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ABSTRACT

The endomembrane system is one of the hallmark features of all eukaryotes that distinguishes
them from prokaryotes. Compared to bacteria and archaea, eukaryotic cells consist of biochemically and
functionally distinct membranous compartments such as the endoplasmic reticulum, the Golgi apparatus,
endosomes, lysosomes, and the plasma membrane. Cargo is transported to and from these organelles in
distinct vesicle carriers whose formation and fusion at donor and recipient organellar membranes is
facilitated by vesicle formation and fusion trafficking proteins. Together, these compartments with this
molecular machinery form a complex interconnected network termed the membrane trafficking system that
mediates extracellular export, intracellular import, and cargo-sorting between the cell and its environment.
Proper functioning of this system is fundamental to the survival of all eukaryotes, and breakdown results in
disease states or the inability to inhabit niche environments. Eukaryotic pathogens heavily rely on their
membrane trafficking system for host-pathogen interactions, to transition between different lifecycle stages,
and secrete virulence factors for immune avoidance and establishing disease. Giardia intestinalis is one
such enteric microbial parasite of humans and animals that relies on its cargo secretory and endocytic
processes to cause diarrheal infection within the animal gut and for environmental survival and propagation.

Microscopically, Giardia’'s endomembrane organization is strikingly different from that present in
model eukaryotes such as yeast, plants, animals, or even other eukaryotic parasites. It lacks conventional
stacked Golgi and endo-lysosomal compartments, and instead, possesses numerous Giardia-specific
organelles. These are the peripheral vacuoles, which are static-state vesicular compartments, a labyrinth
tubulovesicular endoplasmic reticulum, and stage-specific encystation-specific vesicles. Giardia belongs to
the sub-phylum Fornicata within the eukaryotic supergroup Metamonada. Fornicata is a lineage that
consists of free-living heterotrophic flagellates such as Carpediemonas membranifera and Carpediemonas-
like organisms, endobionts of ruminant animals such as the retortamonads, and the largely parasitic
Diplomonadida, which comprises bi-nucleated parasites such as Giardia. The endomembrane organization
in fornicates is variable in its complexity and one that is gradually reduced. Within the Giardia genus,
different Giardia intestinalis assemblages have been proposed to be distinct species that cause disease in
humans and animals. This thesis examined the molecular evolution of the membrane trafficking system,

specifically the vesicle formation machinery, to understand how the minimal trafficking system



in Giardia arose and what evolutionary processes were at interplay. It also investigated the differences in
the vesicle formation machinery between the different Giardia intestinalis assemblages, especially those
implicated in causing human infections, through a population-level survey. Finally, upon identifying critical
components from several important vesicle formation protein complexes, their molecular functions were
assessed to study their roles in this parasite’s divergent endomembrane system.

A systems approach using evolutionary bioinformatics (comparative genomics and phylogenetics),
immunofluorescent microscopy, proteomics, and large-scale genome assembly determined how the vesicle
formation machinery evolved in fornicates from an ancestral state, leading into parasitism and within the
Giardia lineage, and what organelles they associate in the Giardia trophozoite cells. The culmination of
work produced in this thesis determined that Giardia’s reduced trafficking system is a by-product of ancient
losses, parasitism-associated streamlining, and Giardia-specific adaptations. A population-level survey of
the vesicle formation proteins across isolates of the human-infecting Giardia intestinalis also revealed inter-
assemblage differences in the molecular complement of these proteins. Finally, in vitro microscopy and
proteomics investigations with key membrane trafficking proteins in the lab strain of Giardia intestinalis
AWB (C6) revealed associations of these proteins primarily with the peripheral vacuoles, marking them as
a singular yet a multi-dynamic destination for endo-lysosomal trafficking in this parasite. Unexpectedly,
promiscuous roles of some machinery were also elucidated at the parasite mitosomes and the ER and have
shed light on the plasticity of trafficking system proteins in eukaryotes in general. Overall, findings from this
thesis unveiled new modes and tempo by which cargo transport processes evolved and take place in this

parasite that is of substantial public health, clinical, and biomedical importance.



PREFACE

(Mandatory due to collaborative work)

Bioinformatic and molecular functional work presented in this thesis are a product of several previous and

on-going collaborations.

The beginning portions of Chapter 1 are currently under preparation for a first-author review article
conceptualized between Dr. Joel B. Dacks, Dr. Kristina Zahonovd, Dr. Lynora Saxinger, and myself. |
performed all literature surveys under the guidance of JBD and LS. Figure 1.1 from this chapter was
reproduced and modified from the following published dispatch where | was a co-author: Rueckert, S.,
Pipaliya, S. V., & Dacks, J. B. (2019). Evolution: Parallel Paths to Parasitism in the Apicomplexa. Current
Biology, 29(17), R836—R839. https://doi.org/10.1016/j.cub.2019.07.047. Figure 1.2A from this chapter was
reproduced from the following primary research article where | was also a co-author: Karnkowska, A., Treitli,
S. C., Brzon, O., Novak, L., Vacek, V., Soukal, P., Barlow, L. D., Herman, E. K., Pipaliya, S. V., Panek, T.,
Zihala, D., Petrzelkova, R., Butenko, A., Eme, L., Stairs, C. W., Roger, A. J., Elia$, M., Dacks, J. B., &
Hampl, V. (2019). The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a
Mitochondrion. Molecular Biology and Evolution, 36(10), 2292-2312.

https://doi.org/10.1093/molbev/msz147. Current Biology is an Elsevier Journal that grants permission for

article content reuse by its original publication authors. Molecular Biology and Evolution is an open-access
Oxford University Press journal that allows the reproduction of its content under the Creative Commons
CC-BY-NC licence. Therefore, no additional permissions from either publisher were necessary for the

inclusion of these figures in this thesis.

Bioinformatic investigations presented in Chapter 2 were performed as part of the Carpediemonas
membranifera genome project conceived by Dr. Dayana Salas-Leiva and Dr. Andrew J. Roger at Dalhousie
University (Nova Scotia, Canada). Dr. Joel B. Dacks and | designed specific comparative genomics and
phylogenetic analyses of the vesicle coat proteins. | performed all bioinformatic investigations and
interpreted the results. Both JBD and | composed the written sections to include these results into a larger
manuscript currently in preparation. The limited inclusion of the fornicate genomes and transcriptomes in
this chapter compared to later parts of the thesis was due to the following reasons: 1) to match the sampling
determined for the genome project, and 2) their lack of availability during the initial stages of my Ph.D.
Several of the analyzed fornicate genomes were also not yet publicly available in 2017 when these
bioinformatic investigations were first pursued. Dr. Goro Tanifuji provided early versions of the Kipferlia

bialata genome, and Dr. Feifei Xu and Dr. Staffan Svard shared the Giardia muris genome for analyses.

Chapter 3 (exclusive of the preface and afterword) has been published as the following first-author research
publication: Pipaliya, S. V., Thompson, L. A., & Dacks, J. B. (2021). The reduced ARF regulatory system in



Giardia intestinalis pre-dates the transition to parasitism in the lineage Fornicata. International Journal for
Parasitology, 51(10), 825-839. https://doi.org/10.1016/j.ijpara.2021.02.004. International Journal for

Parasitology is an Elsevier Journal that allows its authors to reproduce and re-use articles for dissertations,

and therefore, no additional licences were required. Text within this chapter is unmodified from the
published article. Joel Dacks and | conceived the project and the design of the bioinformatic studies. Under
my guidance, Alexa Thompson performed all comparative genomic analyses pertaining to the evolution
and distribution of ADAP across eukaryotes. | performed all remaining comparative genomic and
phylogenetic analyses of the ARF regulatory system proteins in fornicates. | also composed all of the figures
and initial drafts of the manuscript, which all authors edited. This chapter and publication were conceived
as a follow-up to the investigation that determined the evolution of the ARF GEF proteins across eukaryotes
where | was a first author: Pipaliya, S. V., Schlacht, A., Klinger, C. M., Kahn, R. A., & Dacks, J. (2019).
Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Molecular
biology of the cell, 30(15), 1846—1863. https://doi.org/10.1091/mbc.E19-01-0073. Although findings from

that study were not explicitly included in this thesis, they nonetheless contributed to our understanding of

the ancient ARF GEF complement and provided numerous starting hypotheses for testing regarding the

distribution of these proteins in fornicates.

Chapter 4 (exclusive of the preface and afterword) is published original research article: Pipaliya, S.V.,
Santos, R.R., Salas-Leiva, D., Balmer, E.A., Wirdnam, C.D., Roger, A.J., Hehl, A.B., Faso, C., and Dacks,
J.B. (2021). Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex
evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biology, 19(1),
167. BMC Biology is a Springer Nature open access journal under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). No additional

permissions were necessary to reproduce this work for this thesis. Minor typographical and syntax edits
have been made to the original text to improve clarity and flow with the rest of the thesis. Dr. Joel Dacks,
Rui Santos, Dr. Adrian Hehl, Dr. Carmen Faso, and | conceived the project and design of the informatics
and molecular functional experiments. | performed all bioinformatic analyses and some
immunofluorescence assays and microscopy during my three-month research visit to the Institute of
Parasitology (University of Zurich, Switzerland) in the laboratory of Dr. Adrian Hehl in 2019. | also performed
the subcellular fractionation experiments with HA-CHMP7 during my eight-month research visit to the
University of Bern from Fall 2020 until Spring 2021, under the guidance of Dr. Corina Wirdnam and Dr.
Carmen Faso. All remaining experimental work was performed by RRS, EAB, CDW, and CF. Personnel at
the Functional Genomics Centre Zurich (ETH Zurich and the University of Zurich, Switzerland) performed
the mass-spectrometry experiments. Imaging was performed with the equipment provided by the Center of
Microscopy and Image Analysis (ZMB) at the University of Zurich and the Microscopy Imaging Center at
the University of Bern. RS, JBD, CF, ABH, and | interpreted all results, and RS and | composed early

versions of the manuscript, which was edited and approved by all authors.



The data presented in Chapter 5 are in preparation for eventual submission of a first-author publication.
Work from this chapter was produced in collaboration with Dr. Carmen Faso (University of Bern,
Switzerland), Dr. Adrian Hehl (University of Zurich, Switzerland), myself, and Dr. Joel Dacks. Dr. Carmen
Faso and Dr. Corina Wirdnam generated the episomal constructs. Dr. Manfred Heller and Dr. Sophie Braga
at the Proteomics Mass Spectrometry Core Facility (University of Bern) performed the mass-spectrometry
experiments. | performed all remaining molecular functional experiments (i.e., parasite culture and
propagation, parasite transfections, immunofluorescence assays, widefield and confocal microscopy, and
co-immunoprecipitation and western blotting) during my two research visits to the University of Zurich and
the University of Bern (described above), with guidance from Rui Santos, Dr. Corina Wirdnam, Dr. Adrian
Hehl, and Dr. Carmen Faso. Technical guidance with confocal image deconvolution and FlJI/ImageJ
microscopy image analyses was provided by Dr. Yury Belyaev at the Theodor Kocher Institute (University
of Bern). | interpreted all imaging and proteomics data with guidance from Dr. Carmen Faso, Dr. Richard
Kahn, and Dr. Joel Dacks.

The population genomics and bioinformatic analyses performed in Chapter 6 are under preparation for a
first-author manuscript with co-supervisors (and co-authors) Dr. Matthew Croxen and Dr. Joel Dacks. The
project was initially conceptualized between Dr. Kinga Kowalewska-Grochowska, Dr. Matthew Croxen, Joel
Dacks, and myself. MC, JBD, and | designed the experiments, whereas | performed the de novo genome
assembly and reference-based gene predictions for all investigated BCCDC PHL Giardia isolates under

the supervision of MC. All data analyses were also performed by me with guidance from MC.
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Dedicated to my beloved parents.

“Wisdom begins in wonder.”

-- Socrates
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CHAPTER1

Introduction

1.1 Overview

The goal of this thesis was to uncover the molecular evolution and roles of trafficking system
proteins within the existing endomembrane complexity of the microbial parasite, Giardia intestinalis. In order
to gain a comprehensive appreciation of the work presented in the subsequent chapters, it is necessary to
understand how eukaryotic parasitism is generally defined and the patterns of evolution it follows across
the tree of life. This introduction chapter begins by providing examples of important human-infecting
parasites nested within different eukaryotic supergroups that have taken interesting evolutionary paths to
reach pathogenicity as an end-state. It also provides a contextual overview into the best-known
mechanisms and players that underpin trafficking processes, and how parasites have evolved these in
comparison to their free-living relatives for a host-adapted lifestyle. Because the parasite of focus in this
thesis is Giardia intestinalis, this introductory chapter also discusses the clinical and epidemiological
relevance of the disease it causes. Known aspects of Giardia biology and the underlying molecular
mechanisms for disease establishment, especially the role of membrane trafficking system within those
processes, are also covered. One of the objectives in this thesis was to uncover the precise evolutionary
mechanisms by which trafficking pathways have diverged in this pathogen in comparison to its relatives.
Therefore, taxonomic descriptions and an overview into the ecological niches that are occupied by the
members of the Fornicata lineage, to which Giardia belongs, are also provided. Known morphophysiological
and cellular adaptations that follow a transition to parasitism are described as well. Later chapters also
investigated trafficking complement differences within the Giardia genus itself, and so genomic and
phylogenetic perspectives on the molecular and cellular divergences between the different Giardia
intestinalis species, and which possibly translate to differences in host-specificity and disease

manifestation, are also discussed.

1.2 Evolution of parasitism: A road well-traveled within the existing eukaryotic diversity

Infections caused by protist (i.e., single-celled eukaryotes) parasites pose significant public health
and financial burden and are consequential contributors to high rates of global disability-adjusted life years
(Kirk et al., 2015). A considerable number of these are characterized as neglected diseases that affect
populations inhabiting parts of the world that are disproportionately faced with increased levels of
socioeconomic disparities (World Health Organization, 2013). Many of these regions also have temperate
and subtropical climates that house habitats ideal for vector-mediated disease propagation (Githeko et al.,
2000). A paradigm shift towards globalization and ease in international travel has increased global
interconnectedness. However, it has also lead to the emergence of new diseases and their accelerated
spread, prevalence, and endemicity in parts of the world that were once unaffected (Wilson, 1995). From a



clinical perspective, some of these problems are further substantiated by over-prescription of antimicrobials,
giving rise to multidrug resistance in pathogens and ‘superbugs’ (Llor & Bjerrum, 2014). When combined,
these multifactorial variables have exacerbated the growing inability to treat infectious diseases and
eliminate their contribution towards global healthcare and socioeconomic burdens. Many clinically
implemented pharmacological agents target critical aspects of parasite biology that have evolved due to
reciprocal host-pathogen evolutionary '‘arms' race known as the Red Queen Hypothesis, a theory first
proposed by biologist Leigh Van Valen (Papkou et al., 2019; Van Valen, 1973). Therefore, understanding
parasite biology and cellular systems through an evolutionary lens has significant clinical utility and can
underpin drug treatment efficacy in distantly related microbes. This insight also becomes valuable for
developing and clinically implementing new therapeutics, or repurposing treatments that may otherwise be

unconventional (Klug et al., 2016).

The lay audience often associates parasites as biological entities with shared ancestry, just as
animals, plants, or fungi. However, a more complex definition of parasitism and its evolution is necessary
to accurately reflect distribution of these organisms amongst other eukaryotes. Parasitism is a life strategy
employed by any organism through obligate association with another (i.e., a host) for survival and one that
results in a decreased fitness of the host (Stevens, 2010). This definition allows parasites to be interspersed
with free-living organisms and within most major lineages of eukaryotes (Figure 1.1). Eukaryotic parasitism
is, therefore, a by-product of independent convergence. In fact, transition to parasitism as a trophic lifestyle
is @ major evolutionary shift within eukaryotes and perhaps the most successful life strategy on Earth, with
more parasites populating different ecosystems than free-living species and for every potential organism to
serve as a host (Adl et al., 2019; Poulin and Randhawa, 2015).

Many previous notions, such as the now-dismantled Archaezoa Hypothesis first proposed by
Cavalier-Smith in 1983, presumed numerous protist parasites to be primitive eukaryotes (Cavalier-Smith,
1989). The Archaezoa Hypothesis was an early model for eukaryogenesis that placed highly reduced and
once-thought-to-be 'amitochondriate’ parasitic lineages such as Giardia, Trichomonas, Entamoeba, and
microsporidia as an early-branching monophyletic group of organisms that branched off before the
endosymbiotic event that gave rise to mitochondria-possessing eukaryotes (Cavalier-Smith, 1989, 1993).
The absence of canonical mitochondria paired with a high degree of genomic and protein sequence
divergence resulted in incorrect phylogenetic placements of these lineages and assumptions about the
evolution of eukaryotic protist parasitism (Keeling, 1998). With the continual discovery of new free-living
protist lineages combined with advancements in sensitive phylogenomic methods and computational
models to assess protein and nucleotide evolution, the modern view of the road to protist parasitism is one
that has been traveled in a multitude of ways and independently across different eukaryotic supergroups
(Poole & Penny, 2007) (Figure 1.1).



Figure 1.1. A schematic tree depicting eukaryotic relationships and the evolution of parasitism
within major taxonomic groups. Ten consensus supergroups (i.e., Opisthokonta, Amoebozoa,
Metamonada, Discoba, Archaeplastida, Cryptista, Hemimastigophora, Haptophyta, CRuMs
(collodictyonids, rigifillids, and mantamonadids), and TSAR (Telonemia, Stramenopila, Alveolata, and
Rhizaria)) are depicted and highlighted in different colours. Most supergroups can be subdivided into
additional phyla, which consist of both parasitic and free-living members. A selection of those is shown
here. These relationships and terminology are based on the most recent nomenclature and phylogenetics
determined by AdI et al. (2019) and Burki et al. (2020). This figure was reproduced from Rueckert et al.
(2019) and modified for the inclusion of several additional supergroup