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Abstract

Autonomous navigation has been a popular research topic over the last two

decades. The ability for a robot to solve the simultaneous localization and

mapping (SLAM) problem is required to navigate unknown environments. One

such example is a self-driving car: it needs to build maps of new environments

and simultaneously localize itself. Many approaches for solving the SLAM

problem have been proposed, but most of these require expensive LiDAR sen-

sors. In this work, we investigate a strategy to solve the SLAM problem using

an RGB-depth sensor Kinect v2, an open-source SLAM package called RTAB-

Map, and an Extended Kalman Filter (EKF). Although SLAM algorithm we

chose is computationally tractable and provides accurate results, the resulting

pose data is available only at 1 Hz. To overcome the disadvantage of the low

data frequency from RTAP-Map, we utilize an EKF filter to fuse in odometry

estimates and obtain higher-rate (30 Hz) pose estimates. The system is imple-

mented onboard a Jackal Unmanned Ground Vehicle (UGV), equipped with a

Kinect v2 camera as the only external sensor. A motion capture system from

Vicon is used to obtain a ground truth of the robot’s motions.

Our results show good agreement between the pose estimates from our sys-

tem and the ground truth. Our work demonstrates the ability of an inexpen-

sive RGB-depth sensor such as the Kinect v2, combined with an open-source

SLAM package and fused with high-rate odometry estimates through an EKF,

to achieve good performance and accuracy results.
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Chapter 1

Introduction

Navigation is a fundamental technology for autonomous vehicles or robots.

The earliest navigation systems were used on guided missiles of the US gov-

ernment in the early 1950s, developed by the MIT Instrumentation Laboratory.

This system is based on inertial navigation which obtains the state estimates

of a missile or vehicle by dead reckoning calculated from inertial sensors. Such

inertial sensors are capable of measuring the acceleration and angular velocity

of the vehicle at a high rate. The drawback of inertial navigation is that the

error in the state estimates grows without bound as time passes and cannot be

corrected by itself [1]. Later with the appearances of technologies such as the

NavStar Global Positioning System (GPS) or star trackers, the state estimates

computed from the integration of inertial sensors could be corrected to rectify

the accumulated errors. This kind of system in which low rate sensors like GPS

are used to correct the state estimate produced by high rate inertial sensors is

referred to as an aided navigation system. Among aided navigation systems,

GPS-aided navigation is the most common and widely used solution in com-

mercial vehicles and the aerospace area and considered as the state-of-the-art

until the late 1990s.

As stated above, a GPS-aided navigation system can determine the state

of the vehicle accurately. However, in some situations such as indoor, un-

derground or outer space where GPS is noneffective, GPS-aided navigation

cannot be used. In 1986 during the IEEE Robotics and Automation Con-

ference held in San Francisco, the concept of Simultaneous Localization and
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Mapping (SLAM) problem was first proposed. The problem asks if the robot

can build a map of its unknown environment and locate itself at the same time

without an external reference system like GPS, which can be stated as a nav-

igation problem in environments like indoor, underground and outer space. A

SLAM problem is more challenging than a mapping problem or a localization

problem, since neither map nor pose is known [2]. Ever since the proposal of

SLAM, it has been considered as a fundamental problem in robotics. SLAM

solutions are employed in wheeled robots, but also unmanned aerial vehicles,

autonomous underwater vehicles and even inside the human body [3]. The

SLAM problem is usually solved using inertial sensors and sensors which can

provide visual features. Because of the accumulated error from inertial sensors

and measurement errors, the estimated state of the robot and the positions of

observed landmarks (map) all have uncertainty. Thus, the SLAM problem is

described in a statistical framework based on the work by Smith and Cheese-

man following the IEEE conference [4]. In the late 1980s, Kalman filter-type

algorithms began to be used in visual navigation [5] and sonar-based naviga-

tion [6] [7]. Inspired by the above works, Smith et al. [8] proposed to estimate

the state of robot using the Extended Kalman Filter (EKF) in 1990, which

was later considered as the first solution of the SLAM problem, called EKF-

SLAM. In 1995, Whyte et al. first proved that the SLAM problem estimates

converge when combining mapping and localization into a single estimation

problem [9]. After this, large varieties of SLAM solutions became available.

The SLAM problem can be divided into two main categories: online SLAM

and full SLAM [2]. The first one involves only estimating the instantaneous

state of the robot and the map while the second one seeks the complete tra-

jectory of the robot state as well as the map. The solutions of the online

SLAM problems are classified as a filtering approach [10], which includes the

EKF-SLAM solution stated above. Some other popular filtering approaches

also falling into this category include particle [11] [12] [13] and information

filters [14] [15]. The solutions of the full SLAM problem are classified as a

smoothing approach which typically relies on least-square error minimization

techniques [10]. One of the solutions belonging to the smoothing category is
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Graph-based SLAM approach which was first addressed by Lu and Milios in

1997 [16]. This solution has become a popular research trend in recent years

because of its advantages over filtering approaches such as support for very

large-scale mapping. In our study, we use an approach which belongs to the

Graph-based SLAM category.

The procedure for solving graph-based SLAM can be divided into front-

ends and back-ends. Front-ends can be understood as the process of construct-

ing a set of map nodes from onboard sensors, and detecting loop closures which

occur when the robot returns to a previous visited location. This involves mul-

tiple problems such as feature extraction, frame matching, and rejection of false

closures. There are a variety number of methods to improve the performance

of front-ends. Neira and Tardos [17] proposed a joint compatibility branch

and bound method to find the largest loop closure hypothesis, which guards

against wrong detections. Other methods such as spectral clustering [18] and

tree-structured Bayesian [19] can also improve the data association. Com-

pared with front-ends, back-ends solve a more time-consuming problem which

is adjusting and optimizing the estimated map based on measured and de-

tected constraints between nodes. The solutions of back-ends are often known

as graph optimization methods. Lu and Milios [16] gave the first solution to

globally optimize the map. Later in 1999, Gutmann and Konolige [20] pro-

posed a technique called Local Registration and Global Correlation (LRGC)

which can efficiently add new information to the system and perform loop clo-

sure detection. Relaxation approaches to solve back-ends were introduced by

Howard et al. [21]. Frese et al. [22] applied a variant of Gauss-Seidel relax-

ation on multiple levels of resolution to optimize the map. Sparse Cholesky and

QR factorization were first used by Dellaert and Kaess [23] to solve the SAM

(smoothing and mapping) problem. They later presented iSAM [24] which

implements real-time SLAM application. Konolige [25] exploited conjugate

gradient descent method to optimize the map. Graph optimization methods

such as TORO (a tree-based network optimizer) [26] and g2o (general graph

optimizer) [27] use theclassic optimization methods of gradient descent and

Levenberg-Marquardt algorithm respectively to minimize the non-linear least
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squares problem in back-ends.

A large variety of open-source SLAM solutions which run in real-time are

available for the Robot Operating System (ROS). Most of these can be clas-

sified as either lidar-based SLAM approach or visual SLAM approach based

on their sensor type. Among the lidar-based SLAM approaches, GMapping

[13] proposed in 2007 is considered as a state-of-the-art SLAM solution, which

utilizes Rao-Blackwellized particle filters. Google Cartographer [28] is a more

recent open-source lidar-based SLAM solution published in 2016, which cre-

ates sub-maps instead of individual map nodes and optimizes the estimated

poses of sub-maps when a loop closure is detected. It has shown good results in

a backpack-based mapping platform, but its hard-to-tune parameters and the

need for an expensive Velodyne lidar sensor make it difficult to implement on a

real robot. Visual SLAM approaches usually utilize stereo cameras or RGB-D

cameras. ORB-SLAM2 [29] is considered as a state-of-the-art visual SLAM

approach, which uses bundle adjustment for graph optimization, but as the

map grows the time to detect loop closures and update the map also increases,

making ORB-SLAM2 unable to meet real-time constraints. The open-source

SLAM solution we chose for this thesis is Real-time Appearance-Based Map-

ping (RTAB-Map) [30] [31] whose memory management architecture makes

it possible to achieve multi-session and large-scale mapping under real-time

constraints. RTAB-Map supports both depth cameras and lidar sensors and

can generate either 2D or 3D maps. Although SLAM solution solves mapping

and localization problem, its computational complexity makes the output rate

slow. The pose output of RTAB-Map is around 1 Hz.

Our objective in this thesis is to obtain accurate and high rate global pose

data using low-cost sensor by achieving SLAM-aided navigation though sensor

fusion. In other words, we want to find a solution that has better performance

than single SLAM solution. We use a commercial mobile robot equipped with

wheel encoder, IMU and computer as platform. We fuse the output of SLAM

with inertial sensors of robot to obtain high frequency and accurate robot

pose data. In 2004, Kim and Sukkarieh proposed a method to improve SLAM

performance by adding a feedback control to inertial sensors which as the in-
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put for SLAM [32]. However, the publish rate of SLAM is still low. Many

studies have been done on sensor fusion for robot localization problem, es-

pecially the combination of visual and inertial sensors [33]. In 2002, Strelow

and Singh [34] introduced a hybrid visual-inertial sensor fusion system using

Levenberg-Marquardt algorithm to optimize combined error from visual sen-

sor and inertial sensors, which showed good results in short-range. In 2003,

Rehbinder and Ghosh [35] proposed a pose estimation method by combining

line-based vision and inertial sensors. At the early 2000s, researchers in con-

trol area were exploring the navigation system that can provide better pose

estimates and they mainly focused on the visual-inertial system. However,

most of visual-inertial sensor fusion navigation algorithms do not solve the

full SLAM problem, their estimated poses will diverge over time and space.

Meanwhile, researchers in computer science has been working on the SLAM

problem as stated above. They realized that without loop closure detection

estimated poses will diverge with no boundary. Thus we come up an idea

to use the output of SLAM to be fused with inertial sensors, which ensures

the filtered poses are global pose data. And this way has not been used by

others before. There are multiple categories to achieve sensor fusion: Kalman

filer [36], Bayesian network [37] [38], neural network [39] and so on. A va-

riety different type Kalman filter have been used for localization application

such as Extended Kalman filter [40], Unscented Kalman filter [41]. Among all

these solutions, nonlinear Kalman filter has been used for a long time to deal

with localization problem and it is the most mature and easy to implement

technique. Thus in our work, we used these two Kalman filters as our sensor

fusion solution and compared their performances.

1.1 Thesis Overview

This chapter has given a review of the history of the SLAM problem, provided

a literature review and outlined our proposed work. The remainder of the

thesis is structured as follows:

Chapter 2: Two filters, the Extended Kalman Filter (EKF) and Un-
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scented Kalman Filter (UKF) are discussed first. We then introduce funda-

mentals of filtering SLAM and graph-based SLAM.

Chapter 3: The Robot Operating System (ROS) software environment

and the hardware used for our experiments are introduced. We cover the

data collection method used for multiple computers with different operating

systems and explain how to reconcile pose data from different sources.

Chapter 4: We describe our chosen SLAM solution, RTAB-Map, and

discuss the methods used by RTAB-Map. Three major graph optimization

approaches supported by RTAB-Map, TORO, g2o and GTSAM, are also dis-

cussed.

Chapter 5: The method for selecting the odometry input of RTAB-Map

is discussed. Next, we present the results of comparing the performance of

two state estimators (EKF and UKF) and the results of implementing SLAM-

aided navigation. The experimental results of different configurations of the

overall system are then given.

Chapter 6: We give conclusions and suggest future work.
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Chapter 2

Fundamentals

In this Chapter, we will first explain the fundamentals of nonlinear Kalman

filters since they are not only the core of the first SLAM solution, EKF-SLAM,

but also treated as the motion state estimators for sensor fusion. Next, filtering

SLAM approach and smoothing SLAM approach, specifically EKF-SLAM and

graph-based SLAM are covered.

2.1 Kalman Filter

The idea of Kalman Filter (KF) is using a series of measurements with noise

to estimate the state of the system. The KF algorithm can be divided into two

steps: prediction and update. In the prediction step, KF estimates the current

state variables based on the previous estimate. As soon as new measurements

are observed, the KF updates the current estimate according to the certainty

of the measurements. The estimate obtained in the prediction step actually

happened prior to the current time. This prior estimate is usually denoted as

x̂k|k−1. The estimate is updated after the measurements are observed, denoted

as x̂k|k. The state of system can be described as

xk+1 = Φkxk + wk (2.1)

The measurement of the process is a linear function of system state, which

is denoted as

zk = Hkxk + vk (2.2)

7



The notations above are explained below:

xk - (n× 1) state vector.

Φk - (n×n) transition matrix describes the relationship between xk and xk+1.

wk - (n× 1) vector, process noise whose covariance is known.

zk - (m× 1) measurement vector.

Hk - (m×n) matrix describes the nominal relationship between measurement

zk and state vector xk.

vk - (m× 1) measurement error vector. Like wk, its covariance is known, and

we assume vk and wk are independent meaning uncorrelated.

The covariance matrices of error vectors wk and vk are defined by

E[wkw
T
i ] =

{
Qk, i = k
0, i 6= k

(2.3)

E[vkv
T
i ] =

{
Rk, i = k
0, i 6= k

(2.4)

Assume we have a prior estimate x̂k|k−1 and we want to use the measure-

ment to improve this estimate. We can express the updated estimate by taking

into account both prior estimate and noisy measurement in the form of the

following equation:

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (2.5)

where Kk is known as Kalman gain. Except for Kk, other variables in Equation

(2.5) are known. Thus, the problem now lies on how to find the Kalman gain

that can produce the optimal updated estimate. We can solve the problem of

finding the optimal estimate x̂k|k by finding the minimum mean-square error.

Thus, we express the covariance of the error between the updated estimate

x̂k|k and the desired state xk as

Pk|k = E[ek|ke
T
k|k] = E[(xk − x̂k|k)(xk − x̂k|k)T ] (2.6)

where we assume the mean of estimation error ek|k is zero. After substituting

Equation (2.2) and Equation (2.5) into Equation (2.6), we get

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkK
T
k (2.7)

8



Now, we can find the gain Kk by minimizing the error covariance Pk|k. Be-

cause the diagonal entries of Pk|k are the estimation error variances of elements

in the system state, the optimization problem can be seen as minimizing diag-

onal terms in Pk|k (minimize trace Pk). Using matrix differentiation formulas,

we can obtain the differentiation of the trace of Pk with respect to Kk. The

detailed process of derivation can be found in [42]. We can solve the Kalman

gain by setting the derivative equal to zero:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1 (2.8)

Substituting the optimal Kalman gain into estimation error covariance (2.7)

leads to three possible expressions for computing the Pk|k. These expressions

vary only in the numerical performance on real data. Here, for easy notation,

we list the simplest equation which is

Pk|k = (I−KkHk)Pk|k−1 (2.9)

Now, we can use the optimal Kalman gain in Equation (2.5) to update the

estimate. The recursive procedure of Kalman filter can be understood as a

recursive predict-update process:

1. Predict the prior estimate and its prior error covariance.

2. Compute the Kalman gain. Update the estimate and its error covariance.

3. Use the updated estimate and error covariance to predict the prior esti-

mate and error covariance at the next time step (go back to Step 1).

The prior estimate in Step 1 is obtained from the previous estimate via the

transition matrix Φ as:

x̂k|k−1 = Φk−1x̂k−1|k−1 (2.10)

The error and corresponding error covariance are expressed as

ek|k−1 = xk − x̂k|k−1

= (Φk−1xk−1 + wk−1)−Φk−1x̂k−1|k−1

= Φk−1ek−1 + wk−1

(2.11)

9



Pk|k−1 = E[ek|k−1e
T
k|k−1]

= E[(Φk−1ek−1 + wk−1)(Φk−1ek−1 + wk−1)T ]

= Φk−1Pk−1Φ
T
k−1 + Qk−1

(2.12)

After determining the prior estimate x̂k|k−1 and its covariance Pk|k−1, we

compute the Kalman gain Kk via Equation (2.8) and update the estimate x̂k|k

and its corresponding covariance Pk|k. Then use the updated state to predict

prior estimate at time tk+1. A more detailed recursive process is expressed as

follows, assuming we specified an initial estimate x̂0 and its error covariance

P0:

1. Compute Kalman gain

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1

2. After obtaining a measurement zk, we update the state estimate as well

as its covariance as

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1)

Pk|k = (I−KkHk)Pk|k−1

3. Predict state and error covariance at next time step

x̂k+1|k = Φkx̂k|k

Pk+1|k = ΦkPk|kΦ
T
k + Qk

4. Go back to step 1, calculate Kalman gain and update state values.

2.1.1 Extended Kalman Filter

In the real world, especially in navigation, the system models are usually

nonlinear. EKF is one of the early extensions of KF which copes with nonlinear

models by re-linearizing them about the latest state estimate.

In EKF, the transition and observation models can be specified as differ-

entiable nonlinear functions

ẋk = f(xk−1,uk) + wk (2.13)
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zk = h(xk) + vk (2.14)

where f and h are known, and uk is the control vector. The EKF algorithm

has the same recursive predict-update procedure as KF. Due to the nonlinear

functions used in EKF, some formulas may be different from that of KF. EKF

linearizes the functions by applying Taylor’s series expansions and keeping

only the first-order term. The results are

f(xk−1,uk) = f(x̂k−1|k−1 + ek−1|k−1,uk)

≈ f(x̂k−1|k−1,uk) +

[
∂f

∂x

]
x̂k−1|k−1

ek−1|k−1 +
∂f

∂uk

= f(x̂k−1|k−1,uk) + Fkek−1|k−1 + Gk

(2.15)

h(xk) = h(x̂k|k−1 + ek|k−1)

≈ h(x̂k|k−1) +

[
∂f

∂x

]
x̂k−1|k−1

ek|k−1

= h(x̂k|k−1) + Hkek|k−1

(2.16)

As for the process in KF, the goal is to find a Kalman gain such that the

state can be updated. To get this Kalman gain, We need to determine the

updated error covariance first. After following the same steps in KF to obtain

Pk|k, we get the same equation of covariance as Equation (2.7). The only

difference is that Hk in EKF is a Jacobian instead of a measurement matrix.

Thus, the Kalman gain and updated error covariance in EKF have the same

expressions as Equation (2.8) and Equation (2.9), respectively.

The prior error and corresponding error covariance can be obtained by

substituting Equation (2.16) into Equation (2.11):

ek|k−1 = xk − x̂k|k−1

= Fkek−1|k−1 + wk

(2.17)

Pk|k−1 = E[(ek|k−1)(ek|k−1)T ]

= E[(Fkek−1|k−1)(Fkek−1|k−1)T ] + Qk

= FkPk−1|k−1F
T
k + Qk

(2.18)

The recursive procedure of EKF is similar to that of KF. We summarize it

as follows denoting the initial prior estimate as x0 and prior error covariance

as P0:
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1. Compute Kalman gain

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1

Hk =

[
∂h

∂x

]
xk|k−1

2. After obtaining the measurement zk, update the estimate as well as its

covariance

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))

Pk|k = (I−KkHk)Pk|k−1

3. Predict state and error covariance at next time step

x̂k+1|k = f(x̂k|k,uk+1)

Pk+1|k = Fk+1Pk|kF
T
k+1 + Qk+1

Fk+1 =

[
∂f

∂x

]
xk+1|k

4. Go back to the step 1, calculate Kalman gain and update state values.

In conclusion, the EKF utilizes first-order Taylor expansion to linearize

the nonlinear measurements and functions to implement KF in navigation.

There do exist second- or higher-order linearizations that give more accurate

approximation, but they also give more complexity in solutions and require

more computational time.

2.1.2 Unscented Kalman Filter

The idea of UKF is introducing more points to linearize the nonlinear function

instead of using only one point as in EKF [43]. These points are called sigma

points which means they are not randomly chose. Passing all the points from a

Gaussian distribution through a nonlinear function is time consuming, and it

is not guaranteed that after a nonlinear transform one can still get a Gaussian-

distributed output. Thus, a limited number of points from this distribution

with the same mean as the original are chosen. A method called Unscented
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Transform can help determine the estimates of the mean and covariance of a

random variable after a nonlinear transform.

Assume the estimated state x̂k−1|k−1 and mean x̄ and covariance P of the

process noise are known. A set of 2N + 1 sigma points is chosen where N is

the dimension of the state [43]. The weighted sigma points can be calculated

as follows:

X 0 = x̄ W 0 = κ/(n+ κ)

X i = x̄ + (
√

(n+ κ)P)i W i = 1/2(n+ κ)

X i+n = x̄− (
√

(n+ κ)P)i W i+n = 1/2(n+ κ)

(2.19)

where κ is a constant. When the state x is assumed Gaussian distribution,

usually n+κ = 3 is selected because it can give the best performance to reduce

the overall prediction error [43]. (
√

(n+ κ)P)i is the ith row or column of the

matrix square root of (n+ κ)P and W i is the corresponding weight.

The set of these sigma points is denoted as Xk−1|k−1 at time k − 1. We

denote the sigma points transformed though the transition function f(·) as

X i
k|k−1 = f(X i

k−1|k−1) i = 0, ..., 2N (2.20)

To produce the predicted state x̂k|k−1 and covariance Pk|k−1, transformed

sigma points are assigned weights and combined as follows

x̂k|k−1 =
2N∑
i=0

W iX i
k|k−1 (2.21)

Pk|k−1 =
2N∑
i=0

W i
[
X i

k|k−1 − x̂k|k−1

] [
X i

k|k−1 − x̂k|k−1

]T
(2.22)

After we obtain the predicted state and covariance, using the same ap-

proach as stated above we create sigma points and project them though the

observation function h(·)

γik = h(X i
k|k−1) i = 0, ..., 2N (2.23)

We can obtain the predicted measurement and predicted measurement co-

variance by combining the weighted sigma points

ẑk =
2N∑
i=0

W iγik (2.24)
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Pzkzk =
2N∑
i=0

W i
[
γik − ẑk

] [
γik − ẑk

]T
(2.25)

The Kalman gain of UKF is computed as

Kk = Pxkxk
P−1

zkzk
(2.26)

where the cross-covariance matrix of state and measurement Pxkzk is

Pxkzk =
2N∑
i=0

W i
[
X i

k|k−1 − x̂k|k−1

] [
γik − ẑk

]T
(2.27)

As with the EKF above, the updated state is derived by the predicted state

plus the measurement error weighted by the Kalman gain

x̂k|k = x̂k|k−1 + Kk(zk − ẑk) (2.28)

And the updated covariance is derived by the predicted covariance minus

the predicted measurement covariance weighted by the Kalman gain

Pk|k = Pk|k−1 −KkPzkzkK
T
k (2.29)

When the transition function f(·) and observation function h(·) are highly

non-linear, the EKF typically gives poor performance [43]. UKF gives more

accurate mean and covariance estimates for certain systems [44]. UKF also

does not require calculating Jacobians, which reduce the complexity of com-

putation. In our experiment, we compared the performances of both state

estimators in Chapter 6 to see whether our nonlinear system (evolving on

SE(3)) will influence their performances.

2.2 Filtering SLAM

Solving the SLAM problem cannot rely on the external measurement system

such as GPS, so only measurements u1:t and observations z1:t from onboard

sensors are given, where t is the time. Based on these inputs, the SLAM

problem is to find the trajectory of robot x1:t and the map described by features

m.
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The online SLAM problem seeks to estimate the most recent pose and

map. We can describe the online SLAM problem as estimating the posterior

probability of momentary pose and the map:

p(xt,m|z1:t, u1:t) (2.30)

Filtering SLAM solutions usually involve the following procedures, which

repeat at each time step: At an initial position, landmarks are observed and

their locations are noted. When the robot moves to a new location, the uncer-

tainty of the robot pose grows due to noise sources and errors. New observed

landmarks have a high uncertainty because of errors in the measurements and

uncertainty of the robot pose; and locations of previously observed landmarks

are predicted based on the robot’s motion. At the new location of the robot,

measurements of previously observed landmarks are obtained. Based on the

residual of predicted location and measured location, the robot corrects its

current estimated location and the locations of observed landmarks.

EKF-SLAM is one of the classic filtering solutions. In the rest of this

section, we will present the procedures of EKF-SLAM [8] as an example of

the filtering SLAM solution. The state vector of EKF-SLAM contains the

estimated poses of both robot and landmarks:

x = [R,L1, ..., Ln]T (2.31)

where R is the robot state and L represents landmark state, with n the number

of landmarks. The covariance matrix of the state vector is

P =

[
PRR PRM

PMR PMM

]
=


PRR PRL1 . . . PRLn

PL1R PL1L1 . . . PL1Ln

...
...

. . .
...

PLnR PLnL1 . . . PLnLn

 (2.32)

The goal of EKF-SLAM is to keep the state of the robot and landmarks

(map) up to date. Following the procedures stated above and EKF algorithm

stated in Section 2.1.1, the state vector is updated based on robot motion

x̂k|k−1 = g(xk−1|k−1,uk) which only affects robot state R. The covariance

is updated as Equation (2.18), where Fk is replaced by Gk, the Jacobian of

15



g. The Jacobian only affects covariance of robot state PRR. Among all the

observed measurements of the locations of landmarks, if the landmarks have

not been observed, their locations are updated by adding their states to the

estimated robot location. If the landmarks have been observed, based on

the previously observed locations and current robot location we can obtain

predicted measurements ẑk = h(x̂k|k−1), and compare it with measurements

we observed to get the measurement residual zk − ẑk. Following Equation

(2.8), we can obtain the Kalman gain Kk after we calculate the Jacobian of

h, Hk. Now the predicted state vector and covariance can be corrected and

updated as follows:

x̂k|k = x̂k|k−1 + Kk(zk − ẑk)

Pk|k = (I −KkHk)Pk|k−1

The above procedures of EKF-SLAM mostly follows the machinery of the

original EKF, the only difference is EKF-SLAM adds an extra step, landmark

initialization, which is adding the states of unobserved landmarks into the

state vector.

2.3 Graph-based SLAM

The graph in Graph-based SLAM solution is formed by nodes and edges as

can be seen in Figure 2.1. Nodes contain information of corresponding robot

poses and observations, and they are connected by edges obtained from mea-

surements. Measurements are either acquired from odometry or loop closure

detection. Before a loop closure is detected, where nodes present poses of robot

or landmarks and edges are added between nodes by odometry measurements.

The graph building process is known as front-end as can be seen in Figure 2.1

(a). After a loop closure is detected, as location X1 and location X5 shown

in Figure 2.1, a configuration needs to be found (the former poses need to be

corrected) since there is a transformation residual between two locations due

to the drift of odometry measurements. This task is called back-end which

can be treated as a large error minimization problem. The technique to solve
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(a) (b)

Figure 2.1: A representation of a graph-based SLAM process. Circles repre-
sent nodes which are connected by arrows that represent edges. Arrows with
solid lines are constraints from odometry measurements, while the arrow with
dashed red line represents constraint resulted from loop closure detection

back-end is usually called graph optimization method. Figure 2.1 (b) is an

example of corrected poses after a loop closure is detected.

2.3.1 Graph Optimization

Back-ends solve a more crucial problem than front-ends since they need to

correct all the previous pose estimates based on the constraints. The back-

end problem can be solved by minimizing the sum of squared errors between

estimated and measured transitions between graph nodes. In this section, we

will explain the overall problem of graph optimization.

The measurements are obtained from robot odometry first. A function

fji(x) is defined to compute a transition from node i to node j based on

the current set of pose estimates x = (xT
1 , ...,x

T
n )

T . The measured transition

between the node i and j is represented by δji. The error eji between the

desired transition and measured transition is defined as:

eji(x) = fji(x)− δji (2.33)

We define the cost Fji associated to error eji as

Fjix =
1

2
(fji(x)− δji)

TΩji(fji(x)− δji) (2.34)
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where Ωji is the Fisher information matrix Ω corresponding to measurement

δji which represents . Fisher information matrix is the inverse of covariance

matrix. The cost function of the overall configuration x is

F (x) =
1

2

∑
<j,i>∈C

eji(x)TΩjirji(x) (2.35)

where C = {< j1, i1 >, ..., < jM , iM >} contains all the pairs of nodes with

constraints.

Ultimately, the purpose of graph optimization is to find the configuration

x∗ which minimizes the cost function (2.35):

x∗ = argmin
x

F (x) (2.36)

In this Chapter, we have stated the mechanism of filters we used in sensor

fusion, the differences between two major SLAM categories and procedures of

graph-based SLAM. Next, we will present the hardware and related software

we used in our experiments.
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Chapter 3

Experimental Mobile Robot
System and Tools

The goal of this thesis is to demonstrate that pose data obtained from sen-

sor fusion is more accurate than single output pose estimate from SLAM. A

mobile robot would be the desired carrier to help us validate this hypothesis.

Therefore, we utilized a commercial mobile robot as the experimental plat-

form. The reason we did not build our own robot is that it would save time

and efforts of dealing with hardware problems and so that we can focus on the

core issues. In this chapter, we describe the hardware and the related software

which allow us to modulate and access the hardware.

3.1 Robot Operating System

All our experiments are based on the ROS (Robot Operation System). Al-

though ROS is called an “operating system”, it is not an operating system in

the traditional sense. Instead, ROS is a platform which contains a collection

of robot software frameworks and provides communications between hetero-

geneous computer cluster. The original developers of ROS are Willow Garage

Lab and Stanford Artificial Intelligence laboratory. They released the first ver-

sion of ROS in 2007, and from then almost every year a new version of ROS

has been released. We utilized the version “Indigo Igloo” ROS which was re-

leased on July 22 2014 since it is the most reliable version and most of the ROS

packages have released fully developed version on ROS Indigo. ROS Indigo
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was designed to run at the Ubuntu 14.04 LTS which is the operating system

of our mobile robot’s computer and monitoring computer. The computer in

the mobile robot is also integrated with Indigo ROS.

There are some important concepts of ROS: nodes, messages, topics and

services. Nodes can be understood as “software module” that contain specific

functions. They are executable within ROS package. The term “node” is from

the visualization of ROS system at runtime. Nodes are communicating with

each other by passing messages. A message is a simple data structure. The

name of a message is formed by the name of the package plus the name of

the .msg file. For example, RTAB-Map has a node which can produce visual

odometry information, the message it published is called rtabmap/odom. But

if a node wants to subscribe all the odometry information in the system, then

it is a pain to write down all the odometry messages from different packages.

ROS introduced a concept called topic to improve. A node can specify what

topics to subscribe, and all the messages belong to that topic will be sub-

scribed. A node may be not aware of the existence of other nodes, since all

the communications are done by specifying subscribed and published topics

and passing messages. Except for this topic-based publish-subscribe model,

ROS has another communication paradigm called service which is designed for

synchronous transactions. Service can provide a one-time server-client trans-

port. A service is defined by a pair of messages: one is the request sent by

client and one is the response sent by server. The server is the node that

provide services.

There are other functions and commends in ROS we utilized frequently

during our experiments. roslaunch is the command that can open the launch

file which enables the executable of multiple nodes. roslaunch is required

when you are working with a big project. Another command is called rosbag

which can record ROS topics during a certain period of time. It can also

republish the messages from a bag file. rosbag enables us to collect raw

sensor data into a bagfile, and play it back through algorithm with different

settings and configurations to debug.
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3.1.1 ROS Enhancement Proposals

There are two important ROS Enhancement Proposals (REP) when executing

ROS in mobile platforms: REP 103 (Standard Units of Measure and Coordi-

nate Conventions) and REP 105 (Coordinate Frames for Mobile Platforms).

REP 103 offers standards about preferred conventions of units and coordinate

used within ROS. The default units in ROS is SI units and the convention

of axis orientation of a body in ROS follows the right hand rule. In our

experiments all the topics from different packages and nodes follow REP 103

standards. REP 105 specifies the naming conventions of frames of mobile robot

and relationship between frames. The names of the frames that specified are:

base link, odom, map, earth

The coordinate frame named base link is the frame that attached to the

mobile robot base. The position of this frame is usually preset at the gravity

center of the robot. odom is defined as a world-fixed coordinate frame, it usually

stays at the start position of robot. The pose of the robot in the odom frame is

computed based on odometry sources. The odom frame is an accurate, short-

term local reference, but it will drift as time passes. The coordinate frame

called map is also a world-fixed frame that stays at the start position of robot.

The pose in this frame is calculated from sensor observations, such as SLAM.

Thus map frame is defined as long-term global reference. The coordinate frame

earth is the origin of Earth Center, Earth Fixed (ECEF), it is designed to

implement the interaction of multiple robots. During our experience we only

utilized one robot. Thus the earth frame is not defined. ROS chooses a tree

representation to attach frames, which means each frame can only have one

parent frame but multiple child frames. Except for the earth frame, the rest

three frames are attached by transforms as follows:

map→ odom→ base link

Each transform between two frames can only be published by one node.

Except for these four conventional frames, one can define other frames, such as
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the frames of onboard sensors. The position of a onboard sensor can be defined

by creating static transform between its frame to the base link frame.

3.2 Mobile Robot Platform

During the research experiments, the mobile robot platform Clearpath Jackal

Unmanned Ground Vehicle (UGV) (see Figure 3.1) was utilized. This is a

four-wheeled mobile robot equipped with GPS, Inertial Measurement Units

(IMU) and an onboard computer fully integrated with Indigo ROS. It provides

an excellent communication structure for hardware and software. This kind

of commercial mobile robot with the pre-setup equipment can allow us start

the research immediately. The robotic platform is customizable, which allows

adding our own sensors and other accessories that can be powered through

internal onboard PC. During the experiments, we directly use the existing

ROS packages in Jackal to extract the data from the internal sensors, such

as odometry and IMU. The robot’s motion is controlled by a wireless PS4

joystick.

Figure 3.1: Jackal UGV

Jackal is equipped with GPS patch module PA6H manufactured by Glob-

alTop Technology Inc. and IMU multi-chip module MPU-9250 manufactured

by TKD InvenSense. These modules are installed in the cylinder attached on

Jackal chassis (see Figure 3.2).

3.2.1 The Robot Jackal UGV System Background

Large applications on a robot like Jackal typically involve several intercon-

nected launch files. When Jackal’s computer is powered up, a ROS package
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Figure 3.2: GPS module and IMU module that installed in Jackal. The size
of GPS module is 15mm × 15mm × 2.5mm. The size of IMU module is
25.5mm× 15.4mm× 3mm

named robot upstart automatically opens the top-level launch file. This

launch file includes lines which control what launch files will run next. Each

launch file brings up the nodes required for specific function. By using this hi-

erarchy structure, users can modify the function easily. The default hierarchy

of open launch file can be seen in Figure 3.3.

Figure 3.3: The flow diagram of opening launch file when boot the Jackal

The top-level launch file ros.launch consists of the commands to open

the second-level launch files. accessories.launch file contains the nodes

and parameters of Clearpath-supported sensors. This file will automatically

open any supported sensors if detected. This file can be modified to adapt
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customized sensor configuration. The base.launch file launches IMU, GPS

and WiFi communication of Jackal. It also opens the launch files on the

third-level, where the description launch file contains the Unified Robot De-

scription Format (URDF) data of Jackal and positions of frames, which is used

to transform sensor readings for data fusion, as well as for visualization of the

Jackal model in Rviz (3D Visualization tool for ROS). The last two launch

files control.launch and teleop.launch are both in the jackal control

package. Intuitively, this package is in charge of the control issues of Jackal.

control.launch file handles the differential drive control and opens the EKF

node for base localization. teleop.launch file manages the teleoperation of

Jackal via joystick or via path planning in RViz. Since the PS4 controller

provides direct control of the Jackal’s motions, we did not employ the path

planning functionality.

For the teleoperation via joystick, the configuration file (teleop ps4.yaml)

of the corresponding controller will be loaded first. This file contains the infor-

mation of the index number of each button, related functions and maximum

linear and angular velocities. One can always remap the button and modify

the maximum velocities. Once the user press the button, the information of

that button will be transfered to a ROS message named /joy by ROS node

joy node. Then this message will be translated to velocity commands by a

ROS node teleop twist joy. The wheels of Jackal will receive the command

and rotate at assigned rate. The rotary encoders attached to the wheels mea-

sure the rotations of the wheels, which is used for the navigation of the robot.

3.2.2 Odometry

Because Jackal has four fixed wheels, it needs a controller to split the veloc-

ity to each of the wheel so that it can execute turns. A ROS node called

diff drive controller can implement differential driving.

Jackal has two motors. Optical encoder mounted integrally to the back

of the motor. One set is mounted on the front left wheel, and the other

is mounted on the rear right wheel. The motors are manufactured by Mid-

west Motion Products. Series number of the motor is “MMP S22-346F-24V
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GP52-025 EU 1024”. Optical encoder belongs to the “EU” series with 1024

Cycles Per Revolution (CPR). The two wheels of each side are connected us-

ing a caterpillar belt, meaning they are forced to move at the same speed.

Thus Jackal UGV can be considered as a two wheel differential drive system.

diff drive controller splits and assigns the velocities to the left wheels and

right wheels. While the wheels get the command to move at a specific speed,

encoders convert the rotations of wheels into digital signals. The output of en-

coder will be used as the feedback of diff drive controller to compute the

odometry. The simplified odometry setup is illustrated in Figure 3.4, where

S = 0 represents the mobile robot starting position; SL and SR represent the

traveled distances of left wheel and right wheel, respectively.

Figure 3.4: Odometry based navigation. Jackal’s wheel system can be simpli-
fied as a two-wheel system. Encoder on each side of wheel enables separate
actuation so that each wheel (each side of wheels) can move independently on
the axle

While the two wheeled system has the advantage of reducing the complexity

of driving control, it also has disadvantages such as the inevitable friction while

the robot is steering and wheel skid while turning the robot. Once wheel skid

happens, the accuracy of odometry navigation can get affected significantly [1].

Besides, optical encoders cannot track the exact movement of robot when the

wheel is skidding, which will affect the calculation by diff drive controller

of the distance the robot traveled. Thus the robot will get a poor position
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estimate of itself. Besides of the skid steering drive, there are other sources

which can cause odometry error. Because the measurement of the odometry

is cumulative, the error will increase with time. Thus for pure odometry

navigation, the position error will increase without bound. Extra sensors are

needed for improving the navigation.

Jackal is equipped with another internal sensor IMU employed for sensor

fusion and to determine the robot’s attitude. The IMU in Jackal consists of

gyroscope, accelerometer and magnetometer, which can report robot’s angular

velocity, accelerations and the magnetic field surrounding the body. Important

parameters of each sensor can be found in Table 3.1. For more details please

visit the manufacturer website and download related product datasheet.

Table 3.1: Important parameters of three sensors in IMU
SENSOR PARAMETER VALUE UNITS
Gyroscope Total RMS Noise 0.1 ◦/s-rms

Accelerometer Total RMS Noise 8 mg-rms
Magnetometer Sensitivity Scale Factor 0.6 µT/LSB

Sensor data from the IMU is fed into a node called imu filter madgwick

which calculates the orientation of the robot. This ROS package is based on

the code of Sebastian Madgwick who is the developer of the filter [45]. Later,

Clearpath fuses this attitude data with odometry via an Extended Kalman

Filter (EKF) using the robot localization ROS package [46]. The sensor

fusion of odometry and IMU can be seen in Figure 3.5, where Ẋ, Ẏ , Ż rep-

resent the linear velocities along axes x, y and z, respectively; φ, θ and ψ

represent rotations about axes x, y and z, respectively (see Figure 3.11 for

the definitions of x, y and z). The resulting pose estimate is published as the

odometry filtered topic and is used as the “odometry” input of RTAB-Map.

In addition to the original IMU equipped in Jackal, we installed an external

IMU (KVH 1750 IMU Figure 3.6) to compare the performances of differ-

ent IMUs as the odometry input for the SLAM solution package since graph

optimization method in SLAM solution is sensitive to the twist covariance gen-

erated by IMU which we will talk about in Chapter 4. The KVH 1750 IMU
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Figure 3.5: Default robot localization configuration

has tactical-grade quality and accuracy and provides an onboard state estima-

tor for roll and pitch angles. A ROS package called ros kvh1750 provides an

interface between this IMU and ROS and publishes topic kvh 1750 imu/imu

which belongs to message type nav msgs/Imu.

Figure 3.6: KVH 1750 IMU

3.3 Kinect v2

Ever since the release of Kinect for Windows v1 (Kinect v1) in 2010, it has

been used in the field of robot navigation and computer vision as a reliable

and low-cost sensor to acquire depth images of environment. Kinect v1 belongs

to the “structured light” sensor, which means it calculates depth information

using a IR (Infrared Radiation) light pattern projection. Later in 2012, Mi-

crosoft Kinect for Windows v2 (Kinect v2) an upgraded version of Kinect v1

was released, with a better resolution up to 1920×1080, a wider field of view

(horizontal field of view of 70 degrees, vertical field of view of 60 degrees).

Kinect v2 is time-of-flight (ToF) camera. The light from the light source in-

frared illuminate in Kinect v2 travels to the object, and reflects back to the

27



receiver infrared camera. Timing generator calculates the time Δt of travel

during this procedure. The system calculates depth from the speed of light in

air and the time it traveled [47]. This method is more stable, precise and less

prone to errors as compared to structured light utilized by Kinect v1.

Figure 3.7: Jackal with Kinect v2 camera

During our research, we used Kinect v2 as the only external sensor in Jackal

UGV. This RGB-Depth sensor is mounted on the aluminum platform at the

front of Jackal which is reserved for customization (Figure 3.7) for getting a

clear and complete view of the environment. The pillars are 20 centimeters

high. For the adaption of the system, we utilized an open-source Kinect v2

driver libfreenect2 [48] and its corresponding ROS package iai kinect2

[49]. For obtaining a better performance, we calibrated the Kinect v2 by

following the steps in the tutorial of iai kinect2 using OpenCV and a chess-

board (Figure 3.8). Kinect v2 will publish the depth image and color image

which are required by SLAM solution and its visual odometry module.

Figure 3.8: Chessboard used in calibration. The size of the cubes in the pattern
is 0.03m× 0.03m. Chessboard can be printed on A4 paper
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3.3.1 Visual odometry

The SLAM solution we used in our experiment includes a visual odometry

module which can be used to replace wheel odometry and IMU fusion, for

instance for hand-held Kinect mapping. RTAB-Map supports various visual

odometry approaches. One of them is called rgbd odometry which employs

RGBD images produced by a camera like the Kinect v2. The visual odometry

is computed using image features extracted from successive RGBD images. In

order to transfer the odometry information from the Kinect frame into the

robot base frame (/base link), a tf is required between the two frames. We

utilized the node static transform publisher to specify a static coordinate

transform to tf, which was determined by manual measurement. During the

experiments, the Kinect v2 was tilted by a small pitch angle to avoid seeing

too much of the ground.

Whenever Kinect v2 captures an RGBD frame, image features are ex-

tracted and compared with features in a previous image. The feature match-

ing process is based on the nearest neighbor distance ratio (NNDR). Us-

ing the matching feature correspondences between consecutive images, the

transformation between them is calculated using a Perspective-n-Point (PnP)

RANSAC approach [50].

3.4 VICON Motion Capture System

To validate the accuracy of the pose output of the research method, we set

up the VICON motion caption system to provide the pose of Jackal UGV as

the ground truth. VICON employs passive optical motion capture technology

which uses retroreflective markers that are tracked by infrared cameras. There

are ten VICON Vero cameras mounted around the experimental environment

for obtaining a clear view of Jackal in 5m × 5m planar environment (Figure

3.9).

A gigabit Power over Ethernet (PoE) switch is used for the connection

between cameras and the host PC. The VICON Tracker software is installed

in the host PC. Six motion markers were placed on Jackal UGV (Figure 3.10),
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Figure 3.9: Screen capture of VICON software. Ten cameras are mounted
around the experimental environment which guarantee we will not lose any
frame of Jackal

which can define the rigid body object of Jackal in the VICON system. The

locations of markers are based on the Jackal base link frame which can be

found in Figure 3.11 (a). After the object is created, we can track the motion

of Jackal during the experiment with frequency of 100 Hz.

We aligned the body frame created in VICON and base link frame defined

in Jackal system for comparison. Also, due to the different world frames, we

need to transfer the pose data from two systems into a common frame. This

is done as explained below.

The Vicon system defines a robot body frame which is different from the

base link frame defined in Jackal (Figure 3.11). Thus pose data from the Vi-

con system and the on-board estimates need to be transformed into a common

frame for comparison. This is done as explained below.

There is a total of PCs participating in the test: the PC in Jackal, the

host PC for VICON system and the PC for data collection. When collecting

data from different computers, the time synchronization is an issue because

each computer uses its own timer and operating systems (the PC used for

VICON system is Windows 10, while Jackal onboard PC is Ubuntu 14.04).
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Figure 3.10: Six VICON motion capture markers are placed on the Jackal and
their locations.

(a) (b)

Figure 3.11: The frames of Jackal that the pose data are based on. (a) is the
Jackal base link frame in RVIZ. (b) is the Jackal frame in VICON software

The connection between Jackal’s PC and control PC can be implemented by

setting Jackal as ROS MASTER. Modifying Jackal’s network setting can create its

ownWIFI access point. Once the control PC connects to Jackal via the wireless

network, it can “see” the activity of Jackal including the ROS topics published

by the sensors mounted on Jackal. This means the control PC can collect pose

data from Jackal easily by using rosbag record {desired topics}.
In order to get the datastream from VICON system, we utilized a ROS
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package called vicon bridge, which can publish “transform” ROS topic of

assigned rigid body to specified PC (data collection PC). The data collection

PC can use rosbag to record the data from Jackal and host PC. See the

following architecture Figure 3.12 for detail.

Figure 3.12: Data flow chart

As stated above, a ROS package vicon bridge was utilized to build a

connection that enables ROS to collect the transform data from VICON sys-

tem. vicon bridge publishes data generated from VICON which is called

geometry msgs/TransformStamped. It gives the pose with timestamp of the

Jackal with respect to the VICON world frame. The world frame in VICON

is defined during the calibration. Calibration is a two-step process: 1. Cal-

ibrating cameras; 2. Setting volume origin. The first step determines each

camera’s physical position and orientation. The second step uses the calibra-

tion object (wand) to define the world frame of the VICON system. In other

words, the world frame is defined to be the wand, and can be changed every

time the system is recalibrated. Since RTAB-Map uses the first position of the

base link frame as the ground-fixed frame, we must reconcile the two poses.
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To implement comparison between VICON and RTAB-Map under the same

world frame, we take the initial VICON derived pose T0 ∈ SE(3), then apply

its inverse to all subsequent poses as T−10 T . In this way we convert the world

frame in VICON from the frame of wand into the initial frame of Jackal. This

method allows us to directly compare the poses from both systems. Figure

3.13 illustrates an example of this process. {O} and {R} are world coor-

(a)

(b)

Figure 3.13: (a) is the trajectory of robot regarding world frame. (b) is the
trajectory after convert the transform to pose

dinate frame and robot frame, respectively. T∗ represent the transform data

with respect to the VICON world frame. After applying T0
−1 to all transform

data, we obtain the pose data P∗ of mobile robot. This approach allows us to

implement robot pose comparison between VICON and RTAB-Map as can be

seen in Figure 3.14 (b). We also put a plot of the trajectories Figure 3.14 (a)

before we applied this method.
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(a) (b)

Figure 3.14: (a) is the trajectory of Jackal from VICON before we applied the
convert method, (b) is the trajectory after we applied the method

3.5 Robot Localization Package

As stated in Section 3.2.2, the ROS package robot localization is first used

in Jackal odometry for fusing IMU and wheel encoder data. This package con-

tains two state estimation nodes which are based on EKF (Extended Kalman

Filter) [46] and UKF (Unscented Kalman Filter) [43] and another node for

integrating GPS data into the estimator. The default state estimation node in

robot localization is based on EKF called ekf localization node which

is also the estimator utilized for fusing wheel encoder and IMU in local navi-

gation.

Before robot localization package was developed by Tom Moore [51],

there already exists a ROS package aimed to implement robot pose estima-

tion in 3D space called robot pose ekf. As the name suggests, this pack-

age uses only EKF estimator. Unlike robot localization, robot pose ekf

can not specify the measurements that one wants to fuse. Instead, a large

covariance value needs to be manually assigned to make it ignore the spe-

cific measurement. robot localization supports more input topics than

robot pose ekf. Besides odometry topic (nav msgs/Odometry) and IMU

topic (sensor msgs/Imu), robot localization can subscribe pure pose and

twist data with covariance:

geometry msgs/PoseWithCovarianceStamped
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geometry msgs/TwistWithCovarianceStamped

As stated in Section 3.2.2, both data from wheel encoder and IMU are

fused through EKF estimator node in robot localization to provide odom-

etry data of Jackal which is based on odom frame. Later, we use other estimator

node to implement global sensor fusion of which the output is based on map.

This two modes for robot localization is defined by specifying four param-

eters: map frame, odom frame, base link frame, world frame. The values for

the first three parameters are set to the conventional frame names in REP

105 which are map, odom and base link, respectively. For the last param-

eter world frame, if it is set to odom the estimator node provides odometry

output and publishes transform between odom frame to base link frame. If

world frame is set to map, then the estimator provides global pose estimates

and publishes transform between map frame to odom frame.

Initially the transform from odom to base link is computed and broadcast

by the odometry source of Jackal, and there is no map frame exist. When

we run SLAM algorithm in Jackal, the transform between map to odom is

broadcast by the SLAM algorithm. The transform from odom to base link is

still published by local EKF node.

After we execute the global state estimator the transform from map to odom

broadcast by SLAM algorithm is disabled since one transform cannot have

multiple broadcaster. The output data from SLAM algorithm is absolute pose

data whose topic is geometry msgs/PoseWithCovarianceStamped, which is

based on the world frame defined in RTAB-Map. The world frame is the

initial base link frame when RTAB-Map is running on Jackal. The output

from EKF node is also based on its world frame which is the initial base link

frame when it is running. Thus we modified the output from RTAB-Map to

zeros so that its world frame is converted to that of EKF when fused into

EKF. In robot localization, there are two parameters called “ relative”

and “ differential” can help us to adjust input data. If you set “ relative” to

“true”, then the corresponding measurements will be fused relative to the first

data it received. Parameter “ differential” is only effective to the pose data, if
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it is set to “true” the corresponding pose data will be converted to velocity. In

next Chapter, we will discuss how RTAB-Map work to achieve mapping and

localization simultaneously.
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Chapter 4

A Graph-based SLAM with
Kinect v2

RTAB-Map is a graph-based solution for full SLAM problem which is an intu-

itive way to address the SLAM problem [10]. A graph-based SLAM problem

builds the graph of the environment using the raw sensor measurements. The

nodes in the graph contain the corresponding poses estimated by odometry

and the edges contain the measured transitions between them. This graph

construction process is usually known as the front-end in graph-based SLAM.

After loop closures are added in the graph, the pose estimates at each node

are adjusted to minimize an overall error cost function. This procedure is

known as the back-end and can be viewed as solving a nonlinear least-squares

problem.

In this chapter, we will discuss RTAB-MAP, a pose graph-based solution

of the SLAM problem, and procedures RTAB-Map utilized during our exper-

iments. We will first discuss the front-end in RTAB-Map, and the results of

the comparison of using different odometries as the input of RTAB-Map.

4.1 Experimental Setup

The recommended equipment for running RTAB-Map on a mobile robot is a

robot equipped with a 2D LiDAR sensor, odometry, and a calibrated RGBD

sensor. Jackal’s odometry is provided by onboard sensors, wheel encoder and

IMU, as stated in Section 3.2.2. Because the goal of our project is to imple-
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ment SLAM by utilizing ”low-cost” sensors and applying sensor fusion method.

Thus, besides of the onboard sensors, Jackal is equipped only with Kinect v2.

RTAB-Map requires the user to provide RGBD images and robot odometry

information. RGBD images can be obtained from the Kinect v2. For odometry

information, there are two possible sources: wheel odometry from the Jackal,

or visual odometry from the Kinect v2. The odometry from Jackal is obtained

from an EKF node which fuses wheel encoder data and IMU data. Visual

odometry is obtained by using RGBD information from Kinect v2, as discussed

in Section 3.3.1. See Figure 4.1 for details. The ROS driver iai kinect2 of

Kinect v2 publishes three important topics that RTAB-Map subscribes with

kinect2 prefix, qhd specifies the resolution of Kinect v2 optical data.

(a)

(b)

Figure 4.1: Configuration (a) using Jackal’s odometry. Configuration (b) using
visual odometry. Visual odometry is generated from the three RGB-D topics
from Kinect v2

Before loop closure detection, the map is generated from nodes and edges

created in short-term memory (STM) from odometry poses and RGBD im-

ages. The RGBD images are processed to extract image descriptors, used to

form visual words for loop closure detection and for visual odometry. In the
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next section, we will discuss the image descriptors utilized by RTAB-Map to

implement fast image matching.

4.2 Image Descriptors

When Kinect v2 acquires a new image, the features of the image instead of the

image itself are saved. The descriptors that can describe the visual features are

called image descriptors and are formed from features such as colours, edges

and textures. RTAB-Map supports almost all image features implemented in

OpenCV. Speeded-Up Robust Features (SURF) used to be the default im-

age feature of RTAB-Map, but due to patenting issues the default image fea-

tures are now BRIEF+GFTT. GFTT is the abbreviation for Good Features

to Track, and BRIEF stands for Binary Robust Independent Elementary Fea-

tures.

4.2.1 SURF

SURF can be considered as a speeded-up version of SIFT. SIFT (Scale Invari-

ant Feature transform) was invented by David Lowe in 2004 [52]. As the name

suggests, SIFT features are features which stay invariant to image scaling and

rotation. Keypoints are first extracted from the image and then used to cal-

culate the corresponding descriptors. The image is convolved with Gaussian

filters at different scales. DoG (Difference of Gaussians) image is the differ-

ence of two nearby scale convolved with the image. Once the DoG image is

found, it will be searched for local maxima/minima over scale and space. Local

extrema will be considered as the candidates of keypoints. Later, the edges

in these potential keypoints will be removed using a method similar to Harris

corner detector. An orientation is assigned to each keypoint by calculating the

directions of gradient magnitude of neighborhood. Once we have the position,

scale and orientation of the keypoint, a descriptor needs to be assigned to it. A

16×16 pixel neighborhood around the keypoint is divided into 16 4×4 blocks.

Each block calculates 8 bin orientation histogram. A total 4×4×8 (128) bin

descriptor is created.
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Although the SIFT descriptor is widely used, it is also slow due to its

high dimension. As a speeded-up version of SIFT, SURF [53] follows the

overall steps of SIFT. Instead of using DoG to find keypoints which are scale

invariant, SURF utilizes a Box Filter to obtain different scale images and a

Hessian Matrix as a blob detector to find keypoints. Thanks to an integral

image, the speed of this process is fast. For orientation assignment, SURF uses

Haar wavelet responses in horizontal and vertical directions. The maximum

of sum of responses within a sliding orientation window of angle 60 degrees

is chosen as the dominant orientation assigned to the keypoint. Ultimately, a

total 4×4×4 (64) bin descriptors is created. The smaller storage size of SURF

reduces the computation cost of descriptor matching which makes SURF faster

than SIFT.

4.2.2 Binary Image Descriptor

Because SURF is patented (non-free), the default image descriptor now in

RTAB-Map is GFTT+BRIEF. Because BRIEF is a feature descriptor, it does

not contain the ability to find the features. Thus, RTAB-Map combines GFTT,

a feature detector, with BRIEF. GFTT is a corner detector proposed in late

1994 [54] which is a modified version of the Harris detector [55]. A corner is

defined as the intersection of two edges. The image gradient is computed first.

Each location in the image needs to be searched for the existence of a corner

(feature). Thus, a small window is used to grab an image patch for analyzing

and tracking the features. Within this window, displacement and deformation

are applied at the center of the window x. Then GFTT calculates the sum of

squared differences between the origin image patch and the shifted one. The

final approximation of the differences can be written in the form

S = dTZd

where Z is the structure tensor:

Z =

[
I2
x IxIy

IxIy I2
y

]
Z is a 2×2 symmetric matrix whose eigenvalues λ1 and λ2 can represent the

intensity variations in a window. In other words, eigenvalues can determine
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whether the area in the window is a flat region, an edge or a corner. If both

eigenvalues are greater than a predefined threshold, then it is considered as a

corner, and saved as a feature. The mechanism of GFTT corner detection can

be seen in Figure 4.2.

Figure 4.2: GFTT corner detection mechanism

After GFTT captures interest points, BRIEF creates a square patch and

applies Gaussian smoothing to it to reduce the sensitivity. Location pairs are

selected and the pixel intensity between them is compared. If the intensity

of the interest point is smaller than that of paired point, then the result is 1,

else it is 0. BRIEF provides three options for the numbers of location pairs:

128, 256 or 512. The corresponding storage size would be 16 bytes, 32 bytes

and 64 bytes. Recall the SIFT and SURF descriptors are 128-dimensional

and 64-dimensional floating point values. Each SIFT descriptor requires 512

bytes storage and each SURF descriptor requires 256 bytes. The default size of

BRIEF descriptor in RTAB-Map is 16 bytes which is obviously much smaller

than the 256 bytes of SURF descriptor. Due to the smaller size, BRIEF greatly

reduces the feature matching time with respect to SIFT or SURF.
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4.2.3 Nearest Neighbor Search

Once the image features of the frame are extracted and described as image de-

scriptors, these descriptors are quantized to an incremental visual vocabulary.

This process is done in STM (Short Term Memory). To decrease the time used

for finding the loop closure detection, RTAB-Map divides its memory into WM

(Working Memory) and LTM (Long Term Memory). The nodes in WM are

used for loop closure detection, while STM is used to store the current image.

Each new node created in STM is assigned a 0 weight and its visual words are

compared with the previous node. If the similarity is higher than a threshold,

the weight of the new node is increased to one plus the weight of the last

node, and the previous node is discarded. This way, if the robot is stationary,

new nodes are not added to WM. When WM reaches its memory threshold

or search time threshold, nodes with lowest weights and oldest timestamp are

moved into LTM (Long Term Memory) to preserve real-time operation.

The method utilized for comparing visual words between two nodes de-

pends on the type of image descriptor. The goal is to find nearest neighbor

and second-nearest neighbor of each descriptor according to the Euclidean

distance. If the distance ratio of closest match and second-closest match is

less than 0.8, then the closest match can be considered as the match for the

descriptor [52]. Researchers found by choosing the ratio to 0.8 can eliminate

90% of the false matches [52]. For high dimensional descriptor like SURF and

SIFT descriptor, using exhaustive search would be extremely time-consuming.

RTAB-Map uses randomized kd-tree to find the match of image descriptors of

one node with image descriptors of another node. Randomized kd-tree con-

structs a tree-structure searching model which can reduce the searching time

by 1/2n where n is the number of levels of the tree. For binary descriptors like

BRIEF, due to its small dimension, RTAB-Map chooses brute force method

for searching for matches. If the visual odometry node in RTAB-Map is used,

the features extracted are employed for both visual odometry and loop closure

detection.
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4.3 Loop Closure Detection

If the size of WM is too large, the searching time for loop closure detection will

exceed the time available to maintain real-time performance. Thus, a thresh-

old Ttimes is set to control the size of WM. As stated in Section 4.2.3 when the

searching time is greater than the threshold, the old locations with the lowest

weights are transferred from WM to LTM. Ttime is determined by the compu-

tational capacity. If a location is transferred to LTM, its corresponding visual

words will also be transferred. A location where a loop closure is identified,

its neighbors are not allowed to be transferred to LTM. Also, the locations

that are newly added into WM are ignored using a threshold Trecent = 0.2.

The transfer process helps keep the size of WM and vocabulary to save the

computational cost for finding loop closure and building the nearest-neighbor

index.

The discrete Bayesian filter is utilized to follow the loop closure hypotheses

of all nodes in WM, which determines whether the current location is from a

previously visited location or a new location [30]. If a loop closure occurred,

the full posterior is updated. The expression of the discrete Bayesian filter is:

p(St|Lt) = ηp(Lt|St)
tn∑

i=−1

p(St|St−1 = i)p(St−1 = i|Lt−1) (4.1)

where Lt consists of all the locations in WM and STM (Lt = L−1, ..., Lt) and

St represents the states of loop closure hypotheses. St = i means location Lt

finds its loop closure at past location Li. St = −1 means there is no loop

closure which occurred at location Lt. η is the normalization term.

If the hypothesis p(St = −1|Lt) is lower than the loop closure threshold

Tloop, and there exits a highest loop closure hypothesis p(St|Lt) occurred when

St = i, which means location Lt closes a loop at location Li. Later, the

rigid transformation (SE(3))is calculated based on the matched features from

two locations by RANSAC approach. When features are extracted, the depth

information of each feature is assigned to it. If the number of inliers exceeds

the threshold I, loop closure is accepted and a loop-closure link is created

between Li and Lt [56]. The weight of Li is added t the weight of Lt and reset
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to 0.

If the neighbors of location Li are in LTM instead of WM, then they are

transferred back to the WM. This procedure is called retrieval. A maximum of

two locations can be retrieved at each time, because loading locations from the

LTM is very time consuming. And neighbors in time are preferred for retrieval

more than neighbors that are linked by loop closure. For instance, if the current

location’s highest hypothesis is location Li, the highest loop closure hypothesis

of Li is Lr. The neighbors Li−1 and Li+1 will be retrieved first before the Lr

according to this priority guideline. Also, the retrieved locations might contain

some visual words that are not in the visual vocabulary. Thus, their visual

descriptors need to be determined whether they exist in the vocabulary or not.

The words that cannot find matches will be added back to visual vocabulary.

4.4 Graph Optimization Methods

Different graph optimization approaches can be considered as different so-

lutions for solving the problem (2.36). There are three major graph opti-

mization methods supported by RTAB-Map: TORO (a Tree-based network

optimizer) [26], g2o (general graph optimization) [27], and GTSAM (Georgia

Tech Smoothing and Mapping) [57].

Both TORO and g2o optimize the problem by finding the minimizer of non-

linear squares problem iteratively. They use different optimization methods,

TORO uses gradient descent, g2o uses Levenberg-Marquardt algorithm. But

the update equations from both methods are executable under the assumption

that the space of x is Euclidean. For SLAM problem, the variable belongs

to SE(3) group which is non-Euclidean. Therefore, they chose to express

the increment ∆x in the form that use a minimum representation. One can

represent an increment by a translation vector and the axis of normalized

quaternion with corresponding rotation angle. ∆x = (x, y, z), (ê, θ). And x

can be represented by translation vector and a full quaternion. The increment

will be first converted to the same form as pose and then added to it.
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4.4.1 A Tree-based Network Optimizer

Before TORO was proposed, most graph optimization approaches only con-

sidered two-dimensional pose space SE(2), but could not be used for the

three-dimensional pose space SE(3). One of the reasons for this is the non-

commutativity of rotations in the 3D case. When an error occurred in 2D

space, each node can be corrected easily by applying proportional of the er-

ror. However, due to the non-commutativity of 3-dimensional rotations, this

technique cannot be applied to the SE(3) case:

R(ϕ, θ, ψ) 6=
n∏
1

R(
ϕ

n
,
θ

n
,
ψ

n
) (4.2)

The technique TORO used for finding the minimizer in Equation (2.36) is

gradient descent (GD), a classic first-order iterative optimization algorithm.

GD updates poses along the negative gradient of F evaluated at the current

pose by the following equation:

xt+1 = xt 	 λ · JT
jiΩjieji︸ ︷︷ ︸
∆x

(4.3)

where 	 indicates this operation is performed on x ∈ SE(3) poses, meaning

∆x is transformed appropriately, and λ is the learning rate, which is adjusted

as the iterations go on, and Jji is the Jacobian of fji. The term JT
ji maps

the error into the parameter space, which is a linear mapping. This mapping

might increase the error when applying GD. To overcome this problem, TORO

separates the process into two steps: first update the rotational components

and then, update the translational components.

TORO decomposes the rotational matrix B that rotates the node into

the desired orientation based the error into a set of increments by using the

spherical linear interpolation (slerp) [58] and the eigenvalues of the covariance

of the constraints: B = B1:n = B1B2...Bn. The number of the increments is

the number of the nodes. Given the set of increments, we can calculate the

set of rotations An that update each rotation into the desired one.

∀nk=1 : Ak = RT
k (B1:k−1)TRkB1:k. (4.4)
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Once the matrices An are determined, the rotation matrices of each nodes in

the chain are updated by

Rk ← RkAk (4.5)

The method used to update of the translational component is more straight-

forward than that of rotation component. The error eji is distributed on each

node linearly. The fraction of the error assigned on each node depends on the

corresponding covariance which shows the uncertainty of front-end constraints.

According to the experiment result, this type of update can give a smooth de-

formation along the path, and has shown good performance on reducing the

error.

4.4.2 General Graph Optimization

In 2011, Kummerle et al. proposed a general framework for the graph opti-

mization problem called g2o [27]. In this approach, the error function (2.33) is

iteratively approximated by a first order Taylor expansion at the initial guess

x̆ = (x̆i, x̆j):

eji(x̆i + ∆xi, x̆j + ∆xj) = eji(x̆ + ∆x)

' eji + Jji∆x
(4.6)

The Equation (2.35) is updated by substituting its error term by above equa-

tion

Fji(x̆ + ∆x) = c+ 2b∆x + ∆xTH∆x (4.7)

where c =
∑

<j,i>∈C eT
jiΩjieji, b =

∑
<j,i>∈C eT

jiΩjiJji, H =
∑

<j,i>∈C JT
jiΩjiJji.

The above quadratic form of the cost function can be minimized by solving

the linear function which is introduced by Levenberg-Marquardt algorithm

(H + λI)∆x∗ = −b (4.8)

where λ is a factor which is used for controlling the step size. λ is modified at

each iteration, and is decreased if the new error is smaller then the previous

one. (details of update λ). The LM algorithm prevents the divergence problem

happened when Hessian matrix is not positive definite which guarantee that
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the direction of movement is a descent direction. The new guessing point is

updated by adding the increment Δx to the previous guess

xk+1 = xk +Δx (4.9)

In every iteration, the previous guess is used as the initial point and the

input of calculating the increment.

4.4.3 Georgia Tech Smoothing and Mapping

Both TORO and g2o perform the optimization by solving a non-linear least

squares problem (2.36). Unlike them, GTSAM expresses the optimization

problem as a factor graph. A factor graph is a type of probabilistic graphical

model, which is motivated by the hidden Markov model (HMM). Figure 4.3

shows a Bayesian network of a three time-step HMM. Measurements z1 z2 z3

are known. We can obtain the hidden statesX1 X2 X3 by finding the maximum

posterior probability P (X1, X2, X3|Z1 = z1, Z2 = z2, Z3 = z3).

Figure 4.3: A hidden Markov model over three time steps along the direction
where the arrow points. X represents the state of the robot. Measurements
Z depend only on the state. P (X0) and P (Xt+1|Xt) are prior probability and
transition probabilities, respectively

A factor graph contains the variables and related factors with probabilistic

information. The variables in GTSAM are the estimated poses. The factors are

the measured transitions with associated probabilistic information obtained

from odometry or from detected loop closures. The value of the factor graph
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is the product of all factors

f(X1, X2, ..., Xn) =
m∏
j=1

fj(Xj) (4.10)

where X are variables, f(X ) is a factor of the variable X . Figure 4.4 illustrates

an example factor graph. The red line represents a loop closure detected

between location x5 and x2. Except for factor f0x1 which is unary, the rest of

the factors are all binary. The term o in factors which relate successive poses

such as f1(x1, x2; o1) represents odometry measurements.

Figure 4.4: An example factor graph

The goal of GTSAM is to find the maximum a-posteriori (MAP) of the

function (4.10). The factors can be considered as the prior probabilities.

The method to obtain the MAP is to first assign an initial guess and then

search iteratively. Due to the nonlinear SE(3) dynamics of the problem as de-

scribed before, a nonlinear optimizer is needed. GTSAM chose the Levenberg-

Marquardt optimizer to find the MAP.

Among all three graph optimization approaches, the covariance of odom-

etry measurements is an important factor. Poorly estimated or unreasonable

covariance values may cause divergence or erroneous outputs. TORO is less

sensitive to unreasonable covariances. Based on experimental evaluations [31],

g2o is more likely to diverge or give poor estimates due to poor covariance

estimates compared to GTSAM. The RTAB-Map developer has compared the
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performances of the three graph optimization approaches, and found that GT-

SAM is slightly more robust than g2o in multi-session mapping [31]. Thus, we

chose to use GTSAM as the graph optimization method for our experiments.
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Chapter 5

Experimental Results

The first objective of this chapter is to compare the robot pose estimates gener-

ated by different odometries (Visual odometry and wheel odometry) using the

same motion estimator (EKF). Next, robot pose estimates generated by dif-

ferent filters (EKF and UKF) are compared. Finally, the robot pose estimates

generated by the chosen filter under different fusing modes in RTAB-Map with

the chosen odometry method are compared against the ground truth from the

VICON system.

5.1 Odometry Comparisons and Results

The raw sensor data is collected from the two different IMUs, the wheel en-

coders, and the Kinect v2 in the same experiment. The total of six topics are

saved to a .bag file as shown in the left side of Figure 5.1. Next, RTAB-Map

is run in offline mode using the different odometry inputs. As can be seen in

right side of Figure 5.1, two wheel odometries are obtained from EKF nodes

corresponding to the two IMU units, while visual odometry is obtained from

the rgbd odometry node in RTAB-Map.

5.1.1 Comparisons of different odometries

Each odometry mentioned above is fed separately into RTAB-Map. This is

done by modifying the launch file of RTAB-Map to listen to the specified topic

while replaying the .bag file. After the .bag file playback is finished, RTAB-

Map has generated a grid map and a 3D map for the current odometry, which
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Figure 5.1: Six topics representing raw input data. First two topics are from
Jackal’s IMU and wheel encoders. The third topic is published by the KVH
IMU. The last three topics are raw image data from Kinect v2. Two EKF
nodes fuse data from different IMU with the same wheel encoder data

are saved as files. Since the image information used for each session is the

same, the quality of the odometry decides the quality of the estimates. We

first compared trajectories of Jackal estimated from the three odometries with

that from VICON, which is shown in Figure 5.2. The jackal is controlled by

PS4 controller with average speed of 0.05 m/s maximum speed of 0.1 m/s.

The unit of length in ROS is meter. The time published in ROS can reach

nanoseconds accuracy.

We compare each element of pose (x, y and yaw) from odometries and

VICON in Figure 5.3.

Finally, the RMS (Root Mean Squared) errors of each pose element are

given in Table 5.1 where r stands for radian, m stands for meter. All the

raw measurement data are calculated through filters and we saved filtered

estimated trajectory data from ROS. ROS publishes maximum 14 decimal

length data. For RMS errors, we saved 5 decimal data.

As can be seen from the Figure 5.2, all three odometries diverge over time,

and visual odometry deviates the most from the ground truth. The two wheel-

derived odometries show similar performance, although wheel odometry with

the KVH IMU shows a better consistency in terms of numerical results (Table

5.1): the RMSE of position x from wheel odometry with the KVH IMU is

0.05 m smaller than that from wheel odometry with the Jackal IMU, although

the RMSEs of position y and angle yaw are close. Based on these odometry
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Figure 5.2: Trajectories of Jackal generated from different odometries and
VICON motion capture system

Table 5.1: Root mean squared error results of the pose estimation errors from
the three odometries.

Odometry Input Pose Root Mean Squared Error

Wheel Odometry
(KVH IMU)

x 0.27562 [m]
y 0.15823 [m]

yaw 0.09554 [r]

Wheel Odometry
(Jackal IMU)

x 0.32004[m]
y 0.15466 [m]

yaw 0.09355 [r]

Visual Odometry
x 0.71193 [m]
y 0.46460 [m]

yaw 0.09938 [r]

comparison results, we can predict the quality of the map generated from each

odometry will be:

WO (KVH IMU) > WO (Jackal IMU) > VO

where WO means wheel odometry, VO means visual odometry. Since there
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Pose from different odometries compared against VICON ground
truth and corresponding error plots
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is no single criteria to evaluate the quality of a map, among all the intuitive

methods proposed in [59], evaluating the accuracy of the poses estimated by

the SLAM system (RTAB-Map) is the most useful approach. Thus we will run

RTAB-Map in localization mode to estimate the poses of the robot under each

odometry while employing the corresponding map generated in this section.

5.1.2 Odometry Comparisons Through RTAB-Map

Instead of simply extracting pose data from the earlier mapping experiments,

we ran new experiments while employing the map we obtained from the pre-

vious experiment, saving the results to another .bag file. The same topics as

before (as shown in Figure 5.1) were logged. For each session, RTAB-Map was

run in localization mode with each odometry input in turn, using the map

created through the corresponding odometry in the previous experiment. The

resulting pose estimates were saved to a .bag file, then extracted to a .csv

file. The resulting trajectory estimates of the Jackal are illustrated in Figure

5.4. We also show plots of the state estimates [x,y,yaw] from each odome-

try compared with those from VICON in Figure 5.5. Table 5.2 shows the

corresponding RMS errors.

Table 5.2: Root mean squared error results for different odometries against
ground truth

Odometry Input Pose Root Squared Mean Error

Wheel Odometry
(KVH IMU)

x 0.075815 [m]
y 0.103185 [m]

yaw 0.044472 [r]

Wheel Odometry
(Jackal IMU)

x 0.086022 [m]
y 0.126301 [m]

yaw 0.035164 [r]

Visual Odometry
x 0.436703 [m]
y 0.247331 [m]

yaw 0.066772 [r]

Due to the high publishing frequency of the VICON system, the corre-

sponding trajectory looks like a smooth continuous line. The remaining three
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Figure 5.4: Trajectories of the Jackal estimated by RTAB-Map using three
different odometries and VICON motion capture system

trajectories are sparse and discrete because the output rate of the SLAM so-

lution is around 1 Hz. If the trajectory estimated by RTAB-Map is close to

the one from VICON, then we can conclude the corresponding map correctly

models our lab. As can be seen in Figure 5.4, the trajectory obtained from vi-

sual odometry has the least consistency relative to the VICON ground truth.

The estimates from both wheel odometries marked in green and yellow are

close to the ground truth. This result confirms the assumption we made above

that the quality of the odometry input determines the quality of the map.

A low publishing rate is one of the reasons visual odometry shows poor

results. The computer onboard the Jackal does not contain a Graphics Pro-

cessing Unit (GPU). Thus iai kinect cannot use GPU acceleration methods

to perform visual odometry calculations. The frequency of visual odometry

estimates in our experiment is around 4 Hz. Thus when the mobile robot

moves fast, this leads to odometry loss and inaccurate outputs. On the other

hand, wheel odometry can achieve a 50 Hz data publish rate.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Pose estimates from RTAB-Map with different odometry inputs
compared with VICON ground truth and corresponding error plots

As can be seen in Figure 5.4, the Jackal started at the point (0,0) and

ended around point (0.78,-0.11). Up until the point denoted by the black

arrow, the wheel odometry fused with the Jackal’s (old) IMU yields a slightly
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more accurate trajectory than the wheel odometry fused with the KVH (new)

IMU. Later, the wheel odometry fused with the new IMU is closer to the

ground truth. From the numerical results shown in Table 5.2, wheel odometry

with the new IMU gives smaller RMSE values in both x and y positions than

the wheel odometry with the old IMU. Figure 5.5 represents the pose estimates

(x, y, yaw) from the three odometries compared against the VICON ground

truth. Position x and position y shown in Figure 5.5 (a) and (b) illustrate that

the position estimates obtained from visual odometry have the worst accuracy

as compared with the other two wheel odometries.

In summary, we have shown the performance of RTAB-Map pose estimation

under different odometry inputs, and how the quality of the IMU affects the

map generated by RTAB-Map. In the end, we choose visual odometry as

the input for RTAB-Map, since we intend to prove that one can still obtain

improved state estimates under sensor fusion even if the input data is lousy.

Also, since wheel odometry will later be used as one of the inputs of the EKF

filter, also using it as the input of RTAB-Map would lead to violating the EKF’s

assumption of statistical independence of the process and measurement noise,

leading to erroneous results.

5.2 Filter Comparison Results

In Section 2.1, we introduced two filters in the robot localization package:

EKF and UKF. Both of them can be applied in the nonlinear dynamics case.

But when the state model functions f and h are highly nonlinear, the EKF

can give poor performance due to its reliance on linearization [43]. Also, the

UKF can obtain more accurate estimates of the mean and covariance compared

with the EKF under some conditions. In our experiments, we compared the

performances of EKF and UKF for estimating the global pose of the Jackal.

Figure 5.6 illustrates the estimated Jackal trajectories obtained form EKF and

UKF compared with VICON ground truth. The trajectories from EKF and

UKF are overlapping with each other. Both state estimators that available

in robot localization package show close performance, thus we chose the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Trajectories of Jackal obtained from two different state estimation
filters (EKF, UKF) and VICON motion capture system in six trials

default state estimator EKF as our estimator for later experiment.
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5.2.1 Configuration for State Estimator

In our experiments, we implemented sensor fusion by fusing global pose esti-

mates from RTAB-Map with onboard sensor data through an EKF estimator.

We seek to find a configuration which yields good state estimates. The data

from the onboard sensors (wheel odometry and IMU) that we will fuse in the

EKF node are the same as those in the local EKF node (Figure 3.5). Wheel

odometry provides both pose and twist data, while the IMU provides atti-

tude and angular velocity information about the Jackal. The position data

(X, Y, Z) from wheel odometry diverges over time and is thus considered un-

reliable. Thus they are modified into velocities when fused into EKF. Our

experiment results show that fusing full pose data and fusing only position

data from RTAB-Map into EKF lead to similar performances. Figure 5.7

shows the trajectory estimation results of the Jackal in three trials.

(a) (b)

(c)

Figure 5.7: Trajectories of Jackal from EKF-based state estimator with two
different configurations in three trials (a), (b), (c)
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The publishing frequency of RTAB-Map estimated poses is around 1 Hz,

and the orientation data usually has a high corresponding covariance. The

EKF estimator thus puts more trust into the orientation data from the IMU

with high frequency. Thus fusing only position data versus full pose data from

RTAB-Map shows little difference. The flow chart of EKF estimator process

is shown in Figure 5.8.

Figure 5.8: Flow chart of measurement of estimation process

5.3 Global Sensor Fusion Results

In Section 3.5, we mentioned that by setting the parameters “ relative” and

“ differential”, the pose data input into the EKF estimator node can be modi-

fied to start at the current frame. The pose data from RTAB-Map is generated

relative to the world frame defined within RTAB-Map. Thus these poses need

to be modified before being passed to the EKF.

5.3.1 Results of differential and relative

By setting the parameter “ relative” to “true”, the EKF estimator converts the

input pose data to a pose relative to the first input pose data point. When the

parameter “ differential” is enabled, the absolute pose data from RTAB-Map is

integrated differentially. Both parameters cannot be set to “true” at the same

time. The trajectories of VICON, RTAB-Map and EKF fusion-derived results

of 6 trials are shown in Figure 5.9. Pose estimates from EKF results compared

with VICON and corresponding error plots can be found in Appendix A. Table
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5.3 shows the RMSE of each trial and the average.

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Pose outputs from EKF fusion and RTAB-Map compared with
VICON ground truth

Comparing the estimated trajectories using the two settings, those ob-

tained from “ relative” have discrete jumps in position, while those from
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Table 5.3: Root mean squared error results for EKF fusion against VICON
ground truth

Parameter Position x [m] Position y [m] Yaw angle [r]

Trial1
EKF ( differential) 0.1396 0.1335 0.01460

EKF ( relative) 0.2740 0.1276 0.01461

Trial2
EKF ( differential) 0.1781 0.1541 0.01439

EKF ( relative) 0.3172 0.1671 0.01448

Trial3
EKF ( differential) 0.1854 0.2071 0.01612

EKF ( relative) 0.2796 0.1974 0.01614

Trial4
EKF ( differential) 0.1765 0.1819 0.01886

EKF ( relative) 0.2102 0.1497 0.01889

Trial5
EKF ( differential) 0.1798 0.1940 0.01760

EKF ( relative) 0.3083 0.1504 0.01762

Trial6
EKF ( differential) 0.1518 0.1808 0.01475

EKF ( relative) 0.3442 0.1642 0.01478

Average
EKF ( differential) 0.1685 0.1752 0.01605

EKF ( relative) 0.2890 0.1594 0.01609

“ differential” are continuous and smoother. The difference between “ relative”

and “ differential” can be understood as the difference between fusing posi-

tion and fusing velocities in an EKF estimator. Because the absolute position

is input into the EKF, the trajectory obtained from “ relative” has discrete

jumps. When “ differential” is set to true, all the input sensor data input into

the EKF do not contain absolute data: linear velocities are provided by wheel

odometry and RTAB-Map, while rotational velocities are provided by IMU.

In other words, the pose estimates are calculated from velocities only. From

RMSE results of two different settings, results from “ differential” show bet-

ter results on position x. “ relative” gives slightly better results on position

y. Finally, both settings show close performances on yaw angle. When set

“ different” to true, its trajectories are smoother and closer to VICON ground

truth than the conditions when “ relative” is enabled. However, using abso-

lute poses can guarantee that the estimated pose does not diverge over time.

But the quality of the EKF pose estimates relies on the quality of the absolute

pose fused into it. If the RTAB-Map generates poor global poses, then there
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is a high chance for the EKF estimator to give poor estimates.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we started by reviewing inertial navigation systems, which are

limited by the accumulation of estimation error. Aided navigation, in particu-

lar GPS-aided navigation, can be used to update state estimates from inertial

sensors and bound this error. We then introduced a navigation system which

does not rely on an external reference system such as GPS. This design is

called SLAM, considered as a fundamental problem in robotics. The objec-

tive of our thesis was to combine the SLAM solutions with inertial sensors to

implement SLAM-aided navigation which could give better results than just

SLAM or inertial navigation.

We compared SLAM solutions from two different categories, filtering and

smoothing. We chose graph-based SLAM which belongs to the smoothing cat-

egory as our SLAM solution for experiment. Among the open-source SLAM

solutions, RTAB-Map was chosen for our project. The robot we used in our

work is a commercial wheeled platform called Jackal designed and manufac-

tured by Clearpath Robotics. Next, we successfully implemented RTAB-Map

on the Jackal using only a Kinect v2 as the depth sensor, and we studied the

influence of odometry input choice on the performance of RTAB-Map. The

choice of input odometry was found to have a great effect on estimation ac-

curacy. The pose estimates obtained from RTAB-Map were then fused with

inertial measurements from the robot’s wheel encoder and IMU sensors using

a state estimator. There are two types of state estimators available, EKF
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and UKF, and we compared their performance and chose EKF based on our

results. We investigated the effects of fusing either full pose or just posi-

tion from RTAB-Map, as well as tuning various parameters. Orientation data

from RTAB-Map was found to have little influence on the final results, and

both variations showed good fidelity against ground truth information obtained

from a Vicon indoor motion capture system. We thus successfully implement

SLAM-aided navigation on a mobile robot under the following conditions:

• Mobile robot Jackal as the base platform initially mounted with IMU,

wheel encoders, GPS and computer

• Kinect v2 as the only external sensor

• Robot is running at average speed of 0.05 m/s, maximum speed of 0.1

m/s

6.2 Future Work

Future work can include adding the ROS package move base to our system.

This package provides the robot with the ability to move itself to a given goal

in the world map while avoiding obstacles. It can be considered as a criteria

to evaluate the quality of the map created by RTAB-Map by assessing how

well the robot is able to maneuver in complex environments.

From experimental results, we found that the quality of odometry greatly

affects the performance of RTAB-Map. The low output rate of visual odometry

might be the reason of causing the poor performance of RTAB-Map. In the

future, we could investigate these issues and improve the situation by adding

an extra CPU, GPU or choosing a different algorithm for visual odometry.

Finally, long-term and large-scale indoor testing, outdoor testing and 3D

(SE(3)) condition should be considered. Kinect v2 should be changed to other

sensors that can provide depth information during daytime since depth camera

in Kinect v2 will be blinded by direct sunlight [60]. In our experiments, the

VICON motion capture system provided the ground truth of robot pose, but
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this confined testing to a small indoor lab, which is why we did not run large-

scale indoor or outdoor test. However these tests would allow to assess the

memory-management feature offered by RTAB-Map.
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Appendix A

Pose Elements Comparisons
Results of EKF Fusion

Following figures are the pose estimates from EKF fusion compared with VI-

CON and corresponding error plots of 6 trials.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Pose estimates from EKF fusion results compared with VICON
and corresponding error plots of trial 1
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Pose estimates from EKF fusion results compared with VICON
and corresponding error plots of trial 2
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Pose estimates from EKF fusion results compared with VICON
and corresponding error plots of trial 3
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Pose estimates from EKF fusion results compared with VICON
and corresponding error plots of trial 4
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: Pose estimates from EKF fusion results compared with VICON
and corresponding error plots of trial 5
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: Pose estimates from EKF fusion results compared with VICON
and corresponding error plots of trial 6
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