PM-13%2"x4" PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSI/ISO #2 EQUIVALENT

1O i 2
w 02 a2

L n36
A =
— &

L2 flis e

o

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wetlington Street

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa Ontario

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Ottawa (Ontario)

Yoor e Lot phtience

Our bl Notee referoce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si 'université nous
a fait garvenir une photocopie de
qualité inférieure.

La reproduction, méme partizile,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

Implementing Bit Data Structures in Mizar-C

BY

©

Kathleen Kippen

A thesis submitted to the Faculty of Graduate Studies and Research in partial {ulfill-
ment of the requirements for the degree of Master of Science.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alb: -
Spring 199,

L |

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellinglon

Ottawa, Ontanio Ottawa (Ontano)

K1A ON4 K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01616-1

Canadia

Your e \ore rdldrence

Lt Tl NOe 160109 e

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUL MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

UNIVERSITY OF ALBERTA

RELEASE FORM

NAM i OF AUTHOR: Kathleen Kippen

TITLE O THESIS: Implementing Bit Data Structures in Mizar-C
DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

rescarch purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

yoos !
(Signed) . % A U,) ’JZU .
Kathleeri Kippen
822 - 112 B Street
Edmonton, AB
T6J 6W3

Y

Ea §
Date: .\".’ e ‘3(11 /?5

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faenlty of Gracl

uate Studies and Research for acceptance, a thesis entitled Implementing Bit Dara
Structures in Mizar-C submitted by Kathleen Kippen in partial fulfillient of the
requirements for the degree of Master of Science.

-

v 7
227 0 A

P~

e
Dr: 11). Hoover (Supervisor)
—

/h/ W Joerg [Joxternal)

, 7 ¢
bt

Ly Randnicki (Examiner)

-t

Dr. B. joe (Chair)

Date: ~i @7 . 30/?{
«

Abstract

One o the main goals of computer programming is to produce compiiter svstems that
are correct with respect 1o their specifications; in other words, to produce programs
that do what they are supposed to. There are two main impediments to this goal:
the Tack of completeness in most program specifications, and the difficulty in verifving
the correctness of programs, especially those that have vot heen fully specified. This
thesis examines the use of constructive proofs to specify and produce correct code.
Typically, a computer program is specified, implemented, and then proven correct. (n
this rescarch a different approach is taken: the specification of the program is proven
to be true, and the code is then extracted from this prool using the Mizar-C' system.
a natural deduction proof environment which extracts Lisp code from construciive
proofs.

The main goal of this research was to define finite sequences of bit strings in
Mizar-C. The work done to accomplish this goal is the content of this thesis. Some
basic background to this work is given which provides a high-level overview of the
notion of extracting programs from proofs, the Mizar-C system and the basic bit
mmachine underlying its extracted programs. Appendices that go into greater detail
about the system are provided. In order to provide the motivation for the specific
work undertaken, some intuition into the jrocess that was followed in defining the
finite sequences is given. The work that was done to facilitate this definition is then
discussed: the implementation of sume new inference rules is outlined, a proof of
an ilerator function done in Mizar-C is presented, and the definition of the finite
sequence of bit strings is given. A discussion of the feasibility of using the Mizar-C
system as a programming tool is then given in conclusion.

Acknowledgements

[would like to take this opportunity to express my sincere thanks to those who have
helped me throughout my graduaie studies.

[exterd my appreciation to my superviser, Dr. 1L James Hoover, for all his support
throughout the course of this work, and to the members of 1y commitiee for thei
evaluation of this thesis.

Thanks also:

to Dr. Piotr Rudnicki for all the discussions over coflee,

to Mira and Annette for keeping me sane,

to my family for their love,

and especially to my husband Kelly, whose endless support and encouragenent nide
all of this possible.

Contents

Introduction

L1 Motivation © o0 o000
1.2 Programming with Coustructive Proofs
1.3 Current Research o o000 00000 0L
4 Overviewof Thesis .« .o 0000 00000
Background

2.1 Interpreting Proofs as Programs
2.2 The Mizar-C Systemy
2.3 The Bit Machineo

Basic Intuition

3.1 Extending the Basic Bits Functionality
3.2 Attempting to Define New Types

New Inference Rules

4.1 The Choice Rule
4.2 Guarded Chotce0 o0
4.3 Definitions
4.4 Inductiono

Iterator Function

Db Motivation . ..o
5.2 Delining the Tterator o
5.3 Proving the Iterator00 L

5.3.1 Outlinc of the Proof
5.4 Other Properties of the lterator
5.5 Problems Encountered During Proof

Definition of Finite Sequences

6.1 Packets oo
6.2 Finite Sequences ..o oL Lo
6.3 Properties of Finite Sequences

e I =

Mg

oL o—~1 o U

11
4

17
17
19
21
29

~ L

24
24
26
o=
28
31
3!

34
34
35

37

7 Conclusions 38

7.1 Mizar-C as a Programming Tool 3
7.2 Using Formal Methods 39
A Sparse Realizability 41
A.l Conjunctions: (6; & ... & 0, Yom >l i
A.2 Disjunctions: (6, or ... or 0, o> o 12
A3 lImplications: (8, implies 6,) 12
Ad M (0,iff0,). o 11
A5 Universally Quantified Formulae 11
A6 Existentially Quantified Formulac 15
AT Case Analysiso 16
B Mizar-C Inference Rules AT
B.1 Constructive Inference Rules i
B.1.I Direct Rule, i
B.1.2 Equality Substitution AT
B.1.3 The elim lnference Rude I8
B.1.4 Universally Quantified Formmlae a0
B.I.5 Implications i
B.1.6 ME ... 55
B.1.7T Reasoning by Cases Hh
B.1.8 Existentially Quantified Formulae ON
B.1.9 Tuple Manipulation ()
B.1.10 Disjunction Manipulation fil
B.1.11 Conjunction Manipulation 63
B.112 Induction il
B.1.13 The Choice Rule 61
B.1.14 Guarded Choice N
B.1.15 Definitions i1

B.2 Non-constructive Inference Rules £
B2.1 Magic 65
B.2.2 Reverse Implication 65
B.2.3 Law of Excluded Middl: G
B.2.4 Negation Introduction 66
B.2.5 Negation Elimination 67
B.2.6 Contradiction Introduction 67
B.2.7 Contradiction 67
B.2.8 Equality Introduction. e
B.2.9 DeMorgan’s Laws 69
B.2.10 Conversion Between Disjunctions and Implications 64

C Basic Bit String Extensions 71

Bibliography

List of Figures

O I

[

21
22
23
24
25
26
27
28
29
30
31
32
33

Example of Choice Rule without Content
Example of Choice Rule with Content |
Example of Guarded Choice Rule with Content
Definition of One-to-One Bimary Relation
Well-Founded Induction
Definition of Unary Naturals

Iterator Theorem
lterator Definition.
Initial Inductive Proof
Other Iterator Property Definitions
lterator Theorems
Example of Equality Substitution Rule
Examples of Elimation Rule
Content-Free Universal Introduction.
Universal Introduction with Content
Universal Elimination Example
Content-Free Implication Iutroduction
Type i Implication Introduction
Type 2 Implication Introduction
Implication Elimination
U Introduction
Il Elimination.
Introduction of Cases
Case Analysis
Existential Introduction on Formula without Content,
Existential Introduction on Formula with Content,
Existential Elimination when Formula has no Content
Existential Elimination when Formula has Content
Example of Tuple Rule
Disjunction Introduction
Disjunction Elimination
Examples of Conjunction Manipulation

Use of Magic Inference Rule e

AN
Hi

34 Lxamples of Reverse Implication Rule 0 .00 0000000 . 66

35 DBxcluded Middle Inference Rule 0 0000000 66
36 lxample of Negation Introduction 67
37 Exampleof Contra Ruleo 0oL 63
38 Equality Introduction oL 00 0oL 69
39 Examples of Demorgan Rule 70

40 Conversion between Implication and Disjunction 70

List of Tables

A.1 Implication Realizations 13
A.2 Realizations of Implication Elimination N K
A3 Realizations of UT Elimination o
A4 Realizations of Universal Formulac i
A.5 Realizations of Universal Elimination A

.6 Realizations of Existential Formulac. R B

A
A.T Realizations of Existential Elimination 16

Chapter 1

Introduction

1.1 Motivation

One of the main goals of computer programming is to produce computer systems that
are correct with respect to their specifications; in other words. to produce programs
that do what they are supposed to. There are two main impediments to this goal: the
lack of completeness in most program specifications. and the difficulty in verifying the
correctness of programs, especially those that have not been fully specified. As part
of the Mizar-C' group at the University of Alberta, | have been investigating wavs of
overcoming these problems using formal methods of program specification and veri-
fication. Specilically, the Mizar-C group is examining the use of constructive proofs
to specify and produce correct code. Typically, a computer program is specificd.
implemented, and then proven correct. Our research takes a different approach; the
specification of the program is proven to be true, and the code is then extracted from
this proof. We have been developing and using Mizar-C, a natural deduction proof
environment which extracts Lisp programs from constructive proofs, to examine the
feasibility of this method of programming [29).

The rigour of formal theories is not applicable to all types of programming. The
extra programmer time, and thus cost, required to perform the formal proofs of
specifications is not always feasible. However, there are computer systems where the
cost of failure is so high as to justily the extra cost of using formal methods. Also, it
is not necessary to formally prove the specifications of programs that can be proven
by rigorous testing. Such programs have a behaviour that is defined in such a way
that all possible actions can be tested by a good test suite.

There are systems where no sucli test suite exists; for example certain protocols,
which depend upon a set of assumptions about the behaviour of the computer system,
are not possible to exhaustively test in reality, and so must be simulated. In cases like
these, formal methods can be used to prove that the protocol meets the specification
under a set of specific ~ssun.ptions. Formal methods have the added benefit of forcing
the identification of the exact assumptions being made by the developer. My own
experience using the Mizar-C system (as well as Hehner’s method of refinement [11])

tells me that this is not a minor point. It is amazing how mauy assumptions a persen
brings into a given situation which formalization forces them, sometimes painfully, to
deal with. Since some programming tasks lend themselves to formal methods. while
others are better handled by good test procedures, it scems that a combination of
formal methods and thorough testing would be a good approach to improving the
quality of most systems.

1.2 Programming with Constructive Proofs

Programming in the Mizar-C' system can be scen as analogous to programiming in
a high-level language. When programming in a higher-level tanguage, the beginner
programmer usually starts by implementing the specification in the most straight

forward obvious way, which may or may not be the most eflicient method. 1 is by
understanding something about how the higher-level code is compiled into the lower
level object code, and how the memory is utilized that the programmer can make
choices about how to implement i1 the higher-level langnage in order to effeet the
efficiency of the compiled code. in Mizar-C'. often the obvions prool is not the one
that will lead to the most efficicnt implementation. However, by understandimg the

relationship of the proof to the code that is generated. the prover can choose the prool

structure that will result in the more efficient implementation. Although higher-level

languages are supposed to make the programming task casier by abstracting some of

the low-level details, the programmer who wants to produce efficient code must still
take those details into account. The same thing applies to an implicit programiing
system like Mizar-C; if the programmer cares about the complexity of the extracted
program he must pay attention fo the details of the code exiraction process.

For example, case analysis in a proof will correspond to a conditional test in the
extracted program. Inductive proofs result in recursion; the use of lemmas may result
in calls to other programs. Thus the structure of the proof determines the structure
of the extracted program. Because . this, for a given specification une proof may be
more desirable than another becau:: i results in a better implementation. This is no
different than how, for a specific programming task (for example sorting or scarching),
one algorithm may be preferable to another. Just as an experienced programmer
learns how to choose the algorithm that is best suited to the desived task, the Mizar-
C programmer learns how to choose the proof structure that corresponds to the hest,
algorithm.

One problem with this implicit method of programming is that any reasoning
about the complexity of the extracted program must be done outside of the Mizar- (¢
system. Since the programs are not objects within the system it is not possible Lo
talk about them directly. Although the extracted programs are correct with respect,
to their specifications, these specifications describe what the programs produce as
output rather than how they produce it or what resources are consumed. Sinee the
code generated by the computer can be quite difficult for humans to follow, reasoning
about an extracted program’s behaviour is even more challenging than usual, We

to

came across sceveral examples of this while working in Mizar-C. Although we felt
we had a general idea of the way the program would execute, many times we were
surprised by the run-time behaviour. When a proof is quite complex it can be difficult
to sce the correspondence between the proof and the program’s execution. Since a
“good” program is not only correct but alse efficient, this problem of complexity of
extracted programs must be addressed before this implicit method of programming
will be of any practical use.

1.3 Current Research

There is mnch research in the area of using constructive proof methods to realize
correct computer programs. NUPRL [3] and CoQ [6] are two systems that, like Mizar-
¢, perform implicit program extraction from constructive proofs. However, both
systems are based upon constructive type theories, which results in what we feel is
one of the major differences between them and Mizar-C. In type theories, a given
type is defined by its construction method and can only be dismantled in one way.
This prohibits using different methods to take apart a given data structure. The
types defined in Mizar-C are not restricted to any particular method of construction.
and thus for a given programming task, the most efficient method of access can be
implemented (see Section 5 for further discussion). Neither NUPRL or COQ appears
to have dealt with the problem of the complexity of the extracted programs. Manna
and Waldinger have done work on program synthesis using deductive-tableau proofs
and in {I8] they mention the need to reason about the complexity of the synthesized
programs, although no solution is provided. Some systems, such as PX][10], allow
dircet reasoning about the extracted programs. In PX, the programs exist as terms
in the object language, and can thus be reasoned about directly.

There is other research which focuses on more explicit methods for proving pro-
gram correctness. Most of these approaches use existing theorem provers to perform
program verification rather than program extraction. For example, P. Rudnicki is
using the MIZAR system to reason about programs written for a simple machine (the
SCM machine) [25]. The Boyer-Moore theorem proving system, Nqthm, has been
used to prove the correctness of a computing system known as the CL] Stack, which
includes a microprocessor design, an assembler and a higher-level language; as well a
proof of correctness for a small operating system kernel has been done [20]. HoL has
been used in the process of hardware, software and protocol verification; as an exam-
ple, it was used to partially verify the commercially-available VIPER microprocessor

2].

1.4 Overview of Thesis

My main project was to define finite sequences of bit strings in the Mizar-C system.
Some basic background to this work is given in Chapter 2, which provides a high-level

overview of the notion of extracting programs from proofs, the Mizar-C system and
the basic bit machine underlying its extracted programs. Appendix A provides greater
detail into the realizability interpretation used to produce programs from proofs in
Mizar-C, while Appendix B provides a full description of the inference rules of the
system. Chapter 3 provides some intuition into the process that was undertaken in
defining the finite sequences. This chapter provides the motivation for the work that
was done in Mizar-C to facilitate the definition, and the remaining chapters outline
this work. Chapter 4 describes my implementation of the new inference rules that
were required to begin the definition of new types in Mizar-C. Chapter 5 outlines
the proof of an iterator function that is used in the definition. The formal delinition
of finite sequences is then presented in Chapter 6, along with a discussion of the
theory that was proven to support the definition. Finally, a general discussion of the
feasibility of the Mizar-C system as a programming tool is given.

Chapter 2

Background

2.1 Interpreting Proofs as Programs

The goal of the Mizar-C project is to examine the use of constructive proofs of pro-
gram specifications as a programming methodology. Given a program specification. a
constructive proof of the existence of an object meeting the specification is performed.
from which the program can be extracted. For example the formula

Vz 3y st Post[x,v]

can be read as a specification for a program which, for a given x, finds a y for which
some property Post[x,y] is true. Mizar-C extracts the program from the constructive
prool using a realizability interpretation, which relates logical connectives to compu-
tation.

In order to interpret proofs as programs, there must be a relationship between
proof constructs and programming constructs. The following are some examples of
general analogies that can be made between proof steps and program steps.

Proofs Programs

V intro: function declaration:
let
e £(int x){

thus Plz]

Va P[] J
V elim: function application:
VP[]
RCH He)

b

Universal introduction can be viewed as introducing a function, and eliminating
the universal variable is analogous to applying the function to the argument.

d intro: results:
£O{
Pl6 +g(2)]
dr Plzx]

return 6+g(2);

}

3 elim: assignment:
3(1: P[ilf]
cunsider t st Pt]

t = f£Q);

Existential introduction can be viewed as creating a macro that uses global argu-
ments 1o compute a specific value, and the existential elimination can be viewed as
assigning the value computed by the macro to a particular variable.

= intro: use a module:
assume M #include M
thus Q ’

*—EQ— module Q

= elim: linking/loading:

/l/],i@:i(l 1d Q.0 -0 Q -1M

One way to view implication introduction is as follows: given a set of facts M (o
module), one can use them to produce @ (another module). Implication elimination
can be then seen as using an existing module to create another module.

V intro: case analysis:
PR switch(?) {
Q= [é case P: R

—_—_—[‘VQ-—?R— }case Q: R

Vv elim: case execution:

PvQ@Q,P= R, Q=R

execute above code

R

These two rules relate to a decision precedure. The first creates the code to per-
form the decision, while the second would actually execute the procedure to produce
the desired result.

induction: recursion:
let x int f(int x) {
assume JThyp: .
Vy.y <z = Ply] oo f(x-1)
£(x-3)
thus P[z] return value of f(x)
Vz P[z] }

An inductive proof results in a recursive function that can use the values from
the recursive calls to compute the desired output. The structure of the proof would
determine the base case and the recursive calls to be made.

2.2 The Mizar-C System

The Mizar-C system [29] provides an environment for doing natural deduction proofs,
where code can be extracted from the constructive parts of the proof. Mizar-C im-
plements a classical, limited second-order logic, and the language for the logic is
related to that of the M'zar-MSE language [14]. The proof-checking environment
is implemented using the Synthesizer Generator [24], which provides an interactive
syntax-directed proof editing environment. Lisp is used as the language for the real-
izations that make up the extracted programs.

The idea of realizability was first proposed by Kleene [15] as a method for making
the constructive content of arithmetical sentences explicit. The Curry-Howard iso-
morphism [4], or “propositions-as-types” principle, provided a means for interpreting

~1

constructive logic and extracting its computational content as typed lambda caleulus
expressions. The realizability interpretation of Mizar-C, called sparse realizability,
is based upon the Curry-Howard isomorphism, although sparse realizability destroys
the isomorphism since it is no longer possible to convert programs back into their
corresponding proofs.

Under a full realizability interpretation, every logical formula has an associated
computation called its realization. However, not every realization has actual compu-
tational content. Some realizations have no inputs and are thus simply constants, or
possibly expressions that require evaluation in order to produce the constant. Under
sparse realizability, realizations corresponding to the Curry-Howard isomorphism are
generated only for those formulae that have computational content. This sparse ro-
alization of formulae results in generated code that in a sensce is optimized, sinee it
eliminates the expressions, and hence the need to evaluate these expresstons, that do
not contribute to the overall computation.

The realizations that make up the sparse realizability interpretation are given in
Appendix A. For other work exploring methods of optimizing extracted programs see

[16] [1] [26].

In this thesis, the following conventions are nused when presenting examples of

statements and proofs done in Mizar-C:

e The type style for x being Tx holds P[x] will be used when writing examples of

Mizar-C proof text.

o The type style (LAMBDA () x) will be used in the examples of realizations of

Mizar-C proof text.

2.3 The Bit Machine

The realizability interpretation alone is not sufficient to be able to produce compta-
tion in Mizar-C. Without any other extensions, the programs extracted from Mizar-(,
using the realizations are simply functions — there are no objects to apply them to.
The system has thus been extended with a basic data type of bit strings; these bit
strings are the objects upon which all computation takes place. The axioms, along
with an implementation of the basic primitives of this simple bit machine have been
added to the Mizar-C system. The idea was to add the minimal set, of primitives such
that all other desired functionality could be derived from them within the Mizar-(:
system.

This basic data type consists of bit strings called Bits, which arc essentially strings
of 0 and 1 bits.

given Bits being [Any J;

{<<R-NONE:R-NONE>> }

given 0, 1, nil being Bits rby bit-0, bit-1, bit-nil;
{<<bit-0:bit-0>> <<bit-1:bit-1>> <<bit-nil:bit-nil>> }

Two length predicates are provided, one for when two bit strings are of equal
length, and one for when one bit string is shorter, or less than, in length than another

bit string.

given bits_len_It being [Bits, Bits J;
{<<R-NONE:R-NONE>> }
given bits_len_eq being [Bits, Bits |;
{<<R-NONE:R~NONE>> }

Two primitive operations, cat and split, are provided. The cat function concate-
nates two bit strings together, while the split function divides a bit string into two
picces modulo another bit string. For example:

(cat < 11, 00>) = 1100
(split < 1101011, 1110 >) = < 1101, 011 >

niven cat being (<Bits, Bits > => Bits) rby bit-cat;
{<<bit-cat:bit-cat>> }
BA_cat: (for x, y being Bits holds
(ex z being Bits st (z = (cat <x, y >)))) rby bits-ba-cat;
{<<bits-ba-cat:bits-ba-cat>>}
given split heing (<Bits, Bits > -> <Bits, Bits >) rby bit-split;
{<<bit-split:bit-split>> }
BA_split: (for x, y being Bits holds
(ex z1, z2 being Bits st ((split <x, y >) = <z1, 22 >))) rby Lits-ba-split;
{<<bits-ba-split:bits-ba-split>>}
BA_split_1: (for x being Bits holds (((split <1, x >) = <1, nil >) o1
((split <1, x >) = <nil, 1 >))) rby bits-ba-split-1;
{<<bits-ba-split-1 :bits-ba-split-1>>}

A decider function is provided that determines if a given bit string is nil or not.

BA_nil_or_not: (for x being Bits holds
((x = nil) or (x <> nil)) rby bits-ba-nil-or-not;
{<<bits-ba-nil-or-not:bits-ba-nil-or-not>>}

A function that decides if a given bit (i.e. a bit string of length equal to)isa0
or a | is provided.

BA_len_eq_1: (for x being Bits holds
(bitslen_eq[1, x] iff ((x = 1) or (x = 0)))) rby bits-ba-len-eq-1;
{<<bits-ba-len-eq 1:bits-ba-len-eq-1>>}

iv

A function that, given two bit strings x and y such that r > y. determines if + > u
or r = y is provided.

BA len_notlt: (for x, y being Bits holds ((not bits_len_lt[x, y |) implics
(bitslen Ity, x] or bits_len_eq[x, y]))) rby bits-ba-len-not-It;
{<<bits-ba-len-not-1lt:bits-ba-len-not-1t>>}

A well-founded induction rule, based upon the well-founded partial order bits_len_lt
for the Bits data type was implemented. Several other axioms are provided (see Ap-
pendix C for complete listing of axioms). The remaining axioms do not have any
computation associated with them, and so did not require that any nplementation
be written for them.

Combined with funvtion abstraction, these primitives form a basis for all other
computations with Bits. For example, one can define the bitwise logical operators,
bit indexing (see Section 3.1), etc.

Chapter 3

Basic Intuition

Our goal at this point was to bootstrap from the basic Bits machine to one that was
more useful. Simply being able to handle sequences of Bits would be an improvement,
as it would let us pass variable length argument lists to functions. Complex compu-
tations cannot easily be understood without some structure on the data, and no one
wants to have to specify and prove everything at the bit level. One of the simplest
general structures is a sequence of T, where T " any available type. Once we have
sequences, we can have sequences of sequences, a.lowing the creation of very gencral
structures. In order for these structures to be useful, we must be able to index theni.
Since these sequences can be composed of non-uniform size pieces, we must deal with
the problem of accessing the variable-length components.

To accomplish this, we needed to implement some data structures on top of the
basic Bits data type. Before this could be done, several improvements had to be
made to the Mizar-C system itself. At this moment, there were no inference rules
that would allow new functions to be created. The system had no capabilities for
defining new types and the induction rule would not work for any type other than
Bits. These rules had to be added to the Mizar-C system before any work could be
done on implementing the bit data structures. The work done to implement these
new rules in the Mizar-C system is discussed in Chapter 4. Once the new rules were
in place, we could begin to define new data structures in Mizar-C.

3.1 Extending the Basic Bits Functionality

Since the only functionality at this point was that provided by the primitives of the
basic Bits extension, we first decided to derive some notions that provided a higher-
level view of the Bits data type itself.

For example, the Bits data type has no “natural” notion of indexing into a bit
string to retrieve the individual bits. One function that was built was an indexing
function, based upon the length of a bit string, that would provide random access to
any bit in a bit string. The following proof provided the implementation of the index
furction.

11

/* This proof creates a function (index x i) that
returns the i-th bit of x if there is one.
Otherwise it returns nil. To create this function
using the choice rule, we must prove a statement
of the form:
for x, for i, ex y st IndexProperty[y,x,i] */

now
let x he Bits;
{<<U$R252:U$R2E2>> }
now
let i be Bits;
{<<U$R253:U$R253>> }

/* we know that a bit string can split into two
g P
pieces, modulo another bit string */

(ex x1, x2 being Bits st
((split <x,i>) = <x1, x2>)) by elim[x,iJ(BA_split);
{<<U$R258: (R-APPLY (R-APPLY bits-ba-split U$R252 :tag ’$ELIM2256)
U$R263 :tag *$ELIM2257)>>}
consider x1, x2 being Bits such t'at
x1x2: ((split <x,i>) = <xl, x2>) by direct(_PREVIOUS);
{<<U$R259:U$R258>>}
{<<U$R267: (R-APPLYO (R-FIRST U$R259) 1tag '$EXISTCO0266)>>
<<U$R265: (R-APPLYO
(R-APPLYO (R-SECOND U$R259) :tag ’$EXISTCF262)
:tag *$EXISTND264)>> }
{<<U$R263 :R-NONE>>}

/* x1 is composed of th> iirst i bits of x, x2 the

remaining tits. S°° ., we are indexing from zero,
the i-th bit of x . the first bit of x2. So we
split it off using a bit of length one, Ul. */

(ex y, x3 being Bits st
((split <x2, Ul >) = <y, x3>)) by elim{x2,U1](BA_split);
{<<U$R272: (R-APPLY (R-APPLY bits-ba-split U$R265 :tag ’*$ELIM2270)
U.U1$0 :tag ’$ELIM2271)>>}
consider y, x3 being Bits such that
y: ((split <x2, Ul >) = <y, x3 >) by direct(_LPREVIOUS);
{ :<U$R273:U$R272>>}
{<<U$R281: (R-APPLYO (R-FIRST U$R273) 1tag '$EXISTC0280)>>
<<U$R279:(R-APPLYO (R-APPLYO
(R-SECOND U$R273) :tag ’$EXISTCF276) :tag ’$EXISTNO278)>> }
{<<U$R277 :R-NONE>>}

13

/* y is thus the i-th bit of x =*/

(((split <x,i>) = <x1,x2>) & ((split <x2, Ul >) = <y, x3>))
by conj(y, x1_x2);
{<<U$R282:R-NONE>>}
(ex x3 being Bits st
(((split <x, i>) = <x1,x25) & ((split <x2, Ul >) = <y, x3>))
) by exintro(_.PREVIOUS);
{<<U$R284: {LAMBDA () U$R279) >>}
(ex x2. x3 being Bits st
(((split <x,i>) = <xl,x2>) & ((split <x2, Ul >) =<y, x3>))
) by exintro(_PREVIOUS);
{<<U$R287: (R-LIST (LAMBDA () U$R265) (LAMBDA () U$R284))>>}
(ex x1, x2, x3 being Bits st
(((split <x,i>) =<x1,x2>) & ((split <x2, Ul >) = <y, x3>))
) by exintro(_PREVIOUS);
{<<U$R291:(R-LIST (LAMBDA () U$R267) (LAMBDA () U$R287))>>}
thus (ex y, xI. x2, x3 being Bits st
(((split <x,i>) =<x1,x2>) & ((split <x2, i ») =<y, x3>))
) by exintro(_PREVIOUS);
{<<U$R296: (R-LIST (LAMBDA () U$R281) (LAMBDA () U$R291))>>}
end;
{<<U$R297: (LAMBDA (U$R253)
(R-LIST (LAMBDA () U$R281) (LAMBDA () U$R291)))>>}

(for i being Bits holds
(ex y, x1, x2, x3 being Bits st
(((split <x,i>) = <x1, x2>) & ((split <x2, Ul >) = <y, x3>))
)) by direct(.PREVIOUS);
{<<U$R303:U$R297>>}

/* the function being created returns y. Since it will
take two arguments, choice must be applied twice. */

thus (ex f being (Bits -> Bits) st
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x, i>) = <x1, x2>) & ((split <x2, U1 >) = <(fi), x3>))
))) by choice(_PREVIOUS);
{<<U$R310: (R-LIST (LAMBDA () (LAMBDZ ($C309)
(R-APPLYO (R-FIBRST (R-APPLY U$R303 $01309)))))
(LAMBDA () (LAMBDA ($C309)
(R-APPLYO (R-SECOND (R-APPLY U$R303 $C20%))))))>>}
end;
{<<U$R311: (LAMBDA (U$R252) (R-LIST

(LAMBDA () (LAMBDA ($C309) (R-APPLYO (R-FIRST (R-APPLY U$R303 $C309)))))
(LAMBDA () (LAMBDA /$C309) (R-APPLYO (R-SECOND (R-APPLY U$R303 $C309))))
)))>>}
(for x being Bits holds
(ex f being (Bits -> Bits) st
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x,1>) = <xI, x2>) & ((split <x2, U1 >) = <([i), x3>))
)))) by direct(_PREVIOUS);
{<<U$R318:U$R311>>}
(ex f being (Bits -> (Bits ~> Bits)) st
(for x being Bits holds
(for i being Bits holds
(ex x1, x2, x3 heing Bits st
(((split <x,i>) = <x1, x2>) & ((split <x2, U1 >) = <((fx)i). x3>)
))))) by choice(_PREVIOUS);
{<<U$R326: (R-LIST (LAMBDA () (LAMBDA ($C325)
(R-APPLYO (R-FIRST (R-APPLY U$R318 $C325)))))
(LAMBDA () (LAMBDA ($C . -3) (R-APPLYO (R-SECOND (R-APPLY U$R318 $C325))N
)))>>}

/* give the function the rame index */

consider index being (Bits -> (Bits -> Bits)) such that index:
(for x being Bits holds
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x,i>) = <x1, x2>) & ((split <x2, Ul >) = <((index x) i), x3>))

))) by direct(_.PREVIOUS);
{<<U$R327:U$R326>>}
{<<U.index$0: (R-APPLY0O (R-FIRST U$R327) :tag ’$EXISTC0334)>> }
{<<U.index$P: (R-APPLYO (R-SECOND U$R327) :tag '$EXISTCF333)>>}

The function created, (index x i) , is a function that returns the i-th hit of x.
Many other properties of the Bits data type were also proven.

3.2 Attempting to Define New Types

The next problem was how to define new types (i.c. structures) in Mizar-(, since we
do not have the ability to give recursive structural definitions. The lirst new Lype that
we defined was that of unary naturals, called unats, which we defined as bit strings
where every bit is a 0. We can do this definition directly as:

unat{x] = for y being Bits holds bits_len_lt[y, x] implies (index x y) = 0;

If we had the capability, we could have recursively defined the propertics poussessed
by unats as:

unatfnil] & for x being Bits holds unat[x] implies unat[(cat <0, x >)]

Note that recursive definition of unatfx] is not required, since by using the uni-
versal quantifier in the direct definition, we can iterate the test for a 0-bit over each
bit position (after adjusting for the length). Once we have the direct definition, we
can prove ihe recursive properties of unats withi. the Mizar-C system.

Our next step was to try and generalize this idea to define other recursive struc-
tures. For example, to define a sequence of 2-bit chunks (instead of just 1-bit chunks).
we could first derive a 2-index function as

for x, i being Bits holds
(2-index x i) = (cat <(index x (cat < i,i >)), (index x (cat < i,(cat <i,0>)>))>)

This function essentially computes the indices of the bits that make up the desired
2-bit chunk. The index function is then used with these indices to obtain the desired
bits, which are then be concatenated together and returned. Using this 2-index func-
tion, we can now define recursive structures made up of 2-bit chunks. For example, a
structure called an OddArray, consisting of odd value 2-bit entries, could be defined

as!:

OddArray[x] = for i being Bits holds
(2-index x i) = (cat <0,1>) or (2-index x i) = (cat <1,1>);

In general, we could derive a function dup where

(dupxi)= z-x---2x
’ S—————

(length i) times

This would allow us to index into arrays of elements of arbitrary {yet fixed) size
without having to create a new index function for each one. Instead, the following
function would allow us to index into any structure composed of k-bit chunks.

(k-index x i k) = (first (split< (second (split <x, (dup k i)>)), (dup 0 k)>))

This function first computes a (k = ¢)-length bit string using dup. It then splits x
with this string to create a pair of bit strings <zl, z2>, where zI is composed of the
first (& *7) elements of x, and z2 is composed of the remaining elements of x. The
i-th element that we want is now the first element of the bit string z2. Using dup to
compute a bit string of length k, 22 is then split with this k-length string to create
another pair of bit strings, of which the first one is the desired i-th element.

The dup function can construct its 1csult relatively quickly. Thus splitting off the
proper (k * i)-size chunk from the front of the structure to get immediately at the
desired location is faster than removing the k-bit chunks one at a time.

However, suppose that the chunks that make up the structure are not of a fixed
size. The above solution will no longer provide a means for indexing into the structure.
This is the problem that we face in trying to define finite sequences of Bits. In order
to tell where the first chunk (or bit string) in the sequence ends, we need a prefix code,

and this is provided by the use of Packets to encode a bit string (see Section 6.1 for
details). In the Packet definition, the unary naturals arc used as the prefix code, to
indicate the length of the bit string being encoded. This method was chosen hecanse
it was simple: it is easy to delimit a string of all 0's using a 1-bit, and this makes it
simple to retrieve the prefix of the Packet.

A fixed length sequence of Packets is thus our finite sequence. In order to deline
the finite sequences directly, we still necd some method of actually removing i packets
from a finite sequence. Also, we must be able to state that each chunk indexcd is
indeed a bona-fide Packet. We must provide a method that will allow us to move
iteratively through the finite sequence structure, applying the packet-test to cach
element, similar to how the universal quantifier was used to apply the 0-bit test
to each bit position in the unary naturals. We obtain this method by proving the
existence of an iterator function, which will serve as an all-purpose indexing function.
The proof of the iterator function is outlined in Chapter 5. The formal definition of
the finite sequences using the iterator function is discussed in Chapter 6.

16

Chapter 4

New Inference Rules

As previously stated, my main project in Mizar-C was to define finite sequences of
bits. Before work on this could be started, several inference rules had to be added
to Mizar-C. In its current state, there were no inference rules that would allow new
functions to be created. All functions were disguised in the form

Vo Jy...

and so the functions could not he named. The choice and guarded choice rules were
implemented to provide this naming ability. The definition inference rule was adde:

to allow the abbreviation of long formulae and the definition of new types (i.e. unary
predicates). The current induction rule would not work for any type other than Bits.
so a proper well-founded induction rule had to be implemented. Once these rules
were in place, work could begin on defining new types in the system. The following
scctions outline the manner in which these inference rules were implemented.

4.1 The Choice Rule

The choice rule allows the introduction of a function from a proof of its specification.
Its proper form should take a statement of existence, plus one of uniqueness:

Jor x being Tz holds (ex y being Ty st Pfr,y]),

Jor x being Tx holds (for y, z being Ty holds Pfz,y] & Pfr,z] implies y = z)
ex fbeing Tx — Ty st (for z being Tz holds [z, (f z)])

Currently realizations in Mizar-C are deterministic, so the current implementation of
this rule does not require the proof of uniqueness since the same y is produced by the
realization regardless of uniqueness. However, future versions of Mizar-C must add a
proof of uniqueness requirement to this rule and the guarded choice rule (Section 4.2),
if the underlying implementation should be changed.

There are two forms of realization for the choice rule. If the formula P[z,y] has
content, then the realization is a list of two items:

17

I8

1. the realization o the newly introduced function f, which when applied to a given
x will return the corresponding y-.

2. the realization of a function that, when applied to a given x. returns the real-
ization of the formula Pfz, (f z)].

If the formula Pfr,y] does not have content, then the realization is simply that of the
new function f.

now
let x be Any;
{<<choice$R3:choice$R3>> }

(x = x) by eqintro();
{<<choice$R4:R-NONE>>}
thus (ex y being Any st (x = y)) by exintro(_PREVIOUS):
{<<choice$R6: (LAMBDA () choice$R3) >}
end;
{<<choice$R7: (LAMBDA (choice$R3) (LAMBDA () choice$R3))>>}

(for x being Any holds (ex y being Any st (x = y))) by direct(_PREVIOUS);
{<<choice$R10:choice$R7>>}

lex f being (Any -> Any) st (for x being Auy holds (x = (I x)))
by choice(_PREVIOUS);

{<<choice$R14: (LAMBDA () (LAMBDA ($Cc13)
(R-APPLYO (R-APPLY choice$R10 $C13))))>>)

Figure 1: Example of Choice Rule without Content

Figure 1 illustrates the creation of an identity function. In Figure I, since the body
of the existential expression has no content, the theorem is realized by a function that
will compute the y that is equal to x, for a given x.

Figure 2 is a contrived example in which the postcondition of the function has
content. In Figure 2, the body of the expression has content, so the result, is a list, of
the two realizations as described above.

now
Iet x be Any; _
{<<choice$R43:choice$R43>> }

(x = x) by eqintro();
{<<choice$R44 :R-NONE>>}
((x = x)or (x # x)) by disjintro(_LPREVIOUS);
{<<choice$R45: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
thus (ex y being Any st ((x = y) or (x #£ y))) by exintro(_PREVIOUS);
{<<choice$R47: (R-LIST (LAMBDA () choice$R43)
(LAMBDA () choice$R45))>>}
end;
{<<choice$R48:(LAMBDA (choice$R43) (R-LIST
(LAMBDA () choice$R43) (LAMBDA () choice$R45)))>>}

(for x being Any holds (ex y heing Any st ((x = y)or (x # y))))
by direct(_.PREVIOUS);
{<<choice$R51:choice$R48>>}

(ex f being (Any -> Any) si (for x being Any holds
((x=(fx))or(x# (fx))))) by choice(_PREVIOUS);
{<<choice$R55: (R-LIST
(LAMBDA () (LAMBDA ($C54) (R-APPLYO
(R-FIRST (R-APPLY choice$R51 $C54)))))
(LAMBDA () (LAMBDA ($C54) (R-APPLYO
(R-SECOND (R-APPLY choice$R51 $C54))))))>>}

Figure 2: Example of Choice Rule with Content

4.2 Guarded Choice

The guarded choice rule allows the introduction of a partial function.

for « being Tz holds Guard[x] implies (ex y being Ty st Plz,y])
ex f being Tx — Ty st (for z being Tx holds Guard[z] implies P[z, (f z)])

Note that the Guardfz] defines the actual domain of the function f, yet the function
produced by this guarded choice rule is said to be defined on the entire domain type
Tz. The function freally has type Guard[z] — Ty, where Guard[z] defines a subset of
the type Taz. If the Guard[z] has no content, then this rule is safe within the system,
because the guard cannot in any way be required in the computation of the function f.
Thus it is safe to consider f without the guard being true, since we actually have the
function feven without the guard. In order to be able to reason about the application
of fto z, we would have to perform implication elimination on the formula, which
requires that Guardfz] be true. This makes it impossible to use the function outside

19

of the safe context, since we cannot introduce an application without referring to
a positive occurrence of it (see Appendix B.1.3 for definition of positively oceuring
terms).

Trouble arises when the Guard[z] has content. As mentioned above, it is now
possible that the guard is required as part of the computation of f. which means that
the function f actually requires this guard as an ar gument. Without the guard, not
only do we not actually kave the function f, but it is not even of the type

Ta — Ty
Instead, it has the type
fTguarrl - (T‘l‘ - Ty)

Since we cannot even state partial functions of this latter type in Nizar-C', quarded
choice is only allowed on formulac where the guard has no content.

When we allow content-free definitions to be used as types, then we will be able
to correctly type the function f, that is:

ez f being Guard — Ty st (for & being Guard holds Ple, (f)]}

However, we still must prevent definitions with content from being used, sinee the
same problem occurs as before. In the current version of Mizar-(. only predicates
defined on the type Any can be used as types.

The realization for expressions created through the gnarded choice rule are the
same as that for the choice rule.

20

now
let x be Any;
{<<gchoice$R112:gchoice$R112>> }
assume Plx |;
{<<gchoice$R92:gchoice$RI2>>}
(x = x) by eqgintro();
{<<gchoice$R72:R-NONE>>}
((x = x) or (x # x)) by disjintro(_.PREVIOUS);
{<<gchoice$R73: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
thus (ex y being Any st ((x = y) or (x # y))) by exintro(_PREVIOUS);
{<<gchoice$R114: (R-LIST (LAMBDA () gchoice$R112)
(LAMBDA () gchoice$R73))>>}
end;
{<<gchoice$R115: (LAMBDA (gchoice$R112) (R-LIST
(LAMBDA () gchoice$R112) (LAMBDA () gchoice$R73)))>>}

(for x being Any holds (P[x] implies
(ex y being Any st ((x = y) or (x # y))))) by direct(_PREVIOUS);
{<<gchoice$R125:gchoice$R115>>}

(ex f heing (Any -=> Any) st (for x being Any holds
(P[x] implies ((x = (fx)) or (x # (fx)))))) by gchoice(.PREVIOUS);
{<<gchoice$R159: (R-LIST
(LAMBDA () (LAMBDA ($C158) (R-APPLYO
(R-FIRST (R-APPLY gchoice$R125 $C158)))))
(LAMBDA () (LAMBDA ($C158) (R-APPLYO
(R-SECOND (R-APPLY gchoice$R125 $C158))))))>>}

Figure 3: IExample of Guarded Choice Rule with Content

4.3 Definitions

The define construct in Mizar-C permits the definition of new predicates in the fol-
lowing manner:

label : define Predicate Name of variable list by Formula ;

where variable list is of the following form:
variable names being variable type, ..., variable names being variable type

The definition inference rule allows definitions to be expanded or contracted, accord-
mg to their specification. Definitions can be equated to macros, in that they take
parameters and deliver a formula instantiated with the given parameters. For exam-
ple, Figure 4 defines what it means for a binary relation to be one-to-one. If R is a

one-to-one: define OnetoOne of Relation being [Any, Any | by
(for x, y1, y2 being Any holds
Relation[x,y1] & Relation[x,y2] implies y1 = y2) &
(for x1, x2, y being Any holds
Relation{x1,y] & Relation[x2,y] implies xI = x2)

Figure 4: Definition of One-to-One Binary Relation

2-place predicate, then one-to-one[R] means that R is one to one.

The type of parameters in a definition can be dependent upon the type of other
parameters, with the restriction that the dependent type be preceded in the definition
by the parameter upon which it depends.

Being able to contract definitions makes the proofs ecasier to read, and reduces the
amount of writing to be done by the user. One problem is that the definitions are
in a sense opaque to the system; since the system does not automatically expand all
definitions, it is not possible f - it to determine whether or not the closed predicate
has computational content just by looking at it. To overcome this, Mizar-C internally
marks definitions as to their content.

4.4 Induction -

Induction is allowed on any type using any well-founded partial order for that Lype.
A well-founded partial order is a binary relation that produces no infinite descending
chains. A binary relation 1s a partial order if it is irreflexive and transitive, whicl
guarantees that there are 20 loops. However, being a partial order is not suflicient to
guarantee that recursion can be performed over the ordering, since it alone does not
prevent infinite chains.

In order to prevent an infinite descending chain, we not only need that there are
no loops, but that for every element in the type, all sequences induced by the ordering
that start at the element lead to some minimal clement. We define minimal clement
as an element of the type for which no element is “less than” it. You can also think
of “less than” as “simpler than” in terms of the construction of the elements. I the
case of the recursion, these minimal elements can bhe seen as Lhe stopping cases (or
as the base (ases of the induction).

In Mizar-C, the form of the induction rule is that of strong induction, as follows:

WellFounded[TYPE, LT],
for z being TYPE holds (for y being TYPE holds LT[y,z] implics Ply]) iuplics P[z]
Jor z being TYPE holds P[z]

For this definition of induction to work, we nced at least one built-in type for whicl
induction holds. In Mizar-C, we know that the order bits_len It is well-founded over
the built-in type Bits (Section 2.3). In order to do induction over a type using a given

23

ordering, a proof that the order is well-founded must be provided. The definitions
and theorems stated in Figure 5 are provided in the Bits extension to Mizar-C to
facilitate this.

WellFoundedDef: given WellFounded of S being [Any], LT heing [S,S];
Welll'oundedBits: WellFounded|[Bits, bits_len_It];
WellFoundedTheorem:
for I being [Any], It being [1,I] holds WellFounded[l,It] implies
(for S being [Any], f being S — I, new-It being [S,S] holds
(for 51, s2 being S holds (new-It[s1,s2] iff It[(f s1), (f s2)])) implies
WellFounded([S, new-It]);

Figure 5: Well-Founded Induction

The WellFounded Theorem states that, given a well-founded order It; on some
type Ti, for any other type Ty and order lt, if there exists a total function that maps
clements from 73 to 7} in such a way that the ordering of elements under It, is the
same as the ordering of the mapped elements under 1;, then It, is also a well-founded
ordering. Since we have one ordering for which it is true, the WellFoundedBits, we
can prove other well-founded orderings by finding a function that maps between the
new type and the Bits type.

hroter 5

iterator Function

5.1 Motivation

In Mizar-C, we want to be able to define recursive structures, however if we allow
recursive definitions we have to be very careful to check that the recursion used in
the definition is well-founded. Otherwise it is possible to write definitions that will
lead to contradictions. For exampie, from the following definition:

define P of x being Any by (not ?[x]);
it is possible to prove
for x being Any holds (P[x] iff not P{x]);

In systems such as Hehner’s [11], where you must explicitly iinplement the defini
tions, this is not a real problem since it is net possible to imiplement such non-sensical
definitions. In Mizar-C however, where computation is extracted from the proofs (i.c.
it is implicit), allowing such definitions can lead to extractions with dangerous be-
haviour. One solution to this problem is to require that, within a definition, all
references to the type being defined must be made on objects that are “smaller” than
the current object. It seems to be sufficient that this ordering on the objects he o
pariial order with a bottom element. Thus we could allow recursive definitions as fong
as a proof of the partial order was supplied. Another solution is to define recursive
structures directly, and give an iterative test for correctness of construction. Fhis can
be seen as definition by implementation, which will prevent non-existent types from
being defined. In order to provide an iterative test for any form of recursive structure,
we need the iterator function.

The iterator is a function that takes a function f, composes [with itsell n times,
and applies the composition to a supplied argument x. Thus the three arguments 1o
the iterator are:

» f- the function to compose.

24

® 1 - the number of times to apply the function to itself.
e x - the argument to apply the composition to.

The iterator function enables us to define recursive structures (objects) without the
use of recursion in the definition; instead the structure is defined iteratively. The
iterator function provides a mechanism for moving through the structure of the object,
allowing us to describe what the structure looks like.

As discussed in Chapter 3, this idea of having an all-purpose indexing function
occured when we were deciding how to define unary naturals in Mizar-C. The type
unat was formally defined on the Bits date, type as:

unat_def: define unat of x being Bits by
(for y being Bits holds bits_len_Ity, x] implies (index x y) = 0);

Figure 6: Definition of Unary Naturals

In other words, a unat is defined as a bit string of all 0’s. At this point we
saw that although unats are recursive objects, that is a unat is either nil or a unat
concatenated with 0, it was nol necessary for us to use recursion in order to define
them. In the definition, the universally quantified variable acts as an index into the
unat structure; thus the universal quantifier provides the mechanism for iterating
over the structure. This works fine for unats where we are defining them one bit at a
time. The problem arises in more complicated structures, where the elements of the
structure can be sequences of arbitrary numbers of bits. We wanted a general method
for using the universal quantifier to index recursive structures. Generally, recursive
structures have at least two functions defined for them: one that returns the first
clement, and one that returns what remains after the first element is removed. Thus
the iterator function provides a general method for indexing into a recursive structure
using unats as the index.

Once we have the direct definition, we can then prove the recursive properties
of the defined structure. To prove that an object meets the definition we will first
have to construct the object. Often a particular recursive structure will have more
than one possible method of construction, with each construction method providing
a different recursive property. By defini:s«r the object directly we are not prescribing
any particular construction mechanism. Instead we can prove that different methods
of construction create objects of the same type, since what matters is that once
constructed, these objects have a structure that conforms with the direct definition
using the iterative test for construction correctness. This gives us extensional equality
between the objects.

Because of this any theorems that are proven for the defined structure can be used
by any of the objects that meet the definition, regardless of how they were constructed.
This will allow us to dismantle objects in a different manner than they were originally

26

constructed. Thus the way we access the data structure can be tailored to provide
the most efficient algorithm for a given task. The Bits data type is an example of
this (Section 2.3). It is possible to dismantle Bits one bit at a time, by splitting a
bit string x with the bit string 1 or 0. It is also possible to perform a divide-and-
conquer strategy on x, by splitting it with some arbitrary bit string v whose length is
greater than 1. Depending upon the task, one method may provide a more eflicient
implementation than the other.

5.2 Defining the Iterator

The following is the theorem proving the existence of the iterator function in Mizar-(n

Tor Domain being [Any | holds
ex J being (Domain — Domain) — (Bits — (Demain — Domain)) st
for f being (Domain — Domain) holds Total{Domain.f] implies
for n being Bits holds
for x being Domain holds ((J f (U.length nil) x) = x &
(J £ (U.length (cat <n, 0>)) x) = (f (J { (U.length n) x)) j

Figure 7: Iterator Theorem

The notation Tor is a non-constructive universal quantifier, and allows for guan-
tification over types in Mizar-C. The first argument £ must be a function having
the same domain and range, since it is applied to its own output. For this same
reason the function must be total, and so the theorem is guarded by the definition
Total[Domain, f].

The second argument 1 is the number of times that the function [is to be
composed with itself. In the Mizar-C system, the base type is Bits, which are bit
strings of 0’s and 1’s. All other defined types must be based upon this type. For the
iterator, we really need n to be of type unat (as defined in Figure 6). One problem
was that, at this point in the evolution of Mizar-C, it was not, possible to use types
that were introduced through definitions to type term expressions. This prevented ns
from defining the type of the iterator as

(Domain — Dornain) — (unat — (Domain — Domnain))

One solution would have been to guard the entire expression with an implication
whose antecedent is unat[n], but instead we chose to define the iterator on Lhe length
of n. A function (length n) was proven for Bits that returns the unat that represents
length of the given bit string n. Thus the iterator is actually defined on unats. Since
unats represent the length of a bit string, the expression (length (cat <n, 0>)) gives
us the successor of the unat represenied by n.

5.3 Proving the Iterator
We had several goals in trying te prove the iterator function:

1. We wanted to see what it would be like to do such a large proof in the Mizar-C
system.

2. We wanted the iterator function in order to do recursive definitions without the
nced for recursion.

Up until this point, most of the proofs that had been done in Mizar-C were fairly
small. Proving and extracting ‘he iterator function would test most of the basic
premises of the system. As hwwsed, attempting to do the proof pointed out some
errors that existed in Mizar-C; as well it helped show us some of the things that were
incomplete or needed to be added to the system. For example, we needed to add the
choice and guarded choice rules in order to create the function at all. Some of the
problems of using definitions as types was brought forward, as well we were forced to
deal with the problem of how te implement dependent types.

N
~I

28

5.3.1 Outline of the Proof

An iterator function was defined as having the following propertics:

IterPropDef:
define IterProp of Domain being [Any],
I being ((Domain — Domain) — (Bits — (Domain — Domain))) by

(for f being (Domain — Domain) holds Total[Domain, {] implies

(for n being Bits holds (for x being Domain holds
(((((I'f) (U.length nil)) x) = x) &
(') (Ulength (cat <n, 0°>))) x) = (T (1) (ILlength 1)) x))))

)));

Figure 8 Iterator Definition

We started out by proving the existence of a function, which I will call the slow
iterator which has the iterative properties. The only way o infroduce a new lunetion
in Mizar-C is to use the choice or guarded choice inference rules, so usttiz induction
over n we proved:

Tor Domain being [Any] holds
for f being (Domain — Domain) holds Total[Domain,f] implies
(for n being Bits holds (ex I being (Bits — (Domain — Domain)) st
((for x being Domain holds
(I (U.length nil) x) = x) &
(for j being Bits holds
(bitsden_It[j, n] implies
(for x being Domain holds
(I (U.length (cat <j, 0>)) x) = (f (I (U.length j) x)))) &
(not bits_len_It[j, n] implies
(for x being Domain holds (I (U.length (cat <j, 0>)) x) = x))
)

Figure 9: Initial Inductive Proof

Mizar-C’s induction forces a least fixed point style; that is, for cach n there is an
iterator function that works for all 1n < 7. From this theorem we nscd choiee Lo
obtain:

(ex C being (Bits — (Bits — (Domain — Domain))) st
(for n being Bits holds ((for x being Domain holds
((((C n) (Ulength nil)) x) = x)) &
(for j being Bits holds

((bitsden_It[j, n | implies
(for x being Domain holds
((((C'n) (Ulength (cat <j, 0>))) x) = (f (((Cn) (U.length j)) x))))) &
((not bitslen_lt[j, n]) implies
(for x being Domain holds
((((C n) (Ulength (cat <j, 0 >))) x) = x)))
1))

The result is a proof of the existence of a function (C n). but this is not quite
what we want as the function itself is dependent upon the value n. We next proved
the existence of a function I that is equal to the function (€' (cat <n,0>)), for all n.
essentially renaming the function.

(ex I being (Bits — (Domain — Domain)) st
(for m being Bits holds
(for x being Domain holds

(((Im)x)={(((C(cat <m. 0 >)) (Ulength m)) x)))))

The iterator properties were then proven for this new function I and by performing
choice one more time we get:

Tor Domain being [Any | holds
(ex I being ((Domain — Domain) — (Bits — (Domain — Domain))) st
(for f being (Domain — Domain) holds
Total[Domain,f] implies
(for m being Bits holds (for x being Domain holds
(((((1f) (Ulength nil))) = x) &
((((1 1) (U.length (cat <m, 0>))) x) = (f(((1 1) (Udength m)) x))))))))))

This function I became the slow iterator. Because of the way that the proof of
this P action was done it performs some unnecessary work, mainly extra case analysis.
that results in a less efficient implementation of the iterator than is possible. When
executing 1, since [was created by proving it to be equal to (C (cat <n,0>)), the first
thing that is done is that (C'(cat <n,0>)) is built. This results in a very large lambda
expression being created. Also the manner in which the proof of (C (cat <n,0>))
was done causes some extra comparisons for case selection to be done when executing
(C' (cat <n,0>)). These comparisons are unnecessary from the standpoint of the
run-time execution, since the actual execution path never varies when running the
function. Although all the cases are needed (they are all at some point executed), the
order that the cases are chosen is not affected by the inputs. Because of these extra
comparisons the slow iterator has quadratic execution when creating the composition
of f, and this composition is a very large lambda expression when extracted.

We know that there is an implementation of the iterator function which would
build the composition of f in linear time. Of course, the run-time execution of
applying the composition of f to x is determined by the run-time of f in both the
slow and fast iterators. We used the fact of the existence of the slow iterator to

30

prove the existence of another function, called the fast iterator, which has the same
properties as the slow iterator, but creates the composition in a linear time. Using
what we know about how proofs by induction are realized in the Mizar-(* system, we
proved the existence of the fast iterator in a manner that guaranteed its lincar time
execution. The fast iterator was proven using the following induction:

(for n being Bits holds
(for m being Bits holds LT[m,n] implies
(for x being Domain holds
(ex z being Domain st (z = (((If) (U.length m)) x))))
) implies
(for x being Domain holds
(ex z being Domain st (z = (((I f) (U.length n)) x)))))

From this we can conclude the desired theorem:

Tor Domain being [Any] holds
(for f being (Domain - Domain) holds Total[Domain,f] implies
(for n being Bits holds
(for x being Domain holds
(ex z being Domain st (z = (((1{) (U.length n)) x))))))

Two applications of choice, and one of guarded choice create the fast iterator s
stated in Figure 7, which is linear in n due to the manner in which the induction was
done over n (details of inductive proof given in Section 5.5).

31
5.4 Other Properties of the Iterator

Several other properties of the iterator function were needed when using the iterator
in the definition of finite sequences. The need for the properties given in the following
definitions came to light when attempting to prove properties of the finite sequences.

IterDistDef: define IterDist of Domain being [Any],
I'being ((Domain -> Domain)~> (Bits > (Domain -> Domain))) by
(for [being (Domain -> Domain) holds Total{Domain,f] implies
(for n being Bits holds
(for x being Domain holds

((((11) (Udength n)) (£ x))=(({1 £} (Ulength n)) x)))))));

IterCompDef: define IterComp of Domain being [Any],
I'being ((Domain ~> Domain)-> (Bits -> (Domain -> Domain))) by
(fer [being (Domain -> Domain) holds Total[Domain,f] implies
(for n heing Bits holds (for m being Bits holds
(for x being Domain holds

((((1f) (U.dength n)) (((1f) (U.length m)) x))= (((I1f) (U.lengih (cat <n. m>))) x)))))):

Figure 10: Other lierator Property Definitions

It was then proven that any function for which the IterPropDef (as given in
Figure 8) is true also has the above properties.

thl: (for Domain being [Any | holds
(for J being ((Domain -> Domain)-> (Bits -> (Domain ~> Domain))) holds
(IterProp[Domain, JJ implies IterDist[Domain, J])))

th2: (for Domain being [Any | holds
(for J being ((Domain ~> Domain)-> (Bits -> (Domain -> Domain))) holds
(IterProp[Domain, J] implies IterComp[Domain, J])));

Figure 11: Iterator Theorems

5.5 Problems Encountered During Proof

It took us several attempts to be able to correctly state the theorem required for the
initial proof of the slow iterator (as stated in Figure 9). At first we did not have
the iterator function total (we missed the case for j > n). Next we realized that we
needed to prove it for (length n), wlich required the implementation of naturals as

32
unary bit strings. Since we had not yet decided how we were going to implement
the type hierarchy, it was not possible to correctly tvpe some of the terms. Our
initial sketch of the proof was incorrect, since it required the instantiation (not just
the existence) of a particular function outside of the scope where it was defined. All
of these problems came to light when we attempted to do the proof in the Mizar-(!
system. On paper we thought we had a correct, complete proof. Not until we were
forced to deal with every detail did we see the problems with our original ideas.

If our only goal in producing the iterator function was to use it in defining recursive
structures, then it was not necessary to prove it constructively. Since the definitions
themselves do not have any content, we do not require the content of the iterator
n the definition. It is only when we prove that an object meets the definition that
we actually “coustrict” the object. However, since the iterator function is proven
constructively it is possible to use it when doing the actual constructions, and so it
is a very useful function to have.

It turns out that the slow iterator is not much slower in actual execution than the
fast iterator. The biggest difference between the functions is the resouree consumplion
during execution, which is a result of how the induction was set up. Intheslow iterator
proof, the inductive step assumed the existence ol an iterator function for k < .

assume IH: (for k being Bits holds
(LT[k, n] implies (ex I being (Bits -> (Domain -> Domain)) st
((for x being Domain holds (((I (U.dength nil)) x) = x)) &
(for j being Bits holds
((bitsden_Itfj, k | implies
(for x being Domain holds
(1 (U.length (cat < j, 0>))) x) = (f (I (U.length j)) x))))) &
((not bits_len_lt[j, k]) implies
(for x being Domain holds (((I (U.length (cat < j, 05))) x) = x)))))))))

As mentioned before, this function I is dependent upon the value k and, as the
inductive statement says, I behaves as an iterator function when applied to all values
Jj < k. Thus for a given n, the slow iterator is actually a function which constriets
a large lambda expression that is essentially an iterator for n+1, (the previously
mentioned function (C' (cat <n,0>))), since this function will behave as a proper
iterator when applied to all values less than n+1 (a property stated in the ahove
inductive step). This expression is then applied to n. In the inductive proof of the
slow iterator, an implication which shows how to use the existence of an iterator
function for n-1 to realize an iterator function for n is used along with the above
inductive hypothesis. As a result of this, the slow iterator constructs the iterator
function (C (cat <n,0>)) in terms of an iterator for n-1, which is in turn constructed
from n-2 and so on down o n = nil. The construction of this CXPression requires a
considerable amount of memory at run time.

In contrast, the inductive step for the fast iterator assumes the existence of an
object which is equal to the result of the slow iteretor’s computation.

assume indhyp: (for m being Bits holds
(LT[m, n] implies (for x being Domain holds
(ex z being Domain st (z = ((If) (Ulength m)) x))))));

In the induction on n, the fast iterator shows that applying the function f to an
vbject that is equal to the result of applying the slow iterator to n-I results in au
object that is equal to the result of applying the slow iterator to n. Thus, the fast
iterator does not need to construct an iterator function for each input n; instead it
constructs a sequence of function applications

(F(f (f ...

which is then applied to the base case of the induction (or bottom element of the
recursion). This lambda expression is much smaller, and requires much less memory,
than that of (€ (cat <n,0>)) consiructed by the slow iterator.

33

Chapter 6

Definition of Finite Sequences

Once the iterator function was proven we wanted to use it to define some recursive
structures. We began by defining finite sequences of bit strings, since these SCQUENCes
can then be used as the basis for defining other recursive structures. The finite
sequence definition imposes a structure on a bit string. which is the basic data Ly pe
in Mizar-C; it provides a way of encoding and packaging a particular sequence of
Bits. The particular Bits that are in the sequence have no more meaning than belore.
Other definitions can then be given to provide meaning for the particular hit strings
occuring in the sequence, thus defining new recursive types.

6.1 Packets

Since a finite sequence of Bils is itsell a bit string (or of type Bits), we need to be
able to determine when a bit string is a finite sequence, and we need some wiy of
being able to recover the individual bit strings that make up the sequence. We must
be able to teil where one bit string in the sequence start~ and another leaves off. To
do this, each bit string in the sequence is “packaged” in a wrapper that will separate
the bit strings in the sequence. A finite sequence of Bitsis thus defined as a sequence
of Packets, where a Packet is defined as a structure consisting of a bit string paired
with its length. A 1’ bit is nsed as a delimiter between the length and the bit string.
For example:

e 000001 xxxxx
is the Packet of the bit string xxxxx, which has length 00000,

o 1
is the Packet of the nil bit string, which has length nil.

The following is the formal definition of Packet used in Mizar-C:

packet_def: define Packet of x being Bits by
(ex z1, z2 being Bits st
(((split <x, (nozab x) >) = <(nozab x), z1 >) &

34

((split <z1, UUI >) =<1,22>) &
bits_len_eq[(nozab x), 22 |));

where U.UI is the unary 1.

This definition looks quite complicated. It seems much easier to define how to
create a Packet for a given bit string than it is to define when a given bit string is
a Packet. To be a Packet, a bit string must consists of a sequence of 0’s, followed
Ly a 1 delimiter, followed by a sequence of bits that has the same length as the
intial sequence of 0°s. This is essentially what the definition packet_def says. The
function (nozab x) takes a bit string x and returns the leading 0's of x (nozab stands
for “number of zeros at beginning”). If there are no leading 0’s. it returns nil. For

example:
e (nozab 00110000) = 00
e (nozab 111) = nil
e (nozab 000) = 000

The following is the formal statement of nozal> as pioven in Mizar-(':

nozab: (for x being Bits holds (ex z1, z2 being Bits st
Lunatf(nozab x) | &
((split <x, (nozab x) >) = <(nozab x), z1 >) &
((z1 = nil) or ((split <z1, V.Ul >) =<1,22>))))

Thus in the packet definition, (nozab x) is the unary bit string of leading 0’s and
z2 is the bit string being packaged. Thus (nozab x) = (length z2).

6.2 Finite Sequences
The following is the formal definition of finite sequences used in Mizar-C:

finseq_def: define FinSeq of x being Bits by
(for n being Bits holds
(((first (((Iter rest) (U.length n)) x}) = nil) or
Packet[(first (((Iter rest) (U.length n)) x))]))

where Iter is an iterator function defined on the Bits domain. In other words, a finite
sequence is a sequence of packets.

In order to define a finite sequence using the Iter function, the two functions
first and rest had to be defined. We need some way to move through the sequence
and retrieve the bit strings that make up the sequence. The following is the formal
statement of first and rest as proven in Mizar-C:

for x being Bits holds (ex zl1, 22, 23, z4 being Bits st
(((split <x, (nozab x) >) = <(nozab x), zI >) &
((split <z1, U.U1 >) = <22,23 >) &
((=plit <23, (nozab x) >) = <z4, (rest x) >) &
((first x) = (cat <(cat <(nozab x), z2 >), z1 >)))))

The function (first x) returns the first packet of the bit string x, il there is one,
This function is total on the domain Bits. that 15, it does not require that x be a
finite sequence. (first x) returns what will be the first packet of x il x is a linite
sequence. If x is not a correct finite sequence, then the bit string returned by first is
not guaranteed to be a Packet. For example:

o (first 0011000) = 00110
Even though the argument to first is not a correct, finite sequence, the it string,
returned is a valid Packet.

e (first 100101) = I

The argument is a valid sequence, and the returned bit string is the packet of

the nil bit string.

e (first 001) = 001

The argument is not a finite sequence, and the bit string returned is not a valil
packet.

The function rest is very similar to the above. (rest x) returns the bit string that
remains once (first x) has been removed from x. As hefore, rest is total on the [its
domain: if x is a valid finite sequence, then (rest x) will be a finite sequence, otherwise
(rest x) is just some bit string. For example:

e (rest 0011000) = 00

The bit string returned is not a valid finite sequence.

e (rest 100101) = 0010}
The argument is a valid sequence, and the returned bit string is the finite
sequence that is left once the first packet is removed.

o (rest 001) = nil

There is nothing left once (first x) is removed.

A finite sequence x is a bit string consisting of the concatenation of some natnral
number m of packets. If you apply the rest function n times to x, when 0 < 1 <= 1,
you will get a sub-sequence of x which is also a finite sequence by the definition of
rest. Thus first of this sub-sequence will aiways be a packet by the definition of
first. If n > m, then applying the rest function n times to x will remove all of the
packets from x, returning nil. Since (first nil) = nil by the definition of first, the finite
sequence definition is true for all naturals n.

6.3 Properties of Finite Sequences

Once finite sequences were defined, the theory of finite sequences needed to be proven.
Several theorems are necessary to define the properties of finite sequences. One of
the most important is the finite sequence decider, stated by the following theorem:

finseq_decide: (for x being Bits holds
(fseq.FinSeq[x] or (not fseq.FinSeq[x])))

Proven constructively, this theorem provides a program that decides whether a
given bit string is a proper finite sequence, according to the finite sequence definition.

The attempt to prove this theorem outlined many sub-theorems that were useful
to have. To start with, since finite sequences are defined in terms of Packets. it was
neeessary to prove a packel decidei as follows:

packet_decide: (for x being Bits holds
(fseq.Packet[x] or (not fseq.Packet[x])))

It was necessary to define and prove the [terDist distributive property of the
iterator function, given in Figure 10. Also, since finite sequences are defined in tems
of the rest and first functions, it is useful to state the behaviour of these functions on
some specific hit strings, such as the empty bit string nil. For example, the fact that
the rest function returns nil no matter how many times it is applied to the bit string
nil is stated with the following theorem:

fseq2.it_rest_nil: (for n being Bits holds
((((fseq.Iter fseq.rest) (U.length n)) nil) = nil))

The fact that first returns nil only if the given input bit string is nil is stated as:
fseq2.first_nil: (for x being Bits holds (((fseq.first x)=nil) iff (x=nil)))

Once the finite sequence decider was done, properties of finite sequences need to
be stated and proven. The first theorem proven was one re-stating the definition of a
finite sequence in its recursive form:

fseq3.finseq_thm: (for x being Bits holds
(fseq.FinSeq[x] iff
((x=nil) or (fseq.Packet[(fseq.first x)] & fseq.FinSeq[(fseq.rest x)]))))

Only one other theorem was proven for finite sequences, stating that the concate-
nation of two finite sequences is still a finite sequence:

fseqd.finseq_cat: (for x, y being Bits holds
((fseq.FinSeq[x] & fseq.FinSeq[y]) implies fseq.FinSeq[(cat <x, ¥)))

Ouce finite sequences are used in the definition of some other structure, the theo-
rems about them that are useful will become evident. This happened for the iterator.
first and rest functions. When trying to prove properties of objects that used these
functions in their definitions, it was obvious which theorems would be useful.

37

Chapter 7

Conclusions

7.1 Mizar-C as a Programming Tool

After completing some proofs and extracting the code using the Mizar-(' system,
it became obvious to us that having a “correct” program is not always enough, if
the definition of correctness does not take the complexity of the generated code into
account. The system must provide some iecans of reasoning about the resource
consumption of the extracted programs. It would be preferable if this could be done
without having to look at the generated code, since this code can be quite diflicult for
humans to follow. Not only the run-time complexity of the code must be dealt, with,
but other measures of complexity such as resource consumption must be handled as
well. The slow and fast iterator proofs can be scen as an example of this. Although
the run-time execution is roughly the same for both programs, the slow iterator is a
much larger program and uses more memory when executing. At the moment we see
two possible ways of dealing with the complexity of the extracted code in Mizar-C.
One method would be to attach some general complexity measure to the inference
rules themselves. This would give us an upper-bound measure on the realizations
produced through the use of these rules. Another method would be to introduce a
complexity term into each specification which is then proven along with the other
properties of the program. This method still requires that cach inference rule have
information about how it affects the complexity term.

It is the large gap between the specification language and the programming lan-
guage that makes it difficult to reason about the extracted programn. It might he
easier to have the programming language as part of the term language, so that the
code can be reasoned about directly within the system. Otherwise, as in Mizar-(,
any reasoning about complexity must be done indirectly, and it remains to be scen il
anything other that rough upper-bounds can be calculated.

It would be nice to extract into some language other than Lisp, preferably one
that could be compiled for efficiency reasons.

There is definitely a need for a combination of classical and constructive reasoning,
Many theorems are difficult to prove constructively, and if computation is not required

38

of it there scems to be no reason to force the user to come up with such painful proofs.
Some specifications require theorems that cannot be proven constructively, such as
when proving Markov’s principle. These types of reasoning require notation to allow
for non-content variables. The system should have a means for marking reasonings as
constructive or non-constructive, and should enforce that these reasonings are used
within proper contexts (see [18] and [28] for further discussion).

7.2 Using Formal Methods

After having performed many proofs on paper and then attempting to verify them
using a proof checker, I can conclude that it is worthwhile to machine-check most
proofs. Many paper proofs are incorrect in non-obvious ways, and having a machine
check the proof provides the user with increased confidence in his solution. Also,
formal environments force full specification of the problem, and this can point out
errors or insufficiencies in specifications.

One of the most difficult aspects of doing formal proofs of specifications is the
amount of detail that the user is forced to deal with. Any system whose goal is to
provide an environment for doing formal proofs must improve this for the user. In
the current version of Mizar-C, the system provides very little help in this area. The
following are some ideas which would make it easier to do proofs in Mizar-C, or for
that matter, any formal proof environment.

The implementation of schemes would help to eliminate some of the detail from
proofs. For example, in the development of the finite sequences, I nesded to prove
several properties of iterator functions, given by the definitions in Figure 10. A scheme
could be used for iterator functions where, once a function is proven to meet the
iterator definition IterPropDef (Figuie 8), all the other properties are automatically
true by the scheme. Right now, elimination must be performed on the theorems
in Figure 11 in order to get the other properties for a given function. Schemes
are also useful in adding to the power of the system, in a sense schemes can be
scen as extensions to the base set inference rules. For example, induction could be
implemented through a scheme instead of an inference rule, and then several different
inductive schemes corresponding to different types of induction could be implemented.
Given that the user wants to use a particular scheme to prove a theorem, it should also
be possible for the system to produce a “form” which outlines the steps of the proof,
leaving the details for the user to fill in. For example, with an induction scheme, the
base case and the inductive step can be deduced from the theorem to be proven. The
system should be able to generate these steps for the user, reducing the amount of
writing the user must do.

Another way to eliminate the amount of detail handled by the user would be to
increase Mizar-C’s automatic theorem proving power. As an example, often when
proving theorems by cases, some of the cases are either trivial or not true. These
cases could be proved by the system, eliminating the amount of writing to be done
by the user and allowing him to concentrate on the meaningful parts of the proof.

39

Very large proofs contain many parts, or sub-theorems; once a sub-theorem has been
proven, it is not necessary for the user to see the details of the sub-proof. 'The sub-
theorem statement is usually all that is needed for the remainder of the proof, sinee it
is not possible to reference any of the statements within the scope of the sub-theorem
from outside of it anyway. To facilitate this, it should be possible within the system
to “close” a proof once it is done, and “open” it if the details are wanted. This would
allow a high-level outline of the proof to be more easily seen. In the case of Mizar-(',
this may help the user to see what algorithm has been implemented by his proof,
since this tends to correspond to high-level proof outline.

A different problem with detail exists when trying to use already proven theories,
or proof modules. A decent mechanism for browsing through existing proof modules
for theorems must be implemented. At the current instantiation of Mizar-C', the
number of proof modules (or theories) was quite small, yet trying to find a desired
theorem was already quite tedious. As more modules arc created this problem will pet
worse, resulting in the re-proving of many existing theorems that cannot be located or
whose existence is unknown. This problem of re-utilization of theories is enconntered
by most systems that provide large libraries of modules.

40

Appendix A

Sparse Realizability

Thr realizability interpretation of Mizar-C, called sparse realizability, is based upon
the Curry-Howard isomorphism [4], although sparse realizability destroys the isomor-
phism since it is no longer possible to convert programs back into their corresponding
proofs.

The following conventions are used:

e The type style for x being Tx holds P[x] will be used when writing examples of
Mizar-C proof text.

e The type style (LAMBDA (' x, - ‘Il be used in the examples of realizations of
Mizar-C proof text.

e Let R[0] mean the realization of formula 0.

¢ In Mizar-C {formulae with no content are realized by R-NONE. Formulae whose
truth value is unknown in the current context are realized by R-NIL. (e.g. the
non-proven formulae introduced through disjunction introduction).

A.1 Conjunctions: (¢, & ... & 0,), n > 1

Conjunctions are realized by:

e R-NONE if no 6; has content.
e R[0;] if only one 0; has content.

e (R-LIST R[f,,] ... R[0,1) when iwo or more of the conjuncts have content.
Ouly the realizations of those formulae that have content are put in the list,
thus & < n and there is a one-to-one mapping from i to p; which maps each 0;
that has content to each #,, whose realizations are elements of the list.

Conjunction elimination allows the projection of one of the conjuncts from a con-
junctive formula. Conjunction elimination of a conjunct ¢ from a conjunction ¢ is
realized by:

41

e R-NONE if has no content.
e R[¢] if 0 is the only conjunct of ¢ with content.

® (R-SELECT n R[¢]) if more than one conjunct of ¢ has content. The R-SELECT
operato™ projects the nth element out of an R-LIST, so ¢ must he the nih
cenjunct of ¢ with content.

A.2 Disjunctions: (6, or ... or 6,)y > 1
Disjunctions are realized by:
(R-LIST (LAMBDA () R[6,]1) ... (LAMBDA () R[0,]1))

where R[0;] is actually R-NIL if the sub-formula is not known to be true in the current
context. Otherwise the subexpressions exist, and their realizations are wrapped in
lambda forms to delay evaluation until it is required.

In order to perform disjunction elimination, a formula must be provided that is th.
negation of one of the disjuncts. This disjunct is then removed from the disjunetive
formula. Disjunction elimination of a disjunct 0,, from a disjinction @ is performed
by projecting all of the disjuncts other than 0,, out of ¢. Il ¢ contains more than (wo
disjuncts, the projections become the elements of a new disjunction ¢'. Thus the two
cases are:

o if 4 contains only two disjuncts then the disjunction climination of 0., is realized

by:

= R-NONE if the remaining disjunct has no content.

— (R~APPLYO (R-SELECT » R[¢1)) where the remaining disjunct is the nth
element of the disjunction. The disjunct is unwrapped at this point, since
it is no longer a disjunction, but simply a true statemen.

o if ¢ contains k > 2 disjuncts, then the disjunction climination of ., ks reaid
by (R-LIST (R-SELECT n Rf4]) ...(R-SELECT » R[4]))
for all n where (0 <n < k) and (n# m).

A.3 Implications: (¢, implies 6,)

Implications can be seen as providing a method that uses the facts of the antecedent to
produce the consequent. From this viewpoint an implication is a function that takes
the antecedent as an argument and uses it to compute the consequent. However, if the
antecedent has no content, it has no computational “facts” to be used in constructing
the consequent. In this case, the implication no longer needs to take the antecedent as
an argument in order to compute the consequent, thus its realization can he optimized

[Case #7 0,] 0, J Type] Realization 1
1 no content | no content 0 R-NONE
2 content, no content 0 R~-NONE

3 no content, content 1 R{0,]
4 content, content 2 (LAMBDA (x) R[6,1[RI[0,] := x])

Table A.1: Implication Realizations

to climinate an unnecessary function application. Implications are realized according
to Table A1,

In cases 1 and 2, since the consequent has no computational content, the impli-
cation has none either. Although the antecedent has content in case 2, since the
consequent. has no content it is not possible that the realization of the antecedent is
required for any computation (if the consequent had made use of the antecedent then
the consequent wouid have content). Thus it is not necessary to retain the realization
of the antecedent at all.

In case 3, since the antecedent has no content it obviously cannot be involved
in any of the computation that is done in the consequent, so only the realization of
the consequent is necessary to realize the implication. In this case, it is most likely
that the antecedent is a guard that provides a context for executing the consequent.
Within the systens, it will only be possible to use the consequent in coutexts where
the antecedent has been shown to be true, so the above realization is safe.

In case 4, where both the antecedent and the consequent have content, it is possible
that the consequent uses the antecedent’s realization in its own computation. Since
the formula is an implication, implication elimination must be done in order to be
able to use the consequent. This elimination requires that the antecedent formula be
supplied. The realization of the supplied antecedent formula is bound to the variable
a when the implication elimination is performed.

linplication elimi:ation on formula 6; implies d,, is realized according to Table A.2.

[U1 implies 0, | Realization '
Type 0 R-NONE
Type 1 R[{0; implies £,]
Type 2 (R-APPLY R[0, implies 0,] R[6,]1)

Table A.2: Realizations of Implication Elimination

The type information is used by the system when performing eliminations. Im-
plications of type 0 have no content, and cannot be used as arguments to formulae
requiring content. Implications of type 1 do not require an antecedent with content,
while type 2 implications require a constructive proof of their antecedent, and need
to be applied to this realization.

11
A4 Iff: (0, iff 6)
Iff formulae are realized by a conjunction of the realizations of the two inmplications

(61 implies 8;) and (6, implies 6;), according to the rules for conjunctions.
I eliminations are realized according to Table A.3.

[0, iff 4, L01 implies 921 #; implies 8, l Arg I Realization
no content type 0 type 0 0,018, R-NONE o

content type 0 type 1 or 2 6, R-NONE

content type 1 type 0 &, R[#, iff 0,]

content type 1 tvpe 1 or 2 0, (R-FIRST R[#, iff #.])

content type 2 type 0 0 (R-APPLY R[#, iff 6,] R[#,])

content type 2 type 1 or 2 0, (R-APPLY ‘
(R-FIRST R[#, iff 6.]1) R[#,1)

content type 1 or 2 type 0 62 R-NONE

content type 0 type 1 6, RO#, iff 0,1 -

content type 1 or 2 type 1 8, (R-SECOND R[f, iff 0,])

content type 0 type 2 6, (R-APPLY R[f, iff #,] R[4.])

content type 1 or 2 type 2 0, (R-APPLY T
(R-SECOND R[#, iff #,1) R[0,])

Table A.3: Realizations of Iff Elimination

A.5 Universally Quantified Formulae
for x being Type holds 0

The intuition behind the realization of universally quantified formnlac is the same
as that for implications. If the formula 0 that is universally quantificd has content,
then it may require an argument x of the correct type in order to perform its com-
putation. Thus it can be viewed as a function that takes one argument. However, if
0 has no content, then it can not require the argument, x as input, and its realization
can be optimized to eliminate the unnecessary function application.

Universally quantified formulae are realized according to Table A 4.

[0 | Realization J
no content R-NONE
content (LAMBDA (x) R[0D)

Table A.4: Realizations of Universal Formulae

Universal elimination on a formula «, using a term ¢, is realized according to

Table A.5.

L 10", [Realization I
no content R-NONE
content | (R-APPLY R[a] R[¢])

Table A.5: Realizations of Universal Elimination

A.6 Existentially Quantified Forirulae
ex x being Tx st 0

Fxisientially quantified formulae are realized according to Table A.6.

L 0 l Realization 1
no content, (LAMBDA () R[x])
content (R-LIST (LAMBDA () R[x]) (LaMBDA () R[0]))

Table A.6: Realizations of Existential Formulac

There are two possible interpretations for the existential statement:
e It can be viewed as capturing an explicit value x for export.

® It can be seen as capturing a “procedure” for computing the value x. This
function is then evaluated when the explicit value is requested (by using the
consider statement).

Mizar-C has adopted the second lazy interpretation, and by wrapping the realization
of x in a lambda form we have delayed the computation of the value of x until it is
explicitly requested (by unwrapping it).

In the case where 0 has no content, it is not important to retain its realization. The
rcalization of the existential formula is simply the function that computes the value of
the existential variable. If @ has content, the realization of the existential statement
becomes a list of two elements: the first element is the function that will compute -
the value of the existential variable, and the second element is the computation of
the formula 0.

When an existential elimination is performed on a formula ¢, two realizations are
produced: one that realizes the value of the variable, and one that realizes 0, the
body of the existential formula ¢.

In future versions of Mizar-C, it will be possible to have no-convert existential
formulae where the body @ of the existential may have coutent, but th» existential
variable x does not. This is necessary in order to prove, or even use, certain theorems
such as Markov’s principle, where non-constructive existence is used.

[0 I Realization]
no content (R-APPLYO R[¢])
R-NONE

content (R-APPLYO (R-FIRST R[4]))
R-APPLYO (R-SECOND R[¢]))

Table A.7: Realizations of Existential Elimination

A.7 Case Analysis

Given a disjunction 0, and some implications ¢, through . - analysis is realized

by:

(R-CASE R[0] (R-LIST (LAMBDA () (R-LIST Type R[6:1))

‘(LAMBDA () (R-LIST Type R[n1))))

The antecedents of the implications must correspond to the disjunets of ¢, and the
consequents must all match the goal formula. The Type information indicates the Ly pe
of the implication (as described in Table A.1), which determines how the implication
elimination is performed (see Table A.2). The R-CASE function evaluates the disjuncts
of 0 to determine which one is true, and then selects the corresponding implication
to compute the goal formula. "Since it is possible for more than one disjunct to he
true, the present implementation of Mizar-C uses the first disjunet found to he true.
However, this leaves open the possibility of allowing parallel evaluation and exceution
of all the true cases.

Appendix B

Mizar-C Inference Rules

Mizar-Ct implements a multi-sorted limited second-order natural deduction logic It
provides the following base set of inference rules:

Case Analysis Existential Intre:duction Negation Elimination
Case Introduction Existential Elimination Negation Introduction
C‘hoice Rule Guarded Choice Quantifier Negation
Conjunction Manipulation Iff Introduction Reverse Implication
Contradiction I Elimination Take

Contradiction Introduction Iff Swap Tuple

Definitions Implication Introduction Universal Introduction
DeMorgan’s Laws Implication Elimination Universal Elimination
Disjunction Introduction Induction Rule

Disjunction Elimination Excluded Middie

iquality Introduction Magic

liquality Substitution

B.1 Constructive Inference Rules

B.1.1 Direct Rule

Synopsis: direct(Formula)

This inference rule allows previously proven results to be re-stated. It checks to see
that the reference Formule is equal to the goal formula. 1t is useful for making the
results of a now reasoning explicit. For examples of use, see the sections on Universal
Introduction, Implication Introduction or Existential Elimination.

B.1.2 Equality Substitution

Synopsis: cquality(Formula, Equality,,. .., Equality,,)
The Equality Substitution Rule performs term substitution in the Formula through

47

the use of term equalities. Any number of simple substitutions may be performed, as
long as there is an equality formula Fquality; for each substitution.

environ
given X, y, z being Any;
{<<x:R~-NONE>> <<y:R-NONE>> <<z:R-NONE>> }

A (x =y);
{<<A$P11:R-NONE>>}
B: (y = z);

{<<B$P13:R-NONE>>}

begin
exl: (x = z) by equality(A. B);
{<<eq.ex1$P:A$P11>>}

now
(x = x) by eqintro();
{<<eq$RO:R~-NONE>>}
thus (ex q being Any st (q = x)) by exintro{ _PREVIOUS);
{<<eq$R5: (LAMBDA () x) >>}
end; {<<eq$R8: (LAMBDA () x) >>}
ex2: (ex q being Any st (q = z)) by equality(.PREVIOUS, A, B);
{<<eq.ex2$P:eq$R8>>}

Figure 12: Example of Equality Substitution Rule

In the example in Figure 12, in ex] only one substitution was performed. In ex2,
two substitutions were done: first y for x and then z for y. The substitutions are
performed in the order of the given equalitics. The realization of the goal is that of
the original Formula being substituted.

B.1.3 The clim Inference Rule

Synopsis: elim[universal substitution list] (Formulay, . .., Formuala,), n > 0:

In Mizar-C, elim is a very powerful rule which performs universal climination, -
plication elimination and iff elimination on the argument Formaula,, The universal
substitution list is used for universal quantifier elimination; it lists the variables or
terms that are to be substituted for the universal quantifiers of Formlag, in the
order of elimination. Any terms that arc being substituted must already he defined,
and their justifications (a formula where the term oceurs positively) must he provided
in the formula list.

A term t occurs positively in a formula ¢ when:

* ¢ is a predicate and t occurs inside of it (e.g. ¢[...,1,..]).

A8

49

¢ ¢ is a conjunction, Gy A ... A b, and t occurs positively in some 0;.

Formulay through Formula, are cither the antecedents of the implications or iffs
in Formulay, or the justifications of terms in the substitution list. These formulae
must appear in the correct order of elimination. If an antecedent is a disjunction,
then it is sufficient for Formula; to refer to one of the disjuncts. The goal formula
resulting from the call to elim has the number of quantifications indicated by the
universal substitution list and antecedeats given by Formula, through Formula,
stripped off of Formula,.. If after all climinations, the result would be a conjunction.
the goal formula can simply be one of the conjuncts. Figure 13 illustrates the many
uses of elin. These examples do not show the realizations generated for each inference.
In the sections on universal elimination, implication elimination and iff elimination
that follow, the realizations that result from the use of elim for each case are discussed.

A

now
assume IH: (for x being Nat holds (P[x] implies
(for y being Nat holds ((x = y) or (x # ¥)):
guard: P[px] by magic;
{ we can do simple universal elimination}
1: P[px] implies (for y being Nat holds
((px = y) or (px #y)) by elim[px](1H);
{ wve can do simple implication elimination}
2: (for y being Nat holds
((px =y)or(px# y)) by elim[J(1.guard):
{another universal elimination }
3: (px = py) or (px # py) by elim[py](2);
{ or we can do the eliminations (universal and implication)
all in one step}
4: (px = py) or (px # py) by elim[px, pyJ(Ill, guard):
{we can also eliminate using terms, by givi g the
formula where they occur positively as a justification}
al: Pl(fa)]:
((fa) = (Ta))or ((fa) # (fa)) by elim[(fa), (fa)l(IH, al.al. al):
{ the first reference to al is the justification of the first
substitution term,
the second reference to al is used as the antecedent of the
implication, the third reference to al is the justification of
the second substitution term. }
end;
Al: for x being Nat holds (P[x] or Q[x]) implies R[x];
A2: Plpx];
{ we can eliminate using one of the disjuncts)}
R[px] by elim[px](A1, A2);
A3: for x being Nat holds P[x] iff (R{x] & T[x]);
{ we can refer to just one of the goal conjuncts)
T[px] by elim[px](A3, A2);

.

Figure 13: Examples of Diimation Rule

B.1.4 Universally Quantified Formulae

Universal introduction ocet:re when variables have been introduced by the let con
struction within a now reasoning. The conclusion of the now reasoning, created using,
the thus statement, is the formula that i< universally quantified. The nniversal sen.
tence that is created is interesting onlv ¥ the thus conclusion references the Jot-od
variables. Note that in the now reasorinz where this rule is invoked, there may he
several variables introduced with let ; each variable results in a new quantification

I(?V(?l.

now
let x,y be Any;
{<<univ$R15:univ$R15>> <<univ$R16:univ$R16>> }
thus = = = by eqintro();
{<<univ$R17:R-NONE>>}
end;
{<<univ$R18:R-NONE>>}
Result1: for x, y being Any kolds « = = by direct(_.PREVIOUS);
{<<univ.Result1$P: R-NONE>>}

Figure 14: Content-Free Universal Introduction

IFigure 14 shows a simple now reasoning where two variables are introduced with
a let statement. Although the thus conclusion does not reference the variable v, the
universal sentence created (the statement labeled Result]) has two nested quantifica-
tions over both variables x and y. Since the fo: mula being quantified has no countent,
the universal sentence is realized by R-NONE.

now
let x, y be Any;
{<<univ$R19:univ$R19>> <<univ$R20:univ$R20>> }
r = x by eqintro();
{<<univ$R21:R-NONE>>)}
thus & = z or x # x by disjintro(_LPREVIOUS);
{<<univ$R24: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
end;
{<<univ$R27: (LAMBDA (univ$R19) (LAMBDA (univ$R20)
(R-LIST (LAMBDA () R-NONE) R-NIL)))>>}
Result2: for x, y being Any holds 2 = z or x # z by direct(_LPREVIOUS);
{<<univ.Result2$P: (LAMBDA ($ALL6) (LAMBDA ($ALLT)
(R-LIST (LAMBDA () R-NONE) R-NIL)))>>}

Figure 15: Universal Introduction with Content

Figure 15 shows the realization that is created when the formula being universally
quantificd has content. In this case, universal quantification corresponds to function
abstraction. Since there are two let-ed variables a function is created that takes two
arguments. Conversely, function application corresponds to universal elimination,
which provides the arguments for the function.

Universal elimination is done using the elim rule, as shown in Section B.1.3.

A: (x = x) or (z # z) by elim[x,x](Result2);

{univ$R11: (R-APPLY (R-APPLY univ.Result2$P x) x)>>}

1: (fx) = (fx) by magic;

{<<univ.1$P:R-NONE>>}

B: (fx) = (fx) or (f x)#(f x) by elim[(f x), x](Result2, 1);
{<<univ.R31:(R-AFPLY (R-APPLY univ.Result2$P (FUNCALL f X)) x)>>}
C: (fx) = (fx) by elim[(f x). (f x)](Result1, 1, 1);

{<<univ$R8:R-NONE>>}

Figure 16: Universal Elimination Example

Since sictements A and B in Figure 16 perform universal elimination on a fornmnla
with content, this results in a function application. The realization of the wuniversal
formula Result2is applied to the arguments provided. In statement B, a torm is being,
substituted for one of the universal quantifiers which requires that a Justification he
given; this is provided by the reference to statement 1. In all three cases, althongh the
second quantified variable y is not present in the formula body, an argument must be
provided for it anyway. In statement C, the term (f x) is being used as the argument
for both quantifiers. A justification for each substitution is required, which results in
two references to statement 1.

B.1.5 Implications

Implication introduction is similar to universal introduction in the sense that it cor-
responds to the results of certain hypothetical reasonings. An implication is created
as a result after a formula has been introduced with an assume statement in a now
reasoning. The antecedent of the resulting implication corresponds to the assumed
formula, and the consequent to the thus conclusion reached by the sentences after the
assume statement.

Exi: now
assume 1: P[x |;
{<<imp$R34:imp$R34>>}
thus (x = x) by eqintro();
{<<imp$R41:R-NONE>>}
end;
{<<imp$R44:R-NONE>>}

I5x2: now
assume 1: (ex y being Any st (x = y));
{<<imp$R53:imp$R53>>}
thus P[x] by direct(A);
{<<imp$R61:4$P9>>}

end;

{<<imp$R64:R-NONE>>}

t

Figure 17: Content-Free Implication Introduction

In both ExI and Ex2 given in Figure 17, since the consequent of the implication
is a formula without content, the entire implication has no content and is realized by
R-NONE.

now
assume 1: Plx];
{<<imp$R45:imp$R45>>}
thus (ex y being Any st Py]) by exintro(_.PREVIOUS);
{<<imp$R48: (LAMBDA () x)>>}

end;

{<<imp$RS2: (LAMBDA () x)>>}

Figure 18: Type ! ".uphication [ntroduction

In Figure 18, the antecedent formula P[x] has no coutent. However, since the
consequent is an existentially guantified formula it does hav~ content, and so the
realization of the implication is simply the realization of the cuasequent.

now
assume I: (ex y being Any st (x = v));
{<<imp$R2:imp$R2>>}
consider y1 being Any such that y . = yl) by direct(.PREVIOUS):
{<<imp$R11:imp$R2>>}
{<<imp$R15: (R-APPLYO imp$R11)>>}
{<<imp$Rl3:R-NONE>>}
Ply1] by equality(A, v1);
{<<imp$R26:A$P9>>}
thus (ex z being Any st Pfz]) by exintro(_PREVIOUS);
{<<imp$R30: (LAMBDA () imp$R15) >>}
end;
{<<imp$R33: (LAMBDA (imp$R2) (LAMBPA () imp$:. ,>>)
result4: ((ex y being Any st (x = y)) implies
(ex z being Any st P[z])) by direct(_.PREVIOUS):
{<<imp.result4$P:imp$R33>>}

Figure 19: Type 2 Implication Introduction

With all the labels expanded, the realization of the implication proven in Figure 19
1s:

(LAMBDA (imp$R2) (LAMBDA () (R-APPLYO imp$R2)))

This is an example of an implication where the realization of the antecedent fornmila is
used in the realization of the consequent. The antecedent realization will be a funetion
to compute the value of the existential variable y. Within the reasoning, this value
is named yl. The realization of the consequent is also a function to compute an
existential variable z, and since the value of z is that of yI, the function provided by
the antecedent’s realization is used to compute it. Thus the implication is vealized by
a lambda form that takes the realization of the antecedent formma as an argument.,

Implication elimination is performed using the elim inference rule, as desceribed

in Section B.1.3. In order to perform implication climination the anteeodent, fortmula

must be provided. If the implication requires an antecedent formula with coutent,
as in Figure 19, the result of the implication elimination is a realization where the
realization of the implication is applied to the realization of the supplicd antecedent
formula.

In Figure 20, the realization of the implication imp.result4$P is applicd to the
realization of the antecedent imp.B$P. If the implication be'ug eliminated does not
require the realization of the antecedent, as in Figure 17 and Figure 18, then the impli-
cation is realized by the realization of the consequent; hence implication elimination
does not change the realization at all.

93

(x = x) by eqintro();

{<<imp$R27:R-NONE>>}

B: {ex q being Any st x = q)) by exintro(_PREVIOUS);
{<<imp.B$P: (LAMBDA () x) >>}

(ex z being Any st Pfz]) by elim(result4, B);
{<<imp$R31:(R-APPLY imp.result4$P imp.B$P)>>)

Figure 20: Implication Elimination

B.1.6 Iff

The inference rule iffintro is used to introduce an iff from two implications.
Synopsis: iffintro(In.plicationy, Implication,)

0— ¢, 06— 0
0 e+¢4¢ «— 0

How
assume ((x = x)or (x # x));
{<<iffs$R4:iffs$R4>>}
thus ((x = x) or (x # x)) by direct(_PREVIOUS);
{<<iffs$R5:iffs$R4>>}

end;

{<<iffs$R6: (LAMBDA (iffs$R4) iffs$R4)>>}

A: (((x =x)or (x# x)) implies ((x = x) or (x # x))) by direct(_PREVIOUS);
{<<iffs.A$P:iffs$RE>>}

B:(((x =x)or(x#x))iff ((x =x)or (x#x))) by iffintro(A, A);
{<<iffs.B$P: (R-LIST iffs.A$P iffs.A$P)>>}

Figure 21: Iff Introduction

An iff formula is realized by a conjunction of the realizations of the implications
used to form it. Thus the iff realization depends upon whether the implications have
content, according to the rules given for conjunction realizations in Section A.1.

Il climination is performed using the elim inference rule. as described in Sec-
tion B.1.3.

0,6 0 ¢,0
0 ¢

a6

In order to perform iff elimination, either the left or right side formula of the il
must be provided. When the goal formula has no content it is realized by R-NONE:
when the goal formula has content its realization is determined by the implications
that were used when forming the iff. If the left formula 0 is being climinated, then the
first implication, (/mplicationg in the introduction of the ilf), is used and implication
elimination is performed on it using @ as the antecedent. If the right formula ¢ is being
eliminated, then the second implication is used (Imphication, in the introduction of
the iff). The realization that results follows the rules for implication climination as
outlined in Table A.2. Using iff formula B from Figure 21:

I: (x = x) by eqintro();

{<<iffs.1$P:R-NONE>>}

2: ((x =x)or(x # x)) by disjintro(_PREVIOUS);
{<<iffs.2%P: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}

((x =x)or(x# x)) by elim(B, 2);

{<<iffs$R28:(R-APPLY (R-FIRST iffs.B$P) iffs.28P)>>}

Figure 22: Iff Elimination

B.1.7 Reasoning by Cases

Case introduction, performed with the caseintro inference rule, allows the antecedent
of an implication to be weakened by making it a disjunction.
Synopsis: caseintro(I'mplicationg, Implication,, .. ., lImplication,,)

do =0,y —0,... ¢ — 0
(¢P(0) v J)P(l) V... (/)p(m)) — 0

for any permutation p: {0...m} — {0...m]}.

The resulting realization is a function, which takes a disjunction for an argiment,,
and uses case analysis of the disjunction to determine which of the implications should
be used for the computation.

[t
-1

now
assume (X = x);
{<<case$R0O:case$RO>>}
thus ((x = x) or (x # x)) by disjintro(_PREVIOUS);
{<<case$R1:(R-LIST (LAMBDA () R-NONE) R-NIL)>>}
cid;
{<<case$R2:(R~LIST (LAMBDA () R-NONE) R-NIL)>>}
A: ({x = x) implies . (x = x) or (x # x))) by direct(_PREVIOUS):
{<<case.A$P:case$R2>>}

now
assume (X # x);
{<<case$R3:case$R3>>}
thus ((x = x) or (x # x)) by disjintro(_LPREVIOUS);
{<<case$R4: (R-LIST R-NIL (LAMBDA () R-NONE)) >>}
end;
{<<case$RS:(R-LIST R-NIL (LAMBDA () R-NONE))>>}
B: ((x £ x) implies ((x = x) or (x # x))) by direet(_.PREVIOUS):
{<<case.B$P:case$R5>>}

I (((x =x)or(x#x))implies ((x = x) or {x # x))) by caseintro(A. B);
{<<case.1$P: (LAMBDA ($F6) (R-CASE $F6
(R-LIST (LAMBDA () (R-LIST 1 case.A$P))
(LAMBDA () (R-LIST 1 case.B$P)))))>>}

2:(((x # x) or (x = x)) implies ((x = x) or (x # x))) by caseintro(3. A);
{<<case.2$P:(LAMBDA ($F19) (R-CASE $F19
(R-LIST (LAMBDA () (R-LIST 1 case.B$P))
(LAMBDA () (R-LIST 1 case.A$P Y))))>>}

Figure 23: Introduction of Cases

Casc analysis 1s performed using the caseanal inference rule.
Synopsis: cascanal(Disjunction, Implicationg , ..., Implication,,) m > 1

é()V(/)l V~--¢m» ¢0_>0,---’¢m'—’0
0

The antecedents of the Implications must be iv 1-1 correspondence with the dis-
Juncts in Disjunction. The goal formula must be the consequent of all the Implica-
tions. Using the implications A and B from Figure 23:

(x = x) by eqintro();
{<<case$R82:R-NONE>>)
3: ((x = x) or (x # x)) by disjintro(_PREVIOUS):
{<<case.3$P: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
((x =x)or (x # x)) by caseanal(3, A, B):
{<<case$R89: (R-CASE case.3$P

(R-LIST (LAMBDA () (R-LIST 1 case.A$P))

(LAMBDA () (R-LIST 1 case.B$P))))>>}

Figure 24: Case Analysis

B.1.8 Existentially Quantified Formulae

The inference rule exintro is used to introduce an existentially quantified variable.
Synopsis: exintro(Formula)

In order to introduce an existentially quantified variable with content. the existence
of an actual object must be provided. The goal formula must be the Formmnla, exis
tentially quantified, with the actual object in Formula replaced with the existential
variable. The realization of an existentially quantified formula depends upon whether
or not the formula being quantified has content.

r =z by equintro();

{<<exis$RO:R-NONE>>}

A:ex y being Any st (z = y) by exintro(_LPREVIOUS j:
{<<exis.A$P: (LAMBDA () x)>>}

Figure 25: Existential Introduction on Formmla without Content

The realization of the existential formula created in Figure 25 is simply the fune
tion to compute the value of the existential variable v. When evaluated, (LAMBDA () %)
returns x, which in this case is the value of y.

The existential formula created in Figure 26 is realized by the list of two elements:
the first element is the realization of the function to compute the value of the ex
istential variable y and the second element is the realization of the fornmla heing,
quantified, in this case the disjunction.

x ==z by equintro();

{<<exis$R2:R-NONE>>}

(x = x) or (x # x) by disjintro(_.PREVIOUS);
{<<exis$R3:(R-LIST (LAMBDA () R-NONE) R-NIL)>>}

B:ex y being Any st (2 =y) or (z # y) by exintro(_.PREVIOUS);
{<<exis.B$P: (K-LIST (LAMBDA () x) (LAMBDA () exis$R3)>>}

Figure 26: Existen..al Introduction on Formula with Content.

In Mizar-C, the consider statement is used to eliminate an existential quantifier
and introduce a new free identifier in the scope in which is it used. The type of the
variable introdnced by the consider statement must be the same as the type of the
existential variable, and the formula given to hold for the new variable must matcl
the original quantified formula. The use of the consider statement results in two
realizations:

o the computation of the value of the variable being introduced.

By considering the variable, we are requesting the value of the variable. which
must, now be computed due to the lazy semantics of the realization of the
existential quantifier.

e the realization of the body of the existential formula.

Using existential statement A from Figure 25:

consider q being Any such that (g = x) by direct(A);
{<<exis$R29:exis.A$P>>}

{<<exis.q$0: (R~APPLYO exis$R29)>>}
{<<exis$R30:R-NONE>>}

Figure 27: Existential Eliraination when Formula has no Content

‘The first realization computes the value of the existential variable by unwrapping
the fambda expression. This is accomplished by the function R~APPLYO, which applies
the lambda form to zero arguments. Since the body of the existential formula has no
content, iis realization is R-NONE.

Using statement B from Figure 26:

consider r being Any such that ((x = r) or (x # r)) by direct(B):
{<<exis$F49..xis.B$P>>}

{<<exiz.r$0: (R-APPLYO (R-FIRST exis$R49))>>}
{<<exis$R51: (R-APPLYO (R-SECOND exis$R49))>>)

Figure 28: Existential ilimination when Formmula has Content

To compute the value of the variable, the funtion that computes it st he ex
tracted from the list that realizes the existential statement. This is done using the
function R-FIRST which returns the first element of a list. The function is then
unwrapped as before. Since the body of the existential formula has content, its re
alization is the second element of the list, which is extracted using the R-SECOND
furiction and then unwrapped.

B.1.9 Tuple Manipulation

Synepsis: tuple[Tuple J(Formula)

The tuple inference rule provides a mechanism for accessing the components of i
tuple. If the referenced tuple is a term, then a Formula where the ternn veenrs posi
tively must be given as justification. Given a Tuple the goal formmla is an existential
of the form

ex yl, y2, ..., yn st Tuple = <y1, v2, ..., y>

The reason for this crude manipulation is that the hasic system has no bl in Lypes
that can be used for indexing into the data structure.

Gl

61

environ
given t being <Any, Any, Any \verb,+;
{<<t:R-NONE>> }
given Q being [<Any, Any > |;
{<<R-NONE:R-NONE>> }
given a being Any;
{<<a:R-NONE>> }
given f being (Any -> Any);
{<<f:R-NONE>> }
al: Q[<a, (fa)> ;
{<<a1$PO:R-NONE>>}
hegin
(ex g, r being Any st (<a, (fa)> =<q.r>)) by tuple[<a, (fa) >](al):
{<<tuple$RS: (R-LIST
(LAMBDA () (R-SELECT O (R-TUPLE a (FUNCALL f a))))
(LAMBDA () (LAMBDA () (R-SELECT 1 (R-TUPLE a (FUNCALL f a))))))>>}

(ex X, ¥, 2 being Any st (<x. 302> = t)) by tupleft]():
{<<tuple$Ri12:(R-LIST
(LAMBDA () (R-SELECT 0 t))
(LAMBDA () (R-LIST
(LAMBDA () (R-SELECT 1 t))
(LAMBDA () (LAMBDA () (R-SELECT 2 t))))))>>}

Figure 29: Example of Tuple Rule

£:.1.10 Disjunction Manipulation

To introduce a disjunction the inference rule disjintro is used.
Synopsis: disjintro (Formulag, Formulay, . .., Formula,),m > 0
Disjunction introduction allows one to weaken a statement by adding disjuncts to it.

(v’l)()séla"'a(r/)m
VO, V.. V0,0

where | < < nand ¢ are Formula;. All the formulac in the arguments must
be represented in the goal disjunction, but the order of each ¢; in the goal is not
important. The realization of a disjunction depends upon the realizations of cach
mdividual formula.

In disjunction A, the first disjunct is the one known to be true; in disjunction B3,
the second disjunct is the one known to be true. The disjunct whose value is unknown
is represented by R-NIL in the realization.

' @ =z by equintro();

1<<disj.1$P:R-NONE>>}

A:(z =) or (x # z) by disjintro(1):

{<<disj.A$P: (R-LIST (LAMBDA () R-NONE) R-NIL)>>)}
B: (z # z) or (z = x) by disjintro(1);

{<<disj.B$P: (R-LIST R-NIL (LAMBDA () R-NONE))>>}

Figure 30: Disjunction Introduction

Disjunction Elimination is performed using the inference rule disjelim. A disjunet
can be eliminated from a disjunction when we know the disjunet to be false,
Synopsis: disjelim (Disjunction [, Formulay. Formula,. Fornoda, yan -0
Disjunction elimination requires a disjunctive formmnla. Disjunction, and zero or more
other argument formulae, Formula; which are the negations of the disjuncts to he
eliminated. The goal may or may not be a disjunction.

o VOV LV oo,. 0/}(”). R ,()p(”)

TP VYV rreey VooV i | 000

where 0 <n < m for some total 1-1 mapping I : {0,...,m} — {oo.... m} such that
\VII S {O, . ,7”}’ ((,/1)x = A/I'(i)) \V ((,/J)l = ﬁ()l»(i)) V (*\('/)l- Tz (}I.(‘))'

In other words, the goal is a disjunction like the first argument, except it is missing, the
disjuncts that are the negations of the formulac Opgiy, and possibly has the disjunets
are rearranged. Using disjunctive formula A from Figure 30, disjunction climination
is performed.

now
assume (X # x);
{<<disj$R1:disj$R1>>}
thus contradiction by contrintro(1, _PREVIOUS);
{<<disj$R2:R-NIL>>}
end;
{<<disj$R3:R-NONE>>}
C: (not (x # x)) by negintro(_PREVIOUS);
{<<disj.C$P:R-NONE>>}
(x = x) by disjelim(A, C);
{<<disj$R6:R-NONE>>}

Figure 51: Disjunction Elimination

62

B.1.11 Conjunction Manipulation

In Mizar-C, a conjunction is considered to be a “bag” of {ormulae where the bag
contents can be added to, subtracted from, and rearranged as long as all the formulac
are true in the current context. One inference rule, conj, is used to manipulate
conjunctive formulae.

Synopsis: conj (Formulag, Formula,. ..., Formula,,),0 < m

(f)()’(/")l?' -’a‘f)n
(00((’,01&’, PN &:(}m) ‘ 0

where 0; is a well formed formula obtained from any of the ¢p. b = 1... 0, and ¢ is
any well formed formula which is not a conjunction, obtained from any of the ;.

I: (r = a)or (x # x) by magic;
{<<conj.1$P:(R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
2: Plx];

{<<conj.2$P:R-NONE>>}

3:((r=x)or (¢ #£x)) & PX] Ly conj(1,2):
{<<conj.3$P:conj.1$P>>}

12 P[] & (v =) or (x # z)) by conj(1.2):
{<<conj.4$P:conj.1$P>>}

P[x] by conj(3);

{<<conj$R5:R-NONE>>}

(r =x)or (xr#x) by conj(3);
{<<conj$R6:conj.3$P>>}

Figure 32 Examples of Conjunction Manipulation

The realization of cach conjunction is dependent upon the realizations of its con-
junctss as deseribed in Section ALl

63

B.1.12 Induction

Induction is allowed on any type using any well-founded partial order for that type.
Synopsis: induction(WellFourdedPredicate, InductionFormula)
In Mizar-C, the form of the induction rule is that of strong induction, as follows:

WellFounded[TYPE, L],

for z being TYPE holds (for y being TYPE holds LT]y.t] implics Ply]) implics Ife]
Jor z being TYPE Tolds I'[7] o

In order to do induction over a type using a given ordering, a prool that the order
is well-founded must be provided. The definitions and theorems deseribed in Figure H
are used to achieve this. For examples, see Section 4.1,

B.1.13 The Choice Rule

Synopsis: choice(Formula)
The choice rule allows the introduction of a function.

Jor a being Tr holds (cr y being Ty st Plr.y])
ex fbeing Te — Ty st (for r being Ta holds Ple, (f r)])

e Section 4.1 for further discussion. As implemented, the choice mle is inconve
nient in that is does not return the fact the fis total. This bhecomes a problen when
(f x) does not ocear positively in P[],

B.1.14 Guarded Choice
Syropsis: gchoice(Formula)
The guarded choice rule allows the introduction of a partial function.

Jor x being T holds Guard[x] implics (cx y being Ty st Ple,y])
cr fbeing Tr — Ty st (for o being Tr holds Gruardfe] tmplics Plr. (fr)])

See Section 4.2 for further discussion.
B.1.15 Definitions
The define construct in Mizar-C permits the definiticn of new predicates.
label : define Predicate Name of variable list by Formula

where variable list is of the following form:
variable names being varizble type, ..., variable names heing variable type

See Section 4.3 for further explanation.

6

65
B.2 Non-constructive Inference Rules

The rules in this section are inherently non-constructive, and never produce any
formulae that have content.

B.2.1 Magic

Synopsis: magic

The magic inference rule allows the system to accept any well-formed formula ¢
without references to another formula. The realization of the generated formmla has
the correct shape according to the realization rules for its type, but has no computa-
tion associated with it.

(P[x] & Ply]) by magic();
{<<mag$R25:R-NONE>>}
(Plx Jor Ply]) by magic();
{<<mag$R26: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
(ex r being Any st (r = x)) by magic();
{<<mag$R29: (LAMBDA () $EX28) >>}
(ex r being Any st ((r = x) or (r # x))) by magic();
{<<mag$R35: (R-LIST

(LAMBDA () $EX34)

(LAMBDA () (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))))>>}

Iigure 33: Use of Magic Inference Rule

B.2.2 Reverse Implication

In order to perform reverse implication elimination you must use the revimpiinference
rule.

Synopsis: revimpl(Implication | Iff , Neglormula)

This rule is very similar to implication elimination, except it uses the regated conclu-
sion of the implication to conclude the negated antecedent. It is also used for reverse
iff elimination, where the NegFormula is the negation of cither the left or right side
of the il formula.

—‘0,(}5-—-)0 _'0’¢H0 _'¢7¢H0
-1¢ ﬁqﬂ -0

66

envircn
given P, ¢ being [Any |;
{<<R-NONi::R-NONE>> <<R-NONE:R-NONE>> }
begin
1: (P[x] i-vuiies Q[x]) by magic();
{<<revimp.:$P:R-NONE>>}
2: (not Q[x | i-v magic();
{<<revimp.ii:’:R-NONE>>}
3: (not P[x]) bv revimpl(1, 2);
{<<revimp.3$P:-KONE>>}
4: (P[x] iff Q[x ;} by magic();
{<<revimp.4$P:R-NONE>>}
(not Q[x]) by revimpl(4, 3);
{<<revimp$R45:R-NONE>>}
(not P[x]) by revimpl(4, 2):
{<<revimp$R46:R-NONE>>}

Figure 3:4: Examples of Reverse Implication Rule

B.2.3 Law of Excluded Middle

Synopsis: exmiddle
The Law of Excluded Middle allow us to create a new formula:

0 or =0|~0 0or 0
where 0 is any well-formed formula without any undefined variables.

(P[x]~cr (not P[x])) by exmiddle();
{<<exmid$R52:R-NONE>>}

Figure 35: BExcluded Middle Inference Rule

B.2.4 Negation Introduction
Synopsis: negintro(Implication)

0 — contradiction

—0

Negation introduction is used along with contradiction introduction for proving a
negated formula 0, by assuming 0 and proving that a contradiction follows.

=]
-1

now
assume a: (x # x);
{<<negint$R60:negint$R60>>}
(x = x) by eqintro();
{<<negint$R57:R-NONE>>}
thus contradiction by contrintro(a, -PREVIOUS);
{<<negint$R65:R-NIL>>}
end; {<<negint$R68:R-NONE>>}
(not (x # x)) by negintro(_PREVIOUS);
{<<negint$R69:R-NONE>>}

Figure 36: Example of Negation Introduction

B.2.5 Negation Elimination
Synopsis: negelim(Formula)

()

0

Negation Elimination reduces the number of nots in - ont of a formula by two.

B.2.6 Contradiction Introduction

Synopsis: contrintro(Formulay, Formula m >
1 * m

0()7) (}m

contradiciion

Contradiction introduction is used in now reasonings in a “proof by contradiction™
argument. The argument formulae must exhibit a contradictory pair of formulae; this
means that either there are two formulae 0; and 0; that directly contradict cach other,
or else one of the §; is a conjunction where two of its conjuncis contradict each other.
See Figure 36 for an example of use of this rule.

B.2.7 Contradiction

Synopsis: contra(contradiction)

contradiction

0

The contra rule is used to introduce any well-formed formula in the presence of
contradiction.

now
assume a: (x <> x);
{<<cont$R94:cont$R94>>}
(x = x) by eqintro();
{<<cont$Rr98:R-NONE>>}
contradiction by contrintro(_.PREVIOUS, a):
{<<cont$R101:R-NIL>>}
thus P[x | by contra(_.PREVIOUS;
{<<cont$R104:R-NONE>>}
d;
<cont$R107 :R-NONE>>}

Figure 37: Example of Contra Rule
I

B.2.8 Equality Introduction

Synopsis: eqintro(Formul:)
This rule allows the introduction of a term equality. If the equality is of a vaviable o
defined in the current context, then vo reference Formula is NeCessary.,

¢=¢
The equality rule also allows the extraction of a term t from a Formula 0.

0

=1t

The goal formula is then an equality of a term (f, and the referenced Tormnla ¢
must make explicit positive mention of the term.

{8

69

environ
given P being [Any |;
{<<R-NONE:R-~NONE>> }
given [being (Any -; Any);
{<<f:R-NONE>> } given x being Any;
{<<x:R-NONE>> }
A: Pl(fx)];
{<<A$P88:R-NONE>>}

begin
(x = x) by eqintro();
{<<eq$R89:R-NONE>>}

((fx) = (fx)) by eqintro(A);
{<<eq$R90:R-NONE>>}

Figure 38: Equality Introduction

B.2.9 DeMorgan’s Laws
Synopsis: demorgan(Formula)
The DeMorgan’s Laws included in Mizar are very much like the classical ones.
(/)O\‘/(plv-nvén ¢0A¢1/\"~/\¢n
~(Op0) Aoy A+ Alpiy) ~(Opio) V Op(1) VoV Oppy)
—'(¢0V¢]V'--VC‘{)7L) _'(¢0A¢1/\-'-/\.é7l)
07,(0) A 0,,(1) Ao A 0,,(,,) 0,,(0) % 0],(1) V...V 01,(,1)

where in cach of the above, ¢; =5 Upiiy or # &i = 0,5y, for a permutation p :

{0...n} = {0...n}.

B.2.10 Conversion Between Disjunctions and Implications

There are two inference rules imp2disj and disj2imp that preserve the classical rea-
soning about the relationship between implication and disjunction.
Synopsis: imp2disj(Implication)
This rule transforms an implication into a disjunction.

o— 0 (—¢) — 0

(=) VOOV (~g) dVO|OVS
Syunopsis: disj2imp(Disjunction)
This rule transforms a disjunction into an implication.
¢Vl (~4)Vvo
) =0 $-90

environ
given P, Q being [|;
{<<R-NONE:R-NONE>> <<R-NONE:R-NONE>> }
begin
1: (not (P[Jor Q[])) by magic():
{<<demorg.1$P:R-NONE>>}
((not P[]) & (not Q[])) by demorgan(1);
{<<demorg$R30:R-NONE>>}
2: (not (P[] or (not Q[]))) by magic();
{<<demorg.2$P:R-NONE>>}
((not P[J) & Q[]) by demorgan(2):
{<<demorg$R31:R-NONE>>}
3: ((not P[]) or (not Q[])) by magic():
{<<demorg.3$P: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
(not (P[] & Q[])) by demorgan(3);
{<<demorg$R33:R-NONE>>}

Fizo o0 2 amples of Demorgan Rule

((not P[]) or P[]) by magic();

{<<impdisj$R39: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
(P[] implies P[]) by disj2imp(_.PREVIOUS);

{<<impdisj$R41:R-NIL>>}

((not P[])or P[]) by imp2disj(.PREVIOUS);

{<<impdisj$R42:R-NIL>>}

Figure 40: Conversion between Implication and Disjunetion

i

Appendix C

Basic Bit String Extensions

The following inforimation about the basic bit string data tvpe has been added to

Mizar- ('

given Bits being [Any]
{<<R-NONE:R-NONE>> }
given 0,1, nil being Bits rhy bit-0. bit-1. bit-nil;
{<<bit-0:bit-0>> <<bit-1:p0it-1>> <<bit-nil:bit-nil>> }
given cat being (<Rlits. Bits > => Bits) rbyv bit-cat:
{<<bit-cat:bit-cat>> }
given split being (<Bits, Bits > ~> <Bits, Bits >) rhy bit-split:
{<<bit-split:bit-split>> }
given bits_len It being [Bits, Bits |:
{<<R-NONE:R-NONE>> }
given bits_len_eq being [Bits, Bits |:
{<<R-NONE:R-NONE>> }
given LT being [Bits, Bits |;
{<<R-NUNE:R-NONE>> }
BA nii_not_1: (nil <> 1) rby R-NONI;
{<<R-NONE:R-NONE>>}
BA nil_noet_0: (nil <> 0) rby R-NONE:
{<<R-NONE:R-NONE>>}
BA I_not_f): (1 <> 0) rhy R-NONL;
{<<2-NONE:R-NONE>>}
BA.nil.or_not: (for x being Bits Lolds ((x = nil) or (x <> nil)
) rby bits-ba-nil or-not;
{<<bits-ba-nil-or-not:bits-ba-ril-or-not>>}
BA_ler_It nil: (for x being Bits holds
((x <> nil) iff bits_len_lt!nil. x])) rby R-NONE;
{<<R-NONE:R-NONE>>}
BAen It asym: (for x. v being Bits holds
(bitslen_t[x. v | implics (not bits_len_It[y, x]))) rby R-NONE;
1<<R~NONE:R-NONE>>}
BAlenlttrins: (for X, y. z being Bits holds (bits_len_It]x. v | implies

71

(bitsden_It[y, z] implies bits_len_lt[x. z]))) rbv K-NONE;
{<<R-NONE:R-NON&>>}
BA_len_not_lt: (for x, ¥ being Bits holds ((not bits_len_It[x. v]) implios

(bitsden_ltfy, x | or bitsden_cqfx, v]))) rby bits-ba-len-not-1t;
{<<bits-ba-len-not-1lt:bits~ba-len-not-1t>>}
BA_len_eq_no.it: (for x. » being Bits holds (bits_len_eqfx. v | ifl

(not (bitslen_It{x. v] or bits_len_lt[v. x])))) rby R-NONE:
{<<R-NONE:R-NONE>>}
BA_len_eq_1: (for x being Bits holds

(bitsden_eqll, x] I ((x = 1) or (x = 0)))) rhy bits-ha-len-eq 1:
{<<bits-ba-len-eq-1:bits-ba-len-eq-1>>}
BA_len_eq.refl: (for x being Bits holds bits_len_eqfx. x |} rby B-NONE:
{<<R-NONE:R-NONE>>}
BA len_eq_sym: (for x, y being Bits holds

(bitsden_eq[x, v | impiies bits_len_eqfy. x])) rbv R-NONI-:
{<<R-NONE:R-NONE>>}
BAllen_eq_trans: (for x. y, z being Bits holds (bits_len_eqx. v | implies

(bits_eu_eqfy. z | implies bits_len_eq[x. 7]})) rby R-NONI:
{<<R-NONE:R-NONE>>}
BA_cat_nil: (for x being Bits holds

(((cat <nil, x >) = x) & ((cat <x, nil >) = x)) rby R-NONL:
{<<R-NONE:R-NONE>>}
BA_catden_cq: (for x. y. z being Bits holds (bitslen_eqfy. »] il

bits len_eq[(cat <x, v >), (cat <x,z>)])) rby R-NONI:
{<<R-NONE:R-NONE>>}
BA_catden lt: (for x, y, z being Bits holds (bits_lon_It[y. 7 | ill

bits len_lt[(cat <x, y >), (cat <x, z>)])) rby R-NONF:
{<<R~NONE:R~NONE>>}
BA_cat_both_len eq: (for x, y being Bits holds

bits.len_eq[(cat <x,y >), (cat <y. x>)]} rby R-NONI:
{<<R-NONE:R-NONE>>}
BA_cat: (for x, y being Bits holds

(ex z being Bits st (2 = (cat <x, y >)))) rhy bits-ba-cat;
{<<bits-ba-cat:bits-ba-cat>>}
BA_cat_assoc: (for x, y, z being Bits holds

((cat <(cat <x, 5 >). 7z >) = (cat <x. (cat <y, z>)>))) rhv kR NONF:
{<<R-NONE:R-NONE>>}
BA_cat_split: (for x, y being Bits holds

(x = (cat (split <x,y >)))) rby R-NON;
{<<R-NONE:R-NONE>>}
BA_ split_cat: (for x, y being Bits holds

((split <(cat <x,y >), x>) = <x, ¥ >)) rhy R-NONE:
{<<k-NONE:R~NONE>>}
BA_split: (for x, y being Bits holds

(ex zI, 22 being Bits st ((split <x, y >) = <z1, 22°5))) rhyv bits-ba-split;
{<<bits-ba-split:bits-ba-split>>}

BA_split_1: (for x being Bits aolds (((split <1, x>} =<1, nil >) or
((split <1, x >) = <unil, 1>))) rby bits-ba-split-i,

{<<bits-ba-split-!:bits~ba-split-1>>}

BA _split_eq: (for x, y, z being Bits holds (bits_den_eq(y. z | implies
((split <x, y >) = (split <x, z>)))) rby R-NONE;

{<<R-NONE:R-NONE>>}

BA _split _eq_rev: (for x, y, z being Bits holds
((not bits_ien_ltfx, y]) implies ((not bits_len_lt[x, z]) implies
(((split <x, y>) = (split <x, z>)) il
bits_len_eqfy, z])))) rhy R-NONE;

{<<R-NONE:R-NONE>>}

BA split _big: (for x, y heing Bits holds

((not bits_len_ltfy, x]) iff ({split <x.y >) = <x, nil >))) rby K-NONE:

{<<R-NONE:R-NONE>>}
BA_LT: (for x, y being Bits holds

(bits_len_It[x, y [il LT[x, v])) rby R-NONE:
{<<R-NONE:R-NONE>>}

Bibliography

[

[9]

[10]

(1]

[12]

S. Berardi. Pruning simply typed lambda-terms. Teehnical report. Dipartiniento
di Informatica dell'Universita’ di Torino (University of Turin, Ttaly).

Avra Cohmn. The notion of proof in hardware verification. Journal of Automated
Rrasoning, 5:127-139, May 1989.

R.L. Constable, S.F. Allen, ILM. Bromley, W.R. Cleaveland, J.1°. Crener, RV,
Harper. D.J. Howe, T.B. Knoblock. N.I". Mendler, P. Pananeaden. J1. Sasaki.
and S.F. Smith. fmplementing Mathcmatios with the NCPRL Proof Devdlope nt
System. Prentice-Hall, Englewood Cliffs. New Jersey, 1986.

Thierry Coquand. Ou the analogy hetween propositions and tvpes. In Gerapd
Huet, editor, Logical Foundations of Functional Prograniming, 'The U'T Year of
Programming Series, pages 399-418. Reading, Massachusetts. 1990, Addison
Wesley.

J. N. Crossley and J. B. Remmel. Prools, programs and run times, 25 oner

1991.
G. Dowek ct al. The Coq Proof Assistant Uscr's Guide, February 1992

P. Dybjer. Program verification in a logical theory of constructions. Leefur
Notes in Computer Science, 201:334- 349, 1985.

J. H. Fetzer. Program verification: The very wdea. Communications of the ACA;
31{9):1048-1063, September 1988.

J. Gallier. Ou the correspondence between proofs and Jambda torms, Jannary

1993.

Susumu Hayashi and Hiroshi Nakano. PX: A Computaliona: Logic. The MU
Press, Cambridge, Masschusse's, 1989.

E. C. R. Hehner. a Practical Theory of Progrenuning. University of Toronto,
Derartment of Computer Science, 1992, Draft.

M. C. Henson. Realizability models for program construction. Leeture Notos o
Computer Science, 375:256 272, June 1989Y. Proc. Math of Prog. Constr.

74

(13]

[14]

[17)
1]

[19]

~1

Tt

M. C. Henson and R. Turner. A constructiveset theory for program development.
Lecture Notes in Computer Sciencey 338:329-347, 1538, Proc. 8th conf. on FST

& TCS.

H. J. Hoover and P. Rudnicki. Iutroduction to Logic in Compuling Science.
University of Alberta, Departiment of Computing Science, 1993.

S.C. Kleene., Introduction lo Mctatmathematies. Van Nostrand. 1932,

B. Knight. Safe strict evaluation of redundancy-free programs from proofs. Mas-
ter’s thesis, University of Victoria, 1994,

P. A, Lindsay. A survey of mechanical support for formal reasoning. Soffwar
Fngineering Journal, pages 3 -27. January 1988,

Z. Manna and R. Waldinger. Fundamentals of deductive program synthesis.
[ERLE Transactions on Sofware Enginecring. 13(8):671-70-1. August 1992,

P. Martin-Lof. Constructive mathematics and computer progranmming. In
C.AR. Hoare and J.C.. Shepherdson. editors, Mathematical Logic and Program-
ming Languages. pages 167 184, Prentice/Hall, 1985,

L5, Moore et al. Special issne on system verification. Journal of Automated
Reasoning, 5:109-530, April 1989.

C. Murthy. Ertracting Constructive Content from Classical Proofs. Phl) thesis.
Cornell University, August 1990.

N. N. Nepejvoda. A bridge between constructive logic and computer program-
ming. Theovetical Computer Scienee, 90(1):253-270, Novemiber 1091,

M. Parigot. Recursive programming with proofs. Theoretical Computer Scirnce,
94:335--356, 1992,

Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator. Texts and
Yy

Monographs in Computer Science. Sprouger-Verlag, Berlin-Heidelberg-New York,

1989,

P. Rudnicki, Y. Nakamura, and A. Trybulec. Articles AMIZL .. AMIS SCM_L,
Mizar Data Base, follow directions in http://web.cs.ualberta.ca/~piotr.

Y. Takayata. Extraction of redundancy-free programs from constructive natural
deduction proofs. Journal of Symbolic Computation, 12:29-69, 1989,

A5 Troelstra and D, van Dalen. Constructivism in Mathematics: An Tatrodiue-
tion, voli I and 11, voiume 121 & 123 of Studics in Logic and the Fouadations of
Mathematies. North-Holland, Amisterdam, 1988,

[28] A. Voronkov. Higher order functions in first order logics. Lecture Note s in
Computer Science. 601, May 1992,

[29] A. Walenstein, J. H. Hoover, and P. Rudnicki. Programming with constructive
proof in the MizZAR-C proof environment. Tochnical Report 92-12, Viiversity of
Alberta, 1992,

