

University of Alberta

Improving Rich Internet Applications through Software Refactoring

by

Ming Ying

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

© Ming Ying

Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedicated to my beloved parents …

Abstract

With the advent of Rich Internet Application (RIA) technologies which are crucial

to Web 2.0 sites, Internet user experience has moved from the click-and-wait

mode to a richer, faster and more interactive mode. Instead of refreshing the entire

web page every time when a user requests a change, only updated information

within the web page is modified. This allows RIAs to behave and feel more like

desktop applications.

Due to the evolving nature of RIAs, many efficiency issues need to be resolved

before RIAs can behave like desktop applications. Ensuring the efficiency of

RIAs is now an important issue. This is the reason why many web browsers

advertise the speed of their JavaScript engines as one of the key features.

Additionally, web application performance issues can affect corporate revenues

because with every 1-second delay, customer satisfaction decreases.

Two of the most popular RIA technologies are Adobe Flash and Ajax, and the

efficiency of RIAs using both of these technologies can be improved. This

dissertation introduces refactoring as a method to improve the efficiency of

applications built using these platforms. Programmers using the techniques and

tools introduced in this dissertation can greatly improve the efficiency and user

experience of their applications. More specifically, the thesis introduces four

techniques and tools.

 A refactoring tool called ActionScript Refactoring Tool (ART) is

introduced to improve the efficiency of Flash applications by rewriting

ActionScript 3.0 code.

 To aid programmers embed Flash programs effectively, a refactoring tool

called FlashembedRT is introduced. This tool can refactor five popular

markup-based Flash embedding methods to a JavaScript-based Flash

embedding method called flashembed.

 A refactoring approach to aid programmers transform their XML data

structures into JavaScript Object Notation (JSON)-based structures to

improve the efficiency of their applications is presented. A proof of

concept tool called XtoJ shows that this transformation can be automated

to help programmers rapidly access the efficiency gained when JSON is

used.

 A refactoring system called Form Transformation Tool (FTT) is proposed

as a technique to help programmers convert traditional web forms into

Web 2.0 Ajax-enabled forms.

Acknowledgement

First and foremost I offer my sincerest gratitude to my supervisor, Dr. James

Miller, for his guidance, encouragement and support during my research and

study at the University of Alberta. Without him this dissertation would not be

possible. Dr. James Miller is not only the mentor for my research, he is also my

mentor for life here in Canada. I did learn a lot from him. Thank you James!

I also would like to thank my entire family in China for their continual support.

Although they are not here with me, they still provided encouragements and

support to help me get through difficult time periods.

Thank you Toan Huynh for providing valuable advice, helping me solve problems

and editing this dissertation.

My friends and colleagues at the University were also a great source of

information and kept my life more enjoyable during the compilation of this

dissertation, so I would like to extend a thank you to all of them.

Table of Contents

Chapter 1 Introduction .. 1

1.1 Chapter 2 - Background .. 3
1.2 Chapter 3 - Related Works ... 3
1.3 Chapter 4 - Refactoring ActionScript for Improving Application Execution Time 3
1.4 Chapter 5 - Refactoring Flash Embedding Methods ... 3
1.5 Chapter 6 - Refactoring to Switch the Data Exchange Language for Improving Ajax

Application Performance ... 4
1.6 Chapter 7 - Refactoring Traditional Forms into Ajax-enabled Forms 4
1.7 Chapters 8 - Conclusion and Future Work ... 5

Chapter 2 Background .. 6
2.1 Refactoring ... 6
2.2 The Flash Execution Model .. 8
2.3 Ajax ...10
2.4 XML ..11
2.5 JSON ...11

Chapter 3 Related Work ..13
3.1 Related Work on Refactoring ..13
3.2 Related Work on Speeding up Web Applications ...15
3.3 Related Work Specific to Chapter 4 ..16

3.3.1 Dynamic Optimization ...16
3.3.2 Compiler Optimization ...17
3.3.3 Speeding up Embedded System ..19
3.3.4 Speeding up Distributed System ...20
3.3.5 Summary...21

3.4 Related Work Specific to Chapter 6 ..21
3.5 Related Work Specific to Chapter 7 ..22

Chapter 4 Refactoring ActionScript for Improving Application Execution Time23
4.1 Motivating Example ..24
4.2 Three Strategies for Speeding up Flash Applications ..25

4.2.1 Optimizing Bytecode Directly ..25
4.2.2 Performing Optimizations on JIT ...25
4.2.3 Refactoring ...25

4.3 Design of ART ..26
4.3.1 Characteristics of the System ..26
4.3.2 Maintainability ...27
4.3.3 ART’s Execution Model ...29
4.3.4 Overview of Our Refactoring Cycle ...30
4.3.5 Bad Smells and Refactoring Solutions in ActionScript 3.031

4.4 Evaluation ..34
4.4.1 Methodology ...34
4.4.2 Testing the Performance of Refactoring Patterns ...34
4.4.3 Testing the Performance of Real Applications ...41

Chapter 5 Refactoring Flash Embedding Methods ..45
5.1 Markup-based Flash Embedding Methods ..47

5.1.1 The <embed> tag ..47
5.1.2 The <object> tag ...48
5.1.3 Twice Cooked ...49
5.1.4 Nested Objects ..50
5.1.5 Flash Satay..51

5.2 JavaScript-based Flash Embedding Methods ..51
5.3 Refactoring Flash Embedding Methods ..52

5.3.1 Bad Smell Detection ...53

5.3.2 HTML Code Rewriting ..54
5.3.3 Flashembed Code Generation ...54
5.3.4 Grammar for Transformation ...55
5.3.5 System in Operation ...56

Chapter 6 Refactoring to Switch the Data Exchange Language for Improving Ajax

Application Performance ..58
6.1 Refactoring XML into JSON in Ajax Applications ...59

6.1.1 Example ..59
6.1.2 Performance Comparison ...60
6.1.3 Methodology ...62

6.2 System Components ..62
6.2.1 XML to JSON Converter ..63
6.2.2 JavaScript Code Transformer ...70
6.2.3 JavaScript Code Generator ...74

6.3 Evaluation ..79
6.3.1 Methodology ...79
6.3.2 Testing Results for Ten Ajax Applications ...79
6.3.3 Variables Influencing the Response Time ..82

Chapter 7 Refactoring Traditional Forms into Ajax-enabled Forms85
7.1 Motivating Example ..85

7.1.1 Problem 1: Submission ...85
7.1.2 Problem 2: Validation ...87

7.2 Methodology ..87
7.3 Refactoring Traditional Forms into Ajax-enabled Forms ..88

7.3.1 Form Submission Transformer ...88
7.3.2 Validation Code Generator ...91
7.3.3 QUnit Code Generator ..94

7.4 Transforming the Example Form into an Ajax Form ..95
7.4.1 Record the Form’s Submission Process ..95
7.4.2 Add Test Case ...96
7.4.3 Transform the Registration Form into an Ajax Form ...96
7.4.4 Add Validations ..98
7.4.5 Replay the Form’s Submission Process and Execute the Unit Test100
7.4.6 Case Study 2 ...101

Chapter 8 Conclusion ..105
8.1 Future Work ...106

List of Tables

Table 4.1 Testing Results for Different Patterns in Different Configurations36

Table 4.2 Testing Results of Refactoring Patterns for Flash Applications43

Table 5.1 An Example Configuration ..47

Table 6.1 Results for Different Scenarios ..61

Table 6.2 The XML Documents Size for the Ten Tested Applications...................................80

Table 6.3 The Size of Some Large XML Documents ...81

Table 6.4 Testing Results for the Ten Ajax Applications ..81

Table 6.5 Testing Results for Different Number of Objects ..83

Table 6.6 Testing Results for Accessing Different Objects in Different Structures84

Table 6.7 Testing Results for Accessing a Node with Different Lengths84

Table 7.1 The Number of Lines of Code Generated by FTT ...103

Table 7.2 Testing Results for the Response Time before and after Refactoring104

List of Figures

Figure 2.1 Refactoring Process with a Tool .. 6
Figure 2.2 Client Side‟s Flash Execution Model .. 8
Figure 2.3 The Classic Web Application Model ..10
Figure 2.4 The Ajax Web Application Model ..10
Figure 2.5 An Example of XML Data Structure ..11
Figure 2.6 An Example of JSON Data Structure ...11
Figure 4.1 The Interface of the Tetris Game ..24
Figure 4.2 One Option for ART‟s Execution Model ..29
Figure 4.3 ART‟s Execution Model ...30
Figure 4.4 Refactoring Cycle ...31
Figure 4.5 The Template of the Refactoring Patterns ..32
Figure 4.6 Improvement of Refactoring Patterns ...42
Figure 4.7 The Effects of Code Structure on Pattern ...44
Figure 5.1 The Combined Ajax and Flash Working Model ...45
Figure 6.1 The Ajax RSS Reader Web Page ..59
Figure 6.2 JavaScript Code for XML-based Ajax RSS Reader ...60
Figure 6.3 JavaScript Code for Accessing the JSON File ..74
Figure 6.4 The Generated JavaScript Code for Accessing the RSS JSON File78
Figure 7.1 The User Registration Web Page of JspCart ...86
Figure 7.2 The Validation Selection Window ..93
Figure 7.3 The Output of the Form Submission before Refactoring ..96
Figure 7.4 The Registration Form after Refactoring ..99
Figure 7.5 The Output of the Form Submission after Refactoring ...100
Figure 7.6 The QUnit Testing Result ...101
Figure 7.7 The Product Management Page after Refactoring ..102

List of Acronyms

A

ABC: ActionScript bytecode

Ajax: Asynchronous JavaScript and XML

ANTLR: Another Tool for Language Recognition

API: Application Programming Interface

ART: ActionScript Refactoring Tool

AS2: ActionScript 2.0

AS3: ActionScript 3.0

AST: Abstract Syntax Tree

AVM: ActionScript Virtual Machine

C

CDN: Content Distribution Network

CPU: Central Processing Unit

CS3: Adobe Flash CS3 Professional

CS4: Adobe Flash CS4 Professional

CSE: Common Sub-expression Elimination

CSS: Cascading Style Sheets

D

DCE: Dead Code Elimination

DMC: Direct Mapped Cache

DOM: Document Object Model

E

EMS: Experience Management System

EBNF: Extended Backus–Naur Form

F

FTT: Form Transformation Tool

H

HTML: Hypertext Markup Language

I

IPO: Interprocedure Optimization

J

JIT: Just-in-Time

JSON: JavaScript Object Notation

JSP: Java Server Pages

http://www.google.ca/url?sa=t&source=web&cd=1&ved=0CCwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCascading_Style_Sheets&ei=GfB_TuO7F-7RiALKj_y5Aw&usg=AFQjCNG74AJmjBQOnVPe6ksGSiiU6PqZRg

K

KISS: Keep it simple, stupid

L

LLVM: Low Level Virtual Machine

M

MD: Machine Code

MIR: Macromedia Intermediate Representation

ML: Metalanguage

MP3: MPEG Layer III

P

PGO: Profile-Guided Optimization

PS: Publish Settings

R

RIA: Rich Internet Applications

RMD: Relative Mean Difference

RSS: Really Simple Syndication

S

SGML: Standard Generalized Markup Language

SDT: Software Dynamic Translator

U

URL: Uniform Resource Locator

V

VM: Virtual Machine

W

W3C: World Wide Web Consortium

X

XHTML: eXtensible HyperText Markup Language

XML: Extensible Markup Language

http://en.wikipedia.org/wiki/Uniform_Resource_Locator

1

Chapter 1 Introduction

The current rise in popularity of Web 2.0 applications has significantly changed

the way users interact with the web applications. The nature of Web 2.0 requires

the growth of RIA technologies (Driver et al., 2005) such as Flash and Ajax. RIA

technologies allow richer, faster and more interactive experiences. It breaks the

old click-and-wait user experience mode. Instead, by only changing updated

information without refreshing the entire page, RIA makes web applications feel

more like a desktop application (Hewlett-Packard Company, 2007).

With the advent of the RIAs, users have higher expectations for web applications.

The main difference between RIAs and traditional web applications is the level of

interaction. The interactions of traditional web applications are restricted to

operations on visual objects, such as document, frame and button objects. RIA

technologies lay emphasis on a rich and engaging user experience. Graphics,

animations and different visual effects are used to create highly dynamic,

interactive web pages. Speed becomes an important requirement for the new

generation web applications, as it directly affects users‟ satisfaction.

One of the key requirements for making web applications feel more like a desktop

application is performance. That is, the application has to be responsive. Card et

al. (1991) demonstrate that for a system “to be seen by a user as responsive”, it

has to have a respond rate of 0.1 seconds or less. The users will perceive a delay if

the system takes one second to respond; and after ten seconds of waiting, they will

abandon the task and move on. Traditional web applications are not very

“responsive”. The interaction model involves the user clicking on something, then

waiting. The user first has to wait for the server to process the request. Then the

user waits for the server to send the results back to the browser. Finally, the user

has to wait for the browser to render the results and display it. RIAs resolve this

response-time issue through various technologies.

However, because RIAs are still maturing, many efficiency issues still need to be

resolved before RIAs can truly feel like desktop applications. In fact, efficiency is

so important that one of the main advantages often advertised for web browsers is

the speed of their JavaScript engines. Each time a new version is released, a

significant improvement in the JavaScript engine speed can be seen. For example,

Microsoft Internet Explorer 9‟s JavaScript engine is a significant improvement

over IE 8
1
. Firefox 9 will have a 44% in improvement speed over the previous

version
2
. Efficiency will continue to be an important part of RIAs as they become

more common and slowly replace desktop applications. For example, Google

Chrome OS is an operating system that has all its applications as RIAs. A report

from Aberdeen Group
3
 further shows how important performance is for web

1 http://ie.microsoft.com/testdrive/benchmarks/sunspider/default.html
2 http://www.tomsguide.com/us/firefox-9-type-interference-support-javascript-compiler-improvement-

benchmark,news-12366.html
3 http://www.aberdeen.com/Aberdeen-Library/5136/RA-performance-web-application.aspx

2

applications. They estimate that web application performance issues can affect up

to 9% of corporate revenues and that customer satisfaction decreases 16% for

every 1-second delay. Additionally, WebPerformanceToday.com
4
 performed an

analysis to show that Macys.com may lose 30% of their revenue due to poor

performance. Although newer browsers will continue to have improvements in

efficiency, web programmers can also optimize their RIAs to obtain even more

gain in efficiency.

RIAs are currently dominated by two technologies: Adobe Flash and Ajax

(Asynchronous JavaScript and XML). Adobe Flash is a multimedia platform for

creating interactive and animated web sites. Flash movies and games are

commonly integrated into web pages as components for entertainment or

advertisement. For example, there are many Flash games in Facebook
5
. Flash

contains ActionScript 3.0 (AS3) which is an object-oriented scripting language

based upon ECMAScript. To view these Flash movies and to execute these

ActionScript files, browsers require the Adobe Flash Player add-on. Adobe
6

claims that about 99% of Internet-enabled desktops have Adobe Flash Player

installed.

The other popular RIA technology is Ajax. Ajax is comprised of five different

technologies (Garrett, 2005):

1. Extensible Hypertext Markup Language (XHTML) and Cascading Style

Sheets (CSS) as the presentation layer.

2. Document Object Model (DOM) trees being used for dynamic display and

interaction.

3. Extensible Markup Language (XML) (or any other data interchange

standards) for data interchange and manipulation.

4. XMLHttpRequest to asynchronously retrieve data.

5. JavaScript binding everything together.

Examples of Ajax applications include: Google Maps
7
, Gmail

8
, Google Suggest

9
,

and Facebook. Ajax applications are designed to be more responsive than

traditional web application. Hence, the perceived waiting time for users is

significantly reduced.

Although Flash and Ajax are two popular technologies for implementing RIAs,

the efficiency of these applications can still be improved. This dissertation

proposes refactoring as a technique to improve existing web applications through

different strategies. The outline and contributions of this dissertation are discussed

in the next sections.

4 http://www.webperformancetoday.com/2010/11/30/downtime-versus-slow-page-speed/
5 http://www.facebook.com/
6 http://www.adobe.com/products/player_census/flashplayer/
7 http://maps.google.com/maps
8 https://mail.google.com/mail/help/intl/en/about.html
9 http://www.google.com/

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.google.ca/url?sa=t&source=web&cd=1&ved=0CCwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCascading_Style_Sheets&ei=GfB_TuO7F-7RiALKj_y5Aw&usg=AFQjCNG74AJmjBQOnVPe6ksGSiiU6PqZRg
http://www.google.ca/url?sa=t&source=web&cd=1&ved=0CCwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCascading_Style_Sheets&ei=GfB_TuO7F-7RiALKj_y5Aw&usg=AFQjCNG74AJmjBQOnVPe6ksGSiiU6PqZRg

3

1.1 Chapter 2 - Background

This chapter provides background information on the technologies and systems

utilized in the dissertation. More specifically, Refactoring, Flash, Ajax, XML and

JSON will be discussed in this chapter.

1.2 Chapter 3 - Related Works

Chapter 3 contains the related works for Chapters 4-7.

1.3 Chapter 4 - Refactoring ActionScript for Improving
Application Execution Time

This chapter explores a method to improve the performance of Flash applications

because it, especially in mobile devices, directly influences the user‟s experience.

In fact, speed is one of the most important requirements for mobile devices‟ users

(Buyukozkan, 2009). However, Flash programmers usually specialize in graphic

design rather than programming. In addition, the tight schedule of projects often

makes Flash programmers ignore non-functional characteristics such as the

efficiency of their systems; yet, to enhance Flash‟s user experience, writing

efficient ActionScript code is a key requirement. Therefore, Flash programmers

require automated support to assist with this key requirement. This chapter

presents a “refactoring for efficiency” Flash support system, ART, to help AS3

programmers produce more efficient code by semi-automatically transforming

their ActionScript code.

This chapter makes the following contributions.

1. It introduces 43 refactoring patterns. Each pattern contains a bad smell and

a corresponding refactoring solution. The performance testing results

demonstrate that the refactoring patterns have the ability to make AS3

code faster.

2. A refactoring tool, ART, is produced to improve the efficiency of Flash

applications by semi-automatically rewriting AS3 code.

3. It empirically demonstrates that ART significantly improves the efficiency

of Flash applications.

1.4 Chapter 5 - Refactoring Flash Embedding Methods

As a first step towards integration of Flash and Ajax technologies, this chapter

presents a tool to aid programmers embed Flash into web pages. Two methods of

embedding Flash can be used: markup-based Flash embedding methods and

JavaScript-based Flash embedding methods. However, the drawbacks of markup-

based Flash embedding methods make JavaScript-based Flash embedding

methods a better solution. This chapter‟s contribution is a refactoring tool, called

FlashembedRT, to assist programmers with the refactoring of markup-based Flash

embedding methods into a JavaScript-based method. More specifically, the tool

can refactor five popular markup-based Flash embedding methods to a JavaScript-

based Flash embedding method using flashembed
10

.

10 http://flowplayer.org/tools/toolbox/flashembed.html

4

1.5 Chapter 6 - Refactoring to Switch the Data Exchange
Language for Improving Ajax Application Performance

To achieve a more responsive user experience, data transmission rates and

performance (on both the client and server) characteristics for Ajax applications

are quite crucial. XML and JSON are two popular data exchange formats used by

web applications. XML has numerous benefits including human-readable

structures and self-describing data. However, JSON provides significant

performance gains over XML due to its lightweight nature and native support for

JavaScript. This is especially important for RIAs. Therefore, it is necessary to

change the data format from XML to JSON for efficiency purposes. This chapter

presents a refactoring system (XtoJ) to safely assist programmers migrate existing

Ajax-based applications utilizing XML into functionally equivalent Ajax-based

applications utilizing JSON. An empirical study demonstrates that this

transformation system significantly improves the efficiency of Ajax applications.

This chapter makes the following contributions.

1. It introduces a refactoring approach to convert XML-based Ajax

applications into JSON-based Ajax applications. This approach provides

programmers with a structured method to transform their Ajax

applications.

2. A proof of concept tool called XtoJ is produced to demonstrate that the

transformation can be automated. XtoJ includes an XML to JSON

Converter, a JavaScript Code Transformer and a JavaScript Code

Generator.

3. It empirically demonstrates that JSON-based Ajax applications are more

efficient than XML-based Ajax applications; and that programmers can

use the introduced method to rapidly access this efficiency gain.

1.6 Chapter 7 - Refactoring Traditional Forms into Ajax-
enabled Forms

This chapter explores traditional web forms and how programmers can transform

these traditional forms into Ajax-enabled forms. Forms are a common part of web

applications. They are used as part of the interaction between the user and the web

application. However, forms in traditional applications require entire web pages to

be refreshed every time they are submitted. This model is inefficient and should

be replaced with Ajax-enabled forms. This chapter presents a refactoring system

called FTT to assist web programmers refactor traditional forms into Ajax-

enabled forms while ensuring that functionality before and after refactoring is

preserved.

This chapter makes the following contributions.

1. A method is introduced to refactor traditional forms into Ajax-enabled

forms.

2. It produces a proof of concept tool named FTT to demonstrate that the

transformation can be implemented using an automated approach. The aim

5

of the automated approach is to save developers effort and time while

guaranteeing a defect-free transformation.

3. It provides a demonstration showing successful transformations of two

applications, one of which is commercially available. Thus, programmers

can follow the same process to successfully accomplish the transformation

in their own applications.

1.7 Chapters 8 - Conclusion and Future Work

Chapter 8 summarizes the contributions of this dissertation and discusses future

work related to the topic of refactoring and efficiency.

6

Chapter 2 Background

This chapter introduces background information on the technologies and systems

utilized in the dissertation.

2.1 Refactoring

Refactoring is a process of restructuring the code without changing its behavior to

improve code quality (Opdyke, 1992; Fowler, 1999; Murphy-Hill, 2007). A small

behavior preserving change to the source code is made with each refactoring. A

significant structural change to the code can be seen once a sequence of these

refactorings is applied. The benefits of traditional refactoring include (Fowler,

1999).

1. Refactoring improves the design of software.

2. Refactoring makes code easier to understand.

3. Refactoring helps to fix more bugs.

4. Refactoring saves programmer‟s time.

One side effect of refactoring is the increase in code complexity and size. The

other side effect is “refactoring certainly will make software go more slowly, but

it also makes the software more amenable to performance tuning” (Fowler, 1999;

Demeyer, 2002).

Refactoring is very popular with programmers because the programming process

can be divided into two steps with the technique: (1) write the code to meet the

functional requirements. (2) Modify the written code to improve the quality of the

code. Kataoka et al. (2002) describe the manual refactoring process and Murphy

(2007) describes the process of refactoring with a tool, as shown in Figure 2.1.

Figure 2.1 Refactoring Process with a Tool

The first step is to identify bad smells in the code. Bad smells are blocks of source

code with bad designs in the existing software, which offers opportunities to

undertake refactorings (Fowler, 1999; Srivisut & Muenchaisri, 2007). These bad

smells can be detected by a variety of symptoms, and subsequently removed to

improve the quality of the software. After selecting the code to be refactored, a

certain refactoring pattern is activated upon the selected code. Some refactorings

Error

Identify

Code

Select

Code

Activate

Code

Configure

Apply

Interpret

Results

http://portal.acm.org/author_page.cfm?id=81100028026&coll=GUIDE&dl=GUIDE&trk=0&CFID=77744293&CFTOKEN=87942156

7

need configuration, such as giving a function a new name. Therefore, the third

phase is optional. After configuration, refactoring patterns are applied to code. If

refactoring is not successful, for example, the new name already exists, then the

error is interpreted, and at the same time, the process returns to the “Select Code”

phrase.

Refactoring has many patterns. The most popular refactoring patterns include:

“Rename” and “Extract Method” (Fowler, 1999). “Rename” is undertaken

because the name cannot reveal its purpose, such as renaming “ChangCN” to

“ChangeCustomerName”. “Extract Method” moves a code fragment into a

method whose name indicates the purpose of the method. Murphy-Hill et al.

(2009) describe the refactoring patterns in three levels. High-level refactorings are

the patterns that change the signatures of classes, methods and fields; medium-

level refactorings are the patterns that not only change the signatures of classes,

methods and fields, but also significantly change blocks of code; low-level

refactorings are the patterns that change only blocks of code. They also state that

40% to 60% refactorings are low and medium level patterns according to two

groups of data (Eclipse CVS and Toolsmiths). A variety of refactorings and

catalogs of various refactorings are widely available (Fowler, 1999; Thompson &

Reinke, 2002; Kerievsky, 2004).

Refactoring can support two automation approaches (Mens & Tourwé, 2004),

either semi-automatic or fully-automatic. The semi-automatic approach allows

users to decide which patterns need to be applied and which parts of the source

code need to be transformed. This approach is more flexible; however, it is time-

consuming when the project gets larger and more complex. The fully-automated

approach does not require users‟ participation; the tool will undertake the

refactoring automatically. The problem of this approach is that the code after

refactoring becomes less understandable and readable. Furthermore, only simple

refactoring patterns can be implemented using a fully-automated approach

because more complex refactoring patterns require domain knowledge before the

refactoring can be applied. For example, the “Rename” pattern requires the

programmer to provide the new name that is more easily understandable than the

old name. In order for a refactoring tool to be successful, it needs to support many

refactoring patterns including the more complex patterns. The semi-automated

approach allows the refactoring tool to achieve this objective. It can automatically

refactor simple patterns. For more advanced patterns, it interacts with the

programmer to obtain needed inputs, then automatically refactor the code to the

programmer's requirements. Additionally, the semi-automated approach allows

the programmer to still be in control of the refactoring by allowing the

programmer to review, edit and approve all refactorings; thus providing outputs

that programmers are more likely to trust. This is the reason why many refactoring

tools, for example Eclipse's refactoring feature, utilize the semi-automated

approach. This is also the reason why the tools presented in this thesis utilize the

semi-automated approach.

8

There are many refactoring techniques. However, the “invariants, pre and post-

conditions” refactoring technique (Opdyke, 1992; Roberts, 1999) is the most

popular one. The invariants, pre and post-conditions are three different assertions,

which are established to indicate the behavior of a program. Invariants are

behaviors or properties to be preserved by the transformational process. Pre and

post-conditions are required to be satisfied before and after refactoring has been

applied.

Unit testing (Coelho et al., 2006) is essential for refactoring; it is adopted to

ensure the behavior of a program before and after the refactoring is preserved. A

unit is the smallest piece of a program that is testable, such as a method.

Refactoring – incorporating unit testing – is designed to assist the programmer

with the transformation, while providing safeguards to ensure that defects are not

introduced during the transformational process.

2.2 The Flash Execution Model

On the server side, the ActionScript compiler converts an AS3 program into

ActionScript bytecode (ABC). This is because compiling from bytecode to

machine code is much faster than compiling directly from source code. However,

the ABC must be wrapped into a binary container file (.swf file) before it can be

executed by the Flash runtime tools such as Flash Authoring Tools, Flash players

and browsers (Moock, 2007). The .swf file includes the ABC as well as embedded

media assets, such as images, audios and videos.

Figure 2.2 Client Side’s Flash Execution Model

JIT Compiler

Bytecode Verifier

Runtime System

MD Code Generator

MIR Code Generator

AVM 2

Interpreter MIR

Native Machine Code

ABC

Image Renderer

Audio

Video
Codec

Media

Assets

Flash Player

.swf

9

On the client side (browser), the input to Adobe Flash Player is the .swf file. The

client side‟s Flash execution model is shown in

Figure 2.2 (Grossman, 2006) which consists of several interacting components.

The Codec and Renderer process the media assets inside the file. The

ActionScript Virtual Machine (AVM) processes the ABC files (the latest version

of the AVM is AVM2). In the AVM2, the Bytecode Verifier verifies the ABC

code; this includes the verification of the code‟s structural integrity and type

safety (Grossman, 2006). The AVM2 applies a hybrid execution model by either

interpreting the ABC directly or invoking of the Just-in-Time (JIT) Compiler. The

JIT Compiler translates bytecode into native machine code through two passes.

(1) The Macromedia Intermediate Representation (MIR) Code Generator is used

to convert the ABC into a MIR. The MIR is an internal representation

between the ABC and the target instruction set. It enables the following

optimizations and makes the mapping to the underlying hardware easier

(Polanco, 2007).

 Early Binding: This is used when declaring a variable as a specific

object type. Therefore, the verification occurs before the program

executes which will save execution time. To take advantage of early

binding, typing is very important.

 Constant Folding: This is the process to simplify constant expressions at

compile time. The JIT Compiler firstly searches for unchanged constants,

integer values and calculations, and then replaces them with the

calculated values.

 Copy and Constant Propagation: This is the process of replacing

constants whose value is known in expressions at compile time to reduce

or eliminate redundant code.

 Common Sub-expression Elimination (CSE): This process searches for

identical calculations and makes decisions on whether they can be

substituted by a variable to hold the calculated value.

(2) The Machine Code (MD) Generator is used to convert the MIR into platform

specific instructions (such as X86, Power PC and ARM). The MD Generator

performs the following optimizations.

 Instruction Selection: This is an algorithm that runs on the MIR and is

used to yield a minimized instruction set which implements all the

required functionality.

 Register Allocation: The goal for register allocation is to improve the

program execution time by storing as many operands in the register as

possible. The JIT Compiler utilizes a linear scan algorithm to achieve

register allocation.

 Dead Code Elimination (DCE): This cleans a program by removing

unreachable code without changing the functionality of the program. It

reduces the program size and speeds up execution.

Since the AVM2 applies a hybrid execution model, the ABC can be interpreted or

compiled. So how does the AVM2 choose between the two? Grossman (2006)

(from Adobe Systems) states “initialization functions ($init, $cinit) are

10

interpreted, everything else is JIT”. Hence, we can consider that everything is

compiled; this assumption is utilized in the reminder of our work.

2.3 Ajax

Ajax is a set of web development technologies to make web applications more

interactive and dynamic. Ajax improves the user experience by updating the

content within a web application without reloading the entire web page (Paulson,

2005).

In the classic web application model (Figure 2.3), users on the browser (client)

side trigger an HTTP request to the server side. The server side deals with the

request and returns the updated page to the user. Within the Ajax web application

model (Figure 2.4), an Ajax engine runs within the browser to communicate with

the server, perform interactions, and display requested information in the browser.

If the Ajax engine requires more data, it sends requests asynchronously to the

server in the background to retrieve updated data (and potentially additional code)

without interfering with the users‟ interaction with the application (Zakas et al.,

2007).

Figure 2.3 The Classic Web Application Model

Figure 2.4 The Ajax Web Application Model

Four aspects influence the performance of an Ajax application (Savoia, 2001).

(1) Network transfer time: Network transfer time depends upon the amount of

data to be transferred, and the available bandwidth. This latter factor is clearly

outside of the programmer‟s control.

(2) Network latency: Network latency is a combination of:

 The average delay of a zero-byte transfer from the client to the server or

vice versa.

 The number of transfers required to complete the request/response cycle.

HTTP Request

HTTP + CSS

Server Interface

Browser

HTTP Request

XML Data

Server Ajax Engine Interface

JavaScript Call

 HTTP + CSS

Browser

http://en.wikipedia.org/wiki/Web_development

11

The number of transfers required is dependent on a number of factors

including the version of HTTP(S) that is utilized.

(3) Server processing time: The server processing time reflects the server‟s

capability in handling requests and processing application logic. Data

processing time on the server has great influence on the server processing

time.

(4) Client processing time: JavaScript processing time on the client is also crucial

for Ajax applications, because Ajax technology relies upon a JavaScript-

based Ajax engine to interact with the browser. See Figure 2.4.

2.4 XML

Typically, the format for retrieving Ajax data is XML, as the “X” in the name of

Ajax indicates. XML, an acronym for Extensible Markup Language, is a subset of

the Standard Generalized Markup Language (SGML). XML stores self-describing

data in standardized ways, and allows user-defined document markups to be

created and formatted (Allen et al., 2008). The primary uses for XML are data

interchange and storage in web environments. XML represents data using a

hierarchical structure. Figure 2.5 shows a simple example of an XML data

structure.

Figure 2.5 An Example of XML Data Structure

The advantages of XML include flexibility and readability. However, XML is not

optimal for data interchange between machines because it is overly verbose.

2.5 JSON

An alternative data format to XML is JSON; JSON is short for JavaScript Object

Notation. JSON is a lightweight data interchange format based on a subset of the

array and object literal notations of JavaScript (Standard ECMA-262). Figure 2.6

shows an example of a JSON data structure, which can be considered equivalent

to the previous XML data structure.

Figure 2.6 An Example of JSON Data Structure

<movie>

 <title>A</title>

 <rating>6.5</rating>

</movie>

{

 "movie":{

 "title": "A",

 "rating":"6.5"

 }

}

12

JSON has the advantage of being compact and directly supported by JavaScript.

The biggest disadvantage of JSON is that the format is not very readable for

humans.

The process for transmitting JSON data between the browser and server is as

follows (Webucator, 2009).

1. On the client side: The client creates a JavaScript object and then

serializes the JavaScript data structures into JSON text by using JSON

stringifier
11

(for JavaScript). After that, the client uses GET or POST

methods to trigger an HTTP request, which contains the encoded JSON

string.

2. On the server side: After receiving the request, the server deserializes

the JSON string into an object by using a JSON parser for the language

used by the server. For example, Argo
12

is a JSON parser for the Java

programming language. Subsequently, the server manipulates this object

for different purposes.

11 http://www.json.org/json2.js
12 http://argo.sourceforge.net/

http://www.json.org/json2.js

13

Chapter 3 Related Work

This chapter discusses works related to this dissertation. The chapter is divided

into several sections. Sections 3.1 and 3.2 discuss related works that are general to

the entire dissertation. Sections 3.3 to 3.4 contain related works that are specific to

certain chapters. Chapter 5 does not have any true related works; the topic behind

this research is refactoring for software migration and related works on this topic

is covered in Section 3.1.

3.1 Related Work on Refactoring

The earliest works on refactoring were primarily for improving the quality of

software. For example, Opdyke (1992) defines different refactoring patterns to

automatically restructure object-oriented programs. Fowler (1999) provides a

comprehensive catalog of refactorings, the principles of refactorings, when and

where to implement refactorings for object-oriented programs. Tokuda et al.

(2001) discuss how to design object-oriented applications to improve software

design. Dudziak and Wloka (2002) provide a method to detect structural

weaknesses to improve code structure. Tahvildari and Kontogiannis (2004)

propose a reengineering framework to detect potential design flaws by using

object-oriented metrics and apply transformations to improve the specific qualities

of a software system. Griswold (1991) talks about restructuring programs to

improve software maintenance. Refactoring has been implemented in many

different programming languages, such as refactoring for C (Garrido and Johnson,

2003), Smalltalk (Roberts, 1999) and Java
13

 and UML model (Sunyé et al.,

2001).

Refactoring is now being used for different purposes. For example, Weber et al.

(2001) propose a catalogue of process model “smells” to identify refactorings and

refactoring techniques, so large process repositories can be refactored. Mendonça

(2004) presents RefaX, an XML-based refactoring framework to facilitate the

development, customization and reuse of refactoring tools. With RefaX, it is

possible for programmers to build refactoring tools independently from the source

code model, programming language and XML processing technologies. Cinn ide

et al. (2011) present an automated refactoring approach to improve the cohesion

properties of a program, which in turn has effects on improving the testability of a

program.

Some of refactoring approaches are for migration purposes. Lindvall et al. (2003)

describe a process to restructure an existing experience management system

(EMS) to improve the architecture of the system. Matthews et al. (2001) show

how to automatically transform traditional interactive programs into CGI

programs. Kjolstad et al. (2009) design an algorithm and present a tool

(Immutator) to transform a Java mutable class into an immutable class.

Khatchadourian and Muskalla (2010) present a refactoring tool, Convert

13 http://refactorit.sourceforge.net/

http://dl.acm.org/author_page.cfm?id=81100481685&coll=DL&dl=ACM&trk=0&cfid=43491390&cftoken=31683927
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DWeber,%2520Barbara%26authorID%3D8909168700%26md5%3Db068689107725fa2de01676344d4d378&_acct=C000051251&_version=1&_userid=1067472&md5=d6ea7471fb557dfe37418111182c4fb9

14

Constants, to transform the legacy Java program to use the new enum construct in

Java 5. Roock and Havestein (2002) propose refactoring tags to help developers

carry refactorings undertaken upon frameworks to new versions. Kiezun et al.

(2007) present an algorithm based on type-constraints to help programmers

convert libraries to include type parameters to increase type safety and the

expressiveness of libraries. Mancl (2001) introduces several refactorings to allow

programmers to reuse and extend existing systems.

Some refactoring approaches for efficiency purposes also exist, such as

refactoring for parallelism. Kennedy et al. (1999) present a tool, ParaScope

Editor, for parallel Fortran programs. Liao et al. (1999) present an interactive

parallelization tool called SUIF Explorer. Wloka et al. (2009) present an Eclipse

based refactoring tool (Reentrancer) to make single-threaded Java programs

reentrant by replacing global mutable state with thread-local state. Parallel

speedups can be enabled through this refactoring. Fuhrer and Saraswat (2009)

present several concurrency-related refactorings for the X10 language. Dig et al.

(2009b) present a refactoring tool (RELOOPER) to safely refactor a Java array

into a ParallelArray which is an array data structure that allows parallel

operations. Dig et al. (Dig et al., 2009a; Dig, 2011) present a refactoring tool

(CONCURRENCER) to refactor sequential code into concurrent code. Schäfer et

al. (2011) present a refactoring tool (Relocker) to assist programmers with the

refactoring of synchronized blocks into ReentrantLocks and ReadWriteLocks.

Additionally, Demeyer (2002) refactor C++ programs by replacing conditionals in

the programs with polymorphic method calls. The results from their work show

that the refactored program is faster than the original program. Méndez et al.

(2010) present two categories of Fortran refactorings: refactorings to improve

maintainability and refactorings to improve performance. They also developed a

refactoring tool (Photran) to implement these refactorings. Beyls and D‟Hollander

(2009) present a cache profiling tool (SLO) to find the root cause of poor data

locality which generates cache misses. The implementation of the refactorings

based upon suggestions by SLO could improve the program execution speed.

Different code transformation techniques have been proposed. Bulka and Mayhew

(2000) present many optimization techniques for coding and designing of the C++

programming language to improve the code efficiency and performance. Panda et

al. (2001) introduce a variety of optimizations for data and memory used in

embedded systems from the viewpoint of area, performance, and power

dissipation. They discuss architecture-independent optimizations: code-rewriting

techniques for access locality and regularity, and code-rewriting techniques to

improve data reuse. In addition, they also discuss optimization techniques on

different levels of memory architectures, ranging from register files to on-chip

memory, data caches, and dynamic memory.

http://dl.acm.org/author_page.cfm?id=81421599609&coll=DL&dl=ACM&trk=0&cfid=43757635&cftoken=35635825

15

3.2 Related Work on Speeding up Web Applications

There are significant amount of research on speeding up web applications. Some

of them are for improving data transfer time and server response time. For

example, Myers et al. (2007) present MapJAX, a data-centric framework for

accelerating data transfer and callback time of Ajax applications. MapJAX

provides an abstraction of logical data structures shared between client and server

to replace asynchronous RPCs. Vingraleka et al. (1999) designed Web++, a

system for a fast and reliable HTTP service. It improves the response time by

dynamically replicating popular web resources among multiple web servers.

Reducing file size is also important for building high performance web sites.

JSMin
14

 and YUI Compressor
15

 are tools for removing comments and white

spaces found in JavaScript programs to reduce file size for faster download speed.

Page Speed
16

 is a tool for improving the performance of web applications by

optimizing browser rendering. King (2008) provides ten techniques to maximize

web page display speed. Some examples include optimizing JavaScript for

execution speed and file size, resizing and optimizing images, and minimizing

HTTP requests.

Web caching is another useful technique to accelerate web applications. It can be

classified into either server-side or proxy-based caching. In the server-side

caching category, Datta et al. (2001) build Dynamic Content Acceleration (DCA),

a server-side caching engine that caches dynamic page fragments to reduce

dynamic page generation latency on a web site. In the proxy-based caching

category, Challenger et al. (2004) present architectures and algorithms for

efficiently serving dynamic data at highly accessed web sites. As a result, the

system is able to achieve cache hit ratios close to 100% for cached data. The edge

server (also refers to client-side proxies, server-side reverse proxies at the edge of

the enterprise, or caches within a content distribution network (CDN)) is an

architecture to increase the scalability of the back-end and reduce the client

response latency. Amiri et al. (2003) describe DBProxy, a self-managing edge-of-

network semantic data cache that maintains partial but semantically consistent

materialized views of previous query results, to accelerate web applications.

Ramaswamy et al. (2007) demonstrate that cache cooperation can significantly

improve the performance of edge cache networks. They specifically designed

cooperative EC grid - a large-scale edge cache network to deliver highly dynamic

web content and support low-cost cooperation among its caches.

Database caching is used for speeding up database-backed web applications.

Ghosh and Rau-Chaplin (2006) propose an approach that integrates a HTML

fragment cache and a middle-tier database cache to improve performance and

scalability. It manages cache storage to reduce response time latency by storing

database tables in the middle-tier cache and sharing common fragments among

14 http://crockford.com/javascript/jsmin.html
15 http://developer.yahoo.com/yui/compressor/
16 http://code.google.com/speed/page-speed/

16

multiple pages stored in a HTML fragment cache. Luo et al. (2008) present a

form-based proxy-caching framework for database-backed web servers. They

propose two representative caching schemes for web queries: passive query

caching which services requests that exactly match the previous requests without

any extra processing, and active caching which services requests that can be

answered by processing results from previous requests.

There are also some commercial tools for web caching such as the Java Caching

System
17

 (JCS). This is a distributed caching system for Java applications which

can significantly improve Java applications’ performance through usage of a

cache utility. This cache utility makes it much more convenient to store, access,

and delete data in the cache. Squid
18

 is a high-performance caching proxy for

web users to reduce bandwidth and improve response times by caching and

reusing frequently-requested web pages.

3.3 Related Work Specific to Chapter 4

3.3.1 Dynamic Optimization

Dynamic class loading, runtime binding and shared libraries etc. are heavily used

in modern software, which make it impossible for static analysis systems to

accurately analyze programs. However, even with the help of profilers, what static

optimization can achieve is limited. In this situation, shifting optimization to

runtime (dynamic optimization) becomes the obvious choice. Dynamic

optimization systems typically use caches to buffer optimized hot traces (the

frequently executed control flow paths) to benefit from the repeated use of the

trace in the code cache. Dynamo (Bala et al., 2000) (for PA-RISC) is a transparent

dynamic optimizer to observe run-time behavior without instrumentation. Native

instruction stream is the input for Dynamo. Dynamo interprets the instruction

stream until a “hot” instruction sequence (trace) is identified for optimization.

Some optimizations, such as constant propagation, elimination of redundant

branches, and strength reduction are applied before the traces are placed into a

trace cache. DynamoRIO
19

 is based on Dynamo (for x86 system), the run-time

information is not obtained by interpreting instructions, but by the execution of

instrumented basic blocks from the basic block cache. The Dynamic Execution

Layer Interface (DELI) (Desoli et al., 2002) is a software layer between the

application software and the hardware platform. It provides a uniform

infrastructure for building client applications that manipulate or observe running

programs. The Binary-Level Translation (BLT) layer is the core component,

which offers basic code caching, linking service and dynamic code

transformations to the client applications. However, it has no mechanism for re-

optimizing traces after they are placed into the code cache. Strata (Hiser et al.,

2006) is a flexible and adaptable optimization system which focuses on dynamic

optimizations. The online optimization plans of Strata are formed at compile time

17 http://www.ibm.com/developerworks/java/library/j-jcs.html
18 http://www.squid-cache.org/
19 http://dynamorio.org/

17

using both static and dynamic information. According to these plans,

optimizations are then applied by the runtime system which is based on a software

dynamic translator (SDT). DynamoRIO, DELI and Strata all export APIs for

custom optimizations to instrument the traces and basic blocks. Mojo (Chen et al.,

2000) (for Windows NT running on IA-32) is a dynamic software optimization

system which controls the execution of fragments of code buffered in the Path

Cache or the Basic Block Cache to improve the performance of a variety of

programs including multi-threaded applications which use exception handling.

Dynamic instrumentation which analyzes or modifies software by inserting

trampolines is used for debugging and performance monitoring. Dyninst (Buck &

Hollingsworth, 2000) provides an API to insert code into a running program. The

running program will keep executing without re-compiling, re-linking or re-

starting. Vulcan (Srivastava et al., 2001) is a next generation binary

transformation tool that transforms x86, IA-64, or MSIL code into an abstract

representation before transforming it back to x86, IA-64, or MSIL code. It

provides extensive APIs for both static and dynamic code modification on the

abstract representation.

3.3.2 Compiler Optimization

Compiler optimization is a useful approach to reduce the execution time. There

are many techniques with regard to compiler optimization, such as loop

optimizations, data-flow optimizations, SSA-based optimizations and code

generator optimizations. Bacon et al. (1994) provide an overview of important

high-level program restructuring techniques for imperative languages, such as C

and Fortran. They also discuss where and when these techniques should be

applied to high-performance uniprocessors, vector and multiprocessor machines.

However, optimizations that compilers can perform are limited. For example, the

GNU C Compiler is an optimized C compiler but only implements the following

optimizations: constant folding, common subexpression elimination (CSE), dead

code elimination (DCE), function inlining, loop unrolling, scheduling and strength

reduction, to produce efficient code (Gough, 2004). The Intel C++ compiler
20

 for

Windows applies interprocedure optimization (IPO) which is a collection of

optimization technologies to replace multiple function calls with actual function

code and performs absolute instead of relative addressing. The compiler can also

perform profile-guided optimization (PGO) to reorganize code layout to reduce

instruction-cache thrashing, code size and branch mispredictions. The JIT

compiler in the JVM can only implement optimizations for register allocation and

instruction scheduling without any intermediate representation being created. The

JIT compiler in AVM2 can do optimizations such as constant folding, copy and

constant propagation and common sub-expression. For compiler writers, it is

difficult to choose which techniques are to be used to improve efficiency.

Therefore, Lee et al. (2006) propose a method for measuring the costs and

benefits of compiler optimizations to help compiler writers choose the

20 http://www.aertia.com/productos.asp?pid=147

http://en.wikipedia.org/wiki/Compiler_optimization#Loop_optimizations
http://en.wikipedia.org/wiki/Compiler_optimization#Loop_optimizations
http://www.aertia.com/productos.asp?pid=147

18

optimization methods. Pan and Eigenmann (2006) propose Combined Elimination

(CE), a fast and effective compiler optimization orchestration algorithm to tune

programs by computing the main effect of the optimization and detecting the

interactions between the optimizations. Cavazos et al. (2007) propose a different

approach using performance counters to predict good compiler optimization

settings. It is achieved by using machine learning techniques to gather

performance counter features.

Many compilers make use of adaptive optimization. The HotSpot JVM Runtime

Compiler (Hewlett-Packard Company, 2001) provides adaptive optimization. It

starts by interpreting all the code and after monitoring the execution of the code,

the compiler finds the “hot spot” methods (the 10 % to 20% of the code but

occupy 80% to 90% of the execution time), and then compiles these methods and

applies optimizations to the native code. It uses method inlining optimization to

inline the “hot spot” critical methods to reduce the method invocations and

provide more opportunities for code optimization. Therefore, by only compiling

“hot spot” code, HotSpot JVM Runtime compiler is able to spend more time on

optimizations than a classic JIT. The compiler can also do the following

optimizations: class-hierarchy inlining, global value numbering, optimistic

constant propagation, optimal instruction selection, graph coloring register

allocation and peephole optimization. Jalapeno (Arnold et al., 2000) is a JVM

with adaptive optimization. The dynamic optimizing compiler is the key

component of the Jalapeno Adaptive Optimization System with a compile-only

approach (instead of the interpreter and JIT compiler working together solution).

It has three fully operational compilers. The baseline compiler is for translating

bytecode programs directly into native code; the optimizing compiler is for

compiling computationally intensive methods; and the “quick" compiler is for

performing low level optimizations. Jikes RVM
21

 (Research Virtual Machine)

can perform three levels of optimizations. Level 0: branch opts, constant

propagation, DCE, register allocation and instruction scheduling; level 1: pre-

existence and speculative inlining, static splitting, CSE, load elimination and

flow-insensitive const/copy/type propagation; level 2: loop normalization and

unrolling, scalar SSA, dataflow analysis and global CSE.

Some compilations occur before a program executes (static compilation), some

occur just before a program is about to run (dynamic compilation or just-in-time

compilation). Some are performed at different stages (staged compilation). Staged

dynamic compilers delay a part of the compilation until runtime to reduce the cost

of run-time code generation while enabling a wide range of optimizations on the

code which is generated statically or dynamically. DyC (Grant et al., 1999) is a

selective, value-specific dynamic compilation system which speeds up C

programs. DyC’s dynamic compilers are staged. Parts of the optimization take

place at static compile time without run-time program representation required, and

parts of the optimization occur during dynamic compilation. DyC automatically

caches the dynamically compiled code; and reuses it to reduce dynamic

21 http://jikesrvm.org/Jikes+RVM%27s+compilers

19

compilation overhead. FABIUS (Lee & Leone, 1996) is a compiler that

automatically compiles code written in a subset of Metalanguage (ML) into native

code. FABIUS is also a staged dynamic compiler which dynamically generates

code by using partial evaluation techniques without any intermediate

representation created at run time. The dynamic optimization of the Dynamo

(Leone & Dybvig, 1997) compiler can be implemented by postponing the

remainder of compilation at a certain stage. For example, if a region may benefit

from heavyweight (lightweight) dynamic optimizations, it will be partially

compiled into a high-level (low-level) intermediate representation. If the code

cannot benefit from any code optimizations, then it will be compiled statically.

Some previous works define new compiler architectures to achieve better

performance. For example, Briki (Cierniak & Li, 1997) is a Java compiler

architecture which focuses on the optimizations that are possible or easier to be

implemented on a higher level intermediate representation-JavaIR (Java

Intermediate Representation). Briki recovers a high-level structure from the .class

file and then applies optimizations to the JavaIR before outputting the optimized

code. This way, the computation time is greatly reduced.

3.3.3 Speeding up Embedded System

To improve the performance of compilers for embedded systems, “the basic

strategy is to present the algorithm in a way that gives the optimizer excellent

visibility of the operations and data”. Analog Devices
22

 provides many basic

strategies for tuning C programming language for different embedded system

processor compilers, such as Blackfin and TigerSHARC DSP. These strategies

include: do as much work as possible in the inner loop, use integers for loop

control variables and array indices, do not place function calls in loops and avoid

conditional code in loops etc. These strategies are like the refactoring patterns in

Chapter 4, which cannot be optimized by a compiler, but can make full use of the

compiler to improve code efficiency.

Improving cache performance is also essential for embedded systems. Chen et al.

(2005) address the problems of developing a cache-less embedded system to

reduce the power consumption and improve performance. They encode and wrap

the most frequently executed code into pseudo instructions and then use a

decompression engine to fetch and extract multiple instructions to reduce memory

access time. Kim et al. (2008) propose a data cache for low power and high

performance multimedia-oriented embedded systems. They use a small block size

direct-mapped cache (DMC) for temporal locality and a large block size fully-

associative buffer (FAB) for spatial locality. In addition, they also provide two

hardware enhancements: an adaptive multi-block prefetching and an effective

block filtering mechanism. Bartolini and Prete (2005) provide a new Cache-

Aware Code Allocation Technique (CAT) to improve the cache performance of

embedded systems through reducing conflict cache misses. It restructures the

22 http://www.analog.com/en/index.html

http://www.analog.com/static/imported-files/application_notes/571484852665EE-147.pdf

20

compiled code to optimize locality features of the memory which the cache is able

to exploit.

Reducing the code size is another method to improve the performance of

embedded systems. Lekatsas and Wolf (1999) present SAMC, a code compression

method for reducing the memory requirements of an embedded system. It is only

for instruction compression and it is capable of decompressing compressed code

during runtime. Seong and Mishra (2006) present a bitmask-based code

compression technique which outperforms existing dictionary-based techniques. It

has the ability to significantly improve the compression ratio without any

decompression overhead. Zmily and Kozyrakis (2006) use a block-aware

instruction set (BLISS) which stores basic block descriptors that separate from the

actual instructions to achieve three efficiency metrics: smaller code size, better

performance and lower energy consumption. It reduces the code size by removing

redundant sequences of instructions across basic blocks and by interleaving 16-bit

and 32-bit encodings at instruction granularity (Zmily, Killian & Kozyrakis, 2005;

Zimily & Kozyrakis, 2005).

Using compiler optimization is another approach to improve the performance of

embedded systems. Ghodrat et al. (2007) present a short-circuit code

transformation technique which optimizes conditional blocks in high-level

programs for embedded systems. Šimunić et al. (2000) present a source code

optimization methodology and a profiling tool to optimize software performance

and energy in embedded systems. They are used to optimize and tune the

implementation of an MPEG Layer III (MP3) audio decoder for the SmartBadge.

Three levels of code optimizations are discussed. (1) Algorithmic level: using

algorithmic optimization in MP3 decoding. (2) Data level: using fixed-point

instead of floating point. (3) Instruction level: using well-known instruction-level

techniques (loop merging, unrolling, software pipelining, loop invariant extraction

etc.).

3.3.4 Speeding up Distributed System

For distributed systems, load balancing can reduce the job’s response time,

increase the performance of each host and get the small jobs away from starvation

(Jain & Gupta, 2009). Load balancing algorithms have two basic strategies, static

(the work load is distributed in the start) and dynamic (the work load is distributed

at runtime). In addition, according to the location that initiates load balancing, the

algorithms can be classified into source-initiative (transfer jobs to other hosts) and

server-initiative algorithm (find jobs from other hosts) (Ali, 2001).

The load balancing algorithm is an important part of a load balancing service.

There are three kinds of load balancing services based on different system levels:

network-based load balancing, OS-based load balancing and middleware-based

load balancing. Compared to the first two, middleware-based load balancing

provides the most flexibility. Othman and Schmidt (2001) present a set of

middleware-based load balancing service features, such as server-side

transparency, extensible load balancing strategy support and run-time control of

21

replica life times, to optimize overall performance, scalability and reliability.

Cygnus (Balasubramanian et al., 2004) is an extendible open-source middleware

framework which can support adaptive and non-adaptive load balancing strategies.

In addition, in order to evaluate load balancing strategies, they also designed

LBPerf which is an open-source middleware load balancing benchmarking toolkit.

3.3.5 Summary

In the previous sections, many techniques for speeding up different applications

were discussed. Some are applicable to Flash applications, some are not.

Reducing the size of Flash files while preserving their functionality can make

Flash files load faster. There are many commercial swf compressors, such as

Flash Optimizer
23

. However, compressors do not have the ability to accelerate the

execution of Flash files.

Web caching can also be used to enhance users’ experience of Flash applications.

However, it only saves the response time of requested pages when the requested

pages are already in the web cache. It cannot speed up the execution of Flash files

which is what ART is aimed at achieving.

Dynamic compiler optimization can also be applied to Adobe Flash Player to

optimize the execution of the Flash files. Like classic JIT compilation in the JVM,

the JIT compilation in AVM2 is also a dynamic compilation process, but it is not

adaptive. Adaptive compilation optimizations on the basis of runtime profile

information can make AVM2 more efficient. However, the overhead for the

dynamic compiler, which spends time on monitoring the execution of a program,

selecting which path is a hot trace, etc., is much larger than that of a static

compiler. The ActionScript bytecode compiler can also be staged which means a

part of the compilation is performed by the static compiler and the other part of

the compilation is postponed until runtime to reduce the cost of run-time code

generation. ART cannot compete with compiler optimizations which change the

way ActionScript bytecode compiles. However, there are many disadvantages of

performing optimizations on JIT, as discussed in Chapter 4.

Beyls and D‟Hollander‟s (2009) research is perhaps the closest in concept to the

research presented in Chapter 4. They present a cache profiling tool to find the

root cause of poor data locality which could generate cache misses by analyzing

the runtime reuse paths, and provide the most promising optimizations through

three levels: loop, iteration and function. The tool improves efficiency by

reducing cache misses; ART improves efficiency by optimizing AS3 language

structures used by AS3 programmers.

3.4 Related Work Specific to Chapter 6

Converting XML to JSON is not new. There are many existing tools to convert

XML files to JSON files such as the XML to JSON Convertor
24

 (xml2json.js).

23 http://www.show-kit.com/flash-optimizer/
24 http://www.thomasfrank.se/xml_to_json.html

22

Tools to convert a XML DOM to a set of JSON objects are also available such as

the XML Objectifier (X2J)
25

 tool and the XML to JSON Plugin
26

(jQuery.xml2json). However, there are currently no existing discussions or

solutions to help web programmers with the conversion of the code statements

used to access XML into the JSON equivalent. In other words, current solutions

are only half finished; web programmers can use existing tools to convert XML

resources into JSON files or objects, but once this conversion is done, they will

have to manually rewrite all of the code statements used to process and access the

XML resources into their JSON equivalent. Chapter 6 introduced a complete

refactoring solution to automatically help programmers with both the conversion

of the data structures and the code statements to access these structures.

3.5 Related Work Specific to Chapter 7

Various refactoring proposals for web applications have been discussed. Harold

(2008) shows how HTML can be refactored to improve the design of existing web

applications. Ricca and Tonella (2001) present a semi-automatic restructuring tool

(ReWeb) to implement the analysis on the architecture and evolution of a website.

They (Ricca et al., 2002) also present transformation rules on HTML to improve

the quality of web applications. Olsina et al. (2007) and Garrido et al. (2011)

present a Web Model Refactoring (WMR) approach on the navigation and

presentation models. They also demonstrate how to use WebQEM, a quality

evaluation method, to test the impact of refactoring. Rossi et al. (2008) present a

model-based approach to refactor the web interface of conventional web

applications into RIAs. Mesbah and Deursen (2007) propose a migration process

to transform multi-paged web applications into single-paged Ajax interfaces. They

use a schema-based clustering technique for classifying different web pages and

analyzing the candidate‟s web interface elements for Ajax transformation. Their

work focuses on the web interface identification and classification, which is only

a starting point of the entire transformation process. Chapter 7 focuses on the

source code level transformation from traditional web forms to Ajax-enabled

forms. Chu and Dean‟s research (2008) is perhaps the closest concept to the

research presented in Chapter 7. It automatically migrates list based JSP web

pages to Ajax web pages using a set of source level transformations. They extract

a web service from a JSP page and transform the code of the JSP web page from

utilizing the data from a relational database to utilizing XML. Their work is on

simple list-based JSP web pages, and they emphasize the transformation of data

format and the JavaScript code to access the generated XML file. However, their

work cannot transform traditional forms into Ajax-based forms, which is an

important part of the interaction between users and the web application. The

refactoring process in Chapter 7 is designed to aid web developers transform

traditional forms into Ajax-enabled forms including adding validations to the

form; hence improving the efficiency and minimizing roundtrip latency for form-

based web applications.

25 http://plugins.jquery.com/project/xmlObjectifier
26 http://www.fyneworks.com/jquery/xml-to-json/#tab-Overview

23

Chapter 4 Refactoring ActionScript for Improving

Application Execution Time

RIA technologies emphasize a rich and engaging user experience. Graphics,

animations and different visual effects are used to create highly dynamic,

interactive web pages. However, these pages give rise to serious performance

problems. For example, Flash movies and games consist of numerous different

graphics (vector and bitmap graphics) which are manipulated to provide a visual

experience. After Flash movies or games have been downloaded to the user‟s

machine, these CPU-intensive tasks become the biggest bottleneck and are the

principle source of performance problems. If the graphic objects are not well

programmed and organized, it will lead to delays or even unresponsiveness.

Therefore, RIA client-side technologies require efficient code, such as efficient

ActionScript for Adobe Flash, JavaScript for Microsoft Silverlight and Java for

JavaFX. How to improve the efficiency of RIAs is a significant challenge,

especially given the non-technical background of many programmers in this area

and the likelihood of deployment on smartphones.

The user‟s experience of Flash applications is partially determined by the

download and the execution time of Flash files. Download time depends on the

size of Flash file and the connection speed to the Internet. The file size can be

reduced through the compression of the file. Execution time relies on the

processing power of the client machine and the performance of the ActionScript

code. Although reducing Flash files‟ size is helpful, it is not the key point; writing

faster and more efficient ActionScript code is the most useful way to improve the

user‟s experience.

The quality of Flash code is highly dependent on the developers; however, Flash

programmers often “have backgrounds in music, art, business, philosophy, or just

about anything other than programming. This diversity results in awesome

creativity and content” (Skinner, 2007), but imposes technical challenges. In

addition, the tight schedule of a project tends to result in developers concentrating

on “getting the functionality correct” (Skinner, 2007), while ignoring non-

functional characteristics such as efficiency.

This chapter presents a “refactoring for efficiency” Flash support system, ART, to

help AS3 programmers produce more efficient code by automatically

transforming their ActionScript code. This paper is organized as follows. Section

4.1 presents a motivating example; Section 4.2 analyzes possible strategies for

improving efficiency in Flash applications. Section 4.3 describes the design of

ART. Section 4.4 provides an evaluation of our system.

app:ds:schedule

24

4.1 Motivating Example

In this section, a motivating example is provided to demonstrate how to improve

the efficiency of ActionScript code. Tetris
27

 is an open source Flash game

developed in AS3. Figure 4.1 shows the interface of the Tetris game.

Figure 4.1 The Interface of the Tetris Game

We utilize one function collisionCheckVertical() in the Tetris Flash application to

demonstrate our approach. The ActionScript code of the function is as follows.

function collisionCheckVertical():void{

for(ii = 0; ii < body.block.length; ii++){

if(body.yp + body.block[ii].yp >= cnvMain.height –BLOCKSIZE){

commitBody();

return;

}

}

for(jj = 0; jj < aryBlockRow.length; jj++) {

for(ii = 0; ii < aryBlockRow[jj].length; ii++){

if(aryBlockRow[jj][ii]) {

if(body.CollisionCheck(aryBlockRow[jj][ii])){

commitBody();

return;

}

}

}

}

}

27 http://www.4shared.com/file/QVcDsret/TetrisAS30.html

25

4.2 Three Strategies for Speeding up Flash Applications

By considering the Flash execution model discussed in Section 2.2, we can find

three different strategies for improving the efficiency of Flash applications.

4.2.1 Optimizing Bytecode Directly

The first one is to optimize the ABC directly. The bytecode is semantically similar

to the source code; however, it is a stack-based, irregular and redundant

intermediate representation. The stack-based bytecode causes problems when

performing data flow analysis and transforming the code to implement

optimizations due to the implicit uses and definitions of stack locations (Bergeron

et al., 1999); therefore, many existing optimization techniques are not applicable

at this level.

4.2.2 Performing Optimizations on JIT

The second strategy is to perform optimizations when the JIT Compiler generates

the binary code. Due to the difficulties of direct stack-based bytecode

optimizations, the bytecode is often translated into one (or more) intermediate

representation(s), and then into binary code. These intermediate representations

are usually stackless (such as register-based) and this enables high-level

optimizations and analysis. However, to avoid a considerable startup penalty, the

JIT Compiler has to compromise between the time spent on code optimizations

and the time spent on program execution. For example, “the Jalapeno VM for

Java spends about 93% of its execution time on running application code” (Babic

& Rakamaric, 2002). This time requirement makes the implementation of

expensive code analysis and optimizations unachievable. Therefore, runtime

optimizations for JITs are quite limited. This is why the next generation of

compilers employs two JITs: a client side JIT and a server side JIT. For example,

the Java HotSpot VM
28

 has the Client VM and the Server VM. The client

compiler is used to reduce the startup time and memory footprint of applications.

Whereas, the server compiler is used to maximize the peak execution speed of

long-running server applications which can tolerate higher startup penalties.

Similar to the Java HotSpot client VM, the JIT Compiler in the AVM2 performs

limited optimizations. The optimizations: early binding, constant folding, copy

and constant propagation, and common sub-expression elimination are performed

when generating the MIR. Subsequently, when the JIT Compiler‟s back-end (the

emitter) generates machine code from the MIR, a second limited set of

optimizations (instruction selection, register allocation and dead code elimination)

are performed. However, expanding these sets of optimizations is problematic as

they are always competing with the actual program for resources including CPU

cycles.

4.2.3 Refactoring

The third strategy is to perform optimizations offline on the source code through

refactoring to speed up Flash applications. Due to the limitations of the previous

28 http://www.oracle.com/technetwork/java/javase/tech/index.html

26

two strategies, we have adopted refactoring to make Flash applications faster.

Traditional refactoring is mainly for the purpose of readability, extensibility and

maintainability. In our situation, code quality is mapped onto efficiency. However,

manual refactoring is tedious, error-prone and omission-prone (Dig et al., 2009a);

therefore, we have designed ART, a refactoring tool, to improve the efficiency of

Flash applications by automatically rewriting AS3 code. ART executes before the

ActionScript compiler. Unlike the other two strategies which are online (or during

execution) activities, ART is offline which reduces the execution overhead on the

client side by delivering already refactored code to the client. It is also more

efficient because it only refactors the code once for all the clients that request the

same code. Additionally, (1) ART can implement more optimizations than a JIT

Compiler; and (2) ART makes no changes to current AVMs or Flash players.

Other production approaches also demand refactoring at the source code level. For

example, Packager for iPhone which is now a part of Adobe Flash Professional

CS5
29

 allows Flash developers to deliver applications for the Apple iPhone by

reusing the existing AS3 code. The conversion from AS3 to native ARM

assembly code is implemented by the Low Level Virtual Machine (LLVM)

library. Though the LLVM can perform some code optimizations, these

optimizations are limited. ART refactors the source code before the

implementation of the LLVM code optimizations to produce compatible yet

significantly more efficient code.

4.3 Design of ART

The goal of our research is to build an ActionScript refactoring tool (ART) to

make Flash applications faster, so that Flash users‟ experience is enhanced.

However, for ART to be a realistic tool, it needs to consider its impact upon the

other characteristics of the system. Negative impacts, if not controlled, may result

in ART failing to meet ActionScript programmers‟ requirements for such a

system. Further, there is no point in ART improving the efficiency of a project,

while introducing other side-effects (on other characteristics) which jeopardize the

success of the project in other directions. Therefore, ART is designed to provide

ActionScript programmers with facilities to significantly improve the efficiency

of their systems without affecting any other characteristics of the systems.

4.3.1 Characteristics of the System

FURPS
30

 is a software quality model developed at Hewlett-Packard. The

attributes that impact the software quality include:

1. F-Functionality: Feature set, Capabilities, Generality, Security.

2. U-Usability: Human factors, Aesthetics, Consistency, Documentation.

3. R-Reliability: Frequency/severity of failure, Recoverability,

Predictability, Accuracy, Mean time to failure.

4. P-Performance: Speed, Efficiency, Resource consumption, Throughput,

Response time.

29 http://www.adobe.com/products/flash.html
30 http://www3.hi.is/pub/honnhug/vika3/furps/tsld002.htm

http://en.wikipedia.org/wiki/Hewlett-Packard
http://www3.hi.is/pub/honnhug/vika3/furps/tsld002.htm

27

5. S-Supportability: Testability, Extensibility, Adaptability,

Maintainability, Compatibility, Configurability, Serviceability,

Installability, Localizability, Portability.

Positive (beneficial) and negative (adverse) are usually used to indicate the

technical interrelationships among these factors. “At the factor level, if factor X

positively impacts factor Y, then the presence of factor X will increase the

likelihood of achieving the desired quality goal for factor Y. If the indicated

relationship is negative, then the presence of factor X will increase the difficulty

of achieving the desired quality goal for factor Y” (Lasky & Kevin, 1993; Zulzalil

et al., 2008).

For system like ART, the main conflict is between maintainability and efficiency.

The relationship between these two attributes is negative which means it is very

hard to achieve high efficiency and high maintainability at the same time. For

example, modularity positively impacts maintainability while reducing efficiency;

however, programming styles for efficient code (optimized or compact code)

usually negatively impact maintainability.

4.3.2 Maintainability

Maintainability is a sub-characteristic of the supportability attribute.

Maintainability indicates whether a delivered software product has the ability to

fix defects, modify and update software components. Industry studies show that

over 80% efforts of developing a software product is spent on maintenance

(Nelson, 2008). According to ISO 9126
31

, among the factors in regard to

maintainability, analyzability is essential factor that has the most negative

influence on the efficiency of the code. In other words, improving the efficiency

of the code will make the code harder to analyze. Analyzability measures the

ability to locate failures when bugs occur and the ability to locate modifications

when new specifications are added. It is highly influenced by readability,

comprehensibility, traceability and simplicity (Spinellis, 2006).

1. Readability

Consistency of coding style is the most important factor that affects the readability

of code. The code should be internally consistent as well as externally consistent.

Internally consistent requires the similar elements in a program being coded using

the same coding style and external consistency requires the program being coded

following one of the existing coding styles. There are other factors that influence

the code readability, such as the formatting and naming conventions.

31 http://www.iso.org/

http://it.toolbox.com/people/shayne_nelson/

28

2. Comprehensibility

The process of reading and comprehending a piece of code is a cognitive process.

In cognitive psychology, memory is classified into three storage systems

(Goldstein, 2007).

(1) Sensory memory: It retains the information provided by visual or auditory, but

it only lasts for a few seconds.

(2) Short-term memory: It retains a small amount of information which lasts 3 to

20 seconds.

(3) Long-term memory: It is a relatively permanent storage.

The short-term memory is related to the way programmers understand the

program. Miller (1956) indicates that the storage capacity limitation for the short-

term memory is seven pieces of independent information plus or minus two. A

more recent research shows a lower limitation, about four to five items. The result

is heavily dependent on the people being tested and the material being used during

the testing (Cowan, 2000). Regardless of the exact number, researchers agree that

the limitation is “extremely small”. To expand the ability of learning and

remembering, chunking is used which allows people to “sequence” and organize

information into meaningful groups (chunks). Once a chunk matches an

abstraction stored in long-term memory, the information will be removed from

short-term memory and replaced by the abstraction. For example, the telephone

number is usually chunked into three groups.

Because of the limitation of the short-term memory, a shorter code piece is

usually more readable than its longer alternative. Thus, if the number of operands

and operators in an expression, or the number of statements in a function or a

method exceed the short-term memory storage limitation, a programmer needs to

chunk the program which makes the cognitive process more complex. In addition,

the storage limitation of short-term memory and the ability of chunking vary from

person to person. Thus, it is a good practice to make the length of expressions,

functions or methods shorter to improve the understanding and hence, the

analyzability of a code piece. There are other factors that affect the code

comprehensibility such as the comments for the code blocks and data declaration.

3. Traceability

Tracing is where programmers scan the program back and forth to find the

location that they want to modify. Traceability is the degree to which

programmers locate dependencies between elements. The locality of dependencies

and ambiguity has great impact on code traceability. Couplings and

polymorphism are the possible causes of the code ambiguity. Traceability is

usually regarded as an element of reviewability. Software‟s reviewability is a

related concept - how easy it is for other programmers to examine the code to

ensure that all specifications have been implemented. This is another important

concern during the maintenance process. The ease of understanding of the code

29

has a direct impact on the ability to carry out an effective code review (Faris,

2006).

4. Simplicity

When programmers write code, they can use different ways to create different

algorithms and functionality; however, clear and concise code is always the best

choice (Faris, 2006). This is commonly referred as KISS (Keep it simple, stupid)

(Derezińska et al., 2010). The KISS principle is especially popular in Agile

circles. Simple code helps both the reviewers and maintainers understand the

functionality of the code; hence, it is easier to fix defects and expand the code

base. In addition, simple software design, implementation and coding make the

software more reliable and bug-free. Therefore, “the ease of maintenance of any

piece of software is directly proportional to the simplicity of the individual

pieces” (Kanat-Alexander, 2008).

4.3.2.1 Efficiency

Efficiency is a sub-characteristic of the performance attribute. It is about the usage

of system resources (memory, network, disk space and etc.) when providing the

required functionality. Currently, our refactoring patterns are about increasing the

performance of an application.

To summarize, traditional refactoring restructure the code to improve readability,

expandability and maintainability. Our refactoring is to improve the efficiency of

the code. Our refactoring patterns must not affect the maintainability (readability,

comprehensibility, reviewability and simplicity) of the software products.

4.3.3 ART’s Execution Model

There are two options for ART‟s execution model; the first option is to integrate

ART and the ActionScript compiler, as shown in Figure 4.2. This model takes

AS3 code as the input and outputs the ABC. It is commonly used for complex

code transformations because the code after complex transformations is usually

unreadable due to the inconsistence of the coding style. However, the enhanced

AS3 code after refactoring is not transparent to the programmers in this model. In

addition, ART runs every time when the code is compiled into the ABC; thus, if

the size of the code is large, it is time-consuming to compile a single file. In this

scenario, the usability of the tool is significantly affected.

Figure 4.2 One Option for ART’s Execution Model

The second option is to separate ART and the ActionScript compiler (as shown in

Figure 4.3); this is our choice. In this model, the enhanced AS3 code after

refactoring is transparent to the programmers. This is because our code

transformations are designed to follow the KISS principle (Derezińska & Sarba,

ActionScript Bytecode ActionScript 3.0 ART ActionScript Compiler

http://www.springerlink.com/content/?Author=Krzysztof+Sarba

30

2010) as commonly practiced in the Agile circles. Additionally, the

transformations do not affect the readability and comprehensibility of the code.

Now, ART only runs after significant alternations are made to the code base rather

than every time it is recompiled. Many refactoring tools also make use of this

model, such as the refactoring tool in Eclipse
32

.

Figure 4.3 ART’s Execution Model

4.3.4 Overview of Our Refactoring Cycle

The refactoring process contains two main steps: bad smells (inefficient coding

patterns) (Fowler, 1999; Srivisut & Muenchaisri, 2007) detection and code

rewriting. Each of the steps can be accomplished by using one of three

approaches: fully-automatic, semi-automatic or manual. ART adopts a fully-

automatic approach to detect bad smells in AS3 and semi-automatic approach to

interact with users (get inputs from users and ask users‟ permissions to change the

code) to implement rewriting. Using the semi-automatic approach to translate bad

smells into more efficient and semantically identical code equivalents is required

because:

1. A fully-automatic approach makes the refactored code less readable

which causes problems to code review and maintenance.

2. Refactoring tools are not smart enough to perform the refactoring in-line

with users‟ wishes.

3. Many refactoring patterns are too complex to allow them to be fully-

automatic.

ART is implemented using Another Tool for Language Recognition (ANTLR)
33

,

a recursive parser generator for building translators, compilers and interpreters.

We used ANTLR to build our AS3 parser, because (Kaplan, 1999): (1) it is open

source. (2) It supports selective lookahead LL(*) parsing and predicates to resolve

ambiguities. (3) It is easier to use than other similar tools and the parser code

generated is relative easy to understand, which helps debugging. (4) It generates

tree parser without assistance from other tools. (5) It has a good error reporting.

Through ANTLR, an AS3 Lexer, an AS3 Parser and an AS3 Tree Walker are

generated using:

AS3 grammar: It follows the specification of ECMAScript, which contains the

grammar for tokens, lexer and parser.

32 http://www.eclipse.org/
33 http://www.antlr.org/

ActionScript 3.0 ART
ActionScript

Compiler
ActionScript

Bytecode

Enhanced

ActionScript 3.0

http://portal.acm.org/author_page.cfm?id=81100028026&coll=GUIDE&dl=GUIDE&trk=0&CFID=77744293&CFTOKEN=87942156
http://en.wikipedia.org/wiki/LL_parser
http://www.eclipse.org/

31

AS3 tree grammar: Actions (translation rules) are embedded into the tree

grammar to implement translation.

Our refactoring cycle consists of six phases, as shown in Figure 4.4 (Parr, 2007).

1. The Lexer scans a character stream and generates a token stream with

vocabulary symbols.

2. The Parser constructs an intermediate hierarchical data structure

(abstract syntax tree (AST)) from the token stream.

3. The Tree Walker walks the AST.

4. If the Tree Parser finds a bad smell, it asks for inputs from users, and

then constructs the required solution using the users‟ definitions.

5. The Tree Parser rewrites the code by substituting the bad smell for its

solution.

6. Go back to the phase 4 to continue searching for the other bad smells

until the user has considered them all.

Figure 4.4 Refactoring Cycle

4.3.5 Bad Smells and Refactoring Solutions in ActionScript 3.0

A bad smell and refactoring solution form a refactoring pattern. To begin, we

need to know whether our refactoring patterns will be interpreted or compiled. As

mentioned previously, only initialization functions ($init, $cinit) are interpreted,

everything else is compiled by the JIT Compiler. Therefore, if a refactoring

pattern is inside a class constructor, then it will be interpreted; if not, the JIT

Compiler will be used to compile the code. Hence, we need to know what kind of

code transformations the JIT Compiler performs (as stated in Section 2.2) to make

sure our refactorings perform different optimizations.

Our refactoring uses the invariants, pre and post-conditions refactoring technique

(Opdyke, 1992; Roberts, 1999). ART is able to check the pre and post-conditions:

the syntax of the AS3 code, before and after refactoring, is functionally correct.

Currently, we have identified 43 refactoring patterns and we define our patterns

following a pattern template, as Figure 4.5 shows.

output

AST tokens

characters Lexer Parser Tree Walker

32

Figure 4.5 The Template of the Refactoring Patterns

Our patterns fall into several categories, the detailed discussion of the refactoring

patterns can be found in Appendix A.

1. Variables Refactoring Patterns: Variables are used to store values in a

program. The var statement is required to declare a variable, for example:

var variableName:datatype;

Variable declaration style has great influence on the speed of code.

Therefore, code transformation is necessary.

2. Objects Refactoring Patterns: Objects are frequently used in AS3. This

category has three sub-categories: Math and operators, arrays, and others.

Math operations are quite useful to draw graphics; however, calling Math

objects is inefficient because Math objects are top-level objects in AS3;

thus replacements for Math objects are required. In addition, in AS3,

when using numbers of type int or uint, bitwise operators are faster than

traditional math operators because the bitwise operators allow low-level

access to the memory which results in faster execution. Thus, the

traditional math operators should be replaced by the bitwise operators.

These replacements can be done by strength reduction which is a

compiler optimization technique used to replace costly operations by

equivalent, but less expensive, operations. However, the JIT compiler in

AVM2 cannot do this kind of optimization. Arrays are also ubiquitous in

AS3; they are commonly used to store graphic objects. Array

manipulations are usually slow; thus it is also a vital area to do the

refactoring.

3. Conditions Refactoring Patterns: The conditional statements execute

different blocks of code depending on whether the condition evaluates to

be true or false. The if statement is the most popular conditional

statement in AS3. The syntax for an if statement in AS3 is:

if(textExpression){

codeBlock

}

Small modifications to the structure of an if statement (textExpression

and codeBlock) can provide faster execution of code. Thus, the

conditional statements should be refactored for the efficiency purpose.

Pattern name: The name of the pattern.

Problem: The problem statement including the low efficiency reasons for the bad smells.

Solution: The corresponding refactoring solution(s) for the bad smells.

Input: The user’s inputs or permissions to change the bad smells. (The input is displayed

in bold in the example.)

Recommend running environments: The recommended browser and Flash Player.

Example: An example of the bad smells and the corresponding refactoring solutions.

Grammar: ActionScript grammar before and after refactoring.

33

4. Loops Refactoring Patterns: Loops are widely used in AS3, which

heavily affect code efficiency. If a loop executes thousands of times,

small changes to the loop structure can significantly improve the code

performance. This category has three sub-categories: Pre-calculation

refactoring patterns, for loop refactoring patterns and others. The loop-

invariant computations inside the loop, which are independent of the

iteration of loop, are the redundant computations that affect the efficiency

of a program. The simple refactoring here is to: (a) define the variables;

and (b) execute the loop-invariant computations outside the loop. This is

a well-known optimization for compilers, called loop-invariant code

motion; however, the JIT compiler in AVM2 cannot do this kind of

optimization. The for loop is the most commonly used loop structure

following the format:

for (counter; condition; action){

statements;

}

The counter and the condition of an for loop can be refactored to improve

the efficiency of the for loop.

5. Packages, Classes and Functions Refactoring Patterns: AS3 are

composed of classes, which are the blueprints for the objects of a

program. To use a class that is inside a package, the import statement

should be used. The format is as follows:

import packageName.className;

Variables, constants, and methods can be defined within the definitions

of a class. A function is a block of code that performs specific task. AS3

has two kinds of functions: methods and function closures. If a function

is defined within the class definition or is attached to an instance of an

object, the function is called a method. A function is named a function

closure if it is defined in some other ways. This category discusses

refactoring patterns on the importation of packages and the declaration of

classes and functions.

6. Graphic Display Refactoring Patterns: Flash movies and games

consist of numerous different graphics which are manipulated to provide

a visual experience. All the graphics are created, displayed and

manipulated by the display list. The display list is a tree structure and the

branches and leaves of the display list are different display objects which

derive from the DisplayObject class. For example, flash.geom.Point,

flash.display.Shape and flash.display.Sprite are different display classes

deriving from the DisplayObject class in AS3. In this category, some

refactoring on display objects, which has the ability to speed up the Flash

applications, will be discussed.

7. Event/Event Handling Refactoring Patterns: In AS3, an event is an

occurrence that triggers a response. Each event is represented by an event

object. To respond to specific events, the event listener function is used.

34

The event listener function is called when an event is triggered. The

syntax of registering an event listener is as follows:

 addEventListener(TypeOfEvent.NameOfEvent,

 NameOfEventHandlerFunction);

Changing the type of the event from TimerEvent.TIMER to

Enter.Enter_FRAME and adding the weak reference parameter to

addEventListener() have great impact on the efficiency of AS3 programs.

4.4 Evaluation

4.4.1 Methodology

After identifying the bad smells in AS3, we test the performance of our

refactoring patterns in different configurations to guarantee the patterns‟

performance. When testing Flash applications, three aspects must be considered.

1. The Flash authoring tool used.

2. The version of Adobe Flash Player as set in the Publish Settings (PS).

3. The available runtime environments.

Tests are executed in the following environment: Intel(R) Core (TM) 2 Quad CPU

Q6600 @2.4GHz, with 4 GB of RAM running Microsoft Windows XP

Professional, Service Pack 3. We use getTimer() function in ActionScript

flash.utils package to measure execution time. Usually, a timer will return two

kinds of time, CPU time or wall time. CPU time contains two parts of time: user

time, the time spends on running the actual machine instructions of a program,

and kernel time, the time spends in the kernel. Wall time includes CPU time, I/O

time and communication delay time. The getTimer() function returns wall time;

however, the execution of refactoring patterns does not contain I/O operation and

network communication time. Thus, we actually measure the CPU time of the

function’s execution.

4.4.2 Testing the Performance of Refactoring Patterns

To illustrate the performance of ART, we test the performance of our refactoring

patterns. We create the test code before and after refactoring which only contains

the bad smell and the solution of an refactoring pattern to minimize the impact of

the extended code blocks. We place the code before and after refactoring in

different loop structures which interate 1,000,000 times and we run the test

program 50 times to obtain an average value. For the patterns with array structure,

we use an array with 80 elements. Table 4.1 shows the execution time (in

milliseconds) of the original (slow) and the refactored (fast) code for these trials.

We use Adobe Flash CS3 Professional (CS3) and Adobe Flash CS4 Professional

(CS4) as Flash authoring tools; Adobe Flash Player (9 and 10) as the option for

Publish Settings (PS); and Flash authoring tools (CS3 and CS4), Adobe Flash

Player (9 and 10) and popular browsers (Internet Explorer 8.0 and Firefox 3.6) as

runtime environments. A variation of the relative mean difference (RMD) of the

35

execution time before and after refactoring for each pattern is calculated (Table

4.1). The value (RMD) is calculated as:

 (Execution Time before Refactoring - Execution Time after Refactoring)

 (Execution Time before Refactoring + Execution Time after Refactoring) /2 (1)

If the RMD is positive, then the refactorings have increased the efficiency of code.

However, if the RMD is negative, then the refactorings actually cause a decrease

in performance.

There are some patterns that cannot be measured (Pattern 23, 36, 40 and 43) by

using the getTimer() function. These refactoring patterns offer improvements

indirectly through other optimizations (such as better memory allocation and

better package utilization) that would require specialized evaluation techniques

for each refactoring. Hence, they are not included in Table 4.1 which measures

execution time.

As can be seen from Table 4.1:

1. Our refactoring patterns have the ability to improve the efficiency of

ActionScript code. Take Math.abs(n) for example, there are multiple

versions of refactored code: n<0?(n*(-1)):n, n<0?(-n):n and if(n<0)n=-n.

However before testing, we had no evidence about which version is superior.

According to the results: (1) all three versions of refactored code are about

20 times faster than the original code. (2) “if statement” version performs

better than the other two. (3) The RMD of the execution time between the

original code and “if statement” version (the version of refactored code with

the best performance) is around 1.75.

2. Different configurations have an influence on the effectiveness of each

refactoring pattern. Take “Avoid array.length in for statements” for

example, no matter which Flash authoring tool is used, the original code

running in Adobe Flash Player 9 takes about 10 times longer than in Adobe

Flash Player 10 for both Internet Explorer 8.0 and Firefox 3.6, however, the

refactored code running in Adobe Flash Player 9 takes only about 2 times

more than in Adobe Flash Player 10 for both Internet Explorer 8.0 and

Firefox 3.6. Therefore, this pattern works better in Adobe Flash Player 9

(around 1.7 RMD) than Adobe Flash Player 10 (around 0.9 RMD).

36

Table 4.1 Testing Results for Different Patterns in Different Configurations

 Timing for Different IDE
Timing for Different Adobe Flash

Player
Timing for Different Browser

 CS3 CS4 Adobe Flash Player 9
Adobe Flash

Player 10
Internet Explorer 8.0 Firefox 3.6

PS for

Adobe

Flash

Player 9

PS for

Adobe

Flash

Player 9

PS for

Adobe

Flash

Player 10

CS3

PS for

Adobe

Flash

Player 9

CS4

PS for

Adobe

Flash

Player 9

CS4

PS for

Adobe

Flash

 Player 10

CS3

Adobe

Flash

Player 9

CS4

Adobe

Flash

Player 9

CS4

Adobe

Flash

Player 10

CS3

Adobe

Flash

Player 9

CS4

Adobe

Flash

Player 9

CS 4

Adob e

Flash

Player 10

1

Slow 46.10 55.00 55.16 20.38 20.46 22.26 49.30 49.00 24.70 49.44 51.16 25.86

Fast 1.24 1.00 1.02 0.68 0.68 0.64 1.50 1.50 0.62 1.08 1.10 0.72

RMD 1.90 1.93 1.93 1.87 1.87 1.89 1.88 1.88 1.90 1.91 1.92 1.89

2

Slow 3.80 5.84 5.40 1.74 1.72 2.42 5.02 5.34 1.88 5.90 5.86 2.34

Fast 3.00 4.62 4.62 1.74 1.72 1.88 4.20 4.18 1.56 4.22 4.18 1.96

RMD 0.24 0.23 0.16 0.00 0.00 0.25 0.18 0.24 0.19 0.33 0.33 0.18

3

Slow 110.62 111.56 110.44 63.30 63.52 59.22 108.8 115.66 55.32 111.30 110.00 59.76

Fast1 5.60 6.68 16.22 5.42 5.44 5.16 6.40 16.20 5.32 14.94 7.14 5.24

RMD 1.81 1.77 1.49 1.68 1.68 1.68 1.78 1.51 1.65 1.53 1.76 1.68

Fast2 5.56 6.26 16.20 5.44 5.42 5.46 6.28 16.20 5.30 14.94 6.72 5.38

RMD 1.81 1.79 1.49 1.68 1.69 1.66 1.78 1.51 1.65 1.53 1.77 1.67

Fast3 5.40 5.44 5.44 5.00 5.02 5.00 5.00 5.42 4.70 5.22 5.86 4.62

RMD 1.81 1.81 1.81 1.71 1.71 1.69 1.82 1.82 1.69 1.82 1.80 1.71

4

Slow 116.78 115.12 125.02 73.62 74.08 67.10 119.20 114.50 65.00 113.56 116.46 69.62

Fast 17.54 10.26 15.14 8.92 8.92 8.44 18.78 23.40 8.44 13.76 11.20 8.44

RMD 1.48 1.67 1.57 1.57 1.57 1.55 1.46 1.32 1.54 1.57 1.65 1.57

5 Slow 207.88 203.74 215.05 106.78 106.34 98.28 230.40 231.80 96.58 219.66 223.60 97.66

37

Fast1 142.78 141.40 134.28 85.88 85.26 80.70 152.62 153.02 80.92 147.16 145.94 80.78

RMD 0.37 0.36 0.46 0.22 0.22 0.20 0.41 0.41 0.18 0.40 0.42 0.19

Fast2 188.94 198.66 198.16 84.62 85.96 79.62 193.08 192.86 80.32 191.12 191.74 79.92

RMD 0.10 0.03 0.08 0.23 0.21 0.21 0.18 0.18 0.18 0.14 0.15 0.20

6

Slow 121.4 127.38 121.84 75.84 76.98 70.24 122.28 119.86 69.08 119.00 127.88 70.86

Fast 14.62 11.70 11.68 11.70 11.70 11.74 14.62 14.62 11.56 11.72 11.70 11.72

RMD 1.57 1.66 1.65 1.47 1.47 1.43 1.57 1.57 1.43 1.64 1.66 1.43

7

Slow 119.88 120.50 119.34 72.62 72.92 67.98 115.48 113.42 64.38 112.14 115.10 67.66

Fast 10.16 10.10 20.76 8.60 8.92 8.44 18.80 23.36 8.76 13.78 11.30 8.50

RMD 1.69 1.69 1.41 1.58 1.56 1.56 1.44 1.32 1.52 1.56 1.64 1.55

8

Slow 156.06 140.76 133.62 110.22 110.76 101.00 175.84 175.54 87.82 181.32 178.64 90.62

Fast 3.34 4.60 4.60 3.34 3.34 3.36 4.58 4.60 3.44 4.60 4.62 3.34

RMD 1.92 1.87 1.87 1.88 1.88 1.87 1.90 1.90 1.85 1.90 1.90 1.86

9

Slow 105.66 105.62 100.98 62.30 61.84 57.72 111.58 109.00 50.94 114.56 111.36 53.04

Fast 5.42 5.86 12.54 10.42 10.28 5.48 5.98 12.56 5.62 6.02 12.54 5.40

RMD 1.80 1.79 1.56 1.43 1.43 1.65 1.80 1.59 1.60 1.80 1.60 1.63

10

Slow 106.70 103.66 104.28 62.72 62.36 58.06 111.12 108.60 50.94 113.38 112.34 53.90

Fast 5.46 5.86 12.64 10.40 10.42 5.38 6.00 12.54 5.32 6.04 12.54 5.40

RMD 1.81 1.79 1.57 1.43 1.43 1.66 1.80 1.59 1.62 1.80 1.60 1.64

11

Slow 11.68 7.82 7.90 6.00 6.02 6.02 20.34 20.32 5.64 7.92 7.94 6.16

Fast 5.16 4.20 4.16 5.00 5.02 5.00 4.60 4.58 5.00 4.58 4.60 5.00

RMD 0.77 0.60 0.62 0.18 0.18 0.19 1.26 1.26 0.12 0.53 0.53 0.21

12

Slow 35.64 36.38 43.64 38.44 38.42 45.40 37.50 42.62 45.00 46.36 36.44 45.4

Fast 2.42 4.16 4.60 3.68 3.62 2.50 4.62 4.62 2.5 4.58 4.62 3.04

RMD 1.75 1.59 1.62 1.65 1.66 1.79 1.56 1.61 1.79 1.64 1.55 1.75

38

13

Slow 71.48 59.06 59.90 71.26 71.36 79.18 72.62 73.50 35.12 61.98 59.44 35.14

Fast 13.84 9.56 10.60 12.36 12.36 8.52 22.88 14.70 7.12 10.62 9.28 7.08

RMD 1.35 1.44 1.40 1.41 1.41 1.61 1.04 1.33 1.33 1.41 1.46 1.33

14

Slow 219.54 206.4 207.66 166.86 167.32 148.44 240.68 235.76 162.20 223.52 225.64 150.24

Fast 64.98 61.68 62.86 60.84 61.30 57.66 66.94 70.66 58.12 69.08 68.70 58.52

RMD 1.09 1.08 1.07 0.93 0.93 0.88 1.13 1.08 0.94 1.06 1.07 0.88

15

Slow 1410.80 1639.80 1507.00 1141.80 1132.40 1151.20 1495.20 1497.40 633.80 1491.20 1496.80 663.80

Fast 476.20 513.80 517.60 472.20 472.80 499.20 503.20 503.20 283.00 512.60 511.20 280.20

RMD 0.99 1.05 0.98 0.83 0.82 0.79 0.99 0.99 0.77 0.98 0.98 0.81

16

Slow 4744.00 3579.80 2264.40 2251.40

Fast 156.60 165.80 84.20 85.00

RMD 1.87 1.82 1.86 1.85

17

Slow 54.46 52.04 52.32 52.40 52.64 51.26 55.60 57.42 50.64 54.96 56.18 50.46

Fast 46.68 46.36 46.44 44.98 44.46 43.58 47.44 48.50 45.94 47.88 48.52 44.30

RMD 0.15 0.12 0.12 0.15 0.17 0.16 0.16 0.17 0.10 0.14 0.15 0.13

18

Slow 88.56 70.08 70.80 81.24 81.50 67.26 92.30 92.28 67.82 85.86 85.28 67.88

Fast 66.64 47.80 46.82 67.10 67.04 45.56 58.18 57.88 46.56 57.36 57.30 45.70

RMD 0.28 0.38 0.41 0.19 0.19 0.38 0.45 0.46 0.37 0.40 0.39 0.39

19

Slow 146.76 73.94 74.18 138.72 138.72 73.28 157.14 157.10 68.44 150.66 149.86 68.90

Fast 96.70 151.36 173.26 27.00 27.00 26.32 97.26 95.90 26.56 99.20 98.72 26.18

RMD 0.41 -0.69 -0.80 1.35 1.35 0.94 0.47 0.48 0.88 0.41 0.41 0.90

20

Slow 68.82 60.96 59.24 64.64 64.74 56.48 74.92 70.14 55.64 69.54 68.86 56.48

Fast 46.46 42.22 42.58 44.38 44.32 39.78 48.20 48.20 40.30 46.64 46.52 39.78

RMD 0.39 0.36 0.33 0.37 0.37 0.35 0.43 0.37 0.32 0.39 0.39 0.35

21

Slow 771.00 720.00 735.00 774.00 767.00 711.00 816.00 826.00 672.00 806.00 797.00 684.00

Fast 513.00 471.00 511.00 362.00 366.00 328.00 571.00 556.00 313.00 550.00 530.00 398.00

RMD 0.40 0.42 0.36 0.73 0.71 0.74 0.35 0.39 0.73 0.38 0.40 0.53

22

Slow 13690.00 13344.00 13374.00 13582.00 13634.00 12596.00 13856.00 13914.00 11314.00 14595.00 14424.00 11300.00

Fast 2244.00 2190.00 2156.00 2034.00 2012.00 1856.00 2364.00 2448.00 844.00 2316.00 2308.00 814.00

RMD 1.44 1.44 1.44 1.48 1.49 1.49 1.42 1.40 1.72 1.45 1.45 1.73

39

24

Slow 6.72 10.04 9.20 6.30 6.28 5.88 10.08 8.82 5.44 9.66 8.38 5.86

Fast 3.76 5.02 5.48 3.38 3.42 3.88 6.28 5.44 3.50 5.90 5.00 3.42

RMD 0.56 0.67 0.51 0.60 0.59 0.41 0.46 0.47 0.43 0.48 0.51 0.53

25

Slow 3.86 7.10 6.70 4.20 3.60 6.70 7.08 3.76 6.72 7.10 4.30 6.70

Fast 2.92 5.42 5.44 2.96 2.92 5.44 5.44 3.12 5.48 5.44 2.90 5.44

RMD 0.28 0.27 0.21 0.35 0.21 0.21 0.26 0.19 0.20 0.26 0.39 0.21

26

Slow 5.86 5.94 5.98 5.84 5.84 6.72 5.88 5.86 6.26 5.98 6.00 6.56

Fast 2.94 4.58 4.60 3.06 3.06 5.38 4.16 4.18 5.30 4.28 4.26 5.46

RMD 0.66 0.26 0.26 0.62 0.62 0.22 0.34 0.33 0.17 0.33 0.34 0.18

27

Slow 55.80 51.96 53.28 51.34 51.54 51.64 53.00 51.26 49.38 56.26 54.06 51.05

Fast 2.50 4.20 4.18 2.56 2.52 2.50 4.58 4.62 2.50 4.62 4.68 2.50

RMD 1.83 1.70 1.71 1.81 1.81 1.82 1.68 1.67 1.81 1.70 1.68 1.81

28

Slow 43.52 48.16 50.32 27.64 28.06 28.12 51.22 45.82 27.5 49.34 46.64 89.56

Fast 4.38 4.26 1.68 2.66 2.66 2.66 3.46 1.72 2.50 1.82 3.92 2.64

RMD 1.63 1.67 1.87 1.65 1.65 1.65 1.75 1.86 1.67 1.86 1.69 1.89

29

Slow 72.78 64.08 70.06 69.92 69.76 74.92 89.04 88.08 90.32 75.56 73.18 90.62

Fast1 7.94 11.32 11.28 7.60 7.52 8.12 9.68 10.06 8.76 9.62 10.04 8.76

RMD 1.61 1.40 1.45 1.61 1.61 1.61 1.61 1.59 1.65 1.55 1.52 1.65

Fast2 7.52 11.36 11.28 7.42 7.30 8.06 10.08 10.08 9.36 10.02 10.02 9.22

RMD 1.63 1.40 1.45 1.62 1.62 1.61 1.59 1.59 1.62 1.53 1.52 1.63

30

Slow 1358.00 1190.00 1191.60 953.60 957.60 779.60 1354.20 1354.80 330.20 1342.88 1352.40 336.00

Fast 3.20 4.40 4.40 2.00 2.00 2.00 4.80 4.40 2.60 4.00 4.00 2.60

RMD 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.97 1.99 1.99 1.97

31

Slow 15.92 4.62 4.62 14.22 14.26 3.96 26.60 18.10 2.82 15.04 15.04 2.86

Fast 3.48 4.60 4.60 3.12 3.12 2.98 4.60 5.12 1.76 4.44 4.60 1.74

RMD 1.28 0.00 0.00 1.28 1.28 0.28 1.41 1.12 0.46 1.09 1.06 0.49

32

Slow 7.10 7.54 11.26 4.18 4.18 4.54 13.38 14.32 4.38 7.52 7.46 4.54

Fast 3.40 4.60 4.62 3.12 3.16 2.96 4.60 4.74 2.50 4.50 4.60 2.90

RMD 0.70 0.48 0.84 0.29 0.28 0.42 0.98 1.01 0.55 0.50 0.47 0.44

33 Slow 259.18 225.34 224.08 62.08 62.06 30.38 274.16 272.52 30.00 322.62 335.02 30.03

40

Fast 18.34 21.14 21.32 14.86 14.86 10.62 23.16 23.36 11.88 23.96 23.84 11.96

RMD 1.74 1.66 1.65 1.23 1.23 0.96 1.69 1.68 0.87 1.72 1.73 0.86

34

Slow 486.04 414.22 414.38 334.86 333.30 241.96 553.10 556.12 262.20 560.28 559.46 275.64

Fast 214.34 156.22 147.32 207.18 207.76 126.64 181.76 181.94 131.24 192.52 185.76 127.26

RMD 0.78 0.90 0.95 0.47 0.46 0.63 1.01 1.01 0.67 0.98 1.00 0.74

35

Slow 4812.00 4260.00 4230.00 3272.00 3242.00 2438.00 5314.00 5424.00 1580.00 5384.00 5348.00 1616.00

Fast 526.00 530.00 530.00 364.00 360.00 302.00 644.00 646.00 202.00 620.00 634.00 206.00

RMD 1.61 1.56 1.55 1.60 1.60 1.56 1.57 1.57 1.55 1.59 1.58 1.55

37

Slow 1162.20 1042.00 1031.20 1052.60 1001.00 821.60 1407.00 1404.40 354.60 1455.00 1468.60 370.40

Fast 159.80 152.20 159.20 208.00 202.00 274.00 165.80 160.60 21.60 174.80 173.20 20.60

RMD 1.52 1.49 1.47 1.34 1.33 1.00 1.58 1.59 1.77 1.57 1.58 1.79

38

Slow 11928.00 9904.00 9084.00 12300.00 12228.00 7926.00 15054.00 1568.60 6346.00 13426.00 13214.00 6447.00

Fast 1422.00 1244.00 1236.00 1028.00 1024.00 856.00 1414.00 150.60 344.00 1416.00 1406.00 334.00

RMD 1.57 1.55 1.52 1.69 1.69 1.61 1.66 1.65 1.79 1.62 1.62 1.80

39

Slow 3.46 6.18 6.02 2.24 2.26 4.16 6.38 6.06 2.88 6.24 6.24 3.36

Fast 2.82 4.60 4.20 2.26 2.28 2.38 5.02 5.14 2.46 4.60 4.60 2.24

RMD 0.20 0.29 0.36 -0.01 -0.01 0.54 0.24 0.16 0.16 0.30 0.30 0.40

41

Slow 6.06 3.78 2.96 5.72 6.64 4.84 3.10 3.14 2.82 9.28 9.24 4.62

Fast 1.84 1.24 1.00 1.50 2.08 1.96 2.38 2.38 0.94 2.46 2.46 1.56

RMD 1.07 1.01 0.99 1.17 1.05 0.85 0.26 0.28 1.00 1.16 1.16 0.99

42

Slow 18.66 17.22 17.40 17.84 17.98 14.60 17.48 17.68 14.04 19.62 19.58 15.18

Fast 0.62 1.08 1.12 0.50 0.46 0.88 0.60 0.60 0.50 0.60 0.60 0.52

RMD 1.87 1.76 1.76 1.89 1.90 1.77 1.87 1.87 1.86 1.88 1.88 1.87

 41

4.4.3 Testing the Performance of Real Applications

To further illustrate the performance of our refactoring system, we randomly

select a number of AS3 applications from the Internet
34,35

. We test the execution

time of the original code before refactoring and the execution time of the

refactored code after ART is utilized to parse and transform the original code. We

measure the performance of the applications across the function being refactored

because testing a system’s execution time is not feasible. Interactive Flash

applications including games usually do not have explicit ending points.

For example, we test the execution time of the function collisionCheckVertical()

in the motivating example (Section 4.1). The test environment is Firefox 3.6 with

Adobe Flash Player 10 installed. After applying ART to this function, the

optimized ActionScript code is as follows.

function collisionCheckVertical():void {

var length1:Number = body.block.length;

for(ii = 0; ii < length1; ii++){

if(body.yp + body.block[ii].yp >= cnvMain.height -

BLOCKSIZE){

commitBody();

return;

}

}

var length2:Number = aryBlockRow.length;

for(jj = 0; jj < length2; jj++) {

var length3:Number = aryBlockRow[jj].length;

for(ii = 0; ii < length3; ii++){

if(aryBlockRow[jj][ii]){

if(body.CollisionCheck(aryBlockRow[jj][ii])){

commitBody();

return;

}

}

}

}

}

The pattern “Avoid array.length in for statements” (declare a variable to get the

length of array outside the loop, and use the value inside the loop) is used three

times to the collisionCheckVertical() function. After the transformation, we test

the execution time of the optimized function collisionCheckVertical() and

calculate the relative mean difference (0.40 RMD) of the the execution time

before and after refactoring.

Table 4.2 shows the execution time (in milliseconds) of the original (slow), the

refactored (fast) code and RMD for 9 functions in 9 Flash applications running in

three different browsers. To test the execution time before and after refactoring,

we develop the code in CS4, used Adobe Flash Player 9 and 10 as the add-ons to

34 http://www.krazydad.com/bestiary/
35 http://flash.9ria.com/

http://flash.9ria.com/

 42

the runtime environments: Internet Explorer 8.0, Firefox 3.6 and Chrome 5.0.

Figure 4.6 illustrates the value of the RMD of refactoring patterns in these 9 Flash

applications tested in different browsers. Table 4.2 and Figure 4.6 clearly

demonstrate the efficiency is significantly improved with ART. Table 4.2 and

Figure 4.6 also demonstrate that different configurations have different impacts

on the effectiveness of any refactoring approach. Hence, it is essential that Flash

programmers understand the impact of their configuration selections if they are to

produce highly efficient solutions.

According to the 80-20 rule (10% to 20% of the code occupies 80% to 90% of the

execution time), it is only worthwhile to refactor the bottlenecks of a program, not

every line of code. Thus, before refactoring, an internal ActionScript profiler is

used (Adobe Flex Builder36) to analyze the performance of a program. Based on

the performance analysis, we only refactor the function with the “largest”

computational overhead. The improvements presented in Table 4.2 are the

average across a large number of executions when the functions are supplied with

random, but valid, inputs.

Figure 4.6 Improvement of Refactoring Patterns

Tested in Different Browsers

36 http://www.adobe.com/products/flex/

 43

Table 4.2 Testing Results of Refactoring Patterns for Flash Applications

Application Name

Internet Explorer 8.0
(milliseconds)

Firefox 3.6
(milliseconds)

Chrome 5.0
(milliseconds)

Adobe
Flash

Player 9

Adoble
Flash

Player 10

Adobe
Flash

Player 9

Adobe
Flash

Player 10

Adobe
Flash

Player 10

Tetris

Before 9.4 6.4 9.4 6.0 3.0

After 6.0 4.2 6.0 4.0 2.2

RMD 0.44 0.42 0.44 0.40 0.31

Seek Road

Before 14.2 9.0 13.6 8.8 8.2

After 10.2 7.2 9.8 6.6 6.6

RMD 0.33 0.22 0.32 0.29 0.22

Object Cell

Before 20.6 9.0 19.4 8.8 6.2

After 17.0 6.9 17.0 6.4 5.4

RMD 0.19 0.26 0.13 0.32 0.14

Mine

Sweeping

Before 20.8 8.0 20.8 8.0 5.0

After 16.0 7.0 16.2 6.8 4.0

RMD 0.26 0.13 0.25 0.16 0.22

Fern

Before 34.4 25.0 34.2 24.4 23.6

After 29.2 22.0 29 19 17.2

RMD 0.16 0.13 0.16 0.25 0.31

Bomb Pig

Before 74.4 8.0 68.6 8.0 10.0

After 56.4 6.0 60.0 6.0 9.0

RMD 0.28 0.29 0.13 0.29 0.11

Lightning

Before 7.0 5.0 7.0 5.8 3.6

After 3.8 2.6 4.2 2.8 2.4

RMD 0.59 0.63 0.50 0.70 0.40

Grass

Before 11.5 7.7 10.5 7.3 5.2

After 8.9 5.5 7.3 4.8 4.2

RMD 0.25 0.33 0.36 0.41 0.21

Supper Ball

Before 26.0 19.0 28.5 18.0 12.0

After 19.5 11.0 19.5 10.5 7.5

RMD 0.29 0.53 0.38 0.53 0.46

The RMD as shown in Table 4.2 are between 0.11 and 0.67. This is because the

performance of the refactoring patterns varies across applications due to differing

code structures. On one hand, the frequency of occurrence for a pattern influences

the pattern’s performance. For example, the assignment operator is faster than the

push() method to set an array value (as mentioned in previous Section). However,

if push() is only used once outside of a loop, the performance improvement is not

obvious. On the other hand, the code that is unchanged by refactoring strongly

affects the performance of our patterns. We use implicit path enumeration (Li &

Malik, 1997) to illustrate. Let ci be the execution time of the basic program block,

xi be the number of times the basic block is run and N be the total number of basic

blocks, thus, the total execution time is:

1

N

i i

i

c x



 (2)

The total execution time is undecidable without the constraints on xi: structural

constraints, concluded from program control flow graphs; and functionality

 44

constraints, given the loop bound or other path information by users according to

functionality of a program. If we divide the function into two blocks: B1 which

does not have our patterns, B2 which includes our patterns. The total execution

time of this function is: (c1 * x1 + c2 * x2), where c1 and c2 are the time for

executing B1 and B2 once respectively. Looking at Figure 4.7(a) and Figure 4.7(b),

they both have the pattern “Replace Type Number for iterations”. To get an

accurate relative pattern performance, what we required is only the execution time

of block1 (B1). Therefore, the block2 (B2) should be empty or the code structure of

block2 (B2) should be extremely simple to not affect the results, as shown in

Figure 4.7(a). However, when we evaluate the pattern performance on the

applications, we are required to test more extended code blocks to guarantee the

integrity of the code structure, as is demonstrated in Figure 4.7 (b).

Figure 4.7 The Effects of Code Structure on Refactoring Patterns

The total execution time for the code in Figure 4.7(a) and Figure 4.7(b) is: (c1 *

100 + c2 * 100), where c1 and c2 are the times for executing B1 and B2 once

respectively. The influence of the “Replace Type Number for iterations” pattern is

only to reduce the execution time of B1. The influence of the refactoring is only to

reduce the execution time of B2. Therefore, if B1 takes much more time than B2,

even though the patterns are inside a loop, the improvement of c2 will not be

obvious. Therefore, the performance of the refactoring patterns varies across

applications due to differing code structures. Nevertheless, the results show a

positive improvement, which means ART has the ability to speed up Flash

applications by translating bad smell coding structures into more efficient code

structures. (2) The performance of ART is dependent on how many patterns are

inside a function; this reflects on the programmers’ programming skills. More

skillful programmers will have fewer patterns in their functions while less skillful

programmers will have more patterns.

(b)

for (var i:Number = 0; i <= 100; i++){ B1

mc = new GrassBlade();

mc.x = i*5;

mc.y = itsPar.stage.stageHeight-50;

itsPar.addChild(mc);

}

B2

tmp=i;

}

for(var i:Number = 0 ; i <= 100; i++){ B1

B2

(a)

 45

Chapter 5 Refactoring Flash Embedding Methods

Though both Flash and Ajax allow programmers to build dynamic websites, they

have different focuses. Flash stresses high-quality graphics and animations. It

supports sound effects, video and audio playback and capture; whereas Ajax

emphasizes actions on a website that involves the web server and the browser.

Integrating Flash with Ajax to enhance the user experience is highly popular. In

practice, Flash is usually served as a partial substitute for the interface of Ajax

technology to provide many graphical tasks that are difficult to accomplish using

only Ajax. Currently, there are many innovative websites using Flash and Ajax

technologies together, such as Google Finance
37

 and Yahoo Finance
38

.

Figure 5.1 The Combined Ajax and Flash Working Model

Figure 5.1 shows the combined Flash and Ajax working model. Flash content is

integrated into the user interface as a component. The Ajax engine runs within the

browser to communicate, interact and display information between the server and

the browser. If more data is requested from the Flash component, the Ajax engine

sends an asynchronous request to the server to retrieve extra data for the Flash

component to display without causing the entire web page to be refreshed.

Flash is written in ActionScript; whereas Ajax uses JavaScript. To implement the

integration of Flash and Ajax technologies, interaction between ActionScript and

JavaScript follows two steps.

1. Embedding Flash content into a web page.

2. Communication between ActionScript and JavaScript.

Flash can be embedded through markup-based embedding methods or JavaScript-

based embedding methods (Starr, 2008). Markup-based embedding methods use

pure Hypertext Markup Language (HTML) tags <object> or <embed> to include

Flash content while JavaScript-based embedding methods utilize JavaScript to

load Flash content. Flash embedding methods should meet the following criteria

(Sluis, 2007; Braunstein et al., 2007).

1. Cross-browser support: the method should have the ability to support all

web browsers.

37 http://www.google.com/finance
38 http://finance.yahoo.com/

HTTP Request

XML Data

Server Ajax Engine

Interface JavaScript Call

 HTML +CSS

Browser

 Flash

http://finance.yahoo.com/charts#chart1:symbol=adbe;range=1y

 46

2. Standards compliance: the method should be in compliance with the

World Wide Web Consortium (W3C) standards
39

.

3. Support for alternative content: alternative content should be supported.

That is, the content should be accessible when no Adobe Flash Player is

installed. This content can also be used for search engine indexing

purposes.

4. Support for plug-in version detection: The version of the Adobe Flash

Player should be detected before the Flash content is displayed.

Mismatches between the Flash content and the Adobe Flash Player may

result in errors or broken content.

In general, markup-based Flash embedding methods provide no Flash content and

plug-in version detection; whereas JavaScript-based Flash embedding methods

meet all the criteria (the detail will be discussed in the Markup-based Flash

Embedding Method and JavaScript-based Flash Embedding Methods Sections).

Even with limitations with markup-based methods, most programmers still use

them to embed Flash content (Schmitt, 2005). This is because: (1) many

programmers have limited knowledge about the pros and cons of markup-based

and JavaScript-based Flash embedding methods. (2) Programmers are more

familiar with the <object> and <embed> tags than the new JavaScript libraries.

Although most of the JavaScript libraries for embedding Flash content are easy to

use, it takes time for programmers to learn and become familiarize with the

libraries. (3) Most Flash embedding tutorials and Flash publishing tools choose to

use mark-up based methods for simplicity purposes, and programmers following

the tutorials or using Flash publishing tools just accept the default without

learning more about JavaScript-based methods.

Due to the disadvantages of markup-based embedding methods, they should be

replaced by JavaScript-based embedding methods. Clearly, a manual

transformation that requires the programmer to be knowledgeable about the

HTML tags (the <object> and <embed> tag) and the JavaScript library can

introduce defects. To aid programmers with the transformation from markup-

based embedding methods to JavaScript-based embedding methods, we have built

a refactoring tool, FlashembedRT. This tool refactors markup-based embedding

methods into a method using one of the popular Flash embedding JavaScript

libraries, flashembed
40

.

This chapter is organized as follows: Section 5.1 and Section 5.2 introduce

existing markup-based and JavaScript-based Flash embedding methods; Section

5.3 discusses our refactoring process.

39 http://www.w3.org/
40 http://flowplayer.org/tools/toolbox/flashembed.html

 47

5.1 Markup-based Flash Embedding Methods

Five different markup-based embedding methods are frequently used to insert

Flash content into a web page. To explain the differences between the methods,

we provide an example configuration for embedding Flash content (Table 5.1).

Table 5.1 An Example Configuration

Attribute Value

Container <div id= “flash” >

Path path/flash_movie.swf

Width 300

Height 300

alternative content <p>Alternative content</p>

required Adobe Flash Player version 9.0.45.0

flashvars1 name = varialbe1; value = value1

flashvars2 name = varialbe2; value = value2

For each method, we provide the HTML code using the example configuration as

well as the grammar for the HTML code. We have extended the HTML

grammar
41

 and to make the grammar simpler, only the directly utilized symbols

and rules of the grammar are included.

5.1.1 The <embed> tag

Using the <embed> tag is the most convenient way to insert Flash content. All

major browsers support this method; however, it is not standards-compliant. The

<embed> tag is invalid in HTML 4 and XHTML 1. Though this method supports

alternative content using <noembed> tag, it fails to detect the version of Adobe

Flash Player. The Flash embedding code for the <embed> tag is as follows.

<div id = "flash">

 <embed type = "application/x-shockwave-flash"

pluginspage = "http://www.adobe.com/go/getflashplayer"

width = "300" height = "300" src = "path/flash_movie.swf"

flashvars = "variable1=value1&variable2=value2"/>

 <noembed><p>Alternative content</p></noembed>

</div>

This code segment can be explained as follows.

1. The type attribute specifies that the embedded content is Flash content.

2. The pluginspage attribute indicates the location of the Adobe Flash Player.

3. The width and height attributes are required attributes of the <embed> tag

to specify the dimensions of the Flash content.

4. The src attribute specifies the location of the Flash content and the

flashvars attribute defines variables to be passed to the Adobe Flash Player.

41 http://www.antlr.org/grammar/HTML/html.g

 48

The HTML grammar for this method is defined as follows.

div: '<div' (WS ATTR)? '>' (body_content)* '</div>';
body_content: body_tag | text;

body_tag: heading | block | ADDRESS;

text: PCDATA | text_tag;

text_tag: font | phrase | special | form;

special: embed | noembed | ((condition)* object (condition)*)) |

anchor | IMG | applet | font_dfn | BFONT | map | BR;

embed:'<embed' WS ('type = "application/x-shockwave-flash"')

('pluginspage = "http://www.adobe.com/go/getflashplayer"') ('src

= "' (WORD ('%')? | ('-')? INT | STRING | HEXNUM) '"') ('width =

"' INT '"') ('height = "' INT '"') (ATTR)* '</>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

noembed: '<noembed>' (body_content)* '</noembed>';

5.1.2 The <object> tag

The <object> tag is recommended by the W3C to embed Flash content into a web

page. Thus, this method is standards-compliant and alternative content is allowed.

However, the <object> tag does not support plug-in detection functionality; and

not all major browsers support it.

To insert Flash content into non-IE browsers, the MIME-type (flash) is specified

for the type attribute. The data attribute indicates the location of the Flash content;

the width and height attributes are required attributes of the <object> tag to

indicate the dimensions of the Flash content and the <param> tag defines

variables to be passed to the Adobe Flash Player using the flashvars attribute. The

HTML code for non-IE browsers is as follows.

<div id = "flash">

<object type = "application/x-shockwave-flash" width = "300"

height = "300" data = "path/flash_movie.swf">

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

 <p>Alternative content</p>

</object>

</div>

To insert Flash content into IE, the classid attribute is used to identify the ActiveX

control for the browser as IE expects the Adobe Flash Player to be an ActiveX

control. The movie attribute for the <param> tag specifies the location of the

Flash content. The HTML code for IE is as follows.

<div id = "flash">

<object classid = "clsid:D27CDB6E-AE6D-11cf-96B8-44455354000"

width = "300" height = "300">

<param name = "movie" value="path/flash_movie.swf"/>

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

<p>Alternative content</p>

</object>

</div>

 49

The HTML grammar for the <object> tag is as follows.

object: '<object' WS ('classid = "clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"') | (('type = "application/x-shockwave-flash"')

('data = "' (WORD ('%')? | ('-')? INT | STRING | HEXNUM) '"'))

('width = "' INT '"') ('height = "' INT '"') (ATTR)* '>' (param)*

(body_content)* '</object>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

param: '<param name = "' WORD '"' 'value = "' (WORD ('%')? | ('-')?

INT | STRING | HEXNUM) '"</>';

5.1.3 Twice Cooked

The Twice Cooked method utilizes a nested <embed> tag inside an <object> tag

to embed Flash content. The method is widely used because it is the default

method for the Adobe Flash IDE to insert Flash content. Nonetheless, it is

redundant as each value is declared twice; it is not standards-compliant due to

usage of the <embed> tag; and it provides no alternative content and plug-in

version detection functionality. The codebase attribute specifies the download

location of the Adobe Flash Player. When no Adobe Flash Player is installed, the

browser downloads the Adobe Flash Player automatically. The HTML code for

this method is as follows.

<div id = "flash">

<object classid = "clsid:D27CDB6E-AE6D-11cf-96B8-44455354000"

codebase = "http://fpdownload.macromedia.com/pub/shockwave/

cabs/flash/swflash.cab#version=9,0,45,0" width = "300"

height = "300">

<param name = "movie" value = "path/flash_movie.swf"/>

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

<embed type = "application/x-shockwave-flash"

src = "path/flash_movie.swf" width = "300" height = "300"

pluginspage = "http://www.adobe.com/go/getflashplayer"

flashvars = "variable1=value1&variable2=value2"/>

</object>

</div>

The HTML grammar for this method is as follows.

object: '<object' WS ('classid = "clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"') ('codebase = " http://fpdownload.macromedia.com/

pub/shockwave/cabs/flash/swflash.cab#version=' version '"')

('width = "' INT '"') ('height = "' INT '"') (ATTR)* '>' (param)+

embed '</object>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

param: '<param name = "' WORD '"' 'value = "' (WORD ('%')? | ('-')?

INT | STRING | HEXNUM) '"</>';

embed: '<embed' WS ('type = "application/x-shockwave-flash"')

('pluginspage = "http://www.adobe.com/go/getflashplayer"') ('src

= "' (WORD ('%')? | ('-')? INT | STRING | HEXNUM) '"') ('width =

"' INT '"') ('height = "' INT '"') (ATTR)* '</>';

 50

5.1.4 Nested Objects

Instead of using a nested <embed> tag, the Nested Objects method utilizes a

nested <object> tag to embed Flash content. It is standards-compliant and

supports alternative content.

<div id = "flash">

<object classid = "clsid:D27CDB6E-AE6D-11cf-96B8-44455354000"

width = "300" height = "300">

<param name = "movie" value = "path/flash_movie.swf"/>

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

<object type = "application/x-shockwave-flash"

data = "path/flash_movie.swf" width = "300"

height = "300">

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

<p>Alternative content</p>

</object>

</object>

</div>

The Nested Objects method does not allow plug-in detection and lacks cross-

browser support (Sluis, 2008). Using IE-specific conditional comments can solve

the cross-browser problem (Murphy & Persson, 2008; Allsopp, 2009). IE-specific

conditional comments provide a mechanism to target blocks of HTML code

toward a specific version of the browser. It starts with a <!--[if]> tag and ends

with a <![endif]--> tag.

<div id = "flash">

<object classid = "clsid:D27CDB6E-AE6D-11cf-96B8-44455354000"

width = "300" height = "300">

<param name = "movie" value = "path/flash_movie.swf"/>

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

<!--[if !IE]>-->

<object type = "application/x-shockwave-flash"

data = "path/flash_movie.swf" width = "300"

height = "300">

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

<!--<![endif]-->

<p>Alternative content</p>

<!--[if !IE]>-->

</object>

<!--<![endif]-->

</object>

</div>

The conditional comments [if !IE] targets non-IE browsers, so that all browsers

(IE and non-IE) are considered by this method. The HTML statements inside the

conditional comments are evaluated when non-IE browsers are detected. This

method is standards-compliant and it provides support for all major browsers.

However, it is redundant and it has no plug-in detection functionality. Another

 51

problem with this method is that IE cannot stream large movies; the movie only

starts playing after the entire video file is downloaded. The HTML grammar for

this method is as follows.

object: '<object' WS ('classid = "clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"') | (('type = "application/x-shockwave-flash"')

('data = "' (WORD ('%')? | ('-')? INT | STRING | HEXNUM) '"'))

('width = "' INT '"') ('height = "' INT '"') (ATTR)* '>' (param)*

(condition)* (body_content)* (condition)* '</object>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

param: '<param name = "' WORD '"' 'value = "' (WORD ('%')? | ('-')?

INT | STRING | HEXNUM) '"</>';

5.1.5 Flash Satay

The Satay method (Mclellan, 2002) is based upon a generic object

implementation and can solve the streaming problem of Internet Explorer. A

small container is utilized to load the Flash content. The implementation of this

method contains two steps: (1) create a new Flash movie called c.swf and place

_root.loadMovie(_root.path,0) into the first frame. (2) The actual Flash movie is

loaded using the following code, which passes a variable (path) to the c.swf to

load the target flash_movie.swf.

<div id = "flash">

<object type = "application/x-shockwave-flash"

 data = "c.swf?path=movie.swf" width = "300" height = "300">

<param name = "movie"

value = "c.swf?path=path/flash_movie.swf"/>

<param name = "flashvars"

value = "variable1=value1&variable2=value2"/>

 <p>Alternative content</p>

</object>

</div>

The HTML grammar for this method is as follows.

object:'<object' WS ('type = "application/x-shockwave-flash"')

('data = "' (WORD ('%')? | ('-')? INT | STRING | HEXNUM)) ('width

= "' INT '"') ('height = "' INT '"') (ATTR)* '>' (param)+

(body_content)* '</object>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

param: '<param name = "' WORD '"' 'value = "' (WORD ('%')? | ('-')?

INT | STRING | HEXNUM) '"</>';

5.2 JavaScript-based Flash Embedding Methods

To avoid the issues associated with markup-based Flash embedding methods,

JavaScript-based Flash embedding methods have been developed to meet all the

criteria for embedding Flash content. JavaScript-based Flash embedding methods

can be implemented using different JavaScript libraries, such as SWFObject
42

.

42 http://code.google.com/p/swfobject/

 52

Flashembed is a new JavaScript tool to embed Flash content into a web page,

which has the following features.

1. Flash can be configured with JSON. This is a unique feature of

flashembed. This feature allows more complex configurations to be used

when embedding Flash content.

2. Flashembed has jQuery support; it can work as a standalone tool as well as

a jQuery plug-in.

3. Flashembed produces standards-compliant markup, provides plug-in

detection and alternative content, and is supported by all the major

browsers.

Flashembed is easy to use; the syntax for the flashembed function is as follows.

flashembed(container, embedOptions, flashConfiguration);

The container argument indicates which HTML element contains the Flash object;

the embedOptions argument specifies the path to the swf file and all the attributes

for embedding; and the flashConfiguration argument configures the Flash object

by providing flashvars to the Flash object. JSON-based configurations are

allowed in the third argument.

The jQuery syntax for flashembed is shown as follows.

$("jquery_selector").flashembed(embedOptions, flashConfiguration);

Flashembed provides plug-in detection and alternative content in the following

ways.

1. Programmers place alternative content (HTML code) directly into the

HTML element where Flash is embedded.

2. Flashembed has an attribute called version, which indicates the required

version of the Adobe Flash Player to display the Flash content. By

specifying this attribute, Flashembed detects the version of the Adobe

Flash Player upon loading the Flash content. If the required version is not

detected, the default alternative content will be delivered to the user.

3. Adobe's Express Install (Kazoun & Lott, 2008; Carey, 2009) is supported

through the expressInstall property. Express Install detects the version of

the Adobe Flash Player, if it is not the latest version; it allows a process to

update the Adobe Flash Player to the latest version.

4. Flashembed provides an onFail method which is evaluated when no

Adobe Flash Player or an old version of the Adobe Flash Player is

detected.

5.3 Refactoring Flash Embedding Methods

We adopt refactoring for migration purpose. The semi-automatic refactoring

approach (Mens & Tourwé, 2004) is used as refactoring will often encompass

functionality which cannot be inferred automatically by a program. Thus,

programmers are required to provide information to accomplish the

 53

transformation. The invariants, pre and post-conditions refactoring technique

(Opdyke, 1992; Roberts, 1999) is employed to ensure that the refactoring can be

implemented successfully.

Pre-condition: The syntax of the mark-up based Flash embedding methods is

functionally correct.

Post-condition: The syntax of the generated JavaScript for the flashembed

function and the HTML code for the alternative content is functionally correct.

Our refactoring process comprises three phases: bad smell detection, code

rewriting and code generation.

5.3.1 Bad Smell Detection

The first step of our transformation process is to detect bad smells. The bad smell

in our system comes from the five different markup-based Flash embedding

methods. These methods utilize the HTML <object> and <embed> tags to include

Flash content, which can be identified using an HTML parser. For this

dissertation, Jsoup
43

, a Java HTML parser, is adopted to find, extract and modify

HTML elements, attributes and the content of the elements. Bad smell detection

includes:

1. Flash Container Extraction

When embedding Flash content, it must be placed into an HTML element such as

the <div> tag. The first argument of the flashembed function indicates the id of

the HTML element where the Flash object is placed. Thus, the Flash container

needs to be extracted.

2. Attribute Extraction

Flash supports different parameters or attributes in the <object> or <embed> tag

to control how the Flash content is embedded (Carey, 2009). When using the

<object> tag to embed Flash content, programmers are required to define the

attributes for both of the <object> tag and the nested <param> tag. The

flashembed function has one required attribute, src, and several optional attributes

that are specific to the function.

 The version attribute specifies the minimum version of the Adobe Flash

Player required for displaying Flash content. The format for the version

number is [major, fix].

 The w3c attribute specifies whether the HTML code using standards-based

syntax is generated to include Flash content. If the w3c attribute is set to false,

flashembed generates different HTML code using the <object> tag according

to the browser type (IE or non-IE). By enabling this attribute, flashembed

generates a standards-based syntax that supports all browsers.

 The cachebusting attribute decides whether flashembed forces Flash content

to be loaded from the server while ignoring the Expires HTTP header of the

43 http://jsoup.org/

 54

browser’s cache.

 The expressInstall attribute specifies an absolute or relative path to an

expressinstall.swf file which allows users to update the Adobe Flash Player to

the latest version.

The flashembed function also allows the usage of popular attributes associated

with the <object> and <embed> tags, such as bgcolor, wmode, allowfullscreen

and allowscriptaccess. Thus, attribute extraction extracts the <object> and

<embed> tags’ attributes that can be mapped to the corresponding attributes in the

flashembed function, while ignoring specific attributes for the <object> and

<embed> tag, such as the classid attribute for the <object> tag, and the

pluginspage attribute for the <embed> tag.

3. Alternative Content Extraction

In markup-based Flash embedding methods, the alternative content is specified

inside the <object> or <noembed> tag. If programmers select to keep the

alternative content specified in markup-based Flash embedding methods, the

HTML code for alternative content – which are to be preserved during the process

of refactoring – is extracted.

4. Flash Variables Extraction

The <object> and the <embed> tags are able to pass variables from the HTML

document to the Flash content through the flashvars attributes/parameters when

the Flash content is loaded in a web browser. The variables are defined using a set

of “name = value” pairs separated by the “&” character; whereas the third

argument of the flashembed function defines flashvars using a set of “name: value”

pairs separated by commas. Therefore, if the flashvars property is specified in the

markup-based Flash embedding method, the name and value of the variable to be

passed to the Flash content are extracted and transformed to the corresponding

flashembed format.

5.3.2 HTML Code Rewriting

Moving from markup-based Flash embedding methods to JavaScript-based Flash

embedding methods requires deleting the <object> and <embed> tags and their

specifications. Only the alternative content in the containing element remains

intact, if specified to be preserved. The HTML code rewriting phase cleans up the

HTML code for markup-based Flash embedding methods.

5.3.3 Flashembed Code Generation

The flashembed code generation phase consists of six steps.

1. Select the style for the generated code

The first step to produce the flashembed function code is for programmers to

select the style of the generated code: JavaScript or jQuery.

 55

2. Code generation for importing external JavaScript libraries

The code for importing the flashembed library is produced in this step. If

programmers decide to generate the flashembed function using jQuery, the code

for importing the jQuery library is also produced.

3. Code generation for attributes

In this step, the attributes for embedding Flash content – extracted in the bad

smell detection phase – are mapped to the attributes in the flashembed function.

Additionally, flashembed has several specific attributes, such as w3c and

cachebusting that require programmers to select and configure. The system will

produce the code for all the extracted and newly selected attributes according to

the syntax of the flashembed function.

4. Code generation for alternative content

If the alternative content specified in markup-based Flash embedding methods is

required to be preserved, the alternative content is unchanged before and after

refactoring. Flashembed provides programmers additional options for the Adobe

Flash Player version detection and alternative content through the version,

expressInstall properties and the onFail method. If programmers select to utilize

the version property, they are required to provide the version number of the

Adobe Flash Player to generate the code for this property. By specifying the

version attribute, the default HTML snippet for alternative content is created. If

the expressInstall property is selected, programmers need to input the path to the

Adobe Flash Player express install for the code generation of this property. If

programmers wish to add dynamic alternative content using JavaScript through

the onFail method, a skeleton of the method is generated and programmers are

required to add the body of the method as the system has no way of understanding

the domain of the application.

5. Code Generation for Flashvars

If, during the bad smell detection phase, variables being passed to the Flash

content are detected, the format of these variables are transformed into

flashembded’s format. This step produces the code for the third argument of the

flashembed function.

6. Code Generation for the flashembed function

Once steps 1 to 5 are completed, the flashembed function is generated.

5.3.4 Grammar for Transformation

In the previous section, we provide the grammar for five different markup-based

Flash embedding methods before refactoring. In this section, we provide the

grammar for the flashembed function after refactoring. We extended JavaScript

grammar
44

. To make the grammar simpler, only the directly utilized symbols and

rules of the grammar are included. The grammar for JavaScript flashembed

function is shown as follows.

44 http://www.antlr.org/grammar/1206736738015/JavaScript.g

 56

flashembed: 'flashembed(' container ',' embedOptions ','

flashConfiguration ')';

container: '"' Identifier '"';

embedOptions: '{' ('"' Identifier '"') | (attributes) '}';
attributes: attribute (',' attribute)*;

attribute: Identifier ':' ((('"')? Identifier ('"')?) | function);

flashConfiguration: '{' flashvar | JSONConfiguration '}';
flashvar: var (',' var)*;

var: Identifier ': ' ''' Identifier ''';
JSONConfiguration: Identifier ':{' members? '}'

members: pair (',' pair)*;

pair: Identifier ':' (''')? value (''')?;

value: Identifier | JSONConfiguration;

This is the grammar for the flashembed function using jQuery.

jquery: '$(' jquery_selector ').flashembed(' embedOptions ','

flashConfiguration ')';

container: '"' Identifier '"';

embedOptions: '{' ('"' Identifier '"') | (attributes) '}';
attributes: attribute (',' attribute)*;

attribute: Identifier ':' ((('"')? Identifier ('"')?) | function);

flashConfiguration: '{' flashvar | JSONConfiguration '}';
flashvar: var (',' var)*;

var: Identifier ': ' ''' Identifier ''';
JSONConfiguration: Identifier ':{' members? '}'

members: pair (',' pair)*;

pair: Identifier ':' (''')? value (''')?;

value: Identifier | JSONConfiguration;

5.3.5 System in Operation

To illustrate the operation of FlashembedRT, we provide an example to

demonstrate our refactoring process from the Nested Object method to the

flashembed method. The system starts with the bad smell detection phase.

1. The id (“flash”) of the Flash container (the <div> tag) is retrieved.

2. The width and height attributes of the parent <object> tag and the movie

attribute of the nested <param> tag are extracted. The specifications for the

attributes of the parent <object> and the nested <object> tag should be

identical (except the type and the classid attributes). It is not necessary to

extract all the attributes in the nested <object> tag. However,

FlashembedRT extracts the attributes of the nested <object > tag and

compares them with the parent <object> tag. If the specifications are

different, an error will occur.

3. The alternative content, <p>Alternative content</p>, is retrieved.

4. The flashvars attribute is extracted and transformed to the corresponding

format in the flashembed function.

The HTML code rewriting phase: we select to keep the alternative content. Hence,

the parent <object> tag and the nested <object> tag are deleted, only the

alternative content is preserved in the HTML code.

 57

The flashembed code generation phase:

1. We select to generate the flashembed function in JavaScript.

2. The code for importing the flashembed library is produced.

3. We specify the w3c attribute to be true, and then the code for the w3c

attribute and other attributes are generated. The movie attribute of the nested

<param> tag is mapped to the src attribute of the flashembed function.

4. To add Adobe Flash Player version detection and alternative content, we

specify the version attribute to be 9.0.45.0. By specifying the version

attribute, the default HTML snippet for alternative content is created in the

container of the Flash content. However, in our example, the alternative

content have already defined in the Flash container; hence, the default

HTML code will be disabled. We also select to use the onFail method, so

the code for the version attribute and the skeleton of the onFail method are

produced.

5. The code for the flashvars attribute is generated.

6. The flashembed function is produced according to our configuration and the

last step is to add JavaScript code to the onFail function. We add JavaScript

code to change the title of the web page if no Adobe Flash Player or an old

version of the Adobe Flash Player is detected.

After FlashembedRT is applied to the Nested Objects method, the generated code

for the flashembed function is as follows.

flashembed("flash", {

src: "path/flash_movie.swf",

width: "300",

height: "300",

version: [9, 45],

onFail: function() {

document.title = "Get Adobe Flash Player";

},

variable1: 'value1',

variable2: 'value2'

});

 58

Chapter 6 Refactoring to Switch the Data Exchange

Language for Improving Ajax Application Performance

To achieve a more responsive user experience, data transmission rates and

performance (on both the client and server side) characteristics for Ajax

applications are quite crucial. XML and JSON are two common data interchange

formats currently used in Ajax applications. Though XML is a standard way to

exchange data, due to its verbose nature, it is often replaced by JSON which is a

lightweight data exchange format. Changing the data format from using XML to

JSON for Ajax applications can improve the efficiency of an Ajax application (up

to one hundred times faster) and enhance user experience by reducing the network

transfer time and client JavaScript processing time (Nurseitov et al., 2009).

One way to implement this transformation is through refactoring. Our refactoring

process is for efficiency purpose. Programmers can use our proposed refactoring

technique to transform existing XML-based Ajax web applications into JSON-

based Ajax web applications to increase the efficiency of their applications. To

avoid tedious, error-prone and omission-prone (Dig et al., 2009a) manual

refactoring, in this chapter, we introduce a refactoring tool, XtoJ, to aid with the

transformation process. Specifically, the system assists programmers who

maintain RIAs with the refactoring of systems that are still using XML data

structures into JSON data structures.

Although JSON has been gaining in popularity with new Ajax applications, XML

still remains very common. According to ProgrammableWeb.com
45

, which is a

website specializing in the categorization of Web APIs, there were 58% more

XML-based Web APIs than JSON-based Web APIs as of August 2011.

Additionally, many popular Web APIs from corporations such as Yahoo and

Google initially only offered XML-based APIs before releasing JSON-based APIs

at a much later date. Hence, Ajax web applications developed using XML-based

APIs can now be refactored to take advantage of the available JSON-based APIs.

As the popularity of JSON-based APIs increases, it is important for programmers

to refactor their Ajax web applications from XML-based APIs because Web 2.0

websites may stop supporting XML-based APIs in the future. For example,

Twitter stopped supporting XML-based Streaming API as of December 2010

(Irani, 2010).

The remainder of the chapter is as follows. Section 6.1 presents our refactoring

approach to transform XML-based Ajax applications to JSON-based Ajax

applications. Section 6.2 describes the three components of our refactoring

system. Section 6.3 evaluates the performance of our refactoring system by

utilizing it to refactor a number of real-world applications.

45 http://www.programmableweb.com/

 59

6.1 Refactoring XML into JSON in Ajax Applications

In Section 6.1.1, we provide an example of an XML-based Ajax application

which will be used to demonstrate our refactoring process. We will then discuss

the performance comparison between utilizing XML and JSON in Section 6.1.2.

Finally, Section 6.1.3 describes our approach to implement the transformation

from XML-based Ajax applications to JSON-based Ajax applications.

6.1.1 Example

We use the Ajax RSS Reader
46

 and the Really Simple Syndication (RSS) XML

file from IMDb
47

 as an example. Figure 6.1 shows the web page of the Ajax RSS

Reader (index.html). It displays the information of the channel and each feed in

the channel.

Figure 6.1 The Ajax RSS Reader Web Page

The structure of the RSS XML file is shown as follows.

<channel>

<title>IMDb News</title>

<link>http://www.imdb.com/rg/rss/news-channel/news/</link>

<description>IMDb News</description>

<language>en</language>

<copyright>Copyright (C) 2011 IMDb.com, Inc.

http://www.imdb.com/conditions</copyright>



<item>

<title>Actress McCormack Pregnant</title>

<pubDate>Fri, 22 Apr 2011 19:21:00 GMT</pubDate>

<link>http://www.imdb.com/rg/rss/news/news/ni9872103/

</link>

</item>

46 http://ajax.phpmagazine.net/2005/11/ajax_rss_reader_step_by_step_t.html
47 http://www.imdb.com/

 60

<item>

<title>Pattinson Made Up Royal Connection</title>

<pubDate>Fri, 22 Apr 2011 19:21:00 GMT</pubDate>

<link>http://www.imdb.com/rg/rss/news/news/ni9872102/

</link>

</item>

…

</channel>

Figure 6.2 shows the JavaScript code used to retrieve data from the RSS XML

file. In Figure 6.2, the responseXML property of the XMLHttpRequest object

(RSSRequestObject) gets the response (XML) from a server and returns an XML

DOM object (a tree structure). To get the value of the nodes, two XML DOM

properties: firstChild (returns the first child of a node) and data (returns the value

of a node), and one XML DOM method: getElementsByTagName(tagName)

(returns all nodes with a specified tag name) are used.

Figure 6.2 The JavaScript Code for XML-based Ajax RSS Reader

6.1.2 Performance Comparison

The performance differences between utilizing XML and JSON is obvious.

Nurseitov et al. (2009) design and implement scenarios to measure and compare

the transmission time and resource utilizations between XML and JSON. They

utilized massive data sets during this exploration. In the first scenario, a client

sends 1,000,000 objects to a server using XML and JSON encoding; and in the

second scenario, a client sends a series of smaller number of objects (20000,

40000, 60000, 80000 and 100000) to a server using XML and JSON encoding

separately.

 61

Table 6.1 Results for Different Scenarios

Scenario Measurement XML(ms) JSON(ms) RMD

Scenario 1
Total Time 4546694.78 78257.9

1.93
Average Time Per Object 4.55 0.08

Scenario 2

Total Time for 20,000 Objects 61333.68 2213.15
1.86

Average Time Per Object 3.07 0.11

Total Time for 40,000 Objects 123854.59 3127.99
1.90

Average Time Per Object 3.10 0.08

Total Time for 60,000 Objects 185936.27 4552.38
1.90

Average Time Per Object 3.10 0.08

Total Time for 80,000 Objects 247639.81 6006.72
1.90

Average Time Per Object 3.10 0.08

Total Time for 100,000 Objects 310017.47 7497.36
1.91

Average Time Per Object 3.10 0.07

Table 6.1 describes the performance differences between XML and JSON for

these two scenarios. To compare their performances, the RMD of the transmission

time of accessing XML data and JSON data is calculated as:

 (Response Time for XML - Response Time for JSON)

 (Response Time for XML + Response Time for JSON) /2 (3)

It can be seen from the table that sending JSON encoded data is much faster than

sending XML encoded data. This is because JSON is more compact than XML,

which results in smaller documents. Thus, less bandwidth will be consumed and

the data transmission between the client and server side will be significantly faster

(Nurseitov et al., 2009). On the other hand, XML documents are usually accessed,

and manipulated, by constructing an XML DOM (Jacobs, 2006). According to the

definition by W3C, “The W3C Document Object Model (DOM)
48 is a platform

and language-neutral interface (API) that allows programs and scripts to

dynamically access and update the content, structure, and style of a document”.

To facility the node navigation, a DOM-based parser reads the entire XML

document and transforms the XML document or XML string into an XML DOM

object (a tree structure) in memory. When parsing large XML documents, it can

be slow and resource-intensive (Jacobs, 2006).

However, JSON is a subset of JavaScript, retrieving data from a JSON object is

“identical” to retrieving information from any other JavaScript object. Hence,

processing JSON encoded data is much faster than processing XML encoded data,

which makes the browser’s response faster.

Therefore, based on the testing results in Table 6.1, we can see that a strong

argument exists: Ajax applications requiring high performance should utilize

JSON rather than XML, because JSON improves the efficiency of an Ajax

application by reducing network transfer time and client JavaScript processing

time.

48 http://www.w3.org/DOM/

http://www.w3.org/DOM/

 62

6.1.3 Methodology

Transforming existing XML-based Ajax applications (such as the Ajax RSS

Reader) to JSON-based Ajax applications is not straightforward. For an existing

Ajax application (a common form of RIAs) changing the data format involves two

procedures.

1. Converting the data from XML to JSON.

2. Changing the JavaScript code from the code which manipulates the XML

data to the code which manipulates the JSON data.

However, programmers knowledgeable about XML may know nothing about

JSON. In addition, programmers who implement the transformation may not be

the original authors of the system; therefore, they require an understanding of all

the interactions between the JavaScript code and the XML data. Such a process

can clearly introduce defects; thus, we have designed a refactoring tool, XtoJ, to

assist with the transformation of Ajax applications from utilizing XML to

utilizing JSON.

We use refactoring to implement this transformation. Refactoring can be

performed using either semi-automatic or fully-automatic approach (Mens &

Tourwé, 2004). Our system is a semi-automated system as the transformation will

often encompass functionality which cannot be automatically inferred by a

program.

Our refactoring process contains three principle steps.

1. XML to JSON conversion. Converting an XML file into a JSON file is the

first step in our refactoring process; the system is capable of achieving this

conversion automatically. This transformation requires no “judgment

calls” and is completely safe; hence, a completely automated approach is

the best option.

2. JavaScript code transformation. After the XML file is converted into

JSON, JavaScript code transformations can be completed automatically to

transfer the JavaScript code which accesses the XML data to the

functionally equivalent JavaScript code which processes the semantically-

identical (to the XML) JSON data. This step is fully automated.

3. JavaScript code generation. The JavaScript code transformation only can

convert the already existing JavaScript code which manipulates the

existing XML data to manipulate the newly created JSON data. If more

functionality is required, JavaScript code generation is invoked, in a semi-

automated fashion, to produce the JavaScript code skeletons in accordance

with users‟ requirements and users are asked to provide the “bodies” for

these skeletons.

6.2 System Components

Our system has three components to perform the transformation; we now discuss

each of them in detail.

 63

6.2.1 XML to JSON Converter

The XML to JSON Converter converts XML files into JSON files automatically.

It is not necessary for programmers to know the syntax of XML or JSON, and the

transformation rules between XML and JSON. We extended the grammar of

JsonXml.js
49

 which is a library to implement such transformation automatically.

Though XML and JSON have different syntax and structures, there are six basic

rules for converting XML into JSON. For each rule, an XML version of the code

and the corresponding JSON version of code are given, as well as the methods

required to access the JSON version of the code, as an example. JavaScript

provides an eval() function to convert a JSON string into an object. However, it is

not secure since it can execute any piece of JavaScript code including malicious

scripts. Hence, unless the client trusts the source of the data, it is advisable to use

a JSON parser instead. To stop malicious scripts from executing, we use a JSON

parser
50

 to recognize and accept only valid JSON strings. Finally, grammatical

statements covering the transformational rules are provided as general statements

of the cases each transformational situation covers. The grammatical statements

are Extended Backus-Naur Form (EBNF) (Attenborough, 2003) for XML 1.0

(W3C, 2008), namespace in XML 1.0 (W3C, 2009) and JSON
51

. To simplify the

grammar, we only include directly utilized symbols and rules in the grammars.

6.2.1.1 Rules for Converting XML into JSON

Rule 1: An XML element that only has text

After the transformation, the following statements can be used to access the value

of the node a.

var jsonObject = JSON.parse(xmlHttp.responseText);

var TextA = jsonObject.root.a; //get "text"

49 http://michael.hinnerup.net/blog/2008/01/26/converting-json-to-xml-and-xml-to-json/
50 https://github.com/douglascrockford/JSON-js/blob/master/json2.js
51 http://www.json.org/

<root>

 <a>text

</root>

XML

JSON

{

"root":{

 "a":"text"

}

}

http://michael.hinnerup.net/blog/wp-content/uploads/2008/01/JsonXml.js

 64

Rule 2: An XML element that has text and attributes

After the transformation, the following statements can be used to access the value

and the attribute of the node a.

var jsonObject = JSON.parse(xmlHttp.responseText);

var TextA = jsonObject.root.a["#text"]; //get "text"

var AttributeA = jsonObject.root.a["@name"]; //get "value"

 EBNF for JSON

element: STag content ETag

STag: '<' Name S? '>'

ETag: '</' Name S? '>'

content: (element | CharData)*

EBNF for XML 1.0

object: '{' members? '}'

members: pair (',' pair)*

pair: string : value

value: string | object

string: '"' chars* '"'

{

 "root": {

 "a":{

 "@name":"value",

 "#text":"text"

}

 }

}

JSON

XML

<root>

 text

</root>

 65

Rule 3: An XML element that contains sub elements with the same names

After the transformation, the following statements can be used to access the value

of the node b.

var jsonObject = JSON.parse(xmlHttp.responseText);

var Text1 = jsonObject.root.a.b[0]; //get "text1"

var Text2 = jsonObject.root.a.b[1]; //get "text2"

element: STag content ETag

STag: '<' Name (S Attribute)* S? '>'

Attribute: Name Eq AttValue

ETag: '</' Name S? '>'

content: (element | CharData)*

EBNF for XML 1.0

 EBNF for JSON

object: '{' members? '}'

members: pair (',' pair)*

pair: ('"#text"'| string) : value

value: string | object

string: '"' ('@')? chars* '"'

XML

<root>

<a>

text1

text2

</root>

{

"root": {

"a": {

 "b":["text1","text2"]

 }

 }

}

JSON

 66

Rule 4: An XML element that has contiguous text

After the transformation, the following statements can be used to access the value

of the node a and the node b.

var jsonObject = JSON.parse(xmlHttp.responseText);

var TextA = jsonObject.root.a["#text"]; //get "textA"

var TextB = jsonObject.root.a.b; //get "textB"

element: STag content ETag

STag: '<' Name S? '>'

ETag: '</' Name S? '>'

content: (element | CharData)*

EBNF for XML 1.0

object: '{' members? '}'

members: pair (',' pair)*

pair: string : value

value: string | object | array

string: '"' chars* '"'

array: '[' elements? ']'

elements: value (',' value)*

EBNF for JSON

{

 "root": {

 "a": {

"#text":"textA",

"b":"textB",

 }

 }

}

JSON

XML

<root>

<a>

textA

textB

</root>

 67

Rule 5: An XML element that has a CDATA structure

After the transformation, the following statements can be used to access the value

of the node a.

var jsonObject = JSON.parse(xmlHttp.responseText);

var TextA = jsonObject.root.a["#cdata"]; //get "text"

JSON

{

 "root":{

 "a": {

 "#cdata":"text"

 }

}

}

XML
<root>

<a><![CDATA[text]]>
</root>

element: STag content ETag

STag:'<' Name S? '>'

ETag:'</' Name S? '>'

content: (element | CharData)*

 EBNF for XML 1.0

EBNF for JSON

object: '{' members? '}'

members: pair (',' pair)*

pair: ('"#text"'| string) : value

value: string | object

string: '"' chars* '"'

 68

Rule 6: An XML element that uses namespaces

After the transformation, the following statements can be used to access the value

of the node a:b.

var jsonObject = JSON.parse(xmlHttp.responseText);

var TextAB= jsonObject.root["a:b"]; //get "text"

<root>

<a:b>text</a:b>

</root>

XML

JSON

{

 "root":{

"a:b":"text"

}

element: STag content ETag

STag: '<' Name S? '>'

ETag: '</' Name S? '>'

content: (element | CDSect | CharData)*

CDSect: CDStart CData CDEnd

CDStart: '<![CDATA['

CData: (Char* - (Char* ']]>' Char*))

CDEnd: ']]>'

EBNF for XML 1.0

EBNF for JSON

object: '{' members? '}'

members: pair (',' pair)*

pair: ('"#cdata"' | string) : value

value: string | object

string: '"' chars* '"'

http://www.jelks.nu/XML/xmlebnf.html#NT-CDStart
http://www.jelks.nu/XML/xmlebnf.html#NT-CData
http://www.jelks.nu/XML/xmlebnf.html#NT-CDEnd
http://www.jelks.nu/XML/xmlebnf.html#NT-Char
http://www.jelks.nu/XML/xmlebnf.html#NT-Char
http://www.jelks.nu/XML/xmlebnf.html#NT-Char

 69

6.2.1.2 Example of System in Operation

We use the XML to JSON Converter to convert the RSS XML file in Section

6.1.1 to the RSS JSON file (rss.js). The structure of the created JSON file is as

follows.

{

"channel":{

"title":"http://www.imdb.com/rg/rss/news/news/ni9872099/fff",

"link":"http://www.imdb.com/rg/rss/news-channel/news/",

"description":"IMDb News",

"language":"en",

"copyright":"Copyright (C) 2011 IMDb.com, Inc.

http://www.imdb.com/conditions",

"image":{

"title":"IMDb News",

"url":"http://i.imdb.com/logo.gif",

"link":"http://www.imdb.com/rg/rss/news-channel/news/"

},

 "item":[{

 "title":"Actress McCormack Pregnant",

 "pubDate":"Fri, 22 Apr 2011 19:21:00 GMT",

 "link":"http://www.imdb.com/rg/rss/news/news/ni9872103/"

 },

 {

 "title":"Pattinson Made Up Royal Connection",

 "pubDate":"Fri, 22 Apr 2011 19:21:00 GMT",

 "link":"http://www.imdb.com/rg/rss/news/news/ni9872102/"

 },

…

]}

}

EBNF for namespaces in XML 1.0

element: STag content ETag

STag: '<' QName S? '>'

ETag: '</' QName S? '>'

content: (element | CharData)*

QName: PrefixedName| UnprefixedName

PrefixedName: Prefix ':' LocalPart

UnprefixedName: LocalPart

EBNF for JSON

object: '{' members? '}'

members: pair (',' pair)*

pair: string (':' string)* : value

value: string | object

string: '"' chars* '"'

 70

6.2.2 JavaScript Code Transformer

The JavaScript Code Transformer automatically transforms JavaScript code used

to access XML data into the JSON equivalent. It does this without requiring the

programmers to have knowledge of how to access XML or JSON data. Despite

changes to the data format, both the original code and the transformed version

also require the same functionality.

To ensure the safety of the refactorings, the pre and post-conditions (Opdyke,

1992; Roberts, 1999) are established. The JavaScript Code Transformer is able to

check the following pre and post-conditions.

Pre-conditions:

1. The syntax of the XML documents and the JavaScript code (DOM APIs)

used to access the XML nodes is functionally correct.

2. The hierarchical depth of the XML documents is less than five. Based on

our experience with XML documents in Ajax applications, this level of depth

is sufficient to cover many existing XML documents. However, the tool can

be easily modified to accommodate XML documents at greater depths if this

is required.

Post-condition: The syntax of the converted JSON files and the JavaScript code

used to access those JSON files is functionally correct.

ANTLR is used to implement the JavaScript Code Transformer. RhinoUnit
52

, a

framework for performing unit testing of JavaScript programs is used to ensure

that the refactoring preserves the existing behavior of the program.

The JavaScript Code Transformer adopts a fully-automated approach to detect

bad smells and rewrite the code.

1. Bad smell detection

The bad smells in our refactoring system arise from the inefficient set of XML

DOM APIs used by JavaScript to manipulate XML nodes and attributes. XML

DOM APIs includes: XML DOM properties (such as x.firstChild - x stands for

any node), XML DOM methods (such as x.getElementsByTagName(“tagName”))

and XML attribute node methods (such as x.getAttribute(name)). The XML DOM

APIs allow a variable to be used as a parameter for the methods to retrieve nodes

and attributes. The bad smell detection phase can detect these statements to allow

the code rewriting phase to successfully transform them into semantically-

equivalent JSON statements.

The XML DOM APIs allow many different approaches to access nodes or

attributes. For example, there are two approaches to access XML nodes, using the

x.getElementsByTagName(tagName) method which returns all nodes with a

specified tag name or using XML DOM properties (such as x.childNodes,

52 http://code.google.com/p/rhinounit/

 71

x.lastChild and x.nextSibling) to traverse the tree of the XML document. For

example, the node “channel” in the rss.xml can be accessed by:

var node = RSSRequestObject.responseXML;

var channel = node.getElementsByTagName('channel').item(0);

or

var node = RSSRequestObject.responseXML;

var channel = node.documentElement.childNodes[0];

Additionally, three approaches can be used to access XML attributes, using the

x.attributes property, x.getAttribute(name) and x.getAttributeNode(name)

methods.

Since there is more than one approach to access XML nodes and attributes,

programmers can use many different combinations of approaches to retrieve XML

nodes or attributes they want to access. The bad smell detection phase can detect

all of these different combinations.

2. Code rewriting

Unlike XML, JSON allows objects to contain other objects or arrays. Arrays can

also contain other objects or arrays. JSON structure is accessed through dot or

subscript operators from object to the member of the object to be retrieved. The

name of the object or array is required to access its members. For example, the

node “channel” in the rss.js can be accessed by:

var jsonObject = JSON.parse(RSSRequestObject.responseText);

var channel = jsonOjbect.channel;

Thus, the code rewriting phase transforms the bad smells - combination of XML

DOM APIs that programmers use to access XML nodes or attributes - to the

JavaScript statements used to access JSON structure. When a bad smell is

detected, the JavaScript Code Transformer performs the following steps to rewrite

code statements.

Step 1: Retrieve all the XML DOM APIs to determine the relationship between

the nodes and the location of the XML node that is being accessed within the

XML DOM.

Step 2: Based on the location determined in Step 1, the JavaScript Code

Transformer traverses the XML document to retrieve the name of the node being

accessed and the name of all the parent nodes of that node.

Step 3: Produce JavaScript statement(s) to access the node in JSON format based

upon the information obtained in Step 2.

6.2.2.1 Grammar for the JavaScript Code Transformer

In this section, we provide the EBNF for the JavaScript code which accesses the

XML and the JSON data respectively. The grammar for accessing XML nodes

 72

and XML attributes are different, thus, we show them separately. We extended

the grammar from JavaScript.g
53

 and again, to make the grammar simpler, we

only include the directly utilized symbols and rules.

1. EBNF for JavaScript to access XML nodes

forStatement: 'for' '(' (forStatementInitialiserPart)? ';'

(forControl)? ';' (expression)? ')' statement;

forControl: Identifier '<' XMLHttpRequestName '.responseXML.'

('documentElement.')? ((('getElementsByTagName("' Identifier '")'

('[' (NumericLiteral | Identifier) ']' | 'item(' (NumericLiteral |

Identifier) ')') '.')* ('getElementsByTagName("' Identifier '")'

| 'firstChild')) | ((('childNodes' ('[' (NumericLiteral |

Identifier) ']' | 'item(' (NumericLiteral | Identifier) ')')) '.'

)* ('childNodes' | 'firstChild'))) '.' 'length';

variableStatement: 'var' variableDeclarationList ';';

variableDeclarationList: variableDeclaration (','

variableDeclaration)*;

variableDeclaration: Identifier initialiser?;

Initialiser: '=' XMLhttprequestName '.responseXML.'

('documentElement.')? ('getElementsByTagName("' Identifier '")'

('[' (NumericLiteral | Identifier) ']' | 'item(' (NumericLiteral |

Identifier) ')') ('.')?)* ('childNodes' ('[' (NumericLiteral |

Identifier) ']' | 'item(' (NumericLiteral | Identifier) ')')

('.')?)* ('firstChild' ('.')?) ('nodeValue' | 'data');

2. EBNF for JavaScript to access XML attributes. (All the grammar rules for

accessing XML attributes are the same as accessing XML nodes except the

rule “Initialiser”, shown as follows.)

Initialiser: '=' XMLhttprequestName '.responseXML.'

('documentElement.')? ('getElementsByTagName("' Identifier '")'

('[' (NumericLiteral | Identifier) ']' | 'item(' (NumericLiteral |

Identifier) ')') ('.')?)* ('childNodes' ('[' (NumericLiteral |

Identifier) ']' | 'item(' (NumericLiteral | Identifier) ')')

('.')?)* ('firstChild' ('.')?) ((('getAttributeNode("' Identifier

'")') |(attributes('[' (NumericLiteral | Identifier) ']' | 'item('

(NumericLiteral | Identifier) ')')) | ('attributes' '.'

'getNamedItem("' Identifier '")')) '.' nodeValue) | (getAttribute

'("' Identifier '")');

3. EBNF for JavaScript to access JSON

forStatement: 'for' '(' (forStatementInitialiserPart)? ';'

(forControl)? ';' (expression)? ')' statement;

forControl: Identifier '<' XMLHttpRequestName '.' responseText

'.' (Identifier '.')+ length;

variableStatement: 'var' variableDeclarationList ';';

variableDeclarationList: variableDeclaration (','

variableDeclaration)*;

variableDeclaration: Identifier initialiser?;

Initialiser: '=' 'JSON.parse(' XMLHttpRequestName '.responseText)'

(('.' Identifier) | ('.' Identifier '[' Identifier | ('"' #Text

'"') | ('"@' Identifier '"') | ('"' #cdata '"') | ('"' Identifier

'":"' Identifier '"') ']'))*;

53 http://www.antlr.org/grammar/1206736738015/JavaScript.g

http://www.antlr.org/grammar/1206736738015/JavaScript.g

 73

6.2.2.2 Example of System in Operation

Again, we use the example in Section 6.1.1 to illustrate how the JavaScript Code

Transformer works. After an XML file is successfully converted into a JSON file

by the XML to JSON Converter, the JavaScript Code Transformer takes an

HTML or JavaScript file that retrieves the data from an XML file as input and

outputs an HTML or JavaScript file that retrieves data from the converted JSON

file. The process of transformation is as follows.

Source code preparation: The transformation is on JavaScript code, thus, if the

input file is HTML, all the HTML elements are removed. However, the HTML

elements embedded in the JavaScript snippet will stay the same. In the example,

the input file is an HTML file.

Copy propagation transformation: This transformation “eliminates cases in

which values are copied from one location or variable to another” (Hagen, 2006).

To prepare for the transformation, statements that are used to retrieve the node

properties are combined with statements that are used to access the value of the

node. For example, the variable “node” and “channel” are eliminated in the

following statements.

var node = RSSRequestObject.responseXML;

var channel = node.getElementsByTagName('channel').item(0);

var title = channel.getElementsByTagName('title').item(0).

firstChild.data;

are changed to:

var title = RSSRequestObject.responseXML.

getElementsByTagName('channel').item(0).

getElementsByTagName('title').item(0).firstChild.data;

JavaScript code transformation: The JavaScript parser generated by ANTLR is

used to parse the JavaScript code for accessing the XML file. If a bad smell (the

combination of XML DOM APIs that used to access XML nodes or attributes) is

found. The system rewrites the code according to the transformation rules. Figure

6.3 shows the JavaScript code to process the JSON file after refactoring.

The JavaScript code transformation is comprise of three steps.

Step 1: Change responseXML into responseText. In the JavaScript code for JSON

(Figure 6.3), the responseXML property of the XMLHttpRequest object

(RSSRequestObject) is changed to the responseText property, which gets the

response (non-XML) and returns a string (JSON).

Step 2: Change the JSON string into an object. The JSON parser
54

 is used to

change the JSON string into an object (jsonObject).

Step 3: Change code statements used to access the values. JavaScript code that

accesses the value of the nodes <title>, <link> and <item> (including child nodes

54 https://github.com/douglascrockford/JSON-js/blob/master/json2.js

 74

<title>, <link> and <pubDate>) in the RSS XML file are transformed to access

the corresponding members of the objects in the RSS JSON file for this example.

The <item> node is converted to an object containing three members “title”,

“link” and “pubDate”. If the “item” object is an array, an alternative mechanism is

required to access its members. Thus, the value of typeof(json.channel.item[0]) is

used to check whether the “item” object is an array. An “undefined” value

indicates that the “item” object is not an array; its members are accessed without

iteration. A numbered value indicates that “item” object is an array; iteration is

required to access the members.

Cleanup: If the input file is HTML, the HTML elements are added back and the

output file is generated.

Figure 6.3 The JavaScript Code for Accessing the JSON File

after the Transformation

6.2.3 JavaScript Code Generator

The JavaScript Code Generator is an optional component in our transformation

system. After refactoring the existing application, the JavaScript Code Generator

can be used to generate JavaScript code skeletons to access a JSON file when

more functionality is required. Unlike the JavaScript Code Transformer which is

fully-automated, the JavaScript Code Generator is semi-automated as the

programmer must supply information to allow the code to be constructed safely.

Specifically, the user must:

1. select an XML file to be converted to a JSON file;

2. select groups of data (nodes or attributes) required to be accessed;

3. provide an explanation of the conditions under which the data can be

safely accessed; and

4. select the format for the output to

 75

 print the data,

 store the data into an array, and

 display the data through a form.

Given this information, the system creates the JavaScript code for processing the

JSON structure produced in Step 1. The generated code is considered a skeleton

of the final program as the system has no way of understanding the domain of the

application. The final (manual) step is for the programmer to add any domain

specific component.

For each node selected by the programmer, the JavaScript Code Generator

performs the following steps to generate the JavaScript code for accessing the

converted JSON file.

Step 1: Retrieve the node selected by the programmer and determine the location

of the XML node within the XML DOM.

Step 2: Using the location determined in Step 1, the JavaScript Code Generator

traverses the XML document to retrieve the name of the node being selected and

the name of all the parent nodes of that node.

Step 3: Produce JavaScript statement(s) to access the node in JSON format based

upon the information obtained in Step 2.

6.2.3.1 Patterns for Generating JavaScript Code

The JavaScript Code Generator creates code for:

1. accessing node values or attributes for a single node; and

2. traversing nodes to get values or attributes for multiple nodes.

The following section discusses different patterns to generate JavaScript code for

accessing a JSON file. As in previous sections, we provide the EBNF for XML

1.0 (W3C, 2008) and the EBNF for the generated JavaScript code for each

pattern. We only include the directly utilized symbols and rules of the grammar.

The following explicit definitions are required with respect to EBNF for the

generated JavaScript Code.

JsonObject: the object name after converting a JSON string to an object.

nodeMembers: the name(s) of the node(s) in an XML file.

attributeMember: the attribute name(s) in an XML file.

conditions: the condition(s) under which it is safe to access the data.

1. EBNF for XML 1.0

document: prolog element Misc*

element: EmptyElemTag | STag content ETag

STag:'<' Name (S Attribute)* S? '>'

Attribute: Name Eq AttValue

ETag:'</' Name S? '>'

content: (element | CharData | Reference | CDSect | PI | Comment)*

 76

2. EBNF for generated JavaScript code to access a single node

 Accessing the value of a node

output: JsonObject nodeMembers+;

JsonObject: Identifier;

nodeMembers: ('.' Identifier) | ('.' Identifier '[' Identifier |

('"' #Text '"') | ('"@' Identifier '"') | ('"' #cdata '"') | ('"'

Identifier '":"' Identifier '"') ']');

 Accessing the attribute of a node

output: JsonObject nodeMembers+ '.' attributeMember

JsonObject: Identifier;

nodeMembers: ('.' Identifier) | ('.' Identifier '[' Identifier |

('"' #Text '"') | ('"@' Identifier '"') | ('"' #cdata '"') | ('"'

Identifier '":"' Identifier '"') ']');

attributeMember: Identifier;

3. EBNF for generated JavaScript code to traverse nodes

 Accessing the value of nodes

output: forStatement | ifStatement;

forStatement: 'for(' forInStatementInitialiserPart ';' forControl

';' expression ')' statement;

statement: forStatement | ifStatement | accessStatement;

ifStatement: 'if(' ifExpression ')' statement 'else' statement;

forControl: Identifier '<' JsonObject nodeMembers+ '.length'

ifExpression: ('typeof(' JsonObject nodeMembers+ '[0] ==

undefined)') | conditions

conditions: expression;

accessStatement: 'document.write(' JsonObject nodeMembers+ ')'

JsonObject: Identifier

nodeMembers: ('.' Identifier) |('.' Identifier '[' Identifier |

('"' #Text '"') | ('"@' Identifier '"') | ('"' #cdata '"') | ('"'

Identifier '":"' Identifier '"') ']');

 Accessing the attributes of nodes

output: forStatement | ifStatement;

forStatement: 'for(' forInStatementInitialiserPart ';' forControl

';' expression ')' statement;

statement: forStatement | ifStatement | accessStatement;

ifStatement: 'if(' ifExpression ')' statement 'else' statement

forControl: Identifier '<' JsonObject nodeMembers+ '.length';

ifExpression: ('typeof(' JsonObject nodeMembers+ '[0] ==

undefined)') | conditions;

accessStatement: 'document.write(' JsonObject nodeMembers+ '.'

attributeMember) ')';

conditions: expression;

JsonObject: Identifier;

nodeMembers: ('.' Identifier) |('.' Identifier '[' Identifier |

('"' #Text '"') | ('"@' Identifier '"') | ('"' #cdata '"') | ('"'

Identifier '":"' Identifier '"') ']');

attributeMember: Identifier;

 77

6.2.3.2 Example of System in Operation

In this section, we reuse the RSS XML file from IMDb
55

 to illustrate the

operation of the JavaScript Code Generator. There are six steps (five input steps

plus the code production step) for programmers to produce JavaScript code as

shown in Figure 6.4 from scratch.

Step 1: Select the XML file to be converted. The RSS XML file is converted into

the RSS JSON file (rss.js) by the XML to JSON Converter.

Step 2: Select the groups of data (node values or attributes) to be accessed. In this

example, we have selected to access the values of the nodes <title> and <link>

whose parent node is <channel> and all the values of the nodes whose parent node

is <item>.

Step 3: The programmer provides the conditions for accessing the data (for

example, only the feeds published in the morning are retrieved). This is optional;

hence we have omitted it here for the sake of brevity.

Step 4: Select the format for output. We have chosen to print the retrieved data

(using document.write).

Step 5: The system, using these inputs (Steps 1-4), automatically generates

JavaScript code for accessing the new JSON object, as shown in Figure 6.4.

To explain Step 5 further, we provide a brief overview of the generated code.

Line1-7: Creates an XMLHttpRequest object for different browsers.

 If the web browsers are Internet Explorer 5 or 6, an XMLHttpRequest

object is created using ActiveX controls.

 If the web browsers are Internet Explorer 7, 8 or 9, Mozilla Firefox,

Google Chrome, Opera and Safari, an XMLHttpRequest object is created

using a native object.

Line 8 and 28: Send a request to the server. Line 18 makes a GET request for the

URL: "rss.js" and line 28 sends the request to the server using the send() function.

Line 9 and 10: Handle properties of the XMLHttpRequest. Ultimately these lines

indicate when the response is completed and all the data has been received.

Line 11: Checks the HTTP status. The request is completed “correctly” when the

value is 200.

Line 13: Converts the JSON string (rss.js) to a JSON object named “jsonObject”

using the JSON parser
56

.

55 http://www.imdb.com/
56 https://github.com/douglascrockford/JSON-js/blob/master/json2.js

 78

Line 14-15: Retrieve the members of “title” and “link” in the object “channel” (as

stated Step 2). All the JSON objects are retrieved by the names of their objects.

These objects are actually the nodes‟ names or attributes‟ names in the RSS XML

file. After retrieval, these objects are outputted via document.write (as stated in

Step 4).

Line 16: Checks whether the “item” object is an array.

Line 17-19: If the “item” object is not an array, the members of “title”, “link” and

“pubDate” are retrieved.

Line 21-25: If the “item” object is an array, the code traverses the “item” object

and accesses the members of “title”, “link” and “pubDate”, for every object in the

“item” object. After retrieval, these objects are outputted via document.write (as

stated in Step 4).

Figure 6.4 The Generated JavaScript Code for Accessing the RSS JSON File

Step 6: Add domain specific components. In the JavaScript code presented in

Figure 6.3, the variable “content” is created and used to output HTML elements,

which have the values of the retrieved objects from the RSS JSON file (rss.js). To

produce the final program, the programmer modifies the generated code (Figure

6.4) according to the specific requirements. Thus, instead of outputting the

different members of the “channel” object and the “item” object, a variable

“content” is used to provide the output.

 79

6.3 Evaluation

To evaluate our technique, we randomly select ten XML-based Ajax applications

from the Internet to test the effectiveness of the refactoring system. Because no

new functionality is added to the existing ten applications, the JavaScript Code

Transformer is used to automatically change the ten applications from XML-

based to JSON-based. Subsequently, we test the “response time” of each Ajax

application utilizing XML and utilizing JSON.

6.3.1 Methodology

We use the Client/Server architecture to send XML or JSON data from a server to

a client. The process of transferring data is as follows.

1. After a TCP connection is created, the client creates an XMLHttpRequest

object and sends an HTTP request by using the XMLHttpRequest object to

the server. In addition, the client specifies what type of data is to be retrieved

(XML or JSON).

2. The server processes the request and creates an HTTP response message.

The responseXML and responseText properties of the XMLHttpRequest

object are used to retrieve the requested XML or JSON data from the HTTP

response on the client side.

We measure the “response time” as an amalgamation of the network transfer time,

the network latency time, the server response time and the client processing time.

It starts from the time that the XMLHttpRequest object is created on the client

side to the time that all the data has been retrieved from the server and processed

by the client.

Tests are executed in the following environment.

 Server: Intel(R) Core (TM) 2 Quad CPU Q6600 @2.4GHz, with 4 GB of

RAM running Microsoft Windows XP Professional, Service Pack 3.

 Client: Intel(R) Core (TM) 2 CPU 6300 @1.86GHz, with 2 GB of RAM

running Microsoft Windows 7 Professional.

In addition, we use two different browsers: Firefox 4.0 and Internet Explorer 8.0

to ensure that no browser-specific bias is introduced. Finally, each test is executed

100 times to ensure that any extraneous timing issues are minimized.

6.3.2 Testing Results for Ten Ajax Applications

To determine the improvement in performance, we test with different numbers of

objects being transferred. Although Ajax is used to perform partial updates of the

user interface, a partial update does not mean that only a small amount of data is

retrieved. In addition, a partial update does not imply that only a small section of

the application is updated. For example, similar to Microsoft Excel, online

spreadsheet applications such as EditGrid
57

, Google Spreadsheets
58

 and Zoho

57 http://www.editgrid.com/
58 http://www.google.com/

 80

Sheet
59

 require most of the user's browser window to be updated with hundreds

of cells (objects or properties) when the user switches between workbooks. Online

mapping applications such as Google Maps
60

 and Yahoo Maps
61

 also require

that the majority of the user's browser window be updated each time the user

pans, zooms, or performs any other activity. Other Ajax-enabled websites such as

Facebook
62

 (switching between most pages is done using Ajax); Dell's Online

Store
63

 (customization of the entire computer system is done through Ajax-

enabled technology); and Gmail
64

 (most navigation within Gmail is via Ajax)

require hundreds of objects or properties be loaded as quickly as possible to

provide users with an uninterrupted user experience similar to that achieved in

desktop applications. As more companies start transforming existing traditional

web applications into Ajax-enabled applications and as Ajax applications grow in

complexity, the volume of Ajax applications that will request a large number of

objects will also grow.

As stated above, many large Ajax-based applications regularly transfer a large

number of objects, hence we elect to start our investigation from 100 objects

(lower end); and provide values up to 1000 (upper end), which perhaps represents

the maximum volume of transfers that are likely to be witnessed from the current

generation of Ajax-based applications. Table 6.2 lists the size information of the

XML documents used in our trials.

Table 6.2 The XML Documents Size for the Ten Tested Applications

App

100

Objects

500

Objects

1000

Objects

1 w3schools.com
65

 19KB 94 KB 187 KB

2 ibm.com
66 7 KB 34 KB 68 KB

3 developer.com
67

 79 KB 391 KB 781 KB

4 captain.at
68 8 KB 39 KB 78 KB

5 JavaScriptkit.com
69

 117 KB 583 KB 1165 KB

6 Understanding AJAX: Using JavaScript

to Create Rich Internet Applications

(Eichorn, 2007)

6 KB 27 KB 53 KB

7 ibm.com
51

 9 KB 43 KB 86 KB

8 sitepoint.com
70 7 KB 32 KB 63 KB

9 xml.com
71 8 KB 40 KB 79 KB

10 Brainjar.com
72 56 KB 277 KB 554 KB

59 http://www.zoho.com/
60 http://maps.google.ca/
61 http://ca.maps.yahoo.com/
62 http://www.facebook.com/
63 http://www.dell.com/
64 https://mail.google.com/mail/help/intl/en/about.html
65 http://www.w3schools.com
66 https://www.ibm.com/developerworks/xml/
67 http://www.developer.com/
68 http://www.captain.at/
69 http://www.javascriptkit.com/
70 http://sitepoint.com/
71 http://www.xml.com/
72 http://www.brainjar.com/

http://www.w3schools.com/
http://www.ibm.com/developerworks/xml/
http://www.developer.com/
http://www.captain.at/
http://www.javascriptkit.com/
http://sitepoint.com/
http://www.xml.com/
http://www.brainjar.com/

 81

The size of these documents is in many ways arbitrary, as we know of no reliable

information on the (average) size of XML documents in web applications.

However, a quick search of the Internet can find significant numbers of

applications using XML documents which are several orders of magnitude larger

than the sizes used in our trials. Table 6.3 provides some examples of web

applications that utilize “large” XML documents (Ng et al., 2006).

Table 6.3 The Size of Some Large XML Documents

Data sets Size

XMark (Schmidt et al., 2002) 97 MB

DBLP
73

 42 MB

Shakespeare
74

 7.8 MB

SwissProt
75

 21 MB

TPC-H
76

 34 MB

Weblog
77

 30 MB

For brevity purposes, Table 6.4 shows the response time (ms) for retrieving the

XML and the JSON data from the server for three different quantities of objects

(100, 500 and 1000 objects). Again, this task is repeated 100 times, and the

average is used in all calculations. This mechanism provides a robust estimation

of the response time as a number of factors exist which impact the individual

results but are outside the control of the experimenters. The RMD of the response

time of accessing XML data and JSON data is utilized.

Table 6.4 Testing Results for the Ten Ajax Applications

Number of

Objects

Firefox 4.0 IE 8.0

XML

(ms)

JSON

(ms)
RMD

XML

(ms)

JSON

(ms)
RMD

1

100 5.04 1.26 1.20 5.63 1.54 1.14

500 20.59 3.20 1.46 24.51 4.42 1.39

1000 48.09 5.40 1.60 47.93 8.28 1.41

2

100 5.83 2.23 0.89 4.57 2.73 0.50

500 24.81 8.11 1.01 19.50 12.54 0.43

1000 47.47 15.95 0.99 38.21 25.02 0.42

3

100 10.03 4.67 0.73 13.28 6.72 0.66

500 45.34 19.08 0.82 70.16 35.31 0.66

1000 89.32 37.5 0.82 147.65 72.5 0.68

4

100 3.54 1.38 0.88 8.89 1.60 1.39

500 12.76 3.58 1.12 40.89 5.06 1.56

1000 24.26 5.96 1.21 80.83 9.67 1.57

5

100 20.94 6.21 1.09 31.23 8.13 1.17

500 117.90 28.02 1.23 166.60 44.82 1.15

1000 215.76 64.10 1.08 375.20 93.72 1.20

73 http://dblp.uni-trier.de/
74 http://www.cs.wisc.edu/niagara/data/shakes/shakspre.htm
75 http://www.expasy.ch/sprot/
76 http://www.tpc.org/tpch/default.asp
77 http://httpd.apache.org/docs/logs.html

http://dblp.uni-trier.de/
http://www.expasy.ch/sprot/
http://www.tpc.org/tpch/default.asp
http://httpd.apache.org/docs/logs.html

 82

6

100 3.03 1.21 0.86 3.22 1.48 0.74

500 10.82 2.93 1.15 12.37 4.46 0.94

1000 19.74 4.62 1.24 23.65 8.11 0.98

7

100 2.33 1.37 0.52 2.93 1.77 0.49

500 7.07 3.75 0.61 10.93 5.95 0.59

1000 12.73 7.02 0.58 20.81 11.71 0.56

8

100 3.04 1.35 0.77 5.78 2.81 0.69

500 11.24 4.07 0.94 21.40 9.53 0.77

1000 21.66 6.94 1.03 40.79 17.66 0.79

9

100 5.32 0.85 1.45 10.73 1.45 1.52

500 22.62 2.92 1.54 54.45 4.09 1.72

1000 53.25 4.77 1.67 119.50 7.78 1.76

10

100 22.92 3.47 1.47 42.61 6.68 1.46

500 118.60 19.20 1.44 216.40 32.90 1.47

1000 232.00 34.10 1.49 441.10 65.80 1.48

From this table, we can see that the JSON version of every program is

consistently faster than the XML version; these results broadly correspond to the

results provided by Nurseitov et al. (2009). Since we are able to “reproduce” the

efficiency saving from the work of Nurseitov et al. (2009), we believe that this

illustrates that our transformation process is successful in refactoring Ajax code

for efficiency. These results show the browser version does have an impact on the

response time. Firefox 4.0 generally outperforms IE 8 in both XML and JSON

versions thanks to a more modern JavaScript engine. However, both browser

versions benefit when switched from XML to JSON.

6.3.3 Variables Influencing the Response Time

During the testing of the ten Ajax applications, we find three additional variables

that significantly affect the response time for accessing XML and JSON data and

thus affecting the efficiency improvement rate of our transformation system. We

take the Ajax RSS Reader in Section 6.1.1 as an example to demonstrate their

impact.

1. The number of objects

To test the impact of the number of objects (or nodes), we investigate different

number of feeds in an RSS file for popular websites. The number of feeds in an

RSS file varies from website to website; however, a quick search of the Internet

can find many websites using 50 or more feeds in their RSS files. Some websites

have fixed number of feeds, such as IMDb
78

 (50 feeds), the New York Times-

books
79

 (50 feeds), investopedia
80

 (60 feeds), TUAW
81

 (40 feeds) and

Engadget
82

 (40 feeds). Some websites change the number of feeds every day. For

example Gizmodo
83

 may have up to 100 feeds according to our observations. We

test the XML and JSON version of the Ajax RSS Reader code by retrieving 50,

78 http://www.imdb.com/
79 http://www.nytimes.com/pages/books/index.html
80 http://www.investopedia.com/
81 http://www.tuaw.com/
82 http://www.engadget.com/
83 http://ca.gizmodo.com/

 83

100, 150 and 200 feeds (objects) from the RSS XML file of IMDb and the

converted RSS JSON file. For each trial, we measure the response time for the

XML version and JSON version of the program, using the methodology described

in Section 6.3.2. For the XML version, the response time for accessing different

numbers of child nodes (<title>, <title> + <link>, and <title> + <link> +

<pubDate>) within the node <item> is measured. For the JSON version, the

response time for accessing the same numbers of objects as the XML version of

the code is measured. Table 6.5 indicates the influence of the different number of

objects tested in Firefox 4.0. As more objects are accessed, the response time for

both the XML and JSON version of the code increases.

Table 6.5 Testing Results for Different Number of Objects

Number of the

Objects (feeds)

Objects Accessed within the

Object “item”
XML (ms) JSON (ms) RMD

50

title 2.68 1.27 0.71

title, link 3.01 1.30 0.79

title, link, pubDate 3.29 1.34 0.84

100

title 4.94 2.15 0.79

title, link 5.48 2.25 0.84

title, link, pubDate 6.26 2.41 0.89

150

title 6.59 2.46 0.91

title, link 7.60 2.74 0.94

title, link, pubDate 8.50 2.95 0.97

200

title 8.28 2.74 1.01

title, link 9.35 2.92 1.05

title, link, pubDate 11.02 3.38 1.06

2. The structure of the XML and JSON data

XML documents have a hierarchical structure; accessing different nodes in

different hierarchical depths affects the response time. We test the execution time

for accessing the text of the node <title> whose parent node is <channel> and the

text of the node <title> whose parent node is <image>. These nodes have different

depths.

The JSON data is accessed by the dot operator. Accessing an object and accessing

the objects within that object results in different response time. We tested the

execution time for the JSON version of the code to access the

jsonObject.channel.title object and the jsonObject.channel.image.title object. Each

trial is run 10,000 times in Firefox 4.0 to produce a stable mean value. Table 6.6

clearly shows that for the XML version of the code, accessing nodes in deeper

structures increases the response time of the browsers; for the JSON version,

accessing an object directly is faster than accessing any objects inside the object.

In addition, accessing the attribute of a node and accessing the text of a node in

XML files also leads to different response time. To test the execution time for

accessing the attribute of a node, we manually add an attribute “language” to the

node <title> whose parent node is <channel>. Subsequently, we test the execution

time for accessing the attribute “language” of the node <title> in the XML file.

The object “language” within the object “title” in the JSON file is also tested.

 84

Again, each trial is run 10,000 times in Firefox 4.0 to produce a stable mean

value. As can be seen from Table 6.6, accessing the attribute of a node is faster

than accessing the text of a node for the XML version; however, for the JSON

version, accessing the converted attribute object within an object takes a similar

time (in absolute terms) as accessing that object.

Table 6.6 Testing Results for Accessing Different Objects in Different

Structures

Object Parent Object Depth XML (ms) JSON (ms) RMD

title channel 1 1.90 0.06 1.88

title image 2 2.94 0.08 1.89

attribute channel 1 1.77 0.06 1.87

3. The length of the text in a node

To analyze the influence of the length of the text in a node, we test the response

time of accessing the text of the node <title> in the XML file and the “title” object

in the JSON file by manually changing the length of the text. We use the same

methodology as discussed in Section 6.3.2 and the results are shown in

Table 6.7. As the text length increases, the longer it takes for the browser to

respond to both the XML and the JSON version of code.

Table 6.7 Testing Results for Accessing a Node with Different Lengths

Length of the Text XML (ms) JSON(ms) RMD

50 Chars 2.11 1.15 0.59

1000 Chars 2.87 1.27 0.77

As can be seen from all the results, a number of factors, beyond the number of

object retrieved, significantly impact the efficiency of RIAs using either XML or

JSON. Given almost any combination of these factors, implies that significant

performance differences will exist between semantically equivalent

implementations based upon either data format. However, in every situation,

utilizing JSON is more efficient than utilizing XML. Hence, these figures provide

an empirical proof that a large number of situations exist where it is worthwhile,

from a performance viewpoint, to transform an existing application from an

XML-based application to a JSON-based application.

 85

Chapter 7 Refactoring Traditional Forms into Ajax-

enabled Forms

The Web still has many traditional forms, and transforming these forms into

Ajax-enabled forms is not straightforward. HTML forms are common for

interactive web applications; it has different HTML elements for the user on the

browser (client side) to fill out. HTML forms can contain input elements

(including different types: text field, password field, button, radio button, check

box, reset, submit, image, file and hidden field), text areas and select menus.

Form submission can be invoked using an input element, a button element, a label

element, text or an image. To transform traditional HTML forms into Ajax-

enabled forms, programmers would need to know how to manipulate all these

input elements using JavaScript or a JavaScript Ajax-library and to add the

appropriate Ajax-enabled statements in the right locations.

Hence, to aid with this transformation process, refactoring can be used. In this

Chapter, we extend the refactoring idea to allow programmers to refactor

traditional web forms into Ajax-enabled forms using a semi-automated

refactoring tool, FTT. The purpose of our refactoring is to improve the efficiency

of web forms.

The remainder of this chapter is as follows: Section 7.1 and Section 7.2 provide

an example of a traditional web form and present our refactoring approach.

Section 7.3 describes the three components of our refactoring system. Section 7.4

shows the results of transforming two example forms into Ajax-based forms.

7.1 Motivating Example

In this section, we utilize JspCart
84

 to demonstrate efficiency problems with

forms in traditional web applications. JspCart is an open source shopping cart

application. It is developed using JSP (JavaServer Pages) (Bergsten, 2000) and

JavaBeans (Englander, 1997), and runs on Apache Tomcat
85

 and MySQL
86

.

Figure 7.1 shows the user registration web page of JspCart (Signup.jsp).

7.1.1 Problem 1: Submission

In our example, when the user clicks the “Sign-up” button on the registration page,

it triggers an HTTP request to the server side. After that, the server processes the

request and inserts all the data from the registration form into the database

(jspcart.sql). Subsequently it returns a web page to inform users whether the

registration is successful.

84 http://www.neurospeech.com/Products/JspCart.html
85 http://tomcat.apache.org/
86 http://www.mysql.com/

 86

The following code shows the form submission skeletal code. The HTML form

has many attributes
87

. The action attribute specifies the URL (Signup.jsp) that

accepts the form data when the form is submitted. The name attribute specifies a

name (SignupForm) for the form, and the method attribute specifies the HTTP

method to transfer the form data (POST). In addition, the HTML form also

supports many event attributes. The onsubmit attribute is used to execute custom

JavaScript code when the form is submitted.

<form action="Signup.jsp" onsubmit="if(verifyForm()) return true;

else return false;" method=POST name="SignupForm">

…

<input class=DarkButton type=submit name=Submit value="Sign-up">

</form>

The issue with the traditional form submission is that the entire web page (which

includes all elements) is reloaded every time the submission is triggered. The user

has to wait for the web page to be refreshed, which affects the user‟s experience.

Figure 7.1 The User Registration Web Page of JspCart

87 http://www.w3.org/TR/html401/.

 87

7.1.2 Problem 2: Validation

The JavaScript function verifyForm() is created to perform validation for the

registration form; however, the validation is invoked on submission. The user has

to click the submit button to be notified of the validation results. Additionally, the

error message is displayed using alert() which is a modal window. Thus, if an

error occurs, the user is redirected between the registration page and the alert

message window. In this scenario, the user has to memorize the information being

provided in the alert message window, as the error message is lost when this

window is closed.

The registration form also has server side validations using JavaBeans

(Users.java). The issue with server side validation is that it uses an HTML input

element to show the error message on the top of the form. Moreover, the

validation applies the classic web application model. That is, the request is sent to

the server, and an entire web page is reloaded to display the error message from

the server. Furthermore, when an error is encountered, there are no changes to the

background or border color of the field with the error.

7.2 Methodology

Web 2.0 forms can avoid these issues easily.

1. Ajax should be used to send asynchronous requests to the server.

2. Both client-side and server-side validations should be performed. The

validations should be invoked on change, not on submit. A survey showed

that only 22% of forms used validations on change with Ajax (Smashing

Magazine, 2008).

3. Clear, unambiguous and visible error messages should be displayed. To

get more attention from users, the form should have visual effects (Smashing

Magazine, 2008): (1) the error message should be displayed in an attention

grabbing color. (2) The background or border color of the input field with the

error should be changed. (3) The focus should be altered to the first input field

with the error. However, 84% of the web forms did not have visual and focus

effects. Furthermore, the error message should be placed in the right place (A

survey shows that 57% of such error messages are below the input field, and

26% is on the right side of the field (Smashing Magazine, 2008). Moreover,

all the error messages should be displayed at once. It is bad practice to

redirect users to another page or utilize an alert message window to inform

users of the error. 14% of sites still use JavaScript popups for displaying

validation feedback (Smashing Magazine, 2008).

FTT is able to transform traditional forms (using HTML, JavaScript and CSS to

present the user interface, JSP as the server side scripting language, and MySQL

as the database) into Ajax-enabled forms. FTT uses the jQuery
88

 framework to

minimize the overhead of this transformation. A recent survey shows that usage

of jQuery has steadily grown and it is now more popular than other JavaScript

88 http://jquery.com/

 88

frameworks
89

 such as prototype, dojo and mootools. However, transforming

existing applications is not straightforward; manual transformation requires that

programmers are knowledgeable about jQuery and the interactions between

jQuery, HTML and JSP. Such a process can clearly introduce defects; thus, FTT

is required to assist with the form transformation.

Refactoring tools support two automated approaches (Mens & Tourwé, 2004),

either fully-automatic (user‟s interaction is not required) or semi-automatic

(user‟s participation is required). Our tool is semi-automatic as the transformation

encompasses functionality that cannot be automatically inferred by a program.

Our refactoring adopts the invariants, pre and post-conditions refactoring

approach (Opdyke, 1992; Roberts, 1999). The pre-condition requires that the

syntax of the HTML and JavaScript code before refactoring is functionally correct

and the post-condition requires that the syntax of the modified HTML code and

the generated jQuery code after refactoring is functionally correct. To preserve the

behavior of the to-be-refactored program, unit testing (Coelho et al., 2006) is

usually utilized to ensure that defects are not introduced to the program. However,

unit tests designed for traditional forms cannot be applied to Ajax-enabled forms,

as unit testing cannot test UI-related code associated with Ajax applications.

Hence, our refactoring approach performs validation of the refactored code using

two methods. First, formal unit testing is introduced to test the refactored

JavaScript code. Second, Selenium
90

, a capture-replay tool is used to test whether

the two versions of the code are functionally identical even though the UIs for

them are no longer identical.

The refactoring process implemented by FTT is as follows.

1. Record the form‟s submission process using Selenium; and add unit tests to

test the behavior of the Ajax call.

2. Transform traditional forms to Ajax-enabled forms.

3. Add both client-side and server-side form validations.

4. Replay the form‟s submission process recorded using Selenium and execute

the unit tests to ensure the transformed code can functionally pass these tests.

7.3 Refactoring Traditional Forms into Ajax-enabled
Forms

The functionality of our tool is implemented through three different components;

we will now discuss each of them in detail.

7.3.1 Form Submission Transformer

The Form Submission Transformer transforms the HTML and JavaScript code (if

JavaScript is used) for the traditional form submission into the jQuery-based code

for the Ajax form submission. The transformation process comprises of bad smell

detection, code rewriting and code generation.

89 http://www.google.com/trends?q=prototype+%2C+jquery%2C+YUI%2C+dojo%2C+mootools&ctab=0&g

eo=all&date=all&sort=0
90 http://seleniumhq.org/

 89

1. Bad smell detection and code rewriting

The bad smells in our refactoring system are the HTML and JavaScript code (if

JavaScript is used) for traditional web forms. Detecting the bad smells by parsing

and extracting the HTML and JavaScript code, and rewriting the HTML and

JavaScript code are the first two steps in implementing the transformation. Jsoup,

a Java HTML parser, is utilized to find, extract and modify HTML elements,

attributes and the content of the elements. A JavaScript Parser generated using

ANTLR is adopted to find, extract and modify the HTML attributes set by

JavaScript.

Bad smell detection includes: (1) extracting the action, method and id attributes

specified by the form element by parsing the HTML code. If the action and the

method attributes are null in the HTML code, the JavaScript Parser parses the

JavaScript code to extract the value. If the setting for the action attribute cannot

be found in the JavaScript code, an error will occur because either the settings for

the traditional form are incorrect or the form to be refactored is already an Ajax

form. If the setting for the method attribute cannot be found in the JavaScript

code, the default value (POST) will be used. (2) Extracting the id attribute

specified by all the input, textarea and select elements within the <form></form>

tag. (3) Extracting the id or class attribute specified by the submit input element.

Bad smell code rewrite contains: (1) setting the action and method attributes to

null. The specifications for both of the attributes are to be moved into a jQuery

Ajax function, which will be discussed in the following sections. (2) Adding the

id attribute to the form element and every input, textarea and select elements

within the <form></form> tag, if the id attributes are not specified. This is

because the Ajax form submission code uses the jQuery id selector to select these

elements. (3) Adding the class attribute to the submit input element. The Ajax

form submission code can use the jQuery id or class selector (by default) to

choose the submit input element. If both the id and class attributes are not

specified, the class attribute is required to be added. (4) Adding JavaScript

statements to import the external jQuery plugin. The bad smell detection phase is

fully automated; however, the code rewriting phase adopts a semi-automated

approach as programmers are required to enter the id and class names for

specified HTML elements.

2. Code generation

The third step is to generate the jQuery code for Ajax form submission. JQuery

provides a rich set of APIs to develop Ajax applications. jQuery.ajax()
91

 is

leveraged to perform an asynchronous HTTP request. The following are

descriptions of the most frequently used arguments.

 type: specifies the type of the request: GET or POST.

 url: specifies which URL the request is sent to.

 data: specifies which data string is to be sent to the server.

 dataType: specifies which data type is expected to be retrieved from the

91 http://api.jquery.com/jQuery.ajax/

http://api.jquery.com/jQuery.ajax/

 90

server. The available types are “xml”, “html”, “script”, “json”, “jsonp”,

„text” or multiple values.

 success(): the function to be executed after the request is successfully

sent to the server.

The code generation phase produces two parts of the code: (1) one part is to

retrieve all the form data and to concatenate the data into a string for submission.

The string will be served as the value of the data argument in the jQuery.ajax()

method. (2) The other part is the jQuery.ajax() method with different arguments.

Code generation is invoked in a semi-automatic fashion. Thus, some of the

arguments, such as the type and url arguments, are retrieved from the type and url

attributes of the form element when parsing the HTML or the JavaScript code (if

JavaScript is used). Others are provided manually, such as the dataType

argument. Moreover, the generated success() function is a code skeleton. The

programmer is required to provide the arguments and the “body” of this function

as the system has no way of understanding the domain of the application. To

inform the status of submission, the success() function usually takes an argument

to get a return value from the server. Hence, the programmer is also required to

output a value in the code of the server side scripting to indicate the submission

status.

3. The grammar for transformation

In this section, we provide the grammar for the HTML code before and after

refactoring, and the grammar for the generated jQuery code for the Ajax form

submission. We extended the HTML grammar
92

 and JavaScript grammar
93

. To

make the grammar simpler, only the directly utilized symbols and rules of the

grammar are included.

This is the grammar for the HTML code before refactoring.

form: '<form' WS (ATTR)+ '>' (form_field | body_content)*

'</form>';

form_field: INPUT | select | textarea;

body_content: body_tag | text;

INPUT: '<input' (WS (ATTR)*)? '>';

select: '<select' (WS (ATTR)*)? '>' (PCDATA)* ('<option' (WS

(ATTR)*)? '>' (PCDATA)*)+ '</select>';

textarea: '<textarea' (WS (ATTR)*)? '>' (PCDATA)* '</textarea>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

This is the grammar for the HTML code after refactoring.

form: '<form' WS 'action' ('=""') 'method' ('=""') ('id' ('='

(WORD ('%')? | ('-')? INT | STRING | HEXNUM))) (ATTR)* '>'

(form_field | body_content)* '</form>';

form_field: INPUT | select | textarea;

body_content: body_tag | text;

92 http://www.antlr.org/grammar/HTML/html.g
93 http://www.antlr.org/grammar/1206736738015/JavaScript.g

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/

 91

INPUT: '<input' (WS ('id' ('=' (WORD ('%')? | ('-')? INT | STRING

| HEXNUM))) | ('class' ('=' (WORD ('%')? | ('-')? INT | STRING |

HEXNUM)))) (ATTR)* '>';

select: '<select' (WS ('id' ('=' (WORD ('%')? | ('-')? INT |

STRING | HEXNUM)))) (ATTR)* '>' (PCDATA)* ('<option' (WS (ATTR)*)?

'>' (PCDATA)*)+ '</select>';

textarea: '<textarea' (WS ('id' ('=' (WORD ('%')? | ('-')? INT |

STRING | HEXNUM)))) (ATTR)* '>' (PCDATA)* '</textarea>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

This is the grammar for the generated jQuery code.

program: sourceElements EOF;

sourceElements: sourceElement (sourceElement)*;

sourceElement: function | statement;

function: functionDeclaration | jQueryFunction;

jQueryFunction: documentReadyFunction | jQueryCallbackFunction |

ajaxMethod | validationMethod | asyncTestMethod;
documentReadyFunction: '$' '(' 'document' ')' '.' 'ready' '('

'function' '(' ')' '{' sourceElement '}' ')';

jQuerCallbackFunction: '$' '(' selector ')' '.' action '('

(parameter (',' parameter)*)? (',')? callbackFunction ')';

ajaxMethod: '$' '.' 'ajax' '(' '{' ajaxFunctionBody '}' ')';

ajaxFunctionBody: ajaxFuncBody (',' ajaxFuncBody)*;

ajaxFuncBody: ajaxArgument | ajaxFunction;

ajaxArgument: name ':' value;

ajaxFunction: name ':' 'function' '(' arguments (',' arguments)*

')' '{' sourceElements '}';

statement: statementBlock | variableStatement | emptyStatement |

expressionStatement | ifStatement | iterationStatement |

continueStatement | breakStatement | returnStatement |

withStatement| labelledStatement | switchStatement |

throwStatement | tryStatement;

expressionStatement: expression ';';

expression: assignmentExpression (',' assignmentExpression)*;

assignmentExpression: conditionalExpression | jQueryExpression |

QunitAssertion | leftHandSideExpression assignmentOperator

assignmentExpression;

jQueryExpression: '$' '(' selector ')' '.' action '(' (parameter

(',' parameter)*)? ')';

7.3.2 Validation Code Generator

Form validation can be implemented on both client and server side (Mitchell,

2000). Client-side form validation does not require data from the server. It is

instantaneous as errors are identified before the form is submitted to the server.

Typically, client-side form validation checks whether the required information

(such as username and password) is filled and whether the information is in the

correct format (such as email address, URL, date and phone number). The user

will be informed with correction suggestions if the validation fails. Server-side

form validation requires information from the server side. The user‟s input is sent

to the server for validation using a server scripting language and the validation

feedback is displayed after the client (browser) receives the server‟s response.

Server-side form validation further checks the information before the data is

 92

processed on the server side (such as inserting data into a database) to ensure the

correct operation of the web application. In addition, if JavaScript is not enabled

in a browser, client-side form validation is disabled; however, server-side form

validation is still able to secure the web application. As a result, combining client-

side and server-side form validation helps improve the user‟s experience and

provides responsive and secure form validation.

1. The seven steps to add validation

We built a Validation Code Generator to add client and server-side form

validation code. The validation code is written using the jQuery validation

plugin
94

. This component is also semi-automatic as it requires selections from the

programmer. There are seven steps to generate the form validation code.

Step 1: Select validation rules. The jQuery validation plugin provides a list of

built-in validation methods to be added to different HTML inputs, text areas and

select menus. The first step is for the programmer to provide validation rules for

each element in the form. Figure 7.2 shows the selection window in our system

for adding validation rules. One exception is the validation rule for “Maxlength”.

The input elements have an attribute called maxlength, if this attribute is specified

in the HTML code; the value of the attribute is retrieved during the HTML code

parsing and will be automatically displayed in Figure 7.2. Additionally, if server-

side validation (database involved) is required, the programmer specifies the URL

of a server side scripting file in the “Remote” field. All the built-in validation

methods are common rules for validation, custom validation methods can be

added by clicking the “Add Rules” button. Both client-side and server-side

validation rules can be added using jQuery.validator.addMethod(). Furthermore,

the jQuery validation plugin also provides more complex validation methods in

additional-methods.js, such as the validation rules for time, phone number and IP

address. Hence, if validation rules other than the basic rules are required, the

programmer can click the “More Rules” button for additional options.

Step 2: Server side validation code setting. If a programmer specifies a URL for

the server side validation, they are required to provide the server name, database

name, table name, username and password for the database, to generate the server

side scripting file.

Step 3: Specify error messages. The jQuery validation plugin provides default

error messages for different validation methods. For example, the error message is

“This field is required”, if this field is left empty. Custom error messages are also

available. Thus, this step is for the programmer to specify the custom error

messages for different form fields. This step is optional.

Step 4: Select the display position for error messages. The options include above

or below the field and on the right or left side of the field. This step is optional.

94 http://bassistance.de/jquery-plugins/jquery-plugin-validation/

 93

Step 5: Select the style of error messages. FTT provides different CSS style of

error messages. The programmer can select the style that is accordance with the

style of the form presentation. This step is optional.

Step 6: Code generation. The system generates the jQuery form validation code in

line with the programmer‟s requirements. The validation code can be placed into

the input, textarea and select elements using the class attribute or be placed into

the $(document).ready function which occurs when the DOM has been loaded. If

the programmer specifies a URL for the server side validation, a server side

scripting file whose name is indicated by the specified URL in the “Remote” field

is generated using a JSP code template. The JSP code returns true or false to the

client side to indicate the validation status. Subsequently, form users are informed

as soon as the client side obtains the validation status.

Step 7: Clean up. Traditional web forms before refactoring perform validations

using custom JavaScript functions. The final step is to clean up these JavaScript

functions and their specifications.

Figure 7.2 The Validation Selection Window

2. The grammar for generated form validation code

Two parts of the code are generated: the JavaScript code for importing external

JavaScript libraries, and the validation code using the jQuery validation plugin.

The following code shows the grammar for the generated validation code if the

programmer selects to place the validation code into the HTML elements and the

grammar for the generated validation code if the programmer selects to placed the

validation code into the $(document).ready function. As described in the previous

section, we only include the directly utilized symbols and rules of the grammar.

 94

This is the grammar for the generated validation code placed into HTML

elements.

form: '<form' WS 'action' ('=""') 'method' ('=""') ('id' ('='

(WORD ('%')? | ('-')? INT | STRING | HEXNUM)))(ATTR)* '>'

(form_field | body_content)* '</form>';

form_field: INPUT | select | textarea;

body_content: body_tag | text;

INPUT: '<input' (WS ('id' ('=' (WORD ('%')? | ('-')? INT | STRING

| HEXNUM))) | ('class' '=' validationRules)) (ATTR)* '>';

select: '<select' (WS ('id' ('=' (WORD ('%')? | ('-')? INT |

STRING | HEXNUM))) | ('class' '=' validationRules)) (ATTR)* '>'

(PCDATA)* ('<option' (WS (ATTR)*)? '>' (PCDATA)*)+ '</select>';

textarea: '<textarea' (WS ('id' ('=' (WORD ('%')? | ('-')? INT |

STRING | HEXNUM))) | ('class' '=' validationRules)) (ATTR)* '>'

(PCDATA)* '</textarea>';

ATTR: WORD ('=' (WORD ('%')? | ('-')? INT | STRING | HEXNUM))?;

validationRules: '"{' rules (',' message)? '"}';

rules: rule (',' rule)*;

message: 'messages' ':' '{' rule (',' rule)* '}';

rule: ruleName ':' value;

This is the grammar for the generated validation code placed into the

$(document).ready function.

validationMethod: '$' '(' formID ')' '.' 'validate' '(' '{'

validateBody '}' ')';

validateBody: options (',' options)*;

options: rule | callbackFunc | option;

callbackFunc: funcName ':' 'function' '(' parameter (','

parameter)* ')' '{' sourceElements '}';

option: optionName ':' '{' input (',' input)* '}'

optionName: 'rules' | 'message';

input: inputName ':' (('{' rule (',' rule)* '}') | value);

rule: ruleName ':' value;

7.3.3 QUnit Code Generator

Ajax calls are essential to Ajax forms. To provide programmers with a

mechanism to test Ajax calls after refactoring, a QUnit Code Generator is built to

generate multiple test cases. Unit testing is usually synchronous and the test cases

are executed one after another. To test asynchronous functions, such as Ajax calls

or functions called by setTimeout() or setInterval(), in the test() method, stop() is

called before asynchronous operation, and start() is used after all assertions are

called (Lindley, 2009). QUnit
95

, a powerful JavaScript test suite, provides the

asyncTest() method to test Ajax calls. It is a shortcut as it is equivalent to calling

the test() and stop() methods. Thus, the generated code utilizes asyncTest() to

implement the asynchronous testing.

95 http://docs.jquery.com/Qunit

 95

Ideally, this tool should be utilized as the first phase in the refactoring process to

validate that the new Ajax-based form successfully implements the original

HTML-based form. It is a semi-automated tool, which requires programmers to

provide information for the testing code generation. This information includes:

the name of the test case, the name of the variable to be tested, the expected value

of the test case and the URL to send the Ajax request to. To test the Ajax call for

the form submission, a URL is set to the server side scripting file where all the

form data is submitted to. Similarly, to test the Ajax call for server-side

validation; a URL is set to the server side scripting file generated by the

Validation Code Generator.

The following code shows the grammar for the generated QUnit testing code. As

described in the previous section, we only include the directly utilized symbols

and rules of the grammar.

program: sourceElements EOF;

sourceElements: sourceElement (sourceElement)*;

sourceElement: function | statement;

function: functionDeclaration | jQueryFunction;

jQueryFunction: documentReadyFunction | jQueryCallbackFunction |

ajaxMethod | validationMethod | asyncTestMethod;
asyncTestMethod: asyncTest (';' asyncTest)*;

asyncTest: 'asyncTest' '(' testCaseName ',' 'function' '(' ')' '{'

sourceElement '}' ')';

statement: statementBlock | variableStatement | emptyStatement |

expressionStatement | ifStatement | iterationStatement |

continueStatement | breakStatement | returnStatement |

withStatement| labelledStatement | switchStatement |

throwStatement | tryStatement;

expressionStatement: expression ';';

expression: assignmentExpression (',' assignmentExpression)*;

assignmentExpression: conditionalExpression | jQueryExpression |

QunitAssertion | leftHandSideExpression assignmentOperator

assignmentExpression;

QunitAssertion: ok | equal | notEqual | deepEqual | notDeepEqual |

strictEqual | notStrictEqual | raises;

7.4 Transforming the Example Form into an Ajax Form

In Section 7.1, we introduced JspCart‟s traditional HTML registration form. In

this section, FTT is used to transform it into its Ajax-enabled equivalent form.

7.4.1 Record the Form’s Submission Process

Before the transformation process, we use Selenium to capture the user‟s inputs to

the registration form and the outputs. After refactoring, we replay the user‟s

interaction to check whether the outputs of the form are unchanged (even though

the GUI may have changed), to ensure the functionality of the form is preserved

before and after refactoring. For example, we record the process of a successful

form submission, and Figure 7.3 shows the output of the successful form

submission before refactoring. The browser will be redirected to the Login.jsp if

the registration is successful.

 96

Figure 7.3 The Output of the Form Submission before Refactoring

7.4.2 Add Test Case

To make sure the refactoring is error-free; we add test cases to test Ajax calls for

server-side validations (programmers can also add test cases to test the Ajax call

for the form submission). If we want to test the Ajax call for validating the email

address, we would create the following test unit case. Name: "Test Email

Address", test field: “txtEmailAddress”, test value: “example@ece.com”,

expected return value: “false” and return message: “The Email is in the database”.

We also provide the URL for the server side scripting file (validation.jsp), which

will be generated by our Validation Code Generator. The generated QUnit code

by the QUnit Code Generator is shown as follows.

asyncTest("Test Email Address", function(){

setTimeout(function(){

var dataString = 'txtEmailAddress = '+' example@ece.com';

$.ajax({

url: "validation.jsp",

data: dataString,

success: function(response) {

equals(response, "false", "The Email is in the

database!");

start();

}

});

}, 100)

});

7.4.3 Transform the Registration Form into an Ajax Form

The next step is to transform the traditional form submission method through the

Form Submission Transformer using the process below.

 97

HTML code detection and rewriting: The Form Submission Transformer

performs the following modifications to the code. (1) The action and method

attributes of the form are set to null. (2) The id attribute is added. (3) JavaScript

statements to import the external jQuery plugin are added.

JQuery code generation: The Form Submission Transformer then generates the

Ajax submission code. The generated code for the basic configuration is shown as

follows.

$(".DarkButton").click(function(){

var txtEmailAddress = $("#txtEmailAddress").val();

var txtFirstname = $("#txtFirstname").val();

var txtLastname = $("#txtLastname").val();

 …

 var dataString = "txtEmailAddress = " + txtEmailAddress +

"&txtFirstname = " + txtFirstname + "& txtLastname = " +

txtLastname + …;

 $.ajax({

type: "POST",

url: "Signup.jsp",

data: dataString,

dataType: "html",

success: function(data){

if(data == 1){

location.href = "Login.jsp?txtMessage = Registration

Successful,%20please%20login.&txtRedirect = " +

'<%=org.nspeech.web.UrlEncoderEx.encode(txtRedirect)%>

';

}

 return false;

}

 });

});

The “DarkButton” is the class name of the submit button. When the submit button

is clicked, the input information is gathered using the jQuery id selector and

concatenated into a string “dataString”. In the jQuery.ajax() method, the type of

the request, the URL to send the request to, the data type and the data to be sent to

the server are specified (The user provides the data type information). The other

information is retrieved by HTML parsing and the generated code (dataString). In

addition, a success() function, which is called when the request is successfully

send to the server, is generated with an empty function body. The final step is for

programmers to add any domain specific component to this function.

According to the system flow, after the user has successfully registered, the web

page will be redirected to the Login.jsp for the user to login. Thus, the redirection

code is moved from the JSP snippet in the Signup.jsp to the success() function.

However, a parameter (data) is required for the success() function to inform that

the registration is successful before redirecting the user to the login page. The data

type for the parameter returned from the server is “html”. Meanwhile, we output a

app:ds:concatenate
http://api.jquery.com/jQuery.ajax/

 98

number “1” after the statements of the successful database operation in the JSP

snippet of the Signup.jsp.

7.4.4 Add Validations

There are seven steps used to generate the form validation code.

Step 1: Select the validation rules. We select different validation rules for
different fields. For the email field, we also specify the URL for the server side
scripting file (validation.jsp) containing the server-side validation code.

Step 2: Server-side validation code setting. We provide the server name, database
name, table name, user name and password for the database to generate the server
side scripting file (validation.jsp).

Step 3: Specify the error messages. We specify the error messages for the email
and the confirm password field. If the user‟s email has been registered previously,
the error message “The Email has already been registered!” will be displayed (as
can be seen in Figure 7.4). Moreover, if the two passwords do not match, the error
message “Two passwords must match!” will be shown.

Step 4: Select the position of the error messages. We place the error message on
the right side of the field.

Step 5: Select the style of the error messages. For our style, the error message is
displayed in red and the border of the first input field with an error becomes
dotted and red to attract the user‟s attention.

Step 6: Code generation. The system generates the validation code and the server
side scripting file (validation.jsp) in line with our requirements. The validation
code is placed into the $(document).ready function.

Step 7: Clean up. We delete all the JavaScript functions for the client and server-
side validation and we also delete the onsubmit attribute specified by the form
element.

 99

Figure 7.4 shows the registration form after the validations have been added.

Figure 7.4 The Registration Form after Refactoring

The following code shows the generated jQuery validation code. The

“SignupForm” is the id of the registration form and the validate() is the method to

validate the selected form. The “rules” and “Message” are options of the

validate() method, which are used to specify all the validation rules and the

custom messages through key/value pairs.

$("#SignupForm").validate({

rules:{

txtEmailAddress:{

required: true,

email: true,

remote: "validation.jsp"

},

txtPassword:{

required: true,

minlength: 5

},

txtPassword2:{

http://docs.jquery.com/Plugins/Validation/validate#options
http://docs.jquery.com/Plugins/Validation/validate#options

 100

required: true,

minlength: 5,

equalTo: "#txtPassword"

},

…

},

messages:{

txtEmailAddress:{

remote: "The Email has already been registered!"

},

txtPassword2:{

equalTo: "Two passwords must match!"

 }

}

})

7.4.5 Replay the Form’s Submission Process and Execute the Unit
Test

After refactoring, we replay the Selenium script that recorded the user's

interaction of a successful submission, and the form reproduces the output without

anomalies as shown in Figure 7.5. This output is the same as the output before

refactoring, which implies that our refactoring does not change the functionality

of the form.

In the previous sections, we add the test case to test the Ajax call which checks

whether the email address “example@ece.com” has already been registered.

Thus, after refactoring, we execute the test code to see whether our generated

validation code passes the test case. Figure 7.6 shows the test passes. The test case

returns “false” which means the specified email address is in the database of the

JspCart web application.

Figure 7.5 The Output of the Form Submission after Refactoring

 101

Figure 7.6 The QUnit Testing Result

7.4.6 Case Study 2

Petstore
96

, an open source e-commerce application, will also be transformed.

Petstore has several forms in its website management system; we will take the

form for adding products information as an example (productmanager.jsp). The

refactoring process transforms the traditional form for adding products‟

information into an Ajax version. FTT modifies the following HTML code (1) the

action and method attributes of the form are set to null. (2) The id attributes are

added. (3) The class attribute of the submit input element is added. (4) JavaScript

statements to import the external jQuery plugin are added. FTT then generates the

Ajax submission code which includes: (1) the code to retrieve information for

“Product Name”, “Uniprice” and “Category” from the HTML elements, and to

concatenate all the data into a string. (2) The code for the jQuery.ajax() method is

also produced with different arguments. No matter whether the submission is

successful, the browser will be redirected back to the productmanager.jsp. Ajax-

enabled forms can prevent needless redirections and can display the status of the

submission directly on the productmanager.jsp. Thus, to refactor this form into an

Ajax-enabled version, we have added a parameter to the success() function to

retrieve the status of the submission from the admin/productadmin. A status

message is added to the productmanager.jsp to inform the user about the status of

the submission, and the redirection code in admin/productadmin is removed. This

way, after the submission, the browser will stay in the productmanager.jsp

without redirection.

The next step is to add validations to the form. We specify the rule “required” and

“productNameCheck” for the Product Name field. The rule “productNameCheck”

is a custom server side validation rule to check whether the product already exists

in the database. We provide information for FTT to create this rule using the

jQuery.validator.addMethod(). In addition, we specify the rule “required” and

“number” for the Uniprice field and the rule “required” for the Category field. We

96 http://code.google.com/p/petstorewebsite/

http://api.jquery.com/jQuery.ajax/

 102

also specify the error message for the newly created rule “productNameCheck”.

All the error messages are selected to display in red with an icon in front and the

border of all the input fields with errors are dotted and red. The generated

validation code is selected to be placed into the HTML elements using the class

attribute. To use the class attribute for adding validations, the JavaScript

statement to import jquery.metadata.js is generated at the same time. The

following code shows the generated validation code for the form used to add

products information in the product management page.

<form action = "" name = "newproductrecord" method = ""

id = "newproductrecord">

<input type = "hidden" name = "mode" id = "mode"

value = "<%=addnewmode%>"/>

Product Name: <input type = "text" name = "pname" id = "pname"

value = "" size = "20" class = "{required:true,

productNameCheck:ture,messages:{productNameCheck:'The product

already exists!'}}"/>

Uniprice: <input type = "text" name = "uniprice" id =

"uniprice" value = "" size = "20" class = "{ required:true,

 number:true}" />

Category: <input type = "text" name = "category" id =

"category" value = "" size = "20" class = "{required:true}"

/>

 <input type = "submit" value = "Add" name = "addnew" class =

 "submitform"/>

</form>

Figure 7.7 shows the product management page after refactoring, which

demonstrates that the transformation is performed successfully.

Figure 7.7 The Product Management Page after Refactoring

 103

After the transformation, we count the number of lines of code (LOC) generated

by FTT (not including comment lines, blank lines, lines of a single brace or

parenthesis) to evaluate the effort saved by programmers. Table 7.1 shows the

number of LOC generated for the form submission, form validation and test cases

(using Qunit) for the two web applications (JspCart and Petstore). The number of

LOC generated to perform form validation includes the code for server side

validation. The number of LOC generated for form submission, form validation

and test cases are dependent on how many fields are in the form, how many fields

requiring validation and how many test cases are required to produce the desired

coverage. JspCart has 17 fields (including one hidden field), 12 fields requiring

validation and 1 test case. Petstore has 4 fields (including one hidden field), 3

fields requiring validation and 1 test case.

Table 7.1 The Number of Lines of Code Generated by FTT

Application Form Submission(LOC) Validation(LOC) Test Cases(LOC)

JspCart 33 97 28
Petstore 16 58 28

7.5 Evaluation

We tested the efficiency improvement of the two forms in the JspCart and

Petstore to evaluate the effectiveness of the refactored systems. We measure the

“response time” before and after refactoring as an amalgamation of the network

transfer time, the network latency time, the server response time and the client

processing time.

For JspCart, we test the response time of the server side validation for the form

field “Email Address” when the server side validation fails. Before refactoring,

the entire form needs to be submitted before the field can be validated, so the time

measurement starts from when the user clicks on the Sign-up button and ends

when the server side returns the error message to the registration page. After

refactoring, validation is done on change, so the time measurement starts from

when the user finishes entering the email address to trigger an XMLHttpRequest

request and ends when the error message is displayed on the right side of the

“Email Address” field.

For Petstore, we test the response time of the form submission before and after

refactoring. Before refactoring, the time measurement starts from when the user

clicks on the submission button on the productmanager.jsp page and ends when

the browser is redirected back to the productmanager.jsp page. After refactoring,

the time measurement starts from when the user clicks on the submission button

and ends when the status of submission is displayed on the productmanager.jsp

page.

Tests were executed in the following environment: Intel(R) Core (TM) 2 Quad

CPU Q6600 @2.4GHz, with 4 GB of RAM running Microsoft Windows XP

 104

Professional, Service Pack 3. In addition, each test was executed 100 times in

Firefox 4.0 and an average was taken to ensure that any extraneous timing issues

were minimized.

Table 7.2 shows the response time before and after refactoring and their relative

performance is compared. The table shows that, for both applications, the

response time for the refactored (Ajax-enabled) forms are significantly faster than

the original (traditional) forms. The relative mean difference (RMD) of the

response time before and after is calculated as:

 (Response Time before Refactoring - Response Time after Refactoring)

 (Response Time before Refactoring + Response Time after Refactoring) /2 (4)

Table 7.2 Testing Results for the Response Time before and after Refactoring

Application
Response time before

Refactoring (ms)

Response time after

Refactoring (ms)
RMD

JspCart 119.5 15.8 1.53

PetStore 202.1 46.9 1.25

 105

Chapter 8 Conclusion

As functionality, especially the interactive functionality, increases in RIAs,

performance becomes a more significant issue. This issue is compounded by the

movement of such applications onto mobile platforms such as smartphones and

tablets. Transforming poor performing RIA code into more efficient code is not a

straightforward process. If left solely to the programmer, the result will often be

produce new structures that contain defects while not improving the efficiency of

the system significantly. This dissertation proposes refactoring as a technique to

help improve the efficiency of these RIAs.

Chapter 4 introduces refactoring to help remove bad smells in AS3 code to

improve users‟ experiences by making AS3 code run faster. To avoid the tedious,

error and omission-prone manual refactoring process, this chapter proposes a

refactoring tool, ART, which automatically produces refactorings with minimal

programmer intervention. An empirical study demonstrates that ART produces

significantly faster code. While this system explicitly targets ActionScript,

migrating the system to support other languages derived from ECMA-262 Script

v3-5 is relatively straightforward.

Chapter 5 proposes a technique to better embed Flash content into web pages.

Markup-based embedding methods or JavaScript-based embedding methods can

be used to include Flash content; however, JavaScript-based embedding methods

result in superior implementations. This chapter introduces a refactoring tool

called FlashembedRT to assist programmers transform any of the five markup-

based embedding methods into a method using one of the popular Flash

embedding JavaScript libraries, flashembed. An example is provided to

demonstrate how programmers can use FlashembedRT to refactor their Flash

embedding methods.

Chapter 6 discusses refactoring as a method to modify existing RIAs to use JSON

instead of XML for the data exchange format. Due to its lightweight nature and

native support for JavaScript, JSON, an alternative data exchange format to XML,

improves the efficiency of Ajax applications. Specifically, it improves the

efficiency with respect to (1) network transfer time, and (2) JavaScript processing

time on the client side. Changing the data format for an existing Ajax application

involves: (1) converting the data format from XML to JSON; and (2) changing

the JavaScript code – from code which manipulates the XML version of the data

to code which manipulates the JSON version of the data.

A tool called XtoJ is introduced to aid the programmers with the transformation

from XML to JSON. This system is based around three components: XML to

JSON Converter, JavaScript Code Transformer and JavaScript Code Generator.

An empirical demonstration shows that XtoJ can significantly improve the

efficiency of Ajax applications; and the improvements are consistent with

efficiency reports for manual construction (Nurseitov et al., 2009). An analysis is

 106

also performed on three additional variables that can influence the performance of

the system (the number of objects, the structure of the XML and JSON data and

the length of the text in a node). These additional results imply that the benefits of

transforming such systems will significantly improve a large number of

applications.

Chapter 7 presents a system called FTT to refactor traditional web forms into

Ajax-enabled web forms. Using traditional forms can lead to a poor user

experience because the entire web page is reloaded each time the form is

submitted. Furthermore, form validations on both the client side and the server

side are triggered upon submission, not on change. This model leads to

inefficiency in both responsiveness and data transmission. Hence, traditional

forms should be refactored into Ajax-enabled forms. The system contains three

components: Form Submission Transformer, Validation Code Generator and

QUnit Code Generator. The Form Submission Transformer refactors the original

HTML and JavaScript code into the jQuery-based code. The Validation Code

Generator aids the programmer with client-side and server-side form validation by

automatically generating the validation code based on inputs from the

programmer. Finally, the QUnit Code Generator helps programmers generate

code for unit testing to ensure the form still meets the system requirements after

the refactoring process. Two case studies are performed to demonstrate the

capabilities of the system. These show that FTT can be used to correctly refactor

traditional forms into Ajax-enabled forms.

8.1 Future Work

Exploring additional issues and expanding the capabilities of the refactoring tools

introduced in this dissertation form the basis for future work.

Currently the presented tools are static refactoring tools with minimal user

overhead; therefore, future works include adding dynamic features, which can

pass performance and improvement information to programmers and improve the

communication with them. However, such extensions require great flexibility

because different programmers have differing tolerances for overheads. Hence, an

interactive system must allow the programmers to select the “amount” (or “level”)

of overhead (or “interaction”) which they are willing to tolerate. Without such

flexibility, experience has shown that the support system will quickly be

abandoned by the programming community.

Although programmers can use the proposed refactoring systems to improve their

web applications, the systems are not well integrated with each other. That is,

programmers have to use multiple tools if they want to improve various aspects of

their applications. For example, they have to use XtoJ and FTT to improve the

data format and to refactor their forms into Ajax-enabled forms. Additional work

will concentrate on integrating all the proposed refactoring systems into a fully

comprehensive tool. This tool can then assist programmers improve the efficiency

of their web applications through either optimization techniques (ART, XtoJ) or

 107

migration of their systems to Ajax-enabled versions (FTT). Finally, the tool will

be released to the public. Once the tool is released, a survey can be done from the

programmers using the tool to determine the effectiveness of the tool using a

much larger sample size with a variety of different configurations (Eaton et al.

2007).

 108

Bibliography

Ali, A.D. (2001). A Dynamic Cluster Constructor for Load Balancing in Big Heterogeneous

Distributed Systems. Proceedings of the Symposium on Performance Evaluation of Computer and

Telecommunication Systems, pp. 47-55.

Allen, R., Qian, K., Tao, L., Fu, X. (2008). Web Development with JavaScript and Ajax

Illuminated. Sudbury, MA, USA: Jones & Bartlett Learning.

Allsopp, J. (2009). Developing with Web Standards. New Riders: Berkeley, CA, USA.

Amiri, K., Park, S., Tewari, R., Padmanabhan, S. (2003). DBProxy: A Dynamic Data Cache for

Web Applications. Proceedings of the 19th International Conference on Data Engineering. IEEE

Computer Society: Washington, DC, USA, pp. 821-831.

Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.F. (2000). Adaptive Optimization in the

Jalapeño JVM: The Controller‟s Analytical Model. Proceedings of the 15th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications.

Attenborough, M. (2003). Mathematics for Electrical Engineering and Computing Electronics &

Electrical. Boston, MA, USA: Newne.

Babic, D., Rakamaric, Z. (2002). Bytecode Optimization. Proceedings of the 24th International

Conference on Information Technology Interfaces, pp. 377-383.

Bacon, D.F., Graham, S.L., Sharp, O.J. (1994). Compiler Transformations for High-performance

Computing. ACM Computing Surveys (CSUR) 26(4): 345-420.

Bala, V., Duesterwald, E., Banerjia, S. (2000). Dynamo: A Transparent Dynamic Optimization

System. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM: New York, NY, USA. 35(5), pp. 1-12.

Balasubramanian, J., Schmidt, D.C., Dowdy, L., Othman, O. (2004). Evaluating the Performance

of Middleware Load Balancing Strategies. Proceedings of the 8th IEEE International Enterprise

Distributed Object Computing Conference. IEEE Computer Society: Washington, DC, USA, pp.

135-146.

Bartolini, S., Prete, C. (2005). Optimizing Instruction Cache Performance of Embedded Systems.

ACM Transactions on Embedded Computing Systems (TECS) 4(4), pp. 934-965.

Bergeron, J., Debbabi, M., Erhioui, M.M., Ktari, B. (1999). Static Analysis of Binary Code to

Isolate Malicious Behaviors. Proceedings of the 8th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, pp. 184-189.

Bergsten, H. (2000). JavaServer Pages. Sebastopol, CA, USA: O'Reilly Media.

Beyls, K., D'Hollander, E.H. (2009). Refactoring for Data Locality. IEEE Computer 42(2), pp. 62-

71.

Braunstein, R. (2007). Introduction to Flex 2. Sebastopol, CA, USA: O'Reilly Media.

Braunstein, R., Wright, M.H., Noble J.J. (2007). ActionScript 3.0 Bible. New York, NY, USA:

Wiley.

http://www.sudbury.ma.us/
http://www.acm.org/publications
http://www.reviews.com/Browse/Browse_authors.cfm?author_id=2351119
http://www.reviews.com/Browse/Browse_authors.cfm?author_id=1749299

 109

Buck, B., Hollingsworth, J.K. (2000). An API for Runtime Code Patching. International Journal of

High Performance Computing Applications 14(4), pp. 317-329.

Bulka, D., Mayhew, D. (2000). Efficient C++: Performance Programming Techniques. Boston,

MA, USA: Addison Wesley.

Buyukozkan, G. (2009). Determining the Mobile Commerce User Requirements Using an

Analytic Approach. Computer Standards and Interfaces 31(1), pp. 144-152.

Card, S.K., Robertson, G.G., Mackinlay, J.D. (1991). The Information Visualizer, An Information

Workspace. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI'91), pp. 181-188.

Carey, P. (2009). New Perspectives on HTML, XHTML, and Dynamic HTML. Florence, KY,

Cengage Learning.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle, M.F.P., Temam, O. (2007). Rapidly

Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the

International Symposium on Code Generation and Optimization. IEEE Computer

Society: Washington, DC, USA, pp. 185-197.

Challenger, J.R., Dantzig, P., Iyengar, A., Squillante, M.S. Zhang, L. (2004). Efficiently Serving

Dynamic Data at Highly Accessed Web Sites. IEEE/ACM Transactions on Networking 12(2), pp.

233-246.

Chen, C.W., Chang, C.H., Ku, C.J. (2005). A Low Power-Consuming Embedded System

Design by Reducing Memory Access Frequencies. IEICE Transactions E88-D(12), pp. 2748-2756.

Chen, W.K., Lerner, S., Chaiken, R., Gillies, D.M. (2000). Mojo: A Dynamic Optimization

System. Proceedings of the ACM Workshop on Feedback-Directed and Dynamic Optimization.

Chu, J., Dean, T. (2008). Automated Migration of List Based JSP Web Pages to AJAX.

Proceedings of the 8th IEEE International Working Conference on Source Code Analysis and

Manipulation. IEEE Computer Society: Los Alamitos, CA, USA, pp. 217-226.

Cierniak, M., Li, W. (1997). Briki: an Optimizing Java Compiler. Proceedings of the 42nd IEEE

International Computer Conference. IEEE Computer Society: Washington, DC, USA, pp.179-184.

Cinn ide, M.O., Boyle, D., Moghadam, I.H. (2011). Automated Refactoring for Testability.

Proceedings of the 4h IEEE International Conference on Software Testing, Verification and

Validation Workshops. IEEE Computer Society: Washington, DC, USA, pp. 437–443.

Coelho, R., Kulesza, U., Staa, A.V., Lucena, C. (2006). Unit Testing in Multi-Agent Systems

using Mock Agents and Aspects. Proceedings of the International Workshop on Software

Engineering for Large-Scale Multi-Agent Systems. ACM: New York, NY, USA, pp. 83-90.

Cowan, N. (2000). The Magical Number 4 in Short-term Memory: A Reconsideration of Mental

Storage Capacity. Behavioral and Brain Sciences 24, pp. 87-185.

Datta, A., Dutta, K., Thomas, H.M., VanderMeer, D.E., Ramamritham, K., Fishman, D. (2001). A

Comparative Study of Alternative Middle Tier Caching Solutions to Support Dynamic Web

Content Acceleration. Proceedings of the 27th International Conference on Very Large Data

Bases. Morgan Kaufmann Publishers: San Francisco, CA, USA, pp. 667-670.

 110

Demeyer, S. (2002). Maintainability versus Performance: What's the Effect of Introducing

Polymorphism? Technical Report, Universiteit Antwerpe.

Derezińska, A., Sarba, K. (2010). Distributed Environment Integrating Tools for Software Testing.

Advanced Techniques in Computing Sciences and Software Engineering, pp. 545-550.

Desoli, G., Mateev, N., Duesterwald, E., Faraboschi, P., Fisher, J.A. (2002). DELI: A New Run-

Time Control Point. Proceedings of the 35th Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 257-268.

Dig, D. (2011). A Refactoring Approach to Parallelism. IEEE Software 28(1), pp. 17-22.

Dig, D., Marrero, J., Ernst, M.D. (2009a). Refactoring Sequential Java Code for Concurrency via

Concurrent Libraries. Proceedings of the 31st International Conference on Software Engineering.

IEEE Computer Society: Washington, DC, pp. 397-407.

Dig, D., Tarce, M., Radoi, C., Minea, M, Johnson, R. (2009b). Relooper: Refactoring for Loop

Parallelism in Java. Proceedings of the 24th ACM SIGPLAN Conference Companion on Object

Oriented Programming Systems Languages and Applications. ACM: New York, NY, USA, pp.

793-794.

Driver, M., Valdes, R., Phifer, G. (2005). Rich Internet Applications Are the Next Evolution of the

Web.Technical Report, Gartner.

Dudziak, T., Wloka, J. (2002). Tool-supported Discovery and Refactoring of Structural

Weaknesses in Code. M.S. Thesis, Technical University of Berlin.

Eaton, C., Memon, A.M. (2007). An Empirical Approach to Testing Web Applications Across

Diverse Client Platform Configurations. International Journal on Web Engineering and

Technology (IJWET), Special Issue on Empirical Studies in Web Engineering 3(3), pp. 227-253.

Eichorn, J. (2007). Understanding AJAX: Using JavaScript to Create Rich Internet Applications.

New Jersey, USA: Prentice Hall.

Englander, R. (1997). Developing Java Beans. Sebastopol, CA, USA: O'Reilly Media.

Faris, T.H. (2006). Safe and Sound Software: Creating an Efficient and Effective Quality System

for Software Medical Device Organizations. Milwaukee, USA: ASQ Quality Press.

Florio, C., Adobe Creative Team (2008). ActionScript 3.0 for Adobe Flash CS4 Professional

Classroom in a Book. Berkeley, CA, USA: Peachpit Press.

Fowler, M. (1999). Refactoring Improving the Design of Existing Code. Boston, MA, USA:

Addison-Wesley.

Fuhrer, R.M., Saraswat, V. (2009). Concurrency Refactoring for x10. Proceedings of the 3rd ACM

Workshop on Refactoring Tools. ACM: New York, NY, USA.

Garrett, J. (2005). Ajax: A New Approach to Web Applications.

http://www.adaptivepath.com/ideas/essays/archives/000385.php.

Garrido, A., Johnson, R. (2003). Refactoring C with Conditional Compilation. Proceedings of the

18th IEEE International Conference on Automated Software Engineering. IEEE Computer

Society: Washington, DC, USA, pp. 323-326.

http://www.springerlink.com/content/?Author=Krzysztof+Sarba
http://dl.acm.org/author_page.cfm?id=81421599609&coll=DL&dl=ACM&trk=0&cfid=43757635&cftoken=35635825
http://www.acm.org/publications

 111

Garrido, A., Rossi, G., Distante, D. (2011). Refactoring for Usability in Web Applications. IEEE

Software 28(3), pp. 60-67.

Ghodrat, M.A., Givargis, T., Nicolau, A. (2007). Short-Circuit Compiler Transformation:

Optimizing Conditional Blocks. Proceedings of the 12th Conference on Asia South Pacific Design

Automation. IEEE Computer Society: Washington, DC, USA, pp. 504-510.

Ghosh, P., Rau-Chaplin, A. (2006). Performance of Dynamic Web Page Generation for Database-

driven Web Sites. Proceedings of the International Conference on Next Generation Web Services

Practices. IEEE Computer Society: Washington, DC, USA, pp. 56-63.

Goldstein, E.B. (2007), Cognitive Psychology: Connecting Mind, Research and Everyday

Experience. Florence, KY: Cengage Learning.

Gough, B. (2004). An Introduction to GCC. Bristol, UK: Network Theory.

Grant, B., Philipose, M., Mock, M., Chambers, C., Eggers, S.J. (1999). An Evaluation of Staged

Run-time Optimizations in DyC. Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM: New York, NY, USA, pp. 293-304.

Griswold, W.G. (1991). Program Restructuring as an Aid to Software Maintenance. Ph.D. Thesis,

University of Washington.

Grossman, G. (2006). ActionScript 3.0 and AVM2: Performance Tuning,

http://www.onflex.org/ACDS/AS3TuningInsideAVM2JIT.pdf.

Hagen, W.V. (2006). The Definitive Guide to GCC. Berkeley, CA, USA: Apress.

Harold, E.R. (2008). Refactoring HTML: Improving the Design of Existing Web Applications.

Upper Saddle River, NJ, USA: Addison-Wesley.

Hewlett-Packard Company. (2001). JavaTM Terminology HotSpot JVM Runtime Compiler.

http://docs.hp.com/en/JAVAPERFTUTOR/02Terminology.pdf.

Hewlett-Packard Company. (2007). Load Testing 2.0 for Web 2.0: Simplifying Performance

Validation for Rich Internet Applications [White paper].

http://www.webbuyersguide.com/resource/white-paper/9794/Load-Testing-20-for-Web-20-

Simplifying-Performance-Validation-for-Rich-Internet-Applications.

Hiser, J.D., Kumar, N., Zhao, M., Zhou, S.K., Childers, B.R., Davidson, J.W., Soffa, M.L. (2006).

Techniques and Tools for Dynamic Optimization. Proceedings of the 20th International

Conference on Parallel and Distributed Processing. IEEE Computer Society: Washington, DC,

USA.

Irani, R. (2010). JSON Continues its Winning Streak Over XML.

http://blog.programmableweb.com/2010/12/03/json-continues-its-winning-streak-over-xml/.

Jacobs, S. (2006). Beginning XML with DOM and Ajax: from Novice to Professional. Berkeley,

CA, USA: Apress.

Jain, P., Gupta, D. (2009). An Algorithm for Dynamic Load Balancing in Distributed Systems

with Multiple Supporting Nodes by Exploiting the Interrupt Service. International Journal of

Recent Trends in Engineering (IJRTE) 1(1), pp. 232-236.

http://dl.acm.org/author_page.cfm?id=81100041707&coll=DL&dl=ACM&trk=0&cfid=43491390&cftoken=31683927
http://www.webbuyersguide.com/resource/white-paper/9794/Load-Testing-20-for-Web-20-Simplifying-Performance-Validation-for-Rich-Internet-Applications
http://www.webbuyersguide.com/resource/white-paper/9794/Load-Testing-20-for-Web-20-Simplifying-Performance-Validation-for-Rich-Internet-Applications

 112

Kanat-Alexander, M. (2008). Code Simplicity: Software Design in Open Source Projects.

http://www.codesimplicity.com/wp-content/uploads/2008/07/code-simplicity-open-source-

design.pdf.

Kaplan, I. (1999). Why Use ANTLR? http://www.bearcave.com/software/antlr/antlr_expr.html.

Kataoka, Y., Imai, T., Andou, H., Fukaya, T. (2002). A Quantitative Evaluation of Maintainability

Enhancement by Refactoring. Proceedings of the International Conference on Software

Maintenance. IEEE Computer Society: Washington, DC, USA, pp. 576-585.

Kazoun, C., Lott, J. (2008). Programming Flex 3. Sebastopol, CA, USA: O'Reilly Media.

Kennedy, K., McKinley, K.S., Tseng, C.W. (1991). Interactive Parallel Programming Using the

Parascope Editor. IEEE Transactions on Parallel and Distributed Systems 2(3), pp. 329-341.

Kerievsky, J. (2004). Refactoring to Patterns. Boston, MA, USA: Addison-Wesley.

Khatchadourian, R., Muskalla, B. (2010). Enumeration Refactoring: A Tool for Automatically

Converting Java Constants to Enumerated Types. Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering. ACM: New York, NY, USA, pp.181-182.

Kiezun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.(2007). Refactoring for Parameterizing Java

Classes. Proceedings of the 29th International Conference on Software Engineering. IEEE

Computer Society: Washington, DC, USA, pp. 437-446.

Kim, C.G., Park, J.W., Lee, J.H., Kim, S.D. (2008). A Small Data Cache for Multimedia-oriented

Embedded Systems. Journal of Systems Architecture 54(1-2), pp. 161-176.

King, A.B. (2008). Website Optimization: Speed, Search Engine & Conversion Rate Secrets.

Sebastopol, CA, US: O'Reilly Media.

Kjolstad, F., Dig, D., Acevedo, G. Snir, M. (2009). Transformation for Class Immutability.

Proceedings of the 33rd International Conference on Software Engineering. ACM: New York,

NY, USA, pp. 61-70.

Lasky, J.A., Kevin, H. (1993), Conflict Resolution (CORE) for Software Quality Factors.

Technical Report, Rochester Institute of Technology.

Lee, H., Dincklage, D.V., Diwan, A., Eliot, J., Moss, B. (2006). Understanding the Behavior of

Compiler Optimizations. Software Practice & Experience 36(8), pp. 835-844.

Lee, P., Leone, M. (1996). Optimizing ML with Run-time Code Generation. Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM: New

York, NY, USA. 31(5), pp. 137-148.

Lekatsas, H., Wolf, W. (1999). SAMC: A Code Compression Algorithm for Embedded

Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

18(12), pp. 1689-1701.

Leone M., Dybvig, R.K. (1997). Dynamo: A Staged Compiler Architecture for Dynamic Program

Optimization. Technical Report, Indiana University.

Li, Y.-T.S., Malik, S. (1997). Performance Analysis of Embedded Software Using Implicit Path

Enumeration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

16(12), pp. 1477-1487.

http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81100087482&coll=DL&dl=ACM&trk=0&cfid=44563269&cftoken=87697182
http://dl.acm.org/author_page.cfm?id=81100204056&coll=DL&dl=ACM&trk=0&cfid=44563269&cftoken=87697182
http://dl.acm.org/author_page.cfm?id=81100333471&coll=DL&dl=ACM&trk=0&cfid=44563269&cftoken=87697182
http://dl.acm.org/author_page.cfm?id=81421599609&coll=DL&dl=ACM&trk=0&cfid=44563269&cftoken=87697182
https://researcher.ibm.com/researcher/files/us-ftip/icse2007.pdf
https://researcher.ibm.com/researcher/files/us-ftip/icse2007.pdf
http://dl.acm.org/results.cfm?query=Name%3A%22Danny%20Dig%22&querydisp=Name%3A%22Danny%20Dig%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=43757635&CFTOKEN=35635825
http://dl.acm.org/results.cfm?query=Name%3A%22Gabriel%20Acevedo%22&querydisp=Name%3A%22Gabriel%20Acevedo%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=43757635&CFTOKEN=35635825
http://dl.acm.org/results.cfm?query=Name%3A%22Marc%20Snir%22&querydisp=Name%3A%22Marc%20Snir%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=43757635&CFTOKEN=35635825
http://www.acm.org/publications

 113

Liao, S.-W., Diwan, A., Bosch, R.P. Jr., Ghuloum, A., Lam, G.M. (1999). SUIF Explorer: An

Interactive and Interprocedural Parallelizer. Proceedings of the 7th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming. ACM: New York, NY, USA, pp. 37-48.

Lindley, C.(2009). jQuery Cookbook. Sebastopol, CA: O'Reilly Media.

Lindvall, M., Tvedt, R.T., Costa, P. (2003). An Empirically-Based Process for Software

Architecture Evaluation. Empirical Software Engineering 8(1), pp. 83-108.

Lott, J., Peters, K., Schall, D. (2008), ActionScript 3.0 Cookbook. Sebastopol, CA, USA: O'Reilly

Media.

Luo, Q., Naughton, J.F., Xue, W. (2008). Form-based Proxy Caching for Database-backed Web

Sites: Keywords and Functions. The Vldb Journal – VLDB 17(3), pp. 489-513.

Mancl, D.(2001). Refactoring for Software Migration. IEEE In Communications Magazine

39(10), pp. 88-93.

Matthews, J., Findler, R.B., Graunke, P.T., Krishnamurthi, S., Felleisen, M., (2001).

Automatically Restructuring Programs for the Web. Proceedings of the 16th Annual International

Conference on Automated Software Engineering. IEEE Computer Society: Washington, DC, USA

pp. 211-222.

Mclellan, D. (2002). Flash Satay: Embedding Flash While Supporting Standards.

http://www.alistapart.com/articles/flashsatay/.

Méndez, M., Overbey, J., Garrido, A., Tinetti, F., Johnson, R. (2010). A Catalog and Two Possible

Classifications of Fortran Refactorings. Technical Report.

Mendonga, N.C., Maia, P.H.M., Fonseca, L.A., Andrade, R.M.C. (2004). RefaX: A Refactoring

Framework Based on XML. In Proceedings of the 20th IEEE International Conference on

Software Maintenance, pp. 147-156.

Mens, T., Tourwé, T. (2004). A Survey of Software Refactoring. IEEE Transactions on Software

Engineering 30(2), pp. 126-139.

Mesbah, A., Deursen, A.V. (2007). Migrating Multipage Web Applications to Single-page AJAX

Interfaces. Proceedings of the 11th European Conference on Software Maintenance and

Reengineering. IEEE Computer Society: Washington, DC, USA, pp. 181-190.

Miller, G.A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information. Psychological Review 63, pp. 81-97.

Mitchell, S. (2000). Designing Active Server Pages. Sebastopol, CA: O'Reilly Media.

Moock, C. (2007). Essential ActionScript 3.0. Sebastopol, CA, USA: O'Reilly Media.

Murphy, C., Persson, N. (2008). HTML and CSS Web Standards Solutions: A Web Standardistas'

Approach. Berkeley, CA, USA: Friends of ED.

Murphy-Hill, E. (2007). Programmer-Friendly Refactoring Tools. Thesis Proposal, Portland State

University.

http://dl.acm.org/author_page.cfm?id=81100389505&coll=DL&dl=ACM&trk=0&cfid=47172782&cftoken=51270832
http://www.ideals.illinois.edu/browse?type=author&value=M%C3%A9ndez,%20Mariano
http://www.ideals.illinois.edu/browse?type=author&value=Overbey,%20Jeffrey
http://www.ideals.illinois.edu/browse?type=author&value=Garrido,%20Alejandra
http://www.ideals.illinois.edu/browse?type=author&value=Tinetti,%20Fernando
http://www.ideals.illinois.edu/browse?type=author&value=Johnson,%20Ralph

 114

Murphy-Hill, E., Parnin, C.P., Black, A.P. (2009). How We Refactor, and How We Know It.

Proceedings of the IEEE 31st International Conference on Software Engineering. IEEE Computer

Society: Washington: DC, USA, pp. 287-297.

Myers, D.S, Carlisle, J.N., Cowling, J.A, Liskov, B.H. (2007). MapJAX: Data Structure

Abstractions for Asynchronous Web Applications. Proceedings of the USENIX Annual Technical

Conference. USENIX Association: Berkeley, CA, USA.

Nelson, S. (2008). What's Wrong With 90% of Software Written Today?

http://it.toolbox.com/blogs/tricks-of-the-trade/whats-wrong-with-90-of-software-written-today-

21570.

Ng, W., Lam, W.Y., Cheng, J. (2006). Comparative Analysis of XML Compression Technologies.

World Wide Web 9(1), pp. 5-33.

Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C. (2009). Comparison of JSON and XML

Data Interchange Formats: A Case Study. Proceedings of the International Conference on

Computer Applications in Industry and Engineering. ISCA: Cary, NC, USA, pp. 157-162.

Olsina, L., Rossi, G., Garrido, A., Distante, D., Canfora, G. (2007). Incremental Quality

Improvement in Web Applications Using Web Model Refactoring. Proceedings of the

International Conference on Web Information Systems Engineering, pp. 411-422.

Opdyke, W.F. (1992). Refactoring Object-Oriented Frameworks. Ph.D. Thesis, University of

Illinois at Urbana-Champaign.

Othman, O., Schmidt, D.C. (2001). Optimizing Distributed system Performance via Adaptive

Middleware Load Balancing. Proceedings of the ACM SIGPLAN Workshop on Optimization of

Middleware and Distributed Systems.

Pan, Z.L., Eigenmann, R. (2006). Fast and Effective Orchestration of Compiler Optimizations for

Automatic Performance Tuning. Proceedings of the International Symposium on Code Generation

and Optimization. IEEE Computer Society: Washington, DC, USA.

Panda, P.R., Catthoor, F., Dutt, N.D., Danckaert, K., Brockmeyer, E., Kulkarni, C.,

Vandercappelle, A., Kjeldsberg, P.G. (2001). Data and Memory Optimization Techniques for

Embedded Systems. ACM Transactions on Design Automation of Electronic Systems (TODAES)

6(2), pp. 149-206.

Parr, T. (2007). The Definitive Antlr Reference: Building Domain-specific Languages. Raleigh,

NC, USA: Pragmatic.

Paulson, L.D. (2005). Building Rich Web Applications with Ajax. Computer 38(10), pp. 14-17.

Polanco J. (2007). Flash Internals: Just-in-time (JIT) Compilation.

http://blog.vivisectingmedia.com/2007/11/flash-internals-jit-and-garbage-collection-part-

four/comment-page-1/#comment-928.

Ramaswamy, L., Liu, L., Arun, I. (2007). Scalable Delivery of Dynamic Content Using a

Cooperative Edge Cache Grid. IEEE Transactions on Knowledge and Data Engineering 19(5), pp.

614-630.

Ricca, F., Tonella, P. (2001). Understanding and Restructuring Web Sites with ReWeb. IEEE

MultiMedia 8(2), pp. 40-51.

http://it.toolbox.com/people/shayne_nelson/
http://blog.vivisectingmedia.com/2007/11/flash-internals-jit-and-garbage-collection-part-four/comment-page-1/#comment-928
http://blog.vivisectingmedia.com/2007/11/flash-internals-jit-and-garbage-collection-part-four/comment-page-1/#comment-928

 115

Ricca, F., Tonella, P., Baxter, I.D. (2002). Web Application Transformations based on Rewrite

Rules. Information and Software Technology 44(13), pp. 811-825.

Roberts, D.B. (1999). Practical Analysis for Refactoring. Technical Report, University of Illinois

at Urbana-Champaign.

Roock, S., Havenstein, A. (2002). Refactoring Tags for Automatic Refactoring of Framework

Dependent Applications. Proceedings of the Internetional Conference on Extreme Programming

and Flexible Processes in Software Engineering XP. pp. 182-185.

Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A. (2008). Refactoring to Rich Internet

Applications. A Model-Driven Approach. In: 8th International Conference on Web Engineering.

IEEE Computer Society: Los Alamitos, CA, USA, pp. 14-18.

Sanders, W. B., Cumaranatunge, C. (2007). ActionScript 3.0 Design Patterns. Sebastopol, CA,

USA: O'Reilly Media.

Savoia, A. (2001).Web Page Response Time 101 (Understanding and Measuring Performance

Test Results).

http://ericgoldsmith.com/__oneclick_uploads/2009/02/web_page_response_time_101.pdf.

Schäfer, M., Sridharan, M., Dolby, J., Tip, F. (2011). Refactoring Java Programs for Flexible

Locking. Proceedings of the International Conference on Software Engineering. ACM, New York,

NY, USA, pp. 71-80.

Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R. (2002). XMark: A

Benchmarkfor XML Data Management. Proceedings of the Very Large Database Conference.

VLDB Endowment. pp 974-985.

Schmitt, C. (2005). Professional CSS: Cascading Style Sheets for Web design. New York, NY,

USA: John Wiley and Sons.

Seong, S.W., Mishra, P. (2006). A Bitmask-based Code Compression Technique for Embedded

Systems. Proceedings of the IEEE/ACM International Conference on Computer-aided Design.

ACM: New York, NY, USA. 27(4), pp. 673-685.

Shupe, R., Rosser, Z. (2007). Learning ActionScript 3.0. Sebastopol, CA, USA: O'Reilly Media.

Šimunić, T., Benini, L., Micheli, G.D., Hans, M. (2000). Source Code Optimization and Profiling

of Energy Consumption in Embedded Systems Proceedings of the 13th International Symposium

on System Synthesis. IEEE Computer Society: Washington, DC, USA, pp. 193-198.

Skinner G. (2007). Resource Management Strategies in Flash Player 9.

http://www.adobe.com/devnet/flashplayer/articles/resource_management.html.

Sluis, B.V.D. (2007). Flash Embedding Cage Match.

http://www.alistapart.com/articles/flashembedcagematch/.

Sluis, B.V.D. (2008). Flash Embed Test Suite.

http://www.bobbyvandersluis.com/flashembed/testsuite/.

Smashing Magazine.(2008). Web Form Design Patterns: Sign-Up Forms.

http://www.smashingmagazine.com/2008/07/04/web-form-design-patterns-sign-up-forms/.

http://www.adobe.com/devnet/flashplayer/articles/resource_management.html

 116

Spinellis, D. (2006). Code Quality: The Open Source Perspective. Boston, MA, USA: Addison

Wesley.

Srivastava A., Edwards, A., Vo, H. (2001). Vulcan: Binary Transformation in a Distributed

Environment. Technical Report. Microsoft Research.

Srivisut, K., Muenchaisri, P. (2007). Defining and Detecting Bad Smells of Aspect-Oriented

Software. Proceedings of the 31st Annual IEEE International Computer Software and Applications

Conference, pp. 65-70.

Starr, J. (2008). Embed Flash or Die Trying. http://perishablepress.com/press/2007/04/17/embed-

flash-or-die-trying.

Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.-M. (2001). Refactoring UML Models. Proceedings

of the 4th International Conference on the Unified Modeling Language, Modeling Languages,

Concepts, and Tools. Springer-Verlag London, UK.

Tahvildari, L., Kontogiannis, K. (2004). Improving Design Quality Using Meta-pattern

Transformations: A Metric-based Approach. Journal of Software Maintenance and Evolution:

Research and Practice 16(4-5), pp. 331-361.

Thompson, S., Reinke C.(2002). A Catalogue of Function Refactorings. Lab Report, University of

Kent.

Tokuda, L., Batory, D. (2001). Evolving Object-oriented Designs With Refactorings. Proceedings

of the 14th IEEE International Conference on Automated Software Engineering, pp. 174-181.

Vingralek, R., Breitbart, Y., Sayal, M., Scheuermann, P. (1999). Web++: A System for Fast and

Reliable Web Service. Proceedings of the USENIX Annual Technical Conference. USENIX

Association: Berkeley, CA, USA, pp. 171-184.

W3C. (2008). Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/REC-xml/.

W3C. (2009). Namespaces in XML 1.0. http://www.w3.org/TR/REC-xml-names/#NT-LocalPart.

Weber, B., Reichert, M., Mendling, J., Reijers, H.A. (2011). Refactoring Large Process Model

Repositories. Computers in Industry 62 (5), pp. 467-486.

Webucator. (2009). JavaScript Object Notation (JSON). http://www.learn-ajax-

tutorial.com/Json.cfm.

Wloka, J., Sridharan, M. Tip, F. (2009). Refactoring for Reentrancy. Proceedings of the 7th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering. ACM: New York, NY, USA, pp. 173-182.

Zakas, N.C., McPeak, J., Fawcett, J. (2007). Professional Ajax. Indianapolis, IN: Wiley.

Zmily, A., Killian, E., Kozyrakis, C. (2005). Improving Instruction Delivery with a Block-Aware

ISA. Proceedings of the 11th International Euro-Par Conference. Springer: Germany, pp. 530-539.

Zmily, A., Kozyrakis, C. (2005). Energy-Efficient and High-Performance Instruction Fetch using

a BlockAware ISA. Proceedings of the International Symposium on Low Power Electronics and

Design. ACM: New York, NY, USA, pp. 36-41.

http://portal.acm.org/author_page.cfm?id=81100028026&coll=GUIDE&dl=GUIDE&trk=0&CFID=77744293&CFTOKEN=87942156
http://dl.acm.org/author_page.cfm?id=81100481685&coll=DL&dl=ACM&trk=0&cfid=43491390&cftoken=31683927
http://dl.acm.org/author_page.cfm?id=81100098681&coll=DL&dl=ACM&trk=0&cfid=43491390&cftoken=31683927
http://dl.acm.org/author_page.cfm?id=81340493274&coll=DL&dl=ACM&trk=0&cfid=43491390&cftoken=31683927
http://dl.acm.org/author_page.cfm?id=81100567791&coll=DL&dl=ACM&trk=0&cfid=43491390&cftoken=31683927
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml-names/#NT-LocalPart
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DWeber,%2520Barbara%26authorID%3D8909168700%26md5%3Db068689107725fa2de01676344d4d378&_acct=C000051251&_version=1&_userid=1067472&md5=d6ea7471fb557dfe37418111182c4fb9
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DReichert,%2520Manfred%26authorID%3D35230798400%26md5%3D684133c2b382938eab29c8ddcc48872c&_acct=C000051251&_version=1&_userid=1067472&md5=49e414a701631e9a3ee1c16fcd24255e
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DMendling,%2520Jan%26authorID%3D6503908779%26md5%3D5a290ce06b780dc1cb5ce44f3e5ab6c9&_acct=C000051251&_version=1&_userid=1067472&md5=4267bf3a5bc8c15eb84a01e7c805271d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DReijers,%2520Hajo%2520A.%26authorID%3D6603060277%26md5%3D1a680ef9752ddeec383b6531abd746b1&_acct=C000051251&_version=1&_userid=1067472&md5=b87b51e7440ee1fd513712d4ec03339d
http://dl.acm.org/author_page.cfm?id=81100641428&coll=DL&dl=ACM&trk=0&cfid=43757635&cftoken=35635825
http://www.acm.org/publications
http://www.acm.org/publications

 117

Zmily, A., Kozyrakis, C. (2006). Simultaneously Improving Code Size, Performance, and Energy

in Embedded Processors. Proceedings of the Conference on Design, Automation and Test in

Europe. European Design and Automation Association: Leuven, Belgium, pp. 224-229.

Zulzalil, H., Ghani, A.A.A., Selamat, M.H., Mahmod, R. (2008), A Case Study to Identify Quality

Attributes Relationships for Web-based Applications. IJCSNS International Journal of Computer

Science and Network Security 8(11), pp. 215-220.

 118

Appendix A

In order to make it easier to read the grammar and to reduce the appearance of

repeated grammar rules, several conventions are used.

1. To make the grammar simpler, only the directly utilized symbols and

rules of the grammar are included.

2. Bolded rule name(s) within a rule indicates that the grammar continues

to the corresponding rules in the subsequent statement(s).

3. If the grammar before refactoring has a “start_label -> end_label” line, it

means this line can be replaced by the section of the grammar that

begins with “start_label” and ends with “end_label” which has appeared

prior to the “start_label -> end_label” line.

4. If the grammar after refactoring has a “start_label -> end_label” line, it

means this line can be replaced by a section in the grammar before

refactoring that begins with “start_label” and ends with “end_label”.

5. A rule can be given an alias through the “=” symbol. For example, “ue1”

is an alias of “unaryExpression” in the following statement, “ue1” can

then be used later in the grammar after it is defined.

multiplicativeExpression: ue1=unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

Variables Refactoring Patterns

(1) Pattern name: Type annotations

Problem: In ActionScript 2.0 (AS2), type annotations were just a coding aid, all

values were dynamically typed atoms at runtime. However, in AS3, type

information can be preserved till runtime (early binding). This improves

performance and reduces memory consumption because it avoids unnecessary

implicit type conversion. In addition, this also improves the system's type safety

(Grossman, 2006). Type annotations are especially useful in Math operations and

Object indexes.

Solution: When a variable is declared, always add type annotations.

Input: A type of a variable.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)?;

var i = 0;

myArray[i] = n;

var i:int = 0;

myArray[i] = n;

app:ds:appendix

 119

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? COLON type;

(2) Pattern name: Variables declaring fashion

Problem: Declaring variables in separate statements is slow because the “var”

keyword is used many times.

Solution: Declare all the variables in a single statement.

Input: Permission to change.

Recommend running environments: Firefox 3.6 / Adobe Flash Player 9.

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? (COLON type)?;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? (COLON type)?;

for(var i:int = 0; i< MAX; i++)

{

var v1:Number = 100;

var v2:Number = 100;

}

for(var i:int = 0; i < MAX; i++)

{

 var v1,v2:Number = 100;

}

 120

Objects Refactoring Patterns

Math and Operators Refactoring Patterns

(3) Pattern name: Math.abs

Problem: Math.abs is slow.

Solution: Replacements for Math.abs includes:

 Choice1: n<0?(n*(-1)):n

 Choice2: n<0?(-n):n

 Choice3: if(n<0)n=-n

Input: Selection of choices.

Recommend running environments for choice 1, 2 and 3: Same performance

in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

Or

Or

n = Math.abs(n);

n = (n<0)?(n*(-1)):n;

n = (n<0)?(-n):n;

if(n<0) n = -n;

 121

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . abs';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER;

Grammar after refactoring (Choice 1):

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression QUE

ae1=assignmentExpression COLON ae2=assignmentExpression;

logicalORExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression LT se2=shiftExpression;

se1=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

se2=shiftExpression -> primaryExpression

primaryExpr: '0';

ae1=assignmentExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> additiveExpression

multiplicativeExpression: ue1=unaryExpression STAR

ue2=unaryExpression;

ue1=unaryExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

ue2=unaryExpression ->

parExpression: LPAREN expression RPAREN;

expression -> shiftExpression

additiveExpression: me1=multiplicativeExpression SUB

me2=multiplicativeExpression;

me1=multiplicativeExpression -> primaryExpr

qualifiedName: VOID;

 122

me2=multiplicativeExpression -> primaryExpression

primaryExpr: '-1';

ae2=assignmentExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

Grammar after refactoring (Choice 2):

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression QUE

ae1=assignmentExpression COLON ae2=assignmentExpression;

logicalORExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression LT se2=shiftExpression;

se1=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

se2=shiftExpression -> primaryExpression

primaryExpr: '0';

ae1=assignmentExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> shiftExpression

additiveExpression: me1=multiplicativeExpression SUB

me2=multiplicativeExpression;

me1=multiplicativeExpression -> primaryExpr

qualifiedName: VOID;

me2=multiplicativeExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

ae2=assignmentExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

Grammar after refactoring (Choice 3):

ifStatement:IF parExpression statement (ELSEIF parExpression

sstatement)? (ELSE (WHITESPACE | EOL | COMMENT_MULTILINE |

COMMENT_SINGLELINE)* statement)?

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression LT se2=shiftExpression;

se1=additiveExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER

se2=additiveExpression -> primaryExpression

primaryExpr: '0';

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

 123

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER;
assignmentExpression -> additiveExpression

me1=multiplicativeExpression SUB me2=multiplicativeExpression;

me1=multiplicativeExpression ->

qualifiedName: VOID;

me2=multiplicativeExpression ->

qualifiedName: ARGUMENTIDENTIFIER;

(4) Pattern name: Math.floor

Problem: Math.floor is slow.

Solution: Replace Math.floor(n) by (n>0)?int(n):(int(n)-1).

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

n = Math.floor(n);

n = (n>0)?int(n):(int(n)-1);

 124

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . floor';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression QUE

ae1=assignmentExpression COLON ae2=assignmentExpression;

logicalORExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression GT se2=shiftExpression;

se1=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

se2=shiftExpression -> primaryExpression

primaryExpr: '0';

ae1=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'int';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

ae2=assignmentExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

 125

parExpression: LPAREN expression RPAREN;

expression -> shiftExpression

additiveExpression: me1=multiplicativeExpression SUB

me2=multiplicativeExpression;

me1=multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'int';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

me2=multiplicativeExpression -> primaryExpression

primaryExpr: '1'；

(5) Pattern name: Replace Math.floor(Math.random()*n) (n>0)

Problem: Math.floor(Math.random()*n) is slow.

Solution: Replacements for Math.floor(Math.random()*n) include:

 Choice1: int(Math.random()*n)

 Choice2:(Math.random()*n)>>0 (Choice 2 is faster than Choice 1)

Input: Selection of choices.

Recommend running environments for choice 1: Internet Explorer 8.0 / Adobe

Flash Player 9 and Firefox 3.6 / Adobe Flash Player 9.

Recommend running environments for choice 2: Internet Explorer 8.0 / Adobe

Flash Player 9 and 10, and Firefox 3.6 / Adobe Flash Player 10.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

Or

x = Math.floor(Math.random()*n);

x = int(Math.random()*n);

x = (Math.random()*n)>>0;

 126

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . floor';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> additiveExpression

multiplicativeExpression: ue1=unaryExpression STAR

ue2=unaryExpression;

ue1=unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . random';
argumentSuffix: LPAREN RPAREN;

ue2=unaryExpression -> primaryExpr

qualifiedName: IDENTIFIER;

Grammar after refactoring (Choice 1):

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

 127

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'int';
argumentSuffix: LPAREN argumentList RPAREN;
assignmentExpression -> additiveExpression

multiplicativeExpression: ue1=unaryExpression STAR

ue2=unaryExpression;

ue1=unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . random';
argumentSuffix: LPAREN RPAREN;

ue2=unaryExpression -> primaryExpr

qualifiedName: IDENTIFIER;

Grammar after refactoring (Choice 2):

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> relationalExpression

shiftExpression: ae1=additiveExpression SHR ae2=additiveExpression;

ae1=additiveExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> additiveExpression

multiplicativeExpression: ue1=unaryExpression STAR

ue2=unaryExpression;

ue1=unaryExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . random';

argumentSuffix: LPAREN RPAREN;

ue2=unaryExpression -> primaryExpr

qualifiedName: IDENTIFIER;
ae2=additiveExpression -> primaryExpression

primaryExpr: '0';

(6) Pattern name: Math.round (n > 0)

Problem: Math.round is slow.

Solution: Replace Math.round(n) by int(n+0.5).

Input: Permission to change.

 128

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . round';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

n = Math.round(n);

n = int(n + 0.5);

 129

qualifiedName: ARGUMENTIDENTIFIER;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: 'int';

argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression-> shiftExpression

additiveExpression: me1=multiplicativeExpression PLUS

me1=multiplicativeExpression;

me1=multiplicativeExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

me2=multiplicativeExpression -> primaryExpression

primaryExpr: '0.5';

(7) Pattern name: Math.ceil

Problem: Math.ceil is slow.

Solution: Replace Math.ceil(n) by (n<0)?(int(n)+0.5):int(n).

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

n = Math.ceil(n);

n = (n<0)?(int(n)+0.5):int(n);

 130

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . ceil';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression QUE

ae1=assignmentExpression COLON ae2=assignmentExpression;

logicalORExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression LT se2=shiftExpression;

se1=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

se2=shiftExpression -> primaryExpression

primaryExpr: '0';

ae1=assignmentExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> shiftExpression

additiveExpression: me1=multiplicativeExpression PLUS

me2=multiplicativeExpression;

me1=multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*

memberExpression: primaryExpression | functionExpression |

 131

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'int';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

me2=multiplicativeExpression -> primaryExpression

primaryExpr: '1'；

ae2=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'int';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

(8) Pattern name: Math.pow

Problem: Math.pow is slow.

Solution: Replace Math.pow(i,2) by i*i.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

n = Math.pow(i,2);

n = i * i;

 132

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . pow';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: ae1=assignmentExpression COMMA

as2=assignmentExpression;

ae1=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER;
ae2=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: '2';

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> additiveExpression

multiplicativeExpression: unaryExpression STAR unaryExpression;

unaryExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER;

(9) Pattern name: Math.min

Problem: Math.min is slow.

Solution: Replace Math.min(a,b) by (a<b)?a:b.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

 133

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . min';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: as1=assignmentExpression (COMMA

as2=assignmentExpression)*;

ae1=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

n = Math.min(a,b);

n = (a<b)? a:b;

 134

qualifiedName: ARGUMENTIDENTIFIER1;
ae2=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER2;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression QUE

ae1=assignmentExpression COLON ae2=assignmentExpression;

logicalORExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression LT se2=shiftExpression;

se1=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER1;

se2=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER2;

ae1=assignmentExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER1;

ae2=assignmentExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER2;

(10) Pattern name: Math.max

Problem: Math.max is slow.

Solution: Replace Math.max(a,b) by (a>b)?a:b.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

n = Math.max(a,b);

n = (a>b)? a:b;

 135

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . max';
argumentSuffix: LPAREN argumentList RPAREN;
argumentList: ae1=assignmentExpression COMMA

as2=assignmentExpression;

ae1=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER1;

ae2=assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: ARGUMENTIDENTIFIER2;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

 136

conditionalExpression: logicalORExpression QUE

ae1=assignmentExpression COLON ae2=assignmentExpression;

logicalORExpression -> primaryExpression

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

parExpression: LPAREN expression RPAREN;

expression -> equalityExpression

relationalExpression: se1=shiftExpression GT se2=shiftExpression;

se1=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER1;

se2=shiftExpression -> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER2;

ae1=assignmentExpression-> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER1;

ae2=assignmentExpression-> primaryExpr

qualifiedName: ARGUMENTIDENTIFIER2;

(11) Pattern name: Replacing the division sign by the right-shift operator

Problem: The division sign is much slower than the right-shift operator.

Solution: If x is a signed integer, replace x/2 for x>>1.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

y = x / 2;

y = x >> 1;

 137

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression DIV unaryExpression;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: '2';

Grammar after refactoring:

expression -> relationalExpression

shiftExpression: additiveExpression SHR additiveExpression;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: '1';

(12) Pattern name: Replacing a modulo operator (%) by an AND (&) operator.

Problem: If the divisor is a power of 2, using the following formula to get

modulus provides faster execution speed.
Modulus = Numerator & (Divisor - 1)

Solution: If the divisor is a power of 2, replace x%2
n
 by x & (2

 n
 - 1) (x>0).

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

y = x % 2;

y = x & 1;

 138

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression MOD unaryExpression;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: '2';

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

bitwiseANDExpression: equalityExpression AND equalityExpression;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: '1';

 139

(13) Pattern name: Avoid using Xor to swap variables

Problem: Without creating a new variable, Xor is used to swap variables.

However, a more efficient method is to use a third variable to swap.

Solution: Create a new variable and use it to swap.

Input: The name for the new variable.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER;
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression XOR

bitwiseANDExpression;

bitwiseANDExpression: equalityExpression (AND

equalityExpression)*

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

a = a^b;

b = a^b;

a = a^b;

var tmp:int = b;

b = a;

a = tmp;

 140

multiplicativeExpression: unaryExpression (STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression) ;

qualifiedName: IDENTIFIER;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

expression: assignmentExpression (COMMA assignmentExpression)*;

Arrays Refactoring Patterns

(14) Pattern name: Avoid using push() method to set a value in an array

Problem: The push() method is frequently used to set a value in an array in AS3.

However, calling the push() method is costly; therefore, for arrays whose size are

known, using an assignment statement as a substitution for the push() method

provides increase in efficiency.

Solution: If the size of an array is known, indicate the size when declaring the

array, and use the assignment operator instead of push() method to set an array

value.

Input: The size of an array used for declaration and the index of an array used for

value assignment.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9 and Firefox 3.6 / Adobe Flash Player 9.

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

var myArray:Array = new Array();

for(var i:int = 0; i < 10;i++) {

myArray.push(i);

}

var myArray:Array = new Array(10);

for(var i:int = 0; i < 10;i++) {

myArray[i] = i;

}

 141

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Array';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Array';

argumentSuffix: LPAREN RPAREN;

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

 142

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '.push';

argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: IDENTIFIER;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Array';
assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Array';

argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpression

primaryExpr: literal;

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

 143

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER;

indexSuffix: LBRACK expression RBRACK;

expression –> primaryExpr

qualifiedName: IDENTIFIER;

(15) Pattern name: Avoid using the new operator for objects

Problem: The new operator is typically used to instantiate objects and arrays;

however, literal notation used to instantiate other data types (such as Number,

String) can also be used on objects and arrays to speed up the applications.

Solution: If the size of an array is fixed, use the literal notation to instantiate the

array instead of the new operator.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:
variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Array';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

var myArray:Array = new Array(1,2,3);

var myArray:Array = [1,2,3];

 144

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Array';

argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpression

primaryExpr: literal;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Array';
assignmentExpression -> postfixExpression

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

arrayLiteral: LBRACK elementList RBRACK;

elementList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpression

primaryExpr: literal;

(16) Pattern name: Use Vector instead of Array (for Adobe Flash Player 10)

Problem: Vector, a new type of collection introduced by Adobe Flash Player 10,

stores a collection of objects with specific type. Because it is a strongly typed

container, Vectors allow Adobe Flash Player to deduce the type of objects inside

the container. This results in faster code.

 145

Solution: If the program will be executed in Adobe Flash Player 10, use Vector

instead of Array.

Input: Permission to change the object type.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 10.

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Array';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

var myArray:Array = new Array();

var myVector:Vector.<Number> = new Vector.<Number>();

 146

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Array';

argumentSuffix: LPAREN argumentList? RPAREN;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Vector';
propertyReferenceSuffix: DOT '<' IDENTIFIER '>';

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Vector';

propertyReferenceSuffix: DOT '<' IDENTIFIER '>';

argumentSuffix: LPAREN argumentList? RPAREN;

(17) Pattern name: Avoid using associative arrays

Problem: An associative array (sometimes called a hash or map) is an instance of

the class Object, which uses named elements instead of numeric indexes. The

named elements, named keys or properties, are a mapping from a string to the

associated element value (Lott et al., 2008). However, accessing and setting

values to an associative array takes longer time than accessing objects with

numeric indexes.

Solution: Avoid using associative arrays if possible.

Input: The numeric array index.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

myArray["name"] = 1;

myArray[1] = 1;

 147

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

indexSuffix: LBRACK QUO expression QUO RBRACK;

expression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: literal;

Grammar after refactoring:

expression -> callExpression

indexSuffix: LBRACK expression RBRACK;

expression -> primaryExpr

primaryExpr: literal;

(18) Pattern name: Cast an object inside an array into a specific type

Problem: When accessing an array, making Adobe Flash Player know what type

of data is inside can make array accessing faster.

Solution: Cast an object into a specific type when accessing an array.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 10.

 148

Example: If the data type stored in the array “myArray” is an object Vector3D,

then:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression) ;

qualifiedName: IDENTIFIER;

indexSuffix: LBRACK expression RBRACK;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

for(var i:int = 0; i < MAX; i++){

myArray[i].x = 2;

}

class Vector3D {

public var x:Number = 0;

public var y:Number = 0;

public var z:Number = 0;

}

for(var i:int = 0; i < MAX; i++){

Vector3D(myArray[i]).x = 2;

}

class Vector3D {

public var x:Number = 0;

public var y:Number = 0;

public var z:Number = 0;

}

 149

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression) ;

qualifiedName: IDENTIFIER;

propertyReferenceSuffix: DOT IDENTIFIER;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: OBJECTIDENTIFIER;

argumentSuffix: LPAREN argumentList RPAREN;

argumentList -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression -> primaryExpr

qualifiedName: IDENTIFIER;

indexSuffix: LBRACK expression RBRACK;

expression -> primaryExpr

qualifiedName: IDENTIFIER;

propertyReferenceSuffix: DOT IDENTIFIER;

(19) Pattern name: Avoid the promotion of numeric types

Problem: The semantics of ECMAScript requires the promotion of numeric

types, so type int is often promoted to type Number. However, types int/uint

provide faster array accessing than type Number.

Solution: When the array index contains calculations, explicitly casting to type

int avoids the promotion from int to Number.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

 150

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

indexSuffix: LBRACK expression RBRACK;

expression: assignmentExpression (COMMA assignmentExpression)*;

Grammar after refactoring:

expression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

indexSuffix: LBRACK expression RBRACK;

expression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

myArray[i*2] = n;

myArray[int(i*2)] = n;

 151

qualifiedName: 'int';

argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

(20) Pattern name: Use array.concat() instead of for in loop to copy array

members

Problem: For in loop is a common way to copy an array; however, array.concat()

which concatenates the elements of an array provides the fastest way to copy an

array.

Solution: Use concat() to copy an array.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

forInStatement: FOR LPAREN forInControl RPAREN LCURLY? statement

RCURLY?;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

for(var i in testArray) {

copy[i] = testArray[i];

}

copy = testArray.concat();

 152

qualifiedName: IDENTIFIER;

indexSuffix: LBRACK expression RBRACK;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER;

indexSuffix: LBRACK expression RBRACK;

expression -> primaryExpr

qualifiedName: IDENTIFIER;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

 153

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '. concat';

argumentSuffix: LPAREN RPAREN;

Other Objects Refactoring Patterns

(21) Pattern name: Use defined objects instead of the Object type

Problem: Avoid using the Object type. Only precise type annotations have the

ability to improve running performance.

Solution: Use defined objects instead of the Object type.

Input: The class name and properties.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 10.

Example:

for(var i:int = 0; i < MAX; i++){

var v: Object = new Object();

v.x = 1;

v.y = 1;

v.x = 1;

}

class Vector3D{

public var x:Number;

public var y:Number;

public var z:Number;

}

for(var i:int = 0; i < MAX; i++){

var v: Vector3D = new Vector3D();

v.x = 1;

v.y = 1;

v.x = 1;

}

 154

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? (COLON

'Object');

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Object';

argumentSuffix: LPAREN argumentList? RPAREN;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? (COLON type);

assignmentExpression -> memberExpression

newExpression: NEW memberExpression argumentSuffix*;

primaryExpression: primaryExpr;

 155

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: TYPEIDENTIFIER;

argumentSuffix: LPAREN argumentList? RPAREN;

(22) Pattern name: Do not use Regular Expression for searching

Problem: Regular Expression is great for validation, but not optimal for

searching. When searching a string, use String methods because of their faster

execution.

Solution: Use String methods for searching.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 10.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

str = SomeString.match(/(.*?)\|/gm);

str = SomeString.split("|");

 156

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '. match';

argumentSuffix: LPAREN argumentList RPAREN;

Grammar after refactoring:

Expression -> leftHandSideExpression

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '.' STRINGMETHODIDENTIFIER;

argumentSuffix: LPAREN argumentList RPAREN;

(23) Pattern name: Add weak reference - Dictionary

Problem: The Garbage Collector is responsible for removing the objects that do

not have any reference to any other active objects through reference counting or

mark sweeping techniques. Weak references (Shupe & Rosser, 2007) are ignored

by reference counting or marking. This means the object is eligible to be collected

if all references to the object are weak references. In AS3, there is no way to

remove an object from the memory. Thus, unless all the references to the object

are deleted, the object will stay in the memory. Therefore, the weak references

help to prevent memory leaks, so that the performance of the application will not

be affected. There are only two places to add weak references in AS3. One place

is with Dictionary objects. This pattern is presented to programmers to help

increase the efficiency of their program. However, programmers should ensure

that switching to weak references will not affect their program's correctness

before using this refactoring pattern.

Solution: When declaring a Dictionary object, add weak references to that object.

Input: Permission to add weak references.

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

var myDict:Dictionary = new Dictionary(false);

var myDict:Dictionary = new Dictionary(true);

 157

variableIdentifierDecl: IDENTIFIER COLON 'Dictionary';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Dictionary';

argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> callExpression

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'false';

Grammar after refactoring:

variableStatement -> memberExpression

newExpression: NEW memberExpression argumentSuffix*;

memberExpression -> primaryExpr

qualifiedName: 'Dictionary';

argumentSuffix: LPAREN argumentList RPAREN;

argumentList -> primaryExpr

qualifiedName: 'true';

 158

Conditions Refactoring Patterns

(24) Pattern name: Rank if…else if… statements

Problem: The syntax for an if…else if… statement in AS3 is:
if(textExpression1){

codeBlock1

}else if(textExpression2){

codeBlock2

…

}else{

codeBlockN

}

If the branches are not executed in equal frequency, rank the branches from most

frequently executed to least frequently executed.

Solution: Rewrite the if statements to place the branches in the order of most

frequently executed to least frequently executed. The most frequently executed

branch will be the top branch, and the least frequently executed branch will be the

bottom branch.

Input: The ranking of the branches in an if statement.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

ifStatement:IF parExpression stmt=statement ELSE (WHITESPACE |

EOL | COMMENT_MULTILINE | COMMENT_SINGLELINE)* elsestmt=statement;

Grammar after refactoring:

ifStatement:IF parExpression elsestmt=statement ELSE (WHITESPACE

| EOL | COMMENT_MULTILINE | COMMENT_SINGLELINE)* stmt=statement;

if(x==0){
trace("Error: The denominator is 0");

} else if(x<0){
trace("Error: The result can not be negative");

} else {

result = numerator / x;
}

if(x>0){

result = numerator / x;
} else if(x<0){

trace("Error: The result can not be negative");
} else {

trace("Error: The denominator is 0");
}

app:ds:denominator
app:ds:denominator

 159

(25) Pattern name: Use nested if statements

Problem: && is regularly used when more than one condition is true in an if

statement; however, nested if statement (using one if statement inside the other

one) has higher efficiency than &&.

Solution: Use nested if statements instead of &&.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

ifStatement:IF parExpression statement (ELSEIF parExpression

sstatement)? (ELSE (WHITESPACE | EOL | COMMENT_MULTILINE |

COMMENT_SINGLELINE)* statement)?

parExpression: LPAREN expression RPAREN;

expression: assignmentExpression (COMMA assignmentExpression)*;

Grammar after refactoring:

ifStatement:IF parExpression statement (ELSEIF parExpression

sstatement)? (ELSE (WHITESPACE | EOL | COMMENT_MULTILINE |

COMMENT_SINGLELINE)* statement)?

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

Loops Refactoring Patterns

Pre-Operation Refactoring Patterns

(26) Pattern name: Pre-calculating the basic calculations

Problem: If some basic calculations are invariants inside a loop, move them

before the loop to avoid the redundant calculations every time the loop executes.

Solution: Move the basic calculations out of the loop.

if(a == 1 && b == 2 && c == 3){
 k = a * b * c;

}

if(a == 1){

 if(b == 2){
if(c == 3){

 k = a * b * c;

 }
 }

}

app:ds:efficiency

 160

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9 and Firefox 3.6 / Adobe Flash Player 9.

Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

(27) Pattern name: Pre-calculating Math object‟s constants

Problem: Math object, a top-level object in AS3, has many public constants.

Calling these constants is inefficient. Sometimes, these constants are used with

some calculations, such as using ∏/180 to get radian. These calculations are quite

slow, especially when used inside a loop. Therefore, pre-calculating these

calculations (Math.PI/180) avoids the redundant calculations every time the loop

executes.

for(var i:int = 0;i < MAX; i++){

 var1 = 10 * SomeConstants;

 var2 = myArray[i] + var1;

}

var1 = 10 * SomeConstants;

for(var i:int = 0;i < MAX; i++){

 var2 = myArray[i] + var1;

}

 161

Solution: (a) Create a new variable outside the loop; and (b) use this variable to

execute the loop-invariant computations outside the loop.

Input: The name of the new variable.

Recommend running environments: Same performance in all environments.

Example: Math.PI/180 is widely used to draw graphics in ActionScript.

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

for(var i:int = 0; i < MAX; i++){

 radians[i] = degrees[i] * Math.PI/180;

}

var myPi:Number = Math.PI/180;

for(var i:int = 0; i < MAX; i++){

 radians[i] = degrees[i] * myPi;

}

 162

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression STAR

ue1=unaryExpression DIV ue2=unaryExpression;

ue1=unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math.PI';

ue2=unaryExpression -> primaryExpression

primaryExpr: '180';

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: PIIDENTIFIER COLON 'Number';

assignmentExpression -> additiveExpression

multiplicativeExpression: ue1=unaryExpression DIV

ue2=unaryExpression;

ue1=unaryExpression -> primaryExpr

qualifiedName: 'Math.PI';

ue2=unaryExpression -> primaryExpression

primaryExpr: '180';

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression -> additiveExpression

multiplicativeExpression: unaryExpression STAR unaryExpression;

unaryExpression -> primaryExpr

 163

qualifiedName: PIIDENTIFIER;

(28) Pattern name: Pre-calculating trigonometric functions

Problem: If trigonometric functions (such as sin() and cos()) are invariants inside

the loop, move them before the loop to avoid the redundant calculation every time

the loop executes.

Solution: Move the trigonometric functions out of the loop.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

for(var i:int = 0; i < MAX; i++){

 value = Math.sin(n);

}

var sin:Number = Math.sin(n);

for(var i:int = 0; i < MAX; i++){

 value = sin;

}

 164

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . sin' | 'Math . cos' |'Math . tan' |'Math .

cot';
argumentSuffix: LPAREN argumentList RPAREN;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: TRIGONOMETRICIDENTIFIER COLON 'Number';

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Math . sin' | 'Math . cos' |'Math . tan' |'Math .

cot';
argumentSuffix: LPAREN argumentList RPAREN;
forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

 165

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression -> primaryExpr

qualifiedName: TRIGONOMETRICIDENTIFIER;

(29) Pattern name: Pre-accessing constants from other classes

Problem: Calling constants from other classes is quite slow, especially when the

call is inside a loop.

Solution:

 Choice 1: (a) Create a variable outside the loop; and (b) assign the value of

the constant from another class to the new variable.

 Choice 2: (a) Create a local constant; and (b) assign the value of the constant

from another class to the new constant.

Input: The name and type of the new constant.

Recommend running environments for choice 1 and 2: Same performance in

all environments.

Example: If AnotherClass.SOMECONSTANT = 100:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

Or

for(var i:int = 0; i < MAX; i++){

myArray[i] = AnotherClass.SOMECONSTANT * i;

}

var myConstant:int = AnotherClass.SOMECONSTANT;

for(var i:int = 0; i < MAX; i++){

myArray[i]= myConstant * i;

}

public const SOMECONSTANT:int = 100;

for(var i:int = 0; i < MAX; i++){

myArray[i] = SOMECONSTANT * i;

}

 166

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression STAR unaryExpression;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER (DOT IDENTIFIER)*;

Grammar after refactoring (Choice 1 and Choice 2):

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: CONSTANTIDENTIFIER COLON type;

 167

assignmentExpression -> primaryExpr

qualifiedName: IDENTIFIER (DOT IDENTIFIER)*;
forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression -> additiveExpression

multiplicativeExpression: unaryExpression STAR unaryExpression;

unaryExpression -> primaryExpr

qualifiedName: CONSTANTIDENTIFIER;

(30) Pattern name: Pre-accessing methods from other classes

Problem: Calling methods from other classes is quite slow, especially when the

call is inside a loop.

Solution: (a) Create a variable outside the loop; and (b) assign the method

accessing to the new variable.

Input: The name and type of the new variable.

Recommend running environments for choice 1 and 2: Same performance in

all environments.

Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

for(var i:int = 0; i < MAX; i++){

 result = str.containsA("A");

}

var result1:Boolean = str.containsA("A");

for(var i:int = 0; i < MAX; i++){

 result = result1;

}

 168

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER (DOT IDENTIFIER)*;

argumentSuffix: LPAREN argumentList? RPAREN;

 169

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: VARIABLEIDENTIFIER COLON type;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER (DOT IDENTIFIER)*;

argumentSuffix: LPAREN argumentList? RPAREN;
forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

assignmentExpression -> primaryExpr

qualifiedName: VARIABLEIDENTIFIER;

For Loop Refactoring Patterns

(31) Pattern name: Replace type uint for iterations

Problem: UINT class is a new class introduced by AS3. It is similar to INT,

except for the different range of values (0 to 4,294,967,295 (2^32-1)). UINT class

is slow when it is used for iterations.

Solution: While initializing iterations, use type int instead of uint if the number of

iteration is within the range of int.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9 and Firefox 3.6 / Adobe Flash Player 9.

 170

Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;
forInit: VAR forvariableDeclarationList | expression;
forvariableDeclarationList: forvariableDeclaration(COMMA

forvariableDeclaration)*;
forvariableDeclaration: forvariableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;
forvariableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? (COLON

fortype)? | THIS (DOT IDENTIFIER)? (COLON fortype)?;

fortype: forqualifiedName | STAR;

forqualifiedName: 'uint';

Grammar after refactoring:

forStatement -> fortype

forqualifiedName: 'int';

(32) Pattern name: Replace type Number for iterations

Problem: As mentioned in Array Refactoring Patterns, type int provides faster

array accessing than type Number. Thus, when looping to access the members of

an array, use type int instead of Number.

Solution: While initializing iterations, use type int instead of Number.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9.

Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;
forInit: VAR forvariableDeclarationList | expression;
forvariableDeclarationList: forvariableDeclaration(COMMA

forvariableDeclaration)*;

for(var i:int = 0; i < MAX; i++)

for(var i:Number = 0; i < MAX; i++)

for(var i:int = 0; i < MAX; i++)

for(var i:uint = 0; i < MAX; i++)

 171

forvariableDeclaration: forvariableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;
forvariableIdentifierDecl: IDENTIFIER (DOT IDENTIFIER)? (COLON

fortype)? | THIS (DOT IDENTIFIER)? (COLON fortype)?;

fortype: forqualifiedName | STAR;

forqualifiedName: 'Number';

Grammar after refactoring:

forStatement -> fortype

forqualifiedName: 'int';

(33) Pattern name: Avoid array.length in for statements

Problem: The AVM2 has the ability to perform Common Sub-expression

Elimination (CSE) automatically; however, getter/setter sub-expressions are an

exception which cannot be eliminated. Array.length is a getter/setter property, to

optimize array.length, CSE by refactoring is necessary.

Solution: Create a new variable outside the loop; and use this variable to access

array.length outside the loop.

Input: A name and type (int) for the length of the array.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9 and Firefox 3.6 / Adobe Flash Player 9.
Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression LT shiftExpression;

var length:int = myArray.length;

for(var i:int = 0; i < length; i++){}

for(var i:int = 0; i < myArray.length; i++){}

 172

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '.length';

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: LENGTHIDENTIFIER COLON 'int';

assignmentExpression -> primaryExpr

qualifiedName: IDENTIFIER '.length';
forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> equalityExpression

relationalExpression: shiftExpression LT shiftExpression;

shiftExpression -> primaryExpr

qualifiedName: LENGTHIDENTIFIER;

Other Loop Refactoring Patterns

(34) Pattern name: Avoid recreating an object to initialize the object

Problem: After an instance is created, don‟t recreate it when initializing the

instance. The creation of unnecessary instances makes Adobe Flash Player slow,

because extra time will be spent on creating the instance and on being collected

by the Garbage Collector once the objects are no longer required.

Solution: Assign values to an object instead of recreating the object.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

9 and Firefox 3.6 / Adobe Flash Player 9.

 173

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND

equalityExpression)*

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression (STAR|DIV|MOD)^

unaryExpression)*

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

for(var i:int = 0; i < MAX; i++){

var myPoint:Point = new Point();

myPoint = new Point(i, i + 2);

}

for(var i:int = 0; i < MAX; i++){

var myPoint:Point = new Point();

myPoint.x = i;

myPoint.y = i + 2;

}

 174

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

argumentSuffix: LPAREN argumentList? RPAREN;

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER (DOT IDENTIFIER)*;

assignmentExpression -> primaryExpr

qualifiedName: IDENTIFIER;

(35) Pattern name: Avoid creating instances inside a loop

Problem: Calling the new operator is very expensive. To avoid recreating the

instance every time the loop iterates, create an instance of a class outside the loop.

Solution: Move instance creations outside the loop.

Input: Permission to change.

Recommend running environments: Same performance in all environments.

 175

Example:

Grammar before refactoring:

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

blockStatement: LCURLY statement* RCURLY;

statement: expression semic | blockStatement |

useNamespaceStatement | namespaceStatement |

constantVarStatement | tryStatement | labelledStatement |

switchStatement | withStatement | returnStatement | breakStatement

| continueStatement | forStatement | forInStatement |

doWhileStatement | whileStatement | ifStatement | emptyStatement

| variableStatement | functionDeclaration | expressionNoIn semic;

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

forStatement: FOR LPAREN (LineTerminator* forInit)?

LineTerminator* SEMI expression? SEMI forUpdate? RPAREN statement;

Packages, Classes and Functions Refactoring Patterns

(36) Pattern name: Import package.Class instead of package.*

Problem: When importing a package, only import the package.Class rather than

package.*. If importing package.*, all the classes inside the package will be

imported which are the “extra baggage” (Sanders & Cumaranatunge, 2007).

Solution: Remove package.*, use specified package.Class instead.

Input: Permission to change.

for(var i:int = 0; i < n; i++){

var point: Point = new Point();

point.x = point.y = 0;

}

var point: Point = new Point();

for(var i:int = 0; i < n; i++){

point.x = point.y = 0;

}

 176

Example:

Grammar:

importDeclaration: IMPORT importDeclarationTypeElement semic;

importDeclarationTypeElement: IDENTIFIER

importDeclarationTypeElementPart*;

importDeclarationTypeElementPart: DOT (IDENTIFIER | STAR);

(37) Pattern name: Avoid using Dynamic classes

Problem: In AS3, a class can be dynamic which is allowed to add properties and

methods at runtime, or sealed (by default) which cannot be altered at runtime

(Florio, 2008). However, dynamic classes consume more memory to create

internal hash tables to store dynamic properties and methods.

Solution: If dynamic classes are not necessary, they should be changed to sealed

classes.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 10.

Example:

Grammar before refactoring:

classDeclaration: memberModifiers? CLASS type (EXTENDS type)?

(IMPLEMENTS typeList)? classBody;

memberModifiers: (DYNAMIC | FINAL | INTERNAL | NATIVE | OVERRIDE |

PRIVATE | PROTECTED | PUBLIC | STATIC | IDENTIFIER)+;

Grammar after refactoring:

classDeclaration: memberModifiers? CLASS type (EXTENDS type)?

(IMPLEMENTS typeList)? classBody;

memberModifiers: (FINAL | INTERNAL | NATIVE | OVERRIDE | PRIVATE

| PROTECTED | PUBLIC | STATIC | IDENTIFIER)+;

public dynamic class MyClass{}

//Add dynamic properties and methods

public class MyClass{

//Move dynamic properties and methods here

}

import flash.display.*;
import flash.text.*;

import flash.display.MovieClip;
import flash.display.Sprite;

import flash.text.TextField;

 177

(38) Pattern name: Use static methods if possible

Problem: Static methods are faster than instance methods because no time is

spent on the creation of an instance of a class when static methods, such as the

methods in the Math class, are called.

Solution: Change an instance method to a static method.

Input: Permission to change.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 10.

Example:

Grammar before refactoring:

functionDeclaration: functionDefination blockStatement;

functionDefination: memberModifiers? FUNCTION

functionGetSetModifier? IDENTIFIER formalParameterList

functionReturnType?;

memberModifiers: (DYNAMIC | FINAL | INTERNAL | NATIVE | OVERRIDE |

PRIVATE | PROTECTED | PUBLIC | IDENTIFIER)+;

Grammar after refactoring:
functionDeclaration: functionDefination blockStatement;

functionDefination: memberModifiers? FUNCTION

functionGetSetModifier? IDENTIFIER formalParameterList

functionReturnType?;

memberModifiers: (DYNAMIC | FINAL | INTERNAL | NATIVE | OVERRIDE |

PRIVATE | PROTECTED | PUBLIC | STATIC | IDENTIFIER)+;

Graphic Display Refactoring Patterns

(39) Pattern name: Avoid using the flash.geom.point class

Problem: The Point class allows you to draw points using two properties: x and

y. Though it is frequently used in ActionScript, this class significantly slows

down Adobe Flash Player. Consequently, using a custom point class as an

alternative to the flash.geom.point class increases the performance of Flash

applications. For example, Nodename has designed a new MyPoint97 class as a

substitute for the Point class.

Solution: Using a custom point class instead of the flash.geom.point class.

Input: Permission to change.

Recommend running environments: Firefox 3.6 / Adobe Flash Player 9 and 10.

97 http://nodename.com/blog/2005/09/26/point-class-slow/

private static function myFunc():void{};

private function myFunc():void{};

 178

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Point';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Point';

argumentSuffix: LPAREN argumentList? RPAREN;

var myPoint:MyPoint = new MyPoint();

var myPoint:Point = new Point();

 179

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'MyPoint';
assignmentExpression -> memberExpression

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'MyPoint';

argumentSuffix: LPAREN argumentList? RPAREN;

(40) Pattern name: Use Sprite objects instead of MovieClip objects

Problem: Sprite is a new class introduced by AS3. Sprite is similar to MovieClip,

they both inherit from DisplayObject. However, MovieClip has a timeline, which

has a significant overhead.

Solution: If the timeline is not necessary, MovieClip objects should be changed

to Sprite objects.

Input: Permission to change object type.

Example:

import flash.display.MovieClip;

var myMovieClip:MovieClip = new MovieClip();

myMovieClip.graphics.beginFill(0xff0000);

myMovieClip.graphics.drawCircle(40, 40, 40);

myMovieClip.addEventListener(MouseEvent.CLICK, clicked);

function clicked(event:MouseEvent):void {

trace("Click MovieClip!");

}

addChild(myMovieClip);

import flash.display.Sprite;

var mySprite:Sprite = new Sprite();

mySprite.graphics.beginFill(0xff0000);

mySprite.graphics.drawCircle(40, 40, 40);

mySprite.addEventListener(MouseEvent.CLICK, clicked);

function clicked(event:MouseEvent):void {

trace("Click Sprite!");

}

addChild(mySprite);

 180

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'MovieClip';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'MovieClip';

argumentSuffix: LPAREN argumentList? RPAREN;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Sprite';
assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

 181

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Sprite';

argumentSuffix: LPAREN argumentList? RPAREN;

(41) Pattern name: Speeding up access to getter properties

Problem: In AS3, a class is allowed to define setter methods to set properties and

getter methods to access properties. Storing getter properties in a variable and

accessing that variable is faster than using the getter properties directly.

Solution: Store getter properties in a local variable.

Input: The name of the new variable.

Recommend running environments: Internet Explorer 8.0 / Adobe Flash Player

10 and Firefox 3.6 / Adobe Flash Player 9 and 10.

Example:

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

var sprite:Sprite = new Sprite();

sprite.graphics.clear();

sprite.graphics.beginFill(0x000000);

sprite.graphics.drawCircle(0,10,0);

sprite.graphics.endFill();

var g:Graphics = sprite.graphics;

g.clear();

g.beginFill(0x000000);

g.drawCircle(0,10,10);

g.endFill();

 182

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '. graphics' (DOT IDENTIFIER)*;
argumentSuffix: LPAREN argumentList? RPAREN;

Grammar after refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: GRAPHICIDENTIFIER COLON 'Graphics';

assignmentExpression -> primaryExpr

qualifiedName: IDENTIFIER '. graphics';

expression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: GRAPHICIDENTIFIER (DOT IDENTIFIER)*;
argumentSuffix: LPAREN argumentList? RPAREN;

Event/Event Handling Refactoring Patterns

(42) Pattern name: Use Enter.Enter_FRAME instead of Timer

Problem: Both Enter.Enter_FRAME and Timer can be used to create animations.

The differences between the two are (Moock, 2007):

(1) Enter.Enter_FRAME triggers on every frame, therefore, the time intervals

are the same as the frame rate; a Timer dispatches TimerEvent.TIMER

events at programmer-specified time intervals, not the frame rate;

 183

(2) For the same animation, the code for Enter.Enter_FRAME is simpler than

Timer;

(3) Timer requires more memory than Enter.Enter_FRAME because of its

creation and event dispatch; and

(4) The updateAfterEvent() is a method in TimerEvent which is used to refresh

the screen (to create a smooth animation). It forces Adobe Flash Player to

render immediately after an event is processed. However, if each object has a

separate Timer and each TimerEvent.TIMER event uses the

updateAfterEvent() method, numerous independent requests to refresh the

screen can cause performance problems.

Solution: If no change of frame rate is required, use Enter.Enter_FRAME instead

of Timer.

Input: Permission to change from Timer to Enter.Enter_FRAME.

Recommend running environments: Same performance in all environments.

Example:

Grammar before refactoring:

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: IDENTIFIER COLON 'Timer';
assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

addEventListener(Event.ENTER_FRAME, onEnterFrame);

public function onEnterFrame(event:Event):void{

trace("EnterFrame:" + event);

}

var myTimer:Timer = new Timer(delay, repeatCount);

myTimer.addEventListener(TimerEvent.TIMER, onTimerTick);

myTimer.start();

public function onTimerTick(event:TimerEvent):void{

trace("TimerHandler:" + event);

}

 184

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

newExpression: NEW memberExpression argumentSuffix*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'Timer';

argumentSuffix: LPAREN argumentList RPAREN;

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '. addEventListener';
argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: 'TimerEvent.TIMER';

expression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: IDENTIFIER '. start';
argumentSuffix: LPAREN RPAREN;

functionDeclaration: functionDefination blockStatement;

functionDefination: memberModifiers? FUNCTION

functionGetSetModifier? IDENTIFIER formalParameterList

functionReturnType?;

formalParameterList: LPAREN (formalNonEllipsisParameter (COMMA

formalEllipsisParameter)?)? RPAREN;

formalNonEllipsisParameter: variableDeclaration (COMMA

 185

variableDeclaration)*;

variableStatement: (PROTECTED|PRIVATE|PUBLIC|INTERNAL)? STATIC?

CONST? VAR? variableDeclaration (COMMA variableDeclaration)* semic；

variableDeclaration: variableIdentifierDecl (indexSuffix |

propertyReferenceSuffix | argumentSuffix)* (ASSIGN

assignmentExpression)? (AS IDENTIFIER)?;

variableIdentifierDecl: 'event' COLON 'TimerEvent';

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: leftHandSideExpression;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'addEventListener';
argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: 'Event.ENTER_FRAME';

functionDeclaration -> variableDeclaration

variableIdentifierDecl: 'event' COLON 'Event';

(43) Pattern name: Add weak reference - addEventListener

Problem: The second place to add weak references is the .addEventListener()

method in the EventDispatcher class. The .addEventListener() method registers an

event to an object, and the object starts to listen to that event. If the listener is not

used any more, it is good practice to remove it explicitly by using the

.removeEventListener() method, otherwise the object cannot be collected by

Garbage Collector and will stay in the memory until all the listeners are removed.

However, “weak references allow the object to be deleted even if the event

listener has not been explicitly removed” (Braunstein, 2007). Therefore, it should

always be used to prevent memory leaks. There are five properties in the

.addEventListener() method, the last property specifies the weak references (the

default value is false). This pattern is presented to programmers to help increase

the efficiency of their program. However, programmers should ensure that

switching to weak references will not affect their program's correctness before

using this refactoring pattern.

Solution: Use weak references when registering an event for an object.

Input: Permission to change.

Example:

addEventListener(MouseEvent.CLICK,clickHandler,false,0,true);

addEventListener(MouseEvent.CLICK,clickHandler,false,0,false);

 186

Grammar before refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression: conditionalExpression |

leftHandSideExpression assignmentOperator assignmentExpression;

conditionalExpression: logicalORExpression (QUE

assignmentExpression COLON assignmentExpression)?;

logicalORExpression: logicalANDExpression (LOR

logicalANDExpression)*;

logicalANDExpression: bitwiseORExpression (LAND

bitwiseORExpression)*;

bitwiseORExpression: bitwiseXORExpression (OR

bitwiseXORExpression)*;

bitwiseXORExpression: bitwiseANDExpression (XOR

bitwiseANDExpression)*;

bitwiseANDExpression: equalityExpression (AND equalityExpression)*;

equalityExpression: relationalExpression ((EQ|NEQ|SAME|NSAME|IS|

ADD_ASSIGN|MUL_ASSIGN) relationalExpression)*;

relationalExpression: shiftExpression

((IN|LT|GT|LTE|GTE|INSTANCEOF) shiftExpression)*;

shiftExpression: additiveExpression ((SHL|SHR|SHU)

additiveExpression)*;

additiveExpression: multiplicativeExpression ((PLUS|SUB)

multiplicativeExpression)*;

multiplicativeExpression: unaryExpression ((STAR|DIV|MOD)^

unaryExpression)*;

unaryExpression: unaryOp? postfixExpression;

postfixExpression: leftHandSideExpression postfixOp?;

leftHandSideExpression: callExpression | newExpression;

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'addEventListener';
argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: 'false';

Grammar after refactoring:

expression: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> leftHandSideExpression

callExpression: memberExpression (indexSuffix |

propertyReferenceSuffix | argumentSuffix)*;

memberExpression: primaryExpression | functionExpression |

newExpression;

primaryExpression: primaryExpr;

primaryExpr: (literal| arrayLiteral | objectLiteral | THIS |

SUPER | qualifiedName | xmlPrimaryExpression | parExpression);

qualifiedName: 'addEventListener';
argumentSuffix: LPAREN argumentList RPAREN;

argumentList: assignmentExpression (COMMA assignmentExpression)*;

assignmentExpression -> primaryExpr

qualifiedName: 'true';

