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Abstractux. J '

A

A model for transactioncmanagement in a distributed databasé

system i1¢ proposed. The basisvfor the model stems, from the
fact thatlthe synchrbnization atomicity of a transact{on can
be derived f{rom the atomicity of its subtransactions and.
commit protocols. Consequently, the distributed cor rrency
control problem may be shown to reduce_to three subprobiems 
- local concurrency control at the nodes, distribu-
deadlock detection and - multiple copy update. These
subproblems are solved indepehdently; A distributed databaée
system is built by adding two software layers to local
database syvstems, which are assumed to exist atrthe‘nodes,
Kierarchical and loosely coupled systems are the two-
extensicns of the proposed modél.'They are characterized by
the commit protocol used for transaction termination. A
hierarchical intertonnection relaxes the assumption of full
connectivity between component databases. A loosely EOupled
system allows the user to view a collection of databases as

a single database, even if the component systems do not.

participate in distributed transaction management.

iv
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Chapter 1

Introduction |

1.1 Why Distribute Databases ?

Human organizations are inherently structured with
multiple levelsAof control, authority and responsibility.
However, Data Base Managemenf Systems'of_fhe 60's and 70's
have tended to centralize information about an enterprise
because of cost and technological constraints. A centra;ized
aatabase has many advantages =~ it provides uﬁﬁform‘ and
controlled access to shared data and enforces security and
integrity constraints.] A central authority, called tﬁe
Database Administrator, IS fesponsible for maintaining
information needed by all the users. Recent advances in
hardware technology have made available cheap p?oéessing
power and storage, permitting information to be ‘stored and
processed close to the user. Conseguently, a new technique
in vSystems Design, known as Distributed Systems, has
emerged. | |

What can be qualified as " a distributed‘ system is a -
matter of definition. Butv tﬁe‘ general consensus is that
processors, data and control;4§£9uld- be distributed in a
distributed AS§stem. T@ééﬁé&éiEEhosen is that a distributed

&

““gi.ndmber - computers, called nodes,

I\

system consists. of:

connected togethgi j\é\;network.' Each node has its own

{ L oY

LT 4 ' o :
. ~ SNy .9 :
processor, . memory and.data and is largely autonomous. But
RN ST : *
LS LN : .
nodes can‘cooperate ‘among themselves to provide some -
< e, .



services to the user.

A Distributed Data Base (DDB) is defined as a set of
component daéabases implemented at various nodes of- the
network. Each node has its own set_of_users who usually
require access to’ data that is stJred at that hodé.
Occasionally, \fhey request access to some data items'whith
are located at dffferéﬁf"negggA;Ihe"bﬁﬁ/provides a uniform
view of the component databases to- all the users,'
irrespective of where they are located. The users see only a
logical collection of data and they need not know the
location of an object to réad or write it. This is known as
the location transparency of data. A Distributed Data Base
Management Systém (DDBMS) is a set of programs implemented
at jvariohs " nodes of the network. The BDBMé is respongible
for supporting and controlling user interactions with the
DDB.

The objectives of diStribﬁted database systems are
generally the same as those of centralized systems. However,
some benefits are unique’to'distributed systems. Information
can be kept close fo where it is most needed, reducing
commﬁnication costs and improving response times. Critical
daté can be duplicated, improving data' availability.
Distributéd batabases are natural for applications in; for
.exémple; banking, airline reservation ﬁsystemsfx”énd
government, which exhibit a well-defined hiera:Ehy iﬁg:their

structure,.



The ® algorithms used in the implementation of a DDBMS
cfitically.determine its performance. There are a number of
-problems 1like synchronizationAand recovery, tg be §ddressed
by the designer}gf a DDBMS. The soluﬁioné to téesé, problems
are more complex than thése of centralized systems because
of the parallelism and diversity ‘inherent in diétributed
systems. . In this report,vsohe of these technical\prob;ems
are addressed.

1.2 Arbhitectufg of DDBMS

Two well-defineqd and complementary a;chitectures can be
discerned in -theu impleméntation of a DDBMS. These are the
Information and System Architectures [DER82]. The
information architecture defines how the information is to
be modeled, represented, allocated and accessed, whilf ‘the
- system archit~cture defines proéessor characteristics,
ldcatién, communications and protocols for transéct%on
‘management [DERBZ]. This thesis concentrates on the system

architecture, and in particular on transaction management.

1.3 Transactions

The concept of a gransaction is well established in the
database - area [EGL76,Gra79,Gra81]. A transaction is some
compﬁtafibn that reads the currenf state of a set of obje;ts
in the database and possibly changes the state of-these

.objects. In essence, it consists of some read and write

actions. A transaction can be expressed in a self-contained
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query language ot it can be vembedded in a high-level
language appliéat}on program. Transactions originated by a
~number of users run-conturrently on ithe system. One of the
funaémental issues in desiéning é. database system is to
ensurgﬂ that_thege transactions are isolated from each other
and their effect is the same as wﬂen each of them 1is
executed in some - serial order. This 1is known as
serializability, and the algorithms .which enforce this
property are known as concurrency control algorithms. A
formal definition of serializability will be given later.

whén” a transaction reéueSts access to a resource that
}s held by another, it is forced to wait until the resource
becomes available again. Meanwhile, the second tranéaction
itself méy be waiting for anothe:, and so on. If this
-wait-for relationship extends to a cycle, no transaction in
the cycle will be able to proceed. This 1is known as the
deadlogk problem,

Anpatomic action is an action that appears to occur
indivisibly 1in the system [Lah81]. Read and ante are
examples of atomic actions and their atomicity is usually
guaranteed by thé operating system. A major objeétive.df
database systems 1is to guarantee the atomicity of
transactions. This is done hv ensuring fhat:

1. a partial execution of-a transaction is not visible to
other transactions <;;) |

2. all the actions in a transaction are completed or none

are, even when failures intervene [Lam81].
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The first a£tripute is called the synchronization.atomicity
and it is enforceé by the concurrency control‘ algorithms.
The second attribute 1is called the tbllure‘atomicityw In
‘this presentation, the term "atomiéity" is used to refer to
both attributes. The~ term "synchronization atomicity" or
"failure atomicity* is used to emphasize one attribute.

Recovery procedures in a database system are designed
to enforce the failure atomicity of transactions. Typical‘
failures that these procedures handle are the transaction
and -system failures.

The problems mentioned above, namely conégrrency
‘control, deadlock and fecovery, are well understood 1in
centralized systems. These solutions have been extended for
distributed systems and several new ones proposed
[BeGB81,KKN83,Gra79]. These solutions are often very complex
and only a few of‘them have been actually implemented. They
are based»on differegt assumptions about the sy tem and very

little is known about their comparative performance.

1.4 Distributed'Transaction Management

A transaction in a distributed system may re uiré
access to data stored at different nodes. As a consequence,
patts of it execute at different nodes. A transaction's
initistion, migration and termination should be controlled
by man%gers at the nodes where it is executed. |

In a distributed system, nddés. have‘only’a partial

knowledge of the system state and no single node knows the



complete system state. Transaction. Managers (TMs), Data
Magagers (DMs) and.Schedulers located at one or more nodes
are the components of an architecture model for transaction
management. TMs talk to sc :dulers and schedulers talk to

DMs and also among themselves [BeGB82]. Schedulers accept

read/write requests from TMs and execute them in some order

¢ czermined by the concurrency control algorithm used. The

simplest architecture consists of only one scheduler'locéted
at a distinguished node and a TM and DM at every node. The
scﬁeduler controls all actions 1in the system and éll TMs
talk to it. Though this solution is easy to implement, it is
not desirable for several reasons. Control is centralized
and the entire system . pends on one . node, ldsing all
benefits of distribution. Also, this node becomes the
bottleneck for the entire system.

Another solution ié to have a scheduler at each node,
executing actions from different transactions in some order.
In this scheme, ifﬁis assumed that all nodes are identically
structured and they all use identical algorithms. \Virtually
all published algorithms assume one of the above models or
some variations. For example, in timestamp-based algorithms
all transactions are tihestamped and act;ons in them are
processed by different schedulers in the order of their
timestamps.

In this report, a model 1is proposed for distributed
transaction management in which .individual transactions

instead of individual actions are synchronized. Each node is

v



treafed as a transaction processor, on top of which a
distributed transaction processing layer is built. A
transactién is split into a set of subtraﬁsactions which
communicate among themselves. Each subtransaction is
synchronized by a controller which 1is unaware of the
existence of other nodes. It 1is proved‘hthat local
concurrency céntroi at the nodes, coupled with commitment
protocols, ensure serialfzability. This 1is a bottom-up
approach to design as oppésed to the top-down approach, 1in
which a DDBMS 1is designed first and components which must
reside at difﬁerent nodes are decided .later. There are a
number of benefits to the proposed appgqach:
* Heterogeneity in systems is aliowed. Components
can widely vary in their capabilities.
* Different nodes can use differen£ concurrency
control algorithms.
* Only minimal changes 1eec be made to existing
systems. O
* Each node, by itself, <can be a distributed
database, permitting a tree-structured logical
interconnection of DBMSs.
A disadvantage of this model 1is that it does not give
priority to distributed » transactions over | local a
transac;ions. For examplé, a distributed transaction may be
aborted and restarted in case of a deadlock,'even-ﬁhough it
may cost mﬁch less to abort a local transaction. Also, ff a

distributed system is designed from scratch,
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application-depeﬁdent knowledge can be used to simplify
desigﬁ_and improve performance.

Existing systems provide only a flat 1interconnection
between )component. databases, in which every node  has"
complete information about every other node. Such an
%nterconnection is‘nqt suitable for very large networks. Foy
,é&émple, in a national library network with hundreds of
libraries and millions of books, 1t is ynrealistic to assume
that each node will have complete 1information about all
other nodes. Hence, gqueries like "given a book, find the
librafy" can not be supported easily.

As a first . step in removing this restriction, the
proposed transaction management model can be extenaed to a
hierarchy of DDBMSs. In tﬁis mdael, each component database
of a DDB can itself be a DDB, thus permitting a hierarchy. A
transaction in this hierarchy consists of subtransactions,
which consist of more subtransactions and so  on. The
execution tree of a transaction follows the topology of the
interconnection. These are also called nested ﬁfansgctions,
and the study of them is a currently activé research area
[Mos81,SpS83], It will be shown in the next chaptér that the
proposed model <can be extended to a special case of nested
‘transactions, one in which no synchronization 1is necessary
between descendents of a transéctioﬁ.

There are often occasions when a7_user interacts with

several databases, which fhemselves have nothing to do with

v each other. A sequence of interactions with these databases
. - \ . \
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is seen as a transactibn byfthe user and each interaction is
seen as a complete transaction by the databases concerned.
This falls within the domain of Loosely Coupled Systems, .a
notion that is not supported by existing transaction models.
The application of the proposed model to such systems will

also be described in this thesis.
1.5 Organiz.tion of thii Thesis~/’f
The characteristics of processors, communication and
component databases are defined first. Subsequent
discussions depend on these definitions. Existing models for
transaction management will then be described. The new
transaction managemeﬁt model will be presented after the'
motivations behind it are pointed out..
The chapters on Concurrency Coﬁtrol,' Deadlock and
Recovery are presented in'the'folléwing format :
* Issues in Centralized Systems
* Issues in Distributed Systems
* Issues in the new model, with subsections on
hierarchical DDBMS and loosely coupled systems.
The last cﬁapter contains a summary of results obtained in.

this, thesis and some suggestions for future work.

7



Chapter 2

Architecture Models .

2.1 Design objectives _\

In the previous chaﬁter} some benéfit$ ‘of distributed
databases were pointed out. However, dis%ributing data is
purely a design issue. At the highest levels of abstraction,
the user or the applicatién programmer ‘should see no
difference between distributed and centraliée@ databases. He
should not have to worry about such details és the location
of data or thé failure of processors; At the user level, the
system should exhibit the following properties:

| a). Location Transparency: Although tth.e data is .
geographically distributed énd may move from place
to place, the user can act as if all the data is at
one node. ‘ |
b). Replication Transparency: Although the same data
item may be replicated at several nodes of.the
network, the programmer can treat them as ifvit wefe‘
stored as'a single item at a single site.

c). Concurrency Thanspar*éncy: Although '*:che ",systém
runs many transactions concurrently, to each
transaction it appears as if it were the only
activity in the system.

d). Failure Transparency: Either all the actions of
a. transaction occur or none of them occur. Once the

transaction is committed, its effects survive all

10
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hardware = and software failuges [TGGB2]. Note that
‘while this condition is impossible to achieve, it
can be satisfied with 5 arbitrarily high
probability.u
Additionally, 1if the component dafébases'are heterogeneous,
the user should be given a ngba%ly cod@hspent view of the
data, independent .of the éat;-hodels used.

The Information (or Schema) Architecture defines how
information is conceptually modeled, repfésented, allocated
and accessed. The ANSI/SPARC %iscbem; h proposal for
centralized database = systems :ias been extended for
distributed systems. It includes two additional levels - the
Global Representation: Schema waﬁd. the Global Conceptual
Schema [DER82,Dee8f]. For hetgrogeheous.isystems ‘éupportihg
different data models, .a- commén ~view of ‘the data and a
'globaily consistenf‘accéés }anguage'are needed [Spa81].” Such
an ‘appfoach -has been‘ tékén inlMultibase, a heterogeneous
distributed database ' system ‘Qndér .development [smB81].
Transactions in  Mﬁ1tibase ;are _expressed in ADAPLEX, an
.ADA—compaEib;e quéry langﬁaée: This thesis concentratéé on
fhe transaction maﬂagement"issues_ of synchronization,
deadlock éhd redo§ery. Schema architecture does not directly

affect thése issues and hence will not be discussed further.

S
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2.2 Distributed Systems

A distributed system is modeled by a seﬁ of nodes
(computers) connected together by a network. Each node
consists of a processor and two levels of.memory - wvolatile
and permanent [MosB81]. The contents bf the volatile memory'
are assumed to be lost when the processor fails. Permanent
memory is the disk storage and it is assumed to be ideal -
the information stored in it 1is never corrupted and 1is
always available to the processor. Techniques for
constructing disk storage systems with érbitrarily low
probabilities of failure are wellb known and a few such
systems . . have ' actually been implemented

\
[ver77,ver78,ver79,Lam81].

Nodes of the distributed system do not have any shared
memory and . they communicate only by sending messages over

- : .
the network. The network is viewed at a high level of

Iy

¢
abstraction and it is assumed to be constructed such that:

.  Messages sent from node ‘A to node B arrive at node B
within a finite time and in the order in which they were
sent. Messages are not lost or duplicatéd [LeL79]. |

S 2. ’Twoimessages sent from nodes A and.B to node C arfive at

‘node C in an arbitrary order. |

3. The failure of a node is reported by the network to any
okher noée ~that tries to communicate with it. The
network can not distinguish between the processor

failure at. a node and the failure of communications to

that node.



13

This view is supporfed by a ﬁierarchy of layers constituting'
the network. The status of an action completed by the
distributed system 1is either desired, undesired but
. anticipated or disaster [Lam81]. The objective is to design
a system such that it can handle gny number of undesired but
anticipated events like _ processor and communication
failures. Disasters, like failure of all the nodés, are not

handled.

2.3 Component Databases
In this presentation, eéch node. is viewed as a
transaction procegsor. Each node vhas a database and a
transaction manager which accepts transactions that read aﬁd
pbssibly‘modify~thebaata. A database D';s defined as a set
of named entities:
D={Ey, E2, +c...,Eq }.

The entitiés may be such‘things as records, diék pages or
files. The current contents of ah_entity, E, for example, is:
represented by value(E,), while the current contents of the
détabase, termed the database state [ull82], is represented
by state(D). The éontents of an entity‘and‘the database vary
with time, while the names of entities are invariant.

'The values of some of these entities may be
- semantically relatgd. For example, if seats—-available,
5eats—reserved and capacity are entities in a datébase for
airline reservations, they may be related by a constraint

like:
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seats-reserved + seats-available < 1.1 * capacity
Consistency constraiﬁts ensure that values of the database
entities remain semantically related. We can associate a
predicate with a consistency constraint such that the
predicate 1is true if }and only 1if the <constraint ié
satisfied.. The conjunctién of predicétes correspond{ng\to
various constraints on the dépabase is knownAas the éystem
predicate "I". The state of the database is consistent if
I(state(D)) is true [Mos81]. The database has associated
with it a transaction manager, TM. TM is a software module

which accepts user transactions on the database and executes

them. A transaction is modeled by a set of operations of the

3

form:

read(E;) return(value);

waite(E.,value);
The set of entities read by the transaction is known as its
readset, ‘R, and the set " of entities’ written ﬁy‘] the
transaction is "known as' its writeset, W. A transaction
either produces a new value for state(D) which satisfies
I(state(D)) or 1leaves state(D) unchanged. The entities are
stored in the permaﬁent memory. The value stored in the
permanent memory for an entity is terhed its permanent copy.
Transactions start with a begin-fﬁansactfon command and end
with an endftnansactioh command. When a begin—rtr'ansaction
command is issued, say for T, the TM creates a workspace for

T in the volatile memory. When T issues a'read command, a

copy of the entity read (calledla volatile copy) 1is made
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available in T's workspace. When T issues a write command,
the new valﬁe of the entity is written in its workspace.
When T issues the end- thansactlon command, it goes through

\\\”/yhat is called the commitment phase [Gra79]. At the end of
this phase all the changes ‘made by T are reflected in the
permanent copies  of entities, and T'é. workspace is
discarded. If the system crashes during the execution of T,
the contents of the volatile memery are assumed to be lost.
Therelare no checkpoints within T to partial}y restore it,
Hence, T is aborted durihg restart. This model ’of
transactions was broposed- by Grey [Gra79] and Lampson
[Lam81j.

The read and write commands mentioned before are
examples - of actions, while a sequence of such actions is a
transaction. For example, a transaction ‘can be formed‘ as
follows: |

begin-transaction

x = read(E,)

read(E,)

y
» write(E,, x + y )

end-transaction
The objective of database systems is to ensure the atom1c1ty
of transactlons, given the atom1c1ty of actlons.
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2.4 Model of DDB o

A distributed database is defined as a set of component
databases, {DF,DZ...D?}, such that each D,, 1 = 1,?...k,
along with its TM is implemented at node ji. A DDBMS is a set
of programs implemented at each node of the network to
manage transactions that need access to data which is stéred
at. various nodeéni |

Replication of data is a key issue in database design.
It increases fheiavailability of data items replicated and

reduces * communication costs for transactions that only read

them. However, update transactions i incur additional

communication costs because of the éynéhronization‘that is
needed to maintain the mutual consistency of the copies.

Careful design is needed in balancing these conflicting

requirements. Replicated data is identified by the
constréints. |
Let each D, be represeﬁted as D, = {E+i, BEzi,...Emil}.

The current state of the DDB is represented by state(DDB). A
Afﬁndamental property of distributed systems ié'tth at any
instant of time ﬁo single nqde‘knows the value of state(DbB)u
[LeL79]. - |
Definition 1: ) ’

ThHe = constraint on a pair ;of entitﬁesﬂ\Em{, E,j,

i#g, isfsatiéfied if value(E,;) = vaiue(Enjd;
The = constraiﬁt identifies the multiple copies of the same

data and strictly speaking theyvshould be identical all the

]

|
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time. Two entities which satisfy this constraint are treated
as duplicates 1in a set union operation (that is, the
constraint establishes an equivalence class). |
Definition 2:~

A distributed database is internally consistent if

some invariant predicate I(state(DDB)) is true.
Definition 3:

A distributed database is externally consistent if

all = constraints on its entities are satisfied.
Two types of external consistencies, known as strong and
weak external consistencies, must” be distinguished:
a) A:aistributed database is said to satisfy strong external
consistency if at any instance of time, all = constraints on
its entities are satisfied.
b) A distributed database is said to satisfy weak external
consistency if, in the absence of any new activity, all =
constraints on its entities will be satisfied after an
arbitrarily large amount of time [LeLSi].O
Maintaining strong external lconsiStency involves heavy
synchronization overheads. In a - situation, where all the
users do not require the most current version of data,
maintaining only a weak external- consistency may be
sufficient. For example, ugg’ting the iibrary database once
a day may bevenough for most users. This_issthe basic idea
behind the iptimary copy anproach fet nultiple copy update

(Chapter 3)./// L

/
~

re
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Definition 4:
A distributed .database is said to be fully
replicated if, |D,| = N, 1<isgk, whefe N is some
integer and for all m and j, 1SmsSN, 2s5jsk,
there exists‘s, 15§SN, such that E,, = E, .
In a fully replicated database the same set of entities is
stored at ail nodes.
Definition 5:-
e ) ‘
~“A distributed database. is strictly partitioned 1if
there are no = constraints to be satisfied on any
| pair of entities. “
Semantically related data is stored at various nodes of the
~network and there is no duplication of data.
Definition 6:
A distributed system is said to be partitioned and
partially replicated if it is not fully replicated

and it 'is not strictly partitioned.

2.5 Distributed Transaction Management

AsS meﬁtioned before, how a transaction 1is decomposed,
éxecuted and synchronized 1is a fundamental issue in DDBMS
design. SOme.existing models of transaction management will

be described first.

2.5.1 Existing Models
The model proposed by Bernstein and Goodman

[BeG81,BeG82] is adapted to illustrate distributed
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transaction processing in existing systems. ~The components
of this model are Transaction Managers (TME), Scheaulers,
Data Managers (DMs) and Buffer Manégers (BMs) . Transactic s
calk  to TMS, TMs talk +. schedulers énd BMs and the
schedulers“£alk to BMs and alsé to each othér,"A transaction
consists of four fypes of 'commandg, begin-transaction,

end-transaction, read ‘and write -- whose- semantics are

identical to those described before. A transaction issues

"all its commands to a sipgle TM which routes them to

different schedulers.

The centralized architecture [MeM78] for transaction
processing is given in  Figure 1. In this model, for a
: . | p

begin-transaction command from a transaction T, its TM

negotiates work/°space for it at different BMs. Read and

Qrite~actions.in T are passed by 1its TM to the central

" scheduler. This scheduler sets a lock for the data item read

6r wfitfen and passes the command to the 'BM of the node
where A the data .. item 1is located. *When T 1issues  an
end—transéction command, its TM passes it to the scheduler
thch coordinates the commitment of T and releases all’ locks
associated with T.

The disaavantagg of this approach is the centralized
control, ;; the eﬂtire system depends on one node. This node
becomeg the 1limiting factor in the system performance. An
improvement over this solution [MeM78,A1D76] employs bacﬁups

of the scheduler at several nodes. TMs send requests to all

schedulers, though only the primary scheduler is responsible

K
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for control. When fhe primary fails, éne of the backups
becomes the new primary. Communication costs may be high in
this scheme. ‘ ~ NER

The decentralized model of transaction execution is
given in Figure 2. In this model, every.node has a TM, BM,
DM and a scheduler. An action 1s sent by its TM to the
"scheduler of the node at which the data item resides. No
single scheduler has complete knowledje abou: the states of
transactions. Ciearly, to satisfy the serializability
property of transactions, .some synchronization among them‘is
necessary. 1In ‘the following paragraph this problem is
restated and some fundamental existing solutions are
outlined. |

TMs can be considered as producers of actions and
schedulers their consumers [LeL.79]. Actions are executed
atomically by consumers. A transaction Tlis a set of actions
which océur at different consumers. How can we make T
atomic? -

In the circuiating sequencer solution to this problem
[LeL81), producers organize themselves in a virtual ring and
circulate a token through this ring. Only the producer which
holds the token is allowed to initiatq actions. It compietes
T and passes the token to the next préducer. Producers are
solely responsible for synéhronization and consumers are
passive. In timestamp-based methods tRSL78,Lém78], every
traﬁsact{on is assigned a timestamp by its TM. The consumers

execute different actions in the order of their timestamps.’
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In the two-phase locking solution [EGL76,TGG82], consumers
guarantee mutual exclusion in access to objects between two
time periods dynamically specified by the producers (through
lock and unlock commands). A producer first locks all the
entities accessed ana then unlocks them.

A crucial observation in all these solutions is that

individual actions are synchronized to guarantee atomicity

of T. In my proposal it is individual transactlons which are

synchronized, based on the assumptlon that a consumer -‘can
guarantee atomicity of a set of actions. Actions in T are
divided into subsets (called subtransactions) and each

subtransaction is sent to one consumer. In the next chapter

it is proved that this property, coupled with commit

protocols, is a sufficient condition'for serializabilitj. An

important‘ feature ., of th{s solution is that each
subtransaction at a consumer ie considered a complete
transactlon and the consumer can synchronize it using any of
the techniques mentioned above.

A DDBMS based on the existing techniques reflects the

top-down approach. to design. It consists of a set of .

identical modules which execute at differentA nodes. Each
module knows the complete system structure. Only a flat
interconnection is possible between component systems and
they all have to be homogeneous. The model proposed removes
these.restrietions. It reflects the bottom-up approach to

DDBMS design and only minimal capabilities are assumed of

component systems. This makes it possible to integrate .

4
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heterogeneods systems. Heterogeneity can be not only in the
data models, but also in‘concurrency control, deadlock and

recovery algorithms,

2.6 Proposed Model

| Translation Layer |

| Distribution Layer | .

T™ | T™ | T™

| |
l |
DM DM - DM
I - I
Node 1 | . Node 2 ] Node 3

Figure 3. Proposed Model

Y
In.this model, each node is considered a database machine.
It stores a sét of entities and has a TM which accepts.
transactions for manipuiating these entities. The 'DDBMS is
built by adding two layers - the distribution layer and the
translation layer - over each  database machine. The

distribution layer takes care of inter-nodal communication



24

and provides location transparency. The translation layer is
‘responsible for the decomposition of user transactions. It
also selects and executes protocols for multiple copy
update. Above this layer, the user sees the database as if
it is only at- one node {and without replication. His
transactions are composed according to this view.

The distribution layer consists of a set of programs
implemented at each node..These programs comﬁunécate among
themselves for managing  transactions. This layer is
responsibie for créating and deleting remote transactions,
storing‘thg states of transactions in cooperation with local
TMs, supporting commit protocols, detecting global deadlocks
and checkpointing. It provides a number of primitives for
doing these oberations. Some of them are discussed below and

others will be described in subsequent chapters.

1. begin-transact ion(node-id) returns(tid)

| This primitive is 'used to create subtransactions at
various nodes. If begin-transaction is issued against
the node at which it originated, it signals .the
beginning of a new global transaction. The transaction
thus created is kﬁbwn as the coordinator. Its functions
include coordination of the execution of subtransactions
and consistent termination of the transaction (commit 6r»
abort). .

2. abort-transact ion(node-id,tid)

Aborts the specified transaction at the node. All the
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changes done by this transaction are undone at the node.
3. secure-transaction(node-id,tid) returns(status)
This primitive 1s used to implement the two-phase commit
protocol [Gra79]. It 1is 1invoked by the coordinator,
after it has detected the completion  of all
sub;ransactions. The TM of each subtransaétion lis
requested to secure the changes made by the
subtra: actions in disk storage (usually in a log file).
all theDTMS'send "secured" messages as repliesp the
co. dine v can choose to commit the transaction.
©. commit-treisaction(tid) -

1is orimitive is  invoked by the coordinator and

"commit messages are sent to all subordinates.

2.6.1 Transaction becompositiqn

A transaction is split into a set of subtransactions
such that each of them executes entirely at one node. A
traﬁSaction is allowed to make its requests dynamically.
That 1is, its read and write sets need not be known in
advance. Some communication is needed between
subtransactions to perform operations across system
boundaries. send and receive primi;ives are provided .for

this purpose. The semantics of these primitives is similar

to that of remote procedure calls [Shr81,Lis79}. Send and

receive operators are inserted within a transaction by the
translation layer. Suppose that T; and T, are two

subtransactions of T, executing at nodes 1 and 2
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B

respectively. If T, wishes to perform an action at node 2,

it sends a message of the format proc-name(parl,par2...) to

'T,, where proc-name is the name of the procedure to be

activated to perform the intended action(s). T, will receive
this message and 1invoke the procedure proc-name. All the
computations at node 2 are performed by T,, and both T, and

T, are within the scope of T. In existing models, a single

.TM would perform all the actions of T resulting in a

centralized execution control of T. In the solution
described above, execution of T is dgcentrglized. For
example, .the- procedure proc-name above can contain'other
remote actions.

The approach to transaction decomposition discussed
above is similar to the dataflow solution for implementing
distributed relational queries [VinB81]. In this éoiution, a
transaction is represented by a query graph. The nodes of
the gfaph ‘are relational or transaction management
‘operators. The edgés reflect data dependencies between
operators. Every edge in the graph which connects operators
.to be performed at d%fferent nodes  is replaced by one
transmit and one receijve opefator. Operations for each node
are grouped together to Zorm subtransactions. -

The send primitive has the following syntax:

Send(nodefid,tid;msg) netur'hs(status‘)

Three types of semantics are pbssible for the send primftive

.

[Lis79]:n

7. In the "no-wait" send, the sending process waits
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only until the message is composed.

2. In the "synchronization" send, the sending
process waits until the message is received by
the target process.

3. In the "remote—invocétion" send, the sending

.prpcess waits for a response/result from the
receiving process.
Any one of these semantics can be used.b
Similarly, the preceive primitive has the following
syntax: ] | N
&

receive(node-id, tid, msq) PetUFnS(ssatus)

The semantics of receive depends on the choice of send. For
the "no-wait" send, the semantics of receive as defined b§.
Dijkstra and Scholten [DiS80] can be used. They have assumed
that each process has an associated message queue. MesSages
froﬁ other -processes, are appendea to this gqueue and the
receiving process retrieves them in the FIFO order.

Example:

Consider a distributed system with two nodes. The
usir's view ] of the database .consists of two files,
"supplier" and "supply;. "supply" 1is stored entirely at
node-2, whereas "sﬁpplier" is. partitioned and one pértitibn

is stored at each node.

User's View: supply (S#,P#)
sypplier (S#,Sname).

Distribution: node-1 node-2

supplier (S#,Sname) supplier (S#,Sname)
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supply (S#,P#)
Query +(at node-1):
List all suppliers who supply "123NUTS".
Transaction: ' |
begin-transaction
t = {x | (x,"123NUTS") ¢ supply)
r = {# | 3y: [(y,x) e supplier) A [y e t]}
end-transaction
Decomposition:
For node-1:
begin-transaction
t = {x | (x,"123NUTS") € sﬁpply)
r1 = {x | }y: [(y,x) e.supplier] A [y ¢ t]}
tid = begin-transaction(node-2)
send(node-Z,ﬁid,t)
receive(r2)
r = rl union r2

end-transaction

For nodé-2;
begin-transaction
recéi&é(t)

r ='{x [ }y; [(y,x) e supplierJ Ay € t]}
send(node-1,tid,r)

end-transaction
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Several variations are possible in transaction
decomposition to minimize such things as the communication
traffic and the response time. This is known as the query

optimizatien problem and is not dealt with in this thesis.

2.6.2 Hierarehical Interconnectionv ' : !

As mentioned before, the database machlﬁe at each node
consists of a TM and a set of entities which it manlpulates.
The view of the DDBMS above the translation layer is
identical to that of a single node database machine. This
implies that each node can itself be a DDBMS. If this
hierarchy'f is extended further, it results. in a
tree-structured interconnection of DDBMSs.

Why do we need this tree-structured interconnection?
Current systems support only a flat interconnection in which
. each node ‘knows ‘the complete_\eystem structure and
communicates with%every other node.‘CeHErol of the execution

N

of a transaction is centered at a 51ngle T™, and it should
‘haveﬁcomplete knowledge about the locatlon of all objeets
accessed. If a h1erarch1cal interconnection is pe;ﬁitped;
the control of the execution of a transaction ean.ibe\
decentralized. Each node may need-to know only about a few
other nodes. This simplifies the task of maintaining
system-wide directories. |

Let {D,,Dz...Dk} be the set of c%mponent databases

constituting the DDB. The set of entltIJS seen by the user

in the DDB is {D, union ... D }. In a hierarchical DDBMS,
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any element of the set {D,,D,...D,} can by itself—bé a DDB.
Assume that D} is a distfibuted database while others are
non-distributed. The set of elements known to D, 1is the
union of such sets known to its sons, and the transactions
of the users at D, operafe only on entities in this set. We
impose the following réstriction on D,:
{D, union ...Dy.,, and {D,} should be strictly
éartitioned.
If this restrictio% is not met, the following -anomaly 1is
possible: | | |
There are two entities, say E, and E:, with. an =
constraint. One DDB knows only -about E,; while
another DDB at a higher‘level in the hierarchy knows
about both E; and E, and the = constraiﬁt between
them. "
The = constraint is meaningless in‘this example and_sucﬁ a
‘isituatiqn is unacceptable. Any solution that removes this
restriction should extend the ' tree model to a'graph; The
structure of a.transaction in the graph model 1is complex,
since some synchronization may be needed between its
subtransactions. In this thesis we will not deal with this
issue. No published soltion implements such'a structure.

: Transaétiops in a hierarchical DDBMS can be nested. For
example, -‘a sugtransaction rg?ning at a node may create
additional subtransaétions at its sons wifhout its parent
"knowing this fact. That is, a consumer can act as-a producer

to the next level of consumers. The execution tree of a



A A

transactién foliows the topology of ' DDBMS in;éigﬁ"
.Concurrency control for such systemsjwill bé‘désér
Chapter 3. ‘ | |

The hierarchical structure reflects the 1logical
interconnection of database systems and is independent of
the structure of the underlying network.

Example:" -
The Newcastle Connection [BMR82] is the name of the software
subsystem that has been added to UNIX,~in_order to connect
them tdgethér. UNIX United is a distributed system based on
the Newcastle Connection. It is composed of a (éossibly
lérge) set of interlinked standérd UNIX systems, each'one
‘completely independent [BMR82]. These systems ' are arranged
in a tree-structure and are addressed by the user_ﬁﬁ‘ag
format similar.to the UNIX file structure. The Qrogpéed  ‘
transaction model natufally fits in such an enviroﬁﬁéﬁi,t‘
 §uppo§e that there is a proéedure,,called» pnoces#—news'ﬂéﬁ
~each node; we can implement a-franéaction thaf sends s;ﬁe“
news to all systems in UNIX Uﬁited as-ﬁollowé: |
begin-transaction '
recéi?e(proc—name,paf1)i
invoke proétname(par1)

end-transaction

process-news(newsfile) {

Write-news(nevwsfile)

-

for each son do {
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t, = begin-transaction(son)
send(son,t,,"process-news" ,newsfile)
}
}
'There are some efforts under way to extend the
trahsaction concept: to non—dafabase, general purpose

distributed computing- applications [Li581,Sp583],,A group at
the”Carnegie Mellon University [SpS83] are investigating the
idea of building a transaction kernel at every node to
manage objects andiimodules (abstract data types). Their
notion of transaction kernel is similar to the distribution
layer 1in the pgoposéd model. The object-oriented language
CLU is being extended to serve a® a distributed computing
language [Lis82])}. It supports .transactions, which are
allowea to manipulate remote objects. Nested transactions
and message-based computations are fundamental to the design;
¢ ch a language and a great deal of work still remains to

ne.

2.6.3 Loosely Coﬁpled Systems |

Tﬁére ére4 often occasions when a uéer interacts with
several databases which themsélves have nothing to do with
each other. -Consider the following example, impleﬁenting a
travel agent system:
A transaction consists of:

| i. 'resepyatiohs with different airlines

2. car rental reservations
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3. hotel reservations

4. credit card billing [Gra81].
Often, the wuser «cancels reservations. It is inconceivable
that the database systems of different airlines and hotels
will cooperate for the convenience of the tfavel agent. Each
of these systems treats portions of the transaction
independently. Yet, it is seen as one complete transaction
by the travel agent. This is an example of a transaction
which has within its scope severgl others. An’approach that
is‘promising in this situation is the notion of Compensat ing
Transactions (CT), suggested by Davies [Dav73]. Existing
systems do not support such a notion. Gray [Gra81], while
commenting ) on the 1limitations of existing transaction
models, suggests that they be extended to support
compensating transactions.

A CT 1is invoked to undo the effects of a ‘cbmmitted
transact o>n. Consider the following franSaction T, initiated
by an operator at a bank:

begin-transaction
bal = read(acc¥, acc-bél)
write(acc#, acc-bal - 100)
end-transaction
Assume that T is completed. The operator detects later that
the acc-bal should have been increased (deposit) ~ and not

decreased (withdrawal). This mistake can be corrected by

running a credit-posting transaction, say T', as follows:



34

begin—transaction\
bal = read(aqc#, acc-bal)
write(accg, acc-bal + 100)
end-transact ot
We <can consider T! as a CT for T; 1f some transaction had
completed after T;‘but before T', .t would have read the
wrong balance Vfor the account. This transaction should be
undone and this may require some other transactions to be
undone or aborted. This results in what is termed the domino
effect [Ran75)]. If T had in it an action like "dispense
$10,000" (from an automatic teller), it cannot be undone and
T can never be compensated. This is an example of a real
acﬁién (not handled in the proposéd model). A CT is allowed
only if it does not force other completed transactions to
abort.‘ This 1is wusually the respbnsibility of the user.
However, in some special cases, we can build systems which
automatically generate CTs. | |

~Actions are Commutatfve if their actual ordering :s
unimportant.;_For example, additive and subtractive actions
on an object can be made commutative. Such actions do not
make any value-based updates. An entity 1is said to be

commutable (for want of a better adjective) 1if all the

actions defined on it are commutative. A transaction is said
to be reversible if its actions operate only on commutable
entities. A CT is defined only for such a transaction.

AsS méntioned béfore, a transactiqﬁ in the Vproposed

model is decomposed into a number of subtransactions, one
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for each node accessed. If in .a particular node, say i, all
the entities 1in the database are commutable, all
subtransactions for D, will be reversible. A CT can then be
defined for each subtransaction at D;.

Let DDB, be a distributed database and let D, be a
database that is loosely coupled to DDB,, resulting in a new
distributed database DDBZ.'The usérs of DDB, see a database
which is the union of entities in DDB, and D;, and compose
their transactions accordingly. However, since the entities
in DDB, and D, are semantically unrelated, a transaction is
decomposed in such a way that all actions on D, are grouped
into a single subtransaction. Call this subtransaction é..
c, is processed at D, and committed independently of its
parent. Suéh a partial commitment does not violate system
consistency constraints., There are consistency constraints
on DDB, or D,;; but no single constraint involves entities in
both. Let I,, I, and I, be the invariants on DDB,, DDB, and
D, respectively.

Definition 7: _
D, at node i is‘loosgly coupled to DDB, if:
1. there are no constraints involving entities in
both DDB, and D;, and I, can be egpressed as
I,(state(DDB,)) = I,(state(DDB,)) A I,(state(D,))
2. all entities in D; are commutable.
Note that this definition is asymmefric. Node | cannot treat

DDB, as 1if it is loosely coupled.
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Let T be a transaction initiated by a - global user.
Since the subtransaction of T at D, 1is executed
independently of its parent, some restrictions need to be
imposed on the ordering of actions in T. These restrictions
are defined based on the collapsibility of the precedence
graph of T. | |
Let T = { a,,az, ...,a,}, where each a,, i=1,2...n, stands
for an action in T,

Let <4 be the partial ordering (p;ecedence relation) on T.
a, <4 aj implies that the action a, uses the value output by
a, and that the action a,; is to precede a,.

Definition 8: (precedence graph) [CoD73]

The precedence graph G(W,U) of T is defined as

follows:
W={a, | a, ¢ T}
U=1{ (ai,a;) | (ai <g a;) A ~(3k: a, <, a, <4 a;) }
Let u = (a.,a,) be an element of U. Then, tail(u) .= éy and

head(u) = a,.

Let A = { a;,a;.; .... a, } be the set of all actions 1in T
which operate on some entity in D;.

Let G'(W',U') be a subgraph of G such that:

W' = A

U { ueU | tail(u) e W' A head(u) e VW‘ }

Collapsing of a sﬁbgraph of a given graph is the process in
which the.entire subgraph is replaced by a single new node.
During tﬁis process, all edges entirely within the subgraph

are discarded; all edges leéding out of the subgraph are
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replaced by edges leading out of the new node; all edges
leading into the subgraph are replaced by edges leading into
the new node, |
Formally, cdllapsing of G' in G is the construction of
a new graph G- (W-,U-) such that:
W-=1{a, | (a, e W A-(a, e W) } union { c }

U- ={ (ai,a;) e U | ~(a; e W) A ~(a; ¢ W) }

]

union
{ (a,c) | "(ai e W') Al3x e W': (a;,x) € U }
union '
{ (c,ba) | ~(a, ¢ W) Adx e W: (x,a,) e U }
[BeR81]
The subtransaction for D; is collapsed into a single action
C..

The property that should be satisfiéd by T is ‘that G-
is acyclic. Otherwise, some communication is needed between
the subtransaction that executes at D, and_.its parent. In
such a case, the action c cannot occur indivisibly. If D, is
loosely coupled to DDB,, then no send or receive primitives
are allowed within its subtransaction. Note that the
subtransaction at D, is committed 'independently of its
parent: This property 1is immediately obvious from the
collapsed graph as any coordinated commitment. will create. a
simble tWo—nSdé cycle..

As mentioned before, somé minimal changes are necessary

in database machines at nodes. Some primitives, 1like

secure-transaction, must be supported by these systems at
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the interface with the diétribution layer. 1f D, is loosely
coupled to DDB,, no such changes are necessary at node i. It
participates only as a consumer. .

At  the first glance, it ﬁay seem as though the
assumptions -about entities in D, .are too restrictiye and
unrealistic. However, this 1s not the case. Two examples-are
given below to illustrate this point. Consider the travel
agent case. In the absence of the extension suggested above,
he will have to run 4/transactions corresponding to airline,
hotel and car reservétions and credit card billing. He is
also responsible for wundoing one or more of these
transactions, if necessary. The notion of loosely coupled
systems suggestea in this thesis is éimed at removing this
burden from the travel agent and delegating it to his
system. The travel agent's view of the databases is suitably
restricted to gnable the system to take the responsiblity
for the transaction; To the othef’iusers of the airline
database, for example,: it makes no difference whether the
travel agent's transaction reseryed a .seat or his

transaction’'s transaction reserved the seat.

The other, perhaps more important appliéation of

lobsely coupled systems 1s in the extension of the

transaction concept to non~database, general purpose

distributed computing. The <creation of temporary files at
remote nodes is a typical operation in such an environment.
This can be considered a commutable subtransaction initiated

by a process in the distributed system. If the process is
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aborted for some reason, all the temporary files created by
it must be destroyed. The recovery procedures defined for a
loosely coupled system will automatically do it for the

user..:

2.7 Summary

In .fhis chapﬁer, varioué components of a' DDBMS
architecture model are defined. Sohe existing models of
transaction management are described and a new model is
proposed. The new model 1is particularly suited for
heterogeneous systems. Two special cases of the model --.

hierarchical and loosely coupled systems are also described.



Chapter 3

Concurrency Control

3.1 Centralized Systems

Transactions are the basic unit of computation in a
database systém. Trahsattions initiated by several users may
be run concurrently. The objecﬁive of concurrency cdntrol is
to ensure that these transactions are effectiyely isolated
from each other énd that they get a consigtent view of the
database. Transactions should satisfy two fundamental
properties - failure étomicity and serializability.

Failure atomicity require§ that either all the actions
in a transaction are completed or none are. Since B failures
during execution are possible, the system must have some
facility to undo/redo actions (see Chapter 5). Even if there
are no system failures, a transaction may be forced to abort
because of incorréct computations (for example, a divide by
0) or invalid access requests. |

1

3.1.1 Serializability - Y

Let T = { T1,Tz...,Tn.'} be a set of transaqtions
accessing the database. An execution of II is serial if no
two transactﬁons run concurrently in it. Since every
.trénsaction iévassumed to be a correct. computation, serial
4 executioﬁ of I is correct. An execution of N is serializable

if it is computationally equivalent to some serial schedule.

The - transactions in, - 11 are then said to satisfy

40
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synchronization atomicity. The traditional example, used to
illustrate concurrenéy contrdl [Koh81] is to consider the
case of 3 bank accounts A, B and C and three transactions
Ty, T, and T3;. T, transfers $106-from account A to account
B, T, transfers $50 from account B to account C, and T,
prints the account Salances of A, B and C. The consistency
constraint is that the sum of account balances should be

constant, ' | S

Initial account balances:

A = $200 N
B = $100
C = $50

Transactions:

T,
_ .
begin—traqﬁaction
1 A-bal = read(A)
2 B-bal = read(B)
3 write(a, A-bal - 100)
4 write(B, B-bal + 100)
end-transaction
Tz:

begin-transaction

1 B-bal = read(B)
2 C-bal = read(C)
3  write(B, B-bal - 50)

4 write(C, C-bal + 50)

end-transaction
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begin-transaction

1 A-bal = read(A) .
2 B-bal = read(B)
3 C-bal = read(C)

end-transaction

A schedule . for I in this example is an ordering of actions
in Ty, T, and T,. Suppose that the actions are executed in
the following order: |
steps 1-3 of T,, 1-4 of T,, 4 of"T1

The resulting balance for B will be $200 when it should
actually be $150. This 1is known as the lost wupdate or
ww—synchroniz;tion-problem.

Suppose that in -some other schedule, actions are
processed in the following order:

.. steps 1-3 of Ty, 1-3 of T; and 4 of T, ..

T; will report account balances as $100, $100 and $50, when

such a state never existed. T; will produce an output that

can never again be .repeated. This 1is' known as the
rw-synchronization problem. |

Two actions are said to conflict.if they both operate
on the'same data-obﬁect and one of them is a write. Let the
‘entity accessed by 'an action "a" be aenoted by v(a). An
action is of a certain type type(a) = x, x ¢ {r,w}, where r-

and v stand for read and write respectively.
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.Definition 1: (conflict)
| Two actions a and b are in conflict, written a
conflict b, if and only if
“v(a) = v(b) A (type(a)=w | type(b)=w) [Sch78].
Definition 2:  (schedule)
A schedule S = (a,, <) consists of a set A, of
actions_ and a relation <, such that conflicting
actions are ordered [Sch78]. |
a ‘confl?ct b, a # b, implies that a < b or b < a. a < b
means that a precedes b iﬁ. S.. S establishes a partial
orderi g of all actions in II. |

Let S* be a serial schedule fer M. s 1is said to 'be

serializable if
1. The: final state\ef the daeabase is ic ~tical to
the state that /yguld' reeult if s 2re the .
schedule.
2. Outputs of all transactions in M are identical
| to outputs that would result if S* were the
schedule.
Since we have assumed that each.transaction, if run alone,
would preserve the integrity of the database, a‘serializable
schedule preserves the integéity of the database.

Partial ordering between actions 1ntroduces a
dependency between transactlons that contain them. This is
characterlzed by the dependency graph of S. |
Definition 3: O

The dependency graph G(W,U) of a schedule is defined
\
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as follows:

. W= {\T. | T/ € T }

2. U={(T;,Ty) | 3a e T,, 3b e T;: a < b is.in S}

[Sch78].
The nodes of the dependency graph are the ﬁransacfions.'lf
(Ty,T.) is an edge in the gfaph it implies that T, read a
value which was subsequently written by\T; or T1 wfote a
value'which was subsequently read or written by T,.
.Theofem 1:
A schedule 1is serializable if and only if its

_ - dependency graph does not contain a cycle [Sch78].
Note that serializability has beeﬁ #defined considering rw
and ww conflic..- together. It can also be defined separately
for rwland ww conflicts [BeG81]. The seriali;abiliﬁy problem
in this case is reduced to ‘two subproblems, rw and ww

synchronization, and different algorithms can be wused to

solve these subproblems.

A
/.

3.1.2 Two-phase Loﬁking ' \ \
Two-phase locking is a technique used to detect
conflicts. Before a transaction attempts to read or write an
object, it obtains a lock fdr it of the corresponding type.
Two transactions cannot be given é. lock on- an objectv if
either one of them is a write; Transactions that obtain a
proper lock on an object before reading or writing it . are
said to be well formed. A transaction is said to be

two-phase if it obtains all the locks before unlocking any

- '
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one of them [EGL?é]. Suéh a transaction exnibits two phases

. in its execution - the growing ' (locking) phééehand the
shrinking (unlocking) bhase; It has been proved [EGL76] tnat
if all transactions are well formed'and two-phase, they are
'serializable. Two-phase locking is a sufficient condition
for serializability. |

The choice of an element for locking in a database,
like a file or a record, determines the potential
.parallelism in the system and ’signific y- affects
performance [RiS77,RiS79]. The simpie locking 'strategy just
‘described can be extended to hierarqh;gal locking [Gra79].
The hierarchy consists of tnevdatnnase, files, pageé and
records. A transaction can request locks-at any level in the
_hierarchy. To détect conflicts within a hierarchy, an
additional‘mnde of locking,‘called the intention mode has
been introduced [Gra79]. .

A major problem associated with locking is ' the
possibility of deadlock. A deadlock occurs when a set of
;transactions can never be granted all the lock§ they need in
ordér to reach complet%on. Solutions to deadlock Ain

centralized systems are well known [CoD73].

3.2 Distributed Concurrency Control
A distributed concurrency control algorithm should
address two probléms' - the 1internal consistency of the

database and the mutual consistency of repliééfed copies. It

has been shown [BeG81] that though a large number of such
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algorithms have been published, they are all variations of
g

two basic techniques, namely two-phase locking and timestamp’

ordering. These fundamental solutions are examined in some

detail.

Two-Phase Locking{

Two—pﬁase locking requires that all the actipns in a
transaction be processed by a single TM. Some of these
actions mé§ be remote. Before performing én oberation on a

remote object, the TM requests an appropriate lock from the

s

object's scheduler (Figure 2). Note that there may be.

several schedulers in the distributed.system. If TMs do not

permit any parallelism within a transaction, the execution

of transactions in a distributed system can be modeled as’

their execution in a centralized system [TGG82]. Hence, if
all transactions in a distributed system are well formed and
two-phase, they are serializable. |

An implementation gf this algorithm amounts to building

a scheduler, a software module that receives lock and unlock

requests and processes them according to the two-phase

‘locking specification [BeG81]. Schedu’ars are distributed

along with the database such that a data item and its
scheduler reside at the samé node. g

A consequénce of distributed two-phase locking is the
possibility of giobal deédlocks. No singlg node will have

sufficienf information to detect such a deadlock. See

Chapter 4 for further details.
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Timestamp Ordering:

In this technique, each transaction 1is assigned a
unique timestamp by its TM. Actions in it are given this
timestamp before they are sent to a scheduler. The crection
of timestamps requires loosely synchronized clocks at all
the nodes. Timestamps are made unique systemwide by
assigning a unique number to each node and appending this
number-to the lower order bits of the timestamp génerated by
it [Lam78].

The operation of a scheduler based on timestamp
ofdering is quite simple. Each scheduler resolves conflicts
‘between actions. in the order of their fimestamps. For each
data item'in.a node, 1its scheduler records the largest
timestamps of read and write actions pérformed on it. The
scheduler outputs actions received acco;ding to the
following algorithm:

Let TS(a) be the timestamp associated with an action
"a" roperating on ah_ébject X.

»if type(a) = r then
if TS(a) < largest timestamp of any write on x

yet "accepted”

then reject a

else
"accept” a and output it as soon as

all-writes on x with smaller
) timestamps are completed

else’
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if type(a) = w then
if TS(a) < largest timestamp of any read
or write on x yet "accepted"
then reject a
else
"acéept"'a and output itAas soon as
all reads and writes on x with |
smaller timestamps are completed
[BeG82].
An action 1is rejected if it tries to perform a read on an
object which has a higher tihestamp, since it may lead to
inconsistencies. It can easily be proved that timestahp
brdering always leads to serializable 'schedules
[Lam78,RSL78,BeG82]. When an action 1is rejected, the
“transaction that tried to perform it is aborted (possibly at
several sites) and restarted with a new and 'larger
timestamp.

It has been shown [RSL78] that a transaction can find
itself in a situation in which every time it restarts it is
aborted subsequently, because of conflicts with other
transactions. Such a transacﬁién will go through infinite
restart/abort cycles and can never be completed..A‘solution
to this problem involves, among other approaches, assigning
higher priority to restarted transactions. Several
strategies have been proposed [RSL78] for coping with such

problems.
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A modified version of the algérithm just described,
called conservative timestamp ordering [BeG81], avoids
rejections by delaying operations instead. “an action is
delayed by the scheduler until it is sure that outputting it
will cause no future operations to be rejected [BeG81]. This
solution requires that each scheduler receive reads and
writes from each TM in the order of their timestamps. The
scheduler must have an operation from each TM in its input
gueue. It then scans this queue and chooses an action with
~the lowest timestémp.bsince the earliest 'requesf made by
each TM is known, outputting an operation in the gQueue with
the lowest timestamp cannot lead to rejection of other
actions"in the future [BeG81]. Even if a ™ has'no actions
for a scheduler, it periodically sends null cperations with
a timestamp. Note that this solution avoids rejections at
the cost of excessive delays in processing actio&s.

Several ‘vériations of two;phase locking and timestamp
ordering h:ve been reported. Bernstein. and Goodman. have

published a survey of these techniques [BeG81].

3.3 Concurrency Congrol in the Proposed Model

As described in Chapter 2, a transaction is decomposed
into a set of subtransactions that are executed at different
nodes. A' subtransaction is executed only at ohe node.
Subtransactions from a number of transactions run
concurrently at a node (see Figﬁre 3); It is assumed that

the TM at a node guarantees the serializability and failure
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atomicity of its subtransactions.

Let T; be a transaction and let T,,; and T,; be its
subtransactions at nodes 1 and 2 respectively. It .can
clearly be seen that the failure atomicity of T,, and T,, is
not a sufficient condition for the failure atomicity of T.
Both T,, and T,, should succeed or both of them should fail.
A "commit" protocol brings about such a decision and it is a
standard feature of distributed database systems.,

A key feature of the concurrency control suggested 1in
this thesis is that it uses the commit protocols invoked by
individual transactions to establish their serializability.
This will be further explained in the subsequent paragraphs.
The serializability of subtransactions at a single node is
termed the local serializability.

Ascme that the distributed system has a set of fully
synchronized physical clocks.[Lam78] to establish the time
at which an action occurs (these clocks are used as a proof
mechanism and are not required in an actual implementatién).
CLOCK(a) denotes the physical time at which an aqtioﬁ' a
occurs. Two actions at the same node have different clbck
values. If a and b afe two acticdhs in the node then CLOCK(a)
# CLOCK(b). Conversely, if for two actions a and b, a # b,\\

CLOCK(a) = CLOCK(b) implies a and b occur at different

L P : \
nodes. Physical ordering of two events at a node, written a

<, b implies that CLOCK(a) is less than CLOCK(b). In the

definition of the schedule, a < b implies a <, b.
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The one-phase commit protocol 1is used to terminate
distributed transactions. The protocol assumes the existence
of a known coordinator and is briefl?“described:

1. Each participant, when it has completed, records the
changes in permanent storage (usually the log file) and
sends the "ready to commit" message to the coordinator.

2. When the coordinator has received "ready té commit" from
all participants, it sends "commit" messages to all of
them. If any participant wanted to abort, the
coordinator sends "abort" messages to all participants
instead of the "commit" message.

3. Each participant aborts , or commits a transaction
depénding on the message from the coordinator.

Leﬁ commit-T, deﬁote the action that commits the transaction

T, at a node. We assume that it occurs atomically at a node

(see Chapter 5). Let CLOCK(commit-T;) denote the time which.

this action occurs at a node.

Definition 4:

A schedule S for a single node database is strictly
serializable if and only if the following'conditions
are satisfied:

1. Its dependency graph G is acyclic.

2. If (T, T;) is an edge in G then
Vb e T;, 3a ¢ T,: (a < b) » commit-T, < b,

Strict»serializabilitynmeans that a conflicting regquest 1is

never dranted to a transaction until all the transactions

that hold the reéesource have terminated, Most database
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systems support only strict serializability for recovery

reasons.
Let ﬂ‘i {1, T2....T, } be the set of transactions
accessing the DDB. Each T,, i = 1,2,...n 1s again a set of

subtransactions.

Let T, = {T,,Tiy...}, x # y, where x,y... denote nodes at

which subtransactions are run. T, is called a distributed

transaction if | T; | > 1,

Defihition 5: |
A global schedule S = (a,, <) of Il is a set of all
actions in each T; e‘ﬂ together with a relation <
such that conflicting actions are ordered.'

Assertion 1:
Two subtransactions of ‘the same transaction never
conflict.

Proof:

The sets of resources required by each subtransaction
are disjoint because a subtransaction runs only at one node.
Hehce there can not be a conflict. =

I1f a subtransactionr sends' a. message and another
receives it, a dependency is introduced ‘between them.
However, this dependency is embedded in the semantics of the
send and receive operations. In subsequent discussions, we
will assume that such intra-transaction dependencies are
automatically wupheld in any schedule and that two

subtransactions never end up in a deadlock, waiting for

messages from each other.
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Theorem 2:
Two transactions T,,T; e Il conflict only if there
exists a k.such that T,, and T,;, conflict.
Proof:
Since T, and T; conflict, there exists an action a in
T, and an action b in T, such that a < b. But we previously
~asserted that a < b 2 a and b occur at a single node. Let
that node be k. We have only one subtransaction of each
transaction at a node. Therefore, ae¢ Ty, and b e T;.
Hence, a < b = T,, conflict T;,. ®
Theorem 3: - |
Let S be a schédule for a set of transactiéns
accessing the DDB in which each node guarantees
striét local serializability. Then, commitment of
distributed transactions by the one-phase commit
protocol is a §ufficient condition for
serializability of S. |
Proof: |
» Since message delays in the network -are variable, the
subtransactions of a distributed transaction receive
"commit".messages at different clock times. Let
CLOCK(min(commit-T,;)) and CLOCK(méx(commit-T;)) denote the
earliest and latest clock times at which some subtfansaction
of T, committed. Thén, Yk, T,x € T, » CLOCK(min(commit-T,))
< CLOCK(commit-T,,)) < CLOCK(max(commit-T,)).
Assume that the dependency graph of S contains a cycle. Let

T,,T;,... T,,Ty be that cycle.
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Since (T,,T;) 'is an.edge in G, according to theorem 2, 3k
such that T,, and T,, conflict.
Since we have assumed strict local serializability,
CLOCK(cohmit—T,k) < CLOCK(b), where b.is some action in Toy .
i.e. CLOCK(min(commit-T,)) < CLOCK(b)
i.e.yCLOCK(min(commit—T,)) < CLOCK(min(commit-T.)). . \
We can extend the same arguments for each edge and finally
obtain |
CLOCK(min(commit-T,)) < CLOCK(min(commit-T,)}).... <
CLOCk(min(commié—T1)), which is impossible.
Hence there can not be a cycle in the graph and S is
serializable. =
This proof of serializability is similar to the proof
for two-phase locking [EGL76,TGG82]. The acyclic property of
the dependency graph is established based on clock values of
lcommit actions 1in the proof above. In two-phase locking,
this property is establishea based on the instant at which a

transaction holds all its locks.

3.3.1 Muitiple Copy Update

The concurrency control algorithm just described works
well for a strictly partitioned DDB. However, replication of
data needs special treatment. Since only frequently used
~data will be replicated at different nodes, transactions can
easily end up 1in a deadlock. Several solutions have been
proposed to the multiple copy update proglem. Some of them

are discussed below:
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Unanimous Update:

A read request is transformed into a read request
on a local coony (if available). A write request is
transformed into a set of write requests, one for each
copy of the replicated data. Unanimous acceptance of the
update by all the copies is necessary before any one of
them is updated. If p is the probability that one copy
is‘ available, then the probability of success of this

update strategy is p ** N, where N is the number of

copies. Hence, a write requeSt“is less likely to succeed

with multiple copies. Another disadvantage‘ of ‘this
method is that the deadlock freqguency is high. |
Single Primary Update:  |

One copy is designafed as‘primary and the remaining
copies are designéted as secondaries. Write requests
update the primary copy . which then propagates the.
changes to the secondaries. Updates sucéeed only 1f the
primary copy is available. Another“problem with this
solutiqn is' that the secondaries do not always cqntain

the most recent version of the data, resulting in

incorrect reads [Sto79].

Single‘primary-mgltiple backup:

This method is a variation of the previous
technique and it provides“greater resilienéy to
failures. Write requests update the primary as well as
the backups. When the primary fails, the first node in

the succession of béckups takes over [AlD76].
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4, Synchronous Voting:

Upon arrival of a transaction, the TM, if it haec

not already initiated voting on a previous transaction,
broadcasté a vote for itself to all other TMs. The TMs

send meséages to each other to establish a partial

ordering of nodes, which is then used as the basis for

conflict resolution at all nodes [Hol81].

7

5. Majority Consensus: /
/

An update succeeds only if it is accepted by a
majority of TMs. A version number is then assigned with
a particular iajority which agreéd on a set of updates,
Only one vcrsion can hold the majérity at one time. When
a node fails it causes a new majority to be elected.
Only a subset of the nodes, known as the ruling
majority, with the most recent version of the data, are
allowed to vote [Tho79]. LN
Any one of these protocols can ‘be“used “in the proposéd
model. The cﬁoiée depends ' upon the specific .design.
Primitives can be .defined at the “distribution layer
depending on the algdgithm selected. Multiple copy update
algorithms are often complei and difficult to verify
[Hol81,Sel81]. Primary copy update is probably a good idea,
since it is easy to implement.
;
3.3.2 Né?teq Transactions
It hag} so far been assumed that actions in a

transaction)’\&ike /read and write are atomic. In practice,
P _

————

4
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very few actions are atomic. It 1is preferable to have
actions performed directly by hardware which would make them
atomic (like a single instruction).- Even actions are
qpmpvgégﬁgﬁ a number of primitive steps and. what 1is an
étomlc actlon at one.level is a transactlon at another level
of - abstractl\h» This concept can be extended to the u---

\\

interface to include'Uyec\;ransactions which are nested to

. m S~
an arbitrary depth. » N e

- Moss has pL oposed an implementation of nested
transactions in a distributed system [Mos81]. His proposal
is the  basis for the new distributed computing language
Arqus, being developed ‘at MIT. ' His concurrency control
algorithm prdvides synchronization within a transaction and
serializes access to objectsiby two subtransactions of the
saﬁe trahsaction. Two—phase locking is used for concurrencf
control, with some changes to accommodate parent-child
relationships. Transactions possess a lock in two ways -
held and retained. A transaction holds a lock in é
particular mode if it has requested it. It retains a lock if
the lock is passed to the transaction by a child. The
locking rules are: i

. \
1. A transaction may hold a lock in write mode if no other

: \
transaction holds the 1lock (in any mode) and all
retainers of the 1lock are superiors of the requesting

'transactiqn. (

2. A transaction may hold a lock in read mode if no other

transaction holds the lock in write mode and all
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retainers of write locks are superiors of the requesting
transaction.

3. When a transaction aborts, all its locks (held and
retained, of all modesj are simply discarded. If any of"
its superiors hold or Petain the same lock, they
continue to do so, in the same mode as before the abort
[Mos81]. - " ‘

4, When a transactioﬁ commits, all .its " locks (held and,
retained, of all modes) are inherited by its parent (if
any). This means that the parent retains each of the
locks (in the same mode as the child held or retained
them) . )

In the last rule an union of some lock modes is performed.

The basic modes are ordered as shown below: . |

none < read < write.
parent's new retainea mode =
max( parent's bld_retéined mode,
child's retained mode,
child"s held mode ).

A transaction's held and retained modes are independent and

each" séparately obeys the rule that the mode never

decreases. Transaction management based on these rules is
complex and involves substantial messagé commgnicatiqns.

The proof ofbserializability establisheéﬁby Theorem 3
can easily be extended for a restrictéd casé of nested

transactions. Let NI = { T,,T,...T,} be a set of -

transactions. Each T; € 1l contains some actions and some’

\
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subtransactions, .whiéh in turn contain actions -and other
subtransactions. Each subtransaction runs entirekﬁpdat one
node. We will place the additional restriction that‘no two
descendents of a pérent run at a single node (see Chapter

The sets of entities acted upon’ by two' related
-traqsactions are ‘disjoint. Bach T; e Il is represented by an
xecution tree réflecting pafent—;hild relationships.

,The one-phase commit protocol for a nested transaction
is as follows: Each node.in the tree decides to enter the
commitment phase and sends a "ready fo commit" meésagé to
its parent only if - it. has received "ready to commit”
messagés from all its children; Thg coo}dinator (root node),
if it has received "ready to commit" méssage'from all its
children, commits the entiré transaction by sending "commit"
mességes directly to all.its descendents. Thesé messages éan
alsa be sent hierarchicaily down the tree. Since message
delays areﬂ Qariable but bounded, "all .subtransactions willl
eventually commite This protocol is vulnerable to failures.
More'phaées in the commitment.prdtdcoi are necessary to make
it resilieﬁt to failures. |

| £
Theorem 4:

Let S be a schedule for II. If each node' gquarantees

strict local serializability, the commitment of

]

nested transactions by one-phase commit pfotocol is
a sufficient condition for serializabilit. of S.

Proof:

—
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Identical to that of TheoremdB. L
Transactions in a hierarchical DDBMS are nested and obey the
restrictions mentioned before. This theorem establishes that
concurrencxﬁncontrol\in a hierarthical DDBMS is no different
from thétﬁinié system without hierarchy.

IfﬂEhewDDB haslan hierarchical intereonnection, the set
df entities known’to.a node | is ‘the nnion_ of such sets
known to its sons. Subtxinsactions at the node | create new
subtransactions at its -sdns. Since © th all operate on
disjoint sets of data, Theorem 4 can be applied to'establish
their‘serializability.

If two subgransactions are permitted to operate on
ove}lapping sets ofldpjects, dee ‘synChronization between
them is necessaf;t T™s wfil -hawegqﬁo ;know how two
subtr?nsqgeiine are related to each other’ A large number of
newf/problemS‘ af?’ pQ§ed like how conf];ﬂts are to be
defqned how a subtransactlon‘ anmd- its- dascendent should
communlcate and how the failure of a node is to be handled.
A compleue design of such a 'system is necessarily very
complex. | . S

Replicatien of data is not allowed‘between two DDBs in
the hiefarchy (see Chap:er 2). Otherwise, imagine that A and
B are two DDBs in the hierarchy that have cepies of a
~replicated data item. Two subtransactions of a'éransaction
started at the least common ancestor of these DDBs‘ can

cogjlict' at A or B..This 1ntroduces a dependency modeled by-

a directed graph (instead of a tree) and it is forbldden
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under the assumptions made before.

3.3.3 Loosely Coupled Systems

Let D, be a node that is- lopsely coupled ﬁo a
distributed database DDB,, resulting in DDBZ; Let T be a
transaction for DDB,. As défined in ( apter 2, the
subtransaction of T that .- executes at D, can be collapsed
into a single action ¢, which is commutative: By definition,
commutative actions never conflict because there 1is no
dependenéy between them.

Let T = { T,,T2, ... T, } be the set of transactions
accessing DDB2. Let S, = (A,,<;) be a schedule for II and let
A, be the set of all actions in Azéaﬁich occuf at node 1i.
Construcﬁ Sy = (A;,<;) where A, iS'themdifference of A, and
A;. There 1is no depéndency between actions in A, because
they are commutative. Hence <, = <,,. | ‘
Theorem 5:

S; is serializable iff S, i; serializable.
Proof:

N

The sets of nodes in the dependency- graphs of S, and S,

are- identical. (transactions in 1II). Since <y = <,, no new

dependency is introduced between transactions in II because

&

of actions in A,. Consequently, the sets of edges in in the v'

dépendency graphs of S, -and S; are also identical. Hence

these graphs are identical, ®

e
AT

looSely coupled system: Its implitation is that the}fab%

-0

e d

This theorem establishes concurrency control in- a o
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coupling of D, to DDB, does not affect concurrency control

in DDB;.

3.4 Summary |

In this Chapter; fwo fundamental existing algdrithms -
two-phase locking and timestamp ordering - are described. It
is proved that local serializability, together with commit
protocols; is a sufficient condition for global
serializability .in the pfoposed model. This proof is

‘extended for ' nested transactions and loosely coupled

systems,



Chapter. 4
Deadlock
| - g
4.1 Centralized Systems
Deadlock is a fundamental problem to' be addressed in
any. system of concurrent processes which require exclusive
access to shared resources. A well knéwn“'example is the
deadlock which ‘occurs in operating systeﬁé,lQhén}bhunks of
memory are allocated to processes. Considér two pfocesses P,
and P,, which have 20K bytes of memory allocated to them.
Suppose that the total memory available on the system is 64K
bytes and that both P, and P, request an additional 30K
bytes of memory each. Neither P, nor P, can be allocated the
requested memory, and in Jthe;absence of‘any?éfbitration,
these processes will waifﬁjfor ever. Ope}ating systems
usually have facilities to recognize and resolve such
conditions. In the example aﬁbve, one of the processes could
perhaps be swapped to disk, freeing its memory. )
' Similar situations arise in database systems, when
tfanséctions require exclusive acceés to stored entities.
Considerbtwo transactions T, and Tz acéive in the system. If
T, requests a cqnflicﬁing lock on an entity which is held by
T,, it is forced to wait until T, releases the lock. T, is
<= said to wait-for T,. Tzwjitgélf may be waiting for
anc*'.er transaction, and a dea@i?éf%ﬁ%ists if this wait-for
+. -actionship extends to a éyéfg%%%é;dlock situations can be

characterized by wait-for graphs [Hol72}. A wait-for graph

SOREN
e e
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is an immediate consequence of the dependency graph of a set
of transactions (see Chapter 3).
Let D = {E,,EQ,...E;} be the database and .

let I = {T,,T;,...7,} be the set of .transactions accessing
it. Two actions a- ¢ T, and a, € T, are said to conflict if
they both operate on the same data and one of them 1is a
‘write. This condition is usually detected by locking, where
a lock has to be obtained on an entity before én‘action can
use it. A transaction can request several such locks and
hence it can simultaneously wait for several transactions to
complete. ‘ |
The wait-for graph (also called the system graph) G(W,U) is

defined such that:

1. W {T(lT]fn}

2. U

{ (?,,T,) | T.,T; € 1 and (T, waits-for Ty) }°

A deadlock exists iff G does not contain a cycle [Hol72]}.

4.1.1 Basic Approaches to Deadlock Handling
" The three basic approaches to handle deadlocks are
prevention, avoidance and detection.

Prevention:

Prevention techniqués restrict the usage of resources in

éuch a way that deadlocks can not occur. One strategy is to

disallow dynamic resource requests - all the regources
: . .

needed are requested before a transaction is initiated. The

"system checks "to see- if all the resources reguested are

available;&lf not, the transaction is forced to wait until

-
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such a time. This means that the read and write sets of .a
transaction should be known in advance, a situation often
not possible in database systems.

Another prevention strategy is preempting a blocked
transaction when an active transaction requests a resource
held by 1it. The disadvantages of this approach are the
preemption of transactions even when there 1is no deadlock
and cyclic restaft. In cyclic restart, a transaction goes
through Several phases of preemption and restart, without
ever being completed.

| - Another prevention technique is to order the resources
and force all transactions to request the resources in the
éscending for. descending) - order. Essentially, each
transaction has a priority, whicﬁ is the rank of the highest
order resource it has.requested. A transaction is allowed to
wait for bnly higher priority transactjons.
AQoidance:
In évoidance techniques, advance information about resource
usage is used to control allocation such that there 1is at
least one way_ in which all transactions can complete. For
example, an avoidance technique suggested by Lomet [Lom79]
builds what is tefmed the potential wait—forlgraph using the
resources cléimed and resources held sets of all
transactions. The Pesodﬁces claimed set of a transaction
contains resources wﬁoée“use is anticipated in future. An
allocation 1is considered safe only if it does not create a

‘cycle in the potential wait-for graph.
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Detection:
Detection techniques allow transactions to make resource
requests freely. A resource, if it 1is available, s
allocated to the first transaction that reguests it.
Deadlocks are detected by building the wait-for graph., If
there 1is a «cycle 1in the graph, a victih is chosen and
aborted, thus breaking the cycle.
Associated with each transaction’ is a cost which
measures the overheads ‘involved in abor;ing it. When a
‘deadlock is found, the victim chosen is the transaction with
the least cost. When there are multiple cycles, a set of
transactions which will break the <cycles are chosen as
victims. Victims are always aborted and all resources held
o

by them are released. Isloor and Marsland have provided a

summary of these technigues [IsM80].

4.1.2 Probébility of Deadlock Occurrence

Let there be N transactions in the system, each
requiring r resources from an universe of R resources (r <<
R). Gray e}t al. [GHO80] used an empirical modél to show that
the probability of deadlock is equal to (N * r*) / (gﬂszf).
Their conclusions, based on thisﬁganalyéis and écfﬁal;M
observations, may be summarized by:
1. Probability fhat a. transaction exﬁeriences deadlock is

proportional to the degree of concurrency (N).

2. Waits rise as the second power of-transaction size.

3. Deadlocks rise as the fourth power of transaction size.

1
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4. Almost all deadlock cycles are of size 2 [GHO80].

4.2 Deadlock in Distributed Systems

The deadlock detection and prevention technfgues for
centralized systems can be extended for distributed systems
[Ma180,KKN83]. However, these solutions are very complex

because of the distribution'of control.

4.2.1 Detecti;n Techniques

In‘distributed systems, transactions running at several
nodes can find themselves deadlocked. A deadlock may exist
.in the system even if nb singleivnode can detect it. For
example, égnsidér\ two transactions T, and T.,, at nodes N,
aﬁd N, respectively. T, holds the é#clusivg lock on entity
e, at N,, and requests'the exclusive lo&k'on entity e, at
N,. T, holds the exclusive lock on e. and requests the lock
on e,. ﬁ?, and Tz are deadlocked, and controllers at N, and
N, will nﬁt be able to recognize it indépendently.

Each node constructs'a wait-for graph (calied the local
| graph) using transaction waiting conditions known to it. The
global wait-for graph (called the global graph) is the Un%?ﬁ}
of all local graphs. The drstributed deaalock detect;on‘
pr. olem is reduced to the problem of finding cycles in tﬁe
global graph. The existing distributed deadlock detéction
algbrithms can be classified according to how they construct:
this graph [KKN83]. The global grapﬁ;may be constructed at

one ' node, at all nodes, or partiélly constructed at each
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node. ‘

In the centralized methods [MeM79,Gra79,HoR82], one
nod- is elected:to detect distributed deadlocks.AEach node
resolves local deadlocks internally’ and reports wait-for
conditions of distributed transactiohs to the elected node,
vﬁhich constructs the global graph by merging local graphs.

Another solution [MaI80] involves coﬁstfuction-of the
global graph at all nodes. Local deadlocks are resolved
internally at each node and thgﬁ.global deadlocks are
recognized at all the nodes (since the wait-for conditions:
of distributed transactions are known to all nodes). An
event which can change the status of a distributed
transaction. (like an allocation or a reléase of a resource)
is communicated immediately to all 5ther nodes. The global
graph is maintained by incremental ch&nges. \

 Tﬁe message-passing deadlgck ]detection algorithms
belong' to the category in which the global graph 1is
partially constructed at each nodel In the original scheme |
proposed by Goldman [Gol77], a process is allowed to wait
‘fOr only one other resource and hence only one other
process. Suppose that process p; is waiting for process p..
P sends a mesSage (aiéo called a probe in this context) to
pz. If p., 1is active, it destrgys the message from p;.
Otherwise, if p, itself is waiting for another process, say
Ps, Pp: appends its name to the méssage from p: and éends it.
to p». If the message eventually reaches p, again, tﬂere is

a deadlock ~in the system. Actual details of implementation

N



69

and the férmat of the messages have been omitted here. The
major disadvéntages of tﬁis scheme are:
1. A process can wait for only one reéoufce at a
time. |
2. Several controllers can detect ' the same
deadlock, thereby complicating ;esolution}
Two solutions have been proposed [ChM82,JaV82]‘to remove the
first restriction. A d;tection technique based on the
partial construction of the global graph was proposed,by
Menasce and Muntz [MeM79]. However, it was shown to be
incorrect by Gligér and Shattuck [G1S80]. The improvement
suggested by Gligor and Shattuck wasdsubseqﬁéntly.lshown to
be incorregt by Tsai and Belford [TsB82].

The nature of the communication network introduces two
problems - Idetection of false deadlocks and delayed
detecgion of exiksting deadlocks. False deadlocks ;. are
detected when the conditions that caused the deadlock have,
changed duriné the construction of the global graph. For
example, a 'transaction might have been aborted, releasiﬁg
all its resqurceé; unknown to the detection algorithm, a
node may have érashed, aborting'all transactions that run
there,\ w

Periodic transmission of the local graphééigithe’reéson
for delayed deadlock detection. Incremental construction of
the graph [MaI80] reduces delays in deadlock detection.

Some detection techniques cbnsider_ the giobal graph

itself as a‘distributed"aatabaSe, cycle detection as a query
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and changes to the global graph as ypdate transactions.
Synchronization methods like timestamp. ordering are used
update the global graph. Based on thisﬁgpproach, several
variations are possible in the deadlock deteétion'algorithms

and a few have been proposed already [TsB82,KKN82].

4.2.2 Prevention Techniques

Time-outs and timeétamps are  the frequently wused
prevention technigues in distribpﬁed syétems. Time-outs are
used to revoke transaction—waitsﬁafter a predetermined time
interval. When a trénsaction makes a request, . the éystem
sets a timer for it with a specific value. The transaction
is aborted if tﬁe request 1is not granted before the timer
runs out. Though 1t 1is simple to implement, the basic
problem in this scheme 1is nﬁhe choice of the timé—out
interval. If it 1is toé high;';.deadlock may persist for a
long time. If it is too'sméll,-too ﬁgny"transactions will
getb aborted. When the system is congested,{atoo rmany.
transactions will be aborted and restarted, further adaing
to congestion. . n

Two methods, called wound-wait and wait-die have been
proposéd' [RSL78] for distributed deadlock prevention based
on timestamps. 'In botﬁ ‘methods, the priority 6f a.
transaction is determined byvitsyﬁﬁhestahp.,Wait—die is a
non-preemptive techniqu;. Suppose that a transacfion T,
tries to wait for T,. If T, is youngér than T, it is

permitted to wait. Otherwise, T, is aborted and is forced to
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restart. It is important that T, 1is not assigned a new
timestamp when it restarts. In the wound-wait technique, T,
is aliowed to wéit if it is older than T,. Otherwise, T, |is
aborted. Both wound-wait and wait-die avoid cyclic restarts.
An undesirable ﬁfoperty of wait;die system is that a
transac.ion which ‘dies may restart aca‘n :nd end up in the
same conflict which forced it to abort ;“v1ously. However,
it ‘has a desirable property that once a transaétion has.
obtained all the locks it needs, it willnnot be forced to
réstart. It has been suggested [RSL78] that wound—waif,

cpmbined with the knowledge of commitment of transactions,

" forces fewer restarts in total.

4.3 Deadlock Handling in the Proposed Model
Any of these deadlock prevention/detection strategies
can be used in the transaction management model proposed in

_Chapter. “Q) Some details unigque to this model are outlined
. iy S , . )

/fv below(. K
| /z/ﬁ/fh the proposéd model, a transaction T, never requests
Vaccess to. a remote entity.;  Rather, it creates. a
subtransaction, séy Ti1, ép tyé rémote node and communicates
the request to Ty,. T,, reads the entity and pegfofms thé

changes necessary. At each node Qe'ﬁave a set of independent
transacfions, some of wh@éh aré.active while the others are
waiting. Such a wait is called nesouncé—wait. Parent-child

relationships betweeq‘transactions introduces .a different -

type  of Waitingh’condition. This wait is called the

I



72

éession—wait [Gra?é]. In the example above, T, and T,, are
involved in a session-wait. Local deadlocks entirely
contained within a node are handled by the TM of the local
database machine (see Chapter 2). Local deadlocks are of the
form:
resource-wait->,...resource-wait->....resource-wait.
Global deadloéks involving multiple nodes are of the form:
-..resource-wait->....session-wait->resource-wait...
..~>resource-wait [Gra79].

Note that a basic assumption of the proposed model is that

_there are no deadlocks within a transaétién.gb
ﬁ The distribufion‘laygr at a node, say N,, is unaware.of
tﬁe waits-for felationshipé'between subt:ansactions at that
node. To obtain the waits-for information from the local T™,
Q%e distributioh layer invokes fhe following primitive:
wait-status(ll) returns(G,)
I is the set of all subtransactions (of distributed
-

transactions) running at N,. G, is called the Reduced Local

Graph (RLG) of N,, and is defined as follows:

G1(WIU):
W= {t|ten} |
U =

'{ (t,,tz)bl t1,;z'e Il and t, is reachable ‘from t,

| in the local graph af‘N, }
Note that G, is ‘acyclic,‘ since 'éll locél .deadidcks .are
resolved internally at a node. fhis méy cause a distributed
‘transaction to be“aborted in preference to a purely local

transaction..This is a disadvantage of the proposed model.
) o !
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Global deadlock is detected by merging RLGs from all

nodes. For example, in .centralized

methods, a node 1is

periodically elected to receive RLGs. The elected node glues

together the RLGs, looks fof cycles,
informs the nodes concerned.

A node may place restrictions
waits. %or example, it may’ assign
higher‘priority transactions to wait

transactions. -Such details are purely

'selects victims and

on (sub)transaction
priorities and forbid
for lower priority

internal to the nodei

However, if a subtransaction is allowed to wait for another,

it should be reported‘ when the wait-status primitive‘ié'.‘

invoked.-

v

graph is usually very sparse and that

Gray et al. [GHOB80] have hypothesized that the globalx

the probability of

deadlbcks_is Qery low.‘Hence,’they have advocated the use of

message-passing deadlock detection algorithms.

4.3.1 Hierarchical DDBMS m'%

As pointed out before, each ﬁgﬁe in the proposed model

can by itself be a DDBﬁé, This.pefmits the system to be

modeled by a tree whose nodes are the

‘DDBMSs. Each' DDBMS

resolves -deadlocks within it ihternally-and.cbnsEYUcts the

reduced local graph for subtransactions iﬁ%tiated by its -

parent. This graph is sent to the parent when requ..:ed (the

' wait-status prlmlt ve) .

A

The execuv' »n tree of a transaction corresponds to a

subset of the system structure. Suppose that there are two.,
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2 such that the deécendent of T, A waits

¥

transactions T, and
forv the descenden of T, atya DDBMS,  say d,,'and that the
deécendent of T, waits for the descendent of‘ T, at sqﬁe
other DDBMSL‘ say d,. T, and T, are deadlocked and this 
éeadlock’is défec éd by the least common ancestor of:d,; and-

- d, [HQR82,MeM78]. o o

a

Note agair/ that two descendents of a transaction never: ..
. . . e R i

reside at a/ single node. This prevents conflicts within a% +

y

transaction Howe%er, if general,purpose nested transactions - i<

are allowed without this Testriction, a\deédlockvcan develop
within a /transaction. One preposed solut{onw[MQEBT] to this. ..
’ ‘ O ‘ _ :

is an extension.of Goldman's &ié@?‘ s I .
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[Rie82] is well suited for ‘loo%ély‘ Spgpledu sy§g§m§;ﬁﬁf§gs
élgopithﬁ ‘aistinguishes betwééniﬁafdmic'.ana% ﬁoh—éﬁd@ib}?wﬁk:
: T S .
se;sions. When a transaction %nitiates a shbtfénséﬁtidh}ffigq~ R

is séid to be in an atomic s%;éion if;  |
¢ 1. Nol‘communidatiqﬂy is .necessary between them (n6 )”tE
‘send_; or: récei%é ’ primitive; within - - the |

M

subtransaction)

2. Commitment of the subtransaction is independent
- of its parent. L K : : o
. o - o o .\\‘ s . T ; ’
Otherwise} the session is:def%heiﬁtb be non-atomic.
- ‘ ; &

Let D; be .the .aaﬁabase’;loosgly“~coupled“ to the

distributed ,Eatgpase. DDB,,?~§¥;_pgfi?ééfini;ion of loosely
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4.4 Suy%ary

Déadlock detection and prevention 'techniques .in
centragized‘and distributed systems are deécribed in this
Qhapﬁér.“ These techniqhes are extended for the proposed

transdction management model.

A\



Chapter 5

3
N _Recovery
The aspects of rgcoverflﬁhiéh affect transaction. management
in the propoSedkwabdel are described in this Chapter.
Existing ‘pechniques can be wused in the deel without any
‘signrficant chénges. Hence, this Chapter contains only a
summary of thé published recoye}y techniques.
Reliability is often quoted as one of the major
advantages of a distributed system. However, it is only a 7

potential . advantage. There are several problems to be

overcome before the desifed reliability can be achieved. A /4

/

: —
variety of failures are. possible in a distributed system and

it deviates’bfrom its expecﬁed behavior when a failure
occurs. Depending op@ﬁ%e level of reliability desired, the
types of failures to be handled must be decided [Gar80]. The

, problém of recovery can be classified into 3 subproblems}

<

"

1. Termination of active transactions when a fgilure is
detected.

2. Continuvation of (possibly degradeq&“proceéﬁgng during .

the failure - D
s P . ’ ~',y""

3. Restart and resumption of normal prbcessﬁng_ after. the
v R . ‘ . R T 2. Ea B
: - A oo T .-
source of failure has been removed. ™ <* " e il
- : - Y AT : sy
The recovery protocols of centralized ' systems . will be
 described firstu ‘ ; ) -
" o @ﬁﬁQ & 7
N ‘ ’ ) ‘ e
A v . ,
. > &
-“\J“v ) oo
N o i
: _
‘g:ag, . _e‘_? .
s 3
K—% :‘i@c&? o el 7
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5.1 Centralized Systems ' )

The types of failures expected in a centralized system

‘

are:
1. Media failure:
A media failure occurs when an unrecoverable error is
detected in the file system. lfﬁg v
2. Transactionlfailure: |
A transaction failure occurs when it has to'be aborted“

'

because of- incorrect computations or invalid access

e

requests. o
3. System failure:

A system failure occurs when a serious grgor' occurs in

the system. An example ~ the failure ot“the processor,
Medla failures are usually. handled by lower- level protocols.
A layered architecture <can be used to construct reliable
flle systems [Ver77, Ver78 Ver79,Lam81]. Protocols supported
byy these models handﬁe medla failures 1nternally, without
‘the cooperatlon of the- transactlon management layer.

Transact1on and system failures affect the atom1c1ty of

transactions. The follow1ﬁg reco%iry protocols are commonly
., used to handle such failures [Gra79]. v | —

% ‘ . . ., -
Cohsisten;y‘Lock Protocol: -

"xansactlon Jcan be con51dered as a set of actions on

By / n,,\) ;n . .,
regover Je objects. An object is recoverable if. its state'

¢

be festored to some previous value. For example

2

databése ent1t1es are recoverable, while the” state of ‘a cash

dlspen51ng teller |is unrecoverable. A log (also called an

v



 tﬁe permanent memory. From the transaction's point of

79

audit-trail or a journal) is %Qgéle that records the history
of state changes to the database entities. Updates to the
database are recorded in the log, along with the identity of
the transaction that caused the change.

A transaction doés not directly update entities in the
bermanent memory. It changes onI& the copies stored 1in its
private workspace in Qolatiie memory. When a transaction
completes its c&mputations,'it requests whétz is known as

‘commitment. Commitment is a process that updates entities in

~\ f 5

véew,
cbmmitmeh£ is an unrecoverable, atomic action. Note.that the.
changes madeﬁby a transaction are hade known to others only
after its commitment.

If a transaction is aborted before  requesting

'ébmﬁitment, its actions are undone simply by discarding its .

private workspace and releasing all the locks held by it.
However, ‘once it requests cdmmitment, (phé system must

guarantee the failure atomicity of Gsmmibment; The

ard

Write

Ahead Log (WAL) protocol is used for this pufposéf 

WAL Protocol: .

Py

~ Before coﬁmitting a transactién; the systeﬁ posts a
his@orylof its updates to the log file and forces the log to
permanent _memofy (that ié,';t-is noé kept in the volatile
memory, waiting.to be transférred 52 disk) [Gra79]. WAL
implehehts the secufe—tﬁanéaction primitive déscribed in

Chapfer 2.

~
s



o
2

rdo not occur:. o C ECAR I
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Undo-Redo Protocol:

The commitment of a transaction procéeds in two successive
phases 4—x$i;st ‘the WAL.protocol, followed by actual.cﬁanges
in the database. vathe system crashes during phase 1, the
transaction is aborted and any entries correspbnding to it
in the 1log are ignored. If the system“égashes_during phase
2, partially completed updates are undbne and phase 2 of the
commitment is carried out from the beginning [Gra79]. .

Checkpoints:

.. A checkpoint is a system state when no transaction is

active. Hence, it represénts a consistent snapshot of the
system state. The system forces‘checkpoints of its state
'periodically. Technigues are available to record checkpoints

while transactions are still active [Ver78,Kus82], by

relaxing the condition mentioned above. Checkpoints are

: ) . i .
usually recorded in the log file with sufficient information

to restore the system, state [McD81]. Restart protocols scan

R

the 1log from the latest checkboint‘to identify partially .

completed transactions. g . R

:

5.2 Issues. in Distributed Systems

We deal with the distributed'sYSﬁem at .a high level of.

"

abstraction’ and assume.that the follpﬁiﬁg$the§‘3¥_failgfés:'

R R -
¢ - R LN
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1. No malevolent failures: . -

A node does not act maliciously;éi%}always follows the
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No undetected failures:

The existence of a very reliable virtual network, like

The

repo

: 1nto

comm

one

Wusyst

5. 2

B

}.L

'ﬁmay

the RelNet of SDD-1 [HaS80,BRS80], is assumed. Such a°

network detects all system failures and reports them to
higher levels (the RelNet goes a step further and
supports facilities like the‘global clock and guarantaed
message delivery). A deéign based on such a network has
been stfongly.advocated [HaSB80] for systems with high
reliability requirements.
No communication failures:
The network is very reliable and is assumed to sagisfy
the message tfa 3misi;9ﬁ/§roperties_outlined in'Chapter
2 tGarBO].

following types of failures have been addressed an this
rt: ‘ I L o . | '

1. Transaction failures. = -&x. .
* . R

ﬂpwo or more disjoint groups such “na
S 1 is
R

unlcate only within its group. Network

of the severest dlsasters that can befall a glst:'buted
. - j )

em [AlD76]. ' g

1 Termlnatlon Protocols -

A dlsurlbuted transactlan executes at several nodes and

changel the states of databases at these nodes. Several

¢
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failures _are possible“furing its processing. For example, a

subtranscction may fail or a node may crash. To preserve the-

consistency of the database, it 1is essential that  the
transaction be terminated uniformly at all the nodegfﬁfThét
is; all subtransactions of a transaction commit.or all of
them abort. Two—phasé'commit is the standard protocol that

is used to bring about such a decision.

Two~phase Commit Protocol:
The node at which a transaction originated is usually
selected as the coordinator for the protocol. Each

subtransaction, - when it has completed 1its work, sends a
"completed" message to the coordinator...., The protocol
proceeds according to the following steps:

1. .ﬁhen the coordinator has received "completed"-méssages
from all subtransactions, it sends "preparel ﬁo commit"
ﬁessages ‘to all of them. If any subtranSacpioh had
failed, the coordinato; recognizes this 'conditibn ana

“ sends "abort" messages to all of them.

3 :
2.g~Eéch subtransaction receives  the ‘"prepare to commit"
\\,’ ‘ ; 5" > A' . . X L
5essage and records i%gu updates in the 1log file

WA

(secure-transact ioh primitive and the WAL protocol) and

sends a "prepared" message to the coordinator. If for.

any reason, a subtransaction chooses to abort, it sends
"a "abqg;" message instead.
A o o

3. The coordinator, if it has received "prepared" messages

e

from all subtransactions, sends "commit" messages to all

- of them. Otherwise, it sends "abo:@ﬁ messages.

-t
Ny
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~
4, BEBach subtransaction commits 1its results after it

receives the "commit" mes%%ge from the coordinator
[Gra79,Lam81]. ” »
 The pfotocol is called "two-phase" because of the tho
~distinct states of a subtranSacfionrduring its commitment.
The first phase extends from +the time a subtr nsactidn
completes till the time_it receives the "prepare to com%it“
‘message. The second phase exists between the instants at
which it receives the ‘"prepare to commit" and "commit"
messageé. It is eésy to see that_the‘ protocol c&nsistently
termin;tes the sﬁbtransactions. in the absence of any
failures. Suppose that'the coordinatof or a subtransaction
failed duringi;the first phase. Other nodes can detect this
condition and switch to "abort" independently. |

If a subtransadtioh had failed during the second phase,
it can not reaéh a decision about commitment when it
réStarts. It either has to talk to the coordinator or one of
the subtransactions to find out the decision taken.

If the .coordiﬁato? fails: during phase tgo,vwe have
additional problemé. For example, ‘it may have sent "commit"

messages to some but not all subtransactions. A

subtransaction which has not received the "commit" message

has the following options:

1. Talk _to other sgbtransactigf ;

any one of them has receit&?

message. If so, commit the “subtransaction.
- i A 3 - : \ .

Otherwise wait tilaéghe,coordinator restarts.

©
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2. Wait till the coordinator recovers.

The first option involves additional communications and
forbids independent “recovery. Independent recoveryn of a
subtransaction is the process by which it can reach a
decision soleiy based on its current state, without talking
to other subtransactions [SkS81]. The skcond option is said
Lo be‘a,"blocking; option; it forces an bpera%ional node to

wait for a failed node [SksS81]. |
The second phase of the two-phase coﬁmit'protocol'is
called the "in-doubt area"™ [Bal81] or the "window of
uncerta&nty?;LCooBZ]i It is'possible to introduce additional
phases in the ﬁgmmit' protoc017}t6. reduce the .window ,pf
'uncertainty. Skeen [Ske81,SkS81] used a formal médel of
transéction commitment to show that any number of phases in

the .protocdl‘w{ll nogrmake‘it non-blocking to ultiAle‘ﬂtwo

or more) node failures or network partitions.
A large - number of commitment ‘protocols begn
proposed in literature. Some of them are variations of 't

two-phase commit protocol while the Others try to handle a

E)

specific ‘¥4ilure with procedures that involve ex&%?sive
~ overheadj ghring normal processing.
e ' : .
Distributed Checkpointing: SR

Distributed checkpointing is used to roll back”thes
entire system to an earlier consistent state. A system wide

roll~backA may be necébsary to recover from a catastrophe. A
related problem is the identification of recovery lines in a

: g ‘
system of- concurrent pfocesses. Eacngf these processes sets

.

=32
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 its %checkpoints' independently. A recovery line is a.gét of
‘checkpoints, one ‘at each process, such .that no single
tranSaétion initiated by a process is active before and
- after these checkpqints._ A number of algorith@s alreaay 
Aexist for»h_gis{ributed checkpbinting and detection of

recovery lines [Fer81,FGL82,Kus82,McD81,RLT78,TKN81]..

'5L2.2‘Processing during failures
Since the components of a DDBMS- have independent
failure modes, failure of a node should not seriously affect

the functioning of operational nodes. For example, a -

-
T

°ftfahsakfﬁon should never be delayed because of failures
unless the only copy of data requested by it 'resides in a .
failed node. In case of partitioning, at least one partition

shéu&@lbe allowed to proceed. Some -sblutions-’havé¢fbeen

o

suggested [DaG81;BhaB82] for transaction proéessing dYring

faildres. . , o |
The research on  distributed recovery has Lbeen
s ’ ’ :

concent%aféd on termination protocéls. Existing sblutioﬂ§ to
: transaéﬁidﬁ wpro;essing during failures are application
depenaent,anugye nét general. We§ éuggést ghat a'\féfﬁal
" model be deQeioped for distributed transaétion processing

during failures, one which includes single and multiple node

failures and network,pgrtitioﬁing.



5.2.3 Hierarchical and‘loosely coupled systems

The two-phase commit’ protocol can easily be extended
for a tree of transactions in a hierarchical DDBMS. If the
transaction at the root of a’ tree knows abour all its

descendents, no changes are necessary to the protocol. If

the messages always flow down the tree, a "1 change is
necessary. A node sends the "comple "prepared™
meséages of the protocol to 1its paren. if it has

received such messages from all 1its sons; it sends the

"prebared to commit" and "commit" messages of the prgtocol

to 511‘ its sons when it receives these messages f r ot its
. ' S .

parent.
So- far, there has not been a necessity for commitment

and recovery protocols for a tree of transactions. Hence, no

work seemS':f-V
B Y 5

_problems of these protocols. The
problems of j'ff;‘ \ _i y coupled systems 1nclude thel
generatlon andaproce551ng of oensatlng transactlons. AFor

'example, a compensating transavt1on 1tse1f may fall forcing"

retries. This area needs further study.
5.3 Summary
Failure and recovery aspects oﬁ"transaction 'management

are- outlined .in this Chapter. The.protocols‘ior ensuring

failure atomicity of transactions in.

&3

of ’adlstrlbuted

3

described first. Failure- atomidtpy

" transactions is achieved by termination protocols and.

Y . y ! . ' 2

\\ S " ' ' - N S B . e

been reported about the potential

:allzed,systems are



descriptions of some of them are also given.

87



.

Chapter 6

Conclusions
A model for distributed transaction management has been ;
proposed 1in this thesis. The concurrency controi problem for
distfibuted database :systems was partitiohed into 3
subprdbléms - serializability, multiple copy update and
deadlock . detection. -A major effort Qas ‘devoted to .
establishing the syncﬁfonizatiqn'atomicity of a t;ansactidn,
based on this property of its subtransactiohé; Existing

; ; .

~solutions for multiple copy upéate and deadlock deteation
were adapted to make the solution compléte. '

The essential aifferencé between the proposed model and
éxistihg- ones is the synchronization-technique. Existing
models ‘establisﬁ the synchronization atomicity of a
.transaction basgd on the atomicity of the actions. Whereas,
the proposed model establishes the same, based on the
atomicity of subtransactions. This feature was shown to be
the baéis'ﬁor the extensions to the transaction’ concept to
support nested and commutable: transactions.

Since a t:ansaction\is divided'into subtransactions, a
natural vexfension will be the division|o£ subtransactions
into further sqbtrahsactions and so on, resulting in a
nestec t-ansaction. A nested transaction can be modeled by
its execution tree. The synchronizationJatomicity of a node
in the tree is derived based on this property of its sons.

This has also .been-called the multi-level atomicity problem

in the literature [BeR81].

88
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The proposed model was extended for a restricted case
of nested transactions. This extension was shoWwn to support

a hierarchical nDDBMS. Current sysfems assume full
'connéct}“.y between 'component databaseSuvin a DDB. The
hierarchic ; DDBMS‘grodps fhe components into clusters and
the clusters are connected in the form of a tree.

The other extension of the model was termed "loosely
coupled systems". The potion of commutablénsubtransactions‘
was used as the bésis for defining the lpose‘coupling of a
node to a DDB. *

. The transaction concept is being extendea for
non—database, théfal purpose distributed_“compufing
[Li582,5p583].‘The nodes‘.of‘ the distributed . system are
assumed tb support some objects and procedures that
manipulate these objects (abstract  data | types). We
hypothesize that the prgposed model, with its extension to
nestéd and commutable transactions, can be used to advantage
in such a system. - y
6.1 Suggestions for future work
1. The tree model for DDBMSs can be extended to a g?aph.
The DDBMS can be thought of as a network of transactlon
processors and the structure of the graph is determined
by the entities known to each transaction processof. Fér
example, if the structure is a directed acyciic‘ graph,

the set of entities known to a node may be the union of

all such sets reachable from this node. The notion of
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nested transactions is cloaaly related to this model and
as - shown in. Chapter 3, synchronization within a
transaation may be necessary. .

TWo implenentation'techniques have been proposed for
anpporting nested transactions. The first is based on
two-phase locking [M0581] and the seCond is based on

timestamps and multi-version objects [Ree83]. These

.proposals can be extended. For example, Moss' proposal

[Mos81] severely restricts communications between
subtransactions and this restriction can be removed , (by
checkpointing a transaction; one has to read his

-

proposal before understanding the connection between'

i

checkpoints and communications).
So far, we have assumed ‘that a\tfansaction typically
runs for a few seconds or minutes. However, transactions
which run fo * days' instead of mlnutes can be expected'
\

[Gra81]. ' Such transactions are very vulnerable to
\failures and the costs of aborting/restarting them are
very higna A single transaction can be| made more
reliable ‘by introducing checkpdinﬁs within it; The
1mplementat10n of such checkpoints and the asSociated,~
problem of finding recovery. lines can be handled by the
distribution layer. This problem needs further study.

No general technique exists for the generation of

compensatinc transactions. While the semantics of

recovery in lo.oely :ouoled ’syStems has been pointed

. out, the procesliures were not described. This area needs
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further study.

Oonly some straightforward extensions of existing

deadlock detection algorithms and commit protocols for a

_hierarchical DDBMS have been described in this thesis.

More sophisticated techniques may be'necessary.



[A1D76]
[ALS78]

[Bad79]

[Bal81]

[BBD82]

[Bes78]
[ﬁRssol

[BeG81]

[BeG82]

[BeR81]

[Bha82]

References

Alsberg, P. A. and Day, J. D., A Principle of
Resilient Sharing of Distributed Resources, Proc.
Int. Conf. on Software Eng. , - San Francisco,

Calif., Oct 1976, 562-570.

Anderson, T;, Lee, P. A. and Shrivastava, S. K., A
Model of Recoverability in Multi-level Systems,
IEEE Trans. on Software Eng. SE-4, 6 (Nov. 1978),.

- 486-494.

Badal, D. Z., Correctness of Concurrency Control
and ‘implications in Distributed Databases, Proc.
IEEE COMPSAC, Chicago, 19709. .

Balter, R., Selection éf Commitment and Recovery

Mechanism for a Distributed Transaction System,

IEEE Symp. on Reljability in Distributed Software

arnd Database Systems, Pittsburgh, Penn., June 1981.
y - , .

Balter, R., Berard, P. and Decitree, P., Why
Concurrency Control in Distributed Systems is more

fundamental than Deadlock Management, ACM SIGOPS

Symp. on Principles .of Distributed Computing,
Ottawa, Canada, Aug 1982,

Bernstein, P. A. and Shipman, D. W., A formal model.

of concurrency control mechanisms for Database
Systems, Proc. 3rd Berkeley Workshop on Distributed
Data Management and Computer Networks, Aug. 1978 .

Bernstein, P. A., Rothnie, J. and Shipman, D. W.,
The Concurrency Control  mechanism. of SDD-1: A
system for Distributed Databases, ACM  Trans.
Database Systems 5, 1 (March 1980), 18-25. ‘

Bernstein, P. A. and Goodman, N., Concurrency .

Control in Distributed Database Systems, Computing
Surveys 12, 2 (June 1981), 185-221. :

Bernstein, P. A. and Goodman, N., A sophisticate's
introduction to Distributed Database Concurrency
Control, Proc. 8th Int. conf. on Very Large
Databases , Mexico City, Sept. 1982.

Best, E. and Randell, B.,‘Formal-model of atomicity
in Asynchronous Systems, Acta Inf. 16, (1981), 93-

124.

Bhargava, B., Optimistic Concurrency Control
approach to’Distributed Databases, Proc. IEEE Symp.

" on Relie~ility in Distributed Software and Database

92



- Systems, Pittsburgh, PA, Jufé 1982,

[Bor81]
[BrL82z}
[BMRSZ]

¢

[CFﬂBZ]

'iChmszﬁ

——
s
~
99)
~J
.
[

[CoB79]

[CooBZj

[paG81]

[Dav73]

[Dee8 1]

93

.3_

Borr, A., Transaction' Monitoring. in Encompass:
Reliable Distributed . Transaction Processing
System, Proc. 7th Int. Conf. on Very Large Data
Bases, Cannes, France, Sept 1981. :
a \ N
Breitwiese®¥, H. and Leszak, M., A Distributed
Transaction Processing protocol based on Majority
Consensus, ACM SIGOPS Symp. onh Pr nciples - of
Distributed Computing, Ottawa, Canada, Aug. 1982. -

Brownbridge, D. R., Marshall, L. F. and Randell,
B., The Newcastle Connection or UNIXes ©o he World
Unite, SoftwarePractice & Experience 12, (1982),
1147-1162. .

Chan, A., Fox, S., Lin, W. K., Nori, A. and * =,
D.. The implementation of an integrated Concu-rency
Control and Recovery Scheme, ACM SIGMOD In: . Conf.
on Management of Data, Orlando, ®lorida, June 1982

Chandy, K. M. and Misra, ~J., An algorithm for
Detecting Resource Deadlocks in Distributed
Systems, ACM SIGOPS Symp. on Principles of
Distributed Computing, Ottawa, Canada, Aug 1282.

Coffman, E. G. and Denning, P. J., in Operating
Systems Theory, Prentice Hall Inc., 1973. <

Colliat, G. and Bachman, C., Commitment in a

Distributed Database, in Database Architecture,
Bracchi, G. and Nijjsen, G. M. (ed.), North-
Holland, 1979. -

Cooper, E. C.,- Analysis of Distributed* Commit
Protocols, ACM SIGMOD Int. Conf. on Management of

Data , Orlando, Florida, June 1982.

Davidson, S. B. and Garcia-Molina, H., Protocols
for Partitioned Distributed Database Systems, IEEE
Symp. on Reliability in Distributed Software and
Database -Systems, Pittsburgh, Penn., June 1981.

Davies, C. T., Recovery Semantics for a DB/DC
System, Proc. ACM National Conference, Atlanta,
1973. . .

Deen, S., Architecture of Distributed Database
Systems, in Distributed Data Sharing Systems, Riet,
R. P. V. D. and Litwin, W. (ed.), North Holland,



[DERS2]

[D;seol

[EGL76]

a

.[Fer81}
[FGL82]
[?grBO]
[Gaw82]

[G1s80]

[Gol77].

[Gra78]

[GHO80]

fGraBO]

[Gra81] "
. Limitations, Pr&c. 7th Int. Conf. on Very Large

94

Devor, C., Elmasni, R. and Ra} i, S., The design

- of DDTS: A ‘testbed for reliable Distributed

Database Management, Proc. 2nd Int. conf. on
Reliability im Distributed Software and Database
Systems, Pittsburgh, PA, July 1982.

Dijkstra, E. W. D. and Scholten, C. S., Termination
Detection for Diffusing Computations, Inf. Proc.
Letters 11, 1 (Aug 1980), 1-4. :

Eswaran, K. P., Gray, &. N., Lorie, R. A. and
Tfraiger,. 1. L., The notions of Consistency and
Predicate Locks i1 a Database System, Com. . 4CM 19,

- 11 (Nov. 1976), 624-633.

Ferran, G., Dictributel Checkpointing in a
Distritised .:Data Management System, IEEE Symp. on
Realtime &) stems, 1981,

Fis her, M. J., sriffeth, N, D. and Lynch, N. A;,
Global States of a Distributed System, IEEE Trans.
cn Seftwar - [og. SE-8, 3 (July 1982). . S

Gérgia—Mo’:na, H., Reliability Issues for

‘Ccmpleteiy Replicated Distributed Databases, Proc.

IEEE fFall COMPCON, 1980.

"Ga¥cia-Molina, H. and Wiederhold, G., Read—oniy

Transactions -in a Distributed Database System., ACM

‘Trans.ﬁDatabase Syvstems 7, 2 (June 1982), 209-234.:

Gligor, V. D.-and Shattuck, S., On Detect.on of
Deadlocks in Di.tributed Systems, IEEE Trans. on
Software Eng. SE-6, 4 (Sept 1980), 435-440. -

Gofdman, B., -Deadlock  fDetection in Computer
Networks, Tech. Rep.-MIT/LCS/Tech. Rep.-185, Lab of
Computer Science, Sept 1977.°

Gray,.J.’N., Notes op Database ‘Operating Systeméi
in Operating Systems: An Advanced Course, Springer
Verlag, 1878, 393-481.

Gray, J., Homan, R., Obermarck, R. and Korth, H., A
Straw, Man Analysis of Probability of Waiting and
Deadlock, IBM Research Report RJ3066(38112), San

" Jose,Ca, 1980. A ,

Gréy,'J. N., A Transaction Model, 1in Automata,
Languages and Programming , Springer Verlag, 1980,
282-298 . . ' ,

Gray, J. N., The Transaction Concept: Virtues and



[GrMB1]
[H;séol
[Hor821] -
[Hol§77\\
[Hol72]
[1sM80]

[Jav82]

[KKN83]

[Kus82]

[Lam78]

95

Data Bases, Cannes, France, Sept 1981.

Gray, J. and McJones, P., The Recovery Manager of
the System: R Database Manager, Comput ing Surveys
13, '2 (June 1981), 223-242.

Hammer, M. and Shipman, D., Relinbility Mechanisms
for SDD-1: A System for Distributed Databases, ACM
Traris. Database Systems 5, 4 (Dec 1980), 431-466.

Ho, G. S. and Ramamoorthy, C. V., Protocols for
Deadlock Detection 1in Distributed Database Systems,
IEEE Trans. on Software Eng. SE-8, 6 (Nov 1982).

Holler, ,E., Mulfiple Copy Update , in Distributed
Systems: Architecture and Implementat ion, Springer
Verlag, 1981. ‘

HQlt,‘R. C., Some Deadlock Properties of Compute~
Systems, Computing Surveys 4, (Sept. 1972), 179
196. : :

Isloor, S. S..and Marsland, T. A., The Deadlock
Problem:- An Overview, Computer, Sept 1980, 58-77.

Jagannathan, .. R. and vasudevan, R., A Distributed
Deadlock Detection and  Resoultion Scheme:
performance Study , 3rd Iiit. Conf. on Distributed
Computer Systems, Ft. Lauderdale, Fla., Oct. 1982,

Korth, H., Krishnamurthy, R., Nigam, A. and
Robinson, J. T., A framework for understanding
Distributed Deadlock (Detection) algorithms, ACM
SIGACT-SIGMOD  Symp. on Principles of Database
Systems, Atlanta , 1983. '

Kuss, H., On Totally Ordering Checkpoints in
Distributed Databases, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Orlando, Florida, June 1982.

Lamport, L., Time, Clocks and Ordering of Events in

a Distributed System , Comm. ACM 21, 17 (July

11978), 558-565.

[Lam81]

[LeL79]

[LeL80]

Lampson, B. W., Atomic Transactions, in Distributed
Systems: Architecture and Implementation, Springer.
Verlag, 1981, 246-265.

LeLann, G., An Analysis of Different Aﬁproaches to
Distributed Computing, Proc. 1st Int. Conf. on
Distributed Comupter Systems, Huntsville, - Alabama,
1979. ‘

LeLann, G., Consistency, ,Synchronization and



oot

[LeL81]

(Lin80]

[Lis79]

<[Lf58i]

[Lom79]

.[Ma180]

[McD81]

[MeM79]

[MosS1]

[Mun79]

[Ran75]

[RLT78]

96

Concurrency Control, in Distvibufed Databases,
Draffan, I. W., and Poole, F. (ed.), Cambridge
University Press, Sheffield, England, 1980.

Leung, J. Y. and Lei, "E. K., On minimum 4cost
Recovery from System Deadlock, IEEE Trans. on

.Computers C-28, 9 (Sept 1981), 671-677.

Lindsay; B. G., Single and Multi Site Reéovery
Facilities, 1in Distributed Databases, Draffan, 1I.
W. and Poole, F. (ed.), Cambridgde University Press,
1980.

Liskov, B., Primitives for Distributed Computing,
Proc. 9th Symp. on Openatlng System Prin., Pacific
Grov., A, 1979, .

LiskoQ, B., On Linguistic Support for Distributed
Programs, IEEE Tnans on Software Eng. SE-8, 3

'(July 1981).

Lomet, D. B., Coping with Deadlock- in Distributed
Systems, in Database Architecture, Bracchi, G. and
Nijjsen, G. M. (ed.), North-Holland, 1979.

Marsland, T. A. and 1Isloor, §S., Detection of
Deadlocks in Distributed Database Systems, INFOR -
18, 1 (Feb. 1980). . ;

McDermia, Ji A., Chegkpointing and error Recovery
in Distributed ’Sys%émgi,_PFEE?\ 2nd Int. Conf. on
Distributed Systems, 1981. 7 , ‘ '

Menasce, D. and Muntz, R., Locking and Deadlock

Detection 1in Distributed Databases, IEEE Trans. on
Software Eng. SE-5, 2 (May 1979), 195-202.

Moss, J. E. B., Nested Transactions: An Approach to
Reliablé Distributed Computirng, = MIT/LCS/Tech.
Rep.-26, MIT Lab. for Computer Science, Cambridge,
Mass., April 1981 . ‘

Munz, R., Gross Architecture of the Distributed
System ‘VDN , in Database Architecture, Bracchi, G.
and Nijjsen, G.-M. (ed.), North Holland, 1979.

Randell, B., System Structure for Software Fault
Tolerance, IEEE Trans. on Software Eng. SE-1, 3
(June 1875), 220-232. ‘ '

|
1

Randell, B., Lee, P. A. and Treleaven, P. C.,
Reliability Issues in Computing Systems Design,
Comput ing Surveys 10, 2 (June 1978), 123-165.

-



N

~3
[ReS81]

[ReeB83]
[ReuB 1]
[RiS77]
[RiS79]
[Ris82]

[RSL78]

[RBF80]

[sch78]

[sch79]

'[sel80]

[Shr81]

[ShP82]

97

Reed, D. and Svobodova, L., Swallow: A Distributed
Data Storage System for a Local Network, in Local
Networks for Computer Communications, West, A. and
Janson, P. (ed.), North Holland, 1981, 355-373.
Reed, D., Implementing Atomic Actions . on
Decentralized Data, ACM Trans. Computer Systems 1,
1 (Feb. 1983), '
Reuter, A., Recovery Architecture for Database
Systems, Proc 6th ACM European Regional Conf. on
Systems Architecture, 1981.

Ries, D. and Stonebraker, M., Effects of Locking
Granularity in Database System, ACM Trans. Database
Systems 2, 3 (Sept. 1977), 233-246.

Ries, D. and Stonebraker, M., Locking Granularity
Revisited, ACM Trans. Database Systems 4, 2 (June
1979),- 210-227. '

Ries, D. R. and Smith, G. d(, Nested Transactions -
in Distributed Systems, IEEE Trans. on Software
Eng. SE-8, 3 (July 1982).

Rosenkratz, D.wJ., Sterns, R. E. and Lewis, P. M.,
System level Concurrency Control for Distributed
Database Systems , ACM Trans. Database Systems 3,
2 (June 1978), 178-198.

Rothnie, J. B., Bernstein, P. A., Fox, S., Goodman,
N. and Hammer, M., Introduction to a System for
Distributed Databases (SDD-1), ACM Trans. Database
Systems 5, 1 (March 1980), 1-17.

Schlageter, G., Process Synchronization iﬂ'Database
Systems, ACM Trans. Database Systems 3, (1978).

Schlageter, G., Enhancement of Concurrency in
Database Systems by. the Use of Special Rollback -
methods, in Database Architecture, Bracchi, G. and
Nijjsen, G. M. (ed.), North Holland, 1979.

Selinger, P., Replicated Data , in Distributed
Databases, Draffan, 1. W. and Poole, F. (ed.),
Cambridge University Press, 1980.

Shrivastava, S. K., Structuring Distributed Systems
for Recoverability and Crash Resistance, IEEE
Trans. on Software Eng. SE-7, 4 (July 1981 ), 436-
447. .

Shrivastava, S. K. and Panzieri, F., The Design of

‘a Reliable Remote Procedure Call Mechanism, IEEE



[Sksa1J

[SkeB81]

[smB81]
‘ /(;paBO]

[sps83]

[Sto79]
[Sto80]
{T£o79]‘
[Tos81]
[TGG82]

[TsB82]

[TKN81]

W

\

98 -

Trans. on Computera C—31 7 -(July 1982), 692-697.

Skeen, D. and Stonebraker, M., A Formal Model of
Crash Recovery .in Distributed Systems, Memo UCB/ERL
M80/48, Electronics Research ' Lab., Univ.
Callfornla, Berkeley, 1981. . '

Skeen, D., Non-blocking Commit Protocols , ACM
SIGMOD Int. Conf. on Management of Data , 1981,
133-141. :

smith, J. A. and Bernstein, P. A., 'Multibase:
Integrating Heterogeneous Distributed Database
Systems, PPOC AFIPS Conf., 1981.

Spaccapletra, S., " Heterogeneous Database
Distribution, in Distributed Databases, Draffan, I.
W. and Poole, F. (ed.), Cambridge Unlver51ty Press,
Cambridge, England, 1980.

_ v
Spector, - A. and Schwarz, P., . Transactions: A
Construct for Rellable~lDlstr1buted Computing,
SIGOPS Review 17, 2 (April 1983), .

Stonebraker, M., aneurrency Control and
Consistency of Multiple Copies of Distributed

~ INGRES , IEEE Trans. on Software Eng. SE-5 , 3

(May 1979).

Stonebraker, M., Homogeneous Distributed Database
Systems, in Distributed Databases, Draffan, I. W.
and Poole, F. (ed.), Cambridge - University - Press,
Cambridge, England, 1980.

Thomas, R. H., A Majority Consensus approach to
Concurrency Control for Multiple copy Databases,
ACM Trans. Database Systems g, 2 (June 1979), 180~
209

Toan, N. G. and Sergeant, G.,  Distributed
Architecture and Decentralized Control for a Local
Network Database System, Proc. ACM European
Conf. on Systems Archztecture, 1981.

~Traiger, I. L.,- Gray, Jes, "Galtieri, C. A. and

Lindsay, B. G. ~Transactions and Consistency in -
Distributed D tabase Systems, ACM Trans. Database
Systems 7 %;(Sept 1932), 323-342.

ford, G. G., Detecting Deadlocks in:
System, Proc. of IEEE INFOCDM Los

kgsuruka,‘xw Kaneko, A. and Nishihara, Y., Dynamic

)



[ul182]
"[Ver77]
[Veer]

_[Ver79]

[ving81]

[Wat81]

99

Recovery Schehes for Distributed Processés, IEEE
Symp. on Reliability in Distributed Software and
Database Systems, Pittsburgh, Penn., June 1981,

.Ullman, J. D., in Priciples of Database Systems,

1982, Computer Science Press.

Verhotstad, J. S. M., Recovery.and Crash Resistance

'in a Filidg System, ACM SIGMOD 1Int. Conf. on

Management of Data, Toronto, Canada, 1977.
- 4

Verhofsfad, J. S. M., Recovery Technidues for
Database Systems, Computing Surveys 10, 2 (June
1978), 167-195.° . -

Verhofstad, J. S. M., Recovery Based on Types, in
Database Architecture, Bracchi, G. and Nijjsen, G.

. M. (ed.), North Holland, 1979.

Vines, D. H., A Dataflow Solution to Implementing
Distributed Queries , Proc. 6th Berkeley workshop
on Distributed Data - Management and  Computer
Networks , Berkeley, Calif. , 1981. p

Watson, R. W., Distributed System Architecture
Model, in Distributed Systems: Architecture and

Implementation, Springer Verlag, 1981, 10-43.

Al



Appendix ‘
Symbols and Notations
veeu..... there exists ‘ ’J

e logical and

.. for all

X Q> e

seveee.. CrOSS proéuct ' R
K cereraees élement of
- I;....... Cardinaiity of a set
-CT~l....... Compensating Transaction
T veennnn. Transactién Manager
lDM ,....;.. Data‘Managér
BMu...,.... Buffer Manager

i

DBMS ...... Data BasewManagement System f
i

DDBMS ..... Distributed DBMS J

DDB ........ Distributed Data Base .
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