
University of Alberta

Search, Inference and Opponent Modelling in an Expert-Caliber Skat Player

by

Jeffrey Richard Long

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Jeffrey Richard Long
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or
sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein
before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior written permission.

Abstract

In this dissertation, we investigate the problems of search, inference and opponent modelling in im-

perfect information games through the creation of a computer player for the popular german card

game skat. In so doing, we demonstrate three major contributions to the field of artificial intelligence

research in games. First, we present our skat player Kermit which, using a synthesis of different

techniques, decisively defeats previously existing computer players and displays playing strength

comparable to human experts. Second, we propose a framework for evaluating game-playing algo-

rithms with known theoretical flaws and explaining the success of such methods in different classes

of games. Finally, we enhance Kermit with a simple but effective opponent modelling component

that allows it to adapt and improve its performance against players of differing playing strength in

real time.

Acknowledgements

First and foremost, I would like to acknowledge my supervisor Dr. Michael Buro for his guidance,

support, and innumerable lessons about how to lose to him at skat. Dr. Nathan Sturtevant is also

deserving of my thanks for valuable discussion and advice, as is my fellow student Tim Furtak. I

also express thanks to Nathan Taylor and Ryan Lagerquist for their general work on the skat project

at various points.

I thank also my family for their boundless support and belief in the value of education.

Finally, I would like to thank Shavaun Liss, Ben Willson and many other friends who have

indulged me in my fanatical devotion to game-playing at any point — and even for occasionally

letting me win.

Table of Contents

1 Introduction 1
1.1 Problem Domain . 2
1.2 Contributions . 2

2 Background 4
2.1 Game Theoretic Concepts . 4

2.1.1 Extensive-Form Games . 4
2.1.2 Solution Concepts . 5

2.2 Skat Rules of Play . 6
2.3 Properties of Skat . 10

3 Previous Work in Imperfect Information Games 12
3.1 Contract Bridge . 12

3.1.1 Planning Techniques for Bridge . 12
3.1.2 GIB: A Player for Contract Bridge . 12
3.1.3 The Best Defense Model and its use in Bridge 14
3.1.4 Current Techniques in Computer Bridge 16

3.2 Skat . 16
3.2.1 A Double-Dummy Solver for Skat . 16
3.2.2 The UCT Algorithm . 17

3.3 Poker . 18
3.4 Scrabble . 19
3.5 Kriegspiel Chess . 20
3.6 Hearts and Issues in Multi-Player Games . 20

4 Kermit: An Expert-Level Computer Skat Player 22
4.1 Perfect Information Monte Carlo Search for Cardplay 22

4.1.1 Perfect Information Search Enhancements 23
4.1.2 Search Payoffs . 24

4.2 State Evaluation for Bidding . 25
4.2.1 Learning Table-Based State Evaluations 27
4.2.2 Application to Skat Bidding . 27

4.3 Inference . 31
4.3.1 Inference Formulation . 31
4.3.2 Application to Skat Cardplay . 33

4.4 Kermit Versus the World: Experimental Results 34
4.4.1 Playing Local Tournaments . 34
4.4.2 The International Skat Server (ISS) . 36
4.4.3 Kermit’s Online Play . 36

4.5 Why Kermit? . 37
4.6 Conclusion . 38

5 Why Perfect Information Monte Carlo Search? 39
5.1 Understanding the Failings of PIMC Search . 39
5.2 Understanding the Success of PIMC Search . 43

5.2.1 Motivation . 44
5.3 Methodology . 45

5.3.1 Measuring Properties in Real Games . 46
5.4 Experimental Setup . 46

5.4.1 Synthetic Trees . 46
5.4.2 Experiments on Synthetic Game Trees . 47
5.4.3 Real Games . 50

5.5 Conclusion . 52

6 Inference 54
6.1 Isn’t Inference Just Opponent Modelling? . 54
6.2 Inference and Non-locality . 55

6.2.1 Using Inference to Solve Subgames . 56
6.3 Inference in PIMC Search . 57

6.3.1 Inference in Kermit . 57
6.3.2 Considerations in Inference Design . 58
6.3.3 Learning Features for Inference . 59

6.4 Conclusion . 60

7 Real Time Opponent Modelling in Skat 61
7.1 Background and Motivation . 61
7.2 Methodology . 62

7.2.1 Perfect Information Post-Mortem Analysis 63
7.2.2 Theoretical and Empirical Properties of PIPMA 63
7.2.3 Applying Perfect Information Post-Mortem Analysis to Skat 66

7.3 Experimental Results . 68
7.3.1 Computer Player Tournaments . 68
7.3.2 Online Play . 70

7.4 Conclusion . 70

8 The Investigator’s Graveyard 72
8.1 UCT Search in Skat . 72
8.2 Recursive PIMC Search . 73
8.3 Tracking Bidding Behaviour . 76
8.4 Beyond Threshold Bidding . 78
8.5 Randomized Perfect Information Search . 79
8.6 Conclusion . 79

9 Lessons Learned and Future Work 80
9.1 Lessons . 80

9.1.1 Local Methods and Independence . 80
9.1.2 Understanding Suboptimality . 81
9.1.3 Self-play is Not Enough . 81

9.2 Future Work . 82
9.2.1 Identifying Mistakes . 82
9.2.2 Inference from Cardplay Moves . 82
9.2.3 Iterative Data Generation . 83
9.2.4 Generalizing Synthetic Game Trees . 83
9.2.5 Non-adversarial Domains . 83

9.3 Conclusion . 84

Bibliography 85

The beginning is the most impor-
tant part of the work.

-Plato 1
Introduction

The study of competitive games has been one of the most enduring and challenging problems in the

field of artificial intelligence. In the early 1950’s, pioneering computer scientists such as Turing and

Shannon [39] were already studying the game of chess, and Samuel’s introductory work on check-

ers began later that same decade [36]. These lines of study eventually culminated in the Deep Blue

super computer’s famous defeat of chess Grand Master Kasparov, and in the creation of the program

Chinook which claimed the world championship title in Checkers [37]. A defining characteristic of

checkers, chess and nearly all other games studied for the 40 years following Turing and Shannon’s

work is that they are games of perfect information. A perfect information game is one in which all

players have complete knowledge of the state of the game at all times. By contrast, the study of

games of imperfect information — games in which at least one player does not have full knowledge

of the game state — has lagged behind the study of perfect information games by nearly 50 years.

Only in the late 1990’s did serious work emerge for the game of bridge [15] [41] [9], and poker fol-

lowed as a popular domain of study shortly thereafter [2]. While there has been significant progress

in the past 10 years, the arena of imperfect information games has yet to see the kind of decisive

defeats of human world champions that have occurred in the perfect information domain.

Research in games is often motivated by the claim that games make an ideal testing ground for

more general artificial intelligence techniques. Indeed, games have some attractive features for this

purpose: they have well-defined rules, a finite state and action space, and offer a straightforward way

of measuring performance. This latter feature is particularly important in the context of imperfect

information. Consider real-world adversarial settings that might conceivably be modelled as an

imperfect information game: election strategy, business and investment strategy, or military planning

and counter-insurgency. Often, such environments have uncertainties that will never be resolved

even after the fact, making performance evaluation of any policy a difficult task, and trial-and-error

is typically costly if not impossible. It is therefore all the more useful to be able evaluate techniques

for dealing with these environments in the well-behaved model that games provide.

However it is the belief of this author that games are not solely useful as incubators for ideas

that will some day grow up to be useful in the real world. Games are a real-world domain them-

selves. The commercial success of the video game industry is often used as evidence of this point,

but of course games have played a significant cultural role for centuries before the first computer

was invented. In many ways, games are the mental analog of physical sport. In addition to provid-

1

ing mental exercise and recreation, traditional face-to-face games are often lauded for their social

aspects. However, these same aspects can make them daunting to beginners. Rather than embarass

themselves in front of their peers, many beginning players prefer to learn games playing against a

computer who does not mind if the novice spends some extra time taking their turn (human players,

on the other hand, are rarely so patient). What’s more, the success of computer players in games

is an achievement that even people lacking a scientific or technical background can understand and

with which they can connect and identify. We therefore suggest that games are valuable to artificial

intelligence research both as test-tube and as show-case.

Imperfect information is one important feature that separates games that we know, at least in

general terms, how to approach from those that we do not. Moreover, as imperfect information is a

near-ubiquitous property of real-world scenarios, it is a feature that must be well understood in order

to lift artificial intelligence techniques used in games to other applications. Imperfect information

poses some distinct challenges for decision making agents. One such challenge is how to evaluate

the merits of different actions when the true state of the environment is partially unknown. Another

is determining information that is implicitly conveyed by the actions of other agents in the environ-

ment, and also reasoning about the information conveyed by our own actions. We take some steps

to address both of these challenges over the course of this work.

1.1 Problem Domain

In this dissertation, we study the problem of imperfect information in games through the creation

of an expert-caliber computer player for the game of skat. Skat is a three-player, trick-taking card

game that is similar to bridge, its better known British and North American counterpart. In skat,

players first compete in an auction for the priviledge of becoming the “soloist” while the remaining

two players become joint defenders, and then play out their cards to determine whether or not the

soloist wins her game. We describe skat in much more detail in Chapter 2. For now, it suffices to say

that skat is a challenging domain that exemplifies many of the key aspects of imperfect information

games. Prior to our work here, computer systems existed that could play passably well during the

cardplay portion of skat, but bidding during the auction phase was a major weakness, and no existing

computer skat player could claim comparable playing strength to the level of human experts in terms

of playing the entire game.

1.2 Contributions

Our work described here makes the following three major contributions to the study of imperfect

information games. Each of these contributions has also been published in an associated paper.

• The creation of an expert-level computer skat player. We construct a computer player for

the game of skat that decisively defeats previous computer players and plays at approximately

2

the same level as expert humans. A combination of three core aspects — game-tree search,

state evaluation and inference of hidden information — are used to achieve this performance.

We describe the different techniques used to create each one. This work has been published

by Buro et al. [4].

• A framework for understanding suboptimal solution methods. A key contributor to our

program’s strength is an algorithm known as Perfect Information Monte Carlo (PIMC) search.

Although it has often produced strong results in imperfect information games, PIMC search

is a suboptimal solution technique with known theoretical flaws. We present a framework for

understanding and analyzing the success of PIMC search, and for predicting classes of games

where such a method is likely to be successful. This work has been published by Long et al.

[26].

• A simple technique for adaptive opponent modelling in real time. Computing a strong,

static solution to a complex imperfect information game is challenging, but creating a dynamic

player that adapts to exploit its opponents’ weaknesses in real time is perhaps harder still. We

present an enhancement to our skat player that allows it to adapt to individual opponents.

Although our player only adapts one simple aspect of its behaviour, it is able to do so in real

time after only a very small number of encounters with an opponent. This adaptation results in

substantial gains against some opponents without compromising playing strength in self-play.

This work has been published by Long and Buro [27].

The remainder of this document is organized as follows. Chapter 2 presents a brief review of

game theoretic terms and notation, and a detailed overview of the game of skat. Chapter 3 reviews

previous work and existing techniques for playing imperfect information games. Chapter 4 describes

the first of our main contributions, the construction of our expert-level computer player Kermit.

Chapter 5 describes our framework for analyzing the success of PIMC search. Chapter 6 is devoted

to discussion and analysis of the problem of inference as it relates to imperfect information games

— the content of this chapter has not previously appeared outside of this dissertation. Chapter 7

presents our real-time opponent modelling technique. Chapter 8 gives an overview of an assortment

of techniques that we investigated but that failed to produce significant successful results. These

ideas may be of interest for the purpose of future work, or perhaps just as cautionary tales. Like

Chapter 6, this content has also not been published. Finally, Chapter 9 concludes the dissertation.

3

Oh the places you’ll go! There is
fun to be done! There are points
to be scored. There are games to
be won.

-Theodor Geisel, alias Dr. Seuss 2
Background

In this chapter, we first review basic game theoretic concepts and terminology that will be used

throughout this document. We then outline the rules of the game of skat, our primary application

domain, and then provide an analysis of why skat is an interesting game to study.

2.1 Game Theoretic Concepts

2.1.1 Extensive-Form Games

An extensive-form game is a formal, general model of a multiagent decision-making environment.

It is computationally convenient for modelling environments where agents take actions in turn, as

the action sequence is represented explicitly. An extensive-form game G consists of the following

components:

• A finite set P of N rational players.

• A tree T consisting of a set of states S and a set of actions A that define transitions between

states. This is often called the game tree.

• A set of terminal states, Z.

• Each terminal state s ∈ Z has an associated N -tuple of payoffs, denoting the utility that each

player p ∈ P will receive in that state. We expect that the goal of each player is to maximize

her own utility in the game.

• A partition of the game’s non-terminal states into N + 1 subsets (some of which may be

empty), indicating the player to act in each non-terminal state. Player N + 1 is a special

player called Chance whose strategy is fixed and known to all players.

• A further partitioning of the states belonging to each player pi into information sets, Ii. Let

Ii ∈ Ii be an information set belonging to player pi ∈ P . Then for any two states s ∈ Ii and

s′ ∈ Ii, the player pi is unable to distinguish s from s′ and must therefore act identically in

both states.

Within this formal model, player pi selects her actions according to her strategy, σi. σi is a

mapping from each information set Ii to a probability distribution over all the actions available in

4

Ii. We call σi a pure strategy if the probability it assigns to playing any action in any information

set is either 0 or 1. In other words, if player i is playing a pure strategy, then given the moves of

the other players (including chance), player i’s actions are entirely deterministic. We call σi a mixed

strategy if for at least one action a for some information set Ii, σi assigns to a a probability in the

interval (0, 1). In such instances, player i is assumed to throw a random number “in her head” to

select her action and thus will sometimes make different moves in identical situations.

It is worth noting that certain types of extensive form games have commonly used special names

based on their properties. We list some of these below.

• A perfect information game is a game that can be represented in such a way that the number

of game tree states in every information set is exactly one. An imperfect information game

contains at least one information set of size greater than one.

• A deterministic game is one in which the special player Chance plays no actions, although we

note that the outcome of such games can be non-deterministic since players are permitted to

play mixed strategies. A stochastic game is one in which the Chance player plays at least one

action somewhere in the game tree.

• A multi-player game is commonly used to refer to a game with more than two players.

• A finite game is one in which the game is guaranteed to reach a terminal state in a finite

number of moves.

• A zero-sum game is a game in which at every terminal state, the sum of the payoffs for all

players is zero. The term constant-sum game is used to describe a game where the payoffs

for all players always sums to the same constant; however since payoffs can always be nor-

malized, a constant-sum game can be equivalently represented as a zero-sum game. Zero-sum

game will thus be the term of choice used in this document.

2.1.2 Solution Concepts

In the setting of a formal game, we are often interested in the question of “how should a player act

so as to maximize her expected payoff?” The most common game theoretic answer to this question

is that players should aim to play a Nash equilibrium. A strategy profile σ (specifying a strategy

σi for each player i) is said to be in equilibrium if no player can improve her expected payoff by

unilaterally changing her individual strategy, σi.

As proven by Nash, at least one (and often, many more than one) Nash equilibrium exists for

every finite game with perfect recall so long as mixed strategies are allowed [30]. In the special case

of two-player, zero-sum games, equilibrium strategies have some important properties that make

them especially attractive as a solution concept. In a two-player, zero-sum game, if the strategy pair

(σ1, σ2) is an equilibrium, and the strategy pair (σ′1, σ
′
2) is an equilibrium, then (σ1, σ

′
2) and (σ′1, σ2)

5

are also in equilibrium. In other words, in this special setting, equilibrium strategies for individual

players are fully interchangeable and may be mixed and matched without changing the expected

outcome of the game for either player. This property does not necessarily hold in non-zero-sum

games or games with more than two players.

Numerous methods for finding Nash equilibria exist, the Lemke-Howson algorithm being among

the most common [24]. Such methods traditionally require that the game being solved be repre-

sented in its normal form, an N -dimensional matrix where each matrix entry represents the terminal

payoffs that are obtained by each player playing a single pure strategy. The size of this matrix is

exponential in the size of the game tree (which is itself usually very large). In 1994, Koller et al.

presented a solution technique that allows for a linear, rather than exponential, representation of the

game tree [22], and in 2008, Zinkevich et al. proposed Counterfactual Regret minimization (CFR),

which further reduces the memory requirements of finding equilibria to be linear in the number of

information sets, as opposed to game states [50]. Due to these advances, the size of games that can

be efficiently solved has increased drastically in recent years; current techniques can solve games of

approximately 1012 game states, although these are typically limited to two-player, zero-sum games.

We will discuss these and other techniques further in Chapter 3.

Finally, we should note that playing (or attempting to play) an equilibrium strategy may not

always be desirable, even in zero-sum two-player games. While an equilibrium guarantees the best

possible “worst-case” payoff against strong opposition, it does not necessarily benefit from mistakes

by the opponent. In fact, depending on the structure of the game, an equilibrium strategy may be

so “defensive” that it becomes difficult or even impossible for an opponent to make a mistake in the

first place.

2.2 Skat Rules of Play

In Germany and its surrounding regions, skat is the card game of choice, boasting over 30 million

casual players and more than 40,000 players registered in the International Skat Player’s Association

(ISPA) http://www.ispaworld.org/. Although much less prevalent than contract bridge in the

English-speaking world, there are nevertheless skat clubs in most major Canadian cities.

Skat is a trick-taking card game for three players. It uses a “short” 32-card playing deck, similar

to the standard 52-card playing deck except all cards with numeric value two through six have

been removed from each of the four suits. The game is played over a series of independent hands;

typically, hands are grouped into sets of 36 which are known as lists. Each player’s objective is

to maximize the number of points she makes over all her hands. A hand begins with each of the

three players being dealt ten cards. The remaining two cards are called the skat, and are set aside

for later without being examined by any player. The ordering of the players is also important; the

player to the dealer’s left is called the “forehand” player, with the remaining players being called

“middlehand” and “rearhand” respectively (rearhand is also normally the dealer as well).

6

Figure 2.1: Ranking of cards in the trump suit.

Figure 2.2: Ranking of cards in non-trump suits.

Figure 2.3: ‘Standard’ card ordering, used in null games.

Once the players have been dealt their cards, the remainder of the hand consists of two phases.

The first is the bidding phase, in which players compete to be the “soloist” of the hand, a position

analogous to the declarer in bridge. Unlike bridge, there are no permanent alliances of players

between hands, but the two players who lose the bidding will become partners for the remainder of

the current hand. The relative ranking of cards also differs from bridge; in particular, the four Jacks

are generally special cards and make up the highest-ranked trump cards in the game, and are usually

a member of the trump suit, rather than the suit depicted on the card. In addition, the rank of the

Jacks relative to each other is fixed, with the clubs Jack being the highest rank, followed by spades,

hearts and diamonds in that order. Within suits, the ranking of cards is slightly altered from the

standard ordering, with the Ten ranking just below the Ace and ahead of the King. These rankings

are depicted in Figure 2.1 for the trump suit and Figure 2.2 for non-trump suits. In certain special

instances, however, the rankings of the cards reverts to “standard” bridge ordering, which we depict

in Figure 2.3. We will discuss how to determine which ranking to use after describing the bidding

process.

Players make bids in terms of a numeric game value. If a player places a bid of B, it is akin to

saying “If I win the bid, I will announce a game of value at least B”. Calculating the value of the

game relies on two factors: a base value that depends on the game type that the soloist eventually

announces, and a multiplier, which depends largely on which Jacks the soloist is holding. The final

7

Forehand

RearhandMiddlehand

(Dealer)

Answer

Bid

Winner

Bid

Answer

Figure 2.4: The bidding sequence in skat. First middlehand bids with forehand, then rearhand
continues the bidding with the winner of the two.

game value is obtained by simply multiplying these two factors together. Players place bids in a fixed

order depending on their position. Middlehand starts the bidding by announcing a bid B. Forehand

then responds with either “yes”, indicating she will also play a game of at least value B, or “pass.”

If forehand said “yes”, then middlehand either announces a higher bid, or passes. In either case,

when one player has passed, rearhand continues the bidding by assuming the role of announcing the

bids, while whichever of forehand or middlehand remains answers either “yes” or “pass” to each

one. Whichever player does not pass during this process becomes the soloist, or declarer, while the

other two players form a temporary alliance and are now called the defenders. This bidding process

is graphically depicted in Figure 2.4.

Once the bidding is over, the soloist has the option to pick up the skat — the two cards which

were set aside at the beginning of the hand. If she does so, she may take the two cards into her hand,

and then discard any two cards that she likes (including one or both of the cards she just picked up).

These discarded cards are considered to have been ‘won’ by the soloist for purposes of determining

who will win the hand. If the soloist opts not to pick up the skat, she is playing a hand game, which

increases the multiplier to her game value by one.

After either picking up the skat and discarding cards or opting to play a hand game, the soloist

then announces the game type. There is one game type for each of the four suits (diamonds, hearts,

spades and clubs), with base values of 9, 10, 11 and 12 respectively. These together are referred

to as suit games. Other game types include grand, with a base value of 24, and null, with a base

value of 23. Null games are special, however, in that they have no multiplier to their base value. A

null-hand game, where the soloist opted not to pick up the skat, is worth 35, and null-ouvert, where

the soloist lays his cards on the table for the defenders to see, is worth 46. Finally, the soloist may

8

Table 2.1: Base game values for different skat game types.
Game Type Base Value
♦ 9
♥ 10
♠ 11
♣ 12
Null 23
Grand 24
Null-hand 35
Null-ouvert 46
Null-ouvert-hand 59

play null games both ouvert and hand, which has a value of 59. These game values are summarized

in Table 2.1.

In any game except null games, the four Jacks are considered the highest trump cards and are a

member of the trump suit. In grand games, the Jacks are the only trumps; in suit games, all cards

of the named suit are trump as well. In null games, however, there are no trumps and the card ranks

revert to their “standard” ordering. In non-null games, the trump cards held by the soloist determine

her game value multiplier. If the soloist is holding the Jack of clubs, she counts the number of

consecutive trumps she holds in descending order of rank and adds 1 to the total to get her final

game value multiplier. An example of this is shown in Figure 2.5. If she is not holding the Jack of

clubs, she counts how many consecutive trumps she is missing from the top, and again adds one to

obtain her game value multiplier. An example of such a hand is shown in Figure 2.6.

Figure 2.5: This hand contains the clubs and spades Jacks, but is missing the hearts Jack. Therefore,
we say this hand is “with two” for a final game multiplier of three.

Figure 2.6: This hand is missing the clubs Jack, but contains the spades Jack. Therefore, we say this
hand is “without one” for a final game multiplier of two.

9

Once the soloist has chosen the game type, the cardplay phase of the game begins. This phase

takes place over a series of 10 tricks, with each player playing one card per trick. The player leading

the trick may play any card in her hand; the other players must then follow suit if they are able to

do so. If unable to follow suit, the other players may play any card. If one or more trump cards

are played, the trump with the highest rank takes the trick; otherwise, the card with the highest rank

in the suit that was originally lead takes the trick. The player seated in forehand always leads the

first trick, regardless of who won the bidding, and afterwards each trick is lead by the winner of the

previous trick.

The objective of the soloist during cardplay is to take 61 out of 120 available card points. These

points are completely distinct from the value of the game that was used for bidding. Each card is

worth a fixed number of card points: Aces are worth 11, Tens are worth 10, Kings are 4, Queens are

3 and Jacks are 2. All other cards are of no value. If the soloist succeeds in taking 90 card points,

she is said to have played the opponents “schneider” and may add one to her game value multiplier.

Again, null games are an exception, where card points are irrelevant and the soloist’s objective is to

lose every trick. If the soloist fulfills these objectives, then at the end of the hand she receives points

equal to the value of the game she ended up playing, so long as this value is greater than or equal

to her bid in the auction phase. If she fails, then she loses double the value of the game that was

played. In most tournament and club settings, soloist wins are worth an additional constant bonus

of 50 points, and soloist losses are given an additional 50 point penalty. Finally, if the soloist loses

the hand, then the defenders score a small, constant number of game points — 40 or 30, depending

on whether 3 or 4 players sit at the table respectively (in the case of a 4-table, the dealer also earns

these defender points for ease of physical book-keeping).

2.3 Properties of Skat

Skat is an interesting game to study for several reasons beyond its popularity. First of all, the sheer

size of skat’s game tree is immense. There are 2,753,294,408,504,640 opening deals. Each such

deal could result in one of 6 different major game types, for which any of the 3 players could take

the role of the soloist. The number of ways in which each deal can be played differs by deal and

game type, but is at least 10! in all cases, since the player to lead can always play any card from

her hand. This gives us an extremely conservative lower bound of 1.7 · 1023 states, and we have not

even accounted for the auction phase, or certain special-case game declarations. This puts skat far

outside the range of games that can be solved in a game theoretic sense.

Another crucial property of skat, from a complexity standpoint, is that it is in fact a multi-player

game. For cardplay, since the players are partitioned into only two teams, the game can somewhat

safely be abstracted as a two-player game. This is, at least, typically the approach that has previously

been taken in the game of bridge (although results by von Stengel and Koller [47] show that such an

abstraction poses pitfalls even in this relatively simple case, which we discuss further in Chapter 3).

10

However, unlike in bridge, the bidding phase is a three-way competition, which gives us a venue to

explore some of the challenges posed by multi-player games.

For the cardplay phase, other authors have treated skat as a two-player, zero-sum game [38] [23];

as we have noted in our game theory overview, the zero-sum property is a particularly important one.

In most of our work here, we will make that same assumption. However, we must be aware that,

strictly speaking, this assumption is not true. This is due to a peculiar artifact in the way that skat

games are scored, namely in that the game value won by the soloist is partially determined by her

cards (in particular, how many of the highest trump cards she is playing with or without). Recall

that defenders score a small, constant number of points for defeating the soloist. Consider now a

situation late in the game where a defending player has two possible plays: one which wins the

game if the soloist holds the ♣J and the other wins if his partner holds the ♣J instead. Let us say

that the game value is much higher if the soloist holds the ♣J, but based on the bidding and other

information, the defender believes it is slightly more likely that the soloist does not hold the Jack.

We now have a situation where our defending player must choose between maximizing points for

himself — making the play that is slightly more likely to earn his defender points — and minimizing

the score of the soloist. In practice this dilemma appears to be rare, but it is yet another factor that

makes skat a difficult game to deal with.

The bidding phase poses other challenges, in the sense that it appears to be the sort of problem

to which standard search techniques are poorly suited. One reason for this is that while existing

search methods are reasonably effective at choosing good moves during cardplay, they do not always

accurately predict the end result of the game. Furthermore, existing techniques usually fail to provide

a meaningful winning probability associated with moves, which is particularly relevant for bidding.

We will discuss this claim further in future chapters. Bidding decisions may also be affected by

inferences a player might make concerning the contents of the skat, based on the bidding of the

other players. Finally, unlike in bridge where it is required to be able to explain the “meaning” of

bids in plain English, in skat a player has complete freedom to bid as she wishes. This is convenient

for quickly creating computer agents that can compete against humans, as well as offering more

flexibility in creating a machine-optimized bidding process.

Skat possesses one more wrinkle from an inference and cardplay perspective. In many imperfect

information games, such as bridge, poker and blackjack, the only moves which are not observed by

all players are those made at chance nodes — for example, the dealing out of individual hands of

cards. Skat, however, also contains hidden moves made by actual players — namely, the soloist’s

discard of two cards after picking up the skat. Hidden information resulting from chance nodes

seems, intuitively at least, relatively easy to deal with, since we can sample from the known distri-

butions of those chance events. With hidden information resulting from opponent moves, we have

no such convenient starting point, which has the potential to raise interesting challenges.

11

A good leader needs all the infor-
mation.

-My father, CONSTANTLY 3
Previous Work in Imperfect Information Games

In this chapter, we review previous work in the domain of computer players for imperfect informa-

tion games. As work on skat in particular has been fairly limited, we include work on a variety of

different imperfect information domains. Although the list we present here is by no means exhaus-

tive, it represents a reasonable snap-shot of current techniques.

3.1 Contract Bridge

The most extensive body of work concerning an imperfect information game closely related to skat

is on the game of contract bridge. Bridge is similar to skat in many ways; it is a trick-taking card

game consisting of a bidding phase followed by a cardplay phase; and it is played in teams such that

players do not know the hands of either their opponent(s) or their partner. We describe here some of

the historical work in this domain, as well as the basic techniques that will make up the foundations

of our computer skat player.

3.1.1 Planning Techniques for Bridge

One early success in computer bridge playing arose from the use of AI planning techniques by Smith

et al. [41], who employed Hierarchical Task Networks (HTNs) to construct a computer player for

declarer cardplay. Instead of searching over the enormous space of possible cardplay paths, their

program, Tignum 2, plans over an abstract space of tactical ploys, many of which are commonly de-

scribed and used by human experts. These techniques were incorporated into a commercial program

called the Bridge Baron, which won the 1997 Baron Barclay World Bridge Computer challenge.

The HTN planning approach was not used, however, for bidding or defender cardplay, and Smith

et al. report that as of their 1997 victory, the overall performance of computer bridge programs was

still far shy of world-class human play.

3.1.2 GIB: A Player for Contract Bridge

In 1998, Ginsberg proposed an alternative approach to computer bridge with his player called GIB

[15]. Rather than rely on planning and attempts to mimic human play, GIB employed a brute force

approach in the form of Perfect Information Monte Carlo (PIMC) search, a technique first suggested

by Levy [25]. Conceptually, the algorithm is very simple. Whenever the PIMC player is to move,

12

we first create a hypothetical world, h, where we assign a value to all unobserved variables in the

current game state. In a card game like bridge, this would consist of distributing cards between the

unobserved hands of our opponents. Once this information has been assigned, we then assume that

all players have perfect information of the game and employ standard perfect information search

techniques to determine the best move at the root for that world h. We record the utility of the move

according to the search and then repeat this process several times, choosing a different h for each

iteration. In the end, we simply play the move at the root which has the highest average utility.

Using this technique, by 2001, GIB was claimed to be the strongest computer bridge player in the

world and of roughly equivalent playing strength to human experts (at least for its cardplay).

The linchpin of GIB’s success is its ability to solve an entire 52-card deal of the perfect infor-

mation (often called double dummy) variant of the game of bridge. Minimax search with alpha-beta

pruning alone is too slow to solve such deals, or at least to solve a sufficient quantity of them for the

Monte Carlo sampling procedure. To overcome this speed deficiency, Ginsberg introduces the con-

cept of partition search. Partition search is an extension of the well-known game search technique

of transposition tables. Transposition tables store individual game positions that can potentially be

reached by numerous paths through the game tree, and a game outcome associated with the stored

positions. Ginsberg’s partition search extends transposition tables to store sets of positions associ-

ated with a game outcome, instead of individual positions. This technique requires the creation of

certain game-specific functions and abstractions (for example, treating small cards as “don’t cares“

in bridge), and allows GIB to solve full 52-card deals several orders of magnitude faster than was

previously possible.

In light of the fact that bridge is not a perfect information game, Ginsberg improves GIB’s card-

play further by introducing the concept of alpha-beta search over lattices. This allows the program

to search over sets of card configurations in which the declarer makes the contract, instead of over

the numeric interval normally used in evaluation functions. This allows GIB to capture the imperfect

information of bridge to a much greater extent; however, Ginsberg only uses this technique for GIB’s

declarer card play, and it still assumes that the defenders have perfect information of the game.

The majority of Ginsberg’s work focuses on the search techniques used for GIB’s cardplay.

Much less is said about the creation of hypothetical worlds used by the Monte Carlo simulations, or

the bidding process that occurs at the start of every bridge hand. For bidding, GIB uses an enormous

database of hand-crafted rules to suggest candidate bids in a given situation, followed by Borel

simulations in order to distinguish between ’close’ decisions. Borel simulations construct a set of

deals, D, consistent with the bidding thus far, and then for each bid b from our candidate set, we use

the database to predict how other players will bid and thus how the bidding will conclude, and then

compute the double dummy result of the contract that was reached. We then select the bid b with the

best score with regard to the double dummy result.

One important aspect of bidding in bridge is that every bid has an established meaning. There

13

are a variety of different rules, or conventions, for decyphering the meaning of a bid, but players in a

bridge game must not only understand their partners’ conventions, they must also be able to provide

these same conventions to their opponents upon request. Thus, in order to successfully interact with

human bridge players, a computer player needs to understand a wide variety of different human

conventions. This also complicates the creation of any sort of “machine-optimized” bidding process,

since bids used by the computer player must be explainable to human opponents in plain, natural

language.

Now we turn to the manner in which GIB generates its hypothetical card deals for the Monte

Carlo simulations. To do this, Ginsberg uses a two-stage process. First, he produces a set of can-

didate deals that are consistent with the bidding of all players. This is done by first producing con-

straints on the number of cards in each suit held by each player based on the established meaning of

the bids according to the bidding database, and then validating each deal by asking GIB’s bidding

module if it would have bid in the same way the player was observed to have done while holding

that hand. Deals that pass this test move on to the second stage, where the card play of the deal

is analyzed. In this stage, GIB evaluates the probability of whether a player is holding a particular

card C based on whether the program’s search algorithm indicates that the given player should have

played C if indeed she possessed it. Defensive signalling, such as following standard conventions

so as to convey information to one’s partner, is also taken into account, resulting on a probabilistic

weight wd attached to each deal d. wd is then used to weight the results of the alpha-beta search

performed on d.

3.1.3 The Best Defense Model and its use in Bridge

In 1998, Frank and Basin published an extensive critique of the Perfect Information Monte Carlo

search (or as they call it, repeated minimaxing) approach to imperfect information games [9]. In

so doing, they identified and formalized the sorts of mistakes that PIMC search is guaranteed to

make through two distinct concepts that they term strategy fusion and non-locality. We will discuss

these concepts in much greater detail in Chapter 5. In this work, Frank and Basin also propose a

new model of analysis for imperfect information games. One of the major goals of the authors is

to reconcile the formal model used by computer scientists for analyzing bridge and other imperfect

information games with the model implicitly used by human experts in bridge literature. The “Best

Defense” model is the result of this ambition.

Building the Best Defense model of an imperfect information game is based on three major

assumptions. The first is that we assume our opponent (henceforth, the minimizer) has perfect in-

formation of the game whereas we (the maximizer) do not. Secondly, we assume that the minimizer

chooses her strategy after the maximizer. And thirdly, we assume that the maximizer adopts a pure,

rather than a mixed, strategy. Not only do these assumptions coincide with those made in expert

bridge literature, but they result in a formal model that is amenable to analysis. This results in an al-

14

gorithm for solving the best defense form of a game which Frank and Basin term exhaustive strategy

minimisation. The algorithm enumerates all possible strategies of the maximizer, and a minimisa-

tion operation is performed on each such strategy. This algorithm, however, is doubly exponential

in the number of maximizing layers in the game tree, and thus Frank and Basin contend that it is

not entirely intended for practical use, but as a framework through which other architectures can be

analyzed.

In 2000, Frank et al. produced Finesse, a system capable of optimally solving single-suit bridge

problems — a subset of the full game of bridge in which only the 13 cards in a given suit are

considered [10]. Finesse solves these situations by searching over a space of expert-defined tactics,

rather than over the space of individual card plays. Since this abstract space is much smaller than the

original state space, Finesse can actually solve the single-suit deals under Frank and Basin’s Best

Defense model — in other words, by enumerating the maximizer’s strategy space and computing

a complete set of payoff vectors obtained by each strategy. The authors demonstrate results on an

authoratative set of 1500 single-suit bridge problems for which the abstractions used by Finesse do

not cause it to miss any optimal plays, and indeed the program discovers a 3% error rate in the

solutions given by experts.

Of perhaps equal interest to Frank et al. is Finesse’s ability to explain its play in human readable

terms. These explanations can be easily extracted from Finesse’s game-tree, since the tree is already

built over abstract strategies. The authors show that the explanations produced by Finesse closely

match corresponding explanations by human experts, and even express their intent for Finesse to

author a bridge textbook of its own. Unfortunately, however, solving single-suit card configurations

is a long way from playing the full game of bridge complete with bidding, and it is quite likely that

the full game is simply too large for an approach based on the Best Defense model.

From a theoretical standpoint, the Best Defense model is more satisfying than PIMC search in

the sense that whenever a guaranteed winning move is found in the model, it is also guaranteed to be

a winning move in the original imperfect information game. This property does not hold for PIMC

search, as Frank and Basin have shown. However, a drawback that the Best Defense model shares

with PIMC search is that it makes no allowance for exploiting an opponent’s ignorance. It is very

possible that under Best Defense, some move M is reported as being a guaranteed loss because the

opponent is assumed to be playing perfectly with perfect information, whereas in reality, M may

have a very high chance of success due to the very fact that our opponent does not have perfect

information. In some sense, we may say that exhaustive strategy minimisation in the Best Defense

model is sound, but not complete: any move which Best Defense identifies as good is actually good,

but there may be many actually good moves which are discarded as bad under the assumption of

Best Defense.

15

3.1.4 Current Techniques in Computer Bridge

Since Ginsberg’s introduction of GIB, there has been relatively little published work on computer

players that play the game of bridge in its entirety. Sub-problems of the game have, however, been

examined by some authors. Mossakowski and Mandziuk [29] describe the use of neural networks

to predict the outcome of perfect information (or double-dummy) bridge problems and report a

level of accuracy comparable to human experts on some classes of deals. Amit and Markovitch [1]

devised a learning system for bridge bidding, with particular emphasis on training cooperative agents

simultaneously. This approach is particularly salient in bridge, since in most bridge tournaments,

participants enter in pairs and will play with the same partner for the entire tournament. Amit

and Markovitch showed that their program could outperform GIB’s bidding module. Interesting

and challenging problems not directly related to constructing strong computer bridge players have

also appeared in the literature. Kemp et al. [20] discuss the techniques needed to construct an

effective automated bridge tutoring system, and Yan [49] discusses the problem of detecting illegal

collusion (such as partners sharing hand information over external channels) in online bridge play.

Computer bridge competitions, such as the World Computer Bridge Championship, continue to be

held annually, and the strongest programs are said to still be based on Ginsberg’s GIB [35].

3.2 Skat

3.2.1 A Double-Dummy Solver for Skat

Although commercial computer skat programs do exist, the first published work of which we are

aware that relates to skat was by Kupferschmid and Helmert in 2007 [23]. These authors applied

Monte Carlo simulation with alpha-beta search to the game of skat to produce a player they simply

call Double-Dummy Solver, or DDS. DDS is largely constructed using a straightforward implemen-

tation of the Perfect Information Monte Carlo algorithm, but with two major enhancements to the

alpha-beta search component. The first, quasi-symmetry reduction, is an adaptation of Ginsberg’s

partition search that groups together search states that are “nearly“ equivalent. For example, in skat,

a player may hold two cards that are adjacent in terms of rank, or rank equivalent, but which differ in

point value. Therefore, playing either card results in states that are strategically equivalent in terms

of the number of tricks won, but which differ in end result by at most the difference in point value

between the two cards. This observation can be used to bound the alpha-beta search, and therefore

prune the game tree. The second enhancement used by Kupferschmid and Helmert, adversarial

heuristics, calculates guaranteed upper and lower bounds on the number of points that can be won

by the declarer, in a manner somewhat similar to heuristics used in single-agent search problems,

and uses these bounds to prune sections of the game tree.

Kupferschmid and Helmert show that the resulting DDS system can solve individual double-

dummy deals quickly. They also provide a small indication of the program’s actual playing strength,

16

stating that it defeated the expert system XSkat (available at www.xskat.de) 17 out of 18 games,

and performed comparably with human players of unspecified caliber on a similar number of hands.

The authors do not specify how DDS generates hypothetical deals of the cards that are used in the

repeated alpha-beta searches, or whether weighted Monte Carlo samples are used as was the case

for Ginsberg’s GIB.

Although in principle, DDS could also use Monte Carlo simulations for bidding, Kupferschmid

et al. instead turn to a clustering method based on the k-nearest neighbors classification algorithm

[19]. K-nearest neighbors is a simple machine learning algorithm in which a new, unlabelled exam-

ple x is assigned a label by comparing it to a set of labelled exemplars; in particular, the k exemplars

that are closest to x by virtue of some distance metric. Kupferschmid’s system is in fact a collection

of 5 different classifiers, one for each different game type in skat. When classifying an unknown

sample x, for each game type t the system assigns x a score in the interval 0 . . . 120 in terms of the

number of card points the declarer is expected to win if he were to play a game of type t. This is

done by computing a numeric feature vector f(x) and using Euclidean distance to find the k nearest

neighbors from among the system’s knowledge base. The value assigned to the hand is then simply

the average of the values of these k neighbors, weighted by the relative distance of each neighbor.

Kupferschmid et al. produce the system’s knowledge base by evaluating several thousand card hands

using DDS’s alpha-beta search procedure, and reports a final accuracy of 75% in terms of correctly

classifying ‘winnable’ games. No results are given however on actual games played using this bid-

ding system, so the overall playing strength of DDS with k-nearest neighbor bidding was previously

unknown. We provide some such results later in this document.

3.2.2 The UCT Algorithm

The Upper Confidence bounds on Trees, or UCT, algorithm by Kocsis and Szepesvari [21] is a

very different approach to planning in games from the traditional minimax search approach, and

has been applied to Skat in work by Schäfer [38]. UCT is effectively a sampling algorithm that

keeps statistics on the performance of different moves at each node of the game tree. The algorithm

performs numerous simulations, where each simulation corresponds to a single play of the entire

game, and where the move at each game tree node N is selected according to a formula of the form:

M = argmaxi(Xi + C

√
2 log ti
T

) (3.1)

where Xi is the average result of selecting move i so far at N , ti is the number of times move i

has been selected, and T is the total number of times that N has been visited during the search.

This selection method provides a balance of exploration and exploitation — the first term of

equation 3.1 encourages “promising” moves to be selected most of the time, while the second en-

sures that all moves will eventually be examined and the simulations will never completely stop

exploring the game tree. The algorithm can be terminated after any number of iterations, at which

17

point we simply play the move with the highest average score at the root node of the search.

In practice, memory constraints will usually make it infeasible to keep statistics on every node

in the game tree. Therefore, it is common to start maintaining statistics at a game tree node N only

after N has been visited a sufficient number of times during the simulations performed by UCT.

In this case, however, UCT still requires some form of playout module that is capable of selecting

moves statically at nodes where statistics are not yet being kept. This playout module could be

as simple as selecting moves at uniform random, or could be elaborately constructed from expert

domain knowledge.

The UCT algorithm first showed its major promise in the game of go [48]; it is probably fair

to say that UCT has formed at least the original basis and inspiration of most major computer go

players, including all the top players at the 2008 Computer Olympiad. UCT has also been successful

in the General Game Playing competition, first appearing in the competition and winning in 2007

[8]. Since then, most of the strongest players in GGP have used UCT, including the winner from

2009 and 2010 [28]. UCT has also been implemented in the game of skat by Schäfer [38]. To

construct his system, Schäfer used XSkat, the best known rules-based skat program, as his playout

module for completing games at the leaf nodes of his UCT tree, and simply created hypothetical

deals at uniform random for use in the UCT simulations. Schäfer then showed that the resulting

UCT player significantly defeated XSkat playing on its own, although his results were inconclusive

against a PIMC search-based player.

3.3 Poker

Poker (and in particular, Texas Hold’em poker) is another game which has recently seen the appear-

ance of successful computer players. Since poker crucially depends on the assumption that neither

player knows for sure (except in rare cases) which one holds the better hand, a Monte Carlo search

approach based on perfect information search seems likely to be doomed to failure. Rather, in poker

it is important to be able to employ a randomized or mixed strategy, such that the opponent cannot

deduce our cards based on our play.

A recent but successful approach to achieving this behavior is the use of counterfactual regret

minimisation, or CFR, as proposed by Zinkevich et al. [18] and implemented in poker by Johanson

[16]. Unlike Monte Carlo search and UCT, CFR is an offline process that learns move probabilities at

every information set of the game. The algorithm is an iterative one; each iteration consists of a run

through the game tree with the move at each information set being selected according to the current

move probabilities stored at that node. Upon reaching a terminal state of the game, every node in

the tree is updated according to how much the program regrets playing the strategy that was actually

played compared to best available move at each information set. This process will converge to a Nash

equilibrium in the two-player case, although in practice this can take a considerable amount of time

to occur. However, the resulting computer player is simply an enormous table of move probabilities,

18

meaning that nothing more than a table look-up needs to be performed when the program is actually

playing games.

CFR improves considerably over previous methods for approximating Nash equilibria in that

it requires memory linear in the number of information sets, as opposed to actual game states.

However, for full-scale, large games such as poker (with 1018 states) or, bigger yet, skat, this is

unfortunately still not feasible. To combat this drawback, Johanson instead runs the CFR algorithm

over a smaller, abstract version of the game of poker. For instance, instead of considering individual

permutations of cards, Johanson creates buckets that group together sets of cards that have similar

strategic properties, notably in terms of the strength of the hand in terms of its probability of de-

feating the opponent. Under this scheme, strategies can then be defined over sequences of a small

number of buckets, instead of over sequences of actual cards, making the game small enough to be

amenable to CFR.

This general approach of finding a Nash equilibrium in a smaller, abstract game and mapping this

strategy back to the original game has been quite successful in computer poker, and has been used by

several of the top computer players [50] [14]. Beyond building static, equilibrium strategies, poker

AI researchers have also been concerned with the problem of opponent modelling — that is to say,

dynamically exploiting observed weaknesses of an opponent’s strategy. When research in this field

first began in earnest in 2001, the critical need for opponent modelling was cited as a key feature that

distinguished poker from more traditional perfect information games [2]. However, although early

forays into poker opponent modelling do exist [7] [42], an examination of the top contenders of the

2010 AAAI Computer Poker competition (http://www.computerpokercompetition.org/)

shows that the clear majority are static players with little online adaptation to a particular opponent.

There has, however, been some recent exciting progress on this front. In 2009, Johanson and

Bowling [17] proposed Data Biased Response (DBR), an opponent modelling technique that bal-

ances an agent’s ability to exploit an opponent while avoiding being exploited itself. Most im-

pressively, DBR comes with theoretical guarantees that the trade-off it achieves between opponent-

exploitation and self-exploitability is optimal. However, there are two caveats to this approach: first,

DBR still requires on the order of thousands of observations to begin significantly exploiting the

opponent, and second, computing the DBR strategy itself once given its observations is much too

slow to be done in real time. In 2011, Ganzfried and Sandholm proposed a method that lacks some

of the guarantees of DBR, but that can function in real-time and using only in-game observations of

the opponent’s behaviour (for example, their approach does not get to observe the opponent’s cards

in situations that did not lead to a showdown) [13].

3.4 Scrabble

Scrabble is another imperfect information game that has seen the appearance of strong computer

players. The first program to seriously challenge (and ultimately defeat) human experts was the

19

program Maven by Sheppard [40]. Although much of the challenge in Scrabble stems from the need

for fast move generation, Maven also uses simulation roll-outs of multiple hypothetical worlds to

evaluate positions in a manner somewhat similar to Ginsberg’s GIB. More recent work by Richards

and Amir [32] highlights Scrabble’s imperfect information aspects. In this work, Richards and Amir

enhance Quackle, at that time the world’s strongest Scrabble program, with an inference component

to bias hidden information in the game (in particular, letter distributions for the opponent’s rack)

for use in simulations. This was done using Quackle’s static move evaluator in conjunction with

Bayes’ Rule to calculate the probability that the opponent would have played as observed given

different hypothetical letter racks. The addition of this inference allowed Quackle to defeat its prior

incarnation by a significant margin.

3.5 Kriegspiel Chess

Kriegspiel Chess is an imperfect information chess variant in which a player sees only the positions

of his own pieces. When a move is attempted, an impartial and omniscient referee informs the player

of whether or not the move is in fact legal. The first known computer player to play kriegpsiel chess

in its entirety at a reasonable level is by Parker et al. [31]. The basic approach used by this program

is similar to the PIMC search used by Ginsberg in bridge. A key challenge in kriegspiel chess is

that, unlike in bridge, skat and poker, merely generating hypothetical game states that are consistent

with the game’s history can take exponential time. Parker et al. overcome this by considering only

hypothetical states that are consistent with the most recent set of observations in the middle to late

game, and show that with reasonable probability, such states will also be consistent with the entire

history. Later, Ciancarini et al. [5] created a program they call Darkboard, which groups together

large numbers of states into metapositions. Using this technique, Darkboard defeated the program

by Parker et al.. More recently, Ciancarini and Favini have applied the UCT algorithm to kriegspiel

chess with good results [6]. However, as kriegspiel chess is not nearly as popular among humans

as the previously discussed games in this chapter, it is difficult to assess the strength of kriegspiel

playing programs in more absolute terms.

3.6 Hearts and Issues in Multi-Player Games

Hearts is a card game for four players in which each player endeavors to take as few points as

possible. It is similar to both bridge and skat in that it is a trick-taking card game, but in some ways

simpler, as there is no auction phase nor a notion of multiple game types. It is, however, complicated

by the fact it is a multi-player game, without the permanent alliance between players in bridge, or

even the temporary alliance formed between the defenders during the cardplay phase of skat.

One of the strongest known hearts programs was created by Sturtevant and White [45]. Ac-

cording to these authors, search-based programs have generally been very weak in hearts due to

20

the game’s multi-player nature. Instead, Sturtevant and White used the TD(λ) algorithm, one of

the most common techniques in reinforcement learning, to construct a hearts player that combines

learning and search. Linear regression is used over a set of features to abstract the state space for

learning, after which the system simply learns through self-play and by playing against a competing

search-based player. An interesting note about this work is that the learned player only learns to

play the perfect information version of Hearts, and is then simply used as a module for a top-level

Monte Carlo search in order to play the real, imperfect information game, similar to Ginsberg’s GIB.

The resulting player is shown to significantly defeat one of the strongest known pure search-based

players. Later, Sturtevant applied the UCT algorithm discussed in Section 3.2.2 to the hearts domain

with strong results [44].

Sturtevant’s work in hearts is both interesting and relevant because both trick-taking card games

previously mentioned in this thesis — bridge and skat — are in actual fact multi-player games.

In the literature, bridge has typically been treated as a two-player game, but in actual fact it is

played by four different players; the abstraction to a two-player game makes sense because the

players are allied in teams of two, and all existing approaches to the game have been based on

perfect information models of the game where we ignore the fact that two partners do not necessarily

know each others’ hand, and therefore may not actually play as though they were a single entity.

Skat stradles the multi-player line even more precariously than bridge; although the cardplay phase

can (and has been) treated as a two-player game, during the auction phase, each player is out for

herself. Thus, in studying skat, we must be conscious of some of the pitfalls found in multi-player

games. Sturtevant has previously outlined some of these pitfalls [43], particularly the need for strong

opponent modelling in multi-player games. As mentioned in our game theoretic background in

Chapter 2, this is primarily due to the fact that equilibrium strategies are not interchangeable in multi-

player games. In other words, no “safe” opponent-invariant strategy exists in this domain in the

general case. Human skat players are certainly acutely aware of this issue: e.g. the word “Maurer”

(or mason) is a widely used term among skat players that describes a player who intentionally holds

back during the bidding process so as to defeat the eventual soloist with an unexpectedly strong

defender hand. What’s more, Von Stengel and Koller [47] have shown that in non-cooperative, zero-

sum team games, in which a team of agents with shared payoffs but disparate information competes

against an omniscient adversary, the best payoff that the team players can hope for is given by the

team-maxmin equilibria. Von Stengel and Koller show that a team-maxmin equilibrium is distinct

from the equilibrium that would arise in the 2-player version of the same game, and furthermore the

payoff to the team can be lower than in the case where the team is treated as a single player. Since in

skat the two allied defenders are typically less informed than the soloist (because the soloist knows

the two cards hidden in the skat), this result by von Stengel and Koller indicates that any approach

treating skat as a 2-player game even in the cardplay phase may be unable to capture the optimal

strategy of the true multi-player game.

21

Time’s fun when you’re having
flies.

-Kermit the Frog 4
Kermit: An Expert-Level Computer Skat Player

In this chapter, we will describe the inner workings of Kermit, a computer player for the game of

skat capable of playing the game in its entirety. Our goal for Kermit was not only to produce a

strong player capable of challenging both other programs and humans alike, but also to establish a

baseline for our future experiments and investigations. Many of the techniques used to build Kermit

— particularly the Perfect Information Monte Carlo search used for its cardplay — are not novel

on their own. Rather, the main contribution highlighted by Kermit is the synthesis of effective

techniques to create a strong computer skat player that plays at human speeds.

We will separate our discussion of Kermit into three major topics. First is the search mechanism

that Kermit uses to select moves during cardplay. Next is the bidding phase, in which we primarily

employ a learned static state evaluator to assess soloist winning potential for individual hands. Third,

we will discuss the inference procedure that Kermit uses to make more informed guesses about

hidden information in the game (e.g. the cards held by the opponents).

Finally, the author wishes to make it clear that he is by no means the sole contributor to the

construction of Kermit and the necessary surrounding skat infrastructure. In particular, credit for

implementing Kermit’s perfect information alpha-beta search and the discovery and fine-tuning of

table features belongs to Dr. Michael Buro; many basic skat data structures were written by Nathan

Taylor.

4.1 Perfect Information Monte Carlo Search for Cardplay

We have already briefly discussed the Perfect Information Monte Carlo (PIMC) search technique

in Chapter 3. This is the algorithm that Kermit uses to select moves during cardplay, and so we will

revisit it here. Recall that PIMC search works by repeatedly sampling fully observable worlds and

calculates the value of each of our available legal actions in each such sampled world. In the end,

we simply select the action with the highest accumulated score over all worlds. Pseudocode for this

procedure is shown in Algorithm 1. If time permits, then conceivably every possible world could

be sampled; in practice, one will normally sample as many worlds as possible within the allotted

time-frame. This process can easily be parallelized, in the simplest case by essentially running two

separate instances of the PIMC search algorithm and in the end aggregating the final move values

(although this can result in duplicated work if the same world is sampled in both processes). This

22

Algorithm 1 Pseudocode for Perfect Information Monte Carlo Search
Require: current state s, set of worlds W that are legal in state s, maximum available time T

for each action a that is possible at s do
{Initialize values for all actions}
v(a)← 0

end for
t← elapsedT ime
while t < T do

sample some world w ∈W
for each action a that is possible at s do
{applyAction(w, a) returns the world that results when action a is applied to world w}
w′ ← applyAction(w, a)
v(a)← v(a) + solve(w′)

end for
t← elapsedT ime

end while
return argmaxa(v(a))

is the approach that Kermit takes. Typically, Kermit can examine approximately 40 to 50 worlds

per process in the first trick of a skat hand, and can examine every remaining legal world by the

mid-game.

PIMC search owes much of its strength to the computational tractability it gains by considering

different worlds to be completely independent, i.e. that the best move in some worldw ∈W depends

only on w itself, and not on any other w′ ∈W for which w 6= w′. This strength is also its weakness,

since the independence assumption leads to the theoretical deficiencies identified by Frank and Basin

as mentioned in Chapter 3, but we will defer a deeper discusion of these issues to Chapter 5.

The key operation in the PIMC search procedure is solve(w), which attaches a game value to a

perfect information world w. In principle, any form of evaluator, be it exact or heuristic, could be

used here. For Kermit, as per Ginsberg’s previous work in bridge, we use an alpha-beta minimax

search to compute perfect information game values. This, of course, requires the capability to solve

perfect information skat deals efficiently, which we describe further below.

4.1.1 Perfect Information Search Enhancements

Kermit uses standard alpha-beta minimax search to compute the value of perfect information worlds.

Since skat uses a smaller deck than other games such as bridge, this computation is relatively

straightforward. Nevertheless, for the game’s first trick, the time required to solve a single world is

not insubstantial. Here we describe the search enhancements used to speed up Kermit’s alpha-beta

search.

Kermit makes use of standard alpha-beta search enhancements such as transposition tables and

shallow searches for sorting moves close to the root. For sorting moves in interior nodes, we combine

numerous general and game-specific heuristics. Notably, the addition of the fastest-cut-first search

heuristic [11], which rewards moves based on their beta-cutoff potential and the estimated size of the

23

underlying subtree, reduced the search effort by approximately 40%. The idea is that in cut-nodes

it is sufficient to find one move with value ≥ β. Therefore, in inhomogeneous trees visiting moves

with high cutoff potential and small size first may lead to better search performance than starting

with the potentially best move.

We also implemented a series of card-game- and skat-specific move ordering heuristics. As in

[23], we group cards according to their strength and only search one representative move in each

group. For instance, when holding 7 8 suited in one’s hand, both are equivalent. Similarly, 7 and 9

are equivalent if the 8 has been played in a previous trick. Care must be taken not to consider current

trick-winning cards as being already played, because the player to move can still decide to take the

trick or not. For example, when holding 79 in a suit in which the 8 has just been led, 7 and 9 are not

equivalent. This sound forward pruning heuristic applies to all cards in null-games and the 789 and

Jack card groups in trump games. In addition, at the beginning of the game we group Queens with

Kings and Tens with Aces at the cost of small score differences. Our remaining heuristics for trump

games reward moves for winning tricks, catching high cards, and putting the soloist in the middle

position of play. In null-games, we bias move selection towards avoiding the soloist’s void suits,

preferring the co-defender’s void suits, and sloughing the highest card in unsafe suits.

4.1.2 Search Payoffs

The payoff at the leaf nodes of Kermit’s alpha-beta search tree is the card point differential between

the two competing parties, the soloist and the defenders. Recall that the total number of card points in

the game is 120 and the soloist needs 61 of these to win. For the purpose of these perfect information

searches, the two defenders are treated as a single player in the search.

When searching an individual perfect information world, Kermit does not in fact perform only

a single search. Rather, we employ a series of zero-window searches to narrow down the search

space. A zero-window alpha-beta search is one in which alpha and beta are set to the values v and

v + 1 respectively. Performing a search with such a window will determine whether the true value

of the position is greater than or less-than-or-equal-to v. We begin with a zero-window search to

determine whether the position is a win or a loss for the soloist. Based on the outcome of this search,

we perform a second zero-window search to determine whether the winning side can play the loser

“schneider,” which requires taking 90 or more of the card points and results in an additional game

value multiplier for the soloist. Finally, we widen the search window given the range determined

by the previous two searches and determine the actual card points that are taken by each side. The

final value that is returned by the search prioritizes winning the game, with the final card points won

added on as a small “tie-breaker” to distinguish between positions with the same win/loss value.

Note that this final stage of the search could potentially be omitted, since actual card points

won make no difference to the game’s final value (e.g. a soloist win with 61 card points is just

as good as one with 85 in terms of his list-score). Doing so would speed up the search process,

24

allowing for more hypothetical worlds to be examined. However, empirically, we have found this

final optimization to be worth its cost in terms of playing strength.

The null game type, where the soloist’s goal is to lose every trick, does not quite fit into the

framework above, since card points are irrelevant in this context. Therefore, for null games, Kermit

searches primarily for win/loss distinction, with a small bonus for node-depth for the soloist (and

therefore a penalty for node-depth for the defenders). This latter adjustment causes Kermit, as

soloist, to favour positions that prolong the game as much as possible when it thinks it is losing.

This adjustment has been critical for Kermit’s null-game performance, as otherwise there appear to

be too many positions that are considered a certain loss under the perfect information assumption

with no way to distinguish between them.

4.2 State Evaluation for Bidding

When solving a game is infeasible due to large state spaces, it becomes necessary to approximate

state values. There exist large bodies of literature in statistics, machine learning, and AI that cover

the design, optimization, and evaluation of function approximators which can be used to evaluate

the utility of a state for a player. Classical examples are linear material-based chess evaluators and

artificial neural networks trained to predict the outcome of backgammon games [46]. Function ap-

proximators have been mostly trained for two-player perfect information games, although there has

been some work on learning evaluations in multi-player card games as well. Sturtevant and White

[45] describe a system that successfully uses TD-learning and a mechanism to generate features to

learn a linear evaluation function for the perfect information version of hearts.

In the construction of Kermit, we propose approximating imperfect information state values

directly and using such estimates in game tree search for the bidding phase of the game. If imperfect

information game data is available, evaluation parameters can be estimated directly using supervised

learning techniques. Otherwise, it may be possible to bootstrap imperfect information evaluations

from perfect information evaluations and from self-play using cardplay methods such as PIMC

search.

In principle, the same PIMC search used for cardplay could be used to evaluate positions for

bidding potential as well. For example, if for a particular hand a PIMC search beginning from the

play of the first trick finds that the player to move wins in 75% of the worlds it examines and loses in

the remaining 25%, this information could be used to make bidding decisions. In Kermit, we do not

take this approach for two reasons. The first is speed. After the soloist has won the bid, she will often

pick up the two cards in the skat, where 231 different possible card combinations await. She then

discards two cards, for which she has 66 possibilities, and then must decide between six major game

types, resulting in a final factor of 91476. It would be infeasible for Kermit to perform a first-trick

PIMC search for even a small fraction of this space and still play at human speeds. The second, and

more important, reason is that while PIMC search appears to perform well at differentiating moves

25

Soloist

Figure 4.1: A miniature skat position where PIMC search will underestimate the soloist’s winning
chances.

during cardplay, it is much less accurate at predicting actual game outcomes. We will illustrate this

seemingly contradictory phenomenon by means of an example.

Consider the miniature deal shown in Figure 4.1. We will say that this is a ‘Grand’ game, where

only the ♠J held by the soloist, is trump. The soloist is to lead and needs to take all the remaining

card points to win. Let us also say that the soloist has discarded the ♥9 but that from the defenders’

perspective, it is possible that the ♣9 was discarded instead. A PIMC search from the soloist’s

perspective in this setting will correctly identify that playing the ♣9 first is a terrible mistake; it is

much better to play the ♣A first, resulting in a winning position in the event that the ♣K and ♣Q

are split between the two defender hands. However, in the real game, the situation where the ♣K

and ♣Q are not split is not a guaranteed loss for the soloist (although PIMC search will believe that

to be the case). When the soloist plays the ♠J, it is possible that one of the defenders will have to

choose between keeping the♣Q and the♥Q, and will only make the right decision 50% of the time.

Therefore, PIMC search will not correctly assess the soloist’s winning chances in this scenario, but

will generally play the cards correctly if forced to do so.

Scenarios of this sort appear to be common in skat. Table 4.1 shows the result of estimating

the soloist’s winning chances by performing a PIMC search at the beginning of the cardplay phase

on a collection of 10,000 games played by humans, separated by game type. This is compared to

the actual soloist win rates based on the outcomes of these same games. We see that PIMC search

significantly underestimates the soloist’s winning chances in all game types, with this effect being

most severe in null games. In light of this, we turn to the learned static evaluations that we describe

26

Table 4.1: Soloist win% estimation as calculated by PIMC search as compared to empirical soloist
win-rates on a collection of 10,000 human games.

Game Type PIMC Search Win% Actual Win%
Suit games 67% 80%

Grand 82% 93%
Null 58% 75%

in the next section.

4.2.1 Learning Table-Based State Evaluations

When applying learning to game tree search, evaluation accuracy and speed are a concern, because

good results can be obtained either by shallow well-informed search or deeper but less-informed

search. In trick-based card games many relevant evaluation features can be expressed as operations

on card groups such as suits or ranks. Therefore, the generalized linear evaluation model (GLEM)

framework [3], on which world-champion caliber Othello programs are based, is suitable for creating

highly expressive yet efficient evaluation functions for card games. The top-level component of

GLEM implements a generalized linear model of the form

e(s) = l
(∑

i

wi · fi(s)
)
,

where e(s) is the state evaluation, l is an increasing and differentiable link function, wi ∈ R are

weights and fi(s) are state features. For the common choices of l(x) = x (linear regression) and

l(x) = 1/(1 + exp(−x)) (logistic regression) the unique parameters wi can be estimated quickly,

but the resulting expressiveness of e may be low. To offset this limitation, GLEM uses table-based

features of the form

f(s) = T [h1(s)] . . . [hn(s)],

where index functions hj : s 7→ {0, .., nj−1} evaluate properties of state s and the vector of indexes

is used to retrieve values from multi-dimensional table T . The advantages of table-based features

are that table values can be easily learned from labeled samples and state evaluation is fast.

4.2.2 Application to Skat Bidding

Prior to our work on Kermit, bidding was often considered as a particular weakness of skat programs.

In commercial programs, bidding is believed to be commonly implemented using rule-based systems

designed by program authors who may not be game experts. We have previously mentioned the work

by Kupferschmid et al. describing a bidding system based on k-nearest-neighbor classification which

estimates the card point score based on the soloist’s hand and a knowledge base of hand instances

labeled by DDS game results. [19]. We will later compare our work against their approach.

Our bidding system is based on evaluating the soloist’s hand in conjunction with the cards that

have been discarded and the type of game to be played (we call this the “10+2 evaluation”), esti-

mating winning probabilities by means of logistic regression. We believe that basing the strength of

27

hands on winning probability or expected payoff, rather than expected card points as Kupferschmid

et al. had done, is more suitable because the soloist’s payoff in skat mostly depends on winning the

game, e.g. winning with 61 or 75 card points makes no difference. We use a set of table-based fea-

tures which are more expressive than the mostly count-based features used in previous work. Lastly,

we have access to 22 million skat games that were played by human players on an Internet skat

server located in Germany. This allows us to mitigate the problems caused by DDS-generated data

and to benefit from human skat playing expertise which is still regarded as superior when compared

to existing skat programs. No filtering of this data was performed however, and players of a wide

range of skill are represented in the data set.

Our 10+2 evaluation eg(h, s, p) estimates the winning probability of the soloist playing game

type g ∈ {grand,♣,♠,♥,♦, null, null-ouvert}with ten-card hand h in playing position p ∈ {0, 1, 2}

having discarded skat s. We describe the features used to build this estimator in the following sub-

sections.

Null-Game Evaluation

Conceptually, the null-game evaluation is the simplest. It is based on estimating the strength of card

configurations in h separately for each suit. Recall that the soloist wins null-games if he doesn’t

take a trick. Certain card configurations within a suit are safe regardless of whether the soloist has

to lead or not (e.g. ♣789). Others are only safe if the soloist doesn’t have to lead (e.g. ♣79J). This

suggests creating a table that assigns to each of the 28 = 256 suited card configurations a value

representing the safety of that configuration. We define this value as the winning probability under

the assumption that there is only one weakness in h. To evaluate h we then simply multiply the

four associated configuration values assuming independence. Table values can be easily estimated

from human training data. It is hard to estimate the true winning probability of unsafe null-games

using DDS because the defenders get to see the weakness in h and exploit them perfectly. This

leads to DDS almost always predicting soloist losses. Taking the defenders’ ignorance into account,

however, the soloist often has a considerable winning chance (e.g. having a singleton Ten and a void

suit), which is reflected in the table values learned from human data.

Trump-Game Evaluation

Recall that in skat trump-games the soloist needs to get 61 or more card points to win. Because Aces

and Tens are worth the most by far, skat evaluation functions need to be able to judge which party

will get these cards over the course of the game. The soloist can obtain high-valued cards in several

ways: by discarding them in the skat, trumping high cards played by the defenders, playing an Ace

and hoping it will not be trumped, or trying to catch a Ten with an Ace.

Good skat players understand the trade-off between the number of tricks won and the number

of guaranteed high cards. Ron Link, who is one of North America’s strongest skat players, has

28

developed the following simple heuristic which helps him making move decisions in all game phases

(personal communication, 2008): “If you can secure k high cards, then you can give away k + 1

tricks and still be confident of winning”. Our evaluation functions for suit- and grand-games are

based on the GLEM evaluation framework. They implement the above evaluation idea using tables

to evaluate the expected number of points and tricks obtained during play. High cards for the trump

suit and each off-trump suit are evaluated independently and both are combined by means of logistic

regression, i.e.:

eg(h, s, p) = 1/(1 + exp(wg
0 +

4∑
i=1

wg
i · f

g
i (h, s, p))),

where fg1 , f
g
2 and fg3 , f

g
4 evaluate the number of card points and the number of tricks and high-valued

cards made in the trump suit and off-trump suits, respectively, for trump game type g, and wg
j ∈ R

are maximum-likelihood weight estimates computed from a set of labeled sample positions.

To compute the features fg1 , . . . , f
g
4 , we employ a table-based evaluation using the primitive in-

dex features described below. These table index features can be computed quickly by bit operations

on words of length 32 (representing card sets) and, when combined, form a set of expressive non-

linear features that capture important aspects of skat hands correlated with winning trump-games:

• {♣?,♠?,♥?,♦?}(c) ∈ {0, . . . , 27−1} gives the index corresponding to the configuration of

cards in c, restricted to a given suit, excluding Jacks. E.g. ♣?(♣78J♥JA) = 20 + 21 = 3.

• {♣?,♠?,♥?,♦?}(c) ∈ {0, . . . , 211−1} is the same as {♣?,♠?,♥?,♦?}(c), but includes all

Jacks. E.g. ♣?(♣78J♥JA) = 20 + 21 + 210 + 28 = 1283.

• tc(t, c) ∈ {0, 1} distinguishes two trump contexts: 0 if the # of cards in c from trump suit t is

≤ 5, 1 otherwise. I.e. hard-to-win hands.

• tt(t, o) ∈ {0, 1, 2, 3} counts high-valued trump targets (Aces and Tens) amongst opponents’

cards o = (h ∪ s)c which are not from trump-suit t. The count is clipped at 3, as usually no

more than 3 high cards can be trumped.

• vt(t, h) ∈ {0, 1, 2} represents the number of high cards in the soloist’s hand that are vulnera-

ble to defenders’ trumps (clipped at 2) — for trump suit t.

Using these building blocks, our table-based suit-game evaluation features are defined as follows

(assuming, for example, that ♣ is trump):

f♣1 (h, s, p) =
∑

x∈{♠?,♥?,♦?}

sidePoints
[
tc(♣, h ∪ s)

][
x(s)

][
x(h)

]
f♣2 (h, s, p) =

∑
x∈{♠?,♥?,♦?}

sideTricks
[
tc(♣, h ∪ s)

][
x(s)

][
x(h)

]
f♣3 (h, s, p) = trumpPoints

[
♣?(h)

][
tt(♣, (h ∪ s)c)

][
vt(♣, h)

]
29

f♣4 (h, s, p) = trumpTricks
[
♣?(h)

][
tt(♣, (h ∪ s)c)

][
vt(♣, h)

]
The table entries of the features above predict how many card points will be taken (sidePoints)

and how many tricks and high cards are secured (sideTricks) in the course of a game, given that the

soloist holds cards h and the skat contains s. The side-suit tables each consist of 2·128·128 = 32768

entries, of which only 4374 are actually in use because our encoding is not tight. The trump context

is used to help distinguish between hard to win scenarios where the soloist has fewer than 6 trump

cards. We estimate these side-suit tables’ entries by scanning millions of games played by humans,

considering only those tricks in which at least one side-suit card has been played by any player, and

examining the outcome of those tricks. For example, if a player p holds the ♥KQ and plays the

♥Q in a trick consisting of ♥AQ7, where an opponent plays the ♥A, then we consider the ♥KQ

configuration to have lost p 14 points (because the configuration allowed the opponent to both get

an Ace home and capture the Queen), and to have lost both one trick and one high-card. The trump-

related tables each have 2048 · 4 · 3 = 24576 entries which are computed similarly, now focusing

on tricks involving trump cards. The grand-game evaluation structure is also similar, except that up

to 4 trump targets and vulnerable high cards are considered and the trump context is replaced by an

index that encodes the Jack constellation and whether the soloist is in first playing position.

Bidding, Discarding, and Choosing Contracts

The 10+2 evaluation can be used for bidding as illustrated in Figure 4.2. The root value is the result

of an expectimax computation of winning probability over all soloist choices (picking up the skat or

not, selecting the game type (6 choices) to be played, and discarding two cards (66 choices)) as well

as chance nodes for the initial skat (22 choose 2 = 231 possibilities).+ + + +
+

pick up skat hand-game

skat (231) game type (6)

skat (231)

10+2 evaluation

10+2 evaluation

game type (6)

discard (66)

: max

: average

Figure 4.2: The simplified skat bidding search tree based on 10+2 evaluation.

Note that the hand-game branch of the tree is a convenient simplification in that we let the soloist

“know” the skat cards so as to reuse the 10+2 evaluation function. This can cause the hand-game

30

evaluation to be overly optimistic.

In the bidding phase, our program evaluates up to 92,862 leaf nodes with the 10+2 evaluation

function in a fraction of a second on modern hardware. The program then bids iff the root value

meets or exceeds a fixed bidding threshold B ∈ [0, 1]. Lowering B leads to riskier bidding. We

chose B = 0.6 from self-play experiments.

Once Kermit has won the bidding, the tree is searched again to determine whether or not to pick

up the skat. If not, the hand-game with the highest winning probability is announced. Otherwise,

Kermit receives the skat cards and selects the contract and the cards to discard based on searching

the relevant subtree and maximizing the expected game value.

4.3 Inference

While skat has been studied by other authors, none of the previous work involves the inference

of opponent cards during play. Research which uses inference in the closest manner to what we

describe here includes work by Ginsberg in bridge [15], and Richards and Amir in Scrabble [32].

Ginsberg’s bridge program, GIB, first places constraints on the length of card suits in each player’s

hand based on their bidding. For each such generated hand, GIB then checks whether it would have

made the bid that was actually made in the game, throwing out hands that do not pass this test.

Inference information from cardplay is incorporated as well, although precise details of how this is

done are not presented in Ginsberg’s work.

Richards and Amir’s Scrabble program, Quackle, performs a simple form of inference to es-

timate the letters left on an opponent’s rack (the leave) after the opponent has made a play. The

probability P (leave | play) is estimated using Bayes’ Rule. P (leave) is the prior probability of the

letters left on the opponent’s rack, obtained analytically from tile-counting. P (play) is a normalizing

constant, and P (play | leave) is obtained by assuming the opponent is playing greedily according to

Quackle’s static move-evaluation function; that is, P (play | leave) = 1 if play is the best-ranked play

possible, given what letters the player is assumed to have had, and 0 otherwise. These probabilities

are then used to bias the hypothetical worlds that Quackle examines during its simulations.

4.3.1 Inference Formulation

Our work has two key differences from that of Richards and Amir. The inference problem in im-

perfect information games can generally be described as the problem of finding P (world |move)

for an arbitrary hypothetical world and some move made by another player. An agent capable of

playing the game can obtain P (move |world), which easily leads to P (world |move) via Bayes’

Rule. There are, however, two problems with this approach. The first, as Ginsberg and Richards

and Amir point out, is that calculating P (move |world) for a large number of hypothetical worlds is

intractable. The second is that if the computer player generates only deterministic moves (as is the

31

case with GIB, Quackle and indeed our own program), then P (move |world) will always be either 1

or 0. This makes the prediction brittle in the face of players who do not play identically to ourselves.

Therefore, the first key aspect of our work is that we obtain values for P (world |move) by

training on offline data, rather than attempting to calculate P (move |world) at run-time. The second

key aspect is that we generalize the inference formulation such that we can perform inference on

high-level features of worlds, rather than on the individual worlds themselves. Examples of such

features include the number of cards a player holds in a particular suit and how many high-point

cards she holds. So long as we assume independence between features and conditional independence

between worlds and moves given these features (which may not be true, but allows for tractability),

we can derive a simple expression for P (world |move) as follows.

Here, let w be a world, m our move and F = f1 . . . fn the features present in w. By definition

of conditional probability, we have:

P (w|m) =
P (w ∧m)

P (m)
(4.1)

Because P (F |w) = 1, i.e. the presence of features is determined solely by the world, we can

write:

P (w ∧m) = P (w ∧m ∧ F) (4.2)

Now, using Bayes’ Rule, consider the following:

P (w|F) =
P (F |w)P (w)

P (F)
, P (m|F) =

P (F |m)P (m)

P (F)
(4.3)

Recall our assumption that worlds and moves are conditionally independent given features, i.e.

P (w ∧m|F) = P (w|F)P (m|F). Therefore, combining this with equation 4.3, we can write:

P (w ∧m|F) =
P (F |w)P (w)P (F |m)P (m)

P 2(F)
(4.4)

By definition of conditional probability, P (w ∧m|F) = P (w∧m∧F)
P (F) . Therefore, recalling that

P (F |w) = 1, we have:

P (w ∧m ∧ F) =
P (w)P (F |m)P (m)

P (F)
(4.5)

Combining this with equations 4.2 and 4.1 and cancelling out P (m), we get:

P (w|m) =
P (w)P (F |m)

P (F)
(4.6)

Finally, recall that the features F = f1 . . . fn were assumed to be independent. Therefore, we

arrive at our final equation:

32

P (w |m) = P (w) ·
∏
i

P (fi |m)

P (fi)
(4.7)

This is the formulation used by Kermit to perform inference. P (fi |m) in this case comes from

a database look-up, while P (fi) adjusts for the number of worlds in which feature fi is present, and

can be calculated analytically at run-time. This inference can be easily extended to observing move

sequences and used in card-playing programs to bias worlds generated in decision making modules.

4.3.2 Application to Skat Cardplay

The current version of our skat program draws conclusions from bids and the contract based on

(4.7), assuming independence, and biases worlds generated for PIMC accordingly. We distinguish

between soloist and defender card inference because of the inherent player asymmetry in skat.

As soloist, our program first samples possible worlds wi uniformly without replacement from

the set of worlds that are consistent with the game history in terms of void-suit information and

soloist knowledge. Given bidi := opponent i’s bid, the program then computes

P (wi | bid1, bid2) = P (h1(w′i) | bid1) · P (h2(w′i) | bid2),

where w′i represents the 32-card configuration in the bidding phase reconstructed from wi by con-

sidering all played cards as well as the soloist’s cards. Functions hi extract the individual hands the

opponents were bidding on from these complete 32-card configurations, and those are then evalu-

ated with respect to the bid. In a final step, our program then samples worlds for PIMC using these

values after normalization.

To estimate the probability of ten-card hands w.r.t. bids we could in principle make use of the bid-

ding system we described in Subsection 4.2.2. However, we can only process 160 states per second,

which is not fast enough for evaluating hundreds of thousands of possible hands in the beginning of

the cardplay phase. Instead, we use table-based features to quickly approximate hand probabilities

by multiplying feature value frequencies that have been estimated from generated bidding data. The

following is a list of the features used.

• Suit length ∈ {0 . . . 7}: The number of cards held in each of the four suits, ♦♥♠♣.

• Jack constellaion ∈ {0 . . . 15}: The exact configuration of the player’s Jacks.

• Ace count ∈ {0 . . . 4}: Number of Aces held.

• High card count ∈ {0 . . . 8}: Number of Aces and Tens held.

• King Queen count ∈ {0 . . . 8}: Number of Kings and Queens held.

• Low card count ∈ {0 . . . 12}: Number of 7s, 8s and 9s held.

33

The same basic algorithm is used for defenders modelling the soloist, but instead of basing the

inference on the soloist’s bid, we estimate the hand probability according to the announced contract,

which is more informative than the bid. Because we are sampling the soloist’s hand together with

the two cards discarded in the skat, we can use our 10+2 evaluation directly, since there is no need

for the tree search that averages over possible skats and game types. For this inference, we simply

assign a zero probability to hands with a winning probability below a fixed threshold of 0.5. This is

lower than Kermit’s bidding threshold of 0.6 to account for the fact that Kermit’s bidding is based

on expected value, and it may find worse-than-average cards in the skat.

4.4 Kermit Versus the World: Experimental Results

In this section we present performance results for our skat program, Kermit, that indicate that it is

much stronger than other existing programs and appears to have reached human expert strength.

Measuring playing strength in skat is complicated by the fact that it is a 3-player game in which two

colluders can easily win — as a team — against the third player. For instance, one colluder could bid

high to win the auction and his “partner” lets him win by playing cards poorly. In this extreme form,

collusion can be detected easily, but subtle “errors” are harder to spot. As this isn’t a “feature” of

our program, we score individual games using the Fabian-Seeger system which is commonly used

in skat tournaments. In this system, soloists are rewarded with the game value plus 50 points if they

win. Otherwise, soloists lose double the game value plus 50 points. In a soloist loss, each opponent

is also rewarded 40 or 30 points, depending on whether 3 or 4 players play at a table.

4.4.1 Playing Local Tournaments

We first compare the playing strength of our program by playing two kinds of tournaments to differ-

entiate between cardplaying and bidding strength. For this purpose we generated 800 random hands

in which, according to our bidding system using threshold 0.6, at least one player makes a bid. In

the cardplay tournaments we then had two competing players play each of those games twice: once

as soloist and once as defenders, for a total of 1600 games. In each game our bidding system de-

termined the soloist, the contract, and which cards to discard. In the full-game tournaments two

programs compete starting with bidding and followed by cardplay. To take player position and de-

fender configurations into account, we played 6 games for each hand (i.e., ABB, BAB, BBA, AAB,

ABA, BAA for players A and B), totalling 4800 games. All tournaments were played on 2.5 GHz

8-core Intel Xeon 5420 computers with 6–16 GB of RAM running Linux/GNU. Our skat program

is written in Java and compiled and run using Sun Microsystem’s JDK 1.6.0.10. The other pro-

grams we tested are written in C/C++ and compiled using gcc 4.3. Each program was given 60 CPU

seconds to finish a single game.

Table 4.2 lists the results of tournaments between various Kermit versions, XSkat, and KN-

NDDSS. XSkat is a free software skat program written by Gunter Gerhardt (www.xskat.de). It

34

Table 4.2: 2-way tournament results. S and D indicate that Kermit infers cards as soloist or defender,
resp. The NI program version does not do any inference. In full-game tournaments Kermit uses
bidding threshold 0.6.

Type Name Point Avg. Std.Dev. #
Cardplay Kermit(SD) 996 50 1600

Kermit(NI) 779 54 1600
Cardplay Kermit(SD) 986 51 1600

Kermit(S) 801 53 1600
Cardplay Kermit(SD) 861 53 1600

Kermit(D) 820 54 1600
Cardplay Kermit(SD) 1201 48 1600

XSkat 519 56 1600
Cardplay Kermit(SD) 1012 51 1600

KNNDDSS 710 53 1600
Full Game Kermit(SD) 1188 30 4800

XSkat 629 26 4800
Full Game Kermit(NI) 1225 30 4800

XSkat 674 27 4800
Full Game Kermit(SD) 1031 32 4800

KNNDDSS 501 21 4800

is essentially a rule-based system which does not perform search at all and serves as a baseline.

KNNDDSS is described by Kupferschmid et al. [23, 19]. It uses k-nearest-neighbor classification

for bidding and discarding and PIMC search with uniformly random world selection for cardplay.

Listed are the point averages per 36 games (which is the usual length of series played in human

tournaments), its standard deviation, and the total number of games played. Averaging 950 or more

points per series when playing in a skat club is regarded as a strong performance among human

players. As indicated in the top three rows, adding card inference to Kermit makes it significantly

stronger, with defenders inferring the soloist’s cards having the biggest impact. The following two

rows show that the cardplay of XSkat and KNNDDSS, which do not use card inference apart from

tracking void suits, is weaker than Kermit(SD)’s. In the full game tournaments XSkat’s performance

is slightly better, which means that its bidding performance is better than its cardplay relative to

Kermit. The similar performance between the inference and no-inference versions of Kermit against

XSkat indicate that Kermit’s inference is robust enough that its quality of play is not compromised

even against an opposing player very different from itself. The performance drop of KNNDDSS

when playing entire games is caused by Kermit outbidding it by a rate of more than 3:1, even at an

aggressive bidding threshold of 51 points used for KNNDDSS. It is possible that this is due to a bug

in KNNDDSS, or it may be an artefact of the issues we discussed in Section 4.2, where open-handed

and PIMC search based evaluations (which were used to train the knn classification of KNNDDSS)

severely underestimate the soloist’s winning chances.

35

4.4.2 The International Skat Server (ISS)

In late 2007, we launched the International Skat Server (ISS), an online environment which allows

human and computer players to compete at skat. ISS is written in Java, and a platform-independent

graphical user interface is available from the ISS website (www.skatgame.net/iss) which players

can download and use to connect to our server.

Play on ISS is organized around virtual tables. When a human player wishes to start a game,

he creates an empty table and then invites two or three other players to join that table, at which

point the assembled group of players will most likely play several hands together. Several computer

players — including Kermit — are “idling” on ISS at all times, and will accept any invitation that

they receive. The computer players are capable of playing at multiple tables simultaneously, or

in multiple instances at the same table. The computer players do not initiate game invitations on

their own. This format favours the human players, since they are free to explicitly seek out weak

opponents or even to always play with the same friendly human “partner” in all of their games.

For the play of a single hand, all players on ISS are allotted a maximum of three minutes play-

time. If a player’s clock runs out, he (and his partner if he is a defender during cardplay) forfeits the

match. The computer players on the server typically do not come close to using their entire allotted

time. The ISS user interface also allows human players an option to play in a (fascetiously named)

“noob mode,” in which they may examine the trick history and view the cards that have not yet

been played during the game. At a face-to-face skat table, players are not allowed to examine this

information, but we provide this option on the server to eliminate the computer players’ advantage

of a perfect memory (if the human players so desire).

To provide a rough picture as to the popular useage of ISS, as of June 2011, there are 126 human

players who have played 200 games or more on the server; the most active human player has played

over 49,000 games and 20 of the human players have played over 10,000 games.

4.4.3 Kermit’s Online Play

Since its creation in 2008, Kermit has been playing on ISS. At the time when we first published

results outlining Kermit’s playing strength in 2009, we presented the server results shown in Table

4.3. The top entries list the results of Zoot, Kermit, XSkat, and Bernie, the four computer players

playing on the server, playing against Zoot and Kermit. Zoot is a clone of Kermit using bidding

threshold 0.55 instead of 0.6, meaning that it bids more aggressively and is willing to play riskier-

looking games. Bernie is a program written by Jan Schäfer [38] that uses UCT search with XSkat

as playout module in all game phases, as mentioned in Chapter 3, Section 3.2.2. These results show

that the Kermit variations dominate these two programs when averaging over all games in which the

programs happened to play together at the same virtual table against other players on the server. The

bottom entries presents the results for Ron Link and Eric Luz, who are members of the Canadian

team that won the skat world-championships in 2006 and 2008. Although some entries do not

36

Table 4.3: Skat server game results. colPts and rowPts values indicate the point average for the
column and the row players, resp, while the # column is the number of hands played. Standard
deviations are shown in parentheses.

Name Zoot Kermit
rowPts colPts # rowPts colPts #

Zoot 942 (25) 942 (25) 6.4k 876 (43) 888 (44) 2.3k
Kermit 888 (44) 876 (43) 2.3k 919 (11) 919 (11) 36k
XSkat 577 (49) 1116 (44) 1.9k 592 (46) 1209 (43) 2.0k
Bernie 407(185) 1148(177) 133 588 (66) 1126 (65) 998

Name Ron Link Eric Luz
rowPts colPts # rowPts colPts #

Zoot 927 (141) 604 (137) 213 918 (38) 860 (38) 2.7k
Kermit 876 (101) 898 (99) 408 836 (43) 739 (42) 2.3k
XSkat 572 (75) 1075 (72) 812 829 (296) 760 (300) 50
Bernie 553 (205) 987 (192) 108 833 (135) 370 (146) 217

indicate a statistically significant advantage for either side, it is apparent that Kermit is competing at

expert-level strength.

As of June, 2011, Kermit had played over 354,000 games on ISS, with a list average of 937,

which suggests that even after several years of opportunity to probe for weaknesses, the human

players on the server have been unable to find a way to significantly exploit Kermit’s play.

Further evidence of Kermit’s considerable playing strength was provided by Dr. Rainer Gößl,

a strong skat player from Germany, who maintains a skat website that contains up-to-date reviews

of commercial skat programs (www.skatfox.com). After playing at least 900 games against each

program he concludes by saying that today’s best programs stand no chance against good players.

The best program he tested achieved an average of 767 points against his own 1238. When playing

49 games with Kermit, Bernie, and XSkat he finished with a 751 point average, while the programs

achieved 1218, 1007, and -34 points, respectively. While not being statistically significant by itself,

this outcome in combination with the other results we have presented and Gößl’s program reviews

suggests that at the moment Kermit is stronger than any other program and plays skat at human

expert level.

4.5 Why Kermit?

The curious reader may wonder why we chose the name “Kermit” for our program. It is, of course,

a reference to Jim Henson’s legendary muppet Kermit the Frog, as featured prominently on the

excellent television programs The Muppet Show and Sesame Street. When we launched ISS in 2007,

the first computer player to “live” on the server was the UCT player by Jan Schäfer. At that time,

the ISS infrastructure could not handle two instances of the same login name playing at the same

virtual table. Therefore, it was necessary to run two entirely separate instances of the UCT player,

37

each with its own handle; since these players came as a pair, we decided to use the logins Ernie and

Bert, after the inseparable muppet room-mates from Sesame Street. From there, it seemed natural

that our next program should also be named for a well-known muppet and so Kermit emerged as the

clear favourite. As the ISS infrastructure improved, Ernie and Bert were merged into the single user

name of Bernie, an obscure reference to their once-separate identities.

4.6 Conclusion

In this chapter, we have presented our skat-playing program, Kermit, which has been shown to

substantially defeat existing skat programs and plays roughly at the level of human experts. We

have also quantified the performance gain that Kermit achieves from its inference abilities, which

has not generally been done in other card-playing programs. Finally, Kermit owes its performance in

bidding to a state evaluator built from human data that drastically outperforms other existing bidding

methods.

For the remainder of this dissertation, Kermit is generally the standard against which additional

techniques and refinements are tested. Whenever we refer to Kermit without qualification, we are

referring to precisely the player we have described here.

38

When you can’t beat ’em, join ’em.

-English Proverb 5
Why Perfect Information Monte Carlo Search?

Although it has been used to create strong computer players in the past, Perfect Information Monte

Carlo (PIMC) search is a technique with known theoretical failings. When we first began work to

create a strong computer skat program, one of our initial goals was to find a technique that could

overcome these failings and surpass PIMC search as an algorithm for cardplay in games with a

similar structure to skat. We had hopes, for example, of employing the UCT algorithm that had

revolutionized the world of computer Go. However, the performance of Kermit, using a relatively

straight-forward PIMC implementation as described in Chapter 4, and its convincing domination of

other computer players, including one using a UCT approach, caused us to reconsider this goal. We

devote this chapter to a deeper understanding of the strengths and weaknesses of PIMC search, and

to why it works as well as it does in the domains in which it has been applied.

5.1 Understanding the Failings of PIMC Search

It is well-known that PIMC search as an algorithm does not produce a Nash equilibrium or any other

strategy with provable game theoretic properties. Frank and Basin were the first to precisely identify

and formalize the exact nature of the errors that PIMC search will make [9]. Fundamentally, these

errors occur because repeated plays of the perfect information variant of a game do not truly capture

all of the imperfect information aspects of the original game.

Frank and Basin distinguish between two distinct types of errors that PIMC search is guaran-

teed to be unable to detect, irrespective of the number of hypothetical worlds examined. The first

of these errors is termed strategy fusion. Strategy fusion arises because Perfect Information Monte

Carlo search (incorrectly) believes it has the luxury to choose the best strategy for any particu-

lar world, whereas in reality, there are situations (or information sets) which consist of multiple

different perfect information scenarios. In the full imperfect information game, a player cannot dis-

tinguish between these scenarios, and must choose the same strategy in each one; but PIMC search

erroneously assumes that it can choose a strategy tailored to each individual scenario. We illustrate

strategy fusion in Figure 5.1(a), which depicts an abstract, two-player zero-sum game tree. The

maximizing player is represented as an upward pointing triangle, and the minimizing player by a

downward triangle. Terminal nodes are squares with payoffs for the max player below them. There

are two worlds which would be created by a chance node higher in the tree. We assume neither

39

c

1

-1

-1

1

World 1

World 2

1

World 1 & 2

b a

(a) Strategy Fusion

c

1

a b

-1

c'

-1

1

a' b'

1

World 1World 2

-1

(b) Non-locality

Figure 5.1: Examples of strategy fusion and non-locality.

player knows whether they are in world 1 or 2, so we do not show this information in the tree.

At the root, the maximizing player has the choice of moving to the right to node (c) where a

payoff of 1 is guaranteed, no matter the world. The maximizing player can also get a payoff of 1

from the node marked (a) in World 1 and the node marked (b) in World 2. PIMC search will think

that it can always make the right decision above nodes (a) and (b), and so both moves at the root look

like wins. However, in reality the max player is confused between worlds 1 and 2 and may actually

make a mistake in disambiguation on the left side of the tree. We note that there are two conditions

required for strategy fusion to actually cause an error in the play of PIMC search. First, there must

be moves which are anti-correlated values (nodes (a) and (b)) on one portion of the tree, and second,

there must be a move which is guaranteed to be better on the other side of the tree. If node (c)

had the value -1, PIMC search would make the correct decision, although it would overestimate the

value of the tree.

The second error identified by Frank and Basin is termed non-locality. Non-locality is a result

of the fact that in a perfect information game, the value of a game tree node is a function only of

its subtree, and therefore the value of a node is completely determined by a search starting with

40

its children. In an imperfect information game, a node’s value may depend on other regions of the

game tree not contained within its subtree, primarily due to the opponent’s ability to direct the play

towards regions of the tree that he knows (or at least guesses) are favorable for him, using private

information that he possesses but we do not. This phenomenon creates non-local dependencies

between potentially distant nodes in the tree.

We illustrate non-locality in Figure 5.1(b). In this figure there is a chance node at the top of the

tree. The maximizing player knows the chance action, but the minimizing player cannot distinguish

between the states within the dotted rectangle. In this tree PIMC search would conclude that all

moves for the minimizing player are of equal value, and would therefore select a move at random.

But, in fact, the minimizing player can always know the correct move. Because the maximizing

player will take the win in world 1 if possible, the minimizing player will only have an opportunity

to play if he is in world 2, when the maximizing player moves to the left to avoid the immediate

loss. Thus, the minimizing player can infer the correct world and the correct action.

In Chapter 3, we have previously mentioned Frank and Basin’s Best Defense model, which

aspired to reconcile computer analysis of bridge hands with that of human experts. The effective

result of this model is that the strategy fusion problem is removed from the point of view of the

maximizer; the minimizer is assumed to still have perfect information. Ginsberg’s lattice search

achieves a similar effect, and is primarily concerned with ensuring the maximizer (particularly the

declarer in the context of bridge) can distinguish “clever” lines of play that win no matter the split

of the cards between the defenders from lines that require a deferred guess on the maximizer’s part.

However, neither of these techniques address an issue that frequently arises in skat, which is the

maximizer’s need to recognize and exploit the ignorance of his opponents.

To better illustrate this problem, we consider the more concrete skat-like example presented in

Figure 5.2. Say that there are no trump in this game, and that forehand, who holds the ♦A, the ♣10

and the ♠10, is the soloist; she gets to discard one of her three cards at the start of the game. Let us

also say she needs to win both tricks to win the game. Clearly, forehand’s best choice is to keep the

♦A and discard one of the Tens. To a human player, it is also clear how to play the hand: forehand

should begin with the ♦A, at which point middlehand (who holds the ♣A and the ♠A) must drop

one of his two aces. However, as he does not know which card forehand discarded, he does not know

which ace to keep. All else being equal, there is a 50% chance then that he drops the wrong ace. If

he does so, then forehand will play her remaining Ten and win the second trick as well. Thus, with

this strategy, forehand is guaranteed one trick and has a 50% chance of making two and winning the

game.

However, this is not the conclusion that Perfect Information Monte Carlo search will come to.

Because PIMC search analyzes the perfect information version of the game, the defenders will

always know which of the Tens forehand discarded, and which one she kept. Therefore, in the

perfect information play-outs, middlehand will always keep the correct ace, and therefore prevent

41

RearhandMiddlehand

Forehand, soloist

Figure 5.2: A cardplay situation that is incorrectly analyzed by PIMC search.

forehand from taking her second trick. What’s worse, since forehand needs both tricks to win the

game, when considering her first move, she will (incorrectly) see that all moves lead to a loss, and is

therefore equally likely to lead the ♦A as she is her Ten, when of course in reality, leading the Ten

guarantees her loss, while leading the ace means a 50% shot at victory. This is indeed an example

of strategy fusion, but neither Frank and Basin’s Best Defense nor Ginsberg’s lattice search could

resolve this scenario, since it requires recognizing that the opponents do not in fact have perfect

information and using this fact to make a potentially game-winning gambit.

In the example in Figure 5.2, we can perhaps save PIMC search by writing our alpha-beta search

such that it prefers maximizing card points won even if an overall win is impossible, which is the

approach taken by our program Kermit as described in Chapter 4. However, in Figure 5.3, we present

a situation in which this modification to alpha-beta not only fails, but in fact specifically hurts our

situation. This time, there is still no trump and middlehand is the soloist, holding ♣A, ♠8 and ♠7.

Forehand holds the ♣10 and the ♥10, while his partner holds the ♥A and the ♦A. The decision of

interest here is which card the soloist will discard. If none of the players know each others’ cards,

then forehand has a dilemma. He needs to play the Ten in the suit in which his partner holds the ace,

but he does not know which suit this is. Clearly then, if middlehand keeps the ♣A, there is a chance

that forehand plays the ♣10, allowing middlehand to take the first trick, and then take the second

trick in spades since the defenders hold none. Of course, discarding the ♣A guarantees the soloist’s

loss.

However, again in the perfect information analysis of this deal, forehand will never make the

mistake of playing the wrong Ten. Therefore, as far as middlehand can tell, all moves are a guaran-

42

RearhandMiddlehand, soloist

Forehand

Figure 5.3: A cardplay situation in which optimizing card points leads to the worst possible perfor-
mance.

teed loss. However, if our alpha-beta search has been tweaked to prefer moves that maximize card

points, then middlehand will in fact prefer the situation where he discards the ♣A, because at least

then that card is safe — even though in so doing, he gives up his 50% chance of taking both tricks

and therefore winning the game!

In this second situation, the analysis above only shows that alpha-beta search incorrectly ana-

lyzes a single hypothetical world (though in this case, the true one). The PIMC search that averages

over all worlds would indeed find in this situation that keeping the ♣A is the right move for mid-

dlehand, since there are card permutations — for instance, swapping the ♥A and ♥10 — in which

keeping ♣A will win a trick. However, let us assume that somehow, middlehand learns more about

the game, and infers the cards that his opponents hold, without them being able to do the same.

In this case, middlehand now knows the true world, and since alpha-beta incorrectly analyzes this

world, middlehand is now guaranteed to make the worst possible move. Thus, we have created the

perverse situation where knowing more actually hurts the performance of our player!

5.2 Understanding the Success of PIMC Search

The discussion of the preceding section may give the impression that the situation for PIMC search is

quite bleak. Indeed, PIMC search has often been criticized for “avoiding the issue” of imperfect in-

formation. For instance, in the 2nd edition of their widely-used AI textbook, Russell and Norvig [34]

write that PIMC search (which they call “averaging over clairvoyancy”) suggests a course of action

that “no sane person would follow” in a simple example that they present (in the 3rd edition, the

43

language is softened, although the same example is shown [35]).

Given such criticism, the true mystery is not why PIMC search might not work, but rather why it

works as well as it does, at least in the domains we have discussed. If PIMC search was fundamen-

tally the wrong approach, one would expect that no program of reasonable quality could use it to

play at any level approaching human strength. In this chapter, we will attempt to answer why PIMC

search has in fact been quite successful in practice.

We hypothesize that there should be a small number of concise properties which can describe

the general properties of a game tree and measure, from these properties, whether PIMC search as

an approach is likely to be successful or not. Several properties are proposed and used to build small

synthetic trees which can be solved and also played with PIMC search. We will show that these

properties directly influence the performance of PIMC search, and that they can be measured in real

games as well. Thus, we are able to suggest that in many classes of games PIMC search will not

suffer large losses in comparison to a game-theoretic solution.

The author expresses his thanks to Dr. Nathan Sturtevant and Tim Furtak for their contribution to

the work that follows. In particular, Dr. Sturtevant provided the data and analysis relating to hearts

and Kuhn poker, and Tim is responsible for measuring our synthetic tree properties in real games.

5.2.1 Motivation

In spite of its theoretical drawbacks, there is evidence that PIMC search can produce strong computer

players in some domains, in particular trick-taking card games such as bridge and skat. We have

seen in Chapter 4 how in skat, it dominates computer players based on hard-coded rules and UCT,

and even performs well against expert humans. Perhaps, however, the “bar is low,” as it were, in

these domains; even good human players may not actually play these games well in an absolute

sense. How well would PIMC search perform against a game-theoretically optimal player?

As we have previously discussed, finding a Nash equilibrium to the full game of skat is infeasi-

ble. However, it is possible to “solve” (with some caveats) small skat end-game positions, with for

instance three cards remaining for each player. We will do this using the CFR algorithm that has

been used to compute equilibrium strategies for poker [18], and compare the resulting optimal solu-

tion against a PIMC search player. For solving purposes, we will consider this three-trick sub-game

to begin with a chance node that distributes the remaining 11 cards among the three players and

the skat in a manner that is consistent with known void-suit information but is otherwise uniform.

This uniform distribution is, of course, not precisely accurate in describing the true game state, but

we will use the same assumption for both our equilibrium player and for PIMC search which will

hopefully make for a fair comparison. For our starting positions, we will use real skat games played

by humans for the first seven tricks for which the outcome of the game is still uncertain (i.e. neither

side has yet acquired sufficient card points to win the game). Empirically, approximately 15% of

skat games are still unresolved when there are three tricks left in the game, based on our analysis of

44

thousands of human-played games.

Over a randomly selected set of 3,000 such unresolved games, PIMC search makes mistakes that

cost it 0.42 tournament points (TPs) per deal on average against the equilibrium solution computed

by CFR. We must also note the caveat that CFR is not guaranteed to produce Nash equilibrium

solutions to multi-player games such as Skat; however, there is evidence that it still often produces

strong strategies [33], especially for small games of the type considered here. If we assume the

value of 0.42 to be close to the true loss against a Nash-optimal player, then as only 15% of games

are unresolved at this point, PIMC’s average loss is only 0.063 TP per deal. In a series of 180 deals

for each player (5 lists of 36 games each) in typical Skat tournaments the expected loss amounts to

11.3 TPs, which is dwarfed by the empirical TP standard deviation of 778. Thus, the advantage over

PIMC search in the endgame hardly matters for winning tournaments. If we assume that this result

generalizes to the ten-trick game — a big assumption, to be sure — a loss of 0.42 TPs per deal, or

15 TPs per list, is more significant, but still quite modest. It seems enough, in any case, to warrant

further investigation into the question of how much PIMC search will suffer against an equilibrium

player in different domains.

5.3 Methodology

As we have described in the preceding sections, work by Frank and Basin has already formalized

the kinds of errors made by PIMC search through the concepts of strategy fusion and non-locality.

However, not only does the mere presence of these properties seem difficult to detect in real game

trees where computing a full game-theoretic solution is infeasible, but as we have previously argued,

their presence alone is not enough to necessarily cause PIMC search to make mistakes in its move

selection.

Therefore, instead of focusing on the concepts of strategy fusion and non-locality directly, our

approach is to measure elementary game tree properties that probabilistically give rise to strategy

fusion and non-locality in a way that causes problems for PIMC search. In particular, we consider

three basic properties.

• Leaf Correlation, lc, gives the probability all sibling terminal nodes have the same payoff

value. Low leaf node correlation indicates a game where it is nearly always possible for a

player to affect their payoff even very late in a game.

• Bias, b, determines the probability that the game will favor a particular player over the other.

With very high or very low bias, we expect there to be large, homogeneous sections of the

game, and as long as a game-playing algorithm can find these large regions, it should perform

well in such games.

• Disambiguation factor, df , determines how quickly the number of nodes in a player’s infor-

mation set shrinks with regard to the depth of the tree. For instance, in trick-taking card games,

45

each play reveals a card, which means the number of states in each information set shrinks

drastically as the game goes on. Conversely, in a game like poker, almost no private informa-

tion is directly revealed until the game is over. We can determine this factor by considering

how much a player’s information set shrinks each time the player is to move.

All of these properties can be measured in real game trees, as we describe below.

5.3.1 Measuring Properties in Real Games

To measure leaf correlation, bias, and the disambiguation factor in real games (i.e. large games) we

suggest using random playouts to sample the terminal nodes (unless there is some a priori reason to

discard portions of the game tree as uninteresting or irrelevant). Once a terminal node is reached, the

bias and correlation may be estimated from the local neighbourhood of nodes. Along these random

playout paths the size of the information set to which each node belongs may be computed in a

straightforward manner, and compared to the subsequent size when next that player is to move. It is

then straightforward to convert the average reduction ratio into a df value for one’s desired model.

5.4 Experimental Setup

In this section, we first describe experiments on synthetic trees measuring the performance of PIMC

search in the face of various tree properties, and then show the measurement of these properties in

the real games that make up our domains of interest.

5.4.1 Synthetic Trees

We construct simple synthetic trees used in our experiments as follows. We assume, for simplicity’s

sake, that our trees represent a two-player, zero-sum, stochastic imperfect information game. We

may also assume, without loss of generality, that the game has alternating moves between the two

players, and that all chance events that occur during the game are encapsulated by a single large

chance node at the root of the game tree. Each player node is of degree 2, while the degree of the

beginning chance node is defined in terms of worlds per player, W . Furthermore, the information

concerning these worlds is assumed to be strictly disjoint; for each world of player p1, there are

1 -11 1 1 1 1 1 1-1 -1 -1 -1 -1 -1 -1

Figure 5.4: A sample of a depth 2 synthetic tree, with 2 worlds per player. Max nodes in boxes and min nodes
with the same shading are in the same information set respectively.

46

initially W worlds for player p2 that p1 cannot distinguish. We restrict ourselves to this disjoint

case because in cases where the players’ information overlaps, the game collapses to a perfect in-

formation stochastic game (i.e. there may be information unknown to both players, but at least they

are in the same boat). Therefore, the total degree of the chance node is W 2. Game tree nodes are

initially partitioned into information sets based on these worlds. We assume that all player moves

are observed by both players, in the sense that both players know whether the player to move chose

the ‘left’ or ‘right’ branch at each of their information sets. Finally, terminal payoffs are restricted

to be either 1 (a win for p1) or -1 (a win for p2). A small sample of such a tree is presented in Figure

5.4.

Now, under the above assumptions, we define our three properties in the synthetic tree context,

each one of which is continuous valued in the range [0, 1]. We describe below the effect of these

parameters on the construction of the synthetic trees.

• Leaf Correlation, lc: With probability lc, each sibling pair of terminal nodes will have the

same payoff value (whether it be 1 or -1). With probability (1 − lc), each sibling pair will

be anti-correlated, with one randomly determined leaf having value 1 and its sibling being

assigned value -1.

• Bias, b: At each correlated pair of leaf nodes, the nodes’ values will be set to 1 with probability

b and -1 otherwise. Thus, with bias of 1, all correlated pairs will have a value of 1, and with

bias of 0.5, all correlated pairs will be either 1 or -1 at uniform random (and thus biased

towards neither player). Note that anti-correlated leaf node pairs are unaffected by bias.

• Disambiguation factor, df : Initially, each information set for each player will contain W

game nodes. Each time p is to move, we recursively break each of his information sets in half

with probability df (thus, each set is broken in two with probability df ; and if a break occurs,

each resulting set is also broken with probability df and so on). If df is 0, then p never gains

any direct knowledge of his opponent’s private information. If df is 1, the game collapses

to a perfect information game, because all information sets are broken into sets of size one

immediately. Note that this generative model for df is slightly different than when measuring

disambiguation in real games trees.

Note that we do not specifically examine correlation within an information set; rather, we hypothe-

size that these properties represent the lowest level causes of tree structures that result in problems

for PIMC search, and that if they are present with sufficient frequency, then higher-level confusion

at the information set level will occur.

5.4.2 Experiments on Synthetic Game Trees

Using the synthetic game tree model outlined above, we performed a series of experiments com-

paring the playing strength of both PIMC search and a uniform random player against an optimal

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

s

Correlation

a) PIMC - Correlation and Bias

-0.18
-0.16
-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
is

am
bi

gu
at

io
n

Correlation

b) PIMC - Correlation and Disambiguation

-0.2
-0.18
-0.16
-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

s

Disambiguation

c) PIMC - Disambiguation and Bias

-0.18
-0.16
-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
 0

Figure 5.5: Performance of PIMC search against a Nash equilibrium. Darker regions indicate a greater average
loss for PIMC. Disambiguation is fixed at 0.3, bias at 0.75 and correlation at 0.5 in figures a, b and c respectively.

Nash equilibrium player created using the CFR algorithm. In each experiment, synthetic trees were

created by varying the parameters for leaf correlation, bias and disambiguation. Tree depth was held

constant at depth 8, and we used 8 worlds per player at the opening chance node, for a total chance

node size of 64. Playing strength is measured in terms of average score per game, assuming 1 point

for a win and -1 for a loss. For each triple of parameter values, we generated 10000 synthetic trees

and played 2 games per tree, with the competing players swapping sides in the second game.

The results of these tests are presented in figures 5.5 through 5.7. For ease of visualization, each

figure plots two parameters against each other on the x and y axes, while the third parameter is held

constant. Figures 5.5 and 5.6 shows the playing performance of the challenging player (either PIMC

search or uniform random) against the equilibrium player. White shaded regions are areas of the

parameter space where the challenger breaks even with equilibrium. The darker the shading, the

greater the challenger’s loss against the equilibrium. Figure 5.7 is similar, except that the shading

represents the gain of PIMC search over the random player when playing against equilibrium. Dark

regions of these plots represent areas where PIMC search is performing almost no better than the

random player, whereas lighter regions indicate a substantial performance gain for PIMC search

over random.

These plots show that PIMC search is at its worst when leaf node correlation is low. This is

true both in absolute performance, and in PIMC’s relative improvement over random play. The

most likely explanation for this behavior is that when anti-correlation occurs deep in the game tree

– particularly at the leaves – then PIMC search always believes that the critical decisions are going

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

s

Correlation

a) Random - Correlation and Bias

-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
is

am
bi

gu
at

io
n

Correlation

b) Random - Correlation and Disambiguation

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

s

Disambiguation

c) Random - Disambiguation and Bias

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

Figure 5.6: Performance of random play against a Nash equilibrium. Darker regions indicate a greater average
loss for random play. Disambiguation is fixed at 0.3, bias at 0.75 and correlation at 0.5 in figures a, b and c
respectively.

to come ‘later’ and that what it does higher up the tree does not actually matter. Of course, when

an information set structure (which PIMC ignores at every node except the root of its own search) is

imposed on the tree, early moves frequently do matter, and thus the superior play of the equilibrium

player. When correlation is medium to low, bias also seems to play a role here, with more extreme

bias resulting in better performance for PIMC, although the effect of bias is generally small. The

performance gain due to bias for PIMC is likely because a more extreme bias reduces the probability

of interior nodes that are effectively anti-correlated occuring perhaps one or two levels of depth up

from the leaves of the tree. Note that, of course, in the case of maximum bias and correlation, even

the random player will play perfectly, since the same player is guaranteed to win no matter what the

line of play (we can only suppose these would be very boring games in real life).

The situation with the disambiguation factor initially appears counter-intuitive; it appears that a

low disambiguation factor is good for the absolute performance of PIMC search, while the worst case

is a mid-range disambiguation factor. However, in the relative case of PIMC’s gain over random,

the trend is very clearly reversed. The explanation for this lies in the fact that the random player

performs relatively well in games with a low disambiguation factor. In some sense, because there

is so much uncertainty in these games, there is a lot of ‘luck,’ and there is only so much an optimal

player can do to improve his position. As we increase the disambiguation factor, the performance

of the random player deteriorates rapidly, while PIMC search is much more successful at holding

its own against the optimal player. As disambiguation approaches 1, the performance of PIMC

improves drastically, since the game is approaching a perfect information game. Finally, we note

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

s

Correlation

a) PIMC Gain - Correlation and Bias

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
is

am
bi

gu
at

io
n

Correlation

b) PIMC Gain - Correlation and Disambiguation

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

s

Disambiguation

c) PIMC Gain - Disambiguation Bias

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Figure 5.7: Performance gain of PIMC search over random against a Nash equilibrium. Darker regions
indicate minimal performance gain for using PIMC search over random play. Disambiguation is fixed at 0.3,
bias at 0.5 and correlation at 0.75 in figures a, b and c respectively.

that with a high disambiguation in the 0.7-0.9 range, low correlation is actually good for PIMC’s

performance. This is a result of the fact that these games become perfect information games very

quickly, and low correlation increases the probability that a win is still available by the time the

PIMC player begins playing optimally in the perfect information section of the tree.

5.4.3 Real Games

To test the predictive powers of our three properties, we estimated the distribution of those parame-

ters for actual games. The first game so measured is skat. We differentiate results by the three major

game types — suit, grand and null. For each game type, 10000 human-bid games were explored

using random actions from the start of the cardplay phase. In each game correlation and bias were

measured 1000 times near the leaves. To do this, we walk down the tree, avoiding moves which lead

to terminal positions (after collapsing chains of only one legal move). When all moves lead directly

to terminal positions we take their value to be the game value with respect to the soloist (to emulate

the values of the fixed depth synthetic trees). We say these “pre-terminal” nodes are correlated if

all move values are the same, and compute bias as the fraction of correlated nodes which are soloist

wins.

Disambiguation was measured by comparing the change in the number of possible (consistent)

worlds since the current player was last to move. Only 10 disambiguation rollouts were performed

per world, since the resulting ratios were tightly clustered around df = 0.6. The observed distribu-

tions are shown in Fig. 5.8. In this figure, we also display results for Hearts, which, like skat, is a

50

Figure 5.8: Parameter space estimation for Skat game types and Hearts. Dark regions correspond to a high
density of games with those measured parameters. Values were sampled using 10000 games for each skat type
and 3000 games for hearts. Bias is given in terms of score w.r.t. a fixed player.

trick-taking card game, but played with a larger deck and different scoring rules. 3000 Hearts games

using 500 sample points per game were used to generate this data.

For both the skat and hearts games, the resulting graphs show a very high level of correlation

(from 0.8 to nearly 1.0), with bias varying more widely and disambiguation very close to 0.6, as

mentioned above. Examining Figures 5.5(b) and 5.7(b) puts skat in a parameter space where the

PIMC player loses only 0.1 points per game against equilibrium and gains 0.4 points over random

play (recalling that our synthetic trees use payoffs from -1 to 1), with perhaps plus or minus 0.05

points depending on the bias of the individual hand. This seems like relatively good performance

for PIMC search, which coincides with our motivating evidence that PIMC search seems to perform

well in these games in practice.

Another game we examined is Kuhn poker, a highly simplified poker variant for which Nash-

optimal solutions are known. In this game two players are each dealt one card out of a deck of three.

The game proceeds as: both players ante; player 1 may check or raise; player 2 may fold, check,

call, or raise as appropriate; if the game is still proceeding, player 1 may fold or call. The player

with the high card then wins the pot. With Nash-optimal strategies player 1 is expected to lose 1/18

= 0.05̄ bets per game and player 2 to win 1/18 bets per game.

This game has a disambiguation factor of 0, since no cards are revealed (if at all) until the end,

and the size of an information set is never decreased. By inspecting the game tree and using our

51

Table 5.1: Average payoff achieved by random and PIMC against Nash and best-response players
in Kuhn poker.

Opponent
Player: Nash Best-Response

Random (p1) -0.161 -0.417
Random (p2) -0.130 -0.500
PIMC (p1) -0.056 -0.083
PIMC (p2) 0.056 -0.166

notion of pre-terminal nodes the correlation and bias can be seen to be 0.5 and 0.5 respectively.

These parameters are very different from skat and hearts and lie in the portion of parameter space

where we would predict that PIMC search performs more poorly and offers little improvement over

random play. This is then, perhaps, at least one explanation of why research in the full game of

poker has taken the direction of finding game-theoretic solutions to abstract versions of the game

rather than tackling the game directly with PIMC search.

We present results comparing play between a random player, PIMC player and Nash player in

Table 5.1. Kuhn poker is not symmetric, so we distinguish the payoffs both as player 1 and player 2.

Because the PIMC player does not take dominated actions, when playing against a Nash equilibrium

this player achieves the equilibrium payoff, while a random player loses significantly against even

an equilibrium player. If an opponent is able to build a best-response against a PIMC player, then the

PIMC player is vulnerable to significant exploitation as player 2, while the random player loses -0.5

as the second player, where 0.056 could have been won. Thus, these results present the experimental

evidence showing that PIMC is not a good approach in practice for a game like poker. Although it

plays better and is less exploitable than a random player, PIMC may lose significantly to a opponent

that can model its play.

5.5 Conclusion

In this chapter, we performed experiments on simple, synthetic game trees in order to gain some

insight into the mystery of why Perfect Information Monte Carlo search has been so successful in

a variety of practical domains in spite of its theoretical deficiencies. We defined three properties of

these synthetic trees that seem to be good predictors of PIMC search’s performance, and demonstrate

how these properties can be measured in real games.

There are still several open issues related to this problem. One major issue that we have not

addressed is the potential exploitability of PIMC search. While we compared PIMC’s performance

against an optimal Nash equilibrium player in the synthetic tree domain, the performance of PIMC

search could be substantially worse against a player that attempts to exploit its mistakes. It would

also be informative to examine more real games that more completely span the parameter space

established by our synthetic trees.

Finally, we have seen that in games like skat that there isn’t a single measurement point for a

52

game, but a cloud of parameters depending on the strength of each hand. If we can quickly analyze

a particular hand when we first see it, we may be able to use this analysis to determine what the best

techniques for playing are on a hand-by-hand basis and improve performance further.

53

On the contrary, Watson, you can
see everything. You fail, however,
to reason from what you see. You
are too timid in drawing your infer-
ences.

-Sherlock Holmes

6
Inference

In an imperfect information game, inference is the problem of accurately assigning a probability

distribution over unobserved variables in the game state. Informally, in a card game like skat, this

means we want to be able to guess the cards that an opponent is holding based on the opponent’s

actions. It has generally been taken for granted, at least in trick-taking card games such as skat and

bridge, that inference of this sort is desirable, but there has been relatively little discussion as to why.

For instance, of the 55 pages that Ginsberg uses in his journal paper describing his seminal PIMC

search-based player GIB [15], less than 1 page is devoted to inference and the issues related to it. In

this chapter, we will discuss the inference process as it relates to imperfect information games and

to particular techniques like PIMC search in greater detail, as well as presenting inference-related

theoretical results and insights.

6.1 Isn’t Inference Just Opponent Modelling?

Inference, as we have taken it, is the problem of mapping a series of observed actions taken by

a player into a probability distribution over that player’s private information. A reasonable and

intuitive question to ask is whether inference is nothing more than an attempt to build a model of

a particular opponent. Certainly, since inference attempts to derive meaning from an opponent’s

actions, it is inherently dependent on the opponent’s policy for choosing those actions — in other

words, her strategy. And if the opponent does not act as we expect, could our inferences cause us to

make more mistakes by misleading us?

To answer these questions, we will revisit the simple abstract game tree in Figure 6.1, which

we had previously displayed in Chapter 5. In our earlier discussion, we stated that in this game,

the minimizing player (who moves second here) can always make the correct play by moving to

the right. This is because he has inferred that if world 1 was the true world, surely the maximizing

player would have moved to the right and won immediately. But what if the maximizing player is

trying to “trick” the minimizer? Perhaps she takes great joy in tempting her foe with the chance of

victory, knowing full well he will throw it away under the assumptions of his inference. So let us

suppose that she always moves to the left. In the case where worlds 1 and 2 are equally likely, the

minimizer will now win half of the time by always moving to the right, which is the best he can do

in this case. However, if world 1 is more likely than world 2 — say it is 75% likely to be the true

54

c

1

a b

-1

c'

-1

1

a' b'

1

World 1World 2

-1

Figure 6.1: A game tree where sound inferences can be made.

world — the minimizer would do better by always moving to the left instead and winning 75% of

the time. By insisting on moving to the right due to his inference, he wins only 25% of the time,

which is a considerable drop in expected value compared to 75%. However, recall that if world 1

was indeed the true world 75% of the time, then the maximizing player could have just won outright

75% of the time by foregoing this little charade and always moving to the right whenver she knows

world 1 to be the true world. Therefore, the most the minimizer can actually hope for against an

optimal opponent is a 25% win rate, which he achieves by moving to the right (against the optimal

opponent or any opponent for that matter).

This discussion leads us to a distinction between what we will call sound and unsound inference.

A sound inference is one that cannot cause a reduction in our expected value assuming a strong

opponent. More precisely, in a two-player, zero-sum game, we will say an inference is sound if it

is based on the assumption than an opponent is playing a Nash equilibrium strategy. Our discussion

concerning Figure 6.1 is an example of sound inference. An unsound inference is based only on the

assumption that the opponent is playing an arbitrary fixed strategy. Therefore, so long as we limit

ourselves to sound inferences, then the inference process is as generally valid as the widely-used

assumption that the opponent is playing an equilibrium strategy.

6.2 Inference and Non-locality

In Chapter 5, we discussed in detail Frank and Basin’s concept of non-locality [9], one of the two

distinct sources of error for PIMC search. This concept is in fact very closely related to the problem

of inference. As stated by Frank and Basin, non-locality arises because the opponent may be able

to use their private knowledge to direct the play towards sections of the game tree that are more

favorable for her. This is akin to saying that moves convey information, using reasoning of the form:

“X cannot be true, because if it were, the opponent would have played differently.” Inference is the

process of capturing this information conveyed by opponent moves, and by the same token, being

55

aware of the information that our own moves convey to the opponent.

In their discussion of non-locality, Frank and Basin conclude that the problem is not specific to

PIMC search in its particulars; rather, non-locality has the potential to arise for any move-selection

algorithm that considers only the subtree of the current state (or even current information set). We

will call such an approach a local solution method. The only way to guarantee correctness is to use

solution methods that consider the game tree of an imperfect information game in its entirety; we

will term such approaches as global solution methods. However, as we have previously established,

applying a global method to a large real game is a daunting endeavour. In games like skat, where

end-game positions at least appear so much smaller and simpler than the full game, we would like

to be able to harness the computational simplicity of local methods. Inference can help us to do just

that.

6.2.1 Using Inference to Solve Subgames

Suppose we have a magical black-box that can, at any stage of an imperfect information game,

generate an accurate probability distribution over all the hidden (i.e. non-public) information in the

game. We will show that we could use such a box to find optimal strategies for subtrees of a game

G without the need to consider the entire game-tree of G.

Definition 6.2.1. Let G be a finite imperfect information extensive form game. Let H be a history

of actions taken by the players in G. We designate H as a public move history if all of the actions

in H were observed by all of the players in G.

Definition 6.2.2. Define BOX(G,H, σ) as a function, that, given a game G, a public move history

H leading to a set of possible states S, and the strategy profile σ for all players in G, generates

P (s) for all s ∈ S as the correct a posteriori probability distribution over all possible current states

S.

Theorem 6.2.1. Let G be a finite imperfect information extensive form game and let S be the set

of states in G that are consistent with an arbitrary public move history H . Let σ be the strategy

profile used by the players in G that generated H . Let G′ be a game that begins with a chance node

that generates initial game states according to the distribution produced by BOX(G,H, σ) and is

otherwise identical to the subtree of G rooted at S. Let σ′ be a strategy profile for playing G′. Then

the expected payoff for all states in G′ under sigma′ will be the same as the expected payoff of the

corresponding state in G under σ′.

Proof. Let S be the set of possible states in G. Together, σ and the public move sequence H =

m1 . . .mn define a conditional probability distribution P (s|m1 . . .mn, σ) for all s ∈ S that are

consistent with H . Since we have stated σ is fixed, the entire game tree prior to S may be con-

densed to a single state L where the chance player is to move, and acts according to the distribution

P (s|m1 . . .mn, σ
s) — by definition, this is precisely the distribution produced by BOX(G,H, σ).

56

LetG′ be a game that begins with L and is then followed by all game subtrees fromG that are rooted

at S such that there is an edge e from L to some s ∈ S inG′ iff the chance outcome represented by e

combined with the move sequence m1 . . .mn would lead to the same state s in the original game G.

Then the expected value for any strategy profile σ′ for playing G′ will be the same as the expected

value for σ′ when used in the corresponding subtree of G. Therefore, at each state s′ from G′ the

expected value is same as for the matching state s from G.

At first glance, we may not have gained much from this theorem, as it depends on our magical

black-box. Of course, if we have σ, constructing our box requires no particular special magic but

only a straightforward application of Bayes’ rule; however, typically σ is not easily available, partic-

ularly the components belonging to the opponents. The key insight here is that we only care about σ

insomuch as it helps us generate our probability distribution over states, P (S). If we could somehow

estimate P (S) directly, then we need not care about obtaining σ at all. The dimensionality of the

space of possible states is typically far smaller than for the space of possible strategies; therefore,

P (S) may be considerably easier to approximate than σ itself.

6.3 Inference in PIMC Search

We have seen in the preceding sections how accurate inference can enable the use of local methods

for move selection without sacrificing guarantees of theoretical correctness. However, that discus-

sion assumed the use of optimal move selection methods. As we have seen in Chapter 5, PIMC

search is not an optimal method. A good inference engine solves “half” of the non-locality problem

for PIMC search, in that it can take into account information leaked by opponent moves prior to the

current state. However, it will remain unaware of information leaked by its own future moves (and

those of the opponents), and the problem of strategy fusion remains the same as before. Therefore,

it cannot be taken for granted that accurate inference will improve the playing strength of PIMC

search. Instead the question must be examined empirically.

6.3.1 Inference in Kermit

In Chapter 4, we presented results concerning the playing strength of our program, Kermit. In those

results, we explicitly tested versions of the program with and without its inference module. We

reproduce the relevant sections of those results here to discuss them in greater detail.

First, we note that the inference module substantially improves Kermit’s performance in self-

play. This entry should represent an upper-bound on the performance gain due to inference, since

Kermit has available the perfect model of itself. Most of the gain comes from the defenders mod-

elling the soloist, and it is not hard to argue as to why. In particular, a great deal of information is

conveyed by the soloist’s choice of game-type, especially as to which suit is trump. Without infer-

ence, PIMC search will examine worlds at uniform random — which means from a defender’s point

57

Table 6.1: Re-visiting 2-way tournament results that highlight Kermit’s inference performance. S
and D indicate that Kermit infers cards as soloist or defender, resp. The NI program version does
not do any inference.

Type Name Point Avg. Std.Dev. #
Cardplay Kermit(SD) 996 50 1600

Kermit(NI) 779 54 1600
Cardplay Kermit(SD) 986 51 1600

Kermit(S) 801 53 1600
Cardplay Kermit(SD) 861 53 1600

Kermit(D) 820 54 1600
Full Game Kermit(SD) 1188 30 4800

XSkat 629 26 4800
Full Game Kermit(NI) 1225 30 4800

XSkat 674 27 4800

of view, his partner could easily hold more trump cards than the soloist. Furthermore, in any world

where this is the case, it is typically easy for the defenders to win the game with nearly any move,

which makes it difficult for them to differentiate move quality. In reality, of course, the soloist chose

a particular trump suit because she is holding more than her share of those cards, and this is reflected

in Kermit’s inference.

Good performance in self-play is not enough to validate Kermit’s inference, so we also tested

Kermit’s non-inference version against the rules-based system XSkat. Here we see that the inference

has little effect on Kermit’s performance; the score differential between Kermit and XSkat remains

nearly the same. Both players have lower scores overall because the inference-equipped Kermit

plays better on defense, which tends to lower the average score. In some sense this is a positive find-

ing, as it suggests that Kermit’s inference is sound. XSkat is a relatively weak player which Kermit

already dominates with or without inference; therefore, to improve performance in this setting, most

likely unsound inference would be required. Combined with Kermit’s strength playing online on

ISS, this indicates that Kermit’s inference is beneficial against stronger players and at least does not

mislead the program against weaker players.

6.3.2 Considerations in Inference Design

Even if we have a good method of attaching probabilities to individual worlds, there are some

practical subtleties to using inference for PIMC search (or any other local solution method that uses

inference to sample worlds) that bear mentioning. Ideally, PIMC search would exhaustively examine

all worlds, and weigh the result of each world’s analysis by the world’s probability. When the state

space is still large, this approach is not feasible if the analysis of each world is time-consuming, as is

the case when using alpha-beta search on perfect information worlds. The next solution, then, is to

build the complete a posteriori probability distribution over all worlds and sample as many worlds as

58

possible from that distribution. However, if the cost of assigning a probability to individual worlds

is too high, this process may still be infeasible, especially near the start of a game when millions

of different worlds are possible; this was certainly the case for our player Kermit. One approach

then is to sample worlds uniformly and then weight the results of examining those worlds by their

probability, throwing out worlds with zero probability and re-sampling if necessary. A downside

to this approach is that if there are only a few worlds with high probability and many with a low

but non-zero probability, we are unlikely to ever examine the most interesting worlds. A good

compromise, and the approach used in Kermit, is to sample a sizeable subset of the possible worlds

at uniform random, and then build a probability distribution over this subset, which can then be

sampled for worlds that will actually be searched.

6.3.3 Learning Features for Inference

In Kermit, we took the approach of learning features offline for use in inference. In general, we

are attempting to store probabilities of the form P (f |C), where f is either a complete perfect in-

formation world or perhaps some feature of interest describing a world (for example, the number of

cards a player holds in a specific suit) and C is an information context. It is immediately apparent

that C should generally consist of the public move sequence, or at least some subset of it that we

deem to be most relevant. A key question with which we grappled was whether aspects of a player’s

private information should be included in C. For instance, say we wish to infer whether or not a

player holds the Ace in a particular suit (say ♣). Should we store conditional probabilities of the

form P (has(♣A)|M,♣(h)), where M is the move history and ♣(h) is the constellation of cards

that the player performing the inference holds in the ♣ suit? Intuitively at least, it seems natural that

our own card constellation might tell us something about the way the opponent will play her cards.

It turns out that in fact we never need consider private information in learning these conditional

probabilities. It suffices to store probabilities conditioned on public information; at run-time, pri-

vate information can be used to simply knock out impossible worlds and the remaining non-zero

probabilities need only be renormalized. We show this is true by proving the following theorem.

Theorem 6.3.1. Let G be a game. Let pi be a player in G who makes move m in the information

set Ii. Then P (Ii|m,σi) is the probability that pi is in information set Ii given that we observe his

move, m, and his fixed strategy, σi. Now let x be private information which was not known to pi in

Ii, but for which P (x|Ii) is known. Then P (Ii|m,σi, x) = P (m|Ii, σi) ·P (σi) ·P (x|Ii) · p(Ii)/C,

where C is simply a normalizing constant.

Proof. A straightforward application of Bayes’ rule yieldsP (Ii|m,σi, x) =P (m|Ii, σi, x)·P (σi|Ii, x)·

P (x|Ii) · P (Ii) in the numerator (as always, the denominator is just a normalizing constant). We

may now simplify some terms due to conditional independencies. By definition, σi maps informa-

tion sets directly into action probabilities. Therefore, m depends uniquely on σi and Ii, and by

definition of conditional independence, we may rewrite P (m|Ii, σi, x) as P (m|Ii, σi). Since pi’s

59

strategy is fixed, it does not depend on his information set nor on private information unknown to pi,

so P (σi|Ii, x) = P (σi). This is simply a prior belief that pi plays strategy σi. Therefore, with these

simplications we now have P (Ii|m,σi, x) = P (m|Ii, σi)·P (σi)·P (x|Ii)·P (Ii)/C as required.

The key aspect of Theorem 6.3.1 is that the private information x only appears in the numerator

once, in the term P (x|Ii). In the special case where P (x|Ii) = 0 for “inconsistent” information

sets (e.g. we know our own cards, so therefore the opponent cannot be holding any of them) and

is otherwise uniform, this has the effect of zeroing out the probability of impossible information

sets and renormalizing the rest. For features that depend directly and uniquely on information sets,

it is straightforward to see that Theorem 6.3.1 holds as well. This insight is a critical one for the

efficient offline learning of world and feature probabilities, since including private information (such

as a player’s own cards) in an information context exponentially bloats the number of conditional

probabilities that need to be estimated

6.4 Conclusion

In this chapter we discussed the issues related to the problem of inference in an imperfect infor-

mation game. We have presented some theoretical inference properties, as well as practical con-

siderations when using inference in our player Kermit. We suggest that on the whole, considering

inference as an explicit problem in the domain of imperfect information games gives rise to a useful

mental framework in which we can separate a game into two distinct components: those actions that

have happened prior to the game’s current state, and those that will happen after it. Inference is the

glue that allows us to bind this past and future together.

60

Know your enemy and know your-
self, and you can fight a hundred
battles without disaster.

-Sun Tzu 7
Real Time Opponent Modelling in Skat

Opponent modelling is the problem of predicting the actions of other agents in an adversarial en-

vironment. Classically, the general implicit approach to opponent modelling has been to assume

that all players are attempting to play a Nash equilibrium — a game-theoretically optimal policy

that guards against the worst case. Such an assumption is critical to the alpha-beta minimax search

techniques that have been applied with great success to perfect information games like chess and

checkers.

However, when adversarial environments become more complex, notably through the inclusion

of stochasticity and imperfect information, it becomes more important to consider different opponent

models for two reasons. The first reason is that optimal strategies in these environments are often

overly defensive — they guarantee that we cannot lose much, but also that we cannot gain much

either, no matter the actions of the opponent. In settings such as competitive tournaments, it is often

not enough to play well against strong opposition; potential tournament winners must also maximize

their gains against weaker, more exploitable competitors. The second reason is that in imperfect

information environments, it is often helpful to infer hidden state variables based on actions of other

agents. For certain types of inference (notably unsound inference as we discussed in Chapter 6,

this requires an accurate model of how agents behave in the environment. Thus, an appropriate

opponent model allows for an agent to explicitly exploit opponent weaknesses, and to improve its

own decision making through superior inference of hidden information.

In this chapter, we describe a simple post-processing analysis technique that can be used to

assess an agent’s general decision quality in certain classes of environments. We then apply this

technique to skat, and show how our agent is able to appropriately adapt its play against varying

strengths of opponents. Most importantly, this adaptation is fast enough to be performed in real time

and requires only a handful of encounters with a particular opponent in order to be effective.

7.1 Background and Motivation

In Chapter 3, we mentioned how Richards and Amir [32] describe a method of inferring letters on

the opponent’s rack in the game of Scrabble in order to bias letter distributions used in simulations.

Equipped with this inference technique, Quackle, which at the time was the strongest Scrabble

program and had previously beaten a former human World-champion, achieved a substantial 5.2

61

point score advantage over the original Quackle version. Similarly, in our own work in Skat, we

saw in Chapter 4 the positive effect that inference had on Kermit’s performance. However, in both

these cases, the inference was a result of the player modelling itself, rather than explicitly tracking

the behaviour of an opponent.

We also discussed in Chapter 3 recent advances in opponent modelling in the game of poker

by Johanson and Bowling [17] and Ganzfried and Sandholm [13]. The work by Johanson and

Bowling has the advantage of being robust, in that it guarantees a good trade-off between an agent’s

ability to exploit the opponent and the agent’s chance of being exploited itself, but requries a large

number of interractions and is too slow for real time use. The work by Ganzfried and Sandholm has

fewer guarantees but is faster. However it still requires approximately one-thousand interractions

or more to show any positive result. At a live skat tournament, players will typically stay at the

same table for one list of 36 games before moving on to a new table with new opponents. Therefore,

requiring thousands or even hundreds of games for modelling purposes is much too slow for winning

tournaments.

Furthermore, in skat we have strong evidence that opponent modelling is particularly important

to achieving a high overall game score. We have mentioned how on our online skat server, Kermit

maintains a very respectable list average of 931. However, david, the top human player on ISS has

a list average of 1324. This is because david plays many games against weak players like XSkat.

What’s more, as a result of playing against such opponents, david’s behaviour is quite different from

Kermit’s. On average, david plays as the soloist in a staggering 59% of his games, whereas Kermit

plays roughly its “share” of soloist games at 32%. It seems evident that david is able to adjust

his bidding to account for the general weakness of his opponents. In this chapter, we will discuss

methods to enhance Kermit to exhibit similar behaviour.

7.2 Methodology

In his seminal work on building an expert-calibre computer bridge player, Ginsberg remarks that

both human bridge experts and his program GIB have an extraordinarily low “double-dummy mis-

take rate” [15]. What he means by this is that if one were to compute the perfect information value

of the game — the final resulting game value under the assumption that the location of all cards

is known to all players, and all players play perfectly from that point onwards — that value would

rarely change following any play by a human expert or by his program.

Ginsberg does not dwell on this observation, other than to consider it as supporting evidence

that his program GIB has reached or surpassed human expert level playing strength. For us, this

observation will form the foundation of our modelling approach, which we describe below.

62

Algorithm 2 PIPMA post-game update procedure for a single player. Winning positions have value
1 and losing positions, value -1; we assume here that there are no other values.
Require: completed episode E, agent p

for each state s in E for which p is to move do
Win← ∅
Lose← ∅
for each action a available in s do

compute value(a)
{Returns the Perfect Information game value of selecting a at s}
if value(a) = 1 then
Win←Win ∪ {a}

else
Lose← Lose ∪ {a}

end if
end for
if Win 6= ∅ AND Lose 6= ∅ then
mistakeOpps(p)← mistakeOpps(p) + 1
{p’s opportunies to make mistakes, maintained globally}
if p’s chosen action in s ∈ Lose then
mistakes(p)← mistakes(p) + 1
{p’s total mistakes made, maintained globally}

end if
end if

end for

7.2.1 Perfect Information Post-Mortem Analysis

We will refer to our approach as Perfect Information Post-Mortem Analysis, or PIPMA. The proce-

dure is intended to be called at the conclusion of each episode in an environment of interest and to

incrementally update a mistake rate for each agent involved in the episode. This is done by exam-

ining each state in which an agent acted and computing the perfect information value of that state

before and after the agent’s move. If there is a difference, the agent’s move is flagged as a mistake.

It is also necessary to determine whether it was even possible to make a mistake, which in the worst

case, requires examining every available move. States where a mistake was not possible are dis-

carded from the analysis. The agent’s final mistake rate is defined as the ratio of mistakes to mistake

opportunities. Pseudo-code for the PIPMA process is shown in Algorithm 2.

We note that PIPMA requires two assumptions about the environments to which it can be applied.

The first is that by the end of each environmental episode, all previously hidden information from

the environment must have become public for all agents. The second is that perfect information

values must be relatively easy to compute for all states in the environment. These assumptions hold

in most trick-taking card games, such as bridge as studied by Ginsberg, and in skat.

7.2.2 Theoretical and Empirical Properties of PIPMA

PIPMA assumes that the actions it identifies as mistakes in the perfect information version of an

environment are actually undesirable in the original imperfect information setting and should be

63

MAX

MAX MIN

a

cb

2

3

4

1W +1 −1 −1 −1

W −1 +1 −1 −1
W −1 −1 +1 −1
W −1 −1 −1 +1

−1 +1 +1 +1

+1 −1 +1 +1
+1 +1 −1 +1
+1 +1 +1 −1

Figure 7.1: A synthetic zero-sum game in which PIPMA flags the optimal move (a-c) as a mistake.
The payoffs at the leaves in each world Wi are given in view of player MAX.

avoided by rational players. It is simple to show that there is no theoretical guarantee that this will

be the case. In fact, PIPMA can, in principle, consider an optimal move to be a perfect information

mistake. We demonstrate this through means of the example shown in Figure 7.1.

In this example, there are two players, MAX (represented by circles) and MIN (represented by

squares), who are playing an imperfect information game. There are four possible worlds, deter-

mined secretly at the start of the game. MAX is to move at the root and can go either right or left.

If she goes left, then she is to move again. Now she has four options, each one of which wins in

exactly one distinct world and loses in the other three. Because MAX does not know which is the

true world, she must simply pick a move at random, and achieve a payoff of 1 with probability 0.25

and -1 otherwise. Alternatively, if MAX goes right at the root, she can foist the guess onto MIN,

and therefore achieve the positive payoff with probability 0.75. Clearly, then, MAX’s best move is

to go to the right. However, from a perfect information perspective, where all players know the true

world, going to the right is a mistake for MAX, since MIN has no need to “guess” in this game’s

perfect information variant. Therefore, MAX moving right will be flagged as a mistake by PIPMA,

even though it is the clear optimal move in the real game.

In spite of this theoretical caveat, it seems that pathological cases like those shown in Figure

7.1 rarely occur, at least in the environments where PIPMA has been examined. Ginsberg shows

that in bridge, human world experts have a PIPMA mistake rate of approximately 2% while leading

the first trick of the game, and this rate goes steadily down as the game progresses. In skat, we

measured card-play mistake rates for a collection of sixty-five randomly selected human players,

each of whom had played at least 2000 games on an online skat server. We plot these mistake

rates against the players’ average score-per-list — the standard scoring metric in skat — in Figure

7.2. Although card-play strength is only one aspect of playing good skat, the general trend is clear:

higher-scoring players tend to have lower PIPMA mistake rates. We also show skat data in Figure

7.3 indicating how PIPMA mistake error declines as a function of the number of tricks played so

64

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 500 600 700 800 900 1000 1100

M
is

ta
k
e
 R

a
te

Average Score per List

Figure 7.2: PIPMA mistake rate plotted against average score-per-list for sixty-five human skat
players.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1 2 3 4 5 6 7 8 9 10

M
is

ta
k
e
 R

a
te

Trick

Kermit

Amateur Human

Ron Link

Figure 7.3: PIPMA mistake rate plotted as a function of the current trick in skat for three players.
Kermit is a computer player, Ron Link is a high-ranked human expert and the third player is an
arbitrary human of roughly average strength.

far. On this plot, we show data for three players: Kermit, Ron Link, who is a high-ranked human

expert, and an arbitrarily selected amateur human player. Although overall mistake rates appear to

be higher in skat than in bridge, we see a trend similar to Ginsberg’s observation, namely that the

mistake rate declines as the game progresses.

Finally, we note that PIPMA is relatively difficult for a canny human (or other opponent-modelling

computer) player to exploit, so long as cases such as described in Figure 7.1 are indeed rare (and

it is likely inadvisable to use PIPMA at all in environments where they are not). In order to be

unduly “underestimated” by PIPMA, a player must intentionally throw away games that, from a

perfect information perspective, she has already won. It seems exceedingly unlikely that forfeiting

guaranteed wins frequently enough to cause PIPMA to make a serious misestimation of a player’s

skill could result in a significant long-term advantage. However, this is true if PIPMA flags only

mistakes that change the game value from a win to loss. If, for example, PIPMA considers a move

that loses points according to some heuristic function — say, failing to maximize tricks taken in

bridge beyond what is needed to win the contract, or failing to maximize card points in skat — to

be a “mistake,” then it could become vulnerable to an exploitative opponent. On the other hand, if

most of these mistakes are genuine, flagging them with PIPMA could decrease the amount of data

65

needed to form an accurate opinion of the opponent’s mistake rate. In the remainder of this work,

we restrict ourselves to considering pure win/loss mistakes, but considering heuristic mistakes as

well could lead to interesting future work.

7.2.3 Applying Perfect Information Post-Mortem Analysis to Skat

In this section we describe how we use the PIPMA technique described above to add a real-time

opponent modelling component to our computer skat player Kermit.

Recall in skat the asymmetry between the soloist and the defenders. The soloist has the potential

to gain many points but can also lose points as well, so it is an inherently risky position. The

defenders can win a small number of points if they defeat the soloist during card-play, but cannot

lose points in any way. Therefore, playing defense is very safe, but does not allow for the potential

of large rewards. Recall also that Kermit uses a simple thresholding approach to decide if it will

continue to bid in hopes of winning the auction and becoming the soloist, or if it will pass and resign

itself to a defense role. Kermit continues to bid if its perceived winning probability as soloist is

greater than the fixed threshold of 0.6.

Our new program, which we will refer to as the Count (due to the program’s manic obsession

with counting points and moves of the other players, much like the Sesame Street muppet of the

same name), is identical to Kermit, except that after every hand, it post-processes the card-play

moves of all players involved using PIPMA and updates their mistake rates. This post-processing

takes approximately one second after each game, and is therefore practical even for real-time play

against humans. The Count then uses this information to dynamically adjust its bidding threshold

during the bidding phase of future games.

The basic intuition behind this threshold adjustment is simple: bid more aggressively against

weak players (players with a high mistake rate), and less aggressively against stronger ones. The

problem that remains is exactly how much to adjust this bidding threshold based on the observed

mistake rates of the opponents. To gain insight into this decision, we constructed a synthetic skat

player that is directly defined in terms of its mistake rate m as follows. Whenever the player is

to move, it is explicitly informed of the true world, and computes the sets of winning and losing

moves for the current (perfect information) position. Then, assuming both sets are non-empty, with

probability 1 − D(m) the player chooses a winning move to play, using Kermit’s PIMC search

procedure (and thus for this purpose ignoring that the player knows the true world) to break ties

if necessary. D(m) is a function that maps the player’s global mistake rate to a local one that

is dependent on the current stage of the game — this is to account for the fact that in skat, players

make many more mistakes early in the game than they do later. With probabilityD(m), the player is

forbidden from selecting a winning move and must play a losing move (e.g. make a mistake) instead,

again using PIMC search to break ties among candidate losing moves. We chose D(m) = m+ 0.07

for the game’s first trick andD(m) = max(0, (m−(0.01(trick−1)))) for subsequent tricks. These

66

Mistake Rate 1

M
is

ta
ke

 R
at

e
2

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20

P(win) Offset

−0.05

0.00

0.05

0.10

0.15

Figure 7.4: Synthetic tournament results displaying the average P(win) estimation error in Kermit’s
bidding-phase hand evaluator, plotted as a function of the mistake rates of Kermit’s two opponents.

choices were based on the approximate observed rate at which Kermit’s own mistake rate declined

as a function of the current trick, and so that empirically the synthetic player’s global mistake rate

ends up being very close to m.

We then played a series of games between Kermit and synthetic players of varying strength. For

each series, we record the average error in Kermit’s bidding evaluation function over all games in

which Kermit played as soloist, where the error for an individual game G is defined as follows:

error(G) = win(G)− pWin(G) (7.1)

win(G) is 1 if Kermit won inG as soloist and 0 otherwise, while pWin(G) is the winning probability

for G as computed by Kermit’s evaluation function. The results of these experiments are shown in

Figure 7.4.

[t]offset(p1, p2) =

{
0.1−m(p1, p2) if m(p1, p2) ≤ 0.1

0.05− 0.5m(p1, p2) otherwise (7.2)

Note that, while useful, these synthetic results do not take account of more complex factors, such

as a player’s potential to win extra points as a defender due an opponent’s high error rate. However,

using these as a starting point, we performed some empirical tuning and ultimately chose the formula

shown in Equation (7.2) to use for the Count, wherem(p1, p2) is simply the average of the individual

mistake rates of the two opponents, p1 and p2. Recall that this is an offset to the Count’s bidding

threshold, so that a positive offset increases the threshold, making the program more conservative,

while a negative offset decreases the threshold, making the program bid on riskier games.

67

Table 7.1: Tournament results between players, all performed on the same set of 2000 deals. In
each match, the column player played against two clones of the row player. We report the average
score-per-list difference (row-column) and score-per-list (standard deviation in brackets) for row and
column players in each match-up.

row \ col Kermit Tracker Tracker-rm36
r-c row col r-c row col r-c row col

Mistake0.03 379 874(46) 495(55) 344 812(47) 468(55) 262 756(48) 494(50)
Mistake0.10 -213 634(48) 847(48) -90 693(48) 783(52) 47 684(48) 637(53)
Mistake0.25 -638 460(52) 1098(45) -726 460(50) 1186(48) -498 468(49) 966(56)
XSkat -741 648(42) 1389(47) -826 612(36) 1438(39) -662 594(31) 1256(63)

row \ col theCount theCount-rm36
r-c row col r-c row col

Mistake0.03 108 756(48) 648(48) 133 761(48) 628(46)
Mistake0.10 -161 660(48) 821(48) -144 662(49) 806(48)
Mistake0.25 -618 511(50) 1129(52) -564 493(52) 1057(53)
XSkat -818 630(39) 1448(52) -808 623(39) 1431(39)

7.3 Experimental Results

7.3.1 Computer Player Tournaments

To assess the strength of our PIPMA modelling approach in a real game environment, we ran a

series of skat tournaments between computer players. Our goal is to compare the performance of

three different candidate players: Kermit, the Count and a player we call Tracker. Kermit is the

static, non-adaptive skat player described in Chapter 4. The Count is the modification of Kermit

that uses PIPMA to adjust its bidding behaviour, as described in Section 7.2. Tracker is a “naive”

adaptive player also based on Kermit that tracks only its own performance as soloist in the context

of its current opponent match-up: after each soloist game played, Tracker updates its perceived

error in its bidding evaluation function according to Equation (7.1) from Section 7.2. It then uses

the average accumulated error as an offset to its bidding threshold in future games. Tracker’s final

adjusted bidding threshold is capped at 0.75, so as to prevent the program from believing that all

soloist games are unwinnable (and therefore never playing as soloist again to gather more data) after

a particularly unlucky streak.

We note that the card-play strength of our three candidate players is identical. Furthermore,

the adaptive bidding of Tracker and the Count is such that against an opponent of equal card-play

strength, the bidding of these two programs is nearly identical to Kermit’s. Therefore, comparing

these programs by playing them against each other would be futile.

Instead, we play each of these candidates against a set of benchmark players. Three of these are

synthetic players, as described in Section 7.2, using mistake rates of 0.03, 0.1 and 0.25. The fourth

benchmark player is the rules-based program XSkat. We have previously shown in Chapter 4 that

XSkat is substantially weaker than Kermit. It serves as a useful example of a player that is very

68

different from the synthetic players and our candidate players.

In our experiments, each candidate played the same set of 2000 skat deals against two clones

of each of the benchmark players (although the candidate players were not aware that their two

opponents were identical for the purpose of modelling). All experiments were run on computers

with eight 2.5 GHz Intel Xeon E5420 CPUs with 16 GB of RAM.

We show results of these tournaments in Table 7.1. The displayed score represents average points

earned per list (36 games). The candidate players Tracker and the Count have two types of entries

in this table: one with the suffix “rm 36” and one without. The “rm 36” version of each program

deletes all of its opponent modelling data every 36 games; the non-suffixed version keeps its data

for the duration of the 2000 game run.

Discussion

In opponent modelling, the general goal is to improve performance against some opponents, ideally

without losing in self-play or becoming too vulnerable to exploitation by an adaptive adversary. Our

experiments against the candidate players were designed to test the first two of these three criteria

and we will discuss the results in that light.

Against the Mistake0.1 player, we see little difference between Kermit and the Count; in fact,

Kermit performs slightly better. This is not unexpected, because Kermit’s own global error rate is

very close to 0.1, and therefore this result approximates a self-play match. Since Kermit is tuned

to perform well in self-play, the best the Count could hope for in this match-up is to tie Kermit’s

performance, which it effectively does.

Meanwhile, the Count achieves a modest but, in skat terms, still substantial gain against XSkat,

and a dramatic gain against the exceptionally strong Mistake0.03 player. The Count’s somewhat

weak performance against the Mistake0.25 player was more of a surprise. Although the Count

still outperforms Kermit in the long run, this advantage is slight enough that it disappears when

the Count is forced to erase its modelling data. This appears to be because although the synthetic

player’s cardplay is quite weak, it still bids as aggressively as Kermit, meaning that Kermit earns

many points on defense and would achieve little by increasing its own bidding aggressiveness (as

the Count tries to do). XSkat, while of similar card-play strength to the Mistake0.25 player, is

more conservative in its bidding. A follow-up experiment where the Mistake0.25 player’s bidding

threshold was increased from 0.6 to 0.7 seemed to confirm the role of the bidding behaviour; in this

setting, the Count (with “rm36” enabled) exceeds Kermit’s list-average by 57 points.

Finally, we compare the Count to the Tracker player. Our objective in including Tracker among

our candidate players was to compare the amount of data needed to perform successful opponent

modelling by a naive approach against the amount needed by the Count’s PIPMA. In nearly all cases,

we see that Tracker performs quite similarly to the Count in the long run. However, when it is forced

to delete its modelling data every 36 games, the performance of Tracker degrades quickly, becoming

69

weaker than both Kermit and the Count against all the benchmark players except Mistake0.03, where

it is roughly even with Kermit. The Count, on the other hand, becomes only very slightly weaker

when it deletes its data. Effectively, Tracker is not able to accurately model its opponents in a

short period of time using only end-of-game results whereas the Count gains considerably more

information per game by examining the individual moves made by all players. This appears to allow

the Count to model its opponents sufficiently quickly inside a 36 game window to make a positive

difference in its play.

7.3.2 Online Play

In addition to the tournaments between computer players described above, the Count has been play-

ing on ISS. When we first introduced the Count to online play, it achieved a list average of 1000

points (std. deviation of 18) in its first 14415 games, which was 60 points more than Kermit’s aver-

age at the time. Since then, the difference between Kermit and the Count has decreased slightly, with

the Count dropping to a 963 list average over 134,000 games, though it is still ahead of Kermit’s

937 average. The Count’s behaviour is quite different from Kermit’s, as it plays 38% of its games

as soloist, up from Kermit’s 32%. This suggests that the Count’s modelling approach works well

against human players in addition to synthetic ones, although we must be cautious about drawing

conclusions in this setting, since so much depends on the make-up of matches. For instance, the

more the Count plays with a clone of itself or with Kermit (as often happens if a human invites two

computer players to a table), the more its score will converge to Kermit’s, which is a likely reason for

the Count’s slow decline in score. Perhaps the most encouraging result of the Count’s modest out-

performance of Kermit on ISS is that since humans are typically good at exploitative play, it appears

that the Count’s PIPMA approach is indeed robust against exploitation in practice, as suggested by

our arguments in Section 7.2.

7.4 Conclusion

In this chapter, we proposed Perfect Information Post-Mortem analysis as a simple tool for quickly

assessing opponent decision-making abilities in certain classes of environments, notably trick-taking

card games. We then used this technique to create the Count, a computer skat player that adjusts

its bidding behaviour in real time in response to the card-playing strength of its opponents. We

presented experimental results showing that the Count generally performs approximately as well or

better — and in some cases, substantially better — as a non-adaptive player against several opponent

types. Finally, the Count is able to successfully model its opponents in fewer than 36 games, the

length of a standard skat tournament match, making it practical for real-time play against humans.

In pursuing the work we have described here, we have effectively been dealing with two separate

questions: first, can we capture some model of the opponent’s behaviour, and second, if so, what

should we do about it. PIPMA is a relatively general technique that addresses the first of those

70

questions in environments that are easier to deal with “in hindsight” than they were at the time that

actual decisions were being made. This appears to be a fast and robust way of capturing a general

concept of “playing strength” in such domains.

The second question, how to appropriately react to a known opponent mistake rate, seems con-

siderably more domain specific. In skat, we were fortunate in that a general approach to this question

— adjusting bidding rate — seemed immediately apparent. However, although we performed var-

ious experiments to explore how the bidding rate should be adjusted, our final approach is still

somewhat ad hoc and could likely be improved in future. In other domains, it is less apparent what

the first steps should be in reacting to a known general opponent weakness.

Finally, we note that our focus here has been on opponent modelling in an adversarial setting.

However, there are numerous non-adversarial contexts in which a PIPMA-style assessment of agent

decision quality could be useful. Take, for instance, a card-game tutorial program of the type sug-

gested by Kemp et al. [20]. Such a system might wish to match a novice human player against

computer players of an appropriate skill level. PIPMA provides a straightforward means of evaluat-

ing this skill level both for the human and for computer players. In fact, PIPMA may be even more

easily applicable in such domains, since an administrating program can have access to full post-

game hidden information even if the players involved normally would not. Thus, non-adversarial

settings are another promising avenue along which this work could be further explored.

71

The average Ph. D. thesis is noth-
ing but a transference of bones
from one graveyard to another.

-James Frank Dobie 8
The Investigator’s Graveyard

During the course of our work to build a strong computer skat player and to understand the issues

surrounding that goal, we investigated a number of techniques that failed to live up to our initial

expectations for them. For some of these ideas, perhaps this is because they are simply entirely

without merit. For others, skat may simply not be the right domain, or perhaps they are lacking some

crucial refinement. In this chapter, we will chronicle what we believe to be the most interesting of

these techniques.

8.1 UCT Search in Skat

Initially, we had aspirations of extending the work of Schäfer [38], who applied the UCT search

algorithm to skat. Compared to PIMC search, UCT has the potential to better address issues of

imperfect information. Recall that UCT works by building up a tree of game state nodes, where

statistics on move performance are kept at each node. If this tree does not encompass the entire

game (as it usually will not), a roll-out module is used to simulate the remainder of the game.

For an imperfect information game, UCT’s statistics could be kept at the level of information sets,

rather than specific game nodes, enforcing the constraint that players must act the same within an

information set. This regime still does not capture all aspects of imperfect information; for instance,

if we only sample worlds where the player to move has his true hand (as was done by Schäfer and

is typically done in PIMC search), then the other players in the UCT tree will implicitly “learn” the

hand of the player to move. Nevertheless, this approach is still more imperfect information aware

than PIMC search. Additionally, since perfect information game values underestimate the soloist’s

winning chances, we considered using UCT for the bidding phase as well as cardplay.

In spite of our early optimism, preliminary results by us in combination with Kermit’s eventual

domination of Schäfer’s UCT player on our online skat server caused us to abandon a UCT-based

approach. We believe we can provide at least some insight as to why UCT seemed ineffective in the

domain of skat.

First, let us consider UCT for bidding. Suppose our player, p1, is trying to decide whether to

accept a bid or to pass. To do this using UCT, p1 would sample both moves and begin to build up

a tree for the next few levels of information sets — for instance, selecting a game type and then a

discard once the bid has been won. The problem, using a sampling approach, is that in skat, the

72

vast majority of game types and discards are catastrophic, no matter how strong p1’s hand. Using

relatively uninformed playouts, it takes UCT an enormous number of simulations to discover that

for one very specific game type with a small number of reasonable discards, it actually has a good

game as soloist. What’s more, because the initial samples on the accept branch are so bad, UCT will

spend much more time examining the pass branch. Initially, this branch will look very good to UCT,

for the same reason that the accept branch looked so bad; the opponent will lose most game types

and thus UCT anticipates earning some nice, safe, tasty defender points. In the event that it is likely

the opponent actually has a winnable soloist hand, it will take UCT many simulations to determine

that the defender points may not be so likely after all, and then it must return to primarily sampling

the accept branch. The end result of this is that a player using UCT for bidding does not win the

bidding auction very often. This suggests that perhaps UCT is ill-suited for dealing with games that

require a very narrow line of play to accurately evaluate certain branches of the game tree.

For cardplay, UCT seems to suffer from a somewhat different issue. Recall that UCT uses a

static roll-out policy to select moves deeper in the game tree. While this roll-out policy can vary

in strength from being completely random to being highly informed with domain knowledge, it is

still assumed to produce weaker moves than the UCT process itself; otherwise, why not simply use

the roll-out policy to play the entire game and forego UCT entirely? Therefore, the UCT search

paradigm assumes that we are mostly considering high-quality moves for all players near the root of

the search, and that deeper in the tree we have a weaker model of how players will act. However, as

our results from Chapter 7 have suggested, this model has it backwards when it comes to skat; near

the end of the game, players tend to make very few mistakes, and thus are not accurately modelled

by a relatively weak roll-out policy.

8.2 Recursive PIMC Search

Recursive Perfect Information Monte Carlo search is a technique briefly suggested by Ginsberg [15]

for addressing some of the errors made by PIMC search. The basic idea is simple: instead of using

PIMC search to choose moves only at the root of a search, use it to assign moves further down in the

game tree as well. Thus, instead of predicting that players will play the optimal perfect information

move in each world, we will instead predict that they will play the move that would be suggested by

PIMC search in their position. We show pseudocode for this in Algorithm 3.

The major benefit of this recursive approach is that it captures to some degree the concept that

moves convey information. We will illustrate this through an example. Consider the miniature skat

situation in Figure 8.1. Let us say the only remaining trump card is the ♣J, which is held by the

soloist along with the ♠7. Defender 1 is up next to lead, and holds the ♠98. His partner, defender

2, is in the middle and holds ♥A7. Furthermore, since the ♥A is the only high-point card left, let

us say that whichever side wins that card will win the game. Let us also say that defender 2 knows

which four cards are held by the other players, but does not know how they are distributed.

73

Algorithm 3 Top level procedure for Recursive PIMC Search
Require: current information set I , set of worlds W that are legal in state I , maximum available

time T , maximum time for recursive search t, a global collection M(w) that maps perfect infor-
mation worlds to moves, maximum recursive depth d
for each action a that is possible at I do
{Initialize values for all actions}
v(a)← 0

end for
t← elapsedT ime
while t < T do

sample some world w ∈W
for each action a that is possible at s do
{applyAction(w, a) returns the world that results when action a is applied to state s}
w′ ← applyAction(w, a)
recursivePIMC(w′, d, t))
for i from 1 to d do
w′ ← applyAction(w′,M(w′)
v(a)← v(a) + solve(w′)

end for
end for
t← elapsedT ime

end while
return argmax(v(a))

Algorithm 4 Recursive sub-procedure for Recursive PIMC Search
Require: perfect information world w, recursive depth d, maximum time t

if d = 0 then
return

end if
{I(w) gives the information set to which world w belongs from the perspective of the player-to-
move in w}
M(w)← PIMCSearch(I(w), t)
w′ ← applyAction(w,M(w))
recursivePIMC(w′, d− 1)

From a perfect information perspective, this is a won position for the defenders. Defender 1

is guaranteed to make one trick in ♠, allowing his partner to put on the ♥A. Note that in in this

position, playing either of his cards is a winning move for defender 1, since both defeat the ♠7

which the soloist is forced to play. Therefore, if PIMC search was being used to play this position,

it would randomly select one of the two cards to play first.

The problem, from defender 2’s perspective, is that he does not know exactly which cards de-

fender 1 is holding. In particular, defender 1 might be holding the ♠8 and the ♣J. This position

is still a perfect information win for the defenders, and defender 1 could still play either card first;

if he plays the ♠8, he knows he is losing the ♠ trick, but will win the last trick with the jack, and

will expect his partner to save his ♥A for that trick. However, to defender 2, this situation is in-

distinguishable from our earlier scenario, where defender 1 holds the ♠98. In that world, he must

immediately put on his ace if he sees the ♠8, because the soloist will win the second trick with the

74

Soloist

Defender 1 (on lead)

Defender 2

Figure 8.1: A cardplay situation where PIMC search may play an ambiguous move as Defender 1.

jack.

The entire dilemma could be avoided if defender 1 simply played ♠9 or the ♣J — whichever

he actually has — first, so that his partner knows what is going on. Leading with the ♠8 is an

ambiguous play for which defender 2 always has a winning move, but cannot tell which move it is.

Our player Kermit, using PIMC search, frequently makes such ambiguous moves, and while they

may or may not be the worst mistakes in terms of playing strength, anecdotally they are the most

frustrating mistakes for human players. Recursive PIMC search would help solve this problem, as it

will show that other players will sometimes make mistakes in the face of ambiguous moves.

The number of required PIMC searches in Algorithm 3 is dWB, where W is the number of

worlds examined, B is the average branching factor and d is the depth up to which we will apply

the recursive procedure. What’s more, B will be larger than for vanilla PIMC search, since we

cannot collapse cards that are adjacent in rank and therefore equivalent in the perfect information

setting (indeed, the whole point is NOT to do this!). If we model other players as using recursive

PIMC search themselves (rather than using standard PIMC search to fix their moves), the number of

searches increases to (WB)d. Even in the former, simpler case, this complexity is too high for prac-

tical use, especially in the first few tricks when solving worlds is relatively expensive. Nevertheless,

to gain some small intuition as to the potential gains of recursive PIMC search, we implemented a

depth-1 recursive PIMC search player and tested it against Kermit on a set of games that had been

partially completed by human players. The two players used a fixed number of worlds for each

search instead of a time-limit. Over 1000 deals where each program played both sides of the deal

starting from the 6th trick, the recursive player earned 1.2 tournament points per game (43 points

75

per list) more than Kermit. This amount is not insubstantial in skat terms. However, it came at a cost

of a 100 fold increase in computation time. When the same set of deals was played starting from

trick 8, the difference dropped to less than 0.5 points per game. For now, it appears the cost of this

technique is prohibitive for the relatively modest gains involved, especially for a system intended to

play at human speeds.

8.3 Tracking Bidding Behaviour

In human skat clubs, different players are known for having widely varying bidding behaviour. Some

players are quite conservative, content to play defense much of the time and bidding only on very

strong games, while others bid much more aggressively. We investigated the problem of modelling

this behaviour using real-time post-game processing similar to the PIPMA technique we discussed

in Chapter 7.

We begin by observing that by the conclusion of each deal, we know precisely the initial hands

hi of each player i who played defense. We also know the maximum bid that each player made

during the auction, bi. We can therefore use Kermit’s “10+2” bidding evaluation to assign a soloist

winning probability Pi(hi, bi) to the initial hand of player i. Our data then consists of pairs of the

form (B,P), where B is a binary variable that indicates whether the player bid or passed and P is

the winning probability of the player’s hand according to the 10+2 evaluation. If we now assume

that the opponent is, like Kermit, a threshold player who bids whenever P > T for some threshold

T , our data now induces a collection of inequalities on T . These inequalities take the form of

(T < P) for each data point (B,P) and (T > P) for each point (¬B,P). Unless the opponent

truly is a strict threshold player (and moreover, one that uses Kermit’s 10+2 hand evaluation), some

of these inequalities will be contradictory. But we can find a T that minimizes some loss function

with respect to these inequalities, for example, a simple hinge loss function where for an inequality

(T < P), our loss L is defined by L = T − P for T > P and 0 otherwise. If we discretize T , then

this minimization can be done with simple hill-climbing, since the hinge loss function is convex. We

graph this loss function as a function of the threshold T in Figure 8.2 for Kermit (using a threshold

value of 0.5), XSkat and an aggregate collection of online human players, using 10,000 games to

generate the bidding inequalities in each case. We see here, as we might expect, that Kermit’s

loss function is much steeper than XSkat’s and the humans’, as well as seeing that XSkat is quite

conservative with its bidding in general. We also see that XSkat’s overall loss is much higher than

that of Kermit or the human players; this is indicative of inconsistent bidding on the part of XSkat,

as it frequently misjudges the winning chances of its hands.

In the case of a soloist who picks up the skat, we have a snag, in that there is now no way to

extract the soloist’s initial hand from the public play history (without cheating, of course). We know

the 12 cards that the soloist had prior to her discard, but we do not know which two of the those

twelve came from the skat. We could try to estimate probabilities for different possible initial hands,

76

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80 90 100

L
o

s
s
 s

c
o
re

Threshold

Kermit (0.5)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50 60 70 80 90 100

L
o

s
s
 s

c
o
re

Threshold

XSkat

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70 80 90 100

L
o

s
s
 s

c
o
re

Threshold

Human Players

Figure 8.2: Loss value plotted against estimated threshold for Kermit (using threshold 0.5), XSkat
and an aggregate collection of online human players.

but this requires a model of how the opponent bids, which is what we’re trying to get at in the first

place. Moreover, the data that we get in this case is of marginal use, since it results in a single

lower-bound inequality. Most of our information is obtained in cases where a player started bidding

but then eventually passed, since this will produce two relatively tight inequalities on their assumed

threshold T . In practice, we can simply omit recording any data at all for the soloist (except in hand

games, where we do in fact know the soloist’s initial hand) and still get very fast estimation.

For true threshold players, this estimation is extremely fast, and will nearly always pinpoint the

player’s true bidding threshold in fewer than 36 games. For other players, such as humans or XSkat,

if we assume the player’s true optimal threshold to be the one estimated after examining thousands

of games, then the average absolute estimation error after using only 36 games is less than 0.02

(recalling that thresholds range from 0 to 1).

Although it appears that this bidding estimation is both quick and accurate, this section sits in

the graveyard of this document because we have yet to find a way to use this information to improve

playing strength in a significant way. Initially, we had thought to adjust our own bidding behaviour

as a response to opponent bidding, but it appears that Kermit’s default threshold of 0.6 is quite robust

no matter the bidding of the opponents. While bad bidding can be catastrophic for the opponent,

it seems to be difficult for us to capitalize on it in the same way that we took advantage of the

opponent’s cardplay strength in Chapter 7.

77

8.4 Beyond Threshold Bidding

Kermit’s model of threshold bidding — bidding whenever its perceived winning chances as soloist

are above some win-probability threshold — appears to be simple, but effective. However, it is a

myopic view in that it leaves out factors such as the potential to win points on defense and inferences

about what we might find in the skat given the bidding of the opponents. It seems like we should be

able to do better.

A slightly more sophisticated model treats bidding as an expected value (EV) calculation that

takes opportunity costs into account. More specifically, under an EV model, we continue to bid so

long as pWins(B) ·winV alue− (1− pWins(B)) · lossV alue > pWind(B) · defenderV alue.

pWins is the program’s perceived chance of winning as soloist and pWind the winning chance as

defender, both as functions of the current bidding level B. This model assumes that pWins(B)

is monotonically decreasing in B, while pWind(B) is monotonically increasing in B. Strictly

speaking this assumption may not be true due to inferences that may be made on the two cards in

the skat, but it is certainly true from the perspective of Kermit’s 10+2 evaluation function and is a

good bet in general.

Kermit’s evaluation function already provides us with pWins, but now we need pWind as

well. One way to obtain an estimate for this is to sample possible hands for the opponent, and

use our trusty 10+2 evaluation to compute the opponent’s winning chances, and use pWind =

1− pWins−opponent. In sampling opponent hands, we must take only those that are consistent with

the opponent’s bidding behaviour so far; this of course requires a model of how the opponent bids.

We can assume the opponent bids as Kermit would have, possibly modifying our model based on

techniques discussed in the preceding section. In the same way, we can sample opponent hands

in combination with the skat to assess probabilities for the cards we may find should we win the

bid, weighting the the resulting expected game values appropriately. In the special case where the

opponent has not yet bid, we set defenderV alue to 0, since we know we will make no points if all

players pass.

Unfortunately, testing this EV bidding model in self-play against Kermit resulted in no statis-

tically significant difference in playing strength. We hypothesized that this approach might yield

better results against an opponent with more “informative” bidding, such as being very conservative

or aggressive, but here too the EV model failed to outperform Kermit’s simple threshold bidding. We

believe there are two reasons for this. The first is, as we have stated earlier, that Kermit’s threshold

of 0.6 has proven to be surprisingly robust. The second is that the learned entries of Kermit’s 10+2

evaluation function are quite noisy; some are even empty of data and therefore have a default value.

In simple models like threshold bidding, the effect of this noise is washed out by averaging over the

large chance node from picking up the skat. But for techniques that rely upon more precise values

from the evaluation, the effect of the holes in the tables becomes more pronounced. Therefore, we

suspect the evaluation itself will need to be re-visited before more complex bidding schemes can

78

show their promise.

8.5 Randomized Perfect Information Search

In Chapter 7, we saw that in real skat games, good players very often make the correct perfect

information move, but not quite always. To model this, we experimented with the idea of replacing

perfect information alpha-beta search as the module for evaluating worlds in the PIMC search regime

with a randomized perfect information search. The modification is straightforward: at each node,

with probability (1− ε) we play as normal, and with some small probability ε, the node becomes a

chance node, with the move selected at uniform random. As a result, the evaluation of each world

becomes non-deterministic, but PIMC search can sample the same world more than once if need

be. The hope is that this approach will help differentiate moves that are certain wins or losses from

those that depend on the other players playing a very narrow line of play. Another nice feature of

this approach is that it invites straightforward opponent modelling, since ε can easily be adjusted for

individual players whose mistake rates have been measured.

In spite of these hopes, a preliminary test of this idea showed a slight decline in playing strength

both in self-play and against XSkat. We suspect that a uniform model of what mistakes are made and

where is too crude. For example, few players would make the mistake of happily putting on their

10 when an opponent has led the Ace in the same suit. Leading the wrong suit, on the other hand,

is quite common. Investigating how easily common mistakes can be identified and categorized may

lead to better results for this approach.

8.6 Conclusion

In this chapter, we gave an overview of a number of techniques which we investigated in the context

of our work on skat but that failed to give noteworthy positive results. Perhaps a big-picture lesson

we can take away from this work is that at Kermit’s current reasonably high playing strength, there

is probably no single enhancement that will result in a large improvement in all settings. It may be

more fruitful to target particular aspects and weaknesses of Kermit’s play, and only when a number

of techniques focused on different relatively rare “problem” scenarios are combined will we see a

marked improvement in the full game.

79

The future will be better tomorrow.

-Former US Vice-President Dan
Quayle 9

Lessons Learned and Future Work

In this final chapter, we take a step back to consider some more general insights suggested by the

results described in this dissertation, and to propose a few directions in which this work could be

extended in future.

9.1 Lessons

There are, we believe, some high-level lessons that manifest themselves across various aspects of

the work described in this document. We will discuss these in terms of three themes: the role of

local methods and of independence, the importance of understanding success as well as limitations,

and the need for testing regimes beyond self-play.

9.1.1 Local Methods and Independence

One of the aspects of imperfect information games that makes them so difficult is that they are

fundamentally non-local structures. To guarantee theoretical correctness, the entire game tree must

be taken into consideration; this is in contrast with perfect information games, wherein a subtree

may be optimally solved without the need to examine any other section of the game tree.

Nevertheless, the success of PIMC search as shown in this document indicates that local meth-

ods are still a powerful tool for certain classes of environments. Local methods have significant

advantages in computational tractability over global ones and allow us to focus on the “here and

now” of specific circumstances. We gained a useful perspective on this property during our brief

investigation into using the CFR algorithm to solve skat end-games that we described in Chapter 5.

Under the CFR regime, we sampled individual worlds for each CFR iteration. Recall that for CFR,

we must sample worlds in which we (the player computing the move) have a hand other than our

true hand in order to accurately compute strategies for the opponents. However, if the total number

of iterations is relatively small and we do not sufficiently sample worlds where we do have our true

hand, the playing strength of the strategy computed by CFR suffers drastically. At the end of the

day, the information set where we have our true hand is the one that will be used to actually select a

move. In skat, it seems that knowing how best to play the hand that we have is much more important

than knowing how to play the many hands that we do not (and may not ever) have.

Key to local methods is the power of the independence assumption: the belief that various as-

80

pects of the game tree can reasonably considered to be independent of one another. Although this

assumption is rarely completely justified, in many cases it seems to be “true enough” to yield good

results. Not only is it the key assumption behind PIMC search (that worlds themselves are rela-

tively independent), but it is important for inference. If we wish to know whether a player holds

the ♥A, say, we might consider the most relevant moves to be the ones where ♥ were played. This

is effectively saying that the probability that a player holds the ♥A is independent of moves that

did not involve any cards in the ♥ suit. Identifying and exploiting such structural independencies is

therefore of considerable interest.

9.1.2 Understanding Suboptimality

PIMC search is an algorithm with no hard theoretical guarantees; in fact, it is easy, at least in skat and

bridge, to devise examples where PIMC search will select the worst possible move. Yet in practice,

it performs well, a mystery we investigated in Chapter 5. The main lesson here is that even provable

suboptimality is not sufficient cause to discard out of hand an empirically effective method. Instead,

perhaps a new paradigm is needed to describe the suboptimality of game-playing algorithms. We

may need to talk about specific game tree structures and local independencies (again, highlighting

the importance of the search for independence) at a more granular level.

Similarly, our work in Chapter 7 suggests that a better understanding is needed of the relation be-

tween an imperfect information gameG and its perfect information variantG′. In general, not much

can be said about the connection betwen G and G′, as a strategy for playing one may be arbitrarily

bad in the other, yet it seems misleading to say there is no connection at all. In skat, it is clear that

there is such a connection between these game variants, and an extraordinarily deep one. It seems

incredible that coincidence alone could explain the fact that much of the time, good players will play

the move in G that would have been optimal in G′. A better understanding of this connection may

help us to generalize game-playing techniques across different classes of environments.

9.1.3 Self-play is Not Enough

When considering a new enhancement to a computer game player, it is tempting to consider the main

standard of improvement as an increase in performance against the player’s previous incarnation. In

fact, in the domain of imperfect information games, it is important to test performance against a

variety of players of different playing strengths. In Chapter 6, we saw how sound inference may not

show a performance gain against certain players; testing against different players is also important to

ensure the inference is not an “over-fit” of the program’s model of itself. In Chapter 5, we discussed

how in some game classes, the greatest weakness of PIMC search may not be its performance against

an equilibrium, but rather its potential exploitability. And in Chapter 7, we introduced a method for

constructing synthetic players with an adjustable playing strength to study techniques for opponent

modelling. An interesting point about this last approach is not only did we create weak synthetic

81

players, but it was also possible to create “super optimal” synthetic players that were stronger than

our program, or any known program. The big message here is that when working with imperfect

information games, one should keep in mind that performance evaluation can be deceptively tricky

and may require a number of different evaluation techniques.

9.2 Future Work

Throughout this document, we have occasionally made mention of possible improvements and fu-

ture work, often in the conclusions of the preceding chapters. In this section, we will add some

further directions in which the work presented in this dissertation could be extended in the short and

mid-term.

9.2.1 Identifying Mistakes

We saw in Chapter 7 how a simple post-game analysis technique can be used to quickly gain a

general impression of a player’s cardplay skill. The next step in this regard is to examine how quickly

we can estimate the types of mistakes that an opponent makes. If, for instance, an opponent’s mistake

rate is considerably higher in null games than in other game types, we could adjust our bidding

accordingly. Furthermore, there is potentially great value in pinpointing where players are likely to

make specific cardplay errors. In Chapter 8, we discussed the idea of a randomized alpha-beta search

for use in PIMC evaluations. A better understanding of where players make their mistakes could not

only enhance this technique in terms of plugging the “gaps” in PIMC search’s play, but could also

allow us to exploit opposing players in the cardplay phase as well as in bidding. For example, human

players on ISS have anecdotally reported that XSkat can be counted on to make specific cardplay

mistakes; we would like for a computer player to be able to exploit these mistakes as well. Finally, a

better model of how players make mistakes would be useful in improving the synthetic players that

we used to evaluate performance in Chapter 7, given how earlier in this chapter we highlighted the

value of testing against opponents with scalable playing strength.

9.2.2 Inference from Cardplay Moves

Currently, Kermit’s inference stems entirely from bidding and game type selection decisions made

by the other players. Although we believe these are the most informative moves in a typical skat

game, information is undoubtedly conveyed by cardplay moves as well. We did investigate the use

of simple cardplay features for inference at some point in this work, but were unable to find features

with a significant effect. This may just be a feature-search problem, but there are other approaches

that could be taken as well. One such approach would be to use Kermit’s PIMC search module

to examine past opponent moves and determine if the opponent would have acted as observed in a

given hypothetical world. This is likely to be computationally impractical much like the recursive

PIMC search discussed in Chapter 8. However a variation on this theme is to examine opponent

82

moves in the context of a perfect information search, and use the opponent’s known mistake rate as

discussed in Chapter 7 to weight worlds where the opponent did or did not play the expected optimal

perfect information play. This approach would require a very fast perfect information solver, but we

are aware of work by Furtak and Buro that may achieve exactly that [12].

9.2.3 Iterative Data Generation

When constructing Kermit, we were fortunate to have access to a large volume of human game

data. This was critical for building Kermit’s 10+2 hand evaluator, which has been quite effective in

practice. However, human data is not always easily available, and furthermore, even our existing

data has a downside: we tend not to see negative examples (for example, the result of playing grand

games with weak hands), and certain rare card configurations do not show up in the data (having 9

or 10 trump cards is very good, but we never see it, so our evaluation assumes it is very bad). An

interesting question is whether, in the absence of human data, data from self-play can suffice. If so,

then perhaps an iterated process of generating data and then building a new state evaluator to use for

both bidding and inference can result in increasingly better performance. There are some potential

pitfalls to this approach; as we noted when discussing the use of UCT for bidding in Chapter 8, most

hands are terrible for most game types. Therefore, we risk building a predictor that decides that the

surest bet is to simply predict losses for all hands. However, if we can overcome such problems,

eliminating the need for human data would significantly increase the generality of our approach to

Kermit’s static state evaluation.

9.2.4 Generalizing Synthetic Game Trees

In Chapter 5, we used synthetic trees to search for elementary game tree properties that might ex-

plain the success or failure of algorithms such as PIMC search. Our game tree model was, however,

exceedingly simple, and could be enriched by lifting restrictions on branching factor, on uniformity

of tree depth and by allowing a broader range of payoffs to name but a few examples. This gen-

eralization would also admit more complex tree properties which might help to further explain the

performance of game-playing algorithms. On that note, our synthetic trees could be used to evaluate

other algorithms beyond PIMC search, for example UCT with a random playout policy. Such work

could lead to a general classification of different techniques and the structural environments in which

they can be successfully applied.

9.2.5 Non-adversarial Domains

Throughout our work on skat, we have focused on the competitive playing strength of our player

(perhaps this is an indictment of the character of the researchers involved). However, there are

other applications in the domain of imperfect information games that are not so confrontational. We

mentioned some of these in Chapter 3; for instance, Yan [49] discusses the problem of detecting

83

collusion in online bridge. This is certainly a potential issue in skat as well. Our PIPMA method

from Chapter 7 could provide a starting point for tackling this problem; for instance, if a player is

detected to be playing with an impossibly low mistake rate, this is strong evidence that information

is somehow being obtained through external channels. A different application is that when humans

play games recreationally, they do not always enjoy playing against an impossible-to-beat opponent.

Although the synthetic players we describe in Chapter 7 were intended for evaluation of our com-

puter player, a similar approach could be used for creating playing partners for humans with a highly

scalable playing strength.

9.3 Conclusion

In this document, we have presented the game of skat as a context in which to study the problems

posed by imperfect information games. Our major contributions consist of the creation the world’s

strongest computer skat player that plays on a level with human experts, a framework for explaining

the success of the Perfect Information Monte Carlo (PIMC) search algorithm and assessing its a

priori suitability for other game domains, and the development of a simple but effective real-time

opponent modelling technique. We have also explicitly discussed the problem of inference and its

role in facilitating the use of local methods such as PIMC search.

Ultimately, we hope that a greater understanding of imperfect information games will remove a

significant barrier in lifting artificial intelligence techniques from games to more complex real-world

domains. But we also believe that games themselves are important social and cultural artifacts.

What’s more, they make for a visible challenge problem that non-scientists can understand and

appreciate. For these reasons, we suspect that imperfect information games such as skat will remain

a fruitful area of artificial intelligence research for the foreseeable future.

84

Bibliography

[1] A. Amit and S. Markovitch. Learning to bid in bridge. Machine Learning, 63(3):287–327,
2006.

[2] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The Challenge of Poker. Artificial
Intelligence, 134(1-2):201–240, 2002.

[3] M. Buro. From simple features to sophisticated evaluation functions. In H. van den Herik and
H. Iida, editors, Computers and Games, Proceedings of CG98, LNCS 1558, pages 126–145.
Springer Verlag, 1999.

[4] M. Buro, J. Long, T. Furtak, and N. R. Sturtevant. Improving state evaluation, inference, and
search in trick-based card games. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI2009), 2009.

[5] P. Ciancarini and G. Favini. Representing kriegspiel states with metapositions. In Proceedings
of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pages
2450–2455.

[6] P. Ciancarini and G. Favini. Monte carlo tree search techniques in the game of kriegspiel.
In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence
(IJCAI-09), pages 474–479, 2009.

[7] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron. Improved opponent modeling in poker.
In Proceedings of the 2000 International Conference on Artificial Intelligence, pages 1467–
1473. Citeseer, 2000.

[8] H. Finnsson and Y. Bjornsson. Simulation-based approach to general game playing. In Pro-
ceedings of AAAI ‘08, pages 259–264, 2008.

[9] I. Frank and D. Basin. Search in games with incomplete information: A case study using
bridge card play. Artificial Intelligence, pages 87–123, 1998.

[10] I. Frank, D. Basin, and A. Bundy. Combining knowledge and search to solve single-suit bridge.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages 195–200,
2000.

[11] T. Furtak and M. Buro. Minimum proof graphs and fastest-cut-first search heuristics. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI2009),
2009.

[12] T. Furtak and M. Buro. Using payoff-similarity to speed up search. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI2011), 2011.

[13] S. Ganzfried and T. Sandholm. Game theory-based opponent modeling in large imperfect-
information games. In Proceedings of the Tenth International Conference on Autonomous
Agents and Mutli-Agent Systems (AAMAS), 2011.

[14] A. Gilpin and T. Sandholm. Finding equilibria in large sequential games of imperfect informa-
tion. In ACM Conference on Electronic Commerce, 2006.

[15] M. Ginsberg. GIB: Imperfect Information in a Computationally Challenging Game. Journal
of Artificial Intelligence Research, pages 303–358, 2001.

[16] M. Johanson. Robust Strategies and Counter-Strategies: Building a Champion Level Computer
Poker Player. Master’s thesis, University of Alberta, Canada, 2007.

[17] M. Johanson and M. Bowling. Data biased robust counter strategies. In Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), pages
264–271, 2009.

[18] M. Johanson, M. Zinkevich, and M. Bowling. Computing Robust Counter-Strategies. In
Advances in Neural Information Processing Systems, 2008.

[19] T. Keller and S. Kupferschmid. Automatic Bidding for the Game of Skat. In Proceedings of
the 31st Annual German Conference on AI (KI 2008). Springer-Verlag, 2008.

85

[20] R. Kemp, B. McKenzie, and E. Kemp. Issues in Designing Tutors for Games of Incomplete
Information: a Bridge Case Study. Research and Development in Intelligent Systems XXII,
pages 331–344, 2006.

[21] L. Kocsis and C. Szepesvari. Bandit Based Monte-Carlo Planning. In Proceedings of the
European Conference on Machine Learning, pages 282–293, 2006.

[22] D. Koller, N. Megiddo, and B. Von Stengel. Fast algorithms for finding randomized strate-
gies in game trees. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 750–759. ACM, 1994.

[23] S. Kupferschmid and M. Helmert. A Skat Player based on Monte-Carlo Simulation. In
Proceedings of the 5th International Conference on Computers and Games, pages 135–147.
Springer-Verlag, 2007.

[24] C. Lemke and J. Howson. Equilibrium points of bimatrix games. Journal of the Society for
Industrial and Applied Mathematics, 12(2):413–423, 1964.

[25] D. Levy. The million pound bridge program. Ellis Horwood, Asilomar, CA, 1989.

[26] J. Long, N. R. Sturtevant, M. Buro, and T. Furtak. Understanding the success of perfect infor-
mation monte carlo sampling in game tree search. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence (AAAI2010), 2010.

[27] J. R. Long and M. Buro. Real-time opponent modelling in trick-taking card games. In Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI2011),
page To appear, 2011.

[28] J. Méhat and T. Cazenave. Ary, a general game playing program. In 13th Board Game Studies
Colloquium, 2010.

[29] K. Mossakowski and J. Mandziuk. Learning without human expertise: a case study of the
double dummy bridge problem. Neural Networks, IEEE Transactions on, 20(2):278–299,
2009.

[30] J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36(1):48–49, 1950.

[31] A. Parker, D. Nau, and V. Subrahmanian. Game-tree search with combinatorially large be-
lief states. In International Joint Conference on Artificial Intelligence, volume 19, page 254.
Citeseer, 2005.

[32] M. Richards and E. Amir. Opponent modeling in scrabble. In M. M. Veloso, editor, IJCAI,
pages 1482–1487, 2007.

[33] N. Risk and D. Szafron. Using counterfactual regret minimization to create competitive mul-
tiplayer poker agents. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, pages 159–166. International Foundation
for Autonomous Agents and Multiagent Systems, 2010.

[34] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 2nd edition, 2003.

[35] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 3rd edition, 2009.

[36] A. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3(3):211–229, 1959.

[37] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook: The world man-machine checkers
champion. AI Magazine, 17(1):21–29, 1996.

[38] J. Schäfer. The UCT Algorithm Applied to Games with Imperfect Information. Master’s thesis,
University of Magdeburg, Germany, October 2007.

[39] C. Shannon. A chess-playing machine. Scientific American, pages 48–51, 1950.

[40] B. Sheppard. Mastering scrabble. IEEE Intelligent Systems, 14(6):15–16, 1999.

86

[41] S. Smith, D. Nau, and T. Throop. Computer bridge: A big win for ai planning. AI Magazine,
19(2):93, 1998.

[42] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and C. Rayner. Bayes’
bluff: Opponent modelling in poker. In Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 550–558, 2005.

[43] N. Sturtevant. Current Challenges in Multi-Player Game Search. In Proceedings of the 4th
International Conference on Computers and Games, 2004.

[44] N. Sturtevant. An Analysis of UCT in Multi-Player Games. In Computers and Games, 2008.

[45] N. Sturtevant and A. White. Feature Construction for Reinforcement Learning in Hearts. In
Proceedings of the 5th International Conference on Computers and Games, 2006.

[46] G. Tesauro. TD-Gammon, a self-teaching backgammon program, reaches master-level play.
Neural Computation, 6(2):215–219, 1994.

[47] B. von Stengel and D. Koller. Team-Maxmin Equilibria. Games and Economic Behavior,
pages 309–321, 1997.

[48] Y. Wang and S. Gelly. Modifications of UCT and sequence-like simulations for Monte Carlo
Go. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Games,
pages 175–182, 2007.

[49] J. Yan. Collusion Detection in Online Bridge. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[50] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. Advances in Neural Information Processing Systems, 20:1729–1736,
2008.

87

