
Deromanization of Code-mixed Texts

by

Rashed Rubby Riyadh

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Rashed Rubby Riyadh, 2019

Abstract

The conversion of romanized texts back to the native scripts is a challenging

task because of the inconsistent romanization conventions and non-standard

language use. This problem is compounded by code-mixing, i.e., using words

from more than one language within the same discourse. Considering these

two problems together is necessary to utilize the NLP resources and tools that

are developed and trained on text corpora written in the standard form of

the language. In this thesis, we propose a novel approach for handling these

two problems together in a single system. Due to the unavailability of suf-

ficiently large annotated resources for training an end-to-end approach, the

proposed approach combines several supervised models for the three compo-

nents: word-level language identification, back-transliteration, and sequence

prediction. The results of the experiments on Bengali and Hindi datasets

show that the proposed approach is substantially more accurate than Google

Translate, and establish the state of the art for the task of deromanization of

code-mixed texts.

ii

Preface

The work presented in this thesis is a elaboration of the research article advised

by Professor Greg Kondrak (Riyadh and Kondrak, 2019). The author was the

main contributor who implemented different methods, and performed all the

experiments.

iii

Acknowledgements

I am deeply grateful to Professor Greg Kondrak for his supervision and guid-

ance throughout the thesis. It would not be possible to overcome the steep

challenges of performing graduate-level research in NLP without his help.

I would also like to thank Bradley Hauer and Saeed Najafi for the sugges-

tions and feedback.

Finally, I am eternally indebted to my parents for their love and support.

I cannot think of coming this far without them.

iv

Contents

1 Introduction 1

2 Literature Review 6
2.1 Language Identification . 6
2.2 Deromanization . 11
2.3 Summary . 13

3 Methodology 14
3.1 Background . 14

3.1.1 Statistical Language Modeling 14
3.1.2 Hidden Markov Model 15

3.2 Proposed Approach . 16
3.2.1 Language Identification (LID) 17
3.2.2 Back-Transliteration (BTL) 18
3.2.3 Sequence Prediction (SP) 20

3.3 Summary . 24

4 Experiments 25
4.1 Setup . 25

4.1.1 Language Identification 25
4.1.2 Back-Transliteration 26
4.1.3 Sequence Prediction 28

4.2 Evaluation Metrics . 28
4.3 Results . 29

4.3.1 Language Identification 29
4.3.2 Back-Transliteration 31
4.3.3 Sequence Prediction 33

4.4 Error Analysis . 34
4.5 Summary . 36

5 Conclusion 37

References 39

v

List of Tables

4.1 Datasets for the experiments. 26
4.2 The language balance (in % of word tokens) in data sets. . . . 26
4.3 The hyper-parameter setting for the language identification sys-

tem. 27
4.4 The hyper-parameter settings for the back-transliteration systems. 28
4.5 Language identification accuracy (in %). 29
4.6 Impact of annotated data on the back-transliteration word ac-

curacy of Bengali dev set (in %). 30
4.7 NEWS shared task results on NEWS test sets (in %). 31
4.8 Back-transliteration word accuracy on test sets (in %). 31
4.9 Deromanization word accuracy (in %). 33

vi

List of Figures

1.1 An example Bengali sentence that involves both romanization
and code-mixing. 2

3.1 Overview of the proposed deromanization system. 16
3.2 The encoder for labeling the sentence “tomake to decent mone

hoyechilo”. 17
3.3 Modeling the sequence prediction system as HMM. 21

4.1 Sample mapping from Bengali to English characters. 27
4.2 Language identification accuracy on test sets (in %). 29
4.3 Impact of annotated data on the back-transliteration word ac-

curacy (Top-1) of Bengali dev set (in %). 30
4.4 Back-transliteration word accuracy (Top-1) on test sets (in %). 32
4.5 Deromanization word accuracy on test sets (in %). 34
4.6 Google Translate interface for the transliteration. 34
4.7 Examples of the proposed deromanization system. 35

vii

Chapter 1

Introduction

Ad-hoc romanization is the practice of using the Roman script to express

messages in languages that have their own native scripts (Figure 1.1). The

phenomenon is often observed in informal settings, such as social media, blog

posts, news forums etc., and is due to several reasons, such as unavailability

of a native-script keyboard, difficulties in writing in the native keyboard, min-

imizing the switching between English and native keyboard etc. Rather than

following any predefined inter-script mappings, romanized texts typically con-

stitute an idiosyncratic mixture of phonetic spelling, ad-hoc transliterations,

and abbreviations. A great deal of information is also lost in the romanization

process due to the difficulty of representing native phonological distinctions in

the Roman script. This makes deromanizing or converting such messages back

to their native scripts a challenging task (Irvine et al., 2012).

Another phenomenon that further complicates the task of deromanization

is code-mixing, which occurs when words from another language (typically

English) are introduced in the messages (e.g., the word decent in Figure 1.1).

It can happen both within (inter-sentential) and between (intra-sentential)

sentences. People may use code-mixing consciously or sub-consciously in their

discourse for several reasons, such as comfort in expressing some concepts

(such as technical terms) in a particular language, excluding people from a

conversation, exerting influence on others etc. Code-mixing is particularly

common in multi-lingual areas such as South Asia (Bali et al., 2014), Eastern

Africa (Myers-Scotton, 1995), United States (Mart́ınez, 2010) etc. Several

1

(a) tomake to decent mone hoyechilo

(b) B B E B B

(c) ত োমোকে ত ো decent মকে হকেছিল

(d) "you" "like" "decent" "in mind" "was"

(e) "you seemed a decent person"

Figure 1.1: An example Bengali sentence that involves both romanization
and code-mixing: (a) original message; (b) implied language tags; (c) target
deromanization; (d) word-level translation; (e) sentence-level translation.

studies have also been conducted to understand the extent of code-mixing in

social media contents of specific locations. Rijhwani et al. (2017) show that

non-English speaking cities produce a large number of code-mixed messages in

the social media, such as 12% tweets in Istanbul and 8% tweets in Quebec City

contain code-mixing. Bali et al. (2014) study the code-mixing phenomena in

Indian social media and report 17% Facebook posts generated in India contain

code-mixing.

Most prevalent form of code-mixing observed on the internet is in the

same scripts (such as English-Spanish). Also, the languages involved in the

phenomena are generally linguistically similar. Thus, analyzing these code-

mixed texts are simpler. However, it is more difficult to process the texts when

multiple scripts are employed or words from multiple languages are written in

a single script. The trivial way to handle the romanized code-mixed texts is to

convert every words to the native script. However, most of the English words

have no equivalent conversions in the native script in many cases.

Transliterations have been commonly employed in the deromanization task.

Transliteration is conversion of named entities and words between distinct

scripts. Back-transliteration, on the other hand, is the conversion of translit-

erated named entities or words back to their original scripts. Though there

can be several ways to transliterate a native word to other scripts, there is

generally only one correct way to render the transliterated word to the native

form (Knight and Graehl, 1998). Transliteration and back-transliteration are

2

generally employed in machine translation and contextual cues are used to

predict the correct transliterations. However, most of the works in deroman-

ization perform the transliteration without considering the contextual infor-

mation. Also, these deromanization systems generally consider only the top

predictions, which might be incorrect in many cases due to spelling variations.

Transliterations and romanizations are closely related. Romanization can

be considered a special form of transliteration, where words from any non-

Latin script are converted to Latin script. As romanization involved only two

distinct scripts, there are generally one or more standard romanization conven-

tions. However, it is difficult and sometimes infeasible to come up with hand-

crafted rules or standard mappings for transliterations due to a large number

of possible scripts. So, transliteration systems are generally trained on a set

of word pairs, which are transliterated by professional annotators. Transliter-

ation mining can also be used to extract a large set of possible transliteration

pairs from the parallel translation corpus.

In this thesis, we address the task of deromanization of code-mixed texts.

This normalization process is necessary in order to take advantage of NLP

resources and tools that are developed and trained on text corpora written

in the standard form of the language, which in turn can facilitate tasks such

as sentiment analysis, opinion mining, product recommendation in the social

media. In addition, web-search queries are often expressed in a romanized form

by speakers of languages that use native scripts, such as Arabic, Greek, and

Hindi (Gupta et al., 2014b). Thus, deromanization of the search queries and

the vast amount of web documents is required for providing the relevant search

results which should match both native-script and code-mixed documents.

The individual sub-tasks of deromanization of code-mixed texts have been

investigated in prior work, but we are the first to incorporate them in a sin-

gle system. Several unsupervised and supervised approaches are proposed for

language identification in code-mixed texts. However, only a few of these

researches consider language identification in the code-mixed romanized sce-

nario, which is a more difficult task. Workshops and shared tasks have also

been devoted to code-mixing, including the problem of language identification

3

(Choudhury et al., 2014; Solorio et al., 2014; Molina et al., 2016).

Transliteration and back-transliteration is a well-understood problem, which

also has been the topic of several shared tasks (Duan et al., 2016; Chen et al.,

2018). The focus of these shared tasks is on the transliteration of names rather

than dictionary words, which is performed without considering the word in

context. Thus, directly transliterating the romanized words may not be ideal

approach, as deromanization should take the context into consideration. Fi-

nally, a number of papers address the deromanization of social media contents

and informal texts, but propose no effective way of handling the code-mixing

issue. We show that this limitation leads to sub-optimal performance on dero-

manization.

In this thesis, we propose a novel approach for tackling the problem of

romanization and code-mixing together in a single system. Since sufficiently

large annotated data sets for training an end-to-end approach are not available,

we instead combine supervised models for the three main components of the

complete task: (a) word-level language identification, (b) back-transliteration,

and (c) word sequence prediction. These modules involve several diverse tech-

niques, including neural networks, character- and word-level language mod-

els, discriminative transduction, joint n-grams, and Hidden Markov Models

(HMMs). We perform experiments on three datasets that represent two lan-

guages, including a new dataset that we have collected and annotated our-

selves. The results show that our system is substantially more accurate than

Google Translate, which is the only available tool that can be applied to this

task.

The main statement of the thesis is:

Romanized messages that involve code-mixing can be more accurately

recovered by jointly considering the phenomena of romanization and

code-mixing through the combination of language identification, back-

transliteration, and word sequence prediction.

The main contributions of the thesis are the following: (1) we propose a

novel approach to deromanization of code-mixed texts through the combina-

4

tion of language identification, back-transliteration, and sequence prediction;

(2) we develop a system that establishes the state of the art on the task; (3) we

create a fully annotated dataset of romanized Bengali messages. We make our

code and data publicly available.1

This thesis is organized as follows. In Chapter 2, we provide the literary

works related to the thesis, which include the previous methods for identi-

fying languages in code-mixed texts, and different approaches for addressing

deromanization. Chapter 3 provides the necessary background for the pro-

posed approach. It also introduces our approach for handling deromanization

of code-mixed texts. In Chapter 4, we provide detailed experimental analy-

sis of the proposed approach and show it’s effectiveness on the task. Finally,

Chapter 5 concludes the thesis and provides the discussion for future work.

1https://github.com/x3r/deromanization

5

Chapter 2

Literature Review

This chapter provides an overview of the two important tasks, namely language

identification and deromanization. We will mainly focus on the recent progress

of these respective tasks in the code-mixed setting. Additional prior work will

also be presented as required in the next chapters.

2.1 Language Identification

Though the identification of language in a monolingual document is a well

studied problem, identifying languages in multilingual texts has garnered lots

of attention recently. In this section, the recent advancements of language

identification in code-mixed texts will be covered.

King and Abney (2013) propose several weakly supervised systems for iden-

tifying languages in mixed-language documents. The methods are based on

conditional random fields (CRF), Hidden Markov Model (HMM) and logistic

regression that use several hand-crafted features. The authors show that the

systems which consider the contextual information perform better than the in-

dependent language identification. The proposed approaches are evaluated on

manually-annotated bilingual datasets that contain 30 languages. Among the

evaluated approaches, the CRF-based approach is found to be most accurate.

However, the use of hand-crafted features has been proven to be sub-optimal

and replaced with word representations learned using neural approaches, which

surpass the performance of the traditional feature-based approaches.

6

Nguyen and Doğruöz (2013) present several supervised approaches, which

are guided by the language labels produced by an unsupervised approach,

for language identification in multilingual conversational texts. The unsuper-

vised approach uses dictionary and character n-gram features to predict the

language labels. The labels are then used as features by the supervised ap-

proaches, namely logistic regression and CRFs. Additionally, the authors also

perform experiments with the contextual features to evaluate how these fea-

tures affect the identification accuracy. The approaches are evaluated on a

manually created Dutch-Turkish dataset. Though both the CRF (97.6%) and

LR (96.7%) with contextual features outperforms the methods without the

features, the margin of improvement is low (.2% on average).

Yu et al. (2013) employ statistical language modeling for identifying code-

switched sentences and the language labels in code-mixed document. Their

supervised approach determines the probability of the next word being a code-

switched word based on the previous n-words. The authors train two language

models-one from code-switched sentences and another from non-code-switched

sentences and compare the probability of a test sentence on these language

models to determine whether a sentence is code-switched or not. The proposed

approach is evaluated on Sinica corpus, which contains Mandarin-Taiwanese

sentences and achieved 53.08% accuracy on the word-level language identifi-

cation task. Though approach is able to successfully apply language models

for language identification, the presence of ambiguous and informal words sig-

nificantly deteriorates the performance as seen from the low-accuracy of the

approach.

Chittaranjan et al. (2014) describe a CRF-based supervised approach for

word-level language identification in code-mixed. Their approach uses various

token-level and contextual features such as capitalization information, charac-

ter n-gram, lexicon features etc. for training the CRF system. The approach is

tested on the Computational Approaches to Code-switching shared task (Diab

et al., 2014) in four language pairs, namely, English-Spanish (En-Es), English-

Nepali (En-Ne), English-Mandarin (En-Cn), and Standard Arabic-Arabic (Ar-

Ar), and achieves accuracy ranging from 80%-95%, except for Ar-Ar test set.

7

Barman et al. (2014) propose several unsupervised and supervised ap-

proaches for language identification of social media. The unsupervised dictionary-

based approach makes use of several word lists to determine the origin of a

word. The supervised approaches employ contextual features to train support

vector machines (SVM) and CRFs. The experiments are performed on a man-

ually collected and annotated corpus which contains words from Hindi, English

and Bengali. Among the tested approaches, the CRF approach achieves the

best result with 95.8% accuracy, with the SVM approach close behind.

Das and Gambäck (2014) perform a comparison among several unsuper-

vised and supervised approaches for word-level language identification in code-

mixed texts. Their unsupervised approaches are based on character n-gram

and dictionary look-up. The authors use SVM that employs several hand-

crafted features as the supervised approach. A post-processing technique is

also proposed that performs error correction on the predicted label by consid-

ering the contextual information. The approaches are evaluated on a dataset

manually created and annotated from several Facebook pages and groups.

The experimental analysis shows that SVM-based supervised approach with

post-processing achieves 94.4% and 91.9% accuracy on Hindi and Bengali,

respectively, and outperforms both unsupervised approaches.

Sadat et al. (2014) employ character-level language modeling for Arabic

dialect identification in social media. They propose two supervised approaches,

namely Markov model and Naive Bayes classifier, which utilize character n-

gram models (Uni-gram, Bi-gram and Tri-gram) built from training data in

social media context. The approaches are tested using a data set collected

from Arabic blogs and forums. Though the approaches achieve around 97%

in dialect identification, it does not consider the mixing of dialects in the

documents, and performs document-level classification.

Gella et al. (2014) introduce an interesting post-processing step on top

of a supervised approach for word-level language identification in code-mixed

texts. Their approach seeks to build a general language identification system

which makes use a binary classifier such as Naive Bayes, Logistic Regression

etc. which can employ character n-grams as features, and performs a post-

8

processing step known as CoverSet. As the approach does not assume the

languages of the text, the CoverSet chooses the minimum number of languages

for labeling all the words in a text. The authors evaluate their approach on

two datasets - FIRE dataset, and a synthetic dataset, and achieve 42% and

82% average accuracy, respectively.

Jaech et al. (2016) describe a supervised approach for language identifica-

tion in social media. The approach is based on hierarchical character-word

models, which employs character and contextualized word-level representa-

tions for the task. The character-level representation is built using a convo-

lutional neural network (CNN) applied over the whitespace-limited words. A

bi-directional LSTM recurrent neural network is used over the character repre-

sentation to produce the word labels. The approach is evaluated on TweetLID

and Tweet70 datasets, and achieves 76.1% and 91.2% F1-score, respectively.

An unsupervised approach based on Hidden Markov Models (HMMs) is

proposed by Rijhwani et al. (2017) for language identification in code-mixed

Twitter texts. The approach considers k-HMMs for k languages. The transi-

tion probabilities are generated by considering both the monolingual and code-

switched word as probable states, and emission probabilities are produced from

monolingual word language models. It then uses the HMM parameters to de-

code the most probable language label sequence using a Viterbi decoder. The

authors train the model on corpora of seven languages collected from Twit-

ter, and evaluate it on a manually curated test set. The proposed approach

achieves on average 96.3% accuracy in a mixture of two languages.

An interesting idea of employing the encoding of characters for the lan-

guage identification of Bengali-English code-mixed data is proposed by Man-

dal et al. (2018). Their supervised approaches are based on LSTM networks

which employ two different encoding, namely character-based and root phone-

based encoding for training. The character-based encoding is developed by

replacing each character with an integer index, and the phone-based encoding

is built by creating a mapping between n-gram language model tokens and

Unicode pronunciation of Bengali words. The phones present in a word are

then replaced by the corresponding index of these phones in the mapping. The

9

encoding schemes are combined to create two ensemble models using stack-

ing and threshold technique. The approach is evaluated on the data from

two shared tasks, namely- ICON 161, ICON 172. The stacking and threshold

models achieve 91.8% and 92.3% accuracy on the test set, respectively. As

the proposed approaches are based on character-level information and do not

consider the context, they are not able to handle the spelling ambiguities in

code-mixed data and predict the same label for similarly spelled words that

are from different languages.

Several workshops and shared tasks are dedicated to the task of language

identification in code-mixed texts, including FIRE shared task on Translit-

erated Search (Choudhury et al., 2014), Computational Approaches to Code

Switching (Solorio et al., 2014; Molina et al., 2016) etc. FIRE shared task

(Choudhury et al., 2014) holds the subtask of language identification in sev-

eral code-mixed romanized South-Asian languages. There are 6 language pairs

which contain a South-Asian language (Bengali, Hindi, Malayalam, Kannada,

Tamil, Gujrati) mixed with English. A total of 18 teams participated in the

subtask, who have mostly utilized character n-grams and token level features

for supervised classifiers, such as SVMs and Naive Bayes etc. The best re-

ported accuracy for the languages are - Bengali (90.5%), 96.3% (Gujrati),

Hindi (87.9%), Kannada (68.1%), Malayalam (86.0%) and Tamil (98.6%).

Computational Approaches to Code Switching (Molina et al., 2016) con-

ducts the shared task on language identification in code-switched data from

two language pairs - Modern Standard Arabic - Dialectal Arabic (MSA-DA),

and Spanish - English (SPA-ENG). A total of nine teams participate in the

shared task. The most used approach for the task are based on CRFs, which

utilize language models, case and contextual features. A few teams also em-

ploy deep learning techniques using Convolutional Neural Networks (CNNs),

Long Short Term Memory (LSTMs) etc. The best reported F1-score for the

language pairs are - SPA-ENG (91.3%) and MSA-DA (83.0%).

1http://ltrc.iiit.ac.in/icon2016/
2http://ltrc.iiit.ac.in/icon2017/

10

2.2 Deromanization

The problem of converting romanized texts to their native scripts has been

studied on its own or as a sub-module in pipeline approaches for machine

translation, mixed-script information retrieval etc. In this section, the recent

works in deromanization will be presented.

Short Message Service (SMS) is a potential source of romanized texts due to

the difficulty of typing in the native-script keyboard. A supervised approach is

proposed for deromanizing the informal Urdu messages by Irvine et al. (2012).

The supervised approach makes use of a Hidden Markov Model (HMM) to

combine the candidates derived from a character-level transliteration model

and a dictionary of automatically aligned words. The experiments are per-

formed on a Urdu SMS corpus which is manually annotated using Mechanical

Turk. The authors show that the approach surpasses a baseline deterministic

approach (Buckwalter Arabic deterministic map) and achieves 51% word-level

transliteration accuracy. However, deterministic mapping algorithms are not

able to consider the variations in spelling and the rich contextual information.

Due to the unavailability of the standard train-test splits, we are unable to

compare our approach with the proposed method.

Chakma and Das (2014) employ several supervised approaches for the au-

tomatic transliteration of code-mixed social media texts. Their supervised

approaches are based on joint source channel (JSC) which breaks down the

source and target words into phoneme units to learn the mappings between

the source and target phonemes using the contextual information. They also

make use of International Phonetic Alphabet (IPA) to generate the mappings

between source and target characters. They perform the experiments on the

manually collected and annotated FIRE 2014 shared task corpus that contains

words from English, Hindi and Bengali (Choudhury et al., 2014). The exper-

imental analysis shows that IPA-based system (on average 80%) outperforms

the JSC-based approaches (on average 70%) on both Bengali and Hindi. Due

to the unavailability of the test corpus, we cannot directly compare our system

with the proposed approach.

11

A supervised approach for converting Dialectical Arabic written in Latin

script (Arabizi) to Arabic script is presented by Al-Badrashiny et al. (2014).

The approach utilizes a character-level finite state transducer to generate

transliteration candidates. A morphological analyzer is then used to filter the

candidates and a language model to choose the output transliteration. The

authors test their approach on two in-house datasets that contain Egyptian

Arabic SMS written in Latin script. The approach is evaluated on a Egyptian

Arabizi SMS corpus and achieves 74% word-level transliteration accuracy.

Similar to the above task, van der Wees et al. (2016) introduce a super-

vised Arabizi-to-Arabic transliteration approach to deromanize the Arabizi

texts. The approach uses a character-based transliteration model, which is

incorporated as a component in the pipeline for a Arabizi to English phrase-

based machine translation system. The authors test their approach on NIST

OpenMT evaluation campaign and achieve a comparable performance to hu-

man Arabic-Arbizi transliteration and translation. Though the approach does

not consider the language identification of the texts and transliterates every

word to Arabic, the authors mention that the language identification would

improve the overall translation accuracy. As the datasets are LDC-licensed

and only available to the researchers who participated in the NIST OpenMT

evaluation campaign, we are unable to compare our system.

Verulkar et al. (2015) describe a supervised approach for searching the

Hindi song lyrics using romanized queries. Their supervised approach employs

a dictionary-based method for identifying the language origin and a mapping

between the English and Hindi words for the transliteration. The approach

is tested on the FIRE 2014 shared task on transliterated search (Choudhury

et al., 2014), and achieves 83% language identification accuracy, and 82%

transliteration F-score. Though the proposed approach achieves competitive

performance on the respective tasks, the dictionary-based method is not able

to identify and transliterate unknown words.

12

2.3 Summary

We have provided a detailed literature study on language identification and

deromanization. Though the task of deromanization has been studied for a

while, few studies consider it in the code-mixed setting, and most of these

proposed approaches achieve sub-optimal performance. So, the task requires

close attention and we aim at overcoming the issues in these approaches.

13

Chapter 3

Methodology

In this chapter, we describe our approach for converting romanized code-mixed

texts to their native scripts. First, we provide some preliminary concepts

related to our proposed approach. We then present our approach for handling

the code-mixing and deromanization together in a single system.

3.1 Background

3.1.1 Statistical Language Modeling

Languages are ever-changing and evolve over time. There can be written thou-

sand of rules to model the characteristics of a language, yet there will be some

examples of language usage that do not conform to these rules. Statistical

language modeling aims at estimating probability distribution of various lin-

guistic units, such as - characters, words, sentences etc. Specifically, given

a sentence X, the language model assigns a probability, P(X), which repre-

sents how likely X is from a specific language. Statistical language modeling

has been successfully used in various tasks, such as - language identification,

speech recognition, machine translation, spell correction, decipherment etc.

The n-gram language model (LM) is based on the Markov assumption,

where probability of a word, wn+1, with its preceding context, wn can be

calculated by dividing the count of wnwn+1, by the count of wn.

P (wn+1) =
count(wnwn+1)∑

w count(wnw)

14

In case of a uni-gram model, where the probability of the current word does

not consider context, is the relative frequency of the word in a corpus. The bi-

gram and tri-gram models consider a context of preceding one- and two-words,

respectively. The probability of a sentence is calculated using chain rule, that

is, by multiplying the likelihood of individual words in the sentence. We can

get the probability of a n-word sentence,

P (wn
1) = P (w1)P (w2|w1)P (w3|w2

1)...P (wn|wn−1
1)

Generally, n-gram order of 2 to 5 is used that can take a longer context

into consider. However, some of the n-grams of a new sentence might not

be present in the training corpus, which will result in the probability of the

whole sentence being zero. To solve this problem, several smoothing and back-

off techniques have been proposed. We have used the deleted interpolation

smoothing technique in our approach, which will be discussed later.

3.1.2 Hidden Markov Model

Hidden Markov Model (HMM) is a statistical model where the system under

consideration is assumed to be Markov process with unobserved states. In

HMM, the states are not directly visible, however, the outputs or observations

are visible. Each state has a probability distribution (emission probabilities)

over the possible states it can emit. Also, there is a probability distribution

(transition probabilities) over all the possible transitions of the states. HMM

has been widely used in different application areas, particularly in reinforce-

ment learning, speech recognition, parts-of-speech tagging etc.

For example, consider there is a chef’s special dessert in a restaurant, which

depends on the weather that day. Also, it is known that the chef prepares from

a small set of desserts. Now, we can model the behavior of the chef using a

HMM and predict, for example, what special dessert we can expect today. If

we assume that the weather of each day solely depends on the previous day’s

weather, it will be a Markov chain. Then the probability of today’s weather,

provided the weather of yesterday will form the transition probability. Now, if

15

Input tomake to decent mone hoyechilo

LID B B E B B

BTL

ত োমোকে ত ো

decent

মকে হকেচিল

ত োমোকে ত ো মে হেচিল

ত োমোকে ইক ো মচি হকেচিল

 মোকে মকি হকেকিল

...

SP ত োমোকে ত ো decent মকে হকেচিল

Figure 3.1: Overview of the proposed deromanization system.

we construct the probabilities for all the desserts for every weather condition,

we will get the probability of preparing a dessert on a specific weather day.

This probability distribution will form the emission probabilities. Now, we

can employ the HMM to predict today’s dessert using the Forward algorithm,

or to determine the sequence of weather for last week from what was on the

menu that week using the Viterbi algorithm.

3.2 Proposed Approach

Our approach consists of three main components: language identification (Sec-

tion 3.2.1), back-transliteration (Section 3.2.2), and sequence prediction (Sec-

tion 3.2.3). An overview of the proposed approach is presented in Figure 3.1.

The proposed approach takes a romanized code-mixed sentence as input

and converts it to the native scripts. It first attempts to identify the languages

present in the sentence using the language identification component, which as-

signs a language label to each of the tokens in the sentence and provides to the

back-transliteration component. Based on the language label information, the

transliteration systems generate transliteration candidates for the non-English

words and keep the English words unchanged. Finally, the sequence predic-

tion component chooses the best transliteration from the generated candidates

using the prediction scores and a word-level language model.

16

LSTM LSTM

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

LSTM

LSTM

 F(tomake) F(to) F(decent) F(mone) F(hoyechilo)

Fully-connected Layer

h1 h2 h3 h4 h5

Figure 3.2: The encoder for labeling the sentence “tomake to decent mone
hoyechilo”. F retrieves the computed feature vectors. The symbol ‘+’ denotes
the concatenation of the forward (left-to-right) and backward (right-toleft)
outputs.

3.2.1 Language Identification (LID)

Languages can be considered as a sequence of tokens, where there is depen-

dency among the tokens. Recurrent neural networks (RNNs) have been suc-

cessfully applied in many NLP tasks, such as language modeling (Mikolov

et al., 2010), speech recognition (Graves et al., 2013), sentiment classification

(Tang et al., 2015), image caption generation (Mao et al., 2014) etc., to cap-

ture the long-distance dependency in a sequence. Recently, neural sequence-

to-sequence (seq2seq) models are introduced for tasks that take a sequence as

an input and produce a sequence as output (Kalchbrenner and Blunsom, 2013;

Cho et al., 2014). The encoder-decoder models are special variants of seq2seq

models where the encoder employs an RNN to encode the input sequence into

real valued vectors (hidden layers), and the decoder employs another RNN to

decode the vectors into the target sequence.

We approach language identification as a sequence-to-sequence task, in

which a sequence of word tokens is transformed into a sequence of language

tags (Figure 3.1). Without a loss of generality, we assume that one of the

two languages is English. Depending on the language label generated by this

17

module, each input word is either fed into our back-transliteration module

(Section 3.2.2) or copied unchanged to the final output.

Our supervised language identification module is based on the encoder-

decoder model of Najafi et al. (2018a).1 Though Huang et al. (2015) show

that bi-directional Long Short Term Memory (LSTM) network with CRF layer

can achieve state-of-the-art results on sequence labeling tasks such as part-of-

speech tagging (POS), named entity recognition (NER) etc., we get superior

performance from the encoder-decoder model on the language identification

task. We attribute the superiority of the approach to either the nature of the

task itself or the use of rich features in the encoder RNN.

The encoder architecture of the language identification module is presented

in Figure 3.2. The encoder takes character-level and word-level embedding of

the input tokens as features in a bi-directional LSTM network over the input

sequence. The outputs of bi-directional LSTM applied to each word’s char-

acters are concatenated and passed through a dropout layer to construct the

character-level embedding. The capitalization pattern indicators (e.g. first let-

ter is capital or all letters are capital) are then concatenated to these feature

vectors. Pre-trained English word- and character-embeddings help the model

identify English words in the romanized texts. A fully-connected layer pro-

duces the final hidden vectors of the input sequence. The decoder’s forward-

LSTM generates output tokens incrementally from left-to-right; the output

tokens are conditioned on the hidden vectors and the generated tokens from

the previous steps. During the test phase, beam search is used to generate the

outputs.

3.2.2 Back-Transliteration (BTL)

Back-transliteration from romanized texts to the native scripts is difficult be-

cause there is generally only one correct way to render the romanized word to

the native form (Knight and Graehl, 1998). We propose to overcome this prob-

lem by pooling the top-n predictions from three diverse transliteration systems:

(a) Sequitur, a generative joint n-gram transducer; (b) DTLM, a discrimina-

1https://github.com/SaeedNajafi/ac-tagger

18

tive string transducer; and (c) Open-NMT, a neural machine translation tool.

In addition, we bolster the transliteration accuracy by leveraging target word

lists, character language models, as well as synthetic training data, whenever

possible. All of the generated candidate transliterations are then provided to

the sequence prediction module, which is described in Section 3.2.3.

Sequitur

Sequitur (Bisani and Ney, 2008) is a data-driven transduction tool.2 It trains

a joint n-gram based model from the unlabeled data. The joint n-gram model

is built on a language model over the operations used in the conversion from

source to target, which allows the inclusion of source context in the generative

model. Higher n-gram order models are trained iteratively from the lower order

models. The alignment parameters between the source and target sequence

are learned using Expectation Maximization (EM) algorithm. Sequitur was

adopted as a baseline in the NEWS shared task on transliteration (Chen et al.,

2018).

DTLM

DTLM is a new system that combines discriminative transduction with charac-

ter and word language models derived from large unannotated corpora (Nico-

lai et al., 2018). DTLM is an extension of DirecTL+ (Jiampojamarn et al.,

2010), whose target language modeling is limited to a set of binary n-gram

features. Target language modeling is particularly important in low-data sce-

narios, where the limited transduction models often produce many ill-formed

output candidates. We avoid the error propagation problem that is inherent

in pipeline approaches by incorporating the LM feature sets directly into the

transducer, which are based exclusively on the forms in the parallel train-

ing data. The weights of the new features are learned jointly with the other

features of DirecTL+.

In addition, the quality of transduction is bolstered by employing a novel

alignment method, which is referred as precision alignment. The idea is to

2https://github.com/sequitur-g2p/sequitur-g2p

19

allow null substrings on the source side during the alignment of the training

data, and then apply a separate aggregation algorithm to merge them with

adjoining non-empty substrings. This method yields precise many-to-many

alignment links that result in substantially higher transduction accuracy.

OpenNMT

As our neural transliteration system, we adopt the PyTorch variant of the

OpenNMT tool (Klein et al., 2017).3 The system employs an encoder-decoder

architecture with an attention mechanism on top of the decoder RNN. The

encoder encodes the source sentence into a fixed length representation. It can

use character- and word-embedding as input, which is fed into the encoder

RNN. The decoder then outputs a translation using the encoded hidden vector

and the generated outputs in the previous steps. The attention mechanism

helps the model to learn where to place attention on the input sequence as

each word of the output sequence is decoded.

We insert word boundaries (whitespace) between all characters in the input

and output, resulting in translation models which view characters as words and

words as sentences. We apply the default translation architecture provided by

OpenNMT with the exception of using a bi-directional LSTM in the encoder

model. We optionally generate additional synthetic training data for the neu-

ral system, using a simple romanization table that maps each native script

character to a set of English letters.

3.2.3 Sequence Prediction (SP)

The transliteration systems process individual words in isolation, and thus fail

to take into account the context of a word in a sentence. However, multiple

native words may have the same romanized form, so the top-scoring prediction

is often incorrect in the given context. To solve this problem, we propose a

sequence prediction system that attempts to select the best prediction from

the pooled candidate list using both the transliteration score and the word

trigram language model score.

3https://github.com/OpenNMT/OpenNMT-py

20

Figure 3.3: Modeling the sequence prediction system as HMM, where b(t) =
hidden states and e(t) = observations.

We frame the task as a Hidden Markov Model, where the romanized words

are the observed states, and the words in their original scripts are the hidden

states (Figure 3.2.3). The emission probabilities are based on the prediction

scores from the transliteration systems, which are normalized to represent valid

probability distributions. The transition probabilities are based on the trigram

probabilities from a word language model created with the KenLM language

modeling tool.4

As we employ three diverse transliteration systems, these systems predict

n-best transliterations and prediction scores. We concatenate the individual

system’s output together to produce the final transliteration candidates. If

any candidate is produced by more than one system, we chose the highest

of the assigned prediction scores during concatenation. Finally, we normal-

ize the scores of the final candidate list so that they represent a probability

distribution.

The word-level language model helps the sequence prediction component

to choose the words which are present in the vocabulary and maximizes the n-

gram probability of the sequence. We train the unigram, bigram and trigram

language models on a large monolingual corpus and combine the models using

deleted interpolation. The smoothed word-trigram probability P̂ is-

4https://github.com/kpu/kenlm

21

P̂ (bk|bk−1bk−2) = λ1P (bk) + λ2P (bk|bk−1) + λ3P (bk|bk−1bk−2)

,

such that the linear coefficients, λs sum to 1. The linear coefficients are

calculated by successively deleting each trigram from the training corpus and

maximizing the likelihood on the rest of the corpus. The probability of a

sequence s = b1, b2, b3, ..., bn according to the smoothed trigram language model

is-

P (s) =
n∏

k=1

P̂ (bk|bk−1bk−2)

We use a modified Viterbi decoder to determine the most likely transliter-

ation sequence from the generated candidates using both the prediction scores

assigned by transliteration systems and transition scores derived from word-

level language model (Algorithm 1). The scores are linearly combined to pro-

duce the score of a hidden sequence, s. If the transition score of s is T (s) and

the emission score is E(s), then the score of s is derived from the following

equation-

score(s) = log T (s) + logE(s) =
n∑

k=1

T̂ (bk|bk−1bk−2) +
n∑

k=1

Ê(ek|bk)

,

where Ê represents the probability of observing ek from state bk.

Due to the large number of n-grams and small number of transliteration

candidates, the score(s) is heavily skewed towards the emission scores. To

mitigate this imbalance, we use exponent parameters pt and pe for the transi-

tion scores T (s) and emission scores E(s), respectively. These parameters are

learned from the development set. So, the scoring function transforms to-

score(s) = [log T (s)]pt + [logE(s)]pe

=
n∑

k=1

[T̂ (bk|bk−1bk−2)]
pt +

n∑
k=1

[Ê(ek|bk)]pe

22

Algorithm 1: Modified Viterbi Algorithm

Input: Romanized sentence, R
Emissions, E
Transitions, T

Result: The most likely hidden state sequence, S
Initialize score matrix, V;
Initialize path back-pointer, BP ;
begin

/* Add sentence delimiters. */

R = “ < s >< s > ” +R + “ < /s >< /s > ”;
l = length(R);
for i ∈ range(1, l − 1) do

r1 = R[i− 1];
r2 = R[i];
r3 = R[i+ 1];
for w1 ∈ E[r1] do

for w2 ∈ E[r2] do
for w3 ∈ E[r3] do

score = V (i, w2) + [E(r3, w3)]
pe + [T (w1, w2, w3)]pt ;

if V (i+ 1, w3) < score then
V (i+ 1, w3) = score;
BP (w3) = w2

end

end

end

end

end
/* Backtrace the most probable sequence. */

Initialize decoded sequence, S ;
Initialize temporary array, A;
previous = “ < /s > ”;
while BP (previous) 6= “ < s > ” do

A = A ∪BP (previous);
previous = BP (previous);

end
S = reverse(A);

end

Both generated transliteration candidates and foreign words in the code-

mixed texts are sources of out-of-vocabulary (OOV) tokens. Prior to building

the language model, we add a single UNK token to the corpus. During de-

coding, the identified English words and OOV transliterations are replaced

23

with the UNK token. This results with OOV words being assigned very low

probabilities, biasing the sequence prediction module towards in-vocabulary

words.

3.3 Summary

We have presented a novel approach for deromanizing code-mixed texts in

this chapter. Our proposed approach identifies the language labels of the

provided romanized text and generates the transliteration candidates based on

the language label information. Finally, the sequence prediction component

combines the transliteration scores and the word-level language model scores

to predict the most probable deromanization sequence from the transliteration

candidates.

24

Chapter 4

Experiments

In this chapter, we present the results and analysis of the conducted exper-

iments. In order to demonstrate the generality of our approach, we perform

experiments on two languages: Bengali and Hindi. We also provide ablation

study to show the effectiveness of the proposed approach.

4.1 Setup

We provide the experimental setup for all the individual components of the

proposed approach in this section. The datasets for training different compo-

nents are presented in Table 4.1.

4.1.1 Language Identification

The training data for the language identification shared task is collected from

the track on transliterated search of the FIRE shared task (Choudhury et al.,

2014). The Bengali and Hindi sets contain around 20.6k and 17.7k tokens,

respectively. We hold out 10% of the data as a validation set. The language

balance of the sets are presented in Table 4.2.

We use pre-trained Glove word-embeddings of 100 dimensions (Pennington

et al., 2014), and derive the character-embedding of 32 dimensions from the

training data. The encoder and decoder model both employs a single layer of

Long Short Term Memory (LSTM) network with 256 hidden units. The train-

ing is accomplished with Adam optimizer (Kingma and Ba, 2014), dropout

regularization, and batch size of 64. The detailed hyper-parameter setting is

25

System Dataset
Tokens

Bengali Hindi
LI FIRE 2014 20,660 17,756

TL
NEWS 2018 12,623 11,937
Annotated 700 -

Romanization 50,000 -

SP
Dev 1,990 -
Test 539 3,287

Table 4.1: Datasets for the experiments.

Dataset Bengali English Hindi English
Dev 87.1 12.9 - -
Test 68.3 31.7 75.0 25.0

Table 4.2: The language balance (in % of word tokens) in data sets.

provided in Table 4.3.

4.1.2 Back-Transliteration

The Bengali and Hindi training datasets for all three transliteration systems

are from the NEWS 2018 shared task (Chen et al., 2018). The character

language model and target word list for DTLM are built from publicly available

unannotated corpora: Bengali Wikipedia1, a Bengali news corpus2, and a

Hindi news corpus3. No additional data is used for the Hindi models.

For Bengali back-transliteration, we experiment with leveraging language-

specific expertise. First, since the training data contains mostly named enti-

ties, we augment it with manually-created transliterations of the most frequent

700 Bengali words from the news corpus. Second, since the performance of

the neural system depends strongly on the amount of training data, we add

romanizations of 50,000 Bengali words from Wikipedia.

The romanizations are generated with a context-free mapping from Ben-

gali characters into Latin letters. A sample of the mapping is presented in

Figure 4.1. As there are many ways to represent Bengali characters to Latin

letters and some Bengali characters have different representations based on

1https://bn.wikipedia.org/wiki/
2https://scdnlab.com/corpus/
3http://wortschatz.uni-leipzig.de/

26

Hyper-parameter Value
character embedding size 32

word embedding size 100
encoder hidden units 256
decoder hidden units 256

dropout .5
batch size 32

learning rate .0005

Table 4.3: The hyper-parameter setting for the language identification system.

Vowels Consonants

Source Target Source Target

অ {o, a} ক {ko, ka, k}

{আ, া } {a, aa} খ {kho, kha, kh}

{ই, িা} {i, e} ট {To, Ta, T}

{ঈ, া } {I, ii, E, ee} ঠ {Tho, Tha, Th}

{উ, া } {u, oo} ণ {No, N}

{ঊ, া } {U, uu} ন {no, n}

{ঋ, া } {rri, ri, r} জ {jo, ja, j}

{ও, োা } {O, o} য {zo, z}

Figure 4.1: Sample mapping from Bengali to English characters.

their position in a word, we allow multiple mappings for some of them. Each

Bengali character is represented using on average 1.8, and maximum 3 Latin

letters. We make both the mapping and romanization codes publicly avail-

able.4 To evaluate the accuracy of the romanization program, we test it on

the English-Bengali training dataset from the NEWS 2018 shared task. The

program achieves 21.7% word-level and 78.9% character-level accuracy.

We perform a limited parameter tuning on our Bengali development set.

We set the n-gram order of Sequitur to 6. We apply a grid-search to establish

the parameters for the DTLM transducer and aligner. The architecture and

hyper-parameters of OpenNMT system are also selected using grid-search.

We found that using the LSTM as RNN gate performs better than Gated

Recurrent Unit (GRU). The detailed hyper-parameter setting for each of the

systems is provided in Table 4.4.

4https://github.com/x3r/deromanization

27

System Hyper-parameter Value
Sequitur n-gram order 6

DTLM-aligner
maximum source sub-string 2
maximum target sub-string 2

maximization function joint

DTLM-transducer
joint M-gram features {1-5}

n-gram size {5-17}
context-size {2-8}

OpenNMT

encoder RNN gate bi-LSTM
decoder RNN gate LSTM

encoder/decoder hidden units 500
encoder/decoder word-vector size 500

encode/decoder hidden layers 2
dropout .5

attention type general

Table 4.4: The hyper-parameter settings for the back-transliteration systems.

4.1.3 Sequence Prediction

Due to the sparsity of annotated resources, we created our own Bengali devel-

opment set. We collected romanized posts from several Facebook groups and

pages, and manually deromanized them. It contains 247 sentences and 1990

words. As our test sets, we use the official development sets from translit-

erated search track of the FIRE 2014 shared task. The test sets of Bengali

and Hindi contain 100 and 500 sentences, respectively. The test sets consist of

transliterated search queries, which have a greater number of English words as

shown in Table 4.2. Also, these data sets are not from the social media and do

not contain complete sentences, which limit the sequence prediction system’s

ability to utilize the contexts.

4.2 Evaluation Metrics

We use standard evaluation metrics for measuring the performance of the

components. We report the accuracy of the language identification component.

For transliteration, we calculate the word-level Top-1 and Top-10 accuracy

of the transliteration component. Finally, the performance of the sequence

prediction component is measured in word-level accuracy.

28

System
Bengali Hindi

Dev Test Test
Näıve baseline 87.1 68.3 75.0

Dictionary-based 77.8 82.0 83.6
Bi-LSTM + CRF 92.4 90.9 93.2
Encoder-decoder 95.2 92.2 95.3

Table 4.5: Language identification accuracy (in %).

Figure 4.2: Language identification accuracy on test sets (in %).

4.3 Results

In this section, we present the results for each of the three components in turn.

4.3.1 Language Identification

We evaluate our encoder-decoder model based language identification system

against a CRF-based sequence tagging model on top of recurrent neural net-

works (Huang et al., 2015). We adapt a general sequence tagging implemen-

tation5 to the language identification task. A dictionary-based approach of

Barman et al. (2014) serves as a baseline.

The results are shown in Table 4.5. Our encoder-decoder achieves the

5https://github.com/guillaumegenthial/tf ner

29

System
Training data + Annotated data
Top-1 Top-10 Top-1 Top-10

Sequitur 22.1 58.7 34.6 69.3
DTLM 29.1 43.9 40.5 61.5
NMT 35.8 52.1 45.7 63.4

Table 4.6: Impact of annotated data on the back-transliteration word accuracy
of Bengali dev set (in %).

Figure 4.3: Impact of annotated data on the back-transliteration word accu-
racy (Top-1) of Bengali dev set (in %).

highest accuracy on all sets, with the CRF system close behind. The lower

results of the dictionary-based approach highlight the issue of the ambiguity

introduced through romanization. We also report the result of a Näıve baseline

which classifies every token as non-English. Because the gold tags for the FIRE

2014 tests set are not publicly available, we are unable to directly compare to

the systems that participated in the FIRE shared task; however, the best

reported result on those Bengali and Hindi test sets were 90.5% (Banerjee

et al., 2014) and 87.9% (Gupta et al., 2014a), respectively.

30

System DirecTL+ Sequitur OpenNMT Linear Combination
Bengali 35.8 37.8 32.7 40.7
Hindi 32.3 30.3 29.4 32.2

Table 4.7: NEWS shared task results on NEWS test sets (in %).

System
Bengali Hindi

Top-1 Top-10 Top-1 Top-10
Sequitur 42.0 82.7 43.6 89.9
DTLM 48.8 70.2 42.7 82.7

OpenNMT 61.0 81.7 41.1 80.4

Table 4.8: Back-transliteration word accuracy on test sets (in %).

4.3.2 Back-Transliteration

First, we present the results of using the manually-annotated data for train-

ing the systems in Table 4.6. It is clearly evident that this additional data

improves the accuracy of all the three systems, and accounts for 12.5% Top-1

and 14.3% Top-10 average accuracy improvement over the NEWS 2018 train-

ing data. Though the romanization data does not provide much improvements

for Sequitur and DTLM, it further improves the OpenNMT system’s Top-1

and Top-10 accuracy by 4.7% and 3.4%, respectively.

We also report our results of NEWS 2018 Shared Task on Transliteration

in Table 4.7 (Najafi et al., 2018b). The main goal of the shared task is translit-

erating named entities between various scripts. Though the task is different

from the problem we tackle in this thesis, the results will give an overview

of the state of the art in the transliteration, which is a main component of

our proposed approach. We employed 2 non-neural approaches, namely - Di-

recTL+ and Sequitur; 3 neural approaches, namely - OpenNMT, BaseNMT

and RL-NMT; and, a linear combination of all the approaches in the shared

task. The experiments were performed on 19 language pairs, that involve 14

languages. We only present the results of 4 systems on Bengali and Hindi

test sets due to their relevance to this thesis. We also provide average accu-

racy of each system on all language pairs to show their overall performance.

Among the individual systems, DirecTL+ achieves the best accuracy on both

languages. The linear combination generally outperforms individual systems,

31

Figure 4.4: Back-transliteration word accuracy (Top-1) on test sets (in %).

except for Hindi, where it is closely beaten by DirecTL+. Overall, our team

(UALB) is the only team to participate in all language pairs and achieves

competitive results in most of them.

The back-transliteration results on the test sets are shown in Table 4.8. The

neural system has by far the best top-1 accuracy on Bengali, which we attribute

to the use of the synthetic data for training. However, Sequitur achieves

the best accuracy among the top-10 predictions (e.g., 82.7% on the Bengali

test set). All three systems obtain similar results on Hindi. Though DTLM

outperforms both Sequitur and OpenNMT on the NEWS 2018 shared task on

transliteration in all the evaluated language pairs, it falls behind Sequitur and

OpenNMT on Bengali and Hindi datasets, respectively. We conjecture that

the drop in performance can be due to the out-of-domain data for training.

Also, the test set contains search queries and many of the words in those

queries are not dictionary words. As a result, DTLM cannot use the target

word list to guide its predictions. For example, Bengali dev set contains 60.7%

words from the target word list, however, the test set contains 44.4% words

from that list.

32

System
Bengali Hindi

Dev Test Test
Sequitur 47.6 51.0 49.2

Our approach 78.2 79.8 84.3
w/o Language ID 69.6 50.5 61.6

Google Translate 77.1 60.4 64.4

Table 4.9: Deromanization word accuracy (in %).

4.3.3 Sequence Prediction

We evaluate two variants of our system: the complete system that incorporates

all three modules (our approach), and a restricted variant without language

identification (w/o language ID), which attempts to deromanize every input

word. For the baseline, we take the the top-1 prediction of the Sequitur system.

As we are unaware of another publicly-available system for deromanization of

code-mixed texts, we compare our complete system to the output of Google

Translate, which incorporates a general approach for transliteration of roman-

ized input to native scripts of several South Asian languages (Hellsten et al.,

2017). An example of the Google Translate interface is provided in Figure

4.6.6

The end results are presented in Table 4.9. Our complete system sub-

stantially outperforms Google Translate on both Bengali and Hindi test sets.

On average, 27% of errors made by Google Translate on test sets are due to

deromanization of English words. Similar to our restricted variant, Google

Translate unconditionally deromanizes all words regardless of whether they

are native or English. Google Translate outperforms this restricted variant

which has about 25% higher error rate than our complete system. The perfor-

mance improvement of Google Translate in this setting can be attributed to

the superior resources available to Google Translate. These results show the

importance of handling the code-mixing issue in the deromanization task.

Similar to the language identification subtask, we are unable to directly

compare our full system results with the systems participated in the FIRE

2014 shared task. The best reported F-score results of Bengali and Hindi on

6https://translate.google.com/ (accessed on Mar. 3, 2019).

33

Figure 4.5: Deromanization word accuracy on test sets (in %).

Figure 4.6: Google Translate interface for the transliteration, where the left
side contains the original message and the right side contains the translitera-
tion. The errors are highlighted in yellow.

the deromanization of transliterated search subtask are 7.3% (Gupta et al.,

2014a) and 30.4% (Mukherjee et al., 2014), respectively. The low performance

of these systems can be primarily attributed to their inability to handle the

spelling variations found in the romanized code-mixed texts. However, our

proposed approach can effectively handle these issues, which is evident from

the superior results on both languages.

4.4 Error Analysis

A few examples of the proposed deromanization system is presented in Figure

4.4. The errors made by the language identification and back-transliteration

34

1(a) but amdr belay only 1 bar

1(b) but/E আমার/B বেলায়/B only/E 1/E bar/E

1(c) but/E আমার/B বেলায়/B only/E ১/B োর/B

1(d) but only once in our case.

1(e) বুট/B এমডির/B বেলায়/B অনডি/B ১/B োর/B

2(a) sudhu 1 bar mon theke khuje dekho

2(b) শুধু/B ১/B োর/B মন/B বেকে/B খুুঁকে/B বেকখা/B

2(c) শুধু/B ১/B োর/B মন/B বেকে/B খুুঁকে/B বেকখা/B

2(d) find out from the heart only once.

2(e) শুধু/B ১/B োর/B মন/B বেকে/B খুুঁকে/B বেকখা/B

3(a) but the way you affect me is weird

3(b) but/E the/E way/E you/E affect/E me/E is/E weird/E

3(c) but/E the/E way/E you/E affect/E me/E is/E weird/E

3(d) but the way you affect me is weird

3(e) বুট/B টট/B ওয়ে/B ইউ/B এয়েক্ট/B মে/B ইস/B মবোর্ড/B

Figure 4.7: Examples of the proposed deromanization system: (a) original
message; (b) system output with identified language labels; (c) gold output
with language labels; (d) translation of the original message; (e) Google Trans-
late output.

systems are in bold. In the first example, the language identification system

identifies the language of words “1” and “bar” incorrectly as English. We con-

jecture that the mistake is due to these words’ presence in English vocabulary

and presence of another English word “only” in the context. This example

shows the difficulties of identifying languages in the romanized code-mixed

texts due to ambiguity. It is also observed that the word “amdr” is incorrectly

transliterated, which is actually a contraction of the word “amader”, where the

vowels are omitted. Google Translate does not consider the language identifi-

cation and thus, transliterates the English words “but” and “only” as shown

in Figure 4.4. It also makes an error transliterating the word “amdr”.

In the second example, the language identification system identifies all the

35

words correctly. Although this example also contains the words “1” and “bar”,

the system identifies them correctly this time. It supports our conjecture that

context plays an important role in the language identification, and the presence

of the Bengali word “shudhu” helps to determine the origin of the following

words. The sequence prediction system chooses all the transliterations cor-

rectly for this sentence. Similarly, Google Translate is able to deromanize all

the words correctly because there is no code-mixing involved in this case.

Finally, the third example involves an English sentence, which is correctly

identified by our language identification system. As the language labels are

English, the back-transliteration system keeps all the words unchanged. The

sequence prediction system then copies the words to the output. The Google

Translate fails completely in this case due to the absence of a language identi-

fication component, and transliterates all the words to Bengali. This example

illustrates the importance of considering code-mixing and deromanization to-

gether.

4.5 Summary

We have provided the results of our experiments in this chapter. Our proposed

approach shows that considering the code-mixing and deromanization together

can accurately recover the romanized messages, and achieves the state-of-the-

art results on the deromanization task.

36

Chapter 5

Conclusion

In this thesis, we have proposed an approach for addressing the task of dero-

manization in code-mixed texts. Though the individual tasks of code-mixing

and deromanization have been addressed in the previous works, this is the first

approach that considers both tasks together in a single system. The proposed

approach identifies the native words in the romanized code-mixed texts using

a language identification component and generates transliteration candidates

and their prediction scores through three diverse back-transliteration systems.

A sequence prediction component then predicts the most probable sequence for

each given sentence utilizing the scores from the transliteration systems and

a word-level language model. The experiments are performed on the datasets

of two languages-Bengali and Hindi. The detailed experimental analysis and

ablation study show that considering the tasks together leads to the state of

the art results on the task, which outperforms the Google Translate system on

all the datasets.

Though the proposed approach achieved state of the art results on the dero-

manization of code-mixed texts, further research can be performed in several

directions. The experiments are conducted on two Indic languages, Bengali

and Hindi. In order to evaluate the generality of the approach, we plan to apply

it to other languages and scripts that involve both code-mixing and roman-

ization. The sequence prediction component employs the word-level language

model for predicting the most probable deromanization sequence using the

contextual cues. However, the presence of English words between the native

37

words makes it difficult to effectively utilize the language model and results

in isolated predictions. One of the ways to address this issue can be trans-

lating the English words to the native language and converting the translated

words to correct inflected forms to match the surrounding contexts. Further-

more, some English words might be borrowed to the native language, and

there might be standard transliterations for those words. Incorporating the

borrowing phenomena effectively in the proposed approach can be an inter-

esting study. Finally, studies can be conducted on the impact of the proposed

approach on end tasks, such as POS tagging, machine translation, sentiment

analysis etc.

38

References

Mohamed Al-Badrashiny, Ramy Eskander, Nizar Habash, and Owen Ram-
bow. 2014. Automatic transliteration of romanized dialectal Arabic. In
Proceedings of the Eighteenth Conference on Computational Natural Lan-
guage Learning, pages 30–38.

Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yogarshi Vyas. 2014. “I
am borrowing ya mixing?” an analysis of English-Hindi code mixing in Face-
book. In Proceedings of the First Workshop on Computational Approaches
to Code Switching, pages 116–126.

Somnath Banerjee, Alapan Kuila, Aniruddha Roy, Sudip Kumar Naskar, Paolo
Rosso, and Sivaji Bandyopadhyay. 2014. A hybrid approach for transliter-
ated word-level language identification: CRF with post-processing heuris-
tics. In Proceedings of the Forum for Information Retrieval Evaluation,
pages 54–59. ACM.

Utsab Barman, Amitava Das, Joachim Wagner, and Jennifer Foster. 2014.
Code mixing: A challenge for language identification in the language of so-
cial media. In Proceedings of the first workshop on computational approaches
to code switching, pages 13–23.

Maximilian Bisani and Hermann Ney. 2008. Joint-sequence models for
grapheme-to-phoneme conversion. Speech communication, 50(5):434–451.

Kunal Chakma and Amitava Das. 2014. Revisiting automatic transliteration
problem for code-mixed romanized Indian social media text. ocial- ndia
2014, 2014:42.

Nancy Chen, Xiangyu Duan, Min Zhang, Rafael E. Banchs, and Haizhou Li.
2018. News 2018 whitepaper. In Proceedings of the Seventh Named Entities
Workshop, pages 47–54. Association for Computational Linguistics.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and Monojit Choudhury.
2014. Word-level language identification using CRF: Code-switching shared
task report of MSR India system. In Proceedings of The First Workshop on
Computational Approaches to Code Switching, pages 73–79.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using rnn encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078.

Monojit Choudhury, Gokul Chittaranjan, Parth Gupta, and Amitava Das.
2014. Overview of fire 2014 track on transliterated search. In Proceedings
of FIRE, pages 68–89.

39

http://aclweb.org/anthology/W18-2408

Amitava Das and Björn Gambäck. 2014. Identifying languages at the word
level in code-mixed indian social media text. In Proceedings of the 11th
International Conference on Natural Language Processing, pages 378–387.
NLP Association of India.

Mona Diab, Julia Hirschberg, Pascale Fung, and Thamar Solorio. 2014. Pro-
ceedings of the first workshop on computational approaches to code switch-
ing. In Proceedings of the First Workshop on Computational Approaches to
Code Switching.

Xiangyu Duan, Min Zhang, Haizhou Li, Rafael Banchs, and A Kumaran.
2016. Whitepaper of NEWS 2016 Shared Task on Machine Transliteration.
In Proceedings of the Sixth Named Entity Workshop, pages 49–57.

Spandana Gella, Kalika Bali, and Monojit Choudhury. 2014. “ye word kis
lang ka hai bhai?” testing the limits of word level language identification.
In Proceedings of the 11th International Conference on Natural Language
Processing, pages 368–377.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In Acoustics, speech and
signal processing (icassp), 2013 ieee international conference on, pages 6645–
6649. IEEE.

Deepak Kumar Gupta, Shubham Kumar, and Asif Ekbal. 2014a. Machine
learning approach for language identification & transliteration. In Proceed-
ings of the Forum for Information Retrieval Evaluation, pages 60–64. ACM.

Parth Gupta, Kalika Bali, Rafael E Banchs, Monojit Choudhury, and Paolo
Rosso. 2014b. Query expansion for mixed-script information retrieval. In
Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, pages 677–686. ACM.

Lars Hellsten, Brian Roark, Prasoon Goyal, Cyril Allauzen, Françoise Beau-
fays, Tom Ouyang, Michael Riley, and David Rybach. 2017. Transliterated
mobile keyboard input via weighted finite-state transducers. In Proceedings
of the 13th International Conference on Finite State Methods and Natural
Language Processing (FSMNLP 2017), pages 10–19.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models
for sequence tagging. arXiv preprint arXiv:1508.01991.

Ann Irvine, Jonathan Weese, and Chris Callison-Burch. 2012. Processing in-
formal, romanized Pakistani text messages. In Proceedings of the Second
Workshop on Language in Social Media, pages 75–78. Association for Com-
putational Linguistics.

Aaron Jaech, George Mulcaire, Shobhit Hathi, Mari Ostendorf, and Noah A.
Smith. 2016. Hierarchical character-word models for language identification.
In Proceedings of The Fourth International Workshop on Natural Language
Processing for Social Media, pages 84–93. Association for Computational
Linguistics.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kondrak. 2010. Inte-
grating joint n-gram features into a discriminative training framework. In
Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages
697–700. Association for Computational Linguistics.

40

http://aclweb.org/anthology/W14-5152
http://aclweb.org/anthology/W14-5152
https://doi.org/10.18653/v1/W16-6212

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation
models. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1700–1709.

Ben King and Steven Abney. 2013. Labeling the languages of words in mixed-
language documents using weakly supervised methods. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 1110–1119.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-source toolkit for neural machine translation.
In Proc. of Association for Computational Linguistics.

Kevin Knight and Jonathan Graehl. 1998. Machine transliteration. Compu-
tational linguistics, 24(4):599–612.

Soumil Mandal, Sourya Dipta Das, and Dipankar Das. 2018. Language iden-
tification of Bengali-English code-mixed data using character & phonetic
based lstm models. arXiv preprint arXiv:1803.03859.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille.
2014. Deep captioning with multimodal recurrent neural networks (m-rnn).
arXiv preprint arXiv:1412.6632.

Ramón Antonio Mart́ınez. 2010. Spanglish as literacy tool: Toward an under-
standing of the potential role of Spanish-English code-switching in the devel-
opment of academic literacy. Research in the Teaching of English, 45(2):124.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev
Khudanpur. 2010. Recurrent neural network based language model. In
Eleventh Annual Conference of the International Speech Communication As-
sociation.

Giovanni Molina, Fahad AlGhamdi, Mahmoud Ghoneim, Abdelati Hawwari,
Nicolas Rey-Villamizar, Mona Diab, and Thamar Solorio. 2016. Overview
for the second shared task on language identification in code-switched data.
In Proceedings of the Second Workshop on Computational Approaches to
Code Switching, pages 40–49.

Abhinav Mukherjee, Anirudh Ravi, and Kaustav Datta. 2014. Mixed-script
query labelling using supervised learning and ad hoc retrieval using sub word
indexing. In Proceedings of the Forum for Information Retrieval Evaluation,
pages 86–90. ACM.

Carol Myers-Scotton. 1995. Social motivations for codeswitching: Evidence
from Africa. Oxford University Press.

Saeed Najafi, Colin Cherry, and Grzegorz Kondrak. 2018a. Efficient sequence
labeling with actor-critic training. arXiv preprint arXiv:1810.00428.

Saeed Najafi, Bradley Hauer, Rashed Rubby Riyadh, Leyuan Yu, and Grzegorz
Kondrak. 2018b. Comparison of assorted models for transliteration. In
Proceedings of the Seventh Named Entities Workshop, pages 84–88.

41

https://doi.org/10.18653/v1/P17-4012

Dong Nguyen and A. Seza Doğruöz. 2013. Word level language identification
in online multilingual communication. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing, pages 857–862.
Association for Computational Linguistics.

Garrett Nicolai, Saeed Najafi, and Grzegorz Kondrak. 2018. String transduc-
tion with target language models and insertion handling. In Proceedings of
the Fifteenth Workshop on Computational Research in Phonetics, Phonol-
ogy, and Morphology, pages 43–53.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pages 1532–
1543.

Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali, and Chan-
dra Shekhar Maddila. 2017. Estimating code-switching on twitter with a
novel generalized word-level language detection technique. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1971–1982.

Rashed Rubby Riyadh and Grzegorz Kondrak. 2019. Joint approach to dero-
manization of code-mixed texts. In Proceedings of Sixth Workshop on NLP
for Similar Languages, Varieties and Dialects.

Fatiha Sadat, Farnazeh Kazemi, and Atefeh Farzindar. 2014. Automatic iden-
tification of Arabic dialects in social media. In Proceedings of the first in-
ternational workshop on Social media retrieval and analysis, pages 35–40.
ACM.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steven Bethard, Mona
Diab, Mahmoud Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Julia
Hirschberg, Alison Chang, and Pascale Fung. 2014. Overview for the first
shared task on language identification in code-switched data. In Proceedings
of the First Workshop on Computational Approaches to Code Switching,
pages 62–72. Association for Computational Linguistics.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated
recurrent neural network for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural language processing, pages
1422–1432.

Pallavi Verulkar, Rakesh Chandra Balabantray, and Rohit Arvind Chakra-
pani. 2015. Transliterated search of Hindi lyrics. International Journal of
Computer Applications, 121(1).

Marlies van der Wees, Arianna Bisazza, and Christof Monz. 2016. A sim-
ple but effective approach to improve Arabizi-to-English statistical machine
translation. In Proceedings of the 2nd Workshop on Noisy User-generated
Text (WNUT), pages 43–50.

Liang-Chih Yu, Wei-Cheng He, Wei-Nan Chien, and Yuen-Hsien Tseng. 2013.
Identification of code-switched sentences and words using language modeling
approaches. Mathematical Problems in Engineering, 2013.

42

http://aclweb.org/anthology/D13-1084
http://aclweb.org/anthology/D13-1084
https://doi.org/10.3115/v1/W14-3907
https://doi.org/10.3115/v1/W14-3907

	Introduction
	Literature Review
	Language Identification
	Deromanization
	Summary

	Methodology
	Background
	Statistical Language Modeling
	Hidden Markov Model

	Proposed Approach
	Language Identification (LID)
	Back-Transliteration (BTL)
	Sequence Prediction (SP)

	Summary

	Experiments
	Setup
	Language Identification
	Back-Transliteration
	Sequence Prediction

	Evaluation Metrics
	Results
	Language Identification
	Back-Transliteration
	Sequence Prediction

	Error Analysis
	Summary

	Conclusion
	References

