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Abstract

In general, there does not exist a unique action of the rotation group (or SU(2)) on
a principal bundle over spacetime whose structure group is a compact semisimple Lie
group G. Each possible action is uniquely determined by a vector Ag in the Cartan
subalgebra of g where g is the complexification of the Lie algebra of G. When one of
the vectors A induces a [I-system, the Lie algebra g can be replaced by a subalgebra
in which Ag lies in the interior of a Weyl chamber. In this situation. considerable
simplifications occur in the static spherically symmetric Einstein-Yang-Mills (EYM)
equations. However, we cannot generally expect such simplifications as we show
that defining vectors Ag which induce [I-systems are rare. We prove the existence
and uniqueness of bounded local solutions to the static spherically symmetric EYM
equations near the singularities located at the center r = 0, the black hole horizon
r = ry > 0, and at spatial infinity r = oo and we establish the free parameters
that characterize these local solutions. Under the assumption that a global solution
exist, we establish bounds on the solution and determine the asymptotic behavior as
r — oc. That some special global solutions exist is easily derived from the fact that

su(2) is a subalgebra of any compact semisimple Lie algebra.
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Chapter 1

Introduction

It is a well known result of Deser [13] and Coleman [11] that the four dimensional
flat space Yang-Mills (YM) equations have no static solution of finite energy. Deser
also showed that static solutions cannot exist within three dimensional Einstein- Yang-
Mills (EYM) theory [14]. It came, therefore, as a surprise when Bartpik and Mckinnon
numerically constructed globally regular, asymptotically flat, static, spherically sym-
metric solutions to the four dimensional EYM equations with gauge group SU(2) (3]
As is standard, we will refer to these static, globally regular solutions as soiiton..
Shortly after the solitons were discovered, static spherically symmetric SU(2)-EYM
black holes were found numerically [5, 32,64).

To understand the importance of these solutions we first recall the no hair con-
jecture. The no hair conjecture loosely stated says the only allowed characteristics
of a black hole equilibrium configuration are the mass, angular momentum, and the
electric and magnetic charges. The SU(2)-EYM black hole solutions provided counter
examples to this conjecture and stimulated investigations into other matter fields cou-
pled to gravity for the purpose of finding other solutions that violated the no hair
conjecture. Consequently, it has been realized that violation of the no hair conjecture
is typical for gravity coupled to non-Abelian gauge theories. More recently [27, 28I,
static, axisymmetric black holes and globally regular solutions to the SU(2)-EYM
equaticns have been constructed numerically, providing dramatic examples of viola-
tions to the no hair conjecture. All of these solutions have shown that equilibrium
configurations of black holes can be much more complicated than had been previously
thought.

Although the static spherically symmetric solutions to the SU(2)-EYM equations
were shown to be unstable (10,61, 62|, they may still be physically relevant due to
their similarities with sphalerons [16]. Indeed, sphalerons, which are unstable stat. :
solutions of the classical equations for the bosonic sector of the electroweak theory,
are believed to be responsible for violations of the conservation of baryon numbers
at high temperatures [1,35,50]. Therefore, it is possible that the EYM solitons could
play a role in the violation of the conservation of baryon and lepton numbers at high
temperatures.

Existence of the soliton and black hole solutions to the SU(2)-EYM equation:
was first established analytically by Smoller, Wasserman, Yau, and McLeod (52-54].
Global existence was also established by Breitenlohner, Forgdcs, and Maison in [6]
using different methods. Smoller and Wasserman have extensively studied the SU(2)-
EYM equations [55-60] and have completely classified [66] the solutions which are
defined in the far field, i.e. for large radius r. One surprising result that they have
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discovered is that any solution that is defined in the far field is actually defined on
the whole interval (0, 00). This is not the usual situation for solutions to non-linear
systems of differential equations where one normally expects global existence for only
a small subset of the initial conditions.

For gauge groups G other than SU(2), much less is known and the investigations
have almost exclusively focused on SU(n) and only for the most obvious ansatz for
the spherically symmetric gauge field. For SU(3) and SU(4) solitons and black hole
solutions which are not embedded SU(2) solutions, have been found numerically {23,
26, 34|, but little work has been done analytically with the exception of the papers
[4,42]. For arbitrary compact gauge groups even less in known. No numerical solutions
have been constructed for G # SU(n) and the only analytical work is contained in
the papers [2,9,10]. However, in these papers, they restrict themselves to the so
called regular actions which as we shall see later is a strong condition. For a review of
these developments in EYM theory, see [18]. The EYM equations continue to attract
attention. Rotating SU(2)-EYM black holes have been constructed numerically {29}
and the SU(2)-EYM equations with a cosmological constant have been studied [36-
38,49, 51,67.

Recall that the YM field is determined by a connection on a principal bundle over
spacetime. So a YM field is spherically symmetric if and only if the connection is
invariant under an action by principal bundle automorphisms of the rotation group.
Because there is no unique way to lift an isometry from the base manifold to a principal
bundle, the notion of spherical symmetry is more complicated for YM fields than for
tensor fields. It turns out a conjugacy class of the principal bundle automorphisms is
characterized by a generator Ag which is an element of a Cartan subalgebra b of the
complexified Lie algebra g of G [2,8|. Under certain assumptions such as regularity
of the center and vanishing of the total magnetic charge, the generator Ag is forced to
be a semisimple element of a sl,C subalgebra of g. If Ag lies in the interior of a Weyl
chamber, then the action determined by Ag will be called regular. The assumption
that A is regular has been used in all previous work on the EYM equations. The
reason for this is that the EYM equations take on a relatively simple form with this
assumption. Without this assumption, the equations are extremely complicated and
much more difficult to analyze. Unfortunately, as will be seen in chapter 4, the set
of regular actions is very small in the set of all possible actions implying that the
assumption that the action is regular is a strong one. The purpose of this thesis is
to investigate the EYM equations under the assumptions of spherical symmetric and
staticity for arbitrary compact gauge groups but without assuming that the action is
regular. Our long term goal is to characterize the solution space of these equations
as has been done for G = SU(2).

This thesis is organized as follows. Chapter 2 contains a review of the results
from the theory of three dimensional semisimple Lie algebras that will be needed.
In chapter 3 we review the YM formalism and describe how to classify spherically
symmetric YM fields. The static spherically symmetric EYM equations are presented
in chapter 4 along with a classification of the regular actions. Before global existence
of solutions can be proved via a shooting technique, local existence must first be
established. In our case we are interested in local existence near the origin r = 0, the
black hole horizon r = ry, and spatial infinity r = oo. The proof of local existence
is the content of chapter 5. All the results contained in this chapter are taken from
the two papers [45. 46]. Finally, in chapter 6 we establish some a priori estimates on
global solutions. The estimates serve two purposes. First. they aid in constructing
numerical solutions by providing insight into what sort of behavior to expect from
the solution and this allows one to greatly increase the efficiency of the search for
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numerical solutions. Secondly, these estimates will be necessary in proving global
existence.
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Chapter 2

Lie algebra theory

In this chapter we review the necessary definitions and results that we require from Lie
algebra theory. Of particular importance to us are the three dimensional semisimple
subalgebras. These algebras will play a distinguished role in our later work as they
arise from the study of spherically symmetric Yang-Mills fields. Forgunately, a com-
plete classification of these subalgebras is available and this information will be used
to investigate the class of spherically symmetric Yang-Mills fields.

2.1 Notation and conventions

None of the assertions made in this section will be proved. Most are well known and
can be found, for example, in {21} and [30]. Throughout this thesis G will always
denote a real compact semisimple Lie group with Lie algebra go. The adjoint action
of G on gg¢ will be denoted by Ad, while ad will denote the adjoint action of go on go,
i.e. ad(X)(Y) =[X,Y] for all X\Y in go. The complexification of go will be denoted
by g. The ad action can then be extended by complex linearity to an action of g on
g so that ad(X)(Y) := [X,Y] for all XY in g. We will use the notation g¥ for the
centralizer of a single element X € g. In other words,

0¥ :={YegllX.Y]=0}.

Similarly, g is the centralizer of an element X € go.
We will let (-|-) be any non-degenerate ad-invariant bilinear form on g that restricts
to a negative definite inner product on go. By ad-invariance we mean that

(X, Y]|lZ2)=(X|[Y.2]) VX.Y.Z€g.

For example, we could take (-|-) to be the Killing form on g. For later use, we introduce
a non-degenerate Hermitian inner product (-|-) on g defined by

(X|Y):=-(c(X)IY) VX,Yeg.

where c : g — g is the conjugation operator determined by the compact real form gc.
From the ad-invariance of (-|-) and the fact that conjugation is an automorphism of
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g it follows that (-|-) satisfies

(XlY) =(Y|X),
(e(X)le(Y)) = (X]|Y),
(X, e(M)}iZ) = (X|[Y, Z])
for all X,Y,Z € g. Treating g as a R-linear space by restricting scalar multiplication

to multiplication by reals, we can introduce a positive definite inner product ((-|-)) :
g x g — R on g defined by

({X|Y)) :=Re(X]Y) VX,Yeg.

Let ||-]| denote the norm induced on g by ({-|-)), i.e.

IXI = V{XIX) VXeg. (2.1.1)

From the invariance properties satisfied by (-|-), it is straightforward to verify that
{{-])) satisfies

{XIY)) = ((YIX)),
(e(X)le(Y))) = ({ X|Y)), (2.1.2)
(X, eMIIZ)) = ( XI[Y, 2]))
forall X,Y,Z e g.

Let h be a Cartan subalgebra of g and R C h* the roots determined by h. Then
we have the Cartan decomposition

8 = b P Ce.

a€R
where the nonzero vectors e, satisfy
[Hea) =a(H)e, VHeW. (2.1.3)
Note that
Cea={Xegl|H. X]=a(H)X VHep}. (2.1.9)
A straightforward consequence of (2.1.4), the Jacobi identity, and the ad-invariance
of (-|-) is that
[ea, €3] € Ceasrs (2.1.5)
and
(eales) =0 ifa+8#0. (2 1.6)

Following [21], we define t, € h as the unique vector in § that satisfies
(talH)=a(H) YHEH.

Then
(a|B) := (tajts) Ya,B€ER (2.1.7)

defines a positive definite inner product on the space spang{a|a € R}. We will use
| - | to denote the norm of this inner product. It will be useful to introduce the “dual
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roots” a¥ defined by
v ._ 2a
- — |a|2 -

We can use the dual roots to define the angle bracket

(a,B) := (alBY) ,

and the vectors
ha = tav .

Choosing a base A for R, we then have

h=EP Ch,.

a€lA

Also the Cartan matrix C is defined via
Cap:=(a.f) Ya,BeA.
A useful relation that is an easy consequence of the above definitiong is
(ha,eg] =Cgaes Va,f€A. (2.1.8)

Since go is a compact real form of g, the vectors { h,, e, | a € R} can always be
chosen to satisfy the following relations

c(h,) = -h,, cle,)=—-e_, Ya€eR, (2.1.9)
and
[€a,€—a] = h, (2.1.10)
[€a €3] = Nau g€a+s ifa+3€R (2.1.11)
fea,€3] =0 ifa+B8#0anda+08¢R (2.1.12)
where the constants N, s are real and N, 5 = —N_,, 5. We are also free to normalize

the vectors e, as follows

(€al€a) = % VaceR.

A basis satisfying these conditions will be called a Chevalley- Weyl basis. The compact
real form go can then be written as

go = @tha@ @ R(ea-e-a)@ @ Ri(e(\ +e—o) .

a€lA a€R*+ a€R*

where R* is the set of positive roots. The subspace

ho = P Rih, (2.1.13)

a€lA

is called the real Cartan subalgebra of go. Notice that § is the complexification of hg.
As in the complex case, a real Cartan subalgebra can be defined independently as a
maximal Abelian subalgebra of go.

From (2.1.13) and the fact that (a|3) € R for all a, 3 € R, it is clear that a(H) €
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iR for every H € ho and a € R. This allows us to define a subset Wg of ho called the
real fundamental open Weyl chamber by

We:={Hechy| —ia(H)>0 YacA}.

We will also need a related subset W of §) called the (compler) fundamental open Weyl
chamber which is defined by

W:={Heh|a(H)>0 YacA}.

Observe that we have the inclusion W C ihq.
If we let exp : go — G denote the exponential map, then the kernel of exp is by
definition

ker(exp) = { X € go| exp(X) =11}.
The subset of ker(exp) given by

T := ker(exp) N ho

is known as the integral lattice.

2.2 Three dimensional semisimple Lie subalgebras

Later on we will see that classifying spherically symmetric Yang-Mills potentials is
related to the problem of classifying three dimensional semisimple Lie subalgebras
of g up to conjugation by inner automorphisms. This problem of classifying thiee
dimensional semisimple Lie subalgebras has been studied extensively by many authors
beginning with Mal’cev [39] and Dynkin ({15]. For a modern presentation and relations
to nilpotent orbits see {12].

It is well known that any three dimensional semisimple Lie algebra is isomorphic
to sl2C and is spanned by three vectors { Qo, Q4. _ } that satisfy the commutation
relationships

(Q0.9:] =+2Q4 and [Q4,.Q-]=Q. (2.2.1)

The vectors {Qo, Q4+, } are known collectively as a complez standard triple. Instead
of working directly with sl;C-subalgebras, we will often find it more convenient to
work with A;-vectors. An A,-vector is a vector y € g for which there exists two
vectors {2, , Q_ such that the commutation relationships (2.2.1) are satisfied. The set
of all A;-vectors will be denoted by A]. A distinguished subset of AJ is the set A'{'R
of real A,-vectors. These are the A,-vectors Qg for which Q,, Q_ can be chosen so

that

c(Q) = -N and c(Q,) =-0_ (2.2.2
are also satisfied. Notice that in the real case if we define vectors ;. Q2, and Q3 in
go via

Q+ =2iQY3 and Qt =FQ, - ng , (223)
then Q;, 2, and Q3 satisfy

(Q.,9Q,] = €,;Q% . {(2.2.4)

This shows that spang{Q,, 22,93} is isomorphic to sozR.

Let

Aut(g) := {6 € GL(g) | [6(X),8(Y)] =&([X.Y]) forall X.Y € g}
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denote the automorphism group of g. The group of inner automorphisms Int(g)
is defined to be the subgoup of Aut(g) generated by automorphisms of the form
exp(ad(X)) where X is any element of g for which ad(X) is nilpotent. It is a standard
result in Lie algebra theory that Int(g) is the identity component of Aut(g). With
these conventions we define

[A}] := { Int(g) conjugacy classes of A,-vectorsof g }, (2.2.5)
and
[41] ;== { Int(g) conjugacy classes of sl,C-subalgebrasofg }. (2.2.6)

Conjugacy classes of an element z will be denoted by [z].
It is well known [12] that the map

1] — [A}] © [spanc{R. 24,9} — [R0] (227)
is a bijection. In [15] Dynkin proved that for fixed Cartan subalgebra § and bnse
A = {a),a2,...,a¢} there exists a unique A4;-vector Qg in a conjugacy class [Q}]
such that -

a(f) =0, 1, or 2 for all a € A.
He then defined the characteristic y([Qg]) of the conjugacy class [€] by

x = x([%)]) := (a1(Ro). . . ., (o)) .

The importance of the characteristic is that it is a complete invariant, i.e. [Qf] = [Q))
if and only if x([Q5]) = x([Q%]). Consequently.

o

A} N W is in one-to-one correspondence with [A}]. (2.2.8)
It is worthwhile to note that not every combination of 0, 1, and 2 defines the charac-
teristic of some conjugacy class [Q]. In fact, the total number of conjugacy classes is
far less than the potential 3¢. For example. the number of characteristics for A,_; is
equal to to the number of partitions of £ and this is asymptotically equivalent to

L vE
14/3¢
which is much smaller than 3¢-!.

It is not difficult to show that for every Lie algebra g there is always a characteristic
of the form

In other words there always exists an A;-vector g such that a(p) = 2 for all a € A.
These distinguished elements will be called principal A,-vectors.

The Dynkin diagram of a Lie algebra g labeled with the characteristic numbers
ai () above the nodes is called a weighted Dynkin diagram. All the possible weighted
Dynkin diagrams of the exceptional Lie algebras G2, Fy, Es and Es were determined
by Dynkin in [15]. A listing of these diagrams can be found in [12] section 8.4 .

For the classical Lie algebras the weighted Dynkin diagrams are not optimal for
classifying the conjugacy classes of [A}]. Instead, a different method based on the
“partitions of n” is used. To describe this method, we first consider s(,C = 4,,_; tor
which the classification problem can be solved by elementary methods. A partition
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of n is an k-tuple d := (dy,d>,...,dx) such that

k
dy>2d;>...2de>0 and n=) d;. (2.2.9)
Jj=1

If a number s is repeated ¢ times in a partition we will denote this by s? and q will
be called the multiplicity of s. For example, the partition (9,9,9,6,4,4,2,1,1,1) will
also be written as (93,6, 42,2,13). The set of all partitions of n will be denoted by
P(n). Using sloC representation theory, it not hard to show that the there exists
a bijection from [A]] to P(n). Moreover, for each partition (d;,...,dx) a canonical
representative Qf,“"""d") of the conjugacy class can be constructed as follows. For
each s € N let

s 0 0 e 0 0
0 s-2 0 o 0 0
0 0 s—4 0 0
QBp=]. . . A (2.2.10)
0 O 0 -s5+2 O
0 o o - 0 -3 -
Then .
Qi) = oy (2.2.11)
=1
is the canonical representative. There also exists simple formulas for Q4. For each
s€Nlet
(0 V16) 0 0 00
0 0 V2(s—1) 0 ‘e 0
0 0 0 V(s —-12)
Q=0 o 0 0 (2.2.12)
0 o 0 0 VI
\0 0 0 0 . 0 )
and
Q=) (2.2.13)

where * denotes the transpose of a matrix. Then
k
it = Papt. (2.2.14)
=1

From these formuias it is easy to verify that
spanc{Qg“ ..... d.),Qﬁ"""'d&),Q(_dl ..... dg)} ~ S(QC.

Similar results can be obtained for the other classical Lie algebras, with the conjugacy
classes of [A}] being parametrized by a subset of P(n) for appropriate n. A canonical
representative of the conjugacy class can also be constructed although the formulas
are more complicated. All of this can be found in chapter 5 of [12], we only state the
results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 2.2.1. If g = sl,,C then there erists a bijection between {A}] and P(n).

Theorem 2.2.2. If g = 502n,41C then there erists a bijection between [A}] and the
set of partitions of 2n + 1 in which the even parts occur with even multiplicity.

Example: so;C contains six conjugacy classes parametrized by the partitions (7),
(5,12), (3,1%), (3,2%), (32,1), and (22,13).

Theorem 2.2.3. If g = sp,,,C then there erists a bijection between [AY] and the set
of partitions of 2n in which the odd parts occur with even multiplicity.

Example: spsC contains seven conjugacy classes parametrized by the partitions
(6), (4,2), (4,1%), (3%), (2%), (22,12), and (2,1%).

Theorem 2.2.4. If g = 502,C then there erists a bijection between [A]] and the set
of partitions of 2n in which the even parts occurs with even multiplicity ercept that
the “very even” partitions (d,,...,dx)( those with only even parts, each having even
multiplicity) correspond to conjugacy classes labeled (dy,...,dy); and (dy,....di);;.

Example: sogC contains eleven conjugacy classes parametrized by the partitions
(7,1), (5,3), (4®)1, (4%) 11, (5,13), (3%,12), (3.22.1), (2%, (2%) 11, (3,13), and (22, 1Y).
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Chapter 3

Spherically Symmetric
Yang-Mills fields

In this chapter we review the Yang-Mills formalism and introduce the notion of spher-
ically symmetric Yang-Mills fields and Yang-Mills potentials. We also establish the
validity of the temporal gauge. Throughout this thesis a spacetime will refer to a
connected four dimensional manifold M equipped with a Lorentzian metric g. By
Lorentzian we mean that there exists a frame f, at every point in M for which
g(fa, f5) = nas and

-1 00 0
_|o 100
e
0 001

Any non-zero tangent vector v € TM is called spacelike if g(v,v) > 0, timelike if
g(v,v) <0, and null if g(v,v) = 0. A hypersurface £ C M will be called spacelike if
every vector v € TZ is spacelike. From this definition. it is clear that g restricts to
a Riemannian metric on a spacelike hypersurface. A Killing vector field £ is a vector
field for which the Lie derivative L¢g vanishes, so that the flow generated by £ defines
isometries of the spacetime. A spacetime is static if there exists a timelike Killing
vector field £ that is hypersurface orthogonal. That is L¢g = 0 and for every z € M
there exists a spacelike hypersurface £; containing r that is everywhere orthogonal
to &. In this situation, it is always possible to introduce coordinates (z2) so that

E=00' gOb=Ov and a)gab=0

where g = g,sdz® ® dr®. Here we are using the standard notation 8, = %.-.
Suppose M is a static spacetime. Let ¥ be any hypersurface that is orthogonal ro
the timelike Killing vector € and let i : ¥ — M denote inclusion. Then M will be said
to be asymptotically flat if there exist a compact set K C T and a coordinate system
(z*)1 = 1,2,3on L\ K in which lim, . (i*g);, = 4;; and lim, . 9(§,£) = —a (a > 0)
where r = \/(z!)? + (22)? + (z3)2. We note that this is a weak form of asymptotic
flatness. Often, the rate at which (i°g),; approaches §,, and g(£, §) approaches —a as
r — oc is specified. For example, one often assumes that (i*g),, = J,, + O(1/r) and
9k(i"g)i; = O(1/r2) as r — co. However, such consideration will not concern us here
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3.1 Review of the Yang-Mills formalism

In this section, we will quickly review the Yang-Mills formalism. Let P = (P,n, M, G)
be a principal G-bundle over M and w a connection 1-form on P. We will use R, ,
k € G to denote the right action of G on fibres of P. Let ¢ : U € M — P be a local
section of P. The Yang-Mills (or gauge) potential A is defined by

A’ =ow. (3.1.1)

The gauge potential is a local object that depends on the local section ¢. Different
choices of local sections yield different gauge potentials. Choosing a specific local
section is also known as firing the gauge. Once a gauge is chosen, to reduce notation
we will write A instead of A?. If o, : U C M —- Pand oy : U C M — P are two
local sections, then there exists a map g : U — G such that 02(z) = Rg(;)01(z) for
all £ € U. Realizing & as a matrix group, which we can do since G is compact, the
relation between the two gauge potential A7 and A?? is

A% =g 1A% g + g7 dg. (3.1.2)
The curvature 2 of w is defined by
Q=dw+ iwAu].

The Yang-Mills (or gauge) field strength F° is then defined by
F?:=0'Q. (3.1.3)

It is not hard to verify that F? is also given by
F? =dA% + [A°, A°]. (3.1.4)

and the relation between F7' and F°? is
For = g~lF7yg.

As with the gauge potential, once a gauge is fixed we will write F instead of F7. [u
local coordinates (z?) we can write

A = A.dz®
where the A, are go-valued maps. The the field strength is then given by
F = % adea A d'tb

where

Fap = 0, As — By A, + [Aa. Ay] .

For any spacelike submanifold $* in M diffeomorphic to a two sphere, we can
define two gauge invariant quantities

QF = & fou loFuell e and Q= & [ | Fuse?] e,

where ¢ is the associated area element of the sphere S2. The quantities Qj,f,2 and

Q‘E}’ can, in analogy with electromagnetic theory, be thought of as the magnetic and
electric charge, respectively, of the gauge field contained inside of S2.
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If M is static and and asymptotically flat, let ¥ be a spacelike hypersurface that
is orthogonal to the timelike Killing vector £. Then ¥ can be foliated by a family of
two spheres S? where r is the asymptotic radial coordinate. The total magnetic and
electric charges Qs and Qg of ¥ are then defined by

Qe := lim & f53 "tFa,,e‘,{b” & and Qps :=lim, .o 1"—'[53 || Fase2t|| e . (3.1.5)

r—-00

3.2 Spherically symmetric Yang-Mills fields

Let M be a spherically symmetric spacetime, i.e. SU(2) acts on M by isometries
with orbits diffeomorphic to two spheres S? so that locally M 2 M x S2. We will
denote this action by ¢ : SU(2) x M — M. The Lorentz metric g on M can be
decomposed as g = § +r2g where § is a Lorentz metric on M, r is a scalar on M, and
g is the standard metric on S°. Locally we can always introduce a Schwarzschild type
coordinate system (¢,7,8,9) in which (r.t) are coordinates M, (8, #) are the usual
angular coordinates on S2, and

g =—N(rt)S(r,t)%dt? + N(r,t)"'dr® + r?(d6? + sin®6d¢?) . (3.2.1)
Let P = (P,m, M,G) be a principal G-bundle. Let ¢ : SU(2) x P — P be a left

action of SU(2) on P by principal bundle automorphism such that the induced action
of SU(2) on M is equal to . In other words, the diagrams

p-“_.p p-2.p
Nt
MM p-L2_.p

commute for all £ € SU(2) and g € G. A spherically symmetric connection w is
defined to be any connection that satisfies

Yiw =w YkeSUQ).

Spherically symmetric gauge potentials and gauge field strengths are those that are
derivable from a spherically symmetric connection, i.e. see (3.1.1) and (3.1.3).

To determine all spherically symmetric connections and hence all spherically sym-
metric gauge fields two problems must be solved. The first is to classify all principal
G-bundles over M that admit an action of SU(2) by principal bundle automorphisms.
The second is, given such a bundle P, determine all the SU(2) invariant connections
on P. These two problems have been solved independently by Bartnik (2] and Brod-
beck and Straumann [8].

To explain Brodbeck and Straumann's results, we first explain how classifying
principal G-bundles over A that admit an action of SU(2) by principal bundle auto-
morphisms is equivalent to classifying the conjugacy classes of homomorphisms A from
U(l) into G. To see this, fix a point zo € M and consider the orbit O := {512y (Zo)-
We will denote the isotropy group of rq by SU(2),, = U(1). Now consider the
sub-bundle Py = 7~!(O) over O. Observe that the SU(2) action is now fibre tran-
sitive on this bundle. The isotropy group SU(2),, maps the fibre 7= !(zq) to itscli.
Fix ug € 7~ !(z0). Then for any k € SU(2),, there exists a A(k) € G such that
Yr(uo) = Ryx)(uo). It is easy to verify that the map X : SU(2);, — G is a homomnr-
phism. If we change the point ug € 7~!(zo) then the resulting homomorphism will
be conjugate to A and this is also true for any SU(2)-isomorphic bundle. This shows

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that the equivalence classes of principal G-bundles admitting a fiber transitive SU(2)
action are in one to one correspondence with the conjugacy classes of homomorphisms
A:U(1) = G. Brodbeck and Straumann then proved

Theorem 3.2.1. The set of conjugacy classes of homomorphisms A : U(1) — G
is in one-to-one correspondence with the set I N Wg. The conjugacy class of A is
characterized by M'(e) € T N Wg where N : u(l) — go is the induced Lie algebra
homomorphism and e = 2ni is the standard basis vector in the integral lattice of u(1).

Since the lattice point cannot jump when we change orbits, the above theorem
shows that the lattice points within the closed fundamental Weyl chamber classifv
the principal G-bundles with SU(2)-actions. So, once a principal G-bundle with an
SU (2)-action is fixed, it determines a element ZNWpg which we will denote as —47A3.
Brodbeck and Straumann then proved that in a Schwarzschild type coordinate system
(t, 7,8, $) a gauge can always be chosen such that a spherically symmetric Yang-Mills-
connection on P is locally given by

A=A+ A (3.2.2)
where _ -
A= N(t,r)S(t,r)A(t.r)dt + B(t,r)dr (3.2.3)
is a g;}’-mlued 1-form, and
A= Ay(t,r)d8 + (Aa(t.7)sin @ + A3 cos 8)do (3.2.4)

where A, and A: are go-valued maps that satisfy
[Az.Ag] = A] and [Aa.l\]] = Az. (3.2.5)
The field strength is given by

F = (8B ~ 3,(NSA) + NS|A,B))dt Adr + (3,A, + NS[A.Ay]) dt A d6
+ (BAz + NS[A. Ag])sin@dt A dé + (8, A, + [B. Ay])dr A dé
+ (OrA2 + [B, A2])sin@dr Add + ([A1,Az] — A3)sin8dO Ado . (3.2.8)

3.3 Temporal gauge

In this section we show that the B part of the gauge potential (3.2.3) can always be
gauged away, at least locally. We assume that B(t,r) is defined and smooth on a
neighborhood N, ,,) of (to,ro). Let U be a neighborhood of 0 € go such that

exply : U — V := exp(ll) (3.3.1)

is a diffeomorphism. Then
W :U — GL(go) : Y — (Ty exp)™" o TeLexpey) (3.3.2)

defines a smooth map. Let
Urs :=Ungd (3.3.3)

and define a smooth map

fiUM X Nigra) — 80 ¢ (Yotsr) — —¥(Y) 0 Adexp—v)(B(t.7)) . (3.3.4)
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Lemma 3.3.1.
FUM Nio.r0)) C 80° (3.3.5)

Proof. Suppose Y € UM and (t,7) € N4y.r)- Then

[AdﬁxP(—Y)(B(tv r)), A3] = Adexp(-Y)[B(tvr)v AdeXP(Y)(A3)]

= Adexp(-v)[B(t, ), A3] since Y € g)*

=0 since B(t,r) € gg‘
Therefore

Adup-v)(B(t,r)) € 85° . (3.3.6)
Since G is compact, we can assume that G C GL(R™) for some n > 0. Suppose
Z € UNs. Then
‘I’(Y)—l(z) = Texp(Y)Lexp(—Y) oTy exP(Z)
= — exp(-Y)exp(Y +t2Z),
dt|,_o

and hence

W2 A= T

(exp(=Y)exp(Y +tZ)Asz — Ajexp(=Y)exp(Y +tZ)) .
=0

But exp(—Y)exp(Y + tZ)A3 = Azexp(=Y)exp(Y + tZ) since Y, Z € g2}*, and so we
find that (¥(Y)~!(Z), A3} = 0. Thus ¥(Y)~(g}*) C g*. Since ¥(Y)~! is invertible
it follows that ¥(Y)~!(gg?) = (ga?) or equivalently

¥(Y)(95%) = (90°) - (3.3.7)

The lemma now follow immediately from (3.3.6), (3.3.7) and the definition of f. [
By lemma 3.3.1, the initial value problem

- X(t,r)= f(X(t.,r),t,r) : X(to,re) =0 (3.3.8)

has a unique smooth solution X(t, r) defined on a neighborhood )\7(,,,',,,) C Nto.ro) of
(to,ro) that satisfies

X(Nitora)) € 80° - (3.3.9)

The solution X (¢, r) to (3.3.8) can be used to generate a gauge transformation via
g(t,r) = exp(X(t,r)) . (3.3.10)

It is worthwhile to notice that if B is independent of ¢, then the differential equaticn

(3.3.8) will also be t-independent. So then the solution X and hence the gauge
transformation (3.3.10) will be t-independent.

Proposition 3.3.2. The gauge potential (3.2.2) transforms under the gauge trans-
formation (3.3.10) into

NSAdt + A,df + (Agsin@ + A3 cos0)do (3.3.11)

where A = Ady-1(A) + Texp(x)Lexp(—x) © Tx exp@: X, Ay = Ad,-1(Ay) and A, =
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Ad,-1(A2). Moreover, Kl, Kz and A satisfy
[Kg, A3] = Kl ' [A;,KI] = Kz y and [./I, Ag] =0. (3.3.12)

Proof. Under the gauge transformation (3.3.10) the gauge potential (3.2.2) transforms
as

A+—NSAdeyp(-x(e.r))Adt + A1d + A25in 0 + Adeyp(— x(e.r))(A3) cos 8)do
+ Adexp(- X (e.r)) (B(t,7))dr + O(¢, 1) (3.3.13)

where

O(t, 1) = Texp(x(t,r)) Lexp(-X(e.r)) © Tx(e.r) €xp (3 X (¢, r)dt + 3, X (t, r)dr)

= W(X(t,r))"" (B X (¢, 7)dt + 8, X (¢, 7)dr) by (3.3.2)
Now,
Ad xp(-x)Bdr + ¥(X)'8, Xdr = (X))~ (3, X - f(X,r))dr =0
by (3.3.4) and by (3.3.8). Also -

Adexp-x(r))(A3) = A3 by (3.3.9).

The above two result show that (3.3.13) reduces to (3.3.11) as required.
Now,

[Adexp(-x(r))Av A3] = Adexp(—x(r))[A~ Adexp(X(r))Asl
= Adexp(- x(r))[A. Aa] by (3.3.9)
=0 since [A, A3] =0

and

d
[Texp( X)Lexp(—.\’) oTxexpd X, A3] =

ds o lexp(—X(¢,r))exp(X(t +s.7)). Ag] .

But G is compact, so we can again assume that G C GL(R") for some n > 0.
Then exp(—X (¢, 7)) exp(X (¢t +s,r))A3 = Azexp(—~X(t, 7)) exp(X (¢t +s, 7)) by (3.3.9).
Therefore

[Texp(X)Lexp(—X) oTxexpd, X, AJI =0

a_r_ld so it @llows that [.3, Agl = 0. Similar arguments can be used to show that
[AQ,A:)] = A; and [Ag,All =A2. O
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Chapter 4

The Einstein-Yang-Mills
equations

The Einstein-Yang-Mills equations can be derived from the action principle

S(g, A) =/\/|,T|d*‘z(m+,n- L(Fap|F2b)) . (4.0.1)

We are using relativistic units where the speed of light and the gravitational constant
have been set to one and we have absorbed the gauge coupling constants into the
definition of the inner product (-|-). Varying the action (4.0.1) with respect to the
metric g yields the Einstein equations

Rap — %Rguh = 82T, (1.0.2)

where the stress-energy tensor Ty, is given by

Tas = (FuaclFs°) — }9as( Fua F°) . (4.0.3)
Varying the action (4.0.1) with respect to the gauge potential A yields the Yang-Mills
equations
D,F%, =0 (4.0.4)
where
D.Fy. := Vo Foe + [Ac, Fbc] (4.0.5)

and V is the metric connection.

The stress-energy tensor T} defines a linear operator on TAf. Although T, is
symmetric, the linear operator T2 is not necessarily diagonalizable due to the fact
that the metric g is not Riemannian. If T{ happens to be diagonalizable. then the
invariant physical quantities of the Yang-Mills field can be extracted from the stress
energy tensor as follows. Since T} is a diagonalizable by assumption, we can find an
orthonormal basis {U®, X%, Y2, Z2} of eigenvectors with U® timelike and eigenvalues
€. px, Py. and pz, respectively. The eigenvalue e can be interpreted as the rest energy
density of matter. The other eigenvalues px, py, and pz are called the princinal
pressures.

Now that spherically symmetric Yang-Mills fields and spherically symmetric space-
times have been defined, we are ready to introduce the static spherically symmetric
Einstein-Yang-Mills (EYM) equations. The first section of this chapter will be devoted
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to defining these equations and some related quantities. As we remarked earlier in the
introduction, previous studies of the static spherically symmetric Einstein- Yang-Mills
equations have been carried out under the assumption that the action is reqular. The
rest of this chapter will be spent determining exactly which actions are regqular. As
we will see, the regular actions form a very small subset of the total actions and hence
are quite special.

4.1 Static spherically symmetric field equations

We now assume that all the fields are static and spherically symmetric. From the
discussion in section 3.2, we can introduce a Schwarzschild type coordinate system
(t,r,0,¢) for which the metric takes the form

g = ~N(r)S(r)%dt? + N(r)~'dr? + r2(d8® + sin®Ad¢?) . (4.1.1)

and the gauge potential can be written as

A=A+A (4.1.2)
where N -
A = N(r)S(r)A(r)dt + B(r)dr (4.1.3)
is a g)*-valued 1-form, and
A = A (r)d8 + (A2(r)sin 6 + Aj cos8)dd (4.1.4)

where A and A; are go-valued maps that satisfy (3.2.5). As was shown in section 3.3
we are free to use the temporal gauge and therefore set

B=0. (4.1.5)

We will make one more assumption on the form of the gauge potential. namely that
A = 0. In analogy with the electromagnetic theory, we call A and A the electric and
magnetic parts of the gauge potential, respectively. Thus (4.1.5) and the assumption
A = 0 means that the gauge potential is purely magnetic. For solutions that are
bounded at the origin. it can be shown by analyzing the initial value problem at
r = 0 using the techniques of chapter 5 that A = 0 is a consequence of the EYM
equations. Therefore no generality is lost by setting .4 = 0 when looking for solutions
that are bounded at r = 0. However, for black hole solutions it is known that there
exists solutions with A not identically zero [17,25|. Therefore A = 0 is a restriction
in this case.
With the above assumption, the gauge potential takes the form

A = A(r)d8 + (Aa(r)sind + Az cos8)dé . (4.1.6)

Using (4.1.1) and (4.1.6), the EYM equations (4.0.2)-(4.0.5) reduce to

m' = (NG +r~%P). (4.1.7)
S8’ =2r-!G. (4.1.8)
rPNAY +2(m - r~'P)A, + F =0, (4.1.9
AL AL+ (AL A =0 (4.1.10)
18
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where ' := d/dr and

Ai = FA, — 1Az, Ag:= 2iA3, (4.1.11)
N=1- 3;2 G:= L(ALA,) Pi= L(FIF), (4.1.12)
F = (Ao - [A4,A]), (4.1.13)

F = —i[F A, (4.1.14)

Using the norm (2.1.1), G and P can can be written as
G =N ? ad P=L|F|? (4.1.15)
We obviously have G > 0 and P > 0. A useful variant of (4.1.7) is

N'=l(l—N—2NG-%P) ) (4.1.16)

r

Observe that equation (3.2.5) becomes

[AO--‘\t] = i?l\t y (4.1.17)
and Ag satisfies
C(Ao) = —1\0 . (4118)
Defining
Sy={a€ Rla(Ag) =2} (4.1.19)

it follows easily from (4.1.17) that

Av(r)e @D Cea Vr. (4.1.20)
a€Si

It is straightforward to verify that the stress-energy tensor T} in the Schwarzschild
coordinates is given by

(_EE_E NG P ﬁﬂ)

So the energy density, radial and tangential pressure are given by
dre ="} (NG +r%P), dap, =r (NG -r72P), and 4mps =r*P, (4.1.21)
respectively. We see from (3.2.6) that the field strength can be written as
F = -21-(‘\’,k ~A")dr Adf + %(A’+ +A”)sin@dr Adp + Fsin0dd Adé . (4.1.22)
A short calculation shows that
»F = %(A'+ ~A_)SNsin8dt Ado - %(A'+ + A )SNdt A db + %F’dt Adr. (4.1.23)

Assuming that spacetime M is asymptotically flat so that N,S — 1 as r — 0,
19
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we see from (3.1.5) that total magnetic and electric charges are given by
Qum = lim |F(r)| and Qf=0. (4.1.24)
Following [6], we find it useful to introduce a new independent variable 7 via
— =rvVN (4.1.25)
and dependent variables
uw:=vN, U,:= \/IVA;, and k:= ﬁ(l +u2+2u%G - 2r"%P). (4.1.26)

In these variables, equations (4.1.7)-(4.1.10) become

F=ru, (4.1.27)
Ay =+U,, (4.1.28)

b= (k- u)p-2u°G, (4.1.29)
(Su) = S(k — p)pu . N (4.1.30)
k=-r24+1+24%G, (4.1.31)
Uy = ~(x —p)U, - %}', (4.1.32)

where (-) = ‘%—,—) One advantage of this system of equations over (4.1.7)-(4.1.10) is
that it is no longer singular at 4 = N2 = 0. However, this will not be important to us
here. Instead. we shall exploit in section 6.2 the fact that the system (4.1.27)-(4.1.32)
is asymptotically autonomous to determine the behaviour of bounded solutions as
r — oo.

4.2 Restrictions on Ay

In section 3.2 is was shown that Ag must lie in the set #Iﬂwn. We shall now see
how boundary conditions restrict Aq to lie in an even smaller set. For the geometry
to be regular at the origin, it is necessary that

lim N(r) = 1. (14.2.1)

For a global solution that is defined for all r € [0, 0o}, the physical boundary conditions
at the origin r = 0 are that the energy density and the radial and tangential pressures
are finite there. From (4.1.21) and (4.2.1), is clear that these boundary conditions
imply

G(r) =0(r*) and P(r)=0(r') asr —0. (4.2.2)

An immediate consequence of this is that
[A+(0). A=(0)] = Ao.

This result combined with (4.1.17) and (4.1.18) shows that {Ag,A+(0),A_(0)} form
a standard triple satisfying (2.2.2). Thus Ag € A}® N (£ nWp).
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Lemma 4.2.1. 1
ARAW = AVRNn (TI N W.)
w1

Proof. Suppose 2 € A{® N W. Then 27i€ € Wi. Moreover, exp(27i€%) = 1 € G
as g is_the neutral element of a sl,C subalgebra and 27iAq € hg. Therefore 2 €
5T N Whg and hence

2w
v.R ~ A7 v.R 1 IAT
N TN — .
The reverse inclusion is simple to establish and will be left to the reader. O

This lemma shows that with the above boundary conditions at the origin r = 0,
we can assume that

Ao€ AR NW. (4.2.3)

As we remarked before, the assumption that the spacetime is asymptotically flat
implies that

'lirgo N(r)y= rllrgo S(ry=1. (4.24)

A common boundary condition that is adopted at r = oo is that the total magnetic
charge vanishes. The vanishing of the total magnetic charge is equivalent to

lim F =0 (4.2.5)

r—s0

by (4.1.24). Assuming the limit lim,_o, A4+(r) exists, 4.2.5 implies

[A+(o0), A_(00)] = Ao

where Ay (o0) = lim, .o A4(r). The same argument as above shows that Ag €
A‘,"R N W. Therefore, if the magnetic charge vanishes, then we can assume that
Ao ATRAW.

The condition (4.2.5) does not seem to be a necessary one as purely magnetic black
hole solutions have been constructed numerically with nonzero magnetic charge [25].
However, for globally regular solutions defined on [0, 00) it is unknown if this condition
is necessary. Indeed, as we shall see in chapter 6 for certain choices of Ag € A‘{'RF‘IW,
it is not clear that the limit lim, o A4+ (r) actually exists, and even if it does exists
we have not been able to prove that (4.2.5) is automatically satisfied. With this said.
we will for the remainder of the thesis assume that 4.2.3 holds.

4.3 Regular A4,-vectors and [I-systems

If Ao € A‘{‘RDW then we will call Ag a regular A, -vector and the action of SU(2) Jeu .
mined by A¢ according to theorem 3.2.1 will be called a regular action. Previously, all
the results in the literature concerning the EYM equations have be derived under the
assumption that Ag is regular. There are two main reasons for this assumption. First,
equation (4.1.10) can be solved exactly and secondly the remaining equations (4.1.7)-
(4.1.9) can be expanded out in a Chevalley-Weyl basis { h, |a€ A}U{e,|a€ R}
without having to explicitly compute any of the brackets [e,,es]. As we shall see be-
low, this simplification can be traced back to the fact that S is a II-system whenever
Ao is regular. So in fact the simplification is not dependent on Ag being regular but
only on S, being a II-system. We recall [15] that a subset £ C R is called a [1-system
if and only if
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(i) fa,feXthena- 3¢ R
(ii) X is linearly independent

For a proof of the fact that Ao regular implies that S, is a [I-system see [9].

If we assume that S, is a [I-system, then { h,.,e,,e_,|a € Sy} generates a
semisimple Lie subalgebra of g denoted g, for which S, is a base [15]. By the definition
of S, it is clear that Aq is a principal A;-vector in g.. Also from (4.1.20) and the
definition of g, we see that A, (r) € g, for all r. The above discussion shows that if
Ao € A‘{‘l N W is chosen so that S, is a II-system, then the field equations (4.1.7)-
(4.1.10) can be reduced to a subalgebra of g for which Ag is a principal. Therefore,
when S, is a I[I-system we can, without loss of generality, assume that Ag is a principal
A;-vector in g.

So assume now that Ag € A‘,"R NW is principal. We have the expansion

Av(r) = 3 wa(rlea (4.3.1)

a€Sa

by (4.1.20) where the w,(r) are complex valued functions and A = S, . From (2.1.9)
and (4.1.11) it follows that -

A_(r) = Z Wa(r)e—_q . (4.3.2)

a€S,
Substituting (4.3.1) and (4.3.2) into (4.1.10) and using (2.1.10)-(2.1.12) yields
W, = whi, Ya€ S, (4.3.3)

since a, 3 € S, with a # 3 implies that a — 3 ¢ R. Solving equation (4.3.3) shows
that w, must have constant phase. We are free to choose these phases, which amounts
to a choice of gauge, and so we will demand that the phases are all zero. Hence the
wqo(r) are all real valued functions. We can substitute (4.3.1) and (4.3.2) into (4.1.7)
and (4.1.9) to get

m' = (NG +r7?P), (4.3.4)
rPNwl +2(m = r ' Plwl + 1 D waCag(Ag ~w}) =0 (4.3.5)
dES.

where (C,3) := ((a, B)) is the Cartan matrix of the reduced structure group, and

P=1 5 (la—wl)has(rs - w), (1.3.6)
a,JES,
w'?
G=73 Taf? ' (4.3.7)
a€s,
2C
hap = ,Trzé , (4.3.8)
and
Aa=2Y (C Yas- (4.3.9)
BES
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As before, in deriving the above expression we have used a, 3 € S\ with a # g3,
impliesa -3¢ R.

On the other hand, if S\ is not a II-system then equation (4.1.10) can no longer
be solved exactly. This is due to the fact that for o, € R with a # 3 it is no longer
necessary that a — 8 ¢ R. This implies in particular that the bracket [e,.eg] may no
longer be zero. The inability to solve (4.1.10) implies that the system of equations
(4.1.7)-(4.1.10) can no longer be written in the standard form y’(r) = f(y(r),r) which
provides a serious complication. Also the non-vanishing of the brackets [e,,eg] also
greatly increases the complexity of the equations.

In view of the above discussion, it would be desirable to classify all those Ag €
AV® N W for which S, is a II-system.

Lemma 4.3.1.
{Ao€ A‘{'ROW| Sy is a [T-system } = { Ag € A{NW| S, is a [T-system }

Proof. Since A_“"_“OW C AYNW the inclusion {Ag € A}RNW]| S, is a [I-system } C
{Ao € AN W S, isall-system } is clear. To show the reverse inclusion we
note that by the above discussion there exists a subalgebra g\ C g such that Ag is
principal in g, and S, is a base for g5. We can expand Ag in a Chevalley-Weyl basis
{ha|a€eSy}U{es]ac€ Ry} as follows

Ao= Y Aih, (4.3.10)
a€S,

where A, is defined above by (4.3.9). From the Cartan matrix it follows that A, > )
for each a € Sx. Define

Q, = Z \/:\:eo and Q_ := —¢(Q4) = Z \/R:e_a. (4.3.11)

a€s, a€s,

Then using (2.1.10)-(2.1.12) it is easy to verify that {Ao,Q4.Q_} is a complex
standard triple that satisfies (2.2.2). So Ao € A}"R and therefore { A\g € A N
W| Syisallsystem } C {Ao€ A'{‘R NW| S, is all-system }. O

From section 2.2, we know that the sets .4} N W can be completely parametrized.
We can use this parametrization to determine all the Ag € A} N W such that S,
is a [l-system. Then by the above lemma this will completely determine the :et
{Ao€ A{RNW| S, is a [T-system }.

Suppose Ag € A‘l"'l NW is such that Sy is a [I-system. Let g = D, g’ denote
the decomposition of g into simple ideals and R’ C R denote the roots of g’. This
determines a decomposition of Sy = US{ into a disjoint union of sets Si C R’ such
that S] is a [I-system in g’. Moreover, if we let Ag = 3, A} denote the corresponding
decomposition of Ag then it is not difficult to show that S] = {a € R [a(A)) =2}
and A} € A‘,"R(gf) N W(g’). This proves that if we can parametrize the set { A¢ €
A‘{'R NW/| S, is a [I-system } for simple Lie algebras g then we can parametrize it
for all semisimple Lie algebras. The next theorem provides such a parametrization
for the classical simple Lie algebras.

Theorem 4.3.2.
g =si,C
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Sx is a Il-system if and only if the partition d that determines Ag satisfies one of
the following

(i) d=Q2uv,2u+1) with2v>2u+12>3,
(i) d=Q2u+1,2v) with2u+1>2v2>2,
(iti) d=(2v,1,1,...,1) withv > 1.

g = s02,41C

S is a Il-system if and only if the partition d that determines Ao satisfies one of
the following

(i) d=Q2u+1) withu>1,

(ii) d=Q2u+1,2v,2v) withu > 1, and 2u + 1 > 2v,
(iti) d=(2v,2v,2u+ 1) withu>1and2v>2u+1,
(iv) d=(2v,2v,1,1,...,1) withv > 1,
8 = 5p2,C

Sx is a [1-system if and only if the partition d that determines Ag is of the form
d=(2v1,1,...,1) wherev > 1.

8 = s02,C

Sx ts a [1-system if and only if the partition d that determines Aq satisfles one of
the following

(i) d=(u,u) withu>1,

(ii) d=Q2u+1,1) withu>1,
(iii) d=2u+1,2v,2v,1) with2u+1 > 2v > 2,

(iv) d=(2v.2v,2u+1,1) with2v>2u+12>1,

(v d=2v,2v.2u+1,2u+1) with2v>2u+1 >3,
(vi) d=Q2u+1,2u+1,2v,2v) with2u+1>2v > 2.

Proof. We will only prove the theorem for simplest case g = s{,C. The other classical
algebras 502,41 C, 502,C and sp,,C can be analyzed in a similar fashion using the
formulas from chapter 5 of {12]. However, due to the increase in complexity of the
formulas over those for sl,C, the proofs become much more difficult and tedious.

To proceed, let D denote the set of diagonal n x n complex matricies. Then

h={H¢€D|trace(H) =0}
is a Cartan subalgebra for sl,C. Define ¢; € D* by
¢;(diag(H,,H,,.... H.)=H,.

The set of roots determined by his R = {e&; —¢; |1 < i,j < n i # j} and
A={e&—-¢|7=12...,n-1}is a base for R. Suppose Ag is the A;-vecto:
determined by the partition d = (d),da,...,dk) according to the formulas (2.2.10)
and (2.2.11).
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Lemma 4.3.3. If there ezists r,s € {1,2,...,k} withr < s such that d, and d, are
both even, then S, is not a Il-system.

Proof Since d, and d, are both even, and r < s, it follows that d, > d, > 2. Let

=Yild,, I =d.+d./2 and J = d, +d,/2. Then it is not difficult to verify that
e, — €141 and €/ —€j4y arein Sx. But (e —€r41)— (€1 —€s41) = €441 — €141 € R
and hence S, is not a [I-system by definition. O

Lemma 4.3.4. If there erists r,s € {1,2,...,k} with r < s such that d, and d, are
both odd and d, > 1, then S is not a I1-system.

Proof. Since r < s, d. and d, are odd, and d, > 1, we must have d. > 3 and
d >d, Let I =d, + (d. —1)/2 and J = d, + (d, —1)/2wnthd defined as in
lemma 4.3.3. Then it is easy to show that ¢; — €;,, and €; — €, are in S,. But
then (e; —€r41) — (€1 — €141) = €741 — €741 € R and hence S, is not a IT-system by
definition.

From these two lemmas it is clear that the only possibilities left for a partition
d to give rise to a S» that is a [l-system is if d satisfies (i), (ii), or (iii) from the
statement of the theorem. It can be verified that each of these leads to a S, that is a
II-system. We will only verify the case (i). Now, straightforward computation shows
that S,\ = {Ci _€i+lli = l,...,d[ - I}U{fd,.g.. —Ed‘*.“.[li: L...,d’z -1 }. Thus
S, C A which implies that S, is a [I-system. O

We have not yet proved a corresponding theorem to theorem 4.3.2 for the excep-
tional Lie algebras. From the tables in chapter 8 of {12}, it is clear that a proof of
such a theorem would involve only straightforward computation.

Theorem 4.3.5. For the simple algebras By, C¢, Dy, G2, Fy, Eg, E;, Es, and A,
with € odd, the only reqular A,-vector is the the principal one. For ¢ even. the
reqular A,-vectors are classified by partitions of the form d = (¢ + 1 — k, k) for
k=1,2,...,¢/2.

Proof. The statements concerning the classical simple algebras 4., B;, C,. and D,
can be verified using theorem 4.3.5 and the formulas from chapter 5 of {12]. For the
the exceptional algebras G,, Fy. Eg, E7, and Eg, the conclusion follows immediately
from the tables in chapter 9 of 12]. O

The above considerations show how to parametrize the set { Ag € A‘,"R NW |
S is a [I-system}. An obvious question is how can one parametrize the set A‘{'RHW
which we know is in one-to-one correspondence with the set of all non-conjugate
spherically aymmetnc Yang-Mills potentials that satisfy the boundary conditions 4.2
and 4.2.5. Since Av NWcC AT NW, we could use the parametrization of A} N W
discussed in section 2.2 to parametrzie Al N W. The difficulty with this appruach
is that we have no useful charactenzatlon with respect to this parametrization of
when an element Ag of A NW is in A" N W. However, in the case g = si,C.
the formulas (2.2.10)-(2.2.14) can be used to show that A}® "W = Ay N W and
so the parametrization problem is solved. For the other classical Lie algebras there
exist explicit formulas for Ay similar to (2.2.10) and (2.2.11) although they are more
complicated. There does not, however, exist explicit formulas for Q,R analogous to
(2.2.14). Therefore we cannot use the same method to prove that A" N W=Ajn
W for the other cla.ssxcal Lie algebras. Calculations for low dlmens‘onal simple [ Lle
algebras shows that A" NW = Ay N W. This seems to indicate that A}’ RAW =
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A} NW for all Lie algebras. If this is the case, then the parametrization problem is
solved. Note also that this would imply that Ag for which S, is a [I-system are rare.
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Chapter 5

Initial value problem

The main result of this chapter is that the EYM equations (4.1.7)-(4.1.10) admit
bounded local solutions in the neighborhood of the origin r = 0, a black hole horizon
r = ry > 0, and spatial infinity r = 0o. The boundary conditions that we will adopt
are: -

e at the origin r = 0, all the physical quantities (4.1.21) are finite,
e at the black hole horizonr =rgyg >0, N(ry) =0, N'(rgz) > 0. and S(rg) finite,

e the spacetime is asymptotically flat and the total magnetic charge vanishes
which implies that N - 1, S — 1, and F — 0 as r — oo.

Our interest in local solutions is because they provide a starting point for construction
of global solutions both numerically and analytically via the shooting method. Indeed,
the local existence proofs isolate the free parameters in the solutions and provide a
well defined local solution which one can try to extend. Numerically, this means that
there exists a convergent Taylor series expansion from which numerical integration
can start.

To prove local existence to the EYM equations (4.1.7)-(4.1.10), we proceed in
three steps.

1. First we prove the existence of local solutions {A,(r), m(r)} to the equations
(4.1.7) and (4.1.9).

2. Then we determine which solutions from step 1 satisfy equation (4.1.10).

3. Finally, equation (4.1.8) can be integrated for all solutions from step 2 to obtain
the metric function S(r).

Our strategy for carrying out the first step will be to prove that there exists a change
of variables so that the field equations (4.1.7) and (4.1.9) can be put into a form to
which the following theorem applies. An analytic version of this theorem was first
proved by Breitenlohner, Forgics and Maison in [6].

Theorem 5.0.8. The system of differential equations

du, .
t—(;%—:t“‘fi(t,u,v) i=1,....m
t% = —A,v; +tY g,(t, u,v) Jj=1....n
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where u;, v, are integers greater than 1, A\; > 0, and f; and g; are analytic functions
in a neighborhood of (0,co,0) € R'"*™*™  has a unique C! solution t — (u,(t),v;(t))
defined on 0 < t < T for some T > O that satisfies u(0) = c provided |c — cq| is
small enough. Moreover this solution is analytic in (c,t) for |t| < T and |c—cp| small
enough and it satisfies

ui(t) =c+O(t") and v,(t)=0(t"") ast—0.

Proof. We will only prove the case m = n = 1. By replacing u with u — ¢ we can
assume that u(0) = 0. To start, we will also assume that u = v = 1. We note that
the proof of this theorem is similar to the local existence proof in {54].

Consider the integral equation

¢ ¢
u(t)=‘/0 f(s,u(s),v(s))dt and v(t)=tlA/0 g(s,u(s), v(s))ds. (5.0.1)

For t > 0 it is easy to see that this is equivalent to the differential equation. Here
we are assuming that u(t) and v(t) are continuous for ¢ > 0. At t = O the only
problem that can arise is that v(t) may not be differentiable there due to the t* in

the denominator. Consider the limit -
Cw() . [lalsu(s)u()ds . gtu(t).u(r) 1
zh{'c‘) t _zl@: tA+1 "zh\'.'cll A+1 - /\+lg(o‘0‘v(0))‘

where in getting the second equality we have used 'Hospital’s rule. This shows that
v(t) is differentiable at ¢t = 0. Note also that v(t) is C! for t > 0. Similar calculations
show that limg\ o v'(t) = (A + 1)7g(0,0, v(0)) and so we see that v(t) is actually C*
for t > 0.

Define a map

Y(u, v)(t) = (/0 f(s,u(s), v(s))dt, %/(; g(s, u(s), v(s))ds) (5.0.2)

and let

Drr = { (u,v) € C°([0,T]) x C°([0.T]) | l(u, v)| < R }

where
l(u, v)|| = max{j|ufloo, lvllc} -

Then using standard arguments, it can be shown that there exists T,, R. > 0 such
that ¥(Dgr.1) C Dr.1 and ¥ is a contraction for al 0 < T < T, and 0 < R < R,.
Let Dy = {2 € C||jz|| < T } and define

Drr={(uv) € Hr x Hr { ||(u.v)| <R}
where
Hr = {u: Dp(C) — C] u is continuous on D and analytic in the interior } .

Let ¥, denote the same map as (5.0.2), where now the functions u and v lie in Hr
and the integration can be taken over the straightline path between two points in Dr.
Again using standard arguments, it can be shown that there exists T2, RS > 0 such
that ¥,(D% 1) C Dg 1 and ¥, is a contraction for all 0 < T <T: and 0 < R < R;.

Let Ty = min{T2,T.}, Ro = min{R2,T.}, and choose (u?,v?) € D%, 1, such that
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(“Ol[o.'n,]»vq{o.rol) € Dpr,.1,- Letting ¥2 = ¥,0¥,0---0¥, (n times) and using
similar notation for ¥", we see that if we define

(u™,v") := B7(u®, v°)

then
(u" [0.To]" ™ ©0.T) = " (4 (0.Ta}® Uoﬂ[o'rol) . (5.0.3)
Now,
(u(2),v(2)) := lim (u™(2),v"(z)) z € D7,(C)

is the unique fixed point in Df 1, for ®,. But from (5.0.3) it is clear that
(u(t),v(t) = lim (u"(8),v"(8)) ¢ € [0,To]

and hence (u(t),v(t)) is the unique fixed point in Dg, 1, for ®. This implies that
differential equation

du dv
t:i? =tf(t,u,v) and t:i_t- = —Av + tg(t,u,v)

has a unique solution (u,v) in Dg, 7, that satisfies u(0) = 0. Moreover, we get from
the above arguments that u(t) and v(t) are actually analytic for |t| < Tp.
To prove the general case, let f(t,u,v) = th=1f(¢t,u,v) and §(¢t, u,v) = t*~1g(t, u,v).
Then d
u

. dv

t— =tf(t,u,v d t—

g = Huwy) and tT
and we are back to the situation with u = v = 1.

The easiest way to verify the fall off conditions,

= —Av + t§(t, u,v)

u(t) =c+O(t*) and u(t) = O(t*) ast—0

is to substitute a powerseries representation about ¢ = 0 for u(t) and v(t) into the
differential equation and then solve for the powerseries coefficients. [

The next lemma shows that if {A4(r), m(r)} is a solution to the field equations
(4.1.7) and (4.1.9) then the quantity (A, A_] + [A_, A4] satisfies a first order linear
differential equation. This unexpected result is what allows us to carry out step 2
and thereby construct local solutions.

Lemma 5.0.7. If {A;(r), m(r)} is a solution to the field equations (4.1.7) and (1.1.9)
then

) = [As(r), AL(n)] + [A_(r), A (7))
satisfies the differential equation

Proof. Differentiating v yields
Y =[As, A+ (A AR

=~y (= 2P) v+ A B A + (A [ A
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by (4.1.7) and (4.1.9) while
(A= (F AL + Ay A F =0
by (4.1.13), (4.1.17), and the Jacobi identity. Combining the above two results proves
the lemma. O
5.1 Algebraic results

In this section we collect all of the algebraic results needed to prove the local existence
theorems. We will employ the same notation as in [45] section 6. For this section, we
will assume that Ag € A‘{‘. NW is fixed. Let Q,,0_ € g be two vectors such that

(Ao, e] = 2204, [Q4,Q_]=A¢ and ¢(Q,)=-Q_. (5.1.1)

Then
q :=spanc{Ao. 24,0} = sl,C (5.1.2)

and we will often use the dot notation to denote the adjoint action of q on g, i.e.
XY :=ad(X)(Y) V X € spanc{Ao,Q4+,0Q-}, Y €7g.

Because Ag is a semisimple element, ad(Ag) is diagonalizable and it follows from
s{(2)-representation theory [21] that the eigenvalues are integers. Let V,, denote the
eigenspaces of ad(Ag), i.e.

Vai={X€glAoX=nX}) nelZ. (5.1.3)
Observe that
Vo= P Ce., . (5.1.4)
a€S,

It also follows from s{;C-representation theory that if X € g is a highest weight
vector of the adjoint representation of spanc{Ao.Q4,02_} with weight n, and we
define X_; =0, Xo = X and X, = (1/;)Q2.Xo (5 > 0), then

A().X] = (n - QJ)X y
Q_X; =G+ 1)X,41. (5.1.5)
Q.X,=(n-j+1)X,_, (20).

Proposition 5.1.1. There erists M highest weight vectors £*.£2,. ... &M for the ad-
Jjoint representation of q on g that satisfy

(i) the & have weights 2k; where j =1,2,... M and 1 = k; < ky < --- < kyy,

(ii) if V(€7) denotes the irreducible submodule of g generated by €7, then the sum
YL V(E) is direct,

(iii) if § = (1/1)QY_.€7 then _
(&) = (-1)'&, ;» (5.1.6)

(iv) M = |S,| and the set {Ei,-x |i=1.2,... M} forms a basis for V; over C.
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Proof. (i) and (ii): The conjugation operator c satisfies
o([X,Y]) =[c(X),e(Y)] VX, Yeg. (5.1.7)
Using (5.1.1), (5.1.7), and (4.1.18), it is easy to see that
coad(24)” = (-1)"ad(Q4)"ocVn € Z5¢o and coad(Ag) = —ad(Ag)oc. (5.1.8)
As usual, define the Casimir operator C by
C = 1ad(Ag)? + ad(2+)ad(R-) + ad(-)ad(Q4) .
Then g can be decomposed as follows [44]

8=EPV(sp.v*), (5.1.9)
P

where V'(sp, vP) is a highest weight module generated by the highest weight vector v
of weight sp, and it has the property

Av(s,vmy = (353 + 8p) idv(s, 00y VP (5.1.10)

From (5.1.8) it follows that C o ¢ = ¢ o C. Using this result and (5.1.10), we see that

c(V(sp,vP)) C V(sp,v?) Vp. (5.1.11)
Let {s,,,5p;,.--15py } be the set of weights from the decomposition (5.1.9) that are
even and greater than zero. We will assume that they are ordered so that s, <
Sp, < ... < spy. Define k; = s, /2. Then the k, are positive integers that satisfy

ky € ko < ... < kp. Note that k) = 1 because 2, is a highest weight vector with
weight 2. To simplify notation, set v? := v?:. As before with highest weight vectors
(see (5.1.5)), we let v] = (1/1")Q". .v’. Define

v+ C(Uék, )  otherwise

for j =1,2,...M. Then Ao.§? = 2k,&? and Q4.§? =0 for j = 1,2,... M by (5.1.8)
and (5.1.5). Therefore all the & are all highest weight vectors of weight 2k,. Let
V(&’) denote the irreducible submodule generated by £’. From (5.1.11) and (5.1.12)
it is clear that §7 C V/(2k,, v’) and hence V(§?) = V(2k;,v?). Thus the decomposition
(5.1.9) shows that the sum Zﬁ.l V(€7) is direct.

(iii): The relationship (5.1.6) follows from (5.1.8) , (5.1.12), and (5.1.5).

(iv): Because the numbers 2k;, 2ks, ..., 2kas exhaust all the positive even weights
and the sum Z;‘il V(&) is direct, it follows from sl;C-representation theory that
{€1j=1,2,... M} is a basis over C for V;. But {e,|a € S, } is also a basis uver
C for V,. Therefore M = |S,\|. O

The next proposition shows that when S, is a [I-system then the span the of the
highest weight vectors form an Abelian subalgebra of g.

Proposition 5.1.2. Suppose S is a M-system. Then spanc{£',€2,...,6M} is un
Abelian subalgebra of g and hence also an Abelian subalgebra of g.

Proof. From the definition of g, given in section 4.3, it follows that spanc{\o.Q4+.0Q-}
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C ga and V; C ga. But by proposition 5.1.1, V; = spanc{&} _.€2,_,..... & _,},
and hence
(kg + 1)!

Wﬂ'ﬁ'l-ﬁfn—x =& eq

for i =1,2,..., M. Therefore spanc{€!,£2,...,6M} C gi. The &’ are highest weight
vectors, consequently

spanc{€',€2,... .M} c g} (5.1.13)

where g* = { X € gx | [2+,X] =0 }. Define Van:={ X € ga | Ao. X =nX }.
Clearly, Va2 = V2. Using sl;C-representation theory, it is not hard to show that
dime g?” = dim¢ V) 2. But dimc V2 = |S)|, and therefore dim¢ g?* = |S\|- By
proposition 5.1.1, |S.| = M and hence we get from (5.1.13) that

spanc{€',€2,...,6M} = g+ . (5.1.14)

Since S, is a base, |S)| = dimc ha which in turn gives, via the above result. dimc g?" =
dimc b, . Applying lemma 2.1.15 of {12] then shows that

dimc g5 = min{ dimcgX | X € }. - (5.1.15)
We can identify g, with the dual g} using the form (-|-), i.e.
tigao — 8l ¢ X)) =(X]).

So if f € g} and we define g{ ={ X € gx | adx(f) = 0}, then

g =gX vXeg. (5.1.16)

Let G, be a connected complex semisimple Lie group with Lie algebra g». Then for
f€gs, g{ is the Lie algebra of coadjoint isotropy group Gy = {a € G, |Ad;(f) =
f }. But then (5.1.14), (5.1.15), (5.1.16) and a straightforward generalization of
theorem 9.3.10 in [41] to complex Lie groups imply that spanc{£!,£2,....6*} is an
Abelian subalgebra. O

Define an R-linear operator A:g — g by
= 1ad(Q;) o (ad(R-) + ad(Q4) oc) . (5.1.17)

Proposition 5.1.3. The R-linear operator A is symmetric with respect to the inner
product (( | )), te. ((A(X)Y)) =({(X|A(Y))) VX Yeg.

Proof. From (5.1.1) and the invariance properties (2.1.2) of the inner product ({ | )),
it follows that ([, (2, X||IV)) = (( X|[Q4.[2_, Y]})) and (([24.[Q4.c(XNIY 1)
= (( X|[Q4+.[2+.,c(Y)]])) for every X,Y € g. From the definition of A, it is then
obvious that (( A(X)|Y')) = (( X]A(Y))) for every X,Y €9. O

An immediate consequence of this proposition is that A is diagonalizable. Th-
next lemma shows that V; is an invariant subspace for 4 and hence A restricts to a
diagonalizable operator on V2. We denote this operator by

Az = AIV; - (5.1.lﬂ)

As we shall see, the diagonalizability of A7 is essential in proving local existence.
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Lemma 5.1.4.
AV Cc VWV, (5.1.19)

Proof. It follows from si,;C-representation theory that Q,.V,, C V, 42. From (5.1.8) it
is clear that ¢(V,) C V. Thus Q,.Q_.V, C V3 and 2,.9Q,.¢(V2) C V, which implies
that A(V,) Cc Ve, O

We label the integers k, from proposition 5.1 1 as follows
1= k.’| = k.’|+l == k.l|+ml—l < k.’a = k.l:-f-l == k.l;+mz—l
<. <k.ll =k.ll+l ="'=kJ,+m1—l '
where Jy =1, Ji+my=Jigy for 1 =1,2,...,I and Jy4y = M — 1. Define
ki:=ky; 1=1,2,...,1. (5.1.20)

The set {£,{’_l | 7 =1,2,... M) forms a basis over C of V, by proposition 5.1.1 (iv).
Therefore the set of vectors {Xf,Y,‘ [t=12,...,1; s=0,1,...,m — 1} where

X! .= and Y!:=iX!, (5.1.21)

s codi4s

sty if ky is odd
I if k; is even

forms a basis of V3 over R. The next lemma shows that
{(XLYHt=12...,Is=0.1,...,m-1)
is an eigenbasis of A4,.

Lemma 5.1.5.
A2 XY = k(g + DX and A(YH =0 (5.1.22)

fort=1,2,.... I ands=0,1,..., m; — 1.

Proof. Calculations using formulas (5.1.5) and proposition 5.1.1 (iii) show that .-I(Ei’ -
= 3k (ky + ) (L + (=)%Y gl | and AGEL _,) = 3k, (k, + 1) (L + (=1)%) i€l _,
for j = 1,2,... M. The proposition then follows from (5.1.20) and 5.1.21. 3

An immediate consequence of this lemma is that spec(A4;) = {0}uU{k;(k;+1)|j =
1.2,...1} and m, is the dimension of the eigenspace corresponding to the eigenvalue
k;j(k, +1). Note that [ is the number of distinet positive eigenvalues of A; while M
is the total number of positive eigenvalues including multiplicities. Define

E = {ky, ko, ...k} (5.1.23)
so that we can write
spec(A2) = {O}u {s(s+1)]s € E}. (5.1.24)

When Ag is principal. the set £ can be computed for the simple Lie algebras. Refer
to table 5.1 for a list.

Define
E{ = spang (Y }Tuo! | E! =spang{X!}™;!, (5.1.25)
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Lie algebra £

Ae b
B, 27-1
Ce 27 -1
2j—1 ifj<(€+2)/2
D, {l—l ifj=(€+2)/2
2;—3 ifj>(£+2)/2
Ee 1,4,5,7,8,11
E; 1,5,7,9,11,13,17
Eg 1,7,11,13,17,19,23,29
Fy 1,5,7,11
G, 1,5

Table 5.1: The set £ for the simple Lie algebras with Aq principal.

and , ,
Ec=@PE,. E.=@E,. - (5.1.26)
=1 =1

Then
Eq = ker(Ag) (5.1.27)

and E' is the eigenspace of A; corresponding to the eigenvalue k;(k; + 1) . Moreover,
using proposition 5.1.1 (iv), it is clear that

Va=Eo®E, . (5.1.28)

To simplify notation in what follows, we introduce
i
E' ;:@Eges‘i. (5.1.29)
q=0

When S, is a [I-system, subspace E, can be described much more simply. Observe
that if S, is a [I-system then (2, can always be chosen so that Q, € 3" .5 Re, by
(4.3.11). Once this is done we then have:

Proposition 5.1.6. IfQ, € 3~ s Re, and S, is all-system, then E, =3 s Re,.

Proof. As discussed in section 4.3, we can restrict to the subalgebra g, in which Ag
is principal. So without loss of generality we can assume that Ag is principal.
Introduce a basis { Z, |1 < j < M } over R for E, by defining

z, = { &, ., ik, isodd

<j< M.
i{,’ﬁ_l if k, is even b=ss

Equations (5.1.5) and proposition 5.1.1 (iii) can be used to show that
Q,.¢(2,)=0-.2, 1<j<M. (5.1.30)

By assumption 2, = ZoesA wae, for some set of constants w, € R. Note that 4.3.10
implies that w, # 0 for all a € S\ because otherwise A\, = 0 for some a € S, in the
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expansion 4.3.10. But this is impossible since we know that A, > 0. Because ¢(2,) =
—Q_ and c(e,a) = —e_a, N = 5, Wal_a. Since Z; € V2, Z, = Y acs, Bja€a

for some set of constants ao € C. So then ¢(Z;) = ~ 3 s, G;a€-a. Now, since Ao
is principal, [e,,eg] = 0 for all a,8 € S\, a # 8. Therefore
Q.2 = Z WaGja[€-a,€a] = Z —Waa,aha , (5.1.31)
a€S, acs,
while
Q4.¢(Z;) = ) ~Waljalea,e_a] = Y -wadjaha . (5.1.32)
a€sS, a€S,

The three results (5.1.30), (5.1.31), and (5.1.32) then yield

Z Wa(aja — Gja)ha =0.

a€S,

But w, # 0 for all @ € S and the set {h,|a € S,} is linearly independent.
Thus @, — @) = Oforalla € Sy and j = 1,2,...,M. So Z; € 3 .5 Rea
for j = 1,2,...,M which implies that E, C 3 s Re,. However, dimgE, =
dimp(3_,cs, Rea) = |Si| and therefore E, = 3 . Rea. O

The operator A2 also has a simple description when S, is a [I-system. Indeed,
writing Q4 = ), .5, Wa€a where w, € R and using (2.1.9), (2.1.10)-(2.1.12), and
[€a,ea3] =0 for all a,3 € S), a # 3, we get

Ax(ea) = Y wy(B,a)waes .

8€ 8,

This result along with (5.1.28) and proposition 5.1.6 shows that {e,|a € S\ } can be
completed to a basis over R of V2 so that the matrix of A; with respect to this basis

takes the form 0 o
Ao = , 5.1.33
[4e] ( 0 {Aas) ) ( )

Aag = wa(a,ﬂ)wg . (5134)

with

Lemma 5.1.7. Suppose X € Vo. Then X € E* if and only if Q';{. X =0.

Proof. From the formulas (5.1.5), we get

Qq—l el _ 0 ifq > k(
t kLT d(g k)L, fqSh

where d(q,7) = (g + r)!/(r + 1)!. This implies that

0 ifl >k
{~1 q — . .
Q+ . XP { sq d(l, kq) s;’:rlp lfl S kq ) (51
and
0 ifl >k
-1 q v .
Q+ . Yp - { aq d(ly kq) if&’::’{’ ifl < kq ’ (5.136)
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where
g, = 1 if kg is odd
T ¢ ifkgiseven

Suppose X € V5 = ®:=1 E§ & E%. Then there exists real constants agp and by, such

that
I mg—-1

X=3 Y (s Yy +bsp X3) . (5.1.37)

q=1 p=0
Suppose Q. X = 0. Then (5.1.35), (5.1.36), and (5.1.37) imply that

mg-—-1

I
vx=5% 3 (aqpﬂqd(k‘+l,kq)isf:ffl_l+bq,ﬂqd(k¢+l,kq)£::f£_l) =0.
q=l+1 p=0

But the set of vectors
B,igletr Jatp =l+1,1+2,...[, p=0
ﬁqzeh,—h—l'ﬂqsiq—h—lIq— + ) + 9., ,p—' ,],...,mq—'l

is linearly independent over R. Therefore X = Z.‘,=1 E:';J l(¢1,,,,Y,,"'+ bqpX3) which
implies that X € @fFl E§® El.

Conversely, suppose X € @:ﬂ E§ ® E1. Then X can be written in the form
(5.1.37) and it is easy using (5.1.35) and (5.1.36) to verify that Q:f. X=0 QO

Lemma 5.1.8. Suppose X € Va. Then X € E' if and only if Q2. ¢(X) = 0.
Proof. Proved in a similar fashion as lemma 5.1.7. O

Lemma 5.1.9. Let ~:Z>_, — {1,2,...,1} be the map defined by

—_—

—l=6=land§=mmt{1|k¢§s}ifs>0.

Then
(i) ks < s for every s € Z>o.
(i) ki < s < ksyy for every s€ {0,1,.. . k; — 1}.

Proof. (i) This is obvious from the definition of ~.

(it} From part (i), k; < s. So suppose k;4+; < s. Then from the definition of ~it
is clear k3,1 < k;. But because k; < kp < --- < ky, it follows that 5§ + 1 < s which is
a contradiction. Thus k;,; > s and we are done. [

Lemma 5.1.10. If X € V2, ks +5 < kgyy (s 20), and Q¥*°. X =0, then Q. X =
0.

. kj+s—1 o
Proof. Assume s > 0, otherwise we are done. Because X € V,, we have 2 +’“ X e

Va(k;+s)- By assumption Q:‘“. X =0,so0

QYL X € Vo, 44y Nker(ad(£24)) -
But, if n € Z.¢, then

Von Nker(ad(Q4)) # {0} &> n € {k;,ka,...,k1} .
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because otherwise g would contain an irreducible g-submodule with weight 2n €
Z>0\ {2k, 2kz,...,2k;}. This is impossible as the set {2k;, 2kz, ..., 2k} exhausts all
the positive even weights of the irreducible g-submodules in g. Therefore Qi‘“‘ X =

0ask; < ks+s < kj4) implies that (k;+s) is not in {k;, ks, ..., k;}. Repeat the above
argument with s’ = s — 1 to arrive at QP ™' X = Q:"“'z. X = 0. Continuing in
this manner, we find 2. X =0. O

We will frequently use the following fact
(x1)y=I%1 VvieE. (5.1.38)

Proposition 5.1.11. If X, € E3, Y, € E®, and Z. € E¢ then [|c(Xa),Ys), 2] €
E(a+b+c)'

Proof. Suppose X, € E, Y, € E?, and Z. € E¢. Then
e 2e(X) =Y, =% 2. =0 (5.1.3)

by lemmas 5.1.7 and 5.1.8. Now,

8 [[e(Xo) . Z] =3 3 (’l’) (,fl)w,,,.wm

i=0 m=0
where
Wiaseim = ([Q7 ¢(Xa), Q5 ™ V5], 0571 2.

It then follows from (5.1.39) that Wpgpcim = 0if m > ks +2o0rl —m > k; or
p—1 > kz. Thus medm = 0 unless p < L +k: < m+k5+k5 < ka+k5+
k: + 2. But this can never be satisfied if p = ki + k; + k: and so we arrive at
QN 16(X,), Y], Z] = 0. But ks + k; + ks < a + b + ¢ by lemma 5.1.9 and
hence it follows that Q‘r”"“.[[c(xa), Ys], Zc] = 0. But then lemma 5.1.10 implies that
Q" ([¢(Xa). Ya), Z.] = 0 and hence [[c(X,), V3|, Z] € EC+t+7. O

Proposition 5.1.12. If X, € E% and Y, € E® then [[Xa.c(Ys)]. 4], [+, Xa]. V!,
(9=, Xa],Ys] € Eta+t),

Proof. This proposition can be proved using the same techniques as proposition
51.11. O

Lemma 5.1.13. Ifl € € and Z € EL ® E-! then Q' .c(2) = l(1 + 1)Q1.Z.

Proof. Since Z € E‘; & E!-! there exist real constants a$, b3 such that

q' °q
[—1my-1 m;—1 )
Z=3" ) (ay+ibXI+ D aiX] (5.1.40)
q=1 3=0 =0
where J
e JaIIl ifkgisodd
X3 = i{b"" if ko is even
ke —1 q
But .
QLXI=0 forq<i-1 (5.1.41)
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by lemma 5.1.7, and so we get

mp— 1

Q'z= Y aotxl (5.1.42)
=0

Now,

Jqo+s . R
e(xg) = { Spt, Fhaisodd
6,771 ifkgiseven
by proposition 5.1.1 and so
Q2 o(X7) = kg(ky + 1) X7 (5.1.43)
S}ilnce l € € implies that k; = [, it follows easily form (5.1.40),(5.1.41), and (5.1.43)
that
m;—1 :
A2y =1t+1) 3 aiat X1 (5.1.44)
=0

Comparing (5.1.42) and (5.1.44), we see that ®'}'.c(2) = (1 + 1)05'.Z2. O
Proposition 5.1.14. If Z, with | =0,1,...k is a sequence of vectors such that
Zo=Qy, ZicE' 1=12...k and Z e ELDE-' iflec

then for any j =1,...,1

= EF  ifkec
’gl[[c(ZJ—s)st]'Q*-] € {Eé_l ifk c€& .

Proof. Suppose Z; is as in the hypotheses of the proposition, then

Qi ez) =02z, =0. (5.1.45)

Now,

~
-
+

k-1 p+t
-2 S (e Zecs, Z,), 4] = (”7 ‘) Wouts (5.1.46)
11

s=1

L)
]
]

(=]

where

Wois = (@ .c(Ze-,). Q5 2, .

From (5.1.46) we see that Wy, = 0if I > k(- or p+ 1 —1 > k;. Thus
Wokis =O unless p+ 1 <l +ks <k;+ki_yy- +2. (5.1.47°

Now, suppose p = k. Then using the fact that k; < s and kik—s)- < k — 5, we see
from (5.1.47) that Wy, = O unless k + 1 < ! + k; < k + 2. Since this is impossible
to satisfy Wik, = O for all [, s. Thus the sum (5.1.46) vanishes. i.e.

k—1
~05.Y [[e(Zk-s, Z,). Q4] = 0.

=1
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and we get

k-1 [

Y lle(Zk-4, 2Z,). 9, ) e P E© E2 (5.1.48)
=1 q=1

by lemmas 5.1.7 and 5.1.10.

Now, suppose further that k € £ and let p = k — 1. Then by (5.1.47) we have
Wokts = O unless k£ < I +k; < ki + kx—y)- + 2. Now k; < s and k(k-s)- < k — s,
so suppose k; < s or k_,)- < k —s. Then kx_,)- + ks < k — s + s = k which will
make the inequality k <!+ k; < k; + k(x_,)- + 2 impossible to satisfy. Therefore we
see that Wpkis = O unless k(x_,)- = k — s and k; = s (i.e. k — 3,3 € £). However, if
k(k~s)- = k — s and k; = s, then k < I +k; < k; + k(k_,)- + 2 will satisfied only if
l+3=1. So Wpiis, =0 unless k — s,s € £ and | + s = 1. This allows us to write the
sum (5.1.46) as

k-1
RO BCEREATN

= Z ( et l) -s)k—-s+ l)[Qi"".Zk_,,Qi".Z,] by lemma 5.1.12

k-l

— k! Qk—l—lz Q’_l Z
—g("-s—l)!(s—l)![ v k- A2,

Assume now that k is odd. Then we can write the above sum as

k-1 k-1 k!
—OL Y le(Ze-a) 2 = Y G T T e 00 2
L

s=1

[}
3

k! keso1 -
+Zx (k=s—-1)(s— 1)![Q+ /S 1 AN

L

F’H

— l)'(s T (957" 2o, QL2 + (1.2, 051 2 _j)

=0.

Similar arguments show that —Qf".Zf;:[[c(Zk_,, Z,},Q4] = 0if k is even. We
then get
k-1

Z“c(zj—s)y Z,],Q+] € EE—I

s=1
by lemmas 5.1.7 and 5.1.10 and (5.1.38). O

Proposition 5.1.15. If Z; withl =0,1....k is a sequence of vectors such that

20=9Q,. ZicE' I=1.2...k and Zic E.9E" ifle¢

then foranyj=1,...,1

2 E*  ifke¢€
;;”dz 1=3)s Zs}s Zie,] e{ 1 fkee
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Proof. Proved using similar arguments as for proposition 5.1.14. O

5.2 Local existence proofs
Forg=1,2,...T let
pri:Va - E], prj: V2 EJ, and pr?:Vo - E{®FE]

denote the projections determined by the decomposition (5.1.28), (5.1.26) of V5.

5.2.1 Solutions bounded at the origin

Theorem 5.2.1. Fiz X € E, andQ, € E, that satisfies [, ,Q_] = Ao where Q_ :=
—~c(24). Then for some € > O there erist @ unique C?x C!-solution {A(r. X), m(r, X)}
to the system of differential equations (4.1.7) and (4.1.9) defined on (0,¢€) that satisfies
A+(O) = Q+ and

pri(Ay —Q4) = X't 4 O(r**2),  pri(As) = O(r**?) Vs €&,
Ay = Q) = X,r*t 4+ O(r**?),  pri(AL) = O(r**?) VseE,

Gwhere X, := pr’ (X). Moreover, these solutions are defined and analytic on (—¢,¢),
G=0(r)asr —0.

Before we proceed with the proof of this theorem we will first present an example
of its consequences. Suppose g = Eg and Agq is principal. From table 5.1 we see that
€ ={1,7,11,13,17,19,23,29}. Since dimg E, = |£|, it follows from theorem 5.2.1
that 8 parameters will have to be chosen to single out a unique solutions to (4.1.7)
and (4.1.9) in a neighborhood of r = 0. Moreover, the last parameter does not show
up in the Taylor expansion of a solution until the 30" power in r. This illustrates
the highly singular nature of the equations (4.1.7) and (4.1.9) at r =0

Proof of theorem 5.2.1. Introduce new variables { u}, u?|s€ £} via
ul = pri(A+ -Qu)r*7 ! and  uf:=pri(AL)re? (5.2.1)

where Q. = A4+(0). This allows us to write A, as

Ar(r) = Q4 + ) (uf(r) +rud(r))r+?. (5.2.2)
s€€

Lemma 5.2.2. For every s € £ there erists analytic maps

F!:Ei — E}®FE, and F?:EgxE, xR — E}®E}
such that, for F given in (4.1.14),

prF = —s(s + Dutr** ! + 12 F (u*) + # 3 F2(0 ut 1)
where

uf = Zug and ut := Z ul. (5.2.3)
a€f a€f
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Proof. Let u, = ru% + u}. Then from (4.1.14) we find

F =3 Ag(ua)r ' + 1 Y ([ clus)], Q4] + ([, ca)], us] + [[0-, ua], up]) ro++2

acf abef
+3 Z ([ua, c(us)], ucjra+d+e+3
ab,cef
But
Ax(ua) = a(a + L)uf . (5.2.4)

by lemma 5.1.5. Also, ks = a for a € £ by lemma 5.1.9. So
d<be=ac<h. (5.2.5)
Using (5.2.4) and (5.2.5), we get

priF = —s(s + Dudr¥i 4 % ) prj([[uo.c(ub)l.Q+] +[[Q4, c(ua)], us]

abef
atb>s

x . -
+[[Q—v“a|v“b])"°+b+2 +3 Z pr’ ([["mc(ub)],uc])r‘”’“’c“

a,b,cef
a+d+c>s

by propositions 5.1.11 and 5.1.12. Substituting u, = ru? + u} into the above expres-
sion completes the proof. O

For every s € £ define

vii=u}!’ and 0 :=(ru9). (5.2.6)

Lemma 5.2.3. There exists analytic functions
P:EgxE, xR—R and G:Eyx EgxE, x E, xR —R
such that
pP=r ”uﬂl2 +r°PW® ut,r) and G =r? ”ui’“”2 +r3Gu0, 0 ut vt r)
where

0= ng and vt := Z vl (5.2.7)

a€f a€f
and u®, u* are defined by (5.2.3).

Proof. The existence of the analytic function G follows easily from the definition
(4.1.12) of G and equations (5.2.3) and (5.2.7). From the definition (4.1.12) of P it
follows that

4
P = 2 @ cud)] + - uf|]| + Q. u* 1)

where Q is a polynomial in r, u% and u*. Using (2.1.2), (5.1.17). (5.1.18), and
A2(uf) = 2uf, we get

1
3 1@ c@h)] + (2, ]| = [|uf|
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and this completes the proof. O

From (5.1.25)-(5.1.27) we have
A2(u}) =s(s+1Du} and A% =0

since u} € E{ and u? € Ej. Using this result, lemma 5.2.2, and equations (5.2.3)
and (5.2.7), the field equations (4.1.7) and (4.1.9) can be written as

ru:l — rv:. , (5.2.8)
o s 2 1 +_Ss+) /1 +
rv} = —2(s + 1)v] N (m rP) v, ” N 1) u;
S 2o (- 2p) s - Fard st
e =~ 400 | (5.2.10)
7 2 l =
o _ _ o _ o_ = - - M
Tuy, = =2(s+ l)v, — s(s + 1)uj N (m ,.P) Vs
_ ﬂ;r;ﬁ (m _ ;p) ul — TprAF2(O ut,r)
- (3 -1) pFih) - préFiw) (5:2.11)
(5.2.12)

where s € £. For every s € &, introduce two new variables

s+1
= —(s+ Nud - . v), oy i=(s+ Dul +00,

and define

Then equations (5.2.10) and (5.2.11) can be written as

iz, = ~(s + 20z, + 2 piFi ) + £y, (5.2.13)
ryy = —(s+ 2y, —priF e, (5.2.14)

for every s € £. Define
=55 (m =Pl - (5.2.15)
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Then the mass equation (4.1.7) can be written as
ru' = -3u+r {P(uo, u*,r) + G(u®, 2 ut, vt r) = 2((uf|v}))
—2r (;4 + "ui""z) (2 ”uﬂl2 +rG(u®,v°, u*, v*,r)) } . (5.2.16)

For every s € £, introduce one last change of variables

. 1 ; . s+1 ;

v," = v:’ + mpr{,f,'(u*’) y Tg =Ty — mptéf}(!l*’) y
and )

Ys = Ys + s—_*_—lpl'af,l(u+) .
Define
1}+:=Zv:', j::z:,' g::z!/,'
s€f& s€E s€&

and -

’1(") = (i‘(f‘), g(r)v u*(r)i o (7'), ”(r)v 7') .
Fix X € E; and let Nx be a neighborhood of X in E,. Define a set D(Nx,¢) by
D(Nx,€):= Eg x Eg x Nx x E* x (—¢€,€) x (—¢,¢) .

Then using lemmas 5.2.2 and 5.2.3 and equations (5.2.8), (5.2.9), (5.2.13), (5.2.14).
and (5.2.16) it is not hard to show that there exists an ¢ > 0 and analytic maps

U, V,: DINx,€) — E3, X,,Y,:DNx,e) — E} ¥Yse&,

and
M: D(Nx,¢) —R

such that
rut'(r) = rU,(n(r)), ri}'(r) = =2(s + 1)eF(r) + rVs(n(r)),
i, (r) = ~(s + 2)Z,(r) + rX,(n(r)), i (r) = —(s + 1)E,(r) + rV,(n(r)),

for every s € £ and
ru'(r) = =3u(r) + rM(n(r)) .

This system of differential equations is in the form to which theorem 5.0.6 appiies.
Therefore for fixed X € E; there exist a unique C!-solution {u}(r.Y), 5} (r,Y),
ZT,(r,Y),0,(r.Y). u(r,Y)} that is analytic in a neighborhood of (r.Y) = (0, X) and
that satisfies

uf(r,Y)=Y,+0(r), 0(r,Y)=0(r), z,(r,Y)=0(), g,(r.Y)=0(r).

for all s € €, and
u(s,Y) =0(r),

where Y, = pri (Y). From these results it is easy to verify that

m(r) = O(r’) and u(r) = O(r9)
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Also
P=0(r') and G =0(r?

by lemma 5.2.3. O

It is important to realize that the fall off conditions m = O(r?), P = O(r?') and
G = O(r?) as r — 0 imply that the physical quantities (4.1.21) are finite at r = 0.
Therefore all of these local solutions satisfy our boundary conditions at r = 0.

Theorem 5.2.4. Every solution from theorem 5.2.1 satisfies equation (4.1.10) on a
neighborhood of r = 0.

Proof. Let {A(r), m(r)} be a solution of the equations (4.1.7) and (4.1.9) on a neigh-
borhood A of r = 0, which we know exists by theorem 5.2.1. Let vy be defined as
in lemma 5.0.7. Observe that A’ (0) = 0 by theorem 5.2.1 and so v(0) = 0. Also,
because m = O(r3) and P = O(r*) for these solutions we see, by shrinking A if

necessary, that
2 1
1) =-=§ ("‘ - :P)

is analytic on AV. But v satisfies the differential equation

Y =f(r)r.

Solving, we find
Y(r) = 4(0)els /4 wre N

Therefore y(r) = 0 for all r € N, since v(0) =0. O

5.2.2 Asymptotically flat solutions

In proving that local solutions exist near r = 0, we were able to “guess” the appropri-
ate transformations needed to bring the field equations (4.1.7) and (4.1.9) in to a form
for which theorem 5.0.6 applies. Near, r = oo the equations become more difficult to
analyze and guessing the appropriate transformation is no longer possible. Instead.
we will show that the field equations (4.1.7) and (4.1.9) admit a formal power series
solutions about the point r = co. This formal power series solution will then be used
to construct a transformation to bring the equations (4.1.7) and (4.1.9) in to a form
for which theorem 5.0.6 applies.
Let z = 1, and define

. A
T dz
for any function f. Then (4.1.7) and (4.1.9) can be written as
2m+ NG+ :2P =0, (5.2.17)
2NA, +2:(1 —3:m+:2P)A, + F =0. (5.2.13)

Assume a powerseries expansion of the form

fe <] 0
Ay = Z Apiz* and m= Z mez* . (5.2.19)
k=0 k=0
We will define
A_.k = —C(A.,.._k) and Qi =Azo. (5.2.20)
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We assume that [Q2,,Q_] = Ag. As we discussed in section 4.2, [Q4,9_] = Ao is
a consequence of the vanishing of the total magnetic charge. Substituting the pow-
erseries (5.2.19) in the equations (5.2.17) and (5.2.18) yields the recurrence equations

k-4
1
m,=m2=0, mk=;(—Gk_3+2szGk_j_4—Pk_|) k=3,4,5,...

1=0
(5.2.21)
As(Ay i) —k(k+ DAy e =he + fi k=123,... (5.2.22)
where
1 k
Gei=353 G+Dk+1-){(Avksr-ilAs;01)) k20, (5.2.23)
Jj=0
. R 1 <<
Fo:=0, Fo:= 5;Z;[[A_,,_,,A+_,].A+,k_,-1 k>1. (5.2.24)
1 k-1 L. -
Po=P =0, Pu=3 D (F|Fe,)) k=2, (5.2.25)
3=1
k-1
hy=0, he:=2) (k—j—-1)(Po2a—(k—j+Um)Ase_,1 k=2, (5.2.26)
=0
and
1 k-1 )
fl =0, fk = 5 Z Z[(A—.]—svf\tsL A+.k—)]
- 1=\ s=0

k-1

+ Z[IA-,I;—,.A+S],Q+]} k>2. (5.2.27)

=1

Note that with these definitions £ = 332 Fiz* and P = 302, Piz* while G =
Ykmo Gzttt

Theorem 5.2.5. Fir X € E, and my, € R. Then there erists a unique solution
{As.k,mi}2, to the recurrence equations (5.2.21) and (5.2.22) that satisfies

Mg =My, My =mMy=0

p‘rﬁ_z\.;'k =Xy Vke€&

and

Auc EF  ifkgc
*EEVEE @ B dfkec”

where X, = prf‘;X.
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Proof. Fix X € E4, ma, € R, and let
Xk=pr';‘_X Vke&.

We will use induction to prove that the recurrence equations (5.2.21) and (5.2.22) can
be solved. When k = 1, the equations (5.2.21) and (5.2.22) reduce to

my = 0 and AQ(A+‘|) - 21\4.'] =0.

This can be solved in E} ® E} by letting A, ; = X,. Note that since min€ = 1, we
have 1 = 1.

We now assume that for k <!, {A4 &, my} is a solution to the recurrence equations
(5.2.21) and (5.2.22) that satisfies

e e E* ifk¢é&
YR EVEE @ ERY ifkeE

It is clear from (5.2.22) that m, is then determined. From (5.2.23-5.2.27) and
propositions 5.1.14 and 5.1.15 it follows that

E*Y ifl+1¢€
hioy + € - . 5.2.28
1+ fian {E‘ fl+leé ( )
Equation (5.2.22) implies that
(A2 =+ DU +2)T v)) A1 = hier + fier - (5.2.29)

Suppose [ + 1 ¢ €. Then 4> — (I + 1)({ + 2)1 is invertible and
Avasr = (A2 = (L + DI+ DT) 7 (hga + fir) -

But then (5.2.28) implies that A, (4, € EF*!.

Alternatively, suppose l + 1 € £ Then ker(A; — (I + 1)({ +2)1) = E‘;“ by
(5.1.25)-(5.1.27) and (5.1.38). Therefore, (5.2.28) shows that

Avarr = (A2 =+ DA+ 2T ) )7 (hiwr + fier) + Xinr

solves (5.2.29) since Xi4) € ker(Az — (1 + 1)({ + 2)1 . It also clear from (5.2.28) and

X4 € Ei“ that A, 41 € Ei+! @f;:x E3§ & E%. This prove that A, 4, satisfies the
induction hypothesis and so the proof is complete. O

Theorem 5.2.6. Fir X € E;, mx > 0, and Q4 € E, that satisfies [,.Q_] =
Ao where Q_ := —c(;). Then for some ¢ > 0 there erist a unique C? x C!-
solution {A4(r,m, X), m(r,mu, X)} to the system of differential equations (4.1./
and (4.1.9) defined on [0, €) that satisfies A4 (0) = Q. m = my + O(r~3) and

5 X, - ] -3
pri(Ay — Q) = ey +O0(r=*), pr3(Ay)=0(r"°) Yse€&

where X, := pri (X). Moreover, these solutions are defined and analytic on (—e.¢)
and depend analytically on the initial data (mo, X).

Comparing this theorem to theorem 5.2.1, we see that the singular behavior at
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r = oo is similar to the behavior at r = 0 except at r = 0o an extra parameter mq,
is present. The parameter m,, measures the “mass” of the spacetime. Recall our
example where g = Eg and Aq is principal so that £ = {1,7,11,13,17,19,23,29}.
Since dimg E; = |£], it follows from theorem 5.2.6 that 9 parameters will have to be
chosen to single out a unique solutions to (4.1.7) and (4.1.9) in a neighborhood of
r = oo. Furthermore, the last parameter will not show up in the Taylor expansion of
a solution until the 29** power in 1.

r

Proof of theorem 5.2.6. Fix X € E, and let
A‘Q‘,k = A+.k(xv mon) and me = mk(x. mw)

be solutions to the recurrence equations (5.2.21) and (5.2.22) which satisfy

Mo =My, My =mp=0 (5.2.30)
priA, =Xy Vke€ (5.2.31)
and
i : i
k
Avx € {QZ‘F‘ Es @ E3 , kge (5.2.32)
E;o@®,_,E0E] ifke€
where X = pr’-jX . Define
U:= ZA,,“,Z'" and M := Z my =¥ (5.2.33)
k=0 k=0
and introduce new variables ¢(z) and o(z) via
Ay =U+2"3% and m=M+:""%, (5.2.34)
where the integer n is to be chosen later. Define
Np:=1-2Mz. F,:= %(Ao +[U, ()], (5.2.35)
> | SRS, 1 o
Fp = —i[Fp, U], P,:= SIEI7 . and Gp:= 5:‘||U|]2 . (5.2.36)

From these definitions it is clear that the quantities N, F,, F,, P, and G, are all
polynomial in the variables X and my. Now, because U and M are the first n terms
in the powerseries solution to the field equations (5.2.17) and (5.2.18) about the point
z = 0 they satisfy

2N,U +22(1 — 3zM + 22P)U + Fp = 2 Yay (X, moo) + a2(X, moo)y) ,
220 + N,Gp + 2P, = ="b(X, moo) .

where a1.a2 : V2 x R = R and b: V3 x R — R are polynomial in their variables.
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From (5.2.36) and (4.1.14) we get

3
F=Fp—2"A) + 2" Y Fr (6, X, Moo, 2)

=1

where
Frj:VaxE, xRxR—R ;=123

are analytic maps that satisfy
]:R.j(e},lv ‘,2' Iy, r2) e e)‘-F.R.j(}’lv %vxlyxz)
for all € € R. It is also not difficult to see from (5.2.36) and (4.1.12) that

o

4 o o o
G = THOW + 2(Dln - 246 + 27728 + L - )24 + 7%

and

4
P = Pp+zn—2ZPR,J(¢vX1mw‘z)

j=1
where
Pr,:VaxE, xRxR—R ;j=1,2.314

are analytic maps that satisfy
Pr,(eY1,Y2,21,22) = € P ,(Y1, Y2, 11, 22)

for all ¢ € R. Note also that
N=N,-2:""%.

Let .
w:=¢ and 6:=:"'¢. (5.2.37)

Using the above results, straightforward calculation shows that there exists analytic
maps

G:VuxVoxE, xR —V, and M:VaxVaxE, xR® —R
such that equation (5.2.17) and (5.2.18) can be written as

)
g

&

—(n =30 + 22 M(0,w, X, mx,0,2), (5.2.38)

b= -0+w, (5.2.39)

and

N(z& +2(n — 3)w + (n — 3)(n — 4)8) + 2(n - 3)8
+ 2w — A2(8) — 2G(0,w. X, my.,0.2) =0. (5.2.40)

We can rewrite (5.2.40) as

0 =-2n-2uw+ (A2 —(n=3)(n =210+ z6(6,w, X. moo.0,2)  (5.2.41)
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where

- 1 1
g(ylvy2v Y3.1|,I2,I3) = E (l _ 2(A’I(Y3.I|) +zg—322)13 - l) (2(n - 3)Y1+

2Y2 - A2(N1)) + G((Vh, Y2, Y3, 2y, 22, 23) ©

Because G is analytic, G is analytic in a neighborhood of (0,0, X, m«,,0,0) € V, x
Vo x Ey xR3 For Y € V2 and s € £, define
E |

Y} =prlY and Y2 :=priy.

Recalling that prf o A; = Az opr§ = 0 and pr} o A; = Azopri = s(s + 1)pr? for
every s € £, we can write (5.2.39) and (5.2.41) as

20 = —0F +w} | (5.2.42)
W0 = -2(n - 2w}
+(s(s+1) = (n=3)(n - 2)8} + 26} (8,w, X, me,0,2),  (5.243)
200 = —6° +u0, ) (5.2.44)
and
2% = —2(n — 2wl + —(n = 3)(n - 2)8° + 26%(0,w, X, mu, 0, ), (5.2.45)
forall se £.

For every s € £, introduce one last change of variables

Gi=(-n+3)8 -u?, Z:i=(n-2)80 +u?,

1
n! = 2s+l((s-—n+3)();'—(..v;"), n? =

1 + +
23_}_l((s+n—-2)(), +w;).

and let

¢=3_¢ and =3 m j=12

s€& €&
Using this transformation we can write (5.2.42)-(5.2.45) for all s€ £ and j = 1,2 as

20 = —(n - j)C + K¢ Cont, n?, X, mies, 0, 2) | (5.2.46)
) = ~(n—(=1)s - j)nd + zH2(C". ¢% 0t 0P X, meo, 0, 2) (5.2.47)

where KJ and H! (j = 1,2) are Eg and E valued maps, respectively, that are analytic
in a neighborhood of (0,0, X, m.0,0) € V3 x V3 x E, x R3.

The system of differential equations given by (5.2.38), (5.2.46), and (5.2.47) is
equivalent to the original system (5.2.17), (5.2.18). Moreover, if we choose n =
max{3,3+max£}, then (5.2.38). (5.2.46), and (5.2.47) are in a form to which theorem
5.0.6 applies. Applying this theorem shows that there exist a unique C!-solution
{o(z,a,Y),{2(z,a,Y), ni(z,a.Y)} that is analytic in a neighborhood of (z.a.Y) =
{0. mog, X) and that satisfies

¢(z) =0(z), ¢l(z)=0(z), and o(z)=0(z). (5.2.48)
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From (5.2.30-5.2.32), (5.2.33), (5.2.34) and (5.2.48) it follows that
pri(Ay —Q4) =Y,2* +O(r*), pri(Ay) =0(z") Vse€&

and
m=a+0(z%).

O

Theorem 5.2.7. Every solution from theorem 5.2.6 satisfies equation (4.1.10) on a
neighborhood of r=! = 0.

Proof. Let z = 1/r and {A4+(z),m(z)} be a solution of the equations (4.1.7) and
(4.1.9) on a neighborhood N of z = 0, which we know exists by theorem 5.2.6.
Lemma 5.0.7 shows that

7(z) = =22([As(2). A (2)] + [A=(2), A+ (2)]) (5.2.49)
and ~(z) satisfies
¥(2) = f(2)7(2) i (5.2.50)
where 9
f(z) = 5(m —22P). (5.2.51)

By theorem 5.2.6 and shrinking AV if necessary, we see that f(z) is analytic on N.
Solving (5.2.50) we find

v(z) = y(0)efo 1Ty e N

But v(0) = 0 by (5.2.50). Therefore y(z) =0 forall ze . O

5.2.3 Bounded black hole solutions

We now prove a local uniqueness result for the black hole boundary conditions. The
proof is less difficult than at r = 0 or r = oo because the singularity that occurs at
r = ry is relatively mild.

Theorem 5.2.8. Lett = r —ry and suppose X € V, satisfies

v(X):= ! lHIIAo+[X,c(X)]||2>O.

H TH
Then for some € > 0 there erist a unique C? x C!-solution {A(t,X), N(t.X)} to the
system of differential equations (4.1.7) and (4.1.9) defined on [0, ¢) that satisfies

N(t) =v(X)t+ 0(t) and Ay (t) =X +0().

Moreover, these solutions are defined and analytic on (—¢, €), and depend analytically
on the initial data X.

Proof. Introduce new variables t, u, and v via

t=r—ry, N=t(u+v), and v=(u+v)A,, (5.2.72)
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where v is a constant. Then

dA+ v
t— _z(“+u), (5.2.53)

and it is clear that there exists analytic maps
F:V; —E, and P:V;, —R

such that X X
FAy)=F and P(A,)=P

where F and P are defined by (4.1.14) and (4.1.12), respectively. Assume |v| > 0.
Define an analytic map

- 1
G: V — M — —— 2 .
2 X Ilul(o) R ’ (x0a) 2((1 Y l/)2 "Xn
Then G = G(v, ). Using these new variables, we can write the field equations (4.1.7)
and (4.1.9) as )
dp 1 2 . 1 1 1
2 1 1 - p+v - ,
-3 ((t+ru)3 E) P(Ay) + (t+r”>(l +2G'(v.;4))] \ (5.2.54)
and .
dv 1 - 2G(v, p)
il T rH)zf(A,,) t ( Teral L8 (5.2.55)
respectively. Introduce two new variables 4 and o via
i=p+v- 2+ 2P, (5.2.56)
B=p H r;’;, +/ - &
b=v+ -i—fr(m) . (5.2.57)
TH

Define an analytic map

r'vaxR—R;(X,a)—a-v+ ! ?,P(X).
H

H T
Fix a vector X € V> that satisfies H;'; - ;%P(X)“ > 0. Then if we set
1 2 .
v= '; - :”P(X) '
we get I'(X,0) = 0. So we can define an open neighborhood D of (X,0) € V2 x R by
D = {(Y,a) | |I(Y.a)|i < {ivll }.

Then from (5.2.53), (5.2.54), (5.2.55), (5.2.56), and (5.2.57), it is not hard to show
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that there exists an € > 0 and analytic maps

G:VoxD—R and H,K:VpxDxI(0)—R

such that
t‘%ti =tG(0, Ay, ), (5.2.58)
z‘% = =i+ tH(D, Ay, iy t) (5.2.59)
di ) . .
t-&? =g +tK(0,Aq,f,t) . (5.2.60)

The system of differential equations (5.2.58), (5.2.59) and (5.2.60) is in the form
for which theorem 5.0.6 applies. Applying this theorem shows that exists a unique
C!-solution {A,(t,Y), 6(¢,Y), fi(t,Y)} to this system of differential equations that
is analytic in a neighborhood of (0, X) and that satisfies

At Y)=Y +0(t), ot Y)=0(), and @t Y)=O0(t).

It follows that N(t) and A, (t) are analytic in a neigborhood of ¢ =0. Expanding in
a convergent Taylor series we have

N(£) =D Net* and A (t)=) Yitt (Yo=Y).

k=0 k=0
Substituting these powerseries into (4.1.7) and (4.1.9) shows

1

1
No=0 and Ni=— - — Ao+ Y, e(MI* .

TH
O

Theorem 5.2.9. Every solution from theorem 5.2.8 satisfies equation (4.1.9) on a
neighborhood of r = ry.

Proof. Let t = r — ry and suppose X € V5 satisfies

v = % - % Ao + [X.c(X)]I? > 0. (5.2.61)

Then we know by the previous theorem that there exist a solution {A4(¢t), N(t)} to the
system of differential equations (4.1.7) and (4.1.9) that is analytic in a neighborhood
of t = 0 and satisfies

N(@)=vt+0(t?>) and A,(t) =X +0(¢t). (5.2.62)
Let

2 1
fe) = T+ )Nt (m(t) T t+rn P(t)) :

Then (5.2.62) shows that f(t) is analytic in a neighborhood of t = 0. A short calcu-
lation shows that f(0) = —1, and therefore we can write

f(t) = —1+tg(t)
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where g(t) is analytic near ¢t = 0. Consider the differential equation on V5,

d
z—'t’% = —n(t) + tg(t)n(t) , (5.2.63)

It has n(t) = 0 as a solution, and therefore this is the unique analytic solution near
t = 0 by theorem 5.0.6. But lemma 5.0.7 shows that y(t) = [A+(t),d“;‘—"(t)] +
[A-(t),i%*-(t)] also solves (5.2.63) in an neighborhood of t = 0. Because v(t) is

analytic near t = 0, it follows by uniqueness of analytic solutions to (5.2.63) that
v(t)=0neart=0. O
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Chapter 6

Global behavior

In the previous chapter we have established that the EYM equations are locally
solvable near r = 0 and r = rg. If one of these solutions can be continued out to r =
oo, we would like to know its behaviour. Knowing the global behaviour is important
for two reasons. The first is that numerical solutions can be constrycted much more
efficiently when one knows what to expect. The second is that we believe that these
global estimates will be necessary in proving the existence of global solutions as was
the case when G = SU(2).

Suppose that {A,(r),m(r)} is a local solution to (4.1.7), (4.1.9), and (4.1.10) in
a neighborhood of r = r, where r, = 0 or r, = ry > 0. We are interested in the
local solutions that can be continued out to r = oo with N(r) > 0 for r > r,. For the
moment we will assume that there exists a rg > r. so that the conditions

Niro) <1, [[A (r)]l < \/lilmon , (6.0.1)
and
[.’\’*_(7’()),1\_ (7'0)] + [A'__ (1‘0),1\4.(7‘0)] =0, (6.0.2)

are satisfied. At the end of section 6.3 we will show that all local solutions that can
be continued out to r = oo with N(r) > 0 for r > r. will necessarily have to satisfy
these conditions. The goal of this chapter will be to determine the global behavior
of these type of solutions. Before we state the main theorem that characterizes the
global behavior, we first need to introduce a technical condition. The space V; (see
(5.1.4)) is uniquely determined by the choice of Ag in A'{‘Rﬂw. Therefore the bilinear
form

B: VQ x V2 — V2 : (X, Y) — [.Y,C(Y)] . (603)

depends implicitly on Ag. Our results require that Ag is chosen so that the following
coercive condition is satisfied

4 o IBXOE
1Aol* = xe¥a\or

(6.0.4)

We show in the next section that there exists Ag in A:‘R AW for which the inequality
(6.0.4) is satisfied. In fact we have some evidence that (6.0.4) is satisfied for all Ag in
AR (W although we have no proof of this fact.
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We now state our main result:

Theorem 6.0.10. Suppose Ag € A'{'R N W is such that the inequality (6.0.4) is
satisfied. If {A(r),m(r)} is a solution to equations (4.1.7) and (4.1.9) defined on
[ro, 00) (ro > 0) that satisfies

1

N(ro) <1, flA4(ro)ll £ 7

Aol . [AL(ro). A-(ro)] + [AL(ro),A(ro)} = O,
at the point ro and
N(r)>0 forallr > ro,

then
(i) there exist @ mo > O such that m(r) — my, as r — oo,
(ii)) O < N(r) <1 for all r > 1o,

(iii) equation (4.1.10) is automatically satisfied for all r > rg,

(iv) equation (4.1.8) can be integrated to obtain S(r) and S(ro) can be chosen so
that S(r) — 1 as r — oo, N

(v) 1AL ()l € WAl /V2 for all v 2> rg,
(vi) rA/ (r) =0 and ||A4(r) = F*|| = 0 as r — oo,

where

3= { X € Va\ {0} | [[c(X). X], X] = 2X }.

Moreover if Sy is all-system then A (r) € E, for allr > ry and lim, oo A4 (7) =
QY for some QP € F* NE,.

When Ag is such that S, is a [I-system, this theorem is a natural generalization of
the SU(2) results. However, if S, is not a [I-system, then there is a possibility for a
new type of behavior as (vi) leaves open the possibility that A, (r) does not actually
approach a limit as r — oo. The reason that this possibility exists is that when S,
is not a [I-system §* forms a |S)|-dimensional real variety. On the other hand, the
existence of the limit A4 (r) as r — oc when S, is a [I-system is due to the fact that
the set F* N E, is discrete ( see lemma 6.1.2).

From the definition of §*, it is clear that every X, € J* determines a real
standard triple { Xo, X_, X+} where X_ := —¢(X,) and Xo := [ X4+, X_]. As Ag €
A‘{‘R N W, we know that there exist an Q. € V3 such that {Ag,N4+.0Q_} (- =
—c(f24)) is a real standard triple. Let

€:={Q, € Va\ {0}|[c(R4). Q4] = A0 }.

Then € C §*, and it follows from (3.1.5) that the magnetic charge Qa — 0 as
r — oo if and only if |[A4+(r) — €| — 0 as r — oo. Therefore §* \ € characterizes
the asymptotic values of A, (r) for which the magnetic charge does not vanish. If
G = SU(2) then € = §* and so we recover the known fact that the global solutions
cannot have any magnetic charge. For G # SU(2), in general € is a proper subset
of § and hence there exist a possibility for solutions with magnetic charge. As we
mentioned earlier in section 4.2, purely magnetic black hole solutions with nonzero
magnetic charge have been found numerically {25]. However, it is not clear if solitons
with nonzero magnetic charge exist. No numerical solutions of this type have been
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found. Assuming that lim,_.o, A+(r) exists, the initial value problem at r = co may
provide some insight. For g = sl,C and A¢ principal, the possiblility of magnetic
charge has been studied by Kiinzle in [34]. To describe his results, we first expand
A (r) as (see (4.3.1))

Av(r) = ) wa(r)ea,

a€S,

where the w, are real valued functions. We note this expansion is possible since
Ao is regular. If the magnetic charge does not vanish, then it can be shown that
lim, o wa(r) = O for some of the a € S). Assuming analyticity of the solution
about r = 0o, the power series expansion then shows that w, = 0 for r near r = co.
We expect , although we have no proof, that w, = 0 near r = oo actually implies
that w, = 0 for all ». For black hole solutions this is not a problem. In fact the
magnetically charged black hole solutions of [25] were found by setting w, = 0 for
certain a € S). But for solitons, w, = 0 for any a € S, is not compatible with
the boundary conditions at r = 0. This may explain why no magnetically charged
solitons have been found. Our analysis of the initial value problem at r = 0o has been
done under the assumption that lim, ., A+ (r) € €. In view of the above discussion,
it would be desirable to generalize the existence and uniqueness proof at r = oo to
allow for lim, .o, A4 (r) in F*. -

It is worthwhile at this point to mention how the existence proof for the gauge
group SU(2) can be used to imply the existence of global solutions for any compact
gauge group and any generator Ag in A‘{'R N W. To see this, choose 2, so that
{Ao,24.Q_} is a real standard triple. Let

Ai(r) = w(r)2, with w(0) = 1. (6.0.5)

Then it follows from (4.1.10) that w(r) = e'™u(r) for a constant vy and a real function
u(r). The remaining equations (4.1.7)-(4.1.9) become

m' = gg(Nu'z + 37731 - w?)?), (6.0.6)
S8 = 2g3r~'u'*, (6.0.7)
rENu’ + (2m - g2r='(1 = u®*)®) ' + (1 - u®)u =0, (6.0.8)

where go := 1||Aoll. They reduce with

p:=r/go, B:=m/go (6.0.9)

to the equations for the SU(2) theory,

du/dp = N(du/dp)* + 1p~3(1 - u?)?, (6.0.10)
S='dS/dp = 2r~Y(du/dp)?, (6.0.11)
p°Nd?*u/dp® + (2u — p~ (1 — w?)?)du/dp + (1 — u?)u =0, (6.0.12)

where now N = 1 — 2u/p. In view of the existence theorems for the G = SU(2)
case [6,52-54] it now follows that the system (4.3.4) and (4.3.5) always admits some
global solutions

Theorem 6.0.11. There erists a countably infinite family of globally regular solu-
tions of the Einstein- Yang-Mills-equations for any simply connected compact semisim-
ple gauge group G on a static spherically symmetric asymptotically flat space-time
diffeomorphic to R4. Similarly, for any ry > O there exists an infinite family of
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asymptotically flat black hole solutions with black hole radius ry .

This of course leaves open the question of what are all the possible global solutions.

6.1 A coercive condition

In this section we show that there exist Ag in A‘{‘l N W so that (6.0.4) is satisfied.
To start, we first derive an inequality that is equivalent to (6.0.4) but easier to work
with. Let

S(V2):={YeV||Y|=1}
and define

J = { X € S(Vo) | [[e(X), X], X] = }l[ X, e(X)]II* X }
Lemma 6.1.1. )
in 1B(X, X)? = __inf ABUGIN

XeJ Xeva\(o} || X]||

Proof. Define
Q(Y):=B(Y,Y)?,

and let C denote the set of critical points of @ 5(v;,). Then it is clear that

2
inf |B(X. X)|? = inf NBK XN
Xec xelior X

Therefore to prove the theorem we need to show that 7 = C. So suppose X is a critical
point of Qg(y,) and let f(Y) := |lY]|". By the method of Lagrange multipliers there
exists a # € R such that

DQ(X) = BDf(X).

Straightforward calculation shows that
Df(Z)-Y =41ZIP((ZIY)) and DQ(Z)-Y = —K({[Z.c(2)] Z)I¥)) .
Therefore X must satisfy
IXll=1 and [[e(X), X]. X] = B8X. (6.1.1)
Taking the norm on both sides of {[¢(X), X], X] = 8X and using || X|| = 1 yields

B = (([le(X), X, X]1 X)) = [e(X), X]II?. (6.1.2)
Let X, := X, X_ := —¢(X), and Xo := [X4, X_]. Then [Xo, X3] = % ||X0H2 X4 by
(6.1.1) and (6.1.2). This proves that C C J. The reverse inclusion is straightforward
to verify. [J
Define
F:={XeV[«X),X],X]|=2X} (6.1.3)

At this point we will prove a result about the structure of § that will be required
later on. This result will not be used in this section.

Lemma 6.1.2. If Sy is a [I-system, then FN E, is a discrete set.
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Proof. Proposition 5.1.6 shows that E, = 2;=1 Re,;, so we can expand X, € E,

as
¢
X = E T,e,,

i=1

where r; € R. So

¢
X_i=-c(Xy) = sze_a,
1=1

and hence
[ ¢
Xo:=[X4,X_]="3 z,2ilea, 0] = z?ha,
J=lk=1 j=1
as [e,,,8-q,] = djxh,,. Using [h,,,esq,] = +Ci;ei,, where Cy; is the Cartan

matrix of g, we get

[4 [4
[Xo, Xt] F2X; = :tz (Z ij:r? - 2) Zk€ta, -

k=1 \j=1

Because the vectors e,, are linearly independent, it is clear that X, € §n E, if

and only if
[4
(EC;‘,I? —2) Te=0 fork=1.2...0

)=l
Using the invertibility of the Cartan matrix C, the above equation can be solved to
give

i
[
rx =0 or rkzi(2Z(C“')k1) k=1.2...., ‘.
1=1

This solution set is obviously finite and therefore the proof is complete. O

Define
§7 = F\{0}. (6.1.4)

Lemma 6.1.3.

inf |B(X,X)|2 = inf ———
xes xea= |B(X. X)|
Proof. Suppose X, € J. Let X_ := —¢(X4) and Xo := [X4.X~|. Then
21X 4117 = ((2X41X4)) = ([ Xo, X4]1X4)) = ({ Xol[e(X+), X4])) = 1 Xol® .
(6.1.5)
Also note that if X € V2 and [¢(X), X] = 0 then
0 = {([c(X), X]|Ao)) = ({ X|[X, Ao])) = =2 ]| X|I .
Therefore
if X € V3 then {¢(X), X] =0 if and only if X =0. (6.1.6)
Define a map
T — 3§
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by

. V32
Xer— X, =
M T (X ), X4

Then using (6.1.5) and (6.1.6), it is straightforward to verify that the above map is
well defined and bijective. The proof now follows since

X,.

I|B(X,, X)|?
IB(X4+, X2 = —F=+"
v BAT
and ..
lIB(Xf'X+)||2 - _ 4
HX 4 ff4 IB(X+, X)H2

by (6.1.5) and the fact that | B(X,, X, )|l = | Xoll. O
The above two lemmas show that the coercive condition (6.0.4) is equivalent to

N
IB(X, X)|i* .

< inf (6.1.7)
Aoll® ~ xe3~

We will now show that there exist generators Ag in A‘{'RDW that satisfy the inequality
(6.0.4).

Theorem 6.1.4. If S, is a [I-system then the inequality (6.0.4) is satisfied.

Proof. Since S, is a [I-system, the discussion in section 4.3 shows that we can without
loss of generality assume that Ag is a principal A;-vector. Note that if X, € § then

Xo :=[X4+,X_] € A where X_ := —c(X,). Also note that since X, satisfies c(Xg) =
—c(Xo) it follows from the definition of ||-|| and B that (Xo|Xo) = |B(X+. X))
Therefore 1 1
inf ——< inf ———, 6.1.8
xeAy (X|X) ~ xed~ | B(X, X)|I* ( )
as it can be easily shown that (X|{X) € R for all X € A}.
Lemma 6.1.5. If Y € A} then (Y5|Yo) < [JAoli®.
Proof. Since Ag is principal, there exists a base A such that
a(Ag) =2 for all a € A. (6.1.9)
Also there exists an automorphism ¢ of g such that
a(¢(Ya)) =0, 1, or 2 for every a € A. (6.1.10)
Now
Ao=) Asha and 6(Yo) =Y yaha
a€d a€ld
where

Aa=2Y (CNag, Ya=I_(C"agB(¢(Yo))

feA Jea

and C~! is the inverse of the Cartan matrix C = ({(a, 8)). Using the above expansions
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it is easy to show that

(Rolho) =2 3 5(CNas (6.1.11)
a,f€A
and )
(Yonfo)=2a};A F;l;aw(vo)) (C™Yap B(e(Yo)) - (6.1.12)

But (C~')ag > 0 for all a, B € A. Therefore (¢(Yo)|#(Ya)) < (Ao|Ao) by (6.1.10),
(6.1.11), and (6.1.12). Finally, observe that (¢(Ys)|#(Yo)) = (YolYo) and (Ao|Ag) =
||1\o||2 since ¢ is an automorphism and ¢(Ao) = —Ao. Therefore (Ys|Yo) < [|Ao|l? and
the proof is complete. O

From this lemma and (6.1.8), we see that the inequality (6.1.7) is satisfied. By
the above results this implies that (6.0.4) is also satisfied. O

Since we now know that there exists Ag in A}"R N W such that the inequality
(6.0.4) is satisfied, it would be desirable to determine exactly which Aq satisfy (6.0.4).
In general, this appears to be a difficult question. However, for low-dimensional Lie
algebras, computations show that every Aq in A'{‘R N W satisfies (6.0.4). This gives
some evidence to our belief that (6.0.4) is always satisfied. If this were the case, then
our later proofs that rely on (6.0.4) would be general.

6.2 Asymptotic Yang-Mills equations

The flat space spherically symmetric Yang-Mills equations can be written as
Ay —Ay +F =0 (6.2.1)

where () = 4‘&(-3 and 7 = In(r). However, for the purpose of this section we will
consider equation (6.2.1) in its own right, and let 7 denote a parameter that is not
necessarily related to the radial coordinate r. We will be interested in 7 — oc behavior
of bounded solutions to equations of the form

Ay — Ay + F=6(1)A, (6.2.2)
where 4 is any C! function that satisfies
lim () =0. (6.2.3)
r—00

To determine this behavior, we use the results of Markus [40] concerning the long
time behavior of solutions to asymptotically autonomous differential equations. See
also (43,63]. To describe these results we first recall that a nonautonomous system of
differential equations in RV

z(r) = h(r,z(7)) (6.2.4)
is said to be asymptotically autonomous with limit equation
y(7) = k(y(7)) (6.2.5)

if
h(r,z) — k() as T — oo uniformly on compact subsets of RY.
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We note that the maps h and g are assumed to be continuous and locally Lipschitz
on RM. The w-limit set w(7o,zo) of a bounded solutions z(r) to (6.2.4) on [7o,2c)
satisfying z(79) = xo is defined by

w(70.Z0) = {y|y = lim z(7;) for some sequence 1, — oo }.
J—00C

The fundamental result of Markus is:

Theorem 6.2.1. The w-limit set w(ro,Zo) of a bounded solutions z(t) to (6.2.4) on
[T0, 0) satisfying z(70) = zo is nonempty, compact, and connected. Moreover,

dist(z(7),w(70,T0)) 2 0 as T — o0,

and w(To, To) is invariant under (6.2.5).

Define maps

Fivh—Vy: X %[Ao +X, (X)) X], (6.2.6)
FiRxVaxVy — Vyx Vg & (1,X1, X2) — (X2, X2 — F(X1) + 6(r)X2), (6.2.7)

and

9:Vax Vo —Vax Vo : (1,X), X2) — (X2, X2 — F(X1)). (6.2.8)
Using these maps we can write (6.2.1) and (6.2.2) in first order form as
(A4, Ty) = g(As.Ty) (6.2.9)

and o
(A+,F+) = f(T,A+, [‘+) ' (62.10)

respectively.

Proposition 6.2.2. f(r,X,Y) — g(X,Y) as T — oo uniformly on compact subsets
of Vo x Va.

Proof. Let B,(V3) = { X € V2| | X|| < p} and suppose K C V; x V, is compact.
Then there exist a p > 0,such that K C B,(V;) x B,(V2). Fix € > 0. Since §(r) — 0
as T — 00, there exists a 7, such that |6(7)] < p~l¢ for all 7 > .. Then for anv

(X.Y) € K, we have
Hf(r, X.Y) = g(X,Y)|| = |6 Y]l < ‘;p =e.

Thus | f(1, X, Y} - g(X, YY) <eforall r > and (X, Y) e K. O

This proposition shows that the nonautonomous system (6.2.10) is asymptoticall
autonomous with limit equation (6.2.9).

Proposition 6.2.3. Suppose X(7) = (X,(7), X2(7)) is a bounded solution to (6.2.10)
that is defined for all T > 19 and satisfies X(79) = Xo. Then

(i) (70, Xg) is non-empty, compact and connected,
(ii) 1X(7) — w(r0,Xo)|]| = 0 as 7 — o0,
61
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(i) w(7o, Xo) s invariant under (6.2.9).
Proof. Follows directly from theorem 6.2.1 by proposition 6.2.2. O
Define

1 1 .
H:VaxVy —R: (Xy, X2) — 31 Xall® = SIF(X)I, (6.2.11)

where

F(X):= %(M +[X,e(X))) . (6.2.12)

Proposition 6.2.4. If X(1) = (X)(7), X2(7)) is a bounded solution to (6.2.10), then
there erxists a B € R such that H(w(1o,Xo)) = 0.

Proof. Straightforward calculation using (4.1.18), (5.1.3), the properties (2.1.2) of the
inner product ({-|-)), and (6.2.10) shows that

(HX(r)) = 1 X2(r)? (1 + 8(r)) .

But §(1) — 0 as 7 — oo, which shows that (H(X(r)) > 0 for-r large enough.
Thus lim,_.. H(X(7)) exists and we will denote it by 3. Therefore for any se-
quence Ty — 0o, We also have limg oo H(X(7x)) = 8. By continuity of H, we have
H(limg — X(7%)) = 8. From the definition of w(79, Xo) it is clear that H (w(79, Xo)) =
B. 0O

The fixed points of (6.2.9) are
g x {0} (6.2.13)
where § was previously defined in (6.1.3).
Theorem 6.2.5. If X(7) = (X(7), X2(7)) is a bounded solution to (6.2.10), then
(i) 1 X1(r) = 3§l =0 as7— oo
(ii) X2(t) = 0ast—oc

Proof. Suppose Yg = (Y;,0,Y20) € w(T0,Xo). Let Y(7) = (Yi(7), Y2(7)) be a solution
to (6.2.9) with Y(0) = Yo. Then Y(7) € w(70,Xo) and H(Y (7)) =3 forall r > 0
by propositions 6.2.3 and 6.2.4. Using (4.1.18), (5.1.3), the properties (2.1.2) of the
inner product ({-|-}), and (6.2.9), it is not difficult to show that (H(Y (7)) = ||Y2(r)|]2.
Therefore we must have ||Y2(7)|| = 0 and hence Yz(7) = Y2(7) = 0. It then follows
form the differential equation (6.2.9) that Y;(r) = 0 and [c(YA(7)), i(T)] = 2Yi(7).
Therefore, Y(7) = (Yo,1,0) and {¢(Y)0),Yi.0] = 2Y10. This proves that w(ry.Xo) C
¥ x {0}. The proof now follows easily since ||X(7) — w(70, Xo)]] — 0 as 7 — 2 by
proposition (6.2.3). O

Theorem 6.2.6. If X(t) = (X1(7), X2(7)) is a non trivial bounded solution to
(6.2.10), then

(i) X1 (r) - | =0asT — o0

(i) Xa(r) - 0as7 — o0
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Proof. If lim, _.o X(7) # 0 then we are done by the above theorem. So assume that
lim; .o X(7) =0. Let W = V, x V, and define a linear operator T on W by

T(Z) :=Dg(0)-Z.

-]

and that T has two distinct eigenvalues (1 + iy/3)/2 each with multiplicity dimg V5.
Therefore there exists constants K, a > 0 such that

A short calculation shows that

le="T| < Ke™®™ vr>0. (6.2.14)
Choose { > 0 so that a
1<% (6.2.15)

Because g(0) = 0 and Dg(0) = 0 it can be shown using appropriate smooth bump
functions that for any u > 0 there exists an € > 0 and a C*™ map-j : W — W such

that
19(Zy) — §(Z2)| <U||Zy — Z2)| VZ),Z2eW, (6.2.16)
19(Z)| <u VZeW (6.2.17)

and
9(2) =9(Z2)-T(Z) VZe B(W). (6.2.18)

Also because lim, o, 6(7) = 0, there exists a 79 and a C™ function 3(1) such that
|d(r)| <! vreR, (6.2.19)

and X
§(r) = §(r) Yr>mo. (6.2.20)

Letting pr, : W — V, denote projection onto the second factor, it is clear from
(6.2.18) and (6.2.20) that

f(1.2) =T(Z) + §(Z) + 6(r)pry(Z) YZeB(W), 7270. (6.2.21)

Because lim,_o, X(7) = 0, there exists a r; > 7o such that X(7) € B(W) for all
T 2 7. So X(7) must be a solution to the differential equation

Y = T(Y) + §(r)pra(Y) + §(Y)

for 7 > 1 by (6.2.21). Define

T(t) := T + &(r)pr, (6.2.22)
so that Y satisfies .
Y = Te)Y) + §(Y) . (6.2.23)
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now |pr,| < 1so0 ]5(1’)pr2| <l for all 7 € R by (6.2.19). Consequently,
To .
[ B(stpralds s ttro 1) vro 27 (6:2.24)

Let ¥(7) be a fundamental matrix associated to T(7). In other words ¥(7) is ar
invertible matrix solution to

¥(r) = T(r)¥(r) .
It then follows by (6.2.14), (6.2.15), (6.2.24), and theorem 2.3 page 86 of [19] that
¥(7) satsifies
[U(r)¥(0) "} < e ) ¥p>7. (6.2.25)

The inequalities (6.2.16) and (6.2.17) guarantee that any solution of (6.2.23) is
defined for all 7. Let X(7) denote the unique global solution to (6.2.23) that satisfies
X(r) = X(r) for all T > 7. Since lim, .o X(7) = 0, X(7) is bounded on [0, c0).
Notice, that because §(0) = g(0) = 0, Z(7) = 0 s also a solution to (6.2.23). However,
a slight generalization of lemma 1.5, page 54 of [22] shows that any solution to (6.2.23)
bounded on [0, c0) is unique by {(6.2.15), (6.2.16), (6.2.17), and (6.2.25). Therefore,
X(r) =0 for all 7 € R and this implies that X(r) =0 for r > 7. But Z(r) =0isa
solution to (6.2.10) and so X(7) = 0 for all 7 € R. This contradicts the assumption
that X(7) is a non-trivial solution to (6.2.10). Therefore lim, ., X(7) # 0. O

6.3 Global estimates

At the end of this section we prove theorem 6.0.10. However, we first need to prove
a number of preliminary results.

Proposition 6.3.1. If {A,.(r),m(r)} is a solution to equations (4.1.7) and (4.1.9)
defined on an interval [ro,ry) (ro > 0) and that satisfies N(r) > 0 for all r > ro and
(A% (o). A_(r0)] + [A_(r0). A4 (ro)] =0 then A, also satisfies (4.1.10).

Proof. Lemma 5.0.7 shows that v(r) = [A4(r),A_(r)] + [A-(r), A/, (r)] satisfies the
differential equation v = — - (m — 1 P) 7. Integrating this equation yields

7(r) = ¥(ro) exp (/ ~a (m-1P)as)

But +(rg) = 0 by assumptions, hence ¥(r) =0 forallr > ro. QO

Proposition 6.3.2. If {Ai(r),m(r)} is a solution to equations (4.1.7) and (4.1.9),
that satisfies N(ro) > 0, [A4(ro),A-(r9)] = Ao . and A/ (rg) = O for some ro >
0, then Ay (r) = Ay(ro), m(r) = R(1 - N(ro)) , and S(r) = S(ro) for all v >
max{2m(rg),0}.

Proof. 1t is straightforward to check that if N(rg) > 0, [A4(r0), A—(r0)] = Ao , and
A’y (ro) = 0, then A, (r) := A4(ro) and m(r) := (1 — N(ro)) solve (4.1.7), (4.1.9),
and (4.1.10). By standard uniqueness results for systems of differential equations, this
is the only solution satisfying N(ro) >0, [A4(r0).A=(r0)] = Ao, and A/, (r0) =0. O

The next two propositions generalize propositions 8 and 9 in {6] which are valid

for G = SU(2). .

Proposition 6.3.3. If {A,(r),m(r)} is a solution to equations (4.1.7) and (4.1.9),
on [ro,r1) (ro >0) and 0 < N(rq) < 1 then N(r) <1 for all r € [ro, ).
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Proof. This can be proved in the exact same manner as when G = SU(2). See (6]
proposition 8 for details.

Proposition 6.3.4. If {A,(r), m(r)} is a solution to equations (4.1.7) and (4.1.9),
on [ro,ry) (ro > 0) with 0 < € < N(r) < 1 then there exists a § > 0 such that the
solutions ezists and is analytic on [rg,r, + 4).

Proof. First note that if the solution {A4(r),m(r)} exists on some open interval
I C (0,00) on which N > 0 then the Cauchy-Kowalevski theorem will guarantee the
solution will be analytic. From standard theorems on differential equations, it follows
that the solution will continue to exist at » = r, unless N — 0 or one of the variables

{m,A,,A’,} becomes unbounded as r — r,. By assumption N does not approach
zero and 0 < N(r) < 1 implies that

0<2m(ry<r, Vre [1‘0,7‘1) . (631)

Therefore we only need to show that A, and A’, are bounded as r — r).
Integrating (4.1.7) yields

r r
m(r) — m(ro) = / (NG + p~2P)dp > / NGdp (6.3.2)
ro ro
since P > 0 and rg > 0. From (6.3.1), (6.3.2), and N(r) > ¢ it follows that
‘2e/ de$2/ NGdp < r; Yr € [ro, ™),
ro ro
which implies that
r -1 2 r 7'[
2 p 'Gdp < — Gdp < — ¥r € [ro,71) - (6.3.3)
ro o Jrg €Tg
Integrating (4.1.8) yields
S(r) =S(r) = Soexp(2/ p~'Gdp), > 0),

and hence
0 < Sp < S(r) < Spexp (cirl-) ¥r € [ro,m1) . (6.3.4)
0

by (6.3.3).
Now,

lA+(T) = Ay (roll =

[ woe| < [C1asoldo.
To ro
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But,
/ AL (p)]| dp < (/ 1A% ()| dp) VT =10 by Holders inequality

i
= (2/ G'dp) Vvr—rg by def. of G
To

< ("1("16— To) ) }

The above two results show that

sup ||JAy(rfi < oo. (6.3.5)
refro.r1)
We can rewrite (4.1.9) as
(NSAY) = —5;—}— (6.3.6)
So then -
IN(ISFIN, (r) = N(ra)S (o)’ (ro)|| = / (NSAL)'dp”
" SF S|IFI _
= —d —_— . I )
f S/m s (6.3.7)
But
10 = | 58 = (A0, A-D | £ F0AOl + 1AL A1) < 3 1Al + KA (638)

for some constant k > 0 since (X.Y) — [X,c(Y)] is a continuous bilinear map from
g % g to g. It follows from (6.3.4), (6.3.5), (6.3.7), and (6.3.8) that

sup [N (r)]] < oo

re(ro.r1)
(]

From this point onward, we will assume that Ag satisfies the coercive condition
(6.0.4). This next theorem can be use to generalize theorem 7 of [45] to any Aq that
satisfies (6.0.4).

Proposition 6.3.5. If {A(r),m(r)} is a solution to (4.1.7) and (4.1.9) on [ro.r;)

(ro > 0) with N(r) > 0, then |[A4.(r)||2 can not achieve a local mazimum in the region
where A4(r)|* >  lAolf”.

Proof. Let u(r) := ||A (r)||* and suppose v(r) achieves a local maximum at r.. Then
v'(re)=0 and v"(r,) <0O.

From (4.1.9), it is not hard to show that v(r) satisfies

rIN(r)v"(r) + ®(r)v’(r) + 2u(r) — N[A+(r), A_(P)]I% = 2r2N(r) "Af,,(r)"g , (6.3.9)
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where
&(r) :=2(m(r) — r~'P(r)) = r(1 — N(r)) — 2= P(r). (6.3.10)
It follows from the above equations that v(r,) > % HA+(re), A(r. )]I]2 while (6.0.4)

implies that —47v(r.)? < [[[A+(r.), A_(r.)}II*. Therefore u(r.) < § [|Ao|l* and the
proof is complete. O

The next proposition is very similar to the previous one, however its slightly
different conclusion will be useful in proving the next result.

Proposition 6.3.6. Suppose {A,(r),m(r)} is a solution to (4.1.7) and (4.1.9) on
[ro,71) (o > 0) with N(r) > 0 and let u(r) = |A+ (). If v(ro) > L |A+(r)||® and
v'(rq) > O then u(r) > %"A+(r)||2 and v'(r) >0 forallr > ry.

Proof. Let r, be the first r > rg such that v'(r) = 0. Then (6.3.9) shows that
rfN(r,z)v”(rl) > ||[A+(r|),A_(r1)]||2 —2v(r,) while it follows from (6.0.4) that v(r,)?
< LAl YA, (r1), A—(r1)]||®. Therefore

rEIN(r)v"(r) > v(r)? - 2u(r). -

4
llAolf?

But v(r;) > 1 [|Ao||? implies that H'A:_u7”(r‘)2 —2v(ry) > 0 and hence v”’(r;) > O since
N(ry) > 0 by assumption. This implies that v’(r;) = 0 is impossible. O

The next proposition is a generalization of proposition 2.2 of [56]. The key to the
proof is the observation that the equation (6.3.9) governing ||A 4 (r)||? can be analyzed
in the region where ||A+(r)]|2 > “Ao||2/2 using the techniques developed in [56] for
G = SU(2). It is remarkable that the SU(2) proof can be adapted to the general case
with such ease.

Proposition 6.3.7. Suppose {A.(r),m(r)} is a solution to (1.1.7) and (4.1.9) de-
fined in a neighborhood of ro and let v(r) = |]A+(r)||2. IfO0 < N(ro) < 1, v(rg) >
%IIA(\HZ and v'(rg) > 0 then there erists a ry > ro with N(r}) =0 ,0< N <1 on
{ro,r1), and [ro,7,) is the mazimal interval of eristence.

Proof. Assume that the solution is defined on [rg,00) and N(r) > 0. Then (6.2.9)
and (6.0.4) imply that

r2Nv"” +2d0" + 2v — zu2 > 0. (6.3.11)
| Aol
Consider the differential equation
AN 4 i +25 — — 502 =0, (6.3.12)
It Aall
#(rq) =v(re) and @' (ro) = v'(ro). (6.3.13)

Lemma 6.3.8. v/(r) > &’(r) for all r > rg and hence v(r) > 6(r) for all r > rg.

Proof. First note that it follows from proposition 6.3.6 that

v(r)>0 and vu(r) > %Ill\oll2 Yr>r1o. (6.3.14)
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Because N(rq) > 0, P(ro) > 0, and v'(ro) > 0, we get from (6.3.11), (6.3.12), and
(6.3.13) that

r3N(ro)(v"(ro) — 9" (r0)) 2 —(®(ra) ~ ro)v’(ro) > 0. (6.3.15)

Thus v”’(re) > 9"”(re) and hence v’(r) > v'(r) for r > ro with r near ro. Suppose r| is
the first r > 0 for which v’(ry) = #'(ry). Then it follows from (6.3.13), (6.3.14), and
the fact that v'(r) > #'(r) for all r € [ro, 7)) that

~2v 2 _2¢(ry). 6.3.16
o "2 u(ry)? (r1) > “A E ——v(ry) (1) ( )

since the function

k(z) = 2-2x>0 (6.3.17)

4
lAoll?

is monotonically increasing in the region z > } lAoli?. Then

riN(r) (" (r) — 8"(ry)) > ||A E sv(r1)? —2v(ry) ~- (IIAoII v("l) 217("1)) >0
by (6.3.11), (6.3.12), (6.3.16), N(ry) > 0, and P(r,) > 0. Therefore v"(r;) > &"(r;)
and this implies that v'(ry) = ¥’(r;) is impossible. O
Lemma 6.3.9. #'(r) > 0 and i(r) > L||A3|] for r > ro.
Proof. Proved in similar fashion as proposition 6.3.6. O

Lemma 6.3.10. If f(r) =r¢' + 20 — myv then there erists an R > ry such that
f(r) <0 forallr > R.

N

Proof. Suppose f(r)) = 0 for some ry > rg. Differentiating f vields f' = ro” +
(3 - I'IA%II’{)) v’. Since f(r,) =0, the differential equation (6.3.12) shows that

riN(r)i"(r)) =

and hence #”(r;) = 0 as N(r;) > 0. Thus

fi(r) = ( T U("l)) t'(r1) <0

by lemma 6.3.9. This shows that f can cross zero at most once. Thus f is either
always positive for r > rg or there exist an R > rg such that f(r) <0 for all r > R.
Suppose f(r) > 0 for all r > rg. Then

-2
-

4 1" >0
lAoll?

rv' + 20 —

or equivalently
dv dr
%+ Age? T
Hoil?
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by lemma 6.3.9. But

[t
¥(ro) -20 + ml-yt-lz

while

which is a contradiction. O

Consider the differential equation

Y =/ - 4 -
r2" +ri’ + 20 — “A0"2v2 =0 (6.3.18)
#(R) =9(R) and ©(R)=1'(R) (6.3.19)

where R is defined in lemma 6.3.10.
Lemma 6.3.11. o(r) > ©(r) and v'(r) > &'(r) for all r > R.

Proof. From (6.3.12), (6.3.18) and (6.3.19) we have -
#"(R) — o"(R) = % (1 - 7(175) : (6.3.20)

Since 0 < N(rg) < 1 and we are assuming that N > 0, it follows from proposition
6.3.3 that 0 < N < 1. Therefore (6.3.20) shows that #”(R) > ©”(R) and hence
?'(r) > ©’(r) for r > R with r near R. Suppose there exists a smallest r; > R for
which 9(r) = ©(r). Using similar arguments as in proving lemma 6.3.8, it can be
shown that

t'(r) > 0 and o(r) > %Ill\oll2 for all r > R. (6.3.21)
Thus
4
[l Aoll
and hence using (6.3.12) and (6.3.18) we see that

o(r1) > o(ry) >0 and

70(r)? = 20(ry) > B(r1)? = 28(r1)

4
| Aolf®

4
Aol

4
2
ll Aol

riN(r)o"(r)—riN(r)d"(ry) = 0(rx)2—2'5(r1)—( o(r)?* - ‘-’a(r.)) >0

which implies that
v"(r1) > N(r)@"(r1) > "(r1) .
Therefore #'(r;) = ©#'(r) is impossible. O

Lemma 6.3.12. There erxists a ¥ > R for which lim, _; 5(r) = oo and lim, ., &'(r) =
oc.

Proof. Let t = In(r). Then we can write (6.3.18) as

i‘}+26——4—262-0 () i= =2 (6.3.22)
Aol ~ ode -
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So © > 0 by (6.3.21) and (6.3.22). This implies that ¢ is increasing. If T = In(R)
then #(T) > 0 by (6.3.21), and thus #(t) > #(T) > 0 for t > T as ¥ is increasing. It
follows that lim, .o, 7(t) = 0o .

The differential equation (6.3.22) admits a first integral

H(t) = %62 + 9% - Tl (6.3.23)

3[lAo)l®
Therefore if we let Hg = H(T), then

N}

- - 4 -
(t)? = Ho + 9(t)? (3 ||Ao"2v(t) - 1)

as H is a constant of the motion. Since #(t) is increasing and lim; ., #i(t) = oo, there
exists a t; > T such that

' 2 253
3ilAoll

1.,
- > VYe>t
2Y =h

As ©# > 0 and ¥ > 0, the above expression is equivalent to

Integrating both sides yields

2 2
Vita) ot ~ 3[|Aall

z(t2 —t1),

or equivalently

— 2
U(tg) Z 2 + 4 (t _ t',) .
Vot | 3AaiT T2

This shows that there exists a ¢ such that lim,_.; 5(t) = co. But r = &, so if we let
¥ = e* then it follows that lim, s G(r) = oo and lim, _; #'(r) = 2. O

The above lemmas show that there exist a # < 7 such that lim, ~; v'(r) =
which proves that A, (r) or A’ (r) becomes unbounded as r — 7. This contradicts
the solution existing on [rg, 00). In view of proposition 6.3.4, we must have N(7) = 0.
Let r, be the smallest r such that N = 0. Then (4.1.16) implies that

AN'(r) =1~ ZP(r) (63249
1
while while it follows from (6.3.9) and (6.0.4)

v(r)?

2 , : 4
(n—;Pvavn+%un o

HA& (1), e(Ae(r1)])| _ \
z ( "A+(rl)"4 ”A0"2) v(r)* 20.
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But v(ry) > || Aol /2 implies that 4v(ry)2/ JJAo)j® - 2v(r1) > 0 and therefore
(r. - —2-P(r1)) v'(ry)>0.
ry

Since v'(r;) > O the above inequality implies that r, > 2P(r,)/r, and hence 1 —
2P(ry)/(r?) > 0. Combining this with (6.3.24) we see that N'(r;) > 0 which contra-
dicts N(ry) = 0. Therefore {ro,r,) must be the maximal interval of existence. O3

Theorem 6.3.13. If {A,(r),m(r)} is a solution to (4.1.7) and (4.1.9) defined on
fra,00) (ro > 0) and it satisfies N > 0, [jA+(ro)|| < ||Acll /V2 and N(ro) < 1 then
IA+()l < llAoll /V2 for all ¥ > ro.

Proof. Since N cannot cross 1 from below by proposition 6.3.3, we have 0 < N(r) < 1
for all r > ro. Let v(r) = ||A,(r)]|® and suppose there exists a r; > ro such that
v(ry) > ||1\0||2 /2. Then by the mean value theorem there exists a r, € (ry,r2)

such that v'(r.) > 0 and v(r.) > [|Acl|® /2. The proof then follows from proposition
6.3.7. O

The next theorem, which guarantees that the mass is bounded, s a generalization
of theorem 2 from (32| and the proof uses similar methods.

Theorem 8.3.14. If {A,(r),m(r)} is a solution to (4.1.7) and (4.1.9) defined on
[ro,oc) with N >0, N(ro) < 1 and [|A4 (o) < [|Aoll /V?2 then

/ NGdr < oo
Proof. It follows from theorem 6.3.13 that

2 1
1A+ < 5 1Al ¥r2ro. (6.3.25)

Let {Xi}:_, be a orthogonal basis for V, with normalization || Xk|| = 1/v2. Define
Let { X}, be a orthogonal basis for V, with normalization || Xi|| = 1/v2. Define

wi(r) = ((XelAs(r))) -

Then it follows from (4.1.9) that for any q, )

gri ' Nuwi = (r"Nuw}) +2r7"'NGuw + 9 2(( Xi|F)) . (6.3.26)

Lemma 6.3.15. If wy has a critical point c € [rg, 00) then
/ NjwL]*dr < oo.
ro

Proof. Let C denote the set of critical points of wx(r). Since wi(r) is analytic by
proposition 6.3.4 the set C can have no limit points. There are two cases to consider.
either C is bounded or C is unbounded. Note that C is not empty by assumption.

If C is bounded. let ¢ = supC. Then wj must be either greater than zero or less
than zero for r > é. We first assume that wi(r) > 0 for r > & Then integrating
(6.3.26) with g = 0 yields

[~

, o, r Lo
Nuwj(r) = / > NGuidp - / pTH(XF o < / 2| Flldp.
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But it is clear from (6.3.8) and (6.3.25) that there exists a 3 > 0 such that || F(r)|] <
V28 for all r > ry. Consequently, Nw)(r) < B(¢~! — r~!) and using

1 1 1 1
ro<p<r c P c r
we get

[ Nwildp < (% - 1) [ witoro <5 (% - 1) k) - (ol

<8 (1 - F) XA - ar@n s & (3-7) 1) - avan

é
8 (1
< 2 (=
< (c) a (6.3.27)
for some a > 0 by (6.3.25). Letting r — oo in the above expression shows that
me' 2dr<i‘6—<oo.
/e I kl = \/§E .

Similar arguments show that the above inequality continues to hold if wy < 0.
If C is unbounded, there there exists a sequence of critical points {c,} such that
¢; < ¢jsr, fer,00) = U2, [e;.€541] , and wi does not change sign on (c;, ¢;+1). From

(6.3.27) we see that
Cy4+1
/ Nlw, |2dr < 28 (__ ! )
c \/ Cj Cj+1

2

[ e < 2 (5-2)

Nlwi|%dr <
/ | k \/-cl

and so

Letting j — 20 gives

a

Lemma 6.3.16. Ifw; > 0 or wi <0 forr > rg then for anyq> 1 andr > ry
2 " -
PNk ()] € N Grollwk(ro)l + VA = r) + [ IF) o %dp.
o
Proof. Using Young's inequality it is not difficult to verify that

q/ |wL|Np""dpS2/ |wi*No?dp + ;ﬁ(r" -rd). (6.3.28)

ro ro

Assume w;. > 0. Then integrating (6.3.26) yields
riN(r)wi(r) = r§N(ro)wi(ro)+
a [ (o Nu 20 NGul) dp - [ T X)) do.
fo

To
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But
lwil® = [((ALIX NP < 5 ||A I’=G and [((XelF) < I1Xell 1F] < |7
and therefore
rIN(r)wi(r) < rgN(ro)wi(ro)+

a [ (6 Nug — 205 Niug}) dp+ [ 171002
< N Golluk(roll + 1A =) + [ 171677 %dp by (63.28)
Similar arguments show that if wj < 0 then
NG () < =r§N (ol (o)l + 3" —r8) + [ 17 .

0O

Lemma 6.3.17. If w; > 0 or w}, < 0 for r > ro then there exists a constant h > 0
such that Nlw,| < h forr > rq.

Proof. Now, |Fll = |[[F,A4]ll < hi||F) for some constant k, > O since [-,] is a
continuous bilinear map from g x g to g. So then

NON < (B) Mookl + 5va (1= (R)") + 2 [ 1102,

by lemma 6.3.16. But

r }
/ 17Nl o7~ 2dp < (/ IFI1? "dp) (/ p2(q-—l)dp)
—a 4 r2-1 _ rgq-l

= ([ 1mr a2

Combining the above two inequalities yields

'V(r)lwk(r)l<( 2)* Niroliwi(roll + 3va (1 - (2)") +

—2 r2q-1 _ rg'l-
mt ([ 17 W) 2B e
From (4.1.7) we have r?P = r~2[}£|j?/2 < m’, while N > 0 implies 2m(r) < r and
hence .
/ IFI2 p=2dp < 2m(r) — 2m(ry) <r. (6.3.20)
So

NIkl < (2)° Neoluhtral + 51 (1= (2)") + ommg /1= (2)
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by (6.3.29) and (6.3.30). Setting ¢ = 2 in the above expression yields

2 hy
’ < ’ < id Ty
Nl (7)) < Nrollui(ro)| + 33 + L
a
Lemma 6.3.18. Ifw, > 0 or w, <0 for r > rq then
Q0O
/ N|wl|?dr < 2.
ro
Proof. Suppose w;, > 0. Then
/ Nlw}|?dp < h/ w, dp by lemma 6.3.17
To To

< Bur(r) = wa(ro)] = B XulAs () = As(ro) )]
< T A+ AL (ol) < K

for some constant K > 0 by (6.3.25). Letting r — oo in the above expression
completes the proof. [

Now,
n

S OICAL Xl ™ X = lwil?.
k=1

1
G=3 AL |? = 2

N

Therefore n
/ NGdr=Y" Nlwl!3dr < 0o
ro k=1

by lemmas 6.3.15 and 6.3.18. O

Corollary 6.3.19. If {A.(r),m(r)} is a solution to (4.1.7) and (4.1.9) defined on
[ro, 00) with N > 0, N(rg) < 1 and ||A4+(r0)| < [|Aoll /2 then lim. ., m(r) exists and
lim, o N(r) =1

Proof. Since N >0, P > 0 .,G > 0, and ||A4(r}]| < ||Aelj /2 it follows from /4.1.7)
that
0<m' < NG+ 52
r

for some constant K > 0. Integrating yields

oc K
m(r) < m(rg) + NGdr+;— < oo
0

Tao

by theorem 6.3.14. Thus lim,_ ., m(r) exists as m is increasing and bounded above.
From the definition of N it is then clear that lim, . N(r) =1. O

Proposition 6.3.20. If {A+(r),m(r)} is a solution to (4.1.7) and (4.1.9) defined on
[ro,00) with N > 0, N(rq) < 1 and |A4(ro)|| < ||Ao]l /2 then (4.1.8) can be solved
for S and S(rg) can be chosen so that lim,_. S(r) = 1.
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Proof. We can solve equation (4.1.8) to get S(r) = Sgexp( f,'; 2p~'Gdp) , where
So > 0 is an arbitrary constant. Because N > 0 and lim,_ N(r) =1 by corollary
6.3.19, N is bounded below on [rg, o) by a positive constant N. Then

-Gdr = —NGdr < — NGdr <
ro T ro Nr rolN Jro

by theorem 6.3.14. So we can let Sg = exp(— f'? 2r=1G dr) which then implies that
lim,_S(r)=1. O

Proposition 6.3.21. If {A;(r),m(r)} is a solution to (4.1.7) and (4.1.9) defined on
fro,oc) with N > 0, N(ro) < 1 and ||A4+(ro)ll < [|Acl} /2 then there exists a constant

h >0 such that rN [|A}||> < k for all + > ro.

Proof. From corollary 6.3.19 and theorem 6.3.13, we get that P(r) is bounded and
lim,; .o m(r) = mq, for some constant my, > 0. Then from the definition of ®(r)
(see (6.3.10)) it is clear that there exists a r, and an € > 0 such that &(r) > € > 0 for
all r > r,. Thus ®
(r) 26 .
r2N+ = >0 Vr>r,. (6.3.31)
Because N > 0 and lim, . N(r) = 1 by corollary 6.3.19, N is bounded below on

[ro,00) by a positive constant N. Also note that theorem 6.3.13 and (6.3.8) imply
that || ¥} is bounded. So then

| s < [T VRN o ) dr
<: / = (NG + 5 nfn’) dr < (6.3.32)

by theorem 6.3.14.
From (4.1.9) and (4.1.16) it follows that

&(r) + 2G

(rNGY = ~ (rw —r—) rNG + NG - é((A',,ur)) :

Therefore
rN(r)G(r) = e~ ¥ (rN(r.)G(r.) + / ’ (NG - :-, ((A',,u-‘))) ¥ dp) ,

where ¥(r) = [ (p"2N~'® + 2p~'G)dp. It then follows from theorem 6.3.14,

(6.3.31), (6.3.32), and
sup exp(¥(p)) = ¥(r)

relp<

that there exists a constant h such that rN(r)G(r) < h for all r > r.. Letting
h = max{h, max{ pN(p)G(p)|ro < p<T.}}
completes the proof. O

Proposition 6.3.22. If {A,(r),m(r)} is a solution to (4.1.7) and (4.1.9) defined on
[ro.o0) with N > 0, N(rg) < 1 and [|[A4(ro)|l < ||Aoll /2 then there erist a constant
h >0 such that r "A’,,_" <h forallr > rg.
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Proof. From theorem 6.3.13 and (6.3.8) we see that

sup S(r)IFl< K

ro<r<oo

for some constant K > 0. So then
p ’ K
IN(r)S(r)A (r) = N(r)S(r)AL ()] < - vnne [ro, 70) (6.3.33)

by (6.3.6). An immediate consequence of corollary 6.3.19 and propositions 6.3.20 and
6.3.21 is that
rlir{.lo N(r)S(r)A, (r) =0.

So then letting r, — oo in (6.3.33) yields | N(r)S(r)A% (r)|| < K/ro for all r > rq.
However, we know from corollary 6.3.19 and proposition 6.3.20 that both S(r) and
N(r) are bounded below by a positive number € > 0. Therefore if we let h = K/(rqe2)
then ||A}(r)]| S hforallr >ro. O

We are now ready to prove theorem 6.0.10.

Proof of theorem 6.0.10. (i)-(v) : These are just a restatement of corollary 6.3.19,
theorem 6.3.13, and propositions 6.3.1, and 6.3.3.

(vi) : Since N is bounded below away from zero and N — 1 as r — oo, the change of
variable from r to 7 given by (4.1.25) is well defined and 7 — o0 as r — 20. Therefore
to prove (vi) we can show instead that ||A4(7) = %] = 0and A4(r) — 0as T — co.
Using (4.1.27)-(4.1.32) it is easy to show that A, (1) satisfies

Ay AL + F=4(n)A, . (6.3.34)

where

Ir)y=2u(r)—xr(r)—-1. (6.3.35)
Since lim, o, N(r) = 1 we have lim,_o (7} = 1 and hence it follows from proposi-
tion 6.3.22 that lim, . A’ (7) = 0. Therefore lim, ..o u(7)>G(r) = 0. Also, because

A4 (r) is bounded and hence A (7) is also bounded, we get lim, . r(7) 2 P(7) = 0.
From the definition (4.1.26) of x it is then clear that lim, o, K(7) = 1 and hence

“’lll'lc“‘l';> J(T) =0.

Another consequence of proposition 6.3.22 is that A+(r) is bounded. Therefore we

see that X(7) = (A4+(7),A4(7)) is a bounded, non-trivial solution to the differential

equation (6.2.10). So A+ (7) - F*|| = Gand A, {T) — 0 as T — oo by theorem 6.2.6.
If Sy is a [I-system then it follows from the discussion in section 4.3 that

As(r) = D walrea

GGSA

where the w,(r) are real valued functions. Therefore A, (r) € E. for all 7. Since
§* N E, is a discrete set by lemma 6.1.2 and ||[A4(7) — F*|| — 0 as 7 — oc. there
exists a QP € §* N E, such that lim, . A4 (r) =QF. O

We now show that any local solution that can be continued out to a global solution
necessarily satisfies (6.0.1) and (6.0.2).
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Proposition 6.3.23. Suppose {A,(r),m(r)} is a local solution to (4.1.7) and (4.1.9)
defined in a neighborhood of r = r, wherer, =0 orr. = ry > 0. If the local solution
can be continued out to r = oo with N(r) >0 for r > r,, then

N(ro) <1, ||A+(fo)||5-%lll\ollv [N, (o), A—(ro)] + [A”(ro), A4 (ro)] = 0.

for some rg > r,.

Proof. r, =0: We know by theorem 5.2.1 that m(r) and A, (r) are analytic in a
neighborhood of » = 0 and

m(r) =0(r®) and A (r)=Q4 + Xr2+0(r®) asr —0

for some X € E,. Substituting powerseries representation for m(r) and A, (r) into
the field equations (4.1.7)and (4.1.9) shows that m(r) = || X||?r® + O(r*) near r = 0
and hence

N(r)=1-2lX|I>r? +0(r*) as r — 0. (6.3.36)

Let v(r) = ||A4+(r)||2. Then

v(0) = 3(([A0, 241124 )) = L(Aal[R4,0])) by (21.2) and 4 = —(Q_)
= 1]]Ao]? since {Q,,Q_] = Aq

The solution is trivial for X = 0 by proposition 6.3.2. If we assume the solution
is non-trivial, then we must have X # 0. So (6.3.36) shows there exists an € > 0 such
that 0 < N(r) < 1 for 0 < r < €. Suppose there exists a rg € (0, ¢) for which v(rq) >
[|Aoli?/2. By the mean value theorem there exist a r; € (0,rg) such that v(ry) >
IIAofl?/2 and v'(r;) > 0. It then follows from proposition 6.3.7 that the maximal
interval of existence for the solutions is finite which contradicts the assumption that
it is defined on (0, 20). Therefore we conclude that v, < ||Ag||2/2forall0 < r < €. To
complete the proof for r. = 0. we observe that [A/,(r), A_(r)] + [A_(r),A4(r)] =0
near r = 0 by theorem 5.2.4.

r. = rg: From the boundary conditions at » = ry > 0 we have N(ry) = 0 and
N'(rpg) > 0and hence 0 < N(r) < 1 for r > ry with r near rg;. We know by theorem
5.2.8 that A, (r) and N(r) are analytic in the variable t = r — ry4 near ¢t = 0 and there
exists a X € V; so that

N(t) =vt +0(t%) and A.(t) = X +0(¢).

where ) .
v=— — = Ao + [X.c(XOII? > 0.
H

TH r
Expanding N(t) and A,(t) in powerseries about ¢t = 0, it follows from the field
equations (4.1.7) and (4.1.9) that
' 1 -
A+(TH) = m‘[x.l\o"f‘ [X.C(X)]] . (6.3.37)

Note also that [A/, (r),A~(r)] + [A_(r),A+(r)] = O for r near rg by theorem (5.2.9).
Let v(r) = A+ (P)|%. If v(ru) < ||Aol|®/2 then u(r) < ||Ao]|?/2 for r near rg and
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we are done. So assume that v(rg) > ||Aof|%/2. Now,
’ ' 1
V(rn) = 2(AL (ra)IA+ (i) = —(([X, [Ao + [ X, e(X)]]IX))
H
by (6.3.37). Using (2.1.2)and X € V,, we can write the above expression as
1
v(ru) = —- (X, (X - 21 X11%) . (6.3.38)
H
But
0 < Ao + (X, c(X)II? = (MAoll® = 2IXH7) + (NX, (XN - 2/1X)1%)  (6.3.39)
by (2.1.2) and the fact that X € V5. Since X = A (ry),
, 1
V(rg) S0 <= [[As(r)l? < 5||1\0H2 (6.3.40)
by (6.3.38) and (6.3.39). Suppose v(ry) > ||Aoll2/2. Then v'(ry) > 0 by (6.3.40).
But this implies that the maximum interval of existence for the solutions is finite by
proposition 6.3.7. So v(ry) = ||Ao}|2/2 as the solution is assumed to exist on (rg. oo).
Suppose now there exists a rg > ry with ro near rg for which v(rg) > ||Aol|?/2. Then
by the mean value theorem there exist a r; € (rg,rq) so that v(r;) > [|Ao||?/2 and

v’(ry) > 0. But this is impossible by proposition 6.3.7. Therefore we must have
v(r) < |Aol|®/2for r > ry and r near ry. QO
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Chapter 7

Conclusion

In this thesis, it has been established that the static spherically symmetric EYM
equations admit bounded local solutions in the neighborhood of the origin r = 0,
a black hole horizon r = rg > 0, and spacial infinity r = oco. As we mentioned
earlier, this local existence result provides a necessary starting point for the shooting
method both analytically and numerically. We have also determined the behavior
near r = oo and established global bounds for solutions satisfying N(r) > 0 for all
rand N(ro) < 1, [|A+(ro)]l < llAoll /v2 and [A’, (7o), A_(ro)] + [AZ(r0). As(ro)] =0
at some point ro > 0. As we discussed in chapter 6, if any of the local solutions
near r = 0 or r = ry could be extended to r = oo with N(r) > 0 then there
certainly would be a point ro > 0 at which N(ro) < 1, |A+(ro)ll < [|Aol /V2 and
(A (ro), A=(ro)] + [A_(r0). A4(r0)] = 0. For the behavior near r = oo there still
remains the question of whether or not A.(r) always has a limit as r — oo. This is
an interesting one and should be resolved. A numerical solutions for a Ay for which
Sy is not a [I-system would aid in settling this problem. The model with the smallest
number of free parameters and for which S, is not a [I-system is g = so5C where
Ao has the characteristic x = (2,0). However, even in this simple case if a numerical
solution were to be constructed by shooting from both ends, say r = 0 and r = oo,
and then matching somewhere in the middle. the number of free parameters would
be 10. Of these, 3 would come from the local solution near r = 0, 4 from the local
solution near r = oo, and the remaining 3 would be due to the fact that we can only
fix A,(r) at only one end. If we fixed A, (r) at r = 0, then at r = oo A,(r) could
take values in §* which turns out to be a 3-dimensional real variety. This implies
that a search of a 10-dimensional parameter space would be required to construct a
global solution. This is a difficult problem. On the theoretical side, a good place to
start would be with the limit equation (6.2.9). The set F* consists entirely of fixed
points of (6.2.9). Therefore by linearizing (6.2.9) about the points of §* it may be
possible to determine the behavior of solutions to (6.2.9) in a neighborhood of §*.
Hopefully, this information could be used to infer the behavior of the EYM equations
near §*.

Although we do not yet have a clear indication on how classify all the possible
global soliton and black hole solutions for arbitrary compact gauge groups, we have
shown that it is possible to generalize many of the results from the SU(2) analysis.
We have already started to consider how to generalize the SU(2) results contained in
the papers (56, 59,60, 66| by Smoller and Wasserman, with the aim of classifying all
solutions that are defined in the far field, i.e for r >> 1, as was done for G = SU(2).
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