Numerical Study of the Helmholtz Equation with Large
Wavenumbers

by

Michelle Michelle

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

n

Applied Mathematics

Department of Mathematical and Statistical Sciences
University of Alberta

(© Michelle Michelle, 2022



Abstract

The Helmholtz equation is a fundamental wave propagation model in the time-harmonic
setting, which appears in many applications such as electromagnetics, geophysics, and ocean
acoustics. It is challenging and computationally expensive to solve due to (1) its highly
oscillating solution and (2) the large ill-conditioned /unstable sign-indefinite linear system
arising from standard discretizations, especially when a large wavenumber is present. In
this thesis, we develop and extensively study high order compact finite difference methods
(FDMs) and a wavelet Galerkin method for the Helmholtz equation in various settings.

In Chapter [1, we provide some background on the Helmholtz equation and wavelets.

In Chapter [2 we introduce the Dirac Assisted Tree (DAT) method coupled with an arbi-
trarily high order compact 1D FDM. DAT successfully overcomes the massive ill-conditioned
linear system associated with the Helmholtz equation by breaking a global problem into small
much better conditioned linking and local problems, as well as harnessing parallel computing
resources. DAT is effective in solving 1D heterogeneous and special 2D Helmholtz equations
with arbitrarily large wavenumbers. Results in this chapter have been published in Comput-
ers and Mathematics with Applications.

In Chapter [3, we propose a new pollution minimizing sixth order compact FDM for the
2D Helmholtz equation with interfaces and mixed boundary conditions. The new pollution
minimization strategy we employ is based on the average truncation error of plane waves.
Compared to existing FDMs, the errors of our method are several orders of magnitude lower.
Results in this chapter have been submitted for publication in SIAM Journal on Scientific
Computing.

In Chapter [, we present new sharp wavenumber-explicit stability bounds for the 2D
Helmholtz equation with mixed inhomogeneous boundary conditions. Such bounds are cru-
cial in the analysis and development of numerical schemes, since they describe how the

solution behaves for given data. Establishing these bounds is difficult, since they highly de-
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pend on boundary conditions and the domain’s geometry. These findings motivate a future
development of a numerical method, which uses our stability bounds to strategically select
dominant Fourier coefficients in the solution. Results in this chapter have been accepted for
publication in SIAM Journal on Numerical Analysis.

Wavelets are sparse multiscale representation systems built from refinable functions (i.e.,
functions that can be expressed as dilated and shifted versions of themselves; e.g., B-splines
and Hermite splines). A Riesz wavelet on a bounded domain in R? (e.g., [0, 1]) is obtained
from the tensor product of 1D Riesz wavelets on a bounded interval. Hence, the efficacy
of a wavelet method in solving multidimensional problems (e.g., image processing and nu-
merical PDEs) relies on the optimal construction of a wavelet basis on an interval. Many
available constructions suffer from shortcomings. For example, some boundary elements may
have reduced vanishing moments, which adversely impact the overall sparsity of the system.
Furthermore, all existing constructions in the literature are applicable only to particular
examples or a very narrow family of wavelet bases. A natural question is whether a system-
atic construction procedure for any compactly supported wavelet basis exists. In Chapter [3]
we fully answer this long-standing problem in wavelet analysis. We propose and study two
systematic approaches that construct all locally supported biorthogonal multiwavelets on
an interval from any compactly supported biorthogonal multiwavelets on R. Results in this
chapter have been published in Applied and Computational Harmonic Analysis.

In Chapter [6] we apply the direct approach in the previous chapter to construct 1D
Riesz wavelets on the unit interval, and subsequently a 2D Riesz wavelet on the unit square
via tensor product. The latter is used in the Galerkin scheme to solve the 2D Helmholtz
equation with a non-local boundary condition, which models electromagnetic scattering from
a large cavity. The implementation of our method is very efficient. Also, our numerical
experiments indicate that the coefficient matrix of our wavelet Galerkin method is much

better conditioned (i.e., much more stable) than that of a standard Galerkin method.
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Preface

Results in Chapter [2| are based on the published journal article “Dirac assisted tree
method for 1D heterogeneous Helmholtz equations with arbitrary variable wave numbers.
Computers and Mathematics with Applications 97 (2021), 416-438.” The development and
composition of results in Chapter |2 are joint work with Bin Han and Yau Shu Wong.

Results in Chapter [3| are based on the paper “Sixth order compact finite difference
method for 2D Helmholtz equations with singular sources and reduced pollution effect,”
(arXiv:2112.07154v1, 20 pages), which has been submitted for publication in SIAM Journal
on Scientific Computing and is currently under review. The development and composition
of results in Chapter |3| are joint work with Qiwei Feng and Bin Han.

Results in Chapter [d] are based on the paper “Sharp wavenumber-explicit stability bounds
for 2D Helmholtz equations,” (arXiv:2108.06469, 28 journal pages), which has been accepted
for publication in SIAM Journal on Numerical Analysis. Results in Chapter [5| are based
on the published journal article “Wavelets on intervals derived from arbitrary compactly
supported biorthogonal multiwavelets. Applied and Computational Harmonic Analysis 53
(2021), 270-331.” Results in Chapter @ are currently in the manuscript preparation stage.

The development and composition of results in Chapters [ to[6] are joint work with Bin Han.
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Chapter 1

Introduction

1.1 Background

The Helmholtz equation is a fundamental time-harmonic wave propagation model, which
appears in many applications such as electromagnetism [[2] [[0]], geophysics [211 Bal @4 B3,
ocean acoustics [87], and photonic crystals [B6]. Its derivation from fundamental relations
in physics is discussed for example in [B6]. This equation is challenging, and by the same
token, fascinating to study for a few reasons.

From the theoretical point of view, the analysis of the Helmholtz equation is involved
because its standard weak formulation is non-coercive. Two fundamental topics to study
are the stability of the underlying solution (also known as a priori bounds) and the er-
ror/convergence of a numerical scheme. A nice exposition of special techniques used for
these topics can be found in [ITI]. The former of the two describes how the solution behaves
when the boundary and source data are perturbed. Wavenumber-explicit stability bounds
are of particular interest, since they describe how the solution’s energy depends on the fre-
quency and serve as a foundation for the development of numerical schemes. Several stability
bounds for the Helmholtz equation in various settings are available: [21] B2] 47 2] 103] 1§
for the interior impedance Helmholtz equation, [, [0 BT B3] B3] for the interior Helmholtz
equation with mixed boundary conditions, [I2 3] @Il OF] for an electromagnetic scatter-
ing from a large cavity problem, [[07] for the Helmholtz equation with transmissions, and
[60, [T, 016, 117, 18] for the exterior Helmholtz equation. More studies can be found in the
references cited by the previous papers. In general, obtaining a sharp wavenumber-explicit
stability bound is very challenging, since they are highly dependent on the domain and
boundary configurations (e.g, [f7]). This can be seen from the studies done by {7, 03] 115,
which deal with a bounded Lipschitz domain. With an extra assumption that the domain

is star-shaped with respect to a ball, [I03] proved a stability estimate that is independent



of the wavenumber . Without this assumption, the stability bound in [II8 Theorem 1.6]
has extra factors /2 and & in front of the boundary and source data respectively. We shall
address a stability problem for the Helmholtz equation in Chapter [4

From the computational point of view, the Helmholtz equation is difficult to solve due
to its highly oscillating solution. To obtain a reasonable solution or observe a convergent
behavior, the mesh size h used in a standard discretization has to be much smaller than the
reciprocal of the wavenumber x. Moreover, the mesh size requirement becomes exponentially
demanding as the wavenumber increases. This is known as the pollution effect, which has
close ties to the numerical dispersion/phase lags. The situation is worsened by the fact
that many discretizations of the Helmholtz equation yield an ill-conditioned sign-indefinite
coefficient matrix. Thus, when solving the Helmholtz equation, one often faces a massive
ill-conditioned sign-indefinite linear system, where standard iterative schemes may fail [43].

To gain a better insight on how the mesh size requirement is related to the wavenumber,
we recall some relevant findings on the finite element method (FEM) and finite difference
method (FDM). The authors in [I05] considered the interior impedance problem and dis-
covered that the quasi-optimality in the Ap-FEM setting can be achieved by choosing a
polynomial degree p and a mesh size h such that p > C'log(k) (for some positive C' inde-
pendent of , h, p) and kh/p is small enough. The authors in 3] found that for sufficiently
small xK?*1h?P  the leading pollution term in an upper bound of the standard Sobolev H!-
norm is k?T'h*. For second order FDMs, 22 23] found that x*h? < C (for some positive
C'independent of k, h) is required to obtain a reasonable solution. Meanwhile, for the fourth
order FDM, [Bg] found that x°h* < C (for some positive C' independent of k, h) is required
to obtain a reasonable solution.

A lot of research effort has been invested in developing ways to tackle these discretization-
related issues. From the previous discussion, it is clear that the mesh size requirement for
high order schemes is less stringent than low order ones. Hence, high order schemes are
typically of interest. Various preconditioners and domain decomposition methods have been
developed over the years (see the review paper [57] and references therein). Many variants of
FEM /Galerkin/variational methods have been explored. For example, [53] B4] relaxed the
inter-element continuity condition and imposed penalty terms on jumps across the element
edges. These penalty terms can be tuned to reduce the pollution effect. Spectral methods
have been used to solve the Helmholtz equation in various settings (S BTl 82 [R5l 08 09
15 016, II7). A class of Trefftz methods, where the trial and test functions consist of local
solutions to the underlying (homogeneous) Helmholtz equation, were considered in [84] and
references therein. A closely related method, called the generalized FEM or the partition

of unity FEM, has been explored. It involves multiplying solutions to the homogeneous



Helmholtz equation (e.g. plane waves) with elements of a chosen partition of unity, which
then serve as the trial and test functions. In recent years, multiscale FEM has also become
an appealing alternative to deal with the pollution effect [[12]. While it is widely accepted
that the pollution effect in standard discretizations such as FEMs and FDMs cannot be
eliminated for 2D and higher dimensions [, we can obtain pollution free FDMs [T7 I[22] in
1D to solve special 2D Helmholtz equations [, [23]. FDMs of various orders and stencil
sizes have been proposed. For example, 2] 23] proposed second order FDMs, [I10] proposed
a third order FDM, [I8 [ B6] proposed fourth order FDMs, and [I25], [[26] proposed sixth
order FDMs. The number of points used in these schemes varies: 9 in [22 23], 13 in [B7],
and both 17 and 25 in [36]. Additionally, the schemes in 22 23] B0 [19] [25] share a similar
dispersion minimization strategy. They start with a stencil having a given accuracy order
with some free parameters. Afterwards, the plane wave solution is inserted into the scheme
and the ratio between the true and numerical wavenumbers is minimized by forming an
overdetermined linear system with respect to a set of discretized angles and a range of ;2@_7}2
(i.e., the number of points per wavelength). We shall present and discuss new FDMs for the
Helmholtz equation in Chapters [2] and [3]

We briefly list some notations used in the discussion of the Helmholtz equation. Through-
out this thesis, we shall refer to domain as an open connected set in R?, where d = 1,2.
Suppose (2 is a bounded Lipschitz domain. Let H*(2), where s > 0, be the classical Sobolev
spaces of order s (e.g., see [62 Sections 1.3.1-1.3.2]), whose norm is denoted by | - [|s.q-
Suppose T' is the boundary of Q. Let H*(T'), where s > 0, be the Sobolev spaces of order
s on the boundary defined in the usual sense (e.g., see [I0Il pages 96-99]). If s = 0, then
H(Q) = Ly(Q2) and H°(T') = Lo(T'). The standard inner product and norm in Ly(Q) are
denoted by (u,v)q = [,uv and | - |00 = (u,u>51)/2. On the boundary, the standard inner
product and norm in Ly(T) are denoted by (u,v)r := [uv and || - [or := <u,u)1£/2. In this
thesis, we also use (-, -) (without any subscripts) to denote the standard inner product, where
the domain of integration is clear from the context.

One of our proposed numerical methods employs wavelet bases as its primary approxima-
tion tool. We now recall some basic concepts and definitions related to wavelets. Wavelets
are sparse multiscale representation systems, which have been successfully used in various
applications such as data science, image/signal processing, and numerical analysis. They
have been used to characterize various function spaces such as Sobolev and Besov spaces.
Wavelets are built from refinable functions, which are functions that can be expressed as

scaled and shifted versions of themselves. A good example of refinable functions is the



B-spline function of order m (i.e, B,, for m € N), where
1
Bl = X(0,1] and Bm = Bm,1 * Bl = / Bmfl(' — $)d$ (11)
0

Note that B, € C™ ?(R), its support is [0,m], and B, |k k+1) is a nonnegative polynomial
of degree m — 1 for all k € Z. Another great example is the Hermite cubic splines. Next,
we present several formal definitions to facilitate an in-depth discussion of the topic. Note
that the Sobolev space H™(R) with 7 € R consists of all tempered distributions f on R such
that [, [F(€)12(1 + |£[*)7d€ < 0o, Let ¢ = {¢1,.... ¢} 7,9 = {¢n,.... %} € H™(R) with
T € R. For J € Z, define the multiwavelet affine system in H™(R) by

AST(di0) == {1 k€ Z, 1 <U<r} Ui, 2 JkeZ 1< (<5},

where ¢l = 270227 - —k) and ¢f, = 200/27y (27 - —k). We say that {¢;¢} is a
Riesz multiwavelet in HT(R) if AS7,(¢; ) is a Riesz basis for HT(R). Le., (1) the linear span
of AST(¢; 1) is dense in H™(R), and (2) there exist Cy, Cy > 0 such that

Ch Z leal” < | Z CTI”H?T{T(R) & Z el

nEAST (¢;9) nEAST (¢39) nEAST (p;9)

for all finitely supported sequences {c,}neast(g:p)- Note that if 7 = 0, then H°(R) = Ly(R).
Throughout this thesis, we let AS ;(¢; 1) to denote ASY(¢;1)). By a simple scaling argument,
it is easy to see ([fQ [[1]) that AS(¢;4) is a Riesz basis of H™(R) for some J € Z if and
only if AS7(¢; 1) is a Riesz basis of H™(R) for all J € Z. If ASy(¢; 1) is an orthonormal basis
of Ly(R), then {¢;v} is called an orthogonal multiwavelet in Ly(R). It immediately follows
that an orthogonal multiwavelet {¢; 1} is a Riesz multiwavelet in Ly(R). If r = 1, the above
vector refinable function becomes a scalar refinable function, and a Riesz multiwavelet in
this case is often referred to as a scalar Riesz wavelet. Throughout this thesis, we often
refer to scalar wavelets and multiwavelets as simply wavelets. Let ¢ := {gz~51, ey QNST}T, =
{i1,...,0}T € H(R) with 7 € R. We call ({¢;4},{¢;¢}) a biorthogonal multiwavelet
in (H™"(R), H™(R)) if (1) {¢;4} and {¢;9} are Riesz multiwavelets in H~"(R) and H7(R)
respectively, and (2) AS}T(Q;; ¥) and AS7(¢; 1)) are biorthogonal to each other; i.e.,

(h,h) =1 and (h,3) =0, Vg e AS}(¢;v)\{h}.



Moreover, the following wavelet representations hold

f:ZZ<f7Q;§,k> g,k‘*’ZZZ(f» ~§;k> f;kv f€ HT(R)>

keZ (=1 j=J kezZ =1

g = Zz<g> f},k> ~§;k + ZZZ<9> f,k> Nf;kv g€ H_T(R)v

keZ (=1 j=J keZ ¢=1

(1.2)

with the above series converging unconditionally in H7™(R) and H "(R) respectively. For
a compactly supported (vector) function 1, we say that 1) has m wvanishing moments if
Jg #/p(x)dx =0 for all j =0,...,m — 1. Furthermore, we define vin(¢) := m with m being
the largest of such an integer. There are a few reasons as to why it is advantageous to use
wavelets in our numerical scheme. First, the coefficient matrix is often well-conditioned and
has uniformly bounded condition numbers, since we use a Riesz wavelet that belongs to a
certain Sobolev space. Second, the coefficient matrix can be assembled and stored efficiently
due to the refinable structure and the sparsity of the system. Third, they can be customized
to a certain extent to exploit the underlying structure of the problem. For some studies on
wavelet based numerical schemes, see [20) B9 74 B8 00, B2]. A Riesz wavelet on a bounded
domain can be obtained by taking the tensor product of univariate Riesz wavelets. Hence,
the efficacy of a wavelet method in solving multidimensional problems relies on the optimal
construction of a Riesz wavelet on a bounded interval. It turns out that many constructions
in the literature can only be applied to specific examples or a small family of wavelets. In
practice, this of course would limit the kinds of wavelets we can use in a numerical scheme. In
the following, we list relevant studies to give more context on the current state of literature.
The authors in [ [6 25, BTl O4] 09] 102, [13] constructed scalar orthogonal wavelets on the
unit interval from Daubechies orthogonal wavelets. The authors in [I8] 19, 20 B4} B3], &Y, 00,
[IT4] constructed spline scalar biorthogonal wavelets, which are built from B-splines (see [29]),
on the unit interval. The semi-orthogonal spline wavelets in [24] have also been adapted to the
unit interval in [25]. Even though multiwavelets generally can have higher vanishing moments
and smoothness than scalar wavelets for a given support, the studies on their constructions
are significantly fewer due to their technicalities [2 B I8 B3] B9 [ 2 3 B0 BG]. In
addition to the previous issue, some constructions produce boundary elements are not as
optimal as they can be. For example, these elements may have reduced vanishing moments,
which negatively impact the system’s overall sparsity, and may have a long support. Given
the current state of literature and our goal of using a wavelet Galerkin method to solve the
Helmholtz equation, we shall first address this critical construction issue in Chapter [5[ and

then present our proposed numerical scheme in Chapter [6]



1.2 Thesis structure and contributions

The main focus of this thesis is to develop and extensively study high order compact FDMs
and a wavelet Galerkin method for the Helmholtz equation in various settings. In this
section, we detail the major contributions of each chapter.

In Chapter [2, we introduce the Dirac Assisted Tree (DAT) method to solve the 1D
heterogeneous and special 2D Helmholtz equations with arbitrarily large wavenumbers. The
key idea of DAT is to break the global problem on [0, 1] into many small local problems by
multiplying the source term with a partition of unity (for example B-splines; here, we use
hat linear functions By). Each local problem now has a highly localized source term with
homogeneous Dirichlet boundary conditions except for those that touch the endpoints. Such
local problems can be solved by any discretization method in a parallel fashion, provided
that the fluxes at the endpoints of local problems can be accurately computed. As we shall
see later, Dirac distributions will naturally appear in the fluxes of local solutions. Hence, to
link these local probems, we want to offset these Dirac distributions by solving small linking
problems also in a parallel fashion. Due to the refinability of the hat function, the local
problems can be further decomposed into sub-local problems. Applying this recursively,
we obtain the tree structure of DAT. DAT can solve heterogeneous Helmholtz equations
that other methods have problems handling, without having any magnitude constraints
on variable wavenumbers, and without dealing with a massive ill-conditioned coefficient
matrix. In particular, we harness parallel computing resources to solve small and much better
conditioned linear systems coming from the local and linking problems. In an extreme case,
each of the local and linking problems in DAT can be solved by at most 4 linear equations.
The accuracy of DAT only depends on the accuracy of the local problem solvers. If the
maximum size of all local problems is bounded and independent of mesh sizes, then all
coefficient matrices of the local problems have uniformly bounded condition numbers. DAT
naturally brings about domain decomposition and adaptivity. The second contribution of
this chapter is to present a 1D compact FDM (that handles the domain’s interior and any
mixed boundary conditions) with an arbitrarily high accuracy order by assuming that a, k2, f
are piecewise smooth. Such high order compact FDMs are particularly appealing for DAT,
especially when computing the fluxes and derivatives of the solutions to local and linking
problems.

In Chapter [3] we propose a sixth order compact finite difference scheme with reduced
pollution to solve the 2D Helmholtz equation with singular sources and mixed boundary con-
ditions on a rectangular domain. Our proposed compact finite difference scheme attains the

maximum overall accuracy order everywhere on the domain with the shortest stencil support



for the problem of interest. Similar to A9, [E0], our approach is based on a critical observation
regarding the inter-dependence of high order derivatives of the underlying solution. When
constructing a discretization stencil, we start with a general expression that allows us to
recover all possible sixth order finite difference schemes. Then, we determine the remaining
free parameters in the stencil by using our new pollution minimization strategy that is based
on the average truncation error of plane waves. Our method differs from existing dispersion
minimization methods in the literature in several ways. First, our method does not require
us to compute the numerical wavenumber. Second, we use our pollution minimization pro-
cedure in the construction of all interior, boundary, and corner stencils. This is in stark
contrast to the common approach in the literature, where the dispersion is minimized only
in the interior stencil. The effectiveness of our pollution minimization strategy is evident
from our numerical experiments. Our proposed compact finite difference scheme with re-
duced pollution effect outperforms several state-of-the-art finite difference schemes in the
literature, particularly in the pre-asymptotic critical region where xh is near 1. When a
large wavenumber & is present, this means that our proposed finite difference scheme is more
accurate than others at a computationally feasible grid size. We also provide a comprehen-
sive treatment of mixed inhomogeneous boundary conditions. In particular, our approach is
capable of handling all possible combinations of Dirichlet, Neumann, and impedance bound-
ary conditions for the 2D Helmholtz equation defined on a rectangular domain. For each
corner, we explicitly provide a 4-point stencil with at least sixth order accuracy and reduced
pollution effect. For each side, we explicitly give a 6-point stencil with at least sixth order
accuracy and reduced pollution effect. To the best of our knowledge, our work is the first
to comprehensively study the construction of corner and boundary finite difference stencils
for all possible combinations of boundary conditions on a rectangular domain. Unlike the
common technique used in the literature, no ghost or artificial points are introduced in our
construction. We derive a seventh order compact finite difference scheme to handle nonzero
jump functions along the interface curve (i.e., the singular source). Since our proposed finite
difference scheme is compact, the linear system arising from the discretization is sparse. The
stencils themselves have a nice structure in that their coefficients are symmetric and take the
form of polynomials of kh. Also, the coefficients in our interior stencil are simpler compared
to 28], as they are polynomials of degree 6, while those in 28] are of degree 16.

In Chapter [4] we study the stability of the 2D Helmholtz equation on a rectangular do-
main with inhomogeneous boundary conditions and derive several new sharp wavenumber-
explicit stability bounds that hold for all positive wavenumber x. By sharp, we mean that
our stability bounds capture the leading k-dependent term in front of the norm of a given

datum, which is accurate up to a constant multiple (independent of x and the given datum).



To this end, we shall devise Fourier techniques, the Rellich’s identity, and a lifting strat-
egy. Furthermore, we shall give several examples to illustrate the sharpness of our stability
bounds. Some of the above boundary configurations can be thought of as simplified elec-
tromagnetic scattering from a large cavity (e.g, see [B [ M2 I3 OF]) or waveguide (e.g.,
see [I4] 63 M0O0]) problems, where we approximate the non-local inhomogeneous boundary
condition with an impedance boundary condition. Even though the stability bounds in [R3]
hold for a rectangular domain with mixed boundary conditions, the boundary configurations
in [R3] are completely different from ours. As we shall see later on, our stability bounds
necessarily depend on the wavenumber unlike [B3]. This again highlights the sensitivity of
stability bounds with respect to boundary placements and conditions. Our results comple-
ment those in [B3] for a rectangular domain, thereby offering a much more complete picture
of the stability behaviour of the Helmholtz equation on a rectangular domain with mixed
boundary conditions. These stability bounds are indeed applicable to the model problem in
Chapter [3| without any interface. While the scheme proposed in Chapter |3| can indeed be
applied to the present chapter’s model problem, our stability bounds motivate a future de-
velopment of a numerical method, which uses them to strategically select dominant Fourier
coefficients in the solution.

In Chapter 5] we do an in-depth study on the construction of wavelets on a bounded
interval from arbitrary compactly supported multiwavelets. This chapter serves as the foun-
dation for Chapter [0 where we present a wavelet Galerkin method to solve a scattering
problem. In this chapter, we present classical and direct approaches to construct all possible
compactly supported biorthogonal wavelets on a bounded intervals, which satisfy prescribed
vanishing moments and homogeneous boundary conditions. This chapter fully answers the
long-standing question in wavelet analysis on the existence of a general construction pro-
cedure that works for any compactly supported biorthogonal wavelets. Furthermore, our
construction does not suffer from any shortcomings that others do. That is, we are able to
maximally preserve the original desirable properties of the wavelets on the real line (e.g.,
short support and maximum vanishing moments). In the classical approach, we generalize
the construction method from scalar wavelets to multiwavelets. The typical procedure is to
first construct primal and dual refinable functions, and only after derive the corresponding
primal and dual wavelets. However, this calculation is often complicated because the dual
parts often have much longer support. This motivates us to propose the direct approach,
which is remarkably more general and much simpler to use than the former, since the dual
parts are not explicitly involved. Due to its convenience, we shall predominantly use the
later method throughout this thesis.

In Chapter [0 we present our wavelet Galerkin method for solving an electromagnetic



scattering from a large cavity problem. We shall apply the direct approach in Chapter |5 to a
new compactly supported biorthogonal wavelet, whose primal refinable function is interpo-
lating [2], to form a 2D Riesz wavelet in an appropriate Sobolev space via tensor product.
Our method falls in the category of high order schemes with a natural preconditioner origi-
nating from our wavelet basis. We expect that these two features help in alleviating the mesh
size requirement and improving the condition/stability of the linear system. Our numerical
experiments indicate that the condition number of the coefficient matrix associated with our
wavelet Galerkin method is approximately 2 to 800 times smaller (i.e., more stable) than
that of the standard Galerkin method.

Finally, we outline some directions of some future work in Chapter [7}



Chapter 2

Dirac Assisted Tree (DAT) Method

We have described some key challenges of the Helmholtz equation in Chapter [ To tackle
them, we present our first numerical method, which is the DAT method with an arbitrarily
high order compact FDM as its solver. It efficiently solves 1D heterogeneous and special
2D Helmholtz equations by decomposing the original problem into small better conditioned
local and linking problems.

In particular, we consider the following model problem. Let £ be the linear differential

operator of the 1D heterogeneous Helmholtz equations as follows
Lu = [a(z)u(2)] + K2 (z)u(z) = f(x), xeQ:=(0,1) (2.1)
with any given linear boundary conditions
Bou(0) := \gu(0) + AX/(0) = go, Biu(1) := Mfu(1l) + M/ (1) = g1, (2.2)

where A&, MO M € C satisfy [N+ M| # 0 and | M| + |\ # 0. Le., Bou(0) and Byu(1)
can be Dirichlet, Neumann or Robin (e.g. Sommerfeld) boundary conditions.

We describe the key ingredients and algorithm for the DAT method in Section 2.1} In
Section we present a 1D compact FDM with an arbitrarily high accuracy order for 1D
heterogeneous Helmholtz equation in (2.1)) with piecewise smooth coefficients, wavenumbers,
and source terms. We discuss the convergence of DAT in Section [2.3] Numerical experiments
showcasing our method are presented in Section [2.4]

Results in this chapter are based on [1].
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2.1 Main ideas and algorithm

Let (a,3) C (0,1) with 0 < a < 8 < 1. Let f € (H'(a,3)) be a source term. Let
e € H(r, B) be the weak solution in the Sobolev space H'(a, ) to the following local

problem:

Lugoe(x) = f(2), x € (o, B), (2.3)

where if a, 8 € {0, 1}, then we preserve the boundary conditions as in ({2.2)); otherwise, we
use homogeneous Dirichlet boundary conditions. Putting these boundary conditions into a
compact form, the boundary conditions to (2.3]) are given by

(Bouloc(o) _90)60,(1 + (1 - 5O,a)uloc<05) = 07 (Bluloc(1> - 91)61,5 + (1 - 51,B)uloc(6) = 07 (24)

where 6., = 1 and 6.4 = 0 for ¢ # d. Recall that v € H' (o, ) if ¥ € La(a,3) and
its weak/distributional derivative ¢ € La(a, ). Moreover, |[¥[7n,5 = VI, +
|| H%xaﬁ), where ¢’ stands for the weak derivative of ¢. Due to (2.4, we can extend
Uoe € H' (v, B) as an element in H'(0,1) by zero extension, which is denoted by ... There-

fore, using the definition of £ in (2.1]), we observe that

(

0, x € (0,a)U(5,1),

P Cin — Ao (Toe)00, = = and a # 0, 2.5)
f(@), z € (a, ),
\dﬁ(alocysﬁ? Tr = ﬁ and 6 7& L,

where J,, is the Dirac distribution at the point o and the above numbers d,, (@), dg(tioe) € C
for a # 0 and  # 1 are given by

do(Tioe) == lim a(x)iy,, (1), ds(tee) = — lim a(z)ay,,.(z), (2.6)
r—at T—B-
which, up to a sign change, are simply the fluxes of ;. at a and 5. Then . is a global
solution of

Liiee(z) = f(x), reQ=1(0,1).

We now introduce the DAT method. Let Ny € N be a positive integer greater than one.
We take a partition of unity {¢, }?;00 of piecewise smooth functions such that each function ¢;
is supported on [0, 1] and Z;.V:OO @;(x) =1 for all x € (0,1). For simplicity, we use piecewise

linear hat functions ¢;. Let 0 = xy < --- < xn, = 1 be a partition of [0, 1]. For simplicity,
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we define z_; = 0 and zny,41 = 1. We let ¢; be the linear hat function supported on
(21, xj41] with ¢;(z;) =1 and @;(z;j_1) = ¢;j(xj4+1) = 0. Obviously, we define @g(z) = 1
and po(z1) = 0, while pn,(zn,) = 1 and @y, (zn,—1) = 0. We now partition the original

source function f into small pieces as follows:

fi(@) = f(x)p;(z),  7=0,...,No.

Since Z;VZOO @;j(xz) =1 for all z € (0,1), we have f = Z;VZOO fi- Let u; € H (zj_1,2j41) be

the weak solution to the regular local problem:

Luj(z) = fi(x), € (rj-1,7j1) (2.7)
with the following boundary conditions:

(Bow;(0) — godo,j)00,2;_, + (1 — oz, )uj(zj—1) =0,

(2.8)
(B1uj(1) = 916n0,5)01,2;40 + (1 = 01,0, Juj(wj41) = 0.

That is, we use the homogeneous Dirichlet boundary conditions u;(x;_1) = u;(z;41) = 0,
except Bouo(0) = go, Bou1(0) = 0, Byun, (1) = g1, and Byup,—1(1) = 0. Due to (2.8)), we can

extend u; € H'(x;_1,x;41) as an element in H'(0,1) by zero extension, which is denoted by

u;. Hence,
.
0, T e (0,%’]‘71) U (LUjJrl, 1),
- dyp. (%;)0p, ,, x=ux;_1and x;_ 0,
Fie) = Liga) = | oo W00 @ =B and 27 29)
fi(z), T € (Tj-1,%j41),

\dle(uj)éxjH, r = ;41 and x4 # 1.

Now we discuss how to link/stitch all these local solutions {ﬁj};\;‘)o together. To do so, for

j=1,..., Ny — 1, we solve the following Dirac assisted local problem:
El}j(l') = 5%., T € ('rj—l; l‘j+1) (210)
with the following boundary conditions:

Byv;(0)do,e;_, + (1 = 602, )vi(xj—1) = 0,  Bivj(1)d1,2;,, + (1 = 01.2,,,)v5(2j41) = 0.
(2.11)

That is, we use the homogeneous Dirichlet boundary condition v;(z;_1) = vj(z;41) = 0,
except Bovi(0) = 0 and Byvy,—1(1) = 0. As explained before, due to (2.11)), we can extend
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v; € H'(z;_1,2;11) as an element in H'(0,1) by zero extension, which is denoted by v;. So,

we must have

(
O, x € (O, .I’j,1) U ($j+17 1),
. dp. (0;)0s, ,, v =ux,;_1 and z;_ 0,
0z, () = Loj(x) = ¢ 7 (3,0, i 1 7 (2.12)
5:Ej7 UES (xj—17 Ij-i-l)v
\dxjﬂ(@j)&xjﬂ, r=1xj4 and x4 # 1.
To link all the local solutions {u; };VZOO together, we need the following result.
Theorem 2.1. The elements in {01, ...,0n,-1} are linearly independent and for any complex
numbers pj, 7 =1,..., Ny — 1, the following linear system induced by
No—1 No—1
D fijoa, = > pyla, (2.13)
=1 j=1
No—1 No—1

has a unique solution {fi;} Moreover, V.= W, where V is the linear span of {v;}
No—1
=1

Jj=1 - 7j=1

and W is the linear span of {w;} where wj is the weak solution to the following global
problem:

Lw;j(r) = 0y, z € (0,1) with Byw;(0) =0, Byw;(1)=0. (2.14)

Proof. Since L0; = gm]. on (0,1) and 9,;(0) = 9,(1) = 0 except Byv1(0) = 0 and ByOn,-1(1) =
0, we obviously have v; € W and hence V' C W. We now prove that v,...,0xy,—; are linearly
independent. To do so, we claim that it is impossible that either 0], , «,) O 7j(;.2,4,) can
be identically zero. Without loss of generality, we assume that |, , .,y is identically zero.
Since U;{(z; 1 0,41) = v; € H'(2j_1,x;41), the function v; is continuous on (z;_y,z;11) and
hence v;(z;) = 0. However, since v; is the weak solution to the local linking problem in
(2.10), we see that v; := v}, s, ,) must be the weak solution to Lv;(x) = 0 on (z;,7;11)
with the boundary conditions v;(z;) = 0 and v;(z;41) = 0 (if j = Ny — 1, then 2,41 =1
and replace v;(z;41) = 0 by By0n,-1(1) = 0). By the uniqueness of the solution, the weak
solution ©; must be identically zero. Hence, v; must be identically zero, which contradicts
. Hence, both vj|(z,_, ;) and vj|(z,,,,) cannot be identically zero; i.e., U;|(;_, ;) and
Uj|(«;2,4,) cannot be identically zero.

No

Consider the linear combination v := )" i—1 ! ;05 such that v is identically zero. Because

0, vanishes outside (x;_1,2;41), we have 0 = v|(zg,21) = 101 |(z0,21)- SiNCe V1 (z,,) cannot be

identically zero, we must have pu; = 0. By induction on j, we must have py = puy = --- =

No—1

fno—1 = 0. This proves that the elements in {9; ;21 must be linearly independent. Now
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by V. C W, we conclude that V' = W. The uniqueness of the solution to the linear system
in (2.13) follows straightforwardly, since Lo, = ij, Lw; = b, and V = W. O

The following result is the main ingredient of our DAT method.

Theorem 2.2. Define

No No—1
wi=uy+us  with uy = Zﬂj, Us 1= Z 1505, (2.15)
=0 j=1

where U; is the weak solution to (2.7)) with prescribed boundary conditions in (2.8) extended

by zero, U, is the weak solution to (2.10)) with the prescribed boundary conditions in (12.11)

Nop—1

extended by zero, and {u; ioq - 1is the unique solution to the following linear system for the

linking problem:

No-1 No—1
Z /“’Lj(sitj = - Z (dﬂ&g ('aj—l) + dxj(aj+1))6ﬂcjv (216)
j=1 j=1

Then u must be the weak solution to the heterogeneous Helmholtz equation in (2.1)) with the
boundary conditions in ([2.2)).

Proof. Since Zé\go f; = f, we can write

No—1

Flae) =32 0yw) = Y- Fe) = D0 (o () e ())es (217)

J]=

[y

By Theorem , there is a unique solution {y; ;V:ol— ! to (2.16). That is, the linking problem
in (2.16) can be uniquely solved. Hence, using (2.17)), we can further write

f0) =3 Fio)+ Y i 215

By the definition of @;, we observe that Lus(x) = Z;V:OO fj(z) for z € (0,1) with the boundary
conditions Byus(0) = go and Bius(1) = g1. On the other hand, by the definition of Sm]., we

have
No—1

Lus(x) = Z ujgzj, z e (0,1)
j=1

and us satisfies the boundary conditions Byus(0) = 0 and Byus(1) = 0. Thus, by (2.18) we

have
No—1

No
Eu:ﬁuf+EU5:ij(x)+ Z e, = f(x), z € (0,1)
=0 j=1
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and u satisfies the prescribed boundary conditions in ({2.2]). O]

Obviously, we can recursively apply the above procedure to solve each of the local prob-
lems in (2.7) with prescribed boundary conditions in (2.8 to further reduce the size of the
problem. To elucidate this point, we now present the DAT algorithm below.

P45

©Yeaj—1 Pe45+1

Peraj+2

Pe,4+3

Tp—1j-1Te45—2 Ti-1j Ty 4542 Le—-1,5+1

Figure 2.1: Left: An initial partition of [0, 1] at £ = 1 with Ny = 8 and its subsequent refinement
at ¢ = 2 with s = 1. Right: The relationship between an interior large hat function ¢,_;; on
[¢—1j—1,2¢—1,+1) and smaller hat functions @ osjr, —2° +1 < k < 2° — 1, with s = 2.

Algorithm 2.1. Consider the 1-level partition {9317j}§y:(’0 given by 0 =211 =210 < 211 <
co < T Ng-1 < TIN, = T1Ng+1 = 1, and let {cpljj}jyzoo be the associated partition of unity
such that supp(¢1,;) C 1,1, %1,41] With ¢1j(21;) = 1. Pick L,s € N such that L is the
tree level and any subinterval at a level is divided equally into 2% small subintervals at the
next level. For each tree level ¢ =2,..., L, let {x; }]2(:(])\[ ° be a refinement partition of the grid
{xg_l,j}i(:zal)sNo such that {xg_l,j}if;”% C {Iz’j}?isévo with @1 ; = 955, Tp—1 = T40 = 0,
and Ty oes 41 1= Tpoesy, = 1. Fix N € N such that N+ 1 is the total number of points on the
?;NO C {z;}};. The local problems will be solved on this
fixed fine grid. Note that supp(er;) C [ws -1, Tej+1) With @pj(ze;) = 1 for 0 < j < 2D N,

and

finest grid in the tree and {z ;}

25—-1 0 25—1
Pe—1,0 = g Peks  Pr-12E-2sN, = E Pratt-Ds Ng+ky  Pe—-15 = E Pe255+k
k=0 k=—25+1 k=—25+1

for j=1,...,2¢=25N, — 1. See Fig. for an illustration of the setting above.

(S1) Solve the following (regular and Dirac assisted) local problems at tree level L in a

parallel fashion using any chosen discretization method.

Lup ;= f; =: fory, T € (Trj—1,T0441), j=0,..., 27D Ny,
(BOuL,](O) - 90604‘)60,9%,]-_1 + (1 - 50,.’17L7j_1)uL,j(xL,jfl> = O? (219)
(Biur j(1) — 910325 ny ) 01,2y 50 + (1= 012y ;40 )uLj (7L j11) = 0,
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Lupj = 0zy T € (Tpj-1,Trj41), j=1,... 207Ny — 1,
Bovr, j(0)00.0p, ;1 + (1 — 602, ;4 )0rj(2L,5-1) =0, (2.20)
Bior j(1)012, ;00 + (1 = 01,2y ;41)vr, (2L 11) = 0.

For all j =0,... ,2(=Ds N, - extend ur,; by zero outside of [z, j_1, 2y j41] and denote

it by g ;. Similarly, for all j = 1,...,25=Us Ny — 1, extend vy, ; by zero outside of

[#j-1,%1,511] and denote it by vy ;.

Let ¢ = L,...,2 decreasingly. Consider the artificial Dirac distributions at each grid
point and find the appropriate linear combination of Dirac local problems to offset it.
This allows us to recover the solutions to local problems at level ¢ — 1 from those at
level £. More explicitly, define an ny X ns tridiagonal matrix and an ns column vector
as follows

Tonang = tridiag({dw,n1+m(@,m—&-m—l) =2y {1 e 17{da:z,n1+m(1~)€,n1+m+l) le:—ll)’

Yeni,ne = [_dﬂce,n1+m (ﬂ&m-i-m—l)(l - 51,m(1 - 50,711(1 - 51!)))

- dwz,n1+m (af,m-i-m-&-l)(l - 5n2,m(1 - (52<‘*1)5N0—2S,n1(1 - 51,3)))]1<m<n27

where ny,ns € N U {0}, and the first, second, and third arguments of tridiag(-, -, -)
correspond to the entries in the lower, main, and upper diagonals. Given a column
vector p, we denote the kth component of p by (u),. For each ¢, solve the linking

problems obtained from steps (a)-(d) below in a parallel fashion.

(a) (Left-most element of partition of unity) Construct a (2°—1) x (2°—1) tridiagonal
matrix Ty 9951 and a (2°—1) column vector g g2 1. Set o0 = (Tro5-1) Vo021

(b) (Interior elements of partition of unity) For all j = 1,...,2¢=2%N, — 1, construct
a (2571 —1) x (2571 — 1) tridiagonal matrix T} gs(j_1)2:+1-1 and a (257! —1) column
vector Yy gs(j—1y2s+1-1. Let ess is a (2°t1 — 1) vector with 1 in the 2°th entry
and 0 in the remaining entries. Set i, ; = (T&Qs(j_l)’zs—o—l_1)_17&23(]'_1)728-4-1_] and
Nej = (Tz,Qs(j—1),2s+1—1)71€28-

(¢) (Right-most element of partition of unity) Construct a (2°—1)x (2°—1) tridiagonal
matrix Ty oe-1)sy,_9s 951 and a (2° — 1) column vector 7y ge-1sp,_gs 951 Set
Heae-2)s Ny = (Tz 2(6—1)s Ng—25 25 — 1) 17@,2“—1)51\[0—25,25—1-

(d) (Construct the solutions to local problems at level £ — 1) For j = 0,2(~2sN,
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(left-most and right-most elements respectively), set

2°—1 2°-1

Up—10 = E Upp + E (120,0) k0t ks
k=0 =1

0 251
Up_q 225Ny = E Ug o(e=1)s Nk T E (1e,200-2)3 Ny )k Vg 20615 Ny —25 41
k=—2541 k=1
For j =1,...,2¢ 25Ny — 1 (interior elements), set
251 2511 2511
Up_1,j = E Uposj4k + E (o) k0025 j—25 4k,  Vp—1j = E (e,5) k00,2525 k-
k=—2541 k=1 k=1

(S3) Construct an (Ny — 1) x (Ny — 1) tridiagonal matrix 7} g n,—1 and an (Ny — 1) column
vector Y10.n,-1- Set 10 = (Thong—1) V10N 1. Finally, the approximated solution

of the problem (21)-(2-2) is given by u = Y32 diak + Y poy  (H1.0)kTok-

As an illustrative example, for an equispaced grid on [0,1] with Ny = 4, h = 27",
L=n—-2,s=1andn € N, the size of each linking and local problem (with the exception of
those near the boundaries) is a 3 x 3 matrix equation. This exactly describes the situation
in Examples [2.1] and [2.4] in Section [2.4]

Thus far, we have described DAT for the linear differential operator £ defined in (2.1)).
The DAT method with appropriate modification can be generalized to general 1D linear
differential operators £ (e.g., the biharmonic equation involving higher order derivatives).
We would need to modify Theorem about how we patch the local problems in ([2.3)
by means of the Dirac assisted local problems in equipped with suitable boundary
conditions. In addition to (2.10f), we may have to solve additional Dirac assisted linking
problems in using higher order distributional derivatives of d,;.

As it currently stands, DAT can handle multidimensional problems that can be decom-
posed into a series of 1D problems (e.g., by the separation of variables). We shall provide a
few relevant 2D numerical examples in Section 2.4.3] We shall discuss the use of DAT for
solving general 2D /3D problems in Chapter
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2.2 Compact finite difference schemes with arbitrarily

high accuracy orders

To numerically solve the heterogeneous Helmholtz equation in f with piecewise
smooth coefficients a, x? and source term f, in this section we shall study compact finite
difference schemes with arbitrarily high accuracy and numerical dispersion orders. Such
compact finite difference schemes are important for accurately solving local problems stem-

ming from DAT in the foregoing section.

2.2.1 Compact stencils for interior points

We start by stating a simple observation, which is critical for proving the existence of a 1D
finite difference scheme with an arbitrarily high accuracy order. The following observation
uses an analyticity assumption for its theoretical analysis; however, we only require the

coefficients to be differentiable up to a certain order as we shall see later in this section.

Proposition 2.3. Let a, k?, f in (2.1)) be analytic functions and let u be an analytic function
satisfying [a(x)u'(z)] + k*(z)u(x) = f(x) with a(z) > 0 for all x € (0,1). For any point
xp € (0,1), we have

j—2
u (zy) = Ejou(zy) + Ejau (zp) + Z Fof (), J =2, (2.21)

=0
where the quantities E; o, E;1, Fj, only depend on the values a(zy), d'(xy), . ..,a¥ =Y (x) and
k2 (1), [KY) (2),. .., [k}]Y=D (z3) for j > 2 and € € Ny. Consequently, for sufficiently small

h,
u(xpy + h) = u(xy) Eo(h) + u'(xp) R EL (R) + Z hH2FO (1) Fy(h), (2.22)
=0

where Eg(h), E1(h) and Fy(h),¢ € Ny are defined to be

0 E,70 ) &) E',l o e8] F',Z o,
l%w%:1+§:7%m,<&my:1+§:7%wly nm)::zjj%mf2.(2%)
=2 j=2 j=t+2

Proof. We prove the claim in (2.21)) using mathematical induction on j. Consider the base

case with j = 2. Since a(x) > 0, we deduce from [a(z)u'(z)]" + £*(x)u(x) = f(x) that

u®(z) = —E8u(z) — L8y (z) + L) z € (0,1). (2.24)

K
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Hence, setting x = z; in the above identity ([2.24]), we conclude that (2.21]) holds for j = 2.
Suppose that the claim in (2.21)) holds for some j > 2. We now prove that (2.21) must
hold for j 4+ 1. Applying the (j — 1)th derivative to both sides of the identity in (2.24)), we

observe that

u(j+1)(x> _ ['f((;;)u(x)} (-1 B [i((j))u/@)} (-1 N [ﬁg] (G-1) .

Applying the Leibniz differentiation formula to the above identity, we conclude that the

quantity «U*Y(x) can be written as a linear combination of f(z), f/(x),..., fU=Y(z) and
u(z), v (z),...,uY (x) with all combination coefficients being analytic functions of z de-
pending only on a(x),d’(z),...,a¥ (z) and &*(z), [k*(2)],..., [x*(x)]Y~Y. Now by induc-

tion hypothesis, we conclude that holds for j 4+ 1. This proves by mathematical
induction on j.

On the other hand, since u is analytic in a neighborhood of x;, the Taylor series of u at
the base point @y is u(zy +h) = u(wy) +u'(xp)h + 377, "(7) (1) pi . Therefore, we deduce from

(2-21) that

u(xy + h) = u(xy) + u' (24 h+zj‘( Ejou(zy) + Ejau'(wy +Z G (%))

(55 5p) (g >Hiiz—f

= u(xp)Eo(h) + u'(zp)hEr(h) + Z Z ' (),

£=0 j=~0+2
from which we obtain ([2.22)). O

Let us now consider compact finite difference schemes with high accuracy and numerical
dispersion orders for the heterogeneous Helmholtz equation in ([2.1)) with smooth coefficients
a,k? and source term f. Suppose the discretization stencil is centered at an interior point
xp with mesh size 0 < h < 1. That is, we fix the base point x; to be in (0,1) such that
(xp — hyxp + h) C (0,1).

Theorem 2.4. Suppose that a,rx?, f in (2.1) are smooth functions. Let M, M be positive
integers with M > M. Let 0 < h < 1 and z, € (0,1) such that (z, — h,2y + h) C

(0,1). Consider the discretization stencil of a compact finite difference scheme for Lu =
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la(z)u/(z)] + £*(z)u(z) = f(z) (ie., [2.1)) at the base point x;, below
Lou(xy) == h™2[c_y(h)u(zy — h) + co(h)u(xy) + cy (h)u(zy + h)] Z de(h xp), (2.25)

where c_1, ¢y, c1 and dy are smooth functions of h for £ =0,..., M — 1. Suppose that

o a(h) a(h) M+1
() = B Bi(-n) T O (2.26)

Co(h) = —C1(h)E0(h) — C_1(h)E0(—h) + ﬁ(hM+2)

+ oMY, ey (h) =

and
dg(h) = —501 + Cl<h)Fg<h) + (—1)ZC,1(}L)F4<—}Z) + ﬁ(hMﬁg), (= 0, ey M — 1, (227)

as h — 0, where a is a smooth function of h with «(0) # 0 and Eo(h), E1(h) and Fy(h), ¢ € Ny
are defined uniquely in (2.23)) of Proposition . Then the discretization stencil of the
compact finite difference scheme has numerical dispersion order M at the base point xy, that

18,
R 2[c_y(R)u(xy — h) + co(h)u(zy) + ci(h)u(zy, + h)] = O(RM), h — 0, (2.28)
for every solution u of Lu =0, and has accuracy order M at the base point xy, that 1s,
Lyu(xy) — f(z) = O(BM),  h—0, (2.29)

for every solution u of Lu = f.

Proof. By Proposition and (2.21)), all the quantities £, Ej1, F;, depend only on the
values a(zy), a'(zp), . .., aV =Y (zy) and k%(zy), [k (23), . . ., [k?]V~ 2 )(x) for j > 2 and £ € Ny,
For simplicity, we define ug := u(xy),u; = o' (x3) and f; := f¥(x;) for £ € Ny. Thus, by
(2.22)), we deduce
h2£hu(xb) — h2f0

= ug (c,l(h)Eo(—h) +eo(h) + cl(h)Eo(h)> + ulh( — e 1(MEy(=h) + cl(h)El(h)>

+ ) R fy (er(R)Fo(h) + (1) ey (h) Fo(—h)) = (do(R) + 1)h* fo — Z_ de(R)h Y2 £y,
- - (2.30)
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where Ey(h) and E;(h) are defined in (2.23)).

On the other hand, from f(z) = [a(x)u'(z)] + &*(x)u(x) we trivially observe that f®
can be written as a linear combination of u, «’, ..., u“t? as well. Consequently, holds
(or equivalently, holds with f = 0 and M = M ) for numerical dispersion order M if
and only if the coefficients of ug and w; in the above identity are &'(h™*2) as h — 0. That

is, ([2.28)) is equivalent to

c_1(R) Eo(—h) + co(h) + er(h) Eo(h) = G(hM*2),  h =0,
— C_1(h)E1(—h) + Cl(h)El(h) = ﬁ(hM—H), h — 0.

Solving the above equation and noting that Fy(0) = E;(0) = 1, we conclude that
holds if and only if holds. Thus, holds for numerical dispersion order M if and
only if holds.

We now prove . Since we proved and M > M, holds for accuracy
order M if and only if all fo,... , fi7_; must be ﬁ(hM“) as h — 0. Rearranging the last
line of , we conclude

th (cr(h)Fy(h) + (=1)fc_1(h)Fy(=h)) fo — (do + 1)h* fo — Z doh 2 f,
h€+2 dz + 50 g) + Cl(h)Fé(h) + (—1)50_1(h)Fg(—h)) fl + ﬁ(hj\;[_m)

Since ([2.28) holds, (2.29) now is equivalent to that all the coefficients f,, £ =0,..., M — 1
in the above identity must be @(h¥*2), that is,

—(de + 60,0) + c1(R)Ey(h) + (=1)c_y(R)Fo(=h) = O(KM~Y),  1=0,...,M —1.

Solving the above linear equations for dy, . ..,d;; , and using (2.26]), we obtain ([2.27). This
proves (2.29) for accuracy order M. O

We make some remarks on Theorem First, from the proof of Theorem 2.4 we see
that Theoremﬁnds all the possible compact FDMs with accuracy order M and numerical
dispersion order M. Because for accuracy order M automatically implies for
numerical dispersion order M with M = M, we often take M = M. Also, x2 can be replaced
by —r? (i.e., k can be complex-valued). Second, if Fy and E; in have closed forms,
then we can have numerical dispersion order M = oo for a pollution free scheme by selecting

Cl(h) = —1/E1(h),0_1(h) = —1/E1<—h> and Co(h) = Eo(h)/El(h> + Eo(—h)/El(—h) in

21



(2.26). In particular, for constant functions a and 2%, we observe

Eo(h) = cos(h), Ey(h)=h"'sin(h) with h:=hk/va (2.31)
and for ¢ € Ny,
cos(h) — S W72 sin(h) — S L poj
Fy(h) = ")~ 2120 oy . Py (h) = (") = 2o "™ (2.32)

(—1)“%2”% (—1)”1712“%

This pollution free scheme coincides with that of [[22) [24]. In the literature, a dispersion
correction procedure for 1D homogeneous Helmholtz equation with (piecewise) constant
wavenumbers also exists [20] 27 H6]. However, the procedure as presented uses the standard
second order FDM, which itself is not a pollution free scheme. The correction solely comes
from modifying the original wavenumber. More specifically, the method involves inserting
the exact homogeneous solution of the 1D Helmholtz equation on the real line into the

standard second order FDM to obtain the modified wavenumber.

2.2.2 Compact stencils for boundary points

We now handle the case that the base point is one of the endpoints. It is important that
a compact FDM should achieve the same accuracy order and numerical dispersion order at
the endpoints as it does at interior points. The following result answers this question. For
simplicity, we only handle the boundary condition at a base point x;, from its right side,
while the treatment for the boundary condition at x;, from its left side is similar through
symmetry. Because we shall handle piecewise smooth coefficients, let us consider a general
boundary condition at x, € [0,1) from its right side. For j € Ny and a function f(z),

fO (y4) = lim,, .+ f9(z) and fO)(2,—) := lim, - f9(z) for one-sided derivatives.

Theorem 2.5. Suppose that a, k>, f in are smooth functions. Let M, M be positive
integers with M > M. Let 0 < h < 1 and the boundary condition at z, € [0,1) with
(p, xp + h) C (0,1). Suppose that the boundary condition at x, for the right side of xy is
given by

Bfu(xy) := Xou(xp+) + M/ (xp+)  with  Xo, A € C. (2.33)

Consider the discretization stencil of a compact FDM for Lu := [a(x)u/(z)] + £*(x)u(z) =

f(zx) at the base point xy,, from the right side of x, with the above boundary condition, below

=,

L8 u(ay) = h B (Wu(xy) + & (R)u(ay + h)] — - dB" ()W O (2,4, (2.34)

Il
o
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where COB+, 0113+ and df+ are smooth functions of h for £ =0,..., M — 2. Suppose that

~ Ei(h)

+O(hM), B (h) =hxo — ¢ (R)Eo(h) + O(hM+) (2.35)

and
dB5(h) = E (W Fh) + (RN, r=0,...,M—2, (2.36)

as h — 0, where Ey, 1, Fy, 0 € Ny are given in of Propositz'on and are determined
by a"™ (zp+) and [K?)"(zp+) for n € No. Then the discretization stencil of the compact
finite difference scheme at the base point x;, with the boundary condition in from the
right side of xy satisfies

BT (h)u(xy) + & (hu(xy + h) = 6(BM), h — 0 (2.37)

for every solution u of Lu =0, and

L8 u(xy) — BTu(z) = 0(WM),  h—0 (2.38)

for every solution u of Lu = f.

Proof. The proof is similar to but easier than the proof of Theorem by using ([2.22)),

which implies

Eo(h) * i1

Er(h) FO(@+) Fo(h). (2.39)

u(xy + h) —

, B 1
u'(zp) = nEN () 2

Since B u(xpy) = Au(xp+) + M/ (2p+), using (2.39) we obtain

~ A Ey(h) =\
B* =nt | h) + ( doh — - hitp® Fy(h).
u(xyp) El(h)u(a:b—l— )+ ( 0 B () u(xy) ; (i) [z +) Fu(h)
(2.40)
Now the claim follows directly by using (2.40]) and ([2.34)). O

If Ey and F; in (2.23)) have closed forms, then we can achieve numerical dispersion order
M = oo for pollution free by selecting ¢;(h) = #(lh) and co(h) = hAg — g?g}i% in (2.35)) of
Theorem . In particular, for constant functions a and w2, Ey, Ey, F} are given in (2.31)
and (22.32)). As before, this pollution free scheme coincides with that of [[221 [24] when the
boundary condition takes the form of A\g = 1 and A\; = 0 in (2.33)) or \g = —ix and A\; = —1

in (2.33).
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2.2.3 Compact stencils for piecewise smooth coefficients

We now discuss piecewise smooth coefficients a, x? and f. Assume that a,x?, f may have
a breaking/branch point z. := z, — 0h € (z, — h,, + h) with 6 € (—1,1) such that they
are smooth on (x, — h,z.) and (z,zp + h), but they may be discontinuous at x.. We also
assume that all the one-sided derivatives of a,k?, f exist at x, and assume 6 € [0,1) for
simplicity. To solve the Dirac assisted local problems in of Algorithm for DAT,
we also assume that w(d,,) is the weight of the Dirac distribution ¢,, in the source term f.

We can generalize Theorem by considering the following discretization stencil at x:
Lyu(zy) = h2[c_1(h)u(zy — h) + colh)u(zs) + c1(h)u(zy + h)]

M-
— 7 S O ) + (0O w)),
£=0

where c_1, o, ¢1,dy, and df ,d; £ =0,. .., M — 1 are smooth functions of h satisfying

c1(h)Eo—((0 — 1)h) + co(h) Eo 1 (6h) + cr(h)Eo (1 + 6)h) = 6 (hM*?),
c_1<h><0—1>E1,_<<0—1>h>“§%+§+co<h>eE1,+<0h>+c1< )+ 1)Ey (14 6)h) = (M),
du(h) = c_1(h)(1 = 6)Ey _((6 — 1)D) (A", h =0,

Q(Ic_)

and for £=0,...,M — 1,

df (h) = co()0" 2 Fis (6h) + ex(h)(0 + 1) Fo (0 + D) + O (hM ),
dz<h) C71<h)(9 — 1)€+2Fg7,<(6 — 1)h> + ﬁ(thZ% B 07

where Ey 4, Ey + and Fj 4 are given in Proposition at the point z. (instead of x;) using
a9 (z.4), [k?)9)(2.4) and fU)(x.4) accordingly. Then the above discretization stencil has
numerical dispersion order M at x;, by satisfying and has accuracy order M at x; by
satisfying Lhu(zy) = O(hM) as h — 0 for every solution u of Lu = f. The proof of the above
equations is very similar to that of Theorem [2.4|but we expand u(x, —h), u(x,) and u(zy,+ h)
through Proposition [2.3 at z. instead of x;, by noting u(zy, — h) = u(x. + (6 — 1)h), u(zp) =

u(z. + 60h) and u(x, + h) = u(z. + (0 + 1)h). Then we link the two sides of z. through the
transmission conditions u(z.4) = u(x.—) and a(z.+)v' (x.4) — a(x.—)u'(v.—) = w(d,,). I
all coefficients a, s, f are smooth inside (z,—h, zp+h), then L,u(zp) in of Theorem
can be recovered through £ (2) = Lyu(xy) + f (1) using x, = x;,. We shall not pursue this

general issue further. In the present paper, it suffices for us to only consider the special case
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that z. = xp, i.e., 8 = 0. For z. = x3, using the following special boundary operators at x;:
Bfu(xy) :==u'(xp+) and B u(xy) := ' (xp—), (2.41)

instead of using ﬁohu(mb) we can deduce a compact stencil at the base point x;, from Theo-

rem [2.5[ for (2.41)) that

o 2a(zp—) B~ 2a(zp+) Bt _ 2w(da,)
Lyu = ; Ly ulzs) — a(wb+)+l:1(wb )£ u(e) = _a($b+)+alzfﬂb—) (2.42)

at the base point x;, where w(d,,) is the weight of the Dirac distribution d,, in the source

term f.

2.2.4 A concrete example of finite difference schemes for M = 8

For the convenience of the reader, here we provide details about how to obtain concrete
compact finite difference schemes with Mth order accuracy and numerical dispersion as
discussed in Sections to 2.2.3] In particular, we provide details for M = 2,4,6,8.
We first discuss how to compute Ey, By, Fy,¢ € NU {0} as defined in (2.23). Using
and taking derivative on both sides of , we observe that the coefficients E;, E;; and
Fj;, 0 =0,...,7—2 at a base point x; in Proposition can be recursively obtained by

/i2 /

a
Eiii0= E],-,o — EEj,b Eiti1=FEjo+ E}J — EEj,la Fiii10= Fj(,g + I,
i=2 4=0,...,5—1

with the initial values

2 /

1
EQ’O = —/{—, E271 = —a—, and F270 =, (243)
a a a

where we used the convention that Fj_; := % and Fj, := 0 for all £ > j — 2. Note that
Eg(O) = E1(0> =1 and Fg(O) = Fg+27g = FQ’O a(a: for all ¢ S NO
Let M = M € 2N. At an interior point z;, we obtain from (2.25) of Theorem . that
M-

c_1(h)u(zy — h) + co(h)u(zy) + c1(R)u(zy, + h) = h2f( Z RO (1) + 0(RMF2),

=0

as h — 0, where one particular choice of c¢_1, ¢, ¢; satisfying (2.26)) of Theorem is given
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by

c1(h) = =& =h), er(h) = =EMTHR), eo(h) = &N (R)E (h) + EMTH(=h)E (=h),

(2.44)
and the corresponding dy, ¢ = 0,..., M — 2 in (2.27) are given by
de(h) == =600 — EMTHR)FM 2 (R) — (=) EM T (—h)F)M 2 (=h), (2.45)

where &, ET, FJ',n € N are the unique polynomials (in terms of h) of degree n satisfying

EY(h) = Eo(h) + O(h™Y),  E}(R) := 1/E(h) + O(h™Y),  Fi(h) = Fy(h) + O(h™H),

(2.46)
as h — 0. Notice that dy;_1(h) = 0 and E;(0) = 1. Observing ¢;(0) + (—=1)~tc_1(0) =0
for even M € 2N, one can directly check that the above choice in and satisfies
all the conditions in ([2.26]) and (2.27) with a(h) =1 — BhM, where §3 is the coefficient of h™
in the Taylor series of #(h) at h = 0. Note that c¢_1,¢g, ¢y in and dg, 0 =0,...,M —2
in (2.45) only depend on a,d’,...,a™ =V, k2 [r?,...,[k]M=2 and f,f,...,fM=2 We
can also obtain stencils for odd integers M = M; however ¢;(0) + (—1)™~¢_1(0) # 0 and
consequently, we have to use & instead of £, £ instead of £, and ]-'jw =1 instead
of 7=~ in (2.44)-(2:4F). Define a; := a¥(xy), r; := [k49(x3) and f; :== f9(z;). For
M = M = 8, we explicitly have

817 =1+ }%é + (2(10(12 + 2agko — a%) % + (a3a02 + 251(102 — 2aia2a0 + a?) % + (6a4a(3) + 18:{2(18 - 18a1a3a(2)
—6a1;¢1a(2) — 16a§a3 — 2a2noa(2) + 14&3(1(2) + 46a%a2a0 — 2&%&0&0 — 19a‘11) ﬁ + (2&5&3 + Sngag — 8a1a4a8 — 6a152a8
—20(12(13(13 - 8a2n1a8 — 2a350a% + 28fiori1a8 + 29(1%(13@(2) + 4a%r{1a% + 48a1a§a(2) — 2a1a2r{0a3 — 14a1ngag - 78a£1"a2a0
+4a§f€0a0 + 27(1?) % + (120,60,8 + 6054(18 — 60a1a5aé - 72(11530,8 - 192a2a4aé — 156a2/£2a8 - 135a§aé — 120a3n1a3

724(14;{0(1% + 348&@%2(1% + 300:{%(13 + 282(1%(14(18 + 114a%n2ag + 204a1a2n1a8 + 1296a1a2a3a8 — 708a150n1a8 + 352(1%(18
—12a2k0af — 240a2k3a3 + 124x3ad — 1056a3azad — 66a3k1ad — 2544a2aa? + 198a3azroal + 354a?k3ad + 2910atazan

7150a‘1l/€0a0 — 863a?) 3a7a8 + 18&5(18 — 18a1a6ag — 30a1n4a8 — 70a2a5a8 — 88a2ﬁ3a8 - 126(13(14(13

hG
60480a$§ +(
5 5 5 5 5 24 2, 4 4 4
—108agkz2aqg — 60ask1ag — 10askoag + 152kgk3ag + 360Kk1 k2ag + 104atasag + T4aikzag + 610aiaz2a4aq + 252a1a2kK2a
+423a1a§a3 + 156a1a3f$1aé + 10a1a4n0a3 — 468a1 Honzag — 420a1 n%aé + 686a§a3a8 + 108a351a8 + 4a2a3n0ag
7600a2n0n1a§ - 142(13/1%0% + 37253.@1(13 - 500a?a4a8 - 126a?n2a8 - 3316a%a2a3a8 — 24Oa%a2/{1a3 + 86a%a3ﬁ0a8

+948a%nom1ag - 1760a1a§a8 + 168a1a%noa8 + 600a1a2n(2)a(3) — 248(1158(18 + 1899a411a3a3 + 48(1411&10,% + GOOOa?agag

7
—522(1{’(12/@0(13 - 474(1?/@%6% — 5310a?a2a0 + 264a?/40a0 + 1375(1{) m()}QlW’
0

8 h? h3 2 2 2 h* 3 2
E=1- HQOaO + (_,ﬂao +2a1Ko) Sag? + (—Hgao + 3a1k1a0 + 3askpao + kKo ag — 6 ay li()) 54ag? + (—Hgao + 4daik2ag

5
+6 azﬁlaoz + 4(13&0@02 + 4/@051(102 —12 a12mao — 24 ajaz2k0a0 — 60,15020,0 + 24 a13m0) 1237(104 + (—54(104 + 5a1f$3a03

+10 a2ﬁ2a03 + 10 a351a03 + 5a4n0a03 + 750&2(103 + 4&120,03 — 20 a12n2a02 — 60 a1a2n1a02 — 40 a1a3,‘€0a02
6
—31 alnofﬂaoQ — 30 agQHan2 —13 a2ﬁ02a02 — H03a02 + 60 a13/§1a0 — 120 a14m) + 180 aﬂagfmao + 36 a12/i02ao) 72(;17&05
5 4 4 4 4 4 4 4 2 3 3
+ (—n5a0 + 6a1k4ag + 15a2k3ah + 20a3k2ag + 15ask1ag + 6askoag + 11kok3zag + 15k1 k20 — 30aik3ay — 120a1azk2aq

7120a1a3n1a8 — 60a1a4n0a3 — 66a1ﬁ0n2a8 — 39a1n§a8 — QOagnlag — 120a2a3n0a8 — 81a2n0/@1a8 - 24a3/£%a8 — Qngnlag
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+120a:13n2a(2) + 540a%a2n1a% + 360a%a3/<0a3 + 228(1%1{0/“ a(z) + 540a1 a%noag + 192a1a2/<gag + 12a; Kgag - 360a‘11/<1a0

—1440a:1"a2f£0a0 — 240a?ﬁga0 + 720(1?50) 504045 + (—ngag + 7a1/i5a(5) + 21a2f$4a8 + 35a3f$3a8 + 35a4fﬂ2a8 + 21a551a8

504

+7(l6/€0a8 + 16&0/€4a8 + 26n1n3a8 + 15n2a0 — 42a1ﬁ4a3 — 210a1a2n3aé — 280a1a3n2aé — 210a1a4n1aé - 84a1a5n0a3

—122a1nom3aé - 174(1151/42(13 - 210a§fi2aé - 420a2agn1aé - 210a2a4noa8 - 202a2non2aé - 120(12&%118 - 1400,3&0(13
—40a4k3af — 1T4azrok1af — 2263 Koad — 28kokiad + 210a3k3ad + 1260a%azkaal 4+ 1260a2azk1al + 630aasroal
+345a%/1%a8 + 572&%/{0&2118 + 1890a1 a%nlag + 2520a1a2a350a8 + 1422a, agnonlag + 418a1a35(2)ag + 130a153ﬁ1a8

+630ag/§0a8 + 303(1%/{%0,% + 34a2,‘iga8 + ngag - 840(1%52(% - 5040a%a2/@1a(2) - 3360a‘i’a350a3 — 1800a:1"f£0n1a%

8
—7560a%a3road — 2280a3azkiad — 120a?kdad + 2520ak1a0 + 12600atazkoan + 1800atkiag — 5040af ko) 403’1270&3
2 3
FS(h) = i _ M + (—3a2a0 — koao + 6a1) QZ 3 + (74(13(1% — 3k1ad + 24a1aza0 + 6a1koap — 24(1?) 12}6 1 + (75a4a8

—6m2a0 + 40a1a3a0 + 23a1/€1a0 + 30a2a0 + 13a2/~coa0 + fioao — 180(11(12(10 — 36a1/i0a0 + 120(11) 0 5 + ( 3a0a5 — 5a0m3
+30a0a1a4 + 28a0a1n2 + 60a0a2a3 + 30a0a251 + 12a0a3f<0 + 4a0f$of<1 - 180a0a1a3 84a0a11$1 — 270a0a1a2 6a0a1,‘£g

—96(130,1(1250 + 720a0a‘;’a2 + 120a0a‘;’no - 360a?) oa 5 + ( 7a8a6 — 15a8/~i4 + 84aga1a5 + 110aéa1m3 + 210a3a2a4

252
+171lagazka + 140asa3 + 129aiask1 + 40akasro + 21airora + 18agk? — 630a3a2as — 482a3a2 ke — 2520a3a1azas3
—1047a3a1a2k1 — 418adarazro — 115a3a1kok1 — 630aia3 — 303ajairo — 34ajaskd — adkd 4 3360akatas + 1320a3a3 k1

+7560a3a3a3 + 2280a3a3azr0 + 120a3a3w3 — 12600a0ataz — 1800agatro + 5040af) =1,
0

2 3
(h) % — M + ( 6acag — Kkoao + 12a1) 12}67618 + (—5a3a3 — 2H1a(2) + 30ai1a2a0 + 4a1Kkoag — 30a?) #(mg + (—15a8a4

710a8n2 + 120a%a1a3 + 39a(2)a1n1 + 90a(2)a§ + 21aga2ng + a%n% - 540a0a%a2 - 60&0&%/{0 + 360a‘11) ﬁ
0

+ (—21a§a5 — QOaéng + 210a3a1a4 + 115a8a1/$2 + 42Oaga2a3 + 120a8a2/§1 + 45a8a3n0 + lOagmofﬂ — 12600,%0,%0,3

P 5
—345a3aik1 — 1890ada1a3 — 375a3a1azko — 15ada1 kg + 5040apaias + 480agpai ko — 2520a%) MZW
IS 2 3
Fa(h) = ﬁ — ;Ola% + (—10az2ap — Koao + 20(1%) 72167(13 + (—4(18(13 — a2k1 + 24apaias + 2apa1ko — 24a%) logﬁg + (—35@8(14
4
—15a8/~;2 + 280(130,10,3 + 59a(2)a1/<1 + 210a%a§ + 31a(2)a2/10 + a%ng - 1260(10(1%0,2 — 900,00@/40 + 84Oa411) 402};’70“87
F3(h) = i— — -l + (—15agpaz — agko + 30a ) + (—35a2a — 6a2rk1 + 210apaias + 12apa1 K —210a3) S
3UY = T20ap ~ T44a2 0¢2 — a0k0 ) 55100 5040a3 093 071 0a142 041r0 1) 4032043’
2 _ 1 arh 2 h? 1 _ 1 arh 0 _ 1
Fi(h) = T30ag — 84(1)a8 + (—21a0a2 —agko + 42a1) 403;70@3’ F5(h) = 5040ag 57610a3’ F(h) = 40320ag

Define &7 ., £7'y, Fy'y for n € Ny to be just £, £F', F' as in (2.46)), respectively but using
aj = a9 (zp%), w; = [k (%) and f; = f9(zp%). Let M = M € 2N. For the left
boundary condition B*u(xy) = Au(zp+) + M/ (z+), we deduce from (2.34) of Theorem [2.5]
that

M—-2

o5 (hyu(ay) + o (hyu(wy + h) = kB u(ay) + > df (WA 2O (ap+) + 6 (WM,

as h — 0, where one particular choice of cf+, B+, and dB for £ =0,..., M — 2 satisfying
(2.35]) and ([2.36]) of Theorem are given by
ET(h) == MEMTIR),  ET(R) = hg — MEMTN(R)EY, (), 247

i (h) = MEMT (W FNTTA(R), =0, M —2.
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Similarly, let the boundary condition at x; for the left side of x; be given by
B~ u(zp) = Mou(xzpy—) + M/ (xp—) with A, \; € C. (2.48)

By symmetry, the discretization at the base point x; from the left side of x; is
M-2
E(R)u(xy, — k) + &~ (h)u(zy) = B u(x) + Z d5 (WRF2 O (2,—) + O(AMHY), (2.49)
=0

as h — 0, which satisfies the corresponding relations in and ( - ) if

PBL(h) = =MEMTH=h),  § (h)=h g+ METH(=R)EN(—h),

B~ (1)1 M-1/_ M—E—2( o B (250)
di (h) = (1) NETH(=)F T (=), £=0,...,M -2

For the stencil used at the breaking/branch point x; such that w(d,,) is the weight of the
Dirac distribution d,, of the source term f, we deduce from (2.47) and (2.50) with A\g = 0
and A\; = 1 that

— 0481]\74_’1(—h)u(xb —h)+ [Ozﬁf\f_’l(—h)&y_(—h) + Bglﬂ,{rfl(h)i(%r(h)] u(xyp)
— BEMT (W)u(ay + h) = —hyw(dy,)

M—
= > HBENT (FNT ) O () + a1 T (=) FY T (k) O ()]

+ O(hM*),
(2.51)

L L Bi= M 2
a(zy+)+a(zy— a(zp+)+a(zy—) a(zp+)+a(zp—) "

Finite difference schemes Wlth lower accuracy orders M = 2,4,6 can be easily obtained

as h — 0, where o := and v :=

by truncating the above given &£5,&7, Fo~* accordingly. In the above compact FDM with

(M—-1) .2 20 [F&z](M—2)

accuracy order M with M = M € 2N, we only need a,d/,...,a , kK, [k

and f, f',..., fM=2),

2.3 Convergence of DAT using compact FDMs

In this section, we discuss the convergence of DAT in Section using compact FDMs
described in Theorems [2.4] and [2.5] of Section 2.2l Let us first outline the notations and
assumptions for our discussion in this section and for our numerical experiments in the next
section. Let 0 =by < by < --- < b, < byy1 = 1 with p € NU{0}. The coefficients a, x* and

f in (2.1]) are piecewise smooth in the sense that they have uniformly continuous derivatives
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of orders up to ny on (bj,bj41) for all 7 = 0,...,p for certain given integer ny; € N (see
Section [2.2| for details). Note that these coefficients may be discontinuous on (0,1) and we
call the points by,. .., b, breaking/branch points. For simplicity of discussion, we assume a
Dirichlet boundary condition at 0, while a Dirichlet, Neumann, or Robin boundary condition
at 1. Let u, be the exact weak solution to with the boundary conditions in . Let
N eNand 0 =29 < 21 < ... < xy_1 < xy = 1 for the computational mesh with the
average mesh size h := N~'. Let {uy(z;)}}_, be the approximated solution on knot points
{z; }évzo. To study theoretical convergence rates and to evaluate the performance of DAT,

we define

N
oy = telloo = max fun(z;) —ue(w;)],  luw — uelf3 = ZO hylun (2;) = ue(a;)* - (2.52)
o
with h; := 2,41 — x; and zy41 = 1. Because |Juy — uell2 < ||luny — ue]|s and ||uly — ulll2 <
|u/y — 1l || always hold, we shall only discuss the convergence in co-norm instead of 2-norm.
Throughout this section, positive constants C, C, Cs are always independent of both matrix
size N and mesh size h. The computational mesh is assumed to be quasi-uniform, i.e., there
exists C' > 0 independent of h such that C~'h < h; < Chforall j =0,..., N. Note that the
weak solution u, € H'(0,1) but «/, may be discontinuous at branch points on (0, 1), because
the coefficients a, x?, f are only piecewise smooth. For convenience, every branch point b,
is assumed to be a grid/knot point and the mesh on each piece (b, b;j11) is uniform for all
7 =0,...,p. These restrictions could be dropped as we already discussed in Section [2.2.3

but they make our discussion here and implementation in Section much simpler.
For an Mth order compact FDM in Section with M = M e N, the stencil at xj:

cj—1(h)u(zj—1) + cjo(h)u(z;) + cja(h)u(zjsr) = Fj(h), j=1,...,N (2.53)

is given in Theorems [2.4) and [2.5] as follows:

(1) If x; is neither a branch point nor a boundary point, then (2.53)) is given by ([2.25) with
(2.26) and (2.27) under the normalization condition a(0) = —1. Because we impose
a Dirichlet boundary condition at 0, the known term ¢; _1(h)u(x) is moved to and

combined with Fj.
(2) If z; is a branch point, then (2.53)) is given by (12.42) or more explicitly (2.51]).
(3) For xy (right boundary point), (2.53) is given by (2.49) with (2.50). Note that

cyn+1(h) = 0. If we impose a Dirichlet boundary condition at 1, the known term
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cn—1,1(h)u(zy) is moved to and combined with F} such that the last term in (2.53) is
N — 1 (instead of N).

The approximated numerical solution uy = {un(z;)}}_, is obtained by solving the linear
system in ([2.53]) with © = uy. By Theorems and , the exact solution u, must satisfy

¢j—1(h)ue(zj—1) + cjo(h)ue(x;) + ¢cja(h)ue(xja) = Fi(h) + Ri(h),  j=1,...,N, (2.54)
where the local truncation error functions R;(h) resulted from Taylor approximation satisfy

|R;(h)| < CRM, it zj & {bo,...,by11}, i.e., z; is an interior point,
J X
ChM+1if z; € {by,...,bys1}, i.e., x; is a branch point or a boundary point,
J P 7

(2.55)
where the constant C' is independent of h and only depends on derivatives of ., a, x* and
f. The error is then defined by Q; := un(z;) — ue(z;) at the knot point z; for j =1,..., N.

By and (2.55),
¢j—1(h)Qj-1 + cjo(M)Q; + ¢j1(M)Qjs1 = Rj(h),  j=1,...,N, (2.56)
which can be put together into the following matrix form
Ah)Q = R(h) with Q:=[Q1,...,Qn]",R(h) :=[Ry,...,Ry]", (2.57)
where A(h) is an N x N tridiagonal matrix defined by
A(h) = tridiag({c;—1(h)}}1a, {ci0(h) 15, {ea (M) }351). (2.58)
Setting h = 0, we have a related N x N constant tridiagonal matrix A(0) given by
A(0) = tridiag({e;,1(0)} o {50001, fesa (015, (2.59)

where tridiag(-, -, -) is defined in (S2) of Algorithm [2.1] and the entries of A(0) are given as

follows:

¢;i-1(0) =¢;1(0) = =1, ¢;0(0) =2 if z; is an interior point,
< cio(0) =2, ¢;_1(0) = —%, ¢j1(0) = =2 —¢; _1(0), if z; is a branch point,

co0(0) =2, ¢1(0) =—1 if Af =0, \f =1in (2.2),

en—1(0) = =1, eno(0) =1, if A #0in (2.2).
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If we impose a Dirichlet boundary condition at 1, then we replace N with N — 1 in ([2.54)),

(2.56), (2.57), (2.58), and (2.59). Furthermore, cy—1.-1(0) = —1 and cy_1,(0) = 2 in (2.59).

Next, we highlight some key issues as to why the theoretical convergence of compact

FDMs in Section for 1D heterogeneous Helmholtz equations with various boundary con-
ditions requires a separate comprehensive treatment and will be addressed elsewhere. First,
the solution stability of such Helmholtz equations is far from trivial and warrants further
investigation. There are some cases in which the stability constant may exponentially rise;
i.e., the solution is close to being ‘unstable’ in some sense. In fact, the solution may become
highly unstable under perturbation or even with fairly accurate approximation of boundary
and source data. See [GIl, Section 5.2]. In these situations, the convergence of FDM (and
any other discretization methods) is severely affected. For illustration purposes, we mention

two such cases by considering the simplest Helmholtz equation:
' +r*u=f on [0,1] with u(0)=wu(1)=0, a constant wavenumber x > 0. (2.60)

First, it is well known that solving the simplest Helmholtz equation in with large
wavenumbers « is challenging, because the huge stability constant grows quickly with x?
and causes the pollution effect. This requires the mesh size h to be extremely small for
any numerical schemes to start effectively approximating the true solution and exhibiting
convergence behavior. Second, if kK = nm with n € N, then the solution u to is
obviously not unique since u(z) + asin(nmx) are also solutions to for all & € C. Now
consider (2.60) with k = nm £+ € with n € N and a very small ¢ > 0. Though the solution
to is now unique and the wavenumber x is quite small, as we shall explain later,
its true solution is highly unstable in some sense. One has to use a small mesh size A in
proportion to € (which may be smaller than machine precision) for any numerical scheme
to start effectively approximating the true solution and exhibiting convergence behavior.
These phenomena and difficulties call for further investigation of the stability of Helmholtz
equations and its relations to convergence properties of FDMs. Because DAT can break any
large problem into very small ones, the above discussion in fact shows the advantages and
contributions of DAT for numerical solutions of Helmholtz equations.

Recall that for an m x n matrix A, the oo-norm of A is ||Allcc = SUP;cjcm D pey [Ajkl;

which is the operator norm mapping ¢ to 2. In the convergence analysis of FDM, one can
deduce from the identity (2.57) that

1Glloe == sup |Q;] < [IAMR) " B(1) oo < IAMR) ™ lool B (R) |- (2.61)

1<G<N
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Hence, how ||A(h)™!||« behaves for small h is a key issue. Even though A(h) in (2.57)
converges entrywise to A(0) in (2.59), the invertibility of A(h) and the norm estimates of
JA(h)™||o are not immediately guaranteed by the properties of A(0) in (2.59), since the
size N of A(h) goes to oo as h — 0. Furthermore, the structure of A(h)~! may be unknown.
In stark contrast to elliptic equations, A(h) may be singular or highly ill-conditioned not
only for large wavenumbers but also for small wavenumbers. Let us consider the simplest
Helmholtz equation in again and use the standard second order FDM. Then at mesh
size h = N7!, our coefficient matrix is A(h) = tridiag({—1}75", {2 — k?R*} 1 {=1}12),
whose eigenvalues are known to take the following form

0, = (2 — Kk*h*) — 2cos(nhm), VYn=1,...,N —1.

Note that the nth eigenvalue, o, vanishes and hence det(A(h)) = 0 if

k= ry(h,n), where k,(h,n):=h"1\/2(1 = cos(nhn)). (2.62)

This situation is not encountered in the elliptic case, since all its eigenvalues (2 + k2h?) —
2cos(nhm) > 0 for all n € N. Consider k = k,(277,3) & 9.4226, that is, k = 37 — € for
some 0 < € < 0.0022. Then the standard second order FDM fails to produce any solution
at h = 277 because det(A(h)) = 0. For k > 0, we define the distance p, := min,ey |k — nnl|,
which can be arbitrarily small for any mesh size h. For example, for the mesh size h = 2719,
we see that p, ~ 1071° with k := £,(271%,3) ~ 9.4248 but det(A(h)) = 0 at h = 271,
Note that the commonly used criterion k?h = €(1) is satisfied because xk?h ~ 2 x 10™* with
Kk = k(2719 3) and h = 2719, However, we need to employ an impractically small grid size
for the FDM before any convergence is perceived. The situation is exacerbated if x is very
large and p, is very small. The foregoing point first demonstrates how we need to carefully
quantify and elaborate on what ‘sufficiently small A’ means for some form of convergence
in the pre-asymptotic (computationally feasible) range to take place, which theoretically
may be challenging (much harder than elliptic equations); and second, it refers back to an
earlier key issue regarding the significance of understanding the solution’s stability. For the
example presented above, one can check by a direct calculation that the energy norm of the
true solution is large. The theoretical convergence for 1D heterogeneous Helmholtz equations
with piecewise smooth coefficients demands more sophisticated analysis due to its underlying
intricacies.

Before we turn to the convergence of DAT, we discuss how to estimate u'(z;) for z, = x;
for some 0 < j < N from u(zg) := un(zg),k = 0,..., N, since ¢y is used in the linking

problems of DAT and in the error ||u)y — ul||~ for measuring performance. Assume that the
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numerical u (i.e., uy) is computed with accuracy order M, that is, |u(zy) — u.(zg)| < ChM
for all kK = 0,..., N for some C' > 0 independent of N and h. We can estimate one-
sided derivatives u'(xp+) and u'(x,—) with the same accuracy order as well. Basically, let

LB u(x) and L8 u(x) be the stencils with accuracy order M for boundary conditions in

(2.41)) through Theorem 2.5 Then
U (ap4) = L8 u(xy) + WM, ul(m—) = L5 u(zy) + O(RM),  h—0, (2.63)

which can be also derived from easily. Higher order one-sided derivatives at x; can also
be estimated with accuracy order M thanks to Proposition[2.3] Moreover, since we can obtain
the one-sided derivatives of u. at all knot points with accuracy order M, using interpolation
we can obtain a function u(z),0 < z < 1 from the computed data {u(z;)}}, such that

u accurately approximates the exact solution u. in the function setting. The identities in
(2.63) play a critical role in DAT to accurately estimate artificial Dirac distributions in (2.9))

and (2.12) for DAT.

Now we are ready to discuss the convergence of DAT. Recall that the average mesh size
h := N~!'. Assume that the Helmholtz equation in (2.1)—(2.2)) has a unique solution. Let N

be a given integer independent of N and h. Now we claim that

If all local problems in DAT are at most No X Ny in size, then all the condition
numbers of all local problems in DAT must be uniformly bounded and DAT using the

Mth order compact FDM exhibits O(h™M) convergence for sufficiently small h.
(2.64)

The argument is as follows. According to the theory of DAT in Section the accuracy of
DAT only depends on the accuracy of the local problem solver and the error accumulated
from the tree depth and the linking problems. So, let us look at one typical local problem
with grid points o« =z < xp4y < - < xy_1 <xyg = [ on (a, ). For small h, as explained
in Section [2.I] on DAT, the boundary conditions for this typical local problem are either
Dirichlet boundary conditions at both @ and § with at most one branch point inside (o, (),
or Dirichlet boundary condition at 0 and the prescribed boundary condition as in at 1.
Let m be the size of this local problem. Then the relation in (2.57)) still holds with N = m,

U= (U1, Upsm]T and R(h) = [Ry, ..., Rim|T. Because the size m < Ny, we have
limy, 0 [|A(h) — A(0)||sc = 0, where the m x m matrix A(0) is given in (2.59). If the local

mesh {x,...,zr} does not contain any branch point, then A(0) must be the standard m xm
tridiagonal matrix generated by [—1,2, —1], probably with [A(0)],,., = 1 instead of 2 de-

pending on the boundary condition at §. The later matrix A(0) is known to be invertible with
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det(A(0)) = m+1, or 1 if [A(0)];nm = 1. Suppose now that the local mesh contains a branch
point b; and the kth row of A(0) corresponds to this branch point b;. Then the kth row of the
. 7. . . . 72(1(1)]'7) 72(1(()]“1’)
standard tridiagonal matrix A(0) with [—1, 2, —1] is replaced by [a(bj+)+a(bj_), , a(bj+)+a(bj_)].
Then det(A(0)) = 2((1+m—k)a(b;—) +ka(b;j+))(a(bj—)+a(b;+)) ! if a Dirichlet boundary
condition is imposed at 3, or det(A(0)) = 2a(b;—)(a(b;—) + a(b;+))~* if a Neumann/Robin

boundary condition is imposed at 8. In all cases, the determinant of A(0) is nonzero; thus,

A(0) must be an invertible matrix. Because A(h) is at most Ny x Ny, we conclude that
A(h) is invertible for all sufficiently small h, limy, o [|A(h)™' — A(0)7|| = 0, and there
exists C; > 0 independent of h such that ||A(h)™!||, < C) for all small h > 0. Hence,
the condition number of A(h) is uniformly bounded for all local problems and we deduce
from and that [|Qllee < C1||R(h)||se- If we use the Mth order compact FDM,
then must hold and hence ||B(h)||o < ChM*L for all sufficiently small h. Putting
everything together, we proved that H@ loo < CLCRMT! for convergence of all local problems
in (S2) of Algorithm [2.1]

For the linking problems, we have to estimate one-sided derivatives u' for approximated
solutions u of all local problems. As we discussed before, this can be done by using
with M being replaced by M + 1, because the local problems are solved with accuracy
order M + 1 as we discussed a moment ago. However, we cannot expect from to
achieve [|u, — u/[|oc < CohM*! with a positive constant Cy independent of h, where u, and
u stand for the exact solution and approximated solution of a local problem. Note that
the constant Cy only depends on a,x and the partitioned source term f; = f¢;, where
; is the hat function supported on |a, 5] with ¢;(y) = 1 for some v € [a, 5]. However,
B —a= O(h) due to m < Ny and hence, [¢||c = O(h™"). Consequently, one can observe
that ||f;n)||oo < Csh™! for all n = 0,..., M, where the positive constant C3 only depends

on f and is independent of h. That is, we can only expect Cy < Csh™!

and consequently,
|l — /|| < CohMTt < C3h™ . Tt is hard to exactly quantify how the error propagates from
the deepest tree level to the surface tree level through the linking problems. Our numerical
experiments seem to indicate that the linking problems do not further reduce accuracy.
Because the one-sided derivatives «’ can be estimated with accuracy &'(h*), the solution Q
is expected to behave like ||Q]lc < CCLChMH < CCC5hM for sufficiently small k. This

leads to the claim in ([2.64).

2.4 Numerical experiments

In this section, we present several numerical experiments to illustrate the performance of DAT
in Section and the developed compact FDMs in Section . Let u, and {uN(:vj)}é-V:O be
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the exact (if its analytic expression is known) and approximated solutions on knot points
{xj}évzo with 0 = 29 < 1 < ... < xy_1 < xy = 1, respectively. Because 2-norm is

controlled by co-norm in (2.52)), we shall measure the performance in co-norm using relative

”uN_Ue”oo and Hu’N_u,eHOO
lluelloo llulloo

(2.63). When the analytic expression of the exact solution u, is unknown, we calculate the

relative error between two consecutive levels. Due to the pollution effect, we know that

errors

, where {u/y(z;)}}_, are estimated from {uy(z;)}}., through

our grid size has to be at least smaller than ||x|Z'. When we perform our experiments,
we initially set our grid size to be approximately ||x||Z!, refine dyadically, and only record
the numerical results where a convergent behaviour is present (either with respect to the
exact solution or the solution at the subsequent grid refinement). All condition numbers are
approximated by using condest in MATLAB, after renormalizing all the diagonal entries to
be one in the coefficient matrices. The columns “Local CN” and “Link CN” in all tables in
this section list the maximum condition numbers associated with local and link problems in
DAT. The tree level and split parameter used are denoted by ¢ and s. The default choice is
s = 1. Also, ¢ = 0 means we use FDM without DAT. All linear systems are solved by using
MATLAB’s backslash command. For all examples below, we use the Mth order compact
FDMs in Section with M = 6 or M = 8. To visualize the numerical performance, the
vertical axis in each convergence plot uses a base-10 log scale and the horizontal axis uses a

base-2 log scale.

2.4.1 A comparison with PUFEM

DAT differs from PUFEM (see B M04]) in the way the partition of unity is applied. The
former multiplies the partition of unity with the source term f, while the latter multiplies the
partition of unity with local approximation spaces. In the presence of a large wavenumber,
the trial functions in PUFEM are highly oscillatory. Hence, finding an appropriate quadra-
ture becomes a major concern and challenge for PUFEM. Moreover, numerical experiments
in [[27] indicate that the coefficient matrix of PUFEM has an extremely large condition num-
ber, which may produce extra stability issues. For the heterogeneous Helmholtz equation
with piecewise smooth coefficients and wavenumber, finding suitable local approximation

spaces can in fact be challenging and computationally expensive.

Example 2.1. Consider the model problem (2.1))-(2.2)) given by [a(z)u/(z)]" + &*(z)u(z) =
f(x),z € (0,1) with the coefficients a = 1, k = 10% f = k?cosh(z), and the boundary
conditions u(0) = 0 and u/(1) — iku(1) = 0. The exact solution has the following analytic

expression _
k2(cosh(z) — ")

k241

—rksin(kx) | | _ e
Ue = W(Slnh(l) —icosh(1)k)e™ +

35



||un —te|lco and ||u§v_ufaHoo

See Table for the numerical performance measured by TR AT The
errors for PUFEM are evaluated at nodal points. Because the wavenumber x = 10° is large,
to fairly compare DAT with PUFEM, all inner products in PUFEM are calculated exactly
via symbolic computation to minimize possible errors due to numerical quadrature. “Local
CN” for PUFEM lists the condition number of its coefficient matrix. All local and linking
problems in DAT in Table solve at most 4 x 4 linear systems with uniformly bounded
small condition numbers. Table demonstrates that DAT can handle very small mesh
size and the maximum condition numbers of coefficient matrices coming from all local and

linking problems are much smaller than those in FDM and PUFEM by several orders of

magnitude.
N o] Dol Mhel= Local N Link ON | [l PA—el= Local N Link CN
DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8

221 0 | 1.7276 x 10~"  4.0087 x 10~* 1.61 x 107 — 4.3849 x 107*  1.0173 x 1073 2.07 x 107 —

22 19 | 1.7276 x 1071 4.0087 x 107! 3.23 x 10} 4.18 x 10% | 4.3849 x 10™* 1.0173 x 1073 3.23 x 10 6.27 x 10!
2220 26379 x 1073 6.1212 x 1073 7.15 x 107 — 1.6674 x 107% 3.8683 x 1076 8.65 x 107 —
22220 | 2.6379 x 1073 6.1212 x 1072 4.15 x 10> 6.37 x 10 | 1.6671 x 1076 3.8677 x 107% 4.15 x 10* 6.28 x 10!
223 (0 | 4.0945 x 107 9.5012 x 1075 3.51 x 10® - 8.1795 x 107 1.8977 x 10~% 3.51 x 10® —

223 21 | 4.0946 x 10™° 9.5014 x 107> 4.41 x 10" 6.29 x 10 | 1.1594 x 10=% 2.6901 x 1078 4.41 x 10* 6.28 x 10*

PUFEM in [

221 — 112806 x 1071 5.7930 x 107t 2.09 x 107 —

222 132473 x 1072 2.1123 x 107t 8.69 x 107 —

223 — 181473 x 103 8.9740 x 1072 2.38 x 108 —

Table 2.1: Relative errors for Example using DAT with Ny =4 and s = 1 in Algorithm

and PUFEM. The grid increment used in [0, 1] is N~1.

2.4.2 Numerical experiments on 1D heterogeneous Helmholtz equa-

tions

Example 2.2. Consider the model problem (2.1))-(2.2)) given by [a(z)u/(z)]’ + &*(z)u(x) =
f(z),z € (0,1) with the following piecewise smooth jumping coefficients having a large

variation:

— -3 4
a = Xp,1 3 y T 10 X[3.,9) + X[8,1) + 10 X[Z.1]»
Y
= 1070k, iz o g 5) + 9000 20, HuiE
f =107 (xp oz dyug. e )
and the boundary conditions u(0) = 0 and 10~2«/(1) — i500u(1) = 0. The exact solution wu,
has an analytic expression which is given on each interval (273(j —1),273j) for j =1,...,8
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r(z)
va(z)

_k(z) )
exp<| x T
a()
B; —_— t —
a(2) ) + eXp( 33) T @ Ja) /23(j_1) I )eXp<
Kk(z)

w82 [ (i
2-3(j—1)

2ik(x)\/a(x)

ue(w) = Aj exp <i

ze (2735 —1),27%)),

where all the coefficients A;, B, for j = 1,...,8 are uniquely determined by solving a system

of linear equations that arises from imposing the boundary conditions and the following

transmission conditions

w27 =) = uc(27+), a7 -)u (277 -) = a7 Hu (27 +),  j=1,....8.

llwy —ue lloo
and a

5”00

[[un —telloo
l[uelloe

See Table for the numerical performance measured by

Fig. for the convergence plot and approximated solution uy. As can be seen from Ta-

, and

ble 2.2] the convergence rates agree with the theoretical discussion in Sections [2.2] and [2.3]

DAT using the compact FDM with order M = 6
i = elloe Local CN  Link CN
1.62 x 10° -

DAT using the compact FDM with order M =8
iy = elles Local CN  Link CN
1.59 x 107 -

Tuly —ueclloo
lluelloc

4.8823 x 1072

lTuy —uefloo
lutlloe

1.2491

2.0833 x 107! 8.0406 x 1073

10

2.0833 x 107!
2.0833 x 107!

1.2491
1.2491

2.27 x 10*
3.98 x 10?

2.32 x 103
2.32 x 10°

8.0406 x 1073
8.0406 x 1073

4.8823 x 1072
4.8823 x 1072

2.22 x 10*
3.87 x 102

2.32 x 103
2.32 x 103

216

11

3.5328 x 1073
3.5328 x 1073
3.5328 x 1073

2.1422 x 1072
2.1422 x 1072
2.1422 x 1072

7.55 x 10°
1.66 x 10°
1.32 x 10?

2.32 x 10°
2.32 x 103

2.3512 x 107°
2.3512 x 107
2.3512 x 1073

1.4404 x 1074
1.4404 x 104
1.4404 x 1074

7.56 x 109
1.66 x 103
1.32 x 102

2.32 x 10°
2.32 x 10°

217

12

5.1547 x 107
5.1547 x 107°
5.1547 x 107

3.1264 x 10~*
3.1264 x 10~*
3.1264 x 1074

2.87 x 107
1.18 x 10*
3.65 x 10!

2.32 x 10°
2.32 x 10°

8.5834 x 1078
8.5834 x 1078
8.5834 x 1078

5.2706 x 10~7
5.2705 x 1077
5.2706 x 1077

2.87 x 107
1.18 x 10*
3.65 x 10!

2.32 x 10°
2.36 x 10°

218

0
10
13

7.9194 x 1077
7.9194 x 1077
7.9194 x 1077

4.8033 x 107°
4.8033 x 107°
4.8033 x 107°

1.14 x 108
1.09 x 10*
4.28 x 10!

2.32 x 103
2.32 x 103

3.2902 x 10710
9.3775 x 10710
3.2825 x 10710

2.0239 x 107
2.0278 x 107°
2.0194 x 107°

1.14 x 108
1.09 x 10*
4.28 x 10!

2.32 x 10?
2.32 x 10°

Table 2.2: Relative errors for Example using DAT with Ny = 32 and s = 1 in Algorithm
The grid increment used in each sub-interval [(k — 1)273,k273] with 1 < k <

Example 2.3. Consider [a(x)u'(z)] + k*(x)u(z)

ficients

X [0

’100) [100 > 100

L)+ (e" + 1)xpa s

100° 100

10%e* X[o, 2L )+ 10°2* X[ 21,62,

37

23 is N~ L.

= f(x),z € (0,1) with the following coef-

35)U o017

y+10' 1+ )X[

LL
00100

+10%~

X[ISTIOJ],



«10°

024 025 026

Relative errors
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Figure 2.2: Example Convergence plot (left) of DAT using the compact FDM with order
M =6 (solid) and M = 8 (dashed) for errors % (blue) and g el (red). The displayed

l[ue o

convergence rates are obtained by calculating log, (W) and log, (M) The real
el|loco 2N elloo

(middle) and imaginary (right) parts of uy with N =2!¥ ¢ =13 and M = 8.

f=10" <X[o,%10) + 952)([%10,%) + 373X[%907%) + I5X[%,1]> :
and the boundary conditions u(0) = 1 and (e + 1)Y/2u/(1) — i10°¢—3u(1) = 0. The exact
solution’s analytic expression is unknown. See Table for the numerical performance mea-
sured by % and %, and Fig. H for the convergence plot and approximated
solution uy. As can be seen from Table [2.3] the convergence rates agree with the theoretical
discussion in Sections and [2.3] This example shows how DAT is stable with respect to
splits and tree levels. For simplicity, we consider a tree level that is not high. Hence, it
is to be expected that the maximum condition numbers of the local and linking problems
are still relatively large, but are nonetheless smaller than the condition numbers of FDM.
In fact, if we look at these condition numbers in granular detail, a large proportion of them
are significantly smaller than those of FDM for any given N. We also note that the maxi-
mum condition numbers listed in the column “Local CN” are the same for (¢, s) = (5,1) and
(¢,s) = (3,2). The reason is because these two rows share the same local problems as defined

in (2.19). The only difference lies in the size of the linking problems: 3 x 3 for (¢,s) = (5, 1)
and 7 x 7 for (¢,s) = (3,2).
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DAT using the compact FDM with order M = 6

DAT using the compact FD with order M = 8

w

lun —uan|loo

[y —uh oo

lluan lloo

llu yllo

Local CN

Link CN

lun —uan|loo

lluy —whnllo

[lugn oo

llus  lloo

Local CN

Link CN

5.9033 x 1071
5.9033 x 1071
5.9033 x 107!

8.6408 x 1071
8.6408 x 1071
8.6408 x 1071

2.63 x 10°
6.29 x 104
6.29 x 10*

7.40 x 10*
1.95 x 10*

9.4394 x 1072
9.4394 x 1072
9.4394 x 1072

1.2948 x 107!
1.2948 x 1071
1.2948 x 107!

4.59 x 10°
2.68 x 10°
2.68 x 10°

8.17 x 104
2.94 x 10

4.7473 x 1072
4.7473 x 1072
4.7473 x 1072

6.7611 x 1072
6.7611 x 1072
6.7611 x 1072

5.19 x 108
2.07 x 10°
2.07 x 10°

8.41 x 10°
2.90 x 10*

2.4465 x 1074
2.4465 x 104
2.4465 x 10~*

3.3087 x 10~*
3.3087 x 10~*
3.3087 x 10~*

5.56 x 10°
2.07 x 10°
2.07 x 10°

8.41 x 10°
2.92 x 10*

7.2618 x 10~*
7.2618 x 10~*
7.2618 x 107*

1.0353 x 1073
1.0353 x 1073
1.0353 x 1073

2.22 x 107
8.29 x 10°
8.29 x 10°

8.41 x 10°
2.92 x 10*

8.7748 x 1077
8.8029 x 1077
8.7595 x 1077

1.1834 x 1076
1.1867 x 107°
1.1813 x 107°

2.22 x 107
8.29 x 10°
8.29 x 10°

8.41 x 10°
2.92 x 10*

N P e P Py
w ool ollw v ollw ot o=
IR RIS

ool ZgE

1.1182 x 107°
1.1188 x 107°
1.1179 x 107°

1.5959 x 10°
1.5967 x 1075
1.5958 x 1075

8.89 x 107
3.32 x 10°
3.32 x 106

8.41 x 10°
2.92 x 10*

3.7755 x 107°
3.2508 x 107°
6.9405 x 107°

5.0250 x 107°
6.3200 x 107°
9.3269 x 107°

8.89 x 107
3.32 x 10°
3.32 x 10°

8.41 x 10°
2.92 x 104

Table 2.3: Relative errors for Example using DAT with Ny = 16 and s = 1,2 in Algorithm

T . 317 (31 697 (69 81 81 . 31 38 12
The glr;d increments used in [0, 1551, (55> 100)> (100> 100)> @0 [1pg, 1] are respectively sz, 523> 253
and 35N
101 "om—9)
n
5107t | :
0 4
31077 | N
g 1075 L .\\ B
= /‘ “u
E 10—7 f— AR — " 9
é) 9 ow=® ~‘. °
10_ 7\ | | \7 - snm T 0306 031 0314
N: 214 215 216 217 1 o1 02 03 04 05 08 07 08 09 1 o1 o0z 03 04 05 06 07 08 o8 1

Figure 2.3: Example Convergence plot (left) of DAT using the compact FDM with or-

der M = 6 (solid) and M = 8 (dashed) for errors W (blue) and W (red).
The displayed convergence rates are obtained by calculating logs <H||172]j\7 :1;24];]\] ”Ho;//”Hi;i]jv ”H":o ) and

[y =ty lloo /|| |l oo

logs < A ; ) The real (middle) and imaginary (right) parts of uy with N = 217,
H“QN “41\7“00/”“41\1“00
(¢,s) =(5,1) and M = 8.

Example 2.4. Consider [a(x)u'(z)] + k*(x)u(z)

ficients

f(z),z € (0,1) with the following coef-

a=11+sin(407z), &=10°(1—(z—05)%), f=10"(2"+1),

and the boundary conditions v/1.1u/(0) + i75000u(0) = —1 and v/1.1u/(1) — i75000u(1)

0. The exact solution’s analytic expression is unknown. See Table for the numerical

|lun —uan—1lloo and lwy —udn_qlloo
[luen —1lloo llug n 1 lloo

plot and approximated solution uy. As can be seen from Table [2.4] the convergence rates
agree with the theoretical discussion in Sections [2.2| and As studied in [61], having a and

k that are oscillating and/or possess a large variation leads to an ill-conditioned coefficient

performance measured by | , and Fig. |2.4| for the convergence
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matrix. This example explores DAT’s potential in handling the Helmholtz problem with an

oscillatory coefficient a and a large wavenumber k.

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M =8
N | vl TN o) 0N Link ON | Dacwevole o Tl o) 0N Link ON
luan—1llo b lloo llugn—1llo 1 llo
2841 0 | 4.8707 x 1071 7.6812 x 107! 5.53 x 106 — 6.7606 x 102 1.0602 x 1072 5.66 x 10° —
16 | 4.8707 x 107! 7.6812 x 107! 2,74 x 105 7.71 x 108 | 6.7606 x 1072 1.0602 x 1072 5.25 x 10° 1.20 x 107
2941 0 | 7.1208 x 1073 1.1068 x 1072 1.47 x 107 - 2.2709 x 1075 3.5577 x 107° 1.42 x 107 -
17 | 7.1208 x 1072 1.1068 x 1072 4.39 x 10! 1.16 x 107 | 2.2709 x 107® 3.5577 x 107° 4.39 x 10! 1.19 x 107
220+1 0 | 1.0754 x 107*  1.6712 x 107 6.21 x 107 - 8.6824 x 1078  1.3591 x 1077 5.98 x 107 -
18 | 1.0754 x 107*  1.6712 x 107* 4.47 x 101 1.19 x 107 | 8.6814 x 10~% 1.3589 x 1077 4.47 x 10! 1.19 x 107
22141 0 |1.6652 x 1076 2.5876 x 1078 2.23 x 108 — 1.9291 x 1072 29177 x 1072 2.23 x 10® —
19 | 1.6652 x 107¢  2.5877 x 107¢ 4.49 x 10! 1.19 x 107 | 1.8549 x 107% 2.8085 x 1072 4.49 x 10! 1.19 x 107

Table 2.4: Relative errors for Example using DAT with Ny
The grid increment used in [0,1] is (N —1)~!

Relative errors

L

15
0 01 02 03 04 05 06 07 08 09 1

06

4 and s = 1 in Algorithm

b \H

i

i

I

|

|

|

I

0 01 02 03 04 05 06 07 08 09 1

Figure 2.4: Example Convergence plot (left) of DAT using the compact FDM with or-

der M = 6 (solid) and M = 8 (dashed) for errors W (blue) and w (red).
2N —1llo0
The displayed convergence rates are obtained by calculating log, (”J';j\],\:liﬂ ;JLTTQ%Q@Z NIJ‘;\TOO) and

luy =t n 1 lloo/ Uy lloo > . . . . .
log, <HU’QN_l—Uﬁ;N_glloo/||UQN_3||oo . The real (middle) and imaginary (right) parts of uy with
N=22"4+1 ¢=19 and M =8.

Example 2.5. Consider [a(x)u'(z)] + k*(x)u(z)

ficients

a = (5+sin(10mz))x(o, 22 )52 1) + (2 + sin(107z)) x| 28 5
= 2000 (7x

100

[1007 100)

f(z),z € (0,1) with the following coef-

100

Xjo,2) + X2, 220 0 + 0.5 X[mo,w(»)v
f= 921 (cosh(x)x[()’%) + sinh(z)y

)+ (9 + sin(107z)) x| 58

100° 100 )

— cosh(z T)X(s sy — sinh(z X[ 1}>

100’

and the boundary conditions u/(0) = 1 and v/5u/(1) — 2000iu(1) = 0. The exact solution’s

analytic expression is unknown. See Table for the numerical performance measured
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lluy —uan—illo
luzn —1loo

nd lluy —uhn_illoo

H“zN 1”00

, and Fig. for the convergence plot and approximated

solution uy. As can be seen from Table the convergence rates agree with the theoretical
discussion in Sections 2.2 and 2.3

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M =8
N ol oSl pac 0N Link ON | ool B Sanls e N Link ON
lluzn—1lloo eyl luan—1]l0 lluty —yllo
21041 0 2.3932 1.8969 1.25 x 10° — 4.8820 x 1072 1.1942 x 107t 4.51 x 10® —
5 2.3932 1.8969 2.66 x 10" 3.44 x 10% | 4.8820 x 1072 1.1942 x 107! 6.47 x 10 2.01 x 10°
211 11 06.9794 x 1073 6.4621 x 1073 3.13 x 10* — 1.6095 x 10™*  5.3061 x 10~ 3.11 x 10* —
516.9794 x 1073 6.4621 x 10% 9.00 x 10 6.92 x 10® | 1.6095 x 10~* 5.3061 x 107 9.00 x 10® 2.48 x 10°
21241 0] 1.0216 x 107* 9.0880 x 107> 9.04 x 10* — 6.6055 x 1077 2.1900 x 1076 9.04 x 10? —
51 1.0216 x 10~* 9.0880 x 10™° 3.66 x 10* 2.53 x 10® | 6.6055 x 10~7 2.1900 x 107¢ 3.66 x 10* 2.51 x 10°
218 41 0 1.5468 x 1075 1.4036 x 107% 3.60 x 10° — 2.6471 x 107 8.6758 x 1077 3.60 x 10° -
5| 1.5468 x 1075 1.4036 x 107® 1.47 x 10° 2.51 x 10® | 2.6448 x 10™? 8.6783 x 107° 1.47 x 10° 2.51 x 10°

Table 2.5: Relative errors for Example using DAT with Ny = 16 and s = 1 in Algorithm

- : 231 123 5371 (53 83 83 . 23 6
The grid increments used in [0, 551, [55> 156)> 166 160)> and 155, 1] are respectively TN FIN-T)
6 17
sv—1)> a0d a5y =1y

°

I m 1

0 02 04 06 08 1 0 02 04 06 08 1

Relative errors
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Figure 2.5: Example Convergence plot (left) of DAT using the compact FDM with or-

der M = 6 (solid) and M = 8 (dashed) for errors W (blue) and W (red).
The displayed convergence rates are obtained by calculating log, <”J|;j\1]\:32u]\i ;ﬂﬁg%ﬁ Ni‘b‘l’w) and

Hu/N_u,QN71”00/Hu/2N71HOO

). The real (middle) and imaginary (right) parts of uy with

lo (
82 \ Tuhy_y ~ s _glloe /Tty 31l

N=2B4+1 ¢=5and M =38.

2.4.3 Numerical experiments on 2D Helmholtz equations

Separable 2D Helmholtz equations can be converted into a sequence of 1D Helmholtz prob-
lems, to which we may apply DAT as demonstrated below.

Example 2.6. Let Dy := {(r,0) : 1 <r < 2,0 € [0,21)}, Dy := {(r,0) : 2 <r < 4,0 €
0,27)}, and D := D;UD,. Consider the following 2D Helmholtz equation V- (Vu)+r?u = 0

on the domain D, which can be rewritten in the polar coordinate system as follows:

1 9%u

2
T—QW—FKUZO on l)7

var (r50) +
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el =0, (324 (= 100) w)locs = (3 + (3 1000 ur) s

where k = 50xp, + 100xp, = ko(r) with kg := 50x[1,2) + 100x[2.4), wr == > o 1" (Som +
2(1 — do.m))Jm(1007) cos(mB), and J,,(-) is the Bessel function of the first kind of order
m. Using the method outlined in [@7 Section 7.1], the exact solution u,. is given by the
series u, = > oo 7720, (r) cos(mB), where v,,,,m € Ny satisfy the following 1D Helmholtz
equations:

um 4 (kg —r 2 (m*=1)) v =0, re(1,4), with (v, —3vm)l=1 =0,

(v, = 100iv,) |rma = 2™ (So.m + 2(1 = 80,)) (S (100r)) =g + (% — 100i) J,,,(400)) .

(2.65)

In particular, for each m € Ny, v, has the following analytic expression
vy = 12 (Ame(507") + BmYm(5OT)>X[172) 4+ b2 <C’me(1OOT) + DmYm(loOr))X[M],

where Y,,,(-) is the Bessel function of the second kind of order m and all the coefficients
Ay B, C,y Dy, are uniquely determined by solving a system of linear equations that arises
from imposing the boundary conditions and the transmission conditions: v,,(2—) = v,,,(2+)
and v), (2—) = v],(2+).

Our approximated solution then takes the form uy = S 000 7= 1/2

oo 20y, N cos(mb), where

U, N 18 the approximated solution to v, in (2.65) using N points. In all cases, we use
2049 points to discretize the angle 6 in our exact and approximated solutions. Also note
that the following “Local CN” and “Link CN” record the maximum condition number of
all local problems and all m = 0,...,640. See Table for the numerical performance
measured by both % and %, where we use the first 641 terms of u, (i.e.,
ue = 300 r=1/29,,(r) cos(m#)), and Fig. for the convergence plot and approximated
solution uy. Due to the separation of variables, the convergence rates observed in the plot
are solely driven by the convergence rates that take place in each 1D problem. As can be

seen, the convergence rates agree with the theoretical discussion in Sections [2.2) and 2.3

DAT using the compact FDM with order M =6 DAT using the compact FD with order M =8
N | Dbl lsels  Local CN  Link ON | Iyl liy—wels Local CN  Link CN

282 41 0 1.0461 x 107! 6.6021 x 1072 1.84 x 10° - 6.8220 x 1073 3.4958 x 1072  1.79 x 10° -
5| 1.0461 x 107*  6.6021 x 1072 4.79 x 10* 3.05 x 10° | 6.8220 x 1073  3.4958 x 1072 9.13 x 10* 2.81 x 10°

2941 0112885 x 1072 7.6950 x 107* 4.04 x 10* - 2.7208 x 107°  1.4102 x 107°  4.04 x 10* -
6| 1.2885 x 107 7.6950 x 10™* 7.06 x 102> 2.78 x 10° | 2.7208 x 107°  1.4102 x 107° 7.05 x 10*> 2.78 x 10°

21041 01]1.9204 x 1075 1.1290 x 1075 1.52 x 10° - 1.0825 x 1077 5.5999 x 1078 1.52 x 10° -
7119204 x 1075 1.1290 x 107° 4.78 x 10!  2.78 x 10° | 1.0825 x 1077  5.5999 x 1078 4.78 x 10} 2.78 x 10°

241 029671 x 1077 1.7375 x 1077 6.01 x 10° - 4.2441 x 1071 21932 x 1071 6.01 x 10° -
8129671 x 1077 1.7375 x 1077 4.56 x 101 2.78 x 10° | 4.2435 x 1071 21934 x 10710 4.56 x 10> 2.78 x 10°
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Table 2.6: Relative errors for Example using DAT with Ny = 8 and s = 1 in Algorithm
The grid increments used in each [1,2] and [2, 4] are respectively 2(N — 1)~! and 4(N —1)~L.

Relative errors

Figure 2.6: Example Convergence plot (left) of DAT using the compact FDM with order
M = 6 (solid) and M = 8 (dashed) for relative errors [ =telee (red) and [“¥=tel2 (blye). The

lluelloo [luell2

displayed convergence rates are obtained by calculating log, (M) and log, (M;uenz)

[ua N —te oo |ua N —tell2

The real (middle) and imaginary (right) parts of uy with N =21 +1, /=8 and M = 8.

Example 2.7. Let Dy := {(r,0) : 1 <r < 3,0 € [0,21)}, Dy := {(r,0) : 3 <r < 4,0 €
[0,27)}, and D := D;UD,. Consider the following 2D Helmholtz equation V- (Vu)+r?u = f

on the domain D, which can be rewritten in the polar coordinate system as follows:

%% (rg—ﬁ) + %% +k*u=f on D with u|_; = % and (% — 5Oiu)|,:4 =0,
where k = 400X p, + 50X p, = Ko(r) with ko(r) := 400x71 3) + 50x(3.4 and f = (10°J;(r)xp, +
10*Jo(r)xp,). By applying the separation of variables twice, the exact solution u. in the
polar coordinate system to the above 2D Helmholtz equation is given by the series u, =

> ez (277) 720, (r)e™? | where for each m € Z, vy, satisfies

o4 (k=172 (m? = 1)) v = 2 fo(r), 7€ (1,4), with

| R (2.66)
,Um‘r:l = \/Lﬁ(_&l,m + 5—4,m)a (/Um - (§ + 50') Um) ‘7'24 = 07

and f,(r) := (2m)~1/2 02” f(r,0)e™df can be efficiently computed by FFT. Note that f,,
are zero except for m = 0. Since v,, are zero for m € Z\{0,+4}, our approximated solution
is of the form uy = (27mr) Y2 n + (277) 712 (v4 5’ +v_gne ™), where vy, v is the
approximated solution to v,, in using N points. We use 2049 points to discretize the
angle 6 in our approximated solutions. Note that the following “Local CN” and “Link CN”
record the maximum condition number of all local and linking problems, and all m = 0, +4.
See Table for the numerical performance measured by both % and %,
and Fig. 2.7 for the convergence plot and approximated solution uy. Due to the separation
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of variables, the convergence rates observed in the plot are solely driven by the convergence
rates that take place in each 1D problem. As can be seen from Table 2.7, the convergence
rates agree with the theoretical discussion in Sections [2.2] and

DAT using the compact FDM with order M = 6 DAT using the compact FD with order M =8
N | lecwesl. luw—vavls — [ocal N Link ON | lex—exle luw—vavls T ocal CN Link CN
lluan|loo [luan |2 Jlugn [l lluan |2 :
210 0 [ 28213 x 1071 2.0128 x 10~} 1.54 x 106 - 14812 x 1072 1.1534 x 1072 1.47 x 106 -
7 128213 x 1071 2.0128 x 1071 1.61 x 102 5.26 x 10° | 1.4812 x 1072 1.1534 x 1072 1.43 x 102 4.95 x 10
211 0 | 5.6999 x 10™%  4.3636 x 10~° 1.21 x 10° - 41235 x 107 3.2294 x 107> 1.22 x 10° -
8 | 5.6999 x 1073 4.3636 x 1073 7.06 x 102 4.98 x 10 | 4.1235 x 1075  3.2294 x 10® 7.05 x 10> 4.98 x 10
212 (| 83447 x 107  6.3909 x 1075  4.85 x 10° - 1.5005 x 1077 1.1778 x 107 4.86 x 10° -
9 | 83447 x 1075 6.3909 x 107° 4.50 x 101  4.98 x 10 | 1.5005 x 10~7  1.1778 x 107  4.50 x 10! 4.98 x 10
213 0 | 1.2805 x 107 9.8055 x 107 1.95 x 106 - 5.8547 x 10710 4.5911 x 107'° 1.95 x 106 -
10 | 1.2805 x 1076 9.8055 x 10™7  4.50 x 10! 4.98 x 103 | 5.8767 x 1071 4.6687 x 107© 4.50 x 10' 4.98 x 10°

Table 2.7: Relative errors for Example using DAT with Ny = 8 and s = 1 in Algorithm
The grid increments used in each [1, 3] and [3,4] are respectively 4N ! and 2N L.

—_ =

3
N

Relative errors
—_
S
ot

O(N~5) ~

1
10~ ‘o]

210 211 212 213

=
[

Figure 2.7: Example Convergence plot (left) of DAT using the compact FDM with order M =
6 (solid) and M = 8 (dashed) for errors % (red) and % (blue). The displayed con-
luny —uan lloo/|uzn]loo ) and log, ( luny —uan[l2/|lw2w |2 )

luan—uanlloo/lluan oo luan —uanll2/lluan|l2

The real (middle) and imaginary (right) parts of uy with N =23 ¢ =10 and M = 8.

vergence rates are obtained by calculating log, (

Example 2.8. Consider the following 2D Helmholtz equation V - (Vu) + x*u = f on Q =
(0,1)2, where

o=

ko(x) := 22 (9000002° — 2250000z* + 21300002° — 94500027 4 198450z — 15445)

X[, L)

+ 27(X[0,%) + 2X[%,1]),

f(x,y) := 5000v/2 ((691: +1) cos(6.57ry)x[0,%)x[0’1] + 2cos(25.57ry)x[0’%)x[0’1]

+(—62+7) cos(6.57ry)x[%71]x[o,1]> )
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and k(z,y) := ko(x) with the following boundary conditions

Q=0 on (0,1)x{0}, 2—i2%u=0 on {1} x(0,1), w=0 on (0,1)x {1},

and u = V/2(cos(14.5my) + cos(30.57y)) on {0} x (0,1).

By the separation of variables, the exact solution u,. to the above 2D Helmholtz equation is

given by the series u.(z,y) = > o, V2v,,(z) cos((m + 1/2)my), where for each m € Ny, vy,

satisfies
v 4 (kg — (m+ 3)°7)vy, = f(x), 2 €(0,1) with
Um(O) == 514,m + 5307m, U%(l) — 28IUm<1) = 0,
and fo,(z) == V2 fo x,y) cos((m + %)Wy)dy can be efficiently computed through FFT.

Note that fm are zero except m = 6,25. Since v, are zero for all m € Ny\{6, 14,25, 30},
our approximated solution is of the form uy = v/2(vg y cos(6.5my) + vign cos(14.5my) +
V95 v €08(25.5my) 430, n cos(30.57y) ), where vy, x with m = 6, 14, 25, 30 are the approximated
solutions to v, in (2.66)) using N points. We use 2049 points to discretize cos((m + 1/2)my)
for m = 6,14,25,30 in our approximated solutions. Also note that the following “Local
CN” and “Link CN” record the maximum condition number of all local problems and all

= 6, 14,25, 30. See Table for the numerical performance measured by both lluy —upnlloo

lluzan lloo
and W and Fig. for the convergence plot and approximated solution uy. Due to
the separation of variables, the convergence rates observed in the plot are solely driven by
the convergence rates that take place in each 1D problem. As can be seen from Table [2.8]

the convergence rates agree with the theoretical discussion in Sections [2.2] and [2.3]

DAT using the compact FDM with order M =6 DAT using the compact FD with order M =8

N ¢ eyl lew—vovle  Tocal CN Link CN | lev—tevle lew—vovle — [ocal CN Link CN
[[uzn [l lluan|l2 lluan [l lluan |2

3(2°%) 0] 1.2184 x 1072 1.4965 x 1072 1.52 x 10° — 2.5802 x 1073 3.4368 x 1072  4.52 x 10° —
2| 1.2184 x 1072 1.4965 x 1072 1.54 x 103> 5.18 x 102 | 2.5802 x 10™®  3.4368 x 1072 3.22 x 103> 5.19 x 102

3(27) 0] 1.9809 x 10™* 2.3348 x 10™*  7.48 x 10? — 1.1417 x 107 1.5130 x 107°  7.48 x 103 —
3| 1.9809 x 107* 2.3348 x 10™* 2.60 x 10®> 5.19 x 102 | 1.1417 x 107°  1.5130 x 107> 2.60 x 103> 5.19 x 102

3(2%) 0131521 x 1075 3.7059 x 1076 2.96 x 10* — 4.6092 x 1078 6.0943 x 1078 2.96 x 10* —
4| 3.1521 x 107% 3.7059 x 1075 3.85 x 10* 8.49 x 102 | 4.6094 x 107%  6.0946 x 10~% 3.85 x 10* 8.49 x 102

3(2%) 049446 x 1078 5.8172 x 107% 1.18 x 10° — 1.8328 x 10710 2.3989 x 1071% 1.18 x 10° —
5| 4.9447 x 1078 58172 x 1078 1.54 x 102 8.87 x 10% | 1.8344 x 107 2.4014 x 1071© 1.54 x 10> 8.87 x 103

Table 2.8: Relative errors for Example using DAT with Ny = 12 and s = 1 in Algorithm

The grid increments used in each [0, 2], [2, 5], and [5, 1] are respectively 1o, =5, and o

710 107 10 10>
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Figure 2.8: Example Convergence plot (left) of DAT using the compact FDM with order M =
6 (solid) and M = 8 (dashed) for errors ¥ =t2nleo (yed) and ly=u2vl2 (}lye). The displayed con-

l[uzn oo luan 2

vergence rates are obtained by calculating log, lun—uznlloo/luanlloe ) oy log, llun —uznllo/lluznll2 )
luzn —uan lloo/lluan lloo luen —uanll2/lluanl2

The real (middle) and imaginary (right) parts of uy with N = 3(2%), £ =5 and M = 8.

2.4.4 DAT and compact FDMs using only function values

The direct usage of derivatives of a,x?, f in Theorems and may not be computa-
tionally efficient. These derivatives can in fact be estimated by using only function values
of a,k?, f through a local polynomial approximation. For example, if we consider an in-
terior stencil of the form and , we know from that all stencil coefficients
depend on a(xy),d (1), ...,a™=Y(zy), K2(zp), [2) (zp), . . ., [R]M =D (z3), and f(xy), f'(zp),

o S (). Consider a(xy), d' (), . . .,a™ "V (2). Let J > M and take J points {x;}7/_
near the base point x;, such that all the points fall into one piece of the piecewise smooth
functions a, x* and f. Find the unique polynomial p of degree J — 1 satisfying p(z;) = a(z;)
forall j =1,...,J. Then a™(z;) ~ p™ (a) for n = 0,..., M —1. We often use J = M and
xy € {z;}7_, such that {z;}/_, is evenly spaced with mesh size h/2. Using only function
values, we re-calculate numerical experiments in Examples which yield virtually
same results as those using derivatives explicitly. It demonstrates the convenience of using
a local polynomial approximation in lieu of true derivatives, which may have complicated

expressions. For the sake of conciseness, we only provide re-calculated Examples 2.3 and [2.5]
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DAT using the compact FDM with order M =6 DAT using the compact FDM with order M =6
for Example for Example

N (ts) | mowde o Modsde pocal N Link ON | N ¢ | Paomsale TOtiale Lol O Link ON

215 (0,0) | 4.7473 x 1072 6.7611 x 1072 5.19 x 10° - 2041 0 2.3932 1.8969 1.25 x 10° -
(5,1) | 4.7473 x 102 6.7611 x 10~ 2.07 x 10° 8.41 x 10° 5 2.3932 3.3990 2.66 x 10 3.44 x 10°
(3,2) | 4.7473 x 102 6.7611 x 10=2  2.07 x 10° 2.90 x 10"

216 (0,0) | 7.2618 x 10~ 1.0353 x 10=% 2.22 x 107 - 2141 0]6.9794x 10~ 6.4621 x 1073 3.13 x 10* -
(5,1) | 7.2618 x 10~ 1.0353 x 10~ 8.29 x 10° 8.41 x 10° 5] 6.9794 x 1073 6.4621 x 1073 9.00 x 10° 6.92 x 103
(3,2) | 7.2618 x 107* 1.0353 x 107 8.29 x 10° 2.92 x 10*

217 (0,0) | 1.1182 x 107° 15959 x 107> 8.89 x 107 - 2241 0] 1.0216 x 107* 9.0880 x 10~ 9.03 x 10* -
(5,1) | 1.1188 x 1075 1.5967 x 107> 3.32 x 10° 8.41 x 10% 5| 1.0216 x 107* 9.0880 x 107 3.66 x 10* 2.53 x 103
(3,2) | 1.1179 x 1075 1.5955 x 107 3.32 x 10° 2.92 x 10*

218 (0,0) | 1.7274 x 1077 2.4663 x 1077 3.56 x 10° - 2841 0] 1.5468 x 107% 1.4036 x 107 3.60 x 10° -
(5,1) | 1.6132 x 1077 2.3056 x 1077 1.33 x 107 8.41 x 10° 5| 1.5468 x 1076 1.4036 x 1075 1.47 x 10° 2.51 x 10%
(3,2) | 1.7914 x 1077 25548 x 1077 1.33 x 107 2.92 x 10*

Table 2.9: Relative errors for Examples and using only point values (without explicitly
computing derivatives) in DAT with the compact FDM with order M = 6.
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Chapter 3

Sixth Order Compact FDM for 2D
Helmholtz Equations with Singular
Sources and Reduced Pollution Effect

Now that we have presented an arbitrarily high order compact 1D FDM in Chapter [2] we are
ready to shift our attention to a 2D FDM. In this chapter, we present a sixth order compact
FDM for the 2D Helmholtz equation with reduced pollution effect.

We start by introducing the model problem. Let Q = (I1,13) x (I3,14) and ¢ be a smooth
two-dimensional function. Consider a smooth curve I'y := {(z,y) € Q : ¢¥(x,y) = 0}, which
partitions €2 into two subregions: QF := {(z,y) € Q : ¢¥(x,y) > 0} and Q= {(x,y) €
Q : ¢(x,y) < 0}. The model problem is explicitly defined as follows:

(
Au+ K?u=f in Q\ Ty,
ul =gp, |Vu-v|=g on I'y,
Jld =g, [Vuv)=ox ! (3.1)
Blu = g1 on Fl = {ll} X (lg,l4), BQU = (g2 ON FQ = {lg} X (lg, l4),
kBgu = g3 on Fg = (ll,l2> X {lg}, B4U = g4 ON F4 = (ll, lg) X {l4},
where k is the wavenumber, f is the source term, and for any point (zg,yo) € 'y,
ul(xo, = lim u(x,y) — lim u(x,y), 3.2
[a)(70:50) = e () seoan "V T e s tana Y (3:2)
Vu - v|(xo, = lim Vu(z,y) v — lim Vu(z,y) v, (3.3
[V vl 50) = o omn T T e sy © Y (3:3)

where v is the unit normal vector of I'; pointing towards Q*. In (3.1), the boundary op-
erators By,...,By € {1, a%» a% — ikI4}, where I, corresponds to the Dirichlet boundary
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condition (sound soft boundary condition for the identical zero boundary datum), 8% corre-
sponds to the Neumann boundary condition (sound hard boundary condition for the identical
zero boundary datum), and a% — ik, (with i being the imaginary unit) corresponds to the
impedance boundary condition. Moreover, the Helmholtz equation of with gp = 0 is
equivalent to finding the weak solution u € H'(Q) of Au+ r*u = f + gndr, in €, where dr,
is the Dirac distribution along the interface curve I'y.

In particular, we assume that

(A1) The solution u and the source term f have uniformly continuous partial derivatives of
(total) orders up to seven and six respectively in each of the subregions O and Q.

However, both u and f may be discontinuous across the interface I';.

(A2) The interface curve I'; is smooth in the sense that for each (z*,y*) € T';, there exists

a local parametric equation: 7y : (—¢,€) — 'y with € > 0 such that v(0) = (z*, y*) and

17/ (0)]]2 # 0.

(A3) The one-dimensional functions gp o~y and gy o have uniformly continuous derivatives

of (total) orders up to eight and seven respectively on the interface I';, where 7 is given

in (A2).

(A4) Each of the functions ¢i, ..., g4 has uniformly continuous derivatives of (total) order

up to seven on the boundary I';.

We explain how our proposed sixth order compact finite difference scheme with reduced
pollution effect is developed in Section We first construct the interior finite difference
stencil with reduced pollution. Then, we construct the sixth order boundary and corner finite
difference stencils with reduced pollution. Finally, we construct the compact interface finite
difference stencil. Numerical experiments to demonstrate the superiority of our proposed
method to several state-of-the-art FDMs are presented in Section [3.2] In Section [3.3] we
present the proofs of several theorems stated in Section [3.1]

Results in this chapter are based on [B1].

3.1 Stencils for sixth order compact finite difference
schemes with reduced pollution effect using uni-

form cartesian grids

Let = (I3, 12) x (I3,14). Without loss of generality, we assume Iy — I3 = Ny(ly — [;) for some
Ny € N. For any positive integer N; € N, we define Ny := Ny/N; and so the grid size is

49



h:= (lg — ll)/Nl = (l4 — l3)/N2 Let
l'l:ll—l-lh, i:O7...,N1, and yjzlg+jh, j:O,...,NQ. (34)

Our focus of this section is to develop sixth order compact finite difference schemes with
reduced pollution effect on uniform Cartesian grids. Recall that a compact stencil centered
at (z;,y;) contains nine points (x; + kh,y; + (h) for k,l € {—1,0,1}. Define

df; = {(k, ) = ke {-1,0,1},¢(x; + kh,y; + (h) > 0}, and
dij = {(k, ) + kL€ {=1,0,1},9(x; + kh,y; + th) < 0}.

Thus, the interface curve I'; := {(z,y) € Q : (x,y) = 0} splits the nine points in
our compact stencil into two disjoint sets {(zi+x,yj1¢) : (k,0) € d;fj} C QtUT; and
{(@ivr,Yjre) + (k,€) €d;;} € Q7. We refer to a grid/center point (z;,y;) as a regular point
if d;; = 0 or d;; = (). The center point (z;,;) of a stencil is regular if all its nine points are
completely in QT UT; (hence d;; = 0) or in Q™ (i.e., d;; = (). Otherwise, the center point

+

(zi,y;) of a stencil is referred to as an irregular point if both d;; and d;; are nonempty.

Now, let us pick and fix a base point (z7,y;) inside the open square (z; — h,z; + h) X

(yj — h,y; + h), which can be written as
r; =z; —voh and y;=y; —woh with —1 <wg,wy <1 (3.5)

We shall use the following notations:

m—+n
(m,;n) .__ J u

T Omxony

u

m-+n
(cf,y;) and poom = 2T

which are used to represent their (m,n)th partial derivatives at the base point (x7,y;).
Define Ny := N U {0}, the set of all nonnegative integers. Given L € Ny, we define

A ={(m,n—m) : n=0,...,L and m=0,...,n}, L € Ny. (3.7)

For a smooth function u and small z,y, the values u(z + 27,y + y;) are well approximated

by its Taylor polynomial as follows:

)
watahyty) = S Lamyt e 6, mye(—2h,2h).  (38)

(mn)EAN11

To put differently, in a neighborhood of the base point (.r;f‘,y;), the function u is well ap-
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proximated and completely determined by the partial derivatives of u of total degree less
than M +2 at the base point (x7,}), i.e., by the unknown quantities u™™ (m,n) € Apryq.
The same holds for f(z + 27,y +yj). For z € R, the floor function |z] is defined to be the

largest integer less than or equal to z. For an integer m, we define

dd(m) 1— (=™ 0, if m is even,
odd(m) .= ————— =
2 1, if m is odd.

Since the function u is a solution to the partial differential equation in (3.1]), all quantities
u™™ (m,n) € Apyy1 are not independent of each other. The next lemma describes this

dependence.

Lemma 3.1. Let u be a smooth function satisfying Au + x*u = f in Q\ T;. If a point
(x7,y7) € Q\ Ty, then

3

m L?J i—1
u(m,n) _ (_]JL%J (LEJ)m%u(odd(m) 2| | +n—2i) _I_Z Z ( 1) KQ(i—j—l)f(m—?i,n—l—Qj)
1
= =1 j=
(3.9)

for all (m,n) € A]\VfH, where

Ay = A \ AL, with Ay ={(tk—¢) :k={,....M+1~{ and £=0,1}.
(3.10)
Define
A]\H/[’il ={(n,m): (m,n) € A]\V/’Iﬂrl,j =1,2}.

If a point (z},y;) € Q\ Ty, then

wlmn) — L%J Z ( 3] > 2i (QL%J+m—2i,0dd(n))+Z Z(_l)z‘—l (2 - 1) KQ(i—j—l)f(m—&-Qj,n—Zi)
: i=1 j=0 J
(3.11)
for all (m,n) € A7,
Proof. The proof is similar to the proof of 9 Lemma 2.1] and [50l Lemma 2.1]. O

See [T Figure 6] for an illustration of how each u(™™ with (m,n) € A; is categorized
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based on A;f’j with j € {1,2}. From (3.9), we have

1

[

- g o %) im )
LY (mn) _ Yy { ENEY LEJ 2i (odd(m),2[%]+n—2i)}
( )Z” e ( )sz m!n! (=1) — i)t
m,n €AM+1 m,n G/\M_~_1 =
L%J 1—1 . 1
2i—2j—2 (m—2i,n+2j)
T Z mlnl{ < )K / }’
(m n)GAinl i=1 320

(3.12)

where the first summation I; above can be expressed as

B (—1) a2y (¢ 2 (0,20+n—23)
=2 “Gom Z; i)

(m, n)GAA4+1 =

(=T even m

3 7

V,2 =0

M+1 5] ot ! M L5] n_or ¢
_ Z - (—1)4332@ 2 Z 14 0 n—2i) + Z - )é 2K+1 2 Z 1 n—21)
e 1 2€+1 n—%'Z:O

n=2 /=1

Z L5 (_1)€xm+2€yn—2£ zf: / ,{2zu(m,n—2i)
- (m + 20)1(n — 20)! & !
( = =

1

xm-‘r% n—20+2

4+[3] -1
I, = Z ZZ Z(_l)hl -1 /{/2(@fpfl)f(m,n+2(p+lf€)) Y
p (m +20)!(n — 204 2)!

1+L%J m~+24,,j—20+2
Z Z (—1)871 (6 jn1> ,ng*" X y] f(m,n)
e{n+2p|peN n ]T (m+2€)|(j_2‘€+2>‘
(m,n)EAN—1 ;+§p<+nf.l;.p1 T(r)l} = 1+J

Z | Mlomen | 1+§E’£J ( 1)£_1 (g _ 1) . ALy 2220 f(m "
pu— _ /{ 7 ‘
(mm)ehn_1  p=0  E=11p p (m+20)!(2p +n +2 — 20)!

= QN o (TY)

(3.13)
Hence, using the right-hand side of (| and the definitions of AVH, AY? M1 in (3.10), we
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T (_1)€xm+2€yn72€ / ) L
I (mmn) _ 2i, (m,n—21)
i Z minl " Z < (m + 20)!(n — 20)! m

v, ' V1 —
(mn)eA, (mmn)eA; i=0 f=i

I'%J m i—
_ Z Z (—1)‘x +%ey 20 ('6 )/{i‘”u(m’")
(m +20)!(7 — 20)! \ F*

(m )GAVl i€{n+2p|p€Ng, p_i=n
M+1 ny2p<M+1—m} 2

(3.14)

L]W+12'm nJ p+L%J

_ Z (_1)2xm+2£yn+2p72£ /¢ I{Qp u(mm)
B (m+20)1(n+2p—20)!'\p '

( ) AM+1 p:O Z:p

J/

-~

::G&,m,n(‘r’y)

Suppose z,y € (—2h,2h). The lowest degree of h for each polynomial Gy, . .(x,y) with
(m,n) € A]‘\/fﬂ in (3.14) is m + n. The lowest degree of h for each polynomial QY. .(,¥)

with (m,n) € AY,_, in (3.13)) is m + n + 2. Therefore, by (3.12))-(3.13)), we can rewrite the
approximation of u(z + x},y + yj) with (z,y) € (—2h,2h) in (3.8) as follows:

wetaly+y) = > uIG )+ D QY n(wy) + O,

(m.n)eAY (mn)€An; 1

(3.15)
where M, M; € Ny and M; > M. By a similar calculation, for (z,y) € (—2h,2h), we also

have

w(etaly+y) = Y umIG L@+ Y QN nlwy) + O(BMT),

(mv")EAffH (mﬂ’L)EA]uf,l
(3.16)
where M, My € Ny, My > M and
GA mn GY, am(Y,x), forallne{0,1},meN
M (T, Y) = Gap (Y, ) {0,1} 0 517

QM7m7n(x,y) = QM,n,m(?/’ x), for all m,n € Ny.

Identities — are critical in finding compact stencils achieving a desired accuracy
order.

In the following subsections, we shall explicitly present our stencils having at least ac-
curacy order six with reduced pollution effect for interior, boundary and corner points. As
we shall explain in details in Section |3.3] we construct such stencils by first finding a gen-
eral expression for all possible discretization stencils achieving the maximum order. Then

we minimize the average truncation error of plane waves to determine the remaining free
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parameters in each stencil to reduce pollution effect.

3.1.1 Regular points (interior)

In this subsection, we state one of our main results on a sixth order (which is the highest
possible order) compact finite difference scheme (with reduced pollution effect) centered at
a regular point (z;, ;) and (7,y;) ¢ 92. We let (x4,y;) be the base point (z},y;) by setting
vg = wo = 0 in . The proof of the following theorem is deferred to Section

Theorem 3.2. Let a grid point (x;,y;) be a regular point, i.e., either d;’j =0 or di; = 0
and (x;,y;) ¢ 0L Let (up);j be the numerical approzimated solution of the exact solution

w of the Helmholtz equation (3.1) at an interior regular point (z;,y;). Then the following

discretization stencil centered at (z;,y;)

hiZ(Cl,l(uh%fl,jfl +Co(un)ij—1 +C1a(up)iv1j—1
Lypup = +Crpo(un)i-1, +Co0(un)i, +Cro(un)iyr; = Z h_Qf(m’n)Cf,m,m

m,n)EA
+Cia(up)ic1je1 +Cio(un)ijer +Cia(un)itr j+1) )€
(3.18)

achieves the sizth order accuracy for Au+r*u = f at the point (x;,y;) with reduced pollution
11
effect, where Cppmp = > 3 CruQY,, (kb Lh) for all (m,n) € Ng, QY .(x,y) is defined
k=—10=—1
i (3.13), and

C1=C_11=C1=C11, Coig=Cp_1=Cy1=Chp,
Cip=1- 357462387 .p) | 1001065991 (mh)Z o 196477327(1%]1)3 + 1155977087<Hh)4

25x1010 2x1010 2x1012 1012
_ 1165{)315313<Kh)5 + 125?2?2641 (Iih)6,
Cra =1~ SHSET -+ S (eh)? — ()P — B ()t (319)
+ 2157391’621’149(1{}1’)5 _ 3457312110(%01 (l‘ih)G,
CO,O = 920+ 31527;521%%7/€h + 5798190%4009 (I{h)Q _ QIG;Bngi%%?(Rh)?) o 1965%<7f(§)9709</€h)4
+ 405?8?31719(5}05 + 7951905111403 (th>6'

Moreover, the mazimum accuracy order of a compact finite difference scheme for Au+r*u =

[ at the point (z;,y;) is siz.

3.1.2 Boundary and corner points

In this subsection, we discuss how to find a compact finite difference scheme centered at
(xi,y5) € 0.
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3.1.2.1 Boundary points

We first discuss in detail how the left boundary (i.e., (z;,y;) € I't = {l1} x (I3,14)) stencil
is constructed. The stencils for the other three boundaries can afterwards be obtained by
symmetry. If Bju = u = ¢g; on I'y, then the left boundary stencil can be directly obtained
from — in Theoremby replacing (up)oj—1, (un)oj, and (us)o j+1 With ¢1(y;-1),
91(y;), and ¢; (y;+1) respectively, where y; € (I3,14), and moving terms involving these known
boundary values to the right-hand side of . The other three boundary sides are dealt
in a similar straightforward fashion if a Dirichlet boundary condition is present. On the
other hand, the stencils for the other two boundary conditions are not trivial at all. The
following theorem provides the explicit 6-point stencil of accuracy order at least six with
reduced pollution effect for the left boundary operator B; € {-Z o —irly, 2 551~ The proof of
the following result is deferred to Section |3.3|

Theorem 3.3. Assume Q = (l1,1lz) x (I3,14). Let (up);; be the numerical approximated
solution of the exact solution u of the Helmholtz equation (3.1)) at the point (z;,y;). Consider

the following discretization stencil centered at (xg,y;) € I'1 for Biu = g1 on I'y with By €

9
v HiId’ ov }

W (Ci(un)o g1 +CT3 (un)r 1
Llup = +C8(un)o;  +CFH(wn)y; = D e, +Zh1 mes

+CE (wojer +CP(up)in) U
(3.20)
where {C}iz}ke{o’l}je{_l’o’l} are polynomials of Kkh, C’f}nn Z Z C,fg v mn(kh, Ch) for all
k=0 ¢=—1
(m.n) € Ag, Q¥ is defined in (B13), gi" = 42 (y;), CB1 = — > Y CHGY, (kh, th)
k=06=—1

foralln=0,...,7, GY, , is defined in (3.14), CB1 L= CD 1, and C’fl_l = Clj
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(1) For By = a% — ikly, the coefficients for defining Efluh i (3.20) are given by

ij’i =1—= 218737123 kh + 6698622893l/€h _ 1620223367(Hh)2 _ 1202725989’(/€h)2

109 1010 1010 e

o+ HOSERE0 (1h)? — LSSERO (o) — SUIEENI (joh) ! — LS (),
Cos = 2 — G wh + HAGEeh — MG (1oh)? — BETEEE (oh)?

+ ST (oh)? — TS (ch)? + SR ) + SRR an),
Cfé:zl_%,ih_}_%wmh_%(Hhﬁ—%(ﬁhy .

+ SR ch)” — LR (k)" - 00 (o) + 2R ch)',
Cég,(l) = —10+ 21813#/@]1 + %mh + %(H}LV . %ﬁtm(/@hy

M () S ) — TR ) — S o)

Then the finite difference scheme in (3.20) achieves sizth order accuracy for Biu =

g—ﬁ — iku = g1 at the point (xo,y;) € I'1 with reduced pollution effect. The mazimum
ou

accuracy order of a G-point finite difference scheme for Biu = g — iku = g1 at the

point (xg,y;) € I'y is six.
2) For By = 2, the coefficients for defining L5 uy, in (3.20) are given by
v h

ClB,i =14+ 1915061419 (/ih)Q + 3019639439 (th>4,

25x109 1012
CH} = 2+ S (oh)? — ME () 522,
Cfb — 44 10641188827(/46]1)2 _ 10713&13;3831(1,%]1)4’ '
Cgf) — _10+ 1315631858716(/€h)2 _ 124(1)?)5193409(/%)4'

Then the finite difference scheme in (3.20) achieves seventh order accuracy for Byu =
9u — g1 at the point (o, y;) € I'y with reduced pollution effect. Moreover, the mazimum

6_1/ =
accuracy order of a 6-point finite difference scheme for Byu = % = g1 at the point

(wo,y;) € I'y is seven.

By symmetry, we can immediately state the stencils for the other three boundary sides.
Same accuracy order results as in Theorem hold. First, consider the following discretiza-

tion stencil for Bou = g5 on I'y with By € {& — ikLy, 2} centered at (zy,,y;) € Ta:

0 1 7

LRu =Y > WO )Nk = Y hICR Y h g,
k=—1/¢=-1 (m,n)eAs n=0

where C®2 , = Cpb for allk € {0,1}, € € {—1,0,1}, CP2, . =30 >, CY, (kh, (h) for

all (m,n) € Ag, g5 = G2(y;), CB2, =30 S, CRHGY, ,(kh,(h) for allm =0,...,7.
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Second, the stencil for Bsu = g3 on I's with Bs € {a% —ikly, a%} centered at (z;,y0) € I's
is ;
LBy, = Z Zh OB (un)ipre = Y hTUmCRs Nl
k=—1 (=0 (m,n)€Ae n=0
where Cj¢ = Cpb for all k € {0,1}, ¢ € { 1,0, 1} O = b1 Y CsQH (K, Ch)
for all (m,n) € Ag, Q¥,, , is defined in g = & 93 (i),

dx™

CBs = S S, Ck,ﬁ 7na(kh, Kh) for all n=0,...,7, and G¥ | is defined in (3.17).

g3.n
Third, the stencil for Byu = g4 on I'y with By € {% — |/<¢Id, 5} centered at (z;,yn,) € 'y

18

1 0
ﬁ%“h = Z Z h_lolfj(uh)i-‘rk,Nz-i-K: Z h_lf(m’n)CBfl +Zh 94 Cg%n,

k=—14=-1 (m,n)€As

where CJt ), = CFy forall k € {0,1}, ¢ € {—1,0,1}, Cf;n S i1 2o CotQE (kh, (h)
for all (m,n) € Ag, g" = D% (x;), and CB = S, S0 | CBGE | (kh, (h) for all

dx™ ga,n
n=0,...,7.

3.1.2.2 Corner points

For clarity of presentation, let us consider the following boundary configuration

Blu:g—ﬁ—i/@u:gl on I'y, Bou=u=g¢gy on I'y,

Bsu =2 =gy on T, Biau = g“ iku = g4 on I'y.

ov

(3.23)

See Fig. for an illustration.

B4u:g—3—i/<cu=g4

Iy

Ot
Ly

Biu = % —iku = g1| Iy [y |Bou=u= gy

I's
Byu = % =93

Figure 3.1: Boundary configuration in (3.23)), where 1 (z,y) = 2? + y?> — 2
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The corners coming from other boundary configurations can be handled in a similar way.
When a corner involves at least one Dirichlet boundary condition, we can use Theorem (3.3
and subsequent remarks to handle it. We denote the bottom left corner (the intersection
of I'y and I's) by Ry, and the top left corner (the intersection of I'y and I'y) by Rs. In
what follows, we discuss in detail how the bottom and top left stencils are constructed.
The following two theorems provide the 4-point stencils of accuracy order at least six with
reduced pollution effect for the left corners. Their proofs are deferred to Section [3.3]

Theorem 3.4. Assume Q = (l1,l2) x (I3,14). Let (up);; be the numerical approximated
solution of the exact solution u of the Helmholtz equation (3.1) at the point (x;,y;). Then

the following discretization stencil centered at the corner point (o, yo):

—1/ Ry R1
Ry (Cog (un)oo  +Crg (un)io
h Tho- R R
+Co1 (un)or  +C17 (un)i)
g : (3.24)
_ —1 g£(m,n) ~R1 -1 _(n) ~Ry -1 (n) ~Ry
= D WUCR Y R VOR Y h e O
(m,n)EAs n=0 n=0
where
Ri _ 2041589737 6666011379i 1213438849 2 254718888i 2
Cri =1 - Tgw = rh + 20— kh — =g (kh)” — 55506 (kh)
2199377569 3 | 4307308979 3 5536966589 4 1556373503 4
+ =5 (kh)” + =5a (kh)” — 250 (kh)" — 2255 (kA7
Ri _ o _ 2041589737 5666011387 ,.7 156034209 2 1629433157/ 2
Cro =2 100 R+ T e Kl 100 (kh) oo (Kkh)
1855012159 3 | 453336943i 3 3170819689 4 | 25677723 4
+ =g (kh)” + S5 (kh)” — =500 (kh)” + 2555 (Kh)7, (3.25)
Ri _ o _ 2041589737 566601138/ .7 556752189 2 1629433157i 2 :
Coi =2 500 B+ 505 kh — “ias (k) oo (Kkh)
3216071983 3 3955100649i 3 | 1546871341 4 | 231176972i 4
+ =50 (kh)? = = (kh)” + 2507 (kh)" + 25000 (kh)7,
R1 _ 510397434 6699431033i 2002755557 2 369405469 2
OOO — _5 + 5><108 /{h/ + 1011 K/h/ + 1010 (K/h) - —2><109 (K/h)
285280517 3 | 326982886i 3 |, 35165403 4 9939550949i 4
1o (Fh)” + 50 (kh)” + 55100 (Kh) oz (k)%
n) . d"q (n) ._ d'gs _ R1 R1 7
o = L), o = L) Jor all m = 0.7, and {CFhYonmenss (R0,
{CF }r—o are well-defined stencil coefficients that uniquely depend on {CF Y ey, achieves

sizth order for Biu = g—ﬁ — iku = g1 and Bzu = g—,’j = g3 at the point (xo,yo) with reduced

pollution effect. Moreover, the maximum accuracy order of a 4-point finite difference scheme

for Biu = g—z — iku = g1 and Bzu = g—ﬁ = g3 at the point (xg,yo) is six.

Theorem 3.5. Assume Q = (l1,1ls) % (I3,14). Let (up);; be the numerical approximated
solution of the exact solution u of the Helmholtz equation (3.1) at the point (z;,y;). Then
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the following discretization stencil centered at the corner point (xo,yn,):

WO (un)onve—1 +OT2 1 (un)1,ny—1

Re -
+Cog (un)ony, — +C75 (un)1ne)
; . (3.26)
_ —1 £(m,n) ~R2 -1 _(n) AR -1 _(n) "R
= > R 4> hTgMeR 4> hTlgeRe,
(m,n)€Nsg n=0 n=0
where
Ry _ 535927359 131913924 4650641357 2 3255802571j 2
Cl,—l =1- 5% 109 Kkh + 108 kh — 1010 (/ih) - T(I{h)
1802358661 3 _ 137039551j 3 _ 116115549 4 _ 390383949/ 4
— on - (kh)” = S0 (k) — S (Rh)" — S555en (kh)7,
R _ o _ 428741887 2238278479/ .7 _ 5558059089 2 278023284j 2
Crg =2 TSI T i o (kh) Tasxios () (3.27)
1525711827 3 _ 57317954 3 | 2099795921 4 | 1100929919 4 :
+ Setor (kh)” = e (kh)” + g (kh)” + =556 (kR)7,
Ry _ _ 1339818397 2043038021/ .7, _ 1519079742 2 _ 2830355397i 2
Cog = =5+ 55cos wh + g0 Kl Sxios (1) sxion - (Kh)
82143257 3 | 3401956461i 3 1420360677 4 | 4391249797 4
— Sxios (Wh)” + =g (wh)”, + 555 (kh)" + 2555 (kh)7,
n) ._ d"aq1 n) ._ d'ga _ Ro Ro 7
91 = dym (yNz)z 9o = = g (‘TO) fOT all n = 0,...,7, and {C 7m7n}(m,n)€A6; {Cgl’"}n:w
Ro 7 . . . Ra
{2 n=o are well-defined stencil coefficients that uniquely depend on {C}7 treio1}0e({-1.0}
; Re2 _ Re ; _ Ou H _ _ Ou
with Cy 2y = C7§, achieves seventh order accuracy for Biu = 3" — iku = g1 and Byu = 3! —
iku = gy at the point (xo, yn,) with reduced pollution effect. Moreover, the mazimum accuracy
. . . . 6'LL . . o 6'U4 . _
order of a 4-point finite difference scheme for Biu = 3% — iku = g1 and Byu = 55 — iku = gy

at the point (xo,yn,) is seven.
Note that the right-hand sides of (3.24) and (3.26)) can be explicitly recovered. See the
proofs of Theorems and [3.5] in Section [3.3] for details.

3.1.3 Irregular points

Let (z;,y;) be an irregular point (i.e., both d;-fj and d;; are nonempty) and let us take a
base point (z7,y;) € I'r N (x; — h,z; + h) X (y; — h,y; + h) on the interface I'; and inside
(x; — h,z; + h) x (y; — h,y; + h). By (3.5)), we have

x; =r; —vh and y; =y; —woh with —1<wvg,wo<1 and (z7,y;)€ s (3.28)
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Let uy and fi represent the solution u and source term f in Q" or Q7 , respectively. Similar

to (3.6]), the following notations are used

(mm) am—l—nui (mm) 8m+nf:|:

Uy = m($¢79j)7 + = amm—any(‘rivyj)a

(m,n) | am—i_ngD

g = (myn) am+ngN
b omxO™y

Since the interface curve I'; is smooth and the solution u and the source term f are

assumed to be piecewise smooth, we can extend v, and f, on Q1 into smooth functions in
a neighborhood of (z},y;). The same applies to u_ and f_ on Q. Identity similar to (3.15)
still holds:

ur(@tafy+y) = > "G L@+ Y QY @) + (M),

(m,n)GAJ\\//}il (m,n)GAMf,l

for x,y € (—2h,2h), where A]\V/,Il-i-l is defined in (3.10)), Ays,—1 is defined in (3.7), G} .. (2, )
is defined in ((3.14)), QJ‘\//If,m,n (x,y) is defined in (3.13)). As in 9 B0], we assume that we have

a parametric equation for I'; near the base point (z7,y;). Le.,
c=r(t)+z;, y=st)+y;, ('{)*+(t)* >0 for te€(—ee€) with €>0, (3.29)

where r and s are smooth functions.

Theorem 3.6. Let u be the solution to the Helmholtz interface problem in (3.1) and the base
point (z;,y;) € ' be parameterized near (x7,y5) by (3.29). Then

u(—m/m/) = usfnlyn/) + Z (TJ’,n’,m,nfj-myn) + Tg’,n’,m,nfgmyn)> + Z Tg]?nl,m,ng(Dm’n)

)

(m,n)€AM—1 (mn)€AM 11

N T e Y () € AV

(m,n)eArr

where all the transmission coefficients T+, 97, TIN are uniquely determined by r™®(0), s (0),
and Kk fork=0,..., M + 1.

Proof. The proof closely follows from the proof of 9] Theorem 2.3]. ]
Next, we state the compact finite difference stencil for interior irregular points.

Theorem 3.7. Let (uy);; be the numerical solution of (3.1) at an interior irreqular point
(zi,y;). Pick a base point (7, y;) as in (3.28)). Then the following compact scheme centered
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at the interior irregular point (x;,y;)

(Cl 1(up)i—1j-1 +Cio(un)ij—1 +Cr1(un)it1j—1
EZ’ = +C10(un)i-1 +Co,0(un)i, +C10(un )i,
+Cya(up)i-1,j41 +Cio(un)ijir +Ch 1<uh)1+1,]+1)
STt Y I+ Y g,
(m,n)EANg (m,n)EAg (m,n)EAs
+ > g,
(m,n)EA7

achieves seventh order accuracy, where {Cy o} g oc{-1,01} are defined in (3.19)), Jﬁfm = J$;2+
Jak for all (m,n) € As,

Tt = Y ChiQb (o + k)b, (wo + OR),  Jil= > L T L Y(m,n) € Ag,
(k0)Ed;; (m’n") ey

ngD,n = Z I;L n’Tngn ,m,n? V(m’n) € A87 Jgfbj\,,n = Z I’I:l ,n’ TmNn’ m,n’ V(m,n) € A7>
(m’,n’)EAE‘:’1 (m’,n’)EAg’1

Imni= > CeuGY (o + k)b, (wo+OR), V(m,n)e A"
(k,0)ed; ;

Moreover, the mazimum accuracy order of a compact finite difference stencil for Au+r*u =

[ at an interior irregular point (x;,y;) is seven.

Proof. The proof closely follows from the proof of A9 Theorem 2.4]. O

3.2 Numerical experiments

In this section, we let Q = (I,15)% For a given J € Ny, we define h := (I — I;)/N; with

Ny :=27. Recall the definition of (z;,y;) in (3.4). Let u(x,y) be the exact solution of ([3.1])

and (up);; be the numerical solution at (z;,y;) using the mesh size h. We shall evaluate
llun—ull2

our proposed finite difference scheme in the 2-norm by the relative error Sl if the exact
solution w is available, and by the error |lu, — wup/2||2 if the exact solution is not known,

where
N1 N1 Nl Nl 9
lun = ull3 == 12> " ((wn)ig — ul@sy)®,  lun —upplls =02 ((un)ig — (unj2)2i2;)” -
=0 j=0 i=0 j=0

In the following numerical experiments, ‘B8]’, ‘[I20]" and ‘[I25]’ correspond to the sixth
order compact FDMs proposed in 28], [[20] and [I25] respectively. ‘Proposed’ corresponds
to the sixth order compact FDM with reduced pollution effect in Section of this paper.
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Recall that i—’;z corresponds to the number of points per wavelength.

3.2.1 Numerical examples with no interfaces

We provide four numerical experiments here.

Example 3.1. Consider the problem (3.1) in Q = (0,1)* with f = 0 and all Dirichlet
boundary conditions such that the boundary data gy, ..., g4 are picked such that the exact
solution u(x,y,0) = exp(ir(cos(f)z +sin(f)y)) is the plane wave with the angle §. We define

the following average error for plane wave solutions along all different angles 6 by

_ N N 2
Jun —ulow 1 st1 >_ilo 2o (un)ignm — ulwi, y;, 0k))
2]l Ny & St it (wlwi,yy, 00))*

where 6 = khg, hy = 27 /N3 for N3 € Ny, and (up); ; is the value of the numerical solution

up, at the grid point (z;,y,) with a plane wave angle 6. See Table for numerical results.

k =50, N3 = 50 k=150, N3 = 30 k = 450, N3 = 30
Proposed 28] Proposed 28] Proposed
7 0 T Y P O 7 I 7P 0 7 0 O A, R 7 Y ) X SR 7
llull2.w l[al]2.w Kkh llall2.w llull2.w Kh lleel]2.w llall2.w Kh

9.83E+04.87E-01 2.020.2
1.57E-021.01E-03| 8.9 |4.0(15.5
5.01E-051.20E-05 6.4 |8.04.193.67E+06.25E-02 2.7/58.7
2.35E-071.77E-07) 6.1 [16.1]1.33/6.04E-036.82E-04] 6.5 | 5.4 8.85
2.78E-092.72E-09 6.0 32.21.022.56E-059.25E-06 6.2 |10.72.77|1.26E+05.43E-02 3.6 23.1
1.78E-071.40E-07] 6.0 21.41.274.72E-037.83E-04 6.1 |7.1|6.03
2.25E-051.13E-05 6.1 [14.31.99
1.85E-071.75E-07] 6.0 28.6(1.06

— =
D2 © oo ot

Table 3.1: Numerical results for Example with h = 1/27. The ratio r is equal to fun—ullzw o

l[ll2,w

28] divided by % of our proposed method. In other words, for the same mesh size h with

h =277, the error of 28] is r times larger than that of our proposed method.

Example 3.2. Consider the problem (3.1)) in Q = (0,1)? with the boundary conditions

uw(0,y) =g1, and wu(l,y)=go for ye(0,1),
u(z,0) = g3, and wuy(z,1) —iku(z,1) =0 for =z € (0,1),

where g1, ..., g4 and f are chosen such that the exact solution u = (y—1) cos(ax) sin(5(y—1))
with «, 8 € R. See Table [3.2] for numerical results for various choices of o and 3.
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a = 50, B = 290 a = 100, B = 275 a = 150, B = 255

T T 7 7 7 7
Proposed Proposed Mﬂ Proposed

2r [ fun—ull2 [un—ull2 | Tun—ull2 r | o Tun—ull2 [ Tun—ull2 [ Jun—ull2 o Tup—ull2 | Jun—ull2 | Jun—ull2
[lull2 [|u]l2 [lull2 [lull2 [lull2 [lull2

r|r
rh | ull2 llull2 [lull2 1|2

2.7|1.1E4-0]9.8E-02|3.8E-02129(2.6/|2.4E+0|2.1E-01|4.4E-02| 54 | 4.6 |4.4E4-01.2E-01|5.8E-02| 77 |2.1
5.4 8.6E-03|6.1E-04/1.3E-04/654.6|1.2E-02|1.3E-03|3.1E-04] 40 | 4.4 1.7E-028.3E-04|1.3E-04/134/6.5
10.7|1.2E-04/8.4E-06|2.8E-06/43|3.0|1.7E-04|1.8E-05/5.7TE-06| 30 | 3.2 [2.4E-04]1.1E-052.0E-06121|5.7
21.4]1.8E-06/1.2E-07|4.6E-08|39|2.6|2.6 E-06|2.7E-079.2E-08| 28 | 2.9 3.7E-06/1.7E-07|3.3E-08/114/5.1
a =200, 8 =200 a =250, 8 =160 a =290, =50

Proposed lu_zm lllzﬁ_l Proposed l_]_zm Proposed

S © 00 | N

27 [ llun—ull2 | [un—ull2 [ Tun—ull2 rl Tun—ufle | [un—ull2 | Tun—ull2 | or [un—ullz [ [un—ull2 | Tusr—ull2 | ro
ch | |ull2 llull2 Jlull2 [lullo llull2 llull2 [lull2 llull2 [[ull2

2.7|1.1E+40[1.3E-011.4E-01] 8 |0.9/6.0E+0|1.8E-01]4.8E-02/125| 3.7 [8.9E+0(1.3E-01/5.5E-02162/2.4
5.4 |7.5E-03|9.7E-04/3.8E-0420(2.6/4.0E-02|1.1E-03|8.1E-05/492(14.1(9.8E-03|7.4E-04|1.5E-04] 66 (4.9
10.7|11.1E-04|1.3E-05|3.4E-06{33|3.9|5.6 E-04|1.6E-05/2.1E-06{264| 7.6 |1.5E-04|1.0E-05(1.6E-06| 92 6.2
21.4]1.7E-0612.0E-07|4.5E-08|38|4.4/8.6 E-06|2.3E-07|3.7E-08234/ 6.3 |2.3E-06/1.5E-07|2.3E-08/101/6.4

S © 00 | N

Table 3.2: Numerical results of Example with h = 1/27 and x = 300. The ratio r; is equal
to ”ul";u”Q of [I20] divided by lun—ullz o oy proposed method and the ratio ry is equal to llen—ull>

ull2 l[ull2 l[ull2

of [I25] divided by lun—ullz of oy proposed method. In other words, for the same grid size h with

[lull2

h =277 the errors of [[20] and [[Z5] are r; and ro times larger than those of our proposed method,
respectively.

Example 3.3. Consider the problem in Q = (0,1)* with boundary conditions in
(13.23)). Le., Biu = % —iku = gy on I'y, Bou = u = go on 'y, Bgu = g—z = g3 on ['3 and
Byu = g—z —iku = g4 on I'y, where ¢1,...,94 and f are chosen such that the exact solution
u = sin(ax + fy) with o, € R. See Section for numerical results for various choices

of av and f.

k =450, a = 400, B = 200 k = 600, a = 300, 8 = 500
2 % order|||up — up a|2|order| 2% % order|||up — wp2||2|order
1.79 |1.3753E4-01 9.8073E+00 1.34 19.0200E4-01 6.4272E401
3.57 | 1.7358E-02 19.630| 1.2212E-02 [9.649| 2.68 | 9.4259E-02 |9.902| 6.6801E-02 [9.910
7.15 [ 1.6528E-04 [6.715] 1.1540E-04 6.725| 5.36 | 2.7428E-04 (8.425| 1.9430E-04 (8.425
14.30| 2.4370E-06 |6.084| 1.6971E-06 [6.087|10.72| 1.7971E-06 |7.254| 1.2453E-06 |7.286

28.60| 3.9410E-08 |5.950 21.45| 4.5869E-08 |5.292

© 00 | K

—_
— O

Table 3.3: Numerical results of Example with h = 1/27 using our proposed method.

Example 3.4. Consider the problem (3.1) in © = (0,1)? with boundary conditions in

(3.23), where f(z,y) = x%sin(8z) cos(6y), g1 = sin(5y), g» = 0, g3 = (¥ — 1)sin(4x), and
g4 = cos(5z). Note that the exact solution u is unknown in this example. See Section [3.2.1]
and Fig. 3.2 for numerical results.
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x = 200 x = 400 k = 800
i—’,; |lup, — wpjallorder) [|up |2 % llun, — upjolloorden |Jup |2 z—z |up, — wpjol|2order) |Jup |2
2.01| 8.776E-01 5.81E-01
4.02| 3.716E-03 |7.889.84E-01/2.01| 7.936E-01 5.28E-01
8.04| 4.430E-05 |6.399.81E-01{4.02| 7.410E-03 [6.749.76E-01/2.01| 8.453E-01 5.08E-01
16.08 9.80E-01|8.04| 8.579E-05 [6.43(9.75E-01/4.02| 1.486E-02 |5.839.70E-01
16.08 9.74E-01/8.04| 1.715E-04 |6.44 9.70E-01
16.08 9.69E-01

I
E S o ooy

Table 3.4: Numerical results of Example with h = 1/27 using our proposed method.

| ,’,mem, i i,
i

X

Figure 3.2: First row: the real part of uj in Example where x = 200 and h = 1/29 (left),
k =400 and h = 1/219 (middle), x = 800 and h = 1/2! (right). Second row: the imaginary part
of up, in Example where k = 200 and h = 1/2% (left), x = 400 and h = 1/210 (middle), x = 800
and h = 1/2'" (right).
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3.2.2 Numerical examples with interfaces

We provide three numerical experiments here.

Example 3.5. Consider the problem in Q = (—3/2,3/2)% with boundary conditions
in (3.23), where k = 100, T'; := {(z,y) € Q : ¢(z,y) = 0} with ¢(z,y) = y*/2 + /(1 +
z?) — 1/2 (see Fig. (left)), gp = —1, and gy = 0. The boundary data g, ..., g4 and fyi
are chosen such that the exact solution w is given by uy = uyxq+ = cos(50x) cos(80y) and
u_ = uxqo- = cos(50x) cos(80y) + 1. See Table [3.5| for numerical results.

yA2exi(1+x})=112 , x*42y*=112 ) y22 xBaxt=112

15 El 2
15 075 0 075 15 - 05 0 05 1 2 - 0 1 2

Figure 3.3: 42/2 4+ 22/(1 + 2?) = 1/2 (left), 2* 4+ 2y* = 1/2 (middle), and y? — 222 + 2* = 1/2
(right).

Example 3.6. Consider the problem in Q = (—1,1)? with boundary conditions in
(3.23), where k = 300, I'; := {(z,y) € Q : ¥(zx,y) = 0} with ¥(z,y) = z* + 2y* — 1/2 (see
Fig.[3.3| (middle)), f+ = 75%sin(3(z+y)), f- = 75 cos(4x) cos(3y), gp = sin(27z) sin(27y) +
3, and gy = cos(2mx) cos(2my). The following boundary data are given by g1 = e¥ + e7¥,
g2 =0, g3 = (r — 1)e”, and g4 = sin(2x). Note that the exact solution u is unknown in this
example. See Table for numerical results.

Example 3.7. Consider the problem in Q = (—2,2)® with boundary conditions in
(3.23), where k = 150, I'y := {(z,y) € Q : ¥(x,y) = 0} with ¥(z,y) = y*> — 222 + 2% — 1/2
(see Fig. [3.3] (right)), f+ = sin(5(z —y)), f- = 10*sin(5z) sin(5y), gp = sin(27(x — y)), and
gy = cos(2m(z + y)). The following boundary data are given by g = cos(y) sin(y), g = 0,
g3 = sin(2x — 4), and g4 = e”sin(z). Note that the exact solution u is unknown in this
example. See Table for numerical results.

3.3 Proofs of Theorems 3.2/ to |3.5

In this section, we prove the main results stated in Section [3.1. The idea of proofs is to

first construct all possible compact stencils with the maximum accuracy order and then to
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Example |3.5|With h=23 Example |3.6|With h = 2% Example |3.7 with h = 5%
J Z—Z ””{@f;”? order|up, — up/2|Jorder %TZ l|un, — wp a||ordery||uy, |2 Z—Z \|un, — wp al|Jorder||up a |2
712.71.28E+00 2.90E+00
815.412.44E-03| 9.0 | 5.51E-03 | 9.0 |{2.7| 1.06E+401 7.039 |2.7| 8.19E400 3.467
910.75.82E-06| 8.7 | 1.31E-05 | 8.7 |5.4| 1.49E-02 | 9.5 | 7.037 |5.4| 7.96E-03 |10.0| 3.469
1021.4 3.98E-08| 7.2 | 9.27E-08 | 7.1 [10.7 1.69E-04 | 6.5 | 7.035 [10.7] 7.66E-05 | 6.7 | 3.468

Table 3.5: Numerical results of Examples to with h = (I3 — 11)/27 using our proposed
method.

minimize the average truncation error of plane waves over the free parameters of stencils to

reduce pollution effect.

Proof of Theorem [3.4 We first find all stencil coefficients {Cj ¢}k c{-1,0,1) and
{C’f,m,n}(m,n)GAMff1 such that

1 1
SN Croulwi+khoy+thy= > fIC .+ 6, =0,

k=—1¢=-1 (m,n)EAMf—l

for some M, M; € Ny and My > M. Afterwards, we set the remaining free parameters by
minimizing the average truncation error of plane waves. Approximating u(x; + kh,y; + (h)

as in (3.15)), we have

ST w3 Y (= ) = O, 0, (3.30)

(m,n)eAX/}il (m,n)GAMf_l

where we define

1 1

1 1
L= Y Y CosGyp kb, th), and  Jon:= > > CriQyy, nlkh, th). (3.31)

k=—1/¢=-1 k=—1/¢=-1

Solving ([3.30) is equivalent to solving

Lpn = O(BM*?),  h—0, forall (m,n)e AL, (3.32)
Ctomm = Jmn + O(KMT2), h — 0, forall (m,n) € Ay, 1. (3.33)

We set Cy = ij\gl Crej(kh)?, where ¢xp; € R for all k,¢ € {—1,0,1}. Furthermore,
welet Cy 1 =C_11 =C11=C11and C_1y = Cy_1 = Cpy = Cpp for symmetry. By
calculation, we find that M = 6 is the maximum positive integer such that the linear system
has a non-trivial solution. All such non-trivial solutions for M = 6 can be uniquely
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written (up to a constant multiple) as

C11 = co(kh)™ + c3(kh)® + ca(kh)® + c1(kh)* + (=12¢2 + ¢4 — 66 + 24c1g + 6c1y + 24c)(kh)> + (1/15
+4cy + 2c5 — 8¢z — 2¢s — 8cz)(kh)? + (—240co + 15¢4 — 120c6 + 480c10 + 120c1; + 480c9) (kh) + 1,

C1.0 = c10(kh)" + c7(kh)S + cg(kh)® + c5(kh)* + ca(kh)® 4 (1/15 + 16¢; + 8cs — 32¢7 — 8cg — 32¢3)(kh)?
+ (—960cs + 60cs — 480c + 1920c10 + 480c1 + 1920co) (kh) + 4,

Coo = c11(kh)" + cg(kh)® + (92c2 — (9/2)cq + 4dcg — 192¢19 — 48¢11 — 192¢9)(kh)® + (—3/10 + 20¢; + 8cs
— 48¢y — 12cg — 48¢3)(kh)* + (—1392¢o 4 82¢4 — 696¢6 + 2784c¢10 + 696¢1; + 2784¢q)(kh)?
+ (82/15 — 80c1 — 40c5 + 160c7 + 40cg + 160c3)(kh)? 4 (4800cz — 300c4 + 2400c — 9600¢10

— 2400¢11 — 9600cq)(rh) — 20,
(3.34)

where ¢; € Rfori =1,...,11 are free parameters. Note that any interior symmetric compact
stencil has accuracy order 6 if and only if the 7Tth-degree Taylor polynomials of the stencil

coeflicients are given by (13.34). Choosing M; = 7 in (3.31)) and (3.33) yields the right-hand
side of (3.18)).
Next, consider a general compact stencil {C}, }x ¢e(-1,0,1) parameterized by CY';, Cfy € R
satisfying
Cv—vl,—l = Civu =0 1= C’i’fl, Civm = C(\;\:—l = (\;\fl = C\1N,07 and C(\;V,O = —20,
where we normalized the stencil by Cyy = —20. Take a plane wave solution u(x,y,0) :=
exp(ir(cos(f)x + sin(f)y)) for any 6 € [0,27). Clearly, we have Au + x?u = 0. Hence, the

truncation error associated with the general compact stencil coefficients {C,‘;V g}k,fe{fl,O,l} at
the grid point (z;,y;) ¢ 0Q is h™*(T(0|kh))a,,, Where

(T(0|KN)) e, y, = Z Z Cypexp(ir(cos(0)(x; + kh) +sin(0)(y; + (h))).
k=—1(=—1

Recall that 2—7,; is the number of points per wavelength. Hence, it is reasonable to choose
rh € [1/4,1]. Without loss of generality, we let (z;,y;) = (0,0). Define S := {} + 1255 : s =
0,...,1000} and let

27
(~\1A:1(lih),0\1/\:0(lih)) = argmin / ((T(0]kh))oo|*dd, rKh € S. (3.35)
0

CY 1,07 pER

We use the Simpson’s 3/8 rule with 900 uniform sampling points to calculate
2T(T(0]Kh))o]d6. Now, we link Cog,Co, Cry in (3:34) with Co, Cylo(kh), O, (kh) in
(3.35) for kh € S. To further simplify the presentation of our stencil coefficients, we set

67



cg = c1p = c11 = 0 in (3.34)) so that the coefficients of the polynomials in (3.34) for degree 7
are zero. Because Cpy = —20 is our normalization, we determine the free parameters ¢; for

i=1,...,8in (3.34) by considering the following least-square problem:

(51, 52, ey 68) = arg min Z ‘Cl 1 Hh) é\ll\:l(lih)CO’o(Hh)/(—20)|2

€1,62,-,C8€R Lo

+[C10(kh) — CYlo(kh)Coo(kh)/(—20).

For simplicity of presentation, we replace each above calculated coefficient ¢; with its approx-
imated fractional form [10%¢;]/10%, where [-] is a rounding operation to the nearest integer.

Plugging these approximated fractional forms into coefficients ¢; for ¢ = 1,...,8 in (3.34),

we obtain ((3.19)). O

Proof of Theorem[3.3. We only prove item (1). The proof of item (2) is very similar. We start

. . : M,
by finding all stencil coefficients {Cﬁ}}k€{0,1}746{,1,0,1}, {Clgjﬂ,n}(m,n)GAMf,l and {C' 1,7
such that

Mgl
Z Z Clyu(witkh,y;+Lh) = > frmmcs +Z @B+ O, =0
k=0 ¢=—1 (m,n)eAMf_l
(3.36)
for some My, M, ,M € Ny, My > M and M, > M. Afterwards, we set the remaining free

parameters by minimizing the average truncation error of plane waves.
Since —u, — iku = g1 on I'y, we have u™™ = —ixu©®m — ¢! for all n = 0,..., M,,. By

D)

M+1
U(x+:vf,y+y;‘)zz 0")GX40nxy +Z (M)GMln(ny)
n=0 n=0

+ Y RN, n(wy) + O )

(m,n)E€AM; 1

M+1 Mg,
_Z“(O")GV Z CGy e+ D QN o (@y) + O )
(m,n)GAMf—1
M+1 Mg,
=3 w06y o (wy) = Y (5u® + )G ()
n=0 n=0

ST QY () + O

(m,n)eAqu

(OM+1)GM0M+1xy +Z (On)<GM0n$y) I‘%GMlnxy) Zgl GV g1:1,m JL‘,y)

+ 0y g QMf,m,n(w,yHﬁ(hM*?), for =,y € (—2h, 2h).

(m,n)€An; 1
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Approximating u(z; + kh,y; + ¢h) in (3.36), we have

M+1

Mgl
S uOIB S (8, - OB, )Y gl (KD C) = (), (337)

(m7n)eAMf—1

as h — 0, where

5= Z Z Cob (Glrom(kh, th) —ikGY; (K, €h)(1 = 6, ar41))
k=0 (=-1
1

T =) Z CorQNey mn(kh, Ch),  KF = — Z Z CryGiy,, 1n(kh, th),  (3.38)

k=0 (=—-1 k=0 (=-1

daa = 1, and 0, = 0 for a # b. We set C’E; = Zﬁwgl(ckh idye;)(kh)?, where cg g, dio; €

R for all k € {0,1} and ¢ € {—1,0,1}. Furthermore, we let C§"; = C§} and Cf*, = C} for
symmetry. By calculation, we find that M = 5 is the maximum positive mteger such that
the linear system of has a non-trivial solution. To further simplify such a solution,
we set coefficients associated with xh of degrees higher than 4 to zero; i.e., we now have
polynomials of kh, whose highest degree is now 4. All such non-trivial solutions for M =5

can be uniquely written (up to a constant multiple) as

C’fll = (c3 +icy)(kh)* 4 (cg +icg)(kh) + 12(icg — (Ti/3)ca + (7i/3)es + (131/3)cr + (7/3)cr + (13/3)es + ¢4
+(7/3)ce — 4/135)(kh)? — 60(icy + 2ics 4 (i/2)cq + ice — 4i/225 — (1/2)cg + ca — 5 — 2¢7)kh + 1

Cgll = (c1 +ics)(kh)* 4+ 13(icy + (20i/13)c3 + (7i/26)cs + (12i/13)cg — 17i/1170 — (7/26)cs + (12/13)c2 — c5
—(20/13)cr) (kh)? + 18(ics — (22i/9)ea + (22i/9)cs + (40i/9)cr + (22/9)cr + (40/9)cs + ca + (22/9)cs
—11/324)(kh)? — 120(ic1 + (2i)cs + (i/2)cs + ice — 291/1800 — (1/2)cs + ¢z — 5 — 2¢q)ih + 2

C’fé = (cq +icg)(kh)* + 18(icy + (4i/3)cs + (i/6)ca + (8i/9)c — /90 — (1/6)cs + (8/9)ca — cs
— (4/3)cr)(kh)? + 36(ics — (22i/9)ca + (22i/9)cs + (40i/9)cr + (22/9)c1 + (40/9) ez + ¢4 + (22/9)ce
— 49/1620)(r5h)? — 240(icy + (2i)cs + (i/2)eq + icg — 29i/1800 — (1/2)cs + ca — c5 — 2c7)kh + 4

Cgb = —4(icg — (3i/2)ca + (2i)es + (7i/2)er + 2¢1 + (7/2)es + e + (3/2)c — 1/80)(kh)* — 80(icy + (2i)cs
+ (i/2)cq + (39i/40)c — 7i/720 — (1/2)cg + (39/40)ca — c5 — 2¢7)(kh)® + 84(icg — (32i/21)cy
+(32i/21)cs + (T4i/21)er + (32/21)er + (T4/21)es + ca + (32/21)cg + 1/3780) (kh)?
+600(ic; + (2i)es + (1/2)cq +icg — 29i/4500 — (1/2)cs + c2 — ¢5 — 2¢7)kh — 10,

)
(

(3.39)
where each ¢; € R for ¢ = 1,...,8 are free parameters. Choosing My = M, = 7 in (3.37)

and ([3.38)) yields the right-hand side of ({3.20)).
Next, consider a compact stencil {C]‘gg}ke{o,l},ée{—l,o,l} parameterized by C‘l’fl, 05{1, C‘l’fo €
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C with

W W w W W
1,-1 = Y11, 00,71 = Co,lv and Co,o = —10,

where we normalized the general stencil by Cj), = —10. Take a plane wave solution
u(x,y,0) = exp(ir(cos(d)z + sin(f)y)) for any 6 € [0,2n). Clearly, we have Au + k?u = 0
and —u, —iku = g; # 0 on I'y, where g; and its derivatives are explicitly known by plugging
the plane wave solution u(x,y,#) into the boundary condition. Hence, the truncation er-
ror associated with the compact general stencil coefficients {C}',}re(0,1},6e{-1,0,1} at the grid
point (z9,y;) € 'y is ™' (T(0|kh))q,,y,, Where

1 1

(T(01kh))agy, = Y Crpexplir(cos(0)(zq + kh) + sin(6)(y; + (h)))

k=0 {=-1
Z Z Z Cr,GY | (kh, Ch).

k=0 ¢(=-1

Without loss of generality, we let (zg,y;) = (0,0). Afterwards, we follow a similar mini-

mization procedure as in the proof of Theorem to obtain the concrete stencils in Theo-

rem [3.3] O

Proof of Theorem|[3.4. We start by finding all stencil coefficients {CF b eq0,1},
{ f,mn} (mum) €Ay 1> {C’ e 0, and {C 1n}n such that

Mg, Mg

1 1
SO Cliulwot+kh,yo+th) = > fmICR Z MR+ Z YR+ 0 (hMF2),
k=0 ¢=0 (m,n)EAMf 1

(3.40)
h — 0, for some M, My, My, , My, € Ny, My > M, My, > M and My, > M. Afterwards,
we set the remaining free parameters by minimizing the average truncation error of plane
waves.
Note that we have

17”) f—

ul —iku@ — g™ and w™D = —gl™ " for all m,n € N,. (3.41)

Let C’;zg = C’,@l’v + C’;zelH for k,¢ € {0,1}, where C’,@l’v and C’Rl’ are to be determined
polynomials of h. Approximating u(xy + kh,yo + ¢h) with , , and using (3.41]),

we have

1 1 M+1 M+1
DD (CRY + O yulao + khyo + h) = 3 wOIIRY 43w O [
k=0 ¢=0 n=0 m=0
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Mgl Mg?,

Y IR S VR Y VKR o(hM?), (3.42)

(mn)€Anr; 1 n=0 m=0
where
1 1
T ZZ (Ghr0,n(kh, €h) —ikGYp (K, €h)(1 = 60 ary1)) s
k=0 £=0
1 1 1 1
ot = CRyVIGH o olkhoth), TR =" (CFPY QYr, (kb th) + CRPH QY L, (K, Ch)),
k=0 ¢=0 k=0 ¢=0
1 1 1
Kyt == Z CRIVGY, (kb th), and KRoH = -3 STCREGH (kb 0h).
=0 (=0 k=0 ¢=0

By replacing the left hand side of (3.40) with , replacing u™® for m =2,..., M +1
with ( . using , and rearranging some terms, we obtain

| M) M
55— L7
«(0:0) Igzl,V_i_Ig%l, WIRL + Z 2p[§)17H+iZ( 1)p+1 2p+11-;;5;1
p=1
L% o
20+1 )
+ Z w020 )Izelﬂ
£=0
L% 25 ] L%
+ u(O,Qﬁ) Z (_1)p (5) KQ(p—E)I;;l,H +i Z (_1)p+1 <I£) P 2(p— K)-‘rll';;i I;%lyv
=1 p=max{{,1} p=max{/,1}
M+1 M+1 R
w50 <(_1)L L + 1 LM“J> (102 1))
LMg1 1J
(2£+1 KR R
+ Z 2@1 Corori1)
M Mgy
2] =] »
20 R,V Ri, R1,H
+ g§ ) K" + Z (—1)ptt <£> 2= E)Izphd — 1760 — CZ; 20
=0 p=max{{,1}
My, ﬂ_ I Mp—2j-2
(0) (g Ra, R £2j+1)( 7R R1
+> g5 (K = O + Z Z PRI 0 = CFlaia)
/=0 7=0
LMf+1 "/J ILMerl 'YJ o1 LMf+217'YJ
O S A >
~€{0,1} =0 7=0 p=max{j+,+1,1}
e (p—L—1 - R R R
(_1>p ! < ] > 2p—t== 1)1’21)3-7 J2Z—l|-'y 2j Cf 21£+'y 2)) = ﬁ(hM+2)7 h — 0.

We set O = Zj]\igl(aw,j + ibyez)(kh)? and Crp™ = Zjﬂi—[i)_l(Ck,g’j + idyr;)(kh)?, where
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Aty Okt s Chags ey € Rforall k € {0,1} and ¢ € {—1,0,1}. By calculation, M = 5 is the
maximum positive integer such that the linear system, obtained by setting each coefficient
of u® for n = 0,...,6 to be &(h") as h — 0, has a non-trivial solution. Afterwards, to
further simplify such a solution, we can set remaining coefficients associated with (kh)° or
(kh)® to zero.

By using the minimization procedure described in the proofs of Theorems [3.2] and [3.3]
we can verify that CJ"" = CYY = iyt = ofp™ =0, ¢fyY C’OO, Y =,
CR“ = 01, and C’Rl’ = Cll, where {Ck,f breetony are defined in (3.25). Given these
(R }k’ge{o’l} and {C3" beveqoay, we set My = My, = M,, = 7 and plug them into the

following relations

=)

C;?% = K;%lv + Z p+1 (]2) 2= Z)[2721+71 I?I’Héé,Oa (=0,..., {%J ,
p=max{¢,1}
R R1, My, —1 R Ri,H
Cgllﬂ—i—l KQZ}H f:o’,_.’ L%J ) Og;g—Kf ! s EZO,...,MQS,
- - y (3.43)
Cf,ﬁl,Qj—i—l JZ21]+17 62077Mf_2j_27j2077LTf_ Ju and
L]\/ﬁc-{»l—’yj
2 P=L=1\ 240 j1R
—— ,
Chnaa= > o (P ety

p=max{j+¢+1,1}

. My+1— My+1— .
where v € {0,1}, 7 =0,..., {fTVJ —(—1,and £ =0,..., {fTﬂ — 1. This completes
the proof of Theorem O

Proof of Theorem[3.5. The proof is almost identical to the proof of Theorem Note that
we need to replace u™1 = —g{™ with u(m) = iku™9 + o™ for all m € Ny in (B.4T). O
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Chapter 4

Sharp Wavenumber-explicit Stability
Bounds for 2D Helmholtz Equations

We have considered the discretization aspects of the 2D Helmholtz equation on a rectangular
domain in Chapter [3| In this chapter, we study the stability of its solution. In particular,

we want to consider the following 2D Helmholtz equation:
Lu:=Au+r’u=—f in Q:=(0,1)° (4.1)
with the following boundary conditions

Biu=g on TI;:=(0,1)x {0}, Bsu=g3; on TIy:=(0,1)x {1},

4.2
Bgu = g2 On FQ = {1} X (0, 1), B4u =4g4 On F4 = {O} X (O, 1), ( )

where £ > 0 is a constant wavenumber, f € Ly(Q2) is the source term, and g; € Lo(L;)
for y = 1,...,4 are boundary data. The different boundary conditions are prescribed by
boundary operators By, ..., By, which belong to one of the three boundary operators: I,
(i.e., Iyju = u) for a Dirichlet boundary condition; a% for a Neumann boundary condition;
or 8% — ikl for the impedance boundary condition, where v is the outward normal vector.
We shall assume that at least one impedance boundary condition is present. Without loss of
generality, we assume that the impedance boundary condition is always imposed on Iy, i.e.,

By = 8% —ikl,;. More specifically, we are interested in the following boundary configurations

81,83 € {Id, %}, 62 € {Id, %, % — iKJId}, and 84 = % — i/iId. (43)

See Fig. for the domain and boundary configurations of the 2D Helmholtz equation

ED-E3).
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] Bsu = g3
I
_ Ou _
Bau =5, —iku L'y Lo|Bau = go
g g4
Iy
Biu=g1 1

Figure 4.1: Boundary configuration in (4.2]) and (4.3)) for the 2D Helmholtz equation (4.1)).

We prove the existence and uniqueness of the solution to the 2D Helmholtz equation
—, state several sharp wavenumber-explicit stability bounds, propose a lifting strat-
egy, and provide several examples to illustrate the optimality of our stability bounds in
Section The technical proofs of several theorems are deferred to Section [4.2]

Results in this chapter are based on [Q].

4.1 Main results on sharp wavenumber-explicit stabil-

ity bounds

First, we study the existence and uniqueness of the solution to the Helmholtz equation
(4.1)—(4.3) and then derive several relevant sharp wavenumber-explicit stability bounds.
Let I'p be the union of all boundaries on which the Dirichlet condition is imposed (i.e.,

u = gp on I'p), I'y be the union of all boundaries on which the Neumann condition is

imposed (i.e., g—:j = gy onI'y), and ' be the union of all boundaries on which the impedance
boundary condition is imposed (i.e., g—z —iku = gg on I'g).

Define
H={uecH(Q) : u=0 on Ip},

where T'p is allowed to be an empty set. If I'p = ), then H = H'(Q2). For the homogeneous

Dirichlet boundary condition © = gp = 0 on I'p, the weak formulation of the 2D Helmholtz

equation (4.1)—(4.3)) is to find u € H such that

a(u,v) = /Q(VwVE—/izu@)—i/ﬁ/F u@:/gfﬂ—i—/r gRG—i-/F gyU YoveH. (4.4)

The existence and uniqueness of the solution to problem (4.4) can be proved by using the
Fredholm alternative and the unique continuation principle [6Il Theorem 2.1]. For the

convenience of the reader, we shall include an explicit proof for our problem to make the
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presentation self-contained.
Proposition 4.1. There is a unique solution u € H satisfying the problem (4.4]).

Proof. The sesquilinear form a(-, -) is bounded, since |a(u, u)| < max(1, &%)[Ju||} o. Also, the
Garding’s inequality [T} (2.7)] is satisfied, since R(a(u,u)) = |lul|f o — (5* + 1)||ul[§ o. We
also know that H is compactly embedded in Lo(2). Hence, by the Fredholm alternative
[T0Tl Theorems 2.34 and 2.27], the solution to the variational problem (4.4)) exists as long as
we can show its uniqueness.

We now prove the uniqueness. Suppose that f = gr = gy = 0 in . We have to
prove that the solution w must be 0. Then, recalling that I'r # (), we have S(a(u,u)) =
k||uljor,. Since s is positive, we have u = 0 on I'g almost everywhere. Let € be an extended
domain Q such that Q = (—¢,1) x (0,1) if T =Ty, @ = (0,14 ¢) x (0,1) if Tz = 'y, or
Q= (—e,1+¢)x(0,1)if Tz = Ty UTy for some € > 0. Let @& be the function u with zero
extension in Q. Note that @ € H* (). Since (Vu, Vo)gq — k*(u,v)q = 0 for all v € H, we
have (Vii, Vo)g — k2(@1,v)q = 0 for all v € H'(€). Also noting that & = 0 in Q \ Q, by [BI
Theorem 2.1] or [ Theorem 1.1], we conclude that v = 0. The existence and uniqueness of
the solution to the problem for the Helmholtz equations have been proved. O

Furthermore, the existence of a unique solution still holds true even in the presence of

inhomogeneous Dirichlet boundary conditions on I'p due to lifting.

4.1.1 Stability bounds for inhomogeneous vertical boundary con-
ditions

To establish stability bounds for inhomogeneous boundary conditions only on the vertical

sides, we assume the horizontal sides take homogenous boundary conditions such that
By, B3 € {1, a%} and Biu=¢g; =0 on I'y, Bsu=g¢3=0 on Is. (4.5)

Define Ny := NU{0}. We shall use one of the following four orthonormal bases {Z; , }nen,
j=1,...,41in Ly(Z) with Z := [0, 1]:

Zy = \/Esin(mr-) and Zyo =1, Zy, = \/§cos(n7r-), n €N, (4.6)
Zspn = V2sin((n + $)m) and  Zy, = V2 cos((n + )7, n € Np. '
To maintain a unified presentation, we often use Z;o := 0 instead of dropping Z; . For

g € Lo(T), we let g be the function g with the zero extension outside the interval Z, and
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define 2-periodic functions Gy, ..., G4 whose values on (—1, 1] are defined by

Grla) = i) — §(=), Gali) = §(0) +5(~), .
Gy(2) = (g(z) — §(=2))e"™?,  Gu(x) = (§() + §(~x))e*™/?

For g € Ly(Z) and j =1,...,4, we have
g= Z g(n)Z;, with g(n) ::/0 9(x)Z;,(z)dx, Vn € Ny, (4.8)

n€Np

where we used the convention Z o := 0. Let Z, stand for the derivative of Zj .. It is also easy
to observe that {Z] , }nen, is an orthogonal system in Ly(Z) satisfying fol Z (@) 2 (2)de =
0 as long as m # n. For {Z;,}nen, With j = 1,2, we let {0, = n7}uen,. For {Z;, }nen,
with j = 3,4, we let {0, = (n 4 )T }nen,. We refer to {0, }nen, as eigenvalues, {Z;, }nen,
as eigenfunctions, and {(02,Z;,)}nen, as eigenpairs. Due to the identities in (4.8), given
eigenpairs {(02, Z; ) bnen, for some j € {1,2,3,4} and s > 0, we say that g € Z5(T,) for
0 €{1,2,3,4},if g € L*(T'y) and

I9l-p = Y (G002 <00 with Gn)i= [ gla)Zm(a)ds Ve Bo (1)
n=0 Fg
Note that [, g(2)Zj.(v)dr = fol g(x)Z;n(x)dx for £ = 1,...,4. Such a Hilbert space has
been used in stability estimates of the Helmholtz equation; e.g, see [I4] Section 2.2 and [106],
Section 3].
In this subsection, let our eigenvalues be {p, = nm}nen, or {ttn = (0 + 3)7}nen,, and

our eigenfunctions be

(
Zl,n(y)7 if Mn:nW%Oand Bl :B3:Id7
Zﬂ ) if n = NT 0and By =B :ﬁ7
Yo(y) =4 % () p # 1 =Bs =3, ne N, w0
Z3,n(y)7 if MUn = (TL + %)77' and Bl = IdaBS — 5%’
| Zin(y), i pn = (n+)mand By = 4, By = 1,

which together give us {(12,Y,) }nen, as our eigenpairs. We are now ready to state our first
set of stability bounds. The oscillating part of the solution predominantly contributes to the
stability bound. Hence, the main idea of the proof is to find a delicate upper bound for its
norm. We achieve this by establishing several technical norm estimates. The proof of the
following theorem is deferred to Section [4.2]
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Theorem 4.2. Consider the Helmholtz equation in (4.1)—(4.2]). Assume that (4.5)) holds,
B, € {1,, %, % —ikIy} with Bou = go = 0 on Ty, and By = % — ikIy with Byu = g4 € Lo(Ty)
on I'y. Then the unique solution u to the Helmholtz equation in (4.1)—(4.2]) with the source

term f vanishing satisfies
|Vulloa + kllulloo < V12max{x, 1}||gsllor,, V k> 0. (4.11)

The following example demonstrates how the stability bound in Theorem is sharp in
the sense that the right-hand side of (4.11]) holds up to a constant multiple (independent of
K and gy).

Example 4.1. In what follows, suppose that the conditions of Theorem hold, that
is, f =0, B;,Bs € {Id,a%}, and By = 2 —ixl; by (£3) with the boundary data ¢, =

ov
g2 = g3 = 0 in (4.2). Note that the boundary data g4 = Byu on I'y. We have three
choices for the boundary operator B,. Let us consider the first case By = E% — ikl with
K? = p2 + w2, where p, = nmw or p, = (n+ 3)m for a temporarily fixed n € N. Let
u = 57— (—sin(rz)k + cos(mz)mi) Yy (y) be the exact solution, where Y, (y) takes one of the
forms in (4.10). Because By = 22 —ikly, we have g4 = Byu =Y, on Iy and hence ||g4|lor, = 1.
The exact solution u = 3= (—sin(wz)k + cos(mz)mi) Y, (y) satisfies

IVulloo + &lluflon = Lry/ & + 5 = Lklgllor,

with & := \/p2 + 72 and p, € {nm, (n+ 3)7} for all n € N.

Next, we consider the second case B, = & with x? := p2 + ix% where p, = nr or
ftn, = (n+3)7 for a temporarily fixed n € N. Let u = —2 sin(Zz)Y,,(y) be the exact solution,

where Y, (y) takes one of the forms in (4.10)). Because By = % —ikly, gg=Byu=Y, on T}y

and hence ||g4lo,r, = 1. The exact solution u = —2 sin(5x)Y,,(y) satisfies

IVullog + &llullon = 22k gallo.r,

with & := /2 + 172 and p, € {n7, (n+ 3)7} for all n € N.

Finally, we consider the third case By = Ig with x? := p? + 7%, where y, = nm or
fin = (n+3)m for a temporarily fixed n € N. Let u = — X sin(mz)Y,(y) be the exact solution,
where Y,,(y) takes one of the forms in . Because By = a% —ikly, g4 =Bsu =Y, on Iy

and hence ||g4lo,r, = 1. The exact solution u = —2 sin(wz)Y,,(y) satisfies

[Vulloo + &l|ulloo = §H|\94| 0.1
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with & := \/p2 + 72 and p, € {nm, (n+ 3)7} for all n € N.
A similar example demonstrating the sharpness of the stability bound (4.11)) for the third

case was also presented in [I].

Next, we present our second set of stability bounds, whose proof is deferred to Section 4.2}
since it again involves several technical norm estimates. We recall that if Bju = u = 0 on
T, for j = 1,3, then ZY/2(Ty) can be identified with a subspace of H'/%(T'y), which after the
zero extension belongs to the space HY/2(90Q); e.g, see [IU6, Section 3).

Theorem 4.3. Consider the Helmholtz equation in (4.1)—(4.2) with the source term f
vanishing. Assume that (4.5) holds, By = % — ikly with Byu = g4 = 0 on 'y, and

By € {Id, 8%’ (% — iHId} with Bou = go € LQ(FQ) on I'y. Then,

(1) For By = % — ikly, the unique solution u to the Helmholtz equation in (4.1)—(4.2)
satisfies
[Vullog + &llulloe < V12max{s, 1}|g2llor,, V&> 0.

(2) For By = 2, the unique solution u to the Helmholtz equation in [&1)-([&.2) satisfies

o’

[Vullo.o + &llulloo < V20 max{x?, 1}||galo.r,, Y k> 0. (4.12)

(3) For By = Iy and g, € ZY2(T'y), the unique solution u to the Helmholtz equation in

(1) -[.2) satisfies

IVulloq + #llulloq < V14 (max{x* 1}[|g2]lor,
+ max{k3, 1}|\g2|\21/2(r2)) . Ve>0. (4.13)

An example demonstrating the sharpness of the stability bound in item (1) of Theorem 4.3
can be recovered from the first case discussed in Example [4.1, where both vertical sides have
the impedance boundary conditions with only the left hand side being inhomogeneous, by
replacing z in the solution u with 1 — x. This way the nonzero vertical boundary condition
is on the right-hand side (i.e., I';). The following example demonstrates how the stability

bounds (4.12)) and (4.13)) are sharp in the sense that the right-hand sides of (4.12)) and (4.13])

hold up to a constant multiple (independent of x and g5).

Example 4.2. In what follows, suppose that the conditions of Theorem hold, that is,
f=0,B1,8; € {Is, 2}, and By = £ — ik, by (£3) with the boundary data g; = 0, g3 =
0,94 = 0in (4.2). Note that the boundary data go = Bou on I's. Let us consider the first
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case By = 6% with k2 := p? + %17'('27 where p, = nm or p, = (n + %)7‘(‘ for a temporarily fixed
n € N. Let u = % (—2mcos(Zz) + 4k sin(Zx)i) Y, (y) be the exact solution, where Y, (y)
takes one of the forms in (4.10). Then g, = Bou =Y, on I's and hence ||g2|lor, = 1. The

exact solution u = & (—2m cos(3x) + 4k sin(Zz)i) Y, (y) satisfies

IVulloq + kllulloo = %5’%2\/ Z+ 2 %5"62”92”0,&,

where  := (/p2 + 172 and p,, € {nm, (n + 1)7} for all n € N.
Finally, we consider the case By = I with x? := p2 + 7%, where i, = nw or i, = (n+3)7
for a temporarily fixed n € N. Let u = £ (=7 cos(mz) + sin(ma) ki) Y, (y) be the exact solu-

tion, where Y,,(y) takes the form of (4.10). Then g, = Bou =Y}, on I'; and hence || ga|/or, = 1.

Also, [|gall z1/2(ry) = /. The exact solution u = L (=7 cos(mz) + sin(mz)ki) Yy (y) satisfies

[Vullon + #llullog = 2Vrt + 7262 = L (k2 +78) > L (82 + 76'2p?)

> (52| gallo,r, + £l 92ll 21/2(r,)),

where k := \/p2 + 72 and p,, € {nm, (n + 1)r} for all n € N.

4.1.2 Stability bounds for non-vanishing source terms

We can derive a stability estimate for f € Lo(£2) by using the variational formulation (4.4
and the Rellich’s identity [B2] Proposition 2.1]. A part of this problem (i.e., 'p = U, UT's
and I'g :=T'y) was addressed in Il Appendix|. The proof of the following result is deferred

to Section 3.

Theorem 4.4. Consider the Helmholtz equation (4.1)-(4.3). Assume that g; =0 on I'; for
allj=1,...,4 and f € Ly(Q).

(1) For By = 1,4, if the unique solution u to is in H*(QY), then
IVulloq + sllulloq < V30max{x® 1}|| flloa, V> 0. (4.14)
(2) For By € {Z, 2 — ikLy}, if the unique solution u to is in H*(QY), then
IVullog + £llufloe < VB42max{x® £~} flloq, V& > 0. (4.15)

The following example demonstrates how the stability bounds (4.14)) and (4.15)) are sharp
in the sense that the right-hand sides of (4.14) and (4.15)) hold up to a constant multiple
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(independent of x and f).

Example 4.3. In what follows, suppose that the conditions of Theorem hold, that is,
f € Ly(Q), By, Bs € {14, .2}, By = Z —irIy by with the boundary data g; = 0 on I'; for
all j = 1,...,4. Let us consider the first case By = I with x? := u2 + 7%, where y,, = nm or
tin = (n+ 3)7 for a temporarily fixed n € N. Let u = Z5 (7 cos(mz) 4+ m — 2sin(wz)xi) Y, (y),
where Y,,(y) takes one of the forms in (4.10). Then f = Y,,(y) and hence ||f|joo = 1. The

exact solution u = J5 (m cos(mx) + m — 2sin(7x)ki) Yy, (y) satisfies

IVullog + &llullog = Lk (\/1 S — H4+\/1 452) > 2217 fllog,

where k1= \/p2 + 7% and p, € {nm, (n + 3)7} for all n € N.

Next, we consider the second case By = a% with % = p? + %WQ, where p, = nm or
ftn = (n+ $)m for a temporarily fixed n € N. Let u = Z (47 — 8xsin(3x)i) Y, (y), where
Y, (y) takes one of the forms in (4.10). Then f = Y,,(y) and hence ||f|loo = 1. The exact

solution u = 25 (47 — 8k sin(Zx)i) Yy (y) satisfies

IVilon + slulan = 526* (V14 £ = g+ \/1+ ) > 221 floa

where k := (/p2 + 372 and p,, € {nm, (n + 1)7} for all n € N,

Finally, we consider the third case By = 2 — ixl, With k% := p? + w2, where p,, = nw or
fin = (n+ ) for a temporarily fixed n € N. Let u = & (7 — s sin(7x)i) Y, (y), where Y, (y)
takes one of the forms in (4.10). Then f =Y, (y) and hence Il flloa = 1. The exact solution

u = 2 (m — ksin(mz)i) Y, (y) satisfies

IVelloe + slulon = e (V1 + 2 = 2 4142 ) > 1 floa,

where k1= \/p2 + 7% and p, € {nm, (n + 3)7} for all n € N.

4.1.3 Stability bounds for inhomogeneous horizontal boundary

conditions using a lifting technique
In this section, we discuss how under certain assumptions, we can transfer the inhomogeneous
horizontal boundary data to the vertical boundary conditions. This procedure is well known

as lifting in the literature. As we shall soon see, we are actually considering a particular

instance of lifting, where our auxiliary functions do not affect the source term at all. Consider
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the Helmholtz equation (4.1)—(4.3]). Without loss of generality, let us assume that only one

of the horizontal boundary conditions is inhomogeneous and it is on I'y. We can use the same

method to handle the case where both horizontal boundary conditions are inhomogeneous.

Our goal is thus to explicitly construct an auxiliary function @ satisfying
Li:=Au+rT=0 in Q:=(0,1)* with

(4.16)
BﬂNL = g; on Fl, Bgﬂ =0 on Fg.

We shall impose some conditions on ¢; to ensure that the traces of  belong to the appropriate
function spaces so that we can go back to the situations discussed in Section [4.1]

Expanding ¢; in terms of certain eigenfunctions is a vital step for the construction of the
above auxiliary solution. For eigenvalues {fi, = nm}nen,, We can use either eigenfunctions
(X0 = Zintnen, o {Xn = Zoptnen,. For eigenvalues {fi, = (n + )T b neno, We can use
either eigenfunctions {Xn = Z3.n}nen, OF {Xn = Zyn}nen,- We first discuss how to properly
choose fi,,n € Ny. Define

do := dist(x?, 7*Z) = inf |x* — n7?| and
ner (4.17)
dy == dist(s*, 7(3 + Z)) = in£ K* — (n+ )7
ne

Note that dy,d; € [0, %7‘(’2] and dy + d; = %77'2. For n € Ny, we choose fi,, according to the

following four cases:

(n + %)ﬂ', if Bl 83 and dO - [07 %71'2]7
~ nm, if Bl = Bg and do [0, 171'2],
fin = " Y (4.18)
nm, if By # Bs and dj € |0, §7r2] [§n27 in 72,
|(n+3)m, if By # By and do & [0, 17%] U [$72, 172,

The next result states that the choices in are critical in ensuring that the following
auxiliary solution u satisfying is well defined. Furthermore, sufficient conditions under
which the Dirichlet trace of an auxiliary function @ belongs to H'/2?(9£2) and the Neumann
trace in the z-direction of an auxiliary function @ belongs to Lo(0f2) are presented. This
allows us to fall back to the cases discussed in Section more specifically, with g; replaced
by g; — Bj(@) on I'; for each j € {2,4}. The proof of the following result is deferred to
Section [4.2

Proposition 4.5. Assume g; € ZY/*(I'y) if By = &. Otherwise, assume g, € Z¥*(I'y) if

By = 1,. Suppose that {jin }nen, are chosen according to (4.18). Let the auxiliary function i
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take the following form

Z n) Xn(2)Y,(y) with G (n) ::/F g1(x) X, (2)dz, (4.19)

n=0

where {Y, bnen, solve

’*<z

7y )+(n — 2)Yo(y) =0 in Z:=(0,1), n €Ny, (4.20)
B,Y,(0) =1, BsY,(1)=0, (4.21)

with By, Bs € {Id,a%}. Then, the auxiliary function @ in (4.19)) satisfies (4.16|) and each
term of @ is well defined. Furthermore, we have that o € H*(SY), the (Dirichlet) trace of i

is in H'/%(09)), and the trace of @, (i.e., the Neumann trace in the x-direction of i) is in
Ly(09).

Next, we study upper bounds of an auxiliary function satisfying (4.16)), which is defined
in (4.19).

Theorem 4.6. Consider an auziliary function @ satisfying (4.16)), which is defined in (4.19))
and takes into account of (4.18). Then,

(1) For By =2, By € {15, 2}, and g1 € Ly(T1), the auziliary function @ satisfies

Villoo + klltoq < 2V717Tmax{k, 1}||¢1|lor,, V& > 0. (4.22)
(2) For By =14, Bs € {1s,:2}, and g1 € ZY*(I'y), the auiliary function @ satisfies

IVilloo + sl < 2v43(max{x?, 1}|g1]lo,r,
+max{x?, }|gillz2ry),  Vh > 0. (4.23)

Note that by symmetry, the same results as above hold when By = 0 on I'y and Bsu = g3
on I'3 in . Also, the conditions imposed on ¢g; in Theorem are weaker compared to
those in Proposition [4.5] because in the former, we are only interested in finding an upper
bound of the norm of an auxiliary solution and do not consider whether its traces belong
to particular spaces or not. The following example demonstrates how the stability bounds

(4.22) and (4.23) are sharp in the sense that the right-hand sides of (4.22) and (4.23) hold

up to a constant multiple (independent of x and g;).

Example 4.4. In what follows, suppose that the conditions of Theorem hold. Note
that the source term in (4.16|) vanishes. Suppose that By = Bs = a% and g1 € Lo(I'y).
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Consider k* := (nm)? + ;72 for a temporarily fixed n € N. Since dy ¢ [0, g7%] in ([4.18),
let u = ——X (z)cos(5(y — 1)) be an auxiliary solution, where X, (z) = v2cos(jinx) or

Xn(z) = \/_sm(un ) with @, = nm. Then g, = Bia = X,, on I'; and hence lg1llor, = 1.
The auxiliary solution @ = —%Xn( ) cos(5(y — 1)) satisfies

IVilloo + #lldllon = 22k|gillor, with = y/(nm)? + ix2, vneN.

Suppose that By = &, B; = I, and g1 € Ly(I'y). Consider x* := (nm)? + 72 for a
temporarily fixed n € N. Since dy € [0, 377, let @ = %Xn(x) sin(m(y — 1)) be an auxiliary
solution, where X, () = v2cos(finz) or X, (x) = v/2sin(ji,z) with fi, = nw. Then g, =
Byii = X, on T'; and hence ||g1]jo.r, = 1. The auxiliary solution & = %f(n(:v) sin(m(y — 1))

satisfies
Vil + &||@)oa = \gmHglﬂoyl with k:=+/(nm)2+ 72, VneN.
Suppose that By = I, Bs = 2, and g; € Z/%(I'y). Consider x* := (6,+6,,)*+(6,—37)?,
where 6, := (n + 3)7 for a temporarlly fixed n € N. Since dy € [2n?, i7%] in (£.18), let

i = X, () Coséiz?;g:ilel,(?)_)l)) be an auxiliary solution, where X, (z) = v/2sin(jinz) or X, (z) =

V2 cos(finx) with fi, = nw. Then g = Byii = X, on I'y and hence ||g1]jor, = 1. Also,

g1l z1r2(ry) = fiv/?. The auxiliary solution @ = X, (z) cos((On+6n")(y—1)

cos( (8.3, 1) satisfies

2452 sin(2(0,+0,1)) 22 sin(2(0,+07 1))
P oOnt0,) T T (0,40, )
cos?(0n,+6, 1) - sin2(971)

2 2 2 2sm 0n+0n )) 2 - 2 sm(2(0n+9;1))

HVﬂH?m T

. 02 (0n-+07 " )2 (3.9 t R

Z min { ((On+671)2+723) 2((en+e;1)2+ﬂ%)} ("4 7)
. 02 203 Tt ki

min { (9n+9—1)27 (9 +9*1)2 } (/{/ + H//’Ln)

02 . _
m(li + Kfiy) = 10 i12+4) (li4 + Kfly),

\%

where we used the fact that |sin(z)| < |z| for all z > 0 to arrive at the first inequality. Using

the basic inequality a® + b* > \/ié(a + b) for nonnegative numbers a and b, we have

1
+ w291l z1/2(ry))

~ ~ 2
IVillogo + kllallo > m(/gﬂgl

where k1= /(0, + 0;1)2 + ji2 with 0, = (n + §)7 and i, = 6,, — 37 for all n € N.
Suppose that By = Iy, Bs = Iz, g1 € ZY3(I'}), and g3 = 0. Consider 2 := (6, +
0,')? + 0%, where 0, := nm for a temporarily fixed n € N. Since dy ¢ [0, 17%] in ([4.18),
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let 4 = —Xn(x)sm(iieg(ggi;)_(?{; Y) be an auxiliary solution, where X,, = v/2sin(fi,z) or X, =

V2 cos(fipx) with fi,, = 6, = nw. Then g, = Byt = X,, on I'; and hence llg1llo.r, = 1. Also,

sin((0n+07 ") (y—1))
sin(0n+6, ")

lg1llz1r2(ry) = fir/*. The auxiliary solution @ = —X,(2) satisfies

9 g2 Sin(2(0n+0: ) (On+671)2402 [ 1 sm(2(6‘n+0_ )
Vi + w2l = et = 20010111 _
0,2 0,02 sin2(9n+6n ) Sin2(9;1)

2 - 4 _ sin(2(0n+0n )
> 0200, + 0,1 + 0, <1 0 h )

62 - - B
2 Torro, 2 (K + Folin) = m(% + Kfin),

where we used the same steps as in the previous case, and the fact that 6; + ;' > 7 and

sin(2(0,4051)) 1 . .
RPN > 5 for all n > 1 to move from the first inequality to the second

inequality. Using the basic inequality a® + b > \/Li(a + b) for nonnegative numbers a and b,

hence 1 —

we have

1
IVallog + sllilloe > sty (laillor, + w2l zer,)).

where & :=+/(0, + 0,;1)2 + 62 with 6,, = fi,, = n7 for all n € N.

We close this section with two important final remarks. By the superposition principle,
the stability bounds for the case where all boundary conditions are inhomogeneous and the
source term vanishes can be recovered by using Theorem [4.6] subtracting the traces of the
auxiliary solutions from g, on I's and g4 on T'y, using Theorems [£.2] and [£.3] and finally
adding all these bounds. Additionally, if the source term is nonzero, then we may also add
the stability bound in Theorem {4.4].

Note that the geometric assumptions in [83] simplify into three cases for a unit square
domain: (1) all sides have impedance boundary conditions, (2) three sides have impedance
boundary conditions and one side has a Dirichlet/Neumann boundary condition, or (3)
two adjacent sides have Dirichlet/Neumann boundary conditions and the other two have
impedance boundary conditions. By two adjacent sides, we mean two sides that are con-
nected to each other; e.g., I'y and I's, or I'y and I'y in . Whenever a Dirichlet/Neumann
boundary condition is imposed, [R3] assumes that it is homogeneous. We emphasize that the
boundary configurations in this paper are completely different from the assumptions used
in [B3). Hence, it is not surprising that our wavenumber-explicit stability bounds are also
different.
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4.2 Proofs of Theorems 4.2/ to 4.4 and 4.6, Lemma 4.8,
and Proposition 4.5

To prove Theorem [£.2] we need the following result.

Lemma 4.7. Let { X, }nen, be the solutions of the following problem

X'z)+ (K* — p2)Xo(z) =0 in Z:=(0,1), n €Ny, (4.24)
BiX,(0) = d;4, BoX,(1) = dj0, (4.25)

where {p, = N tnen, oF {ptn = (N + )T hnen, with j € {2,4}, §;; = 1, and 6;,,, = 0 for
j # m. Define

and )\n =9 . Vn € Nj.

Ay = ‘1—@

Recall that By = & — ikLy in (4.3).

(1) If BiX,(0) = —X'(0) — ikX,(0) = 1 and BoXo(1) = X' (1) — ikX,(1) = 0 with
By = % — ikIy, then the solutions { X, }nen, to the problem (4.24)—(4.25) are given by

A ((1=22) cos(kAn) sin(kAn (1—z))—(1+A2) sin(kAna))

Xn(z) = K(AX2 +(1—X2 )2 sin2 (~An))
+ (1442) Cos(ﬁin?)f(lf%%) cos(kAn) cos(kdn (1—)) i
K(4X2 +(1-X2)2 sin% (kAp,)) ’

If B4X,(0) = —X/(0) — ikX,(0) = 0 and B X, (1) = X/ (1) — ikX,(1) = 1 with
By = Z — ikly, then the solutions {X,}nen, to ([E24)-([25) are given above with x

replaced by 1 — x. Moreover, for both cases, the norms || X,|oz and || X] |loz are given

by

||X ||2 o nS\n(1+5\% —(l—s\%)cos(nin)sin(n;n) ||X/ ”2 _ 55\%(1+)\%)—5\n(5\%—1) cos(kAn) sin(kAn)
nH0T ™ 263X, (42 +(1-X2)2sin2(kX,)) nll0,Z — 2k(4X2 +(1—X2)2 sin2(kA,))

(2) If B4X,(0) = 1 and By X, (1) = o X/ (1) + (1 — @) X,,(1) = 0 with « € {0,1}, then the
solutions { X, }nen, to the problem (4.24)—(4.25) are given by

_ —An(cos(kAn) sin(kAn (1—2))+asin(kAnz)) cos(kAn) cos(kAn (1—2))—(1—a) cos(kAna) -
Xn(w) = #((1=X2) cos?(KAn)+A2 —(1—a) (1+A2)) + K((1=A2) cos? (kAn) +A2 —(1—a)(1+A2))
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Moreover, the norms || X,|loz and || X/ |0z are given by

HX HQ — sin(r{j\n) cos(nj\n)-i-(—l)l’amo\n

nlio.z 2/435%((1—5\%) 0052(/@5\”)4-)\%—(l—a)(l—i—)\%)) ’
S\n<—sin(n)°\n> cos(nj\n)—i-(—l)l*a/i:\n)
2k (0052 (KA ) (1=A2)+A2 = (1—) (1+A2)) °

X316 =

(3) If B4X,,(0) =0 and By X, (1) = aX/ (1) + (1 — ) X,,(1) = 1 with a € {0,1}, then the
solutions { X, }nen, to the problem ([4.24)—(4.25) are given by

_sin(kAnz)(a cos(kAn) —(1—a) sin(kAn))—cos(kAn @) A2 (o sin(k A )+ (1—a) cos(kAn))
Ko@) = () (1=32) con2 8 331 ) (43
k™ cos(kAn (1—2))— (1—a)k 2 AL~ sin(kA, (1—z)) i

(1=A2) cos?(kAn)+A2 —(1—a) (14+A2) )

+

Moreover, the norms || X,|loz and || X] |0z are given by

[P 2 KA (1+A2)—(1=A2) cos(kAn ) sin(kAn)

PHOT ™ 9(khn)20H (@A2+(1—a)+(—1) 1= (1—=A2) cos2(kAn))’

”X/ 2 KA (1+A2)+(1—22 ) sin(kAn) cos(kAn)
nll0,Z — 2(,{5\”)%‘71(

al2+(1=a)+(~1)1=o(1-X2) cos?(kAn))

Proof. Recall from the standard ordinary differential equation theory that the solution to

(4.24)-(4.25)) for each n € Ny with p2 < x? takes the form
Xn(x) = A, exp(ikA,z) + By exp(—iakA, ), (4.26)

where A,,, B,, are uniquely determined by imposing the boundary conditions. Then,
1 1
Xalfz = [ RO+ ROGPde and X1z = [ ROGE + 30X P
0 0

For n € Ny with g2 > k% each solution X, and its norms can be directly obtained by
replacing A, with i), in (4.26)). For n € Ny such that p2 = k2, the solution X,, and its norms
can be obtained by letting A, tend to zero in (4.26]). O

The following quantities will be used numerous times in the proofs of Theorems
and . Similar quantities will also be used multiple times in the proof of (4.6). Let

{1t = n}nen, or {ttn = (N + 3)7nen, and {X, }nen, be solutions to ([4.24)-(4.25) with

boundary conditions explicitly given in the proofs. Define N, := max{n € Ny : p2 < r?},
N, € N such that p3, = &* N, :=min{n € Ny : 2 > £}, and

an = ||X1/q,

g,z + (p2 + “2)||Xn||(2),za 0<n< N,
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QAQ = H)(/C 2
% = ||X1/z o

(i, + )X N6 2 (4.27)
+ (pn + 5[ Xallgz, m > Ne.

Also recall that if a,b > 0, then the following inequality always holds
Va2 + 02 <a+b< V2V + b2, (4.28)

Let 14 denote the indicator/characteristic function of the set A.

Proof of Theorem[{.2 Given the boundary assumptions, the solution u can be expressed as
w=> " ga(n)X,(2)Y,(y) with ga(n) := fr 91(y) Yo (y)dy, where {X, },en, are stated in
Lemma [4.7| and {Y}, },en, are stated in .

Recall that A\, = /|1 — pu2x~2| and observe that ||Y,|oz = p,. By (4.6), since both
{Y, }nen, and {Y, },en are orthogonal systems in Ly(Z), we deduce that

IVulls o + &2 [lulls o

—IIZQ4 X/Y||OQ+||ZQ4 XY'IIOQ+H2||ZQ4 ) XnYallo0

[
Mg

19a(m)PIIX115 +Z\g4 Jn [ X llg 2 + 1 Z|g4 )Xl 2 (4.29)

n=0

3
Il
=)

[
WE

19a(m)[* (IX 152 + (s + =) 1Xll52)

Il
=)

n

< max{ max ¢n, Oy, ,maX?,Dn} Z ’SJAA:(WR
n=N, n=0

0<n< Ny

where ¢,,, 0y,, and v, are deﬁned as in (4.27)).

Case I: suppose By = -= — ikl;. Using item (1) of Lemma , we obtain
(14A2)—S0ErAn) (1 32)2 b ErAn) 5(A2+1)242(A2 1)
Pn = (T+X2)2—cos2 (kAn ) (1—A2)2° n = (A2+1)%(cosh(2rA, ) —1)+8AZ *

To obtain an upper bound for ¢,, we note that for all n < N, and &\, € (0, §]

2)\2 < cos (F&/\n) < 1_’12)‘i+%’f4)‘i7 1— 26202 < sin(2kAn) and

BT 2 (4.30)
KEN2 4+ %Ffl/\i <1- %/{2/\2 <1
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Moreover, for all 0 < kK < 1,

N,=0 (e, N\, =1) if {p, =nn},en,; otherwise, (4.31)
N, does not exist if {y, = (0 + 3)7 Fnen,- '

Now, for k > 0 and n < N,

1 (1423)° = (13727 (1-13)° (14A2)+(1-72)2
90 S gliecty + iR -(1- I{2/\2+3I€4/\4>(1 3 Lz L0ms i) T TR -2 Lt st}

< %1{n<1} + IL{/{21,0<)\n 1} + <2)\2 - Z + 4_11)‘721> ]1{/421,ﬁ<)\n<1}
ey + Lgez1,0cn< 2y + Sk ]l{n>1 <A<t}

max{3,1, %} max{x®, 1} < max{x® 1},

NN

where we respectively used (4.31)) and (4.30) - ) to obtain the first and second terms of the first
inequality. Next, to obtain an upper bound for 1,, we note that M < cosh(z) for all
x € R and so

U < F(Ay, 2) = Z(i(gf‘j’f)g)éﬁ()ﬁ;\; with 2z := cosh(2k\,).

Then we have Z—I; = ((Z_ng’;%igifbﬁ()i%i)_1)2. For £ > 0 and 0 < A, < /5, F is increasing to

lim, oo F'(An, 2) = 2. Since {ptn, = n7}nen, OF {ftn = (0 + 3)7 Fnen,, we also note that

n :\/§—1<\/u%—m2:/§>\n for 0 <k <1,m€{ne€Ny:pu>r’} (4.32)

Now, for k > 0 and n > N,,

2(z+1)

1/’ 21{n>0)\n<\f} + F()‘mz)ﬂ{:oo An>VE} 211{n>0 An<VE} + IL{;‘c>0 An>V/5}

2(cosh(2v/5)+1) 2(cosh(2n)+1)
21{@0 an<vBy T cosh(2v/5)—1 IL{H>1 An>E} T cosh(21;7)71 ]]'{Fi<1,)\n>\/g}

2(cosh(2v/5)4+1) 2(cosh(2n)+1)
maX{Q’ cosh(2v/5)—1 7 cosh(2n)—1 }<3

N

Consequently,

max{ max Qﬁn,GN,maan} max{max{ﬁ 1}, 249 3} < 3max{x? 1}.

0<n<N, >Ne ? 3k2+127

Plugging in the above estimate back into (4.29)), applying the Parseval’s identity, and finally

using (4.28)), we have (4.11)).
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Case II: suppose By = a%. Using item (2) of Lemma with = 1, we obtain

1+(1 >\2)>m(2n)\n) B 2<sing,(€2/\mn)\n) (1+>\%)+1>

— 2KAn
¢” T (1-X2) cos?(kAn)+AZ Y ¢” T (A2+41) cosh(2kAp)+1—A2 "

Now, for k > 0 and n < N,

2-\2 2
¢ 1{n<1} + (1=X2)(1= ,{2)\2 Y12 1{n>1 )\ngmin{%,ﬁ}} + El{n2l,min{%,ﬁ}<)\ngl}
2
< ]l{m<1} + ml{@mngmm{%,ﬁ}} +4k l{n>l,min{%,ﬁ}<)\n<1}

512k2
< o<ty + ]1{1<n< e n\f} 1 e 1672 AT ]l{ﬁ>2f7 n<7}

2
+ 4k 1{/@21,min{\%,ﬁ}<)\n<1}

< Uwar) + morz Lacne o anc ) + Bt Linz g2 an< i) T 45 L Lmin & 21 <r,sn)

< max{l, 525, 5722, 4} max{x*, 1} < 6 max{x? 1},

where we respectively used (4.31]) and (4.30) with kA, € (0, min{- ok ] to obtain the first
and second terms of the first inequality. Next, to obtain an upper bound for 1,, we note

that Cosh( 5 < % and % < cosh(z) for all z € R. For k > 0 and n > N,

inh A
g = Ay )
"7 cosh(26An)(14+A2)+1-22 A2 (cosh(2kAy,)—1)+1+4cosh(2kAn)
<24 2)2
A2 (cosh(2m\n) 1)+1+cosh(2n)\n)

(260n)2
2+ COSh(2I§)\n) ]1{”<1} + 2k2 cosh(2kArn) 1{’{21}

N

N

2 5
2+ cosh(2n) ]]'{“<1} +3 I]'{”>1} HlaX{Q, cosh(2n)—1" §} < 3’

where we used ([4.32]) to arrive at the second term of the third inequality. Consequently,

max{ max ¢, 0y, ,maan} max {6 max{x*,1},2,3} = 6 max{x”, 1}.

0<TL\NP Ne

Plugging in the above estimate back into (4.29)), applying the Parseval’s identity, and finally

using (4.28)), we have (4.11)).

Case III: suppose By = I;. This configuration has been studied in [I], but we include
the proof for the sake of completeness. Using item (2) of Lemma with a = 0, we obtain

1— (1 )\g)sm;iiin) 2(smh(2n)\n)(1+)\2) )
¢n T 1—(1-)X2) cos?(kAn)’ w” T (14+X2) cosh(2kAp)—(1—X2) °
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Now, for K > 0 and n < N,

1-(1-A2)(1-5K223
On S Ljwcry + 1—(1-x2)(1 (rmul 4)A4)]1{“>“" =t & L1, 2 <An<i)

S Tpey + Lpesiaczy + 2k ]l{n>1,4l<)\n<1}
< max{1, %} max{x® 1} < 4max{x? 1},

where we respectively used (4.31)) and (4.30) to obtain the first and second terms of the first
inequality. Next, for k > 0 and n > N,, we have

sinh(2kAn,
" 2(HhErAn) (1422) 1
n X (142A2) cosh(2kAp)—1

) <o

Consequently,

7&§+37

nziNe

HQ
e s, o O s < {13, 85 2} = (1)

Plugging in the above estimate back into (4.29)), applying the Parseval’s identity, and finally

using (4.28)), we have (4.11)). O

Proof of Theorem[{.3. We shall only focus on items (2) and (3), since the proof of item
(1) is identical to the proof of Theorem (Case I). Given the boundary assumptions, the
solution u can be expressed as u = Y~ §2(n) X, (2)Y,(y) with g(n frg g2(v)Yn(y)dy,
where {X,, },en, are stated in Lemma [4.7| and {Y}, }nen, are stated in .

Recall that A\, := /|1 — pu2x~2| and observe that ||Y,!|oz = pn. By 1} since {Y, bnen,
and {Y},en, are orthogonal systems in Lo(Z), we deduce that

IVull .o + #llulld o

—IIZgz X/Y||OQ+||ZQ2 XY|IOQ+K2||292 )XaYallga

— (4.33)
=) _lam)’ !IX'!\OI+Z\92 Yo Xallg £ + K Z\gz WIXallo 2,
n=0 n=0
Regrouping the terms, we have
D 1B PUXG 2 + (e + )Xl 2)
" (4.34)

< max{ max ¢n, O, ,maan} Z

0<n< Ny
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where ¢, 0y,, and v, are defined as in (4.27]).
Item (2): suppose By = 2. Using item (3) of Lemma [4.7] with o = 1, we obtain

(1+>\2) sméjnkn)(l )\2)2 ((1+>\2)2s1n}21'(£2;/\n)+()\2 1))

Pn = 22 (1—X2) cos2 (kAn )+ AZ) ’ Yn = X2 (A2 +1)(cosh(2kMn)—1)+2) *

First, we note that for k > 1,
%(2/{2& (4K 3N 2R 4 9) = 2,42 = Dr2 —3) <0, YA, € (0,4/ 25 + 1],
Now, for k > 0 and n < N,

(1+A%)—(1—§n2ki)(1—/\%)2 (14A2)+(1-)2)2
Pn < 2L gncay + (AN (1—r2AZ)+AZ) - {r=LAnsqi} + A—4]1{n>1,41<An<1}>

2120 —(4k243)A2 +2K2 49
< 2L gpery + = ’éé/{é&z)ﬁﬁ:f s Lozt a<zy + (5142f£4 — 16 K? 4+ 1) L1, 2 <xo<1)

<2y + mﬂ{@l A<} T (512 * 12 K+ 1) L1, 2 <xo<1)

< 2T ey + ?“ +3 )1{H>1 A<y T (22k* — L8k* +1) L1, 2 <xn<1}

< maX{Z,%(l

1512 16 4 1} max{x*, 1} < 10 max{x* 1},

16) » ol

where we respectively used (4.31)) and (4.30) to obtain the first and second terms of the first
inequality. Next, we note that for all n > N, and k), € (0, 1],

sinh(2xAn,
) <14 46202 and 1+ 25%A2 < cosh(26),). (4.35)

Now, for Kk > 0 and n > N,

<2

(Lexp) =Bl +1) o LR (1) 0R-D
22 (cosh(2kA,)—1) {r<1IU{K=1An>21 X2 (k21 A0 <1}

<2 <n2>\2 + ) (%) I]‘{N<1}U{n>1 An>1}

+ (AL + 34 g7, + 5L+ 56%) Lo, <1y

<2 (% +1) (SO 1y + (T + 4 36) Loinc
+ (262 +2) (S 1

< max {2 (77% + 1) (%) , 23—8, 4 <Egz£g;ﬂ> } max{/f, 1} <10 max{/#’ 1},

where we used (4.35)) to arrive at the second term of the first inequality and (4.32) to arrive
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at the first term of the third inequality. Consequently,

max{ max qﬁn,@N,me}sz/Jn} max {10 max{x*, 1}, 2x* + 3,10 max{x* 1} }

0<n<Nyp

= 10 max{x*, 1}.

Plugging in the above estimate back into (4.34)), applying the Parseval’s identity, and finally

using (4.28)), we have

Item (3): suppose Bg = Id We note that for k > 1 and A\, € (0, % + %]

%(3 FO2(02 — 1)kt 4+ 3(1 - )\,QL)KJQ> — 20, (202 — 1)kt — 3x2) < 0.

By item (3) of Lemma [4.7| with o = 0, we obtain for x > 0 and n < N,

R2((1402)—(1-22)2 025 2n) ) K2(1422)+(1-22)2)

Pn = T—(1-X2) cos®(kAn) < 2lgecny + 22 Tzt <an<t

o [ (1-22)(1-(1-A2)(1-2K222)) 22
e ( 1_(1_)‘%)(1—52/\%4-%&4/\%) + 1_(1—>\%)(1—f:2)\%+%fi4)\%) 1{5217A"<ﬁ}

2 2 6
< 2]].{n<1} + K <(1 — )\n) + 3+)\%(>\%—1)R4+3(1—>\%)/€2> 1{”217An<ﬁ}
/12 <)\721 -1 + %) 1{H>1yﬁ<)\n<1}

S 2L gpany + K (1 + (768716#2)n21j)?$68+7r47487r2)> Liezian<zy + 2“ 1{~>1 T <An<1}

S max {2’ 1+ (7687167r2)42(5$g8+7r47487r2)’ %} max{x", 1} < 4max{x", 1},

where we respectively used (4.31)) and (4.30) to obtain the first and second terms of the first
inequality, and substitute A, = ;- into the second term of the third inequality. Next, for
n > N, and A, € (0,00), we have

Slnh(QN)\n)(l_"_AQ) (1_)\%) 9

2 2 _ 2 K
K HXnHo,I = CObﬁ(gnAn)(1+A2) (1-A2) SR

Next, for all A, € R, we note that A\2(1 + \2)~ % 2\[

sinh(2kAn) _1 sinh(2kAn) _1

kN : 2K\
KAn <1m #g

; An(34+X%) o An(34A8)
cosh(2kAp)—1 KAy —0 cosh(2kApn)—

1
3 (14A2)7  Anmoo (14A2)2
By item (3) of Lemma [4.7| with a = 0, we obtain for x > 0 and n > N,

inh(2k A
IXLI2 22 1Xn 27 m((1+3M24234)Sm0Cn) 32 1)

3 1
Hn (1422) 2 cosh(26An)—(1=22)(14+A2) 2
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sinh(2kAn)
r((143X2 +2>\4 ) g e A+
(1+22) 3 (cosh(2rAr)—1)
inh(2k A
R((1+3X2+2)4) S2BCAn) 132 )
(1422)2 (142 ) cosh(2kAn)— (1—-A2))

(143X2 +2)%) sinh(2kA,,) 1
< ( 24 (cosh(2kA,)—1) + (1+)\%)%(cosh(2n)\n)1)) 1{H<1}

{k<1}

{r=1 A< {1 0> 1)

R((143X2+2X0) (1+ 55202 ) 422 1)
(14A2) 2 (14A2) (14262X2) — (1-A2))

(W 1) )\n<%+>\%) < sinh(2kA) >
4 <(1+)\%)7(Cosh(2,{)\n)1)/€ + (1+)\%)% cosh(2kAn)—1
+ 3 2 /<u'> Tizia,>1y
(14+22) 2 (cosh(2kAn)—1) T

sinh(2n) 1
<< 2 + 1) (Cosh(%;ll> + COSh(Zn)71> :H'{H<1}
+

{r=1 <L}

S s (b B8+ i o
< e ;j@iﬁ;}g%”ﬂm Lner) + (4>\$L+6/\%+§)’f23+3f€(>\%+2)]1{H>17)\n<%}
1 (COSh(QS(C?SKé;T?)( )+2\[“1{n>1,>\n>%}
< B SO gy + (5 + 2 4 26) Lsraneny

3(cosh(2)—1)+9 sinh(2 )+2f
+ 9(cosh(2)—1) ]1{f$>1 An> }

(2n*+3n+1) sinh(2n)+2n* 3(cosh(2)—1)+9sinh(2)+2v/3
S max{ : 2nzl(cosh(2n):71) : ’7’ 9(cosh(2)—1) }maX{li, 1}

< Tmax{k, 1},

where we used (4.35)) to arrive at the last term of the second inequality and (4.32) to arrive
at the first term of the third inequality. Continuing from (4.33)), we have

> 1G@m)P IIX’IIOI+Z|92 )it 2| X5 7 + £ Zlgz )P Xnllg 2
n= n=0
Ne—1
=Y @) (IX08 2 + (12 + £)IXalE 2)
n=0
IXAI2 742 1 Xn 2 SN
£ 3 I, (BB S 2y ) X
n=N,g n=DNe

Ne—1
gmax{ max. ¢, 3’2{';;;9 } Z |92(n)]* + 7max{x, 1} Z |G2(n)|? i, + K Z |92(n

0<n< Ny
n= Ne n= Ne

< 4max{x* 1}Z|g2 )|? + 7max{x, 1}Z|g2 TS
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< T(max{x", 1}lg2[5 r, + max{s, 1}|gal|Z1/2(r,).

where we used our assumptions that Z'/2(T'y) and applied the Parseval’s identity to arrive

at the last line. Finally by (4.28]), the stability estimate in (4.13) is proved. ]

Proof of Theorem[{.4. All three cases start the same way. Letting v = u in (4.4)), we have

IVullg. = #2llulls.e = isllulgr, = (f,we, (4.36)

where I'gp = T'oUTy if By = £ —ikly; otherwise, I'p = Ty if By € {1, g }. Separately consid-
ering the real and imaginary parts of ( -, and applying the Cauchy-Schwarz inequality,

we have

IVulls o < w*[lulls.o + 1 floallullon,  sllullr, < IIflloallulloe. (4.37)

It is known in [B2 Proposition 2.1] that for v € H%(Q) and z € (C'(Q2))?, the following
identity holds

23%/Au(z~Vﬂ):2§R 8(z Va) —2§R/Vu (Vi -V)z
Q a0 OV

+/(V-Z)|Vu|2—/ z-n|Vu|2.
Q a0

Take z = (x — 1,0). Since Au = —f — rx%u, 2R(vui,) = (Ju|*)., by applying integration by
parts to the left-hand side of (4.38]), we have

(4.38)

2R [ Bz o) = ~2 [ (o= 155, + R (ull o [l
Q Q

Note that g—z =ikuon I'y. If Byju =u = 0on I'y, then u,(x,0) = (u(z,0)), = 0. Similarly, if
Bsu =u =0 on I's, then u,(z,1) = (u(z,1)), = 0. Therefore, we have 2R [,, %(z - Vu) =
262||ul|g p, for any By, By € {L4, 2}. Hence, fully expanding (4£.38), we have

o / (= 1) 7 + 2 (JulZe — lulr,)

=267 |[ullgr, — 2llusllon + IVull§ o — IVullgr,-

= 267||ullor, — llualls.o + luylls.o — IVullgr,,
from which, after using (4.36) to replace ||uy||§ o, we obtain

2lualis e + lugllor, = (f we +islullgr, +2R((x — Df,ue)o + 26 ullor,  (4.39)
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Taking the real part of (4.39)), we have

2]ucllo < [Iflloellullon + 20 floglusllon + 26 [ullsr, (4.40)

Suppose By = I4. Since ||ullfq < |Juell§q (which is proved by noting that u(z,y) =

— fxl uz(s,y)ds and then estimating an upper bound), and the second inequality of

(4.37) yield [Juslloo < 33+ 2x)| fllog- Le., [[ulogn < HuxHoQ $(3+ 2k)[| fllo0- So, by the
first inequality of (4.37)), we have

IVullga + £2[lulls.o < 26%[ullgo + 1 logllulloe

(55%(3 4+ 26) + 53 +26)) /1130 < 15 max{s*, 1}[I£]}3 .

NN

Finally, by using (4.28)), we obtain (4.14]).
Suppose By = 2. We have lullfo < 2([Jullgr, + [lusllgo) (Which is proved by noting
that u(z,y) = u(0,y) + [y uz(s,y)ds and then estimating an upper bound). By the second

inequality of ([4.37)), we have [lul|§ o — 267" fllo.ellullo0 — 2]|uel§ o < 0. This implies that

lullo.e < &7 flloe + %\/4%‘2||f||3,9 +8llusllf o < 267 fllow + V2lusllog.  (441)

By (4.40)), the second inequality of (4.37)), and (4.41)), we have

2]usllie < (26 + Dliflogllulloe + 2/l flloalluallog
<22+ 8 If I + V26 + V2 +2)lIflloellusllog.

Le., 2[uall§ o — 2v26 + V2 + 2) [ floalltallon — 22 + £~ )If15 o < 0. So,

laallon < 2@V24+ V2 + 2 fllon + 1/ @2V25 + V2 +2) + 162 + 5] fllon
< A@V2E+vV2+2) + 2+ 5] fllog (4.42)
< (V2

V2 + 3V2 14 52| f oo
By the first inequality of (4.37)), (4.41]), and (4.42), we have

IVullgo + &2 lullf o < 262 [ullg o + 11 flloallwlon
< 4R (AR F 110 + 2lluallf o) + 2671 150 + V21 flloalluzlloo
<A (AR +2(V2+ 3V2+ 14+ k7 )| S0 + 267 1 f1I6 0
+V2(V2r + 3V2+ 1+ k7Y fl2
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< (155 + 82v2) max{w', &} 1§ o < 271 max{w’, &} [ 13 o-

Finally, by using (4.28)), we obtain (4.15)).

Suppose By = mId Keeping in mind that the second inequality of (4.37]) implies
kllullgr, < “H“Ho,rgum < || fllo.allwlloq, the proof of this case is identical to the case where
B, = 2 O

27 v

In order to prove Proposition and Theorem we first prove two auxiliary results
stated in Lemmas [4.8 and 4.9 below.

Lemma 4.8. Let fi,,n € Ny be given in (£.18) and define N, := /|1 — 22| for n € Ny.
For Bl = 83,

;Iel£ |/ﬁ?)\n - ]71" = m, Vne No, (443)
and for By # Bs,
. N . 1 i

Proof. We first consider By = Bs. Let j be the unique integer such that j < % <J+ 1L
Then it is obvious that inf,,ez |£A, —ma| = min(|kA, —j7], |KAn— (j+1)7)|). If dy € [0, sm?),
then — 7% + dy € [—27% —§7% and fi, = (n+ )7 by (£.18). By the d~eﬁnition of dy, we
have k* = mn? + dy for some m € Z. By fi, = (n+ 1)m in (4.18) and (rkA,)? = |* — [i2] =

|(m —n? —n)w* + (=37 £ dy)|, we have

- |(N—j2)7r2:|:(—i7r2:tdo)\ > %7‘(2 %ﬂ'

H>\n+]7'(' - KAn+jm 7 kntin T 2 lkAp+1?

where N :=m —n? —n for k? > 2 or N :=n?+n —m for k? < i, and

(RAn)?=(+1D%7? _ ()2 =N)m?(—gn?ddo)| o g7

|’€)\n B (‘7 + ].)7T| - K]S\n-}—(j-i-l)ﬂ - K]S\n-l—(j-i-l)ﬂ = op—lgi,+1’

where we used jm < kA, and hence kX, + j7 < KAy + (j + 1)7 < 26\, + 7.

If dy & [0, £7?], then dy = 37 — dy € [0, 27%] and hence, %ﬂ' +d; € [in?, 1 2] By the
definition of di, we have k* = (m + 3)7* £ d; for some m € Z. By fi, = nr in (4.18) and
(KA\n)? = |12 — @2l = l(m—n?)n* + (%WQ + dy)|, we have

_ [(sAn)2—j%n?] _ |(N—g?)mP (5P Eda)| 12 lr
‘H,)\ _‘77-(‘ Ii)\nJrjﬂ' - I{S\n“l’jzﬂ' 2 I{S\iJror = 271'—181{5\71+1’

2

where N :=m — n? for k2 > i2 or N :=n? —m for k? < i2, and

1

N (s (B2 =G+ 1)%w2 ()P -N) w2 (5P ddy)| 5T
KA — (4 + D)7 = KAn+(G+D)T nin+(j+1)27r > 27r—115\n+1'
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This proves for the case By = Bs.

We now consider By # Bs. Consider the unique integer j such that j < %22 + 2 <
j 4+ 1. Then it is obvious that (j — )7 < < KM\ < (G4 $)m and inf,,ez |KAn — (m + | =
min(|k\, — (j — 5)7T|,|Ii)\ (G + 7). If do € [0,37%] U [2n?, i7?], then —in? £ dy €
[—2n?, =3 U[—2n?, —3n?] U [gn?, 372, By the definition of dy, we have £? = mm? 4 d; for

>

K

*|
N =

8 8 8 8 8
some m € Z. Therefore, by fi,, = nm in and (k\,)? = |2 — 2| = |(m — n®)7? £ do),
we have

3 c 1 |(kAn)?=(=3)2m2 _ |(N =% +j)m+ (= jm2£do)| &7
|I€)\n - (j B §)ﬂ-| Kn+(i— %2) o Kn+(j— 1;17r = 271'*12;5\71—}-1’

where N :=m — n? for k? > i2 or N :=n? —m for k* < 2, and

[(kAn)2=(+3)*m2 |2 +i—N)w2 = (= g2 +do)| &
KAnt(Gitg)m KAnt(j+5)m 7 2 lRAn A1

(KA — (j + )| =

where we used (j — )7 < k), and hence k), + (j — )7 < kA, + ( + D)7 < 26\, + 7.

If dy §Z [ % 2] U [27%, 37%], then dy = 17° — dy € [§7%, 377 and consequently, (37 £
di) € [-2 72 U [—g7?, sm?) U [272, 277, from which we obtain 17 £ (372 £dy) €
[—2n2, —%71'2] U [%7?2 et u(in?, In ] By the definition of dy, we have x? = (m+3)7?+d; for
some m € Z. By fi, = (n+1)m in (£.18) and (KXn)? = |k2—fi2| = |(m—n? —n)m?+iriEd|,
we have

5 C 1 A2 =(—3)?m? _ [(N—j?+)m® =[P £ (G2 Edy)]| &
KA — (J — 5)7T| - /ij\nJr(jfg)ﬂ - ;.;5\,1+(J'4+1/2);rl = 27r_lij\n+1’

2

where N :=m —n? —n for k* > @2 or N :=n?+n —m for k* < i, and

8 (532 — (42272 PN A (b)) in
KA = (7 + ) | = KAn+(j +%2) n nin+(;+%)w4 > 27r*1iﬂn+1'
This proves (4.44)) for the case B; # Bs. O

Lemma 4.9. Consider the problem (4.20)). Define

where fi, for n € Ny is given in (4.18]).

(1) Suppose that B,Y,(0) = =Y/(0) = 1 and BsY,(1) = aY!(1) + (1 — a)Y,(1) = 0 with
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o ={0,1}. Then, the solutions {Y, }nen, to the problem ([.20) satisfy

—acos(nin(y—l))—(l—a) sin(nin(y—l)) . ~9 2
T : . if [ # K7
Yn(y) — KAn (asin(kAn)+(1—a) cos(kAn)) . ,

azy? —y)—(L—a)y—1), if =~

If BY,(0) = —aY!(0) 4+ (1 — a)Y,(0) = 0 and BsY,(1) = Y/(1) = 1 with a = {0, 1},
then the solutions to (4.20) are given above with y replaced by 1 —y. Moreover, for

both cases, the norms ||Yy oz and ||V, |loz are given by

NinJr(fl)l_"‘ sin(ﬁin)cos(nin) . ~9 9
HfangI — ) 2(k2n)3((1—a) cos2(kAn ) +asin?(kAn)) | Zf Hn 7é K
%(l—a)—l—%a, if [t =K
Hin-i-(—l)a Sin(fiin) cos(n}i\n) . ~9 9
~ 2 53 5 y VA n K ,
||YTZ||% 7= 26An ((1—a) cos?(kAy)+asin? (k) f a 7&
(1—a)+ 30, if 2= K2

(2) Suppose that B;Y,(0) = Y,(0) = 1 and BsY,(1) = aY!(1) + (1 — a)Y,(1) = 0 with
o ={0,1}. Then, the solutions {Y,}nen, to the problem ([E.20) satisfy

}'}n _« Cos(nf\n (y—ol))-l—(l—a) sin(n%n(l—y)) .
(y) o cos(kAn)+(1—a) sin(kAn)

If BY,(0) = —aY!(0) 4+ (1 — a)Y,(0) = 0 and BsY,(1) = Y, (1) = 1 with a = {0, 1},
then the solutions to (4.20) are given above with y replaced by 1 —y. Moreover, for

both cases, the norms ||Y,|loz and ||Y!|oz are given by

Hffn H2 L= iin_i_(_l)lfa sir;(ﬁ)s\n) cos(ﬁig) HY// H2 ;= ni\n((—l)a sin(ni\n) COS(Hi\n)tlﬁ)&\n)
0, 2kAn ((1—a) sin? (kAn ) +acos2 (k) ’ n o, 2((1—a) sin? (kAp )+ cos2(kAn))

Proof. The above solutions and norms can be obtained from direct calculations (similar to
the proof of Lemma . O

Proof of Proposition [{.5. Given that holds, we know by Lemmathat each solution
stated in Lemma is well defined and hence each term of @ in is well defined. It is
also straightforward to see that satisfies .

By (&.6)), we recall that {X, }neno, {X4 bnengs {X7 Fnen, are orthogonal systems in Ly(Z).
Also, || X! loz = fin and || X”|joz = ji2. Let Sy;(ii) denote a partial sum of @ with the Mth
term as its last term. Let @, be the first partial derivative of @ in the x direction obtained

by term-by-term differentiation. Define u,, U,,, and t,, similarly.
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Suppose that By = I; and Bs € {1, 6%}. We can pick M € N such that for all n > M,
we have fi2 > k2, coth(k\,) < 2, and 2 < |1 — k%ji,;?| such that item (2) of Lemma@with
a =0 (ie., By =1;) implies

S 12 sinh(kAp) cosh(kAn)—KAn < coth(kAn) < -1 _ ~—1 ‘ 2‘ 1/2 ~—1
||Y ”071 o 2K\, sinh? (kAp,) = 2kA, (H)\n) = Hy 1= H ,LLn <2
12 KAn(sinh(kAn) cosh(kAn)+KAn) 3 3 2~_911/2 ~
||Y ”OZ - 25sinh2(kxn) /\ = 2Hn |1 Ry | S E'Um’

and item (2) of Lemma {4.9) with o = 1 (i.e., B3 = 2 ) implies

|V, 2.7 = Sohledmcoshisdn)pdn o tanhoda) 1|7 202 2 o

2KAn cosh? (kAp) - Kn Kl /ln )
¥ n n ~n — ~n Y ~ ~ 1/2 ~
V7] = atenbaeotchuioh) ¢ 45, — 30, [1 - w2722 < i
That is given B = Iy and B; € {1, 21, ||V, 152 < (KAn) "' < 2/ " and ||}~/'7;||(2)I <K\, < 3 i

for all n > M. Furthermore,
[tz — (Sar(@))zllo = Z 91 ()i P1Yall5 20 Niwe — (Sa1(@))zalloe = Z g1 (n) i P 1Yall5 7

[ty — (Sar(@))ylloo = Z 191 (n)[? HY,HOI’ [tzy — (Sn(@))ayllo,0 = Z 191 (n)fin]? HY,HOI?

Since g1 € Z3/2(F1) for B; =1, the above inequalities all tend to zero as M — oo.

Now suppose that B; = a% and Bz € {1, 8%}. We can pick M € Ny such that for all
n > M, we have i2 > k2, sin(2x\,) < 2(cosh(2k,) — 1), and 272/% < |1 — k2[1; 2| such that
item (1) of Lemma {4.9[ with oo = 0 (i.e., B3 = I;) implies

Y inh (kA An) =KX T o\— - ~_91=3/2 _ ~_
HYanvI - Sm};((i)):\z))g(::sok;;z)(\:%n;{/\n < %(K)\") ’ < %/J’n3 ‘1 - HQILLTL2‘ / < :unsu

2 sinh(kAp) cosh(kAn)+KAn ~—1 2~_2|-1/2 1/3 ~—1
HY ||OI - 2KAn, cosh?(kAy,) S n ‘1 — hoHy, } <2 Hn s

and item (1) of Lemma {4.9) with o = 1 (i.e., B3 = 2 ) implies

N

¥, sin /{n cos n~n f{~n S ~_ ~_921—3/2 ~_
HY ng - }12((;/:\"))35;11;2)(\;{/2\:) > %(5)\ ) < < g“ng |1 o RZMnZ / < 3:“7137

2 sinh(kAp) cosh(kAn)—kAn ~—1 2~72 —-1/2 1/3~-1
||Y ||OI o 2k \n, sinh?2 (/4)\”) < o ‘1 o, ‘ < 2 Hon,-

That is given B; = -2 and B; € {I;, 2}, |V, 152 < (KA \) % < 3j% and HY’HOI (KAp) ™!
21371 for all n > M Since g; € ZY2(I'y) for B, = aﬁ the above inequalities all tend to

zero as M — oo. Therefore, in both of the previously discussed cases, we have shown that
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t, € L*(Q) and (Sy(a)), converges to @, in L?*(€)); the same implications also hold for the
other three cases involving @, @, and .

Clearly, & € H'(2). We have [|a]|1 2,00 < Clla]l1,o < oo for some constant C' by the trace
inequality [I0I, Theorem 3.37]. Also, by the multiplicative trace inequality [62 Theorem
1.5.10 and the last inequality of p. 41], we have ||, |5 5o < C|lte|l1,0lltz]o.o < oo for some
other constant C'. O

Proof of Theorem[{.6. Let N, := max{n € Ny : i2 < s*}, N. € N be such that 43 = x?,
and N, := min{n € N : 2 > x?}. Recall that \, := /|1 — i2~x~2| and observe that
X = ji,. By (&), since {X,,}nen, and {X/ }nen, are orthogonal systems in Ly(Z), we
deduce from that

IVallg o + sl o

=1 X mm+w§jm XVl + RS G KTl )

n=0

o0

<15 ()P IYn HOI“‘Zlgl IR

n=0 n=0

+ HQZ 31 () PIYall5 2

Regrouping the terms, we have

[e.e]

> ld WWWwwwmIQO%Mmm@Z\ (4.4

n=0 Sn<Np
where o,,, 0~NC, and 1, are defined similar to (4.27) with X,,, z, and p, being replaced by Y,,
y, and fi,, respectively.

Item (1): Suppose By = a% and B3 = a%' Define z, := kA, for n € Ny. From ([@.43), we
observe that if the infimum on the left-hand side of the inequality occurs at 7 = 0, then

% > Zn 2 m 2 17r_6’ that iS, Zn 2 177_6 Vn € No, k> 0. (447)

Otherwise, if the infimum on the left-hand side of (4.43)) occurs at a nonzero j, then z, > 7.
Using item (i) of Lemma 4.9 with o = 1, we obtain

sin(2zn sinh(22
o _ sy TEL o et )

¢n - 22 sin?(zy) ’ wn - 22 (cosh(QZn) 1)

For each n € Ny, let v, = arginf;_; |2, — jn|. By (4.43), we deduce that for all 2, €
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[(’Yn - %)T‘—a (/Yn + %)ﬂ-]v
Sin2<2n) = sin ( — YnT ) Z %( — YnT ) = m (448)
For k > 0, n < N, and z, € (0, k], we have

On < ot <325 (1+ 27 12,)? < 3262 (& + i+%)

22 sin? (2, )

<32 (B + 5 + &) max{s®, 1} < 188 < 1051 max{x?, 1},

where we used (4.48)) to arrive at the second inequality, and applied (4.47)) to arrive at the
fourth inequality. Next for k > 0, n > N, and z, € (0,00), we have

bo<2(5 1) (e <2(2 1) <&) max{s?, 1} < 1434 max{s?, 1},

cosh(g)fl

where we used ([4.47]) to arrive at the second inequality. Consequently,

nzIMNe

max { o O, O, max wn}
< max {1051 max{x?, 1}, -tx* + 1, 1434 max{x?, 1} } = 1434 max{x”, 1}.
Applying the Parseval’s identity to and finally using (4.28)), we have (4.22]).

Item (1): suppose By = 2 and Bg = I,. Using item (i) of Lemma (4.9 with a = 0, we

obtain

in(2
“2_(52_Z%)bm2(zzn> k2 (sinh(22p,)—22y,)+22 sinh(22,,)

d)" - 22 cos2(zn) ) wn - 23 (cosh(2zpn)+1)

To obtain an upper bound for (5", we shall list several observations, which are used in its
estimation. For each n € Ny, let 7, = arginf .y |2, — (j + 3)7|. By (4.44)), we deduce that
for all z,, € [y, (v + 1)7),

COs2(zn) = sm2( — (yn + ) ) > %( — (Y + ) )2 > m (4.49)
Also, for all z, € (0, 1], we have

d ((1“;3:’”)) . 3cos(zn)zn(sm2(z%”)+%zntan(zn)fl) 3(1—%2%-&-%(2%—&-%%)—1)

23 cos2(zn)

WV

2 0,

dzn, 22 cos?(zn) - 24 cos?(zn)

where we used ([£.30) and 22 + 3z} < 2, tan(z,) for all z, € (0,1]. Now, for £ > 0, n < N,
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and z, € (0, k], we have

sin(2zn )
b 2 2y SIN@2) 2 2
¢" < (z% CosQ(zn)FL + 2zn cosz(zn)> l{zngl} + 22 cosQ(zn)H ]1{1<Zn<”}

1_sin(2) -
< ( cosQ(Ql) K? + cosQ( )) :H‘{Zn <1} + %K2]—{1<2n<ﬁ}

4—sin(

< QCOSQ(fg maX{HQ’ ]‘}]]‘{Zn<1} + 32(1 + 27T_1)2 max{mQ, 1}:[]-{1<Zn</i}

< 86 max{x?, 1},

where we used (4.49) to arrive at the second term of the first inequality. Next, note that for
all z, >0

d (sinh(2z,)—22,) \ __ 6sinh(z,) cosh®(z,) 2zp
dzn <2z%(cosh(2zn)+1)> T z3(cosh(2zp)+1)2 < L+ 3cosh2(zn) + Sinh(2zn)>
6 sinh(zy,) cosh®(2,,) 2(.2 4 2 14 4
< 22 (cosh(2zy)+1)2 <(_1 + §<Zn ~ Zn + ngL) + (1 - _Z T 45 n))ﬂ{zngﬁ}

+(__ + \[(Slnh(%))_1>l{zn>%}> <0

2
22 2 .4, 2.6 22, 2 14,4 2
where we used —3 ) < z, — 2, + 32, and sy S 1 z + 452, for all z, € (0, =]

Now, for k > 0, n > N,, and z, € (0,00), we have

7 . sinh(2z2,)—22n 2 sinh(2z5,) _ 2,2 2
w” < zl,}go (z%(cosh(%n)—l—l)'% + zn(cosh(an)+1)> =3k +1< Qmax{/-f 71}

Consequently,

max{ max an,HNc,maan} max {86 max{x® 1}, 2k* + 1,2max{x* 1} }

0<TL\ ) ’I’L/ e

= 86 max{x?, 1}.

Applying the Parseval’s identity to (4.46]), and finally using (4.28)), we have (4.22]).

Item (2): suppose By = 1; and B3 = a%' Continuing from (4.45)), we have

(o)
> G T, ||oz+2\g1 EIT 2+ 2 Z| n)EIalE 2
- Ne—1

= Y Rl FITIz+ 3 It 2 (2 + =) Valliz + 172032)

n= Ne

~2 1V |12 712
+ Z |g1 |2~ (Nn”YnHoij‘HYn“o,I)
n=~N,
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o
<o { ma. G, e T2 i
n—=

~2 |V 2 V7|12 i
+ max (M"”Y"llogjllynuo’z> Z |31 ()] fin.- (4.50)

n>Ne

n=0

By item (ii) of Lemma [£.9 with v = 1, we have for £ > 0, 0 < n < N,, and z, € (0, &]

~ H2+(H2*Z%)Sin2(222")

¢n - cos?(zn) — S c052(1 maX{Ii 1}]]'{Zn<1} +32’£ (1 + 27 Zn) Il‘{l<2’n <k}
< cosg( maX{K 1}ﬂ{zn§1} + 32/{ (]‘ + 27 K’) ]]-{1<Zn<ﬁ}
< Cosz rnax{/f D <y +32(1+ 27 1) max{s®, 1} 11 <)

/A

max{#(l),32(l+27r_ )2 }max{fi 1} < 86max{x* 1},

where we used (4.49) to arrive at the second term of the first inequality. Next, for k > 0,

sinh(2zp)

~ s +1
> N, and z, € (0,00), we have #*||Y,[|5 7 = COSE(ZWKQ < k2. Consequently,

max {oglf}zifp On, O, , K max 1Y, ||OI} < max {86 max{x*, 1},2x* £*} = 86 max{x", 1}.
(4.51)
Applying the Parseval’s identity and using , we have the first term of the right-hand
side of (4.23). Next, we recall that since {fi, = nm}nen, or {fi, = (0 + 3)7T}nen,, the lower
bound in still holds with pu,, A, replaced by fiy, An respectively. We also note that for
all K > 0 and z, € (0, 00)

22 4 K2 1sin Zn _o\ &
(zatn)? sinh(zn) "; c?)jh(z:)( ) < (1 =+ /122”2) 2 tanh(zn)1{H>l,zn>1}u{n<1,zn>0}

1
+ (22/(2 + 1) (tanh(zn) ) K1 {1,251}
< \/551{521,zn>1} + (1 +n )2 ]1{&<1 zn>0} + \/_/iﬂ{ﬁ>1 zn<1}
< max {\/5, (1+ 77_2)%} max{k, 1} < 2max{k, 1},

where we used the lower bound in (4.32)) to arrive at the second term of the second inequality.

Now, for k > 0 and n > N,, we have

ﬂi\\?nﬂg,fr“ffé”g,z o (223+52)Sinh(2zn)+21{2zn (4 52)
= = T .
Hon 22 (22+#2) 2 (cosh(22,)+1)
1
224+k2)2 sinh(zn 2
<! e cz)sh(z )( L 4 T < 3max{k, 1}.
" " (22+k2)2 (cosh(2zpn)+1)

Recall that we assumed g; € ZV/2(T';). Plugging (4.51))-(4.52) into ( and using
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we have the second term of the right-hand side of (4.23]).
Item (2): suppose By =1, and Bs = I;. Now, by item (ii) of Lemma 4.9 with oo = 0, we
have for k > 0, 0 < n < N, and z, € (0, ]

- K, ( n) sin(2zn)

On = e S e S82RA (142171 2,)? < 3267 (1 4 217 )

= sin?(zy)

< 32(1 4 27 M2 max{x*, 1} < 86 max{x* 1},

where we used (4.48) to arrive at the second inequality. Next for n > N, and z, > 0, we

have /’52H5}n|‘3z < (sinh(2zpn)—22y)

< 2o e zo 1y < K% Consequently,

max { o ¢n79NC,HiE}\;§¢n} max {86 max{x*, 1}, 2 + 1, k*} = 86 max{x*, 1}.
(4.53)
Applying the Parseval’s identity and using , we have the first term of the right-hand
side of (4.23). As before, since {fi, = n7}nen, or {fin = (n + 3)7 }nen,, the lower bound in
still holds with p,, A, replaced by ji,, An respectively. Now, for K > 0 and n > N,, we

have

1/2

ﬂiH?nllg,z-FIl?éllg,I _ (222+k?)sinh(22,)—2K22p < (1+'€2252) sinh(2zn) 1
i - >1, 1
Hn QZrL(Z%+H2)%(COSh(QZn)_l) = (cosh(2zn)—1) {w>1en>1}
2/{(1+Z%I€_2)1/2 sinh(2zn) 1 (1+52z;2)1/2 sinh(2zn) 1
+ 22p (cosh(22,)—1) {r21,2n<1} + (cosh(2zy)—1) {r<1}

_ /2 .
v/2sinh(2) 2\/§cosh( ) (1+17 2)1 sinh(2n)
S Teosn@ -1 L2121 F Gz D Ltz + @y Ls<t}

_o\1/2
V2sinh(2)  2vZcosh(Z) (14+n~2)"”sinh(2n)
S max{(eosh@)—l)’ osh(T)—1) — (eoshp—1) — J Max{s, 1} < 40max{r, 1},

(4.54)

where we used (4.47) and (4.32) to arrive at the second and third terms of the second

inequality. Recall that we assumed g; € ZV/2(I';). Plugging (4.53 into and
using (4.28)), we have the second term of the right-hand side of (4.23] - m

104



Chapter 5

Construction of Wavelets on a

Bounded Interval

Before we present our wavelet Galerkin method, we need to address the critical issue on the
construction of wavelets on a bounded interval, which is the main focus of this chapter.

We first provide some outlines and road maps of the classical and direct approaches for
constructing compactly supported biorthogonal wavelets on [0, 00) from an arbitrarily given
compactly supported biorthogonal wavelet on the real line in Section before delving into
the technical details and proofs. In Section [5.2] we study some basic properties of wavelets
on the interval [0, 00) such as their Bessel properties and vanishing moments. In Section ,
we generalize the classical approach from scalar wavelets to multiwavelets for constructing
compactly supported biorthogonal wavelets on the interval [0, 00). Additionally, we discuss
the construction of orthogonal (multi)wavelets on [0, o0) in Algorithm[5.1] In Section we
present the direct approach for constructing all possible compactly supported biorthogonal
wavelets on [0, c0) from any given compactly supported biorthogonal (multi)wavelets on the
real line. Additionally, we discuss how to further improve the classical approach by the
direct approach. In Section we address stationary and nonstationary (multi)wavelets on
[0, 00) satisfying any prescribed general homogeneous boundary conditions including Robin
boundary conditions. In Section [5.6] we discuss how to construct wavelets on the interval
[0, N] with N € N from wavelets on [0,00). Using the classical approach and the direct
approach, we present in Section a few examples of orthogonal and biorthogonal wavelets
on the interval [0, 1] such that the boundary wavelets have high vanishing moments and
prescribed homogeneous boundary conditions. For improved readability, some technical
proofs are postponed to Section [5.8]

Results in this chapter are based on [73].
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5.1 Road maps

According to Theorem in Section [5.2] a compactly supported biorthogonal wavelet
({&; 90} {¢;¢}) in Lo(R) must satisfy

6=23"akha2- —k), ¥=23 bk)H2- k),

where a,b,a,b € (Io(Z))™" and by (Io(Z))"™" we denote the space of all finitely supported
sequences u = {u(k)}rez : Z — C™". The above multiscale relations (called the refinable
structures in this paper) are well known to play the key role for a fast multiwavelet transform.
By P,,_1 we denote the space of all polynomials of degree less than m. Define m := VIH(@Z)

and m := vm(¢) for vanishing moments. Also, define a modified system AS;(®; ¥)p o) on
[0,00) adapted from AS;(¢;1) on R as follows

AS (P )00y := {27%0(27) 1 p e ®}U{22(27) : § = Jne T}, JeZ (5.1)
with

C = {p"tU{e( —k) : k=ng},  Ce={P"PU{Y( —k) + k>ny}, (5.2)

where the boundary elements ¢¥ and % are vectors/sets of compactly supported functions
in Ly([0,00)) and the integers ng, ny are chosen so that all elements in {¢(- — k) : k >
ne Y U{Y(-—k) : k = ny} are supported inside [0, c0) and hence are interior elements. From a
given compactly supported biorthogonal wavelet ({@; 1}, {¢:1}) in Ly(R), we are interested
in deriving a compactly supported Riesz basis ASy(®; V)jg ) in La([0,00)) satisfying

ol = 240" (2- +2ZA (2. —k), @' =2Bo"(2 +22 b2 —k), (5.3)

kn¢ kn¢

for some matrices Az, By and finitely supported sequences A, B, where AS(®; W) o) is
defined in for ®, ¥ in (5.2)) with compactly supported boundary vector functions ¢%, 1~.

We shall prove in Theorem that the unique dual Riesz basis of ASy(®; W) o) must be
given by ASo(®; ¥)jg.00) € La([0, 00)), defined similarly as in with & = {¢"}U{o(-—k) :
k > ng} and U= {1 u{d(-—k) : k> n;}, such that ¢" and ¢* must have compact
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support and satisfy
OF =2400"(2)+2 ) AR)G(2- —k), " =2BLo"(2)+2 ) B(k)$(2-—k), (5.4)
k:né k:nd;

for some matrices flL, B; and finitely supported sequences fl, B. Le.,

(ASo(®; \I/)[O,oo); ASo(®; ¥)[0,0)) forms a compactly supported biorthogonal wavelet in
Ly(]0, 00)) such that all boundary elements ¢~ ¢, ¢F, 1)~ have compact support and satisfy
the refinable structures in and . As stated in Theorem , the classical approach
described in Section for constructing a compactly supported biorthogonal wavelet
(ASo(®; V) (0,00), ASo(P; ¥)(g.00)) in La([0, 00)) has four major steps:

(S1) Apply Proposition and Section to construct a compactly supported vector
function ¢ in Lo([0,00)) satisfying the first identity in (5.3). To have polynomial
reproduction, every pxjo,.c) With p € P;,,_; should be an infinite linear combination of

elements in ®.

(S2) Use Algorithm to construct a compactly supported vector function ¢ in Ls([0, 00))
such that the first identity in ([5.4)) holds and ® is biorthogonal to ®. To have vanishing
moments vin(y") = m with m := vin(t), every px[o,oc) with p € P;,_1 must necessarily

be an infinite linear combination of elements in @, see Lemma for details.

(S3) Employ Proposition to construct a compactly supported boundary primal wavelet
¥F such that the second identity in (5.3) holds and ¥ is perpendicular to ®.

(S4) Employ Proposition to construct a compactly supported boundary dual wavelet
¥ such that the second identity in (5.4) holds, ¥ is perpendicular to ®, and U is
biorthogonal to W.

The classical approach for constructing special vector functions ¢* in (S1) is quite simple,
because each entry of ¢’ is either some ¢(-—k) X[0,00), ¥ € Z or their linear combinations. Once
(S1) and (S2) are done, based on two simple observations in Theorem and Lemma [5.8]
Yl in (S3) can be easily constructed by Proposition . Though ¥* itself is not unique,
the remark after Proposition shows that the finite-dimensional space generated by %
modulated by the space spanned by {¢/(-—k) : k > n,} is uniquely determined by ® and ®.
Once (S1)-(S3) are given, ¢ in (S4) can be easily constructed through Proposition and
both ¢~ and U are uniquely determined by @, ® and U. The Bessel property for the stability
of ASO(CT>; ‘ij)[o,oo) and ASy(®; ¥)(g ) is guaranteed by Theorem . To apply wavelet-based

methods for numerically solving boundary value problems, all the elements in the Riesz basis
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ASo(®; ¥)(0,00) must satisfy prescribed homogeneous boundary conditions. This can be easily
done by applying Proposition to the constructed ¢ and ® in (S1).

For a given orthogonal (multi)wavelet {¢; 1} in Ly(R), because {¢;1} is biorthogonal to
itself, (52) can be avoided. Hence, adapting an orthogonal (multi)wavelet from the real line
to [0, 00) becomes quite simple, because (S1) for constructing ¢* and (S3) for constructing
" are fairly easy, see Algorithm for more details. However, by Corollary and The-
orem their boundary wavelets 1)” cannot possess high vanishing moments and satisfy
prescribed homogeneous boundary conditions simultaneously. By Theorem this also
holds for nonstationary orthonormal wavelets on [0, co).

The main complexity /difficulty for the classical approach is (S2) in Algorithm for
constructing vector functions ¢, whose entries are finite linear combinations of q~5(2j .
—k)X0,), k € Z with j € {0,1}. The complexity of (S2) is largely due to two facts:
(1) The support of ¢ is often much longer than that of ¢. Therefore, there are many more
elements ¢(- — k) essentially touch the endpoint 0. (2) Because ® is biorthogonal to ®, we
must have #¢L = #¢L + (n5—ng¢)(#¢) and consequently, we do not have any freedom about
the length of @*. Therefore, it is no longer that easy or simple to construct even particular
@F such that the first identity in holds and ® is biorthogonal to P.

The difficulty in (S2) for the classical approach motivates us to propose a direct ap-
proach, which is more general but simpler than the classical approach. The direct approach
constructs ¢* and ¥’ in Theorems and without explicitly involving ¢~ and ¥F.
Though the particularly constructed ¢ in (S1) by the classical approach can be reused,
the direct approach in Theorem constructs all possible general vector functions ¢% in
(S1) by directly employing the first identity in under the condition p(A4;) < 2712
i.e., the spectral radius of Ay is less than 27%/2. Without explicitly constructing ® and ¥,
inspired by Lemma , the direct approach constructs ¥* in Theorem through the sec-
ond identity in under some necessary and sufficient conditions stated in Theorem [5.14]
Now we can easily derive from (5.3) matrices Ay, By, and finitely supported sequences A, B
from (5.3). Then we only need to check the condition p(flL) < 2712 to obtain a compactly
supported biorthogonal wavelet (ASo(®; U)o s0); ASo(®; ¥)jo.00)) in La([0, 00)), where ¢* and
YL are defined in . The proof of Theorem builds on Theorem , Theorem for
stability, and convergence property of non-standard vector cascade algorithms (which are
closely linked to nonstandard vector subdivision schemes). In addition, the direct approach
can also improve the classical approach by constructing all possible general vector functions
#" in (S2) through Theorem by only requiring that p(A;) < 272 and A, A;, A, A in

(5.3) and ([5.4) should satisfy the identity in ((5.64)).
The procedure stated in Theorem is well known (but without a proof) in the litera-
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ture (e.g., see [BI]) for adapting a compactly supported biorthogonal wavelet

(ASo(®; ¥) 0,00), ASo(P; ¥)(g.00)) in Lo([0,00)) to a bounded interval [0, N] with N € N. We
shall provide a rigorous proof for Theorem in this paper. The main idea of Theorem [5.19]
is quite simple: one constructs a closely related biorthogonal wavelet on the interval (—oo, N|
whose interior elements are still given by 9, ; := 27/2)(27-—k) for some j € Ny and k € Z. To
obtain a locally supported biorthogonal wavelet on [0, N], these two biorthogonal wavelets
on [0, 00) and (—oo, N] are fused together in a straightforward way such that their boundary
elements and all the common interior elements are kept. The main steps in Theorem [5.19]
for obtaining a biorthogonal wavelet on (—oo, N] are as follows. (1) Flip functions about the

origin, that is, we define

bi=o(=), b=u(=), ¢=a(—) and o =1(—).

(2) Construct a biorthogonal wavelet (ASO(&); &I)[O,oo)a AS(®: \if)[o,oo)) in Ly(]0,00)) from the
flipped biorthogonal wavelet ({¢;¢}, {;¢}) in Ly(R). (3) Then {A(N —)}; .o G,
and {h(N — ')}heASo(i;\i)[o,o@) form a biorthogonal wavelet in Lo((—oo, N]). If all the vector
functions in ¢, 1), ¢, 1 possess symmetry, then a biorthogonal wavelet on (—oo, N] can be
directly obtained from the constructed biorthogonal wavelet (ASq(®; \1/)[0700), ASy(P; V) (0,))
in Ly([0,00)), see the remark after Theorem for details.

5.2 Properties of biorthogonal wavelets on the interval
0, 00)

In this section, we shall first recall some results on biorthogonal (multi)wavelets on the real
line. Then we shall study some properties of biorthogonal wavelets on the interval [0, 00)
which are derived from a compactly supported biorthogonal wavelet on the real line R.
Throughout the paper, for simplicity, wavelets stand for both scalar wavelets and multi-

wavelets.

5.2.1 Biorthogonal wavelets on the real line

To recall some results on biorthogonal wavelets on the real line, let us first recall some defini-
tions. The Fourier transform used in this paper is defined to be fA(é’) = [ f(x)e ™ dz, & € R
for f € Li;(R) and is naturally extended to square integrable functions in Lo(R). By
(Io(Z))™** we denote the set of all finitely supported sequences v = {u(k)}rez : Z — C"**.

109



For u = {u(k)}rez € (lo(Z))"**, its Fourier series is defined to be

(€)= u(k)e™  for ¢€R,
keZ
which is an r x s matrix of 27-periodic trigonometric polynomials. An element in (lo(Z))"**
is often called a (matrix-valued) mask or filter in the literature. By § we denote the Dirac
sequence such that 8(0) = 1 and (k) = 0 for all k € Z\{0}. Note that & = 1. By

f € (L2(R))™* we mean that f is an r X s matrix of functions in Ls(R) and we define

(f.9) = / f@)e@) e, fe (LaR)™, g € (Lo(R)™.

According to [[1l, Theorem 4.5.1] and [f0, Theorem 7], any biorthogonal wavelet
({6; 0}, {#;¥}) in Ly(R) must be intrinsically derived from refinable vector functions and
biorthogonal wavelet filter banks. For simplicity, we only state the following result for
compactly supported biorthogonal wavelets ({@; ¥}, {¢;¥}) in Ly(R).

Theorem 5.1. ([71, Theorem 4.5.1] and [70, Theorem 7]) Let b, be r x 1 vectors of com-
pactly supported distributions and 1,1 be s x 1 vectors of compactly supported distributions
onR. Then ({¢;0}, {d;9}) is a biorthogonal wavelet in Ly(R) if and only if the following

are satisfied

— T~

(1) ¢, € (La(R))" and $(0) $(0) = 1.
(2) ¢ and ¢ are biorthogonal to each other: (¢, o — k)) = 8(k)I, for all k € Z.

(3) There exist low-pass filters a,a € (Io(Z))"™" and high-pass filters b,b € (Io(Z))**" such
that

=2 a(k)p(2- k), =2 b(k)o(2- —k), (5.5)

kEZ k€EZ
6=2) ak)p(2- k), =2 bk)$2-—k), (5.6)
kEZ keZ

and ({a; b}, {a;b}) is a biorthogonal wavelet filter bank, i.e., s = r and

—T

=T 7
a(f) _ b(f) | = ]2“ 56 R. (57)

A€+ bE+ )

(4) Both ASo(¢; 1)) and ASy(p;1)) are Bessel sequences in Lo(R), that is, there exists a
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positive constant C' such that

Y. WERP<SCIw and Y KEBEP<CUlLm, Y/ € L(R).

heASH(4;1)) heASo (1))

A vector function ¢ satisfying is called a refinable vector function with a refinement
filter/mask a € (Ip(Z))™". For a vector function ¢ we also regard ¢ as an ordered set
and vice versa. We define #¢ to be the number of entries in ¢, that is, the cardinality of
the set/vector ¢. For r = 1, a refinable vector function is often called a (scalar) refinable
function. By [l Theorems 4.6.5 and 6.4.6] or [67, Theorem 2.3], item (4) of Theorem
can be replaced by

(4’) both ¢ and 1 have at least one vanishing moment, i.e., Jp (x)de = [, &(m)dm =0.

Orthogonal and biorthogonal wavelets on the real line which are derived from refinable func-
tions have been extensively studied, for example, see [24] 29 B for scalar wavelets and
B B8 B9 65 1 72, 7] 79 B9 BT O3] @3] and references therein for multiwavelets. It is
well known in these papers that the study and construction of multiwavelets and refinable
vector functions are often much more involved and complicated than their scalar counter-
parts, largely because the refinable vector function ¢ and multiwavelet ¢ in ([5.5]) are vector

functions with matrix-valued filters a and b.

5.2.2 The dual of a Riesz basis AS;(®; ¥)() ) on [0, c0)

To improve readability and to reduce confusion later about some notations, in the following
let us first state our conventions on some notations. If not explicitly stated, ({qg, 1/;}, {#;0})
in this paper is always a compactly supported biorthogonal (multi)wavelet in Lo(R) satisfying
all items (1)—(4) of Theorem [5.1] which necessarily implies #¢ = #1. For a compactly sup-

r><s)

ported (vector) function ¢ (or a finitely supported filter a € (Io(Z))"**), we define fsupp(¢)
(or fsupp(a)) to be the shortest interval with integer endpoints such that ¢ (or a) vanishes

outside fsupp(¢) (or fsupp(a)). Throughout the paper we always define

[l¢>, h’d)] = fSupp(¢), [ldh h¢] = fSupp(dJ), [lm ha] = fsupp(a), [lbv h'b] = fsupp(b),
(5.8)

[lqzv h’q;] = fsupp(gb), [livv hz;] = fSupp(dJ), [la, h&] = fsupp(&)7 [167 hB] = fsupp(i)).
(5.9)
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One can easily deduce from (5.5 (called the refinable structure in this paper) that

s ho) C [las ha] and  [ly, hy) C [| 232 ], [Rether), (5.10)

For the scalar case r = 1, both C in become identities. But strict C in ([5.10) can
happen for the multiwavelet case r > 1. Note that fsupp(¢(- — k)) = [k + ls, k + hy]. Hence,
supp(¢(-—k)) C (—o0, 0] for all integers k < —hy and supp(¢(-—k)) C [0, 00) for all integers
k > —ls. In other words, the point 0 is an interior point of fsupp(¢(- — k)) if and only if
1—hg <k < —1-14 On the other hand, we deduce from the refinable structure in
that

ha, +2k0

S(-—ko)=2 Y alk—2k)o(2-—k), k€L, (5.11)
k=la+2ko
hy+2ko

U(—ko)=2 > b(k—2k)(2- k), ko €L (5.12)
k=lp+2ko

For any integer n, satisfying n, > max(—ly, —l,), we have I, + 2ky > [, + 2n4 > n, for all
ko > n, and consequently, we deduce from ({5.11]) that

fsupp(p(-—ko)) C [0,00) and ¢(-—kg) =2 i a(k—2ko)p(2-—k), V ko = ng. (5.13)

k=ng

Similarly, for any integer n, satisfying n, > max(—ly, “%4 lb), we have [,+2ky > l,42ny > ny
for all ky > ny and hence we deduce from ([5.12)) that

fsupp(¥(-—ko)) € [0,00) and Y(-—ko) =2 Y b(k—2ko)$(2:—k),  Vko =ny. (5.14)

k:n¢

Throughout the paper, the integers ny and n, are always chosen (not necessary to be the
smallest) such that (5.13) and (5.14) hold. We make the same convention for n; and nj
similarly. Let ¢* and ¥% be vector functions in Ly([0,00)). Similarly to ® and ¥ in (5.2),

we define

= {" U{(-— k) : k> ng}, U= P u{d(-—k) : k> ng}. (5.15)

Under the following conditions for matching cardinality between ® U U and & U :

#O — " = (ng —ng)(#¢) and  #P" — #YF = (ng — ny)(#0), (5.16)
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throughout the paper, the mapping ~: ® — ® with h — h is always the default bijection
between ® and ® such that ¢(- — k) corresponds to ¢(- — k) for all k > max(ng, ng), and the
bijection ~ for other elements is determined by their corresponding positions in the ordered
sets/vectors ® and ®. The bijection ~: ¥ — W is defined similarly by mapping (- — k) to
Y(- — k) for all k > max(n,, ng).

As explained in Section , the pair (AS(¢: 1)), AS,(¢; 1)) on the real line will be mod-
ified into a pair (AS;(®; @)[07m),ASJ(®; W)(0,)) of biorthogonal systems in Ly([0,00)) by
keeping their elements supported inside [0, 00) as interior elements and by modifying their
elements essentially touching the endpoint 0 into boundary elements. By the definition in
and a simple scaling argument as in [Z0], it is straightforward to see that AS;(®; ¥)p )
is a Riesz (or orthonormal) basis of Ly([0,00)) for all J € Z if and only if ASy(®; W), is
a Riesz (or orthonormal) basis of Ly([0, 00)).

We now study the structure of compactly supported Riesz wavelets on [0,00) in the
following result, whose proof is presented in Section and which plays a key role in our

study of locally supported biorthogonal wavelets on intervals.

Theorem 5.2. Let ({¢; 0}, {¢;1}) be a compactly supported biorthogonal wavelet in Ly(R)
with a biorthogonal wavelet filter bank ({@ b}, {a: b}) satisfying items (1)-(4) of Theorem .
Let ¢& and " be vectors of compactly supported functions in Ly([0,00)). Define ly, hy, la, ha
and Lz, hg,la, ha as in (5.8) and (-9). Deﬁne O, U as in (5.2) with integers

) If ASo(®; W) 0,00y in (5-1)) is a Riesz basis of

ng = max( ly, —la) and ny > max(—ly, “2
Ly([0,00)) and satisfies

ot = 240" (2- +2ZA b2 —k), (5.17)
k= n¢

v = 2B " ( +QZB b2 —k), (5.18)
k=ng

for some matrices Ay, By, and finitely supported sequences A, B of matrices, then

(1) there must exist compactly supported vector functions OF, YL in Ly([0,00)) and inte-
gers ng ~> max(—lg, —la,ng) and nj; > max(— l~ 2 ny) satisfying (5.16) such that
ASo(P; V)(0,00) 45 the dual Riesz basis of ASO(<I>, ‘I’)[o,oo) in Ly([0,00)), where

ASo(P; W) g0y := P U{2/275(27) : j € NU{0},7 € T}

and O,V are defined in (5.15);
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(2) there exist matrices Ay, By, and finitely supported sequences A, B of matrices such that

oF = 2A,0"( +2ZA 5(2 - —k), (5.19)
Y =2B1¢"(2) +2 ) B(k)p(2- —k), (5.20)
k:ndg
and
fsupp(e(- — ko)) € [0,00),  &(- — ko) —22 k—2ko)p(2- —k), Y ko> ng,
(5.21)
fsupp(¢ (- — ko)) € [0,00), (- — ko) —2Zb —2ko)9(2- —k), Y ko =0y
(5.22)

(3) Every element in ®(2-) := {¢"(2:)} U{p(2- —k) : k = ny} can be uniquely written as

a finite linear combination of elements in ® U V.

Basically, Theorem says that a compactly supported Riesz basis ASy(®; ¥)jg ) of
Ly([0,00)) satisfying and must have a dual compactly supported Riesz basis
ASy(®; ‘i’)[o,oo) of Ly(]0,00)) satisfying (5.19) and (5.20). Theorem serves as our foun-
dation for developing the classical approach through items (1) and (2) of Theorem and

the direct approach through item (3) of Theorem for deriving wavelets on intervals from

biorthogonal multiwavelets in Ly(R).

5.2.3 Vanishing moments of biorthogonal wavelets on [0, o)

Recall that 1) has m vanishing moments if [; 279 (x)dx = 0 for all j = 0,...,m — 1. In
particular, we define vim(¢)) := m with m being the largest such nonnegative integer. By
P,,,—1 we denote the space of all polynomials of degree less than m. Define Ny := NU{0}. Let
us now discuss the known relation between vanishing moments and polynomial reproduction

for biorthogonal wavelets on the interval [0, 00).

Lemma 5.3. Let ¢,w,$,1ﬂ be wvectors of compactly supported functions in La(R). Let
F WL, Gl b be vectors of compactly supported functions in Ly([0,00)). Suppose that
ASo(®; U)(0.00) and ASo(®; W) (0.0) form a pair of biorthogonal Riesz bases in La([0, 00)), where
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O,V and O,V are defined in (5.2) and (5.15)), respectively. Then min(vm (/%) vin(1))) > m
if and only if every polynomial px(o,.c) on [0,00) with p € Py, can be written as an infinite

linear combination of elements in ®.

Proof. Necessity. Suppose that min(vm(¢/%), vin(¢))) > m. Since all functions in Uy U U1
and ¢ U yF U QNSL U QZL have compact support, we assume that they are supported inside
[—No, No| for some Ny € N. For every polynomial p € P, and N € N, we have pxp,n) €
Ls(R) and hence

Pxo.N) = D _(PXiony: I+ > ) (pxpony, 27/7h(27) 2P h(27-).
hed 7=0 hev

Note that 1);,, and 1);,, are supported inside [277 (k — Np), 277 (k + Np)]. Since (p, h(27-)) =0
for all h € ¥ and j € Ny, we observe that (pxj.n), h(27-))h(27z) = 0 a.e. € [0, N — 2N)
for all h € ¥ and j € Ny. Therefore, we conclude from the above identity that

P(%)X[0,00) (%) = P(@)X[0,3)(2) = Z<pX[ON hyh(z) = Z(P; hyh(z), a.e.x € [0, N—2Np).

hed hed

Taking N — oo in the above identity, we conclude from the above identity that px() with
p € P,,_; can be written as an infinite linear combination of elements in ®.

Sufficiency. Suppose that pxjo.c) With p € Pp,—; can be written as pxjo,c) = 2 peo cnh.
Since every element in ¥ is perpendicular to ® and all elements in ¥ U & have compact
support, we have (pX[o,0c),9) = D nea cn(h,g) = 0 for all g € U. This proves
min(vm(%), vin(¢)) = Vm(\I/) > m. O

The above same argument in Lemma can be also applied to biorthogonal wavelets on
the real line R or intervals [0, N] with N € N. For a biorthogonal wavelet ({¢: '}, {¢;1})
in Ly(R), that every polynomial in P,,,_; can be written as an infinite linear combination of
¢(- — k), k € Z if and only if vin(1)) > m. We say that a (matrix-valued) filter a € (Io(Z))"™"
has order m sum rules with a (moment) matching filter v € (Io(Z))**" if @(0)(}5(0) =1 and

[0(2:)a)9(0) =59 (0) and [5(2))a(- + )] (0)=0, Vj=0,....m—1  (5.23)

In particular, we define sr(a) = m with m being the largest such nonnegative integer. Let
({QNS,@E}, {#;¢}) be a compactly supported biorthogonal wavelet in Lo(R) with a finitely
supported biorthogonal wavelet filter bank ({a; b}, {a;b}) in Theorem . Then vin(¢) > m
if and only if sr(a) > m. That is, vin(¢)) = sr(a) and vm(t)) = sr(d). Moreover, from (G-23),
we further have [@a](j)(%rk) =0(k)d(j) forall j =0,...,m—1and k € Z (see [l (5.6.6)]
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and [65 [66]) and consequently, for all p € P,,_1,

p = _lprvl(k)o( —k) =3 pu(k)o(- — k) with pyi=pxv=>3 <_Pj p)(-)0Y(0),

kEZ keZ J!
(5.24)

since p*xv = > ., p(- —n)v(n) = py, € Py (see [ Lemma 1.2.1 and Theorem 5.5.1]).
Moreover, one can easily deduce from (5.23)) that the quantities ©9)(0),5 = 0,1,...,m — 1
are determined (see [T (5.6.10)]) through ©(0)a(0) = ©(0) with D(0)$(0) = 1, and the

following recursive formula

7j—1 k -

(i 2550 i L .

00 = mv(k’m)a(ﬂ OV, — 27a(0)]",  j=1,...,m—1 (5.25)
k=0

provided that 277 is not an eigenvalue of @(0) for all 5 = 1,...,m — 1. For r = 1 and
a scalar filter a € [y(Z) with @(0) = 1, a scalar filter/mask a has order m sum rules if
and only if (1 4 e7€)™ | @(¢), which is equivalent to @¥)(r) = 0 for all j = 0,...,m — 1.
For the scalar case r = 1 and @(0) = 1, because a(ﬁ) = [, a(277¢) is well defined,
we must have 00 (0) = [1/¢]¥)(0) for all j € Ny, which can be computed via by
starting with ©(0) = 1. The sum rules in for matrix-valued filters in make
it more involved to study refinable vector functions and matrix-valued filters than their
scalar counterparts. Biorthogonal multiwavelets in Ly(R) with high vanishing moments can
be easily constructed by a coset by coset (CBC) algorithm in [65, Theorem 3.4] or [T1],
Algorithm 6.5.2]. Moreover, the values B(j)(O), j € Ny of the matching filter © for the dual
mask a are uniquely determined by the primal mask a as given in [ Theo/\rem 6.5.1] or [65]
Theorem 3.1] through the following identities: E(O)mT — 0(0) with ©(0)$(0) = 1, and the

following recursive formula:

-1

.

-G ), T
5 T 5™ (0)aem(0) (271, — a(0)

0= 2ug—m

7', j€eN

B
Il

0

provided that 27 is not an eigenvalue of @(0) for all j € N.
The following result constructs special ¢ satisfying (5.17)) with polynomial reproduction

property.

Proposition 5.4. Let ¢ be an r x 1 vector of compactly supported functions in Ls(R)
such that ¢ = 23, ., a(k)p(2 - —k) for some finitely supported sequence a € (lo(Z))"™".
Define [ly, hy] = fsupp(¢) and [l,, hs) = fsupp(a). For any integer n, € Z satisfying
ng = max(—ly, —l,), then
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(i) the column vector function ¢° := (¢(- — k)X[0,00))1-hy<k<ng—1 (nole that ¢¢ contains

interior elements ¢(-—k), —ly < k < ny—1) satisfies the following refinement equation:

¢° =241, ¢°(2-) + 2 Z Ad(k)o(2 - —k), (5.26)

k=ng
where Ar, = la(ko — 2n)]1-n,<nko<ny,—1 and Ac is a finitely supported sequence given
by Ac(k) = [a(k — 2n)]1 n,<n<ny,—1 for k = ng, where n is row index and ko is column

ndex;

(i) if in addition the filter a has order m sum rules in ((5.23)) with a matching filter v €
(Io(Z))**" satisfying @\(O)QZ(O) =1, then for any jo,...,j0 €{0,...,m — 1}, the vector

function ¢P, whose entries are linear combinations of elements in ¢°, is given by

) 'p (k)@(j)(0)¢(~ — k)X[o,00) with p(x):= (z0,. .. ,xjé)T

(5.27)

|
k=1—hg j=0 J:

must satisfy (5.17) with ¢* being replaced by ¢P, more precisely,

P =241, ¢P(2)) +2 Z Ap(k)p(2- —k) with Ayp, := diag(27"77, ... 27177,

k=ngy
(5.28)
where A, = {Ap(k)}72,, is a finitely supported sequence given by Ay(k) =0 for k < ng
and
oo m—1<_oj .
Ap(k) == Ap,po(k) — Z pu(n)a(k —2n) with py(k):= S p@ (k)oY (0),
n=ng 7=0
k ;Z Ng.
(5.29)

In fact, Ap(k) =0 for all k > 1, + 2n,, where [ly, hy] := fsupp(a).

Proof. By the refinement equation ¢ =23, , a(k)¢(2- —k), we deduce that

O = )Xoy = 2D all = 20)9(2 - ~k)xi0.00) = 2D alle = 20) (B[ = K)Xi0,0) ) (2:).

keZ keZ

Note that ¢(- — n)xjo,e0) = 0 for all n < —hg and ¢(- — n)X[o,00) = ¢(- — n) for all n > —l,.
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For 1 —hy <n<ng—1, by ng > —ly, we have

o= =2 Y alk— 20) (6(- = F)Xio0) ) (2) +2 Y alk = 20)6(2 - —k). (5.30)
k=1—hg k=ng

Therefore, ((5.26)) holds and we proved item (i).

To prove item (ii), by (5.24) we have p(z) = ¢P(z) + Z;C’:% po(k)p(x — k) for all x €
[0,00). Because p(x) = 2A;,p(2x) trivially holds for x € [0,00), we have p = 24, p(2-) =

2A1,0°(2-) + 2202% 2A1,p0(k)0(2- —Fk). By ng = max(—ly, —l,), (5.13) must hold and then
on [0,00) we have

P =p— Z pu(m)d(- —n) = 241,8°(2:) + Y 2A1,pu(k)$(2- —k) = > pu(n)e(- — n)
= 2A7,¢7(2") + 2 Z Appu(k)p(2-—k) =2 > > " py(n)a(k — 2n)¢(2 - —k)
k=ng n=ng k=ng

= 2A1,6P(2") +2 Z Ap(k)p(2 - —k).

kn¢

We now prove A,(k) =0 for all & > [, + 2n,. Define the subdivision operator

—22 a(n —2k) for neZ.

keZ

We conclude from the definition of A, in (5.29) that A,(k) = Az pu(k) —27'S,pu(k) for all
k > 1, + 2ng. Define u(§) := v(2€)a(€). We deduce from ([5.23)) that

a9(0) =0YV(0) and aY(x)=0, Vj=0,...,m—1. (5.31)
Since p, = p *x v, by [Il Theorem 1.2.4 and Lemma 1.2.1], we conclude from ([5.31)) that
Supo = Sup = (p(2_1)) *u=2Ar,(pxu) =2Ar,(p*v) = 2AL,p..

This proves Ay(k) = Ap py(k) — 27'S,pyu(k) = 0 for all k > [, + 2n4. Therefore, item (ii)
holds. [
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5.2.4 Stability and construction of biorthogonal wavelets on [0, )

We shall adopt the following notation:

S;j(H) :=span{f(2/:) : fe H}, JjE€Z,H C Ly(R), (5.32)

where the overhead bar refers to closure in Ly(R). For a countable subset H of Ly(R)
or Ls([0,00)), we define ¢5(H) to be the linear space of all sequences {cp}ren satisfying
> e len? < oo. For a Bessel sequence H in Ly(R), we say that H is lo-linearly independent
if >, cn cnh = 0 for some {cp}hen € €2(H), then we must have ¢, =0 for all h € H.

In Theorem [5.2} it is necessary that &,V in and @, ¥ in must be Riesz
sequences in Lo([0,00)). We need the following result later for constructing wavelets on
0, 00).

Theorem 5.5. Let ({QE, ﬁ}, {#;¢}) be a compactly supported biorthogonal wavelet in Lo(R)
satisfying items (1)-(4) of Theorem . Let .= {¢"} U{o(- — k) : k =ny}t C Ly([0,00))
as in (5.2) with ¢* having compact support. Then the following statements are equivalent:

(1) ® is a Riesz sequence in Ly([0,00)), i.e., there exists a positive constant C' such that

2
C_IZ|0h|2 < HZChhH < CZ|Ch|2, \V/{Ch}heq;. GEQ((D) (533)
hed he® L2 (®) hed

(2) ® is ly-linearly independent, i.e., c, =0 for allh € ® if Y, o chh = 0 with {cp}hes €
l5(D).

(3) {o"YU{op(-—k) : ny < k < Ny} is linearly mdepefldent, where Ny 1= max(ng, hgr —15)
with [lgr, hyr] := fsupp(¢”) and [I5, h;] := fsupp(¢).

(4) There exists H := {7*} U{@(- — k) : k= Ny} C Ly([0,00)) such that 7™ has compact
support, #iq" = #¢* + (Ng—ng)(#¢) and H is biorthogonal to ®, where Ny is defined
in item (3).

Moreover, for ® = {¢"YU{p(-—k) : k = ny} such that item (3) fails, perform the following

procedure:
(S1) Initially take E = {¢(- — k) : ny < k < Ny}, which must be linearly independent.

(S2) Visit all elements n € ¢* one by one: replace E by E U {n} if EU {n} is linearly

independent; otherwise, delete n from ¢r.
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Update ¢* .= E\{o(- — k) : ny < k < Ny}, i.e., the updated ¢* is obtained by removing
redundant elements in the original ¢*. Then the new ® is a Riesz sequence in Ly([0,00))

and preserves Sy(P).

Proof. (1)==(2)==(3) is obvious. Using a standard argument, we now prove (4)=-(1).
Since ¢ and {¢(- — k) : k € Z} are obviously Bessel sequences in Ly(R), we conclude that

® is a Bessel sequence in Ly([0,00)), i.e., there exists a positive constant C' such that

D LMPE<CUm, V[ €L(R), (5.34)

hed

which is well known to be equivalent to the second inequality in . Similarly, H must be
a Bessel sequence in Ls([0, 00)), i.e., holds with ® being replaced by H (probably with a
different constant C'). For {c,}neo € l2(®), define f := ), 4 cph. Using the biorthogonality
in item (4), we have ¢, = (f, h), where h is the corresponding element of h in H. Now it
follows from (5.34) with ® being replaced by H that the first inequality in holds. This
proves (4)=(1).

To complete the proof, let us prove the key step (3)==-(4). Note that fsupp(¢(- — k)) =
[k + lg k + hq;] for k € Z. Hence, for k = hyr — 1z, we have k + 5 > hge and trivially,
(¢F, (- — k)) = 0 due to their essentially disjoint supports. Let n € {¢p“}U{d(-—k) : ng <
k < Ng}. Then fsupp(n) C [0, N] with N := max(hsz, Ny + hgy — 1,1). We now prove that
there exists d(n) € La([0, N]) such that

(d(n),n) =1 and (d(n),g) =0 Vgec d\{n} (5.35)

Define S := {f € Ly([0,N]) : (f,g9) =0Vg € ®\{n}}. For all integers k > N — I, we
observe that fsupp(¢(-—k)) is contained inside [V, 00) and consequently, ¢(-—k) L Lo([0, N])
for all k > N — 4. Therefore, we conclude that

S={fe€L([0,N]) : (f,9)=0Vge{d"YU{o(-—k) : ng <k <N—lg},g#n}

Since Ly(]0, N]) has infinite dimension, the above identity forces that S must have infinite
dimension. In particular, S is not empty. We now prove that there must exist d(n) € S
such that (d(n),n) = 1. Suppose not. Then n L S. By the definition of the space S, we
must have ® L Ly([0, N]), which forces n = 0 by n € ® N Ly([0, N]). This contradicts our
assumption in item (3). Hence, we proved the existence of d(n) € S such that (d(n),n) = 1.
Now it is straightforward to check that holds. Let 7™ be the vector /set of all elements
d(n) for n € {¢*Y U{p(- — k) : ng <k < Ny}. Then the derived H must be biorthogonal
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to @. This proves (3)==(4).

Suppose that épr + ZkNﬁ;; cxp(- — k) = 0. If @ =0, then Zivi’;: cxd(- — k) = 0 and
by biorthogonality of integer shifts of ¢ and ¢, we conclude that ¢, = 0 for all ngy < k <
N,. Hence, if item (3) fails, then ¢ # 0 and we can remove the redundant entry in ¢*
corresponding to a nonzero entry in ¢. In this way, the new ® with fewer elements in ¢* can

satisfy item (3) and preserves So(®). O

Theorem [5.5) can be applied to all ®, ¥ in (5.2) and ®, ¥ in (5.15). If any of &, ¥, &, ¥
is not ¢y-linearly independent, by Theorem [5.5] then we can always remove the redundant
elements in ¢, %, % % to turn &, ¥, &, ¥ into Riesz sequences in Ly ([0, 00)).

To study the Bessel property of ASy(®; W), we need the definition of the Sobolev
space H™(R) with 7 € R. Recall that the Sobolev space H7(R) with 7 € R consists of all
tempered distributions f on R such that [, IF()2(1 + [€]2)7dE < oo.

Theorem 5.6. Let ¢ be an r x 1 vector of compactly supported functions in Ly(R) such
that ¢ = 2%, ., a(k)p(2 - —k) for some finitely supported sequence a € (lo(Z))™™". Let
Y be a vector of compactly supported functions in Lao(R). Define [ly, he] := fsupp(¢) and
Ly, hy) == fsupp(y)). Let ny, > max(—ly, —l,) and ny > —l,. Define @,V as in with
finite subsets ¢ UYL of compactly supported functions in Lo([0,00)). If 1 has at least one
vanishing moment (i.e., zZ(O) = [p¥(@)dz =0) and ¢ U ¢" UY* C H™(R) for some T > 0
(this latter technical condition always holds if each element in ¢ U ¢¥ UE is a finite linear
combination of $(27 - —k)xjo,cc) with j,k € Z), then AS ;(®; V) (o) must be a Bessel sequence
in Ly([0,00)) for all J € Z, that is, there exists a positive constant C, which is independent
of J, such that

> WERP SO0y Y F € La([0,00)). (5.36)

hEASJ(¢;\Ij)[O,oo)

Proof. Let ¢¢ be defined as in Proposition . Let ng be a vector function obtained by
appending ¢ to ¢°. By the refinement equation ¢ = 23", , a(k)$(2 - —k) and (5.26)), it is
straightforward to see that the vector function qb is a compactly supported refinable vector
function with a finitely supported matrix-valued filter. Because all entries in gzﬁ belong to
Ly(R) and have compact support, we conclude by [[I Corollary 5.8.2 or Corollary 6.3.4]
(also see [61, Theorem 2.2]) that there exists 7 > 0 such that every entry in gb belongs to
H7(R). In particular, we conclude that all the entries in ¢ U ¢° belong to H™(R). Note
that ¢(- — n)xp,c) = 0 for all n < —hy and ¢(- — n)xpec) = ¢(- —n) for all n > —l,.
Consequently, by ng = —lo, ¢(- — n)xp0) € H™(R) for all n € Z. Hence, all elements
of ¢(27 - —k)Xjo,c) With j,k € Z must belong to H™(R). In particular, if each element in
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YU UT is a finite linear combination of ¢(27 - —k)X[0,00) With j, k € Z, then we must have
dUYUpr Uyl C H™(R). Since ¢ U+ C H™(R) with 7 > 0 and ¢ has at least one vanishing
moment, by [{I] Corollary 4.6.6] or [&, Theorem 2.3], ASq(¢; 1) must be a Bessel sequence in
Ly(R), that is, there exists a positive constant C' such that 3, ag, (. [(f; h)|* < C’||f||%2(R)
for all f € Ly(IR). Since all the elements in ASy(®; V) ) but not in ASy(¢;¢) are ¢* and

Lo =202 (20.) for j € Ny := NU {0}, to prove (5.36) with J = 0 and C' being replaced
by 2C, it suffices to prove

K 0NNE, + DI vfollE, < Ol ooy Y € La([0,00)). (5.37)
=0

Define ¢° := ¢* — ¢*(—) and ¢° := L — L (—.). Since ¢ UL C H(R) with 7 > 0, all
elements in ¢° U1 belong to H™(R) and have compact support with one vanishing moment.
Now we conclude from [7I] Corollary 4.6.6] or [& Theorem 2.3] that there exists a positive
constant C' such that

YD WS + DD ISl < ClflEm, VS € La(R),

J=0 keZ j=0 keZ
where ¢, 1= 2/245(27 . —k). For f € Ly([0,00)), we have fsupp(f) C [0,00) and trivially
(f, wﬁo> = (f, wﬁo). Consequently, it follows directly from the above inequality that
must hold and hence holds for J = 0. By a simple scaling argument (e.g., see [0
Proposition 4 and (2.6)] and [l Theorem 4.3.3]), (5.36) must hold for all J € Z with the

same constant C. O]

Based on Theorems [5.1} [5.2] and [5.6] we now present the following result, whose proof is
given in Section , for constructing compactly supported biorthogonal wavelets on [0, 00).

Theorem 5.7. Let ({¢: )}, {¢:1}) be a compactly supported biorthogonal wavelet in Ly(R)
with a biorthogonal wavelet filter bank ({a; b}, {a;b}) satisfying items (1)-(4) of Theorem .

Define integers ly, ly, Lo, ha as in (5.8) and 15, 15,1z, l; as in (5.9). Let OF L, oL DE be finite
sets of compactly supported functions in Lo(]0,00)). Let ng, Ny, g,y be integers satisfying

(5.16). Define ®, ¥ asin (5.2) and ®, ¥ as in (5.15). Assume that p*Up Ut UpT C H(R)

for some T > 0 and

(i) ® C Ly([0,00)) satisfies both (5.13) and (5.17)) for some matriz A, and some finitely

supported sequence A of matrices.

(ii) ® C Ly(]0,00)) is biorthogonal to ®, and & satisfies both (5.19) and (5.21)) for some
matriz Ay, and some finitely supported sequence A of matrices.
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(i1i) So(¥) = 81(®) N (So(P))* and U satisfies both (5.14) and (5.18) for some matriz By,

and some finitely supported sequence B of matrices.

(iv) So(¥) = S1(®) N (Se(®))*, ¥ is biorthogonal to ¥, and ¥ satisfies (5.20) and (5.22)

for some matriz éL and some finitely supported sequence B of matrices.

Then AS ;(®; \ij)[o,oo) and AS ;(P; V) 0,0c), as defined in (5.1)), form a pair of compactly sup-
ported biorthogonal Riesz bases in Ly([0,00)) for every J € Z.

5.3 Classical approach for constructing biorthogonal

wavelets on [0, c0)

The main ingredients of the classical approach for constructing (bi)orthogonal wavelets on
intervals are outlined in items (i)—(iv) of Theorem Most papers in the current literature
(e.g., @E B O3, M9 20, 25 BT B3], B4 [72] R0, B B9 [02] 013 014]) employ (variants of) the
classical approach to construct particular wavelets on intervals from special (bi)orthogonal
wavelets on the real line such as Daubechies orthogonal wavelets in [B8] and spline biorthog-
onal scalar wavelets in [29]. From any arbitrarily given compactly supported biorthogonal
(multi)wavelets on the real line, the main goal of this section is to follow the classical ap-
proach outlined in Theorem for constructing all possible compactly supported biorthogo-
nal wavelets (ASo(®; U)o o), ASo(®; ¥)j0.0)) on the interval [0, 00) with or without vanishing
moments and polynomial reproduction, under the restriction that every boundary element
in ® (or @) is a finite linear combination of ¢(- — E)X[0,00) (0T o(- — E)x(0,00)) With k € Z.
As we shall see in this section, though adapting orthogonal (multi)wavelets from the real
line to [0, 00) is easy, constructing general compactly supported biorthogonal (multi)wavelets
on [0,00) is often much more involved and complicated than their orthogonal counterparts.
The complexity of the classical approach in this section also motivates us to propose a di-
rect approach in Section [5.4] to construct all possible biorthogonal (multi)wavelets on [0, o)
without explicitly constructing the dual refinable functions ® and dual wavelets ¥, while

removing the restrictions on the boundary elements in ® and ®.

5.3.1 Construct refinable ¢ satisfying item (i) of Theorem |5.7

Though elements in ¢ in Theorem could be any compactly supported functions in
Ly([0,00)), in this section we only consider particular ¢. The general case ¢* C Lo([0, 00))
will be addressed later in Theorem 513
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To satisfy item (i) of Theorem [5.7, we have only two conditions (5.13) and (5.17) on
® ={p"tU{o(-—k) : k>nys}. As we discussed before, (5.13) is trivially true by choosing

any integer ng4 satisfying ng > max(—ls, —l,). So, the main task is to construct ¢ to satisfy

(5.17). By Proposition there are three straightforward choices of ¢ satisfying (5.17):

(C1) ¢F = ¢¢ in item (i) of Proposition satisfies (5.17)) with Ay, = A;, and A = A, in
(15.26));

(C2) ¢t = ¢P in (5.27)) in item (ii) of Proposition satisfies (5.17) with A, = Az, and
A = A,, where p(z) = (2%,...,2%)7 such that {jo,..., 5} € {0,...,m — 1} with

m = sr(a);

(C3) ¢t =2 ZZC;% A(k)p(2 - —k) with a finitely supported sequence A satisfies ((5.17)) with
Ar =0.

Through the following breaking and merging steps, many new ¢” satisfying (5.17) can be

obtained from the finite-dimensional space generated by known/given ¢ such as in (C1)-

(C3):

(BS) Breaking Step: For ¢r satisfying (5.17)), write A, = C~tdiag(Jy,...,Jy)C in its
Jordan normal form and define (¢™/) ey 1= Co* with #¢'7 = N;, € N, where J

is an Nj, x N, (basic Jordan block) matrix given by

(v 10 ]
0 A 1
Jo=|: . 1 |, MNeC. (5.38)
o1
0 - N\

Then every ¢/ and its truncated vector functions by throwing away the first n entries
of ¢ with 1 < n < Ny, satisfy (5.17) and span(¢F) = span(U_,¢"7), since

oo netn2)]
Dl =2 : +2 " CA(k)$(- — k).
¢LJN JN¢LJN (2) k=ng

(MS) Merging Step: For vector functions ¢ and ¢™2 satisfying (5.17), i.e.,

B = 245,61 (2) 12 3 AR )

k=ng
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and

o' = 241,0"(2) +2 ) Ax(k)o(2- —k),
k=ng
then ¢l := ¢™ U ¢ satisfies (5.17) with Ay, := diag(Ar,, Ar,) and
A(k) = [A1(k)T, Ao (K)T]T for all k > ny.

Note that we can always add ¢P to ¢ by the merging step (MS) for polynomial reproduc-
tion. ® = {¢*}U{p(- — k) : k = n,} satisfying item (i) of Theorem [5.7is not necessarily a
Riesz sequence in Ly ([0, 00)). However, we can always perform the procedure in Theorem [5.5]
to remove redundant elements in ¢* so that the new @ is a Riesz sequence and still satisfies

item (i) of Theorem [5.7] The particular choice of ¢* = ¢ in item (ii) of Proposition

m=1)T and m := sr(a) was first considered in [BI] for Daubechies

with p(z) = (1,z,...,x
orthogonal wavelets in [B8] and used in [34] {00 for spline biorthogonal scalar wavelets. The
particular choice ¢ = ¢¢ in item (i) of Proposition was originally employed in [I02] for
Daubechies orthogonal wavelets and used in [I9, [[T4] for spline biorthogonal scalar wavelets
with improved condition numbers.

We further study some properties of ® satisfying item (i) of Theorem [5.7|in the following

result, which is useful later for us to construct ¥ satisfying item (iii) of Theorem [5.7]

Lemma 5.8. Let ({¢; ¢}, {¢;9}) be a compactly supported biorthogonal wavelet in Lo(R)
with a finitely supported biorthogonal wavelet filter bank ({a; 5}, {a; b}) satisfying items (1)-

(4) of Theorem . Suppose that ® := {¢"} U{o(- — k) : k = ny} C Ly([0,00)) with ¢
having compact support satisfies item (i) of Theorem . For any integer ny, € Z satisfying

B1), define
me = maX(2n¢ + h@, 2711/, + hl”)), (539)

where [lz, hs) := fsupp(a) and [l;, h;| := fsupp(b), and define
H:={o(-—k) : k=ns} U{d(- —k) : k=ny}, (5.40)
then
(2 - —ko) is a finite linear combination of elements in H for all ko > my (5.41)

and the finite-dimensional quotient space S1(P®)/So(H) has a basis, which can be selected from

{oM(2)} U{b(2- —k) : ng <k <my}.
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Proof. Using (1.2)) with f = ¢(2- —ko) and J = 0, we deduce from (5.6)) that for all ky € Z,

| octa | =5k .
02 —ko)= > alko—2k) o(-—k)+ > blko—2k) w(-—k).  (5.42)

k=[R05ha] k=

By the definition of m¢ in , we have kogh& 2 ne and ko_h@ > ny for all kg = my.

Hence, implies (5.41] . By and in item (i) of Theorem , we have

HC Sl(fb) and hence SO(H) C sy (P ) So, S1(® )/SO( ) is well defined. By (5.41)), So(H) +
So({o(2)Y U {e(2 - —k)}* ") = 81(®). Hence, the dimension of S;(®)/S(H) is no more

k=ng

than (#¢1) + (my — ng) (#¢) < . ]

5.3.2 Construction of orthogonal wavelets on [0, co)

We call {¢;¢} an orthogonal wavelet in Lo(R) if ({¢;¢},{#;1}) is a biorthogonal wavelet
in Ly(R), i.e., ASo(¢;%) is an orthonormal basis of Ly(R). Similarly, we call {a;b} an
orthogonal wavelet filter bank if ({a;b},{a;b}) is a biorthogonal wavelet filter bank. As a
direct consequence of Lemma and Theorems and [5.7, we have

Algorithm 5.1. Let {¢;1} be a compactly supported orthogonal wavelet in Ly(R) associated
with a finitely supported orthogonal wavelet filter bank {a;b}.

(51) Construct ® = {¢"} U{p(- — k) : k = ng} C Ly([0,00)) (e.g., by Section or
Theorem [5.13) such that item (i) of Theorem[5.7 holds but ® is not necessarily a Riesz

sequence in Lo([0, 00)).
(S2) Apply the following Gram-Schmidt orthonormalization procedure to ®:
(1) Initially take E = {¢(- — k) : ny < k < Ny} with Ny = max(ng, hyr — ly),
where [lyr, hye] := fsupp(¢) and [lg, hy) = fsupp(¢);

(2) Visit all elements n € ¢* one by one: replace E by EU{n/||0ll L.y} o |19l 1o®) 7
0, where 1) :=1n — > ,cp(n, h)h; otherwise, delete n from ¢*;

(3) Update/redefine ¢* := E\{¢(- — k) : ny < k < Ny}

Then ® with the updated boundary vector function ¢* is an orthonormal system in
Ly([0, 00)).

(53) Select an integer ny, satisfying (5.14)) and (¢*,¢(-—k)) = 0 for all k > ny,. For example,
we can choose any integer ny satisfying ny > max(—ly, n¢2_lb,h¢L> with [ly, hy] =
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fsupp (1) and [ly, hy) := fsupp(b). Define - == {¢=(2)Y U{p(2- —k) : ng <k <mg}
with my = max(2ny + hg, 2ny + hy). Define My = (max(h"%, h”’;‘b—lﬂ —ly and

calculate
My—1

Ylo= gt — @ gt = > (W o — k))o(- — k).

k=ng

(S4) Update " by applying the similar Gram-Schmidt orthonormalization procedure in (S2)
to {Y"YU{Y(-—k) : ny <k < Ny} with Ny being replaced by Ny := max(ny, hyr —1;).

Then AS j(®; 9) .00y in (5.1) with U := {pL}U{(-—k) : k > ny} is an orthonormal basis
of Ly([0,00)) for all J € Z. Moreover, if we append ¢ with p(x) := (1,2,...,25@HT in
item (i) of Proposition[5.4 to ¢* in (S1), then all elements in U must have st(a) vanishing

moments.

The choice of M, for defining % in (S3) of Algorithm guarantees that supp(zzL) N
fsupp(¢(- — k)) is at most a singleton and hence (@ZL,QS(- —k)) = 0 for all £ > M,. See
Theorem below for calculating inner products in the Gram-Schmidt orthonormalization
procedure in (S2) and (S4) of Algorithm [5.1, Though biorthogonal wavelets on the real line
are flexible to design ([65 [71]) and important in many applications, as we shall see later, the
construction of biorthogonal wavelets on [0, c0) is much more involved than their orthogonal
counterparts.

As we shall discuss in Section [5.5] if an orthogonal (multi)wavelet on [0, c0) satisfies
homogeneous boundary conditions, then some of its boundary elements often can have no

or low order of vanishing moments. The following result is a special case of Theorem [5.17]

Corollary 5.9. Suppose that ASo(®; V)(g ) s an orthonormal basis of Ly([0,00)) such that
all elements of ® U are compactly supported and are continuous near 0. If n(0) = 0 for all

n € VU, then there must exist some n € U such that n does not have any vanishing moments,
ie., [ n(x)dx #0.

To illustrate the complexity of wavelets on intervals, let us present an “abnormal” example

here.

Example 5.1. Let N € N be an arbitrary integer. Let ¢ = xjo1) and ¥ = Xx(0,1/2] — X(1/2,1]-
Then {¢;+} is the well-known Haar orthogonal wavelet in Lo(R). Define ¢* := @ and
ng :=2N. Then ® = {¢(- — k) : k > 2N} obviously satisfies item (i) of Theorem [5.7]
Define 9% = {¢(- — k) : N <k < 2N} and ny := N. For every J € Z, then AS ;(®; ¥)[ )
with W := {2} U{¢»(-—k) : k> N} must be an orthonormal basis in Ly([0, 00)) such that

all elements in ® U ¥ are supported inside [V, 00) and the boundary wavelet ¥’ does not
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have any vanishing moments. This appears weird but not surprising at all. For simplicity,
we present a self-contained proof here only for J = 0 and the general case follows by a simple
scaling argument. It is easy to directly check that ASy(®; V) ) is an orthonormal system

in Ly([0,00)) by noting that ¥ is perpendicular to ® and
So(®) @ So(¥) = Sp(@ U™ D Se({v(- — k) : k> N}) =8,(®). (5.43)

To prove that ASy(®; ¥),oc) is dense in Ly([0,00)), using ((5.43)), we observe that for any
n €N,
Sn(®) = So(P) @ So(V) B S1(¥) @ -+ ® Sp—1(V) S ASo(P; ¥)(0,00)-

Note that S, (®) = So(P(2")) = Se({p(2"(- —27™k)) : k > 2N}). Because lim,, o, 27"N =
0, we now conclude that U S, (®) is indeed dense in Ly(]0,00)). Hence, we proved that
ASo(P; W) (0,0) is dense in Ly([0,00)) and thus is an orthonormal basis in Ly ([0, 00)). Similar

examples can be constructed from any compactly supported orthogonal (multi)wavelets using
Algorithm [5.1]

To perform the Gram-Schmidt orthonormalization procedure in (S2) and (S4) of Algo-
rithm , we have the following result (see Section for its proof) to compute fol é(:v —
m)p(x —n) dx for all m,n € Z from any two arbitrary compactly supported refinable vector

functions.

Theorem 5.10. Let ¢, ¢ be two r x 1 vectors of compactly supported functions in Ly(R)

such that ¢ =23, , a(k)p(2-—k) and ¢ = 2 ZkeZ a(k)p(2-—k) for some finitely supported
filters a,a € (Io(Z))™™". Assume that g/g(O) #0 and ¢(0) # 0. Define [ly, hy] == fsupp(¢) and

(15, hg) := fsupp().
(S1) Define two vector functions by gg = [¢(- — 14 he)Xppa)s - - -» O + ls)Xo,1]" and gg =
[ = T4 hg)xp,, - ¢ +13)xp0]"- Then

3 =2400(2) + 24,02 —1) and & =2400(2) +24,8(2 - —1) (5.44)

with A, = [a(k+v—2))|1-ny<jr<—1, and flv = [a(k+~v— Qj)]l—h¢;<j,k<—l¢; for~v=0,1,
where j is for the row index and k is for the column indez.

(S2) If all the entries in ¢ are not linearly independent on [0,1], then we delete as many
entries as possible from (E S0 Zhat all the deleted entries are linear combinations of
entries kept. Do the same for ¢. Then still holds with Ay, Ay, Ay and A; being
appropriately modified.
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(S3) Define M := fo dx Then the matriz M is uniquely determined by

the system of Zznear equatzons given by
~ T ~ T
M =2AMAy +2A1MA, (5.45)
under the normalization condition
et
oMU =1, (5.46)

where U is the unique row vector satisfying V(Ao + A1) = U and U¢(0) = 1, while

similarly © is the unique row vector satisfying 5([10 +A) = o and 0¢9(0) = 1.

Define Mj , := fo ) —k:) dx)1-n;<jc—t51-hy<h<—t,- Lf (92) is not performed,
then Mj , agrees with M as in (S3); Otherwise, we obtain Mg 4 from M using the linear
combinations in (S2). Hence, all integrals fol (;B(x—j)dex for j, k € Z can be obtained
from Mj ,

Suppose that a has order one sum rule with a matching filter v € (Io(Z))**" and
@(0)5;5(0) = 1 and a has order one sum rule with a matching filter © € (lo(Z))"*" and
5(0)$(0) = 1. Then by [ZI Proposition 5.6.2], we have 0(0)¢(2xk) = 0 for all k € Z\{0}.
By Poisson summation formula, we must have ©(0) >, ., #(- — k) = 1. Consequently, we
conclude that U(0)p(z—1+hy)+---+0(0)p(x+1s) = 1 for almost every x € [0, 1]. Similarly,
we have 0(0) Y kez d(-—k) =1 and 0(0)p(z — 1 + hg)+ -+ 0(0)d(z + l;) =1 for almost
every z € [0,1]. If (S2) is not performed, then M, ; = M and it is easy to directly check
that @ = [0(0),...,5(0)], & = [0(0),...,5(0)], and hence, becomes

[0(0), ..., 5(0)]M; ,[6(0),...,0(0)]" = 1. (5.47)

A particular case of Theorem is ¢ = n with n(x) == (L,x,...,2™) xj01], which is a
refinable vector function. This allows us to compute |, :H i ¢(x)dx for all j € Ny and k € Z.
Note that 7 is refinable: n(x) = Con(2z) + C1n(2z — 1) with Cp := diag(1,27%,...,27™) and
C1 = [27™())]o<jemiose<s-

5.3.3 Construct refinable ® satisfying item (ii) of Theorem 5.7

Though elements in qu in Theorem could be any compactly supported functions in
Ly([0,00)), in this section we present an algorithm to construct a particular & = {¢*} U
{o(-—k) : k> ng} satisfying item (ii) of Theorem . The general case ¢* C Ly([0, 00))
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will be addressed in Theorem [5.15]

Algorithm 5.2. Let ({¢; 0}, {d;0}) be a compactly supported biorthogonal wavelet in Lo(R)
with a biorthogonal wavelet filter bank ({a; b}, {a; b}) satisfying items (1)-(4) of Theorem .
Let 0 < m < sr(a) and 0 < m < sr(a). Assume that ® = {¢*} U {d(- — k) : k = ny} C
Lg([O,oo)), with ¢ having compact support, satisfies item (i) of Theorem (e.g., D is
obtained by Section[5.3.1 or Theorem[5.13) and ® is a Riesz sequence in Ly([0,00)). Define
L5, hgl = fsupp (@) and [lz, ha) == fsupp(a).

(S1) Choose ny > max(—lz, —la, ng) such that ng is the smallest integer satisfying (o(- —
k), ¢ty = 0 for all k > ng, e.g., we can take any ny > max(—lz, —la, ng, hyr) with
[lyz, hyt] := fsupp(¢h).

(52) Since ngy = ng, we define a vector function oL =Y U{o(- — k) : ng <k <mng}.

(S3) Define a vector function ¢* := ¢¢ U ¢", where ¢¢ := {(- — k)X(0.00) }1-hy<h<ng—1 and
=2 Z A(k)p(2-—k) and (3", ¢(-— k) =0,  Vk=n;, (5.48)

where ny, 1= 2max(nge, hy + nz) — 1z with {A(k) Zi;i to be determined. Note that
Pl = 2A,9%(2) + 2 ZZO:% A(k))(2 - —k) for some matriz A and finitely supported

sequence A.

(S4) Apply item (BS) of Section|5.3.1|to break ¢* into short vector functions ¢y, . .., oy with
each satisfying (5.19). Initially define n* = 0. We add/merge by into n* if (nLU@, ¢L)
has full rank. Repeat this procedure until #n* = #qu Then ¢& := (nk, ¢0>L>*1nL 8 a

well-defined vector function, because the square matriz (n*, <;5L> 15 invertible.

(S4°) Assume that {¢“} U {o(- — k) = k > ng} is a Riesz sequence; otherwise, remove
redundant elements from QVSL Instead of (S4), we can alternatively obtain g%L C’qu,
where the unknown (#¢) X (#¢F) matriz C is determined by solving C{¢~, p*) =
and CA, = CAL(¢", $")C

#¢L

Then ® == {¢"}U{o(- — k) : k> ng} satisfies item (i) of Theorem .

Proof. By the choice of ng in (S1), for every k > nj, we have ((- — k),n) = 0 for all
n € ®\{¢(- — k)}. Note that the integer n;, in (S3) is chosen so that fsupp(¢F) is essentially
disjoint with supp(¢(2 - —k)) for all k > ny, and hence (¢(2- —k), ¢=) = 0 for all k > n,. By
the definition of ¢¢, it is trivial to see that (¢¢, ¢(- — k)) = 0 for all k > ng. This and
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imply that (¢, ¢(- — k)) = 0 for all k > ngz. Now the claim holds trivially for the choice of
o in (S4).

The condition C(¢°, ¢X) = I 440 in (S47) is obviously equivalent to the biorthogonality
condition (¢, L) = I, 0. For the choice of ¢" in (S4), we have

ol = Cgt = 204,90 ( -+2§:cy1 b2 —k).

Since {o“YU{d(- — k) : k> ng} is a Riesz sequence, holds if and only if CA; =
ALC. Due to the biorthogonality between ¢~ and ¢F, we must have A, = (¢~ $L(2:)) =
CP", 1 (2)) = CAL (P~ ¢%). Now the condition C A, = CAL(¢%, $%)C in (S47) guarantees
that ¢’ satisfies with A, = CA L(QUSL, q;)L ). Hence, the claim holds for the choice of ¢*
n (S47). O

For spline biorthogonal scalar wavelets ({@; ¢}, {¢;¢}) in 29 with ¢ = B,, in (I.1)) such
that m := sr(a) > m and m+m is an even integer, [B4] considered the particular choice ¢* =
¢P and ¢F = (p,p%) 1P in (S4) with p(z) = (1, z,...,2™ YT and p(z) = (1, ,...,2™ )7
as in Proposition ﬂ [, T4 instead took the particular choice ¢* = ¢¢ in Proposition ,
which has more boundary elements than [B4]. Then [II4] (4.3)] and [I9 (32)] proposed to
take n = ¢P U ¢" in (S4) by properly choosing A in (5.48).

5.3.4 Construct wavelets U and ¥ satisfying items (iii) and (iv) of
Theorem (5.7

Assume that ® and ® satisfy items (i) and (ii) of Theorem [5.7] but without restricting that
" and gEL are special choices as discussed in Sections 5.3.1 and [5.3.3l We now address how
to construct ¥ and W satisfying items (iii) and (iv) of Theorem .

From ® and & satisfying items (i) and (ii) of Theorem , we now construct ¥ satisfying
item (iii) of Theorem [5.7] as follows.

Proposition 5.11. Let ({é;@;},{gb;w}) be a compactly supported biorthogonal wavelet in

Ly(R) satisfying items (1)-(4) of Theorem . Suppose that ® and ® as defined in (5.2)
and (5.15)), consisting of compactly supported functions in Ls([0,00)), satisfy items (i) and

(i) of Theorem . Define [lyr, hyr] := fsupp(¢”) and [z, hi] = fsupp(¢”). Take n, € 7.

to be the smallest integer satisfying

ny > max(—ly, " hay — 1) (5.49)
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and define my 1= max(2n, + ha, 2ny + hy) as in (5.39). Let DL = {pE(2) Y U {B(2- —k) -
ng < k < mgy}. Calculate a compactly supported vector function " by

My—1

Yl =gt — (W8, M) = Y (WF b — k))é(- — k), (5.50)

k=ng

where My = (max(%, hﬁrgflﬂ —l. Then W = {p"YU{y(-—k) : k= ny} satisfies item
(iii) of Theorem[5.7] Moreover, if we apply item (3) of Theorem with ® being replaced
by ¥ to remove the redundant elements of Y= in {pL U{(- — k) : ny <k < Ny} with
Ny = max(ny, hyr —13), then ¥ with updated Yl satisfies item (i) of Theorem and W

is a Riesz sequence in Ly([0, 00)).

Proof. By the definition of ny in (5.49), (5.14) holds. Note that fsupp(y(-—k)) = [k+1y, k+
hy| for k € Z. Hence, for k > n;, we deduce from (5.49) that ny > h g — ly. Therefore, due

to essentially disjoint support, we trivially have (¢(- — k), ") = 0 and ¢ (- — k) L ® for all
k> n-

Due to essentially disjoint support, we have <¢L,qz~5( —k)) = 0 for all & > M,. Since
® is biorthogonal to ® by item (ii) of Theorem , we trivially deduce from the definition
of ¥ in that % L ®. Therefore, ¥ is perpendicular to ® and So(¥) L So(®). By
in Lemma , we have $1(®) = So(®) + So({ LY U {w(- — k) : k> ny}) and hence
S1(®) = So(®) + So(V). Therefore, we must have So(¥) = S;(®) N (Se(®))*. Because all
functions in ® U & are compactly supported, ¥* defined in obviously has compact
support. We can also directly check using the definition of ¥ in and the

relations in (5.17) and (5.13). Hence, U satisfies item (iii) of Theorem [5.7] O

The integer n, satisfying can be replaced by the smallest n, € Z such that
(- —k) €S1(®) and ¢(- — k) L @ for all k > n,. The choice of M, for defining ¢ in (5.50)
guarantees that Supp(lz’:) ﬂfsupp(é(- —k)) is at most a singleton and hence (12’:, (5( —k)=0
for all K > My. To guarantee that ¥ is a Riesz sequence in Proposition , we can avoid
using Theorem m to reduce the redundant elements in 1~ by replacing 1/~ with a suitable
subset of ¢, which forms a basis of the quotient space S;(®)/So(® U {¢(- — k) : k > Ny }).
See the remark after Theorem about how to find such desired subset of 1ZL . Though
YT itself is not unique, the finite-dimensional space So(¥)/So({t’(- — k) : k > ny}) (or
equivalently, span(¢%) mod span{¢(- — k) : k > ny}) is uniquely determined by ® and &
satisfying items (i) and (ii) of Theorem [5.7]

For ®, ® and W satisfying items (i) (iii) of Theorem , it is easy to construct the dual
wavelet U satisfying item (iv) of Theorem , mainly due to the uniqueness of 0.
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Proposition 5.12. Let ({¢:9}, {¢;0}) be a compactly supported biorthogonal wavelet in
Ly(R) satisfying items (1)-(4) of Theorem . Suppose that ®,® and U as defined in
and , consisting of compactly supported functions in Ls([0,00)), satisfy items (i)—(iii)
of Theorem[5.7 Assume that U is a Riesz sequence in Lo([0,00)). Define

[ltj)Lv h¢L] = fsupp(¢L)’ [l’l/)La hiZJL] = fsupp(q/)L), [lggLv hq;L] = fsupp(¢L)

Take ng € Z to be the smallest integer satisfying

ng 15

ng; = max(—li, %, hgr — lt/;’ Ppr — lz@’ ny) (5.51)
and mg := max(2n;+ha, 2n;+hy). For each element n € {p*}U{(-—k) : ny <k <ng},
there exists a unique sequence {c,(h)}neo € lo(P) such that

gyt TI=m with — dy = V2 cy(h(2) €8:(P)  (5.52)
0 ifge(QUP)\{n} hed

and

@ —k)=0  YE=my (5.53)

Then U := (YL} U{d(-— k) : k>ng} with oF = {d, : 7 €{Wu{v( k)« my<h<
ngt} satisfies item (iv) of Theorem and all functions in ¥ have compact support.

Proof. Note that all ®,® and ¥ are Riesz sequences. We first prove that ® U ¥ is a Riesz
sequence. Suppose not. Then the lower Riesz bound of ® U W is zero and there exists
a sequence {c,}o2, in lo(® U W) such that Y, s lcn(R)]? = 1 and lim, o || Foll2,®) =
0, where F, := f, 4+ g, with f,, := >, s cn(R)h and g, := >,y cn(h)h. Because P is
biorthogonal to ® and ® L W, for h € ®, we have (F, h) = (fn, ﬁ} = ¢p(h), where h is the

corresponding element of  in ®. Then

: 2 _ 1 N2 _ 7: N2
Jim > e (WP = Tim S 0 [(Fn B = Tim S O [(F B =0,

hed hed hed

because ® is a Riesz sequence and lim,, o | Foll Loy = 0. Then limy, o0 || fu || £ox) = O since
® is a Riesz sequence. For any e > 0, there exists N € N such that >, 4 [c.(h)]* < ¢,
| Follzy®) < €, and || fol|z,®) < € for all n > N. Thus,

Sleal®P = 1= lea(W)F > 12

hew hed
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and ||gn || Lom) = ||F Jullzo) < 2e. This shows that the lower Riesz bound of ¥ cannot

be larger than \/7
® U ¥ must be a Riesz sequence.

Because ® U U is a Riesz sequence and So(® U ¥) = S;(®) by item (iii) of Theorem [5.7]
P UV is a Riesz basis of S;(®). Since ®(2-) is also a Riesz basis of 81(®P), for every g € PU,
we define w, € f3(®) to be the unique sequence satisfying g = >, wy(h)h(2:). Let n € ¥
and define W, to be the closed linear span of w,, g € ®UW\{n}. Then there exists a unique
element v, € l5(®) such that w, — v, € W, and v, L W,. Because ® U VU is a Riesz basis
of Sl(<I>), we must have v, # 0 and (vy, wy)e,@) 7# 0. Define f:= 3", o vy(h )i(2:). Then
f €8y(®) and f # 0 by v, # 0. Because ® is biorthogonal to ®, we must have (f,m) #0
by (Vg Wy)ep@) # 0 and f L (® U W)\{n} by v, L W,. Obviously, d, := (f,n) "' f € Si(P)
must satisfy - Suppose that both d,), d;] € S1(P) satisfy (6-52). Then dy—d, L OUW.
Hence, d,, — d;, L So(® U W) = S,(®). Since ® is biorthogonal to ® and d,, — d, € S1(®), we
must have d,, = d;. This proves the existence and uniqueness of d,,.

We now prove that dy._p) = (- —m) fon all m > nj. Since nj > max(—1l;, %T_l’;), we
observe that (5.22) holds. Note that fsupp(w(- —k)) = [k+1;k+ hg] for k € Z. Since
ng = hgr — 1 by (5.51 (65-51), for m > 5 we have m + [; > hye and hence (" (- —m)) = 0.
Consequently, ¢( —m) is perpendlcular to all elements in ®. By the same argument and
ng = hyr — 1, Y(- —m) is also perpendicular to all elements in {/*} U {¢(- — k) : ny <
k < ng;}. Now we conclude that must hold with 5 = (- — m) and d,, = ¢(- — m).
This proves dy(.—m) = ¥(- —m) for all m > n;.

Let n € {"} U{¢(- — k) : ny <k <ny}. We now prove that must hold. By
Lemma with ny, being replaced with n;, we conclude from that

¢(2 - —ko) is a finite linear combination of elements in H for all kg > m, (5.54)

where H = {¢(- — k) : k = ng} U{Y(-—k) : k = ng}. By the definition of d, in
(.52) and n € {"} U {Y(- — k) : ny <k < ng}, we have d, L H. For any integer
k > mg, by the biorthogonality of ® and ®, we deduce from (5.54) and d, L H that

cn(d(- — k) = (d,vV2¢(2 - —k)) = 0. This proves (5.53). Hence, ¥ has compact support
and W satisfies item (iv) of Theorem O
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5.4 Direct approach for constructing biorthogonal

wavelets on [0, c0)

The general construction using the classical approach in Section (in particular, Sec-
tion is often complicated and it restricts the choices of ¢ and ¢* in Sections m
and [5.3.3] In this section, we propose a direct approach to construct all possible compactly
supported biorthogonal wavelets on [0, 00) without explicitly involving the dual refinable
functions ® and dual wavelets .

We first address how to construct general ® = {¢*} U {&(- — k) : k > ng} with
¢l C Ly([0,0)) satisfying item (i) of Theorem and having compact support.

Theorem 5.13. Let ¢ be a compactly supported refinable vector function satisfying ¢ =
2> heza(k)o(2 - —k) for some finitely supported matriz-valued filter a € (Io(Z))"". Take
ne € Z satisfying (5.13). Let A be an N x N matriz satisfying

p(AL) < 27Y2 that is, the spectral radius of Ap is less than 271/2. (5.55)

Define an N x 1 vector function ¢* by

o0

Ppr = Z PIATT (20 with g =2 Z A(k)o(- — k), (5.56)

j=1 k=ng

where A is a finitely supported sequence of N x (#¢) matrices. Then ¢* is a well-defined
compactly supported vector function in Ls([0,00))NH™(R) for some T > 0, holds, i.e.,
ot = 2Ap0%(2:) + 222‘;% Ak)p(2 - —k), and ® = {p*} U{d(- — k) : k = ny} satisfies
item (i) of Theorem |5.".

Proof. Since ¢ is a compactly supported refinable vector function with a finitely supported
filter a € (Io(Z))"*", by [, Corollary 5.8.2 or Corollary 6.3.4] (also see [67, Theorem 2.2]),
the refinable vector function ¢ must belong to H*(R) for some ¢ > 0. By our assumption
in (5.59)), we have log, p(Ar) < —1/2 and hence, ta, := —1/2 — log, p(AL) > 0. So,
(0,¢] N (0,t4,) is nonempty. Let 7 € (0,£] N (0,¢4,). Then 7 > 0. Since ¢ C H™(R) by
0 < 7 <t and ny satisfies , we see that g must be a compactly supported vector
function in L ([0, 00)) N H7(R) and hence there exists a positive constant C' independent of
J (e.g., see [69 (3.7)]) such that

CH gl mr @y < 2572777|27(27) | ey < Cllgllaeay
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for all j € NU{0}. Applying the triangle inequality, we deduce that

o0

> YA (27

J=1

o0

<ZQJ 1AL Mg (2 ) @y < 27 Cllglla R)ZT/””HA’ Il

H7(R) Jj=1

Since 7 < t4,, we have t4, —7 > 0. For any 0 < e < t4, — 7, since p(Ar) = lim; o, HAJLHW,
there exists a positive constant C. such that ||A7| < C.2(p(AL))’ for all j € N U {0}.

Therefore,

22 1/2+471)j ”A] 1|| C. 22 1/247)j9e(i— 1)(p(AL))j—1 _ 2(1/2+T)0822(7’+8—tAL)j < 00,

Jj=1 j=0

because 7 +¢& —t4, <0by 0 <& <ts, —7. Hence we proved ¢ C H™(R) with 7 > 0 and
thus, ¢ C Ly([0,00)). Since g has compact support, ¢* in (5.56) obviously has compact
support and

oF = g(2)+24;, izﬂAilg(?“» = g(2:)+24,6"(2:) = 24,0"(2-)+2 Z Ak

j=1 k=ng

This proves (5.17). Hence, ® = {¢"}U{o(-—k) : k > ng4} satisfies item (i) of Theorem
[

To achieve polynomial reproduction, we can simply append the vector function ¢P in
item (ii) of Proposition to the vector function ¢* in Theorem to create a new ¢; or
equivalently, we can append the associated refinement coefficients of ¢P to the coefficients Ay,
and A in instead. Then remove redundant elements in the new ¢* by Theorem [5.5|
To construct orthogonal wavelets on [0,00), we can simply replace (S1) of Algorithm
by Theorem . As we discussed in Section , without loss of generality, Ay in (5.56))
can be taken as a block diagonal matrix of Jordan matrices in (5.38)). Define a vector
function qu by appending ¢ to ¢”. Since ¢” satisfies , we see that ¢?L is a compactly

supported vector function associated with a finitely supported filter. Consequently, we can

apply Theorem |5.10{to compute fol oM (x—m)n(z — n)de for all m,n € Z for any compactly

supported refinable vector function 7. Generalizing results on vector subdivision schemes
and refinable vector functions in [7Il Chapter 5], in fact we can prove through a technical
argument that the condition in must hold if ® = {¢*} U {o(- — k) : k > ny}
satisfies item (i) of Theorem and is a Riesz sequence. We shall address this technical
issue elsewhere.

The direct approach is to construct ¥ directly. The following result will be proved in
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Section £.8

Theorem 5.14. Let ({gz;, 'l/;}, {#;¢}) be a compactly supported biorthogonal wavelet in Lo(R)
with a biorthogonal wavelet filter bank ({a; b}, {a;b}) satisfying items (1)~(4) of Theorem .
Suppose that ® = {¢*}U{p(-—k) : k =ny} C Ly(]0,00)) satisfies item (i) of Theorem
® is a Riesz sequence in Lo([0,00)), and ¢* is a compactly supported vector function in
Ly([0,00)) N H™(R) for some T > 0. Take an integer ny > max(—ly, “2; ) and define
my := max(2ny + ha, 2ny + hy) as in (5.39). Let m,ng € Ny (we often take 0<m < sr(a)
and ng = 0). Construct ¥ := {wL} U{Y(-—k) : k>=ny} such that

(i) ¥* C span({¢"“(2:)} U{o(2-—k) : ny <k <mg+no}), ¥ has m vanishing moments
with vin(yY*) > m, and the set YL (which is regarded as in S1(®)/So(® U {o(- — k) :
k> ny})) is a basis of the finite-dimensional quotient space Si(®)/So(® U {¢(- — k) :

k> ny}).

(ii) Every element in ¢*(2-) U ¢¥(2-) is a finite linear combination of elements in ® U W,
where ¢F = {¢p(- — k) : ng < k < my}. That is, for some integers he = ngy and
h’D 2 My s

[¢L<2->
¢7(27)

for some matrices Ay, By, C(k) with ng < k < he, and D(k) with ny, < k < hp.

= Aop" + Bov" + Y CR)o(-—k)+ > Dk)yp(-—k) (5.57)

ne<k<hc ny<k<hp

Define ng := max(mg, he, —l3,1—1;) and nj = max(ny, hp, —1, (n‘i’lebH}) Then we must
have
n(z;—l 7
$(2-—ko) = Y ako — oK) (- —k)+ Z b(ko — 2k) 2k —k),  VYmg <k <ng (5.58)
k=ng k=mny

Now we can rewrite/combine (5.57) and (5.58|) together into the following equivalent form:
°r —T °r —T °r
¢"(2) = AL ¢" + Br ¥~ (5.59)
where 8 = {p*YU{o(- — k) : ng <k <ng}, o = WP U{w(-—k) : ny <k < %}
and the matrices Ay, By, are uniquely determined by Ay, By, {C(k)Y'e~t, {D(k)}r2—?

- k—n¢7 k= M)y
the filters a,b. If

p(AL) < 27Y2 that is, the spectral radius of Ay, is less than 272, (5.60)
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then the following ¢~ and " are well-defined compactly supported vector functions in Ly ([0, 00)):

of ==Y 2T AT G2 with =2 A(k)d(-— k), (5.61)
7=1 k:nq;
¢¢;:2§U%12y+25323mé@.—k% (5.62)
k=n

where the (#¢7) x (#¢) matrices A(k) and (#F) x (#¢) matrices B(k),k € Z are defined
by

Otot)x (#0) Ottty < (#)
i ik — 2 ~ b(k — 2
Ay — | M2 wd Bl =| T ez e
a(k —2(ng — 1)) b(k —2(n; — 1))

Then AS ;(®; \@)[07m) and AS ;(®; W) (0,0) form a pair of biorthogonal Riesz bases of L([0,00))

for every J € Z, where ® := {$PYU{p(-—k) : k > ns} and W .= {PPYU{p(-—k) : k> ngt.

By item (3) of Theorem [5.2] items (i) and (ii) of Theorem are necessary conditions
on W for AS;(®; ¥)) to be a Riesz basis of Ly([0,00)) satisfying both (5.17) and ({5.18).
We often take n, € Z to be the smallest integer such that (- — k) € S;(®) for all k > ny.

We now discuss how to construct all possible

¥ Cspan({p*(2)} U {o(2 —k) : neg <k <mg+ng})

satisfying both items (i) and (ii) of Theorem Since ®(2-) is a Riesz basis of S;(®), we

observe that

n=>Y_c,(Wh(2) with ¢, = {c)(h)}nes € lo(®),  forn € 5;(D).
hed
Let S := ¢l U@F and T := {¢(- — k) : k = my}. Then ® = SUT and we can write
¢y = cyxs + cpxr for all n € S1(®). Define H := U {¢Y(- —k) : k > ny}. By
and (5.17), we have So(H) C S1(®). Now we can find a finite subset Hy C H such that
My :={c,xs : 1 € Hy} is a basis of the finite-dimensional space spanned by ¢,xs,n € H.
In other words, Hy U T'(2-) is another Riesz basis of S1(®). Next we find a generating set
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(not necessarily a basis) ¢° of the finite-dimensional space
W= {g € span({¢"(2)} U{(2- —k) : ng <k <my +no}) : vm(g) > m},

which is not empty by taking ng large enough (we often set ng = 0). If (- —k) € W for some
k € Z, to have as many interior wavelets as possible, then we always keep ¥ (- — k) in 1*. We
now find a subset ¢* C ¢® such that My U M; is a basis of R#S, where M; := {c,xs : 1 €
YL}, Since both ®(2:) and Hy U T(2-) are Riesz bases of $;(®), item (i) must hold for the
constructed 1*. We now prove that ¢* satisfies item (i) of Theorem [5.14} Let n € S. Then
Cp(2:) = Oy € R#5. Since MyU M, is a basis of R#*S by MyUM; = {cyxs : h € YT UHy}, we

have ¢y 2.y = Zh@LUHO dy, nenxs for some d,,, € C. Observing ¢, = ¢pxs + chXT, We obtain

Cn(2) — Z dynecp = — Z dy hCRXT-

heyplLUHy heyLUHy

Using the refinable structure in and , we conclude that every sequence c¢; for
h € % U H must have only finitely many nonzero entries. Hence, by Hy, C H, the se-
quence ZhEd;LU 1, AnncrXr has only finitely many nonzero entries. Therefore, we conclude
from that ZhewLu Ho d, ncpxr must be a finite linear combination of elements in H.
Consequently, 7(2) — >, cyrum, dnph must be a finite linear combination of elements in H.
This proves item (ii) of Theorem [5.14]

Instead of constructing ¥ first in Theorem , we can first construct @ satisfying item
(ii) of Theorem [5.7/below. Then construct ¥ by Proposition and ¥ by Proposition .
The classical approach in Section [5.3| can be improved by the following result, whose proof

is given in Section [5.8|

Theorem 5.15. Let ({¢: 0}, {¢;0}) be a compactly supported biorthogonal wavelet in Ly(R)
with a biorthogonal wavelet filter bank ({a; b}, {a;b}) satisfying items (1)-(4) of Theorem .
Suppose that ® = {¢*} U{d(- — k) : k = ng} C La(]0,00)) with ¢* having compact support
satisfies item (i) of Theorem and ® is a Riesz sequence in Ly([0,00)). Let ng be chosen
as in item (S1) of Algorithm . Define N := #¢* 4 (n; —ny) (#¢) and let Ap be an N x N
matriz satisfying . For a finitely supported sequence A of N x (#¢) matrices, define

O as in (5.61). By Theorem O is a well-defined compactly supported vector function
in Ly([0,00)) N H™(R) for some T > 0. If

ALAL + f: AR)AR) = Iy, (5.64)

k=n gz
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where Ay, and {A(k:)}zoz% are augmented version in (5.17) with ¢* being replaced by oL =
{o"YU{o(- = k) : ny <k < ng}, then ® is biorthogonal to ® and satisfies item (ii) of
Theoremn where ® == {¢PY U {p(- —k) : k> ng}.

If ® is biorthogonal to ®, then (5.64) must hold. Hence, (5.64)) is a necessary condition
for the biorthogonality between ® and ®. Theorem generalizes Algorithm for the

classical approach.

5.5 Biorthogonal wavelets on [0, c0) satisfying homoge-

neous boundary conditions

In this section we study (bi)orthogonal wavelets on [0, 00) satisfying given boundary condi-
tions.

For a polynomial p(z) = > ¢;a’, it is convenient to use the notation p(L) = > cj%j
for a differential operator. Let Z := [0,00). To study wavelets on Z with general homoge-
neous boundary conditions such as Robin boundary conditions, it is necessary for us to study
nonstationary wavelet systems in Ly(Z). For subsets ®; and W; of functions in Ly(Z) with

J € Z, we define

AS /(@i W32 )= {2720(27) s pe @} U{2P(2) s eV, 2T}, JEL
(5.65)
If®; = ®and ¥; = VU for all j € Z, then AS;(®; {WV;}32 /) 0,00) = ASs(P; ¥)(0,00) as in (5.1)).
For wavelets W;(27-), j > J satisfying prescribed boundary conditions, the following result
shows that all the elements in AS;(®; {W;}32 ;) must satisfy the same prescribed boundary

conditions.

Theorem 5.16. Let J € 7Z and T = [0,00). Let ({¢;1},{¢:1}) be a compactly supported
biorthogonal wavelet in Ly(R) satisfying items (1)-(4) of Theorem[5.1. Let ny € Z such that

fsupp(n(-—ko)) CZ for all kg > ng andn € SUYUGUY. Let {o%, ~§}u{w§,1ﬁf}§; C Ly(7)
have compact support and satisfy lim;_,« Q*jhw =0, where [lqﬂp, hd;;] = fsupp(@/JjL). Define
Q; and W;,5 > J by

Oy = {05 U{o( —k) : k=ng}, U= {YitU{e(—k) : k>ng}  (5.66)
and

b= {(FHULOC— k) - k2ng),  By= (DFY UG~ k) ¢ k> ng).
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Suppose that AS;(®; {V;}52 )z and AS (D {@j}ﬁJ)I form a pair of biorthogonal Riesz
bases in Lo(Z). Let po,...,pe € Pp_1 be polynomials of degree less than m. Suppose that
each function n € AS;(®;;{V;}52 )z has continuous derivatives of all orders less than m
on [0,&,) for some &, > 0. If all the wavelet functions in AS;(®;;{V;}32 )z satisfy the

following homogeneous boundary conditions prescribed by po, ..., pe as follows:

o)) am =+ = (L) (N20)) oo =0 W€ Wyj >, (567

then the refinable functions ®;(27-) in AS;(®; {¥;}32 ;)7 must satisfy the same boundary

conditions

o) (@20l = -+ = Pe(E) (P2 2)) oo =0 ¥ p € B, (5.68)

That is, if all the elements in {27/?1(27-) : n € V;,j > J} satisfy the homogeneous boundary
conditions in ((5.67)), then all elements in AS (P s; {W;}52 ;)7 must satisfy the same boundary

conditions.

Proof. Let € > 0 and consider functions f € Ly([2e,00)). Since
AS (@i (W} )z and  AS, (s {12 )

form a pair of biorthogonal Riesz bases of Ly(Z), we have

D) = Y2 G )e() + 3 3 XA )

ped j=J nev;

Because lim; o, 27 7hje = 0 and supp(l/;f(?-)) C [0,277hye], there exists J. € N such that
supp(¢) (27)) € [0,2¢],  Vj = J.. (5.69)

Since ¢, ¢,¢~> and 12 have compact support, we assume that all of them are supported inside
[N, N] for some N € N. Since supp(n(2/-—k)) C 277 (k—=N), 277 (k+N)] for n € pUpUpU1,
we observe

supp(¥(27 - —k)) C [0, 2¢], Ving<k<2te—N (5.70)

and
supp(¢(27 - —k)) Usupp(¢(27 - —k)) C [e, 00), Vk>2e+N. (5.71)

Let J. € N such that .J. > max(.J., log, 2 2N). For j > J. and k € Z, then either k < 27T'e — N
or k > 2/¢ + N must hold. Consequently, one of (5.70) and ((5.71)) must hold for all k£ > n
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Hence, by supp(f) C [2¢,00) and .J. > J., we deduce from (5.70) and (5.71) that
(fa@)n@z)=0  Vzelle)nel;j>J. (5.72)

From (5.71)), for z € [0,¢), we have (f, (27 - —k))p(27x — k) = 0 for all k > 27¢ + N and
(f,0(2 - —k)(2z — k) = 0 for all k > 2/e + N. Consequently, by (5.71) and (5.72), we

obtain

[27e+N|
F@) =(f, @) 500 (5 s0(@) + D (f, bra)bun()
e | (5.73)
Je—1 ) 2e+N]
+ 30 (4 @) @ )s0(@) + D Bidtsa(a) )
j=J k=ng
for almost every x € [0,¢), where 9, := 27/2(27 - —k). By assumption, each function

n € AS;(®;{¥,;}52 )z is continuous on [0,&,) and has continuous derivatives of all orders
less than m on [0,¢,) for some €, > 0. Because there are only finitely many terms in (5.73),
there must exist 0 < €9 < ¢ such that (5.73)) holds for all x € [0,e0) and all terms in ([5.73))

have continuous derivatives of all orders less than m on [0, gy). Applying our assumption in

(5.67)) and using the fact supp(f) C [2¢,00), we conclude from ([5.73)) that pi(%)f(m)uzo =0
and

[27e+N]

2/(f, 0527 NP5 (27 D) amo + D 2(f,0(27 - —R))Pi() (27T — K)om0 = 0 (5.74)

k=n¢

for all i = 0,...,¢. By the choice of ny satisfying (5.13)), supp(¢(- — k)) C [1,00) for all
k = ng + 1 and hence trivially p;(-£)¢(2’x — k)|,—o = 0. For simplicity, we may group
#(- — ng) into ¢¥. Hence, (5.74) becomes

(£, 0527 )pi(45)05(2 ) [amo =0, Vi=0,....0 and [ € Ly([25,00)).  (5.75)

In particular, (5.75) must hold with e = 0. Since ¢3§ must be a Riesz sequence, the mapping
Ly ([0, 00)) — C#97 with f — (f,$%(27+)) is onto. Consequently, we deduce from (5.75) that
(5.68) holds for all ¢ € ¢4, from which we conclude that ((5.68)) holds for all ¢ € ®. O

As a direct consequence of Theorem [5.16] we now claim that any orthogonal wavelet

basis on [0, 00) satisfying boundary conditions often cannot have high vanishing moments.

Theorem 5.17. Let J € Z and T = [0,00). Let {¢;v} be a compactly supported or-
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thogonal wavelet in Ly(R). Let {¢5} U{4f}52; C Ly(Z) have compact support and satisfy
lim; o0 2_jth =0, where [Lyr, hyr] = fsupp(y7). Let ng € Z such that fsupp(n(- —ko)) C T
for all kg = ng andn € pUY. Define @y and V;,5 > J as in . Letpg,...,pe € Pp_q
and define ng to be the largest nonnegative integer such that

(L) (@ )peo =0  Vi=0,....¢ and j=0,...,n5— 1. (5.76)
Suppose that each function n € AS;(®s;{V;}52 ;)1 has continuous derivatives of all orders
less than m on [0,¢e,) for some g, > 0. ]fASJ((PJ; {V;}32 ;)1 is an orthonormal basis of Ly(T)
such that the boundary conditions in are satisfied, then for any jo € N, there exists at

least one element n;, € U5, W; such that n;, has no more than ng vanishing moments, i.e.,

vin(nj,) < np.

Proof. Suppose not. Then there exists jo € N such that all the elements in U2, W; have
ng + 1 vanishing moments. Since ¢ and ) have compact support, we can assume that ¢
and 1) are supported inside [—N, N] for some N € N. Define ¢ := 20N > 0 and let
h : ]0,00) — R be a compactly supported continuous function such that h(z) = 1 for all

€ [0,2¢]. Define f(x) := a"8h(x). Then f € Lyo(Z) has compact support and f(x) = "8
for all z € [0,2¢]. Noting that supp(n(2/ - —k)) C [277(k — N),277(k+ N)] for all n € ¢ U1,
we can easily verify that holds and

supp (¥ (27 - —k)) C [0, 2¢], Vng <k<2e— N (5.77)

By lim; o 2 'hipL — 0, there exists an integer J. > jo such that supp (¢ (27-)) C [0, 2¢] for
all j > J.. Since f(z) = 2™ for z € [0, 2] and all elements in U352, ¥ have np + 1 vanishing
moments, we have (f,¢7(27-)) = 0 for all j > J.. Let J. € Nsuch that J. > max(.J., log, 2.
Note that J. > jo by e = 2! N. For all j > J., one of and - ) must hold. Now

it follows from the same argument as in the proof of Theorem that

[27e+N|

F@) =(f. (65100 (@7) so(x) + Y (f brw)psul)

k=ng
Ja_l |_2j8+NJ

+Z(f, (WE)) D)o+ S (b))

k:n¢

(5.78)

for almost every x € [0, ¢), and there exists 0 < gy < € such that (5.78]) holds for all x € [0, &¢)
and all terms in (5.78]) have continuous derivatives of all orders less than m on [0, £).

On the other hand, all the conditions in Theorem [5.16| are satisfied. Consequently,
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all the elements in AS;(®;{V;}52 ;)7 must satisfy the prescribed homogeneous boundary
conditions. Therefore, we deduce from that p;(<L)f(z)]s=0 = 0 for all i = 0,..., 0.
Because f(z) = 2" for all z € [0, 2¢], we conclude that holds with ng being replaced
by ng+ 1, which contradicts the definition of the maximum integer ng in . This proves
the claim. O

A popular choice of homogeneous boundary conditions in the literature is

dio J die ) . ‘
=S pe() = e with 0<jo<...<7jp<m. (5.79)

Po(ﬁ)

Moreover, the particular choice jo = 0,...,75, = £ in is commonly used in the varia-
tional formulation of the boundary value problems in numerical partial differential equations,
where the derivatives are in the weak/distributional sense and boundary values at 0 are in-
terpreted in the trace sense. Spline scalar wavelets on [0, 1] satisfying homogeneous Dirichlet
boundary conditions have been addressed in [I8 20 B2 BY [71] [73] BY] and references therein.

Let (AS (P \Tl)[o,oo), AS;(®; ¥)[,0)) be a (stationary) biorthogonal wavelet on [0, 00). Let
Po,---,Pe € Pp_1. It is easy to check that holds with ¥, := W for all j > J if and only
if p(zL)n(2)]s—0 = 0 for all n € ¥ and p € P := span{po(27),...,pe(2"-) : j > J}. Note
that P is generated by all the nonzero monomial terms in the polynomials py, ..., p,. Hence,
if span{pg, ..., p¢} does not have a basis of monomials as in , then the dimension of
P will be greater than ¢ 4+ 1. To avoid increasing the number of boundary conditions, it is
necessary to consider nonstationary wavelets in (5.65]). To construct a biorthogonal wavelet
(AS 1 (®; ¥) 0,00y, AS 1 (®; ¥)[0.00)) 00 [0, 00) such that

dio die

by Theorem and the refinable structure in ([5.17)) and ([5.18]), it is necessary and sufficient
that , .

a’o d’t

A o@emo == B pa)luco=0,  Voeo (5.80)

dxie

Consequently, (5.80) holds if and only if all the elements in AS ;(®; )0, satisfies the same
prescribed homogeneous boundary conditions given by (5.79)). For ® satisfying the boundary
conditions in ([5.80)), to achieve high approximation orders near the endpoint 0, it is important

to have

meIX[O,oo) - Span{PoX[o,oo), cey PeX[o,oo)} + So(q)) with  pg,...,psin " (581)

For any ® satisfying item (i) of Theorem , we can easily obtain a new ®% satisfying item
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(i) of Theorem and the boundary conditions in ({5.80)).

Proposition 5.18. Let ® = {¢} U{¢(- — k) : k = ng} C Lo([0,00)) satisfy item
(i) of Theorem where ¢ and ¢ have compact support. Let p(z) = (z%°,... 297
with {jo,...,je} € {0,1,...,m — 1}. Suppose that every element n € ® has continuous

derivatives of all order less than m on [0,¢,) for some €, > 0. Then there exists an invertible

(#o" + #¢) x (#0" + #¢) matriz Cyr such that

¢L
o(- —ng)
(5.82)

)

M,(¢"") = {0} and M,(¢"F) is a basis of span(My(®)) with [

where My(S) := {p(£)n(z)|s=0 : n € S} for S C So(®). Then
O = oMY U{B(-— k) : k=ny+1}

satisfies item (i) of Theorem the homogeneous boundary conditions p(Z=)n(z)|,—0 = 0
for all n € ®%, and So(P%) = {n € So(P) : p(%)n(m)uzg =0}.

Proof. Note that fsupp(¢(- — k)) C [1,00) for all k > ng + 1. Trivially, p(-£)¢(z — k)]0 =
0 for all & > ng + 1. Thus, My(®) = My(¢" U ¢(- — ng)), which is a finite subset of
R#P. Therefore, there exists an invertible matrix Cyr such that holds. Hence, all
the elements in ®% satisfy the homogeneous boundary conditions prescribed by p. Since
So(¢™F U @) = 8 (P) and Cye is invertible, by (5.13) and (5.17), we have

n= > aNF@)+ D eNFR)+ D ed(-—k)e2-—k), 1€ So(®). (5.83)
fegph B fegph I k=ngy+1

Because M,(g) = {0} for all g € ®%, for n € So(P) with M,(n) = {0} in (5.83), we have

{0} = My(n) = [eg(/)peore Mp(677(27)) = ey (/) epr.e ding(27,..., 27) My(9"").

Since M,(¢™¥) is linearly independent, the above identity forces ¢,(f) = 0 for all f € ¢™F.

By (5.83), n = > cpru cn(f)f(2~)+zzozn¢+1 cn(d(-—k))od(2-—k) for all n € ®b¢. This proves
(5.17) and (5.13)) for ®* with n, being replaced by ng + 1. Hence, ®% satisfies item (i) of
Theorem The identity So(®*) = {n € So(®) : p(-L)n(z)|,=0 = 0} follows directly from

and (53) 0
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5.6 Orthogonal and biorthogonal wavelets on bounded

intervals

In this section we discuss how to construct locally supported biorthogonal wavelets on a
bounded interval [0, N] with N € N from compactly supported biorthogonal wavelets on
0, 00).

Recall that Ny := N U {0} and fj, := 2//2f(2/ . —k) for j,k € Z. We remind the
reader that a vector function is also used as an ordered set and vice versa throughout the
paper. Using the classical approach in Section [5.3| or the direct approach in Section for
constructing (bi)orthogonal wavelets on [0, 00), we now discuss how to construct a locally
supported (bi)orthogonal wavelet in Lo([0, N]) with N € N from a compactly supported
biorthogonal wavelet in Ly(R). We shall provide a detailed proof in Section for the

following result, which is often employed but without a proof in the literature.

Theorem 5.19. Let ({qg, 1;}, {¢;¢}) be a compactly supported biorthogonal wavelet in La(R)
with a biorthogonal wavelet filter bank ({a; b}, {a;bY) satisfying items (1)-(4) of Theorem .
A locally supported biorthogonal wavelet on the interval [0, N| with N € N can be constructed

as follows:

(S1) From the biorthogonal wavelet ({¢;1)}, {¢;¥}) in Ly(R), use either the classical ap-
proach in Section or the direct approach in Section to construct compactly
supported ®, U, &, U as in (5.2) and such that (AS ;(®; \I/)[om),ASJ(CI); U)(0,00))
is a pair of biorthogonal Riesz bases in Ls([0,00)) for every J € Ny and satisfies items

(i)-(iv) of Theorem[5.7]

(82) Similarly, perform item (S1) to the (flipped) biorthogonal wavelet ({(;;,1;},{(;5,7#}) in
Ly(R) to construct compactly supported &3, \il, <i>, \if, where

bi=o(=), Vi=p(—), bi=a(—), vi=d(—), (5.84)

such that (AS.(®; \if)[o,oo), AS (9 \if)[o,oo)) is a pair of biorthogonal Riesz bases in
Ly([0,00)) for every J € Ny and satisfies items (i)—(iv) of Theorem[5.7 similarly.

(S3) Let Jy be the smallest nonnegative integer such that

max(ha+ng, hg+ng,hi+ng, hg+ng, 2ng+2n;—2,2n,+2n,; —2) < 274N (5.85)
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and all elements in ¢¥ U U gZL U &L are supported inside [0,27N], where

[l4, ha] = fsupp(A (I, hp] = fsupp(B),

) g (5.86)
[l/iv hA] = fsupp(A), [ZB7 hB] = fSU_pp(B)

for the finitely supported filters A, B, A, B in (.17), (5.18)), (5.19), and (5.20)), respec-
twely. The integers h 4, hy and hfx’ hé are defined similarly.

(S4) Let Jo be the smallest nonnegative integer such that

max(h ; +ng, hg +ng, hi+ng hg g, 2ng+2ng 2,2n¢+2n1z—2) < 2PHIN, (5.87)
all elements in ¢~ UL U L UL are supported inside [0,27N], and for all j > J,

{¢g 0’77Z)]O} J—{ij 29I N—N> ]QJN Nb and {¢]07¢g ) J—{QSJ 29 N—N> ]2JN Nt (5.88)

where the right boundary refinable functions and right boundary wavelets are defined

= H(N =), R = PEN =), RGN =), R = GH(NV =), (5.89)

Without loss of generality, we assume Jo < Jo. Then the following statements hold:

(1) for each j > Jy, there exist matrices A; and B; such that ®; = A;®;11 and VU,
B;j®. 1 with #V,; = #&,, — #b; = 2N (#¢) and #&; = #¢F + #¢L + (21N — ng—
ne + 1)(#¢), where

YN —ny} U{oln n} (5.90)

P = {¢]‘L;0}U {@jr + np <k <2
<k<2N—ngl U{gly ) (5.91)

k
;= {ij;o}U{%';k tng <k

(2) for every j > Jo, there exist matrices A and B such that <I> = A, CBJH and \ilj =
Bj<1>j+1 hold with #\I/j = #V; = 2N (#¢) and #ij = #®,, where

(i)j = {QEJLO} U {ng;k cng Sk < 2'N — ndj} U {QgﬁQJ'NfN}v (5.92)
U= {&jLO} U {dj ng Sk < 2N — ndj} U {&ﬁQJ’NfN}' (5.93)

(3) For every J > Jy, (By,By) forms a pair of biorthogonal Riesz bases of Ly([0, N])

and for all integers j > Jy, the matriz [A]'T,ET] must be an invertible square matriz
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satisfying

—T —T
[AJ 7B' ] ]#‘Dj-s-u

A; B A; A,
I =& B, thatis, || [A B ="

J J J

(5.94)
where By .= &, U{¥, : j>J} andBJ::@JU{lifj: j=J}.

(4) Po_1xp.8 C span(®;) for some (or all) j = Jo if and only if vin(p* U R U ) >
Stmilarly, Pr_1x(0,n € span(® ;) for some (or all) j > Jo if and only if v ()" U@/}R
¥) > .

(5) If [A_JT,B_J | is invertible for every Jo < J < Jo, then (By, B;) forms a pair of biorthog-
onal Riesz bases of Ly([0, N]) for every Jy < J < Jo, where we recursively define
CTDJ- = flj&)jﬂ and \Tfj = B]@jﬂ for j going from Jo — 1 to Jy with the matrices flj
and Bj in (5.94).

We now make some remarks on Theorem [5.190 Note that there are no interior elements
of ®; in (5.90) if 27N < ne+mng . Since Jy is often much smaller than Jo, item (5) allows us to

have a locally supported Riesz basis B, with simple structures and the smallest coarse scale

level Jy. Suppose that ¢ = (¢",...,¢") T, ¢ = (*,..., "), ¢, € (Lo(R))" in Theoremm

have the following symmetry:

oy =) =€lot, ) — ) =€d" with & €Z, ) e {~1,1}, (=1,....r, (5.95)
Pl — ) = et Pl — ) =€t with ¢ € Z,e) € {—1,1}, £=1,...,7. (5.96)

As a consequence of the above symmetry property, up to a possible sign change of some
elements, ASo(¢(—);1h(—-)) is the same as ASo(¢; 1), while ASq(p(—-);1(—-)) is the same
as ASy(¢; ). Hence, using the definition in (5.84), for item (S2) in Theorem we can

simply choose
b= {¢"YU{' (k) s k2ne+ Y, U={" YU —k) b =ny 4,
(5.97)

O = {F UL —k)  k=ng+ by, ®={D UL —k) k=gt
(5.98)

In other words, up to a possible sign change of some elements, (iD, \i/, <i>, and W are the same
as @, U, &, U, respectively. If a compactly supported biorthogonal wavelet ({(Z;, 12}, {#;¢})
in Ly(R) has the symmetry properties in (5.95) and (5.96)), then we always take ® and VU in
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(5.97)) and ® and ¥ in (5.98)) for item (S2) in Theorem |5.19| for all our examples in the next

section.

5.7 Examples of orthogonal and biorthogonal wavelets
on [0, 1]

In this section we provide a few examples to illustrate our general construction methods
and algorithms. Since the construction of orthogonal wavelets on [0, 1] is much simpler
than biorthogonal wavelets on [0, 1], let us first provide a few examples of orthogonal mul-
tiwavelets on [0,1] by Algorithm such that the boundary wavelets have the same or-
der of vanishing moments as the interior wavelets. We shall provide examples of wavelets
on [0, 1] satisfying homogeneous boundary conditions as well. All our examples have the
polynomial reproduction property in for @ satisfying , ie., for m = sr(a),
P, 1 C span({z" : 0 < n < £}) + span(®,) holds on [0,1] and A™(0) = K™ (1) = 0 for
all0 <n </l he®;and j > Jy, where { = —1 (no boundary conditions) or ¢ € {0,1}.
To avoid possible confusion, we shall use the notations @™, @&l for ¢, and plbe, oplbel
for 1 if they satisfy the homogeneous Dirichlet boundary conditions for £ = 0 or ¢ = 1,
respectively.

Before presenting our examples, let us recall a technical quantity. For 7 € R, recall
that ¢ € (H(R))" if [, ||¢ IE (L + [€[*)7dE < co. We define the smoothness exponent
sm(¢g) = sup{T € R . ¢ € (H'(R))"}. Fora,a € (Io(Z))™", let ¢, ¢ be compactly supported

distributions satisfying 9(2¢) = a(€)(€) and $(26) = 3(6)B(€) with H(0 )T¢( 0) = 1. It is
known (e.g., see [[Il Theorem 6.4.5] and [66]) that items (1) and (2) in Theorem can
be equivalently replaced by sm(a) > 0 and sm(a) > 0, where the technical quantity sm(a)
is defined in [7I (5.6.44)] (also see [60 (4.3)] and [68] (3.2)]) and can be computed (see
B9, 66, Theorem 7.1], and [Il, Theorem 5.8.4]). The quantity sm(a) is closely linked
to the smoothness of a refinable vector function ¢ through the inequality sm(¢) > sm(a).
For any refinable vector function ¢ in a biorthogonal wavelet, {¢(- — k) : k € Z} must
be a Riesz sequence in Ls(R) and hence we always have sm(¢) = sm(a) (e.g., see [[I]
Theorem 6.3.3]). See B0, B3 66, 68 [71], BY B3] for more details on smoothness sm(¢) of
refinable vector functions and the quantity sm(a). Recall that sr(a) is the highest order
of sum rules satisfied by the filter a in (5.23)), while vin(¢) stands for the highest order
of vanishing moments satisfied by ¢¥. We shall always take n, in Theorem to be the
smallest integer such that (- — k) € S1(®) for all k > ny

In what follows, we present three examples. For more examples, see [[H], Section 7].
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Example 5.2. Consider the compactly supported ¢ orthogonal wavelet {¢; 1} in 0] satisfying

6(26) = AE)H(&) and $(26) = H(E)H(E) with ¢(0) = (/7/33,/3/4,/5/132)" and an
associated finitely supported orthogonal wavelet ﬁlter bank {a; b} given by

[ V2V154(3+2V5)  V2vVT4(245V5) 3 5 V2VI54(67430V5)  V2VT4(—10+V5E)
0 - 7392 2464 T 44T 22 7392 224
a= 0 0 0 0 0 0 )
0 0 0 0 0 0
r1 V2vV154(67-30 v5) f\ﬁ(10+\/5) 3, 5 V2V154(—3+2V5)  V2V14(—2+455)
2 7392 —u Tt 7392 2464
3 f\ﬁ( 4+f) V2154 3 V2v22(4+/5)
0 8 176 ’ 44 8 176
V2V22(3247 V5) 5 . VB VaVTD  V2V23(-3247V5) 5 _ V5
L0 528 —ss T 2 T 44 528 788 T 22 [-2,1]
[0 0 0 0 0 0
b — V2v/154(34+2V5) V2V14(2+5V5) 5 V2v/T54(67+30 V/5) V2(10—5) V14
- 0 7392 - 2464 ’ 44 + 5 - 7392 224 ’
_VRVT(14VE)  VRVTT(-143V5) V2VII(1+V5) V2v7(29+13 V/5) V2VTT(~75+17 V/5)
L 672 2464 - 88 672 2464
0 \/i\ﬁ( 2+f) V2V7(13-6V/5) 132 CVRVTT(VEH2)  V2VT(1346 V5)
176 a4 5283 176
1 V2V154 ( 67+3of) V2vT4(10+V5) 3 5 V2V154(3-2v5)  V2(2-5V5)V14
2 - 224 ’ 14~ 22 7392 2464
ff( 29+13 V5) VaVTT(T5+17 V/5) VaVTI(1-V5) V2V7(1-/5) V2VT7(3V5+1)
0 672 - 2464 88 672 - 2464 [-2,1]

Note that ¢ = (¢!, ¢2, ¢*)7 is a continuous piecewise linear vector function without sym-
metry and fsupp(¢) = fsupp(v) = [—1,1]. Then sm(a) = 1.5, sr(a) = 2, and its matching
filter v € (Ip(Z))™2 with T(0)p(0) = 1 is given by D(0) = (1/7/33,v/3/2,1/5/132) and
0'(0) =i(0,v/3/4,4/165/132 — 1/1/33). By item (i) of Proposmon 4l with ny = 2, the left
boundary refinable vector functions consisting of interior elements ¢2, 3, ¢(-—1) and a true

boundary element

Lo J B gl ) satisfying o = ¢F(2-) + 2[y/ T2 0, 0]a(1)6(2 - —1).

Hence, we can reset n, := 1 and use only {¢”, ¢* ¢} as the left boundary refinable vector
function. Let [a(k)];. denote the jth row of the matrix a(k). Using ny =1 and ny, = 1 in
Algorithm [5.1] we obtain the left boundary wavelet {¢/*, '} with #¢% = 1 as follows:

¥ =2 ([5,0,0] + A [b(0)]s,) 67(2) + 2\ [b(1)]5,0(2- —1) with Ay = 44/ 7TV

Note that ¢ = (¢!, ¢2 ¢*)T := ¢(—-) has no symmetry. Using item (ii) of Proposition

with p(z) = (1,2)7, we have n 5 = 1 and the left boundary refinable vector function

3 = H2) + 2ALfa(-D]s.o2- -1)

QCQL = Y14 élx[om) satisfying .
7+5 2_\/ﬁ[a(_2)]1,:¢(2 . —=2).

7+V5
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Using nj = 1 in Algorithm , we obtain the left boundary wavelet @ZL with #&L =1 as

follows:
P = P (2) 4 209 b(—1)]2.b(2 - —1) + 2Ao[b(=2)]5.h(2 - —2) with Ay = /1D

By (5.89), we have ¢® := ¢F(1 — -) and ¥® := ¢)*(1 — -). According to Algorithm [5.1| and
Theorem with N = 1, we conclude that By = ®, U{V¥; : j > J} is an orthonormal
basis of Ly([0,1]) for every J € Ny, where ®; and ¥; in (5.90) and (5.91)) with ny, = ny =

n; =n, =1 are given by

(D - {¢JLOa ;09 } U {¢] ik < - 1} U {¢ﬁ2j—1}7
J = {wﬁm j;O} U {wﬁk : < j 1} U {w] 129 —1

with #¢F = #¢f = ¢F = Y® = 1, #&; = 3(27) + 1 and #¥; = 3(27). Note that
vin(¢r) = vin(¢®) = vin(¢)) = 2 = sr(a) and Py xp,1) C span(®;) for all j € Ny.

Using the classical approach in Section and Theorem [5.19 we obtain a Riesz basis
BY == o U{Wl : j > J} of Ly([0,1]) for every J > Jy := 1 such that h(0) = k(1) = 0 for
all h € BY, where

7 Q}U{¢J2ﬂ 1}

O = {02, 0%, bju} Uy + 2< k<2
2 <2j_2}u{wj23 lanRQI;C 1}

<
‘I/?'c = {ij;Obcv 7 07¢J 1} U {wj ko k

k
<
with #hte = gpfthe = 1, £l = 3(27) — 1 and #W%° = 3(27), where ™ .= Pplbe(1 — )

and

phie = D G200 1 g3(2) + 0, LU 1] (2. 1),
Jhbe .= [%% _1} 62 —1).

Note that vm(¢"*) = vm(p*) = vim(¢)) = 2 and % = ®;\{¢F, ¢ o R, .} asin Prop051—
tion m Moreover, the dual Riesz basis BY of BY is given by By = dbeu {¥be : j > J}
with J > Jp = 2 and

q)bc _ {¢L bC} U {¢j;k : 2 . 2} U {¢R2b]c s with &R,bc = gL,bc(l . .>’
\Ijbc = {@Z)L bc} U {¢j;k : 2 2J - 2} U {@Z)JRQI;C 1} with @ZN)R,bC = IZL’bC(l - ')7
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ol = )P =5, #9M = 3, and 0 = 4, where

TLbc .__ 47(4—/5
o1t =\ [ |0, AR, 2585 0} o +10°( = 1), 0°( — 1), 6(- =2,
Glbe .= A1 [214551;\/5’ 0, _4\ﬁ(ﬁi—\/5)} OF + (- — 1),
[ V11(114—51/5) 315—54v/5 9v/7(— 2+f) 3VIL(—2+V5) 18v5-27
104 104 104 104
3v/154(31v/5—69) V14(167/5—41) \@(207 49+/5) 3v/154(3v/5—1) 9v/14(14/5)
~ 1144 1144 143 o 1144 104
Pphbe = 0 0 0 0 0
3VT7(6v/5—13) V7(27V5-86) 8—2v5 _3VTT(B+2vE)  VT(—6+VE)
308 308 11 308 28
3vI4(5v5-11)  V154(25v5-67) V22(v/5-3) 3v/14(14/5) V/154(13v/5—47)
- 56 616 11 56 616
093 O2x3
+ 2--2)+ 2--3),
ooy | #2772 gy | 427
V2 (837+377\/ ) 3vV154(1503v5+3361)  14(8683v/5+19321)
616 616
- 8+2f 3v/77(134+6+/5) V7 (27[ 186) -
QZL’bC . - 308 &L,bc@ )
T \/ﬁ(\/ngs) _ 3V14(11+5v5) V154 (67+25f)
11 56 616
V7(504+225v5)  v/11(1347v/5+3012) 2592/5+5715
11 44 44
'0 _3V154(189+83v5)  9v14(13v5+31)
616 56
1 3ﬁ(—3+2\/5) _\ﬁ(6+\/5) . 2b( 1) .
308 28
+ 0 3VI4(v5-1) _ V/154(13/5+47) $(2--2) + 0 $(2-=3)
56 616 Ix3
0 V11(75v/5+168) _ 814365
L 44 4
2b(=2)| -
(P H(2- —4).
L leS

Note that ¢&b¢ and qZL’bC satisfy the refinement equation in ([5.19)) as follows:

3 VIL(—4+/5) V7T 3 VI1(4+V5)
1 14 11 1 14
_ 9VI1(—44V5) 65—8v5 V7(=4+vE)  3V11(—4+V5) 1
&L,bc _ 44 44 11 44 4 éL,bC(Q_)
VT7(39-18v5)  VT7(86—27/5) 2v/5-8 VT7(946v5)  V7(V/5-6)
308 308 11 308 28
02x5
O2x3 O2x3
+ 2--2)+ 2--3),
2a(0) o ) 2a(1) i )
8+2f VTT(18v5+39)  VT7(27v5+86)
7 N y JTE) | TLb
Lbc _ 77 3 ,be
e i i ¢ (2)
V7(4+v5)  9VI1(44+V5) 65+8v5
11 44 44
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_ VTT(6vV5-9)  V7(6+V5)

1
308 28
VII(=4+V5
+ 10 3 CAVO (2 —2) + 2a(—1)¢(2 - —3) + 2a(—2)¢(2 - —4).
g 3Vil(+v5) 1
44 4

We can also directly check that all the conditions in Theorem [5.14] are satisfied for the Riesz
basis BY% with J > 2. To avoid complicated presentation, we only mention that the condition
in is satisfied with p(A%) = 1/2 for both left and right dual boundary elements. Note
that the dual Riesz basis BY for J = 1 has to be computed via item (5) of Theorem .
See Fig. for the graphs of ¢, and all boundary elements.

4
1

(B) U= (@)

1

(a) 6= (¢",¢%¢")"

10

(c) o* @t

4

A e b L o N w

°
°

(e) ¥ (£) ¢* (g) v (h) pfibe

Figure 5.1: The generators of the orthonormal basis B; and the Riesz basis BY of Ls([0,1])
in Example with J > 1 such that h(0) = h(1) = 0 for all h € B%. The black, red, and
blue lines correspond to the first, second, and third components of a vector function. Note that

vm($h) = vin($R) = vm($E) = vm(Fe) = vin(y) = 2.

Example 5.3. Using the C/]:%C algorithm in [65] [T], we construct a biorthogonal wavelet
({6; 0}, {¢; ¥}) with 5(0) = $(0) = (1,0)T and a biorthogonal wavelet filter bank ({a; b}, {a; b})
given by

_1 15
5 1 0 0
Tl 7o o2921| 7| 2 24 ’
1164 2761 97 6794 J [_29)



91 39 13 1 1699 569 647 2471
5= 2432 T 29184 2432 3648 12~ 43776 2432 10944 3648
3 7 |9 1|’ | 619 4225 | 7| 1965 37|’ 0 7291
152 608 152 76 1216 14592 1216 96 7296
569 647 1 1699 39 13 13 91
2432 10944 12 43776 2432 3648 T 2432 20184
1965 37 |’ 679 4225 || 9 1 || _ 3 7 ’
1216 96 T 1216 14592 152 76 152 608 (—4,4]
1 __T_ 3 _1 1 2161 _ 611 _ 605 1219 0
b — 1864 58368 1864 7296 24 87552 1864 21888 7296
0 0 ’ 0 0 ’ 679 4753 | 7| 2037 679 ’ 0 7469
T 4864 58368 4864 7296 20814
611 605 1 2161 3. 1 1 7
T 4864 21888 24 87552 1864 7296 1864 58368
2037 679 || 679 4753 || o || o 0
4864 7296 1864 58368 [—4,4]

Note that ¢ is the well-known Hermite cubic splines with fsupp(¢) = [—1,1]. Note that
fsupp(¢)) = [—2, 2] and fsupp(¢) = fsupp(¥) = ,4]. Then sm(a) = m(a) = (1281008

[—4 2.5, 8
sr(a) = sr(a) = 4, and the matching filters v, 0 € (ZO(Z))1X2 with 9(0)$(0) = 9(0)$(0) =
are given (see [69 [66]) by ©(0,0) = (1,0), v(0) = (0,i), v”(0) = v"(0) = (0,0) and

5(0) - (170)’ 17/(0) - i(O, %5)7 v (0) = (_%70)7 6///<0) = i(07 _1%5)

We use the direct approach as discussed in Section [5.4] By item (i) of Proposition with
ng = 1, the left boundary refinable vector function is ¢ := ®X[0,00) With #opt = 2 and

satisfies
oF = (¢1,95)" = (67(27), 305 (2:)) " + 2a(1)¢(2 - —1). (5.99)

Taking n,, = 2 and my = 7 in Theorem |5.14, we have

N [ere)] [E % % 3 0 0
Pr= k| = |ek@) |+ |& T -1+ |-t 2]62--2)+| 0 0]e2--3),

L 0 1 320 _ 52 660 -9 90

3 61 61 61 61

which satisfies items (i) and (ii) of Theorem with fsupp(C) = [1, 5], fsupp(D) = [2, 5]

and

79 49043 54639 _ 1399 48111 3653 97227 1341 64593 152367 675 __75 225 525 T
Ao = 64 394624 98656 24664 49328 24664 ~ 98656 6166 48 197312 98656 ~ 197312 789248
0= | _279 58639 6135 _ 561771 _ 33789 1097199 _ 30279 729081 1718679 _ _7155 795 2385 5565
64 ~ 394624 98606 T 24664 49328 ~ 24664 98656 12332 ~ 197312 789248 197312 98656 197312 ~ 789248
_ 15 49043 54639 1399 _ 48111 _ 3653 97227 _ 1341 _ 64593 152367 675 T
4 T 394624 98656 24664 49328 24664 98656 6166 197312 789248 197312 98656 197312 789248
Bo = 279 847887 _ 823347 6135 561771 33789 _ 1097199 30279 729081 _ 1718679 71 i
0 128 789248 197312 49328 98656 49328 197312 24664 394624 1578496 394624 197312 394624 1078496 ’
_61 1222501 282125 82289 2913787 1504321 _ 847107 46787 563091 1325957 4941 549 47 38
9216 170477568 ~— 4735488 ~ 2663712 7103232 10654848 1578496 394624 3156992 ~ 12627968 3156992 ~ 1578496 3155992 12627968
_ 1 27 95129 10735 552251 33025 _ 8905 _ 247 4459 _ 32493 13351 _ 13351 _ 13351 93457 T
c(1) = 256 14206464 1183872 221976 591936 887904 394624 98656 2367744 28412928 789248 3551616 2367744 28412928
3 99131 80633 8923 _ 363803 _ _4033 1200891 _ 67723 _ 806635 5513543 18123 _ _6041 __6041 42287 ’
128 2367744 ~ 197312 ~ 36996 98656 147984 197312 49328 394624 4735488 394624 591936 394624 4735488
0— 19 19 19 247 76 513 285 16363565 _ 7958533 1757267 _ 1997741 _ 772 5248657 T
c(2) = 221976 18498 27747 9249 27747 6166 3083 22493568 269922816 7497856 33740352 9249 134961408
0 679 __679 _ _679 _ 8827 _ _679 _ 54999 _ 30555 _ 329829 565273 3023955 _ 360659 _ 54999 2166985 ’
1183872 98656 147984 49328 36996 98656 49328 937232 468616 1874464 937232 98656 7497856

0 — 53 585 _ 23611 _ 72635 46169 52487 15235991 455 T
c(3) = 2367744 197312 290968 98606 73992 197312 98656 295968 1775808 197312 887904 = 22493568 89974272
0o -1 _ 3 _243 _ 135 2044109 13373051 _ 6058455 _ 2167229 15 22477733 ’
49328 T 12332 5166 6166 3083 T 12332 6166 3748928 44987136 3748928 5623392 468616 22493568
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0 _ 13 _ 91 39 13 _ 1 _ 1699 1T o __91 1T
C(4) 1Xx8 T2432 ~ 29184 2432 3648 12 ~ 43776 c(s) = 1x12 2432 9
0 3 7 9 _ 1 679 4225 0 7 >
1x8 7152 608 152 6 1216 14592 1x12 152 608
0 _19 19 _ 247 _ _38 _513 285 6259489 8864935 _ 1886753 1868255 386 _ 6673003 T
D(2) = 443952 T 36996 55494 18498 27747 12332 6166 44987136 539845632 14995712 67480704 9249 269922816
= 79 679 679 8827 679 54999 30555 18333 79443 _ 164997 18333 54999 128331
4735488 304624 591936 197312 147984 394624 197312 197312 394624 394624 197312 394624 1578496
0— 24745 87377 4957 49085 7516339 T
D(@3) = 4735488 394624 591936 197312 147984 '394624 197312 591936 35)1616 394624 1775808 44987136 179948544
0 0 o 0 0 0 0 o - S19 _ AT 2037 L79. 0 SA69 ’
1864 58368 1864 7296 29184
0 1 7 3 1 1 2161 T 1 7 T
D(4) = 1X8 T 71864 ~ 58368 4864 7296 24 87552 D(5) = O01x12 — 7864 ~ 58368
o 0 0 0 0 _ 679 _ 4753 T |o1x12 O 0 :
1x8 1864 ~ 58368 x

Since (5.60) is satisfied with p(A;) = 1/2, we conclude from Theorems |5.14| and [5.19)]
with N =1 that By = &, U{V¥, : j > J} is a Riesz basis of Ly([0,1]) for all J > Jy := 2,
where ®; and V; in (5.90) and (5.91) with ng = n; = 1 and ny = n,; = 2 are given by
OF = (1 — ), ¥ = (1 — ) and

{¢] 07¢j la(b] 27¢] 3} U{¢]k < 4} U {¢J 2927 — 17¢j;2j—17¢j;2j—27¢j;2j—3}7
U= {hg, o, s} U {4 <k < 2 4} U {0l 1 Wi 2,053},

with #oF = #o6F = 2, #0F = #yYF = 3, #b, = 2+ + 2 and #U; = 2+ Note
that vm(y*) = vm(y®) = vm(¢)) = 4 = sr(@). The dual Riesz basis B; of B; with j >
Jo := 3 is given by Theorem through and . We rewrite ggL in (5.61)) as
{oF, d(- —4),d(- —5), (- — 6)} with true boundary elements ¢* and #¢* = 8, and rewrite
YF in (5.62) as {@L, 15( —4), (- —5)} with true boundary elements Y and #¢L = 7. Hence,
By=®,U{¥; : j>J}for J >3 is given by

é' = {¢ O}U{¢jk

4<k< 2j — 4} U {(gfgj 1}, with &R = (gL(l - ')7
i’ - {wj 0} U {wﬂ ik - < <

2 —4yu{df,_}, with ¢ =PF(1 ).

Note that vin(¢F) = vin(4%) = vin(¢)) = 4 = sr(a) and Psx(0,1) C span(®;) for all j > 2.
According to T heoremwith N =1, (By, By) forms a biorthogonal Riesz basis of L ([0, 1])
for every J > 3.
By item (ii) of Proposition with ng = 1 and p(z) = (z,22,23)7, the left bound-
ary refinable vector function is gbL’bC = ¢ (the second entry of ¢¥) and satisfies ¢ =
107°(2:) + [§, —4]¢(2- —1) by (5.99). Taking ny = 2 and my = 7 in Theorem [5.14] we have
Ylbe = (", o, o) with

e gl - 64(2) - (32, 100 -1 + 53,160+ -2) + -5, Wo(2- -3

with #l% = 3 satisfying both items (i) and (ii) of Theorem [5.14, where AY¥, Bb, Cb,
and D% can be easily derived from Ay, By, C, and D. More precisely, A% is obtained

from U~ Ay by taking out its first row and first column, and B¢, C*, D% are obtained from
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U='B,, U'C,U™'D, respectively by removing their first rows, where the invertible matrix
U is given by

1 @ —M21 583 989 17 61 195 g
X

U - [14 +BO T 2376 36 594 18 88 44 )
O2><14

Since ([5.60) is satisfied with p(AY) = 1/2, we conclude from Theorems and that
By = ®% U{W¥l : j > J} is a Riesz basis of Ly([0,1]) for every J > Jy := 2 such that
h(0) = k(1) = 0 for all b € BY, where ® and W in (5.90) and (5.91) with ny = ng =1

and ny = n; = 2 are given by

@?c = {QZSJLé)C, ¢] ;1 ¢] 125 ¢j 3} U {Qb] k-
\IJ?C = {@ZJJLobca% 2, Vst Uty 1 4 <k

R,b
— 4 U{9,55 1, Djai1: Pjai—2, Gj2i -3},
b
] 4} U {¢f216 1° % 129 —2) ¢j;2173}7

//\ //\

where ¢f0¢ = ¢l%(1 — ) and B = Pbbte(1 — ) with #¢l% = 1, #ylP = 3, and
#Pb = Ul = 27+ For the case j = 2, O = {py5", b1, da, do3, sy  } and Wb =
{¢2L(;)C, .9, @/Jgébc} after removing repeated elements. Note v (1%%¢) = v (1 #%) = vin(¢)) =
4 and b = ©;\{(¢1);0, (¢19)j;21-1} as in Proposition m The dual Riesz basis B2 of B
with j > Jy := 3 is given by Theorem through (5.61) and (5.62). We rewrite ¢=* in
as {¢P, p(-—4), d(-—5), ¢(- —6)} with true boundary elements ¢=*¢ and #p=be = 7,
and ¢ in (5.62) as {p™* (- — 4),4(- — 5)} with true boundary elements ¥"* and
#aplbe = 7. Hence, BY = b U {\ilg’c : j = J} is given by

] 4} U {¢R ,be } with QZN)R’bC — QZN)L’bC<1 . ‘)7

3:29—1

2 —A U Yl }, with R = plbe(1 — ),

7;27—1

O = {1 U {ds :
Wl = {1 U {da

k<2
k<2

//\ //\

Note that vm (") = vm (1)) = 0 and {zxp.11, 22X[0,1), T*X[0,1]} C span(q);’-c) for all j > 2.
By Theorem with N = 1, (B%, BY) forms a biorthogonal Riesz basis of Ly([0,1]) for
every J > 3.

By item (ii) of Proposition 5.4 with ny = 1 and p(z) = (22,23)7, we have ¢&b! := (.
Taking ny = 2 and m, = 7 in Theorem , we have bl .= (e pIt Ly with

byt =y — 05 (2) — [, Tp(2-— 1)+ [10, 18] (2. —2) — [22 60052 —3) — [ £, 0] (2 —4)

with #5bel = 3 satisfying both items (i) and (ii) of Theorem where A%l is obtained
from V 1Ay by taking out its first two rows and the first two columns, and B, Cbel| Dbel

are obtained from V~'By, V~1C, V1D, respectively by removing their first two rows, where
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the invertible matrix V' is given by

_ _ 1121 533 989 17 _ 61 195
L0 2376 36 594 18 88 44 0 O1x5
V=1 B _ _ 1 _7 10 1048 _ 52 660 _ 9 .
141+ Dol 0 1 36 i 9 183 61 61 51 Oixs
O1x14

Since ({ is satisfied with p(AbCl) = 1/2, we conclude from Theorems and with
N =1 that Bbd Yt U{Wh! ¢ j > J} is a Riesz basis of Ly([0, 1]) for every J > Jo =2

such that h(0) = 1/(0) = h(1) = h’(l) = 0 for all h € BY", where &% and ¥’ in (5.90) and
(0.91) with ny =ngy =1 and ny = n,; = 2 are given by: for j = 2,3,

Ot = {1k <Y — 1) W= T U (v 2 <k <Y -2 U (o )
where el .= opLbel(1 — ) with #qplbel = 4pftbel = 3 and for j > 4

j_5}U{¢j-2f po 1<k <4y
2J - 5} U {¢f2130117 1/}] ;20 -2 % 129 -3 ¢j;2j74}7

(I)bd = {¢j : <4 U{dr 5 <

k<
bel L,bcl <
‘;[I —{’QD 7¢]27¢j37¢]4}u{¢]k S

with #®%! = 2741 — 2 and #W)! = 27+1. Note that vm(¢"*") = v () = vm(y) = 4
and <I>b01 <I>bc\{¢fé’c, o} =@\ {ok,, ¢T,;_1} as in Proposition [5.18 We rewrite plbel

7,29 —1

in as {¢P (- — 5), ¢(- — 6)} with true boundary elements ¢p=*! and #¢plbel = 8.
Note that #Lbl = 9. The dual Riesz basis BY! := @1 U {P%! : j > J} of BX! with
j > Jo:=4is given by

Wt = (Y U by 5 <k <Y =5 UG, with 9= 91—,
\Ilbd — {¢L bcl} U {wj 5 < <2 j _ 5} U {¢R21;c11 with 77Z)R,bcl — 77EL,bcl(l . )

Note that vm(p2!) = vm(ipR%l) = 0 and {221, 2°x,y} C span(®Ut) for all j > 2.
According to Theorem with N = 1, (B%', B%") forms a biorthogonal Riesz basis of
Ly([0,1]) for every J > 4. See Fig. for the graphs of ¢, and their associated boundary

elements.

Example 5.4. Consider the scalar biorthogonal wavelet ({&: 0}, {¢;0}) in [ with ¢(0) =
$(0) = 1 and a biorthogonal wavelet filter bank ({&;b}, {a;b}) given by



(b) ¢ = (', ¥?)T (c) o= (",¢")" (d) ¥ = (@",9")"

(e) o* (f) v* (g) vht (h) et

Figure 5.2: The generators of the Riesz bases B, Bf’,c, Bgd for Lo([0,1]) with J > 2in Example
such that 1(0) = n(1) for all n € BY and h(0) = K/(0) = h(1) = K/(1) = 0 for all h € BY¥!. The
black, red, and blue lines correspond to the first, second, and third components of a vector function.
Note that ¢ in BY is the second entry of ¢r, ¢L?t = () in B!, and vm(¢r) = vim(yhte) =
vm(pbel) = vm(y) = 4.

Then, sm(a) = 1.5, sm(a) ~ 0.440765, and sr(a) = sr(a) = 2. Note that ¢ is a piecewise
linear function. By item (i) of Proposition with ng = 1, we have the left boundary
refinable function ¢* := ¢xpe) = ¢%(2:) + 26(2 - —1). We use the direct approach in
Section . Taking n, = 1 and my = 4 in Theorem we have L = ¢L(2.) — %QS(Q .
—1) + 36(2 - —2), which satisfies items (i) and (ii) of Theorem with fsupp(C) = [1, 2],
fsupp(D) = [1,1], and

AO - [%) %7 _%70]1—7 BO = [%7 _é) %70]1—7 O(1> - [_%7 3_76’ ga zll]Tu
C<2) = [%7 _3_16’ _%7 ZIL]T: D(l) = [%a _%7 _%a %]T

Since (5.60) is satisfied with p(AL) = 1/2, we conclude from Theorems and with
N =1that By =&, U{V; : j > J}is a Riesz basis of Ly([0,1]) for all J > J, := 1, where
®; and ¥; in (5.90) and (5.91) with ng =n; = ny =1 and n; = 2 are given by

;= {¢ﬁo> Gj1, Gjat U{djn: 3< k<27 -3} U {¢f§2j_17 Bji2i—1, Gjoia}s
U= {50, i} U{wyn 0 2 <k <2 =33 U{fy 1 Y000},

where ¢ := ¢F'(1—-) and 7 := L (1—-) with #¢F = #¢f = #F = #pF =1, #P,; = 2141
and #¥; = 27. For the cases j = 1 and j = 2, &; = {qﬁﬁo,gbl;l, ﬁl}, U, = {qﬁﬁo,l/zf;l},
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and @y = {¢5, P21, P22, P2;3, P55} after removing repeated elements. Note that vm(y*) =
vm(yf) = vim(¢)) = 2 = sr(@). The dual Riesz basis B; of B; with j > J, := 3 is given by
Theoremthrough and . We rewrite ¢ in (5.61]) as {qBL ( —3)} with true
boundary elements ¢* and #¢* = 3, and rewrite /” in (5.62) as {¢%, (- — 2),¢(- — 3)}
with true boundary elements ¢* and #¢ = 2. Hence, By = &, U{¥; : j > J} for J >3
is given by

= {¢]O}U {¢Jk

3<k<2 27 — 3} U {&fm 1}a with QER = &L(l —),
= {00} U{thjn 2 <k <2

2/ —3}u {@/)J 9i 1), Wwith Pt = zZL(l — ).

Note that vm(¢") = vin(9") = vm(¢)) = 2 = sr(a) and Pyxjo1) C span(®;) for all j > 1.
According to Theoremwith N =1, (By, By) forms a biorthogonal Riesz basis of Ly ([0, 1])
for every J > 3.

By item (ii) of Proposition with ng = 1 and p(z) = =, the left boundary refinable
vector function is ¢2* := (). Taking ny = 1 and m, = 4 in Theorem 5.14] we have #ybte = 1
and

PR = b - §h(2) + 4620 1) — 262 ~2) + 362 —3)

satisfying both items (i) and (ii) of Theorem where A%, Bb, C%, and D% can be
easily derived from Ay, By, C, and D. More precisely, A% is obtained from U~ Ay by taking
out its first row and first column, and BS, C%, D% are obtained from U~1B,, U~*C,U"'D,

respectively by removing their first rows, where the invertible matrix U is given by
U .= [4 —+ Bo[—17 %, —g, %]

Since is satisfied with p(Abc) = 1/2, we conclude from Theorems n and |5.19 with
N =1 that Bf}c = @Y% U{Wk : j > J}is a Riesz basis of Ly([0, 1]) for every J > JO =2
such that h(0) = h(1) = 0 for all h € BY, where ®% and U in and with

ng =nj=ny =1 and nj = 2 are given by

/ S}U{¢32J 1 Qi — 2}

% = {¢ji1, pjat U{dju : 3 <k <2 —
Sh<Y =3YU{ylyr | i),

‘IJ?C = {l/)jL;obcy Vit U : 2

where ¢L,bc _ (bR,bc = () and wR,bc = wL,bc(l _ ) with #wL,bc — #wR,bc — 1’ #(I)gc —
2/ — 1, and #\IJ?»C = 27, For the case j = 2, B = {¢o.1, P22, P23} after removing repeated
elements. Note that Vm(¢L’bc)~: vm () = Vrfl(zb) = 2 and O = O;\{p], ¢y} as in
Proposition We rewrite ¢ in (5.61) as {¢1%, ¢(- — 3)} with true boundary elements
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P and #oPr = 2, and P& in (5.62) as {2, (- — 2),4(- — 3)} with true boundary
elements {™* and #1p2* = 2. The dual Riesz basis BY := @ U{P : j > J} of BY with
J > Jo := 3 is given by

b= {Pin YU i : 3 <k <P =3} U{dlyr ), with b= ghhe(1 ),
b= {PIy b Uy 1 2 <k <2 = 3YU{¥l 1, with e = hbe(1 — ).

7;27—1

Note xxpo,1) C span(®¥) for all j > 2. By Theorem [5.19| with N = 1, (BY, BY) forms a
biorthogonal Riesz basis of Lo([0,1]) for J > 3. See Fig. |5__§| for the graphs of ¢, v, ¢, 1 and

all boundary elements.

() ¢ (b) ¥ | (c) | (d) ¢

(e) o* (f) y* (g) oF (h) ot

05

(i) vt () ¢hte (k) it (1) Prbe

Figure 5.3: The generators of the biorthogonal wavelet bases (B, B;) and (lggc, B%) of Ly(]0,1])
for J > 3 in Example [5.4] with h(0) = h(1) = 0 for all h € BY. The black, red, and blue lines
correspond to the first, second, and third components of a vector function. Note that vm (%) =

vm (1) = vm(y) = 2.
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5.8 Proofs of Theorems|5.2 5.7, (5.10}, [5.14}, |5.15/and [5.19

In this section, we provide the detailed proofs for Theorems|[5.2] 5.10, [5.14] [5.15] and [5.19]

Proof of Theorem[5.2. Since ny > max(—ly, —l,) and ny > max(—ly, =2 ) the relations in
(5.13) and ((5.14) must hold, see Section m Hence, ASo(®; ¥)(,) g L5(]0,00)). By our

assumption that ASy(®; W), is a Riesz basis of Ly ([0, 00)), it must have a unique dual Riesz
basis, denoted by B here, in Ly([0, 00)). We first prove that B = ASy(®; ¥)(g ) for some &, ¥
in . Since both ¢* and %’ have compact support, we have fsupp(¢’) U fsupp(yr) C
[0, N] for some N € N. Consequently, we have

supp(¢™(27-)) Usupp(v*(27-)) € [0,27YN] C [0, N] for all j € N,.

We take ng > max(—lz, —la, ny) such that the supports of all gZ;( k),k > ng do not
essentially overlap with [0, N]. Similarly, we take n; > max(— l~ nw) such that the

supports of all P(- — k), k > > n,; do not essentially overlap with [0, ] Consequently, ((5.21])
and ((5.22)) must hold and we trivially have

(D(- = ko), #"(27)) =0, ((- — ko), "(27)) =0, Vo =nyjeN,, (5.100)

and

(- = ko), 0"(27)) =0, V(- — ko), 9"(27)) =0,  Vhko=ngjeN,.  (5.101)

Let kg > ng be arbitrarily fixed. Since ({é, QZ}, {¢;¢}) is a biorthogonal wavelet in Ly(R),
it is trivial that

(D(- — ko), ¢(- — ko)) = I, and  (¢(- — ko), h) =0 Vh € ASo(e; ¥)\{b(- — ko)}.

In particular, we have (¢(- — ko), o(-—k)) = 0 for all k > ny but k # ko and (G(- — ko), ) =
0 for all j € Ny and £ € Z. Now it follows from that ¢(- — ko) must be the
unique biorthogonal element /vector in Ls([0,00)) corresponding to the element ¢(- — ko) €
ASo(®; W)[g.00); more precisely, ((- — ko), (- — ko)) = I, and (p(- — ko),h) = 0 for all
h € ASo(P; V) p0,00)\{A(- — ko) }-

Let jo € Ny := NU {0} and kg > n; be arbitrarily fixed. We now show that 1),
is the unique biorthogonal element in Ly([0,00)) corresponding to the element ; .k, €
ASo(P; V) (0,0). Indeed, it follows from the biorthogonality relation between ASy(¢; 1)) and
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ASy(¢; 1) that
<7;jo;koa Pjosk) =0 and @jo;ko, Vi) = 0(j — Jo)d(k — ko), VjeNy,keZ (5102)
By (BI01), we have

<&j0;k07 ¢L(2j0')> =0, <12j0;k07 wL(2j')> = 27]'0/2(15(' - kO)a wL<2j7jO')> =0, \V/j = Jo-
(5.103)

By the identities in (5.17), (5.18), (5.21) and (5.22)), we see that every element in

Sjy = dU{22n(20) 1 j=0,...,j0—1,n€ TV} (5.104)

is a finite linear combination of {27%0/2¢L(270)} U {¢;,x : k = ng}. Consequently, it follows
from (5.102) and (5.103) that (1hj,x,, h) = 0 for all h € S;,. Hence, by (5-102)), we proved
that 1.5, is the unique biorthogonal element in Ls([0, 00)) corresponding to the element
Yok € ASo(P; ¥)[0,00)-

Since nj > ng, we add the elements ¢(- — k), ng < k < nj to the vector function oF to

form a new vector function ¢?L . We define @L similarly by adding ¢(- — k),ny < k < ng
to wl. Let ¢ be the unique biorthogonal element/vector in Ls([0,00)) corresponding to
¢, and ¢~ be the unique biorthogonal element/vector in Ly([0,00)) corresponding to ¢~
for the Riesz basis ASo(®; ¥)p,) of La([0,00)). Let jo € Ny be arbitrarily fixed. We now
prove that 270/2¢5F(27%.) is the unique biorthogonal element in L5([0,00)) corresponding to
200/29)L(290.) € ASy(®; ) [gne)- By the definition of ¢, we have

(@R (20), ) = (5 o) = 0, V5 > ook > g
and
<2j0/21;L<2j0.)’2j/2(ZL(2j.)> — @L’ 2(j*jo)/2z/;L(2j*j0.)> =0(j — jo) e, Vi = Jo

Define the set Sj; as in ((5.104]). As we proved before, every element in S, must be a finite
linear combination of {270/2¢%(200)} U {¢jo : k > n;}. By the definition of P, we must
have

(21220, 203G (210)) = (54, 6%) = 0
and

(29012 E(270) ¢ k) = (DF, p(- — k) = 0, VEk>ng.

Consequently, we proved that (270/2¢)%(270.) h) = 0 for all h € S;,. This shows that
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290/24)L(270.) must be the unique biorthogonal element in Ly ([0, 00)) corresponding to
200/20)L(200.) € ASy(®; W)y In summary, we proved B = ASy(®; ¥)p). Note that
SFE = HGE = #6F + (ng — ng)(#6) and FPE = YT = HPE + (ng —ny)(#0). Therefore,
- holds. To complete the proof of item (1) in Theorem , next we prove that both
¢% and ¥ must have compact support. Since ({¢; 1}, {¢:1}) is a biorthogonal wavelet in
Ly(R), we can expand oL in (T.2) with J = 0 as follows:

" = (0" p(- = k)NO(- — k) + DD (8" i)k

keZ j=0 k€Z

Since ¢F is perpendicular to all elements in ASy(®; \If)[o,oo)\{CZL}a we see from the above
identity that

R R (o0 (g )T R ) R S R LA (5.105)
k=00 j=0 k=—00

from which we deduce that ¢* must be supported inside (—oo, M] with M := max(n; +
hg,ng+hg). Because ¢* lies in Ly ([0, 00)) and hence is supported inside [0, 00), we conclude
that ¢’ must have compact support with fsupp(¢?) C [0, M]. By the same argument, we
can prove that holds with ¢~ being replaced by ¢~ and hence ¢~ also has compact
support. This proves item (1).

We now prove item (2). Since ASy(®; ¥){o,o0) and ASy(®; \TJ)[O,OO) form a pair of biorthog-
onal Riesz bases in Ly([0,00)), by a simple scaling argument (e.g., see [{0] Proposition 4
and (2.6)] and [ Theorem 4.3.3]), it is straightforward to verify that AS;(®; W) and
AS ;(®; ¥)(g o0y form a pair of biorthogonal Riesz bases in Ly([0, 00)) for every J € Z. Ex-
panding ¢% under the biorthogonal basis formed by AS;(®; ‘i’)[o,oo) and AS;(®; V)(p,), We

have

oh= Y (¢hmh=2("0"(2) +2Z (0", 6(2- —k))p(2- —k),
(

heAS, CI);\I/)[(),OO)

since (¢%, h) = 0 for all h € U(27.) with j > 0. Hence, ) holds with A := (¢, $E(2-))
and A(k) := <q~SL,gb(2 - —k)) for k > nj. Since both ¢L and ¢ have compact support, the
sequence A must be finitely supported. The identity in (5.20]) can be proved similarly by
expanding 1" instead of ¢, under the biorthogonal basis formed by AS;(®;¥)g ., and
AS1(®; ¥)[,). Using the same argument as in the proof of , we see that the identities
in ((5.21)) and follow directly from (5.6) and the assumption that n; > max(—lz, —l,)
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and n; > max(— l~
To prove item (3), since (ASy(®; \IJ)[O,OO), ASo(®; ¥)(0,c)) is a pair of biorthogonal Riesz
bases in Ly([0, 00)), noting that ®(2-) L ¥(27-) for all j > 1, for n € ®(2-) we have

GO  + Y (o = kDS = k) + (0, MW+ D (b (- = k)i (- — k).

) This proves item (2).

Since all functions in ® U ¥ U ® U ¥ have compact support and ® U U is a Riesz sequence,
we conclude from the above identity that item (3) holds. O

Proof of Theorem[5.7. By assumption ¢~ U " C H™(R) for some 7 > 0, since ASq(¢; ) is
a Bessel sequence in Ly(R), ¢ must have at least one vanishing moment and we conclude
from Theorem that AS;(®; V) is a Bessel sequence in Ly([0,00)). Similarly, by
¢" Ut C H™(R) for some 7 > 0, we conclude from Theorem [5.6] that AS;(®; V) ) is a
Bessel sequence in Ls([0,00)). Now the rest of the argument is quite standard for proving
that AS,(®; @)[0700) and AS ;(®; ¥)[,«) form a pair of biorthogonal Riesz bases in Ly ([0, 00)).
By scaling, it suffices to prove the claim for J = 0. Define 5}, as in for jo € N. Using
items (i)—(iv) and the same argument as in the proof of Theorem [5.2, we see that every
element in S}, is a finite linear combination of ®(27%-) := {¢L (270 )} U{p(270-—k) : k = ng4}.
Now by the biorthogonality between ® U ¥ and ® U U, it follows from the same argument
as in the proof of Theorem that AS;(®; ¥)o,00) and ASJ(Ci); \if)[opo) must be biorthogonal
to each other in Ly(|0, oo)) Consequently, by the standard argument (e.g., see the proof
of (4)==(1) in Theorem [5.5), we conclude that both AS;(®; ¥)(y ) and AS (@ \If)[o ) are
Riesz sequences in Lg([O,oo)). By item (iii), we have So(¥) = S;(®) N (So(®))*. For any
f€81(®), define g := 3", 4 (f,7m)n. Then f —g L ® and we conclude that f =g+ (f — g)
such that g € So(®) and f — g € 81(P) N (So(P))L = So( V). This proves S;(P) C So(® U W).
Because So(® U W) C 81(P) is trivial, we conclude that So(® U ¥) = S;(P). By the scaling

argument, we must have
Sp(PUT UTR2)U--- U2 1)) =8 (@UTU---UT(Z72)) =-.. =3,;(d).

Hence, So(ASo(®; ¥)j,0c)) contains U52,S;(®), which includes the subset U2 {¢(27 - —k) :
k > ngs}, whose linear span is dense in Ly([0,00)) due to limj, o 277004 = 0. Therefore,
the linear span of ASy(®; V)9 ) is dense in Ly([0,00)). This proves that ASy(®; ¥)(g ) is a
Riesz basis of Ly([0,00)). Similarly, ASo(®;¥)(g.) is also a Riesz basis of Ly([0, 00)). This
completes the proof of Theorem [5.7] n

Proof of Theorem[5.10, Define ¢; := ¢(-—j)xpo,1] for j = 1—hyg, ..., —l, (for other j € Z, ¢,
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is identically zero). By ¢ =23, , a(k)$(2-—k), for j € Z, we have ¢(- —j) = 2>, ., a(k —
27)$(2 - —k). Multiplying x[o,1) on both sides of this identity, we particularly have

9j(x) = ¢(x — j)xp1(x) =2 Z —2))0(2z — k)Xo, ().

kEZ

Note that

P(2r — k)X[0,1/2](9U) = ¢(2z — k)X[o,l](Qﬂv) = [QS( - k)X[O,l](')] (2z) = ¢n(27),
P22 — k)xpj2(7) = ¢(2x — k)x, (22 — 1) = [¢(' +1- k)X[o,l}(')]( r—1)=¢p1(22 - 1).

Hence, we have

(x) =2 a(k — 2§)¢(2z — k)xpy(x) =2 alk — 2j)[¢x(22) + dp_1 (22 — 1)]

keZ kEZ
—lg —lg
=2 ) alk—2)ér(20) +2 Y alk+1-2j)¢(2z — 1),
k=1—hg k=1—hg

since all ¢y for k € Z\[1 — hy, —l,] are identically zero. By ¢ = (Gr-nys-- - P—,)", this
proves the first identity in (5.44]). The proof of the second identity in is similar.

We now prove (5.45). Noting that ¢(2z) is supported inside [0,1/2] and ¢(2z — 1) is
supported inside [1/2,1], we deduce from that

1 . T

M= | dx)d(x) do

0

—4 / 1 (,2105(21;) Aio(2x — 1)) (5(21:)TA_0T + (2 — 1)TA_1T>dx

/¢2x
_on/qs

= 2AOMAO +2A1MA1 .

dxAO + 4A1/ 32z — 1)é(2z — 1) A

d$/40 "|"’2/410/n ¢ ) leEIT

This proves ((5.45). We now prove that up to a multiplicative constant (5.45) has a unique
solution. By vec(M) we denote the column vector by arranging the columns of M one by

one. Then ([5.45) is equivalent to

Tvec(M) =vec(M) and T :=2(Ay® Ay + A, ® Ay), (5.106)
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where ® stands for the right Kronecker product of matrices. To prove (S3), it suffices to
prove that 1 is a simple eigenvalue of the matrix 7" in . Define s := #(5 and § := #g;.
Note that 5 is a compactly supported refinable vector function in Ls(R) and the integer
shifts of gg are linearly independent. By [Il Corollary 5.6.12 and Proposition 5.6.2], we
conclude that 1 must be a simple eigenvalue of Ay + A; and the mask/filter associated with
5 must have at least order one sum rule, that is, by/\, there must exist a nontrivial row
vector 7 € C'*¢ such that 04, = 04, = %17 and 175(0) = 1. Since 1 is a simple eigenvalue

of Ag + A1, such row vector ¥ must be unique by ¥(Ag + A1) = ¢. Similarly, there exists a

unique row vector o € C*¥ such that 94, = 04, = %5 and 06(0) = 1. By A, = 0A; = U

and 04y = 0A; = %5, we trivially have

Hence 1 must be an eigenvalue of T'. Next we prove that the eigenvalue 1 of 7" has multiplicity
one by employing the joint spectral radius technique in [64]. Let U be the space of all column
vectors u € C*® such that vu = 0. By vAy = vA4; = %6, it is trivial to observe that AU C U
and A;U C U. Since all the entries in gg are compactly supported functions in Lo(R) and
the integer shifts of gg are linearly independent, we must have (e.g., see [TIl Theorems 5.6.11
and 5.7.4]. Also c.f. [64] Theorem 3.3]) that

lim 22||{ 4o, A }"ull, =0, NVuelU (5.107)
n—oo

and for every w € C*, there exists a positive constant C,, such that
22{ Ag, A1} 'wl|;, < C,  Vn€EN, (5.108)

where as in [64] Section 2] we define

1 1
1{ Ao, Ay ull?, o= - > 1Ay, - Ay ul.

7=0 Yn=0

Similar conclusions hold for Ay and A;. Take particular vectors w := ¢(0) and @ := 5(0)

Hence, we must have #w = 1 and 0w = 1. Now considering 7"(u ® %) with u € U and using
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the Cauchy-Schwarz inequality, we conclude that

IT™(@ @ )| < 2"[[{Ao. Aryulli, [{ Ao, A}, < Co2"?[[{Ao, Ar}ulli, — 0
as n — o0o. Similarly, for o € U, as n — 00, we have

IT"(@ @ @) < 2"[[{Ao, Ar}wlli, [{Ao, A}, < Cu2?|[{Ao, Ar}alls, — 0.

Also, for all u € U and @ € U, we similarly have lim,,_,o |7"(7 ® @)|| = 0. Note that w and
U span the whole space C* while @ and U span C?, where s := #gg and § := #gz:;. The above
three identities prove that all the other eigenvalues of T" must be less than one in modulus.
Hence, 1 is a simple eigenvalue of T'. Hence, up to a multiplicative constant, M is the unique
solution to (}5.45]).

Note that >, ., T6(-—k) =1 and Y kez 55( — k) = 1. Since both ¢ and gare supported

inside [0, 1], we must have 7¢(z) = 1 and 9¢(z) = 1 for almost every z € [0,1] and hence

—

L 1 = — T 1
TMT :/ 0p(z)vp(x) dr :/ ldr = 1.
0 0

This proves (5.47) and completes the proof. ]

Proof of Theorem [5.14 By my = max(2n, + ha, 2ny + hj), we have mg > 2ng + ha > ng

since ng > —l, = —hg. By the definition of ng and ng, we trivially have ng = max(—l(z;, —lz)
l

—2). Therefore, (5.21) and (5.22) must hold. We now prove (5.58).

n&—lg-{-l-l

"$

and n; > max(—lg,

By the definition of ng and ng, we also have ng > 1 —1; and ng = [

3
have fe-la ng; — 1 and Mol & ng — 1 for all kg < ng. Therefore, for all ky € Z satisfying

mgy < ko < ng, it follows from (5.42) and Lemma |5.8] that (5.58) must hold.

Define (infinite) column vector functions by

. Hence, we

o={o(-—k) : k=nz} and ¢ :={Y(-—k) : k=ng}

Abusing notations a little bit by using the same notations for augmented Ay, B, and A, B
with ¢F, 1~ being replaced by ¢%, ¢, respectively, we can equivalently rewrite (5.13)), (5.14),
(5-17) and (5.18) as

oF A My
Ol _om |2 i o m= |0 Ma : (5.109)
s ¢(27) By Mg
v 0 M,
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where My, Mg, M,, M, are matrices associated with filters A, B, a,b, respectively. More
precisely, using (5.17), (5.18), (5.13) and (5.14), we have My := [A(k)]n;<k<oo (which is
equivalent to Ma¢ = ZZ‘;% A(k)o(- — k), Mp = [B(k)]n;<k<oo, and

Ma = [(l(l{? - 2k0)]nq§<ko<oo,nq;<k<oo and Mb = [b(k - 2k0)]nd~)<ko<oo,nd;<k<ooa (5110)

where ko is row index and £ is column index. By njg = my, we see from Lemma and

(-32) that

§(2) =D 6" + Mz 6+ Mz " + 14 4, (5.111)
where Mz, M5, Mz, M; are matrices uniquely determined by the filters @ and b. More pre-
cisely,

M= | Otor)xoo oMy = | Oggrxoo ,
(G(k’ - QkO))n¢<ko<nq§,n$gk<oo (b(k - 2k0))n¢<k’o<nd~),n$<k<oo

(5.112)
and Mj;, M; are defined similarly as in (5.110]) using @ and b instead of a and b, where kq is
row index and k is column index. Therefore, we deduce from (5.59)) and the above identity

in (5.111) that

o AL M

p o R ) ]
[“2((22))] :MT EL with M = g ]\Aj‘l : (5.113)

: L Mg

i 0 M

By assumption, ® is a Riesz sequence in Ly(]0,00)) and hence linearly independent. By
item (i), the elements in ® UW must be linearly independent. Consequently, we deduce from
and that /\;IMT = 277 and ﬂT/\;l = 27!, where I here stands for the
infinite identity matrix.

We now prove that A and B in are finitely supported. For all k£ > 2n 3+ ha, we
have k — 2kg > hg for all kg = ng,...,ng — 1 and hence a(k — 2ko) = 0. So, {A(k)};‘;%
in is finitely supported. Similarly, for all k& > 2n; + h;, we have k — 2kg > h; for
all kg = ny,...,n; — 1 and hence b(k — 2ky) = 0. So, {B(k)},ﬁ‘;n in is finitely
supported. Since p(A;) < 272 in (5.60), we conclude from Theorem that ¢F in
is a well-defined compactly supported vector function in Ly([0,00)) N H™(R) for some 7 > 0

and satisfies (5.19). Since B is finitely supported, ¥* in (5.62) is a well-defined compactly
supported vector function in Ly([0,00)) N H™(R) and satisfies ([5.20)).
We now prove that ® must be biorthogonal to ®. Define ¢ := {¢(- — k) : k > nz}. By

(5.112)), we have MAQE = Zzoznq; A(k)o(- — k). Since we assumed that @ is a Riesz sequence,
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we conclude from Theorem that item (4) of Theorem holds. If necessary, enlarging
ng, then we can assume that H=n"U gz~§ in item (4) of Theorem is biorthogonal to ¢
with #iL = #¢L. Define fy := ¢ and fy := 7. For n € N, we can recursively define

foi=2A0 0 1(2) +g(22) and  f, =240 fu 1(2-) + §(2), neN, (5.114)

where g := 2 Z;O:% A(k)p(- — k), g is given in (5.61]), and A, and A are augmented version
in . Let F, :== f, Ugand F, := f,U¢. By the choice of fo = ¥ and fy = qb we have
Fo = H and Fy = ®. Therefore, Fo is biorthogonal to Fy by Theorem . Suppose that

F,_1 is biorthogonal to F,_; (induction hypothesis), i.e., <Fn 1, Fn_1) = 1. We now prove
the claim for n. Note that

s . AL M - AL M;
F,=2NF, 1(2), F,=2NF, (2) with N:=|"" 74 N.=|7F 74
0 M, 0 M,
(5.115)

It follows trivially from the identity MM = 27T that NN = 2717 Therefore, by
induction hypothesis (lf’n,l, F,._1) = I, we have

<Fn’ Fn) = 4N<Fn—1(2'), Fn_1(2')>fT/T = QNNT =

This proves the claim for n. By mathematical induction, we proved that F), is biorthogonal
to F,, for all n € N. By and with fy = QOSL, we trivially have f, = ¢?L and
hence, F,, = @ for all n € N. So, F, is biorthogonal to ® for all n € N. We deduce from the
definition of f, in that

fo=2" AL fo(2m) + Y 2T A g(20).

Jj=1

Since p(Az) < 2772 and [|27A% fo(2") || o) < || foll 2o 2™/2(| A% ||, we conclude that
T (12743 fo(2) 1ace) = 0.

This proves lim,, . || f—ot | ory = 0. Since ® = lim,,_, F, in Ly(R) and F,, is biorthogonal
to @, we conclude that ® must be biorthogonal to ®.

By (5.112), we have Yl = 2ﬁBLq~5L(2-)ﬁ+ QMBg;(Q;). Also note that ¢F = 2A,65(2-) +
2Mz6(2-), ¢ = 2M;z¢(2:), and o = 2M;e(2-) with ¢ == {¢(- — k) : k > n;}. Using the
identities MM ' = 2717 and M' M = 2711, we can now check that all items (i)-(iv) of
Theorem are satisfied. Because we assumed ¢ C H™(R) for some 7 > 0, by the choice
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of 1* in item (i), we must have 1)* C H7(R). Note that we already proved ¢ U" C H™(R)
for some 7 > 0. Since all the conditions in Theorem are satisfied, we conclude from
Theorem [5.7| that AS ;(®; @)[0700) and AS;(®; U)jp ) form a pair of biorthogonal Riesz bases
in Ly([0,00)) for every J € Z. O

Proof of Theorem [5.15 By the choice of nj in item (S1) of Algorithm , for all & = ng,
we have (¢(- — k), ¢(- — k)) = I, and (¢(- — k) n) = 0 for all n € c1>\{¢>( — k)}. Define

o={o(-—k) : k> ng} and b:={o(-—k) : > ng}. Then and (5.19) become
O = 2406H(2) + 2MaG(2), 6" = 241052 +2M40(2),

where M,y = [A(k;)]n <keoo and My := [A<k>]n¢;<k<oo with & being the column index. Since
ng = max(—lg, l&) and n¢ > ng > max(—lg, —l,), by (5.13) and (5.21), we must have
o= 2Ma¢( -) and ng = 2Magb( -), where M, is defined in 1) and Mj; is defined similarly.
Define N and N as in . Using and , we must have NA7T = 2717, Since
® is a Riesz sequence, by the same argument as in the proof of Theorem [5.14] we conclude
that ® is biorthogonal to ® and ® satisfies item (ii) of Theorem O

Proof of Theorem[5.19. Let j > Jy. By assumption in (S3), all the boundary elements
in ®; U ¥; belong to Ly([0, N]). Since fsupp(¢(- — k)) C [0,00) for all & > ng, to show
®; C Ly([0, NJ), it suffices to prove that fsupp(é(- — k)) € (—o0, 2/ N] for all k < 2N —ny,
which is equivalent to ¢(2/N — - — k) € Ly([0,00)). For all k < 2/N — n,, we note that
(2N — - —k)=¢(-— (PN —k)) and 2PN — k > ng. By the definition of nj, we must have

G(2N — - — k) = ¢(- — (22N — k)) C Ly([0, 00)).

This proves ¢, € Ly([0,N]) for all ny < k < 22N —n - Consequently, we proved ®; C
Ly([0, NJ) for all j > Jo. Slmllarly, we have W, C Ly([0, N]) for all j > JO

We now prove item (1). By (5.18) and hp + n, < < 2FIN in , we have hp <
PHIN — ng and

20+ N — ng

]o—\/_BL¢]+10+\/_Z (k)i = V2B ]+10+\/_ Z k)®jt1sk

kn¢ kn¢

with B(hg + 1) = --- = B(2*'N —ny) = 0 due to [lg,hp] = fsupp(B) and 27*!N >
hp +ny in (5.85) for all j > Jo. By n; > max(— lzp,%T_lg), we have lj + 2n; > ng. Since

b= b(—-), we have lj = —h, and hence, we proved hy, — 2n,; < —ng, from which we get
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hy + 22N —ny) < 2N —ng. By ny = max(—Ly, %;lb), we have [, + 2n, > ng. So, for

every k = ny,..., 2N —n;, we have ng < lp + 2k < hy + 2k < 277N —n; and thus we
deduce from ) = 2 Z b(n)p(2 - —n) that

n=ly

ho+2k 2+ IN-n,
Vi =V2 D bn=28)d1n =V2 Y b(n—2k)¢jirm,  k=ng,..., 20N —ny.
n=ly+2k n=mne

By (5.18) for ¢ and h +ng < 277! N in (5.85), noting that ¢® = (N —-) and ¢ = ¢(—),
we have 27*!N — hy > ny and

ﬁZJ'N—N = 2ﬁgj‘:;o(]\f - )

hg
= \/EBL¢]L+1;O(N —)+ V2 Z B(k?)ﬁbjﬂ;k(N —)
k:n$
hi
- \/ﬁBL¢f+1;2j+1N7N +V?2 Z B(k) @110+ Nk
="
2HIN—n;

— \/_BL¢]+1 IFIN-—N + \/_ Z 2j+1N )¢j+1;k>

kn¢

where we used 277N —h > ny due to our assumption h+ny < 277N in - for 7 > Jy.
Hence, we proved the existence of a matrix B; such that ¥; = B;®;.;. The existence of a
matrix A; can be proved similarly by the same argument. Similarly we can prove the first
part of item (2).

Due to item (S1), by item (ii) of Theorem [5.7] or in Theorem [5.2) we must have
Hol — #pl = (ng —ng)(#¢) and #qﬁL L = (n —n; )(#¢) from which we have

HO" + HO" — (13 +n5) (#0) = (H6" + #6) — (ng + o) (#0).

By (5.89), we have #6" = #¢" and #¢" = #¢*. Note that 2N > ng + ny — 1 for all
j = Jo by (5.85) and 27N > >ng+ ns— 1 for all j > Jy by (5.87] (5-87). Consequently,

#O; = #0" + #0" + (PN —ng —ng + )(#0),  j = (5.116)
Using the above two identities and Jo > Jo, for 7 > Jo, we deduce that
#B; = #O + O+ (N —ng—ng+1)(#0) = #6" +#0" + (2N —ny—ny+1)(#6) = #2,
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By Theorem , we must have #F — #yl = (nj; — ny)(#¢) and #zZL #pl = (n -
)(#w) By the same argument, we must have #W¥; = #W¥;. By the proved 1dent1t1es
#<I> = #®; and #\II =#V; forj > Jo, we observe from - that (I> U\Il is biorthogonal
to ®; UV, forall j > JO.
Since i)j U @j is biorthogonal to ®; U W¥;, the proved identities ®; = A;®;,; and ¥; =
B;®;,, imply #®; + #V,; < #®,4; and ®; U ¥; is a Riesz sequence. To prove the other

direction, by (5.42)),

_ m—1

|2
Gjrim = V2 Z a(m—2k) Gy + V2 Z b(m — 2k) .

M”;Law P iy

Define my := max(2ny + ha, 2ny + hy) and my := max(2n; — la, 2n; — l5). Using (5 (-8), we
conclude from the above identity that ¢; 1., € span(®;UV,) for all m; < m < QJHN mo.
On the other hand, for sufficiently large j, it follows directly from item (3) of Theorem [5.2]
that

Ofr10 U {dj i, C span(®; U W)

and
TFIN— ng
¢g+1 ain-n UL+, k}k 2 Nyl = span(®; U ;).

This proves that ®;,; C span(®; U ;) for sufficiently large j. Since ®; U U, is a Riesz
sequence, we conclude from ®;; C span(®; U ¥,) that #ij+1 < #P,; + #Y¥;. Hence, we
proved #®,,.1 = #®, + #V,; and we deduce from ) that #W; = #d;, — #CD- =
2jN(#¢) for sufficiently large j. Note that 22N > ny, + n¢ — 1 for all j > Jy by (5.85) and
2N > st np— 1 for all j Jo by (5.87). From the definition of ¥;, noting that #@/} #o
(see item (3) of Theorem [5.1)) and #\I/j = 2N (#¢), we have

HYL + FYT = $U; — (PN —ny —ny + D)#Y) = (ny +ny — 1)(#e). (5.117)
Now for any arbitrary j > Jy, by definition of ¥; in (5.91) and the above identity, we have

#U; = # + #8 + (2N —ny —ny + 1)(F#9)
= (ny +ny = 1)(#6) + (2N = ny —ny + 1)(#9)
= 2N (#¢).

Consequently, #V; = 27N (#¢) = #P;,1 — #P,; and hence #P;1 = #P; + #7; for all
j = Jo. This proves both items (1) and (2).
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Next we prove item (3). By proved items (1) and (2), [A_jT, ET} must be a square matrix
for all j > Jy and [AJT,E’JT] must be a square matrix for all j > Jy. Since <i>j U \ilj is
biorthogonal to ®; U ¥;, we must have (5.94). Now by items (1) and (2), we can directly
check that B, and B, are biorthogonal to each other for all J > Jo. Note that By is a
Bessel sequence, since By C ASj(®; ¥)joo0) U {n(N —-) 1 € AS (9 @)[07m)}. By a similar
reasoning, B3, is also a Bessel sequence. By the same standard argument as in the proof of
(4)==(1) in Theorem , both B; and B; are Riesz sequences in Ly([0, N]) for all .J > J.
By the proved item (1), we have span(B;) D UX j{¢jx : ng < k < 2N —n,}, which spans
a dense subset of Lo([0, N]). That is, span(B;) is dense in Ly([0, N]) and hence, B; must
be a Riesz basis of Ly([0, N]). Similarly, we can prove that B; is a Riesz basis of Ly([0, N])
for all J > jo. Since B; and B s are biorthogonal to each other, this proves that B 7 and B
form a pair of biorthogonal Riesz bases for Ly([0, N]) for all J > Jy. This proves item (3).

Using item (3), item (4) can be easily proved by the same argument as in Lemma [5.3]

By item (3), for Jy < J < j@ such that J decreases from jo — 1 to Jy, using and
the biorthogonality relation between B; and B, we can recursively prove that B, and B,

form a pair of biorthogonal Riesz bases for L([0, N]). This proves item (5). O
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Chapter 6

A Wavelet Galerkin Method for an

Electromagnetic Scattering Problem

Now that we have discussed in detail the construction of wavelets on a bounded interval in
Chapter b we are ready to present our wavelet Galerkin method for solving an electromag-
netic scattering from a large cavity problem. As we shall soon see, this method falls in the
category of high order schemes, which is equipped with a natural preconditioner stemming

from the wavelet basis. The model problem of this chapter is as follows

Au+r*u=f in Q,

u=0 on OO\, (6.1)
ou
o T(u)+g on T,

where £ > 0 is a constant wavenumber, Q := (0,1)%, T := (0,1) x {1}, f € Ly(), g €

H'Y2(I'), v is the unit outward normal,

T (u) := " L

1
o oo a:’|H£ V(k|z — 2| u(a’, 1)da, (6.2)

# denotes the Hadamard finite part integral, and H{l) is the Hankel function of the first
kind of degree 1. We briefly discuss the derivation of the model problem in Section [6.1]
The implementation of our wavelet Galerkin scheme is discussed in Section [6.2] Finally, we

present some numerical experiments in Section [6.3]
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6.1 Derivation of the model problem

In practice, such a scattering problem is often encountered in stealth/tracking technology.
The model derivation in this section closely follows the discussion in [A2]. The Radar Cross
Section (RCS) measures the detectability of an object by a radar system. The RCS of cavities
in an object (e.g., a jet engine’s inlet ducts, exhaust nozzles) contributes the most to the
overall RCS of an object. Therefore, accurate measurements of the RCS of these cavities are
important. This is where numerical methods for the scattering problem come into play.

In order to derive the model problem, we introduce several simplifying physical assump-
tions. We assume that the cavity is embedded in an infinite ground plane. The ground plane
and cavity walls are perfect electric conductors (PECs). The medium is non-magnetic with
a constant permeability, u, and a constant permittivity, €. Furthermore, we assume that
no currents are present and the fields are source free. Let E and H respectively denote the
total electric and magnetic fields. So far, our current setup can be modelled by the following
iw

Maxwell’s equation with time dependence e !, where w stands for the angular frequency

VxFE—iwuH =0,

(6.3)
V x H + iweE = 0.

Since we assume that the ground plane and cavity walls are PECs, we equip the above
problem with the boundary condition v x E = 0 on the surface of PECs, where v is again
the unit outward normal. We further assume that the medium and the cavity are invariant
with respect to the z-axis. The cross-section of the cavity, denoted by (2, is rectangular. More
specifically, Q = (0,1)%. Meanwhile, " corresponds to the top of the cavity or the aperture.
As stated before, I' = (0, 1) x {1}. We restrict our attention to the transverse magnetic (TM)
polarization. This means that the magnetic field is transverse/perpendicular to the z-axis;
moreover, the total electric and magnetic fields take the form E = (0,0, u(z,y)) and H =
(H;, Hy,0) for some functions u(x,y), H,, and H,. Plugging these particular £, H into
and recalling the boundary condition, we obtain the 2D homogeneous Helmholtz equation
defined on the cavity and the upper half space with the homogeneous Dirichlet boundary
condition at the surface of PECs, and the scattered field satisfying the Sommerfeld’s radiation
boundary condition at infinity. By using the half-space Green’s function with homogeneous
Dirichlet boundary condition (e.g., [[I]) or the Fourier transform (e.g., [B O00), we can
introduce a non-local boundary condition on I' such that the previous unbounded problem
is converted to a bounded problem.

For the standard scattering problem, we want to determine the scattered field u* in the
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Figure 6.1: Geometry of the scattering from a cavity problem, where Q := (0, 1)2.

half space and the cavity given an incident plane wave u™"¢ = ¢**~ =1 where a = £ sin(f),
f = kcos(f), and the incident angle § € (—n/2,7/2). In particular, v® = u — u"™ +

elortiBy=1) wwhere u is found by solving the following problem
Au+ k*c,u=0 in Q,
u=0 on OQ\I,
ou -
I _ 2 [fe% F
B T (u) — 2iPe on T,
where ¢, is the medium’s relative permittivity and the non-local boundary operator 7T is

defined in (6.2]). Note that in the model problem (§6.1)), we assume that ¢, = 1, and allow
both f and g to vary. See Fig. for an illustration.

6.2 Implementation

Define H := {u € H'(Q) : w = 0 on IQ\I'}. The weak formulation of the problem (6.1]) is
to find v € H such that

a(u,v) = (Vu, Vv)g — k*(u,v)q — (T (u),v)r = (g, v)r — (f,v)q, Vv e H. (6.4)

The existence and uniqueness of the solution to have been studied in [8 Theorem 4.1].

We now turn to the wavelet aspects of the numerical scheme. Following the notations
and definitions of Chapter , we consider a biorthogonal wavelet ({gg, zﬁ}, {¢;¢}) with QE(O) =
(£, 2)T. $(0) = (1,1)7, and a biorthogonal wavelet filter bank ({a, b}, {a,b}) given by

373
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Note that ¢ = (¢!, ¢?)T has an analytic expression. That is,

o
I

o (z) = (22° + 3z + )x[-10) + (22° — 3z + 1)xpy and  ¢*(x) = (—42” + 42)xp,1- (6.5)

Furthermore, sm(a) = sm(a) = 1.5 and sr(a) = sr(a) = 3, and its matching filters v,0 €

1.
(Io(Z))*? with (0 )¢(0) 3(0)6(0) = 1 are given by 9(0) = (1,1), 3 <0) = i(0,2), 3"(0) =

~

(0, —}1), 5( 0) = (3, 3) 0 (0) = i(0, 3) and © (O) = (%, ——) Refer to 3)) and the beginning
of Section [5.7] for the definitions of the foregoing quantities and a matching filter. Let
¢" == @' X000y and 9" = ¢X[000). Note that ¢* = ¢"(2:) + 26°(2-) — §¢*(2- —1) and
phte = 3plbe(2.) + [1,3]¢(2 - —1). The direct approach in Chapter |5 yields

P = ¢P(2) - 622 + 3, —Ele(2 - 1),
Pl = Glte(2.) 4 [~ 2L, BT16(9. _1) 4 (B _i02]4(9. ),

We do not include any information on the dual boundary elements, since they do not play
an explicit role in the Galerkin scheme.
Denote fj := 279/2f(27 - —k). For Jy > 1 and j > Jp, define

O = {oTo U b 1 1<k <20 =1}, W= {g b u{ey - 1 <k <P —13u{giye ),
where ¢ftbe = ¢pL:b(1 — ) and
Y= 0% U0l o b W= (W 1}) U{ef, ),

where ¢f = ¢*(1 —-) and ¢* = ¢"(1 —-). Then, ®4 U{¥7 : j > Jo} forms a Riesz wavelet
in H'(0, 1) satisfying the homogeneous Dirichlet boundary condltlon at both endpoints, and
Y U{WY:j > Jo} forms a Riesz wavelet in H'(0,1) satisfying the homogeneous Dirichlet
boundary condition only at the left endpoint. See Fig. for the generators of these 1D
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() ¢ = (¢',¢°)7 (b) v =¥ () 9=(9"0")" (@) ¥ = (1,927

I

1 0 02 04 0.6 08 1 70 05 1 15

(e) ¢* (f) v* (g) o™ (h) yhte

Figure 6.2: The generators of Riesz wavelets ®5 U{¥7 : j > Jo} and @ U{¥¥ :j > Jo} of
H'(0,1) for Jy > 1. The black (solid) and red (dotted dashed) lines correspond to the ﬁrst and
second components of a vector function.

Riesz wavelets. By the refinability property, the following relations hold

B . A B,
r __ o HT T __ J5J x Yy o 757 Yy Yy J:J Yy - -/
q)] — AJJ/@]'/, \Ij‘] — BR,bC j,7 ¢] — ¢jl7 and \I[] — R (p]/ \V/j < j 9
Jig’ 7.3’ 7.3’

(6.6)

where A; j/, A] iy Bijs BJR;C, and BR are well-defined matrices.
Given one-dimensional functions fi, fo : R — C, the two-dimensional function f; ® f,
is defined by (f1 @ f2)(z,y) := fi(x)fa(y), where z,y € R. Furthermore, if Fy, F, are sets

containing one-dimensional functions, then Fy ® Fy := {f1 ® fo: f1 € F}, fo € Fy}. Define
B,y = (95, @ @5 )U{P] @ VU@ dIUTi W J, <j<J—1}

Note that when J = Jo, By, 5, = 5, ® <I>y The 2D Riesz wavelet in H we shall employ is
Bj, = B, 00, where Jy > 1. See Fig. |6.3] - for some generators of B,.

In the Galerkin scheme, our approximated solution is of the form w; = Z’WGBJO,J Cy)-
Plugging it into the weak formulation (6.4), using test functions in By, s, and recalling the

relations in , we obtain the linear system

(B (10 w) 0)vawens @ (0,000 weay ) BT =T) O = F. (6.7)
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Figure 6.3: Some generators of the Riesz wavelet B, of ‘H, where Jy > 1.

where R = [R, Ry, -+, Ry ;_5y.]" with Ry = Ay ;@ Ajy g,

[ Bosr-2.7 @ Agpro—2.] [ Bjyte—2,7 ®@ AIJ%O-M—Q,J-
Bi’feq,J @ Ajyro-2.7 Bi’icefz,(] @A ooy
R, .= AJOM_Q,J ® BJ0+z—2,J v Ry_jo4e:= AJOH—Q,J ® Bi-ﬁ-f—Q,J )
Biyye—2,7 @ Bjyye—2,7 Bjyre-20 @B 4
_B‘]I:fffe—z‘] ® By+e-2,] _Bz’icz—z,J ®BE o]

2<0<J—Jy+1,

[ Byie-1.
R,bc

Bjie1,

S= (S, ST, Sp= 27NN A s 1< T =y,

Bjyte-1.7

R,bc
BJg-i—Z—l,J_

T.— O(rows(R)—rows(S))x(rows(R)—rows(S)) O(rows(R)—rows(S))><rows(S)

Orows(S)X(rows(R)—rows(S)) S [<T(77); C)F]n(@p? ST ’
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0 rows(R)—rows(S 1
_ [ ( (R) (5))x — Rvec <[<f, ’UlU)Q]webz,v€¢>§> )

S g, U>F]ve<1>§

® denotes the kronecker product, C' denotes the coefficients {c,},en Jo.s Properly arranged
in a vector form, 0,,, denotes an m x n zero matrix, rows(:) denotes the number of rows
of a given matrix, and vec(-) denotes the standard vectorization operation. We make some
important remarks regarding the assembly of the linear system. First, we further normalize
each element in By, s by |a(-, )| 7¥/2, where a(-,-) is defined in (6.4)). This makes the modulus
of all diagonal entries of the coefficient matrix on the left-hand side of equal to 1.
Second, we note that the assembly of the linear system can be done efficiently by exploiting
the refinability structure. The inner products are computed only for the refinable functions
at the highest scale level (i.e., elements of ®% and ®%). Third, following [O8 Remark 4.1],

we rewrite the non-local boundary condition as

! / / / / ! / / / 1 ! U(x/) /
T () = / In(|z — 2'|)qo(z — 2")v(2")dx —|—/ ¢ (x — 2")v(2")dx' + —f T 5dr, (6.8)
0 0 TJo |x -z |
where
i/{H(l)KS kJi(K|s 1 kJi(K|s
ao(s)i= S LD AU o - g o= D

and J; is the first order Bessel function of the first kind. Note that go(s) and ¢i(s) are
even analytic functions. The first integral in is only weakly singular. After properly
partitioning this integral so that the weak singularity appears on an endpoint, we can use a
combination of the Gauss-Legendre and double exponential quadratures to compute it. The
second integral in can be handled by the Gauss-Legendre quadrature. Recall that

]g %dm’ — lim (Aw—e%dxur/;%dd— QUT(:”)> (6.9)

For the right side to exist, a sufficient condition is v € C**(0, 1) (i.e., the first derivative of
v is a-Holder continuous on the unit interval with 0 < o < 1). Then, the third integral of
can be exactly computed by , since the Riesz wavelet we employ has an analytic

expression.
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6.3 Numerical experiments

In what follows, we present several numerical experiments to compare the performance of
the wavelet and standard Galerkin schemes. The relative errors reported below are in terms

of 2-norm. Assuming that the exact solution u exists, we define

211 211

e =l = 2723 03 e ) = waais ),

i=1 j=1

where (z;,y;) fori,j =0,...,2" and 201 —x; = yj41 —y; =2 1 foralli, j =0,...,2" —1.
Note that the above error is just an approximation of the error in the L, norm. In each
table below, we report the relative errors ||[u — uy||2/||u||2 in the ‘Rel. err’ column. We also
report the condition numbers (i.e., the ratio of the largest and smallest singular values) of
the coefficient matrices coming from the wavelet and standard Galerkin methods, which are
respectively denoted by By, ; and ®; := &% ® &% in cach table below. Their ratios are
reported in the column ‘CN Ratio.” The convergence rate reported in the ‘Order’ column is

obtained by calculating log, (||u — wy||2/||u — wsi1|2)-

Example 6.1. Consider the model problem (6.1)), where 7T is defined in (6.2)), and f and g are
chosen such that u = exp(zy) sin(kz) sin((k + 7/2)y). Additionally, we let xk = 4, 87, 167.
See Table [6.1] for the numerical results.

Example 6.2. Consider the model problem (|6.1)), where 7T is defined in (6.2]), x = 327, and
f and g are chosen such that u = sin(7zx)sin(v/k? — 72y). See Table for the numerical

results.

In all cases, we observe that the condition numbers of the coefficient matrices associated
with the standard Galerkin method are around 2 to 800 times worse than those associated
with the wavelet Galerkin method. The rapid growth in these condition numbers is primarily
caused by the decreasing smallest singular values; the largest singular values, on the other
hand, behave like a constant at various scale levels. One can expect that this ratio continues
to increase dramatically as the scale level .J increases. Also, since span(By, ;) = span(®;)
for all J > Jy > 1, it is not surprising that the errors are essentially identical. As a final
remark we note that the choice of ¢ in our biorthogonal wavelet in actually belongs to
a special family of interpolating refinable functions. These interpolating refinable functions
have been well studied. To achieve a higher order convergence rate, we may replace the
current ¢ with another one in the same family but with a higher multiplicity. For this family
of interpolating refinable functions, a higher multiplicity means the refinable function has a

higher polynomial reproduction order and consequently a higher convergence rate.
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Kk =4r

J CNofB;; CNof ®; CN Ratio Rel. err of B, ; Order Rel. err of ®; Order
3 73.6 184.0 2.5 3.89E-2 3.89E-2
4 145.3 853.7 5.9 4.90E-3 2.99 4.90E-3 2.99
5 197.0 3464.4 17.6 6.11E-4 3.00 6.11E-4 3.00
6 232.2 13876.3 59.8 7.63E-5 3.00 7.63E-5 3.00
7 256.2 55503.0 216.7 9.53E-6 3.00 9.53E-6 3.00
8 273.0 221978.6 813.0 1.19E-6 3.00 1.19E-6 3.00
K= 8m
J CNofBs; CNof®; CNRatio Rel errof Bs; Order Rel err of ®; Order
3 92.2 92.2 1 2.03E-1 2.03E-1
4 185.2 491.5 2.7 3.51E-2 2.53 3.51E-2 2.53
5 314.9 3015.3 9.6 4.39E-3 3.00 4.39E-3 3.00
6 342.6 12556.1 36.7 5.46E-4 3.00 5.46E-4 3.00
7 355.0 50397.3 142.0 6.82E-5 3.00 6.82E-5 3.00
8 364.0 201647.9 554.0 8.53E-6 3.00 8.53E-6 3.00
k=167
J CNofBy; CNof®; CNRatio Rel errof By; Order Rel. err of ®; Order
4 297.3 297.3 1 1.91E-1 1.91E-1
5 415.2 908.9 2.2 3.36E-2 2.51 3.36E-2 2.51
6 1061.6 10192.8 9.6 4.17E-3 3.01 4.17E-3 3.01
7 1266.4 46561.9 36.8 5.28E-4 2.98 5.28E-4 2.98
8 1320.9 188128.2 142.4 1.11E-4 2.25 1.11E-4 2.25
Table 6.1: Condition numbers and relative errors for Example .
Kk =327
J CNofBs; CNof®; CNRatio Rel errof B;; Order Rel. err of ®; Order
5 1285.9 1285.9 1 1.72 1.72
6 1258.5 2673.7 2.1 4.18E-1 2.04 4.18E-1 2.04
7 2979.5 28615.4 9.6 2.97E-2 3.81 2.97E-2 3.81
8 4738.9 174325.0 36.8 1.93E-3 3.95 1.93E-3 3.95
9 5066.7 722029.3 142.5 1.26E-4 3.93 1.26E-4 3.95

Table 6.2: Condition numbers and relative errors for Example
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Chapter 7

Future Work

We conclude this thesis by outlining some directions of some future work.

Generalizing DAT for solving a larger class of the 2D Helmholtz equation is a problem
we may consider in the future. It is a challenging multifaceted problem, which requires new
ideas. There are two critical issues that need to be resolved. The source term would still be
partitioned by shifted square hat functions and their refinability can still be used to give rise
to the tree structure. The first issue comes from the 2D Dirac assisted local problems. In
contrast to the 1D Dirac assisted local problem whose source term is a Dirac distribution at
a single point, the 2D Dirac assisted local problems would have the source term consisting
of weighted Dirac distributions defined along the boundary of a rectangular subdomain.
Obtaining a highly accurate numerical solution of such 2D Dirac assisted local problem and
accurately estimating its outward fluxes are challenging, because its weak solution involves
highly singular functions caused by the singular distribution source term. The second issue
is on formulating the linking problems and generalizing Theorem for stitching all the
local solutions into a global solution. In a multidimensional setting, this is considerably
more difficult than in 1D due to more complicated topology and boundaries of subdomains.

Another problem is to explore the possibility of obtaining a sixth order compact FDM
for the 2D Helmholtz equation with variable coefficients and reduced pollution effect. This
can be considered as a generalization of Chapter So far, there already exists a fourth
order FDM for the 2D Helmholtz equation with smooth variable coefficients [If]; however,
the authors did not further reduce the pollution effect. This work would be useful in solving
the 2D Helmholtz equation with the perfectly matched layer boundary condition, which is
commonly used in geophysics. Throughout this thesis, we have mostly used the first order
absorbing boundary condition in our model problems.

Still in the context of FDM, we may also perform a rigorous error analysis for our proposed

FDM. The major difficulty comes from the fact that the coefficient matrix is sign-indefinite.
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Thus, new techniques may be needed to carry out the analysis.

The stability bounds in Chapter 4] motivate us to develop a new numerical scheme, which
presently is a combination of a Fourier method and DAT. We use our stability bounds to
strategically pick dominant Fourier coefficients in the solution, which are then computed by
a Filon-type quadrature due to its accuracy and adaptivity. Our initial experiments suggest
that these bounds play a critical role, especially when we have high frequency boundary
data. At this moment, we are trying to figure out what high frequency boundary data are
typically encountered in practice and whether they have any structures.

In terms of the wavelet Galerkin method we proposed, we may apply the same methodol-
ogy in Chapter [6] to wavelets whose primal refinable function belongs to the same family as
but with a higher multiplicity. As discussed earlier, a higher multiplicity in this case ul-
timately translates to a higher rate of convergence. One challenge we encounter is finding an
appropriate compactly biorthogonal wavelet on the real line, since there are many freedoms
and they take the form of a nonlinear system. We may also consider using a biorthogonal
wavelet whose dual has infinite support, and see what extra benefits it can offer (e.g., a fur-
ther reduction of the condition number). Unfortunately, the theory presented in Chapter
does not apply to this situation. If a biorthogonal wavelet with an infinitely supported dual
does offer extra advantages, then we may also consider building a theory to construct/adapt
such wavelets on a bounded interval similar to the content of Chapter [} In Chapter [6]
we performed an exhaustive parameter search to reduce the condition number as much as
possible. A question that may be worthwhile addressing is if there is a systematic or more
efficient way to do this. Finally, similar to before, we are also interested in performing a

rigorous error analysis for our proposed wavelet Galerkin method.
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