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Abstract

In this thesis, with the purpose of correcting for potential measurement errors

in repeatedly-observed matrix-valued surrogates, and examining the underly-

ing association between latent matrix covariates and a binary response, we

propose a Bayesian joint model framework. This joint model method imposes

a low-rank structure on the covariance matrix of additive measurement errors,

and relates the binary response with low-dimensional features extracted from

latent matrix covariates. Although in our framework, the latent matrix covari-

ates are not directly observed and used as predictors in the proposed model,

a unique formulation of associations between latent covariates and response

is derived. Simulation studies demonstrate that our proposed method out-

performs other naive methods (i.e., a naive joint model and a naive two-stage

model) with respect to the estimates of underlying association. The advantage

of the proposed method is more notable in the circumstances where a small

sample size but high dimensional matrix covariates are presented. Finally, we

apply this proposed framework to a case study that explores the association

between a favorable response to antidepressant treatment and resting stage

electroencephalography (EEG) data measured under different conditions. Re-

sults suggested that our method should be able to handle the attenuation bias

induced from measurement errors and to reveal the most underlying associa-

tion, compared to other competing methods.
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Chapter 1

Introduction

The widely used therapies for effective disorders such as depression are antide-

pressant medications (Holsboer, 2008). However, Measuring the effectiveness

of these medications in in-vivo studies is time-consuming and may present un-

expected risks to the patients involved (Jiang et al., 2020). Therefore, there

emerged a noticeable demand for predicting the response to antidepressants

so as to choose the right medicines for patients prior to obtaining treatment

(Holsboer, 2008). In recent decades, neuroimaging techniques have demon-

strated their ability to provide antidepressant treatment biomarkers (Steiger

& Kimura, 2010). Among those techniques, Electroencephalography (EEG) is

a prominent method that measures and digitalizes the electrical brain activ-

ities under the specific mental state (Jiang et al., 2020). Various subsequent

researches are conducted to relate the EEG records to antidepressant treat-

ment outcomes (Alhaj, Wisniewski, & McAllister-Williams, 2011; Olbrich &

Arns, 2013). Among these methods, the common practice to make the pre-

diction is to rely on EEG data recorded under a single mental condition, for

example, eyes-open state or eyes closed state (Iosifescu et al., 2009; Lee et al.,

2011).

Although EEG gradually becomes one of the most used predictors of the

antidepressant response and gives promising results (Wade & Iosifescu, 2016),
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recent studies have shown that EEG data could potentially involve measure-

ment errors from various aspects. For example, one type of measurement

errors are the performance errors among patients arising from irregular im-

pulses in attention tend to change the fluctuation patterns in the theta and

alpha frequency bands in EEG records (van Driel, Ridderinkhof, & Cohen,

2012). Another commonly-acknowledged source of measurement errors occurs

in the process of estimating the current sources of EEG recorded from the

electrodes mounted on the scalp (Khosla, Don, & Kwong, 1999; Liu, Dale, &

Belliveau, 2002). Due to the impedance irregularities and electrode-spacing

errors, localization of the estimated current sources could be inaccurate. Even

with the help of source density methods which are supposed to alleviate these

errors through matrix transformation, such errors can hardly be eliminated

(Tenke & Kayser, 2012).

Such measurement errors are in need of resolution as studies have shown

that it could lead to significant bias in parameter estimation and inference

results. For example, in an investigation of additive measurement error in

matrix-valued explanatory variables (refer to matrix-valued covariates here-

after), Fang and Yi (2020) theoretically refined the bias in estimates induced

by additive measurement errors in a logistic regression model. Their results

showed that, as the severity of measurement errors increase, the negative im-

pact brought by the bias to naive estimates increases accordingly. With the

limited sample size and high dimensionality of matrix covariates, the esti-

mation and inference results would be even worse. To address the impact

of measurement errors, the authors suggested two methods of estimating the

bias with additive measurement errors. In their experiments, their methods

can successfully get rid of the bias induced from measurement errors and make

correct inferences on the parameters. It is noted that this method is typically

proposed for the circumstance when the sample size is larger than the dimen-
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sionality of matrix-valued surrogates (i.e., repeatedly measured matrix covari-

ates who are contaminated by measurement errors). When the sample size

is smaller than matrix surrogates’ dimension, the dimension reduction tech-

niques (two-directional two-dimensional principal component analysis (Zhang

& Zhou, 2005) was employed in their paper) need to be implemented first

before correcting for measurement errors in matrix surrogates. This two-step

implementation indeed weakens the interpretability of the association between

original matrix-valued covariates and responses.

To the best of our knowledge, their work is the only attempt to incorporate

the measurement errors in the matrix-variate regression problem. Thus, ad-

justing for measurement errors in matrix-valued covariates under other regres-

sion setting is of great research interest, leading to a research gap in matrix-

variate regression models with measurement error correction and dimension

reduction together. In this paper, to fill such a research gap, we propose

a Bayesian joint model framework (hereafter, we refer to our framework as

JMME) to simultaneously estimate the true latent matrix covariates from re-

peatedly observed matrix surrogates by incorporating measurement errors, ex-

tract low dimensional features from latent covariates, and relate them to binary

responses through a probit regression model. Our study should relax the mea-

surement error in matrix-valued covariates, and the proposed model further

allows a bi-linear dimension reduction for the latent matrix-valued variables.

Moreover, the Bayesian credible intervals allow the quantification of estimates’

uncertainties for inference purposes (Jiang et al., 2020). Practically, we take

advantage of the repeatedly measured EEG under two conditions: eyes-open

state and eyes-closed state, and examine the association between the latent

EEG baseline data (after measurement error correction) and the treatment

outcomes from the selective serotonin reuptake inhibitors.

This work is highly related to the work from Jiang et al. (2020). However,
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they directly related the noisy matrix covariates to the responses without

considering the potential measurement errors. Therefore, our work can be

considered as an extension on measurement errors correction through repeated

measures in the matrix-variate regression context.

The contributions of this study are multi-fold:

1. A new framework, JMME, is proposed to adjust for measurement errors

in the repeatedly observed matrix-valued covariates through a low-rank

structure on the covariance matrix of measurement errors.

2. The proposed JMME framework is the first Bayesian matrix-variate re-

gression model that handles the repeated measures where the sample

size can be smaller than the dimensionality of matrix covariates given

the existence of measurement error. Through simulation and case study,

JMME is examined to be able to incorporate the measurement errors

and reduce the dimensionality simultaneously.

3. The theoretical framework of JMME leads to an identifiable regression of

binary outcomes on the latent matrix covariates after measurement error

correction. Therefore, the inferences for associations between binary

outcomes and the latent matrix covariates can be naturally obtained by

Bayesian credible intervals from Markov chain Monte Carlo (MCMC)

chains.

The rest of the thesis is organized as follows:

In Chapter 2, we discuss the literature related to this study. Specifi-

cally, we provide a review on recently researched dimension reduction

techniques for matrix-valued covariates, the classic measurement error

models handling errors in covariates, the influence of measurement errors
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on principal component analysis, and the most recent study on matrix-

variate logistic regression with measurement error correction.

In Chapter 3, we introduce the proposed JMME relating a binary re-

sponse to the repeatedly measured erroneous matrix covariates through

low-dimensional features. The corresponding hierarchical structure of

JMME is presented. Its identifiability is also justified in this chapter.

Then, the choices of prior distributions for model parameters are pro-

vided and the posterior distributions for the Gibbs sampling procedure

are derived accordingly. At the end of this Chapter, we illustrate how to

select the desired dimensions for the extracted features.

Chapter 4 demonstrates a simulation study to examine the performance

of JMME. The simulation setups are described in detail. To examine

the advantage of our joint model, we also implement two naive methods

(i.e., without considering measurement errors) to compare the estimation

correctness for model parameters. The simulation results are presented

and analyzed in detail.

In Chapter 5, we apply the proposed JMME to our motivating dataset

(EEG baseline data) to explore the association between latent EEG mea-

sures (corrected for measurement errors) and treatment responses with

SSRI antidepressants. For comparison purposes, the same two naive

methods are implemented to the same motivating dataset and the infer-

ence results are analyzed.

In Chapter 6, we conclude the findings with a discussion for the proposed

joint model. The potential limitation and future works are also included.
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Chapter 2

Literature Review

2.1 Dimension Reduction and Regression model

for matrix-valued covariates

Matrix-valued covariates have attracted outstanding attention during recent

decades due to the popularity of matrix structured data (i.e., image data, tem-

poral and spatial EEG data) (Ding & Cook, 2016). When used as predictors,

such matrix structured data, also known as the matrix-variates, exhibit two

important properties: 1. They are usually of high dimensionality; 2. Their

elements are dependent on the rows and columns (Ding & Cook, 2016). Such

properties present challenges when regressing with the matrix-variates, espe-

cially with a small sample size, since simply vectorizing them could produce

the predictors with even higher dimensionality and also destroy the natural

matrix structure (Ding & Cook, 2016). To overcome the high dimensionality in

the matrix-valued covariates, dimension reduction techniques were intensively

researched so that low dimensional features can be extracted as predictors for

consequent regression models. For example, as an extension of classical princi-

pal component analysis (PCA), Yang et al. (2004) proposed a two-dimensional

principal component analysis (2D-PCA) that projects matrix-valued covariates

onto their row space. Accordingly, Zhang and Zhou (2005) proposed an alter-

native 2D-PCA to project a matrix onto column space. They also introduced
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a (2D)2-PCA method that simultaneously projects the matrix-valued covari-

ates on rows and columns spaces by eigenvalue-eigenvector decomposition.

The multilinear principal component analysis (MPCA) then extends the di-

mension reduction to tensor variables with arbitrary order (Lu, Plataniotis, &

Venetsanopoulos, 2008). Afterward, there are plenty of variant methods based

on MPCA that can solve different problems. For example, Lai et al. (2014)

proposed a multilinear sparse PCA that rewrites the MPCA formulation into

sparse regression for face recognition problem; A non-Negative multilinear

principal component is proposed for music genre classification, which reduces

the dimension for third-order tensors while preserves the non-negativity in

auditory data (Panagakis, Kotropoulos, & Arce, 2009).

In another track with the regression model context, a number of models

have been investigated to handle matrix-variates. Hung and Wang (2013) pro-

posed a logistic regression model that imposes a rank-1 structure to the coeffi-

cients of matrix-variates. To handle the small sample size situation, the likeli-

hood function is penalized with l2 norms to obtain the maximum likelihood es-

timates for model parameters. This model is then extended to the generalized

linear model framework (i.e., allows either continuous or discrete responses)

by H. Zhou, Li, and Zhu (2013). They also generalized their GLM to tensor

variables with arbitrary order by applying low-rank Candecomp/Parafac (CP)

decomposition on the coefficients of tensor predictors. Penalties are applied to

maximize the likelihood to obtain the estimation of coefficients. Later on, H.

Zhou and Li (2014) investigated the sparsity regularization, i.e., regularization

with the nuclear norm, in the GLM with matrix-variates. On the other hand, a

Bayesian method is proposed by Jiang et al. (2017) that assumes a hierarchical

structure for the low-rank CP decomposition. Another Bayesian joining model

is investigated later, which utilizes a probabilistic MPCA model and regresses

the response with extracted features simultaneously (Jiang et al., 2020). How-
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ever, as mentioned earlier, all current dimension reduction techniques and the

subsequent models do not take into account the fact that the observed matrix

covariates may be measured with potential errors. They either directly regress

the response with observed matrix covariates, or straightforwardly applied the

dimension reduction techniques to the observations without adjusting for mea-

surement errors.

2.2 Classical measurement error model

Measurement error is a common issue in many research areas, for example,

social science (Heckman, Stixrud, & Urzua, 2006) and medication (Atkinson

& Nevill, 1998), where the variables of interest cannot be directly or precisely

observed. These errors can be easily ignored by the analysis. However, ignor-

ing these errors in variables cannot always give accurate estimation and thus

inference results for model parameters. The attenuation bias typically occurs

when modeling directly on the erroneous predictors, leading to the parameter

estimates shrunk toward zero (Schofield, 2015).

During the past decades, various models are investigated to handle different

kinds of measurement errors. Among them, the models correcting for normally

distributed errors that are independent of latent variables (refer to classical

measurement errors) are well researched (Chen, Hong, & Nekipelov, 2007).

For example, Carroll and Stefanski (1990) proposed a quasi-likelihood estima-

tion for model parameters in linear regression with such classical measurement

errors. A semiparametric estimation is investigated later in logistic model by

Carroll and Wand (1991). Fuller (2009) described a moment-based method

to correct for classical measurement errors in linear models. Richardson and

Gilks (1993) proposed a Bayesian approach for logistic regression with such

measurement errors, based on a conditional independence assumption: the re-

sponse is independent of observed surrogates given the unobserved predictors.
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Their model consists of three submodels: (1) an outcome model for unobserved

predictors and responses; (2) a measurement model for classical measurement

errors; (3) a prior model for parameters. Later on, a Mixed Effects Struc-

tural Equations (MESE) model is introduced to handle measurement errors in

survey data (Schofield, 2015). As data grows, measurement error models are

relaxed to high dimensional datasets. For example, Datta, Zou, et al. (2017)

investigated a cocolasso model that applies a lasso penalty on least square

estimators with additive measurement errors scenario. Although these models

can successfully handle the measurement errors in covariates, little literature

pays attention to the measurement errors in matrix-valued covariates. As

the matrix-variate models are gradually becoming popular, the measurement

errors in the matrix-valued covariates await further investigations.

2.3 The impact of measurement errors in di-

mension reduction

There is several literature that takes measurement errors into account while

applying dimension reduction techniques. In the vector covariates settings,

PCA is a popular technique to reduce dimensionality. It searches for linear

combinations of the vector variables which can capture the largest variation.

The coefficients of the linear combinations are called the principal components

or the loadings. Hellton and Thoresen (2014) had explored the biases in the

estimates of loadings when applying PCA on the error-contaminated data.

Through Taylar’s expansion on eigenvectors for the data matrix, it is proved

that ignoring measurement errors during PCA could contribute to the large

variability in the principal components (PC). Moreover, depending on the

structure of measurement errors (i.e., correlated or heterogeneous), the bias

induced from the errors may have different directions (Hellton & Thoresen,

2014). Such impacts would make the interpretation based on the loadings
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difficult. Consequently, a maximum likelihood principal component analysis is

investigated to extend the PCA with additive correlated measurement errors

(Wentzell et al., 1997). Later on, a Bayesian method using probabilistic PCA

is proposed by Sanguinetti et al. (2005) to incorporate the measurement errors.

In the matrix covariates setting, the MPCA with matrix-valued covariates

can be considered as a parsimonious version of PCA with a rank-1 structure in

PCA loadings (Hung et al., 2012). Therefore, similar to the results proved by

Hellton and Thoresen (2014), when the matrix covariates are measured with

errors, the estimated loadings for matrix covariates should be influenced by

the measurement errors, leading to difficulties in interpretation based on the

estimated loadings. Hence, it is worth trying to take measurement errors into

account during the MPCA procedure for matrix-valued variables.

2.4 Matrix-variate regression with measure-

ment error correction

Despite the vast amount of work on measurement error correction, to the best

of our knowledge, very few have been investigating the measurement errors

in matrix-variate regression. A notable prior work by Fang and Yi (2020)

introduced an matrix-variate logistic regression with additive matrix-variate

measurement errors in the matrix-valued observation. By maximizing the

likelihood of data, they explicitly obtained the model parameters’ estimates

with and without measurement errors. Therefore, the bias induced by matrix-

variate measurement errors can be quantified and hence estimated. As de-

scribed in 1, their findings illustrated the negative impact of measurement er-

rors on the logistic regression model. However, one shortcoming of this method

is that it needs to first apply a (2D)2 PCA method to reduce the dimension

when the sample size is smaller than the dimension of matrix-valued covari-

ates. Such a two-fold procedure weakens the interpretability of the coefficients

10



in the original matrix-variate scale. To address this concern, we proposed a

Bayesian joint model that is able to not only adjust for measurement errors in

the high-dimensional matrix covariates, but also reduce the dimension of true

unobserved matrix covariates simultaneously. A probit regression model was

built for the binary response and the extracted low dimensional features so

that a closed form of posterior distributions can be obtained during the Gibbs

sampling procedure.
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Chapter 3

Matrix-variate Regression Joint
Model Framework: JMME

In this chapter, we introduce the framework for our proposed JMME for

matrix-valued covariates regression with measurement error correction. The

identifiability of our framework is justified and the hierarchical structure of

JMME is then established. In addition, this chapter describes the prior dis-

tributions that we chose for model parameters; their corresponding posterior

distributions are clarified accordingly. In the end, we illustrate the procedure

of selecting the optimal dimension for the extracted low-dimensional features.

3.1 Framework Formulation

In this section, we describe the proposed joint model framework that consists

of three sub-models. For each subject i, i ∈ {1, . . . , n}, let Oi represents the

binary response for subject i and X∗i ∈ Rp×q denotes the latent matrix-valued

covariates which contains the information to predict Oi. We further assume

that the exact measurement of X∗i cannot be obtained directly, but the proxy

measurements with errors can be observed repeatedly. For each subject i, we

assume that, in total, the latent matrix-valued covariates are repeatedly ob-

served for M times. These observations are called surrogate matrix covariates,

and are denoted as X im ∈ Rp×q, for m ∈ {1, . . . ,M}. The vector of scalar
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covariates, which is assumed to be observed precisely, is denoted as Zi ∈ Rpz

with pz represents the number of scalar covariates.

3.1.1 Sub-model for Measurement Error between Re-
peated Contaminated Measures and Latent Ma-
trix Covariates

A new measurement error sub-model is proposed to quantify the measurement

error between the repeated surrogate covariates X im and the latent covariates

X∗i . Motivated by the classical measurement errors, we assumed an addi-

tive measurement error that is independent of Oi and zi. The sub-model is

formulated as follows:

MME : X im = X∗i + ε∗im,where vec(ε∗im) ∼ N
(

0, diag(vec(Σ̃i))
)
. (3.1)

Note:

1. vec(·) denotes the vectorization operator.

2. ε∗im represents the random matrix-valued measurement error that is in-

dependent of X∗i .

3. Σ̃i is the covariance matrix of measurement errors. To preserve the

natural matrix structure, it is defined as Σ̃i =

σ
2
i11 . . . σ2

i1q
...

. . .
...

σ2
ip1 . . . σ2

ipq

, where

σ2
ijk represents the variance for the measurement error at row j and

column k for subject i.

4. The covariance matrix structure for ε∗im implies the independent mea-

surement errors among elements in different rows and columns of matrix-

valued covariates.

In order to reduce the number of parameters and maintain the matrix form of

Σ̃i, we further introduce a low rank structure for Σ̃i through rank = r:

MLow : log(Σ̃i) = Ũ Ṽ
>

+ ε̃i,where vec(ε̃i) ∼ N
(
0, δ2I

)
. (3.2)
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Here:

1. log is the element-wise log calculation

2. ε̃i ∈ Rp×q is an error matrix resulting from the low rank approximation

3. With r ≤ min(p, q), the low rank structure of log(Σ̃i) is obtained from

Ũ ∈ Rp×r and Ṽ ∈ Rq×r

3.1.2 Sub-model for Latent Matrix Covariates through
MPCA Formulation

This proposed sub-model aims to find a low dimensional representation of

latent matrix covariates X∗i which is able to approximate X∗i while preserving

innate matrix structure in X∗i at the same time. Resorting to the probabilistic

formulation of multi-linear principle component analysis (MPCA) (Jiang et al.,

2020), we defined our MPCA sub-model as the following:

MMPCA : X∗i = AuiB
> + εi,where vec(εi) ∼ N

(
0, φ−1Ipq×pq

)
(3.3)

Note:

1. εi here represents the error matrix due to the dimension reduction pro-

cedure. It is independent of ui.

2. With p0 < p, q0 < q, vec(ui) ∈ Rp0×q0 is the desired low dimensional

representation of X∗i .

3. We assume that vec(ui) ∼ N (vec(η), ξ ⊗ λ), where ξ and λ are diagonal

matrices representing the covariance matrix of ui, and vec(η) stands for

the mean matrix.

4. A ∈ Rp×p0 and B ∈ Rq×q0 are the MPCA projection matrices that

mapping X∗i onto ui. Followed by Jiang et al. (2020), we let A>A =

Ip0×p0 , B
>B = Iq0×q0 .
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Sub-model 3.3 can be further decomposed to regulate the population mean

and to standardize the matrix covariate ui. The decomposed sub-model is of

the form

vec(X∗i ) = (B ⊗A)vec(ui) + vec(εi)

= (B ⊗A) [vec(ui)− vec(η) + vec(η)] + vec(εi)

= (B ⊗A)vec(η) + (B ⊗A)(ξ ⊗ λ)1/2(ξ ⊗ λ)−1/2(vec(ui)− vec(η)) + vec(εi)

= (B ⊗A)vec(η) + (B ⊗A)(ξ ⊗ λ)1/2vec(ũi) + vec(εi)

= (B ⊗A)
[
vec(η) + (ξ1/2 ⊗ λ1/2)vec(ũi)

]
+ vec(εi).

(3.4)

Now, ũi is the standardized matrix covariate so that vec(ũi) ∼ N (0, I).

This sub-model 3.4 can be equivalently written, in the matrix form, as

MMPCA decomp : X∗i = AηB> +Aλ1/2ũiξ
1/2B> + εi

= A
[
η + λ1/2ũiξ

1/2
]
B> + εi

(3.5)

with ui = η + λ1/2ũiξ
1/2.

Remark 1. Our JMME is highly related to the joint model framework

proposed by Jiang et al. (2020). In their framework, a similar probabilistic

formuation of MPCA is established as follows:

X i = µ+AuiB
> + εi, (3.6)

with µ stands for population mean and vec(ui) ∼ N (0, I). In our formulation,

we relax this assumption and consider a more flexible covariance structure for

ui: vec(ui) ∼ N (vec(η), ξ ⊗ λ). Motivated from the propeties of MPCA

developed from Hung et al. (2012), we relax the covariance matrix of ui as

(ξ ⊗ λ) so that the λ corresponds to the variance among rows and the ξ

corresponds to the variance among columns for ui. Our relaxed assumption

also absorbed the population mean µ into the low dimension features, further

allowing a regularization on population mean.
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3.1.3 Sub-model for Binary Outcome

This sub-model defines a probit regression model that relates the binary out-

come Oi ∈ {0, 1} to the precisely measured scalar covariates zi and the stan-

dardized low-dimensional features ũi extracted from latent matrix covariates.

Motivated by the work from Jiang et al. (2020), the reason that we use the

standardized ũi ∈ Rp0×q0 as the predictors instead of the latent true covari-

ates X∗i ∈ Rp×q is because such sub-model significantly reduces the number

of model parameters from pq to p0q0, while providing the unique transforma-

tion between the coefficients for ũi and the coefficients for X∗i . This unique

transformation will be derived in details in the following section. Specifically,

the probit regression model is of the form:

Mout : Φ−1(p[Oi = 1]) = ψ + γ>zi + θ>vec(ũi), (3.7)

Note:

1. Φ(·) is the cumulative distribution function for a standard normal dis-

tribution;

2. ψ ∈ R is a constant for intercept in the regression sub-model;

3. γ ∈ Rpz is a vector of coefficients for scalar covariates zi;

4. θ ∈ Rp0q0 is a vector of coefficients for vec(ũi).

3.2 Identifiability for JMME

It is noticed that, similar as in the model proposed by Jiang et al. (2020),

the sub-models MMPCA decomp (3.5) and Mout (3.7) are rotation invariance.

That is, the identifiability can only be achieved up to orthogonal rotations.

For example, if G ∈ Rp0×p0 and H ∈ Rq0×q0 are two arbitrary orthonormal

matrices such that GGT = Ip0 and HHT = Iq0 , then, with
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(a) A∗ = AG,

(b) B∗ = BH ,

(c) λ∗1/2 = GTλ1/2G,

(d) ξ∗1/2 = HTξ1/2H ,

(e) η = GTηH ,

(f) ũ∗i = GT ũiH ,

the identical likelihood for MMPCA decomp can be achieved as:

A∗
[
η∗ + λ∗1/2ũ∗i ξ

∗1/2
]
B∗>

= A∗η∗B∗> +A∗λ∗1/2ũ∗i ξ
∗1/2B∗> + εi

= AGGTηHHTBT +AGGTλ1/2GGT ũiHH
Tξ1/2HHTBT + εi

= AηB> +Aλ1/2ũiξ
1/2B> + εi

= A
[
η + λ1/2ũiξ

1/2
]
B> + εi

Furthermore, θ∗ = (HT ⊗GT )θ leads to

θ∗>vec(ũ∗i ) = θ>(H ⊗G)(H> ⊗G>)vec(ũi)

= θ>vec(ũi)

so that the same likelihood for Mout is achieved.

Since our goal is to examine the association between binary response oi and

latent matrix covariates x∗i in p× q space, such rotation invariance can be ne-

glected only when the estimation of association is identified (Jiang et al., 2020).

To recover the regression model for oi given latent matrix-valued covariate x∗i

and scalar covariates zi, we followed the similar procedure from Jiang et al.

(2020) by introducing a intermediate variable wi such that oi = I(wi > 0) and

wi ∼ N(ψ+γ>zi+θ
>vec(ũi), 1). We further let ν includes all the parameters

in sub-models 3.1, 3.5 and 3.7 so that ν = (Σ̃i, Ũ , Ṽ , δ,A,B, φ,η,λ, ξ, ψ,γ,θ).
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Then, with the conditional distribution p(vec(x∗i )|vec(ũi),ν) implied from

MMPCA decomp (sub-model 3.4), a joint normal distribution for p(wi,x
∗
i , ũi|zi,ν)

can be inferred. As a result, this joint normal distribution further leads to a

conditional normal distribution for p(wi|x∗i , zi,ν).

To determine this conditional distribution, we first derive the conditional

distribution p(vec(ũi)|vec(x∗i ),ν):

p(vec(ũi)|vec(x∗i ),ν) ∝ p(vec(ũi)|ν)p(vec(x∗i )|vec(ũi),ν)

∝ exp

{
−1

2
vec(ũi)

>vec(ũi)−
φ

2
‖vec(x∗i )− (B ⊗A)

[
vec(η) + (ξ ⊗ λ)1/2vec(ũi)

]
‖2F
}

∝ exp

{
−1

2

[
vec(ũi)

>C−1vec(ũi)− 2vec(ũi)
>C−1m

]}
∝ exp

{
−1

2
[vec(ũi)−m]>C−1 [vec(ũi)−m]

}
by completing the square,

where

C−1 = I + φ(ξ ⊗ λ),

m = φC(ξ ⊗ λ)1/2
[
(B ⊗A)>vec(x∗i )− vec(η)

]
.

This is a kernel for normal density function with meanm and varianceC. This

derivation results a conditional normal distribution such that vec(ũi)|vec(x∗i ) ∼

N (m,C).

Next, we apply the law of total expectation and variance to obtain mean

and variance for the conditional normal distribution p(wi|x∗i , zi,ν). It follows

that,
E[wi|x∗i , zi,ν] = E [E(wi|ũi,x∗i , zi,ν)|x∗i , zi,ν]

= ψ + γ>zi + θ>E[vec(ũi)|x∗i ,ν]

= ψ + γ>zi + θ>m,

and
Var[wi|x∗i , zi,ν] = Var [E(wi|ũi,x∗i , zi,ν)|x∗i , zi,ν]

+ E [Var(wi|ũi,x∗i , zi,ν)|x∗i , zi,ν]

= θ>Var[vec(ũi|x∗i ,ν]θ + 1

= θ>Cθ + 1.
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Therefore, a regression model for wi given x∗i , zi and ν is revealed as follows,

wi = ψ − φθ>C(ξ ⊗ λ)1/2vec(η) + γ>zi + φθ>C(ξ ⊗ λ)1/2(B ⊗A)>vec(x∗i ) + ei,

where ei ∼ N (0, 1 + θ>Cθ). Because that Pr(oi = 1) = Pr(wi > 0) =

Pr((1 + θ>Cθ)−
1
2wi > 0), the following regression model for oi given latent

matrix-valued covariate x∗i , scalar covariates zi, and model parameters ν is

obtained as

Φ−1[Pr{oi = 1}] = ϕ+α>zi + β>vec(x∗i ), (3.8)

where
ϕ = (1 + θ>Cθ)−

1
2

[
ψ − φθ>C(ξ1/2 ⊗ λ1/2)vec(η)

]
,

α = (1 + θ>Cθ)−
1
2γ,

β = φ(1 + θ>Cθ)−
1
2 (B ⊗A)(ξ1/2 ⊗ λ1/2)Cθ.

With this regression model between oi and x∗i , it is followed that α and

β stay the same with orthogonal rotations of A, B, λ, ξ and θ. Specifically,

with A∗, B∗, θ∗, λ∗1/2 and ξ∗1/2 aforementioned, we only need to show that

θ>Cθ and (B ⊗A)(ξ ⊗ λ)1/2Cθ remain unchanged:

θ∗>C∗θ∗ = θ>(H ⊗G)
[
I + φ(H> ⊗G>)(ξ ⊗ λ)(H ⊗G)

]−1
(H> ⊗G>)θ

= θ>(H ⊗G)
[
(H> ⊗G>) [I + φ(ξ ⊗ λ)] (H ⊗G)

]−1
(H> ⊗G>)θ

= θ>(H ⊗G)(H> ⊗G>) [I + φ(ξ ⊗ λ)]−1 (H ⊗G)(H> ⊗G>)θ

= θ> [I + φ(ξ ⊗ λ)]−1 θ

= θ>Cθ
(3.9)
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and

(B∗ ⊗A∗)(ξ∗1/2 ⊗ λ∗1/2)C∗θ∗

= (B ⊗A)(ξ1/2 ⊗ λ1/2)(H ⊗G)
[
I + φ(H> ⊗G>)(ξ ⊗ λ)(H ⊗G)

]−1
(H> ⊗G>)θ

= (B ⊗A)(ξ1/2 ⊗ λ1/2)(H ⊗G)
[
(H> ⊗G>) [I + φ(ξ ⊗ λ)] (H ⊗G)

]−1
(H> ⊗G>)θ

= (B ⊗A)(ξ1/2 ⊗ λ1/2)(H ⊗G)(H> ⊗G>) [I + φ(ξ ⊗ λ)]−1 (H ⊗G)(H> ⊗G>)θ

= (B ⊗A)(ξ1/2 ⊗ λ1/2) [I + φ(ξ ⊗ λ)]−1 θ

= (B ⊗A)(ξ1/2 ⊗ λ1/2)Cθ
(3.10)

Therefore, the rotation invariance in the model parameters is negligible and

our proposed JMME implies an identifiable regression model of oi on the la-

tent matrix covariates x∗i , leading to a unique correspondence between the

coefficients for low-dimension features ũi and the coefficients for x∗i .

Remark 2. As mentioned in chapter 1, our JMME is an extension of

the work from Jiang et al. (2020) for adjusting meausrement errors in matrix

variate regression. Therefore, for comparison purpose, we implemented their

joint model (named as naiveJM) to illustrate the improvement of our frame-

work. The naiveJM is directly carried out with the observed matrix covariates

xi, assuming no measurement errors involved. In naiveJM, the low dimension

features û∗i is extracted to approximate xi by

û∗i = ETxiF + ε∗i ,where vec(ε∗i ) ∼ N
(
0, φ∗−1Ipq×pq

)
with projection matrices E, F such that E>E = Ip0×p0 , F

>F = Iq0×q0 , and

p0 < p, q0 < q. Meanwhile, the probit regression in naiveJM for û∗i is of the

form

Φ−1(p[Oi = 1]) = ψ∗ + γ>∗zi + θ∗>vec(û∗i )

As a result, the naiveJM leads to the coefficients β∗ for matrix-valued covari-
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ates xi as

β∗ = φ∗(1 + θ∗>C∗θ∗)−
1
2 (F ⊗E)C∗θ∗

with C∗−1 = (φ∗ + 1)I. Due to the omission of measurement errors, the

naiveJM tend to be subject to attenuation bias such that the estimation of

coefficients are shrunk towards zero. Consequently, naiveJM becomes less effi-

cient than our JMME in the context of measurement errors. This phenomenon

is demonstrated in both chapter 4 and chapter 5.

Remark 3. Despite of naiveJM, we also considered the a two-stage model

without measurement error correction (named as naiveTSM) as another base-

line method to compare with our JMME (Jiang et al., 2020). We implemented

this method as follows:

Stage1 - For the observed matrix covariates xi, MPCA (Lu, Plataniotis, &

Venetsanopoulos, 2008) is applied on xi to obtain an estimation of low

dimension features, û∗i ∈ Rp0×q0 . Similar as the MPCA formulation in

naiveJM, û∗i approximates the observed xi by

û∗i ≈ ETxiF

with p0 < p, q0 < q, E>E = Ip0×p0 , and F>F = Iq0×q0 ;

Stage2 - We further fitted a probit regression model for binary outcome oi taking

the form

Φ−1(p[Oi = 1]) = ψ∗ + γ>∗zi + θ∗>vec(û∗i )

Thus, we can recover the coefficient matrix for observed xi by

β∗ = Eθ∗F T .

Similar as naiveJM, the naiveTSM ignores measurement errors in observa-

tions, leading to attenuation bias in coefficients estiamtes. As a consequence,

naiveTSM should be less efficient than our JMME either, in the context of
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measurement errors. Such phenomenon is illustrated in both chapter 4 and

chapter 5.

3.3 Hierarchical structure for JMME

This section illustrates the hierarchical structure for the proposed framework

combining MME (sub-model 3.1), MMPCA decomp (sub-model 3.5) and Mout

(sub-model 3.7). With model parameters ν defined in section 3.2, the full

likelihood based on the complete data (o, ũ,x,x∗, and covariates z) is given

as the follows,

f(o, ũ,x,x∗, |z,ν)

=
n∏
i=1

M∏
m=1

[p(oi|ũi,ν, z)× p(xim|x∗i ,ν)× p(x∗i |ũi,ν)× p(ũi)]

=
n∏
i=1

M∏
m=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

× 1

(2π)pq/2 |Σi|1/2
exp

{
−1

2
(vec(xim)− vec(x∗i ))

>Σ−1i (vec(xim)− vec(x∗i ))

}
×
(
φ

2π

)1/2

exp

{
−φ

2
‖x∗i −A

[
η + λ1/2ũiξ

1/2
]
B>‖2F

}
× 1

(2π)p0q0/2
exp

{
−1

2
vec(ũi)

>vec(ũi)

}]

=
n∏
i=1

M∏
m=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

× 1

(2π)pq/2 |Σi|1/2
exp

{
−1

2
(vec(xim)− vec(x∗i ))

>Σ−1i (vec(xim)− vec(x∗i ))

}
×
(
φ

2π

)1/2

exp

{
−φ

2
‖x∗i −AuiB>‖2F

}
× 1

(2π)p0q0/2
exp

{
−1

2
vec(ũi)

>vec(ũi)

}]
(3.11)

where ‖ · ‖2F represents the Frobenius norm, and pi = Φ(ψ + γ>zi +

θ>vec(ũi)). Figure 3.1 is a graphical illustration of our JMME that depicts
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Figure 3.1: A graphical depiction of the hierarchical structure for proposed
JMME

the structures among sub-models.

3.4 Prior distributions

In this section, we demonstrate the prior distributions chose for the parameters

in our proposed JMME.

3.4.1 Prior distributions for MME

For the parameters in sub-model 3.1 and 3.2, we followed the commonly used

conjugate priors for Bayesian methods (Jiang et al., 2020). The priors are

assumed as follows:

1. for each element ũj in vec(Ũ), ũj ∼ N (µu, σ
2
u), j = 1, . . . , pr

2. for each element ṽk in vec(Ṽ ),ṽk ∼ N (µv, σ
2
v) , k = 1, . . . , qr
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3. µu, µv ∼ N (0, σ2
0) with σ2

0 = 10

4. σ2
u, σ

2
v , δ

2 ∼ IG(a0, b0) with a0 = 0.1, b0 = 0.1

3.4.2 Prior distributions for MMPCA

In the sub-model 3.5, the prior distributions for projection matrices A and

B are special. As suggested by the literature (Hoff, 2007; Jiang et al., 2020),

because A ∈ Rp×p0 is orthonormal, it belongs to a space of all p×p0 orthonor-

mal matrices named Stiefel manifolds with notation νp0,p. Hence, following the

literature (Hoff, 2007; Jiang et al., 2020), we adopted a uniform distribution

on νp0,p as the prior distribution for A. Such a uniform distribution leads to

a distinct conditional distribution of p(A[,j]|A[,−j]), where A[,j] ∈ Rp×1 rep-

resents jth column of matrix A and A[,−j] ∈ Rp×(p0−1) refers to matrix A

without the jth column. It is proved that p(A[,j]|A[,−j])
d
= NA[,−j]aj, where

NA[,−j] ∈ Rp×(p−(p0−1)) represents an orthonormal basis for the null space of

A[,−j] (i.e., for a space such that {t ∈ Rp0−1|A[,−j]t = 0},NA[,−j] represents a

basis whose columns have norm 1), and aj ∈ R(p−(p0−1))×1 follows a uniform

distribution on a Rp−(p0−1) unit sphere. This conditional distribution further

allows to accelerating the Gibbs sampling step from full posterior distribution

on A (Hoff, 2007; Jiang et al., 2020). The derivation is presented in appendix

A.

Similarly, because B ∈ Rq×q0 belongs to a Stiefel manifold νp0,p, the prior

distribution for B is chosen as a uniform distribution on νp0,p. As a result,

with notations B[,k] ∈ Rq×1 representing kth column of matrix B and B[,−k] ∈

Rq×(q0−1) referring to matrix B without the kth column, p(B[,k]|B[,−k])
d
=
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NB[,−k]bk. Here, NB[,−k] ∈ Rq×(q−(q0−1)) stands for an orthonormal basis for

the null sapce of B[,−K], and bk ∈ R(q−(q0−1))×1 follows a uniform distribution

on a Rq−(q0−1) unit sphere. The aforementioned acceleration of Gibbs sam-

pling procedure from B’s full posterior distribution is also achieved by this

conditional distribution (Hoff, 2007; Jiang et al., 2020).

For other parameters in sub-model 3.5, we again followed the commonly

used conjugate priors (Jiang et al., 2020):

1. vec(η) ∼ N (0, σ2
0I) with σ2

0 = 10

2. for each diagonal element λ
1/2
l in λ, λ

1/2
l ∼ N (µλ, σ

2
λ), l = 1, . . . , p0

3. for each diagonal element ξ
1/2
l in ξ, ξ

1/2
h ∼ N

(
µξ, σ

2
ξ

)
, h = 1, . . . , q0

4. µλ, µξ ∼ N (0, σ2
0) with σ2

0 = 10

5. σ2
λ, σ

2
ξ , 1/φ ∼ IG(a0, b0) with a0 = 0.1, b0 = 0.1

3.4.3 Prior distributions for Mout

For the parameters in sub-model (3.7), similar as the work of Jiang et al.

(2020), we defined the priors are follows:

1. (ψ,θ>,γ>)> ∼ N (0, σ2
0I) with σ2

0 = 10

3.5 Gibbs Sampling Procedure

In this section, we described the Gibbs sampling procedure from model pa-

rameters’ posterior distributions (also known as full conditional distributions)

(Jiang et al., 2020). For the ease of derivation, we assume the rank r for the

low rank structure inMlow (sub-model 3.2) as r = 1. The complete derivation

is provided in appendix A.
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1. For elements in Σ̃i =

σ
2
i11 . . . σ2

i1q
...

. . .
...

σ2
ip1 . . . σ2

ipq

, update [log(σ2
ijk)|·] ∼ the dis-

tribution with following kernel:

exp

{
−1

2

(log(σ2
ijk)− ũj ṽk)2

δ2

}
×

M∏
m=1

[(
exp(log(σ2

ijk))
)−1/2

exp

{
−1

2

(ximjk − x∗ijk)2

exp(log(σ2
ijk))

}]
,

by metropolis sampling, i ∈ {1, . . . , n}, j ∈ {1, . . . , p}, k ∈ {1, . . . , q}.

2. For elements in Ũ =

ũ1...
ũp

, update [ũj|·] ∼ N (M,E), where

E =

(
1

σ2
u

+
nṼ

>
Ṽ

δ2

)−1
,

M = E

(
µu
σ2
u

+
n∑
i=1

Ṽ
>

log(Σi[j,])
>

δ2

)
.

3. Update [µu|·] ∼ N (M,E), where

E = (
1

σ2
0

+
p

σ2
u

)−1,

M = E

(
p∑
j=1

ũj
σ2
u

)
.

4. Update [(σ2
u)
−1|·] ∼ Gamma

{
a0 + p/2, b0 + 1

2

∑p
j=1(ũj − µu)2

}
.

5. For elements in Ṽ =

ṽ1...
ṽq

, update [ṽk|·] ∼ N (M,E), where

E =

(
1

σ2
v

+
nŨ

>
Ũ

δ2

)−1
,

M = E

(
µv
σ2
v

+
n∑
i=1

Ũ
>

log(Σi[,k])

δ2

)
.

6. Update [µv|·] ∼ N (M,E), where

E = (
1

σ2
0

+
q

σ2
v

)−1,

M = E

(
q∑

k=1

ṽk
σ2
v

)
.
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7. Update [(σ2
v)
−1|·] ∼ Gamma

{
a0 + q/2, b0 + 1

2

∑q
k=1(ṽk − µv)2

}
.

8. Update [(δ2)−1|·] ∼ Gamma
{
a0 + npq/2, b0 + 1

2

∑n
i=1

∑p
j=1

∑q
k=1(log(σ2

ijk)− ũj ṽk)2
}

.

9. Update [vec(η)|·] ∼ N (M ,E), where

E = (
1

σ2
0

+ nφ)−1I,

M = E

(
n∑
i=1

φ
[
(B ⊗A)>vec(x∗i )− (ξ ⊗ λ)1/2vec(ũi)

])
.

10. For diagonal elements in λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
p0 ), update [λ

1/2
l |·] ∼

N (M,E), for l = 1, . . . , p0, where

E =

(
1

σ2
λ

+ φ
n∑
i=1

ũi[l,]ξũ
>
i[l,]

)−1
,

M = E

(
µλ
σ2
λ

+ φ
n∑
i=1

ũi[l,]ξ
1/2
[
A>[,l]x

∗
iB − η[l,]

]>)
.

11. Update [µλ)|·] ∼ N (M,E), where

E = (
1

σ2
0

+
p0
σ2
λ

)−1,

M = E

∑p0
l=1 λ

1/2
l

σ2
λ

.

12. Update [(σ2
λ)
−1|·] ∼ Gamma

{
a0 + p0

2
, b0 +

∑p0
l=1

(
λ
1/2
l −µλ

)2
2

}
.

13. For diagonal elements in ξ1/2 = diag(ξ1/2, . . . , ξq0
1/2), update [ξ

1/2
s |·] ∼

N (M,E), for s = 1, . . . , q0, where

E =

(
1

σ2
ξ

+ φ
n∑
i=1

ũ>i[,s]λũi[,s]

)−1
,

M = E

(
µξ
σ2
ξ

+ φ
n∑
i=1

ũ>i[,s]λ
1/2
[
A>x∗iB[,s] − η[,s]

])
.
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14. Update [µξ)|·] ∼ N (M,E), where

E = (
1

σ2
0

+
q0
σ2
ξ

)−1,

M = E

∑q0
s=1 ξ

1/2
s

σ2
ξ

15. Update [(σ2
ξ )
−1|·] ∼ Gamma

{
a0 + q0

2
, b0 +

∑q0
s=1

(
ξ
1/2
s −µξ

)2
2

}
.

16. Update [vec(ũi)|·] ∼ N (M ,E), for i = 1, . . . , n, where

E = (I + φ(ξ ⊗ λ) + θθ>)−1,

M = E
(
φ(ξ ⊗ λ)1/2

[
B ⊗A)>vec(x∗i )− vec(η)

]
+ θw̃i

)
,

and w̃i = wi − ψ − γ>zi.

17. Calculate the ui = η+λ1/2ũiξ
1/2, and update the following parameters

with ui.

18. Update [φ|·] ∼ Gamma{a0 + npq/2, b0 +
∑n

i=1 ‖x∗i −AuiB
>‖2F/2}.

19. Update [A[,j]|·]
d
= NA[,−j]aj, for j ∈ {1, . . . , p0}, where aj ∼ vMF(ηA)

with

ηA = φN>A[,−j]

n∑
i=1

q0∑
k=1

ui[j,k]x
∗−j
i B[,k],

x∗−ji = x∗i −
∑
j′ 6=j

q0∑
k=1

A[,j′]ui[j′,k]B
>
[,k].

20. Update [B[,k]|·]
d
= NB[,−k]bj, for k ∈ {1, . . . , q0}, where bj ∼ vMF(ηB)

with

ηB = φN>B[,−k]

n∑
i=1

p0∑
j=1

ui[j,k]x̃
∗−k
i A[,j],

x̃∗−ki = x>i −
∑
k′ 6=k

p0∑
j=1

B[,k′]ui[j,k′]A
>
[,j].

28



21. Update [(vec(x∗i )|·] ∼ N (M ,E),for i ∈ {1, . . . , n}, where

E = (φI +MΣ−1i )−1,

M = E(φ(B ⊗A)vec(ui) +
M∑
m=1

Σ−1i vec(xim)).

22. Update wi, for i ∈ {1, . . . , n}, we have

[wi|·] ∼ N (ψ + γTzi + θ>vec(ũi), 1)I(wi > 0) if oi = 1

[wi|·] ∼ N (ψ + γTzi + θ>vec(ũi), 1)I(wi < 0) if oi = 0

23. Update [(ψ,γ>,θ>)>|·] ∼ N (M ,E) where

E = (
1

σ2
0

I +
n∑
i=1

z̃iz̃
>
i )−1,

M = E
n∑
i=1

wiz̃i with z̃i = (1, z>i , vec(ũi)
>)>.

3.6 Selection of Dimensionality

It should be noticed that, before applying our proposed JMME framework, the

dimension for the extracted features ui ∈ Rp0×q0 in sub-model 3.3 needs to be

predetermined. To select the optimal (p0, q0), we considered the Akaike infor-

mation criterion (AIC) for the conditional likelihood f(O|X∗, ν) because we

aim to examine the association between responses and latent matrix covariates

X∗.

To calculate the desired AIC, we first derive the likelihood L(o|x∗, ν).

Implied by model (3.8), the likelihood takes the form

L(o|x∗, ν) =
n∏
i=1

p(oi|x∗i , ν)

=
n∏
i=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

] (3.12)

where pi = Φ(ϕ+α>zi + β>vec(x∗i )).
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Table 3.1: A list of model parameters in likelihood L(o|x∗) and their corre-
sponding dimensionality

Model Parameters in L(o|x∗) Dimensionality
A p× p0
B q × q0
η p0 × q0
λ1/2 p0
ξ1/2 q0
φ 1
ψ 1
γ pz
θ p0 × q0

Therefore, the AIC for conditional likelihood f(o|x) is of the form:

AIC = −2log(L̂(o|x∗)) + 2k, (3.13)

where k represents the totoal number of parameters in the likelihood (model

3.12) and L̂ is the posterior mean of likelihood 3.12 from MCMC chain. In

terms of total number of parameters, Table 3.1 tells all the parameters used

in the o|x∗ regression model along with their dimensions needed for likelihood

calculation. Consequently,

k = p× p0 + q × q0 + p0 × q0 + p0 + q0 + 1 + 1 + pz + p0 × q0.
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Chapter 4

Simulation Study

To examine the correctness and effectiveness of our proposed framework, a

simulation study was implemented in various trials with different matrix sur-

rogates dimensionality setups. The study aims to evaluate the performance

of our JMME framework from the perspective of correctly estimating coeffi-

cients for latent matrix covariates. As baselines, the naiveTSM and naiveJM

methods introduced in Chapter 3 were also implemented so as to highlight the

improvement of our proposed method.

4.1 Simulation Procedure

4.1.1 Data setup

To test the three methods, this study followed the procedure described in

Jiang et al. (2020). Each simulation trial was coupled with both a fixed low-

dimensional structure ((p0, q0) = (2, 2)) and a fixed number of repeatedly ob-

served matrix-valued covariates (M = 2 in the measurement error sub-model

(3.1)). For different choices of n ∈ {50, 100} and (p, q) ∈ {(5, 5), (10, 10), (15, 15)},

totally 600 simulation trials were performed on each of the three methods. For

each simulation trial, a simulated synthetic dataset with binary outcomes was

generated through the following steps:

1) With fixed (p0, q0) = (2, 2), the elements in vec(ũi) are generated inde-
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pendently from a uniform distribution on (-1, 1);

2) Generate zi from a uniform distribution on (-0.5, 0.5);

3) With 1> = (1, . . . , 1)>, oi is generated from a Bernoulli distribution with

p = 0.2zi + 1>vec(ũi);

4) The elements in η are generated independently from a uniform distribu-

tion on (-2, 2);

5) The diagonal elements of λ1/2 are generated independently from a uni-

form distribution on (-1, 1), and the off-diagonal elements are 0;

6) The diagonal elements of ξ1/2 are generated independently from a uni-

form distribution on (-1, 1), and the off-diagonal elements are 0;

7) The corresponding ui can be calculated as ui = η + λ1/2ũiξ
1/2 so that

vec(ui) ∼ N (vec(η), ξ ⊗ λ) holds;

8) For each {(oi, zi,ui) : i = 1, . . . , n} generated from 1) - 7), we further

simulated (x∗i : i = 1, . . . , n) and (xim : i = 1, . . . , n,m = 1, . . . ,M)

corresponding to different pairs of (p, q) , with fixed M = 2, as follows:

a) Generate A ∼ uniform(νp,p0), a uniform distribution on the Stiefel

manifold with dimension (p, p0), using rstiefel package in R software;

b) Generate B ∼ uniform(νq,q0), a uniform distribution on the Stiefel

manifold with dimension (p, p0), using rstiefel package in R software;

c) Generate xi
∗ = AuiB

> + εi, with vec(εi) ∼ N (0, 0.22Ipq×pq);
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d) The elements of Ũ are generated independently from a uniform dis-

tribution on (-1, 1);

e) The elements of Ṽ are generated independently from a uniform dis-

tribution on (-1, 1);

f) Generate log(Σ̃i) = Ũ Ṽ
>

+ ε̃i with vec(ε̃i) ∼ N (0, 0.4I);

g) For m ∈ {1, 2}, generate xim = x∗i + ε∗im under the condition that

vec(ε∗im) ∼ N
(

0, diag(vec(Σ̃i))
)

;

4.1.2 Evaluation Criteria

For each simulated dataset, we applied the Gibbs sampling procedure described

in section 3.5. The posterior samples of model parameters were obtained from

the MCMC chains by keeping every 5th draw from 10000 iterations after a

burn-in period of 20,000 iterations (Jiang et al., 2020). In order to evaluate

the estimation performance of the coefficient β for vec(x)∗i , we calculated the

root mean squared error (RMSE) for the estimates. More precisely, under each

choice of (p, q), for the tth simulated dataset, t = 1, . . . , 100, we defined the

RMSE as

RMSE(t) =

√
1

pq
‖β̂

(t)
− β(t)‖2F , (4.1)

where β(t) is the true coefficient matrix for the unobserved true matrix covari-

ates in p× q dimension and β̂
(t)

is its posterior mean estimate obtained from

the MCMC chains. As proved at section 2.8, the formulation for estimating β

from model parameters follows the equation 3.8.

In addition, we compared our JMME framework with the naiveJM and

naiveTSM methods. All three methods were implemented with the same num-
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ber of low-dimensional features ((p0, q0) = (2, 2)). It is noted that our simula-

tion procedure generated 2 repeatedly observed error-prone covariates in the

matrix form {xim,m = 1, 2}. Given the fact that the naiveJM and naiveTSM

methods cannot handle repeated measurements (M=2), we set them up with

the following three observation-setup options:

Option 1) Assuming that xi1 is the only measured matrix covariates, datasets of

the form {oi, zi,xi1} are used for the two baseline methods;

Option 2) Assuming that xi2 is the only measured matrix covariates, datasets of

the form {oi, zi,xi2} are used for the two baseline methods;

Option 3) Use the mean of the two observations, 1
2

∑2
m=1 xim, as an estimation of

accurately measured matrix covariates. Hence {oi, zi, 12
∑2

m=1 xim} are

used for the two baseline methods.

For each option, we implemented the two baseline methods as follows. For

thenaiveJM, we used the same prior distributions for all model parameters as

JMME’s. Moreover, to make the results comparable, the MCMC chains for

their method were also obtained with the same number of iterations as ours,

and the posterior samples of model parameters were accessed by keeping every

5th draw from 10,000 iterations after 20,000 burn-in iterations. For each saved

posterior sample, the coefficients for observed matrix covariates were estimated

through the formulation described in remark 3.2. As a result, the posterior

mean of coefficients was obtained by averaging out the posterior estimates of

coefficients, and the RMSE was calculated accordingly.

For naiveTSM, we first applied MPCA on the matrix-valued covariates with

the rTensor package in R software (Li, Bien, & Wells, 2018). Then, a probit

regression model for the outcome oi was implemented with scalar covariates

and vectorized low-dimensional features extracted from MPCA. The coeffi-
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cients for observed matrix covariates were calculated as described in remark

3.2 and the RMSE was obtained accordingly.

4.2 Simulation Results

Table 4.1, 4.2 and 4.3 display the average RMSE of coefficient estimates β̂ ∈

Rpq×1 in binary response prediction over the 100 simulated datasets, with n =

50. Similarly, table 4.4, 4.5 and 4.6 display the cases when n = 100 for three

methods. Overall, for all three methods, there exists a decreasing trend among

the average RMSEs when the sample size increased from n=50 to n=100,

leading to a more precise estimates of the coefficients β when more samples

are used in the models. Among all the results, our proposed JMME achieved

the smallest RMSE within all scenarios, suggesting its ability of providing

more accurate estimates of the associations between binary outcome and latent

matrix-valued covariates in p× q dimensional space.

According to Table 4.3 and Table 4.6, among all levels of (p, q), the naiveTSM

method performed the worst in estimating the coefficients β. This observa-

tion fits our expectation because, on the one hand, the measurement errors in

the observed matrix covariates could deteriorate the estimates of coefficients

for latent matrix covariates without explicit correction. On the other hand,

the MPCA procedure could be subject to estimation errors when extracting

lower-dimensional features û∗i . Such estimation errors could further negatively

impact the estimates of coefficients.

As for the naiveJM method, it slightly improved the estimation perfor-

mance, compared to the naiveTSM model. This is because that the naiveJM

explicitly modeled the estimation error during the MPCA procedure so that

the estimation bias is avoided (Jiang et al., 2020). However, its drawback lies

in the situation when measurement errors exist: it could still induce the bias

in coefficient estimation due to the lack of measurement error correction. This
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RMSE for Proposed JMME Framework with n = 50
(p, q) = (5, 5) (p, q) = (10, 10) (p, q) = (15, 15)

Use repeated measures 0.079 0.043 0.031

Table 4.1: The average of the root mean squared errors (RMSEs) of the esti-
mated coefficients β̂ across 100 simulated datasets with n = 50 under differ-
ent (p, q) scenarios and observation-setup options, using the proposed JMME
framework.

RMSE for NaiveJM Method with n = 50
((p, q) = (5, 5) (p, q) = (10, 10) (p, q) = (15, 15)

Option 1 0.435 0.219 0.146
Option 2 0.427 0.218 0.146
Option 3 0.423 0.218 0.145

Table 4.2: The average of the root mean squared errors (RMSEs) of the es-
timated coefficients β̂ across 100 simulated datasets with n = 50 , different
(p, q) scenarios and observation-setup options, using naiveJM method.

explains the substantial reduction in RMSEs provided by the proposed JMME

model on the basis of the naiveJM model.

When comparing among the observation-setup options, using the average

of two observations as an estimate of true latent matrix covariates slightly

outperform others in terms of the coefficients estimation results in naiveTSM.

The finding is consistent for naiveJM: using the average of two observations

leads to a minor reduction in RMSEs compared to naiveJM using single xim.

This is partially due to the fact that taking average may reduce the variability

in the original matrix covariates, so that the assumed additive measurement

errors could be diminished. However, such reduction is insufficient for mea-

surement error correction, and the RMSEs are still larger than those obtained

by our proposed JMME model, as shown in Table 4.1.
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RMSE for NaiveTSM Method with n = 50
(p, q) = (5, 5) (p, q) = (10, 10) (p, q) = (15, 15)

Option 1 0.656 0.307 0.207
Option 2 0.624 0.306 0.211
Option 3 0.610 0.301 0.204

Table 4.3: The average of the root mean squared errors (RMSEs) of the esti-
mated coefficients β̂ across 100 simulated datasets with n = 50 , under different
(p, q) scenarios and observation-setup options, using naiveTSM method.

RMSE for Proposed JMME Framework with n = 100
(p, q) = (5, 5) (p, q) = (10, 10) (p, q) = (15, 15)

Use repeated measures 0.071 0.039 0.028

Table 4.4: The average of the root mean squared errors (RMSEs) of the esti-
mated coefficients β̂ across 100 simulated datasets with n = 100 under differ-
ent (p, q) scenarios and observation-setup options, using the proposed JMME
framework.

RMSE for NaiveJM Method with n = 100
((p, q) = (5, 5) (p, q) = (10, 10) (p, q) = (15, 15)

Option 1 0.395 0.201 0.134
Option 2 0.394 0.201 0.134
Option 3 0.383 0.199 0.133

Table 4.5: The average of the root mean squared errors (RMSEs) of the esti-
mated coefficients β̂ across 100 simulated datasets with n = 100 , under dif-
ferent (p, q) scenarios and observation-setup options, using naiveJM method.

RMSE for NaiveTSM Method with n=100
(p, q) = (5, 5) (p, q) = (10, 10) (p, q) = (15, 15)

Option 1 0.397 0.201 0.134
Option 2 0.397 0.201 0.134
Option 3 0.386 0.200 0.134

Table 4.6: The average of the root mean squared errors (RMSEs) of the esti-
mated coefficients β̂ across 100 simulated datasets with n = 100, under differ-
ent (p, q) scenarios and observation-setup options, using naiveTSM method.
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Chapter 5

Case Study: Antidepressant
Response Prediction using EEG
Data

In this chapter, we applied the proposed JMME framework on the error-prone

EEG data to predict the antidepressant outcomes and explore the associa-

tion between latent EEG data and treatment outcomes. To illustrate that

our model is able to successfully adjust for the potential measurement errors

in the EEG data and restore the associations from attenuation bias, we com-

pared our model with the joint modeling without measurement error correction

(naiveJM) described in remark 3.2 and the naive two-stage modeling method

(naiveTSM) described in remark 3.2.

5.1 Data Description

The case study used two types of data sources collected from a group of 80

patients with major depressive disorder: error-prone CSD-EEG data collected

through physical equipment, and the patients’ responses to an antidepressant

treatment in the class of selective serotonin reuptake inhibitors. The goal of the

case study is to study the association between latent EEG (i.e., the unobserved

EEG corrected for measurement errors) and patients’ treatment responses.

The CSD-EEG was obtained through a procedure of collecting continuous
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scalp EEG data measured from physical electrodes and transform them into

matrices using the current source density (CSD) analysis. The rows of the

resulting matrices correspond to the the positions of electrodes placed over

brain areas and the columns are frequencies ranging from 0.25Hz to 74.75 Hz,

with 0.25 Hz resolution (Jiang et al., 2020). Suggested by prior theoretical and

empirical studies (Tenke et al., 2017), we made the hypothesis that the CSD-

EEG data measures of power spectra in the theta-frequency band (4-7 Hz) at

the posterior brain regions, under eyes open and eyes closed conditions, are the

most related to the patients’ response to an antidepressant treatment. Based

on this assumption, we acquired for each patient two 14×13 matrices of CSD-

EEG measures: The first one corresponds to the EEG recorded under eyes-

open condition (denoted as xi1 for patient i) and the second matrix corresponds

to eyes-closed condition (denoted as xi2 for patient i). The columns of each

matrix correspond to 14 electrodes (P9, P10, P7, P8, P5, P6, PO7, PO8, PO3,

PO4, O1, O2, POZ, OZ) at the posterior brain region and the rows correspond

to theta-frequency band (4-7Hz). As suggested in the literature, the CSD-

EEG matrices are log-transformed for normalization purposes (Jiang et al.,

2020). As described in Chapter 1, since the CSD-EEG data cannot accurately

access the patients’ brain activities due to the potential measurement errors,

we further hypothesized additive measurement errors (as proposed in MME

in our joint model) among CSD-EEG baseline measures, and let x∗i represents

the latent EEG covariates, estimated from the two sets of CSD-EEG under

eyes-open and eyes-closed conditions.

In addition, we also consider the effect of gender and depression chronicity

when predicting treatment outcomes. The gender factor takes value 1 for a

patient being female and 0 for a patient being male; the chronicity takes value

1 if a patient is being depressed for at least 24 months during the past 4 to

5 years and 0 otherwise. These two scalar covariates are denoted as zi for
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subject i.

To formulate the treatment outcomes, the 17-item Hamilton Depression

Rating Scale (HAMD-17) at baseline for each patient was recorded to measure

the severity of depression. Ranging from 0 to 52, the higher the HAMD-17

score is, the more severe the depression is for a patient. These scores were

recorded at weeks 1, 2, 3, 4, 6, and 8 during the treatment. After 8 weeks, the

treatment outcome, denoted as oi, is a binary variable such that oi = 1 (the

patient favorably responded to the SSRI) if the HAMD-17 score is reduced by

50% or more (Israel, 2006) and Oi = 0 otherwise (Jiang et al., 2020). Among

80 subjects, 46 were with Oi = 1 and the remaining 34 were with Oi = 0.

In summary, the complete data for our motivating study consists of two

sets of contaminated CSD-EEG baseline signals {(xi1,xi2)}ni in 14×13 matrix

form, two accurately observed scalar covariates {xi}ni and the binary treatment

outcome {oi}ni .

5.2 Implementation

We applied our proposed JMME model with the prior distributions specified

in chapter 3.4. To obtain the posterior samples for model parameters, we ran

five MCMC chains, each consists of 20000 discarded burn-in samples and con-

secutive 20000 iterations on a high performance computing cluster, and keep

every 5th sample as a posterior sample. In total, the Gibbs sampling procedure

generated 2000 posterior sample points for association analysis. Note that the

dimensionality of extracted features in lower p0× q0 space needs to be decided

for applying our JMME framework. As described in chapter 3, we calculated

the averaged AIC for all combinations of (p0, q0) ranging from 1 to 5 and the

smallest AIC leads to the desired dimensionality for JMME. Table 5.1 shows

the resulting AIC for all fitting models with smallest AIC bolded. The AIC

values first decreased when p0 and q0 changed from 1 to 2, and then increased
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Table 5.1: AIC under different combination of (p0, q0) for proposed joint
model

p0/q0 1 2 3 4 5
1 180.621 212.574 244.547 276.904 308.904
2 214.86 171.685 258.245 294.706 337.367
3 248.4 211.948 295.719 349.542 392.306
4 282.495 251.372 341.395 391.907 442.027
5 316.311 292.28 378.798 436.638 488.283

when p0 and q0 increased from 2 to 5. Overall, there exists a U-shape trend in

the AIC for all fitting JMME models, and the smallest AIC was obtained at

(p0, q0) = (2, 2). Therefore, the estimation of coefficients β for latent EEG in

antidepressant response prediction is calculated using (p0, q0) = (2, 2) in the

equation derived in chapter 3.

To illustrate the improvement of JMME method and highlight the signif-

icance of measurement errors in CSD-EEG baseline data, the naiveJM and

naiveTSM were implemented to compare with our JMME method. Accord-

ing to Table 5.1 , JMME is best performed when (p0, q0) = (2, 2). Therefore,

we applied the naiveJM and the naiveTSM with (p0, q0) = (2, 2). Since the

two baseline methods cannot handle the repeated CSD-based EEG measures,

similar to the simulation study design in Chapter 4, three observation-setup

options were provided to adopted the two CSD-EEG datasets:

Option 1) Use only the CSD-EEG data measured under eyes-open state xi1 as the

matrix-valued covariates, assuming no measurement errors involved;

Option 2) Use only the CSD-EEG data measured under eyes-closed state xi2 as the

matrix-valued covariates, assuming no measurement errors involved;

Option 3) Use the mean of the CSD-EEG data measured under eyes-open state

and eyes-closed state, i.e., 1
2

∑2
m=1 xim, as an estimation of the latent

CSD-EEG for the two methods.
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For (p0, q0) = (2, 2) with each observation-setup option, the two baseline meth-

ods are implemented as follows. For the naiveJM method, the prior distribu-

tions for all model parameters are chosen to be the same as for our approach

(as described in chapter 3.4). Moreover, to make the results equitable, the

MCMC chains for their method were also obtained with the same number of

iterations as ours. That is, the posterior samples of model parameters were

accessed by keeping every 5th draw from 20,000 iterations after 20,000 burn-

in iterations. The posterior mean of coefficients is then obtained from the

formulation described in remark 3.2.

For the naiveTSM method, we first applied the MPCA procedure on CSD-

EEG data to extract low-dimensional features of EEG with rTensor package

(Li, Bien, & Wells, 2018). Then, a probit regression model was implemented to

regress the response oi with scalar covariates and vectorized low-dimensional

features. The coefficients for observed EEG were calculated as described in

remark 3.2.

5.3 Results

In this section, we demonstrated the coefficients for CSD-EEG data estimated

from three methods under the optimal choice of (p0, q0) = (2, 2). Figures 5.1

to 5.5 show the estimated coefficients and the significance results for CSD-

EEG data. In these figures, the filling color of each cell indicates the value

of estimated coefficients, and the discoveries of significant effects are marked

as yellow asterisks. Due to the advantage of the Bayesian framework, the

significant effects at 5% significance level are determined if 0 is not contained in

the 95% credible intervals of the coefficients, and is denoted as yellow asterisks

in the figures.
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5.3.1 JMME

For the JMME method, our results show that neither chronicity (γ̂1 = −0.49

with 95% CI: (-3.53, 2.91)) nor gender (γ̂2 = 0.54 with 95% CI: (-3.09, 3.87))

contribute to the prediction on SSRI responder. For the latent 14× 13 CSD-

EEG covariates, among all 14 electrodes considered in our study, P8, P7, P5,

O2, and O1 electrodes do not have important effects over the theta frequency

band on predicting the treatment outcome. The remaining 9 electrodes jointly

have significant effects on the 4-5Hz and 6-7Hz frequency range. In total,

our JMME method successfully identified 90 combinations of electrodes and

frequencies that jointly played significant roles in predicting antidepressant

response. Our findings corroborate previous literature that CSD-EEG data

recorded at the posterior brain regions and theta frequency band contain useful

information in antidepressant response prediction (Tenke et al., 2017).

5.3.2 naiveJM

As for the naiveJM method, figures 5.2 to 5.4 demonstrate the results under

the three observation-setup options With (p0, q0) = (2, 2). It is shown that the

naiveJM gave similar estimation and inference results of coefficients β between

Option 1 and Option 2. Figure 5.2 and Figure 5.3 suggest that no electrodes

or frequencies are considered as significant for predicting the treatment re-

sponse. This result is improved using the mean of the EEG data under two

conditions (Option 3) where 3 electrodes (P7, P5, O2) at 5.75Hz were detected

as significant, as shown in Figure 5.4.

When comparing the values of coefficient estimates, Figure 5.2 and Figure

5.3 shows that the estimates for coefficients when using EEG with Option 1

and 2 are very close to zero, which is an indication of attenuation bias in the

estimation. In contrast, the range of estimates in Option 3 (Figure 5.4) for

coefficients are slightly increased, though they are still approaching zero. As
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Figure 5.1: Estimation and significance results for the JMME framework, when
(p0, q0) = (2, 2)
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pointed out in Chapter 4, such phenomenon is reasonable due to the reduc-

tion in variability in EEG by taking the average, and hence the measurement

errors are potentially reduced, which further leads to improved estimation of

associations. However, compared to the results from our proposed JMME

method, simply taking the average is insufficient to adjust for measurement

errors, and the effects of other electrodes and frequencies are still underesti-

mated. Moreover, the inconsistency of identified significant effects between

the naiveJM method and our proposed JMME method also follows the litera-

ture that, when the measurement errors exist in predictors, ignoring them in

modeling may lead to inconsistent inference results.

5.3.3 naiveTSM

As shown in Figures 5.5 to 5.7, the results of naiveTSM are very similar to

naiveJM’s. The estimates of coefficients for EEG are close to zero when re-

gressing with EEG with Option 1 and 2, leading to no important effects de-

termined for predicting patients’ responses. The negative impact brought by

the attenuation bias was slightly alleviated when the naiveTSM method was

applied with Option 3. As a result, the estimates following this option have

a slightly larger range for estimated coefficients, and 3 significant effects are

determined with electrodes P7, P5, and O2 with 5.75Hz. However, compared

with the results from our JMME method, naiveTSM estimated the coefficients

still close to zero and discovered fewer significant effects, confirming the find-

ing that modeling without measurement error correction could lead to severe

attenuation bias.

5.3.4 Overall

By comparing the results from the three methods, the influence of measure-

ment errors in EEG data for antidepressant response prediction is compelling.
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Figure 5.2: Estimation and significance results for naiveJM with option 1,
when (p0, q0) = (2, 2)
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Figure 5.3: Estimation and significance results for naiveJM with option 2,
when (p0, q0) = (2, 2)
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Figure 5.4: Estimation and significance results for naiveJM with option 3,
when (p0, q0) = (2, 2)
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The two methods without measurement error corrections estimated the coeffi-

cients for CSD-EEG very close to zero and can hardly infer the significant as-

sociation between EEG data and patients’ responses to SSRI antidepressants.

However, our proposed method is able to successfully correct for potential mea-

surement errors and recover meaningful EEG data. The corresponding results

from our framework also corroborate the literature that baseline CSD-EEG

at theta frequency band can provide feasible information on antidepressant

response prediction.
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Figure 5.5: Estimation and Significance results for naiveTSM with option 1,
when (p0, q0) = (2, 2)
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Figure 5.6: Estimation and Significance results for naiveTSM with option 2,
when (p0, q0) = (2, 2)

51



Figure 5.7: Estimation and Significance results for naiveTSM with option 3,
when (p0, q0) = (2, 2)
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Chapter 6

Discussion and Conclusion

In this thesis, in order to adjust for the measurement errors in the repeat-

edly observed matrix-valued surrogates and examine the underneath associa-

tion between the latent matrix-valued covariates and the binary outcome, we

have proposed a Bayesian joint model framework, JMME. Specifically, JMME

consists of defining (a) a probabilistic measurement error sub-model MME

assuming additive measurement errors in the repeatedly observed matrix co-

variates {xim} and imposing a low-rank structure on the covariance matrix of

measurement errors; (b) a probabilistic MPCA submodel MMPCA extracting

low dimensional features i ∈ Rp0×q0 to approximate the true latent matrix co-

variates x∗i ∈ Rp×q; and (c) a outcome regression modelMout relating the low

dimensional features with binary outcome oi. Our joint model framework is

proved to be identifiable such that the coefficients of latent matrix covariates

in the original p × q space can be uniquely determined. As demonstrated in

the simulation study, our proposed joint model achieved the least RMSE un-

der all described scenarios, compared to the naiveJM and naiveTSM methods.

Especially when the sample sizes are less than the dimensionality of the ma-

trix covariates, our proposed model outperforms the other two methods. The

simulation results show that the joint model we proposed is able to efficiently

correct for additive measurement errors and regulate the matrix-valued covari-
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ates, leading to promising estimation of the relationship between outcomes and

covariates. Moreover, by the advantage of the Bayesian method, the MCMC

chains obtained from Gibbs sampling allow the quantification of the uncertain-

ties among estimates of model parameters, so that the inferences for model

parameters can be easily made.

When applying the proposed JMME framework to the motivating EEG

dataset, our proposed joint modeling approach successfully estimated the most

significant effects in the posterior brain areas at theta band frequencies. With-

out correcting for measurement errors, the effects of EEG tend to be under-

estimated from both the naive joint model and the naive two-stage model.

Indicating from the proposed model, for the true unobserved EEG data, the

9 electrodes (P10, P7, P6, PO7, PO8, PO3, PO4, POZ, OZ) at 4 - 5Hz and

6 -7 Hz frequencies jointly are associated with patients’ response to antide-

pressants. Our finding matches the findings from recent studies that EEG

measures recorded at posterior brain regions and theta band frequencies are

persistently advised as correlated with antidepressant outcomes.

To the best of our knowledge, JMME framework is the first method to

simultaneously correct for the measurement errors for repeated matrix-valued

covariates through low-rank covariance structure, utilize a probabilistic MPCA

model, and predict the binary outcome of interest. The advantage is that in-

ferences of model parameters can be naturally established through Bayesian

credible intervals. However, we have to admit that our method is still subject

to limitations: the current formulation assumed independent additive mea-

surement errors with specific low-rank covariance structure, which may not

always be true in the reality. It is less flexible than the two-stage model, in

the sense that the naiveTSM method could utilize other regression or classifi-

cation models and correct for measurement errors at stage 2 to further improve

the performance.
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Our work can be extended in many aspects. Firstly, the assumption on

measurement errors in observed matrix-valued surrogates can be extended to

more relaxed structures. For example, consider the additive matrix-valued

measurement errors with correlation among rows and columns, or consider

the measurement errors correlated with scalar covariates. Furthermore, we

could think of imposing low-rank structures directly for the unobserved matrix

covariates, so that shrinkage on the rows and columns in the original high

dimensional space can be achieved.
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Appendix A

Derivation for model
parameters’ full conditional
posterior distributions

This appendix provides the computation of model parameters’ full conditional

posterior distributions.

1. full conditional posterior distribution of Σ̃i

With Σ̃i =

σ
2
i11 . . . σ2

i1q
...

. . .
...

σ2
ip1 . . . σ2

ipq

 in MME (model 3.1), let σ2
ijk denotes

the element in the jth row and kth column of Σ̃i. Then, the low rank

formulation (model 3.2) results in the following structure for log(σ2
ijk):

log(σ2
ijk) = ũj ṽk + ε̃ijk,

where ε̃ijk ∼ N (0, δ2). Moreover, model (3.1) also indicates that

ximjk = x∗imjk + ε∗imjk,

where ε∗imjk ∼ N (0, σ2
ijk). In order to make the notation consistent, we

adopted the identity transformation of σ2
ijk: ε

∗
imjk ∼ N (0, exp(log(σ2

ijk))).

Therefore, the full conditional distribution of log(σ2
ijk) given all other
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model parameters is derived as follows:

p(log(σ2
ijk)|·)

∝
M∏
m=1

p(ximjk|log(σ2
ijk,x

∗
imjk))× p(log(σ2

ijk)|ũj, ṽk, δ2)

∝
M∏
m=1

[(
exp(log(σ2

ijk))
)−1/2

exp

{
−1

2

(ximjk − x∗ijk)2

exp(log(σ2
ijk))

}]
× exp

{
−1

2

(log(σ2
ijk)− ũj ṽk)2

δ2

}
.

(A.1)

It is noticed that this kernel density of posterior distribution is not pro-

posed to any named distributions, so that the direct sampling is difficult

in this case. In order to draw the samples from an arbitrary proba-

bility density, we adopted the Metropolis-Hastings algorithm (Chib &

Greenberg, 1995) to draw the posterior samples from a kernel function

proportional to the probability density function. To apply Metropolis-

Hastings algorithm, we let f(log(σ2
ijk) denote this kernel of posterior

density, assume a normal proposal distribution (i.e., the distribution

that generates next candidate value), and set the rejection probability

as uniformly distributed on (0, 1). Specifically, the Metropolis-Hastings

sampling procedure is implemented as follows:

(a) Randomly generate log(σ2
ijk)

0 as the initial and calculate the value

of f(log(σ2
ijk)

0|·);

(b) At iteration t + 1, Proposed the candidate value log(σ2
ijk)

cand ∼

N (0, 10);

i. if f(log(σ2
ijk)

cand|·) > f(log(σ2
ijk)

t|·), set log(σ2
ijk)

t+1 = log(σ2
ijk)

cand;

ii. if not, generate u ∼ uniform(0, 1):

A. if u <
f(log(σ2

ijk)
cand|·)

f(log(σ2
ijk)

t
, set log(σ2

ijk)
t+1 = log(σ2

ijk)
cand;

B. if not, set log(σ2
ijk)

t+1 = log(σ2
ijk)

t.

2. full conditional posterior distribution of Ũ , µu, σ
2
u

Recall that in Mlow (model 3.2), the rank of the measurement error co-

variance matrix Σ̃i is determined as r < min(p, q). Here, for the ease

of derivation, we developed the posterior distribution with r = 1. The
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derivation can be easily generalized to r > 1.

(a) With Ũ =

ũ1...
ũp

 in Mlow (model 3.2), let ũj stand for the jth

element of Ũ . The full conditional distribution of ũj is of the form

p(ũj|·)

∝
n∏
i=1

p(log(Σi[j,])|ũj, Ṽ , δ2)× p(ũj|µu, σ2
u)

∝
n∏
i=1

exp

{
− 1

2δ2

[
(logΣi[j,])

> − ũjṼ
]> [

(logΣi[j,])
> − ũjṼ

]}
× exp

{
−1

2

(ũj − µu)2

σ2
u

}
∝ exp

{
−1

2
[ũj −m]>C−1 [ũj −m]

}
by completing the square,

(A.2)

leading to a normal kernel with mean M and variance E, where

E =

(
1

σ2
u

+
Ṽ
>
Ṽ

δ2

)−1
,

M = E

(
µu
σ2
u

+
n∑
i=1

Ṽ
>

log(Σi[j,])
>

δ2

)
.

Therefore, [ũj|·] ∼ N (M,E).

(b) With Ũ =

ũ1...
ũp

, the full conditional distribution of µu is

p(µu|·)

∝
p∏
j=1

p(ũj|µu, σ2
u)× p(µu|σ2

0)

∝
p∏
j=1

exp

{
−1

2

(ũj − µu)2

σ2
u

}
× exp

(
− µ2

u

2σ2
0

)
∝ exp

{
−1

2
[µu −m]>C−1 [µu −m]

}
by completing the square,

(A.3)
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corresponding to a normal kernel with mean M and variance E,

where

E = (
1

σ2
0

+
p

σ2
u

)−1,

M = E

(
p∑
j=1

ũj
σ2
u

)
.

Therefore, [µu|·] ∼ N (M,E).

(c) The full conditional distribution of σ2
u is

p(σ2
u|·)

∝
p∏
j=1

p(ũj|µu, σ2
u)× p(σ2

u|a0, b0)

∝
p∏
j=1

exp

{
−1

2

(ũj − µu)2

σ2
u

}
× (σ2

u)
(−a0−1)exp

(
− b0
σ2
u

)
∝ (σ2

u)
(−a1−1)exp

(
− b1
σ2
u

)
, (A.4)

leading to an inverse gamma kernel with α = a1 and β = b1, where

a1 = a0 + p/2,

b1 = b0 +
1

2

p∑
j=1

(ũj − µu)2.

Thus, [(σ2
u)
−1|·] ∼ Gamma(a1, b1).

3. full conditional posterior distribution of Ṽ , µv, σ
2
v

Similar as the derivation for Ũ , here we derive the posterior distribution

for Ṽ ∈ Rq×r with r = 1.

(a) With Ṽ =

ṽ1...
ṽq

, let ṽk stand for the kth element of Ṽ . The full
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conditional distribution of ṽk is of the form

p(ṽk|·)

∝
n∏
i=1

p(log(Σi[,k])|Ũ , ṽk, δ2)× p(ṽk|µv, σ2
v)

∝
n∏
i=1

exp

{
− 1

2δ2

[
(logΣi[,k])− ṽkŨ

]> [
(logΣi[,k])− ṽkŨ

]}
× exp

{
−1

2

(ṽk − µv)2

σ2
v

}
∝ exp

{
−1

2
[ṽk −m]>C−1 [ṽk −m]

}
by completing the square.

(A.5)

This is a normal kernel with mean M and variance E, where

E =

(
1

σ2
v

+
Ũ
>
Ũ

δ2

)−1
,

M = E

(
µv
σ2
v

+
n∑
i=1

Ũ>log(Σi[,k])

δ2

)
.

Therefore, [ṽk|·] ∼ N (M,E).

(b) The full conditional distribution of µv is

p(µv|·)

∝
q∏

k=1

p(ṽk|µv, σ2
v)× p(µv|σ2

0)

∝
q∏

k=1

exp

{
−1

2

(ṽk − µv)2

σ2
v

}
× exp

(
− µ2

v

2σ2
0

)
∝ exp

{
−1

2
[µv −m]>C−1 [µv −m]

}
by completing the square,

(A.6)

leading to a normal kernel with mean M and variance E, where

E = (
1

σ2
0

+
q

σ2
v

)−1,

M = E

(
q∑

k=1

ṽk
σ2
v

)
.

Therefore, [µv|·] ∼ N (M,E).
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(c) The full conditional distribution of σ2
v is

p(σ2
v |·)

∝
q∏

k=1

p(ṽk|µv, σ2
v)× p(σ2

v |a0, b0)

∝
q∏

k=1

exp

{
−1

2

(ṽk − µv)2

σ2
v

}
× (σ2

v)
(−a0−1)exp

(
− b0
σ2
v

)
∝ (σ2

v)
(−a1−1)exp

(
− b1
σ2
v

)
, (A.7)

corresponding to an inverse gamma kernel with α = a1 and β = b1,

where

a1 = a0 + q/2,

b1 = b0 +
1

2

q∑
k=1

(ṽk − µv)2.

Thus, [(σ2
v)
−1|·] ∼ Gamma(a1, b1).

4. full conditional posterior distribution of δ2

The full conditional distribution of δ2 is

p(δ2|·)

∝
n∏
i=1

p(logΣi|Ũ , Ṽ , δ2)× p(δ2|a0, b0)

∝
n∏
i=1

exp

{
− 1

2δ2
‖logΣi − Ũ Ṽ

>
‖2F
}
× (δ2)(−a0−1)exp

(
− b0
δ2

)
∝ (δ2)(−a1−1)exp

(
− b1
σ2
v

)
, (A.8)

corresponding to an inverse gamma kernel with α = a1 and β = b1,

where

a1 = a0 + npq/2,

b1 = b0 +
1

2

n∑
i=1

‖logΣi − Ũ Ṽ
>
‖2F .

Thus, [(δ)−1|·] ∼ Gamma(a1, b1).
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5. full conditional posterior distribution of η

The full conditional distribution of vec(η) is of the form

p(vec(η)|·)

∝
n∏
i=1

p(vec(x∗
i )|vec(η),A,B,λ, ξ, ũi, φ)× p(vec(η|σ2

0)

∝
n∏
i=1

exp

{
−φ

2
‖x∗i −A

[
η + λ1/2ũiξ

1/2
]
B>‖2F

}
× exp

{
− 1

2σ2
0

‖η‖2F
}

∝ exp

{
−1

2
[vec(η)−m]>C−1 [vec(η)−m]

}
by completing the square.

(A.9)

This is a normal kernel with mean M and variance E, where

E = (
1

σ2
0

+ nφ)−1I,

M = E

(
n∑
i=1

φ
[
(B ⊗A)>vec(x∗i )− (ξ ⊗ λ)1/2vec(ũi)

])
.

Therefore, [vec(η)|·] ∼ N (M ,E).

6. full conditional posterior distribution of λ1/2, µλ, σ
2
λ

(a) With λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
p0 ), define λ

1/2
l as the element at the

lth row and the lth column of λ1/2. The full conditional distribution

of λ
1/2
l is

p(λ
1/2
l |·)

∝
n∏
i=1

p(vec(x∗
i )|vec(η),A,B, λ

1/2
l , ξ, ũi, φ)× p(λ1/2l |µλ, σ

2
λ)

∝
n∏
i=1

exp

{
−φ

2
‖A[,l]x

∗
iB − η[l,] − λ

1/2
l ũi[l,]ξ‖2F

}
× exp

{
− 1

2σ2
λ

(λ
1/2
l − µλ)

2

}
∝ exp

{
−1

2

[
λ
1/2
l −m

]>
C−1

[
λ
1/2
l −m

]}
by completing the square,

(A.10)
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leading to a normal kernel with meanM and variance C, where

E =

(
1

σ2
λ

+ φ
n∑
i=1

ũi[l,]ξũ
>
i[l,]

)−1
,

M = E

(
µλ
σ2
λ

+ φ
n∑
i=1

ũi[l,]ξ
1/2
[
A>[,l]x

∗
iB − η[l,]

]>)
.

Therefore,
[
λ
1/2
l |·

]
∼ N (M,E).

(b) The full conditional posterior distribution of µλ is derived as

p(µλ|·)

∝
p0∏
l=1

p(λ
1/2
l |µλσ

2
λ)× p(µλ|σ2

0)

∝
p0∏
l=1

exp

{
− 1

2σ2
λ

(λ
1/2
l − µλ)

2

}
× exp

{
− µ2

λ

2σ2
λ

}
∝ exp

{
−1

2
[µλ −m]>C−1 [µλ −m]

}
by completing the square,

(A.11)

corresponding to a normal kernel with mean M and variance E,

where

E = (
1

σ2
0

+
p0
σ2
λ

)−1,

M = E

∑p0
l=1 λ

1/2
l

σ2
λ

.

Thus, [µλ|·] ∼ N (M,E).

(c) The posterior distribution of σ2
λ is given as

p(σ2
λ|·)

∝
p0∏
l=1

p(λ
1/2
l |µλσ

2
λ)× p(σ2

λ|a0, b0)

∝
p0∏
l=1

exp

{
−(λ

1/2
l − µλ)2

2σ2
λ

}
× (σ2

λ)
(−a0−1)exp

(
− b0
σ2
λ

)
∝ (σ2

λ)
(−a1−1)exp

(
− b1
σ2
λ

)
, (A.12)
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corresponding to an inverse gamma kernel with α = a1 and β = b1,

where

a1 = a0 + p0/2,

b1 = b0 +
1

2

p0∑
l=1

(λ
1/2
l − µλ)

2.

Thus, [(σ2
λ)
−1|·] ∼ Gamma(a1, b1).

7. full conditional posterior distribution of ξ1/2, µξ, σ
2
ξ

(a) With ξ1/2 = diag(ξ1/2, . . . , ξ
1/2
q0 ), define ξ

1/2
s as the element at the sth

row and the sth column of ξ1/2, s = 1, . . . , q0. The full conditional

distribution of ξ
1/2
s is

p(ξ
1/2
l |·)

∝
n∏
i=1

p(vec(x∗
i )|vec(η),A,B,λ, ξ1/2s , ũi, φ)× p(ξ1/2s |µξ, σ2

ξ )

∝
n∏
i=1

exp

{
−φ

2
‖A>x∗iB[,s] − η[,s] − λũi[l,]ξ1/2s ‖2F

}
× exp

{
− 1

2σ2
ξ

(ξ1/2s − µξ)2
}

∝ exp

{
−1

2

[
ξ1/2s −m

]>
C−1

[
ξ1/2s −m

]}
by completing the square,

(A.13)

leading to a normal kernel with meanM and variance C, where

E =

(
1

σ2
ξ

+ φ
n∑
i=1

ũ>i[,s]λũi[,s]

)−1
,

M = E

(
µξ
σ2
ξ

+ φ

n∑
i=1

ũ>i[,s]λ
1/2
[
A>x∗iB[,s] − η[,s]

])
.

Therefore,
[
ξ
1/2
s |·

]
∼ N (M,E).
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(b) The full conditional posterior distribution of µξ is derived as

p(µξ|·)

∝
q0∏
s=1

p(ξ1/2s |µξσ2
ξ )× p(µξ|σ2

0)

∝
q0∏
s=1

exp

{
− 1

2σ2
ξ

(ξ
1/2
l − µξ)2

}
× exp

{
−
µ2
ξ

2σ2
ξ

}

∝ exp

{
−1

2
[µξ −m]>C−1 [µξ −m]

}
by completing the square,

(A.14)

corresponding to a normal kernel with mean M and variance E,

where

E = (
1

σ2
0

+
q0
σ2
ξ

)−1,

M = E

∑q0
s=1 ξ

1/2
s

σ2
ξ

Thus, [µξ|·] ∼ N (M,E).

(c) The posterior distribution of σ2
ξ is given as

p(σ2
ξ |·)

∝
q0∏
s=1

p(ξ1/2s |µξσ2
ξ )× p(σ2

ξ |a0, b0)

∝
q0∏
s=1

exp

{
−(ξ

1/2
s − µξ)2

2σ2
ξ

}
× (σ2

ξ )
(−a0−1)exp

(
− b0
σ2
ξ

)

∝ (σ2
ξ )

(−a1−1)exp

(
− b1
σ2
ξ

)
, (A.15)

corresponding to an inverse gamma kernel with α = a1 and β = b1,

where

a1 = a0 + q0/2,

b1 = b0 +
1

2

q0∑
s=1

(ξ1/2s − µξ)2.

Thus,
[
(σ2

ξ )
−1|·
]
∼ Gamma(a1, b1).
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8. full conditional posterior distribution of ũi,ui

(a) To derive the full conditional distribution of vec(ũi), recall that we

have introduced a latent variable wi ∼ N(ψ + γ>zi + θ>vec(ui), 1)

when justify the identifiability, and that w̃i = wi−ψ−γ>zi. Then,

the posterior distribution of ũi is of the form:

p(vec(ũi)|·)

∝ p(vec(x∗
i )|η,A,B,λ, ξ, vec(ũi), φ)× p(wi|vec(ũi), ψ,γ,θ)× p(vec(ũi))

∝ exp

{
−φ

2
‖x∗i −A

[
η + λ1/2ũiξ

1/2
]
B>‖2F

}
× exp

{
−1

2

(
w̃i − θ>vec(ũi)

)2}
× exp

{
−1

2
‖ũi‖2F

}
∝ exp

{
−1

2
[vec(ũi)−m]>C−1 [vec(ũi)−m]

}
by completing the square,

(A.16)

corresponding to a normal kernel with mean M and variance E,

where

E = (I + φ(ξ ⊗ λ) + θθ>)−1,

M = E
(
φ(ξ ⊗ λ)1/2

[
B ⊗A)>vec(x∗i )− vec(η)

]
+ θw̃i

)
,

Therefore, [vec(ũi)|·] ∼ N (M ,E).

(b) Recall that ũi is standardized from ui. Therefore, the posterior

sample of ui can be obtained through

ui = η + λ1/2ũiξ
1/2 (A.17)

9. full conditional posterior distribution of φ
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The posterior distribution of φ is obtained as follows:

p(φ|·)

∝
n∏
i=1

p(x∗
i |A,B,ui, φ)× p(φ|a0, b0)

∝
n∏
i=1

exp

{
−φ

2
‖x∗i −AuiB>‖2F

}
× ((1/φ)2)(−a0−1)exp

(
− b0

(1/φ)2

)
∝ ((1/φ)2)(−a1−1)exp

(
− b1

(1/φ)2

)
, (A.18)

leading to a inverse gamma kernel with α = a1 and β = b1, where

a1 = a0 + npq/2,

b1 =, b0 +
1

2

n∑
i=1

‖x∗i −AuiB>‖2F .

Hence, [φ|·] ∼ Gamma(a1, b1)

10. full conditional posterior distribution of A

As suggested by Hoff (2007), to derive the full posterior distribution

of A, we first rewrite the full likelihood based on the complete data

(3.11) as function of A[,−j] and A[,j]. Recall that A[,−j] is the matrix A

without its jth column and A[,j] is the removed jth column of A. With

previously determined notations B[,k] representing kth column of matrix

B and B[,−k] referring to matrix B without the kth column, We further

define that

x∗−ji = x∗i −
∑
j′ 6=j

q0∑
k=1

A[,j′]ui[j′,k]B
>
[,k], (A.19)

where ui[j,k] denote the element in the jth row and kth column of ui
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(Jiang et al., 2020). As a consequence,

n∑
i=1

‖x∗i −AuiB>‖2F

=
n∑
i=1

‖x∗i −
p0∑
j=1

q0∑
k=1

A[,j]ui[j,k]B
>
[,k]‖2F

=
n∑
i=1

‖x∗i −A[,j]

q0∑
k=1

ui[j,k]B
>
[,k] −

∑
j′ 6=j

q0∑
k=1

A[,j′]ui[j′,k]B
>
[,k]‖2F

=
n∑
i=1

‖x
∗−j
i −A[,j]

q0∑
k=1

ui[j,k]B
>
[,k]‖2F

=
n∑
i=1

‖x
∗−j
i ‖2F − 2A>[,j]

n∑
i=1

q0∑
k=1

ui[j,k]x
∗−j
i B[,k] +

n∑
i=1

q0∑
k=1

u2
i[j,k]. (A.20)
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It follows that the likelihood 3.11 can be rewritten as

f(o, ũ,xm,x
∗, |z,ν)

=
n∏
i=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

]
×

n∏
i=1

M∏
m=1

[
1

(2π)pq/2 |Σi|1/2
exp

{
−1

2
(vec(xim)− vec(x∗i ))

>Σ−1i (vec(xim)− vec(x∗i ))

}]

×
n∏
i=1

(
φ

2π

)1/2

exp

{
−φ

2
‖x∗i −AuiB>‖2F

}
×

n∏
i=1

1

(2π)p0q0/2
exp

{
−1

2
vec(ũi)

>vec(ũi)

}
=

n∏
i=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

]
×

n∏
i=1

M∏
m=1

[
1

(2π)pq/2 |Σi|1/2
exp

{
−1

2
(vec(xim)− vec(x∗i ))

>Σ−1i (vec(xim)− vec(x∗i ))

}]

×
(
φ

2π

)n/2
exp

{
−φ

2

n∑
i=1

‖x∗i −AuiB>‖2F

}

×
n∏
i=1

1

(2π)p0q0/2
exp

{
−1

2
vec(ũi)

>vec(ũi)

}
=

n∏
i=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

]
×

n∏
i=1

M∏
m=1

[
1

(2π)pq/2 |Σi|1/2
exp

{
−1

2
(vec(xim)− vec(x∗i ))

>Σ−1i (vec(xim)− vec(x∗i ))

}]

×
(
φ

2π

)n/2
exp

{
−φ

2

(
n∑
i=1

‖x
∗−j
i ‖2F − 2A>[,j]

n∑
i=1

q0∑
k=1

ui[j,k]x
∗−j
i B[,k] +

n∑
i=1

q0∑
k=1

u2
i[j,k]

)}

×
n∏
i=1

1

(2π)p0q0/2
exp

{
−1

2
vec(ũi)

>vec(ũi)

}
. (A.21)

From Hoff (2007), with the conditional distribution p(A[,j]|A[,−j])
d
=

NA[,−j]aj implied from a uniform prior, the full conditional posterior

distribution of aj is proportional to

exp

(
φa>j N

>
A[,−j]

n∑
i=1

q0∑
k=1

ui[j,k]x
−j
i B[,k]

)
.
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This expression corresponds to a von Mises-Fisher distribution on the

(p − (p0 − 1))-dimensional unit sphere with notation vMF(ηA), where

ηA ∈ Rp−p0+1 and ηA = φN>A[,−j]
∑n

i=1

∑q0
k=1 ui[j,k]x

−j
i B[,k]. A uniform

distribution on the sphere is a special case of von Mises-Fisher distri-

bution (Hoff, 2007; Jiang et al., 2020). The general probability density

function for a von Mises-Fisher distribution for a vector ~u on the p-

dimensional unit sphere is of the form:

fp(~u;µ) = cp(||µ||)exp{~u>µ}

with parameter µ ∈ Rp and is denoted by vMF(µ). Here, cp is a nor-

malizing constants for fp(~u;µ). Therefore, the density function for A’s

full conditional posterior distribution is

fp(aj;η
A) = cp−p0+1(||ηA||)exp{a>j ηA}.

Therefore, similar as Jiang et al. (2020), a posterior sample of A[,j] can

be drawn from the above posterior distributions in following ways:

(a) Draw a sample of aj ∼ vMF(ηA);

(b) Find N>A[,−j] and set N>A[,−j]aj as a posterior sample of A[,j].

11. full conditional posterior distribution of B

Similar as the analysis for A, with previously determined notations B[,k]

representing kth column of matrix B and B[,−k] referring to matrix B

without the kth column, we further let

x̃−ki = x>i − µ> −
∑
k′ 6=k

p0∑
j=1

B[,k′]ui[j,k′]A
>
[,j]. (A.22)

Recall that ui[j,k] denote the element in the jth row and kth column

of ui, A[,−j] is the matrix A without its jth column and A[,j] is the

removed jth column of A (Jiang et al., 2020). As a consequence, the

term with Frobenius norm in the complete likelihood (model 3.11) can
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be transformed as:
n∑
i=1

‖x∗i − µ−AuiB>‖2F

=
n∑
i=1

‖x∗>i − µ> −
p0∑
j=1

q0∑
k=1

B[,k]ui[j,k]A
>
[,j]‖2F

=
n∑
i=1

‖x∗>i − µ> −B[,k]

p0∑
j=1

ui[j,k]A
>
[,j] −

∑
k′ 6=k

p0∑
j=1

B[,k′]ui[j,k′]A
>
[,j]‖2F

=
n∑
i=1

‖x̃∗−ki −B[,k]

p0∑
j=1

ui[j,k]A
>
[,j]‖2F

=
n∑
i=1

‖x̃∗−ki ‖2F − 2B>[,k]

n∑
i=1

p0∑
j=1

ui[j,k]x̃
∗−k
i A[,j] +

n∑
i=1

p0∑
j=1

u2
i[j,k]. (A.23)

Accordingly, the complete likelihood can be then rewritten in the form:

f(o, ũ,xm,x
∗, |z,ν)

=
n∏
i=1

[
p
I(oi=1)
i (1− pi)I(oi=0)

]
×

n∏
i=1

M∏
m=1

[
1

(2π)pq/2 |Σi|1/2
exp

{
−1

2
(vec(xim)− vec(x∗i ))

>Σ−1i (vec(xim)− vec(x∗i ))

}]

×
(
φ

2π

)n/2
exp

{
−φ

2

(
n∑
i=1

‖x̃∗−ki ‖2F − 2B>[,k]

n∑
i=1

p0∑
j=1

ui[j,k]x̃
∗−k
i A[,j] +

n∑
i=1

p0∑
j=1

u2
i[j,k]

)}

×
n∏
i=1

1

(2π)p0q0/2
exp

{
−1

2
vec(ũi)

>vec(ũi)

}
. (A.24)

Similarly, as clarified above, with the conditional distribution p(B[,k]|B[,−k])
d
=

NB[,−k]bk implied from a uniform prior, the full conditional posterior dis-

tribution of bk, is proportional to

exp{b>k (φN>B{−k}

n∑
i=1

p0∑
j=1

ui[j,k]x̃
−k
i A[,j])},

leading to a von Mises-Fisher distribution vMF(ηB), where ηB ∈ Rq−(q0−1)

and ηB = φN>B{−k}
∑n

i=1

∑p0
j=1 ui[j,k]x̃

−k
i A[,j] (Jiang et al., 2020). The

corresponding density function for B’s full conditional posterior distri-

bution is

fp(bk;η
B) = cq−q0+1(||ηB||)exp{b>k ηB}.
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Therefore, similar as Jiang et al. (2020), a posterior sample of B[,j] can

be drawn from the above posterior distributions through the following

procedure:

(a) Draw a sample of bk ∼ vMF(ηB);

(b) Find N>B[,−k] and set N>B[,−k]bk as a posterior sample of B[,k].

12. full conditional posterior distribution of x∗i

The posterior distribution of x∗i is derived as

p(vec(x∗i )|·)

∝
M∏
m=1

p(xim|x∗i , Σ̃i)× p(vec(x∗
i )|A,B,ui, φ)

∝
M∏
m=1

exp

{
−1

2
(vec(xim)− vec(x∗i ))

>
[
diag(vec(Σ̃i))

]−1
(vec(xim)− vec(x∗i ))

}
× exp

{
−φ

2
‖x∗i −AuiB>‖2F

}
∝ exp

{
−1

2
[vec(x∗i )−m]>C−1 [vec(x∗i )−m]

}
by completing the square,

(A.25)

corresponding to a normal kernel with mean M and variance E, where

E =

(
φI +

[
diag(vec(Σ̃i))

]−1)−1
,

M = E(φ(B ⊗A)vec(ui) +
2∑

m=1

Σ−1i vec(xim)).

Therefore, [vec(x∗i )|·] ∼ N (M ,E).

13. full conditional posterior distribution of wi

Recall that, in chapter 3, we have introduced oi = I(wi > 0) with an

indicator function I(·) and wi ∼ N(ψ+γ>zi +θ
>vec(ui), 1). Therefore,

the posterior sample for wi is obtained as follows:

[wi|·] ∼ N (ψ + γTzi + θ>vec(ũi), 1)I(wi > 0) if oi = 1

[wi|·] ∼ N (ψ + γTzi + θ>vec(ũi), 1)I(wi < 0) if oi = 0

75



14. full conditional posterior distribution of (ψ,γ>,θ>)>

To derive the posterior distribution of (ψ,γ>,θ>)>, we let z̃i represent

(1, z>i , vec(ũi)
>)> and let θ̃ denote (ψ,γ>,θ>)>.It follows that

p(θ̃|·)

∝
n∏
i=1

p(wi|z̃i, θ̃)× p(θ̃|σ2
0)

∝
n∏
i=1

exp

{
−1

2
‖wi − z̃iθ̃‖2F

}
× exp

{
− 1

2σ2
0

‖θ̃‖2F
}

∝ exp

{
−1

2

[
θ̃ −m

]>
C−1

[
θ̃ −m

]}
by completing the square,

(A.26)

leading to a normal kernel with mean M and variance E, where

E = (
1

σ2
0

I +
n∑
i=1

z̃iz̃
>
i )−1,

M = E
n∑
i=1

wiz̃i.

Therefore,
[
(ψ,γ>,θ>)>|·

]
∼ N (M ,E)
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