PM-1 3%2"x4” PHOTOGRAPHIC MICROCOPY TARGET

NBS 1010a ANSI/ISO #2 EQUIVALENT

=3

ooy
i
i

.4

28

=

122

&

=

B

PRECISIONSM RESOLUTION TARGETS



University of Alberta

RaiNBow: Protoryea rur DEONLINEROPERA R 1 SYS M

[ A

Yoo-Shin Lee @

A thesis submitted to the Faculty of €

wadnate Studies and Research iy partial Philfilline
of the requirenients for the degree of M

nt
aster of Science.

Department of Computing Seience

Edmonton, Alberta
Fall 1996



L R

Acquisiions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

195 Wellington Street 395, rue Wellington
Ottawa, Ontano Ottawa (Ontarto)
KA ONA K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your tie  Votre rélerence

Qur e Notte rétérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18287-8

Canada



University of Alberta

Library Release Form

Name of Author: Yoo-Shiy, Lee
Title of Thesis: Rainbow: Prototyping the DION] Interoperable Syston
Degree: Master of Science

Year this Degree Granted: 1996

Permission is hereby granted to the University of Alberta Library to reproduece single copies
of this thesis and to lond or sell sucli copies for private. scholarly or scientifi researcl
purposes only.

The author reserves al other publication and ot her rights in association with e copyright
in the thesis. and except as hercinbefore provided. neither the thesis nor any substantial
portion thereof may he printed or otherwise reproduced inany niateria) form whatever
without the author's prior written permission.

/ .~
Yt
Yor;-Shin/l,m-
J(H(»-T?/St‘rvm NW
Fdmonton, Alberta
Canada, TG 0X6

Date: jw{/ B2 ‘7[



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read. and recommend to the Facalty of Grad-
nate Studies and Rescarch for acceptance. a thesis entitled Rainbow: Prototyping
the DIOM Interoperable System submitted by Yoo-Shin Lee in partial fulfillinent
of the requirements for the degree of Master of Science.

/ C o
r. L. Liu (Supervisor)

Dr. M. T. Ozsu (Internal)

it Y]

Dr. Dennis Ward (External)

Date: W&/?j}’fé



Tomy parents. Yooo)in, and my grandmother i wemorian,



Abstract

The goal of the DION (Distributed Interoperable Object Model) project is the development
of adaptive methodologies and toolkits for the integration and access of heterogeneous
imformation sonrees iy large-scale and rapidly: growing network environments.

The Rainbow prototype system aims at developing a toolkit based on the DION] query
mediation method to facilitate the interconnection between information consumers and
information producers. The Rainbow svstem consists of several components which extract
and collect data from disparate data repositories or information brokers/mediators and
then convert this gathered information into a representation specified by the information
consumer.

The main services that the DIOM system provides include producer information source
registration, metadata iibrary management, query routing. query decomposition. parallel
query plan generation subquery transformation and execution. and result assembly. This
thesis presents the desien and implementation of Rainbow, a prototype of the DIOM adap-

tive query mediation met hodology.



Acknowledgements

This thesis could not lave been produced without the contributions ol several special people.

First and foremost, 1 am deeply indebted 1o My supervisor, Deo Ling Liu, for her
direction. patience. and fundiug. Not only has she provided me with a first class education
into the world of interoperable database research, but she wis also a constanm . ource of
positive encouragement and inspiration. ! thank Dr. Lin for her invaluable advice on
academic related matters and her decication 1 - my program and future. Dr. Lin's work
with Dr. Calton Pu provided the funaamental vackgronnd material for this thesis.

I thank the members of my examining committee, Dr. Ousy and Dr. Ward, whao
thoroughly reviewed this work and offered excollent construetive criticisms. | also thank
the examining committee chair, Dr. Gocebel, who made me feel at case and was flawless in
liis duties.

Acknowledgement £0es 0at 1o past members of the DIOA] project group, Karim Makhani
and Uwe Thiemann. who both offered excellent technical support and ideas, 1 also approe-
ciate the caring support | rocejved from the support staff and administrative siafl in the

department of Comp g Scicnee,



Contents

1 Introduction

I

|2

1.3

Thesis Motivation .

Heterogeneity Issues

L2b Application Seenario o000
122 Types of Heterogeneiny 000000
seope and Organizavion of Thesis ...

2 DIOM System Architecture

3 The DIOM Metadata Facility

3.1
3.2
4.3

3.1

Consunier’s Domain Usage Model 000000000000

Producer’s Source Models

DION-IDL ..

Source-specifie

Maintaining A\l

........................

Metadata ... 0000000

‘tadata Catalog in the Presence of Changes . . . . .

4 The DIOM Query Mediation Facility

4.1

Informal Overview of DIONM-IQL
4.1

Example Query

..............................

{3

10

16

16

17
20
21
21
21
22
23
24

26
26



1.2 Query Processing ..o N
Pl The Framework o000 2N
B2 Queny Routing oo 30
B3 Queny Decomposition .00 32
1200 Parallel Access Plan Generation ... 36
425 Subquery Processing at Wrapper Level 000000 36
1.2.6° Query Result Assembly oo IN

b3 Benefitsof the Metadata Model 19

The Rainbow Prototype Design 43

5.1 Rainbow Detailed Svstem Components ... 13
PR Cliens o 1h
5.1.2 Rainbow Services Manager o000 15
.13 Official Metadata Catalog o000 A5
SLb Wrapper. oo 46

22 Implementation Considerations . ... ... .. A7

The User Interface 49

O SystemStartup .o S50

0-2 Producer Metadata Facilities ... ... . 51
6.2.1  Source Registration and Update 000000 Ol
6.2.2  Source \etadata Browsing ... ... .. ... . . 55

03 Consumer Metadata Facilivies . . .. ... . . . = 5T
6.3.1  Consumer IDL Interface Bditor o000 57
6.3.2 Consumer IDL Interface Browsing ... ... ... . .. . . 60

64 Distributed Query Serviees .00 G2
G40 Simple Query ..o 62
6.4.2  Simple Query Tracing ..o 2
043 Expert Query ..o 67
6.4.4  Expert Query Tracing ..o 67

6.4.5 Query Result Assembly oo 71



O- L0 usdalled Quevies o000
I
b0 b werface Enbancowents 0000

7 Wrapper Design and Prototype Implementation

ChWrapper Network Access o000
V. Svntax of the Wrapper Ircerface Language . .. ..
b2 Wrapper Result Formar 00000000

E Generie Wrapper Funeties Suite oo

oA monrceSpecific Fanction Suite 000

b Hierarehy of Wrapper Tvpes and Examples .00
ool Wrapper to St ‘d Information Sources .. .
12 Wrapper to ! wrtured Information Sources . . ...

Co Implementation besves L0000

8 Related Work

N The Global Schema Approach .o
N2 The Pederated Approach o000
N4 he Distributed Object Management Approach . .. ...
S Multidatabase language systems L0000
SA Mediator Approach L
MO Enabling Technologies o000

9 Conclusion and Future Work

B Conclusion L
9.2 Ongoing and Future Implementation ... ...

Bibliography

79
80
80

R]



List of Figures

I.1

xaniples of information sources
Fragments of the OXport schemas of example information COnrces

DION research subdivisions. Highlights show focus of (his research.,

DIOMN System Architecture

Network of mediators

Fragment of example consumer’s domain model

Automatic generation of the object access interfaces for the information sonrces
Fragment of an information source mode]

Fraginent of DIOM information souree repository

Fragmeut of DIOM interface repository

Fragment of implementation repository maintained at he wrapper to [YR?
Fragment of implementation repository maintained at (he wrapper to DR3
Fragment of implementation repository maintained at }e wrapper to DR
Fragment of source-specific metadata extracted from (he export sehema of

DR3

An example query

Fields represented by “*"in example query

Consumer’s domain model witl; query result interface

Query steps in a distributed environment with wrappers

Operators for candidate information sonrce seloction

Reformulated example query with targets and connection paths added

An example of query decomposition

29
30
31
31

34



1.~

1.9

Jo00

5.

5.2

—
~

6.6
6.7
G.N

6.9

6.11
6.12
G.13
G.11

6.15

6,18
6.19

6.20

Results of the cabgneries |

Firal guery resolt

Fial query result witl, onterjoin option | .
| . 1 |

Kainbow detailed component diagram

Client to Rainhow Serviees Manager

Weapper translation of rec uest and resnlts |
Pi |

Wrapper Architecture .

Rainbow main menu

Registratio,. Dialog . .. . . .
Fater more information oy kevwards
Repositery is accepted . . .
Filter to find repository metadata . . |
All repository metadata shown . . ..
DION-IDL Interface Editor .. .
Interface is accepted ..
IDL Interface Browse Form . | Ce.
IDLs wiatching browse fornt are shown
Simple query composition forn, . . .,
Dialogne for simple query tracing . . .
Results from Yahoo only ... ...,
Results from all available sources R

Expert query composition form

» Query Processing: Repository selection

Decomposed query for DR3 . . . . . .

Final query resuit page. .. ... ...

¢ Query Processing: Query tree with clickable nodes

.................

10
41



Wrapper translation of request and resnlts |

Wrapper subtyvpe troc

The diom_wrapper Seloct tunction for network semi <t it red wreppers |
The local _[Externalloteh function for HEMNL Tnformation ool W ppers
The local ExternalNormalize function for KA. information tool wrappers
HTAT _makeURL function for Yaloo .

HTNI translate funetion tor Yalioo

)

40



Chapter 1

Introduction

1.1 Thesis Motivation

The explosion of networking technology has led to the ubiquitous Internet and the lavpe-scale
availability of diverse information sources. Although there is much debate on the accuracy
of Internet measurements. a study [55] done in 1995 conservatively estimates that there are
ten million hosts ' and twenty million users on the Internet with numbers doubling roughly
every year. In addition to these growing numbers. the loose reign on Internet development
has led to many protocols for navigating and obtaining information from the Internet. The
current situation of numerons incompatible Internet protocols, the large number of users
secking information, and a wide variety of hosts providing infor nation has resulted in user
frustration and the inefficient utilization of resources. These issues have not been adequately
resolved by current Internet service tools.

Information consumers, those seeking information. are left with the daunting tasks of
contending with data overload, resolving information heterogencity. learning different in-
formation access methods, and compiling the information obtained. The development of
the World Wide Web and the proliferation of easy-1o-use navigational tools (e.g., Netscape,
Internet Explorer, Mosaic, ete.) have gone far to facilitate the availability of online informa-
tion but still leave much of the searching and assembly of information up to the user. Users
are spending approximately 79% of online time browsing [21], therefore it is estimated that
much bandwidth today is wasted due to inefficient searching and ineffective assembly of
result data. Without more intelligent information tools, the great potential to information
thet this new networking technology offers is wasted.

In terms of object-oriented terminology, interoperability refers to the ability to exchange
requests between ohjects and to enable objects to request services of other objects, regardless
of the internal object differences (e.g., hardware platforms, operating systems, data mod-
cls). Distributed inte rope rable objects are objects that support a level of interoperability
bevond the traditional object computing boundaries imposed by programming languages,
data models. process address space. and network interfaces [7].

One way to support information gathering across heterogeneous and autonomous infor-
mation sources is to approach the problems from an interoperability standpoint. Therefore,
the challenge is to build cooperative systems for large-scale environments which are able to
connect information consumers with information producers while providing transparent and

"the data on these hosts will only be useful for specific domains and not all hosts will offer public or even
usefal data



customizable information access across multiple heterogencous and autonomous information
sources (including databases., knowledge bases. flat files. or programs). For an interopera
ble systeni to be effective in large-scale computing enviromments requires attention to the
USECA properties [31] which are summarized here:

Uniform access

Uniform access pertains to the differences in accessing heterogencous information sources.
We can categorize these differences as network access protocol differences and information
language differences.  When attempting to access an information source in a large scale
environment. a user must first contend with choosing and obtaining the tools for utilizing,
the correct Internet protocol. In the Internet world there are dozens of different application
protocols {(e.g. WAIS. FTP, GOPHER. TELNET. HTTP, STMP, Vendor Specilic etel) and
multiple data access languages (e.g., SQL. Vendor Specific AP, HTTP FORM, ete.). Thus,
obtaining information can become quite cumbersome with results being obtained in difforent
and possibly incompatible formats, In a large scale environment the efficient exchange of
information is greatly hindered by the differences in repository access, interoperabl.
svstem without uniform access wonld require queries (o contain a list of relevant sites,
metliods with which to access these sites, and the terminology required to invoke loeal
queries.

Scalability

Scalability is a necessary requirement for the Internet services, As millions of new hosts can
come online within a space of months, effective queries in this large-scale environment, must
be able to utilize all sources that are relevant, Query processing facilities shou ¥ be able to
incorporate new sources as they are added, without rewriting the code and redesigning the
svstem infrastructure.

Evolution

Evolution refers to ability of a system 1o adapt to the dynamic nature of {he Internet
growth. In the Internet ¢roronment, individual components may temporarily coase (o
operate or become obsoleto, Furthermore, even when the changes to individual component
repositories are infrequent, the large number of databases may add up 10 4 surprisingly
large number of change events in the system. For example, assuming on average there s
only one change in two vears for any component database schema, an interoperable system
with tw., hundred databases will have to conterd with one hundred changes a yvear, whicl,
on aver. ge corresponds to two changes every week,

Composibility

System composibility refers to the modularity and reusability of the system design and
implementation. and the neced for incremental design and construction of interoperation
interfaces. When dealing with large scale systems, modularizing the design into small jm-
plementable and manageable objects makes practical sense. [t would also be quite desirable
to reuse much of the objects. so whenever it is possible, system functionality should incor-
porate the object-oriented design abstractions such as generalizatic n, specialization, and
aggregation.



Autonomy

A reasonable and preferably minimal amount of repository modification is required when
repositories participate in interoperation with other repositories. Imposing @ global schema
i not practical in an environment where autonomy of the individual information sources i«
important, To respect the autonomy of individual systems, it is important that we:

o treit the external applications and any interoperable system similar to its ordinary
clieats,

o usedata model independent language constructs and facilities to allow un<ers to define
their views of data in their preferred representations, so users can formulate queries
and receive query results based on their own understanding of data

User i utonomy is anotier issue. It would facilitate user querying of sources, if users were
not made to compromise the way in which they prefer to understand their domain semantics
and were not forced to surrender to a system-supplied. canonical integration schema.

In addition to the USECA properties. there are other system development requirements
which are important. For example, cofficient distributed query processing. security, auto-
mated semantic representation and matching are other important areas of concern systems
should consider,

Our approach 10 a large-seale cooperative system is based on the Distributed Interop-
erable Object Model (DIOM) [31). The DIOM mediation architecture features the support
of the USECA properties in the development of distributed object query services, and
the flexible cooperation of a notwork of mediators for transparent query processing. This
research attempts to prototvpe parts of the DIOM model by developing the Rainbow medi-
ation toolkit and by building the basic framework for the eventual completion of the overall
svstem in plementation.

TE © einelude:

o | che Rainbow implementation architecture and the design of functionality
for the wiat prototype.

o The selection of software environment tools for the implementation development.
e The coding and testing of the implementation using a real-world application.

The aext seetion will detail the motivation and the importance of the DIOM query
mediation framework by presenting an example application scenario and by studying the
heteroge ieity problems which hinder the effective retrieval of information.

1.2 Heterogeneity Issues

A real world multidatabase system can include tens or hundreds of information sources
separately managed by different types of DBMSs, simple file systems. or knowledge base
systems. The heterogeneity of information is natural and unavoidable. The individual
information sources are often heterogeneous in logical data structure, in type and attribute
naming, and in representational semantics. This heterogeneity in information source models
results in heterogeneity in query formulation, query processing, and query result assembly.



1.2.1 Application Scenario

A real-world application scenario will be used ax a running example thronghout this thesis
to illustrate imporant features and describe the Rainbow implementation. The application
scenario is as follows: A multimedia expert is searching for jobs located in the USA or
Canada which are related to her domain of expertise.

— o —— [ - . \

: | l

't Recruters Openlob ‘ Positions ‘ 1 Jublas l
' 1 i
[ [ ‘ |

DRI1: Recruitment [‘—“4._1*\—;—"*‘—"*‘ DR3: Job Postings l)R-t:.lthrﬁclr.x

H by T [ 1~
Apencies Job t1 Employees | {Text Filus (Usenet)
(HTML) | ‘
; TechRepons j

DR2: Job l.islinﬁ‘; at Arl.liodrl:sk
(RDBMS)

N e
| Business ' ’ Companies | l Book . .
i |
L |
= e Bibliography |
DR7: Companies on : hophy
— T the Web |- o b
{ Directory [Businessinterest (HTML) ‘ Article
DRS: Placement  DR6: Business DRSE: Bibliography of
Agencies Directory Resume Resources
(RDBMS) (RDBMS) (BibTeX)

Figure 1.1: Examples of information SOUTCes

Assume that the relevant information sources (as shown in Figure 1.1) that are cur-
rently available include a Recruitment Agencies HTML document, a job Listing database
at Autodesk 2, a Job Postings text file. Job Articles from Usenet News, a Placement Agency
Database. a Business Directory Database, a Companies on the Web H'EMI document. and
a Resume Resources BibTeX file. We rofor to these information sources as component i
formation sources of the given enterprise system. The relations or classes are deseribed
as boxes and the links indicate the primary key and foreign key relationships or ohjoct
reference relationships. The superclass and subclass relationships are depicted using arrow
links. Figure 1.2 contains fragments of the export schemas for these information sources,

In order to find most of the relevant Job opportunities, the job seeker (information
consumer) would have to search and possibly revisit many different data sources, This task
may involve browsing and navigating through the above mentioned repositories, What is
required 1s a more efficient and manageable system to connect this consumer Lo tose job
repositories and make querying easier over these heterogeneon- repositories,

Automating the connection between information consumers with relevi information
producers requires: (1) gathering knowledge about the type of data the consuner desiyes.
(2) gathering knowledge about the tvpe of information a producer —opplies, and then (3]
efficiently matching consumers with producers. Hence, new information technologies nust
use information about the information {metadata) to automate the abstraction of dats and
mediate heterogeneity problems,

?Autodesk is a trademark of Autodesk Inc.



-

deseription)

DR1: Recruitment Agencies (HTML)

Hecruiters={name, city, state, ail code, phone, e-mail.

Jeb=[jobtitle, description, start -wage, max.wage]
Opendob=[jobtitle, opendate, deadline date, department,
internal]

Employees={last name. first_name, sin. dob. sex, Jjobtitle]
TechReparts={report id. author. date, keywords)

DR2: Job Listings at Autodesk (RDBMS)

Posittons=(title, deseription, compuny, pay]

DR3: Job Postings (Text File)

JabiList=[pesition. description, organization)

DR4: Job Articles (Usenet)

Agency=[name, description)
Divectory =[{name, addreas, state, city, country, zipcade]

DR5: Placement Agencies (RDBMS)

Business=[name, street. city, state, country, zip)
Businessinterest=[name. description, investment level]

DRG: Business Directory (RDBMS)

('cnmp:mim:[nmm-. address, city, provinee, country,
postalcode, homepage)

DR7: Companies (HTML)

Book=[author, title, publisher, address, year]
Article=[author, title, journal, year, pages)

DRS: Bibliography of Resume Resources
(BibTeX)

Figure 1.2: Fragments of the export schemas of example information sources
a I




This application scenario brings to light some of the expected functionality and tools
required in the interoperable svstem:

e Automated tools to capture knowledge of consumer needs, demands, and expeted
objects,

e Automated tools to register producer sources and to capture knowledge of producers
over their source data including the information abjects they supply.

¢ Querviug over multiple data sources in terms of a single query language rather than
having the consumer learn all of 1he different data access languages for each source.

® Representing the result of a consumer query in a format understandable by the con
sumer.

1.2.2 Types of Heterogeneity

Some of the example information sources have similar data contents, but their represen
tations are different. This is generally true for most of the information sources that are
created and managed by separate organizations. Moreover, different heterogencous factors
at information source models may have different effects on multidatabase query processing
strategies. Here is a list of the tvpes of heterogeneity problems:

¢ Heterogeneity in data model types.
Examples are relational models (Oracle. Sybase, Informix), network/IMS models,
object-oriented models (ObjectStore. GemStone) and simple record-based data models
(e.g.. a file system). One main cause of this type of heterogeneity is the fact that one
real world entity often has different representations in different data models. T'he
heterogeneity in data models may further incur heterogeneity in query languages,
query formulation. query optimization methods. and query result representations.

e Heterogeneity in domain requirements.
The export schema in DR2 includes certain constraint information (e.g.. only employ-
ces of Autodesk can apply to certain posted jobs in DR2), while this constraint may
not be relevant in other information source. such as DR3 and DRA.

¢ Heterogeneity in schema designs.
This type of heterogeneity includes

— structural heterogenc ity: The number of object types or relations used by different
database schemas to model the same domain of applications may vary. For
instance, the Recruiters relation in DRI is only one relation while to get the
same information in DR5 requires using two relations. Furthermore, the number
of attributes used to model the same entity in the real-world may differ from
schema to schema (e.g.. the start.wage attribute in DR2' Job relation is not
available in the JobList relation for DRA.

— naming hcteroyeneity: The naming variations may oceur at both at tribute and
relationship level (e.g., title in DR3 and position in DR) and object type
level (e.g., job listings are modeled using OpenJob in 1DR2, Positions in DRY,
and JobList in DR..)

6



= scwmantic heterogeneity: The same named attributes may have different underly-
ing semantics. For instance, the start_vage and max.wage for DR2 may be in
Canadian dollars while pay in DR3 may be in US dollars.

= Missing. crroncous or conflicting data: the actual data values may be missing,
erroneous, or couflicting:

Missing data
For example, job postings in DR3 and DR4 contain less fields and therefore are
missing data in comparison to job postings in DR2.

Erroneous data

Errors in data also leads to errors in reported results. In an autonomous dis-
tributed environment the accuracy of data on sites is not guaranteed, at best
the system could rate sites for a certain degree of accuracy and this could be
reported back as part of the result. For example. official government sites releas-
ing statistical data could be rated with high data accuracy whereas data from
an individual user could be given a low accuracy rating.

Conflicting data

Consider a search for job titles and jol: - wrnings. When considering actual data
on job wages, one company may offer i..gher wages than another for the same
job title. If the company name is not taken as a projection field, then the system
must deal with the conflict and consider which wage or if both wages should be
reported back in the result.

These heterogeneity factors make it difficult to effectively retrieve data from various
component information sources. First. given a set of information sources, different queries
may be relevant to different subsets of the available information sources. Second, the
same query “find all jobs rclating to multimedia cnd located in North America” must be
written differently for each relevant information source because of the varying logical data
structures, the heterogeneity in attribute naming. and the different semantic meanings in
each information source schema design. The situation becomes even worse when the number
of information sources is large (tens and hundreds versus three or four), many new sources
are added. and each source may evolve dynamically. It is not only time consuming for the
system users to customize queries for each component information source, but also nearly
impossible to keep track of the schema changes.

1.3 Scope and Organization of Thesis

This thesis presents the design and implementation of a prototype query tool, namely
Rainbow, based on the DIOM query mediation methodology [31]. The theoretical model
and architecture are based on previous work from the DIOM (31] Project. This prototype
illustrates the ability to automate the linking of information consumers (users searching
for information) with information producers (hosts providing information). The prototype
will also demonstrate querying these multiple heterogeneous sources. The Rainbow system
consists of several components that gather information from unstructured data sources or

~I



from other information brokers/mediators, and represent gathered information in terms of
a consumer’s interface description defined using DIOM IDL/IQL [32]. The main component
services that the RAINBOW prototype addresses include the producers” information source
registration, metadata library management. query routing, query decomposition, parallel
query plan generation, subquery transformation and execution, and results assembly. This
thesis will present our initial prototyping effort by a work-through example, wi'h the objec-
tive of demonstrating the practical feasibility of the DIOM query mediation me. nod [34),

The design of the Rainbow prototype system satisfies the USECA properties for dis-
tributed interoperation and addresses the following issues in particular:

® The prototype design and implementation of the consumer domain model.

e The prototype design and implementation of the DIOM metadata catalog including
the interface repository and implementation repository,

e The prototype design and implementation of a simple keyword based DIOM multj
source query facility.

® The prototype design and implementation of a DIOM-1QL. expert query facility in-
cluding the simulation of query routing and decomposition.

e The implementation of subquery translation to the designated wrappers, subquery
execution. and simple forms of query result assembly.,

® The interface design for both metadata functions and installed queries,

Figure 1.3 shows the major areas of research for the DIOM project. The highlighted
boxes represent the areas the Rainbow prototype attempts 1 address.

The remainder of this thesis is organized as follows: Chapter 2 presents an overview of
the DIOMI system architecture. Chapter 3 describes the DIOM metadata model which is
the basis of the Rainbow system design and implementation, Chapter 4 deseribes the DIOM
query mediation approach which utilizes consumer and producer metadata to process dis-
tributed queries. Chapter 5 presents the Rainbow prototvpe design, and the individual
implementation-level components, Chapter 6 will describe and illustrate the functionality
of the current Netscape-based DIOAM user interface implemented in the Rainbow protoLtype,
Chapter 7 will describe the wrapper design and implementation details, Chapter 8 gives a
brief overview of the state of the art research in heterogeneous multidatabase systems, Chap-
ter 9 summarizes the contributions of the Rainbow prototype to the overall development of
the DIOM system, and the issues addressed by the Rainbow prototype implementation,



Front End (User Interface) System ]

Metadata Management an¢
Distributed Catalog Services

Distributed Query Mediation Services

X \ , I
(routing, decomposhion, optimization, assemb: y) RATNBOW
Prototype

Heterogeneity Management

Distributed Access Services

interconnection of Information Sources

Figure 1.3: DIOM research subdivisions. Highlights show focus of this research.



Chapter 2

DIOM System Architecture

The DIOM system architecture is given in Figure 2.1 which conforms to the mediator.
based framework [27]. The architecture is a two-tier architecture offering services both
at the mediator level and the wrapper level. The informaton sources are located at the
bottom of the diagram and are accessed through the wrappers. The mediator sub-system
is responsible for: (1) the creation and maintenance of both information consumer and
information producer metadata, (2) the initial steps in distributed query processing of
consumer queries. and (3) the coordination and maintenance of metadata at the various
wrappers. The main task of the wrapper sub-system is to control and lacilitate external
access to the information repository by using the local metadata kept in the implementation
repository and by using the wrapper query processing modules.
The two tiers consist of the following services:

DIOM Interface Manager: interacts with the system user by presenting a GUJ inter-
face and underlying API to allow users to perform DIOM functions. Compiles 1D,
statements using the IDI, compiler and preprocesses IQL statements using the 1QI,
preprocessor.

Distributed Query Mediation Service Provider: provides the distributed query pro.
cessing services including source selection. query decomposition, parallel aceess plan
generation, and result assembly.

Runtime Supervisor: executes subqueries by communicating with wrappers

Information Source Catalog Manager: responsible for the management of repository
metadata and communicates with the local impiementation repository managers to
cooperate in the maintenance of wrapper metadata

Query Wrapper Service Manager: receives query requests from the runtime SUpervi-
sor, uses data from the implementation repository, utilizes the wrapper query pro-
cessing modules, and communicates with the local information sources to return a
result

Implementation Repository Manager: manages the implementation repository meta-
data by coordinating with the Information Source Catalog Manager

Figure 2.2 shows an example network of information mediators collaborating through
the DIOM mediator network architecture. This network includes simple wrapper-bhased

10



Services at Mediator Tier

1

: oL

' Compiler

! Intertace

: Repository

' DIOM interface

! Manager r/
: [+1 8

' Preprocessor

'

)

t Intormation

'

! Distributed Query Source Catalog
) — Runtime Manager

' Mediation Service Supervisor

' Provider

]

" Services at Wrapper Tier

: Implemenation
' R ftory

X Query Wrapper Manager

' Service M

]

'

Ll

t

]

) implementation
1

) Subquery Subguery Subquery Repository

: T E j Result Packaging

]

D e T I ey

Information Sources

Figure 2.1: DIOM System Architecture

11



mediators such as the wrapper which provides information about and access to the Book.
StoreDB repository. This wrapper-based mediator is in tury used to construct a BookSale
mediator. The BookSale mediator i again used to build both a document inquiry mediator
and a travel plan mediator. This recursive construction and organization of information
access results in some important features, First. the individual mediators can be indepen-
dently built and maintained. Each specialized mediator represents a customized pereonal
view for a particular group of information consumers over the large amount of information
from the growing number of information sources. Second, these mediators can be generated
automatically or semi-automatically by using the DIOM IDL/1QL interface specification
language and the associated incremental compilation techniques. These features also make
it possible to scale the DIOM architecture not only to the large and growing nmumber of
information sources but also to the varying information customization needs from diverse
information consumers.

In the DIOM multidatabase framework, an information consumer (i.e, user or domain
expert) may build his/her special-purpose information mediator using the DIOM-1DI, (See-
tion 3.1). A tyvpical application-specific information mediator contains two lovels of interface
descriptions: (1) an information consumer’s domain usage mode | (personal view), deserib
ing the usage and expertise of the domain, and (2) a number of information producers’
sou. - data models, each providing relevant information contents that are of interest to (he
information consumer. Every mediator defined in terms of DIOM-IDL is specialized to a
specific application domain and provides access to the available information sources that are
relevant to that domain. A complex information mediator can be built based on a network
of simpler mediators which interact with each other in order to accomplish tasks. For ex-
ample, a Document Inquiry mediator (as shown in Figure 2.2) can be buily by interacting
among several smaller mediators such as Book mediator, TechReport mediator, Medical
ClaimFolder mediator [32]. and so on.

To Leild a network of specialized and interacting medjators. we need an architecture
for a sing.» mediator {(perhaps called a meta mediator) that can be instantiated to provide
multiple mediators. The ultimate goal of developing such a meta mediator architecture js
to provide a uniform interface description language and the associated query services that
can be utilized and customized by a number of application-specific mediators to facilitate
access to multiple and heterogeneous information sources. Such a development not only
enables rapid prototyping and maintenance of individual mediators but also provides a
robust approach to Inanaging cooperation among the network of DIOM mediators and
preservation of the USECA properties.

The meiators, meta-mediators, wrappers, and meta-wrappers can be seen as the middle
Jave: i.otv sen the clients (information consumers) and information repositories (information
proda-ers). Clients make requests to mediators for information, mediators communicate
with other mediators and wrappers to gather and process data, and the wrappers allow
repositories to participate in the system. The meta-mediator and meta-wrapper modules
allow for the instantiation of new mediators and wrappers respectively. The following is a
description of the architectural components:

Mediators

Mediators simplify, abstract. reduce, merge, and explain data from the producer repusito-
ries [53]. The DIOM application mediator can be viewed as a logical grouping of consnmer
defined interfaces that represents an information consumer's view of data with respect (o

12



VMediatornBrokers Wrappere Information Korrcen

TechReport )
Wedlator 7
Bilio.bib tile

/" Docament \, A
< Ingolry PublicherDB
AN
’ W rapper Docunent

Repouitory

Claim Folder : .
Mediator . m . BLuranceDd.
<J
</"”TllVl|Plln N

N Mediator m

Bool Kale
Medlator

Inage
Repouitory

P Book@toreDB

Figure 2.2: Network of mediators

13



a particular domain. The set of consemer defined interfaces are used to exploit encoded
knowledee about producer repositories to create information for a higher laver of cliem
application or other mediators. Producer’s self-representation is gathered through source
registration and is described in Section 6.2.1. Consumer's domain knowledge is specified or
recorded in the form of interface definitions described in Section 3.1

The high degree of modularization in this architectyre allows for g corresponding degree
of reuse and scalability. Each mediator can he composed from base repositories (Vvia wrap
per) and from existing mediators, An example of this is shown by the Document Inquiry
Mediator in Figure 2.2, It is composed of the TechMe port A, diator, Book Sale Mediator.
and Document Re pository.

Wrappers

In order to make an existing information source available to the network of mediators,
building a wrapper around the existing local system is HECESSATy 1o turn a repository into
a DIOM local agent. The wrapper is responsible for accessing that information source and
obtaining requisite data for answering the query,

The main task of an information source wrapper is to provide services thiat neay facilitare
the communication and the information exchange hotween a mediator and js component
systems.  This includes translating a source-level subquery from DION Interface Query
—nguage (DIOM-IQL) expression inte an information producer’s query Language expres

. submitting the translated query to the target information source, and collecting the
subquery result. Note that only one such wrapper would need 1o be built for any given 1y po
of information source. For oxam ple. a wrapper implementation for Oracle conld be used for
ail Oracle DBMSs.

Using wrappers to incorporate different information repositories allows for uniform ac
-ess 1o ach repository and modularizes 4. heterogeneity problems amang information
sourccs into manageable implementation o - ts. Auy source can become participant as
ong. < a wrapper to that source typeis pi ded, The antonomy of the iocal repository

" atained as the wrapper is responsible . translating DJOA] CONSMNCT requests into

» requests which are equivalent to requests made by external users of the foc: svsteny,
Using wrappers to modularize the interconnection bridges the gap between the information
consumers and the producer sources. This leads to a higher degree of extensibility and
scalability,

Repositories

Repositories can be well structured (e.g.. RDBAIS, OODBMS), semi-structured (e HTMIL
files. text based records), or unstruct ured (e.g.. technical reports). Every information sonree
is treated as an autonomous unit. Component information sources rray ke changes witl

Out requiring consent from mediators. Wrappers access ropositories as if they were extornal
users (i.c., no direct access to the repository). Building wrappers for cach type of repository
requires mapping generic wrapper functions into equivalent local funetions.

Automatic generation of mediators and wrappers requires meta-mediators and mety
wrappers. A meta-mediator would require knowledge of the producer repositories available
and the consumer interface descriptions to be able to antomatically compile meodiators
whick map the producer repositories to the consumer croated mterfaces, The creation of
new wrapper can bhe partially automated by using a met A-WTapper Lo instantiate o skeleton
wrapper. Specific parts of this wrapper mayv have to he coded by the repository-type

14



cxpert. For example, ntilizing wel search tools as data re

proper R [(n to that web too),
Wave ta write code 1o form the

positories requires forming the
The wrapper implementors to 1hese web sites would
proper URLs fronn the query. New wrappers can be

built by
1w rappers (subtyvping).

tening cotponents from simils

"URE stands for Uniform Resource Locator. otherwise known as a web address.

15



Chapter 3

The DIOM Metadata Facility

Each mediator consists of consumer’s domain model and many information producer's
source models. The consumer's domain model specifies the mediator's domaiu of expertise
(e.g.. the Book-Sale consumer's domain model area of expertise is in the sale of books). The
producer’s domain models are managed by other mediators or data repository managers and
are chosen for their relevaney to the mediator's expertise. The consumer's domain model
and information producer’s source models constitnte the general knowledge of a medjator
and are used to determine how a consumer’s information request is procoessed.

3.1 Consumer’s Domaiu Usage Model

I'he consumer's domain usage model is targeted at the specific application domain (hat a
gronp of information consumers are interested in. It provides deseriptions of the classes of
objects (interfaces) and how they are related 1o cach other, It also deseribes the relation-
ships between the consumor's usage model and the relovant information producers’ souree
models. The domain model of a mediator not only defines its area of expertise but also the
terminology that other mediators can use to interact with this mediator, Figure 3.1 shows
a fragment of a domain usage model for a Job Search Assistant application domain.

Business

ResumeHelp -

Figure 3.1: Fragment of example consumer’s domain model

16



In this figure, the nodes represent classes of objects defined in terms of IDL interfaces.
the thick arrows represent specialization /generalization relationships. Note that (1) the
domain model of a mediator is intended to be a description of the application domain and
domain expertise from the infurmation consumer’s point of view and (2) the classes defined
in the consumer nsage model do not necessarily correspond directly 1o the objects described
in-any particular information producer’s source model.

3.2 Producer’s Source Models

The information producers® source models describe the resources that are available to the
DIOM syctem when answering information consumer’s requests. A producer source model
contains only the portions of the producer source that the source chooses to export 1o
DIOM, rather than a complete description of the entjre information source. The typical
information that an producer source model cousists of includes: (i) a description of the
relevant classes exported from an information producer’s source and (ii) the relationships
between these classes. The correspondence between the domain usage model of a mediator
and its corresponding information source models is needed for transforming a consumer's
query imo a set of producer’s queries, each over a single information source.

3.3 DIOM-IDI,

The interfaces in a consumer domain model an the generated interfces for a producer
information source are defined using DIOM-IDL. In what follows, we first brieflv discuss
how DIOM makes use of the three well-known object-oriented data abstraction mechanisms
(i.c.. aggregation, generalization. and specialization) to build useful links among disparate
data sources and to resolve certain representational conflicts. 1}, « we describe the fourth
interface composition mechanism that DIOM supports. namely *! import mechanism. and
illustrate the major benefits of using the import mechanism in construction of interoperation
interfaces,

Interface Composition Mechanism: Aggregation

The aggregation abstraction s a mechanism that allows for the composition of new inter-
faces from existing interfaces such that objects of the container interface may access the
objects of component interfaces directly. As a result, the operations defined in the com-
ponent interfaces can be invoked via the container’s interface. The aggregation mechanism
is a useful facility for implementing behavioral composition {29, 30] and ad-hoc polymor-
phism [11] based on coercion of operations. Another benefit of using interface aggregation
abstraction is to minimize the impact of component schema changes over the application
programs working with the existing interoperation interfaces.

Interface Composition Mechanism: Generalization

The generalization abstraction provides a convenient facility to merge several information
sources which are semantically similar but have different in:~rfaces into a more generalized
interface. The main idea is based on generalization by abstracting the common properties
and operations of some existing (base or compound) interfaces. As a result, it enables ob-
Jects that reside on disparate data repositories to be accessed and viewed uniformly through

17



a generalized DIOM interface. The interface generalization mechanism also provides a help-
ful means to assist the automatic resolution of representational conflicts,

Interface Composition Mechanism: Specialization

The specialization abstraction is a useful mechanism for building a new interface in torms
of some existing interfaces through type refinement. This mechanism promotes information
localization such that changes in an object type or its implementations can automatically
be propagated to the subtypes that are specialized versions of it. In the first phase of DIOM
implementation. the specialization abstraction is only supported for construction of & new
interface based on one or more base interfaces whose scope is the same data repository (see
[31] for more details).

Interface Composition Mechanism: Import

The import mechanism is designed for importing selected portions of the data from a given
export schema !, instead of importing everything that is available. For a data repository
that manages complex objects. the import mechanism performs the antomatic checking
of type closure property and referential integrity of the imported types/classes. The Ly pe
closure property refers to the Lype consistency constraint over subtype/supertype hierarchy
such that whenever a tyvpe/class is imported, all the properties and operations it inhorits
from its supertypes have to be imported together. The referentjal integrity property refers
to the type “completeness™ rule on object reference relationships, and is used to gnarantee
that there is no dangling reference within the imported schema.

Using the import mechanism, a number of benefits can he obtained. First, by means of
the import mechanism, users may simply specify the kev information that is of interest to
their intended applications. The system will automatically infer the rest of the types/classes
that need to be imported in order 1o preserve the referential integrity and type closure
property. Second. the use of import mechanisms allows users to customize the source data
during the importing process by excluding irrelevant portions of the source data. ‘Third,
when an application is interested in many types of data from a single data repository, using
the import mechanism may also relieve the database administrators from the tedjous job
of specification of base interfaces for each of the source data types. Last but not least,
the interoperation interfaces constructed through the import mechanism exhibit. higher
robustness and adaptiveness in the presence of component schema changes,

Using the repositories from the running example in Section 1.2.1, an interface creator
who is an expert in the Job Search domain may construct a Job Search Assistant consumer
domain model which consists of the four interfaces;

Job= [title, pay, descrip, company, post_date]

Company= [name, address, city, prov/state, country,
mail_code, descrip, phone, fax, URL]

Recruiter= [name, address, city, prov/state, country,
mail_code, descrip, phone, fax, URL]

Resumelelp= [author, format, title, pages, publisher,
address, year]

'An export schema is part of a conceptual schema (logical schema) of a database, which is accessible vy
external users

18



Here are the full IDL definitions for our four interfaces:

CREATE INTERFACE Jobs
{ GESERALIZATION OF
select interface-name from Interface-Repository

where description CONTAINS [‘Job’ || ‘Position’];
ATTRIBUES

Str.ng title,

Double pay .,

VarString descrip,

String location,

Company company,

String post_date }

CREATE INTERFACE Business

{ GENERALIZATION OF
select interface-name from Interface-Repository
where description CONTAINS

[(‘Business’) &% {‘Address’ I'l ‘Description’]);

ATTRIBUTES

String name,

String address,

String city,

String prov/state,

String country,

3tring mail_code,

VarString descrip,

string phone,

string fax,

string email,

string URL }

CREATE INTERFACE Company
{ GENERALIZATIOB OF
select interface-name from Interface-Repository
where description CONTAINS
{(‘Business’ || ‘Company’) g&
(‘Address’ || ‘Description’]);
ATTRIBUTES
Business BusinessPtr }

CREATE IBTERFACE Recruiter
{ GENERALIZATIOE OF
select interface-name from Interface-Repository
where description CONTAIES
[‘Placement’ {| ‘Recruiter’'];
ATTRIBUTES
Business BusinessPtr }

CREATE IBTERFACE Resumelelp
{ GEBERALIZATION OF
select interface-name from Interface-nepository
where description CONTAIES
{‘ResumeHelp’ || ‘CVBooks’ ||
‘ResumeArticles’];
ATTRIBUTES
String author,
String format,
String title,
String pages,
String publisher,
String address
String year }

19



3.4  Generation of Consumer Objects

Figure 3.2 presents how to generate the Job and Company object models deseribed in D]
from the sonree information models in our example application. Figure 3.3 illustrates how

b )  Company)
P (Company
\T/ —p—.

Maodels

Source Models

‘
(2] e

Figure 3.2: Automatic generation of the ohject access interfaces for the information sonrees

the relevant portions of an information source model are related to a customers domain
model. A mapping link is maintained between a source model object and a domain model
object. It is important to note that:

title T
company ST
- 7 pan) ~—=»  Company )
. S T
‘ pay :
. (] .
. s descri 1 Legend
. ! 4 i . agpreration
1l . ;l N g . o
' . . t ‘ - speaalizanon relation deriy e
\ ' / 1 ‘ = trom IDL speatfication
K ' ——— attrsbute mapping relation

. - base interface
.. company ~—
d compound interbace
pay escription

Figure 3.3: Fragment of an information source model

title

e both the consumer's domain usage model and the information producer’s sourece med.
els are expressed in the DIOM interface description language [31].

® The idea of building specialized mediators for specific application areas provides o
only a modular organization of the growing number of information sourees on the
Internet but also a clear characterization of the types of queries cach mediator can
hiandle.

20



o Tiie interface construction mechanisms provided in DIOM-IDL also enable the com-
plex domain to be broken down into meaningful sub-domains and an information
mediator to be built for each sub-domain.

e Ouce a consumer’s domain model is defined. an application-specific mediator is cre-
ated. Itinvokes the DIOM metadata catalog management services to build its mediator-
specific metadata catalog and to establish the correspondence between its domain
model terminology and the corresponding source model terminology. It makes use of
the DIOAT distributed object access services to process the consumer’s information
request and obtain the requisite data for answering the query.

3.5 Metadata Catalog Management

In the DIOM system. metadata extracted from information consumer’s interface schemas
and information producers’ export schemas are managed and maintained in the DIOM
metadata catalog. In the following sections we will discuss the three most important com-
ponents of the metadata catalog: the information source repository. the interface repository.
and the implementation repository.

3.5.1 Information Source Repository

‘The information source repository is created and maintained by the DIOM information
source registration manager. The source registration manager is responsible for recording
all the available source producers' information. such as (1) the information producer’s name,
(2) the loration pointer (e.g.. the URL in WW1W). (3) the information source description
(keywords), (1) the export schema name. (5) the source type. etc. A fragment of the DIOM
information source repository is shown in Figure 3.4. Every application-specific mediator.
once created., is also registered as an information source that is available to the customer
set of the DIOM system.

[ ScurceNawne | PointerToProducerSite | SourceType Description | ExportSchema T Owner
Harvest http://harvest.com/ Broker Security.PCSofware,... | HarvestH T ML Harvest Inc.
Yahoo http://vahoo.com/ Braker YahooHTML Yahoo! Corp.
DR http://drl.com/ HTAL Recruiters RecruitersHTML JobsEx Corp.
DR2 dr2.com/ RDB Jobs,Openlobs,... DR2.JobsDB Autodesk
DR3 dr3.com/ text file Positions DR3.JobList Bill Smith
Usonet Johs drd.com/ AppMediator | JobList Diom_UsenetJobs N/A
Dih drd.org/ RDB PlacementAgency.... DR5.RecruitDB HireAStdent Inc.
Ditei dré.com/ RDB Business,Businessint... | DR6.BusinessDB ACME Finance
DRT http://dr7.0org/ HTML Company CompanyHTML VirtWeb Inc.
DRx dr8.org/ BibTeX ResumeHelp DR8.ResumeHelpBib | Susan Jones
JobSearen DION Mediator Job,Company.... (Default) Y. Lee

Figure 3.-1: Fragment of DIOM information source

3.5.2 Interface Repository

repository

The Interface repository is another basic component of the DIOM metadata catalog. When-
ever a new information consumer's domain model is defined in DIOM-IDL, the interface

21



repository will he extended. The first scan of the IDL preprocessor over a given 1D schema
handles «ll .. interfaces defined by means of the import and hide mechanisms. The base
interface generator is invoked for each IDL interface defined using import.

Figure 3.5 shows a fragment of the interface repository.  For each consumer-defined
(compound) interface or system-generated base interface, a pointer to the list of attributes,
relationships. or methods associated with this interfuce definition is also maintained in the
interface repository. The description field contains synonyms to be used in object linking.
The synonyms for each keyword are matched with keywords from the interface descriptions.

interface-name interface-type description ) suur«‘t-—l‘n.uhu'c-rj
Harvest base Sm'nri(_\'.P(‘Sofware.('.\"li-('hRopurl.... Harvest

Yahoo base Yahoo
DR1.Recruiters base Placement Agency DR1

DR2.Job base Company Jobs DR2
DR2.0OpenJobs base OpenJobs,Jobs, Positions DI2
DR2.Employees base Emplovess, Workers.. DR?2
DR3.Pasitions base Positions, Jobs DR3
JobSearch.Jol) generalization Job.Jobs,Positions, Open Jobs Diom
JobSearch.Company generalization | Business, Company Diom ]
JobSearch.Recruiter generalization [ Recruiter, Recruiters, Placementagency | Dinn ]
Jthearch.HesumeHpr generalization ResumeHelp, CVBaoks. Diom

Figure 3.5: Fragment of DIOM interface repository

3.5.3 Implementation Repository

The DIOM servers (mediator level and wrapper level) provide a number of general services to
facilitate global query planning. query reformulation, and parallel multi-informstion source
query execution. One of the most important services is the creation ane maintenance of
implementation repository metadata, which are used heavily by the DIOM queTy services
provided by the mediators and their associated wrappers. The main issues 16 be addressed
include: (1) how to establish a semantic correspondence between the types and relationships
defined in the consumer’s domain model with the classes and relations used in the producers’
source models. (2) how to maintain the implementation metadata catalog in the presence
of changes. The second issue will be addressed separately in Section 3.5.5.

The internal representation of relating an information source to a consumer’s domain
modc! for the Job Search Assistant application is illustrated in Figure 3.6, Figure 3.7,
and Figure 3.8. Each of these figures represents the attribute correspondence hetween
mediated attributes defined in the consumer’s domain model and source attributes defined
in a particular information source model. The first column in each table contains the names
of the mediated attributes. The second column contains the corresponding information
source level attributes, prefixed by the class or relation they belong to. For example, the
attributes from database DR2, DR3. and DR4 are described in the second column of the table
in Fizure 3.6, Figure 3.7. and Figure 3.8 respectively. A null value in a source attribute
colunin denotes the non-existence of the attribute in the corresponding information source.

From the implementation point of view, the mediated attributes ane their types are
used as instruments to establish connections among similar attributes and their classes
or relations defined in the relevant component information sources. It js also possible

22



Mediated—attributes [ Di2 ]

Job—-title Openldob.jobtitle

Job o pay Job.start wage
Job=deacriy, Jobs.description
Jobscomypany <DIOM.Catalog.owner>
Job— past date OpenJob.opendate

Figure 3.6: Fragment of implementation repository maintained at the wrapper to DR2

LMc-diated—)attribmes | DR3 7
JobStitle Positions.title ]
Joh—pay Positions.pay _j'
Job—descrip Positions.description |
Job—company Positions.company
Job—post date

Figure 3.7: Fragment of implementation repository maintained at the wrapper to DR3

in special cases for some mediated attributes to be connected to data from the catalog
(e.g.. Job—company in DR2 can bo mapped to the Owner attribute in the DIOM interface
repository). These semantic links are central to the automation of global query planing.
query refinement, query decomposition, and query result assembly.

Note that this tvpe of metadata s mainly obtained by applving machine learning
techniques to the metadata catalog. For example. the knowledge about conreciing term
JobList, OpenJobs, Positions to the term Job can be learned directly from the inter-
‘ace definition of Job. In order to build comprehensive domain-specific terminology match-
ing rules and ontology, a sophisticated learning and knowledge discovery tool is needed
[39. .13, 28], Appropriate interaction with the information consumer or domain expert may

also be required.

3.5.4 Source-specific Metadata

In order to automate query translation and query result assembly, additional metadata are
required. For example, for each attribute defined at an individual information source, the
following information is needed: (1) the scale of the attributes. (2) the key constraint of the
attributes (key, non-key, foreign key). and (3) the logical connection paths.

The connection path assignment scheme varies for different types of information sources.
For example,

e the connection path assignment scheme for the information sources managed by rela-
tional systems is the following. A non-keyv attribute points to its key attribute(s). A

Mediated—attributes | DRA ]
Job—title JobList.position
Job—pay

Job—descrip JobList.description
Job—company JobList.organization
Job—apost_date

Figure 3.8: Fragment of implementation repository maintained at the wrapper to DR4

23



key attribute points to its foreign keys. and each foreign key points to its home key.
If a relation has no foreign key. the pointer field is null. This simple path assignment
schema ensures that all the necessary joins can be constructed when translating a
consumer-level query into a group of subqueries at the information producer’s source
fevel. each against a single information source.

® The connection path assignment schieme for object-based information sources is even
simpler. Each oid field corresponds to the key field of a given object class. The
rest are non-key fields. The navigational path for the same attribyte type may vary
from query to query. depending on the specific structural pointers (object references)
specified in each query.

Source-specific metadata is mostly related to a single data source. |t can be obtained di
rectly from the export schema of the given information source, and incrementally maintained
by the corresponding DIOM wrapper. More importantly, the translation of subqueries into
the component query expressions should be carried out at the wrapper laver to prevent i
query processing bottleneck at the DIOM distributed object server tayer. Figure 3.9 shows
the internal representation of the metadata catalog maintained by the corresponding DIOM
wrapper. the local DIOM agent to the DR2 information source.

[ DR2attribute | DR2.domain | DR2.scale | DR2key Dlw.kv_vl"l)j

Job.jobtitle none none key

Job.description none none nonkey Job_jobtitle
Job.start wage none USS nonkey Job jobtitle
Job.max wage none Canadian§ | nonkey Job.jobtitle
Job.internal (Yes, No) none nonkey Job jobtitTe
Openlob.id none none key

Openlob.jobtitle none none fkey Job.jobtitle
Openlob.opendate none none nonkey Openldob.id
OpenlJob.deadlinedate | none none nonkey Opendob.id
Openlob.department (Multimedia, Networks) | none nonkey Opendob.id

Figure 3.9: Fragment of source-specific metadata extracted from the export schema of DRRY

3.5.5 Maintaining Metadata Catalog in the Presence of Changes

When a new information source is registered. to guarantee this new information sonrce will
be used to respond to a query, updates to the existing metadata catalog are needed. T'wo
strategies can be used for maintaining the metadata catalog up to date: (1) Immediate
update or (2) Deferred update.

With immediate update approach, the maintenance proceeds in three steps: First, the
DIOM server triggers the metadata catalog manager to perforin an incremental recompila-
tion on all the existing domain interface schemas to which this new information source may
be related. Second. for each relevant domain interface schema, the implementation reposi-
tory manager will be invoked to relate object types used in this new information souree to
the object types defined in the given domain model. Third, the source-specific metadata
catalog manager associated with the wrapper to this new information source i - voked.
The source-specific implementation metadata is extracted from the export schema of this
new information source.

24



With the deferred update approach, the incremental recompilation of existing domain
interface schemas is delayed to the time when a query is issued. By using the deferred
approach, instead of propagating changes to all the domain interface schemas only those
domain interface schemas that are frequently used by queries are updated.

When a change is made to the information consumer’s domain model or the informa-
tion producer’s source model, a modification to the corresponding metadata is performed
accordingly and transparently.

For example, in information source DR2 modifying the domain of attribute department
by adding Administration in the relation OpenJob requires a change of the source-specific
metadata (i.e. the cell in the DR2.domain column and the OpenJobs.department row of
Figure 3.9 will be updated from ((Multimedia, Networks) to (Multimedia, Networks,
Administration)).



Chapter 4

The DIOM Query Mediation
Facility

Queries to multiple information sources are expressed in the interface query language (1Q1.).
IQL queries use the naming conventions and terminology defined in the information con

sumer’s domain model. There is no need for the query writers (o be aware of the many
different naming conventions and terminology used in the underlying information sources,
Given a query expressed in terms of the consumer’s domain model, an information media-
tor identifies the appropriate information sources, decomposes the query into a colleetion of
subqueries (each expressed in terms of an information producer’s source model) and they
forwards these reformulated queries to the corresponding sources for subquery translation
and execution. Note that (1) distributing su bquery translations from t e object server layer
to the wrapper layer helps to prevent query processing bottlenecks in the object server and
(2) the approach of building wrappers 1o coordinate between a mediator and its underlying
sources greatly simplifies the implementation of individual mediators, since each mediator
only needs to handle one underlying language. It also makes interoperation among networks
of mediators easily scalable to the ever growing number of information sources,

4.1 Informal Overview of DIOM-IQL

The DIOM interface query language (IQL) is designed as an object-oriented oxtoension of
SQL. The basic construct in DIOM-IQL is an SQL-like SELECT-FROM~WHERE OXpression
where certain fields are optional (i.e.. fields surrounded by brackets [and ). The sSyntax
is:

[MEDIATOR  <Mediator-name> ]
[TARGET <Source-expressions> ]
SELECT <Fetch-expressions>
FRONM <Fetch-target-list>
[WHERE <Fetch-conditions> )

[GRoUP BY <Fetch-expression> )
{ORDER BY <Fetch-expression> ]

The MEDIATOR field refers to the associated mediator of the referenced interfaces, The
TARGET field specifies the target repositories. The SELECT field specifies the interface
attributes to display. The FROM field specifies which interface definitions are to be utilized.
The WHERE field specifies the condition applied to the interface attributes, The GROL )

26



BY and ORDER BY are display options which arrange the results by groups and/or in a
certain order,

The svntax of the SELECT-FROM-WHERE expression is as follows:

<Fetch-expressions>: := <Fetch-expr> | <Fetch-expr>, <Fetch-expressions>
<Fetch-target-list>::= <Fetch-target> | <Fetch-target>, <Fetch-target-list>
<Fetch-tarjet> 1:= <interface type> | <target-Info~Scurce name>
<Fetch-conditions> ::= <Fetch-condition> | <Fetch-cordition> <Logic-ops>
<Fetch-conditions>
<Fetch-condition> ::= <Fetch-expr><comparison-op><Fetch-expr>
| <Fatch-expr><Comparison-op><constant-object>
| <Fetch-expr><Comparison-op><Fetch-cond-list>
<Fetch-exp.-> 1:= <Path-expr>-><attribute>
<Fetch-cond-1list> ::= <consumer-defined attribute><logic-ops>
<Fetch~cond-list>

<attribute> <consumer-defined attribute> | <source-attribute>
<Path-expr:» <interface type> | <interface type>=-><Path> | »
<Path> <consumer-defined attribute>-><Path® | 7

>l <=13] o=

<Comparison-op> <
AND | OR | &2 | ||

<Logic-~ops> e

The 1QL. design follows a number of assumptions: First, IQL by itself is not computa-
tionall complete. However, queries can invoke methods. Second, IQL is truly declarative.
It de  nct require users to specify navigational access paths or Join conditions. Third, IQL
also doai's with the representational heterogeneity problem. For example, different informa-
tion sources may have different structural and naming conventions for the same real world
eutity. These information producers’ representations may not fit to the information con-
sumer’s preference. Using IQL, the information consumer only needs to specify the query in
terms of his/her own IDL specification. The system is responsible for mapping a consumer’s
query expression into a set of information producers’ query expressions. Furthermore, IQL
allow.s the use of object type names of information sources in the FROM clause by prefixing
the sourc name with dot notation. It is also possible to use information source names
directly in the FROM clause of a query. The result of an IQL query is by itself an object
of the special interface type QueryResult. The main objective of these IQL extensions is
to increase the accessibility of the MDBS and to improve the quality of global information
sharing and exchange.

4.1.1 Example Query

For exaniple. the query Qy: “find all jobs rclating to multimedia and located in North
America” can be expressed in IQL as shown in Figure 4.1. For the query in Figure 4.1 we
use a ***in the SELECT field to represent all fields from the two interfaces (Job, Company)
(Figure -1.2).

SELECT +

FROM  Job, Company

WHERE Job->descrip contains 'multimedia’
AND (Company->country contains 'Canada’ I} >UsA»)

Figure 4.1: An example query

In representing this query, the query writer does not need to be concerned with the
different naming conventions and different structural designs from JobList to OpenJobs to
Positions. Instead, she can write a query using the terminology that is preferable in her

27



Job->title, Job->pay, Job->descrip,

Company->name, Company->address, Company—>city.
Company->prov/state, Company->country. Company~>mail_code,
Company-)descrip, Company->URL

Fionre 120 Fiolds represented by *"in example query

own application domain. Second, the query writer does not specify any “join™ conditions
in her query expression. The IQL preprocessor will auteinaticatly insert the necessary
connection paths to relate different object types involved in the query with ecach other,
since such connection semantics should be easily derived from the metadata maintained in
the DIOAT interface repository and implementation repository.,

Another feature of the DION query model is the automatic creation of result type for
each consumer query. It means that, for every consumer quersexpressed in DIOA-1QL.,
a compound interface will be generated as the result tyvpe of the query, and maintained in
the DIOM interface repository, This functionalityv is sarticularly important for preserving
the closure of the DIOM ohject model and for assembly of multidatabase query results in
terms of a consumer’s preforred representation. For example, (he query given in Figure 1.
generates the following compound intorface deseription:

CREATE IBTERFACE Result_Q1
{
AGGREGATION OF Job, Company;
ATTRIBUTES
Job->title,
Jab->pay,
Job->descrip,
Company->name ,
Company->address,
Company->city,
Company~->prov/state,
Company->country,
Company->mai1_code,
Company->descrip,
Company->URL

Fhis query result can also be further incorporated in the example domain model of
the Job Search Assistant mediator. Using the aggregation function, a diagram of the new
domain model is shown in Figure -1.3.

4.2 Query Processing
4.2.1 The Framework

The main task of the DIOM distributed query manager is to coordinate the communicarjon
and the distribution of the processing of information consumers' query requests among the
mediator and its associated wrappers.

The general procedure for multidatabase query processing is outlined in Figure 4.1, [y
consists of the following five steps:

1. Query Routing
This is done by mapping the domain model terminology to the source mode termi-
nology. by eliminating null queries, whicl, return enipty results, and by transforming

28



4 Rccruith @\\

company

Result_Q1

Figure -1.3: Cousumer’s domain model with query result interface

anthienous queries into semantic-clean queries. Tu general, the choice is made such
that the minmber of different information sources used 10 answer a query is minimized.,
The mimber of sonrces chosen depends on the fullness of the query result desired
by the user versus the processing tinwe overhead required when more repositories are

selectod,

2. Query decomposition
This is done by decomposing a query expressed in terms of the domain model into a
collection of queries, cach expressed in terms of a single source model. Both straight-
forward query decomposition and complex query decomposition are considered.

4. Parallel query plan generation

The goal of generating a parallel access plan for the groups of subqueries is to obtain
the maximum parallelism and the best quality of cooperation in searching for query
answers from multiple information sources, A parallel query plan is constructed for
the modified uery resulted from query decomposition. The plan is composed of
single-sonree queries {each posed against exactly one local export schema). move op-
erations that ship results of the single-source queries between sites, and the post
processing: queries that assemble the results of the single-source queries in terms of
the information consumer’s query request expressions,

Subquery translation and execution

The translation process basically converts cach subquery expressed in terms . an
DL source model into the corresponding information producer’s query language ex-
pression. and adds the necessary join conditions required by the information source
sVstem.

Query result assembly

Phe result assembly process involves resolving the semantic variations among the
subquery results, Annotation/semantic attachment s one of the main techniques
that we use for resolving the semantics heterogeneity implied in the query results.

29



Information Consumer's

I Domain Fisage Modc Mediator Metadata
E _ (atalog Manager
Infonr uon Producers’
Source Data Models
v i v
{———--«—4-—-—*-; [ X e M Y
very request | . | : ' ‘
R Dynamic Query JoQuey | ParalelAceess Resul
!50““95?'“"0“ ’ Decomposition ’!‘PlanGenmﬁon} Assembly
L Py B e e e e e S ,‘.. -
L
Metadata < -’ Tmeﬁ?n | Execution i
Catalog o S
Wrapper |

Figure {.1: Query steps in a distributed environment with wrappers

After each query is submitted. it is sent to the individual wrappers which do the transla-
tion. local query execution, addition of attachments, and returns a result back to the query
manager for assembly.

4.2.2 Query Routing

The first step in answering an IQL query is 1o select the appropriate information sonrces,
The ultimate goal for dynamic query source selection is to eliminate the information sources
which are irrelevant for answering the query. This section will not attempt to discuss more
complex query situations (such as overlapped data) instead we focus on the general sonrce
selection algorithm. To identify the set of candidate information sources that may be needed
to answer a query, the mediator applies a set of catalog mapping operators to map each
compound interface type defined in the consumer’s domain model into the base interface
types at the information source level. We summarize these catalog mapping operators in
Figure 4.5.

The application of operators A-map, G-map. or S-map is recursive. The recir-
sion ends when all the compound interface types defined in terms of interface general-

30



Operator Operand HeturnResult Purpose

Dircet-map base interface  souree name Return the information source that
(h-miap) corresponds to the base interface type.
Aggregation-map compaound aset of component  Replace a compound interface defined in
(A-map) interface interface types terms of aggregation with an appropriate

set of component interface types

Generalization-map compound a set of specialized  Replace a compound inteiace defined in
(Gmay) interface interface types terms of generalization with an appropriate
set of specialized interface types

Specialization-map compound a generalized Replace a compound interface defined
(S-map) interface interface type in terms of specialization with a
generalized interface type

Figure 4.5, Operators for candidate information source selection

ization/specialization and interface aggregation are replaced by the corresponding base in-
terface types. Then the operator D-map is used to find the corresponding information
sources,

Consider the query Q, given in Figure 4.1. B applying the operators G-map and
D-map to the compound interface type Book. the set of candidate information sousces
selected contains DR2, DR3, DR4. whereas by applying G-map and D-map to the com-
pound interface type Supplier, the information sources selected are DR6, DR7. Thus. the
solution to our query is found from data on the repository set: DR2, DR3, DR4, DR6, DR7.
‘The purpose of this step is to avoid retrieving extraneous data and to remove the potential
ambiguity implied in a given query. This is done by inserting necessary connection paths
into the query selection condition. As a result, additional information sources may need to
be added into the set of candidat information sources.

Consider the query Q, given in Figure 1.1. There is only one connection path (join
condition) between Job and Company: *Job->company=Company->name"". Therefore, the query in
Figure -1.1 is reformulated by inserting this connection path to the query selection condition
in Figure 1.6,

TARGET DR2, DR3, DR4, DR6, DR7

SELECT »

FROM  Job, Company

WHERE Job->descrip contains 'multimedia’

ABD (Company->country contains 'Canada’ || 'USA’)
ABD Job->company=Company->name

Figure -1.6: Reformulated example query with targets and connection paths added

However, when multiple connection paths exist between two or more IDL interface
descriptions. automatic insertion of connection paths may become rather difficult, because
the system has to make the decision as to which connection path should be selected on the
fly. In such cases, a query written in IQL is considered ambiguous. In the case of ambiguous
queries, the DIOM system will present all the possible connections to the user and make a
final choice based on the feedback from the user.

31



4.2.3 Query Decomposition

The goal of query decomposition is to break down a multi-information source query into a
collection of subqueries. each targeted at a single source. The query decomposition module
takes as input the IQL query expression modified {reformulated) by the dynamic query
source selection module, and performs the query decomposition in two phases:

I. target split. This is done by decomposing the query into a collection of subqueries,
each targeting a single source. These subqueries can be either independent or depen-
dent upon cach other. The target split procedure consists of the following steps:

(a) For each compound interface involved in the query,

e if it is defined in terms of aggregation abstraction. then an aggregation-
based join over the component interfaces is used to replace this compound
interface;

e if the compound interface is defined in terms of generalization abstraction,
then a distributed-union (D-union) over the specialized interfaces ix nsed 1o
replace this compound interface.

(b) Group the leaf branches of the query tree by target source.

(¢} Use conventional query processing tactics, such as moving selection down to the
leaf nodes, perform selection and projection at individual sources, and attach
appropriate subset of the projection list to each subquery before exccuting any
inter-source joins and inter-source unions.

The process of target split results in a set of subqueries and a modified (GUOTY ex-
pression that is semantically cquivalent to the originai query. The operations used (o
combined the results from the subqueries are also presented.

2. Useful subquery dependency recording. This is done by recording all the mean-
ingful subquery dependencies with ressect to the efficiency of the global query pro-
cessing.

For each consumers query, if the number of subqueries resulting from the query
decomposition phase is k, then the number of possible synchronization alternatives is
CL+CE 4. + CF (k> 1). Not surprisingly, many of the possible synchronization
alternatives will never be selected as the parallel access plan for the given query.
For example. assume that, for any two subqueries, the independent evaluation of
a subquery subQ; is more expensive than the independent evaluation of subquery
subQz. Thus, the synchronization scheme that executes subQ), first and then ships
the result of subQ, to another source to Join with the subquery subQy is, relatively
speaking. an undesirable access plan because of the poor performance it presents, The
following simple heuristics may be used to rule out those undesirable synchronization
alternatives.

(a) The selectivity level of a Fetch condition with one of the following operators
"<=,<.>.>="is higher than the selectivity level of a Fetch condition with the
operator “=", but lower than the selectivity level of a Felch condition witl, RO
operator.

32



(b) Subqueries with a lower level of selectivity are executed first. If there is more
than one subquery of lowest leve] of selectivity, then thev should be executed in
parallel,

fe) Subqueries with highest level of selectivity are executed last.

The idea of applying these simple heuristics is to use the obvious difference in the
selectivity levels of different query predicates (fetch conditions) to estimate the cost
difference among various subqueries. When the selectivity level of a subquery is
low-r, the size of the subquery result tends to be relatively small. Thus it is always a
recommended tactic to execute those subqueries of low selectivity level earlier.

It is well known that the quality of a query processor relies on the efficiency of its query
proressing strategies and the performance of its query execution plans. The performance
of a distributed query processing plan is not only determined by the response time of the
local subqueries but also affected by the synchronization scheme chosen for synchronizing
the execution of subqueries. A goad svnchronization scheme may utilize the results of some
subqueries to reduce the processing cost of the other subqueries whenever it is beneficial.
Consider the example query reformulated at the end of Section 4.2.2. We shall illustrate
the query decomposition of the reformulated query using the following symbols:

o Let X denote “Job->title

o Let Xy denote “job->pay®

e Let X3 denote “Job->descrip”

e l.et .\-4 denote “Job->company” OI' “Company->name”
e Let X5 denote *Company->address”

o [t _Y(; denote “Company->city"

e l.ot \, denote “Company->prov/state”

e Lot Xz denote “Company->country”

o Lo .\'9 denote “Company->mail code”

e [.o X o denote “Company->descrip”

e Lev Xy denote “ Company->URL®

e Tle predicate P, denotes the condition “Job->Descrip contains ‘multimedia”"

e The predicate P, denotes the condition “Company->country contains ‘Canada’ Jl ‘'UsA’

The query decomposition process first generates the query tree graph as shown in Fig-
ure -1.7(a). Then the target split module is invoked. The procedure of target split starts
by repeatedly replacing the compound interface based on generalization (or aggregation)
by the distributed union (or distributed aggregation join) over the corresponding base in-
terfaces as shown in Figure 4.7(b). This is done by searching the interface repository of the
Job Search Assistant mediator (recall Figure 3.7 and Figure 3.8).

33



To replace the generalization-bas« interface Job. only DR2.0penJob. DR3.Positions.
and DR4.JobList are used since DR2. ii3. DR4 are the only sources that are relevant to this
query. Similarly. for the Company interface only DR6 and DR7 are used.

The next step is to move the ta rget downward close to the leaf nodes. The query tree
is then transformed to the one in Figure 1.7(c). After grouping the leaf nodes by targ
source. the query is modified into the query tree shown in Figure 1.7(d). By applyving the
conventional distributed query processing tactics, such as moving sclection down to the leaf
level, performing selection and projection earlier. performing local Jjoins before moving the
data among sites for inter-source Joins, the query is reformulated as shown in Figure -1.7(d).

Target DR2 DRY. DR, DR6. DR? Target DR2, DRY, DRY, DR6. DR?
!

' Projecty.
Project m]"" N Xy
| A-tn

I ST“ Pyaa Py
i

Setect [&q

P, una P ;l- Jub-scumpanye ompany - >neme
f 1 H
Nlubxumpln)=(‘umpln)-)numr N-Union D-Union
; HE
T |
rd
Joh Company DR2 DR} Ry DRo DR?
Kpenjobs Positions Joblist  Business Compames
(@ (h)
Projecty.
) X|,.. .\” Job->company»
l l'«n,uny--n-mrg
Select p g P,
|
D-Union D-Enion
dnho>compuny=Campuny->name I . ,.___L_~_.
‘ [ — sub ©F PY ST ‘_f]_s.“?“” [
[ ' " Turget DR2 ' Target mu';.' Ta. et DRA ¢ Target DR6  * Target DR7.
D-Union D-Union i lll'- I N o I' N I '
; i ‘\‘ Project v,'.'ll’rojed S Project ."v\ Project R
| | 7 Vo1 hAN N XA NN ALY, :
TargelPR? - TargelDRY - Tamet RS TargetDRb  TarmetDRT| [ et | gy O T T
' P ' . . P P
l Cop R hy o
i N ! " ', " Lo ‘
DR2 DR} DR4 DR# PR? |! DRz ' DR | PR .. DRe ¢ opwr
Openjobs Posinons fublas: Business Companies |« Openjobs ' ' Positions L\ Joblist ‘:l ! Business | Companies K
{ \(-d‘!

Figure 4.7: An example of query decomposition

The final query tree allows the system to detect whether or noi the interfaces, Job
and Company, are independent or dependent. If our repositories contained data for both
interfaces then it would be possible to send queries containing local join conditions for the
two interfaces (i.e., Job->name=Company->name). But in this example the system notices
that no repositories contain data for both interfaces, and so the Jjoin must be performed
after all the data for each interface has been collected (the join symbol in the query troe
remains above all interfaces). Thus, our query shown in Figure 4.6 can be split into two
separate queries for each type of interface. All repositories for the Job interface receive this

query:

34



SELECT Job->title, Job->pay, Job->descrip, Job->company
FROM  Job

WHERE Job->descrip contains 'multimedia’

Sinee there are three repositories (DR2. DR3. DRY) for the Job interface we send out
three subqueries (SubQ1, SubQ2. SubQ3) which are identical as the above query but with
the addition of a TARGET field specifying the repository (e.g. TARGET DR2).

‘This is the query sent to all repositories in the Company interface:

SELECT Company->name, Company->address, Company->city,
Company->prov/state, Company->country, Company->mail_code,
Company->descrip, Company->URL

FROR  Company

WHERE Company->country contains [‘Canada’ I} ‘USA*)

Again, since there are two repositories (DRG. DR7) for the Company interface we send
ont two subqueries (SubQd, SubQ5) which are identical as the above query but with the
addition of a TARGET field specifving the repository (e.g. TARGET DR6).

The original query is now transformed into an semantically equivalent DIOQM distributed
query algebraic expression: D- ['nion(SubQ1, SubQ2, SubQ3) and D-Union(SubQ4, SubQs).
The operation D-Union is a distributed union operator which adds the necessary seman-
tic attachments to the results of each set to make them union-compatible before applyirg
the union operation to combine the two operands. A detail discussion is provided in Sec-
tion -1.2.6,

The second phase of query decomposition is the recording of useful subquery dependen-
cies. According to the result of target split (Figure 4.7(¢)). the original query in Figure 4.1
is transformed into an equivalent IQL query expression composed of five subqueries.

Thus the execution of the original query Q; can be reduced to the execution of the five
subqueries with two distributed unijons.

We list three possible execution plans here:

. SubQ1 || SubQ2 || SubQ3 || SubQ4 || SubQs:

2. SubQ1 — SubQ2 [j SubQ3 I| SubQ4 || Subgs:

..

- SubQ1 — SubQ2 — SubQ3 — SubQ4 | SubQs.

The synchronization operator || is called parallel dispatch operator. The dependency
expression SubQ1 — SubQ2 indicates the sequence that SubQ1 is executed before SubQ2.

Because the subqueries are independent of each other we do not need to consider selec-
tivities of each subquery when choosing the best execution sequence.

Therefore the parallel execution of all subqueries (i.e., sequence 1) is the only useful
dependency with respect 1o the performance of subquery processing. This dependency
annotation specifies that the submission and execution of all the subqueries should be
carried out in parallel, the results returned for each union set can be merged directly in
terms of the DIOM annotation-based unjon operator,

Obviously. in order to make the above subqueries executable over the corresponding
information sources. each of the subqueries must be translated into the correct query state-
ments expressed in the specific source query language. This is one of the tasks that will be
carried out at the wrappers level since the subquery translation and execution can be seen
as a source-specific task. A detailed discussion is found in Section 4.2.5.

35



We have given an introduction to the query routing and query decomposition st rategies
by using an example. Since the global optimization of mediated queries is bevond the focus
of this paper. we will not further discuss selection of useful subquery dependencies, or the
design of the DIOM distributed object algebra operators.

4.2.4 Parallel Access Plan Generation

The parallel access plan generation module is responsible for determining the final syn-
chronization access plan for the set of subqueries resulting from query decomposition. The
selection is based primarily on the number of useful subquery dependencies recorded at the
query decomposition phase. The factors that may influence the final decision inclide (Dthe
size of the extents of the relevant information source classes or relations, and (2)the cache
information available on the client side. This part of our query processing implementation
is still under design.

4.2.5 Subquery Processing at Wrapper Level

After source selection, query decomposition and parallel access plan generation, the sub-
queries in QL expressions will be passed from the mediator to the corresponding wrappers
for subquery translation and execution.

Each wrapper will first convert the IQL query into a query expression that is under-
standable to the data source which the wrapper serves. When the repository is a RDBMS,
say Oracle. the wrapper will map an QL expression into the local language which in this
case is an Oracle/SQL query statement.

It is also the wrapper's responsibility to collect and package the result in terms of DIOM
objects before sending the result of a subquery back to the mediator. If the data source
is an OODBMS (say ObjectStore). the wrapper will map each IQL expression into an
ObjectStore query that is bound to an ObjectStore class dictionarv. When the data source
is stored and managed solely by a file server. say in the form of HTML, then the wrapper
will map the IQL expression into. for example, a C' module or a Perl module that scans the
source data and returns the matching records.

The subquery translation module is in charge of translating a subquery in QL into
a source-specific query in the source query language or a piece of program that can be
executed over the corresponding source. This is done in three steps:

l. Attribute conversion and type replacement. This is done by looking at the
implementation repository metadata and finding the matching expression for each at-
tribute and entity type in the IQL query expression, and by replacing all the attributes
and interface types defined at the domain model level by their matching attributes
and entity types at the information source model Jovel. The target information sonree
names are used to lead the search and conversion.

2. Completion of the subquery expression. Each information source may have
specific requirements for representing a query over the source. For example, if the
source is an Oracle database, a subquery over more than one relation must provide
explicit join conditions among these relations to make this subquery executable over
the Oracle database source. The role of the subquery expression completion step is
to guarantee that the subquery to be executed at the source conforms 1o the souree-
specific query language requirement.

36



3. Subquery refinement The purpose of su bquery refinement is to utilize the available
constraints to further reduce the search scope of the subquery and to detect null
queries,

Consider the Job Search Assistant scenario. Recall Section 4.2.3, where the query Q,
was decomposed into five subqueries subq1, subg2, SubQ3, subQ4, and subgs. The procedure of
subquery translation proceeds as follows:

e Step 1: Attribute conversion and type replacement The procedure of sub-
query translation starts with attribute conversion and type replacement . For each
subquery, the query decomposition module searches the source-specific implementa-
tion repository in the metadata catalog using the Targer information source name as
index. and replaces the mediated attributes and interface types by the corresponding
source attributes and entity types defined at the information source model level. For
instance, using DR3 as an index to search the metadata maintained in the implementa-
tion repository in Figure 3.7. we may easily find that the mediated attribute Job->pay
has the matching source attribute Positions .pay in the source DR3. Following a sim-
ilar approach, all the mediated attributes are replaced by the corresponding source
attributes. Those attributes not available will be dealt with later during query result
assembly (Section 1.2.6). The five subqueries generated at the query decomposition
module (Section 4.2.3) are further modified as follows:

SubQ1 TARGET DR2
SELECT OpenJob. jobtitle, Job.start_wage, Job.description,
FROM  Job
WHERE Job.descripticr contains ‘multimedia’

SubQ2 TARGET DR3
SELECT Positions.title, Positions.pay, Positions.description,
Positions.company
FROM  Positions
WHERE Positions.description contains ‘multimedia’

SubQ3 TARGET DR4
SELECT JobList.position, JobList.description, JobList.organization
FROM  JobList
WHERE JobList.description contains ‘multimedia’

SubQ4 TARGET DR6
SELECT A.name, A.street, A.city,
A.state, A.country, A.zip,
Businessinterest.description
FROM Business A
WHERE A.country contains [‘Canada’ || ‘USA’]

SubQ5 TARGET DR7
SELECT A.name, A.address, A.city, A.province, A.country,
A.postal_code, A.homepage
FROM  Companies A
WHERE A.country contain [‘Canada’ || ‘USA’]

Obviously, these subqueries are still incomplete with respect to relational systems
because relational SQL requires that (i) all relations involved in a query be declared
in the FROM clause: and (ii) the join condition be explicitly expressed when multiple
relations are involved in a query. Thus, the next step of the subquery translation is
to complete the subquery expression and to refine the subqueries according to the
constraint information available in the export schema of the source.

37



e Step 2: Completion of the subquery expression Since both the sauree pre
and the source ors are relational data repositories, according to relational SQL, all the
relations involved in the query should be declared in the FROM clause, and the join con-
ditions among the relations should be explicitly expressed in the WHERE clause. Based
on the metadata maintained by the wrapper to DR2 and the wrapper to DR6 (recall Fig-
ure 3.7, Figure 3.8 and Figure 3.9). the Join condition “job. jobtitle = OpenJob. jobtitle
should be added into the WHERE clause of the subquery SubQ1. The Jjoin condition
“Business.name = BusinessInterast.name” should be added into the WHERE clause of the sub-
query SubQ4. The rest of the subqueries do not require any further completions.
Thus. the subquery SubQ1 is further modified at the corresponding wrapper to DR2 as
follow-s:

SubQ1: TARGET DR2
SELECT OpenJob. jobtitle, Job.start_vage, Job.description,
OpenJob.opendate
FROM  Job, OpenJob
WHERE Job.description contains ‘multimedia’
ABD Job.jobtitle=0penJob.jobcitle

The subquery SubQ4 is modified at the corresponding wrapper to DR by adding the
additional join coudition to the WHERE clause and the additional relation to the FROM
clause:

SubQ2: TARGET DR6
SELECT A.name, A.street, A.city, A.state, A.country,
A.zip, B.description
FRON Business A, BusinessInterest B
WHERE A.country contains [‘Canada’ || ‘UsA’]
AED A.name=B.name

4.2.6 Query Result Assembly

Once all the subqueries are processed and the results are returned to the wrappers (the
DIOM local agents), the results must be assembled and attached with additional semantic
information before being presented to the user in terms of the user’s preferred terminology,
Instead of enforcing the integration of structural heterogeneity and semantic heterogeneity
in various information sources. we propose a semantic attachment approach to assemble the
query results. The techniques we apply include source attachment. scale attachment, aecess
path attachment. and absent attribute specification. These techniques are described below
using our example from the Job Search Assistant application scenario given in Section 4.1.1
(recall the query from Figure 4.1).

After the subqueries are processed based on the subquery svuchronization plan generated
from the phase of parallel access plan generation, the results of these five subqueries are
shown in Figure 4.8.

By applying the following semantic attachment techniques to the query results, the
outcome of the query results assembly is shown in Figure 1.9 and Figure 4.10.

e \Nonezisting attribute spectfication
All mediated attributes which do not convert to any attribute in the local informa-
tion source must be noted when assembling the subquery results. For example, the
mediated attribute Job=->pay does not convert to any attribute in the subquery to
information source DR6 because there is no corresponding attribute available,

38



o Seale altachinent

The scale for the mediated attribute Job=>pay may be different for different infor-
tation sources, For example, the unit of the pay attribute in the information source
DR is Canadian Dollars (CANS) while the unit of the pay attribute in the rest of the
information sonrces are in US dollars (USS). Thus. when the user does not explic-
itly indicate what the preferred currency unit should be for the mediated attribute
Job->pay, we add the scale attachment to the query result. rather than enforcing the
price values returned from different information sources to be either US$ or CANS.

o Source atlachment
We also provide the source attachment option as a default. It means that unless the
user explicitly excludes the source attachment, we will attach each returned result
object with the name of its source. For instance, the first tuple in Figure 4.9 is from
the information sources DR6 and DR4.

o OQuler Join Option

It may be useful to be able to perform outer joins on our mediator interfaces, Svstem
QL. queries can be designated as outer Join queries where all records which were
touched in the processing of the query are returned back to the user. Figure 4.10
shows the final results of the example query when using the outer join option. The
first record shows the company Fujitsu Business as having company information but
no jobs offered. There is also a jol listing for Senior Multimedia Consultants but no
company information available. These queries are not shown in Figure 4.9.

4.3 Benefits of the Metadata Model

The DIOA metadata model provides a simple scheme for managing distributed metadata.
and a high-level query language for the multidatabase users to request and gather informa-
tion from multiple and disparate information sources. The advantages of using the DIOM
object model and query language arc the following:

e Iirst. users may express queries even when they have no precise knowledge of which
information sources are relevant. The information source location will be dynamically
selected by the system using the DIOM catalog functions. Our dynamic information
sot ree selection mechanism allows the new information producers’ data sources to be
selected upon their arrival,

® Sccond. users are no longer required to specify the inter-data source connections or the
intra-database join conditions (typically the joins between primary key and foreign
key attributes) in the query, as they are inferred automatically by the system using
the metadata. When compared with writing traditional SQL queries such as in a
RDBAIS, this simplifies the query formulation and query planing process.

e In addition, the DIOM global query model encourages the delay of resolution of the
heterogeneity problems in a multidatabase system to the query evaluation time. The
DIOM system resolves the heterogeneity problems by combining an adaptive approach
to query planning with a semantic enrichmen: scheme for result assembly, rather than
through the enforcement of an integrated and monolithic global schema.

39



Job.Desaription [Job.stert wnge [ OpenJob jobtitie

10-15 yeass sottwa-+ - multimedia development of product - markeung expenence [90.000 RSemor Duector of Mulamedis Product Developmient
‘;kz:;s en Inrermediate to Senor level programmer test engneer pzsiton in the Multimedia Software JA ,8;000 PA Enguees 11 T e
Resuk of subquery SubQ1 o
[Positions.company [ Positians.description [Positions pay | Positions thle
Our immediate challenges wall require Engy g prote als with engy g degrees or the equvalent and i N ’
Motorola cresuve talents i any of the followang areas Software Hardware Systems Manufactunng Field As part of ows .000 Test Engmeerny,
imedia team
|THE LEADING WORLDWIDE SUPPLIER OF MEDIA ASSET MANAGEMENT SVSTEMS AND TOOLS EOR Senor Mult N
McCoy Lud APFLICATIONS IN MULTIMEDIA AND ENTERTAINMENT IS SEEKING SEVERAL SENIOR LEVEL 0,000 oy, edie
CONSULTANTS TO HELP FORM THE CORE OF ITS CONSULTING ORGANIZATION -ensultants

We don’t do run-of-the mull products, so we don 't plan to setde for he - hum marketing We went somethung

Cracle Corporaton |ditferent Somethung exaung Real grabbers that will get people’s sttention with multhmedia G et them interested 75,000 utesactive warheting

G et them 1volved nansges
Result of subquery Swb(2 T
| JobList.arganization | JobList.description "7 JobListposition
: Any expenence wath document unaging scenners, scannes davers. OCR endior umage processing, mubtimedia or text- to - speech I : B
(Xerox Corporanon products would be cutstending 1 Software Archutect
MEC Electronucs Inc  {Assistan developing nuultimedia cver ATM swategies and dnve market development actvities for senuconductor busmnes [Apyhuwns Engnees
Result of subquery SubQ3 .
BusinessInterest . desaription Business.zip [Business.cowtry [Business.state Business.clty | Busimess.street “Rusiness nome
Oracle Corporation is the world's largest vendor of softwage for - Redwood
mansging informanon, with more than 12,500 dedicated software  [USA 94065 Celitorrua Shores 500 Oracle Parkway [Oracle Corporation
professtonels working in 93 countnes around the world o
At Xerex Corporstion’s Desktop Decument Systems Divasion, T D
we're leveraging more than 1S vears of comsmutment in the design, 4400 Hullview |
menufacture and service of high quality products to develop unque [USA 194304 Cahtorrus Paln Alre Avenue I:IAI\HV-I 5 |Kerox Carporation |
tnnovatons 1 document recognition software and the assistve enue “
technologies marketplace
NEC 15 poised to play s vital role in the mulumedia age, providing o o ”HV. “J"' m:,'
solutons through enhanced C and € (the integrauon of computers  [94039-7241 |USA CA M stamn View 1401 Elbs Srreer I . ’ s
and communications) products and services '
N/A ’92806 USA EA ll\nahum f3190 Mireloina Ave ,Fn]llsu Business
Result of subquery SubQd } T
i Compemies.URL Companies postal_code [Companies_country posies province (Compandes.city |  Campomies.address {(anpdnm
fhetp ivww sutodesh com [L3R 6H3 ICannds IOnrano Maskhiam 19C Allstate Parkway Swte 201 IAuwdrsh
{htep v motorola com [60196 USA IL [Schaumburg  [1303 Eest Algonqun Posd Motorule
Reswlt of subquery SubQS T

Figure 4.8: Results of the subqueries

10



Figure 4.9: Final query result

41



Chapter 5

The Rainbow Prototype Design

In DIOM environments. the information sources mav differ by their organization (e.g., tra-

ditional databases, knowledge bases, and flat v their content (e.g., HTML hypertext,
relational tables, and objects of complex ictures). and by the many browsers and
graphical user interfaces (GUIs) as well as languages used for information access. It

would be convenient and beneficial if there existed software systems that provided facilities
allowing for casy interoperation among these diverse information sources.

Rainbow implements an interoperable software architecture based on DIOM to support
USECA properties. The foundation of the Rainbow architecture design is with the DIOM
system architecture [31] described in Chapter 2. Therefore, for background material, the
reader may refer to the carlier presentation of the DIOM system architecture during the
presentation of the following Rainbow prototype design.

5.1 Rainbow Detailed System Components

This section describes the Rainbow design and prototype of the DIOM query mediation
methodology. which offers querving capabilities over multiple heterogeneous data sources.
This tool was designed to illustrate the functionality of the DIOM interoperable object
model, architecture and query mediation process. The target environment was the Internet
and the target was a Job Search Assistant application.

Rainbow is implemented as a WWW application. Its interface functions are created
using HTML [14] and Perl [52] CGl-scripts. Linking to the underlying data sources and
metadata library database is implemented with Oraperl (5]

Figure 5.1 illustrates the detailed system components for Rainbow, which includes the
clients, the Rainbow Services Managers (RSMs), the Official Metadata Catalogs (OMCs),
the wrappers. and the data repositories. All components are connected by network. Fig-
ure 5.2 shows the connections from the DIOM clients to a RSM which is designed using a
client-server model. Each client connects to a RSM server which processes client requests
and can simultaneously handle more than one client.

All components of the system interact through the HTTP [17] protocol. This is a
popular protocol which has good flexibility in types of data that can be sent and received
(both text and binary). Using HTTP also allows us to focus on the components and non-
network issues because of the large HTTP support base of tools and libraries. Furthermore,
using a popular protocol such as HTTP allows Rainbow components to be more readily

incorporated into new developments of the DIOM svstem as well as other external systems.

43



L
‘ O
: u
] .
. .
‘ .
o
o
e?
Internet .. ®

.......-I---‘

Wrapper Wrapper oo o Wrapper

Figure 5.1: Rainbow detailed component diagram

Metadata

Services

Official
Metadata
Catalog

Object
Linking
Services

Figure 5.2: Client to Rainbow Services Manager

44



5.1.1 Clients

Clients consist of any popular GUI interface and underlving client modules to the Rain-
bow system using the DIOM client APL Clients communicate with the RSM using the
HTTP protocol as the underlying network protocol and using a Perl API of available RSM
commands. Clients may be implemented using any GUl-tool such as Web Applications
(HTML-based), TCL/TK applications, Smalltalk applications etc. Applications can be of-
ficial Raithow clients which allows for a full range of functionality or specialized clients.
Specialized clients may offer limited functiunality where only one working view of data is
offered (e.g.. a Real Estate information application).

5.1.2  Rainbow Services Ma.ager

The Rainbow Services Manager (RSM) is the primary service module which receives and
processes client requests. The RSM services include metadata services (such as repository
registration. consumer interface creation, and metadata browsing), query services (such as
query installation, query retrieval. and distributed query processing). and object linking
services (see Figure 3.2). Each RSM is identical, offering identical services. and is designed
to be replicated throughout the network.

All consumer and producer metadata creation and maintenance is through the RSM.
The RSM accepts metadata for the creation of new consumer interfaces or the registration
of new repositories and returns whether or not the metadata was successfully registered.
The RSM also allows for the browsing and searching of consumer and producer metadata.

Object linking services link consumer interfaces with the relevant repositories which
fulfill tha: interface. The RSM must use system metadata on the interface and on the
producer sources to do this linking. The RSM currently does this matching dynamically
where the repositories are chosen when the query is executed. Future implementations may
choose to preprocess the query and save the relevant repositories during query composition
which would allow for better optimization and quicker query execution.

The RSM is also responsible for providing distributed query processing facilities. DIOM-
QL. quer'es are composed and can be installed within the system. These installed queries are
saved and managed by the RSM. Query execution involves loading the necessary metadata
(i.e., instantiating the appropriate mediator interface objects and producer source models)
and follewing the query processing steps of source selection, query decomposition, and
parallel iccess plan generation. The RSM then sends the subqueries to the individual
wrappers which return the results back to the RSM for result assembly. Figure 4.4 illustrates
the query processing steps of the RSM and the query processing steps of the wrapper.

5.1.3 Official Metadata Catalog

To process requests each RSM communicates with an Official Metadata Catalog (OMC)
server. For example, when a RSM needs to load mediator information to process a consumer
query, it instantiates the mediator by retrieving the mediator definition from the OMC.
OMCs are identical and store the metadata received from the RSM. The OMC handles
the storage of the information source repository and interface repository (see Chapter 3).
OMCs can also be replicated but should remain under the control of a Rainbow system
administrator for the following reasons: (1) metadata should be carefully maintained and
verified by Rainbow system administrators to maintain system integrity and security, (2)

45



information is a valuable commodity whit ' can be exploited commercially,  OMCs can
be strategically placed throughout the Internet for optimal performance. A replication
algorithm is needed to maintain consistency of metadata between all OM('s.

5.1.4 Wrapper

Each different repository type needs a wrapper to connect with the system and ultimately
to the consumers. To facilitate the incorporation of new information sources, (he wrappers
are specified with a generic function suite (see Chapter 7) which is composed of underlying
local fun 1ions. New sources are then able to participate by implementing these underly-
ing functions. Wrapper generation may be partially automated by having meta-wrappers
produce skeleton wrapper code depending on the category of dita repository (structured,
semi-structured, unstructured). Using the DIOM specified wrapper interface, wrapper cre-

ation for new types of informatior  -ositories can be partially automated.

A generic wrapper archite ¢ useful for the automated construction of wrappers to
different types of data reposit. he base set of functionality for the wrapper design
is grouped iuto query. update, «.  cal metadata functions. These function requUests are

translated by the wrapper into the local command equivalent and the result is returned
as a DIOM result object. Thus. only those methods local to the repository need to be
re-implemented.

Local

Function Calls

Wrapper Function ————
Call

Data Repository

DIOM Result -
Object

Result in

AEmTwr IS

Local Format

Figure 5.3: Wrapper translation of request and results

A sketch of our wrapper architecture is shown in Figure 5.4. The Wrapper receives
a service request from mediators via the Rainbow Services Manager. The DIOM serviee
request is processed by the subquery translation module which translates the service request
or consumer query (in DIOM-IQL) into the local language. The source-specific metadata,
provided by the source producer and pre-processed by the DIOM metadata ¢ atalog manager,
is used to facilitate the translation. For example, a wrapper to Oracle DBMS receiving a
DIOM-IQL query will translate the IQL into the Oracle SQL equivalent using the local
equivalent relations and attribute names. Next, the subquery refinement module utilizes
the available constraints to handle the possible refinement of the subquery, such as the
elimination of null queries and the reduction of the query search space. The subquery

46



execntion module then sends the query to the local manager for local execution. The
local query result packaging mo-dule takes the returned result which is in local format and
normalizes the data into a DIOM-specific data format. Depending on the functionality of
the local repository the wrapper may have to perform different amounts of processing (e.g..
text based records would require all processing done by the wrapper vs. database repository
where much processing can be done by the repository).

L HINTeX Harvest

DIOM-Kenult h DIOM.-Hesult Metadata Mediator Call
(Resultin 191 Request (Subyuery in DIOM.IQL)

P Ittt R A Attt ‘
' R 1
' Wrapper Metadata Subquery ,
' Catalog Mansger Translation/Completion :
: )
1 t
] 1
L} ]
' )
1 )
' Subquery ,

. |
' Source-dependent Refinement '
1
: Metadata '
1
: '
N 1
1 1
1
: Local Query Result Subquery t
M )
. Packaging Execution t
) 1
. A Wrapper Quers Manager '
B d p T TRy I I

Result in Raw Formut Query In Local Language

"- T T TTettTtpmsznzosssc-meeea oLl \
' pE— '
1
: = !
N — 1]
' —_ '
)
! —_— !
— —— 1
, D 3 abion '
1
: Orucle '
. -_ 1
t Usenet ,
: Lycm R 1
' — '
' 1
i )

Figure 5.4: Wrapper Architecture

5.2 Implementation Considerations

The current implementation of the RSM is through Perl and the metadata catalogs are
saved as Oracle relations. Clients access the RSM using a URL address with the commands
embedded as part of the URL search string. The wrapper implementation will be discussed
in more detail in Chapter 7.

Because the components are interoperating via HTTP, the individual components can
easily be replicated and made to run on different hosts throughout the Internet. The network
details are taken care of by HTTP.

The RSM is able to register new repositories, register new consumer interfaces, browse
metadata, and process consumer queries. This requires much more work in dynamically
decomposing the query and assembling the results. Currently, the OMC sub-system is in-
tegrated within the RSM. Work needs to be done in creating a separate OMC sub-system
which can replicate data between other OMC sites. Limited querying capabilities are avail-

47



able such as simple keyword based queries and SQL-like queries over the pre-installed Job
Search Assistant mediator. Query tracing is simulated and not implemented.
A completely working interoperable system will require much more work and research

into many areas. Much of the underlying sub-system components are simulated and need
to made fully functional.

48



Chapter 6

The User Interface

This chapter describes the Rainbow design of the H"ML-based DIOM interface accessible
by World Wide Web clients such as Netscape [42]. Specifically the following functionality
was taken into consideration in the user interface design:

e Produc: aletadata Facilities

— Registration of new repositories including individual information sources and
external information brokers such as Lycos. Infoseek etc.

— Update of previously registered repositories

— Browse or filter to find repository metadata

e Consumer Metadata Facilities

Generation of a DIOM-1DL specification for a DIOM-IQL query

Composition and submission of new consumer interfaces defined using DIOM-
IDL

Update of previously entered consumer interfaces

Browse or filter to find an IDL interface definition

!

o Query Facilities

Simple keyword query form and query trace interface
Expert query form based on DIOM-IQL

Query processing trace interface including:

|

* interface to query routing

* interface to query decomposition
+ interface to local query processing
* result assembly screen

!

Browse or filter to find IQL definitions of installed queries



6.1 System Startup

Starting up the Rainbow prototype requires access to a web client which supports tables and
frames (e.g.. Netscape 2.0). The web client starts the application by opening a URL " tothe
Rainbow main menu. The initial main menu page is shown in Figure 6.1. The web page in
Figure 6.1 is broken up into three main sections. First. the menu options at the top of the
screen are Netscape program functions which are beyond the scope of this discussion (See
[42] for Netscape details). Second. the larger frame to the right of the screen offers all major
Rainbow features: the Producer Metadata Facilities, the Consumer Metadata Facilities, and
the Query Facilities. Lastly. the smaller frame on the left side offers a functionally identical
menu which remains throughout the rest of the Rainbow session 2 to allow for convenient
access to all the major functions. The user can now choose any function by mouse-clicking,
the boxes in the main frame or any of the underlined words in the side menu.

Figure 6.1: Rainbow main menu

'Uniform Resource Locator (e.g., http://www.cs.ualberta.ca/)
2for the purposes of the following user interface discussion this left frame will be omitted in the screen
figures

50



6.2 Producer Metadata Facilities

6.2.1 Source Registration and Update

Al information sources must be registered to be utilized by the DIOM system. It is assumed
that repository registration is performed by local repository owners or local repository
administrators who possess knowledge about their repository. There is some work required
by the administrator ir. registering their repository.

Mouse-clicking the Register New Repository or the Update Repository links from the
main menu brings us to the interface shown in Figure 6.2. For new registrations the fields
1o be filled in are left blank. For update registrations, a preliminary dialogue which is
used to query the user for a DIOM repository ID. Using the re: .itory metadata, the
repository information fields will be filled. Unique DIOM repository IDs re assigp.< to all
new repositories when they first register with DIOM.

‘'he first field Repository Name simply allows the administrator to associate an inturus.
general name to the repository. For example, in Figure ".2 the name assigned is Jobs
Database. Next, and of significant importance, is the URL to the repositery wrapper. Thi-
URL is used to access the repository wrapper which must be installed before registration
(see Chapter 7).

The next field, Repository Source Type, records the underlying system type which the
repository is actually running. For example, repository sources types can be HTML pages,
Oracle DBMSs. Informix DBMSs, Sybase DBMSs, etc. New types of repositories <ar. be
entered using the other text input field.

The Repository Ezport Schema Name allows the local repository to have multiple ex-
port schemas under different names. This allows different parts of their information to be
exported separately perhaps for more logical organization. There is a default export schema
name in the case no name is specified (as shown in the example).

The Repository Ouwner is the owner or maintainer of the repository. In this case it is
Autodesk Inc..

The next input field are the Repository Keywords. The repository maintainer supplies
us with relevant keywords for their repository. These keywords can be directly related to
the repository, such as relation names, or indirectly related. These keywords are critical as
they will be used later on in connecting consumer interface descriptions to the producers’
source repositories. The list of descriptive keywords must be chosen carefully and must be
complete if the repository is to be utilized to its fullest potential 3. In the example for the
Jobs Database the repository keywords. Jobs, OpenJobs and Employees correspond to
the relation names.

For each keyword, we may want to gather more semantic information. Figure 6.3 shows
one way to gather more semantic information. This example allows us to add more keywords
for each of the previous keywords. Eventually, for a given application domain, this interface
could be advanced to ask more intelligent questions about the keywords. For example,
given the keyword Jobs, the system could ask the registrant whether they mean “open job
listings™ or “tasks to do” or “employment”.

The final step in registration involves the system checking the URL for a valid wrapper,
assigning a DIOM repository ID, installing the repository information into the metadata
catalog, and reporting the results (shown in Figure 6.4) back to the user.

% Again ontology studies and research may help to uncover more semantic information for the repository

51



Figure 6.2: Registration Dialog



QT e

AL S
RE

w0 U IR -
SC-SOYINM TS

Figure 6.3: Enter more information on keywords

53



Figure 6.4: Repository is accepted



6.2.2 Source Metadata Browsing

The source metadata browser tool allows users to browse repository metadata from the
DIOM metadata catalog, including metadata that was entered during registration. This
browsing tool is intended for those users who are interested in the repositories that are
online. 1t offers a convenient service for browsing individual repositories.

From the main menu, choosing the Browse Repositories option gives us the screen in
Figure 6.5. The first option, Show all registered repositories, located at the top of the screen
retrieves metadata on all registered repositories. The filter fields located on the bottom half
of the screen are used to find specific repositories. The filter fields are a mirror of the
fields used during repository registration. Any of the fields can be used to query for certain
repository information. For example, by inputting a repository ID a unique repository
can be found or by entering a partial URL all repositories with partially matching URLs
will be listed in the result. The result screen in Figure 6.6 lists the resultant information
repositories in table format with all metadata catalog information.

Figure 6.5: Filter to find repository metadata

55



YTiengy
R

Al CTRRTETE

g

S e

ST e

i it 2
e e

) s ] s etsan
o

Figure 6.6: All repository metadata shown



6.3 Consumer Metadata Facilities

6.3 1 Consumer IDL Interface Editor

DIOM-IDL, interface definitions as described in section 3.3 can be composed manually, but
to facilitate composition a user friendly interface which allows for basic definitions and mixed
definitions was created. The interface definitions define the objects the consumer is seeking
and the terminology used to access the objects. The system takes the interface definitions
and links the object definitions with objects from the available producers. Therefore, having
the interface well defined is important for the automatic object linking and embedding
SOrvices,

The DIOM-IDL, interface editor (Figure 6.7) closely follows the IDL syntax given in
Section 3.3. The interface is first grouped with a mediator using the select option or a new
mediator grouping can be created. The interface is then given a name (i.e., Interface Name)
and a high-level English description (i.e., Interface Description). In the example shown, the
user is creating a job interface to list open job listings. The interface name is Job and
the description is job listings. Next we come to choosing the Interface Abstraction
Typc. The abstraction type can be left open in which case the default option will be
used which automatically chooses one of the abstractions. Automatic interface creation
permits the system to attempt to fulfill the interface by trying out the different abstractions
automatically. For example, in using the automatic abstraction type for our Job interface.
the system will attempt generzlization first, then aggregation to produce a Job object from
the available data sources.

The interface creator can also have more control over the creation of interfaces by using
one of the abstraction mechanisms. For an example of aggregation abstraction, consider
the situation where an interface composer may have previously specified other interfaces
say N-ray Image and Doctor Diagnosis. Now, to create a new interface, Patient Record,
they may want to aggregate the X-ray and Diagnosis interfaces. This convenience allows
for reuse of previously created interfaces.

The next field, Interface Keywords, requests the keywords needed to choose the repos-
“ories to use for the abstraction. In our example for the generalization of a Job interface,
we enter Job and Position as the keywords in order to find those repositories which will
have cither Job or Position information to form our composite job interface.

The attribute editor on the bottom half of the screen is a Java [4] applet which allows
for casy editing of attributes. Attributes have a name, type, and description. The name is
a semantically relevant word to the attribute, the type can be a basic type such as String
or Float, and the description box keeps an English language description of the attribute.
When matching attributes from this interface to attributes in a repository, the name of
the attribute along with words from the description are used in the matching process. For
example, the title attribute of the Job interface is matched to object attributes pusition,
jobtitle, and name from our example repositories.

The attribute list box below keeps a list of the attributes added and is a convenient way
to summarize the attributes.

Finally, the composed interface definition may be submitted for processing. The inter-
face definition is saved in the metadata catalog and a preliminary linking of repositories with
{his new interface is done. The result screen (Figure 6.8) reports the id’s of the matching
repositories and the successful completion of interface creation.

57



Figure 6.7: DIOM-IDL Interface Editor



oy
P
MLy

Figure 6.8: Interface is accepted

59



6.3.2 Consumer IDL Interface Browsing

Users may want to browse previously installed interface definitions to find useful interfaces,
or to reuse interface descriptions in the composition of new interfaces.

The IDL browse interface (Figure 6.9) allows users to view all installed IDL. definitions
or use a filter to select a subset. The first option. Show all DiOM-IDLs, lists all interfaces
descriptions in tabular format. The filter option allows users to browse the interfaces that
match to specific fields. The browsing condition can be formed by using the OR/AND
boolean operations. For exanple, to find all interfaces with Job in the keyword, the user
would type Job in the keyword field of the filter and submit. The filter results are presented
in a tabular format as shown in Figure 6.10. All fields vsed in the creation of the interface
are displaved. The attributes of the interiuc. ~an be displayed by entering the tterface 1D
in the View Attributes input field. Tnterfaces can also be deleted by entering the interfuce
ID in the Delete Interface input held.

- - : il form below 10 find intertace(s)
A

Loy

Figure 6.9: IDL Interiace Browse Iorm

60



Figure 6.10: IDLs matching browse form are shown



6.4 Distributed Query Services

Querying multiple and heterogeneous information sources through the DIOM system re-
quires a mapping of form-based user input to DIOM-IQL. Clients transform user input
into DIOM-IQL syntax. This allows for flexibility in query interface designs based on the
consumer rcquirements. The Rainbow system implementation offers two query interfaces,
a simple keyword based query interface, and an expert SQL-like query interface.

6.4.1 Simple Query

This method of querying is intended for naive or irregular system users who are not inter-
ested in the design of mediators or are not familiar with the usage of SQL-like language.
The simple query user provides keywords related to the information they seek. The choice
of keyword is important in obtaining the desired information. The system will use these
keywords to search from the available information sources and generate a return set of
matching objects.

Figure 6.11 shows the query interface for a simple query. The KEYWORDS field is
where the user enters their keywords.

The user also has the following options available: (1) choice of “AND™ or *OR™ boolean
stringing of kevwords, (2) specification of the number of resulting objects to be shown on
each page. (3) the partial matching or exact matching of keywords, and (:1) choice of how
much information is to be presented in the result.

An optimal solution is generated by utilizing information brokers which support key-
word based searching. For example. in processing a simple query on the keywords, job
and multimedia, our system could query all information brokers registered which provide
general keyword based search services such as Yahoo and Harvest.

6.4.2 Simple Query Tracing
Simple query processing of information sources is currently composed of a five step process:
1. source selection

2. for each source, translation of the simple query form data into a valid URL address
to that source

3. parallel execution of each subquery against an individual source
4. translation of each subquery result into the consumer’s preferred result representation
5. the merging of the subquery results from different sources into the final result format

The first step of source selection is done manually from the Choose Repositories selection
box in Figure 6.11. To monitor the other four steps of simple query processing, the query
is decomposed and presented in an interactive interface. Figure 6.12 shows the decomposed
query components for the multimedia and jobs query. The top of the screen shows the
query options chosen to answer the query: 1) the sources are Yahoo, Harvest, and Lycos,
2) the keywords are multimedia and jobs, 3) the maximum requested number of results
are 30, 4) all records should contain both keywords (and), 5) and the query is based on
partial matching keywords only.

62



N

ey

Figure 6.11: Simple query composition form

63



Sonr <o 16 it b
T

ey

e

Figure 6.12: Dialogue for simple query tracing

64



it oo i SRRy
] SRR Y

e e
e R e

Figure 6.13: Results from Yahoo only

65



e

ioatins

e

s s AR A IS Y

S S B
O
LA RS o L s

B v NG el

Figure 6.14: Results from all available sources

66



The middle of the screen shows the decomposed queries. Each leaf box represents a
information source and the D-UNION box represents the final union of the results. Clicking
on a box will execute the local query and return the result in normalized format. Figure 6.13
shows the results returned from Yahoo. The Yahoo subquery returns a list of pointers to
its component information sources which contain the keywords. The results are displayed
in a tabular format with three fields: (1) source of the record (which is only Yahoo in this
case), (2) URL to actual information (the pointer received from Yahoo), and (3) description
taken from actual information with the initial search keywords in bold.

Clicking on the D-UNION box from Figure 6.12 allows us to see the final result after
assembling the results returned from each sub-query through the distributed union operator
D-UNION. The D-UNION first conforms each subquery result into a common IDL format
and then unions them. The final result of the initial example query is shown in Figure 6.14.
The table contains the same field names as the Yahoo result page but in this case the Source
values are alternating between Yahoo and Harvest.

6.4.3 Expert Query

For those users who are more experienced with the SQL style of querying, Rainbow provides
an expert query tooi based on DIOM-IQL. The expert query form is intended for more
complex query formation, and expert queries can be saved (installed) and reused later.
Queries are run over a set of interfaces defined through a mediator. They reference the
interfaces and the attributes defined for those interfaces. The resultant object is represented
in terms of an IDL specification derived from the query specification itself.

The DIOM-IQL form shown in Figure 6.15 closely follows the DIOM-IQL syntax de-
scription given in Section 4.1. The mediator field specifies which grouping of interfaces to
use and can be left open to allow the system to generate the corresponding IDL interface.
The Targct field specifies the information repositories to be used or avoided in the query
where repositories to be av.ided are preceded by an ‘I’. The Select field allows the user to
select only those fields wh h are of interest to her. The From field specifies the interfaces
to use. The Where field ¢ - ‘tains the query conditions to be matched. Join conditions be-
tween interfaces do not hav to be specified here as they will be automatically filled in from
the IDL definitions (see Se ion 4.1.1). A full outer join will return all records which were
relevant to the query. The 1 . ults can be grouped and ordered by filling in the appropriate
conditions in the group and o1 fields respectively. Expert queries can be traced by using
the trace checkbox. The query can then be installed and be reused later on. Eventually,
an extension to expert query installation is the development of a toolkit for supporting
continuous (active) queries [33].

Figure 6.15 shows the query form filled out for an example query. The Mediator field is
the Job Search Assistant, so the sysiem will use the interfaces found from that mediator.
The Target field is left as ‘*’, so all repositories relevant to the interfaces will be used to
fulfill the query. The Select condition is also left as ‘*’, so all fields will be displayed. The
From field displays Job and Company. so these interface descriptions (defined in Chapter 3)
will be used in answering the query.

6.4.4 Expert Query Tracing

To fine tune and monitor the steps of querying in the DIOM environment we provide the
capability for query tracing through a graphical interface. Each step of the query process

67



Figure 6.15: Expert query composition form

68



can be monitored by the user. The DIOM query mediation process consists of the following
steps: '

I. Query Routing
‘I'his is done by mapping the domain model terminology to the source model termi-
nology, by eliminating null queries, which return empty results, and by transforming
ambiguous queries into semantic-clean queries.

2. Query decomposition
This is done by decomposing a query expressed in terms of the domain model into 2
collection of queries, each expressed in terms of a single source model. Both straight-
forward query decomposition and complex query decomposition are considered.

3. Parallel query plan generation

The goal of generating a parallel access plan for the groups of subqueries is to obtain
the maximum parallelism and the best quality of cooperation in searching for query
answers from multiple information sources. A parallel query plan is constructed for
the modified query resulting from query decomposition. The plan is composed of
single-source queries {each posed against exactly one local export schema), move op-
crations that ship results of the single-source queries between sites, and the post
processing queries that assemble the results of the single-source queries in terms of
the information consumer’s query request expressions.

1. Subquery translation and execution
The translation process basically converts each subquery expressed in terms of an
IDL source model into the corresponding information producer’s query language ex-
pression, and adds the necessary join conditions required by the information source
system.

b}

. Query result assembly
The result assembly process involves resolving the semantic variations among the
subquery results. The annotation/semantic attachment is one of the main techniques
that we use for resolving semantics heterogeneity implied in the query results.

Tracing the query is designed to show the user which repositories are being selected
in the process and how the query is actually processed at each site. This can be a useful
option perhaps when debugging or determining the role of a repository in answering a query-
The query trace option is provided at the bottom of the expert query composition form in
Figure 6.15.

The query given in Figure 6.15 is executed with the query trace option. The first step
in query tracing is query routing and is displayed in Figure 6.16 which gives a list of all
repositories and the repositories selected for answering this query. The repositories with
the selected checkbox buttons are the repositories selected as for the Job and Company
interfaces and are the repositories that will actually be queried. The user can tailor this list
by adding or removing repositories to the query.

Following the query routing step is the query decomposition and parallel query plan
generation steps. Figure 6.17 shows the query tree generated from the initial expert query.
Each leaf node represents the result from a single repository and the intermediate nodes rep-
resent the result of using a relational operator on the results from the underlying connected

69



¥

: ]

Figure 6.16: Query Processing: Repository selection

70



nodes. Clicking on each leaf uode will display the subquery that is to be executed at that
repository and the result obtained. Clicking on the relational operators will give the results
of the aperation over the data assembled from the lower connected nodes. Figure 6.18 shows
an example subquery result returned from repository DR3.

Query Trace Continued

Query Decomposition Tree

Figure 6.17: Query Processing: Query tree with clickabwe nodes

6.4.5 Query Result Assembly

Once all the subqueries are processed the results are returned from the wrappers and as-
sembled according to the original IQL query expression. Figure 6.19 shows the result of the
initial query from Figure 6.15 in tabular format.

6.4.6 Installed Queries

Similar to the browsing of metadata of information sources, our system allows for browsing
over installed queries. This browsing capability results in a display of all installed queries
or the installed queries satisfving a particular filtering condition as shown in Figure 6.20.
The filter is designed to find queries by specifving filtering conditions on the keywords

71



Figure 6.18: Decomposed query for D3

72



Figure 6.19: Final query result page

73



oditad or executed.

[ SO S 1"

Figure 6.20: Form to query metadata on installed queries

6.5 Implementation Issues

The Rainbow user interface is made up of two components: (1) the H'TML markup language
(including frames) which the Netscape browser actually interprets and displ v, and (2) the
underlying Perl CGI modules which process the data from the scripts ard return new
web pages to display. The client machine running the Netscape browser does virtually no
processing other than to interpret and display the HTML markup language. The server
machine which processes the form user data does most of the processing by activating the
scripts which make up the RSM. The Perl scripts do such things as interpret the form data,
access other Rainbow modules {e.g., wrappers), access the Oracle engine (through Oraperl),
and transform and normalize data. After all server-side processing is completed, the Gl

74



Figure 6.21: Result of metadata search on installed queries

-]

(o}



scripts return valid HTML code to the client side browser for display.

An HTML interface has been designed and implemented. Future implementations in-
clude the creation of a Java [4] applet for Rainbow. This will make the user interfaces
richer in functiorality and more dynamic to user input. Due to the popularity and interest
of WWW development and WWW tools, the following offers a brief comparison between
dynamic user interfaces based solely on standard CGI aid interfaces based on Java applets:

Common Gateway Interface

The Common Gateway Interface (CGI) is a standard for interfacing external applications
with information servers, such as HTTP or Web servers. A plain HTML document that the
Web daemon retrieves is static, which means it exists in a constant state: a text file that
doesn’t change. A CGI program, on the other hand is executed in real-time, so that it can
output dynamic infermation.

For example, let us say that you wanted to “hook up” your Unix dat: base to the World
Wide Web, to allow peopie from all over the world to query it. Basically, you nced to create
a CGI program that the Web daemon will execute to transmit information to the database
engine, and receive the results back again and display them to the client. Tkis is an example
.. & gateway, and this is where CGI gou its origins.

database example is a simple idea, but most of the time rather difficult to implement.
aily is no limit as to what you can hook up to the Web. The only thing you need to

r¢ - .ver is that whatever your C'GI program does, it should not take too long to precess.
Java

Java is a programming language for distributs: - - tions. Java lets vou add both
the content and the ccde necessary to interact wit' -+ content. You no longer need to

wait for the next release of a browser that supports v« -ir preferred image format or special
game protocol. With Java you send browsers both the content and the program necessary
to view this content at the same time.

Previously you had to wait for all the companies that make the weh browsers your
readers use to update their browsers before you could use a new content ::pe. Then you
had to hope that all your readers actually did update their browsers. Java compatibility is
a feature that any browser can implement and by so doing implement every feature.

For instance let us say you want to edit tables using your web browser. Previously you
would have to wait for a new browser which supports table-editing functions. Now you ran
write your own code to view and edit the tables and send it to any client which requests
the table.

CGI scripts operate on t*~ server side of tne interface. They are programs which return
dynamic HTML code, bu. this code is still simple HTML. Web browsers simply display
HTML and allow very little else, so the functionality is limited. The use of frames aliows
the user interface to be divided into multiple windows, but this mechanism is still very
primitie and is not very flexible. Java applets on the other hand, operate on the client side
of the interface (Netscape runs a Java virtval machine). Java gives the interface programmer
the ability to have full-fledged user interfaces (dialogues, separate windows, sound, graphics,
widgets, etc.).

The DIOM project will slowly migrate to a Java-based user interface, but because of
tirie constraints and the late avaiiability of the Java development kit, a Java version of the

76



interface was not available for this thesis.

6.5.1 Interface Enhancements

Here are a list of user interface enh .ncements which will increase system functionality. Some
of these enhancements have only became feasible with the recent emergence of the Java
programming language, the Java programmer development tools, and Netscape support.

Consumer Domain Model Editor

The implementation of a consumer domain model editor is currently in progress. The future
development of the IDL interface will include a CUI to create diagrams such as Figure 3.1
and to be able to edit these diagrams with semantic information for the nodes and the links.

Source Registration

It can be argued that some of fields in the producer registration form (Figure 6.2) should
be automatically retrieved through the wrapper. To make it easier on the registrant the
only thing they would be required to fill in would be the wrapper URL. The system could
access the wrapper initially given this URL. The repository name, source type, owner, and
first level of keywords could then be supplied by the wrapper. The export schema name
could be given as a set of choices. This option will be taken into consideration in the next
implementation release.

Repository Browsing

For the repo:itory browsing interface shown in Figure 6.5 and Figure 6.6, further improve-
ment includes the ability to browse the actual repository data by mouse-clicking on the
repositories found. The interface would then be able to directly access and edit tables from
the producer repositories.

Simple Query

Future implementations may include more intelligent methods for determining the semantics
of a simple query. For example, the system may ask the user to provide more semantic
information on the keywords (via popup dialogue windows) such as whether multimediais
nart of a title or description. The system may then automatically map the simple query to
an 1QL expert query.

Expert Query

Future development of this interface will require more automated query composition. For
example, choosing the Job Search Assistant mediator would trigger the interface to give the
user specific choices on which IDL interfaces and which attributes are available.

Query Tracing

The creation of the query processing tree is simuiated. Using Java, it would be possible
to create a tree dynamically. The tree would also have clickable nodes and offe: the same
functionality as ir. the Rainbow prototype.

77



Chapter 7

Wrapper Design and Prototype
Implementation

Wrappers are software modules that are responsible for connecting individual information
sources to external users. In the DIOM system, a wrapper receives and translates instruc-
tions written in the DIOM-IQL language into executable local repository commands as
shown in Figure 7.1. The result of the repository is then packaged by the local query result
packaging module and returned to the client. A sketch of our wrapper architecture was
shown previously in Figure 5.4. A generic wrapper architecture is useful for the automuted
construction of wrappers to different types of data repositories. A generic wrapper architec-
ture allows for unifcrm access to the wrapper and a uniform return result format. Wrappers
which are built with the specified generic architecture may also reuse (by subtyping) much
of the higher levei code with only certain local functions having to be reimplemented.

Weapper Function
Call

DIOM Result o
Object

TmeETrRS

Figure 7.1: Wrapper translation of request and results

The generic function suite for the wrapper design is grouped into query, update, and
wrapper metadata functions. Each of these functions is in turn composed of lower level
local functions. Wrapper function requests are translated by the wrapper into the local
command equivalent and the result is returned as a DIOM result object.

Using the DIOM specified wrapper interface, wrapper creation for new types of infor-
mation repositories may be partially automated. Thus, only those methods local to the
repository need to be re-implemented. In order to support semi-automatic generation of

78



wrappers, the wrapper software module consists of a two-tier design: the generic wrapper
function suite and the source-dependent wrapper function suite. All wrappers support the
generic function suite which is then mappad to the source-dependent functions. The pri-
mary difference between the various DIOM wrappers (e.g., wrapper to Oracle vs. wrapper
10 Lycos) lies in the connection of the generic wrapper functions to the source-dependent
functions and the amount, of processing that a wrapper does compared to the local source.
These wrapper functions work together to accomplish the primary tasks:

e Transform a wrapper service request into a local command which is executable at the
corresponding source repository.

o To connect the execution results into DIOM objects and return"the result to the caller.

7.1 Wrapper Network Access

The wrappers are navigated and accessed across the network via the HTTP Internet pro-
tocol. This protocol relieves the system of network navigation and access conflicts, and
thus offers a solution to the heterogeneity of network access protocols. The DIOM wrapper
services are invoked by opening the correctly formed URL [6] to the wrapper. The wrapper
is currently implemented as a CGl ! [41] script, whizh a is common standard for external
gateway programs to interface with information ser-ers. Wrappers are implemented us-
ing Perl, the widely ported programming language. " ‘:e external wrapper interface (URL
address) is identical in format for all wrappers.

7.1.1 Syntax of the Wrapper Interface Language

The wrapper interface language allows external clients to request wrapper services and
queries in a format that is understandable by the wrapper manager. Therefore, the RSM is
not the only possible client of the wrapper, as external developers can create applications
directly based on our wrappers. Currently, wrapper invocation expressed in the wrapper
interface language format is in the form of a URL to the wrapper which can then be used
to invoke the wrapper. A BNF-like description for a HTTP URL looks like this:

httpurl = “http://" hostport [ “/" hpath [ "?" search ]]

The hostport is the Internet hostname of the machine where the wrapper is located, the
hpath is the unix-like filesystem path to the wrapper script, and the search field is where
the wrapper service commands and data are embedded.

In compliance with HTTP protocol, all spaces must be replaced by a ‘+’, and all variable
names and values in the search field must have their special characters encoded with their
hexadecimal equivalent prefixed with a ‘%’. The special characters which must be encoded
are:

$c¢c> g% {2l -~"[]:\?7:e=28

For example, the query:

query=select * wvhere symbols=@?#

!Common Gateway interface Specification version 1.1

79



must be encoded as:

query=select+s+vhare+binarycode=X40%3F%23

The wrapper services include: insert, delete, select, createclass, destroyclass, getclass-
info, getexportschema, and reqvariablesinfo. Each service call maps directly to one of the
generic functjons in the generic function suite (Gee Section 7.2 for a detailed description).
A fragment of our wrapper interface language syntax is provided as follows:

wrapperSyntax ::= http://<wrapper path>?<DIOR Request>
<DIOM Request> ::= servicem<service type>&<variable list>

<service type> ::= insert | delete | selact
createclass | destroyclass | getclassinfo |
getexportschema | reqvarjablesinfo

<variable 1ist> ::= <variablename> | <separator> | <varizble list>

<variablename> ::= attlist=<attnamel> <attname2>..
classlist=<classnamel> <clascname2>. |
condition=’<conditionstring>’ |
values=<namel> ’<valuestringl>’
<name2> ’'<valuestring2>’...
<separator> w42

Here is an example of using the wrapper interface syntax to find “all jobs offered by IBAM"
using one repository and one wrapper (assume the Rainbow Services Manager has targeted
this repository as one of the sources to answer the query). The decomposed subquery before
begin encoded into the wrapper interface language is:

select ¢ from jobs where company_name="IBN'"

The DIOM-IQL query is then encoded into the following wrapper interface syntax which
is generated by the Rainbow Services Manager (note: url is an actual continous string):

http://uee.test.ca/ diom/wrapper/service.cgi?
servicesselectiattlist=sclasslist=Jobkcondition=’company_name="IBN"’

The wrapper service call is a URL which points to the network address of the repository,
the wrapper CGI-Script, and contains the encoded DIOM-IQL query plus any extra vari-
ables. Each of the components of the select query have been broken up into the constituent
parts: the requested service is a select, the attributes to return are all (‘#’), the class to
query is Job, and the query condition is company_name="‘‘IBM’’.

7.1.2 Wrapper Result Format

The wrapper returns the result from wrapper service calls as a MIME 2 multi-part object (8,
40] which is already a part of .he HTTP 1.0 specifications. The current implementation
of the wrapper returns a simple text MIME type of the query result in a standard table
format.

2MIME allows retwin objects to contain both text and non-textual data such as digitalized audio, images,
and video

80



7.2 Generic Wrapper Function Suite

The generic wrapper functions zre classified into three categories: IQL object queries, local
update requests, and DIOM directory service requests. The IQL object query allows for
the selection and return of local objects in an IQL query fashion. The local update requests
allow for updates to the actual local object. The directory service requests allow system
programmers to access metadata information on the local wrapper.

Defining generic wrapper functions allows for the creation of wrappers to various types
of data repositories. The classification of our wrapper functions closely fits with functions
in more structured data repositories such as RDBMs, and OODBMs. For semi-structured
data sources such as BibTeX files or HTML documents, more wrapper processing is required
to retrieve useful data. Some highly unstructured data sources such as technical reports or
journal articles need text-retrieval type or content-based processing. Furthermore, unstruc-
tured data need more complicated heuristics to retrieve useful information. It is important
to consider the granularity of information wrapping. For example, when designing wrap-
pers to duplicated data such as Usenet data, there are two methods: (1) if each server is
considered a information source than wrappers must be implemented for each news server,
(2) a finer granularity might be achieved by considering each news group as an information
source. In this case, a wrapper may use more than one news server to fulfill a request.
The Rainbow implementation opts for the first design where each server is seen as an in-
formation source. Each newsgroup is then viewed as an object containing smaller article
objects and articles would contain attributes: subject, post.date, organization. Alterna-
tively, the second method may retrieve more useful information from the articles as some
newsgroups have highly structured articles. For example, the alt.jobs news group has a
defined structure of the subject heading which specifies the additional fields: joblocation
and job_title.

Each wrapper function is implemented as a Perl function. The generic wrapper function
suite designed in Rainbow is provided here:

1. IQL Object Query

&diom_wrapper_Select ( attributenamelist, condition)
This function returns a DIOM object with the instances matching the selection. SQL
equivalent:

Select attributenames from class ,[class]... where condition
2. Local Update Requests

&:diom_wrapper_Delete (classname, condition)
Deletes selected instances from class. Deletes actual local data. SQL equivalent:

Delete from classname where condition

&diocwmn.wrapper_Insert (classname, name-value-pair-list)
Inserts new instances into classname. Inserts data into local repository. SQL equiva-
lent:

Insert into classname (namel, name?2, ... ) values [(valuel[,valueg)...)]

81



&diom_wrapper.CreateClass (string classname, sttributespeclist)
This creates new classes given the attribute specifications. Creates new data in infor-
mation source which is equivalent to the class definition.

Create Class classname attribute spec [,attribute spec...]

&diom_wrapper_DestroyClass (classname)]
This destroys classes. Destroys the class equivalent in the local information source.

LCv 1oy Class classname

3. DIOM Directory Service Requests

&diom_wrapper.GetClassInfo
retrieves class information on all classes.

&diom_wrapper-GetExportSchema
retrieves export schema 3

&diom_wrapper_ReqVariablesInfo
retrieves variable names needed to access rep. iitory

7.3 Source-Specific Function Suite

Each of the generic functions is in turn composed of local function calls which abstract
the details of the local source. The functions have been designed in this two-tier manner
to allow for easier composibility of wrappers to new source types. The existing generic
interface functions can be transferred tc new wrappers and the source-specific functions are
the only pieces of code which need be altered. Here is the source-specific function suite:

&local_ExternalFetch Returns data from the local repository in its native data format.

&local_ExternalNormalize Takes data in native format and normalizes into an internal
format (Such as the Oracle DBMS).

&local_Select Performs a select-from-where on the normalized data. This code may be
reused for common normalization internal data formats.

&local.Delete Performs a deletion of data using the local language.
&local_Insert Performs an insertion of data using the local language.
&local_ResultsToDiom Translates the result from a selection into a DIOM-result.

&local_CreateClass Creates a new class (where a local class-equivalent is pre-defined)
using the local language.

3 A view of the local source that is accessible to the external users or external systems

82



&local_DestroyClass Destroy the equivalent of a class using local language.

&local_GetClassInfo Returns raw data from data repository which contains the class
information.

&local_InfoNormalize Translates raw data on class information into an internal form
suchk as a relation in Oracle.

&local_GetExportSchema Returns raw data from data repository needed to create an
export schema.

&local_ExportNormalize Translates raw data from GetExportSchema to an internal
format.

&local_ReqVariablesInfo Returns a text list of all variable names, its type, and whether
it is required or not.

&local_AddToResult Adds objects to the DIOM-Result.

7.4 Hierarchy of Wrapper Types and Examples

The numerous types of repositories and information systems iiave resulted in the need for
a subtyping scheme to group and abstract the repository types. Once repository types
are classified and subtyped according to our repository subtype tree, the wrapper gener-
ation module is able to produce the correct wrapper skeleton for automatic generation of
new wrappers. This subtyping based classification allows much of the wrapper code from
previous implementations to be reused.

Figure 7.2 displays the subtyping tree for the wrapper types. The generic wrapper, at the
top of the tree, contains the main interface for the generic wrapper services. The first level
of subtyping of the generic wrapper is into structured, semi-structured, and unstructured
tvpes. This initia! rubtyye of the geneiic wrapper reflects the processing power available at
the repositories. For example, the structured repositories (e.g., Oracle) have powerful data
processing capabilities and most likely have clean gateways to their DBMSs. Implementing
the generic and local function suites for these repositories should require relatively litile
effort. For comparison, Semi-structured information repositories typically do not have any
local data processing facilities, so the wrapper must perform the data processing. The
semi-structured repositories can also be broken up into network information tools and local
files. Network information tools will typically require a network access method (e.g., HTML
pages requires HTTP access) while local files (e.g., BibTeX files) reside on the same physical
machine as the wrapper. Both of these file types require processing by the wrapper to
extract information and do basic data manipulation operations. Finally, the last subtype
are the unstructured file types such as LaTeX documents which have little set structure.
There may be specialize] ways to extract information (information from figures, tables,
lists) from these sorts of documents, but producing wrappers to these types of data will
require the most effort.

7.4.1 Wrapper to Structured Information Sources

As mentioned earlier, the wrapper interface specification is based on common functions
found in most database systems. The generic wrapper suite functions to RDBMSs such as

83



Generic

Structured Semi-Structured Unstructured
ROBMS OODRMS Network localsys m
or HTML  Usenel BibTeX textfle MS-WORD  LaTeX

Wrapper subtype tree

84



Oracle are directly mapped to local Oracle commands. Many commercial database systems
provide some external gateways to their products. Most DBMSs have either € or C++
interface libraries. Extremely popular DBMSs such as Oracle [44] also have extensions
to popular languages such as Oraperl [5] and PL/SQL [45] as external gateways to their
systems.

Wrappers for RDBMSs must translate the DIOM-request to a local gateway command.
The generic interface commands: Delete, Insert, and Seleet require little change, as all
RDBMSs have the support for such basic data manipulation. The Create Class and De-
stroy Class definition commands are translated into create table and destroy table equiv-
alents. Each relation is interpreted as a separate class and each record in the relation is
interpreted as an instance of that class. The metadata queries diom_wrapper_GetClassinfo,
diom_wrapper_GetEzportSchema, and diom_wrapper.GetErportSchemain a RDBMS return
a list of all available tables, return the database export scheina as defined by the local DBMS
administrator, and return a list of the variables needed to access the export database, re
spectively.

Oracle

Oracle is a Relational DBMS which is accessed using the Oraperl 4 [5] gateway. ur first
relational DBMS wrapper is implemented for the Oracle RDBMS. The data mauipulation
commands are directly translated into Qracle commands using the ora_do Oraperl func
tion call. The data definition commands are slightly altered to Create Table and Drop
Table the Oracle equivalents to Create Class and Destroy Class. The metadata query,
diom_wrapper.GetClassinfo, can be translated into the 1QL query:

select table.name from user._tables

The above Oracle SQL returns a list of the tables available. The metadata query,
diom_wrapper_GetEzrportSchema, is generated by running an Oracle script or by retrieving,
a flat file that the DBMS Administrator has created manually.

7.4.2 Wrapper to Semi-Structured Information Sources

The complexity and large scale of the world wide web (WWW) has fueled the developiment
of search tools such as Yahoo [56], the Harvest Web Broker [9], and Lycos [38]. These tools
are sufficient for simple keyword-based searching but the results contain simple information
and are represented as HTML documents which impedes further processing. There is a
need for tools which can assist consumers in the merging, the combining, and the sorting
of retrieved results from multiple sources. Currently, users who wish to gather information
from various tools need to do so by visiting each tool separately and then assembling the
results manually. By creating wrappers to each information tool, Rainbow allows users to
merge, combine, and sort their search results within a single query. No similar tool has yet
been encountered during the time of this writing.

Since most of these information sources only allow network (HTTP) access, our wrapper
is not physically located on the server machine of the tool. The link from our wrapper to
the source is implemented through third party software (get_url.pl Perl Library) which
retrieves output from remote HTML pages and from remote CGI scripts.

The diom_wrapper Select generic function in Figure 7.3 will be used as the running
example to illustrate reusability in DIOM wrapper construction and generation.

4a Perl based scripting language

85



sub diom_wrapper_Select {
local ($result);

88 Fetch Data

$resultwilocal _ExternalFetch;

Sverbose &8
print "RAW PAGE ====s=\n<pre>\n $result \n</pre>".
" \n==:=m End RAW PAGE\n";

#% Normalization

$tablename=ilocal _Externallormalize ($result);

#% process normalize data
$return=klocal_Select ($tablename);

#8 clean up tmp tables
&local _Close ($tablename);

#% return answver
$return;

Figure 7.3: The diom_wrapper_Select function for network semi-structured wrappers

sub local_ExternalFetch {
#% Template for Web Pages
local(8url);

#8 compose correct URL
$url=2HTML makeURL;
($verbose) &8 (print “URL: $url\n*);

## gradb web page
eval "\$result=aGrabWebPage(\$url)* ||
die "Page Grab failed\n";

($verbose) &t (print "Page Grab SUCCESS\n");
$result;

Figure 7.4: The local_ExternalFetch function for HTML Information tool wrappers

The code in Figure 7.3 is written for network semi-structured wrappers. The fu.ction
first fetches the data from the network information tool, normalizes it inside the wrapper
DBMS, performs the necessary selections on the data based on the condition and then
returns the result as a packaged DIOM object (MIME type).

Figure 7.4 and Figure 7.5 show the code for the HTML information tools local func-
tions: local_ExternalFetch and local_.ExternalNormalize network wrapper. These wrapper
functions are a subtype of network wrapper function. The local_ExternalFetch function
composes the correct URL to the information tool, grabs the web page, and returns the raw
result up to the Select function. The local_.ExternalNormalize function takes the raw result
and normalizes it inside the wrapper database.

Wrapper to Yahoo

The Yahoo system only allows for two types of functionality: keyword searching and
category-based browsing. We can consider the classes and instances to be read only. Thus,
some of our wrapper functions are limited. The searching functionality of Yahoo is accessible
througli the URL to Yahoo's search engine.

86



sub local ExternalNormalize {

Figure 7.5: The local_ExternalNormalize function for HTML information tool wrappers

The formation of the Yahoo URL starts off with the web host and path 1o the egi seript:

local($result)=¢_;

#8 create temporary table name to use
$tablename=tlocal_NakeTableName;

¥8% create normalization commands
QinsertCommands =
&HTKL_translate($tablename, $result);

## ,rint commands

$verbose & print “INSERT COMMAEDS *
“mezxzmmx\n@insertCommands\n===x=x END INSERT *".
“COMMANDS\n";

#% execute commands to insert into table
eval "kinsertScratch (\$tablename, ™.
*\¢insertCommands)" || print "ERROR vith *.
"creating scratch table and data";

# return $tablename;
$tablename;

source: http://search.yahoo.com/bin/search?

Next, to form a correct URL we have to embed the proper functionality within the

search string:

p=<keyvwords> (separated by +)
d=(ignore this) (yahoo, usenet, omail)
s= ola (or / and)

w= s (partial) | v (exact)

Here are some Yahoo URL examples of searching for the keywords job and multimedia:

http://search.yahoo.com/bin/search?p=job+multimedia

http://search.yahoo.com/bin/search?p=job+multimediatd=yts=oku=skn=2§

The HTML_makeURL function utilized in the function in Figure 7.4 is the function
which creates the proper URL to Yahoo. It was created by taking the above Yahoo URIL
formation knowledge and creating a Perl script to manipulate the condition field given in
the call to wrapper. The HTML_makeURL for Yahoo is shown in Figure 7.6.

The HTML_translate function utilized in the function in Figure 7.5 is the function
which extracts the URL and description from the raw HTML result where one record has
this format:

<1i><a href="http://mlds-www.arc.nasa.gov/BAMNTA/">BAMTA <b>Job</b>
Bank</a> ~ <b>multimedia</b> and Web technology related positions.

It can be seen that if each 12cord in the HTML raw result has the same format as the
one give above, then parsing for each such record will allow for the extraction of data. The

87

(vord matching partial / exact)
n=<number> (number of results.. 100 max for Yahoo)



sub HTML_makeURL {
local(8$url, €keyword);

888 source
$url .= *http://sesrrch.yahoo.com/bin/search?’;

#48% keywords
$url .= 'p=';

$verbuse B¢ (print "local_ExternalFetch $condition: $condition\n<p>");
$condition =" 8/ ([~ ?]+)?/$keyvord[$x++]1=81/eg;
$verbose k& (print "local_ExternalFetch KEYWORDS: €keyword\n<p>");

foreach ¢i (@keyword) {
$url .= “$i+";

}

$url =" s/\+3$/2/;

#88 or/and

if ($condition =~ /or/) {
$url .= 's=ok’;

7

else {
$url .= ’'s=ak’;

}

888 partial/complete

if ($condition =~ /% (.9)%/) {
$url .= ‘g=g}’;

}

else {
Surl .= ‘'g=gi’;

}
if (!($numfetch. || ($numfetch < 50) ) {$numfetch =50;}

$url .= "na$numfetch”;
$url;

Figure 7.6: HTML_makeURL function for Yahoo



sub HTML translate {
#8 this routine takes yahoo search result and creates oracle
#3 insert commands

local ($tablename,$result)=g_;
local ($description,$url, $commands);

foreach ( split(/\n/, $result) ) {

if ("\L$_" =~ /<1id/) { # SIBGLE ITEM
8/ \s+|\s+3//g; # DFELETE SPACES
8/<1i>//g;
s/<LI>//g;
$line = $_;

8/\<\/A> ¢/ /g; % DELETE HTML TAGS
a/\<\/a>.'//g; # DELETE HTML TAGS
8/<A HREF="//g; ® DELETE HTML TAGS
8/<a href="//g; # DELETE HTML TAGS
s/"\>.+//g; # DELETE HTML TAGS
$url = §_;

$_ = $line;

8/<a href.«"\>//g;
8/<A HREF.*"\>//g;
s/\'"IN"//g;

$description = §_;

$insert="insert into $tablename *'.
“(description, URL, URL_URL, Source, ".
* Source_URL) values \n".
“(*$description’\n".
*,*8url’,’$url’,Yahoo’,\n".
*Jhttp://www.yahoo.com/?)";

tnow insert into commands array
unshift (Q@commands,$insert);

}o® i 218>

} # foreach
Ccopmands ;

Yrure 7.7: HTML_ translate function for Yahoo

89



HTML translate is based on the format of Yahoo return records. the HTML _translate for
Yahoo is shown in Figure 7.7.

Using the «.om_wrapper Select function as an example, the derivation of the local HTML
functions was illustrated. For any HTML tool the only two functions which need to be
defined are the HTML_makeURL and HTML_translate functions. To generate wrappers
for infurmation tools becomes a two-function creation process. Eventually, these function
creation steps can be automated using a well designed interface for entering the URL de-
scription and a description of how the HTML record is formatted.

Wrapper to Harvest, Lycos and others

Creating wrappers to Harvest, Lycos and others is implemented by reusing parts of the
Yahoo wrapper and overwriting the code for URL creation and HTML page translation.
For example, the URL to the Harvest Web Broker search engine is different so this part
needs to be re-implemented. The translation of HTML page into a DIOM object also may
need to be redone, but the general interface to the wrapper is identical to Yahoo and car be
reused. This is efficient and doesn’t require recompilation of client programs which access
the wrapper.

Any HTML page or HTML search tool can now be more readily incrporated into our
system using our HTML wrapper skeleton. The only part which has to be re-implemented
is the formation of the URL from the condition keywords and the translation of HTML
information into class information methods. The main interface can be reused allowing for
rapid incorporation of new WWW data sources.

Here is a list of the functions which must be re-implemented from the YAHOO wrapper
to other HTML-tools wrapper:

&local_ExternalFetch This contains the code for URL formation
&local_ExternalNormalize This translates the HTML page into internal wrapper format

&local_GetClassInfo This translates the HTML general information or browser page into
class descriptions

&local_InfoNormalize This does the same as &local _GetClassInfo

&local_ReqVariablesInfo This returns the list of variables needed to access the web tool.
Some tools may require special passwords and usernames

Wrapper to Usennt

Each Usenet newsgroup is modeled as a separate class and each article in the newsgroup
is modeled as an instance of that class. Each one of the generic wrapper functions must
translate the DIOM request into a Usenet client request [26] and translate the result back
into a “/1OM result. To facilitate data functions on Usenet data, we scan the data in
its native format and insert the articles into a local database system (normalize). We then
perferm query processing using the database and the result is translated to a DIOM-Result.

Each DIOM wrapper function is based on local functions which are reimplemented for
each wrapper. We now present the list of wrapper functions and the pseudo-code of our
Usenet wrapper implementation,

90



&diom._wrapper_Select
is implemented by first gathering all news headers from each article into a database and
running the query on the database objects.

1. execute &local_ExternalFetch to fetch news ar.icles.

2. execute &local_ExternalNormalize to translate fetched data into database insert com-
mands and insert into database.

3. execute &local Select to select article matching condition

4. execute &local_AddToResult to add select articies to DIOM-result (&local _ResultsToDiom)

&diom_wrapper._Delete
operations can be mapped to searching fcr articles based on the condition and then using
Usenet cancel article commands to cancel all articles found. The algorithm is shown here:

1. execute &local_ExternalFetch to fetch news articles through the News server.

2. execute &local _ExternalNormalize to translate fetched data into database insert ~om-
mands and insert into database.

3. execute &local Select to select article :nessage-id’s matching delete condition
4. execute &local.Delete which sends cancel requests to news server for each message-id.

5. execute &local_AddToResult to add SUCCESS or FAIL to result

&diom_wrapper_Insert
operations can be mapped to a Usenet news posting. The algorithm is shown here:

1. execute &local_Insert to translate DIOM Request into local insert request. In this
case a Usenet news post request. Post news.

2. execute &local_AddToResult to add SUCCESS or FAIL to result

&diom_wrapper._CreateClass
can be mapped to a create new newsgroup request (&local_CreateClass).

&diom_wrapper_DestroyClass

can be implemented as either a destroy newsgroup command ° or by deleting the newsgroup
from the News Server’s available newsgroup’s list. Again the DIOM-Result should contain
SUCCESS or FAIL. (&local DestroyClass).

*Because Usenet news feeds are duplicated on a mass scale complete deletion of newsgroups may be
unrealistic

91



&diom_wrapper_GetClassInfo
retrieves the list of news groups and news group descriptions available from the server.

1. execute &local_GetClassInfo. This queries the news server for all available newsgroups
and descriptions.

2. execute &local_InfoNormalize. This translates newsgroup information from the server
into the internal database.

3. execute &local Select to select inserted records from the internal database.

4. execute &local_ AddToResult to add the selected records to the DIOM result.

&diom_wrapper_GetExportSchema
retrieves all possible newsgioups and returns the results.

1. execute &local_GetExportSchema. This queries the news server or queries an internal
list of all possible newsgroups in the Usenet domain.

2. execute &local_.ExportNormalize. This translates newsgroup information from the
server into database commands which are then used to insert into the scratch database.

3. execute &local Select to select all newsgroup records

4. execute &local_AddToResult to add the selected records to the DIOM result.

&diom_wrapper_ReqVariablesInfo

retrieves the variables necessary to access the data repository. To access news articles we
simply need the newsgroup name and article numbers. To post news we need user name,
subject, organization, article body, newsgroup name. Our function will simply return all
possible variables that can be filled back to the client.

1. execute &local_ReqVariablesInfo which returns a DIOM-result listing all the variable
names and type that can be entered. Required and optional variables are marked.

Each Article retrieved from this wrapper can undergo further processing to extract extra
information. For example, the wrapper may return articles from the jobs newsgroup. A
simple scan of the data may only reveal the subject, article creator, and the organization
of the poster. But further processing may also uncover the job title, job pay, job location,
and the employer. We will elaborate on further processing more fully in our Mediator
presentation,

All local functions must be re-implemented for each new wrapper. Some local func-
tions are highly specific such as the &local_ExternalFetch and &local_ExternalNormalize
functions. If a common local database is used for normalization then &local_Select can be
reused. For example, if Oracle is used as the common underlying database system, then
&local_Select can be used for any wrapper using Oracle for the internal database.

92



Wrapper to Local Semi-Structured Files
Flat files require some structure if they are to be incorporated into our system. Flat files
without any structure are generally harder to wrap as they may require complex knowledge
discovery heuristics to gather any useful information. Hence, we will focus on the use of
semi-structured data files (e.g., BibTeX) as the target of our flat file wrapper construction.
Many bibliographies are stored in BibTeX format. The BibTeX format allows any sort

of documentation such as books, technical reports, magazine articles etc. to be stored and
used as references within the LaTeX documentation system. Each BibTeX entry has specific
field name and formats. Here is an example BibTeX entry:

Q@techreport{bib:21,

author = ‘‘A. Fekete and N. Lynch and §. Meriitt and W. Weihl'’,

title = ‘‘Commutativity-based locking for nested transactions’’,

institution = ‘‘MIT, Lab. of Computer Science’’,

number = ¢ ‘MIT/LCS/TM-370.b°",

year = ‘61989,
month = jul}

Using the the field name on the left side of the equality sign and associated value on
the right side, each document entry can be instantiated in a DBMS for further processing.
For example, all book entries can be instantiated in the Book class, all journal entries into
the journal class, all article entries into the article class. By first scan.ung and inserting
entries into a Oracle database we can reuse most of the code from the Oracle wrapper to
implement our BibTeX wrapper.

The delete command can delete entries stored in the flat file, the insert command can
insert new entries, and the select command can utilize the normalized database based on
the native data to execute the query. Using the metadata browsing capability, users are
able to query the classes used by a specific wrapper. To retrieve class information we can
return all classes and attributes which are utilized in the flat file. To retrieve the export
schema we can return all the classes available in the BibTeX standard.

7.5 Implementation Issues

Currently, the wrapper functions are implemented as a Common Gateway Interface 1.0
script in Oraperl, and can be accessed through HTTP protocol. The invocation commands
to a wrapper are embedded within the HTTP call and the result is returned as a MIME
object. Oraperl, an Oracle extension of the Perl language, includes functions for accessing
Oracle Databases. Raw data from the repositories is normalized into th» Oracle database
which then allows for further data processing.

Perl is an interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It’s also a
good language for many system management tasks. The language is intended to be practical
(easy to use, efficient, complete) rather than beautiful (tiny, elegant, minimal).

Oraperl is an extension of Perl which offers an API to Oracle DBMSs. The new version
of Perl 5.0 offers the DBperl package which offers a generic API to many other DBMSs.
Future implementations of the Perl-based wrappers will use the DBperl [25] package which
will allow a single wrapper implementation to run over multiple underlying repository types.

During the last stage of the Rainbow prototype development, Sun Microsystems an-
nounced the release of the Java JDBC € [51] database access API. JDBC will become a

€Java and JDBC are trademarks of Sun Microsystems Inc, http://splash.javasoft.com/jdbc/

93



widely accepted API to many information sources. Java-based wrappers can now also be
implemented. Utili- « JDBC will allow single wrapper implementations to be used for all
underlying supporied repositories. Some wrapper processing with JDBC implementation
may also allow for more distributed computing in the sense that those processing tasks
which are less data intensive can be shifted to the client machine.

Further features which could be added to our wrapper functionality include: More
metadata features such as export schema names (choices), repository name, source type,
etc. A clear export schema specification needs to be created so wrappers can export schemas.
The processing of more complex parallel query plans may require data to be shifted from one
repository to others or to intermediate servers. This calls for more interoperation between
wrappers. Furthermore, more research into wrappers to other types of sources such as
object oriented databases and knowledge bases is required.

94



Chapter 8

Related Work

To resolve semantic and schematic heterogeneity, there are a wide range of proposed so-
lutions for global information sharing of multiple heterogeneous sources in a distributed
environment. The main strategies of the past have focussed on varying degrees of integra-
tion ranging from tightly-coupled to more loosely-coupled [49, 36, 10] along with many other
diverse characteristics which make classification difficult. The advantage to tight-coupling
is close synchronization among sites leading to efficient global processing. For small-systems
the creation and maintenance of a global integrated schema is feasible, but for larger scale
systems this is a fundamental roadblock towards system scalability and evolution. In con-
trast, loose-coupling strategies favour zero schema integration. Loosely-coupled strategies
have much less local-level control of repositories, and have a much more reduced global
function set. These strategies typically access local repositories by applications (gateways,
wrappers) which lie above the repository. Because there is no integrated schema, many of
the responsibilities, such as semantic conflict resolution, may be left up to the uvser. The
following sections will give a general overview of relevant research into major areas of mul-
tidatabase research and how they are similar to and different from the work presented in
this thesis.

8.1 The Global Schema Approach

A classic approach [47, 48] for multidatabase management relies on building a single global
schema to encompass the differences among the multiple local database schemas. Global
schema integration approaches can be extreme such as in the case of a traditional distributed
database where global and local functions share the same low-level interna! interfaces and
are so tightly integrated that there is little distinction between local and global functions.
A more bottom-up design is that of a global schema multidatabase where global functions
are implemented through the external interface of a local DBMS but there is still a global
schema. All local sites must be diligent and cooperate closely to maintain the global schema.

Although the enforcement of a single global schema through data integration yields
full transparency for uniform access, component DBMSs have much restricted autonomy,
scalability and their evolution becomes difficult. Our project is an attempt to support the
USECA properties. Thus, it is infeasible to maintain a global and monolithic schema in a
large-scale interoperable environment.

95



8.2 The Federated Approach

Federated databases [24] are made up of component databases which are semi-autonomous
and are a more loosely coupled subset of the global schema approach. Each local DBMS de-
fines an expor: schema. Based on these export schemas, applications define import schemas
which can be considered a global external view. Although they are semi-autonomous, each
component database must still cooperate closely with the specific nodes it accesses. Changes
to the local schemas may have profound impact on the global views and may require re-
working of the glcbal views.

This approach cannot scale well when new sources need to be added into an existing
multidatabase system. Furthermore, the component schemas cannot evolve without the
consent from the affected integrated schemas. Again a federated approach does not satisfy
the USECA requirements.

8.3 The Distributed Object Management Approach

The distributed object management approach [37, 35], generalizes the federated approach by
modeling heterogeneous databases of different levels of granularity as objects in a distributed
object space. It requires the definition of a common object model and a common object
query language. Recent activities in the OMG and the ODMG standard [15], which extends
the OMG object model to include database interoperability, is an important standardization
for continued work in distributed object management.

Research into DIOM [31] takes ODMG and adds extensions targeted to allow for more
flexible and adaptive composition of interoperation interfaces, such as the addition of the
abstraction mechanisms presented earlier in this thesis.

8.4 Multidatabase language systems

In a multidatabase language system, the global system supports all global functions by
providing query language tools which aid in the integration of information from separate
databases. Language tools include functions to map information from different represen-
tations into one the user is familiar with or into partial global schemas. User queries can
then specify queries against local schemas of the nodes participating in the system. The
mapping from each local schema to other partial or full global schema is often expressed
in a common SQL-like language, such as HOSQL in the Pegasus System [1] or SQL/M in
the UniSQL/M system [16]. The main weak point of this approach is the poor scalability
since the users often need to know what are the information sources that are relevant or of
interest to her queries.

The DIOM model allows for the creation of user interfaces through DIOM-IQL and
DIOM-IDL without knowing the information sources. The DIOM query mediation services
will automatically connect consumers’ query requests to the relevant producers’ source
information.

8.5 Mediator Approach

Another approach, called tie intelligent information integration (I%) mediation [53] can
be seen as a gzneric system architecture for information integration, with several projects

96



funded by ARPA in the I° program [54]. For example, TSIMMIS [20] (The Stanford-1B\
Manager of Multiple Information Sources) is one of the best known systems, which im-
plements the mediators-based information integration architecture through a simple object
exchange model. Another example is the Context Exchange project {22, 50] at MIT. It
uses context knowiedge in a context mediator to explicitly define the meaning of infor
mation provided by a source and that required by a receiver. Similarly, the Intelligent
Agent Integration Project at the University of Maryland at Baltimorve County uses the
Knowledge Query and Manipulation Language [18] (KQML) to integrate licterogencous
databases. An example of a wrapper-based architecture is the Garlic [12] project at IBM
Almaden Research Center, which aims at developing a system for the management of large
quantities of heterogeneous multimedia information using repository wrappers. The SIMS
project {2, 3] uses the LOOM knowledge representation system as the data model and query
language to implement the agent-based integration. Other examples include University of
Maryland [13, 19] and SRI [46], which in different ways integrate heterogeneous data and
knowledge bases using a multiple F-logic object schema, via the KIF knowledge interchange
logic.

The DIOM architecture is motivated mainly by the mediator architecture. For example,
this architecture incorporates the notion of a logical mediator which keeps knowledge on a
specific domain and uses wrappers to bridge the gap between the interoperable database
system and the individual component repositories. TSIMMIS uses a very simple object
model (Object Exchange Model) which does not provide explicit support for data abstrac-
tion mechanisms such as in DIOM. DIOM utilizes a rich set of object-oriented mechanisms
enabling the incremental construction of new interfaces from existing ones. Furth..more,
among these projects, only a few have dealt with the issues of query processing and query op-
timization. For example, TSIMMIS query processing is based on pre-defined query pattern
matching. The query reformulation and simplification are performed by using logic-based
rewriting rules against pre-defined query patterns. The query processing in the information
mediation project at the university of Maryland and SRI uses F-logic to define a set of
heterogeneous object equivalence rules to facilitate the mapping between the multidatabase
and the local schemas. The query processing in SIMS is done through query reformulation
and query optimization by the LOOM reasoning module. These related projects have not
addressed all the requirements of the USECA properties in a systematic manner, which is
the goal of our approach.

8.6 Enabling Technologies

A number of proposed and implemented systems have emerged as basic enabling technolo-
gies for implementing interoperable objects in a distributed and dynamic object environ-
ment. Examples include Microsoft’s Object Linking and Embedding (OLE), IBM’s System
Object Model (SOM) and its distributed version (DSOM), OMG’s Common Object Request
Broker Architecture (CORBA) [23], and CI labs OpenDoc.

The research and emergence of these technologies demonstrates that object-oriented pro-
gramming and ovject-oriented database management systems are evolving and are focussing
towards langu: - =-independence in a distributed object computing environment. Although
these proposals are ¢ sarly practical and important, they focus primarily on the software
interface problem, not the USECA properties for a large scale system.

DIOM can be seen as the glue which spans and integrates these interface models at

97



4 higher level. For example, unlike in CORBA, ODMG, and DSOM where only special-
ization/generalization are considered in interface construction, DIOM also supports the
import and aggregation mechanisms for interface abstraction. Thes: abstractions provide
more flexibility and convenience in interface composition and also increase the robustness,
scalability, and adaptiveness of compound interfaces in the presence of component schema
changes and system evolution.

All of the above offer systems of integrating heterogeneous sources and offer different
advantages and disadvantages. In an interoperable world of the future, we contend that
the DIOM system has the ability to incorporate the above systems by creating wrappers to
each. In this way all systems can interoperate which is the initial design of DIOM.

98



Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis describes the Rainbow prototype implementation of the DIOM query mediation
methodology, which offers adaptive querying capabilities over multiple heterogeneous data
sources. The term, adaptive, refers to the extensibility, the scalability, and the composibility
of the services with respect to the growing number of sources and the evolving requirements
of producers’ source models and consuniers’ query models. This tool was designed as a
prototype to illustrate the functionality of the DIOM interoperable object model, the system
architecture and the DIOM query mediation method. The target environment was the
Internet and the example application was a Job Search Assistant application. This thesis
provided an extended overview of architecture, and presented the design and implementation
effort in prototyping the DIOM query mediation method.

The main objective of this implementation is to design and implement the framework
to allow for future development. The main components of the Rainbow prototype include:

o The design of a graphical user interface offering major system functions inclnding
producer and consumer metadata functions and querying functions.

e The design of underlying database schema needed to capture and maintain metadata
on producers and consumers.

e Rainbow Services Module to process client requests and return resul's from real
sources.

e The wrapper design and implementation including the partition between the general
wrapper interface from the local functions which aids in the reuse and generation of
wrappers.

Rainbow was implemented as a WWW application. Its interface was created using
HTML and Per! cgi-scripts. The individual wrappers were also created as Perl programs.
Linking to the underlying database was primarily done through Oraperl. Many versions of
the prototype were built during development. The user interface and the Rainbow system
were refined as requirements and functionality became clearer.

99



9.2 Ongoing and Future Implementation

A prototype system will require much more work and research. Currently, several of the
underlying sub-system components are sirnulated. For Rainbow to become a production-
quality system more effort is needed to make it fully functional. Here is a list of the general
sub-divisions within the DIOM project which will require larger investments of time and
were not in the scope of this thesis:

Front End

A better interface to capture consumer domain knowledge and to allow for consumers to
compose new interfaces is needed. Continued work needs to be done in refining the WWW
interface and incorporating Java to allow for more versatility and richer functionality.

Metadata Management/Distributed Catalog Service

All metadata has to be stored «fficiently. methods for maintaining the metadata and repli-
cation strategies need to be designed and implemented, including distributed algorithms for
caching/replication and dealing with issues of performance and availability.

Distributed Query Mediation Services
The ongoing DIOM research includes efforts in several areas, for example, the formal devel-
opment of a distributed object query algebra, including joins involving multiple information
sources, the design and validation of algorithms for query decomposition, and the design
and validation of algorithms for generation of optimal parallel access plans. Optimal ac-
cess plans should take into account the efficient processing of aggregate functions such as
SUM, COUNT, MAX, and MIN. Research into the prototype implementation of continuous
query {33] support is also open.

In the prototype, query tracing is simulated and not fully functional. The Rainbow Ser-
vices Manager needs more work to fully support the DIOM query decomposition algorithms
and the query assembly algorithm.

Heterogeneity Management

This area includes semantic matching of consumer interface descriptions with producer
source metadata and utilization of the state-of-art research in ontology to improve the reso-
lution of heterogeneity problems and to provide quality interconnection between information
consumers and producer sources.

Interconnections of Information Sources

Wrappers to other types of sources need to be created. Currently, wrappers are designed for
a small generic function suite to Oracle, HTML-based information tools, and Usenet sources.
Assistance is needed in generating and installing wrappers for various other sources with
emerging tools such as JDBC and DBperl.

100



Bibliography

[1] R. Ahmed, P. Smedt, W. Du, W. Kent, M. Ketabchi, W. Litwin, , and A. Raffi. The
Pegasus heterogeneous multidatabase system. IEEE Computer Magazine, 24(12):19
27, December 1991.

[2] Y. Arens and et al. Retrieving and integrating data from multiple information sources.
International Journal of Intelligent and Cooperative Information Systems, 2(2):127

158, 1993.

[3] Y. Arens and C. Knoblock. Planning and reformulating queries for semantically-
modeled multidatabase systems. In Proceedings of the first International Conference

on Knowledge and Information Management, 1992.

(4] K. Arnold and J. Gosling. The Java(tm) Programming Language. Addison-Wesley
Publishing Company Corporate and Professional Publishing Group, 199¢.

(5] K. Bath. What is Oraperl? hitp://www.bf.rmit.edu.au/ orafaq/perlish.html#toraperl,
1995.

[6] T. Berners-Lee, L. Masinter, and M. McCabill. Uniform resource locators (URL) (RFC
1738). http://ds.internic.net/rfc/rfc1738.txt, October 1994.

[7] M. Betz. Interoperable objects: laying the foundation for distributed object computing,.
Dr. Dobb’s Journal: Software Tools for Professional Programmer, (220), October 1994,

[8] N. Borenstein. RFC 1521: MIME (multipurpose internet mail extensions) part one:
Mechanisms for specifying and describing the format of internet message bodies.

ftp://ds.internic.net/rfc/rfc1521.txt, September 1993.

101



[9] C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. F. Schwartz. The Harvest
information discovery and access system. In Proceedings of the Second International

World Wide Web Conference, pages 763-771, Chicago, Illinois, October 1994.

[10] M. Bright, A. Hurson, and S. H. Pakzad. A taxonomy and current issues in multi-

database systems. IEEE Computer Magazine, March 1992.

[11] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-

phism. ACM Computing Surveys, 17(4):471, December 1985.

[12] M. Carey, L. Haas, and P. S. et al. Towards heterogeneous multimedia information
systems: the Garlic approach. In Technical Report, IRM Alm=den Research Center,
1994.

[13] Y. Chang, L. Raschid, and B. Dorr. Transforming queries from a relational schema

to an equivalent object schema: a prototype based on f-logic. In Proceedings of the

International Sympostum on Methodologies in Information Systems (ISMIS), 1994.

(14] J. December and M. Ginsburg. HTML & CGI Unlcashed. Sams.Net Publishing, Oct.
1995.

[15] R. C. et al. The Object Database Standard: ODMG-93 (Release 1.1). Morgan Kauf-
mann, 1994.

[16)] W. K. et al. On resolving semantic heterogeneity in multidatabase systems. Distributed

and Parallel Databases, 1(3), 1993.

[17]) R. Fielding and H. Frystyk. Hypertext transfer protocol - HTTP/1.0.
http://www.w3.org/pub/WWW //Protocols/HTTP1.0/draft-ietf-http-spec.html,
february 1996.

(18] T. Finin, D. McKay, R. Fritzsonand, and R. McEntire. KQML: An information and
knowledge exchange protocol. Knowledge Building and Knowledge Sharing, 1994,

[19] D. Florescu, L. Raschid, and P. Valduriez. Using heterogeneous equivalences for query
rewriting in multidatabase systems. In Proceedings of the International Conference on

Cooperative Information Systems (CooplS), 1995.

102



[20] H. Garcia-Molina and et al. The TSIMMIS approach to mediation: data models and

languages (extended abstract). In Technical Report, Stanford University, 1994.

[21] Georgia Tech Research Corporation. GVU’s 4th WWW user survey home page.
http://www.cc.gatech.edu/gvu/user surveys/survey-10-1995/, 1995.

[22] C. Goh, S. Madnick, and M. Siegel. Context interchange: overcoming the challenges of
large-scale interoperable database systems in a dynamic environment. In Proceedings of

International Conference on Information and Knowledge Management, pages 337346,

1994.

[23] O. M. Group. The common object request broker: Architecture and specification. OMG
Document Number 91.12.1, Revision 1.1, 492 Old Connecticut Path, Framingham, MA
01701, December 1991.

[24] D. Heimbigner and D. McLeod. A federated architecture for information management.

ACM Trans. Comput. Syst., 3(3):253-278, July 1985.

[25] Hermetica. DBI - a database interface module for perl5.

http://www.hermetica.com/technologia/DBI/index.html, 1995.

[26] M. Horton. @ RFC 1036: Standard for interchange of USENET messages.
ftp://ds.internic.net/rfc/rfc1036.txt, December 1987.

[27] R. Hull and R. King. Reference architecture for the intelligent integration of informa-

tion (version 1.0.1). http://isse.gmu.edu/I3_Arch/izdex.html, May 1995.

[28] J. Kahng and D. McLeod. Dynamic classification ontologies for discovery in cooperative
federated databases. In Proceedings of the Internutional Conference on Coopertive

Information Systems, pages 26-35, Brussels, June 19-21 1996. IEEE Press.

[29]) L. Liu. A recursive object algebra based on aggregation abstraction for complex objects.

Journal of Data and Knowledge Engineering, 11(1):21-60, 1993.

[30] L. Liu and R. Meersman. Activity model: a declarative approach for capturing commu-
nication behavior in object-oriented databases. In Proceeding of the 18th International

Conference on Very Large Databases, Vancouver, Canada, 1992. Morgan Kauffman.

103



(31] L. Liv and C. Pu. The DIOM approach to large-scale interoperable information sys-
tems. Technical report, TR95-16, Department of Computing Science, University of

Alberta, Edmonton, Alberta, March 1995.

[32] L. Liu and C. Pu. The distributed interoperable object model and its application to
large-scale interoperable database systems. In ACM International Conference on Infor-
mation and Knowledge Management (CIKM’95), Baltimore, Maryland, USA, Novem-
ber 1995.

(33] L. Liu, C. Pu, R. Barga, and T. Zhou. Differential evaluation of continual queries.
In IEEFE Proceedings of the 16th International Conference on Distributed Computing
Systems, Hong Kong, May 1996.

[34] L. Liu, C. Pu, and Y. Lee. An adaptive approach to query mediation across het-
erogeneous databases. In Proceedings of the International Conference on Coopertive

Information Systems, pages 144-156, Brussels, June 19-21 1996. IEEE Press.

[35] M. T. Ozsu, U. Dayal, and P. Valduriez, editors Distributed Object Management,

Edmonton, Canada, August 1992. Morgan Kaufmann.

[36] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-
Hall, 1991.

[37] F. Manola and S. Heiler. An approach to interoper:ible object models. In Proceedings
of the 1992 International Workshop on Distributed Object Management, Edmonton,
Canada, August 1992.

(38] M. L. Mauldin and J. R. R. Leavitt. Web agent related research at the center for
machine translation. Center for Machine Translation, Carnegie Mellon University,

August 1994.

[39] E. Mena, E. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: an approach for
query processing in global information systems based on interoperation across pre-
existing ontologies. In Proceedings of the International Conference on Coopertive In-

formation Systems, pages 14-25, Brussels, June 19-21 1996. IEEE Press.

104



[40] K. Moore. RFC 1522: MIME (multipurpose internet mail extensions) part two: Mes-

sage header extensions for non-ascii text. ftp://ds.internic.net/rfc/rfc1522.txt, Septem-

ber 1993.

[41) NCSA' HTTPd Development Team. The common gateway interface.

http://hochoo.ncsa.uiuc.edu/cgi/overview.html.
[42] Netscape Communications Corp. Netscape homepage. http://home.netscape.com/.

[43] A. M. Ouksel and I. Ahmed. Coordinating knowledge elicitation to support context
construction in cooperative information systems. In Proceedings of the International
Conference on Coopertive Information Systems, pages 4-13, Brussels, June 19-21 1996.
IEEE Press.

(44] J. Perry and J. Lateer. Understanding Oracle. Sybex Inc., 2021 Challenger Drive #100,
Alameda, CA, 1989.

[45] T. Portfolio. PL/SQL User’s guide and reference. Oracle Corporation, Dec. 1992.

[46] L. Qian and L. Raschid. Query interoperation among relational and object-oriented
databases. In Proceedings of the International Conference on Data Engineering, TaiPei,

1995.

[47] S. Ram, editor. Special Issue on Heterogeneous Distributed Databases Systems, volume

24:12 of IEEE Computer Magazine. IEEE Computer Society, December 1991.

[48]) A. Sheth. Special Issue in Multidatabase Systems. ACM SIGMOD Record, Vol.20, No.
4, December 1991.

[49] A. Sheth and J. Larson. Federated database systems for managing distributed, het-
erogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-236,
September 1990.

[50] M. Siegel and S. Madnick. Context interchange: sharing the meaning of data. In ACM
SIGMOD RECORD on Management of Data, pages 77-78, 20, 4 (1991).

105



[51] Sun  Microsystems,  Inc. The JDBC(tm) database access APL
http://splash.javasoft.com/jdbc/, 1996.

[52] L. Wall and R. L. Schwartz. Programming Perl. O’Reilly and Associates, Jan. 1991.

[53) G. Wiederhold. Mediators in the architecture of future information systems. IEEE

Computer Magazine, March 1992.
(54) G. Wiederhold. I® glossary. Draft 7, March 16 1995.

[55] R. W. Wiggins. Growth of the internet: An overview of a complicated subject.

http://www.msu.edu/ /staff/rww/netgrow.html, 1995.

[56] Yahoo Inc. Yahoo! homepage. http://www.yahoo.com/.

106



