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Abstract

The Helmholtz equation is a fundamental wave propagation model in the time-harmonic

setting, which appears in many applications such as electromagnetics, geophysics, and ocean

acoustics. It is challenging and computationally expensive to solve due to (1) its highly

oscillating solution and (2) the large ill-conditioned/unstable sign-indefinite linear system

arising from standard discretizations, especially when a large wavenumber is present. In

this thesis, we develop and extensively study high order compact finite difference methods

(FDMs) and a wavelet Galerkin method for the Helmholtz equation in various settings.

In Chapter 1, we provide some background on the Helmholtz equation and wavelets.

In Chapter 2, we introduce the Dirac Assisted Tree (DAT) method coupled with an arbi-

trarily high order compact 1D FDM. DAT successfully overcomes the massive ill-conditioned

linear system associated with the Helmholtz equation by breaking a global problem into small

much better conditioned linking and local problems, as well as harnessing parallel computing

resources. DAT is effective in solving 1D heterogeneous and special 2D Helmholtz equations

with arbitrarily large wavenumbers. Results in this chapter have been published in Comput-

ers and Mathematics with Applications.

In Chapter 3, we propose a new pollution minimizing sixth order compact FDM for the

2D Helmholtz equation with interfaces and mixed boundary conditions. The new pollution

minimization strategy we employ is based on the average truncation error of plane waves.

Compared to existing FDMs, the errors of our method are several orders of magnitude lower.

Results in this chapter have been submitted for publication in SIAM Journal on Scientific

Computing.

In Chapter 4, we present new sharp wavenumber-explicit stability bounds for the 2D

Helmholtz equation with mixed inhomogeneous boundary conditions. Such bounds are cru-

cial in the analysis and development of numerical schemes, since they describe how the

solution behaves for given data. Establishing these bounds is difficult, since they highly de-
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pend on boundary conditions and the domain’s geometry. These findings motivate a future

development of a numerical method, which uses our stability bounds to strategically select

dominant Fourier coefficients in the solution. Results in this chapter have been accepted for

publication in SIAM Journal on Numerical Analysis.

Wavelets are sparse multiscale representation systems built from refinable functions (i.e.,

functions that can be expressed as dilated and shifted versions of themselves; e.g., B-splines

and Hermite splines). A Riesz wavelet on a bounded domain in Rd (e.g., [0, 1]d) is obtained

from the tensor product of 1D Riesz wavelets on a bounded interval. Hence, the efficacy

of a wavelet method in solving multidimensional problems (e.g., image processing and nu-

merical PDEs) relies on the optimal construction of a wavelet basis on an interval. Many

available constructions suffer from shortcomings. For example, some boundary elements may

have reduced vanishing moments, which adversely impact the overall sparsity of the system.

Furthermore, all existing constructions in the literature are applicable only to particular

examples or a very narrow family of wavelet bases. A natural question is whether a system-

atic construction procedure for any compactly supported wavelet basis exists. In Chapter 5,

we fully answer this long-standing problem in wavelet analysis. We propose and study two

systematic approaches that construct all locally supported biorthogonal multiwavelets on

an interval from any compactly supported biorthogonal multiwavelets on R. Results in this

chapter have been published in Applied and Computational Harmonic Analysis.

In Chapter 6, we apply the direct approach in the previous chapter to construct 1D

Riesz wavelets on the unit interval, and subsequently a 2D Riesz wavelet on the unit square

via tensor product. The latter is used in the Galerkin scheme to solve the 2D Helmholtz

equation with a non-local boundary condition, which models electromagnetic scattering from

a large cavity. The implementation of our method is very efficient. Also, our numerical

experiments indicate that the coefficient matrix of our wavelet Galerkin method is much

better conditioned (i.e., much more stable) than that of a standard Galerkin method.
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Preface

Results in Chapter 2 are based on the published journal article “Dirac assisted tree

method for 1D heterogeneous Helmholtz equations with arbitrary variable wave numbers.

Computers and Mathematics with Applications 97 (2021), 416-438.” The development and

composition of results in Chapter 2 are joint work with Bin Han and Yau Shu Wong.

Results in Chapter 3 are based on the paper “Sixth order compact finite difference

method for 2D Helmholtz equations with singular sources and reduced pollution effect,”

(arXiv:2112.07154v1, 20 pages), which has been submitted for publication in SIAM Journal

on Scientific Computing and is currently under review. The development and composition

of results in Chapter 3 are joint work with Qiwei Feng and Bin Han.

Results in Chapter 4 are based on the paper “Sharp wavenumber-explicit stability bounds

for 2D Helmholtz equations,” (arXiv:2108.06469, 28 journal pages), which has been accepted

for publication in SIAM Journal on Numerical Analysis. Results in Chapter 5 are based

on the published journal article “Wavelets on intervals derived from arbitrary compactly

supported biorthogonal multiwavelets. Applied and Computational Harmonic Analysis 53

(2021), 270-331.” Results in Chapter 6 are currently in the manuscript preparation stage.

The development and composition of results in Chapters 4 to 6 are joint work with Bin Han.
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Chapter 1

Introduction

1.1 Background

The Helmholtz equation is a fundamental time-harmonic wave propagation model, which

appears in many applications such as electromagnetism [12, 108], geophysics [21, 36, 44, 55],

ocean acoustics [87], and photonic crystals [56]. Its derivation from fundamental relations

in physics is discussed for example in [86]. This equation is challenging, and by the same

token, fascinating to study for a few reasons.

From the theoretical point of view, the analysis of the Helmholtz equation is involved

because its standard weak formulation is non-coercive. Two fundamental topics to study

are the stability of the underlying solution (also known as a priori bounds) and the er-

ror/convergence of a numerical scheme. A nice exposition of special techniques used for

these topics can be found in [111]. The former of the two describes how the solution behaves

when the boundary and source data are perturbed. Wavenumber-explicit stability bounds

are of particular interest, since they describe how the solution’s energy depends on the fre-

quency and serve as a foundation for the development of numerical schemes. Several stability

bounds for the Helmholtz equation in various settings are available: [21, 32, 47, 52, 103, 118]

for the interior impedance Helmholtz equation, [7, 17, 61, 63, 83] for the interior Helmholtz

equation with mixed boundary conditions, [12, 13, 41, 98] for an electromagnetic scatter-

ing from a large cavity problem, [107] for the Helmholtz equation with transmissions, and

[60, 111, 116, 117, 118] for the exterior Helmholtz equation. More studies can be found in the

references cited by the previous papers. In general, obtaining a sharp wavenumber-explicit

stability bound is very challenging, since they are highly dependent on the domain and

boundary configurations (e.g, [47]). This can be seen from the studies done by [47, 103, 118],

which deal with a bounded Lipschitz domain. With an extra assumption that the domain

is star-shaped with respect to a ball, [103] proved a stability estimate that is independent
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of the wavenumber κ. Without this assumption, the stability bound in [118, Theorem 1.6]

has extra factors κ1/2 and κ in front of the boundary and source data respectively. We shall

address a stability problem for the Helmholtz equation in Chapter 4.

From the computational point of view, the Helmholtz equation is difficult to solve due

to its highly oscillating solution. To obtain a reasonable solution or observe a convergent

behavior, the mesh size h used in a standard discretization has to be much smaller than the

reciprocal of the wavenumber κ. Moreover, the mesh size requirement becomes exponentially

demanding as the wavenumber increases. This is known as the pollution effect, which has

close ties to the numerical dispersion/phase lags. The situation is worsened by the fact

that many discretizations of the Helmholtz equation yield an ill-conditioned sign-indefinite

coefficient matrix. Thus, when solving the Helmholtz equation, one often faces a massive

ill-conditioned sign-indefinite linear system, where standard iterative schemes may fail [45].

To gain a better insight on how the mesh size requirement is related to the wavenumber,

we recall some relevant findings on the finite element method (FEM) and finite difference

method (FDM). The authors in [105] considered the interior impedance problem and dis-

covered that the quasi-optimality in the hp-FEM setting can be achieved by choosing a

polynomial degree p and a mesh size h such that p ⩾ C log(κ) (for some positive C inde-

pendent of κ, h, p) and κh/p is small enough. The authors in [43] found that for sufficiently

small κ2p+1h2p, the leading pollution term in an upper bound of the standard Sobolev H1-

norm is κ2p+1h2p. For second order FDMs, [22, 23] found that κ3h2 ⩽ C (for some positive

C independent of κ, h) is required to obtain a reasonable solution. Meanwhile, for the fourth

order FDM, [36] found that κ5h4 ⩽ C (for some positive C independent of κ, h) is required

to obtain a reasonable solution.

A lot of research effort has been invested in developing ways to tackle these discretization-

related issues. From the previous discussion, it is clear that the mesh size requirement for

high order schemes is less stringent than low order ones. Hence, high order schemes are

typically of interest. Various preconditioners and domain decomposition methods have been

developed over the years (see the review paper [57] and references therein). Many variants of

FEM/Galerkin/variational methods have been explored. For example, [53, 54] relaxed the

inter-element continuity condition and imposed penalty terms on jumps across the element

edges. These penalty terms can be tuned to reduce the pollution effect. Spectral methods

have been used to solve the Helmholtz equation in various settings [48, 81, 82, 85, 98, 109,

115, 116, 117]. A class of Trefftz methods, where the trial and test functions consist of local

solutions to the underlying (homogeneous) Helmholtz equation, were considered in [84] and

references therein. A closely related method, called the generalized FEM or the partition

of unity FEM, has been explored. It involves multiplying solutions to the homogeneous
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Helmholtz equation (e.g. plane waves) with elements of a chosen partition of unity, which

then serve as the trial and test functions. In recent years, multiscale FEM has also become

an appealing alternative to deal with the pollution effect [112]. While it is widely accepted

that the pollution effect in standard discretizations such as FEMs and FDMs cannot be

eliminated for 2D and higher dimensions [9], we can obtain pollution free FDMs [77, 122] in

1D to solve special 2D Helmholtz equations [77, 123]. FDMs of various orders and stencil

sizes have been proposed. For example, [22, 23] proposed second order FDMs, [110] proposed

a third order FDM, [15, 16, 36] proposed fourth order FDMs, and [125, 126] proposed sixth

order FDMs. The number of points used in these schemes varies: 9 in [22, 125], 13 in [37],

and both 17 and 25 in [36]. Additionally, the schemes in [22, 23, 36, 119, 125] share a similar

dispersion minimization strategy. They start with a stencil having a given accuracy order

with some free parameters. Afterwards, the plane wave solution is inserted into the scheme

and the ratio between the true and numerical wavenumbers is minimized by forming an

overdetermined linear system with respect to a set of discretized angles and a range of 2π
κh

(i.e., the number of points per wavelength). We shall present and discuss new FDMs for the

Helmholtz equation in Chapters 2 and 3.

We briefly list some notations used in the discussion of the Helmholtz equation. Through-

out this thesis, we shall refer to domain as an open connected set in Rd, where d = 1, 2.

Suppose Ω is a bounded Lipschitz domain. Let Hs(Ω), where s ⩾ 0, be the classical Sobolev

spaces of order s (e.g., see [62, Sections 1.3.1-1.3.2]), whose norm is denoted by ∥ · ∥s,Ω.
Suppose Γ is the boundary of Ω. Let Hs(Γ), where s ⩾ 0, be the Sobolev spaces of order

s on the boundary defined in the usual sense (e.g., see [101, pages 96-99]). If s = 0, then

H0(Ω) = L2(Ω) and H0(Γ) = L2(Γ). The standard inner product and norm in L2(Ω) are

denoted by ⟨u, v⟩Ω :=
∫
Ω
uv and ∥ · ∥0,Ω := ⟨u, u⟩1/2Ω . On the boundary, the standard inner

product and norm in L2(Γ) are denoted by ⟨u, v⟩Γ :=
∫
Γ
uv and ∥ · ∥0,Γ := ⟨u, u⟩1/2Γ . In this

thesis, we also use ⟨·, ·⟩ (without any subscripts) to denote the standard inner product, where

the domain of integration is clear from the context.

One of our proposed numerical methods employs wavelet bases as its primary approxima-

tion tool. We now recall some basic concepts and definitions related to wavelets. Wavelets

are sparse multiscale representation systems, which have been successfully used in various

applications such as data science, image/signal processing, and numerical analysis. They

have been used to characterize various function spaces such as Sobolev and Besov spaces.

Wavelets are built from refinable functions, which are functions that can be expressed as

scaled and shifted versions of themselves. A good example of refinable functions is the
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B-spline function of order m (i.e, Bm for m ∈ N), where

B1 := χ(0,1] and Bm := Bm−1 ∗B1 =

∫ 1

0

Bm−1(· − x)dx. (1.1)

Note that Bm ∈ Cm−2(R), its support is [0,m], and Bm|(k,k+1) is a nonnegative polynomial

of degree m − 1 for all k ∈ Z. Another great example is the Hermite cubic splines. Next,

we present several formal definitions to facilitate an in-depth discussion of the topic. Note

that the Sobolev space Hτ (R) with τ ∈ R consists of all tempered distributions f on R such

that
∫
R |f̂(ξ)|

2(1 + |ξ|2)τdξ < ∞. Let ϕ := {ϕ1, . . . , ϕr}T, ψ := {ψ1, . . . , ψs}T ∈ Hτ (R) with
τ ∈ R. For J ∈ Z, define the multiwavelet affine system in Hτ (R) by

ASτJ(ϕ;ψ) :=
{
ϕℓJ ;k : k ∈ Z, 1 ⩽ ℓ ⩽ r

}
∪
{
ψℓj;k : j ⩾ J, k ∈ Z, 1 ⩽ ℓ ⩽ s

}
,

where ϕℓJ ;k := 2J(1/2−τ)ϕℓ(2
J · −k) and ψℓj;k := 2j(1/2−τ)ψℓ(2

j · −k). We say that {ϕ;ψ} is a

Riesz multiwavelet in Hτ (R) if ASτJ(ϕ;ψ) is a Riesz basis for Hτ (R). I.e., (1) the linear span
of ASτJ(ϕ;ψ) is dense in Hτ (R), and (2) there exist C1, C2 > 0 such that

C1

∑
η∈ASτJ (ϕ;ψ)

|cη|2 ⩽ ∥
∑

η∈ASτJ (ϕ;ψ)

cηη∥2Hτ (R) ⩽ C2

∑
η∈ASτJ (ϕ;ψ)

|cη|2

for all finitely supported sequences {cη}η∈ASτJ (ϕ;ψ). Note that if τ = 0, then H0(R) = L2(R).
Throughout this thesis, we let ASJ(ϕ;ψ) to denote AS0

J(ϕ;ψ). By a simple scaling argument,

it is easy to see ([70, 71]) that ASτJ(ϕ;ψ) is a Riesz basis of Hτ (R) for some J ∈ Z if and

only if ASτJ(ϕ;ψ) is a Riesz basis of Hτ (R) for all J ∈ Z. If AS0(ϕ;ψ) is an orthonormal basis

of L2(R), then {ϕ;ψ} is called an orthogonal multiwavelet in L2(R). It immediately follows

that an orthogonal multiwavelet {ϕ;ψ} is a Riesz multiwavelet in L2(R). If r = 1, the above

vector refinable function becomes a scalar refinable function, and a Riesz multiwavelet in

this case is often referred to as a scalar Riesz wavelet. Throughout this thesis, we often

refer to scalar wavelets and multiwavelets as simply wavelets. Let ϕ̃ := {ϕ̃1, . . . , ϕ̃r}T, ψ̃ :=

{ψ̃1, . . . , ψ̃s}T ∈ H−τ (R) with τ ∈ R. We call ({ϕ̃; ψ̃}, {ϕ;ψ}) a biorthogonal multiwavelet

in (H−τ (R), Hτ (R)) if (1) {ϕ̃; ψ̃} and {ϕ;ψ} are Riesz multiwavelets in H−τ (R) and Hτ (R)
respectively, and (2) AS−τ

J (ϕ̃; ψ̃) and ASτJ(ϕ;ψ) are biorthogonal to each other; i.e.,

⟨h, h̃⟩ = 1 and ⟨h, g̃⟩ = 0, ∀g ∈ ASτJ(ϕ;ψ)\{h}.
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Moreover, the following wavelet representations hold

f =
∑
k∈Z

r∑
ℓ=1

⟨f, ϕ̃ℓJ ;k⟩ϕℓJ ;k +
∞∑
j=J

∑
k∈Z

s∑
ℓ=1

⟨f, ψ̃ℓj;k⟩ψℓj;k, f ∈ Hτ (R),

g =
∑
k∈Z

r∑
ℓ=1

⟨g, ϕℓJ ;k⟩ϕ̃ℓJ ;k +
∞∑
j=J

∑
k∈Z

s∑
ℓ=1

⟨g, ψℓj;k⟩ψ̃ℓj;k, g ∈ H−τ (R),
(1.2)

with the above series converging unconditionally in Hτ (R) and H−τ (R) respectively. For

a compactly supported (vector) function ψ, we say that ψ has m vanishing moments if∫
R x

jψ(x)dx = 0 for all j = 0, . . . ,m− 1. Furthermore, we define vm(ψ) := m with m being

the largest of such an integer. There are a few reasons as to why it is advantageous to use

wavelets in our numerical scheme. First, the coefficient matrix is often well-conditioned and

has uniformly bounded condition numbers, since we use a Riesz wavelet that belongs to a

certain Sobolev space. Second, the coefficient matrix can be assembled and stored efficiently

due to the refinable structure and the sparsity of the system. Third, they can be customized

to a certain extent to exploit the underlying structure of the problem. For some studies on

wavelet based numerical schemes, see [20, 39, 74, 88, 90, 92]. A Riesz wavelet on a bounded

domain can be obtained by taking the tensor product of univariate Riesz wavelets. Hence,

the efficacy of a wavelet method in solving multidimensional problems relies on the optimal

construction of a Riesz wavelet on a bounded interval. It turns out that many constructions

in the literature can only be applied to specific examples or a small family of wavelets. In

practice, this of course would limit the kinds of wavelets we can use in a numerical scheme. In

the following, we list relevant studies to give more context on the current state of literature.

The authors in [4, 6, 25, 31, 94, 99, 102, 113] constructed scalar orthogonal wavelets on the

unit interval from Daubechies orthogonal wavelets. The authors in [18, 19, 20, 34, 35, 88, 100,

114] constructed spline scalar biorthogonal wavelets, which are built from B-splines (see [29]),

on the unit interval. The semi-orthogonal spline wavelets in [24] have also been adapted to the

unit interval in [25]. Even though multiwavelets generally can have higher vanishing moments

and smoothness than scalar wavelets for a given support, the studies on their constructions

are significantly fewer due to their technicalities [2, 5, 18, 33, 39, 71, 72, 73, 80, 96]. In

addition to the previous issue, some constructions produce boundary elements are not as

optimal as they can be. For example, these elements may have reduced vanishing moments,

which negatively impact the system’s overall sparsity, and may have a long support. Given

the current state of literature and our goal of using a wavelet Galerkin method to solve the

Helmholtz equation, we shall first address this critical construction issue in Chapter 5 and

then present our proposed numerical scheme in Chapter 6.
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1.2 Thesis structure and contributions

The main focus of this thesis is to develop and extensively study high order compact FDMs

and a wavelet Galerkin method for the Helmholtz equation in various settings. In this

section, we detail the major contributions of each chapter.

In Chapter 2, we introduce the Dirac Assisted Tree (DAT) method to solve the 1D

heterogeneous and special 2D Helmholtz equations with arbitrarily large wavenumbers. The

key idea of DAT is to break the global problem on [0, 1] into many small local problems by

multiplying the source term with a partition of unity (for example B-splines; here, we use

hat linear functions B2). Each local problem now has a highly localized source term with

homogeneous Dirichlet boundary conditions except for those that touch the endpoints. Such

local problems can be solved by any discretization method in a parallel fashion, provided

that the fluxes at the endpoints of local problems can be accurately computed. As we shall

see later, Dirac distributions will naturally appear in the fluxes of local solutions. Hence, to

link these local probems, we want to offset these Dirac distributions by solving small linking

problems also in a parallel fashion. Due to the refinability of the hat function, the local

problems can be further decomposed into sub-local problems. Applying this recursively,

we obtain the tree structure of DAT. DAT can solve heterogeneous Helmholtz equations

that other methods have problems handling, without having any magnitude constraints

on variable wavenumbers, and without dealing with a massive ill-conditioned coefficient

matrix. In particular, we harness parallel computing resources to solve small and much better

conditioned linear systems coming from the local and linking problems. In an extreme case,

each of the local and linking problems in DAT can be solved by at most 4 linear equations.

The accuracy of DAT only depends on the accuracy of the local problem solvers. If the

maximum size of all local problems is bounded and independent of mesh sizes, then all

coefficient matrices of the local problems have uniformly bounded condition numbers. DAT

naturally brings about domain decomposition and adaptivity. The second contribution of

this chapter is to present a 1D compact FDM (that handles the domain’s interior and any

mixed boundary conditions) with an arbitrarily high accuracy order by assuming that a, κ2, f

are piecewise smooth. Such high order compact FDMs are particularly appealing for DAT,

especially when computing the fluxes and derivatives of the solutions to local and linking

problems.

In Chapter 3, we propose a sixth order compact finite difference scheme with reduced

pollution to solve the 2D Helmholtz equation with singular sources and mixed boundary con-

ditions on a rectangular domain. Our proposed compact finite difference scheme attains the

maximum overall accuracy order everywhere on the domain with the shortest stencil support
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for the problem of interest. Similar to [49, 50], our approach is based on a critical observation

regarding the inter-dependence of high order derivatives of the underlying solution. When

constructing a discretization stencil, we start with a general expression that allows us to

recover all possible sixth order finite difference schemes. Then, we determine the remaining

free parameters in the stencil by using our new pollution minimization strategy that is based

on the average truncation error of plane waves. Our method differs from existing dispersion

minimization methods in the literature in several ways. First, our method does not require

us to compute the numerical wavenumber. Second, we use our pollution minimization pro-

cedure in the construction of all interior, boundary, and corner stencils. This is in stark

contrast to the common approach in the literature, where the dispersion is minimized only

in the interior stencil. The effectiveness of our pollution minimization strategy is evident

from our numerical experiments. Our proposed compact finite difference scheme with re-

duced pollution effect outperforms several state-of-the-art finite difference schemes in the

literature, particularly in the pre-asymptotic critical region where κh is near 1. When a

large wavenumber κ is present, this means that our proposed finite difference scheme is more

accurate than others at a computationally feasible grid size. We also provide a comprehen-

sive treatment of mixed inhomogeneous boundary conditions. In particular, our approach is

capable of handling all possible combinations of Dirichlet, Neumann, and impedance bound-

ary conditions for the 2D Helmholtz equation defined on a rectangular domain. For each

corner, we explicitly provide a 4-point stencil with at least sixth order accuracy and reduced

pollution effect. For each side, we explicitly give a 6-point stencil with at least sixth order

accuracy and reduced pollution effect. To the best of our knowledge, our work is the first

to comprehensively study the construction of corner and boundary finite difference stencils

for all possible combinations of boundary conditions on a rectangular domain. Unlike the

common technique used in the literature, no ghost or artificial points are introduced in our

construction. We derive a seventh order compact finite difference scheme to handle nonzero

jump functions along the interface curve (i.e., the singular source). Since our proposed finite

difference scheme is compact, the linear system arising from the discretization is sparse. The

stencils themselves have a nice structure in that their coefficients are symmetric and take the

form of polynomials of κh. Also, the coefficients in our interior stencil are simpler compared

to [28], as they are polynomials of degree 6, while those in [28] are of degree 16.

In Chapter 4, we study the stability of the 2D Helmholtz equation on a rectangular do-

main with inhomogeneous boundary conditions and derive several new sharp wavenumber-

explicit stability bounds that hold for all positive wavenumber κ. By sharp, we mean that

our stability bounds capture the leading κ-dependent term in front of the norm of a given

datum, which is accurate up to a constant multiple (independent of κ and the given datum).
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To this end, we shall devise Fourier techniques, the Rellich’s identity, and a lifting strat-

egy. Furthermore, we shall give several examples to illustrate the sharpness of our stability

bounds. Some of the above boundary configurations can be thought of as simplified elec-

tromagnetic scattering from a large cavity (e.g, see [3, 11, 12, 13, 98]) or waveguide (e.g.,

see [14, 63, 106]) problems, where we approximate the non-local inhomogeneous boundary

condition with an impedance boundary condition. Even though the stability bounds in [83]

hold for a rectangular domain with mixed boundary conditions, the boundary configurations

in [83] are completely different from ours. As we shall see later on, our stability bounds

necessarily depend on the wavenumber unlike [83]. This again highlights the sensitivity of

stability bounds with respect to boundary placements and conditions. Our results comple-

ment those in [83] for a rectangular domain, thereby offering a much more complete picture

of the stability behaviour of the Helmholtz equation on a rectangular domain with mixed

boundary conditions. These stability bounds are indeed applicable to the model problem in

Chapter 3 without any interface. While the scheme proposed in Chapter 3 can indeed be

applied to the present chapter’s model problem, our stability bounds motivate a future de-

velopment of a numerical method, which uses them to strategically select dominant Fourier

coefficients in the solution.

In Chapter 5, we do an in-depth study on the construction of wavelets on a bounded

interval from arbitrary compactly supported multiwavelets. This chapter serves as the foun-

dation for Chapter 6, where we present a wavelet Galerkin method to solve a scattering

problem. In this chapter, we present classical and direct approaches to construct all possible

compactly supported biorthogonal wavelets on a bounded intervals, which satisfy prescribed

vanishing moments and homogeneous boundary conditions. This chapter fully answers the

long-standing question in wavelet analysis on the existence of a general construction pro-

cedure that works for any compactly supported biorthogonal wavelets. Furthermore, our

construction does not suffer from any shortcomings that others do. That is, we are able to

maximally preserve the original desirable properties of the wavelets on the real line (e.g.,

short support and maximum vanishing moments). In the classical approach, we generalize

the construction method from scalar wavelets to multiwavelets. The typical procedure is to

first construct primal and dual refinable functions, and only after derive the corresponding

primal and dual wavelets. However, this calculation is often complicated because the dual

parts often have much longer support. This motivates us to propose the direct approach,

which is remarkably more general and much simpler to use than the former, since the dual

parts are not explicitly involved. Due to its convenience, we shall predominantly use the

later method throughout this thesis.

In Chapter 6, we present our wavelet Galerkin method for solving an electromagnetic
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scattering from a large cavity problem. We shall apply the direct approach in Chapter 5 to a

new compactly supported biorthogonal wavelet, whose primal refinable function is interpo-

lating [42], to form a 2D Riesz wavelet in an appropriate Sobolev space via tensor product.

Our method falls in the category of high order schemes with a natural preconditioner origi-

nating from our wavelet basis. We expect that these two features help in alleviating the mesh

size requirement and improving the condition/stability of the linear system. Our numerical

experiments indicate that the condition number of the coefficient matrix associated with our

wavelet Galerkin method is approximately 2 to 800 times smaller (i.e., more stable) than

that of the standard Galerkin method.

Finally, we outline some directions of some future work in Chapter 7.
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Chapter 2

Dirac Assisted Tree (DAT) Method

We have described some key challenges of the Helmholtz equation in Chapter 1. To tackle

them, we present our first numerical method, which is the DAT method with an arbitrarily

high order compact FDM as its solver. It efficiently solves 1D heterogeneous and special

2D Helmholtz equations by decomposing the original problem into small better conditioned

local and linking problems.

In particular, we consider the following model problem. Let L be the linear differential

operator of the 1D heterogeneous Helmholtz equations as follows

Lu := [a(x)u′(x)]′ + κ2(x)u(x) = f(x), x ∈ Ω := (0, 1) (2.1)

with any given linear boundary conditions

B0u(0) := λL0 u(0) + λL1 u
′(0) = g0, B1u(1) := λR0 u(1) + λR1 u

′(1) = g1, (2.2)

where λL0 , λ
L
1 , λ

R
0 , λ

R
1 ∈ C satisfy |λL0 |+ |λL1 | ≠ 0 and |λR0 |+ |λR1 | ≠ 0. I.e., B0u(0) and B1u(1)

can be Dirichlet, Neumann or Robin (e.g. Sommerfeld) boundary conditions.

We describe the key ingredients and algorithm for the DAT method in Section 2.1. In

Section 2.2, we present a 1D compact FDM with an arbitrarily high accuracy order for 1D

heterogeneous Helmholtz equation in (2.1) with piecewise smooth coefficients, wavenumbers,

and source terms. We discuss the convergence of DAT in Section 2.3. Numerical experiments

showcasing our method are presented in Section 2.4.

Results in this chapter are based on [77].
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2.1 Main ideas and algorithm

Let (α, β) ⊆ (0, 1) with 0 ⩽ α < β ⩽ 1. Let f ∈ (H1(α, β))′ be a source term. Let

uloc ∈ H1(α, β) be the weak solution in the Sobolev space H1(α, β) to the following local

problem:

Luloc(x) = f(x), x ∈ (α, β), (2.3)

where if α, β ∈ {0, 1}, then we preserve the boundary conditions as in (2.2); otherwise, we

use homogeneous Dirichlet boundary conditions. Putting these boundary conditions into a

compact form, the boundary conditions to (2.3) are given by

(B0uloc(0)−g0)δ0,α+(1−δ0,α)uloc(α) = 0, (B1uloc(1)−g1)δ1,β+(1−δ1,β)uloc(β) = 0, (2.4)

where δc,c = 1 and δc,d = 0 for c ̸= d. Recall that ψ ∈ H1(α, β) if ψ ∈ L2(α, β) and

its weak/distributional derivative ψ′ ∈ L2(α, β). Moreover, ∥ψ∥2H1(α,β) := ∥ψ∥2L2(α,β)
+

∥ψ′∥2L2(α,β)
, where ψ′ stands for the weak derivative of ψ. Due to (2.4), we can extend

uloc ∈ H1(α, β) as an element in H1(0, 1) by zero extension, which is denoted by ũloc. There-

fore, using the definition of L in (2.1), we observe that

f̃ := Lũloc =



0, x ∈ (0, α) ∪ (β, 1),

dα(ũloc)δα, x = α and α ̸= 0,

f(x), x ∈ (α, β),

dβ(ũloc)δβ, x = β and β ̸= 1,

(2.5)

where δα is the Dirac distribution at the point α and the above numbers dα(ũloc), dβ(ũloc) ∈ C
for α ̸= 0 and β ̸= 1 are given by

dα(ũloc) := lim
x→α+

a(x)ũ′loc(x), dβ(ũloc) := − lim
x→β−

a(x)ũ′loc(x), (2.6)

which, up to a sign change, are simply the fluxes of ũloc at α and β. Then ũloc is a global

solution of

Lũloc(x) = f̃(x), x ∈ Ω = (0, 1).

We now introduce the DAT method. Let N0 ∈ N be a positive integer greater than one.

We take a partition of unity {φj}N0
j=0 of piecewise smooth functions such that each function φj

is supported on [0, 1] and
∑N0

j=0 φj(x) = 1 for all x ∈ (0, 1). For simplicity, we use piecewise

linear hat functions φj. Let 0 = x0 < · · · < xN0 = 1 be a partition of [0, 1]. For simplicity,
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we define x−1 = 0 and xN0+1 := 1. We let φj be the linear hat function supported on

[xj−1, xj+1] with φj(xj) = 1 and φj(xj−1) = φj(xj+1) = 0. Obviously, we define φ0(x0) = 1

and φ0(x1) = 0, while φN0(xN0) = 1 and φN0(xN0−1) = 0. We now partition the original

source function f into small pieces as follows:

fj(x) := f(x)φj(x), j = 0, . . . , N0.

Since
∑N0

j=0 φj(x) = 1 for all x ∈ (0, 1), we have f =
∑N0

j=0 fj. Let uj ∈ H1(xj−1, xj+1) be

the weak solution to the regular local problem:

Luj(x) = fj(x), x ∈ (xj−1, xj+1) (2.7)

with the following boundary conditions:

(B0uj(0)− g0δ0,j)δ0,xj−1
+ (1− δ0,xj−1

)uj(xj−1) = 0,

(B1uj(1)− g1δN0,j)δ1,xj+1
+ (1− δ1,xj+1

)uj(xj+1) = 0.
(2.8)

That is, we use the homogeneous Dirichlet boundary conditions uj(xj−1) = uj(xj+1) = 0,

except B0u0(0) = g0, B0u1(0) = 0, B1uN0(1) = g1, and B1uN0−1(1) = 0. Due to (2.8), we can

extend uj ∈ H1(xj−1, xj+1) as an element in H1(0, 1) by zero extension, which is denoted by

ũj. Hence,

f̃j(x) := Lũj(x) =



0, x ∈ (0, xj−1) ∪ (xj+1, 1),

dxj−1
(ũj)δxj−1

, x = xj−1 and xj−1 ̸= 0,

fj(x), x ∈ (xj−1, xj+1),

dxj+1
(ũj)δxj+1

, x = xj+1 and xj+1 ̸= 1.

(2.9)

Now we discuss how to link/stitch all these local solutions {ũj}N0
j=0 together. To do so, for

j = 1, . . . , N0 − 1, we solve the following Dirac assisted local problem:

Lvj(x) = δxj , x ∈ (xj−1, xj+1) (2.10)

with the following boundary conditions:

B0vj(0)δ0,xj−1
+ (1− δ0,xj−1

)vj(xj−1) = 0, B1vj(1)δ1,xj+1
+ (1− δ1,xj+1

)vj(xj+1) = 0.

(2.11)

That is, we use the homogeneous Dirichlet boundary condition vj(xj−1) = vj(xj+1) = 0,

except B0v1(0) = 0 and B1vN0−1(1) = 0. As explained before, due to (2.11), we can extend
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vj ∈ H1(xj−1, xj+1) as an element in H1(0, 1) by zero extension, which is denoted by ṽj. So,

we must have

δ̃xj(x) := Lṽj(x) =



0, x ∈ (0, xj−1) ∪ (xj+1, 1),

dxj−1
(ṽj)δxj−1

, x = xj−1 and xj−1 ̸= 0,

δxj , x ∈ (xj−1, xj+1),

dxj+1
(ṽj)δxj+1

, x = xj+1 and xj+1 ̸= 1.

(2.12)

To link all the local solutions {ũj}N0
j=0 together, we need the following result.

Theorem 2.1. The elements in {ṽ1, . . . , ṽN0−1} are linearly independent and for any complex

numbers µj, j = 1, . . . , N0 − 1, the following linear system induced by

N0−1∑
j=1

µ̃j δ̃xj =

N0−1∑
j=1

µjδxj (2.13)

has a unique solution {µ̃j}N0−1
j=1 . Moreover, V = W , where V is the linear span of {ṽj}N0−1

j=1

and W is the linear span of {wj}N0−1
j=1 , where wj is the weak solution to the following global

problem:

Lwj(x) = δxj , x ∈ (0, 1) with B0wj(0) = 0, B1wj(1) = 0. (2.14)

Proof. Since Lṽj = δ̃xj on (0, 1) and ṽj(0) = ṽj(1) = 0 except B0ṽ1(0) = 0 and B1ṽN0−1(1) =

0, we obviously have ṽj ∈ W and hence V ⊆ W . We now prove that ṽ1, . . . , ṽN0−1 are linearly

independent. To do so, we claim that it is impossible that either ṽj|(xj−1,xj) or ṽj|(xj ,xj+1) can

be identically zero. Without loss of generality, we assume that ṽj|(xj−1,xj) is identically zero.

Since ṽj|(xj−1,xj+1) = vj ∈ H1(xj−1, xj+1), the function vj is continuous on (xj−1, xj+1) and

hence vj(xj) = 0. However, since vj is the weak solution to the local linking problem in

(2.10), we see that v̊j := vj|(xj ,xj+1) must be the weak solution to Lv̊j(x) = 0 on (xj, xj+1)

with the boundary conditions v̊j(xj) = 0 and v̊j(xj+1) = 0 (if j = N0 − 1, then xj+1 = 1

and replace v̊j(xj+1) = 0 by B1v̊N0−1(1) = 0). By the uniqueness of the solution, the weak

solution v̊j must be identically zero. Hence, vj must be identically zero, which contradicts

(2.10). Hence, both vj|(xj−1,xj) and vj|(xj ,xj+1) cannot be identically zero; i.e., ṽj|(xj−1,xj) and

ṽj|(xj ,xj+1) cannot be identically zero.

Consider the linear combination v :=
∑N0−1

j=1 µj ṽj such that v is identically zero. Because

ṽj vanishes outside (xj−1, xj+1), we have 0 = v|(x0,x1) = µ1ṽ1|(x0,x1). Since ṽ1|(x0,x1) cannot be
identically zero, we must have µ1 = 0. By induction on j, we must have µ1 = µ2 = · · · =
µN0−1 = 0. This proves that the elements in {ṽj}N0−1

j=1 must be linearly independent. Now
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by V ⊆ W , we conclude that V = W . The uniqueness of the solution to the linear system

in (2.13) follows straightforwardly, since Lṽj = δ̃xj , Lwj = δxj and V = W .

The following result is the main ingredient of our DAT method.

Theorem 2.2. Define

u := uf + uδ with uf :=

N0∑
j=0

ũj, uδ :=

N0−1∑
j=1

µj ṽj, (2.15)

where ũj is the weak solution to (2.7) with prescribed boundary conditions in (2.8) extended

by zero, ṽj is the weak solution to (2.10) with the prescribed boundary conditions in (2.11)

extended by zero, and {µj}N0−1
j=1 is the unique solution to the following linear system for the

linking problem:
N0−1∑
j=1

µj δ̃xj = −
N0−1∑
j=1

(dxj(ũj−1) + dxj(ũj+1))δxj , (2.16)

Then u must be the weak solution to the heterogeneous Helmholtz equation in (2.1) with the

boundary conditions in (2.2).

Proof. Since
∑N0

j=0 fj = f , we can write

f(x) =

N0∑
j=0

fj(x) =

N0∑
j=0

f̃j(x)−
N0−1∑
j=1

(dxj(ũj−1) + dxj(ũj+1))δxj . (2.17)

By Theorem 2.1, there is a unique solution {µj}N0−1
j=1 to (2.16). That is, the linking problem

in (2.16) can be uniquely solved. Hence, using (2.17), we can further write

f(x) =

N0∑
j=0

f̃j(x) +

N0−1∑
j=1

µj δ̃xj . (2.18)

By the definition of ũj, we observe that Luf (x) =
∑N0

j=0 f̃j(x) for x ∈ (0, 1) with the boundary

conditions B0uf (0) = g0 and B1uf (1) = g1. On the other hand, by the definition of δ̃xj , we

have

Luδ(x) =
N0−1∑
j=1

µj δ̃xj , x ∈ (0, 1)

and uδ satisfies the boundary conditions B0uδ(0) = 0 and B1uδ(1) = 0. Thus, by (2.18) we

have

Lu = Luf + Luδ =
N0∑
j=0

f̃j(x) +

N0−1∑
j=1

µj δ̃xj = f(x), x ∈ (0, 1)
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and u satisfies the prescribed boundary conditions in (2.2).

Obviously, we can recursively apply the above procedure to solve each of the local prob-

lems in (2.7) with prescribed boundary conditions in (2.8) to further reduce the size of the

problem. To elucidate this point, we now present the DAT algorithm below.

x1,0 x1,8x1,4

x2,0 x2,8 x2,16

xℓ−1,j xℓ−1,j+1xℓ−1,j−1

φℓ,4j

φℓ,4j−1

φℓ,4j−2

φℓ,4j−3

φℓ,4j+1

φℓ,4j+2

φℓ,4j+3

xℓ,4j+2xℓ,4j−2

Figure 2.1: Left: An initial partition of [0, 1] at ℓ = 1 with N0 = 8 and its subsequent refinement
at ℓ = 2 with s = 1. Right: The relationship between an interior large hat function φℓ−1,j on
[xℓ−1,j−1, xℓ−1,j+1] and smaller hat functions φℓ,2sj+k, −2s + 1 ⩽ k ⩽ 2s − 1, with s = 2.

Algorithm 2.1. Consider the 1-level partition {x1,j}N0
j=0 given by 0 = x1,−1 = x1,0 < x1,1 <

· · · < x1,N0−1 < x1,N0 = x1,N0+1 = 1, and let {φ1,j}N0
j=0 be the associated partition of unity

such that supp(φ1,j) ⊆ [x1,j−1, x1,j+1] with φ1,j(x1,j) = 1. Pick L, s ∈ N such that L is the

tree level and any subinterval at a level is divided equally into 2s small subintervals at the

next level. For each tree level ℓ = 2, . . . , L, let {xℓ,j}2
ℓsN0
j=0 be a refinement partition of the grid

{xℓ−1,j}2
(ℓ−1)sN0
j=0 such that {xℓ−1,j}2

(ℓ−1)sN0
j=0 ⊂ {xℓ,j}2

ℓsN0
j=0 with xℓ−1,j = xℓ,2sj, xℓ,−1 := xℓ,0 = 0,

and xℓ,2ℓsN0+1 := xℓ,2ℓsN0
= 1. Fix N ∈ N such that N+1 is the total number of points on the

finest grid in the tree and {xL,j}2
LsN0
j=0 ⊂ {xj}Nj=0. The local problems will be solved on this

fixed fine grid. Note that supp(φℓ,j) ⊆ [xℓ,j−1, xℓ,j+1] with φℓ,j(xℓ,j) = 1 for 0 ⩽ j ⩽ 2(ℓ−1)sN0

and

φℓ−1,0 =
2s−1∑
k=0

φℓ,k, φℓ−1,2(ℓ−2)sN0
=

0∑
k=−2s+1

φℓ,2(ℓ−1)sN0+k, φℓ−1,j =
2s−1∑

k=−2s+1

φℓ,2sj+k

for j = 1, . . . , 2(ℓ−2)sN0 − 1. See Fig. 2.1 for an illustration of the setting above.

(S1) Solve the following (regular and Dirac assisted) local problems at tree level L in a

parallel fashion using any chosen discretization method.
LuL,j = fj =: fφL,j, x ∈ (xL,j−1, xL,j+1), j = 0, . . . , 2(L−1)sN0,

(B0uL,j(0)− g0δ0,j)δ0,xL,j−1
+ (1− δ0,xL,j−1

)uL,j(xL,j−1) = 0,

(B1uL,j(1)− g1δ2LsN0,j)δ1,xL,j+1
+ (1− δ1,xL,j+1

)uL,j(xL,j+1) = 0,

(2.19)
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
LvL,j = δxL,j , x ∈ (xL,j−1, xL,j+1), j = 1, . . . , 2(L−1)sN0 − 1,

B0vL,j(0)δ0,xL,j−1
+ (1− δ0,xL,j−1

)vL,j(xL,j−1) = 0,

B1vL,j(1)δ1,xL,j+1
+ (1− δ1,xL,j+1

)vL,j(xL,j+1) = 0.

(2.20)

For all j = 0, . . . , 2(L−1)sN0, extend uL,j by zero outside of [xL,j−1, xL,j+1] and denote

it by ũL,j. Similarly, for all j = 1, . . . , 2(L−1)sN0 − 1, extend vL,j by zero outside of

[xL,j−1, xL,j+1] and denote it by ṽL,j.

(S2) Let ℓ = L, . . . , 2 decreasingly. Consider the artificial Dirac distributions at each grid

point and find the appropriate linear combination of Dirac local problems to offset it.

This allows us to recover the solutions to local problems at level ℓ − 1 from those at

level ℓ. More explicitly, define an n2 × n2 tridiagonal matrix and an n2 column vector

as follows

Tℓ,n1,n2 := tridiag({dxℓ,n1+m(ṽℓ,n1+m−1)}n2
m=2, {1}n2

m=1, {dxℓ,n1+m(ṽℓ,n1+m+1)}n2−1
m=1 ),

γℓ,n1,n2 := [−dxℓ,n1+m(ũℓ,n1+m−1)(1− δ1,m(1− δ0,n1(1− δ1,ℓ)))

− dxℓ,n1+m(ũℓ,n1+m+1)(1− δn2,m(1− δ2(ℓ−1)sN0−2s,n1
(1− δ1,ℓ)))]1⩽m⩽n2 ,

where n1, n2 ∈ N ∪ {0}, and the first, second, and third arguments of tridiag(·, ·, ·)
correspond to the entries in the lower, main, and upper diagonals. Given a column

vector µ, we denote the kth component of µ by (µ)k. For each ℓ, solve the linking

problems obtained from steps (a)-(d) below in a parallel fashion.

(a) (Left-most element of partition of unity) Construct a (2s−1)×(2s−1) tridiagonal

matrix Tℓ,0,2s−1 and a (2s−1) column vector γℓ,0,2s−1. Set µℓ,0 = (Tℓ,0,2s−1)
−1γℓ,0,2s−1.

(b) (Interior elements of partition of unity) For all j = 1, . . . , 2(ℓ−2)sN0 − 1, construct

a (2s+1−1)× (2s+1−1) tridiagonal matrix Tℓ,2s(j−1),2s+1−1 and a (2s+1−1) column

vector γℓ,2s(j−1),2s+1−1. Let e2s is a (2s+1 − 1) vector with 1 in the 2sth entry

and 0 in the remaining entries. Set µℓ,j = (Tℓ,2s(j−1),2s+1−1)
−1γℓ,2s(j−1),2s+1−1 and

ηℓ,j = (Tℓ,2s(j−1),2s+1−1)
−1e2s .

(c) (Right-most element of partition of unity) Construct a (2s−1)×(2s−1) tridiagonal

matrix Tℓ,2(ℓ−1)sN0−2s,2s−1 and a (2s − 1) column vector γℓ,2(ℓ−1)sN0−2s,2s−1. Set

µℓ,2(ℓ−2)sN0
= (Tℓ,2(ℓ−1)sN0−2s,2s−1)

−1γℓ,2(ℓ−1)sN0−2s,2s−1.

(d) (Construct the solutions to local problems at level ℓ − 1) For j = 0, 2(ℓ−2)sN0
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(left-most and right-most elements respectively), set

ũℓ−1,0 =
2s−1∑
k=0

ũℓ,k +
2s−1∑
k=1

(µℓ,0)kṽℓ,k,

ũℓ−1,2(ℓ−2)sN0
=

0∑
k=−2s+1

ũℓ,2(ℓ−1)sN0+k +
2s−1∑
k=1

(µℓ,2(ℓ−2)sN0
)kṽℓ,2(ℓ−1)sN0−2s+k.

For j = 1, . . . , 2(ℓ−2)sN0 − 1 (interior elements), set

ũℓ−1,j =
2s−1∑

k=−2s+1

ũℓ,2sj+k +
2s+1−1∑
k=1

(µℓ,j)kṽℓ,2sj−2s+k, ṽℓ−1,j =
2s+1−1∑
k=1

(ηℓ,j)kṽℓ,2sj−2s+k.

(S3) Construct an (N0 − 1)× (N0 − 1) tridiagonal matrix T1,0,N0−1 and an (N0 − 1) column

vector γ1,0,N0−1. Set µ1,0 = (T1,0,N0−1)
−1γ1,0,N0−1. Finally, the approximated solution

of the problem (2.1)-(2.2) is given by u =
∑N0

k=0 ũ1,k +
∑N0−1

k=1 (µ1,0)kṽ0,k.

As an illustrative example, for an equispaced grid on [0, 1] with N0 = 4, h = 2−n,

L = n−2, s = 1 and n ∈ N, the size of each linking and local problem (with the exception of

those near the boundaries) is a 3× 3 matrix equation. This exactly describes the situation

in Examples 2.1 and 2.4 in Section 2.4.

Thus far, we have described DAT for the linear differential operator L defined in (2.1).

The DAT method with appropriate modification can be generalized to general 1D linear

differential operators L (e.g., the biharmonic equation involving higher order derivatives).

We would need to modify Theorem 2.2 about how we patch the local problems in (2.3)

by means of the Dirac assisted local problems in (2.10) equipped with suitable boundary

conditions. In addition to (2.10), we may have to solve additional Dirac assisted linking

problems in (2.10) using higher order distributional derivatives of δxj .

As it currently stands, DAT can handle multidimensional problems that can be decom-

posed into a series of 1D problems (e.g., by the separation of variables). We shall provide a

few relevant 2D numerical examples in Section 2.4.3. We shall discuss the use of DAT for

solving general 2D/3D problems in Chapter 7.
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2.2 Compact finite difference schemes with arbitrarily

high accuracy orders

To numerically solve the heterogeneous Helmholtz equation in (2.1)–(2.2) with piecewise

smooth coefficients a, κ2 and source term f , in this section we shall study compact finite

difference schemes with arbitrarily high accuracy and numerical dispersion orders. Such

compact finite difference schemes are important for accurately solving local problems stem-

ming from DAT in the foregoing section.

2.2.1 Compact stencils for interior points

We start by stating a simple observation, which is critical for proving the existence of a 1D

finite difference scheme with an arbitrarily high accuracy order. The following observation

uses an analyticity assumption for its theoretical analysis; however, we only require the

coefficients to be differentiable up to a certain order as we shall see later in this section.

Proposition 2.3. Let a, κ2, f in (2.1) be analytic functions and let u be an analytic function

satisfying [a(x)u′(x)]′ + κ2(x)u(x) = f(x) with a(x) > 0 for all x ∈ (0, 1). For any point

xb ∈ (0, 1), we have

u(j)(xb) = Ej,0u(xb) + Ej,1u
′(xb) +

j−2∑
ℓ=0

Fj,ℓf
(ℓ)(xb), j ⩾ 2, (2.21)

where the quantities Ej,0, Ej,1, Fj,ℓ only depend on the values a(xb), a
′(xb), . . . , a

(j−1)(xb) and

κ2(xb), [κ
2]′(xb),. . . , [κ

2](j−2)(xb) for j ⩾ 2 and ℓ ∈ N0. Consequently, for sufficiently small

h,

u(xb + h) = u(xb)E0(h) + u′(xb)hE1(h) +
∞∑
ℓ=0

hℓ+2f (ℓ)(xb)Fℓ(h), (2.22)

where E0(h), E1(h) and Fℓ(h), ℓ ∈ N0 are defined to be

E0(h) := 1 +
∞∑
j=2

Ej,0
j!
hj, E1(h) := 1 +

∞∑
j=2

Ej,1
j!
hj−1, Fℓ(h) :=

∞∑
j=ℓ+2

Fj,ℓ
j!
hj−ℓ−2. (2.23)

Proof. We prove the claim in (2.21) using mathematical induction on j. Consider the base

case with j = 2. Since a(x) > 0, we deduce from [a(x)u′(x)]′ + κ2(x)u(x) = f(x) that

u(2)(x) = −κ2(x)
a(x)

u(x)− a′(x)
a(x)

u′(x) + f(x)
a(x)

, x ∈ (0, 1). (2.24)
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Hence, setting x = xb in the above identity (2.24), we conclude that (2.21) holds for j = 2.

Suppose that the claim in (2.21) holds for some j ⩾ 2. We now prove that (2.21) must

hold for j + 1. Applying the (j − 1)th derivative to both sides of the identity in (2.24), we

observe that

u(j+1)(x) = −
[
κ2(x)
a(x)

u(x)
](j−1)

−
[
a′(x)
a(x)

u′(x)
](j−1)

+
[
f(x)
a(x)

](j−1)

.

Applying the Leibniz differentiation formula to the above identity, we conclude that the

quantity u(j+1)(x) can be written as a linear combination of f(x), f ′(x), . . . , f (j−1)(x) and

u(x), u′(x), . . . , u(j)(x) with all combination coefficients being analytic functions of x de-

pending only on a(x), a′(x), . . . , a(j)(x) and κ2(x), [κ2(x)]′, . . . , [κ2(x)](j−1). Now by induc-

tion hypothesis, we conclude that (2.21) holds for j+1. This proves (2.21) by mathematical

induction on j.

On the other hand, since u is analytic in a neighborhood of xb, the Taylor series of u at

the base point xb is u(xb+h) = u(xb)+u
′(xb)h+

∑∞
j=2

u(j)(xb)
j!

hj. Therefore, we deduce from

(2.21) that

u(xb + h) = u(xb) + u′(xb)h+
∞∑
j=2

hj

j!

(
Ej,0u(xb) + Ej,1u

′(xb) +

j−2∑
ℓ=0

Fj,ℓf
(ℓ)(xb)

)

= u(xb)

(
1 +

∞∑
j=2

Ej,0
j!
hj

)
+ u′(xb)

(
h+

∞∑
j=2

Ej,1
j!
hj

)
+

∞∑
j=2

j−2∑
ℓ=0

Fj,ℓ
j!
hjf (ℓ)(xb)

= u(xb)E0(h) + u′(xb)hE1(h) +
∞∑
ℓ=0

∞∑
j=ℓ+2

Fj,ℓ
j!
hjf (ℓ)(xb),

from which we obtain (2.22).

Let us now consider compact finite difference schemes with high accuracy and numerical

dispersion orders for the heterogeneous Helmholtz equation in (2.1) with smooth coefficients

a, κ2 and source term f . Suppose the discretization stencil is centered at an interior point

xb with mesh size 0 < h < 1. That is, we fix the base point xb to be in (0, 1) such that

(xb − h, xb + h) ⊂ (0, 1).

Theorem 2.4. Suppose that a, κ2, f in (2.1) are smooth functions. Let M, M̃ be positive

integers with M ⩾ M̃ . Let 0 < h < 1 and xb ∈ (0, 1) such that (xb − h, xb + h) ⊂
(0, 1). Consider the discretization stencil of a compact finite difference scheme for Lu :=
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[a(x)u′(x)]′ + κ2(x)u(x) = f(x) (i.e., (2.1)) at the base point xb below

Lhu(xb) := h−2[c−1(h)u(xb− h) + c0(h)u(xb) + c1(h)u(xb+ h)]−
M̃−1∑
ℓ=0

dℓ(h)h
ℓf (ℓ)(xb), (2.25)

where c−1, c0, c1 and dℓ are smooth functions of h for ℓ = 0, . . . , M̃ − 1. Suppose that

c1(h) =
α(h)

E1(h)
+ O(hM+1), c−1(h) =

α(h)

E1(−h)
+ O(hM+1),

c0(h) = −c1(h)E0(h)− c−1(h)E0(−h) + O(hM+2)

(2.26)

and

dℓ(h) = −δ0,ℓ + c1(h)Fℓ(h) + (−1)ℓc−1(h)Fℓ(−h) + O(hM̃−ℓ), ℓ = 0, . . . , M̃ − 1, (2.27)

as h→ 0, where α is a smooth function of h with α(0) ̸= 0 and E0(h), E1(h) and Fℓ(h), ℓ ∈ N0

are defined uniquely in (2.23) of Proposition 2.3. Then the discretization stencil of the

compact finite difference scheme has numerical dispersion order M at the base point xb, that

is,

h−2[c−1(h)u(xb − h) + c0(h)u(xb) + c1(h)u(xb + h)] = O(hM), h→ 0, (2.28)

for every solution u of Lu = 0, and has accuracy order M̃ at the base point xb, that is,

Lhu(xb)− f(xb) = O(hM̃), h→ 0, (2.29)

for every solution u of Lu = f .

Proof. By Proposition 2.3 and (2.21), all the quantities Ej,0, Ej,1, Fj,ℓ depend only on the

values a(xb), a
′(xb), . . . , a

(j−1)(xb) and κ
2(xb), [κ

2]′(xb), . . . , [κ
2](j−2)(xb) for j ⩾ 2 and ℓ ∈ N0.

For simplicity, we define u0 := u(xb), u1 := u′(xb) and fℓ := f (ℓ)(xb) for ℓ ∈ N0. Thus, by

(2.22), we deduce

h2Lhu(xb)− h2f0

= u0

(
c−1(h)E0(−h) + c0(h) + c1(h)E0(h)

)
+ u1h

(
− c−1(h)E1(−h) + c1(h)E1(h)

)
+

∞∑
ℓ=0

hℓ+2fℓ
(
c1(h)Fℓ(h) + (−1)ℓc−1(h)Fℓ(−h)

)
− (d0(h) + 1)h2f0 −

M̃−1∑
ℓ=1

dℓ(h)h
ℓ+2fℓ,

(2.30)
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where E0(h) and E1(h) are defined in (2.23).

On the other hand, from f(x) = [a(x)u′(x)]′ + κ2(x)u(x) we trivially observe that f (ℓ)

can be written as a linear combination of u, u′, . . . , u(ℓ+2) as well. Consequently, (2.28) holds

(or equivalently, (2.29) holds with f = 0 and M̃ = M) for numerical dispersion order M if

and only if the coefficients of u0 and u1 in the above identity are O(hM+2) as h → 0. That

is, (2.28) is equivalent to

c−1(h)E0(−h) + c0(h) + c1(h)E0(h) = O(hM+2), h→ 0,

− c−1(h)E1(−h) + c1(h)E1(h) = O(hM+1), h→ 0.

Solving the above equation and noting that E0(0) = E1(0) = 1, we conclude that (2.26)

holds if and only if (2.28) holds. Thus, (2.28) holds for numerical dispersion order M if and

only if (2.26) holds.

We now prove (2.29). Since we proved (2.28) and M ⩾ M̃ , (2.29) holds for accuracy

order M̃ if and only if all f0, . . . , fM̃−1 must be O(hM̃+2) as h → 0. Rearranging the last

line of (2.30), we conclude

∞∑
ℓ=0

hℓ+2
(
c1(h)Fℓ(h) + (−1)ℓc−1(h)Fℓ(−h)

)
fℓ − (d0 + 1)h2f0 −

M̃−1∑
ℓ=1

dℓh
ℓ+2fℓ

=
M̃−1∑
ℓ=0

hℓ+2
(
−(dℓ + δ0,ℓ) + c1(h)Fℓ(h) + (−1)ℓc−1(h)Fℓ(−h)

)
fℓ + O(hM̃+2).

Since (2.28) holds, (2.29) now is equivalent to that all the coefficients fℓ, ℓ = 0, . . . , M̃ − 1

in the above identity must be O(hM̃+2), that is,

−(dℓ + δ0,ℓ) + c1(h)Fℓ(h) + (−1)ℓc−1(h)Fℓ(−h) = O(hM̃−ℓ), ℓ = 0, . . . , M̃ − 1.

Solving the above linear equations for d0, . . . , dM̃−1 and using (2.26), we obtain (2.27). This

proves (2.29) for accuracy order M̃ .

We make some remarks on Theorem 2.4. First, from the proof of Theorem 2.4, we see

that Theorem 2.4 finds all the possible compact FDMs with accuracy order M̃ and numerical

dispersion order M . Because (2.29) for accuracy order M̃ automatically implies (2.28) for

numerical dispersion orderM withM = M̃ , we often takeM = M̃ . Also, κ2 can be replaced

by −κ2 (i.e., κ can be complex-valued). Second, if E0 and E1 in (2.23) have closed forms,

then we can have numerical dispersion orderM = ∞ for a pollution free scheme by selecting

c1(h) = −1/E1(h), c−1(h) = −1/E1(−h) and c0(h) = E0(h)/E1(h) + E0(−h)/E1(−h) in
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(2.26). In particular, for constant functions a and κ2, we observe

E0(h) = cos(h̃), E1(h) = h̃−1 sin(h̃) with h̃ := hκ/
√
a (2.31)

and for ℓ ∈ N0,

F2ℓ(h) =
cos(h̃)−

∑ℓ
j=0

(−1)j

(2j)!
h̃2j

(−1)ℓ+1h̃2ℓ+2a
, F2ℓ+1(h) =

sin(h̃)−
∑ℓ

j=0
(−1)j

(2j+1)!
h̃2j+1

(−1)ℓ+1h̃2ℓ+3a
. (2.32)

This pollution free scheme coincides with that of [122, 124]. In the literature, a dispersion

correction procedure for 1D homogeneous Helmholtz equation with (piecewise) constant

wavenumbers also exists [26, 27, 46]. However, the procedure as presented uses the standard

second order FDM, which itself is not a pollution free scheme. The correction solely comes

from modifying the original wavenumber. More specifically, the method involves inserting

the exact homogeneous solution of the 1D Helmholtz equation on the real line into the

standard second order FDM to obtain the modified wavenumber.

2.2.2 Compact stencils for boundary points

We now handle the case that the base point is one of the endpoints. It is important that

a compact FDM should achieve the same accuracy order and numerical dispersion order at

the endpoints as it does at interior points. The following result answers this question. For

simplicity, we only handle the boundary condition at a base point xb from its right side,

while the treatment for the boundary condition at xb from its left side is similar through

symmetry. Because we shall handle piecewise smooth coefficients, let us consider a general

boundary condition at xb ∈ [0, 1) from its right side. For j ∈ N0 and a function f(x),

f (j)(xb+) := limx→x+b
f (j)(x) and f (j)(xb−) := limx→x−b

f (j)(x) for one-sided derivatives.

Theorem 2.5. Suppose that a, κ2, f in (2.1) are smooth functions. Let M, M̃ be positive

integers with M ⩾ M̃ . Let 0 < h < 1 and the boundary condition at xb ∈ [0, 1) with

(xb, xb + h) ⊂ (0, 1). Suppose that the boundary condition at xb for the right side of xb is

given by

B+u(xb) := λ0u(xb+) + λ1u
′(xb+) with λ0, λ1 ∈ C. (2.33)

Consider the discretization stencil of a compact FDM for Lu := [a(x)u′(x)]′ + κ2(x)u(x) =

f(x) at the base point xb, from the right side of xb with the above boundary condition, below

LB+

h u(xb) := h−1[cB
+

0 (h)u(xb) + cB
+

1 (h)u(xb + h)]−
M̃−2∑
ℓ=0

dB
+

ℓ (h)hℓ+1f (ℓ)(xb+), (2.34)
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where cB
+

0 , cB
+

1 and dB
+

ℓ are smooth functions of h for ℓ = 0, . . . , M̃ − 2. Suppose that

cB
+

1 (h) =
λ1

E1(h)
+ O(hM), cB

+

0 (h) = hλ0 − cB
+

1 (h)E0(h) + O(hM+1) (2.35)

and

dB
+

ℓ (h) = cB
+

1 (h)Fℓ(h) + O(hM̃−ℓ−1), ℓ = 0, . . . , M̃ − 2, (2.36)

as h→ 0, where E0, E1, Fℓ, ℓ ∈ N0 are given in (2.23) of Proposition 2.3 and are determined

by a(n)(xb+) and [κ2](n)(xb+) for n ∈ N0. Then the discretization stencil of the compact

finite difference scheme at the base point xb with the boundary condition in (2.33) from the

right side of xb satisfies

cB
+

0 (h)u(xb) + cB
+

1 (h)u(xb + h) = O(hM), h→ 0 (2.37)

for every solution u of Lu = 0, and

LB+

h u(xb)− B+u(xb) = O(hM̃), h→ 0 (2.38)

for every solution u of Lu = f .

Proof. The proof is similar to but easier than the proof of Theorem 2.4 by using (2.22),

which implies

u′(xb) =
1

hE1(h)
u(xb + h)− E0(h)

hE1(h)
u(xb)−

∞∑
ℓ=0

hℓ+1

E1(h)
f (ℓ)(xb+)Fℓ(h). (2.39)

Since B+u(xb) = λ0u(xb+) + λ1u
′(xb+), using (2.39) we obtain

B+u(xb) = h−1

[
λ1

E1(h)
u(xb + h) +

(
λ0h− λ1E0(h)

E1(h)

)
u(xb)

]
−

∞∑
ℓ=0

λ1
E1(h)

hℓ+1f (ℓ)(xb+)Fℓ(h).

(2.40)

Now the claim follows directly by using (2.40) and (2.34).

If E0 and E1 in (2.23) have closed forms, then we can achieve numerical dispersion order

M = ∞ for pollution free by selecting c1(h) =
λ1

E1(h)
and c0(h) = hλ0 − E0(h)

E1(h)
λ1 in (2.35) of

Theorem 2.5. In particular, for constant functions a and κ2, E0, E1, Fℓ are given in (2.31)

and (2.32). As before, this pollution free scheme coincides with that of [122, 124] when the

boundary condition takes the form of λ0 = 1 and λ1 = 0 in (2.33) or λ0 = −iκ and λ1 = −1

in (2.33).
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2.2.3 Compact stencils for piecewise smooth coefficients

We now discuss piecewise smooth coefficients a, κ2 and f . Assume that a, κ2, f may have

a breaking/branch point xc := xb − θh ∈ (xb − h, xb + h) with θ ∈ (−1, 1) such that they

are smooth on (xb − h, xc) and (xc, xb + h), but they may be discontinuous at xc. We also

assume that all the one-sided derivatives of a, κ2, f exist at xc and assume θ ∈ [0, 1) for

simplicity. To solve the Dirac assisted local problems in (2.20) of Algorithm 2.1 for DAT,

we also assume that w(δxc) is the weight of the Dirac distribution δxc in the source term f .

We can generalize Theorem 2.4 by considering the following discretization stencil at xb:

L̊hu(xb) := h−2[c−1(h)u(xb − h) + c0(h)u(xb) + c1(h)u(xb + h)]

− h−1dw(h)w(δxc)−
M̃−1∑
ℓ=0

hℓ
(
d+ℓ (h)f

(ℓ)(xc+) + d−ℓ (h)f
(ℓ)(xc−)

)
,

where c−1, c0, c1, dw, and d
+
ℓ , d

−
ℓ , ℓ = 0, . . . , M̃ − 1 are smooth functions of h satisfying

c−1(h)E0,−((θ − 1)h) + c0(h)E0,+(θh) + c1(h)E0,+((1 + θ)h) = O(hM+2),

c−1(h)(θ − 1)E1,−((θ − 1)h)a(xc+)
a(xc−)

+ c0(h)θE1,+(θh) + c1(h)(θ + 1)E1,+((1 + θ)h) = O(hM+1),

dw(h) = c−1(h)(1− θ)E1,−((θ − 1)h) 1
a(xc−)

+ O(hM+1), h→ 0,

and for ℓ = 0, . . . , M̃ − 1,

d+ℓ (h) = c0(h)θ
ℓ+2Fℓ,+(θh) + c1(h)(θ + 1)ℓ+2Fℓ,+((θ + 1)h) + O(hM̃−ℓ),

d−ℓ (h) = c−1(h)(θ − 1)ℓ+2Fℓ,−((θ − 1)h) + O(hM̃−ℓ), h→ 0,

where E0,±, E1,± and Fℓ,± are given in Proposition 2.3 at the point xc (instead of xb) using

a(j)(xc±), [κ2](j)(xc±) and f (j)(xc±) accordingly. Then the above discretization stencil has

numerical dispersion order M at xb by satisfying (2.28) and has accuracy order M̃ at xb by

satisfying L̊hu(xb) = O(hM̃) as h→ 0 for every solution u of Lu = f . The proof of the above

equations is very similar to that of Theorem 2.4 but we expand u(xb−h), u(xb) and u(xb+h)
through Proposition 2.3 at xc instead of xb by noting u(xb − h) = u(xc + (θ − 1)h), u(xb) =

u(xc + θh) and u(xb + h) = u(xc + (θ + 1)h). Then we link the two sides of xc through the

transmission conditions u(xc+) = u(xc−) and a(xc+)u′(xc+) − a(xc−)u′(xc−) = w(δxc). If

all coefficients a, κ2, f are smooth inside (xb−h, xb+h), then Lhu(xb) in (2.25) of Theorem 2.4

can be recovered through Lh(xb) = L̊hu(xb) + f(xb) using xc = xb. We shall not pursue this

general issue further. In the present paper, it suffices for us to only consider the special case
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that xc = xb, i.e., θ = 0. For xc = xb, using the following special boundary operators at xb:

B+u(xb) := u′(xb+) and B−u(xb) := u′(xb−), (2.41)

instead of using L̊hu(xb) we can deduce a compact stencil at the base point xb from Theo-

rem 2.5 for (2.41) that

Lhu = 2a(xb−)
a(xb+)+a(xb−)

LB−

h u(xb)− 2a(xb+)
a(xb+)+a(xb−)

LB+

h u(xb) = − 2w(δxb )

a(xb+)+a(xb−)
(2.42)

at the base point xb, where w(δxb) is the weight of the Dirac distribution δxb in the source

term f .

2.2.4 A concrete example of finite difference schemes for M = 8

For the convenience of the reader, here we provide details about how to obtain concrete

compact finite difference schemes with Mth order accuracy and numerical dispersion as

discussed in Sections 2.2.1 to 2.2.3. In particular, we provide details for M = 2, 4, 6, 8.

We first discuss how to compute E0, E1, Fℓ, ℓ ∈ N ∪ {0} as defined in (2.23). Using (2.24)

and taking derivative on both sides of (2.21), we observe that the coefficients Ej,0, Ej,1 and

Fj,ℓ, ℓ = 0, . . . , j − 2 at a base point xb in Proposition 2.3 can be recursively obtained by

Ej+1,0 = E ′
j,0 −

κ2

a
Ej,1, Ej+1,1 = Ej,0 + E ′

j,1 −
a′

a
Ej,1, Fj+1,ℓ = F ′

j,ℓ + Fj,ℓ−1,

j ⩾ 2, ℓ = 0, . . . , j − 1

with the initial values

E2,0 := −κ
2

a
, E2,1 := −a

′

a
, and F2,0 :=

1

a
, (2.43)

where we used the convention that Fj,−1 :=
Ej,1
a

and Fj,ℓ := 0 for all ℓ > j − 2. Note that

E0(0) = E1(0) = 1 and Fℓ(0) = Fℓ+2,ℓ = F2,0 =
1

a(xb)
for all ℓ ∈ N0.

Let M = M̃ ∈ 2N. At an interior point xb we obtain from (2.25) of Theorem 2.4 that

c−1(h)u(xb− h) + c0(h)u(xb) + c1(h)u(xb+ h) = h2f(xb) +
M−2∑
ℓ=0

dℓ(h)h
ℓ+2f (ℓ)(xb) +O(hM+2),

as h → 0, where one particular choice of c−1, c0, c1 satisfying (2.26) of Theorem 2.4 is given
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by

c−1(h) := −EM−1
1 (−h), c1(h) := −EM−1

1 (h), c0(h) := EM−1
1 (h)EM0 (h) + EM−1

1 (−h)EM0 (−h),
(2.44)

and the corresponding dℓ, ℓ = 0, . . . ,M − 2 in (2.27) are given by

dℓ(h) := −δ0,ℓ − EM−1
1 (h)FM−ℓ−2

ℓ (h)− (−1)ℓEM−1
1 (−h)FM−ℓ−2

ℓ (−h), (2.45)

where En0 , En1 , F n
ℓ , n ∈ N are the unique polynomials (in terms of h) of degree n satisfying

En0 (h) = E0(h) + O(hn+1), En1 (h) := 1/E1(h) + O(hn+1), Fn
ℓ (h) = Fℓ(h) + O(hn+1),

(2.46)
as h → 0. Notice that dM−1(h) = 0 and E1(0) = 1. Observing c1(0) + (−1)M−1c−1(0) = 0
for even M ∈ 2N, one can directly check that the above choice in (2.44) and (2.45) satisfies
all the conditions in (2.26) and (2.27) with α(h) = 1−βhM , where β is the coefficient of hM

in the Taylor series of 1
E1(h)

at h = 0. Note that c−1, c0, c1 in (2.44) and dℓ, ℓ = 0, . . . ,M − 2

in (2.45) only depend on a, a′, . . . , a(M−1), κ2, [κ2]′, . . . , [κ2](M−2) and f, f ′, . . . , f (M−2). We
can also obtain stencils for odd integers M = M̃ ; however c1(0) + (−1)M−1c−1(0) ̸= 0 and
consequently, we have to use EM1 instead of EM−1

1 , EM+1
0 instead of EM0 , and FM−ℓ−1

ℓ instead
of FM−ℓ−2

ℓ in (2.44)-(2.45). Define aj := a(j)(xb), κj := [κ2](j)(xb) and fj := f (j)(xb). For

M = M̃ = 8, we explicitly have

E7
1 = 1 + ha1

2a0
+
(
2a0a2 + 2a0κ0 − a21

)
h2

12a20
+
(
a3a0

2 + 2κ1a0
2 − 2a1a2a0 + a31

)
h3

24a30
+
(
6a4a

3
0 + 18κ2a

3
0 − 18a1a3a

2
0

−6a1κ1a
2
0 − 16a22a

2
0 − 2a2κ0a

2
0 + 14κ20a

2
0 + 46a21a2a0 − 2a21κ0a0 − 19a41

)
h4

720a40
+
(
2a5a

4
0 + 8κ3a

4
0 − 8a1a4a

3
0 − 6a1κ2a

3
0

−20a2a3a
3
0 − 8a2κ1a

3
0 − 2a3κ0a

3
0 + 28κ0κ1a

3
0 + 29a21a3a

2
0 + 4a21κ1a

2
0 + 48a1a

2
2a

2
0 − 2a1a2κ0a

2
0 − 14a1κ

2
0a

2
0 − 78a31a2a0

+4a31κ0a0 + 27a51
)

h5

1440a50
+
(
12a6a

5
0 + 60κ4a

5
0 − 60a1a5a

4
0 − 72a1κ3a

4
0 − 192a2a4a

4
0 − 156a2κ2a

4
0 − 135a23a

4
0 − 120a3κ1a

4
0

−24a4κ0a
4
0 + 348κ0κ2a

4
0 + 300κ21a

4
0 + 282a21a4a

3
0 + 114a21κ2a

3
0 + 204a1a2κ1a

3
0 + 1296a1a2a3a

3
0 − 708a1κ0κ1a

3
0 + 352a32a

3
0

−12a22κ0a
3
0 − 240a2κ

2
0a

3
0 + 124κ30a

3
0 − 1056a31a3a

2
0 − 66a31κ1a

2
0 − 2544a21a

2
2a

2
0 + 198a21a2κ0a

2
0 + 354a21κ

2
0a

2
0 + 2910a41a2a0

−150a41κ0a0 − 863a61
)

h6

60480a60
+
(
3a7a

6
0 + 18κ5a

6
0 − 18a1a6a

5
0 − 30a1κ4a

5
0 − 70a2a5a

5
0 − 88a2κ3a

5
0 − 126a3a4a

5
0

−108a3κ2a
5
0 − 60a4κ1a

5
0 − 10a5κ0a

5
0 + 152κ0κ3a

5
0 + 360κ1κ2a

5
0 + 104a21a5a

4
0 + 74a21κ3a

4
0 + 610a1a2a4a

4
0 + 252a1a2κ2a

4
0

+423a1a
2
3a

4
0 + 156a1a3κ1a

4
0 + 10a1a4κ0a

4
0 − 468a1κ0κ2a

4
0 − 420a1κ

2
1a

4
0 + 686a22a3a

4
0 + 108a22κ1a

4
0 + 4a2a3κ0a

4
0

−600a2κ0κ1a
4
0 − 142a3κ

2
0a

4
0 + 372κ20κ1a

4
0 − 500a31a4a

3
0 − 126a31κ2a

3
0 − 3316a21a2a3a

3
0 − 240a21a2κ1a

3
0 + 86a21a3κ0a

3
0

+948a21κ0κ1a
3
0 − 1760a1a

3
2a

3
0 + 168a1a

2
2κ0a

3
0 + 600a1a2κ

2
0a

3
0 − 248a1κ

3
0a

3
0 + 1899a41a3a

2
0 + 48a41κ1a

2
0 + 6000a31a

2
2a

2
0

−522a31a2κ0a
2
0 − 474a31κ

2
0a

2
0 − 5310a51a2a0 + 264a51κ0a0 + 1375a71

)
h7

120960a70
,

E8
0 = 1− κ0h

2

2a0
+ (−κ1a0 + 2 a1κ0)

h3

6a02 +
(
−κ2a02 + 3 a1κ1a0 + 3 a2κ0a0 + κ0

2a0 − 6 a1
2κ0
)

h4

24a03 +
(
−κ3a03 + 4 a1κ2a0

2

+6 a2κ1a0
2 + 4 a3κ0a0

2 + 4κ0κ1a0
2 − 12 a1

2κ1a0 − 24 a1a2κ0a0 − 6 a1κ0
2a0 + 24 a1

3κ0
)

h5

120 a04 +
(
−κ4a04 + 5 a1κ3a0

3

+10 a2κ2a0
3 + 10 a3κ1a0

3 + 5 a4κ0a0
3 + 7κ0κ2a0

3 + 4κ1
2a0

3 − 20 a1
2κ2a0

2 − 60 a1a2κ1a0
2 − 40 a1a3κ0a0

2

−31 a1κ0κ1a0
2 − 30 a2

2κ0a0
2 − 13 a2κ0

2a0
2 − κ0

3a0
2 + 60 a1

3κ1a0 − 120 a1
4κ0 + 180 a1

2a2κ0a0 + 36 a1
2κ0

2a0
)

h6

720 a05

+
(
−κ5a50 + 6a1κ4a

4
0 + 15a2κ3a

4
0 + 20a3κ2a

4
0 + 15a4κ1a

4
0 + 6a5κ0a

4
0 + 11κ0κ3a

4
0 + 15κ1κ2a

4
0 − 30a21κ3a

3
0 − 120a1a2κ2a

3
0

−120a1a3κ1a
3
0 − 60a1a4κ0a

3
0 − 66a1κ0κ2a

3
0 − 39a1κ

2
1a

3
0 − 90a22κ1a

3
0 − 120a2a3κ0a

3
0 − 81a2κ0κ1a

3
0 − 24a3κ

2
0a

3
0 − 9κ20κ1a

3
0
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+120a31κ2a
2
0 + 540a21a2κ1a

2
0 + 360a21a3κ0a

2
0 + 228a21κ0κ1a

2
0 + 540a1a

2
2κ0a

2
0 + 192a1a2κ

2
0a

2
0 + 12a1κ

3
0a

2
0 − 360a41κ1a0

−1440a31a2κ0a0 − 240a31κ
2
0a0 + 720a51κ0

)
h7

5040a60
+
(
−κ6a60 + 7a1κ5a

5
0 + 21a2κ4a

5
0 + 35a3κ3a

5
0 + 35a4κ2a

5
0 + 21a5κ1a

5
0

+7a6κ0a
5
0 + 16κ0κ4a

5
0 + 26κ1κ3a

5
0 + 15κ22a

5
0 − 42a21κ4a

4
0 − 210a1a2κ3a

4
0 − 280a1a3κ2a

4
0 − 210a1a4κ1a

4
0 − 84a1a5κ0a

4
0

−122a1κ0κ3a
4
0 − 174a1κ1κ2a

4
0 − 210a22κ2a

4
0 − 420a2a3κ1a

4
0 − 210a2a4κ0a

4
0 − 202a2κ0κ2a

4
0 − 120a2κ

2
1a

4
0 − 140a23κ0a

4
0

−40a4κ
2
0a

4
0 − 174a3κ0κ1a

4
0 − 22κ20κ2a

4
0 − 28κ0κ

2
1a

4
0 + 210a31κ3a

3
0 + 1260a21a2κ2a

3
0 + 1260a21a3κ1a

3
0 + 630a21a4κ0a

3
0

+345a21κ
2
1a

3
0 + 572a21κ0κ2a

3
0 + 1890a1a

2
2κ1a

3
0 + 2520a1a2a3κ0a

3
0 + 1422a1a2κ0κ1a

3
0 + 418a1a3κ

2
0a

3
0 + 130a1κ

2
0κ1a

3
0

+630a32κ0a
3
0 + 303a22κ

2
0a

3
0 + 34a2κ

3
0a

3
0 + κ40a

3
0 − 840a41κ2a

2
0 − 5040a31a2κ1a

2
0 − 3360a31a3κ0a

2
0 − 1800a31κ0κ1a

2
0

−7560a21a
2
2κ0a

2
0 − 2280a21a2κ

2
0a

2
0 − 120a21κ

3
0a

2
0 + 2520a51κ1a0 + 12600a41a2κ0a0 + 1800a41κ

2
0a0 − 5040a61κ0

)
h8

40320a70
,

F6
0 (h) =

1
2a0

− a1h

3a20
+
(
−3a2a0 − κ0a0 + 6a21

)
h2

24a30
+
(
−4a3a

2
0 − 3κ1a

2
0 + 24a1a2a0 + 6a1κ0a0 − 24a31

)
h3

120a40
+
(
−5a4a

3
0

−6κ2a
3
0 + 40a1a3a

2
0 + 23a1κ1a

2
0 + 30a22a

2
0 + 13a2κ0a

2
0 + κ20a

2
0 − 180a21a2a0 − 36a21κ0a0 + 120a41

)
h4

720a50
+
(
−3a40a5 − 5a40κ3

+30a30a1a4 + 28a30a1κ2 + 60a30a2a3 + 30a30a2κ1 + 12a30a3κ0 + 4a30κ0κ1 − 180a20a
2
1a3 − 84a20a

2
1κ1 − 270a20a1a

2
2 − 6a20a1κ

2
0

−96a20a1a2κ0 + 720a0a
3
1a2 + 120a0a

3
1κ0 − 360a51

)
h5

2520a60
+
(
−7a50a6 − 15a50κ4 + 84a40a1a5 + 110a40a1κ3 + 210a40a2a4

+171a40a2κ2 + 140a40a
2
3 + 129a40a3κ1 + 40a40a4κ0 + 21a40κ0κ2 + 18a40κ

2
1 − 630a30a

2
1a4 − 482a30a

2
1κ2 − 2520a30a1a2a3

−1047a30a1a2κ1 − 418a30a1a3κ0 − 115a30a1κ0κ1 − 630a30a
3
2 − 303a30a

2
2κ0 − 34a30a2κ

2
0 − a30κ

3
0 + 3360a20a

3
1a3 + 1320a20a

3
1κ1

+7560a20a
2
1a

2
2 + 2280a20a

2
1a2κ0 + 120a20a

2
1κ

2
0 − 12600a0a

4
1a2 − 1800a0a

4
1κ0 + 5040a61

)
h6

40320a70
,

F5
1 (h) =

1
6a0

− a1h

8a20
+
(
−6a2a0 − κ0a0 + 12a21

)
h2

120a30
+
(
−5a3a

2
0 − 2κ1a

2
0 + 30a1a2a0 + 4a1κ0a0 − 30a31

)
h3

360a40
+
(
−15a30a4

−10a30κ2 + 120a20a1a3 + 39a20a1κ1 + 90a20a
2
2 + 21a20a2κ0 + a20κ

2
0 − 540a0a

2
1a2 − 60a0a

2
1κ0 + 360a41

)
h4

5040a50

+
(
−21a40a5 − 20a40κ3 + 210a30a1a4 + 115a30a1κ2 + 420a30a2a3 + 120a30a2κ1 + 45a30a3κ0 + 10a30κ0κ1 − 1260a20a

2
1a3

−345a20a
2
1κ1 − 1890a20a1a

2
2 − 375a20a1a2κ0 − 15a20a1κ

2
0 + 5040a0a

3
1a2 + 480a0a

3
1κ0 − 2520a51

)
h5

40320a60
,

F4
2 (h) =

1
24a0

− a1h

30a20
+
(
−10a2a0 − κ0a0 + 20a21

)
h2

720a30
+
(
−4a20a3 − a20κ1 + 24a0a1a2 + 2a0a1κ0 − 24a31

)
h3

1008a40
+
(
−35a30a4

−15a30κ2 + 280a20a1a3 + 59a20a1κ1 + 210a20a
2
2 + 31a20a2κ0 + a20κ

2
0 − 1260a0a

2
1a2 − 90a0a

2
1κ0 + 840a41

)
h4

40230a50
,

F3
3 (h) =

1
120a0

− a1h

144a20
+
(
−15a0a2 − a0κ0 + 30a21

)
h2

5040a30
+
(
−35a20a3 − 6a20κ1 + 210a0a1a2 + 12a0a1κ0 − 210a31

)
h3

40320a40
,

F2
4 (h) =

1
720a0

− a1h

840a20
+
(
−21a0a2 − a0κ0 + 42a21

)
h2

40320a30
, F1

5 (h) =
1

5040a0
− a1h

5760a20
, F0

6 (h) =
1

40320a0
.

Define En0,±, En1,±,Fn
ℓ,± for n ∈ N0 to be just En0 , En1 ,Fn

ℓ as in (2.46), respectively but using

aj = a(j)(xb±), κj = [κ2](j)(xb±) and fj = f (j)(xb±). Let M = M̃ ∈ 2N. For the left

boundary condition B+u(xb) = λ0u(xb+)+λ1u
′(xb+), we deduce from (2.34) of Theorem 2.5

that

cB
+

0 (h)u(xb) + cB
+

1 (h)u(xb + h) = hB+u(xb) +
M−2∑
ℓ=0

dB
+

ℓ (h)hℓ+2f (ℓ)(xb+) + O(hM+1),

as h → 0, where one particular choice of cB
+

1 , cB
+

0 , and dB
+

ℓ for ℓ = 0, . . . ,M − 2 satisfying

(2.35) and (2.36) of Theorem 2.5 are given by

cB
+

1 (h) := λ1EM−1
1,+ (h), cB

+

0 (h) := hλ0 − λ1EM−1
1,+ (h)EM0,+(h),

dB
+

ℓ (h) := λ1EM−1
1,+ (h)FM−ℓ−2

ℓ,+ (h), ℓ = 0, . . . ,M − 2.
(2.47)
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Similarly, let the boundary condition at xb for the left side of xb be given by

B−u(xb) := λ0u(xb−) + λ1u
′(xb−) with λ0, λ1 ∈ C. (2.48)

By symmetry, the discretization at the base point xb from the left side of xb is

cB
−

−1 (h)u(xb − h) + cB
−

0 (h)u(xb) = hB−u(xb) +
M−2∑
ℓ=0

dB
−

ℓ (h)hℓ+2f (ℓ)(xb−) + O(hM+1), (2.49)

as h→ 0, which satisfies the corresponding relations in (2.37) and (2.38) if

cB
−

−1 (h) := −λ1EM−1
1,− (−h), cB

−

0 (h) := hλ0 + λ1EM−1
1,− (−h)EM0,−(−h),

dB
−

ℓ (h) := (−1)ℓ+1λ1EM−1
1,− (−h)FM−ℓ−2

ℓ,− (−h), ℓ = 0, . . . ,M − 2.
(2.50)

For the stencil used at the breaking/branch point xb such that w(δxb) is the weight of the

Dirac distribution δxb of the source term f , we deduce from (2.47) and (2.50) with λ0 = 0

and λ1 = 1 that

− αEM−1
1,− (−h)u(xb − h) +

[
αEM−1

1,− (−h)EM0,−(−h) + βEM−1
1,+ (h)EM0,+(h)

]
u(xb)

− βEM−1
1,+ (h)u(xb + h) = −hγw(δxb)

−
M−2∑
ℓ=0

hℓ+2[βEM−1
1,+ (h)FM−ℓ−2

ℓ,+ (h)f (j)(xb+) + α(−1)ℓEM−1
1,− (−h)FM−ℓ−2

ℓ,− (−h)f (j)(xb−)]

+ O(hM+1),

(2.51)

as h→ 0, where α := 2a(xb−)
a(xb+)+a(xb−)

, β := 2a(xb+)
a(xb+)+a(xb−)

and γ := 2
a(xb+)+a(xb−)

.

Finite difference schemes with lower accuracy orders M = 2, 4, 6 can be easily obtained

by truncating the above given E8
0 , E7

1 ,F6−ℓ
ℓ accordingly. In the above compact FDM with

accuracy order M with M = M̃ ∈ 2N, we only need a, a′, . . . , a(M−1), κ2, [κ2]′, . . . , [κ2](M−2),

and f, f ′, . . . , f (M−2).

2.3 Convergence of DAT using compact FDMs

In this section, we discuss the convergence of DAT in Section 2.1 using compact FDMs

described in Theorems 2.4 and 2.5 of Section 2.2. Let us first outline the notations and

assumptions for our discussion in this section and for our numerical experiments in the next

section. Let 0 = b0 < b1 < · · · < bp < bp+1 = 1 with p ∈ N ∪ {0}. The coefficients a, κ2 and

f in (2.1) are piecewise smooth in the sense that they have uniformly continuous derivatives
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of orders up to nM on (bj, bj+1) for all j = 0, . . . , p for certain given integer nM ∈ N (see

Section 2.2 for details). Note that these coefficients may be discontinuous on (0, 1) and we

call the points b1, . . . , bp breaking/branch points. For simplicity of discussion, we assume a

Dirichlet boundary condition at 0, while a Dirichlet, Neumann, or Robin boundary condition

at 1. Let ue be the exact weak solution to (2.1) with the boundary conditions in (2.2). Let

N ∈ N and 0 = x0 < x1 < . . . < xN−1 < xN = 1 for the computational mesh with the

average mesh size h := N−1. Let {uN(xj)}Nj=0 be the approximated solution on knot points

{xj}Nj=0. To study theoretical convergence rates and to evaluate the performance of DAT,

we define

∥uN − ue∥∞ := max
0⩽j⩽N

|uN(xj)− ue(xj)|, ∥uN − ue∥22 :=
N∑
j=0

hj|uN(xj)− ue(xj)|2 (2.52)

with hj := xj+1 − xj and xN+1 := 1. Because ∥uN − ue∥2 ⩽ ∥uN − ue∥∞ and ∥u′N − u′e∥2 ⩽
∥u′N−u′e∥∞ always hold, we shall only discuss the convergence in ∞-norm instead of 2-norm.

Throughout this section, positive constants C,C1, C2 are always independent of both matrix

size N and mesh size h. The computational mesh is assumed to be quasi-uniform, i.e., there

exists C > 0 independent of h such that C−1h ⩽ hj ⩽ Ch for all j = 0, . . . , N . Note that the

weak solution ue ∈ H1(0, 1) but u′e may be discontinuous at branch points on (0, 1), because

the coefficients a, κ2, f are only piecewise smooth. For convenience, every branch point bj

is assumed to be a grid/knot point and the mesh on each piece (bj, bj+1) is uniform for all

j = 0, . . . , p. These restrictions could be dropped as we already discussed in Section 2.2.3

but they make our discussion here and implementation in Section 2.4 much simpler.

For an Mth order compact FDM in Section 2.2 with M̃ =M ∈ N, the stencil at xj:

cj,−1(h)u(xj−1) + cj,0(h)u(xj) + cj,1(h)u(xj+1) = Fj(h), j = 1, . . . , N (2.53)

is given in Theorems 2.4 and 2.5 as follows:

(1) If xj is neither a branch point nor a boundary point, then (2.53) is given by (2.25) with

(2.26) and (2.27) under the normalization condition α(0) = −1. Because we impose

a Dirichlet boundary condition at 0, the known term c1,−1(h)u(x0) is moved to and

combined with Fj.

(2) If xj is a branch point, then (2.53) is given by (2.42) or more explicitly (2.51).

(3) For xN (right boundary point), (2.53) is given by (2.49) with (2.50). Note that

cN,N+1(h) = 0. If we impose a Dirichlet boundary condition at 1, the known term
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cN−1,1(h)u(xN) is moved to and combined with Fj such that the last term in (2.53) is

N − 1 (instead of N).

The approximated numerical solution uN = {uN(xj)}Nj=0 is obtained by solving the linear

system in (2.53) with u = uN . By Theorems 2.4 and 2.5, the exact solution ue must satisfy

cj,−1(h)ue(xj−1) + cj,0(h)ue(xj) + cj,1(h)ue(xj+1) = Fj(h) +Rj(h), j = 1, . . . , N, (2.54)

where the local truncation error functions Rj(h) resulted from Taylor approximation satisfy

|Rj(h)| ⩽

ChM+2, if xj ̸∈ {b0, . . . , bp+1}, i.e., xj is an interior point,

ChM+1, if xj ∈ {b0, . . . , bp+1}, i.e., xj is a branch point or a boundary point,

(2.55)

where the constant C is independent of h and only depends on derivatives of ue, a, κ
2 and

f . The error is then defined by Qj := uN(xj)− ue(xj) at the knot point xj for j = 1, . . . , N .

By (2.54) and (2.55),

cj,−1(h)Qj−1 + cj,0(h)Qj + cj,1(h)Qj+1 = Rj(h), j = 1, . . . , N, (2.56)

which can be put together into the following matrix form

A(h)Q⃗ = R⃗(h) with Q⃗ := [Q1, . . . , QN ]
T, R⃗(h) := [R1, . . . , RN ]

T, (2.57)

where A(h) is an N ×N tridiagonal matrix defined by

A(h) = tridiag({cj,−1(h)}Nj=2, {cj,0(h)}Nj=1, {cj,1(h)}N−1
j=1 ). (2.58)

Setting h = 0, we have a related N ×N constant tridiagonal matrix A(0) given by

A(0) = tridiag({cj,−1(0)}Nj=2, {cj,0(0)}Nj=1, {cj,1(0)}N−1
j=1 ), (2.59)

where tridiag(·, ·, ·) is defined in (S2) of Algorithm 2.1 and the entries of A(0) are given as

follows:

cj,−1(0) = cj,1(0) = −1, cj,0(0) = 2 if xj is an interior point,

cj,0(0) = 2, cj,−1(0) = − 2a(bj−)

a(bj+)+a(bj−)
, cj,1(0) = −2− cj,−1(0), if xj is a branch point,

c0,0(0) = 2, c0,1(0) = −1 if λL1 = 0, λL0 = 1 in (2.2),

cN,−1(0) = −1, cN,0(0) = 1, if λR1 ̸= 0 in (2.2).
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If we impose a Dirichlet boundary condition at 1, then we replace N with N − 1 in (2.54),

(2.56), (2.57), (2.58), and (2.59). Furthermore, cN−1,−1(0) = −1 and cN−1,0(0) = 2 in (2.59).

Next, we highlight some key issues as to why the theoretical convergence of compact

FDMs in Section 2.2 for 1D heterogeneous Helmholtz equations with various boundary con-

ditions requires a separate comprehensive treatment and will be addressed elsewhere. First,

the solution stability of such Helmholtz equations is far from trivial and warrants further

investigation. There are some cases in which the stability constant may exponentially rise;

i.e., the solution is close to being ‘unstable’ in some sense. In fact, the solution may become

highly unstable under perturbation or even with fairly accurate approximation of boundary

and source data. See [61, Section 5.2]. In these situations, the convergence of FDM (and

any other discretization methods) is severely affected. For illustration purposes, we mention

two such cases by considering the simplest Helmholtz equation:

u′′ + κ2u = f on [0, 1] with u(0) = u(1) = 0, a constant wavenumber κ > 0. (2.60)

First, it is well known that solving the simplest Helmholtz equation in (2.60) with large

wavenumbers κ is challenging, because the huge stability constant grows quickly with κ2

and causes the pollution effect. This requires the mesh size h to be extremely small for

any numerical schemes to start effectively approximating the true solution and exhibiting

convergence behavior. Second, if κ = nπ with n ∈ N, then the solution u to (2.60) is

obviously not unique since u(x) + α sin(nπx) are also solutions to (2.60) for all α ∈ C. Now
consider (2.60) with κ = nπ ± ϵ with n ∈ N and a very small ϵ > 0. Though the solution

to (2.60) is now unique and the wavenumber κ is quite small, as we shall explain later,

its true solution is highly unstable in some sense. One has to use a small mesh size h in

proportion to ϵ (which may be smaller than machine precision) for any numerical scheme

to start effectively approximating the true solution and exhibiting convergence behavior.

These phenomena and difficulties call for further investigation of the stability of Helmholtz

equations and its relations to convergence properties of FDMs. Because DAT can break any

large problem into very small ones, the above discussion in fact shows the advantages and

contributions of DAT for numerical solutions of Helmholtz equations.

Recall that for an m × n matrix A, the ∞-norm of A is ∥A∥∞ := sup1⩽j⩽m

∑n
k=1 |Aj,k|,

which is the operator norm mapping ℓn∞ to ℓm∞. In the convergence analysis of FDM, one can

deduce from the identity (2.57) that

∥Q⃗∥∞ := sup
1⩽j⩽N

|Qj| ⩽ ∥A(h)−1R⃗(h)∥∞ ⩽ ∥A(h)−1∥∞∥R⃗(h)∥∞. (2.61)
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Hence, how ∥A(h)−1∥∞ behaves for small h is a key issue. Even though A(h) in (2.57)

converges entrywise to A(0) in (2.59), the invertibility of A(h) and the norm estimates of

∥A(h)−1∥∞ are not immediately guaranteed by the properties of A(0) in (2.59), since the

size N of A(h) goes to ∞ as h→ 0. Furthermore, the structure of A(h)−1 may be unknown.

In stark contrast to elliptic equations, A(h) may be singular or highly ill-conditioned not

only for large wavenumbers but also for small wavenumbers. Let us consider the simplest

Helmholtz equation in (2.60) again and use the standard second order FDM. Then at mesh

size h = N−1, our coefficient matrix is A(h) = tridiag({−1}N−1
j=2 , {2 − κ2h2}N−1

j=1 , {−1}N−2
j=1 ),

whose eigenvalues are known to take the following form

σn := (2− κ2h2)− 2 cos(nhπ), ∀n = 1, . . . , N − 1.

Note that the nth eigenvalue, σn, vanishes and hence det(A(h)) = 0 if

κ = κ∗(h, n), where κ∗(h, n) := h−1
√

2(1− cos(nhπ)). (2.62)

This situation is not encountered in the elliptic case, since all its eigenvalues (2 + κ2h2) −
2 cos(nhπ) > 0 for all n ∈ N. Consider κ = κ∗(2

−7, 3) ≈ 9.4226, that is, κ = 3π − ϵ for

some 0 < ϵ < 0.0022. Then the standard second order FDM fails to produce any solution

at h = 2−7 because det(A(h)) = 0. For κ > 0, we define the distance ρκ := minn∈N |κ− nπ|,
which can be arbitrarily small for any mesh size h. For example, for the mesh size h = 2−19,

we see that ρκ ≈ 10−10 with κ := κ∗(2
−19, 3) ≈ 9.4248 but det(A(h)) = 0 at h = 2−19.

Note that the commonly used criterion κ2h = O(1) is satisfied because κ2h ≈ 2× 10−4 with

κ = κ∗(2
−19, 3) and h = 2−19. However, we need to employ an impractically small grid size

for the FDM before any convergence is perceived. The situation is exacerbated if κ is very

large and ρκ is very small. The foregoing point first demonstrates how we need to carefully

quantify and elaborate on what ‘sufficiently small h’ means for some form of convergence

in the pre-asymptotic (computationally feasible) range to take place, which theoretically

may be challenging (much harder than elliptic equations); and second, it refers back to an

earlier key issue regarding the significance of understanding the solution’s stability. For the

example presented above, one can check by a direct calculation that the energy norm of the

true solution is large. The theoretical convergence for 1D heterogeneous Helmholtz equations

with piecewise smooth coefficients demands more sophisticated analysis due to its underlying

intricacies.

Before we turn to the convergence of DAT, we discuss how to estimate u′(xb) for xb = xj

for some 0 ⩽ j ⩽ N from u(xk) := uN(xk), k = 0, . . . , N , since u′N is used in the linking

problems of DAT and in the error ∥u′N − u′e∥∞ for measuring performance. Assume that the
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numerical u (i.e., uN) is computed with accuracy order M , that is, |u(xk)− ue(xk)| ⩽ ChM

for all k = 0, . . . , N for some C > 0 independent of N and h. We can estimate one-

sided derivatives u′(xb+) and u′(xb−) with the same accuracy order as well. Basically, let

LB+

h u(xb) and LB−

h u(xb) be the stencils with accuracy order M for boundary conditions in

(2.41) through Theorem 2.5. Then

u′e(xb+) = LB+

h u(xb) + O(hM), u′e(xb−) = LB−

h u(xb) + O(hM), h→ 0, (2.63)

which can be also derived from (2.39) easily. Higher order one-sided derivatives at xb can also

be estimated with accuracy orderM thanks to Proposition 2.3. Moreover, since we can obtain

the one-sided derivatives of ue at all knot points with accuracy order M , using interpolation

we can obtain a function u(x), 0 ⩽ x ⩽ 1 from the computed data {u(xj)}Nj=0 such that

u accurately approximates the exact solution ue in the function setting. The identities in

(2.63) play a critical role in DAT to accurately estimate artificial Dirac distributions in (2.9)

and (2.12) for DAT.

Now we are ready to discuss the convergence of DAT. Recall that the average mesh size

h := N−1. Assume that the Helmholtz equation in (2.1)–(2.2) has a unique solution. Let N0

be a given integer independent of N and h. Now we claim that

If all local problems in DAT are at most N0 ×N0 in size, then all the condition

numbers of all local problems in DAT must be uniformly bounded and DAT using the

M th order compact FDM exhibits O(hM) convergence for sufficiently small h.

(2.64)

The argument is as follows. According to the theory of DAT in Section 2.1, the accuracy of

DAT only depends on the accuracy of the local problem solver and the error accumulated

from the tree depth and the linking problems. So, let us look at one typical local problem

with grid points α = xL < xL+1 < · · · < xH−1 < xH = β on (α, β). For small h, as explained

in Section 2.1 on DAT, the boundary conditions for this typical local problem are either

Dirichlet boundary conditions at both α and β with at most one branch point inside (α, β),

or Dirichlet boundary condition at 0 and the prescribed boundary condition as in (2.2) at 1.

Let m be the size of this local problem. Then the relation in (2.57) still holds with N = m,

U⃗ := [UL+1, . . . , UL+m]
T and R⃗(h) = [RL, . . . , RL+m]

T. Because the size m ⩽ N0, we have

limh→0 ∥A(h) − A(0)∥∞ = 0, where the m ×m matrix A(0) is given in (2.59). If the local

mesh {xL, . . . , xR} does not contain any branch point, then A(0) must be the standardm×m
tridiagonal matrix generated by [−1, 2,−1], probably with [A(0)]m,m = 1 instead of 2 de-

pending on the boundary condition at β. The later matrix A(0) is known to be invertible with
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det(A(0)) = m+1, or 1 if [A(0)]m,m = 1. Suppose now that the local mesh contains a branch

point bj and the kth row of A(0) corresponds to this branch point bj. Then the kth row of the

standard tridiagonal matrix A(0) with [−1, 2,−1] is replaced by [
−2a(bj−)

a(bj+)+a(bj−)
, 2,

−2a(bj+)

a(bj+)+a(bj−)
].

Then det(A(0)) = 2((1+m−k)a(bj−)+ka(bj+))(a(bj−)+a(bj+))−1 if a Dirichlet boundary

condition is imposed at β, or det(A(0)) = 2a(bj−)(a(bj−) + a(bj+))−1 if a Neumann/Robin

boundary condition is imposed at β. In all cases, the determinant of A(0) is nonzero; thus,

A(0) must be an invertible matrix. Because A(h) is at most N0 × N0, we conclude that

A(h) is invertible for all sufficiently small h, limh→0 ∥A(h)−1 − A(0)−1∥∞ = 0, and there

exists C1 > 0 independent of h such that ∥A(h)−1∥∞ ⩽ C1 for all small h > 0. Hence,

the condition number of A(h) is uniformly bounded for all local problems and we deduce

from (2.57) and (2.61) that ∥Q⃗∥∞ ⩽ C1∥R⃗(h)∥∞. If we use the Mth order compact FDM,

then (2.55) must hold and hence ∥R⃗(h)∥∞ ⩽ ChM+1 for all sufficiently small h. Putting

everything together, we proved that ∥Q⃗∥∞ ⩽ C1Ch
M+1 for convergence of all local problems

in (S2) of Algorithm 2.1.

For the linking problems, we have to estimate one-sided derivatives u′ for approximated

solutions u of all local problems. As we discussed before, this can be done by using (2.63)

with M being replaced by M + 1, because the local problems are solved with accuracy

order M + 1 as we discussed a moment ago. However, we cannot expect from (2.63) to

achieve ∥u′e − u′∥∞ ⩽ C2h
M+1 with a positive constant C2 independent of h, where ue and

u stand for the exact solution and approximated solution of a local problem. Note that

the constant C2 only depends on a, κ and the partitioned source term fj = fφj, where

φj is the hat function supported on [α, β] with φj(γ) = 1 for some γ ∈ [α, β]. However,

β − α = O(h) due to m ⩽ N0 and hence, ∥φ′
j∥∞ = O(h−1). Consequently, one can observe

that ∥f (n)
j ∥∞ ⩽ C3h

−1 for all n = 0, . . . ,M , where the positive constant C3 only depends

on f and is independent of h. That is, we can only expect C2 ⩽ C3h
−1 and consequently,

∥u′e−u′∥∞ ⩽ C2h
M+1 ⩽ C3h

M . It is hard to exactly quantify how the error propagates from

the deepest tree level to the surface tree level through the linking problems. Our numerical

experiments seem to indicate that the linking problems do not further reduce accuracy.

Because the one-sided derivatives u′ can be estimated with accuracy O(hM), the solution Q⃗

is expected to behave like ∥Q⃗∥∞ ⩽ CC1C2h
M+1 ⩽ CC1C3h

M for sufficiently small h. This

leads to the claim in (2.64).

2.4 Numerical experiments

In this section, we present several numerical experiments to illustrate the performance of DAT

in Section 2.1 and the developed compact FDMs in Section 2.2. Let ue and {uN(xj)}Nj=0 be
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the exact (if its analytic expression is known) and approximated solutions on knot points

{xj}Nj=0 with 0 = x0 < x1 < . . . < xN−1 < xN = 1, respectively. Because 2-norm is

controlled by ∞-norm in (2.52), we shall measure the performance in ∞-norm using relative

errors ∥uN−ue∥∞
∥ue∥∞ and

∥u′N−u′e∥∞
∥u′e∥∞

, where {u′N(xj)}Nj=0 are estimated from {uN(xj)}Nj=0 through

(2.63). When the analytic expression of the exact solution ue is unknown, we calculate the

relative error between two consecutive levels. Due to the pollution effect, we know that

our grid size has to be at least smaller than ∥κ∥−1
∞ . When we perform our experiments,

we initially set our grid size to be approximately ∥κ∥−1
∞ , refine dyadically, and only record

the numerical results where a convergent behaviour is present (either with respect to the

exact solution or the solution at the subsequent grid refinement). All condition numbers are

approximated by using condest in MATLAB, after renormalizing all the diagonal entries to

be one in the coefficient matrices. The columns “Local CN” and “Link CN” in all tables in

this section list the maximum condition numbers associated with local and link problems in

DAT. The tree level and split parameter used are denoted by ℓ and s. The default choice is

s = 1. Also, ℓ = 0 means we use FDM without DAT. All linear systems are solved by using

MATLAB’s backslash command. For all examples below, we use the Mth order compact

FDMs in Section 2.2.4 with M = 6 or M = 8. To visualize the numerical performance, the

vertical axis in each convergence plot uses a base-10 log scale and the horizontal axis uses a

base-2 log scale.

2.4.1 A comparison with PUFEM

DAT differs from PUFEM (see [8, 104]) in the way the partition of unity is applied. The

former multiplies the partition of unity with the source term f , while the latter multiplies the

partition of unity with local approximation spaces. In the presence of a large wavenumber,

the trial functions in PUFEM are highly oscillatory. Hence, finding an appropriate quadra-

ture becomes a major concern and challenge for PUFEM. Moreover, numerical experiments

in [121] indicate that the coefficient matrix of PUFEM has an extremely large condition num-

ber, which may produce extra stability issues. For the heterogeneous Helmholtz equation

with piecewise smooth coefficients and wavenumber, finding suitable local approximation

spaces can in fact be challenging and computationally expensive.

Example 2.1. Consider the model problem (2.1)-(2.2) given by [a(x)u′(x)]′ + κ2(x)u(x) =

f(x), x ∈ (0, 1) with the coefficients a = 1, κ = 106, f = κ2 cosh(x), and the boundary

conditions u(0) = 0 and u′(1) − iκu(1) = 0. The exact solution has the following analytic

expression

ue =
−κ sin(κx)
κ2 + 1

(sinh(1)− i cosh(1)κ)eiκ +
κ2(cosh(x)− eiκx)

κ2 + 1
.
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See Table 2.1 for the numerical performance measured by ∥uN−ue∥∞
∥ue∥∞ and

∥u′N−u′e∥∞
∥u′e∥∞

. The

errors for PUFEM are evaluated at nodal points. Because the wavenumber κ = 106 is large,

to fairly compare DAT with PUFEM, all inner products in PUFEM are calculated exactly

via symbolic computation to minimize possible errors due to numerical quadrature. “Local

CN” for PUFEM lists the condition number of its coefficient matrix. All local and linking

problems in DAT in Table 2.1 solve at most 4 × 4 linear systems with uniformly bounded

small condition numbers. Table 2.1 demonstrates that DAT can handle very small mesh

size and the maximum condition numbers of coefficient matrices coming from all local and

linking problems are much smaller than those in FDM and PUFEM by several orders of

magnitude.

N ℓ ∥uN−ue∥∞
∥ue∥∞

∥u′N−u′e∥∞
∥u′e∥∞

Local CN Link CN ∥uN−ue∥∞
∥ue∥∞

∥u′N−u′e∥∞
∥u′e∥∞

Local CN Link CN

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8

221 0 1.7276× 10−1 4.0087× 10−1 1.61× 107 − 4.3849× 10−4 1.0173× 10−3 2.07× 107 −
221 19 1.7276× 10−1 4.0087× 10−1 3.23× 101 4.18× 102 4.3849× 10−4 1.0173× 10−3 3.23× 101 6.27× 101

222 0 2.6379× 10−3 6.1212× 10−3 7.15× 107 − 1.6674× 10−6 3.8683× 10−6 8.65× 107 −
222 20 2.6379× 10−3 6.1212× 10−3 4.15× 101 6.37× 101 1.6671× 10−6 3.8677× 10−6 4.15× 101 6.28× 101

223 0 4.0945× 10−5 9.5012× 10−5 3.51× 108 − 8.1795× 10−9 1.8977× 10−8 3.51× 108 −
223 21 4.0946× 10−5 9.5014× 10−5 4.41× 101 6.29× 101 1.1594× 10−8 2.6901× 10−8 4.41× 101 6.28× 101

PUFEM in [9]

221 − 1.2806× 10−1 5.7930× 10−1 2.09× 107 −
222 − 3.2473× 10−2 2.1123× 10−1 8.69× 107 −
223 − 8.1473× 10−3 8.9740× 10−2 2.38× 108 −

Table 2.1: Relative errors for Example 2.1 using DAT with N0 = 4 and s = 1 in Algorithm 2.1,
and PUFEM. The grid increment used in [0, 1] is N−1.

2.4.2 Numerical experiments on 1D heterogeneous Helmholtz equa-

tions

Example 2.2. Consider the model problem (2.1)-(2.2) given by [a(x)u′(x)]′ + κ2(x)u(x) =

f(x), x ∈ (0, 1) with the following piecewise smooth jumping coefficients having a large

variation:

a = χ[0, 1
8
) + 10−1χ[ 1

8
, 2
8
) + χ[ 2

8
, 3
8
) + 10−2χ[ 3

8
, 4
8
) + χ[ 4

8
, 5
8
) + 10−3χ[ 5

8
, 6
8
) + χ[ 6

8
, 7
8
) + 10−4χ[ 7

8
,1],

κ = 104(χ[0, 1
8
)∪[ 2

8
, 3
8
)∪[ 4

8
, 5
8
)∪[ 6

8
, 7
8
)) + 500(χ[ 1

8
, 2
8
)∪[ 3

8
, 4
8
)∪[ 5

8
, 6
8
)∪[ 7

8
,1]),

f = 107ex(χ[0, 1
8
)∪[ 2

8
, 3
8
)∪[ 4

8
, 5
8
)∪[ 6

8
, 7
8
))− e−2x(χ[ 1

8
, 2
8
)∪[ 3

8
, 4
8
)∪[ 5

8
, 6
8
)∪[ 7

8
,1]),

and the boundary conditions u(0) = 0 and 10−2u′(1)− i500u(1) = 0. The exact solution ue

has an analytic expression which is given on each interval (2−3(j − 1), 2−3j) for j = 1, . . . , 8
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by

ue(x) = Aj exp

(
i κ(x)√

a(x)
x

)
+Bj exp

(
−i κ(x)√

a(x)
x

)
+

exp

(
i
κ(x)√
a(x)

x

)
2iκ(x)

√
a(x)

∫ x

2−3(j−1)
f(t) exp

(
−i κ(t)√

a(t)
t

)
dt

−
exp

(
−i

κ(x)√
a(x)

x

)
2iκ(x)

√
a(x)

∫ x

2−3(j−1)
f(t) exp

(
i κ(t)√

a(t)
t

)
dt, x ∈ (2−3(j − 1), 2−3j),

where all the coefficients Aj, Bj for j = 1, . . . , 8 are uniquely determined by solving a system

of linear equations that arises from imposing the boundary conditions and the following

transmission conditions

ue(2
−3j−) = ue(2

−3j+), a(2−3j−)u′e(2
−3j−) = a(2−3j+)u′e(2

−3j+), j = 1, . . . , 8.

See Table 2.2 for the numerical performance measured by ∥uN−ue∥∞
∥ue∥∞ and

∥u′N−u′e∥∞
∥u′e∥∞

, and

Fig. 2.2 for the convergence plot and approximated solution uN . As can be seen from Ta-

ble 2.2, the convergence rates agree with the theoretical discussion in Sections 2.2 and 2.3.

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8

N ℓ ∥uN−ue∥∞
∥ue∥∞

∥u′N−u′e∥∞
∥u′e∥∞

Local CN Link CN ∥uN−ue∥∞
∥ue∥∞

∥u′N−u′e∥∞
∥u′e∥∞

Local CN Link CN

215 0 2.0833× 10−1 1.2491 1.62× 106 − 8.0406× 10−3 4.8823× 10−2 1.59× 107 −
7 2.0833× 10−1 1.2491 2.27× 104 2.32× 103 8.0406× 10−3 4.8823× 10−2 2.22× 104 2.32× 103

10 2.0833× 10−1 1.2491 3.98× 102 2.32× 103 8.0406× 10−3 4.8823× 10−2 3.87× 102 2.32× 103

216 0 3.5328× 10−3 2.1422× 10−2 7.55× 106 − 2.3512× 10−5 1.4404× 10−4 7.56× 106 −
8 3.5328× 10−3 2.1422× 10−2 1.66× 103 2.32× 103 2.3512× 10−5 1.4404× 10−4 1.66× 103 2.32× 103

11 3.5328× 10−3 2.1422× 10−2 1.32× 102 2.32× 103 2.3512× 10−5 1.4404× 10−4 1.32× 102 2.32× 103

217 0 5.1547× 10−5 3.1264× 10−4 2.87× 107 − 8.5834× 10−8 5.2706× 10−7 2.87× 107 −
9 5.1547× 10−5 3.1264× 10−4 1.18× 104 2.32× 103 8.5834× 10−8 5.2705× 10−7 1.18× 104 2.32× 103

12 5.1547× 10−5 3.1264× 10−4 3.65× 101 2.32× 103 8.5834× 10−8 5.2706× 10−7 3.65× 101 2.36× 103

218 0 7.9194× 10−7 4.8033× 10−6 1.14× 108 − 3.2902× 10−10 2.0239× 10−9 1.14× 108 −
10 7.9194× 10−7 4.8033× 10−6 1.09× 104 2.32× 103 9.3775× 10−10 2.0278× 10−9 1.09× 104 2.32× 103

13 7.9194× 10−7 4.8033× 10−6 4.28× 101 2.32× 103 3.2825× 10−10 2.0194× 10−9 4.28× 101 2.32× 103

Table 2.2: Relative errors for Example 2.2 using DAT with N0 = 32 and s = 1 in Algorithm 2.1.
The grid increment used in each sub-interval [(k − 1)2−3, k2−3] with 1 ⩽ k ⩽ 23 is N−1.

Example 2.3. Consider [a(x)u′(x)]′ + κ2(x)u(x) = f(x), x ∈ (0, 1) with the following coef-

ficients

a = e−xχ[0, 31
100

)∪[ 69
100

, 81
100

) + (ex + 1)χ[ 31
100

, 69
100

)∪[ 81
100

,1],

κ = 104e2xχ[0, 31
100

) + 105x4χ[ 31
100

, 69
100

) + 104(1 + x4)χ[ 69
100

, 81
100

) + 105e−3xχ[ 81
100

,1],
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Figure 2.2: Example 2.2: Convergence plot (left) of DAT using the compact FDM with order

M = 6 (solid) and M = 8 (dashed) for errors ∥uN−ue∥∞
∥ue∥∞ (blue) and

∥u′N−u′e∥∞
∥u′e∥∞

(red). The displayed

convergence rates are obtained by calculating log2

(
∥uN−ue∥∞
∥u2N−ue∥∞

)
and log2

(
∥u′N−u′e∥∞
∥u′2N−u′e∥∞

)
. The real

(middle) and imaginary (right) parts of uN with N = 218, ℓ = 13 and M = 8.

f = 107
(
χ[0, 31

100
) + x2χ[ 31

100
, 69
100

) + x3χ[ 69
100

, 81
100

) + x5χ[ 81
100

,1]

)
,

and the boundary conditions u(0) = 1 and (e + 1)1/2u′(1) − i105e−3u(1) = 0. The exact

solution’s analytic expression is unknown. See Table 2.3 for the numerical performance mea-

sured by ∥uN−u2N∥∞
∥u2N∥∞ and

∥u′N−u′2N∥∞
∥u′2N∥∞ , and Fig. 2.3 for the convergence plot and approximated

solution uN . As can be seen from Table 2.3, the convergence rates agree with the theoretical

discussion in Sections 2.2 and 2.3. This example shows how DAT is stable with respect to

splits and tree levels. For simplicity, we consider a tree level that is not high. Hence, it

is to be expected that the maximum condition numbers of the local and linking problems

are still relatively large, but are nonetheless smaller than the condition numbers of FDM.

In fact, if we look at these condition numbers in granular detail, a large proportion of them

are significantly smaller than those of FDM for any given N . We also note that the maxi-

mum condition numbers listed in the column “Local CN” are the same for (ℓ, s) = (5, 1) and

(ℓ, s) = (3, 2). The reason is because these two rows share the same local problems as defined

in (2.19). The only difference lies in the size of the linking problems: 3× 3 for (ℓ, s) = (5, 1)

and 7× 7 for (ℓ, s) = (3, 2).
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DAT using the compact FDM with order M = 6 DAT using the compact FD with order M = 8

N (ℓ, s) ∥uN−u2N∥∞
∥u2N∥∞

∥u′N−u′2N∥∞
∥u′2N∥∞ Local CN Link CN ∥uN−u2N∥∞

∥u2N∥∞
∥u′N−u′2N∥∞

∥u′2N∥∞ Local CN Link CN

214 (0, 0) 5.9033× 10−1 8.6408× 10−1 2.63× 109 − 9.4394× 10−2 1.2948× 10−1 4.59× 109 −
(5, 1) 5.9033× 10−1 8.6408× 10−1 6.29× 104 7.40× 104 9.4394× 10−2 1.2948× 10−1 2.68× 105 8.17× 104

(3, 2) 5.9033× 10−1 8.6408× 10−1 6.29× 104 1.95× 104 9.4394× 10−2 1.2948× 10−1 2.68× 105 2.94× 104

215 (0, 0) 4.7473× 10−2 6.7611× 10−2 5.19× 106 − 2.4465× 10−4 3.3087× 10−4 5.56× 106 −
(5, 1) 4.7473× 10−2 6.7611× 10−2 2.07× 105 8.41× 103 2.4465× 10−4 3.3087× 10−4 2.07× 105 8.41× 103

(3, 2) 4.7473× 10−2 6.7611× 10−2 2.07× 105 2.90× 104 2.4465× 10−4 3.3087× 10−4 2.07× 105 2.92× 104

216 (0, 0) 7.2618× 10−4 1.0353× 10−3 2.22× 107 − 8.7748× 10−7 1.1834× 10−6 2.22× 107 −
(5, 1) 7.2618× 10−4 1.0353× 10−3 8.29× 105 8.41× 103 8.8029× 10−7 1.1867× 10−6 8.29× 105 8.41× 103

(3, 2) 7.2618× 10−4 1.0353× 10−3 8.29× 105 2.92× 104 8.7595× 10−7 1.1813× 10−6 8.29× 105 2.92× 104

217 (0, 0) 1.1182× 10−5 1.5959× 10−5 8.89× 107 − 3.7755× 10−9 5.0250× 10−9 8.89× 107 −
(5, 1) 1.1188× 10−5 1.5967× 10−5 3.32× 106 8.41× 103 3.2508× 10−9 6.3200× 10−9 3.32× 106 8.41× 103

(3, 2) 1.1179× 10−5 1.5958× 10−5 3.32× 106 2.92× 104 6.9405× 10−9 9.3269× 10−9 3.32× 106 2.92× 104

Table 2.3: Relative errors for Example 2.3 using DAT with N0 = 16 and s = 1, 2 in Algorithm 2.1.
The grid increments used in [0, 31

100 ], [
31
100 ,

69
100 ], [

69
100 ,

81
100 ], and [ 81

100 , 1] are respectively
31
25N , 38

25N , 12
25N ,

and 19
25N .
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Figure 2.3: Example 2.3: Convergence plot (left) of DAT using the compact FDM with or-

der M = 6 (solid) and M = 8 (dashed) for errors ∥uN−u2N∥∞
∥u2N∥∞ (blue) and

∥u′N−u′2N∥∞
∥u′2N∥∞ (red).

The displayed convergence rates are obtained by calculating log2

(
∥uN−u2N∥∞/∥u2N∥∞
∥u2N−u4N∥∞/∥u4N∥∞

)
and

log2

(
∥u′N−u′2N∥∞/∥u′2N∥∞
∥u′2N−u′4N∥∞/∥u′4N∥∞

)
. The real (middle) and imaginary (right) parts of uN with N = 217,

(ℓ, s) = (5, 1) and M = 8.

Example 2.4. Consider [a(x)u′(x)]′ + κ2(x)u(x) = f(x), x ∈ (0, 1) with the following coef-

ficients

a = 1.1 + sin(40πx), κ = 105
(
1− (x− 0.5)2

)
, f = 109(x7 + 1),

and the boundary conditions
√
1.1u′(0) + i75000u(0) = −1 and

√
1.1u′(1) − i75000u(1) =

0. The exact solution’s analytic expression is unknown. See Table 2.4 for the numerical

performance measured by ∥uN−u2N−1∥∞
∥u2N−1∥∞

and
∥u′N−u′2N−1∥∞

∥u′2N−1∥∞
, and Fig. 2.4 for the convergence

plot and approximated solution uN . As can be seen from Table 2.4, the convergence rates

agree with the theoretical discussion in Sections 2.2 and 2.3. As studied in [61], having a and

κ that are oscillating and/or possess a large variation leads to an ill-conditioned coefficient
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matrix. This example explores DAT’s potential in handling the Helmholtz problem with an

oscillatory coefficient a and a large wavenumber κ.

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8

N ℓ ∥uN−u2N−1∥∞
∥u2N−1∥∞

∥u′N−u′2N−1∥∞
∥u′2N−1∥∞

Local CN Link CN ∥uN−u2N−1∥∞
∥u2N−1∥∞

∥u′N−u′2N−1∥∞
∥u′2N−1∥∞

Local CN Link CN

218 + 1 0 4.8707× 10−1 7.6812× 10−1 5.53× 106 − 6.7606× 10−3 1.0602× 10−2 5.66× 106 −
16 4.8707× 10−1 7.6812× 10−1 2.74× 105 7.71× 106 6.7606× 10−3 1.0602× 10−2 5.25× 105 1.20× 107

219 + 1 0 7.1208× 10−3 1.1068× 10−2 1.47× 107 − 2.2709× 10−5 3.5577× 10−5 1.42× 107 −
17 7.1208× 10−3 1.1068× 10−2 4.39× 101 1.16× 107 2.2709× 10−5 3.5577× 10−5 4.39× 101 1.19× 107

220 + 1 0 1.0754× 10−4 1.6712× 10−4 6.21× 107 − 8.6824× 10−8 1.3591× 10−7 5.98× 107 −
18 1.0754× 10−4 1.6712× 10−4 4.47× 101 1.19× 107 8.6814× 10−8 1.3589× 10−7 4.47× 101 1.19× 107

221 + 1 0 1.6652× 10−6 2.5876× 10−6 2.23× 108 − 1.9291× 10−9 2.9177× 10−9 2.23× 108 −
19 1.6652× 10−6 2.5877× 10−6 4.49× 101 1.19× 107 1.8549× 10−9 2.8085× 10−9 4.49× 101 1.19× 107

Table 2.4: Relative errors for Example 2.4 using DAT with N0 = 4 and s = 1 in Algorithm 2.1.
The grid increment used in [0, 1] is (N − 1)−1.
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Figure 2.4: Example 2.4: Convergence plot (left) of DAT using the compact FDM with or-

der M = 6 (solid) and M = 8 (dashed) for errors
∥uN−u2N−1∥∞

∥u2N−1∥∞ (blue) and
∥u′N−u′2N−1∥∞

∥u′2N−1∥∞
(red).

The displayed convergence rates are obtained by calculating log2

(
∥uN−u2N−1∥∞/∥u2N−1∥∞

∥u2N−1−u4N−3∥∞/∥u4N−3∥∞

)
and

log2

( ∥u′N−u′2N−1∥∞/∥u′2N−1∥∞
∥u′2N−1−u

′
4N−3∥∞/∥u′4N−3∥∞

)
. The real (middle) and imaginary (right) parts of uN with

N = 221 + 1, ℓ = 19 and M = 8.

Example 2.5. Consider [a(x)u′(x)]′ + κ2(x)u(x) = f(x), x ∈ (0, 1) with the following coef-

ficients

a = (5 + sin(10πx))χ[0, 23
100

)∪[ 83
100

,1] + (2 + sin(10πx))χ[ 23
100

, 53
100

) + (9 + sin(10πx))χ[ 53
100

, 83
100

),

κ = 2000
(
e−xχ[0, 23

100
) + χ[ 23

100
, 53
100

)∪[ 83
100

,1] + 0.5exχ[ 53
100

, 83
100

)

)
,

f = 221
(
cosh(x)χ[0, 23

100
) + sinh(x)χ[ 23

100
, 53
100

) − cosh(x)χ[ 53
100

, 83
100

) − sinh(x)χ[ 83
100

,1]

)
,

and the boundary conditions u′(0) = 1 and
√
5u′(1) − 2000iu(1) = 0. The exact solution’s

analytic expression is unknown. See Table 2.5 for the numerical performance measured
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by ∥uN−u2N−1∥∞
∥u2N−1∥∞

and
∥u′N−u′2N−1∥∞

∥u′2N−1∥∞
, and Fig. 2.5 for the convergence plot and approximated

solution uN . As can be seen from Table 2.5, the convergence rates agree with the theoretical

discussion in Sections 2.2 and 2.3.

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8

N ℓ ∥uN−u2N−1∥∞
∥u2N−1∥∞

∥u′N−u′2N−1∥∞
∥u′2N−1∥∞

Local CN Link CN ∥uN−u2N−1∥∞
∥u2N−1∥∞

∥u′N−u′2N−1∥∞
∥u′2N−1∥∞

Local CN Link CN

210 + 1 0 2.3932 1.8969 1.25× 106 − 4.8820× 10−2 1.1942× 10−1 4.51× 105 −
5 2.3932 1.8969 2.66× 104 3.44× 103 4.8820× 10−2 1.1942× 10−1 6.47× 103 2.01× 103

211 + 1 0 6.9794× 10−3 6.4621× 10−3 3.13× 104 − 1.6095× 10−4 5.3061× 10−4 3.11× 104 −
5 6.9794× 10−3 6.4621× 10−3 9.00× 103 6.92× 103 1.6095× 10−4 5.3061× 10−4 9.00× 103 2.48× 103

212 + 1 0 1.0216× 10−4 9.0880× 10−5 9.04× 104 − 6.6055× 10−7 2.1900× 10−6 9.04× 104 −
5 1.0216× 10−4 9.0880× 10−5 3.66× 104 2.53× 103 6.6055× 10−7 2.1900× 10−6 3.66× 104 2.51× 103

213 + 1 0 1.5468× 10−6 1.4036× 10−6 3.60× 105 − 2.6471× 10−9 8.6758× 10−9 3.60× 105 −
5 1.5468× 10−6 1.4036× 10−6 1.47× 105 2.51× 103 2.6448× 10−9 8.6783× 10−9 1.47× 105 2.51× 103

Table 2.5: Relative errors for Example 2.5 using DAT with N0 = 16 and s = 1 in Algorithm 2.1.
The grid increments used in [0, 23

100 ], [
23
100 ,

53
100 ], [

53
100 ,

83
100 ], and [ 83100 , 1] are respectively

23
25(N−1) ,

6
5(N−1) ,

6
5(N−1) , and

17
25(N−1) .
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Figure 2.5: Example 2.5: Convergence plot (left) of DAT using the compact FDM with or-

der M = 6 (solid) and M = 8 (dashed) for errors
∥uN−u2N−1∥∞

∥u2N−1∥∞ (blue) and
∥u′N−u′2N−1∥∞

∥u′2N−1∥∞
(red).

The displayed convergence rates are obtained by calculating log2

(
∥uN−u2N−1∥∞/∥u2N−1∥∞

∥u2N−1−u4N−3∥∞/∥u4N−3∥∞

)
and

log2

( ∥u′N−u′2N−1∥∞/∥u′2N−1∥∞
∥u′2N−1−u

′
4N−3∥∞/∥u′4N−3∥∞

)
. The real (middle) and imaginary (right) parts of uN with

N = 213 + 1, ℓ = 5 and M = 8.

2.4.3 Numerical experiments on 2D Helmholtz equations

Separable 2D Helmholtz equations can be converted into a sequence of 1D Helmholtz prob-

lems, to which we may apply DAT as demonstrated below.

Example 2.6. Let D1 := {(r, θ) : 1 ⩽ r < 2, θ ∈ [0, 2π)}, D2 := {(r, θ) : 2 ⩽ r ⩽ 4, θ ∈
[0, 2π)}, and D := D1∪D2. Consider the following 2D Helmholtz equation∇·(∇u)+κ2u = 0

on the domain D, which can be rewritten in the polar coordinate system as follows:

1
r
∂
∂r

(
r ∂u
∂r

)
+ 1

r2
∂2u
∂θ2

+ κ2u = 0 on D,
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∂u
∂r
|r=1 = 0,

(
∂u
∂r

+
(

1
2r

− 100i
)
u
)
|r=4 =

(
∂uI
∂r

+
(

1
2r

− 100i
)
uI
)
|r=4,

where κ = 50χD1 + 100χD2 = κ0(r) with κ0 := 50χ[1,2) + 100χ[2,4], uI :=
∑∞

m=0 i
m(δ0,m +

2(1 − δ0,m))Jm(100r) cos(mθ), and Jm(·) is the Bessel function of the first kind of order

m. Using the method outlined in [97, Section 7.1], the exact solution ue is given by the

series ue =
∑∞

m=0 r
−1/2vm(r) cos(mθ), where vm,m ∈ N0 satisfy the following 1D Helmholtz

equations:

v′′m +
(
κ20 − r−2

(
m2 − 1

4

))
vm = 0, r ∈ (1, 4), with

(
v′m − 1

2
vm
)
|r=1 = 0,

(v′m − 100ivm) |r=4 = 2im(δ0,m + 2(1− δ0,m))
(
(Jm(100r))

′|r=4 +
(
1
8
− 100i

)
Jm(400)

)
.

(2.65)

In particular, for each m ∈ N0, vm has the following analytic expression

vm = r1/2
(
AmJm(50r) +BmYm(50r)

)
χ[1,2) + r1/2

(
CmJm(100r) +DmYm(100r)

)
χ[2,4],

where Ym(·) is the Bessel function of the second kind of order m and all the coefficients

Am, Bm, Cm, Dm are uniquely determined by solving a system of linear equations that arises

from imposing the boundary conditions and the transmission conditions: vm(2−) = vm(2+)

and v′m(2−) = v′m(2+).

Our approximated solution then takes the form uN =
∑640

m=0 r
−1/2vm,N cos(mθ), where

vm,N is the approximated solution to vm in (2.65) using N points. In all cases, we use

2049 points to discretize the angle θ in our exact and approximated solutions. Also note

that the following “Local CN” and “Link CN” record the maximum condition number of

all local problems and all m = 0, . . . , 640. See Table 2.6 for the numerical performance

measured by both ∥uN−ue∥∞
∥ue∥∞ and ∥uN−ue∥2

∥ue∥2 , where we use the first 641 terms of ue (i.e.,

ue ≈
∑640

m=0 r
−1/2vm(r) cos(mθ)), and Fig. 2.6 for the convergence plot and approximated

solution uN . Due to the separation of variables, the convergence rates observed in the plot

are solely driven by the convergence rates that take place in each 1D problem. As can be

seen, the convergence rates agree with the theoretical discussion in Sections 2.2 and 2.3.

DAT using the compact FDM with order M = 6 DAT using the compact FD with order M = 8

N ℓ ∥uN−ue∥∞
∥ue∥∞

∥uN−ue∥2
∥ue∥2 Local CN Link CN ∥uN−ue∥∞

∥ue∥∞
∥uN−ue∥2

∥ue∥2 Local CN Link CN

28 + 1 0 1.0461× 10−1 6.6021× 10−2 1.84× 105 − 6.8220× 10−3 3.4958× 10−3 1.79× 105 −
5 1.0461× 10−1 6.6021× 10−2 4.79× 104 3.05× 105 6.8220× 10−3 3.4958× 10−3 9.13× 104 2.81× 105

29 + 1 0 1.2885× 10−3 7.6950× 10−4 4.04× 104 − 2.7208× 10−5 1.4102× 10−5 4.04× 104 −
6 1.2885× 10−3 7.6950× 10−4 7.06× 102 2.78× 105 2.7208× 10−5 1.4102× 10−5 7.05× 102 2.78× 105

210 + 1 0 1.9204× 10−5 1.1290× 10−5 1.52× 105 − 1.0825× 10−7 5.5999× 10−8 1.52× 105 −
7 1.9204× 10−5 1.1290× 10−5 4.78× 101 2.78× 105 1.0825× 10−7 5.5999× 10−8 4.78× 101 2.78× 105

211 + 1 0 2.9671× 10−7 1.7375× 10−7 6.01× 105 − 4.2441× 10−10 2.1932× 10−10 6.01× 105 −
8 2.9671× 10−7 1.7375× 10−7 4.56× 101 2.78× 105 4.2435× 10−10 2.1934× 10−10 4.56× 101 2.78× 105

42



Table 2.6: Relative errors for Example 2.6 using DAT with N0 = 8 and s = 1 in Algorithm 2.1.
The grid increments used in each [1, 2] and [2, 4] are respectively 2(N − 1)−1 and 4(N − 1)−1.
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Figure 2.6: Example 2.6: Convergence plot (left) of DAT using the compact FDM with order

M = 6 (solid) and M = 8 (dashed) for relative errors ∥uN−ue∥∞
∥ue∥∞ (red) and ∥uN−ue∥2

∥ue∥2 (blue). The

displayed convergence rates are obtained by calculating log2

(
∥uN−ue∥∞
∥u2N−ue∥∞

)
and log2

(
∥uN−ue∥2
∥u2N−ue∥2

)
.

The real (middle) and imaginary (right) parts of uN with N = 211 + 1, ℓ = 8 and M = 8.

Example 2.7. Let D1 := {(r, θ) : 1 ⩽ r < 3, θ ∈ [0, 2π)}, D2 := {(r, θ) : 3 ⩽ r ⩽ 4, θ ∈
[0, 2π)}, andD := D1∪D2. Consider the following 2D Helmholtz equation∇·(∇u)+κ2u = f

on the domain D, which can be rewritten in the polar coordinate system as follows:

1
r
∂
∂r

(
r ∂u
∂r

)
+ 1

r2
∂2u
∂θ2

+ κ2u = f on D with u|r=1 =
sin(4θ)√

π
and

(
∂u
∂r

− 50iu
)
|r=4 = 0,

where κ = 400χD1 +50χD2 = κ0(r) with κ0(r) := 400χ[1,3)+50χ[3,4] and f = (105J1(r)χD1 +

104J0(r)χD2). By applying the separation of variables twice, the exact solution ue in the

polar coordinate system to the above 2D Helmholtz equation is given by the series ue =∑
m∈Z(2πr)

−1/2vm(r)e
imθ, where for each m ∈ Z, vm satisfies

v′′m +
(
κ20 − r−2

(
m2 − 1

4

))
vm = r1/2fm(r), r ∈ (1, 4), with

vm|r=1 =
i√
2
(−δ4,m + δ−4,m),

(
v′m −

(
1
8
+ 50i

)
vm
)
|r=4 = 0,

(2.66)

and fm(r) := (2π)−1/2
∫ 2π

0
f(r, θ)eimθdθ can be efficiently computed by FFT. Note that fm

are zero except for m = 0. Since vm are zero for m ∈ Z\{0,±4}, our approximated solution

is of the form uN = (2πr)−1/2v0,N + (2πr)−1/2
(
v4,Ne

i4θ + v−4,Ne
−i4θ
)
, where vm,N is the

approximated solution to vm in (2.66) using N points. We use 2049 points to discretize the

angle θ in our approximated solutions. Note that the following “Local CN” and “Link CN”

record the maximum condition number of all local and linking problems, and all m = 0,±4.

See Table 2.7 for the numerical performance measured by both ∥uN−u2N∥∞
∥u2N∥∞ and ∥uN−u2N∥2

∥u2N∥2 ,

and Fig. 2.7 for the convergence plot and approximated solution uN . Due to the separation
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of variables, the convergence rates observed in the plot are solely driven by the convergence

rates that take place in each 1D problem. As can be seen from Table 2.7, the convergence

rates agree with the theoretical discussion in Sections 2.2 and 2.3.

DAT using the compact FDM with order M = 6 DAT using the compact FD with order M = 8

N ℓ ∥uN−u2N∥∞
∥u2N∥∞

∥uN−u2N∥2
∥u2N∥2 Local CN Link CN ∥uN−u2N∥∞

∥u2N∥∞
∥uN−u2N∥2

∥u2N∥2 Local CN Link CN

210 0 2.8213× 10−1 2.0128× 10−1 1.54× 106 − 1.4812× 10−2 1.1534× 10−2 1.47× 106 −
7 2.8213× 10−1 2.0128× 10−1 1.61× 102 5.26× 103 1.4812× 10−2 1.1534× 10−2 1.43× 102 4.95× 103

211 0 5.6999× 10−3 4.3636× 10−3 1.21× 105 − 4.1235× 10−5 3.2294× 10−5 1.22× 105 −
8 5.6999× 10−3 4.3636× 10−3 7.06× 102 4.98× 103 4.1235× 10−5 3.2294× 10−5 7.05× 102 4.98× 103

212 0 8.3447× 10−5 6.3909× 10−5 4.85× 105 − 1.5005× 10−7 1.1778× 10−7 4.86× 105 −
9 8.3447× 10−5 6.3909× 10−5 4.50× 101 4.98× 103 1.5005× 10−7 1.1778× 10−7 4.50× 101 4.98× 103

213 0 1.2805× 10−6 9.8055× 10−7 1.95× 106 − 5.8547× 10−10 4.5911× 10−10 1.95× 106 −
10 1.2805× 10−6 9.8055× 10−7 4.50× 101 4.98× 103 5.8767× 10−10 4.6687× 10−10 4.50× 101 4.98× 103

Table 2.7: Relative errors for Example 2.7 using DAT with N0 = 8 and s = 1 in Algorithm 2.1.
The grid increments used in each [1, 3] and [3, 4] are respectively 4N−1 and 2N−1.
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Figure 2.7: Example 2.7: Convergence plot (left) of DAT using the compact FDM with orderM =

6 (solid) andM = 8 (dashed) for errors ∥uN−u2N∥∞
∥u2N∥∞ (red) and ∥uN−u2N∥2

∥u2N∥2 (blue). The displayed con-

vergence rates are obtained by calculating log2

(
∥uN−u2N∥∞/∥u2N∥∞
∥u2N−u4N∥∞/∥u4N∥∞

)
and log2

(
∥uN−u2N∥2/∥u2N∥2
∥u2N−u4N∥2/∥u4N∥2

)
.

The real (middle) and imaginary (right) parts of uN with N = 213, ℓ = 10 and M = 8.

Example 2.8. Consider the following 2D Helmholtz equation ∇ · (∇u) + κ2u = f on Ω =

(0, 1)2, where

κ0(x) := 2
5
2 (900000x5 − 2250000x4 + 2130000x3 − 945000x2 + 198450x− 15445)

1
2χ[ 3

10
, 7
10

)

+ 27(χ[0, 3
10

) + 2χ[ 7
10
,1]),

f(x, y) := 5000
√
2
(
(6x+ 1) cos(6.5πy)χ[0, 3

10
)×[0,1] + 2 cos(25.5πy)χ[0, 3

10
)×[0,1]

+(−6x+ 7) cos(6.5πy)χ[ 7
10
,1]×[0,1]

)
,
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and κ(x, y) := κ0(x) with the following boundary conditions

∂u
∂ν

= 0 on (0, 1)× {0}, ∂u
∂ν

− i28u = 0 on {1} × (0, 1), u = 0 on (0, 1)× {1},

and u =
√
2(cos(14.5πy) + cos(30.5πy)) on {0} × (0, 1).

By the separation of variables, the exact solution ue to the above 2D Helmholtz equation is

given by the series ue(x, y) =
∑∞

m=0

√
2vm(x) cos((m+ 1/2)πy), where for each m ∈ N0, vm

satisfies
v′′m + (κ20 − (m+ 1

2
)2π2)vm = fm(x), x ∈ (0, 1) with

vm(0) = δ14,m + δ30,m, v′m(1)− 28ivm(1) = 0,

and fm(x) :=
√
2
∫ 1

0
f(x, y) cos((m + 1

2
)πy)dy can be efficiently computed through FFT.

Note that fm are zero except m = 6, 25. Since vm are zero for all m ∈ N0\{6, 14, 25, 30},
our approximated solution is of the form uN =

√
2(v6,N cos(6.5πy) + v14,N cos(14.5πy) +

v25,N cos(25.5πy)+v30,N cos(30.5πy)), where vm,N withm = 6, 14, 25, 30 are the approximated

solutions to vm in (2.66) using N points. We use 2049 points to discretize cos((m+ 1/2)πy)

for m = 6, 14, 25, 30 in our approximated solutions. Also note that the following “Local

CN” and “Link CN” record the maximum condition number of all local problems and all

m = 6, 14, 25, 30. See Table 2.8 for the numerical performance measured by both ∥uN−u2N∥∞
∥u2N∥∞

and ∥uN−u2N∥2
∥u2N∥2 , and Fig. 2.8 for the convergence plot and approximated solution uN . Due to

the separation of variables, the convergence rates observed in the plot are solely driven by

the convergence rates that take place in each 1D problem. As can be seen from Table 2.8,

the convergence rates agree with the theoretical discussion in Sections 2.2 and 2.3.

DAT using the compact FDM with order M = 6 DAT using the compact FD with order M = 8

N ℓ ∥uN−u2N∥∞
∥u2N∥∞

∥uN−u2N∥2
∥u2N∥2 Local CN Link CN ∥uN−u2N∥∞

∥u2N∥∞
∥uN−u2N∥2

∥u2N∥2 Local CN Link CN

3(26) 0 1.2184× 10−2 1.4965× 10−2 1.52× 105 − 2.5802× 10−3 3.4368× 10−3 4.52× 105 −
2 1.2184× 10−2 1.4965× 10−2 1.54× 103 5.18× 102 2.5802× 10−3 3.4368× 10−3 3.22× 103 5.19× 102

3(27) 0 1.9809× 10−4 2.3348× 10−4 7.48× 103 − 1.1417× 10−5 1.5130× 10−5 7.48× 103 −
3 1.9809× 10−4 2.3348× 10−4 2.60× 103 5.19× 102 1.1417× 10−5 1.5130× 10−5 2.60× 103 5.19× 102

3(28) 0 3.1521× 10−6 3.7059× 10−6 2.96× 104 − 4.6092× 10−8 6.0943× 10−8 2.96× 104 −
4 3.1521× 10−6 3.7059× 10−6 3.85× 104 8.49× 102 4.6094× 10−8 6.0946× 10−8 3.85× 104 8.49× 102

3(29) 0 4.9446× 10−8 5.8172× 10−8 1.18× 105 − 1.8328× 10−10 2.3989× 10−10 1.18× 105 −
5 4.9447× 10−8 5.8172× 10−8 1.54× 102 8.87× 103 1.8344× 10−10 2.4014× 10−10 1.54× 102 8.87× 103

Table 2.8: Relative errors for Example 2.8 using DAT with N0 = 12 and s = 1 in Algorithm 2.1.
The grid increments used in each [0, 3

10 ], [
3
10 ,

7
10 ], and [ 710 , 1] are respectively 9

10N , 6
5N , and 9

10N .
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Figure 2.8: Example 2.8: Convergence plot (left) of DAT using the compact FDM with orderM =

6 (solid) andM = 8 (dashed) for errors ∥uN−u2N∥∞
∥u2N∥∞ (red) and ∥uN−u2N∥2

∥u2N∥2 (blue). The displayed con-

vergence rates are obtained by calculating log2

(
∥uN−u2N∥∞/∥u2N∥∞
∥u2N−u4N∥∞/∥u4N∥∞

)
and log2

(
∥uN−u2N∥2/∥u2N∥2
∥u2N−u4N∥2/∥u4N∥2

)
.

The real (middle) and imaginary (right) parts of uN with N = 3(29), ℓ = 5 and M = 8.

2.4.4 DAT and compact FDMs using only function values

The direct usage of derivatives of a, κ2, f in Theorems 2.4 and 2.5 may not be computa-

tionally efficient. These derivatives can in fact be estimated by using only function values

of a, κ2, f through a local polynomial approximation. For example, if we consider an in-

terior stencil of the form (2.44) and (2.45), we know from (2.3) that all stencil coefficients

depend on a(xb), a
′(xb), . . . , a

(M−1)(xb), κ
2(xb), [κ

2]′(xb), . . . , [κ
2](M−2)(xb), and f(xb), f

′(xb),

. . ., f (M−2)(xb). Consider a(xb), a
′(xb), . . . , a

(M−1)(xb). Let J ⩾M and take J points {xj}Jj=1

near the base point xb such that all the points fall into one piece of the piecewise smooth

functions a, κ2 and f . Find the unique polynomial p of degree J − 1 satisfying p(xj) = a(xj)

for all j = 1, . . . , J . Then a(n)(xb) ≈ p(n)(xb) for n = 0, . . . ,M − 1. We often use J =M and

xb ∈ {xj}Jj=1 such that {xj}Jj=1 is evenly spaced with mesh size h/2. Using only function

values, we re-calculate numerical experiments in Examples 2.1–2.8, which yield virtually

same results as those using derivatives explicitly. It demonstrates the convenience of using

a local polynomial approximation in lieu of true derivatives, which may have complicated

expressions. For the sake of conciseness, we only provide re-calculated Examples 2.3 and 2.5.
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DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 6

for Example 2.3 for Example 2.5

N (ℓ, s) ∥uN−u2N∥∞
∥u2N∥∞

∥u′N−u′2N∥∞
∥u′2N∥∞ Local CN Link CN N ℓ ∥uN−u2N−1∥∞

∥u2N−1∥∞
∥u′N−u′2N−1∥∞

∥u′2N−1∥∞
Local CN Link CN

215 (0, 0) 4.7473× 10−2 6.7611× 10−2 5.19× 106 − 210 + 1 0 2.3932 1.8969 1.25× 106 −
(5, 1) 4.7473× 10−2 6.7611× 10−2 2.07× 105 8.41× 103 5 2.3932 3.3990 2.66× 104 3.44× 103

(3, 2) 4.7473× 10−2 6.7611× 10−2 2.07× 105 2.90× 104

216 (0, 0) 7.2618× 10−4 1.0353× 10−3 2.22× 107 − 211 + 1 0 6.9794× 10−3 6.4621× 10−3 3.13× 104 −
(5, 1) 7.2618× 10−4 1.0353× 10−3 8.29× 105 8.41× 103 5 6.9794× 10−3 6.4621× 10−3 9.00× 103 6.92× 103

(3, 2) 7.2618× 10−4 1.0353× 10−3 8.29× 105 2.92× 104

217 (0, 0) 1.1182× 10−5 1.5959× 10−5 8.89× 107 − 212 + 1 0 1.0216× 10−4 9.0880× 10−5 9.03× 104 −
(5, 1) 1.1188× 10−5 1.5967× 10−5 3.32× 106 8.41× 103 5 1.0216× 10−4 9.0880× 10−5 3.66× 104 2.53× 103

(3, 2) 1.1179× 10−5 1.5955× 10−5 3.32× 106 2.92× 104

218 (0, 0) 1.7274× 10−7 2.4663× 10−7 3.56× 108 − 213 + 1 0 1.5468× 10−6 1.4036× 10−6 3.60× 105 −
(5, 1) 1.6132× 10−7 2.3056× 10−7 1.33× 107 8.41× 103 5 1.5468× 10−6 1.4036× 10−6 1.47× 105 2.51× 103

(3, 2) 1.7914× 10−7 2.5548× 10−7 1.33× 107 2.92× 104

Table 2.9: Relative errors for Examples 2.3 and 2.5 using only point values (without explicitly
computing derivatives) in DAT with the compact FDM with order M = 6.
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Chapter 3

Sixth Order Compact FDM for 2D

Helmholtz Equations with Singular

Sources and Reduced Pollution Effect

Now that we have presented an arbitrarily high order compact 1D FDM in Chapter 2, we are

ready to shift our attention to a 2D FDM. In this chapter, we present a sixth order compact

FDM for the 2D Helmholtz equation with reduced pollution effect.

We start by introducing the model problem. Let Ω = (l1, l2)× (l3, l4) and ψ be a smooth

two-dimensional function. Consider a smooth curve ΓI := {(x, y) ∈ Ω : ψ(x, y) = 0}, which
partitions Ω into two subregions: Ω+ := {(x, y) ∈ Ω : ψ(x, y) > 0} and Ω− := {(x, y) ∈
Ω : ψ(x, y) < 0}. The model problem is explicitly defined as follows:

∆u+ κ2u = f in Ω \ ΓI ,

[u] = gD, [∇u · ν] = gN on ΓI ,

B1u = g1 on Γ1 := {l1} × (l3, l4), B2u = g2 on Γ2 := {l2} × (l3, l4),

B3u = g3 on Γ3 := (l1, l2)× {l3}, B4u = g4 on Γ4 := (l1, l2)× {l4},

(3.1)

where κ is the wavenumber, f is the source term, and for any point (x0, y0) ∈ ΓI ,

[u](x0, y0) := lim
(x,y)∈Ω+,(x,y)→(x0,y0)

u(x, y)− lim
(x,y)∈Ω−,(x,y)→(x0,y0)

u(x, y), (3.2)

[∇u · ν](x0, y0) := lim
(x,y)∈Ω+,(x,y)→(x0,y0)

∇u(x, y) · ν − lim
(x,y)∈Ω−,(x,y)→(x0,y0)

∇u(x, y) · ν, (3.3)

where ν is the unit normal vector of ΓI pointing towards Ω+. In (3.1), the boundary op-

erators B1, . . . ,B4 ∈ {Id, ∂
∂ν
, ∂
∂ν

− iκId}, where Id corresponds to the Dirichlet boundary
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condition (sound soft boundary condition for the identical zero boundary datum), ∂
∂ν

corre-

sponds to the Neumann boundary condition (sound hard boundary condition for the identical

zero boundary datum), and ∂
∂ν

− iκId (with i being the imaginary unit) corresponds to the

impedance boundary condition. Moreover, the Helmholtz equation of (3.1) with gD = 0 is

equivalent to finding the weak solution u ∈ H1(Ω) of ∆u+ κ2u = f + gNδΓI in Ω, where δΓI
is the Dirac distribution along the interface curve ΓI .

In particular, we assume that

(A1) The solution u and the source term f have uniformly continuous partial derivatives of

(total) orders up to seven and six respectively in each of the subregions Ω+ and Ω−.

However, both u and f may be discontinuous across the interface ΓI .

(A2) The interface curve ΓI is smooth in the sense that for each (x∗, y∗) ∈ ΓI , there exists

a local parametric equation: γ : (−ϵ, ϵ) → ΓI with ϵ > 0 such that γ(0) = (x∗, y∗) and

∥γ′(0)∥2 ̸= 0.

(A3) The one-dimensional functions gD ◦γ and gN ◦γ have uniformly continuous derivatives

of (total) orders up to eight and seven respectively on the interface ΓI , where γ is given

in (A2).

(A4) Each of the functions g1, . . . , g4 has uniformly continuous derivatives of (total) order

up to seven on the boundary Γj.

We explain how our proposed sixth order compact finite difference scheme with reduced

pollution effect is developed in Section 3.1. We first construct the interior finite difference

stencil with reduced pollution. Then, we construct the sixth order boundary and corner finite

difference stencils with reduced pollution. Finally, we construct the compact interface finite

difference stencil. Numerical experiments to demonstrate the superiority of our proposed

method to several state-of-the-art FDMs are presented in Section 3.2. In Section 3.3, we

present the proofs of several theorems stated in Section 3.1.

Results in this chapter are based on [51].

3.1 Stencils for sixth order compact finite difference

schemes with reduced pollution effect using uni-

form cartesian grids

Let Ω = (l1, l2)× (l3, l4). Without loss of generality, we assume l4 − l3 = N0(l2 − l1) for some

N0 ∈ N. For any positive integer N1 ∈ N, we define N2 := N0N1 and so the grid size is
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h := (l2 − l1)/N1 = (l4 − l3)/N2. Let

xi = l1 + ih, i = 0, . . . , N1, and yj = l3 + jh, j = 0, . . . , N2. (3.4)

Our focus of this section is to develop sixth order compact finite difference schemes with

reduced pollution effect on uniform Cartesian grids. Recall that a compact stencil centered

at (xi, yj) contains nine points (xi + kh, yj + lh) for k, l ∈ {−1, 0, 1}. Define

d+i,j := {(k, ℓ) : k, ℓ ∈ {−1, 0, 1}, ψ(xi + kh, yj + ℓh) ⩾ 0}, and

d−i,j := {(k, ℓ) : k, ℓ ∈ {−1, 0, 1}, ψ(xi + kh, yj + ℓh) < 0}.

Thus, the interface curve ΓI := {(x, y) ∈ Ω : ψ(x, y) = 0} splits the nine points in

our compact stencil into two disjoint sets {(xi+k, yj+ℓ) : (k, ℓ) ∈ d+i,j} ⊆ Ω+ ∪ ΓI and

{(xi+k, yj+ℓ) : (k, ℓ) ∈ d−i,j} ⊆ Ω−. We refer to a grid/center point (xi, yj) as a regular point

if d+i,j = ∅ or d−i,j = ∅. The center point (xi, yj) of a stencil is regular if all its nine points are

completely in Ω+ ∪ ΓI (hence d
−
i,j = ∅) or in Ω− (i.e., d+i,j = ∅). Otherwise, the center point

(xi, yj) of a stencil is referred to as an irregular point if both d+i,j and d
−
i,j are nonempty.

Now, let us pick and fix a base point (x∗i , y
∗
j ) inside the open square (xi − h, xi + h) ×

(yj − h, yj + h), which can be written as

x∗i = xi − v0h and y∗j = yj − w0h with − 1 < v0, w0 < 1. (3.5)

We shall use the following notations:

u(m,n) :=
∂m+nu

∂mx∂ny
(x∗i , y

∗
j ) and f (m,n) :=

∂m+nf

∂mx∂ny
(x∗i , y

∗
j ), (3.6)

which are used to represent their (m,n)th partial derivatives at the base point (x∗i , y
∗
j ).

Define N0 := N ∪ {0}, the set of all nonnegative integers. Given L ∈ N0, we define

ΛL := {(m,n−m) : n = 0, . . . , L and m = 0, . . . , n}, L ∈ N0. (3.7)

For a smooth function u and small x, y, the values u(x + x∗i , y + y∗j ) are well approximated

by its Taylor polynomial as follows:

u(x+ x∗i , y + y∗j ) =
∑

(m,n)∈ΛM+1

u(m,n)

m!n!
xmyn + O(hM+2), x, y ∈ (−2h, 2h). (3.8)

To put differently, in a neighborhood of the base point (x∗i , y
∗
j ), the function u is well ap-
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proximated and completely determined by the partial derivatives of u of total degree less

than M +2 at the base point (x∗i , y
∗
j ), i.e., by the unknown quantities u(m,n), (m,n) ∈ ΛM+1.

The same holds for f(x+ x∗i , y + y∗j ). For x ∈ R, the floor function ⌊x⌋ is defined to be the

largest integer less than or equal to x. For an integer m, we define

odd(m) :=
1− (−1)m

2
=

0, if m is even,

1, if m is odd.

Since the function u is a solution to the partial differential equation in (3.1), all quantities

u(m,n), (m,n) ∈ ΛM+1 are not independent of each other. The next lemma describes this

dependence.

Lemma 3.1. Let u be a smooth function satisfying ∆u + κ2u = f in Ω \ ΓI . If a point

(x∗i , y
∗
j ) ∈ Ω \ ΓI , then

u(m,n) = (−1)⌊
m
2
⌋
⌊m

2
⌋∑

i=0

(
⌊m

2
⌋
i

)
κ2iu(odd(m),2⌊m

2
⌋+n−2i)+

⌊m
2
⌋∑

i=1

i−1∑
j=0

(−1)i−1

(
i− 1

j

)
κ2(i−j−1)f (m−2i,n+2j)

(3.9)

for all (m,n) ∈ ΛV,2M+1, where

ΛV,2M+1 := ΛM+1 \ ΛV,1M+1 with ΛV,1M+1 := {(ℓ, k − ℓ) : k = ℓ, . . . ,M + 1− ℓ and ℓ = 0, 1 }.
(3.10)

Define

ΛH,jM+1 := {(n,m) : (m,n) ∈ ΛV,jM+1, j = 1, 2}.

If a point (x∗i , y
∗
j ) ∈ Ω \ ΓI , then

u(m,n) = (−1)⌊
n
2
⌋
⌊n
2
⌋∑

i=0

(
⌊n
2
⌋
i

)
κ2iu(2⌊

n
2
⌋+m−2i,odd(n))+

⌊n
2
⌋∑

i=1

i−1∑
j=0

(−1)i−1

(
i− 1

j

)
κ2(i−j−1)f (m+2j,n−2i)

(3.11)

for all (m,n) ∈ ΛH,2M+1.

Proof. The proof is similar to the proof of [49, Lemma 2.1] and [50, Lemma 2.1].

See [49, Figure 6] for an illustration of how each u(m,n) with (m,n) ∈ Λ7 is categorized

51



based on ΛV,j7 with j ∈ {1, 2}. From (3.9), we have

∑
(m,n)∈ΛV,2M+1

xmyn

m!n!
u(m,n) =

=:I1︷ ︸︸ ︷∑
(m,n)∈ΛV,2M+1

xmyn

m!n!

{
(−1)⌊

m
2
⌋
⌊m

2
⌋∑

i=0

(
⌊m

2
⌋
i

)
κ2iu(odd(m),2⌊m

2
⌋+n−2i)

}

+
∑

(m,n)∈ΛV,2M+1

xmyn

m!n!

{ ⌊m
2
⌋∑

i=1

i−1∑
j=0

(−1)i−1

(
i− 1

j

)
κ2i−2j−2f (m−2i,n+2j)

}
︸ ︷︷ ︸

=:I2

,

(3.12)

where the first summation I1 above can be expressed as

I1 =
∑

(m,n)∈Λ
V,2
M+1

ℓ=m2 , even m

(−1)ℓx2ℓyn

(2ℓ)!n!

ℓ∑
i=0

(
ℓ

i

)
κ2iu(0,2ℓ+n−2i)

+
∑

(m,n)∈Λ
V,2
M+1

ℓ=m−1
2 , odd m

(−1)ℓx2ℓ+1yn

(2ℓ+ 1)!n!

ℓ∑
i=0

(
ℓ

i

)
κ2iu(1,2ℓ+n−2i)

=

M+1∑
n=2

⌊n
2
⌋∑

ℓ=1

(−1)ℓx2ℓyn−2ℓ

(2ℓ)!(n− 2ℓ)!

ℓ∑
i=0

(
ℓ

i

)
κ2iu(0,n−2i) +

M∑
n=2

⌊n
2
⌋∑

ℓ=1

(−1)ℓx2ℓ+1yn−2ℓ

(2ℓ+ 1)!(n− 2ℓ)!

ℓ∑
i=0

(
ℓ

i

)
κ2iu(1,n−2i)

=
∑

(m,n)∈Λ
V,1
M+1

n⩾2

⌊n
2
⌋∑

ℓ=1

(−1)ℓxm+2ℓyn−2ℓ

(m+ 2ℓ)!(n− 2ℓ)!

ℓ∑
i=0

(
ℓ

i

)
κ2iu(m,n−2i),

and the second summation I2 above can be expressed as

I2 =
∑

(m,n)∈ΛM−1

1+⌊n
2
⌋∑

ℓ=1

ℓ−1∑
p=0

(−1)ℓ−1

(
ℓ− 1

p

)
κ2(ℓ−p−1)f (m,n+2(p+1−ℓ)) xm+2ℓyn−2ℓ+2

(m+ 2ℓ)!(n− 2ℓ+ 2)!

=
∑

(m,n)∈ΛM−1

∑
j∈{n+2p|p∈N0,
n+2p⩽M+1−m}

1+⌊ j
2
⌋∑

ℓ=1+ j−n
2

(−1)ℓ−1

(
ℓ− 1
j−n
2

)
κj−n

xm+2ℓyj−2ℓ+2

(m+ 2ℓ)!(j − 2ℓ+ 2)!
f (m,n)

=
∑

(m,n)∈ΛM−1

⌊M+1−m−n
2

⌋∑
p=0

1+⌊p+n
2
⌋∑

ℓ=1+p

(−1)ℓ−1

(
ℓ− 1

p

)
κ2p

xm+2ℓy2p+n+2−2ℓ

(m+ 2ℓ)!(2p+ n+ 2− 2ℓ)!︸ ︷︷ ︸
=:QVM,m,n(x,y)

f (m,n).

(3.13)

Hence, using the right-hand side of (3.8) and the definitions of ΛV,1M+1,Λ
V,2
M+1 in (3.10), we
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have

I1+
∑

(m,n)∈ΛV,1M+1

xmyn

m!n!
u(m,n) =

∑
(m,n)∈ΛV,1M+1

⌊n
2
⌋∑

i=0

⌊n
2
⌋∑

ℓ=i

(−1)ℓxm+2ℓyn−2ℓ

(m+ 2ℓ)!(n− 2ℓ)!

(
ℓ

i

)
κ2iu(m,n−2i)

=
∑

(m,n)∈ΛV,1M+1

∑
i∈{n+2p|p∈N0,
n+2p⩽M+1−m}

⌊ i
2
⌋∑

ℓ= i−n
2

(−1)ℓxm+2ℓyi−2ℓ

(m+ 2ℓ)!(i− 2ℓ)!

(
ℓ
i−n
2

)
κi−nu(m,n)

=
∑

(m,n)∈ΛV,1M+1

⌊M+1−m−n
2

⌋∑
p=0

p+⌊n
2
⌋∑

ℓ=p

(−1)ℓxm+2ℓyn+2p−2ℓ

(m+ 2ℓ)!(n+ 2p− 2ℓ)!

(
ℓ

p

)
κ2p︸ ︷︷ ︸

=:GVM,m,n(x,y)

u(m,n).

(3.14)

Suppose x, y ∈ (−2h, 2h). The lowest degree of h for each polynomial GV
M,m,n(x, y) with

(m,n) ∈ ΛV,1M+1 in (3.14) is m + n. The lowest degree of h for each polynomial QV
M,m,n(x, y)

with (m,n) ∈ ΛVM−1 in (3.13) is m + n + 2. Therefore, by (3.12)-(3.13), we can rewrite the

approximation of u(x+ x∗i , y + y∗j ) with (x, y) ∈ (−2h, 2h) in (3.8) as follows:

u(x+x∗i , y+ y
∗
j ) =

∑
(m,n)∈ΛV,1M+1

u(m,n)GV
M,m,n(x, y)+

∑
(m,n)∈ΛMf−1

f (m,n)QV
Mf ,m,n

(x, y)+O(hM+2),

(3.15)

where M,Mf ∈ N0 and Mf ⩾ M . By a similar calculation, for (x, y) ∈ (−2h, 2h), we also

have

u(x+x∗i , y+ y
∗
j ) =

∑
(m,n)∈ΛH,1M+1

u(m,n)GH
M,m,n(x, y)+

∑
(m,n)∈ΛMf−1

f (m,n)QH
Mf ,m,n

(x, y)+O(hM+2),

(3.16)

where M,Mf ∈ N0, Mf ⩾M and

GH
M,m,n(x, y) := GV

M,n,m(y, x), for all n ∈ {0, 1},m ∈ N0

QH
M,m,n(x, y) := QV

M,n,m(y, x), for all m,n ∈ N0.
(3.17)

Identities (3.15)-(3.16) are critical in finding compact stencils achieving a desired accuracy

order.

In the following subsections, we shall explicitly present our stencils having at least ac-

curacy order six with reduced pollution effect for interior, boundary and corner points. As

we shall explain in details in Section 3.3, we construct such stencils by first finding a gen-

eral expression for all possible discretization stencils achieving the maximum order. Then

we minimize the average truncation error of plane waves to determine the remaining free
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parameters in each stencil to reduce pollution effect.

3.1.1 Regular points (interior)

In this subsection, we state one of our main results on a sixth order (which is the highest

possible order) compact finite difference scheme (with reduced pollution effect) centered at

a regular point (xi, yj) and (xi, yj) /∈ ∂Ω. We let (xi, yj) be the base point (x
∗
i , y

∗
j ) by setting

v0 = w0 = 0 in (3.5). The proof of the following theorem is deferred to Section 3.3.

Theorem 3.2. Let a grid point (xi, yj) be a regular point, i.e., either d+i,j = ∅ or d−i,j = ∅
and (xi, yj) /∈ ∂Ω. Let (uh)i,j be the numerical approximated solution of the exact solution

u of the Helmholtz equation (3.1) at an interior regular point (xi, yj). Then the following

discretization stencil centered at (xi, yj)

Lhuh :=
h−2(C1,1(uh)i−1,j−1 +C1,0(uh)i,j−1 +C1,1(uh)i+1,j−1

+C1,0(uh)i−1,j +C0,0(uh)i,j +C1,0(uh)i+1,j

+C1,1(uh)i−1,j+1 +C1,0(uh)i,j+1 +C1,1(uh)i+1,j+1)

=
∑

(m,n)∈Λ6

h−2f (m,n)Cf,m,n,

(3.18)

achieves the sixth order accuracy for ∆u+κ2u = f at the point (xi, yj) with reduced pollution

effect, where Cf,m,n :=
1∑

k=−1

1∑
ℓ=−1

Ck,ℓQ
V
7,m,n(kh, ℓh) for all (m,n) ∈ Λ6, Q

V
7,m,n(x, y) is defined

in (3.13), and

C−1,−1 = C−1,1 = C1,−1 = C1,1, C−1,0 = C0,−1 = C0,1 = C1,0,

C1,1 = 1− 357462387
25×1010

κh+ 1001065991
2×1010

(κh)2 − 196477327
2×1012

(κh)3 + 1155977087
1012

(κh)4

− 116352513
4×1013

(κh)5 + 1255955641
1014

(κh)6,

C1,0 = 4− 357462387
625×108

κh+ 532995477
25×1011

(κh)2 − 267461861
25×1011

(κh)3 − 288674231
1011

(κh)4

+ 2179972749
5×1014

(κh)5 − 3473210401
5×1013

(κh)6,

C0,0 = −20 + 357462387
125×108

κh+ 5798934009
109

(κh)2 − 969775457
125×109

(κh)3 − 1963785709
5×109

(κh)4

+ 4056581719
1013

(κh)5 + 795951403
1011

(κh)6.

(3.19)

Moreover, the maximum accuracy order of a compact finite difference scheme for ∆u+κ2u =

f at the point (xi, yj) is six.

3.1.2 Boundary and corner points

In this subsection, we discuss how to find a compact finite difference scheme centered at

(xi, yj) ∈ ∂Ω.
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3.1.2.1 Boundary points

We first discuss in detail how the left boundary (i.e., (xi, yj) ∈ Γ1 = {l1} × (l3, l4)) stencil

is constructed. The stencils for the other three boundaries can afterwards be obtained by

symmetry. If B1u = u = g1 on Γ1, then the left boundary stencil can be directly obtained

from (3.18)-(3.19) in Theorem 3.2 by replacing (uh)0,j−1, (uh)0,j, and (uh)0,j+1 with g1(yj−1),

g1(yj), and g1(yj+1) respectively, where yj ∈ (l3, l4), and moving terms involving these known

boundary values to the right-hand side of (3.18). The other three boundary sides are dealt

in a similar straightforward fashion if a Dirichlet boundary condition is present. On the

other hand, the stencils for the other two boundary conditions are not trivial at all. The

following theorem provides the explicit 6-point stencil of accuracy order at least six with

reduced pollution effect for the left boundary operator B1 ∈ { ∂
∂ν

− iκId,
∂
∂ν
}. The proof of

the following result is deferred to Section 3.3.

Theorem 3.3. Assume Ω = (l1, l2) × (l3, l4). Let (uh)i,j be the numerical approximated

solution of the exact solution u of the Helmholtz equation (3.1) at the point (xi, yj). Consider

the following discretization stencil centered at (x0, yj) ∈ Γ1 for B1u = g1 on Γ1 with B1 ∈
{ ∂
∂ν

− iκId,
∂
∂ν
}:

LB1
h uh :=

h−1(CB1
0,1(uh)0,j−1 +CB1

1,1(uh)1,j−1

+CB1
0,0(uh)0,j +CB1

1,0(uh)1,j

+CB1
0,1(uh)0,j+1 +CB1

1,1(uh)1,j+1)

=
∑

(m,n)∈Λ6

h−1f (m,n)CB1
f,m,n +

7∑
n=0

h−1g
(n)
1 CB1

g1,n
,

(3.20)

where {CB1
k,ℓ}k∈{0,1},ℓ∈{−1,0,1} are polynomials of κh, CB1

f,m,n =
1∑

k=0

1∑
ℓ=−1

CB1
k,ℓQ

V
7,m,n(kh, ℓh) for all

(m,n) ∈ Λ6, Q
V
7,m,n is defined in (3.13), g

(n)
1 := dng1

dyn
(yj), C

B1
g1,n

= −
1∑

k=0

1∑
ℓ=−1

CB1
k,ℓG

V
7,1,n(kh, ℓh)

for all n = 0, . . . , 7, GV
7,1,n is defined in (3.14), CB1

0,−1 = CB1
0,1, and C

B1
1,−1 = CB1

1,1.
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(1) For B1 =
∂
∂ν

− iκId, the coefficients for defining LB1
h uh in (3.20) are given by

CB1
1,1 = 1− 218737123

109
κh+ 6698622893i

1010
κh− 1620223367

1010
(κh)2 − 1202725989i

1010
(κh)2

+ 3105005559
1011

(κh)3 − 1252107029i
1011

(κh)3 − 3412232989
1012

(κh)4 − 1505046263i
1012

(κh)4,

CB1
0,1 = 2− 218737123

5×108
κh+ 1139724579i

109
κh− 3034055489

1010
(κh)2 − 1967977733i

1010
(κh)2

+ 1090897501
25×109

(κh)3 − 7785677273i
1011

(κh)3 + 98544681
4×109

(κh)4 + 1218033221i
5×1010

(κh)4,

CB1
1,0 = 4− 8749484921

1010
κh+ 2279449157i

109
κh− 946955529

2×109
(κh)2 − 1967977733i

5×109
(κh)2

+ 2905342517
5×1010

(κh)3 − 1542150899i
5×1010

(κh)3 + 2645544603
1012

(κh)4 + 302693249i
25×109

(κh)4,

CB1
0,0 = −10 + 218737123

108
κh+ 202754213i

2×109
κh+ 7851597997

1010
(κh)2 − 2846864471i

1010
(κh)2

− 1147746931
5×109

(κh)3 + 2236631341i
1010

(κh)3 − 1738692843
5×1010

(κh)4 − 898631349i
25×109

(κh)4.

(3.21)

Then the finite difference scheme in (3.20) achieves sixth order accuracy for B1u =
∂u
∂ν

− iκu = g1 at the point (x0, yj) ∈ Γ1 with reduced pollution effect. The maximum

accuracy order of a 6-point finite difference scheme for B1u = ∂u
∂ν

− iκu = g1 at the

point (x0, yj) ∈ Γ1 is six.

(2) For B1 =
∂
∂ν
, the coefficients for defining LB1

h uh in (3.20) are given by

CB1
1,1 = 1 + 1915061419

25×109
(κh)2 + 3019639439

1012
(κh)4,

CB1
0,1 = 2 + 665061419

125×108
(κh)2 − 1071383831

2×1012
(κh)4,

CB1
1,0 = 4 + 106409827

109
(κh)2 − 1071383831

1012
(κh)4,

CB1
0,0 = −10 + 1316987716

5×108
(κh)2 − 1240891409

1010
(κh)4.

(3.22)

Then the finite difference scheme in (3.20) achieves seventh order accuracy for B1u =
∂u
∂ν

= g1 at the point (x0, yj) ∈ Γ1 with reduced pollution effect. Moreover, the maximum

accuracy order of a 6-point finite difference scheme for B1u = ∂u
∂ν

= g1 at the point

(x0, yj) ∈ Γ1 is seven.

By symmetry, we can immediately state the stencils for the other three boundary sides.

Same accuracy order results as in Theorem 3.3 hold. First, consider the following discretiza-

tion stencil for B2u = g2 on Γ2 with B2 ∈ { ∂
∂ν

− iκId,
∂
∂ν
} centered at (xN1 , yj) ∈ Γ2:

LB2
h uh :=

0∑
k=−1

1∑
ℓ=−1

h−1CB2
k,ℓ(uh)N1+k,j+ℓ =

∑
(m,n)∈Λ6

h−1f (m,n)CB2
f,m,n +

7∑
n=0

h−1g
(n)
2 CB2

g2,n
,

where CB2
−k,ℓ = CB1

k,ℓ for all k ∈ {0, 1}, ℓ ∈ {−1, 0, 1}, CB2
f,m,n =

∑0
k=−1

∑1
ℓ=−1C

V
7,m,n(kh, ℓh) for

all (m,n) ∈ Λ6, g
(n)
2 := dng2

dyn
(yj), C

B2
g2,n

=
∑0

k=−1

∑1
ℓ=−1C

B2
k,ℓG

V
7,1,n(kh, ℓh) for all n = 0, . . . , 7.
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Second, the stencil for B3u = g3 on Γ3 with B3 ∈ { ∂
∂ν

− iκId,
∂
∂ν
} centered at (xi, y0) ∈ Γ3

is

LB3
h uh :=

1∑
k=−1

1∑
ℓ=0

h−1CB3
k,ℓ(uh)i+k,ℓ =

∑
(m,n)∈Λ6

h−1f (m,n)CB3
f,m,n +

7∑
n=0

h−1g
(n)
3 CB3

g3,n
,

where CB3
ℓ,k = CB1

k,ℓ for all k ∈ {0, 1}, ℓ ∈ {−1, 0, 1}, CB3
f,m,n =

∑1
k=−1

∑1
ℓ=0C

B3
k,ℓQ

H
7,m,n(kh, ℓh)

for all (m,n) ∈ Λ6, Q
H
7,m,n is defined in (3.17), g

(n)
3 := dng3

dxn
(xi),

CB3
g3,n

= −
∑1

k=−1

∑1
ℓ=0C

B3
k,ℓG

H
7,n,1(kh, ℓh) for all n = 0, . . . , 7, and GH

7,n,1 is defined in (3.17).

Third, the stencil for B4u = g4 on Γ4 with B4 ∈ { ∂
∂ν

− iκId,
∂
∂ν
} centered at (xi, yN2) ∈ Γ4

is

LB4
h uh :=

1∑
k=−1

0∑
ℓ=−1

h−1CB4
k,ℓ(uh)i+k,N2+ℓ =

∑
(m,n)∈Λ6

h−1f (m,n)CB4
f,m,n +

7∑
n=0

h−1g
(n)
4 CB4

g4,n
,

where CB4
ℓ,−k = CB1

k,ℓ for all k ∈ {0, 1}, ℓ ∈ {−1, 0, 1}, CB4
f,m,n =

∑1
k=−1

∑0
ℓ=−1C

B4
k,ℓQ

H
7,m,n(kh, ℓh)

for all (m,n) ∈ Λ6, g
(n)
4 := dng4

dxn
(xi), and CB4

g4,n
=
∑1

k=−1

∑0
ℓ=−1C

B4
k,ℓG

H
7,n,1(kh, ℓh) for all

n = 0, . . . , 7.

3.1.2.2 Corner points

For clarity of presentation, let us consider the following boundary configuration

B1u = ∂u
∂ν

− iκu = g1 on Γ1, B2u = u = g2 on Γ2,

B3u = ∂u
∂ν

= g3 on Γ3, B4u = ∂u
∂ν

− iκu = g4 on Γ4.
(3.23)

See Fig. 3.1 for an illustration.

Ω−

Ω+

ΓI

Γ1 Γ2

Γ3

Γ4

B1u = ∂u
∂ν

− iκu = g1 B2u = u = g2

B3u = ∂u
∂ν

= g3

B4u = ∂u
∂ν

− iκu = g4

Figure 3.1: Boundary configuration in (3.23), where ψ(x, y) = x2 + y2 − 2.
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The corners coming from other boundary configurations can be handled in a similar way.

When a corner involves at least one Dirichlet boundary condition, we can use Theorem 3.3

and subsequent remarks to handle it. We denote the bottom left corner (the intersection

of Γ1 and Γ3) by R1, and the top left corner (the intersection of Γ1 and Γ4) by R2. In

what follows, we discuss in detail how the bottom and top left stencils are constructed.

The following two theorems provide the 4-point stencils of accuracy order at least six with

reduced pollution effect for the left corners. Their proofs are deferred to Section 3.3.

Theorem 3.4. Assume Ω = (l1, l2) × (l3, l4). Let (uh)i,j be the numerical approximated

solution of the exact solution u of the Helmholtz equation (3.1) at the point (xi, yj). Then

the following discretization stencil centered at the corner point (x0, y0):

LR1
h uh :=

h−1(CR1
0,0 (uh)0,0 +CR1

1,0 (uh)1,0

+CR1
0,1 (uh)0,1 +CR1

1,1 (uh)1,1)

=
∑

(m,n)∈Λ6

h−1f (m,n)CR1
f,m,n +

7∑
n=0

h−1g
(n)
1 CR1

g1,n
+

7∑
n=0

h−1g
(n)
3 CR1

g3,n
,

(3.24)

where

CR1
1,1 = 1− 2041589737

1010
κh+ 6666011379i

1010
κh− 1213438849

1010
(κh)2 − 254718888i

25×108
(κh)2

+ 2199377569
1011

(κh)3 + 4307308979i
5×1011

(κh)3 − 5536966589
1012

(κh)4 − 1556373503i
1012

(κh)4,

CR1
1,0 = 2− 2041589737

5×109
κh+ 566601138i

5×108
κh− 156034209

109
(κh)2 − 1629433157i

1010
(κh)2

+ 1855012159
1011

(κh)3 + 453336943i
2×1010

(κh)3 − 3170819689
5×1011

(κh)4 + 25677723i
8×109

(κh)4,

CR1
0,1 = 2− 2041589737

5×109
κh+ 566601138i

5×108
κh− 556752189

25×108
(κh)2 − 1629433157i

1010
(κh)2

+ 3216071983
1011

(κh)3 − 3955100649i
1011

(κh)3 + 1546871341
1011

(κh)4 + 231176972i
125×108

(κh)4,

CR1
0,0 = −5 + 510397434

5×108
κh+ 6699431033i

1011
κh+ 2002755557

1010
(κh)2 − 369405469i

2×109
(κh)2

− 285280517
25×108

(κh)3 + 326982886i
25×108

(κh)3 + 35165403
25×109

(κh)4 − 9939550949i
1012

(κh)4,

(3.25)

g
(n)
1 := dng1

dyn
(y0), g

(n)
3 := dng3

dxn
(x0) for all n = 0, . . . , 7, and {CR1

f,m,n}(m,n)∈Λ6, {CR1
g1,n

}7n=0,

{CR1
g3,n

}7n=0 are well-defined stencil coefficients that uniquely depend on {CR1
k,ℓ }k,ℓ∈{0,1}, achieves

sixth order for B1u = ∂u
∂ν

− iκu = g1 and B3u = ∂u
∂ν

= g3 at the point (x0, y0) with reduced

pollution effect. Moreover, the maximum accuracy order of a 4-point finite difference scheme

for B1u = ∂u
∂ν

− iκu = g1 and B3u = ∂u
∂ν

= g3 at the point (x0, y0) is six.

Theorem 3.5. Assume Ω = (l1, l2) × (l3, l4). Let (uh)i,j be the numerical approximated

solution of the exact solution u of the Helmholtz equation (3.1) at the point (xi, yj). Then
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the following discretization stencil centered at the corner point (x0, yN2):

LR2
h uh :=

h−1(CR2
1,0 (uh)0,N2−1 +CR2

1,−1(uh)1,N2−1

+CR2
0,0 (uh)0,N2 +CR2

1,0 (uh)1,N2)

=
∑

(m,n)∈Λ6

h−1f (m,n)CR2
f,m,n +

7∑
n=0

h−1g
(n)
1 CR2

g1,n
+

7∑
n=0

h−1g
(n)
4 CR2

g4,n
,

(3.26)

where

CR2
1,−1 = 1− 535927359

5×109
κh+ 131913924i

108
κh− 4650641357

1010
(κh)2 − 3255802571i

1011
(κh)2

− 1802358661
1013

(κh)3 − 137039551i
25×108

(κh)3 − 116115549
625×108

(κh)4 − 390383949i
2×1011

(κh)4,

CR2
1,0 = 2− 428741887

2×109
κh+ 2238278479i

109
κh− 5558059089

1010
(κh)2 − 278023284i

125×108
(κh)2

+ 1525711827
5×1011

(κh)3 − 57317954i
5×108

(κh)3 + 2099795921
1011

(κh)4 + 1100929919i
2×1011

(κh)4,

CR2
0,0 = −5 + 1339818397

25×108
κh+ 2043038021i

1010
κh− 1519079742

5×108
(κh)2 − 2830355397i

5×109
(κh)2

− 82143257
5×108

(κh)3 + 3401956461i
1010

(κh)3,+1420360677
5×109

(κh)4 + 4391249797i
1011

(κh)4,

(3.27)

g
(n)
1 := dng1

dyn
(yN2), g

(n)
4 := dng4

dxn
(x0) for all n = 0, . . . , 7, and {CR2

f,m,n}(m,n)∈Λ6, {CR2
g1,n

}7n=0,

{CR2
g4,n

}7n=0 are well-defined stencil coefficients that uniquely depend on {CR2
k,ℓ }k∈{0,1},ℓ∈{−1,0}

with CR2
0,−1 = CR2

1,0 , achieves seventh order accuracy for B1u = ∂u
∂ν

− iκu = g1 and B4u = ∂u
∂ν

−
iκu = g4 at the point (x0, yN2) with reduced pollution effect. Moreover, the maximum accuracy

order of a 4-point finite difference scheme for B1u = ∂u
∂ν

− iκu = g1 and B4u = ∂u
∂ν

− iκu = g4

at the point (x0, yN2) is seven.

Note that the right-hand sides of (3.24) and (3.26) can be explicitly recovered. See the

proofs of Theorems 3.4 and 3.5 in Section 3.3 for details.

3.1.3 Irregular points

Let (xi, yj) be an irregular point (i.e., both d+i,j and d−i,j are nonempty) and let us take a

base point (x∗i , y
∗
j ) ∈ ΓI ∩ (xi − h, xi + h) × (yj − h, yj + h) on the interface ΓI and inside

(xi − h, xi + h)× (yj − h, yj + h). By (3.5), we have

x∗i = xi − v0h and y∗j = yj − w0h with − 1 < v0, w0 < 1 and (x∗i , y
∗
j ) ∈ ΓI . (3.28)
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Let u± and f± represent the solution u and source term f in Ω+ or Ω−, respectively. Similar

to (3.6), the following notations are used

u
(m,n)
± :=

∂m+nu±
∂mx∂ny

(x∗i , y
∗
j ), f

(m,n)
± :=

∂m+nf±
∂mx∂ny

(x∗i , y
∗
j ),

g
(m,n)
D :=

∂m+ngD
∂mx∂ny

(x∗i , y
∗
j ), g

(m,n)
N :=

∂m+ngN
∂mx∂ny

(x∗i , y
∗
j ).

Since the interface curve ΓI is smooth and the solution u and the source term f are

assumed to be piecewise smooth, we can extend u+ and f+ on Ω+ into smooth functions in

a neighborhood of (x∗i , y
∗
j ). The same applies to u− and f− on Ω−. Identity similar to (3.15)

still holds:

u±(x+ x∗i , y + y∗j ) =
∑

(m,n)∈ΛV,1M+1

u
(m,n)
± GVM,m,n(x, y) +

∑
(m,n)∈ΛMf−1

f
(m,n)
± QVMf ,m,n

(x, y) + O(hM+2),

for x, y ∈ (−2h, 2h), where ΛV,1M+1 is defined in (3.10), ΛMf−1 is defined in (3.7), GV
M,m,n(x, y)

is defined in (3.14), QV
Mf ,m,n

(x, y) is defined in (3.13). As in [49, 50], we assume that we have

a parametric equation for ΓI near the base point (x∗i , y
∗
j ). I.e.,

x = r(t)+x∗i , y = s(t)+y∗j , (r′(t))2+(s′(t))2 > 0 for t ∈ (−ϵ, ϵ) with ϵ > 0, (3.29)

where r and s are smooth functions.

Theorem 3.6. Let u be the solution to the Helmholtz interface problem in (3.1) and the base

point (x∗i , y
∗
j ) ∈ ΓI be parameterized near (x∗i , y

∗
j ) by (3.29). Then

u
(m′,n′)
− = u

(m′,n′)
+ +

∑
(m,n)∈ΛM−1

(
T+
m′,n′,m,nf

(m,n)
+ + T−

m′,n′,m,nf
(m,n)
−

)
+

∑
(m,n)∈ΛM+1

T gDm′,n′,m,ng
(m,n)
D

+
∑

(m,n)∈ΛM

T gNm′,n′,m,ng
(m,n)
N , ∀ (m′, n′) ∈ ΛV,1M+1,

where all the transmission coefficients T±, T gD , T gN are uniquely determined by r(k)(0), s(k)(0),

and κ for k = 0, . . . ,M + 1.

Proof. The proof closely follows from the proof of [49, Theorem 2.3].

Next, we state the compact finite difference stencil for interior irregular points.

Theorem 3.7. Let (uh)i,j be the numerical solution of (3.1) at an interior irregular point

(xi, yj). Pick a base point (x∗i , y
∗
j ) as in (3.28). Then the following compact scheme centered
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at the interior irregular point (xi, yj)

LΓI
h :=

h−1(C1,1(uh)i−1,j−1 +C1,0(uh)i,j−1 +C1,1(uh)i+1,j−1

+C1,0(uh)i−1,j +C0,0(uh)i,j +C1,0(uh)i+1,j

+C1,1(uh)i−1,j+1 +C1,0(uh)i,j+1 +C1,1(uh)i+1,j+1)

=
∑

(m,n)∈Λ6

h−1f
(m,n)
+ J+

m,n +
∑

(m,n)∈Λ6

h−1f
(m,n)
− J−

m,n +
∑

(m,n)∈Λ8

h−1g
(m,n)
D JgDm,n

+
∑

(m,n)∈Λ7

h−1g
(m,n)
N JgNm,n,

achieves seventh order accuracy, where {Ck,ℓ}k,ℓ∈{−1,0,1} are defined in (3.19), J±
m,n := J±,0

m,n+
J±,T
m,n for all (m,n) ∈ Λ6,

J±,0
m,n :=

∑
(k,ℓ)∈d±

i,j

Ck,ℓQ
V
7,m,n((v0 + k)h, (w0 + ℓ)h), J±,T

m,n :=
∑

(m′,n′)∈ΛV,1
8

I−m′,n′T
±
m′,n′,m,n, ∀(m,n) ∈ Λ6,

JgD
m,n :=

∑
(m′,n′)∈ΛV,1

8

I−m′,n′T
gD
m′,n′,m,n, ∀(m,n) ∈ Λ8, JgN

m,n :=
∑

(m′,n′)∈ΛV,1
8

I−m′,n′T
gN
m′,n′,m,n, ∀(m,n) ∈ Λ7,

I−m,n :=
∑

(k,ℓ)∈d−
i,j

Ck,ℓG
V
7,m,n((v0 + k)h, (w0 + ℓ)h), ∀(m,n) ∈ ΛV,1

8 .

Moreover, the maximum accuracy order of a compact finite difference stencil for ∆u+κ2u =

f at an interior irregular point (xi, yj) is seven.

Proof. The proof closely follows from the proof of [49, Theorem 2.4].

3.2 Numerical experiments

In this section, we let Ω = (l1, l2)
2. For a given J ∈ N0, we define h := (l2 − l1)/N1 with

N1 := 2J . Recall the definition of (xi, yj) in (3.4). Let u(x, y) be the exact solution of (3.1)

and (uh)i,j be the numerical solution at (xi, yj) using the mesh size h. We shall evaluate

our proposed finite difference scheme in the 2-norm by the relative error ∥uh−u∥2
∥u∥2 if the exact

solution u is available, and by the error ∥uh − uh/2∥2 if the exact solution is not known,

where

∥uh − u∥22 := h2
N1∑
i=0

N1∑
j=0

((uh)i,j − u(xi, yj))
2 , ∥uh − uh/2∥22 := h2

N1∑
i=0

N1∑
j=0

(
(uh)i,j − (uh/2)2i,2j

)2
.

In the following numerical experiments, ‘[28]’, ‘[120]’ and ‘[125]’ correspond to the sixth

order compact FDMs proposed in [28], [120] and [125] respectively. ‘Proposed’ corresponds

to the sixth order compact FDM with reduced pollution effect in Section 3.1 of this paper.
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Recall that 2π
κh

corresponds to the number of points per wavelength.

3.2.1 Numerical examples with no interfaces

We provide four numerical experiments here.

Example 3.1. Consider the problem (3.1) in Ω = (0, 1)2 with f = 0 and all Dirichlet

boundary conditions such that the boundary data g1, . . . , g4 are picked such that the exact

solution u(x, y, θ) = exp(iκ(cos(θ)x+sin(θ)y)) is the plane wave with the angle θ. We define

the following average error for plane wave solutions along all different angles θ by

∥uh − u∥2,w
∥u∥2,w

:=
1

N3

N3−1∑
k=0

√√√√∑N1

i=0

∑N1

j=0 ((uh)i,j,k − u(xi, yj, θk))
2∑N1

i=0

∑N1

j=0 (u(xi, yj, θk))
2

,

where θk = khθ, hθ = 2π/N3 for N3 ∈ N0, and (uh)i,j,k is the value of the numerical solution

uh at the grid point (xi, yj) with a plane wave angle θk. See Table 3.1 for numerical results.

κ = 50, N3 = 50 κ = 150, N3 = 30 κ = 450, N3 = 30
[28] Proposed [28] Proposed [28] Proposed

J ∥uh−u∥2,w
∥u∥2,w

∥uh−u∥2,w
∥u∥2,w order 2π

κh
r ∥uh−u∥2,w

∥u∥2,w
∥uh−u∥2,w

∥u∥2,w order 2π
κh

r ∥uh−u∥2,w
∥u∥2,w

∥uh−u∥2,w
∥u∥2,w order 2π

κh
r

4 9.83E+04.87E-01 2.0 20.2
5 1.57E-021.01E-03 8.9 4.0 15.5
6 5.01E-051.20E-05 6.4 8.0 4.193.67E+06.25E-02 2.7 58.7
7 2.35E-071.77E-07 6.1 16.11.336.04E-036.82E-04 6.5 5.4 8.85
8 2.78E-092.72E-09 6.0 32.21.022.56E-059.25E-06 6.2 10.72.771.26E+05.43E-02 3.6 23.1
9 1.78E-071.40E-07 6.0 21.41.274.72E-037.83E-04 6.1 7.1 6.03
10 2.25E-051.13E-05 6.1 14.31.99
11 1.85E-071.75E-07 6.0 28.61.06

Table 3.1: Numerical results for Example 3.1 with h = 1/2J . The ratio r is equal to
∥uh−u∥2,w

∥u∥2,w of

[28] divided by
∥uh−u∥2,w

∥u∥2,w of our proposed method. In other words, for the same mesh size h with

h = 2−J , the error of [28] is r times larger than that of our proposed method.

Example 3.2. Consider the problem (3.1) in Ω = (0, 1)2 with the boundary conditions

u(0, y) = g1, and u(1, y) = g2 for y ∈ (0, 1),

u(x, 0) = g3, and uy(x, 1)− iκu(x, 1) = 0 for x ∈ (0, 1),

where g1, . . . , g4 and f are chosen such that the exact solution u = (y−1) cos(αx) sin(β(y−1))

with α, β ∈ R. See Table 3.2 for numerical results for various choices of α and β.
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α = 50, β = 290 α = 100, β = 275 α = 150, β = 255
[120] [125] Proposed [120] [125] Proposed [120] [125] Proposed

J 2π
κh

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2 r1 r2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2 r1 r2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2 r1 r2

7 2.7 1.1E+0 9.8E-02 3.8E-02292.6 2.4E+0 2.1E-01 4.4E-02 54 4.6 4.4E+0 1.2E-01 5.8E-02 77 2.1
8 5.4 8.6E-03 6.1E-04 1.3E-04654.6 1.2E-02 1.3E-03 3.1E-04 40 4.4 1.7E-02 8.3E-04 1.3E-041346.5
9 10.7 1.2E-04 8.4E-06 2.8E-06433.0 1.7E-04 1.8E-05 5.7E-06 30 3.2 2.4E-04 1.1E-05 2.0E-061215.7
10 21.4 1.8E-06 1.2E-07 4.6E-08392.6 2.6E-06 2.7E-07 9.2E-08 28 2.9 3.7E-06 1.7E-07 3.3E-081145.1

α = 200, β = 200 α = 250, β = 160 α = 290, β = 50
[120] [125] Proposed [120] [125] Proposed [120] [125] Proposed

J 2π
κh

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2 r1 r2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2 r1 r2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2

∥uh−u∥2
∥u∥2 r1 r2

7 2.7 1.1E+0 1.3E-01 1.4E-01 8 0.9 6.0E+0 1.8E-01 4.8E-02125 3.7 8.9E+0 1.3E-01 5.5E-021622.4
8 5.4 7.5E-03 9.7E-04 3.8E-04202.6 4.0E-02 1.1E-03 8.1E-0549214.1 9.8E-03 7.4E-04 1.5E-04 66 4.9
9 10.7 1.1E-04 1.3E-05 3.4E-06333.9 5.6E-04 1.6E-05 2.1E-06264 7.6 1.5E-04 1.0E-05 1.6E-06 92 6.2
10 21.4 1.7E-06 2.0E-07 4.5E-08384.4 8.6E-06 2.3E-07 3.7E-08234 6.3 2.3E-06 1.5E-07 2.3E-081016.4

Table 3.2: Numerical results of Example 3.2 with h = 1/2J and κ = 300. The ratio r1 is equal

to ∥uh−u∥2
∥u∥2 of [120] divided by ∥uh−u∥2

∥u∥2 of our proposed method and the ratio r2 is equal to ∥uh−u∥2
∥u∥2

of [125] divided by ∥uh−u∥2
∥u∥2 of our proposed method. In other words, for the same grid size h with

h = 2−J , the errors of [120] and [125] are r1 and r2 times larger than those of our proposed method,
respectively.

Example 3.3. Consider the problem (3.1) in Ω = (0, 1)2 with boundary conditions in

(3.23). I.e., B1u = ∂u
∂ν

− iκu = g1 on Γ1, B2u = u = g2 on Γ2, B3u = ∂u
∂ν

= g3 on Γ3 and

B4u = ∂u
∂ν

− iκu = g4 on Γ4, where g1, . . . , g4 and f are chosen such that the exact solution

u = sin(αx + βy) with α, β ∈ R. See Section 3.2.1 for numerical results for various choices

of α and β.

κ = 450, α = 400, β = 200 κ = 600, α = 300, β = 500

J 2π
κh

∥uh−u∥2
∥u∥2 order ∥uh − uh/2∥2 order 2π

κh
∥uh−u∥2

∥u∥2 order ∥uh − uh/2∥2 order
7 1.79 1.3753E+01 9.8073E+00 1.34 9.0200E+01 6.4272E+01
8 3.57 1.7358E-02 9.630 1.2212E-02 9.649 2.68 9.4259E-02 9.902 6.6801E-02 9.910
9 7.15 1.6528E-04 6.715 1.1540E-04 6.725 5.36 2.7428E-04 8.425 1.9430E-04 8.425
10 14.30 2.4370E-06 6.084 1.6971E-06 6.087 10.72 1.7971E-06 7.254 1.2453E-06 7.286
11 28.60 3.9410E-08 5.950 21.45 4.5869E-08 5.292

Table 3.3: Numerical results of Example 3.3 with h = 1/2J using our proposed method.

Example 3.4. Consider the problem (3.1) in Ω = (0, 1)2 with boundary conditions in

(3.23), where f(x, y) = κ2 sin(8x) cos(6y), g1 = sin(5y), g2 = 0, g3 = (x − 1) sin(4x), and

g4 = cos(5x). Note that the exact solution u is unknown in this example. See Section 3.2.1

and Fig. 3.2 for numerical results.
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κ = 200 κ = 400 κ = 800
J 2π

κh
∥uh − uh/2∥2order ∥uh∥2 2π

κh
∥uh − uh/2∥2order ∥uh∥2 2π

κh
∥uh − uh/2∥2order ∥uh∥2

6 2.01 8.776E-01 5.81E-01
7 4.02 3.716E-03 7.88 9.84E-01 2.01 7.936E-01 5.28E-01
8 8.04 4.430E-05 6.39 9.81E-01 4.02 7.410E-03 6.74 9.76E-01 2.01 8.453E-01 5.08E-01
9 16.08 9.80E-01 8.04 8.579E-05 6.43 9.75E-01 4.02 1.486E-02 5.83 9.70E-01
10 16.08 9.74E-01 8.04 1.715E-04 6.44 9.70E-01
11 16.08 9.69E-01

Table 3.4: Numerical results of Example 3.4 with h = 1/2J using our proposed method.

Figure 3.2: First row: the real part of uh in Example 3.4, where κ = 200 and h = 1/29 (left),
κ = 400 and h = 1/210 (middle), κ = 800 and h = 1/211 (right). Second row: the imaginary part
of uh in Example 3.4, where κ = 200 and h = 1/29 (left), κ = 400 and h = 1/210 (middle), κ = 800
and h = 1/211 (right).
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3.2.2 Numerical examples with interfaces

We provide three numerical experiments here.

Example 3.5. Consider the problem (3.1) in Ω = (−3/2, 3/2)2 with boundary conditions

in (3.23), where κ = 100, ΓI := {(x, y) ∈ Ω : ψ(x, y) = 0} with ψ(x, y) = y2/2 + x2/(1 +

x2) − 1/2 (see Fig. 3.3 (left)), gD = −1, and gN = 0. The boundary data g1, . . . , g4 and f±

are chosen such that the exact solution u is given by u+ = uχΩ+ = cos(50x) cos(80y) and

u− = uχΩ− = cos(50x) cos(80y) + 1. See Table 3.5 for numerical results.

y2/2+x2/(1+x2)=1/2

-1.5 -0.75 0 0.75 1.5

x

-1.5

-0.75

0

0.75

1.5

y

x4+2 y4=1/2

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1
y

y2-2 x2+x4=1/2

-2 -1 0 1 2
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2

y

Figure 3.3: y2/2 + x2/(1 + x2) = 1/2 (left), x4 + 2y4 = 1/2 (middle), and y2 − 2x2 + x4 = 1/2
(right).

Example 3.6. Consider the problem (3.1) in Ω = (−1, 1)2 with boundary conditions in

(3.23), where κ = 300, ΓI := {(x, y) ∈ Ω : ψ(x, y) = 0} with ψ(x, y) = x4 + 2y4 − 1/2 (see

Fig. 3.3 (middle)), f+ = 752 sin(3(x+y)), f− = 752 cos(4x) cos(3y), gD = sin(2πx) sin(2πy)+

3, and gN = cos(2πx) cos(2πy). The following boundary data are given by g1 = ey + e−y,

g2 = 0, g3 = (x− 1)ex, and g4 = sin(2x). Note that the exact solution u is unknown in this

example. See Table 3.5 for numerical results.

Example 3.7. Consider the problem (3.1) in Ω = (−2, 2)2 with boundary conditions in

(3.23), where κ = 150, ΓI := {(x, y) ∈ Ω : ψ(x, y) = 0} with ψ(x, y) = y2 − 2x2 + x4 − 1/2

(see Fig. 3.3 (right)), f+ = sin(5(x− y)), f− = 104 sin(5x) sin(5y), gD = sin(2π(x− y)), and

gN = cos(2π(x + y)). The following boundary data are given by g1 = cos(y) sin(y), g2 = 0,

g3 = sin(2x − 4), and g4 = ex sin(x). Note that the exact solution u is unknown in this

example. See Table 3.5 for numerical results.

3.3 Proofs of Theorems 3.2 to 3.5

In this section, we prove the main results stated in Section 3.1. The idea of proofs is to

first construct all possible compact stencils with the maximum accuracy order and then to
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Example 3.5 with h = 3
2J

Example 3.6 with h = 2
2J

Example 3.7 with h = 4
2J

J 2π
hκ

∥uh−u∥2
∥u∥2 order∥uh − uh/2∥2order 2π

hκ
∥uh − uh/2∥2order∥uh/2∥2 2π

hκ
∥uh − uh/2∥2order∥uh/2∥2

7 2.7 1.28E+00 2.90E+00
8 5.4 2.44E-03 9.0 5.51E-03 9.0 2.7 1.06E+01 7.039 2.7 8.19E+00 3.467
9 10.7 5.82E-06 8.7 1.31E-05 8.7 5.4 1.49E-02 9.5 7.037 5.4 7.96E-03 10.0 3.469
1021.4 3.98E-08 7.2 9.27E-08 7.1 10.7 1.69E-04 6.5 7.035 10.7 7.66E-05 6.7 3.468

Table 3.5: Numerical results of Examples 3.5 to 3.7 with h = (l2 − l1)/2
J using our proposed

method.

minimize the average truncation error of plane waves over the free parameters of stencils to

reduce pollution effect.

Proof of Theorem 3.2. We first find all stencil coefficients {Ck,ℓ}k,ℓ∈{−1,0,1} and

{Cf,m,n}(m,n)∈ΛMf−1
such that

1∑
k=−1

1∑
ℓ=−1

Ck,ℓu(xi + kh, yj + ℓh) =
∑

(m,n)∈ΛMf−1

f (m,n)Cf,m,n + O(hM+2), h→ 0,

for some M,Mf ∈ N0 and Mf ⩾ M . Afterwards, we set the remaining free parameters by

minimizing the average truncation error of plane waves. Approximating u(xi + kh, yj + ℓh)

as in (3.15), we have∑
(m,n)∈ΛV,1M+1

u(m,n)Im,n +
∑

(m,n)∈ΛMf−1

f (m,n) (Jm,n − Cf,m,n) = O(hM+2), h→ 0, (3.30)

where we define

Im,n :=
1∑

k=−1

1∑
ℓ=−1

Ck,ℓG
V
M,m,n(kh, ℓh), and Jm,n :=

1∑
k=−1

1∑
ℓ=−1

Ck,ℓQ
V
Mf ,m,n

(kh, ℓh). (3.31)

Solving (3.30) is equivalent to solving

Im,n = O(hM+2), h→ 0, for all (m,n) ∈ ΛV,1M+1, (3.32)

Cf,m,n = Jm,n + O(hM+2), h→ 0, for all (m,n) ∈ ΛMf−1. (3.33)

We set Ck,ℓ :=
∑M+1

j=0 ck,ℓ,j(κh)
j, where ck,ℓ,j ∈ R for all k, ℓ ∈ {−1, 0, 1}. Furthermore,

we let C−1,−1 = C−1,1 = C1,−1 = C1,1 and C−1,0 = C0,−1 = C0,1 = C1,0 for symmetry. By

calculation, we find that M = 6 is the maximum positive integer such that the linear system

(3.32) has a non-trivial solution. All such non-trivial solutions for M = 6 can be uniquely
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written (up to a constant multiple) as

C1,1 = c9(κh)
7 + c3(κh)

6 + c2(κh)
5 + c1(κh)

4 + (−12c2 + c4 − 6c6 + 24c10 + 6c11 + 24c9)(κh)
3 + (1/15

+ 4c1 + 2c5 − 8c7 − 2c8 − 8c3)(κh)
2 + (−240c2 + 15c4 − 120c6 + 480c10 + 120c11 + 480c9)(κh) + 1,

C1,0 = c10(κh)
7 + c7(κh)

6 + c6(κh)
5 + c5(κh)

4 + c4(κh)
3 + (1/15 + 16c1 + 8c5 − 32c7 − 8c8 − 32c3)(κh)

2

+ (−960c2 + 60c4 − 480c6 + 1920c10 + 480c11 + 1920c9)(κh) + 4,

C0,0 = c11(κh)
7 + c8(κh)

6 + (92c2 − (9/2)c4 + 44c6 − 192c10 − 48c11 − 192c9)(κh)
5 + (−3/10 + 20c1 + 8c5

− 48c7 − 12c8 − 48c3)(κh)
4 + (−1392c2 + 82c4 − 696c6 + 2784c10 + 696c11 + 2784c9)(κh)

3

+ (82/15− 80c1 − 40c5 + 160c7 + 40c8 + 160c3)(κh)
2 + (4800c2 − 300c4 + 2400c6 − 9600c10

− 2400c11 − 9600c9)(κh)− 20,

(3.34)

where ci ∈ R for i = 1, . . . , 11 are free parameters. Note that any interior symmetric compact

stencil has accuracy order 6 if and only if the 7th-degree Taylor polynomials of the stencil

coefficients are given by (3.34). Choosing Mf = 7 in (3.31) and (3.33) yields the right-hand

side of (3.18).

Next, consider a general compact stencil {Cw
k,ℓ}k,ℓ∈{−1,0,1} parameterized by Cw

1,1, C
w
1,0 ∈ R

satisfying

Cw
−1,−1 = Cw

−1,1 = Cw
1,−1 = Cw

1,1, Cw
−1,0 = Cw

0,−1 = Cw
0,1 = Cw

1,0, and Cw
0,0 = −20,

where we normalized the stencil by Cw
0,0 = −20. Take a plane wave solution u(x, y, θ) :=

exp(iκ(cos(θ)x + sin(θ)y)) for any θ ∈ [0, 2π). Clearly, we have ∆u + κ2u = 0. Hence, the

truncation error associated with the general compact stencil coefficients {Cw
k,ℓ}k,ℓ∈{−1,0,1} at

the grid point (xi, yj) /∈ ∂Ω is h−2(T (θ|κh))xi,yj , where

(T (θ|κh))xi,yj :=
1∑

k=−1

1∑
ℓ=−1

Cw
k,ℓ exp(iκ(cos(θ)(xi + kh) + sin(θ)(yj + ℓh))).

Recall that 2π
κh

is the number of points per wavelength. Hence, it is reasonable to choose

κh ∈ [1/4, 1]. Without loss of generality, we let (xi, yj) = (0, 0). Define S := {1
4
+ 3s

4000
: s =

0, . . . , 1000} and let

(C̃w
1,1(κh), C̃

w
1,0(κh)) := argmin

Cw
1,1,C

w
1,0∈R

∫ 2π

0

|(T (θ|κh))0,0|2dθ, κh ∈ S. (3.35)

We use the Simpson’s 3/8 rule with 900 uniform sampling points to calculate∫ 2π

0
|(T (θ|κh))0,0|2dθ. Now, we link C0,0, C1,0, C1,1 in (3.34) with Cw

0,0, C̃
w
1,0(κh), C̃

w
1,1(κh) in

(3.35) for κh ∈ S. To further simplify the presentation of our stencil coefficients, we set
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c9 = c10 = c11 = 0 in (3.34) so that the coefficients of the polynomials in (3.34) for degree 7

are zero. Because Cw
0,0 = −20 is our normalization, we determine the free parameters ci for

i = 1, . . . , 8 in (3.34) by considering the following least-square problem:

(c̃1, c̃2, . . . , c̃8) := argmin
c1,c2,...,c8∈R

∑
κh∈S

|C1,1(κh)− C̃w
1,1(κh)C0,0(κh)/(−20)|2

+ |C1,0(κh)− C̃w
1,0(κh)C0,0(κh)/(−20)|2.

For simplicity of presentation, we replace each above calculated coefficient c̃i with its approx-

imated fractional form [108c̃i]/10
8, where [·] is a rounding operation to the nearest integer.

Plugging these approximated fractional forms into coefficients ci for i = 1, . . . , 8 in (3.34),

we obtain (3.19).

Proof of Theorem 3.3. We only prove item (1). The proof of item (2) is very similar. We start

by finding all stencil coefficients {CB1
k,ℓ}k∈{0,1},ℓ∈{−1,0,1}, {CB1

f,m,n}(m,n)∈ΛMf−1
and {CB1

g1,n
}Mg1
n=0

such that

1∑
k=0

1∑
ℓ=−1

CB1
k,ℓu(xi+kh, yj+ℓh) =

∑
(m,n)∈ΛMf−1

f (m,n)CB1
f,m,n+

Mg1∑
n=0

g
(n)
1 CB1

g1,n
+O(hM+2), h→ 0

(3.36)

for some Mf ,Mg1 ,M ∈ N0, Mf ⩾ M and Mg1 ⩾ M . Afterwards, we set the remaining free

parameters by minimizing the average truncation error of plane waves.
Since −ux − iκu = g1 on Γ1, we have u(1,n) = −iκu(0,n) − g

(n)
1 for all n = 0, . . . ,Mg1 . By

(3.15),

u(x+ x∗i , y + y∗j ) =

M+1∑
n=0

u(0,n)GV
M,0,n(x, y) +

M∑
n=0

u(1,n)GV
M,1,n(x, y)

+
∑

(m,n)∈ΛMf−1

f (m,n)QV
Mf ,m,n(x, y) + O(hM+2)

=

M+1∑
n=0

u(0,n)GV
M,0,n(x, y) +

Mg1∑
n=0

u(1,n)GV
Mg1 ,1,n

(x, y) +
∑

(m,n)∈ΛMf−1

f (m,n)QV
Mf ,m,n(x, y) + O(hM+2)

=

M+1∑
n=0

u(0,n)GV
M,0,n(x, y)−

Mg1∑
n=0

(
iκu(0,n) + g

(n)
1

)
GV

Mg1
,1,n(x, y)

+
∑

(m,n)∈ΛMf−1

f (m,n)QV
Mf ,m,n(x, y) + O(hM+2)

= u(0,M+1)GV
M,0,M+1(x, y) +

M∑
n=0

u(0,n)
(
GV

M,0,n(x, y)− iκGV
M,1,n(x, y)

)
−

Mg1∑
n=0

g
(n)
1 GV

Mg1
,1,n(x, y)

+
∑

(m,n)∈ΛMf−1

f (m,n)QV
Mf ,m,n(x, y) + O(hM+2), for x, y ∈ (−2h, 2h).
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Approximating u(xi + kh, yj + ℓh) in (3.36), we have

M+1∑
n=0

u(0,n)IB1
n +

∑
(m,n)∈ΛMf−1

f (m,n)
(
JB1
m,n − CB1

f,m,n

)
+

Mg1∑
n=0

g
(n)
1

(
KB1
n − CB1

g1,n

)
= O(hM+2), (3.37)

as h→ 0, where

IB1
n :=

1∑
k=0

1∑
ℓ=−1

CB1
k,ℓ

(
GV
M,0,n(kh, ℓh)− iκGV

M,1,n(kh, ℓh)(1− δn,M+1)
)
,

JB1
m,n :=

1∑
k=0

1∑
ℓ=−1

CB1
k,ℓQ

V
Mf ,m,n

(kh, ℓh), KB1
n := −

1∑
k=0

1∑
ℓ=−1

CB1
k,ℓG

V
Mg1 ,1,n

(kh, ℓh), (3.38)

δa,a = 1, and δa,b = 0 for a ̸= b. We set CB1
k,ℓ :=

∑M+1
j=0 (ck,ℓ,j+ idk,ℓ,j)(κh)

j, where ck,ℓ,j, dk,ℓ,j ∈
R for all k ∈ {0, 1} and ℓ ∈ {−1, 0, 1}. Furthermore, we let CB1

0,−1 = CB1
0,1 and C

B1
1,−1 = CB1

1,1 for

symmetry. By calculation, we find that M = 5 is the maximum positive integer such that

the linear system of (3.37) has a non-trivial solution. To further simplify such a solution,

we set coefficients associated with κh of degrees higher than 4 to zero; i.e., we now have

polynomials of κh, whose highest degree is now 4. All such non-trivial solutions for M = 5

can be uniquely written (up to a constant multiple) as

CB1
1,1 = (c3 + ic7)(κh)

4 + (c2 + ic6)(κh)
3 + 12(ic8 − (7i/3)c2 + (7i/3)c5 + (13i/3)c7 + (7/3)c1 + (13/3)c3 + c4

+ (7/3)c6 − 4/135)(κh)2 − 60(ic1 + 2ic3 + (i/2)c4 + ic6 − 4i/225− (1/2)c8 + c2 − c5 − 2c7)κh+ 1

CB1
0,1 = (c1 + ic5)(κh)

4 + 13(ic1 + (20i/13)c3 + (7i/26)c4 + (12i/13)c6 − 17i/1170− (7/26)c8 + (12/13)c2 − c5

− (20/13)c7)(κh)
3 + 18(ic8 − (22i/9)c2 + (22i/9)c5 + (40i/9)c7 + (22/9)c1 + (40/9)c3 + c4 + (22/9)c6

− 11/324)(κh)2 − 120(ic1 + (2i)c3 + (i/2)c4 + ic6 − 29i/1800− (1/2)c8 + c2 − c5 − 2c7)κh+ 2

CB1
1,0 = (c4 + ic8)(κh)

4 + 18(ic1 + (4i/3)c3 + (i/6)c4 + (8i/9)c6 − i/90− (1/6)c8 + (8/9)c2 − c5

− (4/3)c7)(κh)
3 + 36(ic8 − (22i/9)c2 + (22i/9)c5 + (40i/9)c7 + (22/9)c1 + (40/9)c3 + c4 + (22/9)c6

− 49/1620)(κh)2 − 240(ic1 + (2i)c3 + (i/2)c4 + ic6 − 29i/1800− (1/2)c8 + c2 − c5 − 2c7)κh+ 4

CB1
0,0 = −4(ic8 − (3i/2)c2 + (2i)c5 + (7i/2)c7 + 2c1 + (7/2)c3 + c4 + (3/2)c6 − 1/80)(κh)4 − 80(ic1 + (2i)c3

+ (i/2)c4 + (39i/40)c6 − 7i/720− (1/2)c8 + (39/40)c2 − c5 − 2c7)(κh)
3 + 84(ic8 − (32i/21)c2

+ (32i/21)c5 + (74i/21)c7 + (32/21)c1 + (74/21)c3 + c4 + (32/21)c6 + 1/3780)(κh)2

+ 600(ic1 + (2i)c3 + (i/2)c4 + ic6 − 29i/4500− (1/2)c8 + c2 − c5 − 2c7)κh− 10,

(3.39)

where each ci ∈ R for i = 1, . . . , 8 are free parameters. Choosing Mf = Mg1 = 7 in (3.37)

and (3.38) yields the right-hand side of (3.20).

Next, consider a compact stencil {Cw
k,ℓ}k∈{0,1},ℓ∈{−1,0,1} parameterized by Cw

1,1, C
w
0,1, C

w
1,0 ∈
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C with

Cw
1,−1 = Cw

1,1, Cw
0,−1 = Cw

0,1, and Cw
0,0 = −10,

where we normalized the general stencil by Cw
0,0 = −10. Take a plane wave solution

u(x, y, θ) := exp(iκ(cos(θ)x + sin(θ)y)) for any θ ∈ [0, 2π). Clearly, we have ∆u + κ2u = 0

and −ux− iκu = g1 ̸= 0 on Γ1, where g1 and its derivatives are explicitly known by plugging

the plane wave solution u(x, y, θ) into the boundary condition. Hence, the truncation er-

ror associated with the compact general stencil coefficients {Cw
k,ℓ}k∈{0,1},ℓ∈{−1,0,1} at the grid

point (x0, yj) ∈ Γ1 is h−1(T (θ|κh))xi,yj , where

(T (θ|κh))x0,yj :=
1∑

k=0

1∑
ℓ=−1

Cw
k,ℓ exp(iκ(cos(θ)(x0 + kh) + sin(θ)(yj + ℓh)))

+
7∑

n=0

g
(n)
1

1∑
k=0

1∑
ℓ=−1

Cw
k,ℓG

V
7,1,n(kh, ℓh).

Without loss of generality, we let (x0, yj) = (0, 0). Afterwards, we follow a similar mini-

mization procedure as in the proof of Theorem 3.2 to obtain the concrete stencils in Theo-

rem 3.3.

Proof of Theorem 3.4. We start by finding all stencil coefficients {CR1
k,ℓ }k,ℓ∈{0,1},

{CR1
f,m,n}(m,n)∈ΛMf−1

, {CR1
g1,n

}Mg1
n=0, and {CR1

g3,n
}Mg3
n=0 such that

1∑
k=0

1∑
ℓ=0

CR1
k,ℓ u(x0+kh, y0+ℓh) =

∑
(m,n)∈ΛMf−1

f (m,n)CR1
f,m,n+

Mg1∑
n=0

g
(n)
1 CR1

g1,n+

Mg3∑
n=0

g
(n)
3 CR1

g3,n+O(hM+2),

(3.40)

h → 0, for some M,Mf ,Mg1 ,Mg3 ∈ N0, Mf ⩾ M , Mg1 ⩾ M and Mg3 ⩾ M . Afterwards,

we set the remaining free parameters by minimizing the average truncation error of plane

waves.

Note that we have

u(1,n) = −iκu(0,n) − g
(n)
1 and u(m,1) = −g(m)

3 , for all m,n ∈ N0. (3.41)

Let CR1
k,ℓ := CR1,V

k,ℓ + CR1,H
k,ℓ for k, ℓ ∈ {0, 1}, where CR1,V

k,ℓ and CR1,H
k,ℓ are to be determined

polynomials of h. Approximating u(x0 + kh, y0 + ℓh) with (3.15), (3.16), and using (3.41),

we have

1∑
k=0

1∑
ℓ=0

(CR1,V
k,ℓ + CR1,H

k,ℓ )u(x0 + kh, y0 + ℓh) =
M+1∑
n=0

u(0,n)IR1,V
n +

M+1∑
m=0

u(m,0)IR1,H
m
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+
∑

(m,n)∈ΛMf−1

f (m,n)JR1
m,n +

Mg1∑
n=0

g
(n)
1 KR1,V

n +

Mg3∑
m=0

g
(m)
3 KR1,H

m + O(hM+2), (3.42)

where

IR1,V
n :=

1∑
k=0

1∑
ℓ=0

CR1,V
k,ℓ

(
GV

M,0,n(kh, ℓh)− iκGV
M,1,n(kh, ℓh)(1− δn,M+1)

)
,

IR1,H
m :=

1∑
k=0

1∑
ℓ=0

CR1,H
k,ℓ GH

M,m,0(kh, ℓh), JR1
m,n :=

1∑
k=0

1∑
ℓ=0

(CR1,V
k,ℓ QV

Mf ,m,n(kh, ℓh) + CR1,H
k,ℓ QH

Mf ,m,n(kh, ℓh)),

KR1,V
n := −

1∑
k=0

1∑
ℓ=0

CR1,V
k,ℓ GV

Mg1
,1,n(kh, ℓh), and KR1,H

m := −
1∑

k=0

1∑
ℓ=0

CR1,H
k,ℓ GH

Mg3
,m,1(kh, ℓh).

By replacing the left-hand side of (3.40) with (3.42), replacing u(m,0) for m = 2, . . . ,M + 1

with (3.9), using (3.41), and rearranging some terms, we obtain

u(0,0)

IR1,V
0 + IR1,H

0 − iκIR1,H
1 +

⌊M+1
2

⌋∑
p=1

(−1)pκ2pIR1,H
2p + i

⌊M
2
⌋∑

p=1

(−1)p+1κ2p+1IR1,H
2p+1


+

⌊M
2
⌋∑

ℓ=0

u(0,2ℓ+1)IR1,V
2ℓ+1

+

⌊M
2
⌋∑

ℓ=1

u(0,2ℓ)

 ⌊M+1
2

⌋∑
p=max{ℓ,1}

(−1)p
(
p

ℓ

)
κ2(p−ℓ)IR1,H

2p + i

⌊M
2
⌋∑

p=max{ℓ,1}

(−1)p+1

(
p

ℓ

)
κ2(p−ℓ)+1IR1,H

2p+1 + IR1,V
2ℓ


+ u(0,2⌊

M+1
2

⌋)
(
(−1)⌊

M+1
2

⌋IR1,H

2⌊M+1
2

⌋ + IR1,V

2⌊M+1
2

⌋

)(
1− δ⌊M+1

2
⌋,⌊M

2
⌋

)

+

⌊Mg1−1

2
⌋∑

ℓ=0

g
(2ℓ+1)
1 (KR1,V

2ℓ+1 − CR1
g1,2ℓ+1)

+

⌊Mg1
2

⌋∑
ℓ=0

g
(2ℓ)
1

KR1,V
2ℓ +

⌊Mg1
2

⌋∑
p=max{ℓ,1}

(−1)p+1

(
p

ℓ

)
κ2(p−ℓ)IR1,H

2p+1 − IR1,H
1 δℓ,0 − CR1

g1,2ℓ


+

Mg3∑
ℓ=0

g
(ℓ)
3 (KR1,H

ℓ − CR1
g3,ℓ

) +

⌊
Mf
2

−1⌋∑
j=0

Mf−2j−2∑
ℓ=0

f (ℓ,2j+1)(JR1
ℓ,2j+1 − CR1

f,ℓ,2j+1)

+
∑

γ∈{0,1}

⌊
Mf+1−γ

2
⌋−1∑

ℓ=0

⌊
Mf+1−γ

2
⌋−ℓ−1∑

j=0

f (2ℓ+γ,2j)

 ⌊
Mf+1−γ

2
⌋∑

p=max{j+ℓ+1,1}

(−1)p−ℓ−1

(
p− ℓ− 1

j

)
κ2(p−ℓ−j−1)IR1,H

2p+γ + JR1
2ℓ+γ,2j − CR1

f,2ℓ+γ,2j

)
= O(hM+2), h→ 0.

We set CR1,V
k,ℓ =

∑M+1
j=0 (ak,ℓ,j + ibk,ℓ,j)(κh)

j and CR1,H
k,ℓ =

∑M+1
j=0 (ck,ℓ,j + idk,ℓ,j)(κh)

j, where
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ak,ℓ,j, bk,ℓ,j, ck,ℓ,j, dk,ℓ,j ∈ R for all k ∈ {0, 1} and ℓ ∈ {−1, 0, 1}. By calculation, M = 5 is the

maximum positive integer such that the linear system, obtained by setting each coefficient

of u(0,n) for n = 0, . . . , 6 to be O(h7) as h → 0, has a non-trivial solution. Afterwards, to

further simplify such a solution, we can set remaining coefficients associated with (κh)5 or

(κh)6 to zero.

By using the minimization procedure described in the proofs of Theorems 3.2 and 3.3,

we can verify that CR1,V
0,1 = CR1,V

1,1 = CR1,H
0,0 = CR1,H

1,0 = 0, CR1,V
0,0 = CR1

0,0 , C
R1,V
1,0 = CR1

1,0 ,

CR1,H
0,1 = CR1

0,1 , and CR1,H
1,1 = CR1

1,1 , where {CR1
k,ℓ }k,ℓ∈{0,1} are defined in (3.25). Given these

{CR1,V
k,ℓ }k,ℓ∈{0,1} and {CR1,H

k,ℓ }k,ℓ∈{0,1}, we set Mf = Mg1 = Mg3 = 7 and plug them into the

following relations

CR1
g1,2ℓ

= KR1,V
2ℓ +

⌊
Mg1
2

⌋∑
p=max{ℓ,1}

(−1)p+1

(
p

ℓ

)
κ2(p−ℓ)IR1,H

2p+1 − IR1,H
1 δℓ,0, ℓ = 0, . . . ,

⌊
Mg1

2

⌋
,

CR1
g1,2ℓ+1 = KR1,V

2ℓ+1 , ℓ = 0, . . . ,
⌊
Mg1−1

2

⌋
, CR1

g3,ℓ
= KR1,H

ℓ , ℓ = 0, . . . ,Mg3 ,

CR1
f,ℓ,2j+1 = JR1

ℓ,2j+1, ℓ = 0, . . . ,Mf − 2j − 2, j = 0, . . . ,
⌊
Mf

2
− 1
⌋
, and

CR1
f,2ℓ+γ,2j =

⌊
Mf+1−γ

2

⌋∑
p=max{j+ℓ+1,1}

(−1)p−ℓ−1

(
p− ℓ− 1

j

)
κ2(p−ℓ−j−1)IR1,H

2p+γ + JR1
2ℓ+γ,2j,

(3.43)

where γ ∈ {0, 1}, j = 0, . . . ,
⌊
Mf+1−γ

2

⌋
− ℓ− 1, and ℓ = 0, . . . ,

⌊
Mf+1−γ

2

⌋
− 1. This completes

the proof of Theorem 3.4.

Proof of Theorem 3.5. The proof is almost identical to the proof of Theorem 3.4. Note that

we need to replace u(m,1) = −g(m)
3 with u(m,1) = iκu(m,0) + g

(m)
4 for all m ∈ N0 in (3.41).
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Chapter 4

Sharp Wavenumber-explicit Stability

Bounds for 2D Helmholtz Equations

We have considered the discretization aspects of the 2D Helmholtz equation on a rectangular

domain in Chapter 3. In this chapter, we study the stability of its solution. In particular,

we want to consider the following 2D Helmholtz equation:

Lu := ∆u+ κ2u = −f in Ω := (0, 1)2 (4.1)

with the following boundary conditions

B1u = g1 on Γ1 := (0, 1)× {0}, B3u = g3 on Γ3 := (0, 1)× {1},

B2u = g2 on Γ2 := {1} × (0, 1), B4u = g4 on Γ4 := {0} × (0, 1),
(4.2)

where κ > 0 is a constant wavenumber, f ∈ L2(Ω) is the source term, and gj ∈ L2(Γj)

for j = 1, . . . , 4 are boundary data. The different boundary conditions are prescribed by

boundary operators B1, . . . ,B4, which belong to one of the three boundary operators: Id

(i.e., Idu = u) for a Dirichlet boundary condition; ∂
∂ν

for a Neumann boundary condition;

or ∂
∂ν

− iκId for the impedance boundary condition, where ν is the outward normal vector.

We shall assume that at least one impedance boundary condition is present. Without loss of

generality, we assume that the impedance boundary condition is always imposed on Γ4, i.e.,

B4 =
∂
∂ν

− iκId. More specifically, we are interested in the following boundary configurations

B1,B3 ∈ {Id, ∂
∂ν
}, B2 ∈ {Id, ∂

∂ν
, ∂
∂ν

− iκId}, and B4 =
∂
∂ν

− iκId. (4.3)

See Fig. 4.1 for the domain and boundary configurations of the 2D Helmholtz equation

(4.1)–(4.3).
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Γ1

Γ2

Γ3

Γ4

0 B1u = g1 1

B3u = g3

B2u = g2
B4u = ∂u

∂ν
− iκu

= g4

1

Figure 4.1: Boundary configuration in (4.2) and (4.3) for the 2D Helmholtz equation (4.1).

We prove the existence and uniqueness of the solution to the 2D Helmholtz equation

(4.1)–(4.3), state several sharp wavenumber-explicit stability bounds, propose a lifting strat-

egy, and provide several examples to illustrate the optimality of our stability bounds in

Section 4.1. The technical proofs of several theorems are deferred to Section 4.2.

Results in this chapter are based on [76].

4.1 Main results on sharp wavenumber-explicit stabil-

ity bounds

First, we study the existence and uniqueness of the solution to the Helmholtz equation

(4.1)–(4.3) and then derive several relevant sharp wavenumber-explicit stability bounds.

Let ΓD be the union of all boundaries on which the Dirichlet condition is imposed (i.e.,

u = gD on ΓD), ΓN be the union of all boundaries on which the Neumann condition is

imposed (i.e., ∂u
∂ν

= gN on ΓN), and ΓR be the union of all boundaries on which the impedance

boundary condition is imposed (i.e., ∂u
∂ν

− iκu = gR on ΓR).

Define

H := {u ∈ H1(Ω) : u = 0 on ΓD},

where ΓD is allowed to be an empty set. If ΓD = ∅, then H = H1(Ω). For the homogeneous

Dirichlet boundary condition u = gD = 0 on ΓD, the weak formulation of the 2D Helmholtz

equation (4.1)–(4.3) is to find u ∈ H such that

a(u, v) :=

∫
Ω

(∇u · ∇v − κ2uv)− iκ

∫
ΓR

uv =

∫
Ω

fv +

∫
ΓR

gRv +

∫
ΓN

gNv ∀ v ∈ H. (4.4)

The existence and uniqueness of the solution to problem (4.4) can be proved by using the

Fredholm alternative and the unique continuation principle [61, Theorem 2.1]. For the

convenience of the reader, we shall include an explicit proof for our problem to make the
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presentation self-contained.

Proposition 4.1. There is a unique solution u ∈ H satisfying the problem (4.4).

Proof. The sesquilinear form a(·, ·) is bounded, since |a(u, u)| ⩽ max(1, κ2)∥u∥21,Ω. Also, the
G̊arding’s inequality [101, (2.7)] is satisfied, since ℜ(a(u, u)) = ∥u∥21,Ω − (κ2 + 1)∥u∥20,Ω. We

also know that H is compactly embedded in L2(Ω). Hence, by the Fredholm alternative

[101, Theorems 2.34 and 2.27], the solution to the variational problem (4.4) exists as long as

we can show its uniqueness.

We now prove the uniqueness. Suppose that f = gR = gN = 0 in (4.4). We have to

prove that the solution u must be 0. Then, recalling that ΓR ̸= ∅, we have ℑ(a(u, u)) =

κ∥u∥0,ΓR . Since κ is positive, we have u = 0 on ΓR almost everywhere. Let Ω̃ be an extended

domain Ω such that Ω̃ = (−ε, 1) × (0, 1) if ΓR = Γ4, Ω̃ = (0, 1 + ε) × (0, 1) if ΓR = Γ2, or

Ω̃ = (−ε, 1 + ε) × (0, 1) if ΓR = Γ2 ∪ Γ4 for some ε > 0. Let ũ be the function u with zero

extension in Ω̃. Note that ũ ∈ H1(Ω̃). Since ⟨∇u,∇v⟩Ω − κ2⟨u, v⟩Ω = 0 for all v ∈ H, we

have ⟨∇ũ,∇v⟩Ω̃ − κ2⟨ũ, v⟩Ω̃ = 0 for all v ∈ H1(Ω̃). Also noting that ũ = 0 in Ω̃ \ Ω, by [61,

Theorem 2.1] or [1, Theorem 1.1], we conclude that u = 0. The existence and uniqueness of

the solution to the problem (4.4) for the Helmholtz equations have been proved.

Furthermore, the existence of a unique solution still holds true even in the presence of

inhomogeneous Dirichlet boundary conditions on ΓD due to lifting.

4.1.1 Stability bounds for inhomogeneous vertical boundary con-

ditions

To establish stability bounds for inhomogeneous boundary conditions only on the vertical

sides, we assume the horizontal sides take homogenous boundary conditions such that

B1,B3 ∈ {Id, ∂
∂ν
} and B1u = g1 = 0 on Γ1, B3u = g3 = 0 on Γ3. (4.5)

Define N0 := N∪{0}. We shall use one of the following four orthonormal bases {Zj,n}n∈N0 ,

j = 1, . . . , 4 in L2(I) with I := [0, 1]:

Z1,n :=
√
2 sin(nπ·) and Z2,0 := 1, Z2,n :=

√
2 cos(nπ·), n ∈ N,

Z3,n :=
√
2 sin((n+ 1

2
)π·) and Z4,n :=

√
2 cos((n+ 1

2
)π·), n ∈ N0.

(4.6)

To maintain a unified presentation, we often use Z1,0 := 0 instead of dropping Z1,0. For

g ∈ L2(I), we let g̃ be the function g with the zero extension outside the interval I, and
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define 2-periodic functions G1, . . . , G4 whose values on (−1, 1] are defined by

G1(x) := g̃(x)− g̃(−x), G2(x) := g̃(x) + g̃(−x),

G3(x) := (g̃(x)− g̃(−x))eixπ/2, G4(x) := (g̃(x) + g̃(−x))eixπ/2.
(4.7)

For g ∈ L2(I) and j = 1, . . . , 4, we have

g =
∑
n∈N0

ĝ(n)Zj,n with ĝ(n) :=

∫ 1

0

g(x)Zj,n(x)dx, ∀n ∈ N0, (4.8)

where we used the convention Z1,0 := 0. Let Z ′
j,n stand for the derivative of Zj,n. It is also easy

to observe that {Z ′
j,n}n∈N0 is an orthogonal system in L2(I) satisfying

∫ 1

0
Z ′
j,m(x)Z

′
j,n(x)dx =

0 as long as m ̸= n. For {Zj,n}n∈N0 with j = 1, 2, we let {σn = nπ}n∈N0 . For {Zj,n}n∈N0

with j = 3, 4, we let {σn = (n + 1
2
)π}n∈N0 . We refer to {σn}n∈N0 as eigenvalues, {Zj,n}n∈N0

as eigenfunctions, and {(σ2
n, Zj,n)}n∈N0 as eigenpairs. Due to the identities in (4.8), given

eigenpairs {(σ2
n, Zj,n)}n∈N0 for some j ∈ {1, 2, 3, 4} and s ⩾ 0, we say that g ∈ Zs(Γℓ) for

ℓ ∈ {1, 2, 3, 4}, if g ∈ L2(Γℓ) and

∥g∥2Zs(Γℓ) :=
∞∑
n=0

|ĝ(n)|2σ2s
n <∞ with ĝ(n) :=

∫
Γℓ

g(x)Zj,n(x)dx ∀n ∈ N0. (4.9)

Note that
∫
Γℓ
g(x)Zj,n(x)dx =

∫ 1

0
g(x)Zj,n(x)dx for ℓ = 1, . . . , 4. Such a Hilbert space has

been used in stability estimates of the Helmholtz equation; e.g, see [14, Section 2.2] and [106,

Section 3].

In this subsection, let our eigenvalues be {µn = nπ}n∈N0 or {µn = (n + 1
2
)π}n∈N0 , and

our eigenfunctions be

Yn(y) =



Z1,n(y), if µn = nπ ̸= 0 and B1 = B3 = Id,

Z2,n(y), if µn = nπ ̸= 0 and B1 = B3 =
∂
∂ν
,

Z3,n(y), if µn = (n+ 1
2
)π and B1 = Id,B3 =

∂
∂ν
,

Z4,n(y), if µn = (n+ 1
2
)π and B1 =

∂
∂ν
,B3 = Id,

∀n ∈ N0, (4.10)

which together give us {(µ2
n, Yn)}n∈N0 as our eigenpairs. We are now ready to state our first

set of stability bounds. The oscillating part of the solution predominantly contributes to the

stability bound. Hence, the main idea of the proof is to find a delicate upper bound for its

norm. We achieve this by establishing several technical norm estimates. The proof of the

following theorem is deferred to Section 4.2.
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Theorem 4.2. Consider the Helmholtz equation in (4.1)–(4.2). Assume that (4.5) holds,

B2 ∈ {Id, ∂
∂ν
, ∂
∂ν

− iκId} with B2u = g2 = 0 on Γ2, and B4 =
∂
∂ν

− iκId with B4u = g4 ∈ L2(Γ4)

on Γ4. Then the unique solution u to the Helmholtz equation in (4.1)–(4.2) with the source

term f vanishing satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω ⩽
√
12max{κ, 1}∥g4∥0,Γ4 , ∀ κ > 0. (4.11)

The following example demonstrates how the stability bound in Theorem 4.2 is sharp in

the sense that the right-hand side of (4.11) holds up to a constant multiple (independent of

κ and g4).

Example 4.1. In what follows, suppose that the conditions of Theorem 4.2 hold, that

is, f = 0, B1,B3 ∈ {Id, ∂
∂ν
}, and B4 = ∂

∂ν
− iκId by (4.3) with the boundary data g1 =

g2 = g3 = 0 in (4.2). Note that the boundary data g4 = B4u on Γ4. We have three

choices for the boundary operator B2. Let us consider the first case B2 = ∂
∂ν

− iκId with

κ2 := µ2
n + π2, where µn = nπ or µn = (n + 1

2
)π for a temporarily fixed n ∈ N. Let

u = 1
2κπ

(− sin(πx)κ+ cos(πx)πi)Yn(y) be the exact solution, where Yn(y) takes one of the

forms in (4.10). Because B4 =
∂
∂ν

−iκId, we have g4 = B4u = Yn on Γ4 and hence ∥g4∥0,Γ4 = 1.

The exact solution u = 1
2κπ

(− sin(πx)κ+ cos(πx)πi)Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω =
√
2
2
κ
√

1
π2 +

1
k2

⩾
√
2

2π
κ∥g4∥0,Γ4

with κ :=
√
µ2
n + π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

Next, we consider the second case B2 = ∂
∂ν

with κ2 := µ2
n + 1

4
π2, where µn = nπ or

µn = (n+ 1
2
)π for a temporarily fixed n ∈ N. Let u = − 2

π
sin(π

2
x)Yn(y) be the exact solution,

where Yn(y) takes one of the forms in (4.10). Because B4 =
∂
∂ν

− iκId, g4 = B4u = Yn on Γ4

and hence ∥g4∥0,Γ4 = 1. The exact solution u = − 2
π
sin(π

2
x)Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω = 2
√
2

π
κ∥g4∥0,Γ4

with κ :=
√
µ2
n +

1
4
π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

Finally, we consider the third case B2 = Id with κ2 := µ2
n + π2, where µn = nπ or

µn = (n+ 1
2
)π for a temporarily fixed n ∈ N. Let u = − 1

π
sin(πx)Yn(y) be the exact solution,

where Yn(y) takes one of the forms in (4.10). Because B4 =
∂
∂ν

− iκId, g4 = B4u = Yn on Γ4

and hence ∥g4∥0,Γ4 = 1. The exact solution u = − 1
π
sin(πx)Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω =
√
2
π
κ∥g4∥0,Γ4
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with κ :=
√
µ2
n + π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

A similar example demonstrating the sharpness of the stability bound (4.11) for the third

case was also presented in [41].

Next, we present our second set of stability bounds, whose proof is deferred to Section 4.2,

since it again involves several technical norm estimates. We recall that if Bju = u = 0 on

Γj for j = 1, 3, then Z1/2(Γ2) can be identified with a subspace of H1/2(Γ2), which after the

zero extension belongs to the space H1/2(∂Ω); e.g, see [106, Section 3].

Theorem 4.3. Consider the Helmholtz equation in (4.1)–(4.2) with the source term f

vanishing. Assume that (4.5) holds, B4 = ∂
∂ν

− iκId with B4u = g4 = 0 on Γ4, and

B2 ∈ {Id, ∂
∂ν
, ∂
∂ν

− iκId} with B2u = g2 ∈ L2(Γ2) on Γ2. Then,

(1) For B2 = ∂
∂ν

− iκId, the unique solution u to the Helmholtz equation in (4.1)–(4.2)

satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω ⩽
√
12max{κ, 1}∥g2∥0,Γ2 , ∀ κ > 0.

(2) For B2 =
∂
∂ν
, the unique solution u to the Helmholtz equation in (4.1)–(4.2) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω ⩽
√
20max{κ2, 1}∥g2∥0,Γ2 , ∀ κ > 0. (4.12)

(3) For B2 = Id and g2 ∈ Z1/2(Γ2), the unique solution u to the Helmholtz equation in

(4.1)–(4.2) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω ⩽
√
14
(
max{κ2, 1}∥g2∥0,Γ2

+max{κ
1
2 , 1}∥g2∥Z1/2(Γ2)

)
, ∀ κ > 0. (4.13)

An example demonstrating the sharpness of the stability bound in item (1) of Theorem 4.3

can be recovered from the first case discussed in Example 4.1, where both vertical sides have

the impedance boundary conditions with only the left hand side being inhomogeneous, by

replacing x in the solution u with 1− x. This way the nonzero vertical boundary condition

is on the right-hand side (i.e., Γ2). The following example demonstrates how the stability

bounds (4.12) and (4.13) are sharp in the sense that the right-hand sides of (4.12) and (4.13)

hold up to a constant multiple (independent of κ and g2).

Example 4.2. In what follows, suppose that the conditions of Theorem 4.3 hold, that is,

f = 0, B1,B3 ∈ {Id, ∂
∂ν
}, and B4 = ∂

∂ν
− iκId by (4.3) with the boundary data g1 = 0, g3 =

0, g4 = 0 in (4.2). Note that the boundary data g2 = B2u on Γ2. Let us consider the first
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case B2 =
∂
∂ν

with κ2 := µ2
n +

1
4
π2, where µn = nπ or µn = (n+ 1

2
)π for a temporarily fixed

n ∈ N. Let u = 1
π2

(
−2π cos(π

2
x) + 4κ sin(π

2
x)i
)
Yn(y) be the exact solution, where Yn(y)

takes one of the forms in (4.10). Then g2 = B2u = Yn on Γ2 and hence ∥g2∥0,Γ2 = 1. The

exact solution u = 1
π2

(
−2π cos(π

2
x) + 4κ sin(π

2
x)i
)
Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω = 4
√
2

π
κ2
√

1
π2 +

1
4κ2

⩾ 4
√
2

π2 κ
2∥g2∥0,Γ2 ,

where κ :=
√
µ2
n +

1
4
π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

Finally, we consider the case B2 = Id with κ
2 := µ2

n+π
2, where µn = nπ or µn = (n+ 1

2
)π

for a temporarily fixed n ∈ N. Let u = 1
π
(−π cos(πx) + sin(πx)κi)Yn(y) be the exact solu-

tion, where Yn(y) takes the form of (4.10). Then g2 = B2u = Yn on Γ2 and hence ∥g2∥0,Γ2 = 1.

Also, ∥g2∥Z1/2(Γ2) = µ
1/2
n . The exact solution u = 1

π
(−π cos(πx) + sin(πx)κi)Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω =
√
2
π

√
κ4 + π2κ2 ⩾ 1

π

(
κ2 + πκ

)
⩾ 1

π

(
κ2 + πκ1/2µ1/2

n

)
⩾ 1

π
(κ2∥g2∥0,Γ2 + κ1/2∥g2∥Z1/2(Γ2)),

where κ :=
√
µ2
n + π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

4.1.2 Stability bounds for non-vanishing source terms

We can derive a stability estimate for f ∈ L2(Ω) by using the variational formulation (4.4)

and the Rellich’s identity [32, Proposition 2.1]. A part of this problem (i.e., ΓD = Γ1∪Γ2∪Γ3

and ΓR := Γ4) was addressed in [41, Appendix]. The proof of the following result is deferred

to Section 3.

Theorem 4.4. Consider the Helmholtz equation (4.1)-(4.3). Assume that gj = 0 on Γj for

all j = 1, . . . , 4 and f ∈ L2(Ω).

(1) For B2 = Id, if the unique solution u to (4.4) is in H2(Ω), then

∥∇u∥0,Ω + κ∥u∥0,Ω ⩽
√
30max{κ2, 1}∥f∥0,Ω, ∀κ > 0. (4.14)

(2) For B2 ∈ { ∂
∂ν
, ∂
∂ν

− iκId}, if the unique solution u to (4.4) is in H2(Ω), then

∥∇u∥0,Ω + κ∥u∥0,Ω ⩽
√
542max{κ2, κ−1/2}∥f∥0,Ω, ∀κ > 0. (4.15)

The following example demonstrates how the stability bounds (4.14) and (4.15) are sharp

in the sense that the right-hand sides of (4.14) and (4.15) hold up to a constant multiple
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(independent of κ and f).

Example 4.3. In what follows, suppose that the conditions of Theorem 4.4 hold, that is,

f ∈ L2(Ω), B1,B3 ∈ {Id, ∂
∂ν
}, B4 =

∂
∂ν

− iκId by (4.3) with the boundary data gj = 0 on Γj for

all j = 1, . . . , 4. Let us consider the first case B2 = Id with κ
2 := µ2

n + π2, where µn = nπ or

µn = (n+ 1
2
)π for a temporarily fixed n ∈ N. Let u = 1

π3 (π cos(πx) + π − 2 sin(πx)κi)Yn(y),

where Yn(y) takes one of the forms in (4.10). Then f = Yn(y) and hence ∥f∥0,Ω = 1. The

exact solution u = 1
π3 (π cos(πx) + π − 2 sin(πx)κi)Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω =
√
2

π3 κ
2

(√
1 + 3π2

4κ2
− π4

2κ4
+

√
1 + 3π2

4κ2

)
⩾ 2

√
2

π3 κ
2∥f∥0,Ω,

where κ :=
√
µ2
n + π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

Next, we consider the second case B2 = ∂
∂ν

with κ2 := µ2
n + 1

4
π2, where µn = nπ or

µn = (n + 1
2
)π for a temporarily fixed n ∈ N. Let u = 1

π3

(
4π − 8κ sin(π

2
x)i
)
Yn(y), where

Yn(y) takes one of the forms in (4.10). Then f = Yn(y) and hence ∥f∥0,Ω = 1. The exact

solution u = 1
π3

(
4π − 8κ sin(π

2
x)i
)
Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω = 4
√
2

π3 κ
2

(√
1 + π2

2κ2
− π4

8κ4
+

√
1 + π2

2κ2

)
⩾ 8

√
2

π3 κ
2∥f∥0,Ω,

where κ :=
√
µ2
n +

1
4
π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

Finally, we consider the third case B2 =
∂
∂ν

− iκId with κ
2 := µ2

n + π2, where µn = nπ or

µn = (n+ 1
2
)π for a temporarily fixed n ∈ N. Let u = 1

π3 (π − κ sin(πx)i)Yn(y), where Yn(y)

takes one of the forms in (4.10). Then f = Yn(y) and hence ∥f∥0,Ω = 1. The exact solution

u = 1
π3 (π − κ sin(πx)i)Yn(y) satisfies

∥∇u∥0,Ω + κ∥u∥0,Ω = 1√
2π3κ

2

(√
1 + 2π2

κ2
− 2π4

κ4
+

√
1 + 2π2

κ2

)
⩾

√
2

π3 κ
2∥f∥0,Ω,

where κ :=
√
µ2
n + π2 and µn ∈ {nπ, (n+ 1

2
)π} for all n ∈ N.

4.1.3 Stability bounds for inhomogeneous horizontal boundary

conditions using a lifting technique

In this section, we discuss how under certain assumptions, we can transfer the inhomogeneous

horizontal boundary data to the vertical boundary conditions. This procedure is well known

as lifting in the literature. As we shall soon see, we are actually considering a particular

instance of lifting, where our auxiliary functions do not affect the source term at all. Consider
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the Helmholtz equation (4.1)–(4.3). Without loss of generality, let us assume that only one

of the horizontal boundary conditions is inhomogeneous and it is on Γ1. We can use the same

method to handle the case where both horizontal boundary conditions are inhomogeneous.

Our goal is thus to explicitly construct an auxiliary function ũ satisfying

Lũ := ∆ũ+ κ2ũ = 0 in Ω := (0, 1)2 with

B1ũ = g1 on Γ1, B3ũ = 0 on Γ3.
(4.16)

We shall impose some conditions on g1 to ensure that the traces of ũ belong to the appropriate

function spaces so that we can go back to the situations discussed in Section 4.1.

Expanding g1 in terms of certain eigenfunctions is a vital step for the construction of the

above auxiliary solution. For eigenvalues {µ̃n = nπ}n∈N0 , we can use either eigenfunctions

{X̃n = Z1,n}n∈N0 or {X̃n = Z2,n}n∈N0 . For eigenvalues {µ̃n = (n + 1
2
)π}n∈N0 , we can use

either eigenfunctions {X̃n = Z3,n}n∈N0 or {X̃n = Z4,n}n∈N0 . We first discuss how to properly

choose µ̃n, n ∈ N0. Define

d0 := dist(κ2, π2Z) = inf
n∈Z

|κ2 − nπ2| and

d1 := dist(κ2, π2(1
2
+ Z)) = inf

n∈Z
|κ2 − (n+ 1

2
)π2|.

(4.17)

Note that d0, d1 ∈ [0, 1
2
π2] and d0 + d1 = 1

2
π2. For n ∈ N0, we choose µ̃n according to the

following four cases:

µ̃n =



(n+ 1
2
)π, if B1 = B3 and d0 ∈ [0, 1

8
π2],

nπ, if B1 = B3 and d0 ̸∈ [0, 1
8
π2],

nπ, if B1 ̸= B3 and d0 ∈ [0, 1
8
π2] ∪ [3

8
π2, 1

2
π2],

(n+ 1
2
)π, if B1 ̸= B3 and d0 ̸∈ [0, 1

8
π2] ∪ [3

8
π2, 1

2
π2].

(4.18)

The next result states that the choices in (4.18) are critical in ensuring that the following

auxiliary solution ũ satisfying (4.16) is well defined. Furthermore, sufficient conditions under

which the Dirichlet trace of an auxiliary function ũ belongs to H1/2(∂Ω) and the Neumann

trace in the x-direction of an auxiliary function ũ belongs to L2(∂Ω) are presented. This

allows us to fall back to the cases discussed in Section 4.1; more specifically, with gj replaced

by gj − Bj(ũ) on Γj for each j ∈ {2, 4}. The proof of the following result is deferred to

Section 4.2.

Proposition 4.5. Assume g1 ∈ Z1/2(Γ1) if B1 = ∂
∂ν
. Otherwise, assume g1 ∈ Z3/2(Γ1) if

B1 = Id. Suppose that {µ̃n}n∈N0 are chosen according to (4.18). Let the auxiliary function ũ
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take the following form

ũ =
∞∑
n=0

ĝ1(n)X̃n(x)Ỹn(y) with ĝ1(n) :=

∫
Γ1

g1(x)X̃n(x)dx, (4.19)

where {Yn}n∈N0 solve

Ỹ ′′
n (y) + (κ2 − µ̃2

n)Ỹn(y) = 0 in I := (0, 1), n ∈ N0, (4.20)

B1Ỹn(0) = 1, B3Ỹn(1) = 0, (4.21)

with B1,B3 ∈ {Id, ∂
∂ν
}. Then, the auxiliary function ũ in (4.19) satisfies (4.16) and each

term of ũ is well defined. Furthermore, we have that ũ ∈ H1(Ω), the (Dirichlet) trace of ũ

is in H1/2(∂Ω), and the trace of ũx (i.e., the Neumann trace in the x-direction of ũ) is in

L2(∂Ω).

Next, we study upper bounds of an auxiliary function satisfying (4.16), which is defined

in (4.19).

Theorem 4.6. Consider an auxiliary function ũ satisfying (4.16), which is defined in (4.19)

and takes into account of (4.18). Then,

(1) For B1 =
∂
∂ν
, B3 ∈ {Id, ∂

∂ν
}, and g1 ∈ L2(Γ1), the auxiliary function ũ satisfies

∥∇ũ∥0,Ω + κ∥ũ∥0,Ω ⩽ 2
√
717max{κ, 1}∥g1∥0,Γ1 , ∀κ > 0. (4.22)

(2) For B1 = Id, B3 ∈ {Id, ∂
∂ν
}, and g1 ∈ Z1/2(Γ1), the auxiliary function ũ satisfies

∥∇ũ∥0,Ω + κ∥ũ∥0,Ω ⩽ 2
√
43(max{κ2, 1}∥g1∥0,Γ1

+max{κ
1
2 , 1}∥g1∥Z1/2(Γ1)), ∀κ > 0. (4.23)

Note that by symmetry, the same results as above hold when B1ũ = 0 on Γ1 and B3ũ = g3

on Γ3 in (4.16). Also, the conditions imposed on g1 in Theorem 4.6 are weaker compared to

those in Proposition 4.5, because in the former, we are only interested in finding an upper

bound of the norm of an auxiliary solution and do not consider whether its traces belong

to particular spaces or not. The following example demonstrates how the stability bounds

(4.22) and (4.23) are sharp in the sense that the right-hand sides of (4.22) and (4.23) hold

up to a constant multiple (independent of κ and g1).

Example 4.4. In what follows, suppose that the conditions of Theorem 4.6 hold. Note

that the source term in (4.16) vanishes. Suppose that B1 = B3 = ∂
∂ν

and g1 ∈ L2(Γ1).
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Consider κ2 := (nπ)2 + 1
4
π2 for a temporarily fixed n ∈ N. Since d0 /∈ [0, 1

8
π2] in (4.18),

let ũ = − 2
π
X̃n(x) cos(

π
2
(y − 1)) be an auxiliary solution, where X̃n(x) =

√
2 cos(µ̃nx) or

X̃n(x) =
√
2 sin(µ̃nx) with µ̃n = nπ. Then g1 = B1ũ = X̃n on Γ1 and hence ∥g1∥0,Γ1 = 1.

The auxiliary solution ũ = − 2
π
X̃n(x) cos(

π
2
(y − 1)) satisfies

∥∇ũ∥0,Ω + κ∥ũ∥0,Ω = 2
√
2

π
κ∥g1∥0,Γ1 with κ :=

√
(nπ)2 + 1

4
π2, ∀n ∈ N.

Suppose that B1 = ∂
∂ν
, B3 = Id, and g1 ∈ L2(Γ1). Consider κ2 := (nπ)2 + π2 for a

temporarily fixed n ∈ N. Since d0 ∈ [0, 1
8
π2], let ũ = 1

π
X̃n(x) sin(π(y − 1)) be an auxiliary

solution, where X̃n(x) =
√
2 cos(µ̃nx) or X̃n(x) =

√
2 sin(µ̃nx) with µ̃n = nπ. Then g1 =

B1ũ = X̃n on Γ1 and hence ∥g1∥0,Γ1 = 1. The auxiliary solution ũ = 1
π
X̃n(x) sin(π(y − 1))

satisfies

∥∇ũ∥0,Ω + κ∥ũ∥0,Ω =
√
2
π
κ∥g1∥0,Γ1 with κ :=

√
(nπ)2 + π2, ∀n ∈ N.

Suppose that B1 = Id, B3 =
∂
∂ν
, and g1 ∈ Z1/2(Γ1). Consider κ

2 := (θn+θ
−1
n )2+(θn− 1

2
π)2,

where θn := (n + 1
2
)π for a temporarily fixed n ∈ N. Since d0 ∈ [3

8
π2, 1

2
π2] in (4.18), let

ũ = X̃n(x)
cos((θn+θ

−1
n )(y−1))

cos((θn+θ
−1
n ))

be an auxiliary solution, where X̃n(x) =
√
2 sin(µ̃nx) or X̃n(x) =√

2 cos(µ̃nx) with µ̃n = nπ. Then g1 = B1ũ = X̃n on Γ1 and hence ∥g1∥0,Γ1 = 1. Also,

∥g1∥Z1/2(Γ1) = µ̃
1/2
n . The auxiliary solution ũ = X̃n(x)

cos((θn+θ
−1
n )(y−1))

cos((θn+θ
−1
n ))

satisfies

∥∇ũ∥20,Ω + κ2∥ũ∥20,Ω =
κ2+µ̃2n

sin(2(θn+θ
−1
n ))

2(θn+θ
−1
n )

cos2(θn+θ
−1
n )

=
κ2+µ̃2n

sin(2(θn+θ
−1
n ))

2(θn+θ
−1
n )

sin2(θ−1
n )

⩾ θ2nκ
2 + µ̃2

nθ
2
n
sin(2(θn+θ

−1
n ))

2(θn+θ
−1
n )

= θ2n(θn + θ−1
n )2 + µ̃2

nθ
2
n

(
1 + sin(2(θn+θ

−1
n ))

2(θn+θ
−1
n )

)
⩾ min

{
θ2n(θn+θ

−1
n )2

((θn+θ
−1
n )2+µ̃2n)

2 ,
µ̃2nθ

2
n

2((θn+θ
−1
n )2+µ̃2n)

}
(κ4 + κ2)

⩾ min
{

θ2n
4(θn+θ

−1
n )2

, π2θ2n
4(θn+θ

−1
n )2

}
(κ4 + κµ̃n)

=
θ21

4(θ1+θ
−1
1 )2

(κ4 + κµ̃n) =
81π4

4(9π2+4)2
(κ4 + κµ̃n),

where we used the fact that | sin(x)| ⩽ |x| for all x ⩾ 0 to arrive at the first inequality. Using

the basic inequality a2 + b2 ⩾ 1√
2
(a+ b) for nonnegative numbers a and b, we have

∥∇ũ∥0,Ω + κ∥ũ∥0,Ω ⩾ 9π2

2
√
2(9π2+4)

(κ2∥g1∥0,Γ1 + κ
1
2∥g1∥Z1/2(Γ1)),

where κ :=
√

(θn + θ−1
n )2 + µ̃2

n with θn = (n+ 1
2
)π and µ̃n = θn − 1

2
π for all n ∈ N.

Suppose that B1 = Id, B3 = Id, g1 ∈ Z1/2(Γ1), and g3 = 0. Consider κ2 := (θn +

θ−1
n )2 + θ2n, where θn := nπ for a temporarily fixed n ∈ N. Since d0 /∈ [0, 1

8
π2] in (4.18),
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let ũ = −X̃n(x)
sin((θn+θ

−1
n )(y−1))

sin(θn+θ
−1
n )

be an auxiliary solution, where X̃n =
√
2 sin(µ̃nx) or X̃n =

√
2 cos(µ̃nx) with µ̃n = θn = nπ. Then g1 = B1ũ = X̃n on Γ1 and hence ∥g1∥0,Γ1 = 1. Also,

∥g1∥Z1/2(Γ1) = µ̃
1/2
n . The auxiliary solution ũ = −X̃n(x)

sin((θn+θ
−1
n )(y−1))

sin(θn+θ
−1
n )

satisfies

∥∇ũ∥20,Ω + κ2∥ũ∥20,Ω =
κ2−θ2n

sin(2(θn+θ
−1
n ))

2(θn+θ
−1
n )

sin2(θn+θ
−1
n )

=
(θn+θ

−1
n )2+θ2n

(
1−

sin(2(θn+θ
−1
n ))

2(θn+θ
−1
n )

)
sin2(θ−1

n )

⩾ θ2n(θn + θ−1
n )2 + θ4n

(
1− sin(2(θn+θ

−1
n ))

2(θn+θ
−1
n )

)
⩾ θ21

4(θ1+θ
−1
1 )2

(κ4 + κµ̃n) =
π4

4(π2+1)2
(κ4 + κµ̃n),

where we used the same steps as in the previous case, and the fact that θ1 + θ−1
1 > π and

hence 1 − sin(2(θn+θ
−1
n ))

2(θn+θ
−1
n )

> 1
2
for all n ⩾ 1 to move from the first inequality to the second

inequality. Using the basic inequality a2 + b2 ⩾ 1√
2
(a+ b) for nonnegative numbers a and b,

we have

∥∇ũ∥0,Ω + κ∥ũ∥0,Ω ⩾ π2

2
√
2(π2+1)

(κ2∥g1∥0,Γ1 + κ
1
2∥g1∥Z1/2(Γ1)),

where κ :=
√

(θn + θ−1
n )2 + θ2n with θn = µ̃n = nπ for all n ∈ N.

We close this section with two important final remarks. By the superposition principle,

the stability bounds for the case where all boundary conditions are inhomogeneous and the

source term vanishes can be recovered by using Theorem 4.6, subtracting the traces of the

auxiliary solutions from g2 on Γ2 and g4 on Γ4, using Theorems 4.2 and 4.3, and finally

adding all these bounds. Additionally, if the source term is nonzero, then we may also add

the stability bound in Theorem 4.4.

Note that the geometric assumptions in [83] simplify into three cases for a unit square

domain: (1) all sides have impedance boundary conditions, (2) three sides have impedance

boundary conditions and one side has a Dirichlet/Neumann boundary condition, or (3)

two adjacent sides have Dirichlet/Neumann boundary conditions and the other two have

impedance boundary conditions. By two adjacent sides, we mean two sides that are con-

nected to each other; e.g., Γ1 and Γ2, or Γ4 and Γ1 in (4.2). Whenever a Dirichlet/Neumann

boundary condition is imposed, [83] assumes that it is homogeneous. We emphasize that the

boundary configurations in this paper are completely different from the assumptions used

in [83]. Hence, it is not surprising that our wavenumber-explicit stability bounds are also

different.
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4.2 Proofs of Theorems 4.2 to 4.4 and 4.6, Lemma 4.8,

and Proposition 4.5

To prove Theorem 4.2, we need the following result.

Lemma 4.7. Let {Xn}n∈N0 be the solutions of the following problem

X ′′
n(x) + (κ2 − µ2

n)Xn(x) = 0 in I := (0, 1), n ∈ N0, (4.24)

B4Xn(0) = δj,4, B2Xn(1) = δj,2, (4.25)

where {µn = nπ}n∈N0 or {µn = (n + 1
2
)π}n∈N0 with j ∈ {2, 4}, δj,j = 1, and δj,m = 0 for

j ̸= m. Define

λn :=

√∣∣∣1− µ2n
κ2

∣∣∣ and λ̊n :=

λn if µ2
n ⩽ κ2,

iλn if µ2
n > κ2,

∀n ∈ N0.

Recall that B4 =
∂
∂ν

− iκId in (4.3).

(1) If B4Xn(0) = −X ′
n(0) − iκXn(0) = 1 and B2Xn(1) = X ′

n(1) − iκXn(1) = 0 with

B2 =
∂
∂ν

− iκId, then the solutions {Xn}n∈N0 to the problem (4.24)–(4.25) are given by

Xn(x) =
λ̊n((1−λ̊2n) cos(κλ̊n) sin(κλ̊n(1−x))−(1+λ̊2n) sin(κλ̊nx))

κ(4̊λ2n+(1−λ̊2n)2 sin2(κλ̊n))

+ (1+λ̊2n) cos(κλ̊nx)−(1−λ̊2n) cos(κλ̊n) cos(κλ̊n(1−x))
κ(4̊λ2n+(1−λ̊2n)2 sin2(κλ̊n))

i.

If B4Xn(0) = −X ′
n(0) − iκXn(0) = 0 and B2Xn(1) = X ′

n(1) − iκXn(1) = 1 with

B2 = ∂
∂ν

− iκId, then the solutions {Xn}n∈N0 to (4.24)–(4.25) are given above with x

replaced by 1− x. Moreover, for both cases, the norms ∥Xn∥0,I and ∥X ′
n∥0,I are given

by

∥Xn∥20,I = κλ̊n(1+λ̊2n)−(1−λ̊2n) cos(κλ̊n) sin(κλ̊n)
2κ3λ̊n(4̊λ2n+(1−λ̊2n)2 sin2(κλ̊n))

, ∥X ′
n∥20,I = κλ̊2n(1+λ

2
n)−λ̊n (̊λ2n−1) cos(κλ̊n) sin(κλ̊n)

2κ(4̊λ2n+(1−λ̊2n)2 sin2(κλ̊n))
.

(2) If B4Xn(0) = 1 and B2Xn(1) = αX ′
n(1) + (1 − α)Xn(1) = 0 with α ∈ {0, 1}, then the

solutions {Xn}n∈N0 to the problem (4.24)–(4.25) are given by

Xn(x) =
−λ̊n(cos(κλ̊n) sin(κλ̊n(1−x))+α sin(κλ̊nx))

κ((1−λ̊2n) cos2(κλ̊n)+λ̊2n−(1−α)(1+λ̊2n))
+ cos(κλ̊n) cos(κλ̊n(1−x))−(1−α) cos(κλ̊nx)

κ((1−λ̊2n) cos2(κλ̊n)+λ̊2n−(1−α)(1+λ̊2n))
i.
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Moreover, the norms ∥Xn∥0,I and ∥X ′
n∥0,I are given by

∥Xn∥20,I = sin(κλ̊n) cos(κλ̊n)+(−1)1−ακλ̊n

2κ3λ̊n((1−λ̊2n) cos2(κλ̊n)+λ2n−(1−α)(1+λ2n))
,

∥X ′
n∥20,I =

λ̊n(− sin(κλ̊n) cos(κλ̊n)+(−1)1−ακλ̊n)
2κ(cos2(κλ̊n)(1−λ2n)+λ2n−(1−α)(1+λ2n))

.

(3) If B4Xn(0) = 0 and B2Xn(1) = αX ′
n(1) + (1 − α)Xn(1) = 1 with α ∈ {0, 1}, then the

solutions {Xn}n∈N0 to the problem (4.24)–(4.25) are given by

Xn(x) =
sin(κλ̊nx)(α cos(κλ̊n)−(1−α) sin(κλ̊n))−cos(κλ̊nx)̊λ2n(α sin(κλ̊n)+(1−α) cos(κλ̊n))

(κλ̊n)α((1−λ̊2n) cos2(κλ̊n)+λ̊2n−(1−α)(1+λ̊2n))

+ ακ−α cos(κλ̊n(1−x))−(1−α)κ−2αλ̊1−αn sin(κλ̊n(1−x))
(1−λ̊2n) cos2(κλ̊n)+λ̊2n−(1−α)(1+λ̊2n)

i.

Moreover, the norms ∥Xn∥0,I and ∥X ′
n∥0,I are given by

∥Xn∥20,I = κλ̊n(1+λ̊2n)−(1−λ̊2n) cos(κλ̊n) sin(κλ̊n)
2(κλ̊n)2α+1(αλ̊2n+(1−α)+(−1)1−α(1−λ̊2n) cos2(κλ̊n))

,

∥X ′
n∥20,I = κλ̊n(1+λ̊2n)+(1−λ̊2n) sin(κλ̊n) cos(κλ̊n)

2(κλ̊n)2α−1(αλ̊2n+(1−α)+(−1)1−α(1−λ̊2n) cos2(κλ̊n))
.

Proof. Recall from the standard ordinary differential equation theory that the solution to

(4.24)-(4.25) for each n ∈ N0 with µ2
n < κ2 takes the form

Xn(x) = An exp(iκλnx) +Bn exp(−iaκλnx), (4.26)

where An, Bn are uniquely determined by imposing the boundary conditions. Then,

∥Xn∥20,I =

∫ 1

0

|ℜ(Xn)|2 + |ℑ(Xn)|2dx and ∥X ′
n∥20,I =

∫ 1

0

|ℜ(X ′
n)|2 + |ℑ(X ′

n)|2dx.

For n ∈ N0 with µ2
n > κ2, each solution Xn and its norms can be directly obtained by

replacing λn with iλn in (4.26). For n ∈ N0 such that µ2
n = κ2, the solution Xn and its norms

can be obtained by letting λn tend to zero in (4.26).

The following quantities will be used numerous times in the proofs of Theorems 4.2

and 4.3. Similar quantities will also be used multiple times in the proof of (4.6). Let

{µn = nπ}n∈N0 or {µn = (n + 1
2
)π}n∈N0 and {Xn}n∈N0 be solutions to (4.24)-(4.25) with

boundary conditions explicitly given in the proofs. Define Np := max{n ∈ N0 : µ2
n < κ2},

Nc ∈ N such that µ2
Nc

= κ2, Ne := min{n ∈ N0 : µ
2
n > κ2}, and

ϕn := ∥X ′
n∥20,I + (µ2

n + κ2)∥Xn∥20,I , 0 ⩽ n ⩽ Np,
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θNc := ∥X ′
Nc∥

2
0,I + (µ2

Nc + κ2)∥XNc∥20,I , (4.27)

ψn := ∥X ′
n∥20,I + (µ2

n + κ2)∥Xn∥20,I , n ⩾ Ne.

Also recall that if a, b ⩾ 0, then the following inequality always holds

√
a2 + b2 ⩽ a+ b ⩽

√
2
√
a2 + b2. (4.28)

Let 1A denote the indicator/characteristic function of the set A.

Proof of Theorem 4.2. Given the boundary assumptions, the solution u can be expressed as

u =
∑∞

n=0 ĝ4(n)Xn(x)Yn(y) with ĝ4(n) :=
∫
Γ4
g4(y)Yn(y)dy, where {Xn}n∈N0 are stated in

Lemma 4.7 and {Yn}n∈N0 are stated in (4.10).

Recall that λn =
√

|1− µ2
nκ

−2| and observe that ∥Y ′
n∥0,I = µn. By (4.6), since both

{Yn}n∈N0 and {Y ′
n}n∈N are orthogonal systems in L2(I), we deduce that

∥∇u∥20,Ω + κ2∥u∥20,Ω

= ∥
∞∑
n=0

ĝ4(n)X
′
nYn∥20,Ω + ∥

∞∑
n=0

ĝ4(n)XnY
′
n∥20,Ω + κ2∥

∞∑
n=0

ĝ4(n)XnYn∥20,Ω

=
∞∑
n=0

|ĝ4(n)|2∥X ′
n∥20,I +

∞∑
n=0

|ĝ4(n)µn|2∥Xn∥20,I + κ2
∞∑
n=0

|ĝ4(n)|2∥Xn∥20,I (4.29)

=
∞∑
n=0

|ĝ4(n)|2
(
∥X ′

n∥20,I + (µ2
n + κ2)∥Xn∥20,I

)
⩽ max

{
max

0⩽n⩽Np
ϕn, θNc ,max

n⩾Ne
ψn

} ∞∑
n=0

|ĝ4(n)|2,

where ϕn, θNc , and ψn are defined as in (4.27).

Case I: suppose B2 =
∂
∂ν

− iκId. Using item (1) of Lemma 4.7, we obtain

ϕn =
(1+λ2n)−

sin(2κλn)
2κλn

(1−λ2n)2

(1+λ2n)
2−cos2(κλn)(1−λ2n)2

, ψn =
sinh(2κλn)

2κλn
2(λ2n+1)2+2(λ2n−1)

(λ2n+1)2(cosh(2κλn)−1)+8λ2n
.

To obtain an upper bound for ϕn, we note that for all n ⩽ Np and κλn ∈ (0, π
4
]

1− κ2λ2n ⩽ cos2(κλn) ⩽ 1− κ2λ2n +
1
3
κ4λ4n, 1− 2

3
κ2λ2n ⩽ sin(2κλn)

2κλn
, and

1− κ2λ2n +
1
3
κ4λ4n ⩽ 1− 2

3
κ2λ2n ⩽ 1.

(4.30)
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Moreover, for all 0 < κ < 1,

Np = 0 (i.e., λn = 1) if {µn = nπ}n∈N0 ; otherwise,

Np does not exist if {µn = (n+ 1
2
)π}n∈N0 .

(4.31)

Now, for κ > 0 and n ⩽ Np,

ϕn ⩽ 1
2
1{κ<1} +

(1+λ2n)
2−(1− 2

3
κ2λ2n)(1−λ2n)2

(1+λ2n)
2−(1−κ2λ2n+ 1

3
κ4λ4n)(1−λ2n)2

1{κ⩾1,0<λn⩽ π
4κ

} +
(1+λ2n)+(1−λ2n)2
(1+λ2n)

2−(1−λ2n)2
1{κ⩾1, π

4κ
<λn⩽1}

⩽ 1
2
1{κ<1} + 1{κ⩾1,0<λn⩽ π

4κ
} +

(
1

2λ2n
− 1

4
+ 1

4
λ2n

)
1{κ⩾1, π

4κ
<λn⩽1}

⩽ 1
2
1{κ<1} + 1{κ⩾1,0<λn⩽ π

4κ
} +

8
π2κ

2
1{κ⩾1, π

4κ
<λn⩽1}

⩽ max{1
2
, 1, 8

π2}max{κ2, 1} ⩽ max{κ2, 1},

where we respectively used (4.31) and (4.30) to obtain the first and second terms of the first

inequality. Next, to obtain an upper bound for ψn, we note that sinh(x)
x

⩽ cosh(x) for all

x ∈ R and so

ψn ⩽ F (λn, z) :=
z2(λ2n+1)2+2(λ2n−1)
(λ2n+1)2(z−1)+8λ2n

with z := cosh(2κλn).

Then we have dF
dz

= 2(λ2n+1)2λ2n(5−λ2n)
((z−1)λ4n+(2z+6)λ2n+z−1)2

. For κ > 0 and 0 < λn ⩽
√
5, F is increasing to

limz→∞ F (λn, z) = 2. Since {µn = nπ}n∈N0 or {µn = (n+ 1
2
)π}n∈N0 , we also note that

η :=

√
π2

4
− 1 ⩽

√
µ2
n − κ2 = κλn for 0 < κ < 1, n ∈ {n ∈ N0 : µ

2
n > κ2}. (4.32)

Now, for κ > 0 and n ⩾ Ne,

ψn ⩽ 21{κ>0,λn⩽
√
5} + F (λn, z)1{κ>0,λn>

√
5} ⩽ 21{κ>0,λn⩽

√
5} +

2(z+1)
z−1

1{κ>0,λn>
√
5}

⩽ 21{κ>0,λn⩽
√
5} +

2(cosh(2
√
5)+1)

cosh(2
√
5)−1

1{κ⩾1,λn>
√
5} +

2(cosh(2η)+1)
cosh(2η)−1

1{κ<1,λn>
√
5}

⩽ max
{
2, 2(cosh(2

√
5)+1)

cosh(2
√
5)−1

, 2(cosh(2η)+1)
cosh(2η)−1

}
⩽ 3.

Consequently,

max

{
max

0⩽n⩽Np
ϕn, θNc ,max

n⩾Ne
ψn

}
⩽ max

{
max{κ2, 1}, 2κ2+9

3κ2+12
, 3
}
⩽ 3max{κ2, 1}.

Plugging in the above estimate back into (4.29), applying the Parseval’s identity, and finally

using (4.28), we have (4.11).
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Case II: suppose B2 =
∂
∂ν
. Using item (2) of Lemma 4.7 with α = 1, we obtain

ϕn =
1+(1−λ2n)

sin(2κλn)
2κλn

(1−λ2n) cos2(κλn)+λ2n
, ψn =

2( sinh(2κλn)
2κλn

(1+λ2n)+1)
(λ2n+1) cosh(2κλn)+1−λ2n

.

Now, for κ > 0 and n ⩽ Np,

ϕn ⩽ 1{κ<1} +
2−λ2n

(1−λ2n)(1−κ2λ2n)+λ2n
1{κ⩾1,λn⩽min{ 1√

2
, π
4k

}} +
2
λ2n
1{κ⩾1,min{ 1√

2
, π
4κ

}<λn⩽1}

⩽ 1{κ<1} +
2

1+λ2n(λ
2
n−1)κ2

1{κ⩾1,λn⩽min{ 1√
2
, π
4κ

}} + 4κ21{κ⩾1,min{ 1√
2
, π
4κ

}<λn⩽1}

⩽ 1{κ<1} +
2

1−κ2

4

1{1⩽κ< π
2
√
2
,λn⩽ 1√

2
} +

512κ2

256κ2−16π2κ2+π41{κ⩾ π
2
√
2
,λn⩽ π

4κ
}

+ 4κ21{κ⩾1,min{ 1√
2
, π
4κ

}<λn⩽1}

⩽ 1{κ<1} +
64

32−π21{1⩽κ< π
2
√
2
,λn⩽ 1√

2
} +

512
256−16π21{κ⩾ π

2
√
2
,λn⩽ π

4κ
} + 4κ21{κ⩾1,min{ 1√

2
, π
4κ

}<λn⩽1}

⩽ max{1, 64
32−π2 ,

512
256−16π2 , 4}max{κ2, 1} ⩽ 6max{κ2, 1},

where we respectively used (4.31) and (4.30) with κλn ∈ (0,min{ κ√
2
, π
4
}] to obtain the first

and second terms of the first inequality. Next, to obtain an upper bound for ψn, we note

that x2

cosh(x)
< 5

4
and sinh(x)

x
⩽ cosh(x) for all x ∈ R. For κ > 0 and n ⩾ Ne,

ψn =
2( sinh(2κλn)

2κλn
(1+λ2n)+1−λ2n)

cosh(2κλn)(1+λ2n)+1−λ2n
+ 2λ2n

λ2n(cosh(2κλn)−1)+1+cosh(2κλn)

⩽ 2 + 2λ2n
λ2n(cosh(2κλn)−1)+1+cosh(2κλn)

⩽ 2 + 2
cosh(2κλn)−1

1{κ<1} +
(2κλn)2

2κ2 cosh(2κλn)
1{κ⩾1}

⩽ 2 + 2
cosh(2η)−1

1{κ<1} +
5
8
1{κ⩾1} ⩽ max{2, 2

cosh(2η)−1
, 5
8
} ⩽ 3,

where we used (4.32) to arrive at the second term of the third inequality. Consequently,

max

{
max

0⩽n⩽Np
ϕn, θNc ,max

n⩾Ne
ψn

}
⩽ max

{
6max{κ2, 1}, 2, 3

}
= 6max{κ2, 1}.

Plugging in the above estimate back into (4.29), applying the Parseval’s identity, and finally

using (4.28), we have (4.11).

Case III: suppose B2 = Id. This configuration has been studied in [41], but we include

the proof for the sake of completeness. Using item (2) of Lemma 4.7 with α = 0, we obtain

ϕn =
1−(1−λ2n)

sin(2κλn)
2κλn

1−(1−λ2n) cos2(κλn)
, ψn =

2( sinh(2κλn)
2κλn

(1+λ2n)−1)
(1+λ2n) cosh(2κλn)−(1−λ2n)

.
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Now, for κ > 0 and n ⩽ Np,

ϕn ⩽ 1{κ<1} +
1−(1−λ2n)(1− 2

3
κ2λ2n)

1−(1−λ2n)(1−κ2λ2n+ 1
3
κ4λ4n)

1{κ⩾1,λn⩽ π
4κ

} +
2
λ2n
1{κ⩾1, π

4κ
<λn⩽1}

⩽ 1{κ<1} + 1{κ⩾1,λn⩽ π
4κ

} +
32
π2κ

2
1{κ⩾1, π

4κ
<λn⩽1}

⩽ max{1, 32
π2}max{κ2, 1} ⩽ 4max{κ2, 1},

where we respectively used (4.31) and (4.30) to obtain the first and second terms of the first

inequality. Next, for κ > 0 and n ⩾ Ne, we have

ψn ⩽
2( sinh(2κλn)

2κλn
(1+λ2n)−1)

(1+λ2n) cosh(2κλn)−1
⩽ 2.

Consequently,

max

{
max

0⩽n⩽Np
ϕn, θNc ,max

n⩾Ne
ψn

}
⩽ max

{
4max{κ2, 1}, 2κ2+3

3κ2+3
, 2
}
= 4max{κ2, 1}.

Plugging in the above estimate back into (4.29), applying the Parseval’s identity, and finally

using (4.28), we have (4.11).

Proof of Theorem 4.3. We shall only focus on items (2) and (3), since the proof of item

(1) is identical to the proof of Theorem 4.2 (Case I). Given the boundary assumptions, the

solution u can be expressed as u =
∑∞

n=0 ĝ2(n)Xn(x)Yn(y) with ĝ2(n) :=
∫
Γ2
g2(y)Yn(y)dy,

where {Xn}n∈N0 are stated in Lemma 4.7 and {Yn}n∈N0 are stated in (4.10).

Recall that λn :=
√

|1− µ2
nκ

−2| and observe that ∥Y ′
n∥0,I = µn. By (4.6), since {Yn}n∈N0

and {Y ′
n}n∈N0 are orthogonal systems in L2(I), we deduce that

∥∇u∥20,Ω + κ2∥u∥20,Ω

= ∥
∞∑
n=0

ĝ2(n)X
′
nYn∥20,Ω + ∥

∞∑
n=0

ĝ2(n)XnY
′
n∥20,Ω + κ2∥

∞∑
n=0

ĝ2(n)XnYn∥20,Ω

=
∞∑
n=0

|ĝ2(n)|2∥X ′
n∥20,I +

∞∑
n=0

|ĝ2(n)µn|2∥Xn∥20,I + κ2
∞∑
n=0

|ĝ2(n)|2∥Xn∥20,I ,

(4.33)

Regrouping the terms, we have

∞∑
n=0

|ĝ2(n)|2(∥X ′
n∥20,I + (µ2

n + κ2)∥Xn∥20,I)

⩽ max

{
max

0⩽n⩽Np
ϕn, θNc ,max

n⩾Ne
ψn

} ∞∑
n=0

|ĝ2(n)|2,
(4.34)

90



where ϕn, θNc , and ψn are defined as in (4.27).

Item (2): suppose B2 =
∂
∂ν
. Using item (3) of Lemma 4.7 with α = 1, we obtain

ϕn =
(1+λ2n)−

sin(2κλn)
2κλn

(1−λ2n)2

λ2n((1−λ2n) cos2(κλn)+λ2n)
, ψn =

2((1+λ2n)2
sinh(2κλn)

2κλn
+(λ2n−1))

λ2n((λ
2
n+1)(cosh(2κλn)−1)+2)

.

First, we note that for κ ⩾ 1,

d
dλn

(
2κ2λ4n − (4κ2 + 3)λ2n + 2κ2 + 9

)
= 2λn(4(λ

2
n − 1)κ2 − 3) ⩽ 0, ∀λn ∈ (0,

√
3

4κ2
+ 1].

Now, for κ > 0 and n ⩽ Np,

ϕn ⩽ 21{κ<1} +
(1+λ2n)−

(
1−2

3
κ2λ2n

)
(1−λ2n)2

λ2n((1−λ2n)(1−κ2λ2n)+λ2n)
1{κ⩾1,λn⩽ π

4κ
} +

(1+λ2n)+(1−λ2n)2
λ4n

1{κ⩾1, π
4κ
<λn⩽1},

⩽ 21{κ<1} +
2κ2λ4n−(4κ2+3)λ2n+2κ2+9

3+3λ2n(λ
2
n−1)κ2

1{κ⩾1,λn⩽ π
4κ

} +
(
512
π4 κ

4 − 16
π2κ

2 + 1
)
1{κ⩾1, π

4κ
<λn⩽1}

⩽ 21{κ<1} +
2κ2+9

3(1−λ2nκ2)
1{κ⩾1,λn⩽ π

4κ
} +

(
512
π4 κ

4 − 16
π2κ

2 + 1
)
1{κ⩾1, π

4κ
<λn⩽1}

⩽ 21{κ<1} +
2κ2+9

3(1−π2

16
)
1{κ⩾1,λn⩽ π

4κ
} +

(
512
π4 κ

4 − 16
π2κ

2 + 1
)
1{κ⩾1, π

4κ
<λn⩽1}

⩽ max
{
2, 11

3
(1− π2

16
)−1, 512

π4 − 16
π2 + 1

}
max{κ4, 1} ⩽ 10max{κ4, 1},

where we respectively used (4.31) and (4.30) to obtain the first and second terms of the first

inequality. Next, we note that for all n ⩾ Ne and κλn ∈ (0, 1],

sinh(2κλn)
2κλn

⩽ 1 + 4
3
κ2λ2n and 1 + 2κ2λ2n ⩽ cosh(2κλn). (4.35)

Now, for κ > 0 and n ⩾ Ne,

ψn ⩽ 2

(
(1+λ2n)

sinh(2κλn)
2κλn

+1

λ2n(cosh(2κλn)−1)

)
1{κ<1}∪{κ⩾1,λn>

1
κ
} +

(1+λ2n)
2(1+ 4

3
κ2λ2n)+(λ2n−1)

λ2n
1{κ⩾1,λn⩽ 1

κ
}

⩽ 2
(

κ2

κ2λ2n
+ 1
)(

cosh(2κλn)+1
cosh(2κλn)−1

)
1{κ<1}∪{κ⩾1,λn>

1
κ
}

+
(
λ2n + 3 + 4

3
κ2λ4n +

8
3
κ2λ2n +

4
3
κ2
)
1{κ⩾1,λn⩽ 1

κ
}

⩽ 2
(

1
η2

+ 1
)(

cosh(2η)+1
cosh(2η)−1

)
1{κ<1} +

(
7

3κ2
+ 17

3
+ 4

3
κ2
)
1{κ⩾1,λn⩽ 1

κ
}

+
(
2κ2 + 2

) ( cosh(2)+1
cosh(2)−1

)
1{κ⩾1,λn>

1
κ
}

⩽ max
{
2
(

1
η2

+ 1
)(

cosh(2η)+1
cosh(2η)−1

)
, 28

3
, 4
(

cosh(2)+1
cosh(2)−1

)}
max{κ2, 1} ⩽ 10max{κ2, 1},

where we used (4.35) to arrive at the second term of the first inequality and (4.32) to arrive
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at the first term of the third inequality. Consequently,

max

{
max

0⩽n⩽Np
ϕn, θNc ,max

n⩾Ne
ψn

}
⩽ max

{
10max{κ4, 1}, 2

3
κ2 + 3, 10max{κ2, 1}

}
= 10max{κ4, 1}.

Plugging in the above estimate back into (4.34), applying the Parseval’s identity, and finally

using (4.28), we have (4.12).

Item (3): suppose B2 = Id. We note that for κ ⩾ 1 and λn ∈ (0,
√

3
2κ2

+ 1
2
]

d
dλn

(
3 + λ2n(λ

2
n − 1)κ4 + 3(1− λ2n)κ

2
)
= 2λn((2λ

2
n − 1)κ4 − 3κ2) ⩽ 0.

By item (3) of Lemma 4.7 with α = 0, we obtain for κ > 0 and n ⩽ Np,

ϕn =
κ2((1+λ2n)−(1−λ2n)2

sin(2κλn)
2κλn

)
1−(1−λ2n) cos2(κλn)

⩽ 21{κ<1} +
κ2((1+λ2n)+(1−λ2n)2)

λ2n
1{κ⩾1, π

4κ
<λn⩽1}

+ κ2
(

(1−λ2n)(1−(1−λ2n)(1− 2
3
κ2λ2n))

1−(1−λ2n)(1−κ2λ2n+ 1
3
κ4λ4n)

+ 2λ2n
1−(1−λ2n)(1−κ2λ2n+ 1

3
κ4λ4n)

)
1{κ⩾1,λn⩽ π

4κ
}

⩽ 21{κ<1} + κ2
(
(1− λ2n) +

6
3+λ2n(λ

2
n−1)κ4+3(1−λ2n)κ2

)
1{κ⩾1,λn⩽ π

4κ
}

+ κ2
(
λ2n − 1 + 2

λ2n

)
1{κ⩾1, π

4κ
<λn⩽1}

⩽ 21{κ<1} + κ2
(
1 + 1536

(768−16π2)κ2+(768+π4−48π2)

)
1{κ⩾1,λn⩽ π

4κ
} +

32
π2κ

4
1{κ⩾1, π

4κ
<λn⩽1}

⩽ max
{
2, 1 + 1536

(768−16π2)+(768+π4−48π2)
, 32
π2

}
max{κ4, 1} ⩽ 4max{κ4, 1},

where we respectively used (4.31) and (4.30) to obtain the first and second terms of the first

inequality, and substitute λn = π
4κ

into the second term of the third inequality. Next, for

n ⩾ Ne and λn ∈ (0,∞), we have

κ2∥Xn∥20,I = κ2
sinh(2κλn)

2κλn
(1+λ2n)−(1−λ2n)

cosh(2κλn)(1+λ2n)−(1−λ2n)
⩽ κ2.

Next, for all λn ∈ R, we note that λ2n(1 + λ2n)
− 3

2 ⩽ 2
√
3

9
,

sinh(2κλn)
2κλn

−1

cosh(2κλn)−1
⩽ lim

κλn→0

sinh(2κλn)
2κλn

−1

cosh(2κλn)−1
⩽ 1

3
, and

λn(
3
2
+λ2n)

(1+λ2n)
3
2

⩽ lim
λn→∞

λn(
3
2
+λ2n)

(1+λ2n)
3
2

⩽ 1.

By item (3) of Lemma 4.7 with α = 0, we obtain for κ > 0 and n ⩾ Ne

∥X′
n∥20,I+µ

2
n∥Xn∥20,I

µn
=

κ((1+3λ2n+2λ4n)
sinh(2κλn)

2κλn
+λ2n−1)

(1+λ2n)
3
2 cosh(2κλn)−(1−λ2n)(1+λ2n)

1
2
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⩽
κ((1+3λ2n+2λ4n)

sinh(2κλn)
2κλn

+λ2n+1)

(1+λ2n)
3
2 (cosh(2κλn)−1)

1{κ<1}

+
κ((1+3λ2n+2λ4n)

sinh(2κλn)
2κλn

+λ2n−1)

(1+λ2n)
1
2 ((1+λ2n) cosh(2κλn)−(1−λ2n))

1{κ⩾1,λn⩽ 1
κ
}∪{κ⩾1,λn>

1
κ
}

⩽

(
(1+3λ2n+2λ4n) sinh(2κλn)

2λ4n(cosh(2κλn)−1)
+ 1

(1+λ2n)
1
2 (cosh(2κλn)−1)

)
1{κ<1}

+
κ((1+3λ2n+2λ4n)(1+ 4

3
κ2λ2n)+λ2n−1)

(1+λ2n)
1
2 ((1+λ2n)(1+2κ2λ2n)−(1−λ2n))

1{κ⩾1,λn⩽ 1
κ
}

+

(
( sinh(2κλn)

2κλn
−1)

(1+λ2n)
3
2 (cosh(2κλn)−1)

κ+

(
λn( 3

2
+λ2n)

(1+λ2n)
3
2

)(
sinh(2κλn)

cosh(2κλn)−1

)
+ λ2n

(1+λ2n)
3
2 (cosh(2κλn)−1)

κ

)
1{κ⩾1,λn>

1
κ
}

⩽
((

1
2η4

+ 3
2η2

+ 1
)(

sinh(2η)
cosh(2η)−1

)
+ 1

cosh(2η)−1

)
1{κ<1}

+ (4λ4n+6λ2n+2)κ3+3κ(λ2n+2)
3+(3λ2n+3)κ2

1{κ⩾1,λn⩽ 1
κ
} +

(
1
3
κ+ sinh(2)

cosh(2)−1
+ 2

√
3

9(cosh(2)−1)
κ
)
1{κ⩾1,λn>

1
κ
}

⩽ (2η4+3η+1) sinh(2η)+2η4

2η4(cosh(2η)−1)
1{κ<1} +

(4λ4n+6λ2n+2)κ3+3κ(λ2n+2)
3κ2

1{κ⩾1,λn⩽ 1
κ
}

+ 3(cosh(2)−1)+9 sinh(2)+2
√
3

9(cosh(2)−1)
κ1{κ⩾1,λn>

1
κ
}

⩽ (2η4+3η+1) sinh(2η)+2η4

2η4(cosh(2η)−1)
1{κ<1} +

(
7

3κ3
+ 4

κ
+ 2

3
κ
)
1{κ⩾1,λn⩽ 1

κ
}

+ 3(cosh(2)−1)+9 sinh(2)+2
√
3

9(cosh(2)−1)
κ1{κ⩾1,λn>

1
κ
}

⩽ max
{

(2η4+3η+1) sinh(2η)+2η4

2η4(cosh(2η)−1)
, 7, 3(cosh(2)−1)+9 sinh(2)+2

√
3

9(cosh(2)−1)

}
max{κ, 1}

⩽ 7max{κ, 1},

where we used (4.35) to arrive at the last term of the second inequality and (4.32) to arrive

at the first term of the third inequality. Continuing from (4.33), we have

∞∑
n=0

|ĝ2(n)|2∥X ′
n∥20,I +

∞∑
n=0

|ĝ2(n)µn|2∥Xn∥20,I + κ2
∞∑
n=0

|ĝ2(n)|2∥Xn∥20,I

=
Ne−1∑
n=0

|ĝ2(n)|2
(
∥X ′

n∥20,I + (µ2
n + κ2)∥Xn∥20,I

)
+

∞∑
n=Ne

|ĝ2(n)|2µn
(

∥X′
n∥20,I+µ

2
n∥Xn∥20,I

µn

)
+

∞∑
n=Ne

κ2|ĝ2(n)|2∥Xn∥20,I

⩽ max

{
max

0⩽n⩽Np
ϕn,

κ2(2κ2+9)
3(κ2+1)

}Ne−1∑
n=0

|ĝ2(n)|2 + 7max{κ, 1}
∞∑

n=Ne

|ĝ2(n)|2µn + κ2
∞∑

n=Ne

|ĝ2(n)|2

⩽ 4max{κ4, 1}
∞∑
n=0

|ĝ2(n)|2 + 7max{κ, 1}
∞∑
n=0

|ĝ2(n)|2µn

93



⩽ 7(max{κ4, 1}∥g2∥20,Γ2
+max{κ, 1}∥g2∥2Z1/2(Γ2)

),

where we used our assumptions that Z1/2(Γ2) and applied the Parseval’s identity to arrive

at the last line. Finally by (4.28), the stability estimate in (4.13) is proved.

Proof of Theorem 4.4. All three cases start the same way. Letting v = u in (4.4), we have

∥∇u∥20,Ω − κ2∥u∥20,Ω − iκ∥u∥20,ΓR = ⟨f, u⟩Ω, (4.36)

where ΓR = Γ2∪Γ4 if B2 =
∂
∂ν

− iκId; otherwise, ΓR = Γ4 if B2 ∈ {Id, ∂∂ν}. Separately consid-

ering the real and imaginary parts of (4.36), and applying the Cauchy-Schwarz inequality,

we have

∥∇u∥20,Ω ⩽ κ2∥u∥20,Ω + ∥f∥0,Ω∥u∥0,Ω, κ∥u∥20,ΓR ⩽ ∥f∥0,Ω∥u∥0,Ω. (4.37)

It is known in [32, Proposition 2.1] that for u ∈ H2(Ω) and z ∈ (C1(Ω))2, the following

identity holds

2ℜ
∫
Ω

∆u(z · ∇u) = 2ℜ
∫
∂Ω

∂u

∂ν
(z · ∇u)− 2ℜ

∫
Ω

∇u · (∇u · ∇)z

+

∫
Ω

(∇ · z)|∇u|2 −
∫
∂Ω

z · n|∇u|2.
(4.38)

Take z = (x − 1, 0). Since ∆u = −f − κ2u, 2ℜ(uux) = (|u|2)x, by applying integration by

parts to the left-hand side of (4.38), we have

2ℜ
∫
Ω

∆u(z · ∇u) = −2ℜ
∫
Ω

(x− 1)fux + κ2(∥u∥20,Ω − ∥u∥20,Γ4
).

Note that ∂u
∂ν

= iκu on Γ4. If B1u = u = 0 on Γ1, then ux(x, 0) = (u(x, 0))x = 0. Similarly, if

B3u = u = 0 on Γ3, then ux(x, 1) = (u(x, 1))x = 0. Therefore, we have 2ℜ
∫
∂Ω

∂u
∂ν
(z · ∇u) =

2κ2∥u∥20,Γ4
for any B1,B3 ∈ {Id, ∂

∂ν
}. Hence, fully expanding (4.38), we have

−2ℜ
∫
Ω

(x− 1)fux + κ2(∥u∥20,Ω − ∥u∥20,Γ4
)

= 2κ2∥u∥20,Γ4
− 2∥ux∥20,Ω + ∥∇u∥20,Ω − ∥∇u∥20,Γ4

.

= 2κ2∥u∥20,Γ4
− ∥ux∥20,Ω + ∥uy∥20,Ω − ∥∇u∥20,Γ4

,

from which, after using (4.36) to replace ∥uy∥20,Ω, we obtain

2∥ux∥20,Ω + ∥uy∥20,Γ4
= ⟨f, u⟩Ω + iκ∥u∥20,ΓR + 2ℜ⟨(x− 1)f, ux⟩Ω + 2κ2∥u∥20,Γ4

. (4.39)
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Taking the real part of (4.39), we have

2∥ux∥20,Ω ⩽ ∥f∥0,Ω∥u∥0,Ω + 2∥f∥0,Ω∥ux∥0,Ω + 2κ2∥u∥20,Γ4
(4.40)

Suppose B2 = Id. Since ∥u∥20,Ω ⩽ ∥ux∥20,Ω (which is proved by noting that u(x, y) =

−
∫ 1

x
ux(s, y)ds and then estimating an upper bound), (4.40) and the second inequality of

(4.37) yield ∥ux∥0,Ω ⩽ 1
2
(3 + 2κ)∥f∥0,Ω. I.e., ∥u∥0,Ω ⩽ ∥ux∥0,Ω ⩽ 1

2
(3 + 2κ)∥f∥0,Ω. So, by the

first inequality of (4.37), we have

∥∇u∥20,Ω + κ2∥u∥20,Ω ⩽ 2κ2∥u∥20,Ω + ∥f∥0,Ω∥u∥0,Ω
⩽
(
1
2
κ2(3 + 2κ)2 + 1

2
(3 + 2κ)

)
∥f∥20,Ω ⩽ 15max{κ4, 1}∥f∥20,Ω.

Finally, by using (4.28), we obtain (4.14).

Suppose B2 = ∂
∂ν
. We have ∥u∥20,Ω ⩽ 2(∥u∥20,Γ4

+ ∥ux∥20,Ω) (which is proved by noting

that u(x, y) = u(0, y) +
∫ x
0
ux(s, y)ds and then estimating an upper bound). By the second

inequality of (4.37), we have ∥u∥20,Ω − 2κ−1∥f∥0,Ω∥u∥0,Ω − 2∥ux∥20,Ω ⩽ 0. This implies that

∥u∥0,Ω ⩽ κ−1∥f∥0,Ω + 1
2

√
4κ−2∥f∥20,Ω + 8∥ux∥20,Ω ⩽ 2κ−1∥f∥0,Ω +

√
2∥ux∥0,Ω. (4.41)

By (4.40), the second inequality of (4.37), and (4.41), we have

2∥ux∥20,Ω ⩽ (2κ+ 1)∥f∥0,Ω∥u∥0,Ω + 2∥f∥0,Ω∥ux∥0,Ω
⩽ 2(2 + κ−1)∥f∥20,Ω + (2

√
2κ+

√
2 + 2)∥f∥0,Ω∥ux∥0,Ω.

I.e., 2∥ux∥20,Ω − (2
√
2κ+

√
2 + 2)∥f∥0,Ω∥ux∥0,Ω − 2(2 + κ−1)∥f∥20,Ω ⩽ 0. So,

∥ux∥0,Ω ⩽ 1
4
(2
√
2κ+

√
2 + 2)∥f∥0,Ω + 1

4

√
(2
√
2κ+

√
2 + 2)2 + 16(2 + κ−1)∥f∥0,Ω

⩽ (1
2
(2
√
2κ+

√
2 + 2) + (2 + κ−1)1/2)∥f∥0,Ω

⩽ (
√
2κ+ 3

2

√
2 + 1 + κ−1/2)∥f∥0,Ω.

(4.42)

By the first inequality of (4.37), (4.41), and (4.42), we have

∥∇u∥20,Ω + κ2∥u∥20,Ω ⩽ 2κ2∥u∥20,Ω + ∥f∥0,Ω∥u∥0,Ω
⩽ 4κ2(4κ−2∥f∥20,Ω + 2∥ux∥20,Ω) + 2κ−1∥f∥20,Ω +

√
2∥f∥0,Ω∥ux∥0,Ω

⩽ 4κ2(4κ−2 + 2(
√
2κ+ 3

2

√
2 + 1 + κ−1/2)2)∥f∥20,Ω + 2κ−1∥f∥20,Ω

+
√
2(
√
2κ+ 3

2

√
2 + 1 + κ−1/2)∥f∥20,Ω
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⩽ (155 + 82
√
2)max{κ4, κ−1}∥f∥20,Ω ⩽ 271max{κ4, κ−1}∥f∥20,Ω.

Finally, by using (4.28), we obtain (4.15).

Suppose B2 = ∂
∂ν

− iκId. Keeping in mind that the second inequality of (4.37) implies

κ∥u∥20,Γ4
⩽ κ∥u∥20,Γ2∪Γ4

⩽ ∥f∥0,Ω∥u∥0,Ω, the proof of this case is identical to the case where

B2 =
∂
∂ν
.

In order to prove Proposition 4.5 and Theorem 4.6, we first prove two auxiliary results

stated in Lemmas 4.8 and 4.9 below.

Lemma 4.8. Let µ̃n, n ∈ N0 be given in (4.18) and define λ̃n :=
√
|1− µ̃2

nκ
−2| for n ∈ N0.

For B1 = B3,

inf
j∈Z

|κλ̃n − jπ| ⩾
1
8
π

1+2π−1κλ̃n
, ∀ n ∈ N0, (4.43)

and for B1 ̸= B3,

inf
j∈Z

|κλ̃n − (j + 1
2
)π| ⩾

1
8
π

1+2π−1κλ̃n
, ∀ n ∈ N0. (4.44)

Proof. We first consider B1 = B3. Let j be the unique integer such that j ⩽ κλ̃n
π

< j + 1.

Then it is obvious that infm∈Z |κλ̃n−mπ| = min(|κλ̃n−jπ|, |κλ̃n−(j+1)π)|). If d0 ∈ [0, 1
8
π2],

then −1
4
π2 ± d0 ∈ [−3

8
π2,−1

8
π2] and µ̃n = (n + 1

2
)π by (4.18). By the definition of d0, we

have κ2 = mπ2 ± d0 for some m ∈ Z. By µ̃n = (n+ 1
2
)π in (4.18) and (κλ̃n)

2 = |κ2 − µ̃2
n| =

|(m− n2 − n)π2 + (−1
4
π2 ± d0)|, we have

|κλ̃n − jπ| = |(κλ̃n)2−j2π2|
κλ̃n+jπ

=
|(N−j2)π2±(− 1

4
π2±d0)|

κλ̃n+jπ
⩾

1
8
π2

κλ̃n+jπ
⩾

1
8
π

2π−1κλ̃n+1
,

where N := m− n2 − n for κ2 ⩾ µ̃2
n or N := n2 + n−m for κ2 < µ̃2

n, and

|κλ̃n − (j + 1)π| = |(κλ̃n)2−(j+1)2π2|
κλ̃n+(j+1)π

=
|((j+1)2−N)π2±(− 1

4
π2±d0)|

κλ̃n+(j+1)π
⩾

1
8
π

2π−1κλ̃n+1
,

where we used jπ ⩽ κλ̃n and hence κλ̃n + jπ ⩽ κλ̃n + (j + 1)π ⩽ 2κλ̃n + π.

If d0 ̸∈ [0, 1
8
π2], then d1 = 1

2
π2 − d0 ∈ [0, 3

8
π2] and hence, 1

2
π2 ± d1 ∈ [1

8
π2, 7

8
π2]. By the

definition of d1, we have κ2 = (m + 1
2
)π2 ± d1 for some m ∈ Z. By µ̃n = nπ in (4.18) and

(κλ̃n)
2 = |κ2 − µ̃2

n| = |(m− n2)π2 + (1
2
π2 ± d1)|, we have

|κλ̃n − jπ| = |(κλ̃n)2−j2π2|
κλ̃n+jπ

=
|(N−j2)π2±( 1

2
π2±d1)|

κλ̃n+jπ
⩾

1
8
π2

κλ̃n+jπ
⩾

1
8
π

2π−1κλ̃n+1
,

where N := m− n2 for κ2 ⩾ µ̃2
n or N := n2 −m for κ2 < µ̃2

n, and

|κλ̃n − (j + 1)π| = |(κλ̃n)2−(j+1)2π2|
κλ̃n+(j+1)π

=
|((j+1)2−N)π2±( 1

2
π2±d1)|

κλ̃n+(j+1)π
⩾

1
8
π

2π−1κλ̃n+1
.
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This proves (4.43) for the case B1 = B3.

We now consider B1 ̸= B3. Consider the unique integer j such that j ⩽ κλ̃n
π

+ 1
2
<

j + 1. Then it is obvious that (j − 1
2
)π ⩽ κλ̃n < (j + 1

2
)π and infm∈Z |κλ̃n − (m + 1

2
)π| =

min(|κλ̃n − (j − 1
2
)π|, |κλ̃n − (j + 1

2
)π|). If d0 ∈ [0, 1

8
π2] ∪ [3

8
π2, 1

2
π2], then −1

4
π2 ± d0 ∈

[−6
8
π2,−5

8
π2]∪ [−3

8
π2,−1

8
π2]∪ [1

8
π2, 2

8
π2]. By the definition of d0, we have κ

2 = mπ2±d0 for

some m ∈ Z. Therefore, by µ̃n = nπ in (4.18) and (κλ̃n)
2 = |κ2 − µ̃2

n| = |(m − n2)π2 ± d0|,
we have

|κλ̃n − (j − 1
2
)π| = |(κλ̃n)2−(j− 1

2
)2π2|

κλ̃n+(j− 1
2
)π

=
|(N−j2+j)π2+(− 1

4
π2±d0)|

κλ̃n+(j− 1
2
)π

⩾
1
8
π

2π−1κλ̃n+1
,

where N := m− n2 for κ2 ⩾ µ̃2
n or N := n2 −m for κ2 < µ̃2

n, and

|κλ̃n − (j + 1
2
)π| = |(κλ̃n)2−(j+ 1

2
)2π2|

κλ̃n+(j+ 1
2
)π

=
|(j2+j−N)π2−(− 1

4
π2±d0)|

κλ̃n+(j+ 1
2
)π

⩾
1
8
π

2π−1κλ̃n+1
,

where we used (j − 1
2
)π ⩽ κλ̃n and hence κλ̃n + (j − 1

2
)π ⩽ κλ̃n + (j + 1

2
)π ⩽ 2κλ̃n + π.

If d0 ̸∈ [0, 1
8
π2] ∪ [3

8
π2, 1

2
π2], then d1 = 1

2
π2 − d0 ∈ [1

8
π2, 3

8
π2] and consequently, ±(1

4
π2 ±

d1) ∈ [−5
8
π2,−3

8
π2] ∪ [−1

8
π2, 1

8
π2] ∪ [3

8
π2, 5

8
π2], from which we obtain 1

4
π2 ± (1

4
π2 ± d1) ∈

[−3
8
π2,−1

8
π2]∪[1

8
π2, 3

8
π2]∪[5

8
π2, 7

8
π2]. By the definition of d1, we have κ

2 = (m+ 1
2
)π2±d1 for

some m ∈ Z. By µ̃n = (n+ 1
2
)π in (4.18) and (κλ̃n)

2 = |κ2−µ̃2
n| = |(m−n2−n)π2+ 1

4
π2±d1|,

we have

|κλ̃n − (j − 1
2
)π| = |(κλ̃n)2−(j− 1

2
)2π2|

κλ̃n+(j− 1
2
)π

=
|(N−j2+j)π2−[ 1

4
π2±( 1

4
π2±d1)]|

κλ̃n+(j+1/2)π
⩾

1
8
π

2π−1κλ̃n+1
,

where N := m− n2 − n for κ2 ⩾ µ̃2
n or N := n2 + n−m for κ2 < µ̃2

n, and

|κλ̃n − (j + 1
2
)π| = |(κλ̃n)2−(j+ 1

2
)2π2|

κλ̃n+(j+ 1
2
)π

=
|(j2+j−N)π2+[ 1

4
π2±( 1

4
π2±d1)]|

κλ̃n+(j+ 1
2
)π

⩾
1
8
π

2π−1κλ̃n+1
.

This proves (4.44) for the case B1 ̸= B3.

Lemma 4.9. Consider the problem (4.20). Define

λ̃n :=

√∣∣∣1− µ̃2n
κ2

∣∣∣ and ˚̃λn :=

λ̃n if µ̃2
n ⩽ κ2,

iλ̃n if µ̃2
n > κ2,

∀n ∈ N0.

where µ̃n for n ∈ N0 is given in (4.18).

(1) Suppose that B1Ỹn(0) = −Ỹ ′
n(0) = 1 and B3Ỹn(1) = αỸ ′

n(1) + (1 − α)Ỹn(1) = 0 with
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α = {0, 1}. Then, the solutions {Ỹn}n∈N0 to the problem (4.20) satisfy

Ỹn(y) =


−α cos(κ

˚̃
λn(y−1))−(1−α) sin(κ˚̃λn(y−1))

κ
˚̃
λn(α sin(k

˚̃
λn)+(1−α) cos(κ˚̃λn))

, if µ̃2
n ̸= κ2,

α(1
2
y2 − y)− (1− α)(y − 1), if µ̃2

n = κ2.

If B1Ỹn(0) = −αỸ ′
n(0) + (1 − α)Ỹn(0) = 0 and B3Ỹn(1) = Ỹ ′

n(1) = 1 with α = {0, 1},
then the solutions to (4.20) are given above with y replaced by 1 − y. Moreover, for

both cases, the norms ∥Ỹn∥0,I and ∥Ỹ ′
n∥0,I are given by

∥Ỹn∥20,I =


κ
˚̃
λn+(−1)1−α sin(κ

˚̃
λn) cos(κ

˚̃
λn)

2(κ
˚̃
λn)3((1−α) cos2(κ˚̃λn)+α sin2(κ

˚̃
λn))

, if µ̃2
n ̸= κ2,

1
3
(1− α) + 2

15
α, if µ̃2

n = κ2,

∥Ỹ ′
n∥20,I =


κ
˚̃
λn+(−1)α sin(κ

˚̃
λn) cos(κ

˚̃
λn)

2κ
˚̃
λn((1−α) cos2(κ˚̃λn)+α sin2(κ

˚̃
λn))

, if µ̃2
n ̸= κ2,

(1− α) + 1
3
α, if µ̃2

n = κ2.

(2) Suppose that B1Ỹn(0) = Ỹn(0) = 1 and B3Ỹn(1) = αỸ ′
n(1) + (1 − α)Ỹn(1) = 0 with

α = {0, 1}. Then, the solutions {Ỹn}n∈N0 to the problem (4.20) satisfy

Ỹn(y) =
α cos(κ

˚̃
λn(y−1))+(1−α) sin(κ˚̃λn(1−y))
α cos(κ

˚̃
λn)+(1−α) sin(κ˚̃λn)

.

If B1Ỹn(0) = −αỸ ′
n(0) + (1 − α)Ỹn(0) = 0 and B3Ỹn(1) = Ỹn(1) = 1 with α = {0, 1},

then the solutions to (4.20) are given above with y replaced by 1 − y. Moreover, for

both cases, the norms ∥Ỹn∥0,I and ∥Ỹ ′
n∥0,I are given by

∥Ỹn∥20,I = κ
˚̃
λn+(−1)1−α sin(κ

˚̃
λn) cos(κ

˚̃
λn)

2κ
˚̃
λn((1−α) sin2(κ˚̃λn)+α cos2(κ

˚̃
λn))

, ∥Ỹ ′
n∥20,I = κ

˚̃
λn((−1)α sin(κ

˚̃
λn) cos(κ

˚̃
λn)+κ

˚̃
λn)

2((1−α) sin2(κ˚̃λn)+α cos2(κ
˚̃
λn))

.

Proof. The above solutions and norms can be obtained from direct calculations (similar to

the proof of Lemma 4.7).

Proof of Proposition 4.5. Given that (4.18) holds, we know by Lemma 4.8 that each solution

stated in Lemma 4.9 is well defined and hence each term of ũ in (4.19) is well defined. It is

also straightforward to see that (4.19) satisfies (4.16).

By (4.6), we recall that {X̃n}n∈N0 , {X̃ ′
n}n∈N0 , {X̃ ′′

n}n∈N0 are orthogonal systems in L2(I).
Also, ∥X̃ ′

n∥0,I = µ̃n and ∥X̃ ′′
n∥0,I = µ̃2

n. Let SM(ũ) denote a partial sum of ũ with the Mth

term as its last term. Let ũx be the first partial derivative of ũ in the x direction obtained

by term-by-term differentiation. Define ũy, ũxx, and ũxy similarly.
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Suppose that B1 = Id and B3 ∈ {Id, ∂
∂ν
}. We can pick M ∈ N such that for all n ⩾ M ,

we have µ̃2
n > κ2, coth(κλ̃n) ⩽ 2, and 1

4
⩽ |1− κ2µ̃−2

n | such that item (2) of Lemma 4.9 with

α = 0 (i.e., B3 = Id) implies

∥Ỹn∥20,I = sinh(κλ̃n) cosh(κλ̃n)−κλ̃n
2κλ̃n sinh2(κλ̃n)

⩽ coth(κλ̃n)

2κλ̃n
⩽ (κλ̃n)

−1 = µ̃−1
n

∣∣1− κ2µ̃−2
n

∣∣−1/2
⩽ 2µ̃−1

n ,

∥Ỹ ′
n∥20,I = κλ̃n(sinh(κλ̃n) cosh(κλ̃n)+κλ̃n)

2 sinh2(κλ̃n)
⩽ 3

2
κλ̃n = 3

2
µ̃n
∣∣1− κ2µ̃−2

n

∣∣1/2 ⩽ 3
2
µ̃n,

and item (2) of Lemma 4.9 with α = 1 (i.e., B3 =
∂
∂ν
) implies

∥Ỹn∥20,I = sinh(κλ̃n) cosh(κλ̃n)+κλ̃n
2κλ̃n cosh2(κλ̃n)

⩽ tanh(κλ̃n)

κλ̃n
⩽ µ̃−1

n

∣∣1− κ2µ̃−2
n

∣∣−1/2
⩽ 2µ̃−1

n ,

∥Ỹ ′
n∥20,I = κλ̃n(sinh(κλ̃n) cosh(κλ̃n)−κλ̃n)

2 cosh2(κλ̃n)
⩽ 1

2
κλ̃n = 1

2
µ̃n
∣∣1− κ2µ̃−2

n

∣∣1/2 ⩽ 1
2
µ̃n.

That is given B1 = Id and B3 ∈ {Id, ∂
∂ν
}, ∥Ỹn∥20,I ⩽ (κλ̃n)

−1 ⩽ 2µ̃−1
n and ∥Ỹ ′

n∥20,I ⩽ κλ̃n ⩽ 3
2
µ̃n

for all n ⩾M . Furthermore,

∥ũx − (SM(ũ))x∥0,Ω =
∞∑

n=M

|ĝ1(n)µ̃n|2∥Ỹn∥20,I , ∥ũxx − (SM(ũ))xx∥0,Ω =
∞∑

n=M

|ĝ1(n)µ̃2
n|2∥Ỹn∥20,I ,

∥ũy − (SM(ũ))y∥0,Ω =
∞∑

n=M

|ĝ1(n)|2∥Ỹ ′
n∥20,I , ∥ũxy − (SM(ũ))xy∥0,Ω =

∞∑
n=M

|ĝ1(n)µ̃n|2∥Ỹ ′
n∥20,I ,

Since g1 ∈ Z3/2(Γ1) for B1 = Id, the above inequalities all tend to zero as M → ∞.

Now suppose that B1 = ∂
∂ν

and B3 ∈ {Id, ∂
∂ν
}. We can pick M ∈ N0 such that for all

n ⩾M , we have µ̃2
n > κ2, sin(2κλ̃n) ⩽ 2(cosh(2κλ̃n)− 1), and 2−2/3 ⩽ |1− κ2µ̃−2

n | such that

item (1) of Lemma 4.9 with α = 0 (i.e., B3 = Id) implies

∥Ỹn∥20,I = sinh(κλ̃n) cosh(κλ̃n)−κλ̃n
2(κλ̃n)3 cosh

2(κλ̃n)
⩽ 1

2
(κλ̃n)

−3 ⩽ 1
2
µ̃−3
n

∣∣1− κ2µ̃−2
n

∣∣−3/2
⩽ µ̃−3

n ,

∥Ỹ ′
n∥20,I = sinh(κλ̃n) cosh(κλ̃n)+κλ̃n

2κλ̃n cosh2(κλ̃n)
⩽ µ̃−1

n

∣∣1− κ2µ̃−2
n

∣∣−1/2
⩽ 21/3µ̃−1

n ,

and item (1) of Lemma 4.9 with α = 1 (i.e., B3 =
∂
∂ν
) implies

∥Ỹn∥20,I = sinh(κλ̃n) cosh(κλ̃n)+κλ̃n
2(κλ̃n)3 sinh

2(κλ̃n)
⩽ 3

2
(κλ̃n)

−3 ⩽ 3
2
µ̃−3
n

∣∣1− κ2µ̃−2
n

∣∣−3/2
⩽ 3µ̃−3

n ,

∥Ỹ ′
n∥20,I = sinh(κλ̃n) cosh(κλ̃n)−κλ̃n

2κλ̃n sinh2(κλ̃n)
⩽ µ̃−1

n

∣∣1− κ2µ̃−2
n

∣∣−1/2
⩽ 21/3µ̃−1

n .

That is given B1 =
∂
∂ν

and B3 ∈ {Id, ∂
∂ν
}, ∥Ỹn∥20,I ⩽ (κλ̃n)

−3 ⩽ 3µ̃−3
n and ∥Ỹ ′

n∥20,I ⩽ (κλ̃n)
−1 ⩽

21/3µ̃−1
n for all n ⩾ M . Since g1 ∈ Z1/2(Γ1) for B1 = ∂

∂ν
, the above inequalities all tend to

zero as M → ∞. Therefore, in both of the previously discussed cases, we have shown that
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ũx ∈ L2(Ω) and (SM(ũ))x converges to ũx in L2(Ω); the same implications also hold for the

other three cases involving ũxx, ũy, and ũxy.

Clearly, ũ ∈ H1(Ω). We have ∥ũ∥1/2,∂Ω ⩽ C∥ũ∥1,Ω <∞ for some constant C by the trace

inequality [101, Theorem 3.37]. Also, by the multiplicative trace inequality [62, Theorem

1.5.10 and the last inequality of p. 41], we have ∥ũx∥20,∂Ω ⩽ C∥ũx∥1,Ω∥ũx∥0,Ω < ∞ for some

other constant C.

Proof of Theorem 4.6. Let Np := max{n ∈ N0 : µ̃2
n < κ2}, Nc ∈ N be such that µ̃2

Nc
= κ2,

and Ne := min{n ∈ N : µ̃2
n > κ2}. Recall that λ̃n :=

√
|1− µ̃2

nκ
−2| and observe that

∥X̃ ′
n∥0,I = µ̃n. By (4.6), since {X̃n}n∈N0 and {X̃ ′

n}n∈N0 are orthogonal systems in L2(I), we
deduce from (4.19) that

∥∇ũ∥20,Ω + κ2∥ũ∥20,Ω

= ∥
∞∑
n=0

ĝ1(n)X̃
′
nỸn∥20,Ω + ∥

∞∑
n=0

ĝ1(n)X̃nỸ
′
n∥20,Ω + κ2∥

∞∑
n=0

ĝ1(n)X̃nỸn∥20,Ω

⩽
∞∑
n=0

|ĝ1(n)µ̃n|2∥Ỹn∥20,I +
∞∑
n=0

|ĝ1(n)|2∥Ỹ ′
n∥20,I + κ2

∞∑
n=0

|ĝ1(n)|2∥Ỹn∥20,I .

(4.45)

Regrouping the terms, we have

∞∑
n=0

|ĝ1(n)|2(∥Ỹ ′
n∥20,I+(µ̃2

n+κ
2)∥Ỹn∥20,I) ⩽ max

{
max

0⩽n⩽Np
ϕ̃n, θ̃Nc ,max

n⩾Ne
ψ̃n

} ∞∑
n=0

|ĝ1(n)|2, (4.46)

where ϕ̃n, θ̃Nc , and ψ̃n are defined similar to (4.27) with Xn, x, and µn being replaced by Ỹn,

y, and µ̃n respectively.

Item (1): Suppose B1 =
∂
∂ν

and B3 =
∂
∂ν
. Define zn := κλ̃n for n ∈ N0. From (4.43), we

observe that if the infimum on the left-hand side of the inequality occurs at j = 0, then

π
2
> zn ⩾ π

8(1+2π−1zn)
⩾ π

16
, that is, zn ⩾ π

16
∀n ∈ N0, κ > 0. (4.47)

Otherwise, if the infimum on the left-hand side of (4.43) occurs at a nonzero j, then zn ⩾ π
2
.

Using item (i) of Lemma 4.9 with α = 1, we obtain

ϕ̃n =
κ2+(κ2−z2n)

sin(2zn)
2zn

z2n sin2(zn)
, ψ̃n =

2((κ2+z2n)
sinh(2zn)

2zn
+κ2)

z2n(cosh(2zn)−1)
.

For each n ∈ N0, let γn = arg infj∈Z |zn − jπ|. By (4.43), we deduce that for all zn ∈
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[(γn − 1
2
)π, (γn +

1
2
)π],

sin2(zn) = sin2(zn − γnπ) ⩾ 4
π2 (zn − γnπ)

2 ⩾ 1
16(1+2π−1zn)2

. (4.48)

For κ > 0, n ⩽ Np, and zn ∈ (0, κ], we have

ϕ̃n ⩽ 2κ2−z2n
z2n sin2(zn)

⩽ 32κ
2

z2n
(1 + 2π−1zn)

2 ⩽ 32κ2
(

1
z2n

+ 4
znπ

+ 4
π2

)
⩽ 32

(
256
π2 + 64

π2 +
4
π2

)
max{κ2, 1} ⩽ 10368

π2 max{κ2, 1} ⩽ 1051max{κ2, 1},

where we used (4.48) to arrive at the second inequality, and applied (4.47) to arrive at the

fourth inequality. Next for κ > 0, n ⩾ Ne, and zn ∈ (0,∞), we have

ψ̃n ⩽ 2
(
κ2

z2n
+ 1
)(

cosh(2zn)+1
cosh(2zn)−1

)
⩽ 2

(
256
π2 + 1

)( cosh(
π
8
)+1

cosh(
π
8
)−1

)
max{κ2, 1} ⩽ 1434max{κ2, 1},

where we used (4.47) to arrive at the second inequality. Consequently,

max

{
max

0⩽n⩽Np
ϕ̃n, θ̃Nc ,max

n⩾Ne
ψ̃n

}
⩽ max

{
1051max{κ2, 1}, 4

15
κ2 + 1

3
, 1434max{κ2, 1}

}
= 1434max{κ2, 1}.

Applying the Parseval’s identity to (4.46) and finally using (4.28), we have (4.22).

Item (1): suppose B1 = ∂
∂ν

and B3 = Id. Using item (i) of Lemma 4.9 with α = 0, we

obtain

ϕ̃n =
κ2−(κ2−z2n)

sin(2zn)
2zn

z2n cos2(zn)
, ψ̃n = κ2(sinh(2zn)−2zn)+z2n sinh(2zn)

z3n(cosh(2zn)+1)
.

To obtain an upper bound for ϕ̃n, we shall list several observations, which are used in its

estimation. For each n ∈ N0, let γn = arg infj∈Z |zn − (j + 1
2
)π|. By (4.44), we deduce that

for all zn ∈ [γnπ, (γn + 1)π],

cos2(zn) = sin2(zn − (γn +
1
2
)π) ⩾ 4

π2 (zn − (γn +
1
2
)π)2 ⩾ 1

16(1+2π−1zn)2
. (4.49)

Also, for all zn ∈ (0, 1], we have

d
dzn

(
(1− sin(2zn)

2zn
)

z2n cos2(zn)

)
=

3 cos(zn)zn( sin(2zn)
2zn

+ 2
3
zn tan(zn)−1)

z4n cos3(zn)
⩾

3(1− 2
3
z2n+

2
3
(z2n+

1
3
z4n)−1)

z3n cos2(zn)
⩾ 0,

where we used (4.30) and z2n +
1
3
z4n ⩽ zn tan(zn) for all zn ∈ (0, 1]. Now, for κ > 0, n ⩽ Np,
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and zn ∈ (0, κ], we have

ϕ̃n ⩽

(
1− sin(2zn)

2zn

z2n cos2(zn)
κ2 + sin(2zn)

2zn cos2(zn)

)
1{zn⩽1} +

2
z2n cos2(zn)

κ21{1<zn⩽κ}

⩽

(
1− sin(2)

2

cos2(1)
κ2 + 1

cos2(1)

)
1{zn⩽1} +

32(1+2π−1zn)2

z2n
κ21{1<zn⩽κ}

⩽ 4−sin(2)
2 cos2(1)

max{κ2, 1}1{zn⩽1} + 32(1 + 2π−1)2max{κ2, 1}1{1<zn⩽κ}

⩽ 86max{κ2, 1},

where we used (4.49) to arrive at the second term of the first inequality. Next, note that for

all zn > 0

d
dzn

(
(sinh(2zn)−2zn)
2z3n(cosh(2zn)+1)

)
= 6 sinh(zn) cosh

3(zn)
z4n(cosh(2zn)+1)2

(
−1 + 2z2n

3 cosh2(zn)
+ 2zn

sinh(2zn)

)
⩽ 6 sinh(zn) cosh

3(zn)
z4n(cosh(2zn)+1)2

(
(−1 + 2

3
(z2n − z4n +

2
3
z6n) +

(
1− 2

3
z2n +

14
45
z4n
)
)1{zn⩽ 2√

5
}

+(−2
3
+ 4√

5
(sinh( 4√

5
))−1)1{zn> 2√

5
}

)
⩽ 0,

where we used z2n
cosh2(zn)

⩽ z2n − z4n +
2
3
z6n and 2zn

sinh(2zn)
⩽ 1 − 2

3
z2n +

14
45
z4n for all zn ∈ (0, 2√

5
].

Now, for κ > 0, n ⩾ Ne, and zn ∈ (0,∞), we have

ψ̃n ⩽ lim
zn→0

(
sinh(2zn)−2zn
z3n(cosh(2zn)+1)

κ2 + sinh(2zn)
zn(cosh(2zn)+1)

)
= 2

3
κ2 + 1 ⩽ 2max{κ2, 1}.

Consequently,

max
{

max
0⩽n⩽Np

ϕ̃n, θ̃Nc ,max
n⩾Ne

ψ̃n

}
⩽ max

{
86max{κ2, 1}, 2

3
κ2 + 1, 2max{κ2, 1}

}
= 86max{κ2, 1}.

Applying the Parseval’s identity to (4.46), and finally using (4.28), we have (4.22).

Item (2): suppose B1 = Id and B3 =
∂
∂ν
. Continuing from (4.45), we have

∞∑
n=0

|ĝ1(n)µ̃n|2∥Ỹn∥20,I +
∞∑
n=0

|ĝ1(n)|2∥Ỹ ′
n∥20,I + κ2

∞∑
n=0

|ĝ1(n)|2∥Ỹn∥20,I

=
∞∑

n=Ne

k2|ĝ1(n)|2∥Ỹn∥20,I +
Ne−1∑
n=0

|ĝ1(n)|2
(
(µ̃2

n + κ2)∥Ỹn∥20,I + ∥Ỹ ′
n∥20,I

)
+

∞∑
n=Ne

|ĝ1(n)|2µ̃n
(
µ̃2n∥Ỹn∥20,I+∥Ỹ ′

n∥20,I
µ̃n

)
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⩽ max

{
max

0⩽n⩽Np
ϕ̃n, θ̃Nc , κ

2 max
n⩾Ne

∥Ỹn∥20,I
} ∞∑

n=0

|ĝ1(n)|2

+max
n⩾Ne

(
µ̃2n∥Ỹn∥20,I+∥Ỹ ′

n∥20,I
µ̃n

) ∞∑
n=0

|ĝ1(n)|2µ̃n. (4.50)

By item (ii) of Lemma 4.9 with α = 1, we have for κ > 0, 0 ⩽ n ⩽ Np, and zn ∈ (0, κ]

ϕ̃n =
κ2+(κ2−z2n)

sin(2zn)
2zn

cos2(zn)
⩽ 2

cos2(1)
max{κ2, 1}1{zn⩽1} + 32κ2(1 + 2π−1zn)

2
1{1<zn⩽κ}

⩽ 2
cos2(1)

max{κ2, 1}1{zn⩽1} + 32κ2(1 + 2π−1κ)21{1<zn⩽κ}

⩽ 2
cos2(1)

max{κ2, 1}1{zn⩽1} + 32(1 + 2π−1)2max{κ4, 1}1{1<zn⩽κ}

⩽ max
{

2
cos2(1)

, 32(1 + 2π−1)2
}
max{κ4, 1} ⩽ 86max{κ4, 1},

where we used (4.49) to arrive at the second term of the first inequality. Next, for κ > 0,

n ⩾ Ne, and zn ∈ (0,∞), we have κ2∥Ỹn∥20,I =
sinh(2zn)

2zn
+1

cosh(2zn)+1
κ2 ⩽ κ2. Consequently,

max

{
max

0⩽n⩽Np
ϕ̃n, θ̃Nc , κ

2 max
n⩾Ne

∥Ỹn∥20,I
}

⩽ max
{
86max{κ4, 1}, 2κ2, κ2

}
= 86max{κ4, 1}.

(4.51)

Applying the Parseval’s identity and using (4.28), we have the first term of the right-hand

side of (4.23). Next, we recall that since {µ̃n = nπ}n∈N0 or {µ̃n = (n + 1
2
)π}n∈N0 , the lower

bound in (4.32) still holds with µn, λn replaced by µ̃n, λ̃n respectively. We also note that for

all κ > 0 and zn ∈ (0,∞)

(z2n+κ
2)

1
2 sinh(zn)

zn cosh(zn)
⩽
(
1 + κ2z−2

n

) 1
2 tanh(zn)1{κ⩾1,zn>1}∪{κ<1,zn>0}

+
(
z2nκ

−2 + 1
) 1

2
(
tanh(zn)z

−1
n

)
κ1{κ⩾1,zn⩽1}

⩽
√
2κ1{κ⩾1,zn>1} + (1 + η−2)

1
21{κ<1,zn>0} +

√
2κ1{κ⩾1,zn⩽1}

⩽ max
{√

2, (1 + η−2)
1
2

}
max{κ, 1} ⩽ 2max{κ, 1},

where we used the lower bound in (4.32) to arrive at the second term of the second inequality.

Now, for κ > 0 and n ⩾ Ne, we have

µ̃2n∥Ỹn∥20,I+∥Ỹ ′
n∥20,I

µ̃n
= (2z2n+κ

2) sinh(2zn)+2κ2zn

2zn(z2n+κ
2)

1
2 (cosh(2zn)+1)

(4.52)

⩽ (z2n+κ
2)

1
2 sinh(zn)

zn cosh(zn)
+ κ2

(z2n+κ
2)

1
2 (cosh(2zn)+1)

⩽ 3max{κ, 1}.

Recall that we assumed g1 ∈ Z1/2(Γ1). Plugging (4.51)-(4.52) into (4.50) and using (4.28),
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we have the second term of the right-hand side of (4.23).

Item (2): suppose B1 = Id and B3 = Id. Now, by item (ii) of Lemma 4.9 with α = 0, we

have for κ > 0, 0 ⩽ n ⩽ Np, and zn ∈ (0, κ]

ϕ̃n =
κ2−(κ2−z2n)

sin(2zn)
2zn

sin2(zn)
⩽ 2

sin2(zn)
κ2 ⩽ 32κ2(1 + 2π−1zn)

2 ⩽ 32κ2(1 + 2π−1κ)2

⩽ 32(1 + 2π−1)2max{κ4, 1} ⩽ 86max{κ4, 1},

where we used (4.48) to arrive at the second inequality. Next for n ⩾ Ne and zn > 0, we

have κ2∥Ỹn∥20,I ⩽ (sinh(2zn)−2zn)
2zn(cosh(2zn)−1)

κ2 ⩽ κ2. Consequently,

max
{

max
0⩽n⩽Np

ϕ̃n, θ̃Nc ,max
n⩾Ne

ψ̃n

}
⩽ max

{
86max{κ4, 1}, 2

3
κ2 + 1, κ2

}
= 86max{κ4, 1}.

(4.53)

Applying the Parseval’s identity and using (4.28), we have the first term of the right-hand

side of (4.23). As before, since {µ̃n = nπ}n∈N0 or {µ̃n = (n + 1
2
)π}n∈N0 , the lower bound in

(4.32) still holds with µn, λn replaced by µ̃n, λ̃n respectively. Now, for κ > 0 and n ⩾ Ne, we

have

µ̃2n∥Ỹn∥20,I+∥Ỹ ′
n∥20,I

µ̃n
= (2z2n+κ

2) sinh(2zn)−2κ2zn

2zn(z2n+κ
2)

1
2 (cosh(2zn)−1)

⩽
(1+κ2z−2

n )
1/2

sinh(2zn)

(cosh(2zn)−1)
1{κ⩾1,zn>1}

+
2κ(1+z2nκ−2)

1/2
sinh(2zn)

2zn(cosh(2zn)−1)
1{κ⩾1,zn⩽1} +

(1+κ2z−2
n )

1/2
sinh(2zn)

(cosh(2zn)−1)
1{κ<1}

⩽
√
2 sinh(2)

(cosh(2)−1)
κ1{κ⩾1,zn>1} +

2
√
2 cosh(π

8
)

(cosh(π
8
)−1)

κ1{κ⩾1,zn⩽1} +
(1+η−2)

1/2
sinh(2η)

(cosh(2η)−1)
1{κ<1}

⩽ max
{ √

2 sinh(2)
(cosh(2)−1)

,
2
√
2 cosh(π

8
)

(cosh(π
8
)−1)

,
(1+η−2)

1/2
sinh(2η)

(cosh(2η)−1)

}
max{κ, 1} ⩽ 40max{κ, 1},

(4.54)

where we used (4.47) and (4.32) to arrive at the second and third terms of the second

inequality. Recall that we assumed g1 ∈ Z1/2(Γ1). Plugging (4.53)-(4.54) into (4.50) and

using (4.28), we have the second term of the right-hand side of (4.23).

104



Chapter 5

Construction of Wavelets on a

Bounded Interval

Before we present our wavelet Galerkin method, we need to address the critical issue on the

construction of wavelets on a bounded interval, which is the main focus of this chapter.

We first provide some outlines and road maps of the classical and direct approaches for

constructing compactly supported biorthogonal wavelets on [0,∞) from an arbitrarily given

compactly supported biorthogonal wavelet on the real line in Section 5.1 before delving into

the technical details and proofs. In Section 5.2, we study some basic properties of wavelets

on the interval [0,∞) such as their Bessel properties and vanishing moments. In Section 5.3,

we generalize the classical approach from scalar wavelets to multiwavelets for constructing

compactly supported biorthogonal wavelets on the interval [0,∞). Additionally, we discuss

the construction of orthogonal (multi)wavelets on [0,∞) in Algorithm 5.1. In Section 5.4, we

present the direct approach for constructing all possible compactly supported biorthogonal

wavelets on [0,∞) from any given compactly supported biorthogonal (multi)wavelets on the

real line. Additionally, we discuss how to further improve the classical approach by the

direct approach. In Section 5.5, we address stationary and nonstationary (multi)wavelets on

[0,∞) satisfying any prescribed general homogeneous boundary conditions including Robin

boundary conditions. In Section 5.6, we discuss how to construct wavelets on the interval

[0, N ] with N ∈ N from wavelets on [0,∞). Using the classical approach and the direct

approach, we present in Section 5.7 a few examples of orthogonal and biorthogonal wavelets

on the interval [0, 1] such that the boundary wavelets have high vanishing moments and

prescribed homogeneous boundary conditions. For improved readability, some technical

proofs are postponed to Section 5.8.

Results in this chapter are based on [75].
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5.1 Road maps

According to Theorem 5.1 in Section 5.2, a compactly supported biorthogonal wavelet

({ϕ̃; ψ̃}, {ϕ;ψ}) in L2(R) must satisfy

ϕ = 2
∑
k∈Z

a(k)ϕ(2 · −k), ψ = 2
∑
k∈Z

b(k)ϕ(2 · −k),

ϕ̃ = 2
∑
k∈Z

ã(k)ϕ̃(2 · −k), ψ̃ = 2
∑
k∈Z

b̃(k)ϕ̃(2 · −k),

where a, b, ã, b̃ ∈ (l0(Z))r×r and by (l0(Z))r×r we denote the space of all finitely supported

sequences u = {u(k)}k∈Z : Z → Cr×r. The above multiscale relations (called the refinable

structures in this paper) are well known to play the key role for a fast multiwavelet transform.

By Pm−1 we denote the space of all polynomials of degree less than m. Define m := vm(ψ̃)

and m̃ := vm(ψ) for vanishing moments. Also, define a modified system ASJ(Φ;Ψ)[0,∞) on

[0,∞) adapted from ASJ(ϕ;ψ) on R as follows

ASJ(Φ;Ψ)[0,∞) := {2J/2φ(2J ·) : φ ∈ Φ} ∪ {2j/2η(2j·) : j ⩾ J, η ∈ Ψ}, J ∈ Z (5.1)

with

Φ := {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ}, Ψ := {ψL} ∪ {ψ(· − k) : k ⩾ nψ}, (5.2)

where the boundary elements ϕL and ψL are vectors/sets of compactly supported functions

in L2([0,∞)) and the integers nϕ, nψ are chosen so that all elements in {ϕ(· − k) : k ⩾

nϕ}∪{ψ(·−k) : k ⩾ nψ} are supported inside [0,∞) and hence are interior elements. From a

given compactly supported biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) in L2(R), we are interested
in deriving a compactly supported Riesz basis AS0(Φ;Ψ)[0,∞) in L2([0,∞)) satisfying

ϕL = 2ALϕ
L(2·) + 2

∞∑
k=nϕ

A(k)ϕ(2 · −k), ψL = 2BLϕ
L(2·) + 2

∞∑
k=nϕ

B(k)ϕ(2 · −k), (5.3)

for some matrices AL, BL and finitely supported sequences A,B, where AS0(Φ;Ψ)[0,∞) is

defined in (5.1) for Φ,Ψ in (5.2) with compactly supported boundary vector functions ϕL, ψL.

We shall prove in Theorem 5.2 that the unique dual Riesz basis of AS0(Φ;Ψ)[0,∞) must be

given by AS0(Φ̃; Ψ̃)[0,∞) ⊆ L2([0,∞)), defined similarly as in (5.2) with Φ̃ = {ϕ̃L}∪{ϕ̃(·−k) :

k ⩾ nϕ̃} and Ψ̃ = {ψ̃L} ∪ {ψ̃(· − k) : k ⩾ nψ̃}, such that ϕ̃L and ψ̃L must have compact
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support and satisfy

ϕ̃L = 2ÃLϕ̃
L(2·) + 2

∞∑
k=nϕ̃

Ã(k)ϕ̃(2 · −k), ψ̃L = 2B̃Lϕ̃
L(2·) + 2

∞∑
k=nϕ̃

B̃(k)ϕ̃(2 · −k), (5.4)

for some matrices ÃL, B̃L and finitely supported sequences Ã, B̃. I.e.,

(AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞)) forms a compactly supported biorthogonal wavelet in

L2([0,∞)) such that all boundary elements ϕL, ψL, ϕ̃L, ψ̃L have compact support and satisfy

the refinable structures in (5.3) and (5.4). As stated in Theorem 5.7, the classical approach

described in Section 5.3 for constructing a compactly supported biorthogonal wavelet

(AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞)) in L2([0,∞)) has four major steps:

(S1) Apply Proposition 5.4 and Section 5.3.1 to construct a compactly supported vector

function ϕL in L2([0,∞)) satisfying the first identity in (5.3). To have polynomial

reproduction, every pχ[0,∞) with p ∈ Pm−1 should be an infinite linear combination of

elements in Φ.

(S2) Use Algorithm 5.2 to construct a compactly supported vector function ϕ̃L in L2([0,∞))

such that the first identity in (5.4) holds and Φ̃ is biorthogonal to Φ. To have vanishing

moments vm(ψL) = m̃ with m̃ := vm(ψ), every pχ[0,∞) with p ∈ Pm̃−1 must necessarily

be an infinite linear combination of elements in Φ̃, see Lemma 5.3 for details.

(S3) Employ Proposition 5.11 to construct a compactly supported boundary primal wavelet

ψL such that the second identity in (5.3) holds and Ψ is perpendicular to Φ̃.

(S4) Employ Proposition 5.12 to construct a compactly supported boundary dual wavelet

ψ̃L such that the second identity in (5.4) holds, Ψ̃ is perpendicular to Φ, and Ψ̃ is

biorthogonal to Ψ.

The classical approach for constructing special vector functions ϕL in (S1) is quite simple,

because each entry of ϕL is either some ϕ(·−k)χ[0,∞), k ∈ Z or their linear combinations. Once

(S1) and (S2) are done, based on two simple observations in Theorem 5.5 and Lemma 5.8,

ψL in (S3) can be easily constructed by Proposition 5.11. Though ψL itself is not unique,

the remark after Proposition 5.11 shows that the finite-dimensional space generated by ψL

modulated by the space spanned by {ψ(·−k) : k ⩾ nψ} is uniquely determined by Φ and Φ̃.

Once (S1)–(S3) are given, ψ̃L in (S4) can be easily constructed through Proposition 5.12 and

both ψ̃L and Ψ̃ are uniquely determined by Φ, Φ̃ and Ψ. The Bessel property for the stability

of AS0(Φ̃; Ψ̃)[0,∞) and AS0(Φ;Ψ)[0,∞) is guaranteed by Theorem 5.6. To apply wavelet-based

methods for numerically solving boundary value problems, all the elements in the Riesz basis
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AS0(Φ;Ψ)[0,∞) must satisfy prescribed homogeneous boundary conditions. This can be easily

done by applying Proposition 5.18 to the constructed ϕL and Φ in (S1).

For a given orthogonal (multi)wavelet {ϕ;ψ} in L2(R), because {ϕ;ψ} is biorthogonal to

itself, (S2) can be avoided. Hence, adapting an orthogonal (multi)wavelet from the real line

to [0,∞) becomes quite simple, because (S1) for constructing ϕL and (S3) for constructing

ψL are fairly easy, see Algorithm 5.1 for more details. However, by Corollary 5.9 and The-

orem 5.17, their boundary wavelets ψL cannot possess high vanishing moments and satisfy

prescribed homogeneous boundary conditions simultaneously. By Theorem 5.17, this also

holds for nonstationary orthonormal wavelets on [0,∞).

The main complexity/difficulty for the classical approach is (S2) in Algorithm 5.2 for

constructing vector functions ϕ̃L, whose entries are finite linear combinations of ϕ̃(2j ·
−k)χ[0,∞), k ∈ Z with j ∈ {0, 1}. The complexity of (S2) is largely due to two facts:

(1) The support of ϕ̃ is often much longer than that of ϕ. Therefore, there are many more

elements ϕ̃(· − k) essentially touch the endpoint 0. (2) Because Φ̃ is biorthogonal to Φ, we

must have #ϕ̃L = #ϕL+(nϕ̃−nϕ)(#ϕ) and consequently, we do not have any freedom about

the length of ϕ̃L. Therefore, it is no longer that easy or simple to construct even particular

ϕ̃L such that the first identity in (5.4) holds and Φ̃ is biorthogonal to Φ.

The difficulty in (S2) for the classical approach motivates us to propose a direct ap-

proach, which is more general but simpler than the classical approach. The direct approach

constructs ϕL and ψL in Theorems 5.13 and 5.14 without explicitly involving ϕ̃L and ψ̃L.

Though the particularly constructed ϕL in (S1) by the classical approach can be reused,

the direct approach in Theorem 5.13 constructs all possible general vector functions ϕL in

(S1) by directly employing the first identity in (5.3) under the condition ρ(AL) < 2−1/2,

i.e., the spectral radius of AL is less than 2−1/2. Without explicitly constructing Φ̃ and Ψ̃,

inspired by Lemma 5.8, the direct approach constructs ψL in Theorem 5.14 through the sec-

ond identity in (5.3) under some necessary and sufficient conditions stated in Theorem 5.14.

Now we can easily derive from (5.3) matrices ÃL, B̃L and finitely supported sequences Ã, B̃

from (5.3). Then we only need to check the condition ρ(ÃL) < 2−1/2 to obtain a compactly

supported biorthogonal wavelet (AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞)) in L2([0,∞)), where ϕ̃L and

ψ̃L are defined in (5.4). The proof of Theorem 5.14 builds on Theorem 5.5, Theorem 5.6 for

stability, and convergence property of non-standard vector cascade algorithms (which are

closely linked to nonstandard vector subdivision schemes). In addition, the direct approach

can also improve the classical approach by constructing all possible general vector functions

ϕ̃L in (S2) through Theorem 5.15 by only requiring that ρ(ÃL) < 2−1/2 and AL, ÃL, A, Ã in

(5.3) and (5.4) should satisfy the identity in (5.64).

The procedure stated in Theorem 5.19 is well known (but without a proof) in the litera-
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ture (e.g., see [31]) for adapting a compactly supported biorthogonal wavelet

(AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞)) in L2([0,∞)) to a bounded interval [0, N ] with N ∈ N. We

shall provide a rigorous proof for Theorem 5.19 in this paper. The main idea of Theorem 5.19

is quite simple: one constructs a closely related biorthogonal wavelet on the interval (−∞, N ]

whose interior elements are still given by ψj,k := 2j/2ψ(2j ·−k) for some j ∈ N0 and k ∈ Z. To
obtain a locally supported biorthogonal wavelet on [0, N ], these two biorthogonal wavelets

on [0,∞) and (−∞, N ] are fused together in a straightforward way such that their boundary

elements and all the common interior elements are kept. The main steps in Theorem 5.19

for obtaining a biorthogonal wavelet on (−∞, N ] are as follows. (1) Flip functions about the

origin, that is, we define

ϕ̊ := ϕ(−·), ψ̊ := ψ(−·), ˜̊
ϕ := ϕ̃(−·) and

˜̊
ψ := ψ̃(−·).

(2) Construct a biorthogonal wavelet (AS0(
˜̊
Φ;

˜̊
Ψ)[0,∞),AS0(Φ̊; Ψ̊)[0,∞)) in L2([0,∞)) from the

flipped biorthogonal wavelet ({ ˜̊ϕ; ˜̊ψ}, {ϕ̊; ψ̊}) in L2(R). (3) Then {h̃(N − ·)}
h̃∈AS0( ˜̊Φ;

˜̊
Ψ)[0,∞)

and {h(N − ·)}h∈AS0(Φ̊;Ψ̊)[0,∞)
form a biorthogonal wavelet in L2((−∞, N ]). If all the vector

functions in ϕ, ψ, ϕ̃, ψ̃ possess symmetry, then a biorthogonal wavelet on (−∞, N ] can be

directly obtained from the constructed biorthogonal wavelet (AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞))

in L2([0,∞)), see the remark after Theorem 5.19 for details.

5.2 Properties of biorthogonal wavelets on the interval

[0,∞)

In this section, we shall first recall some results on biorthogonal (multi)wavelets on the real

line. Then we shall study some properties of biorthogonal wavelets on the interval [0,∞)

which are derived from a compactly supported biorthogonal wavelet on the real line R.
Throughout the paper, for simplicity, wavelets stand for both scalar wavelets and multi-

wavelets.

5.2.1 Biorthogonal wavelets on the real line

To recall some results on biorthogonal wavelets on the real line, let us first recall some defini-

tions. The Fourier transform used in this paper is defined to be f̂(ξ) :=
∫
R f(x)e

−ixξdx, ξ ∈ R
for f ∈ L1(R) and is naturally extended to square integrable functions in L2(R). By

(l0(Z))r×s we denote the set of all finitely supported sequences u = {u(k)}k∈Z : Z → Cr×s.
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For u = {u(k)}k∈Z ∈ (l0(Z))r×s, its Fourier series is defined to be

û(ξ) :=
∑
k∈Z

u(k)e−ikξ for ξ ∈ R,

which is an r× s matrix of 2π-periodic trigonometric polynomials. An element in (l0(Z))r×s

is often called a (matrix-valued) mask or filter in the literature. By δ we denote the Dirac

sequence such that δ(0) = 1 and δ(k) = 0 for all k ∈ Z\{0}. Note that δ̂ = 1. By

f ∈ (L2(R))r×s we mean that f is an r × s matrix of functions in L2(R) and we define

⟨f, g⟩ :=
∫
R
f(x)g(x)

T
dx, f ∈ (L2(R))r×t, g ∈ (L2(R))s×t.

According to [71, Theorem 4.5.1] and [70, Theorem 7], any biorthogonal wavelet

({ϕ̃; ψ̃}, {ϕ;ψ}) in L2(R) must be intrinsically derived from refinable vector functions and

biorthogonal wavelet filter banks. For simplicity, we only state the following result for

compactly supported biorthogonal wavelets ({ϕ̃; ψ̃}, {ϕ;ψ}) in L2(R).

Theorem 5.1. ([71, Theorem 4.5.1] and [70, Theorem 7]) Let ϕ, ϕ̃ be r× 1 vectors of com-

pactly supported distributions and ψ, ψ̃ be s× 1 vectors of compactly supported distributions

on R. Then ({ϕ̃; ψ̃}, {ϕ;ψ}) is a biorthogonal wavelet in L2(R) if and only if the following

are satisfied

(1) ϕ, ϕ̃ ∈ (L2(R))r and ϕ̂(0)
T̂̃ϕ(0) = 1.

(2) ϕ and ϕ̃ are biorthogonal to each other: ⟨ϕ, ϕ̃(· − k)⟩ = δ(k)Ir for all k ∈ Z.

(3) There exist low-pass filters a, ã ∈ (l0(Z))r×r and high-pass filters b, b̃ ∈ (l0(Z))s×r such
that

ϕ = 2
∑
k∈Z

a(k)ϕ(2 · −k), ψ = 2
∑
k∈Z

b(k)ϕ(2 · −k), (5.5)

ϕ̃ = 2
∑
k∈Z

ã(k)ϕ̃(2 · −k), ψ̃ = 2
∑
k∈Z

b̃(k)ϕ̃(2 · −k), (5.6)

and ({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank, i.e., s = r and

[̂̃a(ξ) ̂̃a(ξ + π)̂̃b(ξ) ̂̃b(ξ + π)

] â(ξ)
T

b̂(ξ)
T

â(ξ + π)
T

b̂(ξ + π)
T

 = I2r, ξ ∈ R. (5.7)

(4) Both AS0(ϕ;ψ) and AS0(ϕ̃; ψ̃) are Bessel sequences in L2(R), that is, there exists a
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positive constant C such that∑
h∈AS0(ϕ;ψ)

|⟨f, h⟩|2 ⩽ C∥f∥2L2(R) and
∑

h̃∈AS0(ϕ̃;ψ̃)

|⟨f, h̃⟩|2 ⩽ C∥f∥2L2(R), ∀ f ∈ L2(R).

A vector function ϕ satisfying (5.5) is called a refinable vector function with a refinement

filter/mask a ∈ (l0(Z))r×r. For a vector function ϕ we also regard ϕ as an ordered set

and vice versa. We define #ϕ to be the number of entries in ϕ, that is, the cardinality of

the set/vector ϕ. For r = 1, a refinable vector function is often called a (scalar) refinable

function. By [71, Theorems 4.6.5 and 6.4.6] or [67, Theorem 2.3], item (4) of Theorem 5.1

can be replaced by

(4’) both ψ and ψ̃ have at least one vanishing moment, i.e.,
∫
R ψ(x)dx =

∫
R ψ̃(x)dx = 0.

Orthogonal and biorthogonal wavelets on the real line which are derived from refinable func-

tions have been extensively studied, for example, see [24, 29, 38] for scalar wavelets and

[30, 58, 59, 65, 71, 72, 78, 79, 89, 91, 93, 95] and references therein for multiwavelets. It is

well known in these papers that the study and construction of multiwavelets and refinable

vector functions are often much more involved and complicated than their scalar counter-

parts, largely because the refinable vector function ϕ and multiwavelet ψ in (5.5) are vector

functions with matrix-valued filters a and b.

5.2.2 The dual of a Riesz basis AS0(Φ;Ψ)[0,∞) on [0,∞)

To improve readability and to reduce confusion later about some notations, in the following

let us first state our conventions on some notations. If not explicitly stated, ({ϕ̃; ψ̃}, {ϕ;ψ})
in this paper is always a compactly supported biorthogonal (multi)wavelet in L2(R) satisfying
all items (1)–(4) of Theorem 5.1, which necessarily implies #ϕ = #ψ. For a compactly sup-

ported (vector) function ϕ (or a finitely supported filter a ∈ (l0(Z))r×s), we define fsupp(ϕ)

(or fsupp(a)) to be the shortest interval with integer endpoints such that ϕ (or a) vanishes

outside fsupp(ϕ) (or fsupp(a)). Throughout the paper we always define

[lϕ, hϕ] := fsupp(ϕ), [lψ, hψ] := fsupp(ψ), [la, ha] := fsupp(a), [lb, hb] := fsupp(b),

(5.8)

[lϕ̃, hϕ̃] := fsupp(ϕ̃), [lψ̃, hψ̃] := fsupp(ψ̃), [lã, hã] := fsupp(ã), [lb̃, hb̃] := fsupp(b̃).

(5.9)
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One can easily deduce from (5.5) (called the refinable structure in this paper) that

[lϕ, hϕ] ⊆ [la, ha] and [lψ, hψ] ⊆ [⌊ lb+lϕ
2

⌋, ⌈hb+hϕ
2

⌉]. (5.10)

For the scalar case r = 1, both ⊆ in (5.10) become identities. But strict ⊆ in (5.10) can

happen for the multiwavelet case r > 1. Note that fsupp(ϕ(· − k)) = [k+ lϕ, k+ hϕ]. Hence,

supp(ϕ(·−k)) ⊆ (−∞, 0] for all integers k ⩽ −hϕ and supp(ϕ(·−k)) ⊆ [0,∞) for all integers

k ⩾ −lϕ. In other words, the point 0 is an interior point of fsupp(ϕ(· − k)) if and only if

1 − hϕ ⩽ k ⩽ −1 − lϕ. On the other hand, we deduce from the refinable structure in (5.5)

that

ϕ(· − k0) = 2

ha+2k0∑
k=la+2k0

a(k − 2k0)ϕ(2 · −k), k0 ∈ Z, (5.11)

ψ(· − k0) = 2

hb+2k0∑
k=lb+2k0

b(k − 2k0)ϕ(2 · −k), k0 ∈ Z. (5.12)

For any integer nϕ satisfying nϕ ⩾ max(−lϕ,−la), we have la + 2k0 ⩾ la + 2nϕ ⩾ nϕ for all

k0 ⩾ nϕ and consequently, we deduce from (5.11) that

fsupp(ϕ(·−k0)) ⊆ [0,∞) and ϕ(·−k0) = 2
∞∑

k=nϕ

a(k−2k0)ϕ(2·−k), ∀ k0 ⩾ nϕ. (5.13)

Similarly, for any integer nψ satisfying nψ ⩾ max(−lψ, nϕ−lb2
), we have lb+2k0 ⩾ lb+2nψ ⩾ nϕ

for all k0 ⩾ nψ and hence we deduce from (5.12) that

fsupp(ψ(·−k0)) ⊆ [0,∞) and ψ(·−k0) = 2
∞∑

k=nϕ

b(k−2k0)ϕ(2·−k), ∀ k0 ⩾ nψ. (5.14)

Throughout the paper, the integers nϕ and nψ are always chosen (not necessary to be the

smallest) such that (5.13) and (5.14) hold. We make the same convention for nϕ̃ and nψ̃
similarly. Let ϕ̃L and ψ̃L be vector functions in L2([0,∞)). Similarly to Φ and Ψ in (5.2),

we define

Φ̃ := {ϕ̃L} ∪ {ϕ̃(· − k) : k ⩾ nϕ̃}, Ψ̃ := {ψ̃L} ∪ {ψ̃(· − k) : k ⩾ nψ̃}. (5.15)

Under the following conditions for matching cardinality between Φ ∪Ψ and Φ̃ ∪ Ψ̃:

#ϕ̃L −#ϕL = (nϕ̃ − nϕ)(#ϕ) and #ψ̃L −#ψL = (nψ̃ − nψ)(#ψ), (5.16)
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throughout the paper, the mapping ∼: Φ → Φ̃ with h 7→ h̃ is always the default bijection

between Φ and Φ̃ such that ϕ(· − k) corresponds to ϕ̃(· − k) for all k ⩾ max(nϕ, nϕ̃), and the

bijection ∼ for other elements is determined by their corresponding positions in the ordered

sets/vectors Φ and Φ̃. The bijection ∼: Ψ → Ψ̃ is defined similarly by mapping ψ(· − k) to

ψ̃(· − k) for all k ⩾ max(nψ, nψ̃).

As explained in Section 5.1, the pair (ASJ(ϕ̃; ψ̃),ASJ(ϕ;ψ)) on the real line will be mod-

ified into a pair (ASJ(Φ̃; Ψ̃)[0,∞),ASJ(Φ;Ψ)[0,∞)) of biorthogonal systems in L2([0,∞)) by

keeping their elements supported inside [0,∞) as interior elements and by modifying their

elements essentially touching the endpoint 0 into boundary elements. By the definition in

(5.1) and a simple scaling argument as in [70], it is straightforward to see that ASJ(Φ;Ψ)[0,∞)

is a Riesz (or orthonormal) basis of L2([0,∞)) for all J ∈ Z if and only if AS0(Φ;Ψ)[0,∞) is

a Riesz (or orthonormal) basis of L2([0,∞)).

We now study the structure of compactly supported Riesz wavelets on [0,∞) in the

following result, whose proof is presented in Section 5.8 and which plays a key role in our

study of locally supported biorthogonal wavelets on intervals.

Theorem 5.2. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a biorthogonal wavelet filter bank ({ã b̃}, {a; b}) satisfying items (1)–(4) of Theorem 5.1.

Let ϕL and ψL be vectors of compactly supported functions in L2([0,∞)). Define lϕ, hϕ, la, ha

and lϕ̃, hϕ̃, lã, hã as in (5.8) and (5.9). Define Φ,Ψ as in (5.2) with integers

nϕ ⩾ max(−lϕ,−la) and nψ ⩾ max(−lψ, nϕ−lb2
). If AS0(Φ;Ψ)[0,∞) in (5.1) is a Riesz basis of

L2([0,∞)) and satisfies

ϕL = 2ALϕ
L(2·) + 2

∞∑
k=nϕ

A(k)ϕ(2 · −k), (5.17)

ψL = 2BLϕ
L(2·) + 2

∞∑
k=nϕ

B(k)ϕ(2 · −k), (5.18)

for some matrices AL, BL and finitely supported sequences A,B of matrices, then

(1) there must exist compactly supported vector functions ϕ̃L, ψ̃L in L2([0,∞)) and inte-

gers nϕ̃ ⩾ max(−lϕ̃,−lã, nϕ) and nψ̃ ⩾ max(−lψ̃,
nϕ̃−lb̃

2
, nψ) satisfying (5.16) such that

AS0(Φ̃; Ψ̃)[0,∞) is the dual Riesz basis of AS0(Φ;Ψ)[0,∞) in L2([0,∞)), where

AS0(Φ̃; Ψ̃)[0,∞) := Φ̃ ∪ {2j/2η̃(2j·) : j ∈ N ∪ {0}, η̃ ∈ Ψ̃}

and Φ̃, Ψ̃ are defined in (5.15);
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(2) there exist matrices ÃL, B̃L and finitely supported sequences Ã, B̃ of matrices such that

ϕ̃L = 2ÃLϕ̃
L(2·) + 2

∞∑
k=nϕ̃

Ã(k)ϕ̃(2 · −k), (5.19)

ψ̃L = 2B̃Lϕ̃
L(2·) + 2

∞∑
k=nϕ̃

B̃(k)ϕ̃(2 · −k), (5.20)

and

fsupp(ϕ̃(· − k0)) ⊆ [0,∞), ϕ̃(· − k0) = 2
∞∑

k=nϕ̃

ã(k − 2k0)ϕ̃(2 · −k), ∀ k0 ⩾ nϕ̃,

(5.21)

fsupp(ψ̃(· − k0)) ⊆ [0,∞), ψ̃(· − k0) = 2
∞∑

k=nϕ̃

b̃(k − 2k0)ϕ̃(2 · −k), ∀ k0 ⩾ nψ̃;

(5.22)

(3) Every element in Φ(2·) := {ϕL(2·)} ∪ {ϕ(2 · −k) : k ⩾ nϕ} can be uniquely written as

a finite linear combination of elements in Φ ∪Ψ.

Basically, Theorem 5.2 says that a compactly supported Riesz basis AS0(Φ;Ψ)[0,∞) of

L2([0,∞)) satisfying (5.17) and (5.18) must have a dual compactly supported Riesz basis

AS0(Φ̃; Ψ̃)[0,∞) of L2([0,∞)) satisfying (5.19) and (5.20). Theorem 5.2 serves as our foun-

dation for developing the classical approach through items (1) and (2) of Theorem 5.2 and

the direct approach through item (3) of Theorem 5.2 for deriving wavelets on intervals from

biorthogonal multiwavelets in L2(R).

5.2.3 Vanishing moments of biorthogonal wavelets on [0,∞)

Recall that ψ has m vanishing moments if
∫
R x

jψ(x)dx = 0 for all j = 0, . . . ,m − 1. In

particular, we define vm(ψ) := m with m being the largest such nonnegative integer. By

Pm−1 we denote the space of all polynomials of degree less than m. Define N0 := N∪{0}. Let
us now discuss the known relation between vanishing moments and polynomial reproduction

for biorthogonal wavelets on the interval [0,∞).

Lemma 5.3. Let ϕ, ψ, ϕ̃, ψ̃ be vectors of compactly supported functions in L2(R). Let

ϕL, ψL, ϕ̃L, ψ̃L be vectors of compactly supported functions in L2([0,∞)). Suppose that

AS0(Φ̃; Ψ̃)[0,∞) and AS0(Φ;Ψ)[0,∞) form a pair of biorthogonal Riesz bases in L2([0,∞)), where
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Φ,Ψ and Φ̃, Ψ̃ are defined in (5.2) and (5.15), respectively. Then min(vm(ψL), vm(ψ)) ⩾ m

if and only if every polynomial pχ[0,∞) on [0,∞) with p ∈ Pm−1 can be written as an infinite

linear combination of elements in Φ̃.

Proof. Necessity. Suppose that min(vm(ψL), vm(ψ)) ⩾ m. Since all functions in ϕ∪ψ∪ϕ̃∪ψ̃
and ϕL ∪ ψL ∪ ϕ̃L ∪ ψ̃L have compact support, we assume that they are supported inside

[−N0, N0] for some N0 ∈ N. For every polynomial p ∈ Pm−1 and N ∈ N, we have pχ[0,N) ∈
L2(R) and hence

pχ[0,N) =
∑
h∈Φ

⟨pχ[0,N), h⟩h̃+
∞∑
j=0

∑
h∈Ψ

⟨pχ[0,N), 2
j/2h(2j·)⟩2j/2h̃(2j·).

Note that ψ̃j;k and ψj;k are supported inside [2−j(k−N0), 2
−j(k+N0)]. Since ⟨p, h(2j·)⟩ = 0

for all h ∈ Ψ and j ∈ N0, we observe that ⟨pχ[0,N), h(2
j·)⟩h̃(2jx) = 0 a.e. x ∈ [0, N − 2N0)

for all h ∈ Ψ and j ∈ N0. Therefore, we conclude from the above identity that

p(x)χ[0,∞)(x) = p(x)χ[0,N)(x) =
∑
h∈Φ

⟨pχ[0,N), h⟩h̃(x) =
∑
h∈Φ

⟨p, h⟩h̃(x), a.e. x ∈ [0, N−2N0).

Taking N → ∞ in the above identity, we conclude from the above identity that pχ[0,∞) with

p ∈ Pm−1 can be written as an infinite linear combination of elements in Φ̃.

Sufficiency. Suppose that pχ[0,∞) with p ∈ Pm−1 can be written as pχ[0,∞) =
∑

h∈Φ chh̃.

Since every element in Ψ is perpendicular to Φ̃ and all elements in Ψ ∪ Φ̃ have compact

support, we have ⟨pχ[0,∞), g⟩ =
∑

h∈Φ ch⟨h̃, g⟩ = 0 for all g ∈ Ψ. This proves

min(vm(ψL), vm(ψ)) = vm(Ψ) ⩾ m.

The above same argument in Lemma 5.3 can be also applied to biorthogonal wavelets on

the real line R or intervals [0, N ] with N ∈ N. For a biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ})
in L2(R), that every polynomial in Pm−1 can be written as an infinite linear combination of

ϕ(·− k), k ∈ Z if and only if vm(ψ̃) ⩾ m. We say that a (matrix-valued) filter a ∈ (l0(Z))r×r

has order m sum rules with a (moment) matching filter υ ∈ (l0(Z))1×r if υ̂(0)ϕ̂(0) = 1 and

[υ̂(2·)â](j)(0) = υ̂(j)(0) and [υ̂(2·)â(·+ π)](j)(0) = 0, ∀ j = 0, . . . ,m− 1. (5.23)

In particular, we define sr(a) = m with m being the largest such nonnegative integer. Let

({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R) with a finitely

supported biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) in Theorem 5.1. Then vm(ψ̃) ⩾ m

if and only if sr(a) ⩾ m. That is, vm(ψ̃) = sr(a) and vm(ψ) = sr(ã). Moreover, from (5.23),

we further have [v̂ϕ̂](j)(2πk) = δ(k)δ(j) for all j = 0, . . . ,m− 1 and k ∈ Z (see [71, (5.6.6)]
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and [65, 66]) and consequently, for all p ∈ Pm−1,

p =
∑
k∈Z

[p ∗ υ](k)ϕ(· − k) =
∑
k∈Z

pυ(k)ϕ(· − k) with pυ := p ∗ υ =
∞∑
j=0

(−i)j

j!
p(j)(·)υ̂(j)(0),

(5.24)

since p ∗ υ :=
∑

n∈Z p(· − n)υ(n) = pυ ∈ Pm−1 (see [71, Lemma 1.2.1 and Theorem 5.5.1]).

Moreover, one can easily deduce from (5.23) that the quantities υ̂(j)(0), j = 0, 1, . . . ,m − 1

are determined (see [71, (5.6.10)]) through υ̂(0)â(0) = υ̂(0) with υ̂(0)ϕ̂(0) = 1, and the

following recursive formula

υ̂(j)(0) =

j−1∑
k=0

2kj!

k!(j − k)!
υ̂(k)(0)â(j−k)(0)[Ir − 2j â(0)]−1, j = 1, . . . ,m− 1 (5.25)

provided that 2−j is not an eigenvalue of â(0) for all j = 1, . . . ,m − 1. For r = 1 and

a scalar filter a ∈ l0(Z) with â(0) = 1, a scalar filter/mask a has order m sum rules if

and only if (1 + e−iξ)m | â(ξ), which is equivalent to â(j)(π) = 0 for all j = 0, . . . ,m − 1.

For the scalar case r = 1 and â(0) = 1, because ϕ̂(ξ) :=
∏∞

j=1 â(2
−jξ) is well defined,

we must have υ̂(j)(0) = [1/ϕ̂](j)(0) for all j ∈ N0, which can be computed via (5.25) by

starting with υ̂(0) = 1. The sum rules in (5.23) for matrix-valued filters in (5.23) make

it more involved to study refinable vector functions and matrix-valued filters than their

scalar counterparts. Biorthogonal multiwavelets in L2(R) with high vanishing moments can

be easily constructed by a coset by coset (CBC) algorithm in [65, Theorem 3.4] or [71,

Algorithm 6.5.2]. Moreover, the values ̂̃υ(j)(0), j ∈ N0 of the matching filter υ̃ for the dual

mask ã are uniquely determined by the primal mask a as given in [71, Theorem 6.5.1] or [65,

Theorem 3.1] through the following identities: ̂̃υ(0)â(0)T = ̂̃υ(0) with ̂̃υ(0)̂̃ϕ(0) = 1, and the

following recursive formula:

̂̃υ(j)(0) = j−1∑
k=0

j!

k!(j − k)!
̂̃υ(k)(0)â(j−k)(0)T[2jIr − â(0)

T
]−1, j ∈ N

provided that 2j is not an eigenvalue of â(0) for all j ∈ N.
The following result constructs special ϕL satisfying (5.17) with polynomial reproduction

property.

Proposition 5.4. Let ϕ be an r × 1 vector of compactly supported functions in L2(R)
such that ϕ = 2

∑
k∈Z a(k)ϕ(2 · −k) for some finitely supported sequence a ∈ (l0(Z))r×r.

Define [lϕ, hϕ] := fsupp(ϕ) and [la, ha] := fsupp(a). For any integer nϕ ∈ Z satisfying

nϕ ⩾ max(−lϕ,−la), then
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(i) the column vector function ϕc := (ϕ(· − k)χ[0,∞))1−hϕ⩽k⩽nϕ−1 (note that ϕc contains

interior elements ϕ(·−k),−lϕ ⩽ k ⩽ nϕ−1) satisfies the following refinement equation:

ϕc = 2ALcϕ
c(2·) + 2

∞∑
k=nϕ

Ac(k)ϕ(2 · −k), (5.26)

where ALc = [a(k0 − 2n)]1−hϕ⩽n,k0⩽nϕ−1 and Ac is a finitely supported sequence given

by Ac(k) := [a(k − 2n)]1−hϕ⩽n⩽nϕ−1 for k ⩾ nϕ, where n is row index and k0 is column

index;

(ii) if in addition the filter a has order m sum rules in (5.23) with a matching filter υ ∈
(l0(Z))1×r satisfying υ̂(0)ϕ̂(0) = 1, then for any j0, . . . , jℓ ∈ {0, . . . ,m− 1}, the vector

function ϕp, whose entries are linear combinations of elements in ϕc, is given by

ϕp :=

nϕ−1∑
k=1−hϕ

m−1∑
j=0

(−i)j

j!
p(j)(k)υ̂(j)(0)ϕ(· − k)χ[0,∞) with p(x) := (xj0 , . . . , xjℓ)T

(5.27)

must satisfy (5.17) with ϕL being replaced by ϕp, more precisely,

ϕp = 2ALpϕ
p(2·) + 2

∞∑
k=nϕ

Ap(k)ϕ(2 · −k) with ALp := diag(2−1−j0 , . . . , 2−1−jℓ),

(5.28)

where Ap = {Ap(k)}∞k=nϕ is a finitely supported sequence given by Ap(k) = 0 for k < nϕ

and

Ap(k) := ALppυ(k)−
∞∑

n=nϕ

pυ(n)a(k − 2n) with pυ(k) :=
m−1∑
j=0

(−i)j

j!
p(j)(k)υ̂(j)(0),

k ⩾ nϕ.

(5.29)

In fact, Ap(k) = 0 for all k ⩾ la + 2nϕ, where [la, ha] := fsupp(a).

Proof. By the refinement equation ϕ = 2
∑

k∈Z a(k)ϕ(2 · −k), we deduce that

ϕ(· − n)χ[0,∞) = 2
∑
k∈Z

a(k − 2n)ϕ(2 · −k)χ[0,∞) = 2
∑
k∈Z

a(k − 2n)
(
ϕ(· − k)χ[0,∞)

)
(2·).

Note that ϕ(· − n)χ[0,∞) = 0 for all n ⩽ −hϕ and ϕ(· − n)χ[0,∞) = ϕ(· − n) for all n ⩾ −lϕ.
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For 1− hϕ ⩽ n ⩽ nϕ − 1, by nϕ ⩾ −lϕ, we have

ϕ(· − n)χ[0,∞) = 2

nϕ−1∑
k=1−hϕ

a(k − 2n)
(
ϕ(· − k)χ[0,∞)

)
(2·) + 2

∞∑
k=nϕ

a(k − 2n)ϕ(2 · −k). (5.30)

Therefore, (5.26) holds and we proved item (i).

To prove item (ii), by (5.24) we have p(x) = ϕp(x) +
∑∞

k=nϕ
pυ(k)ϕ(x − k) for all x ∈

[0,∞). Because p(x) = 2ALpp(2x) trivially holds for x ∈ [0,∞), we have p = 2ALpp(2·) =
2ALpϕ

p(2·)+
∑∞

k=nϕ
2ALppυ(k)ϕ(2 · −k). By nϕ ⩾ max(−lϕ,−la), (5.13) must hold and then

on [0,∞) we have

ϕp = p−
∞∑

n=nϕ

pυ(n)ϕ(· − n) = 2ALpϕ
p(2·) +

∞∑
k=nϕ

2ALppυ(k)ϕ(2 · −k)−
∞∑

n=nϕ

pυ(n)ϕ(· − n)

= 2ALpϕ
p(2·) + 2

∞∑
k=nϕ

ALppυ(k)ϕ(2 · −k)− 2
∞∑

n=nϕ

∞∑
k=nϕ

pυ(n)a(k − 2n)ϕ(2 · −k)

= 2ALpϕ
p(2·) + 2

∞∑
k=nϕ

Ap(k)ϕ(2 · −k).

We now prove Ap(k) = 0 for all k ⩾ la + 2nϕ. Define the subdivision operator

[Sav](n) := 2
∑
k∈Z

v(k)a(n− 2k) for n ∈ Z.

We conclude from the definition of Ap in (5.29) that Ap(k) = ALppυ(k)− 2−1Sapυ(k) for all
k ⩾ la + 2nϕ. Define û(ξ) := υ̂(2ξ)â(ξ). We deduce from (5.23) that

û(j)(0) = υ̂(j)(0) and û(j)(π) = 0, ∀ j = 0, . . . ,m− 1. (5.31)

Since pυ = p ∗ υ, by [71, Theorem 1.2.4 and Lemma 1.2.1], we conclude from (5.31) that

Sapυ = Sup = (p(2−1)) ∗ u = 2ALp(p ∗ u) = 2ALp(p ∗ υ) = 2ALppυ.

This proves Ap(k) = ALppυ(k) − 2−1Sapυ(k) = 0 for all k ⩾ la + 2nϕ. Therefore, item (ii)

holds.
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5.2.4 Stability and construction of biorthogonal wavelets on [0,∞)

We shall adopt the following notation:

Sj(H) := span{f(2j·) : f ∈ H}, j ∈ Z, H ⊆ L2(R), (5.32)

where the overhead bar refers to closure in L2(R). For a countable subset H of L2(R)
or L2([0,∞)), we define ℓ2(H) to be the linear space of all sequences {ch}h∈H satisfying∑

h∈H |ch|2 <∞. For a Bessel sequence H in L2(R), we say that H is ℓ2-linearly independent

if
∑

h∈H chh = 0 for some {ch}h∈H ∈ ℓ2(H), then we must have ch = 0 for all h ∈ H.

In Theorem 5.2, it is necessary that Φ,Ψ in (5.2) and Φ̃, Ψ̃ in (5.15) must be Riesz

sequences in L2([0,∞)). We need the following result later for constructing wavelets on

[0,∞).

Theorem 5.5. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
satisfying items (1)–(4) of Theorem 5.1. Let Φ := {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} ⊆ L2([0,∞))

as in (5.2) with ϕL having compact support. Then the following statements are equivalent:

(1) Φ is a Riesz sequence in L2([0,∞)), i.e., there exists a positive constant C such that

C−1
∑
h∈Φ

|ch|2 ⩽
∥∥∥∑
h∈Φ

chh
∥∥∥2
L2(R)

⩽ C
∑
h∈Φ

|ch|2, ∀ {ch}h∈Φ ∈ ℓ2(Φ). (5.33)

(2) Φ is ℓ2-linearly independent, i.e., ch = 0 for all h ∈ Φ if
∑

h∈Φ chh = 0 with {ch}h∈Φ ∈
ℓ2(Φ).

(3) {ϕL}∪{ϕ(·−k) : nϕ ⩽ k < Nϕ} is linearly independent, where Nϕ := max(nϕ, hϕL−lϕ̃)
with [lϕL , hϕL ] := fsupp(ϕL) and [lϕ̃, hϕ̃] := fsupp(ϕ̃).

(4) There exists H̃ := {η̃L} ∪ {ϕ̃(· − k) : k ⩾ Nϕ} ⊂ L2([0,∞)) such that η̃L has compact

support, #η̃L = #ϕL+(Nϕ−nϕ)(#ϕ) and H̃ is biorthogonal to Φ, where Nϕ is defined

in item (3).

Moreover, for Φ = {ϕL}∪{ϕ(·−k) : k ⩾ nϕ} such that item (3) fails, perform the following

procedure:

(S1) Initially take E := {ϕ(· − k) : nϕ ⩽ k < Nϕ}, which must be linearly independent.

(S2) Visit all elements η ∈ ϕL one by one: replace E by E ∪ {η} if E ∪ {η} is linearly

independent; otherwise, delete η from ϕL.
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Update ϕL := E\{ϕ(· − k) : nϕ ⩽ k < Nϕ}, i.e., the updated ϕL is obtained by removing

redundant elements in the original ϕL. Then the new Φ is a Riesz sequence in L2([0,∞))

and preserves S0(Φ).

Proof. (1)=⇒(2)=⇒(3) is obvious. Using a standard argument, we now prove (4)=⇒(1).

Since ϕL and {ϕ(· − k) : k ∈ Z} are obviously Bessel sequences in L2(R), we conclude that

Φ is a Bessel sequence in L2([0,∞)), i.e., there exists a positive constant C such that∑
h∈Φ

|⟨f, h⟩|2 ⩽ C∥f∥2L2(R), ∀ f ∈ L2(R), (5.34)

which is well known to be equivalent to the second inequality in (5.33). Similarly, H̃ must be

a Bessel sequence in L2([0,∞)), i.e., (5.34) holds with Φ being replaced by H̃ (probably with a

different constant C). For {ch}h∈Φ ∈ ℓ2(Φ), define f :=
∑

h∈Φ chh. Using the biorthogonality

in item (4), we have ch = ⟨f, h̃⟩, where h̃ is the corresponding element of h in H̃. Now it

follows from (5.34) with Φ being replaced by H̃ that the first inequality in (5.33) holds. This

proves (4)=⇒(1).

To complete the proof, let us prove the key step (3)=⇒(4). Note that fsupp(ϕ̃(· − k)) =

[k + lϕ̃, k + hϕ̃] for k ∈ Z. Hence, for k ⩾ hϕL − lϕ̃, we have k + lϕ̃ ⩾ hϕL and trivially,

⟨ϕL, ϕ̃(·−k)⟩ = 0 due to their essentially disjoint supports. Let η ∈ {ϕL}∪{ϕ(·−k) : nϕ ⩽

k < Nϕ}. Then fsupp(η) ⊆ [0, N ] with N := max(hϕL , Nϕ + hϕ − 1, 1). We now prove that

there exists d(η) ∈ L2([0, N ]) such that

⟨d(η), η⟩ = 1 and ⟨d(η), g⟩ = 0 ∀ g ∈ Φ\{η}. (5.35)

Define S := {f ∈ L2([0, N ]) : ⟨f, g⟩ = 0 ∀ g ∈ Φ\{η}}. For all integers k ⩾ N − lϕ, we

observe that fsupp(ϕ(·−k)) is contained inside [N,∞) and consequently, ϕ(·−k) ⊥ L2([0, N ])

for all k ⩾ N − lϕ. Therefore, we conclude that

S = {f ∈ L2([0, N ]) : ⟨f, g⟩ = 0 ∀ g ∈ {ϕL} ∪ {ϕ(· − k) : nϕ ⩽ k < N − lϕ}, g ̸= η}.

Since L2([0, N ]) has infinite dimension, the above identity forces that S must have infinite

dimension. In particular, S is not empty. We now prove that there must exist d(η) ∈ S

such that ⟨d(η), η⟩ = 1. Suppose not. Then η ⊥ S. By the definition of the space S, we

must have Φ ⊥ L2([0, N ]), which forces η = 0 by η ∈ Φ ∩ L2([0, N ]). This contradicts our

assumption in item (3). Hence, we proved the existence of d(η) ∈ S such that ⟨d(η), η⟩ = 1.

Now it is straightforward to check that (5.35) holds. Let η̃L be the vector/set of all elements

d(η) for η ∈ {ϕL} ∪ {ϕ(· − k) : nϕ ⩽ k < Nϕ}. Then the derived H̃ must be biorthogonal
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to Φ. This proves (3)=⇒(4).

Suppose that c⃗ϕL +
∑Nϕ−1

k=nϕ
ckϕ(· − k) = 0. If c⃗ = 0, then

∑Nϕ−1

k=nϕ
ckϕ(· − k) = 0 and

by biorthogonality of integer shifts of ϕ and ϕ̃, we conclude that ck = 0 for all nϕ ⩽ k <

Nϕ. Hence, if item (3) fails, then c⃗ ̸= 0 and we can remove the redundant entry in ϕL

corresponding to a nonzero entry in c⃗. In this way, the new Φ with fewer elements in ϕL can

satisfy item (3) and preserves S0(Φ).

Theorem 5.5 can be applied to all Φ,Ψ in (5.2) and Φ̃, Ψ̃ in (5.15). If any of Φ,Ψ, Φ̃, Ψ̃

is not ℓ2-linearly independent, by Theorem 5.5, then we can always remove the redundant

elements in ϕL, ψL, ϕ̃L, ψ̃L to turn Φ,Ψ, Φ̃, Ψ̃ into Riesz sequences in L2([0,∞)).

To study the Bessel property of AS0(Φ;Ψ)[0,∞), we need the definition of the Sobolev

space Hτ (R) with τ ∈ R. Recall that the Sobolev space Hτ (R) with τ ∈ R consists of all

tempered distributions f on R such that
∫
R |f̂(ξ)|

2(1 + |ξ|2)τdξ <∞.

Theorem 5.6. Let ϕ be an r × 1 vector of compactly supported functions in L2(R) such

that ϕ = 2
∑

k∈Z a(k)ϕ(2 · −k) for some finitely supported sequence a ∈ (l0(Z))r×r. Let

ψ be a vector of compactly supported functions in L2(R). Define [lϕ, hϕ] := fsupp(ϕ) and

[lψ, hψ] := fsupp(ψ). Let nϕ ⩾ max(−lϕ,−la) and nψ ⩾ −lψ. Define Φ,Ψ as in (5.2) with

finite subsets ϕL ∪ ψL of compactly supported functions in L2([0,∞)). If ψ has at least one

vanishing moment (i.e., ψ̂(0) =
∫
R ψ(x)dx = 0) and ψ ∪ ϕL ∪ ψL ⊆ Hτ (R) for some τ > 0

(this latter technical condition always holds if each element in ψ ∪ ϕL ∪ ψL is a finite linear

combination of ϕ(2j ·−k)χ[0,∞) with j, k ∈ Z), then ASJ(Φ;Ψ)[0,∞) must be a Bessel sequence

in L2([0,∞)) for all J ∈ Z, that is, there exists a positive constant C, which is independent

of J , such that ∑
h∈ASJ (Φ;Ψ)[0,∞)

|⟨f, h⟩|2 ⩽ C∥f∥2L2([0,∞)), ∀ f ∈ L2([0,∞)). (5.36)

Proof. Let ϕc be defined as in Proposition 5.4. Let ϕ̊ be a vector function obtained by

appending ϕ to ϕc. By the refinement equation ϕ = 2
∑

k∈Z a(k)ϕ(2 · −k) and (5.26), it is

straightforward to see that the vector function ϕ̊ is a compactly supported refinable vector

function with a finitely supported matrix-valued filter. Because all entries in ϕ̊ belong to

L2(R) and have compact support, we conclude by [71, Corollary 5.8.2 or Corollary 6.3.4]

(also see [67, Theorem 2.2]) that there exists τ > 0 such that every entry in ϕ̊ belongs to

Hτ (R). In particular, we conclude that all the entries in ϕ ∪ ϕc belong to Hτ (R). Note

that ϕ(· − n)χ[0,∞) = 0 for all n ⩽ −hϕ and ϕ(· − n)χ[0,∞) = ϕ(· − n) for all n ⩾ −lϕ.
Consequently, by nϕ ⩾ −la, ϕ(· − n)χ[0,∞) ∈ Hτ (R) for all n ∈ Z. Hence, all elements

of ϕ(2j · −k)χ[0,∞) with j, k ∈ Z must belong to Hτ (R). In particular, if each element in
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ψ∪ϕL∪ψL is a finite linear combination of ϕ(2j ·−k)χ[0,∞) with j, k ∈ Z, then we must have

ϕ∪ψ∪ϕL ∪ψL ⊆ Hτ (R). Since ϕ∪ψ ⊆ Hτ (R) with τ > 0 and ψ has at least one vanishing

moment, by [71, Corollary 4.6.6] or [67, Theorem 2.3], AS0(ϕ;ψ) must be a Bessel sequence in

L2(R), that is, there exists a positive constant C such that
∑

h∈AS0(ϕ;ψ) |⟨f, h⟩|
2 ⩽ C∥f∥2L2(R)

for all f ∈ L2(R). Since all the elements in AS0(Φ;Ψ)[0,∞) but not in AS0(ϕ;ψ) are ϕ
L and

ψLj;0 := 2j/2ψL(2j·) for j ∈ N0 := N ∪ {0}, to prove (5.36) with J = 0 and C being replaced

by 2C, it suffices to prove

∥⟨f, ϕL⟩∥2l2 +
∞∑
j=0

∥⟨f, ψLj;0⟩∥2l2 ⩽ C∥f∥2L2([0,∞)), ∀ f ∈ L2([0,∞)). (5.37)

Define ϕS := ϕL − ϕL(−·) and ψS := ψL − ψL(−·). Since ϕL ∪ ψL ⊆ Hτ (R) with τ > 0, all

elements in ϕS∪ψS belong to Hτ (R) and have compact support with one vanishing moment.

Now we conclude from [71, Corollary 4.6.6] or [67, Theorem 2.3] that there exists a positive

constant C such that

∞∑
j=0

∑
k∈Z

∥⟨f, ϕSj;k⟩∥2l2 +
∞∑
j=0

∑
k∈Z

∥⟨f, ψSj;k⟩∥2l2 ⩽ C∥f∥2L2(R), ∀ f ∈ L2(R),

where ψSj;k := 2j/2ψS(2j · −k). For f ∈ L2([0,∞)), we have fsupp(f) ⊆ [0,∞) and trivially

⟨f, ψSj;0⟩ = ⟨f, ψLj;0⟩. Consequently, it follows directly from the above inequality that (5.37)

must hold and hence (5.36) holds for J = 0. By a simple scaling argument (e.g., see [70,

Proposition 4 and (2.6)] and [71, Theorem 4.3.3]), (5.36) must hold for all J ∈ Z with the

same constant C.

Based on Theorems 5.1, 5.2 and 5.6, we now present the following result, whose proof is

given in Section 5.8, for constructing compactly supported biorthogonal wavelets on [0,∞).

Theorem 5.7. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) satisfying items (1)–(4) of Theorem 5.1.

Define integers lϕ, lψ, la, ha as in (5.8) and lϕ̃, lψ̃, lã, lb̃ as in (5.9). Let ϕL, ψL, ϕ̃L, ψ̃L be finite

sets of compactly supported functions in L2([0,∞)). Let nϕ, nψ, nϕ̃, nψ̃ be integers satisfying

(5.16). Define Φ,Ψ as in (5.2) and Φ̃, Ψ̃ as in (5.15). Assume that ϕL∪ψL∪ϕ̃L∪ψ̃L ⊆ Hτ (R)
for some τ > 0 and

(i) Φ ⊂ L2([0,∞)) satisfies both (5.13) and (5.17) for some matrix AL and some finitely

supported sequence A of matrices.

(ii) Φ̃ ⊂ L2([0,∞)) is biorthogonal to Φ, and Φ̃ satisfies both (5.19) and (5.21) for some

matrix ÃL and some finitely supported sequence Ã of matrices.
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(iii) S0(Ψ) = S1(Φ) ∩ (S0(Φ̃))
⊥ and Ψ satisfies both (5.14) and (5.18) for some matrix BL

and some finitely supported sequence B of matrices.

(iv) S0(Ψ̃) = S1(Φ̃) ∩ (S0(Φ))
⊥, Ψ̃ is biorthogonal to Ψ, and Ψ̃ satisfies (5.20) and (5.22)

for some matrix B̃L and some finitely supported sequence B̃ of matrices.

Then ASJ(Φ̃; Ψ̃)[0,∞) and ASJ(Φ;Ψ)[0,∞), as defined in (5.1), form a pair of compactly sup-

ported biorthogonal Riesz bases in L2([0,∞)) for every J ∈ Z.

5.3 Classical approach for constructing biorthogonal

wavelets on [0,∞)

The main ingredients of the classical approach for constructing (bi)orthogonal wavelets on

intervals are outlined in items (i)–(iv) of Theorem 5.7. Most papers in the current literature

(e.g., [4, 5, 6, 18, 19, 20, 25, 31, 33, 34, 72, 80, 88, 99, 102, 113, 114]) employ (variants of) the

classical approach to construct particular wavelets on intervals from special (bi)orthogonal

wavelets on the real line such as Daubechies orthogonal wavelets in [38] and spline biorthog-

onal scalar wavelets in [29]. From any arbitrarily given compactly supported biorthogonal

(multi)wavelets on the real line, the main goal of this section is to follow the classical ap-

proach outlined in Theorem 5.7 for constructing all possible compactly supported biorthogo-

nal wavelets (AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞)) on the interval [0,∞) with or without vanishing

moments and polynomial reproduction, under the restriction that every boundary element

in Φ (or Φ̃) is a finite linear combination of ϕ(· − k)χ[0,∞) (or ϕ̃(· − k)χ[0,∞)) with k ∈ Z.
As we shall see in this section, though adapting orthogonal (multi)wavelets from the real

line to [0,∞) is easy, constructing general compactly supported biorthogonal (multi)wavelets

on [0,∞) is often much more involved and complicated than their orthogonal counterparts.

The complexity of the classical approach in this section also motivates us to propose a di-

rect approach in Section 5.4 to construct all possible biorthogonal (multi)wavelets on [0,∞)

without explicitly constructing the dual refinable functions Φ̃ and dual wavelets Ψ̃, while

removing the restrictions on the boundary elements in Φ and Φ̃.

5.3.1 Construct refinable Φ satisfying item (i) of Theorem 5.7

Though elements in ϕL in Theorem 5.2 could be any compactly supported functions in

L2([0,∞)), in this section we only consider particular ϕL. The general case ϕL ⊂ L2([0,∞))

will be addressed later in Theorem 5.13.
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To satisfy item (i) of Theorem 5.7, we have only two conditions (5.13) and (5.17) on

Φ = {ϕL}∪ {ϕ(· − k) : k ⩾ nϕ}. As we discussed before, (5.13) is trivially true by choosing

any integer nϕ satisfying nϕ ⩾ max(−lϕ,−la). So, the main task is to construct ϕL to satisfy

(5.17). By Proposition 5.4, there are three straightforward choices of ϕL satisfying (5.17):

(C1) ϕL = ϕc in item (i) of Proposition 5.4 satisfies (5.17) with AL = ALc and A = Ac in

(5.26);

(C2) ϕL = ϕp in (5.27) in item (ii) of Proposition 5.4 satisfies (5.17) with AL = ALp and

A = Ap, where p(x) = (xj0 , . . . , xjℓ)T such that {j0, . . . , jℓ} ⊆ {0, . . . ,m − 1} with

m := sr(a);

(C3) ϕL := 2
∑∞

k=nϕ
A(k)ϕ(2 · −k) with a finitely supported sequence A satisfies (5.17) with

AL = 0.

Through the following breaking and merging steps, many new ϕL satisfying (5.17) can be

obtained from the finite-dimensional space generated by known/given ϕL such as in (C1)–

(C3):

(BS) Breaking Step: For ϕL satisfying (5.17), write AL = C−1 diag(J1, . . . , JN)C in its

Jordan normal form and define (ϕLJℓ )1⩽ℓ⩽N := CϕL with #ϕLJℓ = NJℓ ∈ N, where Jℓ
is an NJℓ ×NJℓ (basic Jordan block) matrix given by

Jℓ :=



λℓ 1 0 · · · 0

0 λℓ 1 · · · 0
...

...
. . .

...
...

0 0 · · · λℓ 1

0 0 0 · · · λℓ


, λℓ ∈ C. (5.38)

Then every ϕLJℓ and its truncated vector functions by throwing away the first n entries

of ϕLJℓ with 1 ⩽ n < NJℓ satisfy (5.17) and span(ϕL) = span(∪Nℓ=1ϕ
LJℓ ), since

ϕLJ1
...

ϕLJN

 = 2


J1ϕ

LJ1 (2·)
...

JNϕ
LJN (2·)

+ 2
∞∑

k=nϕ

CA(k)ϕ(· − k).

(MS) Merging Step: For vector functions ϕL1 and ϕL2 satisfying (5.17), i.e.,

ϕL1 = 2AL1ϕ
L1(2·) + 2

∞∑
k=nϕ

A1(k)ϕ(2 · −k)
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and

ϕL2 = 2AL2ϕ
L2(2·) + 2

∞∑
k=nϕ

A2(k)ϕ(2 · −k),

then ϕL := ϕL1 ∪ ϕL2 satisfies (5.17) with AL := diag(AL1 , AL2) and

A(k) = [A1(k)
T, A2(k)

T]T for all k ⩾ nϕ.

Note that we can always add ϕp to ϕL by the merging step (MS) for polynomial reproduc-

tion. Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} satisfying item (i) of Theorem 5.7 is not necessarily a

Riesz sequence in L2([0,∞)). However, we can always perform the procedure in Theorem 5.5

to remove redundant elements in ϕL so that the new Φ is a Riesz sequence and still satisfies

item (i) of Theorem 5.7. The particular choice of ϕL = ϕp in item (ii) of Proposition 5.4

with p(x) = (1, x, . . . , xm−1)T and m := sr(a) was first considered in [31] for Daubechies

orthogonal wavelets in [38] and used in [34, 100] for spline biorthogonal scalar wavelets. The

particular choice ϕL = ϕc in item (i) of Proposition 5.4 was originally employed in [102] for

Daubechies orthogonal wavelets and used in [19, 114] for spline biorthogonal scalar wavelets

with improved condition numbers.

We further study some properties of Φ satisfying item (i) of Theorem 5.7 in the following

result, which is useful later for us to construct Ψ satisfying item (iii) of Theorem 5.7.

Lemma 5.8. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a finitely supported biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) satisfying items (1)–

(4) of Theorem 5.1. Suppose that Φ := {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} ⊂ L2([0,∞)) with ϕL

having compact support satisfies item (i) of Theorem 5.7. For any integer nψ ∈ Z satisfying

(5.14), define

mϕ := max(2nϕ + hã, 2nψ + hb̃), (5.39)

where [lã, hã] := fsupp(ã) and [lb̃, hb̃] := fsupp(b̃), and define

H := {ϕ(· − k) : k ⩾ nϕ} ∪ {ψ(· − k) : k ⩾ nψ}, (5.40)

then

ϕ(2 · −k0) is a finite linear combination of elements in H for all k0 ⩾ mϕ (5.41)

and the finite-dimensional quotient space S1(Φ)/S0(H) has a basis, which can be selected from

{ϕL(2·)} ∪ {ϕ(2 · −k) : nϕ ⩽ k < mϕ}.
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Proof. Using (1.2) with f = ϕ(2 · −k0) and J = 0, we deduce from (5.6) that for all k0 ∈ Z,

ϕ(2 · −k0) =
⌊ k0−lã

2
⌋∑

k=⌈ k0−hã
2

⌉

ã(k0 − 2k)
T
ϕ(· − k) +

⌊
k0−lb̃

2
⌋∑

k=⌈
k0−hb̃

2
⌉

b̃(k0 − 2k)
T

ψ(· − k). (5.42)

By the definition of mϕ in (5.39), we have k0−hã
2

⩾ nϕ and
k0−hb̃

2
⩾ nψ for all k0 ⩾ mϕ.

Hence, (5.42) implies (5.41). By (5.13) and (5.17) in item (i) of Theorem 5.7, we have

H ⊆ S1(Φ) and hence S0(H) ⊆ S1(Φ). So, S1(Φ)/S0(H) is well defined. By (5.41), S0(H) +

S0({ϕL(2·)} ∪ {ϕ(2 · −k)}mϕ−1

k=nϕ
) = S1(Φ). Hence, the dimension of S1(Φ)/S(H) is no more

than (#ϕL) + (mϕ − nϕ)(#ϕ) <∞.

5.3.2 Construction of orthogonal wavelets on [0,∞)

We call {ϕ;ψ} an orthogonal wavelet in L2(R) if ({ϕ;ψ}, {ϕ;ψ}) is a biorthogonal wavelet

in L2(R), i.e., AS0(ϕ;ψ) is an orthonormal basis of L2(R). Similarly, we call {a; b} an

orthogonal wavelet filter bank if ({a; b}, {a; b}) is a biorthogonal wavelet filter bank. As a

direct consequence of Lemma 5.8 and Theorems 5.5 and 5.7, we have

Algorithm 5.1. Let {ϕ;ψ} be a compactly supported orthogonal wavelet in L2(R) associated
with a finitely supported orthogonal wavelet filter bank {a; b}.

(S1) Construct Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} ⊆ L2([0,∞)) (e.g., by Section 5.3.1 or

Theorem 5.13) such that item (i) of Theorem 5.7 holds but Φ is not necessarily a Riesz

sequence in L2([0,∞)).

(S2) Apply the following Gram-Schmidt orthonormalization procedure to Φ:

(1) Initially take E := {ϕ(· − k) : nϕ ⩽ k < Nϕ} with Nϕ := max(nϕ, hϕL − lϕ),

where [lϕL , hϕL ] := fsupp(ϕL) and [lϕ, hϕ] := fsupp(ϕ);

(2) Visit all elements η ∈ ϕL one by one: replace E by E∪{η̊/∥η̊∥L2(R)} if ∥η̊∥L2(R) ̸=
0, where η̊ := η −

∑
h∈E⟨η, h⟩h; otherwise, delete η from ϕL;

(3) Update/redefine ϕL := E\{ϕ(· − k) : nϕ ⩽ k < Nϕ}.

Then Φ with the updated boundary vector function ϕL is an orthonormal system in

L2([0,∞)).

(S3) Select an integer nψ satisfying (5.14) and ⟨ϕL, ψ(·−k)⟩ = 0 for all k ⩾ nψ. For example,

we can choose any integer nψ satisfying nψ ⩾ max(−lψ, nϕ−lb2
, hϕL) with [lψ, hψ] :=
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fsupp(ψ) and [lb, hb] := fsupp(b). Define ψ̊L := {ϕL(2·)} ∪ {ϕ(2 · −k) : nϕ ⩽ k < mϕ}
with mϕ := max(2nϕ + ha, 2nψ + hb). Define Mϕ := ⌈max(

h
ϕL

2
,
hϕ+mϕ−1

2
)⌉ − lϕ and

calculate

ψL := ψ̊L − ⟨ψ̊L, ϕL⟩ϕL −
Mϕ−1∑
k=nϕ

⟨ψ̊L, ϕ(· − k)⟩ϕ(· − k).

(S4) Update ψL by applying the similar Gram-Schmidt orthonormalization procedure in (S2)

to {ψL}∪{ψ(·−k) : nψ ⩽ k < Nψ} with Nϕ being replaced by Nψ := max(nψ, hψL−lψ̃).

Then ASJ(Φ;Ψ)[0,∞) in (5.1) with Ψ := {ψL}∪{ψ(·− k) : k ⩾ nψ} is an orthonormal basis

of L2([0,∞)) for all J ∈ Z. Moreover, if we append ϕp with p(x) := (1, x, . . . , xsr(a)−1)T in

item (ii) of Proposition 5.4 to ϕL in (S1), then all elements in Ψ must have sr(a) vanishing

moments.

The choice of Mϕ for defining ψL in (S3) of Algorithm 5.1 guarantees that supp(ψ̊L) ∩
fsupp(ϕ(· − k)) is at most a singleton and hence ⟨ψ̊L, ϕ(· − k)⟩ = 0 for all k ⩾ Mϕ. See

Theorem 5.10 below for calculating inner products in the Gram-Schmidt orthonormalization

procedure in (S2) and (S4) of Algorithm 5.1. Though biorthogonal wavelets on the real line

are flexible to design ([65, 71]) and important in many applications, as we shall see later, the

construction of biorthogonal wavelets on [0,∞) is much more involved than their orthogonal

counterparts.

As we shall discuss in Section 5.5, if an orthogonal (multi)wavelet on [0,∞) satisfies

homogeneous boundary conditions, then some of its boundary elements often can have no

or low order of vanishing moments. The following result is a special case of Theorem 5.17.

Corollary 5.9. Suppose that AS0(Φ;Ψ)[0,∞) is an orthonormal basis of L2([0,∞)) such that

all elements of Φ∪Ψ are compactly supported and are continuous near 0. If η(0) = 0 for all

η ∈ Ψ, then there must exist some η ∈ Ψ such that η does not have any vanishing moments,

i.e.,
∫∞
0
η(x)dx ̸= 0.

To illustrate the complexity of wavelets on intervals, let us present an “abnormal” example

here.

Example 5.1. Let N ∈ N be an arbitrary integer. Let ϕ = χ[0,1] and ψ = χ(0,1/2] − χ(1/2,1].

Then {ϕ;ψ} is the well-known Haar orthogonal wavelet in L2(R). Define ϕL := ∅ and

nϕ := 2N . Then Φ = {ϕ(· − k) : k ⩾ 2N} obviously satisfies item (i) of Theorem 5.7.

Define ψL = {ϕ(· − k) : N ⩽ k < 2N} and nψ := N . For every J ∈ Z, then ASJ(Φ;Ψ)[0,∞)

with Ψ := {ψL}∪{ψ(·−k) : k ⩾ N} must be an orthonormal basis in L2([0,∞)) such that

all elements in Φ ∪ Ψ are supported inside [N,∞) and the boundary wavelet ψL does not
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have any vanishing moments. This appears weird but not surprising at all. For simplicity,

we present a self-contained proof here only for J = 0 and the general case follows by a simple

scaling argument. It is easy to directly check that AS0(Φ;Ψ)[0,∞) is an orthonormal system

in L2([0,∞)) by noting that Ψ is perpendicular to Φ and

S0(Φ)⊕ S0(Ψ) = S0(Φ ∪ ψL)⊕ S0({ψ(· − k) : k ⩾ N}) = S1(Φ). (5.43)

To prove that AS0(Φ;Ψ)[0,∞) is dense in L2([0,∞)), using (5.43), we observe that for any

n ∈ N,
Sn(Φ) = S0(Φ)⊕ S0(Ψ)⊕ S1(Ψ)⊕ · · · ⊕ Sn−1(Ψ) ⊆ AS0(Φ;Ψ)[0,∞).

Note that Sn(Φ) = S0(Φ(2
n·)) = S0({ϕ(2n(· − 2−nk)) : k ⩾ 2N}). Because limn→∞ 2−nN =

0, we now conclude that ∪∞
n=1Sn(Φ) is indeed dense in L2([0,∞)). Hence, we proved that

AS0(Φ;Ψ)[0,∞) is dense in L2([0,∞)) and thus is an orthonormal basis in L2([0,∞)). Similar

examples can be constructed from any compactly supported orthogonal (multi)wavelets using

Algorithm 5.1.

To perform the Gram-Schmidt orthonormalization procedure in (S2) and (S4) of Algo-

rithm 5.1, we have the following result (see Section 5.8 for its proof) to compute
∫ 1

0
ϕ̃(x −

m)ϕ(x− n)
T
dx for all m,n ∈ Z from any two arbitrary compactly supported refinable vector

functions.

Theorem 5.10. Let ϕ, ϕ̃ be two r × 1 vectors of compactly supported functions in L2(R)
such that ϕ = 2

∑
k∈Z a(k)ϕ(2 ·−k) and ϕ̃ = 2

∑
k∈Z ã(k)ϕ̃(2 ·−k) for some finitely supported

filters a, ã ∈ (l0(Z))r×r. Assume that ϕ̂(0) ̸= 0 and ̂̃ϕ(0) ̸= 0. Define [lϕ, hϕ] := fsupp(ϕ) and

[lϕ̃, hϕ̃] := fsupp(ϕ̃).

(S1) Define two vector functions by ϕ⃗ := [ϕ(· − 1 + hϕ)χ[0,1], . . . , ϕ(· + lϕ)χ[0,1]]
T and ⃗̃ϕ :=

[ϕ̃(· − 1 + hϕ̃)χ[0,1], . . . , ϕ̃(·+ lϕ̃)χ[0,1]]
T. Then

ϕ⃗ = 2A0ϕ⃗(2·) + 2A1ϕ⃗(2 · −1) and ⃗̃ϕ = 2Ã0
⃗̃ϕ(2·) + 2Ã1

⃗̃ϕ(2 · −1) (5.44)

with Aγ := [a(k+γ−2j)]1−hϕ⩽j,k⩽−lϕ and Ãγ := [ã(k+γ−2j)]1−hϕ̃⩽j,k⩽−lϕ̃ for γ = 0, 1,

where j is for the row index and k is for the column index.

(S2) If all the entries in ϕ⃗ are not linearly independent on [0, 1], then we delete as many

entries as possible from ϕ⃗ so that all the deleted entries are linear combinations of

entries kept. Do the same for ⃗̃ϕ. Then (5.44) still holds with A0, A1, Ã0 and Ã1 being

appropriately modified.
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(S3) Define M := ⟨⃗̃ϕ, ϕ⃗⟩ :=
∫ 1

0

⃗̃ϕ(x)ϕ⃗(x)
T

dx. Then the matrix M is uniquely determined by

the system of linear equations given by

M = 2Ã0MA0
T
+ 2Ã1MA1

T
(5.45)

under the normalization condition

⃗̃vMv⃗
T
= 1, (5.46)

where v⃗ is the unique row vector satisfying v⃗(A0 + A1) = v⃗ and v⃗
̂⃗
ϕ(0) = 1, while

similarly ⃗̃v is the unique row vector satisfying ⃗̃v(Ã0 + Ã1) = ⃗̃v and ⃗̃v
̂⃗̃
ϕ(0) = 1.

Define Mϕ̃,ϕ := (
∫ 1

0
ϕ̃(x − j)ϕ(x− k)

T
dx)1−hϕ̃⩽j⩽−lϕ̃,1−hϕ⩽k⩽−lϕ. If (S2) is not performed,

then Mϕ̃,ϕ agrees with M as in (S3); Otherwise, we obtain Mϕ̃,ϕ from M using the linear

combinations in (S2). Hence, all integrals
∫ 1

0
ϕ̃(x−j)ϕ(x− k)

T
dx for j, k ∈ Z can be obtained

from Mϕ̃,ϕ.

Suppose that a has order one sum rule with a matching filter υ ∈ (l0(Z))1×r and

υ̂(0)ϕ̂(0) = 1 and ã has order one sum rule with a matching filter υ̃ ∈ (l0(Z))1×r and̂̃υ(0)̂̃ϕ(0) = 1. Then by [71, Proposition 5.6.2], we have υ̂(0)ϕ̂(2πk) = 0 for all k ∈ Z\{0}.
By Poisson summation formula, we must have υ̂(0)

∑
k∈Z ϕ(· − k) = 1. Consequently, we

conclude that υ̂(0)ϕ(x−1+hϕ)+ · · ·+ υ̂(0)ϕ(x+ lϕ) = 1 for almost every x ∈ [0, 1]. Similarly,

we have ̂̃υ(0)∑k∈Z ϕ̃(· − k) = 1 and ̂̃υ(0)ϕ̃(x− 1 + hϕ̃) + · · ·+ ̂̃υ(0)ϕ̃(x+ lϕ̃) = 1 for almost

every x ∈ [0, 1]. If (S2) is not performed, then Mϕ,ϕ̃ = M and it is easy to directly check

that v⃗ = [υ̂(0), . . . , υ̂(0)], ⃗̃v = [̂̃υ(0), . . . , ̂̃υ(0)], and hence, (5.46) becomes

[̂̃υ(0), . . . , ̂̃υ(0)]Mϕ̃,ϕ[υ̂(0), . . . , υ̂(0)]
T = 1. (5.47)

A particular case of Theorem 5.10 is ϕ̃ = η with η(x) := (1, x, . . . , xm)Tχ[0,1], which is a

refinable vector function. This allows us to compute
∫ k+1

k
xjϕ(x)dx for all j ∈ N0 and k ∈ Z.

Note that η is refinable: η(x) = C0η(2x)+C1η(2x− 1) with C0 := diag(1, 2−1, . . . , 2−m) and

C1 := [2−m
(
j
ℓ

)
]0⩽j⩽m,0⩽ℓ⩽j.

5.3.3 Construct refinable Φ̃ satisfying item (ii) of Theorem 5.7

Though elements in ϕ̃L in Theorem 5.2 could be any compactly supported functions in

L2([0,∞)), in this section we present an algorithm to construct a particular Φ̃ = {ϕ̃L} ∪
{ϕ̃(· − k) : k ⩾ nϕ̃} satisfying item (ii) of Theorem 5.7. The general case ϕ̃L ⊆ L2([0,∞))
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will be addressed in Theorem 5.15.

Algorithm 5.2. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) satisfying items (1)–(4) of Theorem 5.1.

Let 0 ⩽ m ⩽ sr(a) and 0 ⩽ m̃ ⩽ sr(ã). Assume that Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} ⊆
L2([0,∞)), with ϕL having compact support, satisfies item (i) of Theorem 5.7 (e.g., Φ is

obtained by Section 5.3.1 or Theorem 5.13) and Φ is a Riesz sequence in L2([0,∞)). Define

[lϕ̃, hϕ̃] := fsupp(ϕ̃) and [lã, hã] := fsupp(ã).

(S1) Choose nϕ̃ ⩾ max(−lϕ̃,−lã, nϕ) such that nϕ̃ is the smallest integer satisfying ⟨ϕ̃(· −
k), ϕL⟩ = 0 for all k ⩾ nϕ̃, e.g., we can take any nϕ̃ ⩾ max(−lϕ̃,−lã, nϕ, hϕL) with

[lϕL , hϕL ] := fsupp(ϕL).

(S2) Since nϕ̃ ⩾ nϕ, we define a vector function ϕ̊L := {ϕL} ∪ {ϕ(· − k) : nϕ ⩽ k < nϕ̃}.

(S3) Define a vector function ϕ̆L := ϕ̃c ∪ ϕ̃h, where ϕ̃c := {ϕ̃(· − k)χ[0,∞)}1−hϕ̃⩽k⩽nϕ̃−1 and

ϕ̃h := 2

nh−1∑
k=nϕ̃

Ã(k)ϕ̃(2 · −k) and ⟨ϕ̃h, ϕ(· − k)⟩ = 0, ∀ k ⩾ nϕ̃, (5.48)

where nh := 2max(nϕL , hϕ + nϕ̃) − lϕ̃ with {Ã(k)}nh−1
k=nϕ̃

to be determined. Note that

ϕ̆L = 2ĂLϕ̆
L(2·) + 2

∑∞
k=nϕ̃

Ă(k)ϕ̃(2 · −k) for some matrix ĂL and finitely supported

sequence Ă.

(S4) Apply item (BS) of Section 5.3.1 to break ϕ̆L into short vector functions ϕ̆1, . . . , ϕ̆N with

each satisfying (5.19). Initially define ηL = ∅. We add/merge ϕ̆ℓ into η
L if ⟨ηL∪ϕ̆ℓ, ϕ̊L⟩

has full rank. Repeat this procedure until #ηL = #ϕ̊L. Then ϕ̃L := ⟨ηL, ϕ̊L⟩−1ηL is a

well-defined vector function, because the square matrix ⟨ηL, ϕ̊L⟩ is invertible.

(S4’) Assume that {ϕ̆L} ∪ {ϕ̃(· − k) : k ⩾ nϕ̃} is a Riesz sequence; otherwise, remove

redundant elements from ϕ̆L. Instead of (S4), we can alternatively obtain ϕ̃L := Cϕ̆L,

where the unknown (#ϕ̊)× (#ϕ̆L) matrix C is determined by solving C⟨ϕ̆L, ϕ̊L⟩ = I#ϕ̊L

and CĂL = CĂL⟨ϕ̆L, ϕ̊L⟩C.

Then Φ̃ := {ϕ̃L} ∪ {ϕ̃(· − k) : k ⩾ nϕ̃} satisfies item (ii) of Theorem 5.7.

Proof. By the choice of nϕ̃ in (S1), for every k ⩾ nϕ̃, we have ⟨ϕ̃(· − k), η⟩ = 0 for all

η ∈ Φ\{ϕ(· − k)}. Note that the integer nh in (S3) is chosen so that fsupp(ϕ̊L) is essentially

disjoint with supp(ϕ̃(2 · −k)) for all k ⩾ nh and hence ⟨ϕ̃(2 · −k), ϕ̊L⟩ = 0 for all k ⩾ nh. By

the definition of ϕ̃c, it is trivial to see that ⟨ϕ̃c, ϕ(· − k)⟩ = 0 for all k ⩾ nϕ̃. This and (5.48)
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imply that ⟨ϕ̃L, ϕ(· − k)⟩ = 0 for all k ⩾ nϕ̃. Now the claim holds trivially for the choice of

ϕ̃L in (S4).

The condition C⟨ϕ̃c, ϕ̊L⟩ = I#ϕ̊L in (S4’) is obviously equivalent to the biorthogonality

condition ⟨ϕ̃L, ϕ̊L⟩ = I#ϕ̊L . For the choice of ϕ̃L in (S4’), we have

ϕ̃L = Cϕ̆L = 2CĂLϕ̆
L(2·) + 2

∞∑
k=nϕ̃

CĂ(k)ϕ̃(2 · −k).

Since {ϕ̆L} ∪ {ϕ̃(· − k) : k ⩾ nϕ̃} is a Riesz sequence, (5.19) holds if and only if CĂL =

ÃLC. Due to the biorthogonality between ϕ̃L and ϕ̊L, we must have ÃL = ⟨ϕ̃L, ϕ̊L(2·)⟩ =

C⟨ϕ̆L, ϕ̊L(2·)⟩ = CĂL⟨ϕ̆L, ϕ̊L⟩. Now the condition CĂL = CĂL⟨ϕ̆L, ϕ̊L⟩C in (S4’) guarantees

that ϕ̃L satisfies (5.19) with ÃL = CĂL⟨ϕ̆L, ϕ̊L⟩. Hence, the claim holds for the choice of ϕ̃L

in (S4’).

For spline biorthogonal scalar wavelets ({ϕ̃; ψ̃}, {ϕ;ψ}) in [29] with ϕ = Bm in (1.1) such

that m̃ := sr(ã) ⩾ m and m+m̃ is an even integer, [34] considered the particular choice ϕL =

ϕp and ϕ̃L = ⟨p̃, ϕ̊L⟩−1ϕ̃p̃ in (S4) with p(x) = (1, x, . . . , xm−1)T and p̃(x) = (1, x, . . . , xm̃−1)T

as in Proposition 5.4. [19, 114] instead took the particular choice ϕL = ϕc in Proposition 5.4,

which has more boundary elements than [34]. Then [114, (4.3)] and [19, (32)] proposed to

take ηL = ϕ̃p̃ ∪ ϕ̃h in (S4) by properly choosing Ã in (5.48).

5.3.4 Construct wavelets Ψ and Ψ̃ satisfying items (iii) and (iv) of

Theorem 5.7

Assume that Φ and Φ̃ satisfy items (i) and (ii) of Theorem 5.7 but without restricting that

ϕL and ϕ̃L are special choices as discussed in Sections 5.3.1 and 5.3.3. We now address how

to construct Ψ and Ψ̃ satisfying items (iii) and (iv) of Theorem 5.7.

From Φ and Φ̃ satisfying items (i) and (ii) of Theorem 5.7, we now construct Ψ satisfying

item (iii) of Theorem 5.7 as follows.

Proposition 5.11. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in

L2(R) satisfying items (1)–(4) of Theorem 5.1. Suppose that Φ and Φ̃ as defined in (5.2)

and (5.15), consisting of compactly supported functions in L2([0,∞)), satisfy items (i) and

(ii) of Theorem 5.7. Define [lϕL , hϕL ] := fsupp(ϕL) and [lϕ̃L , hϕ̃L ] := fsupp(ϕ̃L). Take nψ ∈ Z
to be the smallest integer satisfying

nψ ⩾ max(−lψ, nϕ−lb2
, hϕ̃L − lψ) (5.49)
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and define mϕ := max(2nϕ + hã, 2nψ + hb̃) as in (5.39). Let ψ̊L := {ϕL(2·)} ∪ {ϕ(2 · −k) :

nϕ ⩽ k < mϕ}. Calculate a compactly supported vector function ψL by

ψL := ψ̊L − ⟨ψ̊L, ϕ̃L⟩ϕL −
Mϕ−1∑
k=nϕ

⟨ψ̊L, ϕ̃(· − k)⟩ϕ(· − k), (5.50)

whereMϕ := ⌈max(
h
ϕL

2
,
hϕ+mϕ−1

2
)⌉−lϕ̃. Then Ψ := {ψL}∪{ψ(·−k) : k ⩾ nψ} satisfies item

(iii) of Theorem 5.7. Moreover, if we apply item (3) of Theorem 5.5 with Φ being replaced

by Ψ to remove the redundant elements of ψL in {ψL} ∪ {ψ(· − k) : nψ ⩽ k < Nψ} with

Nψ := max(nψ, hψL − lψ̃), then Ψ with updated ψL satisfies item (iii) of Theorem 5.7 and Ψ

is a Riesz sequence in L2([0,∞)).

Proof. By the definition of nψ in (5.49), (5.14) holds. Note that fsupp(ψ(·−k)) = [k+ lψ, k+

hψ] for k ∈ Z. Hence, for k ⩾ nψ̃, we deduce from (5.49) that nψ ⩾ hϕ̃L − lψ. Therefore, due

to essentially disjoint support, we trivially have ⟨ψ(· − k), ϕ̃L⟩ = 0 and ψ(· − k) ⊥ Φ̃ for all

k ⩾ nψ̃.

Due to essentially disjoint support, we have ⟨ψ̊L, ϕ̃(· − k)⟩ = 0 for all k ⩾ Mϕ. Since

Φ̃ is biorthogonal to Φ by item (ii) of Theorem 5.7, we trivially deduce from the definition

of ψL in (5.50) that ψL ⊥ Φ̃. Therefore, Ψ is perpendicular to Φ̃ and S0(Ψ) ⊥ S0(Φ̃). By

(5.41) in Lemma 5.8, we have S1(Φ) = S0(Φ) + S0({ψ̊L} ∪ {ψ(· − k) : k ⩾ nψ}) and hence

S1(Φ) = S0(Φ) + S0(Ψ). Therefore, we must have S0(Ψ) = S1(Φ) ∩ (S0(Φ̃))
⊥. Because all

functions in Φ ∪ Φ̃ are compactly supported, ψL defined in (5.50) obviously has compact

support. We can also directly check (5.18) using the definition of ψL in (5.50) and the

relations in (5.17) and (5.13). Hence, Ψ satisfies item (iii) of Theorem 5.7.

The integer nψ satisfying (5.49) can be replaced by the smallest nψ ∈ Z such that

ψ(·− k) ∈ S1(Φ) and ψ(·− k) ⊥ Φ̃ for all k ⩾ nψ. The choice of Mϕ for defining ψL in (5.50)

guarantees that supp(ψ̊L)∩fsupp(ϕ̃(·−k)) is at most a singleton and hence ⟨ψ̊L, ϕ̃(·−k)⟩ = 0

for all k ⩾ Mϕ. To guarantee that Ψ is a Riesz sequence in Proposition 5.11, we can avoid

using Theorem 5.5 to reduce the redundant elements in ψL by replacing ψ̊L with a suitable

subset of ψ̊L, which forms a basis of the quotient space S1(Φ)/S0(Φ∪ {ψ(· − k) : k ⩾ nψ}).
See the remark after Theorem 5.14 about how to find such desired subset of ψ̊L. Though

ψL itself is not unique, the finite-dimensional space S0(Ψ)/S0({ψ(· − k) : k ⩾ nψ}) (or

equivalently, span(ψL) mod span{ψ(· − k) : k ⩾ nψ}) is uniquely determined by Φ and Φ̃

satisfying items (i) and (ii) of Theorem 5.7.

For Φ, Φ̃ and Ψ satisfying items (i)–(iii) of Theorem 5.7, it is easy to construct the dual

wavelet Ψ̃ satisfying item (iv) of Theorem 5.7, mainly due to the uniqueness of Ψ̃.
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Proposition 5.12. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in

L2(R) satisfying items (1)–(4) of Theorem 5.1. Suppose that Φ, Φ̃ and Ψ as defined in (5.2)

and (5.15), consisting of compactly supported functions in L2([0,∞)), satisfy items (i)–(iii)

of Theorem 5.7. Assume that Ψ is a Riesz sequence in L2([0,∞)). Define

[lϕL , hϕL ] := fsupp(ϕL), [lψL , hψL ] := fsupp(ψL), [lϕ̃L , hϕ̃L ] := fsupp(ϕ̃L).

Take nψ̃ ∈ Z to be the smallest integer satisfying

nψ̃ ⩾ max(−lψ̃,
nϕ̃−lb̃

2
, hϕL − lψ̃, hψL − lψ̃, nψ) (5.51)

and mϕ̃ := max(2nϕ̃+hã, 2nψ̃+hb̃). For each element η ∈ {ψL}∪{ψ(·−k) : nψ ⩽ k < nψ̃},
there exists a unique sequence {cη(h)}h∈Φ ∈ ℓ2(Φ) such that

⟨dη, g⟩ =

1 if g = η,

0 if g ∈ (Φ ∪Ψ)\{η}
with dη :=

√
2
∑
h∈Φ

cη(h)h̃(2·) ∈ S1(Φ̃) (5.52)

and

cη(ϕ(· − k)) = 0 ∀ k ⩾ mϕ̃. (5.53)

Then Ψ̃ := {ψ̃L} ∪ {ψ̃(· − k) : k ⩾ nψ̃} with ψ̃L := {dη : η ∈ {ψL} ∪ {ψ(· − k) : nψ ⩽ k <

nψ̃}} satisfies item (iv) of Theorem 5.7 and all functions in ψ̃L have compact support.

Proof. Note that all Φ, Φ̃ and Ψ are Riesz sequences. We first prove that Φ ∪ Ψ is a Riesz

sequence. Suppose not. Then the lower Riesz bound of Φ ∪ Ψ is zero and there exists

a sequence {cn}∞n=1 in ℓ2(Φ ∪ Ψ) such that
∑

h∈Φ∪Ψ |cn(h)|2 = 1 and limn→∞ ∥Fn∥L2(R) =

0, where Fn := fn + gn with fn :=
∑

h∈Φ cn(h)h and gn :=
∑

h∈Ψ cn(h)h. Because Φ̃ is

biorthogonal to Φ and Φ̃ ⊥ Ψ, for h̃ ∈ Φ̃, we have ⟨Fn, h̃⟩ = ⟨fn, h̃⟩ = cn(h), where h is the

corresponding element of h̃ in Φ. Then

lim
n→∞

∑
h∈Φ

|cn(h)|2 = lim
n→∞

∑
h∈Φ

|⟨Fn, h̃⟩|2 = lim
n→∞

∑
h̃∈Φ̃

|⟨Fn, h̃⟩|2 = 0,

because Φ̃ is a Riesz sequence and limn→∞ ∥Fn∥L2(R) = 0. Then limn→∞ ∥fn∥L2(R) = 0 since

Φ is a Riesz sequence. For any ε > 0, there exists N ∈ N such that
∑

h∈Φ |cn(h)|2 ⩽ ε,

∥Fn∥L2(R) ⩽ ε, and ∥fn∥L2(R) ⩽ ε for all n ⩾ N . Thus,∑
h∈Ψ

|cn(h)|2 = 1−
∑
h∈Φ

|cn(h)|2 ⩾ 1− ε
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and ∥gn∥L2(R) = ∥Fn − fn∥L2(R) ⩽ 2ε. This shows that the lower Riesz bound of Ψ cannot

be larger than 2ε√
1−ε for all 0 < ε < 1, which contradicts that Ψ is a Riesz sequence. Hence,

Φ ∪Ψ must be a Riesz sequence.

Because Φ ∪Ψ is a Riesz sequence and S0(Φ ∪Ψ) = S1(Φ) by item (iii) of Theorem 5.7,

Φ∪Ψ is a Riesz basis of S1(Φ). Since Φ(2·) is also a Riesz basis of S1(Φ), for every g ∈ Φ∪Ψ,

we define wg ∈ ℓ2(Φ) to be the unique sequence satisfying g =
∑

h∈Φwg(h)h(2·). Let η ∈ Ψ

and define Wη to be the closed linear span of wg, g ∈ Φ∪Ψ\{η}. Then there exists a unique

element vη ∈ ℓ2(Φ) such that wη − vη ∈ Wη and vη ⊥ Wη. Because Φ ∪ Ψ is a Riesz basis

of S1(Φ), we must have vη ̸= 0 and ⟨vη, wη⟩ℓ2(Φ) ̸= 0. Define f :=
∑

h∈Φ vη(h)h̃(2·). Then

f ∈ S1(Φ̃) and f ̸= 0 by vη ̸= 0. Because Φ̃ is biorthogonal to Φ, we must have ⟨f, η⟩ ≠ 0

by ⟨vη, wη⟩ℓ2(Φ) ̸= 0 and f ⊥ (Φ ∪ Ψ)\{η} by vη ⊥ Wη. Obviously, dη := ⟨f, η⟩−1f ∈ S1(Φ̃)

must satisfy (5.52). Suppose that both dη, d
′
η ∈ S1(Φ̃) satisfy (5.52). Then dη − d′η ⊥ Φ ∪Ψ.

Hence, dη − d′η ⊥ S0(Φ ∪Ψ) = S1(Φ). Since Φ̃ is biorthogonal to Φ and dη − d′η ∈ S1(Φ̃), we

must have dη = d′η. This proves the existence and uniqueness of dη.

We now prove that dψ(·−m) = ψ̃(· −m) for all m ⩾ nψ̃. Since nψ̃ ⩾ max(−lψ̃,
nϕ̃−lb̃

2
), we

observe that (5.22) holds. Note that fsupp(ψ̃(· − k)) = [k + lψ̃, k + hψ̃] for k ∈ Z. Since

nψ̃ ⩾ hϕL − lψ̃ by (5.51), for m ⩾ nψ̃ we have m + lψ̃ ⩾ hϕL and hence ⟨ϕL, ψ̃(· −m)⟩ = 0.

Consequently, ψ̃(· −m) is perpendicular to all elements in Φ. By the same argument and

nψ̃ ⩾ hψL − lψ̃, ψ̃(· −m) is also perpendicular to all elements in {ψL} ∪ {ψ(· − k) : nψ ⩽

k < nψ̃}. Now we conclude that (5.52) must hold with η = ψ(· −m) and dη = ψ̃(· −m).

This proves dψ(·−m) = ψ̃(· −m) for all m ⩾ nψ̃.

Let η ∈ {ψL} ∪ {ψ(· − k) : nψ ⩽ k < nψ̃}. We now prove that (5.53) must hold. By

Lemma 5.8 with nψ being replaced with nψ̃, we conclude from (5.41) that

ϕ(2 · −k0) is a finite linear combination of elements in H for all k0 ⩾ mϕ̃, (5.54)

where H := {ϕ(· − k) : k ⩾ nϕ} ∪ {ψ(· − k) : k ⩾ nψ̃}. By the definition of dη in

(5.52) and η ∈ {ψL} ∪ {ψ(· − k) : nψ ⩽ k < nψ̃}, we have dη ⊥ H. For any integer

k ⩾ mϕ̃, by the biorthogonality of Φ and Φ̃, we deduce from (5.54) and dη ⊥ H that

cη(ϕ(· − k)) = ⟨dη,
√
2ϕ(2 · −k)⟩ = 0. This proves (5.53). Hence, ψ̃L has compact support

and Ψ̃ satisfies item (iv) of Theorem 5.7.
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5.4 Direct approach for constructing biorthogonal

wavelets on [0,∞)

The general construction using the classical approach in Section 5.3 (in particular, Sec-

tion 5.3.3) is often complicated and it restricts the choices of ϕL and ϕ̃L in Sections 5.3.1

and 5.3.3. In this section, we propose a direct approach to construct all possible compactly

supported biorthogonal wavelets on [0,∞) without explicitly involving the dual refinable

functions Φ̃ and dual wavelets Ψ̃.

We first address how to construct general Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} with

ϕL ⊆ L2([0,∞)) satisfying item (i) of Theorem 5.7 and having compact support.

Theorem 5.13. Let ϕ be a compactly supported refinable vector function satisfying ϕ =

2
∑

k∈Z a(k)ϕ(2 · −k) for some finitely supported matrix-valued filter a ∈ (l0(Z))r×r. Take

nϕ ∈ Z satisfying (5.13). Let AL be an N ×N matrix satisfying

ρ(AL) < 2−1/2, that is, the spectral radius of AL is less than 2−1/2. (5.55)

Define an N × 1 vector function ϕL by

ϕL :=
∞∑
j=1

2j−1Aj−1
L g(2j·) with g := 2

∞∑
k=nϕ

A(k)ϕ(· − k), (5.56)

where A is a finitely supported sequence of N × (#ϕ) matrices. Then ϕL is a well-defined

compactly supported vector function in L2([0,∞))∩Hτ (R) for some τ > 0, (5.17) holds, i.e.,

ϕL = 2ALϕ
L(2·) + 2

∑∞
k=nϕ

A(k)ϕ(2 · −k), and Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} satisfies

item (i) of Theorem 5.7.

Proof. Since ϕ is a compactly supported refinable vector function with a finitely supported

filter a ∈ (l0(Z))r×r, by [71, Corollary 5.8.2 or Corollary 6.3.4] (also see [67, Theorem 2.2]),

the refinable vector function ϕ must belong to H t(R) for some t > 0. By our assumption

in (5.55), we have log2 ρ(AL) < −1/2 and hence, tAL := −1/2 − log2 ρ(AL) > 0. So,

(0, t] ∩ (0, tAL) is nonempty. Let τ ∈ (0, t] ∩ (0, tAL). Then τ > 0. Since ϕ ⊆ Hτ (R) by

0 < τ ⩽ t and nϕ satisfies (5.13), we see that g must be a compactly supported vector

function in L2([0,∞)) ∩Hτ (R) and hence there exists a positive constant C independent of

j (e.g., see [69, (3.7)]) such that

C−1∥g∥Hτ (R) ⩽ 2(−1/2−τ)j∥2jg(2j·)∥Hτ (R) ⩽ C∥g∥Hτ (R)
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for all j ∈ N ∪ {0}. Applying the triangle inequality, we deduce that∥∥∥∥∥
∞∑
j=1

2j−1Aj−1
L g(2j·)

∥∥∥∥∥
Hτ (R)

⩽
∞∑
j=1

2j−1∥Aj−1
L ∥∥g(2j·)∥Hτ (R) ⩽ 2−1C∥g∥Hτ (R)

∞∑
j=1

2(1/2+τ)j∥Aj−1
L ∥.

Since τ < tAL , we have tAL− τ > 0. For any 0 < ε < tAL− τ , since ρ(AL) = limj→∞ ∥AjL∥1/j,
there exists a positive constant Cε such that ∥AjL∥ ⩽ Cε2

εj(ρ(AL))
j for all j ∈ N ∪ {0}.

Therefore,

∞∑
j=1

2(1/2+τ)j∥Aj−1
L ∥ ⩽ Cε

∞∑
j=1

2(1/2+τ)j2ε(j−1)(ρ(AL))
j−1 = 2(1/2+τ)Cε

∞∑
j=0

2(τ+ε−tAL )j <∞,

because τ + ε− tAL < 0 by 0 < ε < tAL − τ . Hence we proved ϕL ⊆ Hτ (R) with τ > 0 and

thus, ϕL ⊆ L2([0,∞)). Since g has compact support, ϕL in (5.56) obviously has compact

support and

ϕL = g(2·)+2AL

∞∑
j=1

2j−1Aj−1
L g(2j+1·) = g(2·)+2ALϕ

L(2·) = 2ALϕ
L(2·)+2

∞∑
k=nϕ

A(k)ϕ(2·−k).

This proves (5.17). Hence, Φ = {ϕL}∪{ϕ(·−k) : k ⩾ nϕ} satisfies item (i) of Theorem 5.7.

To achieve polynomial reproduction, we can simply append the vector function ϕp in

item (ii) of Proposition 5.4 to the vector function ϕL in Theorem 5.13 to create a new ϕL; or

equivalently, we can append the associated refinement coefficients of ϕp to the coefficients AL

and A in (5.56) instead. Then remove redundant elements in the new ϕL by Theorem 5.5.

To construct orthogonal wavelets on [0,∞), we can simply replace (S1) of Algorithm 5.1

by Theorem 5.13. As we discussed in Section 5.3.1, without loss of generality, AL in (5.56)

can be taken as a block diagonal matrix of Jordan matrices in (5.38). Define a vector

function ϕ̊L by appending ϕ to ϕL. Since ϕL satisfies (5.17), we see that ϕ̊L is a compactly

supported vector function associated with a finitely supported filter. Consequently, we can

apply Theorem 5.10 to compute
∫ 1

0
ϕL(x−m)η(x− n)

T
dx for all m,n ∈ Z for any compactly

supported refinable vector function η. Generalizing results on vector subdivision schemes

and refinable vector functions in [71, Chapter 5], in fact we can prove through a technical

argument that the condition in (5.55) must hold if Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ}
satisfies item (i) of Theorem 5.7 and is a Riesz sequence. We shall address this technical

issue elsewhere.

The direct approach is to construct Ψ directly. The following result will be proved in
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Section 5.8.

Theorem 5.14. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) satisfying items (1)–(4) of Theorem 5.1.

Suppose that Φ = {ϕL}∪{ϕ(·−k) : k ⩾ nϕ} ⊆ L2([0,∞)) satisfies item (i) of Theorem 5.7,

Φ is a Riesz sequence in L2([0,∞)), and ϕL is a compactly supported vector function in

L2([0,∞)) ∩ Hτ (R) for some τ > 0. Take an integer nψ ⩾ max(−lψ, nϕ−lb2
) and define

mϕ := max(2nϕ + hã, 2nψ + hb̃) as in (5.39). Let m,n0 ∈ N0 (we often take 0 ⩽ m ⩽ sr(ã)

and n0 = 0). Construct Ψ := {ψL} ∪ {ψ(· − k) : k ⩾ nψ} such that

(i) ψL ⊆ span({ϕL(2·)}∪{ϕ(2 ·−k) : nϕ ⩽ k < mϕ+n0}), ψL has m vanishing moments

with vm(ψL) ⩾ m, and the set ψL (which is regarded as in S1(Φ)/S0(Φ ∪ {ψ(· − k) :

k ⩾ nψ})) is a basis of the finite-dimensional quotient space S1(Φ)/S0(Φ ∪ {ψ(· − k) :

k ⩾ nψ}).

(ii) Every element in ϕL(2·) ∪ ϕE(2·) is a finite linear combination of elements in Φ ∪ Ψ,

where ϕE := {ϕ(· − k) : nϕ ⩽ k < mϕ}. That is, for some integers hC ⩾ nϕ and

hD ⩾ nψ,[
ϕL(2·)
ϕE(2·)

]
= A0ϕ

L +B0ψ
L +

∑
nϕ⩽k<hC

C(k)ϕ(· − k) +
∑

nψ⩽k<hD

D(k)ψ(· − k) (5.57)

for some matrices A0, B0, C(k) with nϕ ⩽ k < hC, and D(k) with nψ ⩽ k < hD.

Define nϕ̃ := max(mϕ, hC ,−lϕ̃, 1− lã) and nψ̃ := max(nψ, hD,−lψ̃, ⌈
nϕ̃−lb̃+1

2
⌉). Then we must

have

ϕ(2 ·−k0) =
nϕ̃−1∑
k=nϕ

ã(k0 − 2k)
T
ϕ(·−k)+

nψ̃−1∑
k=nψ

b̃(k0 − 2k)
T

ψ(·−k), ∀mϕ ⩽ k0 < nϕ̃. (5.58)

Now we can rewrite/combine (5.57) and (5.58) together into the following equivalent form:

ϕ̊L(2·) = ÃL
T

ϕ̊L + B̃L

T

ψ̊L, (5.59)

where ϕ̊L := {ϕL} ∪ {ϕ(· − k) : nϕ ⩽ k < nϕ̃}, ψ̊L := {ψL} ∪ {ψ(· − k) : nψ ⩽ k < nψ̃},
and the matrices ÃL, B̃L are uniquely determined by A0, B0, {C(k)}hC−1

k=nϕ
, {D(k)}hD−1

k=nψ
and

the filters ã, b̃. If

ρ(ÃL) < 2−1/2, that is, the spectral radius of ÃL is less than 2−1/2, (5.60)
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then the following ϕ̃L and ψ̃L are well-defined compactly supported vector functions in L2([0,∞)):

ϕ̃L :=
∞∑
j=1

2j−1Ãj−1
L g̃(2j·) with g̃ := 2

∞∑
k=nϕ̃

Ã(k)ϕ̃(· − k), (5.61)

ψ̃L := 2B̃Lϕ̃
L(2·) + 2

∞∑
k=nϕ̃

B̃(k)ϕ̃(2 · −k), (5.62)

where the (#ϕ̊L)× (#ϕ) matrices Ã(k) and (#ψ̊L)× (#ϕ) matrices B̃(k), k ∈ Z are defined

by

Ã(k) :=


0(#ϕL)×(#ϕ)

ã(k − 2nϕ)
...

ã(k − 2(nϕ̃ − 1))

 and B̃(k) :=


0(#ψL)×(#ϕ)

b̃(k − 2nψ)
...

b̃(k − 2(nψ̃ − 1))

 , k ∈ Z. (5.63)

Then ASJ(Φ̃; Ψ̃)[0,∞) and ASJ(Φ;Ψ)[0,∞) form a pair of biorthogonal Riesz bases of L2([0,∞))

for every J ∈ Z, where Φ̃ := {ϕ̃L}∪{ϕ̃(·−k) : k ⩾ nϕ̃} and Ψ̃ := {ψ̃L}∪{ψ̃(·−k) : k ⩾ nψ̃}.

By item (3) of Theorem 5.2, items (i) and (ii) of Theorem 5.14 are necessary conditions

on Ψ for ASJ(Φ;Ψ)[0,∞) to be a Riesz basis of L2([0,∞)) satisfying both (5.17) and (5.18).

We often take nψ ∈ Z to be the smallest integer such that ψ(· − k) ∈ S1(Φ) for all k ⩾ nψ.

We now discuss how to construct all possible

ψL ⊆ span({ϕL(2·)} ∪ {ϕ(2 · −k) : nϕ ⩽ k < mϕ + n0})

satisfying both items (i) and (ii) of Theorem 5.14. Since Φ(2·) is a Riesz basis of S1(Φ), we

observe that

η =
∑
h∈Φ

cη(h)h(2·) with cη := {cη(h)}h∈Φ ∈ ℓ2(Φ), for η ∈ S1(Φ).

Let S := ϕL ∪ ϕE and T := {ϕ(· − k) : k ⩾ mϕ}. Then Φ = S ∪ T and we can write

cη = cηχS + cηχT for all η ∈ S1(Φ). Define H := Φ ∪ {ψ(· − k) : k ⩾ nψ}. By (5.5)

and (5.17), we have S0(H) ⊆ S1(Φ). Now we can find a finite subset H0 ⊆ H such that

M0 := {cηχS : η ∈ H0} is a basis of the finite-dimensional space spanned by cηχS, η ∈ H.

In other words, H0 ∪ T (2·) is another Riesz basis of S1(Φ). Next we find a generating set
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(not necessarily a basis) ψb of the finite-dimensional space

W := {g ∈ span({ϕL(2·)} ∪ {ϕ(2 · −k) : nϕ ⩽ k < mϕ + n0}) : vm(g) ⩾ m},

which is not empty by taking n0 large enough (we often set n0 = 0). If ψ(·−k) ∈ W for some

k ∈ Z, to have as many interior wavelets as possible, then we always keep ψ(·−k) in ψb. We

now find a subset ψL ⊆ ψb such that M0 ∪M1 is a basis of R#S, where M1 := {cηχS : η ∈
ψL}. Since both Φ(2·) and H0 ∪ T (2·) are Riesz bases of S1(Φ), item (i) must hold for the

constructed ψL. We now prove that ψL satisfies item (ii) of Theorem 5.14. Let η ∈ S. Then

cη(2·) = δη ∈ R#S. SinceM0∪M1 is a basis of R#S, byM0∪M1 = {chχS : h ∈ ψL∪H0}, we
have cη(2·) =

∑
h∈ψL∪H0

dη,hchχS for some dη,h ∈ C. Observing ch = chχS + chχT , we obtain

cη(2·) −
∑

h∈ψL∪H0

dη,hch = −
∑

h∈ψL∪H0

dη,hchχT .

Using the refinable structure in (5.5) and (5.17), we conclude that every sequence ch for

h ∈ ψL ∪ H must have only finitely many nonzero entries. Hence, by H0 ⊆ H, the se-

quence
∑

h∈ψL∪H0
dη,hchχT has only finitely many nonzero entries. Therefore, we conclude

from (5.41) that
∑

h∈ψL∪H0
dη,hchχT must be a finite linear combination of elements in H.

Consequently, η(2·)−
∑

h∈ψL∪H0
dη,hh must be a finite linear combination of elements in H.

This proves item (ii) of Theorem 5.14.

Instead of constructing Ψ first in Theorem 5.14, we can first construct Φ̃ satisfying item

(ii) of Theorem 5.7 below. Then construct Ψ by Proposition 5.11 and Ψ̃ by Proposition 5.12.

The classical approach in Section 5.3 can be improved by the following result, whose proof

is given in Section 5.8.

Theorem 5.15. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) satisfying items (1)–(4) of Theorem 5.1.

Suppose that Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} ⊆ L2([0,∞)) with ϕL having compact support

satisfies item (i) of Theorem 5.7 and Φ is a Riesz sequence in L2([0,∞)). Let nϕ̃ be chosen

as in item (S1) of Algorithm 5.2. Define N := #ϕL+(nϕ̃−nϕ)(#ϕ) and let ÃL be an N×N
matrix satisfying (5.60). For a finitely supported sequence Ã of N × (#ϕ) matrices, define

ϕ̃L as in (5.61). By Theorem 5.13, ϕ̃L is a well-defined compactly supported vector function

in L2([0,∞)) ∩Hτ (R) for some τ > 0. If

ÃLAL
T
+

∞∑
k=nϕ̃

Ã(k)A(k)
T
= IN , (5.64)
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where AL and {A(k)}∞k=nϕ̃ are augmented version in (5.17) with ϕL being replaced by ϕ̊L :=

{ϕL} ∪ {ϕ(· − k) : nϕ ⩽ k < nϕ̃}, then Φ̃ is biorthogonal to Φ and satisfies item (ii) of

Theorem 5.7, where Φ̃ := {ϕ̃L} ∪ {ϕ̃(· − k) : k ⩾ nϕ̃}.

If Φ̃ is biorthogonal to Φ, then (5.64) must hold. Hence, (5.64) is a necessary condition

for the biorthogonality between Φ̃ and Φ. Theorem 5.15 generalizes Algorithm 5.2 for the

classical approach.

5.5 Biorthogonal wavelets on [0,∞) satisfying homoge-

neous boundary conditions

In this section we study (bi)orthogonal wavelets on [0,∞) satisfying given boundary condi-

tions.

For a polynomial p(x) =
∑∞

j=0 cjx
j, it is convenient to use the notation p( d

dx
) =

∑∞
j=0 cj

dj

dxj

for a differential operator. Let I := [0,∞). To study wavelets on I with general homoge-

neous boundary conditions such as Robin boundary conditions, it is necessary for us to study

nonstationary wavelet systems in L2(I). For subsets Φj and Ψj of functions in L2(I) with
j ∈ Z, we define

ASJ(ΦJ ; {Ψj}∞j=J)I := {2J/2φ(2J ·) : φ ∈ ΦJ} ∪ {2j/2η(2j·) : η ∈ Ψj, j ⩾ J}, J ∈ Z.
(5.65)

If Φj = Φ and Ψj = Ψ for all j ∈ Z, then ASJ(ΦJ ; {Ψj}∞j=J)[0,∞) = ASJ(Φ;Ψ)[0,∞) as in (5.1).

For wavelets Ψj(2
j·), j ⩾ J satisfying prescribed boundary conditions, the following result

shows that all the elements in ASJ(ΦJ ; {Ψj}∞j=J) must satisfy the same prescribed boundary

conditions.

Theorem 5.16. Let J ∈ Z and I = [0,∞). Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported

biorthogonal wavelet in L2(R) satisfying items (1)–(4) of Theorem 5.1. Let nϕ ∈ Z such that

fsupp(η(·−k0)) ⊆ I for all k0 ⩾ nϕ and η ∈ ϕ∪ψ∪ϕ̃∪ψ̃. Let {ϕLJ , ϕ̃LJ}∪{ψLj , ψ̃Lj }∞j=J ⊆ L2(I)
have compact support and satisfy limj→∞ 2−jhψ̃Lj = 0, where [lψ̃Lj , hψ̃Lj ] := fsupp(ψ̃Lj ). Define

ΦJ and Ψj, j ⩾ J by

ΦJ := {ϕLJ} ∪ {ϕ(· − k) : k ⩾ nϕ}, Ψj := {ψLj } ∪ {ψ(· − k) : k ⩾ nϕ} (5.66)

and

Φ̃J := {ϕ̃LJ} ∪ {ϕ̃(· − k) : k ⩾ nϕ}, Ψ̃j := {ψ̃Lj } ∪ {ψ̃(· − k) : k ⩾ nϕ}.
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Suppose that ASJ(ΦJ ; {Ψj}∞j=J)I and ASJ(Φ̃J ; {Ψ̃j}∞j=J)I form a pair of biorthogonal Riesz

bases in L2(I). Let p0, . . . , pℓ ∈ Pm−1 be polynomials of degree less than m. Suppose that

each function η ∈ ASJ(ΦJ ; {Ψj}∞j=J)I has continuous derivatives of all orders less than m

on [0, εη) for some εη > 0. If all the wavelet functions in ASJ(ΦJ ; {Ψj}∞j=J)I satisfy the

following homogeneous boundary conditions prescribed by p0, . . . , pℓ as follows:

p0(
d
dx
)(η(2jx))|x=0 = · · · = pℓ(

d
dx
)(η(2jx))|x=0 = 0 ∀ η ∈ Ψj, j ⩾ J, (5.67)

then the refinable functions ΦJ(2
J ·) in ASJ(ΦJ ; {Ψj}∞j=J)I must satisfy the same boundary

conditions

p0(
d
dx
)(φ(2Jx))|x=0 = · · · = pℓ(

d
dx
)(φ(2Jx))|x=0 = 0 ∀ φ ∈ ΦJ . (5.68)

That is, if all the elements in {2j/2η(2j·) : η ∈ Ψj, j ⩾ J} satisfy the homogeneous boundary

conditions in (5.67), then all elements in ASJ(ΦJ ; {Ψj}∞j=J)I must satisfy the same boundary

conditions.

Proof. Let ε > 0 and consider functions f ∈ L2([2ε,∞)). Since

ASJ(ΦJ ; {Ψj}∞j=J)I and ASJ(Φ̃J ; {Ψ̃j}∞j=J)I

form a pair of biorthogonal Riesz bases of L2(I), we have

f(x) =
∑
φ∈Φ

2J⟨f, φ̃(2J ·)⟩φ(2Jx) +
∞∑
j=J

∑
η∈Ψj

2j⟨f, η̃(2j·)⟩η(2jx).

Because limj→∞ 2−jhψ̃Lj = 0 and supp(ψ̃Lj (2
j·)) ⊆ [0, 2−jhψ̃Lj ], there exists J̃ε ∈ N such that

supp(ψ̃Lj (2
j·)) ⊆ [0, 2ε], ∀ j ⩾ J̃ε. (5.69)

Since ϕ, ψ, ϕ̃ and ψ̃ have compact support, we assume that all of them are supported inside

[−N,N ] for someN ∈ N. Since supp(η(2j ·−k)) ⊆ [2−j(k−N), 2−j(k+N)] for η ∈ ϕ∪ψ∪ϕ̃∪ψ̃,
we observe

supp(ψ̃(2j · −k)) ⊆ [0, 2ε], ∀ nϕ ⩽ k ⩽ 2j+1ε−N (5.70)

and

supp(ϕ(2j · −k)) ∪ supp(ψ(2j · −k)) ⊆ [ε,∞), ∀ k ⩾ 2jε+N. (5.71)

Let Jε ∈ N such that Jε ⩾ max(J̃ε, log2
2N
ε
). For j ⩾ Jε and k ∈ Z, then either k ⩽ 2j+1ε−N

or k ⩾ 2jε+N must hold. Consequently, one of (5.70) and (5.71) must hold for all k ⩾ nϕ.
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Hence, by supp(f) ⊆ [2ε,∞) and Jε ⩾ J̃ε, we deduce from (5.70) and (5.71) that

⟨f, η̃(2j·)⟩η(2jx) = 0 ∀ x ∈ [0, ε), η ∈ Ψj, j ⩾ Jε. (5.72)

From (5.71), for x ∈ [0, ε), we have ⟨f, ϕ̃(2J · −k)⟩ϕ(2Jx − k) = 0 for all k ⩾ 2Jε + N and

⟨f, ψ̃(2j · −k)⟩ψ(2jx − k) = 0 for all k ⩾ 2jε + N . Consequently, by (5.71) and (5.72), we

obtain

f(x) =⟨f, (ϕ̃LJ )J ;0⟩(ϕLJ )J ;0(x) +
⌊2jε+N⌋∑
k=nϕ

⟨f, ϕ̃J ;k⟩ϕJ ;k(x)

+
Jε−1∑
j=J

(
⟨f, (ψ̃Lj )j;0⟩(ψLj )j;0(x) +

⌊2jε+N⌋∑
k=nϕ

⟨f, ψ̃j;k⟩ψj;k(x)
) (5.73)

for almost every x ∈ [0, ε), where ψj;k := 2j/2ψ(2j · −k). By assumption, each function

η ∈ ASJ(ΦJ ; {Ψj}∞j=J)I is continuous on [0, εη) and has continuous derivatives of all orders

less than m on [0, εη) for some εη > 0. Because there are only finitely many terms in (5.73),

there must exist 0 < ε0 < ε such that (5.73) holds for all x ∈ [0, ε0) and all terms in (5.73)

have continuous derivatives of all orders less than m on [0, ε0). Applying our assumption in

(5.67) and using the fact supp(f) ⊂ [2ε,∞), we conclude from (5.73) that pi(
d
dx
)f(x)|x=0 = 0

and

2J⟨f, ϕ̃LJ (2J ·)⟩pi( ddx)ϕ
L
J (2

Jx)|x=0 +

⌊2jε+N⌋∑
k=nϕ

2J⟨f, ϕ̃(2J · −k)⟩pi( ddx)ϕ(2
Jx− k)|x=0 = 0 (5.74)

for all i = 0, . . . , ℓ. By the choice of nϕ satisfying (5.13), supp(ϕ(· − k)) ⊆ [1,∞) for all

k ⩾ nϕ + 1 and hence trivially pi(
d
dx
)ϕ(2Jx − k)|x=0 = 0. For simplicity, we may group

ϕ(· − nϕ) into ϕ
L. Hence, (5.74) becomes

⟨f, ϕ̃LJ (2J ·)⟩pi( ddx)ϕ
L
J (2

Jx)|x=0 = 0, ∀ i = 0, . . . , ℓ and f ∈ L2([2ε,∞)). (5.75)

In particular, (5.75) must hold with ε = 0. Since ϕ̃LJ must be a Riesz sequence, the mapping

L2([0,∞)) → C#ϕ̃LJ with f 7→ ⟨f, ϕ̃LJ (2J ·)⟩ is onto. Consequently, we deduce from (5.75) that

(5.68) holds for all φ ∈ ϕLJ , from which we conclude that (5.68) holds for all φ ∈ ΦJ .

As a direct consequence of Theorem 5.16, we now claim that any orthogonal wavelet

basis on [0,∞) satisfying boundary conditions often cannot have high vanishing moments.

Theorem 5.17. Let J ∈ Z and I = [0,∞). Let {ϕ;ψ} be a compactly supported or-
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thogonal wavelet in L2(R). Let {ϕLJ} ∪ {ψLj }∞j=J ⊆ L2(I) have compact support and satisfy

limj→∞ 2−jhψLj = 0, where [lψLj , hψLj ] := fsupp(ψLj ). Let nϕ ∈ Z such that fsupp(η(·−k0)) ⊆ I
for all k0 ⩾ nϕ and η ∈ ϕ ∪ ψ. Define ΦJ and Ψj, j ⩾ J as in (5.66). Let p0, . . . , pℓ ∈ Pm−1

and define nB to be the largest nonnegative integer such that

pi(
d
dx
)(xj)|x=0 = 0 ∀ i = 0, . . . , ℓ and j = 0, . . . , nB − 1. (5.76)

Suppose that each function η ∈ ASJ(ΦJ ; {Ψj}∞j=J)I has continuous derivatives of all orders

less than m on [0, εη) for some εη > 0. If ASJ(ΦJ ; {Ψj}∞j=J)I is an orthonormal basis of L2(I)
such that the boundary conditions in (5.67) are satisfied, then for any j0 ∈ N, there exists at

least one element ηj0 ∈ ∪∞
j=j0

Ψj such that ηj0 has no more than nB vanishing moments, i.e.,

vm(ηj0) ⩽ nB.

Proof. Suppose not. Then there exists j0 ∈ N such that all the elements in ∪∞
j=j0

Ψj have

nB + 1 vanishing moments. Since ϕ and ψ have compact support, we can assume that ϕ

and ψ are supported inside [−N,N ] for some N ∈ N. Define ε := 21−j0N > 0 and let

h : [0,∞) → R be a compactly supported continuous function such that h(x) = 1 for all

x ∈ [0, 2ε]. Define f(x) := xnBh(x). Then f ∈ L2(I) has compact support and f(x) = xnB

for all x ∈ [0, 2ε]. Noting that supp(η(2j · −k)) ⊆ [2−j(k−N), 2−j(k+N)] for all η ∈ ϕ∪ψ,
we can easily verify that (5.71) holds and

supp(ψ(2j · −k)) ⊂ [0, 2ε], ∀ nϕ ⩽ k ⩽ 2j+1ε−N. (5.77)

By limj→∞ 2−jhψLj = 0, there exists an integer J̃ε ⩾ j0 such that supp(ψLj (2
j·)) ⊆ [0, 2ε] for

all j ⩾ J̃ε. Since f(x) = xnB for x ∈ [0, 2ε] and all elements in ∪∞
j=j0

Ψj have nB+1 vanishing

moments, we have ⟨f, ψLj (2j·)⟩ = 0 for all j ⩾ J̃ε. Let Jε ∈ N such that Jε ⩾ max(J̃ε, log2
2N
ε
).

Note that Jε ⩾ j0 by ε = 21−j0N . For all j ⩾ Jε, one of (5.71) and (5.77) must hold. Now

it follows from the same argument as in the proof of Theorem 5.16 that

f(x) =⟨f, (ϕLJ )J ;0⟩(ϕLJ )J ;0(x) +
⌊2jε+N⌋∑
k=nϕ

⟨f, ϕJ ;k⟩ϕJ ;k(x)

+
Jε−1∑
j=J

(
⟨f, (ψLj )j;0⟩(ψLj )j;0(x) +

⌊2jε+N⌋∑
k=nϕ

⟨f, ψj;k⟩ψj;k(x)
) (5.78)

for almost every x ∈ [0, ε), and there exists 0 < ε0 < ε such that (5.78) holds for all x ∈ [0, ε0)

and all terms in (5.78) have continuous derivatives of all orders less than m on [0, ε0).

On the other hand, all the conditions in Theorem 5.16 are satisfied. Consequently,
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all the elements in ASJ(ΦJ ; {Ψj}∞j=J)I must satisfy the prescribed homogeneous boundary

conditions. Therefore, we deduce from (5.78) that pi(
d
dx
)f(x)|x=0 = 0 for all i = 0, . . . , ℓ.

Because f(x) = xnB for all x ∈ [0, 2ε], we conclude that (5.76) holds with nB being replaced

by nB+1, which contradicts the definition of the maximum integer nB in (5.76). This proves

the claim.

A popular choice of homogeneous boundary conditions in the literature is

p0(
d
dx
) =

dj0

dxj0
, . . . , pℓ(

d
dx
) =

djℓ

dxjℓ
with 0 ⩽ j0 < . . . < jℓ < m. (5.79)

Moreover, the particular choice j0 = 0, . . . , jℓ = ℓ in (5.79) is commonly used in the varia-

tional formulation of the boundary value problems in numerical partial differential equations,

where the derivatives are in the weak/distributional sense and boundary values at 0 are in-

terpreted in the trace sense. Spline scalar wavelets on [0, 1] satisfying homogeneous Dirichlet

boundary conditions have been addressed in [18, 20, 35, 39, 71, 73, 88] and references therein.

Let (ASJ(Φ̃; Ψ̃)[0,∞),ASJ(Φ;Ψ)[0,∞)) be a (stationary) biorthogonal wavelet on [0,∞). Let

p0, . . . , pℓ ∈ Pm−1. It is easy to check that (5.67) holds with Ψj := Ψ for all j ⩾ J if and only

if p( d
dx
)η(x)|x=0 = 0 for all η ∈ Ψ and p ∈ P := span{p0(2j·), . . . , pℓ(2j·) : j ⩾ J}. Note

that P is generated by all the nonzero monomial terms in the polynomials p0, . . . , pℓ. Hence,

if span{p0, . . . , pℓ} does not have a basis of monomials as in (5.79), then the dimension of

P will be greater than ℓ + 1. To avoid increasing the number of boundary conditions, it is

necessary to consider nonstationary wavelets in (5.65). To construct a biorthogonal wavelet

(ASJ(Φ̃; Ψ̃)[0,∞),ASJ(Φ;Ψ)[0,∞)) on [0,∞) such that

dj0

dxj0
η(x)|x=0 = · · · = djℓ

dxjℓ
η(x)|x=0 = 0, ∀ η ∈ Ψ,

by Theorem 5.16 and the refinable structure in (5.17) and (5.18), it is necessary and sufficient

that
dj0

dxj0
φ(x)|x=0 = · · · = djℓ

dxjℓ
φ(x)|x=0 = 0, ∀φ ∈ Φ. (5.80)

Consequently, (5.80) holds if and only if all the elements in ASJ(Φ;Ψ)[0,∞) satisfies the same

prescribed homogeneous boundary conditions given by (5.79). For Φ satisfying the boundary

conditions in (5.80), to achieve high approximation orders near the endpoint 0, it is important

to have

Pm−1χ[0,∞) ⊆ span{p0χ[0,∞), . . . , pℓχ[0,∞)}+ S0(Φ) with p0, . . . , pℓ in (5.79). (5.81)

For any Φ satisfying item (i) of Theorem 5.7, we can easily obtain a new Φbc satisfying item
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(i) of Theorem 5.7 and the boundary conditions in (5.80).

Proposition 5.18. Let Φ = {ϕL} ∪ {ϕ(· − k) : k ⩾ nϕ} ⊆ L2([0,∞)) satisfy item

(i) of Theorem 5.7, where ϕL and ϕ have compact support. Let p(x) := (xj0 , . . . , xjℓ)T

with {j0, . . . , jℓ} ⊆ {0, 1, . . . ,m − 1}. Suppose that every element η ∈ Φ has continuous

derivatives of all order less than m on [0, εη) for some εη > 0. Then there exists an invertible

(#ϕL +#ϕ)× (#ϕL +#ϕ) matrix CϕL such that

Mp(ϕ
L,I) = {0} and Mp(ϕ

L,E) is a basis of span(Mp(Φ)) with

[
ϕL,E

ϕL,I

]
:= CϕL

[
ϕL

ϕ(· − nϕ)

]
,

(5.82)

where Mp(S) := {p( d
dx
)η(x)|x=0 : η ∈ S} for S ⊆ S0(Φ). Then

Φbc := {ϕL,I} ∪ {ϕ(· − k) : k ⩾ nϕ + 1}

satisfies item (i) of Theorem 5.7, the homogeneous boundary conditions p( d
dx
)η(x)|x=0 = 0

for all η ∈ Φbc, and S0(Φ
bc) = {η ∈ S0(Φ) : p( d

dx
)η(x)|x=0 = 0}.

Proof. Note that fsupp(ϕ(· − k)) ⊆ [1,∞) for all k ⩾ nϕ + 1. Trivially, p( d
dx
)ϕ(x− k)|x=0 =

0 for all k ⩾ nϕ + 1. Thus, Mp(Φ) = Mp(ϕ
L ∪ ϕ(· − nϕ)), which is a finite subset of

R#p. Therefore, there exists an invertible matrix CϕL such that (5.82) holds. Hence, all

the elements in Φbc satisfy the homogeneous boundary conditions prescribed by p. Since

S0(ϕ
L,E ∪ Φbc) = S0(Φ) and CϕL is invertible, by (5.13) and (5.17), we have

η =
∑

f∈ϕL,E
cη(f)f(2·)+

∑
f∈ϕL,I

cη(f)f(2·)+
∞∑

k=nϕ+1

cη(ϕ(·−k))ϕ(2 ·−k), η ∈ S0(Φ). (5.83)

Because Mp(g) = {0} for all g ∈ Φbc, for η ∈ S0(Φ) with Mp(η) = {0} in (5.83), we have

{0} =Mp(η) = [cη(f)]f∈ϕL,EMp(ϕ
L,E(2·)) = [cη(f)]f∈ϕL,E diag(2

j0 , . . . , 2jℓ)Mp(ϕ
L,E).

Since Mp(ϕ
L,E) is linearly independent, the above identity forces cη(f) = 0 for all f ∈ ϕL,E.

By (5.83), η =
∑

f∈ϕL,I cη(f)f(2·)+
∑∞

k=nϕ+1 cη(ϕ(·−k))ϕ(2 ·−k) for all η ∈ Φbc. This proves

(5.17) and (5.13) for Φbc with nϕ being replaced by nϕ + 1. Hence, Φbc satisfies item (i) of

Theorem 5.7. The identity S0(Φ
bc) = {η ∈ S0(Φ) : p( d

dx
)η(x)|x=0 = 0} follows directly from

(5.82) and (5.83).
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5.6 Orthogonal and biorthogonal wavelets on bounded

intervals

In this section we discuss how to construct locally supported biorthogonal wavelets on a

bounded interval [0, N ] with N ∈ N from compactly supported biorthogonal wavelets on

[0,∞).

Recall that N0 := N ∪ {0} and fj;k := 2j/2f(2j · −k) for j, k ∈ Z. We remind the

reader that a vector function is also used as an ordered set and vice versa throughout the

paper. Using the classical approach in Section 5.3 or the direct approach in Section 5.4 for

constructing (bi)orthogonal wavelets on [0,∞), we now discuss how to construct a locally

supported (bi)orthogonal wavelet in L2([0, N ]) with N ∈ N from a compactly supported

biorthogonal wavelet in L2(R). We shall provide a detailed proof in Section 5.8 for the

following result, which is often employed but without a proof in the literature.

Theorem 5.19. Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be a compactly supported biorthogonal wavelet in L2(R)
with a biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) satisfying items (1)–(4) of Theorem 5.1.

A locally supported biorthogonal wavelet on the interval [0, N ] with N ∈ N can be constructed

as follows:

(S1) From the biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) in L2(R), use either the classical ap-

proach in Section 5.3 or the direct approach in Section 5.4 to construct compactly

supported Φ,Ψ, Φ̃, Ψ̃ as in (5.2) and (5.15) such that (ASJ(Φ̃; Ψ̃)[0,∞),ASJ(Φ;Ψ)[0,∞))

is a pair of biorthogonal Riesz bases in L2([0,∞)) for every J ∈ N0 and satisfies items

(i)–(iv) of Theorem 5.7.

(S2) Similarly, perform item (S1) to the (flipped) biorthogonal wavelet ({ ˜̊ϕ; ˜̊ψ}, {ϕ̊; ψ̊}) in

L2(R) to construct compactly supported Φ̊, Ψ̊,
˜̊
Φ,

˜̊
Ψ, where

ϕ̊ := ϕ(−·), ψ̊ := ψ(−·), ˜̊
ϕ := ϕ̃(−·), ˜̊

ψ := ψ̃(−·), (5.84)

such that (ASJ(
˜̊
Φ;

˜̊
Ψ)[0,∞),ASJ(Φ̊; Ψ̊)[0,∞)) is a pair of biorthogonal Riesz bases in

L2([0,∞)) for every J ∈ N0 and satisfies items (i)–(iv) of Theorem 5.7 similarly.

(S3) Let J0 be the smallest nonnegative integer such that

max(hA+nϕ̊, hB+nϕ̊, hÅ+nϕ, hB̊+nϕ, 2nϕ+2nϕ̊−2, 2nψ+2nψ̊−2) ⩽ 2J0+1N (5.85)
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and all elements in ϕL ∪ ψL ∪ ϕ̊L ∪ ψ̊L are supported inside [0, 2J0N ], where

[lA, hA] := fsupp(A), [lB, hB] := fsupp(B),

[lÃ, hÃ] := fsupp(Ã), [lB̃, hB̃] := fsupp(B̃)
(5.86)

for the finitely supported filters A,B, Ã, B̃ in (5.17), (5.18), (5.19), and (5.20), respec-

tively. The integers hÅ, hB̊ and h ˜̊
A
, h ˜̊

B
are defined similarly.

(S4) Let J̃0 be the smallest nonnegative integer such that

max(hÃ+n ˜̊
ϕ
, hB̃+n ˜̊

ϕ
, h ˜̊

A
+nϕ̃, h ˜̊

B
+nϕ̃, 2nϕ̃+2n ˜̊

ϕ
−2, 2nψ̃+2n ˜̊

ψ
−2) ⩽ 2J̃0+1N, (5.87)

all elements in ϕ̃L ∪ ψ̃L ∪ ˜̊
ϕL ∪ ˜̊

ψL are supported inside [0, 2J̃0N ], and for all j ⩾ J̃0,

{ϕLj;0, ψLj;0} ⊥ {ϕ̃Rj;2jN−N , ψ̃
R
j;2jN−N} and {ϕ̃Lj;0, ψ̃Lj;0} ⊥ {ϕRj;2jN−N , ψ

R
j;2jN−N}, (5.88)

where the right boundary refinable functions and right boundary wavelets are defined

by

ϕR := ϕ̊L(N − ·), ψR := ψ̊L(N − ·), ϕ̃R :=
˜̊
ϕL(N − ·), ψ̃R :=

˜̊
ψL(N − ·). (5.89)

Without loss of generality, we assume J0 ⩽ J̃0. Then the following statements hold:

(1) for each j ⩾ J0, there exist matrices Aj and Bj such that Φj = AjΦj+1 and Ψj =

BjΦj+1 with #Ψj = #Φj+1 −#Φj = 2jN(#ϕ) and #Φj = #ϕL +#ϕ̊L + (2jN − nϕ̊−
nϕ + 1)(#ϕ), where

Φj := {ϕLj;0} ∪ {ϕj;k : nϕ ⩽ k ⩽ 2jN − nϕ̊} ∪ {ϕRj;2jN−N}, (5.90)

Ψj := {ψLj;0} ∪ {ψj;k : nψ ⩽ k ⩽ 2jN − nψ̊} ∪ {ψRj;2jN−N}. (5.91)

(2) for every j ⩾ J̃0, there exist matrices Ãj and B̃j such that Φ̃j = ÃjΦ̃j+1 and Ψ̃j =

B̃jΦ̃j+1 hold with #Ψ̃j = #Ψj = 2jN(#ϕ) and #Φ̃j = #Φj, where

Φ̃j := {ϕ̃Lj;0} ∪ {ϕ̃j;k : nϕ̃ ⩽ k ⩽ 2jN − n ˜̊
ϕ
} ∪ {ϕ̃Rj;2jN−N}, (5.92)

Ψ̃j := {ψ̃Lj;0} ∪ {ψ̃j;k : nψ̃ ⩽ k ⩽ 2jN − n ˜̊
ψ
} ∪ {ψ̃Rj;2jN−N}. (5.93)

(3) For every J ⩾ J̃0, (B̃J ,BJ) forms a pair of biorthogonal Riesz bases of L2([0, N ])

and for all integers j ⩾ J̃0, the matrix [Aj
T
, Bj

T
] must be an invertible square matrix
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satisfying[
Ãj

B̃j

]
= [Aj

T
, Bj

T
]−1, that is,

[
Ãj

B̃j

]
[Aj

T
, Bj

T
] =

[
Aj

Bj

]
[Ãj

T

, B̃j

T

] = I#Φj+1
,

(5.94)

where BJ := ΦJ ∪ {Ψj : j ⩾ J} and B̃J := Φ̃J ∪ {Ψ̃j : j ⩾ J}.

(4) Pm−1χ[0,N ] ⊆ span(Φj) for some (or all) j ⩾ J̃0 if and only if vm(ψ̃L ∪ ψ̃R ∪ ψ̃) ⩾ m.

Similarly, Pm̃−1χ[0,N ] ⊆ span(Φ̃j) for some (or all) j ⩾ J̃0 if and only if vm(ψL ∪ψR ∪
ψ) ⩾ m̃.

(5) If [AJ
T
, BJ

T
] is invertible for every J0 ⩽ J < J̃0, then (B̃J ,BJ) forms a pair of biorthog-

onal Riesz bases of L2([0, N ]) for every J0 ⩽ J < J̃0, where we recursively define

Φ̃j := ÃjΦ̃j+1 and Ψ̃j := B̃jΦ̃j+1 for j going from J̃0 − 1 to J0 with the matrices Ãj

and B̃j in (5.94).

We now make some remarks on Theorem 5.19. Note that there are no interior elements

of Φj in (5.90) if 2jN < nϕ+nϕ̊. Since J0 is often much smaller than J̃0, item (5) allows us to

have a locally supported Riesz basis BJ0 with simple structures and the smallest coarse scale

level J0. Suppose that ϕ = (ϕ1, . . . , ϕr)T, ψ = (ψ1, . . . , ψr)T, ϕ̃, ψ̃ ∈ (L2(R))r in Theorem 5.19

have the following symmetry:

ϕℓ(cϕℓ − ·) = ϵϕℓϕ
ℓ, ϕ̃ℓ(cϕℓ − ·) = ϵϕℓ ϕ̃

ℓ with cϕℓ ∈ Z, ϵϕℓ ∈ {−1, 1}, ℓ = 1, . . . , r, (5.95)

ψℓ(cψℓ − ·) = ϵψℓ ψ
ℓ, ψ̃ℓ(cψℓ − ·) = ϵψℓ ψ̃

ℓ with cψℓ ∈ Z, ϵψℓ ∈ {−1, 1}, ℓ = 1, . . . , r. (5.96)

As a consequence of the above symmetry property, up to a possible sign change of some

elements, AS0(ϕ(−·);ψ(−·)) is the same as AS0(ϕ;ψ), while AS0(ϕ̃(−·); ψ̃(−·)) is the same

as AS0(ϕ̃; ψ̃). Hence, using the definition in (5.84), for item (S2) in Theorem 5.19 we can

simply choose

Φ̊ = {ϕL} ∪ {ϕ̊ℓ(· − k) : k ⩾ nϕ + cϕℓ }
r
ℓ=1, Ψ̊ = {ψL} ∪ {ψ̊ℓ(· − k) : k ⩾ nψ + cψℓ }

r
ℓ=1,

(5.97)

˜̊
Φ = {ϕ̃L} ∪ { ˜̊ϕℓ(· − k) : k ⩾ nϕ̃ + cϕℓ }

r
ℓ=1,

˜̊
Φ = {ψ̃L} ∪ { ˜̊ψℓ(· − k) : k ⩾ nψ̃ + cψℓ }

r
ℓ=1.

(5.98)

In other words, up to a possible sign change of some elements, Φ̊, Ψ̊,
˜̊
Φ, and

˜̊
Ψ are the same

as Φ,Ψ, Φ̃, Ψ̃, respectively. If a compactly supported biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ})
in L2(R) has the symmetry properties in (5.95) and (5.96), then we always take Φ̊ and Ψ̊ in
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(5.97) and
˜̊
Φ and

˜̊
Ψ in (5.98) for item (S2) in Theorem 5.19 for all our examples in the next

section.

5.7 Examples of orthogonal and biorthogonal wavelets

on [0, 1]

In this section we provide a few examples to illustrate our general construction methods

and algorithms. Since the construction of orthogonal wavelets on [0, 1] is much simpler

than biorthogonal wavelets on [0, 1], let us first provide a few examples of orthogonal mul-

tiwavelets on [0, 1] by Algorithm 5.1 such that the boundary wavelets have the same or-

der of vanishing moments as the interior wavelets. We shall provide examples of wavelets

on [0, 1] satisfying homogeneous boundary conditions as well. All our examples have the

polynomial reproduction property in (5.81) for Φ satisfying (5.80), i.e., for m := sr(a),

Pm−1 ⊆ span({xn : 0 ⩽ n ⩽ ℓ}) + span(Φj) holds on [0, 1] and h(n)(0) = h(n)(1) = 0 for

all 0 ⩽ n ⩽ ℓ, h ∈ Φj and j ⩾ J0, where ℓ = −1 (no boundary conditions) or ℓ ∈ {0, 1}.
To avoid possible confusion, we shall use the notations ϕL,bc, ϕL,bc1 for ϕL, and ψL,bc, ψL,bc1

for ψL if they satisfy the homogeneous Dirichlet boundary conditions for ℓ = 0 or ℓ = 1,

respectively.

Before presenting our examples, let us recall a technical quantity. For τ ∈ R, recall
that ϕ ∈ (Hτ (R))r if

∫
R ∥ϕ̂(ξ)∥

2
l2
(1 + |ξ|2)τdξ < ∞. We define the smoothness exponent

sm(ϕ) := sup{τ ∈ R : ϕ ∈ (Hτ (R))r}. For a, ã ∈ (l0(Z))r×r, let ϕ, ϕ̃ be compactly supported

distributions satisfying ϕ̂(2ξ) = â(ξ)ϕ̂(ξ) and ̂̃ϕ(2ξ) = ̂̃a(ξ)̂̃ϕ(ξ) with ϕ̂(0)
T̂̃ϕ(0) = 1. It is

known (e.g., see [71, Theorem 6.4.5] and [66]) that items (1) and (2) in Theorem 5.1 can

be equivalently replaced by sm(a) > 0 and sm(ã) > 0, where the technical quantity sm(a)

is defined in [71, (5.6.44)] (also see [66, (4.3)] and [68, (3.2)]) and can be computed (see

[89], [66, Theorem 7.1], and [71, Theorem 5.8.4]). The quantity sm(a) is closely linked

to the smoothness of a refinable vector function ϕ through the inequality sm(ϕ) ⩾ sm(a).

For any refinable vector function ϕ in a biorthogonal wavelet, {ϕ(· − k) : k ∈ Z} must

be a Riesz sequence in L2(R) and hence we always have sm(ϕ) = sm(a) (e.g., see [71,

Theorem 6.3.3]). See [30, 65, 66, 68, 71, 89, 93] for more details on smoothness sm(ϕ) of

refinable vector functions and the quantity sm(a). Recall that sr(a) is the highest order

of sum rules satisfied by the filter a in (5.23), while vm(ψ) stands for the highest order

of vanishing moments satisfied by ψ. We shall always take nψ in Theorem 5.14 to be the

smallest integer such that ψ(· − k) ∈ S1(Φ) for all k ⩾ nψ.

In what follows, we present three examples. For more examples, see [75, Section 7].
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Example 5.2. Consider the compactly supported orthogonal wavelet {ϕ;ψ} in [40] satisfying
ϕ̂(2ξ) = â(ξ)ϕ̂(ξ) and ψ̂(2ξ) = b̂(ξ)ϕ̂(ξ) with ϕ̂(0) = (

√
7/33,

√
3/4,

√
5/132)T and an

associated finitely supported orthogonal wavelet filter bank {a; b} given by

a =


0 −

√
2
√
154(3+2

√
5)

7392

√
2
√
14(2+5

√
5)

2464

0 0 0

0 0 0


−

3
44 −

√
5

22

√
2
√
154(67+30

√
5)

7392

√
2
√
14(−10+

√
5)

224

0 0 0

0 0 0

 ,


1
2

√
2
√
154(67−30

√
5)

7392

√
2
√
14(10+

√
5)

224

0 3
8

√
2
√
22(−4+

√
5)

176

0
√
2
√
22(32+7

√
5)

528 − 5
88 +

√
5

22

 ,

− 3

44 +
√
5

22

√
2
√
154(−3+2

√
5)

7392

√
2
√
14(−2+5

√
5)

2464√
2
√
154

44
3
8

√
2
√
22(4+

√
5)

176

−
√
2
√
70

44

√
2
√
22(−32+7

√
5)

528 − 5
88 −

√
5

22




[−2,1]

,

b =



0 0 0

0
√
2
√
154(3+2

√
5)

7392 −
√
2
√
14(2+5

√
5)

2464

0 −
√
2
√
7(1+

√
5)

672

√
2
√
77(−1+3

√
5)

2464

 ,


0 0 0

3
44 +

√
5

22 −
√
2
√
154(67+30

√
5)

7392

√
2(10−

√
5)

√
14

224

−
√
2
√
11(1+

√
5)

88

√
2
√
7(29+13

√
5)

672

√
2
√
77(−75+17

√
5)

2464

 ,

0

√
2
√
77(−2+

√
5)

528

√
2
√
7(13−6

√
5)

176

1
2

√
2
√
154(−67+30

√
5)

7392 −
√
2
√
14(10+

√
5)

224

0
√
2
√
7(−29+13

√
5)

672 −
√
2
√
77(75+17

√
5)

2464

 ,


13
√
2

44 −
√
2
√
77(

√
5+2)

528 −
√
2
√
7(13+6

√
5)

176

3
44 −

√
5

22

√
2
√
154(3−2

√
5)

7392

√
2(2−5

√
5)

√
14

2464√
2
√
11(1−

√
5)

88

√
2
√
7(1−

√
5)

672 −
√
2
√
77(3

√
5+1)

2464




[−2,1]

.

Note that ϕ = (ϕ1, ϕ2, ϕ3)T is a continuous piecewise linear vector function without sym-

metry and fsupp(ϕ) = fsupp(ψ) = [−1, 1]. Then sm(a) = 1.5, sr(a) = 2, and its matching

filter υ ∈ (l0(Z))1×2 with υ̂(0)ϕ̂(0) = 1 is given by υ̂(0) = (
√

7/33,
√
3/2,

√
5/132) and

υ̂′(0) = i(0,
√
3/4,

√
165/132−

√
1/33). By item (i) of Proposition 5.4 with nϕ = 2, the left

boundary refinable vector functions consisting of interior elements ϕ2, ϕ3, ϕ(· − 1) and a true

boundary element

ϕL :=

√
7(7+

√
5)

22
ϕ1χ[0,∞) satisfying ϕL = ϕL(2·) + 2[

√
7(7+

√
5)

22
, 0, 0]a(1)ϕ(2 · −1).

Hence, we can reset nϕ := 1 and use only {ϕL, ϕ2, ϕ3} as the left boundary refinable vector

function. Let [a(k)]j,: denote the jth row of the matrix a(k). Using nϕ = 1 and nψ = 1 in

Algorithm 5.1, we obtain the left boundary wavelet {ψL, ψ1} with #ψL = 1 as follows:

ψL := 2
(
[1
2
, 0, 0] + λ1[b(0)]3,:

)
ϕL(2·) + 2λ1[b(1)]3,:ϕ(2 · −1) with λ1 :=

1
2

√
7(7−

√
5)

11
.

Note that ϕ̊ = (ϕ̊1, ϕ̊2, ϕ̊3)T := ϕ(−·) has no symmetry. Using item (ii) of Proposition 5.4

with p(x) = (1, x)T, we have nϕ̊ = 1 and the left boundary refinable vector function

ϕ̊L :=
√
14√

7+
√
5
ϕ̊1χ[0,∞) satisfying

ϕ̊L = ϕ̊L(2·) + 2
√
14√

7+
√
5
[a(−1)]1,:ϕ̊(2 · −1)

+ 2
√
14√

7+
√
5
[a(−2)]1,:ϕ̊(2 · −2).
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Using nψ̊ = 1 in Algorithm 5.1, we obtain the left boundary wavelet ψ̊L with #ψ̊L = 1 as

follows:

ψ̊L := ϕ̊L(2·) + 2λ2[b(−1)]2,:ϕ̊(2 · −1) + 2λ2[b(−2)]2,:ϕ̊(2 · −2) with λ2 :=

√
7(7−

√
5)

22
.

By (5.89), we have ϕR := ϕ̊L(1 − ·) and ψR := ψ̊L(1 − ·). According to Algorithm 5.1 and

Theorem 5.19 with N = 1, we conclude that BJ = ΦJ ∪ {Ψj : j ⩾ J} is an orthonormal

basis of L2([0, 1]) for every J ∈ N0, where Φj and Ψj in (5.90) and (5.91) with nϕ = nψ =

nϕ̊ = nψ̊ = 1 are given by

Φj = {ϕLj;0, ϕ2
j;0, ϕ

3
j;0} ∪ {ϕj;k : 1 ⩽ k ⩽ 2j − 1} ∪ {ϕRj;2j−1},

Ψj = {ψLj;0, ψ1
j;0} ∪ {ψj;k : 1 ⩽ k ⩽ 2j − 1} ∪ {ψRj;2j−1},

with #ϕL = #ϕR = ψL = ψR = 1, #Φj = 3(2j) + 1 and #Ψj = 3(2j). Note that

vm(ψL) = vm(ψR) = vm(ψ) = 2 = sr(a) and P1χ[0,1] ⊂ span(Φj) for all j ∈ N0.

Using the classical approach in Section 5.3 and Theorem 5.19, we obtain a Riesz basis

BbcJ := Φbc
J ∪ {Ψbc

j : j ⩾ J} of L2([0, 1]) for every J ⩾ J0 := 1 such that h(0) = h(1) = 0 for

all h ∈ BbcJ , where

Φbc
j = {ϕ2

j;0, ϕ
3
j;0, ϕj;1} ∪ {ϕj;k : 2 ⩽ k ⩽ 2j − 2} ∪ {ϕj;2j−1},

Ψbc
j = {ψL,bcj;0 , ψ

1
j;0, ψj;1} ∪ {ψj;k : 2 ⩽ k ⩽ 2j − 2} ∪ {ψj;2j−1, ψ

R,bc
j;2j−1

}

with #ψL,bc = #ψR,bc = 1, #Φbc
j = 3(2j) − 1 and #Ψbc

j = 3(2j), where ψR,bc := ψ̊L,bc(1 − ·)
and

ψL,bc := −
√
11(4+

√
5)

33
ϕ2(2·) + ϕ3(2·) +

[
0,

√
11(4−

√
5)

33
, 1
]
ϕ(2 · −1),

ψ̊L,bc :=
[

2√
7
,
√
11(

√
5−4)

33
,−1

]
ϕ̊(2 · −1).

Note that vm(ψL,bc) = vm(ψR,bc) = vm(ψ) = 2 and Φbc
j = Φj\{ϕLj;0, ϕRj;2j−1} as in Proposi-

tion 5.18. Moreover, the dual Riesz basis B̃bcJ of BbcJ is given by B̃bcJ = Φ̃bc
j ∪ {Ψ̃bc

j : j ⩾ J}
with J ⩾ J̃0 = 2 and

Φ̃bc
j = {ϕ̃L,bcj;0 } ∪ {ϕj;k : 2 ⩽ k ⩽ 2j − 2} ∪ {ϕ̃R,bc

j;2j−1}, with ϕ̃R,bc :=
˜̊
ϕL,bc(1− ·),

Ψ̃bc
j = {ψ̃L,bcj;0 } ∪ {ψj;k : 2 ⩽ k ⩽ 2j − 2} ∪ {ψ̃R,bc

j;2j−1
}, with ψ̃R,bc :=

˜̊
ψL,bc(1− ·),
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#ϕ̃L,bc = #ψ̃L,bc = 5, #ϕ̃R,bc = 3, and #ψ̃R,bc = 4, where

ϕ̃L,bc :=
√

22
7(7+

√
5)

[
0, 4

√
7(4−

√
5)

11
, 21−8

√
5

11
, 0, 0

]T
ϕL + [ϕ2(· − 1), ϕ3(· − 1), ϕ(· − 2)]T,

˜̊
ϕL,bc := λ−1

2

[
21+8

√
5

11
, 0,−4

√
7(4+

√
5)

11

]T
ϕ̊L + ϕ̊(· − 1),

ψ̃L,bc :=



√
11(114−51

√
5)

104
315−54

√
5

104
9
√
7(−2+

√
5)

26
3
√
11(−2+

√
5)

104
18

√
5−27

104
3
√
154(31

√
5−69)

1144

√
14(167

√
5−41)

1144

√
2(207−49

√
5)

143
−3

√
154(3

√
5−1)

1144
−9

√
14(1+

√
5)

104

0 0 0 0 0
3
√
77(6

√
5−13)

308

√
7(27

√
5−86)

308
8−2

√
5

11
−3

√
77(3+2

√
5)

308
−

√
7(−6+

√
5)

28

−3
√
14(5

√
5−11)

56
−

√
154(25

√
5−67)

616

√
22(

√
5−3)

11
3
√
14(1+

√
5)

56

√
154(13

√
5−47)

616


ϕ̃L,bc(2·)

+

[
02×3

2b(0)

]
ϕ(2 · −2) +

[
02×3

2b(1)

]
ϕ(2 · −3),

˜̊
ψL,bc :=


−

√
2(837+377

√
5)

11
3
√
154(1503

√
5+3361)

616
−

√
14(8683

√
5+19321)

616
8+2

√
5

11
−3

√
77(13+6

√
5)

308

√
7(27

√
5+86)

308√
22(

√
5+3)

11
−3

√
14(11+5

√
5)

56

√
154(67+25

√
5)

616√
7(504+225

√
5)

11
−

√
11(1347

√
5+3012)

44
2592

√
5+5715
44

 ˜̊
ϕL,bc(2·)

+


0 −3

√
154(189+83

√
5)

616
9
√
14(13

√
5+31)

56

1 3
√
77(−3+2

√
5)

308
−

√
7(6+

√
5)

28

0 3
√
14(

√
5−1)

56
−

√
154(13

√
5+47)

616

0
√
11(75

√
5+168)

44
−81+36

√
5

4

ϕ̊(2 · −2) +

[
2b(−1)

01×3

]
ϕ̊(2 · −3)

+

[
2b(−2)

01×3

]
ϕ̊(2 · −4).

Note that ϕ̃L,bc and
˜̊
ϕL,bc satisfy the refinement equation in (5.19) as follows:

ϕ̃L,bc =


3
4

√
11(−4+

√
5)

44

√
77
11

3
4

√
11(4+

√
5)

44

−9
√
11(−4+

√
5)

44
65−8

√
5

44

√
7(−4+

√
5)

11
3
√
11(−4+

√
5)

44
−1

4√
77(39−18

√
5)

308

√
7(86−27

√
5)

308
2
√
5−8
11

√
77(9+6

√
5)

308

√
7(
√
5−6)

28

02×5

ϕ̃L,bc(2·)

+

[
02×3

2a(0)

]
ϕ(2 · −2) +

[
02×3

2a(1)

]
ϕ(2 · −3),

˜̊
ϕL,bc =

−8+2
√
5

11

√
77(18

√
5+39)

308
−

√
7(27

√
5+86)

308√
77
11

3
4

√
11(4+

√
5)

44√
7(4+

√
5)

11
−9

√
11(4+

√
5)

44
65+8

√
5

44

 ˜̊ϕL,bc(2·)
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+

1 −
√
77(6

√
5−9)

308

√
7(6+

√
5)

28

0 3
4

√
11(−4+

√
5)

44

0 3
√
11(4+

√
5)

44
−1

4

ϕ(2 · −2) + 2a(−1)ϕ(2 · −3) + 2a(−2)ϕ(2 · −4).

We can also directly check that all the conditions in Theorem 5.14 are satisfied for the Riesz

basis BbcJ with J ⩾ 2. To avoid complicated presentation, we only mention that the condition

in (5.60) is satisfied with ρ(ÃbcL ) = 1/2 for both left and right dual boundary elements. Note

that the dual Riesz basis B̃bcJ for J = 1 has to be computed via item (5) of Theorem 5.19.

See Fig. 5.1 for the graphs of ϕ, ψ and all boundary elements.
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Figure 5.1: The generators of the orthonormal basis BJ and the Riesz basis BbcJ of L2([0, 1])
in Example 5.2 with J ⩾ 1 such that h(0) = h(1) = 0 for all h ∈ BbcJ . The black, red, and
blue lines correspond to the first, second, and third components of a vector function. Note that
vm(ψL) = vm(ψR) = vm(ψL,bc) = vm(ψR,bc) = vm(ψ) = 2.

Example 5.3. Using the CBC algorithm in [65, 71], we construct a biorthogonal wavelet

({ϕ̃; ψ̃}, {ϕ;ψ}) with ϕ̂(0) = ̂̃ϕ(0) = (1, 0)T and a biorthogonal wavelet filter bank ({ã; b̃}, {a; b})
given by

a =

{[
1
4

3
8

− 1
16

− 1
16

]
,

[
1
2

0

0 1
4

]
,

[
1
4

−3
8

1
16

− 1
16

]}
[−1,1]

,

b =

{[
0 0

2
97

24
679

]
,

[
−1

2
−15

4

77
1164

2921
2761

]
,

[
1 0

0 1

]
,

[
−1

2
15
4

− 77
1164

2921
2761

]
,

[
0 0

− 2
97

24
679

]}
[−2,2]

,

153



ã =

{[
− 13

2432
− 91

29184

3
152

7
608

]
,

[
39

2432
13

3648

− 9
152

− 1
76

]
,

[
− 1

12
− 1699

43776

679
1216

4225
14592

]
,

[
569
2432

647
10944

−1965
1216

−37
96

]
,

[
2471
3648

0

0 7291
7296

]
,

[
569
2432

− 647
10944

1965
1216

−37
96

]
,

[
− 1

12
1699
43776

− 679
1216

4225
14592

]
,

[
39

2432
− 13

3648

9
152

− 1
76

]
,

[
− 13

2432
91

29184

− 3
152

7
608

]}
[−4,4]

,

b̃ =

{[
− 1

4864
− 7

58368

0 0

]
,

[
3

4864
1

7296

0 0

]
,

[
1
24

2161
87552

− 679
4864

− 4753
58368

]
,

[
− 611

4864
− 605

21888

2037
4864

679
7296

]
,

[
1219
7296

0

0 7469
29814

]
,

[
− 611

4864
605

21888

−2037
4864

679
7296

]
,

[
1
24

− 2161
87552

679
4864

− 4753
58368

]
,

[
3

4864
− 1

7296

0 0

]
,

[
− 1

4864
7

58368

0 0

]}
[−4,4]

.

Note that ϕ is the well-known Hermite cubic splines with fsupp(ϕ) = [−1, 1]. Note that

fsupp(ψ) = [−2, 2] and fsupp(ϕ̃) = fsupp(ψ̃) = [−4, 4]. Then sm(a) = 2.5, sm(ã) = 0.281008,

sr(a) = sr(ã) = 4, and the matching filters υ, υ̃ ∈ (l0(Z))1×2 with υ̂(0)ϕ̂(0) = ̂̃υ(0)̂̃ϕ(0) = 1

are given (see [65, 66]) by υ̂(0, 0) = (1, 0), υ̂′(0) = (0, i), υ̂′′(0) = υ̂′′′(0) = (0, 0) and

̂̃υ(0) = (1, 0), υ̂′(0) = i(0, 1
15
), ̂̃υ′′(0) = (− 2

15
, 0), υ̂′′′(0) = i(0,− 2

105
).

We use the direct approach as discussed in Section 5.4. By item (i) of Proposition 5.4 with

nϕ = 1, the left boundary refinable vector function is ϕL := ϕχ[0,∞) with #ϕL = 2 and

satisfies

ϕL = (ϕL1 , ϕ
L
2 )

T := (ϕL1 (2·), 12ϕ
L
2 (2·))T + 2a(1)ϕ(2 · −1). (5.99)

Taking nψ = 2 and mϕ = 7 in Theorem 5.14, we have

ψL =

ψ
L
1

ψL2

ψL3

 :=

ϕ
L
1 (2·)
ϕL2 (2·)

0

+


31
54

533
36

1
36

7
4

1 390
61

ϕ(2 · −1) +

−
29
27

59
9

−1
9

2
3

−52
61

660
61

ϕ(2 · −2) +

 0 0

0 0

− 9
61

0

ϕ(2 · −3),

which satisfies items (i) and (ii) of Theorem 5.14 with fsupp(C) = [1, 5], fsupp(D) = [2, 5]
and

A0 =

[
79
64

49043
394624

− 54639
98656

− 1399
24664

48111
49328

3653
24664

− 97227
98656

1341
6166

64593
197312

− 152367
789248

675
197312

− 75
98656

− 225
197312

525
789248

− 279
64

− 58639
394624

823347
98656

− 6135
24664

− 561771
49328

− 33789
24664

1097199
98656

− 30279
12332

− 729081
197312

1718679
789248

− 7155
197312

795
98656

2385
197312

− 5565
789248

]T

,

B0 =

 − 15
64

− 49043
394624

54639
98656

1399
24664

− 48111
49328

− 3653
24664

97227
98656

− 1341
6166

− 64593
197312

152367
789248

− 675
197312

75
98656

225
197312

− 525
789248

279
128

847887
789248

− 823347
197312

6135
49328

561771
98656

33789
49328

− 1097199
197312

30279
24664

729081
394624

− 1718679
1578496

7155
394624

− 795
197312

− 2385
394624

5565
1578496

61
9216

1222501
170477568

− 282125
4735488

− 82289
2663712

2913787
7103232

1504321
10654848

− 847107
1578496

46787
394624

563091
3156992

− 1325957
12627968

4941
3156992

− 549
1578496

− 1647
3156992

3843
12627968


T

,

C(1) =

[
− 1

256
− 113627

14206464
95129

1183872
10735
221976

552251
591936

33025
887904

− 8905
394624

− 247
98656

4459
2367744

− 324935
28412928

13351
789248

− 13351
3551616

− 13351
2367744

93457
28412928

3
128

99131
2367744

− 80633
197312

− 8923
36996

− 363803
98656

− 4033
147984

1200891
197312

− 67723
49328

− 806635
394624

5513543
4735488

18123
394624

− 6041
591936

− 6041
394624

42287
4735488

]T

,

C(2) =

[
0 − 19

221976
19

18498
19

27747
247
9249

76
27747

513
6166

285
3083

16363565
22493568

− 7958533
269922816

1757267
7497856

− 1997741
33740352

− 772
9249

5248657
134961408

0 679
1183872

− 679
98656

− 679
147984

− 8827
49328

− 679
36996

− 54999
98656

− 30555
49328

− 329829
937232

565273
468616

3023955
1874464

− 360659
937232

− 54999
98656

2166985
7497856

]T

,

C(3) =

[
0 − 13

2367744
13

197312
13

295968
169

98656
13

73992
1053

197312
585

98656
− 23611

295968
− 72635

1775808
46169
197312

52487
887904

15235991
22493568

455
89974272

0 1
49328

− 3
12332

− 1
6166

− 39
6166

− 2
3083

− 243
12332

− 135
6166

2044109
3748928

13373051
44987136

− 6058455
3748928

− 2167229
5623392

15
468616

22477733
22493568

]T

,
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C(4) =

[
01×8 − 13

2432
− 91

29184
39

2432
13

3648
− 1

12
− 1699

43776

01×8
3

152
7

608
− 9

152
− 1

76
679
1216

4225
14592

]T

, C(5) =

[
01×12 − 13

2432
− 91

29184

01×12
3

152
7

608

]T

,

D(2) =

[
0 19

443952
− 19

36996
− 19

55494
− 247

18498
− 38

27747
− 513

12332
− 285

6166
6259489
44987136

8864935
539845632

− 1886753
14995712

1868255
67480704

386
9249

− 6673003
269922816

0 − 679
4735488

679
394624

679
591936

8827
197312

679
147984

54999
394624

30555
197312

18333
197312

79443
394624

− 164997
394624

18333
197312

54999
394624

− 128331
1578496

]T

,

D(3) =

[
0 − 1

4735488
1

394624
1

591936
13

197312
1

147984
81

394624
45

197312
24745
591936

87377
3551616

− 49571
394624

− 49085
1775808

7516339
44987136

35
179948544

0 0 0 0 0 0 0 0 − 679
4864

− 4753
58368

2037
4864

679
7296

0 7469
29184

]T

,

D(4) =

[
01×8 − 1

4864
− 7

58368
3

4864
1

7296
1
24

2161
87552

01×8 0 0 0 0 − 679
4864

− 4753
58368

]T

, D(5) =

[
01×12 − 1

4864
− 7

58368
01×12 0 0

]T
.

Since (5.60) is satisfied with ρ(ÃL) = 1/2, we conclude from Theorems 5.14 and 5.19

with N = 1 that BJ = ΦJ ∪ {Ψj : j ⩾ J} is a Riesz basis of L2([0, 1]) for all J ⩾ J0 := 2,

where Φj and Ψj in (5.90) and (5.91) with nϕ = nϕ̊ = 1 and nψ = nψ̊ = 2 are given by

ϕR := ϕL(1− ·), ψR := ψL(1− ·) and

Φj := {ϕLj;0, ϕj;1, ϕj;2, ϕj;3} ∪ {ϕj;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ϕRj;2j−1, ϕj;2j−1, ϕj;2j−2, ϕj;2j−3},

Ψj := {ψLj;0, ψj;2, ψj;3} ∪ {ψj;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ψRj;2j−1, ψj;2j−2, ψj;2j−3},

with #ϕL = #ϕR = 2, #ψL = #ψR = 3, #Φj = 2j+1 + 2 and #Ψj = 2j+1. Note

that vm(ψL) = vm(ψR) = vm(ψ) = 4 = sr(ã). The dual Riesz basis B̃j of Bj with j ⩾

J̃0 := 3 is given by Theorem 5.14 through (5.61) and (5.62). We rewrite ϕ̃L in (5.61) as

{ϕ̃L, ϕ̃(· − 4), ϕ̃(· − 5), ϕ̃(· − 6)} with true boundary elements ϕ̃L and #ϕ̃L = 8, and rewrite

ψ̃L in (5.62) as {ψ̃L, ψ̃(·−4), ψ̃(·−5)} with true boundary elements ψ̃L and #ψ̃L = 7. Hence,

B̃J = Φ̃J ∪ {Ψ̃j : j ⩾ J} for J ⩾ 3 is given by

Φ̃j := {ϕ̃Lj;0} ∪ {ϕ̃j;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ϕ̃Rj;2j−1}, with ϕ̃R := ϕ̃L(1− ·),

Ψ̃j := {ψ̃Lj;0} ∪ {ψ̃j;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ψ̃Rj;2j−1}, with ψ̃R := ψ̃L(1− ·).

Note that vm(ψ̃L) = vm(ψ̃R) = vm(ψ̃) = 4 = sr(a) and P3χ[0,1] ⊂ span(Φj) for all j ⩾ 2.

According to Theorem 5.19 withN = 1, (B̃J ,BJ) forms a biorthogonal Riesz basis of L2([0, 1])

for every J ⩾ 3.

By item (ii) of Proposition 5.4 with nϕ = 1 and p(x) = (x, x2, x3)T, the left bound-

ary refinable vector function is ϕL,bc := ϕL2 (the second entry of ϕL) and satisfies ϕL,bc =
1
2
ϕL,bc(2·)+ [1

8
,−1

8
]ϕ(2 · −1) by (5.99). Taking nψ = 2 and mϕ = 7 in Theorem 5.14, we have

ψL,bc := (ψL,bc1 , ψL2 , ψ
L
3 )

T with

ψL,bc1 := ψL1 − ϕL1 (2·)− [1121
2376

, 533
36
]ϕ(2 · −1) + [989

594
, 17
18
]ϕ(2 · −2) + [−61

88
, 195

44
]ϕ(2 · −3)

with #ψL,bc = 3 satisfying both items (i) and (ii) of Theorem 5.14, where Abc0 , B
bc
0 , C

bc,

and Dbc can be easily derived from A0, B0, C, and D. More precisely, Abc0 is obtained

from U−1A0 by taking out its first row and first column, and Bbc
0 , C

bc, Dbc are obtained from
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U−1B0, U
−1C,U−1D, respectively by removing their first rows, where the invertible matrix

U is given by

U := I14 +B0

[
−1 0 −1121

2376
−533

36
989
594

17
18

−61
88

195
44

01×6

02×14

]
.

Since (5.60) is satisfied with ρ(ÃbcL ) = 1/2, we conclude from Theorems 5.14 and 5.19 that

BbcJ = Φbc
J ∪ {Ψbc

j : j ⩾ J} is a Riesz basis of L2([0, 1]) for every J ⩾ J0 := 2 such that

h(0) = h(1) = 0 for all h ∈ BbcJ , where Φbc
j and Ψbc

j in (5.90) and (5.91) with nϕ = nϕ̊ = 1

and nψ = nψ̊ = 2 are given by

Φbc
j := {ϕL,bcj;0 , ϕj;1, ϕj;2, ϕj;3} ∪ {ϕj;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ϕR,bc

j;2j−1
, ϕj;2j−1, ϕj;2j−2, ϕj;2j−3},

Ψbc
j := {ψL,bcj;0 , ψj;2, ψj;3} ∪ {ψj;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ψR,bc

j;2j−1
, ψj;2j−2, ψj;2j−3},

where ϕR,bc := ϕL,bc(1 − ·) and ψR,bc := ψL,bc(1 − ·) with #ϕL,bc = 1, #ψL,bc = 3, and

#Φbc
j = #Ψbc

j = 2j+1. For the case j = 2, Φbc
2 = {ϕL,bc2;0 , ϕ2;1, ϕ2;2, ϕ2;3, ϕ

R,bc
2;3 } and Ψbc

2 =

{ψL,bc2;0 , ψ2;2, ψ
R,bc
2;3 } after removing repeated elements. Note vm(ψL,bc) = vm(ψR,bc) = vm(ψ) =

4 and Φbc
j = Φj\{(ϕL1 )j;0, (ϕR1 )j;2j−1} as in Proposition 5.18. The dual Riesz basis B̃bcj of Bbcj

with j ⩾ J̃0 := 3 is given by Theorem 5.14 through (5.61) and (5.62). We rewrite ϕ̃L,bc in

(5.61) as {ϕ̃L,bc, ϕ̃(·−4), ϕ̃(·−5), ϕ̃(·−6)} with true boundary elements ϕ̃L,bc and #ϕ̃L,bc = 7,

and ψ̃L,bc in (5.62) as {ψ̃L,bc, ψ̃(· − 4), ψ̃(· − 5)} with true boundary elements ψ̃L,bc and

#ψ̃L,bc = 7. Hence, B̃bcJ = Φ̃bc
J ∪ {Ψ̃bc

j : j ⩾ J} is given by

Φ̃bc
j := {ϕ̃L,bcj;0 } ∪ {ϕ̃j;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ϕ̃R,bc

j;2j−1
}, with ϕ̃R,bc := ϕ̃L,bc(1− ·),

Ψ̃bc
j := {ψ̃L,bcj;0 } ∪ {ψ̃j;k : 4 ⩽ k ⩽ 2j − 4} ∪ {ψ̃R,bc

j;2j−1
}, with ψ̃R,bc := ψ̃L,bc(1− ·).

Note that vm(ψ̃L,bc) = vm(ψ̃R,bc) = 0 and {xχ[0,1], x
2χ[0,1], x

3χ[0,1]} ⊂ span(Φbc
j ) for all j ⩾ 2.

By Theorem 5.19 with N = 1, (B̃bcJ ,BbcJ ) forms a biorthogonal Riesz basis of L2([0, 1]) for

every J ⩾ 3.

By item (ii) of Proposition 5.4 with nϕ = 1 and p(x) = (x2, x3)T, we have ϕL,bc1 := ∅.
Taking nψ = 2 and mϕ = 7 in Theorem 5.14, we have ψL,bc1 := (ψL,bc1 , ψL,bc12 , ψL3 ) with

ψL,bc12 := ψL2 −ϕL2 (2·)− [ 1
36
, 7
4
]ϕ(2 ·−1)+[10

9
, 1048

183
]ϕ(2 ·−2)− [52

61
,−660

61
]ϕ(2 ·−3)− [ 9

61
, 0]ϕ(2 ·−4)

with #ψL,bc1 = 3 satisfying both items (i) and (ii) of Theorem 5.14, where Abc10 is obtained

from V −1A0 by taking out its first two rows and the first two columns, and Bbc1
0 , Cbc1, Dbc1

are obtained from V −1B0, V
−1C, V −1D, respectively by removing their first two rows, where
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the invertible matrix V is given by

V := I14 +B0


−1 0 −1121

2376
−533

36
989
594

17
18

−61
88

195
44

0 01×5

0 −1 − 1
36

−7
4

10
9

1048
183

−52
61

660
61

− 9
61

01×5

01×14

.
Since (5.60) is satisfied with ρ(Ãbc1L ) = 1/2, we conclude from Theorems 5.14 and 5.19 with

N = 1 that Bbc1J = Φbc1
J ∪ {Ψbc1

j : j ⩾ J} is a Riesz basis of L2([0, 1]) for every J ⩾ J0 := 2

such that h(0) = h′(0) = h(1) = h′(1) = 0 for all h ∈ Bbc1J , where Φbc1
j and Ψbc1

j in (5.90) and

(5.91) with nϕ = nϕ̊ = 1 and nψ = nψ̊ = 2 are given by: for j = 2, 3,

Φbc1
j := {ϕj;k : 1 ⩽ k ⩽ 2j − 1}, Ψbc1

j := {ψL,bc1j;0 } ∪ {ψj;k : 2 ⩽ k ⩽ 2j − 2} ∪ {ψR,bc1
j;2j−1

},

where ψR,bc1 := ψL,bc1(1− ·) with #ψL,bc1 = #ψR,bc1 = 3, and for j ⩾ 4,

Φbc1
j := {ϕj;k : 1 ⩽ k ⩽ 4} ∪ {ϕj;k : 5 ⩽ k ⩽ 2j − 5} ∪ {ϕj;2j−k : 1 ⩽ k ⩽ 4},

Ψbc1
j := {ψL,bc1j;0 , ψj;2, ψj;3, ψj;4} ∪ {ψj;k : 5 ⩽ k ⩽ 2j − 5} ∪ {ψR,bc1

j;2j−1
, ψj;2j−2, ψj;2j−3, ψj;2j−4},

with #Φbc1
j = 2j+1 − 2 and #Ψbc1

j = 2j+1. Note that vm(ψL,bc1) = vm(ψR,bc1) = vm(ψ) = 4

and Φbc1
j = Φbc

j \{ϕ
L,bc
j;0 , ϕ

R,bc
j,2j−1

} = Φj\{ϕLj;0, ϕRj;2j−1} as in Proposition 5.18. We rewrite ϕ̃L,bc1

in (5.61) as {ϕ̃L,bc1, ϕ̃(· − 5), ϕ̃(· − 6)} with true boundary elements ϕ̃L,bc1 and #ϕ̃L,bc1 = 8.

Note that #ψ̃L,bc1 = 9. The dual Riesz basis B̃bc1J := Φ̃bc1
J ∪ {Ψ̃bc1

j : j ⩾ J} of Bbc1j with

j ⩾ J̃0 := 4 is given by

Φ̃bc1
j := {ϕ̃L,bc1j;0 } ∪ {ϕ̃j;k : 5 ⩽ k ⩽ 2j − 5} ∪ {ϕ̃R,bc1

j;2j−1
}, with ϕ̃R,bc1 := ϕ̃L,bc1(1− ·),

Ψ̃bc1
j := {ψ̃L,bc1j;0 } ∪ {ψ̃j;k : 5 ⩽ k ⩽ 2j − 5} ∪ {ψ̃R,bc1

j;2j−1
}, with ψ̃R,bc1 := ψ̃L,bc1(1− ·).

Note that vm(ψ̃L,bc1) = vm(ψ̃R,bc1) = 0 and {x2χ[0,1], x
3χ[0,1]} ⊂ span(Φbc1

j ) for all j ⩾ 2.

According to Theorem 5.19 with N = 1, (B̃bc1J ,Bbc1J ) forms a biorthogonal Riesz basis of

L2([0, 1]) for every J ⩾ 4. See Fig. 5.2 for the graphs of ϕ, ψ and their associated boundary

elements.

Example 5.4. Consider the scalar biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) in [29] with ϕ̂(0) =̂̃ϕ(0) = 1 and a biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) given by

a =
{

1
4
, 1
2
, 1
4

}
[−1,1]

, b =
{
−1

8
,−1

4
, 3
4
,−1

4
,−1

8

}
[−1,3]

,

ã =
{
−1

8
, 1
4
, 3
4
, 1
4
,−1

8

}
[−2,2]

, b̃ =
{
−1

4
, 1
2
,−1

4

}
[0,2]

.
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Figure 5.2: The generators of the Riesz bases BJ , BbcJ , Bbc1J for L2([0, 1]) with J ⩾ 2 in Example 5.3
such that η(0) = η(1) for all η ∈ BbcJ and h(0) = h′(0) = h(1) = h′(1) = 0 for all h ∈ Bbc1J . The
black, red, and blue lines correspond to the first, second, and third components of a vector function.
Note that ϕL,bc in BbcJ is the second entry of ϕL, ϕL,bc1 = ∅ in Bbc1J , and vm(ψL) = vm(ψL,bc) =
vm(ψL,bc1) = vm(ψ) = 4.

Then, sm(a) = 1.5, sm(ã) ≈ 0.440765, and sr(a) = sr(ã) = 2. Note that ϕ is a piecewise

linear function. By item (i) of Proposition 5.4 with nϕ = 1, we have the left boundary

refinable function ϕL := ϕχ[0,∞) = ϕL(2·) + 1
2
ϕ(2 · −1). We use the direct approach in

Section 5.4. Taking nψ = 1 and mϕ = 4 in Theorem 5.14, we have ψL = ϕL(2·) − 5
6
ϕ(2 ·

−1) + 1
3
ϕ(2 · −2), which satisfies items (i) and (ii) of Theorem 5.14 with fsupp(C) = [1, 2],

fsupp(D) = [1, 1], and

A0 = [2
3
, 2
3
,−1

3
, 0]T, B0 = [1

3
,−2

3
, 1
3
, 0]T, C(1) = [− 7

72
, 7
36
, 7
9
, 1
4
]T,

C(2) = [ 1
72
,− 1

36
,−1

9
, 1
4
]T, D(1) = [ 1

36
,− 1

18
,−2

9
, 1
2
]T.

Since (5.60) is satisfied with ρ(ÃL) = 1/2, we conclude from Theorems 5.14 and 5.19 with

N = 1 that BJ = ΦJ ∪ {Ψj : j ⩾ J} is a Riesz basis of L2([0, 1]) for all J ⩾ J0 := 1, where

Φj and Ψj in (5.90) and (5.91) with nϕ = nϕ̊ = nψ = 1 and nψ̊ = 2 are given by

Φj := {ϕLj;0, ϕj;1, ϕj;2} ∪ {ϕj;k : 3 ⩽ k ⩽ 2j − 3} ∪ {ϕRj;2j−1, ϕj;2j−1, ϕj;2j−2},

Ψj := {ψLj;0, ψj;1} ∪ {ψj;k : 2 ⩽ k ⩽ 2j − 3} ∪ {ψRj;2j−1, ψj;2j−2},

where ϕR := ϕL(1−·) and ψR := ψL(1−·) with #ϕL = #ϕR = #ψL = #ψR = 1, #Φj = 2j+1

and #Ψj = 2j. For the cases j = 1 and j = 2, Φ1 = {ϕL1;0, ϕ1;1, ϕ
R
1;1}, Ψ1 = {ψL1;0, ψR1;1},
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and Φ2 = {ϕL2,0, ϕ2;1, ϕ2;2, ϕ2;3, ϕ
R
2;3} after removing repeated elements. Note that vm(ψL) =

vm(ψR) = vm(ψ) = 2 = sr(ã). The dual Riesz basis B̃j of Bj with j ⩾ J̃0 := 3 is given by

Theorem 5.14 through (5.61) and (5.62). We rewrite ϕ̃L in (5.61) as {ϕ̃L, ϕ̃(· − 3)} with true

boundary elements ϕ̃L and #ϕ̃L = 3, and rewrite ψ̃L in (5.62) as {ψ̃L, ψ̃(· − 2), ψ̃(· − 3)}
with true boundary elements ψ̃L and #ψ̃L = 2. Hence, B̃J = Φ̃J ∪ {Ψ̃j : j ⩾ J} for J ⩾ 3

is given by

Φ̃j := {ϕ̃Lj;0} ∪ {ϕ̃j;k : 3 ⩽ k ⩽ 2j − 3} ∪ {ϕ̃Rj;2j−1}, with ϕ̃R := ϕ̃L(1− ·),

Ψ̃j := {ψ̃Lj;0} ∪ {ψ̃j;k : 2 ⩽ k ⩽ 2j − 3} ∪ {ψ̃Rj;2j−1}, with ψ̃R := ψ̃L(1− ·).

Note that vm(ψ̃L) = vm(ψ̃R) = vm(ψ̃) = 2 = sr(a) and P1χ[0,1] ⊂ span(Φj) for all j ⩾ 1.

According to Theorem 5.19 withN = 1, (B̃J ,BJ) forms a biorthogonal Riesz basis of L2([0, 1])

for every J ⩾ 3.

By item (ii) of Proposition 5.4 with nϕ = 1 and p(x) = x, the left boundary refinable

vector function is ϕL,bc := ∅. Taking nψ = 1 andmϕ = 4 in Theorem 5.14, we have #ψL,bc = 1

and

ψL,bc := ψL − ϕL(2·) + 4
3
ϕ(2 · −1)− 4

3
ϕ(2 · −2) + 1

2
ϕ(2 · −3)

satisfying both items (i) and (ii) of Theorem 5.14, where Abc0 , B
bc
0 , C

bc, and Dbc can be

easily derived from A0, B0, C, and D. More precisely, Abc0 is obtained from U−1A0 by taking

out its first row and first column, and Bbc
0 , C

bc, Dbc are obtained from U−1B0, U
−1C,U−1D,

respectively by removing their first rows, where the invertible matrix U is given by

U := I4 +B0[−1, 4
3
,−4

3
, 1
2
].

Since (5.60) is satisfied with ρ(ÃbcL ) = 1/2, we conclude from Theorems 5.14 and 5.19 with

N = 1 that BbcJ = Φbc
J ∪ {Ψbc

j : j ⩾ J} is a Riesz basis of L2([0, 1]) for every J ⩾ J0 := 2

such that h(0) = h(1) = 0 for all h ∈ BbcJ , where Φbc
j and Ψbc

j in (5.90) and (5.91) with

nϕ = nϕ̊ = nψ = 1 and nψ̊ = 2 are given by

Φbc
j := {ϕj;1, ϕj;2} ∪ {ϕj;k : 3 ⩽ k ⩽ 2j − 3} ∪ {ϕj;2j−1, ϕj;2j−2},

Ψbc
j := {ψL,bcj;0 , ψj;1} ∪ {ψj;k : 2 ⩽ k ⩽ 2j − 3} ∪ {ψR,bc

j;2j−1
, ψj;2j−2},

where ϕL,bc = ϕR,bc = ∅ and ψR,bc := ψL,bc(1 − ·) with #ψL,bc = #ψR,bc = 1, #Φbc
j =

2j − 1, and #Ψbc
j = 2j. For the case j = 2, Φbc

2 = {ϕ2;1, ϕ2;2, ϕ2;3} after removing repeated

elements. Note that vm(ψL,bc) = vm(ψR,bc) = vm(ψ) = 2 and Φbc
j = Φj\{ϕLj;0, ϕRj;2j−1} as in

Proposition 5.18. We rewrite ϕ̃L,bc in (5.61) as {ϕ̃L,bc, ϕ̃(· − 3)} with true boundary elements
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ϕ̃L,bc and #ϕ̃L,bc = 2, and ψ̃L,bc in (5.62) as {ψ̃L,bc, ψ̃(· − 2), ψ̃(· − 3)} with true boundary

elements ψ̃L,bc and #ψ̃L,bc = 2. The dual Riesz basis B̃bcJ := Φ̃bc
J ∪ {Ψ̃bc

j : j ⩾ J} of BbcJ with

J ⩾ J̃0 := 3 is given by

Φ̃bc
j := {ϕ̃L,bcj;0 } ∪ {ϕ̃j;k : 3 ⩽ k ⩽ 2j − 3} ∪ {ϕ̃R,bc

j;2j−1
}, with ϕ̃R,bc := ϕ̃L,bc(1− ·),

Ψ̃bc
j := {ψ̃L,bcj;0 } ∪ {ψ̃j;k : 2 ⩽ k ⩽ 2j − 3} ∪ {ψ̃R,bc

j;2j−1
}, with ψ̃R,bc := ψ̃L,bc(1− ·).

Note xχ[0,1] ⊂ span(Φbc
j ) for all j ⩾ 2. By Theorem 5.19 with N = 1, (B̃bcJ ,BbcJ ) forms a

biorthogonal Riesz basis of L2([0, 1]) for J ⩾ 3. See Fig. 5.3 for the graphs of ϕ, ψ, ϕ̃, ψ̃ and

all boundary elements.
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Figure 5.3: The generators of the biorthogonal wavelet bases (B̃J ,BJ) and (B̃bcJ ,BbcJ ) of L2([0, 1])
for J ⩾ 3 in Example 5.4 with h(0) = h(1) = 0 for all h ∈ BbcJ . The black, red, and blue lines
correspond to the first, second, and third components of a vector function. Note that vm(ψL) =
vm(ψL,bc) = vm(ψ) = 2.
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5.8 Proofs of Theorems 5.2, 5.7, 5.10, 5.14, 5.15 and 5.19

In this section, we provide the detailed proofs for Theorems 5.2, 5.7, 5.10, 5.14, 5.15 and 5.19.

Proof of Theorem 5.2. Since nϕ ⩾ max(−lϕ,−la) and nψ ⩾ max(−lψ, nϕ−lb2
), the relations in

(5.13) and (5.14) must hold, see Section 5.2.2. Hence, AS0(Φ;Ψ)[0,∞) ⊆ L2([0,∞)). By our

assumption that AS0(Φ;Ψ)[0,∞) is a Riesz basis of L2([0,∞)), it must have a unique dual Riesz

basis, denoted by B̃ here, in L2([0,∞)). We first prove that B̃ = AS0(Φ̃; Ψ̃)[0,∞) for some Φ̃, Ψ̃

in (5.15). Since both ϕL and ψL have compact support, we have fsupp(ϕL) ∪ fsupp(ψL) ⊆
[0, N ] for some N ∈ N. Consequently, we have

supp(ϕL(2j·)) ∪ supp(ψL(2j·)) ⊆ [0, 2−jN ] ⊆ [0, N ] for all j ∈ N0.

We take nϕ̃ ⩾ max(−lϕ̃,−lã, nϕ) such that the supports of all ϕ̃(· − k), k ⩾ nϕ̃ do not

essentially overlap with [0, N ]. Similarly, we take nψ̃ ⩾ max(−lψ̃,
nϕ̃−lb̃

2
, nψ) such that the

supports of all ψ̃(· − k), k ⩾ nψ̃ do not essentially overlap with [0, N ]. Consequently, (5.21)

and (5.22) must hold and we trivially have

⟨ϕ̃(· − k0), ϕ
L(2j·)⟩ = 0, ⟨ϕ̃(· − k0), ψ

L(2j·)⟩ = 0, ∀ k0 ⩾ nϕ̃, j ∈ N0, (5.100)

and

⟨ψ̃(· − k0), ϕ
L(2j·)⟩ = 0, ⟨ψ̃(· − k0), ψ

L(2j·)⟩ = 0, ∀ k0 ⩾ nψ̃, j ∈ N0. (5.101)

Let k0 ⩾ nϕ̃ be arbitrarily fixed. Since ({ϕ̃; ψ̃}, {ϕ;ψ}) is a biorthogonal wavelet in L2(R),
it is trivial that

⟨ϕ̃(· − k0), ϕ(· − k0)⟩ = Ir and ⟨ϕ̃(· − k0), h⟩ = 0 ∀h ∈ AS0(ϕ;ψ)\{ϕ(· − k0)}.

In particular, we have ⟨ϕ̃(·−k0), ϕ(·−k)⟩ = 0 for all k ⩾ nϕ but k ̸= k0 and ⟨ϕ̃(·−k0), ψj;k⟩ =
0 for all j ∈ N0 and k ∈ Z. Now it follows from (5.100) that ϕ̃(· − k0) must be the

unique biorthogonal element/vector in L2([0,∞)) corresponding to the element ϕ(· − k0) ∈
AS0(Φ;Ψ)[0,∞); more precisely, ⟨ϕ̃(· − k0), ϕ(· − k0)⟩ = Ir and ⟨ϕ̃(· − k0), h⟩ = 0 for all

h ∈ AS0(Φ;Ψ)[0,∞)\{ϕ(· − k0)}.
Let j0 ∈ N0 := N ∪ {0} and k0 ⩾ nψ̃ be arbitrarily fixed. We now show that ψ̃j0;k0

is the unique biorthogonal element in L2([0,∞)) corresponding to the element ψj0;k0 ∈
AS0(Φ;Ψ)[0,∞). Indeed, it follows from the biorthogonality relation between AS0(ϕ̃; ψ̃) and
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AS0(ϕ;ψ) that

⟨ψ̃j0;k0 , ϕj0;k⟩ = 0 and ⟨ψ̃j0;k0 , ψj;k⟩ = δ(j − j0)δ(k − k0), ∀ j ∈ N0, k ∈ Z. (5.102)

By (5.101), we have

⟨ψ̃j0;k0 , ϕL(2j0·)⟩ = 0, ⟨ψ̃j0;k0 , ψL(2j·)⟩ = 2−j0/2⟨ψ̃(· − k0), ψ
L(2j−j0·)⟩ = 0, ∀ j ⩾ j0.

(5.103)

By the identities in (5.17), (5.18), (5.21) and (5.22), we see that every element in

Sj0 := Φ ∪ {2j/2η(2j·) : j = 0, . . . , j0 − 1, η ∈ Ψ} (5.104)

is a finite linear combination of {2j0/2ϕL(2j0·)} ∪ {ϕj0;k : k ⩾ nϕ}. Consequently, it follows
from (5.102) and (5.103) that ⟨ψ̃j0;k0 , h⟩ = 0 for all h ∈ Sj0 . Hence, by (5.102), we proved

that ψ̃j0;k0 is the unique biorthogonal element in L2([0,∞)) corresponding to the element

ψj0;k0 ∈ AS0(Φ;Ψ)[0,∞).

Since nϕ̃ ⩾ nϕ, we add the elements ϕ(· − k), nϕ ⩽ k < nϕ̃ to the vector function ϕL to

form a new vector function ϕ̊L. We define ψ̊L similarly by adding ψ(· − k), nψ ⩽ k < nψ̃
to ψL. Let ϕ̃L be the unique biorthogonal element/vector in L2([0,∞)) corresponding to

ϕ̊L, and ψ̃L be the unique biorthogonal element/vector in L2([0,∞)) corresponding to ψ̊L

for the Riesz basis AS0(Φ;Ψ)[0,∞) of L2([0,∞)). Let j0 ∈ N0 be arbitrarily fixed. We now

prove that 2j0/2ψ̃L(2j0·) is the unique biorthogonal element in L2([0,∞)) corresponding to

2j0/2ψ̊L(2j0·) ∈ AS0(Φ;Ψ)[0,∞). By the definition of ψ̃L, we have

⟨2j0/2ψ̃L(2j0·), ψj;k⟩ = ⟨ψ̃L, ψj−j0;k⟩ = 0, ∀ j ⩾ j0, k ⩾ nϕ̃

and

⟨2j0/2ψ̃L(2j0·), 2j/2ψ̊L(2j·)⟩ = ⟨ψ̃L, 2(j−j0)/2ψ̊L(2j−j0 ·)⟩ = δ(j − j0)I#ψ̃L , ∀ j ⩾ j0.

Define the set Sj0 as in (5.104). As we proved before, every element in Sj0 must be a finite

linear combination of {2j0/2ϕ̊L(2j0·)} ∪ {ϕj0;k : k ⩾ nϕ̃}. By the definition of ψ̃L, we must

have

⟨2j0/2ψ̃L(2j0·), 2j0/2ϕ̊L(2j0·)⟩ = ⟨ψ̃L, ϕ̊L⟩ = 0

and

⟨2j0/2ψ̃L(2j0·), ϕj0;k⟩ = ⟨ψ̃L, ϕ(· − k)⟩ = 0, ∀ k ⩾ nϕ̃.

Consequently, we proved that ⟨2j0/2ψ̃L(2j0 ·), h⟩ = 0 for all h ∈ Sj0 . This shows that
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2j0/2ψ̃L(2j0·) must be the unique biorthogonal element in L2([0,∞)) corresponding to

2j0/2ψ̊L(2j0·) ∈ AS0(Φ;Ψ)[0,∞). In summary, we proved B̃ = AS0(Φ̃; Ψ̃)[0,∞). Note that

#ϕ̃L = #ϕ̊L = #ϕL+ (nϕ̃− nϕ)(#ϕ) and #ψ̃L = #ψL = #ψL+ (nψ̃ − nψ)(#ψ). Therefore,

(5.16) holds. To complete the proof of item (1) in Theorem 5.2, next we prove that both

ϕ̃L and ψ̃L must have compact support. Since ({ϕ̃; ψ̃}, {ϕ;ψ}) is a biorthogonal wavelet in

L2(R), we can expand ϕ̃L in (1.2) with J = 0 as follows:

ϕ̃L =
∑
k∈Z

⟨ϕ̃L, ϕ(· − k)⟩ϕ̃(· − k) +
∞∑
j=0

∑
k∈Z

⟨ϕ̃L, ψj;k⟩ψ̃j;k.

Since ϕ̃L is perpendicular to all elements in AS0(Φ;Ψ)[0,∞)\{ϕ̊L}, we see from the above

identity that

ϕ̃L =

nϕ̃−1∑
k=−∞

⟨ϕ̃L, ϕ(· − k)⟩ϕ̃(· − k) +
∞∑
j=0

nψ̃−1∑
k=−∞

⟨ϕ̃L, ψj;k⟩ψ̃j;k, (5.105)

from which we deduce that ϕ̃L must be supported inside (−∞,M ] with M := max(nϕ̃ +

hϕ̃, nψ̃+hψ̃). Because ϕ̃
L lies in L2([0,∞)) and hence is supported inside [0,∞), we conclude

that ϕ̃L must have compact support with fsupp(ϕ̃L) ⊆ [0,M ]. By the same argument, we

can prove that (5.105) holds with ϕ̃L being replaced by ψ̃L and hence ψ̃L also has compact

support. This proves item (1).

We now prove item (2). Since AS0(Φ;Ψ)[0,∞) and AS0(Φ̃; Ψ̃)[0,∞) form a pair of biorthog-

onal Riesz bases in L2([0,∞)), by a simple scaling argument (e.g., see [70, Proposition 4

and (2.6)] and [71, Theorem 4.3.3]), it is straightforward to verify that ASJ(Φ;Ψ)[0,∞) and

ASJ(Φ̃; Ψ̃)[0,∞) form a pair of biorthogonal Riesz bases in L2([0,∞)) for every J ∈ Z. Ex-

panding ϕ̃L under the biorthogonal basis formed by AS1(Φ̃; Ψ̃)[0,∞) and AS1(Φ;Ψ)[0,∞), we

have

ϕ̃L =
∑

h∈AS1(Φ;Ψ)[0,∞)

⟨ϕ̃L, h⟩h̃ = 2⟨ϕ̃L, ϕ̊L(2·)⟩ϕ̃L(2·) + 2
∞∑

k=nϕ̃

⟨ϕ̃L, ϕ(2 · −k)⟩ϕ̃(2 · −k),

since ⟨ϕ̃L, h⟩ = 0 for all h ∈ Ψ(2j·) with j ⩾ 0. Hence, (5.19) holds with ÃL := ⟨ϕ̃L, ϕ̊L(2·)⟩
and Ã(k) := ⟨ϕ̃L, ϕ(2 · −k)⟩ for k ⩾ nϕ̃. Since both ϕ̃L and ϕ have compact support, the

sequence A must be finitely supported. The identity in (5.20) can be proved similarly by

expanding ψ̃L instead of ϕ̃L, under the biorthogonal basis formed by AS1(Φ̃; Ψ̃)[0,∞) and

AS1(Φ;Ψ)[0,∞). Using the same argument as in the proof of (5.13), we see that the identities

in (5.21) and (5.22) follow directly from (5.6) and the assumption that nϕ̃ ⩾ max(−lϕ̃,−la)
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and nψ̃ ⩾ max(−lψ̃,
nϕ̃−lb̃

2
). This proves item (2).

To prove item (3), since (AS0(Φ̃; Ψ̃)[0,∞),AS0(Φ;Ψ)[0,∞)) is a pair of biorthogonal Riesz

bases in L2([0,∞)), noting that Φ(2·) ⊥ Ψ̃(2j·) for all j ⩾ 1, for η ∈ Φ(2·) we have

η = ⟨η, ϕ̃L⟩ϕ̊L +
∞∑

k=nϕ̃

⟨η, ϕ̃(· − k)⟩ϕ(· − k) + ⟨η, ψ̃L⟩ψ̊L +
∞∑

k=nψ̃

⟨η, ψ̃(· − k)⟩ψ(· − k).

Since all functions in Φ ∪ Ψ ∪ Φ̃ ∪ Ψ̃ have compact support and Φ ∪ Ψ is a Riesz sequence,

we conclude from the above identity that item (3) holds.

Proof of Theorem 5.7. By assumption ϕL ∪ ψL ⊆ Hτ (R) for some τ > 0, since AS0(ϕ;ψ) is

a Bessel sequence in L2(R), ψ must have at least one vanishing moment and we conclude

from Theorem 5.6 that ASJ(Φ;Ψ)[0,∞) is a Bessel sequence in L2([0,∞)). Similarly, by

ϕ̃L ∪ ψ̃L ⊆ Hτ (R) for some τ > 0, we conclude from Theorem 5.6 that ASJ(Φ̃; Ψ̃)[0,∞) is a

Bessel sequence in L2([0,∞)). Now the rest of the argument is quite standard for proving

that ASJ(Φ̃; Ψ̃)[0,∞) and ASJ(Φ;Ψ)[0,∞) form a pair of biorthogonal Riesz bases in L2([0,∞)).

By scaling, it suffices to prove the claim for J = 0. Define Sj0 as in (5.104) for j0 ∈ N. Using
items (i)–(iv) and the same argument as in the proof of Theorem 5.2, we see that every

element in Sj0 is a finite linear combination of Φ(2j0·) := {ϕL(2j0·)}∪{ϕ(2j0 ·−k) : k ⩾ nϕ}.
Now by the biorthogonality between Φ ∪ Ψ and Φ̃ ∪ Ψ̃, it follows from the same argument

as in the proof of Theorem 5.2 that ASJ(Φ;Ψ)[0,∞) and ASJ(Φ̃; Ψ̃)[0,∞) must be biorthogonal

to each other in L2([0,∞)). Consequently, by the standard argument (e.g., see the proof

of (4)=⇒(1) in Theorem 5.5), we conclude that both ASJ(Φ;Ψ)[0,∞) and ASJ(Φ̃; Ψ̃)[0,∞) are

Riesz sequences in L2([0,∞)). By item (iii), we have S0(Ψ) = S1(Φ) ∩ (S0(Φ̃))
⊥. For any

f ∈ S1(Φ), define g :=
∑

η∈Φ⟨f, η̃⟩η. Then f − g ⊥ Φ̃ and we conclude that f = g + (f − g)

such that g ∈ S0(Φ) and f − g ∈ S1(Φ)∩ (S0(Φ̃))
⊥ = S0(Ψ). This proves S1(Φ) ⊆ S0(Φ∪Ψ).

Because S0(Φ ∪ Ψ) ⊆ S1(Φ) is trivial, we conclude that S0(Φ ∪ Ψ) = S1(Φ). By the scaling

argument, we must have

S0(Φ ∪Ψ ∪Ψ(2·) ∪ · · · ∪Ψ(2j−1·)) = S1(Φ ∪Ψ ∪ · · · ∪Ψ(2j−2·)) = · · · = Sj(Φ).

Hence, S0(AS0(Φ;Ψ)[0,∞)) contains ∪∞
j=1Sj(Φ), which includes the subset ∪∞

j=1{ϕ(2j · −k) :

k ⩾ nϕ}, whose linear span is dense in L2([0,∞)) due to limj0→∞ 2−j0nϕ = 0. Therefore,

the linear span of AS0(Φ;Ψ)[0,∞) is dense in L2([0,∞)). This proves that AS0(Φ;Ψ)[0,∞) is a

Riesz basis of L2([0,∞)). Similarly, AS0(Φ̃; Ψ̃)[0,∞) is also a Riesz basis of L2([0,∞)). This

completes the proof of Theorem 5.7.

Proof of Theorem 5.10. Define ϕj := ϕ(·−j)χ[0,1] for j = 1−hϕ, . . . ,−lϕ (for other j ∈ Z, ϕj
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is identically zero). By ϕ = 2
∑

k∈Z a(k)ϕ(2 ·−k), for j ∈ Z, we have ϕ(·− j) = 2
∑

k∈Z a(k−
2j)ϕ(2 · −k). Multiplying χ[0,1] on both sides of this identity, we particularly have

ϕj(x) = ϕ(x− j)χ[0,1](x) = 2
∑
k∈Z

a(k − 2j)ϕ(2x− k)χ[0,1](x).

Note that

ϕ(2x− k)χ[0,1/2](x) = ϕ(2x− k)χ[0,1](2x) =
[
ϕ(· − k)χ[0,1](·)

]
(2x) = ϕk(2x),

ϕ(2x− k)χ[1/2,1](x) = ϕ(2x− k)χ[0,1](2x− 1) =
[
ϕ(·+ 1− k)χ[0,1](·)

]
(2x− 1) = ϕk−1(2x− 1).

Hence, we have

ϕj(x) = 2
∑
k∈Z

a(k − 2j)ϕ(2x− k)χ[0,1](x) = 2
∑
k∈Z

a(k − 2j)[ϕk(2x) + ϕk−1(2x− 1)]

= 2

−lϕ∑
k=1−hϕ

a(k − 2j)ϕk(2x) + 2

−lϕ∑
k=1−hϕ

a(k + 1− 2j)ϕk(2x− 1),

since all ϕk for k ∈ Z\[1 − hϕ,−lϕ] are identically zero. By ϕ⃗ = (ϕ1−hϕ , . . . , ϕ−lϕ)
T, this

proves the first identity in (5.44). The proof of the second identity in (5.44) is similar.

We now prove (5.45). Noting that ϕ⃗(2x) is supported inside [0, 1/2] and ϕ⃗(2x − 1) is

supported inside [1/2, 1], we deduce from (5.44) that

M =

∫ 1

0

⃗̃ϕ(x)ϕ⃗(x)
T

dx

= 4

∫ 1

0

(
Ã0
⃗̃ϕ(2x) + Ã1

⃗̃ϕ(2x− 1)
)(
ϕ⃗(2x)

T

A0
T
+ ⃗̃ϕ(2x− 1)

T

A1
T
)
dx

= 4Ã0

∫ 1

0

⃗̃ϕ(2x)ϕ⃗(2x)
T

dxA0
T
+ 4Ã1

∫ 1

0

⃗̃ϕ(2x− 1)ϕ⃗(2x− 1)
T

dxA1
T

= 2Ã0

∫ 1

0

⃗̃ϕ(x)ϕ⃗(x)
T

dxA0
T
+ 2Ã1

∫ 1

0

⃗̃ϕ(x)ϕ⃗(x)
T

dxA1
T

= 2Ã0MA0
T
+ 2Ã1MA1

T
.

This proves (5.45). We now prove that up to a multiplicative constant (5.45) has a unique

solution. By vec(M) we denote the column vector by arranging the columns of M one by

one. Then (5.45) is equivalent to

Tvec(M) = vec(M) and T := 2(A0 ⊗ Ã0 + A1 ⊗ Ã1), (5.106)
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where ⊗ stands for the right Kronecker product of matrices. To prove (S3), it suffices to

prove that 1 is a simple eigenvalue of the matrix T in (5.106). Define s := #ϕ⃗ and s̃ := #⃗̃ϕ.

Note that ϕ⃗ is a compactly supported refinable vector function in L2(R) and the integer

shifts of ϕ⃗ are linearly independent. By [71, Corollary 5.6.12 and Proposition 5.6.2], we

conclude that 1 must be a simple eigenvalue of A0 +A1 and the mask/filter associated with

ϕ⃗ must have at least order one sum rule, that is, by (5.23), there must exist a nontrivial row

vector v⃗ ∈ C1×s such that v⃗A0 = v⃗A1 = 1
2
v⃗ and v⃗

̂⃗
ϕ(0) = 1. Since 1 is a simple eigenvalue

of A0 + A1, such row vector v⃗ must be unique by v⃗(A0 + A1) = v⃗. Similarly, there exists a

unique row vector ⃗̃v ∈ C1×s̃ such that ⃗̃vÃ0 = ⃗̃vÃ1 =
1
2
⃗̃v and ⃗̃v

̂⃗̃
ϕ(0) = 1. By v⃗A0 = v⃗A1 =

1
2
v⃗

and ⃗̃vÃ0 = ⃗̃vÃ1 =
1
2
⃗̃v, we trivially have

(v⃗ ⊗ ⃗̃v)T = (v⃗ ⊗ ⃗̃v)2(A0 ⊗ Ã0 + A1 ⊗ Ã1) = 2(v⃗A0)⊗ (⃗̃vÃ0) + 2(v⃗A1)⊗ (⃗̃vÃ1)

=
1

2
(v⃗ ⊗ ⃗̃v) +

1

2
(v⃗ ⊗ ⃗̃v) = v⃗ ⊗ ⃗̃v.

Hence 1 must be an eigenvalue of T . Next we prove that the eigenvalue 1 of T has multiplicity

one by employing the joint spectral radius technique in [64]. Let U be the space of all column

vectors u ∈ Cs such that v⃗u = 0. By v⃗A0 = v⃗A1 =
1
2
v⃗, it is trivial to observe that A0U ⊆ U

and A1U ⊆ U . Since all the entries in ϕ⃗ are compactly supported functions in L2(R) and

the integer shifts of ϕ⃗ are linearly independent, we must have (e.g., see [71, Theorems 5.6.11

and 5.7.4]. Also c.f. [64, Theorem 3.3]) that

lim
n→∞

2n/2∥{A0, A1}nu∥l2 = 0, ∀u ∈ U (5.107)

and for every w ∈ Cs, there exists a positive constant Cw such that

2n/2∥{A0, A1}nw∥l2 ⩽ Cw, ∀n ∈ N, (5.108)

where as in [64, Section 2] we define

∥{A0, A1}nu∥2l2 :=
1∑

γ1=0

· · ·
1∑

γn=0

∥Aγ1 · · ·Aγnu∥2.

Similar conclusions hold for Ã0 and Ã1. Take particular vectors w :=
̂⃗
ϕ(0) and w̃ :=

̂⃗̃
ϕ(0).

Hence, we must have v⃗w = 1 and ⃗̃vw̃ = 1. Now considering T n(u⊗ w̃) with u ∈ U and using
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the Cauchy-Schwarz inequality, we conclude that

∥T n(u⊗ w̃)∥ ⩽ 2n∥{A0, A1}u∥l2∥{Ã0, Ã1}w̃∥l2 ⩽ Cw̃2
n/2∥{A0, A1}u∥l2 → 0

as n→ ∞. Similarly, for ũ ∈ Ũ , as n→ ∞, we have

∥T n(w ⊗ ũ)∥ ⩽ 2n∥{A0, A1}w∥l2∥{Ã0, Ã1}ũ∥l2 ⩽ Cw2
n/2∥{Ã0, Ã1}ũ∥l2 → 0.

Also, for all u ∈ U and ũ ∈ Ũ , we similarly have limn→∞ ∥T n(u⊗ ũ)∥ = 0. Note that w and

U span the whole space Cs while w̃ and Ũ span Cs̃, where s := #ϕ⃗ and s̃ := #⃗̃ϕ. The above

three identities prove that all the other eigenvalues of T must be less than one in modulus.

Hence, 1 is a simple eigenvalue of T . Hence, up to a multiplicative constant, M is the unique

solution to (5.45).

Note that
∑

k∈Z v⃗ϕ⃗(·−k) = 1 and
∑

k∈Z
⃗̃v⃗̃ϕ(·−k) = 1. Since both ϕ⃗ and ⃗̃ϕ are supported

inside [0, 1], we must have v⃗ϕ⃗(x) = 1 and ⃗̃v⃗̃ϕ(x) = 1 for almost every x ∈ [0, 1] and hence

⃗̃vMv⃗
T
=

∫ 1

0

⃗̃v⃗̃ϕ(x)v⃗ϕ⃗(x)
T

dx =

∫ 1

0

1dx = 1.

This proves (5.47) and completes the proof.

Proof of Theorem 5.14. By mϕ = max(2nϕ + hã, 2nψ + hb̃), we have mϕ ⩾ 2nϕ + hã ⩾ nϕ

since nϕ ⩾ −la ⩾ −hã. By the definition of nϕ̃ and nψ̃, we trivially have nϕ̃ ⩾ max(−lϕ̃,−lã)
and nψ̃ ⩾ max(−lψ̃,

nϕ̃−lb̃
2

). Therefore, (5.21) and (5.22) must hold. We now prove (5.58).

By the definition of nϕ̃ and nψ̃, we also have nϕ̃ ⩾ 1 − lã and nψ̃ ⩾ ⌈nϕ̃−lb̃+1

2
⌉. Hence, we

have k0−lã
2

⩽ nϕ̃ − 1 and
k0−lb̃

2
⩽ nψ̃ − 1 for all k0 < nϕ̃. Therefore, for all k0 ∈ Z satisfying

mϕ ⩽ k0 < nϕ̃, it follows from (5.42) and Lemma 5.8 that (5.58) must hold.

Define (infinite) column vector functions by

ϕ⃗ := {ϕ(· − k) : k ⩾ nϕ̃} and ψ⃗ := {ψ(· − k) : k ⩾ nψ̃}.

Abusing notations a little bit by using the same notations for augmented AL, BL and A,B

with ϕL, ψL being replaced by ϕ̊L, ψ̊L, respectively, we can equivalently rewrite (5.13), (5.14),

(5.17) and (5.18) as 
ϕ̊L

ϕ⃗

ψ̊L

ψ⃗

 = 2M

[
ϕ̊L(2·)
ϕ⃗(2·)

]
with M :=


AL MA

0 Ma

BL MB

0 Mb

, (5.109)
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where MA,MB,Ma,Mb are matrices associated with filters A,B, a, b, respectively. More

precisely, using (5.17), (5.18), (5.13) and (5.14), we have MA := [A(k)]nϕ̃⩽k<∞ (which is

equivalent to MAϕ⃗ =
∑∞

k=nϕ̃
A(k)ϕ(· − k)), MB := [B(k)]nϕ̃⩽k<∞, and

Ma := [a(k − 2k0)]nϕ̃⩽k0<∞,nϕ̃⩽k<∞ and Mb := [b(k − 2k0)]nψ̃⩽k0<∞,nϕ̃⩽k<∞, (5.110)

where k0 is row index and k is column index. By nϕ̃ ⩾ mϕ, we see from Lemma 5.8 and

(5.42) that

ϕ⃗(2·) =MÃ

T
ϕ̊L +Mã

T
ϕ⃗+MB̃

T
ψ̊L +Mb̃

T
ψ⃗, (5.111)

where MÃ,MB̃,Mã,Mb̃ are matrices uniquely determined by the filters ã and b̃. More pre-

cisely,

MÃ :=

[
0(#ϕL)×∞

(ã(k − 2k0))nϕ⩽k0<nϕ̃,nϕ̃⩽k<∞

]
, MB̃ :=

[
0(#ψL)×∞

(b̃(k − 2k0))nψ⩽k0<nψ̃ ,nϕ̃⩽k<∞

]
,

(5.112)

and Mã, Mb̃ are defined similarly as in (5.110) using ã and b̃ instead of a and b, where k0 is

row index and k is column index. Therefore, we deduce from (5.59) and the above identity

in (5.111) that

[
ϕ̊L(2·)
ϕ⃗(2·)

]
= M̃

T


ϕ̊L

ϕ⃗

ψ̊L

ψ⃗

 with M̃ :=


ÃL MÃ

0 Mã

B̃L MB̃

0 Mb̃

. (5.113)

By assumption, Φ is a Riesz sequence in L2([0,∞)) and hence linearly independent. By

item (i), the elements in Φ∪Ψ must be linearly independent. Consequently, we deduce from

(5.109) and (5.113) that M̃MT
= 2−1I and MTM̃ = 2−1I, where I here stands for the

infinite identity matrix.

We now prove that Ã and B̃ in (5.63) are finitely supported. For all k ⩾ 2nϕ̃ + hã, we

have k − 2k0 > hã for all k0 = nϕ, . . . , nϕ̃ − 1 and hence ã(k − 2k0) = 0. So, {Ã(k)}∞k=nϕ̃
in (5.63) is finitely supported. Similarly, for all k ⩾ 2nψ̃ + hb̃, we have k − 2k0 > hb̃ for

all k0 = nψ, . . . , nψ̃ − 1 and hence b̃(k − 2k0) = 0. So, {B̃(k)}∞k=nϕ̃ in (5.63) is finitely

supported. Since ρ(ÃL) < 2−1/2 in (5.60), we conclude from Theorem 5.13 that ϕ̃L in (5.61)

is a well-defined compactly supported vector function in L2([0,∞))∩Hτ (R) for some τ > 0

and satisfies (5.19). Since B̃ is finitely supported, ψ̃L in (5.62) is a well-defined compactly

supported vector function in L2([0,∞)) ∩Hτ (R) and satisfies (5.20).

We now prove that Φ̃ must be biorthogonal to Φ. Define ⃗̃ϕ := {ϕ̃(· − k) : k ⩾ nϕ̃}. By
(5.112), we have MÃ

⃗̃ϕ =
∑∞

k=nϕ̃
Ã(k)ϕ̃(· − k). Since we assumed that Φ is a Riesz sequence,
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we conclude from Theorem 5.5 that item (4) of Theorem 5.5 holds. If necessary, enlarging

nϕ̃, then we can assume that H̃ = η̃L ∪ ⃗̃ϕ in item (4) of Theorem 5.5 is biorthogonal to Φ

with #η̃L = #ϕ̊L. Define f0 := ϕ̊L and f̃0 := η̃L. For n ∈ N, we can recursively define

fn := 2ALfn−1(2·) + g(2·) and f̃n := 2ÃLf̃n−1(2·) + g̃(2·), n ∈ N, (5.114)

where g := 2
∑∞

k=nϕ̃
A(k)ϕ(· − k), g̃ is given in (5.61), and AL and A are augmented version

in (5.17). Let Fn := fn ∪ ϕ⃗ and F̃n := f̃n ∪ ⃗̃ϕ. By the choice of f̃0 = η̃L and f0 = ϕ̊L, we have

F̃0 = H̃ and F0 = Φ. Therefore, F̃0 is biorthogonal to F0 by Theorem 5.5. Suppose that

F̃n−1 is biorthogonal to Fn−1 (induction hypothesis), i.e., ⟨F̃n−1, Fn−1⟩ = I. We now prove

the claim for n. Note that

Fn = 2NFn−1(2·), F̃n = 2Ñ F̃n−1(2·) with N :=

[
AL MA

0 Ma

]
, Ñ :=

[
ÃL MÃ

0 Mã

]
.

(5.115)

It follows trivially from the identity M̃MT
= 2−1I that ÑN T

= 2−1I. Therefore, by

induction hypothesis ⟨F̃n−1, Fn−1⟩ = I, we have

⟨F̃n, Fn⟩ = 4Ñ ⟨F̃n−1(2·), Fn−1(2·)⟩N
T
= 2ÑN T

= I.

This proves the claim for n. By mathematical induction, we proved that F̃n is biorthogonal

to Fn for all n ∈ N. By (5.19) and (5.114) with f0 = ϕ̊L, we trivially have fn = ϕ̊L and

hence, Fn = Φ for all n ∈ N. So, F̃n is biorthogonal to Φ for all n ∈ N. We deduce from the

definition of f̃n in (5.114) that

f̃n = 2nÃnLf̃0(2
n·) +

n∑
j=1

2j−1Ãj−1
L g(2j·).

Since ρ(ÃL) < 2−1/2 and ∥2nÃnLf̃0(2n·)∥L2(R) ⩽ ∥f̃0∥L2(R)2
n/2∥ÃnL∥, we conclude that

lim
n→∞

∥2nÃnLf̃0(2n·)∥L2(R) = 0.

This proves limn→∞ ∥f̃n−ϕ̃L∥L2(R) = 0. Since Φ̃ = limn→∞ F̃n in L2(R) and F̃n is biorthogonal
to Φ, we conclude that Φ̃ must be biorthogonal to Φ.

By (5.112), we have ψ̃L = 2B̃Lϕ̃
L(2·) + 2MB̃

⃗̃ϕ(2·). Also note that ϕ̃L = 2ÃLϕ̃
L(2·) +

2MÃ
⃗̃ϕ(2·), ⃗̃ϕ = 2Mã

⃗̃ϕ(2·), and ⃗̃ψ = 2Mb̃
⃗̃ϕ(2·) with ⃗̃ψ := {ψ̃(· − k) : k ⩾ nψ̃}. Using the

identities M̃MT
= 2−1I and MTM̃ = 2−1I, we can now check that all items (i)–(iv) of

Theorem 5.7 are satisfied. Because we assumed ϕL ⊆ Hτ (R) for some τ > 0, by the choice
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of ψL in item (i), we must have ψL ⊆ Hτ (R). Note that we already proved ϕ̃L∪ ψ̃L ⊆ Hτ (R)
for some τ > 0. Since all the conditions in Theorem 5.7 are satisfied, we conclude from

Theorem 5.7 that ASJ(Φ̃; Ψ̃)[0,∞) and ASJ(Φ;Ψ)[0,∞) form a pair of biorthogonal Riesz bases

in L2([0,∞)) for every J ∈ Z.

Proof of Theorem 5.15. By the choice of nϕ̃ in item (S1) of Algorithm 5.2, for all k ⩾ nϕ̃,

we have ⟨ϕ̃(· − k), ϕ(· − k)⟩ = Ir and ⟨ϕ̃(· − k), η⟩ = 0 for all η ∈ Φ\{ϕ(· − k)}. Define

ϕ⃗ := {ϕ(· − k) : k ⩾ nϕ̃} and ⃗̃ϕ := {ϕ̃(· − k) : k ⩾ nϕ̃}. Then (5.17) and (5.19) become

ϕ̊L = 2ALϕ̊
L(2·) + 2MAϕ⃗(2·), ϕ̃L = 2ÃLϕ̃

L(2·) + 2MÃ
⃗̃ϕ(2·),

where MA := [A(k)]nϕ̃⩽k<∞ and MÃ := [Ã(k)]nϕ̃⩽k<∞ with k being the column index. Since

nϕ̃ ⩾ max(−lϕ̃,−lã) and nϕ̃ ⩾ nϕ ⩾ max(−lϕ,−la), by (5.13) and (5.21), we must have

ϕ⃗ = 2Maϕ⃗(2·) and ⃗̃ϕ = 2Mã
⃗̃ϕ(2·), whereMa is defined in (5.110) andMã is defined similarly.

Define N and Ñ as in (5.115). Using (5.7) and (5.64), we must have ÑN T
= 2−1I. Since

Φ is a Riesz sequence, by the same argument as in the proof of Theorem 5.14, we conclude

that Φ̃ is biorthogonal to Φ and Φ̃ satisfies item (ii) of Theorem 5.7.

Proof of Theorem 5.19. Let j ⩾ J0. By assumption in (S3), all the boundary elements

in Φj ∪ Ψj belong to L2([0, N ]). Since fsupp(ϕ(· − k)) ⊆ [0,∞) for all k ⩾ nϕ, to show

Φj ⊆ L2([0, N ]), it suffices to prove that fsupp(ϕ(· − k)) ⊆ (−∞, 2jN ] for all k ⩽ 2jN − nϕ̊,

which is equivalent to ϕ(2jN − · − k) ∈ L2([0,∞)). For all k ⩽ 2jN − nϕ̊, we note that

ϕ(2jN − ·− k) = ϕ̊(· − (2jN − k)) and 2jN − k ⩾ nϕ̊. By the definition of nϕ̊, we must have

ϕ(2jN − · − k) = ϕ̊(· − (2jN − k)) ⊆ L2([0,∞)).

This proves ϕj;k ∈ L2([0, N ]) for all nϕ ⩽ k ⩽ 2jN − nϕ̊. Consequently, we proved Φj ⊆
L2([0, N ]) for all j ⩾ J0. Similarly, we have Ψj ⊆ L2([0, N ]) for all j ⩾ J0.

We now prove item (1). By (5.18) and hB + nϕ̊ ⩽ 2j+1N in (5.85), we have hB ⩽

2j+1N − nϕ̊ and

ψLj;0 =
√
2BLϕ

L
j+1;0 +

√
2

hB∑
k=nϕ

B(k)ϕj+1;k =
√
2BLϕ

L
j+1;0 +

√
2

2j+1N−nϕ̊∑
k=nϕ

B(k)ϕj+1;k

with B(hB + 1) = · · · = B(2j+1N − nϕ̊) = 0 due to [lB, hB] = fsupp(B) and 2j+1N ⩾

hB + nϕ̊ in (5.85) for all j ⩾ J0. By nψ̊ ⩾ max(−lψ̊,
nϕ̊−l̊b

2
), we have l̊b + 2nψ̊ ⩾ nϕ̊. Since

b̊ = b(−·), we have l̊b = −hb and hence, we proved hb − 2nψ̊ ⩽ −nϕ̊, from which we get
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hb + 2(2jN − nψ̊) ⩽ 2j+1N − nϕ̊. By nψ ⩾ max(−lψ, nϕ−lb2
), we have lb + 2nψ ⩾ nϕ. So, for

every k = nψ, . . . , 2
jN − nψ̊, we have nϕ ⩽ lb + 2k ⩽ hb + 2k ⩽ 2j+1N − nϕ̊ and thus we

deduce from ψ = 2
∑hb

n=lb
b(n)ϕ(2 · −n) that

ψj;k =
√
2

hb+2k∑
n=lb+2k

b(n− 2k)ϕj+1;n =
√
2

2j+1N−nϕ̊∑
n=nϕ

b(n− 2k)ϕj+1;n, k = nψ, . . . , 2
jN − nψ̊.

By (5.18) for ψ̊ and hB̊ +nϕ ⩽ 2j+1N in (5.85), noting that ψR = ψL(N − ·) and ϕ̊ = ϕ(−·),
we have 2j+1N − hB̊ ⩾ nϕ and

ψRj;2jN−N = ψ̊Lj;0(N − ·)

=
√
2B̊Lϕ̊

L
j+1;0(N − ·) +

√
2

hB̊∑
k=nϕ̊

B̊(k)ϕ̊j+1;k(N − ·)

=
√
2B̊Lϕ

R
j+1;2j+1N−N +

√
2

hB̊∑
k=nϕ̊

B̊(k)ϕj+1;2j+1N−k

=
√
2B̊Lϕ

R
j+1;2j+1N−N +

√
2

2j+1N−nϕ̊∑
k=nϕ

B̊(2j+1N − k)ϕj+1;k,

where we used 2j+1N−hB̊ ⩾ nϕ due to our assumption hB̊+nϕ ⩽ 2j+1N in (5.85) for j ⩾ J0.

Hence, we proved the existence of a matrix Bj such that Ψj = BjΦj+1. The existence of a

matrix Aj can be proved similarly by the same argument. Similarly we can prove the first

part of item (2).

Due to item (S1), by item (ii) of Theorem 5.7 or (5.16) in Theorem 5.2, we must have

#ϕ̃L −#ϕL = (nϕ̃ − nϕ)(#ϕ) and #
˜̊
ϕL −#ϕ̊L = (n ˜̊

ϕ
− nϕ̊)(#ϕ), from which we have

#ϕ̃L +#
˜̊
ϕL − (n ˜̊

ϕ
+ nϕ̃)(#ϕ) = (#ϕL +#ϕ̊L)− (nϕ̊ + nϕ)(#ϕ).

By (5.89), we have #ϕ̃R = #
˜̊
ϕL and #ϕR = #ϕ̊L. Note that 2jN ⩾ nϕ + nϕ̊ − 1 for all

j ⩾ J0 by (5.85) and 2jN ⩾ nϕ̃ + n ˜̊
ϕ
− 1 for all j ⩾ J̃0 by (5.87). Consequently,

#Φj = #ϕL +#ϕ̊L + (2jN − nϕ̊ − nϕ + 1)(#ϕ), j ⩾ J0. (5.116)

Using the above two identities and J̃0 ⩾ J0, for j ⩾ J̃0, we deduce that

#Φ̃j = #ϕ̃L+#
˜̊
ϕL+(2jN−n ˜̊

ϕ
−nϕ̃+1)(#ϕ) = #ϕL+#ϕ̊L+(2jN−nϕ̊−nϕ+1)(#ϕ) = #Φj.
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By Theorem 5.7, we must have #ψ̃L − #ψL = (nψ̃ − nψ)(#ψ) and #
˜̊
ψL − #ψ̊L = (n ˜̊

ψ
−

nψ̊)(#ψ). By the same argument, we must have #Ψ̃j = #Ψj. By the proved identities

#Φ̃j = #Φj and #Ψ̃j = #Ψj for j ⩾ J̃0, we observe from (5.88) that Φ̃j ∪ Ψ̃j is biorthogonal

to Φj ∪Ψj for all j ⩾ J̃0.

Since Φ̃j ∪ Ψ̃j is biorthogonal to Φj ∪ Ψj, the proved identities Φj = AjΦj+1 and Ψj =

BjΦj+1 imply #Φj + #Ψj ⩽ #Φj+1 and Φj ∪ Ψj is a Riesz sequence. To prove the other

direction, by (5.42),

ϕj+1;m =
√
2

⌊m−lã
2

⌋∑
k=⌈m−hã

2
⌉

ã(m− 2k)
T
ϕj;k +

√
2

⌊
m−l

b̃
2

⌋∑
k=⌈

m−h
b̃

2
⌉

b̃(m− 2k)
T

ψj;k.

Define m1 := max(2nϕ + hã, 2nψ + hb̃) and m2 := max(2nϕ̊ − lã, 2nψ̊ − lb̃). Using (5.8), we

conclude from the above identity that ϕj+1;m ∈ span(Φj ∪Ψj) for all m1 ⩽ m ⩽ 2j+1N −m2.

On the other hand, for sufficiently large j, it follows directly from item (3) of Theorem 5.2

that

ϕLj+1;0 ∪ {ϕj+1;k}m1−1
k=nϕ

⊆ span(Φj ∪Ψj)

and

ϕRj+1;2jN−N ∪ {ϕj+1;k}
2j+1N−nϕ̊
k=2j+1N−m2+1

⊆ span(Φj ∪Ψj).

This proves that Φj+1 ⊆ span(Φj ∪ Ψj) for sufficiently large j. Since Φj ∪ Ψj is a Riesz

sequence, we conclude from Φj+1 ⊆ span(Φj ∪ Ψj) that #Φj+1 ⩽ #Φj + #Ψj. Hence, we

proved #Φj+1 = #Φj + #Ψj and we deduce from (5.116) that #Ψj = #Φj+1 − #Φj =

2jN(#ϕ) for sufficiently large j. Note that 2jN ⩾ nψ + nψ̊ − 1 for all j ⩾ J0 by (5.85) and

2jN ⩾ nψ̃+n ˜̊
ψ
− 1 for all j ⩾ J̃0 by (5.87). From the definition of Ψj, noting that #ψ = #ϕ

(see item (3) of Theorem 5.1) and #Ψj = 2jN(#ϕ), we have

#ψL +#ψR = #Ψj − (2jN − nψ − nψ̊ + 1)(#ψ) = (nψ + nψ̊ − 1)(#ϕ). (5.117)

Now for any arbitrary j ⩾ J0, by definition of Ψj in (5.91) and the above identity, we have

#Ψj = #ψL +#ψR + (2jN − nψ̊ − nψ + 1)(#ϕ)

= (nψ + nψ̊ − 1)(#ϕ) + (2jN − nψ̊ − nψ + 1)(#ϕ)

= 2jN(#ϕ).

Consequently, #Ψj = 2jN(#ϕ) = #Φj+1 − #Φj and hence #Φj+1 = #Φj + #Ψj for all

j ⩾ J0. This proves both items (1) and (2).
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Next we prove item (3). By proved items (1) and (2), [Aj
T
, Bj

T
] must be a square matrix

for all j ⩾ J0 and [ÃT
j , B̃

T
j ] must be a square matrix for all j ⩾ J̃0. Since Φ̃j ∪ Ψ̃j is

biorthogonal to Φj ∪ Ψj, we must have (5.94). Now by items (1) and (2), we can directly

check that BJ and B̃J are biorthogonal to each other for all J ⩾ J̃0. Note that BJ is a

Bessel sequence, since BJ ⊆ ASJ(Φ;Ψ)[0,∞) ∪ {η(N − ·) : η ∈ ASJ(Φ̊; Ψ̊)[0,∞)}. By a similar

reasoning, B̃J is also a Bessel sequence. By the same standard argument as in the proof of

(4)=⇒(1) in Theorem 5.5, both BJ and B̃J are Riesz sequences in L2([0, N ]) for all J ⩾ J̃0.

By the proved item (1), we have span(BJ) ⊃ ∪∞
j=J{ϕj;k : nϕ ⩽ k ⩽ 2jN − nϕ̊}, which spans

a dense subset of L2([0, N ]). That is, span(BJ) is dense in L2([0, N ]) and hence, BJ must

be a Riesz basis of L2([0, N ]). Similarly, we can prove that B̃J is a Riesz basis of L2([0, N ])

for all J ⩾ J̃0. Since BJ and B̃J are biorthogonal to each other, this proves that B̃J and BJ
form a pair of biorthogonal Riesz bases for L2([0, N ]) for all J ⩾ J̃0. This proves item (3).

Using item (3), item (4) can be easily proved by the same argument as in Lemma 5.3.

By item (3), for J0 ⩽ J < J̃0 such that J decreases from J̃0 − 1 to J0, using (5.94) and

the biorthogonality relation between BJ and B̃J , we can recursively prove that B̃J and BJ
form a pair of biorthogonal Riesz bases for L2([0, N ]). This proves item (5).
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Chapter 6

A Wavelet Galerkin Method for an

Electromagnetic Scattering Problem

Now that we have discussed in detail the construction of wavelets on a bounded interval in

Chapter 5, we are ready to present our wavelet Galerkin method for solving an electromag-

netic scattering from a large cavity problem. As we shall soon see, this method falls in the

category of high order schemes, which is equipped with a natural preconditioner stemming

from the wavelet basis. The model problem of this chapter is as follows

∆u+ κ2u = f in Ω,

u = 0 on ∂Ω\Γ,
∂u

∂ν
= T (u) + g on Γ,

(6.1)

where κ > 0 is a constant wavenumber, Ω := (0, 1)2, Γ := (0, 1) × {1}, f ∈ L2(Ω), g ∈
H1/2(Γ), ν is the unit outward normal,

T (u) :=
iκ

2
=

∫ 1

0

1

|x− x′|
H

(1)
1 (κ|x− x′|)u(x′, 1)dx′, (6.2)

=
∫

denotes the Hadamard finite part integral, and H
(1)
1 is the Hankel function of the first

kind of degree 1. We briefly discuss the derivation of the model problem in Section 6.1.

The implementation of our wavelet Galerkin scheme is discussed in Section 6.2. Finally, we

present some numerical experiments in Section 6.3.
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6.1 Derivation of the model problem

In practice, such a scattering problem is often encountered in stealth/tracking technology.

The model derivation in this section closely follows the discussion in [42]. The Radar Cross

Section (RCS) measures the detectability of an object by a radar system. The RCS of cavities

in an object (e.g., a jet engine’s inlet ducts, exhaust nozzles) contributes the most to the

overall RCS of an object. Therefore, accurate measurements of the RCS of these cavities are

important. This is where numerical methods for the scattering problem come into play.

In order to derive the model problem, we introduce several simplifying physical assump-

tions. We assume that the cavity is embedded in an infinite ground plane. The ground plane

and cavity walls are perfect electric conductors (PECs). The medium is non-magnetic with

a constant permeability, µ, and a constant permittivity, ε. Furthermore, we assume that

no currents are present and the fields are source free. Let E and H respectively denote the

total electric and magnetic fields. So far, our current setup can be modelled by the following

Maxwell’s equation with time dependence e−iωt, where ω stands for the angular frequency

∇× E − iωµH = 0,

∇×H + iωεE = 0.
(6.3)

Since we assume that the ground plane and cavity walls are PECs, we equip the above

problem with the boundary condition ν × E = 0 on the surface of PECs, where ν is again

the unit outward normal. We further assume that the medium and the cavity are invariant

with respect to the z-axis. The cross-section of the cavity, denoted by Ω, is rectangular. More

specifically, Ω = (0, 1)2. Meanwhile, Γ corresponds to the top of the cavity or the aperture.

As stated before, Γ = (0, 1)×{1}. We restrict our attention to the transverse magnetic (TM)

polarization. This means that the magnetic field is transverse/perpendicular to the z-axis;

moreover, the total electric and magnetic fields take the form E = (0, 0, u(x, y)) and H =

(Hx, Hy, 0) for some functions u(x, y), Hx, and Hy. Plugging these particular E,H into (6.3)

and recalling the boundary condition, we obtain the 2D homogeneous Helmholtz equation

defined on the cavity and the upper half space with the homogeneous Dirichlet boundary

condition at the surface of PECs, and the scattered field satisfying the Sommerfeld’s radiation

boundary condition at infinity. By using the half-space Green’s function with homogeneous

Dirichlet boundary condition (e.g., [11]) or the Fourier transform (e.g., [3, 10]), we can

introduce a non-local boundary condition on Γ such that the previous unbounded problem

is converted to a bounded problem.

For the standard scattering problem, we want to determine the scattered field us in the
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Γ

Ω

θ

Figure 6.1: Geometry of the scattering from a cavity problem, where Ω := (0, 1)2.

half space and the cavity given an incident plane wave uinc = eiαx−iβ(y−1), where α = κ sin(θ),

β = κ cos(θ), and the incident angle θ ∈ (−π/2, π/2). In particular, us = u − uinc +

eiαx+iβ(y−1), where u is found by solving the following problem

∆u+ κ2εru = 0 in Ω,

u = 0 on ∂Ω\Γ,
∂u

∂ν
= T (u)− 2iβeiαx on Γ,

where εr is the medium’s relative permittivity and the non-local boundary operator T is

defined in (6.2). Note that in the model problem (6.1), we assume that εr = 1, and allow

both f and g to vary. See Fig. 6.1 for an illustration.

6.2 Implementation

Define H := {u ∈ H1(Ω) : u = 0 on ∂Ω\Γ}. The weak formulation of the problem (6.1) is

to find u ∈ H such that

a(u, v) := ⟨∇u,∇v⟩Ω − κ2⟨u, v⟩Ω − ⟨T (u), v⟩Γ = ⟨g, v⟩Γ − ⟨f, v⟩Ω, ∀v ∈ H. (6.4)

The existence and uniqueness of the solution to (6.4) have been studied in [3, Theorem 4.1].

We now turn to the wavelet aspects of the numerical scheme. Following the notations

and definitions of Chapter 5, we consider a biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) with ϕ̂(0) =
(1
3
, 2
3
)T, ̂̃ϕ(0) = (1, 1)T, and a biorthogonal wavelet filter bank ({ã, b̃}, {a, b}) given by

a =

{[
0 − 1

16

0 0

]
,

[
0 3

16

0 0

]
,

[
1
2

3
16

0 3
8

]
,

[
0 − 1

16
1
2

3
8

]}
[−2,1]

,
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b =

{[
0 − 1

32

0 −1
8

]
,

[
3
8

− 9
32

−3
2

15
8

]
,

[
1
2

− 9
32

0 −15
8

]
,

[
3
8

− 1
32

3
2

1
8

]}
[−2,1]

,

ã =

{[
3
32

−1
8

0 0

]
,

[
− 3

16
3
8

0 0

]
,

[
11
16

3
8

− 3
32

3
8

]
,

[
− 3

16
−1

8
7
16

3
8

]
,

[
3
32

0

− 3
32

0

]}
[−2,2]

,

b̃ =

{[
− 3

32
1
8

3
128

− 1
32

]
,

[
3
16

−3
8

− 3
64

3
32

]
,

[
5
16

−3
8

0 − 3
32

]
,

[
3
16

1
8

3
64

1
32

]
,

[
− 3

32
0

− 3
128

0

]}
[−2,2]

.

Note that ϕ = (ϕ1, ϕ2)T has an analytic expression. That is,

ϕ1(x) = (2x2 + 3x+ 1)χ[−1,0) + (2x2 − 3x+ 1)χ[0,1] and ϕ2(x) = (−4x2 + 4x)χ[0,1]. (6.5)

Furthermore, sm(a) = sm(ã) = 1.5 and sr(a) = sr(ã) = 3, and its matching filters v, ṽ ∈
(l0(Z))1×2 with v̂(0)ϕ̂(0) = ̂̃v(0)̂̃ϕ(0) = 1 are given by v̂(0) = (1, 1), v̂′(0) = i(0, 1

2
), v̂′′(0) =

(0,−1
4
), ̂̃v(0) = (1

3
, 2
3
), ̂̃v′(0) = i(0, 1

3
), and ̂̃v′′(0) = ( 1

30
,−1

5
). Refer to (5.23) and the beginning

of Section 5.7 for the definitions of the foregoing quantities and a matching filter. Let

ϕL := ϕ1χ[0,∞) and ϕL,bc := ϕ2χ[0,∞). Note that ϕL = ϕL(2·) + 3
8
ϕ2(2·) − 1

8
ϕ2(2 · −1) and

ϕL,bc = 3
4
ϕL,bc(2·) + [1, 3

4
]ϕ(2 · −1). The direct approach in Chapter 5 yields

ψL := ϕL(2·)− 9
16
ϕ2(2·) + [3

4
,− 1

16
]ϕ(2 · −1),

ψL,bc := ϕL,bc(2·) + [−2121
512

, 657
4096

]ϕ(2 · −1) + [3877
1024

,−4023
4096

]ϕ(2 · −2).

We do not include any information on the dual boundary elements, since they do not play

an explicit role in the Galerkin scheme.

Denote fj;k := 2−j/2f(2j · −k). For J0 ⩾ 1 and j ⩾ J0, define

Φx
J0

:= {ϕL,bcJ0;0
}∪{ϕJ0;k : 1 ⩽ k ⩽ 2J0−1}, Ψx

j := {ψL,bcj;0 }∪{ψj;k : 1 ⩽ k ⩽ 2j−1}∪{ψR,bc
j;2j−1

},

where ψR,bc = ψL,bc(1− ·), and

Φy
J0

:= Φx
J0
∪ {ϕRJ0;2J0−1}, Ψy

j :=
(
Ψx
j \{ψ

R,bc
j;2j−1

}
)
∪ {ψRj;2j−1},

where ϕR = ϕL(1− ·) and ψR = ψL(1− ·). Then, Φx
J0
∪ {Ψx

j : j ⩾ J0} forms a Riesz wavelet

in H1(0, 1) satisfying the homogeneous Dirichlet boundary condition at both endpoints, and

Φy
J0

∪ {Ψy
j : j ⩾ J0} forms a Riesz wavelet in H1(0, 1) satisfying the homogeneous Dirichlet

boundary condition only at the left endpoint. See Fig. 6.2 for the generators of these 1D
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Figure 6.2: The generators of Riesz wavelets ΦxJ0 ∪ {Ψx
j : j ⩾ J0} and ΦyJ0 ∪ {Ψy

j : j ⩾ J0} of

H1(0, 1) for J0 ⩾ 1. The black (solid) and red (dotted dashed) lines correspond to the first and
second components of a vector function.

Riesz wavelets. By the refinability property, the following relations hold

Φx
j = Aj,j′Φ

x
j′ , Ψx

j =

[
Bj,j′

BR,bc
j,j′

]
Φx
j′ , Φy

j =

[
Aj,j′

ARj,j′

]
Φy
j′ , and Ψy

j =

[
Bj,j′

BR
j,j′

]
Φy
j′ ∀j < j′,

(6.6)

where Aj,j′ , A
R
j,j′ , Bj,j′ , B

R,bc
j,j′ , and B

R
j,j′ are well-defined matrices.

Given one-dimensional functions f1, f2 : R → C, the two-dimensional function f1 ⊗ f2

is defined by (f1 ⊗ f2)(x, y) := f1(x)f2(y), where x, y ∈ R. Furthermore, if F1, F2 are sets

containing one-dimensional functions, then F1 ⊗ F2 := {f1 ⊗ f2 : f1 ∈ F1, f2 ∈ F2}. Define

BJ0,J := (Φx
J0
⊗ Φy

J0
) ∪ {Φx

j ⊗Ψy
j ∪Ψx

j ⊗ Φy
j ∪Ψx

j ⊗Ψy
j : J0 ⩽ j ⩽ J − 1}.

Note that when J = J0, BJ0,J0 = Φx
J0

⊗ Φy
J0
. The 2D Riesz wavelet in H we shall employ is

BJ0 := BJ0,∞, where J0 ⩾ 1. See Fig. 6.3 for some generators of BJ0 .
In the Galerkin scheme, our approximated solution is of the form uJ =

∑
η∈BJ0,J

cηη.

Plugging it into the weak formulation (6.4), using test functions in BJ0,J , and recalling the

relations in (6.6), we obtain the linear system(
R
(
[⟨v, w⟩(0,1)]v,w∈ΦxJ ⊗ [⟨v, w⟩(0,1)]v,w∈ΦyJ

)
RT − T

)
C = F, (6.7)

178



(a) ϕ1 ⊗ ϕ1 (b) ϕ1 ⊗ ϕ2 (c) ϕ2 ⊗ ϕ2 (d) ψ1 ⊗ ψ1

(e) ψ1 ⊗ ψ2 (f) ψ2 ⊗ ψ2 (g) ψL,bc ⊗ ψL,bc (h) ψL,bc ⊗ ψR

(i) ψL,bc ⊗ ψ1 (j) ψL,bc ⊗ ψ2 (k) ψ1 ⊗ ψR (l) ψ2 ⊗ ψR

Figure 6.3: Some generators of the Riesz wavelet BJ0 of H, where J0 ⩾ 1.

where R := [RT
1 , R

T
2 , · · · , RT

2(J−J0)+1]
T with R1 := AJ0,J ⊗ AJ0,J ,

Rℓ :=


BJ0+ℓ−2,J ⊗ AJ0+ℓ−2,J

BR,bc
J0+ℓ−2,J ⊗ AJ0+ℓ−2,J

AJ0+ℓ−2,J ⊗BJ0+ℓ−2,J

BJ0+ℓ−2,J ⊗BJ0+ℓ−2,J

BR,bc
J0+ℓ−2,J ⊗BJ0+ℓ−2,J

 , RJ−J0+ℓ :=


BJ0+ℓ−2,J ⊗ ARJ0+ℓ−2,J

BR,bc
J0+ℓ−2,J ⊗ ARJ0+ℓ−2,J

AJ0+ℓ−2,J ⊗BR
J0+ℓ−2,J

BJ0+ℓ−2,J ⊗BR
J0+ℓ−2,J

BR,bc
J0+ℓ−2,J ⊗BR

J0+ℓ−2,J

 ,

2 ⩽ ℓ ⩽ J − J0 + 1,

S := [ST
1 , · · · , ST

J−J0 ]
T, Sℓ := 2−(J0+ℓ−1)/2


BJ0+ℓ−1,J

BR,bc
J0+ℓ−1,J

AJ0+ℓ−1,J

BJ0+ℓ−1,J

BR,bc
J0+ℓ−1,J

 , 1 ⩽ ℓ ⩽ J − J0,

T :=

[
0(rows(R)−rows(S))×(rows(R)−rows(S)) 0(rows(R)−rows(S))×rows(S)

0rows(S)×(rows(R)−rows(S)) S [⟨T (η), ζ⟩Γ]η,ζ∈ΦxJ S
T

]
,
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F :=

[
0(rows(R)−rows(S))×1

S [⟨g, v⟩Γ]v∈ΦxJ

]
−Rvec

(
[⟨f, vw⟩Ω]w∈ΦyJ ,v∈ΦxJ

)
,

⊗ denotes the kronecker product, C denotes the coefficients {cη}η∈BJ0,J properly arranged

in a vector form, 0m×n denotes an m × n zero matrix, rows(·) denotes the number of rows

of a given matrix, and vec(·) denotes the standard vectorization operation. We make some

important remarks regarding the assembly of the linear system. First, we further normalize

each element in BJ0,J by |a(·, ·)|−1/2, where a(·, ·) is defined in (6.4). This makes the modulus

of all diagonal entries of the coefficient matrix on the left-hand side of (6.7) equal to 1.

Second, we note that the assembly of the linear system can be done efficiently by exploiting

the refinability structure. The inner products are computed only for the refinable functions

at the highest scale level (i.e., elements of Φx
J and Φy

J). Third, following [98, Remark 4.1],

we rewrite the non-local boundary condition as

T (v) =

∫ 1

0

ln(|x− x′|)q0(x− x′)v(x′)dx′ +

∫ 1

0

q1(x− x′)v(x′)dx′ +
1

π
=

∫ 1

0

v(x′)

|x− x′|2
dx′, (6.8)

where

q0(s) :=
iκH

(1)
1 (κ|s|)
2|s|

+
κJ1(κ|s|)
π|s|

ln(|s|)− 1

π|s|2
, q1(s) := −κJ1(κ|s|)

π|s|
,

and J1 is the first order Bessel function of the first kind. Note that q0(s) and q1(s) are

even analytic functions. The first integral in (6.8) is only weakly singular. After properly

partitioning this integral so that the weak singularity appears on an endpoint, we can use a

combination of the Gauss-Legendre and double exponential quadratures to compute it. The

second integral in (6.8) can be handled by the Gauss-Legendre quadrature. Recall that

=

∫ 1

0

v(x′)

(x− x′)2
dx′ := lim

ϵ→0

(∫ x−ϵ

0

v(x′)

(x− x′)2
dx′ +

∫ 1

x+ϵ

v(x′)

(x− x′)2
dx′ − 2v(x)

ϵ

)
. (6.9)

For the right side to exist, a sufficient condition is v ∈ C1,α(0, 1) (i.e., the first derivative of

v is α-Hölder continuous on the unit interval with 0 < α ⩽ 1). Then, the third integral of

(6.8) can be exactly computed by (6.9), since the Riesz wavelet we employ has an analytic

expression.
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6.3 Numerical experiments

In what follows, we present several numerical experiments to compare the performance of

the wavelet and standard Galerkin schemes. The relative errors reported below are in terms

of 2-norm. Assuming that the exact solution u exists, we define

∥u− uJ∥22 := 2−22

211∑
i=1

211∑
j=1

|u(xi, yj)− uJ(xi, yj)|2,

where (xi, yj) for i, j = 0, . . . , 211, and xi+1−xi = yj+1−yj = 2−11 for all i, j = 0, . . . , 211−1.

Note that the above error is just an approximation of the error in the L2 norm. In each

table below, we report the relative errors ∥u− uJ∥2/∥u∥2 in the ‘Rel. err’ column. We also

report the condition numbers (i.e., the ratio of the largest and smallest singular values) of

the coefficient matrices coming from the wavelet and standard Galerkin methods, which are

respectively denoted by BJ0,J and ΦJ := Φx
J ⊗ Φy

J in each table below. Their ratios are

reported in the column ‘CN Ratio.’ The convergence rate reported in the ‘Order’ column is

obtained by calculating log2(∥u− uJ∥2/∥u− uJ+1∥2).

Example 6.1. Consider the model problem (6.1), where T is defined in (6.2), and f and g are

chosen such that u = exp(xy) sin(κx) sin((κ + π/2)y). Additionally, we let κ = 4π, 8π, 16π.

See Table 6.1 for the numerical results.

Example 6.2. Consider the model problem (6.1), where T is defined in (6.2), κ = 32π, and

f and g are chosen such that u = sin(πx) sin(
√
κ2 − π2y). See Table 6.2 for the numerical

results.

In all cases, we observe that the condition numbers of the coefficient matrices associated

with the standard Galerkin method are around 2 to 800 times worse than those associated

with the wavelet Galerkin method. The rapid growth in these condition numbers is primarily

caused by the decreasing smallest singular values; the largest singular values, on the other

hand, behave like a constant at various scale levels. One can expect that this ratio continues

to increase dramatically as the scale level J increases. Also, since span(BJ0,J) = span(ΦJ)

for all J ⩾ J0 ⩾ 1, it is not surprising that the errors are essentially identical. As a final

remark we note that the choice of ϕ in our biorthogonal wavelet in (6.5) actually belongs to

a special family of interpolating refinable functions. These interpolating refinable functions

have been well studied. To achieve a higher order convergence rate, we may replace the

current ϕ with another one in the same family but with a higher multiplicity. For this family

of interpolating refinable functions, a higher multiplicity means the refinable function has a

higher polynomial reproduction order and consequently a higher convergence rate.
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κ = 4π
J CN of B2,J CN of ΦJ CN Ratio Rel. err of B2,J Order Rel. err of ΦJ Order
3 73.6 184.0 2.5 3.89E-2 3.89E-2
4 145.3 853.7 5.9 4.90E-3 2.99 4.90E-3 2.99
5 197.0 3464.4 17.6 6.11E-4 3.00 6.11E-4 3.00
6 232.2 13876.3 59.8 7.63E-5 3.00 7.63E-5 3.00
7 256.2 55503.0 216.7 9.53E-6 3.00 9.53E-6 3.00
8 273.0 221978.6 813.0 1.19E-6 3.00 1.19E-6 3.00

κ = 8π
J CN of B3,J CN of ΦJ CN Ratio Rel. err of B3,J Order Rel. err of ΦJ Order
3 92.2 92.2 1 2.03E-1 2.03E-1
4 185.2 491.5 2.7 3.51E-2 2.53 3.51E-2 2.53
5 314.9 3015.3 9.6 4.39E-3 3.00 4.39E-3 3.00
6 342.6 12556.1 36.7 5.46E-4 3.00 5.46E-4 3.00
7 355.0 50397.3 142.0 6.82E-5 3.00 6.82E-5 3.00
8 364.0 201647.9 554.0 8.53E-6 3.00 8.53E-6 3.00

κ = 16π
J CN of B4,J CN of ΦJ CN Ratio Rel. err of B4,J Order Rel. err of ΦJ Order
4 297.3 297.3 1 1.91E-1 1.91E-1
5 415.2 908.9 2.2 3.36E-2 2.51 3.36E-2 2.51
6 1061.6 10192.8 9.6 4.17E-3 3.01 4.17E-3 3.01
7 1266.4 46561.9 36.8 5.28E-4 2.98 5.28E-4 2.98
8 1320.9 188128.2 142.4 1.11E-4 2.25 1.11E-4 2.25

Table 6.1: Condition numbers and relative errors for Example 6.1.

κ = 32π
J CN of B5,J CN of ΦJ CN Ratio Rel. err of B5,J Order Rel. err of ΦJ Order
5 1285.9 1285.9 1 1.72 1.72
6 1258.5 2673.7 2.1 4.18E-1 2.04 4.18E-1 2.04
7 2979.5 28615.4 9.6 2.97E-2 3.81 2.97E-2 3.81
8 4738.9 174325.0 36.8 1.93E-3 3.95 1.93E-3 3.95
9 5066.7 722029.3 142.5 1.26E-4 3.93 1.26E-4 3.95

Table 6.2: Condition numbers and relative errors for Example 6.2.
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Chapter 7

Future Work

We conclude this thesis by outlining some directions of some future work.

Generalizing DAT for solving a larger class of the 2D Helmholtz equation is a problem

we may consider in the future. It is a challenging multifaceted problem, which requires new

ideas. There are two critical issues that need to be resolved. The source term would still be

partitioned by shifted square hat functions and their refinability can still be used to give rise

to the tree structure. The first issue comes from the 2D Dirac assisted local problems. In

contrast to the 1D Dirac assisted local problem whose source term is a Dirac distribution at

a single point, the 2D Dirac assisted local problems would have the source term consisting

of weighted Dirac distributions defined along the boundary of a rectangular subdomain.

Obtaining a highly accurate numerical solution of such 2D Dirac assisted local problem and

accurately estimating its outward fluxes are challenging, because its weak solution involves

highly singular functions caused by the singular distribution source term. The second issue

is on formulating the linking problems and generalizing Theorem 2.2 for stitching all the

local solutions into a global solution. In a multidimensional setting, this is considerably

more difficult than in 1D due to more complicated topology and boundaries of subdomains.

Another problem is to explore the possibility of obtaining a sixth order compact FDM

for the 2D Helmholtz equation with variable coefficients and reduced pollution effect. This

can be considered as a generalization of Chapter 3. So far, there already exists a fourth

order FDM for the 2D Helmholtz equation with smooth variable coefficients [16]; however,

the authors did not further reduce the pollution effect. This work would be useful in solving

the 2D Helmholtz equation with the perfectly matched layer boundary condition, which is

commonly used in geophysics. Throughout this thesis, we have mostly used the first order

absorbing boundary condition in our model problems.

Still in the context of FDM, we may also perform a rigorous error analysis for our proposed

FDM. The major difficulty comes from the fact that the coefficient matrix is sign-indefinite.
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Thus, new techniques may be needed to carry out the analysis.

The stability bounds in Chapter 4 motivate us to develop a new numerical scheme, which

presently is a combination of a Fourier method and DAT. We use our stability bounds to

strategically pick dominant Fourier coefficients in the solution, which are then computed by

a Filon-type quadrature due to its accuracy and adaptivity. Our initial experiments suggest

that these bounds play a critical role, especially when we have high frequency boundary

data. At this moment, we are trying to figure out what high frequency boundary data are

typically encountered in practice and whether they have any structures.

In terms of the wavelet Galerkin method we proposed, we may apply the same methodol-

ogy in Chapter 6 to wavelets whose primal refinable function belongs to the same family as

(6.5) but with a higher multiplicity. As discussed earlier, a higher multiplicity in this case ul-

timately translates to a higher rate of convergence. One challenge we encounter is finding an

appropriate compactly biorthogonal wavelet on the real line, since there are many freedoms

and they take the form of a nonlinear system. We may also consider using a biorthogonal

wavelet whose dual has infinite support, and see what extra benefits it can offer (e.g., a fur-

ther reduction of the condition number). Unfortunately, the theory presented in Chapter 5

does not apply to this situation. If a biorthogonal wavelet with an infinitely supported dual

does offer extra advantages, then we may also consider building a theory to construct/adapt

such wavelets on a bounded interval similar to the content of Chapter 5. In Chapter 6,

we performed an exhaustive parameter search to reduce the condition number as much as

possible. A question that may be worthwhile addressing is if there is a systematic or more

efficient way to do this. Finally, similar to before, we are also interested in performing a

rigorous error analysis for our proposed wavelet Galerkin method.
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[19] D. Černá and V. Finěk, Construction of optimally conditioned cubic spline wavelets on
the interval. Adv. Comput. Math. 34 (2011),219–252.
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