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A bstract

In general, there does not exist a unique action of the rotation group (or SU (2)) on 

a principal bundle over spacetime whose structure group is a compact semisimple Lie 

group G. Each possible action is uniquely determined by a vector Ao in the Cartan 

subalgebra of g where g is the complexification of the Lie algebra of G. When one of 

the vectors Ao induces a 17-system, the Lie algebra g can be replaced by a subalgebra 

in which Ao lies in the interior of a Weyl chamber. In this situation, considerable 

simplifications occur in the static spherically symmetric Einstein-Yang-Mills (EYM) 

equations. However, we cannot generally expect such simplifications as we show 

that defining vectors Ao which induce ri-systems are rare. We prove the existence 

and uniqueness of bounded local solutions to the static spherically symmetric EYM 

equations near the singularities located at the center r =  0, the black hole horizon 

r = r/f > 0, and at spatial infinity r  =  oc and we establish the free parameters 

that characterize these local solutions. Under the assumption that a global solution 

exist, we establish bounds on the solution and determine the asymptotic behavior as 

r — oc. T hat some special global solutions exist is easily derived from the fact that 

su(2) is a subalgebra of any compact semisimple Lie algebra.
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Chapter 1

Introduction

It is a well known result of Deser [13] and Coleman [11] that the four dimensional 
flat space Yang-Mills (YM) equations have no static solution of finite energy. Deser 
also showed th a t static solutions cannot exist within three dimensional Einstein-Yang- 
Mills (EYM) theory [14]. It came, therefore, as a  surprise when Bartpik and Mckinnon 
numerically constructed globally regular, asymptotically flat, static, spherically sym­
metric solutions to the four dimensional EYM equations with gauge group SU (2) [3|. 
As is standard, we will refer to these static, globally regular solutions as soiiton.->. 
Shortly after the solitons were discovered, static spherically symmetric SU (2)-EYM 
black holes were found numerically [5,32,64).

To understand the importance of these solutions we first recall the no hair con­
jecture. The no hair conjecture loosely stated says the only allowed characteristics 
of a  black hole equilibrium configuration are the mass, angular momentum, and the 
electric and magnetic charges. The S U (2)-EYM black hole solutions provided counter 
examples to  this conjecture and stimulated investigations into other m atter fields cou­
pled to gravity for the purpose of finding other solutions that violated the no hair 
conjecture. Consequently, it has been realized that violation of the no hair conjecture 
is typical for gravity coupled to non-Abelian gauge theories. More recently [27,28j, 
static, axisymmetric black holes and globally regular solutions to the 5C/(2)-EYM 
equations have been constructed numerically, providing dram atic examples of viola­
tions to the no hair conjecture. All of these solutions have shown that equilibrium 
configurations of black holes can be much more complicated than had been previously 
thought.

Although the static spherically symmetric solutions to  the Sf/(2)-EYM  equations 
were shown to be unstable [10,61,62], they may still be physically relevant due to 
their similarities with sphalerons [16]. Indeed, sphalerons, which are unstable stati : 
solutions of the classical equations for the bosonic sector of the electroweak theory, 
are believed to be responsible for violations of the conservation of baryon numbers 
a t high temperatures [1,35,50]. Therefore, it is possible th a t the EYM solitons could 
play a role in the violation of the conservation of baryon and lepton numbers at high 
temperatures.

Existence of the soliton and black hole solutions to the St/(2)-EYM  equation.-; 
was first established analytically by Smoller, VVasserman, Yau, and McLeod [52-54]. 
Global existence was also established by Breitenlohner, Forgacs, and Maison in [6j 
using different methods. Smoller and VVasserman have extensively studied the S U (2)- 
EYM equations [55-60] and have completely classified [66] the solutions which are 
defined in the far field, i.e. for large radius r. One surprising result that they have
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discovered is tha t any solution that is defined in the far field is actually defined on 
the whole interval (0, oo). This is not the usual situation for solutions to non-linear 
systems of differential equations where one normally expects global existence for only 
a small subset of the initial conditions.

For gauge groups G  other than S U (2), much less is known and the investigations 
have almost exclusively focused on S U (n) and only for the most obvious ansatz for 
the spherically symmetric gauge field. For SU (3) and S U (4) solitons and black hole 
solutions which are not embedded S U (2) solutions, have been found numerically [23, 
26,34], but little work has been done analytically with the exception of the papers 
[4,42]. For arbitrary compact gauge groups even less in known. No numerical solutions 
have been constructed for G  /  SU (n) and the only analytical work is contained in 
the papers [2,9,10]. However, in these papers, they restrict themselves to the so 
called regular actions which as we shall see later is a strong condition. For a review of 
these developments in EYM theory, see [18]. The EYM equations continue to a ttrac t 
attention. Rotating SC/(2)-EYM black holes have been constructed numerically [29] 
and the S U (2)-EYM equations with a cosmological constant have been studied [36- 
38,49,51,67].

Recall that the YM field is determined by a connection on a principal bundle over 
spacetime. So a  YM field is spherically symmetric if and only if the connection is 
invariant under an action by principal bundle automorphisms of the rotation group. 
Because there is no unique way to lift an isometry from the base manifold to a principal 
bundle, the notion of spherical symmetry is more complicated for YM fields than for 
tensor fields. It turns out a conjugacy class of the principal bundle automorphisms is 
characterized by a generator Ao which is an element of a Cartan subalgebra fi of the 
complexified Lie algebra g of G [2,8]. Under certain assumptions such as regularity 
of the center and vanishing of the total magnetic charge, the generator Ao is forced to 
be a semisimple element of a SI2C subalgebra of g. If Ao lies in the interior of a Weyl 
chamber, then the action determined by Ao will be called regular. The assumption 
that Ao is regular has been used in all previous work on the EYM equations. The 
reason for this is tha t the EYM equations take on a relatively simple form with this 
assumption. W ithout this assumption, the equations are extremely complicated and 
much more difficult to analyze. Unfortunately, as will be seen in chapter 4, the set 
of regular actions is very small in the set of all possible actions implying that the 
assumption that the action is regular is a strong one. The purpose of this thesis is 
to investigate the EYM equations under the assumptions of spherical symmetric and 
staticity for arbitrary compact gauge groups but without assuming that the action is 
regular. Our long term goal is to characterize the solution space of these equations 
as has been done for G = SU (2).

This thesis is organized as follows. Chapter 2 contains a review of the results 
from the theory of three dimensional semisimple Lie algebras that will be needed. 
In chapter 3 we review the YM formalism and describe how to classify spherically 
symmetric YM fields. The static spherically symmetric EYM equations are presented 
in chapter 4 along with a classification of the regular actions. Before global existence 
of solutions can be proved via a shooting technique, local existence must first be 
established. In our case we are interested in local existence near the origin r  =  0, the 
black hole horizon r  =  r//, and spatial infinity r  =  0 0 . The proof of local existence 
is the content of chapter 5. All the results contained in this chapter are taken from 
the two papers [45.46]. Finally, in chapter 6 we establish some a priori estimates on 
global solutions. The estimates serve two purposes. First, they aid in constructing 
numerical solutions by providing insight into what sort of behavior to expect from 
the solution and this allows one to greatly increase the efficiency of the search for

2
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numerical solutions. Secondly, these estimates will be necessary in proving global 
existence.

3
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Chapter 2

Lie algebra theory

In this chapter we review the necessary definitions and results that we require from Lie 
algebra theory. Of particular importance to us are the three dimensional semisimple 
subalgebras. These algebras will play a distinguished role in our later work as they 
arise horn the study of spherically symmetric Yang-Mills fields. Fortunately, a com­
plete classification of these subalgebras is available and this information will be used 
to investigate the class of spherically symmetric Yang-Mills fields.

2.1 N otation  and conventions
None of the assertions made in this section will be proved. Most are well known and 
can be found, for example, in [21) and [30], Throughout this thesis G will always 
denote a real compact semisimple Lie group with Lie algebra go- The adjoint action 
of G  on go will be denoted by Ad, while ad will denote the adjoint action of g0 on go, 
i.e. ad ( X ) ( Y )  = [X, Y ] for all X , Y  in g0. The complexification of g0 will be denoted 
by g. The ad action can then be extended by complex linearity to an action of g on 
g so tha t ad(X )(Y ) :=  [-Y, V'] for all X , Y  in g. We will use the notation gx  for the 
centralizer of a single element X  € 0 - In other words,

0X := { Y € 0 ) [A, Y] = 0 } .

Similarly, gx  is the centralizer of an element X  6 go-
We will let ( | ) be any non-degenerate ad-invariant bilinear form on g that restricts 

to a negative definite inner product on go- By ad-invariance we mean that

( \X,Y] \Z)  = (X\[Y.Z\)  V.Y . Y . Z e g .

For example, we could take ( | ) to be the Killing form on g. For later use, we introduce 
a non-degenerate Hermitian inner product (- ) ■) on g defined by

( X \ Y )  := - (c (JQ |K ) V X , Y € 0 .

where c : g —• g is the conjugation operator determined by the compact real form gp. 
From the ad-invariance of ( | ) and the fact that conjugation is an automorphism of

4
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g it follows tha t ( - |- ) satisfies

( X \ Y ) = { Y \ X )  ,

<c(A-)|c(y)) =  (A-|r),
( {X,c(Y) \ \Z)  = ( X \ [ Y , Z} )

for all X,  Y, Z  £  g. TVeating g as a R-linear space by restricting scalar multiplication 
to multiplication by reals, we can introduce a positive definite inner product {( | - )) : 
g x g —* R on g defined by

{ ( X \ Y ) )  := R e (A '|y )  V X . y e  g .

Let D U denote the norm induced on g by (( |- )), i.e.

11*11 :=  V  <( X \ X )) V X € g .  (2.1.1)

From the invariance properties satisfied by ( | - ) ,  it is straightforward to verify tha t 
((■!•)) satisfies

( ( X \ Y ) )  = ( ( Y \ X ) )  ,
« c (X )|c O O »  =  « * m >  , (2.1.21

( ({X,c(Y) \ \Z))  =( { X \ [ Y , Z } ) )

for all X , Y , Z £  g.
Let h be a Cartan subalgebra of g and R  C  h* the roots determined by fi. Then 

we have the Cartan decomposition

8 =  1 ) 0  Ce„
R

where the nonzero vectors e a satisfy

[H, e0] =  a ( H) e a V H  £ I). (2.1.3)

Note that
C eQ = { X 6 g | [H, X] =  a ( H ) X  V H e l ) } .  (2.1.4)

A straightforward consequence of (2.1.4), the Jacobi identity, and the ad-invariance 
of (-|-) is that

[ea ,eaj £ Ce a+ (3 (2.1.5)

and
(eo |e j ) = 0  i f a + / 3 # 0 .  (21.6)

Following [21], we define t a £ 1) as the unique vector in h that satisfies

( tQ|H ) = a ( H )  V / /  €  f) •

Then
(a|/3) := (ta lt/,) V a j e f l  (2.1.7)

defines a positive definite inner product on the space spang{ a  \ a  £ R  }. We will use 
| - 1 to  denote the norm of this inner product. It will be useful to introduce the “dual

5
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roots” a v defined by
v 2a 

°  := - l 2|a |’
We can use the dual roots to define the angle bracket

( a , 0 )  := (a |/3 v ) ,

and the vectors
ho .  ^QV

Choosing a base A for R ,  we then have

h =  0  Ch„ .
a € A

Also the Cartan matrix C  is defined via

Ca 0 :=(a. (3)  V a , / 3 e  A .

A useful relation th a t is an easy consequence of the above definitions is

[hQ,e^] =  C 0 a e 0  V a , / ? €  A.  (2.1.8)

Since g0 is a compact real form of g, the vectors { h„, e„ | a  € /? } can always be 
chosen to satisfy the following relations

c ( h o )  = -h o , c ( e 9 ) =  —e _ o  V a  €  R  . (2 .1 .9 )

and

[eQ,e_„] =  h« (2.1.10)
[ea ,e j]  =  N a ,0 e a + 0  if a  + 0  € R  (2.1.11)
[ea , e ^ ] = 0  if a  + 0  £  0 and a  4- 3  £ R  (2.1.12)

where the constants Na,0 are real and Na,j  = —N - a,~0- We are also free to normalize
the vectors e„ as follows

(eo|eo) =7^7 V a e f i .

A basis satisfying these conditions will be called a Chevalley- Weyl basis. The compact 
real form go can then be written as

0° = Riho © R (eQ — e_ o ) © Ri (e„ + e_„) ,
o€A a£R* a^R*

where R +  is the set of positive roots. The subspace

f ) o = 0 R i h o  (2.1.13)
a € A

is called the real C artan subalgebra of go- Notice that I) is the complexification of ho-
As in the complex case, a real Cartan subalgebra can be defined independently as a
maximal Abelian subalgebra of g0.

FYom (2.1.13) and the fact tha t {a\0) €  R for all a ,  0  €  R, it is clear that a (H ) €

6
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iR for every W 6  f)o and a  e  R. This allows us to define a subset W r of f)o called the 
real fundamental open We-yl chamber by

W r :=  { H  € l)o I -  > 0  Va € A } .

We will also need a related subset W  of f) called the (complex) fundamental open Wcyl 
chamber which is defined by

W  : = { / / €  b | a( H)  > 0  Va 6  A } .

Observe that we have the inclusion W  C  *ho-
If we let exp : go —* G  denote the exponential map, then the kernel of exp is by 

definition
ker(exp) =  { X  € g0 | exp(-Y) =  1 } .

The subset of ker(exp) given by

J  := ker(exp) n l)o
is known as the integral lattice.

2.2 Three dim ensional sem isim ple Lie subalgebras
Later on we will see that classifying spherically symmetric Yang-Mills potentials is 
related to the problem of classifying three dimensional semisimple Lie subalgebras 
of g up to conjugation by inner automorphisms. This problem of classifying thiee 
dimensional semisimple Lie subalgebras has been studied extensively by many authors 
beginning with Mal’cev [39] and Dynkin [15]. For a modern presentation and relations 
to nilpotent orbits see [12].

It is well known that any three dimensional semisimple Lie algebra is isomorphic 
to SI2C and is spanned by three vectors { Q0, . H_ } that satisfy the commutation
relationships

[n0,n±] = ± 2 n± and [n+,n_] = n 0 . (2 .2 . 1 )

The vectors { f!_ } are known collectively as a complex standard triple. Instead 
of working directly with s^C-subalgebras, we will often find it more convenient to 
work with -4i-vectors. An A\-vector is a vector fio €  g for which there exists two 
vectors f l+, fi_  such that the commutation relationships (2 .2 .1) are satisfied. The set 
of all .41-vectors will be denoted by «4|. A distinguished subset of is the set *4]f'R 
of real Ai-vectors. These are the .41-vectors flo for which f l+ , 0 _  can be chosen so 
that

c(fto) =  - fio  and c(fi+ ) =  - f l_  (2 .2 .2 )

are also satisfied. Notice that in the real case if we define vectors Qi. fi2 , and O3 in 
go via

n + = 2iflj and f l± = -  ifln , (2.2.3)

then flj ,  fl2. and O3 satisfy
[ f i „n , l  =  € , >n  fc. (2 .2 .4 )

This shows that span8 {n i, 0 2 . ^ 3 } is isomorphic to S03R.
Let

Aut(g) :=  { 0  € GL(g) | [0(A), 0(Y)] =  0([X, K]) for all X, Y  € g }

7
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denote the automorphism group of 0 . The group o f inner automorphisms Int(g)
is defined to be the subgoup of Aut(0 ) generated by automorphisms of the form
exp(ad(X )) where X  is any element of g for which ad(X ) is nilpotent. It is a standard 
result in Lie algebra theory that Int(g) is the identity component of Aut(g). With 
these conventions we define

[-4j] :=  { Int(g) conjugacy classes of Ai-vectors of g } , (2.2.5)

and

[,4i] :=  { Int(g) conjugacy classes of s^C-subalgebras of g } . (2.2.6)

Conjugacy classes of an element x will be denoted by [x].
It is well known [12] that the map

[-4i] —  [A]} : [ s p a n c t f i o . +  , fi_ }] —  [Do] (2.2.7)

is a bijection. In [15] Dynkin proved that for fixed C artan subalgebra h and base 
A = { a  1, 0 2 . ■ • • } there exists a unique Ai-vector fio in a conjugacy class [fig)
such that

a(fio) =  0 , 1, or 2 for all a  € A.

He then defined the characteristic \;([fioi) *he conjugacy class [fig] by

x = x([n,ol):= («»(«o)....... o,(fi„)).

The importance of the characteristic is that it is a complete invariant, i.e. [fig] =  [fig] 
if and only if x([fig]) =  x([Dg]). Consequently.

.4[ n  VV is in one-to-one correspondence with [-4,]. (2.2.S)

It is worthwhile to note that not every combination of 0 , 1, and 2 defines the charac­
teristic of some conjugacy class [fl0]- In fact, the total number of conjugacy classes is 
far less than the potential 3*. For example, the number of characteristics for A t -1  is 
equal to to the number of partitions of I and this is asymptotically equivalent to

_ L _ e ' / ¥
Ay/U

which is much smaller than 3/_1.
It is not difficult to show that for every Lie algebra g there is always a characteristic 

of the form
X — (2,2.........2) .

In other words there always exists an Ai-vector fio such that a (f l0) =  2 for all a  € A. 
These distinguished elements will be called principal A\-vectors.

The Dynkin diagram of a Lie algebra g labeled with the characteristic numbers 
Qfc(Do) above the nodes is called a weighted Dynkin diagram. All the possible weighted 
Dynkin diagrams of the exceptional Lie algebras Go, F4, E& and E$ were determined 
by Dynkin in [15]. A listing of these diagrams can be found in [12] section 8.4 .

For the classical Lie algebras the weighted Dynkin diagrams are not optimal for 
classifying the conjugacy classes of [.Ai], Instead, a  different method based on the 
“partitions of n” is used. To describe this method, we first consider sI„C =  A„_i  tor 
which the classification problem can be solved by elementary methods. A partition
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of n is an A:-tuple d  := (di ,d? , . . .  ,dk) such that

n =  ^ ^ d ,  ■
j=i

(2.2.9)

If a number a is repeated q times in a partition we will denote this by aq and q will 
be called the multiplicity of a. For example, the partition (9 ,9 ,9 ,6 ,4 ,4 ,2 ,1 ,1 ,1 ) will 
also be written as (93,6 ,4 2,2, l 3). The set of all partitions of n will be denoted by 
V(n).  Using SI2C representation theory, it not hard to show that the there exists 
a bijection from [,4[] to 'P(n). Moreover, for each partition (d i , . . .  ,dk) a canonical
representative Qq*'" 
each s € N let

,d„) of the conjugacy class can be constructed as follows. For

(2 .2 .10)

Then

s € N let

( s 0 0 ••• 0 0 ^0 s — 2 0 •• 0 0
0 0 a - 4  0 0

ns = ;

0 0 0 —s +  2 0
0 0 ••• 0 - v

fc
n (dl’S£o d‘ ) =  0 i # - 1

j=i

representative. There also exists simple formulas

/0  v /l(s) 0 0 0 \
0 0 / 2 ( s - - i )  0 0
0 0 0 V 3 ( s - 2 )
0 0 0 0

0 0 0 0 ^ ) i00

0 0 0 /

n i  = ( n ; ) ‘

( 2 .2 . 11)

( 2 .2 . 12)

and

where 1 denotes the transpose of a matrix. Then

(2.2.13)

Qld,....

J  =  1

d, - l
± (2.2.14)

From these formulas it is easy to verify that

spanc {flo<<1 dk\ r f * '  .............^  sl2C .

Similar results can be obtained for the other classical Lie algebras, with the conjugacy 
classes of being parametrized by a subset of V(n)  for appropriate n. A canonical 
representative of the conjugacy class can also be constructed although the formulas 
are more complicated. All of this can be found in chapter 5 of [12], we only state the 
results.
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T heorem  2.2.1. I f  g = slnC then there exists a bijection between [v4̂ j and V{n).

T heorem  2.2.2. I f  g =  S02n + iC then there exists a bijection between and the 
set of partitions o f 2n +  1 in which the even parts occur with even multiplicity.

Example: 507C contains six conjugacy classes parametrized by the partitions (7), 
(5, l 2), (3 ,l 4), (3,22), (32, 1), and (22, l 3).

T heorem  2.2.3. I f  g =  sp2nC then there exists a bijection between [,4j] and the set 
of partitions o f 2n in which the odd parts occur with even multiplicity.

Example: sp6C contains seven conjugacy classes parametrized by the partitions 
(6), (4,2), (4, l 2), (32), (23), (22,1 2), and (2, l 4).

T heorem  2.2.4. I f  g = so^nC then there exists a bijection between and the set 
of partitions of 2n in which the even parts occurs with even multiplicity except that 
the “very even” partitions ( d i , . . . , dk) f  those with only even parts, each having even 
multiplicity) correspond to conjugacy classes labeled (d \ , . . .  ,dk)i  and ( d i , . . .  ,d/t)//.

Example: sosC contains eleven conjugacy classes parametrized by the partitions 
(7,1), (5,3), (42)/, (42)// , (5, l 3), (32, l 2), (3,22, 1), (24)/, (24)// ,  (3 ,J5), and (22, l 4).
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Chapter 3

Spherically Sym m etric  
Yang-Mills fields

In this chapter we review the Yang-Mills formalism and introduce the notion of spher­
ically symmetric Yang-Mills fields and Yang-Mills potentials. We also establish the 
validity of the temporal gauge. Throughout this thesis a spacetime will refer to a 
connected four dimensional manifold M  equipped with a Lorentzian metric g. By 
Lorentzian we mean that there exists a frame f„ a t every point in M  for which 
g(fa,fb) =  Tjab and

-1 0 0 o'
0 1 0 0
0 0 1 0
0 0 0 I

Any non-zero tangent vector v 6 TAf is called spacelike if g(v,v)  > 0, timelike if 
g(v, v) < 0, and null if g(v,v) = 0. A hypersurface £  C M  will be called spacelike if 
every vector v 6 T £  is spacelike. From this definition, it is clear th a t g restricts to 
a Riemannian metric on a spacelike hypersurface. A Killing vector field £ is a vector 
field for which the Lie derivative L^g vanishes, so that the flow generated by £ defines 
isometries of the spacetime. A spacetime is static if there exists a  timelike Killing 
vector field £ that is hypersurface orthogonal. T hat is L$g =  0 and for every x  € M  
there exists a spacelike hypersurface Ex containing x that is everywhere orthogonal 
to £. In this situation, it is always possible to introduce coordinates (xa ) so that

£ =  cfo , gob - 0 , and dogab — 0

where g = gabdxa ® dxb. Here we are using the standard notation da =
Suppose A/ is a static spacetime. Let £  be any hypersurface that is orthogonal to 

the timelike Killing vector £ and let i : £  —• M  denote inclusion. Then M  will be said 
to be asymptotically fiat if there exist a compact set K  C  £  and a coordinate system 
(x‘) i =  1.2,3 on E \ K  in which limr —oc(i*s)o =  *̂> an^ limr_oo = - a  (a > 0)
where r  =  ^ /(x1)2 +  (x2)2 +  (x3)2. We note that this is a weak form of asymptotic 
flatness. Often, the rate at which (i ’g) tJ approaches 6,} and g(£, £) approaches —a as
r  —* oc is specified. For example, one often assumes th a t ( i 'g) tJ = StJ + 0 ( l / r )  and
dk(i 'g)i j  = 0(1 / r 2) as r  —» oo. However, such consideration will not concern us here
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3.1 R eview  o f the Yang-M ills formalism
In this section, we will quickly review the Yang-Mills formalism. Let P  = (P, jt, M, G ) 
be a principal G-bundle over M  and w a connection 1-form on P. We will use Rk , 
k  € G  to denote the right action of G on fibres of P. Let a : U c  M  —► P  be a  local 
section of P. The Yang-Mills (or gauge) potential A a is defined by

A a = o 'u i . (3.1.1)

The gauge potential is a local object that depends on the local section a. Different
choices of local sections yield different gauge potentials. Choosing a specific local
section is also known as fixing the gauge. Once a gauge is chosen, to  reduce notation 
we will write A  instead of A ° . If o\ : U C M  —* P  and a-i : U C M  -* P  are two 
local sections, then there exists a map g : U —* G such that <Ji(x) =  Rg(x)a i (x ) f°r 
all x € U. Realizing G as a matrix group, which we can do since G  is compact, the 
relation between the two gauge potential A a> and A”2 is

A"’ = g - l A a'g + g - ldg.  (3.1.2)

The curvature fi of ui is defined by

f i  =  d u i +  ^[u; A w] .

The Yang-Mills (or gauge) field strength F a is then defined by

F a :=<7*n.  (3.1.3)

It is not hard to verify that F a is also given by

Fa = d A a + \Aa , A a\.  (3.1.4)

and the relation between Fa 1 and F ”2 is

F ° 2 =  g ~ l F a>g .

As with the gauge potential, once a gauge is fixed we will write F  instead of F a. In 
local coordinates (x“ ) we can write

A  =  A adxa

where the Aa are g0-valued maps. The the field strength is then given by

F — \  Fabdxa A dxb

w’here
Fab — daAb — dbAa + [Aa . Ai,] .

For any spacelike submanifold S '  in A/ diffeomorphic to a two sphere, we can 
define two gauge invariant quantities

Q f  ■= £  fs* l l * ^ “6|l < - d  Qfl := X fsa ||Fahea61| f f

where e is the associated area element of the sphere S 2. The quantities Q fJ  ind  
Q e  can, in analogy with electromagnetic theory, be thought of as the magnetic and 
electric charge, respectively, of the gauge field contained inside of S 2.
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If M  is static and and asymptotically flat, let E be a spacelike hypersurface that 
is orthogonal to  the timelike Killing vector £. Then E can be foliated by a family of 
two spheres S 2 where r  is the asymptotic radial coordinate. The total magnetic and 
electric charges Qm  and Q e  of E are then defined by

:=  rilS, &  h *  ll*f ’a6£“fcH fr and := <7 f s i  l l ^ l l  er . (3.1.5)

3.2 Spherically sym m etric Yang-M ills fields
Let M  be a spherically symmetric spacetime, i.e. 51/(2) acts on M  by isometries 
with orbits diffeomorphic to two spheres S2 so th a t locally M  =  M  x 5 2. We will 
denote this action by 0  : 51/(2) x Af —» Af. The Lorentz metric g on M  can be 
decomposed as g =  g -f r2g where g is a Lorentz metric on Af, r  is a scalar on Af, and 
g is the standard metric on S~. Locally we can always introduce a Schwarzschild type 
coordinate system (t , r, 8 , 0) in which (r. £) are coordinates Af, (0,0) are the usual 
angular coordinates on 5 2, and

g =  - N ( r , t ) S ( r , t ) 2dt2 +  N (r ,t)~ ldr2 + r2 (d02 + sin2 8 d<j>2) . (3.2.1)

Let P  =  (P,ir, M ,G )  be a principal C-bundle. Let 0  : SU (2) x P  — P  be a left 
action of SU (2) on P  by principal bundle automorphism such that the induced action 
of SU (2) on M  is equal to 0 . In other words, the diagrams

p * P P

' 1 | T 'i'k |
A/ Vfc . A/ P

commute for all k £ 5(7(2) and g € G. A spherically symmetric connection is 
defined to be any connection that satisfies

0^W =U1 V k € 5(7(2).

Spherically symmetric gauge potentials and gauge field strengths are those th a t are 
derivable from a  spherically symmetric connection, i.e. see (3.1.1) and (3.1.3).

To determine all spherically symmetric connections and hence all spherically sym­
metric gauge fields two problems must be solved. The first is to classify all principal 
(/-bundles over M  that admit an action of 5(7(2 ) by principal bundle automorphisms. 
The second is, given such a bundle P, determine all the 5(7(2) invariant connections 
on P. These two problems have been solved independently by Bartnik [2 ] and Brod- 
beck and Straum ann [8 ].

To explain Brodbeck and Straum ann’s results, we first explain how classifying 
principal G-bundles over A/ that admit an action of 5(7(2) by principal bundle auto­
morphisms is equivalent to classifying the conjugacy classes of homomorphisms A from 
(7(1) into G. To see this, fix a point xo €  A/ and consider the orbit O := 0st/(2)(xo)- 
We will denote the isotropy group of x0 by S U (2)l0  =  (7(1). Now consider the 
sub-bundle P$ = 7r- l (C?) over O. Observe that the 5(7(2) action is now fibre tran­
sitive on this bundle. The isotropy group SU (2)Xq maps the fibre 7T- l (xo) to  itself. 
Fix ti0  G tt- 1 ( x o ) .  Then for any k  €  5(7(2)Xo there exists a A (k) G G such that 
0k(uo) =  Px(k)iuo)- It is easy to verify that the map A : 5 (/(2 )IO —* G is a homomor­
phism. If we change the point u q  g  7r - l (x0) then the resulting homomorphism will 
be conjugate to  A and this is also true for any 5(7(2)-isomorphic bundle. This shows
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that the equivalence classes of principal G-bundles admitting a fiber transitive S U (2) 
action are in one to one correspondence with the conjugacy classes of homomorphisms 
A : U (l)  —► G. Brodbeck and Straumann then proved

T h e o re m  3 .2 .1 . The set o f conjugacy classes o f homomorphisms A : U (\)  —• G 
is in one-to-one correspondence with the set I  n  W r. The conjugacy class o f A is 
characterized by A'(e) € I n  W r when  A' : u (l) —* go is the induced Lie algebra 
homomorphism and e  =  27ri is the standard basis vector in the integral lattice o f u( 1).

Since the lattice point cannot jump when we change orbits, the above theorem 
shows tha t the lattice points within the closed fundamental Weyl chamber classify 
the principal C-bundles with S U (2)-actions. So, once a principal G-bundle with an 
S U (2)-action is fixed, it determines a element I n  W r which we will denote as —4 ttA3- 
Brodbeck and Straumann then proved that in a Schwarzschild type coordinate system 
(£, r, 0 , <f>) a  gauge can always be chosen such tha t a spherically symmetric Yang-Mills- 
connection on P  is locally given by

A = A + A  (3.2.2)

where
A  =  N (t, r)S (t, r).4(£, r)dt + B{t, r)dr  (3.2.3)

is a go’ -valued 1-form, and

A  =  A i(t,r)dQ + (A2(£ .r)s in 0 -f A3 cos 0)d4> (3.2.4)

where Ai and A 2 are go-valued maps that satisfy

[A2 ,A 3] =  Ai and [A3,A l] =  A2. (3.2.5)

The field strength is given by

F  = (dtB -  dT(N S A )  4- JVS[.4,0])<tt A dr + (a,A, 4- N S[A , A1 ]) d£ A d0  

4- (atA2 +  N S[A , A2]) sinddt A dd> 4- (dr Ai 4- [S, A1 ]) dr A d0
+ {dr A2 4- [B , A2])s in 0 d r A d<t> 4- ([A 1, A2] -  A3) sin 9d9  A d$ . (3.2.5)

3.3 Temporal gauge
In this section we show that the B part of the gauge potential (3.2.3) can always be 
gauged away, at least locally. We assume that B (t,r) is defined and smooth on a 
neighborhood A ^ .m ) ° f  (*o. fo)- Let W b e a  neighborhood of 0 € go such that

exp|w : U — ► V :=  exp(W) (3.3.1)

is a diffeornorphism. Then

*  : U GL(g0) : Y  >— > (Ty' exp) " 1 o T eL „ p(V) (3.3.2)

defines a smooth map. Let
UA' := U n  g^ 1 (3.3.3)

and define a smooth map

f  : U ^  x  Ar{to,ro) — ► 0o : (Y, t, r) —  - * ( K )  o Ad«xp(_ n (B(t, r »  . (3.3.4)
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Lem m a 3.3.1.
/(W Aj,JV(lo,ro))C(foA3 (3.3.5)

Proof. Suppose Y  6  UAi and (t , r ) € fS(t0 ,r0)- Then

(Ad.xp(_ V')(S (t,r)) , A3] =  Adexp(_y-)(B(<,r), Adexp(V)(A3)]

=  Adexp(_ n [B (t,r), A3] since Y  € 0 ^ 3

= 0 since B(f, r) 6 0q3

Therefore
Ad , xp(. v )(8 ( i , r ) ) e JoA j. (3.3.6)

Since G  is compact, we can assume th a t G  c GL(Rn) for some n > 0. Suppose 
Z € i / Al. Then

* { Y ) - ' ( Z )  =  Tex^yjLexpj-V') oT y 'exp(Z ) 
d
dt

and hence

exp( —K) exp(V + t Z )  ,
t=o

[ W , (Z) ,a3] =  j t (exp(-V ')exp(Y ' 4  t Z ) \ 3 -  A3 exp(-Vr)exp(V' 4  tZ))
1=0

But exp( — Y)  exp(V' 4  t Z ) \ 3 = A3 exp(—V, )exp(Vr + tZ)  since Y, Z  € gfi3 , and so we 
find that [4'(V, )_ 1(Z), A3I = 0 . Thus ^f(V^)"1(flo3) C 0q3. Since 'I'(V' ) -1  is invertible 
it follows that 't(V ')"'l (0o3) = (0o3) or equivalently

^ (V )(0^ 3) =  (0oV3) .  (3.3.7)

The lemma now follow immediately from (3.3.6), (3.3.7) and the definition of / .  □

By lemma 3.3.1, the initial value problem

drX( t ,  r) = f ( X ( t , r), t, r) : X (f0, r0) = 0  (3.3.8)

has a unique smooth solution X( t ,  r) defined on a neighborhood A/(to,r„) C N(t0 .ra) 
(fo.fo) th a t satisfies

X&tO'To)) C d *  . (3.3.9)

The solution X( t ,  r) to (3.3.8) can be used to generate a gauge transformation via

g{t,r) = e x p (X (t,r) )  . (3.3.10)

It is worthwhile to notice that if B  is independent of f, then the differential equation
(3.3.8) will also be ^-independent. So then the solution X  and hence the gauge 
transformation (3.3.10) will be l-independent.

P roposition  3 .3 .2 . The gauge potential (3.2.2) transforms under the gauge trans­
formation (3.3.10) into

N S A d t  -f- A \d6  4- (A2 sin0 4  A3cos6 )do (3.3.11;

where A  =  Adg- i (A)  4- T „ p(.V)Lexp(_x)) ° Tx expdtX ,  Ai =  .4dg- i(A i)  and \ 2 =
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Adg- i ( \ 2 )- Moreover, A i,  A2 and A  satisfy

[A21 A3] =  A [ , [A3, A1 ] — A2 , and (.4, A3] =  0 . (3.3.12)

Proof. Under the gauge transformation (3.3.10) the gauge potential (3.2.2) transforms
as

A  •— »Af5Adexp(_x(t,r))-^dt 4- AidO 4- A2 sin# 4- Ad*xp(_x(«,r))(A3 ) cos9)d<j>
+  Adexp(_ x (t.r))(B(«, r))dr 4- 0 («, r) (3.3.13)

where

0 ( t , r )  =  T exp(X(t,r))Lexp(-x(t,r)) o T x ( t , r )e x p (3tX ( t ,  r)dt 4- dTX( t , r )dr)
= ' J/ (X(t , r))~l (dt X( t , r )d t  + drX( t , r )dr)  by (3.3.2)

Now,

Adexp(_x)E dr 4- t y ( X) ~ ldTXdr  =  t f ( X ) - ‘ (9rX  -  f ( X , r ) ) d r  = 0

by (3.3.4) and by (3.3.8). Also

Adexp(_x(r))(A3) =  A3 by (3.3.9) .

The above two result show that (3.3.13) reduces to (3.3.11) as required.
Now,

[Adexp(_X(r))-4 i A3) =  A d exp(_ X ( r ) ) [A  A d„xp(X(r))A3]

= A d exp(_ x ( r ) ) [ A  A3] b y  (3.3.9)
=  0 since [.4, A3] = 0

and

[exp( —X (t, r))exp(A ’(t 4- s, r)). A3|[T 'e*P(X )L ex p ( — .V) 0 6 X p 3 [ ,Y ,  A3] —
j= 0

But G is compact, so we can again assume that G C GL(Rn) for some n > 0. 
Then exp(—X(£,r))exp(AT(t 4-s,r))A 3 =  A3 e x p (-A (t,r))ex p (A '(t 4- s ,r ) )  by (3.3.9). 
Therefore

[Texp(X)Lexp(_x) ° T x  expc?tA\ A3I =  0

and so it follows that [-4, A3] = 0. Similar arguments can be used to show that 
[A2,A 3] =  Ai and [A3 ,Ai] =  A2. □
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Chapter 4

The Einstein-Yang-M ills 
equations

The Einstein-Yang-Mills equations can he derived from the action principle

S(g,A)  = j  y / \g \d * x ( - ± .R - i ( F ah|F “h )) . (4.0.1)

We are using relativistic units where the speed of light and the gravitational constant 
have been set to one and we have absorbed the gauge coupling constants into the 
definition of the inner product ( | ). Varying the action (4.0.1) with respect to the 
metric g yields the Einstein equations

Rab -  \R g ab = SirTai, (4.0.2)

where the stress-energy tensor Tab is given by

Tab = ( Fac\Fbc ) -  ±gab( Frd\Fcd) . (4.0.3)

Varying the action (4.0.1) with respect to the gauge potential .4 yields the Yang-Mills 
equations

DaFab = 0  (4.0.4)

where
DaFbc ■= VaFbc 4- [Ac, Ffcc] (4.0.5)

and V is the metric connection.
The stress-energy tensor T* defines a linear operator on T M . Although Tab is 

symmetric, the linear operator is not necessarily diagonaiizable due to the fact 
that the metric g is not Riemannian. If T£ happens to be diagonaiizable, then the 
invariant physical quantities of the Yang-Mills field can be extracted from the stress 
energy tensor as follows. Since Tb is a diagonaiizable by assumption, we can find an 
orthonormal basis {Ua, X a, Y a, Z a } of eigenvectors with Ua timelike and eigenvalues 
e , p x ,  PY-  and p z .  respectively. The eigenvalue e can be interpreted as the rest energy 
density of matter. The other eigenvalues p x ,  P y , and p z  are called the princ ipa l  
pressures.

Now that spherically symmetric Yang-Mills fields and spherically symmetric space- 
times have been defined, we are ready to introduce the static spherically symmetric 
Einstein-Yang-Mills (EYM) equations. The first section of this chapter will be devoted
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to defining these equations and some related quantities. As we remarked earlier in the 
introduction, previous studies of the static spherically symmetric Einstein-Yang-Mills 
equations have been carried out under the assumption that the action is regular. The 
rest of this chapter will be spent determining exactly which actions are regular. As 
we will see, the regular actions form a very small subset of the total actions and hence 
are quite special.

4.1 Static spherically sym m etric field equations
We now assume that all the fields are static and spherically symmetric. From the 
discussion in section 3.2, we can introduce a Schwarzschild type coordinate system 
(t , r, 6 , 4>) for which the metric takes the form

g =  - N ( r ) S ( r ) 2dt2 +  N ( r ) ~ 1dr2 +  r2 {d92 +  sin2 9d<t>2) . (4.1.1)

and the gauge potential can be written as

A = A + A  (4.1.2)

where
A = N(r)S(r)A(r)dt  +  B(r)dr  (4.1.3)

is a Qq1-valued 1-form, and

.4 =  A i{r)dd +  (A2 (r)s in 0 -f A3 cos0 )di> (4.1.4)

where Aj and A2 are g0-valued maps th a t satisfy (3.2.5). As was shown in section 3.3
we are free to use the temporal gauge and therefore set

5  =  0 .  (4.1.5)

We will make one more assumption on the form of the gauge potential, namely that 
A  — 0 . In analogy’ with the electromagnetic theory, we call .4 and .4 the electric and 
magnetic parts of the gauge potential, respectively. Thus (4.1.5) and the assumption 
>4 =  0  means that the gauge potential is purely magnetic. For solutions that are 
bounded at the origin, it can be shown by analyzing the initial value problem at 
r  =  0  using the techniques of chapter 5 that A  =  0  is a consequence of the EYM 
equations. Therefore no generality is lost by setting >4 =  0 when looking for solutions 
that are bounded at r  =  0 . However, for black hole solutions it is known that there
exists solutions with >4 not identically zero [17,25]. Therefore >4 = 0 is a restriction
in this case.

W ith the above assumption, the gauge potential takes the form

.4 =  A[(r)d0 (A2( r )s in 0  -1- A3 cos 9)d<t>. (4.1.6)

Using (4.1.1) and (4.1.6), the EYM equations (4.0.2)-(4.0.5) reduce to

m ' = ( i\G  + r~ 2 P). (4.1.7)

S ~ lS ' = 2 r ~ lG.  (4.1.8)
r 2( V A ';+ 2 ( m - r - 1P)A,+ + JF  =  0, (4.1.9)

[A'+, A_] -I- [A'_, A+] =  0  (4.1.10''
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where ' := djdr  and

A± := tA j  — 1A2, Ao ■ = 2iA3, (4.1.11)

G : = I ( A '+ |AV> P : = i ( F | F ) ,  (4.1.12)

F : =  i (A o - [ A + ,A_]), (4.1.13)

F : =  - i [ F ,A +]. (4.1.14)

Using the norm (2.1.1), G  and P  can can be written as

C = i ||A V I |2 and P = ± | |F | | 2 (4.1.15)

We obviously have G > 0 and P  >  0. A useful variant of (4.1.7) is

N ’ = i  ( l  -  JV -  2 NG -  - | p )  . (4.1.16)

Observe that equation (3.2.5) becomes

[Ao,A±] =  ±2At  , * (4.1.17)

and Ao satisfies
c(A0) = -A 0 . (4.1.18)

Defining
S x = { a  € fi|a (A o ) =  2 } (4.1.19)

it follows easily from (4.1.17) that

A + ( r ) € ® C e 0 V r .  (4.1.20)
a$S\

It is straightforward to verify tha t the stress-energy tensor T “ in the Schwarzschild 
coordinates is given by

T a _ , .  (  * G  P N G  P  P  P \
g V r 2 r4 ’ r2 r4 ' r 4 ' r 4 )

So the energy density, radial and tangential pressure are given by 

4ne = r~2( NG + r~2 P),  47rpr =  r ~2( NG -  r ~ 2 P ), and 4 irpg—r ~ 4 P, (4.1.21) 

respectively. We see from (3.2.6) that the field strength can be written as

F =  ^(A'+ -  A'_)dr A dO +  ^(A'+ +- A'_) s in0d r A d<t> 4- FsinOdd  A d<t>. (4.1.22)

A short calculation shows that
1 c

*F  = -(A '+ -  \ ' _ ) S N s i n 9 dt A do  — i(A '+ + \ '_ )S N d t  A d0 + ^ F d t  A dr  . (4.1.23)

Assuming that spacetime A/  is asymptotically flat so tha t N,  S —• 1 as r  — 0 0 ,
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we see from (3.1.5) tha t total magnetic and electric charges are given by

Qm = lim ||F (r) || and QB =  0 . (4.1.24)
r —*oo

Following [6], we find it useful to introduce a new independent variable r  via

dr  ,—
^  =  ry /N  (4.1.25)

and dependent variables

/i : = y / N , U+ := \/N a '+, and k  :=  ~ ( l  4- /x2 + 2p2G  — 2r~ 2 P) . (4.1.26)

In these variables, equations (4.1.7)-(4.1.10) become

r  =  r/x , (4.1.27)

A+ =  rU+ , (4.1.28)
ii =  (k -  -  2n2G , (4.1.29)

( S t f  = S (k -  n)n  , (4.1.30)
k = - k 2 +  1 4- 2/x2C , (4.1.31)

V =  - ( * - /x ) t /+  -  - P ,  r (4.1.32)

where (•) =  One advantage of this system of equations over (4.1.7)-(4.1.10) is 
that it is no longer singular a t /x =  N 2 =  0. However, this will not be important to us 
here. Instead, we shall exploit in section 6.2 the fact that the system (4 .1 .27)-(4 .1 .32 ' 
is asymptotically autonomous to determine the behaviour of bounded solutions as 
r  —* oo.

4.2 R estrictions on Ao
In section 3.2 is was shown that Ao must lie in the set n W r. We shall now see 
how boundary conditions restrict Ao to lie in an even smaller set. For the geometry 
to be regular at the origin, it is necessary that

lim N(r)  =  1. (4.2.1)

For a global solution that is defined for all r  £ [0, oo), the physical boundary conditions 
at the origin r  =  0 are tha t the energy density and the radial and tangential pressures 
are finite there. From (4 .1 .21) and (4 .2 .1), is clear that these boundary conditions 
imply

G(r) =  O (r2) and P (r)  =  0 ( r 4) as r —• 0 . (4.2.2)

An immediate consequence of this is that

[A+ (0 ) , A _ ( 0 )] = A 0 .

This result combined with (4.1.17) and (4.1.18) shows tha t {Ao, A+ (0), A _ ( 0 )} form 
a standard triple satisfying (2 .2 .2). Thus Ao
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L em m a 4.2.1. )
Proof. Suppose Qq 6 -4 |'R n  VV. Then 2xiOo € VVfe- Moreover, exp(2xifi0) =  1 € G 
as Qq is_the neutral element of a SI2C subalgebra and 2tiA o € ho- Therefore ft0 € 
2 ^ j l  n W r  and hence

^ '* n V V c > i ; 'Rn ^ i i r n W Rj  .

The reverse inclusion is simple to establish and will be left to  the reader. □

This lemma shows tha t with the above boundary conditions a t the origin r  = 0, 
we can assume that

A0 6 ^ n W .  (4.2.3)

As we remarked before, the assumption that the spacetime is asymptotically hat 
implies that

lim N(r)  = lim S(r)  =  1 . (4.2.4)
r — oo  r —• 00 „

A common boundary condition that is adopted at r  =  00 is that the total magnetic 
charge vanishes. The vanishing of the total magnetic charge is equivalent to

lim F  =  0 (4.2.5)r-*ac

by (4.1.24). Assuming the limit limr—oo A+(r) exists, 4.2.5 implies

[A+(oc), A_(ao)] =  A0

where A+ (oo) =  limr—oo A+(r). The same argument as above shows that A0 €
-4 | R n  W. Therefore, if the magnetic charge vanishes, then we can assume that
Ao € .Ai'* n  VV.

The condition (4.2.5) does not seem to be a necessary one as purely magnetic black 
hole solutions have been constructed numerically with nonzero magnetic charge [25]. 
However, for globally regular solutions defined on [0,0 0 ) it is unknown if this condition 
is necessary. Indeed, as we shall see in chapter 6 for certain choices of Ao € ,4 ,'Rn  W, 
it is not clear that the limit limr—00 A+(r) actually exists, and even if it does exists 
we have not been able to prove that (4.2.5) is automatically satisfied. W ith this said, 
we will for the remainder of the thesis assume that 4.2.3 holds.

4.3 Regular .41-vectors and n-system s
If Ao € ^ * ’RnW  then we will call Ao a regular A i-vector and the action of SU (2) del 
mined by Ac according to theorem 3.2.1 will be called a regular action. Previously, all 
the results in the literature concerning the EYM equations have be derived under the 
assumption that Aq is regular. There are two main reasons for this assumption. First, 
equation (4.1.10) can be solved exactly and secondly the remaining equations (4.1.7)-
(4.1.9) can be expanded out in a Chevalley-Weyl basis { h Q | a S A } u { e a | a € f t }  
without having to explicitly compute any of the brackets [ea , e^]. As we shall see be­
low, this simplification can be traced back to the fact th a t S \  is a II -system  whenever 
Ao is regular. So in fact the simplification is not dependent on Ao being regular but 
only on S \  being a II-system. We recall [15] that a subset £  C ft is called a II-system 
if and only if
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(i) if q , 0  € E then a  — 0  $ R

(ii) E is linearly independent

For a  proof of the fact that Ao regular implies that S \  is a  Il-system see [9].
If we assume that S \  is a Il-system, then { h0 , e a , e _ a | a  € S \  } generates a 

semisimple Lie subalgebra of 0  denoted 0a for which S \  is a base [15]. By the definition 
of 5a, it is clear that Ao is a  principal Ai-vector in 0a- Also from (4.1.20) and the 
definition of 0a, we see that A+(r) € 0a for all r. The above discussion shows that if 
Ao € >ti'* n W  is chosen so that S \  is a Il-system, then the field equations (4.1.7)-
(4.1.10) can be reduced to a subalgebra of g for which Ao is a principal. Therefore, 
when 5 a is a Il-system we can, without loss of generality, assume that Ao is a principal 
Ai-vector in 0 .

So assume now that Ao € n  W is principal. We have the expansion

A+(r ) =  ^  w«(r )eQ , (4.3.1)
oeSj

by (4.1.20) where the wa(r) are complex valued functions and A  = S \  . From (2.1.9) 
and (4.1.11) it follows that

A _(r) =  wa (r)e-a . (4.3.2)
a€S*

Substituting (4.3.1) and (4.3.2) into (4.1.10) and using (2.1.10)-(2.1.12) yields

u)aw'n = w'aui„ V q  e  5a (4.3.3)

since a , 0  € 5a with a  ^  0  implies that a  — 0  <£ R. Solving equation (4.3.3) shows
that wa must have constant phase. We are free to choose these phases, which amounts
to a choice of gauge, and so we will demand that the phases are all zero. Hence the
wa (r) are all real valued functions. We can substitute (4.3.1) and (4.3.2) into (4.1.7) 
and (4.1.9) to get

m'  — ( N G  -I- r~2 P),  (4.3.4)

r2 Nw'" + 2(m -  r~ l P)w'a +• i  ^  waCal) ( \ 0  -  w20) =  0 (4.3.5)

where (Cap) := ( ( a ,0))  is the Cartan m atrix of the reduced structure group, and

P = l  £  (A“ - ^ a )hoa(X9  - w 2g), (4.3.6)
a.UZSx

G =  ^  N 7 ’£»es» 1 1 
2 Cap

na 0  = ■■■ ,2 i (4.3.8)

and

Aa = 2  5 3 ( C " l )a a . (4.3.9)
aeSx
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As before, in deriving the above expression we have used a, 0  £ S \  with a  ^  0, 
implies a  — 0  £ R.

On the other hand, if S \  is not a Il-system then equation (4.1.10) can no longer 
be solved exactly. This is due to the fact that for a ,0  6 R  with a  ^  0  it is no longer 
necessary that a  — 0  $ R. This implies in particular that the bracket [eQ,e^] may no 
longer be zero. The inability to solve (4.1.10) implies that the system of equations
(4.1.7)-(4.1.10) can no longer be written in the standard form y'(r) = / (y ( r ) , r) which 
provides a serious complication. Also the non-vanishing of the brackets [eQ,e^] also 
greatly increases the complexity of the equations.

In view of the above discussion, it would be desirable to classify all those Ao € 
«4j * fl W for which S \  is a fl-system.

L em m a 4.3.1.

{ Ao € -4i’R n  W  | S \ is a Il-system } = { A o 6 - 4 ) [ n W |  S \  is a n -system  }

Proof. Since .4 ,'Rn y v  C  A\C \W  the inclusion {Ao 6 ,4^'Rn W | S \  is a Il-system } C 
{ Ao € A \  n  W | S \  is a Il-system } is clear. To show the reverse inclusion we 
note that by the above discussion there exists a subalgebra C j  such that Ao is 
principal in g> and S \  is a base for g*. We can expand Ao in a Chevalley-Weyl basis 
{ h0 | a  € S \  } U { e a | a  € R \  } as follows

A0 = ^  A',h„  (4.3.10)

where AQ is defined above by (4.3.9). FYom the Cartan matrix it follows that Aa > ) 
for each a  € S \.  Define

:= ^  y / \ ^ e a and := -c (D +) =  ^  y / \ ^ e - a . (4.3.11)

Then using (2.1.10)-(2.1.12) it is easy to verify tha t {A o,n+ ,fi_} is a complex 
standard triple that satisfies (2.2.2). So Ao € «4,'R and therefore { Ao € -4, n  
W  | 5a is a Il-system } C  { Ao 6 -4]['R Cl W | S \  is a ri-systern }. □

From section 2.2, we know th a t the sets .4i D W can be completely parametrized. 
We can use this parametrization to determine all the Ao € n  W  such that S \  
is a Il-system. Then by the above lemma this will completely determine the et 
{ Ao € -4i'R n  W | 5a is a Il-system }.

Suppose Ao € -4i,R n  W is such that S \  is a Il-system. Let g ĝ  denote
the decomposition of g into simple ideals and RJ C  R  denote the roots of g} . This 
determines a decomposition of S \  =  US}X into a disjoint union of sets S x C  R1 such 
that S x is a Il-system in g7. Moreover, if we let Ao =  Aq denote the corresponding 
decomposition of Ao then it is not difficult to show that S JX =  { a  € W  | o(Aq) =  2 ) 
and Aq € - 4 ,R(gJ ) n  W(g7). This proves that if we can parametrize the set { Ao € 
.4 j,r H W | 5a is a Il-system } for simple Lie algebras g then we can parametrize it 
for all semisimple Lie algebras. The next theorem provides such a parametrization 
for the classical simple Lie algebras.

T h e o re m  4.3.2.
g =  sf„C
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S \  is a II-system if  and only i f  the partition d  that determines Ao satisfies one of 
the following

(i) d  =  (2v, 2u +  1) with 2v > 2u + 1 > 3,

(it) d  =  (2u +  1 ,2 v) with 2u +  1 > 2 v > 2 ,

(Hi) d  =  (2u, 1 ,1 , . . . .  1) with v > 1.

0 =  so2n+lC

S \  is a Il-system  i f  and only i f  the partition d  that determines Ao satisfies one of 
the following

(i) d  =  (2u +  1) with u > 1,

(ii) d  =  (2u +  \ , 2 v , 2 v) with u > 1, and 2 u +  1 >  2 v,

(iii) d  =  (2u,2u, 2u +  1) with u > 1 and 2 v > 2u +  1,

(iv) d  =  (2 v , 2 v, 1 ,1 , . . . ,  1) with v > 1.

0 = SP2„C

S \  is a Il-system i f  and only i f  the partition d  that determines \ 0 is o f the form  
d  =  (2 v , 1 ,1 , . . . ,  1) where v > 1.

0 = so2nC

S \  is a Il-system i f  and only i f  the partition d  that determines Ao satisfies one of 
the following

(i) d =  (u, u) with u > 1,

(ii) d =  (2u + 1,1) with u > 1,

(iii) d =  (2u +  1,2t% 2 v, 1) with 2u + 1 > 2 v > 2.

(iv) d = (2u.2i’,2u +  1,1) with 2 v > 2 u +  1 > 1,

M d =  (2u, 2u, 2u +  1,2u + 1) with 2v > 2u +  1 > 3 ,

(vi) d =  (2 u +  1,2u +  1,2 v, 2 v) with 2 u + 1 > 2 v > 2.

Proof. We will only prove the theorem for simplest case g =  sl„<C. The other classical 
algebras so2n+iC , so2nC and sp2nC can be analyzed in a similar fashion using the 
formulas from chapter 5 of [12]. However, due to the increase in complexity of the 
formulas over those for sl„C, the proofs become much more difficult and tedious.

To proceed, let D denote the set of diagonal n x n  complex matricies. Then

f) =  { H  6 S) | trace(//) =  0 }

is a Cartan subalgebra for sl„C. Define Cj € 0*  by

e,(diag {Hu H2  Hn)) = Hj .

The set of roots determined by f) is R  = { e, — e} \ 1 < i . j  < n i /  j  } and 
A =  { e, — t j  | j  = 1,2, . . . , n  — 1 } is a base for R.  Suppose Ao is the Aj-vectoi 
determined by the partition d =  (<fi,d2, . . .  ,</*) according to the formulas (2.2.10) 
and (2.2.11).
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L em m a 4 .3 .3 . I f  there exists r , s €  { 1 ,2 ,...,/ :}  with r < s such that dT and d ,  are 
both even, then S x is not a Il-system.

Proof. Since dr a n d d , are both even, and r  <  s, it follows that dT > d, > 2. Let 
d} := dt , I  = dr +dr / 2 , and J  = d3 -t-d,/2. Then it is not difficult to verify that 
e/ -  e/ + 1 and e/ -  e j+1 are in S x. But (e/ -  e/+ I ) -  (et -  eJ+x) =  eJ+x -  el + l € R 
and hence Sx is not a Il-system by definition. □

L em m a 4.3 .4 . If  there exists r , s G  { 1 ,2 ,...,/ :}  with r < s such that dr and d3 are 
both odd and dr > 1 , then S x is not a II-system.

Proof. Since r  <  s, dr and ds are odd, and dr > I, we must have dr > 3 and
dr > d,. Let I  = dr + (dr — l) /2  and J  = ds + (dt — l ) /2  with dj defined as in 
lemma 4.3.3. Then it is easy to show that e/ — e /+j and e/ — ej+x are in Sx . But
then (e/ — e/+i) -  (f/ — f j+ i )  =  ( j +1 — c/+i € R  and hence S x is not a Il-system by-
definition. □

From these two lemmas it is clear that the only possibilities left for a partition 
d to give rise to a  S x that is a Il-system is if d satisfies (i), (it), or (iii) from the 
statem ent of the theorem. It can be verified that each of these leads to a S x that is a 
Il-system. We will only verify the case (t). Now, straightforward computation shows
that S x =  {fi - £ , + i  11 =  1 , . . . , di — l } u { £ dl+l - £ dl+1+i | i  =  1 , d2 -  1 }. Thus
S x C  A which implies that S x is a Il-system. □

We have not yet proved a corresponding theorem to theorem 4.3.2 for the excep­
tional Lie algebras. From the tables in chapter 8 of [12], it is clear that a proof of 
such a theorem would involve only straightforward computation.

T h e o re m  4 .3 .5 . For the simple algebras B t, C t, Dt, Go, F4 , E&, E j, E$, and .4*- 
urith I' odd, the only regular .4 i-vector is the the principal one. For even, the 
regular A\-vectors are classified by partitions o f the form  d =  (£' +  1 — k, k)  for
k = 1,2____ P/2.

Proof. The statements concerning the classical simple algebras .4*, Be, Ct, and Dt 
can be verified using theorem 4.3.5 and the formulas from chapter 5 of [12]. For the 
the exceptional algebras C 2, F*. E$, £ 7 , and E%, the conclusion follows immediately 
from the tables in chapter 9 of [12]. □

The above considerations show how to parametrize the set { Ao € .4]['r  n  W  | 
S x is a Il-system}. An obvious question is how can one parametrize the set > l|'Rn  W 

which we know is in one-to-one correspondence with the set of all non-conjugate 
spherically’ symmetric Yang-Mills potentials that satisfy the boundary conditions 4.2.2 
and 4.2.5. Since n  W  C O W, we could use the parametrization of .4, n  VV 
discussed in section 2.2  to parametrzie •4 i 'R n  W. The difficulty with this approach 
is that we have no useful characterization with respect to this parametrization of 
when an element Ao of n W  is in -4j R n  W. However, in the case g =  sl„C, 
the formulas (2.2.10)-(2.2.14) can be used to show that -4| * n  W  =  ^  n  W and 
so the parametrization problem is solved. For the other classical Lie algebras there 
exist explicit formulas for Ao similar to (2 .2 .10) and (2 .2 .11) although they are more 
complicated. There does not, however, exist explicit formulas for analogous to 
(2.2.14). Therefore we cannot use the same method to  prove that W = .4}' n
W for the other classical Lie algebras. Calculations for low dimensional simple Lie 
algebras shows that >li'R n  W  =  A \  n  W. This seems to indicate th a t > t,’R n W  =
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for all Lie algebras. If this is the case, then the parametrization problem is 
solved. Note also that this would imply that Ao for which S \  is a Il-system are rare.
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Chapter 5

Initial value problem

The main result of this chapter is that the EYM equations (4.1.7)-(4.1.10) admit 
bounded local solutions in the neighborhood of the origin r  =  0, a black hole horizon 
r  =  TH > 0, and spatial infinity r  =  oo. The boundary conditions that we will adopt 
are:

•  at the origin r  =  0, all the physical quantities (4.1.21) are finite,

•  at the black hole horizon r  =  r«  > 0, iV(r«) =  0, (V'(r//) >  0, and S ( r / / ) finite,

•  the spacetime is asymptotically flat and the total magnetic charge vanishes 
which implies th a t N  —» 1, S  —• 1, and F  —> 0 as r  —• oo.

Our interest in local solutions is because they provide a starting point for construction 
of global solutions both numerically and analytically via the shooting method. Indeed, 
the local existence proofs isolate the free parameters in the solutions and provide a 
well defined local solution which one can try to extend. Numerically, this means that 
there exists a convergent Taylor series expansion from which numerical integration 
can start.

To prove local existence to the EYM equations (4.1.7)-(4.1.10), we proceed in 
three steps.

1. First we prove the existence of local solutions (A+(r), m (r)} to the equations
(4.1.7) and (4.1.9).

2. Then we determine which solutions horn step 1 satisfy equation (4.1.10).

3. Finally, equation (4.1.8) can be integrated for all solutions from step 2 to obtain 
the metric function S(r).

Our strategy for carrying out the first step will be to prove that there exists a change 
of variables so th a t the field equations (4.1.7) and (4.1.9) can be put into a form to 
which the following theorem applies. An analytic version of this theorem was first 
proved by Breitenlohner, Forgacs and Maison in [6].

T h e o re m  5 .0 .6 . The system o f differential equations

= t ,,' f i( t , u , v)  i = 1 , . . . ,  m

=  ~ \ j vj +  t" 1 g}( t ,u,v)  j  =  1 , . . . ,  n
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where p ,, t/, are integers greater than 1, \ } > 0, and f i  and gj are analytic functions 
in a neighborhood o f (0,co,0) € R l+m+nj has a unique C l solution t  >—► ( U i ( t ) , V j ( t ) )  

defined on 0 <  t < T  for some T  > 0 that satisfies u(0) =  c provided |c — co| is 
small enough. Moreover this solution is analytic in (c , t ) for  |£| <  T  and |c — co| small 
enough and it satisfies

Ui(t) =  c +  0 ( P ‘) and v,(t) = 0 ( t u’ ) as t — 0 .

Proof We will only prove the case m = n = 1. By replacing u with u — c we can 
assume th a t u(0) ■ 0. To start, we will also assume that p. =  u =  1. We note that 
the proof of this theorem is similar to the local existence proof in [54].

Consider the integral equation

u(t) = J  f ( s , u(s) , v ( s ) )dt  and v(t) =  ^  J  g(s, u(s), v(s))ds  . (5.0.1)

For t > 0 it is easy to see that this is equivalent to the differential equation. Here 
we are assuming that u(t) and v(t) are continuous for t > 0. At t = 0 the only 
problem th a t can arise is that v(t) may not be differentiable there due to the tx in 
the denominator. Consider the limit

= VM M , =  = 1
tv )  t t \  o t x+l t \ o  A + 1 A + 1 MV v ; /

where in getting the second equality we have used l’Hospital’s rule. This shows that 
v(t) is differentiable a t t = 0. Note also that v(t) is C l for t > 0. Similar calculations 
show th a t limts^o v'(t) =  (A +  l ) _ ,g(0,0,u(0)) and so we see that v(t) is actually G'1 
for t > 0.

Define a  map

<ft(u,v)(t)= ^ J  f (s ,u(s) ,v(s))dt ,  ^  J  g(s ,u(s) , v( s ) )dsSj  (5.0.2)

and let 

where

V R,T =  { («!, V) € C7°([0,T]) X C°([0, T]) | ||(u, u)|| < R  }

||(u ,«)|| =  maxflMlooJt/llao} .

Then using standard  arguments, it can be shown that there exists T.,R »  > 0  such 
that ^ ( D r . t )  C  "Dr .t  ♦  is a contraction for all 0 < T  < T. and 0 <  R < R ,.

Let D t  =  { 2 6  C | |)z|| < T  } and define

V r .t  = { (« .«) £ H t x Ht  ] ||(«. c)|| < R  }

where

H t  =  { u : D t(C )  —* C | u is continuous on D t  and analytic in the interior } .

Let 'Fa denote the same map as (5.0.2), where now the functions u and v lie in H t  
and the integration can be taken over the straightline path between two points in Dt- 
Again using standard  arguments, it can be shown th a t there exists T “ , > 0  such
that T ) C  D% t  and is a  contraction for all 0 <  T  < T? and 0 < R < R^.

Let T0 =  m in{T * ,r.} , Rq = min{f2?,T.}, and choose (u°,i>°) € ^  such that
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(U°I [o,7o| ’ W°I [o.7o|) G ^«o.7o- L«tting = ♦„ ° ° ° (n times) and using
similar notation for we see that if we define

(«",« ") := *"(tx ° ,t;0)

then
(“ "Ijo.rol’^lo .ro]) =  * n(u°l[o,Toi’u°l![o,ro|) • (5.0.3)

Now,
(u(z) ,v(z))  := lim (u"(*),vn(z)) z 6  DTo(C)

n —*oo

is the unique fixed point in P ^ r o  ®°r ®ut fr°m (5.0.3) it is clear that

(u(t),v(t)) = lim (u"(t),t;"(t)) t €  [0,To|fl—*00

and hence (u( t ) , v( t )) is the unique fixed point in Pfto.To f°r $  This implies that 
differential equation

du . . . .  dv . ,t — = t f ( t , u , v )  and t — = —\ v  + tg(t ,u,v)
dt dt

has a unique solution (u, v) in Pr,,To th a t satisfies u(0) =  0. Moreover, we get from 
the above arguments tha t u(t) and v(t) are actually analytic for |£| < To.

To prove the general case, let / ( ( ,  u, t/) =  u, v) and g(t , u, v) =  tv~ lg(t, u, v).
Then

du : dv
t — = t f ( t , u , v )  and t —  = - \ v  + tg(t, u, t/)

dt dt
and we are back to the situation with /x =  v = 1.

The easiest way to verify the fall off conditions,

u(t) =  c -f O ^ )  and v(t) = 0 (tu) as t — 0

is to  substitute a powerseries representation about t =  0 for u(t) and v{t) into the 
differential equation and then solve for the powerseries coefficients. □

The next lemma shows that if (A+ (r) ,m(r)} is a solution to the field equations
(4.1.7) and (4.1.9) then the quantity [A'+ , A_] 4- [A'_, A+| satisfies a first order linear 
differential equation. This unexpected result is what allows us to carry out step 2 
and thereby construct local solutions.

L em m a 5 .0 .7 . //{A +(r), m(r)} is a solution to the field equations (4.1.7) and (4.1.9) 
then

7(r) :=  (A+(r), A'_(r)] +  (A_(r), A'+(r)J 

satisfies the differential equation

1 '=  ( m  -  7 P )  11'

Proof. Differentiating 7 yields 

7 ' =  [A+,A"] +  [A_,A';i

=  ~rhi ( m ■ ; P )  7 +  (/VA+ll +  (A+- [A-. F1J) .
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by (4.1.7) and (4.1.9) while

[A_, [F, A+|] +  [A+, [A_, F]] =  0

by (4.1.13), (4.1.17), and the Jacobi identity. Combining the above two results proves 
the lemma. □

5.1 Algebraic results
In this section we collect all of the algebraic results needed to prove the local existence 
theorems. We will employ the same notation as in [45] section 6. For this section, we 
will assume th a t Ao € -4 ,’* n  W is fixed. Let Q+, Q_ £ g be two vectors such that

[Ao,n±] =  ±2fi± , [fi+, n _ ] = A o  and c(fi+ ) =  - f l _  . (5.1.1)

Then
q :=spanc{Ao.n+ , n _ }  ^ s l 2C (5.1.2)

and we will often use the dot notation to denote the adjoint action of q on g, i.e.

X .Y  :=  ad (X )(y ) V X  £ sp an c lA o .tt+ .fl-} , Y  €*g.

Because Ao is a  semisimple element, ad(Ao) is diagonaiizable and it follows from 
sl(2)-representation theory [21] that the eigenvalues are integers. Let Vn denote the 
eigenspaces of ad(Ao), i.e.

V'„ := {X  € 0] Aq.X = nX} n €  Z .  (5.1.3)

Observe that
^ 2 = 0  CeQ . (5.1.4)

It also follows from sl2C-representation theory that if X  6 g is a highest weight 
vector of the adjoint representation of spanc {Ao.fl+, f l _ } with weight n, and we 
define X - i  — 0, X q =  X  and X } — ( l / j ! ) f l i .X 0 (j > 0), then

A0.Aj  = (n -  2j ) X } ,
Q - . X ,  = (j + l )X J+t , (5.1.5)
n +.Xj  = ( n - j +  UXJ-X (j > 0) .

P ro p o s it io n  5 .1 .1 . There exists M  highest weight vectors £ l ,£2 for the ad­
joint representation o f q on g that satisfy

(i) the have weights 2kj where j  =  1 ,2 , . . . .  A/ and I =  Jfci < fc2 < • • • < k \ f ,

(ii) i f  V (£J ) denotes the irreducible submodule of g generated by £J , then the sum 
I l f  i t  v ( t3) w direct,

(iii) i f  Zf = ( l/(!)n L  ?J then
(5.1.6)

(iv) M  =  |Sa| and the set t \ j  =  1 .2 , . . .  A/} forms a basis for V2 over C.
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Proof, (i) and (ii): The conjugation operator c satisfies

c([A \T]) =  [c(X),c(V)J V X , Y e g . (5.1.7)

Using (5.1.1), (5.1.7), and (4.1.18), it is easy to  see that

c o a d ( n ± ) n = ( —l)nad(f l± ) "oc V n  G Z>o and coad(Ao) =  — ad(Ao)°c . (5.1.8) 

As usual, define the Casimir operator C by

From (5.1.8) it follows th a t C ° c = coC.  Using this result and (5.1.10), we see that

Let (sPl, sP2, . . . ,  spu } be the set of weights from the decomposition (5.1.9) that are 
even and greater than zero. We will assume that they are ordered so that sPl < 
Sp* < • • • < SpM • Define k} =  sPj /2. Then the k} are positive integers that satisfy 
hi < k2 <■■■ < k \ i . Note that k t =  1 because 0 + is a highest weight vector with 
weight 2. To simplify notation, set vJ := vp>. As before with highest weight vectors 
(see (5.1.5)), we let vj = (1 /l\)£ll_.vJ. Define

for j  =  1,2, . . .  XI. Then Ao-f-’ =  2 k}£J and (l+.£} =  0 for j  =  1 ,2 , . . .  A/ by (5.1.8) 
and (5.1.5). Therefore all the & are all highest weight vectors of weight 2kr  Let

it is clear that £* C V (2 k j , xp) and hence U(£J ) =  V (2 k} , vJ). Thus the decomposition 
(5.1.9) shows that the sum V(&)  is direct.

(iii): The relationship (5.1.6) follows from (5.1.8) , (5.1.12), and (5.1.5).
(iv): Because the numbers 2ki ,2k2l . . . ,  2 km exhaust ail the positive even weights

! j  — 1,2 , . . .  XI} is a basis over C for V2. But { e a | a  € S \  } is also a basis o v e r  
C for V2. Therefore XI = |SA|. □

The next proposition shows that when S \  is a ri-system then the span the of the 
highest weight vectors form an Abelian subalgebra of g.

P ro p o s itio n  5.1.2. Suppose SA is a II-system. Then spanQ^ 1 ,£2, . . .  } is <-n
Abelian subalgebra of gA and hence also an Abelian subalgebra o f g.

Proof. From the definition of gA given in section 4.3, it follows that sp a i^ f  A q, f i + , f i _  }

C =  ^ad(Ao)2 +  ad(fi+)ad(fi_) +  ad(fi_ )ad(n+ ) . 

Then g can be decomposed as follows [44]

9  = ® V ( s p,vP), (5.1.9)
p

where V(sp, vp) is a highest weight module generated by the highest weight vector vp 
of weight sp, and it has the property

C\v(3p,v') =  (j'Sp +  Sp) idv(jp>up) V p . (5.1.10)

c(V(sp, vp)) C  V(sp, vp) V p . (5.1.11)

ixP +• c(iviki ) if c(v?ik ) =  -c (  v3) 
vJ +  c(v2fcj) otherwise

(5.1.12)

V(£J ) denote the irreducible submodule generated by £J. From (5.1.11) and (5.1.12)

and the sum YIjL i V(€} ) *s direct, it follows from s^C-representation theory that
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C 0A and V2 C 0a- But by proposition 5.1.1, V2 = s p a n c ^ ^ . p ^ - i .........6 tL-i}>
and hence

( * l ± H ! o * * - l  el _  el c  „
(2 kt)\ + k‘~ l * 9x

for i =  1 ,2 , . . . ,  M . Therefore s p a i ic ^ 1, ^ , . . .  , £M) C 0a- The & are highest weight 
vectors, consequently

spanctC 1, * 2  « " } C 0?* (5.1.13)

where 0“ * =  { X  € 0a | [fi+, X] =  0  }. Define Va,„ := { X  € 0a | A0- X  =  n X  }. 
Clearly, Va,2 =  V2. Using sljC-representation theory, it is not hard to show that 
dimc0A+ =  dimcVA.2 - But dime V2 =  |Sa|, and therefore d im c0* + =  |Sa|- By 
proposition 5.1.1, |5a| =  M  and hence we get from (5.1.13) that

s p a n c K 1,*2, . . . , * " }  =  0? + . (5.1.14)

Since S \  is a base, |Sa| =  dime 1)a which in turn gives, via the above result, dime 0 * + = 
dime 1)a • Applying lemma 2.1.15 of [12] then shows that

d im c 0A+ = m*n ( dime 0*  | X  € 0a } • * (5.1.15)

We can identify 0a with the dual 0J using the form ( | ), i.e.

<■ : 0a,o —• 0 a,o : i{X)(-) = (X\ - )  .

So if /  € 0 J and we define =  { X  € 0 a | a d * ( / )  =  0 }, then

0aX ) = 9 a  VA' 6  0 . (5.1.16)

Let Ga be a connected complex semisimple Lie group with Lie algebra 0a- Then for 
/  6  0a> 0a *s ^*e algebra of coadjoint isotropy group Ga./ =  {a € Ga |Ad*(/) = 
/  }. But then (5.1.14), (5.1.15), (5.1.16) and a straightforward generalization of
theorem 9.3.10 in [41] to complex Lie groups imply that spanc { ^1,^ 2  s Af} is an
Abelian subalgebra. □

Define an R-linear operator .4 : 0 — 0 by

A =  ^ad(fi+) o (ad(f?_) 4- ad(fi+) o c )  . (5.1.17)

P ro p o s itio n  5 .1.3. The R-linear operator A  is symmetric urith respect to the inner 
product (( | )), «.e. ( (A (X ) |F ) )  = ((A-|A(K))) V A, Y  € 0 .

Proof. From (5.1.1) and the invariance properties (2.1.2) of the inner product (( | )),
it follows that ( ( [n+ , [ n _ , * ] ] | v )) =  ( ( x\ [n+,  [n_,  y \] )) and ( ( [n+ . ( n + . c ( X ) ] ] | r ;)
=  ( ( [f2+, c(y) ] ] )) for every X,  Y  € 0 . From the definition of .4. it is then
obvious that ((A(.Y)|V')) =  (( A|A(K)))  for every X,  Y  € 0 . □

An immediate consequence of this proposition is that .4 is diagonaiizable. Th- 
next lemma shows that V2 is an invariant subspace for .4 and hence .4 restricts to a
diagonaiizable operator on V2. We denote this operator by

A 2 : =A\ V2. (5.1.1*)

As we shall see, the diagonalizability of A 2 is essential in proving local existence.
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Lem m a 5.1.4.
A(V2) C  V2 (5.1.19)

Proof. It follows from sljC-representation theory tha t C  Vn±2. From (5.1.8) it
is clear that c(Vn ) c Vn . Thus C  V2 and Q+.Ci+.c(V2) c  V2 which implies
that A(V2) C V2. □

We label the integers k} from proposition 5.1 1 as follows

1 + 1 * + m  | — 1 < k j 2 — k j 2 +1 =  • "  =  k j 2+m3 — |

Therefore the set of vectors { X l,,Yj; \ I — 1 , 2 , . . . , / ;  s =  0 , 1 , . . . ,  m/ -  1} where

is an eigenbasis of .42.

Lem m a 5.1.5.
A 2 (X[)  = kj(k{ +  1)A'' and A 2 (Yj )  =  0 (5.1.22)

for I =  1 , 2 , . . . , /  and s =  0 , 1, . . . ,  mj — 1.

Proof. Calculations using formulas (5.1.5) and proposition 5.1.1 (iii) show that A(£Jk _ t ) 
=  i k, (k,  +  1) (1 + ( - l ) ^ - , ) ^ _ ,  and A ( « ^ _ , )  = i k j ( k ,  + 1) (1 +  ( - l ) t ' X ’_i 
for j  =  1 ,2 , . . .  A/. The proposition then follows from (5.1.20) and 5.1.21. □

An immediate consequence of this lemma is tha t spec(A2) =  {0}u{k2(k2 +  1 ) | j  = 
1 , 2 , . . . / }  and m} is the dimension of the eigenspace corresponding to the eigenvalue 
kj(kj +  1). Note tha t /  is the number of distinct positive eigenvalues of A2 while A/ 
is the total number of positive eigenvalues including multiplicities. Define

When Ao is principal, the set £  can be computed for the simple Lie algebras. Refer 
to table 5.1 for a list.

^  ‘ ^  ^ 7 /  —  k j t + \ —  * —  k j j + m i  _  i  ,

where J\  = 1 , J/ +  mj =  for I = 1 , 2 , . . . , /  and Jj+i = M  — 1. Define

ki := kj, I = 1,2........1 . (5.1.20)

The set | j  =  1 ,2 , . . .  A/} forms a basis over C of V2 by proposition 5.1.1 (iv).

if k< is odd 
if kj is even and Yj  := i X lM , (5.1.21)

forms a basis of V2 over R. The next lemma shows that

{ X ‘„ Y j  | Z = 1,2 I s  = 0 . 1  m t -  1}

£ :=  {k, ,k2, . . . k , } (5.1.23)

so tha t we can write

spec(.42) =  {0} U {s(s +  I) | s 6  £}. (5.1.24)

Define
£o =  spanR{ K /} ^ 0 1 , E l+ = span„{X '}3/j=0 ’ (5.1.25)
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Lie algebra £
At j
Bt 2 j  — 1
Ct 2 j - l

Dt <
2 j  — 1 if j  < ( i  + 2)/2  
t  -  1 if j  = ( t  + 2)/2  

2j — 3 if j  > (£ + 2)/2
Ee 1,4,5,7,8,11
£ 7 1,5,7,9,11,13,17
Es 1,7 ,11,13,17,19,23,29
E» 1,5,7,11
c 2 1,5

Table 5.1: The set £  for the simple Lie algebras with Ao principal.

and
/ /

£o =  0 f £ ,  £ + = 0 E V -  - (5.1.26)
/=i 1=1

Then
£ 0 = k e r ( A 2) (5.1.27)

and E 1̂ is the eigenspace of .42 corresponding to the eigenvalue k;(k/ 4- 1) . Moreover, 
using proposition 5.1.1 (iv), it is clear tha t

V2 =  £ „< © £+.  (5.1.2S)

To simplify notation in what follows, we introduce

<

(5.1.29)
<j=0

When S \  is a fl-system, subspace £+  can be described much more simply. Observe 
that if Sx is a Il-system then can always be chosen so that fl+ € Re„ by
(4.3.11). Once this is done we then have:

P ro p o s itio n  5 .1 .6 . IfCl+ € Hags* an‘̂  is a Il-system, then £ + =  Ren

Proof. As discussed in section 4.3, we can restrict to the subalgebra g* in which Ao 
is principal. So without loss of generality we can assume th a t Ao is principal. 

Introduce a basis { Z} [ 1 < j  < M  } over R for E+ by defining

Z = l  if k} U 
J 1 1 ^

odd
I < j  < M  .even

Equations (5.1.5) and proposition 5.1.1 (iii) can be used to show that

n+.c(Zj )  =  n_ .  Zj  i < j  < m  . (5.1.30)

By assumption 12+ =  5Zq€Sx u’Qea for some set of constants wa €  R. Note th a t 4.3.10 
implies tha t icQ /  0 for all a  6 S\  because otherwise Xa — 0 for some a  6 S \  in the
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expansion 4.3.10. But this is impossible since we know that Aa > 0. Because c(fi+ ) = 
and c(eQ) =  e _ a , f!_ uiae_<j. Since Zj 6  1*2, =  )  *c e s ,

for some set of constants aJt4 e  C. So then c(Zj)  = — H aeSi a j ae _ a . Now, since Ao
is principal, [ea ,e^) =  0 for all a,/3 € S>, a  ^  /3. Therefore

i l—.Zj  =  ^  u;aa j0 [e_a ,e a ] =  ^   ̂ u/a a^a h a , (5.1.31)
o€5a

while
f i+ .c (2 j)  — ^   ̂ ^ a flja[©af®-a] =  ^  " ^ a flja h a  * (5.1.32)

a$S\ c*€.S\
The three results (5.1.30), (5.1.31), and (5.1.32) then yield

w°(aj* ~  5>a )ho =  0 .
<*€S\

But wa ■£ 0 for all a  £ Sx and the set {ho | a  € S x } is linearly independent. 
Thus aja  -  aja =  0 for all a  € S \  and j  = 1,2, . . . , M .  So Zj € Y la es , Re,»
for j  =  1 , 2 , . . . ,  M  which implies that Re„. However, dima E+ -
dimH(X)Q€5 A ReQ) =  |SX| and therefore £+ =  Ylr.es, Re<» □

The operator A2 also has a simple description when S \  is a IT-system. Indeed, 
writing fi+ =  Y ,a esx wae a where wa 6 R and using (2.1.9), (2.1.10)-(2.1.12), and 
[ea ,e^] =  0 for all a,/3 € 5 X, a  ^  /3, we get

•42(e0 ) =  5 Z  w u ( 0 ' a ) w ‘> e 0  ■

aes.

This result along with (5.1.28) and proposition 5.1.6 shows th a t {e„ | a  € Sx } can be 
completed to a basis over R of V2 so that the matrix of A? with respect to this basis 
takes the form

1*1 =  (  I  )  ■ (5-1.33)

with
Aan = wa (a, (3)w0  . (5.1.34)

L em m a 5 .1 .7 . Suppose X  € V2. Then X  € E l i f  and only ifS}k+. X  = 0 .

Proof. From the formulas (5.1.5), we get

r w -1 d  _  /  0 if ^
“ + •“*.-» </(**,)& ,_, if q<k < ■

where d(q,r)  =  (q + r ) ! /( r  4 - I)!. This implies tha t

O '- l  VW =  J  0 u * >  K,
3 5 +  • ^ p  \  3 q A n  L  ' C  ■, + P  It I ^  t, ' ( 5 . 1 . U . J

if / >  k„ 
3qd{l,kq) ^ Z [  i f / < k ,

and

i t l < £  ' (5136)
Q i-i Y 1 =  J -  if / >  k,

+ Yp \ 0 q
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where
a _  \  1 if k , is odd
<? — ( i if k, is even

Suppose X  €  Vj =  © * _ , Eq 0  E^.. Then there exists real constants aqp and bqp such 
that

l  m,  - 1

*  =  E  £  (a*P Yp + b*P X p) (S.1.3T)
1=1 p=o

Suppose X  = 0. Then (5.1.35), (5.1.36), and (5.1.37) imply that

I  m , - l

q = l + l  p=0

But the set of vectors

{ ^ * ^ - p / 3 , ^ ; _ +k,; - l l9  =  i +  l . i + 2 , . . . / ,  p = 0 . 1 , . . . , m , - l  }

is linearly independent over R. Therefore X  = Y lq=i 12™=oX(a'ipY£~+ bnpXp) which 
implies that X  €  0 ^ = i Eq ® E^..

Conversely, suppose X  € © g =l Eq © E \ .  Then X  can be written in the form 
(5.1.37) and it is easy using (5.1.35) and (5.1.36) to verify that fi+. X  =  0. □

L e m m a  5.1 .8 . Suppose X  6 Vj. Then X  6 E l if  and only t / f i+ +2. c(X) = 0 .

Proof. Proved in a similar fashion as lemma 5.1.7. □

L em m a 5 .1 .9 . Let ~ : Z>_i —• { 1 ,2 , . . . . /}  be the map defined by

— 1 =  0 = 1 and § =  max{ / | kj < s } if  s > 0.

Then

(i) kj < s for every s 6 Z>o-

(ii) kj < s <  ki+ | for every s € ( 0 ,1 , . . .  k/ -  1}.

Proof, (i) This is obvious from the definition of ~ .
(ii) From part (i), kj < s. So suppose ki+ i < s. Then from the definition of ~ it 

is clear k j+ i <  kj. But because kj < k? < ■ ■ ■ < k[, it follows that s -t- 1 < s which is 
a contradiction. Thus k j+i > s and we are done. □

L e m m a  5 .1 .10 . I f  X  € Vj, kp +- s < kp+j (s > 0 ) , and _ X =  o r then n^.p. .V —
0.

Proof. Assume s > 0, otherwise we are done. Because A" € Vj, we have n+p+J-1. A' €
Vj(kj+*)- By assumption x  =  0, so

€ Vj(k.+J) n k e r(a d (n + )) .

But, if n  6 Z>o, then

Vj„ n ker(ad(n+ )) /  {0} <=> n € {k,, k2, . . . ,  k,} .

36

R e p ro d u c e d  with pe rm iss ion  of th e  copyright ow ner .  F u r the r  reproduction  prohibited w ithout perm iss ion .



because otherwise g would contain an irreducible q-submodule with weight 2n £ 
Z>o\{2ki, 2k2,. . . ,  2k/}. This is impossible as the set (2kt , 2k2,. . . ,  2k/} exhausts all 
the positive even weights of the irreducible q-submodules in g. Therefore 1. X  =
0 as kp < kp+s < kp+i implies that (kp+s) is not in {ki, k j , . . . ,  k/}. Repeat the above 
argument with s ' =  s -  1 to arrive at ~ l .X  = X  =  0. Continuing in
this manner, we find . X  =  0. □

We will frequently use the following fact

( l ± l ) '  = i ± l  V i e f .  (5.1.38)

P ro p o s itio n  5 .1 .11. I f  X a £ E d, Yb £  E* , and Zc £ E i then [[c(Xa),Y b], Zc] 6
£ ( a + b + e y

Proof. Suppose X a £ E a, Yb £ £ \  and Z c £ £ £. Then

n h+i+ 2 c (x a) =  n k; . y a =  n k+<.zc =  o (5 .1.3 3 )

by lemmas 5.1.7 and 5.1.8. Now,

Qp,.{[c(Xa),Y b},Zc\ =
I—0 m=Q '  ^ '

where
Wpcbcim =  [(n? .c (x a ), n 1- m .y6j, n p~‘.z c\ .

It then follows from (5.1.39) that Wpahcim =  0 if m > k„ +  2 or ! -  m > kj or 
p — I > kc. Thus Wpahcim = 0 unless p <  I -t- k£ < m + kj + k* < k* -F kj +-
kc +  2. But this can never be satisfied if p =  k„ -F kj 4- kc and so we arrive at
Qka+kk-t-ki,[[C(X0), V*], Zc\ =  0. But k„ +  kj +  ka < a 4- 6 4- c by lemma 5.1.9 and 
hence it follows that n “+b+c.[[c(.Ya ), Vi], Zc\ =  0. But then lemma 5.1.10 implies that 
«+'**t+' ’'-((c(*a), Vi), Z,;] =  0 and hence ([c(JY„), Vfc], Zc] € £(«+»+■=)*. □

P ro p o s itio n  5 .1 .12 . I f X a £ £ d and Yb £ E h then [[A'a ,c (H )] ,f i+|, [[H+, X a}. Yb\,
[[n_,Aa],Vi] € £ (o+6)".

Proof This proposition can be proved using the same techniques as proposition 
5.1.11. □

L em m a 5.1.13. I f  I <= £ and Z  £ E l+ © E ‘~ l then n l+l .c(Z) = 1(1 + 1 )ill~ l .Z  . 

Proof. Since Z  £ E+ © £ <_l there exist real constants a‘ , b* such that

/— 1 rn, — 1 m,--l
Z =  + £  a \X [  (5.1.40)

*1=1 j=0 j=0

where / r • .
is oddlf k<? ls 

-  \  c \+ *  e L
lf k9 13is evenV ‘ *

But
><-1Ql- l .X* = 0 for q < 1 - 1  (5.1.41)
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m,— I

by lemma 5.1.7, and so we get

fi'+- , Z =  £  a}Ql- \ x [ .  (5.1.42)
j=0

Now,

‘̂ teodd . l ‘£k, + i if k, is even

by proposition 5.1.1 and so

=  k ,(k , +  1 )* J  . (5.1.43)

Since I €  £  implies that k(- =  I, it follows easily form (5.1.40),(5.1.41), and (5.1.43)
that

m p I
n l+l .c(Z) = i(i + 1) £  . (5.1.44)

j=0

Comparing (5.1.42) and (5.1.44), we see that (l‘+ l .c(Z) =  1(1 4- l ) f l ‘p l .Z  . □  

P rop osition  5 .1 .14 . I f  Zi with I =  0 ,1 ,.. .  k is a sequence o f vectors such that

Zo =  n + , Zt <=E‘ I = 1 ,2 ,.. .  & and Z t € E+ ® E ‘~1 if I € £  

then for any j  =  1 , . . . ,  I

| W . ) . z . | . n t | e g _ ,

Proof. Suppose Zi is as in the hypotheses of the proposition, then

n  +f+a.c(Z,) =  n k; . z ,  = o . (5.1.45)

Now,

- n p- '5 2 { lc (Z k-„Z,],Sl+ ]  =  £ £  ( P+  l ) lV pkt3 (5.1.46)
*=1 j= l i=o '  '

where
w pkla =  [nl+.c(zfc. , ) . n ^ l - , . z , ] .

From (5.1.46) we see that Wpku  =  0 if / > k(fc_j)- or p 4- 1 — I > kj .  Thus

WpM* = 0 unless p + l < Z  +  k i < k i +  k (fc_ , r  4- 2 . (5.1.1"'

Now, suppose p  =  k. Then using the fact tha t kj <  s and k ^ .,) -  < k  -  s, 
from (5.1.47) tha t Wpkia = 0 unless f c 4 - l < / 4 - k j < A : 4 - 2 .  Since this is imp
f  a  n n f  M / . - .__ fl Cnn nil f n ^ • . /C 1 i  ̂  \ _ r _

we see
irom (.o. 1.4 / ;  m at vvpkU = u  unless k  ■+■ i  < i + k ,  < K 4- j .  Since this is impossible 
to satisfy Wpkia =  0 for all I, s. Thus the sum (5.1.46) vanishes, i.

fc-i
- n i - Y l{ [c (Z k -„ z ,] ,n +]=  o .
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and we get
fc-i t
3 [ c ( Z t _ ) ,Z 1]i n + | e 0 £ J © £ ,+ (5.1.48)
»= i q—I

by lemmas 5.1.7 and 5.1.10.
Now, suppose further that k € £  and let p = k  -  1. Then by (5.1.47) we have 

Wpkt, = 0 unless A: < / +  k,- < k,- +  k(fc_i r  +  2. Now kg < s and k(k_ ,y  < k -  s, 
so suppose ki <  s or k(fc_,)- < k  -  s. Then k{k_t)- + k i < k - s  + s = k which will 
make the inequality A; < I +  kj <  kj +  k( t_5)- +  2 impossible to satisfy. Therefore we 
see th a t =  0 unless =  A: — s and kj =  s (i.e. t - s , s €  £). However, if
k(*_j)- = k  — s and kj =  s, then k < I + kj < kj +  k(*_,)- +  2 will satisfied only if 
/ +  s =  1. So Wpkl,  =  0 unless A: — s ,s  €  £  and / +  s =  1. This allows us to write the 
sum (5.1.46) as

k - l  

a=  I

lc~ * /  k \
= 1 1  \ k  -  s + l ) (* "  ,) (* "  * +  l ) in k+— l - Z k - . ,n ‘+-'.Z>\ by lemma 5.1.

Assume now th a t k is odd. Then we can write the above sum as

a— —y— — I
h - 1

•*•£ (T - » l* ) !(k-  i)|(n* - - l z>— n »"1 Z,1
k-  |

= £  {r - s - % ( s - i y .  { V kr - l Z x - > ^ \ - l Zs} + [ n r , .zJtn t - <- | .z fe-,j}

=  o .

Similar arguments show that [^(Z * -,, Z a],(l+\ = 0 if A: is even. We
then get

fc-i
Y y i< z ,-> )< z a\,n+\ € E *~ l
3=1

by lemmas 5.1.7 and 5.1.10 and (5.1.38). □

P ro p o s it io n  5 .1 .15 . I f Zi with I = 0 ,1  k is a sequence o f vectors such that

Z0 = f i + . Zf € E ‘ I =  1 .2 ,. . .  A: and Zt G © £ ' '*  i f  I € £

then for any j  =  1 , . . . ,  /

j = i «=o

i f k £ £

i f k & £
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Proof. Proved using similar arguments as for proposition 5.1.14. □

5.2 Local existence proofs
For q = 1 ,2 ,. . .  I  let

pr+ :V2 ^ E \ ,  prqQ :V 2 - .E % ,  and pr« : V2 E* 0  E*+

denote the projections determined by the decomposition (5.1.28), (5.1.26) of V2.

5.2.1 Solutions bounded at the origin
T h e o rem  5.2.1. Fix X  G E+ and f i+ G E+ that satisfies =  Ao where fl_ :=
—c(fi+). Then for some e >  0 there exist a unique C ^ x C 1-solution {A+(r. X), m(r, X )} 
to the system o f differential equations (4.1.7) and (4.1.9) defined on [0,e) that satisfies 
A+(0) =  Q+ and

depend analytically on the initial data X , and satisfy m  = 0 (r3), P  = 0 (r4) and 
G =  0 ( r2) as r —► 0.

Before we proceed with the proof of this theorem we will first present an example 
of its consequences. Suppose g =  E% and Ao is principal. From table 5.1 we see that 
£  =  {1,7,11,13,17,19,23,29}. Since dim* E + = |£ |, it follows from theorem 5.2.1 
that 8 parameters will have to be chosen to single out a unique solutions to (4.1.7) 
and (4.1.9) in a neighborhood of r  =  0. Moreover, the last parameter does not show 
up in the Taylor expansion of a solution until the 30th power in r. This illustrates 
the highly singular nature of the equations (4.1.7) and (4.1.9) at r  = 0

Proof of theorem 5.2.1. Introduce new variables { u+, uj I s e  £  } v‘a

p r \(A+ -  n +) =  X + 0 ( r '+2) , pri(A+ ) = 0 ( r ’+2) Vs G £. 

where X , pr*+{X). Moreover, these solutions are defined and analytic on ( —e, e). 

ut  '■= Pr+(A+ -  n+ )r~’ 1 and u° :=  pr^(A+)r * 2 (5.2.1)

where =  A+(0). This allows us to write A+ as

(5.2.2)

L em m a 5.2.2. For every s G £ there exists analytic maps

T \  : £+ — • E l  © E% and : £ 0 * E+ x R — . £* © E%

sucA that, for T  given in (4.1.14),

p r* /- =  - s ( s  +  l )u * r ,+ 1 + r*+2f l ( u +) -t- r 1+3J r2(u°, u+ , r)

where
(5.2.3)
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Proof. Let uM =  ru° 4- u+. Then from (4.1.14) we find 

=  £ A 2(ua)r“+1 +  i  Y ,  ([[«a.«(«*)],J1+] +  [[n+ ,c(ua )],U6] +  [[n _ ,« a ],u 6] ) r° +l,+2
a,b££

+ 1 5Z  i[u<»'c(u*)i' itc]r<,+fc+c+3 •

a,6,c€^

But
M {u a) =  a(a  +  l R  . (5.2.4)

by lemma 5.1.5. Also, ka =  a for a G £  by lemma 5.1.9. So

a < fc <=> a < b . (5.2.5)

Using (5.2.4) and (5.2.5), we get

=  s ( s  +  l ) u £ r 1 + ‘ +  \  Y  Pt* r [ [ « a , c ( u ( , ) | , n + | +  [[ f i+ , c ( u a ) ] , u b]
o ,*€£■ 'a+6> j

+ [[n_ ,u0|,u fc] ) r “^ 2 +  i  Y  PrJY [ K ,c ( u 6)],ucl ) r : ^ 3
'  a,b.ce£ ^ '

a + 6-t*c> j

by propositions 5.1.11 and 5.1.12. Substituting ua =  +■ u+ into the above expres­
sion completes the proof. □

For every s g f  define

v+ := u f  and :=  ( r u ° ) '. (5.2.6)

L em m a 5.2.3. There exists analytic functions

P  : Eq x E+ x R — ► R and G : Eq x  Eq x  E+ x  E+ x  R — > R

such that

P  =  r 4 ||u f  ||2 +  r 5P(u°, u+, r) and G =  r 2 UiXj-1|2 4- r3G(u°, v°, u +, v +, r) 

where
v° := Y  va and u+ •= 5 Z  • (5.2.7)

a€f
and u° , u+ are defined by (5.2.3).

Proof. The existence of the analytic function G  follows easily from the definition
(4.1.12) of G  and equations (5.2.3) and (5.2.7). From the definition (4.1.12) of P  it 
follows that

P  =  T  IKn + ’c(“ i’)l +  P - R l l l  + r sQ (u ° .u +.r)

where Q is a polynomial in r, u° and u+. Using (2.1.2), (5.1.17). (5.1.18), and 
-42(u f )  =  2 u f, we get

gi|[fi+.c(uj-)] +  [n_,t»f]|| =  R | |
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and this completes the proof. □

From (5.1.25)-(5.1.27) we have

'M w j')  =  s (3 +  l )u ^ and -42(u?) =  0

since G E'+ and u j € Eq. Using this result, lemma 5.2.2, and equations (5.2.3) 
and (5.2.7), the field equations (4.1.7) and (4.1.9) can be written as

r u f  = rv*  , (5.2.8)

r v f  = - 2 (s  +  l ) v t  -  ±  (m  -  i p )  v* -  ^ ± A >  ( I  -  l )  «+

-  ^ 2 +N l)  ( m -  ; p )  u* -

-  -  l )  PT^E}(u+) -  p r;jFJ1(ti+ ) , (5.2.9)

ru ° ' =  -u 2  + u ? , (5.2.10)

rv°J = - 2(5 +  l)v°, -  5 ( 5  +  l)u°s -  1  ( m  -  i p )  v°s

~ ( m ~ J P ) “ * ~ ^ rp r2 ^ ;(u 0,u  + ,r)

-  ( i  -  l )  PrjjF ‘(u + ) -  p r j ^ ( u +) . (5.2.11)

(5.2.12)

where s 6 £. For every s € €, introduce two new variables

x ,  := - ( s  +  l)u° -  - y* := (« + l)u? 4- v° ,

and define

2 (  l n \  0 2(5 +  1) (  1 0
L = ~ N  r  -  r p )  V- -  - n r -  [ m - - r P )  “ *

-  ^ p r 5 ^ ? ( “ 0. “ * .r )  -  -  l )  pr*,+  (u^) .

Then equations (5.2.10) and (5.2.11) can be written as

rx't =  - ( s +  2)x, + — —•pr5-^,1(u+ ) +  (5.2.13)s s
ry'. = ~{s  +  2)t/j -  pr£ f j ( u  + ) f3 , (5.2.14)

for every s G £■ Define

^  =  ^ ( m _ r 3 | |“ i '| |2) • (5.2.15)
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Then the mass equation (4.1.7) can be written as

r/i ' =  - 3 n  + r  |P ( u ° ,u +,r )  +  G(u°, t»°, u +, v+, r)  -  2 ((ti^ |w /'))

- 2 r  (/i +  K | | 2)  (2 ||u ?- ||2 + rG (u 0,t;0,u + , U+ ,r ) )  } . (5.2.16)

For every s €  S , introduce one last change of variables

and

Define

and

y. — y , + -xTPr5 .̂'(“+) •
3  +  1

v + J / : = 5 2 y ,  ,
jg f  »e£

0(r ) =  (*(r ). J/(r), u+(r),i>+(r) ,n {r ),r )  .

Fix X  6 E+ and let M x  be a neighborhood of X  in E +. Define a set D(A/x,f) by

'■= E q X E q X A/x x E + X (-c,€)  x (—€, f) .

Then using lemmas 5.2.2 and 5.2.3 and equations (5.2.8), (5.2.9), (5.2.13), (5.2.14). 
and (5.2.16) it is not hard to show that there exists an e > 0 and analytic maps

U , ,V s -.D{Mx , e ) — .E % , X 3 , y ,  : D(ACx , 0  —  E* V s e f ,

and
A4 : D(A/>,e) —  R

such that

=  rU3(r}(r)), r v f ( r )  =  -2 (s  + l ) i+ ( r )  + rVs(q(r)), 
r x / ( r )  =  (s +  2 )x ,(r) + rX 3(tj(r)), r y /( r )  =  - ( s  + l)x ,( r)  +  r^ ( r /( r ) ) ,

for every s G £  and
r/i'(r) =  —3/i(r) +  rAd(r;(r)) .

This system of differential equations is in the form to which theorem 5.0.6 applies. 
Therefore for fixed X  € E+ there exist a unique C l-solution {u+ (r.Y ),v+ (r,Y )y 
i» (r ,Y ) ,v t (r ,Y ). n (r ,Y )}  that is analytic in a neighborhood of (r .Y )  = (0, X )  and 
that satisfies

Uj+(r,K ) = F , + 0 ( r ) ,  f i + ( r , n = 0 ( r ) ,  x ,( r ,Y )  = O (r), y ,(r, Y )  =  O(r).

for all s € £, and
fi(s,Y) = O(r) , 

where Ys =  pr+(K). From these results it is easy to verify that

m ( r )  = 0 ( r 3) and u°(r) =  O (r0)
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Also
P = 0 ( r 4) and G  =  0 ( r 2)

by lemma 5.2.3. □

It is important to realize that the fall off conditions m =  O (r3), P  = 0 ( r 4) and 
G = 0 ( r 2) as r  -> 0 imply that the physical quantities (4.1.21) are finite at r  =  0.

neighborhood o f r = 0 .

Proof. Let (A+(r), m (r)} be a solution of the equations (4.1.7) and (4.1.9) on a neigh­
borhood A f of r  =  0, which we know exists by theorem 5.2.1. Let 7  be defined as 
in lemma 5.0.7. Observe that A'+(0) =  0 by theorem 5.2.1 and so 7 (0 ) =  0. Also, 
because m  =  0 ( r 3) and P  =  0 ( r 4) for these solutions we see, by shrinking A/" if 
necessary, that

Therefore 7 (r) =  0 for all r  € Af, since 7 (0 ) = 0 . □

5.2.2 A sym ptotically flat solutions
In proving that local solutions exist near r  =  0 , we were able to ‘‘guess” the appropri­
ate transformations needed to bring the field equations (4.1.7) and (4.1.9) in to a form 
for which theorem 5.0.6 applies. Near, r  =  00 the equations become more difficult to 
analyze and guessing the appropriate transformation is no longer possible. Instead, 
we will show that the field equations (4.1.7) and (4.1.9) admit a formal power series 
solutions about the point r  =  00 . This formal power series solution will then be used 
to  construct a transformation to bring the equations (4.1.7) and (4.1.9) in to a form 
for which theorem 5.0.6 applies.

Let 2 =  7 , and define

for any function / .  Then (4.1.7) and (4.1.9) can be written as

Therefore all of these local solutions satisfy our boundary conditions at r  =  0 . 

T h e o re m  5 .2 .4 . Every solution from theorem 5.2.1 satisfies equation (4.1.10) on a

JV ! r2N  \  r  )  

is analytic on Af. But 7  satisfies the differential equation

V =  / ( r ) 7 •

Solving, we find
7 (r) =  7 (0 )e-f° ^ T'ldT Vr £ Af .

z2m  4- N G  4- z2P  =  0 ,
_ °o O

z N  A + +  2z(l -  3zm +  z2P )A+ + T  =  0 .

(5.2.17)

(5.2.13)

Assume a powerseries expansion of the form

30 30

and (5.2.19)
fc=0

We will define
A := -c(A +,it) and fl± :=  A±.0 • (5.2.20)
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We assume that =  Ao- As we discussed in section 4.2, [fi+,n _ ]  =  Ao is
a consequence of the vanishing of the to tal magnetic charge. Substituting the pow- 
erseries (5.2.19) in the equations (5.2.17) and (5.2.18) yields the recurrence equations

£ +  2 mj Gf c- j - 4  -m i  = m 2  = 0 ,  J - Cf c - 3  +  2 j k =  3 , 4 , 5 , . . .

(5.2.21)
A2(A+,fc) -k(k + l)A +,fc =  h k + f k k = 1 ,2 ,3 ,. . .  (5.2.22)

where

1 *
+  |A+j + i »  k > 0 ,  (5.2.23)

j = 0

1 k  j

F0 := 0 , Fk := - 5 3 ^ [ ( A - , J_ J,A ^,J],A+,fc_J) k > 1 . (5.2.24)
;= I j =0

1 t-1Po = Pi= 0, Pk ■.= -  V «  Fj\Fk- , »  k > 2 , (5.2.25)
i=y

k - 1

h , = 0 ,  hk:=2Y,(k-j - l ){PJ- 2 - ( k - j  + l)m J) \ +,k- J- l k> 2 , (5.2.26)
j —o

and

1 f f c - i  j

f i  =  0> f k '■= -  \  A+>J], A+i*_;
“ ^  = i ,=o

fc-i \
+ X ][lA-.* -« .A +s j ,n +| J  k ^ 2 (5-2.27)

Note that with these definitions F  =  ant* F  = ^kL oP k**  while G =
E r .o G , . - * * '

T h e o re m  5.2.5. Fix A € £+ and <E R. Then there exists a unique solution 
{A+-fc,mfc}£L0 to the recurrence equations (5.2.21) and (5.2.22) that satisfies

mo =  , m i — m 2 = 0

pr*A+Jt =  X fc

and

if  k<££

IS
where X k =  pr%X.

A+,* € ' r t ® £ ‘ - ‘ i / f c e f ’
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Proof. F ix X  €  E +, m,*, € R, and let

A’t = p r ‘ A' V Jfc€£ .

We will use induction to prove that the recurrence equations (5.2.21) and (5.2.22) can 
be solved. When k = 1, the equations (5.2.21) and (5.2.22) reduce to

This can be solved in Eq ® E \  by letting A+,i = X \.  Note that since m in£  =  1, we 
have 1 =  1.

We now assume that for k < I , {A+,*, m *} is a  solution to the recurrence equations
(5.2.21) and (5.2.22) that satisfies

It is clear from (5.2.22) that m(+ i is then determined. From (5.2.23-5.2.27) and 
propositions 5.1.14 and 5.1.15 it follows that

But then (5.2.28) implies that A+,i + i G £ ’(+I.
Alternatively, suppose / 4- 1 € £. Then ker(A2 -  (/ 4- 1)(/ +  2)1 ) = E ‘+l by 

(5.1.25)-(5.1.27) and (5.1.38). Therefore, (5.2.28) shows that

A+,i+i =  ((A2 -  (1 +  l)(f + 2)1 )Ie ‘) 1 (ht+i 4- fi+i) 4- X i+ j

solves (5.2.29) since X/+i G ker(A2 — (1 4- l)(f 4- 2)1 . It also clear from (5.2.28) and
A/+i 6 £ ’++1 that A+.j-h  6 E ,+I ® This prove that A+,j+ i satisfies the
induction hypothesis and so the proof is complete. □

T h e o re m  5 .2 .6 . Fix X  € E+, m ^  > 0, and fi+ € E+ that satisfies =
Ao where :=  —c(ft+ ). Then for some e >  0 there exist a unique C2 x C l - 
solution {A+(r, moo, .Y), m(r, m x , X)} to the system o f differential equations (4.1. f > 
and (4.1.9) defined on [0, e) that satisfies A+(0) =  m  =  m x  4- 0 (r~ 3 ) and

and depend analytically on the initial data ( ,  X ) .

Comparing this theorem to theorem 5.2.1, we see that the singular behavior a t

mj = 0 and A2(A+,i ) — 2A+,i =  0 .

E k iik< ££
E% © E k~ l \ { k e S '

(5.2.28)

Equation (5.2.22) implies that

(A2 -(/-+- 1 )( / 4- 2)1 v-i) A+.z+i = +1 4- / i+1 .

Suppose I +  1 £  £ .  Then .42 — (/ 4- 1 ) ( l  4-2)1 is invertible and

A+.,+, = (-42 -  (/ 4- !)(/ 4- 2)1 T 1 (hl+l + f l+l) .

(5.2.29)

p r i(A + - f i + ) = ^  + 0 ( r - ' ) ,  prjj(A+ ) =  0(r~*) Vs € £

where X ,  := pri+(X ). Moreover, these solutions are defined and analytic on (—«. t)
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r  =  oo is similar to the behavior a t r  =  0 except a t r  =  00 an extra param eter m0a 
is present. The parameter m *  measures the “mass" of the spacetime. Recall our 
example where g = E% and Ao is principal so that £  =  {1,7,11,13,17,19,23,29}. 
Since dimg E + =  \£\, it follows from theorem 5.2.6 that 9 parameters will have to be
chosen to single out a unique solutions to (4.1.7) and (4.1.9) in a neighborhood of
r  =  00 . Furthermore, the last parameter will not show up in the Taylor expansion of 
a solution until the 29th power in £.

Proof o f theorem 5.2.6. Fix X  €  E+ and let

A+,fc =  \+ ,k (X ,m ao) and m* =  mfc(X, m * )

be solutions to the recurrence equations (5.2.21) and (5.2.22) which satisfy

m0 =  moo , m i =  m2 =  0 (5.2.30)

pr*A+,fc =  Xfc V ifc e f  (5.2.31)

and

A , ,  4 ^ * ' '! k i £  ■ (5.2.32)

where Xk  = pr+X . Define

n  n

U := Y l  A+.kZk and Af := ]T  m kzk (5.2.33)
fc=0 k = 0

and introduce new variables <i>{z) and o {z ) via

A+ = U + zn~2<t> and m = At + z n~2o  , (5.2.34)

where the integer n is to be chosen later. Define

iVp := 1 — 2M z  . Fp : =  ^(A0 4- [U,c{U)|) , (5.2.35)

PP := -i[ F p,U ], Pp := \\\F pf .  and Gp : = l- z * ||t>||2 . (5.2.36)

From these definitions it is clear that the quantities Np, Fp, P p, Pp and Gp are all
polynomial in the variables X  and moo. Now, because U  and Af are the first n terms 
in the powerseries solution to the field equations (5.2.17) and (5.2.18) about the point 
s = 0  they satisfy

* OO O
z2NpU + 2 z ( \ - 3 z M  + z Pp)U + T p = z,,- l (a l (X , m * ) +  a 2(X, m ^ y ) , 

z2 At + NPGP + z2Pp = znb(X, moo) . 

where <21. a 2 : V2 x R —• R and b : V2 x R —» R are polynomial in their variables.
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FYom (5.2.36) and (4.1.14) we get

3
T  = J P -  z n~3A 2{<t>) + z n~2 Y ,  p R.j (<fc X , m o c z )

j= i

where
F ft j  : Vj x £ + x R x  R — » R j  = 1,2,3 

are analytic maps that satisfy

F r ,j(€Y i .y ji *i» *2) = ^ ^ r j ( Y i ,  V2 .x 1.x 2) 

for all £ € R. It is also not difficult to see from (5.2.36) and (4.1.12) that 

4

G = y  II&I!2 +  z4« U |(n  -  3)2— V  +  z " -3£»  + | | | ( n  -  3 )2— +  zn~3l ||

and
4

p =  Pp -I- z n ~ 2 Y .  P r , j  (<fi< X ,  mqc. z) 
J=i

where
P r . j  : V 2 x E + x  R x  R — . R j  =  1 , 2.3 .4  

are analytic maps that satisfy

P R . j ( t Y i , Y 2 , x l , x 2) =  ( ’ P r ,j ( Y 1, Y 2 , x 1, x 2) 

for all £ € R. Note also that
N  = Np -  2zn~2<7 .

Let
uj: = 6  and 6 z ~ ld>. (5.2.37)

Using the above results, straightforward calculation shows that there exists analytic 
maps

Q : U2 x  V2 x E + x  R3 — ► V2 and M  : V2 x V2 x  E+ x  R3 — . R 

such that equation (5.2.17) and (5.2.18) can be written as

za  =  —(n — 3)<r ■+- z 2 A 4 ( 6 , u j ,  X,  m ^ ,  <7 , z )  , (5.2.38)

z B = - 6  + ui, (5.2.39)

and

N { z u  +  2(n -  2)u  +  (n -  3)(n -  4)6) 4- 2(n -  3)0
+  2u - A 2(9 ) - z G (0 ,* i 'X ,m ao,<7,z) = 0 .  (5.2.40)

We can rewrite (5.2.40) as

zZ = —2(n -  2)u + (A 2 -  (n -  3)(n -  2)1 )6 +  zQ{9,u, X . m x .a, z) (5.2.41)
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where

G (Y i,Y2, Y3, x \ , x 2,x 3) =  — ( - —  / Tv  \ \ ----------0 ( 2 ( n - 3 ) Y i  +
1 3  V I - 2 ( \ ( ( Y 3 , x i ) +  x £  3x 2 ) x 3 J

2Y2 -  A 2(Yl ) )+ g ( (Y l ,Y 2,Y 3, x l , x 2, x 3) .

Because Q is analytic, Q is analytic in a neighborhood of (0,0, X ,  moo, 0 ,0) & V2 x 
V2 x E+ x R3. For Y  6 V2 and s € £, define

Y *  := p r ; r  and V? .=  p r ^  .

Recalling that prj o A2 =  A2 0 p rj =  0 and pr^. o A2 =  A 2 o pr^_ =  s(s  +  l)pr^. for 
every s £ £ , we can write (5.2.39) and (5.2.41) as

z°6t = - 0 t + u i t ,  (5.2.42)

zu jf =  -2 (n  -  2)u*

+  (s(s +  1) -  (n -  3)(n -  2))0+ + zQt{9,u>, z ) , (5.2.43)

z°0°t = -0P3 + u ;°, ’ (5.2.44)

and

zu°. =  —2(n -  2 K + + - ( n  -  3)(n -  2)0? +  sS?(0,u,t X, m * , <7, 2 ) , (5.2.45)

for all s £ S .
For every s £ £, introduce one last change of variables

Cl : = ( - « + 3 ) 0 ? - u / J ,  CJ2 := ( n - 2 ) f l? + u ;? ,

:= 27TT((s " n + 3)^  ~ Wj+) ’ r/* := 2lTT((s + " ~ 2)d,+ + Wj+)'
and let

and J =  1,2.
»e£ j€£

Using this transformation we can write (5.2.42)-(5.2.45) for all s £  €  and j  =  1,2 as

‘ Ci =  - ( " - J K 2  + 2JCJJ(<;l ,<;2,T7l ,r72,X ,m 00,<7,2), (5.2.46)

=bi =  - ( n - ( - l ) Js -  j)//i +  iH J(C ‘.C2.'?l . ';2.X ,m 00,CT, 2 ) , (5.2.47)

where K.3S and KJ (j  =  1,2) are Eq and E + valued maps, respectively, th a t are analytic 
in a neighborhood of (0,0, X,  moo,0,0) €  V2 x V2 x £ + x R3.

The system of differential equations given by (5.2.38), (5.2.46), and (5.2.47) is 
equivalent to the original system (5.2.17), (5.2.18). Moreover, if we choose n = 
m ax{3,3-f m ax£}. then (5.2.38). (5.2.46), and (5.2.47) are in a form to which theorem 
5.0.6 applies. Applying this theorem shows that there exist a unique C l -solution 
{<7 ( 2 , a , Y ) , ^ 3(z,a,Y) , r j3(z,a,Y~)} that is analytic in a neighborhood of (2 ,a ,F )  =  
(0. moo, X )  and that satisfies

< j( 2 ) = 0 ( 2 ) ,  C3(z) =  0 ( z ) ,  and <r(z) =  O (z ) . (5.2.48)
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FYom (5.2.30-5.2.32), (5.2.33), (5.2.34) and (5.2.48) it follows that

p r ;(A + - O t.) =  n * , + 0 ( 0 ,  pr*(A+ ) = 0 (2*) Vs € £

and
m = a 4- 0(z3) .

□
T h e o re m  5 .2 .7 . Every solution from theorem 5.2.6 satisfies equation (4.1.10) on a 
neighborhood o f r~ l =  0.

Proof. Let z =  1/ r  and {A+(z),m(z)} be a solution of the equations (4.1.7) and 
(4.1.9) on a neighborhood M  of z = 0 ,  which we know exists by theorem 5.2.6. 
Lemma 5.0.7 shows that

7 (z) =  - * 2([A+(z), A_(z)] 4- [A_(z), A+(z)]) (5.2.49)

and 7 (2 ) satisfies
1 (2 ) =  f  (.2 )1 (2 ) .  (5.2.50)

where
f ( z )  =  £ ( m  -  2 z P ) . (5.2.51)

By theorem 5.2.6 and shrinking A/" if necessary, we see th a t f ( z )  is analytic on Af. 
Solving (5.2.50) we find

7 (2) =  7 (0 )«/«? nr)dT V2 e  Af .

But 7 (0 ) =  0  by (5.2.50). Therefore 7 (2) = 0  for all 2 € Af. □

5.2.3 Bounded black hole solutions
We now prove a  local uniqueness result for the black hole boundary conditions. The 
proof is less difficult than at r  =  0 or r  =  00 because the singularity that occurs at 
r = rff is relatively mild.

T h e o re m  5 .2 .8 . Let t =  r  — and suppose X  € V2 satisfies

K X );=  J _ _  J - | |A o +  [,Y,c(A-)]||2 > 0 .  
rtf rH

Then for some e > 0  there exist a unique C 2 x C l -solution {A+(t, X ), N(t ,  X)} fo the 
system of differential equations (4.1.7) and (4.1.9) defined on [0, e) that satisfies

Ar(t) =  v(X) t  +  0(t2) and A+ (t) =  X  +  0( t ) .

Moreover, these solutions are defined and analytic on (—e,e), and depend analytically 
on the initial data X .

Proof. Introduce new variables t, p, and v via

t = r  -  th , AT =  t(p  -I- u) , and v = (p +  i/)A'+ , (5.2.52)
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where u  is a  constant. Then

>d4 L = ‘ ( — )  ■dt \ n  + v /  

and it is clear that there exists analytic maps

t : V2 — >E+ and P  : V2

(5.2.53)

R

such tha t
j r( A + ) = f  and P(A+) = P\ r /------------- ------  -  \  r  /

where T  and P  are defined by (4.1.14) and (4.1.12), respectively. Assume \i/\ > 0. 
Define an analytic map

G : V 2 x / m (0) — « R ; (X,a)
2 (a +  i/)2

Then G =  G (u ,p ). Using these new variables, we can write the field equations (4.1.7) 
and (4.1.9) as

~ 7  (<7vW " i)  P(A*) + ( r f T ? )(l + 2 6 , v -i‘ ))

and
dv 1

t d t = ~ V ~  ( t + r #f) * ^ (A+)

respectively. Introduce two new variables n and v via

i l =  (l + V  -  +  -g-P(A  + ) .
th <h 

«> = u +  4--F (A + ) .
H

(5.2.54)

(5.2.55)

(5.2.56)

(5.2.57)

Define an analytic map

we set

r  : Vj x R — ► R ; (X,a)  >— ► a — u + —------4 - P ( X )  .
rtf r3„

Fix a vector X  € V2 that satisfies || -  p - P ^ ) ! ]  > 0. Then if w<

1 2 *

u = - - - T P { X ) >
H i n

we get T(X, 0) = 0 . So we can define an open neighborhood D  of (X,  0) 6 V2 x R by

D = { ( F , a ) | | | r ( y . a ) | |< |H  }.

Then from (5.2.53), (5.2.54), (5.2.55), (5.2.56), and (5.2.57), it is not hard to show
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that there exists an e > 0 and analytic maps

g- .V2 x D — >R and W, K. : V2 x D  x / e( 0 ) — >R

such that

= t&(v, A+,fi) . (5.2.58)

=  - v  + fH(v,  t) , (5.2.59)

t %  = - f i  + t tC(v,A+, f i , t ) .  (5.2.60)

The system of differential equations (5.2.58), (5.2.59) and (5.2.60) is in the form 
for which theorem 5.0.6 applies. Applying this theorem shows th a t exists a unique 
C l-solution {A +(t ,Y) ,  v ( t ,Y) ,  ( i ( t ,Y)}  to this system of differential equations that 
is analytic in a neighborhood of (0, X )  and that satisfies

A+( t ,Y)  = Y  + 0( t )  , v ( t , Y )  = 0 ( t ) ,  and £(t, K) =  O(t) •

It follows th a t N(t)  and A+(£) are analytic in a neigborhood of t = 0. Expanding in 
a  convergent Taylor series we have

O O  3 0

N(t)  = '* T N ktk and A+ (f) =  £ ^ ‘ (Y0 = Y ) .
fc=0 k=0

Substituting these powerseries into (4.1.7) and (4.1.9) shows

No = 0 and N x =   -------- -- ||A0 +  [V',c(V')]||2 .
r H r H

T h e o re m  5 .2 .9 . Every solution from theorem 5.2.8 satisfies equation (4.1.9) on a 
neighborhood of r = r f j .

Proof. Let t =  r  — r// and suppose X  € V2 satisfies

v  :=  ------- -- ||Aq + [X,c(.Y)l||2 > 0 .  (5.2.61)
rH r H

Then we know by the previous theorem that there exist a solution (A+(t), N{t)}  to the 
system of differential equations (4.1.7) and (4.1.9) that is analytic in a neighborhood 
of t =  0 and satisfies

N{t )  = vt + 0(t2) and A+(t) =  X  + 0 ( t ) . (5.2.62)

Let

m  : =  — ( t  4- r f i ) 2 N { t ) t ~ l ( m ( 0  “  F T 7 ^ P ( 0 )  •

Then (5.2.62) shows that f ( t )  is analytic in a neighborhood of t = 0. A short calcu­
lation shows that /(0 ) =  — 1, and therefore we can write

f { t )  = - l + t g ( t )
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where g(t) is analytic near t =  0. Consider the differential equation on

=  - n i t )  +  tg{t)V(t) , (5.2.63)

It has g(t) = 0 as a solution, and therefore this is the unique analytic solution near
t = 0 by theorem 5.0.6. But lemma 5.0.7 shows th a t -y(t) =  (A+(f). +
[A_(t), also solves (5.2.63) in an neighborhood of t = 0. Because -y(t) is
analytic near t =  0, it follows by uniqueness of analytic solutions to (5.2.63) that 
7 (<) =  0 near t =  0. □
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Chapter 6

Global behavior

In the previous chapter we have established tha t the EYM equations are locally 
solvable near r  =  0 and r  =  r//. If one of these solutions can be continued out to r  =  
oo, we would like to know its behaviour. Knowing the global behaviour is important 
for two reasons. The first is that numerical solutions can be constructed much more 
efficiently when one knows what to expect. The second is that we believe that these 
global estimates will be necessary in proving the existence of global solutions as was 
the case when G =  SU(2).

Suppose that {A+(r), m(r)}  is a local solution to (4.1.7), (4.1.9), and (4.1.10) in 
a neighborhood of r  =  r . where r .  =  0 or r ,  = 77/ > 0. We are interested in the 
local solutions that can be continued out to r  =  00 with (V(r) > 0 for r  > r . . For the 
moment we will assume that there exists a r<j >  r .  so that the conditions

tf(ro) < 1, IIA + (r)|| < -J=||A0|| . (6.0.1)

and

[A'+(ro), A_(r0)) +  [A'_(r„), A+(r0)] = 0. (6.0.2)

are satisfied. At the end of section 6.3 we will show that all local solutions that can 
be continued out to r  =  00 with N ( r ) >  0 for r  > r .  will necessarily have to satisfy 
these conditions. The goal of this chapter will be to determine the global behavior 
of these type of solutions. Before we state  the main theorem that characterizes the 
global behavior, we first need to introduce a technical condition. The space V2 (see
(5.1.4)) is uniquely determined by the choice of Ao in .4 ,'Rn  W. Therefore the bilinear 
form

B : V 2 x V2 — *V2 : (X , Y)  — . [-Y.c(K)] . (6.0.3)

depends implicitly on Ao- Our results require that Ao is chosen so that the following 
coercive condition is satisfied

_ L , <  inf m x . x ) f '
II A0|| X€Va\{0> IIXII4

We show in the next section that there exists Ao in .4j R n  W for which the inequality 
(6.0.4) is satisfied. In fact we have some evidence tha t (6.0.4) is satisfied for all Ao in 

n  W  although we have no proof of this fact.
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We now state our main result:

T h e o re m  6 .0 .10 . Suppose Ao e  -4,’r  n  W is such that the inequality (6.0.4) is 
satisfied. I f  {A+(r),m (r)} is a solution to equations (4.1.7) and (4.1.9) defined on 
[ro, oo) (ro > 0) that satisfies

N ( r 0) < 1 ,  ||A+(r0)|| <  ^=l|A o|| , (A'+ (r0), A _(r0)] +  [A'_(r0), A+(r0)) =  0 ,

at the point tq and
N(r)  > 0 for all r > r 0,

then

(i) there exist a > 0 such that m (r) —* as r  — oo,

(ii) 0 <  N(r)  <  1 for all r  >  r0,

(Hi) equation (4.1.10) is automatically satisfied for all r > ro,

(iv) equation (4.1.8) can be integrated to obtain S(r)  and S (r0) can be chosen so 
that S (r ) —• 1 as r —» oo,

(v) ||A+(r)|| < HA01| fy/2 for a l l r > r Q,

(vi) r \ '+(r) —• 0 and || A+(r) — JJ* || —» 0 as r —» oo, 

where
r  :=  { x  € V2 \  {0 } I [[c(AT), X], X } = 2 X  }.

Moreover i f  S \  is a H-system then A+(r) € £  + for all r > r0 and limrJOO A+(r) =  
n *  for some 6 5* n  E+.

When Ao is such that S \  is a ri-system, this theorem is a natural generalization of 
the SU{2)  results. However, if S\  is not a IT-system, then there is a possibility for a 
new type of behavior as (tu) leaves open the possibility that A + (r) does not actually 
approach a limit as r — oo. The reason that this possibility exists is that when S \  
is not a [I-system 5 X forms a IS^I-dimensional real variety. On the other hand, the 
existence of the limit A+(r) as r —► oc when S \  is a IT-system is due to the fact that 
the set 5* n  £ + is discrete ( see lemma 6.1.2).

From the definition of 5* , it is clear that every X+ €  5 X determines a real 
standard triple {Ao,X - , X + }  where A_ :=  - c ( X +) and .Vo := [A+, A_]. As Ao 6 

n  W, we know that there exist an 0+  € V2 such that {A o,n+ ,fi_} (O - : =  
-c(n+)) is a real standard triple. Let

€ := { Q+ 6 V2 \  {0} | [c(fl+), Q+\ = A0 }.

Then €  C 5 X> and it follows from (3.1.5) tha t the magnetic charge Q\ i  —» 0 as 
r  —• oo if and only if ||A+(r) — <£|| — 0 as r  —• oo. Therefore \  €  characterizes 
the asymptotic values of A+ (r) for which the magnetic charge does not vanish. If 
G =  S U( 2) then € =  5 X and so we recover the known fact tha t the global solutions 
cannot have any magnetic charge. For G /  SU(2), in general €  is a proper subset 
of 5  and hence there exist a  possibility for solutions with magnetic charge. As we 
mentioned earlier in section 4.2, purely magnetic black hole solutions with nonzero 
magnetic charge have been found numerically [25]. However, it is not clear if solitons 
with nonzero magnetic charge exist. No numerical solutions of this type have been
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found. Assuming th a t limr—oo A+(r) exists, the initial value problem a t r  =  oo may 
provide some insight. For g =  sl„C and Ao principal, the possiblility of magnetic 
charge has been studied by Kiinzle in [34). To describe his results, we first expand 
A +(r) as (see (4.3.1))

A+(r) =  J !  w«(r )e<» ’

where the wa are real valued functions. We note this expansion is possible since 
Ao is regular. If the magnetic charge does not vanish, then it can be shown that 
limr_oo^o(r) =  0 for some of the a  €  S \.  Assuming analyticity of the solution 
about r  =  oo, the power series expansion then shows that wa = 0 for r  near r = oo. 
We expect , although we have no proof, th a t wa = 0 near r  =  oo actually implies 
tha t wQ = 0 for all r. For black hole solutions this is not a problem. In fact the 
magnetically charged black hole solutions of [25] were found by setting wa = 0 for 
certain a  € S \.  But for solitons, u;Q =  0 for any a  €  S \  is not compatible with 
the boundary conditions at r  =  0. This may explain why no magnetically charged 
solitons have been found. Our analysis of the initial value problem a t r  =  oo has been 
done under the assumption that limr —oo A+(r) e  (S. In view of the above discussion, 
it would be desirable to generalize the existence and uniqueness proof a t r  =  oo to 
allow for limr—oo A+(r) in 5 X.

It is worthwhile at this point to mention how the existence proof for the gauge 
group S U (2) can be used to imply the existence of global solutions for any compact 
gauge group and any generator Ao in ■4̂ ,r n W. To see this, choose f i+ so that 
{A0, n +,fi_}  is a real standard triple. Let

A+(r) =  v (r)fl+ with w(0) = 1. (6.0.5)

Then it follows from (4.1.10) that w(r) =  e,7ou(r) for a constant y0 and a real function 
u(r). The remaining equations (4.1.7)-(4.1.9) become

= 9o(W u'2 +  5>"~2(1 -  u2)2).

S ~ lS ‘ =  2</or_  1 u"- 
r 2N u" + (2m — <7or _ l ( l — u2)2) ^  +- (1 -  u2)u = 0,

where g0 := ^||Ao||. They reduce with

p :=  r/go, p :=  m /g 0 (6.0.9)

to the equations for the SU (2) theory,

dp/dp = N[du/dp)2 + ^p-2 (l — u2)2, (6.0.10)
S ~ ldS/dp = 2r~l (du/dp)2, (6.0.11)

p2N d2u /dp2 + (2 p — p- l ( l — u2)2)du/dp  +  (1 — u2)u = 0, (6.0.12)

where now N  — 1 — 2p/p.  In view of the existence theorems for the G =  SU{2) 
case [6,52-54] it now follows that the system (4.3.4) and (4.3.5) always admits some 
global solutions

T h e o rem  6.0 .11 . There exists a countably infinite family o f globally regular solu­
tions of the Einstein- Yang-Mills-equations for any simply connected compact semisim­
ple gauge group G on a static spherically symmetric asymptotically flat space-time 
diffeomorphic to R4. Similarly, for any r //  >  0 there exists an infinite family of
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asymptotically flat black hole solutions with black hole radius rfj.

This of course leaves open the question of what are all the possible global solutions.

6.1 A coercive condition
In this section we show that there exist Ao in .4 ,’* n  W  so that (6.0.4) is satisfied. 
To start, we first derive an inequality that is equivalent to (6.0.4) but easier to work 
with. Let

S(V2) := { Y  € V2 | \\Y\\ = 1 }

and define
J  := { X  e  S(V2) | [[c(X ),X ],X ] =  ||[X ,c(X )]||2 X  }

Lem m a 6.1 .1 .

inf ||f l(X ,X )||2 =  inf 
x e j  X€Vi\{o} ||X ||4

Proof. Define
Q(Y)  := B ( Y , Y ) 2 , 

and let C denote the set of critical points of QlsfVj). Then it is clear that

2 ||B (X ,X ) ||2
inf | | B ( X , X ) f  =  inf-veer ' ’ xev2\(o} ||X ||4

Therefore to prove the theorem we need to show that J  = C. So suppose X  is a critical 
point of Qs(Vi)  an^ le t f ( Y )  '■= ll^ll4- By the method of Lagrange multipliers there 
exists a (3 € R such th a t

DQ(X)  =  ( 3 D f ( X ) .

Straightforward calculation shows that

D f ( Z ) - Y  = 4 \ \ Z f ( ( Z \ Y ) )  and DQ(Z)  • Y  =  -4<( [(Z. c(Z)\,  Z ] \ Y )) .

Therefore X  must satisfy

||X || =  1 and [[c(X) ,X\ ,X\  = flX  . (6.1.1)

Taking the norm on both  sides of [[c(X), * ] , X] =  3 X  and using ||X || =  1 yields

0  =  (([[c (X ),X ],X ]|X »  = ||[c(X), X ]||2 . (6.1.2)

Let X + :=  X , X_ := - c (X ) , and X0 :=  (X+. X_j. Then [X0, X±J =  ±  \\X0\\2 X± by 
(6.1.1) and (6.1.2). This proves that C C  J . The reverse inclusion is straightforward 
to verify. □

Define
5  :=  { X 6 V2 | [[c(X), X], X] =  2X } (6.1.3)

At this point we will prove a result about the structure of 5  th a t will be required 
later on. This result will not be used in this section.

L em m a 6 .1 .2 . I f S \  is a Il-system, then 5  n  E+ is a discrete set.
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Proof. Proposition 5.1.6 shows tha t E+ =  Re <*>> s° we can expand X+ € E +
as t

x + = xJe o,
j=i

where x } e  R. So
t

X _ :=  -c (X + ) =
j = i

and hence

X0 :=  [X +,X _] =  j y ] i )n [ eo , ,e - a J  =  5^*>1*0,
j=ifc=i j =l

as [ea j ,e _ 0J  =  ^jtho^. Using [ha j ,e ±QJ  =  ± C k]e± ak where Ck] is the Cartan 
m atrix of gA, we get

l*o, X±] T  2X± = ±  ~ ^  xfce ±<>* ■

Because the vectors e± ttj are linearly independent, it is clear tha t X+ € 5 n  £ + if 
and only if

^  CkjXj -  2^ x k =  0 for A: = 1 ,2 , . . .  I.

Using the invertibility of the Cartan matrix C, the above equation can be solved to 
give

x k = 0  or x fc =  ± ^ 2 £ ( C - % j  * = 1 , 2 .........i .

This solution set is obviously finite and therefore the proof is complete. □

Define
5 X := 3 \{ 0 } . (6.1.4)

L em m a 6.1 .3 .
inf ||5 (X ,X ) ||2 =  inf 4

..................  x e3* ||f l(X ,X ;||2

Proof. Suppose X+ €  J ■ Let X -  := -c (X + ) and Xo :=  [X +,X _]. Then

ll*o
(6.1.5)

2 l |* + i|2 =  ((2X + |X + »  =  « [X 0,X +]|X + »  =  <(X0|[c(X+ ) ,X +] »  =  UXoll2

Also note tha t if X  € Vj and [c(X),X] =  0 then

0 =  ( ( [c(X), X]|Ao)) =  ( ( X |[X , Ao])) =  - 2  ||X ||2 .

Therefore
if X  €  U2 then [c(X), X] =  0 if and only if X  =  0. (6.1.6f

Define a map
*: J  — * S x
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by
^  y/2

X+ X+ ||[c(X+ ) ,X + || X+ ‘

Then using (6.1.5) and (6.1.6), it is straightforward to wrify tha t the above map is 
well defined and bijective. The proof now follows since

U K *+ .
n x . r

and
||B (X +,X +)|| 2

||X +||< ||B (X +,X +)||*

by (6.1.5) and the fact that ||B (X + ,X + )|| =  ||Xo||. □

The above two lemmas show that the coercive condition (6.0.4) is equivalent to

< inf ------- -  5 . (6.1.7)
IIA0|| | |f l(X ,X ) | |2

We will now show that there exist generators Ao in *4i'Rn W  that satisfy the inequality 
(6.0.4).

T heorem  6 .1 .4 . I f  S \  is a  FI-system then the inequality (6.0.4) is satisfied.

P roo f. Since S \  is a Il-system, the discussion in section 4.3 shows that we can without 
loss of generality assume that Ao is a principal Ai-vector. Note tha t if X + € 5 then 
Xo :=  [X+, X_] € A ]  where X _ := — c(X+). Also note that since Xo satisfies c(A'o) = 
-c(X o) it follows from the definition of || || and B  that (Xo|Xo) = ||B (X +, X+)||. 
Therefore

^  4_
xkmA\ (X |X ) -  X€3 - ||B (X ,X ) | |2

as it can be easily shown that (X |X ) € R for all X € .4[.

„infw / Vl < J n f  ,7 ~ 2 > (6.1.8)

L em m a 6.1 .5 . I fY 0 € A] then (K0|T0) < ||A0||2.

Proof. Since Ao is principal, there exists a  base A such tha t

q (A o ) =  2 for all a  € A. (6.1.9)

Also there exists an automorphism <f> of g such that

a(4>(Yo)) = 0 , 1, or 2 for every a  6 A. (6.1.10)

Now
Ao =  ^ 2  Aa ho and d>(Y0) = ^  yaha

a€A

A« = 2  ^ ( C - % ,  , ya = (3(4>(Yo))
0€A »J€A

and C ~ 1 is the inverse of the C artan  matrix C  = {{a, (3)). Using the above expansions

where
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it is easy to  show th a t

(a 0 |Ao) =  2 5 3  (6111 )
a,0€A |a |

and
(K0 | r 0) =  2 5 3  i^ a ( 0 (yo) ) ( c - , w ^ ( y ' o ) ) .  (6 .1.12)

a,0€A 1 1

But (C - , )a^ > 0 for all a ,  @ € A. Therefore (<A(Vo)|<£(Yo)) -  (Ao|Ao) by (6.1.10),
(6.1.11), and (6.1.12). Finally, observe th a t (<£(Vo)|<£(Vo)) =  (Vo|Vo) and (A0|Ao) =
||Ao||2 since <t> is an automorphism and c(Ao) =  —Ao- Therefore (Yo|Vo) <  ||Ao||2 and 
the proof is complete. □

From this lemma and (6.1.8), we see that the inequality (6.1.7) is satisfied. By 
the above results this implies that (6.0.4) is also satisfied. □

Since we now know that there exists Ao in A \ * n  W such th a t the inequality 
(6.0.4) is satisfied, it would be desirable to  determine exactly which Ao satisfy (6.0.4). 
In general, this appears to be a difficult question. However, for low-dimensional Lie
algebras, computations show that every Ao in .4*’* n W satisfies (6.0.4). This gives
some evidence to  our belief that (6.0.4) is always satisfied. If this were the case, then 
our later proofs that rely on (6.0.4) would be general.

6.2 A sym ptotic Yang-M ills equations
The flat space spherically symmetric Yang-Mills equations can be written as

A+ - A + + ^  = 0 (6.2.1)

where (•) =  and r  =  ln(r). However, for the purpose of this section we will 
consider equation (6.2.1) in its own right, and let r  denote a parameter that is not 
necessarily related to the radial coordinate r. We will be interested in r  — oc behavior 
of bounded solutions to equations of the form

A+ -  A+ +  T  = 6(r)A+ , (6.2.2)

where S is any C 1 function tha t satisfies

lim 6 ( t )  =  0 . (6.2.3)
r-* o c

To determine this behavior, we use the results of Markus [40] concerning the long 
time behavior of solutions to asymptotically autonomous differential equations. See 
also [43,63]. To describe these results we first recall that a nonautonomous system of 
differential equations in

x(r) = h(T ,x(r)) (6.2.4)

is said to be asymptotically autonomous with limit equation

y(r)  = k(y(r))  (6.2.5)

if
h (r,x ) —» k(x)  as r  —• oo uniformly on compact subsets of R N.
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We note that the maps h and g are assumed to be continuous and locally Lipschitz 
on R N . The u;-limit set u;(ro,x0) of a bounded solutions x (r) to (6.2.4) on (ro,oc) 
satisfying x(xo) =  xo is defined by

u)(tq, x 0 ) =  { y  | y  =  lim x ( t j  ) for some sequence r, —► oo } .>—oo

The fundamental result of Markus is:

T h e o re m  6 .2 .1 . The uj-limit set u/(tq, xq) of a bounded solutions x (r)  to (6.2.4) on 
(ro,oo) satisfying x (to) = Xo is nonempty, compact, and connected. Moreover,

dist(x(T),u>(ro,xo)) -♦ 0 os r  —* o o , 

and uj(tq, xq) is invariant under (6.2.5).

Define maps

?  ■ *2 — * Vi ■ X  i— ► i(Ao +  (X\c(X)], X ] , (6.2.6)

f  : R x  V2 x V2 — ► V2 x V2 : ( r ,X , ,X 2) ( X 2, X 2 -  ^ ( X ,)  +*<5(r)X2), (6.2.7)

and

g : V 2 x V 2 — . V 2 x V2 : (r, X ,, X2) (X2, X2 -  j ( X , ) ) . (6.2.8)

Using these maps we can write (6.2.1) and (6.2.2) in first order form as

(A+, r + ) =  g (A + ,r+ ) (6.2.9)

and
(A + ,r+) =  / ( r ,A + , r + ) , (6 .2 .10)

respectively.

P ro p o s it io n  6 .2 .2 . / ( r ,  X, T) — * g{X,  Y)  as r  —• oo uniformly on compact subsets 
of V2 x V2.

Proof. Let BP{V2) =  { X € V2 | [|X|| <  p } and suppose K  C V2 x V2 is compact. 
Then there exist a p > 0,such that K  C BP{V2) x B P(V2). Fix e > 0. Since <S(r) — 0 
as r  —• oo, there exists a r( such that |<5(r)| < p~ le for all r  > rt . Then for anv 
(X.  Y)  €  K,  we have

||/ ( r ,  X. V) -  g{X,  r)|| =  |5(r)| \ \Y || < - p  = t .
P

Thus | | / ( r ,  X, Y)  -  g{X,  Y)\\ < e for all r  > rt and (X , V') €  K . □

This proposition shows that the nonautonomous system (6.2.10) is asymptotically 
autonomous with limit equation (6.2.9).

P ro p o s it io n  6 .2 .3 . Suppose X (r) =  (X i(r), X2(r)) is a bounded solution to (6.2.10; 
that is defined for all r  >  r0 and satisfies X (r0) =  Xo- Then

(i) uj(tq, X q) is non-empty, compact and connected,

(ii) ||X (r) -  u/(r0, Xo)|| — 0 as r  -* oo,
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(Hi) w(to,Xo) is invariant under (6.2.9).

Proof. Follows directly from theorem 6.2.1 by proposition 6.2.2. □

Define

H  :V2 x V 2 — ► R : (X ,, X 2) ~  |  ||X2||2 -  | ] | JF(A'i)||2 , (6.2.11)

where
F ( X ) := i ( A o  +  [A-,c(X)]). (6.2.12)

P ro p o s it io n  6 .2 .4 . / /X ( r )  =  (X i(r) , X 2(r)) is a bounded solution to (6.2.10), then 
there exists a 0  € R such that H (u>(ro,Xo)) =  0-

Proof. Straightforward calculation using (4.1.18), (5.1.3), the properties (2.1.2) of the 
inner product (( | )), and (6.2.10) shows tha t

(//(X(T))- =  ||X2( r ) ||2 ( l+ « J (r ) ) .

But 6(r) —* 0 as r  —• oo, which shows tha t (H(X(r)) '  >  0 fo r-r large enough. 
Thus limr _oo / /(X (r) )  exists and we will denote it by 0. Therefore for any se­
quence Tfc -♦ oo, we also have limfc_oc W (X(t*)) =  /J. By continuity of H,  we have 
/ / ( l im t_ (30 X(r*)) =  0.  FYom the definition of u>(t0, Xo) it is clear that Xo)) =
0. □

The fixed points of (6.2.9) are
5 x { 0 }  (6.2.13)

where 5  was previously defined in (6.1.3).

T h e o re m  6.2 .5 . / /X ( r )  = {Xi(r) ,  X 2(r)) is a bounded solution to (6.2.10), then

(i) ||X i(r)  — 5|| —• 0 os r  —• oo

(ii) X 2(r) —• 0 as r  — oo

Proof. Suppose Yo =  (Vi.o.VVo) 6 w(r0,X o). Let Y (r) =  ( Y\ ( t ) ,Y2{t))  beasolution 
to (6.2.9) with Y(0) =  Y0. Then Y (r)  e w(r0,X 0) and f f ( Y ( r ) )  = 0  for all r  > 0 
by propositions 6.2.3 and 6.2.4. Using (4.1.18), (5.1.3), the properties (2.1.2) of the 
inner product (( |- )), and (6.2.9), it is not difficult to show that ( / /(Y (r ) ) ' = ||V2( r ) | |2. 
Therefore we must have ||V2( t) || =  0 and hence Y2( t ) = Y2( t ) =  0. It then follows 
form the differential equation (6.2.9) that Yi(r)  = 0 and [c(Vi(r)), Yi(r)] =  2Yi(r).  
Therefore, Y (r) =  (Yo.i.O) and [c(Y|.o), Yi.o] =  2yi,0- This proves tha t lv(t0.Xo) C 
5 x {0}. The proof now follows easily since ||X (r) - w ( r 0,Xo)|| —• 0 as r  — oo by 
proposition (6.2.3). □

T h e o re m  6.2.6. I f  X (r) =  (X i(r) , X 2(t )) is a non trivial bounded solution to 
(6.2.10), then

(*) ||X ,(r)  -  J x || — 0 os r  — oo

(ii) X 2(t ) — 0 as r  — oo
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Proof. If limr _oo X (r) ^  0 then we are done by the above theorem. So assume that 
limT_ 00 X (r) =  0. Let W  = V2 x V2 and define a  linear operator T  on XV by

T(Z) :=  Dg(0) ■ Z .

A short calculation shows that

T = 0 1
- 1  1

and tha t T  has two distinct eigenvalues (1 ±  iy/3)/2 each with multiplicity dimR V2. 
Therefore there exists constants K,  a  > 0 such that

|e~rT| < K e~ aT V r  >  0 . (6.2.14)

Choose / > 0 so that
/ < £  . (6.2.15)

Because g(Q) =  0 and Dg(0) =  0 it can be shown using appropriate smooth bump
functions that for any /j > 0 there exists an e > 0 and a C°° m a p : XV —* IV’ such
that

| |9 ( Z |) - g ( Z 2)|| < / | |Z i  - Z 2|| V Z ,,Z 2 € W", (6.2.16)
||5 ( Z ) ||< / i  V Z e X V  (6.2.17)

and
g(Z) = g(Z) -  T(Z) VZ € B((XV) . (6.2.18)

Also because limr -.oo <$(t) = 0, there exists a t0 and a C°° function 6{t ) such that

|rf(r) |< Z  V r e R ,  (6.2.19)

and
S(r) = 8 { t ) Vr > r0 . (6.2.20)

Letting pr2 : XV —* V2 denote projection onto the second factor, it is clear from 
(6.2.18) and (6.2.20) that

/ ( t ,  Z) =  T(Z) 4- g(Z)  4- <5(r)pr2(Z) V Z € Bt {W), r  > r0 . (6.2.21)

Because limr _ 00X (r) = 0, there exists a >  r0 such that X (r)  6 B ({W)  for all
t  >T\ .  So X ( t ) must be a solution to the differential equation

Y  = T ( Y ) + i ( r ) p r 2( Y ) + g ( Y )

for r  >  Ti by (6.2.21). Define

T(<) :=  T +  <5(r)pr2 (6.2.22)

so tha t Y  satisfies
Y  =  T(«)(Y) +  g( Y)  . (6.2.23)
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Now |p r2| <  1 so |<f(r)pr2| <  / for all r  €  R  by (6.2.19). Consequently,

J  |d(s)pr2|ds <  Z(r0 -  r)  Vr0 > r  . (6.2.24)

Let 'l’(r) be a fundamental matrix associated to T (r). In other words 'l '(r)  is an 
invertible matrix solution to

*(r)  =  T ( t ) * ( t )  .

It then follows by (6.2.14), (6.2.15), (6.2.24), and theorem 2.3 page 86 of [19] that 
'l '(r) satsifies

l* ( r ) 'K r0) - , | < e - o(T° - r) V r0 > r  . (6.2.25)

The inequalities (6.2.16) and (6.2.17) guarantee that any solution of (6.2.23) is 
defined for all r . Let X (r)  denote the unique global solution to (6.2.23) that satisfies 
X (r) =  X (r) for all r  >  T\. Since limr -.oo X (r) =  0, X (r) is bounded on [0, oo). 
Notice, that because g{0) =  g(0) =  0, Z(r )  =  0 is also a solution to (6.2.23). However, 
a slight generalization of lemma 1.5, page 54 of [22] shows that any solution to (6.2.23) 
bounded on [0,oo) is unique by (6.2.15), (6.2.16), (6.2.17), and (6.2.25). Therefore,
X (r) =  0 for all r  € R and this implies th a t X (r) =  0 for r  > r t . But Z (r) =  0 is a
solution to (6.2.10) and so X (r) =  0 for all r  e  R. This contradicts the assumption 
that X (r)  is a non-trivial solution to (6.2.10). Therefore limr —oo X (r)  ^  0. □

6.3 Global estim ates
At the end of this section we prove theorem 6.0.10. However, we first need to prove 
a number of preliminary results.

P ro p o s itio n  6 .3.1. / / { A+(r), m(r)} is a solution to equations (4.1.7) and (4.1.9) 
defined on an interval (ro, n ) (ro > 0) and that satisfies N(r)  > 0 for all r > r o and 
[A'+(ro), A _(r0)] +  [A'_(r0), A+(r0)| =  0 then A+ also satisfies (4.1.10).

Proof. Lemma 5.0.7 shows that */(r) = [A+(r), A'_(r)] + [A_(r), A'+(r)] satisfies the 
differential equation y' = (m ~ r ^ )  ~t- Integrating this equation yields

7(r) =  7 (r„)e*p ( £  (m  -  I p )

But 7 (r0) =  0 by assumptions, hence 7 (r) =  0 for all r  > r0. □

P ro p o s itio n  6 .3 .2 . / / (A +(r), m(r)} is a solution to equations (4.1.7) and (4.1.9), 
that satisfies iV(ro) > 0 , [A+(r0), A _(r0)] =  Ao . and A'+(r0) =  0 for some r0 > 
0, then A + (r) =  A+(r0), m(r) = ^ (1  — N{r0)) , and S(r)  =  5 (r0) for all r > 
max{2m(ro),0}.

Proof. It is straightforward to check that if N( r 0) > 0 , (A+(r0), A _(r0)] =  Ao , and 
A'+ (ro) =  0, then A+(r) :=  A+ (r0) and m (r) := ^ (1  -  N(ra)) solve (4.1.7), (4.1.9), 
and (4.1.10). By standard uniqueness results for systems of differential equations, this 
is the only solution satisfying N( r0) > 0 , [A+ (r0), A_(r0)] =  Ao , and A'+ (r0) = 0 . □

The next two propositions generalize propositions 8 and 9 in [6] which are valid 
for G = SU{2). .

P ro p o s it io n  6 .3 .3 . I f  { \ +(r) ,m(r)} is a solution to equations (4.1.7) and (4.1.9), 
on [r0, r i)  (r0 > 0) and 0 <  N (r0) <  1 then N(r)  < 1 for all r  £  [r0,r i ) .
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Proof. This can be proved in the exact same manner as when G = SU (2). See [6] 
proposition 8 for details. □

P ro p o s it io n  6 .3 .4 . I f  {A+(r),m (r)}  is a solution to equations (4.1.7) and (4.1.9), 
011 lr o»r i) (r0 >  0) with 0 < € <  N{r)  < 1 then there exists a S > 0 such that the 
solutions exists and is analytic on [ro .ri +  <$).

Proof. First note that if the solution {A +(r),m (r)} exists on some open interval 
I  C (0, oo) on which N  > 0 then the Cauchy-Kowalevski theorem will guarantee the 
solution will be analytic. From standard theorems on differential equations, it follows 
that the solution will continue to exist a t r  =  r i  unless N  0 or one of the variables 
{m, A+,A'+ } becomes unbounded as r  —♦ r j. By assumption N  does not approach 
zero and 0 < JV(r) < 1 implies that

0 <  2m (r) <  r t V r  €  ( r o ^ ) . (6.3.1)

Therefore we only need to show that A+ and A'+ are bounded as r  —» ri. 
Integrating (4.1.7) yields

m (r) -  m (r0) =  f  (N G  +  p~2P)dp > f  N G dp' (6.3.2)

since P > 0 and r0 > 0. From (6.3.1), (6.3.2), and JV(r) > e it follows that

which implies that

(6.3.3)

Integrating (4.1.8) yields

S(r) = Soexp(2 f  p~xGdp)
J r n

and hence
(6.3.4)

by (6.3.3). 
Now,

l|A+(r) -  A+(r0|| =  T  A'+(p)dp\\ < f  ||AV(/»)|| dp
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But,

£  ||A'+(p)|| dp < ||A'+(p)||2d p ) i y/T= TO

=  (2/> )
< ^ n ( r i  - r 0) y

y/r - r0

by Holders inequality 

by def. of G

The above two results show that

We can rewrite (4.1.9) as

sup ||A+(r)|| <  oo .
r€ ( ro ,r ,)

(N s\'+y =

So then

\ \N{r)S{r)A’+(r) -  JV(r0)S(r0)A,+ (r0)|| =  f  ( N S X ' J d p

But

ll^il = - ( A o - [ A + ,A_l)

(6.3.5)

(6.3.6)

< i(||Ao|| +  ||[A+,A_]||) < i | |A 0||+A :||A + |

(6.3.7)

(6.3.8)

for some constant k > 0 since ( X , Y )  — [X, c(T)] is a continuous bilinear map from 
g x g to  g. It follows from (6.3.4), (6.3.5), (6.3.7), and (6.3.8) that

sup ||AV(r)|| <  oo .
r € [ r 0 .r , )

From this point onward, we will assume that Ao satisfies the coercive condition 
(6.0.4). This next theorem can be use to generalize theorem 7 of [45] to  any A0 that 
satisfies (6.0.4).

P ro p o s it io n  6 .3 .5 . / / (A +(r), m(r)} is a solution to (4.1.7) and (4.1.9) on [r0, r i )  
(ro > 0) with N(r)  > 0, then ||A+(r) ||2 can not achieve a local maximum in the region 
where ||A+(r) ||2 >  I ||A0||2.

Proof. Let v(r) := ||A+ (r) ||2 and suppose v(r) achieves a local maximum at r . .  Then

«/(r.) =  0 and v"(r. )  < 0 .

From (4.1.9), it is not hard to show that v(r) satisfies 

r 2N( r ) v ”(r) + <*(r)«/(r) +  2v(r) -  ||[A+(r), A _(r)]||2 =  2r 2A'(r) ||A'+ ( r ) ||2 , (6.3.9)
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where
$ ( r )  : = 2 (m (r) - r " l P (r)) =  r ( l  -  N { t ))  -  2r ~ 'P ( r )  . (6.3.10)

It follows from the above equations that u (r .)  > £ ||[A +(r.), A _ (r . ) ] | |2 while (6.0.4) 
implies th a t p ^ jjr t,(r *)2 ^  ||(A+(r .) , A _(r.)])|2. Therefore u (r.) <  5 ||Ao]|2 and the 
proof is complete. □

The next proposition is very similar to the previous one, however its slightly 
different conclusion will be useful in proving the next result.

P ro p o s itio n  6.3 .6 . Suppose {A+(r), m (r)} is a solution to (4.1.7) and (4.1.9) on 
[»’o ,r 1) (r0 >  0) with N(r)  > 0 and let v(r)  =  ||A+(r) ||2. I f  v(rQ) > 1 ||A+(r) | |2 and 
v'(ro) > 0 then v(r) > ± ||A+(r ) | |2 and v’(r) > 0 for all r > ro.

Proof. Let r i be the first r  > r0 such that v'(r) = 0. Then (6.3.9) shows that 
rf  Af(ri)t>"(ri) >  ||(A+(ri), A _(rt )j||2 -2 u ( r i)  while it follows from (6.0.4) that v ( r i )2 
< *1^11 ||[A+ ( r l ), A_(t-,)]||2. Therefore

r?JV (r,)u"(ri) > —i- j t» ( r i )2 -  2v ( r , ) .
UAoll

But u (ri) > ^ ||Ao||2 implies that nAo||, l , ( r> )2 — 2 w(r 1) > 0  and hence v"(ri) > 0  since 
N( r  1) > 0  by assumption. This implies th a t i /( r i)  =  0 is impossible. □

The next proposition is a generalization of proposition 2.2 of [56]. The key to the 
proof is the observation tha t the equation (6.3.9) governing ||A +(r) | |2 can be analyzed 
in the region where ||A+(r) | |2 > ||Ao| |2 / 2  using the techniques developed in [56] for 
G =  SU (2). It is remarkable that the SU (2) proof can be adapted to  the general case 
with such ease.

P ro p o s itio n  6 .3 .7 . Suppose (A +(r),m (r)}  is a solution to (4.1.7) and (4.1.9) de­
fined in a neighborhood of ro and let v(r) =  ||A + (r)|]2. If 0 < N ( r 0) < 1, v(r0) >
i  ||Ao||2 and v'(r0) > 0 then there exists a r t > r0 with N( r \ )  =  0 , 0 < .V < 1 on
[ro .ri), and [r0, r i )  is the maximal interval o f existence.

Proof. Assume that the solution is defined on [r0 , 0 0 ) and N(r)  > 0. Then (6.2.9) 
and (6.0.4) imply that

r2N v" + 24»i/ +  2 u  1 —,,2 > Q (6.3.11)
II A0|| -

Consider the differential equation

r2N v ', + r v ’ + 2 v  (6.3.12)
IIAoll2

v(ra) =  v(ro) and t’̂ ro) =  t /( r0) . (6.3.13)

L em m a 6 .3 .8 . v'(r) > v'(r) for all r > ro and hence v(r) >  v(r) for all r > r0. 

Proof. First note that it follows from proposition 6.3.6 that

v’(r) > 0 and u(r) >  i  ||Ao||2 V r > r 0 . (6.3.14)
£
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Because N (r 0) > 0, P (r0) > 0, and v'(rQ) > 0, we get from (6.3.11), (6.3.12), and 
(6.3.13) tha t

roW(ro)(u"(ro) -  w"(r0)) > -(<&(rQ) -  r0)t/(r0) > 0 . (6.3.15)

Thus w"(r0) > t5"(r0) and hence v'(r) > v'(r) for r  > r0 with r  near r0. Suppose is
the first r  >  0 for which v '(r t ) =  v'(ri).  Then it follows from (6.3.13), (6.3.14), and
the fact tha t v '(r) >  v'(r) for all r  €  [ro, n )  that

4 u(r i)2 -  2v(ri)  >  —^ ^ ( r ! ) 2 -  2u(r1) . (6.3.16)
IIAol!2 HAoll2

since the function
k(x)  =  4 2- i 2 -  2 i  > 0 (6.3.17)

HAoll

is monotonically increasing in the region x  > ^ ||Ao||2. Then

r ?iNf(r1)(u"(r i ) -  u "(n )) > —i p u ( r , ) 2 -  2v(r,) -  ( —i-j«> (r,)2 -  2t>(rI)'\ > 0
II Ao || \  HAoll - )

by (6.3.11), (6.3.12), (6.3.16), W (r,) > 0, and P ( r t ) >  0. Therefore t / '( r ,)  > u"(r,) 
and this implies that u '(r i) =  *^(r i) is impossible. □

L em m a 6 .3 .9 . v'(r) > 0 and v(r) >  A [| 1| j or r > rQ

Proof. Proved in similar fashion as proposition 6.3.6. □

L em m a 6 .3 .10 . I f  f (r)  = rv' +2i5 — then there exists an R > rQ such that11 Aa l|
f ( r )  < 0 for all r  > R.

Proof. Suppose f ( r i) = 0 for some r | > r0. Differentiating /  yields / '  =  rv" +■ 
(3  -  iiAoll3 *0 Since / ( r i) =  0, the differential equation (6.3.12) shows that

r^N(r i ) v“(ri) = 0 

and hence v"(ri)  =  0 as N(r \ )  > 0. Thus

by lemma 6.3.9. This shows tha t /  can cross zero a t most once. Thus /  is either 
always positive for r  > ro or there exist an R > r0 such that / ( r )  < 0 for all r  >  R. 
Suppose / ( r )  >  0 for all r  > ro. Then

4
rv + 2 v --------- ~v‘ > 0

IIAoll2

or equivalently
dv dr

~ 2d +  p t r * 2 >  ~
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by lemma 6.3.9. But

^O(ro) - Z "  +  j j^ j j

f ° °  d r  _  

J To r

r  dv

Jv(r0 ) +  i i A ^ l l i ^ 2

while
r  * oo

which is a  contradiction. □

Consider the differential equation

r2v" + r v ’ + 2 v  i - j j} 2 = 0  (6.3.18)
HAoll2

v ( R ) = v ( R )  and v(R) = v' (R)  (6.3.19)

where R  is defined in lemma 6.3.10.

L em m a 6.3 .11 . v(r) > u(r) and v'{r) > v'(r) for all r > R.

Proof. From (6.3.12), (6.3.18) and (6.3.19) we have

S” (K> -  5"(B> -  ( l  -  . (6.3.20)

Since 0 < N(ro)  < 1 and we are assuming that N  > 0, it follows from proposition
6.3.3 that 0 < AT < 1. Therefore (6.3.20) shows that v"(R) > v"(R)  and hence
v'(r) > i}'(r) for r > R with r  near R. Suppose there exists a smallest rj > R  for
which v(r)  =  t>(r). Using similar arguments as in proving lemma 6.3.8, it can be 
shown that

v'(r) > 0 and v(r) > ^ ||Ao||2 for all r > R. (6.3.21)

Thus

«Hr 0  > c(r ,)  > 0 and —- ^ v ( r , ) 2 -  2u(r,) > —i- ^ u f r , ) 2 -  2u (r0
l|Ao|| l|A0||

and hence using (6.3.12) and (6.3.18) we see that

r? iV (r,)6 "(rl ) - r fA f( r1)w"(r,) =  _ i , 5 ( r , ) 2- 2 5 ( r , ) - ( — !̂ v ( r , ) 2 - 2 t ; ( r l )>) > 0
HAoll \  II Ao|| /

which implies that
« " ( n ) >  Af(r, )v"(r,) > e " ( r , ) .

Therefore v '( r j ) =  C'(ri) is impossible. □

L em m a 6.3 .12 . There exists a r  > R fo r which limr_ f  v(r) =  00 and l i m r _ r  v'(r) = 
oc.

Proof. Let t =  ln(r). Then we can write (6.3.18) as

( 6 - 3 ' 2 2 )
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So v  > 0 by (6.3.21) and (6.3.22). This implies th a t v is increasing. If T  =  ln(ft) 
then i {T)  >  0 by (6.3.21), and thus v(t) > v(T)  >  0 for t > T  as v is increasing. It 
follows that limt_ 00 v(t) = oo .

The differential equation (6.3.22) admits a first integral

(6323 )

Therefore if we let Ho = H(T) ,  then

ho+S(o’fer«>-i)
as H  is a  constant of the motion. Since v(t) is increasing and limt—oo v(t) =  oo, there 
exists a. ti > T  such that

if)2 > — - —jv 3 V t > t,
2 3i|A0||2

As v > 0 and v  > 0, the above expression is equivalent to

v 4
—r  >  5 V t > <! .
vi  3 ||Ao||2

Integrating both sides yields

2 2 4
3 ||Ao||2

or equivalently
2

+ 3iTvnp(tl ~ h)

This shows that there exists a  t such that limt_£ 0(t) =  oo. But r =  e‘, so if we let 
f = e‘ then it follows that limr _? C(r) =  oo and lim r—i* «'(»■) =  oo. □

The above lemmas show that there exist a r  < f  such that limr / v  v'(r) = oo
which proves that A + (r) or A'+(r) becomes unbounded as r  — r. This contradicts 
the solution existing on [r0, oo). In view of proposition 6.3.4, we must have N( f )  =  0.
Let r t be the smallest r  such that N  =0.  Then (4.1.16) implies that

riAT(ri) = 1 -  % P ( r t) (6.3.24)
ri

while while it follows from (6.3.9) and (6.0.4)

(r, -  £ /> (r i))  v\n) + 2v(rl) -  j j£ jj l« (n )2

(  ||[A+ (r l ),c(A+ ( r l )]|| __ 4 \
l|A+( r ,) | |4 ||Ao||2 /

u (n ) > 0 .
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B ut v(ri)  >  ||A o||2 /2  implies th a t 4 u (r1)2/  ||Ao||2 -  2 t/(ri) >  0 and therefore

Since t /( r j )  >  0 the above inequality implies that r j  > 2P(r \ ) / r \  and hence 1 — 
2P(r i ) / ( r i) > 0- Combining this with (6.3.24) we see tha t N' frx)  >  0 which contra­
dicts N ( r i ) =  0. Therefore [ro, ) must be the maximal interval of existence. □

T h e o re m  6 .3 .13 . If  {A +(r),m (r)} is a solution to (4.1.7) and (4.1.9) defined on 
[r0,oo) (ro >  0) and it satisfies N  > 0, |jA+(r0)|| <  ||Ao|| /V 2  and N{r0) <  1 then 
l|A+(r)|| <  ||Ao|| /y/2 for all r > r0.

Proof. Since N  cannot cross 1 from below by proposition 6.3.3, we have 0 < N(r)  <  1 
for all r  >  r0. Let v(r) = ||A+(r) ||2 and suppose there exists a r j  >  r0 such that 
u(r i) >  ||Ao||2 / 2. Then by the mean value theorem there exists a r .  e  ( r i , r2) 
such th a t v' (rm) > 0 and v(r . )  > ||Ao||2 /2 . The proof then follows from proposition

The next theorem, which guarantees th a t the mass is bounded, is a generalization 
of theorem 2 from [32] and the proof uses similar methods.

T h e o re m  6 .3 .14 . If  (A +(r),m (r)}  is a solution to (4.1.7) and (4.1.9) defined on 
(r0,oc) urith N  > 0, .V(r0) < 1 and ||A+ (r0)|| < || Aq|| / \ /2  then

Proof. Let C denote the set of critical points of t«k(r). Since tUk(r) is analytic by 
proposition 6.3.4 the set C can have no limit points. There are two cases to consider, 
either C is bounded or C is unbounded. Note that C is not empty by assumption.

If C is bounded, let c =  supC. Then w'k must be either greater than zero or less 
than zero for r  > c. We first assume th a t w'k(r) > 0 for r > c. Then integrating
(6.3.26) with q =  0 yields

6.3.7. □

N  G dr < oo .

Proof. It follows from theorem 6.3.13 th a t

l|A+(r)||2 < — ||A0||2 V r  > r0 . (6.3.25)

Let {A’k}]J_1 be a orthogonal basis for V2 with normalization ||.Yfc|| = l / \ /2 . Define

wk(r) :=<<*fc|A + ( r )»  .

Then it follows from (4.1.9) th a t for any q,

q r ' - l Nw'k = (rqN w ky  4- 2rq~ l N G w k + r , - 2 (( X k \ F) )  . (6.3.26

L em m a 6 .3 .15 . I f  wk has a critical point c 6 [ro,oo) then

Nw'k (r) = - £  Is 'G w 'kdp -  f ' p - 2(( X k] F ) ) d p  < £  p~2 ||^ || dp
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But it is clear from (6.3.8) and (6.3.25) that there exists a  /3 >  0 such that ||/"(r)|| < 
n/2/3 for all r  >  r0. Consequently, N w k(r) <  @(c~1 -  r -1 ) and using

m <p<

we get

sup / * ( * - - )
><p<r \ c  p )  Vc r )

J_ N\w'k \2dp < 0  Q  -  wk(p)dP -  ^  _  7 )  ~  u,k^ )l

- 0  (I “;)K< XfciA+(r) - »i - ̂  (1_;)l|A+(r)" A+(£)|1
s A ( i ) «  (63.27)

for some a  > 0 by (6.3.25). Letting r  —• 00  in the above expression shows that

I  N W * f d r  s ̂  < 00 ■
Similar arguments show that the above inequality continues to hold if wk < 0 .

If C is unbounded, there there exists a sequence of critical points {cj} such that
Cj < cJ + 1, [ci, oo) =  U * i[ c ; ,c J + 1] , and wk does not change sign on (cj,cj + i). From
(6.3.27) we see that

£ V w ' ^ ( ± -  ± ) .

□
L em m a 6 .3 .16 . If  wk > 0  or wk < 0  for r  > ro then for any q > 1 and r > r0

r« JV (r)K (r) |  < rgJV(r0)K(r0)| + -  rg) + j f  ||JF|| pi~2dp .

Proof. Using Young’s inequality it is not difficult to verify that

q j f  K l Np’ - ' d p  <  2 j f \w'k \3Np->-1dp+  | ^ ( r *  -  r g ) . (6.3.28)

Assume wk > 0 . Then integrating (6.3.26) yields 

r* ]V(r)u4 (r) =  rg;V(ro)«i/£(ro)+

q r  {p‘>-l Nw'k - 2 p ‘>-l NGiu'k) d p -  f  p i - 2 ( ( X k\F))  dp.
Jro JrQ

and so

Letting j  — 00 gives
a 3

< 00 .
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But

K l 2 =  l((A V |X ))|2 < i | |A '+ ||2 =  G and |«  X k\7)) \  <  \\Xk \\ \\r\\ < \\F\\ 

and therefore

r*JV(r)wk(r) <  rgAT(r0)u4(ro) +

q r  (pq~1 N w k -  2pq~ l N\w'k\2w'k) dp +  r  \\?\\ pq~2dp 
J r o  J r 0

< rSAT(ro)K(r0)| +  | ^ ( r *  -  rg) +  j f  ||:F|| p ^ d p  by (6.3.28) 

Similar arguments show that if wk < 0 then

- r* J V ( r K ( r )  <  -rgJV(r0) K ( n , ) |  +  \ s /q ( r q -  rg) 4- j f  \\F\\ pq~2dp .

□
L e m m a  6.3 .17 . I f  w'k > Q or wk < 0  for r  > ro then there exists a constant h > 0 
such that <  h for r > r0.

Proof. Now, ||.F|| =  ||[F, A+]|| < h i||F || for some constant h\ > 0 since [•,•] is a 
continuous bilinear map from g x g to g. So then

N(r)K(r)| < ( 7 ) V ( r 0)K (r0)| + |v ^ ( l  " ( 7 )* ) + ^  f  W H P ^ d p -
J  ro

by lemma 6.3.16. But

£  ||JF|| pq- 2dp < Q f  \ \ r \\2 p - 'd p ' j 2 [ £  p2(" -  l)d p ) *

i  lr 2 , - 1  _ r 2 q - ‘
- ( £ m v v . ) 7 2 q - l

Combining the above two inequalities yields

‘V ( r ) K ( r ) |  < ( ^ )  V ( r o ) K ( r o ) |  +  1 "  ( 7 ) " )  +

( £ i f f  1 (6-3-29,

From (4.1.7) we have r JP  = r~ 2||F |j2/2  < m', while N  > 0 implies 2m (r) < r  and 
hence

f  Ill'll2 /? 2dp < 2 m(r) -  2 m(rQ) < r . (6.3.:’0)
Jra

So

A T M K W I <  ( ? ) *  W M K M I  +  | ^ ( i  -  ( £ ) • )  +
2 q -
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by (6.3.29) and (6.3.30). Setting q = 2 in the above expression yields 

W (r ) K ( r ) | < t f ( r0) K ( r o ) | +  \ ^  .

□
L em m a 6 .3 .18 . I f  w'k > 0 or w'k < 0 for  r  > r0 then

L

oo
/

Therefore

J V K I 'd r  < o o .
J tq

Proof. Suppose wk >  0. Then

f  N \w k\2dp < h j  wk dp by lemma 6.3.17
Jro Jr0

< h|ti;fc(r) -  ti>fc(r0)| =  h\(( A ^ A ^ r )  -  A+(r0) ))|

<  ^ ( ||A +(r) | |+ | |A+(ro)| | ) < / f

for some constant K  > 0 by (6.3.25). Letting r  —► oo in the above expression 
completes the proof. □

Now,

G = \  IKII2 = = E  i<( A'+i ira -1 x*))\ = i l  k i2 •
k=i *=i

f  N G d r  =  f  N \w k\2dr < oo
^ r0 fa.-. J J r0

by lemmas 6.3.15 and 6.3.18. □

C o ro lla ry  6 .3 .19 . / / {A+(r), m(r)} is a solution to (4.1.7) and (4.1.9) defined on 
[r0,oo) with N  > 0, N( r 0) <  1 and ||A+(r0)|| < ||Ao|| /2  then lim--.*, m(r) exists and 
limr^oc N(r)  = 1

Proof. Since N  >  0, P  > 0 ,G > 0, and ||A+(r)|| < ||Ao|| /2  it follows from (4.1.7) 
that

0 < m ' <  N G  +  %r1
for some constant K  > 0. Integrating yields

/■« AT
m (r) <  m(ro) + I N G d r  4- — < oo

J  ro r0

by theorem 6.3.14. Thus limr —oo m (r ) exists as m  is increasing and bounded above.
FVom the definition of N  it is then clear tha t limr- .<» N(r)  =  1. □

P ro p o s it io n  6 .3 .20 . 7/{A +(r),m (r)} is a solution to (4.1.7) and (4.1.9) defined on 
(r0,oo) with N  >  0, N( r 0) < 1 and ||A+ (r0)|| < ||A o||/2  then (4.1.8) can be solved 
for S  and S(ro) can be chosen so that limr —oo S(r)  =  1.
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Proof. We can solve equation (4.1.8) to get S(r)  = Sq exp(f*o I p  lGdp)  , where 
So > 0 is an arbitrary constant. Because iV > 0 and limr -.oo N (r) =  1 by corollary 
6.3.19, N  is bounded below on [ro, oc) by a positive constant N.  Then

f °o *1 o r°°
I - G d r  =  I -r^-N G dr  <     I N G d r  < oo

Jro r  Jro N r  ~ roN  J ro

by theorem 6.3.14. So we can let 50 =  exp(— / *  2r ~ lGdr)  which then implies that 
limr_ 00 S (r) =  1. □

P ro p o s it io n  6 .3 .21. I f  {A+(r),m (r)} is a solution to (4.1.7) and (4.1.9) defined on 
[r0 , oc) with N  > 0, N(r0) <  1 and ||A+(ro)|| <  ||Ao|| /2  then there exists a constant 
h > 0 such that r N  ||A +||2 < h for all r  > r0.

Proof. FYom corollary 6.3.19 and theorem 6.3.13, we get that P (r)  is bounded and 
lim,—.oo m (r) =  for some constant > 0. Then from the definition of <&(r)
(see (6.3.10)) it is clear that there exists a r .  and an e > 0 such that 4>(r) > e >  0 for 
all r  > r . .  Thus

<fc(r) 2 G
+ —  > 0  V r  > r ,  . - (6.3.31)r2N  r

Because N  > 0 and limr _oo N(r)  = 1 by corollary 6.3.19, N  is bounded below on 
(r0,oo) by a positive constant N.  Also note that theorem 6.3.13 and (6.3.8) imply 
that ||P || is bounded. So then

J ™  ; l« A V |P » |d r  < j ~  y/N \\\'+ \\ ^  ll^ll *r

{ N G +  ll^ll2)  dr < oo (6.3.32)

by theorem 6.3.14.
From (4.1.9) and (4.1.16) it follows that

cr NGY  =  -  r N G  +  N G  -  '-(( A'+ | ^ »  .

Therefore

rN(r)G(r)  = e~*(^  ( r N( r . ) G( r . )  +  J '  ( n G -  i<( A'+ |P ) ) )  e*™ dp'j ,

where <F(r) =  f ^ ( p ~ 2N ~ l$  4-2p~xG)dp.  It then follows from theorem 6.3.14, 
(6.3.31), (6.3.32), and

sup exp('t(p)) =  ’i’(r)

that there exists a constant h such that rN(r)G(r)  < h for all r  > r ..  Letting 

h = max{ h , inax{ p N (p)G(p) | r0 <  p < r,  } } 

completes the proof. □

P ro p o s it io n  6 .3 .22 . / / {A+(r), m(r)} is a solution to (4.1.7) and (4.1.9) defined on 
(r0,oo) with JV > 0, N(r0) <  1 and ||A+ (r0)|| <  ||A o ||/2  then there exist a constant 
h > 0 such that r ||A'+|| < h for all r > rQ.
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Proof. From theorem 6.3.13 and (6.3.8) we see that

sup S (r) II^H <  K
ro<r<oo

for some constant K  > 0. So then

||N (r)S (r)A V (r) -  < — V r,r, € [r0,oo) (6.3.33)
ro

by (6.3.6). An immediate consequence of corollary 6.3.19 and propositions 6.3.20 and 
6.3.21 is that

lim N( r )S( r )A\ ( r )  =  0 .r —*oo

So then letting r |  —• oo in (6.3.33) yields || AT(r)S(r)A'+ (r)|| < K / r 0 for all r  > r0. 
However, we know from corollary 6.3.19 and proposition 6.3.20 that both S(r)  and 
N( r )  are bounded below by a positive number e > 0. Therefore if we let h =  K/ ( r 0e2) 
then ||A'+(r)|| <  h for all r  > r0. □

We are now ready to prove theorem 6.0.10.

Proof o f theorem 6.0.10. (i)-(v) : These are just a restatement of corollary 6.3.19, 
theorem 6.3.13, and propositions 6.3.1, and 6.3.3.
(vi) : Since N  is bounded below away from zero and N  —• 1 as r  -♦ oo, the change of 
variable from r  to r  given by (4.1.25) is well defined and r  —> oo as r  —• oo. Therefore 
to  prove (vi) we can show instead tha t || A+(r) — J?x || —•0  and A+(r) —• 0 as r  — oo. 
Using (4.1.27)-(4.1.32) it is easy to show that A+(r) satisfies

A+ — A+ +  T  =  <5(r)A+ , (6.3.34)

where
S(t) = 2h ( t ) -  k ( t )  -  1 . (6.3.35)

Since limr —oo A’(r) =  1 we have liinr —oo M(r ) = 1 and hence it follows from proposi­
tion 6.3.22 that limr _oo A'+(r) =  0. Therefore limT—ao ^(i")2G (r) = 0. Also, because 
A +(r) is bounded and hence A+(r) is also bounded, we get limr —oo r (T)~2 P{T) = 0. 
From the definition (4.1.26) of k it is then clear that limr -.oo k(t ) = 1 and hence

lim 8(r) = 0 .r —*ao

Another consequence of proposition 6.3.22 is that A +(r)  is bounded. Therefore we 
see th a t X (r) =  (A +(r), A+ (r)) is a bounded, non-trivial solution to the differential 
equation (6.2.10). So ||A+(f) -  5 X || —* 0 and A+(r) —> 0 as r  — oo by theorem 6.2.6. 

If S \  is a ri-system then it follows from the discussion in section 4.3 that

A+(r ) = 5 Z  wa(r )e a

where the wa(r) are real valued functions. Therefore A +(t) e  for all r .  Since 
S x n  E+ is a discrete set by lemma 6.1.2 and ||A +(t) — $ x || —. 0 as r  —» oc, there 
exists a f i j 1 6 ffx D E + such that limr—oo A+ (r) =  f l^ .  □

We now show that any local solution tha t can be continued out to a global solution 
necessarily satisfies (6.0.1) and (6.0.2).
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P ro p o s it io n  6 .3 .23 . Suppose {A +(r),m (r)} is a local solution to (4.1.7) and (4.1.9) 
defined in a neighborhood o f r  = r . where r . =  0 or r . =  rff > 0. I f  the local solution
can be continued out to r  =  oo with N(r)  > 0  for r  > r , , then

N( r 0) <  1, ||A+(r0)|| <  ||Ao|| , [A'+ (n ,)t A _(r0)] +  (A'_(r0),A + (r0)l = 0 ,

for some ro >  r . .

Proof, r .  = 0 :  We know by theorem 5.2.1 that m (r) and A+(r) are analytic in a 
neighborhood of r  =  0 and

m (r) = 0 ( r 3) and A+(r) =  f i+ +  X r 2 +  0 ( r 3) as r  —* 0

for some X  €  E \. Substituting powerseries representation for m (r) and A+(r) into 
the field equations (4.1.7)and (4.1.9) shows that m (r) =  ||X ||2r 3 +  O (r4) near r  =  0 
and hence

N(r)  =  1 -  2||X || V  +  0 (r3) as r  — 0. (6.3.36)

Let u(r) =  ||A+(r) ||2. Then

W0) =  § « [A o ,n +]|n+)> = i((A 0|[n + ,n - D )  by (2 .1 .2 ) and n + = - c ( n _ )
=  |||A 0||2 since =  A0

The solution is trivial [or X  = 0  by proposition 6.3.2. If we assume the solution 
is non-trivial, then we must have X  ^  0. So (6.3.36) shows there exists an e > 0 such 
that 0 < N(r)  <  1 for 0 < r  < €. Suppose there exists a ro € (0, e) for which v(ro) > 
||A0||2/2. By the mean value theorem there exist a rj 6 (0, r 0) such that u (n )  > 
||A0||2/2  and t / ( r i )  >  0. It then follows from proposition 6.3.7 that the maximal 
interval of existence for the solutions is finite which contradicts the assumption that 
it is defined on (0, oo). Therefore we conclude that vr < ||Ao||2/2  for all 0 < r  < e. To 
complete the proof for r .  =  0. we observe that [A'+(r), A_(r)j +  [A'_(r), A + (r)j = 0 
near r  =  0 by theorem 5.2.4.

r .  =  th :  From the boundary conditions a t r  =  r ^  > 0 we have N{r n)  =  0 and 
N' ( r H) > 0 and hence 0 < N(r)  < 1 for r  > r// with r  near r //. We know by theorem 
5.2 8 th a t A+(r) and iV(r) are analytic in the variable t = r — r n  near t = 0 and there 
exists a X  € V2 so that

N(t)  = vt  +  0(t2) and A+(t) =  X  + 0 ( t) ,

where
*> =    j -  IIA0 +  [ X , c ( X ) ] l | 2 >  0 .

rH rH
Expanding N(t )  and \+{t)  in powerseries about t = 0, it follows from the field 
equations (4.1.7) and (4.1.9) that

A+( rH) =  ^ - [ X . A o + [ X , c ( X ) j ]  . (6.3.37)

Note also th a t [A'+ (r), A_(r)] +  [A'_(r), A+ (r)] =  0 for r  near r #  by theorem (5.2.9). 
Let v(r) =  ||A+ (r) ||2. If v(rn)  < ||Ao||2/2  then v(r) < ||Aq||2/2  for r  near r //  and
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we are done. So assume that v(rn)  >  ||Ao||2/2. Now,

v' (rH) = 2 ((A V (ri/) |A +(rw) »  =  —  « [ * ,  [A0 +  [X,c(X)}]\X )>
V H

by (6.3.37). Using (2.1.2)and X € Vj, we can write the above expression as

"'(»•») =  : i ( l l [ * . c(* )II|2 -  2 \ \ X f )  . (6.3.38)UJ-H

But

0 < !|A0 +  \ X , c ( X ) ] f  =  (HAoll2 -  2 PH I2) +  (||[A-,c(X)]||2 -  2 ||A '||2) (6.3.39)

by (2.1.2) and the fact tha t X  € V3. Since X  =  A+(r//) ,

v'(rff) < 0 ||A+(r„ ) | |2 < i | |A 0||2 (6.3.40)

by (6.3.38) and (6.3.39). Suppose v(rn)  > ||Ao||2/2. Then v' (t h ) > 0 by (6.3.40). 
But this implies that the maximum interval of existence for the solutions is finite by 
proposition 6.3.7. So v (rj/)  =  ||Ao||2/2  as the solution is assumed to exist on (r//,  oo). 
Suppose now there exists a r0 > r// with r0 near r//  for which v(rQ) > || Ao||2/2. Then 
by the mean value theorem there exist a r i  6 ( r « , r 0) so that v (rt ) > ||Ao||2/2  and 
t /( r i )  > 0. But this is impossible by proposition 6.3.7. Therefore we must have 
v(r) < ||Ao||2/2  for r > rfi and r near r//. □
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Chapter 7

Conclusion

In this thesis, it has been established that the static spherically symmetric EYM 
equations admit bounded local solutions in the neighborhood of the origin r  =  0 , 
a black hole horizon r  =  r// > 0, and spacial infinity r  =  o o . As we mentioned 
earlier, this local existence result provides a necessary starting  point for the shooting 
method both analytically and numerically. We have also determined the behavior 
near r  =  oo  and established global bounds for solutions satisfying N(r)  >  0 for all 
r  and N ( r 0) < 1, ||A+(r0)|| < ||A0|| / \ /2  and [A'+(r0), A _(r0)j +  [A'_(r0), A+(r0)j =  0 
at some point ro > 0. As we discussed in chapter 6, if any of the local solutions 
near r  =  0 or r  =  could be extended to r  =  oo with N(r)  > 0 then there 
certainly would be a point r0 > 0 a t which iV(r0) < 1, ||A +(r0)|| < ||A0|| / \ / 2  and 
(A'+(r0), A _(r0)] +  [A'_(ro), A+(r0)] =  0. For the behavior near r  =  oo there still 
remains the question of whether or not A + (r) always has a limit as r  —* oo . This is 
an interesting one and should be resolved. A numerical solutions for a Ao for which 
S \  is not a Il-system would aid in settling this problem. The model with the smallest 
number of free parameters and for which S \  is not a ri-system is g =  SO5C where 
Ao has the characteristic x  = (2,0). However, even in this simple case if a numerical 
solution were to be constructed by shooting from both ends, say' r  = 0  and r = 00, 
and then matching somewhere in the middle, the number of free parameters would 
be 10. O f these, 3 would come from the local solution near r  =  0, 4 from the local 
solution near r  =  00, and the remaining 3 would be due to the fact tha t we can only 
fix A+(r) a t only one end. If we fixed A+(r) a t r  =  0, then at r  =  00 A+(r) could 
take values in 5 X which turns out to be a 3-dimensional real variety. This implies 
that a search of a 10-dimensional param eter space would be required to construct a 
global solution. This is a difficult problem. On the theoretical side, a good place to 
start would be with the limit equation (6.2.9). The set J x consists entirely of fixed 
points of (6.2.9). Therefore by linearizing (6.2.9) about the points of 3 X it may be 
possible to determine the behavior of solutions to (6.2.9) in a neighborhood of J x . 
Hopefully, this information could be used to infer the behavior of the EYM equations 
near 5*.

Although we do not yet have a  clear indication on how classify all the possible 
global soliton and black hole solutions for arbitrary compact gauge groups, we have 
shown th a t it is possible to generalize many of the results from the S U (2) analysis. 
We have already started to consider how to generalize the S U (2) results contained in 
the papers [56,59,60,66] by Smoller and Wasserman, with the aim of classifying all 
solutions th a t are defined in the far field, i.e for r  > >  1, as was done for G  =  51/(2).
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