the most current version available at the time (version 1.40) and wargeted it for 68000
and 68020/68882 hardware platforms.
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The most important reason we have chosen GCC is that it is the only compiler that has its source code
available for modifications and distribution. Furthermore it is widely used within the scientific community
and can be compiled for a wide variety of platforms and CPUs (Motorola, Intel, SPARC, RISC, MIPS,

etc.).

4.3.1 Overview of GCC

GCC is a multi-pass compiler. Besides the Hasit; < »munents, it contains parts that allow mislti-platform
compilation and optimization — intermediate code gererator (ICG? 1 optimizer. We will ccacentrate on
the former component since the latter part is completely separated frozi: SLOTT. The intermediate language
is not only important for the multi-pass optimization, but also for the standardized generation of compilers
for different hardware platforms. The advantage of this approach is that these compilers differ only in the
code gencrator, the other parts stay the same.

The GCC's lexical analyzer and parser are implemented in a similar way as described in section 4.1.1.
Consequently, their modifications follow the modification points mentioned in sections 4.1.3 and 4.1.4. The
most significant part of the parser is its direct connection to the ICG instead of the code generator. Here we
have to encode the program's structure into the intermediate language, make sure that it does not get altered
or deleted by the optimization phase and decode it during the code generation phase.

The intermediate language is called a register transfer language or RTL. It describes the action of each
instruction to be output in an algebraic form. Its structure is based on‘ Lisp lists. It consists of an internal
form (structures that point at other structures) and a textual form (strings used for machine description and
dcbugging) that uses parentheses to express the internal structures in a hierarchical arrangement.

RTL supports four objects: integers, strings, vectors and expressions. The first two are self-
cxplanatory, the third contains an arbitrary number of pointers to structures. The most important objects are
the RTL expressions (RTXs) since they store the semantics of the source code. The most significant RTX is
an insn expression that represents the code of a function in a doubly-linked list. However, GCC does not
store all instructions in one type of insn RTXs. Rather, there are several types of insn expressions that
store the information about the instructions, jumps, function calls and labels. The plain insn RTX is used
for all instructions except jumps and function calls. The jumps are encoded in the jump_insn RTXs, and
the function calls are contained in the call_insn expressions. Additionally, GCC defines one insn
type that is used for debugging and declarative purposes — the note_insn or note instruction. The
instructions of this type are particularly important in SLOTT's implementation since they do not affect the
code gencration; morcover, they are not removed or changed by the optimization phase.
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The optimization phase consists of several passes; however, none of them influences SLOTT's operation or
changes the code structure. Hence, SLOTT can faithfully represent the timing information of the generated
code even if the optimization flag is turned on.

4.3.2 SLOTT's Program Structures and its Constructs in RTL

The RTL requires that the program structure and its constructs be encoded into the RTL list of instructions.
The solution comes in the form of note_insn expressions. As has been outlined, these expressions arc
inserted by the compiler into the doubly-link list of instructions to indicate debugging and other
information. During the optimizat on phase, the notes arc not removed, neither are they shifted or re-
allocated within the insn list. Furthermore, the optimization involves a reduction in the instruction count
which is marked by changing unnecessary instructions from insn type to note_insn type.

Each note_insn expression carrics information that describes its meaning or purposc. It contains two
fields (besides pointers to neighboring instructions) of integer and string types. The integer field encodes
the note's description or meaning; the string carries more information whencver the type requires it. If the
integer ID is positive, the number corresponds to the line rumber of the source code and the string contains
the file name. If the ID is negative, the note has a special meaning. This includes thc meaning of (1) a
deleted instruction ihat has been changed from the insn to note_insn type and (2) the markers for

scoping level boundaries or loops. Currently GCC does not usc the string field if the ID is negative.

The note gTX is appropriately suited for the implementation of SLOTT markers. To accommodate the
note_insn for our use, we have to define our meanings for it. This is done quite casily by expanding the
negative ID range. Most of our markers require additional information to be stored with the markers like
the time block's name, maximum iteration count or preferred jump. All this data is stored in the string

format of note_insn's string field.

4.3.3 Timing Process During GCC Compilation

As has been mentioned in section 4.3.1, the presence of RTL separates the timing process into two phibis.
However, this split confuses the order in which the timing information is gathcred. The timing pilicess
becomes even more complicated when the #pragma markers are involved, especially if the:stiiming
marker is used for timing a whole function.



51

Before we describe the actual process, it is necessary to mention that the compiler uses the linked list of
RTL instructions only for the function body, while the prologue and epilogue parts are handled separately.
Conscquently, to record the timing valuc for the whole function, we have to initiate recording before the
main function body is parsed! Assuming that the whole function is to be timed, the actual order of events is
this:

¢)) The lexical analyzer encounters the stiming marker before the function declaration. It
immediatcly scts global variables to reflect that the timing block for the function has been
defined.

2 Since the function parsing has not commenced yet, the linked list of insn RTXs does not
cxist. Additionally, we would not gain anything if we inserted timing notes into the insn
strcam because only the function body exists in the link list format, not the prologue sor the
cpilogue.

(3) The whole function body is parsed, and the link list of RTL instructions is produced only for
the current function,

4) The function is optimized.

) Immediately after the optimization phase, a procedure is called that outputs the function's
prologue. Since we have set up global variables in step (1) to indicate the start of function's
st iming, the prologue will record the execution value of each instruction that it generates.

{(6) The time information of cach assembly instruction of the function body is recorded before the
instruction is written out into the assembly file.

N Finally, a procedure for generating the function's epilogue is called which will record the

timing information of its instructions.

44 Timing Analyzer

The analyzer is designed specifically for user needs. Consequently, we will present only the necessary
details that pertain to the correct operation of the analyzer.

The timing analyzer is hardware specific. If the analyzer is used for different hardware platforms, then it
has to acquirc from the intermediate timing files the exact hardware configuration. This information has to
include the CPU and FPU types along with their frequency.

Another requirement is to keep a list of all functions that have been analyzed so far. Currently, the analyzer
does not suspend the calculation of the current block until an unknown function is found. Instead, it

searches the list and if the function is there, it uses its timing information. If the function is missing, it just
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assumes unbound value for that function cven if it may appear later during the compilation process. This
means that we have to declare functions in proper order, i.e., follow Pascal style declarations. The present
implementation is quite sufficient for our testing purposes. However, problems arise when a timing block
contains functions defined in other source files or when the functions arc rot defined in the appropriate
order. Then the analyzer could be updated to search for the functions in diffcrent files and suspend the
analysis until the information of all functions is known.



Chapter 5
Evaluation of SLOTT

In order 1o know how well and accurate the timing too! predicts the execution time, a number of tests have
been carried out. These test concentrate on certain aspects of the givep hardware and program structures.
For example, the CPU may have an instruction/data cache, and the floating point operations may be carried
out by an FPU. First the “real” execution time of each important insiruction was determined. Then the
68020 CPU was studied more closely. Finally, several smaller and larger procedures, or collection of
procedures, were tested, and execution values compared against the SLOTT values. In order to demonstrate
its flexibility, SLOTT has been modified and tested for other hardware configurations. Section 5.1 deals
with the selection of appropriate hardware, Part 5.2 presents results of test programs run on a 68000 system.,
Section 5.3 discusses various factors that affect the execution.time of a basic 68020 assemibly. instruction;
soction 5.4 presents the results oblained by system using the 68020/68882 CPU/FPU combination. Segment
5.5 gives the accuracy of SLOTT's predictions. Finally, part 5.6 compares the SLOTT performance against
other tools discussed in section 2.2.3,

5.1  Choosing the Correct Hardware System

Ewven though the UNIX operating system provides means to collect timing information of any process, it is
not suitable for performing accuratc measurements. As a result, all tests have been performed on a
dedicated card, Heurikon HK68/V2F, containing MC68020/68882 both operating at 16.67 MHz frequency.
The card is connected to a Sun 3 workstation through a VME bus and can run any program compiled for
the Sun 3 hardware. All Heurikon programs contain a small OS kernel that handles all the necessary OS
calls including the timing calls and the selection of cache ON/OFF setting.
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Programs were also run on a Macintosh II that has the 68020 CPU operating at 15.6672 MHz. frequency.
Macintos* lends itself as a good testing environment — its programs run in co-operative multitasking
environment where cach program decides when the context switch can occur and how long it should last.
For the test programs, that we have used, no context switch was performed. Additionally, Macintosh
programs can also disable all interrupts. Thus it can precisely time programs. The major stumbling block
that prevents direct compilation of the UNIX assembly source files on Macintosh is the way in which the
Macintosh environment deals with global variables. Macintosh programs access global variables teraugh
register AS, while UNIX uses absolute addressing. Execution values of several instructions werg tested on
both Heurikon and Macintosh. Since the Macintosh results closely followed the Heurikon results, a limited
number of tests were performed on Macintosh to avoid the complexity of patching global variables.

The only accessible system that uses the 68000/010 CPU was a Macintosh SE opcrating at 7.8336 MHz.
Again, we have excluded Sun 2 UNIX workstations for the reasons mentioned above. The only difference
between the 68000 and 68010 is the virtual environment support and difference in timing values for some
instructions. Having experience in running programs on the Macintosh I1, we have modificd the cvaluation
programs to exclude any global variables, and to use the local stack framc instead. This approach requircs
passing these local structures into the functions as pointer arguments. Since 68000 docs not saport an FPU
co-processor, all programs that use floating point operations have been excluded.

5.2 Evaluation of MC68060 Hardware

The 68000 ‘hardware system does not have any FPU support; conscquently, all floaling operations arc
performed in the Macintosh environment with the help of the SANE! library routines. To climinatc any
library calls, all procedures involving floating point operations have been discarded. Also, procedures that
perform long integer multiplication and division operations have becn modified to usc short integers since
the MC68000 CPU does not support long integer format for these instructions.

The execution time of the 68000 follows formula [7] described in section 4.2.1. Additionally, the exccution
time is not affected by factors that affect more complex CPUs, like MC68020 (described later in section
5.3). The only factors that affect the MC68000 execution time are non-CPU related: speed of mcmory
access, number of wait states, software timer interrupts, clock interrupts, memory refreshments, ctc, These
factors are quite substantial since they decrease the execution time of an instructior: by 15% to 30%.
Consequently, the execution time values of all instructions, involved in the test programs, have been

1Standard Apple Numeric Environment.
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normalized to account for these factors. The normalization process involves calculation of actual execution

time of an instruction directly from the execution time of test procedures.

5.2.1 Test Programs

All of these programs arc identical to those mentioned in scction 5.4 with some minor modifications that
exclude the use of global arrays and variables (see section 5.1). Rather, these arrays are locally allocated in
the main () procedurc and passed as arguments into the test procedures.

We have used only four test programs; Ins Worst, Bubl Worst, StrSrchW and Rand Num, Ins Worst and
Bubl Worst procedures perform insertion and bubble sort. We assume and test only the worst case, i.e., the
list of numbers arranged in descending order is sorted into ascending order. StrSrch W is a procedure that
scarches a test string of 512 bytes for a specific 6 byte string pattern of which none of the characters can be
found in the test string. Rand Num has been taken from [Press90] and was changed to suit our needs.
Actually, a loop insidc the procedure has been expanded, while the loop count has been reduced. The
procedure calculates random numbers using an array of integers. Since MC68000 CPU allows only short
integer operations for multiplication and division instructions, ail long integer variables have been re-
defined into short ones to eliminate any library calls. In addition, GCC uses library routines for division and
modulo calculations irrespective of operand sizes; therefore, it is necessary to define inline assembly
macros to substitute these standard C operations.

§5.2.2 Test Results

The tests arc presented in Table 5.1. The predicted time values, gencrated by the timing tool, arc given in
the ficlds of Predicted Time. The average of actual execution time is given in Average Time field and the
prediction crror is indicated by % Error values. The sign of these erros values indicates whether the

predicted value underestimates (negative sign), or over-estimates (positive sign) the actual execution value.

ns Worst | Bubl -Wors; §trSrchW Rand Num
Predicted Time (s): 10.262 13.69 6.27 3.908
Average Time (s): 10.246 13.809 6.374 3.892
% Error: 0.15% -0.86% -1.63% 0.42%

Table 5.1 - Execution time of MC68000 test programs.

The predicted valucs are very close to the actual execution time. However, we have to mention one more
characteristic that applies for some CPU instructions. The execution time of these instructions depends on

the valuc present in one of its operands. For example, the execution time of the shift, move multiple and
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multiplication instructions is defincd to be proportional to the number of shifts, number of registers to be
moved and number of bit changes in one of its opcrands. Our SLOTT can account for this differeace only if
the operand is immediate (a number). If the value is stored in a register or a memory location, SLOTT has
to assume a certain value. In the Rand Num cxample, all sonsce operands for multiplication have been

compiled as immediate. But what valuc should the tool assume if the operand is not immediate —
maximum, or an average?

To find out the best value, we have designed a small program, TestMult, that uscs two arrays of short
integers. These arrays are filled with random numbers and then cach field of onc array is multiplicd with
the field of the other array. The percentage error of using the average and maximum exccution time is given
in % Error Ave Mult and % Error Max Mult fields, respectively in Table 5.2.

Predicted Time of TestMult

% Error Ave Mult: -0.50%
% Error Max Muli 6.18%

Table 5.2 — Testing the use of the average and maximum timing valucs for the MC680(X)

multiplication instruction,

The crror valucs clearly show that the average value gives better prediction value by as much as 6%.  ose

results confirm our first postulation of using average timing values for such instructions (scction 4.2.1).

5.3 Factors That Affect Execution Time

The architecture of the MC68020 makes exact instruction timing calculations difficult duc to the effects of:
an on-chip instruction cache and instruction prefetch, operand misalignment, bus controller/sequence

concurrency and instruction execution overlap [Motorola020-89].

The presence of instruction cache increases the speed of already fetched instructions in cache. Instruction
prefetching allows faster execution since even if cache miss occurs, the bus controller prefeiches the next
instruction from the cxternal memory while the microprocessor is busy with the current instruction
execution. The CPU prefetches information in 4-byte, or long-word, blocks aligned on a long-word
boundary. If two adjacent instructions happen to be only a word long, then the second instruction is already
fetched and no additional read is necessary. If the prefetch falls on an odd-word boundary, due 10 a branch,

the CPU will read the unnccessary even word along with the required odd word on onc read cycle.
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In these scctions when we talk about a code size with a reference to cache performance, we actually
refer to the code size of any loop construct. It is important to mention this peculiarity since only the code of
a loop can profit from the positive effects of the cache, i.e., no sequential instructions can exccute faster

unless they have been previously loaded into the: cache.

Operand misalignment has impact on execution tine when the CPU reads or writes into external memory
since additional bus cycles must be performed to fetch the operand. The misalignment occurs when the
address of a word operand falls across a long-word boundary, or a long-word operand falls on a byte or a

word address that is not a long-word boundary.

Bus controller and sequencer can speed up the execution by running concurrently. The bus controller
manages the bus activity. The scquencer, in turn, handles the bus controller and all internal processor

operations such as calculation of effective address time and setting of condition codes.

Instruction exccution overlap defines a time slot during which two instructions can execute concurrently.
This time slot actually belongs to the previous instruction that can absorb the current instruction’s execution
time. [Motorola020-89] uscr's manual does not give thesc overlap values, but rather it gives the best, cache
and worst case time values that account for the instruction overlap. On the other hand, the user's manual for
MC68030, [Motorola030-89], defines the execution time in a more precise way by defining three variables
for cach instruction ~ the head, the tail and the total time that includes the overlaps. The effective execution
time is calculated as the difference of the body and the smaller amount of either the previous instruction’s
tail or the current instruction's head (see section 4.2.1).

The following scctions will show how some of these factors can affect the instructions execution time.
Since it is difficult to test the bus controller/sequence concurrency, we concentrate on the other factors. All
test programs, except the cache and operand alignment tests, have been run with only the cache OFF
(COFF) sctting. A test program (except of a cache test) consists of several procedures each having 100

move instructions with the same addressing modes.

$.3.1 Instruction Alignment

Even though it is not mentioned by Motorola in the list of the factors, the instructions alignment influences
the instruction stream timing. [Motorola020-89] even gives some examples how the lim.ing might be
affected when 4-byte or longer instructions are not aligned on long word boundary. In the experiments, we
have tested 4 and 8-byte instructions that have been properly aligned and misaligned. Results indicate that

there arc only some instructions that are adversely affected by this factor, while others are not affected at
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all. The decrease in performance of the affected instructions ranges from 3.8% 1o 6.7% when the

instructions arc misaligned as compared to properly aligned instructions.

5.3.2 Inmstruction Overlap

This factor has been simulated by having 50 move instructions of one type interleaved with 50 move
instructions of another type. The execution values of these “heterogeneous” blocks arc compared to the
predicted values derived from the exccution values of the "homogeneous” blocks of the corresponding
types. The results indicate that some instruction combinations do not differ from the "homogencous” block
values, while other combinations show improvement, and still others exhibit degradation. Both positive and

negative results range from 1.5% to 7.3% in execution performance.

5.3.3 Effect of Operand Alignment

These tests have been performed with the cache ON (CON) and COFF settings. Only local variables and
indexed variables have been used since GCC correctly aligns global variables. The results indicate that this
factor affects both CON and COFF cxccution values in equal amounts, i.¢., the cache docs not have any
positive effect. The value of having a single operand misaligned accounts for additional § CPU cycles, both
for CON and COFF cases. If two operands are misaligned, the overhead is 10 CPU cycles. This effect is
quite substantial especially if the execution time of instructions with properly aligned operand(s) is small.
The impact is even more significant under the CON setting. The worst degradation in performance reaches

80% when one operand is misaligned and 85% when both operands are affected (CON setting).

Thesc results are quite instructional since they illustrate how little it takes to make a code run faster or
slower, depending on a proper or haphazard way of declaring variables. The proper way of declaring
variables is to make sure that all double and long-sized variables are declared first before any 2-byte and
char-sized variables are declared.

The same applies for creating structures, i.e., types with long-word boundary must be declared first,
and then followed by other types. If a structure that contains long word fields is declared inside another
structure, then we had better make sure that the first structure starts at a proper boundary. If there are more
structures defined within another one, one should insert filler ficlds into any structurcs whose size is not a
multiple of 4.bytes. If we do not adhere (o these basic principles, then the predicted execution value of an
instruction can be degraded by as much as 80% when only one operand is misaligned and by as much as
85% when both operands are affected! Consequently, this is quite a major factor that should not be ignored

by any programmer, especially when programming real-time systems.
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5.3.4 Effect of Cache

This scction will explore the cache of the CPU, its effect on the execution time and correlation between
code size and the execution time. The 68020 CPU on-chip instruction cache is a direct-mapped cache of 64
long-word cntrics [Motorola020-89). It means that each block in memory can be placed only at one location
in the cache, i.e., the replacement algorithm determines the address in the cache from the memory address
by a modulo arithmetic of the cache size. When the loop code size is smaller than the cache size, all
instructions will stay in the cache, to result in a hit ratio of 1. If the code size goes beyond the cache size,

the performance will decrease according to the following formula [Smith83):

if M <N < 2M the block hit ratio is ZM;I-E (10}

if 2M < N the block hit ratio is 0,

where M stands for the cache size, and N is the loop size.

Thus, the cache miss occurs every time when the code size is larger thson two cache size units.

All instruction sizes have been tested — from 2-byte to 10-byte. The test loop sizes range from 1/3 of the
cache size to almost twice the cache size in several steps. The results have been obtained for both the CON
and COFF scttings. However, the final result is calculated as the CON/COFF ratio. This way we can
demonstrate the effect of the cache on the instruction execution since the COFF value represents the
absolute worst value of the CON setting. Graph 5.1 presents the execution results of all instruction sizes in

a graphical form:
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Graph 5.1 - The effect of loop size on the CON exccution time.

The smaller changes in valucs of data below one cache unit size can be attributed to (1) the instruction
alignment and (2) the influence of the instructions that make up the loop construct. Nevertheless, the results
parallel formula [10).

5.3.5 Summary of the Results

The execution time is affected by several factors, some of which can be avoided by proper programming
style, such as those that avoid opcrand misalignment; however, most of the factors arc impossible to
correct. Even the timing tool cannot track down and compensate for most of the aforcmentioned factors
because they become visible only during the execution time. Consequently, we cannot predict the exact
execution time of each instruction, especially if the instruction happens to reside in a loop (unless we go
- into great lengths to analyze the lcop itself). Sequential instructions that are not a part of any loop will
execute at COFF rates.

This concludes the testing of the factors that affect the CPU execution time. In the next section we will

concentrate on general purpose and real-time programs and subroutincs.
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5.4 Testing General Purpose Procedures

Since our hardware contains an FPU, and the timing utility can deal with FPU instructions, we have divided
the test programs into three groups — one that does not have any FPU instructions, another that spends about
50% of timc excéuting FPU instructions, and the third group which uses mostly FPU instructions. It is
important to mention that even a pure FPU code will require the CPU to calculate the effective address of
the FPU operands. All tests have been run under both cache settings, and the predicted best, cache and

worst casc valucs have becn compared with the average value of ten test runs.

5.4.1 Tests Involving only the CPU Instructions

Since cache is a major factor in the instruction execution, we have devised programs which employ small

loops that fit inside the cache and programs that are significantly large to reduce the cache influence.

5.4.1.1 Significantly Large Programs

There arc three such programs: Rand Num, Encrypt and Vect. Rand Num is identical to the Rand Num
.yogram presented in section 5.2.1. The only difference is that this time the multiplication and division
wperations are done on long integers.

Encrypt program "encrypts” random data using EOR (Exclusive OR) instructions. The data is encrypted
in blocks of 8 bytes. Even though we could have used a FOR loop to EOR the data, we have expanded the
instructions to increase the code size.

Vect pr‘ocedurc uses a couple of subroutines to calculate the dot product and cross product of two

vectors. Each subroutine inside the Vect is called only once to eliminate the cache effects.

54.1.2 Small Programs

Five progsams, Ins Worst, Bubl Worst, StrSrch W, EncryptS and Rand NumS, are small enough to fit inside
the cache. Ins Worst, Bubl Worst and StrSrch W are identical to procedures mentioned in section 5.2.1,
Encryp:S$ is the same procedures as the Encrypt procedure mentioned before, but in this case a FOR
loop reduces the code of 16 EOR instructions into 2. Rand NumsS is identical to Rand Num procedure;
however, this onc docs not initialize the array of random numbers. Consequently, we need to call the Rand

Num at the beginning of the program to initialize the array.
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5.4.1.3 Cache OFF Test Results

The COFF results are presented in Table 5.3a. Each column to the right of the fist columa contains data for
one test program. The actual cxecution time is presented in the Average row. The percentage crror of best,
cache or worst prediction valucs, as compared to the average of actual exccution valucs, are given in the
appropriate Error fields. Since the cache is turned OFF, only the wors? ¢ase valucs should be considered in
the prediction. However, to indicate the spread of errors, all three cascs are presented. This spread implics
the accuracy of the prediction by the worst case values.

Cache OFF sWorst [ Bubl | SuSrchW | Rand | Rand | Encrypt | EncryplS | Veet
Worst Num | NumS

Average (s): 11.07 15455 16.31 9.69 12485 19.865 19.925 20.325

Error Best %: -59.17% ] -60.72%| -6849%| -16.72% | -23.19%| -70.00%!| -69.39%| -50.36%

Error Cache %: -30.62% | -32.13%| -41.94% 0.00% 461%| -3748% | -3731%| -32.5%

Error Worst %: -1147% | -11.94% ] .20.42% 8.46% 774%| -1925%| -16.54% ) -14.10%

Table §.3a — Exccution time of CPU-only instructions (cache OFF casc).

Thesc results scparate the programs into two groups according to the crror spread between the best and
worst case values — onc that has division and multiplication instructions (Rand Num programs) and the
other that does not (the rest). The first group shows the range of crrors to he about 28%, while the range of
the second group is about 50%. The smallcr range of errors for the first group can be attributed to the small
range of execution values between the best and worst cascs for the division and multiplication instructions.
Since the execution time of division and multiplication operations depends on the valuc of one their
operands, Motorola presents the execution times as the maximum number of CPU cycles required to
perform these instructions. As a result, the predicted worst casc values for both Rand Num programs (first
group) show over-estimation by about 8%. On the other hand, the second group's worst casc predicted
values are underestimated by about 11.5% to 20%. This means that in order to predict the COFF case of the
first:group we have to underestimate the worst casc value by about 8%, and of the sccond group we have to

over-estimate the predicted worst casc valuc by 15%.

The cstimation errors are reduced when execution time of each instruction is normalized in the same way as
in scction 5.2. By normalizing execution time of every instruction we reduce the predicted trio of best,
cache and worst valucs into onc valuc that morc closcly reflects the real exceution time. Even if some
instructions arc not normalizcd, the predicted range of best, cache and worst values will be smaller leading

to more accurate prediction.
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Three procedures have been tested: Ins Worst, Bubl Worst and StrSrch W. The results are given in
Table 5.3b. The Average field gives the average execution time and the Error ficld indicates the prediction

crror using the normalized vaiues.

Cache OFF SWorst | Bubl Worst | StrSIchW _
Average (s): 11.07 15455 1631
Error %: -3.25% 0.61% -6.44%

Table 5.3b — Exccution time of CPU-only instructions using normalized execution values.
(cache OFF casc).

The predicted values become very close to the actual execution values, Consequently, it would be advisable

to normalize as many instructions as possible for the COFF case.

§.4.1.4 Cache ON Test Results

The CON results are presented in Table 5.3c. All fields correspond to the samc ficlds of the COFF case. In
fact, the predicted trio values arc the same as in the COFF case, but in this casc the cache results have to be

uscd for comparison. The table ficlds correspond to the fields of Table 5.3a.

Cache ON ns Worst | Bubl StrSrchW | Rand Rand Encrypt | EncryptS |  Vect
Worst Nom | NumpS

Average (s): 746 1023 9382 9.665 10455 16765 12.699 18.4

Error Best %: 3941% | -40.66%| -47.66%| -16.50% 843%] -6445%| -51.96%| -46.73%

Ervor Cache %: 2.95% 2.54%| -3.56% 026%| 13.73%| -2592%| -1.65%| -27.61%

Error Worst %: 3137% | 33.04%{ 32.18% 8.74%| 2846%| -432%| 30.96% -1.81%

Table 5.3c — Exccution time of CPU-only instructions (cache ON case).

From these results we can sec how the error depends on the code size and the instruction type. The Rand
Num and Rand NumS values again show small variation in error due to the abundance of multiplication and
division/modulo instructions. However, Rand Num procedure is sufficiently long enough to decreasc the
effect of cache to the point that CON and COFF values arc almost identical. On the other hand, Rand Num§
procedure can fit inside the cache, thus its execution tize is faster under CON setting than under COFF
setting. The over-cstimation of cache results can be attributed to the presence of multiplication and division
instructions.

Other procedures with a small code, that fits inside the cache, (Ins Worst, Bubl Worst, StrSrchW,
EncrypS) show very intercsting results. Even though the range between the best error and the worst error is
larger than in the COFF casc, the cache results are very accurate to within £3.5%! However, as the code
sizc increases and the cache misses occur, the execution time becomes longer such that the worst case

values should be considercd instead (procedures Encrypt and Vect).



54.2 Tests Involving CPU and FPU Instructions in Same Proportions

54.2.1 Test Programs

These proportions are not expressed in the number of instructions, but rather in the number of CPU and
FPU cycics. Since the FPU instructions on average take longer to exccute than the CPU instructions, the
program does not have to contain equal number of CPU and FPU instructions.

We have used only two test programs: LinearSolve and FootMove. Linear Solve has been taken from
[Press90] and was adapted for our nceds. The program uses three procedurcs, and it solves a lincar set of
equations. We have uscd random numbcrs as input data for cach of the test runs. FootMove is a real-time
program that calculates foot positions of a robot's lcg as it moves from onc position to the next. It uscs
Jacobian and its pscudoinverse to determine the incremental position of the robot's foot. The move was

simulated between the same two positions. The itcration count in this casc applics to the number of

intermediate steps that comprise the move.

5.4.2.2 Test Results

Table 5.4 summarizcs CON and COFF results. The COFF case scction combines both data book and
normalized values. Additionally, this table also shows the CPU cycle content (% CPU) using the cache
timing values. The other ficlds correspond to the fields of Table 5.3a.

Cache OFF Cache ON
Data book Values Normalized Values
ocotMove | LinearSolve | FootMove | LinearSolve | FootMove | LinearSojve |
% CPU: 45.40% 48.34% 50.57% 51.00% 45.40% 48.349,
Average (s): 12425 9.861 12425 9.861 10.525 8.78
Error Best %: -33.52% -24.55% -4.63% -6.60% -21.52% -15.26%
Error Cache %: -10.82% -8.53% -1.49% -3.56% 5.21% 2.73%
Error Worst %: -0.85% 0.60% 0.04% | -2.04% 17.05% 12.98%

Table 5.4 — The cxecution time of programs having cqual number of CPU and FPU
instruction cycles. Both the data book and normalized valucs are given for the
COFF casc; the CON casc uscs only the data book values.

It is obvious from the table that the data book values are more spread. However, the magnitude is not as
wide as for the CPU-only instructions. Also the worst casc values are very close to the actual cxccution
time. The normalized values are almost identical to the actual time of the FootMove program. The Linear
Solve normalized value, on the other hand, is worsc than the data book value. Conscquently, it is hard to

decide which timing values should be used. Since the data book values are closer to the actual values for



both cases, it might be better to usc the values supplicd by the manufacturer even though the best-worst
spread is larger.
As the table indicates, the cache values should be used for prediction. However, this should not be

surprising since the cache has been tumed ON.

5.4.3 Tests Involving Mostly FPU Instructions
54.3.1 Test Programs

These procedures have been taken from a real-tinie program usi¢ for controlling a robot arm. They are
Puma Dir Kin and Puma Inv Kin. Both procedures involve only fi  ding point calculations and operations.
The only CPU instructions present in the test procedures are used for moving data, accessing variables and
calculating addressing modes of all operands.

Puma Dir Kin procedure determines direct kinematics of a Puma robot arm, It uses random numbers as
input joint angles (Theta 1 through Theta 6) and calculates the arm's position and orientation in the 3-D
space.

Puma Inv Kin procedure calculates the angle values for the robot's joints from the position and
oricntation values (indirect kinematics). It too uses random numbers to calculate the angles, but the
randomncss in this case is restricted to those values that place the end-effector into the working space of the
robot. This procedurc serves for two testing programs. The first program (Puma Inv Kin) utilizes the wholce
procedure, while the second program (Puma Inv KinE) simulates an error in the position/orientation values.
This crror causcs the program to jump over the calculation of oricntation angles (Theta 4 - 6), thus resulting

in computation of only the position angles (Theta 1 -3).

5.4.3.2 Cache OFF Test Results

The COFF valucs arc presented in Table 5.5a that compares the actual values against the data book timing

valucs and the normalized values. The meaning of the table fields corresponds to the meaning of Table 5.4.

Cache CFF Data book Timing Values Normalized Timing Values
PumaDir | Pumalnv | Pumalnv | PumaDir | Pumalpv | Pumalnv
% CPU 8.11% 6.45% 6.81% 11.17% 8.42% 9.22%
Average (s): , 12428 14.5255 10.953 12428 145255 10953
Error Best %: -6.34% -1.90% -1.12% -1.27% 1.61% 3.26%
Error Cachie %: -1.83% 2.51% 3.26% 1.54% 471% 6.00%
Error Worst %: 1.711% 6.09% 7.00% 3.48% 6.78% 8.01%

Table 5.5a - Exccution time of FPU-oricnted programs (cache OFF casc). Both normalized

and data book prediction values arc summarized.
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Both data book and normalized values give very close results. This similarity can be attributed to the small
percentage of CPU instructions. Since this is the COFF casc, the worst case valucs shouid be considered.
The over-vstimation of the worst case values of Puma Inv Kin procedures indicates shorier execution path
than the path considered during the analysis phase.

It is very difficult to say which casc should be considered, but looking at the individual values, it would be
more appropriate to take into account the worst casc values. It scems that the Puma Inv procedurcs do not
find all test conditions of IF statements TRUE since both of them exhibit shorter actual exccution time as

comparcd to Puma Dir Kin procedurc which has almost the same fraction of CPU instruction cycles.

5.4.3.3 Cache ON Test Results

Thesc results are present in Table 5.5b. The meaning of the table fields is identical to the meaning ficlds of
Table 5.5a.

Cache ON PumaDir | Pumalnv | Pumalnv

% CPU 8.11% 6.45% 681%
Avcrage (s): 124395 14589 10.985
Error Best %: -6.43% -2.32% -1.41%
Error Cache %: -1.93% 2.06% 2.96%
Error Worst %: 1.61% 5.63% 6.69%

Table 5.5b - Exccution time of FPU-oricnted programs. (cache ON casc).

As in the COFF case, the crror values are quitc small. The spread is smali duc to the low percentage of the
CPU instructions. Puma Inv procedures exhibit shorter exccution time, thus the worst and cache case valucs
overestimate the actual average exccution time. In any casc, the cache valucs, which should be used for the
prediction, give the best results.

5.4.4. Summary of the Test Results

The results indicate that for a CPU with cache the exccution time depends not only on the cache state, but
also on the type of instructions and the code size itsclf. Whereas it is possible to predict quite accurately the
scquential code that has no loops, it is impossible to predict exactly the exccution time of a looping
construct unless we analyzc loops. This analysis might be hampered by subroutine calls from within the
loop especially if the subroutine's address is hidden inside a register.
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In gencral, we have observed from the results that the timing value approaches the worst case for the
COFF setting, and the cache case for the CON setting, when the code gets larger and/or the FPU
computation increases. This observation is useful since we do not have to be concerned with the loop size
and can estimate the execution time directly from the predicted values.

The calculations also have 10 take into account instructions that tend to overestimate the execution
time, like the DIV and MUL CPU instructions do. The execution time value of such instructions is defined

by the manufacturer as the maximum.

To summarize the data, the range of errors for best, cache and worst cases has been displayed in Graphs
5.2a-c. The programs have been classified into the following six groups: CPU/Small (Ins Worst, Bubl
Worst, StrSrchW and EncrypiS), CPUISmallDM (Rand NumS), CPUILarge (Encrypt, Vect), CPU/LargeDM
(Rand Num), CPUIFPU (LinearSolve and FootMove) and FPU (Puma Dir Kin and Puma Inv Kin). The
rcason why the CPU/Large and CPU/Small have been further divided into those that contain division and
multiplication operations and those that do not, is to demonstrate how these operations tend to decrease the
crror range while at the same time they tend to overestimate the execution time. Only three major groups
have becn tested with normalized COFF values — CPU/Small, CPUIFPU and FPU. The Minimum error bar
indicates the minimum crror value of all test programs in a group. The Range of errors bar shows how the
crrors range from the minimum to maximum value.

The CPU/Small group shows underestimation for COFF case of al} data book values. However, the
normatized values arc very close to the actual execution time. The cache values for the CON case predict
closely the cxecution time.

The CPU/Large group underestimates the execution time for both COFF and CON cases due to the
code size that is longer than one cache size. Since the code is not Jonger than twice the cache size, some of
the instructions remain in the cache resulting in smaller CON errors.

Both CPUILargeDM and CPU/SmallDM groups indicate smaller range of CON and COFF errors.
Additionally, they overestimate the execution values.

The CPUIFPU group shows smaller variation in error values than of CPU-only programs. The worst
casc data book and normalized values predict accurately the COFF execution values, while the cache case
valucs are suited to predict the CON execution values.

The FPU group cxhibits the smallest range of errors for both the COFF and CON cases. The high
percentage of FPU cycles makes the exccution time more predictable.



Data book COFF Errors

best
cache
worst

best
cache
wOrst

best
cache
worst

cache
worst

best
cache
worst

CPU/Small best
cache
worst

best
cache

CPU/SmallDM

worst

best
cache

Z

worst

CPU/FPU best
cache
worst

cache

2
g

worst

-80

60 40 -2 0 20

Error Range (%)
@

CON Errors

IS NN SNV VT I OO

4.

80 60 -40 -20 0 20 40

Acdo

Error Range (%)

(b)

. Minimum emor

Range of errars

Graph 5.2a,b - Range of prediction errors using data book timing valucs.

feds.

68



69

Normalized COFF Errors

best
cache | CPU/Small I
worst W%f
4 Minimum error

best l CPU/FPU I Range of errors
cache
worst
best FPU
cache
worst

|

-10 -5 0 5 10
Error Range: (%)

Graph 5.2¢ - Runge of prediction errors using normalized valucs.

5.5 Accuracy of SLOTT

The accuracy will be judged on the knowledge of the type of programs and the lack of this information. The
type of programs iz important only for MC68020 system since it is affected by various factors (section 5.3)
that do not influence the MC68000 system.

5.5.1 MC68000 System

Once the instructions arc normalized, the prediction is very precise. Using all four test program results, we
can first calculate an average crror offset. Using this offset value, the absolute error differences are
calculated. These differences arc then averaged to give the average error value for a predicted value that has
been already offsct. Table 5.6 summarizes the prediction errors and gives the average error and the offset
crror valuc. Both the error range and average error values are given in absolute terms. The offset error
indicates whether the offsct should be positive (to over-estimate) or negative (o underestimate the

predicted valuc).
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Error range (%) 0.1510 1.63
Offsct Error (%) 0.48
Average Error (%) 0.765

Table 5.6 -~ Range of errors, offset crror and average prediction error of the MC68000 system,

These error values will apply to the programs of any type and any length. The cxecution time of
instructions, that depends on the operand's value, is calculated cither dircctly from the value, or as an

average of the worst and best execution time values (section 5.2.2).

5.5.2 MC68020 System

These results are separated into COFF and CON error values. COFF casc is further divided into results
using data book values and normalized values. All offset error and average error values have been
calculated using the same method as describe in previous section. Again we will calegorize the programs
into the six groups mentioned in section 5.4.4. To obtain the range of errors, at lcast two programs of the
same type must be present. The number in the parentheses after the name of the group indicates the number

of programs used for the calculation.

5.5.2.1 COFF Case with Worst Data Book Values

Since the cache is turned OFF, the code length is not a factor. Therefore, we can combine the
CPU/LargeDM and CPU/SmallDM programs into one group to create CPU/DM category. Five groups have
been compared and they are shown in Table 5.7a. The fields arc the same as those for Table 5.6. Again,

only the Offset Error value indicates with the sign whether the result should be over-estimated or

underestimated.
Error Range (%) | Offset Error (%) | Average Error (%)
CPU/Small (4) 11510 204 15.1 34
CPU/Large (2) 14.110 19.25 16.7 26
CPU/DM (2) 7.74 10 8.46 8.1 0.36
CPU/FPU (2) 0.6 10 0.85 0.125 0.73
FPU (3) 1711070 49 2.15

Table 5.7a - Range of errors, offsct errors and average prediction crrors of the worst data

book values under COFF setting.

As stated before, the CPU/Large and CPU/Small groups could have been combined into one group since
the code length is not a factor. The results clearly show that both CPU/Large and CPU/Small categories
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have almost the same crror range, offsct error and average error values. The division and multiplication
operations tend to over-cstimate the estimated result; therefore, the offset value of 8.1% is used todecrease
the calculated valuc to arrive at better estimation. Both CPU/DM and CPU/FPU groups share the smailiest

average crror, bellow 1%, once the results have been adjusted by the offsct value,

5.5.2.2 CON Case with Cache Data Book Values

Here the code length is of utmost importance. Since CPU/LargeDM and CPU/SmallDM programs have
only one program for each group, we cannot use them in calculation of the error values. The results are

present in Table 5.7b and the fields correspond to the

Error Range (%) | Offset Error (%) | Average Error (%)
CPU/Small (4) 1.65 10 3.56 -0.07 2.67
CPU/Large (2) 25910216 26.8 0.85
CPU/FPU (2) 2.73105.27 -4.00 1.27
FPU (3) 1.93 10 2.96 -1.03 197

Table 5.7b - Range of errors, offset errors and average prediction errors of the cache data
book values under CON setting.

The average crror ranges between 0.85% to 2.67% once the results have been adjusted by the offsct values.
While cache values predict very closely execution time of CPU/Small programs (offset error is 0.07%), the
prediction can be off by as much as 27% for CPU/Large programs. Consequently, it is desirable to

compensate for this discrepancy by SLOTT during compilation.

»

5.5.2.3 COFF Case with Normalized Values

Only three groups are compared and evaluated: CPU/Small, CPUIFPU and FPU programs. The results are
present in Table 5.7c and the meaning of the fields correspond to the meaning of Tables 5.7a,b.

Error Range (%) | Offset Error (%) | Average Error (%)
CPU/Small (3) 0.61 10 6.44 343 2.00
CPU/FPU (2) 0.04 10 2.04 1.00 1.04
FPU (3) 3.48 10 8.01 -6.09 1.74

Table 5.7¢ — Range of errors, offset errors and average prediction errors of the normalized

data book values under COFF setting.

.y
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The normalization process reduces the offsct error and to some degree also the average crror. The most
significant effect of using normalized valucs can be observed for CPU-only programs. The cffect on

CPUIFPU and FPU progeams is almost unnoticeable.

5.5.3 Summary

The average and the maximum errors of adjusted values are shown in Graph 5.3a and 5.3b. Graph 5.3a
indicates prediction errors for MC68000 system. These errors apply to all programs of any type and length.

Thus any predicted value will differ from the true execution time by 1.1% at maximum.

MC68020 system has to consider diffcrent factors, thus it is necessary to know what type of program is
considered and whether cache is turned on. Using only data book values and knowing the type of programs,
the maximum prediction errors range from 0.5% to 5.5% for the COFF case, and 0.9% to 3.5% for the
CON case. If the normalized values are used, the maximum prediction crror ranges from 1% 10 3%.

If the program type is not known, then we have to have to assume the worst casc that can occur. To
arrive at the offset value, we have 1o refer to Graphs 5.2a and 5.2b. Under the COFF sctting, wc arc using
worst case prediction values. The largest error is cxhibited by both CPU/Small and CPU/Large test
;- wasbures which is underestimation of 20%. Thus increasing the predicted worst case crror by 20%, the
cves - stimation will shift from 10% (CPU/DM programs) to 30%. Under the CON sctting, the cache valucs
are used. Referring to Graph 5.2b, the largest error occurs for CPU/Large programs with the vatue of 25%.
By shifting the base from O to the 25% mark, the over-cstimation valuc for CPU/SmallDM program
increases from 15% to 40%. Consequently, the worst result for the COFF case has 1o be over-estimated by
20%, while the cache value for the CON case has to be increased by 25%. However, the adjusted valucs
can over-estimate the execution time by as much as 30% and 40% for the COFF and CON cascs,
respectively.

If the program type and the cache setting are not known, then we have to assume the worst case values.
Again, the offsct is 20% (under COFF sctting for CPU-only programs), but the over-cstimation crror will
increase to 50% due to the worst CON error valucs of the CPU/Small and CPUISmallDM programs (Graph
5.2b).

MC68000 System
B Average Error (%'
Maximum Error (%)
¥
2 3 4 5 6

Average and Maximum Error (%)
Graph 5.3a - Percentage errors for all MC68000 test cases.



73

MC68020 System

I COFF - Data Book Values I

CPU/Small S
CPU/Large S8
CPUDM §i
CPU/FPU S
FPU |8

CON - Data Book Values

CPU/Small
CPU/Large ER
CPU/FPU 18

FPU

B Averaze Error (%'

Maximum Error (%)

r COFF - Normalized Values

CPU/Small J§
CPU/FPU £
. FPU [

Ffryrrrrvr™&™ Ty L Jum e T. 5.

0 1 2 3 4 5 6
Average and Maximum Error (%)
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5.6 Comparison of SLOTT with Other Systems

This section will try to compare the performance of SLOTT with the performarnce of tools described in
scction 2.2.3. The performance of source level timing tools depends on three major factors: (1) obtaining
exact assembly instructions produced by the compiler, (2) the accuracy of aligning assembly-instructions
with language constructs ard timing blocks, and (3) tool's features that can specify the correct program flow
directly at the source level. MARS-C system provides markers that permit ioop and code bounding at the
source level, and RT Euclid accepts only bounded loops. Both RT Euclid and MARS-C obtain precise
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assembly instructions. But the accuracy of instruction’s alignment with language constructs can be

questioned in the MARS-C system especially under optimization.

Even though RT Euclid CPU has a cache, Stoyenko docs not describe how he deals with different loop
sizes. Apparently, the author uses only value(s) present in the manufacture's data book. The test programs
concentrate on how the utility can predict the execution time of the whole system. Thus several real-time
programs have been tested under light, medium and heavy load conditions. To be fair to RT Euclid, we will
assume only light load case values since they would correspond to SLOTT's predicted values. The claimed
accuracy ranges between 2% and 5%. However, no indication is given of what the code size is and what the
structure of these test programs is. The complexity of the test programs can be compared 10 our FootMove
test program since we are timing a larger program consisting of several procedures. This characteristic is
favorable for timing a system as a whole since over-estimation and underestimation errors of loops and
non-looping code will tend to cancel cach other out. Obviously, to scrutinizc the prediction of RT Euclid
more closcly, programs consisting of individual procedures will have (o be tested out. This cvaluation is
important to make sure that the tool can precisely analyze schedulability of individual tasks that arc under
time constraints.

The authors of MARS-C system o a0t give any comparison between the predicied and actual
cxecution time. However, knowing that the iool has been designed for MC68000), we can say that the tool
can be as accurate as SLOTT. The accuracy, though, depends on (1) the knowledge of jump sizes, (2) the
treatment of instructions whosc execution times arc determined by the value of their operands, (3) the
presence of selection markers and (4) alignment precision. Since the authors do not mention the first two
points; the system does not support the third one, and might have problem with the fourth onc, we-can
assume that MARS-C cannot surpass SLOTT in its performance.

Completely different approach in predicting the execution time is presented by Shaw and Park in
source level timing schema (SLTS) [Park91]. As mentioned in scction 2.2.3.1, SLTS docs not obtain the
exact generated code, rather it predicts the binary output. Consequently, it predicts large range of execution
values depending o what size of atomic block is used for the prediction. For example, if onc Large Atomic
Block (LAB) is used for a function call, the predicted time is calibrated to the actual execution time, But if
a number of Small Atomic Blocks (SABs) is used for the same function call, the predicted value can differ
from the actual value by as much as 393% [Park91]. The authors have divided their test procedures from a
simple expression that makes up one LAB, through simple procedures consisting of several lines of code, to
complex procedures like an insertion sort and a scheduier. The Insertion sort procedure of SLTS paralicls
SLOTT's /ns Worst procedure. Considering the worst sorting case for both-MC68000/010 systems, SLTS
overestimates the execution time by 67% while SLOTT is accurate to within 9.15%! Although the authors
categorize thc Scheduler test procedure as a complex procedure, it consists of threc procedures that are

executed in a loop. Thus its complexity can be classified under the category of Whole Real-time System.
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Table 5.8 gives an overview of the test results mentioned by the authors that developed their systems. As
we can see, SLOTT outperforms SLTS and possibly MARS-C systems. Even though RT Euclid and
SLOTT have been designed for different hardware sysiems, their accuracy in predicting the execution time

of a real-time system is almost identical.

System Type Simple Expression Simple Procedure Complex Whole Real-time
Procedure System

RT Euclid (0) N/A N/A N/A 2% 0 5%

MAXT/MARS-C N/A t N/A t N/A N/A ¢

SLTS (1) 0% (LABS) » 0.72% 10 9.7% 1.4% to 66.6% 31.2% 0 81.5%

SLOTT NAt| 015%101.6% (1) 0.15% w0 1.6% (1) 2.7%105.3% (2)

Table 5.8 - Comparison of SLOTT with other source level timing tools.

Notes:
+ No evaluation has been performed, but it may follow results of the SLOTT's MC68000 system.
1 The error will depend on the normalization of execution time of instructions.
» The execution time of these simplc expressions has been calibrated to the pre-timed pure execution time.
(0) NS16000/32000 CPU family results.
(1) MC68000/010 results.
(2) MC68020 results.



Chapter 6

Conclusion

The knowledge of precise time limits of real-time tasks, in time-constraint systems, is of utmost
importance. By knowing the execution time of each procedure, the designer can morc precisely fine-tune
each portion of the source code. He can concentrate on the bottle-necks and parts of the code that are the
most critical for the correct system performance. These execution time valucs can be obtained by two
different means — testing or predicting.

The disadvantage of testing is that it requires a major portion of the development time. Programmers
must allocate time to design test driver programs, and then analyze the data these programs gencrate.
Furthermore, the designer might have to invest in expensive tools, like simulation programs, or hardwarc
timing devices. Finally, the obiained execution timing may be affected by factors that are analogous to the
Heiscnbergaincertainty principle (section 2.2).

Reliable prediction within predetermined tolerances has definite advantages: (1) once implemented and
calibrated it is very fast, (2) no tcst driver programs are required and (3) it allows the user to analyzc
different scenarios just by supplying different running conditions, i.e., various loop itcrations and distinct
program flow paths. As a result, important liming information can be obtained before the code is actually
run. The crucial factor that determines the quality of such a tool is how closcly the tool can predict the
actual exccution time. This condition depends on the complexity of the hardwarc system and how closely
the tool can resolve the factors that affect the exccution time: cache, operand alignment, instructions

overlap and alignment, etc.

This work presents a-prediction timing tool — the Source Level Oriented Timing Tool, or SLOTT - that ..
predicts the execution time directly form the source code. It is implemented as the part of a C compiler, but
its simple and modular implementation allows easy import into other languages as well. The tool exists on

its own and it does not mestrain the compilation process. SLOTT gives the programmer the option to bound
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loops, and scgment of code and specify the program flow. It collects the timing information for the user-
defined code fragments which can range from one line to the whole function. Since most real-time
languages do not deal with the timing aspects of their programs, the functionality of such real-time systems
can be enhanced by including SLOTT in their design.

SLOTT has been tested on two hardware platforms the 68000 and the 68020/68882. Results obtained for
the 68000 CPU are very accurate, especially after the execution time of each instruction used in the test
programs has been normalized. The normalization process is important because it takes into the account
various hardware and system related factors like memory refreshing, additional wait states, timer interrupts
and the DMA operations. The 68000 CPU does not have a cache and thus it is not affected by cache related
factors as the 68020 CPU is.

The 68020 hardware system has a cache and is sensitive to operand/instruction alignment, instruction
overlap and other factors. The cache OFF (COFF) case execution values are very close to the normalized
COFF valucs for the CPU-only instructions. When the FPU instructions are included, the worst case values
can be used to predict the COFF values. Most of the time; however, the CPU will be utilized with the cache
ON (CON) setting. In this case it is very important to consider the loop size since the execution time of the
CPU instructions can be significantly improved when the instructions are present in the cache. The FPU
instructions are not affected as much since the Ty, periion of the T, time is more significant than the
Ty portion. Additionally, the FPU execution value of cach instruction is defined by one data book value.
This reduces the errors introduced by the triple timing vsiues for the CPU. As the program size gets larger
and the FPU content increases, the actual CON values gt vloser to the predicted cache values. Thus even
though the loop size is important for small code segments, the execution time will average out for timing

blocks that involve many functions of a variable code size.

Since it is very hard for a programmer to determine the loop size directly from the instruction stream, the
next improvement of SLOTT should include this calculation. Knowing the loop size, SLOTT can then
predict the cxecution time more preciscly. This implies, that accurate COFF and CON values be determined
for cach instruction that is to be considered in the calculations of the variable loop size. The best approach
to accomplish this task is to perform tests similar to tests described in section 5.3.4 where the CON/COFF
ratio for slightly under-filled cache is calculated instead of a single CON value. Additionally, the COFF
normalized values can be determined. The second test will establish all COFF values as a basis for the first
test values that are used for the calculations of the CON values from the CON/COFF ratios.

Another requirement for the CISC (Complex Instruction Set Computer ) CPUs is that the instruction
size must be known. The 68000 family instructions range from 2 bytes to 10 bytes in size and it is fairly
easy to determine the instruction size from the operand's addressing modes. Other architectures such as the
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RISC (Restricted Instruction Set Computer) CPUs arc cven simpler in this regard since cvery instruction is
4-bytes long.

The current version of SLOTT assumes jumps to be of a certain length — average time of byte and word
long jumps have been used. In most situations the difference between the actual size and the real one is
insignificant, but in order to calculate the exccution time more pregiscly, the jump size must be determined.
This again requires that we keep track of the code size. Morcover, we have 10 create . unk list of all
instructions since some jumps may refer to forward labels in which case we have to find out the code size
between the jump and the label before we can determine what the jump size is going to be. However, to
know if the presumed jump size will correspond to the actual compiled size, we have to know whether the

assembler will optimize the jumps, or whether it will blindly follow assembly instructions.

The markers can be diversified as well. For example, in some situations it would be casicr to define the
iteration count of the inner loops in terms of their relation to the outer loops. Then the bounding of the outer
loop would automatically bound the inner loops as well. This way we could specify the itcration count of
all loops involved in the matrix muitiplication by associating the matrix size with the upper bound of the
outer loop.

Similar improvement can be applied to the FOR loops. Here the inner loops could determine the
relation of their iteration count to the iteration values of the outer loops. This means that SLOTT will have
to recognize assignment and arithmetic/logic operations using, not just constants, but also the index
variables of the outer loops. Furthermore, the variables of the cuter loops would have to be accessible for
the inner loops unti! the end of their definitions.

The sciection markers could be expanded in their functionality. They could allow more than one
alternative of the same conditional statement to be considered in the analysis phasc. These altematives
could be specified statisticaily so that each of them would be bound o certain portion of total number of
selections.

Finally, the tool can be expanded beyond the CISC architecture. These days the trend is towards the use f
the RISC and ihc MIPS CPUs due to their design simplicity, incréased performance and computationat
speed. It should not be then surprising that the current hardware real-time systems are migrating from the
CISC to the RISC platforms. There are four major techniques employed in the RISC design that zflow
faster execution: (1) instruction pipelines, (2) load/store architecture, (3) delayed load instructions and (4)
delayed branch instructions. Additionally, the architectural simplicity increases the performaice duc to the
faster instruction decode, operation and access time [Kane88). For example, many RISC CPUs define w2
instructions to be uniformly 32 bits long. This eliminates many of the misalignment problems mentionse ia
chapter 5 and simplifies the instruction decode algorithm. Most of the RISC processors claim to perforra at
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one CPU cycle per any instruction. Obviously, some of these features should prove advantageous in the
RISC version of SLOTT designs; however, instruction pipeline, delayed load and branch instructions might
cause problems for some SLOTT implementations. SLOTT design demands that the compiler keeps the
construct markers at the precise positions since the delayed load and branch techniques can rearrarge the

assembly code in order to suit the RISC philosophy.

There is certainly a need for reliable, fast, and accurate source level timing tools like the SLOTT. With all
the computing power at our hands the time has arrived for the tools that correctly calculate and predict the
cxccution time directly from the source code. Using tools similar to SLOTT, resources spent on testing and
simulation could be redirected to the development and improvement of program code, thus resulting in
faster and more reliable performance. SLOTT provides a good basc from which similar "SLOTT-like"

production tools can cvolve.
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Appendix

This appendix includes one test procedure from each test groups. The cail from the main () procedure will
be illustrated with the last example. The following is the Puma Dir Kin test procedure:

#include

“puma.h*

/* Define inline assembly macros */

fdefine sin(x) \
({ float _ value,

arg = (x);

asm ("fsinf.x %1, %0": “-f* (_value}: “f* {_arg)); \

__value; 1

#define cos(x) \
{{ float _ value, _ arg = (x); \
asm ("fcos%¥.x %1,%0%: “=f* {__value): “f" (__arg));
__value; 1)

#tdefine atan{x) \
({ float _ value, arg = (x); \
asm (“fatan¥.x %1,%0%: "=f* (_ value): “f* {__arqg)):
__value; 3]

tdefine sqft{x) \

float _ value, arg = {(x); \
asm (“fsqre¥.x %1,%0%: “=f* (_value): *f* (__arqg));
__value; N
fdefine asin(x) \
float _ value, arg = {x); N
asm ("fasint.x %1,%0%: “=f* (_ value): “f" (__arq));
__value;
fdefine acos({x) \
{{ float _ value, arg = (x); \
asm ("facos¥.x §1,30%: “=f* (__value): “f* (_ arg));
__value; 1
fdefine CD 180.0/M_PI
fdefine CR M_PI/180.0

Thetas th, rth;

transf tr;

#pragma stiming ()
DirectKinematics(pos, ths)

Thetas *ths;
transf *pos;
{

float tl, t2, t3, tUniq, delta;

float cl, si, c2, s2, c23, s23, c3, s3, c4, s4, c5, 85, c6, 56;

float US11, US12, U521, US522;
float U411, U412, U413, U421, U422, U423;
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float U311, U312, U313, U314, vazl, U322, U323, U324;
float uz11, U217, Y213, U214, U221, u222, U223, UV224;

fioat *fpt, *fpp;
float ox, oy;
float ax, ay;
float px, PYy:

fpt = &(ths->tl);
fpp = & (pos->n.x);

tl = *fpt++;
t2 = *fpt+4;

t3 = *fpt++;
51 = sin(tl);
cl = cos (tl);
52 = sin(t2};
c2 = cos(t2);

s23 = sin{t2 + t3)
€23 = cos(t2 + t.3)
g4 = sin(*fpt);
cd = cos(*fpt++);
55 = sin{*fpt);

- cos(*fpt++);
s6 = sin(*fpt);

« cos{*fpt);

.
¢
.
’

U512 = -c5°s6;
U522 = ~85*s6;

U412 = c4+U512 ~ s4°c6;
U413 = -cq4*s5;

Y422 = s4*US12 + cd*c6;
U423 » -84*s5;

U222 = s523*U412 + c23*U522;
U223 = 523*U413 + c23+c5;
U224 = c23*d4 + s2*a2;

212 = c23*U412 - s23*US22;
U213 = ©23°U413 - 523*c5;
U214 « -523*d4 + a2*c2;

- cl4U212 - s14U422;
oy = s1*U212 + cl+U422;

= c1%0213 - s1+U423;
ay = s1*U213 + cl1+U423;
*fppt+ = oy*U223 - ay*0222;
sfppt+ = U222%ax - ox*U223;
sfpp+t = ox*ay - oy*ax;

*fppt+ = ox;
¢fppt+ = oy;
sfppt+ = U222;

*fpptt = ax;
t{pp++ = ay;
*fppt+ = U223;

o
px = c1*U214 + s1+d2;
py = s1*U214 - cl*d2;
tfppt+ = px.
*fppt+ = py;
sfppt+ = U224;

/* Set global flags about the initial

myatan2 (py, px, tUnig);
tUniq += M _PI_2;

delta = tUniq -~ tl;

if (delta < 0.0)

1f (delta > -M_PI) /* Make sure abs{delta) < 180 degrees

thiL R = LEFT;

/* = ax */
/* = ny */
/* = nz */

/.

positions of thl, th2, thS
Macro for calculating atan2

lse
thlL_R = RIGHT; /* else it must be the other state

else
if (deita < M_PI)
thlL R = RIGHT;
else
thilL R = LEFT;

pr = a2*c2 - 523+d4;
myatan2 (U224, px, tuniq);

delta = tUniq - t2;

/* suppose the arm is in RIGHT position ./

{f (delta < 0) {
if (delta > -M_PI}
th2u D = UB;
else
, th2U_D = DOWN;
else {
if {delta < M_PI)

*/
*/

*/

*/
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th2U, D = DOWN;

{]
th2u D = UP;
i

1f (thiL R == LEFT) { /* Exchange if thl is LEFT 7
if (Lh2V D == UP)
th2U D = DOWN;
else
th2U D = UP;

}
if (55 < G)
thSF_NE = FLIP;

se
thSF_NF = NGFLIP;

The next group of procedures represents the LinearSolve test program:

fdefine mMin(x,y) ((x <y} 2 x : y)
fdefine mMax(x,y) ({x > y} 2 x : ¥)
fdefine mMod(x,y) (X = ((x / ¥y} * ¥))

#define EQN_SIZE 3

fdefine fabs(x) \
({ float _ value, arg = (x);
asm (“fabs$.x %1,%0": '-f' (__value): “f* {_ arg));
__value; 3]

double tvv;
aouble *aa;
int *index;

int cntl, cnt2, cnt3, cnt4, cnt5, cnt6, cnt?, cnt8, cnt9;
int cntl0, entll, cntl2, entl3, cntl4, cntl5;

tdefine noErr 0
fdefine kNullRowErr 1
fdefine kNullPivotErr 2

#pragma stiming ()
int LUDeComposition (double *a, int n, int *index)
i

int §,3,k, imax, errLevel;

double big, sum, temp;

errlevel = noErr;

for (1=0f1<EQN SIZE;i++) |
big = 0.0;
for (j=0; JCEQN_SIZE; J++)
big = mMax(big, fabs ((*{a + (i*n)} + 3))));

if{big==0.0) {
errlevel = kNullRowEBrr;
break;

}
*(vv+ét) = 1.0/big;

if(errlevel == notrr) {
for(j=0; J<EQN_SIZE; j++) |

fpragma max_ic (2)
for(i=0;1<)si4+) |
sum = *{a + (i*n)} + J);

fpragma max_ic (1)
for (k=0;k<isk++) {
sum -= (*(a + (1*n) + K)) * (*(a + (k*n) + 3I));

“{a + (i*n) + ) = sum;

big = 0.0;

fpragma max_ic (2)
for{i=j;1<EQN_SIZE;i++} {
sum = *(a + (i*n) + 3);

fpragma max_ic (2)
for(k=0;k<j;k++)
sum -« (*(a + (1¥n) + k)) * (*(a + (k*n) + 3));



*{a + {i*n) + J) = sum;

1£{(Lemp=(* (vv+]))* fabs (sum)) >= big) {
big = temp; imax = 1;

}

}

f1()!eimax) |
for (k=0;k<EQN_SIZE;k++) |
temp = * (3@ + (imax*n) + k);
*(a + {imax*n) + k) = *(a + {3*n) + k};
*{a + (j*n) + k) = temp;

o {vveimax) « *(vv+l);

}
* (index+j) = imax;

f1((*(a ¢+ (3°n) +3))==0.0) {
crrlevel = kNullPivotEre;
break;

ft(ji=(n-11) {
temp = 1.0/("{a ¢+ (3*n)} + §}):

$pragma max_ic (2)
tor{i=341:1<n;i¢4)
(*¢a ¢+ (i*n) + )} *= temp;

}

}
return errlevel;

spragma stiming ()
void LUBackSubstitution (double *a, int n, int *index, double *b)
{

int i,41,4p,3:

double sum;

ii = -1;

for (1=0;I<EQN_SI2E;i++) |{
ip = *(indext1);
sum = *(b+ip);
¢ (beip) = *(b+i);
1£(1i>=0) |

fpragma max_ic (3)
for(j=ii;3<={i~1);3¢¢)
sum -» (*{a + (i*n) +3)) * (*(b + 3}));
} alse
{f(sum!=0.0)
it =4;
*(bef) = sum;

tor (1= (EQN_SIZE-1);i>=0;1--) {
sum = *(btl);
fpragma max_ic (2)
for (3=1+41; J<EQN_SIZE; j++)
sum -= {*{a + (i*n) ¢3)) * (*(b + §))?
*(bel) = sum/(*{a+ {i*n) +i));
}

return;

fpragma stiming ()
int LinearSolve (double *a, double *b, double *x, int n)
{

int {,3, errlevel;

for (1-0;{<EQN_SIZE;1++) {
*(x+i) = S{btl);
for (J=0; J<EQN_S12E; J++)
*(aa + (1%n) 43) = *(a + (i°n) +});

errlevel = LUDeComposition(aa,n,index);
if(errlevel == notrr)
LUBackSubst itut fon{aa,n, index,x);

return errlevel;



The following is the Rand Num procedure:

tdefine M1 259200
fdefine IAl 7141
fdefine ICl1 54773
fdefine M2 134456
fdefine IA2 8121
tdefine IC2 28413
fdefine M3 243000
fdefine IA3 4561
fdefine IC3 51349

long ix1, ix2, ix3;
long ri4);

fpragma stiming ()

int

ranl (idnum)

int idnum;

long temp;
int j, iff = O;

i1f (idnum < 0 1| iff == 0) {
iff H
{IC1 - (idnum}} & Ml;

ix] =

ix] = (IAl*ixl + IC1l) % Ml;
ix2 = ix1 & M2;

ix1 = (IA1*ixl + IC1l) % MI1;
ix3 = fx1 & M3;

ixl & (IAl*ixl + IC1) & Mi;
Ix2 = (IA244x2 + IT2; % M2;
rl(l) = (ixl + ix2/M2)/M1;

ixl = (IAl*ixl + IC1} % M1;
Ix2 = (IA2*ix2 + IC2) % M2;
r{2] = {ixl + ix2/M2) /Mi;

ixl = (IAl*ixl + IC1) % Ml
ix2 = (IA2*ix2 + IC2) $ M2
T3] = (ix1 + ix2/M2) /M1;

.
.
.
B

ixl = (IAl*ixl + ICl} % M];
1x2 = (IA2*ix2 ¢ JIC2) § M2;
ix3 = (JA3*ix3 + 1C3) & M3;

- 9§ =1+ ((3*ix3)/MI);
temp = ¥(jl;

r(j) = (ix1 + ix2/M2)/M1;
return temp;

The last examples show couple of short CPU-only test procedures along with the function calls from the
main () procedure:

int array{ARR_SI2E]};

fpragma stiming{()
InsertSort {) /* Ins Worst */
{

int &, 3§, v;

for (i=1; {<ARR_SIZE; i++) {
v = array(1];
i= i
fpragma total_ic (124750}
while (array(3j-1] > v) {
array()) = array{j-14;

3==:

]
array(3) = v;

fpragma stiming()



HubbleSort () /° Bubl Worst */
int §, t;

tpragma total ic (50G)
do
t = arrayioi;
for {)=1; i<ARR_SIZE; Jee) H
tpragma total ic (124750)
1t (arrayl3-1} > arrayli}) {
t =~ arrayl(j-11;
arraylj-11 - arrayl3l;
arrayldi =

}
} while (L !+ arraylC)):

fpragma stiming()
WorstList () /* Create array sorted in descending order
{

int §;

for (1=0; 1<ARR_SIZE; i++)
arrayfi) - 1000-1;

main ()

{
register int i, §;
iat start, end, k, i, m;

for (k=0; k<2; k++) {
it (k==0) {
CacheOFF () ;
printf (“CacheOFF\n"};

}
else {

CacheON{) ;

printf (“CacheON\n"},

for (1=1; 1<=10; l¢+¢) {
printf ("ioop%d\n~, 1);

i~ 10;
start = gettime ();

fpragma stiming (WIns) /* Time out Ins Worst procedure
fpragma max_ic (10}
for (i~0; i<j; i+¢4) |
worstList ();
InsertSort ();

s}
tpragma etiming (WIns)
end -~ gettime ();
printf (*sd\t®, (end-start));

)= 5
start = gettime ()
fpragma st iming (WB1b) /* Time out Bubl Worst procedure

#pragma max_ic (5)
for (i=0; i<j; i+4) |
wWorstList ()7
BubbleSort ()}

}
fpragma etiming (WBlb)
end = gettime ();
printf{ ("Sd\t®, (end-start)});

./

t/

*/

90



