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Abstract

Improved procedures for dosimetric verification of intensity-modulated
radiotherapy (IMRT) treatments using an amorphous silicon flat-panel electronic portal
imaging device (EPID) are described in this work. The two pre-treatment verification
techniques compare either 2-D or 3-D dose distributions based on EPID measurements to
corresponding distributions calculated by a treatment planning system (TPS). Accurate
measurement of the incident fluence of an IMRT field with the EPID is the foundation of
both procedures. Fluence profiles are extracted from EPID images by deconvolution
with scatter kernels that characterize signal spread in the EPID. The kemnels are derived
using Monte Carlo simulations of dose deposition in the EPID and empirical fitting
methods. In the 2-D verification, the EPID-measured fluences are convolved with a
kernel describing dose deposition in a water phantom, and cross-calibrated with ion
chamber measurements. The beam-by-beam 2-D verifications of three step-and-shoot
IMRT treatments using the EPID are in good agreement with those performed with film,
with a mean percent difference of 0.3 £ 1.0 % (24 fields). For the 3-D verification
technique, EPID-measured 2-D fluence modulation profiles for each field are used as
input for the TPS, which then generates 3-D dose distributions. The EPID-based doses
for three IMRT plans suggested that the planned TPS doses underestimated the mean
dose in the critical structures of the spinal cord and the parotids by approximately 4 Gy
(11 — 14 %). Radiobiological modeling calculations indicate that such underestimates

may lead to clinically significant under-predictions of normal tissue complication rates.
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This thesis also includes investigations regarding the application and development
of radiobiological models, since their use may be particularly beneficial for IMRT. A
convenient computational tool was developed that furnishes current modeling predictions
of tumor control probability (TCP) and normal tissue complication probability (NTCP)
for 3-D dose distributions. In a more fundamental modeling study, potential difficulties
in the interpretation of fits to clinical data resulting from the inherent population
heterogeneity of such data are explored. The incorporation of the dynamic processes of
repair, repopulation, and resensitization in TCP models is also investigated with respect

to the description of fractionation effects.
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Figure 5.7. Fits (lines) of the RH model to pseudo-data (circles) generated for one
fractionation regime and using parameter set (a) #1 and (b) #4, the latter set
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Figure 5.14. Comparison of simulated surviving clonogen distribution and
corresponding predictions of binomial statistics for radiobiological parameter values
of N=10*, = 0.30, B =0.03, and 2=0.17, and a treatment of 25 fractions of 1.7
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Binomial = 0.43. (b) TCP 2 weeks after treatment: simulated = 0.53, Binomial TCP
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TCP, TCPsin,is plotted asa functionof A for various valuesof N. TCPzsand
TCPpg;, are evaluated at the predicted Dsp dose for the TCPg,, curve. .................... 187

Figure 5.17. Fits (lines) of TCP models to six fractionation regimes (» as indicated in the
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BED
BEV
CCI
CE
CT
cv
DDVH
DMLC
DNA
DQE
DVH
EBRT

EGSnrc

EPID
FSU
GMD
IGAR
IMRT

LPL

LQ

List of Abbreviations

biologically effective dose

beam’s eye view

Cross Cancer Institute

critical element (NTCP model)

computed tomography

critical volume (NTCP model)

differential dose-volume histogram

dynamic multi-leaf collimation
deoxyribonucleic acid

detective quantum efficiency

dose-volume histogram

external beam radiotherapy

Electron Gamma Shower (a Monte Carlo Radiation Transport
Code), version developed by the NRC (National Research Council
of Canada)

electronic portal imaging device

functional sub-unit

generalized mean dose

image guided adaptive radiotherapy
intensity-modulated radiotherapy
lethal-potentially lethal (cell survival model)

linear-quadratic (cell survival model)
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LQ-IR
MLC
MRI
MU
NTCP
PET

PLL

ROI
RT
SDD
SH
SMLC
TCP
TFT
TLD
TPS
VOI
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linear-quadratic incomplete repair (cell survival model)
multi-leaf collimator

magnetic resonance imaging

monitor unit

normal tissue complication probability

positron emission tomography

potentially lethal lesion

Roberts and Hendry (reference to authors of a TCP model)
region of interest

radiotherapy

source-to-detector distance

single hit (cell survival model)

segmental multi-leaf collimation

tumor control probability

thin-film transistor

thermoluminescent dosimeter

treatment planning system

volume of interest

Zaider and Minerbo (reference to authors of a TCP model)
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Chapter 1: Introduction’

This thesis work describes investigations relaited to intensity-modulated
radiotherapy (IMRT), an advanced technique of external beam radiotherapy. The work
can be divided into two main project areas. The first involves development of methods
for verifying the dosimetric accuracy of IMRT treatments based on use of an amorphous
silicon electronic portal imaging device (EPID). The methods described aim to increase
both the convenience and clinical relevance of IMRT verification procedures. The
second part of this thesis work studies the application and utility of current
radiobiological models. Reliable radiobiological models hold the promise of not only
more accurate evaluation of treatment outcomes, but also improved optimization and
customization of patient treatments. The potential benefit of incorporation of
radiobiological knowledge in the radiotherapy treatment planning process is particularly
great for IMRT. In this thesis, radiobiological models are used to predict the biological
outcomes of IMRT dose distributions, and more specifically, to assess the biological
consequences of the dosimetric uncertainties quantified by IMRT verification procedures.

This introductory chapter will briefly present contextual information of relevance

to the thesis work, which is discussed in detail in the following chapters.

A. Intensity-Modulated Radiotherapy (IMRT)

External beam radiotherapy (EBRT) is one of the primary treatment modalities
for localized cancers. Unfortunately, in delivering radiation dose to a tumor, surrounding
normal tissues are also irradiated, which can lead to unacceptable treatment side-effects.
These normal tissue complications generally restrict the dose that can be safely delivered
to the tumor, which may in turn limit the likelihood of tumor control. The efficacy of
radiotherapy thus relies crucially on the geometric accuracy of the dose delivery.! IMRT
is a technique that facilitates a greater conformation of dose to a tumor target, while

distributing normal tissue dose away from critical organs.

' Versions of the material throughout this thesis has been accepted for publication/published in Refs. [116-
121]. See Section 1.D at the end of this chapter for further details.
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IMRT represents a departure from conventional radiotherapy (RT) delivery
techniques in both the mechanics of dose delivery, and in the procedures of treatment
planning. With conventional EBRT techniques, the size and shape of the radiation beam
from a linear accelerator (linac) treatment unit (or alternatively, but now less commonly,
a Cobalt treatment unit) is determined by the settings of a pair of collimating jaws. These
conventional radiation beams are thus rectangular in shape, and nearly uniform in
intensity. To achieve a suitable dose distribution (i.e. sufficiently high tumor dose, and
low normal tissue dose), the task of treatment planning for conventional RT treatments
entails optimization of the number, the angles of incidence, the sizes, and the relative
weights of the radiation beams, and the selection of appropriate beam-modifying devices
(e.g. wedges). Typically, a forward treatment planning process is employed for the
optimization of these treatment parameters: the planner uses an iterative procedure
involving adjustment of parameters and re-calculation of the resulting dose distribution.

As implied by its name, in its most literal interpretation IMRT simply refers to the
use of beams with a non-uniform intensity. There are a number of methods of realizing

23 These include the use of scanned beams,4 multi-leaf collimators

56

beam modulation.
(MLCs) with conventional linacs, physical compensators, or tomotherapy machines.
Currently, the most common kind of IMRT employs a linac-based MLC, and this is the
type of IMRT of interest for this thesis work. An MLC is a collimating device attached
to or (more often) within a linac treatment head that consists of many independently
moving, narrow collimating leaves. The resolution of the dose delivery perpendicular to
the direction of leaf travel is determined by the width of the leaves. As an example, the
Varian Millennium 120 MLC (Varian Medical Systems, Palo Alto, CA) model used in
this work has 60 pairs of leaves, with the central 40 pairs and outer 20 pairs having
widths of 0.5 cm and 1.0 cm (measured at isocenter), respectively.

The many independent leaves of an MLC provide a flexible means of generating
irregularly shaped, intensity-modulated beams. In dynamic multi-leaf collimation
(DMLC), the MLC leaves move while the radiation beam is on. In this “sliding window
technique,” each pair of leaves defines an opening that moves across the width of the
field,” with the shape and intensity-modulation of a given field being thus determined by

the size of the openings (or “windows”) between all the different pairs of leaves as a -
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function of time.> At our institute (Cross Cancer Institute, Edmonton, AB), segmental
multi-leaf collimation (SMLC) is used in clinical practice; we describe improved
verification procedures for this type of IMRT in Chapters 2 and 3. In the case of SMLC,
which is also referred to as *“‘step-and-shoot” IMRT, a single intensity-modulated field is
realized by delivery of a number of static, MLC-defined sub-fields (Fig 1.1) at a given
beam angle. The distinguishing feature of SMLC is that the radiation beam is off while

the MLC leaves are moving into the new positions defining the next sub-field.

| weitd m o

Figure 1.1. Illustration of the concept of segmental IMRT (SMLC). The images 1-6 represent
individual static sub-fields (or segments). The weighted summation of the sub-fields (with
respective weights of 0.250, 0.159, 0.125, 0.164, 0.130, and 0.171) produces the intensity-
modulated field shown.

Use of intensity-modulated beams can, in theory, be combined with a forward
treatment planning process (e.g. Refs.[8-10]), as used for conventional RT treatments.
However, because of the large degree of freedom in designing the modulation profile of
each beam, it is impossible to produce a truly optimal dose distribution using forward
planning. Instead, the term IMRT generally implies the use of intensity-modulation in
conjunction with inverse treatment planning. In the inverse planning process, depicted
schematically in Fig. 1.2,'' computers are used to optimize the fluence intensity profile of
each beam. In the case of MLC-based IMRT, the optimized fluences are then converted

to corresponding MLC leaf positions. To steer the optimization routine, the user
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specifies quantitative treatment objectives, usually in the form of the prescribed dose to
the tumor, and a limited number of dose-volume constraints for the relevant normal
tissues. To reduce the computational complexity of the computer optimization, the user
manually selects the number and angles of the incident beams, rather than including these

parameters as part of the optimization process.

Delineate target and critical structure volumes on CT anatomy
T Human

Input

Defire treatment objectives:
Rx target dose, D-V constraints for normal tissues

e e L

Calculate 3-D dose distribution Dose
at dose calculation pts sampled w/in defined volumes, < Calculation
for the parameters of the current treatment plan iteration Algorithm
v

J

Computer

Use optimization ranking function
to evaluate the relative quality of the current treatment plan

¥ , Optimization

Search & Iterate: Search parameter space for beam intensity Algorithm
modulations that more optimally meet specified treatment
objectives; adjust treatment parameters accordingly J
Treatment objectives met? OR
User stopped optimization?
/ Optimized Treatment Plan /
Human
Evaluation

Figure 1.2. Flowchart of the inverse IMRT planning process.'!

The advent of IMRT as a clinical reality is quite recent. IMRT’s modem
development was spurred by the availability of treatment planning systems capable of

calculating dose distributions with respect to the three-dimensional (3-D) anatomical data
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sets provided by CT (computed tomography), and the introduction of convenient and
flexible computer-controlled methods of achieving beam modulation® (such as MLCs).
Although the concept of using an MLC device for dose conformation dates back
approximately 40 years,'? the fundamentals of modern IMRT were mainly elucidated in
works published in the late 1980’s and early 1990’s.** The clinical introduction of

IMRT was somewhat later, in the late 1990’5,7‘l'24

and was at first limited to a very few
institutions.

IMRT enjoys the greatest advantage over conventional delivery techniques when
the tumor target is irregularly shaped and/or proximal to or surrounding a critical normal
tissue structure for which it is vital that the dose does not exceed a specified tolerance
level. For this reason, IMRT was first used for treatment of prostate cancers, where
nearby critical structures include the rectum and the bladder, and for head and neck
cancers, where the spinal cord and parotid glands require sparing. IMRT has also found
application in the treatment of breast and lung cancers. The Cross Cancer Institute was
the first Canadian center to clinically implement inverse-planned IMRT in 2000, and has

used IMRT in the treatment of head and neck and (iater) lung cancers.

B. Verification of IMRT Treatments

i Characteristics of IMRT Necessitating Verification Procedures

Since effective radiation therapy relies on the accuracy of dose delivery, quality
assurance procedures used to detect dosimetric errors are of critical importance. The
unique characteristics of IMRT place even more stringent demands on verification
procedures, and rhake them even more essential.

The potential clinical benefits of IMRT can only be fully realized if the
technological capability to precisely deliver dose is matched by an equivalent facility to
ensure that the planned dose is delivered to the patient during a treatment.
Fundamentally, the purpose of most verification procedures is to confirm that the 3-D
dose distribution calculated by a treatment planning system (TPS) is adequately
representative of the patient dose. The radiotherapy process involves the following: (1)
treatment planning to generate both a dose distribution, as calculated by a TPS, and

treatment parameters, including beam angles, sizes, weights, monitor units (MUs) for
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each beam, MLC-controller files, etc.; (2) transfer of the beam parameters to the
treatment unit; and, (3) delivery of the actual treatment. Thus, differences between the
TPS-calculated dose and the dose actually delivered to the patient may result from
inaccuracies in the dose calculation algorithm, from systematic procedural errors, or from
problems with the mechanical delivery of the treatment. Errors from each of these
sources are more likely in the case of IMRT treatments, than with conventional EBRT
ones.

Conventional EBRT treatments are characterized by a relatively uniform dose
distribution in the tumor, and low dose gradients elsewhere. The dose calculations for
such distributions are generally quite reliable. Thus, if verification of a treatment of this
type is considered necessary, use of a single (or few) point-dose measurement(s) is
usually deemed sufficient. Since the dose changes in a predictable, well-understood
manner, when there is agreement between measurement and TPS calculation at one (or a
few) appropriate point(s) (e.g. isocenter), adequate agreement at other points in the
patient volume is generally assumed.

IMRT treatments, in contrast, are distinguished by more heterogeneous dose
distributions and large dose gradients, as required to achieve enhanced tumor dose
conformation and critical structure dose avoidance. However, concomitant with the
added benefit of these large dose gradients is an added danger. If the true position of a
large dose-gradient in the delivered dose distribution is shifted with respect to the
location predicted by a TPS dose calculation, an anatomical region intended to receive a
high dose may actually receive a2 low dose, or vice versa. Clearly, single point-dose
measurements are inadequate in verifying the distinctly non-uniform dose distributions of
IMRT. Since agreement between planned and delivered doses at one point may indicate
very little about the agreement at other points, it is necessary for measurements to more
fully characterize the spatial distribution of the dose. This is especially true because dose
calculations are inherently less reliable in the case of IMRT. One main reason is that it is
difficult for TPS algorithms to correctly model the dose in regions of charged-particle
disequilibrium, such as those where large dose gradients are present. The absence of
lateral charged particle equilibrium also occurs in the small sub-fields that typically

comprise step-and-shoot IMRT fields. Another common source of error in TPS
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calculations is the simplified modeling of the MLC that typically fails to accurately
account for inter-leaf MLC leakage effects, which include those due to the tongue-and-
groove geometry present in some MLCs, and the transmission through the rounded-leaf
geometry of some MLCs. Such MLC leakage and transmission effects may not always
be insignificant for a given IMRT field.>?® For instance, at a junction between a set of
closed leaf pairs, the TPS may under-predict the dose considerably. One function of a
dosimetric IMRT verification procedure may thus be to ensure that either these
overdosage regions do not lie in critical treatment areas (e.g. within critical normal
structures), or that they are insignificant when averaged out between all fields of the
IMRT treatment.

The greater complexity in both the procedure and in the delivery of IMRT
treatments may also introduce additional sources of error. Systematic errors in the
transfer of MLC leaf sequence files from the treatment planning computer to the record
and verify system is an example of a potential procedural error. Since its mechanical
design and computer control system make the MLC a complex device, occasional failures
in the proper functioning of the MLC would not be unexpected®’ and could potentially be

a source of significant dosimetric errors.

ii. General Description of IMRT Verification Procedures

Several of the procedures developed to ensure accurate and safe IMRT deliveries
are described in Refs. [21,22,28]. Routine quality assurance tests specifically verifying
the mechanical accuracy of the MLC leaf movements during beam delivery represent one
of the most common types of IMRT verification procedure.”>” Typically with such
tests, the delivery of an MLC test pattern is imaged using film or an electronic portal
imaging device (EPID). The positions of the MLC leaves on the image are then
compared to the expected positions, as described in the MLC controller file. Procedures
involving the comparison of measured doses to TPS doses represent another type of
IMRT verification test. Such dosimetric veriﬁcatidns may be used to directly assess the
combined effect on IMRT dose distributions of various sources of errors (e.g. procedural

errors, MLC delivery malfunctions, and TPS dose calculation inaccuracies).
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Dosimetric comparisons can be divided into two main classes: two-dimensional
(2-D) and three-dimensional (3-D) tests. A conventional 2-D technique is measurement
(beam-by-beam) of the beam’s-eye-view (BEV) dose distribution for each planned IMRT
field at a single depth in a homogeneous (e.g. water) phantom.” Typical 3-D procedures
involve the delivery of an entire IMRT treatment to an anthropomorphic 3-D
phantom.m':’g'39 There are a few different ways to measure the cumulative (i.e. from all
beams) dose distribution within the phantom. Conventional dosimeters for this task are

21.38

thermo-luminescent dosimeters (TLDs), placed in a variety of locations in the

4041

phantom, and radiographic film, positioned in a spiral orientation to facilitate

measurement of doses in more than one plane. MRI (magnetic resonance imaging) gel

. 424
dosimetry 248

is an alternative (though not commonly used) technique capable of
providing a complete 3-D dose distribution. Here a 3-D phantom is filled with a gel that
acts as a chemical dosimeter. Absorption of dose induces chemical changes in the gel
which alter the gel’s relaxation parameters. After irradiation, the gel is imaged with MRI
to determine relaxation rates throughout the gel, to allow a reconstruction of a 3-D dose
image.

In comparison to 2-D tests, a main advantage of 3-D tests is that they provide a
more complete and direct assessment of the accuracy of the TPS predictions of the
complex IMRT dose distributions. They also allow the cumulative effect of dose errors
from all beams to be quantified, which is not the case for beam-by-beam 2-D
comparisons. Although this is generally advantageous, if significant discrepancies
between measured and predicted dose distributions are suggested by a 3-D verification, it
may be difficult to identify the source of the errors. To isolate the errors it may then
become necessary to resort to a beam-by-beam 2-D verification. A principal
disadvantage of 3-D tests is that they are very labor-intensive, and for this reason, are
generally not practical if verifications are to be done for each patient’s IMRT treatment
plan.

At our institute (CCI, Edmonton), the treatment plan of each IMRT patient has
been verified using a film-based, beam-by-beam 2-D BEV verification. In this work, we
developed an analogous EPID-based 2-D technique that has since replaced the previous
film-based method in clinical practice. We also developed a complementary 3-D IMRT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



verification technique utilizing EPID measurements. Since a major feature of both
techniques is that they are EPID-based rather than film-based, we first briefly discuss the
use of film and EPIDs as dosimeters in IMRT applications in Section B.iii. We then

proceed to a short overview of our 2-D and 3-D techniques in Section B.iv.

iii. Overview of the use of Film and EPIDs as IMRT Dosimeters

As a result of its fine spatial resolution and two-dimensional nature, radiographic
film has been the traditional choice for many IMRT verification applications.?'?-52
Film, however, does suffer from several drawbacks. First, the energy dependence and
non-linearity of the dose response of film can complicate accurate dose calibration. Film
dosimetry can also be unreliable because of the sensitivity to processor conditions (e.g.
temperature, chemical state of the developer and fixer solutions) and the variability in
dose response between film batches. The use of film is also labor-intensive, requiring
wet-processing and scanning of each film. The storage and archiving of film is also
Inconvenient.

Electronic portal imaging devices (EPIDs) were developed to be digital
replacements for radiographic film in conventional portal imaging used for geometric
verification of patient treatments. Another obvious potential role for EPIDs is as
convenient 2-D dosimeters. Unfortunately, early generation liquid ion-chamber and

camera-based fluoroscopic EPIDs*>>¢

generally produced images of inferior contrast and
spatial resolution to those obtained using film.>® Despite this, significant research effort
has demonstrated the potential utility of these two types of EPIDs for IMRT procedures

such as quality assurance of MLC leaf positioning®'=2"!

and dosimetric verification of
IMRT treatments.® The third and most recent class of commercial EPIDs uses flat-
panel photo-diode arrays to detect the optical photons produced as a result of x-ray dose
deposition in a scintillating screen. Compared to the liquid ion-chamber and fluoroscopic
EPIDs, these indirect detection flat-panel imagers exhibit higher detective quantum
efficiencies (DQEs). Their improved spatial resolution makes flat-panel EPIDs
especially well suited for IMRT applications. A recently published work®” has also

described design details and a prototype of another kind of EPID - a high-DQE EPID
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based on use of a thick cesium iodide (CsI(T1)) scintillator. This type of EPID is not
presently commercially available.

The Varian aS500 EPID used in this study is an example of an amorphous silicon
flat-panel EPID. Because of the recent commercial introduction of this type of EPID,
there had only been a few reports in the literature about their use for IMRT applications
prior®® to the work described in this thesis. Other more recent works in this area include
those in Refs. [37,69,70].

iv. Overview of Proposed 2-D and 3-D IMRT Verification Procedures
a. Review of EPID calibration

The use of any EPID for dosimetric purposes first requires implementation of a
suitable procedure establishing a relationship between pixel intensity and either fluence
or dose distributions. Calibration of an EPID is more complex than for many other
dosimeters. For example, simple cross-calibration of pixel response with dose
measurements made with an ion chamber in 2 homogeneous water phantom (or in air) is
generally not sufficient. The physical structure of an EPID is complex, consisting of
multiple layers of different materials above and below the detector layer of the EPID.
These various material layers constitute an “EPID-phantom” having dose-deposition
properties that differ significantly from those of a simple water phantom. The
relationship between dose and EPID response is further complicated by “optical glare,”
which for an indirect flat-panel EPID is caused by the spreading of optical photons
generated in the scintillating screen before reaching the photodiode array.

There are two general reported approaches for EPID calibration. One of them is
an empirical method proposed by Chang et al.”! that is based on the measurement of
EPID phantom-scatter factors. In general, phantom-scatter factors are used in dose
calculations to account for the increase in dose at a reference point with increasing field
size that results from the greater dose originating from scatter within a phantom when
more of a phantom is irradiated.”” The field-size-dependent EPID phantom-scatter
factors described by Chang er al. relate EPID pixel values to ion chamber measurements
in a water phantom at the center of an open beam. Unfortunately, the use of a single

phantom scatter factor for all points in a field would limit the accuracy of this type of
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calibration at off-axis points. Changes in the EPID pixel/ion chamber relationship away
from a beam’s central axis result from changes in the relative contribution of scatter to
the total signal, and also potentially from a relative over-response of the EPID to the
softer off-axis beam. Thus, a calibration employing one phantom scatter factor per field
is not ideally suited for verification of IMRT beams comprised of irregularly-shaped sub-
fields with superposing field edges. An improved empirical approach is to calculate
unique scatter factors for all points inside a field. In principle, these off-axis scatter
factors can be estimated from measured central-axis scatter factor values using (for e.g.)
Day’s method.”” However, such an approach still has limited applicability near field
edges,”” which for IMRT may be problematic.

A second, more flexible EPID calibration approach is based on convolution
methods and scatter kernels. The convolution method is used either to convert a 2-D
EPID pixel distribution to a dose distribution in a homogeneous phantom, or a known
primary fluence into a portal dose distribution that is compared with the EPID image.
The mathematical form of these scatter kernels can be derived either by Monte Carlo
modeling of the underlying physical scattering processes, or empirically, by adjusting the
kernels to obtain the best possible agreement between EPID doses obtained using the
convolution method and measured ion chamber doses. Kemel-based techniques have
been implemented to calibrate the dose-response of liquid-ionm'-'7 and fluoroscopic®>87
EPIDs. Recently, McCurdy et al. have applied their two-step kernel-based calibration
procedure® to indirect flat-panel portal detectors.® With this approach, the scattered (in
patient) energy fluence is predicted at the detector plane, and then used to calculate the
dose distribution within the portal detector, through superposition with the dose
deposition and optical glare kemels unique to the portal detector. In our 2-D and 3-D
IMRT verification techniques we will use the EPID to measure the incident fluence of
delivered IMRT fields by in essence reversing this approach. This is done by
deconvolving a portal dose distribution with respect to dose deposition and glare kernels.
The use of deconvolution techniques to extract incident fluence is conceptually
straightforward, and in comparison to a strictly empirical method, should be more

accurate near field edges.

11
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b. Proposed EPID-based 2-D IMRT Verification Technique

Our beam-by-beam, 2-D, EPID-based IMRT verification method is enabled by
implementation of a two-staged kernel-based calibration procedure. The first step is the
deconvolution step, where the raw EPID image is deconvolved directly to incident
fluence using a scatter kernel composed of two elements: a dose-deposition kernel
specific for the geometry of the Varian aS500 EPID generated using the EGSnrc®
(National Research Council (NRC) Canada, Ottawa) Monte Carlo radiation transport
code; and an empirically-derived kernel accounting for optical photon blurring, as well as
any deficiencies in the Monte-Carlo based dose kernel. This deconvolution to primary
fluence obviates an EPID-independent fluence estimate: we have verified the accuracy of
fluences measured with the EPID by making direct comparisons of the deconvolved
EPID fluence profiles with those measured using a diamond detector (PTW Freiburg,
Germany). The second step of our calibration procedure is a convolution of the primary
fluence with dose-deposition kernels generated using EGSnrc for the depth of 10cm in a
water phantom. To establish an absolute dose calibration relationship, the processed (i.e.
deconvolved-convolved) EPID distribution of a calibration field is correlated to
corresponding measurements of absolute dose made in a water phantom with an ion
chamber. For verification purposes, an EPID-based absolute BEV dose distribution is
produced for each IMRT field and then compared to the analogous 2-D dose distribution
calculated by our treatment planning system. As alluded to previously, this type of 2-D
dosimetric verification is intended to quantify procedural, MLC leaf movement, and TPS

dose calculation errors.

¢. Proposed EPID-based 3-D IMRT Verification Technique

A limitation of the 2-D verification method is that it is not evident how the errors
quantified in a 2-D dose at a single depth in a water phantom relate to the cumulative
errors in a 3-D dose distribution in the patient from all beams in an IMRT plan. This
limitation makes it difficult to assess the potential clinical significance of dosimetric
errors, particularly errors that appear small in the 2-D dose distribution but might be
additive in the 3-D dose distribution. This motivated the development of our “3-D”,
EPID-based IMRT verification technique.

12
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A number of researchers have investigated techniques of 3-D dose reconstruction
using EPID measurements of exit fluence acquired during a treatment session with the
patient in the beam.®#83%  ynlike these techniques, the one we describe is a more
rudimentary pre-treatment (i.e. no patient) 3-D verification technique that exploits our
method of measuring primary fluence with the EPID. A somewhat similar pre-treatment
verification technique, but using film, has recently been described by Renner ez al® In
their work, for each IMRT field, a 2-D dose distribution was measured using film placed
below a 3 mm copper build-up plate. These 2-D distributions were then used as the
primary fluence input for calculations of the 3-D dose employing an in-house pencil-
beam superposition algorithm. The verification was a comparison of these doses to
corresponding doses calculated by a commercial treatment planning system.

With our technique, EPID images are acquired of each IMRT field and its
corresponding open field. IMRT-field and open-field 2-D fluences are then extracted
using our kernel-based deconvolution technique to eliminate blurring of the fluence
caused by scattering within the EPID and the water-build up placed on its surface. The
ratio of IMRT-field to open-field fluences provides a 2-D relative fluence modulation
profile for each IMRT field. These 2-D modulation profiles are then used as input to our
commercial TPS, which then generates a 3-D dose distribution using the patient’s CT
data. The verification consists of comparing this 3-D dose distribution, obtained using
measured fluence modulations, to the original inverse-planned 3-D dose distribution
calculated by the same TPS, using TPS-optimized fluence modulations. Discrepancies
between these two dose distributions are quantified and displayed along with the 3-D
patient anatomy. Thus, unlike our 2-D technique, the 3-D dose differences are
cumulative and arise from all the fields of an IMRT treatment.

Many of the same sources of error are probed with our 3-D technique as are with
our 2-D technique. For example, since the EPID-measured fluences will contain inter-
leaf leakage effects, errors in the TPS doses using TPS-optimized fluences due to the
TPS’s failure to account for such leakage can be identified. The 3-D verification should
also identify errors resulting from inaccuracies of the TPS’s modeling of very small sub-
fields: in the case of the EPID-based 3-D doses, the TPS is no longer required to model

the small sub-fields because the fluence modulation input is based on an EPID
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measurement of the entire IMRT field. It is however noted that, since the TPS performs
the dose calculation step for both the EPID-based and the original (measurement-
independent) TPS-based doses, only the fluence modeling step of the TPS calculations
will be verified in our 3-D method. In theory, an independent verification of the
convolution/superposition step of the TPS’s dose calculation would also be valuable. In
practice, however, there are reasons why use of the commercial TPS to perform both dose
calculations may in many circumstances be more convenient and preferable to use of an
independent (e.g. pencil beam) algorithm to calculate dose from the EPID fluences. A
clinical TPS is subject to a thorough commissioning process. Commissioning of an
independent algorithm requires considerable effort, and in general it may be difficult to
implement an algorithm that improves upon the accuracy of a commercial TPS.
Commercial TPS dose algorithms are also routinely updated and improved by the TPS
vendors. The flexibility of a commercial TPS may also be advantageous — e.g. it may be
easier with 2 commercial TPS to calculate the overall dose distribution from a treatment
plan combining IMRT with a conventional RT technique using other beam-modifying
devices such as compensators or wedges.

The 3-D verification provides dose-volume statistics for specific clinical volumes
of interest, which can be used as input for radiobiological modeling calculations of
normal tissue complication probability (NTCP) and tumor control probability (TCP).
Thus, a tremendous advantage of the 3-D technique is that it makes feasible a very direct

evaluation of the potential clinical impact of dosimetric uncertainties in IMRT treatments.

C. The Role of Radiobiological Modeling in IMRT

Ultimately, optimizing radiotherapy treatments requires not only better
knowledge of the dose delivered, but also of the biological outcome of that dose. This is
the purpose of radiobiological dose-response models. In the following sections, potential
benefits of such models in treatment planning are discussed, and a brief overview of the

radiobiological modeling work contained in this thesis is given.
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i. Inverse Optimization of IMRT treatments

The computer algorithms performing the inverse IMRT optimization require a
mathematical ranking function to steer the search for the beam intensity modulations that
best meet the clinical objectives of the treatment. Currently, commercial IMRT inverse
planning algorithms almost exclusively rely on the use of so-called physical dose-volume
metrics®’ to rank prospective treatment plan iterations. Commonly, a physical ranking

function, F,,, (D), will consist of two parts: F s (D)=F, (D). The

bjective

(D)+F,,

nstraint
“objective” piece typically formulates the treatment goal with respect to the tumor dose
distribution. An example of an objective function that is frequently minimized in

optimization algorithms is,

Fabjecrive (5) = 2 (Dl - DR: )2 ’ (1°1)

i€tumor
where D; is the dose calculated at point 7, and Dg, is the user-specified prescription dose.
This objective function is based on the philosophy that, for a given integral tumor dose, a
homogeneous tumor dose distribution yields the highest probability of tumor control. .
The “constraint” function is used to penalize dose distributions that violate the user-
specified dose-volume constraints for the critical normal tissue structures.

There are limitations to the use of physical ranking functions.>® The physical
dose or dose-volume metrics are presumed surrogates for the actual biological
consequence of a given dose distribution. However, these metrics may not always
accurately reflect the true dose responses of tumors and normal tissues. Even though the
basic philosophy of Eq. (1.1) can be supported on radiobiological considerations,” this
objective function may be too simplistic in the case of the highly heterogeneous dose

distributions of IMRT. As an illustration, two tumor dose distributions may give the
same value for the F,,. .. (D)in Eq. (1.1), but one may represent a small, yet uniform

under-dosage of the tumor, while the second may be characterized by a cold spot that is
small in volume but large in dose magnitude. The biological effects of the two
distributions are likely to be very different. Further, Eq. (1.1) fails to account for the fact
that highly heterogeneous tumor dose distributions may be beneficial if they allow the
integral tumor dose to be escalated without increasing the dose to normal tissues,” as is

often the case with IMRT. Typical constraint functions also have limitations. Usually,
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only a few (e.g. two or three) dose-volume constraints can be specified for each normal
tissue of interest. However, there is a multitude of dose-volume histograms (DVHs) that
may equally well satisfy these few constraints, yet may correspond to drastically different
complication rates. The converse is also true, very different DVHs may in fact lead to the
same complication rate. Thus, use of a very large number of dose-volume constraints is
not a solution, since this may unnecessarily restrict the search for the optimal dose
distribution.

Philosophically at least, the incorporation of radiobiological dose-response
models in the optimization functions provides a much more direct translation between
dose distributions and their biological outcome. A useful ranking function could be, for
instance, one that maximizes the probability of achieving tumor control without any
normal tissue complications. There has been some research into the application of
biological optimization of conformal treatments.”'” When employing “pure” biological
optimization based solely on dose-response calculations, often very large tumor dose

heterogeneities result in the optimized dose distributions.'®

This is still generally
deemed clinically unacceptable, since very large tumor doses may needlessly damage
normal tissue embedded within the tumor.”! An alternative approach is to use an
optimization function that combines dose-response model predictions with physical
constraints based on clinical experience. Some recent research has reported some
encouraging results when adopting such a biophysical (or hybrid) approach:®! 9798102
dose distributions with reasonable levels of heterogeneity that are also of comparable or
in some cases better clinical quality (as judged using conventional dosimetric criteria)
than those obtained from pure physical optimization.

There is considerable reluctance towards implementation of biological or
biophysical optimization algorithms. The first reason is that physical optimization has
been well-established in clinical practice, and has been effective in producing clinically
acceptable, though likely not theoretically optimal, treatment plans. The second reason is
the large uncertainties that currently plague radiobiological modeling calculations (see
Section C.iv). The ability of radiobiological models to properly rank competing
treatment plans has been questioned in a number of works.'®% 1t is hoped that further
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development of radiobiological models will enhance their reliability, and make their

application more viable.

ii. Adaptation of treatments

Radiobiological models have a great potential role in adapting treatments to
treatment conditions or patient characteristics that differ from those assumed when a
treatment plan is generated. This can be illustrated with a few brief examples. If one ora
few fractions of a treatment are missed by a patient, radiobiological models should be
employed to properly adjust subsequent treatments, e.g. for the effects of tumor
repopulation.'® A patient’s radiobiological characteristics may also change during the
course of treatment. In conjunction with implementation of an image-guided adaptive
therapy (IGAR) protocol, it is possible that future developments will allow images
acquired during treatment to track changes in, for example, tumor volume or tumor
hypoxia. Again, radiobiological models in this case would be indispensable in
determining how best to adjust the treatment plan. Finally, models could also be used to
account for dose delivery inaccuracies, such as those detected by daily images acquired
during a tomotherapy-based treatment. Corrections for such errors that do not utilize
dose-response models may be error-prone. Accurate corrections in general may require
detailed knowledge of dose-volume relationships of tissues. In correcting for dose errors,
dose-response models may also be needed to account for differences in the treatment
effect between a dose delivered on one day and the same amount of dose delivered at a

later time.'?

iii. Individualization of treatments

One of the most natural potential applications of radiobiological modeling is in
the patient-specific customization of treatment plans. The paradigm is shown in Fig. 1.3.
Radiobiological assays would be used to extract parameters describing the specific
characteristics (e.g. normal tissue and tumor radiosensitivities, proliferation rate) of an
individual patient. Incorporating these parameters into appropriate radiobiological
models furnishes individual predictions of tumor control and normal tissue probabilities.

The predictions are useful, if not explicitly in the inverse IMRT optimization, at least in
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helping to suggest appropriate modifications to standard treatment prescriptions or even
perhaps the unsuitability of a given type of treatment for a specific patient. Recent works
that investigate the potential advantages of using TCP models that exploit patient-specific
data from radiobiological assays include those of Buffa er al.,'® and Mackay and
Hendry.'®

L. cal Patient-specific Individual Individualized
Radiobiologica model parameters TCP/NTCP treatment plan /
Assay (eg- B D) predictions dose prescription

Figure 1.3. Paradig}n for individualization of rﬁdiotherapy based on radiobiological assays and
models.

iv. Confounding Issues of Radiobiological Modeling

Clearly the potential role for radiobiological modeling in radiotherapy treatment
planning is significant. The advantages are even greater specifically for IMRT planning,
since the effects of the very heterogeneous dose distributions of IMRT are difficult to
quantify without the use of dose-response models. Presently, however, the direct use of
models in such active roles as optimization, adaptation, or individualization is rare
because of the deemed unreliability of current model predictions. The reasons stem from
the quality of the data on which model parameter estimates are based, and ambiguities in
interpretation of these estimates. Compounding the problem, even the level of
uncertainty in parameter estimates is often ill-defined."'%"!

Population-based (as opposed to individual) radiobiological parameter values are
extracted by fitting to clinical dose-response data. Unfortunately, there has been a dearth
of such clinical data, and the data that existed until recently generally had large statistical
or unknown uncertainties. This situation has been recently improving because of the use
of 3-D treatment planning systems and the archiving of their 3-D dose distribution
calculations. Nonetheless, clinical data in general has insufficient diversity to
discriminate different model parameters. For example, if, as is often the case, the patients
represented in a data set have been treated with similar fractionation protocols, it would
not be possible to deduce a meaningful value for a parameter descriptive of tumor

repopulation effects. The similarity of dose-volume histograms (DVHs) in a data set may
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also limit the biological relevance of fitted values for parameters describing tissue dose-
volume characteristics. Practically, fits to clinical data are often chiefly
phenomenological in nature, which limits the applicability of the fitting results to other
patient populations or treatment protocols that differ from the ones represented in the
original data set.

It is interesting that the converse is also true: the diversity of clinical data also
complicates interpretation of radiobiological fitting exercises. There may be considerable
variation in radiation response characteristics between individual patients in the
population represented by a clinical data set. As discussed in Section 5.B, parameter
estimates (e.g. of the radiosensitivity parameters & and ) can be skewed from their true
values if this inherent population heterogeneity is not taken into account in the dose-
response model used to fit the data.'? Failure to account for population heterogeneity
may also lead to unrealistically low estimates of the uncertainties in fitted parameter
values. The development of population-based dose-response models is quite recent.

There are also difficulties when attempting to use patient-specific parameter
values in individual (as opposed to population) dose-response models to facilitate the sort
of treatment customization discussed in Section C.iii. First, as discussed by Mackay and
Hendry,109 uncertainties in radiobiological assay data may reduce or even reverse any
prospective gains in the rates of tumor control with assay-based individualization of dose
prescriptions. Also, the correlation between in vitro radiobiological assay results and the
in vivo response of a patient is not well established.*"* For example, in vitro and in
vivo estimates for a given radiobiological parameter often differ substantially. It is an
unresolved issue to what extent this is due to intrinsic differences between in vitro and in
vivo dose response characteristics, or a result of ambiguities or errors in the extraction of

parameter values.

v. Overview of Radiobiological Investigations in this Work

The radiobiological modeling work in this thesis comprises several smaller
projects, rather than one large investigation. We first developed (Chapter 4) a practical
computational tool that calculates radiobiological predictions of TCP and NTCP from

dose-volume histogram information that characterizes treatment plan dose distributions.
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The tool attempts to encapsulate and make accessible the current radiobiological
modeling knowledge as it pertains to treatment planning. It is used in conjunction with
the EPID project to evaluate the potential clinical consequence of dosimetric
uncertainties in IMRT, as measured by our 3-D IMRT verification technique.

The projects described in Chapter 5 represent more fundamental radiobiological
investigations that help further refine radiobiological models and understand their
appropriate use. Though not explicitly focused on IMRT, they are certainly relevant
because of the many potential applications of radiobiological modeling to IMRT. The
first of these works derives explicit expressions relating phenomenological parameters
describing dose-response curves to radiobiological parameters found in mechanistic
models. Another larger study uses a recently proposed population TCP model to explore
some of the complications inherent in attempts to extract biologically meaningful
parameter estimates when fitting to clinical dose-response data. In a third project, we
investigate the importance of incorporating dynamic cell processes such as repair,
repopulation and resensitization in TCP models when describing or interpreting
fractionation effects.

Further introduction to the radiobiological modeling projects is provided in the

sections of the thesis describing each of these works.

D. Overview of Thesis Structure

The structure of the remainder of this thesis is as follows. The development of the
EPID-based 2-D and 3-D IMRT verification procedures is detailed in Chapters 2 and 3,
with Chapter 2 describing the methods and materials, and Chapter 3 presenting the
results. The development of our 2-D EPID-based IMRT verification method has also
already been published (in significantly modified form) in Medical Physics,''> while our
3-D method is the subject of an article recently accepted for publication in the same
journal."'®  Chapter 4 describes the NTCP-TCP computational tool, and is, with a few
minor modifications, identical to the article we published in the Journal of Applied
Clinical Medical Physics.''” The other radiobiological modeling investigations are, as
mentioned previously, discussed in Chapter 5. They are also the foundation for a number

of our manuscripts: an article in Physics in Medicine and Biology''® presented the
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derivation of expressions relating phenomenological and mechanistic model parameters;
the study o f d ynamic cell processes in T CP models w ith respect to fractionated d ose-
response data is detailed in both an article published in 2003,'"? and a second recently
accepted manuscript'?’  (both in Medical Physics). Though no manuscript has yet been
prepared, our examination of a population-based TCP model was presented at the annual
conference of the AAPM (American Association of Medical Physics) in 2002.1%

Chapter 6 is a brief concluding chapter to the thesis.
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Chapter 2: EPID-based IMRT Verification —
Methods

This is the first of two chapters describing the development of 2-D (beam’s eye
view plane) and 3-D IMRT (intensity-modulated radiotherapy) dosimetric verification
procedures using an EPID (electronic portal imaging device). In this chapter, relevant
operational characteristics and the signal formation process of the Varian aS500 EPID are
discussed, as are details of our method of using this EPID for fluence measurements.
Much of these descriptions are common to both the 2-D and 3-D IMRT verification
techniques. However, since the two projects were undertaken in two distinct stages, there
are also some differences. Initially the 2-D technique was developed solely for 15 MV
beams, since this was the only beam energy used with the existing clinical 2-D
verification method using film. For the 3-D technique, developed later, we decided to
include both 6 and 15 MV photon beams. As a result, the details of the development of
the kernels characterizing blurring in the EPID are slightly different for the two cases —
specifically, the approximation used to describe the back-scattering and optical scattering
in the EPID. This is discussed in Sections 2.D.iii-2.D.v. In the last part of this chapter,
the methods of calculation of 2-D and 3-D doses based on the EPID measurements of

fluence are discussed.

A. Basic Experimental Details
L. EPID Measurements

Measurements were performed using 6 and 15 MV photon beams generated by a
Varian (Varian Medical Systems, Palo Alto, CA) 21EX medical linear accelerator (linac).
Unless otherwise specified, the linear accelerator was operated with a nominal dose rate
of 100 monitor units (MU) per minute (with 1 MU = 1 ¢Gy at the depth of maximum
dose, at isocenter). Images of radiation fields were acquired with the aS500 EPID
(Varian Medical Systems, Palo Alto, CA) and its “IMRT” acquisition mode. All images
were acquired without a patient or phantom in the beam path since the purpose of this

work was to develop pre-treatment IMRT verification procedures. The detector (i.e.
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EPID) was placed at a nominal (specified by the pendant controller) source-to-detector-
distance (SDD) of 105 cm, the smallest allowed by the R-arm that controls the EPID’s
movement. Since the EPID imaging plane is ~1.3 cm lower than the distance reported by
the pendant, the actual SDD is ~ 106.3 cm. Use of the smallest SDD available allows the
largest possible field sizes to be imaged. At this SDD, field sizes of up to approximately
37.6 x 28.2 cm?® (measured at 100 cm from the source) can be imaged, since the active
area of the detector is 40 x 30 cm®. At our clinic, the largest IMRT fields are about 26

cm along the narrow dimension of the EPID (y-direction).

ii. Fluence Measurements using a Diamond Detector

To verify our EPID-based technique of measuring fluence profiles, EPID-based
profiles were compared to profile measurements made with a diamond detector (PTW-
Freiburg, Freiburg, Germany). The external shape of this detector is a cylinder
approximately 20 mm in length and with a circular face of 7 mm in diameter.! Its
sensitive layer is approximately 1 mm from the front face and has a thickness of ~ 0.3
mm and a circular cross-sectional area of approximately 4.4 mm’.'! Diamond detectors
thus have excellent intrinsic spatial resolution, making them well-suited for profile
measurements. Additional characteristics of this diamond detector can be found in Refs.
(1,2]. Our in-air diamond profile measurements were taken at an SDD of 106.3 cm in an
empty tank used for beam-scanning measurements (Scanditronix Wellhofer North
America, Bartlett, TN). The beam-scanning system allows the movement of the detector
to be controlled remotely within a scanning volume of 48 x 48 x 41 (depth) cm®. A brass
build-up cap for the diamond detector was used to achieve (nearly) charged-particle
equilibrium for these in-air measurements. The outer diameters of the 6 and 15 MV
cylindrical build-up caps are 11 mm and 16 mm, respectively (inner diameter of the
opening for the diamond detector is 7 mm). Although the build-up cap reduces the
spatial resolution of the detector (due to volume averaging effects), its use is necessary to
minimize contributions from electron contaminants in the photon beam, and it also
increases the size of the detector signal. Without adequate build-up, the signal amplitude
would also be more sensitive to changes in the energy spectrum at different locations in

the incident beam. Those parts of the beam with a larger percentage of low-energy
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photons would produce a disproportionately larger signal, since the low-energy photons
would be closer to electronic equilibrium in the detector (i.e. more “built-up”) than the
higher energy photons.

As is conventional, it is assumed that the diamond detector profiles are
representative of the incident fluence profiles, although strictly speaking, they are
measurements of the dose deposited in the detector. The dose deposited will be
proportional to the fluence if the energy spectrum is constant across the beam. Generally
this is not the case, as the mean beam energy tends to decrease when moving further from
the central beam axis.> Nevertheless, because the response of the diamond detector is
reasonably energy-independent (comparable to an ion chamber in this regard), spectral
effects are not expected to cause large distortions in the fluence profiles measured with
the diamond detector.

All scans were acquired with the diamond detector/build-up cap in a “horizontal”
orientation, with the side of the detector/build-up cap facing the incident beam and the
axis of the cylindrical build-up cap in the “in-plane” (i.e. y) direction. The response of
the detector/cap combination is asymmetric in the in-plane direction because the active
volume of the diamond detector is much closer to one end of the build-up cap along its
length than the other. Thus, the edges of open fields seen in in-plane in-air profiles are
(artificially) asymmetric. The response of the detector/cap is, however, symmetric when
scanning in the “cross-plane” (i.e. x) direction, where the beam sees a circular cross-
section. Thus, the profiles of open fields shown in Section 3.B (in the next chapter) were
acquired from cross-plane scans. In retrospect, symmetric scans in both the in-plane and
cross-plane directions could have been obtained by using the detector/cap in a “vertical”

orientation, with the beam incident on the circular face of the build-up cap.

B. Physical Structure of the Varian aS500 EPID

The Varian aS500 EPID is an active matrix flat-panel imager used for
megavoltage electronic portal imaging utilizing an “indirect” method of photon detection.
The detector has a complex structure consisting of many different layers composed of a
number of different materials. The layers can be grouped into four main regions: a

build-up region lying above the phosphor, the phosphor (340 pm thick gadolinium oxy-
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sulfide, Gd,0,S:Tb), a 2-D amorphous silicon flat-panel photodiode array, and all
materials lying below the photodiode array. Photons incident on the detector first interact
with material in the build-up region, resulting in the production of charged particles. The
main build-up layer in the EPID is a 1 mm copper sheet (~ 1 cm water-equivalent®),
which also filters out contaminant charged particles in the incident photon beam, and
reduces the radiation scattered from the patient reaching the detector to achieve improved
portal image quality. For our measurements, an additional 2 cm of solid water was
placed on top of the EPID to establish full build-up for an incident 15 MV photon beam.
For convenience the same amount of solid water was also used for 6 MV measurements,
so that entering the linac vault was unnecessary when switching between these two beam
energies. In one stage of EPID signal formation, charged particles produced in the build-
up region deposit dose in the phosphor screen. This stimulates the production of optical
photons (emission peak at 540 nm), the latter stage of this “indirect” detection method. A
fraction of the optical photons is then detected by the photodiode array fabricated on a
glass substrate. The detector signal (i.e. summed pixel value) is linearly proportional to
the number of optical photons produced, which is in turn proportional to the energy
deposited in the phosphor. The linearity of the detector response (i.e. pixel value vs.
delivered MUs) of this and similar amorphous silicon flat-panel systems has been
discussed in Refs. [4-6]. The photodiode array of the aS500 contains 512 x 384 pixels
covering the active area of 40 x 30 cm? (pixel pitch = 0.0784 cm). The materials lying
below the photodiode array include cables, supporting structure materials, and the metal
“R-arm” used to move the EPID in and out of the beam. These materials contribute a

backscatter component to the dose deposited in the phosphor layer.

C. Image Acquisition using the Varian aS500 EPID
i. General Description

In addition to a reverse-biased photodiode, each pixel also contains a thin-film
transistor (TFT) used for electronically transferring the charge produced in the
photodiode to the pre-amplifier using a grid of “gate” (row-selection) and “data” (charge
transfer) wires. These components, and the associated “read-out” and “gate-driver”

electronics, are used to read the charge produced by optical photons within the
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photodiode array. The “bias” wires are used to apply the reverse voltage on each
photodiode. The photodiode array is read row-by-row by applying voltage to one “gate”
line at a time. When a given “gate” line is activated, the TFTs for all 512 pixels in the
corresponding row permit the charge stored in each photodiode to flow along the 512
“data™ lines connected along the columns of the array. The charge in each pixel is
amplified, read by an electrometer, and converted to a number by a 14-bit analog-to-
digital converter. A single image “frame” is acquired once all 384 rows have been read
in this fashion.

The timing parameters used to control the read-out of the EPID array are uniquely
specified for each acquisition mode (namely “standard,” “high-quality,” and “IMRT")
and for each beam energy/nominal dose rate combination of a linac.” Read-out is
triggered by “PVSync” pulses having a regular frequency that is determined from the
linac pulse pattern. Even at the lowest linac dose rate of 100 MU/min, where pulse
repetition times are 16.7 ms (6 MV) and 33.3 ms (15 MV) for the Varian 21EX
accelerator, all 384 rows of the EPID can not be read between any two linac pulses. This
means that different parts of the EPID image will register dose contributions from
different linac pulses. As a representative example, if 70 rows can be read between each
pair of linac pulses, and the number of pulses between consecutive reads of a given row
is six, rows 1-70 will read dose from linac pulses 1-6, rows 71-140 from pulses 2-7, etc.
Thus, in theory, pulse-to-pulse variations in the linac dose rate can lead to a band-like
structure in the image, where different regions of the image have different intensities.
However, in IMRT mode (discussed below), where an entire dose delivery is integrated,
this is generally less problematic because dose-rate fluctuations are reduced due to

averaging.

ii. Image Acquisition using “IMRT” Mode

The final image supplied by the Portal-Vision software is an average over a
number of frames. Frame-averaging is performed by a “hardware adder” (capacity of 64
frames) component of the acquisition electronics. The number of frames used to create
an image depends on which image acquisition mode is used. Portal-Vision’s

conventional portal imaging modes (“standard” and “high-quality”) typically use either
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two or four frames, the latter when better image quality is desired. In this study, a
recently available “IMRT” acquisition mode designed specifically for dosimetric (as
opposed to imaging) applications was used for all measurements. With this IMRT mode,
frames are acquired and stored in local memory continuously for the duration of the beam
delivery, rather than for a small fraction of the delivery as for the conventional imaging
modes. To preserve the linearity between pixel value and the dose delivered, the frame-

averaged EPID image supplied by the Portal-Vision software, EPIDpy , is multiplied by

the number of frames used to create the image, nfame, 10 produce an integrated dose

image, EPID

toral *

EPID,

voiat = P frame * EPIDpy . 2.1)

Though IMRT mode is employed to measure an entire dose delivery, as discussed
by Chang et al.,® small parts of the dose delivery are not represented in the final image.
First, at the start of delivery one “reset” frame (~ 0.1 sec) is used to reset the frame
buffer, so that in the first image frame, the charge read corresponds to the same number
of linac pulses for all rows. Reset frames are not included in the final frame-averaged
image. Also, if the last radiation pulse of a dose delivery occurs with the EPID read-out
somewhere in the middle of an image frame, this partially-completed image frame is
discarded. Thus a small amount of dose at the end of delivery is also generally missed.
As noted by Chang er al.,® the amount of dose missed from the start and end of the
delivery is generally small. For a typical 100 MU dose delivery where the final image is
an average of more than 400 image frames, the loss of at most two frames corresponds to
less than 0.5% of the total dose delivered.

iii. Effect of Buffer Deadtimes and Potential Ghosting Effects on EPID Images
Potentially more problematic for absolute dosimetric applications is the dose
missed because of the limited 64-frame capacity of the hardware adder. After 64 frames
have been acquired, the EPID’s frame buffer must be cleared so that additional frames
can be acquired: this process takes approximately 0.16 sec.® After clearing the buffer,
the EPID also uses a reset frame before resuming acquisition of the frames used to create

the final image. The total buffer-related deadtime (including buffer clearing and the reset
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frame) and the frame acquisition rate for each linac energy/dose-rate combination were
determined from the acquisition times (7T,,) and numbers of frames (statistics provided
by the Portal-Vision software) from a series of images containing different numbers of
image frames (i.e. with and without buffer delays). The acquisition time per frame (T,c,/
Nframe) is plotted as a function of ngame in a given image in Fig. 2.1 for image acquisition
for both 15 MV and 6 MV beams at 100 MU/min. As illustrated, the uncorrected time
per frame increases every 64 frames. After a buffer deadtime, Tp,g.,, of 272 msec (15
MV/100 MU/min) or 258 msec (6 MV/100 MU/min) is subtracted from the total
acquisition time for every time the buffer requires clearing, the corrected time per frame,
Tframe, Temains constant at approximately 133 msec (7.5 frames/sec) and 93 msec (10.7
frames/sec) for 15 MV/100 MU/min and 6 MV/100 MU/min, respectively. Our buffer
deadtimes are consistent with the delay of ~ 270 msec reported by other authors®® for
measurements at 300 MU/min. It is noted that a Portal-Vision software patch that
corrects for the problem of buffer deadtime and is based on work of Manser et al..’ is

now available from Varian.
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Figure 2.1. The acquisition time per image frame plotted as a function of the total number
of frames acquired in an image for (a) 15 MV/100 MU/min, and (b) 6 MV/100 MU/min.
The squares and circles represent the time/frame before and after (respectively) correcting
the acquisition time for buffer delays. The vertical lines correspond to the numbers of
frames at which buffer delays occur.
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Any dose delivered during a buffer deadtime will not be represented in the final
image. For a simple open-field irradiation, where dose is being delivered continually at a
nearly fixed rate, the amount of missed dose should be approximately proportional to the
total buffer deadtime as a percentage of T,,. Based on this assumption, a simple

correction® factor for the integrated EPID image, EPID,,,,, would be,

T, n,q..1
C - acq =1+ buffer* buffer ) 22
buffer (n frame ) [ T - nbuﬁ"T ] ( T ( )

acq buffer n frame” frame

n -1
where ny,g,, is the number of buffer delays and is equal to the quotient of [—f"%——l
J

and the “buffer-corrected” EPID,,,,; is givenby EPID,,, =EPID ;1 Copoer M) -

buffer

nbuﬂ'erTbuﬁ'er

For images with a large number of frames, the correction term will

n frameTframe

Tbuﬁ’er

approach a constant value of , equal to 4.3 % and 3.2 % for 6 MV/100 MU/min

frame
and 15 MV/100 MU/min, respectively. Figure 2.2 shows the integrated pixel value
(EPID,,, ) per MU delivered as a function of the number of frames in an image. The

pixel values refer to the mean value of the central 50 x 50 pixels (3.9 x 3.9 cm?) in each
image of a 10 x 10 cm? field delivered with a 15 MV/100 MU/min beam. The drop in the
uncorrected detector dose-response immediately after a buffer delay is evident in Fig.
2.2(a). After applying the correction in Eq. (2.2), the pixel value per MU before and after
the first buffer delay are in much better agreement. However, as illustrated in Fig. 2.2(b),
after the first buffer delay, the corrected detector dose response (i.e. pixel value/MU)
tends to increase with an increasing number of frames (i.e. increasing MUS), rather than

remaining roughly constant as desired.
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Figure 2.2. EPID pixel value (i.e. EPID,,,;) per MU plotted as a function of the number of frames used
to acquire an image (15 MV/100 MU/min). Eq. (2.2) is used to correct the dose response for buffer
delays (closed circles). The solid line depicts the application of an additional correction for “‘ghosting™
effects described in Ref. [10]. The data in (a) and (b) is the same: the graph in (2) shows only the data
nearest the first buffer delay at 64 frames (vertical line), while (b) covers a wider range of nf.m, values.

A potential explanation of this trend is a “ghosting” effect,’®"! where residual
signal from preceding frames is manifest in subsequent frames. The main source of this
residual signal is believed to originate from charge capture and release processes in the
amorphous silicon photodiodes.'" Eventually, the corrected dose response does stabilize
at a nearly constant value. The corrected dose response for the last four points shown in
Fig. 2.2(b), which correspond to 50, 75, 100 and 200 MUs (or 215, 320, 424 and 838
frames), agree within ~ 0.6 %, while the last two of these points agree within 0.1 %.
Assuming that the “ghosting” explanation is valid, this stability suggests that an
equilibrium in the capture and release processes is reached after approximately 70 MUs
or 300 frames (for 15 MV/100 MU/min). This is quite consistent with the findings of
McDermott e al.,'® who found that the response of an amorphous silicon EPID stabilized
to within ~ 0.5 % only after approximately 40 seconds of irradiation, which would
correspond to 67 MUs at 100 MU/min in our example. McDermott et al. devised an

empirical “ghosting” correction factor,

G(t) =1-234.3exp(-7.8t) — 0.036 exp(—0.46¢) — 0.026 exp(-0.034z) , (2.3)
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where ¢ is the time of irradiation in seconds, and the corrected EPID signal is

EPID,omll = EPID,,,,; / G(t). The solid line in Fig. 2.2 depicts the measured dose

ghost
response of the aS500 EPID corrected both for the buffer delay (Eq. (2.2)) and the
“ghost” effect (Eq. (2.3)), i.e. EPID =EPID,,,, - C5., (n4,,. ) G(1). The

total Ibu_ﬂ'er—ghosr
ghost correction significantly improves the stability of the EPID response, although it
appears that the G(r) in Eq. (2.3) may be too small for the shorter irradiations
corresponding to less than 100 frames. It is not unexpected that the appropriate ghosting
correction would be slightly different for our measurements made with a Varian aS500
EPID, since McDermott et al. derived their G(7) from measurements made with an Elekta
iViewGT (Elekta Inc., Norcross, Georgia) EPID. A fit to our data shown in Fig. 2.2
suggested a ghosting correction for the Varian aS500 (15 MV/100 MU/min) that can be
described by the equation, G(z) =1-0.062exp(-0.086¢) .

Also suggested by Fig. 2.2(b), is that the uncorrected (i.e. without use of Eq. (2.2)
or Eq. (2.3)) dose response is reasonably stable for irradiations corresponding to the
range from 100 to 300 frames. In this range, the uncorrected dose response actually is
more constant in general than the dose response corrected for the buffer delays alone: the
reduction in the pixel value/MU ratio due to the buffer deadtime is partially compensated
by an increase in this ratio due to the apparent ghosting mechanism. Aiso, as the number
of image frames increases, the change in the uncorrected dose response immediately after
a buffer deadtime decreases. For example, immediately before and after the sixth such
buffer delay (at 384 frames), the correction Poufier Toufier changes from 2.7 % to 3.2 %:

R framet frame
this implies that the uncorrected dose response changes by at most ~ 0.5 % due to the
buffer deadtime for images composed of more than 400 frames, equivalent to an open-
field delivery of ~ 100 MUs at 15 MV/100 MU/min.

Errors introduced by buffer deadtimes and ghosting into the integrated dose image
are more difficult to predict for step-and-shoot IMRT fields. For example, since the
shape of the field changes, and the dose delivery stops between segments when the leaves
are moving, the effect of buffer deadtimes will depend on where they occur in the

treatment delivery. Thus, a simple correction such as that given in Eq. (2.2) is no longer
41
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valid. This can be illustrated by considering a hypothetical 100-frame image of a two-
segment IMRT field. If the buffer delay at 64 frames occurs during leaf movement,

when the dose delivered should be nearly zero, the buffer delay will have no impact
on EPID,,,,, , and use of Eq. (2.2) would incorrectly over-predict the dose. If instead, the
buffer delay occurs during segment 2, the buffer deadtime will cause the dose delivered
during segment 2 to be under-represented in the final uncorrected EPID,,,, image. In
theory, to restore a more accurate representation of the actual dose delivered, segment 2°s

Tbuﬁ'er

contribution should be multiplied by a correction factor, 1+
R frame 2 Tframe

, where

Nframe(2) is the number of frames acquired while segment 2 was delivered; segment 1’s
contribution should be left uncorrected. More generally, a correction for step-and-shoot
IMRT fields analogous to the correction in Eq. (2.2) for open-fields, would be to multiply
EPID,,,,; by a 2-D pixel correction map,

Rpuffer @) Tbuﬁ"er . .
[; (1 * nframe (i) Tframe ]ny (l)]/[; ny (l)] ’

where the sums are over the number of segments in the IMRT field, ng,gq,, (1) is the

number of buffer delays occurring in segment i, and D(i) is the 2-D dose contribution of
segment i. In practice, however, such a correction would be difficult. First, since one

does not have access to the individual frames contained in the EPID,,,,; image, the doses

of each segment D, (i) would need to be estimated. Also, it is not simple to predict
exactly where the buffer delays will occur with respect to the beam delivery. Knowledge
of the exact time needed between each segment to move the MLC leaves to the new
positions would require analysis of the dynamic log files generated by the linac’s control
system.'?> Thus, rather than attempting 2 complicated correction of this type to account
for buffer delays, we instead chose to use acquisition parameters that would minimize
potential errors. It is also noted that the ghosting correction suggested by McDermott ez
al.'® was published after completion of most of the work published in this thesis. Since
this correction was derived for continuous irradiation, it also would require modification

for proper application to step-and-shoot IMRT delivery.
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iv. Accuracy of IMRT Mode for Step-and-shoot IMRT

The use of a large number of frames, and thus a longer irradiation time for each
segment, was found to improve the accuracy of the dose images of step-and-shoot IMRT
fields obtained using IMRT acquisition mode. This is as expected for the following

reasons. First, the impact of “ghosting” effects on EPID,,,,; will be reduced. As shown

in Fig. 2.2 for the case of open fields, the dose-response does approach a constant value
for sufficiently long irradiations, as the ghosting effect stabilizes due to an equilibrium
between charge capture and release. Also, since the time for leaf movements between
segments is independent of the amount of dose delivered, the proportion of frames
acquired when the radiation is off between segments will be reduced when the number of
MUs (and hence the number of frames) is increased. As a result, the EPID will see a
more nearly constant dose rate, which also stabilizes ghosting effects. Finally, when a
large number of frames are acquired during all segments, distortions caused by a buffer
delay to the relative contribution of a single segment to the cumulative image will be
reduced.

We verified the improved accuracy achieved using an increased number of frames
by comparing the single EPID, ., image for the entire delivery of a twelve-segment

IMRT field to the weighted summation of IMRT-mode images taken individually of each

of the twelve segments. Each weighted image, EPID,.5, ™", was calculated using:

EPID8 sum —ZEPI SEBTENE (1) - we (i) - MUq

total total R
MU segment 0)

(2.4)

In Eq. (24), EPIDSE7°™ (i) is the image of an individual segment i acquired using
MU*¥™™(1) MUs; MUy, is the number of MUs used to acquire the EPID,,,,; image, and
the weight wt(i) is the fraction of the total number of MUs for each segment i, as

specified in the MLC controller file used for EPID,,, image acquisition. Assuming

proper operation of the MLC controller, the EPID,,, and EPID;% ™" images should

ttal

be nearly identical except for the buffer dead-times and ghosting effects. Figure 2.3
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shows (EPID,,,, — EPID;8,7*“™) images and the corresponding difference histograms
for those pixels lying within the delineated ROL. The differences are expressed as a

percentage of the maximum pixel value in the EPID, s ~*“" image. In Fig. 2.3(a), the

differences are calculated for two cases: when the EPID,,,,; image is acquired using 100

MUs (314 frames) and when a much larger 800 MUs (1025 frames) are delivered.

Individual segment images ( EPID;*/" (i) ) were each separately acquired using 50 MUs

1otal
(53 or 54 frames). With this number of MUs, the dose-response is within ~ 1 % of its -
stable value, and the image is acquired before the occurrence of the first buffer deadtime.
These measurements were made using a 15 MV beam, and a dose rate of 600 MU/min,
which is the dose rate we had initially intended to use for our EPID measurements. As

illustrated, the agreement between the single (EPID,,,) and the weighted-sum

(EPID;E*“™) images improves substantially when using the larger number of MUs: the

mean and standard deviation of ( EPID,,,, — EPID.% ™) within the ROI for the 100

toral
MU case are -2.0 % and 2.1 %, respectively, while only -0.8 and 0.7 % for the 800 MU
case. A similar set of dose difference comparisons for the same IMRT field is depicted in
Fig. 2.3(b) for measurements using 2 15 MV beam and the lowest available dose rate of
100 MU/min. Single images of the entire IMRT field are acquired with 100 MUs (564
frames) and 200 MUs (986 frames); images of the individual segments are again acquired
using 50 MUs (218 frames). For this dose rate, good agreement between the EPID,,,

and EPID;;’f;,"“’" images is already obtained using 100 MUs: the mean and the standard

deviation in the ROI are -0.8 % and 0.5 %, respectively, roughly equivalent to the
agreement observed using 800 MUs at the higher 600 MU/min dose rate.
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Figure 2.3. The 2-D difference images ( EPID

total

- EPID}3'/5“m ) expressed as a percentage of

the maximum pixel value in EPIDE "™, and the corresponding histogram for pixels within the

ROI (delineated by the line in the dose difference image) are shown for linac dose rates of ()
600 MU/min and (b) 100 MU/min. The left and right columns for each dose rate depict the

effect on the differences of increasing the number of MUs used to acquire the £P/D,

rotal image.

Thus, the results in the previous and this section imply that, provided a sufficient

number of image frames are acquired, use of the single uncorrected EPID,,,, image to

determine the actual dose delivered with an IMRT field will at worst lead to relatively
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small errors. Figure 2.3(b) also. indicates that the agreement between EPID,,,

and EPID"®' 7" does improve further when using 200 MUs at 100 MU/min, as the

total

mean and standard deviation are reduced to -0.4 % and _0.3 %, respectively. However,
this slight improvement in the agreement also comes at the cost of an approximate
doubling of delivery time to more than 2 minutes per IMRT field. Since it is desirable to
streamline the IMRT verification process as much as possible, we decided that a suitable
compromise between speed and accuracy was to verify each IMRT field using 100 MUs
at 100 MU/min. Though the time of delivery, the total number of frames, and the
apparent accuracy are fairly similar between using 800 MU at 600 MU/min and 100 MU
at 100 MU/min, we chose to use the lower 100 MU/min dose rate for all verification
measurements primarily to reduce the total dose delivered to the EPID. This was to

prevent any potentially unnecessary damage caused by excessive radiation exposure.

v. Flood- and Dark-field Image Corrections

A number of corrections are automatically applied by the Portal-Vision software
to the EPID images. First, using a predetermined defect map of pixels with anomalously
small signals, the software replaces the value of each of these defective pixels with an
average of the values of neighboring pixels. The EPID images are also corrected using
dark-field and flood-field images acquired during the routine calibration procedure of the
EPID. A dark-field image, EPIDdark » 1S acquired in the absence of radiation and is used to
correct for the electrometer offset values for each pixel due to dark current. To reduce
statistical noise in these offsets values, the dark-field image is an average over a large
number (60) of image frames. The flood-field image, EPID flood » 1S acquired in an open
radiation field covering the entire active area of the EPID, and is generated using 30
image frames. To correct pixel values for differences between pixels in their dose-

sensitivity, the pixel values of an uncorrected raw EPID image of a given radiation field,
EPID ypeorr » are divided by the pixel values of the flood-field. The corrected image
supplied by the Portal-Vision software, EPID,, , can thus be expressed by the following

equation,7
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EPIDyneorr = EPID gypi
EPIDPV = : kFFmean ’ (2'5)
EPID flood —~ EPIDggry | |defect

corrected

where krrmean 1 a scaling factor representing the mean pixel value of the flood-field
image after it is dark-field corrected. Dark-field and flood-field images are acquired for
each given beam energy/dose rate combination, since these images depend on the EPID’s
timing parameters.

During normal clinical use of the EPID for portal imaging, the pixel sensitivities
and dark currents usually change gradually over time. Typically, such small changes do
not adversely affect image quality, and routine dark- and flood-field calibrations are thus
performed relatively infrequently — perhaps every month. However, for quantitative
dosimetric applications, changes in pixel sensitivities and dark currents are more
important. Thus, as a precaution to ensure the best possible accuracy, dark- and flood-
field calibration procedures were performed before every set of our experimental
measurements. For convenience, these calibration images were acquired with 2 cm of
extra solid-water build-up placed on the detector and the (nominal) SDD set to 105 cm —

the same set-up used for all subsequent EPID measurements.

vi. Correction of Fluence Profile Distortions caused by the Flood-field Correction

For dosimetric applications, the flood-field image should ideally be generated
using a spatially uniform energy fluence incident on the EPID. However, this is not the
case for our calibration, since the flood-field image is generated using an open beam that
contains the horns arising from a linac’s flattening filter. As a consequence, the
automatic flood-field correction — the division in Eq. (2.5) — not only corrects the image
for pixel-to-pixel differences in dose-response, but unfortunately also removes the
sensitivity to the true “horned” shape of the input dose profile. If this is not taken into
account, the flood-field correction will thus introduce spatial distortions in any dose
distributions derived from EPID images.

There are different methods of attempting to prevent such distortions, while still
correcting for pixel-to-pixel variations in sensitivity. One way is to use a more perfectly
uniform input dose distribution. Typically this could be done by placing additional solid
water on the EPID (e.g. Refs. [13,14]) so that the EPID is at an effective depth of
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measurement (usually about 10 cm water-equivalent) where the profile of the open beam
is as flat as possible (i.e. the “horns” have been minimized). We chose not to use this
approach for the following reasons. Firstly, for the purpose of streamlining our
verification procedure, we wished to use the same amount of solid-water build-up for
both the calibration and the verification images. Use of a large amount of build-up would
cause excessive blurring of the EPID images of IMRT fields, and will make attempts to
accurately extract the primary fluence from these images through deconvolution more
error-prone. Secondly, since there is no depth at which the distribution is perfectly flat,
we attempted to devise a more generic correction procedure.

Our correction procedure involves restoring the shape of the flood-field input by
multiplying (pixel-by-pixel) the original EPID image, EPID,, , by a “pseudo-simulated”

EPID flood-field image containing no variability in pixel sensitivity, g, ;.- The
corrected (and integrated) EPID image is thus described by the equation,

EPID,,, (x,¥)=n4up, - EPIDpy (X%, ¥) - 1 gy gim (%, ¥) - (2.6)
By doing this, the only remaining effect of the division in Eq. (2.5) will be to correct for

pixel dose-response variations, as desired. The 2-D flood field I,,,_, is generated by
convolving (®) the flood-field fluence,¥ ,,, , with a pencil-beam kemel, K, , which
describes the blurring processes in the EPID:

L poodmsim % ) = ¥ 50 (£, Y) ® K gy (%, ¥) - .7
The details of K, are described in Section 2.D. The flood-field fluence distributions

for both 6 and 15 MV photon beams were derived from dose calculations done using our
treatment planning system (TPS) [Helax-TMS, Nucletron B.V., Veenendaal, The
Netherlands]. For each energy, a beam’s eye view (BEV) dose distribution for a flood-

field beam (D, ps) Was calculated at a depth of 3 cm in a rectangular phantom
measuring 40 x 30 x 5.5 (depth) cm’. The phantom was modeled in the TPS to
approximate the geometry of the EPID. Since our TPS only provides a very limited
choice of phantom materials, the actual materials constituting the EPID structure could
not be used, and the phantom was simply modeled as water. The depth of 3 cm is

approximately the same effective water-equivalent depth of our EPID measurements. To
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calculate ¥, , the TPS flood-field dose distributions are deconvolved (®') with a

EGSnrc-generated (EGSnrc, National Research Council (NRC) Canada, Ottawa)l5

pencil-beam kernel, K g, hamon » USEd to describe the pencil beam 2-D dose distribution
at 3 cm depth of this phantom:
P 00d % 3) = D g 165 (X VYO K s praiom (% ¥) - (2.8)
We later verified the above method of deriving ¥,,,, by comparing to in-air
measurements of the flood-field relative fluences (¥ ,o4ne ) Made with an IC10 ion

chamber (15 MV) or with a diamond detector (6 MV) in a Wellhofer scanning tank. For

this purpose we generated a second set of simulated flood-field images, ;. _imimeas >

calculated using the measured ¥, ... in Eq. (2.7), rather than the ¥, calculated

\meas
using Eq. (2.8). For comparison purposes, [, im and I cnn, Were each
normalized to the central pixel of their respective distributions, and the difference image,

1 i —simmeas =L fiooa-sim» WS then calculated. For the 15 MV images, the differences are

reasonably small. Within a ROI covering the central 28 x 28 cm’, the mean, minimum,
and maximum differences are -0.5 %, -1.9 % and 1.7 % respectively, and the standard
deviation is 0.6 %. In the same ROI, the corresponding differences for the 6 MV
simulated flood-fields are 0.8 %, -1.6%, and 4.3 %, and the standard deviation is 1.4 %,
indicating a somewhat worse agreement in the 6 MV case. However, it is probable that at
least part of these larger discrepancies is in fact due to errors in the measured fluence for
the 6 MV flood-field. The central in-plane profile in this measured fluence shows a
relatively large asymmetry: if real, such an asymmetry would have been detected in the
routine quality assurance scans of this linac, since it is larger than would be tolerated
clinically.

For all the IMRT verification calculations, we used/ ,,,,_,, the simulated EPID

flood-field based on the fluence extracted from TPS calculations. For the 2-D
verification (see Section 2.E) of one treatment plan (15 MV, eight fields), we repeated

the analysis uSing I g,y imness- When using I . oo, instead of g, ., the mean

dose difference (TPS — EPID) changed by a maximum of 0.14 % for any single field, and
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was an average of 0.01 + 0.08 % different over the eight fields. Similarly, the maximum
change in the standard deviation of the dose difference was only 0.10 %, and the average
difference was 0.01 = 0.05 %. This suggests that the choice of method of deriving the

flood field fluence (measured or TPS-based) has a negligible impact on the verifications.

D. Pencil-beam Kernels Describing Blurring in the EPID
The foundation of both the 2-D and the 3-D IMRT pre-treatment verification
procedures is the EPID's ability to accurately measure the 2-D relative incident energy

fluence distributions actually delivered by a radiation beam. However, the EPID_, in Eq.

(2.6) does not directly reflect the fluence distribution incident on the detector, but rather
includes the blurring caused by spatial spreading of scattered x-ray photons in the build-
up and phosphor layers, as well as optical photons in the phosphor layer. Our method
thus requires deconvolution (i.e. “de-blurring”) using kernels describing x-ray and optical
scattering that were derived using a “semi-empirical” approach employing Monte Carlo

and empirical fitting techniques.

i. Monte-Carlo Dose-deposition Kernels
The main source of blurring occurs in the dose-deposition stage of the formation

of the EPID output signal. Mathematically, the dose, D, (x",y"), deposited at a
point (x’,y") at a given depth in the phosphor can be expressed quite generally as a
superposition of the incident polyenergetic photon fluence, ¥, (x,y, p,.E,), with a dose

deposition pencil-beam kernel, K, (x’,y’,x,y,p,.E,),

DI ESYED IS [¥,0%.9.5,.E,) K1 (x.3,%,7, B, B, )dxdy . (2.9)

E, B

In Eq. (29), E,, p,,and (x,y) describe the energy, direction, and spatial coordinates on

the phosphor surface, respectively, of the photons comprising the incident energy fluence.
To extract the energy fluence from the dose, an inverse operation of the superposition in
Eq. (2.9) could be attempted. In practice, however, such a task is computationally
challenging. It also requires a priori assumptions about the energy spectrum and its

dependence on off-axis location, as well as a full characterization of the kernel

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K, (XY, X, ¥, P,- E,) . The latter would be difficult because of the many variables on

which the kernel potentially depends. Thus, to simplify calculations, we assumed that the

full superposition can be approximated by a convolution operation,
D osphor (X5 ¥) = j‘I’p (6 V) Kgose (x =X,y = y)dxdy =¥, (x, ) ® K g0 (%, 7).

(2.10)

In the frequency domain convolution becomes a simple multiplication,

FTD pposphor (X' YD1 = FTY¥  (x, )} FT[K g5 (x, )], (2.11)
where FT refers to the Fourier transform operation. The main assumption in this
approach is that the kernel is spatially invariant: that the dose deposition depends only on
the relative locations of the given points in the detector and fluence planes, and not on
their absolute locations. Implicitly this assumes that: (1) the scattering properties of the
detector are the same at all points in the detector; (2) the shape of the incident energy
spectrum is the same for all points in the photon beam; and (3) the beam is normally
incident on the detector (i.e. no kernel-tilting).

The form of K,,, was derived using the EGSnrc (National Research Council

(NRC) Canada, Ottawa) Monte Carlo software package to simulate the dose deposition in
the EPID phosphor caused by an incident pencil beam. Since full specifications detailing
the dimensions and material compositions of all components of the EPID were not
available, the simplified model of the EPID shown in Fig. 24 was used for our
simulations. This model contains five prominent layers of the detector: the extrinsic
water build-up (2.0 cm thickness, p=1.0 g/cm®), the copper plate (0.1 cm, p=8.93 g/em®),
the phosphor (Gd,0,S, 0.034 cm, p=3.67 g/cm’), the glass substrate for the photodiode
array (SiOp, 0.11 cm, p=2.3 g/cm’), and a water backscatter layer, used to approximate
the materials lying below the active detection layer in the EPID. The choice of
backscatter thickness differed for 6 and 15 MV beams, and is discussed specifically in
Sections 2.D.iii-2.D.v below. The model had a cross-section of 30 x 30 cm?, and the dose
was scored in the phosphor layer, which was divided into 383 x 383 pixels each
measuring 0.0784 x 0.0784 cm®. The scoring and set-up of the simulation geometry were
simplified by using the DOSxyz code (NRC, Ottawa). The incident photon energy

spectra used for the simulations were the Varian 6 and 15 MV photon beam central-axis
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spectra (Fig. 2.5) generated by Sheikh-Bagheri and Rogers,” who used the BEAMnrc
(NRC, Ottawa) Monte Carlo code to model the output from the heads of a number of

commercial linacs for a 10 x 10 cm? field. Changes in K, resulting from variation in

dose
the incident energy spectra with off-axis beam location and due to differences in the
amount of head scatter with changing collimation were not investigated in this work. The
normally-incident pseudo-pencil beam was pixel-sized, 0.0784 x 0.0784 cm’, and
centered on the EPID model’s cross-section. Simulations were performed with the
photon and electron cutoffs set to 10 keV kinetic energy (ECUT = 0.521 MeV, PCUT =
0.010 MeV), and using the PRESTA-II electron-step and “exact” boundary-crossing

algorithms.

¥, (x,y)

1. 2.0 cm H,O (extra build-up)

. 0.1 cm Cu (intrinsic build-up)
. 0.034 cm Gd0,S (phosphor)

4. 0.11 cm SiO; (glass substrate)

5. H,0 (backscatter materials)

Figure 2.4. Simplified model of the geometry of the aSS00 EPID used in the EGSnrc Monte
Carlo simulations used to derive K, .. The cross-section of each of the five layers was 30 x
30 cm? (383 x 383 pixels).
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Figure 2.5. Incident photon beam spectra used for EGSnrc simulations. The spectra
are results of BEAMnrc simulations for Varian linac (a) 6 MV and (b) 15 MV photon
beams published by Sheikh-Bagheri and Rogers.?

ii. Empirically-derived Optical Spread Kernels

Additional blurring of the EPID image is caused by optical glare, the spreading of
optical photons before reaching the photodiode array. Due to the linearity of this
detector system, if it is assumed that this process can also be described with a spatially-

invariant kernel, K, ., an overall blurring kernel, K, , can be then expressed as a
convolution of the glare and dose-deposition kernels, K, = K, ® K. We did not,
however, explicitly model optical spreading to generate X, . Rather, to create the
overall EPID kemel, we instead convolved K, 6 with an empirical function

designated K, _iove

Kepp =K, K, (2.12)

~glare *
The empirical kernel is designed to not only describe any optical spreading, but also to
account for any deficiencies in the modeling used to generate K, ,, particularly
uncertainties in the modeling of the backscatter material. The corrected EPID

image, EPID,_ , , calculated with Eq. (2.6), can thus be represented by the convolution of

corr *

the incident fluence with this total kernel,
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EPID,, =¥, ®Kpp - (2.13)

corr

The incident fluence can then be derived very simply using,

FT[EPIDCOPF (‘x’ y)]]
FT[KEPID(X’ )’)] ’

with IFT representing the inverse Fourier transform operation. For our calculations, all

¥, (x,y) = IFT[ (2.14)

Fourier transform operations were performed using pre-packaged MATLAB (The

Mathworks Inc., Natick, MA) routines, and were done using Cartesian coordinates and

pixel spacing equal to the pixel pitch of the EPID (0.0784 cm). The empirical K, ,_ ..

is chosen as the one that results in the best agreement for open fields between EPID
fluences obtained from Egs. (2.6), (2.12), and (2.14) and corresponding beam profiles
measured with a diamond detector.

As noted in the introduction to this chapter, the original 15 MV EPID kernel used
for the 2-D verification analysis differs slightly in its development from the 6 and 15 MV
kemnels derived later for the 3-D verification project. The primary differences involve the
thickness of backscatter used in the simplified EPID model, and the empirically-derived

Kuk-gre Kernel. These differences are clarified in the following sections, which

describe each of the kernels in more detail.

iii. Original 15 MV EPID Kernels used in 2-D verifications

In deriving the original 15 MV dose kemnel for 2-D verifications, we used a 2.5
cm thick water backscatter layer in our simplified EGSnrc EPID model, based on results
reported by Kim ez al.’® To generate the kemnel, 1.8 x 108 incident photon histories were
used in the EGSnrc simulations, which resulted in a statistical uncertainty of

approximately 5.5 % in the kernel amplitude for the pixel located 2 cm from the center of

the pencil beamlet. We first investigated whether this dose kernel, X2%", could alone

describe the blurring properties of the EPID, since there is some uncertainty if optical
glare contributes noticeably to image blurring for flat-panel imaging systems. For
example, the works of Munro and Bouius’ and Siebers er al"’ have suggested a
negligible glare contribution, while McCurdy ez al. * found that the use of a glare kernel

significantly improved the agreement between measured and simulated portal images.
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Since there were appreciable discrepancies between the diamond profiles and the EPID-

based fluence profiles derived from Eq. (2.14) using K., =K.¥, our results

dose *

suggested that an additional kernel ( K,/ ... ) Was necessary.

A double exponential form was used for K,>i" .. »

15MV
K

back-glare (nN= exp(_cl r+ C2 €xp (—C3 r, (2.15)

where r=+/Ax* + Ay is the radial distance from the center of this pencil-beam kernel,

and C;, C», and Cj are fitting parameters. Values of C; = 37.1 cm’), C>=0.00136, C; =
2.46 cm™ were obtained by fitting the EPID-based profile to the diamond profile in the

tail region of a2 10 x 10 cm® open field. The spatial extent of this kernel was limited to a

radius of 2.5 cm (i.e. K, .= O for r > 2.5 cm), since increasing this radius did not

improve the quality of the fit. These parameters also yielded good agreement for a
similar comparison using a 4 x 4 cm” field, but a slight under-deconvolution for a 20 x 20
cm® field. However, the slightly poorer agreement in the tail of the larger field was not
considered particularly problematic. Since most of the segments comprising step-and-
shoot IMRT fields are comprised of relatively small sub-fields, it was considered more
important to fit the smaller fields. This was supported by the fact that these fit
parameters provided very good agreement between EPID-derived and diamond profiles
through a segment of a clinical IMRT field.

iv. 6 MV EPID Kernel used in 3-D Verifications
In our initial attempts to generate the 6 MV EPID kemels, we used 2.5 cm of

backscatter in our Monte Carlo simulations, as was done for the 15 MV case. We also

initially tried using the same empirical kernel, i.e. K5 .. = Kyoiogu - However, the

resulting total EPID kemnel produced poor agreement between the EPID and diamond
fluence profiles. Specifically, for the smaller open fields, the EPID profiles showed
evidence of over-deconvolution: near the base of the field’s penumbra, the EPID profile

would dip, before rebounding to a higher level in the tail region. Using no empirical

kemnel, i.e. K5y .. =1, much improved the agreement between the EPID and diamond
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profiles; however, for the smallest open fields tested (4 x 4 cm’ and 2 x 2 cmz), there still
appeared to be slight over-deconvolution.

These results prompted a re-examination of the use of our simplified EPID model.
Although the layers included in this model were expected to describe the majority of the
scattering in the EPID, the missing layers — air gaps, the front and back covers, structural
foam and plastic layers, glues, ezc. — may also contribute a non-negligible scattering
component. In a recent work, von Wittenau et al.'® used Monte Carlo simulations to
study the different sources of blurring in a representative model of a flat-panel imaging
system. They found that while the detector components (i.e. scintillator and electronics)
accounted for the short-range (sub-millimeter) part of the blurring kernel, components
upstream and downstream of the detector layers dominated the mid-range (millimeter-to-
centimeter) and long-range (up to tens of centimeters) regions of the kerel, respectively:
these latter parts of the kernel contribute significantly to the overall blurring in the image.

For our model, deficiencies in the “upstream” modeling may potentially be less
serious because of the use of a large amount (2 cm) of extrinsic water build-up. Small,
but appreciable, errors in the kernel can still be expected, however. This is illustrated in
Fig. 2.6, which shows a statistically-significant change in the 6 MV dose kemels when an
air gap layer of 6.5 mm thickness is inserted between the water build-up and the copper

plate (see Fig 2.4). (For this example, no backscatter was used in either of these models.)

’
10°

-——— no air gap
-——— with airgap

Relative Amplitude

-15 -10 10 15

-5 0 5
radial distance from beamiet (cm)

Figure 2.6. The change in K :;;’ev derived from EGSnrc simulation when a 6.5

mm air gap layer is placed between the extrinsic build-up and copper plate layers
in the EPID model depicted in Fig. 2.4.
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Much larger errors in the dose kernel can be expected from the simplified
modeling of the backscatter, since it is unclear how well the 2.5 cm thick uniform layer of
water in the original model approximates the different components made of various
materials (including metals) that actually comprise the downstream EPID components.
Thus, our revised approach to modeling the EPID was to attempt to optimize the

thickness of the water backscatter layer to obtain the best agreement between the EPID

and diamond profiles. A series of EGSnrc simulations were performed to generate K5+

kernels corresponding to backscatter thicknesses ranging from O (no backscatter) to 5.0
cm, in 0.5 cm increments. As illustrated in Fig 2.7 and expected from the results of von

Wittenau et al.,'® changing the thickness of backscatter primarily affects the longer-range

part of the kernel. Unfortunately, none of these K. kemels (withKjv, .. =1, e no

empirical kernel) yielded optimal profile agreement for all open fields considered - 2 x 2,
4 x 4,10 x 10, and 20 x 20 cm®. Of the backscatter thicknesses investigated, 1.5 cm and
2.0 cm gave the best fits on average for this range of field sizes; however, the fits for
individual field sizes were still less than optimal (see Section 3.B.ii). Large field sizes
were fit better using larger amounts of backscatter, while the smaller field sizes suggested

the use of very little or no backscatter.

10°

10

Relative Amplitude
o

-15 -10 -5 0 ) 10 15
radial distance from beamiet (cm)

Figure 2.7. The change in KSO"::' derived from EGSnrc simulation for

different thicknesses (0, 1, 2, or 4 cm) of the backscatter layer in the EPID
model (layer 5 in Fig. 2.4).
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The final kernel used for IMRT verifications was generated using the following
method. First, simulations were performed (3 x 10® histories, 4.7 % statistical uncertainty
at r = 2 cm) with an EPID model having no backscatter layer, i.e. only layers 1-4 in Fig

2.4. No backscatter was used to ensure adequate fits for the smallest field sizes. We then

convolved this Kjw kemel with an empirical kernel K i .. having a triple
exponential form,
K :at’kv-gzare (r)=exp(=C\r)+ C, exp(-C,r) + C, exp(-=Cir), (2.16)

to create an overall kernel K3y, that also described the blurring in large fields well. The
fit parameters C;, Cz, C3, C4, and Cs were extracted by fitting the EPID and diamond
profiles in the tail regions of the 2 x 2, 4 x 4, 10 x 10, and 20 x 20 cm’ open fields
simultaneously. There is never perfect agreement between the diamond and EPID
profiles. For example, the penumbras of the EPID profiles have in general a slightly
sharper slope because of the slight blurring of the in-air diamond measurements due to
the brass cap placed over the diamond detector for build-up and to minimize dose from
contaminant electrons. There is thus some degree of subjectivity in the fitting procedure.
A “semi-automated” procedure was used: MATLAB computer code was written to help
steer the fits, with visual evaluation of the fits of the profiles for both the open fields and
the IMRT segment field used to help determine the final set of parameter values.

The final fit parameters used for K g4 eare &€ C1=37.1 cm’, C; = 1.57 x 107,

C; = 0.405 cm™, C; = 1.40 x 10, and Cs = 0.0153 cm™’. The value of C; = 37.1 cm™

characterizing the short-range exponential term used here for Ky care 1S the same value

of C; used previously for the K., .. kernel. The implicit hypothesis was that the first

exponential terms in Eqgs. (2.15) and (2.16) describe the blurring due to optical glare: this

blurring is expected to have a very short (sub-millimeter) range,'®"

and is not expected
to be very dependent on the energy of the incident photon beam. However, a more
explicit modeling of the optical blurring would be required to make this hypothesis more
than purely speculative.

Without the use of backscatter in our EPID model, it is not surprising that the

parameters used to characterize Kjo; . describe a kernel with a large long-range
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component. It is interesting to note that the “glare” kernel reported by McCurdy et al®
also had a relatively broad tail. Since it seems that these authors used a model of the
EPID that also lacked backscatter, their kernel is likely also compensating primarily for

deficiencies in the simplified modeling of the EPID, rather than actual optical photon

processes. For comparison, our K,>;” .. kemel, derived in conjunction with an EPID

model with 2.5 cm of water backscatter, has a long-range component that is much smaller

than either McCurdy et al.’s kernel or our Ky ., -

An important observation is that the overall kemel could not be modeled
adequately by simply approximating the “downstream” EPID components with a uniform
water backscatter. This seems to suggest that if a more rigorous derivation of the kemel
is desired, one that relies less on empirical corrections, a more thorough modeling of the
EPID is necessary. Further, it is also noted that the scatter from the downstream
components is not uniform across the EPID array: a disproportionate amount of scatter
will reach the top of the array, due to the location of the metal R-arm below the EPID; the
electronics located on the top and right sides of the EPID array may also contribute
additional scatter. For example, this is manifest as an asymmetry in an in-plane EPID

profile of a 20 x 20 cm? open field (Fig. 2.8). Recently, Ko et al.,®

whose preliminary
work'® had used the uniform 2.5 cm water backscatter layer for EGSnrc modeling of the
EPID, investigated the problems associated with these backscatter non-uniformities.
Their suggested solution requires inserting a lead plate between the glass substrate of the
photodiode array and the support structures in the EPID when making measurements.
Since the suggestion postdates the completion of the present work and also involves
modification of the EPID (which is used clinically), it was not pursued in this study.

The two “kinks” seen at the top of the in-plane profile depicted in Fig. 2.8 are row
artifacts of this image acquisition mode (IMRT mode, 15 MV/100 MU/min) that occur
near row 139 and row 278 of the imager. The periodicity of the artifacts suggest that they
are a consequence of the timing parameters of this mode, and are likely a function of the
number of imager rows that can be scanned between consecutive PVSync pulses. A
similar set of artifacts is also evident when using IMRT mode at 6 MV (100 MU/min).
The 6 MV artifacts are smaller in magnitude, but affect more rows. Attempts were made

to correct the EPID images for these artifacts by replacing the measured pixel values of
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the affected rows with pixel values interpolated from unaffected nearby rows. The
proposed correction worked well for open fields. However, for IMRT fields, where there
are many large gradients, it was difficult to devise an algorithm that reliably corrected for
the artifact without also smoothing out the gradient regions. Since we considered the
smoothing of these gradients (and consequent loss of spatial resolution) worse than the

artifacts themselves, we did not implement any corrections for these artifacts.
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Figure 2.8. In-plare 15 MV EPID profile of a 20 x 20 cm’ open field. The dashed line is used
to highlight the asymmetry between the penumbras on the left and right sides of the field. Itis
believed that the metal R-arm below the EPID contributes additional backscatter to pixels at the
top of the EPID array (corresponding to the right side of the profile).

v. “New” 15 MYV EPID Kernel used in 3-D Verifications

The EGSnrc kemels for the 3-D verification project were generated using newer
hardware (dual Intel Xeon 2.0 GHz and P4 2.4 GHz machines) and newer releases of the
EGSnrc software than was available for the 2-D project (dual P3 0.6 GHz, Linux
operating system). In addition to the new 6 MV kemels, the 15 MV kernels were also re-
generated with the newer software/hardware platforms. Both Linux-based and (later)
Window-based machines were used, where the latter ran the EGSnrcMP (where “MP” =
multi-platform) version of the EGSnrc software. The kemels were found to be
independent of which operating system platform was used, within statistical fluctuations.
However, the newer 15 MV dose kemels were slightly different than those generated
originally using the older version of the software, despite the fact that all user-defined

parameters were the same in both cases. Specifically, using the same 2.5 cm of water
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backscatter in the original 15 MV simulations, the long-range component of the K}%"

kernel is slightly larger using the newer version of the EGSnrc software (see Section

ISMV
K dose

3.A). By generating multiple versions of corresponding to different thicknesses of

backscatter ranging from 0.5 to 4.0 cm in 0.5 cm increments, it was found that the old

KM kernel was best approximated with a 1.5 cm thick backscatter layer when using the

newer software. No systematic attempt was made to identify the changes (if any) in the
fundamental physics modeling in the EGSnrc code that caused this discrepancy.
Despite differing from the original kemel, the overall agreement for all field sizes

between the EPID and diamond profiles was approximately equivalent using the newer

Kjfu"e"' Bx 108 histories, statistical uncertainty of ~ 4.0 % at r =2 cm) with 2.5 cm water

backscatter, and the original form for K.’ . described above in Section 2.D.iii.

However, the quality of the fits to the individual field sizes was not identical for the new
and old K" kemels. Specifically, the larger long-range component of the new kernel

was better able to fit the larger 20 x 20 cm® field than the original kernel, whereas the
smaller field sizes were fit slightly better with the old kernel. Obviously, this implies that
there is some uncertainty in the empirical derivation of the “optimal” kernel.

Unless otherwise specified, the results (reported in Chapter 3) for the 2-D

verifications were all generated using the original, older version of Ky , while the

newer 3-D verifications used the newer version of this kemnel, based on the newer
EGSnrc software, but still with 2.5 cm of backscatter in the EPID model. We also re-
analyzed the 2-D verification results for three clinical IMRT treatment plans using the

newer version K (see Chapter 3). Essentially this serves as one test of the sensitivity

of the 2-D verification procedure to inaccuracies in the empirical determination of the

kernel. Where distinction is necessary, the original and new 15 MV kemels will be

designated Kppp | and Ky |, respectively.
O
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E. IMRT Verification using 2-D Beam’s Eye View Dose Distributions
L. Overview of the Method

A schematic of the 2-D verification technique is illustrated in Fig. 2.9. In the
treatment planning stage, the TPS is used to generate an inverse-planned IMRT treatment
based on the patient’s CT anatomy, and specified dose prescription and dose-volume
constraints. For the first step of the 2-D verification, the TPS-modeled IMRT beams are
exported from the treatment plan for the patient CT data, and imported into a second
treatment plan for a simple water phantom measuring 50 x 50 x 25 (depth) cm’, which
has been modeled in the TPS. The TPS is then used to calculate the 2-D beam’s-eye-
view (BEV) dose distribution at 10 cm depth for each IMRT field individually. In
addition to the IMRT field, a 5x5 cm? open field normally incident on the BEV water
phantom is also modeled in the TPS in the same dose plan. This 5 x 5 cm® open field is
positioned near the corner of the phantom, so that there is minimal scatter contribution to
the 5 x 5 field from the IMRT field (and vice versa). The 2-D dose values for the IMRT
field are normalized to the dose at the center of the 5x5 field. Since the dose fora 5 x 5
cm® field at 10 cm depth in water is known from commissioning data, the IMRT dose

distributions can then be converted to absolute doses (in cGy).

For linac delivery of the IMRT fields, the TPS-modeled step-and-shoot segments
of each IMRT field are translated into instructions that can be read by the MLC
controller, which are then transferred to the treatment unit’s computer. The second step
of the verification is the measurement of a 2-D BEV dose distribution for each IMRT
field delivery, as realized via these MLC controller files. A comparison of the measured
2-D doses and the analogous doses calculated by the TPS completes the verification.

Previously at our clinic, the BEV doses had been measured using film placed at
10 cm depth in a phantom consisting of slabs of solid water.?!  The phantom measured
approximately 25 x 25 x 25 cm’® and the source-to-film distance was 100 cm. The
limitations of film-based techniques have been outlined in the Introduction (Section
1.B.iii). For clinical 2-D IMRT verifications, dose measurements are now performed
with the EPID using the methods described below.

The registration of film, EPID and TPS dose images was required to generate the
film/EPID, TPS/film, and TPS/EPID dose difference comparisons presented in Sections
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3.E.ii and 3.E.iii. For this purpose, the film and TPS images were first re-sampled to the
EPID pixel spacing using a MATLAB routine for bilinear interpolation. A Fourier cross-
correlation algorithm®' first implemented for our clinical film-based IMRT verifications
was then used to perform the main part of the registration. Final small image shift
adjustments (e.g. one or two pixels) were made, if necessary, based on minimization of
the standard deviation of each dose difference distribution within a region of interest
(ROD) in the image defined just outside the field edges. It is noted that this method of
image registration will remove any systematic shifts between the linac’s dose delivery
and the TPS coordinate system. However, this is not problematic, since such shifts
should be detected and corrected during the routine quality assurance and maintenance
procedures performed on each linac.

All TPS dose calculations discussed in this work (both 2-D and 3-D verifications)
were performed using a well-known pencil-beam convolution dose algon’thrnzzz3 that is
employed in the commercial Helax-TMS (Nucletron B.V., Veenendaal, The Netherlands)
system. This is the algorithm used clinically at our institute for calculation of the dose

distributions of IMRT treatments.

TPS (patient CT):
Inverse planning of IMRT treatment using
patient CT data

l l

Export MLC leaf sequence

files for the IMRT fields & Transfer beam parameters
generate corresponding for IMRT fields

MLC controller files

Y \ 4

LINAC: TPS (BEV phantom):

Deliver fields & Measure Calculate 2-D BEV dose at

2-DBEV doseat 10cmin 10 cm in water phantom for
water phantom for each field each field

2-D Verification:
Compare Measured and Calculated BEV
doses for each field

Figure 2.9. Flowchart of the 2-D IMRT verification process.
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ii. Calculation of 2-D BEV Doses with the EPID

The process of calculating EPID-based doses (Dgp;p) is summarized by the

equation,

DEPID (x.y)= (\Pp (%) ® KBEVphantom (%, }’)) kcal » 2.17)

and depicted in Fig. 2.10. The EPID-measured incident fluence profile for each IMRT
field, ¥, (x, y) , is first calculated using Eq. (2.14). This fluence is then convolved with a

dose-deposition kernel, X pryppuanom » 10 yield a dose image (in arbitrary dose-pixel units)

at 10 cm depth in a water phantom, as required for verification. To generate

K pEViohaniom » EGSIIc was used to simulate and score the dose deposition at 10 cm depth

when a pixel-sized photon pencil beam is normally incident on a 30 x 30 x 25 cm® water
phantom. The energy spectra and EGSnrc parameters for these simulations were the

same as those previously described for the EPID kernels. The calibration factor, k.4, is

used to convert the doses in arbitrary dose-pixel units to doses in absolute units of cGy.

To calculate the EPID-calibration factor, k., , an additional EPID image of a

“step-window” calibration field is also acquired during each verification, in addition to
the images of each of the IMRT fields. The step-window is a twelve-segment step-and-
shoot field that delivers a 4 x 3 grid of 4 x 4 cm? square sub-fields, as depicted in Fig.
2.11. It was initially devised to expedite the generation of an H&D (Hurter and Driffield)
curve, by providing a well-sampled twelve point calibration curve with the irradiation of
only a single piece of film. Using a total linac delivery of 240 MUs, the squares
correspond to irradiations of 10 to 120 MUs in 10 MU increments. The doses for each
square are not quite linearly spaced because of differing percent contributions from
scatter and MLC leakage radiation. Using the same procedure as discussed for the IMRT
fields, the EPID “step-window” image is converted to a dose distribution, in arbitrary
dose-pixel units, at 10 cm depth in a water phantom. The mean of the dose-pixel values
in a 15 x 15 pixel (1.2 x 1.2 cm?) region in the centre of each step-window square,

DosePixg,,, (i) (where i = 1 to 12), is then calculated. In separate experiments, the

absolute point dose at the center of each square, Dose,,, (i), was also measured using an
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ion chamber placed at 10 cm depth in a water phantom. The dose-calibration factor. %, ,
is the coefficient providing the best linear fit, Dose;,, = k., - DosePixgpp . to the twelve

(DosePix e (s Dose,, (i)) points.

(a) Step-Window Calibration Field Image Processing o N -
EPID image (EPID_,,+) EPID kernel (Kepip) phantom kernel
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(b) IMRT Field Image Processing
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Figure 2.10. Tlustration of the steps involved in calculating the BEV dose distribution at 10 cm depth in a
water phantom from an EPID image. (a) The raw EPID image of the step-window calibration field is
converted to a dose image in arbitrary dose-pixel units via the shown processing steps (¢f Egs. (2.6), (2.12),
(2.14), and (2.17)). This dose image is cross-calibrated with step-window absolute doses measured with an
ion chamber to generate a calibration curve that yields the linear calibration coefficient, k.s . (b) The same
image processing steps used in (a) are utilized to convert a raw EPID image of an IMRT field to a dose image
in arbitrary dose-pixel units. Using k.4 (Eq. (2.17)), this image is then converted to an absolute dose image.

* Special thanks to my colleague Dr. Stephen Steciw for producing this figure.
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Figure 2.11. E PID image ofthe step-window calibration field used to
calculate the dose calibration coefficient k.. There are twelve 4 x 4 cm®
sub-fields corresponding to irradiations of 10 MUs (bottom left) to 120
MU (top right) in 10 MU increments.

The 15 MV step-window point-doses were first measured in a phantom consisting
of slabs of solid water, as was done previously at our clinic for the clinical 2-D
verifications using film. At a later time, we made step-window point-dose measurements
for both 6 and 15 MV beam energies, using an IC-10 ion chamber (Scanditronix
Wellhofer North America, Bartlett, TN) in a Wellhofer scanning tank filled with (liquid)
water. For all such experiments, the absolute doses were calculated in the following
manner. Jon chamber readings were recorded for each of the twelve step-window
measurement points, and also for a 10 x 10 cm? open field (all at 10 cm depth). Using the
absolute dose for the 10 x 10 cm? field from TG-51%* calibration results to calculate a

conversion factor, the ion-chamber readings at the step-window points could be

converted to absolute dose values. So that k., could be corrected for day-to-day

fluctuations in the linac output, the relative output of the linac was measured both on the
day the absolute ion chamber doses were measured and on the day an IMRT verification
was performed. The linac outputs were measured using a routine QA (quality assurance)

procedure, where readings taken with a PR-06C (Capintec Inc., Ramsey, NJ) ion chamber
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in a polystyrene cylindrical jig-phantom are cross-calibrated with previous TG-51

measurements using a *jig-factor”.

F. IMRT Verification using 3-D Dose Distributions in a Patient’s CT
Anatomy
i. Calculation of 3-D Doses from EPID Measurements of Incident Fluence

The 3-D IMRT verification process is illustrated in Fig. 2.12. For each field in
the IMRT treatment plan, two EPID images ( EPID,,,, ) are acquired: an “MLC” image
of the delivered step-and-shoot sequence of the IMRT field, and an image of the
corresponding “open-field” defined solely by the secondary collimators, with these
collimators located at the same positions as used for the first image. The 2-D relative

fluence profile for each of these images is again calculated using Eq. (2.14). The
measured 2-D fluence modulation, ¥, ,(x,y), for each IMRT field is then determined

from the “MLC”-to-“open-field” ratio of the relative incident fluences:

W oa (X, y) = ————HLC (2a8)

The measured ¥, (x, y) from Eq. (2.18) for each field is re-sampled on a larger 0.15 x

0.15 cm’ grid (defined at 100 cm from the linac source) using a simple linear
interpolation algorithm written in MATLAB. It is then formatted appropriately as a
“compensator” file that can be read by the TPS. Use of this “virtual” compensator has
the effect of replacing the modulation modeled by the TPS for the optimized step-and-
shoot MLC sequence for each field with the modulation measured using the EPID. The

TPS, with the measured ‘Pmod (x,y), is then used to re-calculate the cumulative (i.e. all
beams together) 3-D dose distribution, Dgpjpg,, With respect to the patient’s CT

anatomy. Note that the beam energy, main collimator settings, and relative beam weights

are all identical to those used to calculate the original planned dose distribution, Dypg ,

based on the TPS-optimized fluence modulations. A type of “3-D IMRT verification” is
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then furnished by comparing the new, measurement-dependent Dgpjpg, dose with the

planned, measurement-independent Dypg .

1. Original TPS 3-D dose plan (patient CT)

D TIPS
(TPS-optimized fluence modulation)

v

Export MLC leaf sequences for IMRT fields & generate
MLC controller files

A 4

LINAC
Deliver and acquire EPID images for:
(1) IMRT(MLC) fields (2) Open fields

Egs. (2.6), (2.14), & (2.18)

y
Modulation Matrices

lIJmod (x’ y)

Import as compensator files

y

TPS

recalculates 3-D dose distribution

Y
II. EPID-based 3-D dose plan (patient CT)

Depippu
(EPID-measured fluence modulation)

A 4

3-D Verification: Compare Drps (I) and Depipp. (1) B
Output: Depippy - Drps: 3-D distribution, histograms X
Dgplpﬂu ,Dn»s : DVHs

8

Figure 2.12. Flowchart of the 3-D verification process.

Registration of the D gpjpg, and Drpg doses was accomplished with the following

technique. During the EPID measurements, an EPID image of an open 10 x 10 cm? field
is also acquired. The center of the radiation field with respect to the pixel coordinates of

the EPID image is determined from the locations of the four edges of this symmetric,
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square field in the EPID image, as determined by standard edge detection techniques.
This allows the measured ¥, (x, y) matrix, and thus the imported compensator file, to

be properly aligned with the TPS coordinate system. This method of registration is
effective, provided routine quality assurance of the linac ensures that the isocenter
defined by the lasers used in the set-up of patients for treatment coincides with the center
of the 10 x 10 cm” radiation field.

ii. Normalization of Dose Distributions Calculated by the TPS

Our TPS internally calculates a patient dose distribution with respect to a standard
reference dose, defined as the dose at the depth of maximum dose (d,,:) in a water
phantom at 100 cm SSD for a 10 x 10 cm® ﬁeld. For output, the TPS then converts this
un-normalized dose distribution, where all doses are relative to the fixed reference dose,
to a normalized distribution, where all doses are expressed relative to a user-specified
normalization point or volume in the patient plan, and a corresponding user-specified
dose level. Consistent with the convention used at our clinic for IMRT plan
normalization, the Dgp;pg, and Drpg doses were normalized such that the median dose
in the planning target volume (PTV > matched a specified prescription dose. However,
use of this normalization forces the normalized median doses to be identical for the
EPID-based and planned TPS doses: thus, any difference in the un-normalized (i.e. with

respect to the reference dose) median dose between the two cases due to discrepancies
between the measured and the TPS-optimized ¥ ,(x,y) will be lost. To establish a
common normalization for the two dose distributions and thus restore sensitivity to
differences in the un-normalized median doses, the Dgpjpg, distribution was multiplied
by a normalization correction factor, Nco,r,
Depippty = N corr * Depinfta - (2.19)

In theory, N is the ratio of the un-normalized median dose calculated for the
uncorrected EPID-based distribution to that of the TPS-based distribution. In practice,
there is no straightforward way to calculate this ratio, since the TPS can be used to report

un-normalized doses (with respect to the standard dose) only for points of interest, and

not for volumes of interest. Thus, to calculate N,,,, the EPID-based and TPS-based dose
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distributions were temporarily normalized to a single normalization point located at
isocenter. The median normalized PTV doses using this new point normalization were

then calculated, and are designated Dgpjpg, pry and Dy pry for the EPID-based and

TPS-based doses, respectively. The un-normalized doses at the normalization point for

and unnorm

the two dose distributions, ““"Dgpipg, normpt Drpg normpe » Were also

recorded, so that the normalized median doses could be corrected for differences in the
un-normalized doses at the normalization point. The normalization correction factor,

Neorr, Was then calculated from the following equation:

D . unnorm D
__ “EPIDflu,PTV EPIDflu,normpt
corr — .

N

— (2.20)
Drps prv - D1ps. normpt

iii. TPS Dose Calculations with a “Point- Source” Model

In its dose calculation algorithm, the TPS models beam penumbra by including an
additional penumbra dose convolution kernel dependent on “beam-size” parameters,
rather than explicitly modifying the energy fluence itself. However, EPID-measured 2D-
fluences intrinsically describe the beam penumbra, as supported by the good agreement
between open field fluence distributions measured with the EPID and those measured

with a diamond detector (see Chapter 3). Therefore, EPID-derived fluence modulations

(¥ moq ) imported into the TPS already contain penumbral blurring at the treatment field
edges. The TPS, however, treats the imported ¥ 4 as a virtual compensator and thus
applies the penumbra dose kemnel to calculate the EPID-based dose (Dgpppyg, ): this

introduces an unnecessary additional blurring at the treatment field edges. Since the

planned ¥4 does not contain the penumbral blurring, this problem does not exist for
the Dyps dose. To quantify the significance of this effect, EPID-based dose calculations

were also performed with the “beam-size” parameters used in the penumbra kernel
reduced from ~0.5 cm to 0.001 cm, to effect a “point-source” that avoids additional
penumbral blurring. EPID-based doses calculated using this “point-source” TPS model

are designated as DEPlDﬂulpnt .
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G. Summary

This chapter provided the background material necessary to understand the
development of our 2-D and 3-D EPID-based IMRT verification procedures. In the first
sections of this chapter, relevant properties and image acquisition characteristics of the
Varian aS500 EPID were described. Specifically, we discussed the recently available
“IMRT” acquisition mode, which effectively allows the EPID to be used as an integrating
dosimeter. The accuracy of the IMRT mode for measuring dose distributions from step-
and-shoot IMRT fields was assessed, and issues of buffer deadtime and ghosting effects
relevant to use of the IMRT mode were addressed. Also described was a correction we
devised to account for distortions in the raw EPID image pixel intensity distributions
caused by the flood-field correction that is automatically applied by the EPID’s Portal
Vision software.

Our 2-D and 3-D IMRT verification procedures rely on the ability to accurately
measure fluence distributions with the EPID. For this purpose, we developed a kernel-
based deconvolution technique that converts the pixel intensity distribution of a raw
EPID image to a 2-D incident fluence distribution using pencil-beam kernels describing
image blurring processes in the EPID. The methods used to generate the necessary
kernels were described in this chapter. These methods include Monte Carlo simulations
of the dose deposition in the EPID, and empirical fitting techniques to account for both
optical glare, and any deficiencies in the Monte Carlo-derived dose deposition kernels
due to the simplified modeling of the EPID structure.

Finally, this chapter provided an overview of the processes of the 2-D and 3-D
IMRT verification techniques. For the 2-D technique, the EPID-measured fluences are
convolved with a kemel characterizing dose deposition in a water phantom, and then
cross-calibrated with ion-chamber absolute dose measurements, to generate an EPID-
based BEV dose distribution at 10 cm depth in water. The 2-D verification compares this
EPID-based BEV dose distribution with the analogous distribution calculated by the TPS.
In the case of the 3-D verification, the fluence modulation distribution of each field of an
IMRT treatment plan is measured with the EPID. These measured modulations are

imported back into the TPS, which is then used to re-calculate a cumulative 3-D dose

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



distribution in a patient’s CT anatomy. To complete the 3-D verification, the 3-D dose
distribution based on EPID-measured fluences is compared to the original planned 3-D
distribution based on TPS-optimized fluences.

In the following chapter, results of 2-D and 3-D IMRT verifications are presented.
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Chapter 3: EPID-based IMRT Verification -
Results

In this chapter, results for the EPID-based IMRT verification projects are
presented. The various kernels used to extract fluence profiles from EPID images are
presented first, followed by comparisons of these EPID-based profiles to analogous
profiles measured using a diamond detector. In the main part of the chapter, separate

sections report results from the 2-D and then, the 3-D IMRT verification projects.

A. Pencil Beam Kernels used to Extract Fluence Profiles from EPID
images
The Monte-Carlo generated dose kernel (K, ), the empirically-derived back-

glare  kemel  (Kpgek—giare)» and the resulting overall EPID  kernel

(Kepip = Kiose ® Kpack—glare ) 1sed t0 describe the blurring processes in the EPID are
shown in Figure 3.1. The 3-D verification results were generated with the 6 MV and the
“new” 15 MV Kkernels illustrated in Fig. 3.1(a) and (b), while Fig. 3.1(c) depicts the “old”
15 MV kernels used to produce the 2-D verification results. In this and other figures
displaying pencil-beam kernels, the kernels are normalized to unity on the pencil beam
axis. As expected from the discussion in Section 2.D.iv, Fig. 3.1 illustrates that for the 6

MV case, the empirical Kj, 4 _g1ore has a large long-range tail: at radial distances greater
than ~ 5 cm from the center of the kernel, the dominant contribution to the overall Kgpp
kernel is from Kp;c¢_ gire » and nOU K g5, . This relatively large long-range component in
Kpack-glare compensates for the diminished long-range tails in K, due to the lack of

backscatter in the simplified EPID model in the EGSnrc simulations. In contrast, for the
15 MV case where the EGSnrc model contained 2.5 cm of water backscatter, the
empirical back-glare kernel mainly broadened the short and medium ranges (r < 2.5 cm)
of the total EPID kernel. Overall, a much smaller empirical “correction” was necessary

in the 15 MV case, indicating that the 2.5 cm of backscatter was more representative of
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the actual scattering properties of the EPID in the 15 MV case, than the use of no

backscatter was in the 6 MV case.
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Figure 3.1. (a) 6 MV, (b) “new” 15 MV, and (c) “old” 15 MV pencil-beam kernels used to
describe blurring in the EPID: the dose kernel (K. ) is generated from Monte-Carlo simulations,
the back-glare kernel (Kpuckgiare) is derived empirically, and the total EPID kernel (Kgpip) is the
convolution of the dose and back-glare kernels. A comparison of the three total EPID kernels is
shown in (d).

A comparison of the 6 MV and 15 MV (“old” and “new”) Kgp;p kemels is
shown in Fig 3.1(d). The 6 MV kermnel is significantly narrower for radii below ~ 2 cm
from the kernel center, but has an appreciably larger amplitude in the long-range tail (r >
~ 6 cm). This is consistent with the following explanation. Since the near-range part of
the kernel results mainly from the transport of electrons released in primary interactions,

the 15 MV kemel is broader in this region because of the longer range of the higher-
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energy electrons produced from the 15 MV incident beam. However, photon backscatter
cross-sections are larger for the lower energy 6 MV beam, explaining the larger long-
range tail for the 6 MV case. The differences between the “new” and “old” 15 MV
kernels are subtle, with the main difference being the slightly larger amplitude of the
long-range tail of the “new” kernel.

The 6 and 15 MV K 5,4 _ phanom Kernels needed to generate the simulated flood-
fields [ gopq_sim (Section 2.C.vi), and the Kpryppanom kernels which convert EPID-

derived incident photon fluences to 2-D BEV dose distributions are shown in Fig. 3.2(a)
and 3.2(b), respectively. Both kemels characterize dose deposition in a uniform water
phantom: K 5,4 _ phantom at 3 cm depth in a 5.5 cm thick phantom, K pzyphanom at 10 cm
depth in a 25 cm thick phantom. For similar reasons as described above for the EPID

kernels, the shape of the 6 MV kernels is narrower in the short-range and slightly broader

in the long-range than the corresponding 15 MV kemnels.
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Figure 3.2. (a) Kpoodphauom kernel used to generate the simulated flood-field Zgpysime and (b)
Kaevphanom Kernel used to convert photon fluence to BEV dose for both 6 and 15 MV.

To describe the overall shape of the Kpgpip, Kypser K flood—phantom» and
K BEVphaniom kernels, each was fit to the following function, which is the sum of four

exponential terms:

K fi (r) = exp(—ayr) + a; exp(—azr) + a4 exp(—asr) + ag exp(—a;r) . 3.1
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The best-fit parameters (a; ... a;) for each kemel are given in Table 3.1. To perform the
fits, we implemented a computerized fitting routine based on a Monte Carlo search
algorithm' and minimization of a weighted sum-of-squares difference between the
logarithm of the fitted and original kernels. As discussed in Section 2.D, the empirical

kernel, Kpuct— glare » Was assumed to be the sum of two (15 MV) or three (6 MV)

exponentials: these parameters are also reproduced in Table 3.1.

K 5, (r) = exp(-ar) + a; exp(—asr) + a4 exp(—asr) + ag exp(—a;r)

a; as as as as as az

Kernel (cm'l) (cm") (crn'l) (cm'l)
Kgbp 23.6 x3'1606.3 3.98 xzfz)l 0s40 AT 0128
kg 194 % 3. L0 a6 % osn
A o % suz 0 289 190 A8 o3
i 205 lo» 832 x&l‘:)i 222 x5 '1%‘?5 0.538
Kise |, | 226 135 525 300 1 3 030
Kiose' | ., 250 20, 60 P 139 28 osm
Kjack-gare | 371 15 0405 90 o013 NA  NA
Kporilgare | 37.1 x1'1306_3 246 NA NA NA NA
K Good-phantom | 217 x6i8()92 6.01 x5'170§ 1.50 x3'1%§5 0.368
K- phantom | 179 x6'110§2 416 35 179 S 0328
Ketphanom | 201 >7% 521 V. 0690 2% 0192
K§ohanom | 16.6 jfoz.z 339 x8'19064 0.947 x""l%?s 0.218

Table 3.1. Best-fit parameters for fits of a function that is the sum of four exponentials to the various
kernels used in this work.
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The original. non-parametric forms of the Kgpip. Kaoseo K flood - phantom »
and K peyphanom kernels were used to generate the 2-D and 3-D verification results. The

parametric forms were given in Table 3.1 to supply a convenient mathematical
description of these kernels that may be useful for other investigators, perhaps to compare
with kernels they themselves derive. The parametric kernels are also used in the tests
described in Section 3.B.iv that investigate the sensitivity of the shape of the EPID

profiles to different parts of the K EP,D' kernel.

B. Comparisons of EPID-derived Fluence Profiles and Measured
Diamond Detector Fluences
i. Open fields and IMRT Segments

In Fig. 3.3, a cross-plane profile for a 10 x 10 cm®6 MYV field fluence is shown for
each of the following: an in-air measurement with a diamond detector; the raw,

uncorrected EPID image ( EPIDpy ) of the field; and the EPID-derived relative fluence

that is extracted from this raw EPID image using the kemnels characterized above in
Section 3.A in conjunction with the deconvolution technique summarized by Egs. (2.6),
(2.12), and (2.14) in Chapter 2. In comparison to the in-air diamond measurement, the
raw EPID profile has a significantly larger amplitude in the tail of the profile, and a
significant downward rounding towards the field edges in the open part of the field. In
contrast, after deconvolution, the corrected EPID profile restores the shape of the profile
in the open part of the field, which is nearly flat with a very slightly horned shape (from
the flattening filter), and also matches the tail region of the field very well. The corrected
EPID profile actually reproduces the expected shape of the incident photon fluence in the
penumbra somewhat better than the diamond profile: the diamond profile has a
comparatively shallower slope in the penumbra due to the additional blurring caused by

the build-up cap used for the in-air measurements.
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Figure 3.3. Comparison of cross-plane profiles through an open 10 x 10 cm® 6 MV field
derived from in-air diamond detector measurements, raw EPID images (EPIDpy) before

deconvolution, and EPID images after the deconvolution to extract incident fluence ( b ¢ P ).

Additional comparisons of diamond and corrected EPID fluence profiles are
shown for a range of open fields of sizes 2x 2,4 x 4, 10 x 10, and 20 x 20 cm® in Fig. 3.4
for 6 MV, and in Fig. 3.5 for 15 MV. Each profile has been normalized to its own mean
value of the central eleven pixels (0.9 cm). As illustrated, the diamond and EPID profiles
agree very well for all field sizes, indicating that the final versions of the EPID kemels
are able to describe the blurring properties of the EPID detector adequately for purposes

of deconvolution. Fig. 3.5 suggests that differences between the EPID profiles using the

old EPID kernel, K LMy , and those using the new version, K 214 , are relativel
EPID | . g EPID | y

insignificant.
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Figure 3.5. Same as Fig. 3.4, except for 15 MV. As illustrated, the differences in the profiles
between using the “new” or “old™ EPID kernels in the deconvolution are negligible.

The EPID and diamond relative fluences are also compared in Fig. 3.7(a) (6 MV)
and 3.7(b) (15 MV) for in-plane profiles taken through the segment of the step-and-shoot
IMRT field depicted in Fig. 3.6(a). The numbers 1-6 are used to identify different
regions of this IMRT segment in both the diagram of the segment and in the
corresponding profiles. The EPID profiles are again in good overall agreement with the
diamond profiles. However, the EPID profiles again exhibit sharper slopes in the
penumbral regions, at the edges of the different regions. For example, the troughs
between regions 2 and 3, and 3 and 4, are not as deep for the diamond profiles; as before,

this is a consequence of the blurring from the diamond’s build-up cap. Also because of
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this blurring, the diamond fluence amplitude for the narrow region #1 is significantly less
than for the other wider regions; in contrast, the EPID-based prediction of the fluence for
region #1 is nearly the same as for the other regions. In general, the EPID fluence profile
is slightly more uniform in the open-field sections of the field, particularly for the 15 MV
case. For these reasons, it is believed that the EPID profiles represent the actual shape of
the incident fluence slightly better than the diamond profiles for IMRT fields, as was also
found for the open-fields. An additional comparison of 6 MV diamond and EPID
profiles, which shows similar results, is depicted in Fig. 3.7(c) for the multi-leaf
collimated field shown in Fig. 3.6(b).

@ | ‘ (b)

1 1

Figure 3.6. (a) Image of the IMRT segment field corresponding to the profiles shown in Fig.
3.7(a & b). The profiles are taken along the dashed line, and the numbers identify the regions
of the segment described in the text and indicated in Fig. 3.7. (b) Image of the multi-leaf
collimated segment field corresponding to the profile (along the dashed line) in Fig. 3.7 (c).
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Figure 3.7. Comparison of diamond and EPID fluence profiles for multi-leaf collimated
fields. (a) 6 MV and (b) 15 MV profiles along the dashed line through field shown in Fig.

3.6(a). (c) 6 MV profiles along the dashed line through field shown in Fig. 3.6(b).
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ii. Sensitivity of EPID profiles to the amount of backscatter used in the EPID model
For the 6 MV case, the sensitivity of the EPID-derived fluences to the amount of

backscatter used in the EGSnrc EPID model was investigated. For this purpose, different

dose-deposition kernels ( K g, ) corresponding to different thicknesses of uniform water

backscatter were generated; the different “backscatter” EPID kernels were created

without implementing any empirical kernel correction, ie. Ky, _gare= 1, and thus

Kegpip = Kzse - EPID fluences were then extracted using each of these “backscatter”

kernels for both a small 4 x 4 cm” and a large 20 x 20 cm’ field, and compared to the
corresponding diamond profiles. The diamond profiles were re-sampled at the points of
the EPID pixels using a MATLAB cubic spline interpolation routine. For each
"backscatter” kernel and field size, two figures of merit (FOM) were calculated to
characterize the degree of agreement between the EPID and diamond profiles. The first
FOM is the sum of the squared difference between the EPID and diamond profiles for all

pixels within a region of interest (ROI):

SSgor = 3, (EPID(i) - diamond (i) . (32)
i€ ROI

The ROI, shown in Fig. 3.8(a), included the tail region and a portion of the open-field
nearest the field edges. However, this ROI excluded the high-gradient penumbra part of
the profiles, since disagreement between the diamond and EPID profiles is expected (and
to some extent desired) here because of the build-up cap blurring evident in the diamond
profiles. In general, SSgo; provides a good indication of the quality of the EPID-to-
diamond fit. However, it is not always sensitive to a short-range “over-deconvolution” of
a profile, which manifests as a spurious under-prediction of the fluence at the base, and
an over-prediction at the top of a sharp edge. Thus, a second “transient-detecting” FOM,

A was calculated that is the mean of the absolute differences of the amplitude of the

trans

diamond and EPID profiles calculated at the base and peak of the profiles at both field

edges (Fig. 3.8(b)). As a baseline, the two FOMs SSzo; and A, were also calculated

trans

for the comparison between the diamond profiles and the EPID fluences derived with the

“best” final version of the Kgpp kernel (no backscatter, but using Kp,cr_glare )» the

version actually utilized for our IMRT verifications. Table 3.2 reports the ratios of the
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values of SSzor and A, for the “backscatter” kernels to the corresponding values

trans

back

e [ 44 : . ba k
calculated using the “best” kernel. These ratios are designated SSg,|, . and A j

best *

trans
Values of these ratios much greater than 1 suggest a significantly worse EPID-to-
diamond fit using the given “backscatter” kernel, while values near one indicate that the
“backscatter” and “best” kernels yield a similar fit for that particular field size. Note that
since the tail region has a larger amplitude for larger field sizes, and thus discrepancies

between the diamond and EPID profiles in the tail region are potentially greater,

back . . - « ”
SS R0,| b:; ratios will generally be more sensitive to poor fits of the “backscatter

kernels for larger field sizes. Some measure of the breadth of each kernel was quantified

by calculatingKemsum=2K(i, J), the sum of the values of all 383 x 383 pixels
iLj

(spanning 30 x 30 cm?) for each kernel (K(,j), where i,j = 1,2, ..., 383). Before

calculating Kernsum, the kernels were first normalized so that the central pixel of the

kernel has a value of one (i.e. K(192,192)=1). The ratio of this sum for the “backscatter”

(1% > b k . - .
and “best” kernels, Kernsum],.. " , is also given in Table 3.2.

1r (a) M d 1F @)M_:
08 E {1 08 4
[+ [+
2 2
§o.6— §o.6-
2 2
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D [
«© o«
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Figure 3.8. Diamond and EPID (non-optimal) profiles through a 20 x 20 cm’ field. (a) The ROI
(region of interest) used to calculate SSgo; (Eq. (3.2)) includes the four regions demarcated by the

four pairs of vertical lines. (b) A, is the mean value of the differences between each of the four
sets of horizontal lines, which are located at the tops and bases of the field edges.
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q back
backscatter back SSror ]:zg‘ A s | pes
thickness | Kernsum|, ' 5220330 | 4x4  20x20

(cm) cm’ cm’ cm’ cm?
0 0.67 2.0 379 1.4 6.5
0.5 0.71 1.3 28.5 0.7 5.0
1.0 0.74 1.5 18.8 2.1 3.5
1.5 0.77 24 10.8 3.1 1.9
2.0 0.80 3.6 54 3.9 0.9
2.5 0.83 5.1 24 4.5 0.9
3.0 0.85 6.6 2.0 5.0 22
3.5 0.88 8.1 3.9 54 3.5
4.0 0.90 9.5 8.0 5.7 4.7
5.0 0.94 12.1 214 6.2 6.8

Table 3.2. Dependence of the fits of EPID fluence profiles to diamond profiles for 4 x 4 and 20
x 20 cm® 6 MV open fields on the thickness of water backscatter material used in the EPID
model (for EGSnrc simulations). The quality of the fits is characterized by the ratio of the $Sgo,

and A, values (described in the text) calculated for each “backscatter” kernel (without
K pack—glare ) 1© the analogous values obtained using the “best” Kzp;p kerel (no backscatter,

with X back—glare ). Ratio values less than one indicate a relatively better fit.

The results in Table 3.2 demonstrate the necessity of the empirical Kback_g,a,e
kernel to adequately describe blurring in the EPID for the 6 MV case. None of the
“backscatter” kernels, irrespective of how much backscatter was used in the EPID model,
could alone (i.e. without use of a Kp,c_g1qre kernel) describe sufficiently both the 4 x 4

and 20 x 20 cm?® fields. The “backscatter” kernel that fit the smaller 4 x 4 field best was

the one corresponding to 0.5 cm of backscatter. Use of this kernel resulted in values for

A Ro,[:j;k and Ammlgk of 1.3 and 0.7, respectively, for this field; on the other hand,
this kernel fit the 20 x 20 field very poorly (SSgor|ooc and A,,,[r =28.5 and 5.0,

respectively). The 2.5 cm backscatter kernel produced a reasonable, though not optimal,

back back
best and A”‘”‘-‘lbesr °

fit to the 20 x 20 field, yielding values of 2.4 and 0.9 for SS RO,[ The

back

best and

fit to the 4 x 4 field using this kernel was, however, now unacceptable (SS ROll

A, |”* =51 and 4.5, both >> 1). Intermediate values of backscatter thickness gave

trans | pest

relatively poor fits for both the 4 x 4 and 20 x 20 field sizes. In Fig. 3.9, diamond
detector profiles for both field sizes are compared to EPID-based profiles for the 0.5, 1.5
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and 2.5 cm “backscatter” kernels. It is noted that Siebers er al.” found that 1.0 cm of
uniform backscatter provided good agreement between simulated EPID images and
measured portal images for a range of field sizes. However, they also used a much more
complete model of the EPID detector than the simplified one used for our simulations
(Fig. 2.4), which likely explains why they did not require explicit use of an optical glare

kernel or an empirical kernel correction (e.g. Kpact—glare )-

1 L-’—«ﬂ . “ —\--.__“.: 4
0.8 L ] R} .
[0
(&)
&
3067 . ]
[T
s {
S 04t 1
e |t o EPID: 0.5¢cm
- ——— EPID:15cm
0.2 " e EPID: 2.5 cM - -
+ * diamond e
0 l E ] l { - “M‘.m[
0 2 4 6 8 10 12

cross-plane coordinate (cm)

Figure 3.9. The effect of the amount of backscatter used in the EGSnrc model of the
EPID on EPID 6 MV fluence profiles for 4 x 4 and 20 x 20 cm’ fields. The three

EPID profiles were generated with three different deconvolution kernels (K dose)
corresponding to 0.5, 1.5, and 2.5 cm of water backscatter.

iii. Effect on EPID profiles of the short-range exponential term in K

~glare
We had hypothesized that the first exponential term in both the 6 and 15 MV

Kpack-glare €mpirical kernels may describe short-range optical blumring. For both

incident photon energies, the length parameter characterizing this short-range exponential
was C; = 37.1 cm™ in Eq. (2.16). To investigate the sensitivity of the EPID profiles to

this particular exponential term, we generated a second set of Kj,q4_pqre Kernels with C;

= 1037.1 cm™ and the other parameters unchanged. Use of this large value of C;
effectively makes the short-range part of the kernel a delta function, which would imply

that there is no short-range blurring. The ratios of the SSgzo; and A values calculated

trans
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for the kernel (for each energy) with C; = 1037.1 cm™' to the values using C; = 37.1 cm™,

1037

1037
and A a

37 trans

SSroi

are reported in Table 3.3. As indicated by these values and
displayed in Fig. 3.10, the dependence of the EPID profiles on C; for the two photon
energies is different. In the 15 MV case, changing the short-range parameter (i.e. C; =

1037.1 cm™) in K back—glare Produces an over-deconvolution in the short-range of the
fields. This is suggested visually in Fig. 3.10 and numerically by the values of 2.0 (4 x
4) and 1.4 (20 x 20) for A,,w[;??. However, in the 6 MV case, increasing C, to 1037.1

cm’ has less effect on the short-range part of the fields; rather it has the greatest impact

1037

on the height of the tail for the 20 x 20 field (SSgoyl;,

= 1.9), which implies a long-

range effect. Thus, short-range effects, such as optical glare, can be described by the C;
parameter alone only for the 15 MV empirical kernel, and not for our implementation of
the 6 MV kemel. In retrospect, this is not surprising. There were no long-range
components in K, ., with the span of this kernel being restricted to radii less than

ol care 1S dominated by long-range exponentials used to

2.5 cm. In contrast, however, K
approximate the missing backscatter in the EPID model. As a result, the overall impact
on KM care Of changing solely the C; parameter is more complicated and more difficult

to predict, since Kmy. .. is convolved with K37y to get the overall Kgpyy, kernel.

Photon 1037 SS ROI|13?]37 A”w ;337
Energy | Kernsum|y; 4x4  20x20 | 4x4  20x20
MV) cm? cm? cm® cm’
6 0.83 13 1.9 14 1.0
15 0.84 1.1 1.1 2.0 1.4

Table 3.3. Dependence of the fits of EPID fluence profiles to diamond profiles on the first
exponential term in Kback.g,m . The quality of the fits is characterized by the ratio of the

SSpo; and A, values for a Kpor.giare kernel using C; = 1037.1 cm™ (i.e. short-range delta
function) to those values with a kernel with C; =37.1 cm’™.
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Figure 3.10. Dependence of 4 x 4 and 20 x 20 cm® EPID profiles on the first exponential term (C;)
in Kpactoctare - (3) 6 MV: use of C; = 1037.1 em™ (ie. short-range delta function) instead of C; =
37.1 cm” primarily affects the height of the long-range tail for the 20 x 20 field. (b) 15 MV: use of
C, =1037.1 cm results in a short-range over-deconvolution for both the 4 x 4 and 20 x 20 fields.

iv. Sensitivity of the EPID profiles to different regions of the EPID kernel

The sensitivity of the 6 MV EPID profiles to the different regions of the EPID
kernel was studied by varying, one at a time, the best-fit parameters (a; ... a7 in Table 3.1)
of the quadruple exponential function (Eq. (3.1)) used to characterize the shape of

K gppp - For example, assuming the original best-fit parameter values (par0) are (a;o, azo,

aso, -.-» azn), one new kernel was generated using the parameters, par = (a}, azp, Az, ...,
az), where a, =a,,-Const . For each such kernel, Const is selected so that the Kernsum is
approximately 10 % larger or smaller than the Kernsum calculated for the kernel based on

the original parQ parameters. The ratios of the SSzorand A, values calculated for each
kernel using a modified set of parameters (par) to those values for the original (par0)

kernel are designated SS Ro,[i ~, and B | hory- These ratios are given in Table 3.4.

Also reported are the value of Const for each kemel, the corresponding Kernsum ratios,

Kemsum|z 2:0’ and whether the modified kernel resulted in more or less deconvolution

than the unmodified kernel.
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: SSrot|"r A
Modified deconv: Const Kemsuml par RO! par0 wrans | paro
Param. more/less par0 | 4x4 20x20) 4x4 20x20

cm’ cm? cm? cm’
a; less 0.91 1.10 0.8 2.8 0.5 34
a; more 1.12 0.90 1.9 1.9 1.9 1.8
az less 0.001 0.93 0.8 1.1 0.9 14
a more 2.50 1.10 1.3 24 4.7 1.5
as more 0.64 1.11 6.5 1.8 7.3 3.6
as less 10.0 0.93 0.8 1.1 0.9 1.4
ay less 0.01 0.90 4.0 7.2 33 7.2
a; more 2.00 1.10 8.3 3.3 5.1 5.3
as more 0.71 1.10 6.2 11.3 2.8 6.3
as less 6.00 0.90 4.0 7.4 33 7.2
as less 041 0.90 1.0 19.3 0.5 6.6
as more 1.58 1.10 1.8 14.9 14 4.6
ar more 0.62 1.10 1.1 134 1.1 3.0
az less 1.85 0.90 0.9 18.4 0.8 5.9

Table 3.4. Sensitivity of the fits of 6 MV EPID fluence profiles to diamond profiles on the different
parameters (qy ... @y) in the quadruple-exponential function (Eq. (3.1)) used to describe the shape of

Kepip. The quality of the fits is characterized by the ratio of the SSpo; and Amm values for a kernel

with one of the parameters modified, to the values obtained with the original (par0) best-fit parameters:
(23.6cm™, 3.66 x 107, 3.98 cm™, 2.37 x 10™,0.840 cm™, 1.47 x 10°, 0.128 cm™).

Fig. 3.11 shows the effect on the kernel shape of changing the ay, a3, as, or ay
parameters by the amounts tabulated in Table 3.4; the corresponding impact on the EPID
profiles are illustrated in Fig. 3.12. Note that these four parameters characterize four
length scales in the kernel. The original best-fit values of 23.6, 3.98, 0.840, and 0.128
cm’ represent nominal length scales of 0.0424 (“short” range), 0.251 (“short-mid”), 1.19
(“mid”), and 7.81 cm (“long”). The amplitudes of the latter three length scales are
characterized by the parameters a,, a4, and as, respectively. As expected, there is a
significant correlation between the amplitude and length parameter of each exponential
term: for example, increasing the amplitude a; has a similar (though not identical) effect
on the EPID profiles as decreasing the value of a; (i.e. increasing the range of this term).

For this reason, the a, a4, and as parameters are not explicitly discussed below.
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Figure 3.11. Effect on the shape of the EPID kernel described by the quadruple-exponential fit
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Figure 3.12. Effect on the 4 x 4 and 20 x 20 6 MV EPID profiles when altering the shape of the
EPID kernel by changing one of the parameters (ay. a;, as, or ay) in Kj; from its optimal value (see
Fig. 3.11 above).
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Decreasing a; results in a significant short-range over-deconvolution. This is

evident in the dip at the base and spike at the top of the field edge in the profiles in Fig.

3.12(b), and also in the A, |""  values of 7.3 and 3.6 for the 4 x 4 and 20 x 20 field,

respectively. The shape of the EPID profiles is much more stable, however, with respect
to an increase in a;. Increasing the best-fit as value, azp, by a factor of ten makes the
kernel much narrower for radii between ~ 0.5 and 1.5 cm (Fig. 3.11(b)), but decreases the

quality of the fit of the EPID profiles to the diamond profiles by only a small amount

(e.g. SS RO’IZ:O and A,,mlz:o values near one). It was also found that this kernel (with a3

= 10a3p) can be fit well with a function that is the sum of three exponentials. This
suggests that a triple-exponential function may sufficiently describe the blurring in the
EPID practically, i.e. for the purposes of deconvolution to relative fluence.

Since the as parameter value characterizes the “mid” range of the kernel,
changing its value does not produce as severe an over- or under-deconvolution near the
base or top of the profile as does changing the a3z parameter. Instead, the as parameter
most obviously affects the slope of the top and tail of the profile. The effects of changing
as are manifest for both the 4 x 4 and 20 x 20 fields. In contrast, but as expected,
modifying the “long” range a; parameter affects primarily the larger 20 x 20 field, and
tends to change the height of the tail of the profile. As observed for the short-range

K6MV

exponential in Kpget_grare (Sect. 3.B.iii), the shortest range a; parameter in the fit to the

Kgpip kemel does not display a clearly short-range behavior. Rather, its effect is

probably closest to that of the long-range a7 parameter.

C. EPID phantom scatter factors: measured vs. kernel-based
predictions

To verify the ability of the derived EPID kemels to describe scattering in the
EPID, we compared measured EPID-phantom scatter factors (Spg) to values predicted
using our Kgp;p kemnel, for the 15 MV case. The concept of field-size dependent Spe

factors was introduced by Chang et al.? to facilitate EPID calibration. The factors are

used to relate EPID pixel values to doses measured with an ion chamber in a phantom on
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the central axis of an open beam. To measure Spg, EPID images were acquired for
several square field sizes. The value of Spg for a field size fs, defined at 100 cm from the
source (isocenter), was calculated as follows,’
MREP(f5)/S,(fs)
MREP(fs;of)! Sc(fsrer)

In Eq. (3.3). MREP is the mean of the raw EPID pixel values in a small central region (11

Spe(fs)= (3.3)

x 11 pixels, or 0.9 x 0.9 cm?) of the field, fs.,r is 10x10 cm” at isocenter, and S, is the
collimator scatter factor.* The values of S, were measured using an IC-10 ion chamber
with a 1.6 cm diameter brass build-up cap, and were the average of measurements made
on two separate occasions. To generate the predicted EPID phantom scatter values, a

simulated EPID image for each field size was produced by convolving an input fluence

image with Kgp;p. For comparison, simulated EPID images were created employing

both the “new” and the old versions of the 15 MV kernel (K ]E‘E’DV and K E}%’ g ).
new ]

The fluence map for each field size was obtained from the flood-field fluence distribution
by truncating it to the field dimensions. Predicted Spg factors were calculated as the ratio
of mean pixel values in the small central region of the simulated EPID images for each
field size and the 10x10 cm® field. A comparison of measured and predicted EPID-
phantom scatter factors is summarized for several field sizes in Table 3.5. As indicated,
there is reasonable agreement between measured and predicted values: the values agree
within ~ 1 % for fields up to 16 x 16 cm? in size for the “old”, and up to 20 x 20 cm for
the “new” 15 MV kernel. Generally, the agreement for the “old” kernel is slightly better
for the smaller field sizes (< 10 x 10), while the “new” kernel better predicts the Spg for
the larger field sizes (> 10 x 10). This is a consequence of the slightly higher amplitude
of the long-range tail component of the “new” kemel (see Section 2.D.v). The
approximate 1 % discrepancy between measured and simulated values of Spz is perhaps
not insignificant given that the Spz values deviate from one by only + 5% for field sizes
from 4 x 4 cm” to 20 x 20 cm?; nevertheless, this level of consistency suggests that the
ability of the convolution kernels to describe the scattering properties of the aS500 EPID

is adequate for our dosimetric applications.
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Field | Measured Simulated Field | Measured Simulated
Size SPE SPE Size SPE SpE

2 2 2 15MV
(em?) | (£0.010) Kiwp Iold £ (cm”) | (x0.010) Kemp ’(,1‘1 KlSMVIne,..

EPID EPID
3x3 0.920 0927 0911 |12x12| 1.013 1.009  1.011
4x4 0.947 0950 0937 |14x14} 1.023 1.013  1.016
5x5 0.963 0964 0954 |16x16| 1.032 1.022  1.028
6x6 0.974 0974 0966 |18x18| 1.041 1.027  1.034
8x38 0.991 0988 0985 |20x20| 1.049 1.030  1.039

10x 10| 1.000 1.000  1.000

Table 3.5: Comparison between measured and simulated values for the 15 MV EPID-phantom
scatter factors for a range of square field sizes. Simulated values are calculated by convolution of

an open beam primary fluence with the Kgp;p kernel.

new

D. Dose calibration: step-window doses
The absolute doses measured with an ion chamber at 10 cm depth in a water
phantom at the center of each of the twelve 4 x 4 “step-window” sub-fields (see Section

2.E.ii) are provided in Table 3.6. These doses are used to calculate k., , which converts

arbitrary EPID dose pixel units to cGy, facilitating calculation of 2-D BEV dose

distributions. &, is the slope of the linear regression between ion chamber doses and the

doses predicted by the EPID at 10 cm depth in a water phantom using the EPID's
deconvolved fluence and a water dose deposition kernel (see Fig 2.11 in Chapter 2).
Table 3.6 reports two sets of 15 MV and one set of 6 MV measurements. The first set of
15 MV doses, measured in a solid water phantom, was used to generate the 2-D
verification results. The second 15 MV and the sole 6 MV sets of doses were measured
in a water tank and used for tests verifying the 3-D technique (see Section 3.F.i below).
The “water-tank™ doses are average values for two sets of experiments performed on
different days.

There is good agreement between the “solid water” and the “water tank” 15 MV

doses. The individual doses differ by at most 1.0 cGy, and the mean of the absolute

deviation for the twelve doses is 0.5 ¢cGy. The values of k., obtained with the “water

tank” and “solid water” doses differ by a negligible 0.1 %. The errors given for the
“water tank” are the deviations in the means for the values measured on the two different
days. The maximum and mean absolute differences between the two measurements are

0.9 and 0.5 cGy for the 6 MV case, and 2.8 and 0.7 cGy for 15 MV. The uncertainties in
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the value of k., arising from the deviations in the two sets of measurements are = 0.2 %

(6 MV) and £0.5 % (15 MV).

Step- solid water water tank
window | phantom doses doses
sub-field (cGy) (cGy)
(MUs) 15 MV 15 MV 6 MV

10 14.2 13.2+0.1 11.3£0.2
20 23.0 22.1+0.2 19.1+0.3
30 31.1 30.5+£0.1 26.2+0.2
40 38.7 38.3+00 324+0.3
50 46.9 46.3 0.6 39.8+0.1
60 55.5 55.8+0.0 47.8+0.2
70 64.7 64.7+0.2 54.7+0.0
80 71.8 72.3+0.1 61.3+0.1
90 79.7 788 +1.4 67.3+0.5
100 88.6 88.8 £0.5 759+0.4
110 97.3 97.5+£0.3 83.0+£0.3
120 104.0 104.5+0.6 88.2+04

Table 3.6. Absolute doses measured with an ion chamber at 10 cm depth in water for
each of the 4 x 4 cm’ sub-fields comprising the “step-window™ field (240 MUs total).
The errors for the “water tank™ doses are the deviations in the mean of two sets of
measurements taken on different days.

Changes in the dose sensitivity of the EPID, during the course of an IMRT
verification, may introduce uncertainties in the dose calibration factor, k.. In our
IMRT verification procedure, one step-window calibration image is acquired for every
set of patient IMRT fields (typically eight fields). However, to quantify the uncertainty
in k., arising from changes in the EPID’s sensitivity, we performed “test” verifications
where three step-window calibration images were acquired — one before, one mid-way,
and one after the irradiation of the patient IMRT fields. This experiment was performed
on two different occasions. Averaging over these two occasions, the value of k_,; before
the patient fields was 1.5 % lower, and the value after the patient fields was 0.4 % higher,
than the mid-way value. A reasonable estimate of this uncertainty in the dose calibration

was thus considered to be 1.5 %. Ghosting effects are the probable cause of this change in

dose sensitivity.5 The dose sensitivity does appear to stabilize somewhat eventually, as
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the last value of &, is much closer to the mid-way value than the first value. It is thus

likely that the magnitude of this error could be reduced by pre-irradiating the EPID
before acquiring the verification images.

Factors such as field size and MLC leakage are also potentially important in the
calibration of the aS500 EPID because of the expected energy-dependence of the pixel
response that may result from the high atomic numbers of the copper plate and
gadolinium screen. The step-window is more representative of the actual IMRT fields
being verified than simple open fields. Like IMRT fields, the step-window field is a
multi-segment, MLC field. Also, the 4x4 cm? sub-fields that comprise the step-window
are more similar in size to the sub-fields of an IMRT field than, for example, the 10x10
cm? field that is commonly used for calibration.

To investigate any possible errors in the “step-window” calibration, a second
calibration curve was generated using a series of EPID images of a MLC-collimated 4x4
cm” beam centered on the central axis. For this field, the main collimator jaws were set
considerably outside the MLC collimators (20.4 x 10.2 cmz) to mimic a typical sub-field
in a step-and-shoot IMRT field. Each EPID image was obtained with a different dose

ranging from 20 — 200 MUs. As illustrated in Fig. 3.13, the k_,; obtained from a linear

fit to the individual 4 x 4 cm® corrected-EPID images is nearly identical (within 0.5 %) to
that obtained using the step-window technique. This provides confidence in the
reliability of the step-window calibration. Fig. 3.13 also shows an additional data point
corresponding to an open 10 x 10 cm? field defined only by the secondary jaws. This
point agrees within ~1% with the straight-line fits of the step-window and “individual
4x4” calibration measurements. This result tends to suggest that the calibration is not
particularly sensitive to the type of field used to calibrate the detector response, and that
any spectral differences between 10 x 10 cm® and 4 x 4 cm?” fields do not lead to large

uncertainties in the dose calibration.
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Figure 3.13: A comparison of the EPID dose-pixel value relationship when measured
using a single irradiation of the multi-segmented “‘step-window™ pattern, individual
irradiations of an MLC-collimated 4 x 4 cm” field corresponding to different MUs, and a
single 100 MU irradiation of a 10 x 10 cm? field (without MLC). The linear fits to the
“step-window™ (solid line) and *“individual 4x4” data (dashed line) are virtually

indistinguishable; the linear calibration coefficients (X, ) are as shown.

To summarize, uncertainty in k., results from the uncertainties of approximately

0.5 %, 1.5 %, and 1.0 % in the ion-chamber absolute doses, the changes in the EPID’s
dose sensitivity during IMRT verification, and in potential field-size and beam energy

dependencies of the dose response, respectively

E. 2-D Verification Results

L. Comparison between ion chamber and EPID relative dose profiles

Relative 15 MV profiles of the BEV dose at 10 cm depth in a water phantom were
calculated for our EPID-based technique and compared to doses measured with an IC-10
ion chamber in a scanning water tank. This serves as a check of the accuracy of the
deconvolution/convolution processes that form the basis of the EPID-based dose
calculation. The use of a convolution method rather than a superposition technique (c.f.
Eqgs. (2.9) and (2.10)) assumes that the kernels describing blurring in the EPID and dose-
deposition in the BEV phantom are spatially invariant. As discussed by Sharpe and

Battista,® the difference between superposition, which accounts for kernel tilting, and
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convolution, which does not, is generally small for smaller field sizes and larger SSDs
(e.g. = 100 cm). However, for large field sizes there may be appreciable discrepancies
between the two methods, particularly in the shape of the penumbral regions (e.g. 10 %
near the beam edge of a 6 MeV 30 x 30 cm” photon field with a 100 cm SSD®).

The EPID-to-ion chamber comparison for a small 2 x 2 cm® open field is shown
in Fig. 3.14(a). For this and the other open field comparisons, the profiles were
normalized to the mean value of a small central part of each profile. As illustrated, there
is good agreement between the EPID and ion-chamber profiles. The IC-10 profile is,
however, slightly more rounded, because of the blurring caused by the finite dimensions
of the IC-10 chamber (~ 3 mm radius, 6.3 mm length). Thus, to facilitate a more
meaningful comparison, in addition to the ion-chamber and EPID profiles (Profico(x)
and Profepip(x), respectively), we generated a third profile that is the 1-D convolution of

the EPID profile with an IC-10 “blurring” kernel, K ;¢o(x):

Prof gpippiur () = Prof gpip (x) ® K jy9(x) . (34)

For a small 2 x 2 cm? field size it can reasonably be assumed that the difference between

convolution and superposition is negligible. Hence, we attempted to find a K ;o(x) that

produced an excellent match in the shapes of the Proficio(x) and ProfepippiAx) profiles

for the 2 x 2 field; we then used the same K, 4(x) for other, larger field sizes. An

appropriate form for K, (x) was found to be,
K jc10 (¥) = exp(-x* / 2702), 3.5)

a Gaussian with 216 = 3.3* mm®. The shape of this X c10(x) is compared to the shape

of the IC-10 blurring kernel that would be predicted from the nominal geometric
dimensions of the detector (i.e. a circular cylinder with radius of 3 mm) in Fig. 3.14(b).

In comparison to the “geometric” kernel, the tail of the K;ro(x) based on Eg. (3.5) is

Ionger, but its width is otherwise very comparable.
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Figure 3.14. (a) Comparison of ion ch'amber (IC-10) and EPID-based (after deconvolution /
convolution) profiles through a 2 x 2 cm” open field at 10 cm depth in water. After blurring the
EPID profile by Kjc;o (Eq. 3.5) to compensate for the geometric blurring inherent in the IC-10
profile, there is very good agreement between the IC-10 and EPID profiles. (b) Comparison of
the K;c;o from Eq. 3.5 to the kernel shape predicted from simple geometric considerations.

Fig. 3.15(a) shows profile comparisons for a large 20 x 20 cm’ open field. As
depicted, there is exceptionally good agreement between the EPID and the ion-chamber
profiles, even for large fields. This suggests that potential errors introduced via our use
of simpler convolution techniques, rather than more complicated superposition ones, are
small and should have a negligible impact on our 2-D verifications results. One probable
explanation for this is that any errors occurring in the deconvolution stage (EPID image
— EPID fluence) may be largely offset by similar errors, but in the opposite direction, in
the second convolution step (fluence — dose) of the calculation.

The accuracy of the EPID-based dose calculation is further confirmed in Fig.
3.15(b), which compares profiles through the IMRT segment field previously depicted in
Fig. 3.6(b). Again Proficio(x) and Profepipsix) agree very well. It is interesting to note
that the original, un-blurred EPID profile, Profepip(x), has slightly deeper troughs
between the sub-fields in this field, and a significantly larger amplitude for the narrow
sub-fields (the third and fourth peaks from the left in Fig. 3.15(b)). This suggests again
that, as a result of the superior spatial resolution of the EPID detector, the EPID profiles

are more representative of the delivered dose profile than the profiles measured with an

ion chamber.
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Figure 3.15. Comparison of ion chamber and EPID-based (both :vith and without the additional
blurring of Kjcjo) profiles at 10 cm depth in water. (a) 20 x 20 cm™ open field profiles. (b) profile
through the multi-leaf collimated segment field depicted in Fig. 3.6(b).

ii. Comparisons between TPS, film, and EPID doses for open-fields

To demonstrate the feasibility of our EPID-based IMRT verification method, 2-D
dose distributions measured with the EPID are also compared with analogous
distributions from film (Kodak XV) measurements and TPS calculations. H&D curves
for film calibration were generated using the step-window technique described earlier.
Absolute dose distributions for each method of determining dose (TPS, film, or EPID)
were first measured/calculated independently, and then for comparison purposes, all
doses were converted to percent values by dividing by the maximum dose in the EPID
image (assigned a value of 100%). To clearly illustrate potential disagreements between
the three methods of determining dose, these comparisons are first presented for open
fields (Figs. 3.16 — 3.18). Images of the absolute percent difference (relative to the
maximum dose in the EPID image) between i) the TPS and film, ii) film and the EPID,
and iii) the TPS and the EPID are shown for MLC-shaped 10 x 10 cm® and 2 x 2 cm?
fields. The mean and standard deviation of the percent differences for each of these three
difference images are summarized in Table 3.7. These statistics are generated for two
regions of interest: one defined 0.5 cm inside each nominal field edge to exclude the
penumbra, and a second defined 0.5 cm outside each field edge to include the penumbra.
Central cross-plane absolute dose profiles and the corresponding dose difference profiles
for TPS, film and EPID measurements are also shown in Figs. 3.17 and 3.18 for the 10 x

10 and 2 x 2 cm” open fields. In the penumbra region, the agreement is best between film
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and the EPID; large discrepancies are evident between the TPS and the two
measurement-based methods. The TPS/film and TPS/EPID penumbral agreements are
particularly poor for the 2x2 cm” field. These results emphasize the limitations of the
treatment planning system in modeling penumbra and in its small-field dosimetry. This
highlights the need for an independent verification of treatment planning dose
calculations done for IMRT treatments. Figs. 3.16 — 3.18 and Table 3.7 also indicate
that the TPS and EPID mean doses agree quite well within the central region of the fields,

while the TPS and film mean doses are in slightly worse agreement.

[Film — EPID| (%) " |TPS — EPID| (%)

10

b))

Figure 3.16. Images of the absolute percent difference (as a percent of the maximum EPID
dose) between dose measurements made with the TPS, film, and the EPID for a (a) 10 x 10 cm?

anda(b)2x 2 cm® open field.
TPS — Film (%) | Film-EPID (%) | TPS - EPID (%)
Field Size (cm?) mean std.dev.| mean std.dev. | mean std. dev.
10 x 10 (excl. penumb.) 1.3 1.1 -1.6 0.9 -0.3 1.2
10 x 10 (@incl. penumb.) 1.7 3.2 -1.6 2.4 0.1 4.0
2 x 2 (excl. penumb.) 4.1 1.6 2.1 0.3 20 1.8
2 x 2 (incl. penumb.) 3.0 5.4 0.0 3.0 3.0 6.5

Table 3.7. Numerical comparison between doses measured with the TPS, film, and the EPID
corresponding to the images in Fig. 3.16. Values for the mean and standard deviation of the %
differences between the three methods of determining dose are provided for the 10 x 10 cm® and 2 x
2 cm?’ fields, both when excluding (0.5 cm inside each nominal field edge) and when including (0.5
cm outside each field edge) the penumbra region of the fields.
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Figure 3.18. Dose differences (as a percent of the maximugx EPID dose) between the EPID, film, and
TPS for the profiles of a (a) 10 x 10 cm™ and a (b) 2 x 2 cm” open field shown in Figure 3.17.

iii. 2-D IMRT Verifications for three patient treatment plans

The film, EPID, and TPS doses are compared for a clinical IMRT patient field in
Figs. 3.19 and 3.20. The three BEV dose distributions and the three BEV dose difference
distributions are shown in Fig. 3.19(a) and (b), respectively. In Fig. 3.20, profiles along
the vertical dashed line in Fig. 3.19(a) are also depicted for these dose and dose
difference distributions. For each dose difference distribution shown in Fig. 3.19(b), a
dose difference histogram and associated mean and standard deviation statistics are
calculated (Fig. 3.19(c)) for the pixels within the ROI (region of interest) delineated by
the dashed line in Fig. 3.19(b). The ROI is positioned slightly outside the edge of the
IMRT field to include the penumbra. The doses and dose difference values are again

expressed as percentages of the maximum dose in the EPID image.
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The previous clinical method of IMRT verification consisted of the (TPS — Film)
comparison shown in Fig. 3.19. As illustrated by the (TPS — EPID) comparison, similar
verification results are obtained when using the EPID instead of film. More directly, the
(Film — EPID) dose difference distribution and histogram show that the film and EPID
doses are in good agreement. For the IMRT field of this example, the standard deviation
in the (Film — EPID) difference is 2.0 %, compared with 3.1 and 3.2 % for the (TPS -
Film) and (TPS — EPID) differences, respectively. Small deviations between dose
distributions can be attributed to sub-pixel misalignments of the two dose images. Thus,
perhaps more indicative of the superior film/EPID agreement is that there are fewer
pixels with large deviations (e.g. > 5 %) between the film and EPID doses than found
between the TPS dose and either of the measurement-based doses. The large
discrepancies found between the TPS dose and the measured doses are most prevalent in
the penumbral regions, near the edges of the MLC leaves.

The results of 2-D IMRT verifications for three clinical IMRT treatment p lans
comprising 24 fields (eight per plan) are summarized in Table 3.8. All verifications were
performed with a 15 MV beam. As discussed above, there is good agreement between
the film and EPID doses: averaged over the 24 fields, the mean and standard deviation in
the (Film — EPID) dose differences are 0.3 £ 1.0 % (one standard deviation) and 1.9 £ 0.3
%, respectively. Consequently, there is little difference between the statistical results of
the film-based verification and the EPID-based one.

TPS — Film (%) Film—EPID (%) TPS-EPID (%)

patient mean std. dev. mean  std.dev. | mean std. dev.
1(8fields) |-1.6 +0.6 28+03|-0.1+05 1.8+02|-1.7+0.7 3.1£03
2(8fields) | -22+04 29+£05| 1.1£0.7 1.7+0.1|-1.1+£0.7 3.1£04
3(8fields) | -1.3+0.6 29+03[-02+1.0 22+0.2]|-1.5+£09 3.0x04

Average
(24 fields) -1.7+£06 2904 03£1.0 19+03|-1.5+08 3.0+04

Table 3.8. Results from 2-D IMRT verifications of three clinical IMRT treatment plans based on
comparison of TPS doses to measured film or EPID doses. The BEV doses are expressed as
percentages of the maximum dose in the EPID distribution. The dose difference statistics (mean
and standard deviation) are calculated for pixels lying within a ROI defined just outside the
perimeter of each IMRT field. The given errors are the standard deviation in the mean and
standard deviation for each set of values.
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Figure 3.19. (a) Dose distributions for an IMRT field based on EPID and film measurements and
TPS calculations. (b) Dose difference distributions for: [TPS-Film|, [Film-EPID], and [TPS-EPID]. (c)
Dose difference histogram corresponding to each dose difference image directly above it in (b). The
histograms are calculated for the ROI demarcated by the dashed line around the IMRT field in (b).
Doses and dose differences are expressed as a percentage of the maximum dose in the EPID image.
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Figure 3.20. (a) Dose profiles along the dashed line through the IMRT field in Fig. 3.19(a) for EPID
and film measurements and TPS calculations. (b) Dose difference profiles corresponding to the
profiles in (a). expressed as a percentage of the maximum EPID dose.
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The results reported in Table 3.8 were generated using the older version of the

Kgpip kemel, K Loy l . We re-generated these results with the newer version of the
o

kernel, K IESP%V

, to test the sensitivity of the 2-D verification to the exact form of
new

Kgpip- As shown in Table 3.9, there is a negligible difference between the “new” and
“old” verification results. The mean and standard deviation in the (TPS — EPID) dose
differences change by only 0.2 + 0.1 % and 0.02 + 0.05 %, respectively, when using the

“new” kernel in lieu of the “old” kernel.

TPS - EPID (%)

KEnp | KE| Change
mean std. dev. mean std. dev. mean std. dev.
Average e R
(24 fields) -1.3+08 3.0+04|-1.5+08 3.0+x04|02+0.1 0.02+0.05

Table 3.9. Comparison of the 2-D EPID-based verification results when using the Kyl - kernel
new

instead of KIESP%'LM to describe scattering processes in the EPID.

We also evaluated how the 2-D IMRT verification results would change if no
processing (i.e. no deconvolution/convolution) of the EPID images of the step-window
and IMRT treatment fields were performed. For this purpose, a verification of one

clinical IMRT treatment plan was repeated assuming that Dgp;p was proportional to the

raw EPID image — i.e. Dgpip(X,Y)=n pgme - EPIDpy (X, ¥) ke . A comparison (Table

3.10) of “unprocessed” to “processed” (Dgp;p calculated using Egs. (2.6), (2.14) and
(2.17)) results illustrates the importance of the deconvolution/convolution procedure to
the accuracy of the IMRT verification. Without image processing, the agreement
between film and EPID doses is much worse, as evidenced by the near doubling of the
standard deviation in the (Film — EPID) dose difference from 1.8 % to 3.5 %. Similarly,
the standard deviation of the (TPS — EPID) difference increases from 3.0 % to 4.4 %,
suggesting that the EPID-based 2-D IMRT verification would significantly over-predict
the errors in the TPS dose calculations if the EPID doses were based solely on raw EPID

images.
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patient 1 Processed EPID image Raw EPID image
(8 fields) Film-EPID  TPS-EPID | Film-EPID  TPS-EPID
std. dev. (%) 1.8 3.0 3.5 4.4
Table 3.10. The impact of image processing on the results of 2-D EPID-based verifications. The
“unprocessed” verification assumed that Dgp, is simply proportional to the raw EPID image,

whereas the “processed”™ verification involved first executing image processing steps (¢f: Egs. (2.6),
(2.14), (2.17)) that include deconvolution and convolution of the raw image.

An EPID-based IMRT verification can be completed within approximately one
hour, for a typical treatment plan with eight fields. This is considerably shorter than the
roughly two and one half hours required for film-based verification. For this reason, and
since the EPID-based and film-based verification results are similar, the EPID-based

technique is now used in clinical practice at our institution.

F. 3-D Verification Results
i. Comparisons of 2-D dose distributions: Dgpipg, > Depipgyspnes Depips and Drpg
To verify the accuracy of the 3-D method of dose calculation, Dgpjpg, (3-D

method) BEV dose distributions at 10 cm depth in a water phantom are compared to the

analogous Dgp;p doses (2-D method), which the results in Section 3.E.ii suggest are
accurate even for small field sizes. Recall that Dgpypq, doses are based on measurement
of W04 import of this modulation matrix into the TPS, and use of the TPS to perform
the dose convolution. The Dgp;pg, BEV dose distributions are converted to doses in

cGy using the same normalization technique used to calculate absolute Dypg doses (see

Section 2.E.i): each IMRT field dose distribution is normalized to the isocenterof a S x 5

cm” open field, and a dose conversion factor is then determined from the measured dose

for this 5 x 5 field. In contrast, Dgp;p doses are based on calculation of ¥, using Eq.

(2.14), TPS-independent convolution (Eq. (2.17)), and the step-window absolute dose-

calibration technique (Section 2.E.ii). Both Dgppg, and Dgpyp doses are based on
EPID-measured fluences. Thus, any discrepancies between Dgpjpg, and Dgpjp result

from differences between our method of dose convolution and our convolution kernel

(Eq. (2.17)) and those of the TPS; and from any errors introduced in the (3-D method)
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process of importing the fluence modulation into the TPS. Hence, calculation of the

difference, Dgpipp, = Depip (Of Deprpgus pne = Dgpip)- is one means of assessing the

accuracy of the dose calculation step of the TPS, particularly for small fields.

The difference Drpg — Dgpp is used to quantify the combined effects of both
differences between the TPS-optimized and EPID-measured fluences, and between the
TPS-dependent and TPS-independent dose calculations. This Dypg — Dgpyp comparison
is the same one utilized for 2-D IMRT verification.

The 2-D BEV dose distributions Dgpipgy, »Depip» and Dypg were generated for

both 6 MV and 15 MV photon beam energies for a number of fields: 2x2,4x4, 10x
10, 15 x 15, 10 x 1, and 1 x10 cm? open fields defined by the MLC with the secondary
collimators set to 20x20 cm®; a single segment of a step-and-shoot IMRT field; and the
entire IMRT fields of the three treatment plans for which 2-D (Section 3.E.iii) and 3-D
IMRT (Section 3.F.iii) verifications were performed. The EPID images, required to

calculate Dgpipg, and Dgpyp, were acquired using 40 MUs/image for the open and

IMRT-segment fields, and 100 MUs/image for the multi-segment IMRT fields (all at 100
MU/min).

a. Open fields and IMRT- segment field

Comparisons of the Dgpipg, ,Depip» and Drps BEV dose distributions are

summarized for open fields and a single IMRT-segment in Tables 3.11(a) and 3.11(b) for
incident photon energies of 6 MV and 15 MYV, respectively. The means and standard
deviations of the 2-D dose difference maps are calculated for the three comparisons:
Depippy = Depips  Drps = Depip» and Dgpipgy s pnr = Dgpip- These statistics  are
calculated for two regions of interest (ROIs): a ROI (ROI1) encompassing the central
quarter of the open fields — e.g. the central 5x5 cm? for the 10x10 cm? field; and a second
ROI (ROI2) that includes the entire field and its penumbra, and is described by a
perimeter positioned 0.5 cm outside the nominal field edge as defined by the MLC. The
means and standard deviations are reported as a percentage of the maximum in the Dgp;p

dose for the given field.
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(a) 6 MV D EPIDflu — Depip Drps = Depip | Depipfius pne = Pepip
Field | mean std.dev. | mean std.dev.| mean std. dev.
ROI (em®) | (%) (%) (%) (%) (%) (%)
15x15 0.2 0.3 0.2 0.5 0.2 03
ROIL: 10x10 | -0.1 0.5 0.1 0.6 -0.1 0.5
Central quarter 4x4 -1.1 0.3 1.5 0.4 -1.1 03
of field area 2x2 -1.6 0.3 4.8 0.3 -1.5 0.3
10x1 -1.7 1.1 5.9 1.2 -0.5 0.8
1x10 -0.5 0.6 -3.9 1.8 0.0 0.5
15x15 14 1.7 0.2 53 14 14
ROD2: 10x10 0.9 1.9 0.2 4.5 09 1.4
entire field and 4x4 -04 2.9 0.4 50 -04 1.9
penumbra 2x2 -0.6 3.7 -4.5 9.7 -0.5 2.5
10x1 -04 4.4 3.0 6.0 -0.3 3.0
1x10 -0.1 34 -16.2 114 0.0 2.1
IMRT segment| 0.5 3.3 1.1 6.3 0.6 2.1
(b) 15MV Depippu —=Depip | Drps = Depip | Depippus e = Depin
Field | mean std.dev.| mean std.dev.| mean std. dev.
ROI (em®) | (%) (%) (%) (%) (%) (%)
15x15 | -1.1 0.6 -1.2 0.7 -1.1 0.6
ROIL: 10x10 | -1.2 0.2 -1.1 0.3 -1.2 0.2
Central quarter 4x4 -0.6 04 0.1 0.7 -0.6 04
of field area 2x2 24 1.0 3.7 1.8 2.7 0.7
10x1 -0.8 1.6 3.7 1.2 0.4 1.6
1x10 1.4 0.9 -10.6 2.0 2.1 0.8
15x15 | -0.2 1.9 -19 54 -0.2 1.7
ROI2: 10x10 0.2 2.2 -1.1 4.6 0.2 2.0
entire field and 4x4 -0.1 2.8 -0.7 4.9 0.0 24
penumbra 2x2 0.6 35 4.8 84 0.7 3.0
10x1 0.6 3.8 33 6.2 0.7 3.0
1x10 0.9 4.1 -17.4 9.3 1.0 3.8
IMRT segment| -0.1 39 -0.3 6.0 0.0 2.9

Table 3.11. Statistical comparison of different methods of calculating dose at 10 cm depth in a water
phantom: D EPIDflu (EPID ¥ .4. TPS convolution), Drps (TPS Wioa» TPS convolution),

D EPIDfu! pnt (EPID ¥ 4. TPS convolution with a “point” source), and Dgp,, (EPID ¥ 4. TPS-

independent convolution).
maximum Dgp;, dose are calculated for two ROIs (regions of interest) and a number of different

fields for photon beam energies of (a) 6 MV and (b) 15 MV.
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For the larger open field sizes — 4 x 4, 10 x 10 and 15 x 15 cm’ — there is good
agreement between all methods of calculating the 2-D dose in the central ROI (ROI1), for
both photon energies. The mean dose differences are less than 2% in all cases, and the
standard deviations are less than or equal to 0.7%. For the larger ROI (ROI2), which also

includes penumbral regions, the standard deviations ranging from 1.7 - 2.9 % for the
Dgpipg, —Dgpip comparison do suggest a non-negligible difference between the two
EPID-based methods of calculating dose. However, the standard deviations of 4.5 —
54% for Drps — Dgpp indicate a significantly larger disagreement between the
reference Dgp;p dose and the dose calculated by the TPS using the TPS-optimized ¥4 -

This suggests that even for these relatively large field sizes, the penumbra modeling of
the TPS is less than ideal.

Differences between Dypg and the two EPID-based doses are much more
pronounced for the smaller field sizes (2 x 2, 10 x 1, and 1 x 10 cm?®). The mean

Dgpipp, dose differs from the mean Dgp;p dose by at most 2.4 % and 0.9 % in ROII and

ROI2, respectively. In contrast, mean dose differences between Drpg and Dgp;p are as
large as 10.6 % in the central ROI and 17.4 % in the larger ROI2: in ROI1, the mean
(Drps ~ Dgpyp ) ranges from -3.9 % — 5.9 % for 6 MV and from -10.6 % — 3.7 % for 15
MYV; in ROI2, these ranges are -16.2 % — 3.0 % (6 MV) and -17.4 % - 3.3 % (15 MV).
Deficiencies in the TPS’s fluence modeling of small fields are further emphasized by the
standard deviations in ROI2. These values range from 6.0 % — 11.4 %, much larger than

the analogous values of 3.4 % — 4.4 % for D epipfiu — Depip.  Noteworthy is that the
apparent errors in Dypg are much worse when the narrow dimension of the field is in the
direction of MLC leaf travel. For example, for the 6 MV case and ROI2, the mean dose
difference and standard deviation in Dypg — Dgpyp are -16.2 % and 11.4 % for the 1 x

10 cm® field, while only 3.0 % and 6.0 % for the 10 x 1 cm? field. Results for the IMRT-
segment field, a relatively large field with a highly irregular shape, fall in-between those
obtained for the smaller and larger open field sizes. The standard deviations of 6.3 % (6

MV) and 6.0 % (15 MV) for Dypg — Dgp;p are not as large as forthe2x 2 and 1 x 10
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cm” fields, but still significantly larger than the corresponding values of 3.3 % and 3.9 %
for the Dgpipp, — Dgpyp comparison.
For the three smaller open field sizes and the IMRT-segment field, the standard

deviation in Dgp;pay/ pne — Dgpip is on average 1.2 % and 0.6 % lower for 6 and 15 MV,

respectively, in comparison to the D gppg, —~Dgpyp case. Therefore, use of the point-

source model in the 3-D technique improves the agreement between the 2-D and 3-D
EPID-based methods of dose calculation.
Fig. 3.21 illustrates the differences between the methods of calculating dose for

the worst-case 1 x 10 cm? field and a 6 MV beam. The 2-D dose difference maps are
shown for Depipg, —Dgpip» Drps — Dgpip - and Deprpays pnt = Dgpip » 2s Wwell as a

cross-plane profile through the center of the field along the narrow dimension for each

dose distribution. The broad line to the left of the 1 x 10 cm® field in the Dyps — Dgpyp

difference map also clearly depicts the failure of the TPS to model leakage radiation at
the junctions of MLC leaves.
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Figure 321. Results for a 1 x 10 cm’ field and a 6 MV beam: (a) 2-D dose difference maps
(absolute values of the differences are shown) and (b) cross-plane profile through the center of the
field. The doses and dose differences are expressed as percentages of the maximum Dgp,, dose.

The Drpg dose deviates significantly from the other three doses based on EPID measurements.
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b. Multi-segment IMRT fields

Comparisons similar to those described for open fields in Section 3.F.iii.a above
are summarized in Table 3.12 for the multi-segment, “step-and-shoot” IMRT fields
comprising three clinical IMRT treatment plans. Statistics are calculated for ROI2,
which includes the entire field and the penumbra. The mean ROI doses agree well
among the different methods of dose calculation: when averaging over the three patients

(irrespective of beam energy), Dgpipg, and Drpg are 0.7 % larger and 1.1 % smaller,

respectively, than Dgp,. The average standard deviation of 3.4 % for the
Dypg — Dgp;p comparison, which is typical of 2-D IMRT verification results at our

clinic, is approximately twice the 1.8 % and 1.5 % calculated for the Dgpipg, — Dgpip

and D EPIDflul pnt — D EPID dose differences.

Depipfiu — Dypg — Depipgut pne —

Depip Dgpip Depip
Avg, Avg. [ Avg. Avg. | Avg. Avg.
Patient /no. IMRT fields |mean std.dev.| mean std.dev.| mean std.dev.
(%) (%) | (%) (%) (%) (%)
Patient 1: 8 - 15MV fields 0.93 168 |-1.14 3.69 0.97 1.39
Patient 2: 8- 6 MV fields 043 207 |[-1.20 3.13 0.51 1.82

Patient 3: 6-15MV,2-6 MV | 0.86 167 -1.03 343 091 1.34

Table 3.12. Comparisons of different methods of calculating the 2-D dose (10 cm depth, water
phantom) for the multi-segment IMRT fields comprising three clinical IMRT treatment plans.
Statistics are calculated for ROI2, which includes the entire field and the penumbra.

ii. Comparison of 3-D EPID doses with TLD Measurements

For further validation, our 3-D EPID-based verification technique was compared
to an IMRT verification procedure employing TLD (thermoluminescent dosimeter) dose
measurements. The latter verification had been performed as a requirement for
participation in an IMRT protocol (RTOG H-0022), and involved generating and
delivering an IMRT treatment plan for a hypothetical treatment of an anthropomorphic
head and neck phantom. A dosimetry insert for the phantom contains regions describing
primary, and secondary PTVs (planning tumor volumes), and a critical structure.

(Further details of this phantom and the verification procedures can be found in Refs.
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[7,8].) After irradiation of the phantom, the doses recorded by the TLDs placed in each
of these regions were measured by the RPC (Radiological Physics Center, M.D.
Anderson Cancer Center, Houston, TX). The locations of the TLDs were also delineated
on the CT scan of the phantom.

The TLD doses ( Dy, p ) reported by the RPC are compared to the analogous mean
doses calculated by the TPS using the EPID-measured Wy,oq (Dgpipp, ) and the TPS-
optimized ¥ ;.4 (Drps) in Table 3.13. As indicated, there is slightly better agreement
with the TLD doses for Dgppg, than for Dypg in the low-gradient regions located in the

primary and secondary PTVs, though there is substantial agreement between all three
doses. However, in the high-gradient region where the TLD was placed in the simulated

critical structure, the Dypg dose under-predicts the TLD-measured dose by 16%. In
contrast, the Dgpjpg, and Dyryp, doses agree within the RPC-estimated uncertainty of
* 3 % in the TLD doses. The results using Dgpjpg, s p,e are nearly identical to those

obtained USing D EPIDflu *

Regionof  Drps Depippy Depinpiuipne Drip Pres. Depinpu Depiopus
Interest (Gy) (Gy) (Gy) Gy) Dpp  Dpp Dro

Primary PTV  7.10 7.38 137 731 0.97 1.01 1.01
Secondary PTV  5.63  5.65 5.62 570 0.99 0.99 0.99
Critical Struct.  3.16 3.85 3.86 376 0.84 1.02 1.03

Table 3.13. Measured TLD doses (= 3 %) compared to TPS-calculated doses using fluences modeled
by the TPS (Dgpg) and EPID-measured fluences (D EPIDflu and D EPIDflu/ prt ) for an IMRT

treatment of an anthropomorphic head and neck phantom.

One potential limitation of our method of verifying the 3-D dose distributions

calculated by our TPS is that the calculation of our EPID-based 3-D doses (Dgpypg, )

relies on the TPS itself to perform the convolution step of the dose calculation. Thus,
errors introduced in this step by the TPS will not be identified by our verification

procedure. However, the good agreement between Drrp and Dgppg, . and the large

discrepancy between either of these measurement-based doses and Drpg in a high

gradient region, suggest that a large portion of the dose calculation errors of our TPS are
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introduced prior to the convolution step, e.g. in the fluence modeling stage of the

calculations.

iii. 3-D IMRT Verification of clinical IMRT treatment plans

Analysis of the 3-D verification results was performed using an in-house software
(Fig. 3.22) tool developed in the MATLAB programming environment to show the 3-D
dose difference distribution overlaid on a patient’s CT anatomy. The software tool also
allows display of the tumor and normal tissue contours delineated previously in the TPS.
Dose differences in these volumes are summarized in terms of DVHs (dose-volume
histograms) and dose difference statistics. Results are reported for 3-D verifications that
were performed retrospectively on three clinical head-and-neck cancer IMRT treatment
plans: one comprised of eight 15 MV beams, another of eight 6 MV beams, and a third of
six 15 MV and two 6 MV beams.

Dyps Depipiu =  DEpipfius pne —| Derippy Depippur pus
VoI (Gy) Drps (Gy)  Drps (Gy) | Drps Drps

mean std.dev. mean std.dev. mean std.dev.| mean mean
Patient 1
PTV 73.3 5.9 1.9 14 19 1.5 1.03 1.03
spinal cord | 30.1 93 3.8 1.1 3.7 1.1 1.13 1.12
left parotid | 24.0 169 4.3 1.9 42 1.8 1.18 1.18
right parotid { 29.6  18.1 3.8 1.5 3.7 1.5 1.13 1.12
Patient 2
PTV 614 54 0.9 1.0 1.2 1.1 1.01 1.02
spinal cord | 15.6 8.8 3.1 14 3.1 14 1.20 1.20
left parotid | 23.6 127 4.1 1.2 4.2 1.1 1.17 1.18
right parotid | 50.3  14.1 2.1 1.7 2.5 1.7 1.04 1.05
Patient 3
PTV 70.7 3.6 1.6 1.2 1.6 1.2 1.02 1.02
spinalcord | 282 109 43 14 4.1 14 1.15 1.15
left parotid | 36.9 226 49 2.6 49 2.5 1.13 1.13
rightparotid | 24.5 13.6 4.8 1.6 4.8 1.6 1.20 1.20

Table 3.14. 3-D IMRT verification results: comparison of TPS ( Dpg) and EPID-based (Depipu ©F
Dgpipgiu 1 pns ) 3-D dose distributions for three clinical IMRT treatment plans.
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Figure 3.22. Example output from the software developed for the analysis of 3-D IMRT verifications.
(a) Original TPS dose distribution, D,,c. The thicker black line delineates the left parotid gland. The
other lines are isodose lines, with the thinner black line representing the 70 Gy line (prescription dose =
74 Gy). (b) Dose differences between TPS and EPID-based 3-D doses, DEPIDﬂu — Dypg - The thinner
white lines are the 4 Gy isodose contours for the dose difference. (c) Dose difference frequency
distribution (top) and associated statistics, and the DVHs (bottom) for the selected volume of interest (left
parotid) for the Dypg and Dgp/pq, distributions.
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Figure 3.23. Comparison of DVHs derived from TPS (Drpg) and EPID-based (DEPlDﬂu or

Depippius pm) dose distributions generated during 3-D IMRT verifications of patient 3’s treatment
plan.
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Results from the retrospective 3-D verification of three clinical head-and-neck
cancer IMRT treatment plans are summarized in Table 3.14. For each patient, the

original dose distribution calculated by the TPS, Dypg, and the dose difference
distribution, DEPlDﬂu —DTPS (OI' DEPIDﬂu/pm _DTPS ), are characterized by mean and

standard deviation statistics for four volumes of interest (VOIs) — PTV, spinal cord, right
parotid and left parotid. The dose distributions were normalized such that the median

doses in the PTV for Dypg were 74, 62, and 71 Gy for patient 1, 2, and 3, respectively.

As was found for the head-and-neck phantom, TPS and EPID-based doses agree well in
the PTV, with the mean dose difference of 1.4 Gy (averaged over the three patients)
corresponding to a 2 % difference. However, in the high-gradient regions of the critical
structures, there is once again a large discrepancy: the EPID-based doses are on average
3.7 Gy (16 %), 4.4 Gy (16 %), and 3.6 Gy (12 %) higher than the TPS doses for the
spinal cord, left parotid, and right parotid, respectively. DVHs for the PTV and critical
structures derived from the TPS and EPID-based dose distributions for patient 3 are
compared in Fig. 3.23.

As was done for the 2-D IMRT verification (Section 3.E.iii), we also generated a
3-D IMRT verification of patient 1’s treatment plan using unprocessed EPID images. In
this case, no deconvolution was performed, and it was assumed that the incident fluences
in Eq. (2.18) were proportional to the raw, integrated EPID image - i.e.
¥, (x,y)=nfome - EPIDpy(x,y). In comparison to the processed doses, the
unprocessed Dgpypg, mean doses were 0.2, 2.2, and 2.0 Gy higher for the spinal cord,
left parotid, and right parotid, respectively, and 2.7 Gy lower in the PTV. Also, the
Dgpipp, ! Drps ratios of 1.13, 1.18, 1.13, 1.03 (spinal cord, left parotid, right parotid,
PTV) in Table 3.14 changed to values of 1.13, 1.27, 1.19, 0.99 when the raw EPID
images were used. Thus in this example, a 3-D verification using the unprocessed EPID
fluence instead of the processed one would indicate a significantly larger (9 %) error in
the TPS’s prediction of the mean dose in the right parotid gland. Akin to the similar 2-D

verification comparison, this suggests that the EPID image processing steps are necessary

to achieve accurate 3-D verification results.
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iv. Radiobiological significance of 3-D verification results

Differential dose-volume histograms (DDVHs) for the critical structure VOIs
listed in Table 3.14 were also generated and used to calculate radiobiological estimates of
normal tissue complication probabilities (NTCPs) arising from the TPS and EPID-based
dose distributions. NTCP calculations employing the Lyman sigmoidal dose-response
model were performed using software and methods described in Chapter 4. Model
parameter values for both the spinal cord and the parotid glands are available from the
Burman et al® fits to the Emami er al.'® dose-response database; additional NTCP
estimates for the parotids are possible using more recent Lyman model parameter
estimates published in Eisbruch er al.'' and Roesink et al."* Since large uncertainties are
currently inherent in such radiobiological modeling exercises, these calculations are used
only to provide insight into the porential consequences of TPS dose modeling errors.

The radiobiological predictions (Table 3.15) suggest that for these three treatment
plans, the spinal cord is sufficiently spared such that the additional ~ 4 Gy predicted by
the EPID-based dose for this structure has little impact on the predicted rate of
complication — the NTCP is <2 % for all dose distributions. The NTCP estimates for the
parotid glands vary widely, depending on which set of model parameter values are used.
The Burman ez al. parameters yield the lowest NTCPs. The approximately 4 Gy larger
Dgpipp, dose results in an increase in the predicted NTCP of < 5 % with one exception,
the increase from 22 % to 40 % for the right parotid of Patient 3. Much higher parotid
NTCPs result from the more recent (and statistically-based) parameter estimates. A
modest but potentially significant increase of between 3 and 13 % is predicted with the
Roesink et al. parameters, whereas the much steeper dose-response described by the
Eisbruch e al. parameters lead to NTCP estimates up to 39 % higher (Patient 3, right
parotid) when using Dgpipg, -

Despite the apparent improvement in the 2-D comparisons obtained with the
“point-source” model (Section 3.F.iii), the results in Tables 3.13, 3.14 and 3.15 suggest

the use Of Dgpipg,spn instead of Dgpypg, has little practical impact on the 3-D

verifications.
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NTCP (%) ANTCP (%)
model D D
VOI param. D D D EPIDflu EPIDflu/ pnt
Ref. # TPS EPIDf Y EPIDflul pnt| Dyps - Dyps

Patient 1

spinal cord [9,10] 1 2 2 1 1

left parotid 19,10} 0 1 1 1 1
[12] 9 28 28 20 19
[11] 16 22 22 6 6

right parotid  {9,10] 4 8 9 4 5
[12] 60 79 82 19 23
[11] 30 36 37 6 7

Patient 2

spinal cord [9,10] 0 0 0 0 0

left parotid [9,10] 0 2 2 2 1
[12] 12 45 38 32 26
[i1] 17 26 25 9 7

right parotid  [9,10] 78 83 84 5 6
[12] 100 100 100 0 0
[11] 77 80 80 3 3

Patient 3

spinal cord [9,10] 1 2 2 1 1

left parotid [9,10] 22 39 40 18 18
[12] 94 100 100 5 5
[11] 44 56 56 13 14

right parotid [9,10} 1 4 4 3 3
[12] 23 62 63 39 40
[11] 21 30 31 10 10

Table 3.15. Comparison of radiobiological modeling predictions of the NTCP based on TPS (Dypg ) and
EPID-based (D EPIDflu ©F D EPIDflu/ pnt ) 3-D dose distributions for three clinical IMRT treatment plans.

G. Comparison and summary of 2-D and 3-D IMRT verification

procedures

The advantage of 3-D IMRT verification is that dosimetric uncertainties can be
quantified directly with respect to anatomical volumes of interest, making possible a
more direct evaluation of the clinical consequence of errors in TPS calculation. By
comparison, the information provided by the simpler 2-D IMRT verification method is
generally insufficient for such assessments. The beam-by-beam 2-D verification
identifies potential problems by the presence of large “hot” (or “cold”) regions in the 2-D

Dgpip —Drpg dose difference map, or by mean difference and standard deviation
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statistics for this map that fail specified criteria (e.g. > 2 % and 4 % for the mean
difference and standard deviation, respectively). The 2-D verification is thus effective at
detecting larger errors, including procedural mistakes in the delivery — e.g. incorrect
transfer of a MLC leaf sequence file to the linac — and planning - e.g. alignment of MLC
leaf junctions with a critical structure — stages of an IMRT treatment. The 2-D method is
ineffective, however, in quantifying the effect of smaller errors that, though present, do
not arouse concern. For example, each field of the three IMRT patient treatments
“passed” the 2-D verification tests, as supported by the average mean dose difference of
-1.1 % and standard deviation of 3.4 % reported for these verifications in Table 3.12.
Nevertheless, the results in Tables 3.14 and 3.15 imply that these small errors may lead to
considerably larger than expected cumulative dose errors of up to 20% in the critical
structures, and further, that they may have potential clinical implications as to the
acceptability of these treatments.

The tests detailed in Sections 3.F.i and 3.F.ii substantiate that the results of the 3-
D verification method are not simply spurious. For the IMRT irradiation of an
anthropomorphic head and neck phantom, the large TPS underestimate of the dose in the
simulated critical structure suggested by the EPID-based 3-D dose was confirmed by a

TLD measurement. Comparisons between Dgpipgy. Dgpip. and Drpg BEV dose

distributions in a water phantom for various open and IMRT fields were also instructive.
There was reasonable agreement between the 2-D EPID-based method of calculating

Dgp;p from an EPID-derived fluence and an independent dose convolution, and the 3-D
method of using EPID fluences and the TPS dose algorithm to generate Dgppg, - Much
larger discrepancies were found between either of these two EPID-based doses and the
TPS dose, Dypg, particularly for small fields. These results support the conclusion that
the large errors in Dypg doses apparent in the 3-D IMRT verifications originate mainly

from errors in the TPS’s modeling of the incident fluence. One potential source of error
is the TPS’s inadequate modeling of the geometry of the MLC. Cadman er al.” cite the
failure of their commercial TPS (Philips ADAC Pinnacle, Philips Medical Systems,
Markham, ON) to model transmission through rounded leaf ends as the probable reason

for their similar finding of TPS dose underestimation in critical structure regions.
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Evidence that this may also be a serious limitation of our TPS is that the largest errors in

the Drpg BEV water phantom doses were observed for the 1 x 10 cm’ field, where

opposing leaf pairs defined the narrow dimension of this field. Cadman et al. also found
that better agreement between TPS-calculated and measured doses could be achieved by
making the gaps between each pair of MLC leaves 1.4 mm narrower than the original gap
widths in the TPS-optimized IMRT step-and-shoot fields. So far, this potential solution
has not been investigated at our clinic.

Despite the limitations of the 2-D IMRT verification method, it is still a useful
clinical quality assurance tool. In its current implementation, our 3-D method is
hampered by the excessive time required to perform the verification. Although the time
necessary for acquisition of the required EPID images is not long (~ Y2 hour), the process
of converting the calculated fluence modulation matrices to the appropriate
“compensator” file format, and particularly the actual import of these “compensator” files
on a beam-by-beam basis into the TPS is time-consuming and tedious. It is anticipated
that the 3-D method could be streamlined considerably using a TPS with a “script-based”
user interface. Such streamlining could make the 3-D IMRT verification method

clinically feasible, and hence, an effective complement to the existing 2-D technique.
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Chapter 4: TCP-NTCP Estimation Module

This chapter discusses a computer module used to estimate, using current
radiobiological models, the TCP (tumor control probability) and NTCP (normal tissue
complication probability) values resulting from radiotherapy treatment plans. Thus, the
focus of this chapter is the application of radiobiological modeling. A more elaborate
discussion of fundamental radiobiological modeling concepts, and some studies exploring
current topics of interest to the further development of radiobiological models, are

presented in the next chapter (Chapter 5).

A. Introduction

Radiotherapy treatment plans are assessed by evaluating the 3-D dose
distributions calculated by a treatment planning system (TPS). Typically, the evaluation
process includes: 1) looking at the dose distribution superimposed on images of the
patient anatomy; and 2) examining DVHs (dose-volume histograms), which are 1-D
representations of 3-D dose information, for each organ or tumor volume of interest.
With these methods of assessment, acceptance or rejection of a plan relies on an implicit
estimation of the TCP and NTCP arising from the dose distribution. This estimation is
based on clinical experience with respect to appropriate target doses and corresponding
dose-volume constraints. The advent of more sophisticated radiotherapy techniques such
as intensity-modulated radiotherapy (IMRT) has led to more complex and heterogeneous
dose distributions, making such implicit evalvations more difficult. For example,
different treatment plans may lead to dose distributions having similar gross dose
measures (such as mean dose), but characterized by DVHs with very different shapes. To
determine the best plan in this case, clinicians may need to rely on relatively vague
notions of dose-volume characteristics of different tissues.

Clearly, a natural application of radiobiological modeling to radiotherapy is the
ranking of treatment plans, via a more explicit calculation of TCP and NTCP values
using models that automatically incorporate the available clinical data regarding the dose-

volume characteristics of different tissues. Unfortunately, the predictive capabilities of
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current radiobiological models in this regard are still limited.'? Presently there is still
insufficient clinical data on the dose-response characteristics of human tissues and tumors
on which to base reliabie estimates of model parameters. This precludes the use of model
predictions as a primary evaluative tool. However, such predictions are still a valuable
complement to clinical experience. Further, as a result of increased archiving of 3D dose
distributions and corresponding treatment outcomes, the quality and quantity of clinical
data has begun to improve significantly in the last few years. Since this will surely
enhance the reliability of model predictions, it is plausible that radiobiological modeling
will play an important role in treatment plan evaluation and optimization in the future.’

We developed a convenient software tool for estimating the TCP or NTCP arising
from differential (frequency) dose volume histograms (DDVHs).* The program,
TCP_NTCP_CALC, was designed to amalgamate relevant current radiobiological
modeling knowledge, and make it accessible to clinicians, treatment planners, and
researchers. It serves the following functions: 1) as an aid in the prospective evaluation
of rival treatment plans, by allowing evaluation and comparison of different model
predictions; and 2) as an analysis tool in the retrospective study of radiotherapy
treatments that may help establish or repudiate the predictive capabilities of different
model/parameter sets.

During the development of this software, we became aware of a software package
(BIOPLAN) designed with a similar intent published by Sanchez-Nieto and Nahum.’
Although the two packages share some similarities, a number of differences also exist.
For example, our module includes the Critical Volume (CV) NTCP model®® and the
recent Zaider-Minerbo/LQ TCP model’ which are not available in BIOPLAN.
TCP_NTCP_CALC also includes several different parameter databases, and provides a
convenient method of archiving (and using) newly published parameter databases. Thus

this additional software is a useful complement or alternative.

B. Methods

i. Radiobiological Models
In general, clinical dose-response data only have sufficient diversity to support the

use of relatively simple radiobiological models; use of complex models with many
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parameters typically results in significant parameter correlation, and ambiguity in
biological interpretation. Our NTCP and TCP calculation module incorporates a total of
four radiobiological modeis. Included are two NTCP models: the Lyman model, and
individual-based and population-based variants of the Critical Volume (CV) model; and
two TCP models: a two-parameter Poisson-based model, and a model employing linear-
quadratic cell kill and the formalism developed by Zaider and Minerbo® to account for
repopulation. The simple Lyman and Poisson models have been most frequently applied
in the analysis of normal tissue complication and tumor response data, respectively. The
CV NTCP and the Zaider-Minerbo TCP models are slightly more complex, but are
founded on more specific biological descriptions. The four models are briefly discussed
in the following paragraphs, and the parameters used in each of the models are

summarized in Table 4.1.

NTCP  param. descriptor of: TCP  param. descriptor of:
Model Model
dose-volume D position of dose-
n . . S50
relationship response
yman Poisson -
L m  slope of dose-response ° ¥s0 slope of dose
response
D position of dose-
30 response
critical relative N no. of tumor
Her volume clonogens
N  no.of FSUsinorgan | Zaider- @,/ radiosensitivity —
Cv . LQ parameters
o dividual Minerbo P
(individual) cellular LQ 2 .
a radiosensitivity repopulation rate
N, no. of cells in FSU n no. of fractions in
treatment
7. critical volume
o opulation variation
cv Pop
(population) DFSU position of FSU dose-
S0 response
7;’3[] slope of FSU dose-
50 response

Table 4.1. A list of the parameters and their description for each of the models used in the module.
Abbreviations: FSU = functional sub-unit, CV=Critical Volume, LQ = linear-quadratic.
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a. Lyman (Sigmoidal Dose Response) NTCP model

110

The Lyman model™™ describes the sigmoidal dose-response curve of normal

tissues using the following probit form,

NTCP < q{ EUD - Dy, ) @.1)
50
where ®(x) is the probit function,
1 7 2 1 x
O(x) = i i exp(—t3/2)dt = 5[1 +erf(7§- ﬂ , @4.2)

with x=(EUD~ Dsy)/ mDsy. In Eq. (4.1), EUD is the equivalent uniform dose, which

represents the dose that if delivered uniformly to the entire organ would produce the same
effect as the given heterogeneous dose distribution, as specified by the DVH. Here it is
assumed that the EUD is equal to a generalized mean dose (GMD), calculated from the
dose-volume pairs {D;,v;} of the DDVH using:

- 1/n
GMD_(Eilvi D; J . @3)

For the Lyman model, the above method of DVH reduction, which reduces a full DVH

to a single dose (GMD) delivered to the entire volume, is equivalent' "'

to the “Kutcher-
Burman” reduction method,'® which reduces 2 DVH to a reference dose delivered to an
effective fractional volume. Other methods of reducing dose-volume histograms to a
single dose or volume parameter have been proposed. The work of Cozzi et al*
suggested that most current DVH reduction schemes are somewhat error-prone, as they
can lead to DVH reductions inconsistent with the expected biological effect. The
“Kutcher-Burman” (KB) method was found to be one of the more robust of the available
DVH reduction schemes.

The Lyman model has three parameters, n, m and Dsp : n determines the dose-
volume dependence of a tissue and thus accounts for differences in tissue architecture; m
controls the slope of the dose-response curve (in the case of homogeneous irradiation);

and Dy, represents the dose at which there is a 50% chance of complication, and thus

dictates the position of the dose-response curve. Though largely phenomenological, the
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Lyman model can be interpreted as predicting the NTCP for a population where
individuals each have a threshold-like dose-response behaviour, and the different values

of the dose threshold within the population are normally distributed.

b. Critical Volume (CV) NTCP model
The Critical Volume (CV) model®” is based on the premises that organs are

composed of functional sub-units (FSUs), and that organ function is compromised when
a certain critical fraction (4, ) of these FSUs are damaged. For a uniformly irradiated
organ with N FSUs and a reserve capacity of L-1 FSUs (i.e. u., = L/N ), the probability
of complication can be expressed mathematically as,

N
NTCP= Y

1
M oM (D)= prsy DYV M, 44)
M=L M)!

M\Y(N -
where pgg, (D) is the probability of damage to an FSU after receiving a dose D. Since

the number of FSUs is always quite large, the cumulative binomial distribution in Eq.

(4.4) can be approximated by a cumulative normal distribution, '

NTCP =9 ‘/—N—(PFSU (D) _/ucr) ]’ (45)
Prsy (D) Q- prsy (D)) )

where the @ (probit) function is as defined in Eq. (4.2). For the case of a

heterogeneously irradiated organ, the probability of complication becomes,

JN [Zvi Prsy (D;)— 1. ]
\/zvi Prsy (D) A= pesy (Dy)) '

NICP =9, 4.6)

Eq. (4.6) assumes that the total damage to the organ can be treated as the sum of damage

to independent sub-volumes. In Eq. (4.6), the sum Zv,- Prsy (D;) can be identified as
i

the mean relative damaged volume, fZ;. For our implementation of this CV model, the
probability of damage to an FSU is calculated using,

prsy (D) =(1—-e )Mo, @7
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The parameters ¢« and N, describe the cellular radiosensitivity and the number of cells in
the FSU, respectively, and it is assumed that the FSU is only irreparably damaged when
all cells are killed.

The above CV model is appropriate for description of the dose-response of an
individual patient; clinical data, however, describe dose-response averaged over a
population of individuals. We have thus incorporated in our module a “population”
variant of the CV model® which takes into account inter-patient variability in normal
tissue dose-response. This CV model assumes that the NTCP for an individual is step-
like,

1 ;=
NTCP, ={ HaZber 4.8)
0 Hag <H
i.e. a complication will occur (and only occur) if the mean relative damaged volume is
greater than or equal to the critical relative volume. Using the DDVH to calculate 7,

we now assume that the damage to an FSU can be described by a probit (®) function

parametrized using position and slope parameters, DF SU and 'yF U
By = Z v; Prsy (D) —ZV ‘D(w/ Yapl In—— 5 ST ] 4.9)
50

The “population-averaged” CV model is then formulated by further assuming that inter-
patient variability is limited to the critical relative volume (mean =4, ), and that values
for this parameter are log-log normally distributed in the population with a standard

deviation of ¢ (0 =—0,_[(4, Injt;,)). Tt can be shown that NTCP,,, can then be

represented by a probit function,®

NTCPpop ~ ¢(- ln(_ln )ud ) + ln(— ln #C") ), (4.10)
(o}

which is the form that we used for calculation purposes.

¢. TCP model based on Poisson statistics
TCP models generally rely on the assumption that tumor control requires the
killing of all tumor clonogens. Poisson statistics predict that the probability of this

occurring is
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TCP =exp(—N p,(D)), 4.11)

where N is the initial number of clonogens and py(D) is the cell survival fraction after a

dose D. If it is assumed that cell survival can be described by single-hit mechanics,
ps(D) =exp(-aD), 4.12)
the expression in Eq. (4.11) can be re-written in terms of the two parameters describing

the dose and normalized slope at the point of 50 % probability of control, Ds, and?ys,:

1 Txp[Zyso (1-D/ Dsp)/In 2}

TCP= (5 (4.13)

Y
Using the assumption of independent sub-volumes, for the case of heterogeneous

irradiation, the overall probability of tumor control is the product of the probabilities of

killing all clonogens in each tumor sub-volume described by the DDVH,
TCP =[] TCP(D;,v;) . 4.14)

Thus, for a given DDVH {D;v;}, the TCP can be calculated using the following two
parameter TCP formula:

1 Fv,- expl2¥so (1-D;/ Dsg)/In 2]
TCP= (— i (4.15)
2

The above formula originates from an attempt to predict the TCP for an individual patient
from a mechanistic perspective. However, because of its relative simplicity, Eq. (4.13)
(or Eq. (4.15) for the case of a heterogeneous tumor dose) is often conveniently used to
fit clinical data describing the tumor response of a population of individuals. In this case,

the parameters Dy, and } 5o are phenomenological in nature.

d. TCP model incorporating radiobiological data

Since the application of Eg. (4.15) is mainly phenomenological, we believed it
would be useful to include a second TCP model that is parametrized in terms of
fundamental cellular radiation response characteristics. Recently, Zaider and Minerbo®
derived a conceptually robust expression for tumor control probability that incorporates
the effect of tumor repopulation. The original Zaider-Minerbo expression, valid for any

temporal protocol of dose delivery, has been adapted for the case of a fractionated
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delivery with varying time intervals between fractions by Stavreva et al.'® This adapted

expression predicts that the TCP after the delivery of r fractions is,

. aN
aT,
TCP =|1- f ’](T")e , (4.16)
T~ 1 -AT, -2T,
1+ p,(T,)e™ " ) ———— kel — ™"k
| [ ae S L] ]]_

where A is the rate of cellular repopulation, 7 is the time between the k" fraction and the
first fraction, and p,(T}.) is the cell survival after the k" fraction. Here cell survival was

predicted using the familiar linear-quadratic (LQ) model. Assuming that there is
complete repair of sub-lethal cellular damage between fractions, the LQ prediction of cell

survival after the £ fraction is,

k )2
ps(T) =exp —a(ﬁD)-—ﬂ—(—iﬂ } @.17)
/
where @ and [ are cellular radiosensitivity parameters, D is the total dose delivered in
the n-fraction treatment, and it is assumed that the dose delivered in each fraction is the

same. To treat the case of heterogeneous irradiation, Eq. (4.16) is used in conjunction
with Eq. (4.14), with each TCP(D;,v;)in Eq. (4.14) being calculated by evaluating Eq.
(4.16) after making the substitution N — Nv;, and using D — D; in Eq. (4.17).

ii. Parameter Databases

One of the main purposes of the TCP_NTCP_CALC program is to provide a
convenient means of accessing and archiving current and future radiobiological
knowledge as it pertains to treatment plan evaluation. The program contains parameter
databases for three of the models described above: the Lyman NTCP model, the CV
NTCP model (“population” variant only), and the Poisson TCP model. For each of these
three models there are two databases: a “default” one which can not be altered by the
user, and a “user” database, for which the user is allowed to add and delete database
entries via a menu-driven interface. Each database entry includes the following data:

model name, organ/endpoint or tumor/grade descriptor, parameter values (and
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corresponding confidence intervals if desired), and descriptors of the parameter database
and the clinical data on which it is based.

Although there are published parameter estimates for the “individual” CV model
for a few single organs, a comprehensive database of parameter estimates for a large
number of normal tissues is not available. Thus no databases for this model are included
in our module. However, if the user is more familiar with or prefers the “individual” CV
model, the user has the option of using this model by specifying their own parameters.

There are no estimates of the various parameters used in the Zaider-Minerbo/LQ
TCP model for clinical tumor response data. Again, however, users may utilize the
Zaider-Minerbo/LQ model by specifying their own parameter values. This may be
valuable when investigating.the sensitivity of TCP predictions to parameter uncertainties
(e.g. in the values of the LQ radiosensitivity parameters, a and f), and the effects of

repopulation defined with parameter /.

a. Lyman databases

For normal tissues, the first and still largest compilation of dose-response data is
that published by Emami et al.'” in 1991. This data provides estimates of up to six dose-
volume points — doses leading to 5 and 50% complication rates for irradiation of one-
third, two-thirds and all of an organ — for many different normal tissue types. Based on
this data, estimates of the Lyman model parameters for 27 of these normal tissues were
provided by Burman et al.'® This parameter set comprises the “default” Lyman database
in our module.

Until recently, works estimating normal tissue complications have almost
exclusively relied on the Burman/Emami Lyman parameter set. Unfortunately, the
Emami et al. data are not statistical in nature, being based on limited data and estimates

made by clinicians as to appropriate dose values;'’

as a result, uncertainties in the
parameter values are indeterminate, as are the corresponding uncertainties in the
calculated NTCPs. The development of 3D treatment planning systems and the resulting
potential for archival of 3D dose distributions with treatment outcome has much
improved the quality of clinical data sets, making them more amenable to radiobiological
analysis. In recent years, a number of works have provided parameter estimates,

including statistical uncertainties, for several different normal tissues. Recent Lyman
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model parameter estimates include those for the parotid gland,'s"21 the heart,? the

225 and the liver.?%¥ For further details (e.g. treatment techniques, parameters)

lung,
about the clinical data on which each of these parameter estimates are based, the reader is
referred to the original papers. These parameter sets have been included in the “user”
Lyman database, so that the user can delete them if desired, e.g. if the user prefers a given

parameter set for a specific organ.

b. Critical Volume (“population” ) databases

The default database for the population-averaged CV model incorporates the
parameters published by Stavrev et al® for sixteen types of normal tissue. Since these
estimates are again based on the Emami ez al. data, no parameter uncertainties are
available. Stavrev et al. noted that the CV model was flexible enough to describe the
data not only of “traditional” CV organs such-as liver and lung, but also of organs such as
spinal cord and stomach that are believed to have a more “critical element” architecture.
However, they caution that though the CV model has a biological foundation, extracted
parameter values should be considered phenomenological, owing perhaps to a large
degree of parameter correlation inherent in the model. There are a few works that
provide estimates for the CV model for single organs. Parameters (including
uncertainties) for this particular variant of the CV model based on liver data published by
Jackson er al.® were also extracted in Ref. [8], and have been included in the “user” CV

database of our program.

¢. Poisson TCP databases

A large collection of tumor dose-response parameters (D5, and}sg) extracted

from single- and multi-institution tumor data sets from a variety of sources for many
different tumor sites and grades has been compiled and published by Okunieff ez al®

Sixty-two of the Okunieff et al. entries are included in our “default” Poisson database.

Dy, and?ys, values for non-small-cell lung cancer (NSCLC) from Willner et al.® and for

prostate cancer from Cheung et al®® and Levegriin er al.®' are included in the “user”

database.
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iii. Program Architecture

The TCP_NTCP_CALC software has been developed in the MATLAB (The
Mathworks Inc., Natick, USA) programming environment, and has been designed for use
on a Windows-based computer (Pentium 3 or faster recommended) with MATLAB
(version 6 or greater) software installed. TCP_NTCP_CALC has a menu-driven user
interface, designed for convenient, straight-forward use. The framework of the program
is simple: the user inputs a differential dose-volume histogram (DDVH); based on user
selection from parameter databases or from user input, appropriate parameters for the
available radiobiological models are retrieved; NTCP or TCP calculations are performed
based on these parameter values; a convenient display of the relevant model predictions
and the DVH are provided. Further details of the program functionality are provided

below.

a. Input
The program accepts DDVHs in either of two formats:
1) the DVH file output from the HELAX-TMS (Nucletron B.V., Veenendaal, The
Netherlands) commercial treatment planning system, or
2) atwo-column text file of {D;, v;} values.
DDVHs can be evaluated either on an individual basis, in which case a single DDVH file
is specified by the user, or as a group, in which case the user need only specify the
directory in which the DDVH files are located. The former option (“single-mode”) is
suited for using the program as an aid in treatment plan evaluation, while the latter option
(“group-mode”) is convenient when retrospectively comparing actual treatment outcomes

of a cohort of patients with radiobiological model predictions.

b. Parameter Selection/Retrieval

After selecting the input DDVH file(s), a menu prompts the user to 1.) identify the
file as either a normal tissue or a tumor DDVH file, and to 2) choose between using
parameters stored in the parameter databases or specifying their own values for one or
more of the models for calculation of the NTCPs or TCPs. For normal tissues, the user

can access the parameter databases in one of two ways. The first method is to select an
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organ type from a list of the normal tissues present in the databases. If the DDVH is in
HELAX-TMS format, the program will attempt to automatically identify the organ and
ask for user confirmation. After determining the organ type, the program retrieves all
available parameter estimates in the databases for this organ, which may include
parameters for different complication end-points and for one or both of the Lyman and
CV (“population”) models. The user can also access the normal tissue databases in a
second way, by selecting any number of entries from listings of the four normal tissue
databases (Lyman-default, Lyman-user, CV-default, CV-user). For tumors, user
selection from the databases is facilitated by listings of the 62 Okunieff et al. entries
entered in the default Poisson TCP database, as well as the entries residing in the user
database.

As mentioned above, the user can instead choose to specify their own parameters
for any of the models: Lyman, CV (‘“popuiation”), CV (“individual”), Poisson TCP, and
Zaider-Minerbo/LQ. Confidence intervals for each of the parameters and the confidence
level (e.g. 68% or 95%) can be also be entered. This option allows users to test the
sensitivity of radiobiological model predictions of NTCP or TCP to different parameter

sets and/or parameter uncertainties.

¢. Calculation of the NTCP /TCPs

Using the retrieved parameters and the DDVH {D;v;}, NTCPs are calculated
using Egs. (4.1) and (4.3) for the Lyman model, Egs. (4.6) and (4.7) for the individual
CV model, and Egs. (4.9) and (4.10) for the population CV model. TCP predictions are
based on Eq. (4.15) for the Poisson model, and Egs. (4.14), (4.16), and (4.17) for the
Zaider-Minerbo/LQ model.

When parameter uncertainties are available, the corresponding uncertainties in the
TCP or NTCP are estimated using the following Monte-Carlo method. A large number
(500) of sets of parameter values are generated by randomly sampling a probability
distribution of values for each parameter of the model. A distribution of NTCP (or TCP)
values is then generated by evaluating the NTCP (or TCP) for each of the sampled
parameter sets. The standard deviation of this NTCP (or TCP) distribution is calculated
to furnish a measure of the uncertainty in the predicted NTCP (or TCP) value. As

132

described by Schilstra ez al.,” the probability distribution for each parameter should be
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related to the value of the likelihood function in 2 maximum likelihood fitting analysis.
The shape of the likelihood contour is, however, unavailable in this case, since only the
confidence interval and confidence level is specified. We thus assumed that parameter
values were normally distributed, equivalent to assuming that the likelihood function has
a normal shape with respect to the model parameters. The confidence interval and level
are used to determine the width of the distribution. Since the above assumption is not
always valid, the provided NTCP (or TCP) uncertainties should be treated as approximate

indicators of the degree of confidence one should have in the different model predictions.

d. Calculation of the probability distribution of the expected number of complications
When the user chooses to input a group of DDVH files for analysis (“group-
mode” of the program), in addition to calculating the mean NTCP (or TCP) for this
cohort, the program will also calculate the probability of observing any number of
complications (or controls). This provides an additional and more in-depth
characterization of the radiobiological modeling predictions than use of the mean NTCP
(or TCP) alone. The complication (or tumor control) probability distribution is generated
using a Monte-Carlo method outlined in Ref. [8]. For a cohort with npat patients, for
each DDVH file a corresponding model prediction of the NTCP is calculated, NTCP; (i=1
to npat), and a random number between zero and one is generated, RN;. The random
numbers are used to represent pseudo-data of a clinical trial with npat patients. A
complication for patient i is assigned if RN; < NTCP;, and thus the number of
complications in this trial is equal to the number of times this inequality is true for the
npat random numbers. This procedure is then repeated a large number of times (10,000
trials) to generate a probability distribution for the number of complications. This
probability distribution provides another useful means of retrospectively comparing
model predictions to actual treatment outcomes. The described Monte-Carlo method of
calculating this distribution is a much faster surrogate for explicit calculation of the

corresponding multi-variate binomial probability distribution.

e. Display and output
The main output of the TCP_NTCP_CALC is a figure containing the following

items:
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1) a plot of the cumulative DVH. In “group-mode” analysis, the mean
cumulative DVH is displayed.

2) text describing the location of the DDVH file (or directory) being analyzed.

3) a table which includes: calculated NTCP/TCP predictions for each of the
models for which parameters were available/specified; descriptors of the
parameter database and the clinical data relevant to each model prediction;
database descriptors of the tissue/tumor for each prediction.

More than one DVH and corresponding set of model predictions can be displayed in one
figure, if desired. Fig. 4.1 is representative of the output figure for a case where the user
has chosen to display DVHs for a prostate target, and the normal tissues of the bladder,
rectum and spinal cord. The figure conveniently summarizes the analysis, and is suitable
for printing. This may be useful for archiving or consultation purposes. Analysis results

are also output to a text file.

Patient (Last DVH file): VOI label (Last DVH file): Spinal cord
1 m. - " = ; ) ‘-\*'___\;\ ' T
£ 08l % ‘\ \ 1
! \ ™
2 06\ \~~ H 7
© . N\ i
Soal N = DVH #1 Sm——— i
= . —— DVH#2 S b
Sozt N == DVH#3 “q 1
) | Sey vt DVH#4 . '
20 30 40 50 60 70
Dose (Gy)
DVHFile 1: CAUSERS\TMP\DDVHs\PTV.DVH
2: CAUSERS\TMP\DDVHsS\BLADDER.DVH
3: C:\USERS\TMP\DDVHS\RECTUM.DVH
4: C:\USERS\TMP\DD VHs\spinalcord. DVH
DVH# Model TCP/NTCP (%) Param.DB DataSrc. DB descriptor
1 Poisson  84.44 Okunieff95 various Prostate: T3, multi
2 Lyman 6.71 Burman91 Emami91 Bladder
2 CV (pop) 6.58 Stavrev01 Emami91 bladder
3 Lyman 7.14 Burman91 Emami9l Rectum
4 Lyman 0.07 Burman91 Emami91i spinal cord
4 CV(pop) 0.25 Stavrev0l Emami9] spinal cord

Figure 4.1. Example output from the program for a case where the user has chosen to display and
analyze DDVHs for the bladder, rectum, spinal cord, and a prostate tumor.
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When using “group-mode” analysis, TCP_NTCP_CALC will also display an
additional figure showing the predicted probability distribution for the number of
complications in the cohort of patients described by the supplied set of DDVHs. This
probability distribution is calculated and can be displayed for each of the

models/parameter sets evaluated.

C. Results and Discussion
A few brief examples of potential uses of the TCP_NTCP_CALC module are

demonstrated in this section.

i. Retrospective analysis of treatments for a cohort of patients

The analysis of a group of DVHs corresponding to a cohort of patients treated
with a given treatment technique is one useful application of the module. The display
output for such an application is illustrated in Figs. 4.2 and 4.3. Fig. 4.2 shows the results
of a comparison of the lung toxicity arising from two different breast-cancer treatment
techniques — “five-field” and “wide-tangent™.>> The same set of 16 patients was
retrospectively planned using both techniques. In Fig. 4.2, the mean cumulative DVH for
each technique is shown, and indicates that for this example, a larger fraction of the lung
is exposed to both very small doses and to large doses with the “wide-tangent technique™
(DVH #2): e.g. approximately 25% less lung is exposed to doses exceeding 5 Gy, but
about 8% more lung is exposed to doses exceeding 40 Gy with the “wide-tangent”
technique. For each set of DVHs, Fig. 4.2 also displays the mean NTCP model

predictions based on Lyman parameter sets from four different sources'3>%

and one
Critical Volume parameter set.® For the parameter sets shown, the estimated mean
probability of lung pneumonitis ranges from 0.4 to 4.3 % for the “5-field” technique; a
similar probability of pneumonitis is predicted with the “wide-tangent™ technique, with
corresponding mean NTCPs ranging from 0.4 to 4.0 %. For both techniques, the NTCP
predictions based on the Emami er al. (Lyman and Critical Volume models) are
appreciably lower than the complication probabilities estimated using more recently

published Lyman parameter sets.
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Patient (Last DVH file):
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Dose (Gy)
DVH Directory 1: CA\USERS\TMP\DDVHS\LTLUNG\SFLD\
2: C\USERS\TMP\DDVHs\ LTLUNG\WIDET\
DVH# Model NTCP (%) Param.DB DataSrc. DB descriptor

1 Lyman 0.66 Burman91 Emami9l lung/pneumonitis
1 Lyman 1.82+047 Kwa08 5 institute lung/pneumonitis
1 Lyman 4.04 +3153 Moiseenko03 Moiseenko03 lung/symp pneum
1 Lyman 0.21+25.81 Moiseenko03 Moiseenko03 lung/symp fibrosis
1 Lyman 4.28 £3.55 Seppenw03 Seppenw03  lung/pneumonitis
1 CV (pop) 0.36 Stavrev0l EmamiS1 lung/pneumonitis
2 Lyman 0.50 Burman91 Emami9l lung/pneumonitis
2 Lyman 1.62 £ 0.45 Kwa98 5 institute lung/pneumonitis
2 Lyman 3.19x£36.86 Moiseenko03 Moiseenko03 Ilung/symp pneum
2 Lyman 0.13+36.16 Moiseenko03 Moiseenko03 lung/symp fibrosis
2 Lyman 4.04 +4.44 Seppenw03 Seppenw03 lung/pneumonitis
2 CV (pop) 0.37 Stavrev0l Emami9l lung/pneumonitis

Figure 4.2. Program output after analysis of lung DVHs generated from the retrospective
treatment planning of a cohort of 16 breast-cancer patients using two different treatment
techniques. DVH #1 (solid line) is the cumulative DVH (averaged over the 16 patients) for a “S-
field” technique, while DVH #2 (dotted line) is the corresponding DVH for a “wide-tangent™
technique. For each set of DVHs, radiobiological model predictions of the mean NTCP are

displayed for a number of different parameter sets available in the literature.

As shown in Fig. 4.2, there are considerable uncertainties in the NTCP predictions
based on the Moiseenko et al. and (to a lesser extent) the Seppenwoolde et al. Lyman
model parameters. These parameters were derived from analyses of clinical data sets
consisting of 55 and 382 patients, respectively. This once again underlines the challenge
in generating precise radiobiological predictions: the statistics and diversity of clinical
data are in general insufficient to define narrow confidence intervals for parameter
estimates. The uncertainties in the NTCP predictions based on the Kwa ez al. model
parameters are significantly lower than the other error estimates. However, this is at least
partly due to the fact that Kwa ez al. fixed the parameter n = 1, which also led to tighter
confidence intervals for the other two parameters, m and Dso. The validity of these

NTCP predictions is thus implicitly dependent on the validity of the assumption that the
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mean lung dose (MLD) is an accurate predictor of lung response to a heterogeneous dose
delivery. Note also that the Kwa er al. NTCP predictions shown do not incorporate the
offset of 0-11% in the NTCP reported in their work.

Fig. 4.3 shows the second program output, the predicted probability distribution
of the number of complications, when a group of ten DDVHs describing dose
distributions in the mandible is analyzed. For this normal tissue, the program database
contains the Lyman and Critical Volume parameter sets based on the Emami et al. data.
As shown, the complication distributions are similar for these two parameter sets: using
the Lyman parameters, the program predicts probabilities of 73, 24 and 3 % for observing
zero, one, and two or more complications; using the Critical Volume parameters, the
corresponding probabilities are 69, 27, and 4 %. The mean, standard deviation, and 95%
confidence interval of these distributions are also included in the output, and are as

shown.

Number of Complications: Probability Distribution ~ Number of Complications: Probability Distribution
8

08
no, patients = 10 no. patients = 10
<N>=0.305; 6,=0.53 : <N>=0.367; 6,=0.59
0.6 95% Ci-[0.1) ; >0.6 95% Cl1-10.2]
z = N | prob.
Ke] [+
0| 0.686
_<8°0.4 .50.4 1| 0267 W
a o 2(0.0439
3 |0.0034
02 02 4 |0.0004
5{ 0
6 | 0.0001
0 0 1 2 3 4 0 1.2 3 45 6
number of complications (N) num%er of complications (N)

(a) Model/Database: Lyman/Burman91 (b) Model/Database: CV (pop)/ Stavrev0l

Figure 4.3. Program output displaying the distribution of the number of complications
predicted from the DVHs for the mandible for a group of 10 patients based on two sets of
radiobiological predictions based on the Emami ez al.'’ data: (a) Lyman model, Burman er al.'®
parameters (b) “population” Critical Volume model, Stavrev ez al. 8 parameters.
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ii. Testing of the sensitivity of model predictions to parameter values

The TCP_NTCP_CALC program is also useful to those seeking to test the
sensitivity of model predictions to different model parameter values. Fig. 4.4 displays the
program output for the case when a user has chosen to specify four sets of parameter
values for the Zaider-Minerbo/LQ TCP model, in the analysis of a given tumor DDVH
file. The first time the following parameters have been specified: LQ cellular
radiosensitivity values of o = 0.30 Gy and B = 0.03 Gy? (i.e. o/B = 10 Gy); N = 10° for

the number of tumor clonogens; A = 0.05 days™, which corresponds to a potential
doubling time Qn%) of about 14 days; and n = 25 fractions. These parameters lead to a

predicted TCP of 91.5 %. For the second set of parameters, the radiosensitivity is
reduced by 10 %, with values of o = 0.27 Gy and B = 0.027 Gy being specified (all
other parameters the same as the first set). This reduces the predicted TCP by 22 % to
69.5 %, demonstrating the considerable sensitivity of the TCP calculation to small
changes or uncertainties in the cellular radiosensitivity. A similar reduction of 24 % in
the TCP (to 67.5 %) is also predicted if instead of changing the radiosensitivity, the
repopulation rate is doubled to A = 0.10 days™ (parameter set #3). Use of the fourth set of
parameter values — & = 0.17 Gy, B = 0.017 Gy, N = 10>, A = 0.05 days™, n = 25
fractions — is used to describe a much smaller tumor with increased cellular
radioresistance. The predicted TCPs of 91.2 % and 91.5 % for the fourth and first sets of
parameters, respectively, are nearly the same. This indicates that the 1000-fold decrease
in the size of the tumor can be offset by a reduction in the radiosensitivity parameters of
only 43 %. Indirectly this also suggests, as has been observed in numerous
radiobiological modeling works, that in a heterogeneous tumor, tumor response is

determined mainly by the most radioresistant sub-population within the tumor.
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Patient (Last DVH file):

VOI label (Last DVH file): PTV1
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)
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g
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8
i 0.2r- -
0 1 1 1 - -
30 40 50 60 70 80 90
Dose (Gy)
DVHFile 1: CAUSERS\TMP\DDVHs\PTV1.DVH

2: C\USERS\TMP\DDVHs\ PTV1.DVH
3: CAUSERS\TMP\DDVHs\ PTV1.DVH
4: C\USERS\TMP\DDVHs\ PTV1.DVH

DVH# Model TCP (%) Param.DB DataSrc. DB descriptor
1 Zaid-Min/LQ 91.49 user specified N/A a=0.30,N=10° A=0.05
2 Zaid-Min/LQ 69.54 user specified N/A a=0.27.N=10%, 1=0.05
3 Zaid-MinLQ 67.53 user specified N/A =0.30,N=10°, 1=0.10
4 Zaid-MinLQ 91.20 user specified N/A a=0.17,N=10", A=0.05

Figure 4.4. Program output displaying TCP predictions for the same DDVH for four sets of user-
specified parameters: (i) & = 0.30 Gy, 8= 0.03 Gy?, N = 1e6, A= 0.05 days™, n = 25 fractions;
(ii) same as (i), but with slightly decreased cellular radiosensitivity, = 0.27 Gy’l, B8=0.027 Gy'z;
(iil) same as (i), but with the rate of repopulation doubled, 4= 0.10 days™; (iv) @=0.17 Gy". b=
0.017 Gy, N= 1€3, 1= 0.05 days™, n = 25 fractions.

D. Conclusion

An NTCP-TCP estimation module, TCP_NTCP_CALC, was developed which
can be used as a research tool and as a clinical aid. Our module can assist in the
evaluation of treatment plans by conveniently providing access to current radiobiological
model predictions. It also provides a means of assessing the reliability and utility of
common radiobiological models, both by facilitating comparison of model predictions
(based on available clinical data) to actual clinical outcomes, and by testing of the

sensitivity of model predictions to uncertainties in the model parameters.
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Chapter 5: Investigations of Current
Radiobiological Models

Studies involving current radiobiological models are presented in this chapter.
The further development of such models will, it is hoped, lead to a greater integration of
radiobiological considerations in radiotherapy treatment planning, aimed towards
improved customization of patient treatments. This chapter is divided into three sections.
The first (Section A) provides theoretical background about cell survival and dose
response models that is necessary to understand the projects discussed in Sections B and
C. Section A culminates with a description of our derivation of explicit expressions
relating the shape (position and slope) of dose response curves to parameters describing
fundamental radiobiological properties. The project presented in Section B examines the
potential ambiguities in biological interpretation introduced by the population
heterogeneity that is inherent in clinical data. In the final section (Section C), we
endeavor to investigate the descriptive capabilities of the LQ model, and the importance
of incorporation of dynamic tumor processes in TCP modeling, with respect to the

description of fractionation effects.

A. Theoretical Background: Cell Survival and Dose Response
Relationships
i. Linear Quadratic Cell Survival Model

The linear quadratic (LQ) model employs the following equation to predict the
probability of cell survival, p _, after delivery of a dose D in a single fraction:

p, =exp(-aD- B D?). (5.1)
The parameters « and [ are used to characterize the intrinsic radiosensitivity of a
particular cell type. On a conventional survival curve, where log(p,)is plotted versus
dose, the a term will describe the initial linear part of the curve, while B will produce a

downward bend in the curve. In general, the shape of cell survival curves for mammalian

cell lines can be well described by the LQ c:quation.l‘2
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A fairly conventional mechanistic interpretation of the LQ model is as follows.
The « term describes a “single-hit” mechanism where an un-repairable lethal cell lesion
(e.g. a DNA double-strand break) results from dose deposited by a single particle track.
The number of such lethal lesions is assumed to be proportional to the amount of dose
deposited. The S term is associated with lethal damage resulting from the combined
effect of two sub-lethal Iesions. Assuming that the production of sub-lethal lesions is
also proportional to dose, the probability of a lethal lesion arising from the interaction of
sub-lethal lesions will be proportional to the square of the dose. The value of fis thus
related to the efficiency with which sub-lesions are produced per unit dose, and the
likelihood that sub-lethal lesions will interact to produce lethal damage.

There is still considerable debate about how correctly the LQ model can be

identified with a simple biological interpretation,'

such as that given above. As
discussed in (for e.g.) Refs. [2,6,7], more complex cell survival models formulated on
specific biological assumptions can often be approximated by an LQ expression under
certain conditions. It is further noted that Brenner er al.® have found that the LQ
prediction of fractionation dependencies is consistent with the predictions of more
complex mechanistic models. An example of a more complex mechanistic model is the
lethal-potentially lethal (LPL) model of Curtis.” This model again incorporates two types
of damage, lethal and potentially lethal lesions (PLLs). The PLLs can either be repaired,
or be converted into lethal lesions by improper repair involving interaction of two PLLs.
Individual parameters are used to describe the proportionality constant between dose and
the number of PLLs produced, the rate of enzymatic repair of PLLs, and the rate of
interaction of the PLLs to form lethal lesions.® Using a low-dose approximation of the

¢ An alternative

LPL model, these three parameters can be related to the LQ £ term.
explanation of the LQ shape of cell survival curves that differs conceptually from the
simplified interpretation given in the previous paragraph is provided by repair saturation
models.”> In these models, in contrast to the LPL model, the interaction of potentially
lethal lesions is not a mechanism of cell death. Rather, cell death results from a single
type of lesion produced by single-hit mechanics. A certain fraction of these lesions can
be enzymatically repaired, and initially, at lower doses, the rate of this repair is

proportional to the amount of damage. However, the repair capacity is limited — e.g. due
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to the limited number of available repair enzymes. Therefore, as the dose increases, the
rate of repair will no longer be able to keep pace with the accumulation of the damage.
Eventually, the rate of repair will saturate — i.e. reach a constant value. Thus, in these
models, it is the saturation of cellular repair that dictates the downward bend of the
survival curve (and hence the LQ S value). For convenience, when referring to the
mechanism of the LQ model in the following paragraphs, we will adopt a simplified LQ
interpretation involving interaction of sub-lethal lesions.

Though its applicability to radiotherapy is still disputed by some,'® the LQ model
is likely the most commonly used cell survival model in radiotherapy. .In addition to its
mathematical simplicity, use of the LQ expression is also very convenient because it
leads to a simple parameterization of fractionation effects'! in terms of o7f ratios. If it is
assumed that the percentage cell survival for each dose fraction is independent of the
dose delivered in prior fractions, the LQ model predicts that the net cell survival after
delivery of a total dose D in n fractions of dose 4 is:

ps = ﬂexp(—ad —Bd?) =exp| —aD —gDz ): exp(-— aD(l+§-§—)). (52)
i=]
This assumption is equivalent to presuming that all sub-lethal lesions are repaired
between fractions, i.e. that no sub-lethal lesions remain from previous fractions that can
interact with the sub-lethal lesions produced by the current fraction. From Eq. (5.2) it is
clear that as the number of fractions increases, the cell survival increases in comparison
to the delivery of the same dose D in a single fraction, which would produce cell survival

of exp(-azD— B D?). The size of this fractionation effect is larger for smaller o/

(larger S/ca) values. The response of most tumor types can be characterized by a large
a/f value (e.g. 10 Gy), while the late effects of normal tissues are typically described by
smaller (e.g. 0.5 — 6 Gy [Ref. 12,13]) ¢7f values. Exploiting these differences between
tumor response and normal tissue late effects is the basis of fractionation in radiotherapy.
A convenient concept developed to compare the doses delivered using different
fractionation regimens, is that of Biologically Effective Dose (BED), which can be

defined as:!!

BED = _Inp,) . (5.3)

a
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Thus, for the LQ expression of Eq. (5.2), the BED becomes,

d
BED = D(l + mj , (5.4)

In principle, the suitability of different fractionation regimes can be assessed by

calculating how the BED values for the tumor and surrounding normal tissues change

when the dose per fraction, d = 2 , 1s varied.
n

The expression in Eq. (5.2) represents the simplest variant of the LQ model for
fractionated treatments. It is time-independent, and therefore is unable to incorporate any
dynamic cell processes. A common extension of this LQ model is one that introduces an
explicit time-dependence into the repair mechanism, by assuming that the repair of sub-
lethal lesions is governed by the rate equation,

dNg 1
Est o N, 55
dt z * (55

where Ng; is the number of sub-lethal lesions and 7 is the repair rate constant. It can be
shown'“'* that the cell survival for fractionated treatments then becomes,
n n-1 n
p, = exp[—aD— BY d} =283 Y d.d;exp(-AT; /z')l (5.6)
i=l i=l j=i+l )
where d; is the dose for fraction i and AT is the time interval between fractions i and j.

The third term in the exponent in Eq. (5.6) describes additional cell death resulting from
the interaction of newly produced sub-lethal lesions with sub-lethal lesions remaining
from previous fractions. Eq. (5.6) is thus referred to as the “incomplete repair” LQ (LQ-
IR) model. When the time intervals between fractions are very large compared to the
repair rate constant, this incomplete repair term in Eq. (5.6) will be negligible, and Eq.
(5.6) reduces to the time-independent form in Eq. (5.2). Since estimates of 7 for normal
tissue late reactions are of the order of a few hours,'” use of Eq. (5.2) is typically assumed
to be sufficient when applied to most conventional fractionation schemes, where there is
at least one day between fractions. However, the LQ-IR model may be necessary for
hyper-fractionated regimens, where multiple fractions are delivered in the same day.
Consideration of the time-dependence of repair mechanism is particularly important for

treatments involving continuous dose delivery, such as brachytherapy, where repair is on-
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going during the irradiation. However, in this case, the form of the LQ model is

significantly different than that in Eq. (5.6), and is given by,

p. (D)= =exp(-aD - BG()D?), (5.7)
where, if T is the total time of irradiation, then 15
2
G@) = [T/ -1+exp(-T17)). (5.8)
(T 17)* )

Additional modifications to the simplified LQ model of Eq. (5.2) have also been
proposed to account for dynamic processes other than repair. For example, an attempt to
incorporate cellular repopulation into the LQ model is represented by the following

expression:”"6

Ds = exp(— oD —E-D2 +A max(T - Tlag ,O)), (5-9)
n y

where max{l" -7}, .0) is equal to T ~Tj, if T> Tigg, and O otherwise. In Eq. (5.9), 4 s
the rate of repopulation, which can also be expressed in terms of the potential doubling

time (7T,): A=In2/T,. The T, parameter is used to accommodate a potential delay
P P g p

between start of treatment and the onset of tumor re:population.”'18 Often this type of
repopulation term is nor included in the cell survival expression used in conjunction with
a tissue dose response model. Instead, an LQ expression such as Eq. (5.2) or (5.6) is
used, and repopulation is incorporated explicitly in the equation describing the tissue
dose response model. Repopulation in tumor response models is discussed in more
detail in Section 5.C.ii.

Efforts have also been made to incorporate into the LQ model the dynamic
resensitization processes of reoxygenation and redistribution,'® the remaining two of the
four “R’s” of radiotherapy, in addition to repair and repopulation. Resensitization
processes can alter the radiosensitivity characteristics of a tumor and/or normal tissue.
The potential effects of redistribution of the percentages of cells in the different stages of
the cell cycle stem from the dependence of a cell’s radiosensitivity on where it is in the
cycle: e.g. cells undergoing mitosis are more sensitive to radiation than those in the S
stage of the cell cycle, when DNA is actively being synthesized. The reoxygenation of

initially hypoxic tumor cells is advantageous for tumor control because of the increased
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radiosensitivity of cells within oxygenated environments. Reoxygenation occurs when
the outer layers of the tumor are killed and removed during radiotherapy, allowing
oxygen to diffuse to previously inaccessible inner layers of the tumor. In Section
5.C.li.c, we discuss use of a time-dependent expression for the ¢« radiosensitivity
parameter to accommodate potential reoxygenation effects.

One consequence of modifying the simple time-independent LQ expression of Eq.
(5.2) to include dynamic cell processes is that fractionation effects can no longer be
characterized solely by the single parameter, the @/ ratio. For example, if the LQ
expression incorporating repopulation, Eq. (5.9), is used, the corresponding expression
for the BED becomes:

BED = D[1+a—iz)—-ﬁ-max(T—7}ag 0). (5.10)
In this case, the BED is dependent on &/, &, A, and Ty,. Thus, if repopulation is not
negligible, description of fractionation effects requires knowledge of not only &8, but
also of the cellular radiosensitivity parameter « and the constants A and Ty,

characterizing cell proliferation.'

ii. Tumor and Normal Tissue Dose Response Models
a. Phenomenological Expressions

Plots of the dose response probability P (either tumor control probability, TCP, or
normal tissue complication probability, NTCP) as a function of dose (D) are
characterized by a sigmoidal shape. As discussed by Bentzen and Tucker,?® this
sigmoidal shape is often described by one of three types of mathematical expression:

Poisson, logit, or probit. An example of each of these expressions is shown below.

2 D
CXP[n—Yso[l_)]
Poisson:  P(D) =(%] 27\ Do (5.11a)
)
Logit: P(D) =¢[—J27y50(1-Di)] (5.11b)
50
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1 7 2
where ®(x)=—== [exp(~1?/2)dt
N2r7

—o0

1
D
1+exp|4¥so| 1 —— ]
Dso

Note that the Poisson expression in Eq. (5.11a) is the same as the TCP model described in

Probit: P(D)=

(5.11¢c)

Eq. (4.13), and that the logit expression is identical to the Lyman NTCP model for a

uniform irradiation, with Eq. (5.11b) being equal to Eq. (4.1) with m=——1—. In
V27 ¥so

each of the three expressions, the shape of the probability curve is determined by two
parameters, one each describing the position and slope of the curve. The position

parameter Ds, is the dose at which the probability is equal to 50 %. The slope & of a

probability curve at dose D is,

dP(D)
éD)=———, 5.12
(D) D (5-12)
while the normalized slope,*' % is defined as the slope # multiplied by the dose D,
dP(D)
Dy=D ——=, 5.13
7(D) D (5-13)

and thus has units of (e.g.) Gy. The slope parameter %, utilized in the expressions of Eq.
(5.11) is the normalized slope evaluated at the Dsp dose:
dP(D)

¥s0 =Dsg 5
dD |p-p,,

(5.14)

The sigmoidal shapes described by the three expressions in Eq. (5.11) are not identical.
This is shown in Fig. 5.1, where probability curves for each of the three models are
shown for identical Dsp and ¥5 values. However, in general, the shape of actual dose

response data can be reasonably well described by any one of the three models.”
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Figure 5.1. Probability curves as calculated with the Poisson, logit, and probit models defined
in Eq. (5.11) and using identical parameter values of Dy, = 50 Gy and %, = 3 Gy.

b. Mechanistic Models

The expressions in Eq. (5.11) are essentially phenomenological. However, it is
often desirable to use more mechanistic dose response models, since these may directly
relate dose response probabilities to inherent radiobiological characteristics of tissues.
This is particularly important for potential customization of radiotherapy treatments,
since at least in theory, radiobiological characteristics such as cellular radiosensitivity and
tumor doubling times can be estimated using radiobiological assays. The incorporation
of patient-specific values for parameters such as &, fand A in mechanistic models would
then lead to predictions of the NTCP and/or TCP values resulting for a given treatment
that are valid for an individual patient. A few mechanistic models are briefly described
below for the simple case of uniform dose delivery to an organ or tumor.

The Critical Volume (CV) NTCP model®? was introduced in Chapter 4. To

review, it can be approximated by a probit-type equation,

NTCP =@ JIN (prsy (D) - 4,,) ]
\Prsy (D) (- prsy (D)) J

(5.15)
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where N is the number of functional sub-units (FSUs) comprising the organ and 4, is the
critical fraction of the volume that must be damaged before a complication occurs.
Assuming that an FSU is irreparably damaged only if all of the Ny cells contained in the

FSU are killed, the probability of FSU damage, p gy (D), can be calculated using,

prsy (D) =0-p (DY, (5.16)
The dependence of the NTCP on cellular radiosensitivity parameters is introduced by

using one of the LQ cell survival expressions, e.g. p,(D)= cxp(— oD —éDz ‘}

J
A special case of the CV model occurs when it is assumed that an organ has no
reserve capacity, and thus a normal tissue complication occurs if any of the N FSUs are
damaged. Such an organ is said to have a Critical Element (CE) architecture.”*
Formally, an NTCP expression for a CE organ can be derived by setting L = 1 (where L -
1 represents the number of reserve FSUs) in the basic CV model expression given by Eq.
(4.4) in Chapter 4% The resulting equation can be simplified to yield the following

formula describing the CE “model” prediction of the NTCP,
NTCP =1-(1- prsy D)V, (5.17)

where (1- proy (D))N can be identified with the probability of survival of all ¥ FSUs.

In Eq. (5.17), the probability of FSU incapacitation can again be described by Eqg. (5.16)
in conjunction with one of the LQ cell survival models (e.g. Eq. (5.2)).
Based on the assumption that all N tumor clonogens must be killed to achieve
tumor control, a “binomial” formulation of a TCP model is given by,
TCP= (- p,(D))". (5.18)
The probability of cell survival can again be described by one of the LQ expressions. To
incorporate repopulation in the TCP model, Eq. (5.9) could be implemented to

describe p (D). An alternative method of accommodating repopulation is to make the

replacement N — N exp(AT) in Eq. (5.18) to yield,

TCP = (1- p,(D))V ¥4 (5.19)
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with p (D) being described by an LQ expression without repopulation, e.g. Eq. (5.2) or
Eq. (5.6). In Eq. (5.19), it is assumed that there is no delay between the start of treatment
and the onset of repopulation (i.e. T, = 0), or equivalently that T represents the duration

of treatment after the onset of repopulation (ie. T-T,, —»T). A Poisson

approximation to the binomial expression of Eq. (5.19) is,

TCP = exp(~ Nexp(AT) p(D)). (5.20)
This becomes,
TCP =exp(—N exp(—az)—ﬁp2 +/1T)‘, (5.21)
n
Y

when Eq. (5.2) is explicitly substituted for p (D). Though convenient, the simple
method of including repopulation in a TCP model represented by Egs. (5.19) and (5.21)

does suffer from some limitations. These limitations and an improved TCP model

incorporating repopulation are discussed in Section 5.C.ii.

iii. Expressions relating Dspand yso to Radiobiological Parameter Values

We derived expressions explicitly relating the radiobiological model parameters
present in the mechanistic models outlined above to the position and slope parameters
Dsp and 750 often used to describe the shape of dose-response curves. The first step in
deriving a relation for Ds) is to set the NTCP or TCP expression equal to one-half, and

then to solve for the corresponding value of the cell survival, p,(Dsy). Thus for the
binomial and Poisson TCP model cases, the equations,

Binomial TCP: 0.5=(01-p,( D50))N°"P("'T)

Poisson TCP: 0.5=exp(~ N exp(AT) p,(Dsp)),
are solved to yield:
Binomial TCP:  p_(Dsp) =1~ (0.5)/(Vexe(dD) (5.22a)
Poisson TCP: Ps(Dsp) = __fn2 . (5.22b)
N exp(AT)

For the CE and CV NTCP models, the equations to be solved are:
CENTCP:  05=1-(0- prgy (Dso)”
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CVNTCP: 05=0 VN sy (Dso) ~ ter) W
JPrsy (Dso) (1= prsy (Dsp)) )

This leads to expressions for pggyy (Dsp)
CENTCP:  prgy(Dsp)=1-(0.5"" (5.23a)

CV NTCP: Prsu (Dso) = Uy s (5.23b)
where the latter CV expression makes use of the fact that ®(0) =0.5. Using Eq. (5.16),

expressions for p;(Dsg)can then be derived:

CE NTCP: p.(Dgy) =1-"1-(0.5)"" (5.24a)
CV NTCP: p,(Dy)=1-"u_ . (5.24b)

For all four model expressions (binomial and Poisson TCP, CE and CV NTCP), the time-
independent LQ expression (Eq. (5.2)) was used to describe cell survival, which can be
re-written as,
b pe +aD+In(p,(D))=0. (5.25)
n

Evaluating Eq. (5.25) at the dose Dsp and then solving for Dsp yields,

Ds =$(-a+\/a2 —4€]n(ps (DSO))). (5.26)

The Dsp relevant for each of the four models can be obtained by substitution of the
appropriate p,(Dsg) expression (Eq. (5.22a), (5.22b), (5.24a), or (5.24b)).
To calculate expressions relating ¢ to radiobiological parameters, we first

calculate the (un-normalized) slope (Eq. (5.12)) for each of the models. First, taking the
derivative of Eq. (5.19) with respect to dose yields the slope for the binomial TCP model,

. . TCP(D) dp (D)
Binomial TCP: (D)= Nexp(AT) -—= . (5.27)
A (D))( dD
The derivative of the LQ cell survival expression (Eg. (5.2)) can be expressed as:
dps(D) =—pS(D)(a+ZE'D1 (5.28)
dD n

Evaluating Eq. (5.27) at D = Ds, and using Eq. (5.28) and Eq. (5.22a), the slope can be

simplified to:
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Binomial TCP: 64, =&l‘%£@(2” (Vexp(a) —1{a+£D50 L 629
n
)

By taking the derivative of Eq. (5.21), it is easy to show that the slope for the Poisson

TCP model is,
. 28 1)
Poisson TCP:  6(D) =-TCP(D)In(TCP(D))| ¢ +==D |, (5.30)
n
/
which for D = D5, becomes
Poisson TCP: Osp = 1—112-2— (a + 28 Dy \ (5.31)
n
/

Continuing with the CE NTCP model, the denivative of Eq. (5.12) gives the slope:

(- prsy DY) (d prsy (D)
CE NTCP: 8(D)=N
® (- prsy (D)) daD

=N (I—NTCP(D)) d prsy (D) (5.32)
(-NTCPD)'V |\ daD
Eq. (5.16) and Eq. (5.28) can be used to derive the relation,
dprsy (D) _ ps(D) 28
D NO Prsu (D)———'——(l ey (D))(a + . D) . (5.33)

Then substituting expressions for pggy(Dsg) (Eq. (5.232)) and p,(Dsy) (Eq. (5.242))
into Eq. (5.33), the following expression for &sp can be derived from Eq. (5.32):

NN 1 28

CENTCP: 6, =——2("" 1) {—-———{m—pﬂ, ) (5.34)
2 Nofy _ N
,/ 1-(0.5) ) n
Finally, the slope of a dose response curve described by the CV model is
dd(x) 1 5. dx

CV NTCP: 8(D)= =—=exp(—x“)— , 5.35
=0 "= 639

JN (PFSU — /)

JPesy U= Prsy ) '
dx _ JN (d Prsu }[l— PEsy = Her
dD  \[prsy Q- prsy)\ dD 2prsy - prsy)

Egs. (5.23b), (5.24b), and (5.33) facilitate the calculation of the slope at the dose
corresponding to a 50 % probability of complication, yielding:

and

where, x=

l—2ppsu)]. (5.36)

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N 1 2
CVNICP: 6, =N, }m i fﬂ ) (N T —1](a+7ﬂDso ) (5.37)

Vi
Expressions for the normalized slope, %50, for each model are obtained by multiplying the

un-normalized slope, G5 — Eq. (5.29), (5.31), (5.34) or (5.37) — by the expressions for
Dsp —Eq. (5.26) in combination with Eq. (5.22a), (5.22b), (5.24a), or (5.24b).

The final expressions for Dsp and % are tabulated in Table 5.1. Their use is
appropriate when characterizing the position and slope of a dose response curve
comprised of points that all correspond to the same number of fractions, n, i.e. the dose
per fraction varies for each point describing a different total dose D. Equivalent
expressions can also be derived for the case when all dose points correspond to the same
dose per fraction, d, i.e. the number of fractions varies for the different dose points. In
this case, the appropriate time-independent L1Q model expression is

p, (D)= exp(~D(a + fd)). Also, since d is a constant, the equations corresponding to

Egs. (5.26) and (5.28) would become, Dy, = In(p, (D) and b __ p,(a+Bd). If
o+ pd dD

tumor repopulation is to be included in the TCP expressions, the implicit dependence of
dose on the treatment time T would also require consideration, since the different dose
points would likely correspond to different values of both T, as well as n. The Dsp and 35
expressions for both cases — (1) when 7 is constant, and (2) when 4 is constant (assuming
no repopulation) — along with further details of the derivations, are reported in our
published work, Ref. [27]. When the number of FSUs (V) and the number of cells in an
FSU (Np) are large, the approximation lim,__ x(a"* —1) =Ina, with x representing N or
Ny, can be used to render expressions for the CE and CV NTCP models that are in

slightly more convenient forms than those provided in Table 5.1. These expressions are
also included in Ref. {27].

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Model

D50

Binomial
TCP

2p

n (Ja —f—ﬂ—-ln(l (0. 5)1/(Nexp<z7‘))) aJ
n

Poisson
TCP

n

28

. 4B, (_12_ o
n N exp(AT)

Critical
Element

NTCP

2B

22k ﬁ«T))}

Critical
Volume
NTCP

Model

Ys0

Binomial
TCP

n NCXP(]-T) (2lI(chp(17')) - 1)(\/ 2 _ig_ln(l _ (O.S)II(Nexp(/lT)) )J
n

4B

(\f —ﬂln(l (0. 5)l/(Nexp(m)) )

Poisson
TCP

n41;2 [J(Jt2 —ff-ln

( In2 H(‘/ 4,6( In2 ) ]
_— o ——h| ———— |-«
N exp(AT) \ n N exp(AT)

Critical
Element
NTCP

nNN,

4B

(zmv _1)
NW

1 _1\(\/a2_%1n(1_~m)}
J

(\/ 2ol =05 e
J

Critical
Volume
NTCP

nN,

Nﬂcr

1
27(1- 11,,) [”" 7

-1} [\/az —%m(l— o, )]

2

ln(l-m,)_a)

Table 5.1. Expressions relating the position and slope parameters, Ds, and %, for dose response
curves calculated using the binomial TCP, Poisson TCP, Critical Element NTCP, or Critical Volume
NTCP models to the radiobiological parameters for each of these models. The expressions are valid
assuming that cell survival is described by the time-independent LQ model (Eq. (5.2)), and that all
dose points in the dose response curves correspond to the same number of fractions, n.
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The expressions in Table 5.1 are useful if one wants to determine the change in
the position or slope of a TCP or NTCP curve when a given model parameter is varied,
without having to calculate an entire TCP or NTCP curve for each new parameter value.
An example of this application is illustrated in Fig. 5.2, where the value of Dy is plotted
as a function of n, the number of fractions. The four curves shown in Fig. 5.2 correspond

to calculations for the following models and parameter values: (1) CV NTCP model,
with parameter values of = 0.07 Gy, &/ =2 Gy, N = 10°, N, = 10°, and g, = 0.10;
(2) CV NTCP model, with & = 0.12 Gy™', &/ = 10 Gy, and N, N,, and U having the
same values as in (1); (3) Poisson TCP model, with z=0.30 Gy", o/f=10Gy,N= 108,
A =0 (i.e. no repopulation); and (4) Poisson TCP model, with &, &/, and N the same as
in (3), but with A = 0.10 days™ (i.e. potential tumor doubling time of ~ one week). Note
that the & and /3 values for (1) and (2) yield the same survival fraction at 2 Gy, defined
as SF, =exp(-2a —4f), with @ and fin units of Gy and Gy?, respectively. Fig. 5.2
depicts how the lower o/f values for normal tissues lead to a fractionation benefit. The
curves for the TCP and NTCP models when the value of &/ is the same (= 10 Gy)
exhibit a similar dependence of Dsp on the number of fractions. However, when the
normal tissue ¢/f ratio is reduced from ten to a more realistic value of two, the dose at
which a complication rate of 50 % occurs increases much more rapidly, manifesting the
fractionation advantage. The negative effect of tumor repopulation is also illustrated in
Fig. 5.2. As shown, increasing A from O to 0.10 days'l results in a substantial increase in
the dose required to achieve 50 % tumor control when a large number of fractions is
used. Notice also that for this example, the curves corresponding to cases (1) and (4)
above have nearly the same general shape, implying that a repopulation rate of 4 = 0.10
days™ essentially negates any fractionation benefit that could be realized from the low
o/ Bratio of the normal tissue.

The expressions in Table 5.1 may also yield other useful insights on the shape of
the dose response curves predicted by the different models. One example is that the Ds

expression for the CV NTCP model has no explicit dependence on N, the number of
FSUs in the organ. The normalized slope (50), however, varies according to JIV . This
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would imply that, for organs with a “critical volume” architecture, the position of the
NTCP curve is independent of the size of organ irradiated, but the normalized slope of

the curve will get steeper as the size of the organ increases.

70
60|
50+
>
€ 40}
(=3
2]
()
30
= NTCP: /=2
o0+ NTCP: /B =10
sesee TCP: o/f=10,A=0
m=e: TCP: o/f=10,A=0.10
10 : ‘ ' .
0 10 20 .30 40 50
n (fractions)

Figure 5.2. Dependence of Ds, on the number of fractions (r), as predicted by the expressions
in Table 5.1 for the CV NTCP model and the Poisson TCP model. The two NTCP curves
illustrate the effect of changing the 78 ratio, while the two TCP curves show the impact of
repopulation (1 =0 — no repopulation.) The other parameter values for each of the four curves
are given in the text.

B. Evaluation of a TCP model incorporating population heterogeneity
i Introduction

The motivation for using radiobiological modeling in radiotherapy lies in the
potential to use such models to customize radiotherapy treatments for each individual
patient, in order to maximize the probability of a positive clinical outcome. Ideally,
accurate in vitro assays of the clonogen density, radiosensitivity, and repopulation
capabilities would be used in conjunction with appropriate radiobiological models to
accurately predict an individual’s radiation response to any given treatment regime, and
to suggest appropriate adjustments to a treatment plan. Significant effort has thus been

invested in studying how closely current in vitro assays (e.g. SF») are correlated to in vivo
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tissue radiation response [e.g. Refs. 28-39]. A number of works have used models to
assess the potential gains in TCP (tumor control probability) achievable with assay-based
treatment customization.***? The potential advantage of using radiobiological models for
treatment customization was highlighted in one such work by Buffa er al,** which
illustrated that a TCP model incorporating individual assay results has greater prognostic
power than the in vitro assays alone.

Clearly, the understanding of the relationship between in vitro and in vivo
radiosensitivities is an important objective. It is expected that in vitro and in vivo
radiosensitivities will differ due to the impact of in vivo hypoxia, and differences in repair
capabilities. The extent of influence these and other factors have is difficult to assess.
Comparisons between in vitro and in vivo data are unfortunately complicated by factors
that make the extraction of radiosensitivity parameters (@ and ) from clinical data
difficult. As is well-known, clinical data is composed of a population of individuals
having a distribution of radiation responses. As discussed by a number of authors,
the shallow dose-response observed in clinical data sets may be attributable to variability
in radiation-response parameters within the population. Until recently, however, clinical
data was fit using tissue-response models characterizing the response of an individual.
Failure to account for inter-tumor heterogeneities in the TCP model used to fit a clinical
data set can lead to distortion of the extracted parameter values. It has been suggested
that this is one reason why values of & extracted from clinical data sets have been lower
by a factor as large as ten than values of oz derived from in vitro data.*’

The incorporation of inter-tumor heterogeneities into TCP models has been
addressed in the works given in Refs. [47-49]. In this work we evaluate one of these
attempts, a model developed by Roberts and Hendry,” in order to further explore this
model’s applicability. We fit this population model to various sets of pseudo-data that
we generated, to determine how closely and reliably the fit values match the parameter
values used to generate the pseudo-data. Our results serve as an illustrative example of
the limitations common to the use of population models in general. Specifically, we will
show the difficulty in extracting reliable estimates from fits to clinical data sets of either

the degree of heterogeneity present in a clinical data set, or of the value of the f/a ratio,

which is often used to characterize the fractionation sensitivity of a cell line.
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ii. Theory

The Poisson TCP model given in Eq. (5.21) describes the dose response of an
individual patient. This equation can be re-written in a slightly different form to give,

TCP,, = exp(- explc—aD - fD* /n+ Amax(T - T, ,0))), (5.38)
with xbeing defined as the natural logarithm of the initial number of clonogens:

k=InN.
In Eq. (5.38), & &, B, A, and T4, are the (previously-defined) parameters characterizing
the individual’s tumor, and the symbol TCP,,s is used to explicitly indicate that this
represents an individual TCP model. As mentioned above, the fitting of an individual
TCP model such as this to clinical data can lead to apparently unrealistic values for the
radiation response parameters (X &, f, 4, and Tj,,). To extract meaningful estimates of
these parameters from fits to clinical data requires that patient-to-patient variations in
these parameters be incorporated in the formulation of the TCP model. Typically this is
done by integrating the individual tumor response function with respect to each of the
parameters, weighted by the probabilities of finding given parameter values in the

population of individuals - f,.(x), f.(@), fs(B), f1(D), frn,(T,)- Thus,

accommodating variation in the kX ¢, and A parameters, the general expression for a

population TCP model (TCPp) 1s:
TCP,, = [da f, (@) [dA f,(D) [dx f.(x) TCP,, (5.2, B AT,,).  (539)

Assuming (for mathematical convenience, and as is conventionally done) that the

radiation response parameters are normally distributed within the population, the

)

(5.49)

population-averaged TCP response can be written as:*’

TCPw=(2” 3,20_ .0, ]: ]: p(—exp{x -’
L3 -0 —00

X exp —(K’-f- ) exp —(a—fx )’ ex —(A_f' )’ dx’da’dA’.
20, 20, 20;

lag
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In Eq. (5.40), o,., 0,, and o, are the variances, and x, &, and 4 are the population
means of the normal distributions of each of the parameters. This population model will
be referred to as TCP3p, since it involves an explicit 3-dimensional integration.

The effect of population heterogeneity on the shape of TCP curves is illustrated in
Fig. 53. A TCP curve generated using the individual TCP model (Eq. (5.38)) is
compared to TCP curves calculated using the population model (Eq. (5.40) for different

values of o,. For this exercise, it is assumed that there is no variability in the other
parameters, i.e. 6, =0, 0,= 0. The parameter values common to the individual and
population TCP curves are the same: x = 13.8, &= 0.30 Gy', B = 0.03 Gy?, A=0.10
days™, and Ty, = 0, with o referring to the mean value in the case of the population

model. As evident from Fig. 5.3, the main effect of an increase in population variability

is to make the slope of the TCP curve shallower.

100}
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Figure 5.3. Effect of patient-to-patient variation in o on the shape of TCP curves. The
population model in Eq. (5.40) was used to generate curves corresponding to increasing values
of o, (i.e. increasing heterogeneity). The other parameter values were x'= 13.8, &= 0.30 Gy,
p=0.03 Gy’z, A=0.10 days". and Ty, = 0 (and 6, =0, 03 =0). The curve labeled o, = 0 was
generated using the individual TCP model (Eq. (5.38)) and the same parameter values for X &,
ﬂ. /l and Tlag-

The main drawback to the population model in Eq. (5.40) is the introduction of

three new independent fitting parameters (6,,6,,0; ) , bringing the total number of
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model parameters to eight. Clinical data sets do not have sufficient diversity to support
the use of such a model without introducing considerable parameter correlations. When
correlations occur, different sets of parameters will provide equally good fits to the
clinical data. Attempts to extract biological information from the fits then often become
ambiguous, essentially rendering the fits phenomenological.

An approximate “closed-form” solution to Eq. (5.40) was proposed by Roberts
and Hendry.47 This solution represents an attempt to provide a population TCP model
that, in comparison to the TCP3;p model, is simpler mathematically, requires fewer
parameters, and yet preserves the main dependencies of TCP on the effects of population
variability. The first assumption of the Roberts and Hendry derivation is that the most
important source of heterogeneity is variability in ¢, and that heterogeneity in the other
parameters (e.g. kX and 4) can be neglected. On this basis, Eq. (5.40) can be reduced to a

population model, TCP;p, that requires only a one-dimensional integration:

1 3 BD?
TICP) = —= - Kk—o’'D- +A Tr-7,.0
= oo l"""[ °"‘{ p T ))]

* 2
X exp((L,a)—} do’
20,
(5.41)

For the case of large o, , Roberts and Hendry then approximated the first exponential

(i.e. the individual TCP function) in the integrand by a Heaviside step function,
BD’

n

1 ifz<0
explep)=10 1 o

, where z=(7c—aD— +lmax(T—T,ag ,0)].

(5.42)
This is equivalent to assuming that the slope of the individual TCP dose-response curve is
infinitely steep. Using Eq.(5.42), the integral in Eq. (5.41) can be expressed in terms of
the complementary error function (erfc),
x—oD—~pD* /n+Amax(T-T,.0))
\2Do, ]

TCP,, = %erfc{ (5.43)
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where erfc(x) = j exp(—t?)dt. The number of parameters in the population TCP model

is further reduced by introducing a heterogeneity parameter,

p=2, (5.44)
(o)

a
and by expressing the parameters N, f, and A as ratios relative to & The Roberts and
Hendry population TCP expression, now designated TCPgry, is thus a function of five

parameters, 4, k/a, f/a, Afa,and T, :

1 K D* 2
TICP, = Ee’ﬂ{-\/gD (Z -D- g—; +-Emax(T - T,ag ,O))) . (5.45)

The number of parameters used in this population model is the same as found in the
individual TCP model given by Eq. (5.38). Roberts and Hendry proffered that fits
employing the ratios x/a, f/a, and A/a are more stable and perhaps more
biologically meaningful than fits done with the absolute values of the parameters. This
assumption is consistent with the findings of previous authors***® regarding the
advantages of using ratios of parameter values.

The predicted Dsp in terms of the radiobiological parameters for the TCPry
expression can be calculated using the observation that TCPgy = 0.5 when the argument
of the erfc function in Eq. (5.45) is zero. This gives:

Doy =ﬁ[\/1+ﬁfa—(§+£—max(T—Thg ,0))—1}. (5.46)

The position of the TCPgy curve is independent of both the absolute value of ¢, and the
level of heterogeneity, 4. Taking the derivative of the expression in Eq. (5.45) and

evaluating at the Dsp dose given in Eq. (5.46) provides the value of sy characterizing the

(un-normalized) slope of the curve:

u B Dy,
é = 1+2 . 47
SORH) JZ::DSO( * a n J (5.47)
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iii. Methods

Like any TCP model, a population model can be evaluated with respect to two
considerations: (i) the ability to fit the shape of clinical TCP data with the model, and (i1)
the ability to extract parameter values that accurately reflect the radiobiological
characteristics inherent in the data. Roberts and Hendry found that in fitting two clinical
data sets, their closed-form heterogeneity model produced slightly better fits than those
achieved with a standard individual TCP model. They also suggested that their model
yielded biologically significant parameters: values for the radiosensitivity, clonogen
number, and repopulation parameters that were consistent with relevant in vitro
measurements, in addition to a stable estimate for the parameter characterizing the degree
of population heterogeneity. One disadvantage of using real clinical data to test a model
is, however, that the “true” parameter values of any clinical data set are never known
with a great degree of certainty. It is thus not always easy to assess whether the best-fit
parameter values obtained using a given TCP model are “biological”, or should rather be
considered more “phenomenological” in nature. In an effort to establish more
definitively the capabilities of the Roberts and Hendry (RH) closed-form population
model, we fitted TCPry (Eq. (5.45)) to different sets of “pseudo--data”26 that have been

generated with known parameter values

a. Generation of Pseudo-data

The pseudo-data was generated by writing MATLAB computer code to
implement the following technique:.z""51 First values for the parameters &, &, f, A, Tig,
6., O,, ando,;, which describe the means and variances of the radiobiological
characteristics of a population, were selected, as were values for » and 7, which specify
the fractionation regime(s). Also chosen were an appropriate set of dose points, D; with j
= 1 to ndpts, and the number of patients per dose point, npat, contained in the pseudo-
data set. The data set thus consisted of a total of ndptsxnpat patients. A set of
parameters describing the radiation response of each individual patient was generated:
for the i patient these parameters are designated x;, &, B, Ai, Tiggi- The same f§ and Tise
values were used for each patient, while the values of x;, &, and A;, were randomly

sampled from normal distributions described by the population mean and variance
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parameters. Based on each individual’s parameters, the dose delivered and the
fractionation regime, an individual TCP value, TCP;, was calculated with Eq. (5.38). To
simulate statistical fluctuations in the data set, each 7CP; value was compared to a
random number RN; sampled from a uniform distribution defined between zero and one:
the instances where TCP; > RN; were assigned as treatment successes (i.e. tumor
controls), the others as treatment failures. We will designate the number of “controls™
and “failures™ at a given dose point j as ncon; and nfail;, respectively. The TCP at each
point is thus given by TCP,,,(D;) = ncon; / npat j..

Different pseudo-data sets were generated using the sets of parameter values
given in Table 5.2. Though not derived from any particular clinical data set, they
represent plausible radiobiological values; they are similar, but not identical, to those
used by Roberts and Hendry during their preliminary testing of their model. Set #1 is our
“base” set of parameters. The population heterogeneity for this set is characterized by the
values of 6, =2, 6,=0.075 Gy ando,= 0.05 days™. Theo, value is the same as that
assumed by Roberts and Hendry, while the 6, and o, values are somewhat smaller.
However, our 0, and o, values still represent considerable population heterogeneity,
corresponding to a coefficient of variation, CV= x/o, (where x is a parameter), equal to
25 % for both rand A. The parameters of set #2 were chosen to reflect a data set without
population heterogeneity (0,, 6, and o, =0). Sets #3 and #4 are used to explore the
dependence of the fitting results on the LQ model’s Sterm, and differ from set #1 only in
the values of K and . Set #3 assumes no S-mechanism is present, whereas set #4
assumes a much larger £ strength corresponding to an &/ fratio of three, instead of the
value of ten assumed for set #1. The values of x for sets #3 and #4 were decreased and
increased with respect to the x = 16 of set #1 to maintain a similar value of Ds, for a
treatment consisting of 30 fractions in 39 days.

Two types of pseudo-data sets were generated: those including only a single
fractionation regime of n = 30 fractions in T = 39 days; and those consisting of data for

three fractionation regimes — 15, 30, and 45 fractions delivered in 18, 39 and 60 days,

respectively. Note that when there is no variation in the treatment time between the data
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points of a set of TCP data, fits will not be able to discriminate between the X and
a

0) terms in Eq. (5.45). The parameters describing the clonogen number

ag *

4 max(T —T,
a

and repopulation characteristics are thus inherently correlated in this case. For this

reason, when fits were done to the single fractionation sets of pseudo-data, we fixed the
values of A/a and Ty, to zero, which effectively combined these two parameters and

k/a into a single fitting parameter,

’
K K

+ % max(T -T,,.,0). (5.48)

ag >

The data sets with three fractionation regimes were used to investigate how
diversification of the data with respect to the » and T variables affected the fitting results.

These diversified data sets allowed the x/a , A/a , and Tj,, parameters to be treated

independently for fitting purposes.

Except as noted below, the pseudo-data sets were generated assuming a sample
size (npat) of 50 patients at each of the dose points, which were defined at 2 Gy intervals
between 30 and 90 Gy for the single fractionation sets, and 30 to 100 Gy for the multiple
fractionation sets. These dose ranges were selected to generate full TCP curves that had
points covering essentially the entire range of TCP values from 0 to 100 %. An
additional pseudo-data set was also created that had fewer dose points — seven, rather
than thirty-six, for each of the three fractionation regimes — to determine how the results
would change if fits were performed to a more clinically realistic data set. The effect of

sample size was also studied by generating a set with a sample size of 20 patients per

dose point.
Set#| K O « Oz A o7 B Tig
(Gy"H Gy (days) (daysh) (Gy? (days)
#1 16 0.30 0.075 0.20 0.05 0.03 25

2
# |11 0 020 0 0.20 0 0 25
#3 |13 2 030 0075 0.20 0.05 0 25
# 123 2 030 0075 0.20 005 0.0 25

Table 5.2. Radiobiological parameters used to generate the pseudo-data sets employed
in the fitting exercises designed to test the RH heterogeneity model.
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b. Firting Techniques: Maximum-Likelihood and p-values
The fits to the pseudo-data employed a maximum-likelihood fitting
methodology.>>' The specific method, outlined below, is one detailed in the work of

Stavrev er al.” For a given set of fitted model parameter values, p , the corresponding

TCP values, TCP,, (p,D;), are calculated for all dose points D;. In the case of the RH

model, the fit parameters are p= (4, x/a, f/a, A/a, Tug). If it were assumed that

these are the “true” parameters describing the data, the “likelihood” L (i.e. probability)
predicted by binomial statistics of observing the generated pseudo-data set, described by

the ncon; and nfail; values, is

ndpts

L= | B(ncon,,nfail ) TCP,,(p.D,)™ (L-TCP, (5. D))" , (5.49)
J=1
where B(ncon j,nfail ;)= (ncon; + nfail j)!/(ncon ;! nfail ;1) is the binomial coefficient.

According to this method, the set of “best-fit” parameters, p,,, , is the one that maximizes

the likelihood function L. For optimization purposes it is more convenient and

conventional to work with the natural logarithm of this function, InL. Also, since the

ndpts
product of the binomial coefficients, | | B(ncon;,nfail;), represents a common factor in
j=l

Eq. (5.49) that is independent of the parameter values, this factor can be removed and the

function to be maximized can be written as:

ndpts
InL, = 3 ncon, TCP,(5,D,) + nfail, (I~ TCP,,(5.D,)). (5.50)
Jj=l
If an “ideal” fit were achieved, the fitted and data TCP values would coincide exactly, i.e.

TCP, (p,D;)=TCP,,(D;). The log-likelihood function in this case, InL,,, , is:

ndpts
InLy, = Y ncon, TCP,.(D,) + nfail, (L- TCP,.(D,)). (5.51)
Jj=1
A fit deviance parameter, Devy, can be then defined,
Dev, =-2(nL,-InL,,) (5.52)
and used to quantify the quality of the fit. In our fitting technique, minimization of the

Devg, metric was utilized to steer the fits. A Monte Carlo method was used to search the
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parameter space, with the new parameters for each fitting iteration being sampled
randomly from normal distributions centered at the parameter values giving the best fit
up to that point in the optimization. This fitting algorithm was executed using code we
wrote in MATLAB. |
The fit deviance metric is expected to follow an approximate chi-square (zz)
distribution.” Under this assumption, the probability of observing a given Devg, is equal

to the value of the chi-square function, (Dev;,), where v is the number of degrees of |

freedom, and is equal to the number data points minus the number of free fitting

parameters. This then allows Devg; to be related to the p-value metric, defined as

p-value= [z (x)dx (5.53)

Devy,

the probability of finding a Devy;, value larger than the one obtained for the given set of
parameters. The p-value ranges from zero to one, with larger values suggesting a better
fit. Consistent with convention, fits yielding a p-value less than 0.05 are considered
statistically unacceptable.

To test the reliability of the RH model parameter g as a quantitative measure of
the heterogeneity present in a clinical data set, we used the maximum-likelihood fitting
technique described above to fit single sets of pseudo-data multiple times. In this fitting
procedure, u was fixed at a specified value, while the other parameters were treated as
free fitting parameters. This was repeated several times for different fixed values of u to
determine a range of u values for which a fit with a p-value of at least 0.05 could be
found, i.e. u values that satisfactorily describe the given pseudo-data set from a statistical
perspective.

A second type of fitting exercise was also performed to illustrate the presence of
parameter correlations in the RH population model. For this exercise, a large number
(1000) of different sets of pseudo-data were generated for the same set of values for the
population radiobiological parameters (x; & B, 4, Tig, O, O, ando;). Each of these
sets was then fit to the RH heterogeneity model. For the sake of speed and automation in
fitting this number of different sets, we used a built-in MATLAB function for multi-

dimensional minimization (fminsearch) based on a Nelder-Mead simplex search
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method™” to minimize Devg,. In an attempt to assist the routine in finding reasonable fits,
the parameters were constrained to the limits, ue[0.4,40], x’/ae[20,200], and
p/ael0,2]. For each fit, the best-fit parameters and the corresponding value of Devy;
were stored. Since it is not guaranteed that the minimization routine will always return a
suitable fit, those fits returning a Dev, corresponding to a p-value of less than 0.05 were
discarded. The remaining fits were used to form histograms showing the number of fits

returning a best-fit value within a specific range of values for a given parameter.

iv. Results
a. Evaluation of the Validity of the RH Approximation: Comparison of TCPry, TCP)p
and TCP;p

We first examine how closely the Roberts and Hendry closed-form solution,
TCPgry (Eq. (5.45)), reproduces the TCP predictions of the population models involving
explicit one- or three-dimensional integration, TCP;p (Eq. (5.41)) or TCP3p (Eq.
(5.40)), respectively. Roberts and Hendry suggested that the expression in Eq. (5.45) is
valid in cases of high heterogeneity (large ©,). However, as noted by Buffa ez al.”?
explicit ranges of o, for which this reasonably holds were not provided. To illustrate
the limitations of the RH solution, Buffa et al. compared TCP curves calculated using
TCPgry and TCP)p for two values of 6,,0.03 and 0.10. A similar comparison is shown
in Fig. 5.4. For this example, TCP curves were generated for TCPry, TCP,p, and
TCP;p based on the following radiobiological and treatment parameter values: k= 16,
a=0.30Gy', §=0.03 Gy?, A= 0.20 days™, Ty = 25 days, n = 30 fractions, and T =
39 days. A variation in & characterized by 6, = 0.075 Gy was incorporated for all
three TCP models, and additional population variability described by 6, =2 ando ;=
0.05 days™ was also included for the TCP;p curve. Fig. 5.4 shows an appreciable

difference in the shapes of the TCPgry and TCP;3p curves, with a maximum difference of
6.6 % in the TCP predictions. Some of this discrepancy results from the fact that the
RH expression neglects variability in x and A, as illustrated by differences between
TCP;pand TCP;p. However, most of the discrepancy arises from differences between

TCPgry and TCP;p - the maximum difference between these TCP values is 5.5 %. This
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indicates that the RH approximation of the one-dimensional integral may not be

sufficient for this value of o, .

100 |
— 3D Integral
----- 1D Integral
gof RH approx i

601

TCP (%)

40+

20t

0 2 s N i L 3
30 40 50 60 70 80 90
Dose (Gy)

Figure 5.4. Comparison of population model predictions of TCPgy , TCP,p, and TCP3p for a
population characterized by parameter values of x= 16, = 0.30, 8 = 0.03, 2=0.10, T, = 25,
O,=0.075, 0= 2, and g3 = 0.05 for a treatment of n = 30 fractions in 7 = 39 days.

16
w—— = 0.30, Dso= 55

Lo p— a=0.15, D= 55
| eee—e 0= 0.15, 05°=B3

A TCP (%)

. X R 0 , X . . .
0 0.05 G 0.1 0.15 0.2 1 2 3 4 M 5 6 7 8
Figure 5.5. The maximum difference between TCPry and TCP;p , ATCP, as a function of (a) O,

and (b) iz . Curves are generated for three sets of radiobiological parameters corresponding to
different values of o and/or Ds, values. The dash-dotted line demarcating the ATCP =5 % level is

used for reference purposes.

As a means of quantifying the accuracy of the RH approximation, in Fig. 5.5 we

plot the maximum difference between TCPry and TCPp as a function of (a) 6, and

(b) u for values of u ranging from 1.5 (high heterogeneity) to 8 (low heterogeneity).

The TCPry and TCP;p curves were generated for three sets of parameter values. All
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three sets used identical values of 0.03, 0.20, 25, 30, and 39 for the parameters £, 4,
Tiag, n, and T, respectively. For o and k; the first set used values of 0.30 and 16; the
second set used 0.15 and 8, which gave dose response curves with approximately the
same Dsp values (~ 55 Gy) as the first set of parameters; the third set used o= 0.15 and
x = 16, which produced considerably larger Ds, values of ~ 83 Gy.

The curves corresponding to the three sets of parameters show that the error in
TCPry decreases as 0, increases, as expected. The curves describing this decrease as
a function of o, are essentially identical for the first two parameter sets, despite the
fact that the « values differ by a factor of two; in contrast, the error in TCPgy is much
smaller for a given o, for the third set of parameters, corresponding to a larger Dsp.
These results can be explained by examining the approximation in Eq. (5.42) used to
generate the RH solution. As noted by Roberts and Hendry, this approximation

assumes that the individual TCP model -  exp(-expz) with
z= (K—aD—,BDzln+lmax(T—T,ag ,0)) — goes from zero to one over a range of &

values that is small compared to o,. Since the range of z values for which TCPjy
increases appreciably is a constant, Az, and since changes in z are proportional to aD,
the corresponding range of relevant ¢ values, Aa, is proportional Az/D, or simply
1/D (Az being a constant). Thus, very roughly, the appropriate lower limit of o, for
which the RH approximation is reasonable is also proportional to 1/D, but is not
explicitly dependent on the absolute value of . A consequence of this is that the
accuracy of the RH approximation as a function of # (whereu =a/o ) will depend
on the absolute value of > For example, Fig. 5.5(b) illustrates that to ensure that the
maximum difference between TCPry and TCP)p is no more than 5 %, the value of x4
can be as high as ~ 3.6 (i.e. CV =27 %) if = 0.30, but only as large as ~ 1.8 (i.e. CV
=54 %) if o= 0.15 (for the sets with the same Dsp of ~ 55 Gy). In other words, this

suggests that the reliability of the RH approximation will depend to some extent on

how well « is known, and that use of the RH model may only be appropriate for
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populations manifesting large levels of heterogeneity when the true value of « is
relatively small.

Curves depicting the difference between the slope value, 65, predicted by
TCPrgy, as compared to the slope from TCP)p, are shown in Fig. 5.6. These slope errors
are shown for the same three sets of parameters used to generate the results in Fig. 5.5,

and displayed as a function of 6, and p.

Buffa ez al. have suggested a small modification to the Roberts and Hendry
expression that somewhat improves the agreement between the closed-form solution
and the explicit one-dimensional integration.53 These authors also point to an
alternative population TCP model that one of them developed,*® and which they suggest
yields more accurate results. This latter model, however, is more complex
mathematically than the RH solution. Neither this model, nor the proposed

modification of the RH model is analyzed in this work.

35 - 35 s
—— = 0.30, DSO’_' 55 -— = 0.30, DSO= 55 4
3t e = 0.15, DSO=55 § Y Jp— a=0.15.05°=55 /
H —— = 0.15, DSO= 83 aeeae 0= 0.15, DSO= 83 y
,;25 L 4 ';2.5 r P
o S '
X 2f X2
o [=3
> 0
ee) L (=) L
2 15 < 15
1t 1r
05} 05r
0 , . - A
0 0.15 0.2 1 2 3 4 5 6 7 8

Figure 5.6. The difference between the slope (65) of the TCPry and TCP;p curves, 465, as a
function of (a) o, and (b) 4. Curves are generated for three sets of radiobiological parameters
corresponding to different values of a and/or Ds, values. For reference, the 65, values for the
TCP,p curves range from 1.5 to 6.7 %/Gy for x values increasing from 1.5 to 8 for the first set; the
corresponding ranges for the second and third sets are 1.9 - 6.6 and 1.5 - 6.4 %/Gy, respectively.

b. Fits to Pseudo-Data Consisting of One Fractionation Regime
Fits of the RH model to pseudo-data generated for a single fractionation regime
(n = 30, T = 39) using the parameter values of set #1 in Table 5.2 are shown in Fig.

5.7(a). The value of the heterogeneity factor, # = a/o,, , for this pseudo-data is four
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(i.e. CV =25 %). However, if no constraints are put on the free fitting parameters
k'[la (Eq. (548)) and f/a , statistically acceptable fits can be found to this data set
with values for # ranging from almost 0 to 4.3. Depicted in Fig. 5.7(a) are three fitted
curves with u values of four, two, and one that are equivalent to coefficients of
variation of 25, 50 and 100 %, respectively. The three fits thus suggest widely different
degrees of population heterogeneity, yet fit the pseudo-data almost equally well from a
visual perspective. Statistically, it is in fact the fit using the “correct” (i.e. equal to that
used to generate the pseudo-data) value of i = 4 that fits the pseudo-data worst, as this
fit yields a p-value of 0.07 that is appreciably smaller than the values of 0.21 and 0.28
for the £ =2 and u = 1 fits, respectively. If the level of heterogeneity present in the
pseudo-data set is kept the same, but the assumed strength of the S-mechanism is
increased, estimates of u from fits to the pseudo-data are even more uncertain. This
was demonstrated in fits of the RH model to pseudo-data based on parameter set #4,
which assumes the same y = 4 as parameter set #1, but uses f/a = 0.33 instead of
0.10. The range of statistically acceptable i values for this data set was from nearly 0
to 9.7. Fits to this pseudo-data using the RH model with fixed u values of one and
eight are shown in Fig. 5.7(b). These fits yielded particularly high p-values of 0.95 and

0.89.
o pdata (CV=25%): 4.0, 63,0.10 o pdata (CV=25%): 4.0, 86,0.33
1201 — CV-25%: 40, 58,004 I ol — Cv=100%: 10,228,175
——- CV=50%: 20, 88,034 — CV= 13%: 80, 54,000
ums CV=100%: 10,148, 0.94
100t , 100}
:\: 80+ g 80
o o |
S 60} S 60
40t 40
20¢ 201
. . N o . - :
0 40 70 80 90 30 40 70 80 90

60 60
Dose (Gy) Dose (Gy)
Figure 5.7. Fits (lines) of the RH model to pseudo-data (circles) generated for one fractionation
regime and using parameter set (a) #1 and (b) #4, the latter set assuming greater S strength. The
numbers in the legend correspond to the assumed (pseudo-data) or fitted values of the parameters £z,
X'/a, and Sz As shown, fits with very different values for the heterogeneity parameter u can fit the
pseudo-data well. (The fit lines are nearly indistinguishable visually).
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The fits shown in Fig. 5.7 manifest a correlation between the fitting parameters, 4,
k’/e andf/a: the values of x’/a andf/a both increase as i decreases. These

correlations are perhaps more clearly seen in Figs. 5.8 and 5.9. These figures provide
results from the second type of fitting exercise described in the Methods section (Section
5.B.iii), where a large number of different pseudo-data sets, all generated from set #1°s
parameter values, were fit individually. The histograms in Fig. 5.8 show the frequency of
observing a given best-fit value for 2. Although the exact shape of the histogram derived
from this fitting exercise was found to depend somewhat on the start parameter values
used for the MATLAB fitting routine, useful trends in the fits could still be deduced.
First, Fig. 5.8(a) shows that, as implied by the previously discussed results, the best-fit

values of x4 include a large range of values. Fig. 5.8(b) illustrates the correlation between
the heterogeneity factor and the B-strength. Fits returning a small best-fit f/a value
less than 0.10, also yielded u values between about 3.5 and 4.5, near the 4 = 4 of the
pseudo-data itself; f/a values between 0.1 and 0.5 corresponded to £’s of between 1.5
and 3.0; and large f/a values of greater than 0.5 suggested large degrees of
heterogeneity, with u being consistently less than 1.5 for these fits. The correlations
between x’/a and each of the other two fitting parameters are shown in Fig. 5.9. Fits
returning X’/ values less than 60 also gave high u values and f/a values near zero;
when x’/a was greater than 60 but less than 120, z and f/a values were intermediate;
and for large x’/a values greater than 120, 4 was low and f/a was large. The
correlation between k’/c and f/a can be easily explained. Increasing fi/a values will
move a TCP curve towards lower doses, while larger clonogen numbers and/or more
repopulation (i.e. larger k’/a ) will move the TCP curve in the opposite direction towards

higher doses. As noted in the Theory section (Section S.B.ii), the position of 2 TCP curve

is also essentially independent of the heterogeneity parameter . Thus, to correctly fit the
position (i.e. Dsp) of a given set of TCP data, the use of large (small) values for f/a can
be offset by large (small) x’/a values.
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Figure 5.8. Best-fit values of u obtained from fits to a large number of pseudo-data sets. (a)
Histogram showing the frequency of observing given values of & (b) Histogram of x divided into

three sub-groups corresponding to three different ranges of best-fit #/« values. This illustrates the
correlation between the u and f/« fit parameters.
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Figure 5.9. Histograms of the best-fit parameter values of (a) x and (b) f/c, from fits to a large
number of pseudo-data sets. Each histogram is divided into three sub-groups corresponding to three

different ranges of best-fit x”/a values. This illustrates the correlation between x”/a and the other
two fit parameters.

The observed correlation between y and B/« can be elucidated from the equation
for the slope of a TCP curve calculated using the RH model (Eq. (5.47)) -

Osocrity =7_i_ﬁ):0-(l +2§%}. The value of sy, depends explicitly only on the

D5y position of the curve, and on the zand S/« parameters. Increases in either of these

parameters lead to an increased slope value. Thus, a smaller fit value of x can always be

compensated by a larger fit value of S8/ to achieve the actual 8, slope of the clinical
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data being fit: this is why, without placing a constraint on f/a (or x’/a ), essentially no
lower limit was observed for 4 in the fits to individual sets of single-fractionation
pseudo-data. From Eq. (5.47) it is also obvious that the upper limit for z is observed
when f/a = 0. Note that if the actual f/a value inherent in a set of clinical data is
larger, the slope of the TCP curve will also be larger. When fitting the RH model to such
clinical data, the upper limit of acceptable fit 4 values will thus also increase, as observed
in our fitting exercises.

Not only can fits with a population model suggest an incorrect amount of
population heterogeneity when the data does contain heterogeneity, but it is also
possible that fits may suggest population heterogeneity when the data actually has none.
This is evidenced in Fig. 5.10 that shows fits of the RH model to pseudo-data that is
based on set #2’s parameter values, and thus contains no heterogeneity. The three fits
illustrated correspond to significant coefficients of variation of 20, 30, and 40 % (or 4 =
5.0, 3.3, and 2.5). All three fits yield remarkably good p-values of greater than or equal

to 0.50. This result can be explained from the slope equation for the individual Poisson

TCP model (Eq. (5.31)) = ;s =—1-E—12-%a [1+2-§2&). An individual TCP curve (or
n

a curve for a population without heterogeneity) will have a shallow slope if & is small,

and f/a is close to zero. The shallower the slope of individual TCP dose-response

data, the greater the degree of population heterogeneity that could be suggested by fits
to this data using a population model. The value of & = 0.20 used to generate the
pseudo-data represented in Fig. 5.10 is not, it is noted, especially small, yet this data

could be confused with data containing a significant amount of heterogeneity.
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Figure 5.10. Fits (lines) of the RH model to pseudo-data (circles) based on parameter values
(set #2) that describe a population without heterogeneity. The numbers in the legend correspond
to fit values of u, x/, and B/ Fits suggesting considerable population heterogeneity — e.g.
CV's of 20, 30, or 40 % - all describe this data set well (fit lines are nearly indistinguishablie).

There are potential clinical consequences to the apparent inability to distinguish
between population heterogeneity and the strength of the S-mechanism when fitting
clinical data. An example is illustrated in Fig. 5.11, which shows four theoretical TCP
curves calculated using two sets of radiobiological parameters for each of two different
fractionation regimes. The two sets of parameter values are: (i) x= 11.6, 6, =0, a =
0.20, o,=0.05, f=0.008, 1=0, ando; = 0, which correspond to RH model parameters
of =4, f/a =0.04,and x’/a =58; and (i) x=17.6, 6, =0, =0.20, 6,=0.10, =
0.064, 1=0, ando, =0, equivalentto =2, f/a =0.32, and k’/a =88. The two sets
of parameters give nearly identical TCP curves for the first fractionation regime of n = 30
fractions in T = 39 days, but quite different TCP curves for the second regime of n = 45
fractions in T = 60 days. Now, consider the case of a clinical data set where the true
radiobiological characteristics of the patient population are given by the second set of
parameters — g = 2, ff/a = 0.32, and all patients in this data set were treated with
approximately 30 fractions. If this clinical data were fit, and it was mistakenly assumed
that the f/a ratio was low, a “best-fit” might return values similar to the first set of
parameters above — =4, f/a=0.04. Using this fitting result to predict the TCP for a

prolonged treatment having 45 fractions would errantly suggest that, to maintain a TCP

of 80 %, the total dose would have to be increased by only ~ 2 Gy, when in fact it would
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need to be increased by ~ 10 Gy. Of course, failure to adequately increase the dose level

would reduce the expected TCP substantially.

120t u= 4.0, B/o=0.04: 30 fract g
° wu=2.0, f/o=0.32: 30 fract
| —— n=4.0, f/o= 0.04: 45 fract
100, p=2.0, Bl = 0.32: 45 fract _ oo et
I i
g 0'...
& 60 ..". .
= -
40 - 1
20 r .o'. ~
o il . . ( . . .
30 40 50 60 70 80 90 100
Dose (Gy)

Figure 5.11. TCP curves generated for two parameter sets corresponding to different levels of
heterogeneity and S strength, for each of two different fractionation regimes. The curves
illustrate that if fitting to a clinical data set without sufficient diversity with respect to the
number of fractions, the inability to distinguish between the z and f/ex fit parameters would lead
to large uncertainties when predicting the TCP for a different fractionation regime.

c. Fits to Pseudo-Data Consisting of Three Fractionation Regimes

Fits to pseudo-data sets containing data for three fractionation regimes (n = 15,
30, and 45) indicate that, though reduced, the correlation between the x and
[/ parameters is still a problem when fitting more diversified data sets. The results
are shown in Figs. 5.12 and 5.13, and Table 5.3. Fits with g values ranging from 1.4 to
4.9 can be statistically supported when fitting the RH model to the diversified pseudo-
data set generated from parameter set #1. The inclusion of three fractionation regimes
in the data set does allow a lower limit of 4 to be established, in contrast to the fits to
pseudo-data with only a single fractionation regime. Still, the range of 4 is quite large,
suggesting that the coefficients of variation may be as low as 20 %, or as high as 70 %.
A fit corresponding to a CV of 50 % to this pseudo-data with an inherent CV in & of
25% is shown in Fig. 5.12. We also fit this data set using TCP,p, which utilizes an
explicit one-dimensional numerical integration over . It is interesting to note that for
the latter model the range of statistically acceptable y values is considerably larger,

from 1.1 to > 25 (i.e. CV’s of < 4% up to ~ 90 %). This is likely a result of additional
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parameter correlations inherent in this model, which contains one more parameter than
the RH model.

140 - e p-data 15 fract: 4.0, 53, 0.10, 0.67, 25
¢ p-data 30 fract
120- o p-data 45 fract
— fit(CV=50%): 2.0, 82, 0.33, 0.62, 29

30 40 50 60 70 80 90 100
Dose (Gy)

Figure 5.12. Example of a fit using the RH model assuming a CV of u = 2.0 to pseudo-data
generated for three fractionation regimes (z = 15, 30, 45) that inherently contains heterogeneity
characterized by = 4.0. The p-value of the fit is 0.19. The numbers in the legend correspond
to the parameter values u, M, f/a, /o, and Ty,

The impact of the sample size (i.e. number of patients), the number of dose points
in the data set, and the relative strength of the f~mechanism are summarized in Table 5.3.
Reducing the sample size from 50 to 20 patients increased the acceptable range of u
values slightly from [1.4,4.9] to [1.0,5.4]. Decreasing the number of data points had a
larger effect on the reliability of the u value extracted from fits: Fig. 5.13 shows fits
corresponding to the lower and upper limits of the statistically acceptable range of 0.9
and 8.0 for this case. This pseudo-data set with fewer points is more representative of a
real clinical data set, since it covers a TCP range of approximately 30 to 80 % for each
fractionation regime, rather than the 0 to 100 % for the larger data set. The S strength
inherent in the pseudo-data also has a large influence on the range of acceptable u values.

The range increases from [1.4,4.9] to [~0,8.7] when the B/« of the data increases from

0.10 to 0.33. Noteworthy is that when there is a strong B component in the data, the
lower limit of x is no longer well constrained, indicating that fits to such data can
plausibly suggest large degrees of population heterogeneity. When the actual S
component of the data is zero, the heterogeneity factor is constrained to a significantly
smaller range of ux €[1.8,3.9] (i.e. CV of between ~ 26 to 55 %); the range is however,

not negligibly small. The initial fitting exercises undertaken by Roberts and Hendry
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using clinical data assumed a value of # = 0. This is a potential reason why they
extracted values of x with reasonably small uncertainties: uxe[1.5,2.3] and

u €[1.9,4.1] for the two clinical data sets they fit.

140 p-data 15 fract: 4.0, 53, 0.1, 0.67, 25
1 p-data 30 fract
20 o p-data 45 fract
fit (CV = 111%): 0.9,143, 0.84, 0.93, 41
100 fit (CV= 13%): 8.0, 34, 0.00, 0.57, 1
;\j 80
,%_’ 60 -
40-
20-
0
30 40 50 60 70 80 90

Dose (Gy)

Figure 5.13. Fits to pseudo-data (three fractionation regimes, x = 4.0) with a smaller number of
dose points. Statistically acceptable (p-value > 0.05) fits to this data can be found with u values
as low as 0.9 and as high as 8.0. The numbers in the legend correspond to the parameters u,

Ka, fla, Ve, and T
pseudo-data fit
.- parameter Pl fit fit range:
description set # 7, Gy™Y) npat ndpts model P

default data and fit 1 40 0.10 50 108 | TCPry [1.4,4.9]
fit: uses TCP,p 1 40 0.10 50 108 | TCP,p [1.1,25+]
data: smaller npat 1 40 0.10 20 108 | TCPgry [1.0,54]
data: fewer dose pts 1 40 0.10 50 21 | TCPgry [0.9,8.0]
data: no 8 3 40 O 50 108 | TCPgry [1.8,3.9]
data: larger S 4 40 033 50 108 | TCPry [0, 8.7]

Table 5.3. The effect of different variables on the statistically acceptable range of fit values for the
heterogeneity factor u extracted from fits to p seudo-data generated for three fractionation regimes.
The variables investigated are the model (TCP,p or TCPgy) used to fit the pseudo-data, and the
characteristics of the pseudo-data: the number of patients per dose point (npar), the number of data
points (ndpts), and the inherent strength of the S-mechanism.

v. Discussion and Conclusion
A number of conclusions can be drawn from our fitting exercises. First, the

results suggest that use of the Roberts and Hendry model to extract accurate estimates of
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the population heterogeneity inherent in a clinical data set may be error-prone. This
problem is, however, not a unique feature of the RH model, but would also likely plague
any other population model. The reason is that, populations representing very different
radiobiological characteristics can produce data sets that are, within statistical errors,
very similar. This was illustrated, for example, by the fact that TCP curves generated
with the TCP;p model corresponding to very dissimilar amounts of heterogeneity could
adequately describe 2 TCP data set containing data from three different fractionation
regimes. The underlying explanation for this is the correlation between heterogeneity ()
and cellular radiosensitivity (¢ and particularly f) with respect to tumor dose response.
The changes in slope of TCP curves that result from differing amounts of population
heterogeneity can generally also be effected by differing levels of f/a .

An obvious corollary to the first conclusion is that, accurate estimates of §/a can
not be made from fits to clinical data without knowledge of the inherent heterogeneity of
the data set. A similar point was made recently in the work of Carlone et al>* The

relation between heterogeneity and estimates of the ¢/ f ratio is of some current interest.
Typically, it has been assumed that most tumors have an a/f ratio of ~ 10 Gy. There

have been several recent reports that prostate tumors have a low ¢/f ratio (large f/a )
of approximately 3 Gy,55'56 with one report giving a value as low as 1.2 Gy.57'58 Such low
a/ f ratios would make estimation of tumor heterogeneity more difficult. Conversely,
Carlone et al. indicated that population heterogeneity introduces large uncertainties in the
determination of @/ : in their study, the upper 95 % confidence limit for a/f was ~ 7
Gy for the case when the best estimate for this ratio was only 2.5 Gy.

A distinction between heterogeneity and [ strength could be made if the other
fitting parameters were constrained to rather tight limits. Knowledge of the clonogen
number and repopulation characteristics would largely fix the fit value of f/a, which
would in turn constrain . However, constraints on the other parameters would require
accurate in-vitro assays assessing these radiobiological characteristics, and knowledge of
the true relationship between in vitro and in vivo parameter values. Sufficient parameter
constraints can not be imposed simply on the basis of plausibility. This is particularly

true when using a model that is parameterized in terms of ratios of parameters. For
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instance, it is difficult to determine appropriate limits for the parameter x/c . Without a
priori knowledge of @, a range of x/a of e.g. 40 to 180 can not be dismissed as
biologically unreasonable. A value of & = 0.10, would mean that x/a = 180 gives a
clonogen number (V) of 6.6 x 10°, whereas if = 0.30, x/a =40 suggests N= 1.6 x 10°,
which is also credible. As shown in e.g. Fig. 5.7, this range of x/a values admits at least
a four-fold difference in u values, and f/a values that range from nearly zero to about

one.

A familiar conundrum in radiobiological modeling has thus been illustrated: we
would like to be able to extract radiobiological parameter values from clinical data so that
they can be compared to estimates from in vitro assays; however, the unambiguous
extraction of these parameters themselves relies on the use of accurate and representative

in vitro assays.

C. Application of Robust TCP Models Incorporating Tumor Dynamics

to Describe Fractionation Effects
i Introduction

Radiotherapy treatments are fractionated to take advantage of the greater recovery
capabilities of many normal tissues as compared to some types of tumors. Tumor control
probability (TCP) models can be useful in aiding in the design of optimal fractionation
regimes.

The most common TCP models used to predict fractionation effects are based on
use of the linear-quadratic (LQ) model of cell survival in conjunction with a Binomial or
Poisson TCP expression. Frequently, the simplest time-independent variant of the LQ
model assuming complete repair of sub-lethal damage between fractions is applied. If
tumor repopulation is also assumed to be negligible, fractionation effects are then solely

characterized by the familiar @/f ratio. Reliance on such a simple characterization of

fractionation is of course inadequate, however, if the dynamics of cellular repair, and the
processes of repopulation and resensitization (reoxygenation and redistribution) are an

important contributor to fractionation effects.”
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In this work, we seek to elucidate the role of these time-dependent mechanisms in
TCP models, and the predictive capabilities of the LQ model. To this end, we will fit a
diverse set of fractionated dose response animal data published by Fischer and Moulder®
using various TCP models. Specifically, a time-dependent repair expression, a TCP
formulation derived by Zaider and Minerbo® that represents a theoretically robust
treatment of repopulation, and a time-dependent expression describing cellular

radiosensitivity that potentially accounts for reoxygenation effects, will be investigated.

ii. Theory
a. Repopulation: Limitations of the Poisson or Binomial TCP models

As noted in Section 5.A.ii.b, the conventional approach of accommodating
repopulation in TCP models is through use of a simple exponential re-growth term via the

substitution N — N exp(AT)in either of the basic TCP formulations based on Binomial
or Poisson statistics (cf. Eqgs. (5.19) and (5.20)):

TCPyippmias = (1- p,(D ))Nexp(u)

TCPps0n = €Xp(- N exp(AT) p, (D).
(For simplicity, we will ignore the T, parameter in the above and subsequent formulas).
The theoretical weaknesses of this approach have been discussed by Tucker et al®
Tucker ez al. used numerical simulations to show that when repopulation is present, the
distribution of surviving clonogens is not always well described by Binomial (or Poisson)
statistics. The Binomial (or Poisson) formulation will in fact under-predict the true TCP.
The reason stems from the fact that both the Binomial and the Poisson expressions are

founded simply on mean cell survival probabilities ( p,(D)), with the result that the

stochasticity of cell kill and birth in combination is not properly modeled. Implicitly the
Binomial (or Poisson) expression implies that repopulation continues even if all tumor
clonogens are killed (i.e. after tumor control has been achieved).

Results from simulations similar to those done by Tucker et al.®! are depicted in
Fig. 5.14. A population of 10* identical tumors with radiobiological parameter values of
N = 10" initial clonogens, @ = 0.30 Gy, B =0.03 Gy?, and A = 0.17 days™ (potential

doubling time of ~ 4 days) was simulated for a treatment requiring T = 32 days to deliver
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n = 25 fractions of 1.7 Gy dose each. To simulate the stochasticity of cell kill, random
numbers were generated and compared to the mean survival probability to determine if
each remaining clonogen (in each tumor) would survive or be killed after each fraction of
dose delivery. Similar Monte Carlo methods were also used to decide if each surviving
clonogen would repopulate or not on any given day during the treatment. The
distribution of the surviving number of clonogens at the end of treatment for the
simulated population of tumors is compared to the corresponding predictions based on
Binomial statistics in Fig. 5.14(a). The simulation suggests that the TCP, the probability
of observing zero clonogens, is 53 %, which is 10 % higher than the Binomial prediction.

A second problem with the simple Binomial and Poisson TCP expressions is that
they do not allow an evaluation of the TCP at times after treatment. Both these
expressions predict that the TCP will approach zero as T increases towards infinity. In
reality, in the absence of spontaneous tumor recurrence, the TCP should remain constant
after treatment, since once killed, a tumor will remain killed. This is illustrated in Fig.
5.14(b). A simulation identical to the one above, except that the value of T is increased
from 32 to 46 days, suggests the same value of 53 % for the TCP; in contrast, the model
based on binomial statistics predicts a TCP of 0.01 %.

0577 . 1
\ W simulated (b) 0.8 .. ® simulated - - -

s/ @ Binomial - og) |- OBinomial

0771
0.6
0.57¢
0.4’
0.3+
0.2
= 3 . I 0.1

‘ . , ik 0 TN :
0 1 2 3 4 5+ 0 1 2 3 4 5+

no. surviving clonogens no. surviving clonogens

Figure 5.14. Comparison of simulated surviving clonogen distribution and corresponding
predictions of binomial statistics for radiobiological parameter values of N = 10*, = 0.30, 8 = 0.03,
and 4 =0.17, and a treatment of 25 fractions of 1.7 Gy delivered in 32 days. (a) TCP immediately
after treatment: simulated = 0.53, Binomial = 0.43. (b) TCP 2 weeks after treatment: simulated =
0.53, Binomial TCP = 0.

o)
&

fraction of tumors

fraction of tumors
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b. Zaider-Minerbo TCP model: A Robust Method of Including Repopulation

Zaider and Minerbo® derived a TCP expression incorporating repopulation that
accounts for the sto_chasticity of both cell death and birth. Their TCP model is a solution
to the following differential equation®® describing the rate of change in P;, the probability

of i remaining clonogens, when the cell birth and death rates are 4 and &:
— L= -D[AIP_ (1) =i [A+S)P.(1) + (I +D[S]P,, (). (5.54)

The rate of cell death is composed of two terms, é =4, +46,,(?), one each describing

death from natural cell processes () and from radiation-induced damage (J,q4(t)). The
Zaider-Minerbo solution to the differential equation is,

- aN
(2—5M,):
TCP(t)=|1- p,(e : , (3.55)

- ar
1+ A p, (1) e 4 ~onar" ——
’ ‘! p, () |

.

where, 1 is the time from the start of treatment, p,(z) is the probability of cell survival at
time ¢z, and as before, N and A are the initial number of clonogens and the repopulation
rate. Eq. (5.55) is a general expression that can be adapted for any temporal protocol of
dose delivery. In our work, Ref. [14], we use Eq. (5.55) to derive the following
expression applicable to the case of fractionated radiotherapy:

N
p.(T)e'™

n—1 1
[e';-TkH —e Mk ]

In Eq. (5.56), n is the number of fractions, 7 is the time from the start of treatment of the

TCPy, (T,) =|1-

(5.56)

K" fraction, and it is assumed that the rate of natural cell loss (&) is negligible in
comparison to the rate of repopulation. It is important to note that our expression does
not assume that the time interval between all fractions is the same, as is commonly done
in TCP expressions for fractionated radiotherapy. By using the appropriate values for Ty,

Eq. (5.56) will more accurately account for the repopulation that occurs during a realistic
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fractionation schedule, e.g. one fraction per day during weekdays, with a three-day
interval between Friday and subsequent Monday fractions.

Though more complicated, the Zaider-Minerbo TCP model is theoretically more
robust than the Binomial TCP expression. As illustrated in Fig. 5.15, the Zaider-Minerbo
model reduces to the Binomial expression when there is no repopulation, but also predicts
the appropriate deviation from Binomial statistics when repopulation is present. In
addition, it can be shown'* that the Zaider-Minerbo model predicts that the TCP remains
constant at times after completion of treatment (¢t > T},), as desired.

The magnitude of the error in the Binomial prediction of the TCP is depicted in

Fig. 5.16, which plots the difference, TCP,, —TCPp, iy > as a function of A for several

different values of N. This difference was evaluated at the Ds dose for the TCPginomial
curve, which was calculated for each pair of A4 and N values (and fixed values of & =
0.30, f=0.03, n =25, and T =32). The under-prediction of the Binomial TCP model is
most severe for rapidly proliferating tumors with fewer clonogens. Since it has been
shown that the TCP of a larger tumor may be predominantly determined by the
characteristics of a small radioresistant subpopulation within the tumor, the under-
prediction of the Binomial expression may also be relevant for somewhat larger tumors

than strictly implied by Fig. 5.16.
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Figure 5.15. Comparison of Zaider-Minerbo and Binomial TCP model predictions for parameter
values of N = 10°, @=0.30, $=0.03,n = 25, T=32 and (a) A= 0 or (b) 1=0.35.
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Figure 5.16. Magnitude of the error in the TCP based on Binomial statistics. The
difference between the reference Zaider-Minerbo TCP, TCPzy and the Binomial TCP,
TCPg,., is plotted as a function of A for various values of N. TCPzy and TCPp;, are
evaluated at the predicted Ds, dose for the TCPg, Curve.

c. Repair

Cellular repair is incorporated in TCP models via the expression for cell survival,
ps(D). As discussed in Section 5.A.1, the simple time-independent LQ model in Eq. (5.2)
is most commonly used when fitting data for fractionated treatments. To consider the
dynamic nature of repair, the time-dependent incomplete repair LQ expression given in
Eq. (5.6) is an alternative. This expression introduces the additional parameter 7, which

characterizes the rate of repair of sub-lethal damage.

d. Reoxygenation: Incorporation of time-dependent radiosensitivity

Tumor reoxygenation may cause cellular radiosensitivity to vary during the
course of a treatment. In this study, we employ a time-dependent expression for the &
radiosensitivity parameter,

a(t) = g expl—cyt =co12 12) + &, (L~ exp(—cy 1 =212 12)), (5.57)
to account for reoxygenation. The basic assumptions used to derive this expression are as
follows. (A detailed derivation is given in Ref. [63]). The tumor is modeled as
consisting of an inner hypoxic core of cells surrounded by an outer region of oxygenated
tumor cells. It is assumed that the radiosensitivity of the entire tumor is determined by

the value of a(z) of the inner core of cells, with g representing the initial value (value at
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time, ¢ = 0) of this radiosensitivity. A uniform flux of oxygen diffusing from the outer to
inner tumor regions, and a uniform oxygen concentration in the inner tumor core is
assumed. The rate of change in the oxygen concentration of the inner core is then
proportional to the difference in the oxygen concentrations of the inner and outer layers
of the tumor, and is dependent on the permeability between the inner and outer layers. It
is assumed that this permeability constant, &y, Which is determined by the thickness of
the outer tumor layer and the diffusion coefficient of oxygen, increases linearly with

time: K pepy (£) =c; +c5 1. Eq. (5.57) is also based on the further assumptions that the

rate of change in the value of off) is proportional to the rate of change in the oxygen
concentration of the inner region, and that the & values themselves of the inner and outer
tumor regions are proportional to the oxygen concentrations in each region. Since the
oxygen concentration in the outer, fully oxygenated region is assumed to remain constant
(being equal to the concentration outside the tumor), the radiosensitivity of the outer
region is also assumed to have a constant value, designated ;.. The radiosensitivity of
the inner region, of), approaches a maximum value equal to ¢, asymptotically in time
(i.e. as t— o). The biological interpretation of af) — @ is that eventually enough of
the tumor is destroyed to allow the entire tumor to become fully oxygenated. Although
other processes besides reoxygenation (e.g. cell cycle redistribution) may alter cellular
radiosensitivity during a treatment, these additional factors are not investigated in this

work.

iii. Methods
a. Experimental Data

The importance of including different dynamic cell processes — repair,
repopulation, and resensitization — in TCP models used to describe fractionation effects
was studied by fitting experimental in vivo dose-response data for rat rhabdomyosarcoma
tumors (strain BA1112) published by Fischer and Moulder.*> This data offers a number
of advantages for modeling investigations. First, the population heterogeneity that is
present in human clinical data should be largely absent from this animal data set. Since
the rats came from the same genetic strain, it is expected that there will be minimal

variability between the rats with respect to their radiosensitivity characteristics. Further,
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as discussed by Fischer and Moulder, the initial tumor sizes for all the rats were very
nearly the same, since the size of the tumors could be measured. For these reasons, it
should be appropriate to use individual TCP models to fit the data. Thus, much of the
ambiguity of biological interpretation potentially introduced by population heterogeneity
(see Section 5.B) should be avoided.

Also useful is the diversity of the Fischer and Moulder data set. Included is
data for seven different fractionation regimes — 1, 3, 5, 7, 10 15, and 22 fractions
delivered (Monday-Wednesday-Friday) in 1, 5, 10, 15, 22, 32, and 50 days, respectively.
The Dsodoses range from 57 to 118 Gy for these x-ray treatment regimes. An interesting
feature of this data set is an “inverse” dose behavior manifest in the dose-response of the
three and five fraction treatments. Increased fractionation generally leads to an increase
in the dose required to achieve a given level of tumor control. However, the opposite is
true for the three and five fraction schedules, with the three-fraction TCP data lying to the
right (instead of the left) of the data corresponding to five fractions. It is noteworthy that
a similar “inverse” fractionation behavior has also been observed for mouse mammary
tumors by Fowler ez al. $+%°

We fit two different sets of the Fischer and Moulder data: one that excluded the
three fraction data, and thus did not exhibit the inverse fractionation effect; and a second
that included all seven fractionation regimes, and thus did show the effect. As
demonstrated in the Results (Section 5.C.iv), the inverse behavior of the three and five
fraction data could only be satisfactorily described if resensitization was explicitly

incorporated in the TCP model.

b. Firting Technique

For our fitting exercises, TCP models incorporating different combinations of the
repair, repopulation, and resensitization mechanisms were constructed using
combinations of the Binomial or Zaider-Minerbo TCP expressions in conjunction with
various cell survival expressions. For example, to consider only repair processes, the
Binomial TCP expression (Eq. (5.18)) was used with either the complete (Eq. (5.2)) or
incomplete repair (Eq. (5.6)) LQ expressions. Using the Zaider-Minerbo (Eq. (5.56))

model, repopulation was incorporated. Repopulation effects were studied in combination
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with repair, by using one of the aforementioned LQ models, or in isolation, by using a
“single-hit” cell survival model where it is assumed that S is zero. Replacing the
constant ¢ in the single-hit or LQ cell survival expressions with the time-dependent (1),
given in Eq. (5.57) and parameterized by @, &, ¢; and ¢, accommodated potential
resensitization effects.

The same fitting methodology — maximum-likelihood evaluation / Monte Carlo
search — described in Section 5.B.iii.b was implemented here to derive best-fit parameter
values. The quality of each fit was again assessed by calculating a p-value (cf. Eq.
(5.53)), which requires knowledge of the statistics for each data point. However, the
exact number of animals irradiated to each dose was only specified in Ref. [45] for one (5
fraction/10 days) fractionation schedule. An average of 12 rats per point was used for
this five fraction data, and a total of 616 rats at 53 dose points (11.6 per point) were used
for all seven fractionation regimes. Thus, we assumed statistics of twelve rats for each

dose point of the six regimes for which statistics were not explicitly provided.

iv. Results
a. Repair and Repopulation

The effect of repair and repopulation processes on tumor control is clarified by
the fits to the set of data which consists of six fractionation regimes, but excludes the data
from the three fraction schedule. These fits are depicted in Fig. 5.17, with the
corresponding best-fit parameter values presented in Table 5.4. We first fit the simplest
TCP model, the Binomial TCP model without repopulation combined with the LQ
expression assuming complete sub-lethal repair between fractions. This model contains
no time-dependence, with fractionation effects being determined solely by the relative

strength of the B-mechanism (i.e. the @/f ratio) and the number of fractions. It is

obvious both visually (Fig. 5.17(a)) and from the extremely low best-fit p-value of
6 x 10" that this model is unable to describe this fractionated TCP data. The second
model also neglects repopulation, but adds an explicit time-dependence through use of
the LQ-IR expression, which allows for partial repair of sub-lethal damage between
fractions. The fit using this model (Fig. 5.17(b)) was statistically acceptable (p-value =

0.36). However, the corresponding parameter values do not seem biologically realistic.
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The fit suggested a tumor with 2.4 x 10 clonogens, extreme radioresistance as indicated
by the very low values of 5.6 x 10™ Gy™' and 0.0018 Gy™ for & and J3, as well as a very
slow rate of recovery from sub-lethal damage (7= 8.5 days).

The Zaider-Minerbo (ZM) model, which incorporates repopulation, describes the
Fischer-Moulder data very well. In contrast to the fit using the Binomial model without
repopulation, the best-fit parameters from the fit with the ZM model and the LQ-IR cell
survival expression are much more realistic. With the ZM model, the value of N is
approximately fifty times larger, the o value of 0.165 is biologically reasonable, as is the
value of 4 = 0.187, which corresponds to a potential doubling time of 3.7 days. The p-
value of 0.73 for this fit is also somewhat higher. As evidenced by the low value of =
7.7 x 107, this fit also suggests a weak B-mechanism for this tumor type. This result
prompted us to repeat the fit with the ZM model, this time assuming single-hit cell
survival. This “single-hit” fit is nearly identical to the previous fit including the £
mechanism, yielding very similar best-fit values for N, ¢, and A, and a p-value of 0.80
that is in fact slightly higher, resulting from the reduction in the number of free fitting
parameters by two. These results suggest that repopulation, and not repair, is the

dominant determinant of fractionation effects for this tumor type.

N o B A T

TCP model  Description (Gy™") (Gy?)  (days') (days)

p-value

Bin./LQ Repair | 75 052 70x10° =0 =0 62x10
(complete)
- Repair 4 -
Bin/LQR P 230 56x10° 00018 =0 85 036
ZM/LQ-IR  REPAT+ | i066> 0165 77x10° 0.187 34 073
Repop.
ZM/SH R;fl’l‘;‘" 10428 0169 =0 0194 =0  0.80

Table 5.4. Best-fit parameter values corresponding to the fits shown in Fig. 5.17.

A fit (not shown) to this set of data was also performed using a model comprised
of the Binomial TCP expression incorporating repopulation (Eq. (5.19)) and the LQ-IR
survival model. This was done to facilitate a comparison between the conventional

repopulation approach involving the simple substitution N — N exp(A4t), and the more
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theoretically robust approach inherent in the Zaider-Minerbo model. For this particular
case, there was little difference in the two repopulation approaches: the fit with the
Binomial repopulation model gave similar best-fit parameter values, and a p-value of
0.71 that was nearly as good as the ZM fit. Despite the fact that the Binomial approach

may be sufficient in many circumstances, the general applicability of the Zaider-Minerbo

model still makes its use preferable.

TCP (%)
TCP (%)

TCP (%)
TCP (%)

40 60 80 100 120 140

Figure 5.17. Fits (lines) of TCP models to six fractionation regimes (n as indicated in the legend) of
the Fischer-Moulder data (symbols). (a) Binomial TCP /LQ survival: complete sub-lethal repair, no
repopulation. (b) Binomial TCP / LQ-IR survival: partial sub-lethal repair, no repopulation. (c)
Zaider-Minerbo (ZM) TCP/ LQ-IR survival: partial sub-lethal repair, with repopulation. (d) Zaider-
Minerbo TCP / single-hit (SH) survival: no repair, with repopulation.
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In addition to best-fit values, we also determined ranges for the parameters N, ¢,
[, and A that gave statistically acceptable fits, as conventionally defined by a p-value
greater or equal to 0.05. For the purpose of this exercise, the Zaider-Minerbo model with
the complete repair LQ survival expression was used. The ranges are as follows:
Ne[3x10°%,8.4x10°], ae[0.10,0.25], 5€[0,0.0006], and A€ [0.10,0.29]. The
value of £ is constrained primarily by the data corresponding to the regimes with few
fractions. For example, for the acute treatment, the fterm in the LQ expression becomes
very large at the doses involved (Dsp = 57 Gy for the acute treatment) unless 3 is small.

The range of N from our fits is not consistent with the value of log,, N=7.55 £ 0.21

calculated by Fischer and Moulder for their rat tumors. Although only conjecture, one
plausible explanation for the low N values extracted from our fits is that they represent
the number of clonogens from the most radioresistant subpopulation within each tumor.
It would also be of interest to compare our radiosensitivity parameter values to other in
vitro or in vivo estimates. Fischer and Moulder provide in vitro cell survival parameters
for this cell line; however, these parameters are for a multi-target cell survival expression,
and are thus not directly comparable to our LQ parameters. A cell survival curve
generated with the Fischer-Moulder multi-target parameters does seem to suggest a
significantly more curved cell-survival shape, indicative of a relatively stronger £
mechanism than indicated by our fit values. LQ parameters for a tumor cell line
(rhabdomyosarcoma R1H) derived from the BA1112 line used in the Fischer-Moulder
experiments are given in the work of Vogler and Beck-Bornholdt.®® These values are &
= 0.20, B = 0.041 for in vitro cells, and o= 0.010, 8= 0.0081 for in vivo hypoxic cells.
Though likely not directly comparable to the values from the BA1112 tumor line, it is
noteworthy that the in vitro and in vivo estimates differ substantially. A general comment
made by Vogler and Beck-Bornholdt was that in vivo fractionation effects can not likely
be accurately extrapolated from results of in vitro single-dose or split-dose experiments

used to characterize cellular dose response.
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b. Resensitization

The results of fits using the Zaider-Minerbo model to the entire Fischer-Moulder
data set (all seven fractionation regimes), are shown in Fig. 5.18 and Table 5.5. For the
first fit shown (Fig. 5.18(a)), the complete repair LQ model was used, and o was kept
constant with respect to time. The p-value of 0.13 for this fit indicates that it is
statistically acceptable. However, the value is much lower than that obtained for the fit
with the same model to the set excluding the three fraction regime. The reason is that this
model is unable to account for the inverse fractionation behavior expressed by the three
and five fraction regimes — note that the fitted line for the three fraction regime lies to the
left of the five fraction regime, opposite to the trend exhibited by the data. We then used
a model employing the same LQ expression, but with the constant o replaced by the
time-dependent expression for afz) given in Eq. (5.57). As illustrated (Fig. 5.18(b)), the
use of this resensitization expression provides an excellent fit (p-value = 0.79) that now
can describe the inverse fractionation present in the data. The best-fit parameter values
for N and A are smaller, but comparable to those obtained from the Zaider-Minerbo fits to
the reduced (six-regime) data set. The parameters describing of) are & = 0.085 Gy™', o,
=0.136 Gy, ¢;=0 days™, and ¢, = 0.076 days, which produce the curve shown in Fig.
5.18(d). The value of ¢; was fixed to zero for this fit, since fits with ¢; = 0 and those with
c; allowed to vary freely produced nearly identical ofr) curves. The biological
interpretation of the resensitization curve is that initially the tumor radiosensitivity is
dictated by a radioresistant hypoxic core characterized by an & value of 0.085 Gy™. As
the outer layers of the tumor are killed and the previously hypoxic inner regions become
reoxygenated, the value of « increases, reaching a substantially higher value of 0.136
Gy at about day ten, which corresponds to the completion of the five fraction schedule.
After day ten, the fitted value of « plateaus, as would be expected, since no inverse
fractionation effect is evident in the data for the regimes with more than five fractions.

The best-fit value of f = 0.0011 Gy'2 for the resensitization fit (Fig. 5.18(b)) is
still very low, implying an a/fratio of ~ 100, but is larger than the statistically

permissible values obtained by fits to the reduced (six-regime) Fischer-Moulder data set.

In fact, this small S component plays an integral role in the fits to the full (seven-regime)
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data set. This is demonstrated by the fit depicted in Fig. 5.18(c), based on use of a single-
hit survival model incorporating the time-dependent resensitization expression for . In
this case, the fit (p-value = 0.10) is unable to account for the inverse fractionation effect.
It may seem surprising that this apparently insignificant 8 component can significantly
affect the results; however, it is again simply a function of the constraint placed on the fit
by the data from the acute (1 fraction) treatment. As implied by the resensitization
parameter values (see also Fig. 5.18(d)) for the fit with B = 0, the acute treatment
essentially forces a rather large initial value of 0.15 for &z This is also consistent with the
fit in Fig. 5.18(b), where fis allowed to vary freely: the best-fit values of o = 0.085
Gy! and § = 0.0011 Gy combine to produce an “effective” ¢ value (ay+ pDy,) of

approximately 0.15 Gy™'. The fact that the acute treatment is constraining the appropriate
value of Bis also confirmed by another fit (not shown) that was performed to a set of data
which excluded the acute treatment. In this case, the inverse fractionation effect could be
described while assuming single-hit mechanics (ie. f = 0), and suggested a

radiosensitivity that increased from o= 0.078 to &= 0.170.

o A T
TCP model N ( Gy'l) (Glj -2) ( days") (days) p-value
ZM/LQ 5204 0.146 1.5x10% 0.152 =0 0.13
ZM/LQ/Resens. | 4091 0.085-0.136 0.0011 0.149 =0  0.79
ZM/SH/Resens. | 5839 0.151-0.158 =0 0182 =0 0.10

Table 5.5. Best-fit parameter values corresponding to the fits shown in Fig. 5.18
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Figure 5.18. Fits (lines) with the Zaider-Minerbo (ZM) TCP model to all seven fractionation
regimes of the Fischer-Moulder data (symbols). (a) Without resensitization (¢ constant) and LQ cell
survival. (b) With resensitization using time-dependent expression for & (Eq. (5.57)) and LQ cell
survival. (c) With resensitization and single-hit cell survival (8= 0). (d) Radiosensitivity a as a
function of time corresponding to plots in (a), (b), and (c). The radiosensitivity parameters for fit (b),
the only one which can describe the inverse fractionation effect manifest between the three and five
fraction data, are ap = 0.085 Gy, @, =0.136 Gy, ¢, = 0 days™, and ¢, = 0.076 days2.

v. Conclusion

The present work examined the role played by various dynamic tumor processes
(repair, repopulation, and resensitization) in accounting for fractionation effects by fitting
various TCP models to a diverse set of animal data.®® A theoretically robust TCP
expression derived by Zaider and Minerbo was used to study repopulation effects, while

reoxygenation effects were incorporated with an explicit time-dependent expression for
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the radiosensitivity parameter . The results in this study suggested for this tumor type
the presence of only a weak Smechanism, which only had a significant impact on the
description of acute treatments. The observed fractionation pattern of this in vivo data
could not be characterized simply by an @/fratio. Rather, for the multi-fraction

treatments, repopulation seemed to be the dominant factor determining the effect of
fractionation on dose-response. It is also interesting to note that the relative S strength
suggested by our fits to the in vivo data is much smaller than would be predicted from in
vitro experiments. This emphasizes that caution must be exercised when attempting to
predict in vivo fractionation effects from in vitro estimates of the LQ cell survival
parameters. This set of data also manifest an inverse fractionation effect which could be
described by our resensitization model. Our fits suggested a radiosensitivity that
increased during the first few fractions, consistent with an interpretation based on
reoxygenation. Though this resensitization effect may not have a large influence on the
observed dose response of treatments delivered with a large number of fractions, it could
impact treatments that have few fractions, or those (such as brachytherapy) where the

dose is delivered over a relatively short time period.
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Chapter 6: Conclusion

In the first part of this work we have described the development of 2-D and 3-D
pre-treatment procedures for dosimetric verification of IMRT (intensity-modulated
radiotherapy) treatments using an amorphous silicon flat-panel electronic portal imaging
device (EPID). Such procedures are used to identify differences between the predicted
dose distribution calculated by a treatment planning system ( TPS) and the actual dose
delivered, resulting from systematic procedural errors, dose delivery inaccuracies, or TPS
dose calculation errors.

Both the 2-D and the 3-D verification techniques we developed rely on our
deconvolution technique allowing the m easurement o f 2-D p rimary fluence profiles of
IMRT fields with the EPID. To characterize signal spread in the EPID due to radiation
and optical scattering, we used deconvolution kernels derived using Monte Carlo
simulations of dose deposition in the EPID and empirical fitting methods. Relative
fluence profiles measured with the EPID were found to be in very good agreement with
the corresponding measurements of fluence made with a diamond detector. In the 2-D
verification, 2-D beam’s eye view (BEV) dose distributions were generated for each
IMRT field in a treatment by convolving the EPID-measured fluence with a kernel
describing dose deposition in a water phantom. For absolute dose calibration, EPID-
based doses were cross-calibrated with ion chamber measurements made in water. The
beam-by-beam 2-D verifications of three step-and-shoot IMRT treatments using the
EPID were in good agreement with those performed with a similar film-based technique,
with a mean percent difference of 0.3 = 1.0 % (24 fields).

We also developed a complementary 3-D verification technique that provides a
full 3-D dose distribution in the patient anatomy based on EPID measurements. In the
3-D technique, EPID-measured 2-D fluence modulation profiles for each IMRT field are
used as input for the TPS, which then generates the 3-D dose distributions. Verification
is accomplished by comparing the EPID-based 3-D dose distribution to the original
planned dose distribution calculated by the TPS. TLD point dose measurements for an

IMRT irradiation of an anthropomorphic phantom were in good agreement with the
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EPID-based 3-D doses; in contrast, the planned TPS dose under-predicted the TLD
measurement in a high-gradient region by approximately 16 %. Similarly, large
discrepancies between EPID-based and TPS doses were also evident in dose profiles of
small fields incident on a water phantom. These results suggest that our 3-D EPID-based
method is effective in quantifying uncertainties in the dose calculations of our TPS for
IMRT treatments. For three clinical head and neck cancer IMRT treatment plans, our
TPS underestimated the mean EPID-based doses in the critical structures of the spinal
cord and the parotids by approximately 4 Gy (11 — 14 %). Radiobiological modeling
calculations performed with the computational module we developed indicate that such
underestimates may lead to clinically significant under-predictions of normal tissue
complication rates. It is interesting to note that the corresponding 2-D verifications of the
same IMRT treatments were deemed acceptable based on clinical criteria. The 3-D
verification results thus imply that small errors in the 2-D BEV fluence distributions may
in some cases lead to larger than expected errors in the patient 3-D dose distribution.

We have thus developed two EPID-based verification procedures useful in
ensuring the efficacy and safety of IMRT treatments. Our 2-D EPID-based technique is
much more convenient and requires approximately half the time to perform as a similar
film-based one, and for this reason, has replaced it in clinical practice at our clinic (Cross
Cancer Institute (CCI)). Though our 3-D EPID-based technique is not currently utilized
clinically, it also is a potentially valuable quality assurance tool that allows a much more
direct evaluation of the clinical consequence of dosimetric uncertainties in IMRT,
providing information not easily accessible with more conventional 2-D methods.
Additional automation of our 3-D verification, perhaps through use of a different TPS,
would make the 3-D method more attractive as a clinical technique. If either the 2-D or
3-D verification method were to be used in conjunction with IMRT treatments employing
dynamic multi-leaf collimation (DMLC), detector ghosting effects and corrections would
have to be considered in more detail. There are no current plans, however, to employ
DMLC in clinical practice at the CCI. In an extension to this project that is currently
being pursued (by another graduate student), a potential method of facilely incorporating
daily patient positioning errors and internal tumor or organ motion effects in the

estimates of dosimetric uncertainties of IMRT treatments is being investigated.
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Further refinements and extensions of our EPID-based verification methods are
also possible. The results generated in this work were generated using the pencil-beam
convolution dose calculation algorithm of one TPS. Thus, if other TPS’s were available,
further testing could establish how representative the magnitude of the 2-D and 3-D dose
uncertainties we observed are of modern treatment planning systems in general. In
addition, we could investigate the dependence of the verification results on the type of
dose calculation algorithm, by performing verifications with the other dose calculation
algorithm available with this TPS — a collapsed cone algorithm. (This collapsed cone
algorithm is not in clinical use at our institute, which is why we generated our results
with the pencil-beam algorithm.) Perhaps of most current interest would be studies
involving Monte Carlo-based treatment planning systems, which are now becoming
commercially available. Monte Carlo systems directly simulate radiation transport from
the linac target, through the linac head (including the MLC), and into the patient volume
(as characterized by CT data). Thus, their dose calculations should be much more
accurate than convolution/superposition algorithms in regions where charged particle
equilibrium does not exist — e.g. in high-gradient regions or in small IMRT sub-fields.
Also, the uncertainties in the modeling of the incident fluence which appear to hamper
the accuracy of our TPS should be greatly reduced with Monte Carlo systems, provided
the materials and geometry of the linac head and MLC are correctly specified. Thus, it is
hoped that their will be greater consistency between IMRT verification measurements
and TPS calculations when using Monte Carlo systems. This will lead to greater

confidence in treatment planning decisions based on TPS dose distributions.

The second part of this thesis consisted of a number of studies investigating the
application and development of radiobiological models. Radiobiological modeling has a
potentially significant role to play in the optimization, adaptation, and patient-specific
customization of radiotherapy treatments, particularly those involving IMRT. However,
the limited reliability of current radiobiological model predictions severely restricts the
use of such models.

In one of our radiobiological modeling projects, a convenient computational tool

was developed that furnishes current modeling predictions of tumor control probability
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(TCP) and normal tissue complication probability (NTCP) for 3-D dose distributions. In
essence, this tool is designed to amalgamate and make accessible current radiobiological
knowledge as it pertains to treatment planning, and to serve as a useful complement to
clinical experience in treatment plan evaluation. In addition to its use in assessing the
potential clinical significance o f the dose calculation uncertainties assayed by our 3-D
IMRT verification technique, the program has also already been used in a research
capacity at our clinic in studies requiring the retrospective evaluation of treatment plans.
As warranted, additional radiobiological models and clinical databases can be added to
this NTCP-TCP calculation module.

We also conducted more fundamental investigations of issues of recent interest in
radiobiological modeling. In one study, we evaluated a recently proposed TCP model
incorporating population heterogeneity, and used it to illustrate some of the inherent
difficulties in extracting reliable estimates for biological parameters from fits to clinical
data. For example, the results of this analysis suggest that model parameter correlations
make it difficult to discriminate between the level of heterogeneity intrinsic to a clinical
data set and the strength of the f~mechanism of cell kill. Such ambiguities complicate
attempts to extract estimates of the «/f ratio from fits to clinical data, which may be
important if one wishes to use these estimates to predict fractionation effects. In a
separate work, we examined the role of the dynamic processes of repair, repopulation,
and resensitization in TCP models by fitting different variants of TCP models to a diverse
set of fractionated animal dose-response data. To incorporate repopulation effects, we
used a theoretically robust TCP formulation recently derived by Zaider and Minerbo. For
the particular tumor line represented in this data set, the fitting results suggested the
dominance of repopulation in determining the fractionation pattern, and a weak S~
mechanism (relative to the & (or single-hit) mechanism). Since the implied strength of
the f~mechanism is much weaker than would be predicted from in vitro experiments, one
conclusion of this fitting exercise was to re-affirm that in vitro estimates of the linear-
quadratic (LQ) model parameters are not in general sufficient descriptors of fractionation.
We also found that an inverse fractionation behavior manifest in the data for treatments

with a small number of fractions could be accounted for by incorporating resensitization
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(specifically reoxygenation) effects in the TCP model via a time-dependent expression
for the radiosensitivity parameter «.

In general, a main contributor to the unreliability of radiobiological modeling
predictions is the paucity of data, and the lack of diversity and large statistical
uncertainties in the data that does exist. For example, there is still insufficient data
available to draw definitive conclusions about the dose-volume relationships of different
tissues. This is particularly limiting for applications of models to IMRT treatments, since
IMRT dose distributions are characterized by large heterogeneities. Increased archiving
of 3-D dose distributions of treatment plans and corresponding treatment outcomes
should produce more numerous, high-quality treatment databases. Such data-sets will
allow more precise determination of dose-response parameters for various normal tissues
— e.g. n, m, and Dsy for the Lyman model. This will provide clinicians additional
guidance as to appropriate dose tolerance levels.

Acquisition of such “macroscopic” dose-response data, however, essentially helps
enhance the descriptive capabilities of radiobiological models, and usually only with
respect to characterizing population-averaged responses. This is hopefully only a small
first step in the full realization of the potential benefit of radiobiological modeling to
radiotherapy. Greater progress will rely on the development of the predictive capabilities
of models, so that they can be used to customize radiotherapy treatments for individual
patients, and to adapt for changing treatment conditions. This will require a fuller
understanding of radiation response mechanisms, and methods of accurately measuring
the parameters associated with them. However, as illustrated by our investigations,
simple dose-response data is inadequate in this regard, since population heterogeneity
confounds attempts to extract mechanistic model parameters. Further development of in
vitro radiobiological assays is promising, although their use requires establishment of the
relationship between in vitro measurement and in vivo response.

Exploiting the increasing role of various imaging technologies in radiotherapy
provides an alternative (or complementary) approach that may allow direct measurements
of in vivo dose response characteristics,’ which will also enable a more precise
knowledge of the heterogeneity of such characteristics within a population. For example,

the imaging of a patient every day of treatment with an image-guided adaptive
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radiotherapy protocol allows tumor size to. be tracked during the course of treatment.
From this it may be possible to glean information about cellular radiosensitivity or tumor
proliferative capabilities. Even more exciting is the emergence of molecular and
functional imaging modalities,” such as positron emission tomography (PET), and
functional and spectroscopic magnetic resonance imaging (MRI). These modalities can
provide data about tissue functioning and cellular activities, which complement the
anatomical information provided by a conventional imaging modality such as CT
(computed tomography). For instance, it may be possible to predict changes in
radiosensitivity during treatment based on functional MRI images measuring the
oxygenation status of a tumor. Using PET techniques to measure the metabolic activities
of a tumor may provide another means of characterizing in vivo dose response. Further,
it may be possible to identify the types and locations of radiation damage via the imaging
of molecular markers correlated with specific biological processes (e.g. apoptosis,
angiogenesis, metastasis, erc.). Measurements using these and other (e.g. genetic
profiling) emerging technologies should facilitate extraction of biologically-meaningful
parameter estimates that can subsequently be used in predictive models, allowing
radiobiological modeling to play a fruitful role in truly adaptive and individualized
radiotherapy.

References
lCarlone, M., personal communication.

ZRaaphorst, G.P., personal communication (via comments of external thesis review).

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

(page numbers in the brackets at the end of each entry identify the
locations of each reference in the thesis)

Ahnesjo, A. (1991). Dose Calculation Methods in Photon Beam Therapy using Energy
Deposition Kemels. Department of Radiation Physics. Stockholm, Ph.D. Thesis,
Stockholm University. [p. 63]

Alber, M. and F. Nusslin (1999). "An objective function for radiation treatment
optimization based on local biological measures." Physics in Medicine and
Biology 44(2): 479-493. [p. 16]

Almond, P. R,, P. J. Biggs, et al. (1999). "AAPM's TG-51 protocol for clinical reference
dosimetry of high-energy photon and electron beams.” Medical Physics 26(9):
1847-1870. [p. 66]

Alpen, E. (1998). Radiation Biophysics. San Diego, Academic Press. [p. 144]

Alsbeih, G., S. Malone, et al. (2000). "Correlation between normal tissue complications
and in vitro radiosensitivity of skin fibroblasts derived from radiotherapy patients
treated for variety of tumors." International Journal of Radiation Oncology
Biology Physics 46(1): 143-152. [p. 159]

American Association of Physicists in Medicine (2001). AAPM_ TG-50: Basic
applications of multileaf collimators, Madison, Medical Physics Publishing. [p. 7]

Amols, H. I, C. C. Ling, et al. (2003). Overview of the IMRT Process. A Practical Guide
to Intensitv-Modulated Radiation Therapy. Madison, Medical Physics Publishing.
[p- 2]

Antonuk, L. E. (2002). "Electronic portal imaging devices: a review and historical
perspective of contemporary technologies and research.” Physics in Medicine and
Biology 47(6): R31-R65. [p. 9]

Araki, F., R. Ikeda, et al. (2000). "Dose calculation for asymmetric photon fields with
independent jaws and multileaf collimators." Medical Physics 27(2): 340-5. [p.
11]

Azcona, J. D,, R. A. C. Siochi, et al. (2002). "Quality assurance in IMRT: Importance of
the transmission through the jaws for an accurate calculation of absolute doses
and relative distributions." Medical Physics 29(3): 269-274. [p. 7]

Bentzen, S. M. (1992). "Steepness of the Clinical Dose-Control Curve and Variation in
the Invitro Radiosensitivity of Head and Neck Squamous-Cell Carcinoma.”
International Journal of Radiation Biology 61(3): 417-423. [pp. 159, 163]

Bentzen, S. M. (2002). Dose-response relationships in radiotherapy. Basic Clinical
Radiobiology. G. Steel. New York, Oxford University Press. [p. 149]

Bentzen, S. M. and M. Baumann (2002). The linear-quadratic model in clinical practice.
Basic Clinical Radiobiology. G. Steel. New York, Oxford University Press. [p.
145]

Bentzen, S. M. and S. L. Tucker (1997). "Quantifying the position and steepness of
radiation dose-response curves." International Journal of Radiation Biology 71(5):
531-542. [p. 148]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bentzen, S. M. and S. L. Tucker (1998). "Individualization of radiotherapy dose
prescriptions by means of an in vitro radiosensitivity assay.” R adiotherapy and
Oncology 46(2): 216-218. [p. 159]

Bortfeld, T. (1999). "Optimized planning using physical objectives and constraints."
Seminars in Radiation Oncology 9(1): 20-34. [p. 15]

Boyer, A. L., E. B. Butler, et al. (2001). "Intensity-modulated radiotherapy: Current
status and issues of interest." International Journal of Radiation Oncology Biology
Physics 51(4): 880-914. [pp. 2, 3, 5, 15]

Brahme, A. (1984). "Dosimetric precision requirements in radiation therapy.” Acta
Radiologica Oncology 23(5): 379-391. [pp.l, 149]

Brahme, A. (1987). "Design Principles and Clinical Possibilities with a New Generation
of Radiation-Therapy Equipment - a Review." Acta Oncologica 26(6): 403-412.
[p- 2]

Brahme, A . (1988). " Optimization o f S tationary and M oving B eam R adiation-Therapy
Techniques." Radiotherapy and Oncology 12(2): 129-140. [p. 5]

Brahme, A. (1999). "Biologically based treatment planning."” Acta Oncologica 38: 61-68.
[p. 16]

Brahme, A. (1999). "Optimized radiation therapy based on radiobiological objectives.”

. Seminars in Radiation Oncology 9(1): 35-47. [p. 16]

Brahme, A. and A. K. Agren (1987). "Optimal Dose Distribution for Eradication of
Heterogeneous Tumors." Acta Oncologica 26(5): 377-385. [p. 5]

Brenner, D. J. and D. E. Herbert (1997). "The use of the linear-quadratic model in clinical
radiation oncology can be defended on the basis of empirical evidence and
theoretical argument."” Medical Physics 24(8): 1245-1248. [pp. 143, 144]

Brenner, D. J.,, L. R. Hlatky, et al. (1995). "A Convenient Extension of the Linear-
Quadratic Model to Include Redistribution and Reoxygenation.” International
Journal of Radiation Oncology Biology Physics 32(2): 379-390. [p. 147]

Brenner, D. J., L. R. Hlatky, et al. (1998). "The linear-quadratic model and most other
common radiobiological models result in similar predictions of time-dose
relationships.” Radiation Research 150(1): 83-91. [p. 144]

Brenner, D. J., A. A. Martinez, et al. (2002). "Direct evidence that prostate tumors show
high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding
normal tissue.” International Journal of Radiation Oncology Biology Physics
52(1): 6-13. [p. 181]

Brock, W. A,, S. L. Tucker, et al. (1995). "Fibroblast Radiosensitivity Versus Acute and
Late Normal Skin-Responses in Patients Treated for Breast-Cancer.” International
Journal of Radiation Oncology Biology Physics 32(5): 1371-1379. [p. 159]

Bucciolini, M., F. B. Buonamici, et al. (2004). "Verification of IMRT fields by film
dosimetry." Medical Physics 31(1): 161-168. [p. 9]

Budach, W., J. Classen, et al. (1998). "Clinical impact of predictive assays for acute and
late radiation morbidity." Strahlentherapie Und Onkologie 174: 20-24. [p. 159]

Buffa, F. M., S. E. Davidson, et al. (2001). "Incorporating biologic measurements (SF2,
CFE) into a tumor control probability model increases their prognostic
significance: A study in cervical carcinoma treated with radiation therapy.”
International Journal of Radiation Oncology Biology Physics 50(5): 1113-1122.
[pp. 18, 159]

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Buffa, F. M., J. D. Fenwick, et al. (1999). "Concerning Roberts and Hendry IJROBP
1998:41 : 689-699." International Journal of Radiation Oncology Biology Physics
44(3): 737-739. [pp. 169, 171, 172]

Burman, C., C. S. Chui, et al. (1997). "Planning, delivery, and quality assurance of
intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy
for large-scale implementation for the treatment of carcinoma of the prostate.”
International Journal of Radiation Oncology Biology Physics 39(4): 863-73. [pp.
5,7-9]

Burman, C., G. J. Kutcher, et al. (1991). "Fitting of Normal Tissue Tolerance Data to an
Analytic-Function." International Journal of Radiation Oncology Biology Physics
21(1): 123-135. [pp. 116, 117, 129, 135, 137]

Cadman, P., R. Bassalow, et al. (2002). "D osimetric considerations for v alidation of a
sequential IMRT process with a commercial treatment planning system." Physics
in Medicine and Biology 47(16): 3001-3010. [pp. 8, 112, 118]

Carlone, M., personal communication. [p. 208]

Carlone, M., D. Wilkins, et al. (2003). "Comparison of alpha/beta estimates from
homogeneous (individual) and heterogeneous (population) tumor control models
for early stage prostate cancer.” Medical Physics 30(10): 2832-2848. [p. 18]

Carlone, M., D. Wilkins, et al. (2004). "TCP isoeffect analysis using a heterogeneous
distribution of radiosensitivity.” Medical Physics 31(5): 1176-1182. [p. 181]

Chang, J. and C. C. Ling (2003). "Using the frame averaging of aS500 EPID for IMRT
verification." Journal of Applied Clinical Medical Physics 4(4): 287-299. [pp.
37-9]

Chang, J., C. H. Obcemea, et al. (2004). "Use of EPID for leaf position accuracy QA of
dynamic multi-leaf collimator (DMLC) treatment." Medical Physics 31(7): 2091-
2096. [pp. 7, 10]

Chang, J. H., G. S. Mageras, et al. (2001). "An iterative EPID calibration procedure for
dosimetric verification that considers the EPID scattering factor.” Medical
Physics 28(11): 2247-2257. [pp. 10, 92, 93]

Chang, J. W., G. S. Mageras, et al. (2000). "Relative profile and dose verification of
intensity-modulated radiation therapy." International Journal of Radiation
Oncology Biology Physics 47(1): 231-240. [p. 9]

Chao, K. S. C,, D. A. Low, et al. (1997). "Clinical and technical considerations for head
and neck cancers treated by IMRT: Initial experience." International Journal of
Radiation Oncology Biology Physics 39(2): 238-238. [p. 5]

Cheng, J. C. H., J. K. Wy, et al. (2002). "Radiation-induced liver disease after three-
dimenstonal conformal radiotherapy for p atients with h epatocellular ¢ arcinoma:
Dosimetric analysis and implication." International Journal of Radiation
Oncology Biology Physics 54(1): 156-162. [p. 130]

Cheung, R., S. L. Tucker, et al. (2003). "Dose-response for biochemical control among
high-risk prostate cancer patients after external beam radiotherapy.” International
Journal of Radiation Oncology Biology Physics 56(5): 1234-1240. [p. 130]

Convery, D. J. and M. E. Rosenbloom (1992). "The Generation of Intensity-Modulated
Fields for Conformal Radiotherapy by Dynamic Collimation." Physics in
Medicine and Biology 37(6): 1359-1374. [p. 5]

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Corletto, D., M. Iori, et al. (2003). "Inverse and forward optimization of one- and two-
dimensional intensity-modulated radiation therapy-based treatment of concave-
shaped planning target volumes: the case of prostate cancer." Radiotherapy and
Oncology 66(2): 185-195. [p. 3]

Cormack, A. M. (1987). "A Problem in R otation T herapy with X -Rays." International
Journal of Radiation Oncology Biology Physics 13(4): 623-630. [p. 5]

Cormack, A. M. and R. A. Cormack (1987). "A Problem in Rotation Therapy with X-
Rays - Dose Distributions with an Axis of Symmetry." International Journal of
Radiation Oncology Biology Physics 13(12): 1921-1925. [p. 5]

Cozzi, L., F. M. Buffa, et al. (2000). "Comparative analysis of dose volume histogram
reduction algorithms for normal tissue complication probability calculations.”
Acta Oncologica 39(2): 165-171. [p. 124]

Curtis, S. B. (1986). "Lethal and Potentially Lethal Lesions Induced by Radiation - a
Unified Repair Model." Radiation Research 106(2): 252-270. [p. 144]

Dale, R. G., J. H. Hendry, et al. (2002). "Practical methods for compensating for missed
treatment days in radiotherapy, with particular reference to head and neck
schedules.” Clinical Oncology 14(5): 382-393. [p. 17]

Dawson, L. A., D. Normolle, et al. (2002). "Analysis of radiation-induced liver disease
using the Lyman NTCP model.” Intemational Journal of Radiation Oncology
Biology Physics 53(4): 810-821. [p. 130]

Day, M. J. (1950). "A note on the calculation of dose in x-ray fields." British Journal of
Radiology 23(270): 368-9. [p. 11]

De Angelis, C., S. Onori, et al. (2002). "An investigation of the operating characteristics
of two PTW diamond detectors in photon and electron beams." Medical Physics
29(2): 248-254. {p. 33

De Deene, Y., C. De Wagter, et al. (2000). "Validation of MR-based polymer gel
dosimetry as a preclinical three-dimensional verification tool in conformal
radiotherapy.” Magnetic Resonance in Medicine 43(1): 116-125. [p. 8]

De Gersem, W. R. T., S. Derycke, et al. (1999). "Inhomogeneous target-dose
distributions: A dimension more for optimization?" International Journal of
Radiation Oncology Biology Physics 44(2): 461-468. [p. 16]

De Gersem, W. R. T., S. Derycke, et al. (2000). "Optimization of beam weights in
conformal radiotherapy planning of stage III non-small cell lung cancer: Effects
on therapeutic ratio.”" International Journal of Radiation Oncology Biology
Physics 47(1): 255-260. [p. 16]

De Meerleer, G. O., L. Vakaet, et al. (2000). "Radiotherapy of prostate cancer with or
without intensity modulated beams: A planning comparison." International
Journal of Radiation Oncology Biology Physics 47(3): 639-648. [p. 16]

Deasy, J. O. (2000). "Comments on the use of the Lyman-Kutcher-Burman model to
describe tissue response to nonuniform irradiation.” International Journal of
Radiation Oncology Biology Physics 47(5): 1458-1459. [p. 124]

Deasy, J. O., A. Niemierko, et al. (2002). "Methodological issues in radiation dose-
volume outcome analyses: summary of a joint AAPM/NIH workshop." Medical
Physics 29(9): 2109-27. [p. 122]

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dikomey, E., K. Borgmann, et al. (2003). "Why recent studies relating normal tissue
response to individual radiosensitivity might have failed and how new studies
should be performed.” International Journal of Radiation Oncology Biology
Physics 56(4): 1194-200. [p. 159]

Dogan, N., L. B. Leybovich, et al. (2002). "Comparative evaluation of Kodak EDR2 and
XV2 films for verification of intensity modulated radiation therapy.” Physics in
Medicine and Biology 47(22): 4121-30. [p. 9]

Dubray, B. M. and H. D. Thames (1996). "The clinical significance of ratios of
radiobiological parameters.” International Journal of Radiation Oncology Biology
Physics 35(5): 1099-1111. [p. 163]

Eilertsen, K. (1997). "Automatic detection of single MLC leaf positions with corrections
for penumbral effects and portal imager dose rate characteristics." Physics in
Medicine and Biology 42(2): 313-334. [p. 7]

Eisbruch, A., R. K. Ten Haken, et al. (1999). "Dose, volume, and function relationships
in parotid salivary glands following conformal and intensity-modulated irradiation
of head and neck cancer." International Journal of Radiation Oncology Biology
Physics 45(3): 577-587. [pp. 116, 117]

El-Mohri, Y., L. E. Antonuk, et al. (1999). "Relative dosimetry using active matrix flat-
panel imager (AMFPI) technology.” Medical Physics 26(8): 1530-1541. [p. 35]

Emami, B., J. Lyman, et al. (1991). "Tolerance of Normal Tissue to Therapeutic
Irradiation.” International Journal of Radiation Oncology Biology Physics 21(1):
109-122. [pp. 116, 117,129, 137]

Essers, M., R. Boellaard, et al. (1996). "Transmission dosimetry with a liquid-filled
electronic portal imaging device." International Journal of Radiation Cncology
Biology Physics 34(4): 931-941. [p. 11]

Fenwick, J. D. (1998). "Predicting the radiation control probability of heterogeneous
tumour ensembles: data analysis and parameter estimation using a closed-form
expression.” Physics in Medicine and Biology 43(8): 2159-2178. [pp. 159, 172]

Fidanzio, A ., L. A zario, et al. (2000). "P TW-diamond d etector: D ose rate and particle
type dependence.” Medical Physics 27(11): 2589-2593. [p. 33]

Fischer, J. J. and J. E. Moulder (1975). "Steepness of Dose-Response Curve in Radiation-
Therapy - Theoretical Considerations and Experimental Results." Radiology
117(1): 179-184. [pp. 159, 183, 188, 190, 196]

Fowler, J., R. Chappell, et al. (2001). "Is alpha/beta for prostate tumors really low?"
International Journal of Radiation Oncology Biology Physics 50(4): 1021-1031.
[p. 181]

Fowler, J. F. (1989). "The Linear-Quadratic Formula and Progress in Fractionated
Radiotherapy.” British Journal of Radiology 62(740): 679-694. [pp. 145, 147,
148]

Fowler, J. F., J. Denekamp, et al. (1972). "Fractionation with x rays and neutrons in mice:
response of skin and C 3 H mammary tumours." British Journal of Radiology
45(532): 237-49. [p. 189]

Fowler, J. F., J. Denekamp, et al. (1974). "Optimum fractionation in X-ray treatment of
C3H mouse mammary tumours.” British Journal of Radiology 47(563): 781-9.
[p. 189]

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Girinsky, T., A. Bernheim, et al. (1994). "In-Vitro Parameters and Treatment Outcome in
Head and Neck Cancers Treated with Surgery and/or Radiation - Cell
Characterization and Correlations with Local-Control and Overall Survival."
International Journal of Radiation Oncology Biology Physics 30(4): 789-794.
(p. 159]

Glendinning, A. G., S. G. Hunt, et al. (2001). "Recording accelerator monitor units
during electronic portal imaging: application to collimator position verification
during IMRT." Physics in Medicine and Biology 46(6): N159-N167. [p. 9]

Greer, P. B. and C. C. Popescu (2003). "Dosimetric properties of an amorphous silicon
electronic portal imaging device for verification of dynamic intensity modulated
radiation therapy." Medical Physics 30(7): 1618-1627. [p. 47]

Gum, F., J. Scherer, et al. (2002). "Preliminary study on the use of an inhomogeneous
anthropomorphic Fricke gel phantom and 3D magnetic resonance dosimetry for
verification of IMRT treatment plans.” Physics in Medicine and Biology 47(7):
N67-N77. [p. 8]

Gustafsson, A., B. K. Lind, et al. (1994). "A Generalized Pencil Beam Algorithm for
Optimization of Radiation-Therapy." Medical Physics 21(3): 343-357. [p. 5]

Gustavsson, H., A. Karlsson, et al. (2003). "MAGIC-type polymer gel for three-
dimensional dosimetry: Intensity-modulated radiation therapy verification."
Medical Physics 30(6): 1264-1271. [p. 8]

Haikonen, J., V. Rantanen, et al. (2003). "Does skin fibroblast radiosensitivity predict
squamous cancer cell radiosensitivity of the same individual?” International
Journal of Cancer 103(6): 784-788. [p. 159]

Heijmen, B. J. M., K. L. Pasma, et al. (1995). "Portal Dose Measurement in Radiotherapy
Using an Electronic Portal Imaging Device (Epid)." Physics in Medicine and
Biology 40(11): 1943-1955. [p. 11]

Herbert, D. (1997). "Point/counterpoint: The use of the linear-quadratic model in clinical
radiation oncology can be defended on the basis of empirical evidence and
theoretical argument - Comment." Medical Physics 24(8): 1329-1329. [p. 145]

Herman, M. G., J. M. Balter, etal. (2001). "Clinical use of electronic p ortal imaging:
Report of AAPM radiation therapy committee Task Group 58." Medical Physics
28(5): 712-737. [p. 9]

Ibbott, G., A. Nelson, et al. (2002). An anthropomorphic head and neck phantom for
evaluation of intensity modulated radiation therapy.
(http://rpc.mdanderson.org/rpc). [pp. 8, 112]

Jackson, A., G. J. Kutcher, et al. (1993). "Probability of Radiation-Induced
Complications for Normal-Tissues with Parallel Architecture Subject to
Nonuniform Irradiation.” Medical P hysics 20(3): 6 13-625. [ pp. 122, 125,130,
150]

James, H. V., S. Atherton, et al. (2000). "Verification of dynamic multileaf collimation
using an electronic portal imaging device.” Physics in Medicine and Biology
45(2): 495-509. [pp. 7, 9]

Joiner, M. C. (2002). Models of radiation cell killing. Basic Clinical Radiobiology. G.
Steel. New York, Oxford University Press. [pp. 143, 144]

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://rpc.mdanderson.org/rpc

Joiner, M. C. and S. M. Bentzen (2002). T ime-dose relationships: the linear-quadratic
approach. Basic Clinical Radiobiology. G. Steel. New York, Oxford University
Press. [pp. 145, 146]

Jones, L. and P. Hoban (2002). "A comparison of physically and radiobiologically based
optimization for IMRT." Medical Physics 29(7): 1447-1455. [p. 16]

Kal, H. B. and M. P. R. Van Gellekom (2003). "How low is the alpha/beta ratio for
prostate cancer?" International Journal of Radiation Oncology Biology Physics
57(4): 1116-1121. [p. 181]

Kallman, P., B. Lind, et al. (1988). "Shaping of Arbitrary Dose Distributions by Dynamic
Multileaf Collimation." Physics in Medicine and Biology 33(11): 1291-1300.
(p. 51

Kallman, P., B. K. Lind, et al. (1992). "An Algorithm for Maximizing the Probability of
Complication-Free Tumor-Control in Radiation-Therapy.” Physics in Medicine
and Biology 37(4): 871-890. [p. 16]

Kallman, R. F. (1979). "Facts and Models Applied to Tumor-Radiotherapy."
International Journal of Radiation Oncology Biology Physics 5(7): 1103-1109.
[p. 182]

Kapatoes, J. M., G. H. Olivera, et al. (2001). "On the accuracy and effectiveness of dose
reconstruction for tomotherapy.” Physics in Medicine and Biology 46(4): 943-
966. [p. 13]

Kapatoes, J. M., G. H. Olivera, et al. (2001). "A feasible method for clinical d elivery
verification and dose reconstruction in tomotherapy.” Medical Physics 28(4): 528-
542. [p. 13]

Kausch, C., B. Schreiber, et al. (1999). "Monte Carlo simulations of the imaging
performance of metal plate/phosphor screens used in radiotherapy.” Medical
Physics 26(10): 2113-24. [p. 58]

Kawrakow, I. and D. W. Rogers (2002). "The EGSnrc Code System: Monte Carlo
Simulation of Electron and Photon Transport.” NRCC Report PIRS-701, NRC
Canada. [pp. 12, 49]

Keller, H., M. Fix, et al. (1998). "Calibration of a portal imaging device for high-
precision dosimetry: A Monte Carlo study." Medical Physics 25(10): 1891-1902.
[p. 11]

Keller, H., M. K. Fix, et al. (2000). "Theoretical considerations to the verification of
dynamic multileaf collimated fields with a SLIC-type portal image detector.”
Physics in Medicine and Biology 45(9): 2531-2545. [p. 9]

Kendall, D. G. (1948). "On the generalized 'birth and death’ process." Annals of
Mathematical Statistics 19: 1-15. [p. 185]

Khan, F. M. (2003). The Physics of Radiation Therapy. Philadelphia, Lippincott
Williams & Wilkins. [pp. 10, 69, 93]

Kim, J. O., J. V. Seibers, et al. (2002). "A Monte Carlo Model of an Amorphous Silicon
Flat Panel Imager for Portal Dose Prediction." Proceedings of the 7th
International Workshop on Electronic Portal Imaging, Vancouver, Canada.
[pp- 54, 59]

Ko, L., J. O. Kim, et al. (2004). "Investigation of the optimal backscatter for an aSi
electronic portal imaging device.” Physics in Medicine and Biology 49(9): 1723-
1738. [p. 59]

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kutcher, G. J. and C. Burman (1989). "Calculation of Complication Probability Factors
for Non-Uniform Normal Tissue Irradiation - the Effective Volume Method."
International Journal of Radiation Oncology Biology Physics 16(6): 1623-1630.
(p. 124]

Kwa, S. L. S., J. V. Lebesque, et al. (1998). "Radiation pneumonitis as a function of
mean lung dose: An analysis of pooled data of 540 patients." International Journal
of Radiation Oncology Biology Physics 42(1): 1-9. [p. 130, 135]

Lagarias, J. C., J. A. Reeds, et al. (1998). "Convergence properties of the Nelder-Mead
simplex method in low dimensions." SIAM Journal o f O ptimization 9(1): 1 12-
147. [p. 169]

Langer, M., S. S. Morrill, et al. (1998). "A test of the claim that plan rankings are
determined by relative complication and tumor-control probabilities.”
International Journal of Radiation Oncology Biology Physics 41(2): 451-457.
(pp. 16, 122]

Lee, N., C. Akazawa, et al. (2004). "A forward-planned treatment technique using
multisegments in the treatment of head-and-neck cancer." International Journal of
Radiation Oncology Biology Physics 59(2): 584-594. [p. 3]

Levegrun, S., A. Jackson, et al. (2002). "Risk-group dependence of dose-response for
biopsy o utcome a fter three-dimensional c onformal r adiation therapy o f prostate
cancer." Radiotherapy and Oncology 63(1): 11-26. [p. 130]

Litzenberg, D. W., J. M. Moran, et al. (2002). "Verification of dynamic and segmental
IMRT delivery by dynamic log file analysis." Journal of Applied Clinical Medical
Physics 3(2): 63-72. [p. 42]

LoSasso, T. (2003). Quality assurance of IMRT. A Practical Guide to Intensity-
Modulated Radiation Therapy. Madison, Medical Physics Publishing. [p. 7]

Louwe, R. J. W., E. M. F. Damen, et al. (2003). "Three-dimensional dose reconstruction
of breast cancer treatment using portal imaging." Medical Physics 30(9): 2376-
2389. [p. 13]

Low, D. A,, J. F. Dempsey, et al. (1999). "Evaluation of polymer gels and MRI as a 3-D
dosimeter for intensity-modulated radiation therapy.” Medical Physics 26(8):
1542-1551. [p. 8]

Lyman, J. T. (1985). "Complication Probability as Assessed from Dose Volume
Histograms." Radiation Research 104(2): S13-S19. [p. 124]

Mackay, R. 1. and J. H. Hendry (1999). "The modelled benefits of individualizing
radiotherapy patients' dose using cellular radiosensitivity assays with inherent
variability." Radiotherapy and Oncology 50(1): 67-75. [pp. 18, 19, 159]

MacKenzie, M. A., M. Lachaine, et al. (2002). "Dosimetric verification of inverse
planned step and shoot multileaf collimator fields from a commercial treatment
planning system." Journal of Applied Clinical Medical Physics 3(2): 97-109. [pp.
9,62, 63]

Mackie, T. R., T. Holmes, et al. (1993). "Tomotherapy - a New Concept for the Delivery
of Dynamic Conformal Radiotherapy.” Medical Physics 20(6): 1709-1719. [p. 2]

Mackie, T. R., T. W. Holmes, et al. (1995). "Tomotherapy - Optimized Planning and
Delivery of Radiation-Therapy." International Journal of Imaging Systems and
Technology 6(1): 43-55. [p. 2]

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Manser, P., R. Treier, et al. (2002). "Dose response of an A-Si : H EPID on static and
dynamic photon beams." Medical Physics 29(6): 1269-1269. [p. 38]

Martel, M. K., W. M. Sahijdak, et al. (1998). "Fraction size and dose parameters related
to the incidence of pericardial effusions.” International Journal of Radiation
Oncology Biology Physics 40(1): 155-161. [p. 130]

Maryanski, M. J., R. J. Schulz, et al. (1994). "Magnetic-Resonance-Imaging of
Radiation-Dose Distributions Using a Polymer-Gel Dosimeter." Physics in
Medicine and Biology 39(9): 1437-1455. [p. 8]

McCurdy, B. M. C., K. Luchka, et al. (2001). "Dosimetric investigation and portal dose
image prediction using an amorphous silicon electronic portal imaging device."
Medical Physics 28(6): 911-924. [pp. 11, 35, 54, 59]

McCurdy, B. M. C. and S. Pistorius (2000). "A two-step algorithm for predicting portal
dose images in arbitrary detectors." Medical Physics 27(9): 2109-2116. [p. 11]

McDermott, L. N., R. J. W. Louwe, et al. (2004). "Dose-response and ghosting effects of
an amorphous silicon electronic portal imaging device." Medical Physics 31(2):
285-295. [pp. 40,42, 95]

McNutt, T. R., T. R. Mackie, et al. (1996). "Modeling dose distributions from portal dose
images using the convolution/superposition method." Medical Physics 23(8):
1381-1392. [p.p.9, 13]

MDS-Nordion, Helax-TMS Optimization Algorithms (Reference Manual). Veenendaal,
The Netherlands. [pp. 3, 4]

Memorial Sloan-Kettering Cancer Center (2003). A Practical Guide to Intensity-
Modulated Radiation Therapyv. Madison, Medical Physics Publishing. [p. 7]

Menon, G. V. and R. S. Sloboda (2004). "Compensator thickness verification using an a-
Si EPID." Medical Physics 31(8): 2300-12. [p. 11]

Mohan, R., G. S. Mageras, et al. (1992). "Clinically Relevant Optimization of 3-D
Conformal Treatments." Medical Physics 19(4): 933-944. [p. 16}

Mohan, R., X. H. Wang, et al. (1994). "The Potential and Limitations of the Inverse
Radiotherapy Technique." Radiotherapy and Oncology 32(3): 232-248. [p. 15]

Moiseenko, V., J. Battista, et al. (2000). "Normal tissue complication probabilities:
Dependence on choice of biological model and dose-volume histogram reduction
scheme." International Journal of Radiation Oncology Biology Physics 46(4):
983-993. [pp. 16, 122]

Moiseenko, V., T. Craig, et al. (2003). "Dose-volume analysis of lung complications in
the radiation treatment of malignant thymoma: a retrospective review."
Radiotherapy and Oncology 67(3): 265-274. [p. 130, 135]

Munro, P. (1995). "Portal Imaging Technology: Past, Present, and Future." Seminars in
Radiation Oncology 5(2): 115-133. [p. 9]

Munro, P. and D. C. Bouius (1998). "X-ray quantum limited portal imaging using
amorphous silicon flat-panel arrays." Medical Physics 25(5): 689-702.
[pp- 35, 54]

Niemierko, A. and M. Goitein (1991). "Calculation of Normal Tissue Complication
Probability and Dose-Volume Histogram Reduction Schemes for Tissues with a
Critical Element Architecture." Radiotherapy and Oncology 20(3): 166-176.
[p. 124]

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Niemierko, A. and M. Goitein (1993). "Modeling of Normal Tissue-Response to
Radiation - the Critical Volume Model." International Journal of Radiation
Oncology Biology Physics 25(1): 135-145. [pp. 122, 125, 150, 151]

Niemierko, A., M. Urie, et al. (1992). "Optimization of 3d Radiation-Therapy with Both
Physical and Biological End-Points and Constraints." International Journal of
Radiation Oncology Biology Physics 23(1): 99-108. [p. 16]

Nucletron (1998). Helax-TMS Dose Calculation Reference Manual. Veenendaal, The
Netherlands. [p.63]

Okunieff, P., D. Morgan, et al. (1995). "Radiation dose-response of human tumors."
International Journal of Radiation Oncology Biology Physics 32(4): 1227-1237.
[p. 130]

Oldham, M., 1. Baustert, et al. (1998). "An investigation into the dosimetry of a nine-field
tomotherapy irradiation using BANG-gel dosimetry.” Physics in Medicine and
Biology 43(5): 1113-1132. [p. 8]

Oppitz, U., K. Baier, et al. (2001). "The in vitro colony assay: a predictor of clinical
outcome." International Journal of Radiation Biology 77(1): 105-110. [p. 159]

Paliwal, B., W. Tome, et al. (2000). "A spiral phantom for IMRT and tomotherapy
treatment delivery verification.”" Medical Physics 27(11): 2503-2507. [p. 8]

Parsaei, H., E. El-Khatib, et al. (1998). "The use of an electronic portal imaging system to
measure portal dose and portal dose profiles.” Medical Physics 25(10): 1903-
1909. [p. 47]

Partridge, M., M. Ebert, et al. (2002). "IMRT verification by three-dimensional dose
reconstruction from portal beam measurements.” Medical Physics 29(8): 1847-
1858. [pp. 10, 13]

Partridge, M., P. M. Evans, et al. (2000). "Leaf position verification during dynamic
beam delivery: A comparison of three applications using electronic portal
imaging." Medical Physics 27(7): 1601-1609. [p. 7, 9]

Pasma, K. L., M. L. P. Dirkx, et al. (1999). "Dosimetric verification of intensity
modulated beams produced with dynamic multileaf collimation using an
electronic portal imaging device." Medical Physics 26(11): 2373-2378. [p. 9]

Pasma, K. L., M. Kroonwijk, et al. (1998). "Accurate portal dose measurement with a
fluoroscopic electronic portal imaging device (EPID) for open and wedged beams
and dynamic multileaf collimation.” Physics in Medicine and Biology 43(8):
2047-2060. [p. 11]

Ploeger, L. S., M. H. P. Smitsmans, et al. (2002). "A method for geometrical verification
of d ynamic i ntensity m odulated radiotherapy using a scanning electronic p ortal
imaging device." Medical Physics 29(6): 1071-1079. [p. 9]

Press, W. H., B. P. Flannery, et al. (1986). Numerical Recipes. Cambridge, Cambridge
University Press. [pp. 164, 167]

Raaphorst, G.P., personal communication (via comments of external thesis review).
[p.209]

Renner, W. D., M. Sarfaraz, et al. (2003). "A dose delivery verification method for
conventional and intensity-modulated radiation therapy using measured field
fluence distributions.” Medical Physics 30(11): 2996-3005. [p. 13]

Richardson, S. L., W. A. Tome, et al. (2003). "IMRT delivery verification using a spiral
phantom." Medical Physics 30(9): 2553-2558. [p. 8]

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Roberts, S. A. and J. H. Hendry (1993). "The Delay before Onset of Accelerated Tumor-
Cell Repopulation During Radiotherapy - a Direct Maximum-Likelihood Analysis
of a Collection of Worldwide Tumor-Control Data." Radiotherapy and Oncology
29(1): 69-74. [p. 147]

Roberts, S. A. and J. H. Hendry (1998). "A realistic closed-form radiobiological model of
clinical tumor-control data incorporating intertumor heterogeneity." International
Journal of Radiation Oncology Biology Physics 41(3): 689-699. [pp. 19, 159,
160, 162]

Roberts, S. A., J. H. Hendry, et al. (1994). "T he Influence of Radiotherapy Treatment
Time on the Control of Laryngeal-Cancer - a Direct Analysis of Data from 2
British-Institute-of-Radiology Trials to Calculate the Lag Period and the Time
Factor." British Journal of Radiology 67(800): 790-794. [p. 147]

Roesink, J. M., M. A. Moerland, et al. (2001). "Quantitative dose-volume response
analysis of changes in parotid gland function after radiotherapy in the head-and-
neck region." International Journal of Radiation Oncology Biology Physics 51(4):
938-946. [pp. 116, 117, 130]

Rudat, V., A. Dietz, et al. (1999). "Acute and late toxicity, tumour control and intrinsic
radiosensitivity of primary fibroblasts in vitro of patients with advanced head and
neck cancer after concomitant boost radiochemotherapy.” Radiotherapy and
Oncology 53(3): 233-245. [p. 159]

Sachs, R. K. and D. J. Brenner (1998). "The m echanistic b asis o f the ] inear-quadratic
formalism." Medical Physics 25(10): 2071-2073. [p. 144]

Sachs, R. K., P. Hahnfeld, et al. (1997). "The link between low-LET dose-response
relations and the underlying kinetics of damage production/repair/misrepair.”
International Journal of Radiation Biology 72(4): 351-374. [p. 144]

Sachs, R. K., W. F. Heidenreich, et al. (1996). "Dose timing in tumor radiotherapy:
Considerations o f cell number stochasticity.” M athematical Biosciences 138(2):
131-146. [p. 17]

Samant, S. S., W. Zheng, et al. (2002). "Verification of multileaf collimator leaf positions
using an electronic portal imaging device." Medical Physics 29(12): 2900-2912.
[p. 7]

Sanchez-Nieto, B. and A. E. Nahum (2000). "Bioplan: software for the biological
evaluation of radiotherapy treatment plans." Medical Dosimetry 25(2): 71-76.
[p. 122]

Sanchez-Nieto, B., A. E. Nahum, et al. (2001). " Individualization o f d ose prescription
based on normal-tissue dose-volume and radiosensitivity data.” International
Journal of Radiation Oncology Biology Physics 49(2): 487-499. [pp. 122, 159]

Sandilos, P., A. Angelopoulos, et al. (2004). "Dose verification in clinical IMRT prostate
incidents.” Intemnational Journal of Radiation Oncology Biology Physics 59(5):
1540-1547. [p. 8]

Sastre-Padro, M., U. A. van der Heide, et al. (2004). "An accurate calibration method of
the multileaf collimator valid for conformal and intensity modulated radiation
treatments." Physics in Medicine and Biology 49(12): 2631-2643. [p. 7]

Sawant, A., H. Zeman, et al. (2002). "Theoretical analysis and experimental evaluation of
a Csl(TI) based electronic portal imaging system." Medical Physics 29(6): 1042-
53. [p. 9]

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Schilstra, C. and H. Meertens (2001). "Calculation of the uncertainty in complication
probability for various dose-response models, applied to the parotid gland.”
International Journal of Radiation Oncology Biology Physics S50(1): 147-158.
[p. 132]

Scrimger, R., P. Stavrev, et al. (2002). "Physical parameters to describe flow normal
tissue complication probability (NTCP) for parotid gland irradiation with
intensity-modulated radiotherapy (IMRT)." Presented at the Canadian Association
of Radiation Oncologists (CARO) conference, Toronto. [p. 130]

Seppenwoolde, Y., J. V. Lebesque, et al. (2003). "Comparing different NTCP models that
predict the incidence of radiation pneumonitis.” International Journal of Radiation
Oncology Biology Physics 55(3): 724-735. [p. 130, 135]

Severin, D., S. Connors, et al. (2003). "Breast radiotherapy with inclusion of internal
mammary nodes: A comparison of techniques with three-dimensional planning.”
International Journal of Radiation Oncology Biology Physics 55(3): 633-644.
[p. 135]

Sharpe, M. B. and J. J. Battista (1993). "Dose calculations using convolution and
superposition principles: the orientation of dose spread kernels in divergent x-ray
beams." Medical Physics 20(6): 1685-94. [pp. 97, 98]

Sheikh-Bagheri, D. and D. W. Rogers (2002). "Monte Carlo calculation of nine
megavoltage photon beam spectra using the BEAM code."” Medical Physics 29(3):
391-402. [pp. 34, 52, 53]

Siebers, J. V., J. O. Kim, et al. (2004). "Monte Carlo computation of dosimetric
amorphous silicon electronic portal images." Medical Physics 31(7): 2135-2146.
{pp. 10, 54, 87]

Siewerdsen, J. H. and D. A. Jaffray (1999). "A ghost story: Spatio-temporal response
characteristics of an indirect-detection flat-panel imager." Medical Physics 26(8):
1624-1641. [p. 40]

Slonina, D., M. Klimek, et al. (2000). "Comparison of the radiosensitivity of normal-
tissue cells with normal-tissue reactions after radiotherapy.” International Journal
of Radiation Biology 76(9): 1255-1264. [pp. 19, 159]

Soderstrom, S., A. Gustafsson, et al. (1993). "The Clinical-Value of Different Treatment
Objectives and Degrees of Freedom in Radiation-Therapy Optimization.”
Radiotherapy and Oncology 29(2): 148-163. [p. 5]

Stausbol-Gron, B., S. M. Bentzen, et al. (1999). "In vitro radiosensitivity of tumour cells
and fibroblasts derived from head and neck carcinomas: mutual relationship and
correlation with clinical data.” British Journal of Cancer 79(7-8): 1074-1084.
[pp- 19, 159]

Stavrev, P., D. Hrstov, et al. (2003). "Inverse treatment planning by physically
constrained minimization of a biological objective function." Medical Physics
30(11): 2948-2958. [p. 16]

Stavrev, P., A. Niemierko, et al. (2001). "The application of biological models to clinical
data." Physica Medica 17(2): 71-82. [pp. 78, 122, 126, 130, 133, 135, 137, 150,
167, 168]

Stavrev, P., N. Stavreva, et al. (2001). "Generalization of a model of tissue response to
radiation based on the idea of functional subunits and binomial statistics.” Physics
in Medicine and Biology 46(5): 1501-1518. [pp. 125, 151, 164]

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Stavrev, P., B. Warkentin, et al. (2002). "Evaluation of a closed-form tumor control
probability solution.” Medical Physics 29(6): 1294-1294. [p. 21]

Stavreva, N., P. Stavrev, et al. (2002). "Derivation of the expressions for gamma(50) and
D50 for different individual TCP and NTCP models." Physics in Medicine and
Biology 47(20): 3591-3604. [pp. 20, 155]

Stavreva, N., B. Warkentin, et al. (2005). "Investigating the effect of clonogen
resensitization on the tumor response to fractionated external radiotherapy.”
Accepted for publication in Medical Physics. [pp. 21, 187]

Stavreva, N. A., P. V. Stavrev, et al. (2003). "Investigating the effect of cell repopulation
on the tumor response to fractionated external radiotherapy.” Medical Physics
30(5): 735-742. [pp. 21, 128, 146, 185, 186]

Steciw, S., B. Warkentin, et al. (2005). "Three-dimensional IMRT verification with a flat-
panel EPID." Accepted for publication in Medical Physics. [p. 20]

Suit, H., S. Skates, et al. (1992). "Clinical Implications of Heterogeneity of Tumor
Response to Radiation-Therapy." Radiotherapy and Oncology 25(4): 251-260. [p.
159]

Sultanem, K., H. K. Shu, et al. (2000). "Three-dimensional intensity-modulated
radiotherapy in the treatment of nasopharyngeal carcinoma: The University of
California-San  Francisco experience." International Journal of Radiation
Oncology Biology Physics 48(3): 711-722. [p. 3]

Takahashi, S. (1965). "Conformation radiotherapy: Rotation techniques as applied to
radiography and radiotherapy of cancer." Acta Radiologica Supplement(242): i-
42. [p. 5]

Thames, H. D. and J. H. Hendry (1987). Fractionation in Radiotherapy. Philadelphia,
Taylor & Francis. [pp. 146, 147]

Tome, W. A. and J. F. Fowler (2000). "Selective boosting of tumor subvolumes.”
International Journal of Radiation Oncology Biology Physics 48(2): 593-599.
[p- 15]

Travis, E. L. and S. L. Tucker (1987). "Isoeffect Models and Fractionated Radiation-
Therapy." International Journal of Radiation Oncology Biology Physics 13(2):
283-287. [p. 147]

Tsai, J. S., D. E. Wazer, et al. (1998). "Dosimetric verification of the dynamic intensity-
modulated radiation therapy of 92 patients." International Journal of Radiation
Oncology Biology Physics 40(5): 1213-30. [pp. 5, 7-9]

Tucker, S. L., H. D. Thames, et al. (1990). "How Well Is the Probability of Tumor Cure
after Fractionated-Irradiation Described by Poisson Statistics.” Radiation
Research 124(3): 273-282. [p. 183]

van Dyk, J. (1999). The Modern Technology of Radiation Oncology. Madison, WI,
Medical Physics Publishing. [p. 9]

Van Esch, A., T. Depuydt, et al. (2004). "The use of an aSi-based EPID for routine
absolute dosimetric pre-treatment verification of dynamic IMRT fields."
Radiotherapy and Oncology 71(2): 223-234. [p. 10]

Van Esch, A., B. Vanstraelen, et al. (2001). "Pre-treatment dosimetric verification by
means of a liquid- filled electronic portal imaging device during dynamic delivery
of intensity modulated treatment fields.” Radiotherapy and Oncology 60(2): 181-
190. [p. 9]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



van Luijk, P., T. C. Delvigne, et al. (2003). "Estimation of parameters of dose-volume
models and their confidence limits." Physics in Medicine and Biology 48(13):
1863-1884. [p. 18]

Varian Medical Systems (2000). Portal Vision aS500 Rel.6, Reference Manual. Palo Alto,
CA. [pp. 36, 46]

Verellen, D., N. Linthout, et al. (1997). "Initial experience with intensity-modulated
conformal radiation therapy for treatment of the head and neck region."
International Journal of Radiation Oncology Biology Physics 39(1): 99-114.
[p- 5]

Vieira, S. C., M. L. P. Dirkx, et al. (2002). "Fast and accurate leaf verification for
dynamic multileaf collimation using an electronic portal imaging device."
Medical Physics 29(9): 2034-2040. [p. 9]

Vieira, S. C., M. L. P. Dirkx, et al. (2003). "Dosimetric verification of x-ray fields with
steep dose gradients using an electronic portal imaging device." Physics in
Medicine and Biology 48(2): 157-166. [pp. 9, 11]

Vogler, H. and H. P. Beckbornholdt (1988). "Radiotherapy of the Rhabdomyosarcoma
R1h of the Rat - Kinetics of Cellular Inactivation by Fractionated-Irradiation.”
International Journal of Radiation Oncology Biology Physics 14(2): 317-325. [p.
193]

von Wittenau, A. E. S., C. M. Logan, et al. (2002). "Blurring artifacts in megavoltage
radiography with a flat-panel imaging system: Comparison of Monte Carlo
simulations with measurements.” Medical Physics 29(11): 2559-2570. [pp. 56-8]

Wang, J. Z., M. Guerrero, et al. (2003). "How low is the alpha/beta ratio for prostate
cancer?" International Journal of Radiation Oncology Biology Physics 55(1): 194-
203. [p. 181]

Wang, X., S. Spirou, et al. (1996). "Dosimetric verification of intensity-modulated
fields." Medical Physics 23(3): 317-27. [p. 9]

Wang, X. H.,, R. Mohan, et al. (1995). "Optimization of Intensity-Modulated 3d
Conformal Treatment Plans Based on Biological Indexes." Radiotherapy and
Oncology 37(2): 140-152. [p. 16]

Warkentin, B., P. Stavrev, et al. (2004). "A TCP-NTCP estimation module using DVHs
and known radiobiological models and parameter sets." Journal of Applied
Clinical Medical Physics 5(1): 50-63. [pp. 20, 122]

Warkentin, B., S. Steciw, et al. (2003). "Dosimetric IMRT verification with a flat-panel
EPID." Medical Physics 30(12): 3143-3155. [p. 20]

Webb, S. (1994). "Optimum Parameters in a Model for Tumor-Control Probability
Including Interpatient Heterogeneity." Physics in Medicine and Biology 39(11):
1895-1914. [p. 159]

Webb, S. (1998). "Intensity-modulated radiation therapy: Dynamic MLC (DMLC)
therapy, multisegment therapy and tomotherapy - An example of QA in DMLC
therapy." Strahlentherapie Und Onkologie 174: 8-12. [p. 2]

Webb, S., P. M. Evans, et al. (1994). "A Proof That Uniform Dose Gives the Greatest
TCP for Fixed Integral Dose in the Planning Target Volume." Physics in
Medicine and Biology 39(11): 2091-2098. [p. 15]

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



West, C. M. L., S. E. Davidson, et al. (1998). "The intrinsic radiosensitivity of normal
and tumour cells." International Journal of Radiation Biology 73(4): 409-413.
[p. 159]

Willner, J., K. Baier, et al. (2002). "Dose, volume, and tumor control predictions in
primary radiotherapy of non-small-cell lung cancer.” International Journal of
Radiation Oncology Biology Physics 52(2): 382-389. [p. 130]

Wu, Q. W., R. Mohan, et al. (2002). "Optimization of intensity-modulated radiotherapy
plans based on the equivalent uniform dose." International Journal of Radiation
Oncology Biology Physics 52(1): 224-235. [p. 16]

Yang, Y. and L. Xing (2003). "Using the volumetric effect of a finite-sized detector for
routine quality assurance of multileaf collimator leaf positioning." Medical
Physics 30(3): 433-441. [p. 7]

Yang, Y. and L. Xing (2004). "Quantitative measurement of MLC leaf displacements
using an electronic portal image device." Physics in Medicine and Biology 49(8):
1521-1533. [p. 7]

Zagars, G. K., T. E. Schultheiss, et al. (1987). "Inter-Tumor Heterogeneity and Radiation
Dose-Control Curves." Radiotherapy and Oncology 8(4): 353-362. [p. 159]
Zaider, M. (1998). "Sequel to the discussion concerning the mechanistic basis of the
linear quadratic formalism." Medical Physics 25(10): 2074-2075. [p. 144]

Zaider, M. (1998). "There is no mechanistic basis for the use of the linear-quadratic
expression in cellular survival analysis.” Medical Physics 25(5): 791-792. [p. 144]

Zaider, M. and G. N. Minerbo (2000). "Tumour control probability: a formulation
applicable to any temporal protocol of dose delivery." Physics in Medicine and
Biology 45(2): 279-293. [pp. 122, 123,127, 183, 185]

Zeidan, O. A, J. G. Li, et al. (2004). "Verification of step-and-shoot IMRT delivery using
a fast video-based electronic portal imaging device." Medical Physics 31(3): 463-
476. [p. 9]

Zhou, S. M. and L. J. Verhey (1994). "A Robust Method of Multileaf Collimator (MLC)
Leaf-Configuration Verification." Physics in Medicine and Biology 39(11): 1929-
1947. [p. 7]

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



