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ABSTRACT

In fault detection and assessment, a comprehensive understand-
ing and investigation of advanced signal processing methods is re-
quired. The empirical mode decomposition (EMD) method is an
adaptive time-frequency domain signal processing method that is
completely driven by the data itself. The cubic spline interpolation
method has been used to approximate the local mean in the sifting
process of EMD, where problems of undershooting and overshoot-

ing have been identified.

This study explores approaches to improving the approximation of
the local mean to obtain better EMD performance. In this thesis,
the modified monotone piecewise Hermite interpolation (MMPHI)
method is applied for envelope-mean approximation, because it
demonstrates advantages over the cubic spline method. A type of
direct approximation of the local mean, i.e. the windowed local
mean approach, is also investigated and its merit in identifying im-
pulses is demonstrated. Performance of MMPHI and the windowed
local mean approach are also demonstrated when these are used to

analyze experimental data obtained from a gearbox.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The concepts of signals and systems arise in all areas of technology, ranging
from appliances found in homes to very sophisticated engineering devices. In
fact, it can be argued that much of the development of high technology is a
result of advancements in the theories and techniques of signals and systems.
Particularly in the research area of reliability and maintenance, development of
condition-based maintenance requires a profound understanding of and inves-
tigation into advanced signal processing methods. Reliability has always been
an important aspect of the assessment of industrial products and equipment.
Good product design is, of course, essential for products with high reliability
requirements. No matter how perfect the product design is, however, prod-
ucts deteriorate over time because they are operating under stress or load
in the real environment, often involving randomness. Maintenance has thus
been introduced as a way of assuring a satisfactory level of reliability during
the useful life of a physical asset. The focus of maintenance techniques has
changed from breakdown maintenance, to time-based preventive maintenance,

to condition-based maintenance (CBM) [38].
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1.1 Introduction 2

Condition-based maintenance is a technique that recommends maintenance
actions be based on the information collected through condition monitoring.
CBM attempts to avoid unnecessary maintenance activities by taking action
only when there is evidence of a physical asset’s abnormal behavior. There are

three key steps in CBM [33]:

1. Data Acquisition (information collecting)-to obtain data relevant to sys-

tem conditions;

2. Data Processing (information handling)—to handle and analyze the data
or signals collected in step 1 for better understanding and interpretation

of the data;

3. Maintenance Decision Making (decision making)-to recommend efficient

maintenance policies.

The technologies of signal processing play a very important role in fault detec-
tion of machinery since it bridges the gap between collected physical signals
and the signatures of faulty conditions. These technologies can be categorized
into two types: waveform data analysis and image processing. Time domain
analysis and frequency domain analysis are techniques of waveform data anal-
ysis that were frequently discussed in past decades. Recently, time-frequency
domain analysis has become a focus; its algorithms and technologies have
been discussed in hundreds of paper. This thesis studies the empirical mode
decomposition (EMD), one time-frequency domain signal processing method,

to investigate the possible improvements in the performance of applications.
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1.2 Motivation 3
1.2 Motivation

In time domain analysis, some factors are calculated directly from the time
waveform itself to indicate the statistical features of signals. Fourier spectral
analysis, which examines the global energy-frequency distribution of signals
using the Fourier transform, is the most frequently used form of frequency do-
main analysis. Unfortunately, the data, whether from physical measurements
or numerical modelling, will most likely have one or more of the following

problems:
e the total data span is short;
e the data are non-stationary;
e the data represent non-linear processes.

In those cases, time domain or frequency domain analysis alone may be unable
to capture meaningful signatures of signals. For example, in a project involv-
ing condition-based monitoring of slurry pump wear conditions, signals that
were collected from a slurry pump at both brand new and worn-out condi-
tions included not only vibration signals, but also pressure, current, flow rate,
and acoustic signals because they were fluctuating as well [56]. Time domain
data alone provides little information about the machine’s status because the
processes of operation are non-stationary and non-linear.

Hence, it is necessary to find an efficient signal-processing method suitable
to the data which will make it possible to exploit more information. Empirical
mode decomposition (EMD) is a new time-frequency domain signal processing
method proposed in [27]. Not only can EMD show features of signals in both

the time and frequency domains, but also it is a fully data-driven, self-adaptive
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1.3 Organization of Thesis 4

signal processing method that decomposes signals without assuming any basic
function or using any pre-determined filter. Although EMD has been proven to
be effective and robust in the analysis of non-linear and non-stationary data of
many applications, there are still a few areas that need further improvement,
as stated in the discussion section of [27]. This thesis focuses on studying
improvements of the approximation of local mean in the EMD process in order

to obtain better performance as applied to signals.

1.3 Organization of Thesis

The thesis is organized as follows. The motivation for this study is introduced
in Chapter 1. The background and relevant literature regarding data process-
ing methods, especially, the empirical mode decomposition, are reviewed in
Chapter 2. Chapters 3 and 4 are devoted to improvements in the approxima-
tion of the local mean and the verification of these improvements by simulated
examples. Finally, conclusions are drawn and future work is suggested in

Chapter 5.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Review of Data Processing Methods

Using data acquisition systems, raw data sets are collected from devices and
stored in computer systems. Pre-processing is then done to eliminate data
errors, and, thereby, reduce the possibility that analysis may be ruined by
errors. It is the next step, which is data analysis, that is the focus of this
thesis. The literature provides a variety of models, algorithms and tools for
better comprehension and interpretation of data [29]. The models, algorithms
and tools used for data analysis depend mainly on the types of data collected.
Condition monitoring data collected from the data acquisition step is versatile.

It falls into three categories [29]:

Value type Data collected at a specific time for a condition monitoring vari-
able constitutes a single value. For example, oil analysis data, ambient
temperature, atmospheric pressure, and humidity are all value type data

in most applications.

Waveform type Data collected at a specific time for a condition monitoring

variable constitutes a time series; this is often called a time waveform.
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2.1 Review of Data Processing Methods 6

For example, vibration and ultrasonic data are waveform data.

Multi-dimension type Data collected at a specific time epoch for a condi-
tion monitoring variable is multi-dimensional. The most common multi-
dimensional data is image data such as infrared thermographs, X-ray

images, visual images, and so on.

Data processing for waveform and multi-dimension of data is also called
signal processing. Various signal processing techniques have been developed
to analyze and interpret waveforms to extract useful information for further
diagnostic and prognostic purposes.

In condition monitoring, the most common waveform data are vibration
signals and acoustic signals. Other waveform data include ultrasonic signals,
motor current, flow rate, and so on. In the literature, there are three main
categories of waveform data analysis in the field of CBM and fault diagnosis:

time-domain analysis, frequency-domain analysis and time-frequency analysis.

2.1.1 Time-domain Analysis

Time-domain analysis is directly based on the time waveform itself. Tradi-
tional time-domain analysis calculates characteristic features of time wave-
form signals as descriptive statistics such as mean, peak, peak-to-peak inter-
val, standard deviation, crest factor, form factor; high order statistics: root
mean square (RMS), skewness, kurtosis, etc. In [18], crest factor is defined
as the ratio of the crest value (peak value) to the effective value (RMS), and
form factor is defined as the ratio of the effective value to the half-period mean
value. Thus, the crest factor and the form factor of a sine wave are V2 =1.414

and 7/(2v/2) = 1.111 respectively. The crest factor is calculated is to give us
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2.1 Review of Data Processing Methods 7

a quick idea of how much impact is occurring in a waveform. Impact is of-
ten associated with roller bearing wear, cavitation and gear tooth wear [43].
A perfect sine wave contains no impact; therefore crest factors with a value
higher than 1.414 imply that there is some degree of impact. The above two
factors are combined together to create a revised crest factor (RCF) by [31].
The RCF is obtained by multiplying the original crest factor and the form
factor. The average of absolute sample values for one cycle instead of half a
cycle are used for the mean value. For a sine wave as a benchmark, the RCF
is /2 = 1.571.

Kurtosis is defined as the fourth statistical moment, normalized by the

standard deviation to the fourth power, which is shown below [43].

K=—=%5 (z; —-m)*, (2.1)

where N is the total number of data points, ¢ is the standard deviation, m
is the average of the signal, and z; are the amplitudes of the signal. Kurtosis
represents a measure of the flattening of the density probability function near
the average value. A well-known value for kurtosis is 3, which is the value of a
normal distribution. As a parameter for diagnosing faults in rolling bearings,
the values of kurtosis increase with the growth of the defect. That happens
because the pulses generated are increased by the passage of the rolling ele-
ments over the defect [43]. Kurtosis is also used on the diagnosis of bearing
wear faults of pumps used in the waste water industry [53]. The reason for
using kurtosis is that vibration from an undamaged bearing is not impulsive
whereas vibration from a damaged bearing will be impulsive and will result in

a kurtosis value greater than 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Review of Data Processing Methods 8

Lin et al [35] proposed the fault growth parameter (FGP) and its revised
version, FGP1, should reflect the deterioration of a gearbox and track the gear
tooth health condition over time. FGP is defined as the part (percentage of
points) of the residual error signal which exceeds three standard deviations
calculated from the baseline residual error signal taken when the run began,

or

L
FGP =100 —}:I(ri > 7+ 309), (2.2)

i=1
where 7;’s are the residual error signal points. A series of Morlet wavelets
are used as a filter to decompose the original vibration signal and obtain the
harmonic error signal composed of vibration components from both the pinion
and the gear.The residual error signal is the sum of vibration components that
are purely due to the pinion and vibration components that are purely due
to the gear [54]. T is the mean value of the current residual signal, oy is the

standard deviation and I(-) is the indicator function defined as

1 if z> g,
I(z > o) = (2.3)

0 if z <z
The current residual signal is compared with its mean value to adjust for
possible changes in the running conditions, such as change in load, assuming
that this should not affect the standard deviation. FGP1 is defined as the

weighted part (weighted percentage of points) of the residual error signal, which

exceeds three standard deviations from the baseline residual error signal, or

L .
FGP =100 %I(ri > 7 + 30q), (2.4)

i=1

where w; = I(r; <7+300)+ (| % —1]+1), W = >F  w;, and |-] is the floor
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2.1 Review of Data Processing Methods 9

function. For a normally distributed signal, 99.7% of the signal should remain
within three standard deviations. When a gearbox is in good condition, the
vibration signal is random; thus it should conform to a normal distribution
and only 0.3% of its points have the probability of exceeding three standard
deviations. At this time, the value of FGP and FGP1 should be very low.
With the development of gear tooth faults, more and more abnormal points
will appear making both FGP and FGP1 increase significantly.

Other time-domain processing techniques include time synchronous aver-
age (TSA) [16, 39], the autoregressive (AR) model, the autoregressive moving

average (ARMA) model [4, 10], and principal component analysis (PCA) [7].

2.1.2 Frequency-domain Analysis

Frequency-domain analysis is based on the transformed signal in the frequency
domain. The advantage of frequency-domain analysis over time-domain anal-
ysis is its ability to easily identify and isolate certain frequency components
that are of interest. The most widely used conventional analysis is the spectral
analysis by means of fast Fourier transform (FFT). Fourier proved that any
periodic function z(t) can be represented as a sum of sinusoids with frequencies
which are integer multiples of the frequency of z(t), i.e. if a continuous-time
function, z(t), is periodic with a time period of Ty, it can be represented by a

Fourier series as in [9]

z(t) = i cetokt (2.5)

k=—o0
where () is the frequency of the function given by %, and ci’s are coeflicients
given by

1 rto+Tt .
o= — / T B (t)em TR0kt gy, (2.6)
T(] to
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2.1 Review of Data Processing Methods 10

For non-periodic signals there is also a representation in terms of complex
exponentials which is called a continuous-time Fourier transform (CTFT) {42]:

X(Q) = / = o) %4, 2.7)

-0

These concepts can be extended to discrete-time signals by using discrete-time

Fourier transform (DTFT); that is,

X(w) = i z(n)e " dt, (2.8)

n=—00

where n is the length of the discrete series. The discrete Fourier transform is
a sampled version of DTFT that can be processed by computers. An N-point
DFT is defined as,

N-1
X(k)= 3 z(n)e ¥ 0<E< N -1. (2.9)

n=0

Fourier spectral analysis has provided a general method for examining
global energy-frequency distributions. As a result, the term “spectrum” has
become almost synonymous with the Fourier transform of data because the
Fourier transform has dominated data analysis efforts since its introduction,
and has been applied to almost all kinds of data [2, 44, 53]. The most com-
monly used tool in spectral analysis is the power spectrum. It is defined as
Szz(k) = X(k)X*(k), where “¥” denotes the complex conjugate. The complex
conjugate of a complex number, z = a + bi, is Z = a — bi. Fourier transform is
commonly used as the first step in signal processing because it provides a basic
sense of the collected signals. It can, however, reflect only averaged spectra

in the frequency domain and it gives no information regarding time for some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Review of Data Processing Methods 11

observed peaks.

Besides the wide acceptance of the power spectrum, other useful spectra
for signal processing have been developed and have been shown to have their
own advantages over the FFT spectrum in certain cases. Cepstrum has the
ability to detect harmonics and sideband patterns in a power spectrum. There
are several versions of cepstrum [24], among them, a power cepstrum, which
is defined as the inverse Fourier transform of the logarithmic power spectrum,

or

5= FT7HIn(Ses(k)). (2.10)

The cepstrum is highly sensitive to recurrent patterns such as those generated
by local faults. It can be useful in interpreting the spectrum and as a tool
for the detection of periodic structures [3]. It has been found, however, that
cepstrum is not sensitive to the different progression levels of same faults [16].

Other frequency-domain methods include high order spectrum [52], AR
spectrum [17], and ARMA spectrum [47] based on the AR model and the

ARMA model respectively.

2.1.3 Time-frequency Domain Analysis

One limitation of frequency-domain analysis is that it is unable to handle
non-stationary waveform signals, which are very common when faults occur
on machines [29]. Thus, time-frequency analysis, which investigates waveform
signals in both the time and frequency domains, has been developed for non-
stationary waveform signals.

The simplest way of performing a time-frequency analysis is certainly to
consider a non-stationary signal as a series of quasi-stationary segments for

which the stationary assumption is justified in each segment. Short-time
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2.1 Review of Data Processing Methods 12

Fourier transform (STFT, also called spectrogram) offers a constant resolu-
tion in the time as well as in the frequency domain [13]. The transform is

expressed as

Xe(bw) = | Wt = B ()t (2.11)

—o0
where w(-) is the window function, and b and w are the time and frequency
scale respectively. This method restricts the Fourier transform within a speci-
fied window which slides along the time axis. Wang and McFadden [51] applied
the STFT to the calculation of the time-frequency distribution of a gear’s vi-
bration signals. They showed that selecting the Gaussian function as the
window function is suitable for the calculation of the spectrogram, giving a
representation which is free from ripple and easy to interpret. It is a drawback
mentioned in [13], however, that a good frequency resolution can be achieved
only by means of a large window, which results in poor time resolution; con-
versely, good time resolution implies a short window, which results in poor
frequency resolution.

Wavelet theory has developed rapidly in many areas in the past decade due
to its flexibility and its efficient computational implementation. The continu-
ous wavelet transform (CWT) of a square-integrable (i.e. [*° |z(t)|?dt being
finite) and continuous-time signal z(¢) is the inner product between z(t) and

the wavelet, U, ;(t), which gives wavelet coefficients [59]

1t =D
Xul(a,b) = / 2(t) ¥ (L2t (2.12)
\/El‘—l —00 a
where U*(t) is the complex conjugate of the mother wavelet function, ¥(¢); a

is the scale parameter; and b is the time parameter. Wavelet transform investi-

gates the similarity of the original signals to a set of scaled and shifted versions
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2.1 Review of Data Processing Methods 13

of the mother wavelet. Types of mother wavelets include Haar, Daubechies,
Symlets, Coiflets, Meyer, Mexican Hat, and Morlet wavelet. They have been
widely applied in the detection of gear faults [6, 36, 55]. Corresponding to the
DTFT, there is also a discrete wavelet transform (DWT) but the discretized

parameters are scale and time parameters, i.e. a = 27, 2% =k, and

Xo(k, ) = —— /+°° s (=2 (2.13)

V2 J-oo 2
where j and k are integers. The DWT behaves like a filter bank that decom-
poses an original signal, z(t), into Approximation Coefficients, A;, and Detail
Coefficients, Dy, at the first level by a low pass filter and a high pass filter
respectively. A higher level approximation vector, A;_;, is decomposed into
A; and D; again until the level reaches a preset number, J. The wavelet tree

for J = 3 is illustrated in Fig. 2.1 [41]. The application of the DWT in fault

Figure 2.1: A three-level wavelet tree [41).

detection of spalling in bearings, worn gears and washing machines can be
found in (22, 40, 49)].

A major problem of wavelet is its non-adaptive nature. Once the mother
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2.2 The Empirical Mode Decomposition Method 14

wavelet is selected, one has to use it to analyze all the data. It can be said that
the selection of basis of the decomposition is a priori. In reality, we cannot have
enough data to cover all possible points in the phase plane, therefore, most of
the signals to be dealt with are transient in nature so that non-stationary and
non-linear properties cannot be ignored. Locality and adaptivity are the neces-
sary conditions on which to base an expanding non-linear and non-stationary
time series. To deal with this problem, a new manner is introduced in [27]
where a signal is written as a finite sum of intrinsic mode functions (IMFs).
The method of obtaining this decomposition is called the empirical mode de-
composition (EMD) method. The method is adaptive and is driven by the
signal itself. Details of the EMD method will be given in Section 2.2.

Other time-frequency domain techniques include Choi-William distribution

[14], Wigner-Ville distribution (WVD) [15], and S-transform [48].

2.2 The Empirical Mode Decomposition Method

In the last section, we reviewed some time-frequency domain signal processing
methods. In contrast to all the previous methods, Huang et al [27] introduced
a new method that is intuitive, direct, a posteriori and adaptive, with the basis
of the decomposition based on, and derived from, the data. Actually, Huang
et al proposed a general approach which requires two steps in analyzing the
data. The first step is the empirical mode decomposition (EMD) which decom-
poses the data into a number of intrinsic mode function (IMF) components,
thus expanding the data on a basis derived from itself. The second step is
the Hilbert spectral analysis (HSA) which applies the Hilbert transform to the
decomposed IMFs and constructs an energy-frequency-time distribution, des-

ignated as the Hilbert spectrum, from which the time localities of events will
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2.2 The Empirical Mode Decomposition Method 15

be preserved. In other words, this method uses the instantaneous frequency
and energy rather than the global frequency and energy defined by Fourier
spectral analysis. EMD is actually a pre-step of HSA that decomposes the

data into components for which the instantaneous frequency can be defined.

2.2.1 Intrinsic Mode Functions

Physically, the necessary conditions for defining a meaningful instantaneous
frequency are that the functions are symmetric with respect to the local zero
mean, and have the same number of zero crossings and extrema. As a result,

an intrinsic mode function (IMF) is defined by two conditions:

1. in the whole data set, the number of extrema and the number of zero

crossings must either be equal or differ at most by one;

2. at any point, the mean value of the envelope defined by the local maxima

and the envelope defined by the local minima is zero.

The first condition is obvious; it is similar to the traditional narrow band
requirements for a stationary Gaussian process. The second requirement mod-
ifies the classical global requirement to a local one; it is necessary so that
the instantaneous frequency will not have the unwanted fluctuations induced
by asymmetric wave forms. A local mean is the curve that makes the data
purely symmetric after being subtracted from the data. Ideally, the require-
ment should be “the local mean of the data being zero”. For non-stationary
data, the “local mean” involves a “local time scale” to compute the mean,
which is impossible to define. As a substitution, “envelope mean” which is de-
fined by the local maxima and the local minima is used to force local symmetry

instead. This is a necessary approximation to avoid the definition of a local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 The Empirical Mode Decomposition Method 16

averaging time scale. This type of approximation is called an “envelope-mean”
approximation.

The name “intrinsic mode function” has been adopted because it represents
the oscillation mode imbedded in the data. With this definition, the IMF in
each cycle, defined by the zero crossings, involves only one mode of oscillation;
no complex riding waves are allowed. With this definition, an IMF is not
restricted to a narrow band signal, and it can be both amplitude and frequency
modulated. In fact, it can be non-stationary. As discussed above, purely
frequency or purely amplitude modulated functions can be IMFs even though
they have a finite bandwidth according to the traditional definition. A typical
IMF is shown in Fig. 2.2 (Fig. 2 of (27]).

ﬁ.1 ¥ T 3 ¥ T ¥
i |

Aol ;
! \\ f\ﬂij\f e ‘*ﬁ\j\ﬁf\ J;’ \ /f%\ 8
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Figure 2.2: A typical intrinsic mode function with the same number of zero
crossings and extrema, and symmetry of the upper and lower envelopes with
respect to zero [27].

2.2.2 The Sifting Process

Unfortunately, most of the data are not IMFs. At any given time, the data

may involve more than one oscillatory mode so that we have to decompose the
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2.2 The Empirical Mode Decomposition Method 17

data into IMF components. The decomposition is based on three assumptions:
e the signal has at least two extrema—one maximum and one minimum;

e the characteristic time scale is defined by the time lapse between the

extrema,;

e if the data is totally devoid of extrema but contains only inflection points,
then it can be differentiated one or more times to reveal the extrema.
Final results can be obtained by integration(s) of the components. Ac-

tually, for vibration and acoustic signals, this case is rarely seen.

The time lapse between successive extrema is adopted as the definition of the
time scale for the intrinsic oscillatory mode, not only because it gives a much
finer resolution of the oscillatory modes, but also because it can be applied to
data with a non-zero mean, either all positive or all negative values, without
any zero crossings. A systematic way of extracting the oscillatory modes, called
the sifting process, is described as follows.

By virtue of the IMF definition, the decomposition method can simply
use the envelopes defined by the local maxima and minima separately. Once
the extrema are identified, all the local maxima, E,,,.(t), are connected by a
cubic spline line as the upper envelope, and all the local minima, E,;,(t), are
connected by a cubic spline line as the lower envelope as well. Their mean
is denoted as my, and the difference between the data and mq; is the first

component, hjy, i.e.

z(t) — mn = hn. (2.14)

Here, the symbols m;; and h;; mean they are variables obtained for the jth

decomposition level and kth iteration operation. The first sifting process is
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2.2 The Empirical Mode Decomposition Method 18

illustrated in Fig. 2.3 (a)-(c) (Fig. 2.3 (a) gives the original signal; Fig. 2.3 (b)
gives the data in the thin solid line, the upper and the lower envelopes in the
dot-dashed lines, and their mean in the thick solid line, which bisects the data;
and Fig. 2.3 (c) gives the difference between the data and the local mean as
in equation (2.14)) .

Ideally, hq; should be an IMF, because the construction of hy; described
above seems to have been made to satisfy all the requirements of IMF. In
reality, however, the cubic spline interpolation can generate new extrema, and
shift or exaggerate existing ones. The sifting process serves two purposes: to
eliminate riding waves, and to make the wave profiles more symmetric. Toward
this end, the sifting process has to be repeated a number of times. In the second

sifting process, hj; is treated as a new signal, then

hll — Mg = h]_2, (215)

where 12 is the mean of the upper and lower envelopes of h;;. We can repeat

this sifting procedure &k times, until A is an IMF, that is

hyk—1) — mix = ha, (2.16)

and the result, the first IMF from the signal, is denoted as

e = hag. (2.17)

We should have a criterion to determine when to stop the process of finding
the first IMF and subsequent IMFs. It should not be too extreme because

IMF components should still retain enough physical sense of both amplitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 The Empirical Mode Decomposition Method 19

03— . » ;
(@
02 A N
3 01b ,"}/ S’X‘x 7 I
g ) f‘ § g{‘% ;f“&i , { ’\‘% g{ \51 f
g o WA AN \;f Y | Wﬁk f%"« M VAN
w1t %!j iv ‘ j ‘wg

()
0.2k
g 0.1 A ; : f\ jﬁ r
BV VAN, \/‘v CVEVAVIVRY. \/
"0 \U -
R Y Y s T h2

Time {s]

Figure 2.3: Illustration of the sifting process (Fig. 3 of [27]).
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2.2 The Empirical Mode Decomposition Method 20

and frequency modulations. This can be accomplished by limiting the size of

the standard deviation, SD, computed from two consecutive sifting results as

&gy (®) = hu(t)?
SD = ;)[ TEmG . (2.18)

A typical value for SD can be set between 0.2 and 0.3 [27].
Overall, ¢; should contain the finest scale or the shortest period component

of the signal. We can separate ¢; from the rest of the data by
z(t) —c1 =y, (2.19)

Since the residue, 71, still contains information of longer period components,
it is treated as new original data and subjected to the same sifting process as
described above. This procedure can be repeated on all the subsequent 7;’s,
and all the subsequent c;’s are obtained by using the same stopping criterion

as the first IMF. The result is

Ty —Cy =179
}. (2.20)

Th—1—Ch =Tp

The whole sifting process can be stopped by any of the following predeter-
mined criteria: when the component, ¢,, or the residue, r,, becomes so small
that it is less than the predetermined value of substantial significance, or when
the residue, r,, becomes a monotonic function from which no more IMFs can
be extracted. To distinguish this stopping criterion from the one that stops it-
erations of finding each IMF, we refer the “stopping criterion/criteria” to only

the one that stops iterations of finding each IMF' (unless specified otherwise).
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Even for data with zero mean, the final residue can still be different from zero;
for data with a trend, the final residue should be that trend. By summing up

equations (2.19) and (2.20), we finally obtain
o(t) =) _ ¢+ Tn. (2.21)
i=1

Thus, we have achieved a decomposition of the data into n empirical modes,
and a residue which can be either the mean trend or a constant.

A set of vibration signals from a gearbox experiment [50] is used to exem-
plify the sifting process. The experiment system is shown in Fig. 2.4. The
sampling frequency is 2560Hz. The length of the data is 3.2 seconds. The
rotation speed of the motor is 600RPM. A damaged gear (Gear 4) seeded with
a fault, a missing tooth, meshes with a normal gear (Gear 3) . The original
collected data is shown in Fig. 2.5 and characteristic frequencies of the system
are shown in Table 2.1. The decomposition result is shown in Fig. 2.6 which
is a decomposition.

Table 2.1: Characteristic frequencies of the gearbox [50].
Input | Middle | Output | Gears 1&2 | Gears 3&4

shaft | shaft shaft meshing meshing
10Hz | 3.3Hz | 5.5Hz 160Hz 133Hz

2.2.3 Critical Issues in the EMD

In the previous section, we described the most important part of the sifting
process: the approximation to the local mean of a signal by upper and lower
envelopes obtained from a cubic spline interpolation. A good approximation
can capture the general trend of the signal while keeping the local features as

much as possible. On the contrary, a poor approximation will lose much infor-
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Figure 2.4: Illustration of an experimental system [50].

mation within the original signal causing the decomposed IMFs to have less
physical meaning. Thus, approximation to the local mean is a critical issue in
EMD, one for which there is considerable room for improvement. In Chapter
3 and Chapter 4 we will improve upon this critical issue using two types of
approximation. In Chapter 3, the monotone piecewise Hermite interpolation
will be applied to the envelope approximation procedure to preserve the mono-
tonicity of the data [19]. As mentioned in [27], the envelope-mean interpolation
creates a problem called end point swings. This problem exists because the
length of the given data is finite and the end points cannot be maximum and
minimum points simultaneously. Since the monotone piecewise Hermite inter-
polation also serves the envelope-mean approximation, the problem still exists.
Approaches dealing with this problem will be discussed at length. In Chapter
4, a direct approximation approach using windowed local mean method will

be applied without constructing envelope means; this method performs better

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 The Empirical Mode Decomposition Method 23

608 T T T T T T

006+ ~

Amplitude

|
05 1 1.5 2 25 3
Tima {s}

Figure 2.5: Waveforms of signals collected from a gearbox with tooth missing
fault.

when identifying impulses [45]. The problem of end point swings does not exist
here but a corresponding end point extension procedure for this method will

be considered.

2.2.4 Analysis of Obtained IMFs

We have discussed the basic idea of EMD and some of its critical issues. Al-
though this thesis concentrates on improving EMD, clearly the decomposition
procedure is not the final step of signal processing. The purpose of conducting
the decomposition is to utilize its result for fault detection or other appli-
cations so analysis of obtained IMFs is necessary. Visual observation is the

simplest and most direct way of doing this. In [27] Huang et al introduced an
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Figure 2.6: Illustration of the decomposition of a vibration data set after the
sifting process.
advanced analysis to IMFs that conducts the Hilbert spectral analysis using
Hilbert transform (HT) as the second step of their integrated approach. Since
this is not the focus of this thesis, we provide just a brief review of HT and
instantaneous frequency.

The Hilbert transform was first developed to process non-stationary narrow-
band signals [23]. The Hilbert transform is a time-series analysis technique for

deriving amplitude and phase information from a data set as a function of
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time. It is a powerful tool for dealing with non-stationary signals. For an
arbitrary time series, z(t), we define its Hilbert transform, y(¢t), as [45]

y(t) = Hz(t)] = % | °:o tﬁ(_t%dt'. (2.22)

According to the definition of Hilbert transform, y(¢) is just a time-delay and
90° phase-shifting of the original signal. It means that y(¢) is delayed by a
quarter of a period in time domain than the signal z(¢). With their definitions,

z(t) and y(t) form a complex conjugate, Z(t), as
2(t) = z(t) + y(t) = a(t)e’®®, (2.23)

where a(t) = \/z2(t) + y%(t) and 6(t) = arctan(g—g%). Based on the expression

of the Hilbert transform, Huang et al proposed a definition of the instantaneous

frequency for narrow band signals as
w=—% (2.24)

Then, with the definition, instantaneous frequencies are calculated for each
IMF obtained from the original signal. Let ¢, ¢z, -+, ¢, be n IMFs of z(¢)
generated by the EMD method. Calculating the Hilbert transform of each

mode gives n complex functions [45]:

21(t) = e1(t) + iH[er ()] = ax(t)er®
(2.25)

Zo(t) = cp(t) + iH[ca(t)] = an(t)e?®),

The frequency of each mode is described by 07(¢). So, all #(t), j = 1,---,n
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together give a time-frequency analysis of the signal z(¢), which is called the
Hilbert spectrum. As an example, the Hilbert spectrum of the first IMF of the

signal used in Fig. 2.6 is shown in Fig. 2.7.

Hitbent-Huang Spectrum

Freguency {(Hz2}
o

~1000 H

0.5 1 15 2 25 3 35
Time {s)

Figure 2.7: The Hilbert transform of the first IMF of the signal given in Fig.
2.6.

Zuo and Fan [63] also proposed an IMF analysis method that combines
EMD with Hilbert transform. Unlike the Hilbert-Huang transform, this method
takes the change of amplitude of the IMF’s envelope spectrum into account
other than the instantaneous frequency. It is compared with both the Hilbert-
Huang transform and the wavelet transform using simulated signals and real
signals collected from a gearbox. The results obtained show that the proposed

method is effective in capturing hidden fault impulses.
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2.2.5 Applications of the EMD

Applications for EMD have been found in many areas. In astrophysics, Komm
et al [32] applies EMD and Hilbert analysis to time series of rotation residuals
at all latitudes and at all depths in the solar convection zone derived from 49
Global Oscillation Network Group data sets covering the period May 7 1995 to
May 15 2000. They calculate Hilbert power spectra for each time series in order
to determine whether the rotation rate in the convection zone shows any other
systematic temporal variation besides the so-called torsional oscillation pattern
in the upper convection zone and the periodicity of 1.3 years near the base of
the convection zone. In mechanical systems, a method is presented in [37] for
monitoring the evolution of gear faults based on EMD. Experimental vibration
signals from a test rig have been decomposed into IMFs. An empirical law,
which relates the energy content of the intrinsic modes to crack magnitude, has
been established. The modal energy is thus associated with the deterioration
in gear condition and can be utilized for system failure prediction. Yu [60]
used EMD to decompose the vibration signal of a roller bearing and establish
the AR model of each IMF component. Practice examples show that the
proposed approach can be applied effectively. In earthquake research, Zhang et
al [61] uses EMD to analyze recordings of hypothetical and real wave motion,
the results of which are compared with the results obtained by the Fourier
data processing technique. The analysis of the two recordings indicates that
the method is able to extract some motion characteristics useful in studies
of seismology and engineering, which might not be exposed effectively and

efficiently by the Fourier data processing technique.
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CHAPTER 3

IMPROVEMENT OF THE ENVELOPE-MEAN
APPROXIMATION BY USING MONOTONE

PIECEWISE HERMITE INTERPOLATION

We have reviewed the concepts and basic algorithm of EMD in Chapter 2. The
essential part of EMD is the sifting process using the envelope-mean approxi-

mation. The envelope-mean approximation includes these steps:

1. Identification of local maxima of the data being analyzed. For example,
when checking three consecutive points, P1, P2 and P3, if P2 is greater

than both P1 and P3, then P2 is identified as a maximum.

2. Connection of local maxima using an interpolation method to obtain an

upper envelope. The cubic spline interpolation is used in [27].
3. Identification of local minima. The same approach is used as for maxima.

4. Connection of these local minima using a same interpolation method to

obtain a lower envelope.

5. Use of the average of these two envelopes to approximate the local mean.
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Although the effectiveness of this relatively new technique has been demon-
strated in many applications, EMD itself is not perfect itself. Even the au-
thors of the original paper have stated in [27], “At any rate, improving the
spline fitting is absolutely necessary.” Possible improvements of the envelope-
mean approximation will be investigated in this chapter. Section 3.1 reviews
reported interpolation methods with their merits and disadvantages, among
them the monotone piecewise Hermite interpolation. In Section 3.2, we choose
the monotone piecewise Hermite interpolation to replace the cubic spline in-
terpolation in EMD; comparing their performance using simulated signals on
a common standard. The performance of the winner of the comparison on an
experimental data is tested in Section 3.3. A summary can be found at the

end of the chapter.

3.1 Reported Interpolation Methods

Interpolation is the process of constructing a function that takes on given values
at a given data set. Such a function is called the interpolating function or
interpolant and can be seen as an approximation of a function which is known
at some points [30]. These known or given points are also called knots. Let
{z;}~, be a partition of the interval I = [a,b] C R,ie. a =27 <--- <z, = b.
Suppose that a function, g, is given in I, the problem we consider is finding &

function, f = f(z), such that

f(xi)f—g(xi),i:l,---,n. (31)

Many interpolation methods have been reported since [30] which was pub-

lished in 1910. For historical as well as pragmatic reasons, the most important
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class of interpolating functions is a set of polynomial functions. Polynomial
functions have the advantage of being easy to evaluate directly and can be eas-
ily added, multiplied, integrated, or differentiated [30]. Polynomial functions
have two branches: one is global polynomial interpolation which passes one
polynomial function through all the data. If we want f to be a polynomial we
call f(z) = p(z) a global polynomial interpolating function. The linear space

of polynomials of order n is denoted by

P, = {plp(z) = ag + - - + anz"™ a; € R}. (3.2)

A classical result from algebra is that there is a unique polynomial, p, of
order n such that p(z;) = g(z;) for ¢ = 1,---,n + 1. Another branch is
piecewise polynomial interpolation which uses a polynomial function for each

consecutive pair of knots. Instead of assigning f to be a single polynomial,

f can be a polynomial on each interval, [z;, zi11], i.e. flgei+1] = pi With
pi—1(z:) = p(zs).

A piecewise cubic interpolation is a piecewise interpolation that uses third
order polynomial functions. Hermite cubic interpolation is a piecewise cu-
bic interpolation that requires a continuous first derivative at knots [30]. If
a continuous second derivative is also required, it is called a cubic spline in-
terpolation. If a continuous second derivative is not required but some other
conditions are supplied to guarantee monotonicity, the Hermite cubic interpo-
lation is called a monotone piecewise Hermite interpolation [20]. Monotonicity
is a basic property of a curve that reflects the increasing or decreasing feature

of some consecutive points of the data. As an illustration, the two solid lines in

Fig. 3.1 keep the monotonicity of points A and B but the dashed line doesn’t,
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since it generates a minimum between A and B. Fritsch and Butland [19] de-
scribed a modified monotone piecewise Hermite interpolation that solves the
three problems that were presented in the original interpolation approach [20].
Fig. 3.2 shows a clear understanding of the hierarchy of different interpolation

approaches.

Figure 3.1: Illustration of monotonicity

Among those interpolation methods, the cubic spline and the high-order
spline interpolation have been applied to EMD. Firstly, let’s have a look at how

the cubic spline interpolation works to fulfill the purpose of approximation.

3.1.1 Cubic Spline Interpolation

The term “spline” comes from a flexible strip (wooden or rubber) used by
shipbuilders and draftsmen to draw smooth shapes [5]. In the mathematical
field, if the polynomial is of order three, the interpolant, f, is called “piecewise
cubic”. The linear space of k times differentiable piecewise cubic functions on

I = [a,b], is expressed as

S5([2) = {f|flwst11 € Ps fori=1,---,n—1and f € C¥a,b]}. (3.3)
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Figure 3.2: Classes of different interpolation approaches

In S%([z]) and k < 2, we have infinite possible solutions for f such that f(z;) =
g(z;). For k > 2, there is no guarantee that such an f exists. For a solution

of f, on each interval, [z;, z;11], f is given by fliz;2.01) = Pi, 88

Pi(z) = coi + cri(x — x;) + co4(z — ;)% + cs,i(z — )3 (3.4)

There are four coeflicients, co;, ¢1,, c24, ¢34, for each piecewise polynomial and
there are n — 1 intervals. As a result, there are a total of 4(n — 1) unknown
parameters. Remember there are two constraints on p;(z)-p;(z;) = ¢g(z;) and

pi(ziy1) = g(z441))-which contribute 2(n — 1) constraints totally. Requiring f’
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to be continuous adds n — 2 constraints, i.e. one at each interior knot (a point

not at ends). This means

f(#:) = piy (@) = pi(ws)- (3.5)

We still need to have 4(n — 1) — 2(n — 1) — (n — 2) = n constraints to ob-
tain a unique solution for a piecewise cubic interpolating function. A special
class of cubic interpolating functions are those which are twice differentiable,
such functions are designated as cubic spline interpolants. This means that f

satisfies

f(@i) = pi_y (@) = i/ (w2). (3.6)

Thus, n — 2 additional constraints have been added. The remaining two con-

straints give us a few types of cubic spline interpolation:

Complete cubic spline interpolant This specifies the derivative of f(z) at
the two end points, i.e. set f'(z1) = d; and f'(z,) = d,, where d; and d,

are known values.

Natural spline interpolation This forces f”(z;) = 0 = f”(z,). Physically

this means that the graph of the spline is a straight line outside I.

‘Not-a-knot’ conditions These require f”(z) to be continuous at zs and
at Tn_o, ie. f"(x2) = pf'(z2) = py(x2) and f"(z,2) = p{(zn-—2) =

11

Py (In—2)'

Back to the application of piecewise cubic spline interpolation in EMD.
It has the obvious merit of securing the continuity of the second derivative
at knots. In [27], the ‘Not-a-knot’ type of interpolation was used to find an

approximation to the local mean of a signal. For given collected data, however,
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we usually don’t know any features of its upper and lower envelopes if they are
not revealed by the data itself. As a result, we prefer to have the interpolation
represent the shapes of the envelopes as they are, i.e. to avoid the imposition
of any additional details that are not confirmed by the data [12]. We can see
from Figure 3.3 (picked out from Fig. 2.3), however, that both undershooting
(shaded region A) and overshooting (shaded region B) problems occur due
to the interpolation. In other words, interpolated splines of some consecutive
monotonic maxima or minima do not maintain their monotonicity. One spline
is not monotonic even between two consecutive maxima; there are bumps
between the minima (in region A). The quality of the approximation of the local
mean affects the iteration times of finding IMFs. A bad approximation will
slow down the speed of decomposition. Also, the purpose of the decomposition
is to identify IMF's before conducting Hilbert transform or other subsequent
analysis. Low quality of the approximation will cause more serious asymmetry

of IMF's that makes the results from consequent processes less meaningful.

3.1.2 High-~order Spline Interpolation

Some research work has been done to find a better interpolation for doing the
envelope-mean approximation. Huang et al suggested in [27] using high-order
spline but the exploration was underway. Yang et al [58] proposed using the
high-order spline interpolation to form the upper and lower envelopes. They
examined quartic, quintic, six-order, and seven-order spline interpolations and
found that the precision is improved in terms of IMF error (which was not
defined). Interpolation becomes more and more time-consuming, however,
as the order of polynomial increases. The undershooting and overshooting

problem still exists since no conditions are added to take the monotonicity
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Figure 3.3: Example of the shortcomings of the cubic spline interpolation. The
shaded regions indicate the segments on which monotonicity is not maintained.

into consideration.

3.1.3 Monotone Piecewise Hermite Interpolation

To have less of undershooting and overshooting mentioned above, it is prefer-
able to keep some of the shape properties of a curve. In fact, there are a
few shape properties that it may be advisable to preserve in order to have a
good-looking interpolation. One of the most important ones is monotonicity
[34]. The monotone piecewise Hermite interpolation is a modified version of
the piecewise Hermite cubic interpolation that preserves the monotonicity of
the data [19].

The piecewise Hermite cubic interpolation is a type of interpolation that
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puts constraints on only the first derivative of the known knots, i.e.

f(@:) = pi_y () = pila) = d;, (3.7)

where d; is the derivative value of the ith knot point. Hermite interpolation is
a general base and is open to provision of various conditions that could give a
unique solution, whereas cubic spline interpolation is just a special class of the
piecewise Hermite cubic interpolation which implicitly constrains the value of
d; by conditions of second derivatives.

Some studies have been done to provide alternative conditions for the piece-
wise Hermite interpolation so that monotonicity of the data is kept. Mono-
tonicity is a basic property of a curve; if it is not guaranteed an interpolant will
deviate essentially from the curve. That is why monotonicity is the primary
concern in this study. Let a = z; < --- < z,, = b be a partition of the interval
I = [a,b]. I; = [z, 2441] is a subinterval of I. Let g;:i=1,2,---,n be a
given set of data at knots. Our goal is to construct piecewise cubic functions,
p;i(z) € C*[], on the partition of the interval such that if f; < fiy1 (fi > fir1),
pi(z) is an increasing (or decreasing) function.

Fritsch and Carlson [20] derived necessary and sufficient conditions for a
cubic function to be monotonic in an interval. Let A; = (giv1 — ¢:)/h: be

the slope of the line segment joining the data to be interpolated, where h; =

Tiy1 — ;- The piecewise function p;(z) can be expressed as

di + dl - QAZ —2d1; — dz 3Az
pl(x) = _.i__] (115—33,)3-}-[ +1 +

h? 2 ] (&—2:)+di(z—2:)+9;.

(3.8)
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It is clear that a necessary condition for monotonicity is that

sgn(d;) = sgn(diy1) = sgn(A;), (3.9)

where sgn(z) represents the sign of z. Let o; = d;/A; and §; = d;41/A; be the
respective ratios of the end-point derivatives to the slope of the straight line
connecting the ith and the i+ 1 knot. It is proved by [20] that equation (3.9) is
a sufficient and necessary condition for p;(z) being monotonic if a;+5;—2 < 0.
If a; + B; — 2 > 0, p;(x) is monotonic, at least one of the following conditions

is satisfied:

20; 4+ B; — 3 < 0;
o; + 208, -3 <0,
¢(aiaﬂi) Z 0)

where ¢(a, ) = a — %&%2)72 As a consequence, a region, M, of acceptable
values for o; and 3; (hence d; and d;;;) is constructed to produce a monotonic
interpolant on I;. This region is shown in Fig. 3.4 (Fig. 1 of [20]). Using
this result, a two-step procedure has been suggested for constructing such

an interpolation. Unfortunately, however, the procedure suffers from three

defects.

1. It requires two passes over the data, i.e. d; should be initialized and then

should be adjusted to d} whenever (o, ;) ¢ M such that (af, () € M.

2. The result is dependent on the order in which the data points are pro-
cessed. The common order for processing data points is either from point

1 up to n or from n down to 1.
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3. A correction introduced in the first interval could ripple through the

entire interpolant.

4.0

3.5
3.0k .

; 2.5} “
"l
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0 05 10 1.5 2.0 25 3.0 3.5 4.0
(45

Figure 3.4: The monotonicity region, M, is a combination of these regions:
diagonal hatching: « + 8 — 2 < 0; vertical hatching: « + 8 — 2 > 0 and
2cc+ — 3 < 0; horizontal hatching: a+8—2 > 0 and a+28 —3 < 0; dotted:
¢(c, §) > 0; unshaded: cubic is non-monotone out of region M.

Fritsch and Butland [19] described a modified algorithm that avoids all of

these problems. A function, G, is constructed such that

diIG(Ai_l,Ai), i=2,---,n—1. (310)

Since d; depends only on neighboring slopes, this method based on equation
(3.10) does not need two passes over the data, and a correction of a slope
value would affect only two neighboring derivative values. If G is a symmetric

function of its arguments, the result will also be independent of the direction
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of processing, either from the starting point to the end point or from the end
point to the starting point. Sufficient conditions for an acceptable G function

are given in [12] and a general expression of G is given as

0 ’Lf SISZ S Oa
G(51,5) = sgn(Sﬂﬁ%ﬂ if 1S2] <154, (3.11)
G(Ss,S1) otherwise.

When m = 2, G becomes the harmonic mean

259 6,5, >0,
Gu(S1,8s) = S+ J 55 (3.12)

0 oltherwise.
Equation (3.12) restricts the values (o, 5;) = (di/As, diy1/A:) to the small
square [0,2] x [0,2] of Fig. 3.4. Although it falls into the acceptable monotonic-
ity region, Filling out the maximal symmetric acceptable region is desirable
because if S35 > 0 and |Sy| > |Ss], G(S1, S2) = mS; according to equation
(3.11), and a larger m will result in less difference between two consecutive
slopes. Thus, m is set equal to 3 because the maximal symmetric acceptable

region is [0, 3] x [0, 3], i.e.

0 if S182 <0,
Gs(S1,82) = sgn(Sy) gzl if |Sa] < |Sul, (3.13)
G(S2,51) otherwise.

Equations (3.7), (3.10) and (3.13) give the algorithm of the modified mono-
tone piecewise Hermite interpolation (MMPHI, in short). The key difference

between this interpolation and the cubic spline interpolation is that this one re-
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leases the constraints of the continuity of the second derivatives, while adding
constraints related to monotonicity to have a unique piecewise cubic inter-
polant. The modified monotone piecewise Hermite interpolation has been used
to estimate unsaturated soil hydraulic properties [8] and simulated animations
of fluid dynamics equations [28] but it has not been applied to EMD. In Sec-
tion 3.2 the application of this method to the envelope-mean approximation

of EMD will be discussed.

3.2 Application of the MMPHI to the Envelope-Mean Approxima-

tion
3.2.1 Motivation

The purpose of the interpolation in EMD is to show what the envelopes of the
data look like. The interpolant should show what is contained in the data and
nothing more. If the configuration has any peculiarities, these should be drawn
clearly; if an obvious feature is presented, the interpolant should represent it
in a suitable way [12]. Since monotonicity is a key shape property of a curve,
we want to keep monotonicity of the data in our study. The monotone piece-
wise Hermite interpolation is not the only method that considers monotonicity.
Wolberg [57] described methods that minimize the second derivative disconti-
nuity while the algorithm of [19] guarantees continuity of the first derivatives.
But Wolberg’s methods involve linear and quadratic programming which con-
sume a great deal of time. The linear piecewise interpolation is the simplest
way to keep monotonicity; but, with this approach, a smooth curve’s upper and
lower envelopes, and therefore its envelope mean, can become too sharp, losing
its smoothness. Since the interpolation of EMD is based on extrema which do

not confirm any information about the continuity of the second derivatives,
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only continuity of the first derivatives is considered for our application. Thus,
our motivation for applying MMPHI to the envelope-mean approximation is
that it is able to maintain monotonicity of the data and guarantees continuity

of the first derivatives without too much complexity.

3.2.2 The Proposed Approach and Its Expectation of Improvement

Our proposed approach in this thesis is to use the monotone piecewise Hermite
interpolation developed by [19] to replace the cubic spline interpolation in [27]
for the purpose of approximating upper and lower envelopes in the process of
IMF decomposition.

By applying MMPHI to the envelope-mean approximation instead of the
cubic spline and high-order spline interpolations, we expect to see a more
accurate decomposition of an original signal. This is because MMPHI has
less undershooting and overshooting problems so that the local mean being
approximated is more accurate. The indication of accuracy will be defined in
the comparisons in next subsections.

We also expect MMPHI to have an advantage over the cubic spline inter-
polation with regard to CPU time. We can verify theoretically that doing one
MMPHI interpolation operation is faster than doing one cubic spline interpo-
lation operation. Mathematically, the difference between the two methods is
that they are using different ways to determine the values of d;. Working one

more step from equations (3.3)—(3.5), we have [45]:

hidi—1+2(hi—1+hs)di+hio1dip = 3(hildi—1+hi1d;),  for i=2,---,n—1
(3.14)

With the “not-a-knot” conditions defined on page 33, two more equations can
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be supplied to give a unique solution to the cubic spline interpolation, as

h2d1+(h1+h2)d2= 1+ (1+ 2) 2 1+(£1]1) 2,

3.15
hi + ho ( )

and

h'n—l + 2(hn—1 + hn—Z)hn—ZAn—l + (-Tn—l)ZAn—2

hn~2dn+ (hn—l +hn—2)dn—1 =

hp1+hy o
(3.16)
Thus, the solution is fully determined by solving the linear system
C11 Ci2 0 0 0 0 d1 U1
C21 Ca2 Co3 0 0 0 dy U
0 0 0 cu-1)m-2 Cn-1)n-1) Cn-1)n) dn-1 Un-1
0 0 0 0 C(n)(n—1) Cn)(n) i dn ] i Un |
(3.17)

where, say, ci2 = hy + hy and cuy@n-1) = Ano1 + hyp, and (according to

equations (3.14)- (3.16)).

_ ha+2(hitha)ho A1 +(m1)%A2
Uy = byt ha and
U, = hn—142(hn—1+hn_2)hn_28n_1+(@n-1)2An_2
n hn41+hn—-2 '

Solving equation (3.17) involves a tridiagonal matrix which is a square
matrix with nonzero elements only on the diagonal and slots horizontally or
vertically adjacent to the diagonal. We need O(11n) arithmetic operations
since inversion of this matrix needs O(7n) operations [1] and multiplication of
two matrices needs O(4n) operations. In contrast, MMPHI is obtained without
solving a linear system [30] so the computational complexity depends only on

that of equation (3.13) which, as a consequence, requires only O(3n) arithmetic
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operations. Therefore, for an individual operation MMPHI is faster than the
cubic spline interpolation. Obviously, a total CPU time of a type of EMD is
also dependent on the number of iterations of the sifting process, number of
IMFs decomposed and other system set-up expenses. With a more accurate
envelope-mean approximation, we will have fewer iterations so total CPU time
can be improved as well. The high-order interpolation is even slower than the

cubic spline interpolation [58].

3.2.3 Test of the Proposed Approach
3.2.3.1 Common Standard for the Test

To test the proposed approach and compare its performance with reported
methods, we should make sure that a common standard is set up for all par-
ticipants. For an integrated EMD procedure, there are a few variables open
to be selected, such as stopping criteria, approaches to dealing with end point
swings, and the number of decomposition levels needed. In fact, it is rare to
see more than five decomposed IMFs being used to provide information for
the diagnosis of devices; this is because amplitudes of the IMFs beyond five
are very small [63]. We set the maximal decomposition level to ten so that
all useful information can be included. Chapter 2 has mentioned two other
important aspects that need to be considered: stopping criteria and end point
swings. There have been several reported studies on them. Therefore, before
testing the proposed method, we will carefully select a stopping criterion and
an approach to the problem of end point swings from reported studies. They
will be used by all methods that will be compared.

Let’s look at stopping criteria first. The envelope-mean method in EMD

has a tendency to produce IMFs with uniform amplitude [27]. As a result, the
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stopping criteria in the sifting process needs to be chosen properly. One should
avoid a too stringent criterion that the physical meaning of IMFs would be lost;
on the other hand, one should also avoid a too loose criterion that components
deviating too much from IMFs would be decomposed. In Chapter 2 (page
20) we introduced the criterion of standard deviation. Huang et al described
a second criterion in [26], where the sifting is stopped when the number of
zero-crossing points and extrema is the same number for S successive sifting
steps. Typically, a value of 3 < § < 5 has proved successful as the default
stopping criterion [26]. Rilling et al [46] proposed another criterion based on
two thresholds 8; and 6, aimed at guaranteeing globally small fluctuations
in the mean while taking into account locally large fluctuations. The mode

amplitude is introduced as

a(t) = (emaa:(t) - emin(t)); (318)

DO —

where €,,4-(t) and e, (t) are the upper and lower envelopes respectively.

Then, the evaluation function is defined as

m(t)

oLl (3.19)

ot) =

where m(t) is the mean of upper and lower envelopes. The criterion is that the
sifting process is iterated until o(¢) < 6, for some prescribed fraction (1 —«) of
the total duration, and o(¢) < 6, for the remaining fraction. One can typically
set @ = 0.05, §; = 0.05 and 6, = 106; [46]. The comparison given later will
show why the stopping criterion from [46] will be used in this thesis.

The presence of swings of the interpolation at the end points (including

both first and last points) of a set of a data is due to the finite length of the
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data. End points are usually not the last extrema. Even if they are, they
cannot be a maxima and a minima simultaneously. So, at most one envelope
can be determined based on the data at the end. Other values for the points
beyond the first or the last extrema have to be obtained by extrapolation, but
any extrapolation would lack physical basis because no information of extrema
beyond the first and the last ones can be referred to. Fig. 3.5 is an example
that shows the problem of end point swings. The segment between two vertical
dotted lines is the data for analysis. The four arrows indicate the maxima and
minima beyond the studied segment. Ideally, the envelopes (dash lines) would
still head for these extrema beyond the segment, but without any information
for interpolation, the envelopes are extrapolated much differently than what

we would like. This phenomenon is called end point swings.

Amplitude

o
@l
2
g
g
B

Tirse{s)

Figure 3.5: Illustration of end point swings. The dash lines are the upper and
lower envelopes of the data.

We should not ignore this problem, otherwise, the large deviation could

corrupt the data and propagate to the interior. A method of adding character-
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istic waves at the end points which are defined by the two consecutive extrema
for both their frequency and amplitude of the added waves is suggested in
[27] but it does not specify the type of characteristic waves. Huang et al [25]
specified extended waves as the added waves, which the first and the last two
consecutive extrema are repeated beyond the first and the last data points at
periods equal to the periods of the first and the last two maxima (if a maxi-
mum is the end extremum) or minima (if a minimum is the end extremum).
Another approach is introduced both by Huang et al [25] and Zhao [62]. It
uses the end extrema as two mirrors and reflects the data between the mirrors
out of the end, doubling the length of the original data, which, as a result,
doubles the time of the sifting process. Rilling’s method [46] just mirrors the
two end extrema of the data which is less time-consuming. This method will
be proven best through the following comparison.

We can use a simulated signal to compare options for stopping criteria and
end point swings and to pick suitable ones. The simulated signal is a combina-
tion of multiple sinusoid waves with different frequencies and amplitudes plus

a global trend:

y(t) = 0.5sin(27 * 1000t/10) + 2sin (27 * 1000t/50)+
sin(2m * 1000t/120) + sin(2m * 1000t/200)+ (3.20)
sin(2m * 1000£/300) + sin(2m * 1000¢/500) + 0.0005t.

The signal is shown in Fig. 3.6. We tested both a short series (3000 points)
and a long series (8000 points) and set the time interval of any two adjacent
points at 0.001s.

Two performance indicators are applied: one is the CPU time of EMD

procedure, the other is the accuracy. The latter is represented by the mean
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Figure 3.6: Combination of multiple sinusoid waves with different frequencies
and amplitudes plus a global trend.

square error (MSE) between decomposed components and the sinusoid com-
ponents. For this simulated signal, the MSEs between decomposed IMF's and

correspondent frequency components are calculated as

LOD

MSE = g0 STUME() ()l i=12m,  (3:21)

=1

where LOD is the length of the data, m is the number of known components,
IMF(t) is the ith IMF and x;(t) is the correspondent frequency component.
A smaller i should represent a higher frequency component and a larger

should represent a lower frequency. The averaged MSE of the decomposition
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Table 3.1: Comparison of stopping criteria on the 3000-point signal of multiple
sinusoid waves plus trend.

Stopping Criteria SD S Partial
CPU time 885.996s | 0.216s | 44.217s
MSEq, 1214.90 | N/A | 695.38

is expressed as

1 m
MSE,, = — > MSE;. (3.22)

i=1

To choose a proper stopping criterion, we use EMD algorithm with envelope
means constructed by the cubic spline interpolation and without any consid-
eration of end points swings. Three stopping criteria are compared, which are
mentioned above. For the sake of convenience, we gave short names to them:
SD (the standard deviation criterion in [27]), S (the criterion introduced in
[26]) and Partial (the criterion introduced in [46]).

All codes are programmed in MATLAB 7.0 and have been tested on a
Pentium 4 computer with 512MB of memory.

Table 3.1 shows the comparison on the 3000-point signal of multiple si-
nusoid waves plus trend. From Table 3.1 we can see that SD is the slowest
criterion and the procedure takes a very long time to converge. S criterion is
so easily met that it can be calculated very quickly, but only five IMFs are
decomposed because some components are mixed in IMF3, IMF4, and IMF5
(Fig. 3.7) so the averaged MSE value can not be calculated. We don’t like to
see this serious mixture of frequency components in EMD. The partial criterion
is a good tradeoff between SD and S.

Table 3.2 shows the comparison on the 8000-point signal of multiple sinu-
soid waves plus trend.

There are three points to be noted based on the comparisons above.
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Figure 3.7: Decomposition of first type of simulated signal with S stopping
criterion.

1. Some approaches to the end point swings are necessary because without

them the averaged MSE would be very large, especially for short data.
2. Accuracy is improved as the length of data increases.

3. The partial criterion is a good tradeoff between SD and S with regard
to CPU time and accuracy. We decided to choose partial criterion as the

stopping criterion.

Then, we compared the extending approach and the mirroring approach
with respect to the end point swing problem. In these comparisons, the partial

stopping criterion and the cubic spline interpolation were used and the same
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Table 3.2: Comparison of stopping criteria on the 8000-point signal of multiple
sinusoid waves plus trend.

Stopping Criteria SD S Partial
CPU time 40.866s | 0.451s | 89.042s
MSE,,, 162.65 | N/A | 390.89

Table 3.3: Comparison of approaches to the end point problem on the 3000-
point signal of multiple sinusoid waves plus trend.
Approaches | Extending | Mirroring
CPU time 2.0310s 1.3440s
MSE,,q 0.2877 0.2414

short and long sinusoid signals were tested. Comparisons are shown in Table
3.3 and Table 3.4.

We can see that CPU time and accuracy are obviously improved by using
approaches to the end point problem. From the comparisons, we found that the
mirroring approach deals better with the end points than does the extending
approach. As a result, we decide to use the mirroring approach to evaluate

the proposed method with the original EMD.

3.2.3.2 Comparison of the Proposed Approach with the Reported Methods

Now, we can compare the proposed EMD that constructs envelope means
by the modified monotone piecewise Hermite interpolation to EMD that con-
structs envelope means by cubic spline interpolation (SPLINE, in short) and
by high-order spline interpolation (HIGH-ORDER, in short). Here the high-
order interpolation is quartic, i.e. fourth order polynomial. With the help of
Section 3.2.3.1, we selected the partial stopping criterion and the mirroring end
point approach as the configuration to be used in testing the two methods un-
der the same conditions. The first simulated signals used were a combination

of multiple sinusoid waves, the same as those used in Section 3.2.3.1. These
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Table 3.4: Comparison of approaches to the end point problem on the 8000-
point signal of multiple sinusoid waves plus trend.
Approaches | Extending | Mirroring
CPU time 34.723s 5.383s
MSE,,, 111.3568 0.2768

signals gave us a basic assessment of each method’s decomposition capability.
All codes are programmed in MATLAB 7.0 and have been tested on the same
Pentium 4 computer as mentioned. Figs. 3.8 — 3.10 show the decomposition of
IMFs of the 3000-point data by the three methods. A primary assessment is
given based on the visual observation of the IMFs. It can be seen from Figs.

3.8, 3.9 and 3.10 that:

e only high-order spline interpolation has different frequencies mixed up

in an IMF (IMF4);
o MMPHI generates more IMFs than the other two interpolations;

e the first three sinusoidal components are decomposed in all figures unlike

the rest components;

o although the cubic spline interpolation distorts the rest of the compo-
nents a little worse than does MMPHI, the difference is not noticeable

through observation.

These four points still hold for the decomposition of the 8000-point data. Thus,
the averaged MSEs which were introduced in Section 3.2.3.1 are used on this
type of signal as an objective indicator. The results are also shown in Tables
3.5 and 3.6. It can be seen that the MMPHI is always faster than HIGH-
ORDER and is faster than SPLINE in the test of long data but is slightly

slower than SPLINE in the test of short data. It can also be seend that the
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Table 3.5: Comparison of the performance of the proposed method and other
reported methods on the 3000-point signal of multiple sinusoid waves plus

trend.
Interpolation methods | SPLINE | MMPHI | HIGH-ORDER
CPU time 1.3440s | 1.4533s 1.5084s
MSE,, 0.2414 0.1530 0.3126

Table 3.6: Comparison of the performance of the proposed method and other
reported methods on the 8000-point signal of multiple sinusoid waves plus

trend.
Interpolation methods | SPLINE | MMPHI | HIGH-ORDER
CPU time 5.3830s | 3.7443s 4.3187s
MSEg, 0.2768 0.0846 0.3266

proposed MMPHI approach is better than the cubic spline and the high-order
spline interpolations in terms of the averaged MSE, with an improvement of
up to 74.3%.

The second type of simulated signal is a combination of a periodic impulse

signal and a chirp signal. Each impulse can be expressed as

y;(t) = 0.1 1% 5in(1000t). (3.23)

The time interval between every two impulses is 0.25 seconds. The chirp signal
can be expressed

ye(t) = sin(1007t?). (3.24)

The signal is shown in Fig. 3.11. The mixing ratio between the impulses and
the chirp signal is 1:1. From this figure, we can see that the impulses are hard to
identify in the mixed signal. Because periodic impulses often represent fault
signatures of machinery, this simulated signal is used to test each method’s
ability to detect the existence of periodic impulses. We also test both a short

series (3000 points) and a long series (8000 points) and set the time interval of
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Table 3.7: Comparison of the performance of the proposed method and other
reported methods on the 3000-point signal of combination of impulse and chirp.

Interpolation methods | SPLINE | MMPHI | HIGH-ORDER
CPU time 10.073s | 3.6877s 264.6530s
MSEq, 0.0338 | 0.0099 0.1080

Table 3.8: Comparison of the performance of the proposed method and other
reported methods on the 8000-point signal of combination of impulse and chirp.

Interpolation methods | SPLINE | MMPHI | HIGH-ORDER
CPU time 7.9107s | 7.7233s 550.3680s
MSE,,, 0.0012 0.0012 0.0044

any two adjacent points at 0.001s. Figs. 3.12 — 3.14 show the decomposition
of IMFs of the 3000-point data by the three methods. From Figs. 3.12, 3.13
and 3.14, it can be seen that there is not much difference based on visual
observation. The chirp signal stays mainly in the first IMFs and none of the
three figures gives clear information of the impulses. The decomposition of the
long signal gives the same observation. As a result, the averaged MSE is still
used as an indicator of accuracy but this time m = 2 in equation (3.21). The
results are shown also in Tables 3.7 and 3.8. The proposed MMPHI approach
is the best with regard to CPU time and accuracy. The HIGH-ORDER is very
slow. In the test of the long signal, there was not as much difference between

SPLINE and MMPHI as that of the short signal.

3.3 A Test on Experimental Data

Through comparisons on simulated signals, we have established the superior-
ity of the approximation that uses the modified monotone piecewise Hermite
interpolation. Now we will look at how it performs on an experimental data.
It has been applied to the set of data from the gearbox experiment that was

described on page 21 and the decomposition result is shown in Fig. 3.15. The
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MMPHI takes 25.935 seconds to complete the decomposition. The first IMF
obtained enlarged in Fig. 3.16. Compared with the original collected data in
Fig. 2.5 on page 23, we can see that the obtained first IMF shows impulses
much more clearly than do the original data. It is easy to measure the distance
between two impulses which is 0.18 seconds, and represents the frequency of
the output shaft (1/0.18 = 5.5 Hz). This is what we would expect to see

because the faulty gear is mounted on the output shalft.

3.4 Summary of This Chapter

This chapter has reviewed methods of approximating the envelope-mean in
EMD, focusing on interpolation methods reported in the literature. The ad-
vantages and disadvantages of these methods have been presented, as well. The
modified monotone piecewise Hermite interpolation was used as a replacement
for the cubic spline and high-order spline interpolations. Thereafter, a test was
conducted to select parameters to be used in verifying our expectations of im-
provement, specifically, in selecting stopping criteria and approach to dealing
with end point swings. Once that was done, the three methods were compared.
It can be seen from that comparison that the proposed approach is in most
cases better than the reported envelope-mean methods with respect to CPU
time and accuracy. It should also be noted that even though the proposed
method has the smallest value of averaged MSE on the chirp plus impulses
signal, in Figs. 3.13 - 3.14, none of the methods has identified the impulses
clearly in time domain. Although we can see some impulses from the experi-
mental test, more impulses are expected to be identified clearly. Improvement
on this point will be taken into account in Chapter 4 where a direct-mean

approximation will be used.
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Figure 3.8: Decomposition of the signal of multiple sinusoid waves plus trend
with MMPHI (3000 points).
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Figure 3.9: Decomposition of the signal of multiple sinusoid waves plus trend
with the cubic spline interpolation (3000 points).
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Figure 3.10: Decomposition of the signal of multiple sinusoid waves plus trend
with the high-order spline interpolation (3000 points).
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Figure 3.11: Combination of a periodic impulse signal and a chirp signal.
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Figure 3.12: Decomposition of a combination of impulse and chirp with the
MMPHI (3000 points).
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Figure 3.13: Decomposition of a combination of impulse and chirp with the
cubic spline interpolation (3000 points).
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Figure 3.14: Decomposition of a combination of impulse and chirp with the
high-order interpolation (3000 points).
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Figure 3.15: Decomposition of the vibration data set using EMD with MMPHI.
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Figure 3.16: The first IMF in Fig. 3.15.
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CHAPTER 4

IMPROVEMENT OF THE DIRECT APPROXIMATION

OF THE LOCAL MEAN

In the sifting process of the original EMD method introduced in Chapter 2, the
envelope mean is calculated as an approximation to the local mean. In Chapter
3, we introduced the improvement to the envelope-mean approximation by
using monotone piecewise Hermite interpolation. At the end of Chapter 3,
however, we pointed out a common problem of all the three interpolation
approaches used for the envelope-mean approximation in EMD-that impulses
cannot be identified clearly in decomposition. This is due to a shortcoming of
envelope-mean methods. Essentially, they all tend to use envelope means to
approximate local means. The phrase “local mean” means that there are two
requirements for the calculated curve: 1) it should be the mean of a signal so
it should reflect the global trend of the signal, and 2) some regional signatures
of the original signal should appear on the curve of the local mean. These two
requirements guarantee that the difference between the original signal and the
local mean converges on an IMF. But the algorithm for calculating envelope
means is to connect maxima and minima of the wave by a given interpolation

method and obtain the mean of the upper and lower envelopes. Values for
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the points between extrema are really not important as long as they don’t
exceed their neighboring extrema and become new extrema; therefore, for two
signals with the same extrema positions and values but quite different points
between the extrema, the means obtained by the envelope-mean approach will
be same. This is proof that envelope means do not approximate very well to
local means.

Thus, in this chapter, we work on an alternative to the envelope-mean
approximation to the local mean. This type of approximation is called “di-
rect approximation”. Reported methods of this type are reviewed in Section
4.1. An integrated windowed local mean method is proposed and compari-
son between it and another direct approximation is presented in Section 4.2.
A discussion follows in Section 4.3 and the performance of the winner of the

comparison on an experimental data is given in Section 4.4.

4.1 Reported Direct Approximation Methods

4.1.1 Local Mean Mode Decomposition

Gal et ol introduced a method for approximating local means called Local
Mean Mode Decomposition (LMMD) [21]. LMMD uses a time-varying filter
to calculate the means. First, all the local extrema, Z(t;) (i is the index of
the ith extremum), of the signal z(t) are found. Then the mean value, e(3),
between two successive local extrema, Z(t;), Z(t;+1), can be found using the
equations below in which ¢; means the time value of the ith local extremum.
There are two or more time spots between two extrema. Finally, to get the

“local mean”, LMMD uses

m(tir1) = h(t:) x (i) + h(tiv1) x e(i + 1), (4.1)
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where
Bt = liv2a — lip1
' tiva —t;
tiy1 — 4
h(tiv1) = —
(tir1) live — &
1 tir1
e(i) = ——— ) z(l),
I RSP ILU
1 tit2
e(i+1) = ——M— z(1).
tiya — i +1 l=§il
After obtaining m(t;), - - -, m(¢,) (n is the number of extrema), the cubic spline

interpolation is used to connect them as mi; in equation (2.14). The other
steps are the same as theses of EMD. If, however, the data being treated is non-
stationary, the local mean involves a local time scale for computing the mean;
this time scale is impossible to define [27]. As a result, the “local mean” as it
is called in [21] is not a real local mean because the time interval between two
extrema is not local time scale. LMMD’s using the cubic spline interpolation
would result in the same shortcoming encountered with the envelope-mean
approximation and no effort was done to support the statement that LMMD

is much faster than EMD.

4.1.2 The Windowed Local Mean

Rasler [45] considered the mean of a signal within a window and called this
the local mean with respect to that window. In this thesis, this type of direct
approximation is termed a “windowed local mean”. For a continuous function,

y = f(z), the expression of its windowed local mean is

malfl@) =5 [ rryar 42)
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where z5 = [z — 6/2,z + /2], and § is the width of the integration window.
The purpose of giving such an expression in [45], however, is not for using
it for EMD but just to introduce the windowed local mean to interpret the
concept of “local mean” in Huang’s paper [27]. Only an example on how to
find the right window width for a continuous signal of sinusoid components was
given by [45] but no integrated algorithm was provided that could be applied
in EMD.

4.2 Proposed Direct Approximation Using the Windowed Local

Mean

4.2.1 The Motivation and the Expectation

The purpose of this chapter is to find an improved direct approximation with
a better capacity for identifying impulses. Such an approximation should con-
sider the relatively macro view of a signal but the consideration has to be
restricted to within relatively micro windows to avoid losing local signatures.
Although Résler [45] mentioned only one example of a function of the win-
dowed local mean, we can see that the method does have this good feature.
An expression of the windowed local mean for discrete data points is not given
in [45] but is needed to deal with real signals and to process them in a com-
puter. We define that for a set of data, z;, i = 1,2, - -, n, the discrete form of

its windowed local mean is

1 2

m(i) = —— > =z, i=12,-,n, (4.3)
0 1j=i~6/2

where 641 is the number of data points in the window centered at data point z;.

It’s apparent that é has to be an even integer. The LMMD method reviewed in
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Chapter 3 [21] also calculates windowed local means using the distance between
two consecutive extrema as the width of a summation window. But from
equation (4.2) we can see that only one representative mean value is computed
for each pair of two consecutive extrema and the final mean curve is obtained
by connecting these mean values with the cubic spline interpolation. Using
the method proposed in this chapter, windowed local means are calculated at
each point of the data set. The width of a summation window is centered at
this point. Thus, all points are utilized to contribute to the approximation of
the local mean and no interpolation is required.

Thus, we propose to apply the discrete form of the windowed local mean
to EMD to directly approximate the local mean. We expect it to have a
better capacity for identifying impulses without sacrificing too much basic
decomposition capacity and adding too much CPU time.

To have an integrated algorithm, two issues need to be discussed in next

subsections: selection of a window width and end point extension.

4.2.2 Selection of the Window Width

Apparently, selection of the proper width of the summation window is abso-
lutely crucial to the effectiveness of the windowed local mean method because
it determines the relative relationship between the local and global perspec-
tives. If the width is equal to the length of the data set, all the mean values are
the same and are equal to the algebraic mean of the data set. As a result, the
calculated mean will be a flat curve. If the original data has a non-zero mean,
it will be moved vertically after the subtraction of the flat mean curve so it will
be symmetrical about the X-axis. If the original data has a zero mean already,

it will not be changed after the subtraction. On the other hand, if the width
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is compressed to 0, the mean values are just the points of the original data
themselves so the mean curve is the signal itself and the rest of the subtraction
is the X-axis. Clearly, a proper width should be selected between these two
extreme cases.

Let’s look at a simple example, a sinusoid signal with a single frequency
component, for instance, z(n) = sin(27n/100), n = 1,2,---,1000. Appar-
ently, an ideal decomposition of it should produce itself as the IMF and zero
mean as the residue. This requires the windowed local means to be zero. It
will be seen that if the period or multiples of the signal period are used as
the width of the window, this requirement will be fulfilled. As a result, the

shortest feasible window width is the period of the sinusoid signal.

2 T k] T T H H T T T

period

ATALAANL

05

¥

Aroplitude
<

Figure 4.1: Illustration of a window width for a sinusoidal signal. The region
means the window has a width equal to its period.
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Let’s take an example to see how to find a feasible width for a signal with
multiple frequency components. We have a combination signal with three

frequency components and a length of 3000, This is expressed as

z(n) = sin(27n/1000) + sin(27n/500) + —;—sz’n(27m/100), n=12,---,3000.

(4.4)
Periods of the three components are 1000, 500, and 100, respectively. If we
select a shorter window width, e.g. 50, which is less than the shortest period of
the three components, the result of applying the windowed local mean method
to the combination signal to decompose the first IMF is as shown in Fig. 4.2.
It can be seen from Fig. 4.2 that although the highest frequency component
is filtered out in the subtraction (the first IMF) from the original signal, it
still exists in the windowed local mean curve. This means that as the mean is
used as a new signal for the next round of decomposition, it is not free of the
highest frequency component so the decomposition is ineflicient.

If we select a longer width, e.g. 500, which is the period of a lower fre-
quency component, the result of applying windowed local mean method to the
combination signal to decompose the first IMF is as shown in Fig. 4.3. It can
be seen from Fig. 4.3 that although the windowed mean captures a general
trend of the signal (period of 1000), the difference between the signal and the
mean is still mixed with a low frequency component (period of 500). It cannot
be used as an IMF. If we select a width between 100 and 500, e.g. 300, it can
be seen from Fig. 4.4 that the decomposition is even worse than in the case
of 500, that both the window local mean curve and the first IMF curve are
mixtures of frequencies.

If a width is selected to be exactly equal to the shortest period, or the
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Figure 4.2: Decomposition of the signal’s first IMF using § = 50, which is less
than the shortest period. The dotted line is the original signal; the solid line is
the windowed local mean; the dashed-and-dotted line is the difference between
the signal and the windowed local mean.

period of the highest frequency component, i.e. 100, it can be seen from Fig.
4.5 that the difference between the signal and the windowed mean contains
only the highest frequency and the windowed local mean is built up only by
the lower frequencies. As a result, the thin dashed line represents the first
IMF and only lower frequency components need to be further decomposed in
following IMFs. It can be concluded from our tests on optional widths that,
for this type of signal with multiple frequency components, a good trade-off
between global and local requirements would have the width of the windowed
local mean equal the period of the highest frequency component. It is noted

that the frequencies of this example are multiples of one another. We believe
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Figure 4.3: Decomposition of the signal’s first IMF using § = 500, which is
greater than the shortest period.

a same conclusion can be reached if frequencies are randomly selected since
we don’t utilize any benefits of being multiples. But it needs to be verified by
testing more types of signals. This is an empirical result since we have not
tested all widths from 1 to 3000; to do so would be too time-consuming. Résler
[45] used a similar example but made a mistake in saying that the proper width
is half of the period of the highest frequency component.

For a given signal, the period of the highest frequency component is difficult
to determine unless we are clear about its physical mechanism. For example,
for the signal shown in Fig. 2.5 on page 23, the procedure of using a given
period as the width cannot work because no period is known. Alternatively,

we can use the interval between two neighboring maxima or two neighboring
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Figure 4.4: Decomposition of the signal’s first IMF using 6 = 300.

minima to estimate the shortest period. If the values of the shortest periods
are not the same, we can calculate the average length of all intervals between
two neighboring maxima and between two neighboring minima first and then
use this average value to calculate windowed local mean at the current level.
When the IMF at this level is found, the process moves on to the next level and
requires us to calculate an average value again for the next IMF decomposition.
The decomposition process will not stop until the residual is a trend signal
or the number of the decomposed IMFs has reached a pre-set value. This
procedure works for the signal in Fig. 2.5 and the result is shown later in Fig.

4.18 in Chapter 5.
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Figure 4.5: Decomposition of the signal’s first IMF using 6 = 100, which is
equal to the shortest period.

4.2.3 End Point Extension

In the last subsection, we introduced the concept of the windowed local mean
and gave a method to find a proper width for it. The procedure for a decom-
position using the windowed local mean is also described. In this subsection,
we will point out a problem regarding the windowed local mean and give a
solution to the problem.

As shown by equation (4.3), the windowed local mean is calculated as a
summation at each data point. The summation range is centered at the data
point and has a width which is a given value at a certain decomposition level.
The calculation is not a problem as long as these data values are available for

calculating summations. When the distance between a center point and its
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nearest end point is less than half the width of the window, however, no more
data values can be provided beyond the end point and the summation cannot
be completed. Especially, for the first and last points, only half of the data
values are available. Thus, we have to have the ends of the data extended
to guarantee that a summation can be conducted at every data point. The
data should be extended at least half of the window width at the first and last
point. Since we don’t have any idea what is happening beyond the time span
for data collection, we don’t like to impose any artificial assumptions on a signal
without strong evidence. We choose sine waves for extending a signal because
they have explicit expressions. When we are extending the end points of a
signal in an envelope-mean approximation, we care about only the positions
and values of extrema. Here, we have to consider values of every extended
point since all of them are used in the calculation of the windowed local mean.
With an explicit expression, we know the values of as many extended points
as we want so we don’t need to specify so many points. A detailed description
of the extension is explained in Fig. 4.6. The solid curve is the end part of
an arbitrarily given signal. Only the extension of last points is shown because
the extension of first points is similar. In this example, the last extremum is a
maximum and the value of the last point (Vp) is greater than the value of the

last minimum (V,,,;,). We extend the signal with a sine wave, as

f(t) = Acos(

t
z 7 + phase) + B, (4.5)

where A is the amplitude determined by the values of the last minimum and
the last maximum: A = %]Vmaz — Vinin|, period is determined by the interval

between the last two extrema: period = 2 X |tmar — tmin], B is the vertical
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76
movement that makes the sine wave symmetric about the t -axis (B = é[VmM—

A] in this example), phase is the phase of the sine wave to slide along the ¢ -
axis until it has the same value (Vp) as the last data point, P, at the last
time spot t,, (phase = arccos|[(V, — B)/A] in this example). These parameters

make the extended wave continuous with the end of the data on value, trend
and boundary. If the value of the last point (Vp) is less than the value of the
last minimum (V,,;,), the only change to the extension is that the boundary

of the sine wave is determined by the last point and the last maximum, i.e.
A= %|Vmax -

Vp|. If the last extremum is a minimum, the extension method
is analogous to the case in which the last extremum is a maximum.
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Figure 4.6: Nlustration of the extension of the end of a signal
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Fig. 4.7 shows the result of the windowed local mean approximation when
the extension procedure is applied to the signal in equation (4.5). There are
not any obvious abnormal curves introduced to the mean curve and the IMF

curve. The extension procedure is feasible for this signal.

MF

ofiginal data

Arnpliude

MEEN Cutve

25 i i 1 1 £
750 800 850 an 950 1000 1 1100
Time (s}

Figure 4.7: Result of the windowed local mean approximation after the exten-
sion of the end points.

4.2.4 Comparisons on Simulated data

In this section, we are going to use the same simulated signals used in Section
3.3 to test the proposed windowed local mean method and compare it to the
method which uses the reported direct-mean approximation (LMMD [21]).
The proposed method uses the procedures in Sections 4.2.2 and 4.2.3 to select

a window width and to extend the end points. For the sake of convenience,
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the two signals are shown again below.

e Combination of multiple sinusoid waves with different frequencies and

amplitudes plus a global trend:

y(t) = 0.5sin(27 * 1000t/10) + 2sin(27w * 1000t/50)+
sin(2m * 1000t /120) + sin(27 * 1000t/200)+ (4.6)
sin(2r * 1000t /300) + sin(27 * 1000t/500) + 0.0005¢.

e Combination of a periodic impulse signal and a chirp signal:

y(t) = ve(t) +uilt), (4.7)

where y.(t) = sin(1007¢?) and y;(t) = 0.1e71%%sin(1000t).

The comparison on the combination of sinusoid waves is actually an assess-
ment of a method’s ability to decompose standard stationary signals. The CPU
times for the proposed approach and the LMMD on the short (3000 points) and
long (8000 points) multiple sinusoid combination are shown in Tables 4.1 and
4.2, We can see that the proposed method does not have an advantage with
regard to CPU time. This is because at every level of decomposition, every
data point participates in the calculation of the windowed summation. As the
number of extrema decreases with decomposition, the width of the summation
window becomes larger and larger so that time consumption increases as the
decomposition nears its conclusion, with regard to decomposition performance,
however, we will show that the proposed approach out-performs LMMD. From
observing Figs. 4.8 and 4.9, it can be seen that there is a serious problem with
LMMD. Only four IMFs have been generated because components are mixed

up. As is evident in Figs. 4.10 and 4.11 the proposed approach does not have
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Table 4.1: Comparison of the CPU times for the windowed local mean approx-
imation and the LMMD method on a 3000-point singal of multiple sinusoid

combination.
Direct-mean approximation | LMMD | WINDOWED

CPU time 0.1400s 4.0800s

Table 4.2: Comparison of the CPU times for the windowed local mean approx-
imation and the LMMD method on an 8000-point signal of multiple sinusoid

combination.
Direct-mean approximation | LMMD | WINDOWED

CPU time 2.9700s 16.5070s

this problem. Although the IMFs beyond IMF3 are distorted to some ex-
tent, at least the frequencies of the first three IMFs are clear and equal to the
designed components.

We applied the two methods to the chirp and impulse signals and the
resulting CPU times are shown in Tables 4.3 and 4.4. The proposed approach is
slower than LMMD for the reason mentioned above but the time consumption
is not that large. From visual observations of the decompositions recorded in
Fig. 4.12, it can be seenthat some impulses are present in IMF4-IMF10. The
marked region in IMF6 is enlarged in Fig. 4.13 where most of the periodical
impulses are clearly shown and it is easy to identify their time interval is just
0.25 seconds as designed. The appearance of impulses is even more obvious
when the proposed approach is applied to long combination of impulse and
chirp. IMF4-IMF10 all consist of the impulse patterns shown in Fig. 4.14, and
the enlarged marked region of IMF7 shows up as the clearest one in Fig. 4.15.
In this figure, impulses are separated clearly and the shape of them is close
to the original impulses that are shown in Fig. 3.11. In Figs. 4.16 and 4.17,
however, the information on impulses is too blurred to reveal their intervals

even from enlarged IMF's, which is our real concern when this type of simulated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Discussion of the Comparisons 80

L oMplyin WWMM W’W f\m vy
_10&10 5 3

o/\fvw\\ MM ! J\fm yh W\f Iy N\W J\, ™ l.«J‘ My

o\m\/xm&/w\ww\
—2&10'9 ; ‘ ; : : 3

% ON/«_/\\ T T T T &

o/\/ —

1 - nles() 2

Figure 4.8: Decomposition of a 3000-point sinusoid combination using LMMD.

signal is tested, because impulses may represent faults being monitored.

4.3 Discussion of the Comparisons

This chapter introduced an integrated procedure for using the windowed local
mean as a proposed direct-mean approximation. This procedure includes the
selection of proper window widths and extension of end points. Based on the
comparison with the LMMD method, the proposed approach is not as fast
as LMMD because the width of the summation window becomes larger and
larger causing time consumption to increase as the decomposition approaches

its conclusion. The LMMD method, however, does not pass the basic decom-
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Figure 4.9: Decomposition of an 8000-point sinusoid combination using
LMMD.

position capability test because it uses only one average value to represent
points between two extrema and it ignores local features too much. The pro-
posed approach using the windowed local mean shows more useful information
than does LMMD method; it identifies impulses that hide in chirp signals with-
out losing its basic decomposition capability. This is due to the property of
the windowed local mean takes every data point into consideration and cap-
tures more local features than does LMMD. Although the LMMD is faster, it
sacrifices the basic capability of decomposition and has little to contribute to
impulse detection. The proposed approach may have the potential to detect

real impulses mixed with other types of background signals or noises.
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Figure 4.10: Decomposition of a 3000-point sinusoid combination using win-
dowed local mean.

Table 4.3: Comparison of the CPU times for the windowed local mean ap-
proximation and the LMMD method on a 3000-point combination of chirp

and impulses.
Direct-mean approximation | LMMD | WINDOWED

CPU time 0.1090s 4.4690s

4.4 A Test on Experimental Data

We have verified that the windowed local mean approximation is the winner
of the comparisons on simulated signals. Now we look at how it performs on
an experimental data. It has been applied to the same experimental data in
Chapter 3 and the decomposition result is shown in Fig. 4.18. The windowed
local mean approximation takes 13.733 seconds. The first IMF obtained en-

larged in Fig. 4.19. We can see that the obtained first IMF also shows impulses
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Figure 4.11: Decomposition of an 8000-point sinusoid combination using win-

dowed local mean.

Table 4.4: Comparison of the CPU times for the windowed local mean approx-
imation and the LMMD method on an 8000-point combination of chirp and

impulses.

Direct-mean approximation

LMMD

WINDOWED

CPU time

0.6870s

13.3430s

much more clearly than the original data. It is easy to measure that distance

between two impulses which is 0.18 seconds, and represents the frequency of

the output shaft (1/0.18 = 5.5 Hz). Compared with the experimental result

by the MMPHI method in Chapter 3, it is hard to give a numerical indica-

tor telling which is better, Fig. 3.16 or Fig. 4.19, but, visually, more of the

impulses in the original data can be seen clearly in Fig. 4.19.
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Figure 4.12: Decomposition of a 3000-point combination of impulse and chirp
using the windowed local mean.
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Figure 4.14: Decomposition of an 8000-point combination of impulse and chirp

using the windowed local mean.
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Figure 4.16: Decomposition of a 3000-point combination of impulse and chirp
using LMMD.
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Figure 4.17: Decomposition of an 8000-point combination of impulse and chirp
using LMMD.
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Figure 4.18: Decomposition of the vibration data set using EMD with the
windowed local mean approximation.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Chapters 3 and 4 have discussed improvements to the two types of approx-
imation to the local mean in the process of EMD, i.e. the envelope-mean
approximation and the direct-mean approximation. Based on the work in this

thesis, the following conclusions have been reached:

1. The MMPHI approach has advantages over the other two envelope-mean
methods, i.e. the cubic spline and high-order spline methods, with regard
to CPU time and accuracy. The high-order spline method consumes too
much time and does not gain a benefit on accuracy. The cubic spline
method performs very much like MMPHI when testing simulated long
impulses and chirp signal. This accuracy assessment is primarily based
on visual observations. When a visual observation is not able to detect
much difference, the averaged MSE is used to help with the performance

assessment.

2. The windowed local mean approximation is better than another direction-

mean method, i.e. LMMD method, with regard to its capability to iden-
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tify impulses that hide in other signals. This merit can be obtained
without sacrificing too much CPU time and without losing the basic
decomposition ability. Their difference is obvious through visual obser-

vations.

3. When applied to an experimental data, both of improved methods of the
two types of approximations help EMD decompose the original data into
more useful IMFs. Between them, however, there is not much difference
in CPU time. Their capability to identify impulses is hard to define but,
from visual observations, the windowed local mean approximation seems

to perform better than does MMPHI.

4. In applying EMD to processing signals, we suggest using the MMPHI
approach to have a quick look at what basic frequency components are
contained in the raw data. When that has been done the windowed local
mean approximation can be used to detect impulses and any character-
istic frequency that may exist due to faulty conditions in a system being

monitored.

5.2 Future Work

The MMPHI approach has been developed to address concerns regarding
monotonicity. Monotonicity is not the only property that is important to
a curve. For example, convexity is another property that requires the differ-
entiation of the consecutive data points be monotonic. Brodlie and Butt [11]
developed a type of piecewise cubic interpolation that preserves convexity. The
application of such a type of interpolation to the local mean approximation

may improve the accuracy of EMD but more resources and time would be
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consumed.

In the window local mean approximation, selection of a proper window
width is crucial to the effect of a decomposition. We use a single average
width value in each decomposition iteration. The average width may not work
well for data without uniform frequencies so that we could use varying widths
along the length of the data to capture the local features more precisely.

Last but not least, visual observation is not enough to assess how well
impulse identification is being performed. An reasonable indicator of the ac-
curacy of a decomposition needs to be defined, especially when real signals are

analyzed.
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