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Abstract

Online learning is an emerging education technology area with increasing de-
mands. Massive open online courses (MOOCs) is one such platform where
users with completely different backgrounds subscribe to various courses on
offer. However, oftentimes these users are hesitant to approach other users for
collaboration on certain tasks. In this paper, we propose a reciprocal recom-
mender system that matches users who are mutually interested in, and likely to
communicate with each other based on their profile attributes (age, location,
gender, qualification, interests, grade etc.).

We also present a ‘group formation’ strategy by using the particle swarm
optimization based algorithm which would automatically generate dynamic
learning groups. To form effective groups, we consider two important aspects:
a) intra-group heterogeneity and b) inter-group homogeneity. Intra-group het-
erogeneity advocates the idea of diversity inside a particular group of users
whereas inter-group homogeneity recommends that each group should be sim-
ilar to the other.

We test our algorithm on synthesized data sampled using the publicly avail-
able MITx-Harvardx dataset. We measure the quality of generated groups
based on a certain fitness measure, which is then compared against the fit-
ness of groups obtained using the popular standard clustering algorithm like
k-means. Evaluation of the recommender system is based on our own defined
measures of precision, recall and normalized discounted cumulative gain. Ex-
perimental results show that our system performs better than the baseline
models, therefore it makes a promising case for such a system to be imple-

mented within an actual MOOC.
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Perfecting oneself is as much unlearning as it is learning.
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Chapter 1

Introduction

Higher education is an area that has thus far embraced, but arguably has
not been fundamentally altered by the growth of the Internet. This has been
rapidly changing over the last few years with the rise of Massive Open Online
Courses (MOOCs) as a way of learning that enables students to participate
on their own terms and conditions via Internet. In one of the first MOOC
[7] developed by edX, the consortium led by MIT and Harvard, over 155,000
students initially registered, the MOOC was composed of video lectures, in-
teractive problems, online laboratories, and a discussion forum. The number
has only grown since then and according to data collected by Class Central®,
the total number of students who signed up for at least one course in the year
2015 has crossed 35 million - up from an estimated 16-18 million the previous

year.

MOOC courses integrate the connectivity of social networks, the facilita-
tion of an acknowledged expert in a field of study, and a collection of freely
accessible online resources [37]. Whilst the hype over MOOCs has subsided,
there continues to be an year on year growth in participants and proliferation
of MOOCGs utilization in different learning, research and marketing contexts.
MOOCs have been embraced in a big way by elite universities and institu-
tions, and are beginning to have a major impact on higher education. Success
of MOOC:s relies on the fact that they give students the opportunity to en-
gage with learning in an open format via the Internet. Through the MOOCs’

Thttps:/ /www.class-central.com



self-paced format, a student can engage with the material in a way that works
best for him. At the same time, students can self-organize through the various
tools offered via any MOOCs platform. MOOC learners are diverse, origi-
nating from many cultures across the globe in all ages and backgrounds [18].
Despite this diversity, three main attributes unite them: A desire to learn,
a desire to connect to a global community and a desire to experience and
consume content online.

However, there are legitimate concerns surfacing about MOOCs as their
popularity spreads far and wide. In their study about behavioral patterns in
MOOQOC s, the authors attribute the lack of effective student engagement as one
of main reasons for a very high MOOC dropout rates [46]. Their study reveals
that although many thousands of participants enroll in various MOOC courses,
the completion rate for most courses is below 13%. Moreover, lack of effective
collaboration between students further dissuade them from participating in
projects and assignments which are an essential element for student evaluation

in an online learning environment.

The first part of our research work focuses on encouraging peer-learning
and student collaboration by developing a reciprocal recommender system that
will recommend users to each other based on the potential of mutual likeliness,
derived using attributes like age, gender, location, qualification, interests and
courses. The system takes into account not only the relevance of these at-
tributes between user profiles but also the degree of importance that each one
of these attributes have for the user. Our algorithm looks at the attribute val-
ues and preferences of a user, based on which it generates a recommendation

list of top-N users who are the best fit for the given user.

The emergence of MOOCs as a major source of learning in the modern
world has also created challenges in terms of forming effective groups of learn-
ers. With MOOCSs becoming more and more popular, the normal online class
size is increasing exponentially. More people signed up for MOOCs in the year
2015 than they did in the first three years of the “modern” MOOC movement
(which started in late 2011 when the first Stanford MOOCs took off) [54].



The students registered on MOOCs have a varied demographics in terms of
the countries they originate from, languages they speak and their personality
traits. Hence, it becomes even more demanding to form effective groups of
students to enable healthy communication and team work thereby bringing

out the best possible learning outcomes.

Keeping in mind the above sentiment, the second part of our research work
focuses on exploring the possibilities of assisting MOOC learners in the process
of self-organization (e.g. forming study groups, finding partners, encourage
peer learning etc.) by developing a group formation strategy based on a pre-
defined set of user attributes like age, gender, location, qualification, interests
and grade. We use a modified particle swarm optimization [28] technique which
helps in effective group formation by looking at the different user attributes.
The grouping strategy is based on the conditions of intra-heterogeneity and
inter-homogeneity among groups. The attributes are pre-defined to be either
homogeneous or heterogeneous so that they fit into the group formation strat-
egy accordingly. For instance, if we have ‘grade’ as an inter-homogeneous
attribute, it would mean that all groups should have similar grade levels. Sim-
ilarly, if we have ‘interests’ as an intra-homogeneous attribute, it would mean
that the interests of students within each group should be aligned or similar.
We believe that recommending learners to each other and having effective stu-
dent groups will foster better collaboration and engagement, which in turn
would help mitigate the dropout rates to some extent.

The remainder of the dissertation is organized as follows. Chapter 2
presents some background and related work on the criteria of reciprocal rec-
ommendations and group formation in MOOCs. In Chapter 3, we talk about
the data and reciprocal recommendation model for generating and ranking
recommendations. Soon after, in Chapter 4, we look at the group formation
model to dynamically generate student groups based on the factors of inter-
group homogeneity and intra-group heterogeneity. Lastly, Chapter 5 ends with

a summary and conclusion.



Chapter 2
Background and Related Work

2.1 Background

In this section, we present some background on recommender systems, recip-
rocal recommendation and group formation strategies. Recommender systems
have become extremely common in recent years, and are utilized in a variety
of areas like e-commerce, search queries, social tags etc. The goal of a Recom-
mender System is to generate meaningful recommendations to a collection of
users for items or products that might interest them [38|. Suggestions for books
on Amazon, or movies on Netflix, are real world examples of the operation of
industry-strength recommender systems. Recommender systems differ in the
way they analyze these data sources to develop notions of affinity between
users and items which can be used to identify well-matched pairs. Collabo-
rative Filtering systems analyze historical interactions alone, while Content-
based Filtering systems are based on profile attributes; and Hybrid techniques
attempt to combine both of these designs.

In the context of education, the goal of a recommender system would be to
help the user or a group of users find suitable resources and learning activities
for a better achievement of the learning goal and development of competences
in less time [14] [13] [12]. However, unlike the traditional recommendation
systems where its relatively easy to evaluate the quality of recommendations, it
becomes difficult to assess the recommendations in educational context as the
learning goals cannot be quantified accurately. There are some other contexts

in which recommendation systems are utilized in the field of education, we



discuss it in detail in the next subsection.

Unlike the traditional recommender systems, where a user is provided rec-
ommendations to items which is likely to be of interests to the user, in re-
ciprocal recommendation the likeliness has to be mutual [50]. In a reciprocal
recommender, the user and the item have similar standing in the system, in
that both have preferences that must be satisfied. For instance, in online
dating, the preferences of both the users must be satisfied before they are rec-
ommended to each other. The recommendation in this case is bidirectional in
nature. Most of the research work surrounding reciprocal recommender sys-
tems has been in the field of online dating and job recommendations. Given
our problem of recommending learners to each other on various MOOC plat-
forms, it becomes imperative to exploit the theories in the field of reciprocal
recommendation for this given purpose.

Effective group formation strategy can be utilized to improve the learning
outcome in an online environment. One of the early theories in group for-
mation was formulated by Dr. Bruce Tuckman, which was published in his
Forming Storming Norming Performing model [60] in 1965. Tuckman’s model
explains that as the team develops maturity and ability, relationships estab-
lish, and the leader changes leadership style. Beginning with a directing style,
moving through coaching, then participating, finishing delegating and almost
detached. At this point the team may produce a successor leader and the
previous leader can move on to develop a new team!. Some of these ideas can
be applied in educational context as well, in the sense that we need users who
are naturally able to drive conversations or group discussions.

However, effective collaboration in learning is still a key issue. Unfor-
tunately, there does not exists a defined methodology for group formation,
resulting in important performance differences; some of them can accomplish
the learning objectives and some of them are far from the minimum success
criteria. The problem arises when there is not an identifiable leader, or there
are non-compatible personalities. Due to the lack of diversity, some learning

goals cannot be satisfied. Studies have shown that diverse online classrooms

thttp:/ /www.businessballs.com /tuckmanformingstormingnormingperforming.htm



can create benefits that are largely unavailable in a traditional classroom as
it has been observed that globally diverse discussions boost student perfor-
mance and engagement [32]. Research in many disciplines has shown that
learning within groups improves the students’ learning experience by enabling
peers to learn from each other and by providing rapid feedback on things to
improve [33]. To form groups, students can be either allocated to groups ran-
domly, self-select each other, or be appointed to a group by the teacher based
on some criteria related to the collaboration goals. However, forming groups
manually can be both difficult and time consuming. This is why researchers
have been investigating several techniques for automating this process using

certain computer supported methods.

2.2 Related Work

There has been quite a few previous works on recommender system in edu-
cational contexts, but their main focus has been on recommending courses to
learners [5], [4], helping students take decisions on their academic itineraries
[64] etc. However, not much significant work exists on recommending learners
to each other, in order to build a learner community within a MOOC. The use
of reciprocal recommendation has found certain traction within the domains
of online dating and job recommendations but the idea has not been explored
much in the context of recommending learners in an online setting. We look at
many different works of applying recommendation in various contexts, some

of which inspired the work we did for our research.

Liet. al. [34] built a generalized framework of reciprocal recommender sys-
tem which models the correlations of users as a bipartite graph that maintains
both local and global ‘reciprocal’ utilities. The local utility captures users’
mutual preferences, whereas the global utility manages the overall quality of
the entire reciprocal network. Similar work was done by the authors of [51],
in which they use collaborative filtering combined with a stochastic matching
approach to build people to people match. They introduce a method to remove

the popular user bias by ensuring that every user receives the same number



of recommendations as they are recommended to others. That is, a user A is
only recommended to a user B if user B is also recommended to user A. This
ensured that popular users are not recommended more often than unpopular

ones.

Some of the theories that we built for our research have also been influ-
enced by the ideas in the Recommender Systems Handbook [30]. The work-
book describes some of the most popular and fundamental techniques used
nowadays for building recommender systems, such as collaborative filtering,
semantic-based methods, data mining, and context-aware methods. The work
also focuses on methods and techniques for evaluating the performance and
effect of recommender systems, and diverse applications of recommendation

techniques.

In their work [2|, the authors build a scalable People-to-People Hybrid
Reciprocal Recommender Using Hidden Markov Models. They introduce a
general framework for combining a Hidden Markov model (HMM) content-
based reciprocal recommender system with collaborative filtering techniques
to create a unified hybrid recommender. Evaluation of their system shows that
it generates better recommendations than their counterparts in a time-efficient
manner. While HMM is useful in building a hybrid recommendation system
like above, it could not really fit in our context where the ‘content’ of the user

in terms of user attributes is the governing factor behind any recommendation.

Some of the most significant work with respect to reciprocal recommenda-
tion has been done in the field of online dating. The subject is more relevant
here because in an online dating setting, a successful match only occurs when
both the recommended people like each other or reciprocate, much similar to
our requirement where the learners should only be recommended if they satisfy
the preferences of each other. In the next sub-section we look at some of the

work related to this field.



2.2.1 Reciprocal Recommendation for Online Dating

Akehurst et. al. built a Content-Collaborative Reciprocal (CCR) system [1]
for online dating. The content-based part uses selected user profile features
and similarity measure to generate a set of similar users. The collaborative
filtering part uses the interactions of the similar users, including the people
they like/dislike and are liked /disliked by, to produce reciprocal recommenda-
tions. CCR addresses the cold start problem of new users joining the dating
website by being able to provide recommendations immediately, based on their
profiles.

A similar work was done by Pizzato et. al. [48], where people-to-people
recommenders constitute an important class of recommender systems espe-
cially in the area of online dating. It is important to study and illustrate the
distinctive requirements of reciprocal recommenders and highlight important
challenges, such as the need to avoid bad recommendations since they may
make users feel rejected. Our work to generate a list of similar learners based

on user attributes was partly inspired from these ideas.

RECON - a reciprocal recommender system [49] for online dating was an-
other idea which made use of user preferences to calculate compatibility scores
of users with each other. It was observed that the predictive power gained by
taking account of reciprocity, improves the success rate of the top ten recom-

mendations significantly.

Xia et. al. in their work in reciprocal recommendation [67], introduce
similarity measures that capture the unique features and characteristics of the
heterogeneous online dating network. They build a preference model for each
service user based on the attributes of users who have been contacted by the
service user. They characterize the interest similarity between two users if
they send messages to same users, and attractiveness similarity if they receive
messages from same users. Based on these similarity measures, compatibility
between a service user and potential dating candidates is computed and a

recommendation list is generated to include candidates with top scores.

Lastly, Zhao et. al. did a case study for user recommendations in recipro-



cal and bipartite social networks [70], where they propose a new collaborative-
filtering model. The model considers users’ taste in picking others and attrac-
tiveness in being picked by others. Evaluation of the model on an online dating
network shows that the approach offers good performance in recommending

both initial and reciprocal contacts.

Overall, most of the existing work related to reciprocal recommendations
for online dating revolves around building a metric to map one user to another
on several attributes either specified by the user in their profile or based on
their interaction history with other users. While these ideas have helped us
to build our own similarity metric, the implementation varies as the user at-
tributes for MOOC are inherently very different. In the next subsection, we
look at some related work for reciprocal recommendation in the area of job

recruitments.

2.2.2 Reciprocal Recommendation for Job Recruiting

Yu et. al [69] propose a reciprocal recommendation algorithm for the field of
recruitment. The authors propose an implicit preference function calculation
method, based on the resume delivery in recruitment systems and mining the
potential preference information of users. Then given consideration that users’
explicit and implicit preference information has different effects in computing
similarity, a similarity calculation method based on the integration of these two
preference information is proposed. At last, the reciprocal recommendation is

achieved according to the reciprocal value from high to low.

Hong et. al. build a job recommender system based on user clustering [19].
At first, they look at some of the existing online job recommender systems
(JRSs) from four different aspects: user profiling, recommendation strategies,
recommendation output, and user feedback. They conclude that one of most
important challenges lies in the design of recommendation strategies since
different job applicants may have different characteristics. To address the
aforementioned challenge, they develop an online JRS, iHR, which groups

users into different clusters and employs various recommendation approaches



for different user clusters. As a result, iHR has the capability of choosing the

appropriate recommendation approaches according to users’ characteristics.

In another work [40], the authors propose a novel reciprocal recommen-
dation method for job matching with bi-directional feedback. The method
uses, bilateral messages between job seekers and recruiters, such as applying
to a job, scout for a seeker, and reply to the offer, on the seekers-recruiters’
user network as ‘mutual feedback’. During job matching process, user agents,
as delegate of their owners, send and receive those messages with each other.
From those feedback messages, each user agent computes the popularity de-
gree of its owner user: seeker or recruiter, and evaluation degree of each other
from the popularity degree. Considering both the popularity and evaluation
degrees, a similarity between the condition provided by its user and the profile
of each candidate user is calculated, the agent dynamically updates a ranking

list for recommendation of its owner user after every matching action.

Our research draws inspiration from some of the works mentioned above.
These studies provided us a foundation with related ideas and established the-
ories, in order to build a reciprocal recommender system for MOOCs. Such
a system will assist learners with self-organization in MOOCs and possibly
match students more effectively [42]. More specifically, our system takes into
account one of the MOOC particularities: there is no extended history for
learners’ preferences, thus traditional collaborative filtering systems are not
directly applicable. Moreover, the idea of reciprocity and peer recommenda-
tion is relatively new not only to the area of MOOC but also to the recommen-
dation systems and gains more ground with many applications (like in group
recommendation). With that note, next we review some of the related works

in the area of effective group formation and collaboration in various contexts.

2.2.3 Group Formation Theories

Online courses in MOOC:s offer the opportunity to create a highly social learn-
ing environment, characterized by participation and interactivity for both stu-

dents and instructors. According to Kearsley in his work [27] , online learning

10



is as much a social activity as an individual one. However, the quality and
frequency of interactivity on a MOOC discussion forum can vary depending
upon many factors like type of course, importance of instructors in managing
and regulating interactive content, demography of students etc. Social learn-
ing or learning as part of a group is an important way to help students gain
experience in collaboration and develop important skills in critical thinking,
self-reflection, and co-construction of knowledge [8].

A recent study [47] shows that different learning styles and cultures can
be accommodated more easily because effective collaborative learning values
diversity. Also, the skills gained from the experience of collaborative learning
are highly transferable to team-based work environments [56]. The benefits of
collaborative learning have been demonstrated in countless studies and sev-
eral meta-analyses [26], [58], [59]. Compared to students taught traditionally,
students taught in a manner that incorporates small-group learning achieve
higher grades, learn at a deeper level, retain information longer, are less likely
to drop out of school and acquire greater communication and teamwork skills
[44]. Hence, the importance of forming groups of students in an online set-
ting like MOOC cannot be more emphasized. However, it is essential that
these groups have the right mix of students in order to extract the benefits of

learning in groups as claimed by the existing studies.

In 1995, Hoppe introduced an intelligent tutoring system [20] that allowed
the learners to initiate a group formation when they had a problem (a kind of
learner-helper group). Based on the learners’ models, the system displays a list
of all potential peer learners that can help; the learner then selects a helper
from the list, and the latter can accept or reject the invitation to help the
learner. Parameters here were based on learning experience and competency
criteria in the subject of the collaboration. In case of MOOCs, there are several
parameters in terms of user attributes: age, gender, location, grade that must

be optimized to create quality group of learners.

Inaba et. al. 23] introduced Opportunistic Group Formation (OGF) where

an intelligent system detects the appropriate situation to start a collaborative

11



learning session and sets up a learning goal for the learner. The system takes
into account the modeling of learning goals for each learner. Based on individ-
ual goals as well as the whole group, the system negotiates with the agents of
all the learners in order to come to an agreement and to form a learning group
so that each member of the group can obtain some educational benefit. In case
of MOOCs, we have learners’ preferences that can be aligned to match their
overall learning goal. Users with similar mutual preferences can be thought of
as having similar learning goals, hence it should make sense to cluster them in
the same learning groups. All these studies make a good case to have effective
learning groups on MOOCs which would not only help with better learning
outcomes and mitigate dropouts but would also help prepare students gain
a better understanding of the environment in which they will be working as

professionals.

Although there are many studies mentioned above which confirm that
group formation or collaborative learning is useful in the educational con-
text, there are only few studies which focus on the method to be used for
group formation. Most of the groups are formed without any criterion at all
or by using simple random selection [22], this could lead to a well-known phe-
nomenon: just a few groups are able to achieve high performance whereas the
others are far from reaching the expected goals. This may occur when such
a selection gathers students together, resulting in ‘segregated’ groups where
all members exhibit desirable or undesirable characteristics [43] . To avoid
such a problem, it is important to use group formation methods that not only
seek the general performance of each group but also seek adequate results for
individuals with different characteristics. In other words, the ideal situation
should be having groups with members who are as similar among themselves
as possible (inter-homogeneous), but also empowering the students’ individual
differences inside such groups (intra-heterogeneous).

Moreno et. al. developed a method based on a genetic algorithm (a meta-
heuristic inspired by the process of natural selection that belongs to the larger

class of evolutionary algorithms) approach for achieving inter-homogeneous

12



and intra-heterogeneous groups [43|. An important feature of such a method
is that it allows for the consideration of as many student characteristics as may
be desired, translating the grouping problem into one of multi-objective opti-
mization. This concept is similar to the requirements of grouping in MOOCs
where learners have different characteristics in terms of their attributes, each
of these attributes contribute towards forming inter-homogeneous and intra-
heterogeneous groups hence it becomes a multi-objective optimization prob-
lem. In another similar study [3], the authors use a genetic algorithm to form
groups of students with different levels of programming skills. Results show
that the method used is capable in producing balanced groups, where each
group consists of a mix of students with good, moderate and poor program-
ming skills. However, a genetic algorithm although being effective in terms of
quality of solution is computationally exhaustive [17], especially in cases where

the volume of data is high and optimization involves a lot of constraints.

Graf et. al. propose a mathematical approach to form heterogeneous
groups based on personality traits and the performance of students [15]. They
make use of Ant Colony Optimization (ACO) algorithm in order to maximize
the heterogeneity of formed groups. The Ant colony optimization is a swarm
intelligence based probabilistic technique for solving computational problems
which can be reduced to finding good paths through graphs. Although ACO
has been successfully applied to solve combinatorial optimization problems,
it still has some drawbacks such as stagnation behavior, long computational
time, and premature convergence; these drawbacks become more evident when
the problem size increases. Another swarm intelligence based algorithm called
Particle Swarm Optimization (PSO) [28| has been used by researchers to find
optimal solutions for clustering problems in less computational time. PSO
optimizes a problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality. Van Der Merwe et. al. used PSO to
cluster arbitrary data vectors [63]. On comparison with standard k-means clus-
tering, the results showed that the PSO approaches have better convergence

to lower quantization errors, and in general, larger inter-cluster distances and

13



smaller intra-cluster distances.

Furthermore, Cui et. al. propose a document clustering approach using
PSO [10] which resulted in a higher compact clustering than with k-means. In
another study [45], the authors use PSO for image clustering. The algorithm
finds the centroids of a user specified number of clusters, where each cluster
groups together with similar image primitives. Experimental results show that
the PSO image classifier performs better than state-of-the-art image classifiers
like K-means, Fuzzy C-means, K-Harmonic means and Genetic Algorithms
in all measured criteria. For a large dataset, conventional PSO can conduct
a globalized searching for the optimal clustering, but requires more iteration
numbers and computation than the K-means algorithm does. The K-means
algorithm tends to converge faster than the PSO algorithm, but usually can
be trapped in a local optimal area. The hybrid PSO algorithm combines the
ability of globalized searching of the PSO algorithm and the fast convergence of
the K-means algorithm and avoids the drawback of both algorithms. This has
been the idea behind using hybrid PSO to form students groups in MOOCs,

as it generates better quality groupings and is also scalable.

The above studies and related work provided us with useful insights re-
garding recommender systems and group formation in the domain of education
and other applicable areas. These studies influenced us greatly in formulating
our own approach in building a reciprocal recommender and group formation
strategy for effective collaboration. In the next couple of chapters, we look
at : 1) an approach to build a reciprocal recommender system that generates
a list of top-N like-minded recommendations for a given user and, 2) a mod-
ified PSO algorithm which generates student groups based on the factors of

inter-homogeneity and intra-heterogeneity.
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Chapter 3

Reciprocal Recommendation

This chapter is divided into four different sections: 1) Data: we look at the
data used in our experiments and the description of the related data attributes,
2) Preference and Importance Modeling: here we describe the preference at-
tributes of a user and the preference priority based on which the final recom-
mendation ranking is generated, 3) Reciprocal Recommendation Algorithm:
we delve into the details of the algorithm which matches users based on their
preferences and generates the list of top-N recommendations and, 4) Experi-

ments: lastly, we look at the experiments and analyze the results.

3.1 Data

The Data used in our research comes from the de-identified release from the
first year (Academic Year 2013: Fall 2012, Spring 2013, and Summer 2013)
of MITx and HarvardX courses on the edX platform [41]. These data are
aggregate records (around 300k), and each record represents an individuals’
activity in one edX course and contains many diverse information about the
profile of the learner (e.g. age, gender, location, qualification, etc.) and the
course activity (e.g. grade, forum posts, completed, etc.). For our analysis
and without loss of generality, we selected records with attributes about age,
location, qualification, gender and grade. Moreover, we enhance this infor-
mation with synthesized data about learners’ ‘interests’ and the current or
past ‘courses’ undertaken by them. This information is not available via the

mentioned dataset but is in line with the information available on MOOCs
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for any learner profile, hence it deemed potentially useful to be used in our

recommendation and group formation strategies.

A brief overview of the dataset attributes can be found in Table 3.1. The
user id is a numerical unique identifier for different learners, age of the learner
is calculated using the year of birth obtained from the original dataset, gender
is another binary attribute followed by location, which has information about
the resident city of the learner. The age and location attributes have been fur-
ther divided into levels, this is explained in the next subsection. Furthermore,
the qualification attribute has been divided into 5 levels: less than secondary,
secondary, bachelors, masters and doctorate. The interest attribute contains
one or more values about learners’ interest. Lastly, the courses attribute has
information about the current and past courses undertaken by the learners. A

sample of our dataset used to build our reciprocal recommender can be seen

in Table 3.2.

Table 3.1: Dataset Attribute Description

Attribute Short Type Comment
user _id id Numeric Unique identifier
age age Numeric Calculated using year of birth
gender gen Binary M(ale)/F (emale)
location loc Categorical City of the learner
qualification  qua Ordinal learners’ qualification
interests int Hierarchical, Categorical, Multi-Value  Info about learners’ interests
courses crs Categorical, Multi-Value List of current/previous courses

Table 3.2: Dataset Sample

id age gen loc qua int crs

1 32 M Frankfurt = Doctorate ML machine learning, java, python
2 28 M  Los Angeles Bachelors Al java, python

3 27 F Edmonton  Bachelors Science python, sociology

4 22 F Las Vegas  Secondary Soccer, Al history, general studies

This was an overview of the data used in building the ‘reciprocal recom-
mender’. The data used in ‘group formation’ is slightly different, more details

on this is provided in the next chapter.
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3.2 Preference and Importance Modeling

When users sign up on a MOOC platform, we ask them to provide their
preferences for the above mentioned attributes, based on which their recom-
mendations would be generated. User preferences are based on value ranges
for attributes in Table 3.1 and can include none, one or more (even all) of
these attributes. A description of the value ranges of preferences for each of

the attributes is mentioned below:

e Age: users can select an age range that they prefer learners’ from, using

these 5 choices: less than 20, 20-25, 25-30, 30-35, 35 and above.
e Gender: users can select between male or female gender options.

e Location: users have an option to select learners from the same city
(if they prefer meeting them in person) or from the same country or

timezone (in order to facilitate communication).

e Qualification: users can select one or more qualifications out of the five
levels available: less than secondary, secondary, bachelors, masters and

doctorate

e Interests: users can define their own interest preference which might or

might not be similar to their own interest.

A sample of user preferences can be seen in Table 3.3. It must be noted that
not all five attributes are required to be defined by a user for their preference
profile. One or more (but not all) of these attributes can be left empty, at which
point the algorithm simply ignores these in the recommendation process as it

considers them irrelevant.

Moreover, users can further define whether they have some preferences that
are more important to them i.e. if they have a priority for their preferences
(highlighted in bold in the preference Table 3.3). For instance, looking at
preference p 4 (preference profile of user id:4) in Table 3.3, we can tell that

the user prioritizes location and qualification over other attribute preferences.
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This means that the recommendation list for this user should ideally have
those users who have the same location as him, with a qualification less than
equal to a ‘bachelors’ degree.

Table 3.3: Sample of User Preferences: x refers to unfilled preferences and
bold denotes important preferences

pref age gen loc qua int
p 1 3035 M same city >= Masters X
p_2 X X X Bachelors Football
p 3 25-30 F X X X
p 4 <=25 x same timezone <=Bachelors X

3.3 Recommendation Algorithm Description

In the next subsections, we discuss our recommendation algorithm in detail.
In summary, at first we select users with similar course background (this is
optional) and then build a similarity matrix which has the compatibility scores
(based on preference) between these users, using which they are ranked. Lastly,

we re-rank the users based on their preference priority.

3.3.1 Selection Phase

Since the number of new students signing up for a MOOC might be very large,
we can build a query to select only those users that share at least 50% (this
can be flexible) of the current or previously registered courses with the user
whose recommendation is to be generated. In case the query yields insufficient
number of users (less than the number of recommendations to be generated),
the query can be further relaxed to select users who share at least one course.
Furthermore, the recommendations are now generated from this selected pool
of users. It is to be noted that this phase is optional. In cases where the
registered user on MOOC is ‘new’ (cold start problem) [53], he might not have
any course background. In that case we can skip the selection phase and move

on to build the similarity matrix based on his user preferences.

For instance, in Table 3.2, when the ‘selection phase’ is run for user id:1,
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then only user id:2 will be selected (since they share at least 50% of courses).
However, if the query is relaxed to select users with at least one matching
course, in that case users [id:2 and id:3| will be selected. In scenarios where a
user does not have any history of current or previously registered courses, we

consider the entire set of learners as a pool for generating recommendations.

3.3.2 Building Similarity Matrix

Given the preferences of a user, we compute the “distance” or “compatibility”
of this user, with every other ‘selected’” user based on his/her preferences and
the characteristics or attribute values of the other users. It is to be noted that,
“the lower the distance score, the greater the similarity”. For instance, using
the data sample in Table 3.2, distance of a user (with id=1) to other users in

the table is computed as follows:

e Ordinal Variables (age, qualification): Preferences for age and qual-
ification attributes are divided into levels in such a way that adjacent
levels have a distance of 1. The 5 levels for age attribute preferences are:
“less than 207, “20-25”, “25-30”, “30-35”, “35 and above”. Similarly, the 5
levels for qualification attribute preferences are: “less than secondary”,
“secondary”, “bachelors”, “masters” and “doctorate”. In case of age lev-
els, we code: “less than 20" as 1, “20-25" as 2, “25-30” as 3, “30-35" as
4, “35 and above” as 5. Similarly, in case of qualification, we code: “less
than secondary” as 1, “secondary” as 2, “bachelors” as 3, “masters” as
4 and “doctorate” as 5. Once the age distance dyg. or the qualification
distance dg,, between users is calculated, the distance is then normalized
in range [0 — 1] by dividing it by the maximum distance possible (which
is 5 — 1 =4, for both of these attributes).

On modelling the distances dgg. and dg,, for age and qualification prefer-
ence attributes respectively for user id:1 (see Table 3.2) based on his/her

preferences defined in Table 3.3 (p_ 1), we get the following:

dage(userid:1, userid:2) = 1/4 = 0.25 (as they differ by one age range)
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dage(userid:1, userid:4) = 2/4 = 0.50 (as they differ by two age range)
dgua(userid:1, userid:2) = 1/4 = 0.25 (as they differ by one qua range)
dgua(userid:1, userid:4) = 2/4 = 0.50 (as they differ by two qua range)

From the distance calculated based on age and qualification attributes
alone, we can see that userid:2 is the best match for userid:1 as they have

the least ‘distance’ between them, hence they are more ‘compatible’.

Nominal Variables (gender, location): Preferences for gender and lo-
cation attributes are mapped to a binary distance metric. For instance,
if the gender of two users are the same, then the distance ‘d’y, is 0,
otherwise 1. Similarly, if the location preference of a user matches the
location attribute value of other user, the distance ‘d’,. is 0, otherwise
it is 1.

On modelling the distance dge, and dj,. for gender and location prefer-

ence attributes respectively for userid:1 (see Table 3.2) based on his/her

preferences defined in Table 3.3 (p_ 1), we get the following:

dgen(userid:1, userid:2) = 0 (as gender preference of user id=1, ‘M’,

matches the gender attribute of user id=2, ‘M’)

dgen(userid:1, userid:4) = 1 (as gender preference of user id=1, ‘M’, does

not match the gender attribute of user id=4, ‘F’)

dioc(userid:1,userid:2) = 1 (as location preference of user id=1, ‘same

city’, does not match the location attribute of user id=2, ‘Los Angeles’)

dioc(userid:1,userid:4) = 1 (as location preference of user id=1, ‘same

city’, does not match the location attribute of user id=4, ‘Las Vegas’)

In this case, both users [id:2 and id:/] have the same distance ‘1’ for
location with respect to userid:1, however they differ in distance for the
gender attribute. Using the sum of distances calculated based on gender
and location attributes, we can see that userid:2 is the best match for
userid:1 as they have the least ‘distance’ between them, hence they're

more ‘compatible’.
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e Hierarchical Variables (interests): For preference attributes that come
from a hierarchy there is a similarity measure based on the hierarchy tree,
such as the Rada measure [52|. This measure was founded on the ba-
sis that we can calculate the similarity based on the hierarchical links
such as ‘IS-A’. To calculate the similarity of two concepts in a hierarchy
tree, we must calculate the number of the minimal arcs which separate
them. This measure, based on the edge counting between nodes by the
shortest way, presents a method to evaluate the semantic similarity in a
hierarchical structure tree. The hierarchy we used for interests of users
is based on WordNet [39] and the similarity measure used is based on
the Wu and Palmer method [66]. It calculates relatedness by considering
the depths of the two synsets in the WordNet taxonomies, along with
the depth of the LCS (Least Common Subsumer). The formula is given
as:

score = 2 * depth(lcs)/(depth(sl) + depth(s2)) (3.1)

This means that 0 < score <= 1. The score can never be zero because
the depth of the LCS is never zero (the depth of the root of a taxonomy
is one). The score is one if the two input synsets are the same. Since we
are implementing our system in a distance measure (and not similarity)

the final value of distance between the interests is [1 — score].

For instance, a user with interest in ‘football’ will be more compatible
with another user with interest in ‘volleyball’, in comparison to a user
whose is interested in ‘computer science’. The Wu and Palmer similarity

(wup__ similarity) score for these instances are given below.
wup__similarity( football, volleyball) = 0.80

wup__similarity( football, computer _science) = 0.38

Finally, the ‘compatibility score’ of a user x with any other user y is the

mean of the attribute distances:

Zij\il dl(xv y)

N (3.2)

compatibility _score(zx,y) =
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where d; is the distance for attribute ¢ between users x and y and N repre-
sents the total number of attributes (in our case N = 5). For instance, the

‘compatibility score’ of user 3 (id=3) with the other users can be computed

as follows:

compatibility _score(userid : 3,userid : 1) = 1/?1 = 0.25, (as age range
difference is 1 and gen difference is 1)

compatibility _score(userid : 3,userid : 2) = % = 0.2, (as age range is
same, but gen is different)

compatibility _score(userid : 3,userid : 4) = 1/45+0 = 0.05, (as age range

difference is 1 and gen is same)

Based on the ‘compatibility’ score calcuated above, we can say that userid:3
is most compatible with userid:4. Table 3.4 below shows the ‘Similarity Matrix’
with compatibility scores between all users in the sample dataset (Table 3.2).
The cells marked as ‘x’ means self-compatibility, which is omitted as we are

looking for other compatible users for each given user.

Table 3.4: Similarity Matrix

user id | 1 2 3 4
1 x 03 05 06
2 02 x 0 0.15
3 025 0.2 x 0.05
4 045 0.1 03 x

Once we have the similarity matrix, we can rank users based on their
mutual likeness, which is calculated by taking the ‘harmonic mean’ of their

compatibility scores. This is shown in the next subsection.

3.3.3 Ranking Recommendations by Importance

After the user preferences and the compatibility scores are computed, the list
of recommended users generated for user x are as follows: Every user y will
receive a compatibility score that reflects how much the preferences of user x
match with the attributes of user y, and how much the preferences of user y

match with the attributes of user z. We call this measure ‘reciprocal score’.
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The reciprocal score between user x and user y is the harmonic mean of the
compatibility scores between them. It is to be noted that compatibility scores
of zero are replaced by a small value like 0.001 in order for the harmonic mean
to be computed as a negligible value would still mean high compatibility. A
ranking is generated using the reciprocal scores (harmonic mean) where it
is checked if the preference priority for attributes as denoted by the user is

satisfied or not.

For instance, the reciprocal score for user id:3 is shown in Table 3.5. Col-
umn p(3,y) indicates the similarity of user id:3 with all other users y and
column p(y, 3) indicates the similarity of all other users y with the user id:3.
Note that the reciprocal score is symmetric, i.e. y’s score in the recommen-
dation list for z is the same as z’s score in the list for y. However, as the
lists contains only the top-N recommendations, user y may be in the top-N

recommendations for user z but the opposite may not be true.

Table 3.5: Reciprocal Score for user id:3

y | p(3,y) p(y,3) | harmonic_mean
1 0.25 0.5 0.333
2 0.2 0.001 0.002
4 | 0.05 0.3 0.086

Given the reciprocal scores in Table 3.5, the list of top-3 recommendations
for user id:3 will be: |2, 4 and 1]. Furthermore, user id:3 has noted preference
priority for age attribute (see bold values in Table 3.3). Since user id:2 satisfies
this criterion, it will remain at the topmost position and users id:4 and id:1
will follow. If this was not the case, then a re-ranking of recommended users

is done based on the preference priority of the user for the given attributes.

3.4 Experiments

We conducted experiments with sampled dataset of 100, 1000 and 5000 user
records. The algorithm was run on a computer with 2.7 GHz Intel Core i5

processor and 8 GB RAM. In the next few subsections, we look at some of
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the evaluation metrics used to validate our findings and analyze our results in

terms of measuring precision, recall and discounted cumulative gain.

3.4.1 Evaluation Metrics

As seen in the related work chapter, not much research has been carried out in
the field of reciprocal recommender systems, thus there is limited exploration
of how to effectively evaluate the recommendation results. The goal of our
current work is to primarily explore the role of reciprocity in the formulation
of recommendations for MOOCs. It should be noted that an actual evaluation
of a (reciprocal) recommender system requires on-line deployment and inte-
gration with one of the existing MOOC platforms. Since this was not possible
in our case, we had to build measures based on the data available.

Furthermore, the recommendations generated using traditional recommender
systems (non-reciprocal) would yield a different ranking from our system as
those do not take into account the ‘reciprocity’ factor. More specifically, our
results indicate that our system performs better than the baseline model, this
is described in detail in the ‘experiments’ subsection.

For a reciprocal system (like the one in our case) we need to define ‘what
is a successful recommendation’. We say that, “a learner y is a successful
(reciprocal) recommendation (out of the K-total) for learner z, if and only if
x is also in the top-K recommendations of learner y”. This condition factors
the reciprocity element which is essential to measure the performance of a
reciprocal system like ours. Using this idea, we modify the definitions of
precision and recall [55] for each learner as follows: “In order to compute the
precision for learner x, we divide the number of successful recommendations
of learner x by the total number of generated recommendations (i.e. K) for
leaner z”. “Similarly, in order to compute the recall for learner x, we divide
the number of successful recommendations of learner x by the total number
of learners that have x in their top-K generated recommendation list”. These

definitions can be formalized in the following equations:
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where:

P, is the precision for learner x,

R, is the recall for learner =,

N, is the number of successful recommendations for learner x (as defined

before),

K is the total number of recommendations generated for learner x,

N, is the number of learners that have z in their recommendation list

The total precision and recall of the dataset based on the recommendation

algorithm is defined as follows:

P=>" M (3.5)
=1
M
R;
R=Y" i (3.6)
i=1

where:

e P, and R; are the precision and recall respectively for learner ¢ (as de-

clared previously),
e M is the total number of learners

Moreover, in order to evaluate the rankings of the algorithm, we utilize
a modified definition of the Discounted Cumulative Gain (DCG) [25], a pop-
ular measure of ranking quality. DCG originates from information retrieval

where ranking positions are discounted logarithmically. Since for our system,
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we only care about the rank alignments and not the relevance of ranking po-
sitions (since the algorithm already generates relevant ranking), hence we do
not require the logarithm discounting. When applied to our case, ‘DCG’ is
the measure of ‘reciprocity’ or ‘rank alignment’. In other words, a perfect
rank alignment between users of generated recommendations is when - “if for
all learners 7, present at a position j in the list of top-N recommendations of
learner u, u is also present at the same position j in the list of top-N recom-
mendations of 7”.

Assuming each learner u has a “gain”, g,; from being recommended an-
other learner i, then the average Discounted Cumulative Gain (DCG) for the

recommendation list of K learners is defined as follows:

K

M
. ]_ Z]’:l gui]‘

where:

M is total number of learners,

S is the number of successful recommendations,
J denotes the position in the ranking list,

Gui; is the gain of learner ¢ (in position j) for learner u.

Division by the number of successful recommendations guarantees that
maximum DCG will be 1, provided that a user has successful recommenda-
tions, otherwise it is automatically 0.

The gain g,; is considered to be 0 if learner u is not in the top-K recom-
mendation list for learner ¢ (no gain for the reciprocal recommendation system

here) and if is present, then the gain is defined as follows:

B 1
1+ |diful

where di f,; is the difference in positions between the ranking of user 7 in the

recommendation list of user u and the ranking of user v in the recommendation
list of user 7. If the difference in ranking is zero, the gain g,; results in 1,

otherwise the gain is discounted.
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Finally, DCG can be divided by the ideal DCG for the recommender system
which would lead to the normalized discounted cumulative gain (NDCG). Ideal
DCG is 1 provided that all users have at least one successful recommendation
(each user can have a maximum DCG of 1, so divided by the number of users

that gives 1), otherwise it is a reduced value.

DCG
DCGx*

For example, consider the following Table 3.6 of six learners: [1, 2, 3, 4, 5,

NDCG =

(3.9)

6] with successful recommendations highlighted in circles.

Table 3.6: Ranked Recommendations, K=3

rank/learner 1 2 3 4 5 6
1 2 8 @O 6 1 3
> @ 1 D B O 2
3 i 5 @ @ 6 1
4 ) 1 ) 1 2 4
5 6 6 6 2 3 d

Precision 0.33 0.33 1.00 0.67 0.33 0.00
Recall 0.33 0.33 0.75 0.50 0.50 0.00
DCG 0.50 0.50 0.67 1.00 1.00 0.00

Overall precision for this system is 0.44, recall is 0.40 and the NDCG is
0.73 (DCG is 0.61 and DCG* is 0.83).
In the next subsection, we analyze the results obtained using different data

samples, based on the metrics defined above.

3.4.2 Results

As mentioned previously, we sampled our data using the MITx-Harvardx
dataset. We select samples of [100, 1000, 5000] data records for our exper-
iments . From each of the three samples we rank users by comparing their
reciprocal scores and recommend the top-N [5,10,15,20] users in the list. The
objective of our research is not only to provide the best possible reciprocal
recommendation but also to make sure that the solution is scalable, this is
especially important since the number of students who register on MOOC

has been growing exponentially every year [54]. Our ‘precision’, ‘recall’ and
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‘DCG’ scores are compared against the ‘baseline’, wherein the reciprocity fac-
tor was not accounted for. The ‘baseline’ model simply builds the list of top-N
recommendations without looking at reciprocity, very similar to a traditional
recommender system. As per the evaluation metrics defined in the previous
section, we see the results obtained for these sampled datasets in the next

subsections.

Recommendation Precision with/without “Selection Phase”

Precision is a measure of the number of “successful recommendations” by the
total number of recommendations (top-N). We computed the mean precision
value of the reciprocal recommender system by averaging the precisions of all
the users in the data sample for top-N recommendations. As expected, the
precision increases with the value of ‘N’, which means that if a learner y is
present in the top-N recommendation list for learner =, then the chances that
x is also present in the recommendation list of y increases with increasing value
of ‘N’.

We also measure the scalability of the solution by comparing the perfor-
mance time for datasets with [100, 1000, 5000] records. The evaluation process
was run with and without the “selection phase” of the algorithm. As expected,
the solution has better performance in terms of ‘execution time’ when ‘selec-
tion’ is applied as in this case it filters down the relevant users to recommend
from. Moreover, the precision value with ‘selection’ is slightly less than with-
out ‘selection’ for any top-N recommendation. This is because we're restrict-
ing the number of users to generate recommendations from, when ‘selection’
is applied. The mean precision values and standard deviation (SD) for top-N
recommendations with/without ‘selection’ can be seen in Figure 3.1. It can be
deduced that the precision scores for ‘reciprocal’ model far exceeds the scores
for ’baseline’, across all values of top-N recommendations.

The average precision scores for topd to top-20 recommendations for ‘recip-
rocal’ model ‘with selection’ are [0.55, 0.59, 0.62, 0.66] with standard deviation
[.098,.118,.036,.027| respectively. However, the corresponding average preci-

sion scores for topd to top-20 recommendations for ‘baseline’ model ‘with se-
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lection’ are [0.17, 0.29, 0.38, 0.47] with standard deviation [.116,.088,.109,.095]
respectively.

Similarly, the average precision scores for topd to top-20 recommendations
for ‘reciprocal’ model ‘without selection’ are [0.55, 0.62, 0.60, 0.65] with stan-
dard deviation [.088,.103,.048,.073| respectively. However, the corresponding
average precision scores for topd to top-20 recommendations for ‘baseline’
model ‘without selection’ are [0.12, 0.16, 0.23, 0.25] with standard deviation
[.109,.142,.117,.129] respectively.
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Figure 3.1: Precision Graph

Recommendation Recall with/without “Selection Phase”

Recall is a measure of the number of “successful recommendations” by the total
number of learners that have the given learner in their top-N recommendation
list. We computed the mean recall value of the reciprocal recommender system
by averaging the recall of all the users in the data sample for top-N recommen-
dations. As expected, the recall increases with the value of ‘N’, which means
that if a learner y is present in the top-N recommendation list for learner z,
then the chances that = is not present in the list of learners who are not part

of the recommendation list of x, decreases with increasing value of ‘N’.

We also measure the scalability of the solution by comparing the perfor-

mance time by running the evaluation for datasets with [100, 1000, 5000]
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records. The evaluation process was run with and without the “selection phase”
of the algorithm. As expected, the solution has better performance in terms
of ‘execution time’ when ‘selection’ is applied as in this case it filters down the
relevant users to recommend from. Moreover, the recall value with ‘selection’
is slightly less (but still comparable) than without ‘selection’ for any top-N
recommendation. This is because we’re restricting the number of users to
generate recommendations from, when ‘selection’ is applied. The mean recall
values and standard deviation (SD) for top-N recommendations with/without
‘selection’ can be seen in Figure 3.2. It can be deduced that the recall scores
for ‘reciprocal’ model far exceeds the scores for ’baseline’, across all values of
top-N recommendations.

The average recall scores for topd to top-20 recommendations for ‘recipro-
cal’ model ‘with selection’ are [0.64, 0.71, 0.73, 0.78] with standard deviation
[.048,.093,.117,.027| respectively. However, the corresponding average recall
scores for topd to top-20 recommendations for ‘baseline’ model ‘with selec-
tion’ are [0.20, 0.33, 0.43, 0.53] with standard deviation [.109,.083,.097,.115]
respectively.

Similarly, the average recall scores for topd to top-20 recommendations for
‘reciprocal’ model ‘without selection’ are [0.63, 0.75, 0.70, 0.76] with stan-
dard deviation [.039,.101,.095,.021] respectively. However, the correspond-
ing average recall scores for tops to top-20 recommendations for ‘baseline’
model ‘without selection’ are [0.12, 0.16, 0.23, 0.25] with standard deviation
[.092,.108,.117,.089] respectively.
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Figure 3.2: Recall Graph

Discounted Cumulative Gain with/without “Selection”

Discounted Cumulative Gain (DCG) is the measure of ‘reciprocity’ or ‘rank
alignment’. In other words, a perfect rank alignment is when - “for all learners
y, present at a position p in the list of top-N recommendations of learner z,
if x is also present at the same position p in the list of top-N recommenda-
tions of y”. The value of ‘DCG’ is 1 in case of perfect rank alignment and 0
when there are no ‘successful recommendations’. We calculate the ‘Normal-
ized DCG’ using the formula given in equation 3.9. As shown in Figure 3.3,
‘NDCG’ value decreases if the ‘top-N’ recommendations increase. This makes
sense because with higher number of recommendations, the difference in ranks
for two positions in the recommendation list will increase, thereby resulting
in an overall decrease in ‘gain’. The ‘NDCG’ values for top-N recommenda-
tions with /without ‘selection’ can be seen in Figure 3.3. The reciprocal model
slightly outperforms the ‘baseline’ model. While this suggests that the recipro-
cal model is only a little better than the baseline model when it comes to rank
alignments, it should also be noted that rank alignments has less significance
when it comes to ‘reciprocity’, because if a user z satisfies all the preferences
of user y, it might not be true vice-versa. Hence, their rank alignments will be

different.

31

25



1.0

0.8}

Normalized DCG

0.2+

0.0
0

o
o

o
S

1.0

— reciprocal — reciprocal
— baseline — baseline

0.8

o
o

Normalized DCG
o
IS

0.2

0.0

5 10 15 20 25 0 5 10 15 20
top-N Recommendations top-N Recommendations

(a) with Selection (b) without Selection

Figure 3.3: NDCG Graph

Measuring Scalability with/without “Selection”

The tremendous growth of users in MOOCs in the recent years poses some
key challenges for any recommender system. It should not only be able to
generate high quality recommendations but also be able to perform better in
terms of execution time for millions of users. In this subsection, we look at the
performance of our ‘reciprocal recommender’ measured in terms of ‘minutes’
taken to generate recommendations.

We ran five simulations on different dataset for each of the [100,1000,5000]
data samples. The average time to generate top-20 recommendations for each
of these data samples is shown in Fig 3.4. The execution time in ‘minutes’ for
generating top-20 recommendation using ‘selection’ for [100, 1000 and 5000]
data records are [62.1, 157.7 and 454] respectively. However, understandably
the execution time increases to [139.9, 355.7 and 1080.5] respectively when the
‘selection’ is not applied. It is to be noted that execution time will depend
several factors like dimension of data, number of data records, sparsity of data
etc. Hence, the execution time might change given any of the above factors

are changed.
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Figure 3.4: Average Execution Time for top-20 recommendations

The results show that the our system performs better than the baseline
system on the measures of precision, recall and discounted cumulative gain.
Moreover, these tests have also shown that the system is very robust to take
into account the large datasets for top-N recommendations. This makes for a
promising case for the algorithm to be deployed within an actual MOOC to get
a more realistic estimate of its performance. In the next chapter we describe
the group formation strategy for automatically generating small groups of

learners using an optimization algorithm.
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Chapter 4

Group Formation

This chapter is divided into four different sections: 1) Data: we look at the
data used in our experiments and description of the data attributes, 2) Data
Attributes Modeling: here we describe each of the data attributes and they way
they are tuned to fit into the grouping criteria, 3) Group Formation Algorithm:
we delve into the details of building a hybrid particle swarm optimization
algorithm which groups users based on a predefined set of attributes and, 4)

Experiments: lastly, we look at the experiments and analyze the results.

4.1 Data

The Data used in ‘group formation’ is similar to the one used in our ‘reciprocal
recommender system’ except that we added the ‘grade’ attribute to the set of
existing data attributes like age, gender, location, qualification, interests etc.
A brief overview of the dataset attributes can be found in Table 4.1. The
user _id is a numerical unique identifier for different learners, age of the learner
is calculated using the year of birth obtained from the original dataset, gender
is another binary attribute followed by location, which has information about
the resident city of the learner. Furthermore, the qualification attribute has
been divided into 5 levels: less than secondary, secondary, bachelors, masters
and doctorate. The interest attribute contains one or more values about learn-
ers’ interest. Lastly, the grade attribute has information about users’ grade
between 0(Min) and 1(Max). A sample of our dataset can be seen in Table

4.2.
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Table 4.1: Dataset Attribute Description

Attribute Short Type Comment

user _id id Numeric Unique identifier

age age Numeric Calculated using year of birth

gender gen Binary M(ale)/F(emale)

location loc Categorical City of the learner
qualification  qua Ordinal 5 levels

interests int Hierarchical, Categorical, Multi-Value Info about learners’ interests

grade grade Numeric graded between 0(Min) and 1(Max)

Table 4.2: Dataset Sample

id age gen loc qua int grade
1 32 M  Frankfurt Doctorate ML 0.1

2 28 M Berlin Secondary Al 0.4

3 27 F  Edmonton Bachelors Science 0.8

4 22 F  Las Vegas  Masters  Soccer, Al 1.0

4.2 Data Attributes Modeling

Users signing up on a MOOC platform have varied attributes which have to be
aligned or modeled based on the proposed algorithm to form effective learning
groups. Each attribute in Table 4.1 has its own underlying structure in the way
it contributes towards the grouping logic. A description of how each attribute

is modelled is mentioned below:

o Age: age range of the users’ are segregated in these five levels: less than

20, 20-25, 25-30, 30-35, 35 and above.

e Location: location attribute is categorized into 3 options: same city,

same country or same timezone
e Gender: male or female gender options.

e Qualification: the qualification attribute has been divided into 5 levels:

less than secondary, secondary, bachelors, masters and doctorate

e Interests: the interest attribute contains one or more values about

learners’ interest.
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e Grade: the grade attribute has the average ‘grade’ of a learner from

previous courses, between 0(min) and 1(max).

A sample of data vectors can be seen in Table 4.3. The ‘x’s in the table
represent null value. It must be noted that not all six attributes are required
to be used for any kind of grouping. Our proposed algorithm is flexible enough

to take one or more of these attributes for group formation.

Moreover, we can tune the way each of these attributes contribute in group
formation in terms of intra-group heterogeneity and inter-group homogeneity.
For instance, a reasonably heterogeneous group would refer to a group where
student-grades reveal a combination of low, average and high student-grades.
This is justified by the recommendation of Slavin [57] who proposed that stu-
dents should work in small, mixed-ability groups.

Therefore, it makes sense that each of the generated groups have a good
mix of students with high, average and low grades. A group having majority
of students with high grades is undesirable and so is a group having most
students with low grades. Hence, it is necessary that grade distribution is
even across all groups i.e. the average grades of students across all groups
should be same (inter-group homogeneity) while maintaining that within each

groups the grades are diverse (intra-group heterogeneity).

Another factor to consider into account during group formation in collabo-
rative learning is the interest of the group members, since the interest has the
potential to change the involvement of individuals in learning [35]. A group
with common interests will have more interactivity and discussions which is
likely to make the learning process more engaging. Same can be said about the
‘location’ attribute. Students residing in the same city, country or timezone
will be able to collaborate better due to minimal time differences as opposed
to students living across different continents having major time difference be-
tween them.

To understand how a group would be heterogeneous regarding the level
of ‘grade’, but with the same ‘interests’, see Figure 4.1 [61|. Each square

in the figure represents a learner, the number inside the square represents
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Figure 4.1: Groups formed with different ‘grades’ but same ‘interests’

users’ ‘interest’ and the number inside the small circle represents the ‘grade’
of each learner. It can be seen that users are grouped together in such a way
that their ‘interests’ (squares in the figure) are similar, however their ‘grades’
(circles in the figure) being diverse within a group. As mentioned before, the
average grade across all groups should be same in order to foster equal learning

opportunities for students within different groups.

Table 4.3: Sample Data Vectors

userid age gen loc qua int grade
1 30-3b M same city >= Masters X 0.1
2 X X X Bachelors Football 0.4
3 25-30  F X X X 0.8
4 <=25 x same timezone <=Bachelors b 0.1

Similar to the ‘grade’ attribute, the ‘age’, ‘gender’ and ‘qualification’ of
students in a group should be diverse, this would enable the students to learn

from each others’ differences, thereby making the group more heterogeneous.
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4.3 Algorithm

In the next subsections, we’ll discuss our grouping algorithm in detail. In sum-
mary, at first we use a modified K-means grouping algorithm [16] to generate
groups whose centroids are used to seed the initial swarm of particles. Next,
we use a hybrid ‘Particle Swarm Optimization’ technique to generate the final
group of learners. The general schema of the algorithm can be seen in figure

4.2

» i Build Swarm of
Initial Population :{> Particles

Evaluate Fitness of

Y

each Particle
Update Particle
Clusters
A
No Fitness
Achieved?

Yes

Figure 4.2: General Schema of Hybrid PSO

4.3.1 Modified K-means

One of the most important components of any clustering algorithm is the
measure of similarity between different clusters generated using the algorithm.
Using a traditional K-means algorithm [16], you can generate predefined num-
ber of clusters based on the Euclidean distance similarity measurement. All
the data points within a particular cluster have small Euclidean distances be-

tween them, which means they’re very similar. In contrast, the data vectors

38



between two different clusters will have large Euclidean distances, indicating
that they’re less similar. Every cluster has a ‘centroid’ or the ‘mid-point’
which is the mean of all the data vectors within that cluster. Below are a few

notations which we use to describe K-means:

e N, - denotes the input data dimension, i.e. the number of attributes of

each data vector
e N, - denotes the total number of data vectors to be clustered

e N. - denotes the number of centroids of the clusters, i.e. the number of

clusters to be generated, provided by the user
e 2z, - denotes the p-th data vector
e m, - denotes the centroid of cluster j
e n; - denotes the number of data vector in cluster j

e (; - subset of data vectors that form cluster j

Using the above mentioned notations, the modified K-means algorithm is

summarized below:

1. At first, we randomly initialize N, cluster centroids using the data vectors
2. Repeat

(a) In traditional k-means, each data vector is assigned to that cluster
whose centroid has the least FEuclidean distance with the data vector

as per the equation below:

Ny
d(zpymy) = /(D) (zph — myk)?) (4.1)
k=1
where k represents the dimension.

However in our case, we handle the distance calculation for each

data vector in a different way. We develop a scoring system wherein
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the distance between each attribute of a data vector to that of its
corresponding attribute of all centroids is calculated. The data vec-
tor is then assigned to that cluster where it has the least distance
with its corresponding centroid. A sample case for distance calcu-

lation is shown below:

i. The age and qualification attributes are divided into levels in
such a way that adjacent levels have a distance of 1, which is
shown further. The 5 levels for age attribute are: “less than
207, “20-257, “25-30”, “30-35", “35 and above”. Similarly, the
5 levels for qualification attribute are: “less than secondary”,
“secondary”, “bachelors”, “masters” and “doctorate”. In case of
age levels, we code: “less than 20" as 1, “20-25" as 2, “25-30" as
3, “30-35" as 4, “35 and above” as 5. Similarly, in case of quali-
fication, we code: “less than secondary” as 1, “secondary” as 2,
“bachelors” as 3, “masters” as 4 and “doctorate” as 5. Once the
age distance or the qualification distance between data vector
and centroid is calculated, the distance is then normalized in
range [0 — 1] by dividing it by the maximum distance possible
(which is 5 — 1 = 4, for both the attributes).

On modelling the distance dy4 and dg,, for age and qualifica-
tion attributes respectively, for user id:1 (see Table 4.2) with
different centroids of clusters (assuming user id:2 and id:4 are
randomly selected as centroids), we get the following:
dage(userid:1, userid:2) = 1/4 = 0.25 (as they differ by one age
range)

dage(userid:1, userid:4) = 2/4 = 0.50 (as they differ by two age
range)

Based on the age distance alone, user id:1 would be assigned to
user id:2 (assuming it’s a cluster centroid) as opposed to user
id:4, since it has the least distance with the former.

Now if we also consider the qualification attribute, for distance
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11.

111.

calculation, we get:

dqua(userid:1, userid:2) = 3/4 = 0.75 (as they differ by one qua
range)

dqua(userid:1, userid:4) = 1/4 = 0.25 (as they differ by two qua
range)

Total distance T, based on [age, qualification| attributes for
user id:1 with respect to user id:2 and id:4 are:

Ta(userid : 1,userid : 2) = 0.25+ 0.75 = 1.00

Ty(userid : 1,userid : 4) = 0.50 + 0.25 = 0.75

User id:1 would be assigned to user id:4 (assuming it’s a cluster

centroid) as it has the least total distance as shown above.

The location attribute has three categorical values: same city,
same country and same timezone. If user id:1 and user id:2
(centroid of a cluster) are in the same city, the distance is 0,
otherwise it’s 1 if they’ve the same country, else it’s 2 if they’'ve
the same timezone, lastly the distance is 3 if non of the cases
above is satisfied. We then normalize the calculated distance

by dividing it by the max. possible distance which is 3.

On modelling the distance dp,. for location attribute for user
id:1 (see Table 4.2) with different centroids of clusters (assum-
ing user id:2 and id:4 are randomly selected as centroids), we
get the following:

djoc(userid:1, userid:2) = 1/3 = 0.33 (same city)

dioc(userid:1, userid:4) = 3/3 = 1.00 (none of the 3 conditions
match)

Therefore, by the distance of the location attribute alone, user
id; 1 should belong to the cluster corresponding to user id:2 as

it has the least distance with it.

The gender attribute is mapped to a binary distance metric.
For instance, if the gender of two users are same, then the

distance dge, is 0, otherwise 1.
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v.

On modelling the distance dg,, for gender attribute for user id:1
(see Table 4.2) with different centroids of clusters (assuming
user id:2 and id:4 are randomly selected as centroids), we get
the following:

dgen(userid:1, userid:2) = 0 (same gender)

dgen(userid:1, userid:4) = 1 (different gender)

Therefore, by the distance of the gender attribute alone, user
id:1 should belong to the cluster corresponding to user d:2 as

it has the least distance with it.

For interest attribute, we use a similarity measure based on the
hierarchy tree, like the Rada measure [52|. This measure was
founded on the basis that we can calculate the similarity based
on the hierarchical links such as ‘IS-A’. To calculate the simi-
larity of two concepts in a hierarchy tree, we must calculate the
number of the minimal arcs which separate them. This mea-
sure, based on the edge counting between nodes by the shortest
way, presents a method to evaluate the semantic similarity in a
hierarchical structure tree. The hierarchy we used for interests
of users is based on WordNet [39] and the similarity measure
used is based on the Wu and Palmer method [66]. It calculates
relatedness by considering the depths of the two synsets in the
WordNet taxonomies, along with the depth of the LCS (Least

Common Subsumer). The formula is given as:

score = 2 * depth(lcs)/(depth(sl) + depth(s2)) (4.2)

This means that 0 < score <= 1. The score can never be zero
because the depth of the LCS is never zero (the depth of the
root of a taxonomy is one). The score is one if the two input
synsets are the same. Since we are implementing our system
in a distance measure (and not similarity) the final value of

distance between the interests is [1 — score].
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V.

The grade attribute distance measure between a data vector
and centroid is simply the difference between their grade values.
On modelling the distance dg,qq. for grade attribute for user id:1
(see Table 4.2) with different centroids of clusters (assuming
user id:2 and id:/ are randomly selected as centroids), we get
the following:

dgrade(userid:1, userid:2) = 10.4 — 0.1] = 0.3

dgrade(userid:1, userid:4) = 0.1 — 1.0] = 0.9

Therefore, by the distance of the grade attribute alone, user

id:1 should belong to the cluster corresponding to user id:2 as

it has the least distance with it.

(b) In traditional k-means algorithm, the centroids are typically recal-

culated by taking the average sum of all the data vectors present

within a cluster, as represented by the equation below:

m; = 1/n; Z Zp (4.3)

VzpeC

until a stopping criteria is reached.

However in our case, centroids are recalculated in a different way

based on each attribute value of every data vector within a partic-

ular cluster, as shown below:

i.

11.

For |age, grade] attributes, the centroid value corresponding to
these attributes is simply the mean of age and grade of every
data vector present within the cluster. This is very similar
to how centroids in traditional k-means are recalculated (see
equation 4.3)

In case of [location, gender, qualification, interests| attributes,
the centroid values corresponding to these attributes would be
the value which is present most number of times i.e. the most
common, within the data vectors belonging to a particular clus-

ter.
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end repeat when a stopping criteria is reached.

K-means clustering process ends when any one of the following stopping crite-
ria is reached: when the maximum number of iterations has been exceeded or
when there is little to no change in the centroid vectors over multiple iterations.

We use k-means for two different purpose: 1) To formulate a baseline cluster
model, which we later use to compare the group formation quality against the
actual model generated using our algorithm and 2) To initialize one of the
particles in our hybrid particle swarm optimization method, described in the

next sub-subsection.

Formulating a baseline model: We use two different baseline models for

result comparison.

e Number of clusters/groups (k) is specified: In this case, the number of
clusters to be formed using k-means is specified by the user. Each clus-
ter obtained after running k-means will have data vectors which are very
similar to each other. However, in order to have intra cluster heterogene-
ity we need to have diverse data vectors within a cluster. To build an
unbiased baseline model, we create equal number (k) of empty clusters.
Then using the first cluster obtained via k-means, we evenly distribute
the data vectors in them to each of these empty clusters. We repeat
this process using the data vectors from all other clusters obtained us-
ing k-means. In the end, we have a new set of k£ clusters with data
vectors which are diverse and can be used as a good baseline for result

comparison.

e Number of users () in a cluster/group is specified: In this case, the
number of users in each cluster or group is pre-decided. In order to
account for intra cluster heterogeneity, we run the same process which we
did in the formulation of previous baseline model. To build an unbiased
baseline model, we create an empty cluster of size . Next, we use a
data vector from each of the clusters obtained using k-means to fill-up

the empty cluster until the « value is reached. Then we create another
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empty cluster and repeat the same process until this new cluster is again
filled up with « data vectors. This process is repeated until all the data
vectors have been exhausted in creation of new clusters of size a. In the
end, we have a new set of clusters (size o) with data vectors which are

diverse and can be used as a good baseline for result comparison.

In the next subsection, we’ll see details about particle swarm optimization
algorithm. We modify the algorithm for MOOCSs and combine it with k-means
to build a hybrid algorithm for group formation.

4.3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) [28] is a population based stochastic opti-
mization technique inspired by social behavior of bird flocking or fish schooling
[29]. PSO shares many similarities with evolutionary computation techniques
such as Genetic Algorithms (GA) [11]. PSO maintains a set of particles with
some population, each particle represents a potential solution to an optimiza-

tion problem.

As mentioned before, PSO can simulate the behavior of bird flocking [21].
Let’s assume the following scenario: a group of birds are randomly searching
food in an area. There is only one piece of food in the area being searched. All
the birds do not know the exact location of food. But they know how far the
food is in each iteration. So what’s the best strategy to find the food? The
effective one is to follow the bird which is nearest to the food, it is observed
that the bird that chirps the loudest is typically the one which is closest to the
food. PSO is based on this principle wherein each single solution is a ‘bird’
in the search space, called as “particle”. All the particles have certain level of
fitness which is evaluated by the fitness function to be optimized, and have
velocities which direct the flying of the particles. The particles fly through the

problem space by following the current optimum particles.

In summary, in the context of PSO, a swarm refers to a number of potential
solutions to an optimization problem, wherein each solution is referred to

as a particle. The aim of PSO is to find an optimum solution based on a
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certain fitness function. Every particle is evaluated with respect to this fitness

function, the fittest particle is accepted as solution.

The algorithm keeps track of three global variables:
e Target value or condition

e Global best (gBest) value indicating the particle which is closest to the
target

e Stopping value indicating when the algorithm should stop if the target

is not found

Also, each particle 7 in PSO maintains the following information:

e X, : the current position of the particle
e v, : the current velocity of the particle

e pBest, : the personal best position of the particle.

Using the above notations, a particle’s position is adjusted according to

the following equations:

Vip(t 4+ 1) = w1 (t) + c1m 4 () (pBest j(t) — z; 1(1))+

cora () (gBest; () — xi (1)) (4.4)

zi(t +1) = z;(t) + vi(t + 1) (4.5)

where w is the inertia weight, ¢; and ¢y are the acceleration constants,
71 %(t), m2(t) are random numbers between (0,1), and k =1, ....., Ng.

From equation 4.4, we can see that the velocity of the particle is depen-
dent of 3 different components: 1) fraction of particles’ previous velocity, 2)
cognitive component, which is the separation of the particle in terms of the
distance of its current position from its personal best position, 3) social com-

ponent, which is the separation of particle from the global best particle. This
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is best shown in Figure 4.3. The particle z’s velocity is updated to V1, based
on the current velocity V, personal best pBest and global best gBest.

Fit)

Figure 4.3: Particle Velocity Update

PSO is repeatedly executed until a stopping criteria has been reached,
which could either be the maximum number of iterations exceeded or change
in velocity over multiple iterations being negligible. A pseudocode for PSO

algorithm can be seen in Figure 4.4.
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Input: ProblemSize, POpu’latzOnsize
Output: P.Q—b€5t
Population <—®

Ly best ()

For (I = 1 1o L OpUlationg;.)

P, velocily «— RandomVelocity()

P, position «— RandomPosition(P Opulat‘ionsize)
Pp_best — Pposition

If (Cost(P p-best) < Cost(Pq-best))

g_best «— Pp_best

End
End
While (—StopCondition())
For (PP € population)

velocity «— UpdateVelocity(PUelOCity, Pq-best, Pp-best)
Ppositiorz «— UpdatePos j_tj_on(Pposition, Pveloaity)
1 (cost(! position) < cost(l p-besty)

p_best « 1 position

If (Cost(Pp—bGSt) < Cost(P.(]—b€St))

g-best « Pp_best
End
End
End
End

Return (Pq_best)

Figure 4.4: Pseudocode for particle swarm optimization

4.3.3 Hybrid Particle Swarm Optimization

Based on group formation as a facilitator of any learning process, it was found
that proper training of a group allows better interaction between members
and these interactions are important for learning [43], which means that the
potential for interactions in a group is determined by the process through
which groups are formed [65].

Typically, there are three different ways of forming a collaborative group:

1) self-organized: where students have the freedom to form groups by teaming
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up together, 2) organized by instructor: groups chosen by teacher of the course
3) groups formed based on some algorithms. The first strategy allows having
groups with high empathy among the members, but may entail two undesirable
consequences: it usually prevents students from working with classmates who
do not belong to their regular study groups; and it may produce groups formed
not by pedagogical criteria, but by other criteria of a different nature (friend-
ship, for example). The second strategy allows for mixing all students together
with the hope of reaching heterogeneity inside the groups. This hope however
is not always fulfilled because such a strategy may obtain groups where all
members exhibit desirable or undesirable characteristics. Lastly, when using a
defined algorithm based on a certain grouping logic, it provides for a more bal-
anced grouping of students which includes a mix of strong and weak students
over different competency levels like grade, gender, location and qualification.

Therefore, using computational techniques to support the formation of
groups in education system becomes inherently important to improve the
overall learning process amongst students. Many researchers in the field of
computing science have proposed mathematical models and algorithms which
has facilitated the work of group formation in classrooms under different per-
spectives among which the cognitive perspective, roles and interests are used
mostly [36] [15] [31]. Particle swarm optimization (PSO) has been used to
solve various problems of the level of complexity NP-Hard [9] [24] [68]. The
results of these studies show that PSO has been very effective in solving prob-
lems of this level of complexity. Given our problem, which involves similar
complexity in terms of optimization of different students attributes to form

effective groups, we concluded that it would be a good approach to use PSO.

In the context of grouping, a single particle in PSO represents the N, group

centroid vectors, wherein each particle x; is constructed as follows:

X; = (M1, ... My ..., Min) (4.6)

where m;; refers to the j-th group centroid vector of the i-th particle in

the group Cj;. Therefore, a swarm represents a number of candidate solutions

49



as each particle in itself is a solution.

We use the modified k-means to initialize the N, centroid vectors of one
of the particles of the swarm. The centroid vectors of remaining particles are
initialized randomly using the data vectors. As mentioned before, the goal is to
have heterogeneous groups (based on some attributes) which are similar to each
other on ‘grading’ levels. Within each of these groups, we want students having
similar ‘interests’ and ‘location’ but with diverse ‘gender, ‘age’, ‘qualification’
and ‘grade’. Moreover, the average ‘grade’ across all groups should be similar,
to prevent undesirables grouping of low grade or high grade students together.
This is the grouping logic we have used in our experiment. However, it is
upto the instructor to decide on the way these attribute contribute in group
formation, our algorithm is flexible enough to accommodate for any grouping
changes based on the way these attributes are used.

Using the above mentioned grouping logic, we build N, groups for each
particle. For each group in a particle, we have data vectors which are similar
in terms of location and interests, but diverse in age, gender, qualification
and grade. Fach data vector is allocated to the group where the distance
between each attribute of the centroid vector with the corresponding attribute
of the data vector is minimal for ‘interests’ and ‘location’. For the remaining

attributes, we want them to be diverse to account for heterogeneous groups.

Once the groups of all particles are initialized, we calculate the fitness of

each particle, which is measured using the following fitness error functions:

fitness(P,,,,.) = VeieNe - [max i, 0.) — MINCij,, 00.) (4.7)
N,
< Vz,eCii, d(z,.m;) /| Cis
s - AT Ot IO

where d is Euclidean distance defined in equation 4.1, |Cy;| is the number

of data vectors belonging to group Cj;.

Above mentioned equations 4.7 and 4.8 are fitness measures of a particle
in terms of ‘grade’ and |‘location’, ‘interest’| attributes respectively. The less

the fitness error, the better the quality of groups formed. In our case, we say
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that a particle is fit if, 1) the groups within the particle are inter-homogeneous
for ‘grade’ attribute and, 2) the Euclidean distance is minimum for ‘interest’
and ‘location’ within each group of a particle.

More specifically, if the grade difference between the max and min grade
value for all groups within a particle is less than a threshold ¢ (t=0.1), the
particle is fit. For instance, if each group belonging to a particle has similar
grade levels, then the difference between maz and min grade values will be
negligible, hence we can say that the grouping is ideal since it means that no
particular group has an advantage over the other in terms of smart students
being grouped together and vice versa. In case there is disparity in grade
levels, we can try to minimize this disparity in the next iteration. Similarly,
we try to minimize the distances between data vectors and group centroids for
‘location and interest attributes. We select the gBest (global best) and the
pBest (personal best) particles based on the combination of fitness acheived
using equations 4.7 and 4.8.

The particle with least ‘grade’ difference and minimum ‘location’ and ‘in-
terest’ distances, is selected as the global best. Also, each particle stores its
local best state, which has the least grade difference and minimum ‘location’
and ‘interest’ distances, in any given iteration. Next, we update the group
centroids of each particle using equations 4.4 and 4.5. However, the update
for each attribute of the centroids is different from each other. In case of age
and grade attributes, the updated values depend on the age, grade values of
global best and personal best particle whereas for all other attributes [location,
gender, qualification and interests|, the updated values depend on the most
common values of all data points in respective groups. This entire sequence
completes one iteration of the algorithm. PSO is usually executed until a spec-
ified number of iterations has been exceeded or if a certain level of fitness has

been achieved.

Below is the summary of group formation using hybrid particle swarm

optimization (PSO):
1. Initialize each particle with N, randomly selected group centroids, except
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one particle whose centroids are initalized using modified k-means.
2. for iteration t = 1 to t4q

(a) for each particle i do
(b) for each data vector z,

i. calculate the attribute distances d(z,,m;;), between the data
vector z, with each group centroid m;;, for all group centroids
Cij.-

ii. assign z, to the Cluster C;; where the distance is minimum.

iii. calculate the fitness of particle using equations 4.10 and 4.7.

(c) update the global best particle in the swarm along with the personal

best of each particle.

(d) update the group centroids of each particle using equations 4.4 and

4.5.

4.4 Experiments

4.4.1 Dataset

Similar to reciprocal recommendation, our dataset is based on real data from
MITx-Harvardx dataset [41]. We also synthesized an additional data column
like user interests to cover our cases as we believe that it can be potentially
important attribute for group formation. We conducted experiments with

sampled dataset of 100, 1000 and 5000 user records.

4.4.2 FEvaluation Metrics

In this section, we define different metrics to compare results of the baseline
models generated using the modified k-means and hybrid particle swarm op-
timization. The main purpose is to compare the quality of groups generated
using the modified k-means and hybrid PSO based on the following three cri-

teria:
e the calculated fitness error as defined in equations 4.10 and 4.7.
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e intra-group distances, i.e. the measure of diversity inside each group, the
objective is to maximize intra-group distances for grade attribute so that
we've students with different grades grouped together. It is calculated
by measuring the distance between data vectors within a group for the

mentioned attribute.

e inter-group distances, i.e. the measure of similarity between different
groups, the objective is to minimize inter-group distances for grade at-
tribute while at the same time maximizing the inter-group distances for

‘interests’ and ‘location’ attributes.

The objective of these metrics is to help us to measure diversity inside each
of the group while at the same time making sure that every group is similar

to the other based on the grading levels.

4.4.3 Results

Our experiments employed a series of testing to analyze the effectiveness of
the PSO algorithm for groups formation in MOOCs. The data used for exper-
iments was partially synthesized from the original dataset released by MITx-
Harvardx [41]. The algorithm was run on a computer with 2.7 GHz Intel Core
i5 processor and 8 GB RAM. In order to examine the effectiveness of the PSO,
five different sets of data for each [100, 1000, 5000] samples were generated
randomly from the original dataset which has around 300k records.

The parameters used for velocity update (refer equation 4.4) are: w = 0.72
and ¢; = co = 1.49. These values were chosen to ensure good convergence
[62]. Also, the number of particles predefined is [10, 20, 50| respectively for
data with volumes of [100, 1000, 5000| records. This was chosen based on
the study [6] that any number of particles between 10 to 100 are capable of
producing results that are clearly superior or inferior to any other value for
a majority of the tested problems. The results reported is averaged over 5
different simulations, each simulation was run with different data samples.

Our results will be analyzed on two different baseline models: 1) Number of
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groups/groups (k) is specified and, 2) Number of users («) in a group/group

is specified.

Fitness Analysis

Figure 4.5 shows the effect of varying the number of groups on the fitness values
for ‘grade difference’; ’interest’ and ‘location’ distances for 100 data records.
As expected, the fitness error should go down as the number of groups increase.
We calculate the grade fitness based on equation 4.10, wherein the difference
between the maximum and minimum grade values is taken from all the groups.
This difference is represented as the fitness score in figure 4.5 (a). It is seen
that the fitness score decreases with increase in number of groups which means
that the quality of groups formed increase as the number of groups increase.
However, this observation is to be taken with a grain of salt since it is not
always true, as is seen in case where the fitness score increases from 0.28 to
0.32 even when the group size increases from 10 to 15. Moreover, the hybrid
PSO outperforms the baseline model in terms of fitness achieved and thereby
the quality of groups formed.

Next, we calculate the ‘location’ and ‘interests’ fitness based on equation
4.7, wherein the distance of each data vector to its corresponding centroids is
calculated for these attributes. The less the distance, the better the fitness
or quality of the groups formed. If the ‘location’ of the data vector is same
(same city) as the location of its corresponding centroid, then the distance is
0; if location is in the same country (different cities), then the distance is 1; if
the location is in same timezone, the distance is 2; else the distance is 3. We
then normalize the total distance by dividing it by the max. possible distance
which is 3. This is repeated to calculate location distance for all data vectors
with their corresponding centroids.

Similarly, ‘interests’ distance is also calculated for every data vector. The
total distance for ‘location’ and ’interest’ is then normalized to produce a fit-
ness score which is shown in Figure 4.5 (b). It is seen that the fitness score
decreases with increase in number of groups which means that the quality of

groups formed increase as the number of groups increase. Again, this observa-
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tion is not always to be taken as true. The hybrid PSO model performs better
than the baseline model, which means that the quality of groups formed is

better in terms of location and interests fitness score.
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Figure 4.5: Effect of different number of groups on Fitness

We also compare the fitness results when the number of users in a group (o)
or group is predetermined, the results are shown in Figure 4.6. Looking at the
grade fitness graph (Figure 4.6 (a)), the fitness error decreases with increase
in the number of users per group. This is expected because with more users
the chances of ‘grade’ scores being skewed decreases, hence the grade fitness
increases. However, the grade, location and interests fitness for the hybrid
and baseline model is close for low values of («). This can be attributed to
the fact that with lower number of learners in a group, the chances of similar
values for the mentioned attributes within a group decreases. The hybrid PSO
model performs better than the baseline when the number of users are more.

However, the performance is almost similar for less number of users per group.

Similarly, for ‘location’ and ’interest’ fitness (Figure 4.6(b)), the hybrid
PSO models performs the same as the baseline model when the number of
users per group are less. However, it outperforms the baseline when the number
of users per group increase. However, the overall fitness error may increase
even with the increase in number of users. It can be seen that the fitness

score increases from 0.43 to 0.48 when the number of users per group increase

25
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from 20 to 25. Overall, the hybrid PSO performs better than both the baseline

models, which tells us that the algorithm is useful in generating quality groups.
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Figure 4.6: Effect of number user per group («) on Fitness

Inter-Group Distance Analysis

Here we try to compare the distances between the centroids of groups or
groups. The objective is to maximize the distances between groups for 'loca-
tion” and ’interest’ attributes. We wanted to group students who have similar
interest and location, which means that ideally different groups should have
students with different interests and location. This was analyzed by compar-
ing the interests and location attributes for centroids of various groups. We
counted the unique location values from the total location values of centroids
of various groups formed. The more the count of unique locations, the more
the distance between centroids, thereby increasing the inter-group distance be-
tween centroids for location attribute. We apply the same logic for ‘interests’
attribute as well. The result using 100 data records is shown in Figure 4.7.
From the graphs, it is evident that inter-group distances for ‘location’ is more
for the hybrid PSO model as the unique count is more. However, the inter-
group distances for ‘interest’ is only slightly better for hybrid PSO at higher

number of groups.
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Intra-Group Distance Analysis

We also calculate the Intra-group distances to measure the ‘grade’ distribution
inside a group. Ideally, we would want to have a good mix of high and low
grade students (heterogeneous) for a positive learning outcome. We use a
‘heterogeneity factor’ (HF) as a measure to calculate the heterogeneity of group
with respect to the ‘grade’ attribute [15]. The measure of HF can be computed
as follows. Let AG; be the average grade of the maximum and the minimum
student-grade in the i-th group.
mazxc y +manc

AGZ _ grade; 2 gradei) (49)

where, s; is the grade of j-th student belonging to group C;.

The measure of ‘heterogeneity factor’ is then defined as:

ma/m(cgradei )

+minc,, ,q..) (4.10)

HF, =
1+ Zj |AG; — grade(s;@)|

where,

sj(i) is the grade of j-th student belonging to group C;.

For any group with high ‘heterogeneity’, the HF; should be higher than
1. It is trivial to show that HF; = 0 when all students in a group have

equal student-grades; HF; < 1 when there is less heterogeneity in the group,
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meaning student-scores are at two extremes. The greater the HF;, the better
the heterogeneity. Figure 4.8 below shows the HF; for different groups or
groups generated via baseline and hybrid PSO models using 100 data records.
As can be seen in Figure 4.8(a), PSO hybrid outperforms baseline for grade
heterogeneity, especially at the higher number of groups. Similarly, in the
graph 4.8(b), the hybrid PSO performs better than the baseline model at

higher number of users («) per group.

2.0

— baseline — baseline
— hybrid PSO — hybrid PSO

15}

HF (grade)
-
o
Z
o

0.7

0.5}

0.0

5 10 15 20 25 0 5 10 15 20
Number of groups or clusters Number of users per group (alpha)

(a) HF per the number of groups

Figure 4.8: Heterogeneity Factor comparison with different baseline models

Measuring Scalability

When it comes of group formation, not only the quality of groups matter but
also it is important that the hybrid PSO algorithm scales well. In the given
time, when the number of students registering for MOOCsSs is rising every
year, it becomes absolutely necessary that the algorithm is robust enough to
accommodate the rise in number of students and generate dynamic learning
groups.

We ran five simulations on different dataset for each of the [100,1000,5000]
data samples. The average time to generate learning groups with different data
records is shown in Fig 4.9. The execution time in ‘minutes’ for generating
[5, 10, 15 and 20| student groups using hybrid PSO are [66.4, 144.2, 173.5

and 252.5| respectively. Same as in reciprocal recommendation, the execution

o8
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time to generate groups will depend on several factors like dimension of data,
number of data records, sparsity of data etc. Given the change in any of the

mentioned factors, the execution time will change accordingly.
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Figure 4.9: Average execution time for generating groups using ‘selection’

The above results show that the hybrid PSO models performs better than
both the baseline models in most use cases, thereby generating better quality
of groups. Although, the algorithm could not be tested real-time on an actual
MOOC platform, these results nevertheless provide insights about the group
formation technique using the user attributes. Hence, it would be worthwhile
to integrate it within an actual MOOC to get a realistic opinion on its perfor-

mance.
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Chapter 5

Summary and Conclusions

The first part of our research involved building a novel reciprocal recommenda-
tion system for MOOCs in which learners are recommended to each other based
on their preferences and profile attributes which satisfy those preferences. The
evaluation of the proposed algorithm was done using the modified definitions
of precision, recall and discounted cumulative gain (DCG). Several runs were
made to compare the precision, recall and DCG for top-N recommendations
with /without the ‘selection’ phase of the algorithm. Also, a comparison of the

execution time was measured for large dataset samples.

The results show that the our system performs better than the baseline
system on the measures of precision, recall and discounted cumulative gain.
Moreover, these tests have also shown that the system is robust enough to
take into account the large datasets for top-N recommendations. Reciprocal
recommendation provides a quick and easy way for the users to connect with
their preferred learners in a large pool of users. It has a lot of benefits in
terms of peer learning and improving user engagement which could sustain
the interests of learners and mitigate the dropouts rates in MOOCs. The
proposed algorithm aims at allowing learners to reach out and communicate
with other similar learners, it thereby makes a promising case for our system
to be deployed within an actual MOOC.

As future work, we plan to incorporate some more user attributes like
‘communication frequency’ of users, their ‘leadership ability’ etc., based on

their historical interaction on various MOOC forums. It would possibly help

60



in improving the list of recommendations. Moreover, we plan to conduct tests
on an actual MOOC platform to measure the quality of recommendations.

In the second part of our work, we presented a framework using the hy-
brid particle swarm optimization to form student groups based on certain
pre-specified attributes like |age, gender, location, qualification, interests and
grade|. The evaluation of the proposed algorithm was done using two different
baseline models to determine the overall quality of groups formed in terms of

fitness, intra-cluster heterogeneity and inter-cluster homogeneity measures.

The results showed that the group quality was better when compared to
the baseline models of groups formed using the modified k-means method.
Also, the hybrid group formation algorithm was able to generate groups for
relatively large datasets with close to 5000 records. Therefore, the tests show
that the algorithm is robust and scalable taking into account the different
variations of datasets. The proposed algorithm can help the instructors to
automatically generate suitable groups of students for online classes which
may cause the participating students to be more involved in the knowledge
construction process by increasing the level of interaction and thus improve

learning.

As a future work we plan to conduct tests on an actual MOOC platform
to get a real-time assessment of the quality of student groups formed based
on the proposed algorithm. The algorithm can also be improved to add more
attributes like ‘communication frequency’ of users, their ‘leadership quality’,
‘interactivity within forums’ etc., which could potentially increase the chances
of forming better quality groups. These attributes could be derived based on
the past courses that the students had registered for, or in some form of a

feedback from students themselves based on a certain questionnaire.

Our algorithm would also work on students portal smaller than MOOCs.
However, there would be some challenges in terms of data privacy, ethical
concerns etc., in order to integrate our system with any given MOOC. Our
algorithm is flexible enough to include any changes with respect to user at-

tributes such that we can prioritize the importance of one attribute over the
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other, if required. Case studies reveal that the number of participating users in
MOOC:s is increasing every year, hence it becomes quite challenging to estab-
lish the same kind of communication that exists within a classroom. However,
with these proposed techniques, we believe we can bridge that gap to some

extent.
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