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Abstract

This thesis systematically studies the inference problems after CUSUM test. It
consists of four main chapters in which different aspects of the problems are discussed.

In Chapter 2, properties of minimum point of unbalanced two-sided random walk
are investigated. These results not only can be used to study maximum likelihood
estimator of change point, but also can be applied to research estimate of change point
after CUSUM test. Chapter 3 gives a practical method for constructing the confidence
intervals of change point after CUSUM test. The method can be implemented either
by tracing back some zero points of the control chart before the detection point or by
tracing back certain number of items produced before the stopping time. In Chapter
4, we study the biases of estimates of change point and change magnitude, and find
that biases of both estimates are quite substantial. We therefore propose a bias
correction method for practical use. In Chapter 5. we further investigate properties
of estimate of change magnitude, and obtain the asymptotic distribution function of
the estimate. Based on the asymptotic distribution function. we derive the confidence

intervals of change magnitude.
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Chapter 1

Introduction

1.1 General Description and Motivation

In many practical and experimental situations. certain statistical properties of an
observed phenomenon which evolves in time may change abruptly at some unknown
point(s). The detection and characterization of such a change are key problems of
interest in many scientific fields. Typical examples can be found in quality control,
clinical trials, speech signals recognition and etc. In statistical literature, such prob-
lems are the so-called change point problems. During the last few decades, extensive
researches have been carried out in this field. For some recent reviews, we refer to
Siegmund (1985), Basseville and Nikiforov (1993), Ghosh and Sen (1991), Lai (1995)

and the references therein.



One of the earliest applications of change point detection lies in the area of qual-
ity control, or continuous production monitoring. In this typical application, on-line
quality control procedures are used to reach a decision as each new observation is
collected. Consider a production process which may be in control (products meet
customer’s requirements) or out of control (products do not meet customer's require-
ments). In such asituation , changes happen when the manufacturing process deviates
from the in control conditions and enters the out of control state. From both safety
and quality points of view, it is necessary to detect the changes and stop the process
for inspection and repair as quickly as possible after assignable causes are identified.
Statistical control procedures have long been used in on-line quality control to detect
changes which indicate the trend of deterioration of product quality. As a simple
model, we can assume that when the process being observed is in control. the obser-
vations are iid with a specific probability distribution. When the process is out of
control, this distribution changes. If a parametric approach is adopted. the changes
in the distributions are reflected in changes of parameters associated with the proba-
bility distributions. For example, if we assume that the quality characteristic process
X, is characterized as a normal process. Under normal operating conditions. obser-
vations comply with a normal distribution with mean po and standard deviation oy,

where pq is the target value and oq reflects the permissive variation of quality. Any

[S]



shift from the target value pg or increase in the standard deviation results in poor
quality. So two basic types of changes could happen in the parameters:

1: Shift from the target value (the reference mean value) pg toward u(p # po with
constant standard deviation. This type of change is described as system error.

2: Increase in the standard deviation from oq to (1 + €)og (€ > 0) with constant
mean. This type of change is called as random error.

Composite changes can also happen. but can be broken up into the two basic
types. The problems now become how to design a statistical decision function and

a decision rule that can detect these changes as quickly as possible after changes occur.

To monitor production quality, groups of random samples of size. say m. are usu-
ally taken at regular time intervals, and monitoring procedures based on either sample
mean .X; or sample variance s? (sample range R,) are plotted with appropriate control
limit(s). The Shewhart, CUSUM and EWMA control charts are the most commonly
used ones in practice; see Montgomery (1996) for tutorial overview of these control
charts. The process is stopped at the first time when the control charts fall outside
of control region(s). Then, we may try to identify the sources of disorders (changes)
and isolate the assignable sources. For this, we may use the information provided
by control charts until the alarm time to estimate certain process parameters after

change, such as the mean, standard deviation, and so forth. These estimates may



then be used to adjust the system and reset the monitoring procedure. The object
of this thesis is to consider the inference problems on the change point and change
magnitude after changes have been detected. Most of investigations will be focused

on the corresponding problems after the sequential CUSUM test.

1.2 The CUSUM Procedure

The CUSUM procedure is a sequential statistical procedure which is used to detect
a change in a probability distribution. [t was proposed by Page (1954) and is com-
monly used in situations where data (observations) are being monitored sequentially.
and its application to the on-line quality control is the most prominent example. In
a typical application, we would be observing a sequence of random variables. usually
representing a certain quality characteristic of a manufacturing process. sequentially,
and want to stop the process as soon as possible if the distribution of the random vari-
ables shift from the original in-control distribution to the undesirable out-of-control
distribution, and then inspect and adjust the system.

From statistical point of view, the data (observations) are a realization of a random
process. Because of this random behavior, large fluctuations can occur in the data
even if the process is in control, and these fluctuations result in false alarms, which

are the cases when control chart fall out side of control region. On the other hand.



again because of randomness, a decision rule may not be able to detect the change
immediately after it occurs. So the best solution is a quick detection of change(s)
with as few false alarms as possible. In practice, the optimal solution is basically
a tradeoff between quick detection and few false alarms. The CUSUM procedure

provides a solution to such a kind of problems.

1.2.1 Definition of CUSUM Procedure

We first consider the simple case. Suppose that X;..X,,.... X, are iid r.v. with distri-
bution function Fg,, and X,4+1. X, 42, ... are iid with distribution function Fj . where
Fy, and Fj, are known while v is unknown. v is the so called change point. We want
to stop the process as soon as possible after v. For simplicity, suppose that fp, and
fo, are density functions of Fy, and Fj, with respect to some reference measure. Then
at time n. the log likelihood ratio statistic under the hypothesis that the distribution
has changed by time n (i.e. hypothesis v < n) with respect to the hypothesis that

change has not occurred (i.e. hypothesis v > n) is

:'I=l fgo (‘Yi) H?:u-{—l fa; (‘Yi) }
2L L Ja X0

i=1

= max In H M

Osvsm L o0h foo (Xii)

= 22 (Sn = 5)



= S, — M. (1.1)
where
L r
5 f91(\x) 5
S.=) In ), So=0,
k ; (fao(’(‘) 0
and

f

me = min S;
0<i<k

Thus. we would like to stop the process and reject the null hypothesis at the first

time when A, exceeds some specified threshold. say b, i.e. at time
Ny = inf{n : A, > b}. (1.2)

This is the CUSUM procedure.

The key property of the log likelihood ratio Sn is that it has a negative drift
before change. and a positive drift after change. Therefore, the relevant information.
as far as the change is concerned, lies in the difference between the value of log
likelihood ratio and its current minimum value; and it is clear that the detection
rule is nothing but a comparison between the cumulative sum S, and an adaptive
threshold m, 4+ b. Because of m.,, this threshold not only varies on-line, but also
keeps complete information of the past observations. This provides the basis for the

optimal properties of CUSUM procedure.



1.2.2 Representation in Form of Reflected Random Walk

The CUSUM procedure can be represented in form of reflected random walks. In the
problem described in the previous subsection, when X, X, ... are iid with distribution
Fj,, the process {S’k, k > 0}, being the sum of iid random variables, is called a random
walk. The corresponding reflected random walk {Wi. k > 0} with reflecting barrier

at 0 is defined by

Wo = 0.W, = max{0. W, + In(2258)0 )y or 050, (1.3)
feo(-\ﬂ)

The CUSUM procedure can be equivalently defined as stopping at the first time

N, = inf{n. W, > b}. (1.4)

The relationship between the reflected random walk {I,,n > 0} and the underlyving

random walk {Sn.n > 0} is as follows. The increment between 1¥,_; and W}, is the

S S . Xn . . .
same as that between S,_; and S, when the increment ln(—*——ﬁ 2\, ;) is not causing W',
g\t n

to be negative. Otherwise, i.e. adding ln(f—:l%"—;) to W,-1 would cause IV, to be
0 n

negative, then the process is reflected at 0, by taking W, = 0 instead of of taking

the full increment ln(%g—";). Reflected random walks and their related theory play a
0 n

central role in studying CUSUM procedure (Chang (1992), Siegmund (1985)). Details

will be given in Chapter 3.
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1.3 Standard One Parameter Exponential Family

To describe the problems concerned in the thesis under a unified framework, we
introduce the concept of standard one parameter erxponential family. From now on,
we will restrict our attention to this case. In this subsection, we give some notations
and facts related to the standard one parameter exponential family. It should be
pointed out that similar material is also available from Siegmund (1985) and Chang
(1992).

A family of distribution {F3.6 € O} indexed by the parameter 6 is called a

standard one parameter exponential family if the distribution Fj is of the form
dFy(x) = exp(fzr — v(0))dFo(z), (1.3)

where © contains an interval with 0 in it. and the function v is normalized so that
»(0) = ¢'(0) =0, ¥"(0) = 1.

It can be easily verified that
w'(6) = [ 2dFo(2),¢"(0) = [(z = &'(0))dFi(z),

and ¥'(8) <, =, 0r > 0 according to 8 <,=.or > 0.

We will generally assume that the observations X, Xy, ... are iid random vari-
ables having distribution F, which belongs to the standard one parameter exponen-
tial family, and the notations Py, Ey will denote the corresponding probability and

expectation. So Fyg(X,) = v'().



The function ¥, the cumulant generating function of Fy, is convex, and its Tavlor

expansion at § =0 is

b(0) = 62+ o7 + 6+ 0(6°).

=37 7%

where v = Eo(X3}) and & = Eo(X}) — 3. From this, u = ¢'(0) has the expansion

p=0+ 267+ goi‘ +0(6Y).

For small @ # 0. there corresponds exactly one § # 0, necessarily opposite sign. for

which v(8) = u’r(é). For 8y < 0 < 6,, we conveniently set
A,‘ =9,' —é,’.fO'I‘ I = O.l.

Note that N\g < 0 < A;.

Suppose that, in (1.3), fs, and f;, are density functions of Fy, and Fj, which belong
to the above defined exponential family and 8y < 0 < 6; satisfy ¥'(6y) = ¢(6,). Then
the CUSUM procedure. after rescaling the parameters. can be written as stopping at
the first time

rqy =inf{n: S, — m, > d},

where

k
So=0,5: = Z.X,»,for k>0,and m, = Orsr}:léln Sk.

i=1

Or, equivalently, rewrite as making an alarm at time

N =inf{n: T, > b}, (1.6)

9



where

TO = 09 Tn = maox{O\T -1 + -\’n}g fOI‘ n> 0.

Of particular important examples of the above defined standard exponential fam-
ilies are:

(1) The normal family, where ¥(6) = %02 and Fjy is the distribution function of
standard normal.

(2) The shifted non-negative exponential family. where ¢(8) = —8 — [n(l — 8)
and fo(z) = e~V ). If the density function of usual non-negative exponential
family is ll\e‘f. then the transformation of variable to the standardized variable is
X-landf=1-1

(3) The Gamma(a, 3) family with a being fixed, where v (8) = —\/a# — aln(1 -

75;) and fo(z) = %(r+ \/5)""6"‘/5(”\/3)[(»_\/;). If the density function of usual

Gamma(a.3) family is r(al)ﬁaz"’"e"s. then the transformation of variable to the

1

standardized variable is %’f and § = a(l - 3).

1.4 Statement of Problem

Ever since it was introduced, the CUSUM procedure has attracted heavy attention
of both theoretical and applied statisticians, and its properties and operating charac-

teristics have been extensively studied. Page (1954, 1953, 1957, 1961, 1963) showed

10



that CUSUM procedure performs better in detecting small and moderate changes
than other commonly used procedures, such as, Shewhart chart and EWMA chart.
Barnard (1959) called CUSUM procedure "a fundamental change in the classical pro-
cedure”. Roberts (1966), Pollak and Siegmund (1985), Srivastava and Wu (1993)
compared it with other commonly used procedures, such as EWMA and Shiryayev-
Roberts procedures. Lorden (1971), who first gave the definition (1.1) of the proce-
dure, proved that the procedure has an asymptotic optimality in terms of the average
conditional delay in detection time. The asymptotic optimality is developed on the
basis that CUSUM procedure is a sequence of Wald Sequential Probability Ratio Tests
(SPRT). Moustakides(1986) showed that Lorden’s asymptotic optimality of CUSUM
procedure also holds in a non-asymptotic sense. In the literature, a commonly used
performance measure of control procedures is the average run length (ARL) of sam-
ples. However, the exclusive use of the ARL has been criticized. and use of percent-
age points of the run length distribution has been recommended (Bissell, 1969). To
evaluate the operating characteristics, many techniques have been developed both
numerically and approximately. For example, Brook and Evans (1972) gave the al-
gorithm to calculate ARLs based on the Markov structure of the CUSUM process,
and related numerical algorithms were also given by Woodall (1983), and Waldmann
(1986). These algorithms have been developed to the point that, given a computer

and enough time, we can essentially obtain the true probability distribution of ARLs

11



at a desired value. Siegmund (1985) provided a very accurate approximation formula
for calculating ARL'’s.

In spite of the extraordinary accomplishments listed above on the CUSUM proce-
dures, those researches are mainly focused on the design problems and the operating
characteristics, while the inference problems after CUSUM test received less atten-
tion. More precisely, there is no systematic investigation on the estimations of the
change-point and change magnitude after the detection. However, the estimations
and construction of confidence intervals for the change-point and change magnitude
are a rather crucial issue in practice. For example, in quality control, after the change
has been detected, we want to stop the process for inspection and repair. Apparently.
we want to decide how many items should be inspected to guarantee the uniformity
of the quality. That means, we need to estimate the change point and construct con-
fidence intervals for the change point. From process adjustment and control point of
view. we would also like to estimate the change magnitude as a reference to adjust the
system for the next stage. Hinkley (1971) gave a natural way of estimating change-
point v by & = max{n < N : T, = 0}, and in the case of detecting change in the mean
of a process, estimating process mean after change by 4, = Tn/(N — ©). Simulation
studies were conducted without conditioning on N > v. The results show that nega-
tive bias for £ appears mainly due to the false alarm possibility; and positive biases

for i occurs due to the overshoot at the boundary crossing time. He also pointed

12



out the necessity of further investigation. However, in considering these problems .
conditioning on N > v is very crucial, otherwise the estimations are meaningless. On
the other hand, simulation cannot provide any of usual sorts of insights which one
might hope could be provided by an analytic approximation. Theoretical results are
also necessary for developing simple methods for bias correction. The main goal of
this thesis is to solve the above questions by some analytic approximations.

The thesis is organized in the following manner. In each chapter, different aspects
of the problem are investigated. Chapter 2 presents some fundamental results that are
necessary for a full development of subsequent chapters. Much of notation is defined.
and some preliminary results available from literature are given. Then properties of
the so-called two-sided random walk are investigated, and these results build the basis
for studying inference problems after CUSUM test.

Chapter 3 considers the problem of constructing confidence intervals for change
point based on the information contained in the CUSUM control chart. A practical
method for constructing confidence intervals of change point is proposed by tracing
back a certain number of zero points of the control chart. The method is implemented
by approximating the non-coverage probability. Furthermore, the average lengths
of confidence intervals are derived, and comparison of our approximations with the
simulation results is also conducted.

Chapter 4 turns to studying biases of the estimates of change point and change

13



magnitude. Under certain conditions, the second order approximations for the biases
of change point and change magnitude are obtained. Simulation studies are also per-
formed to check the accuracy of our approximations. Finally, a simple bias correction
method is thus proposed for practical use.

In Chapter 5, the estimate of change magnitude is further investigated. At first,
its asymptotic distribution function is derived. Then based on the asymptotic distri-
bution function, the confidence intervals for the change magnitude are obtained.

Finally, in Chapter 6. major results are summarized, possible extensions are dis-

cussed and some topics for future research are suggested.
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Chapter 2

Unbalanced Two-Sided Random

Walk

2.1 Introduction

The purpose of this chapter is to set the stage for subsequent chapters. It contains
background materials and fundamental theory that are necessary for full development
of the upcoming chapters.

In Section 2.2, we first introduce some notations which will be used throughout the
thesis, and then present some preliminary results available from literature. For the
preliminary results, we first give two results about the local expansions of the moments

of ladder’s height and the correlation between ladder epoch and ladder’s height, then



we list two results which are regarding the convergence rates of overshoot and the
correlation between the crossing time and the overshoot. Finally, we introduce the so-
called Wald’s Likelihood Ratio Identity, which is then used to derive the convergence
rate for the boundary crossing probability.

In Section 2.3. properties of two-sided random walk are investigated. These re-
sults will be applied as essential techniques in later chapters to considering inference
problems after CUSUM test; besides, they can also be used to study properties of
maximum likelihood estimator for change point: and in term of random walk. these
results have their own independent interest as well.

Finally, in Section 2.4, simulation results are given to show the accuracy of ap-

proximations obtained in Section 2.3.

2.2 Notation and Preliminaries

In this section. we introduce some notations and preliminaries that will be used
throughout the thesis.

Suppose that X, X,,... are independent and identically distributed (iid) random
variables. As usual, let Sy = 0 and S = f-"=l X; for k£ > 0. The process {S,k > 0}
is called a random walk. The ladder epoch 7, and the descending ladder epoch 7_
are defined as

T+ = inf{k > 0: S; > 0}, (2.1)
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and

- =inf{k>0: S <0}, (2.

[
(8]
—

and the ladder height is S;, (S;_). More generally, define the first passage time at
boundary x as

=inf{k>0: S, <z}. for <0, (2.3)
=inf{k>0: Sy >z}. for z>0. (2.4)

and denote the overshoot at x as

Now let {Fy,8 € O} be a standard one parameter exponential family as described
in Section 1.3, and X, X,.... be iid with distribution function Fj for some 4 in the

interior of @. Define the characteristic function @4(¢) by

<
og(t) = / e Fy(dr).
Stone (1963) defined that the distribution Fj is strongly non-lattice if

lim sup |@g(t)| < 1.

lt[—o0
With above defined notations, we now present some results that will be used exten-
sively throughout the thesis. The first result gives a local expansion on the moments
of ladder height, which was first discussed by Siegmund (1979), and further studied

by Chang (1992).



Theorem 2.1 [Chang (1992)]: Suppose that {F; : § € ©} is a standard one
parameter exponential family, with Fy being strongly non-lattice. Then for any k > 0,

as0< 80 —-0(0>8—0), we have

k
k ok :

EgS;, = EoSE + o 1(1305‘::1)9 + O(6%).
(EgS* = E,S* + e 1(5055_“)0 + 0(6%).)

The second result is concerning the correlation between ladder epoch and ladder
height.
Theorem 2.2 [Chang (1992)]: Under the conditions of Theorem 2.1. for any

k>0,as0<8—50(0>6—0), we have

o ]‘ v
[lEa(T+~T+) = mEoSi:l + 0(0)

ot l or
(nEe(T-5S7_) = mEobf“ + 0(9).)

where u = ¥'(0) = EpX;.

The next two results are related to the convergence rate of the renewal function.
Stone (1965) showed that the convergence rate for the renewal function is exponen-
tially fast. Siegmund (1979) further showed that in the standard one parameter
exponential family, the result holds uniformly in a neighborhood of 0 if the baseline

distribution function is strongly non-lattice.
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Because of the exponential convergence rate, under any distribution P for § > 0,
R. approaches a limiting distribution as £ — oc. Let R, denote a random variable
with this limiting distribution. The moments of R are given by

Eq(SEH

o Rk 2,
p+(8) = Eg(R) (k + 1)Eq(S-,) =

for k > 0. For convenience. let p4(8) = pi(6), p+ = p+(0). Analogously, we define
ok (8). p_(8) and p_ for § < 0.
Using the exponential convergence rate of the renew function, Chang (1992) de-
rived the convergence rate for the distribution function of the overshoot R..
Theorem 2.3 [Chang (1992)]: Under the conditions of Theorem 2.1, there exist

positive 8, r and C such that
|Po(Re < y) = Po(Re < y)| < Ce™70H),

|Eg(e™2R=) — Eg(e™>R=)| < CAe™™.
uniformly for 8 € [0,0%], A =6 — 0 and z.y > 0.

A relation that will be used in this paper is

(EoS:_)(EoSr,) = —3 (2.

[ ]
-1
v

which hold for any standard one parameter exponential family. This result can be

derived by differentiating the Wiener-Hopf factorization

(1 _ Eoeitsf_(_ )(1 _ Eoeitsf_) =1- Eoeitxl ( .

(8]
oo
g
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twice, and then letting ¢ = 0.

Next result is a modified version of Theorem 3.1 of Chang (1992) which generalizes
a result of Lai and Siegmund (1979) about the limit of the covariance between the
crossing time and the overshoot.

Theorem 2.4 [Chang (1992)]: There exist positive 8%, r and C such that uniformly

for 8 € (0,67,

|uCovs(e, Ra) — /("C’(EQRr — EgRo)Py(r_r = o0)dz| < Ce®
0

Another fundamental tool we will use repeatly is Wald’s Likelihood Ratio [dentity.
We will use it in the following form. Let X|..X;, ... be as above. 3, be the sigma field
generated by X,.....X,. 7 be a stopping time adapted to {3,}. and suppose Y is
measurable with respect to J.. Then we have

Theorem 2.5 [Wald’s Likelihood Ratio Identity]: For any 0. ¢’ € ©, and a 3.

measurable variable Y,
Eg(Y:T < 00) = Eg[Yelf-8)5-=1(wl0)-w8), r < o).

For the proof of theorem 2.5, we refer to Siegmund (1985).
Finally, using Theorem 2.5 and 2.3, we derive the convergence rate for the bound-
ary crossing probability Py(r., < o0). Related results were discussed by Carlsson

(1983), Klass (1983) and Wu (1999).



Theorem 2.6: There ezist 8* > 0 and positive constants C and r such that

uniformly for 6 € [0,60"],
|Py(1—; < oc)/e* Ejeft-= — 1] < CAe™™,

where § < O satisfies v(8) = ¢(8). and A =9 — 0.

2.3 Moments of Minimum Point of Two-sided Ran-

dom Walk

2.3.1 Introduction

Let {Xi} be independent random variables with distribution function Fy, for i < 0
and Fy, for ¢ > 0, where 6§y < 0 < . and Fy, and F belong to a standard one
parameter exponential family as defined in Section 1.3. The two-sided random walk

is defined as
" Xi for n>0

=1

Zn = 0 for n=0 (2.9)

-Y2L X for n<0,

i=n -

and denote the minimum point vy of Z, as

Zp = min Zn. (2.10)

—0<n<c



Then v is the maximum likelihood estimate of change point. Thus the behavior of g
is of particular interest in estimating and making inference about the change point.
For details of how to relate the two-sided random walk to the maximum likelihood
estimator of the change point, please refer to Hinkley (1970).

In this section, we give second order expansions for the first two moments of vqg
under the condition that 6y and 8, approach zero at the same order. These results
can be used to study the bias and variance of the maximum likelihood estimator for
the change point. Wu (1999) considered similar problems for the case that {X,} are
from a normal population with different means in each side of random walk. which is
a special case of the question discussed in this section. The fundamental tool we will
use is the theorems given in section 2.2.

For the convenience of presentation. we introduce some standard notations which

are used throughout this section. Denote

mog= inf Z,=- sup (—=Z,)=-Myp and my = inf Z,,
-20<n<0 —0<n<0 0<n< >

and

mg = min(0,mg), My = max(0, M) and m] = min(0,m,).
Further, we denote v, as the minimum point of S, = Z, forn > 0, i.e. Z,, = m,.
Finally, we use Py, (.) to represent the probability measure associated with the random
walk {S,} for n > 0, and P(.) the probability measure associated with {Z,} for
—00 < n < oo when there is no confusion.
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In the next two subsections, we give the second order expansions for the first and

second moments of vg.

2.3.2 Second Order Expansion of E(y) and E|y|

First write

E(v) = Evoi v < 0] + Elvo; o > 0]
= Elvgimg < m}] + E[vg; my < my). (2.11)

As the two terms on the right hand side of (2.11) have similar structures. we shall
only give the detailed derivation for E{vg: m; < mg).

From the strong Markov property of S, = 1=, Xi for n > 0. we can write
Elvo: my < mg] = Elvo; Ty < o<

= E[tmyi Ty, < 0] + E[un] P17y < ). (2.1:

(V]
—
o
—

where we assume that 7o = 7. when mg = 0 as in the following discussion.
We first give the local expansions of some quantities related to the ladder epoch
T+(T_).

Lemma 2.1: As 6,6, — 0,
Py, (- = 00) = —A EoS,_e 3= + O(AY).

Psy (T4 = 00) = —AgEoS,, €727+ + O(AD).
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Eg[ro57- < o0] = ;_ll—l-EOST_e%L”' + 0(4Ay),
Egy[ryi 7y < 00] = i505,+e%“9+ +0(Ao),
where iy = ¢'(6,) and i, = ¥'(fo).
Proof: From Wald’s Likelihood Ratio Identity. as §; — 0, we have

Py (- < oc) = Ej, ed157-

A?
=1+ A B; 8.+ SLE; 82+ 0(A))

01 2 —\f 2 3

=1+ A(EeS:_ + Eo~; )+—.—EoS,_+0("—\1)
v —Xl EOST+ 3
=14+ A EoS_(L+ T EoS.. —) + O(4Y})

=1+ EoS,_e - + 0(AY),

where in the third equation from last. we used Theorem 2.1 and the fact that §, =
—0; + O(A?). This completes the proof of the first equation of the lemma.
To prove the third equation of this lemma, again by Wald's Likelihood Ratio

Identity and Theorem 2.2, we have
Eg (-, 7- < o) = Egl(r_eA‘s*-)

= Egl(‘l'. + Ai7-5:0) + 0(4y)

1 1
= —E; S,_ + 5—AEoS;_+ 0(A)
Hi E1131

- ﬁi(Eos,. + —5052 )+ ZLEST +0(A)
1

[S%]
-]



= L EpS._etie- 1 o(A).
1

Similarly, we can prove the other two equations.
Next three lemmas give the second order expansions for the three quantities ap-
peared on the right hand side of (2.12) respectively.

Lemma 2.2: 450 < 68, — 0,

Eg[roirm <o) 1
P5|(T— = OC) ﬁlAI

Ep (1) = + O(1).

Proof: We only have to note that v, is equivalent in distribution to ¥4 7! % where
s are iid r.v.. which have the same distribution as that of [r_|7- < ]. and R is

an independent geometric r.v. with p = By, (7~ = ).

Lemma 2.3: As 6y, (60| = 0 at the same order,

P(Tms < 20) = fio + O(A}).

where

o = Cle(c'z/cx)do‘-\l‘ (2.13)
with

AL
C, = Ax(ﬁ++p—)’
! Al - Aoe
1, 1 1, 1,
Cy = 5p% + 5 + EoSrip- — 5(ps — 1) + 5(pZ = o) = Co,

and

Co= /0 Eo(R_z — p_)dEo(R: — py),
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EO(S%.) 2 EO(S-:?_) 2

——____p_

= 3Ee(Sr,) P T 3Es(S)

r
Proof: Conditioning on whether mj = 0 or not, we can write
P(7p; < 00)
= F5 (- < )P {mr =)+ B, (T—pp, < ;3 Mo > 0). (2.14)

The first term of (2.14) can be evaluated by results of Lemma 2.1. For the second

term, first from Appendix 1. we have

Ej e f-~ = 3= + 0(A). (2.13)
Combining (2.15) and Theorem 2.6. we obtain that
Py (T=r < oc) = e UFe=N1 + O(AY) + 0(A 7). (2.16)

uniformly for small 8, > 0 and some r > 0 as + — oc. Using (2.16) and Wald's
Likelihood Ratio Identity, we can write
Py, (Tay < 00: Mo > 0) = _/:; Pa,(7—2 < 00)dPig(Mo > £)
= = [ Pa(r-s < 50)dPay (7. < )
= = [T By (35 By, (e205))
_— — f0°° e~ d1(z=p-) Jolo(x+p4)
— J5° emBrlempu)gedoletas) (B eBo(Rempe) )]
- fo°° e"Al(z“P-)[Eo-l(e'-\l(R—.r—p—) _ 1)]der(r+n+)
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o
—/0 e""("“")[E,;l g™ 81 F-x=2=) _11d[ Py (r < 00) — eBol=+e+]], (2.17)

The first term of (2.17) can be calculated directly as

Ao
AL - 2o

e«’-\1p-+'-\op+

For the third term, we use the fact that EqR., — p_ is exponentially bounded as

r — oo from the strong renewal theorem and therefore is integrable. By the fact that

E; (€3 R-+77=) — 1) = N Eg(R-. — p-) + O(A?).

6

The third term of (2.17) is approximately
— Ao, /O'x(EoR_: —po)dz +0(AY).
Similarly, by integrating by part and note that Ry = S-, . the second term is equal to
e3P [Py, (T4 < o) — €797+] — N\, /Ox(EORI — p+)dr + O(A).

For the fourth term of (2.17). from Appendix 2. we know that

d Aotz d
E;(Pgo(rz < oc) — edolTtes)y = AOZ;EOR: + O(AY). (2.18)

Thus, the fourth term of (2.17) equals to

— Ao, /0 (EoRoz — p_)d(EoR; — ps) + O(A3).
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We complete the proof of Lemma 2.3 by the following facts:

* 1
/0 (EoR: — ps)dz = 5(p} — 1), (2.19)
/0 (EoR-z —p-)dz = —5(p~ —ro). (2.20)

Proof of (2.19) and (2.20):

Let My be defined as in Section 2.2.1 with X|s have distribution Fj,. Then
Eg,(Mo) = /0 Po(Mo > )dz

= /"‘ Pgo(a’r < oo)dr
0

_ /oc edolz+o4) 0 + /°° er(.r+p+)(E9.° ed0(Rs=pt) _ l)dr + O(Ag)
¢] o]

1 . S
= —et ;\.0/0 (EoRa — py)dz + O(A2).

0
On the other hand. by Theorem 1 of Siegmund (1979),
1 A
Ee(Mo) = —— — pr — =or1 + O(AD).
Ao 2

So, from the two expressions of Eg,(Mg), we have

(P} =) + O(Ao).

o)

| (EoRe = py)da =

Since [ (EoR: — p4)dz is free of Ay, it is indeed equal to %(pi —r1). This completes
the proof of (2.19).

Similarly, we can show (2.20).
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By combining the above approximations and some algebraic simplifications. we
get the desired result.

Lemma 2.4: 4s |0g| and §, — 0 at the same order,

Ao

e o),
1 — Qg

E[Tmé;Tm{, < OO] =
Proof: First we write
Elrm:. Ty < o]
= Eg (T-. 7= < 20) P74 = 00) + E[T_agy, Toaty < 0. Mo > 0]. (2.21)

The first term of (2.21) can be evaluated by using Lemma 2.1. For the second term,

from Wald’s Likelihood Ratio [dentity, we have
Eoo [E@l(‘l‘_‘\[o. T-My < 30|;”0 > 0)] = Eoo[Eo‘l(T_‘,woeAlsf‘-"o )]

= Ego [Eo_l (T_Moe—Al(x\!o—ﬂ-))] + EGO [6—31.\10 EG-; (T.‘.\[O(E-A‘(R“"O—p") _ 1))]

= Ego|Ej, (T-arpe™>1Mo=2-))] £ 0(1).

—_—
(3]
.
I
o

~—

We will give the proof of (2.22) in Appendix 3. On the other hand.
Ego[Ej5 (T-re™2 (Mo=p-))]

= LS By [~ MMOE, 5, ]
H1
= %GA“"E%[E—A“%(‘MO +p-)l(1 +0(AY))
1

= ﬁie““’-(p_an [e=31Mo] — Ep [Me™21¥0])(1 + O(A?)).
1

—_—
o
N
[~

~—
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To approximate (2.23), we first note that M is equivalent in distribution to Z" Tt S(')
where SQ, fori > 0, areiid r.v.s, which have the same distribution as that of [S,, |7y <

oo], and K is an independent Geometric random variable with p = Py (7, = oo). Thus

o _A
Egle™®™] = Eq (Y e R

k=2

(1= Py (1s = 00))F Py (74 = o0))]

Egle 354, 1y < 3]
1 — Ege™215+ .7y < o0
Ao

= TaC AO'*'O(Ao)

= P (74 = oc)

and

g y =1 S .
Eag[Moe™1™]) = Egp[3 (3 Sme T 74 (1 = Pog(ry = 00))" " Byy (7 = o))

Eg[S., 3 10 < o]
(1 = Egy[e” A“””f,'r < oc))?
Ao

- Agp+ / 9 9,
ST T8 2

= Py, (14 = o]

(8]
[N
b
~—

The proof is completed by combining the above approximations.
Combining the results of Lemma 2.1 to 2.4, the following result is obtained.

Theorem 2.7: As |0y| and 6 approach zero at the same order,

A0 Ao
E gl = ~—.______ AO(P++9 )+ eAl(p++p_)
o a1(Ar — Ag)? 1A 1A — Ag)
A Ai{ps+0-) Ay Ao{p++
—_——_———C N e=olP+ p-)+01,
fo(Ar — Ao)? H0do(A; — Ag) (1)
and
A0 Ao
Ely| = NNV edolprte-]) 4 edilps+o-)
o (A = Ao)? £1A1(A1 — Ao)
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A edilpsFo-) _ A1

. — Aglp4++p-)
(B = Bo)? FololA; —Bg)© +0(1).

2.3.3 Second Order Expansion for E(ug)

In this subsection. we further explore the techniques used in the last section and derive
the second order expansion for E(v3). As the techniques are basically the same. we
only provide the main steps of proofs. The basic assumptions are the same as in the
last subsection, i.e. that 4, [fy] — 0 at the same order. Same notations will be used.

First, we write

E[d] = Elvd;vo < 0] + E[Ud: 1o > 0]

(8~
[
(W51

= E[vd;mo < m\] + E[dim; < my). (2.2
As the two terms on the right hand side of (2.25) have similar structures. we shall

only give the detailed derivation for E{v3:m; < mg]. For n > 0, we can write

E[ug;mo < mll] = E[(Tm; ‘*‘V?)Q?Tm; < oo

E[Tri:;‘rm:) < OO] -+ QE[TmE,Uz;TmG < OO] + E[uzz;r c’) < 30]
0 m
E[T:;’ Tl < oo + QE[VZ]E[Tm;)? Tm) < oo} + E[v3]P(r 1 < oo). (2.26)
o m

Therefore, there are five quantities to be evaluated separately. Approximations for
E(vy), P(Tm6 < oo) and E[Tma; Tmy < oo] have already been given in the last subsec-
tion. The expansions for the other two will be given after three lemmas.
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Lemma 2.5: For any stopping time N adapted to S, = o{X}..... X0, }. if EgN? <

oo and EgX? < oo,
1
E¢N? = E['d"/(g)Eel\’ +2uEs(NSn) — EgS%],

where 5, = Yoo, Xi, X!s are iid with distribution function Fy which belongs to the
standard one parameter exponential family defined in Section 1.3, and u = v'(8).
Proof: It is easy to check that {(8, —nu)? — n¥"(6).S,} is a martingale. Under

the condition that Ey N2 < oo and E;\? < oc, we know that
Egl|(Sx — Nu)* = Nu"(0)]] < .
Therefore. we have
Eg[(Sy — Nu)? — Nuv"(8)] = 0.

Solving the last equation for Eg:V?, we get the desired result.
The next lemma can be derived from Theorem 2.1. 2.2 and the fact that 6, =
1A+ O(AY), 6 = 120 + O(A]).

Lemma 2.6: As 6,6, — 0.
1o [reSe,] = 5 EoS%, +0(A1) = p4 EoSy +0(A));
oBs[r-S-_] = 5 EoS%. + 0(2o) = p_ EoSr_ + O(Ao);
Eg, Sr, = EoSr,e ¥+ +0(A2),

Ee,S,. = EoS,_e 37~ + O(A).
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Lemma 2.7:

v"(8,)

=3
Hi

1 1
EoS._e7- + 0(—).
0or_€2°7 + (-’31)

Eg [r3;7. < 00] =

Proof: From Wald’s likelihood ratio identity, we have

Ep[r2;7_ < ] = Ej, [r2e2157-)

= B[] + A E; [725, ] + 0(-_\1:). (2.27)
From Lemma 2.5. we have
E; (2} = ;—%[Ea‘ r_w"(01) + 2 B (1-5-_) — Ej S2]
- %[;%Eél So_u(8) + EoS?. — EoS2 +0(A,)]
= ""/;_Eg‘) EoS,_e™ 7o + O(Ai]), (2.28)

where in the last equation. we used lemma 2.6, and in the second to the last equation.
we used Theorem 2.1.

To approximate the second term in (2.27), let A(8) = E4S;_ for 6§ < 0. Then
R"(8) = Eg[—y"(0)7-5-_ + Sr_(S._ — ut-)?).

On the other hand, by Theorem 4.2 of Chang (1992), we have h"(8) = $ES% — V),
and a!V is a constant defined in (4.1) of Chang (1992). Therefore. we have

1

1 ~
E; (728 ] = = i, [r-S7.1— E[S7.]1+ Eg, [r-S:_J0"(61) + O(55)

HNI
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_ 1 o2 "ep 1 9 ¢
= ﬁEobr_d’ (01) + O(A—f) ( .

o
[AV]
Hel
~—

Insert (2.28) and (2.29) into (2.27), we complete the proof of lemma 2.7.
By using the same argument as in the proof for Lemma 2.2, we obtain the following
result.

Lemma 2.8:

L] = Eg[r2ir- < o] | Eg[r-i7- < oc]

E ) 2
612 Pg(T_ = OO) Pg(T_ = oo) )
B U.””(él) 2 l
S TEE TIw R
Lemma 2.9: 456, and 6, — 0,
v(8,) Ao . - 240 , , 1
Elr2.:7+ < o0 = — e-‘-o(ﬂ-f-rﬁ—)__~_.____e—.\xp++.kgp_+0 —.
[ Mo Mo ] A7 (A= A0)? AH(AL = Ag)? ('-3(2))

Proof: We first write

E[r2:7 < ]
] 0
= Eg, [72; 7. < 00] Py (74 = 00) + E[r2 0 i Toar, < 00, Mo > 0] (2.30)

The first term of (2.30) can be shown to be the order of O(37). Again by Wald's
1

Likelihood Ratio Identity, we can write the second term of (2.30) as
Egy[Eo, (72555 m—aty < 00| Mo > 0)]

= Ej, [Egl(T_M e‘A‘(“h—R‘MO)leo > 0)]

0
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= Eg,[e-21Mo=e-) E; (12, [Mo > 0)]
+Eg,[Ej (125 €781 Momp-)(e31(Rasio=p=) _ 1) My > 0)]. (2.31)

From Appendix 4, we know that the second term in (2.31) is the order of O(3r). So
1

we only need to approximate the first term on the right hand side of (2.31).

First, we note that

1 neg ~ o Q
Eg" (TEJ‘,’OI./‘{O) = F;[l[' (91)Eg'l (T_.,\,[ol.’uo) + 2#1E§;(T—~Vob”-‘\!o I./"[o) - Eél(b"z-.uo |_\[0)]
l
L s 1, , M2 2 1
= E (91)(—MO+P-)+EL’ (91)(Eé,(R—Mo|~‘[0)—P-(91))+E?‘-—ﬂf—s‘fo-*'o(_k—?%

Insert the above approximation into the first term on the right hand side of (2.31).

we have

, l = ;
Eay 610727 By (721, | Mol] = 50"(0:) Eay (= Moe™13072-))

1

% "(61) Ege '*““’°”’+M "(0, Ea(,[e-&”-"w-’(Egl(R-.\foiz\ro)—p_(én))]
1

3—)

+.L2E60[-’ [ge—«ll(“fo-p-)] 20— [A,[ e~ {(Mo—p- )] + O(
H1 i
By the technique used in proving Lemma 2.3, we have
Eeo [e-AlM!o—p—)(Ea-l(R-MOIA/IO) - P—(él)))]

- /0 e=8==0=)E; (R_, — p_(61))dPsy (7= < o)

- AO/O e—Ax(:r—.o-)er(::«)—tu»)Eo.l(R_r _ p-(él))dl'
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+83 [T emtutemomlgtoletan By (R, — p_(81))d(BoRe - 1) + O(A3)
=O(A0)

Now, with previous results available, we only need to approximate Eg, MZe~%1Vo In

fact.
k-l A TS
Eo Mie™ ™0 = Eqy[3 (3 S.00)’e V(L= PP(ry = 00))F PPy = o0)]
k=2 i=1 T
=Y (k=1)(k=2)[E% (S, e 5+ 7y < o )P [E®(e75+ 1y < 00)] 3PP (7, = )
k=3

Z (k= 1)[E%( 5'2 e 3157 7, < oo)|[EP(e715 1y < o) R PR(r, = x0)

3 AE% (S, e 1, < oc)]PP%(ry = x) E9°(S,2.+e"‘\‘5’+.r+ < )PP (1, = x|

[1 — Efo(e=®5 1, < o0)]? [1 — Efo(e=15m 1y < o0)]?
- 240 Age+—(A1=Ag)p+ 919
Sl W +0(1). (2.32)

The proof of Lemma 2.9 is completed by combining the approximations of the quan-
tities involved and some simplifications.
Combining the results of Lemmas 2.1-2.9, the following result is obtained.

Theorem 2.8: 456, and 6y — 0,

€

E(u2) = G0) Do sgtperen _ 220 _aiprraon
‘ T (A1 = Ap)? £31(A1 = Ag)

240 edolpsto-) ¥"(61)A0 edi(pe+o-)
A1A(A] — Ag)? F1AL(AL = Ag)

_ edilpe+r-) _ 244 edilps+o-)
£1AY (A = Ao) A§Ao(Ar — Ao)?
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__Y00)A1 _so(ose-) + 24, edolos+o-)
3 A0(A1 — Ao) fEAE(AL — Do)
1[)"(0.0) A Ar{p++p-) 24, A1py—dop- 1
T B A RV t0(3)

2.4 Simulation Results

In this section, simulation results are presented to check the accuracy of the results
obtained in Section 2.3. Attention is focused on values of P(Tma < ). Evg and
Elvg|, which will play an important role in the subsequent chapters. To save space.

we only give results for normal and non-negative exponential cases.

2.4.1 Two-sided Normal Random Walk

In this subsection. we assume that X s are independent normal random variables
with variance 1 and mean 03 < 0 for n < 0, and mean 8, > 0 for n > 0.

In this case, ¥(0) = 16% EoS., = —EoS-_ = ‘2; p+ = —p- = 0.383, which will
be denoted as p; ro = r; = § and Co = 3( 5 — p+)*. Substitute the related quantities
into Lemma 2.3 and Theorem 2.7, we have

Corollary 2.1: As 6,,|65| — 0 at the same order,

fo

—01(61—6) 93).
5 5c + O(8y)

P(Tm{, < OO) = -
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Table 2.1: P(r,: < 00), Evg and E|y| for 8 = —0.2

0, | P(Tmy < 00) Evg E|uvo]
0.2 0.4616 0 18.75
0.4568 | -0.43(0.27) | 18.21

0.25 0.3972 -4.5 15.56
0.4068 -3.55(0.23) | 14.78

0.3 0.3443 -6.94 14.06
0.3509 -6.10(0.21) | 13.06

EU0=L.-——1—+O(1)
208 262
and

Elw| = z}Tﬁﬁ - (01—_19;)7+0(1).

These results have been obtained by Wu (1999).

Table 2.1, 2.2 and 2.3 give comparisons of the simulated values with approximated
values for P(7,; < o0), Evg and E|vg|. The simulated values are based on 10000
replications. For each fixed 6y, we check three values of 8, around —8q. In each cell,
the top number is the approximated value while the bottom number is the simulation
value, and the value given in the parenthesis is standard error for the simulated value.

From these tables, we can see that our approximations are very accurate.
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Table 2.2: P(r,; < 00), Evg and E|v| for 8 = ~0.25

0, | P(tmy < o0) Evg E|w|

0.25 0.4412 0 12

0.4552 -0.02(0.19) | 11.73

0.3 0.3854 -2.44 10.25

0.4012 -2.32(0.17) | 10.07

0.4 0.2966 -4.88 8.76

0.3154 | -4.81(0.15) | 8.58

Table 2.3: P(rn; < oc). Evg and E|vg| for 6o = —0.3

0, | P(rmy < oc) Evg Elvo|

0.3 0.4176 0 8.33

0.4428 0.17(0.14) | 8.21

0.35 0.3676 -1.47 7.27

0.3826 | -1.53(0.12) | 7.16

0.4 0.3239 -2.43 6.64

0.3426 | -2.45(0.11) | 6.47




2.4.2 Two-sided Non-negative Exponential Random Walk

In this subsection, we assume that Y,s are independent non-negative exponential
random variables with mean Ag < 1 for n < 0, and mean A, > 1 for n > 0. Let

X, =Y, — 1, then X|s belong to the standard one parameter exponential family.

In this case, ¥(6) = —6 — In(1 — 8).

1 ]
fp=1——.0, =1 —.
o=1 Ao ! ! A

y0=—1+/\0,/41 =—l+/\1

1
p+=1,rl=1.p_=—§.l‘0=ls and C0=0

Substitute the above corresponding values into Lemma 2.3 and Theorem 2.7. following

results are obtained.

Corollary 2.2: As 6,,]60] — 0 at the same order,

'2—5'30-‘31

P(tmy < o) = Ce¥ +0(23),

with Cy = —ﬁeg"\‘.
Ao AO 2
Evq = . e Ag + = E3A1
° f21(A1 — Ag)? £1A1(A) = Ao)
Al 25 A1 A
—= e3=! 4 — e3s? +0(1 y
fio(Ay — Ag)? fiodo(Ar — Ag) ()
and
A(] A AO 2A
Eluvgl = - e3=0 4 = e3™!
| Ol ,Ul(Al - A0)2 ﬂlAl(AI - A0)



Table 2.4: P(1m; < 00), Evg and E|v| for Ag = 0.85

A P(Tm{J < o) Fug E|vol

1.2 0.5379 2.95 26.18

0.5546 3.16(0.32) | 25.84

1.25 0.4904 -2.78 22.06

0.5036 | -1.36(0.28) | 19.25

1.3 0.4527 -6.08 19.97

Similar to the last subsection, Table 2.4. 2.5 and 2.6 present comparisons of simu-
lated values with approximated values for P(7,; < o0), Evg and E|vg|. The simulated
values are based on 10000 replications. For each Ag, we check three values of A, which
give values of 8, close to 0y after transformation. As in Table 2.1-2.3, in each cell.
the top number is the approximated value while the bottom number is the simulation
value, and the value given in the parenthesis is standard error for the simulated value.

From Table 2.4-2.6, again, we see that our approximations are very accurate.
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Table 2.5: P(rm; < o), Evg and Elvg| for Ao = 0.8

A | P(Tmy < o) Evy E|vol
1.2 0.6127 11.10 21.03
0.6233 3.90(0.27) { 18.39
1.3 0.5268 2.13 13.69
0.5382 1.83(0.25) | 12.35
1.4 0.4679 -1.37 11.24
0.4726 | -1.79(0.17) | 10.27

Table 2.6: P(T,,,;J < o¢). Fvg and E|v| for Ag
A | Pty < o) Evg Elvol

1.4 0.5195 2.27 8.66

0.5326 | 1.34(0.13) | 7.78

1.5 0.4760 0.48 7.38

0.4896 | 0.04(0.11) | 6.46

1.6 0.4434 -0.59 6.71

0.4363 | -1.24(0.11) | 5.92

0.

T

3



APPENDIX 1: Proof of (2.15)

Using Taylor expansion and the fact that all moments of R_., exist, we have

. 1
Ejetf= =14 A\ E; R_ + 501E; B2, +0(A})

e Fas _\,25153- +0(AY)
'2E; S._ '3E; S-_ :

EoS? + 3 Eo 3 6, +1 Eo .
2AEoS:_ + 25053_01) '3E,S,.

E()L.E —lEo:':} _\[ 1 3
_1+A12(EOS ——EQSZA)-F _\(p +7'0)+O(A)

+ 0(A})

=I+Al

1
=1+4, + 533(p2 + o) + O(A})

=1+ Ap-+ %_\.f 2 +0(a))

APPENDIX 2: Proof of (2.18)
We first write

';—‘(Pao(Tz < oo) _ er(r+p+)) = di(er(r+p+)(Eé°(er(Rz-p+) - 1)))
T T

= Age2oltPt) By (eRolRemre) _ 1) 4 eA°(’+"+)di(Ego(eA°(R""*) - 1))
I

d -

_(E(Eé (eBo(R==rp+) _ 1)) + O(Ag).

= eBolz+os) :

46



For a given Az > 0, conditional on {R; < Az} or {R; > Az}, we have
E;, ghoflatas = Ej, [edoRetas B> Az] + Eg, [e2oRaras B < Ag]

= Eéo [eAORI: R:t Z A(l'] + E§° [EAORleI < AI]E&O [CAOR;A‘—Rx); RI < AI]

where R is the overshoot at the boundary x for another independent copy of {S,}.

Thus, we have
Eg, [eRoRsraz _ gdoRs) - E;, [eR0Rztas _gdofe p o N g

= Ej, [e3°R|R, < Ar]Eéo[(e"“R(—\z-R:) - 1):R; < Az|
= 2oE;, Rofr,(0)Az + O(A2AZ) + O(Jo(Ar)?)
= AoEoRofR.(0)Ar + O(AJAL) + O(Ag(Az)?).

Therefore

d : '
7 (Po(7s < o0) = et} = Ag Eo Rof, (0) + O(AF).

In the same way, we can prove that

d
TEORL' = EoRofr.(0).
T

This completes the proof of (2.18).

APPENDIX 3: Proof of (2.22)
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Since the technique is similar to that used in proving lemma 2.6, we only give the
main steps.

Since Eg [Ej [r_pre=1(M=e-)(e21(R-s=p=) _ 1)|M]] can be written as
- /ooo Ej [rozem®1(EmP=)(e31Rosmp=) _ ))dPy (; < oc)
= _/0°° e M Ee By [r_p(e2R=270=) — )]d Py (72 < 20)
= A, /0 T (e (R, — B R_o)|dPyy (7 < 20)
_0(A?) /0 T e By 1 d Py (7, < ) (2.33)

By Theorem 2.3 and the dominated convergence theorem, we know that the first term

in the last equation is equal to

Al - < Ai(z-pe
--‘2—1/0 Ejs (R — Ej R—)P; (M < .r)dm/o e~ 3E=-) Py (7, < oc)
—O(il)/oc e~ dlEme=le=rrd Py (1, < )
H1 JO
Ao AW
((AI“AO)/-H) (#1) (1)

Similarly, we can show that the second term of (2.33) is equal to

A2A,

= __Aife
(Ar — Do)y

O(= /oo re”817defoT) = O( =0(1).
K1 Jo
This completes the proof of (2.22).
APPENDIX 4: Approzimate the second term of (2.31)
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5 .

Since it is similar to the proof of (2.22), only main steps are given.
Eq, [Eél(TEMo e—Ax(Mo—p—)(e‘-\x(R-Mo —p~) _ 1)| Mg > 0)]

> 2
= / e di(z=e-) E; [rZ

-T

0 (eAl(R—x‘ﬂ-) _ 1)]dPg°(T1- < w)
=, [Terditerni gy 12 (R - p-(61))]dPe (7 < 0)

+0(A?) /0 T emSute=em) £y 22 4Py (7. < oc)

l

=o(1?

).

where in the last equation. we use a fact that E,,-‘(T:l,) = O(37)-
0
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Chapter 3

Confidence Interval for Change

Point

The goal of this chapter is to construct confidence interval for the change point after
CUSUM test. This chapter is organized as follows. Section 3.1 gives the general
description of the problem. The method of constructing the confidence interval for
the change point is proposed in Section 3.2. Section 3.3 presents the main results
and their intuitive derivations. The rigorous proofs are given in Section 3.4. Finally.
in Section 3.5, we apply the results to the cases of detecting changes in the mean or

variance of a normal process, and compare them with the simulation results.



3.1 Introduction

Suppose that {X} are independent random variables with distribution function Fj,
for k < v and Fy, for k > v, where 6y < 0 < 6,, Fj, and Fj, belong to a standard
one parameter exponential family as defined in section 1.3. and v is the change point.
We also assume that the distribution function Fg is strongly non-lattice.

For sequential detection of the change point, Page(1954) proposed the CUSUM

procedure where an alarm is made at
N=inf{n>0: T, > d}, (3.1)
where T, is the CUSUM process
T, = max(0,Th-1 + X,), with To=0. (3.2)

and d is the control limit which is chosen to give a specified ARLq. Details of how to
change the classical CUSUM procedure to the current version of CUSUM procedure
will be given in the section 3.5.

The optimality of the CUSUM procedure has been studied by Lorden (1971) and
Moustakides (1986), and the comparison with other procedures can be seen in Pollak
and Siegmund (1985), Roberts (1966), Srivastava and Wu (1993). But so far, less
attention has been paid to the inference problem after CUSUM test. In this chapter.
we propose a method for constructing a lower confidence interval of the change point
v after the sequential CUSUM detection. From quality control point of view, this is a
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rather critical issue. In order to decide how long the process has been out of control
before the detection, we need to estimate the change point. It is well known that

when ¥(6p) = ¥(6;), the maximum likelihood estimator for v is
v=max{n < N: T, =0}, (3.3)

1.e. the first zero point of T, counting backward from the detection time V. Note that
v can be computed recursively by memorizing the last zero point before the alarming
time N.

To construct a confidence interval for v, the basic difficulty is the memory prob-
lem. As the change usually occurs quite far away from the starting pcint. it is simply
impossible to restore all the data until the alarming time. Motivated from the maxi-
mum likelihood estimator, a simple method of constructing lower confidence interval
for the change point is proposed as follows:

Instead of tracking only the last zero point of T,, before detection. we keep tracking
the last s zero points before the current detection time. By properly choosing the value
of s, we can construct a confidence interval for v formed from the s-th last zero point
until the detection time to guarantee that it has the given coverage probability. say
l —a.

An obvious advantage of this method is that all the related quantities can be
computed recursively with fixed memory.

By assuming that v and d approach infinity (which is true in most practical cases),
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we are able to find the asymptotic coverage probabilities and the average length of
confidence intervals conditioning on the change being detected. By further assuming
that 6y and 6, are small, we give the second order expansions for the quantities in-
volved in calculating the coverage probabilities and the lengths of confidence intervals.
The assumption is purely technical in order to give simple formulae for the related

quantities, and also for checking the accuracy of the asymptotic results.

3.2 Method

The basic assumption here is that v and d approach infinity, which is satisfied in most
practical cases as the change usually occurs quite far away from the beginning and
the average in control run length is quite large.

The following notations are standard in our discussion. Denote

tr
Il
)

T
0+ Z X;. where Sy issomeconstant.
=1

Let

M= sup S,, when S5=0.
0<k<

Also, let

N:=inf{n: S, <0 or >d|So=2z}, for z20,

the two-sided boundary crossing time.



For notational convenience, let P¥(.) = Py 4,(.) denote the probability when the
change point is v, Py (.) = P°(.) when the change occurs at zero, and Py, (.) = P>(.)
when there is no change occurring. Similarly, we denote E¥(.), Ep,(.) and Eg(.) as
the corresponding expectations.

Now the method of constructing the confidence interval for v conditioning on
N > v is formally described as follows:

Let L, denole the k-th last zero point of T, = 0 counted backward from i for
k=12..andlet Lo = 0. Then [Ly, N) is a 1 — a-level confidence interval if we
choose s satisfying s = inf{k>0: P’(v < Li|N >v) < a}.

The advantage of this method is that one can calculate all related quantities by
using the parallel computing technique for any given value of s due to the renewal
property of T,,.

Also. it is noted that this is actually a conservative method. To obtain more
accurate lower confidence limit L*, one can interpolate between L, and L,_,.

Now we turn to the problem of calculating the non-coverage probability
ps = P'(v < Ly|N > v). (3.4)

Firstly, it is noted that, conditioning on the value of T, given N > v, the zero points
of T, for n > v will behave like a defective delayed renewal process and the total
number of zero points after the first zero point follows a geometric distribution with

terminating probability Py, (Sn, > d).



Secondly, we note that the event {v < L,} occurs if and only if the number of

zero points after v is larger than or equal to s + 1. Thus, we have
pe = Ps(Sr, < OIN > v)[Py,(Sw, < O, (3.5)

where T, is independent of {Sn — T,,n > v’}. In Section 3.3, the asymptotic values

of p, as well as the average length of E[:V — L,|N > v] will be derived.

3.3 Main Results and Their Intuitive Derivations

In this section, the basic assumptions are both v and d approach infinity and 6y <
0 < 6,. From Pollak and Siegmund (1986). as v and d — oo,

Py (T, € dz|N > v) = Py (M € dz). (3.6)

Thus,

Py, (Sn7, <0

N >v) = po = Py (T-ar < ). (3.7)

where M is the maximum value of another independent copy of {S,.} with drift .

Also, it is obvious that
P@,(SNQ < 0) —>p= Pgl(T.. < ). (3.8)

Therefore, we have the following theorem.

Theorem 3.1: Asd,v = oo,

ps = pop’.
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To force the non-coverage probability less than «, s is thus to be taken as s =
[In(a/po)/Inp], where [z] represents the smallest integer which is no less than r.
Once the confidence interval is given. the next natural question is to evaluate its
expected length. From quality control point of view, this tells us the number of items
we have to inspect in order to guarantee the uniformity of the quality.
By conditioning on NV > v and the location of the change point v, we can calculate

the average length as follows.
(i) With probability (1 — po). the event {v > £} occurs and the corresponding

average length is
5Eg (No|Sny < 0) + Egy[v = 0lv > D] + Eg [N1,|Snp, > d].
Firstly. it is noted that, as d — oo,
Eg,(NolSn, <0) = Egy(7-) +0(1).
Secondly, we denote
S, =8,~S,n. for 0<n<uv.

Then o — v is actually the maximum point of S;. In fact, from the definition of .

we know that T; = 0 and S; = minogk<, Sk. Therefore

T,=S5, - min S;.
v v OSksuk
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Denote ¢ as the maximum point of S/ with maximum value x. The following asymp-

totic result holds.

sEg,(NolSn, < 0) + Egp[v — 0lv > 0] + Eg,[N1,|Sny, > d]

= sEg, (1) + Eo,[Ns|Sn,, > d] + Eloy|T-ar = 00] + 0o(1),
where the following two facts are used:
(1) The event {v > '} is asymptotically equivalent to the event {r_y; = oc}.
(2) v — [ is asymptotically equivalent in distribution to the maximum point oy,
of another independent copy of {S,} with the maximum value M if we look at T,

backward starting from v.
Both facts can be derived from (3.6).

(i) With probability pop®, the event {v < L,} occurs and the average length is
sEg,[NolSny <0} + Eg, [NolSn, > d]

= sEp, [r-|7- < 0o] + Eg,[No|Sn, > d] + o(1).
(iii) With probability (1 — p)p*~'po. the event {Ly < v < Li-1} occurs and the
corresponding average length is

FEg, [I/ — Ll <v L Lk—l] + Ey, [NTu|SNT,, < 0] + Eyg, [NO|SNO > d]

+(k - 1)E91 [NolSNO < 0] + (S - k)Ego[NolsNo < 0]

= Elos+T-s|T-pm < 00|+ Eg, [No|Sn, > d]+(k—1)Ep,[T-|T- < 0o]+(s—k)Egy(7-),

58



for k = 1,..., s, where again we use the fact that event {Sy, < 0} is asymptotically
equivalent to the event {r_p < o0}.

The only two quantities depending on d are Ejg, [No|Sy, > d] and Ej, [Nyf|Sx,, > d]
which can be calculated as follows:

First, we note that
Eq,[No; Sng > d] = E4,[No] = E4,[No: Sy, <0

1
= ‘u—Ea\ [S:Vo] - Egl[T.;T_ < OC] + o(1)
1

1 -l W wl
= #—(Eo‘ [brvo: S(\”Q > d] + Eél [bN :,b.‘Vo S O])
1
—Eg[r_:i7- < oo]+0(1)
1 o =
= ‘u_((l _p)Eal[SAVolb.Vo > d] + E91 {b‘f-;T— < OO])
1

—Eg [t=i7- < 2] +0o(1)
- Ll‘(“ — p)(d + Ea, Ruc) + Eg,[Sr_i 7. < 0]
1

—Eg [To:i7- < o0] + o(1). (3.9)

Similarly,

E91 [NM; SNM > d] = Eax [NM] - on [NM§ SNM < 0]
1
= #—[Eax(SNM) — Ego(M)] = Eg [T—ps5T-a1 < 0] + 0(1)
1

1
= #_[(1 — po){d + E9| R ) + Eq, [S‘r—.w + M;T_p < Oo]
1
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—Ego[l‘/[]] - Eal [T_M; T_-M < OO] + 0(1). (310)

Summing up the above results, we get
Theorem 3.2: As v,d = oo, the average length of the confidence interval [L,, N)

conditioning on N > v is asymptotically equal to

E,JJN = LJN > v = IT pEf;l [Vo; Sny > d] + Eg, [Nas: Sny, > d]

+Eg [oa:m—ar =00+ (1 — p*)E[ropr + oar: 7oy < 9]

BBy rmire < ] = Bufr-) +sBafr] 4ol (31D

where Eg, [No; Sng > d] and Eg [Nas: Sy, > d] are given by (3.9) and (3.10) respec-
tively.

Remark: For fixed values of 3 and 6,. it can be seen from Theorem 2 that the
first order of the average length of the confidence interval is approximately (d +
Eg Roo)/(p1)-

The case that s = 0 is of particular interest as it gives the average length from
the estimator o to the alarm time N.

The difficulty to apply these results is that there are no explicit expressions for
the related quantities. In the next section. we shall give certain local second order
expansions for the non-coverage probabilities and the average lengths of the confidence

intervals when both 8y and 6, approach 0, and 8pd — oc.
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3.4 Local Second Order Approximations

In this section, second order approximations are developed under the following as-
sumption:

(A): Both 8y and 8, approach zero at the same order. and |6o|'*"d — oo for some
~+> 0.

The assumption is purely technical. and is satisfied in most practical situations.
As we shall see. the approximations are quite accurate and can be easily used for
designing the confidence interval for given significance level. say, a.

The techniques used here are those developed in Chapter 2. The following lemma

gives the results concerning the convergence rate of (3.6).

Lemma 3.1: 45 v — oc. we have
P*(T, > z|N > v) = Pa(M > x) + O(e™?).

Proof: First we write

Py(T, >z, N >v)
P*(N > v)

_ Py(To=0,0<T1<d,..08T,; <d. 2 <T, < d)

- Py(To=0,0<T <d,...0< T, <d) '

PY(T,>zIN>v)=

(3.12)
Let J be the number of zero points of {7,,,0 < n < v}, and {L;,1 < j < J} be the

time n when T, = 0 counting from n = 0. Then we have

Ps(To=0,0<T, <d,...0<T,_, <d,z < T, <d)
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v—1

= Z[Pao(SNO < 0)]j-lP60(TLJ = 070 < TLJ+1 S d', "'70 < Tu—l S d’l‘ < TIJ S d)

i=1 B
If we look at {Tr,,TL,+1,.... T,} backward. then it is a random walk starting from

T, with increment —X;, where X/s are iid with distribution function Fg,. Thus by

Theorem 1 (or (1)) of Siegmund (1976). we have

Pio(Tz, = 0,0 < Ty 41 < dy s 0< Ty < dyz < T, <d) = Pay(—Sy, <0). (3.13)

as v — oc.
Similarly, we have

v=1
Po(To=00<T <d....0<T, <d) =Y [Ps(Sno SO)PHL = Pg(—Sv, <0)).

J=1

(3.14)

as v — oC.

By the total probability law, we have
Pay(1: < 00) = Pgo(Tr < 00. =Sy, £0) + Pg(1: < 00. =8y, > d)

= P (—Sn, £0) + Pao(TSN, < o0o|Sn, > d) Py, (—Sn, > d).

By Theorem 2.6,

Piy(Tsy, < oolSy, > d) = O(e?).

Thus

Py, (—Sn, <0) = Pyy(1: < 20) + O(e?).
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Similarly, we can show that
Pay(—Sn, <0) = O(e*?).

Combining results obtained and the fact that Py (7, < o) = P, (M > ), Lemma
3.1 is proved.
Combining Lemma 3.1, (3.7) and Lemma 2.3, we have

Lemma 3.2: Under the assumption of (A).
po = po + O(23) + O(e°?),

where po is the quantity defined in (2.13).
Next lemma gives approximation for p.

Lemma 3.3: Under the assumption of (A),
p =P (Sny < 0) = 1+ N EeS,_e 7= + 0(A) + O(e=19),
Proof: By the total probability law, we have
Py (- < 00) = Py, (- < ¢, Sn, £0) + Py, (7= < 00, SN, > d)

= Py, (Sny £ 0) + Py, (T-sy, < 00|Sn, > d)Fy, (SN, > d).

Thus

Pgl(SNo < 0) = Pgl(‘r_ < 00)— P91(T—3N° < OOISNO > d)Pgl(SNo > d). (3.13)
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From Theorem 2.6, it is easy to see that
P91(7'—-SN° < OOlS;VO > d) = O(e_Ald).

Then the proof is completed by applying Lemma 2.1.
Applying above approximations to Theorem 3.1. we have

Theorem 3.3: Under the assumption of (A). as v approach infinity, we have

Y

ps = po(l + A1Eo~'>71v_6'5l"‘)’.

where Py is given in Lemma 2.3.
To approximate the average length of the confidence interval. by Theorem 3.2. we

only need to approximate the follow items:

—

. EgO[T..];

(™)

Eg [r-:i7— < oc);
3. E[rom + oani 7oy < o3
4. Elor;T-m = oo);

E’gl [No; SNQ > d]:

W]

[«

. Eg, [NA’”SNM > C[]

By Wald’s Identity and Theorem 2.1,

Eg[r_] = uiEos,_e%“p- +0(A). (3.16)
(4}
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The approximation for Eg, [7—; 7- < oo] has been given in Lemma 2.1.

From Lemma 2.4, we know that

Ag

me%(“ﬂ’_) + O(1). (3.17)
=1 — Qo

Elr_ar; T-p < 0] =

In the following, we give a series of lemmas which contain approximations for the
rest of items.

Lemma 3.4: 458y and 6, — 0,

Eg,lov] = —= + O(1).
60 (0] o (1).
E[O’M: T_am < oo] —_ —7—30——".‘631(“"“’_) + 0(1).
#o(-lx - -'\o)‘2
1 Ao

e=t1lp++o-) +0(1).

Eloy - = o0 + =
loass 7= = #OAO fo(A1 — Ng)?

Proof: Let Tii), for : > 0, be 1id r.v.s. which have the same distribution function as
that of (74|74 < oc). and K be a Geometric random variable with p = Py (74 = o¢).
which is independent of all variables involved. Then oy, is equivalent in distribution

to SR=1 7). Thus

oo k-1
Egy(om) =23 Eap (7801 = Py (14 = 00))*! Pyy (4 = o0)
k=2 i=1

Z(k — 1) Ego(74. 74 < 00) Py (74 = 00)
k=2

_ Ego(T+,T+ < w)
Py (T4 = 00)




From Lemma 2.1, we have

1 1
E90(7'+2T+ < OO) = '[L—EO(SH )67A0p+ + O(Ao),
0

and

P, (74 = 00) = —AgEg(S-, Jer20o+ + O(AD),

So, we have

l

- o(l).
#OAO+ ()

Eg(or) = —

To prove the second result of Lemma 3.4. first note that M is equivalent in distribu-

tion to SR~ S) where q( i) for i > 0. are iid r.v.s. which have the same distribution

=1~y

function as that of (S-, |74+ < o0). Similar to the proof of Lemma 2.4, we have
Eloy, v < o] = E[oaPo, (T-p < 00| M)

= Eglone™ M=) (1 4+ 0(AY))

= K g Sa T ,
Z Z e (1 = Pro (74 = 5¢)) Pay (4 = oc)e®=(1 + O(A?))
Z —1)E%(r e~ M5 1 < oo)[Ego(e"'\“s"+,T+ < oo)]"'ngo(n. = 0o0)ed1P-

k=2
(1+0(A})

1

A2
(= En(e oy <ot o))

= Py, (T4 = 00)e®1?- Eg (14215 1y < 00)

By similar technique used in the proof of Lemma 2.1, we have

1 1
Ego(T+e‘A15f+,T'+ < OO) = EEO(ST+)(1 - 3A0p+ - (A] - Ao)p+) + O(Al)
0 z
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and
- 1
Eg (e 1y < 00) =1 — (A1 — Ao)Eg(Sr, )(1 - 5800+ — (A1 — Ao)ps) + O(A}).

So

o

e o).
1 — =0

Eloy, 7 < o0] = —
By the relationship of
Elor.mar = o] = E[oy] — Eloy.mar < ocl,

we finish the proof of Lemma 3.4.

Lemma 3.5 : 456, — 0.

d . , 1 . ) 1 " ,
Eg‘ [ZVQ; SNo > d] = — :p+AlEobr_e;'A‘”‘+#—Eob,._e%‘\”"—-ﬂ—Eob,_C%‘\‘”"-FO(Al).
1 1 1

Proof: Firstly. we note that
Eq R = p+(61) = p+ + O(8,).
By similar technique used in proving Lemma 2.1, we know that
Ep [Sr_i7- < o0] = Ej S, ™15
= E; [S,. + 057 +0(A2)
= EoS,_e1317- 4 O(A2). (3.18)

The proof of Lemma 3.5 is completed by combining (3.9), Lemma 2.1 and the above
approximations.
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Lemma 3.6: As 6y and 6, — 0,

1
E{Num; Sny > d] = #—[ d+p+)(1—po) +p- po+3—+P+]—E[T—Mw T-ar < o0]+0(1)

Proof: By the same technique used in proving Lemma 2.4, we have
ng [ST-.\! + Mitoa < DC] = p_po + O(A,).

Combining (3.10) and the fact that

1 A
Eﬂo‘[——z——P+——o"1+0( 3)-
0

Lemma 3.6 is proved.

3.5 Application

This section demonstrates how to use results obtained in the practical situation. and
conducts simulation studies to check the accuracy of the approximations given in
Section 3.3 and 3.4.

In the field of quality control, we might be monitoring some characteristic of
a manufacturing process. In many practical situations, the quality characteristic
process X; is assumed to be normally distributed with mean uq and standard deviation
09, where e is the target value and oy reflects the variation of quality. Any shift from
the target value pg or increase in the process variation results in poor quality, and we
want to detect the change as soon as possible. To monitor the quality characteristic
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process, groups of random samples of size. say m, are usually taken at some regular
time intervals, and CUSUM charts based on either sample mean X, or sample variance
s? are plotted with the appropriate control limit(s) respectively. We would like to
stop the process for inspection and repair when some points of the CUSUM chart fall
out side of control limit(s). Since false alarms are often costly, we therefore assume
the in control Average Run Length (ARL) of samples to be very large which ensures
that the assumption (A) is true.

In the following, we will apply our results to detecting changes in either the mean
or the standard deviation of a normal process. For simplicity. we only consider de-

tecting the increase in mean or variance.

3.5.1 Detect Increase in Mean

Without lose of generality, we assume that the observed process X, comes from a
normal population with mean 0 and standard deviation 1 when the process is in
control, and with mean u and standard deviation 1 when the process is out of control.

Then the CUSUM procedure is defined as making alarm at
N=inf{n>0: T, > d},
where T, is the CUSUM process

Tn = max(0, Ty + Yn)., with To=0.
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where Y, = X, — %, and d is the control limit with reference value §. Usually, the
reference value § is the change magnitude which we are interested in detecting quickly.

and serves as an preliminary estimate of u, the true change magnitude.

In this case, ¥(8) = %02; 6o = —-%, 0, =pu— %; Mo = —flg = —g—, P = —fl) = u— %:

EoS-, = —EoS;_ = 71;; p+ = —p- ~ 0.383. which will be denoted as p; ro =r, = %

and Co = %(715 — p4+)?. Substitute the related quantities into Theorem 3.3 and 3.2.

we have

Corollary 3.1: Under Condition (). we have

6 .
5o = 2 emulu=5/2). (3.19)
u

p=1—V2(u- g)e-‘"-wp + 0(8°). (3.20)

and thus we have

ps & Oie—u(u-J/?)(l _ \/5(# _ g)e-(u-rﬁ?)p)s.
2u 2
At p =4,
~ Lo-sr20) _ O —sorzys
ps = Qe (1 \/‘ze )’
Corollary 3.2: Under Condition (A), we have
1 1 Po 2 p’
EY[N—=L4,|IN > v] = d+2p) - - — — ——
N = LN > = 2~ S o " e TR a2
s (1 — pt
+£0(L1'__;p)_')'(Eu-6/2[T—§ T- < o] = E_spa[r_]) + sE_sp2[r-] + O(1),
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where

1

E,,;—S/?[T-; T- < OO] = m{)_)e—(u—éﬂ)p + 0(6), (321)
2
E_splr-] = \/T:ef"" +0(8). (3.22)
At p =4,
9 2 D s
E*[N = LN > u]:z.(if_:@_ip_‘_’_”_

Po(1 = p)
A

(Espam=: 7= < 0] = E_gpa[7_]) + O(1).

To check the accuracy of the approximations. we conduct a simulation study. For
average in-control run length ARLy = E_5/;.V = 1000. we take § = 0.4,0.5. and
0.6. The design for the control limit d is given by using the approximation (2.57) of

Siegmund (1985):
)

’1RLO ~ _(;'_z(eé(tﬂ-'lp) -1 _J(d_{_ gp))

The accuracy of this approximation has been discussed by Wu (1994). From this
formula. the values of d are given by 9.96, 8.59 and 7.56 corresponding to § = 0.4,0.5
and 0.6, respectively. The change point v = 100. Comparisons of theoretical values
with simulation values of non-coverage probabilities are given in Table 3.1, 3.2 and 3.3,
where 63 = —6/2 and 6, = u—§/2. In each cell, the top number is the approximated

value while the bottom number is the simulated value.



Table 3.1: Non-coverage Probability for 6y = §/2 = —0.2

6\s| 0 1 2 3 4 5 6 7 8
0.2 | 0.4616 | 0.3454 | 0.2584 | 0.1934 | 0.1443 | 0.1083 | 0.0810 | 0.0606 | 0.0454
0.4602 | 0.3414 | 0.2505 | 0.1843 | 0.1385 | 0.1048 | 0.0784 | 0.0574 | 0.0425
0.25 | 0.3972 | 0.2758 | 0.1915 | 0.1330 | 0.0923 | 0.0641 | 0.0445 | 0.0309 | 0.0215
0.4025 | 0.2808 | 0.1928 | 0.1296 | 0.0917 | 0.0606 | 0.0436 | 0.0317 | 0.0237
0.3 | 0.3443 | 0.2217 | 0.1427 | 0.0919 | 0.0591 | 0.0381 | 0.0245 | 0.0158 | 0.0102
0.3525 | 0.2284 | 0.1499 | 0.0968 | 0.0614 | 0.0409 | 0.0261 | 0.0165 | 0.0113

Comparisons of theoretical values with simulation values for the length of E¥[.V —

L,] are presented in table 3.4, 3.5 and 3.6. where 6y = —§/2, § = u — /2. Values for

s are chosen to be 0, which gives length corresponding to E¥[N — 0[N > v], and other

two numbers, which give lengths corresponding to 90% and 95% confidence intervals.

For the third row, the top numbers are the approximated values of E¥[.V — L N > v],

while the middle numbers are the simulation values, and the the bottom numbers

given in the parenthesis are standard errors for the simulated values.

From these tables, we can see that approximations obtained in this chapter are

surprisingly accurate.

~1
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Table 3.2: Non-coverage Probability for o = —0.25

XD
—
—

wn

o

(4]

T

o
(]
[} ]

0.4412

0.4528

o
o
S
>
=
o
[$%)
~
o
5

0.3117 | 0.2148 | 0.1479

0.1477

0.1026

0.1045

0.0712

0.0720

0.0344 | 0.0239

0.0347 | 0.0231

0.3

0.3854

0.4012

0.2481 | 0.1598 | 0.1028

0.2541 | 0.1636 | 0.1041

0.0662

0.0654

0.0426

0.0442

0.0176

0.0180

0.4

0.2966

0.3623

0.1637 | 0.0904 | 0.0499

0.2210 | 0.1298 | 0.0739

0.0152

0.0265

Table 3.3: Non-coverage Probability for o = —0.30

91\5

W)

=1

0.3

0.4176

0.4347

0.2689 | 0.1731

0.2803 | 0.1820

0.1115

0.1171

0.0718

0.0751

0.0462

0.0477

0.0297

0.0303

0.0192

0.0201

0.35

0.3676

0.3873

0.2193 | 0.1308

0.2291 | 0.1403

0.0780

0.0842

0.0465

0.0488

0.0277

0.0307

0.0165

0.0182

0.4

0.3239

0.3472

0.1788 | 0.0987

0.1967 | 0.1081

0.0545

0.0576

0.0301

0.0297

0.0166

0.0167
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Table 3.4: E¥[N — L,|N > v] for 6 = —0.2

[ o)

0.2 0. 0.25 | 0.25 | 0.25 0.3 0.3 0.3

6 8 0 4 6 0 3 3

65.58 | 73.89 | 36.21 | 53.98 | 62.23 | 34.09 | 47.04 | 55.21

61.20 | 33.78 | 46.51 | 533.37

-1
o
[e—
(O]
[S)
@
o
(V2]
(o)
o
NI
(@]

64.24

(0.31) | (0.36) | (0.24) | (0.28) | (0.31) | (0.23) | (0.26) | (0.28)

Table 3.5: E¥[N — Ly|N > v] for o = —0.25

0.25 | 0.25 0.3 0.3 0.3 0.4 0.4 0.4

5 6 0 4 3 0 3 4

46.68 | 50.09 | 26.54 | 40.98 | 44.35 | 23.61 | 34.00 | 37.32

46.58 | 49.81 | 25.33 | 40.87 | 43.96 | 23.39 | 33.41 | 36.77

(0.26) | (0.28) | (0.21) | (0.25) | (0.26) | (0.21) | (0.24) | (0.25)




Table 3.6: E¥[N — L,|N > v] for 5 = —0.3

6, 03 0.3 0.3 035 | 0.35 | 0.35 0.4 0.4 0.4

s| 0 4 5 0 3 4 0 2 4

21.64 | 34.36 | 37.28 | 20.50 | 29.82 | 32.72 | 19.37 | 25.52 | 31.30
21.56 | 34.17 | 37.33 | 20.52 | 29.97 | 32.70 | 18.99 | 25.20 | 30.39

(0.20) | (0.25) | (0.26) | (0.19) | (0.22) | (0.24) | (0.19) | (0.21) | (0.23)

3.5.2 Detect Increase in Variance

Without lose of generality, we assume that the observed process s? comes from a
population of x?(p) when the process is in control, and from a population of (1 +

€)2\y*(p)(e > 0) when the process is out of control. Then the CUSUM procedure is

defined as making alarm at
N=inf{n>0: T, > d}.
where T, is the CUSUM process

T, =max(0,T,-, + Y»), with T, =0,

and

v Sli+er-1 Y
T 2y2p(1 + €)% In (1 + €) 2’
and d is the control limit with reference value €o which is the relative increase change

magnitude we are interested in detecting quickly. The ¢q also serves as an preliminary
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estimate of ¢, the true relative increase change magnitude.

6(6)= —/20 ~Zin(1 - \/ga),

o \/g(l 21+ ) ln(l+ ),

In this case,

(14+€)-1
b = \/g(l - (ii(i:)?[)();il:)j—eoi] )
Ho = \/g(‘l(l f;;f’[):(fieo) =~ 1.
e (e

For simplicity, we only give results of a special case. i.e. p = 2. For ¢y = 0.2.0.25
and 0.3, we choose the average in-control run length ARLy; = E3 .V = 1000. and
v = 100. The control limit d is given by using the approximation (10.17) of Siegmund

(1985):
1

Qoio

ARLy =~ (e=BoldFre=r=) _ 1 4 \o(d + py —p_))

From this formula, we obtain that d = 10.083,.8.794, and 7.823 corresponding to
€0 = 0.2,0.25, and 0.3 respectively. Simulation results are based on 10000 replications.
It is noted that. when p = 2, 5;_ is a exponential random variable on (0, o0), and

S,_ is uniform distributed on (—1,0). So, we have

1
p+=lLr=1p_= —é,m: I and Cy=0.

Substituting the above corresponding values into Theorem 3.2 and 3.3, The following

results are obtained.



Corollary 3.3: Under condition (4), we have

- Tee-A0A 2 9
Po = 01636C1 o=t (323)

1 i,
p=1 -§f_\1e-a*! + 0(A3). (3.24)

and thus we have

Corollary 3.4: Under condition (4), we have

d+?2 1 1 1
EY[N - LN >v]= -5 -— )+
[ | ] i pO(—\lﬂl ’—\1#1) Aop1
1 Ao 230/3 Qo 230/3 . 22,/3
——— 4+ 2303 gt —? 2/
Aofie (A — Ag)? P (#1(A1 — Ag)? flo( Ay — -50)26 )
po(1l — p° ;
+B°((1_—pp))(Eg‘ [roim- < o0] = Egg[7-]) + sEg[7=] + o(1).
where
1
Eg[r;7- <o0] = -—ZI_—e'A‘/G +0(A). (3.25)
2
1 ;
Eg[r-] = —5—e™%/% + O(Ao). (3.26)
<Ho

Table 3.7, 3.8, and 3.9 give the comparisons of the simulated values with the
approximated values of the non-coverage probabilities for s = 0, 1. ..., in some case
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up to 15. The top number in each cell is the approximated value, while the bottom
number is the simulated value.

Again, similar to the last subsection, comparison of theoretical values with sim-
ulation values for the lengths of E¥[N — L,] are presented in table 3.10, 3.11 and
3.12. ¢ are chosen as 0.2, 0.25, and 0.3. Values for s are chosen to be 0, which
gives length corresponding to E¥[N — &|N > v], and other two numbers, which give
lengths corresponding to 90% or 95% confidence intervals. For the third row, the top
number is the approximated value of E¥[N — L,|N > v]. while the middle number is
the simulated value. and the the bottom number given in the parenthesis is standard
error for the simulated value.

Once again. we find that the approximations obtained in this chapter are surpris-

ingly accurate.



Table 3.7: Non-coverage Probability for ¢ = 0.2

e\s 0 1 2 3 4 3 6 7 8
0.2 | 0.5516 | 0.4570 | 0.3786 | 0.3136 | 0.2598 | 0.2152 | 0.1783 | 0.1477 | 0.1224
0.5627 | 0.4664 | 0.3814 | 0.3158 | 0.2644 | 0.2211 | 0.1834 | 0.1506 | 0.1268
0.25 | 0.4666 | 0.3560 | 0.2716 | 0.2072 | 0.1581 | 0.1206 | 0.0920 | 0.0702 | 0.0536
0.4723 | 0.3672 | 0.2843 | 0.2158 | 0.1646 | 0.1266 | 0.0962 | 0.0720 | 0.0554
0.3 |0.4084 | 0.2877 | 0.2027 | 0.1428 | 0.1006 | 0.0709 | 0.0499 | 0.0352 | 0.0248
0.4189 | 0.2963 | 0.2126 | 0.1504 | 0.1041 | 0.0733 { 0.0502 | 0.0346 | 0.0226
e\s| 9 10 11 12 13 14 15
0.2 | 0.1014 | 0.0840 | 0.0696 | 0.0576 | 0.0477 | 0.0396 | 0.0328
0.1035 | 0.0848 | 0.0712 | 0.0588 | 0.0472 | 0.0395 | 0.0328
0.25 | 0.0409 | 0.0312 | 0.0238 | 0.0181 | 0.0138 | 0.0106 | 0.0081
0.0431 | 0.0327 | 0.0252 | 0.0188 | 0.0151 | 0.0113 | 0.0091
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Table 3.8: Non-coverage Probability for ¢ = 0.25

0.25 | 0.5482 | 0.4347 | 0.3446 | 0.2732 | 0.2166 | 0.1718 | 0.1361 | 0.1080 | 0.0856

0.5578 | 0.4426 | 0.3524 | 0.2820 | 0.2213 | 0.1765 | 0.1385 | 0.1100 | 0.0889

0.3 | 0.4789 | 0.3507 | 0.2568 | 0.1881 | 0.1377 | 0.1009 | 0.0739 | 0.0541 | 0.0396

0.4904 | 0.3637 | 0.2640 | 0.1930 | 0.1434 | 0.1067 | 0.0786 | 0.0553 | 0.0401

0.35 | 0.4288 | 0.2908 | 0.1971 | 0.1337 | 0.0906 | 0.0614 { 0.0417 | 0.0282 | 0.0192

0.4302 | 0.2916 | 0.1971 | 0.1353 | 0.0906 | 0.0634 | 0.0450 | 0.0310 | 0.0195

0.25 | 0.0679 | 0.0538 | 0.0427 | 0.0338 | 0.0268 | 0.0213 | 0.0169

0.0709 | 0.0550 | 0.0449 | 0.0353 | 0.0284 } 0.0225 | 0.0188
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Table 3.9: Non-coverage Probability for ¢, = 0.3

~1

0.3

0.5418

0.5511

0.3126

0.3123

0.2375

0.2386

0.1804

0.1831

0.1370

0.1337

0.1041

0.1036

0.0791 | 0.0601

0.0804 | 0.0607

0.35

0.4840

0.4926

0.2395

0.2469

0.1685

0.1734

0.1185

0.1220

0.0834

0.0876

0.0588

0.0610

0.0413 | 0.0290

0.0445 | 0.0319

0.4

0.4408

0.4418

0.1879

0.1898

0.0801

0.0822

0.0523

0.0539

0.0342

0.0335

0.0223 | 0.0146

0.0231 | 0.0160

11

13

14

15

0.3

0.0456

0.0459

0.0347

0.0341

0.0263

0.0260

0.0200

0.0198

0.0152

0.0158

0.0115

0.0117

0.0088

0.0092

Table 3.10:

E¥[N — L,N > v] for ¢g = 0.2

0.2

0.2

0.25

0.25

0.25

0.3

0.3

0.3

10

13

0

9

34.46

(0.31)

70.24

(0.35)

82.63
79.12

(0.36)

31.50
30.89

(0.29)

63.34
60.26

(0.33)

42.43
40.78

(0.30)

49.17
47.04

(0.31)




Table 3.11: E¥[N — L,|N > v] for g = 0.25

0.25

0.25

0.3

0.3

0.3

0.35

8

11

8

50.97
49.86

(0.31)

59.64
58.12

(0.33)

47.02
46.48

(0.28)

Table 3.12: E¥[N = LN > v] for ¢ = 0.3

0.3

0.3

0.3

0.35

0.35

0.35

0.4

0.4

6

9

0

D)

T

0

19.55
19.97

(0.20)

36.54
36.69

(0.24)

44.22
44.10

(0.26)

17.66
18.10

(0.19)

15.92
16.53

(0.18)

29.09
31.90

(0.23)
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Chapter 4

Biases of Change Point and

Change Magnitude Estimations

This chapter discusses the biases of estimates of change point and change magnitude
after CUSUM test. It is well known that estimation after sequential test usually gives
certain bias (Cox (1952), Siegmund (1978), Whitehead (1986), Woodroofe (1992)).
There is no exception here, and we find that the biases are quite substantial for both
estimates.

Section 4.1 gives the general description of the problem and defines the estimation
of change point and change magnitude. Section 4.2 discusses the bias of estimate of
change point. While the bias of estimate of change magnitude is studied in Section

4.3. In Section 4.4, theoretical results are applied to the case of monitoring the
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changes in the mean or variance of a normal process, and simulation studies are also

conducted there to check the accuracy of theoretical results.

4.1 Introduction

As in Chapter 3, we assume that {X,} are independent random variables with dis-
tribution function Fjy, for k < v and Fy, for k > v, where 6, < 0 < 6,. Fj, and Fj,
belong to a standard one parameter exponential family as defined in section 1.3. and
v is the change point. It is also assumed that the baseline distribution function. Fg.
is strongly non-lattice, i.e. limj\jo sup |Eo(exp(iAX}))| < 1.

For sequential detection of the change point. Page (1954) proposed the CUSUM

procedure where an alarm is made at

N=inf{n>0: T, > d}.

where T, is the CUSUM process

T, =max(0,Th—y + X5), with Ty=0,

and d is a prescribed constant corresponding to a given ARLg. Details about how to
change the classical CUSUM procedure to the current version of CUSUM procedure

will be given in the section of application.

The optimality of the CUSUM procedure has been studied by Lorden (1971) and
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Moustakides (1986). Comparison with other procedures can be seen in Pollak and
Siegmund (1985), Roberts (1966), Srivastava and Wu (1993).

However, the estimation of change point and change magnitude of the parameter
after detection received less attention in the literature. From practical point of view,
this is a rather critical issue. For example, in quality control, after change has been
detected, we want to stop the process for inspection and repair. From process adjust-
ment and control point of view, we would like to estimate the change magnitude as
an initial estimation for the next stage.

It is well known that when ¥(6g) = ¥(4,) the maximum likelihood estimator for
vis

v =max{n < N: T, =0}, (4.1)
i.e. the first zero point of T, counting backward from the detection time .V. However.
as 0, is usually unknown. we would be interested in estimating §, and v simultane-
ously. A natural way is still to use U as the estimator of v, and estimate 4, by first
estimating u; = ¢’'(6,) as

f=Tn/(N - D), (4.2)

and then solve the equation g, = ¥'(6;) for 6, to obtain an estimate of change
magnitude ;. In order to investigate the properties of 6., we have to study the
properties of 7 and f; first.

In this chapter, conditioning on NV > v, the biases of 7 and ji; are studied by
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analytic approximations. The main results, i.e the second order approximations for
the biases are developed under the following assumption:

(B): Both 8o and 6, approach zero at the same order, and v and d tend to infinity
such that for some 0 < v <1, d|6g|'*" — o0, and d|6y|* — 0.

The following notations are used in our discussion. Denote

Sn. = SO + Z —\’u
=1
and
M= sup S,. with So = 0.
0<k< oo
Let

. =inf{n: S, > z|So =0}, for £>0; and
=inf{n:S, <z|S =0} for r<0.

be the boundary crossing time and

R_’t:Sfx—l‘

be the overshoot at the boundary x, and

e =inf{n: S, > 0{So =0}, aend 7 =inf{n: n >0,5, <0|S, = 0}

be the ladder epochs. Also, denote

N:=inf{n: n>0,5,<0 or >d|So=2z}, for >0
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as the two-sided boundary crossing time.

For notational convenience, let P*(.) = Py ; (.) denote the probability when the
change point is v, P (.) = P%(.) when the change occurs at zero, and Py, (.) = P>(.)
when there is no change occurring. £*(.), Ey,(.) and Eq4,(.) denote the corresponding

expectations.

4.2 Bias of Estimate of Change Point

First we write
Eo—vIN>V=EPp-vio> N> - Elv—i0:0 <v|N > (4.3)
From the renewal property of T, at its zero points,
Elo—viv>v|N >
= E[0 —v; Sy, <0

= Eg,[N1,; Snr, < 0] + Po,(Sng, < 0)Eq, (12), (4.4)

where v, is the number of samples from the last zero point of S, to the point where
Sn goes back to zero after v.

From (3.6), (3.7), Lemma 3.1 and Lemma 3.2, we obtain that
Py, (Sny, < 0) = Py (r-pm < 00) + 0(e%) = fo + O(A}) + O(e™?). (4.5)
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where pg is the value defined in (2.13).
At the same time, from (3.6), (3.7) and Lemma 2.4, the approximation for the

first term of the right hand side of (4.4) is obtained in the next lemma.

Lemma 4.1: Under Condition (B),
Eg,[N1,;Snr, < 0] = Eg [T-pi T-m < 00] + 0(1)

B ﬂl(;\.;ﬁ_ﬂ_ao)af“‘“*"" +0(1). (4.6)

From (3.8) and Lemma 3.2, the following result can be derived.

Lemma 4.2: Under Condition (B),

Es,[No. Sy < 0]

EGI(V2) = Pa‘(SNo > d)

_ Egfr_i7 < ]
- P (t- = o0)
1

H1A, (1

+ o(1);

Summarizing Lemmas 4.1-4.2 and (4.5), the next result follows.

Lemma 4.3: Under Condition (B),

Ag
(A1 = Ag)?

1
YAV

E[o—v;0> N> = elolpr+e-) 4 5, +0(1).
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To evaluate the second term of (4.3), under Condition (B), using Lemma 3.1, we
have

Poo(T, < 2|N > v) = Py (M < z) + O(eb0d),

and

Py, (Sny > d) = Py (T-ar = ) + O(Ag) + O(EAod).

On the other hand, by looking at {Si} backward with starting point v. we see that
U — v is actually the maximum point of S, = S, — S,_, for 0 < n < v with drift
po- In fact, from the definition of {T,}. we know that S; = ming<k<, Sk. Suppose

T, = S, — mino<k<y, Sk = r. Then,

If denote o as the maximum point of S/ with maximum value x, then under Condition

(B), the second term of (4.3) is equal to
Eg[omPs(T-p = 00)] + O(1).

Using results given in Lemma 3.4, we obtain the following approximation for
Elv—-0;0 <IN > ).
Lemma 4.4: Under Condition (B).

1 Ag

Ay (pp+p-) 1).
Bofio T FalAr — A" o)

Ev-0;0 <vN>v=—
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Finally, the bias for the estimation of change point is obtained by summarizing
the results of Lemma 4.3 and Lemma 4.4.

Theorem 4.1: Under Condition (B),

Ao 1 1
Elo —vIN>v =~—————-er(9++9-)_- . + _
| | | A(Ar = Qo)? po#l;\x Doflo
—__AO Ai(p++p-)
- -+ 0(1).
FolB; - Ao)? +0(1)

REMARK: From Theorem 4.1, we see that. even in the case y(8;) = ¢(6g). the
bias of 7 is not negligible and is positive (negative) for small 8, and 8y according to
p+ + p- > 0(< 0). This gives us another typical example to show the effect of the
sequential sampling rule. However, this bias becomes less significant for larger 6q's.

A detailed simulation study is reported in Section 4.4.

4.3 Bias of Estimate of Change Magnitude

It is well known that estimation after sequential testing usually gives certain bias.
see Cox (1952) and Siegmund (1978) for initial studies. The estimation studied here
provides another example. We find that the bias of { is quite significant and bias
correction is definitely necessary.

First we write

T
E[j|N > v] = E[NTj’ v >IN > v] + E[X’f—&;u <IN > y). (4.7)

Y
v
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Note, conditioning on {v < 7}, {T,,# < n < N|N > v} behaves stochastically
equivalent to a random walk {S, : 0 < n < Ny|Sn, > d}. Thus. from Lemma 3.1, we

have

Ty

N -

E[ v < DN > ]

IS

Sho 1o
= Eo‘ [lTNO;bNO > ([]Pf?l(SNn, < O)
Q

S
= (Po(7-u < 00) +0(e>*) + O(A])) o, [ S, > d]

By a similar analysis which leads to Lemma 4.4, we obtain that

Ty v
[!T_—E,Z/>Ul.’\ >I/]

Tv .
—_—r >0, 5N, >
IV_I/'*'V_V ! ‘Tu d]

= E|

SNM 3 Agd
= S = / iy,
E[1VA[+0’,${‘ Nas >d](P91(T M OO)+O(A0)+O(6 ))

where oy is given in Lemma 3.4.

Sy

= Q.
Nag+onr |98y >

Now, the question becomes to approximate £y, [%QISNO > d]and E|

To find the approximations, we shall use the following Taylor series expansion for
flz,y) = £

To 1 To To 2 1
1‘7' =—+_I—l' —— — +— -_— —_ —(z - —_—
f(z.y) ” yo( 0) yg(y Yo) yg(y Yo) yg( o)(¥ — yo)

z" 1
“yj(y - y0)% + F(y - y0)*(z — 20), (4.8)
where |2 — zo| < |2 — 20| and |y* — yo| < |y — vol-
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. (SN, |S d NolS d .
Substitute £ = WQ:IIT:?,—;T%’ y = E(&%g:—x%, z9 = E[z] and yo = Ely] into (4.8),

we get
E[Sno|Sno > d] + E[Sno|Sn, > d]
E[No|Sn, > d] (E[IVOISNO > d])?

1
~ (E[NolSn, > d])?

S
Eg[TV’%SN,, >d ~ Var(No|Sn, > d)

Cov(No. Sn,|Sn, > d). (4.9)

[t will be shown in Section 4.5 that the error of this approximation is at the order of

Approximations for each term on the right hand side of (4.9) will be given in the

following several lemmas.

Lemma 4.5: Under Condition (B),
E[SNOISNO > d] =d+p+ +o(1).
This result is obvious (Siegmund (1985). (10.22)), and is listed here for easy reference.

Lemma 4.6: Under Condition (B),

d+ ps 1 L L
Egs [No|Sn, > d] = - +=— +0(x)-
61[ 0| No d] 1 #1A1 ,U'IAl (Al)

Proof: From (3.9),

Eg, [No, Sn, > d] = —((d + p+)Pa, (SN, > d) + Ep,[Sr_;7- < o0])

1
1

—Eg, [7-; 7= < 00] +0(1).
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Combining it with (3.15), Lemma 2.1, and omitting the lower order terms.

1 1 1
Egl [.’VQ,SNO > d] = ;t—((d-{-p.*.)Pal(SNo > d) + ;—EQS-,»_ - EEQST_ + O(l)
1 1 1

Note that under Condition (B),
Py (Sny > d) = Py, (7- = 00) + O(e-‘\“d)
= —A EoS,_e - + 0(AY),

by Lemma 2.1. The proof of Lemma 4.6 is completed by some simplifications.

Lemma 4.7: Under Condition (B).

» d+ N}
Varg (NolSn, > d) = y3p+w'(01)
1
1 1 ~ 1 1 1
— e "(0)) + =" (f1) = (—— — —— )% + O(—).
H?AI ( l) #?Al ( l) (/-llAl ﬂIAI) (A?)

Proof: First we write

Varg (No|Sn, > d) = Eg, [Ng|Sn, > d] = (Eg,[No| Sy, > d])2.

Note that
Es [N¢; Sn, > d] = Eg [NE] - Eq [t~ < o0] + O(1). (4.10)
By Lemma 2.5,

1 .
E [N§] = /7[111"(91)501 No + 2u1 Eg, (NoSn,) — Es, S, ]
1

1

= ?['l#‘"(ox)Eal [No|Sny > d] P, (S, > d) + ¢"(8,) Eg, (T, 7— < 00)+
1
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2u1(d + p4 ) Eg, [NolSng > d) Py, (Sn, > d) + 2u1 B, (Sr_7_, 7 < 00)—

(d+p+) Po,(Sny > d) = Ep,(S7_, 7- < 00)] + O(d + ps4)

(d+ ,0+)2 d+ P+ 2/‘1 2#21’ " 1 " 1
= + ——t +4"(6,)) — 01)1 Py, (Sn, > d)+0(—).
(4.11)
On the other hand, by Lemma 2.7,
(0 1
Eo[r2;7- < 0] = U}.Ea‘)EoSr_ + O(A_ﬂ)' (4.12)
1 A1
Combining (4.11) and (4.12), we have
. d+ps)?  d4ps 2u; | 2ul
E Vzb‘ =( '?”0 _ =Pl 1
91[10| N0>d] ‘u% + /-‘:1; (¥'(0) A1+ﬁ1Al)
U (01) + = "(81) + O(55) (4.13)
pia VT A AT .
Using results obtained in Lemma 4.6, Lemma 4.7 is proved.
We now show that
1 Cov(Nes Sny|Sng > d) = o(———)
(E[NolSn, > d])? PNl T T Ry
By Cauchy-Schwartz inequality, we have
|Cov(No, S, |Sn, > d)| € (Var(No|Sn, > d))*(Var(Sn,|Sx, > d))!/>.
Since Var(Sn,|Sn, > d) approaches a constant, then
1 B1 g d+pe H1
C N, ’St Sv. >d)=0 /2 = o ————).
(E[No|Sn, > d])? ov(No, Sy [Sn, ) ((d+p+)( 3 )*7%) 0(d+p+)

96



Combining results of Lemmas 4.5-4.7, the following result is obtained after some
simplifications.
Lemma 4.8: Under Condition (B),

S
A;O|5No >dl=p +

1+ ¢"(6:) 1
N, —a 7

E[ d O(d+p+

By similar arguments leading to (4.9). we obtain that

E[ SNM lqv > d] - E[SIVMIvaM > d]
Nap+ap Y E[Ny + om|Sy,, > d]

E[SNMISN.\,! > d]
(E[Nup + om|Shy, > d])

Var(Nar + oa|Sn,, > d) + of

d+p+). (4.14)

Again, we shall show that the approximation is really at the order of o(1/(d + p4))
in Section 4.5. The following four lemmas give the corresponding results given in
Lemmas 4.5-4.8.

Lemma 4.9: Under Condition (B),

E[Sny|Sny > dl =d +ps + o(1).

Lemma 4.10: Under Condition (B),

d+P++ 1 1 Ay 1

E[Num|Sny > d] = - T
[Nam|Sny, > d] I 1A 1 1A (A - Ag)

Proof: By Lemma 4.2, we have

E'[ZVM; SNy > dl = E[NM] — E[T_M; T-M < OO] + o(1)
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1
1Sy, — B(M)| = Blr-ari 7 < 0] + (1)

1 1 Ag 1
= —[(d+p4)Pi(Sny >d) + —] - ——2—— + O(—
L1 [( p+) 9( Nas ) AO] #1(A1—Ao)2 + (Al)

Combining (3.7) with Lemma 2.4, we obtain that
[Nar: Sny, > d]
P(Sny > d)

_d+p++A1_’AO_ AO ]‘
231 11 A1 1(Ar — Aog) Ay ’

o I
E[!\lMleM > d] =

which is the desired result.

From Lemma 3.4, the following result follows.

Lemma 4.11: Under Condition (B).

T S —
fodo  fodr  fed (AL — Ao) A7

Eloam|Sny > d] = -

Lemma 4.12: Under Condition (B).

, d )
Var(Na + oml|Sny > d) = +3p+ ©"(61) + O(

I3

).

s

b

Proof: The idea in the proof is similar to that used in proving Lemma 4.8, and thus
some details are omitted.

First note that

Var(Ny + UMlSNM >d) = E[(NM +CIM)2[SNM > d] - (E[NM + 0’M|SNM > d])2
(4.15)
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From Lemma 4.10 and 4.11, we only need to calculate E[( Ny + opr)?|Sw,, > d]. We

write

E[(Nm+0om)?|Sn,, > dl = E[N%|SNn,, > d|+2E[Nyou|Sn,, > d|+ E{e3,|Sx,, > d].

(4.16)
We will find approximation for each term on the right side of (4.16).
First, it is easy to verify that
0 k-1
Elod] = 3 Eao (3 )1 = p)*Yp
k=2 =1
_ Eg(72, 74 < 00) N 2 Egy (T4, T4 < 20))?
p P
o) | 21 :
=- — 1.1
FRA R AR A
where p = Py (74 = oc).
Similarly,
1
E[UifvSNM < 0] = E[a.zwe—AlM] + O(ZE)
0
—_ Eeo(Tie—AlsusT-{- < OO) 2(E00(T+6—Alsy+ T+ < OO))2 + O(i.)
TP T B (e85 1, <00))? T P(1 = Egg(e 557+ 1y <00) | ' A3
Aoy"(6o) 240 1
—= - = +0(— 4.18
R - acF G- aer T OaY 19
Combining (4.17) with (4.18), we have
2 2 27,
Elo}|Sny > dl = == — = + =
Ol > A= 5283 F3Bedy T HAN(B: — D]
¥"(0) | ¥"(60) . __ Ao¥"(60) 1
—-= + = + = + O(—3). 4.19
#8A0 HgAl ,USAI(Al - Ao) (A%) ( )
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Second,

E[Nxoa] = Ego[oarEg, (Nar| M)

1
= ;I-[ESNMU,\[ — E(om M)

d+P+ 1 1
= Elow, - N —
n (oM Sn,, > d] IHE(GM [) + O( AS)
d+ 1 1
= 7”—+E[0M|5NM > d|Py (Sny > d) = —E(ay M) + 0(53) (4.20)
1 231 0
and
k-1 (k-t)
0’"1\[ Z Ego ZT(H Z Q('*') (k l)p
E9o(T+bT+*T+ < OO) )Eﬂo(’+7T+ < OC)EGO( Dry s T4 < DC)
= + .
p 4
S+ 0() 121)
= —=+0U(=) 4.2
fioA3 Aj (
Since
1
E[{Nyor, Sny < 0] = Eloam-y, Topr < o] + O(F)
0
1 - M !
=——_—E[0’1w."’[€ L ]+0(—3)
A
1 & k-1 (k1) —a, Pk i)
= =23 (L™ L §Pe D (1 — sl 4 O()
1 =2 i=l1 =1 0
_ 2 2En(ree 5 7y < 00) Bag (S 57y < o),
- fi (1 - Eﬁo( A1y 1T+ < 00)3
-85 1
E@O(T+ST+C;A 3 +'T+ < m) + O(—a)
(1 - Egy(e72'°™+, 74 < 0)2 A
20, 1
= — + 0(—=). 4.22
PRV WYY (+.22)
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Then, from (4.20) and (4.22), we have

d+ P+ 1 1 A0
E{NyoulS > = = + = + =
[Nmom|Shy, > d] i ( folo  fod\; ,qul(AI—-"-\O))
2 2 24, 1

+ O(

—= + = - —)-
fop1 A fGop1DoAr  flofiAr(A; = Ag)? AS)

Finally, we settle down to evaluate E[N}/|Swn,, > d]. Since
E[N.%!; Sy > d] = E[-’V.’\!} E[f\’w Sy < 0]

2 5 1
= E[N.i!] - E[T:M! T_M < oc] + O(F)
0

From Lemma 2.9, we only need to find E[V}].
Given M = z. for 0 <z <d {(Sv,— 12— umN:)* = Nu"(8,),.Sn,} is a

martingale. Similar to Lemma 2.3, we have

E[N]] = %(w (61)E[N:] + 21 E[Nz(Sn, — 2)] — E(SN, — 1)?).
Thus
E[N%] = ;l?(w () E[Nag] + 21 E{Nas(Snyy — M)] = E(Si,, — M)?)
- ;1?("’"(9‘ VE[Np]+ 201 E{Np Sy ) — 21 E[Ny M) — E[S%,_ | +2E[Sn,, M] - E[M?)).
Since

E[Nar M) = ELME(NulM)] = - E[M(Sw, = M)

——E MS; ——EM2
0 [ VM] ™

101



then

E[NY) = :—2(w"<ol)E[Nm + 34 E[NurSny] — BISE, ] + E[MY).  (4.24)

1

The remain question is now to find approximations for terms on right hand side of

(4.24). For this, first note
E[NMSNM] =(d+ p+)E[NM|S-‘VM > d]Pf?x(SNM >d) + E[NMSN.\!; SNM < O]

1
= (d+ p4) E[NarlSny, > d)Po,(Sw,, > ) +O(3).
1

At the same time, by similar argument leading to (2.32). we have

(k=1)
Ejg, M? = Z Eeg, ( Z :'r."’)?(l _p)(k-l)P

k=2 =1
=Y (k= 1)Eg(SE, .7+ < oo)(1 - p)k-2p
k=2
+ 3 (k= 1)(k = 2)(Egy(Sryr e < 0))3(1 — p)k=3p
k=2
2(E00(ST+7T+ < OO))2 EGO(ST+‘7’+ < m)
p? p
2 o .
- ?-{P (AO) ( ...0)

Finally,

E[S%,) = E[(d+ Rapr)?Ps, (Sny > d)+ O(1) = (d+p1 )2 Py, (Sn,, > d) + O(de™?).

(4.26)
Combining (4.24), (4.25), (4.26), Lemma 2.9 and Lemma 4.10, we have
dtps)t  dtpr u1 2 24320
E N2 S > = ( ] + — - - =
[ Ml Npm d] u% /»‘1 (1:[ ( ) AO Al ,UIAI(Al — AO))
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2 2 ¥M6) _v"(6) __ Act"(6) 240

1
- — - +0(—).
T A S NS Y N E N N ST W W T W Y-Y

+
(4.27)

From (4.19). (4.23), (4.27), Lemma 4.10 and 4.11. we obtain that

Aty , I
L2 y00) + O(55).

""GT(A’VM + U;\,['SNM > d) =
Hi 1
This completes the proof of Lemma 4.12.
Summarizing the results of Lemmas 4.9-4.12, the following result is obtained after

some simplifications.

Lemma 4.13: Under Condition (B).

SNM 1 " Af 1
—_— = —(1 /y - —) 4+ .
E["V‘w-i-mwlSNM >d =+ d( e 24 (2)) O(d+P+)

Summing up the results from Lemma 4.8 and Lemma 4.13. finally we obtain

another main result of this chapter.

Theorem 4.2: Under Condition (B),

1 A3 1
A I " _ 9
Elgy — m|N > ] d(1+¢ (61) QAS(Al—Ao))+O(d+p+) (4.28)
In particular, when ¥(6;) = ¥(o),
Elin = milN > v] = (3 4+ 0(01)) + o{ -——) (4.29)
H1 — H1 U—d4 1 d+p+' -&
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4.4 Application

In this section, we demonstrate how to use our theory in the practical situation.
and conduct simulation studies to check the accuracy of the approximations given in
Section 4.2 and 4.3.

In the field of quality control, we might be monitoring some characteristic of a
manufacturing process, and in many practical situations. the quality characteristic
process X, is assumed to be normally distributed with mean pq and standard deviation
0o, Where pg is the target value and o reflects the variation of quality. Any shift from
the target value yg or increase in the process variation results in poor quality, and we
want to detect the change as soon as possible. To monitor the quality characteristic
process, groups of random samples of size, say m, are usually taken at some regular
time intervals. Meanwhile CUSUM charts based on either sample mean X, or sample
variance s? are plotted with appropriate control limit(s). We would like to stop the
process for inspection and repair when some point of the CUSUM chart falls out-side
of control limit. Since false alarms are often costly, we therefore assume the in control
Average Run Length(ARL) of samples to be very large.

In the following, we will apply our results to detect changes in mean or standard
deviation respectively. For simplicity, we only consider detecting the increase in mean

or variance.
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4.4.1 Detect Increase in Mean

Without lose of generality, we assume that the observed process X, comes from a
normal population with mean 0 and standard deviation 1 when the process is in
control, and with mean p and standard deviation 1 when the process is out of control.

Then the CUSUM procedure is defined as making alarm at
N=inf{n>0: T, > d},
where T, is the CUSUM process
T, = max(0,Tn-, + Y,). with Tp=0,

where Y, = X, — %, and d is the control limit with reference value 4. Usually, the
reference value ¢ is the change magnitude which we are interested in detecting quickly.
§ also serves as a preliminary estimate of p. the true change magnitude.

In this case,

s ]

W(o) = 302, 90 = —3. 01 =g - 3.

. ] N ]
l»lo——l»lo——iv K1 = —H =#—§,

1
EyS,, = —EoS._ = %s p+ = —p- = 0.583,
1 1,1
To =T =Z and Co—}( _)—P+)2



Corollary 4.1: Under condition (B),

1 2
Elp —v]IN > v] = ;

m—z;-FO(l).

when u = 4,

E[r - v)IN > v] = 0(1).

Corollary 4.2: Under condition (B),

. . 1 2Au —§/2)3 1
El@y = m|N > v] =2(2_ ##52/ ) )+o(d+p+)'
when p =4,
A T 1
E[ul—y1|N>u]—Q+o(d+p+).

In the following, simulation results are presented to check the accuracy of our
approximations. Let 6o = —§/2 and 6, = u — é/2. For average in-control run length
ARLy = E_5/2N = 1000. we choose §; = —0.2, ~0.25, and -0.3. the corresponding
control limit d is determined by using Siegmund’s approximation (Siegmund (1985).
(2.57)) which gives d = 9.96, 8.82 and 7.72 respectively. All simulations are replicated
for 10000 times. The change point is taken at ¥ = 100 which guarantees that it has
little effect on the theoretical approximation. In Table 4.1, we give the comparisons
of simulated and approximated biases for & and ;. In each cell, the top number
is the approximation value while the bottom number is the simulated value, and its

standard error is given in the parentheses.
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From this comparison, we can draw the following several conclusions. First, the
bias of U is not negligible for small fg's and becomes less significant for larger 6g's
particularly at 8 = —6,. Second, the variance of o is very large and thus makes
the estimation less reliable. Third, the bias of 4, is definitely not negligible and a
correction is thus necessary. Also the bias at §y = —6, is relatively stable which
confirms our theoretical approximation which is free of 6. When 6, > —§,. the
bias of f1; becomes smaller, but reduces less dramatically. Fourth, the variance of
g1 is also relatively large. Fifth, the comparison shows that the our approximations
are generally quite accurate and can be used in practice. Thus the following bias
correction method is proposed.

First substitute the initial estimation of 6, for 6, into the approrimations of the
biases of o and 6, gtven in Corollary 4.1 and {.2 respectively, and obtain the estimated
biases. Then let

U =0 — (est.bias(?));

and
b, = 6,/(1 + (est.bias(8,))/6).

Although this method slightly over-corrects the bias of 7 to the left and under-
corrects the bias of §, the formula is very simple and easy to be implemented for
practical purposes.

Finally, let us say more about the assumption (B). Under this assumption, the
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effect of v is basically negligible in both biases. Also, the effect of d is negligible for the
approximation of E[0—v|N > v]. However, in the approximation of E[f;—u, |V > v].
the expansion is very weak as we only assume that d8't" — oo for some ¥ > 0 and
d6* — 0. This shows that the approximation works well for 8 neither too large nor

too small. The simulation results confirm this point.
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Table 4.1: Comparison of Approximated and Simulated Bias (Normal).

fo(d) | 61 | Bias() Bias(6,)
-0.2 | 0.2 0 0.1757

(9.96) -0.816(0.28) | 0.1753(0.0022)
0.25 -4.5 0.1628

-3.99(0.28) | 0.1533(0.0023)

0.30 -6.94 0.1431

-6.05 (0.24) | 0.1252(0.0024)

-0.25 | 0.25 0 0.1975
(8.86) -0.131(0.21) | 0.1938(0.0026)
0.30 | -2.44 0.1865

-2.47(0.18) | 0.1685(0.0026)

0.40 -4.873 0.1498

-3.77(0.16) | 0.1463(0.0027)

0.3 | 03 0 0.2267
(7.72) -0.28(0.14) | 0.2096(0.0028)
0.35 |  -1.47 0.2166

-1.41(0.12) | 0.1876(0.0029)

0.4 -2.43 0.2025

-2.44(0.11) | 0.1616(0.0029)
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4.4.2 Detect Increase in Variance

Without lose of generality, we assume that the observed process s? comes from a

population of x?(p) when the process is in control, and from a population of (1 +
€)2x*(p)(e > 0) when the process is out of control. Then the CUSUM procedure is

defined as making alarm at
N=inf{n>0: T, > d},
where T, is the CUSUM process

T, = max(0. Taey + Y,), with Ty =0.

L 32[(14¢0)?—1 P . H— .
Yo =3 e (] \/:, and d is the control limit with reference value ¢;. the

relative increase change magnitude we are interested in detecting quickly. ¢ also

serves as a preliminary estimate of ¢, the true relative increase change magnitude.

0) = —\/?;9— §1n(1 - \/go),

8 \/‘(1_ 1+cozln(1+eo \/—( _ 7(1+cozln(1+eo))
0= (1 + €)? - ) (1+€e?(1+e)2—1]"

(14€)?-1 _ /P (14 €)?[(1 + €)? —-1]
Ho 2(2(1+e0)21n(1+eo)‘1)’ e \/—( 2(1 + €)?In (1 + )

In this case,

For simplicity, we only give results of a special case, i.e. p = 2. For ¢ = 0.2, 0.25,

and 0.3, we choose the average in-control run length ARLy = E4, N = 10000, and
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v = 100. Simulation results are based on 10000 replications. The control limit d is

given by using the approximation (10.17) of Siegmund (1985):

1

oMo

ARLo = (eBold+p4=r-) _ 1 L Ag(d+ py — p_))

From this formula, we obtain that d = 10.083, 8.794, and 7.823 corresponding to
€ = 0.2, 0.25, and 0.3.

Substituting

1 l
p+=1, 7‘1=1, p_=—§. 7‘0=’1—8- and Co=0

into Theorem 4.1 and 4.2, following results are obtained.

Corollary 4.3: Under condition (B), for p = 2, we have

~ A0 2A - 1 1 AO 2n
Elv-vIN >v]| = —————€329 — pjy— + — — = e3> +0(1).
G R el A vy W L W W N N W E )
(4.30)
where
ﬁO = Clemu‘_l-AOAI$
with Cl = —-—A—IA:QA—Oe%AI,
Corollary 4.4: Under condition (B), for p = 2, we have
. 1 (1+ €)' (1 +e)* =12 A 1
— i IN = _ —
(4.31)
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In particular, when ¥(8,) = ¢¥(6p), i.e. €0 =,

13 [(1+e)-1? 1

d+P+(—+ )+O(d+P+

Eliy—mIN > v] = 47 In(1 + )2

).

Table 4.2 gives the comparison of the simulated values with the approximated
values for the biases of & and f;. The order of the numbers are arranged in the same
way as in Table 4.1.

From Table 4.2, we can draw the following conclusions. First. the approxima-
tions of the bias of J is generally very precise. Second, the bias of j; is very large.
and therefore, bias correction is definitely required. This is the most important con-
clusion of this chapter. Third, approximation for the bias of i, is systematically
less than the simulated bias. This may be due to the following reasons. (l): As
mentioned in Section 4.4.1, the expansion of E[i; — p|N > v] is very weak. (2):
The approximation only uses information contained in the first two moments of the
population distribution, and reflects nothing about the skewness and kurtosis of the
population distribution. Therefore, when the population distribution is skewed, the

approximation can not be very precise.
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Table 4.2: Comparison of Approximated and Simulated Bias (Exponential).

€o(d) €1 Bias(?) Bias(4;)

0.2 0.2 3.61 0.2188
(10.083) 3.79(0.304) | 0.3372(0.0055)

0.25 -4.27 0.2108
-3.08(0.24) | 0.3019(0.0063)

0.3 -7.33 0.1935
-6.08(0.21) | 0.2791(0.0070)

0.25 {0.25 2.80 0.2659
(8.794) 2.34(0.23) | 0.4042(0.0068)

0.3 -1.67 0.2683
-1.17(0.18) | 0.3834(0.0074)

0.35 -3.71 0.2660
-3.59(0.17) | 0.3662(0.0080)

0.3 0.3 2.26 0.3169
(7.823) 2.05(0.17) | 0.4866(0.0087)

0.35 -0.51 0.3281
-0.42(0.15) | 0.4522(0.0087)

0.4 -1.93 0.3375
-2.07(0.13) | 0.4557(0.0098)
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4.5 Error Checking for (4.9) and (4.14)

To show that the remain terms of (4.9) are at the order of o(ﬁ), we first note that,

conditioning on the event {Sy, > d},

Swe EelSwlSy, > d
Eex [NOISNO > d] E91 [NOISNO > d]

— 0 in probability as d - x.

and
.’VO

Bo (VoS > d — 1 in probability as d — .

Thus, for the third order terms in Taylor expansion, the coefficient of Ej, {( 'E_[Va%?,_ﬁ]_
y No

EG][SNQISNQ>d] )( AVQ

B ValSwod) | Eo Malowsd] — 1)?|Sx, > d] converges to | in probability, and the co-

. : Eo, [Sny IS
1)3|Sn, > d] is at the order of TB;J[TI?IISTI:,% = O(u;)

: N
efficient of Ej, [(W -

in probability. Thus, we only need to show that

SNo Eq,[Sny|SN, > d] No 2
E - _ 1 0 [ —1 S, > _ ’
VoS > @ Eo MolSe > 4 EoNolSre 5 1) 1% > A = el
(4.32)
and
Ny 1
E - 1)%|Sn, > d] = o( —————). 4.33
01[(E0x[NOISN°>d] ) I No d] 0(#1(d+p)) ( )
We now begin to prove (4.32) and (4.33).
Lemma 4.14: Under Condition (B), we have
won A+ d+ps)? 1
E[(IVO-E[N0|SN0 > d])3|SN° > d] =3y (01)—%4"0('('——#5;))'*'0(;7{)’ (4'34)
1 1 1
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and thus

No 1

E - 1)}|Sn, > d] = o( ———),
e ersn 5 @ ~ V1w > A=)
and
S, Eq [SN |SN > d] No Y 1
E 2 - -1)°|Sy, > d] = .
N NolSm S @~ Es [NolSw, > 4 Ea[Nolsw S d ) 1% > dl = ol370)
Proof: First we write
E[(No — E[No|Sny > d])°|Sn, > d] = E[N§|Sn, > d]
—3E([No|Sn, > dIE[NZ|Sny > d] + 2(E[No|Sn, > d])°.
and note that
E[N(?;SNO >d] = E[Ng] - E[Ng;SNO < 0]
= ENj — E[r3;7_ < o] + O(1).
To evaluate the E[NJ], note that
/ eISn =) g (1) dFy(zn) = 1. (4.35)

Differentiate both sides of equation (4.35) three times with respect to (w.r.t) 8, we
know that

{(Sa = np1)® = 309" (61)(Sn — np1) — np (), S0} (4.36)
is a martingale under Ps,, where ¥()(8;) is the third differential of 1(6) at point 6; .

Thus, we have

1
Ea (N3] = lESR, ~ 3 E(NoS,) + 36160 E(VESo)

1
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—3¢"(6,) E(NoSn,) + 3119"(6) ENE — 3 (8,)E Ny

1
= =[(d+p+)*P(Sn, > d) =3u1(d+p+)2E(No| Sy, > d)P(Sny > d)+3p10"(61) ENG]

I
d+p;)? 1
roleteely ol
H1 Hi

Combining with the results given in the proof of Lemma 4.7 and Lemma 4.8, the first

result of Lemma 4.14 is obtained.

The second result of Lemma 4.14 follows by the following fact.

d+ps .4 d+p4 1 , 1
3(——= 1’/)"0 = " (8,) = o ———n

t I (d+ ps) 2 -

To show (4.32), by Halder inequality, we have

SN E[Sn,|Sn, > d] No ,
-_— 0 _ 1 S’

| E(( E[No|Sx, > d]  E[No|Sn, > d] " E[No|Sn, > d] )?|Sn, > d|
= Zoale 2 dpygy, > )

<(E -
s “.is[zvowNo >d] ~ E[NoSn, > d]

Np
( [IE[IVOIS‘IVO > d] | i VO d])

No
E[No|Sn, > d]

1

= —1P|S 3,

(E|Ra — ERq')'/°(E]]

By the previous argument, we know that

No

E[IE[NolsNg > ([] - lIslsNo > d] = O(l)

Thus, the left hand of (4.32) is at the order of O(ﬁ;), which completes proof of

(4.32).
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The proof for (4.14) is technically similar to the proof of (4.9), but much more
complicated in calculation. By the similar argument in proving (4.9), we know that,

to show (4.14) is equivalent to show the following two equations.

SNM E[SNMISNM > C[]

E —_—
[(E[NM + omlSny > d]  E[Na + om|Sny, > d

)

Nar +ouy )
- 1 d = . K -~
(E[NM + om|Sny, > d] )1Shy > d °(d+p), (4.37)
and
I‘V’:‘! + U‘w 3 l
£ 3 — 1Sy > d] = o( ———). 4.38
( E[Nu + omlSvy > d] P15y > d) 0(#1((1 + p) ) ( )

Similar to the results of Lemma 4.14. we have

Lemma 4.15: Under condition (B),

3(d + "
E[(Ny + oar — E[Nyr+ om|Sny, > d])%|Sh,, > d] = —ETP’LZU‘ (6,)
1
1
+0(=). (4.39)
Hi
Thus,
Ny + oy 3 1
E — - 1)°|Sn,, > d] = o ————),
[(E[NM + om|Swn,, > d] P15 > d] O(ﬂl(d*‘P) )
E[( SNM _ E[SN.wlsNM > d] )
E[NM + U)p[lSNM > d] E[NM + U'MISNM > d]
Ny +on 2
- 1)%|§ = .
(E[NM+UM|SNM>d] ) l NM>d] 0(d+p)
Proof:

E[(Nm — E[Num|Sny > d] + oar — Elom|Sny > d])°|Sny, > d]
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= E[(Ny — E[Ny|Sn,, > d])*|Sn,, > d]
+3E[(Ny — E[NylSny, > d])*(0s — Elom|Sny, > d])|Sn,, > d]
+3E((Ny — E[Num|Sny, > d))(oar — Eloum|Sny, > d])?|Sw,, > d]

+E[(or — Eloa|Sny, > d])°|Sn,, > d). (4.40)

Similar to the proof of Lemma 4.14, we can show that the first term on the right hand

side of (4.40) is equal to

3(d + p) 1
= +O(4\-8

H1

).
For the second term on the right hand side of (4.40), we know that
E[(Nas — E[Na|Sny > d))(oar = Elom|Sny, > d))|Sh,, > d]
= E[Nyom|Sny > d] = E[NY|Sw,, > d|E[ou|Sw,, > d]
—2E[Nyon|Sny > dE[Na|Sny, > d] +2(E[Nar|Sny, > d])?Elom|Sw,, > d] (4.41)

In the following, we shall prove that (4.41) is at the order of O(Z\Lg) .

To evaluate (4.41), using previous obtained results, we only need to approximate

E[N}oum|Sn,, > d). In fact,
E[N}jom.Sny > d] = E[Njor] — E[Niyoar, Sny, < 0]
1
= E[Njoum] + O(F)’ (4.42)
0
and

E[Njom] = Egy[orEe, (N3 |M))
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= L2[¢"(t91)E(NMUzw) + 21 E[(Npoar(Svy — M)] — Eloa(Sny, — M)?]]. (4.43)

H1

From (4.20) and (4.22), we have

d+ 1 1 A 1
P (- S )Ps,(Sny > d) + O(—)-

E(Nyopym) = - + = + =
(Nuowr) M1 fodo  fodr oA (D1 — Qo) Ag

Since

E[Nyom(Sny — M)} = E[NyosSny| — E[Naroar M|

1 1
= (d + p+)E[Nymom, Sny, > d] — #—I[E(UMA’[SNM — E(op MY + O(A—J

0
d+p+
221

1
Pol(‘S'NM > d) + O(E)~
0

= (d + P+)E[1VMUM|SNM > d]Pol (SIVM > d) - E(UA‘[‘/‘/IISN.\I > d)

and

E[UM(SNM - IW)Z] = E[UMS‘,{'M] — QE[O"\.ISNM M)+ E[O’M.M'Z]

= (d+ p4)*Elom|Sny > d)Po,(Sny > d) = 2(d + p4 ) E[om M|Sy,, > d)

1

P91(SNM > d) + O( Ad
0

).

Combining above results, we have

E[NilamlSNM >d] - E[levIISNM > d|E[om|Sny, > d] =

1 fiopr A fop1doAr o1 D1(AL — Ao)
d + P+ 2 2 ?.Ao;ll 1 1 Ao 1
—_——— — — — = —= + = + = +0(—).
Hf Ao 4 lllAl(Al - A0) #vo ,lloAl #OAL(Al - Ao)) (AE‘,)
(4.44)
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On the other hand, by (4.23), Lemma 4.11 and 4.12, we have

E[Numoa|Sny > dIE[Ny|Sny, > d] — (E[Na|Sn,, > d])?Eloa|Sn,, > d]

pi fopi DS fop1 Do flofii Ar(Ay — Ag)
d+p+ 1 1 AO;UI 1 1 Ag 1
e L1 LI - O(—).
pui (Ao A mA{AL = Do) f0de o1 oA (D - Ao)) N (AE'))
(4.43)

Insert (4.44) and (4.45) into (4.41). we have

1

E[(IVA‘! - E[NI\'[ISNM > d])z(as‘{ - E[G’,\[lSNM > d])lsNM > d] = O( AG
0

).
Similarly, we can show that
- ‘ 1
E[('/VM - E[IVA‘{ISNM > d])(O'A[ - E[G.‘"[lbl\r‘\y > d])2|5.‘\"w > d] = O(F)o
0

Thus, (4.39) holds.
Similar to the proof of (4.32) and (4.33), we can prove (4.37) and (4.38).

This completes proof of Lemma 4.16.
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Chapter 5

Confidence Intervals for Change

Magnitude

This chapter addresses the question of constructing confidence intervals for the change
magnitude after CUSUM test. To this end, we first obtain the asymptotic distribution
function of change magnitude estimate. Then we derive confidence intervals based on
this distribution function.

This chapter is organized as follows: Section 5.1 gives the general description of
the problem and the method used to solve the problem. Section 5.2 presents the
main results. Comparisons of the theoretical results with simulated results are given

in Section 5.3. Finally, the rigorous proofs are presented in Section 5.4.



5.1 Introduction

In this chapter, attention is focused on monitoring the change in the mean of a normal
process, a special case of the one parameter exponential family defined in Section 1.3.
More specifically, it is assumed that { X} follow V(fg,1) for £ < v and N(6,,1) for
k > v, where §y < 0 < 8, and v is the change point. The basic assumption is the
Condition (B) given in Chapter 4.

For quick detection of the change point. the CUSUM procedure stops the process
at the first time

N =inf{n>0: T, > d}, (5.1)

where T, is the CUSUM process

T, = max(0, Ty + X,), with Tp=0, (5.2)

and d is the control limit. Details of how to change the classical CUSUM procedure
to the current version of CUSUM procedure have been given in Section 3.5. After
the change has been detected, apparently, we want to estimate the change point and
change magnitude based on the information provided by the control charts. As given
in Chapter 4, we use

v=max{rn< N: T, =0} (5.3)

to estimate the change point, and use

0, = Tn/(N = D) (5.4)
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to estimate the change magnitude.

In practice, we might be more interested in constructing confidence intervals of
change magnitude, so the distribution function of 6; is required. By a simple appli-
cation of Anscombe’s (1952) Theorem, as d — oo, m(él —6,) is asymptotically
standard normal, which means the first order approximation to its distribution is
not affected by its sequential nature. But. as we have already seen in Chapter 4. §,
is seriously biased in practical case (i.e. in the case that d is not extremely large).
and thus simply using standard normal to approximate the distribution function of
VN =7(8,-8,) yields very poor results; besides, from Figure 5.1, we can see that the
distribution function of §; is also seriously skewed and has a non-normal tendency.
These are common for estimation after sequential test (Cox (1952), Woodroofe (1986.
1992), and Todd, Whitehead and Facey (1996)). To obtain more accurate approxi-
mations, Woodroofe (1986) introduced the so-called very weak ezrpansion method and
is found performing very well (Woodroofe (1992), and Todd. Whitehead and Tacey
(1996)). By adopting this method to our case, Z* = _é\/lff-TfTo:(%_) has an asymptotic
distribution of standard normal under Py, as d = oo.

The goal of this chapter is to obtain approximations for the distribution function

of §;,. From the results of Chapter 4, we only need to find the Vargl(él), which will

be developed in the next section.
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Figure 5.1: Histogram of Z* with 1000 replications.

5.2 Asymptotic Distribution of 6,

Before approximating the Vargl(él), a preliminary result is given for later use.

Lemma 5.1: For a random variable X with EX? < oo, and a given event A, let

my = E[X|A] and mac = E[X|A°]. Then

Var(X) = Var(X|A)P(A) + Var(X|A°)P(A°) + (ma — mac)2P(A) P(A°).
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Proof:

Var(X) = EX? — (EX)?
= E(X*|A)P(A) + E(X?|A)P(A°) = (m4P(A) + m e P(A%))?
= Var(X|A)P(A)+Var(A|A°) P(A°)+m% P(A)+mY. P(AS)—(m P(A)+m 4 P(A%))?
= Var(X|A)P(A) + Var(X|A°)P(A%) + (ma — m4e)2P(A) P(A°).

The proof is completed.

Next, note the fact that [ﬁng;u < PIN > ] is stochastically equivalent to

‘1’}’ w < P|Sn, > d], and [32%5;v > 5N > u] is asymptotically equivalent to
[N"MV v > 08y, > d. Let X = 2% and A = (v < J|N > v). by Lemma

5.1, we have

Var(él) = Var( i}% |Sn, > d)P(v < O|N > v)+
0

Var( ISNM > d)P(v > B|N > v)+(my—~my)*P(v < O|N > v)P(v > oIN > v).

SNy,
Nu +
where m; = Eel[ e |SNe > d] and my = Ep [N—w:‘;’;;[SN" > d].

By Lemma 3.1, it becomes

Var(6,) = Var(-‘slv-"—ISN0 > d) Py (T-m < oo)+Var(-—§NM—|SNM > d) Py, (T-p = 0)
N Ny +opm

+(my — mg)? Py, (T-pr = 00) Py, (Topr < 00) + O(83) + O(e%62).  (5.5)
So the remain problem is to find Var(‘f—\’,‘;“-|5'1vo > d) and VGT(WSB:_‘;‘,EWNM > d).
By borrowing some results from Chapter 4, we only need to approximate
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53
Eq, [__‘_M_EISNM > d) and Ej, [T\%?'ISNo > d]

M)

To evaluate these two quantities, we adopt the method used in Section 4.3. The
following Taylor series expansion, similar to (4.8), will be used.

T 1 o 1
f(@y) = =2+ —(z — z0) — —2(y — yo) + —2(y — 0)* — —(z — zo)(y = 10)
Yo Yo Yo Yo Yo

Zo 3 1 2 ZIo , a3 1 3 ,
—y7(y - Yo)’ + F(y - Yo)“(z — x0) + %g(y - Y)” — F(y — Yo)“(z — zo)

1
—yz.e(y —y)° + y's(y - yo)*(z = z0). (5.6)

where |z* — zo| < |z — 19| and |y* — yo| < |y — Yol

. (5%, 1Sng >d) ; .
By letting X = E—[%%T%"—;ﬂ-, = E[%ql%j%, = E[X] and yo = E[Y]. and
denoting A, = E[N¢|Sn, > d], we get

E(SklSn > d] | B[Skl >d],
4 = 4 A3
S1] 1

ES?OISN > ,

[ ¥ 440 C[IE[(Noz— .41])3|5,V0 >d]

<

[312\'0|SN0 > d]
A}

1 2 3 @2 1
- - S -
Cov((N§ — Ay)°, No|SNo >d)+ o(( 72

A3
where p, = 0.583. It will be shown at the end of Section 5.3 that the error of this

ar(N¢|Sn, > d)

———Cov Vg,SNOISNO d) —

-’;——4—5Cov((1\f2 - A) ,..NOIQ'NQ > d) + E[(NZ — A41)*|Sn, > d]
Ay

)s (5.

(S
i |
~—

approximation is at the order of o((d+—:+),-).
From Lemma 5.4-5.11 of Section 5.4, we get the following result.
Lemma 5.2: Under condition (B), we have

0, 4 +of 1
d+P+ (d+p4)? (d+p4)?

Var( |.S'N0 >d) = ).
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: . v (8% 1Sny>d)
On the other hand, by the Taylor series expansion (5.6), with X = E(Nartes 21w 54

, Nas+oum)? , .
Y = E([(( N‘:';a‘; ))zlé.":;?d], zo = E[X] and yo = E[Y], and denoting A; = E[(Nar +
om)?|Sn,, > d], we get

2
SN M

E[SIZVMISNM >d]
(Nm +om)?

A,

E[ ISNM > d] =

E[S% |Sn, > d]. . . 1 . .
+ (S IA% w>d Var((Ny +ou)?* Sy, > d) — ECOU((NM + o)’ SR, 1SNy > d)
- E[S?VM IS‘VM > d]

A3

E[((.’VM + 0’,\!)2 - Ag)SISNM > d]

1
+ﬁcov(((N,\.[ + 0‘.1.1)2 - ‘42)2'51{’.&1'5‘\’-\! > d)

E[S% |Sv, > d
+ [ NMI AL ]E[(("VM'*'UM)z - -42)4ISN.\1 > d]

A3
1 - 1 .o
—ECOU(((IVM + oar)? — Az)3. SzvaleM >d) + o(m)- (3.8)
Again, using the related results in Lemma 5.4-5.11 of Section 5.4, we obtain
Lemma 5.3: Under condition (B), we have
S% 6, 1 202 36¢ 1
Var(——2—|Sy,, > d] = + 4201 L 1 —_—),
T Wt o N T Y e T R Y @ )

Combining Lemma 5.1-5.3, we obtain

Theorem 5.1: Under Condition (B), we have

vm@g=v+4%y
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where

6, 1 63

92 03
v=—+—4——,,————‘7 1 1
4= 3 =00

_—b;g+—-———408(01_00))). (5.9)

d d?
Then, it follows that 6, has an asymptotic normal distribution with mean 6, + ;1;(2 -

83

—!_,—280(91_90)) and variance v.

5.3 Simulation Results

Simulation conducted here is to check the accuracy of coverage probabilities of con-
fidence intervals derived from Theorem 5.1. In Table 5.1, 5.2 and 5.3, for a given
confidence level, the actual coverage probabilities based on 10000 replications are
presented for a fixed 6y and 3 different values of #;,. From these tables, we can see
that the actual coverage probabilities are slightly higher than the theoretical values
for 90% and 95% confidence levels. while the actual coverage probabilities are very
precise for 98% confidence level. In practice, the confidence levels are usually large
(larger than 90%), our result gives a very satisfactory approximation.

The difference between the actual coverage probabilities and the theoretical values
may be due to the following reasons.

First, under Condition (B), the expansions used in approximating mean and vari-
ance of 0, are very weak.

Second, and most importantly, the distribution of 8, is seriously skewed and has
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a non-normal tendency. This property has also been reported by Todd, Whitehead
and Facey (1996) and Whitehead (1997) for estimation after other kind of sequential
tests.

Third, from the proofs given in Section 5.2, we can see that (51 could be better ap-
proximated by a mixture of two independent normal distributions. In fact, in Section
5.2, we showed that. asymptotically, 6, comes from a normal population having mean

6, + 2 and variance % + &% with probability fo, or comes from a normal population

a2 2 . —262 /62 4 4 . e .
having mean 6; + 3——6%%1 and variance %‘ + 1 29‘/%;39‘/(49“) with probability 1 — po.
where g = —ﬁ_ﬂ%e“e‘(”"%). Under Condition (B), the term 8, in both means and

the term le in both variances are the dominant term. we therefore give the asymp-
totic distribution presented in Theorem 5.1 for the sake of easy application. But, in

practice, the domination of these terms in either the means or the variances is very

weak, this gives another source of inaccuracy.
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Table 5.1: Coverage Probabilities of 90% Confidence Intervals

1\bo

-0.2

-0.25

-0.3

0.2

94.46%

0.25

94.21%

94.47%

0.3

95.08%

95.21%

95.31%

0.35

95.48%

95.56%

0.4

95.98%

Table 5.2: Coverage Probabilities of 95% Confidence Intervals

8:1\bo

-0.2

-0.25

-0.3

0.2

96.26%

0.25

95.96%

96.38%

0.3

96.68%

96.86%

96.78%

0.35

97.22%

97.51%

0.4

97.38%

131




Table 5.3: Coverage Probabilities of 98% Confidence Intervals

9.\6 | -02 | -0.25 | -03
0.2 |97.86%

0.25 | 97.47% | 96.46%

0.3 | 98.14% | 97.04% | 97.87%
0.35 97.36% | 98.36%
0.4 98.62%

5.4 Moments of Ny and Ny + oy

This section provides theoretical foundation for the approximations in Section 5.2, i.e.
it gives related moments of Ny conditioning on {Sn, > d}, and moments of Ny + oar
conditioning on {Sn,, > d}. These quantities will be given in a series of lemmas.

Lemma 5.4 to 5.8 are special case of results of Chapter 3 and 4, they are presented
here for an easy reference.

Lemma 5.4: Under Condition (B),
on ['512\'0|SN0 > d] = (d + P+)2 + 0(1)’

and

Eg,[S%,|Shy > d] = (d +p4)? + O(1).
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Lemma 5.5: Under Condition (B),

d+ 1 1
Ea[NolSn, > ] = =52 — 5+ 0(5),
6, 0% 8,
and
d 1 6>
Eo [Ny + omlSn, > d] = Py (=1 + =5) + O0(=)
Lemma 5.6: Under Condition (B),
d+ps)? d+p 1 1
V2 = ( + _ + - =
Eg [N§|Sn, > d] 5 s 7 + 0(0?).
and
, d+ 2 l
Varg [No|Sn, > d] = 03P+ — O('gi)'
1 1 1
On the other hand,
d 2 d 62
Eel [(NM + UM)2|SNA\! > d] = ( +2p+) + +3p+(-1 + —'l‘
6% 63 g2
1 6 6
+5?(_1-62 04)+0(01)
and
d+ 1 36} 1
Varg, [Nar + om|Sny, > d] = 3p+ +=(-2+ 1)+ 0(—3)
63 63 403 63
Lemma 5.7: Under Condition (B),
d+ps)® ,d+ 1
Eol[NglsNo > d] = ( f+) -3 5P+ _3_6+O(—5)’
6 63 63 63
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and

d+ 1
Es, [(No = Es,(No|Sny > D))*|Sn, > D) = 322 4 O(z)-

03 i
While
d+ps)®  3(d+ps)?
Eg,[(Na + om)?|Sny, > d] = ( f+) ( 2p2+)
g7 (Ot g T am) TOGE)
and
- R d+ 1
Eg [((Nar + oar = Eg (Nar + oar|Svy, > d))%|Sh,, > d] = 3_95_p+ + 0(9—6).
1 1

In the following, we will further give expansions for higher order moments of .V,
conditioning on {Sxy, > d}, and those of Ny + oy conditioning on {Sy,, > d}.
Detailed calculations are quite complicated with lots of technical difficulties. To save
space we only give main steps.

Similar to Equation (4.35), we know that
/ e#5n= 5 Y Fo(2).dFo(za) = 1, (5.10)

and both sides of the equation are infinite times differentiable w.r.t 6.

Lemma 5.8: Under Condition (B),

d+py

1 3 2
d+p4) +9(d+P+) _3(d+P+) .
1

: (
E91 [NSISN'O > d] = 0‘11 < 0? 0(15

+O( ), (5.11)
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d 2 d+
Es,[(No — Eg,(No|Sn, > D))*|Sn, > D] = 3 :é"“) + 0O 9,”“‘), (5.12)
1 1
and
d 3 d 2 d
Vare, (N2ISy, > d) = 418501 oW Epe)” | gdtpe) 5
9 o7 A
While
d+p.)t  (d+ 26}
Eel[(‘/ M +0N[)4ISIVO > d] = ( 94p+) + ( 05p+) (24 0_2)
1
d+ 661 d+ .
fldre) 9£+) (= 3+74‘)+0( 97p+), (5.14)
1 1
- . d : d+ .
E[(Ny+or—E(Ny+ous|Sny, > d) Sy, >dl = 3( ;5” +0( ng.,. ). (5.13)
1 1
and
d d 2 462  36] d
Varl(Nas + onFISwy > d) = 4950 L b pel o 467 300, dtps,
63 g 2 " 6 o
(5.16)

Proof: We first prove results of Ng. Differentiating both side of (5.10) four times

w.r.t 8, for Sg =0,
{(Sn = 01n)* — 6n(S, - 6:n)* + 3n?, 3.} (5.17)
is a martingale under P, . Thus, we have
Eai[N{] = gel-En St + 40, Ea,(NoS,) 691 Ea, (N3 5%, ) + 467E (V3S,)

+6Es, (NoSR,) — 12601 Es, (NG Sny) + 601 Ea, (NG) — 3Es, (Ng)

2
R R S L)
1

135



Since

E91 [IVS’WSNO > d] = th [Ng] - Eﬂx [Ng,SNo < 0]
4 1
= E91 [NO] + 0(5?)
1
Thus, we have

d+ py

4 3 2
d+p) +.)(d+P+) _3(d+P+) s
1

61 B o7

Ea[N:1Sx > d = ¢ rodtee

This proves (5.11).
(5.12) and (5.13) are obtained by applying Lemma 5.3, 5.6 and some calculations.
To prove (5.14), (5.15) and (5.16), from Lemma 5.5 and 5.6, we only need to show
(5.14).
Similar to (5.17), differentiating both sides of equation (5.10) four times w.r.t 4.

for So =z and 0 <z < d, we know that

{(Sa — 2 —8in)* —6n(S, — z — 6;n)* + 3,3, ) (5.18)
is a martingale under Fj,. So
Eq [Nyy] = %[—Egl(SNM—M)4+401Egl(NM(SNM—M)s)—GOngl(N,f,(SNM—A/I)z)+

463Ey, (N3,(Sn,, — M)) + 6Es, (Nas(S,, — M)?) — 126, Eq, (N?(S,, — M)

+66F Eg, (N3r) — 3Eq,(Nay)]

(d + p.(..)‘1 (d+ p+)3 201 200 (d -+ p+)2 601 30% 900 30001

= 5 + s (4+——+ )+ 7 (6+9_0+—03_+91-00+(01—00)2



(d+P+)2(_% 367 30?

36,

)+ O(—=—

E[Nyon] = [F——

206 T 262 2(6; = 6o)°

" 2(6, — 6o)

d+P+

]Pﬁx SNM > d)

Combining above results, we have

d+p )t (d+p4)? 262
E[(N.'W + Um)“]SNM > d] = ( Hf+) 0£+) (2 + 0—21')
h 1 0
d 2 667 d+
+%<-3+ )+ Ol P,
1 91
This ends the proof of Lemma 3.8.
Lemma 5.9: Under Condition (B).
d 5 d 4 d 3 2
6; 4 o] 6
and
5 _(d+p)°  (d4pe) 15 56, 56
(d + py)® 156, 562 206, 56,0, (d+ps)?
T Pt TRt Gi-er PO )
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Proof: The idea is similar to that used for proving Lemma 5.8, and thus only main
steps are given. Differentiating both sides of Equation (5.10) five times w.r.t 8, if

So = 0, we know that
{(Sn — 61n)° — 10n(S, — ;1) + 15n(S, — O1n), e} (5.19)
is a martingale under P,. Thus, we have

1 Q5 r o r r3 O
Eq [N3] = 5[E(,,:No — 501 Eg, (NoSy,) + 1062 B (NG SX,) — 1063 Es, (N3S%,

[¢]

)+
501 Es, (Ng Sny) — 10Eg, (NoSR, ) + 306, Eg, (N3 S%,) — 3062 Eg, (N3Sn,) + 106° Eq, N

+15Egl (NgSNo) - 1591E91 JVS]

1 (d+pp)! d+p.)° d+p,;)?
= gl + o458l S Pl o8t yip, (5, 5 a)
1 1 1 1
Since
Eg, [Ng, Sng > d] = E,[N§] — Eg,[N§, S, < 0]
1
= EG: [Ng] + O(EL
1
we have
5 d 4 d 3 d 2
Ea(N3ISy, > ) = LE2el y sU@3pel (0L pe) | o (@tpa))
1 1 1 1

which is the first result of Lemma 5.9.
To prove the second result, similar to (5.19), differentiating both sides of equation

(5.10) five times w.r.t 8, for So = z and 0 < z < d , we know that

{(Sa =z = 0in)® = 10n(S, — z — 6;n)% + 15n(S, — z — 61n), S} (5.20)
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is a martingale under Py, . Thus
1 .
Es [Ny = Ef-[EG‘(SNM ~ M)® =56, Eg, (Sny, — M)*Nn,, + 100?Es,(Sn,, — M) N%,,

—100?E91(SNM - M)? NN + 56} E5,(Sn,, — IW)N;{;M — 10E,, (Sn,, — M)?

M

+300, E,(Sny — M)* N3, — 3063 Eg, (Sny, — M)NS,,, + 1063 Eg, N3

+15E01 (SNM - IL[)"V.%' 100 Eel Nu]

=[(‘1"*‘P+)5_*_(GH'FM)4 15 56, 500

H g (+ 7 T 2%, + 2(01__90—))+
(d ;;’+)3(25 + 12:‘ + 9% + 9;20_9‘;0 + (05’0_"%‘0)2) + O(d J;{’* )| Py, (Sn,, > d).
Since
E[N31, Sny > d) = E[Ny] = E[N3;. Sny <0
= E[Vy] + O P)
Then
d+p+) (d+ps)t 15 56, 56,

E[N3f|Sny > d] = (5 +5-+

T e 2 Tag Tae e

(d + p4 )3 5 156, 59% 206, 5600, d+ P+
i Bttt e T ei-er PO
This completes the proof of Lemma 5.9.
Lemma 5.10: Under Condition (B),
d 6 d 5 d 4 d 3
Eo, [NS|Sw, > d] = & ;f*) +9! ;5’*) + 30 *;;’“‘) +o(t *‘05“) ). (5.21)
1 1 1 1
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and

(d+p4)* (d+p4)°

E91 [(Ng - Eex(NgISNo > d))3|SN° > d] = 48 68 + O( 6° ) ( -2
1 1

(41}
o
(3%
~—

On the other hand,

d+ps)°  (d+ps)° . 362
Eai[(Nar + ow)PIS, > d] = 9€+) +! ozp+) 9+ %)
(d + p)* 1562 15} (d + p4)° .
and
Eo, [((Nm + oa1)? = Eo,((Nu + oar)*|Sny, > d))3|Sw,, > d]
(d+p4)? (d+p4)? .
= 48 0?“ + 0/ 951,* )- (5.24)

Proof: First, differentiating both sides of Equation (5.10) six times w.r.t 4. for

So = 0, we know that
{(Sn = 01n)° — 15n(Sy — 61n)* + 45n*(Sn — 1n)? - 15n°, 3, } (5.25)
is a martingale under Pj,. Thus
Eg, [N§] = %[—Eg,Sﬁ,oGOl Eq,(NoS},) — 1507 Eg (N3SA.) + QOO?E(;‘(NS’S,?,O)

— 1561 Eg, (N3 S%,) + 66; Eo, (N5 Sny) + 15E5, (NoSi,,) — 606, Eg, (N2S3, )
+906; Ey, (N3 SR, ) — 6063 Eg, (N3 Sn, ) + 156} Eg, (N§) — 45Eq, (N2S%,)
+908, Ey, (N3 Sn,) — 450} Eo, (Ng) + 15E4, (N3)]
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(d+p4)°
o]

d+py)®

(d+p4)? " O((d+P+

3
+ 30 78 7 ) )P, (SN, > d).
1 1

Since

E51 [NS’SNO > d] = E'91 [Ng] - on [NgvSNo < 0]
. 1
= Ea‘ [No] + O(GT).
1
Then, we obtain that

6 5
d+p4) +9(d+f’+)
62 01

(d+p4)!
0%

(d + ps)?

30
+ 7

Ea[N§|Sn, > d] = | +0( ).

(5.21) follows after some calculations.
As for approximating E[(Nas + oar)%|Sn,, > d]. first note that, for Sy = r and

0<r<d.
{(Sn — 2= 81n)° — 15n(Ss — £ — O1n)* + 45n%(Sn — 2 — Oin)? — 15n3,3,}  (5.26)

is a martingale under Py, . Thus

1
75— E(Sny = M)° + 60 E(Nyg(Swy, — M)®) = 1563 E(NF (S, = M)Y)
1

Eg [N%] =
+2063 E(N%,(Sw,, — M)?) = 1562 E(N3y(Sny — M)?) + 663 E(NS,(Sw,, — M)
+15E(Npr(Swy ~ M)*) — 608, E(N%((Sn,, — M)?) + 9082 E(N3,(Sn,, — M)?)

— 6082 E(N2;(Snyg — M) +1564 E(N3;)—45E( N, (S, — M)?)+908, E(N3,(Sn,, — M)

—4561 E(Nyy) + 15E(Njy))-
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After some complicated calculation and omitting the terms with order lower than

"&af’gﬁt, we obtain that
1

+ —_—

6 5
Eﬁl [ngl] — [(d+p+) (d+p+) (19 301 300

68 67 T b6 6 -6 *
(d+ps)* 135 308, 756, 1562 15606, (d+ 0. )°
% 2 T th ot Tam e O T WhalSh > ).

Therefore, we have

(d+p4)° + (d+p4)° 2+ 36, 36,

6 —
Eol [NMISNM > ari = 0? 9'{' (1"' o 6, — 00)

(d+p4)* 135 308, 7560 1562 15068, (d+ s )?
e 9t Thoe T m T oap 0w )

Similarly, we have

d+ps)°
EING _ Pr) v v %1
[N3rom|Sny > d] g (203 26, 2(01—00))

(d+ps)* 56, 562 565 56, 567

g8 (G

+ 6o 202 263 8, -6, 2(6; —6,)?

and

4
E[Niyod|Swy > d] = 4E 2]

6 6 63 63 (d+p4)°
% o0 a6, oy 2036 — ) PO )

(5.23) is obtained by applying Lemma 5.6. The proof is completed.

Lemma 5.11: Under Condition (B),

(d+ps)°

(d+p4)°
o)

)

Es, [(Ng — Es, (N¢|Sn, > d))*|Sn, > d] = 48 + O(

_——
(@)}
(3]
-J
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and

d 6 d 5

Eg‘ [((NM+GM)2—E9!((NWI+0M)2|SNA{ > d))4|SNAl > d] = 48( ;1g+) +O(( -;llf.*-)
! 1

(5.28)

Proof: To prove this Lemma, we note that, for Sg = 0,

{(82 —01n)® —28n(S, —6:n)% +210n%(S, — 6,n)* —42(S, —,n)* +105n*, 3, } (5.29)
is a martingale under P, and for So =z with0<r < d,
{(Sa =z —0,n)% —28n(S, —z — 6,;n)® +210n%(S, — & — O;n)* — 42n3(S, — r — O,n)?

+1052°. 5, } (5.30)

is a martingale under Py, . Similar to the proof of Lemma 5.10, we obtain that

d+py)8 d+0.)" d+p.)8 d4+p,).
B (V1S > d = SGPE + 052 192t Gl 4 oS8
1 ! L
and
d+ 8 d+ 7 g2
Eg [(Nm +0’M)SISNM >d] = ( 8p+) + ( 9p+) (20+4—;)
01 01 90
d+p,)° B0 (dtpe) -
+(_%(182 + 56§§ + 28%) + o((_%). (5.32)

Lemma 5.11 follows after some tedious calculations.

With above available results, the remain problem is the error checking for equa-
tions (5.7) and (5.8). We now prove that the error terms are indeed at the order of
0(712-).
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Error Checking for (5.7) and (5.8):
Because of the similarity of the proofs, we only give the proof of (5.7).

First we note that conditioning on the event {Sy, > d},

S?Vo Eel [S.’%/o ISNO > d]

- - — 0 in probability as d — oc;
Egl[NngNo > d] Egl[NgIbNo > d] y

and
N2
Eol[NgISNO > d]

— 1 in probability as d — .

Thus, we know that for the fifth order terms of Taylor expansion, the coefficient

S‘?VO Eel [S?VQ |S.V0 >d] .’Vg

of Eg, [( ENISe5d ~ EalNalom > )(Eol[Nngdi] — 1)*|Sn, > d] converges to 1 in

probability; while the coefficient of Ep, [(E_e,[—Né\_I%_N:;ii —1)°|Sn, > d] is at the order of

2
EerlSng 1Sno>d] O(6?) in probability. Thus, we only need to show that

EOI[NQISN())di -
sz, Es,[S% SN, > d] N2 1
E Vo _ 1L~ Ng 0 - -1 4 S[ . > — — ),
N B NTSwe > A EalMiiSwe > 4] Ba[NalSm S ] ) 1S%e > Al = eligy)
(5.33)
and
Ea,(( N — 1%ISn > d] = o ) (5.34)
" E [N2|SN, > d] e 6i(d + p)? '

To prove (5.33) and (5.34), by the similar techniques used in Section 4.5, we have
to evaluate Ey, [( N2 — 4,)°|Sn, > d].

First, by noting that, for So = 0,
{(Sn = 81n)® — 36n(S, — 01n)7 + 378n%(S, ~ 6;n)° — 1260n%(S, — 8;n)°
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+94n*(Sn — 8in), S} (5.35)

is a martingale under P, .

By the same method as used in proving Lemma 5.10 and after same simplification.

we obtain that

(d+p4)°

d+py)° (d+p+)° | oo (d+p4)
+27 +342 ~

5 10 o1l

Es, [N8ISn, > d] = | +0( ). (5.36)

Similarly, by noting that, for S; =0,
{(Sn — 6;n)"° — 45n(S, — 61n)® + 630n* (S, — 8;n)% — 3150n3(S, — O,n)?
+4725n%(S, — 61n)? - 945n°, 3, } (5.37)

is a martingale under Py, . Thus, we have

110 9 d 8 T
Eo [N2[S, > d] = @ :ﬁ;‘) +3514 ;fl’“‘) +585. ;lﬂ’“) +ol ;1’;*) ). (5.38)
1 1 1 1
Therefore,
d 7
E51 [(Ng - Eol(NgISNo > d))SISNo > d] = O((TTS*‘)—) (5.39)
1
Thus
N? E [(NE — E5, (NZ|Sne > d))3|Sn, > d]
E 0 -1 5 S = 1 (1] 1 0 0 0
ol Vas s g~ 1S > d (Bs[NlSw, > d)F
(d+p+)", (d+p4+)"°
1 1

(@ore) = @
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which completes the proof of (5.34).

To show (5.33), by Holder inequality, we have

512\/0 E91 [SlzvolsNo > d] N02

_ 1\
F BN Sw, > @~ B N2l > @) Ba[WTow 5 ]~ V1S > dl <
512\10 E& [S%,OISNO > d] 5111/5 Ng 51 @ 14/5
(Eel[(IE[NngNO > d]— Eel[N§|5N° > d] I) ]) (E“E[t’v(ﬂSNo > d] _ll |bNo > d])
6? 1
= O 1 * O 1 = y
@) O =or)

This completes the proof of (5.7).

Similarly, we can proof (5.8).
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Chapter 6

Summary and Topics for Future

Research

This thesis develops some theory on inference problems after CUSUM test. The
CUSUM test is extensively used in some industrial settings. For example. in Lucas
(1985), James Lucas stated that "There are now more than 10000 CUSUM con-
trol schemes in use daily in DU Pond”. With such significant use in applications.
one would imagine that any improvement in our understanding of the properties of
CUSUM procedure could be very useful. The main goal of this thesis is to provide
some guidance to application.

In Chapter 2, properties of unbalanced two-sided random walk are investigated.

The results obtained not only form the theoretical foundation for the coming chapters,
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in term of random walk, but also have their own independent interests as well. Chap-
ter 3 discusses how to construct confidence intervals for the change point based on the
information provided by the control charts. A practical method for constructing the
confidence intervals is proposed for any given significance level by tracing back some
zero points of the control charts. At the same time, the confidence intervals can also
be built by tracing back certain number of items produced before the stopping time.
Chapter 4 turns to studying the properties of estimates of change point and change
magnitude. It is common that estimation after sequential test gives certain bias.
Thus, derivations of biases of estimates of change point and change magnitude con-
stitute the main part of Chapter 4. It is found that biases of change point and change
magnitude are both not negligible, and bias of the estimate of change magnitude is
especially substantial. Thus bias correction is definitely required. For this purpose, a
practical method for bias correction is proposed therein. In Chapter 3, properties of
estimate of change magnitude are further investigated . The asymptotic distribution
function of the estimate of change magnitude is derived by Woodroofe’s very weak er-
pansion method. Based on the asymptotic distribution function, confidence intervals
for change magnitude are obtained.

Results of this thesis are mainly developed under the frame of the standard one
parameter exponential family. This frame allows our results to be applied to many

special cases. Of particular important examples, we can apply the results to (i) the
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normal family, (ii) the non-negative exponential family, (iii) Gamma(a, 8) family with
o being fixed, and etc. These distribution families are among the most commonly
used distribution functions in practice, and this makes our results very meaningful.
Our results have been described in the context of quality control, but they are more
widely applicable.

The ultimate goal is to apply the theory to practice. For this purpose, there are
still some problems remained.

First, in reality, when changes happen, we rarely know the change magnitude. so
we have to find 2 method to estimate it. To sclve this problem, using results on the
bias of change magnitude obtained in Chapter 4, in the normal case, the following

iterative scheme is proposed:
. g
6.(i) = —
1 + est.bias(8,(: — 1))/6,(i = 1)

with 0,(0) = —6,.

After change magnitude being estimated, we can further use it to estimate the
bias of change point. With estimates for change magnitude and change point are
obtained, the rest of questions become routine. But how well this method works is
still under investigation.

Second, in this thesis, it is assumed that the in-control variance ol is known.
However, in practice, contrary to the problem of detecting change in the mean, there

typically is no target value for the in-control variance, which should be as small as
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the process permits (Pollak and Siegmund (1991)); besides, in the literature, even in
the case when the in-control variance is known, the change magnitude being detected
is always assumed to be the relative ratio with respect to the in-control standard
deviation. This reminds us to construct control charts which are invariant under
scale transformation.

To illustrate this problem, the following simple case is given. As in previous
chapters, we assume that the process being monitored is normally distributed with
mean p and variance o2. At each sampling point, random samples of size 3 are taken
regularly. Let s? denote the sample variance of the kth sample. If the process standard
deviation changes from o to (1 + €)oo at some unknown point v, then s?.s2, ... s are
independent and identically distributed as non-negative exponential random variable
with mean o2; while s2,,, ..., s2 are independent and identically distributed as non-
negative exponential random variable with mean (1 + ¢)?c2.

We also assume that the process is in control before sample point ng, for some

known value ng, 0 < ng < v. These data are used as the training samples which

provide information for an initial estimate of o2.

Let
k
Vi=>_s} k=1.2,.. (6.1)
i=1
32+1
Y= =L k=1,2.. (6.2)
Ves1
Ze=(1-Y)* k=12,.. (6.3)
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& =—kln(l-Y) k=12, ... (6.4)

It is well known that for any positive integer n, when the process variance has not
changed, (Y1,Y5, ..., Ya-1) is the maximum invariant statistics based on (s2,s2, ..., s2)
under the scale transformation. and Y1,Y5,...,Y,_; are also mutually independent
(Phatarford 1971). Some simple calculations show that Z,, Z,, ..., Z,_, are iid random
variables with uniform distribution on (0,1). Therefore, £),&,,....£6,-, are iid r.v.s
having a non-negative exponential distribution function with mean 1.

When the process goes out of control, say, the standard deviation changes from
gg to (1 + €)oo at some unknown point v, then £,4, for i € v are approximately

independent and distributed as non-negative exponential random variable with mean

(1 + €)% In fact, we have

§ori = —(v+1i)n(l -Y,4)
s2, .
= (v+1i)in(l 4+ kL)
v4i
2 3
~ il‘i'i, when v is large and | K v. (6.3)
s Vi

With the distribution functions before and after change are known, CUSUM pro-
cedure based on the maximum invariant statistic is proposed as follows:

Stop the process at the time

N=inf{n>0:T, > d},
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where

. 1 4+ ¢€)%In(1 + ¢)?
T, = max(0, Tt + (6 — 7)), with r=" (1‘260)(2_1“, and Ty =0,

€o is the reference value for €, and d is the control limit.

To end this question, we have to get rid of the restriction on the sample size.
For a given sample size m, what kind of transformation shall we perform on Y, k =
1,2,..., and what are the distribution functions before and after change after the
transformation? These are remained questions under study.

Finally, we want to extend our study to the multivariate case. This raises another
series of similar problems. Details of these questions will be carried on in the future

researches.
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