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Abstract

A group endowed with a topology compatible with the group operations and for which every point

has a neighborhood contained in a compact set is called a locally compact group. On such groups,

there is a canonical translation invariant Borel measure that one may use to define spaces of p-

integrable functions. With this structure at hand, abstract harmonic analysis further associates

to a locally compact group various algebras of functions and operators. We study the capacity

these algebras to distinguish closed subgroups of a locally compact group. We also characterize an

operator algebraic property of von Neumann algebras associated to a locally compact group. Our

investigations lead to a concise argument characterizing cyclicity of the left regular representation

of a locally compact group.

ii



Acknowledgements

I would like to thank Professor Volker Runde for his guidance and support throughout my studies.
I would also like to thank Jason Crann, Brian Forrest, Tony Lau, Matthew Mazowita, Nico Spronk,
and Ami Viselter for stimulating and fruitful conversations.

Thanks are also due to Prachi Loliencar for reading over a preliminary draft of this document
and discovering an embarrassing number of typographical errors. Her efforts led to its substantial
improvement and its remaining deficiencies are, of course, my own doing.

iii



Contents

1 Introduction and overview 1

2 Preliminaries on operator algebras 4
2.1 C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Projections in von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Preliminaries on abstract harmonic analysis 19
3.1 Locally compact groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Operator spaces and completely contractive Banach algebras . . . . . . . . . . . . . 23
3.3 The group von Neumann algebra and the Fourier algebra . . . . . . . . . . . . . . . 26
3.4 The Fourier multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Amenability and related notions for groups and algebras . . . . . . . . . . . . . . . . 32

4 Separation properties for closed subgroups 35
4.1 The discretized Fourier multiplier algebra . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The discretized H-separation property . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Convergence of Fourier multipliers and averaging over closed subgroups . . . . . . . 46
4.4 Existence of approximate indicators for closed subgroups . . . . . . . . . . . . . . . . 49
4.5 Invariant projections from bounded approximate indicators . . . . . . . . . . . . . . 50

5 A proposition of Aristov, Runde, and Spronk 53

6 Adapted states on von Neumann algebras 56
6.1 The von Neumann algebra L∞ (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 The group von Neumann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Open problems 63
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iv



Chapter 1

Introduction and overview

A locally compact group is a group with a Hausdorff topology for which the group multiplication
and inversion are continuous maps and such that every point has a neighborhood contained in
a compact set. It follows from this that the neighborhood base at any point is a translate of
the neighborhood base at the identity and that each point has a neighborhood base consisting of
precompact sets. From this topological data, one may obtain a nonzero left translation invariant
Borel measure with various regularity properties — the Haar measure — that is unique, and
hence canonical. This measure is used to construct the spaces of p-integrable functions on a
locally compact group G, of which we will be concerned with the space of integrable functions
L1 (G), the Hilbert space L2 (G), and the von Neumann algebra L∞ (G). Considering the operators
implementing left translation of L2 (G) functions, we are naturally led to consider the weak operator
topology closed algebra in B

(
L2 (G)

)
that they generate: the group von Neumann algebra V N (G).

The predual of this von Neumann algebra can be identified with an algebra of complex valued
functions on G, the Fourier algebra A (G), which is also identified with certain functions arising
from the left regular representation of G. Considering functions arising in the analogous way from
arbitrary representations produces the larger Fourier-Stieltjes algebra B (G). Finally, we consider
the Fourier multiplier algebra McbA (G) that consists of functions on G that multiply the Fourier
algebra into itself and for which the multiplication map satisfies a strong form of continuity.

Given a locally compact group G, we are interested in determining whether the operator algebra
V N (G) and the function algebras A (G), B (G), and McbA (G) can distinguish a closed subgroup
H. Thus we seek conditions on the group G, the group H, or the pair G and H that guarantee
that certain separation properties are satisfied. This is the first theme of the thesis. The group
von Neumann algebra V N (G) contains a copy of V N (H) for each closed subgroup H of G and it
is natural to consider the existence of a projection of V N (G) onto V N (H). Since these algebras
are canonically dual A (G)-modules, we may further require that there be a projection invariant
under this module action. Such invariant projections are known to exist in a variety of settings, for
example if H is an amenable group, then there exists an invariant projection V N (G)→ V N (H) for
any locally compact group G containing H as a closed subgroup [11]. If G is a SIN group, meaning
the identity has a neighborhood base of conjugation invariant sets, then there is an invariant
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projection V N (G)→ V N (H) for every closed subgroup H of G [20, Proposition 3.10]. The proof
of this latter implication implicitly uses the notion of a bounded approximate indicator for H,
which is a bounded net in the algebra McbA (G) that converges in an appropriate sense to χH , the
characteristic function of H in G, and the existence of which always guarantees the existence of
an invariant projection V N (G)→ V N (H). We study bounded approximate indicators for closed
subgroups and establish new conditions for their existence.

We stated above that, if H is a closed subgroup of a locally compact group G, then an in-
variant projection for H exists whenever H is amenable. That amenability is inherited by closed
subgroups entails that there is an invariant projection onto V N (H) for every closed subgroup H
of an amenable group G. These results display a connection between separation properties and
amenability conditions, and along these lines we show that amenability of H is equivalent to the
assertion that χH can be approximated in a certain topology by functions in A (G). We investi-
gate further when the characteristic function of a closed subgroup can be approximated by various
algebras of functions and show that weaker forms of amenability suffice in several cases.

The second theme of this work, which is independent of the first, studies the notion of adapted
normal states on the group von Neumann algebra of a locally compact group G as introduced
by Neufang and Runde in [47]. We present the well known state of affairs for the von Neumann
algebra L∞ (G), which asserts that the existence of adapted normal states is equivalent to the
existence of faithful normal states, i.e. to σ-finiteness of the von Neumann algebra, and develop the
analogous characterization for V N (G). Our perspective is a novel one and produces a new (and
we believe more natural) argument characterizing the existence of cyclic vectors for the left regular
representation of G, originally shown by Greenleaf and Moskowitz in [25] and [26].

The document is organized as follows. In Chapter 2, we give an overview of the basic theory
of C∗- and von Neumann algebras, providing references for the main foundational results of these
subjects. We also review the relevant portions of the theory of projections in von Neumann algebras
and of the supports of positive normal functionals, providing proofs of the key technical lemmas
that will be needed. Chapter 3 provides the necessary background on abstract harmonic analysis,
defining locally compact groups and the algebras associated to them. We also provide an introduc-
tion to the theory of operator spaces, a necessary technical tool in studying these algebras. The
chapter ends with a short introduction to amenability theory for locally compact groups, defining
and characterizing amenability and defining two weaker notions of amenability. Chapter 4 studies
separation properties of closed subgroups. We develop various conditions for the approximability
of characteristic functions of closed subgroups in Sections 4.1 and 4.2. A technical device for im-
proving convergence properties of bounded nets of Fourier multipliers is presented in Section 4.3
and is employed in Section 4.4 to provide weaker conditions for the existence of bounded approx-
imate indicators. The chapter ends with Section 4.5, where bounded approximate indicators are
shown to produce invariant projections and a novel connection to operator amenability of a certain
completely contractive Banach algebra is proven. Chapter 5 describes a gap in a proposition of [1]
and gives counterexamples to a related claim. Chapter 6 characterizes the existences of adapted
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normal states on the von Neumann algebras L∞ (G) and V N (G) associated to a locally compact
group G, showing that in both cases this condition is equivalent to σ-finiteness of the algebra and
to certain topological smallness properties of the group G. We characterize cyclicity of the left
regular representation in Section 6.2. The final chapter lists some unresolved questions that arose
during our investigations.
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Chapter 2

Preliminaries on operator algebras

This chapter defines C∗- and von Neumann algebras and related concepts, states their basic prop-
erties, and provides examples that will be relevant to our investigations. We make no claim to
providing a comprehensive treatment of these subjects and sometimes provide definitions in less
than maximal generality that are sufficient and convenient for our purposes. Where proofs of signif-
icant results are omitted, specific references are provided, and more general references are provided
at the end of each section.

All the topics discussed in this thesis can be broadly categorized as lying within the scope
of functional analysis, with which we assume the reader is familiar. In particular, we will freely
draw upon foundational results regarding Banach and Hilbert spaces as well as Banach algebras.
A working knowledge of abstract measure theory is also prerequisite, as many of the spaces and
algebras we consider arise from Borel measures on topological spaces. Note that our vector spaces
will unanimously be over the complex field C, that spaces of functions on a topological space will
always consist of complex valued functions, and that every topology we consider will be Hausdorff,
allowing us to couch our discussion of topological notions in the language of nets and convergence.
For basic definitions and results from topology, functional analysis, measure theory, and Banach
algebra theory that we take for granted, we refer the reader to [41], [52], [18], and [48], respectively.

We now fix some general notation that will be used throughout. A neighborhood of a point in a
topological space always means a set containing an open set containing that point. Given a Banach
space E, we denote its open and closed unit balls by E<1 and E≤1, respectively. If X ⊂ E is any
subset, then we write 〈X〉 the norm closed linear span of X and for a family of subsets X we let
〈X : X ∈ X〉 = 〈

⋃
X∈X X〉. For ϕ ∈ E∗ and x ∈ E we write 〈ϕ, x〉 or, when we want to be explicit

about the duality being applied, write 〈ϕ, x〉E∗,E for the value ϕ (x). The annihilator of X ⊂ E

in E∗ is the set X⊥ = {ϕ ∈ E∗ : 〈ϕ, x〉 = 0 for all x ∈ X} and the preannihilator of Y ⊂ E∗ is
the set Y⊥ = {x ∈ E : 〈ϕ, x〉 = 0 for all ϕ ∈ Y }.
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2.1 C∗-algebras

Let us recall the definition of an involution on a Banach algebra. We convene that a Banach algebra
A always has a contractive multiplication, so that ‖ab‖A ≤ ‖a‖A ‖b‖A for all a, b ∈ A, and that the
unit of a unital Banach algebra has norm one.

Definition 2.1.1. Let A be a Banach algebra. An involution on A is a map A → A : a 7→ a∗

satisfying:

1. (λa+ b) = λa∗ + b∗ for all a, b ∈ A and λ ∈ C.

2. (ab)∗ = b∗a∗ for all a, b ∈ A.

3. a∗∗ = a for all a ∈ A.

4. ‖a∗‖A = ‖a‖A.

A Banach algebra A equipped with an involution is called a ∗-algebra and is called a C∗-algebra
if the norm on A satisfies ‖a∗a‖A = ‖a‖2A (the C∗-identity) for all a ∈ A. We call a subalgebra B
of A a C∗-subalgebra if it is closed under the involution and norm closed.

Example 2.1.2. (The C∗-algebra C0 (X)) Let X be a locally compact Hausdorff topological
space. A complex valued function f on X is said to vanish at infinity if supx∈X\K |f (x)| → 0 as
we let the compact subset K of X increase to X, i.e. where we have ordered the compact subsets
of X by inclusion and require that the limit along this directed set be zero. The space C0 (X)
denotes the continuous functions vanishing at infinity on X. This space is a commutative
C∗-algebra when given the pointwise algebra operations, complex conjugation as involution, and
the uniform norm defined by ‖f‖C0(X) = supx∈X |f (x)|.

The support of a continuous function f on X, denoted supp (f), is defined to be the norm
closure of {x ∈ X : f (x) 6= 0}. The continuous compactly supported functions Cc (X) are
dense in C0 (X), but in general do not form a C∗-algebra, failing to be complete under the uniform
norm unless X is compact, in which case Cc (X) = C0 (X). When X is discrete, the compact subsets
are the finite subsets, so that Cc (X) consists of the functions on X that are nonzero on only finitely
many points of X, i.e. of finite support. To provide a concrete example, when X = N the space
C0 (X) is the familiar space of complex valued sequences tending to zero, usually denoted c0 (N) or
c0. When X is both discrete and compact, meaning that X is a finite set {x1, . . . , xn}, we have
Cc (X) = C0 (X) = Cn.

Example 2.1.3. (The C∗-algebra B (H)) Let H be a Hilbert space. The space B (H) of bounded
linear operators on H given composition of operators for product, Hilbert space adjoint for invo-
lution, and the operator norm is a C∗-algebra. When H is finite dimensional, fixing a basis for H
allows us to identify B (H) with the n by n complex valued matrices Mn (C), where n = dimH.
The C∗-algebra B (H) is only commutative when H has dimension 1. Any norm closed self-adjoint
subalgebra of B (H) is also a C∗-algebra.
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The involution on a C∗-algebra produces the following classes of distinguished elements.

Definition 2.1.4. Let A be a C∗-algebra. We call a ∈ A:

1. Normal if a∗a = aa∗.

2. Self-adjoint if a = a∗.

3. Positive if a = b∗b for some b ∈ A.

4. A projection if a2 = a∗ = a.

5. Unitary if A is unital and a∗a = aa∗ = 1.

We write a ≥ 0 to indicate that a is positive and define a partial order on the self-adjoint elements
of A by saying that a ≥ b when a− b ≥ 0. The set of positive elements of A is denoted A+.

The positive elements of a C∗-algebra do indeed form a proper positive cone, meaning that
λa+ b ∈ A+ when a, b ∈ A+ and λ ≥ 0 and that a,−a ≥ 0 implies a = 0 for any self-adjoint a ∈ A.

The spectral radius of an element a of a Banach algebra A with unitization A# is the quantity

sup
{
|λ| : λ ∈ C and a− λ1 is not invertible in A#

}
,

which is determined entirely by the algebraic structure of A. The spectral radius formula from
Banach algebra theory and the C∗-identity together yield the following result.

Proposition 2.1.5. Let A be a C∗-algebra. If a ∈ A is normal, then ‖a‖A is equal to its spectral
radius.

This has significant consequences for the theory of C∗-algebras: the norm of an arbitrary element
a in a C∗-algebra A is given by ‖a‖A = ‖a∗a‖

1
2
A and therefore the norm on A is determined entirely

by the algebraic structure of A. In particular, there is at most one norm on a ∗-algebra making it
a C∗-algebra.

The terminology of Definition 2.1.4 is motivated by the following two examples.

Example 2.1.6. (Elements of C0 (X)) Let X be a locally compact Hausdorff topological space.
For the C∗-algebra C0 (X) of Example 2.1.2, the notions of Definition 2.1.4 correspond to familiar
properties of functions as follows: every function is normal because C0 (X) is commutative; the
self-adjoint, positive, and unitary functions are those that are real valued, nonnegative valued, and
taking values in the complex unit circle T, respectively; and a projection in C0 (X) is a function
taking values in {0, 1} and thus is the characteristic function χE of some subset E of X. When
C0 (X) contains a nontrivial projection χE , i.e. one distinct from 0 or 1, so that E is not empty
or X, the continuity of χE implies that the space X fails to be connected. Thus in general C0 (X)
may not contain nontrivial projections.
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Example 2.1.7. (Elements of B (H)) Let H be a Hilbert space. We discuss how definition 2.1.4
applies to the bounded linear operators B (H) of Example 2.1.3 as follows:

1. We limit ourselves to observing that normality for operators in B (H) is a generalization of
its finite dimensional counterpart: normality of matrices over C, and that a generalization of
the fact that such matrices are diagonalizable carries over to (a certain class of operators on)
infinite dimensional Hilbert spaces. See [38, Section 5.2] for details.

2. Self-adjoint operators have spectrum contained in R, and normal operators with spectrum
contained in R are self-adjoint.

3. Positive operators T in B (H) are those satisfying 〈Tξ|ξ〉 ≥ 0 for all ξ ∈ H.

4. Projections are the orthogonal projections onto closed subspaces of H. In fact, the association
of its range to a projection yields a one to one correspondence between projections in B (H)
and the closed subspaces of H.

5. Unitary operators in B (H) are the isomorphisms of the Hilbert spaceH, meaning the bijective
inner product (equivalently, norm) preserving maps.

The maps between C∗-algebras that preserve the pertinent structures are the following.

Definition 2.1.8. Let A and B be C∗-algebras. A bounded linear map Ψ : A→ B is:

1. A ∗-homomorphism if T (ab) = T (a)T (b) and T (a∗) = T (a)∗ for all a, b ∈ A.

2. A ∗-isomorphism if T is a bijective ∗-homomorphism.

3. Positive if T (A+) ⊂ B+.

A positive linear functional of norm one on A is called a state.

Example 2.1.9. (The duality between C0 (X) and M (X)) Let X be a locally compact topo-
logical space. By a Radon measure we mean a Borel measure on X that is outer regular on
measurable sets, inner regular on open sets, and that takes finite values on compact sets. Given a
complex Radon measure µ, integration f 7→

´
X fdµ defines a bounded linear functional on C0 (X)

of norm |µ| (X). The Riesz representation theorem [18, Theorem 7.2] asserts that all elements of
C0 (X)∗ arise this way and moreover that the map µ 7→

[
f 7→

´
X fdµ

]
is isometric. Let M (X)

denote the complex Radon measures on X, so that M (X) = C0 (X)∗.
That a measure µ ∈M (X) corresponds to a positive linear functional on C0 (X) is the assertion

that
´
X fdµ = 〈µ, f〉 ≥ 0 for all positive f ∈ C0 (X), from which one may deduce that µ (E) ≥ 0

for all measurable subsets E of X. In particular, µ is a state exactly when µ is a positive measure
of mass one, i.e. a probability measure on X.

See [18, Chapter 7] for a concise exposition of Radon measures on locally compact spaces and
the duality between C0 (X) and M (X). An interesting alternative treatment is given in [4].
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Example 2.1.10. (Vector functionals on B (H)) Let H be a Hilbert space and let ξ and η

be vectors in H. The map T 7→ 〈Tξ|η〉 defines a bounded linear functional on B (H) of norm
‖ξ‖H ‖η‖H, denoted ωξ,η or ωξ if ξ = η. We call such functionals on B (H) vector functionals,
and if we may write a given functional ϕ ∈ B (H)∗ in the form ωξ,η for some ξ, η ∈ H then we
say that ϕ is implemented by ξ and η and refer to these as the implementing vectors for ϕ.
It is clear from the characterization of positivity in B (H) given in Example 2.1.7 that a vector
functional is positive when it is of the form ωξ for some ξ ∈ H and is a state when ξ is a unit vector.

The following analogue of the Cauchy-Schwarz inequality holds for positive linear functionals.

Proposition 2.1.11. (Cauchy-Schwarz inequality) Let A be a C∗-algebra and let ω be a positive
linear functional on A. Then |〈ω, a∗b〉|2 ≤ 〈ω, a∗a〉 〈ω, b∗b〉 for all a, b ∈ A.

We will need the following useful results.

Proposition 2.1.12. Let A be a unital C∗-algebra. The following hold:

1. A linear functional ω on A is positive if and only if 〈ω, 1〉 = ‖ω‖A∗.

2. A linear functional ω on A is a state if and only if 〈ω, 1〉 = ‖ω‖A∗ = 1.

3. The set of states on A is a weak∗ compact, convex set.

An important consequence of Proposition 2.1.12: if A is a unital C∗-algebra and B is a C∗-
subalgebra of A that contains the unit of A, then the restriction to B of a state on A is a state on
B.

The following result, a manifestation of the fact that the algebraic structure of a C∗-algebra
determines its norm structure, implies that the range of a ∗-homomorphism is always a C∗-algebra.

Proposition 2.1.13. Let A and B be C∗-algebras and Ψ : A→ B a linear map.

1. If Ψ is a ∗-homomorphism, then Ψ is contractive.

2. If Ψ is an injective ∗-homomorphism, then Ψ is isometric.

The following two results are fundamental to the theory of C∗-algebras. The latter motivates
the interpretation of C∗-algebras as noncommutative topological spaces.

Theorem 2.1.14. Let A be a C∗-algebra. The following hold:

1. [58, I.9.18] There exists a Hilbert space H and an isometric ∗-homomorphism A→ B (H).

2. [58, I.4.4] If A is commutative, then there exists a locally compact Hausdorff space X and an
isometric ∗-isomorphism A→ C0 (X).

We refer to a ∗-homomorphism of a C∗-algebra A into B (H) for some Hilbert space H as a
representation and say that A is represented in B (H). A representation is called faithful when
it is injective, in which case it is automatically isometric by virtue of Proposition 2.1.13.

An especially readable introduction to C∗-algebras is given in [38], while [58] provides a more
comprehensive treatment.
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2.2 Von Neumann algebras

Amongst the C∗-algebras, those that are dual spaces form an especially rich class.

Definition 2.2.1. A C∗-algebra M that is a dual space is called a von Neumann algebra,
in which case M has a unique predual, denoted M∗. A C∗-subalgebra N of M is called a von
Neumann subalgebra if it is closed in the weak∗ topology of M .

Example 2.2.2. (The Lp-spaces) Let X be a locally compact space and µ a Radon mea-
sure on X. Recall that, for 1 ≤ p < ∞, the space Lp (X) is the set of measurable complex
valued functions f on X such that ‖f‖Lp(X) =

(´
X |f |

p dµ
) 1
p is finite, where we identify func-

tions that agree µ-almost everywhere. The analogous space for p = ∞ is that of the essen-
tially bounded measurable functions: those f for which the essential supremum norm ‖f‖L∞(X) =
inf {α ≥ 0 : {x ∈ X : |f (x)| > α} is µ-null} is finite. We record some important facts:

1. The space L2 (X) is a Hilbert space with inner product 〈ξ|η〉 =
´
X ξηdµ.

2. The continuous compactly supported functions Cc (X) are dense in Lp (X) for 1 ≤ p <∞.

3. When µ is counting measure, the spaces we have defined are the familiar spaces `p (X).

4. When µ is σ-finite, meaning X is the union of countably many sets of finite measure, the
space L∞ (X) is the dual of L1 (X) via 〈φ, f〉L∞(X),L1(X) =

´
X φfdµ. This duality holds more

generally under a slightly modified definition of L∞ (X) that coincides with ours for σ-finite
measures, see [18, Chapter 6] for details. We use this duality in the greater generality, the
distinction in the definition of L∞ (X) will not arise.

Example 2.2.3. (The von Neumann algebra L∞ (X)) Let X be a locally compact space
and µ a Radon measure on X. The space L∞ (X) under pointwise algebra operations, complex
conjugation, and with essential supremum norm is a commutative von Neumann algebra with
predual L1 (X). This algebra acts on L2 (X) via pointwise multiplication: given φ ∈ L∞ (X), the
map Mφ : ξ 7→ φξ is bounded and linear. The mapping

L∞ (X)→ B
(
L2 (X)

)
: φ 7→Mφ (2.2.1)

realizes L∞ (X) as a von Neumann subalgebra of B
(
L2 (X)

)
, i.e. is a faithful ∗-representation.

If X is moreover a topological space and µ a Borel measure, then C0 (X) is a C∗-subalgebra of
L∞ (X), since the supremum and essential supremum norms coincide for continuous functions.

The normal, self-adjoint, positive, and unitary functions in L∞ (X) are characterized, similar to
Example 2.1.6, as those with range in C, R, [0,∞), and T, respectively. The projections in L∞ (X)
are the characteristic functions of measurable subsets of X. Thus L∞ (X) has an abundance of
projections — their span is in fact norm dense, a property common to all von Neumann algebras.
When X is a topological space, this is in sharp contrast to the generic situation for the C∗-algebra
C0 (X), which may fail to have nontrivial projections.
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The predual L1 (X) consists of those complex Radon measures on X that are absolutely contin-
uous with respect to µ, i.e. those for which every µ-null set is null. Positive normal functionals on
L∞ (X) correspond to positive Radon measures on X that are absolutely continuous with respect
to µ, and states to probability measures with this property. If we represent L∞ (X) in B

(
L2 (X)

)
as in (2.2.1), then for ξ, η ∈ H the vector functional ωξ,η is given by

〈Mφ, ωξ,η〉 = 〈φξ|η〉 =
ˆ
X
φξη = 〈φ, ξη〉L∞(X),L1(X) ,

so that ωξ,η|L∞(X) corresponds to the L1 (X) function ξη.

Example 2.2.4. (The von Neumann algebra B (H)) LetH be a Hilbert space with orthonormal
basis (eα)α. The trace class operators T (H), defined to be those T ∈ B (H) such that

∑
α 〈|T | eα|eα〉

is finite, where |T | = (T ∗T )
1
2 , form a predual for B (H) under the duality 〈T, S〉B(H),T (H) =∑

α 〈TSeα|eα〉. Thus B (H) is a von Neumann algebra. Below we provide an alternative description
of the predual of B (H) that is more suitable for our purposes.

Definition 2.2.5. Let H be a Hilbert space and let (Tα)α be a net in B (H) and T ∈ B (H). We
say that Tα converges to T in the:

1. weak operator topology if 〈Tαξ|η〉 → 〈Tξ|η〉 for all ξ, η ∈ H.

2. strong operator topology if ‖Tαξ‖H → ‖Tξ‖H for all ξ ∈ H.

3. σ-weak operator topology if
∑∞
n=1 〈Tαξn|ηn〉 →

∑∞
n=1 〈Tξn|ηn〉 for all sequences (ξn)∞n=1

and (ηn)∞n=1 in H such that
∑
n ‖ξn‖

2
H and

∑
n ‖ηn‖

2
H are finite.

Some comments regarding these topologies are in order. First, specifying the convergent
nets as we have done in each of (1) to (3) does indeed determine a unique topology, see [41,
p.73]. Second, the σ-weak topology is often called the ultraweak topology (a term we avoid),
and we will see shortly that this is exactly the weak∗ topology of B (H). Third, notice that
convergence in the weak operator topology is exactly pointwise convergence on the vector func-
tionals on B (H), since 〈Tξ|η〉 = 〈T, ωξ,η〉. In (3), the conditions on the sequences (ξn)∞n=1 and
(ηn)∞n=1 assert exactly that

∑∞
n=1 ωξn,ηn is a convergent series in B (H)∗, so convergence in the σ-

weak operator topology is pointwise convergence against such series of vector functionals, because∑∞
n=1 〈Tξn|ηn〉 = 〈T,

∑∞
n=1 ωξn,ηn〉.

Proposition 2.2.6. Let H be a Hilbert space.

1. The σ-weak operator topology and the weak∗ topology on B (H) coincide.

2. Weak ⊂ strong ⊂ norm and weak ⊂ σ-weak ⊂ norm, where ⊂ indicates that the left topology
is weaker than the right.

3. The multiplication on B (H) is separately continuous in the weak, strong, norm and σ-weak
topologies.

10



Definition 2.2.7. Let H be a Hilbert space. The commutant of a subset E of B (H) is the set
of operators that commute with each element of E.

The commutant of any nonempty subset of B (H) is a subalgebra closed in the weak operator
topology and, when E is self-adjoint, is self-adjoint and therefore a von Neumann algebra. In
particular, this occurs when E is itself a von Neumann algebra.

Example 2.2.8. (The commutant of B (H) in itself) For a Hilbert space H, the commutant
of B (H) in itself is the centre of the algebra, which is CI: if T ′ ∈ B (H)′ and ξ, η ∈ H are nonzero,
then, letting Pξ,ην := 〈ν|ξ〉 η for ν ∈ H, we have 〈ν|ξ〉T ′η = T ′Pξ,ην = Pξ,ηT

′ν = 〈T ′ν|ξ〉 η. Setting
ν = ξ yields T ′η = 〈ξ|ξ〉−1 〈T ′ξ|ξ〉 η, implying that 〈ξ|ξ〉−1 〈T ′ξ|ξ〉 is independent of the choice of
nonzero ξ, so is a scalar depending only on T ′ and T ′ ∈ CI.

Example 2.2.9. (The commutant of L∞ (X)) Let X be a locally compact space and µ a Radon
measure on X. We show that the commutant of L∞ (X) in B

(
L2 (X)

)
is itself. Since L∞ (X) is

commutative, we have L∞ (X) ⊂ L∞ (X)′. Let T ∈ L∞ (X)′ and for each compact subset K of G
let φK = TχK . If ξ ∈ L2 (X) ∩ L∞ (X) with supp (ξ) ⊂ K, so that ξ = ξχK , then

Tξ = TξχK = TMξχK = MξTχK = MξφK = ξφK .

Set E = {s ∈ K : |φK (s)| ≥ ‖T‖+ 1}. Since χE ∈ L2 (X) ∩ L∞ (X) and supp (χE) ⊂ K, we have

‖TχE‖2L2(X) = ‖χEφK‖2L2(X) =
ˆ
E
|φK |2 ≥ (‖T‖+ 1)2

ˆ
E

1 > ‖T‖2 |E| = ‖T‖2 ‖χE‖2L2(X) ,

a contradiction unless ‖χE‖L2(X) = 0. Thus E must be a null set and consequently ‖φK‖L∞(X) ≤
‖T‖+ 1. Directing the compact subsets of G by inclusion, the bounded net (φK)K in L∞ (X) must
have a weak∗ cluster point, and passing to a subnet we may assume a weak∗ limit, say φ ∈ L∞ (X).
If ξ ∈ Cc (G), say with support K, then for any compact L ⊃ K we have ξ ∈ L2 (X) ∩ L∞ (X)
and supp (ξ) ⊂ L, so that Tξ = ξφL. Therefore Tξ = limw∗

L ξφL = ξφ by weak∗ continuity of
multiplication. Since Cc (X) is norm dense in L2 (G), it follows that Tξ = ξφ for all ξ ∈ L2 (G),
hence T = Mφ ∈ L∞ (G) and L∞ (X)′ = L∞ (X).

Theorem 2.1.14 implies that C∗-algebras are exactly the norm closed subalgebras of B (H) for
some Hilbert space H. Amongst them, the von Neumann algebras are those that are closed in any
of the weaker topologies of Definition 2.2.5.

Theorem 2.2.10. Let A be a C∗-algebra in B (H). The following are equivalent:

1. A is a von Neumann algebra.

2. A is closed in the weak, strong, or σ-weak operator topology of B (H).

3. A′′ = A.

11



The equivalence of (1) and (3) in the preceding theorem is referred to as the double commutant
theorem.

In the context of von Neumann algebra theory, maps that are weak∗-weak∗ continuous between
von Neumann algebras are referred to as normal. The normal linear functionals are therefore
those in the predual.

The following is the von Neumann algebraic analogue of Theorem 2.1.14, and motivates the
view of von Neumann algebras as noncommutative measure spaces.

Theorem 2.2.11. Let M be a von Neumann algebra. The following hold [58, III, Section 1]:

1. There is a Hilbert space H and a weak∗ continuous isometric ∗-homomorphism M → B (H).

2. If M is commutative, then there exists a compact Hausdorff space X and a positive Radon
measure µ such that there is a weak∗ continuous isometric ∗-isomorphism M → L∞ (X,µ).

Theorem 2.2.11 faithfully represents any von Neumann algebraM concretely as bounded opera-
tors on some Hilbert space H. SinceM is then weak∗ closed in B (H), this allows us to describe the
predual of M in terms of that of B (H): the normal functionals on M are exactly the restrictions
of the normal functionals on B (H) to M , so are of the form

∑∞
n=1 ωξn,ηn for sequences (ξn)∞n=1 and

(ηn)∞n=1 in H such that
∑
n ‖ξn‖

2
H and

∑
n ‖ηn‖

2
H are finite. This description of the predual of a

von Neumann algebra makes it clear that if N is a von Neumann subalgebra of M , then normal
functionals on N extend to normal functionals on M , and by Proposition 2.1.12 that normal states
extend to normal states. Every von Neumann algebra admits a faithful representation on some
Hilbert space such that all of its positive normal functionals are vector functionals, which we call
the standard representation [33].

A gentle introduction to the portions of von Neumann algebra theory presented here is available
in [38]. An encyclopedic reference is [58].

2.3 Projections in von Neumann algebras

In this section we collect together the the facts about projections in von Neumann algebras that
will be required in Chapter 6. Proofs are included for many basic results as the techniques they
expose have much in common with those used in Chapter 6.

By Theorem 2.2.11, we may faithfully represent any von Neumann algebra M as bounded
operators on a Hilbert space H and thereby view projections in M as orthogonal projections onto
closed subspaces of H, as per Example 2.1.7. Let us record some elementary facts about these
projections.

Lemma 2.3.1. Let H be a Hilbert space. For orthogonal projections P and Q in B (H):

1. ‖P‖B(H) = 1 unless P = 0.

2. The range and kernel of P are closed orthogonal subspaces of H with direct sum H.

12



3. rng (I − P ) = ker (P ) and ker (I − P ) = rng (P ).

4. If PQ = 0, then P +Q is orthogonal projection onto rng (P )⊕ rng (Q).

5. PQ = 0⇐⇒ rng (P ) ⊥ rng (Q).

6. PQ = Q ⇐⇒ QP = Q ⇐⇒ rng (Q) ⊂ rng (P ).

These last two properties can be stated for projections in a von Neumann algebra without
reference to a particular representation.

Definition 2.3.2. Let M be a von Neumann algebra and P and Q projections in M . We call P
and Q orthogonal and write P ⊥ Q if PQ = 0 and call Q a subprojection of P if PQ = QP = Q.

Example 2.3.3. (Projections in L∞ (X)) Let X be a locally compact space and µ a Radon
measure on X. We saw in Example 2.2.3 that the projections in L∞ (X) are characteristic functions
of measurable subsets of X. Given measurable subsets E and F , we have χEχF = χE∩F , so that
χE and χF are orthogonal exactly when E ∩ F is null. The projection χE is a subprojection of χF
when χE∩F = χE , equivalently when χE\F = 0, i.e. when E ⊂ F up to a null set.

Projections in a von Neumann algebra are self-adjoint and the partial order of Definition 2.1.4
on self-adjoint elements of a C∗-algebra restricted to projections agrees with the notion of subpro-
jection, i.e. Q ≤ P if and only if Q is a subprojection of P .

Proposition 2.3.4. Let H be a Hilbert space andM a von Neumann algebra in B (H). For a family
of projections P in M , define the supremum and infimum of P to be the orthogonal projections onto
〈rng (P ) : P ∈ P〉 and

⋂
P∈P rng (P ), respectively. With these operations, the projections inM form

a complete lattice.

In certain contexts, the following provides a means of reducing arguments involving positive
operators to projections.

Definition 2.3.5. Let H be a Hilbert space and T ∈ B (H). The projection onto rng (T ) is called
the range projection of T and is denoted R (T ).

Proposition 2.3.6. Let M a von Neumann algebra.

1. If T ∈M , then R (T ) ∈M .

2. [38, 7.2.5] If T ∈ M is positive and ω ∈ M∗ is positive, then 〈ω, T 〉 = 0 if and only if
〈ω,R (T )〉 = 0.

Definition 2.3.7. LetM be a von Neumann algebra. A projection P inM is called σ-finite if any
family of nonzero mutually orthogonal subprojections of P must be countable. We call M σ-finite
if the identity is a σ-finite projection, equivalently if every family of nonzero mutually orthogonal
projections in M is countable.
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It is clear that subprojections of σ-finite projections are themselves σ-finite.
We provide proofs for the following routine lemmas to exhibit some of the common features of

arguments appearing in the projection theory of von Neumann algebras.

Lemma 2.3.8. Let H be a Hilbert space and M a von Neumann algebra in B (H). The projection
onto 〈M ′ξ〉 is in M for any ξ ∈ H.

Proof. Let P be orthogonal projection onto 〈M ′ξ〉, which is in B (H). If T ′, S′ ∈M ′, then T ′PS′ξ =
T ′S′ξ = PT ′S′ξ, implying that T ′P = PT ′ on 〈M ′ξ〉, equivalently that T ′P = PT ′P , for every
T ′ ∈M ′. Taking adjoints and applying this result to the adjoint, we obtain P (T ′)∗ = P (T ′)∗ P =
(T ′)∗ P . Therefore P ∈M ′′ = M .

Proposition 2.3.9. Let H be a Hilbert space and M a von Neumann algebra in B (H). Any
projection P in M can be written as

∑
α Pα for mutually orthogonal projections Pα, each of which

is orthogonal projection onto 〈M ′ξα〉 for some unit vector ξα ∈ H.

Proof. For ξ ∈ H, let Pξ denote orthogonal projection onto 〈M ′ξ〉. The result is trivial if P = 0,
so assume P is nonzero and let ξ be a unit vector in the range of P . Then PT ′ξ = T ′Pξ = T ′ξ for
every T ′ ∈ M ′, hence 〈M ′ξ〉 is contained in the range of P and Lemma 2.3.1 yields Pξ ≤ P . We
have shown that every nonzero projection inM contains a nonzero subprojection of the form Pξ for
some ξ ∈ H. The collection P of families of mutually orthogonal nonzero subprojections of P of the
form Pξ for ξ ∈ H is partially ordered by inclusion of families and is nonempty. If C is a chain in P,
then it is clear that

⋃
F∈P F ∈ P and that

⋃
F∈P F dominates each family in C under the inclusion

ordering, whence is an upper bound in P for C. By Zorn’s lemma, P contains a maximal family, say
(Pξα)α for ξα ∈ H. If

∑
α Pξα < P , then P −

∑
α Pξα is a nonzero subprojection of P , hence contains

a nonzero subprojection of the form Pη for some η ∈ H. Then Pη ≤ P−
∑
α Pξα , so Pη+

∑
α Pξα ≤ P ,

and we have Pη = Pη (P −
∑
α Pξα) = Pη −Pη

∑
α Pξα , implying that

∑
α PηPξα = 0 and that Pη is

orthogonal to each Pξα . But then the family {Pη}
⋃

(Pξα)α strictly dominates (Pξα)α in the partial
order on P, a contradiction. Therefore

∑
α Pξα = P .

Example 2.3.10. (σ-finiteness of B (H)) Let H be a separable Hilbert space. Let (Pα)α be
a family of mutually orthogonal projections in B (H). Choosing a unit vector eα in the range of
Pα, we have eα ⊥ eβ for all α 6= β, so (eα)α is an orthonormal set in H and therefore must be
countable, because separable Hilbert spaces are those with countable orthonormal bases. Thus
(Pα)α is countable and B (H) is σ-finite. (It follows that any von Neumann algebra that can be
faithfully represented on B (H) for some separable Hilbert space H is σ-finite.)

Conversely, let H be a Hilbert space for which B (H) is σ-finite. By Proposition 2.3.9 we may
write I =

∑∞
n=1 Pn, where each Pn is orthogonal projection onto

〈
B (H)′ ξn

〉
for some unit vector

ξn. We have
〈
B (H)′ ξn

〉
= Cξn by Example 2.2.8, implying that Pnη = 〈η|ξn〉 ξn. Then (ξn)∞n=1 is

an orthonormal set in B (H) and η =
∑∞
n=1 Pnη =

∑∞
n=1 〈η|ξn〉 ξn for all η ∈ H, so this set is an

orthonormal basis and H is separable.
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We will characterize σ-finiteness for a certain class of von Neumann algebras in Chapter 6. For
now, we develop the connection between σ-finiteness of von Neumann algebras and the existence
of certain positive normal functionals.

Definition 2.3.11. Let ω be a positive normal functional on a von Neumann algebra M . The
support of ω is the minimal projection Sω in M satisfying 〈ω, Sω〉 = 〈ω, I〉.

If ω is a positive normal functional, then it is clear that αω has the same support for any α > 0.

Example 2.3.12. (Support of positive normal functionals on L∞ (X)) Let X be a locally
compact space, µ a Radon measure on X, and f a nonzero positive normal functional on L∞ (X),
which is a positive L1 (X) function by Example 2.2.3. We noted in Example 2.3.3 that projections
in L∞ (X) are characteristic functions of measurable subsets of X. Recall that the support of the
L1 (X) function f is defined to be the closed set

supp (f) = X \
⋃
{U ⊂ X : U is open and fµ (U) = 0} ,

see [4, Chapter III, Section 2]. Since f is nonzero and positive, supp (f) is not null and〈
f, χsupp(f)

〉
=
´
supp(f) f =

´
X f = 〈f, I〉, implying that Sf ≤ χsupp(f). Letting Sf = χE ,

we established that E \ supp (f) is null. Since 〈f, I〉 = 〈f, χE〉 =
〈
f, χsupp(f)\E

〉
+
〈
f, χsupp(f)

〉
=〈

f, χsupp(f)\E
〉

+ 〈f, I〉, we have 0 =
〈
f, χsupp(f)\E

〉
=
´
supp(f)\E f and thus supp (f) \E is null.

Therefore Sf = χsupp(f).

We will frequently use the following elementary facts about supports of positive normal func-
tionals.

Lemma 2.3.13. Let H be a Hilbert space and M a von Neumann algebra in B (H).

1. For a projection P in M and a unit vector ξ ∈ H, we have that

ξ ∈ rngP ⇐⇒ Pξ = ξ ⇐⇒ 〈ωξ, P 〉 = 1 ⇐⇒ Sωξ ≤ P.

2. The projection Sωξ has range 〈M ′ξ〉, for any ξ ∈ H.

3. For ξ, η ∈ H, we have that

〈
ωξ, Sωη

〉
= 0 ⇐⇒ Sωηξ = 0 ⇐⇒ ξ ⊥

〈
M ′η

〉
⇐⇒ η ⊥

〈
M ′ξ

〉
⇐⇒ SωηSωξ = 0.

It follows that
〈
ωξ, Sωη

〉
= 0 exactly when

〈
ωη, Sωξ

〉
= 0.

4. For any positive normal functional ω on M and any T ∈M , we have that

〈ω, T 〉 = 〈ω, SωT 〉 = 〈ω, TSω〉 = 〈ω, SωTSω〉 .
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Proof. (1) The first equivalence is clear and the third follows from the definition of Sωη . If 1 =
〈ωξ, P 〉 = 〈Pξ|ξ〉, then

0 ≤ ‖Pξ − ξ‖2H = 〈Pξ − ξ|Pξ − ξ〉 = ‖Pξ‖H − 〈Pξ|ξ〉 − 〈ξ|Pξ〉+ ‖ξ‖H = ‖Pξ‖H − 1

implying that 1 ≤ ‖Pξ‖H ≤ ‖P‖ ‖ξ‖H = 1, hence Pξ = ξ. Conversely, if Pξ = ξ, then 〈ωξ, P 〉 =
〈Pξ|ξ〉 = ‖ξ‖22 = 1, establishing the middle equivalence.

(2) The claim is trivial for zero vectors, we assume ξ is nonzero and further assume it has unit
length. By definition of Sωξ we have

〈
ωξ, Sωξ

〉
= 1 so that Sωξξ = ξ by (1) and SωξT ′ξ = T ′Sωξξ =

T ′ξ for any T ′ ∈ M ′, so that 〈M ′ξ〉 ⊂ rng
(
Sωξ

)
. Letting Q denote the projection onto 〈M ′ξ〉

(which is in M by Lemma 2.3.8), we have shown that Q ≤ Sωξ . But 〈ωξ, Q〉 = 〈Qξ|ξ〉 = 〈ξ|ξ〉 = 1
implies Sωξ ≤ Q by minimality, so these projections coincide.

(3) Again, we may assume ξ and η are unit length. The equalities
〈
ωξ, Sωη

〉
=
〈
Sωηξ|ξ

〉
=〈

Sωηξ|Sωηξ
〉

=
∥∥Sωηξ∥∥2

H establish the first equivalence. If Sωηξ = 0, then ξ is in the kernel of Sωη ,
which is orthogonal to the range of Sωη , which is 〈M ′η〉 by (2), and conversely if ξ ⊥ 〈M ′η〉, then
for any ν ∈ H we have 0 =

〈
Sωην|ξ

〉
=
〈
ν|Sωηξ

〉
and therefore Sωηξ = 0, so the second equivalence

holds. The third equivalence is clear given that (M ′)∗ = M ′ and 〈ξ|T ′η〉 =
〈
(T ′)∗ ξ|η

〉
for T ′ ∈M ′.

Ifη ⊥ 〈M ′ξ〉, then 〈T ′η|S′ξ〉 =
〈
η| (T ′)∗ S′ξ

〉
= 0 for all T ′, S′ ∈M ′, so Sωξ and Sωη have orthogonal

ranges, and conversely SωηSωξ = 0 implies 0 = SωηSωξξ = Sωηξ, using (1). Finally, that the third
equivalence is symmetric in ξ and η shows last sentence of the claim holds.

(4) By the Cauchy-Schwarz inequality (Proposition 2.1.11),

|〈ω, T (I − Sω)〉|2 ≤ 〈ω, TT ∗〉 〈ω, (I − Sω)∗ (I − Sω)〉 = 〈ω, TT ∗〉 〈ω, I − Sω〉 = 0,

showing that 〈ω, T 〉 = 〈ω, TSω〉. The remaining equalities are proven in a similar way.

Definition 2.3.14. A positive normal functional ω on a von Neumann algebraM is called faithful
if Sω = I, the identity in M .

Example 2.3.15. (Faithful positive normal functionals on L∞ (X)) Let X be a locally
compact space, µ a Radon measure on X, and f a faithful positive normal functional on L∞ (X).
We saw in Example 2.3.12 that Sf = χsupp(f). Faithfulness of f is therefore the assertion that
supp (f) = X up to a null set.

Example 2.3.16. (Positive normal functionals are faithful on the corner defined by their
support) Let M be a von Neumann algebra and let ω be a nonzero positive normal functional
on M . By a corner in M , we mean a von Neumann subalgebra of M of the form PMP for a
projection P in M . Note that P is the unit in the corner PMP . The restriction of ω to SωMSω

is nonzero since Sω ∈ SωMSω, clearly remains positive and normal, and by definition is faithful.

We establish a lemma that will be needed in characterizing faithfulness of positive normal
functionals.
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Proposition 2.3.17. Let ω be a nonzero positive normal functional on a von Neumann algebra M
and let U be a unitary in M . Then 〈ω,U〉 = 〈ω, I〉 if and only if USω = SωU = Sω.

Proof. Recall from Proposition 2.1.12 that ‖ω‖M∗ = 〈ω, I〉, so we may normalize ω and assume
that 〈ω, I〉 = 1.

Suppose that 〈ω,U〉 = 1. Let H be a Hilbert space such that M is standardly represented in
B (H), so that there exists a unit vector ξ ∈ H for which ω = ωξ. Then 〈Uξ|ξ〉 = 1 together with
‖Uξ‖H = 1 entails Uξ = ξ. If η ∈ H is of the form T ′ξ for some T ′ ∈ M ′, then Uη = UT ′ξ =
T ′Uξ = T ′ξ = η, so that U fixes every vector in 〈M ′ξ〉, the range of Sωξ . If η ∈ H and we write
Sωξη = limα T

′
αξ, then USωξη = U (limα T

′
αξ) = limα T

′
αξ = Uη and thus USωξ = Sωξ . It follows

that Sωξ = SωξU
∗U =

(
USωξ

)∗
U = SωξU .

Conversely, if USω = Sω, then by Lemma 2.3.13(4) we have 1 = 〈ω, Sω〉 = 〈ω,USω〉 = 〈ω,U〉.

Corollary 2.3.18. Let ω be a nonzero positive normal functional on a von Neumann algebra M .
The set Uω of unitaries on which ω takes the value 〈ω, I〉 is a weak∗ closed subgroup of the unitaries
in M .

Proof. The claim is clear given the characterization of elements of Uω as those unitaries U satisfying
USω = SωU = Sω.

Proposition 2.3.19. Let ω be a nonzero positive normal functional on a von Neumann algebra
M . The following are equivalent:

1. ω is faithful.

2. 〈ω, T 〉 > 0 for every nonzero positive T in M .

3. 〈ω, P 〉 > 0 for every nonzero projection P in M .

4. 〈ω,U〉 = 〈ω, I〉 implies U = I, for any unitary U in M .

Proof. We may normalize ω to assure that 〈ω, I〉 = 1.
If ω is faithful and U ∈M is unitary with 〈ω,U〉 = 1, then U = USω = Sω = I by Proposition

2.3.17, so (1) implies (4).
Suppose (4) holds. Given a projection P ∈M , a routine calculation shows that I−2P is unitary

and we have 〈ω, I − 2P 〉 = 1 − 2 〈ω, P 〉, so that 〈ω, P 〉 = 0 exactly when 〈ω, I − 2P 〉 = 1, which
implies that I − 2P = I, by (4), and therefore that P = 0. Thus (3) holds.

For T ≥ 0 in M Proposition 2.3.6 asserts that 〈ω, T 〉 = 0 if and only if 〈ω,R (T )〉 = 0, where
R (T ) is the range projection of T , and R (T ) = 0 exactly when T = 0, so (2) and (3) are equivalent.

Finally, if (2) holds, then 〈ω, I − Sω〉 = 〈ω, (I − Sω)Sω〉 = 0 implies I−Sω = 0, so (1) holds.

We require one more lemma in order to characterize σ-finiteness of von Neumann algebras.
Lemma 2.3.13 is used prodigiously and without comment in establishing the following.
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Lemma 2.3.20. Let H be a Hilbert space and M a von Neumann algebra in B (H). If ω =∑∞
n=1 γnωξn is a convex combination of the normal states ωξn on M , where ξn ∈ H are unit vectors,

then the range of Sω is 〈M ′ξn : n ≥ 1〉.

Proof. If η ∈ H is orthogonal to 〈M ′ξn : n ≥ 1〉, then
〈
ωη, Sωξn

〉
= 0 and hence

〈
ωξn , Sωη

〉
= 0 for

each n ≥ 1, implying that
〈
ω, Sωη

〉
= 0 and so SωSωη = 0, whence η ∈ rng

(
Sωη

)
⊂ ker (Sω). Thus

the range of Sω is contained in 〈M ′ξn : n ≥ 1〉. Now if η ∈ rng (Sω) is a unit vector, then Sωη = η

and hence 〈ωη, Sω〉 = 1 6= 0 and thus
〈
ω, Sωη

〉
6= 0, implying that

〈
ωξn , Sωη

〉
6= 0 for some n ≥ 1.

Then ξn is not orthogonal to 〈M ′η〉, so η is not orthogonal to 〈M ′ξn〉, showing that no unit vector
in the range of Sω is orthogonal to 〈M ′ξn : n ≥ 1〉. Therefore the range of Sω and 〈M ′ξn : n ≥ 1〉
coincide.

Proposition 2.3.21. Let M be a von Neumann algebra. Then M is σ-finite if and only if there
exists a faithful positive normal functional on M .

Proof. Let H be a Hilbert space such thatM ⊂ B (H). SupposeM is σ-finite. By Proposition 2.3.9
we have I =

∑∞
n=1 Pn, where Pn is orthogonal projection onto 〈M ′ξn〉 for some unit vector ξn ∈ H

and PnPm = 0 for n 6= m. By Lemma 2.3.13(2), the projection Pn is exactly Sωξn . The positive
normal functional ω =

∑∞
n=1 2−nωξn has support projection with range 〈M ′ξn : n ≥ 1〉, by Lemma

2.3.20, and since η =
∑∞
n=1 Pnη ∈

⊕
n 〈M ′ξn〉 for every η ∈ H, we conclude that 〈M ′ξn : n ≥ 1〉 = H

and that ω is faithful.
Conversely, suppose that ω is a faithful positive normal functional on M . If (Pα)α is any

family of nonzero mutually orthogonal projections in M , then 〈ω, Pα〉 > 0 for each α and that∑
α 〈ω, Pα〉 = 〈ω,

∑
α Pα〉 ≤ 〈ω, I〉 = 1 is finite entails only countably many of the terms 〈ω, Pα〉 are

nonzero, whence (Pα)α is countable. Therefore M is σ-finite.

We may now provide the example that motivates the choice of term σ-finite for general von
Neumann algebras.

Example 2.3.22. (σ-finiteness of L∞ (X)) Let X be a locally compact space and µ a Radon
measure on X. We saw in Example 2.3.15 that a positive normal functional f on L∞ (X) is faithful
exactly when supp (f) = X up to a null set. The support of any function g in L1 (X) is σ-finite: for
n ≥ 1 set Xn =

{
x ∈ X : |g (x)| ∈

[
1

n+1 ,
1
n

)}
and set X0 = {x ∈ X : |g (x)| ∈ [1,∞)}, which have

finite measure since 1
n+1µ (Xn) ≤

´
Xn
|g (x)| ≤ ‖g‖L1(X) < ∞ for each n ≥ 0. Then supp (f) =

X0 ∪
⋃
nXn is the union of countably many sets of finite measure. Therefore supp (f) = X implies

(X,µ) is a σ-finite measure space. Conversely, if (X,µ) is σ-finite, say X =
⋃∞
n=1Xn for sets Xn of

finite measure, then
∑∞
n=1 2−nµ (Xn)−1 χXn is a positive function in L1 (X) with support X, hence

a faithful positive normal functional on L∞ (X).

References for the topics of this section are the same as those for Section 2.2.
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Chapter 3

Preliminaries on abstract harmonic
analysis

This chapter introduces the basic theory of locally compact groups and defines the associated
algebras of functions and operators with which our later investigations will be concerned. We also
outline the relevant theory of operator spaces.

Definition 3.0.1. Let G be a group and f a complex valued function on G. Define

f̌ (t) = f
(
t−1) (t ∈ G)

and for s ∈ G define

sf (t) = f (st) and fs (t) = f (ts) (t ∈ G) .

For an algebra A of functions on a set X and a subset S of X, we write IA (S) for the functions
in A that are zero on S.

3.1 Locally compact groups

Abstract harmonic analysis is the study of groups endowed with a locally compact Hausdorff topol-
ogy compatible with the group operations.

Definition 3.1.1. A group G is locally compact if there is a locally compact Hausdorff topology
on G under which the maps G×G→ G : (x, y) 7→ xy and G→ G : x 7→ x−1 are continuous.

The topology of any locally compact group G is entirely determined by the neighborhood system
at the identity element e: the neighborhood system at any x in G is the image of the neighborhood
system at e under translation by x, a homeomorphism of G. Collecting together results of [29,
Chapter 2], we have the following.
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Proposition 3.1.2. Let G be a locally compact group. For any neighborhood U of the identity e
in G, there exists a compact neighborhood V of e such that V = V −1 (the set V is symmetric)
and V V −1 ⊂ U . Consequently, there is a neighborhood base for e consisting of compact, symmetric
sets.

For these groups, there is a canonical translation invariant Radon measure that is unique up to
scalar multiples. A proof of this fact can be found in [18, Chapter 11].

Definition 3.1.3. Let G be a locally compact group. A left (right) Haar measure on G

is a nonzero positive Radon measure µ that is left (right) translation invariant, meaning that
µ (xE) = µ (E) (µ (Ex) = µ (E)) for all x ∈ G and Borel subsets E of G. If µ′ is any positive
Radon measure µ that is left translation invariant, then µ′ = αµ for some α ≥ 0.

Once a left Haar measure µ on a locally compact group G is chosen, it is referred to as the Haar
measure on G and the Lp-spaces with respect to this measure may be defined as in Example 2.2.2.
All integrals over a locally compact group are implicity taken with respect to the Haar measure on
G. If G is a discrete group, then µ is taken to be the counting measure on G, which is trivially both
left and right invariant, and if G is compact, then we assume that the Haar measure is normalized
to have total mass one. It is straight forward to verify that a right Haar measure on G is defined
by E 7→ µ

(
E−1) for Borel subsets E of G. When the group and measure are clear from context,

we adopt the notation |E| for the Haar measure of the Borel subset E of G.

Example 3.1.4. (When Haar measure is finite) Let G be a locally compact group. We
show that Haar measure is finite if and only if G is compact. One implication is clear: if G is
compact, then, because a Radon measure takes finite values on compact sets, Haar measure is
finite. Conversely, suppose G is not compact and let K ⊂ G be compact with |K| > 0. There must
exist s1 ∈ G \ K such that s1K ∩ K = ∅: otherwise, given t ∈ G, choose k ∈ tK ∩ K and write
k = tk′ for some k′ ∈ K, in which case and t = k (k′)−1 ∈ KK−1, implying that G = KK−1, a
compact set by [29, (4.4)]. Let s0 = e, the identity of G. For n ≥ 1, given s0, . . . , sn ∈ G such that
the sets sjK are pairwise disjoint, we may find sn+1 ∈ G \

⋃n
j=0 sjK such that sn+1K is disjoint

from s1K, . . . , snK, otherwise the preceding argument would entail that G is compact. Thus we
may find countably many pairwise disjoint translates of the set K in G, whence Haar measure is
not finite.

Example 3.1.5. (When Haar measure has atoms) Let G be a locally compact group. We
show that Haar measure assigns a singleton strictly positive measure if and only if G is discrete.
One implication is trivial, since Haar measure is counting measure on discrete groups. Thus suppose
Haar measure assigns some singleton strictly positive measure, in which case |{s}| > 0 for all s ∈ G
by left translation invariance, and suppose towards a contradiction that G is not discrete, in which
case no singleton is open because translation is a homeomorphism. By outer regularity of Haar
measure, there exists an open neighborhood U of e such that |U | − |{e}| < 1

2 |{e}|. Since U cannot
be a singleton, choose s ∈ U distinct from e, and choose disjoint neighborhoods Ue and Us of e and
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s, respectively, that are contained in the open set U . Then 2 |{e}| ≤ |Ue|+ |Us| ≤ |U | < 3
2 |{e}|, a

contradiction, so that G must be discrete.

It follows from Example 3.1.5 that any countable locally compact group, being the disjoint
union of countably many singletons, must be a discrete.

That Haar measure is translation invariant and inner regularity on open sets yields the following.

Lemma 3.1.6. Let G be a locally compact group. If U is an open nonempty subset of G, then the
Haar measure of U is strictly positive.

Example 3.1.7. (Haar measure for closed subgroups) Let G be a locally compact group and
H a closed subgroup. We show that Haar measure µH on H is restriction of Haar measure µG on
G if and only if H is an open subgroup of G, otherwise H is a µG-null set. If H is open in G,
then Lemma 3.1.6 asserts that µG (H) > 0 and it is straight forward to see that µG defines a left
translation invariant positive Radon measure on H, so we may take µH = µG|H . Conversely, if
H fails to be open in G, then H cannot contain a nonempty open set in G, otherwise H would
be the union of translates of this open set and would itself be open in G. If it were the case that
µG (H) > 0, then by regularity of µG we may choose U ⊂ G open and K ⊂ H compact with
K ⊂ H ⊂ U such that µG (U \K) is arbitrarily small. Thus we may find a compact subset K of
H such that µG (H \K) is arbitrarily small, so that we may assure 0 < µG (K ∩H) < ∞. Then
[29, (20.17)] asserts that (K ∩H)2 contains a nonempty open subset of G, a contradiction since
(K ∩H)2 ⊂ H. Therefore H is µG-null whenever H is not open in G, so certainly µH is not the
restriction of µG.

Definition 3.1.8. Let G be a locally compact group with left Haar measure µ. The modular
function of G is the continuous group homomorphism ∆ : G → (0,∞) satisfying µ (Ex) =
∆ (x)µ (E).

The left translation invariance of Haar measure manifests in the following useful formulas for
integration.

Proposition 3.1.9. Let G be a locally compact group. If f ∈ L1 (G) and s ∈ G, then
ˆ
G
f (y) dy =

ˆ
G
f (sy) dy = ∆ (s)

ˆ
G
f (ys) dy =

ˆ
G
f
(
y−1

)
∆
(
y−1

)
dy.

Definition 3.1.10. Let G be a locally compact group. The group algebra of G is the Banach
space L1 (G) endowed with the convolution product and involution given by

(f ∗ g) (s) =
ˆ
G
f (y) g

(
y−1s

)
dy and f∗ (s) = f (s−1)∆

(
s−1

) (
f, g ∈ L1 (G) , s ∈ G

)
,

under which it is a Banach ∗-algebra.

Example 3.1.11. (Identities and approximate identities for the group algebra) Let G be
a locally compact group. The group algebra of G is unital when 1G is an integrable function, i.e.
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when Haar measure is finite, which by Example 3.1.4 occurs exactly when G is compact. We show
that L1 (G) always has a bounded approximate identity. For each open neighborhood U of the
identity e in G, let fU ∈ L1 (G) be positive, norm one, with support contained in U , and such that
fU = f̌U . (For example, we may set fU = |V |−1 χV for a symmetric neighborhood V of e contained
in U .) If g ∈ L1 (G), then

g ∗ fU (s)− g (s) =
ˆ
G
g (y) fU

(
y−1s

)
dy −

ˆ
G
fU (y) dy =

ˆ
G

(g (sy)− g (s)) fU (y) dy (s ∈ G) ,

so that

‖g ∗ fU − g‖L1(G) =
∥∥∥∥ˆ

G
(gy − g) fU (y) dy

∥∥∥∥
L1(G)

≤
ˆ
G
‖gy − g‖L1(G) fU (y) dy ≤ sup

y∈U
‖gy − g‖L1(G) .

It is shown in [17, Proposition 2.41] that translation is norm continuous on L1 (G), so that
supy∈U ‖gy − g‖L1(G) → 0 as U → {e} and (fU )U is a right bounded approximate identity for
L1 (G). That this net is also a left approximate identity follows by a similar computation.

It is a classical result of Wendel that the group algebra, as a Banach algebra, is a complete
invariant for G [61].

Definition 3.1.12. A unitary representation of a locally compact group G is a representation
π : G → B (H) of the group G as unitary operators on the Hilbert space H that is continuous in
the strong operator topology on B (H), meaning that G → H : s 7→ π (s) ξ is continuous for each
ξ ∈ H.

A vector ξ ∈ H is cyclic for the unitary representation π if 〈π (G) ξ〉 = H, where π (G) ξ denotes
the set {π (s) ξ : s ∈ G}.

It is equivalent to ask that a representation of a locally compact group as unitary operators be
continuous in the weak and the strong operator topologies [17, p.68].

Example 3.1.13. (Regular representations of G) The left and right regular representation
of a locally compact group G are given, respectively, by

λ : G→ B
(
L2 (G)

)
: λ (s) ξ (t) = ξ

(
s−1t

)
and ρ : G→ B

(
L2 (G)

)
: ρ (s) ξ (t) = ξ (ts) ∆ (s)

1
2 ,

It is straight forward to verify that these are indeed unitary representations of G, see for example
[17, Chapter 3], where the basic properties of unitary representations of locally compact groups are
outlined. We show in Lemma 6.2.1 that λ and ρ are unitarily equivalent.

We now describe how a unitary representation π : G→ B (H) as in Definition 3.1.12 induces a
∗-representation of the ∗-algebra L1 (G) by integration. For a fixed vector ξ ∈ L2 (G) the function
G → L2 (G) : s 7→ π (s) ξ is bounded and continuous, so that for f ∈ L1 (G) the weak integral
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´
G f (y)π (y) ξdy exists: it is the unique element of L2 (G) satisfying

〈ˆ
G
f (y)π (y) ξdy|η

〉
=
ˆ
G
f (y) 〈π (y) ξ|η〉 dy

(
η ∈ L2 (G)

)
,

see [17, Appendix 3]. The map L2 (G) → L2 (G) : ξ 7→
´
G f (y)π (y) ξdy is clearly linear and is

bounded, and letting π (f) denote this operator in B
(
L2 (G)

)
, it is routine to verify that

π : L1 (G)→ B
(
L2 (G)

)
: f 7→ π (f)

is a ∗-representation, the induced ∗-representation of L1(G).
The text [17] contains a more detailed introduction to the theory of locally compact groups

that we have expounded here. A comprehensive reference for classical noncommutative harmonic
analysis is [29, 30].

3.2 Operator spaces and completely contractive Banach algebras

This section outlines the very basics of operator space theory and defines the related algebraic
notions — algebras and modules — that will arise in the sequel. An operator space structure on a
Banach space is a refinement on the norm structure achieved by simultaneously considering norms
on all the matrix spaces over the Banach space. The significance of this refinement to harmonic
analysis will become apparent in the subsequent sections.

Operator spaces were originally defined to be closed linear subspaces of the bounded operators
on Hilbert spaces and were characterized axiomatically by Ruan in 1988, giving the following
definition:

Definition 3.2.1. An operator space is a vector space E equipped with a complete norm ‖·‖n
on the matrix space Mn (E) for each n ≥ 1, subject to the following compatibility criteria:∥∥∥∥∥ x 0

0 y

∥∥∥∥∥
n+m

= max {‖x‖n , ‖x‖m} and ‖αxβ‖n ≤ ‖α‖ ‖x‖n ‖β‖ ,

for every x ∈ Mn (E) , y ∈ Mm (E) , and α, β ∈ Mn (C). Given a vector space E, we refer to a
choice of complete norms (‖·‖n)n≥1 on the matrix algebras over E that satisfy the above conditions
as an operator space structure on E.

It is plain to see that a closed subspace of an operator space is an operator space.

Example 3.2.2. (Banach spaces are operator spaces) Every Banach space E may be endowed
with a canonical operator space structure — the maximal operator space structure on E — under
which every bounded map from E into an operator space is completely bounded [14, Section 3.2].
Thus a theorem that holds for all operator spaces is a literal generalization of its analogue for
Banach spaces.
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Example 3.2.3. (Closed subspaces of B (H) are operator spaces) Let H be a Hilbert space
and E a closed subspace of B (H). For each n ≥ 1, the matrix space Mn (E) ⊂Mn (B (H)) is given
a norm by identifying Mn (B (H)) with B (Hn) as vector spaces via

[Tij ] 7→

[ξj ] 7→ [Tij ] [ξj ] =

∑
j

Tijξj

 .
An elementary computation shows that the resulting norms satisfy the conditions of Definition
3.2.1 and are therefore an operator space structure on E.

Example 3.2.4. (C∗-algebras are operator spaces) Every C∗-algebra A can be faithfully
represented as bounded operator on a Hilbert space H, by Theorem 2.1.14. The amplifica-
tions of such a faithful representation are representations of Mn (A) as a closed ∗-subalgebra of
Mn (B (H)) = B (Hn), from which we may pull back a C∗-norm on Mn (A). The matrix algebra
Mn (A) is a ∗-algebra under the natural algebra operations on matrices and involution given by
[aij ]∗ =

[
a∗ji

]
, which are entirely determined by the ∗-algebraic structure of A and, as seen in

Section 2.1, uniquely determine the C∗-norm on Mn (A). Since the algebraic structure of Mn (A)
is determined by that of A, it follows that the C∗-norm on Mn (A) is independent of the faithful
representation of A that we began with. Consequently, each matrix space over A carries a unique
C∗-norm determined by A. It can be verified that these yield an operator space structure on A.

The maps of interest to operator space theory are as follows.

Definition 3.2.5. Let T : E → F be a linear map between vector spaces. The nth amplification
of T is the linear map T (n) : Mn (E)→Mn (F ) : [xij ] 7→ [Txij ] .

If E and F are operator space, then T is called:

1. Completely bounded if ‖T‖cb := supn≥1

∥∥∥T (n)
∥∥∥ <∞.

2. Completely contractive if ‖T‖cb ≤ 1.

3. A complete isometry if T (n) is an isometry for every n ≥ 1.

4. A complete quotient map if T (n) is an quotient map for every n ≥ 1.

The norm ‖·‖cb is referred to as the cb-norm. The space of completely bounded maps from E to
F , denoted CB (E,F ), is a Banach algebra under composition and the cb-norm.

Example 3.2.6. (∗-homomorphisms of C∗-algebras are completely bounded) The am-
plifications of a ∗-homomorphism between C∗-algebras are ∗-homomorphisms when the relevant
matrix spaces are given ∗-algebra operations as in Example 3.2.4, so are automatically contrac-
tions by Proposition 2.1.13. Consequently, ∗-homomorphisms between C∗-algebras are complete
contractions.

24



It can be shown that bounded maps from any operator space into a commutative C∗-algebra
are completely bounded and that the operator norm and the cb-norm coincide for such maps, see
for example [14, Proposition 2.2.6]. In particular, bounded linear functionals on an operator space
E are completely bounded and E∗ = CB (E,C) isometrically.

Example 3.2.7. (Duals of operator spaces are operator spaces) Let E be an operator
space. The Banach space dual of E is given an operator space structure by identifying Mn (E∗) =
Mn (CB (E,C)) with CB (E,Mn (C)) as vector spaces and using the cb-norm on the latter space.
See [14, Chapter 2] for details. It follows that the bidual E∗∗ carries an operator space structure
and it can be verified that, with this structure, the canonical inclusion E → E∗∗ is a complete
isometry. If E is a dual Banach space, say E = F ∗, the predual F thereby inherits an operator
space, being a closed subspace of F ∗∗ = E∗. In combination with Example 3.2.4, it follows that
the predual of a von Neumann algebra always carries a canonical operator space structure.

The classical concrete definition of operator spaces is now a representation theorem, which, for
comparison, we state alongside its Banach space analogue.

Theorem 3.2.8. [14, Theorem 2.3.5] Every operator space E is completely isometrically isomor-
phic to a closed subspace of B (H) for some Hilbert space.

Theorem 3.2.9. Every Banach space E is isometrically isomorphic to a closed subspace of C (X)
for some compact Hausdorff space X.

The expected notions of complete boundedness and contractivity for bilinear maps between
operator spaces allow operator space overtones to be added to the notions of Banach algebras and
modules over Banach algebras, as follows.

Definition 3.2.10. A Banach algebra A that is also an operator space is called a completely
contractive Banach algebra if the multiplication map A×A→ A is completely contractive, in
which case a left Banach A-module X is called a completely contractive left Banach A-module
if X is also an operator space and the module action of A on X define a completely contractive
map A×X → X. Right modules and bimoduals are defined analogously.

Example 3.2.11. (Duals of completely contractive modules) Let A be a completely con-
tractive Banach algebra and X a completely contractive left A-module. The dual X∗ of X is an
operator space by Example 3.2.7 and is a completely contractive right A-module under the natural
dual action

〈ϕ · a, x〉 = 〈ϕ, a · x〉 (ϕ ∈ X∗, a ∈ A, x ∈ X) .

Duals of right modules and bimodules are defined analogously.

Example 3.2.12. (L1 (G) is a completely contractive Banach algebra) Let G be a locally
compact group. The group algebra L1 (G), being the predual of the von Neumann algebra L∞ (G),
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is an operator space by in Example 3.2.7. It can be shown that the operator space structure arising
this way is the maximal operator space structure [14, Section 3.3], from which it follows that L1 (G)
is trivially a completely contractive Banach algebra.

There is a natural construction of linearizers for completely bounded bilinear maps, giving rise
to the operator space projective tensor product, which we denote by ⊗̂. See [14, Chapter 7]
for details.

A much more detailed account of what is presented here may be found in [14].

3.3 The group von Neumann algebra and the Fourier algebra

Let G be a locally compact group and π : G → B (H) a unitary representation of G as operators
on a Hilbert space H. The image π (G) of G in B (H) generates a von Neumann algebra, which,
by Proposition 2.2.10, equals π (G)′′ = spanwotπ (G). For the left regular representation of G, we
name the resulting algebra.

Definition 3.3.1. The group von Neumann algebra V N (G) of a locally compact group G is
the von Neumann algebra generated in B

(
L2 (G)

)
by the left translation operators.

It is clear that the right translations on L2 (G) — the operators ρ (s) for s ∈ G — commute
with left translations, so that ρ (G) ⊂ V N (G)′ and thus ρ (G)′′ ⊂ V N (G)′. It can be shown that
equality holds, which we record for later reference. A proof can be found in Chapter 5 of [13] or
Chapter 7, Section 3 of [59].

Proposition 3.3.2. Let G be a locally compact group. The commutant of the group von Neumann
algebra in B

(
L2 (G)

)
is the von Neumann algebra generated by ρ (G).

At the end of Section 2.2 we mentioned that every von Neumann algebra can be represented on
some Hilbert space for which all its normal functionals are vector functionals. For the group von
Neumann algebra, the inclusion of V N (G) into B

(
L2 (G)

)
is this representation and consequently

every element of V N (G)∗ may be written in the form ωξ,η for ξ, η ∈ L2 (G). Normality of the
functional ωξ,η implies that it is determined by its values on the weak∗ dense spanning set λ (G)
for V N (G), and we may view 〈λ (s) , ωξ,η〉 as a function on G, using the notation ωξ,η (s) for this
value. Since ωξ,η (s) = 〈λ (s) ξ|η〉, the continuity of λ in the weak operator topology implies ωξ,η is
continuous on G and moreover we have

‖ωξ,η‖C0(G) = sup
s∈G
|〈λ (s) , ωξ,η〉| ≤ ‖ωξ,η‖V N(G)∗

.

The space of functions on G obtained this way is in fact an algebra:

Theorem 3.3.3. [16] Let G be a locally compact group. The predual of V N (G) may be identified
with a dense subalgebra of C0 (G). For ω ∈ V N (G)∗, we have

‖ω‖V N(G)∗
= inf

{
‖ξ‖L2(G) ‖η‖L2(G) : ξ, η ∈ L2 (G) such that ω = ωξ,η

}
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and under this norm V N (G)∗ is a commutative semisimple completely contractive Banach algebra,
the Fourier algebra of G, denoted A (G).

The Fourier algebra has the following useful properties, all of which may be found in [16].

Proposition 3.3.4. Let G be a locally compact group. The following hold:

1. The nonzero multiplicative linear functionals on A (G) are exactly the elements of λ (G) and
the spectrum of A (G) is homeomorphic to G.

2. The compactly supported functions in A (G) are dense.

3. For any K ⊂ G compact and U ⊃ K open, there exists u ∈ A (G) with compact support taking
values in [0, 1] and satisfying u|K = 1 and u|G\U = 0.

The Fourier algebra respects closed subgroups in the following natural sense.

Theorem 3.3.5. [27] (Herz’s restriction theorem) Let G be a locally compact group and H a
closed subgroup. The restriction map rH : A (G)→ A (H) is a complete quotient map.

Example 3.3.6. (V N (H) for a closed subgroup H of G) Let G be a locally compact group
and H a closed subgroup. By Herz’s restriction theorem the adjoint of the restriction map is a
normal isometry V N (H)→ V N (G). For s ∈ H,

〈r∗H (λH (s)) , ω〉 = rH (ω) (s) = ω (s) = 〈λG (s) , ω〉 (ω ∈ A (G)) ,

implying that r∗H (λH (s)) = λG (s). It follows that r∗H : V N (H) → V N (G) is a unital ∗-
homomorphism on spanλH (H), so also on V N (H) by normality. The group von Neumann algebra
of H may thus be identified with the unital von Neumann subalgebra r∗H (V N (H)) of V N (G), for
which we write V NH (G).

Example 3.3.7. (Ideals vanishing on closed subgroups) Let G be a locally compact group
and H a closed subgroup. The A (G) norm dominates the L∞ (G) norm, so that norm conver-
gence in A (G) implies pointwise convergence, from which it follows that the ideal IA(G) (H) =
{u ∈ A (G) : u|H = 0} is closed. For s ∈ H the functional λ (s) annihilates IA(G) (H) and con-
versely any element of A (G) that is annihilated by λ (H) is in IA(G) (H). Thus IA(G) (H) = λ (H)⊥
and it follows from the bipolar theorem that IA(G) (H)⊥ = (λ (H)⊥)⊥ = spanw∗λ (H) = V NH (G).

A subset E of a locally compact group G is said to be a set of spectral synthesis for A (G) if
the compactly supported functions in IA(G) (E) with support disjoint from E are dense in IA(G) (E).

Example 3.3.8. (Closed subgroups are sets of spectral synthesis for A (G)) Let G be a
locally compact group and H a closed subgroup. Let I0

A(G) (H) denote the closure of the compactly
supported functions in IA(G) (H) with support disjoint from H. If s ∈ H, then clearly λ (s) ∈
I0
A(G) (H)⊥, and if s ∈ G \ H, then Proposition 3.3.4(3) implies that there exists u ∈ A (G) with
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u (s) = 1 and compact support disjoint from H, so that u ∈ I0
A(G) (H) and 〈u, λ (s)〉 = 1, implying

λ (s) /∈ I0
A(G) (H)⊥. Therefore

{
s ∈ G : λ (s) ∈ I0

A(G) (H)⊥
}

= H and it follows from Theorem 6 of
[60] that V NH (G) = I0

A(G) (H)⊥, whence

IA(G) (H) =
(
IA(G) (H)⊥

)
⊥

= V NH (G)⊥ =
(
I0
A(G) (H)⊥

)
⊥

= I0
A(G) (H) .

For a locally compact group G and closed ideal I of A (G), the multiplication of A (G) naturally
makes I a completely contractive A (G)-module. It follows that I⊥ is a completely contractive
A (G)-module when given the natural dual module action of Example 3.2.11.

Definition 3.3.9. Let G be a locally compact group and let I be a closed ideal of A (G). A
bounded map Ψ : V N (G) → V N (G) is called a projection onto I⊥ if it has range I⊥ and
satisfies Ψ2 = Ψ and is called an invariant projection if it is moreover an A (G)-module map.

Given a locally compact group G, there is a natural map A (G) ⊗ A (G) → A (G×G) given
by u ⊗ v 7→ [u× v : (s, t) 7→ u (s) v (t)]. Both of these spaces are completely contractive A (G)-
bimodules by the natural actions

u · (v ⊗ w) · x = uv ⊗ wx and u · (v × w) · x = uv × wx (u, v, w, x ∈ A (G)) .

It follows from a result of Effros and Ruan [15] that this map induces a completely isometric
isomorphism of A (G)-bimodules on the operator space projective tensor product, which we record
for later reference.

Proposition 3.3.10. If G is a locally compact group, then A (G) ⊗̂A (G) = A (G×G) as com-
pletely contractive A (G)-bimodules.

For a unitary representation π : G → B (H), functions on G of the form s 7→ 〈π (s) ξ|η〉 for
ξ, η ∈ H, which are always continuous and bounded, are called coefficient functions of the rep-
resentation π. Thus A (G) is the space of all coefficient functions of the left regular representation.
The space of coefficient functions of all unitary representations of G forms a unital commutative
completely contractive Banach algebra of functions on G, the Fourier-Stieltjes algebra B (G),
under the norm

‖u‖B(G) = inf {‖ξ‖H ‖η‖H : ξ, η ∈ H such that u = 〈π (·) ξ|η〉} . (3.3.1)

Taking the direct sum of all unitary representations of G (that is, one for each equivalence
class under unitary equivalence) yields a faithful representation πu : G → B (Hu), the universal
representation of G, and it is not hard to see that B (G) is the space of coefficient functions of
πu. The induced representation πu : L1 (G)→ B (Hu) is a faithful ∗-representation of the ∗-algebra
L1 (G) and taking the completion of L1 (G) under the C∗-norm obtained by identifying it with its
image yields the group C∗-algebra C∗ (G). An element u of B (G) may be written as 〈πu (·) ξ|η〉
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for some ξ, η ∈ Hu, so u (s) = 〈πu (s) , ωξ,η〉 for s ∈ G, where ωξ,η is the vector functional on B (Hu).
For f ∈ L1 (G) we have
ˆ
G
uf =

ˆ
G
〈πu (y) , ωξ,η〉 f (y) dy =

〈ˆ
G
πu (y) f (y) dy, ωξ,η

〉
B(H),B(H)∗

= 〈πu (f) , ωξ,η〉B(H),B(H)∗

and, since πu
(
L1 (G)

)
is norm dense in C∗ (G), it follows that 〈u, πu (f)〉 :=

´
G uf extends to a

bounded linear function on C∗ (G). It is shown in [16] that every element of C∗ (G)∗ arises this way
and that ‖u‖B(G) = ‖u‖C∗(G)∗ , identifying B (G) with the dual of C∗ (G). The Fourier-Stieltjes
algebra therefore carries a natural weak∗ topology and it is straight forward to verify that the
multiplication of B (G) is separately weak∗ continuous.

The following relations between A (G) and B (G) hold.

Proposition 3.3.11. Let G be a locally compact group. The Fourier algebra A (G) is a closed ideal
in B (G) and coincides with the closure of the compactly supported functions in B (G).

In Chapter 4 we will be concerned with determining which subsets of a locally compact group
G have characteristic functions lying in various function algebras. For the Fourier-Stieltjes algebra,
these subsets are known.

Theorem 3.3.12. (Cohen-Host idempotent theorem) Let G be a locally compact group and
E ⊂ G. The function χE is in B (G) if and only if E is in boolean ring of subsets generated by the
left cosets of open subgroups of G.

Eymard defined the Fourier and Fourier-Stieltjes algebra of a locally compact group G in [16].
This article remains the most complete reference on these algebras.

3.4 The Fourier multipliers

A Fourier multiplier is a complex valued function m on G such that mA (G) ⊂ A (G) and the
multiplication u 7→ mu is a completely bounded map on A (G). The set of all such functions is
a completely contractive Banach algebra of continuous, bounded functions under pointwise mul-
tiplication and the norm ‖u 7→ mu‖cb, denoted McbA (G). This algebra is often referred to as
the completely bounded multiplier algebra of the Fourier algebra, a verbose name that we avoid.
Since A (G) is an ideal in B (G), which itself has completely contractive multiplication, we have
B (G) ⊂ McbA (G). The following representation theorem, originally due to Gilbert [24], will be
our main tool when working with Fourier multipliers. A short proof may be found in [35].

Theorem 3.4.1. (Gilbert’s theorem) Let G be a locally compact group. A complex valued func-
tion m on G is in McbA (G) if and only if there exists a Hilbert space H and bounded continuous
maps P,Q : G → H such that m

(
s−1t

)
= 〈P (t) |Q (s)〉 for all s, t ∈ G, in which case ‖m‖McbA(G)

is the infimum of the quantities ‖P‖∞ ‖Q‖∞ taken over all such maps P and Q and Hilbert spaces
H.
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If u is in B (G) and u = 〈π (·) ξ|η〉 is any representation of u as a coefficient function of a unitary
representation of G, then u

(
s−1t

)
= 〈π (t) ξ|π (s) η〉. It follows from (3.3.1) and Theorem 3.4.1 that

‖·‖McbA(G) ≤ ‖·‖B(G) on B (G). We write Acb (G) for the norm closure of A (G) in McbA (G), which
is a commutative completely contractive Banach algebra with spectrum G [23, Proposition 2.2].

As Fourier multipliers lie in L∞ (G), we may consider L1 (G) as a subspace of the dual of
McbA (G). Taking the completion of L1 (G) with respect to the norm

‖f‖Q(G) = sup
{∣∣∣∣ˆ

G
fm

∣∣∣∣ : m ∈McbA (G) with ‖m‖McbA(G) ≤ 1
} (

f ∈ L1 (G)
)

yields a predual Q (G) for McbA (G) [12, Proposition 1.10]. Thus McbA (G) is a dual space and has
a weak∗ topology, and it can be checked that the multiplication of McbA (G) is separately weak∗

continuous [23, p.969]. For f ∈ L1 (G) we have

‖f‖C∗(G) = sup
{∣∣∣∣ˆ

G
fm

∣∣∣∣ : m ∈ B (G) with ‖m‖B(G) ≤ 1
}
,

from which it follows that ‖f‖C∗(G) ≤ ‖f‖Q(G) and therefore that the identity map on L1 (G)
induces a contraction Q (G)→ C∗ (G). The adjoint is the inclusion map B (G)→McbA (G), which
is therefore weak∗ continuous, meaning that any weak∗ convergent net in B (G) is weak∗ convergent
as a net in McbA (G). Since ‖·‖Q(G) ≤ ‖·‖L1(G) on L1 (G), it follows that ‖·‖L∞(G) ≤ ‖·‖McbA(G). In
summary,

A (G) ⊂ Acb (G) and A (G) ⊂ B (G) ⊂McbA (G) ⊂ L∞ (G) , (3.4.1)

and each containment may be (often is) strict. For u ∈ A (G) and v ∈ B (G),

‖u‖L∞(G) ≤ ‖u‖Acb(G) = ‖u‖McbA(G) ≤ ‖u‖A(G) = ‖u‖B(G) ,

‖v‖L∞(G) ≤ ‖v‖McbA(G) ≤ ‖v‖B(G) ,

so the first, third, and fourth inclusions in (3.4.1) are in general contractive while the second is
isometric.

The following are shown in [12]:

Proposition 3.4.2. Let G and G′ be locally compact groups and let H a closed subgroup of G.
The following hold:

1. The restriction map rH : McbA (G)→McbA (H) is a well-defined contraction.

2. The natural map McbA (G) ⊗̂McbA (G′)→McbA (G×G′) : m⊗ n 7→ m× n is a well-defined
contraction.

Using these results, Herz’s restriction theorem and Proposition 3.3.10, it is straight forward to
verify that both maps of Proposition 3.4.2 preserve the algebra Acb (G). Sets of spectral synthesis
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for Acb (G) are defined as for A (G): those subsets E of G for which the functions in IAcb(G) (E)
with compact support disjoint from E are norm dense. Projections and invariant projections
are defined analogously as well.

In Chapter 4 we will have need to consider a locally compact group G equipped with the discrete
topology, which we indicate by Gd. The inclusions B (G) ⊂ B (Gd) and McbA (G) ⊂ McbA (Gd)
hold and are in fact isometric, see [16] and [55, Corollary 6.3], respectively. For each x ∈ G the
evaluation functional δx lies in `1 (Gd), which is contained in both C∗ (Gd) and in Q (Gd), whence
convergence in the weak∗ topology of B (Gd) or McbA (Gd) implies pointwise convergence. For
bounded nets, the converse holds, see [16] for the assertion regarding B (Gd) and [23, Lemma 2.6]
regarding McbA (Gd). We record this formally for later reference.

Proposition 3.4.3. Let G be a discrete locally compact group. Convergence in the weak∗ topology
of either B (G) or McbA (G) implies pointwise convergence, and on bounded subsets of either space
these two topologies coincide.

The Fourier multiplier algebra of a locally compact group has a long and rich history. Some of
the basic properties of this algebra were established by Haagerup and others in [7, 12]. A modern
treatment focusing on the connection to Herz-Schur multipliers may be found in [55]. The useful
Appendix A of [42] records many folklore facts about the Fourier multipliers.

Aside from Theorem 3.4.4(1), the following result will not be needed in the sequel, but we believe
its mention is warranted as it provides some indication of how one may interpret general Fourier
multipliers. For the moment, let us call a (not necessarily unitary) representation π : G→ B (H) of
G as invertible operators that is continuous in the strong operator topology an invertible repre-
sentation, and call an invertible representation π : G→ B (H) satisfying sups∈G ‖π (s)‖B(H) <∞
a uniformly bounded representation. Define coefficient functions of these more general rep-
resentations as we did before. Recall that a topological space is second countable if it has a
countable base. Amenable locally compact groups are defined in Section 3.5.

Theorem 3.4.4. Let G be a locally compact group. The following hold:

1. McbA (G) = B (G) if and only if G is amenable.

2. [12, Theorem 2.2] The coefficient functions of uniformly bounded representations of G are
Fourier multipliers.

3. [57] If G is second countable and m is a Fourier multiplier of G, then there exists an invertible
representation π : G → B (H) and ξ, η ∈ H such that m

(
s−1t

)
=
〈
π (t) ξ|π

(
s−1)∗ η〉 for all

s, t ∈ G.

One direction of the first result is due to Losert [46], the other due to unpublished work of Ruan.
Steenstrup [56] gives a proof that for many familiar nonamenable groups, e.g. the free groups on at
least two generators, there exist Fourier multipliers that are not coefficients of uniformly bounded
representations.
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3.5 Amenability and related notions for groups and algebras

This section records the basic definitions regarding amenability for locally compact groups and for
(completely contractive) Banach algebras and gives several characterizations of amenable locally
compact groups.

Definition 3.5.1. A locally compact group G is called amenable if there exists a left invariant
mean on L∞ (G), i.e. a state ω on L∞ (G) satisfying 〈ω,s φ〉 = 〈ω, φ〉 for all φ ∈ L∞ (G) and s ∈ G.

Example 3.5.2. (Compact and abelian groups are amenable) Let G be a locally compact
group. If G is compact, then 1G ∈ L1 (G) is a normal left invariant mean on L∞ (G). If G is
abelian, then the left translation action of G on the weak∗ compact, convex set S (L∞ (G)) of
states on L∞ (G) yields a family of commuting, weak∗ continuous, affine maps of S (L∞ (G)) into
itself and therefore has a fixed point, by the Markov-Kakutani fixed point theorem [10, p.109]. This
fixed point is a left invariant mean.

Example 3.5.3. (F2 is not amenable) Let F2 denote the free group on two generators a and b.
For x ∈

{
a, b, a−1, b−1} let Wx denote the words in F2 that begin with the symbol x. It is not too

difficult to see that F2 = Wa ∪ aWa−1 = Wb ∪ bWb−1 . If ω were a left invariant mean on `∞ (F2),
then

〈
ω, χaWa−1

〉
=
〈
ω,a−1

(
χWa−1

)〉
=
〈
ω, χWa−1

〉
implies

1 = 〈ω, 1F2〉 ≤ 〈ω, χWa〉+
〈
ω, χWa−1

〉
and similarly for b. Since F2 equals the disjoint union {e}∪Wa ∪Wb ∪Wa−1 ∪Wb−1 , it follows that

1 = 〈ω, 1F2〉 =
〈
ω, χ{e}

〉
+ 〈ω, χWa〉+ 〈ω, χWb

〉+
〈
ω, χWa−1

〉
+
〈
ω, χWb−1

〉
≥ 2.

Therefore F2 cannot be amenable.

It was shown by Johnson that a locally compact group G is amenable if and only if the Banach
algebra L1 (G) has a certain cohomological property [37], which became a definition for general
Banach algebras. We give an equivalent formulation, also due to Johnson [36], that is more suitable
for our purposes, and we give its operator space adaptation, due to Ruan [51].

Definition 3.5.4. A completely contractive Banach algebra A with product ∆ : A⊗̂A → A is
called operator amenable if there exists a bounded net (dα)α in A⊗̂A satisfying:

1. ‖a∆ (dα)− a‖A → 0 for all a ∈ A, and

2. ‖a · dα − dα · a‖A⊗̂A → 0 for all a ∈ A,

where in (2) we have used the canonical completely contractive A-bimodule action on A⊗̂A given
on elementary tensors by a · (b⊗ c) = ab⊗ c and (b⊗ c) · a = b⊗ ca, for a, b, c ∈ A. Such a net is
called a bounded approximate diagonal for A.
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Of the many characterizations of amenability for locally compact groups, the following will be
relevant to our investigations.

Theorem 3.5.5. Let G be a locally compact group. The following are equivalent:

1. G is amenable.

2. [37] L1 (G) is amenable.

3. [51] A (G) is operator amenable.

4. [44] (Leptin’s theorem) A (G) has a bounded approximate identity.

5. There is a state ω on V N (G) such that 〈ω, λ (s)〉 = 1 for all s ∈ G.

If we ask that A (G) have an approximate identity bounded in the potentially smaller Fourier
multiplier norm, we obtain a strictly weaker condition.

Definition 3.5.6. A locally compact group G is called weakly amenable if A (G) has an approx-
imate identity bounded in the Fourier multiplier norm.

This notion was first studied by Haagerup in [31], who showed that F2 is weakly amenable.
Since then, many nonamenable groups have been found to be weakly amenable, for example [32]
showed that the nonamenable group SL (2,R) is weakly amenable.

Proposition 3.5.7. Let G be a locally compact group. The following are equivalent:

1. G is weakly amenable.

2. Acb (G) has a bounded approximate identity.

3. 1G is in the weak∗ closure of A (G) ∩McbA (G)≤C in McbA (G) for some C > 0.

4. A (G) ∩McbA (G)≤C is weak∗ dense in McbA (G)≤1 for some C > 0.

Proof. The lengthy but routine approximation argument establishing the equivalence of (1) and
(2) is Proposition 1 of [21].

If (2) holds, then by density of A (G) we may assume there is a bounded approximate identity
(eα)α for Acb (G) consisting of functions in A (G). Gien f ∈ Cc (G) with compact support K,
Proposition 3.3.4(3) asserts the existence of u ∈ A (G) with u|K = 1 and we have

|〈eα − 1G, f〉| =
∣∣∣∣ˆ
K

(eα − 1G)uf
∣∣∣∣ = |〈eαu− u, f〉| → 0.

Since Cc (G) is dense in L1 (G), which is dense in Q (G), and since the net (eα)α is bounded in
Acb (G), a straight forward approximation argument shows that eα converges weak∗ to 1G and (3)
holds.
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If (uα)α is a net in A (G) that converges weak∗ to 1G in McbA (G) with supα ‖uα‖McbA(G) ≤ C,

and if m ∈McbA (G)≤1, then uαm
w∗→ m by the weak∗ continuity of multiplication in McbA (G) and

uαm ∈ A (G) with ‖uαm‖McbA(G) ≤ C, whence (3) implies (4).
If (4) holds, then let (uα)α be a net in A (G) that converges weak∗ to 1G in McbA (G) with

supα ‖uα‖McbA(G) ≤ C. Let f ∈ Cc (G) such that f ≥ 0 and
´
G f = 1. Note that, for u ∈ A (G) we

have f ∗u =
´
G f (y)

(
y−1u

)
dy, where the integral is the weak Banach space valued integral of [17,

Appendix A], and consequently f ∗ u ∈ A (G). By Theorem 4.3.1, the net (f ∗ (f ∗ uα))α has the
same norm bound as (uα)α and is an approximate identity of A (G). Thus (1) holds.

In [34], Haagerup and Kraus developed a further weakening of condition (3) of Proposition
3.5.7.

Definition 3.5.8. A locally compact group G is said to have the approximation property if 1G
is in the weak∗ closure of A (G) in McbA (G), equivalently if A (G) is weak∗ dense in McbA (G).

The group Z2oSL (2,Z) fails to be weakly amenable, but does have the approximation property,
and it has been recently shown that SL (3,R) fails to have the approximation property. The
introduction to [32] provides a brief history of these weaker forms of amenability for locally compact
groups. References for the claims of this paragraph may be found in that article.

Comprehensive references for amenability of locally compact groups are [49] and [50]. The
text [53] provides a thorough overview of amenability theory of (completely contractive) Banach
algebras and its relation to amenability for groups.
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Chapter 4

Separation properties for closed
subgroups

In this chapter we investigate separation properties for closed subgroups of locally compact groups.
Our main objectives are to determine conditions on a closed subgroup H of a locally compact group
G that imply:

1. V NH (G) is complemented in V N (G) as a completely contractive A (G)-bimodule, that is,
there is a completely bounded A (G)-bimodule projection V N (G)→ V NH (G).

2. The characteristic function χH , which is always in McbA (Gd), may be approximated in the
weak∗ topology by elements of McbA (G).

The norm of the Fourier-Stieltjes algebra dominates the Fourier multiplier norm, meaning it is easier
for a net to be bounded in the Fourier multiplier norm. The following definition is therefore, strictly
speaking, a generalization of the definition given in [1], where bounded nets in the Fourier-Stieltjes
algebra were considered.

Definition 4.0.1. Let G be a locally compact group and H a closed subgroup. A bounded
approximate indicator for H is a bounded net (mα)α in McbA (G) satisfying

1. ‖urH (mα)− u‖A(H) → 0 for all u ∈ A (H), and

2. ‖umα‖A(G) → 0 for all u ∈ IA(G) (H).

As we will see in Section 4.5, bounded approximate indicators consisting of Fourier multipliers
provide a means of obtaining projections as in (1) above. In Section 4.1 we show, amongst other
things, that (1) is a stronger condition than (2), at least when H satisfies certain weak forms of
amenability. It is noted in Chapter 5 that a closed subgroup can satisfy (1) without satisfying (2).

Example 4.0.2. (Bounded approximate indicators for the diagonal subgroup of G×G)
Let G be a locally compact group and consider the closed subgroup G∆ = {(x, x) : x ∈ G}, which is
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isomorphic to G as a topological group. We show that a a bounded approximate diagonal for A (G)
is exactly a bounded approximate indicator for G∆ that lies in A (G) and is bounded there. Under
the identification A (G) ⊗̂A (G) = A (G×G), the completely contractive Banach algebra product
∆ : A (G) ⊗̂A (G) → A (G) corresponds to restriction to the diagonal rG∆ : A (G×G) → A (G∆).
Moreover, the kernel of ∆ is identified with the ideal IA(G×G) (G∆). The algebra A (G) has the
property that ker ∆ = 〈uv ⊗ w − u⊗ vw : u, v, w ∈ A (G)〉 [9, Theorem 6.5], which together with
the fact that A (G×G) = 〈u× v : u, v ∈ A (G)〉 yields

IA(G×G) (G∆) = 〈uv × w − u× vw : u, v, w ∈ A (G)〉

= 〈v · (u× w)− (u× w) · v : u, v, w ∈ A (G)〉

= 〈u · w − w · u : u ∈ A (G) and w ∈ A (G×G)〉

= 〈(u× 1G − 1G × u)w : u ∈ A (G) and w ∈ A (G×G)〉 .

It follows that a net (dα)α in A (G×G) satisfies ‖u · dα − dα · u‖A(G×G) → 0 for all u ∈ A (G) if
and only if it satisfies ‖udα‖A(G×G) → 0 for all u ∈ IA(G×G) (G∆). Collecting these facts together,
we deduce that for A (G), a bounded approximate diagonal is a net (dα)α in A (G×G) such that

‖urG∆ (dα)− u‖A(G∆) → 0 and ‖wdα‖A(G×G) → 0

for all u ∈ A (G∆) and w ∈ IA(G×G) (G∆), i.e. a bounded approximate indicator for G∆ in
A (G×G).

Example 4.0.3. (A weaker homological property of A (G)) Let G be a locally compact
group. The preceding example showed that the existence of a bounded approximate indicator for
the diagonal in A (G×G) characterizes operator amenability of A (G). The notion of bounded
approximate indicators for subgroups was introduced in [1] to provide a characterization of the
operator biflatness of A (G), a weaker condition than operator amenability which may be defined
as asserting the existence of an invariant projection V N (G×G) → V NG∆ (G×G). We will see
in Section 4.5 that the existence of a bounded approximate indicator for a closed subgroup H of
G yields an invariant projection V N (G) → V NH (G), from which it follows that if a bounded
approximate indicator exists for G∆, then A (G) is operator biflat. It was recently shown in [8]
that operator biflatness of A (G) is in fact characterized by the existence of a bounded approximate
indicator for G∆ in B (G×G).

Example 4.0.4. (Bounded approximate indicators for subgroups of amenable groups)
LetG be an amenable locally compact group. By Leptin’s theorem, the algebra A (G) has a bounded
approximate identity and [19, Proposition 6.4] then asserts that an invariant projection V N (G)→
V NH (G) = IA(G) (H)⊥ exists exactly when the ideal IA(G) (H) has a bounded approximate identity.
By [22], this occurs for every closed subgroup of G and it follows that an approximate indicator
exists for every closed subgroup, since (1G − eα)α is an approximate indicator for H when (eα)α is
a bounded approximate identity for IA(G) (H).

36



The following result suggests a strong connection between amenability properties of locally
compact groups and approximability of characteristic functions.

Theorem 4.0.5. A locally compact group H is amenable if and only if χH is in the weak∗ closure
of A (G) in B (Gd) for some (equivalently, any) locally compact group G containing H as a closed
subgroup.

Proof. Fix a locally compact group G that contains H as a closed subgroup.
Suppose H is amenable. By Leptin’s theorem there exists a bounded approximate identity (eα)α

for A (H) and by [11] there exists an invariant projection Ψ : V N (G) → V NH (G). We showed
in Example 3.3.6 that the adjoint of the restriction map rH : A (G) → A (H) is a ∗-isomorphism
τ := r∗H : V N (H) → V NH (G). It is shown in Example 4.1.6 that Ψ (λG (s)) = χH (s)λG (s) for
all s ∈ G and the argument of Example 4.1.2 shows that eα

ptw→ 1H . It follows that the composition

V N (H)∗ (τ∗)−1

→ V NH (G)∗ Ψ∗→ V N (G)∗

satisfies, for s ∈ G, 〈
Ψ∗ (τ∗)−1 (eα) , λG (s)

〉
=

〈
(τ∗)−1 (eα) , χH (s)λG (s)

〉
=

〈
eα, τ

−1 (χH (s)λG (s))
〉

=

〈eα, λH (s)〉 , s ∈ H

0, s /∈ H
→ χH (s) ,

Let E be a weak∗ cluster point of the bounded net
(
Ψ∗ (τ∗)−1 (eα)

)
α
in V N (G)∗, so that 〈E, λG (s)〉 =

χH (s) for all s ∈ G, by the above computation. Letting (uα)α be a bounded net in A (G) converging
weak∗ to E, we have that uα

ptw→ χH and therefore uα
w∗→ χH in B (Gd) by Proposition 3.4.3.

Conversely, if (uα)α is a bounded net in A (G) such that uα
w∗→ χH in B (Gd), then uα

ptw→ χH

and thus rH (uα) ptw→ 1H . A routine argument shows that we may assume the rH (uα) are states on
V N (H), in which case any weak∗ cluster point ω ∈ V N (H)∗ of the net (rH (uα))α is a state on
V N (H) satisfying 〈ω, λH (s)〉 = limα 〈rH (uα) , λH (s)〉 = 1 for all s ∈ H. Therefore H is amenable
by Theorem 3.5.5.

4.1 The discretized Fourier multiplier algebra

Let G be a locally compact group. In [1], the discretized Fourier-Stieltjes algebra Bd (G) is
defined to be the weak∗ closure of B (G) in B (Gd) and it is noted that there is a weak∗ continuous
quotient map B (G)∗∗ → Bd (G) extending the inclusion B (G) ⊂ Bd (G). We make the analogous
definition for the Fourier multipliers of G.
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Definition 4.1.1. The discretized Fourier multiplier algebra Md
cbA (G) of a locally com-

pact group G is the weak∗ closure of McbA (G) in McbA (Gd). Let Qd (G) denote the predual
Q (Gd) /Md

cb (G)⊥ of Md
cbA (G). Let Ad (G) denote the weak∗ closure of A (G) in McbA (Gd).

Given a subset A of McbA (G), a subset E of G is called A-approximable if χE is in the weak∗

closure of A in McbA (Gd). We call E approximable if χE ∈Md
cbA (G).

In this section, we investigate when subsets of a locally compact group G are approximable. For
a closed subgroup H of G, the assertion that H is approximable may be viewed as a very weak form
of subgroup separation. It should note that, for a subset E of G to be approximable, it must already
be that χE ∈McbA (Gd), and the subsets of G for which this occurs are not well understood when
Gd is not amenable. In the amenable case, the spaces McbA (Gd) and B (Gd) coincide by Theorem
3.4.4 and the Cohen-Host idempotent theorem (Theorem 3.3.12) provides a complete description
of the subsets of G whose characteristic functions lie in B (Gd). For discrete groups, determining
the approximable sets is exactly the question of determining the sets with characteristic function
in the Fourier multipliers.

Example 4.1.2. (Approximate indicators and approximable subgroups) Let G be a locally
compact group and H a closed subgroup for which a bounded approximate indicator (mα)α exists.
If s ∈ H, then by Proposition 3.3.4(3) we may find u ∈ A (H) such that u (s) = 1, in which case

|mα (s)− 1| ≤ ‖urH (mα)− u‖L∞(H) ≤ ‖urH (mα)− u‖A(H) → 0.

If s ∈ G \H, then, using Proposition 3.3.4(3), we may find w ∈ IA(G) (H) such that w (s) = 1, and

|mα (s)| ≤ ‖wmα‖L∞(G) ≤ ‖wmα‖A(G) → 0.

Thus the bounded net (mα)α inMcbA (G) converges pointwise to χH . SinceMcbA (G) ⊂McbA (Gd)
isometrically and since weak∗ and pointwise convergence coincide on bounded subsets ofMcbA (Gd),
it follows that mα has weak∗ limit χH in McbA (Gd), hence H is approximable.

The algebra Md
cbA (G) is a weak∗ closed subalgebra of McbA (Gd) and has separately weak∗

continuous multiplication, since McbA (Gd) does. If we impose a rather weak condition on the
discrete group Gd, then every function in McbA (Gd) may be approximated in the weak∗ topology
by elements of A (G).

Proposition 4.1.3. Let G be a locally compact group. The inclusion Acb (Gd) ⊂ Ad (G) always
holds. Consequently, if Gd has the approximation property, then Ad (G) = McbA (Gd).

Proof. By Proposition 1 of [3] we have A (Gd) ⊂ A (G)B(Gd),w∗ and, because weak∗ convergence in
B (Gd) implies weak∗ convergence in McbA (Gd), it follows that A (Gd) ⊂ A (G)B(Gd),w∗ ⊂ Ad (G).
Taking norm closures inMcbA (Gd) yields Acb (Gd) ⊂ Ad (G). If (eα)α is a net in A (Gd) converging
weak∗ to 1G in McbA (Gd) and if m ∈ McbA (Gd), then meα ∈ A (Gd) ⊂ Ad (G) for each α and
meα

w∗→ m in McbA (Gd), implying that m ∈ Ad (G).
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The following lemma is well known.

Lemma 4.1.4. Let E and F be Banach spaces and let Ψ : E → F be a bounded map. If F is a
dual space, then Ψ extends uniquely to a bounded, weak∗ continuous map Ψ̃ : E∗∗ → F .

Proof. Let κ : F∗ → F ∗ be the canonical isometric inclusion and let Ψ̃ = κ∗Ψ∗∗, which, being the
adjoint of κΨ∗, is weak∗ continuous. For x ∈ E,〈

Ψ̃ (x) , ϕ
〉
F,F∗

= 〈Ψ∗ (ϕ) , x〉E∗,E = 〈Ψ (x) , ϕ〉F,F∗ (ϕ ∈ F∗) ,

showing that Ψ̃ extends Ψ. If Ψ′ is any weak∗ continuous extension of Ψ to E∗∗, then Ψ′ and Ψ̃
agree on the weak∗ dense subset E of E∗∗, hence are equal.

We provide a more concrete construction of the canonical map McbA (G)∗∗ → Md
cbA (G) that

exploits the relation between McbA (G) and Md
cbA (G). Let ιd : McbA (G) → McbA (Gd) and κQ :

Q (Gd) → Q (Gd)∗∗ denote the inclusion maps. By the bipolar theorem Md
cbA (G)⊥ = McbA (G)⊥

and we have
κQ (McbA (G)⊥) ⊂McbA (G)⊥ = im (ιd)⊥ = ker (ι∗d) ,

which together imply that the composition

Q (Gd)
κQ→ Q (Gd)∗∗

ι∗d→ Q (G)∗∗

induces a map Qd (G) → Q (G)∗∗. Denote the adjoint of this induced map by τ : McbA (G)∗∗ →
Md
cbA (G).
Let q : Q (Gd) → Qd (G) denote the quotient map, which has adjoint the inclusion map q∗ :

Md
cbA (G)→McbA (Gd). If m ∈Md

cbA (G), then

m (s) = 〈q∗ (m) , δs〉 = 〈m, q (δs)〉 ,

where s ∈ G and δs ∈ `1 (Gd) ⊂ Q (Gd) is the point mass at s.
For m ∈McbA (G) and s ∈ G we have

τ (m) (s) = 〈τ (m) , q (δs)〉Md
cb
A(G),Qd(G)

= 〈m, ι∗dκQ (δs)〉McbA(G)∗∗,McbA(G)∗

= 〈ιd (m) , δs〉McbA(Gd),Q(Gd)

= m (s) ,

showing that τ is the canonical extension of the inclusion McbA (G) ⊂Md
cbA (G). It follows that if

mα ∈McbA (G) converges weak∗ to ω ∈McbA (G)∗∗, then

τ (ω) (s) = 〈τ (ω) , q (δs)〉 = lim
α
〈τ (mα) , q (δs)〉 = lim

α
τ (mα) (s) = lim

α
mα (s) (s ∈ G) , (4.1.1)
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so the map τ can be thought of as extracting pointwise limits from nets in McbA (G) that are
convergent in the bidual.

The range of τ consists of exactly those elements ofMd
cbA (G) that are limits of bounded nets in

McbA (G): if m ∈Md
cbA (G) is the limit of a bounded net (mα)α in McbA (G), then by passing to a

subnet we may assume that (mα)α converges weak∗ to an element ω of McbA (G)∗∗, in which case
τ (ω) = m by (4.1.1), and conversely if ω ∈McbA (G)∗∗, then we may find a bounded net (mα)α in
McbA (G) converging weak∗ to ω, in which case mα

ptw→ τ (ω) by (4.1.1) and hence mα
w∗→ τ (ω) in

McbA (Gd) by boundedness.

Proposition 4.1.5. Let G be a locally compact group and E ⊂ G. If there is a bounded map
Ψ : V N (G)→ V N (G) satisfying Ψ (λ (s)) = χE (s)λ (s) for all s ∈ G, then χEA (G) ⊂Md

cbA (G).
If, moreover, χE ∈McbA (Gd) and G is A (G)-approximable, then E is approximable.

Proof. Let κA : A (G) → A (G)∗∗ and ιA : A (G) → McbA (G) be the inclusions and let σ denote
the composition

A (G) κA−→ A (G)∗∗ Ψ∗−→ A (G)∗∗
ι∗∗A−→McbA (G)∗∗ τ−→Md

cbA (G) .

For u ∈ A (G) and s ∈ G,

σ (u) (s) = 〈σ (u) , q (δs)〉Md
cb
A(G),Qd(G)

= 〈ι∗∗A Ψ∗κA (u) , ι∗dκQ (δs)〉McbA(G)∗∗,McbA(G)∗

= 〈Ψ∗κA (u) , λ (s)〉A(G)∗∗,V N(G)

= 〈Ψ (λ (s)) , u〉V N(G),A(G)

= χE (s)u (s) ,

where we have used that ι∗Aι∗dκQ (δs) = λ (s). Thus χEu = σ (u) ∈Md
cbA (G) for all u ∈ A (G).

If G is A (G)-approximable, say (eα)α is a net in A (G) converging weak∗ to 1G in McbA (Gd),
then that χE ∈ McbA (Gd) implies χEeα

w∗→ χE , by w∗-continuity of multiplication in McbA (Gd).
Since χEeα ∈Md

cbA (G), we conclude that E is approximable.

By the Cohen-Host idempotent theorem, χH ∈ B (Gd) ⊂ McbA (Gd) for any subgroup H of a
locally compact group G, so that the second part of Proposition 4.1.5 is applicable to characteristic
functions of subgroups. It is shown in Corollary 4.1.12 below that, when χHA (G) ⊂Md

cbA (G), we
need only require 1H ∈ Ad (H) to deduce that H is approximable.

Example 4.1.6. (Invariant projections on V N (G)) Let G be a locally compact group and H
a closed subgroup. We show that an invariant projection Ψ of V N (G) onto V NH (G) satisfies the
hypothesis of Proposition 4.1.5. It is clear that Ψ (λ (s)) = λ (s) for s ∈ H. Let s ∈ G \ H and
suppose Tα ∈ spanλ (H) such that Tα

w∗→ Ψ (λ (s)). If u ∈ A (G) with u (s) = 1 and u|H = 0, then

〈u · λ (s) , v〉 = 〈λ (s) , vu〉 = v (s)u (s) = v (s) = 〈λ (s) , v〉 (v ∈ A (G)) ,
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so u · λ (s) = λ (s). If S =
∑
j αjλ (sj) ∈ spanλ (H), then

〈u · S, v〉 =
∑
j

αjv (sj)u (sj) = 0 (v ∈ A (G)) ,

so that u · S = 0. Thus 0 = u · Tα
w∗→ u · Ψ (λ (s)) = Ψ (u · λ (s)) = Ψ (λ (s)) and Ψ (λ (s)) = 0.

Therefore Ψ (λ (s)) = χH (s)λ (s) for all s ∈ G.

Example 4.1.7. (Natural projections on V N (G)) In [45], Lau and Ülger define a projection
Ψ on V N (G) to be natural if Ψ (λ (s)) = χE (s)λ (s) for some subset E of G. We may interpret
Proposition 4.1.5 as stating restrictions on which subsets of G can arise from a natural projection.

Definition 4.1.8. Let G be a locally compact group. A bounded net (eα)α in A (G) or Acb (G) is
called a ∆-weak bounded approximate identity if eα converges pointwise to 1G.

A bounded approximate identity for Acb (G) is a ∆-weak one, by the reasoning of Example
4.1.2, so that Acb (G) has ∆-weak bounded approximate identity whenever G is weakly amenable.
Observe also that the setG is A (G)-approximable when Acb (G) has a ∆-weak bounded approximate
identity because, by density, we may assume such a net lies in A (G) and on bounded subsets of
McbA (Gd) pointwise and weak∗ convergence coincide (Proposition 3.4.3).

The construction of the map τ above and the proof of Proposition 4.1.5 can be carried out with
McbA (G) replaced by B (G). To be able to conclude that χH is in the weak∗ closure of B (G) in
B (Gd) using this result, we would require 1G to be in the weak∗ closure of A (G) in B (Gd). It
appears difficult to satisfy this condition without utilizing a ∆-weak bounded approximate identity:
any bounded net in A (G) with the desired weak∗ limit is already such an approximate identity, and
any attempt to produce an unbounded net cannot use the only tool at hand, that on bounded sets
pointwise convergence implies weak∗ convergence in B (Gd). But when A (G) has a ∆-weak bounded
approximate identity the group G is already amenable [40, Theorem 5.1]. It is the availability of
∆-weak bounded approximate identities in Acb (G) for a larger class of groups — containing at
least the weakly amenable group — that is responsible for the utility of Proposition 4.1.5. Whether
the existence of a ∆-weak bounded approximate identity in Acb (G) implies weak amenability of G
appears to be an open question.

Definition 4.1.9. Let G be a locally compact group and H a closed subgroup. Let

rH : McbA (Gd)→McbA (Hd) and eH : McbA (Hd)→McbA (Gd)

denote the restriction map and the map that extends by zero, respectively. For a function f on H
let
◦
f denote its extension by zero to G.

The restriction rH is a complete quotient and extension eH a complete isometry (see [55, Corol-
lary 6.3] or [54, Proposition 4.1]), and it is clear that rHeH = idMcbA(Hd) and eHrH = MχH , the
multiplication by χH .
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Lemma 4.1.10. Let G be a locally compact group and H a closed subgroup. The maps rH and eH
are weak∗-continuous.

Proof. If f =
∑n
j=1 αjδxj ∈ `1 (Hd) ∩ Cc (Hd), then

◦
f ∈ `1 (Gd) and

〈r∗H (f) ,m〉 =
n∑
j=1

αjm (xj) =
〈◦
f,m

〉
(m ∈McbA (Gd)) ,

showing that r∗H
(
`1 (Hd) ∩ Cc (Hd)

)
⊂ Q (Gd). Since `1 (Hd)∩Cc (Hd) is dense in Q (Hd), it follows

that rH is weak∗-continuous.
Now if f =

∑n
j=1 αjδxj ∈ `1 (Gd) ∩ Cc (Gd), then

〈e∗H (f) ,m〉 =
〈 ◦
m, f

〉
=

n∑
j=1

αjχH (xj)m (xj) =
〈

n∑
j=1

αjχH (xj) δxj ,m
〉

(m ∈McbA (Hd)) ,

and so
∑n
j=1 αjχH (xj) δxj ∈ `1 (Hd). Therefore e∗H

(
`1 (Gd) ∩ Cc (Gd)

)
⊂ Q (Hd) and the claim

follows by density, as above.

Proposition 4.1.11. Let G be a locally compact group and H a closed subgroup. Then rH maps
Md
cbA (G) into Md

cbA (H) and the following are equivalent:

1. χHA (G) ⊂ Ad (G).

2. eH
(
Ad (H)

)
⊂ Ad (G).

3. Ad (G) = IAd(G) (G \H)⊕ IAd(G) (H) (algebraic direct sum).

Proof. Since the restriction of a Fourier multiplier of G to the closed subgroup H yields a Fourier
multiplier of H by Proposition 3.4.2, the first claim follows from weak∗-continuity of rH .

If χHA (G) ⊂ Ad (G), then, because A (H) = rH (A (G)) by Herz’s restriction theorem,

eH (A (H)) = eH (rH (A (G))) = χHA (G) ⊂ Ad (G)

and (2) follows by weak∗-continuity of eH . Thus (1) implies (2).
If eH

(
Ad (H)

)
⊂ Ad (G), then given m ∈ Ad (G), the weak∗-continuity of rH implies rH (m) ∈

Ad (H) and it follows that χHm = eHrH (m) ∈ Ad (G), whence χG\Hm = m − χHm ∈ Ad (G)
and therefore m = χHm+ χG\Hm ∈ IAd(G) (G \H) + IAd(G) (H). These ideals clearly have trivial
intersection. Thus (2) implies (3).

If (3) holds, then we may write m ∈ A (G) as m = m1 + m2 for m1 ∈ IAd(G) (G \H) and
m2 ∈ IAd(G) (H), in which case χHm = m1 ∈ Ad (G). Thus (3) implies (1).

When the equivalent conditions of Proposition 4.1.11 hold, condition (2) implies that
eH
(
Ad (H)

)
= IAd(G) (G \H) and, because eH is a complete isometry, it follows from condition

(3) that Ad (G) = Ad (H)⊕ IAd(G) (H).
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Corollary 4.1.12. Let G be a locally compact group and H a closed subgroup. If χHA (G) ⊂
Ad (G) and 1H ∈ Ad (H), then H is A (G)-approximable. The latter condition holds, in particular,
whenever H is weakly amenable or Hd has the approximation property.

Proof. It follows from Proposition 4.1.11(2) that χH = eH (1H) ∈ Ad (G). We noted following
Definition 4.1.8 that weak amenability of H implies 1H ∈ Ad (H), while Proposition 4.1.3 implies
1H ∈ Ad (H) when Hd has the approximation property.

Combining the results of this section, we are able to partially address the second point of the
introduction to this chapter.

Corollary 4.1.13. A closed subgroup H of a locally compact group G is approximable when either
of the following conditions is satisfied:

1. Gd has the approximation property.

2. There is a bounded map Ψ : V N (G) → V NH (G) such that Ψ (λ (s)) = χH (s)λ (s) for
s ∈ G, which occurs in particular if Ψ is a natural or invariant projection onto V NH (G),
and 1H ∈ Ad (H), which occurs in particular when H is weakly amenable or Hd has the
approximation property.

4.2 The discretized H-separation property

In this section, we provide a characterization of the condition that a closed subgroup H of a locally
compact group G be approximable in the spirit of the H-separation property of Kaniuth and Lau
[39]. We first review the H-separation property, which is a condition involving the positive definite
functions on G.

Definition 4.2.1. Let G be a locally compact group. A bounded continuous function φ on G is
called positive definite if

´
G (f∗ ∗ f)φ ≥ 0 for all f ∈ L1 (G). The set of positive definite functions

on G is denoted by P (G). For a closed subgroup H of G, let PH (G) = {u ∈ P (G) : u|H = 1}.

The following basic properties of positive definite functions are established in Section 3.3 of [17].

Theorem 4.2.2. Let G be a locally compact group. The following hold:

1. The positive definite functions on G coincide with the:

(a) Coefficient functions of the form 〈π (·) ξ|ξ〉 for ξ ∈ H, where π : G→ B (H) is a unitary
representation of G. Consequently, P (G) ⊂ B (G), the Fourier-Stieltjes algebra of G.

(b) Positive linear functionals on the group C∗-algebra C∗ (G). In particular, λu+v ∈ P (G)
for all u, v ∈ P (G) and λ ≥ 0.
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(c) Continuous functions u : G→ C satisfying

∑
j,k

αjαku
(
s−1
k sj

)
≥ 0 α1, . . . , αn ∈ C and s1, . . . , sn ∈ G. (4.2.1)

2. P (G) is closed under multiplication.

3. For u ∈ P (G), we have :

(a) ‖u‖L∞(G) = ‖u‖B(G) = u (e).

(b) u
(
s−1) = u (s) for all s ∈ G.

Kaniuth and Lau introduced the following separation property.

Definition 4.2.3. Let G be a locally compact group and H a closed subgroup. The group G is
said to have the H-separation property or to separate H if for each s ∈ G \ H there exists
u ∈ PH (G) such that u (s) 6= 1.

It was shown by Forrest [20] that if a locally compact group G has a neighborhood base for the
identity consisting of compact sets that are invariant under conjugation, i.e. if G is a SIN group,
then G separates every closed subgroup.

Example 4.2.4. (Open, compact, and normal subgroups are separated) Let G be a locally
compact group and H a closed subgroup.

1. Suppose H is open in G. We have 1H ∈ P (H) since 1H = 〈π (·) 1|1〉, where π : G→ C is the
trivial representation, and by [30, (32.43)] the extension by zero of a function on H satisfying
(4.2.1) to a function on G also satisfies (4.2.1). Thus χH satisfies (4.2.1) and is continuous,
since H is open, so is in PH (G).

2. Suppose H is compact. Fix s0 ∈ G \H and a neighborhood U0 of H with s0 /∈ U0. Choose a
neighborhood U of H with UU−1 ⊂ U0. Choose an open precompact neighborhood V of the
identity such that HV ⊂ U . Since the set HV =

⋃
h∈H hV is open and HV ⊂ HV , the latter

being a compact set, we have 0 < |HV | <∞ and thus χHV is in L2 (G) and is nonzero. Let

u(s) := 〈λ (s)χHV |χHV 〉 =
ˆ
G
χHV

(
s−1y

)
χHV (y) dy = |sHV ∩HV | (s ∈ G) .

If h ∈ H, then hHV ⊂ HV implies u (h) = |hHV | = |HV |. If s0HV ∩HV 6= ∅, then s0hv =
h′v′ for some h, h′ ∈ H and v, v′ ∈ V , whence s0 = h′v′ (hv)−1 ∈ HV (HV )−1 ⊂ UU−1 ⊂ U0,
a contradiction. Therefore u (s0) = 0 and |HV |−1 u ∈ PH (G).

3. Suppose H is normal. Fix s0 ∈ G \H. The argument above applied to the trivial subgroup
of G/H yields u ∈ P (G/H) such that u (eH) = 1 and u (s0H) 6= 1. Letting q : G → G/H

denote the quotient map, the composition uq : G → C is continuous and is in P (G) by [16,
Théorème 2.20], because q is a group homomorphism. It is clear that uq (h) = 1 for h ∈ H
and uq (s0) = u (s0H) 6= 1.
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In [39], a fixed point argument is used to show that an invariant projection V N (G)→ V NH (G)
exists when the locally compact group G separates a closed subgroup H. In fact, it follows from
their argument that a bounded approximate indicator for H exists.

Proposition 4.2.5. Let G be a locally compact group and H a closed subgroup. Then G has the
H-separation property if and only if there exists a bounded approximate indicator for H in PH (G).

Proof. Suppose G has the H-separation property. By the proof of [39, Proposition 3.1], there
exists an invariant projection P : V N (G) → V NH (G) such that P = w∗ot − limαMuα , where
uα ∈ PH (G) and Muα : V N (G) → V N (G) is the adjoint of the multiplication map u 7→ uαu on
A (G). Given u ∈ A (H), we may find ũ ∈ A (G) with rH (ũ) = u by Herz’s restriction theorem and
by Example 3.3.6 we have r∗H (V N (H)) ⊂ V NH (G), so that for T ∈ V N (H),

〈T, urH (uα)〉 = 〈T, rH (ũuα)〉 = 〈Muα (r∗H (T )) , ũ〉 → 〈P (r∗H (T )) , ũ〉 = 〈r∗H (T ) , ũ〉 = 〈T, u〉 .

If w ∈ IA(G) (H), then

〈T,wuα〉 = 〈Muα (T ) , w〉 → 〈P (T ) , w〉 = 0 (T ∈ V N (G))

since P (T ) ∈ V NH (G) = IA(G) (H)⊥ by Example 3.3.7. Therefore urH (uα) → u weakly in
A (H) for all u ∈ A (H) and wuα → 0 weakly in A (G) for all w ∈ IA(G) (H). Passing to convex
combinations yields a bounded approximate indicator for H which is in PH (G), since this set is
convex.

Conversely, if (uα)α is a bounded approximate indicator for H in PH (G), then, given s ∈ G\H
use Proposition 3.3.4 to find w ∈ IA(G) (H) such that w (s) = 1, in which case

|uα (s)| = |uα (s)w (s)| ≤ ‖uαw‖L∞(G) ≤ ‖uαw‖A(G) → 0

implies uα (s) 6= 1 eventually.

For a closed subgroup H of a locally compact group G, we consider a weaker form of the H-
separation property that replaces the algebra B (G) with Bd (G). We show that this weakened
condition characterizes when χH may be approximated by elements of B (G) and provide a related
characterization of amenability of H.

Definition 4.2.6. Let G be a locally compact group and H a closed subgroup. For a subalgebra
A of B (G), we say that G has the A-discretized H-separation property if for any s ∈ G \H
there exists u ∈ AB(Gd),w∗ ∩ PH (Gd) such that u (s) 6= 1.

Proposition 4.2.7. Let G be a locally compact group and H a closed subgroup. Then G has the
B (G)-discretized H-separation property if and only if χH ∈ Bd (G).

Proof. Suppose G has the B (G)-discretized H-separation property and for each s ∈ G \ H let
us ∈ Bd (G) ∩ PH (Gd) with us (s) 6= 1. Replacing us by 1

2 (1G + us), which is in Bd (G) ∩ PH (Gd)
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by Theorem 4.2.2(1b), we may assume |us (s)| < 1. By (2) and (3) of Theorem 4.2.2, the net
(uns )∞n=1 is in Bd (G) ∩ PH (Gd) with ‖uns ‖B(Gd) = uns (e) = 1 and therefore has a weak∗ cluster
point u0

s ∈ Bd (G)≤1. Then u0
s

∣∣
H = 1 and

∣∣u0
s (s)

∣∣ ≤ lim supn |us (s)|n = 0, so u0
s (s) = 0. Let F be

the collection of finite subsets of G and for each F ∈ F let uF =
∏
s∈F u

0
s, which is in Bd (G)≤1.

Ordering F by inclusion, we have that uF |H = 1 and uF (s) = 0 eventually for each s ∈ G \H, so
that uF

ptw→ χH and by boundedness uF
w∗→ χH in B (Gd), whence χH ∈ Bd (G).

The converse is clear once we note that the characteristic function of a subgroup H is always
in PH (Gd), as was shown in Example 4.2.4.

Proposition 4.2.8. Let G be a locally compact group and H a closed subgroup. Then G has the
A (G)-discretized H-separation property if and only if H is amenable.

Proof. In the argument establishing Proposition 4.2.7, substituting 1
2
(
u2
s + us

)
for the element

1
2 (1G + us) yields a proof that G has the A (G)-discretized H-separation property if and only if χH
is in the weak∗ closure of A (G) in B (Gd). This latter condition is equivalent to amenability of H
by Theorem 4.0.5.

4.3 Convergence of Fourier multipliers and averaging over closed
subgroups

It is folklore that the convergence properties of nets of Fourier multipliers can be improved by
convolving them with probability measures in Cc (G). For example, Knudby recently recorded the
following, the second part of which originated in an argument of Cowling and Haagerup [7].

Theorem 4.3.1. [42, Lemma B.2] Let (mα)α be a bounded net in McbA (G), m ∈ McbA (G), and
let f ∈ Cc (G) such that f ≥ 0 and

´
G f = 1. Convolution on the left with f is a contraction on

McbA (G) and the following hold:

1. If mα
w∗→ m in McbA (G), then f ∗mα

ucs→ f ∗m.

2. If mα
ucs→ m, then ‖(f ∗mα)u− (f ∗m)u‖A(G) → 0 for all u ∈ A (G).

In Section 4.4, we will be interested in upgrading the convergence properties of the restrictions
of such nets to closed subgroups. Towards that end, this section develops an analogue of the
convolution technique relative to a closed subgroup.

Throughout this section, let G be a locally compact group, H a closed subgroup, and fix a
function f ∈ Cc (H) such that f ≥ 0 and

´
H f = 1. The continuous, bounded functions on G are

denoted by Cb (G).

Definition 4.3.2. For u ∈ Cb (G), define a function Ωf (u) on G by the formula

Ωf (u) (s) =
ˆ
H
f (h)u

(
h−1s

)
dh (s ∈ G) .
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We will show that Ωf defines a bounded map on McbA (G). For a Hilbert space H, let Cc (G,H)
and Cb (G,H) denote the continuous functions G→ H that are compactly supported and bounded,
respectively. The continuous, compactly supported functions from G into a Hilbert space are
uniformly continuous.

Lemma 4.3.3. Let H be a Hilbert space. If u ∈ Cc (G,H) then for any ε > 0 there is an open
neighborhood U of the identity e such that supt∈G ‖u (st)− u (t)‖ < ε for all s ∈ U .

Proof. The standard proof in the case that H = C, for example [17, Proposition 2.6], works for any
Hilbert space.

Lemma 4.3.4. Let H be a Hilbert space. If u ∈ Cb (G,H), s0 ∈ G, and ε > 0, then there is an
open neighborhood U of s0 in G such that suph∈H ‖f (h)u (sh)− f (h)u (s0h)‖ < ε for all s ∈ U .

Proof. Since H is closed in G, the function f extends to a continuous compactly supported function
f ′ on G. Assume first that s0 = e. Since f ′u is compactly supported, Lemma 4.3.3 yields an open
neighborhood U of e such that

sup
t∈G

∥∥f ′u (st)− f ′u (t)
∥∥ < ε

2 and sup
t∈G

∣∣f ′ (st)− f ′ (t)∣∣ < ε

2 ‖u‖∞

for all s ∈ U . Then

sup
h∈H
‖f (h)u (sh)− f (h)u (h)‖ ≤ sup

t∈G

∥∥f ′ (t)u (st)− f ′ (t)u (t)
∥∥

≤ sup
t∈G

(∥∥f ′ (t)u (st)− f ′u (st)
∥∥+

∥∥f ′u (st)− f ′ (t)u (t)
∥∥)

< ‖u‖∞ sup
t∈G

∣∣f ′ (st)− f ′ (t)∣∣+ ε

2 < ε.

for all s ∈ U . For s0 6= e, the above argument with u replaced by s0u yields a neighborhood U of e
and s0U is then the desired neighborhood of s0.

In proving the following, we use standard facts regarding Banach space valued integration that
may be found in [17, Appendix 3].

Proposition 4.3.5. If u ∈ McbA (G), then Ωf (u) ∈ McbA (G). The map Ωf : McbA (G) →
McbA (G) is a linear contraction.

Proof. Let u ∈ McbA (G) and apply Gilbert’s theorem (Theorem 3.4.1) to obtain a Hilbert space
H and functions P,Q ∈ Cb (G,H) such that u

(
s−1t

)
= 〈P (t) |Q (s)〉 for all s, t ∈ G. Then

Ωf (u)
(
s−1t

)
=
ˆ
H
f (h)u

(
h−1s−1t

)
dh =

〈
P (t)

∣∣∣∣ˆ
H
f (h)Q (sh) dh

〉
(s, t ∈ G) .

We show that q (s) =
´
H f (h)Q (sh) dh defines a bounded continuous function on G, from which

it will follow that Ωf (u) is in McbA (G), again by Gilbert’s theorem. Define Q′ : G→ L1 (H,H) by
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Q′ (s) = f (sQ) (product, not evaluation), which maps into L1 (H,H) since f has compact support.
Set K = suppf . Given s0 ∈ G and ε > 0, Lemma 4.3.4 yields an open neighborhood U of s0 in G
such that ∥∥Q′ (s)−Q′ (s0)

∥∥
L∞(H,H) = sup

h∈H
‖f (h)Q (sh)− f (h)Q (s0h)‖ < ε

|K|

for all s ∈ U . Since Q′ (s) is supported in K for every s ∈ G, it follows that

∥∥Q′ (s)−Q′ (s0)
∥∥
L1(H,H) =

∥∥χK (Q′ (s)−Q′ (s0)
)∥∥
L1(H,H)

≤ ‖χK‖L1(H,H)
∥∥Q′ (s)−Q′ (s0)

∥∥
L∞(H,H)

< ε

for all s ∈ U . Thus Q′ is continuous and so too is q, the latter being the composition of Q′ with
the bounded map L1 (H,H)→ H : g 7→

´
H g.

Using that f is nonnegative with mass one, if s ∈ G, then ‖q (s)‖ ≤
´
H f (h) ‖Q (sh)‖ dh ≤

‖Q‖∞, so q is bounded with ‖q‖∞ ≤ ‖Q‖∞. By the norm characterization of Gilbert’s theorem,
‖Ωf (u)‖McbA(G) ≤ ‖P‖∞ ‖q‖∞ ≤ ‖P‖∞ ‖Q‖∞ and since P , Q, and H are an arbitrary representa-
tion of u, we conclude that ‖Ωf (u)‖McbA(G) ≤ ‖u‖McbA(G).

The construction just undertaken does indeed average over the subgroup H and achieve our
purpose.

Proposition 4.3.6. rHΩf (u) = f ∗ rH (u) for all u ∈McbA (G).

Proof. If u ∈McbA (G), then

rHΩf (u) (s) =
ˆ
H
f (h)u

(
h−1s

)
dh =

ˆ
H
f (h) rH (u)

(
h−1s

)
dh = f ∗ rh (u) (s) (s ∈ G) .

Theorem 4.3.7. Let (mα)α be a bounded net in McbA (G), let m ∈McbA (H). The following hold:

1. If rH (mα) w
∗
→ m in McbA (H), then rHΩf (mα) ucs→ f ∗m.

2. If rH (mα) ucs→ m, then ‖Ωf (mα)u− (f ∗m)u‖A(H) → 0 for all u ∈ A (H).

Proof. These follow immediately from Theorem 4.3.1 and Proposition 4.3.6.

In our applications, the preceding theorem will be applied with m = 1H , which is fixed under
convolution with f on the left. We conclude the section with some additional observations about
the map Ωf .

1. An argument very similar to that establishing Proposition 4.3.5 shows that Ωf (u) is bounded
and continuous for any bounded continuous function u on G. It is clear that Proposition 4.3.6
holds for functions in Cb (G) as well.
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2. If u = 〈π (·) ξ|η〉 ∈ B (G), where π is a continuous unitary representation of G on a Hilbert
space H and ξ, η ∈ H, then

Ωf (u) (s) =
ˆ
H
f (h) 〈π (s) ξ|π (h) η〉 dh =

〈
π (s) ξ

∣∣∣∣(ˆ
H
f (h)π (h) dh

)
η

〉
,

so Ωf (u) ∈ B (G), and from
∥∥´
H f (h)π (h) dh

∥∥ ≤ ´H f (h) ‖π (h)‖ dh = 1 it follows that
‖Ωf (u)‖B(G) ≤ ‖u‖B(G). Thus Ωf restricts to a contraction on B (G) and moreover restricts
to a contraction on A (G), since Ωf (u) is a coefficient of the same representation as u.

3. An argument similar to that establishing the weak∗ continuity of the map Φf in the proof of
[34, Lemma 1.16] shows that Ωf is weak∗ continuous on McbA (G) with preadjoint mapping
g ∈ L1 (G) to the L1 (G) function s 7→

´
H f (h) g (hs) dh.

4.4 Existence of approximate indicators for closed subgroups

This section provides weaker sufficient conditions for the existence of a bounded approximate indi-
cator for a closed subgroup of a locally compact group.

Say that a net (mα)α of functions on a topological space X converges locally eventually to
zero on A ⊂ X and write mα

le→ 0 if for any compact subset K of A there is an index α0 such
that mα|K = 0 for all α ≥ α0.

Proposition 4.4.1. Let G be a locally compact group and H a closed subgroup. Let f ∈ Cc (H)
such that f ≥ 0 and

´
H f = 1. If (mα)α is a bounded net in McbA (G) and m′α = Ωf (mα), then

the net (m′α)α has the same norm bound as (mα)α and

1. if rH (mα) ucs→ 1H , then ‖u · rH (m′α)− u‖A(H) → 0 for all u ∈ A (H);

2. if mα
le→ 0 on G \H, then m′α

le→ 0 on G \H.

If the bounded net (mα)α satisfies the hypotheses of both (1) and (2), then (m′α)α is a bounded
approximate indicator for H.

Proof. The claim regarding norm bounds holds since the map Ωf of Section 4.3 is a contraction on
McbA (G).

(1) If rH (mα) ucs→ 1H , then, since restriction is a contraction from McbA (G) into McbA (H), the
net (rH (mα))α is bounded and (1) follows from Theorem 4.3.7.

(2) Suppose that mα
le→ 0 on G \ H. Let K ⊂ G \ H be compact and choose α0 such that

α ≥ α0 implies mα = 0 on the compact set (supp (f))−1K. For α ≥ α0, if s ∈ K and h ∈ H,
then f (h)mα

(
h−1s

)
= 0 since either h /∈ supp (f) or h−1s ∈ (supp (f))−1K, implying that

m′α (s) =
´
H f (h)mα

(
h−1s

)
dh = 0. Therefore m′α = 0 on K, for all α ≥ α0. This shows that (2)

holds.
If (mα)α satisfies the hypotheses of both (1) and (2), then (m′α)α satisfies condition (1) of

Definition 4.0.1. The second condition of Definition 4.0.1 follows by a standard argument. If
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u ∈ IA(G) (H) has compact support, then m′αu = 0 eventually by (2), so certainly ‖um′α‖A(G) → 0.
Using that H is of spectral synthesis in A (G) (Example 3.3.8), we now approximate: if u ∈
IA(G) (H), then given ε > 0 choose u0 ∈ IA(G) (H) of compact support with ‖u− u0‖A(G) < ε. For
sufficiently large α,

∥∥um′α∥∥A(G) ≤
∥∥u0m

′
α

∥∥
A(G) +

∥∥u0m
′
α − um′α

∥∥
A(G) < ε

∥∥m′α∥∥McbA(G) ,

and thus ‖um′α‖A(G) → 0, because (m′α)α is a bounded net in McbA (G).

Proposition 4.4.1 allows us to obtain approximate indicators consisting of Fourier multipliers
by verifying the same conditions that yielded approximate indicators in [1]. In particular, given
a net of Fourier multipliers, we are able to pass to an averaged net in place of directly satisfying
condition (1) of Definition 4.0.1, which is difficult in practice.

4.5 Invariant projections from bounded approximate indicators

The following result motivates our interest in bounded approximate indicators.

Proposition 4.5.1. Let G be a locally compact group and H a closed subgroup. If there is a bounded
approximate indicator for H, then there is a completely bounded invariant projection V N (G) →
V NH (G).

Proof. Let (mα)α an approximate indicator for H of norm bound C. For m ∈ McbA (G), let Mm

denote the adjoint of the map u 7→ mu on A (G), so thatMm is a completely bounded A (G)-module
map on V N (G). The net (Mmα)α in CBA(G) (V N (G)) is then bounded by C and thus has a weak∗

operator topology cluster point Ψ ∈ CBA(G) (V N (G))≤C . Passing to a subnet if necessary, we may
assume that Mmα

w∗ot→ Ψ. If T ∈ V NH (G), then T = r∗H (S) for some S ∈ V N (H) and

〈Ψ (T ) , u〉 = lim
α
〈S, rH (uuα)〉 = lim

α
〈S, rH (u) rH (uα)〉 = 〈S, rH (u)〉 = 〈T, u〉 (u ∈ A (G)) ,

showing that Ψ is the identity on V NH (G). For any T ∈ V N (G) and u ∈ IA(G) (H) we have
〈Ψ (T ) , u〉 = limα 〈S, uuα〉 = 0, so Ψ maps into IA(G) (H)⊥ = V NH (G) and is therefore a projection
onto V NH (G).

An analogous result holds for Acb (G) when the locally compact group G is weakly amenable.

Proposition 4.5.2. Let G be a weakly amenable locally compact group and H a closed subgroup.
If there is a bounded approximate indicator for H, then there is a completely bounded invariant
projection Acb (G)∗ → IAcb(G) (H)⊥.

Proof. Let (mα)α an approximate indicator for H of norm bound C. Since A (G) is an ideal in
McbA (G), so too is its closure Acb (G), so that multiplication by mα is a completely bounded
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Acb (G)-module map on Acb (G), say with adjoint denoted by Mmα . As in the proof of Propo-
sition 4.5.1, we may suppose that Mmα

w∗ot→ Ψ for some Ψ ∈ CBAcb(G) (Acb (G)∗). Let ΨA ∈
CBA(G) (V N (G)) be the projection constructed in Proposition 4.5.1 and let ι : A (G) → Acb (G)
be the inclusion. If T ∈ Acb (G)∗ and u ∈ A (G), then

〈ΨAι
∗ (T ) , u〉 = lim

α
〈ι∗ (T ) , umα〉 = lim

α
〈T, ι (u)mα〉 = 〈Ψ (T ) , ι (u)〉 = 〈ι∗Ψ (T ) , u〉

and ΨAι
∗ = ι∗Ψ by density of A (G) in Acb (G). Injectivity of ι∗ and

ι∗Ψ2 = ΨAι
∗Ψ = Ψ2

Aι
∗ = ΨAι

∗ = ι∗Ψ

imply that Ψ2 = Ψ. If T ∈ IAcb(G) (H)⊥, then ι∗ (T ) ∈ IA(G) (H)⊥ and

〈Ψ (T ) , ι (u)〉 = 〈ΨAι
∗ (T ) , u〉 = 〈ι∗ (T ) , u〉 = 〈T, ι (u)〉 (u ∈ A (G)) ,

whence Ψ (T ) = T , again by density of A (G). Therefore IAcb(G) (H)⊥ is contained in the range
of Ψ. Finally, for any T ∈ Acb (G)∗ if u ∈ IA(G) (H), then 〈Ψ (T ) , ι (u)〉 = 〈ΨAι

∗ (T ) , u〉 = 0, so

Ψ (T ) ∈ IA(G) (H)⊥ =
(
IA(G) (H)Acb(G)

)⊥
. That Acb (G) has bounded approximate identity implies

every set of synthesis for A (G) is one for Acb (G) [23, Proposition 3.1] and, because compactly
supported elements of Acb (G) are in A (G), that H is of spectral synthesis for Acb (G) is exactly
the assertion IA(G) (H)Acb(G) = IAcb(G) (H). It follows that Ψ has range in IAcb(G) (H)⊥ and is thus
a projection onto IAcb(G) (H)⊥.

Let ΛG denotes the smallest norm bound of an approximate identity for Acb (G).

Corollary 4.5.3. Let G be a weakly amenable locally compact group and H a closed subgroup.
If an approximate indicator for H of norm bound C exists, then IAcb(G) (H) has an approximate
identity of norm bound (1 + C) ΛG.

Proof. The argument of Proposition 4.5.2 yields an invariant projection Acb (G)∗ → IAcb(G) (H)⊥

of norm bound C and, because the Banach algebra Acb (G) has a bounded approximate identity,
it follows from [19, Proposition 6.4] and its proof that the ideal IAcb(G) (H) has an approximate
identity of norm bound (1 + C) ΛG.

For weakly amenable groups, Corollary 4.5.3 allows us to strengthen a convergence property of
bounded approximate indicators at the cost of increasing their norm bounds.

Corollary 4.5.4. Let G be a weakly amenable locally compact group and H a closed subgroup. If
an approximate indicator for H of norm bound C exists, then an approximate indicator for H of
norm bound 1 + (1 + C) ΛG exists that is identically one on H.

Proof. Corollary 4.5.3 yields an approximate identity (eα)α for IAcb(G) (H) of norm bound
(1 + C) ΛG and it is routine to verify that (1G − eα)α is an approximate indicator for H with
the desired norm bound.

51



We showed in Example 4.0.2 that bounded approximate diagonals for A (G) and bounded
approximate indicators for the diagonal subgroup of G × G are closely related. We close this
section by recording a connection between operator amenability of Acb (G) and the existence of
bounded approximate diagonals.

Proposition 4.5.5. Let G be a locally compact group. If Acb (G) is operator amenable, then there
is a bounded approximate indicator for G∆ in Acb (G×G).

Proof. Write ∆ : Acb (G) ⊗̂Acb (G) → Acb (G) for the product map, r : Acb (G×G) → Acb (G) for
restriction to the diagonal G∆ in G×G, and Λ : Acb (G) ⊗̂Acb (G)→ Acb (G×G) for the complete
contraction defined on elementary tensors by Λ (u⊗ v) = u × v, so that ∆ = rΛ. Let (dα)α be a
bounded approximate diagonal for Acb (G) and set mα = Λ (Xα). We show that the net (mα)α is a
bounded approximate indicator for G∆. Let u ∈ A (G) have compact support and choose v ∈ A (G)
with v = 1 on supp (u) (use Proposition 3.3.4(3)), so that u = uv and

‖ur (mα)− u‖A(G) = ‖u∆ (dα)− u‖A(G) ≤ ‖u‖A(G) ‖v∆ (dα)− v‖Acb(G) → 0.

As the compactly supported functions in A (G) are dense by Proposition 3.3.4 and the net (r (mα))α
is bounded in ‖·‖Acb(G), a routine estimate shows that the above holds for all u ∈ A (G). We saw
in Example 4.0.2 that

IA(G×G) (G∆) = 〈(u× 1G − 1G × u)w : u ∈ A (G) and w ∈ A (G×G)〉 ,

and for elements of this dense spanning set,

‖(u× 1G − 1G × u)wmα‖A(G×G) ≤ ‖w‖A(G×G) ‖u ·mα −mα · u‖Acb(G×G)

≤ ‖w‖A(G×G) ‖u · dα − dα · u‖Acb(G)⊗̂Acb(G) → 0,

where the second inequality uses that Λ is a contractive A (G)-bimodule map. That
‖wmα‖A(G×G) → 0 for all w ∈ IA(G×G) (G∆) follows from the density claim above and the bound-
edness of (mα)α.

For a locally compact group G, it seems plausible that, as in the A (G) case, the converse
of Proposition 4.5.5 may hold, i.e. that the existence of a bounded approximate indicator for
G∆ in Acb (G×G) characterizes operator amenability of Acb (G×G). Indeed, an argument
similar to Example 4.0.2 shows that the converse holds under the hypothesis that the identity
Acb (G) ⊗̂Acb (G) = Acb (G×G) is valid. However, beyond the amenable case — when Acb (G) and
A (G) coincide — it remains unclear when this identity holds.
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Chapter 5

A proposition of Aristov, Runde, and
Spronk

This short chapter presents a gap that was discovered in the proof of Proposition 3.6 of [1]. Recall
from Section 4.1 that for a locally compact group G the discretized Fourier-Stieltjes algebra Bd (G)
is the weak∗ closure of B (G) in B (Gd).

Proposition 5.0.1. [1, Proposition 3.6] Let G be a locally compact group and H a closed subgroup.
If χH ∈ Bd (G), then for K ⊂ H and L ⊂ G \H compact and ε > 0 there exists f ∈ B (G)≤1 such
that f |L = 0 and |f (s)− 1| < ε for all s ∈ K.

The main application of this result was the following.

Theorem 5.0.2. [1, Theorem 3.7] Let G be a locally compact group and H a closed subgroup. If
χH ∈ Bd (G), then there is a bounded approximate indicator for H in B (G).

The proof given in [1] involves manipulations with polars of subsets of Bd (G).

Definition 5.0.3. Let E be a Banach space and let F ⊂ E and S ⊂ E∗ be any subsets. The
polar of F is the set F ◦ = {ϕ ∈ E∗ : |〈ϕ, x〉| ≤ 1 for all x ∈ F} and the prepolar of S is the set
S◦ = {x ∈ E : |〈ϕ, x〉| ≤ 1 for all ϕ ∈ S}.

It is clear that (E≤1)◦ = E∗≤1 and
(
E∗≤1

)
◦

= E≤1 for a Banach space E. The contentious
portion of the proof Proposition 3.6 of [1] is stated in the language of polars, but the sets involved
are linear subspaces, for which polars take the following form.

Example 5.0.4. (Polars and prepolars of subspaces are annihilators) Let E be a Banach
space and F a linear subspace of E. If ϕ ∈ F ◦, then for x ∈ F nonzero we have α |〈ϕ, x〉| =
|〈ϕ, αx〉| ≤ 1 for all α ≥ 0, implying that 〈ϕ, x〉 = 0. Therefore F ◦ ⊂ F⊥. The reverse inclusion
being trivial, we have F ◦ = F⊥. A similar argument shows that S◦ = S⊥ for a linear subspace S
of E∗. In particular, polars of subspaces are subspaces.

The proof of Proposition 3.6 in [1] makes use of the following standard results on annihilators.
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Lemma 5.0.5. Let E be a Banach space. The following hold:

1. If F a linear subspace of E, then
(
F⊥
)
⊥

= span‖·‖EF .

2. If F is a linear subspace of E∗, then (F⊥)⊥ = spanw∗F .

3. If F1 and F2 are linear subspaces of E, then F⊥1 ∩ F⊥2 = (F1 ∪ F2)⊥.

4. If F1 and F2 are weak∗ closed linear subspaces of E∗, then (F1 ∩ F2)⊥ = (F1⊥ + F2⊥)‖·‖E .

Proof. The first two claims are the content of the bipolar theorem as applied to the locally convex
topological spaces F with its weak topology and F ∗ with its weak∗ topology, see [6, p.127] for a
proof.

The third is straight forward to verify: if ϕ ∈ F⊥1 ∩ F⊥2 , then 〈ϕ, x〉 = 0 for x ∈ F1 or x ∈ F2,
whence F⊥1 ∩ F⊥2 ⊂ (F1 ∪ F2)⊥, and if instead ϕ ∈ (F1 ∪ F2)⊥, then 〈ϕ, x〉 = 0 for all x ∈ F1 or
x ∈ F2, so ϕ ∈ F⊥1 ∩ F⊥2 and the claim holds.

For the fourth claim, since both F1 and F2 coincide with their respective weak∗ closed linear
spans, F1 = (F1⊥)⊥ and F2 = (F2⊥)⊥, so that

(F1 ∩ F2)⊥ =
(
(F1⊥)⊥ ∩ (F2⊥)⊥

)
⊥

=
(
(F1⊥ ∪ F2⊥)⊥

)
⊥

= span‖·‖E (F1⊥ ∪ F2⊥) = (F1⊥ + F2⊥)‖·‖E .

In [1], Lemma 5.0.5(4) is invoked when the subspaces F1 and F2 are not closed in the weak∗

topology. We, as well as the authors of [1], have been unable to fill the resulting gap and it remains
unknown whether Proposition 3.6 or the results of [1] that rely on it are correct. Note, however,
that no counterexample is known. A jointly authored corrigendum has now been published [2].

We close this chapter by showing that the Fourier multiplier analogue of Theorem 3.7 in [1] is
false.

Example 5.0.6. The locally compact group SL (2,R) contains F2 as a closed subgroup. It
has recently been shown that SL (2,R) is weakly amenable as a discrete group [43], so that
F2 is A (G)-approximable by Proposition 4.1.3, in particular χF2 ∈ Md

cb (G). If there were a
bounded approximate indicator for F2, then there would exist a completely bounded projection
V N (SL (2,R)) → V NF2 (SL (2,R)) by Proposition 4.5.1. Since SL (2,R) is connected, its group
von Neumann algebra is injective [49, (2.35)], meaning that there exists a completely bounded pro-
jection B

(
L2 (SL (2,R))

)
→ V N (SL (2,R)). Composing these projections yields a completely

bounded projection B
(
L2 (SL (2,R))

)
→ V NF2 (SL (2,R)), implying that V NF2 (SL (2,R)) =

V N (F2) (see Example 3.3.6) is an injective von Neumann algebra [5]. But, for discrete groups,
injectivity of the group von Neumann algebra is equivalent to amenability of the group [49, (2.35)]
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and F2 is not amenable by Example 3.5.3. Therefore no bounded approximate indicator exists for
F2.

Example 5.0.7. Let G = SL (2,R) and consider the diagonal subgroup G∆ of G × G. It was
recently shown by Crann and the author that A (G) is not operator biflat [8], meaning that no
invariant projection V N (G×G) → V NG∆ (G×G) exists (see Example 4.0.3) and consequently
that no bounded approximate indicator for G∆ exists (Proposition 4.5.1). But the weak amenability
of Gd, noted in Example 5.0.6, implies the weak amenability of Gd × Gd = (G×G)d, so that
χG∆ ∈Md

cb (G×G) by Proposition 4.1.3.

Both of the preceding examples show that a closed subgroup H of a locally compact group G
may be approximable when no invariant projection V N (G)→ V NH (G) exists.
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Chapter 6

Adapted states on von Neumann
algebras associated to a locally
compact group

This chapter studies the relationship between adapted and faithful normal states on two classes
of von Neumann algebras associated to a locally compact group. For such a group G, we define
adapted normal states on L∞ (G) and on the group von Neumann algebra V N (G) and for each
show that the existence of an adapted normal state is equivalent to σ-finiteness of the algebra and
to certain topological properties of the group G. For the group von Neumann algebra, our methods
yield a new argument characterizing the existence of cyclic vectors for the left regular representation
of G.

6.1 The von Neumann algebra L∞ (G)

A probability measure µ on a locally compact group G is called adapted if the closed subgroup
generated by supp (µ) is as large as possible, that is, equal to G. Restricting attention the the
probability measures in L1 (G) produces a condition on the normal states of L∞ (G).

Definition 6.1.1. Let G be a locally compact group. A normal state ω on L∞ (G) is called
adapted if, viewed as a function in L1 (G), the support of ω generates G as a topological group,
meaning that

⋃∞
n=1

(
supp (ω)

⋃
supp (ω)−1

)n
is dense in G.

Recall that a topological space is σ-compact if it is the union of countably many compact
subsets and a measure space is σ-finite if it is the union of countably many subsets of finite
measure. Most of the work needed to establish our main result was completed in Section 2.3.

Lemma 6.1.2. Let X be a locally compact space and let µ be an outer regular Borel measure on
X which is strictly positive on nonempty open sets. If X is σ-finite under µ, then X is σ-compact.
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Proof. We show first thatX is Lindelöf, i.e. that open covers have countable subcovers. Let (En)n≥1
be a cover of X by sets of finite measure and for each n choose an open set Vn of finite measure
such that En ⊂ Vn. If (Uα)α is an open cover of X, then the union Vn =

⋃
α Uα ∩ Vn has finite

measure and, because each of the open sets Uα ∩Vn has positive measure whenever it is nonempty,
only countably many of these are nonempty for each n, hence only countably many of the Uα are
needed to cover each Vn. It follows that countably many of the Uα suffice to cover the union of the
sets Vn, which is X. Thus X is Linelöf. Now, choosing for each x ∈ X a compact neighborhood
Kx, the open cover (intKx)x∈X of X has a countable subcover and therefore countably many of
the Kx cover X, so X is σ-compact.

The following result is Theorem 1.2.1 of [28], to which we refer for a proof.

Lemma 6.1.3. Let G be a locally compact group. If f, g ∈ L1 (G) are positive, then supp (f ∗ g) =
supp (f) supp (g).

Recall from Definition 3.1.10 that the involution on L1 (G) is given by f∗ (s) = f (s−1)∆
(
s−1)

for f ∈ L1 (G) and s ∈ G. If f is a probability measure on a locally compact group G, i.e. a
positive function of L1 (G) norm one, then so too is f∗ since this function is also positive and´
G f
∗ =
´
G f

(
y−1)∆

(
y−1) dy =

´
G f = 1, using Proposition 3.1.9. The convolution of probability

measures f, g ∈ L1 (G) is one as well, since
ˆ
G
f ∗ g =

ˆ
G

ˆ
G
f (z) g

(
z−1y

)
dzdy =

ˆ
G
f (z)

ˆ
G
g
(
z−1y

)
dydz =

ˆ
G
f (z) dz

ˆ
G
g (y) dy = 1.

We now establish the main result of this section.

Theorem 6.1.4. Let G be a locally compact group. The following are equivalent:

1. G is σ-compact.

2. There is an adapted normal state on L∞ (G).

3. There is a faithful normal state on L∞ (G).

4. L∞ (G) is a σ-finite von Neumann algebra.

5. G equipped with Haar measure is a σ-finite measure space.

Proof. If G is σ-compact, say with countable compact cover (Kn)∞n=1, then, because Haar measure
is finite on compact sets,

∑∞
n=1 2−nµ (Xn)−1 χXn is a well defined positive function with L1 (X)

norm one and support X, so is an adapted state (in fact a faithful state) on L∞ (X). Thus (1)
implies (2).

Let f be an adapted normal state on L∞ (G) and set E = supp (f). Since both f and f∗

are positive and supp (f∗) = supp (f)−1, we have supp (f ∗ f∗) = EE−1, and since both f and
f∗ are probability measure in L1 (G), so too is f ∗ f∗. Thus 1

2 (f + f ∗ f∗) is a normal state on
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L∞ (G) and has support containing both E and EE−1. The latter set contains the identity e

of G, so, by replacing f with 1
2 (f + f ∗ f∗) if necessary, we may assume e ∈ E, in which case

E ∪ E−1 ⊂ EE−1 = supp (f ∗ f∗). Letting (f ∗ f∗)∗n denote the convolution of f ∗ f∗ with
itself n ≥ 1 times, an induction argument yields

(
E ∪ E−1)n ⊂ supp ((f ∗ f∗)∗n). The normal

state
∑∞
n=1 2−n (f ∗ f∗)∗n therefore contains

⋃∞
n=1

(
E ∪ E−1)n in its support and so has support G,

because supports are closed sets. Thus (2) implies (3).
Proposition 2.3.21 asserts that (3) and (4) are equivalent for any von Neumann algebra and

Example 2.3.22 shows that (4) and (5) are equivalent. That (5) implies (1) follows from Lemma
3.1.6 and Lemma 6.1.2.

6.2 The group von Neumann algebra

This section shows that the analogue of Theorem 6.1.4 holds for the group von Neumann algebra.
In addition, we provide a concise argument characterizing the existence of cyclic vectors for the left
regular representation of a locally compact group G. Part of the characterization we establish was
first given by Greenleaf and Moskowitz in [25] and [26] using reduction techniques in combination
with a complicated operator algebraic argument for a particular class of locally compact groups.
We, too, establish the result in the framework of operator algebras, but our use of the notion
of adapted states on the group von Neumann algebra furnishes a much shorter and, we believe,
more natural argument. Some additional results of interest are established along the way and as a
consequence of our techniques.

In the interest of completeness, we prove the following routine lemma.

Lemma 6.2.1. The left and right regular representation of a locally compact group G are unitarily
equivalent, i.e. are intertwined by a unitary operator in B

(
L2 (G)

)
. Consequently, λ has a cyclic

vector if and only if ρ does.

Proof. Define an operator U ∈ B
(
L2 (G)

)
by Uξ (s) = ξ

(
s−1)∆ (s)−

1
2 , which is clearly linear and

is bounded since for ξ ∈ L2 (G),

‖Uξ‖2L2(G) =
ˆ
G

∣∣∣ξ (y−1
)

∆ (y)−
1
2
∣∣∣2 dy =

ˆ
G

∣∣∣ξ (y−1
)∣∣∣2 ∆ (y)−1 dy =

ˆ
G
|ξ (y)|2 dy = ‖ξ‖2L2(G) .

It is easy to see that U2 = I and we have

〈Uξ|η〉 =
ˆ
G
ξ
(
y−1

)
∆ (y)−

1
2 η (y)dy

=
ˆ
G
ξ (y) ∆ (y)

1
2 η (y−1)∆ (y)−1 dy

=
ˆ
G
ξ (y) η (y−1) ∆ (y)−

1
2dy

= 〈ξ|Uη〉 ,
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so that U∗ = U = U−1 and U is unitary. The operator U indeed intertwines λ and ρ: if ξ ∈ L2 (G)
and s, y ∈ G,

Uλ (s)Uξ (y) = λ (s)Uξ
(
y−1

)
∆ (y)−

1
2

= Uξ
(
y−1s

)
∆
(
s−1y

)− 1
2

= ξ (ys) ∆ (y)−
1
2 ∆

(
s−1y−1

)− 1
2

= ξ (ys) ∆ (s)
1
2

= ρ (s) ξ (y) .

Finally, if ξ ∈ L2 (G) is cyclic for λ and if η ∈ L2 (G) and Tα ∈ spanλ (G) with ‖Tαξ − Uη‖L2(G) → 0,
then UTαU ∈ spanρ (G) and

‖(UTαU)Uξ − η‖L2(G) = ‖Tαξ − Uη‖L2(G) → 0,

showing that η ∈ 〈ρ (G)Uξ〉 and hence that Uξ is cyclic for ρ. A similar argument establishes the
converse of the last sentence of the proposition.

Making use of the fact that V N (G)′ is the strong operator topology closure of spanρ (G)
(Proposition 3.3.2), we see that 〈ρ (G) ξ〉 =

〈
V N (G)′ ξ

〉
for any ξ ∈ L2 (G). This simple observation

yields a characterization of the existence of cyclic vectors for the right regular representation in
terms of the existence of certain faithful states on V N (G).

Proposition 6.2.2. Let G be a locally compact group. The vector ξ ∈ L2 (G) is cyclic for ρ if and
only if the vector functional ωξ implemented by ξ is faithful on V N (G).

Proof. We have, using Lemma 2.3.13(2), that

ξ is cyclic for ρ ⇐⇒ 〈ρ (G) ξ〉 = L2 (G)

⇐⇒
〈
V N (G)′ ξ

〉
= L2 (G)

⇐⇒ Sωξ = I

⇐⇒ ωξ is faithful on V N (G) .

For a normal state ω on V N (G), it was argued in [47] that the appropriate analogue of adapt-
edness is the condition that {s ∈ G : ω (s) = 1} be as small as possible, that is, for ω (s) = 1 to
imply s = e.

Definition 6.2.3. Let G be a locally compact group. A normal state ω on V N (G) is called
adapted if ω (s) = 1 implies s = e, for all s ∈ G.
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For a normal functional ω on V N (G) and s ∈ G we have ω (s) = 〈ω, λ (s)〉, so the assertion
that a normal state is adapted says that, if it takes the value 1 on any unitary in λ (G), then that
unitary must be the identity. Consequently, Proposition 2.3.19 implies that any faithful normal
state on V N (G) is adapted.

Note that if u ∈ A (G), then the function ǔ (s) = u
(
s−1) is in A (G), since we may write u = ωξ,η

for some ξ, η ∈ L2 (G) and

ǔ (s) =
〈
λ
(
s−1

)
ξ|η
〉

= 〈ξ|λ (s) η〉 = 〈λ (s) η|ξ〉 =
〈
λ (s) η|ξ

〉
= ωη,ξ (s) (s ∈ G) . (6.2.1)

Using the characterization of the A (G) norm given in Theorem 3.3.3, it follows that ˇ : A (G) →
A (G) is a contraction. We will need the following action of V N (G) on A (G) defined in [16]: for
T ∈ V N (G) and u ∈ A (G), let Ť be the image of T under the adjoint of the mapˇ: A (G)→ A (G)
and define T ·̌u ∈ A (G) by

〈T ·̌u, S〉 =
〈
u, ŤS

〉
(S ∈ V N (G)) .

It is shown in [16, Proposition 3.17] that when u ∈ A (G)∩L2 (G) we have T ·̌u = Tu, where the
right hand side is evaluation of the operator T ∈ B

(
L2 (G)

)
at the vector u ∈ L2 (G). In particular,

if ξ ∈ L2 (G) has compact support and is positive, then

ωξ (s) = 〈λ (s) ξ|ξ〉 =
ˆ
G
ξ
(
s−1y

)
ξ (y) dy = ξ ∗ ξ̌ (s) (s ∈ G) , (6.2.2)

so ωξ has support the compact set supp (ξ) supp (ξ)−1 by Lemma 6.1.3 and is therefore in A (G) ∩
L2 (G). Note also that ω̌ξ (s) = ωξ (s) = ωξ (s) by (6.2.1).

The following lemma is key to our main result.

Lemma 6.2.4. Let G be a locally compact group. Every nonzero positive operator in V N (G) has
a nonzero continuous function in its range.

Proof. Let P ∈ V N (G) be a nonzero projection and choose a unit vector ξ in its range, so that
Sωξ ≤ P by Lemma 2.3.13(1). Since positive functions span Cc (G), which is in turn dense in
L2 (G), we may find a positive f ∈ Cc (G) of norm one in L2 (G) and not orthogonal to 〈ρ (G) ξ〉,
so that

〈
ωf , Sωξ

〉
6= 0 by Lemma 2.3.13(3). The comments above show that ω̌f = ωf and ωf ∈

A (G) ∩ L2 (G), so

Sωξ (ωf ) (e) =
(
Sωξ ·̌ωf

)
(e) =

〈
Sωξ ·̌ωf , λ (e)

〉
=
〈
ωf , Šωξ

〉
=
〈
ω̌f , Sωξ

〉
=
〈
ωf , Sωξ

〉
6= 0.

Thus Sωξ (ωf ) = Sωη ·̌ωf is nonzero and in A (G), hence continuous. For T > 0 in V N (G) apply
the preceding argument to the range projection of T (Definition 2.3.5).

Recall that a topological space is first countable if every point has a countable neighborhood
base. For a locally compact group, in which the neighborhood base at any point is determined by
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that of the identity (see Section 3.1), it is equivalent to require that the identity element have a
countable neighborhood base.

Theorem 6.2.5. Let G be a locally compact group. The following are equivalent:

1. G is first countable.

2. There is an adapted normal state on V N (G).

3. There is a faithful normal state on V N (G).

4. VN(G) is a σ-finite von Neumann algebra.

5. The left (equivalently, right) regular representation has a cyclic vector.

Proof. Suppose G is first countable and let (Un)∞n=1 be a neighborhood base at the identity in
G. We claim the normal state ω =

∑∞
n=1 2−nωn is faithful, where ωn = |Un|−1 ωχUn . Let T be

a positive operator in V N (G) with 〈ω, T 〉 = 0 and let P be the range projection of T , so that
〈ω, P 〉 = 0 by Proposition 2.3.6. Given any vector f in the range of T we have Sωf ≤ P and thus
0 ≤

〈
ωn, Sωf

〉
≤ 〈ωn, P 〉 ≤ 〈ω, P 〉 = 0, implying that f is orthogonal to 〈ρ (G)χUn〉 for each n ≥ 1.

If f is continuous it follows that

f (s) = lim
n
|Uns|−1

ˆ
Uns

f = lim
n
|Uns|−1

〈
f |ρ

(
s−1

)
χUn

〉
∆ (s)

1
2 = 0

for every s ∈ G. Thus T = 0 by Lemma 6.2.4 and ω is faithful, establishing that (1) implies (3).
Conditions (3) and (4) are equivalent by Proposition 2.3.21. Any faithful normal state on

V N (G) is a vector state by the comments of Section 3.3, so that (3) is equivalent to (5) by
Proposition 6.2.2. That faithful normal states on V N (G) are adapted follows from Proposition
2.3.19, so (3) implies (2).

It remains to show that (2) implies (1), for which we provide the argument of [47]. Suppose ω is
an adapted normal state on V N (G). Fix a compact neighborhood K of the identity in G and for
each n ≥ 1 define Un =

{
x ∈ K : |ω (x)− 1| < 1

n

}
, which is open by continuity of the A (G) function

ω. Let V be any open neighborhood of the identity contained in K. We show that (Un)∞n=1 forms a
neighborhood base at the identity, for which it suffices to establish that some Un is contained in V .
Since ω is continuous, adapted, and K \ V is compact, the value ε = inf {|ω (x)− 1| : x ∈ K \ V }
is strictly positive and we may find n ≥ 1 such that 1

n < ε. If x ∈ Un then x ∈ K and that
|ω (x)− 1| < ε implies x /∈ K \ V , so x ∈ V , as required.

If we call an arbitrary (not necessarily normal) state on a von Neumann algebra faithful when it
satisfies condition (2) of Proposition 2.3.19, i.e. it takes strictly positive values on strictly positive
operators, then it can be shown that, for any von Neumann algebra, the existence of a faithful state
implies the existence of a faithful normal state. The analogous result for adaptedness of states on
V N (G) is false.
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Example 6.2.6. Let G be a locally compact group. Let U be a neighborhood base at the identity
e consisting of compact sets and for each U ∈ U let V be a neighborhood of e such that V V −1 ⊂
U (Proposition 3.1.2) and set ξU = |V |−

1
2 χV . Then ωξU is a normal state on A (G) and the

computation (6.2.2) shows that ωξU = ξU ∗ ξ̌U , so that supp (ωξU ) ⊂ supp (ξU ) supp (ξU )−1 =
V V −1 ⊂ U by Lemma 6.1.3. Directing U by reverse inclusion and passing to a subnet of (ωU )U if
necessary, we may assume this net has a weak∗ limit ω ∈ V N (G)∗, which is then a state on V N (G)
by Proposition 2.1.12. Let s ∈ G be distinct from the identity, let K be a compact neighborhood
of e and W an open neighborhood of e with K ⊂ W and s /∈ W , and use Proposition 3.3.4(3) to
obtain u ∈ A (G) such that u (K) = 1 and u|G\W = 0, so that u (s) = 0. If U ∈ U with U ⊂ K,
then u is identically one on supp (ωξU ) and hence ωξUu = ωξU , implying that

〈ω, λ (s)〉 = lim
U
〈ωξU , λ (s)〉 = lim

U
〈ωξUu, λ (s)〉 = lim

U
ωξU (s)u (s) = 0.

Therefore ω takes that value one at no unitary in λ (G) except the identity, but no adapted normal
state exists for any G that fails to be first countable.

Proposition 6.2.7. Let G be a locally compact group. The following are equivalent:

1. G is first countable.

2. There exists a sequence (ξn)∞n=1 in L2 (G) such that 〈ρ (G) ξn : n ≥ 1〉 = L2 (G).

When these hold, given any neighborhood base (Un)∞n=1 at the identity in G, we have
〈ρ (G)χUn : n ≥ 1〉 = L2 (G).

Proof. If G is first countable, then Lemma 2.3.20 applied to the faithful state constructed in the
proof of Theorem 6.2.5 establishes (2). Given a sequence (ξn)∞n=1 as in (2), by omitting zero vectors
and normalizing we may assume the ξn are unit vectors, in which case the normal state

∑∞
n=1 γnωξn

on V N (G) has support projection I by Lemma 2.3.20, hence is faithful and G is first countable by
Theorem 6.2.5.

The final claim follows from the proof of Theorem 6.2.5 and Lemma 2.3.20.
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Chapter 7

Open problems

In this chapter we collect unresolved problems that arose in the preceding chapters. To our knowl-
edge, each is an open problem.

7.1 Preliminaries

Question 1: Are the positive linear functionals on a C∗-algebra taking the value one at no unitary
except the identity exactly the faithful ones?

Here, a positive linear functional a C∗-algebra is called faithful if it satisfies condition (2) of
Proposition 2.3.19, i.e. takes strictly positive values on strictly positive elements.

7.2 Chapter 4

Let G be a locally compact group.

Question 2: Does the existence of a ∆-weak bounded approximate identity for Acb (G) imply the
existence of a bounded approximate identity, i.e. the weak amenability of G?

Kaniuth and Ülger have shown [40, Theorem 5.1] that the analogous result holds for A (G),
but their argument exploits operator algebraic techniques available because A (G) is the predual
of a von Neumann algebra. For Acb (G), one has only general Banach algebraic techniques to work
with.

Question 3: Is there an example of a locally compact group G and closed subgroup H for which
an invariant projection V N (G)→ V NH (G) exists, but not approximate indicator for H exists?

Question 4: When is the natural map McbA (G)∗∗ →Md
cb (G) a surjection?

The discussion of Section 4.1 shows that it is the same to ask: when is every element of
Md
cb (G) the limit of a bounded net in McbA (G)? When Gd is amenable (which implies G is

amenable), the Fourier multiplier algebras reduce to the Fourier-Stieltjes algebras, and the natural

63



map B (G)∗∗ → Bd (G) is always a quotient map, in particular surjective, without any amenability
hypotheses. Let us briefly sketch this argument, which (unfortunately) exposes the assertion as
a consequence of operator algebraic phenomena that are absent in the Fourier multiplier setting.
Let τ : B (G)∗∗ → Bd (G) be the natural map, which is weak∗ continuous by definition, so has a
preadjoint τ∗ : C∗ (Gd) /B (G)⊥ → B (G)∗ = C∗ (G)∗∗. The bidual of the group C∗-algebra — its
enveloping von Neumann algebra — can be shown (see Section 3 of [1]) to be the von Neumann
algebra generated by the universal representation πu : G → B (Hu) mentioned in Section 3.3.
Since C∗ (Gd) is a completion of `1 (Gd), it is generated by the set {δs : s ∈ Gd} and the map
δs 7→ πu (s) extends to a ∗-homomorphism C∗ (Gd) → C∗ (G)∗∗ with kernel contained in B (G)⊥.
The induced map on the quotient C∗ (Gd) /B (G)⊥ is exactly τ∗, which is then an injective and
therefore isometric ∗-homomorphism. That τ∗ is an isometry entails its adjoint τ is a quotient map.

Question 5: Is there a generalization of the Cohen-Host idempotent theorem that characterizes
the subsets E of G for which χE is a Fourier multiplier?

Question 6: When does the identity Acb (G) ⊗̂Acb (G) = Acb (G×G) hold?

The analogous result for A (G) is, in keeping with the theme, a consequence of operator algebraic
results: if M and N are von Neumann algebras, and if their preduals are given operator space
structures as in Example 3.2.7, then, denoting the spatial tensor product of von Neumann algebras
by M⊗̄N , we have (M⊗̄N)∗ = M∗⊗̂N∗ [15]. It is also noted in [15] that V N (G) ⊗̄V N (G) =
V N (G×G), whence

A (G) ⊗̂A (G) = V N (G)∗ ⊗̂V N (G)∗ = (V N (G) ⊗̄V N (G))∗ = V N (G×G) = A (G×G) .

7.3 Chapter 5

Question 7: If χH ∈ Bd (G) for a closed subgroup H of a locally compact group G, does it follow
that there is an approximate indicator for H in B (G)?

We showed that the corresponding question for the Fourier multipliers has a negative answer,
however the Fourier-Stieltjes algebra is the dual of a C∗-algebra and therefore carries operator
algebraic structure that may produce a positive answer.

7.4 Chapter 6

Question 8: Does the analogue of the last claim in Proposition 6.2.7 hold for an arbitrary locally
compact group G?

Explicitly, if (Uα)α∈I is a neighborhood base at the identity for an arbitrary locally compact
group G, is it true that 〈ρ (G)χUα : α ∈ I〉 = L2 (G)?
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Question 9: If G is a locally compact group and U is a neighborhood base at the identity, and
if E ⊂ G has finite measure and ε > 0, can we always find U1, . . . , Un ∈ U and x1, . . . , xn ∈ G

such that the sets Ujxj are pairwise disjoint and
∣∣∣⋃j Ujxj4E∣∣∣ < ε, where 4 denotes symmetric

difference of sets?

A positive answer to this problem would yield a positive answer to the preceding problem.

Question 10: How can the notions of adaptedness for normal states on L∞ (G) and V N (G) be
unified?

These von Neumann algebras are naturally dual objects when viewed in the context of locally
compact quantum groups. Less extravagantly, they are also both left von Neumann algebras arising
from a certain left Hilbert algebra. Can adaptedness of normal states be characterized in either of
these more general contexts? A reasonable first step towards an answer would be to abstract the
definition of adaptedness for L∞ (G) out of the language of subsets of the group G. The following
is a small but more concrete manifestation of this problem.

Question 11: If ω is an adapted normal state on V N (G), is the normal state
∑∞
n=1 2−n |ω|2n

faithful?

Given an adapted normal state f on L∞ (G), the proof of Theorem 6.1.4 shows that the normal
state

∑∞
n=1 2−n (f ∗ f∗)∗n is faithful. For elements of A (G), the analogue of the involution on

L1 (G) is the map ω 7→ ω̌, which is simply the complex conjugation for a state in A (G) by the
comments preceding Lemma 6.2.4. Thus for a normal state ω ∈ A (G) we have

(
ωω̌
)n

= |ω|2n, so
that our question does indeed ask for a V N (G) analogue of the construction of Theorem 6.1.4.
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