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A b s t r a c t

In fault detection and assessment, a comprehensive understand­

ing and investigation of advanced signal processing m ethods is re­

quired. T he empirical m ode decom position (EMD) m ethod is an 

adaptive time-frequency dom ain signal processing m ethod  th a t is 

com pletely driven by the  d a ta  itself. T he cubic spline interpolation 

m ethod has been used to  approxim ate th e  local m ean in the  sifting 

process of EMD, where problems of undershooting and  overshoot­

ing have been identified.

This s tudy  explores approaches to  im proving the approxim ation of 

the local m ean to  obtain  b e tte r EM D performance. In th is thesis, 

the  modified monotone piecewise H erm ite interpolation  (M M PHI) 

m ethod is applied for envelope-mean approxim ation, because it 

dem onstrates advantages over the  cubic spline m ethod. A type of 

direct approxim ation of the local m ean, i.e. the windowed local 

m ean approach, is also investigated and  its m erit in identifying im­

pulses is dem onstrated. Perform ance of M M PHI and th e  windowed 

local m ean approach are also dem onstrated  when these are used to 

analyze experim ental d a ta  obtained from a gearbox.
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I

C h a p t e r  1 

I n t r o d u c t i o n

1.1 Introduction

The concepts of signals and system s arise in all areas of technology, ranging 

from appliances found in homes to  very sophisticated engineering devices. In 

fact, it can be argued th a t much of the development of high technology is a 

result of advancem ents in the  theories and techniques of signals and systems. 

P articularly  in the  research area of reliability and m aintenance, development of 

condition-based m aintenance requires a profound understanding of and inves­

tigation into advanced signal processing m ethods. Reliability has always been 

an im portan t aspect of the assessment of industrial products and equipm ent. 

Good product design is, of course, essential for products w ith high reliability 

requirem ents. No m atter how perfect the product design is, however, p rod­

ucts deteriorate over tim e because they  are operating under stress or load 

in the real environment, often involving randomness. M aintenance has thus 

been introduced as a way of assuring a  satisfactory level of reliability during 

the useful life of a physical asset. T he focus of m aintenance techniques has 

changed from breakdown m aintenance, to  tim e-based preventive m aintenance, 

to  condition-based m aintenance (CBM) [38].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1 Introduction 2

Condition-based m aintenance is a technique th a t recommends m aintenance 

actions be based on the inform ation collected through condition monitoring. 

CBM attem pts to  avoid unnecessary m aintenance activities by tak ing  action 

only when there is evidence of a  physical asse t’s abnorm al behavior. There are 

three key steps in CBM [33]:

1. D ata  Acquisition (inform ation collecting)-to obtain d a ta  relevant to  sys­

tem  conditions;

2. D ata Processing (inform ation hand ling)-to  handle and analyze the da ta  

or signals collected in step 1 for b e tte r understanding and  in terpretation  

of the data;

3. M aintenance Decision M aking (decision m aking)-to  recom m end efficient 

m aintenance policies.

The technologies of signal processing play a very im portant role in fault detec­

tion of m achinery since it bridges the gap between collected physical signals 

and the signatures of faulty conditions. These technologies can be categorized 

into two types: waveform d a ta  analysis and image processing. Tim e domain 

analysis and frequency dom ain analysis are techniques of waveform d a ta  anal­

ysis th a t were frequently discussed in past decades. Recently, time-frequency 

domain analysis has become a  focus; its algorithm s and technologies have 

been discussed in hundreds of paper. This thesis studies th e  em pirical mode 

decomposition (EM D), one time-frequency dom ain signal processing m ethod, 

to  investigate the  possible im provem ents in the perform ance of applications.
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1.2 Motivation 3

1.2 M otivation

In tim e dom ain analysis, some factors are calculated directly  from the tim e 

waveform itself to  indicate the statistica l features of signals. Fourier spectral 

analysis, which examines the global energy-frequency d istribu tion  of signals 

using the  Fourier transform , is the m ost frequently used form of frequency do­

main analysis. Unfortunately, the data , whether from physical m easurem ents 

or num erical modelling, will most likely have one or more of the  following 

problems:

•  the  to ta l d a ta  span is short;

•  the  d a ta  are non-stationary;

•  the  d a ta  represent non-linear processes.

In those cases, tim e dom ain or frequency domain analysis alone m ay be unable 

to  capture meaningful signatures of signals. For example, in a pro ject involv­

ing condition-based m onitoring of slurry pum p wear conditions, signals th a t 

were collected from a slurry pum p a t bo th  brand  new and w orn-out condi­

tions included not only vibration signals, b u t also pressure, current, flow rate, 

and acoustic signals because they were fluctuating as well [56]. Tim e domain 

data  alone provides little  inform ation about the m achine’s s ta tu s  because the 

processes of operation are non-stationary and non-linear.

Hence, it is necessary to  find an efficient signal-processing m ethod suitable 

to  the  d a ta  which will make it possible to  exploit more inform ation. Em pirical 

mode decom position (EMD) is a  new time-frequency dom ain signal processing 

m ethod proposed in [27]. Not only can EMD show features of signals in both 

the tim e and frequency domains, b u t also it is a fully data-driven, self-adaptive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Organization o f Thesis 4

signal processing m ethod th a t  decomposes signals w ithout assum ing any basic 

function or using any pre-determ ined filter. A lthough EM D has been proven to 

be effective and robust in the analysis of non-linear and non-stationary  d a ta  of 

m any applications, there are still a few areas th a t need further improvement, 

as s ta ted  in the  discussion section of [27]. This thesis focuses on studying 

im provem ents of the  approxim ation of local m ean in the  EM D process in order 

to  obtain  b e tte r perform ance as applied to  signals.

1.3 O rganization of Thesis

The thesis is organized as follows. T he m otivation for this study  is introduced 

in C hapter 1. The background and relevant lite ra tu re  regarding d a ta  process­

ing m ethods, especially, the empirical m ode decomposition, are reviewed in 

C hapter 2. C hapters 3 and 4 are devoted to  im provem ents in the approxim a­

tion of th e  local m ean and the verification of these im provem ents by sim ulated 

examples. Finally, conclusions are draw n and fu ture work is suggested in 

C hapter 5.
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5

C h a p t e r  2 

B a c k g r o u n d  a n d  L i t e r a t u r e  R e v i e w

2.1 R eview  o f D ata  P rocessing  M ethods

Using d a ta  acquisition systems, raw d a ta  sets are collected from devices and 

stored in com puter systems. Pre-processing is then  done to  elim inate d a ta  

errors, and, thereby, reduce the  possibility th a t  analysis m ay be ruined by 

errors. It is the  next step, which is d a ta  analysis, th a t  is the focus of this 

thesis. The literature provides a variety of models, algorithm s and tools for 

b e tte r comprehension and in terpre tation  of d a ta  [29]. T he models, algorithms 

and tools used for d a ta  analysis depend m ainly on the  types of d a ta  collected. 

Condition m onitoring da ta  collected from the  d a ta  acquisition step is versatile. 

I t falls into three categories [29]:

Value typ e  D ata  collected a t a specific tim e for a condition m onitoring vari­

able constitutes a single value. For example, oil analysis data , ambient 

tem perature, atm ospheric pressure, and hum idity are all value type d a ta  

in most applications.

W aveform  typ e  D ata collected a t a specific tim e for a condition m onitoring 

variable constitutes a tim e series; th is is often called a tim e waveform.
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2.1 Review o f Data Processing Methods 6

For example, v ibration and ultrasonic d a ta  are waveform data .

M ulti-d im ension  typ e  D ata  collected a t a specific tim e epoch for a condi­

tion m onitoring variable is m ulti-dimensional. The m ost common m ulti­

dimensional d a ta  is image d a ta  such as infrared therm ographs, X-ray 

images, visual images, and so on.

D ata  processing for waveform and m ulti-dimension of d a ta  is also called 

signal processing. Various signal processing techniques have been developed 

to  analyze and in terpret waveforms to  extract useful inform ation for further 

diagnostic and prognostic purposes.

In condition m onitoring, the  m ost common waveform d a ta  are vibration 

signals and acoustic signals. O ther waveform d a ta  include ultrasonic signals, 

m otor current, flow rate , and so on. In the literature, there are three main 

categories of waveform d a ta  analysis in the  field of CBM and fault diagnosis: 

tim e-dom ain analysis, frequency-domain analysis and tim e-frequency analysis.

2.1.1 T im e-dom ain A nalysis

Tim e-dom ain analysis is directly based on the  tim e waveform itself. Tradi­

tional tim e-dom ain analysis calculates characteristic features of tim e wave­

form signals as descriptive statistics such as mean, peak, peak-to-peak inter­

val, standard  deviation, crest factor, form factor; high order statistics: root 

mean square (RMS), skewness, kurtosis, etc. In [18], crest factor is defined 

as the ratio  of the  crest value (peak value) to  the effective value (RMS), and 

form factor is defined as the ra tio  of the effective value to  the half-period mean 

value. Thus, the  crest factor and the  form factor of a  sine wave are \/2  =  1.414 

and 7t/ ( 2\/2) =  1.111 respectively. T he crest factor is calculated is to  give us

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Review o f Data Processing Methods 7

a quick idea of how much im pact is occurring in a waveform. Im pact is of­

ten  associated w ith  roller bearing wear, cavitation and gear to o th  wear [43]. 

A perfect sine wave contains no impact; therefore crest factors w ith  a  value 

higher th an  1.414 im ply th a t there is some degree of im pact. T he above two 

factors are combined together to  create a revised crest factor (RCF) by [31]. 

The R CF is obtained by m ultiplying the original crest factor and the  form 

factor. T he average of absolute sam ple values for one cycle instead of half a 

cycle are used for the m ean value. For a sine wave as a benchm ark, the RCF 

is tt/2  =  1.571.

Kurtosis is defined as the fourth statistical m om ent, norm alized by the 

standard  deviation to  the fourth power, which is shown below [43].

K  = I > <  -  m )4’ (2'X)

where N  is the to ta l num ber of d a ta  points, a  is the  stan d ard  deviation, m  

is the average of the  signal, and xf are the am plitudes of the  signal. Kurtosis 

represents a m easure of the flattening of the density probability  function near 

the average value. A well-known value for kurtosis is 3, which is the  value of a 

norm al distribution. As a param eter for diagnosing faults in rolling bearings, 

the values of kurtosis increase w ith  the growth of the  defect. T h a t happens 

because the pulses generated are increased by the passage of the  rolling ele­

ments over the defect [43]. Kurtosis is also used on th e  diagnosis of bearing 

wear faults of pum ps used in the  waste w ater industry  [53]. T he reason for 

using kurtosis is th a t  vibration from an undam aged bearing is no t impulsive 

whereas v ibration  from a dam aged bearing will be im pulsive and  will result in 

a kurtosis value greater th an  3.
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2.1 Review o f Data Processing Methods 8

Lin et al [35] proposed the fault growth param eter (FG P) and its revised 

version, FG P1, should reflect the deterioration of a gearbox and  track  the gear 

to o th  hea lth  condition over time. FG P is defined as the  p art (percentage of 

points) of the  residual error signal which exceeds th ree  standard  deviations 

calculated from the baseline residual error signal taken  when the run  began, 

or
L 1

F G P  =  100 X ) 7 / ( r i  > r  +  3 a0), (2.2)
»=l L

where r»’s are the  residual error signal points. A series of M orlet wavelets 

are used as a filter to  decompose the original vibration signal and obtain the 

harm onic error signal composed of vibration com ponents from bo th  the pinion 

and the  gear.The residual error signal is the  sum  of v ibration  com ponents th a t 

are purely due to  the  pinion and vibration com ponents th a t  are purely due 

to  the gear [54]. F is the mean value of the  current residual signal, <To is the 

standard  deviation and /(■) is the indicator function defined as

I ( x  >  x 0) =
1 i f  x  >  x o,

(2.3)
0 i f  x  < xq.

T he current residual signal is com pared w ith  its m ean value to  ad just for 

possible changes in the running conditions, such as change in load, assuming 

th a t th is should not affect the standard  deviation. FG P1 is defined as the 

weighted p art (weighted percentage of points) of the residual error signal, which 

exceeds th ree standard  deviations from the baseline residual error signal, or

L w
F G P  = 100 J 2 ^ I ( r i > f  + 3a0), (2.4)

where Wi =  I  f a  < F+3<7o) +  (L i^ f — l j  + 1 ) ,  W  =  Yif= i Wi, and [-J is the floor
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2 .1 Review o f Data Processing Methods 9

function. For a norm ally d istribu ted  signal, 99.7% of the signal should remain 

w ithin three standard  deviations. W hen a  gearbox is in good condition, the 

v ibration signal is random; thus it should conform to  a  norm al distribution 

and only 0.3% of its points have the  probability of exceeding three standard  

deviations. At th is time, the value of FG P and FG P1 should be very low. 

W ith  the development of gear to o th  faults, more and more abnorm al points 

will appear making both  FG P and FG P1 increase significantly.

O ther tim e-dom ain processing techniques include tim e synchronous aver­

age (TSA) [16, 39], the autoregressive (AR) model, the  autoregressive moving 

average (ARMA) model [4, 10], and principal com ponent analysis (PCA) [7].

2.1.2 Frequency-dom ain A nalysis

Frequency-dom ain analysis is based on the transform ed signal in the frequency 

domain. T he advantage of frequency-domain analysis over tim e-dom ain anal­

ysis is its ability to  easily identify and isolate certain  frequency components 

th a t  are of interest. The most widely used conventional analysis is the  spectral 

analysis by m eans of fast Fourier transform  (FFT ). Fourier proved th a t any 

periodic function x ( t ) can be represented as a sum  of sinusoids w ith frequencies 

which are integer multiples of the  frequency of x(t) ,  i.e. if a continuous-tim e 

function, x ( t ), is periodic with a  tim e period of T0, it can be represented by a 

Fourier series as in [9]
OO

=  Z  ckejQokt, (2.5)
k = —oo

where fio is the  frequency of the function given by and ck s are coefficients 

given by
\  rto+To

cfc =  — /  x{ t)e 3 0 dt. (2.6)
-*0 Jto
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For non-periodic signals there is also a representation in term s of complex 

exponentials which is called a continuous-tim e Fourier transform  (C T FT) [42]:

X (Q )  =  r  x{t)e~jUtdt. (2.7)
7 — 00

These concepts can be extended to  discrete-tim e signals by using discrete-tim e 

Fourier transform  (D T FT ); th a t  is,

OO

X ( u ) =  J2 x{n)e~julndt, (2 .8 )
n = —oo

where n  is the length of the  discrete series. The discrete Fourier transform  is 

a  sam pled version of D T F T  th a t  can be processed by com puters. An N-point 

D FT  is defined as,

N - 1

X ( k )  =  Y ,  x(n)e~j %kn, 0 < k < N - l .  (2.9)
n —0

Fourier spectral analysis has provided a general m ethod for examining 

global energy-frequency distributions. As a result, the  term  “spectrum ” has 

become alm ost synonymous w ith the Fourier transform  of d a ta  because the 

Fourier transform  has dom inated d a ta  analysis efforts since its introduction, 

and has been applied to  alm ost all kinds of d a ta  [2, 44, 53]. T he m ost com­

monly used tool in spectral analysis is the power spectrum . It is defined as

Sxx(k) = X ( k ) X * ( k ) ,  where denotes the  complex conjugate. T he complex 

conjugate of a complex num ber, z  =  a +  bi, is z  =  a — bi. Fourier transform  is 

commonly used as the  first step in signal processing because it provides a basic 

sense of the collected signals. I t can, however, reflect only averaged spectra 

in the frequency dom ain and it gives no inform ation regarding tim e for some
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observed peaks.

Besides the  wide acceptance of the  power spectrum , o ther useful spectra 

for signal processing have been developed and have been shown to  have their 

own advantages over the  F F T  spectrum  in certain cases. C epstrum  has the 

ability to  detect harmonics and sideband patterns in a power spectrum . There 

are several versions of cepstrum  [24], among them , a power cepstrum , which 

is defined as the  inverse Fourier transform  of the logarithm ic power spectrum , 

or

s =  F T - ' M S ^ ik ) ] .  (2 .10)

The cepstrum  is highly sensitive to  recurrent patterns such as those generated 

by local faults. It can be useful in interpreting the spectrum  and as a tool 

for the detection of periodic structures [3]. I t has been found, however, th a t 

cepstrum  is not sensitive to  the  different progression levels of same faults [16].

O ther frequency-dom ain m ethods include high order spectrum  [52], AR 

spectrum  [17], and ARM A spectrum  [47] based on the  A R  m odel and the 

ARMA m odel respectively.

2.1.3 T im e-frequency D om ain  A nalysis

One lim itation of frequency-dom ain analysis is th a t it is unable to  handle 

non-stationary waveform signals, which are very common when faults occur 

on machines [29]. Thus, time-frequency analysis, which investigates waveform 

signals in b o th  the tim e and  frequency domains, has been developed for non- 

stationary  waveform signals.

The sim plest way of perform ing a time-frequency analysis is certainly to  

consider a non-stationary  signal as a series of quasi-stationary  segm ents for 

which the  sta tionary  assum ption is justified in each segm ent. Short-tim e
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Fourier transform  (STFT, also called spectrogram ) offers a constant resolu­

tion  in th e  tim e as well as in the frequency dom ain [13]. The transform  is 

expressed as

where w(-) is the window function, and b and u> are the tim e and frequency 

scale respectively. This m ethod restricts the Fourier transform  within a speci-

the  S T F T  to  the calculation of the time-frequency d istribu tion  of a gear’s vi-

window function is suitable for the calculation of the  spectrogram , giving a 

representation which is free from ripple and easy to  in terpret. I t is a drawback 

m entioned in [13], however, th a t a good frequency resolution can be achieved 

only by m eans of a large window, which results in poor tim e resolution; con­

versely, good tim e resolution implies a short window, which results in poor 

frequency resolution.

W avelet theory  has developed rapidly in m any areas in the  past decade due 

to  its flexibility and its efficient com putational im plem entation. T he continu­

ous wavelet transform  (CW T) of a square-integrable (i.e. \x(t)\2dt being

finite) and continuous-tim e signal x ( t ) is the  inner product between x{t) and 

the wavelet, (t), which gives wavelet coefficients [59]

where \F+(t) is th e  complex conjugate of the m other wavelet function, T(f); a 

is the scale param eter; and b is the tim e param eter. W avelet transform  investi­

gates the  sim ilarity of the original signals to  a set of scaled and  shifted versions

Xp{b, u )  =  / w*(t — f y x f y e ^ d t . (2 .11 )

fied window which slides along the tim e axis. W ang and M cFadden [51] applied

bration  signals. They showed th a t selecting the  G aussian function as the

(2 .12)
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2.1 Review o f Data Processing Methods 13

of the  m other wavelet. Types of m other wavelets include Haar, Daubechies, 

Symlets, Coiflets, Meyer, Mexican H at, and M orlet wavelet. They have been 

widely applied in the detection of gear faults [6, 36, 55]. Corresponding to  the 

D T F T , there is also a discrete wavelet transform  (DW T) b u t the discretized 

param eters are scale and time param eters, i.e. a — 2J , T- — k,  and

i r+°° t  — 2,ik
X w(k , j )  =  - j =  J  ^  x ( i ) * * ( - ^ —  )dt,  (2.13)

where j  and k  are integers. The D W T behaves like a filter bank  th a t decom­

poses an  original signal, x(t) ,  into A pproxim ation Coefficients, Ai ,  and Detail 

Coefficients, D\,  a t the  first level by a  low pass filter and a high pass filter 

respectively. A higher level approxim ation vector, A ,_ i, is decomposed into 

A j  and Dj  again until the level reaches a preset num ber, J .  The wavelet tree 

for J  =  3 is illustrated  in Fig. 2.1 [41]. T he application of the  D W T in fault

Figure 2.1: A three-level wavelet tree  [41],

detection of spalling in bearings, worn gears and washing m achines can be 

found in [22, 40, 49],

A m ajor problem  of wavelet is its non-adaptive nature. Once the  m other
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2.2 The Empirical Mode Decomposition Method 14

wavelet is selected, one has to  use it to  analyze all the  data . It can be said th a t 

the selection of basis of the  decomposition is a priori. In  reality, we cannot have 

enough d a ta  to  cover all possible points in the phase plane, therefore, m ost of 

the signals to  be dealt w ith are transien t in nature so th a t  non-stationary and 

non-linear properties cannot be ignored. Locality and adaptiv ity  are the neces­

sary conditions on which to  base an expanding non-linear and non-stationary 

tim e series. To deal w ith this problem, a new m anner is introduced in [27] 

where a signal is w ritten  as a finite sum  of intrinsic mode functions (IMFs). 

The m ethod of obtaining th is decom position is called the empirical m ode de­

com position (EMD) m ethod. T he m ethod is adaptive and is driven by the 

signal itself. Details of the  EMD m ethod will be given in Section 2.2.

O ther time-frequency dom ain techniques include Choi-W illiam distribution 

[14], Wigner-Ville d istribution (W VD) [15], and S-transform  [48].

2.2 T he Em pirical M ode D ecom position  M ethod

In the last section, we reviewed some time-frequency dom ain signal processing 

m ethods. In contrast to  all the previous m ethods, Huang et al [27] introduced 

a new m ethod th a t is intuitive, direct, a posteriori  and adaptive, w ith the  basis 

of the decomposition based on, and derived from, the  data . Actually, Huang 

et al proposed a general approach which requires two steps in analyzing the 

data. T he first step is the em pirical m ode decomposition (EMD) which decom­

poses the  d a ta  into a num ber of intrinsic m ode function (IMF) com ponents, 

thus expanding the d a ta  on a basis derived from itself. The second step  is 

the  H ilbert spectral analysis (HSA) which applies the  H ilbert transform  to  the 

decomposed IM Fs and constructs an energy-frequency-time distribution, des­

ignated as the H ilbert spectrum , from which the tim e localities of events will
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2.2 The Empirical Mode Decomposition Method 15

be preserved. In other words, this m ethod uses the instantaneous frequency 

and energy ra ther th an  the  global frequency and energy defined by Fourier 

spectral analysis. EMD is actually a pre-step of HSA th a t  decomposes the 

da ta  into com ponents for which the instantaneous frequency can be defined.

2.2.1 Intrinsic M ode Functions

Physically, the  necessary conditions for defining a m eaningful instantaneous 

frequency are th a t  the functions are sym m etric w ith respect to  the local zero 

mean, and have the same num ber of zero crossings and extrem a. As a result, 

an intrinsic m ode function (IMF) is defined by two conditions:

1. in the whole d a ta  set, the num ber of extrem a and th e  num ber of zero 

crossings m ust either be equal or differ a t most by one;

2. a t any point, the m ean value of the  envelope defined by th e  local m axim a 

and the  envelope defined by the local m inim a is zero.

The first condition is obvious; it is similar to  the trad itional narrow band 

requirem ents for a s tationary  Gaussian process. The second requirem ent m od­

ifies the classical global requirem ent to  a  local one; it is necessary so th a t 

the instantaneous frequency will not have the  unwanted fluctuations induced 

by asym m etric wave forms. A local m ean is the  curve th a t  makes the  d a ta  

purely sym m etric after being sub tracted  from the data. Ideally, the require­

ment should be “the  local m ean of the  d a ta  being zero” . For non-stationary  

data, the “local m ean” involves a “local tim e scale” to  com pute the  m ean, 

which is impossible to  define. As a substitu tion, “envelope m ean” which is de­

fined by the local m axim a and the  local m inim a is used to  force local sym m etry 

instead. This is a necessary approxim ation to  avoid the definition of a local
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averaging tim e scale. This type of approxim ation is called an “envelope-mean” 

approxim ation.

The nam e “intrinsic mode function” has been adopted because it represents 

the oscillation m ode im bedded in the data. W ith  th is definition, the  IM F in 

each cycle, defined by the zero crossings, involves only one m ode of oscillation; 

no complex riding waves are allowed. W ith  this definition, an  IM F is not 

restric ted  to  a narrow  band signal, and it can be bo th  am plitude and  frequency 

m odulated. In fact, it can be non-stationary. As discussed above, purely 

frequency or purely am plitude m odulated functions can be IM Fs even though 

they have a finite bandw idth  according to the  trad itional definition. A typical 

IM F is shown in Fig. 2.2 (Fig. 2 of [27]).

0 . 1  ----------------- 1--------   1-----1---------- T    “ T — — l—   - T ”  — I —  1—  — 1------------ — |

- O .t ------------------------------------ — >— — i---    _j_---------J
4,2 4.4 4.8 4.8 5 6.2

Time (si

Figure 2.2: A typical intrinsic m ode function w ith  the  same num ber of zero 
crossings and extrem a, and sym m etry of the  upper and lower envelopes with 
respect to  zero [27].

2.2.2 T he S ifting  Process

Unfortunately, m ost of the d a ta  are not IMFs. At any given tim e, the d a ta  

may involve more th a n  one oscillatory mode so th a t  we have to  decompose the
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2 .2  The Empirical Mode Decomposition Method 17

d a ta  into IM F components. T he decomposition is based on th ree assumptions:

•  the  signal has a t least two extrem a-one m axim um  and one minimum;

•  the  characteristic tim e scale is defined by the  tim e lapse between the 

extrem a;

•  if the  d a ta  is to tally  devoid of extrem a b u t contains only inflection points, 

th en  it can be differentiated one or more tim es to  reveal the  extrema. 

F inal results can be obtained by integration(s) of the  components. Ac­

tually, for v ibration and acoustic signals, th is case is rarely seen.

The tim e lapse between successive extrem a is adopted as the  definition of the 

tim e scale for the  intrinsic oscillatory mode, not only because it gives a much 

finer resolution of th e  oscillatory modes, b u t also because it can be applied to 

d a ta  w ith  a non-zero mean, either all positive or all negative values, w ithout 

any zero crossings. A system atic way of extracting the  oscillatory modes, called 

the  sifting process, is described as follows.

By v irtue of the IM F definition, the  decom position m ethod can simply 

use th e  envelopes defined by the local m axim a and m inim a separately. Once 

the  extrem a are identified, all the local maxim a, E max(t), are connected by a 

cubic spline line as the  upper envelope, and all the local m inim a, E min(t), are 

connected by a cubic spline line as the lower envelope as well. Their mean 

is denoted as win, and the difference between the  d a ta  and m u  is the first 

com ponent, h n ,  i.e.

x( t)  — win =  h n . (2-14)

Here, the  symbols rrijk and hjk m ean they are variables obtained for the j t h  

decom position level and kth  iteration operation. T he first sifting process is
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illustra ted  in Fig. 2.3 (a)-(c) (Fig. 2.3 (a) gives the  original signal; Fig. 2.3 (b) 

gives the  d a ta  in the th in  solid line, the  upper and  the lower envelopes in the 

dot-dashed lines, and their m ean in the  thick solid line, which bisects the data; 

and Fig. 2.3 (c) gives the difference between the d a ta  and the local m ean as 

in equation (2.14)) .

Ideally, h n  should be an IM F, because the  construction of h n  described 

above seems to  have been m ade to  satisfy all the requirem ents of IM F. In 

reality, however, the cubic spline in terpolation  can generate new extrem a, and 

shift or exaggerate existing ones. T he sifting process serves two purposes: to  

elim inate riding waves, and to  make the  wave profiles more symmetric. Toward 

this end, the sifting process has to  be repeated  a num ber of times. In the second 

sifting process, h n  is trea ted  as a new signal, then

h n  ~  Tni2 = h n ,  (2.15)

where m i2 is the m ean of the upper and  lower envelopes of hn-  We can repeat 

this sifting procedure k  times, until h n  is an IM F, th a t  is

hpk- i )  Tft-ik — hn-, (2.16)

and the  result, the first IM F from the signal, is denoted as

ci =  h lk- (2.17)

We should have a criterion to  determ ine when to  stop the process of finding

the  first IM F and subsequent IM Fs. I t should not be too extrem e because

IMF com ponents should still re ta in  enough physical sense of bo th  am plitude
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Figure 2.3: Illustration of the sifting process (Fig. 3 of [27]).
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and frequency m odulations. This can be accomplished by lim iting the size of 

the standard  deviation, S D ,  com puted from two consecutive sifting results as

s d = y :
t - 0

(2.18)

A typical value for S D  can be set between 0 . 2  and 0.3 [27].

Overall, c\ should contain the finest scale or the shortest period component 

of the signal. We can separate C\ from the rest of the  d a ta  by

x( t)  — Ci =  t v  (2-19)

Since the  residue, r\ ,  still contains inform ation of longer period components, 

it is trea ted  as new original d a ta  and subjected to  the  same sifting process as 

described above. This procedure can be repeated on all the subsequent r j ’s, 

and all the  subsequent Cj’s are obtained by using the  same stopping criterion 

as the first IM F. T he result is

n  -  c2 =  r  2

i }• (2.20)

'f'n—l  Cn n

T he whole sifting process can be stopped by any of the  following predeter­

mined criteria: when the com ponent, cn , or the residue, rn , becomes so small 

th a t it is less th an  th e  predeterm ined value of substan tial significance, or when 

the residue, rn , becomes a monotonic function from which no m ore IM Fs can 

be extracted. To distinguish this stopping criterion from the  one th a t  stops it­

erations of finding each IM F, we refer the  “stopping crite rio n /c rite ria” to  only 

the one th a t  stops iterations of finding each IM F (unless specified otherwise).
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Even for d a ta  w ith zero mean, the final residue can still be different from zero; 

for d a ta  w ith a  trend, the final residue should be th a t trend . By sum m ing up 

equations (2.19) and (2.20), we finally obtain

n

x(t)  = J 2 ci + rn- (2.21)
2 = 1

Thus, we have achieved a decomposition of the  d a ta  into n empirical modes, 

and a residue which can be either the mean trend  or a constant.

A set of vibration signals from a gearbox experim ent [50] is used to  exem­

plify the  sifting process. The experim ent system  is shown in Fig. 2.4. The 

sampling frequency is 2560Hz. The length of the d a ta  is 3.2 seconds. The 

ro tation  speed of the m otor is 600RPM. A dam aged gear (Gear 4) seeded with 

a fault, a missing tooth , meshes w ith a  norm al gear (Gear 3) . T he original 

collected d a ta  is shown in Fig. 2.5 and characteristic frequencies of the  system 

are shown in Table 2.1. T he decomposition result is shown in Fig. 2.6 which 

is a decomposition.

Table 2.1: Characteristic frequencies of the gearbox [50].
Input
shaft

Middle
shaft

O utput
shaft

Gears l k .2  

meshing
Gears 3&4 

meshing
10Hz 3.3Hz 5.5Hz 160Hz 133Hz

2.2.3 C ritical Issues in the EM D

In the previous section, we described the m ost im portan t p art of the sifting 

process: the  approxim ation to  the local m ean of a signal by upper and lower 

envelopes obtained from a cubic spline interpolation. A good approxim ation 

can cap tu re the  general trend  of the signal while keeping th e  local features as 

much as possible. On the contrary, a poor approxim ation will lose much infor-
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Damaged gear

Figure 2.4: Illustration  of an experim ental system  [50].

m ation w ithin the  original signal causing the  decomposed IM Fs to  have less 

physical meaning. Thus, approxim ation to  the  local m ean is a critical issue in 

EMD, one for which there is considerable room  for im provement. In C hapter 

3 and C hapter 4 we will improve upon th is critical issue using two types of 

approxim ation. In C hapter 3, the m onotone piecewise H erm ite interpolation 

will be applied to  the envelope approxim ation procedure to  preserve the mono­

tonicity of the  d a ta  [19]. As m entioned in [27], the  envelope-mean interpolation 

creates a problem  called end point swings. This problem  exists because the 

length of the given d a ta  is finite and the  end points cannot be m aximum and 

m inimum points simultaneously. Since the  m onotone piecewise Hermite inter­

polation also serves the envelope-mean approxim ation, the  problem  still exists. 

Approaches dealing w ith this problem  will be discussed a t length. In C hapter 

4, a direct approxim ation approach using windowed local m ean m ethod will 

be applied w ithout constructing envelope means; this m ethod performs b e tte r
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Figure 2.5: Waveforms of signals collected from a gearbox w ith to o th  missing 
fault.

when identifying impulses [45]. T he problem  of end point swings does not exist 

here b u t a corresponding end point extension procedure for th is m ethod will 

be considered.

2.2.4 A nalysis o f O btained IM Fs

We have discussed the basic idea of EMD and some of its critical issues. Al­

though this thesis concentrates on improving EMD, clearly the  decom position 

procedure is not the final step  of signal processing. T he purpose of conducting 

the  decomposition is to  utilize its result for fault detection or o ther appli­

cations so analysis of obtained IM Fs is necessary. Visual observation is the 

simplest and most direct way of doing this. In [27] Huang et al in troduced an
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Figure 2.6: Illustration of the decomposition of a v ibration d a ta  set after the 
sifting process.

advanced analysis to  IM Fs th a t conducts the H ilbert spectral analysis using 

H ilbert transform  (HT) as the second step of their integrated  approach. Since 

this is not the focus of this thesis, we provide ju st a brief review of H T and 

instantaneous frequency.

The Hilbert transform  was first developed to  process non-stationary  narrow­

band signals [23]. T he H ilbert transform  is a time-series analysis technique for 

deriving am plitude and phase inform ation from a d a ta  set as a function of
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time. It is a  powerful tool for dealing w ith non-stationary  signals. For an 

arb itra ry  tim e series, x(t) ,  we define its H ilbert transform , y(t) ,  as [45]

y(t)  =  H\x( t) \  =  i  £ h d t .  (2 .2 2 )

According to  the  definition of H ilbert transform , y(t)  is ju s t a tim e-delay and 

90° phase-shifting of the original signal. It m eans th a t y( t)  is delayed by a 

quarter of a period in tim e dom ain th an  the signal x(t) .  W ith  their definitions, 

x(t)  and  y(t)  form a complex conjugate, Z(t ) ,  as

z ( t ) =  x(t) + y(t) — a{t)elB<̂ \  (2.23)

where a(t) = <Jx2 (t) +  y 2 {t) and 6 (t) = a r c t a n ( ^ j ) .  B ased on the  expression 

of the H ilbert transform , Huang et al proposed a definition of the  instantaneous 

frequency for narrow band  signals as

(2.24)

Then, w ith the  definition, instantaneous frequencies are calculated for each 

IMF obtained from the original signal. Let ci, c2, • • •, cn be n  IM Fs of x(t)  

generated by the  EMD m ethod. C alculating the H ilbert transform  of each 

mode gives n  complex functions [45]:

zi{t)  =  ci(t)  +  iH[ci(t)\  =  ai(t)e®0lW

! (2.25)

zn{t) = cn(t) +  iH[cn(t)\ =  a„(i)e*0"W.

The frequency of each m ode is described by O'At). So, all 9At),  j  =  1, ■ ■ •, n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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together give a  time-frequency analysis of the  signal x(t) ,  which is called the 

H ilbert spectrum . As an example, the H ilbert spectrum  of the  first IM F of the 

signal used in Fig. 2.6 is shown in Fig. 2.7.

Hilbert-Huang Spectrum
1500.----------------------- 1----------------------- 1----------------------- 1----------------------- j----------------------- !----------------------- 1-----------------------

1000

500

&
I 0
cr 2! b.

-500

-1000

- ,5 0 0 0  0 .5  t 1.5 2  2 .5  3  3.5
Time (s)

Figure 2.7: T he Hilbert transform  of the  first IM F of the  signal given in Fig. 
2 . 6 .

Zuo and Fan [63] also proposed an  IM F analysis m ethod th a t combines 

EMD w ith H ilbert transform . Unlike the  H ilbert-H uang transform , this m ethod 

takes the change of am plitude of the IM F ’s envelope spectrum  into account 

other th an  the  instantaneous frequency. It is com pared w ith bo th  the  Hilbert- 

Huang transform  and the wavelet transform  using sim ulated signals and real 

signals collected from a gearbox. T he results obtained show th a t  the proposed 

m ethod is effective in capturing hidden fault impulses.

Hilbert-Huang Spectrum
t--------------------------- 1----------------------------1----------------------------1----------------------------1----------------------------r
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2.2.5 A pplications o f th e  EM D

Applications for EMD have been found in m any areas. In astrophysics, Komm 

et al [32] applies EMD and H ilbert analysis to  tim e series of ro ta tion  residuals 

a t all latitudes and at all depths in the  solar convection zone derived from 49 

Global Oscillation Network Group d a ta  sets covering the  period May 7 1995 to 

May 15 2000. They calculate H ilbert power spectra for each time series in order 

to  determ ine whether the ro tation  ra te  in the convection zone shows any other 

system atic tem poral variation besides the so-called torsional oscillation pa tte rn  

in the upper convection zone and the  periodicity of 1.3 years near the  base of 

the  convection zone. In mechanical systems, a m ethod is presented in [37] for 

m onitoring the evolution of gear faults based on EMD. Experim ental vibration 

signals from a  tes t rig have been decomposed into IM Fs. An empirical law, 

which relates the  energy content of the  intrinsic modes to  crack m agnitude, has 

been established. The m odal energy is thus associated w ith the  deterioration 

in gear condition and can be utilized for system  failure prediction. Yu [60] 

used EMD to decompose the v ibration signal of a roller bearing and establish 

the  A R model of each IM F com ponent. P ractice examples show th a t  the 

proposed approach can be applied effectively. In earthquake research, Zhang et 

al [61] uses EMD to analyze recordings of hypothetical and real wave motion, 

the  results of which are com pared w ith  the results obtained by the  Fourier 

d a ta  processing technique. The analysis of the  two recordings indicates th a t 

the  m ethod is able to  ex tract some m otion characteristics useful in studies 

of seismology and engineering, which m ight not be exposed effectively and 

efficiently by the Fourier d a ta  processing technique.
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C h a p t e r  3 

I m p r o v e m e n t  o f  t h e  E n v e l o p e - M e a n  

A p p r o x i m a t i o n  b y  U s i n g  M o n o t o n e  

P i e c e w i s e  H e r m i t e  I n t e r p o l a t i o n

We have reviewed the  concepts and basic algorithm  of EMD in C hap ter 2. The 

essential p art of EM D is the  sifting process using the  envelope-mean approxi­

m ation. The envelope-mean approxim ation includes these steps:

1. Identification of local m axim a of the d a ta  being analyzed. For example, 

when checking th ree consecutive points, P I ,  P 2  and P 3, if P 2  is greater 

th an  bo th  P I  and P 3, then  P 2  is identified as a  maximum.

2. Connection of local m axim a using an  interpolation m ethod to  obtain  an 

upper envelope. T he cubic spline interpolation is used in [27],

3. Identification of local minima. The same approach is used as for m axima.

4. Connection of these local m inim a using a same in terpolation m ethod to 

obtain a lower envelope.

5. Use of the average of these two envelopes to  approxim ate the  local mean.
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Although th e  effectiveness of th is relatively new technique has been dem on­

stra ted  in m any applications, EMD itself is not perfect itself. Even the  au­

thors of the  original paper have sta ted  in [27], “At any ra te , improving the 

spline fitting  is absolutely necessary.” Possible improvements of th e  envelope- 

mean approxim ation will be investigated in this chapter. Section 3.1 reviews 

reported  in terpolation m ethods w ith their m erits and disadvantages, among 

them  the m onotone piecewise Herm ite interpolation. In Section 3.2, we choose 

the m onotone piecewise Herm ite interpolation to  replace the  cubic spline in­

terpolation in EMD; com paring their perform ance using sim ulated signals on 

a common standard . T he perform ance of the winner of the  com parison on an 

experim ental d a ta  is tested  in Section 3.3. A sum m ary can be found a t the 

end of the chapter.

3.1 R ep orted  Interpolation  M ethods

Interpolation is the  process of constructing a  function th a t  takes on given values 

a t a given d a ta  set. Such a  function is called the in terpo lating  function or 

interpolant and can be seen as an  approxim ation of a function which is known 

a t some points [30]. These known or given points are also called knots. Let 

{xi} "= 1  be a p artitio n  of the interval I  — [a, b] C R , i.e. a =  x% < ■ ■ ■ < x n = b. 

Suppose th a t a  function, g, is given in I,  the  problem  we consider is finding a 

function, /  =  f ( x ) ,  such th a t

f { x i )  =  g(xi ) , i  =  1, • • ■ ,n.  (3.1)

Many in terpolation m ethods have been reported  since [30] which was pub­

lished in 1910. For historical as well as pragm atic reasons, th e  m ost im portant
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class of in terpolating  functions is a set of polynom ial functions. Polynomial 

functions have th e  advantage of being easy to  evaluate directly and can be eas­

ily added, m ultiplied, integrated, or differentiated [30]. Polynom ial functions 

have two branches: one is global polynomial in terpolation  which passes one 

polynom ial function through all the data. If we want /  to  be a polynomial we 

call f ( x ) =  p(x)  a global polynomial interpolating function. T he linear space 

of polynom ials of order n  is denoted by

Pn =  {p\p(x) =  a 0 -I b anx n, a; G R }. (3.2)

A classical result from algebra is th a t  there is a unique polynomial, p, of 

order n  such th a t p ( x i )  — g { x i )  for i =  1 ,  • ■ ■ , n  +  1 .  A nother branch is 

piecewise polynom ial interpolation which uses a  polynom ial function for each 

consecutive pair of knots. Instead of assigning /  to  be a  single polynomial, 

/  can be a polynom ial on each interval, [xi, Zf+i], i.e. / | [ XiiXi+i] =  Pi with 

P i - l ( X i )  = p ( x i ) .

A piecewise cubic interpolation is a piecewise interpolation  th a t  uses th ird  

order polynom ial functions. Hermite cubic in terpolation is a piecewise cu­

bic in terpolation th a t requires a continuous first derivative a t knots [30]. If 

a  continuous second derivative is also required, it is called a cubic spline in­

terpolation. If a  continuous second derivative is not required b u t some other 

conditions are supplied to  guarantee monotonicity, th e  H erm ite cubic interpo­

lation is called a m onotone piecewise Herm ite interpolation [20]. M onotonicity 

is a basic property  of a curve th a t reflects the increasing or decreasing feature 

of some consecutive points of the  data. As an illustration, the two solid lines in 

Fig. 3.1 keep the  m onotonicity of points A and B b u t the  dashed line doesn’t,
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since it generates a m inimum between A and B. Fritsch and B utland [19] de­

scribed a modified monotone piecewise Herm ite in terpolation th a t solves the 

th ree problems th a t were presented in the original interpolation approach [2 0 ]. 

Fig. 3.2 shows a  clear understanding of the  hierarchy of different interpolation 

approaches.

B

Figure 3.1: Illustration of m onotonicity

Among those interpolation m ethods, the cubic spline and the  high-order 

spline interpolation have been applied to  EMD. Firstly, le t’s have a look a t how 

the  cubic spline interpolation works to  fulfill the  purpose of approxim ation.

3.1.1 Cubic Spline Interpolation

T he term  “spline” comes from a flexible strip  (wooden or rubber) used by 

shipbuilders and draftsm en to  draw sm ooth shapes [5]. In the m athem atical 

field, if the  polynomial is of order three, the in terpolant, / ,  is called “piecewise 

cubic” . The linear space of k  times differentiable piecewise cubic functions on 

I  — [a, b\, is expressed as

s 3 (M ) =  { f \  f\[xi,xi+i] e  P3 f o r  i =  1 , • • •, n  -  1 and f  €  C k[a, 6 ]}. (3.3)
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Interpolation

Polynomial Interpolation Others

Global Polynomial P i e c e w i s e  P o l y n o m i a l

Other order piecewise Piecewise cubic interpolation
interpolation

Hermite cubic interpolation O t h e r s

Cubic spline interpolation Monotone piecewise Hermite interpolation

Modified monotone piecewise Hermite interpolation

Figure 3.2: Classes of different interpolation approaches

In S3 ([a;]) and k < 2, we have infinite possible solutions for /  such th a t f ( x i )  = 

g(xi).  For k > 2, there is no guarantee th a t such an /  exists. For a solution 

of / ,  on each interval, [xi ,xi+1], /  is given by f\[Xi,Xi+1] =  pt , as

P i ( x )  =  c0)i +  ci,j(x -  X i )  +  C2 , i { x  -  X i ) 2 +  c 3 t i ( x  -  X i ) 3 . (3.4)

There are four coefficients, Co,i, c p i ,  C2ti, c 3ti ,  for each piecewise polynom ial and 

there are n — 1 intervals. As a  result, there are a to ta l of 4(n  — 1 ) unknown 

param eters. Remember there are two constraints on P i ( x ) - p i ( x { )  — g ( x i )  and 

Pi(xi+1) =  5 (xj+i))~which contribute 2(n — 1) constraints totally. Requiring / '
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to  be continuous adds n  — 2  constraints, i.e. one at each interior knot (a point 

not a t ends). T his means

f ' i x i) =  P i - i t e )  =  Pi(x i)- (3-5)

We still need to  have 4(n — 1) — 2 (n — 1) — (n — 2) = n  constrain ts to  ob­

tain  a  unique solution for a  piecewise cubic interpolating function. A special 

class of cubic interpolating  functions are those which are twice differentiable, 

such functions are designated as cubic spline interpolants. This m eans th a t /  

satisfies

/" (* •) =  Pi- i (x i) =  Pi (*<)■ (3-6)

Thus, n  — 2 additional constraints have been added. T he rem aining two con­

strain ts give us a few types of cubic spline interpolation:

C om plete cubic spline interpolant This specifies the  derivative of f ( x )  at 

the two end points, i.e. set f ' { x i) =  d\ and f ' { x n) = dn where d\ and dn 

are known values.

Natural sp line in terpolation  This forces f " ( x i )  =  0 =  f " ( x n). Physically 

this m eans th a t the graph of the spline is a straight line outside I.

‘N ot-a-k n ot’ conditions These require to  be continuous a t x 2 and

at x„_2, i-e. f ' " ( x 2) = p'”{x2) = p 2 {x2) and / '" (x „ _ 2) =  p"'(xn- 2) = 

P2 {xn- 2).

Back to  the  application of piecewise cubic spline in terpolation  in EMD. 

It has the obvious m erit of securing the continuity of the  second derivative 

a t knots. In [27], the ‘N ot-a-knot’ type of interpolation was used to  find an 

approxim ation to  the  local m ean of a signal. For given collected d a ta , however,
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we usually don’t  know any features of its  upper and lower envelopes if they are 

no t revealed by the  d a ta  itself. As a result, we prefer to  have the interpolation 

represent the shapes of the envelopes as they are, i.e. to  avoid the  imposition 

of any additional details th a t are no t confirmed by the  d a ta  [1 2 ]. We can see 

from Figure 3.3 (picked out from Fig. 2.3), however, th a t bo th  undershooting 

(shaded region A) and overshooting (shaded region B) problem s occur due 

to  the  interpolation. In  other words, in terpolated  splines of some consecutive 

m onotonic m axim a or m inim a do no t m aintain  their monotonicity. One spline 

is not m onotonic even between two consecutive maxima; there are bum ps 

between the m inim a (in region A ). T he quality of the approxim ation of the local 

m ean affects the  iteration times of finding IM Fs. A bad approxim ation will 

slow down the  speed of decomposition. Also, the  purpose of the  decomposition 

is to  identify IM Fs before conducting H ilbert transform  or o ther subsequent 

analysis. Low quality of the approxim ation will cause more serious asym m etry 

of IM Fs th a t makes the  results from consequent processes less meaningful.

3.1.2 H igh-order Spline Interpolation

Some research work has been done to  find a b e tte r interpolation for doing the 

envelope-mean approxim ation. H uang et al suggested in [27] using high-order 

spline bu t the exploration was underway. Yang et al [58] proposed using the 

high-order spline interpolation to  form the upper and lower envelopes. They 

examined quartic, quintic, six-order, and seven-order spline interpolations and 

found th a t the precision is improved in term s of IM F error (which was not 

defined). Interpolation becomes more and more time-consum ing, however, 

as the order of polynom ial increases. T he undershooting and overshooting 

problem  still exists since no conditions are added to  take the m onotonicity
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0.2

0.1

0.1
Undershooting

5.24.4 4.6 5.0Time

Figure 3.3: Exam ple of the  shortcomings of the cubic spline in terpolation. The 
shaded regions indicate the  segments on which m onotonicity is not m aintained.

into consideration.

3.1.3 M onotone P iecew ise H erm ite Interpolation

To have less of undershooting and overshooting m entioned above, it is prefer­

able to  keep some of the shape properties of a curve. In fact, there are a 

few shape properties th a t  it m ay be advisable to  preserve in order to  have a 

good-looking interpolation. One of the most im portan t ones is m onotonicity 

[34]. The m onotone piecewise Herm ite interpolation is a  modified version of 

the piecewise Herm ite cubic interpolation th a t preserves th e  m onotonicity of 

the d ata  [19].

The piecewise Herm ite cubic interpolation is a type of in terpolation th a t
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pu ts constrain ts on only the first derivative of the  known knots, i.e.

f ( x i ) =  = p'^Xi) = du (3.7)

where di is the  derivative value of the ith  knot point. H erm ite interpolation is 

a general base and is open to  provision of various conditions th a t  could give a 

unique solution, whereas cubic spline interpolation is ju s t a special class of the 

piecewise H erm ite cubic interpolation which im plicitly constrains the value of 

di by conditions of second derivatives.

Some studies have been done to  provide alternative conditions for the piece- 

wise H erm ite in terpolation  so th a t m onotonicity of the  d a ta  is kept. Mono­

tonicity is a  basic property of a  curve; if it is not guaranteed an interpolant will 

deviate essentially from the  curve. T h at is why m onotonicity is th e  prim ary 

concern in th is study. Let a =  x \  < ■ ■ ■ <  x n = b be a p artitio n  of the  interval 

I  — [a, 6]. R — [xi, £j+i] is a subinterval of / .  Let <7* : i =  1, 2, • • •, n  be a 

given set of d a ta  a t knots. Our goal is to  construct piecewise cubic functions, 

Pi(x) €  C'1 [/i], on the partition  of the interval such th a t if <  f i+1 > f i+1), 

Pi(x) is an  increasing (or decreasing) function.

Fritsch and Carlson [20] derived necessary and sufficient conditions for a 

cubic function to  be monotonic in an interval. Let A; =  (gi+1 — gi)/hi  be 

the  slope of the  line segment joining the d a ta  to  be in terpolated , where hi =  

Xi+1 — x i . T he piecewise function Pi(x) can be expressed as

( .x-xi)2+di(x-xi)+gi■

(3.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1 Reported Interpolation M ethods 37

I t is clear th a t a necessary condition for m onotonicity is th a t

sgn{di) =  sgn(di+1) =  sgn(Ai) ,  (3.9)

where sgn{x)  represents the sign of x.  Let a ; =  d i /A i  and /3* =  di+i / A i  be the 

respective ratios of the end-point derivatives to  the  slope of th e  straight line 

connecting the  i th  and the i + 1 knot. I t is proved by [20] th a t  equation (3.9) is 

a  sufficient and necessary condition for Pi(x) being monotonic if a t + I8 l — 2 <  0. 

If a ; +  f3i — 2 >  0, Pi(x) is monotonic, a t least one of the  following conditions 

is satisfied:

2di  +  (3i — 3 <  0;

Oi{ +  2Pi — 3 <  0;

</>(«;, A) > 0,

where (f>(a,P) — a  — . As a consequence, a region, M ,  of acceptable

values for cq and Pi (hence di and dj+i) is constructed  to  produce a monotonic 

in terpolant on R.  This region is shown in Fig. 3.4 (Fig. 1 of [20]). Using 

th is result, a two-step procedure has been suggested for constructing such 

an interpolation. Unfortunately, however, the  procedure suffers from three 

defects.

1. It requires two passes over the  data, i.e. di should be initialized and then 

should be adjusted to  d* whenever (cq,/?i) ^  M  such th a t (a*,/3*) 6  M.

2. T he result is dependent on the  order in which the d a ta  points are pro­

cessed. T he common order for processing d a ta  points is either from point 

1 up to  n or from n down to 1 .
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3. A correction introduced in the  first interval could ripple through the 

entire interpolant.

4.0

3.5

3.0

2.5
8

2.0

a

Figure 3.4: The m onotonicity region, M ,  is a com bination of these regions: 
diagonal hatching: a  +  (3 — 2  <  0 ; vertical hatching: a  + B — 2  >  0  and 
2a  +  j3 — 3 <  0; horizontal hatching: a  + (3 — 2 >  0 and a + 2(3 —3 <  0; dotted: 

>  0; unshaded: cubic is non-m onotone out of region M .

Fritsch and B utland  [19] described a modified algorithm  th a t avoids all of 

these problems. A function, G,  is constructed  such th a t

di = G ( A i_ i , A i ) ,  i = 2, (3.10)

Since di depends only on neighboring slopes, th is m ethod based on equation

(3.10) does not need two passes over the  data , and a correction of a slope 

value would affect only two neighboring derivative values. If G  is a sym m etric 

function of its argum ents, the result will also be independent of th e  direction
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of processing, either from the  starting  point to  the  end point or from the  end 

point to  the  s ta rting  point. Sufficient conditions for an acceptabie G  function 

are given in [12] and a general expression of G is given as

Equation (3.12) restric ts the values (c^,/?;) — (dj/A*, d ,+ i/A j) to  the  small 

square [0,2] x [0,2] of Fig. 3.4. A lthough it falls into the  acceptable m onotonic­

ity region, Filling out the  m axim al sym m etric acceptable region is desirable 

because if S 1S 2 >  0 and |S i| 3> IS2 I, G ( S i , S 2) = rnS2 according to  equation

(3.11), and a larger m  will result in less difference between two consecutive 

slopes. Thus, m  is set equal to  3 because the m axim al sym m etric acceptable 

region is [0,3] x [0,3], i.e.

Equations (3.7), (3.10) and (3.13) give the algorithm  of the modified mono­

tone piecewise Herm ite interpolation (MMPH1, in short). T he key difference 

between this in terpolation and the cubic spline in terpolation is th a t  th is  one re-

0 i f  S i S 2 < 0,

G(S\ ,  S 2 ) — < sgn(Si )  

G{S 2 , S 1)

m.|gi | |g2| (3.11)

otherwise.

W hen m  =  2, G  becomes th e  harm onic mean

G h (S u S 2) = {
184 i f S i S2 > 0

(3.12)
0 otherwise.

0 i f  SiSa <  0,

G 3 (Si ,  S 2) -  sgn(Si )  i f  I£ 2 1 <  l-Sil, (3-13)

G ( S 2 ,S i )  otherwise.
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leases the  constrain ts of the continuity of th e  second derivatives, while adding 

constraints re la ted  to  m onotonicity to  have a unique piecewise cubic inter- 

polant. T he modified m onotone piecewise Herm ite in terpolation has been used 

to  estim ate unsa tu ra ted  soil hydraulic properties [8] and sim ulated anim ations 

of fluid dynam ics equations [28] bu t it has not been applied to  EM D. In Sec­

tion 3.2 the  application of this m ethod to  the  envelope-mean approxim ation 

of EMD will be discussed.

3.2 A p plication  o f the M M P H I to  th e  E nvelope-M ean A pproxim a­

tion

3.2.1 M otivation

The purpose of the  interpolation in EMD is to  show w hat the  envelopes of the 

d a ta  look like. T he in terpolant should show w hat is contained in the  d a ta  and 

nothing more. If the  configuration has any peculiarities, these should be drawn 

clearly; if an  obvious feature is presented, the  in terpolant should represent it 

in a suitable way [12]. Since m onotonicity is a key shape p roperty  of a curve, 

we want to  keep m onotonicity of the d a ta  in our study. T he m onotone piece- 

wise H erm ite interpolation is not the only m ethod th a t considers monotonicity. 

Wolberg [57] described m ethods th a t minimize the second derivative disconti­

nuity while the  algorithm  of [19] guarantees continuity of the  first derivatives. 

B ut W olberg’s m ethods involve linear and quadratic program m ing which con­

sume a great deal of time. T he linear piecewise in terpolation is the  simplest 

way to  keep m onotonicity; bu t, w ith this approach, a sm ooth curve’s upper and 

lower envelopes, and therefore its envelope mean, can become too  sharp, losing 

its smoothness. Since the interpolation of EM D is based on ex trem a which do 

not confirm any inform ation about the continuity of the  second derivatives,
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only continuity of the  first derivatives is considered for our application. Thus, 

our m otivation for applying M M PHI to  the  envelope-mean approxim ation is 

th a t  it is able to  m aintain m onotonicity of the  d a ta  and guarantees continuity 

of the first derivatives w ithout too  much complexity.

3.2 .2  T he Proposed  Approach and Its E xp ecta tion  o f  Im provem ent

O ur proposed approach in th is thesis is to  use the  m onotone piecewise Hermite 

in terpolation developed by [19] to  replace the  cubic spline interpolation  in [27] 

for the purpose of approxim ating upper and lower envelopes in the process of 

IM F decomposition.

By applying M M PHI to  the envelope-mean approxim ation instead of the 

cubic spline and high-order spline interpolations, we expect to  see a more 

accurate decomposition of an  original signal. This is because M M PHI has 

less undershooting and overshooting problem s so th a t  the local mean being 

approxim ated is more accurate. The indication of accuracy will be defined in 

th e  com parisons in next subsections.

We also expect MMPHI to  have an  advantage over the  cubic spline inter­

polation w ith regard  to  CPU time. We can verify theoretically th a t  doing one 

M M PHI interpolation operation is faster th an  doing one cubic spline interpo­

lation operation. M athematically, the  difference between the  two m ethods is 

th a t  they are using different ways to  determ ine th e  values of di. Working one 

more step from equations (3.3)-(3.5), we have [45]:

hidi—i -f~ -f- hi'jdi T  — 3 {hi -{- /i^—i , f  or i — 2 , • • • , 77. 1.

(3.14)

W ith  the  “not-a-knot” conditions defined on page 33, two more equations can
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be supplied to give a unique solution to  the  cubic spline interpolation, as

h\  +  2(hi  +  h2 )h2A i  +  (2q)2A2
h2di +  (hi  +  h2 )d2

hi  4- h 2
(3.15)

and

hn~2dn 4* (hn—14~ hn—2)dn—i
hn—i + 2(hn- i  + hn- 2)hn- 2A n_i  4- (x„_ i)2A „_2

hn- i  +  2
(3.16)

Thus, the solution is fully determ ined by solving the  linear system  

/
Cn c12 0

C21 c 22 C23

0 0 0 C(n _ i ) ( n _ 2 ) C(n _ i ) ( n - 1 )  C(n _ i ) ( n )

0  0  0  0  £(n) (n—l)  C(n)(n)

\
dl Ui

d2 u2

dn—i Un- i

/ dn Un
(3.17)

where, say, ci2 =  hi  + h 2 and C(n)(„_ 1) =  hn_ 1 4- h„_2, and (according to 

equations (3.14)- (3.16)).

J J  _  /»l+2(/n+/l2)fe2Al +  (x i)2A2 
1 hi+h,2

TT   hn—l+2(fcn — 1+fon, — 2 )^ 71—2A n — j +  — l ) 2A n — 2
71 2

Solving equation (3.17) involves a  tridiagonal m atrix  which is a square 

m atrix  w ith nonzero elements only on the  diagonal and slots horizontally or 

vertically adjacent to  the diagonal. We need 0 (1  In ) arithm etic operations 

since inversion of th is m atrix  needs 0 (7 n )  operations [1] and m ultiplication of 

two m atrices needs 0 (4 n ) operations. In contrast, M M PHI is obtained w ithout 

solving a  linear system  [30] so the com putational complexity depends only on 

th a t of equation (3.13) which, as a consequence, requires only 0 (3 n )  arithm etic
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operations. Therefore, for an  individual operation M M PHI is faster th an  the 

cubic spline interpolation. Obviously, a to ta l CPU tim e of a type of EMD is 

also dependent on the num ber of iterations of the sifting process, num ber of 

IM Fs decomposed and other system  set-up expenses. W ith  a  m ore accurate 

envelope-mean approxim ation, we will have fewer iterations so to ta l CPU tim e 

can be improved as well. T he high-order interpolation is even slower th an  the 

cubic spline interpolation [58].

3.2.3 Test o f th e  P roposed  A pproach

3.2.3.1 Common S tandard  for the Test

To test the  proposed approach and com pare its perform ance w ith  reported  

methods, we should make sure th a t  a common standard  is set up for all p ar­

ticipants. For an integrated  EMD procedure, there are a few variables open 

to  be selected, such as stopping criteria, approaches to  dealing w ith  end point 

swings, and the num ber of decom position levels needed. In fact, it is rare  to  

see more th an  five decomposed IM Fs being used to  provide inform ation for 

the diagnosis of devices; th is is because am plitudes of the  IM Fs beyond five 

are very small [63]. We set the  maximal decomposition level to  ten  so th a t 

all useful inform ation can be included. C hapter 2 has m entioned two other 

im portant aspects th a t  need to  be considered: stopping criteria and end point 

swings. There have been several reported  studies on them . Therefore, before 

testing the  proposed m ethod, we will carefully select a stopping criterion and 

an approach to  the problem  of end point swings from reported  studies. They 

will be used by all m ethods th a t will be compared.

Let’s look at stopping criteria first. T he envelope-mean m ethod in EMD 

has a tendency to  produce IM Fs w ith uniform  am plitude [27]. As a result, the
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stopping criteria in the  sifting process needs to  be chosen properly. One should 

avoid a too stringent criterion th a t the  physical m eaning of IM Fs would be lost; 

on the o ther hand, one should also avoid a too loose criterion th a t  com ponents 

deviating too m uch from IM Fs would be decomposed. In C hap ter 2 (page 

20) we introduced the  criterion of standard  deviation. H uang et al described 

a  second criterion in [26], where the sifting is stopped when the  num ber of 

zero-crossing points and extrem a is the same num ber for S  successive sifting 

steps. Typically, a  value of 3 <  S  <  5 has proved successful as the default 

stopping criterion [26]. Rilling et al [46] proposed another criterion based on 

two thresholds 9\ and 0 2 , aimed a t guaranteeing globally sm all fluctuations 

in the m ean while taking into account locally large fluctuations. The mode 

am plitude is introduced as

u(£) — ^ (3.18)

where emax(t) and  emj„(i) are the  upper and lower envelopes respectively. 

Then, the evaluation function is defined as

*(0  =  1̂ 1. (3.19)a{t)

where m{t)  is the  m ean of upper and lower envelopes. T he criterion is th a t the 

sifting process is itera ted  until o(t ) < 0 \ for some prescribed fraction (1 —a ) of 

the to ta l duration, and o(t) < 62 for the rem aining fraction. One can typically 

set a  — 0.05, 9\ =  0.05 and 02 — 10#i [46]. T he com parison given later will 

show why the stopping criterion from [46] will be used in th is thesis.

The presence of swings of the interpolation a t the  end points (including 

both  first and last points) of a set of a d a ta  is due to  the  finite length of the
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data. E nd points are usually not the  last extrem a. Even if they  are, they 

cannot be a m axim a and a m inim a simultaneously. So, a t m ost one envelope 

can be determ ined based on the  d a ta  a t the  end. O ther values for the points 

beyond the  first or the last extrem a have to  be obtained by extrapolation, bu t 

any ex trapolation  would lack physical basis because no inform ation of extrem a 

beyond the first and the last ones can be referred to. Fig. 3.5 is an  example 

th a t shows the  problem  of end point swings. The segm ent between two vertical 

do tted  lines is the d a ta  for analysis. The four arrows indicate the  m axim a and 

m inim a beyond the  studied segment. Ideally, the  envelopes (dash lines) would 

still head for these extrem a beyond the segment, b u t w ithout any information 

for in terpolation, the envelopes are extrapolated  m uch differently th an  w hat 

we would like. This phenomenon is called end point swings.

4

3

2

1

I 0
■1

-2

■3

-4
100 150 20p0 50

Figure 3.5: Illustration of end point swings. T he dash lines are th e  upper and 
lower envelopes of the data.

We should no t ignore this problem, otherwise, th e  large deviation could 

corrupt the d a ta  and propagate to  the interior. A m ethod of adding character­
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istic waves a t the end points which are defined by the  two consecutive extrem a 

for b o th  their frequency and am plitude of the  added waves is suggested in 

[27] b u t it does not specify the type of characteristic waves. Huang et al [25] 

specified extended waves as the added waves, which the first and the  last two 

consecutive extrem a are repeated  beyond the  first and the  last d a ta  points at 

periods equal to  the periods of the  first and  the last two m axim a (if a maxi­

mum is the  end extremum) or m inim a (if a minimum is the  end extrem um ). 

A nother approach is introduced bo th  by H uang et al [25] and Zhao [62], It 

uses th e  end extrem a as two m irrors and reflects the d a ta  between the  m irrors 

out of the  end, doubling the length of the  original data , which, as a result, 

doubles the tim e of the sifting process. R illing’s m ethod [46] ju st m irrors the 

two end extrem a of the d a ta  which is less time-consuming. This m ethod will 

be proven best through the following comparison.

We can use a sim ulated signal to  com pare options for stopping criteria and 

end point swings and to  pick suitable ones. T he sim ulated signal is a combina­

tion of m ultiple sinusoid waves w ith different frequencies and am plitudes plus 

a global trend:

y(t)  — 0.5sm(27r * 1000t/10) +  2sin(2n; * 1000f/50)+

sin(2,K * 1000i/120) +  sm(27r * 1000t/200)+ (3.20)

sin(2Tr * 1000t/300) +  sin(2ir * 1000t/500) +  0.0005t.

T he signal is shown in Fig. 3.6. We tested  b o th  a short series (3000 points)

and a long series (8000 points) and set the  tim e interval of any two adjacent

points a t 0.001s.

Two performance indicators are applied: one is th e  CPU tim e of EMD 

procedure, the other is the accuracy. T he la tte r is represented by the  mean
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6 1------------------------1----------------------- 1------------------------1------------------------r

.61 1 1 1 1 1----------------
0  0 .5  1 1;5 2  2 .5  3

Time (s)

Figure 3.6: Com bination of m ultiple sinusoid waves w ith different frequencies 
and am plitudes plus a global trend.

square error (MSE) between decomposed com ponents and the sinusoid com­

ponents. For this sim ulated signal, the MSEs between decomposed IM Fs and 

correspondent frequency com ponents are calculated as

i  L O D

M S E i  =  £  [I M F i(tj) -  X i ( j ) } 2 , i =  (3.21)

where L O D  is the  length of the  data , m  is the number of known com ponents, 

IM F i( t)  is the  i th  IM F and Xi(t) is the correspondent frequency component. 

A smaller i  should represent a  higher frequency com ponent and a  larger i 

should represent a lower frequency. The averaged MSE of the  decomposition
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Table 3.1: Com parison of stopping criteria on the 3000-point signal of multiple 
sinusoid waves plus trend.__________________ _________________

Stopping C riteria SD S P artia l
C PU  tim e 885.996s 0.216s 44.217s
M S E avg 1214.90 N /A 695.38

is expressed as
1 m

M S E avg = ~ J 2 M S E i- (3-22)
m  i= i

To choose a proper stopping criterion, we use EMD algorithm  w ith  envelope 

m eans constructed by the  cubic spline interpolation and w ithout any consid­

eration of end points swings. Three stopping criteria are com pared, which are 

m entioned above. For the sake of convenience, we gave short nam es to  them: 

S D  (the standard  deviation criterion in [27]), S  (the criterion introduced in 

[26]) and P artia l (the criterion introduced in [46]).

All codes are program m ed in MATLAB 7.0 and have been tested  on a 

Pentium  4 com puter w ith  512MB of memory.

Table 3.1 shows the com parison on the 3000-point signal of m ultiple si­

nusoid waves plus trend. From Table 3.1 we can see th a t  S D  is the  slowest 

criterion and the  procedure takes a very long tim e to  converge. S  criterion is 

so easily m et th a t  it can be calculated very quickly, b u t only five IM Fs are 

decomposed because some com ponents are mixed in IM F3, IM F4, and IMF5 

(Fig. 3.7) so the  averaged MSE value can not be calculated. We d on’t  like to 

see this serious m ixture of frequency components in EMD. T he p artia l criterion 

is a good tradeoff between S D  and S.

Table 3.2 shows the  com parison on the 8000-point signal of m ultiple sinu­

soid waves plus trend.

There are th ree points to  be noted based on the com parisons above.
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Figure 3.7: Decomposition of first type of sim ulated signal w ith  S  stopping 
criterion.

1. Some approaches to  the  end point swings are necessary because w ithout 

them  the  averaged MSE would be very large, especially for short data.

2. Accuracy is improved as the length of d a ta  increases.

3. T he partia l criterion is a good tradeoff between S D  and S  w ith  regard 

to  C PU  tim e and accuracy. We decided to  choose partia l criterion as the 

stopping criterion.

Then, we com pared the extending approach and th e  m irroring approach 

w ith respect to  the end point swing problem. In these com parisons, the  partial 

stopping criterion and the  cubic spline interpolation  were used and  the same
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Table 3.2: Com parison of stopping criteria on the  8000-point signal of multiple 
sinusoid waves plus trend.___________________________________

Stopping C riteria SD S P artial
CPU time 40.866s 0.451s 89.042s
M S E avg 162.65 N /A 390.89

Table 3.3: Com parison of approaches to  the  end point problem  on the 3000- 
point signal of multiple sinusoid waves plus trend._______

Approaches Extending M irroring
CPU tim e 2.0310s 1.3440s
M S E avg 0.2877 0.2414

short and long sinusoid signals were tested. Comparisons are shown in Table

3.3 and Table 3.4.

We can see th a t  CPU tim e and accuracy are obviously improved by using 

approaches to  the end point problem. From the  comparisons, we found th a t the 

m irroring approach deals b e tte r w ith the end points th an  does the extending 

approach. As a result, we decide to  use th e  m irroring approach to  evaluate 

the  proposed m ethod with the  original EMD.

3.2.3.2 Com parison of the Proposed A pproach w ith the  R eported  M ethods

Now, we can compare the proposed EMD th a t constructs envelope means 

by the modified monotone piecewise H erm ite interpolation to  EMD th a t con­

structs envelope means by cubic spline interpolation (SPLINE, in short) and 

by high-order spline interpolation (HIGH-ORDER, in short). Here the high- 

order interpolation is quartic, i.e. fourth order polynomial. W ith  the help of 

Section 3.2.3.1, we selected the partia l stopping criterion and the  m irroring end 

point approach as the configuration to  be used in testing  th e  two m ethods un­

der the  same conditions. The first sim ulated signals used were a combination 

of m ultiple sinusoid waves, the  same as those used in Section 3.2.3.1. These
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Table 3.4: Com parison of approaches to  the end point problem  on the 8000- 
point signal of m ultiple sinusoid waves plus trend.

Approaches Extending M irroring
CPU tim e 34.723s 5.383s
M  S  E avg 111.3568 0.2768

signals gave us a  basic assessment of each m ethod’s decomposition capability. 

All codes are program m ed in MATLAB 7.0 and have been tested  on the same 

Pentium  4 com puter as m entioned. Figs. 3.8 -  3.10 show the decomposition of 

IM Fs of the 3000-point d a ta  by the three m ethods. A prim ary assessment is 

given based on the  visual observation of the IMFs. It can be seen from Figs. 

3.8, 3.9 and 3.10 that:

• only high-order spline interpolation has different frequencies mixed up 

in an IM F (IMF4);

•  M M PHI generates more IM Fs th an  the  o ther two interpolations;

• the  first th ree sinusoidal com ponents are decomposed in all figures unlike 

the rest components;

• although the  cubic spline in terpolation  d istorts the rest of the  compo­

nents a little  worse th an  does M M PHI, the difference is not noticeable 

through observation.

These four points still hold for the  decomposition of the  8000-point data . Thus, 

the  averaged MSEs which were introduced in Section 3.2.3.1 are used on th is 

type of signal as an objective indicator. T he results are also shown in Tables

3.5 and 3.6. It can be seen th a t  the  M M PHI is always faster th an  HIGH- 

O RDER and is faster th an  SPLIN E in the te s t of long d a ta  b u t is slightly 

slower th an  SPLINE in the tes t of short data . It can also be seend th a t the
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Table 3.5: Com parison of the  perform ance of the proposed m ethod and other 
reported  m ethods on the 3000-point signal of m ultiple sinusoid waves plus 
trend.

Interpolation m ethods SPLINE MMPHI H IG H -O RD ER
CPU tim e 1.3440s 1.4533s 1.5084s
M S E avg 0.2414 0.1530 0.3126

Table 3.6: Com parison of the  perform ance of the proposed m ethod and other 
reported  m ethods on the  8000-point signal of m ultiple sinusoid waves plus 
trend. _______________________   ._________ .________________ ,

Interpolation m ethods SPLINE M M PHI H IG H -O RD ER
C PU  tim e 5.3830s 3.7443s 4.3187s
A l S  E avg 0.2768 0.0846 0.3266

proposed M M PHI approach is b e tte r th an  the  cubic spline and the high-order 

spline interpolations in term s of the  averaged MSE, w ith  an  im provem ent of 

up to  74.3%.

The second type of sim ulated signal is a com bination of a periodic impulse 

signal and a chirp signal. Each impulse can be expressed as

yi(t) =  0.1e-lootsm (1000t). (3.23)

The tim e interval between every two impulses is 0.25 seconds. The chirp signal 

can be expressed

Vc(t) — sin(1007rt2). (3.24)

The signal is shown in Fig. 3.11. The mixing ratio between the impulses and

the chirp signal is 1:1. From this figure, we can see th a t the  impulses are hard  to

identify in the mixed signal. Because periodic impulses often represent fault 

signatures of machinery, this sim ulated signal is used to  test each m ethod’s 

ability to  detect the existence of periodic impulses. We also test b o th  a short 

series (3000 points) and a  long series (8000 points) and set the tim e interval of
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Table 3.7: Com parison of the  performance of the proposed m ethod and other 
reported m ethods on the 3000-point signal of com bination of im pulse and chirp.

In terpolation  m ethods SPLINE M M PHI H IG H -O RD ER
C PU  tim e 10.073s 3.6877s 264.6530s
M S E avg 0.0338 0.0099 0.1080

Table 3.8: Com parison of the  performance of the proposed m ethod and other 
repo rted m ethods on the  8000-point signal of com bination of im pulse and chirp.

In terpolation m ethods SPLINE M M PHI HIG H -O R D ER
CPU  tim e 7.9107s 7.7233s 550.3680s
M S E avg 0.0012 0.0012 0.0044

any two adjacent points at 0.001s. Figs. 3.12 -  3.14 show th e  decomposition 

of IM Fs of th e  3000-point d a ta  by the th ree m ethods. From  Figs. 3.12, 3.13 

and 3.14, it can be seen th a t there is not much difference based on visual 

observation. T he chirp signal stays mainly in the first IM Fs and none of the 

three figures gives clear inform ation of the  impulses. The decom position of the 

long signal gives the sam e observation. As a result, the  averaged MSE is still 

used as an indicator of accuracy b u t th is tim e m  =  2 in equation (3.21). The 

results are shown also in Tables 3.7 and 3.8. T he proposed M M PH I approach 

is the best w ith  regard to  C PU  tim e and accuracy. T he H IG H -O R D ER  is very 

slow. In th e  tes t of the  long signal, there was not as m uch difference between 

SPLINE and M M PHI as th a t of the short signal.

3.3 A  Test on E xperim ental D ata

Through com parisons on sim ulated signals, we have established the  superior­

ity of the  approxim ation th a t uses the modified m onotone piecewise Herm ite 

interpolation. Now we will look at how it performs on an  experim ental data. 

It has been applied to  the  set of d a ta  from the  gearbox experim ent th a t  was 

described on page 21 and the decomposition result is shown in Fig. 3.15. The
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M M PHI takes 25.935 seconds to  complete the  decomposition. T he first IMF 

obtained enlarged in Fig. 3.16. Com pared w ith  the  original collected da ta  in 

Fig. 2.5 on page 23, we can see th a t  the obtained first IM F shows impulses 

much more clearly th an  do the original data. I t is easy to  m easure the  distance 

between two impulses which is 0.18 seconds, and represents the  frequency of 

the  o u tpu t shaft (1/0.18 =  5.5 Hz). This is w hat we would expect to  see 

because the faulty gear is m ounted on the o u tp u t shaft.

3.4 Sum m ary o f This Chapter

T his chapter has reviewed m ethods of approxim ating the  envelope-mean in 

EMD, focusing on interpolation m ethods reported  in the  literature . The ad­

vantages and disadvantages of these m ethods have been presented, as well. The 

modified m onotone piecewise Herm ite interpolation was used as a replacement 

for the cubic spline and high-order spline interpolations. Thereafter, a test was 

conducted to  select param eters to  be used in verifying our expectations of im­

provement, specifically, in selecting stopping criteria and  approach to  dealing 

w ith  end point swings. Once th a t was done, the  th ree m ethods were compared. 

I t can be seen from th a t  comparison th a t the  proposed approach is in most 

cases b e tte r th an  the reported envelope-mean m ethods w ith respect to CPU 

tim e and accuracy. It should also be noted th a t  even though the  proposed 

m ethod has th e  smallest value of averaged M SE on th e  chirp plus impulses 

signal, in Figs. 3.13 - 3.14, none of the m ethods has identified the  impulses 

clearly in tim e domain. A lthough we can see some impulses from the  experi­

m ental test, more impulses are expected to  be identified clearly. Improvement 

on this point will be taken into account in C hapter 4 where a direct-m ean 

approxim ation will be used.
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Figure 3.8: Decomposition of the  signal of m ultiple sinusoid waves plus trend  
w ith M M PHI (3000 points).
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Figure 3.9: Decomposition of the signal of multiple sinusoid waves plus trend  
with the cubic spline interpolation (3000 points).
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Figure 3.10: Decomposition of the signal of m ultiple sinusoid waves plus trend  
w ith the  high-order spline interpolation (3000 points).
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Im p u ls e

m m

w * r  w

Figure 3.11: Com bination of a periodic impulse signal and a  chirp signal.
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Figure 3.12: Decomposition of a  com bination of impulse and chirp w ith the 
M M PHI (3000 points).
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Figure 3.13: Decomposition of a com bination of impulse and chirp w ith the 
cubic spline interpolation (3000 points).
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Time'(s)

Figure 3.14: Decom position of a  com bination of impulse and chirp w ith the 
high-order in terpolation (3000 points).
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Figure 3.15: Decomposition of the vibration d a ta  set using EM D w ith  MMPHI.
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Figure 3.16: The first IM F in Fig. 3.15.
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( 4

C h a p t e r  4

I m p r o v e m e n t  o f  t h e  D i r e c t  A p p r o x i m a t i o n  

o f  t h e  L o c a l  M e a n

In  the sifting process of the original EMD m ethod introduced in C hapter 2, the 

envelope m ean is calculated as an  approxim ation to  the  local mean. In C hapter 

3, we introduced the improvement to  the  envelope-mean approxim ation by 

using m onotone piecewise H erm ite in terpolation. At the  end of C hapter 3, 

however, we pointed out a  common problem  of all the three interpolation 

approaches used for the envelope-mean approxim ation in E M D -th a t impulses 

cannot be identified clearly in decomposition. This is due to  a shortcom ing of 

envelope-mean methods. Essentially, they  all tend  to  use envelope means to 

approxim ate local means. T he phrase “local m ean” m eans th a t there are two 

requirem ents for the calculated curve: 1) it should be the m ean of a signal so 

it should reflect the global trend  of the signal, and 2) some regional signatures 

of the original signal should appear on the  curve of the local mean. These two 

requirem ents guarantee th a t the  difference between the original signal and the 

local m ean converges on an  IM F. B ut the  algorithm  for calculating envelope 

means is to  connect m axim a and m inim a of the  wave by a given interpolation 

m ethod and obtain the m ean of the upper and lower envelopes. Values for
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the  points between extrem a are really not im portan t as long as they don’t 

exceed their neighboring extrem a and  become new extrem a; therefore, for two 

signals with the same extrem a positions and values bu t quite different points 

between the extrem a, the m eans obtained by the  envelope-mean approach will 

be same. This is proof th a t  envelope means do not approxim ate very well to 

local means.

Thus, in th is chapter, we work on an alternative to  the  envelope-mean 

approxim ation to  the  local mean. This type of approxim ation is called “di­

rect approxim ation” . R eported m ethods of this type are reviewed in Section 

4.1. An in tegrated  windowed local m ean m ethod is proposed and  compari­

son between it and another d irect approxim ation is presented in Section 4.2. 

A discussion follows in Section 4.3 and the perform ance of the  winner of the 

comparison on an experim ental d a ta  is given in Section 4.4.

4.1 R eported  D irect A pproxim ation  M ethods

4.1.1 Local M ean M ode D ecom position

Gai et al in troduced a m ethod for approxim ating local m eans called Local 

Mean Mode Decomposition (LMMD) [21]. LMMD uses a tim e-varying filter 

to  calculate the means. F irst, all th e  local extrem a, Z ( t i ) (i is the  index of 

the  ith  extrem um ), of the signal x(t)  are found. T hen the  m ean value, e(f), 

between two successive local extrem a, Z(ti) ,  Z ( t i+i),  can be found using the 

equations below in which U m eans the  tim e value of the  ith  local extrem um. 

There are two or more tim e spots between two extrem a. Finally, to  get the 

“local m ean” , LMMD uses

m ( t i+i) =  h(ti) x e(i) + h(ti+i) x e(i +  1), (4.1)
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where

h(ti+1)

h(ti)

e(i)

e(i +  1)
U+2 t i+1 +  1 l=ti+1

After obtaining m (t i ) ,  • • •, m ( tn) (n  is the  num ber of extrem a), the  cubic spline 

interpolation is used to  connect them  as m u  in equation (2.14). The other 

steps are the  same as theses of EMD. If, however, the d a ta  being trea ted  is non- 

stationary, the  local m ean involves a local tim e scale for com puting the mean;

is called in [21] is not a real local m ean because the tim e interval between two 

extrem a is not local tim e scale. LM M D’s using the cubic spline interpolation 

would result in the sam e shortcom ing encountered w ith  the  envelope-mean 

approxim ation and no effort was done to  support the  sta tem ent th a t  LMMD 

is much faster th an  EMD.

4.1.2 T h e W indow ed Local M ean

Rosier [45] considered the  m ean of a signal w ithin a window and called this 

the local m ean w ith respect to  th a t window. In this thesis, this type of direct 

approxim ation is term ed a  “windowed local m ean” . For a continuous function, 

y  = f ( x ) ,  the  expression of its windowed local m ean is

this tim e scale is impossible to  define [27]. As a result, the  “local m ean” as it

(4.2)
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where x$ = [x — 5 /2 , £ +  5/2], and 5 is the w idth  of the  in tegration window. 

The purpose of giving such an expression in [45], however, is not for using 

it for EMD b u t ju s t to  introduce the windowed local m ean to  in terpret the 

concept of “local m ean” in H uang’s paper [27]. Only an  exam ple on how to 

find the right window w idth for a continuous signal of sinusoid com ponents was 

given by [45] b u t no integrated algorithm  was provided th a t  could be applied 

in EMD.

4.2 P rop osed  D irect A pproxim ation U sing  th e  W indow ed Local 

M ean

4.2.1 T he M otivation  and the E xp ectation

The purpose of this chapter is to  find an  improved direct approxim ation with 

a b e tte r capacity  for identifying impulses. Such an approxim ation should con­

sider the  relatively macro view of a signal b u t the consideration has to  be 

restric ted  to  w ithin relatively micro windows to  avoid losing local signatures. 

A lthough Rosier [45] mentioned only one example of a function of the win­

dowed local m ean, we can see th a t the m ethod does have th is  good feature. 

An expression of the windowed local m ean for discrete d a ta  points is not given 

in [45] bu t is needed to  deal w ith real signals and to  process them  in a com­

puter. We define th a t for a set of data , x*, i =  1, 2, ■ • •, n, th e  discrete form of 

its windowed local m ean is

2 i+5/2

~  [T+T ?  Xj’ (4-3)
j = i - i 5/2

where 5+1 is the  num ber of d a ta  points in the window centered a t d a ta  point x*. 

I t ’s apparen t th a t  5 has to  be an even integer. The LMMD m ethod reviewed in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Proposed Direct Approximation Using the Windowed Local Mean  68

C hapter 3 [21] also calculates windowed local m eans using the distance between 

two consecutive extrem a as the w idth of a sum m ation window. But from 

equation (4.2) we can see th a t only one representative m ean value is com puted 

for each pair of two consecutive extrem a and the  final m ean curve is obtained 

by connecting these mean values w ith the  cubic spline interpolation. Using 

the  m ethod proposed in this chapter, windowed local means are calculated at 

each point of th e  d a ta  set. The w idth of a sum m ation window is centered at 

this point. Thus, all points are utilized to  contribute to  the  approxim ation of 

th e  local m ean and no interpolation is required.

Thus, we propose to apply the discrete form of the  windowed local mean 

to  EMD to directly approxim ate the local mean. We expect it to  have a 

b e tte r  capacity for identifying impulses w ithout sacrificing too much basic 

decomposition capacity and adding too much C PU  time.

To have an  integrated algorithm , two issues need to  be discussed in next 

subsections: selection of a window w idth and end point extension.

4.2.2 Selection  of the W indow  W idth

A pparently, selection of the proper w idth of th e  sum m ation window is abso­

lutely crucial to  the effectiveness of the windowed local m ean m ethod because 

it determ ines the  relative relationship between the local and global perspec­

tives. If the w idth is equal to  the  length of the  d a ta  set, all the m ean values are 

the  same and are equal to  the algebraic m ean of the d a ta  set. As a result, the 

calculated m ean will be a flat curve. If the original d a ta  has a non-zero mean, 

it will be moved vertically after the  subtraction  of the flat m ean curve so it will 

be sym m etrical about the A-axis. If the original d a ta  has a zero m ean already, 

it will not be changed after the  subtraction. On the other hand, if the w idth
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is compressed to  0, the m ean values are ju s t the points of the original d a ta  

themselves so the m ean curve is the  signal itself and the  rest of the  subtraction  

is the X-axis. Clearly, a  proper w idth  should be selected between these two 

extrem e cases.

L et’s look a t a simple example, a sinusoid signal w ith a single frequency 

com ponent, for instance, x(n) = s in{27m/100), n =  1, 2, ■ • •, 1000. A ppar­

ently, an ideal decomposition of it should produce itself as the  IM F and zero 

m ean as the residue. This requires the  windowed local means to  be zero. It 

will be seen th a t if the period or multiples of the  signal period are used as 

th e  w idth of the window, this requirem ent will be fulfilled. As a result, the 

shortest feasible window w idth is th e  period of the  sinusoid signal.

0.5

tsXS
a.

-0.5

-1.5

100 200 400 500  
Time (s)

800 700 800 900 1000

Figure 4.1: Illustration of a window w idth for a sinusoidal signal. T he region 
means the window has a  w idth equal to  its period.
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L et’s take an  example to  see how to  find a feasible w idth  for a  signal with 

multiple frequency com ponents. We have a com bination signal w ith three 

frequency com ponents and a length of 3000, This is expressed as

x(n)  — sm (27rn/1000) +  sm (27rn/500) +  -sm (27m /100), n  — 1, 2, ■ • ■, 3000.

(4.4)

Periods of the  three com ponents are 1000, 500, and 100, respectively. If we 

select a shorter window w idth, e.g. 50, which is less th an  th e  shortest period of 

the  three com ponents, the  result of applying the  windowed local m ean m ethod 

to  the com bination signal to  decompose the first IM F is as shown in Fig. 4.2. 

I t can be seen from Fig. 4.2 th a t although the highest frequency com ponent 

is filtered out in the subtraction  (the first IM F) from th e  original signal, it 

still exists in the  windowed local m ean curve. This m eans th a t as the  m ean is 

used as a new signal for the  next round of decomposition, it is not free of the 

highest frequency com ponent so the decomposition is inefficient.

If we select a longer w idth, e.g. 500, which is the period  of a  lower fre­

quency com ponent, the result of applying windowed local m ean m ethod to  the 

com bination signal to  decompose the first IM F is as shown in Fig. 4.3. I t can 

be seen from Fig. 4.3 th a t although the  windowed m ean captures a general 

trend of the  signal (period of 1000), the difference between th e  signal and the 

mean is still mixed w ith a low frequency component (period of 500). I t cannot 

be used as an  IM F. If we select a w idth between 100 and 500, e.g. 300, it can 

be seen from Fig. 4.4 th a t  the  decomposition is even worse th an  in the case 

of 500, th a t  b o th  the window local m ean curve and the  first IM F curve are 

m ixtures of frequencies.

If a w idth is selected to  be exactly equal to  the shortest period, or the
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defta=S3<shortesi period
2.5

data

first IMF

I
■0.5,

1500 
Time (s)

2500 30QC1000

Figure 4.2: Decom position of the signal’s first IM F using S — 50, which is less 
than  the  shortest period. T he do tted  line is the  original signal; the  solid line is 
the  windowed local mean; th e  dashed-and-dotted line is the  difference between 
the  signal and  the  windowed local mean.

period of th e  highest frequency component, i.e. 100, it can be seen from Fig.

4.5 th a t the  difference between the signal and the windowed m ean contains 

only the  highest frequency and the windowed local m ean is bu ilt up only by 

the lower frequencies. As a result, the th in  dashed line represents the first 

IM F and only lower frequency components need to be fu rther decomposed in 

following IM Fs. It can be concluded from our tests on optional w idths th a t, 

for this type of signal w ith multiple frequency com ponents, a good trade-off 

between global and  local requirem ents would have the  w id th  of the  windowed 

local m ean equal the period of the highest frequency com ponent. It is noted 

th a t the frequencies of this example are m ultiples of one another. We believe
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Figure 4.3: Decomposition of the  signal’s first IM F using 6 =  500, which is 
greater th an  the shortest period.

a same conclusion can be reached if frequencies are random ly selected since 

we don’t  utilize any benefits of being multiples. B ut it needs to  be verified by 

testing more types of signals. This is an  empirical result since we have not 

tested  all w idths from 1 to  3000; to  do so would be too  time-consuming. Rosier 

[45] used a similar example bu t m ade a m istake in saying th a t the  proper w idth 

is half of the period of the highest frequency com ponent.

For a given signal, the period of the  highest frequency com ponent is difficult 

to  determ ine unless we are clear about its physical mechanism. For example, 

for the  signal shown in Fig. 2.5 on page 23, the  procedure of using a given 

period as the  w idth cannot work because no period is known. Alternatively, 

we can use the interval between two neighboring m axim a or two neighboring
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ctefta=3GQ>shorte8t period
2,5

original data
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\  mean curve

,  first IMF

0.5
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-2.5,
1500 
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Figure 4.4: Decomposition of the  signal’s first IM F using 5 =  300.

m inim a to  estim ate the  shortest period. If the values of the  shortest periods 

are not th e  same, we can calculate the average length of all intervals between 

two neighboring m axim a and between two neighboring m inim a first and then 

use th is average value to  calculate windowed local m ean a t the  current level. 

W hen the  IM F a t this level is found, the  process moves on to  the next level and 

requires us to  calculate an average value again for the next IM F decomposition. 

T he decomposition process will not stop until the residual is a trend  signal 

or the num ber of the decomposed IM Fs has reached a pre-set value. This 

procedure works for the  signal in Fig. 2.5 and the result is shown la ter in Fig. 

4.18 in C hapter 5.
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delta^KXNsheriest period
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Figure 4.5: Decomposition of the  signal’s first IM F using 5 =  100, which is 
equal to  the shortest period.

4.2.3 End P oint E xtension

In the last subsection, we in troduced the concept of the windowed local m ean 

and gave a m ethod to  find a  proper w idth for it. The procedure for a decom­

position using the  windowed local mean is also described. In th is  subsection, 

we will point out a problem  regarding the windowed local m ean and give a 

solution to  the  problem.

As shown by equation (4.3), the  windowed local m ean is calculated as a 

sum m ation a t each d a ta  point. T he sum m ation range is centered a t the d a ta  

point and has a w idth which is a  given value a t a certain decom position level. 

The calculation is not a problem  as long as these da ta  values are available for 

calculating sum m ations. W hen the distance between a center po int and  its
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nearest end point is less th an  half the width of the window, however, no more 

d a ta  values can be provided beyond the end point and the  sum m ation cannot 

be completed. Especially, for the  first and last points, only half of the data  

values are available. Thus, we have to  have the ends of th e  d a ta  extended 

to  guarantee th a t  a sum m ation can be conducted a t every d a ta  point. The 

d a ta  should be extended at least half of the window width a t th e  first and last 

point. Since we do n ’t  have any idea w hat is happening beyond th e  tim e span 

for d a ta  collection, we don’t like to  impose any artificial assum ptions on a signal 

w ithout strong evidence. We choose sine waves for extending a signal because 

they  have explicit expressions. W hen we are extending the end points of a 

signal in an envelope-mean approxim ation, we care abou t only the  positions 

and values of extrem a. Here, we have to  consider values of every extended 

point since all of them  are used in the  calculation of th e  windowed local mean. 

W ith  an explicit expression, we know the values of as m any extended points 

as we want so we d on’t need to  specify so m any points. A detailed  description 

of the extension is explained in Fig. 4.6. The solid curve is th e  end p art of 

an arbitrarily  given signal. Only the extension of last points is shown because 

the  extension of first points is similar. In this example, the  last extrem um  is a 

maximum and the  value of the last point (Vj>) is greater th an  th e  value of the 

last m inim um  (Vmin). We extend the  signal w ith a sine wave, as

27r£
f ( t )  = A cos(  : +  phase)  +  B ,  (4.5)

period

where A  is the  am plitude determ ined by the values of the  last m inim um  and 

the  last maximum: A  = ^\Vmax — Vmin\, period  is determ ined by th e  interval 

between the  last two extrem a: period — 2 x \tmax — tmin |, B  is th e  vertical
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m ovem ent th a t makes the sine wave sym m etric abou t th e  t'-axis  (B  =  |  [Vmax — 

A] in th is exam ple), phase  is the phase of the  sine wave to  slide along the t - 

axis until it has the  same value (Vp) as the last d a ta  point, P , a t the last 

tim e spot tn (phase — arccos[(Vp — B )/A ]  in this example). These param eters 

make th e  extended wave continuous w ith the end of the  d a ta  on value, trend 

and boundary. If the  value of the last point (Vp) is less th an  th e  value of the 

last m inim um  (Vmin), the  only change to  the  extension is th a t  the  boundary 

of the sine wave is determ ined by the last point and  the  last maximum, i.e. 

A  — 11 Vrnax — V p |. If the last extrem um  is a minim um , the  extension m ethod 

is analogous to  the  case in which the  last extrem um  is a maximum.

0.6
t -axis

- 0.5

Figure 4.6: Illustration of the extension of the  end of a signal.
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Fig. 4.7 shows the result of the windowed local m ean approxim ation when 

th e  extension procedure is applied to  the  signal in equation (4.5). There are 

no t any obvious abnormal curves introduced to  the m ean curve and the IM F 

curve. T he extension procedure is feasible for th is signal.

IMFD.5

-0.5

orT3a

original data

-1.5

-2.5
1050750 BOO 850 300 1100

Time (s)

Figure 4.7: Result of the windowed local m ean approxim ation after the exten­
sion of the  end points.

4.2.4 Com parisons on Sim ulated data

In this section, we are going to  use the same sim ulated signals used in Section

3.3 to  tes t the  proposed windowed local m ean m ethod and com pare it to  the 

m ethod which uses the reported  direct-m ean approxim ation (LMMD [21]). 

The proposed m ethod uses the procedures in Sections 4.2.2 and 4.2.3 to  select 

a window w idth and to extend the end points. For the sake of convenience,
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th e  two signals are shown again below.

•  Com bination of m ultiple sinusoid waves w ith different frequencies and 

am plitudes plus a  global trend:

y(t) — 0.5sin(2ir * 1000t/10) +  2sin(2n  * 10007/50)-+-

sin(2TT * 1000i/120) +  sin(2ir * 1000t/200)+ (4-6)

sm(27r * 1000t/300) +  sm(27r * 10007/500) +  0.00057

•  Com bination of a  periodic impulse signal and a chirp signal:

y(t) = yc (t)+ V i(t) , (4.7)

where yc(t) =  sm(1007rt2) and  y / t )  =  0.1e-lootsm (1000t).

T he comparison on the com bination of sinusoid waves is actually an  assess­

m ent of a m ethod’s ability to  decompose standard  stationary  signals. The CPU 

times for the proposed approach and the  LMMD on the short (3000 points) and 

long (8000 points) m ultiple sinusoid com bination are shown in Tables 4.1 and 

4.2. We can see th a t  the proposed m ethod does not have an advantage with 

regard to  CPU time. This is because a t every level of decomposition, every 

d a ta  point participates in the  calculation of the  windowed sum m ation. As the 

num ber of extrem a decreases w ith decomposition, the w idth of the  sum m ation 

window becomes larger and larger so th a t tim e consum ption increases as the 

decomposition nears its conclusion, w ith  regard to  decomposition perform ance, 

however, we will show th a t the proposed approach out-perform s LMMD. From 

observing Figs. 4.8 and 4.9, it can be seen th a t  there is a serious problem  w ith 

LMMD. Only four IM Fs have been generated because com ponents are mixed 

up. As is evident in Figs. 4.10 and  4.11 the proposed approach does not have
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Table 4.1: Com parison of the CPU tim es for the windowed local m ean approx­
im ation and the LMMD m ethod on a 3000-point singal of m ultiple sinusoid 
combination,__________________________

D irect-m ean approxim ation LMMD W INDOW ED
C PU  tim e 0.1400s 4.0800s

Table 4.2: Com parison of the CPU times for the windowed local m ean approx­
im ation and the LMMD m ethod on an 8000-point signal of m ultiple sinusoid 
combinatiom__________________________ ._________,_______________ ,

D irect-m ean approxim ation LMMD W INDOW ED
C PU  tim e 2.9700s 16.5070s

this problem. A lthough the  IM Fs beyond IMF3 are d istorted  to  some ex­

tent, a t least the  frequencies of the first th ree IM Fs are clear and equal to  the 

designed components.

We applied the  two m ethods to  the  chirp and impulse signals and the 

resulting CPU  times are shown in Tables 4.3 and 4.4. T he proposed approach is 

slower th an  LMMD for the  reason m entioned above b u t the tim e consum ption 

is not th a t  large. From visual observations of the decom positions recorded in 

Fig. 4.12, it can be seenthat some impulses are present in IM F4-IM F10. The 

marked region in IM F6 is enlarged in Fig. 4.13 where m ost of the  periodical 

impulses are clearly shown and it is easy to  identify their tim e interval is just

0.25 seconds as designed. T he appearance of impulses is even more obvious 

when the  proposed approach is applied to  long com bination of im pulse and 

chirp. IM F4-IM F10 all consist of the  impulse patterns shown in Fig. 4.14, and 

the enlarged m arked region of IM F7 shows up as the clearest one in Fig. 4.15. 

In this figure, impulses are separated  clearly and the  shape of them  is close 

to  the original impulses th a t  are shown in Fig. 3.11. In Figs. 4.16 and 4.17, 

however, the inform ation on impulses is too blurred to  reveal their intervals 

even from enlarged IM Fs, which is our real concern when this type of sim ulated
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Figure 4.8: Decomposition of a 3000-point sinusoid com bination using LMMD. 

signal is tested , because impulses may represent faults being m onitored.

4.3 D iscussion  o f th e  Com parisons

This chapter introduced an integrated procedure for using th e  windowed local 

m ean as a proposed direct-m ean approxim ation. This procedure includes the 

selection of proper window widths and extension of end points. Based on the 

com parison w ith  the  LMMD m ethod, the proposed approach is no t as fast 

as LMMD because the w idth  of the sum m ation window becomes larger and 

larger causing tim e consum ption to  increase as the decom position approaches 

its conclusion. The LMMD m ethod, however, does no t pass the  basic decom-
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Time (s)

Figure 4.9: Decomposition of an  8000-point sinusoid com bination using
LMMD.

position capability test because it uses only one average value to  represent 

points between two extrem a and it ignores local features too much. The pro­

posed approach using the windowed local m ean shows more useful information 

th an  does LMMD method; it identifies impulses th a t  hide in chirp signals w ith­

out losing its basic decomposition capability. This is due to  the  property of 

th e  windowed local mean takes every d a ta  po int into consideration and cap­

tures more local features th an  does LMMD. A lthough the LMMD is faster, it 

sacrifices the basic capability of decomposition and has little  to  contribute to 

impulse detection. The proposed approach m ay have the po ten tial to detect 

real impulses mixed with other types of background signals or noises.
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Figure 4.10: Decomposition of a  3000-point sinusoid com bination using win­
dowed local mean.

Table 4.3: Com parison of the C PU  times for the windowed local m ean ap­
proxim ation and the  LMMD m ethod on a  3000-point com bination of chirp 
and im pulses___________________________________________________

D irect-m ean approxim ation LMMD W IN D O W ED
C PU  time 0.1090s 4.4690s

4.4 A  Test on E xperim ental D ata

We have verified th a t the windowed local m ean approxim ation is the  winner 

of the comparisons on sim ulated signals. Now we look a t how it perform s on 

an  experim ental data . I t has been applied to  the same experim ental d a ta  in 

C hapter 3 and the  decomposition result is shown in Fig. 4.18. T he windowed 

local m ean approxim ation takes 13.733 seconds. The first IM F obtained en­

larged in Fig. 4.19. We can see th a t the  obtained first IM F also shows impulses
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Figure 4.11: Decomposition of an 8000-point sinusoid com bination using win­
dowed local mean.

Table 4.4: Com parison of the CPU times for the windowed local m ean approx­
im ation and  the LMMD m ethod on an 8000-point com bination of chirp and 
impulses. _____________________________________________________

Direct-m ean approxim ation LMMD W INDO W ED
C PU  time 0.6870s 13.3430s

much m ore clearly th an  the original data. It is easy to  m easure th a t distance 

between two impulses which is 0.18 seconds, and represents the frequency of 

the  o u tp u t shaft (1/0.18 =  5.5 Hz). Com pared w ith the  experim ental result 

by the M M PHI m ethod in C hapter 3, it is hard  to  give a numerical indica­

to r telling which is better, Fig. 3.16 or Fig. 4.19, b u t, visually, more of the 

impulses in the  original d a ta  can be seen clearly in Fig. 4.19.
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Figure 4.12: Decomposition of a 3000-point com bination of impulse and chirp 
using the windowed local mean.
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Figure 4.13: The enlarged region as m arked in IM F6 of Fig. 4.12.
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using the  windowed local mean.
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Figure 4.17: Decomposition of an 8000-point com bination of impulse and chirp 
using LMMD.
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C h a p t e r  5

C o n c l u s i o n s  a n d  F u t u r e  W o r k

5.1 C onclusions

C hapters 3 and 4 have discussed improvements to  the  two types of approx­

im ation to  the  local mean in the process of EM D, i.e. the  envelope-mean 

approxim ation and the  direct-m ean approxim ation. Based on th e  work in this 

thesis, the  following conclusions have been reached:

1. The M M PHI approach has advantages over the  o ther two envelope-mean 

m ethods, i.e. th e  cubic spline and high-order spline m ethods, w ith regard 

to  C PU  tim e and accuracy. The high-order spline m ethod consumes too 

much tim e and does not gain a benefit on accuracy. T he cubic spline 

m ethod perform s very much like M M PHI when testing  sim ulated long 

impulses and chirp signal. This accuracy assessm ent is prim arily based 

on visual observations. W hen a visual observation is not able to  detect 

much difference, the averaged MSE is used to  help w ith the  performance 

assessment.

2. T he windowed local mean approxim ation is b e tte r  th an  another direction- 

m ean m ethod, i.e. LMMD m ethod, w ith regard to  its capability to  iden-
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tify impulses th a t hide in o ther signals. This m erit can be obtained 

w ithout sacrificing too  much C PU  tim e and w ithout losing the basic 

decom position ability. Their difference is obvious through visual obser­

vations.

3. W hen applied to  an experim ental d a ta , bo th  of improved m ethods of the 

two types of approxim ations help EMD decompose the  original d a ta  into 

more useful IMFs. Between them , however, there is not much difference 

in C PU  time. Their capability to  identify impulses is hard  to  define but, 

from visual observations, the  windowed local m ean approxim ation seems 

to  perform  bette r th an  does M M PHI.

4. In applying EMD to processing signals, we suggest using the MM PHI 

approach to  have a quick look a t w hat basic frequency com ponents are 

contained in the raw data. W hen th a t has been done the windowed local 

m ean approxim ation can be used to  detect impulses and any character­

istic frequency th a t may exist due to  faulty conditions in a system being 

monitored.

5.2 Future Work

The M M PHI approach has been developed to  address concerns regarding 

monotonicity. M onotonicity is not th e  only property  th a t  is im portan t to 

a curve. For example, convexity is another property  th a t requires the differ­

entiation of the  consecutive d a ta  points be monotonic. Brodlie and B u tt [11] 

developed a type of piecewise cubic interpolation th a t preserves convexity. The 

application of such a type of interpolation to  the local m ean approxim ation 

may improve the accuracy of EMD b u t more resources and tim e would be
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consumed.

In  the  window local m ean approxim ation, selection of a proper window 

w idth is crucial to  the  effect of a decomposition. We use a single average 

w idth value in each decomposition iteration. The average w idth m ay not work 

well for d a ta  w ithout uniform frequencies so th a t  we could use varying widths 

along the length of the d a ta  to  capture the  local features more precisely.

Last b u t not least, visual observation is not enough to  assess how well 

impulse identification is being performed. An reasonable indicator of the ac­

curacy of a decomposition needs to  be defined, especially when real signals are 

analyzed.
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