
 
 
 
 

Towards Real-Time Simulation of a Finite Element Generic Lumbar Spine 
Model  

 
by 

 
Nathanial Kenneth Shiyoso Maeda 

  
  

 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Doctor of Philosophy 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mechanical Engineering 
University of Alberta 

 
 
 
 
 
 

  
 

© Nathanial Kenneth Shiyoso Maeda, 2018 
  



ii 
 

Abstract 

Real-time simulation of biomechanical models has provided exciting potential for improving 

the outcomes of some medical interventions by allowing clinicians to visualize the 

displacements and strains of biomechanical tissues in real-time during the intervention. 

Through real-time visualization, the clinician could plan the intervention quicker and adjust 

the intervention as they operate in response to the displacements and strains, in addition to 

improving the training of clinicians by using realistic biomechanics in simulation scenarios. 

Although investigated in other areas of medicine, no study has attempted to create a real-time 

simulation of the spine for implementation into spinal interventions, despite the biomechanical 

nature of many spinal conditions and their treatments. One significant barrier for typical FE 

spine models is that they require huge amounts of memory and computation time. Considering 

the lack of developments towards real-time spine simulation and the numerous possible 

applications, initial work should focus on development of a generic lumbar modelling 

methodology from which application-specific models may be derived. Also, given the 

difficulty of FE contact formulations in other real-time biomechanical simulations, facet 

contact is a complex and difficult problem, and thus, it requires a separate investigation in 

itself. Therefore, the proposed thesis aims to initiate and develop improvements to clinical 

applicability of FE spine models by increasing computation speed close to real-time rates. To 

achieve this primary objective, the research was broken into three studies: create and validate 

a FE lumbar spine model for gross physiologic movements, to ensure generalization of the 

current work, using simpler element types and materials than conventional models (Study 1); 

develop real-time FE techniques for spine models using graphic processing unit (GPU) in 

conjunction with the CUDA language (Study 2); and apply the real-time FE techniques to the 
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FE lumbar spine model without facet contact (Study 3). In Study 1, a proposed FE lumbar 

spine model was created using conventional methodologies but comprised of purely tetrahedral 

elements and relatively stable material properties. In comparison to a conventional FE lumbar 

spine model using ANSYS (a conventional FE program), the proposed model exhibited similar 

accuracy and improved parallel computation capability with approximately 1.6X faster speeds 

for physiological movements. Then, in Study 2, a custom CUDA program and a simple cube 

model, of a similar size and material to the proposed spine model, were generated to develop 

and evaluate numerous parallel real-time FE techniques. In comparison with ANSYS, the 

CUDA program demonstrated a computation speed-up of approximately 3-4X with similar 

accuracy. Lastly, in Study 3, the proposed model from Study 1 (but without contact conditions) 

was implemented into the CUDA program from Study 2 (now the CUDA model), in addition 

to adding a novel composite element for the annulus fibrosus. In comparison with the 

conventional ANSYS model, the CUDA model demonstrated similar accuracy with 

approximately 20.9X speed-up versus the conventional model, in which the CUDA model’s 

computation time was approximately 12 seconds for flexion and lateral bending. Although not 

real-time, this result represents possibilities toward creating application-specific spine models 

that may be implemented into clinical scenarios. Still, further work is necessary to reach that 

long-term real-time goal, including the development of real-time FE facet contact. Future 

research should also focus on improving the linear solver through efficient GPU 

implementation and testing the CUDA program on better GPUs with more cores. Altogether, 

the proposed thesis demonstrated significant advancements towards improving the 

computation speed, and thus real-time clinical use, of FE spine models.  
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Preface 

The work in this thesis was arranged into five Chapters. In Chapter 1, we present the thesis 

topic, the motivation driving the thesis work, a literature review, and thesis objectives. 

Chapters 2 through 4 are each under review or in preparation for submissions as journal 

articles. In Chapter 5, an overall discussion of the work including conclusions of the thesis and 

areas of future work are presented. 

Chapters 2 and 3 are under review at and Chapter 4 is in preparation for submission to 

International Journal for Numerical Methods in Biomedical Engineering as the target journal. 

In Chapter 2, we present the development of a novel lumbar spine model for fast parallel 

computation, while in Chapter 3, the development of real-time finite element techniques for 

spine models is described. The implementation of the real-time techniques from Chapter 3 into 

the novel spine model from Chapter 2 is presented in Chapter 4. Therefore, the publication 

plan involves submission of Chapters 2 and 3 first, then upon acceptance, Chapter 4 will be 

submitted. The author’s contribution to each Chapter includes: model development and testing, 

establishment of the mathematical formulations, program development and testing, analysis 

and interpretation of numerical results, and manuscript preparation. 
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Chapter 1   Introduction 

1.1  Motivation 

Real-time biomechanical simulation is a fast-growing and exciting area of research. Some 

algorithms have already instigated massive computation speed increases for various 

biomechanical applications [1]–[3]. Likewise, virtual reality simulators for training purposes 

exhibit promising results, in which prospective application of real-time soft tissue deformation 

would greatly improve the quality of virtual reality simulation [4]–[6]. Studies investigating 

real-time biomechanical simulation are often motivated by medical errors in surgery [7], [8] 

resulting from poor training or techniques [9]. These researchers share a vision of providing 

clinicians with the ability to visualize the results of biomechanical simulation during the 

procedure [1], which would allow the clinician to evaluate the deformation at each stage and 

adjust their intervention as issues arise during the procedure. Considerable work has been 

conducted for real-time simulation of numerous biomechanical scenarios, including estimation 

of brain shift during image-guided neurosurgery [10] and hepatectomy [11]. Other real-time 

simulation work has developed general computational techniques for usage in applications 

involving biological soft-tissue deformation such as advanced surgical simulations [2]. Yet, 

current research into real-time simulation involving spine intervention scenarios is lacking.  

Medical and therapeutic procedures involving the spine are among the most common 

interventions. Some of these procedures attempt to remedy the growing epidemic of 

mechanical back ailments. For example, back pain is one of the most common medical 

ailments in developed populations. Up to 70% of people in developed countries suffer from 

back pain at some point in their lives [12], in which quality of life is affected via inhibited 
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activity and decreased worker productivity. Current treatments for back pain include exercise, 

spinal manipulation therapy (SMT), and surgery. SMT is a non-invasive treatment involving 

force application to the patient’s spinal vertebrae, and although it is deemed relatively safe, 

SMT sometimes causes adverse events at a rate of up to 30% [13], [14] ranging from headaches 

and nausea to paralysis and death in extreme cases (for neck manipulations in particular) [13]. 

As another example of mechanical back ailments, adolescent idiopathic scoliosis (AIS) is a 

three-dimensional spinal deformity characterized by an unusual spinal curve that affects 2-3% 

of children [15], in which the etiology of AIS is not well understood. Apart from cosmetic 

concerns, it can have debilitating muscular and cardiovascular effects especially in severe 

cases. AIS is often treated using a scoliotic brace to straighten the spine, but brace success is 

greatly dependent on the orthotist’s training and skill [16]. Generally, if fails for AIS or for 

severe cases of back pain (with a clear pathological cause), surgery is required to correct the 

spinal abnormalities. Yet, spinal surgery carries considerable cost and risk, in which adverse 

events occur at a rate of 2.4 to 7% [17], [18]. These examples, among others, drive the need 

for improved treatment of mechanical back ailments. 

Given the mechanical nature of medical interventions for back pain and scoliosis, any 

improved treatment methods should involve spine biomechanics. For example, prevention of 

adverse events during SMT relies directly upon how the spinal tissues deform in response to 

applied forces. The clinician could avoid unintended movements (i.e. potentially damaging) of 

the spine if they could visualize the spine’s deformation as they apply the force (i.e. in real-

time). As another example, spine straightness during bracing and surgical treatments of AIS 

also depends upon the spine’s biomechanical response during the intervention. The clinician 

has no visual tools to quickly evaluate the straightness of the spine and adjust applied forces 
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to ensure spine straightness while forming the brace or implementing the surgical rods. Clearly, 

effective real-time spine biomechanical feedback (in the form of displacements and strains) to 

the clinician is lacking. Currently, few technological aids exist for clinicians because the 

development of patient-specific technologies is very difficult. Clinically exciting ideas 

developed through extensive research, such as spine biomechanical models, are often not 

clinically integrated. Reasons for the lack of translation to practice for spine models are 

multifactorial, consisting of three main barriers: development and validation of patient-specific 

models; virtual interaction between the clinician and computational model; and real-time 

computation speed at a reasonable cost. Since none of these barriers have yet been 

appropriately addressed in the literature for general spine applications, the proposed thesis 

focuses on undertaking only the real-time simulation barrier. Once completed, the other two 

barriers can be more readily addressed, similar to other real-time biomedical simulation 

developments [10], [11].  

Considering the various potential applications that would benefit from a real-time spine model 

plus the complexities of real-time simulation, real-time simulations techniques should be 

developed using a general model first before applying to specific applications. Once developed 

for generic lumbar modelling methodologies, the real-time techniques can be integrated into 

application-specific spine models. For example, a group of spine researchers investigating 

interventions to various spinal pathologies [19], [20] are interested in the exciting clinical 

potential that a real-time model (or at least a fast model) would bring to each of their clinical 

applications. In application, each research group would generate another specific model using 

the proposed generic methodology and validate each specific model to fit each of their 

particular needs. For the purposes of this thesis, a “generic model” refers to a model developed 
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using generic metholodologies which are common within the generation of many application-

specific models, and that the model was validated for displacements against gross physiologic 

movements including flexion, extension, lateral bending, axial rotation, and compression. 

Clinically-usable virtual simulations of patient-specific spine models offer great potential for 

improving clinician training and treatment outcomes. Although far from realization, 

application of a real-time virtual spine model into practice could potentially reduce the 

occurrence of adverse events by allowing the clinician to evaluate the spine’s displacements 

and strains during the procedure, then adjust their technique to account for any unintended 

movement may have that occurred. Yet, in order to approach that far-away point, real-time 

simulation techniques specifically designed for a generic lumbar spine model must be 

developed, to ensure that the proposed results and methodologies apply to the greatest number 

of possible application-specific spine models, before any specific applications can be 

considered. Hence, clinical integration of biomechanical spine simulations is the long-term 

vision of the current work that would provide significant impact on public health. Also, 

addressing the real-time barrier requires more scope that current thesis can provide; and 

therefore, the proposed thesis focuses on developing and testing real-time simulation 

techniques for a generic lumbar spine model as novel progress in the field of real-time spine 

simulation. 

The proposed thesis presents foundational starting steps toward potential technological 

improvements to spinal interventions. As already done in other areas of medicine [11], [21], 

the proposed work initiates new development of real-time biomechanical simulation for spinal 

interventions. 
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1.2   Literature Review 

The proposed thesis presents a multidisciplinary approach; and therefore, literature from 

numerous areas must be reviewed. These areas include: Lumbar Spine Finite Element 

Modelling (Section 1.2.1); The Finite Element Method – Total Lagrangian Formulation 

(Section 1.2.2); GPU Computation and Programming (Section 1.2.3); GPU Computing for 

Finite Element Analysis (Section 1.2.4); and Real-Time Simulation (Section 1.2.5).  

1.2.1 Lumbar Spine Finite Element Modelling 

Many experimental studies have investigated spine biomechanics for various purposes [22]: to 

improve understanding of how the spine responds to loading [23], including stability; to 

develop new implant designs [24]; to study the effects of degeneration [25], [26]; to analyze 

various physiological movements and physical activities [27], [28]; and to study the effects of 

various spinal treatments [20], [29]. Yet, numerous testing scenarios cannot be performed 

experimentally, such as testing of implant designs before production and extreme 

displacements for example. Acquiring in vivo measurement data of the spinal tissues in living 

participants has procedural and ethical difficulties, in addition to current technological 

limitations in which medically unnecessary and invasive procedures are sometimes required to 

place the sensors. To circumvent these difficulties, researchers have developed finite element 

(FE) models to simulate the displacements and strains exhibited by the lumbar spine during 

biomechanical loadings. Numerous patient-specific models have been validated against 

experimental data and effectively predicted the response of individual lumbar spines to loading 

[30]–[38]. Subsequently, FE spine modelling has become a powerful tool for visual simulation, 

and it has greatly improved spine biomechanics knowledge. Early models established that 

spine stiffness increases with increased loading [39] and the primary load-bearing components 
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are the IVD and facet joints [40]. Although the vertebral body carries most axial load in the 

spine, particularly during standing posture, the posterior elements, especially the facets, exhibit 

a great influence on loads in lateral-medial and posterior-anterior directions [40]–[42]. Despite 

this, some studies have successfully developed models without contact for their specific 

applications [43]–[45]. As the spine modelling field developed, some studies determined that 

the ligaments play a significant role in spine biomechanics. El-Rich et al. [46] proved that 

forces in the ligaments are important during fast movements, and that fracture can occur first 

in the pedicles during fast movements. Although significant progress has been made using FE 

spine models, validation of FE biomechanical models against in vitro and in vivo data remains 

a challenge for current and future investigations of FE spine models in clinical situations. 

Dreischarf et al. [30] studied a number of full lumbar models and determined that their median 

response most accurately predicted in vitro and in vivo spine response to gross physiologic 

loadings, yet further study is required with respect to validation depending on the specific 

clinical scenario. Regardless, later models built upon the early models by expanding their 

methodologies to include more complexity, such as viscoelasticity and muscles [46], [47] 

depending on their application. Although they are more complex, many current FE models still 

refer to the methodologies of early spine modelling studies.  

Given these previous developments, much of the progress in the modelling of gross lumbar 

spine biomechanics can be attributed to the generation of lumbar spine models using generic 

methodologies that explored spine displacements and strains in response to physiologic 

movements (i.e. flexion, extension, lateral bending, axial rotation, and compression) [30], [44], 

[46], [48]–[50]. Many application-driven studies have relied upon the generic methodologies 

used to build these lumbar spine models for generation of their application-specific models. 
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For example, Schmidt et al [31], [49], [51] built their model for testing lumbar disc arthroplasty 

from numerous previous sources [38], [50], [52] especially their material properties, annulus 

fibre distribution, vertebral modelling, and element formulations. Other examples, among 

many more, include Li et al [53] from similar sources [49], [50], [54] for application to 

intervertebral cages and scoliosis models [55], [56] acquiring their facet contact and some 

material properties from previous studies [50], [57].  

Although researchers have validated their models against experimental data for certain 

applications and made significant progress in characterizing the lumbar spine’s response to 

applied loading, their models exhibit some limitations, which reveal potential barriers for 

directly integrating FE models into clinical scenarios or clinician training, depending on the 

application. Addressing any of their limitations will not improve applicability of FE lumbar 

models into their respective real-time clinical scenarios (including clinician training), unless 

they can achieve real-time computation speeds. Nonetheless, one example of an FE spine 

model used clinically to directly improve clinical outcomes is scoliosis bracing [58]. 

Computational models of scoliotic spines have given significant insights into the biomechanics 

of AIS and bracing techniques [59]. Lately, computer aided drafting software has been used in 

conjunction with FE modelling software to improve brace design methods [58].  Yet again, 

this novel method is currently too time-consuming for the orthotist to use practically in the 

clinic. 

As such, a significant restriction of current FE lumbar spine models is their computation speed, 

in which a single analysis requires substantial amounts of time (i.e. hours to weeks). Although 

many FE spine models have been validated against experimental data and some have been 
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developed for use in other clinical situations, such as torso brace design for scoliosis treatment 

as described above [58], none have yet been integrated into other real-time clinical scenarios 

such as SMT or spinal surgery for example. Significant limitations, especially computation 

speed, prevent the usefulness of FE models in such clinical situations, where they could 

provide the real-time biomechanical understanding to improve spinal interventions. Few 

researchers to date have attempted to create a clinically-usable real-time FE spine model [60]–

[62] that exhibits graphics update speeds nearing real-time (approximately 30 hertz) [2]. 

Therefore, although spine biomechanics and back pain have been studied extensively both 

experimentally and numerically, there still exists a large gap between modelling and real-time 

clinical application.  

To ensure the generality of the current work towards prospective lumbar spine models for 

clinical applications, a generic lumbar spine model is targeted in order to develop real-time 

simulation techniques that may allow many specific spine models to potentially be used in 

clinical applications. All aspects of FE spine model generation must be examined from various 

models in literature to develop an effective and real-time generic lumbar spine modelling 

methodology for clinical use. The general procedure of spine model development may be 

found in Figure 1-1.  
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Figure 1-1: Development of an FE lumbar spine model. Specimen image acquired from [63]. 
The CT images depict a pig spine vertebra, while the model images show a human lumbar 
spine. 

 

The FE lumbar models described in the ensuing paragraph are mostly from studies that 

investigated and were validated against general physiologic movements with applications to 

back pain, spine degeneration, or spinal implants. Kinematic models were not included here as 

they are applicable to only a small set of applications compared to FE ligamentous lumbar 

models. The generic modelling methodologies presented by these FE lumbar models are 

typically used as a basis to build application-specific models, as described in previously. 

Most generic FE lumbar spine modelling methodologies involve generation of seven distinct 

structural components: cancellous bone, cortical bone, posterior elements, annulus fibrosus, 

nucleus pulposus, cartilaginous endplate, and seven ligaments. The cancellous bone 

encapsulated by the cortical bone comprised the vertebral body, and the annulus fibrosus 
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consisted of a solid matrix embedded with fibres. Some models included a bony endplate on 

the vertebral body as well [51], [64]. Typically, participants or cadavers underwent a computed 

tomography (CT) or magnetic resonance imaging (MRI) scan of their lumbar spine [65], and 

the resulting image stacks from the scans were analyzed using image analysis software (such 

as Simpleware or Mimics) to create three-dimensional solid (virtual) models of the vertebrae. 

During image analysis, the images were filtered, and the model was smoothed to ensure good 

quality FE elements during mesh generation. After generating the vertebrae, cartilage endplates 

of 0.5 to 1.0 mm thickness (plus bony endplates for some models) were created on the inferior 

and superior surfaces of the vertebral bodies [66], [67]. Then, the IVDs filled in the spaces 

between the vertebral bodies, where the nucleus pulposus was surrounded by multiple layers 

of annulus fibrosus. For some models, the nucleus pulposus was centered within the 

intervertebral disc [41], [68], but for other models, its center was moved some small distance 

(usually 3.5 mm) dorsally [44], [51]. For mesh generation, all models employed entirely 

hexahedral elements for the annulus fibrosus with mostly hexahedral elements mixed with 

some tetrahedral elements for the nucleus pulposus, endplates, vertebral bodies, and posterior 

elements [30], [46]. Most models used shell elements for the cortical bone [46] while others 

used solid hexahedral/tetrahedral elements [51]. The ligaments and fibers were usually 

generated with one-dimensional tension-only spring elements [30], while some recent models 

generated the ligaments using two-dimensional membrane elements [31], [46]. Since the 

critical biomechanical components of the spine are the IVD and facet joints [40], almost every 

model paid particular attention to these areas. In most models, the annulus fibrosus was 

modelled like a composite material with uniaxial reinforcement: spring elements for the fibers 

connected the corner nodes of the hexahedral elements that comprised the annulus matrix [30]. 
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Alternatively, some models overlaid the hexahedral matrix mesh with fiber membrane 

elements, while others defined the combined annulus matrix and fibers with composite 

elements which were formulated using composite material continuum theory [69]. Effectively, 

modelling the fibers as separate elements results in the stiffness contribution of the fibers being 

superimposed on the stiffness of the matrix. With regards to fiber angles within the annulus 

matrix, some models implemented the fibers at approximately 30° [39], [68] while others 

varied the fibers ventrally from approximately 24° at the midplane to 46° at the dorsal side 

[51]. The stiffness contribution of the fibers also typically varied from stiffer in the outer layer 

to less stiff in the inner layer [41]. Contact modelling within the facet joints revealed greatest 

discrepancies between models. Some models used soft contact, although the normal contact 

stiffness varied between models, while others used hard contact [30]. A facet cartilage layer 

was sometimes included in only some models [66], [70]. Also, the initial gap between facet 

surfaces varied greatly between models since it is highly dependent on vertebral geometry, 

which was acquired from different participants. All models regarded the facet joints as 

frictionless [30]. Despite the importance of the facet joints, some models did not include 

contact formulations [43]–[45], but each of their specific applications did not require contact 

conditions. 

Many studies acquired the material properties for each specific spinal structure in their lumbar 

models from different sources. Cancellous and cortical bones were usually defined as linear 

orthotropic [31], [35], but sometimes as linear isotropic in simpler models [33], [34], [36] or 

elasto-plastic in more complex models [46], [71]. A couple studies even generated bone 

stiffness values from CT density values (i.e. Hounsfield units) [72]. The posterior elements 

were typically defined as linear isotropic [30]. Yet, one model characterized each vertebra as 
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a rigid body connected by a deformable beam element at the pedicles [48], in which the beam 

element was comprised of the same material properties as the posterior elements. Cartilage 

endplates consisted of linear isotropic material with similar properties across most models [39], 

[51], and in models that include bony endplates, the bony endplate material was linear isotropic 

as well with stiffness similar to cortical bone [51], [73]. Nucleus pulposus material model 

differed widely from model to model: some were linear elastic [32], some were Mooney-Rivlin 

[51], and others were incompressible using hydrostatic elements [30]. All models of the 

nucleus pulposus were either nearly- or fully-incompressible [30]. Similarly, some spine 

models described the annulus fibrosus matrix as linear elastic [39] and others as Mooney-

Rivlin [31], although the material properties were similar between models with a moderately 

high Poisson’s ratio [30]. With regards to the annulus fibers, some studies specified a linear 

elastic stress-strain curve [44], [74], [75], while most models referred to the same curve defined 

by Shirazi-Adl [39]. Lastly, ligament stress-strain curves were usually acquired from the same 

two studies, one by Pintar [76] and the other one by Shirazi-Adl [39], although some studies 

approximated these curves as linear or multilinear elastic. However, regardless of element 

types or material models, all the successful models from literature were well-validated against 

experimental data, either collected in-house on the same cadaveric specimen as the model’s 

geometry or from previous studies in literature. Especially, Dreischarf et al. [30] investigated 

numerous well-validated FE spine models from other researchers and compared them to in 

vitro and in vivo data [77], [78]. They not only discovered that the median value of the FE 

models provided a good approximation to experimental data, but also provided a means for 

which to validate future FE models. If a proposed FE model’s results lie within the range of 

previously well-validated models presented by Dreischarf et al., then that model is effectively 
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valid for spine biomechanical response. Still, all FE spine models from the literature are 

complex and require significant amounts of computation time. Based on previous 

methodologies, and through comparison to previous studies, an accurate FE spine model may 

be developed for implementation into real-time clinical scenarios.  

Recent improvements in computing hardware, specifically GPUs, and FE formulations exhibit 

great promise towards creating real-time spine simulations. NVIDIA has developed a C 

programming interface called CUDA (Compute Unified Device Architecture) [79], allowing 

programmers to easily parallelize their applications onto GPUs. Likewise, some studies have 

developed novel methods incorporating CUDA to increase computation speeds for nonlinear 

simulations of human tissues. Using these methods and through the development of novel 

techniques, the proposed research focuses upon improving the computation time of FE lumbar 

spine models to approach real-time speeds. Still, before assessing GPU programming and real-

time simulation, the mathematical formulations must be derived and analyzed. 

1.2.2 The Finite Element Method – Total Lagrangian Formulation 

Finite element method has been used since the early 1960’s as an effective numerical 

approximation of the equations of motion. Early work in nonlinear structural finite element 

analysis focused on two different implementations of the continuum mechanics incremental 

equations of motion: the Updated Lagrangian (UL) formulation and the Total Lagrangian (TL) 

formulation [80]. The primary conceptual difference between the UL and TL formulations is 

the equilibrium configuration that the stresses and strains refer to. During Newton-Raphson 

iterations, the displacement derivatives may be referred to any configuration for which 

equilibrium has already been calculated, see Figure 1-2.  
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Figure 1-2: Configurations considered for the UL and TL formulations [80]. 

 

For the TL formulation, the initial configuration (usually unloaded) is the referenced 

configuration, while for the UL formulation, the current configuration (i.e. the most recently 

calculated) is the referenced configuration. Effectively, the UL formulation requires 

recalculation of the current configuration at each iteration but less memory to store the 

referenced configuration. On the other hand, the TL formulation requires more memory to hold 

the initial configuration throughout the analysis but fewer calculations per iteration. Hence, 

early finite element programs employed the UL formulation since memory was costly in earlier 

computers. The TL formulation has gained recent attention since computer memory is now 

less costly. Each configuration has advantages and disadvantages over the other, depending on 

the target application. Yet, both formulations include large deformation, large rotation, and 

large strain effects. The ensuing mathematical derivations follow Bathe’s book [80] (please 
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see the reference for further details). Considering GPU implementation and corresponding to 

advancements in the field of real-time simulation, the proposed thesis uses the TL formulation. 

The following derivation describes how deformable models are represented within the TL 

framework, in addition to presenting the resulting FE matrices. 

Based on the principle of virtual displacements (including the principle of virtual work), the 

governing equation of motion for nonlinear finite element analysis in the TL framework is seen 

in Equation (1-1). 

� 𝑆𝑆0𝑡𝑡+𝛥𝛥𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿 𝜖𝜖0𝑡𝑡+𝛥𝛥𝑡𝑡

𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

= 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡  (1 − 1) 

where 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 refers to components of the 2nd Piola Kirchhoff (PK2) stress tensor in the next 

configuration with reference to the initial configuration, 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 refers to components of the 

Green-Lagrange (GL) strain in the next configuration with reference to the initial 

configuration, 𝑉𝑉0  is the volume in the initial configuration, 𝑢𝑢𝑖𝑖 is the components of 

displacement, 𝑅𝑅𝑡𝑡+Δ𝑡𝑡
𝑖𝑖 is the components of the external load vector, and 𝛿𝛿 refers to the virtual 

displacement. For clarification, the left subscript for each parameter corresponds to the referred 

configuration while the left superscript refers to the calculated configuration.  

To solve the governing equation at the next time step, the GL strain, Equation (1-2), may be 

broken down into components. 

𝜖𝜖𝑖𝑖𝑖𝑖0
𝑡𝑡+Δ𝑡𝑡 = 𝑒𝑒𝑖𝑖𝑖𝑖0

𝑡𝑡+Δ𝑡𝑡 + 𝜂𝜂𝑖𝑖𝑖𝑖0
𝑡𝑡+Δ𝑡𝑡 (1 − 2) 

where 𝑒𝑒0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 is the linear component and 𝜂𝜂0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖 is the nonlinear component. 
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The components of the GL strain may be inserted into the governing equation, see Equation 

(1-3). 

� 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿� 𝑒𝑒0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖 + 𝜂𝜂0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖�𝑑𝑑 𝑉𝑉0 = 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑖𝑖𝑡𝑡+Δ𝑡𝑡

𝑉𝑉0
 

⇒ � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

= 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑖𝑖𝑡𝑡+Δ𝑡𝑡 (1 − 3) 

Considering that the stresses and strains at the 𝑡𝑡 + Δ𝑡𝑡 configuration are unknown, they must 

be decomposed into incremental components by: 

𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 = 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖 + 𝑆𝑆0 𝑖𝑖𝑖𝑖 (1 − 4) 

𝑒𝑒0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 = 𝑒𝑒0𝑡𝑡 𝑖𝑖𝑖𝑖 + 𝑒𝑒0 𝑖𝑖𝑖𝑖  (1 − 5) 

𝜂𝜂0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 = 𝜂𝜂0𝑡𝑡 𝑖𝑖𝑖𝑖 + 𝜂𝜂0 𝑖𝑖𝑖𝑖 (1 − 6) 

To apply the strain components to Equation (1-3), the variation must be applied by: 

𝛿𝛿 𝑒𝑒0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 = 𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖 (1 − 7) 

𝛿𝛿 𝜂𝜂0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 = 𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖 (1 − 8) 

Note that 𝛿𝛿 𝑒𝑒0𝑡𝑡 𝑖𝑖𝑖𝑖 = 𝛿𝛿 𝜂𝜂0𝑡𝑡 𝑖𝑖𝑖𝑖 = 0 since the variation is taken at the 𝑡𝑡 + Δ𝑡𝑡 configuration. 

Inserting the strain decompositions into Equation (1-3), one can obtain: 

� 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0 𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0 𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

= 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑖𝑖𝑡𝑡+Δ𝑡𝑡  (1 − 9)
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So far, no assumptions or simplifications have been made to the governing equation of motion. 

It has only been re-written in terms of incremental decompositions. Now, each term may be 

analyzed to determine whether simplifications (i.e. linearizing displacements) would help 

improve solvability. Hence, the linearity of each strain component must be determined. 

Referring to Equation (1-2), the GL strain is calculated from Equation (1-10) and is equal to: 

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 =

1
2
�
𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+
𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+
𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖

𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡
𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖
� (1 − 10) 

where 𝑢𝑢0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖,𝑖𝑖 = 𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑗𝑗
. 

Considering that 𝑢𝑢𝑡𝑡+Δ𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝑢𝑢, Equation (1-10) may be decomposed into its increments: 

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 =

1
2
�
𝜕𝜕� 𝑢𝑢𝑡𝑡 𝑖𝑖 + 𝑢𝑢𝑖𝑖�

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+
𝜕𝜕� 𝑢𝑢𝑡𝑡 𝑖𝑖 + 𝑢𝑢𝑖𝑖�

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+
𝜕𝜕� 𝑢𝑢𝑡𝑡 𝑖𝑖 + 𝑢𝑢𝑖𝑖�

𝜕𝜕 𝑥𝑥0 𝑖𝑖

𝜕𝜕� 𝑢𝑢𝑡𝑡 𝑖𝑖 + 𝑢𝑢𝑖𝑖�
𝜕𝜕 𝑥𝑥0 𝑖𝑖

� 

⇒ 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 =

1
2
�
𝜕𝜕 𝑢𝑢𝑡𝑡 𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+
𝜕𝜕 𝑢𝑢𝑡𝑡 𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+
𝜕𝜕 𝑢𝑢𝑡𝑡 𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖

𝜕𝜕 𝑢𝑢𝑡𝑡 𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖
+

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕 𝑥𝑥𝑖𝑖0 +

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕 𝑥𝑥𝑖𝑖0 +

𝜕𝜕 𝑢𝑢𝑡𝑡 𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕 𝑥𝑥𝑖𝑖0 +

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕 𝑥𝑥0 𝑖𝑖

𝜕𝜕 𝑢𝑢𝑡𝑡 𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑖𝑖

+
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕 𝑥𝑥0 𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕 𝑥𝑥0 𝑖𝑖

� 

=
1
2
�

𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖

+ 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖  + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝑢𝑢0 𝑖𝑖,𝑖𝑖
� (1 − 11) 

Equation (1-12) may be determined by combining Equations (1-2) and (1-7) to (1-8). Then, 

comparing Equation (1-12) to Equation (1-11), derivations for 𝑒𝑒0 𝑖𝑖𝑖𝑖 and 𝜂𝜂0 𝑖𝑖𝑖𝑖 may be found: 

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 = 𝑒𝑒0𝑡𝑡 𝑖𝑖𝑖𝑖 + 𝜂𝜂0𝑡𝑡 𝑖𝑖𝑖𝑖 + 𝑒𝑒0 𝑖𝑖𝑖𝑖 + 𝜂𝜂0 𝑖𝑖𝑖𝑖 (1 − 12) 
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𝑒𝑒0 𝑖𝑖𝑖𝑖 =
1
2
� 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖� (1 − 13) 

𝜂𝜂0 𝑖𝑖𝑖𝑖 =
1
2
� 𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝑢𝑢0 𝑖𝑖,𝑖𝑖� (1 − 14) 

By applying the variation to the increment in strain components, linearity of the terms may be 

determined by: 

𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖 =
1
2
� 𝛿𝛿0 𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝛿𝛿0 𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 𝛿𝛿𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝛿𝛿𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖� (1 − 15) 

𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖 =
1
2
� 𝛿𝛿0 𝑢𝑢𝑖𝑖,𝑖𝑖 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝛿𝛿0 𝑢𝑢𝑖𝑖,𝑖𝑖� (1 − 16) 

Since Equations (1-15) and (1-16) are linear and 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖 is a known value from the current 

configuration, the 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖 and 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖 terms are known and linear, respectively, noting 

that the 𝛿𝛿0 𝑢𝑢 terms are the virtual displacements and will cancel out when Equation (1-9) is 

expanded. Given that 𝑆𝑆0 𝑖𝑖𝑖𝑖 is a function of strain, Equation (1-9) is highly nonlinear because 

of the terms 𝑆𝑆0 𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖 and 𝑆𝑆0 𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖. In order to linearize these terms, a Taylor expansion 

may be applied where we neglect any higher order terms: 

𝑆𝑆0 𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖 = �
𝜕𝜕 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖

𝜕𝜕 𝜖𝜖0𝑡𝑡 𝑟𝑟𝑟𝑟
𝑒𝑒0 𝑟𝑟𝑟𝑟 + ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑜𝑜𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑠𝑠� 𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖 ≅ 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 𝑒𝑒0 𝑟𝑟𝑟𝑟𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖 (1 − 17) 

𝑆𝑆0 𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖 = �
𝜕𝜕 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖

𝜕𝜕 𝜖𝜖0𝑡𝑡 𝑟𝑟𝑟𝑟
𝜂𝜂0 𝑟𝑟𝑟𝑟 + ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑜𝑜𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑠𝑠� 𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖 ≅ 0 (1 − 18) 

where 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 = 𝜕𝜕 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑗𝑗

𝜕𝜕 𝜖𝜖0
𝑡𝑡
𝑟𝑟𝑟𝑟

 is the tangential (first order) material property matrix calculated at the 

current configuration. 
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Finally, the linearized equation of motion may be derived by inserting Equations (1-17) and 

(1-18) into Equation (1-9) and moving known quantities to the right-hand-side: 

� 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 𝑒𝑒0 𝑟𝑟𝑟𝑟𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖𝛿𝛿 𝜂𝜂0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

= 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑡𝑡+Δ𝑡𝑡
𝑖𝑖 − � 𝑆𝑆0𝑡𝑡 𝑖𝑖𝑖𝑖𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0

𝑉𝑉0
(1 − 19) 

As a result of the applied approximations, the governing equation of motion exhibits 

linearization error: 

𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟 = 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑡𝑡+Δ𝑡𝑡
𝑖𝑖 − � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖𝛿𝛿 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0

𝑉𝑉0
(1 − 20) 

The error in Equation (1-20) represents the “out-of-balance virtual work” and may be 

decreased by iterating the linearized governing equation of motion until certain convergence 

measures are satisfied, such as force or displacement error. Therefore, the TL formulation 

equation at each iteration is equal to: 

� 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
𝑖𝑖−1Δ 𝑒𝑒0 𝑟𝑟𝑟𝑟

𝑖𝑖 𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖
𝑖𝑖−1𝛿𝛿Δ 𝜂𝜂0 𝑖𝑖𝑖𝑖

𝑖𝑖 𝑑𝑑 𝑉𝑉0
𝑉𝑉0

 

= 𝛿𝛿𝑢𝑢𝑖𝑖 𝑅𝑅𝑡𝑡+Δ𝑡𝑡
𝑖𝑖 − � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖
𝑖𝑖−1𝛿𝛿 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖
𝑖𝑖−1𝑑𝑑 𝑉𝑉0

𝑉𝑉0
(1 − 21) 

where Δ 𝑒𝑒0 𝑖𝑖𝑖𝑖
𝑖𝑖 = 𝑓𝑓�Δ𝑢𝑢𝑖𝑖𝑖𝑖� and Δ 𝜂𝜂0 𝑖𝑖𝑖𝑖

𝑖𝑖 = 𝑖𝑖�Δ𝑢𝑢𝑖𝑖𝑖𝑖� and 𝑢𝑢𝑡𝑡+Δ𝑡𝑡
𝑖𝑖
𝑖𝑖 = 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑖𝑖
𝑖𝑖−1 + Δ𝑢𝑢𝑖𝑖𝑖𝑖. 

Closer inspection of Equations (1-19) and (1-20) reveal that Equation (1-21) represents the 

Newton-Raphson iterations for solving Equation (1-20), where k is the current Newton-

Raphson iteration. See Figure 1-3 for a depiction of the Newton-Raphson solution to nonlinear 

equations.  
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Figure 1-3: Depiction of Newton-Raphson iterations in solution to nonlinear equations. 

 

In matrix form, Equation (1-21) becomes: 

� 𝑲𝑲𝑳𝑳
𝑖𝑖−1

0
𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝑲𝑲0𝑡𝑡+𝛥𝛥𝑡𝑡

𝑵𝑵
𝑖𝑖−1� 𝜟𝜟𝑡𝑡+𝛥𝛥𝑡𝑡 𝒖𝒖𝑖𝑖 = 𝑹𝑹𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝑭𝑭𝑖𝑖−10

𝑡𝑡+𝛥𝛥𝑡𝑡  (1 − 22) 

where 𝑲𝑲𝑳𝑳 is the linear stiffness matrix representing the first term of Equation (1-21), 𝑲𝑲𝑵𝑵 is the 

nonlinear stiffness matrix representing the second term, 𝜟𝜟𝒖𝒖 is the iteration increment in 

displacement, 𝑹𝑹 is the external force vector, and 𝑭𝑭 is the internal force vector representing the 

second term on the right-hand side. 

Now that the general FE equation at each Newton-Raphson iteration has been derived for the 

TL formulation, matrices for each element must be generated. For the models used in the 

current study, two element types are used primarily: linear tetrahedral elements and linear 

tension-only spring elements. See Appendix A for the derivation of the FE matrices 

characterizing linear tetrahedral elements, and see Appendix B for the matrices characterizing 
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linear tension only spring elements. Also, see Appendix C for the derivation of the various 

material property matrices required for the proposed FE spine model. 

1.2.3 GPU Computation and Programming 

Traditionally, FE analyses were computed using central processing units (CPUs) and stored 

during computation on random access memory (RAM) of desktop computers (or network 

servers). As a result, simulations were slow, and better hardware (such as server clusters) 

required to speed up any simulation was expensive, yet they still did not approach real-time 

computational speed. On the other hand, recent advancements in GPUs are providing new 

possibilities for scientific computing and simulations. Driven by the gaming industry, GPU 

development has greatly increased computational power for certain applications at a reasonable 

cost compared to CPUs, see Figure 1-4 for a speed comparison between various GPUs and 

CPUs over recent years. 



22 
 

 

Figure 1-4: Theoretical speed-up of GPU compared to CPU. GFLOP/s stands for giga-
floating operations per second. Image from [79]. 

 

GPUs perform the same computer instruction in parallel as opposed to serially as done by 

CPUs. In situations involving the same computations on separate memory spaces (such as FE 

analysis), GPUs can provide massive improvements in computation speed depending on the 

specific GPU used and application involved. Conversely, CPUs are significantly faster for 

computations on the same memory space. Using a GPU, iterations of a common computer 

instruction are all calculated simultaneously instead of sequentially. Hence, the power of a 

GPU lies in its architecture [79]: thousands of processors allow calculations to be computed in 

parallel, thereby decreasing total computation time for applications where identical 

calculations are processed with thousands of iterations. Furthermore, some of the 

programmable memory on the GPU resides close to the processors, which allows for very fast 

memory accessing times. In addition to improving GPU architecture, NVIDIA has developed 
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a C programming interface called CUDA, allowing programmers to readily parallelize (thus 

speed up) their applications. In all, GPUs provide immense potential to greatly increase 

computation speeds through advancements in architecture and programming interfaces, 

although the speed improvements depend on the parallelism of the coding application. An 

excellent description of GPU CUDA programming can be found on NVIDIA’s website [79]. 

For the purposes of this thesis, a brief explanation highlighting important considerations 

relevant to the current studies is presented. 

CUDA is a powerful programming tool for readily parallelizing computation-heavy programs. 

The CUDA programming model explicitly distinguishes between GPU (known as device) 

memory and CPU (known as host) memory. Likewise, parallel functions, or kernels, run on 

the device are distinctly distinguished from serial functions executed on the host. In 

application, the main function of a C program runs on the host and launches kernels to run on 

the device, see Figure 1-5.  



24 
 

 

Figure 1-5: CUDA program execution depicting serial code execution on the host and parallel 
kernel execution on the device [79]. Note that the main function launches the kernels from the 
host side. In this and subsequent Figures, Block(i,j) refers to the Block identification within 
the grid array of two dimensions. Same convention for Thread(i,j). 

 

CUDA’s programming interface is built upon kernels, which are C functions that are called 

from within the main function of the program. With each kernel invocation, the number of 
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blocks and threads per block that the device will run must be specified. Threads represent each 

of the streaming multiprocessors (SMs) running the code instructions in parallel. A group of 

threads make up a block, where all threads in a block run simultaneously, and a group of thread 

blocks make up a grid, see Figure 1-6, which represents all threads running the same kernel 

code in parallel.  

 

Figure 1-6: Threads, block, and grid organization [79]. 

 

Although each block is considered separate from other blocks for coding purposes, multiple 

blocks will run simultaneously depending on the number of SMs provided by the GPU; thus, 

the programmer must consider all blocks in a grid running simultaneously. Threads and blocks 

may be identified in up to three dimensions for convenience in specifying calculations, but for 
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the purposes of the current work, only one dimension was used. Within each kernel, any thread 

may be selected from the grid using: 

𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑥𝑥 = 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐷𝐷𝑖𝑖𝑚𝑚. 𝑥𝑥 ∗ 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐼𝐼𝑑𝑑𝑥𝑥. 𝑥𝑥 + 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟𝑑𝑑𝐼𝐼𝑑𝑑𝑥𝑥. 𝑥𝑥 (1 − 22) 

where index is the resulting thread identification (ID) from the entire grid, blockDim.x is the 

block size (i.e. number of threads in the block), blockIdx.x is the block ID within the grid, and 

threadIdx.x is the thread ID within that block. 

Kernels execute threads in equally-shaped thread blocks; hence the total number of threads run 

by a single kernel call is equal to the number of blocks times the number of threads per block. 

In conjunction with the hierarchy in kernel execution, device memory handling follows a 

hierarchy as well, see Figure 1-7.  
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Figure 1-7: Device memory hierarchy [79]. 

 

Local and register memory is only available to each thread, while shared memory is available 

to the entire thread block and all other global memory is available to the entire grid, see Figure 

1-8 which gives a helpful depiction of how CUDA programming interfaces with the physical 

device architecture.  
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Figure 1-8: Memory handling on the GPU where dark grey blocks depict memory residing 
next to the SMs and medium-dark grey blocks depict DRAM [79]. 

 

In Figure 1-8, the dark blocks represent the memory types that reside next to the processors 

while medium-dark blocks represent dynamic random-access memory (DRAM) which holds 

most of the memory available to the entire GPU. According to the NVIDIA programming 

manual, computation on registers and shared memory requires only 24 processor cycles, 

whereas global memory requires 400 to 600 cycles [79]. Hence, CUDA codes that make 

efficient use of register/shared memory are exceptionally fast. In combination with effective 

memory handling, the number of threads per block (i.e. block size) is determined by balancing 
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the number of processors running simultaneously (known as occupancy) with the amount of 

registers and shared memory available to each thread. Increasing the number of threads per 

block increases GPU occupancy (i.e. the number of SMs running at once) but decreases the 

amount of register/shared memory for each thread. For most applications, an optimal number 

may be determined which ensures 100% occupancy, meaning all SMs effectively are running 

simultaneously, while allowing sufficient register/shared memory available for fast 

calculations, depending on the compute capability of the GPU. Thus, while CUDA provides a 

slick interface for parallel programming, the developer must consider the specific hardware 

that their programs are running on. Specifically, each GPU’s compute capability determines 

its main capabilities and memory limitations, see Table 1-1.  
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Table 1-1: Specifications based on GPU compute capability [79]. 

Technical 
Specifications 

Compute Capability 
1.0 1.2 2.0 3.0 3.5 5.0 5.3 6.0 6.2 7.0 

Maximum blocks 
per SM 8 8 8 16 16 32 32 32 32 32 

Maximum threads 
per SM 768 1024 1536 2048 2048 2048 2048 2048 2048 2048 

Maximum 
registers per SM N/A N/A 32K 64K 64K 64K 32K 64K 32K 64K 

Maximum 
registers per 

thread 
124 124 63 63 255 255 255 255 255 255 

Maximum shared 
memory per SM 

(KB) 
48 48 48 48 48 48 48 48 48 96 

Amount of local 
memory per 
thread (KB) 

16 16 512 512 512 512 512 512 512 512 

Constant memory 
size (KB) 64 64 64 64 64 64 64 64 64 64 

 

Based on the compute capability, the minimum block size for 100% occupancy may be 

determined by dividing the maximum number of threads per SM by the maximum number of 

blocks per SM. From there, the maximum amount of registers available per thread and shared 

memory available per block may be determined by dividing the maximum amount of registers 

per SM and the maximum shared memory per SM by the block size, respectively. For the Titan 

Black GPU (compute capability of 3.5) as an example, the minimum block size for 100% 

occupancy is 128. With 128 threads per block, only 32 registers and 24 bytes of shared memory 
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would be available for fast calculations within each thread, limited by the total amount of 

memory available per SM. If single precision was used to maximize the amount of values 

stored, only 38 fast memory spaces are available for each thread. Determining the maximum 

amounts of registers and shared memory are critical for speeding up applications since 

register/shared memory computations are considerably faster than global memory 

computations. Therefore, the amounts of register/shared memory available can significantly 

alter algorithms and memory handling within each kernel. If the block size specified for a 

kernel is less than the minimum block size, then less than 100% occupancy will be achieved 

(some SMs won’t be running during kernel execution). On the other hand, the minimum block 

size may not provide enough registers or shared memory needed for fast memory access times 

within the kernel. If more register or shared memory than available for that block size is 

specified by the programmer, then the resulting code will run at less than 100% occupancy as 

well. Therefore, most applications will require a balance between GPU occupancy and fast 

memory computations depending on the amount of memory required for each kernel. Further 

discussion for FE analysis is found in the next section, Section 1.2.4. 

Typical workflow for efficient memory handling using CUDA can be seen in Figure 1-9. 
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Figure 1-9: Efficient memory handling when launching kernels using CUDA. 

 

1.2.4 GPU Computing for Finite Element Analysis 

In the past, FE analysis was typically computed on CPUs using well-established programs, 

such as ANSYS and Abaqus. However, certain aspects of FE analysis are “embarrassingly 

parallel” [9]. As stated in Section 1.2.3, processes computed on separate memory spaces in 

similar manners are readily parallelizable. Thus, computations involving node location 

calculations and any element calculations, including stiffness building and stress/strain 
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calculations, can be readily run in parallel. On the other hand, some processes are considerably 

less parallelizable, including stiffness assembly and matrix solving, where calculations occur 

using the same memory space. See Figure 1-10 for workflow of typical structural FE analysis 

highlighting processes that are readily parallel. Regardless, parallelizing those node and 

element calculations of FE analysis would greatly improve computation speed, and current 

linear direct sparse matrix solving methods remain more efficient through CPU computation. 

 

Figure 1-10: General workflow of nonlinear FE analysis 
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As for any program developed using CUDA, GPU computing of FE models requires certain 

considerations.  

For even simple element types like the linear tetrahedral, see Appendix A, sizeable amounts of 

memory are required to efficiently store calculations during stiffness matrix building. For the 

current discussion, stiffness matrix building (linear tetrahedral element) is used as an example 

since it exhibits the greatest memory requirements during FE analysis, other than linear matrix 

solving. As seen from Equation (A-34) for building the linear tetrahedral stiffness (KL); the 

strain displacement matrix (BL) requires 72 floats, the material property matrix (C) requires 36 

floats, and the overall stiffness matrix (K) requires 144 floats, in addition to other intermediate 

arrays including stress and strain calculations. These arrays may be reused for calculating the 

nonlinear stiffness matrix (KN). Consequently, element calculations ideally require 252 floats, 

which is significantly greater than available fast memory. As discussed in Section 1.2.3, 

increasing the registers per thread results in decreased occupancy. Clearly, to implement FE 

models onto GPU computing, either the occupancy must be decreased to allow for more fast 

memory available per thread or slower global memory must be utilized to ensure 100% 

occupancy. The optimal combination of occupancy and memory handling depends on 

utilization of the fast memory, which would require vastly different approaches to efficient 

memory handling; and therefore, considerable amounts of study to determine the best 

approach. For the purposes of the current study, a sufficient balance should be determined 

through FE knowledge and expertise. Other FE components implemented on the GPU should 

be generated with similar considerations, and in cases where a balance resulted in significant 

inefficiencies, the CPU will need to be used. Another example that requires GPU architecture 

considerations is vector assembly. Vector assembly involves collecting element vectors onto 
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the global nodal vectors; in other words, adding contributions from separate memory spaces 

(i.e. nodal calculations for each elements) onto the same global memory space (i.e. nodal 

calculations for the entire model). 

A couple previous strategies for vector assembly include the scatter and gather methods [2], 

but considering the potential race conditions present in each strategy, other strategies have 

been developed considering GPU computation. See Section 1.2.5 regarding GPU strategies for 

vector assembly. As well, see Chapter 3 for further discussion regarding GPU computing of 

spine models.  

1.2.5 Real-Time Simulation 

Over the past thirty years, some researchers have started to realize the value of real-time 

simulation for biomedical applications. As such, novel algorithms were developed to improve 

the computation speed of deformable models, specifically focusing on surgery simulations. 

Most initial algorithms involve simplified deformation models that were less accurate than FE 

models but computationally faster. The most successful algorithms include: spring-mass 

models (including volumetric extensions) and ChainMail models [81]. Spring-mass models 

were generated by springs connecting discrete mass points comprising a mesh of the geometric 

body [81]. In accordance with Newton’s second law of motion, the force equilibrium for each 

node of the mesh is described by: 

𝑚𝑚𝑖𝑖
𝑑𝑑2𝒙𝒙𝑖𝑖
𝑑𝑑𝑡𝑡2

+ 𝑐𝑐𝑖𝑖
𝑑𝑑𝒙𝒙𝑖𝑖
𝑑𝑑𝑡𝑡

+ 𝑭𝑭𝑖𝑖 = 𝑹𝑹𝑖𝑖 (1 − 23) 
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where 𝑏𝑏 is the node, 𝑚𝑚𝑖𝑖 is the mass, 𝑐𝑐𝑖𝑖 is the damping coefficient (representing 

viscoelasticity), 𝒙𝒙𝑖𝑖 is the current coordinates, 𝑭𝑭𝑖𝑖 is the internal force, and 𝑹𝑹𝑖𝑖 is the external 

(applied) force.  

The internal force is determined by springs connecting the nodes via Hooke’s law: 

𝑭𝑭𝑖𝑖 = � 𝒌𝒌𝑖𝑖𝒔𝒔𝑖𝑖𝑖𝑖

𝑖𝑖∈𝑁𝑁𝑘𝑘

(1 − 24) 

where 𝑁𝑁𝑖𝑖 are the adjacent nodes, 𝒌𝒌𝑖𝑖 is the spring stiffness determined from the material 

properties of the body and 𝒔𝒔𝑖𝑖𝑖𝑖  is the difference between the initial and current lengths of the 

spring between nodes 𝑏𝑏 and 𝑏𝑏.  

Equation (1-23) may be discretized in time and solved using a fourth order Runge-Kutta 

method [81]. As seen from Equations (1-23) and (1-24), spring-mass models are simple in 

methodology and implementation with a reasonable degree of accuracy. However, the mesh 

exhibits difficulty propagating the deformations, especially for relatively stiff systems, where 

oscillations often occur as a natural result of the spring-type mesh. Moreover, spring-mass 

models demonstrate noticeable limitations in volumetric deformation since they lack 

volumetric considerations. Building upon the volumetric limitation of mass-spring models, 

ChainMail models were developed [82]. ChainMail models consist of a mesh of nodes 

connected by links (or chains), like spring-mass models. However, unlike spring-mass models, 

the ChainMail algorithm is vastly different. In general, ChainMail is built upon the idea of 

relative movement constraints for each node surrounding a moving node. The moving node 

generates constraints in the form of bounding regions for its surrounding nodes, where they 

must lie within the bounding regions of the moving node. In this manner, node movements are 
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propagated through the mesh, much like in a chain. In application, the ChainMail algorithm is 

broken down into two stages: first the propagation stage, then the relaxation stage. The 

propagation stage is defined by node movement through the mesh, in which one node (or a set 

of nodes) is moved, then that movement is propagated through the mesh via the bounding 

regions of each node until all constraints are satisfied. Then, the relaxation stage occurs where 

equilibrium, like Equation (1-23), is iteratively established through an energy minimization 

process. The system’s energy is reduced by adjusting node positions and calculating the 

resulting system energy based on material properties until equilibrium is reached. Altogether, 

the ChainMail algorithm improves the stability and deformation propagation limitations of 

spring-mass models. In addition, recent work has improved the ChainMail method to conserve 

volume and strain energy, and to allow for the modelling of anisotropy and inhomogeneity 

[83]. Although promising for real-time simulation of biomedical models, the ChainMail 

method still exhibits considerable limitations. The volumetric capabilities may have been 

improved through recent work [83], but the method is not yet proven effective for complex 

models including materials exhibiting near-incompressibility. In all, spring-mass and 

ChainMail models provided greatly improved computation speed over traditional FE models, 

but their decreased accuracy and current lack of capabilities have proven ineffective for general 

real-time biomedical simulation. 

In recent years, some algorithms that provide computational improvements for FE models have 

surfaced. Some linear formulations were developed to improve computation speed [5], [84], 

but these simulations did not meet the large deformation requirement of typical biomedical 

models. Consequently, Miller et al [10] invented and developed the Total Lagrangian Explicit 

Dynamics (TLED) algorithm for real-time simulation of biomedical tissues, specifically 
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applied to neurosurgery (i.e. brain models). The TLED algorithm applies an explicit centered 

differencing numerical scheme to the equation of motion while calculating the internal energy 

using finite elements. Over several publications, Miller’s group has refined the TLED 

algorithm to incorporate various features, including contact [85], nonlocking tetrahedra [86], 

hourglass control [87], and more [21], [88], [89]. Based on their publication history, Miller et 

al developed the base TLED algorithm first [10], then built advanced FE features on top of that 

algorithm as they moved real-time simulation closer to their neurosurgery simulation 

application. The contact algorithm developed by Miller’s group [85] revealed numerical 

contact formulations as considerable challenges that depend heavily on the base FE algorithm. 

Likewise, the original TLED algorithm has been tested in numerous other applications as well 

[90], [91], which shows that their first publication revealing the TLED algorithm proved useful 

for applications other than the primary motivation behind the study. Furthermore, they 

reformulated the TLED algorithm into the Meshless TLED [92] algorithm to better handle 

large deformations in biological tissues. Although fast for well-behaved materials, the TLED 

algorithm is severely limited by its critical time step, see Equation (1-25), which is highly 

sensitive to near-incompressibility.  

Δ𝑡𝑡𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡 =
𝐿𝐿𝑒𝑒
𝑐𝑐

(1 − 25) 

where 𝐿𝐿𝑒𝑒 is the characteristic length related to element size and 𝑐𝑐 is the dilatational wave speed 

of the speed which has significant relation to bulk modulus of the material. Hence, the 

maximum time step decreases with increased bulk modulus. 

Alternatively, Liu et al. [93] developed a different meshless algorithm based on smooth particle 

hydrodynamics (SPH). Traditionally, SPH is very computationally costly, so Liu proposed a 
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localized SPH method that reduced the number of nodes participating in the computation to a 

local interaction area. This novel SPH method increased computation speed considerably, but 

it was limited to local deformation; and therefore, it cannot accurately predict global 

deformations. In consideration of these limitations, more recent work has focused on using 

GPU technology to improve computation speeds. 

As GPU hardware has improved, various researchers have developed parallel algorithms to 

improve FE computation speed. Miller’s group developed parallel versions of the TLED 

algorithm that exhibited great increases in computation speed over the original TLED 

algorithm [21], [94], [95]. Although exceptionally fast per iteration, the parallel versions still 

suffer the same limitations as the original TLED algorithm. Other GPU-based work includes: 

a co-rotational FE method [11]; other meshless methods including parallel implementations of 

SPH and element-free Galerkin [93], [96], [97]; a parallel ChainMail algorithm [98]; an 

element-by-element preconditioned conjugate gradients algorithm [2]; and statistical-type 

methods including parallel proper generalized decomposition [99]. Courtecuisse et al. 

developed a comprehensive GPU-implemented simulation system that included deformation, 

contact, cutting, and haptic feedback [3], [11]. Their system is built upon a co-rotational 

formulation [100] for the deformable model solved via a backward Euler time integration (an 

implicit numerical method) using a conjugate gradient linear solver. The co-rotational 

formulation improves computational efficiency by considering only linear elasticity but adjusts 

for the large deformations by adding rigid body motion of the elements. Thus, the co-rotational 

formulation allows for large displacements and rotations but small strains, which means that 

small meshes sizes are required to ensure small strains within each element during large 

deformation. Likewise, small strains can limit the method’s applicability considering the large 
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strains expected within biomedical tissue. An alternative method that models large strains 

better than the FE method is meshless methods [101]. Since meshless methods do not rely upon 

elements (and thus element quality) for strain energy calculation, they handle large 

deformations with ease. However, meshless methods are not as readily parallel as FE methods 

and they require significantly more computations. Karatarakis et al. [96] proposed a node pair-

wise approach that was significantly more parallel (and thus faster) than the Gauss point-wise 

approach. However, the method was created for small deformation and has not yet been tested 

in large deformation and nonlinear material scenarios. Meshless methods have great potential 

for real-time simulations of biomedical models, but they are currently in their infancy 

compared to FE methods. On the other hand, Rodriguez et al. [83], [98] developed a parallel 

ChainMail method that demonstrated near real-time response for wrist surgery simulation. 

Regardless, the parallel version of the ChainMail still experiences the same shortcomings as 

the regular ChainMail algorithm. Lastly, Mafi & Sirouspour [2] developed a suite of GPU 

algorithms and techniques for parallelizing nonlinear FE models, including an element-by-

element parallel implementation of a Jacobi-preconditioned conjugate gradient (PCG) solver. 

They demonstrated a strategy for coalesced memory storage along with a GPU-implemented 

vector assembly method that takes advantage of shared memory. Their coalesced memory 

storage strategy exhibited considerable improvements in efficiency over linear memory 

storage, in which global memory bandwidth was optimized by allowing parallel threads to 

access consecutive locations instead of block-size separated locations characterized by the 

linear pattern. 

For their vector assembly method, shared and global memory indexing arrays are pre-

computed to direct the atomic operations onto the correct memory spaces. Then during 
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computation, element vectors are collected on shared memory using atomic operations, and 

the shared memory vectors are then added to global memory using atomic operations. This 

vector assembly strategy also demonstrated considerable speed-up compared to previous 

strategies. Furthermore, their element-by-element PCG linear matrix solver demonstrated great 

computation speed-ups for well-behaved biomedical models. However, iterative solvers, like 

PCG, are dependent on the conditioning of the linear matrix; and therefore, it must be tested 

against direct sparse solvers for the targeted application. The PCG solver requires that the 

linear matrix be symmetric and positive-definite, which is not always the case during FE 

analysis. In all, although real-time simulation has been an area of considerable study over the 

past twenty years, no complete solution exists to the real-time problem and each method must 

be weighted on its pros and cons for each application. Otherwise, new methods must be 

developed for new applications. Further discussion is found in Chapter 3. 

1.3 Thesis Objectives 

In Sections 1.1 and 1.2, I outlined a need and focus for the current work and presented the 

current state of literature regarding this multidisciplinary undertaking. In summary, many FE 

lumbar spine models have been constructed and validated for various applications; in addition, 

numerous real-time FE techniques have been developed that take advantage of parallel GPU 

computing capabilities. Yet, no current study has attempted to build a real-time FE lumbar 

spine model by combining generic spine modelling methodologies with real-time FE 

techniques, in addition to developing novel FE techniques specifically for spine models. 

Considering that the proposed thesis represents an initial and fundamental exploration into 

real-time FE simulation of lumbar spine models, the scope shall be limited as such. To 

construct a foundation from which to generate prospective real-time lumbar spine models, the 
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target purpose for the proposed lumbar spine model will be general, in which the proposed 

model will undergo validation for gross physiologic movements. Furthermore, given the 

challenge of real-time facet contact simulation revealed by previous work in addition to 

potential applications without contact conditions, the proposed thesis will focus on developing 

a real-time FE lumbar model without facet contact, while acknowledging this significant 

limitation. Facet contact will an area of future work that will build upon the foundation 

provided by the current work; and thus, facet contact is out-of-scope for the proposed thesis. 

Therefore, the primary objective of the proposed thesis is to create a FE lumbar spine 

model without facet contact using generic methodologies that exhibits close to real-time 

computation speeds while preserving accurate biomechanical response for gross 

physiologic movements. The proposed thesis represents original progress towards the 

development of real-time FE lumbar spine models for specific applications, in which many 

potential models may be built upon the foundation provided by the current work. To achieve 

this primary objective, three specific aims are realized: 

1. Develop generic modelling methologies then build, within a currently available commercial 

FE program, and validate a FE lumbar spine model that is specifically designed for parallel 

computing. 

2. Test current real-time FE techniques in a custom CUDA program using spine material 

models and develop novel real-time FE techniques specifically designed with spine models in 

mind. 
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3. Create and test a generic FE lumbar spine model without facet joint forces in a custom 

CUDA program that exhibits validated biomechanical response and significant increases in 

computation speed compared to conventional models. 

1.4 Thesis Outline 

The proposed thesis is divided into five Chapters. Motivation for the proposed work and a 

literature review was presented in Chapter 1. In Chapter 2, a novel generic FE lumbar spine 

modelling methodology is proposed and compared to conventional models, with the 

consideration that the proposed model will be used for parallel computation. Validation of the 

proposed model is presented, and comparison to the conventional model is made in terms of 

accuracy and computation speed. The model presented in Chapter 3 aims to meet criteria 

implied by specific aim 1. Previous real-time FE techniques and linear solvers are then 

evaluated for their usefulness regarding real-time computation of spine models in Chapter 3. 

Particularly, GPU methods for FE analysis are evaluated.  Through evaluation of previous 

techniques, the proposed study used the techniques that produced that fastest result with good 

accuracy. In areas where previous techniques were insufficient, novel GPU techniques are 

presented and evaluated. Additionally, the best performing linear matrix solver is chosen for 

use with spine models. Also in Chapter 3, a real-time FE program is presented and tested 

against a conventional FE program, ANSYS. In Chapter 4, implementation of the proposed 

lumbar spine model, with facet contact removed, from Chapter 2 into the real-time FE program 

from Chapter 3 is presented. Some novel FE techniques specific to lumbar spine models are 

presented including their integration into the real-time FE program. Evaluation of the real-time 

lumbar spine model against the conventional model is demonstrated, and improvements for 

future development are suggested. Chapter 5 collects the results from Chapter 2 through 
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Chapter 4 and presents an overall discussion of the proposed work, including conclusions and 

future work. 

Each of the specific aims from the thesis objectives (Section 1.3) are addressed and solved in 

each paper presented within the proposed thesis. Hence, Chapter 2 directly addresses Specific 

Aim 1; then Chapter 3 directly addresses Specific Aim 2; and finally, Chapter 4 builds upon 

Chapter 2 and Chapter 3 to resolve Specific Aim 3. Upon completion of each specific aim, the 

results are considered together and compared to the Primary Objective of the thesis in the 

Chapter 5. Conclusions (Section 5.1) and implications for Future Work (Section 5.2) are drawn 

from the discussion, which concludes the proposed thesis.  
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Chapter 2   Towards the Development of a Faster Generic 

Lumbar Spine Model Using Parallel Computing 

Considerations 

A version of this chapter is under review as: 

Maeda, N.K., Boulanger, P., Carey, J.P., Development of a Faster Lumbar Spine Model with 

Parallel Computing Considerations, Computer Methods in Biology and Medicine (2018). 

2.1 Introduction 

Numerous finite element (FE) models of the lumbar spine have been developed using both 

generic and problem-specific methodologies over the past 40 years. Some of the first models 

were developed to accurately portray general physiologic movements of the lumbar spine 

while providing insight into the biomechanical causes of back pain [38], [39], [102] or into 

spinal instrumentation [103]. Through early FE models, investigators were able to conduct 

simulations on loading scenarios, plus provide novel stress and strain data, that could not be 

achieved through experimentation [102]. From that point, prospective lumbar spine models 

built upon those early models by adding enhanced features, such as visco-elasticity [104] or 

muscle effects [105], and applying those models towards investigations of biomechanical 

properties [71], [104], [105] or specific clinical studies [31], [58]. Some models focused on 

implant and orthotic design [31], while others explored impact loadings [104]. Nevertheless, 

spine models have improved over time and current spine modelling methodologies may be 

derived from early investigations. Although FE modelling of the spine has effected 

improvements to clinical devices [31], [58], [106], few studies have aimed for direct clinical 
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integration of spine models [81], where the clinician may interact with the model to evaluate 

their proposed spinal intervention biomechanically and thus improve clinical outcomes. One 

study successfully applied an FE scoliotic spine model in the scoliosis clinic [58], where the 

FE model improved brace design. Although promising, long term outcomes are yet to be 

determined. Clinical integration of FE spine models is rare since spine models have a 

considerable limitation: current simulations require significant amounts of time to compute the 

spinal response (i.e. hours) [107], making them too slow for many practical applications. Even 

for scoliosis bracing, faster solve times (i.e. less than five seconds) would allow orthotists to 

adjust their designs quicker for faster brace fabrication. As another potential example (among 

others), lumbar spine models with computation times less than a second would open the door 

towards patient-specific evaluation of spinal implants during surgery. Hence, the clinical 

integration of FE spine models exhibits great potential; thus, researchers must address the 

barriers of clinical integration, especially computation speed, to realize this potential. To 

improve the computation time of FE lumbar spine models, every aspect of model development 

and solving must be considered. 

Various FE lumbar spine models have been developed and validated against experimental data 

[30]. Although differences exist between many models, most FE lumbar spine models were 

developed using similar methodologies. The annulus fibrosus is often comprised of hexahedral 

elements embodying the matrix with crisscrossing tension-only spring elements for the fibers 

[51]. Also, the vertebrae are usually broken down into vertebral bodies and posterior elements 

[48]. Some studies have taken the bone density into account [72], but most simply split 

vertebral body into cancellous and cortical bone parts, where the cortical bone is often 

generated using shell elements. Studies often characterize the nucleus pulposus as either 
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nearly-incompressible (i.e. mixed displacement/pressure) solid elements [32], [49] or fully-

incompressible hydrostatic elements [39], [108]. In vivo, the nucleus acts like a nearly-

incompressible gel-like substance with properties close to water [23]. With regards to spine 

modelling, either representation is used and both exhibit similar results [30]. Ligaments are 

typically generated as tension-only spring elements [33], [48], [68], although some recent 

models have constructed them as shell elements [31], [46]. Most validated models include 

contact between the facet joint surfaces [30], [31], [48], [71], in which the contact is defined 

as frictionless and the effect of cartilage is sometimes included [109], [110]. Yet, some 

investigations have not included contact in their models depending on their applications [43]–

[45]. Considering the low facet joint forces observed in flexion and lateral bending [30], some 

investigators also did not investigate facet joint forces for model validity in those loading 

conditions [32]. Altogether, most studies built their FE lumbar spine models using these 

generic methods. To ensure that their models represented accurate spine biomechanics, model 

results were typically compared to in vitro data collected from experiments with the same 

geometry. For most investigations, previous lumbar spine models conducted validation for 

physiologic loading conditions given their clinical applications of spinal implants or 

biomechanical investigations related to back pain. Recently, Dreischarf et al. [30] collected 

results from various well-validated spine models to show that the median of these models better 

predicts in vitro data. Hence, the data presented by Dreischarf could be useful for validating 

prospective spine models through comparison to a range of well-validated models. 

Almost all successful models are meshed primarily with hexahedral elements to ensure model 

accuracy at a reasonable model size, especially considering the presence of nearly-

incompressible materials. Yet, based on FE theory, tetrahedral elements require significantly 
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less computations than hexahedral elements [80]. Although tetrahedral elements are more 

efficient per element, each hexahedral element breaks down into five to six tetrahedral 

elements [111]. Reduced integration (with one integration point) greatly reduces the number 

of computations for hexahedral elements, but hourglass control is required to ensure that the 

hexahedral elements do not lock spurious modes [112]. Hourglass control introduces more 

computations making the reduced integration hexahedral element slightly less efficient. On the 

other hand, FE programs such as ANSYS add an enhanced strain field to the tetrahedral 

elements in order to improve stabilization and prevent locking [112]. Regardless, no study yet 

has compared a spine model built entirely from tetrahedral to conventional models built 

primarily from hexahedral elements, especially in the context of improving computation speed. 

Moreover, considering the nonlinearity inherent to spine biomechanical behaviour, solving FE 

spine models requires nonlinear analyses which is typically performed using the Newton-

Raphson method [112]. Each Newton-Raphson iteration in the nonlinear analysis is broken 

down into the stiffness ‘matrix build’ phase and the ‘matrix solve’ phase [112]. Depending on 

element formulations, each model will exhibit different computation speeds within each phase 

of the nonlinear solve. Therefore, the effects of model parameters and formulations on each 

solving phase must be considered when developing a computationally improved FE spine 

model. 

For defining the cortical bone surrounding the vertebral body, most models use shell elements 

[30]. Although more accurate in thin-walled scenarios, these elements can be relatively 

unstable and require significantly more calculations than the underlying solid elements [80]. 

In spine biomechanics, the vertebrae are orders of magnitude stiffer than the intervertebral disc 

and surrounding tissues [48]. Some musculoskeletal dynamic models have taken advantage of 
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this fact for applications involving orthopedic design [113], ergonomic design [114], [115], 

and rehabilitation investigations [116]–[118]. Using OpenSim and AnyBody software to 

simplify model development and solving, musculoskeletal dynamic models have provided 

insight into spinal muscle forces and vertebral displacements during various postures and 

movements. Although potentially useful for clinics such as scoliosis brace development and 

spinal manipulation therapy, no clinical setting has integrated such spinal models – other than 

for certain orthopedic and ergonomic design purposes. As shown by Shirazi-Adl [48], the 

vertebral bodies and posterior elements tend to act as rigid bodies connected at the pedicles by 

beam elements. Likewise, treating the vertebrae as rigid bodies would greatly reduce the 

problem size since the vertebrae account for a significant proportion of elements in the entire 

model. Rigid bodies are computationally more efficient than solid elements due to the 

decreased number of elements and overall reduced degrees of freedom (DOFs). However, the 

introduction of rigid bodies may reduce accuracy further in addition to causing numerical 

instabilities in the form of an ill-conditioned stiffness matrix. Mathematically, the entire 

stiffness of the vertebra would be collected into the surface nodes of the vertebral endplates, 

decreasing model stability. Also, material failure and yielding could not be investigated by this 

type of model, reducing its usefulness. Similarly, musculoskeletal dynamic models cannot 

calculate the intradiscal pressure, further reducing their usefulness. Regardless, the use of 

musculoskeletal dynamic models, plus models that treat the vertebrae as rigid bodies, could 

greatly increase the computation speed and is a promising avenue of future work.  

Recent developments in computer memory and graphics processing units (GPUs) have opened 

the door to significant speedups for FE simulations. GPUs allow scientific computations to 

readily be computed in parallel on thousands of processors simultaneously instead of 
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sequentially as on central processing units (CPUs), allowing great speedups for applications 

involving repetitive computations, such as FE [2]. Some studies successfully applied real-time 

FE techniques on GPUs to other biomedical systems such as brain and soft tissue models [11], 

[88]. Yet, no studies have attempted to apply real-time FE techniques to lumbar spine models. 

Considering no work to date has focused on developing real-time FE spine models, novel 

efforts are required to move FE spine models toward real-time clinical scenarios as done for 

other biomedical simulations. Further development and application of current real-time FE 

techniques could allow for integration of spine models into clinical scenarios. However, before 

investigating real-time techniques for spine models, a novel generic methodology for 

generating an FE lumbar spine model designed specifically for GPU computation must be 

created. 

This study takes the first step towards computational improvement of FE lumbar spine models 

through development of a novel model with better computational efficiency that allows for 

real-time computing options. By following previous FE lumbar spine models [30] and allowing 

for the wide potential applicability of the proposed model, a general validation against 

physiologic loading scenarios is pursued, in which detailed validation would be required in 

further study for specific applications. The primary objective of the current study is to develop 

a generic FE lumbar spine modelling methodology and validate a lumbar spine model for 

physiologic loading scenarios with the following criteria: increased computation speed over 

conventional models, and improved parallelism for a prospective GPU implementation. The 

research question that this work addresses is: would a novel FE lumbar spine modelling 

methodology produce a faster lumbar spine model than conventional models while preserving 

validity for physiologic loading scenarios?  
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2.2 Methods 

An unmarked computed tomography (CT) scan (1.5 mm slices) was obtained of a full lumbar 

spine (L1 to L5). A solid model of the spine’s bony components was created from the CT 

images using Simpleware (Simpleware Version 7.0, Synopsys, Exeter, UK) and saved as an 

IGES file. Then, using SolidWorks (SolidWorks 2015 SP4.0, Dassault Systems, Waltham, 

MA) on the same IGES file, intervertebral discs were created as slightly bulging volumes 

between each vertebra with a nucleus pulposus volume ratio of ~60% [38] and 1 mm cartilage 

endplates [44]. The mesh was generated using Hypermesh (Hyperworks 2017, Altair 

Engineering Inc., Troy, MI) from the solid model, in which the annulus layers were map 

meshed and the rest of the model was free meshed to form the irregular spinal geometry. 

Ligament attachment points were defined in Hypermesh based upon previous models [30] and 

the mesh was exported into ANSYS (APDL Version 17.0, ANSYS Inc., Canonsburg, PA) for 

analysis. All analyses were run on a desktop computer with 4 cores of an Intel Xeon E5-2630 

v2 CPU (Intel Core, Intel, Santa Clara, CA) and 128 gigabytes of RAM. For all analyses, large 

displacement analysis was applied with a full Newton-Raphson non-linear solver and a sparse 

direct linear solver at each Newton-Raphson iteration. Convergence criteria for displacement 

and force was set to the ANSYS defaults [112], which for the current analysis was 

approximately 0.5 to 3.5 N for force convergence (using the L2 norm), 0.35 to 0.5 mm for 

displacement convergence (using the L2 norm), and approximately 12 to 40 Nmm for moment 

convergence (using the L2 norm), all depending on the model and loading involved. 

2.2.1 Conventional Model 

The conventional model was developed in a manner similar to previous models that utilized 

generic modelling methodologies [30]. As such, the annulus fibrosus was defined as collagen 
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fibers embedded in a ground matrix [50]. Linear hexahedral brick elements (SOLID185) with 

reduced integration comprised the annulus matrix while the fibers were generated using 2-node 

tension-only spring elements (COMBIN39) connecting the corner nodes of the annulus matrix 

brick elements. The annulus matrix mesh was generated such that the fibers were created as 8 

alternating concentric layers [49] at alternating angles of ~30 and ~150 degrees from the 

transverse plane as done in previous FE lumbar models [68]. Although in vivo lumbar 

intervertebral discs typically have 15-20 layers [119], the current study’s model generation is 

consistent with previous models [38], [49] that balanced modelling simplicity with sufficient 

accuracy, considering that the difference in gross biomechanical results between modelling 8 

layers versus 15-20 layers would be negligible. Annulus fiber stiffness was varied from the 

most stiff outer layer to the least stiff innermost layer according to previous studies [39], and 

the volume weighting of the fibers with respect to the annulus matrix was varied from 23% at 

the outermost layer to 5% at the innermost layer following literature [44]. All remaining 

components, excluding the ligaments and cortical bone, were generated from linear 

hexahedral, tetrahedral, prism, and pyramid elements to form the irregular geometries. To 

handle near-incompressibility and improve model stability, pressure nodes were added to the 

nucleus pulposus, thus the nucleus was comprised of mixed displacement-pressure (u/p) 

elements. To model the different material properties of the vertebral bodies and posterior 

elements, each vertebra was split at the pedicles with shared nodes between the components. 

Further, the cortical bone was defined as shell elements (SHELL181) surrounding the 

cancellous bone of the vertebral body. Like the annulus fibers, the ligaments were defined as 

2-node tension-only spring elements. Finally, facet contact was symmetrically specified 

between the superior and inferior facets of adjacent vertebra. The augmented Lagrange method 
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[112] defined the contact behavior between the facets with softened stiffness to represent the 

joint cartilage. Material properties for each component are shown in Table 2-1. 

Table 2-1: Material Properties 

Component Model Properties Values  

Cortical bone [51] Proposed/Conventional Exx, Eyy 11,300 MPa 
 Ezz 22,000 MPa 
 Gxy 3800 MPa 
 Gyz, Gxz 5400 MPa 
 νxy 0.484 
 νyz, νxz 0.203 

Cancellous bone [51] Proposed/Conventional Exx, Eyy 140 MPa 
 Ezz 200 MPa 
 Gxy, Gyz, Gxz 48.3 MPa 
 νxy 0.450 
 νyz, νxz 0.315 

Cartilage Endplates [51] Proposed/Conventional E 23.8 MPa 
  ν 0.4 

Annulus matrix Conventional [51] C10 0.18 MPa 
 C01 0.045 MPa 
 K 4.35 MPa 

 Proposed [49] C10 0.56 MPa 
 C01 0.14 MPa 
 K 14.0 MPa  

Nucleus pulposus Conventional [51] C10 0.12 MPa 
 C01 0.03 MPa 
 K 1499.9 MPa  

 Proposed E 1.0 MPa 
 ν 0.49958 

Symbols are given as follows: E is the Young’s modulus, G is the shear modulus, and ν is the Poisson’s 
ratio in the x, y, or z directions for the orthotropic materials (independent of direction for isotropic 
materials); C10 and C01 are the material constants and K is the initial bulk modulus (related to 
incompressibility) for the Mooney-Rivlin material model. MPa represents megaPascals 

 

Ligament properties were calibrated such that the model response matched previous literature 

data; see Figure 2-1 for a comparison of the current study’s ligament response curves compared 
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to previous work [51]. Note the ligament stiffnesses shown in Figure 2-1 are different since 

each study utilized different geometry and the ligament stiffnesses were calibrated to match 

validation criteria. Likewise, the facet contact surface offset was set to 0.5 mm and the stiffness 

factor was 0.018 to represent the facet cartilage, in which the exact values resulted from 

calibration of the model to experimental data. Optimal convergence was desired to get the 

fastest model for comparison, so a trial-and-error procedure was conducted to calibrate these 

contact parameters. Similar to previous models [30], the model was calibrated to match 

experimental data by adjusting contact parameters for optimal convergence. The gap between 

the articulating surfaces was a result of the facet joint geometries. See Figure 2-2 for a depiction 

of the conventional model created for this study. The conventional model was comprised of 

216 253 elements and 52 826 nodes in total. 
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Figure 2-1: Ligament stiffness curves used for both the proposed and conventional models (i.e. 
"Current") compared to Schmidt's [51] ligament stiffness curves. (on the left) The anterior 
longitudinal ligament (ALL), posterior longitudinal ligament (PLL), and interspinous ligament 
(ISL) are shown on the left. (on the right) The supraspinous ligament (SSL), ligamentum 
flavum (FL), and facet capsulary ligament (FC) are shown on the right. 

 

Figure 2-2: Depiction of the conventional spine model. 
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2.2.2 Proposed Model 

The proposed model aimed to improve computational efficiency by decreasing the number of 

computations while preserving the accuracy of the conventional model for gross physiologic 

movements. Therefore, the proposed model exhibited four significant differences compared to 

the conventional model. Firstly, all solid components were composed of linear tetrahedral 

elements instead of a mixed linear hexahedral and tetrahedral mesh. Secondly, the u/p elements 

encompassing the nucleus pulposus were replaced with pure displacement elements. Thirdly, 

the cortical bone was defined as the outer layer tetrahedral elements encompassing the 

cancellous bone as opposed to shell elements. Lastly, the material properties were adjusted to 

improve accuracy and convergence of the model, see Table 2-1. The two material property 

differences between the conventional and proposed models were within the annulus fibrosus 

and nucleus pulposus. For the proposed model, the nucleus pulposus was defined as linear 

elastic, as opposed to Mooney-Rivlin for the conventional model, and the material properties 

were adjusted by decreasing the Poisson’s ratio (starting at 0.4999) until good model 

convergence was achieved for all loading scenarios. Considering the slight decrease in bulk 

modulus in the intervertebral disc due to the nucleus pulposus, the annulus fibrosus material 

properties were adjusted to increase the bulk modulus, which improved model accuracy. To 

create the tetrahedral mesh, the conventional mixed mesh was split into purely tetrahedral 

elements following a previous algorithm for splitting hexahedral, pyramid, and wedge 

elements into a consistent tetrahedral mesh [111]. Thus, the number of nodes remained the 

same as only the elements were split, and the annulus fibers remained connected to the same 

nodes as from the conventional model mesh. Contact surface offset was adjusted slightly to 

improve convergence: 0.4 for the left L3 facet and 0.43 for the right L3 facet. Contact 
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parameters for the proposed model were adjusted through a trial-and-error procedure, as done 

with the conventional model. The proposed model has a similar depiction as the conventional 

model, as seen in Figure 2-2, since visually the only difference is hexahedral elements to 

tetrahedral elements. The proposed model was comprised of 274 680 elements and 52 826 

nodes in total. Note the same number of nodes as in the conventional model. Mesh convergence 

was deemed not necessary for the current study as long as the models passed validation, and 

especially, considering that the study focuses on direct comparison between modelling 

methodologies rather than model application. 

2.2.3 Model Validation 

Both the conventional and proposed models underwent validation procedures to ensure that 

both models were accurate for basic physiologic loadings before comparison. Loading 

scenarios for validation were chosen as basic for allowing the development of prospective 

spine models following the proposed methodology, especially considering that most clinical 

spinal responses break down into basic physiologic movements. Moreover, the standard 

loadings typically conducted for spinal implant testing are pure moments [24], which are 

representative of many potential clinical scenarios. Model validation was achieved following 

Dreischarf’s paper [30] comparing numerous well-validated FE lumbar models from literature. 

The tested loading scenarios included pure moments of 7.5 Nm in flexion, extension, lateral 

bending (left and right), and axial rotation (left and right), in addition to pure compression of 

1000 N using the follower load method [68]. As per Dreischarf, moments were applied at the 

cranial end of the L1 vertebral body using a remote point attached to all nodes on the superior 

surface, and the follower loadings were applied at the node closest to the centroid of each 

vertebral body. The L1-L5 vertebral rotations resulting from the applied moments were 
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computed as the rotation of that remote point. Boundary conditions for all loading scenarios 

involved fixing the inferior surface of the L5 vertebral body in all DOFs. Intradiscal pressure 

was determined by calculating the average hydrostatic pressure of all elements comprising the 

nucleus. Each model was considered valid if its output – L1-L5 vertebral rotation for moment 

loadings and L4-L5 nucleus pressure for compression loading – fell within the range of outputs 

generated by previously well-validated models; see Dreischarf’s paper [30]. Note that the 

applied loadings and expected responses are pseudo-static and thus do not include the 

hysteresis typical of in vitro models [24]. 

2.2.4 Model Comparison 

Upon validation, both models were compared in terms of speed and accuracy. To conduct the 

comparison, only moment loadings were applied to each model with the same boundary and 

loading conditions as the validation stage. Compression loading was not investigated for 

comparison since it requires small time steps to satisfy the follower load, and thus, it would 

not be useful considering that the long-term focus of the current study is real-time solving and 

that it is another considerable challenge for real-time solving that would require a separate 

study. The number of substeps for each model under each loading scenario was optimized 

through preliminary convergence trials. For accuracy, displacements were compared between 

each model. For speed, the number of iterations for convergence, time per iteration, and total 

computational time were recorded from each model and compared. Considering that all 

simulations were run on the same workstation under the same conditions (including 

background processes) and geometry, differences in total computation time are attributed to 

the differences in element and material definitions between the models. 
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2.3 Results 

2.3.1 Validation 

The results from each loading case for each model satisfied the validation criteria, see Figure 

2-3. 

 

Figure 2-3: (a) L1-5 RoM of the conventional and proposed models compared to previously 
well-validated models from literature, as published by Dreischarf [30]. The red bar represents 
the median of previous models while the error bars represent the range. (b) L1-5 vertebral 
body rotation of conventional and proposed model compared to the most and least stiff well-
validated models shown by Dreischarf. (c) Facet joint forces of the proposed and 
conventional models compared to Dreischarf’s data. The median of all facets is shown with 
the maximum and minimum shown by the error bars. (d) Intradiscal pressure resulting from 
the L4-5 intervertebral nucleus pulposus under compressive follower load of the 
conventional and proposed models compared to the models exhibiting the highest and lowest 
pressures from Dreischarf’s data. 
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The conventional model matched close to the median of previous FE data [30] for flexion, 

lateral bending, and compression, and within the range of previous well-validated FE lumbar 

spine models for extension and axial rotation. On the other hand, the proposed model better 

predicted the median of FE data for extension and axial rotation, and was within the range of 

previous well-validated models [30] for flexion and lateral bending. However, the proposed 

model did not converge past 400 N for the compression loading. This is likely due to locking 

of the tetrahedral elements under considerable hydrostatic pressure in the nearly-

incompressible nucleus pulposus, although further investigation is necessary to determine the 

true cause. Also, facet joint forces of both the conventional and proposed models were ~30 N 

lower in extension than previous models, although the conventional model was closer. In 

general, both the conventional and proposed models were considered valid in representing a 

generic lumbar spine model’s response to basic physiologic loadings, see Figure 3-1; and 

therefore, Model Comparison (Section 2.3.2) may be performed. 

2.3.2 Model Comparison 

See Table 2-2 for accuracy and speed comparisons between the conventional and proposed 

models. Also, see Figure 2-4 for a depiction of the speed comparison. 
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Table 2-2: Accuracy and speed comparison between proposed and conventional models. 

Loading Case Model 
RoM 
(degrees) 

Sub-
steps Iterations 

Time 
(s) 

Time/ 
Iteration (s) 

Flexion Proposed 17.97 4 21 263.1 12.5 

 Conventional 19.11 4 20 378.2 18.9 

Extension Proposed 13.66 3 17 212.1 12.5 

 Conventional 14.60 3 20 430.1 21.5 

Lateral Bending Right Proposed 13.53 3 16 204.4 12.8 

 Conventional 14.13 1 9 192.1 21.3 

Lateral Bending Left Proposed 13.92 3 16 203.8 12.7 

 Conventional 14.43 1 10 193.4 19.3 

Axial Rotation Right Proposed 8.90 3 16 198.04 12.4 

 Conventional 10.60 3 20 413.1 20.6 

Axial Rotation Left Proposed 8.85 3 20 242.3 12.1 

  Conventional 10.43 4 24 491.6 20.5 
 

 

Figure 2-4: Speed comparison of the conventional and proposed models. 
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As shown in Table 2-2, the proposed model exhibits an average of 8.6% lower rotation than 

the conventional model for moment loadings, hence the proposed model is stiffer than the 

conventional model. Although the applied loadings are pure physiologic moments, out-of-

plane rotation of approximately 1.8 degrees (at maximum) occurred due to minor asymmetry 

in the geometry. Yet, this coupled motion was minimal and consistent between both models, 

and therefore, not a concern for the accuracy and speed comparisons of the models. The 

proposed model had an average speed-up of 1.6X compared to the conventional model for all 

moment loadings. The greatest speed-up was 2.1X for the right axial rotation loading case, 

while the proposed model was slightly slower (0.94X) for the lateral bending loading cases 

primarily due to the number of iterations until convergence. Accordingly, the overall speed-up 

directly results from the increased speed per iteration since similar convergence was noticed 

between the two models except for lateral bending, see Table 2-2. Also, the CPU time for the 

matrix build phase of the conventional and proposed models were 77 and 94 seconds, 

respectively, showing that increased speed of the proposed model can be attributed to the linear 

matrix solve phase of the analysis rather than the matrix build phase. In other words, the 

conventional model was faster for the matrix build phase but much slower for the matrix solve 

phase, making the proposed model faster overall. 

2.4 Discussion 

Two FE lumbar spine models – a conventional and a proposed model – were validated for 

basic physiologic loading conditions against previous models and compared to determine 

whether simpler modeling techniques could improve the computational efficiency of spine 

models generated from generic methodologies. From Figure 2-3b, the gross vertebral rotation 

curves appear to lack some of the expected nonlinearity within the loading range, but the 
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tangent stiffness’ match closely to the literature curves. The perceived lack of nonlinearity 

compared to other spine models can largely be attributed to geometric differences of the current 

model, especially within the facet joints, and partly attributed to the linear nucleus pulposus in 

addition to the increased stiffness of the annulus matrix. Although the moment-rotation curves 

appeared somewhat linear, the strain energy is nonlinear given the number of iterations until 

convergence exhibited during the model solving stage for each sub step. One concern for model 

validation was the facet joint forces in extension. Both conventional and proposed models were 

not within range of previous models (~10 N to ~110 N with a median of ~30 N); however, the 

median of facet joint forces from previous models is relatively low (~30 N) so this small 

difference between the current study and previous studies is not a significant concern. 

Moreover, the geometry used in the current study is different from previous models. The facet 

joint surfaces may be situated (i.e. the gap between the surfaces) such that contact doesn’t 

occur in certain loading conditions including extension, which accounts for the lower facet 

joint forces for the current study.  

Upon completion of validation, the proposed study investigated the impact of simpler elements 

and materials on model accuracy and speed. Through model comparison, the proposed study 

determined that the model simplifications were effective in decreasing computation time 

alongside an 8.6% difference in accuracy, in which the difference in accuracy is less of a 

concern given that the proposed model was validated. One noticeable oddity in the Table 2-2 

is the substantial difference in convergence iterations (and thus computation speed) between 

left and right axial rotation. Some lack of symmetry in the geometry (since the geometry came 

from an unmarked human CT data set) between the right and left facets are a likely explanation 

for the convergence disparity, in which this point is supported by the consistency of this 
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convergence disparity between the conventional and proposed models. Nonetheless, the speed 

increase from the conventional to proposed model was modest but consistent for most of the 

tested loading scenarios, see Figure 2-4. The only concern was the lateral bending loading, 

where the proposed model was slightly slower. Effectively, slower model convergence caused 

longer computation of the proposed model for that loading scenario, in which contact 

conditions resulted in slower convergence. The median facet joint force for lateral bending in 

previous models is low at ~10 N and is highly dependent on geometry [30]. Hence, a model 

can still have valid kinematic response (moment-rotation curve) and intradiscal pressure 

without contact conditions for flexion and lateral bending loadings. Some researchers do not 

consider facet joint forces a major concern for their results in lateral bending [32]. Also, slower 

convergence is a result of ‘near’ state of contact as the model slows down significantly at the 

point of contact due to the sudden stiffness change in the model, which is all irrespective of 

the amount of contact force. On the other hand, the proposed model’s response in flexion, 

where no contact occurred, and axial rotation, where contact occurred early along the loading 

curve, demonstrated that the proposed model is faster than the conventional model. Therefore, 

the methodology proposed by the current study exhibits considerable potential for the 

development of prospective lumbar spine models requiring improved computational speed. 

Model differences resulting in the decreased computation time are broken down into Element 

Formulations (Section 2.4.1) and Material Definitions (Section 2.4.2), while model 

Parallelization (Section 2.4.3) was a concern when building the proposed model considering 

the long-term focus of the current study.  
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2.4.1 Element Formulations 

The main element formulation differences between the conventional and the proposed models 

were: an overall mixed mesh versus pure tetrahedral mesh, shell elements versus solid elements 

for the cortical bone, and mixed u/p elements for the nucleus pulposus versus pure 

displacement elements. 

Tetrahedral elements tend to be stiffer than hexahedral elements in the case of large 

deformation. Notwithstanding, the overall difference in stiffness between the proposed and 

conventional models was small. Considering that the hexahedral elements of the conventional 

model were computed using reduced integration with hourglass control, they were still slightly 

more efficient to build than the tetrahedral elements with enhanced strain of the proposed 

model, as determined from the CPU formulation time. However, tetrahedral elements were 

focused on for the proposed model since they are more suited for GPU processing. Although 

the proposed model has significantly more elements, the overall efficiency of tetrahedral 

elements outweighs the increased element count. Furthermore, the difference in accuracy by 

using tetrahedral elements is minimal compared to the gains in parallelism and speed, 

especially considering that the proposed model passed validation criteria. Regardless, further 

stability considerations, such as material and shell element changes, were necessary since 

tetrahedral elements tend to lock in large deformation scenarios.  

With regards to the cortical bone, the difference in overall biomechanical accuracy is minimal 

when switching to a thicker cortical layer of tetrahedral elements in the proposed model from 

a thinner layer of shell elements in the conventional model. The overall rigidity of the vertebral 

body compared to the rest of the model accounts for the preservation of accuracy in switching 
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from shell elements to solid elements for the cortical bone. Clearly, using a thicker cortical 

layer of tetrahedral elements is significantly more efficient than the shell elements alone. Still, 

further study is required to determine the exact improvements in efficiency and stability. 

Additional improvements in efficiency may be revealed by defining the vertebrae as rigid 

bodies [48], but losses of stability and utility are issues. Again, the use of rigid bodies for the 

vertebrae could greatly increase the computation speed and is a promising avenue of future 

work. 

The last difference between the conventional model and proposed model is the use of mixed 

u/p elements to define the nucleus pulposus. Mixed u/p formulation helps stabilize elements 

comprised of nearly-incompressible material [80]. However, u/p elements add pressure DOFs 

to the model, increasing the model size, and thus, increasing the solve time per iteration. Also, 

the u/p element formulation results in a non-positive definite stiffness matrix so a slower matrix 

solver (such as a QR solver) was required to compute each iteration [120] for the conventional 

model. Similar results would be revealed for other models from literature using hydrostatic 

elements (HSFLD242 in ANSYS) to describe each nucleus [31], [68], [108] since they require 

extra pressure DOFs and result in a non-positive definite stiffness matrix as well. Therefore, 

pure displacement elements are preferred where stability is not a concern. As determined by 

the current study and given linear material for the nucleus pulposus, u/p elements are not 

required for stability since the tetrahedral elements appear sufficiently stable and accurate for 

spine biomechanics, given the current mesh size. 

In all, although splitting the conventional model into tetrahedral elements resulted in 

significantly more elements and slightly increased model formulation time, the other element 
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formulation improvements resulted in improved matrix solve times. Hence, overall model 

solve times were faster for the proposed model. Nonetheless, other models could be generated 

that may be more efficient than the proposed model. In particular, element formulation times 

could be optimized by meshing with reduced integration hexahedral elements and solid 

elements for the cortical bone (instead of shell elements), while solve times could be preserved 

by using pure displacement elements instead of u/p elements in order to take advantage of 

faster matrix solvers. However, the focus of the current study was preparing spine models for 

real-time applications by taking advantage of parallel computing, therefore tetrahedral 

elements were built into the proposed model. Given the results of the current study, the element 

formulation time difference between the conventional and proposed models was small, and 

therefore, the improved overall computation time of the proposed model by using pure 

displacement reduced integration hexahedral elements instead of tetrahedral elements would 

be small as well. Still, further investigation would be necessary. 

The current study proved that faster, yet accurate spine models can be developed using simpler 

elements, but further improvements might still be possible. Other optimizations may have 

potential, but one formulation exhibits considerable promise. ANSYS uses the updated 

Lagrangian Jaumann (ULJ) formulation [112] to build its elements, yet the total Lagrangian 

(TL) formulation [80] is more efficient since the Jacobian doesn’t need to be recalculated for 

each iteration in TL. Still, further work is necessary to develop and evaluate the use of the TL 

formulation for real-time spine models. 
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2.4.2 Material Definitions 

In addition to the differences in element formulations between the proposed and conventional 

models, the proposed model also changed two material definitions to improve model 

efficiency. The two material changes were: linear material for the nucleus pulposus; and stiffer 

Mooney-Rivlin constants describing the annulus matrix. 

Linear material properties generate faster solving models since the material stress-strain matrix 

does not require updating between iterations. Moreover, linear material properties tend to be 

more numerically stable for the same reason. However, they are not accurate when 

approximating the response of spinal tissue, particularly in large deformation scenarios. In 

spine biomechanics, the axis of rotation passes through the intervertebral disc since the nucleus 

possesses a large bulk modulus [23]. Hence, large strains are not expected within the nucleus 

pulposus so linear material properties are sufficient for accurate spine displacements in 

response to physiologic moments, as noticed by the current study and others [32], [39]. 

The condition number of the material property matrix has a considerable effect on model 

stability [80], [120]. To improve stability of the proposed model, the Mooney-Rivlin constants 

were altered to increase stiffness. By increasing the stiffness of the annulus matrix, the stiffness 

gradients between the vertebrae and intervertebral discs were decreased. This resulted in 

improved numerical stability which improved model convergence. Although increasing the 

annulus stiffness altered the proposed model’s accuracy, the improved convergence and overall 

model speed overlap the current study’s goals considering that the model still meets the 

validation criteria.  
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2.4.3 Parallelization 

The proposed model was developed with real-time solving considerations in mind since the 

long-term focus is on increasing the capability of spine models adapted and developed 

specifically for clinical scenarios. With other biomedical FE models, the use of GPUs for 

model solving has significantly increased the computational speed [11], [21]. Hence, 

parallelization of model building and solving at the model development stage was a critical 

consideration when creating the proposed model. For CPU computation, the increased element 

counts of the proposed model increased the nonlinear model build time per Newton-Raphson 

iteration since the elements are built sequentially on the CPU. On the other hand, GPU 

computation allows the elements to be built in parallel, thereby decreasing computation time 

by building thousands of elements at the same time [79]. Therefore, although the proposed 

model has substantially more elements than the conventional model (274 680 vs 216 253, an 

increase of 27%), the proposed model is better suited for GPU computation. In comparison 

with the conventional model, the proposed model boasts fewer computations per element over 

a larger number of elements, thus splitting the calculations over a larger number of processors 

in GPU computation. Hence, more elements are computed at a single time, greatly increasing 

the computational speed for building the stiffness matrix and load vector. Consequently, the 

proposed tetrahedral model is the primary focus of future GPU development towards real-time 

computation. 

2.4.4 Limitations 

Although generally successful, a significant limitation exists in the proposed model: it is 

unstable in pure compression loading via the follower loading method. Hence, the applicability 

of the proposed model is limited to scenarios without compression loading where the patient 
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must be lying down and no large axial compression loadings are applied to the lumbar spine 

[121]–[124]. Applicable scenarios include SMT or spinal surgery. Nonetheless, the proposed 

generic modelling methodology provides a basis and a guide for developing other 

computationally improved models, whether they use all or some of the proposed 

improvements. The current study design has limitations. Since both models were built from 

the same lumbar spine geometry, the effect of differing geometries on the resulting 

computation speeds was not investigated, even though differences in geometry between 

models account for significant differences in model response to loading [125]. Still, 

considering that the conventional and proposed models are geometrically exact, the results are 

independent of geometry and the proposed methodology should produce a similar result when 

applied to other lumbar spine geometries. Also, contact conditions have a significant effect on 

model convergence, but their effect was not thoroughly examined. The contact parameters 

effectively changed both the contact stiffness (i.e. the effect of joint cartilage) as the facets 

come into contact and the point when the facets come into the contact (i.e. the initial gap 

between the contact surfaces). Contact parameters were optimized to achieve good 

convergence for all the tested loading scenarios (which required a balance between each of the 

loading scenarios) considering that the goal of the study was computation speed with validity. 

The overall modelling modifications to the proposed model caused increased overall stiffness 

which changed the point when contact occurred between the facet surfaces. For the case of 

lateral bending, contact for many of the facet surfaces occurred just before 7.5 Nm making 

convergence difficult for the proposed model (similar for the conventional model where some 

of the surfaces are just coming into contact at 7.5 Nm). Additionally, some of the surfaces are 

in contact while others are on the verge of contact, which affects the convergence behavior as 
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well. Considering that the proposed model exhibited slower convergence than the conventional 

model, the proposed model likely had more surfaces in a near contact state than the 

conventional model. Regardless, the qualitative comparisons of computation speed are affected 

minimally since the contact conditions only changed when contact occurs along the loading 

curve and not the loading curve itself. In any case, the inclusion of contact was still necessary 

considering that: contact is critical in accurate spine models, and the presence of contact 

demonstrates that the proposed model is still faster with contact included (i.e. axial rotation 

where contact forces are significant). Further study may determine the quantitative effect of 

contact on model convergence between the conventional and proposed models. Regardless, the 

current study ensured ideal convergence and accomplished better comparison that focused on 

the element formulation and material differences between the two models, although different 

geometries with different contact situations (gap and stiffness) could be investigated further. 

Lastly, the current study only considered physiologic loadings up to 7.5 Nm as done for 

validating other lumbar models against pure moments [24], [30], but other pseudo-static 

loading scenarios would likely produce similar results. The tangent stiffness curves at 7.5 Nm 

match close to previous literature, see Figure 2-3, so similar results are expected for loadings 

past 7.5 Nm. Also, spinal response to other pseudo-static loading scenarios, such as the 

postero-anterior loadings of spinal manipulation therapy, principally break down into the 

physiologic loadings (for each motion segment) explored by the current study, although further 

investigation and validation would be required to apply any such model to clinical scenarios. 

One final consideration must be realized: the proposed results are qualitative in that only one 

geometry was compared. Hence, the quantitative results would differ for different geometries, 

but the overall comparison between the proposed and conventional modelling methodologies 
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would remain the same. In all, despite its limitations, the current study is useful as a guide for 

spine model development bearing in mind real-time applications. 

2.5 Conclusion 

As one step towards developing faster spine models using generic methodologies, the primary 

objective of the current study was to develop a generic spine modelling methodology that 

exhibited improved computational efficiency over conventional methodologies while 

considering parallelization. As shown, the proposed model outperformed the conventional 

model in the tested loading conditions since it runs faster for the same problem size while 

preserving accuracy and validity for basic physiologic loading conditions. Improved speed was 

attributed primarily to linear matrix solving times. Numerous changes from the conventional 

model were made to generate the proposed model based on other works and theories in the 

literature, but the effects of each change were not investigated. The aim focused on first 

identifying if such modifications were of value and then to guide future work. Thus, an optimal 

model was not acquired through the current study, although it could be through further 

investigation of the methods used, specifically with the material changes in addition to pure 

displacement elements for the nucleus and cortical bone. Regardless, the use of tetrahedral 

elements improved the parallelization of the proposed model while still exhibiting increased 

computational performance over the conventional model. In meeting the current study’s aims, 

the proposed spine modelling methodology can be used to bring lumbar spine models closer 

to real-time clinical applications, such as SMT, spinal surgery, or spinal implant design during 

intervention. From this starting point as a building block and by using the proposed methods, 

computationally improved lumbar spine FE models may be developed for potential integration 
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into clinical scenarios. Nonetheless, further work is necessary before the goal of accurate, real-

time spine simulation is realized. 
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Chapter 3   Evaluation and Development of Real-Time Finite 

Element Techniques to Simulate Spine Model 

Deformations 

A version of this Chapter is under review as: 

Maeda, N.K., Boulanger, P., Carey, J.P., Evaluation and Development of Real-Time Finite 

Element Techniques to Simulate Spine Model Deformations, Computers and Structures 

(2018). 

3.1 Introduction 

Finite element (FE) lumbar spine models have contributed significantly to the study of lumbar 

spine biomechanics [30], [31], [41], [126] over the last 40 years, in addition to improvements 

in implant and orthotic design [31], [59]. Although potentially useful in clinical and training 

scenarios [107], [127], the development of real-time FE lumbar spine models is lacking in 

current literature. Current simulations of FE lumbar spine models are too slow for real-time 

clinical scenarios, such as scoliosis bracing or spinal surgery. Although generic lumbar spine 

model development methodologies have not yet been analyzed for computational speed, real-

time FE techniques must also be developed that consider the inherent complexity of spine 

materials. 

Most current spine models were computed using readily-available FE modelling software [30], 

such as ANSYS and Abaqus. Hence, their models were built upon non-linear element 

formulations within the software.  For ANSYS and Abaqus, all non-linear structural elements 

are generated using the updated Lagrangian Jaumann (ULJ) formulation [112]. In comparison 
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with the total Lagrangian (TL) formulation, the ULJ formulation requires less memory during 

calculation and allows direct calculation of the true (Cauchy) stresses, which is advantageous 

for developing mixed displacement-pressure formulations. Since ANSYS and Abaqus were 

developed in the early 1990s, when memory was costly, they focused on the ULJ formulation.  

On the other hand, the TL formulation requires less computations than the ULJ formulation 

for basic elements. Hence, the TL formulation is theoretically faster than the ULJ formulation 

for basic structural analyses [2] given serial computation speed per element as a requirement 

for real-time FE methods. Another formulation showing promise due to recent developments 

is meshless techniques [101], specifically smoothed particle hydrodynamics (SPH) [93]. 

Meshless techniques were created in the 1970s as an alternative to FE, but gave way to FE as 

the primary numerical technique since FE satisfies continuity within the model (meshless is 

discontinuous) and requires less computations [9]. With the emergence of real-time biomedical 

simulations, meshless techniques have arisen as a viable alternative to FE. Meshless techniques 

are advantageous for biomedical tissues since they are not sensitive to element shape quality, 

and thus, are more stable in large deformation scenarios. On the other hand, they require 

significantly more calculations per node and are not as readily parallelizable as FE techniques 

since calculations within each node are interconnected [93]. Considering recent developments 

in memory size and computing power of graphics processing units (GPUs), parallel 

computability of simulation methods is a keen consideration for the development of potential 

real-time FE methods [128]. Some researchers have attempted to develop real-time GPU 

meshless techniques [89], [96], [97], but they are in their infancy relative to FE techniques. 

Still, meshless techniques provide a potential avenue for future research of real-time spine 

models. Lastly, mass-spring methods offer a fast alternative to FE, but they tend to be 
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inaccurate [129] depending on the model. Accuracy is another consideration for potential real-

time FE methods. 

Recently, improvements in GPU technology and development of a programming library 

known as CUDA have opened exciting possibilities for real-time simulation. CUDA allows 

programmers to readily parallelize their applications by taking advantage of GPU architecture 

and memory design, increasing computation speeds substantially by conducting many 

calculations at the same point in time instead of sequentially as done in computation on the 

central processing unit (CPU). Using CUDA, some researchers have focused efforts on 

developing real-time FE models for specific clinical applications [2], [11], [21]. Miller et al. 

focused on developing and refining a novel Total Lagrangian Explicit Dynamics (TLED) 

algorithm [10] on GPUs for application to brain surgery [21]. Further, the TLED algorithm has 

gone through considerable development including contact methods [85], hourglass control 

[87], and non-locking tetrahedral elements to handle nearly-incompressible materials 

(Poisson’s ratio equal to 0.49) [86] within the TLED framework. TLED methods were 

successful in achieving significant speed-ups over conventional FE programs, but they were 

not “real-time” and they exhibited some limitations in application. The TLED algorithm was 

designed primarily for brain models, in which spine models encompass materials with 

considerably higher bulk modulus. For spine models, the incompressibility of the nucleus 

pulposus must be considered when evaluating potential real-time FE methods. TLED is limited 

by a maximum time step resulting from its explicit nature [10], in which the time step would 

be unrealistically small for a spine model considering geometric complexity and nearly-

incompressible material (Poisson’s ratio greater than 0.499 for spine models) [2]. On the other 

hand, Mafi designed a preconditioned conjugate gradient (PCG) matrix solver for the TL 
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formulation considering the capabilities and architecture of GPUs [2]. Mafi also outlined a 

coalesced memory storage strategy, see Equation (1-1), that demonstrated increased efficiency 

over linear storage strategy. Mafi’s coalesced memory strategy ensured that parallel threads 

(of the same block) running the same instruction accessed consecutive global memory 

locations, which optimized global memory bandwidth. Additionally, Mafi presented a vector 

assembly strategy that performed atomic operations on faster shared memory instead of global 

memory, which exhibited speed-ups over previously developed scatter and gather vector 

assembly methods. The CUDA memory indexing scheme is: 

𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 ∗ 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐷𝐷𝑖𝑖𝑚𝑚. 𝑥𝑥 ∗ 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐼𝐼𝑑𝑑𝑥𝑥. 𝑥𝑥 + 𝑖𝑖 ∗ 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐷𝐷𝑖𝑖𝑚𝑚. 𝑥𝑥 + 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟𝑑𝑑𝐼𝐼𝑑𝑑𝑥𝑥. 𝑥𝑥 (1 − 1) 

where index refers to the target memory space within the global array, size refers the array size, 

and i refers a vector or matrix component in non-coalesced global memory. 

Mafi’s memory handling strategies are useful for developing other real-time FE programs, 

regardless of solver used. However, PCG solvers are highly dependent on the linear matrix’s 

condition number, so Mafi’s solver may not be successful for spine models, although 

investigation is necessary especially considering numerical stability as a concern for potential 

real-time FE methods for spine models. Another real-time FE algorithm was developed by 

Courtecuisse [3], where he refined a co-rotational linear strain algorithm for GPU 

implementation [11]. Nonetheless, a co-rotational FE formulation would be inaccurate since 

large strain effects are prominent within spine models. Other possible methods for real-time 

FE analysis include statistical-type methods [99], [130] based on model reduction techniques 

and principal component analysis. Although promising for certain applications, extensive pre-

processing of the FE models is required for statistical methods [130], thereby reducing its 
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general utility to clinical scenarios that don’t require immediate generation of patient-specific 

shape models. In all, although previous work was successful for each of these authors’ specific 

applications, their methods are mostly not applicable to spine models. Therefore, novel efforts 

are required to move FE spine models toward real-time clinical scenarios, starting with the 

usage of spine material models to evaluate the suitability of real-time FE methods. 

This study represents steps toward real-time simulation of FE spine models by implementing 

current and new real-time FE techniques on spine material models. Although some of the 

previous methods work well for other biomedical material models [2], [3], [21], spine material 

models are more complex (especially the nucleus pulposus) [30], [38], [51]. Therefore, to 

assess the value of the potential GPU methods for real-time FE spine models, spine material 

models must be tested first. Testing and development of real-time FE techniques on spine 

material models would open the door towards implementing real-time FE techniques onto FE 

spine models. In the current study, GPU methods specifically designed for spine material 

models were investigated and developed.  

The research question that this work addresses is: how can real-time FE techniques improve 

the computation speed of spine material models? Hence, specific aims for this study include: 

(1) generate fast FE formulations for the least and most computationally difficult spine 

materials; (2) parallelize the formulations for GPU implementation; and (3) choose the fastest 

linear solver from readily available solvers.  

3.2 Methods 

A custom program was developed using Visual C++ (Visual Studio 2013, Microsoft Inc., 

Redmond, WA) and CUDA (Version 6.5, NVIDIA Corporation, Santa Clara, CA) that 
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implemented FE computations on a desktop workstation featuring a NVIDIA Titan Black GPU 

(NVIDIA Corporation, Santa Clara, CA) in conjunction with a commercial CPU (i5-2500 

CPU, Intel Core, Intel, Santa Clara, CA). The CUDA program’s speed and accuracy were 

compared to ANSYS (ADPL Version 17.0, ANSYS Inc., Canonsburg, PA) on the same 

workstation for the same model. For comparisons to ANSYS and between linear solvers, a 

cube model was used with a mesh of 41 526 nodes (124 578 DOF) and 231 650 linear 

tetrahedral elements, which is the approximate problem size as a typical lumbar spine model 

[36]. See Figure 3-1 for a depiction of the cube model including mesh and see Section 3.2.4 

for further cube model description.  

 

Figure 3-1: Depiction of the cube model with tetrahedral mesh used to test the CUDA 
program and linear solvers. 
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3.2.1 General Mathematical Framework 

Nonlinear finite element formulations were required considering the large deformation effects 

expected when applying loads to tissues. A commonly used and effective method for real-time 

simulation [2], [10] is the TL formulation developed by Bathe [80] from which all elements of 

the current model were built, see Equation (3-2) for the principle of virtual displacements using 

the TL formulation. During computation, all variable derivatives are referred to the original 

configuration as opposed to the current configuration (as in the ULJ formulation): 

� 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖
𝑉𝑉0

= 𝑅𝑅𝑡𝑡+Δ𝑡𝑡 (3 − 2) 

where 𝑅𝑅 is the external force vector, 𝑉𝑉 is the volume, 𝑆𝑆 = 𝐶𝐶𝜖𝜖 is the 2nd Piola-Kirchoff stress 

tensor, 𝜖𝜖𝑖𝑖𝑖𝑖 = 1
2

(𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝑢𝑢𝑖𝑖,𝑖𝑖𝑢𝑢𝑖𝑖,𝑖𝑖) is the Green-Lagrange strain, 𝑢𝑢𝑖𝑖,𝑖𝑖 = 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 is the gradient 

of displacement, 𝑢𝑢𝑖𝑖 is the nodal displacement in the i direction, and 𝑥𝑥𝑖𝑖 is the original nodal 

coordinates in the j direction. Subscripts refer to the referenced configuration from which the 

current derivatives are calculated, while the superscripts refer to the calculated configuration. 

The subscript or superscript “0” refers to the original configuration, while “𝑡𝑡” refers to the 

current configuration, and “𝑡𝑡 + Δ𝑡𝑡” refers to the next configuration. For example, 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 is 

calculated using 𝑢𝑢0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖,𝑖𝑖 = 𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑖𝑖

𝜕𝜕 𝑥𝑥0 𝑗𝑗
 and 𝑢𝑢𝑖𝑖 is calculated from the “𝑡𝑡 + Δ𝑡𝑡” configuration and 𝑥𝑥𝑖𝑖 

is calculated from the “0” configuration. 

Unlike ULJ, the TL formulation eliminates the need to re-compute the configuration (i.e. the 

Jacobian) at each Newton-Raphson iteration. Instead, computation of the initial displacement 

effect is required for the strain-displacement matrix derived from the Green-Lagrange strain, 
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Equation (3-3), at each iteration.  Still, the overall number of computations for the initial 

displacement effect is significantly less than re-computing the current configuration: 

𝑒𝑒𝑖𝑖𝑖𝑖0 =
1
2
� 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖 𝑢𝑢0 𝑖𝑖,𝑖𝑖 + 𝑢𝑢0 𝑖𝑖,𝑖𝑖 𝑢𝑢0𝑡𝑡 𝑖𝑖,𝑖𝑖� (3 − 3) 

where 𝑒𝑒0 𝑖𝑖𝑖𝑖 = 𝜖𝜖0 𝑖𝑖𝑖𝑖 − 𝜂𝜂0 𝑖𝑖𝑖𝑖 is the linear strain component (𝜂𝜂 is the nonlinear strain component 

and 𝜀𝜀 is the overall Green-Lagrange strain), and 𝜖𝜖0 𝑖𝑖𝑖𝑖 = 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 − 𝜖𝜖0𝑡𝑡 𝑖𝑖𝑖𝑖. A subscripted variable 

with no superscript refers to the difference between the current configuration (t) and the next 

configuration (t+Δt). 

Shape functions for the linear tetrahedral elements were the same as for the ULJ formulation 

in ANSYS [112], by: 

𝑢𝑢 = 𝑟𝑟𝑢𝑢1 + 𝑠𝑠𝑢𝑢2 + 𝑡𝑡𝑢𝑢3 + (1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)𝑢𝑢4 (3 − 4) 

where 𝑟𝑟, 𝑠𝑠, 𝑡𝑡 are the isoparametric coordinates of the element. 

All derivatives are calculated with respect to the original configuration at time 0 as per the TL 

formulation. The rest of the derivation followed Bathe’s work [80]. 

The full Newton-Raphson nonlinear solver method was used to compute the overall nonlinear 

equation: 

� 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟Δ 𝑒𝑒0 𝑟𝑟𝑟𝑟𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

+ � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿Δ 𝜂𝜂0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0

𝑉𝑉0

= 𝑅𝑅𝑡𝑡+Δ𝑡𝑡 − � 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖𝛿𝛿 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

(3 − 5)
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where 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 is the material property tensor and Δ refers to the increment from the Newton-

Raphson iteration. At each iteration, 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 and 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖 are updated and Δ𝑢𝑢 is solved for to 

get the next increment, then 𝑢𝑢 = 𝑢𝑢 + Δ𝑢𝑢 and the process is repeated. 

Considering the size of typical lumbar spine models [36] and the significant computation time 

expected per iteration, fast convergence was required to minimize the number of iterations.  

Also, no sudden stiffness curve changes are expected for spine models in response to gross 

physiologic movements (i.e. flexion, extension, lateral bending, and axial rotation), as 

observed in Dreischarf’s work [30], so line-search or secant methods would not improve 

convergence (and thus computation speed). These considerations are necessary given the 

potential application of the given work on spine material models to full lumbar spine models. 

3.2.2 Program Framework 

The FE formulations were implemented onto the GPU using CUDA [79]. To reduce the 

number (and time) of GPU/CPU memory transfers, all model data was initially transferred to 

the GPU global memory and kept on the GPU during the solve phase, then the result was 

transferred back to the CPU. If the linear solver of the solve phase was implemented on the 

CPU (as opposed to the solve phase staying on the GPU), the stiffness matrix and load vectors 

were transferred to the CPU and the resulting displacement vector was transferred back to the 

GPU. Hence, all other data processing was completed on the GPU to ensure that minimal time 

was lost to data transfers. Also, the assembled stiffness matrix and unassembled force vector, 

including stress and strain updates, were created within a single stiffness building kernel to 

minimize the number of kernel launches. Moreover, fast-math and optimized CUDA libraries, 

such as cuBLAS [79], were used. To increase computation speed further (with a slight loss of 
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accuracy), all computations in the CUDA program were single precision as opposed to double 

precision, which is used by ANSYS. See Figure 3-2 for the flowchart comprising the program 

framework. 

 

Figure 3-2: Flowchart for the CUDA program with CPU implemented linear solvers. CPU 
processes are depicted by black boxes with white text, GPU processes are white boxes with 
black text, processes run on both are grey boxes with white text, and data transfer processes 
are grey boxes with black text. 𝑲𝑲 is the tangential stiffness matrix at each Newton-Raphson 
iteration, 𝒃𝒃 is the residual force vector at each iteration, 𝑹𝑹 is the external force vector, 𝚫𝚫𝒖𝒖 is 
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the incremental displacement vector, and 𝒖𝒖 is the total displacement vector. For the PCG 
solver, CPU/GPU data transfer processes did not occur since the linear solve was performed 
on the GPU (i.e. the “Solve 𝑲𝑲𝚫𝚫𝒖𝒖 = 𝒃𝒃” process would be in a white box with black text 
instead and the grey data transfer processes would be absent). 

 

3.2.3 GPU Memory Handling Strategies 

GPU memory handling strategies were developed by building upon Mafi’s work [2]. Coalesced 

global memory for element data reads and writes were performed as described by Mafi, 

including the vector assembly kernel that conducts atomic operations on the shared memory 

instead of the global memory. Shared memory was also coalesced according to the following 

indexing equation: 

𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑥𝑥 = 𝑖𝑖 ∗ 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐷𝐷𝑖𝑖𝑚𝑚. 𝑥𝑥 + 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟𝑑𝑑𝐼𝐼𝑑𝑑𝑥𝑥. 𝑥𝑥 (3 − 6) 

To achieve the maximum possible computation speed provided by the GPU, the use of 

occupancy, shared memory, and register memory were balanced. For the given Titan Black 

GPU with a CUDA compute capability of 3.5 [79], a thread block size of 128 threads was used 

to generate a balance between GPU occupancy and register/shared memory available to each 

thread. 128 threads per block is the minimum block size for 100% GPU occupancy, but that 

only leaves 32 registers and 24 bytes of shared memory corresponding to only 36 single-

precision floats available per thread. However, element building requires significantly more 

memory. Therefore, to balance occupancy with memory usage, 128 threads per block, 128 

registers per thread, and 384 bytes of shared memory (96 floats) per thread were specified. 

This corresponds with 6.25% GPU occupancy, which appears low but allows for significantly 

more efficient memory usage. Considering the massive memory requirements of FE analysis, 

memory usage takes higher priority than GPU processor usage. Even at 6.25% occupancy, 
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effectively 128 elements are running simultaneously per streaming multiprocessor 

representing massive improvements over serial element computation. Since each tetrahedral 

element stiffness matrix requires 144 floats, they were stored in global memory within the 

assembled model stiffness matrix. Within each kernel function, computation speed was 

optimized by first copying global memory onto shared or register memory, performing 

computations on shared or register memory, then writing the result back into global memory. 

This memory strategy, in addition to the increased usage of register/shared memory at the 

expense of GPU occupancy, minimizes the number of slow global memory accesses within the 

kernel function. 

Stiffness matrix assembly was conducted directly into global memory promptly upon 

calculation within the stiffness building kernel. During computation, a pre-calculated indexing 

array used scatter method to add the stiffness matrix values onto global memory in compressed 

sparse row (csr) format [79], which immediately prepared the stiffness matrix for the linear 

solving stage and reduced the amount of memory required to store the stiffness matrix. With 

regards to an efficient matrix assembly strategy, preprocessing of the element connectivity 

array ensured that all elements within any single block did not share a single common node, a 

technique known as graph coloring [131]. Since the model was relatively large (~250 000 

elements), this lack of node sharing was ensured, and race conditions were minimized within 

each block. Vector assembly was completed using Mafi’s strategy [2]. 

3.2.4 Linear Solver Comparison 

During each Newton-Raphson iteration, the FE program must solve a linear system of 

equations. Depending on the model, the stiffness matrix will have certain characteristics related 
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to solvability for certain linear solvers. Hence, the efficiency of linear solvers in FE analysis is 

highly dependent on the model. To determine the most efficient solver for spine models 

specifically, various solvers were tested on a simplified cube model of similar size to a 

prospective generic lumbar spine model. The solvers tested by the current study are the GPU-

implemented Jacobi preconditioned conjugate gradient (PCG), Cholesky factorization for 

symmetric matrices (LLT solver) and for non-symmetrical matrices (LDLT solver), 

structurally symmetric QR factorization (SQR solver), non-symmetric QR factorization (NQR 

solver), and a GPU implemented Cholesky factorization (CUDA Chol). The PCG solver was 

written onto GPU memory following Mafi’s assembled stiffness algorithm (as opposed to 

Mafi’s element-by-element method) [2]. Likewise, the LDLT, LU, QR, and NQR solvers were 

implemented onto the CPU via the Intel MKL Pardiso library (Intel MKL, Intel, Santa Clara, 

CA), which is a suite of highly efficient and optimized solvers. Also, the CUDA Chol solver 

was implemented onto the GPU via NVIDIA’s cuSolver library (CUDA, NVIDIA 

Corporation, Santa Clara, CA).  

For analysis, boundary conditions involved fixing the bottom surface in all degrees of freedom 

while forces were applied directly on the nodes of the top surface as a pressure (total force 

evenly divided amongst the nodes of the top surface). Two linear isotropic materials common 

in spine models were tested: posterior elements (Young’s modulus of 3500 MPa and Poisson’s 

ratio of 0.25) and nucleus pulposus (Young’s modulus of 1 MPa and Poisson’s ratio of 

0.49958). To ensure non-linear deformation in the analysis, forces of 1 MN and 600 N were 

applied for the posterior elements material and nucleus pulposus material, respectively. 

Preliminary testing of the nucleus pulposus material revealed severe ill-conditioning of the 

stiffness matrix; therefore, multiple material models within the cube model were not tested as 
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severe ill-conditioning represents the toughest test for the linear solvers. In other words, 

multiple materials within the same model would produce similar computational results to the 

nucleus pulposus material alone since both models generate stiffness matrices possessing large 

differences between eigenvalues. Furthermore, contact conditions were not investigated for 

similar reasons: contact for spine models is typically chosen as augmented Lagrange [30] 

resulting in a symmetric stiffness matrix; sudden stiffness changes resulting from contact often 

generate an ill-conditioned stiffness matrix; and contact behaviour for any specific model is a 

result of geometry so it can only be effectively tested on the target geometry, in which the 

current study uses a simplified geometry (i.e. a cube instead of a spine) to explore the research 

question. Therefore, considering that the most computationally difficult component of spine 

models is the nucleus pulposus and that ill-conditioning of the stiffness matrix is the primary 

concern, the proposed analyses are sufficient to determine the appropriate linear solver for 

prospective spine models. Accuracy and speed of the CUDA program were also tested against 

ANSYS by comparing average displacement of the top surface for each loading case and 

overall solving speed, respectively. The Newton-Raphson convergence criteria for all 

simulations was 1 mm for displacement and 20 N for force (both are L2 norms), and the 

convergence criteria for the PCG linear solver was set to 1.0e-8.  

3.3 Results 

See Table 3-1 for the displacement and time results and see Figure 3-3 for a speed comparison 

of the solvers tested, including ANSYS.  
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Table 3-1: Displacement and speed of the cube model for each program and solver. 

Model Solver 
Absolute 
Displacement 
(mm) 

Number 
of 
Iterations 

Total Time (s) 

Formulation Solve Total 

Posterior Elements: 
𝐸𝐸 = 3500 𝑀𝑀𝑀𝑀𝑟𝑟,  

𝜈𝜈 = 0.25 

PCG 2.9674 2 0.10 0.80 0.90 
LLT 2.9674 2 0.09 6.51 6.59 
LDLT 2.9674 2 0.08 6.63 6.72 
SQR 2.9674 2 0.12 14.70 14.82 
NQR 2.9674 2 0.12 16.17 16.30 
CUDA Chol fail 
ANSYS 
sparse 2.838 2 - - 26.55 

Nucleus Pulposus: 
𝐸𝐸 = 1.0 𝑀𝑀𝑀𝑀𝑟𝑟, 

 𝜈𝜈 = 0.49958 

PCG 5.4292 4 0.21 26.08 26.29 
LLT 5.4292 4 0.16 13.27 13.43 
LDLT 5.4292 4 0.16 13.36 13.52 
SQR 5.4292 4 0.24 30.64 30.88 
NQR 5.4292 4 0.24 29.13 29.37 
CUDA Chol fail 
ANSYS 
sparse 4.5333 4 - - 46.31 

 

 

Figure 3-3: Total simulation time compared between the different solvers and ANSYS. 
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The accuracy between all linear solvers implemented in the CUDA program was equal, as 

expected. For the posterior elements material, the PCG solver exhibited the fastest time at 0.9 

seconds followed by the LLT solver with a time of 6.6 seconds, while the slowest solver was 

the NQR solver with a time of 16.3 seconds. As seen in Table 3-1, the model of posterior 

elements material required two Newton-Raphson iterations to converge, while the model of 

nucleus pulposus material required four Newton-Raphson iterations to converge. To solve the 

linear system of equations at each Newton-Raphson iteration, the PCG solver required varying 

amounts of iterations until convergence: 562 and 735 iterations for the posterior elements 

material; and 12080, 5464, 12835, and 12655 iterations for the nucleus pulposus material. For 

the nucleus pulposus material, the LLT demonstrated the fastest time at 13.4 seconds while the 

SQR solver was the slowest with a time of 30.9 seconds, and the PCG solver exhibited a time 

of 26.29 seconds. Also, the GPU/CPU data transfer time process per iteration of the CPU-

implemented linear solvers was minimal at ~0.0045 seconds. 

Accuracy was compared between the CUDA program and ANSYS, see Figure 3-4. The CUDA 

program revealed a difference of 0.13 mm (4.6%) and 0.90 mm (19.8%) with the ANSYS 

program for the posterior elements and nucleus pulposus material, respectively, in the same 

loading scenario.  
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Figure 3-4: Comparison of the cube’s top surface displacement between the CUDA program 
and ANSYS. 

 

3.4 Discussion 

A custom FE program was developed in CUDA for eventual use in real-time spine material 

model computing and then tested on a simplified cube model to determine the optimum linear 

solver plus viability for application to lumbar spine models. Although each real-time FE 

technique or CUDA program component of the current study was not tested individually, the 

overall CUDA program demonstrated substantial improvements in computation time over 

ANSYS with small differences (less than 1 mm) in accuracy for spine materials under 

substantial deformation. The mathematical basis behind the CUDA program is discussed in 

Section 3.4.1 and the GPU-implementation techniques, including comparisons to previous 

real-time FE methods, is discussed in Section 3.4.2. Choosing the Linear Solver (Section 3.4.3) 

presents the rationale and discussion towards the end choice based on the results. Lastly, the 
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use of the CUDA program for solving spine models is examined in Application to Spine 

Models (Section 3.4.4). 

3.4.1 Finite Element Formulations 

The large deformation formulations used are geometrically accurate since they account for the 

quadratic terms in strain displacement, although they are considerably slower than small 

deformation formulations. However, small deformation is not a reliable assumption for 

analyzing biological tissue; therefore, a large deformation formulation must be used. 

Theoretically, the TL and ULJ formulations are equivalent and stress/strain measures from 

either formulation may be calculated from the other formulation (i.e. second Piola-Kirchoff to 

Cauchy stress and Green-Lagrange to logarithmic strain). Still, small differences in accuracy 

between the CUDA program and ANSYS are noticeable during significant force application, 

as seen in Figure 3-4, specifically for the nucleus pulposus material under large deformation. 

Differences between ANSYS and the CUDA program may be attributed to: element strain 

enhancement in ANSYS versus no strain enhancement in the CUDA program; single precision 

computation in the CUDA program versus double precision in ANSYS; small errors 

accumulating during recalculation of the Jacobi (ULJ formulation); approximations in 

calculating the logarithmic strain (ULJ formulation); and calculation of the initial displacement 

effect (TL formulation). Other potential sources of error may exist, but further study is 

necessary to determine the most significant error source. Nonetheless, the accuracy difference 

between the CUDA program and ANSYS was under a reasonable limit of 20% considering the 

deformation range of ~40% exhibited by previous well-validated models [30]. Also, significant 

deformation in the nucleus pulposus is not expected during spine simulations, in which the 

current study demonstrated a deformation limit of the CUDA program with nearly-
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incompressible materials that requires further investigation. Regardless, any prospective spine 

model implemented in the CUDA program would need to undergo validation procedures 

depending on the application. The results presented by the current study point toward the 

potential of generating a real-time FE spine simulation using the proposed methods. Therefore, 

the TL formulation is preferable since it requires fewer computations per element than the ULJ 

formulation.  

Most other finite element methods, such as the arbitrary Lagrange-Euler method [132], are not 

well-suited for the large deformation solid mechanics required by spine models. On the other 

hand, meshless methods [101] provide a promising avenue of future work for real-time spine 

models. Meshless methods do not rely upon mesh quality so they tend to be more stable for 

large deformation scenarios [89]. However, meshless methods are less developed than FE 

methods, especially for real-time GPU applications since they are less suitable for parallelism 

[96]. Still, as researchers continue to develop meshless methods, they may become a promising 

option for future work of real-time spine simulations. Also, although they were not tested by 

the current study, mass-spring methods may provide substantial increases in computation 

speed over the current FE methods and could be a possible avenue of future study. Yet, given 

previous work in that area [81], mass-spring methods would likely prove too inaccurate for 

spine models. 

3.4.2 GPU Implementation 

The proposed GPU implementation established a balance between occupancy with 

register/shared memory usage for the given high-performance GPU, in addition to efficient 

usage of coalesced global and shared memory. Achieving the optimal thread block size and 
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making efficient use of GPU memory within the architectural limitations were critical to 

maximizing computation speed. Although GPU occupancy was low and not optimized, slow 

global memory loads were reduced significantly by efficient use of register/shared memory. 

Yet, the current study did not investigate the effect of using differing amounts of 

register/shared memory, including the balance of GPU occupancy in general, on the resulting 

computation speed. Further investigation is necessary to determine the optimal register/shared 

memory usage that increases GPU occupancy while preserving efficient memory usage. Mafi’s 

highly efficient vector assembly algorithm was used for force vector assembly, but not for 

stiffness matrix assembly. Instead, the scatter method was used, in which race conditions of 

matrix assembly were minimized by pre-calculating an indexing array that ensured no two 

nodes were shared between elements of the same thread block. Although slower than Mafi’s 

method, using the scatter method within the stiffness building kernel requires considerably less 

global memory, in which memory is an issue on the GPU for the given problem size, and is 

still sufficiently fast for the matrix building stage. In general, the current study uses the most 

efficient state-of-the-art techniques to attain the maximum possible computation speed. 

Clearly, the proposed methods are highly efficient since the matrix building process is fast with 

a time of 0.04 seconds per iteration for symmetric stiffness matrix building and 0.06 seconds 

for non-symmetric stiffness matrix building. 

Another well-documented and popular method for real-time FE is the TLED algorithm. 

Although fast, the explicit nature of the TLED algorithm reduces its efficiency by limiting its 

time step. The maximum time step is dependent on the highest natural frequency of the system 

[10], which is influenced by both the bulk modulus of the material and the mesh quality. Higher 

bulk modulus and lower mesh quality of a model result in a lower maximum time step. For the 
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nucleus pulposus of spine models [30], the bulk modulus is in the range of 1x109, which is 

orders of magnitude greater than the brain tissue used to test the TLED algorithm [21]. Also, 

spine models have irregular geometries where mesh qualities are not ideal, lowering the 

maximum time step further. On the other hand, implicit methods, such as sparse direct solvers 

coupled with full Newton-Raphson iterations, allow for considerably larger time steps for spine 

models making the overall solving stage faster than the TLED algorithm. Although the 

maximum time step for the TLED algorithm was not calculated for the current study nor was 

the TLED algorithm compared to the proposed algorithm, implicit methods would likely be 

faster than the TLED algorithm for the reasons discussed. Still, further study is required to 

definitively prove these claims. 

Other methods have been developed for real-time GPU computation that were not explicitly 

tested by the current study, such as the co-rotational method [11] and the element-by-element 

(EbE) PCG linear solver method [2]. The co-rotational method demonstrates promise in 

scenarios of large deformation, but it is only valid in the low strain region since it is not a large 

strain formulation. On the other hand, the EbE PCG method is a fast implicit linear solver that 

takes advantage of the GPU and the matrix multiplication step of the conventional PCG 

method. Yet, it has severe limitations: the EbE PCG solver is only faster than the conventional 

PCG solver (including matrix assembly) under ten iterations (approximately) [2], in which a 

Jacobi PCG solver requires significantly more than ten iterations for a typical solve; and storing 

the stiffness matrix as its separate elements (as required by the EbE PCG solver) requires 

considerably more memory than a directly assembled matrix in csr format. Therefore, only the 

GPU implemented conventional PCG solver, which is still incredibly fast, was tested in the 

current study. 
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In comparison with ANSYS, the CUDA program demonstrated slightly different displacement 

but significant improvements in computation time. One factor contributing to the 

improvements is the use of single precision in the CUDA program instead of double precision 

as used by ANSYS. Using single precision decreases numerical accuracy but doubles 

(approximately) the computation speed since calculations are performed on only half the data. 

Considering that the overall speed-up is 3.4X for the nucleus pulposus material, other 

improvements in efficiency are attributed to the TL formulation, GPU implementation, and 

choice of linear solver. Still, significant speed-ups would be achieved if ANSYS computed the 

model in single precision instead of double precision. 

3.4.3 Choosing the Linear Solver 

Various linear solvers were tested to determine which solver would be fastest for FE spine 

material models (and thus prospective lumbar spine models) on the GPU. Considering that the 

assembled stiffness matrix was symmetric positive-definite, each of these solvers was expected 

to successfully solve the given model with equal accuracy. The main performance differences 

between the solvers would be primarily dependent on conditioning and sparsity pattern of the 

stiffness matrix. An ideal solver would be integrated on the GPU to eliminate time lost to data 

transfers between the GPU and CPU. Thus, an iterative solver, like Mafi’s GPU implemented 

PCG solver [2], would be ideal since iterative methods exhibit better parallelism by nature, but 

iterative solvers are highly dependent on the condition number of the linear system of 

equations. In the current study, the PCG solver demonstrated real-time (less than a second) 

solving for the posterior elements material since the resulting stiffness matrix was well-

conditioned. However, it exhibited substantially more iterations and time for the ill-

conditioned stiffness matrix resulting from the nucleus pulposus (even though it was 
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symmetric positive definite), and thus, it would not be useful for spine models. Other iterative 

solvers, such as the PCG with a different preconditioner, may perform better than the PCG, 

but given the severe ill-conditioning of the stiffness matrix, they would likely not perform 

better than direct methods, although more study is required to prove this statement. On the 

other hand, direct methods require considerably more memory for solving and they lack 

parallelism, so they are not well developed for GPU implementation. Likewise, the CUDA 

Chol solver showed promise for the current study since it was implemented entirely on the 

GPU, but it did not converge for the given model size.  Still, for the size of model in the current 

study (~124 578 DOF), transfer times between the GPU and CPU were not significant (~0.0045 

seconds) and thus not a main concern. Given that the resulting stiffness matrix was symmetric 

positive-definite, the best performing solvers were the LLT and LDLT solvers, which 

demonstrated similar results, as provided by the Intel MKL Pardiso library and implemented 

on the CPU. Another advantage of using the LLT or LDLT solver is lower memory 

requirement since only the symmetric part of the matrix is stored, which is evident from the 

matrix build times where they were lower for the LLT and LDLT solvers than any of the other 

solvers. Other available solvers were not tested by the current study and may provide better 

performance with further study, but given the efficiency of the Intel MKL solvers, only small 

improvements would be expected, if any. Still, once developed, a GPU-implemented sparse 

direct solver may provide faster solve times for spine models. Typically for nonlinear structural 

analysis, most time in spine model FE analysis is spent during the linear solve phase of each 

Newton-Raphson iteration [112]. Therefore, substantial importance is placed on the choice of 

linear solver. Since it demonstrated the fastest computation times, the chosen solver for 
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prospective FE spine model solving, based on the current study for spine material models, is 

the LLT solver. 

The nonlinear solver choice is important as well but given the insignificant matrix formulation 

times at each iteration, differences between the modified and full Newton-Raphson methods 

are minimal. Also, other line-searching nonlinear solvers would be inefficient considering the 

smoothness of the spine model stiffness curve in response to gross physiologic loading 

conditions. 

3.4.4 Application to Prospective Spine Models 

The current study was focused on developing a program that parallelizes and solves spine 

material models on a cube geometry as a test for application to prospective real-time FE spine 

models. Considering that the solid element and material formulations of typical FE lumbar 

spine models [30] are similar to the current study’s formulations, the methods developed by 

the current study are well-suited and will significantly increase computation speed over 

conventional methods. The CUDA program readily parallelizes spine model materials for GPU 

implementation, and thus, it speeds up the solve time considerably. Yet, there is still a 

significant consideration for lumbar spine models not investigated by the current study: contact 

at the articulating facets. Real-time FE contact algorithms for other biomedical models have 

been investigated previously [3], [85], but they are not compatible within the current work 

given their different FE formulations. Implementation of contact conditions into the proposed 

CUDA program would require further exploration and development of real-time FE contact 

algorithms, and thus, it is an area of future work that would build upon the current study. Hence 

in future study, a prospective lumbar spine model without contact may be input to the CUDA 
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program, although its validity would depend greatly on its application. Some spine model 

applications require contact conditions [30], [31] while others do not [43], [45]. Upon input of 

a typical lumbar spine model without contact, the CUDA program will be ready to analyze the 

model with significant increases in computation speed and to output displacements (and 

rotations) of the model’s response. Nonetheless, further investigation is necessary to determine 

the actual performance of the CUDA program for a typical lumbar spine model in comparison 

with conventional programs, which is the next step towards the development of a real-time FE 

lumbar spine model in addition to the development of contact conditions. 

3.5 Conclusion 

A custom CUDA program was successfully developed for spine material models using 

previous work in GPU implementation of FE methods along with novel techniques. In 

comparison to other FE formulations, the TL formulation was determined ideal for fast 

computation of spine material models. Some previous and some novel GPU programming 

techniques were successfully applied to parallelize the TL formulation, and implicit nonlinear 

methods proved superior to explicit and linear schemes. Results of testing on a simplified cube 

model demonstrated that the proposed real-time FE methods were accurate and more than three 

times faster than ANSYS for spine material models. Also, the LLT solver proved to be the 

fastest linear solver for applications involving spine material models. Although fast, the model 

solve is not yet at real-time speeds for the cube model. Still, the proposed methods can be 

readily adapted to faster GPUs with more cores and higher compute capabilities along with 

faster CPUs, which could approach real-time computation speeds in the future. Regardless, the 

CUDA program presented by the current study is ideal for the potential integration of 

prospective real-time FE lumbar spine models without contact, where significant increases in 
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computation speed are expected in future investigation. In conclusion, real-time FE techniques 

improved the computation speed of spine material models by not only parallelizing the element 

build computations, but also through a faster FE formulation algorithm and a faster linear 

solver. 
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Chapter 4   Hybrid GPU/CPU Computing of a Fast Finite 

Element Lumbar Spine Model 

A version of this Chapter is in preparation to be submitted as: 

Maeda, N.K., Boulanger, P., Carey, J.P., Hybrid GPU/CPU Computing of a Fast Finite 

Element Lumbar Spine Model, International Journal for Numerical Methods in Biomedical 

Engineering (2018). 

Also, the Novel Composite Tetrahedral Element presented in Section 4.2.2 is in preparation 

for submission to an appropriate FE spine modelling conference in the near future. 

4.1 Introduction 

Spinal interventions for treating spinal disorders are becoming increasingly common [12], [15], 

but their outcomes reveal varied success in treating the spinal issues [13], [16], [17]. The mixed 

success rates could largely be explained by misunderstanding of biomechanical displacements 

and strains for a specific patient, in which the actual tissue displacements and strains may not 

match the clinician’s intended outcome. During a spinal procedure, the clinician cannot 

effectively visualize the spine’s biomechanical response to the applied forces, which may result 

in an adverse event or prevent a successful outcome. For example, the success of scoliosis 

bracing in preventing progression of the scoliotic curve is highly dependent on an orthotist’s 

skill [16], but a real-time FE spine model would allow an orthotist to ensure spine straightness 

as they position the pads during bracing. As another example, a clinician could ensure that the 

vertebral movement does not cause considerable tissue strains (i.e. arterial dissection) during 

the force application of SMT. In either of these and other spinal intervention examples 
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(including surgery), the biomechanical feedback would need to be instant for efficacy at 

improving outcomes because: force application happens quickly so immediate feedback is 

required to adjust the applied forces; the intervention doesn’t always go as planned and quick 

analysis is necessary to make the best decision in the moment; and less time per intervention 

allows the clinician to perform more interventions in a shorter period of time. Therefore, the 

application of a real-time simulation into clinical settings would allow clinicians to accurately 

visualize how the spine responds to the intervention, and through visualization, improve the 

outcomes of spinal interventions. However, current simulations of FE spine models require 

large amounts of time to compute spinal response, making them too slow for practical 

application. Consequently, as part of the first steps towards eventual implementation of spine 

models into real-time clinical scenarios, the computation speed of spine models needs to be 

increased. 

Many problem-specific lumbar spine models have been developed and validated against 

experimental data [30] for various applications: biomechanical causes of back pain [41]; 

implant design [31]; scoliosis brace design [59]; and many more. The generic methodologies 

used to develop most of these problem-specific models are derived from earlier lumbar models 

[30], [38], [49]. Yet, no researchers have attempted to develop a lumbar spine model for real-

time clinical scenarios, using generic methodologies. In Chapter 2, a generic FE lumbar spine 

model was developed and optimized with GPU implementation consideration. This proposed 

model was built, and then validated, using tetrahedral elements and relatively stable material 

properties for the annulus fibrosus and nucleus pulposus. Through comparison to a 

conventional spine model using ANSYS, the proposed model outperformed the conventional 

model through increased computation speed while preserving accuracy. Although GPU 
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implementation was a primary factor during the development of the proposed model, some 

further considerations are necessary. In the annulus fibrosus, the matrix and fibers share the 

same volume but were defined as separate elements. Element efficiency could be increased by 

combining the matrix and fibers in the same element. As observed in previous real-time 

simulation studies [85], facet contact presents a significant problem with regards to real-time 

computing since it often causes instability and requires smaller time steps. Accordingly, model 

efficiency and stability could be substantially increased by removing contact elements, 

although it would be at the significant cost of reduced accuracy in and applicability to many 

loading scenarios. While most lumbar spine model applications require facet contact for 

validity [30], [31], [48], [71], some models have investigated spine biomechanics without facet 

contact [43]–[45]. In the models without facet contact, their investigation focused on the 

vertebral column, in which facet contact was not necessary for model validity to their 

respective applications including biomechanical investigations of vertebral growth patterns in 

scoliosis [43], balloon kyphoplasty [45], and disc bulging [44]. Likewise, model validity did 

not require facet joint forces in flexion and lateral bending for some investigations [32] 

considering their low values in these loading conditions [30]. In each of these situations, real-

time contact-less lumbar spine simulation would still provide instant valuable strain and 

displacement feedback to the clinician, which would allow the clinician to adjust their 

intervention during application, such as: adjusting the brace for scoliosis treatment and 

ensuring good biomechanical response to flexion and lateral bending movements for spinal 

surgical implants (including balloon kyphoplasty) based on their resulting placement during 

the surgery. Regardless, real-time simulation of contact is another considerable challenge and 

requires a separate investigation [85] that depends upon the formulations and results of the 
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current study. Contact modelling algorithms, especially real-time simulation, build upon the 

mathematical framework and other element formulations present within the base model. Other 

investigators of real-time biomechanical simulation initiated their work by first developing 

mathematical formulations for their respective applications [10], then adding contact 

considerations to their mathematical framework in subsequent studies [85]. Hence, the addition 

of contact algorithms is an area of future work that would build upon the current study. 

Regardless, the proposed model from Chapter 2 represented a step forward towards real-time 

clinical applications, and with some adjustments alongside GPU implementation, it could reach 

closer to real-time computation speeds. 

Recently, some researchers have focused efforts on developing real-time FE models for 

specific clinical applications [2], [10], [11]. The development of CUDA by NVIDIA has 

revealed incredible ease and potential for the development of real-time scientific applications. 

Although successful for their specific applications, their methods were proven not applicable 

for spine models in Chapter 3. The TLED algorithm [10] was determined ineffective for nearly-

incompressible materials (Poisson’s ratio greater than 0.499) because its maximum time step 

would be inefficiently small. On the other hand, a GPU implemented preconditioned conjugate 

gradients solver was determined inefficient for nearly-incompressible materials owing to the 

ill-conditioned stiffness matrix. Other methods, such as the co-rotational algorithm [11] or 

statistical methods [130], were deemed insufficient in large strain or patient-specific scenarios, 

respectively, which are the focus of the current study. In Chapter 3, various linear solvers were 

tested for applicability and efficiency in application to spine material models. Through 

comparison of various linear solvers, the Cholesky factorization sparse direct solver exhibited 

the best performance for spine model applications. The investigation conducted during Chapter 



104 
 

3 also proved that the proposed GPU implementation of FE code using CUDA was much more 

efficient than CPU implemented FE programs, specifically ANSYS.  

Chapter 4 focuses on combining the work completed during Chapter 2 and Chapter 3, which 

is applying a generic lumbar spine model (with facet contact removed) into a GPU-

implemented FE program (i.e. CUDA program) in order to gain massive increases in 

computation speed at a reasonable computation cost. The research question that the current 

study addresses is: how much faster is a GPU-implemented FE lumbar spine model than 

conventional models in the absence of facet contact? Considering the overall goal of the current 

study as a step towards real-time simulation of a generic lumbar spine model, specific aims for 

this paper include: (1) implement the proposed lumbar spine model from Chapter 2 into the 

CUDA program with facet contact removed; (2) adjust the CUDA program for the proposed 

lumbar spine model; and (3) validate against contact-less general physiologic scenarios then 

test the combined CUDA model against the proposed and conventional lumbar spine models 

(with contact removed) implemented in ANSYS. Given the complexity of FE contact 

modelling and considering that the current study represents progressive work towards real-

time simulation of FE lumbar spine models (including a basis for prospective contact 

modelling), facet contact is not a modelling consideration for the current study (it is instead a 

future consideration).  

4.2 Methods 

In Chapter 2, a lumbar spine mesh was created from a computed tomography scan (0.5 mm 

slices) of a full lumbar spine (L1 to L5). See Chapter 2 for more details on model development. 

In Chapter 3, a custom program was developed using Visual C++ (Visual Studio 2013, 
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Microsoft Inc., Redmond, WA) and CUDA (Version 6.5, NVIDIA Corporation, Santa Clara, 

CA) that conducted FE computations using the NVIDIA Titan Black GPU (NVIDIA 

Corporation, Santa Clara, CA) in conjunction with a commercial CPU (i5-2500 CPU, Intel 

Core, Intel, Santa Clara, CA). See Chapter 3 for more details on CUDA program development. 

For the current study, the lumbar spine mesh from Chapter 2 was adjusted and imported into 

the CUDA program from Chapter 3 for analysis. For comparison to conventional methods, the 

CUDA program’s speed and accuracy was compared to ANSYS (ADPL Version 17.0, ANSYS 

Inc., Canonsburg, PA) implementations of the proposed and conventional models developed 

in Chapter 2. See Chapter 2 for details of model development for the proposed and 

conventional models. 

4.2.1 CUDA Lumbar Spine Model 

Two lumbar spine models were developed using generic methodologies in Chapter 2: a 

conventional model (Model 1) and a proposed model (Model 2). Model 1 was developed based 

on typical lumbar spine modelling methodologies from literature [30], while Model 2 improved 

the efficiency of Model 1 by using simpler elements and materials. Following Model 2, the 

lumbar spine model developed by the current study (i.e. CUDA model or Model 3) was 

comprised of linear tetrahedral elements for the vertebrae and intervertebral disc components 

along with tension-only spring elements for the ligaments, see Chapter 2 for details regarding 

generation of the spine model components. Following the objectives and scope of the current 

work, contact elements were removed from Model 1 and Model 2, and they were not 

implemented on Model 3. As done with the cube model from Chapter 3, the mesh of tetrahedral 

and ligament elements was imported directly from ANSYS, where the data underwent a pre-

processing step to generate the necessary indexing arrays before analysis. See Figure 4-1 for a 
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flowchart of the CUDA program and see Appendix E for the CUDA program code including 

model preparation code. All material properties were the same for the proposed model (Model 

2 in the current paper) from Table 2-1 in Chapter 2. Figure 4-2 illustrates a depiction of Model 

3’s mesh as taken using ANSYS. 
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Figure 4-1: Flowchart for the CUDA program with CPU implemented linear solvers. CPU 
processes are colored in blue, GPU processes are run in green, processes run on both are 
colored in orange, and data transfer processes are colored in purple. Symbols are the same as 
in Figure 3-2. 
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Figure 4-2: Spine model geometry used for Model 3. The mesh is from Model 2 in ANSYS 
but with the fiber elements removed since Model 3 used a composite element within the 
tetrahedral element geometry. 

 

Two main differences exist between Model 2 and Model 3 implemented in the current study: 

use of the TL formulation for all elements instead of the ULJ formulation from ANSYS; and 
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a novel combined-composite tetrahedral element for the annulus fibrosus instead of separate 

tetrahedral elements for the matrix and spring elements for the fibers. Use of the TL 

formulation for the spine model was presented in Chapter 3 and it was extended to formulate 

the tension-only spring elements, see Appendix B. Considering its novelty, the composite 

tetrahedral element is highlighted in Section 4.2.2, below. 

The full Newton-Raphson nonlinear solver method was used to compute Model 3. Through 

preliminary analysis, the number of iterations to convergence was optimized by using three 

load steps. The convergence criteria were set at 21 mm and 200.0 N for displacement and force 

L2 norm convergence, respectively. 

4.2.2 Composite Tetrahedral Element 

For the new composite tetrahedral element type comprising the annulus fibrosus in Model 3, 

formulation of the composite tetrahedral element involved combining the annulus matrix and 

fibres into a single element type. The main assumptions behind the mathematical construction 

was iso-strain and that the fibre forces only acted longitudinal to the fibre direction (transverse 

stiffness was negligible). Hence, the strain and stress calculations were the same as for the 

basic tetrahedral element, but fiber stiffness was added to the material property tensor, by: 

𝑪𝑪 = (1 − 𝑉𝑉𝐹𝐹)𝑪𝑪𝑩𝑩 + 𝑉𝑉𝐹𝐹𝑪𝑪𝑭𝑭 (4 − 1) 

𝑺𝑺 = (1 − 𝑉𝑉𝐹𝐹)𝑺𝑺𝑩𝑩 + 𝑉𝑉𝐹𝐹𝑺𝑺𝑭𝑭 (4 − 2) 

where C and S are the material property matrix and stress vector (second Piola-Kirchoff) of 

the element, CB and SB are the material property matrix and stress vector of the bulk annulus 

material, CF and SF are the material property matrix and stress vector of the annulus fiber 
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material in the element coordinate system (which coincides with the global coordinate system), 

respectively, and VF is the volume fraction of the annulus fiber to bulk material. 

These equations show the calculation of the material property matrix and stress vector, 

respectively, from the annulus bulk and fiber material via the rule of mixtures in the 

longitudinal direction [133]. To ensure the fibers were in the correct direction within the 

element coordinate system (which coincides with the global coordinate system), the material 

property matrix and stress vector for each annulus fiber was calculated based on the fiber force-

deflection curve and fiber direction:  

𝑪𝑪𝑭𝑭 = 𝐸𝐸𝐹𝐹𝑻𝑻𝑇𝑇𝑻𝑻 (4 − 3) 

𝑺𝑺𝑭𝑭 = 𝐹𝐹𝐹𝐹𝑻𝑻 (4 − 4) 

where EF and FF are the fiber stiffness and force from the fiber force deflection curve, 

respectively, and T is the transformation matrix from the fiber coordinate system (situated 

along the fiber direction) to the element coordinate system, see Appendix D for the 

transformation matrix. 

At each Newton-Raphson iteration, the deflection of the fiber nodes (corresponding to that 

tetrahedral element as determined from a fiber indexing array) was used to update the 

tangential stiffness matrix and stress vector with reference to the fiber force-deflection curve. 

During solving, the fiber nodes are updated and the transformation is recalculated at each 

iteration since the fiber stiffness and force directions change at each iteration. Note that this 

composite element is numerically exact to separate tetrahedral and spring elements with one 
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slight difference: volume weighting of the components which is a closer representation of 

reality. 

Although novel, the proposed composite tetrahedral element type was not tested on its own 

since it is simple and numerically similar to the previous formulation involving separate 

elements for the annulus matrix and fibres. Yet, prospective testing on this novel composite 

element for modelling of the IVD will be performed in the near future and the results presented 

at a conference, including publication in conference proceedings. 

4.2.3 GPU Implementation 

Parallel implementation of FE spine models was discussed, and spine material models were 

tested using a cube model, in Chapter 3. Based on the results, the proposed CUDA program 

was established as the best option for spine simulation. Also, the Cholesky factorization for 

positive-definite matrices, as accessible through the Intel MKL library, was chosen for solving 

Model 3 after testing a variety of linear matrix solvers in the CUDA program. Although the 

main components of the CUDA program were proven ready for implementation of Model 3, 

some adjustments were made to accommodate Model 3. 

To account for the different numbers of DOF between each element type (twelve for the 

tetrahedral elements and six for the spring elements), global memory for each array was 

allocated as though all elements had the largest DOF, which was twelve. Thus, for the spring 

elements, only the first six memory spaces of the allocated twelve were used, leaving the 

remaining six memory spaces for each element blank, see Figure 4-3. 
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Figure 4-3: Global memory storage strategy for multiple element types where tet stands for 
tetrahedral element, lig stands for ligament element, and bn represents blank memory spaces. 
The figure does not show the coalesced pattern for ease of explanation. Maximum DOF is 12 
for tetrahedral element. 

 

Memory storage in this manner allows for efficient global memory coalescing. Furthermore, 

to reduce the number of kernel launches, threads were explicitly selected within each kernel 

corresponding to each element and material type, and computations for that element were only 

applied within those selected threads. Additionally, extra indexing arrays were generated for 

the fiber nodes of the novel composite elements and nodal coordinates were updated for both 

the fiber and ligament nodes.  

Therefore, with some adjustments, Model 3 was readily implemented into the CUDA program 

for analysis. Please refer to Chapter 3 for further details regarding GPU implementation. In 

correspondence with Chapter 3, the Cholesky factorization solver, as available through the 

Intel MKL library, was used as the linear solver. 

4.2.4 Validation 

Before computational speed comparison, Model 3 was validated in response to certain 

physiologic loading scenarios. Model 1 and Model 2 were validated against literature data [30] 

in Chapter 2 (as the conventional and proposed models, respectively). However, the removal 

of facet contact requires that the models be re-validated for the current study. Furthermore, 
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formulation and element differences between the proposed and CUDA model require that 

Model 3 undergo validation procedures as well. 

In the absence of contact elements, validation of the facet joint forces was not conducted for 

Model 3, in addition to deformation response in axial rotation loading scenarios considering 

the significant presence of facet joint forces. Moreover, considering the difficulty of Model 2 

in handling pure compression, validation for pure compression was not conducted as well. 

Hence, only RoM and L1 centroid rotation curves in response to flexion, extension, and lateral 

bending were validated against Dreischarf’s study [30]. Model validation in this manner 

severely limits the applicability of Model 3, but considering scope of the current study, the 

proposed validation meets the specific aims. Validation simulations were conducted by fixing 

the inferior surface of the L5 vertebral body in all degrees of freedom while applying moment 

loads of 7500 N mm to the superior surface of the L1 vertebral body. For Model 1 and Model 

2 in ANSYS, the moment loads were applied using a remote node that was rigidly connected 

to the L1 superior surface. To improve stability issues in Model 3, moment loads were applied 

as coupled forces across the L1 superior surface such that the sum of forces was equal to zero. 

Loads were applied in ten sub steps to trace the deflection curve of the spine as the load was 

applied. Upon validation of all three models for the current study, Model 3 was ready for 

computation speed comparisons to Model 2 and Model 1. 

4.2.5 Comparison to ANSYS 

Model 3, implemented in the custom CUDA program, was compared to Model 2 and Model 

1, implemented in ANSYS, to determine whether Model 3 met the primary objective of the 

current study: substantial increases in speed with minimal losses in accuracy. As for model 
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validation, the inferior surface of the L5 vertebral body was fixed in all degrees of freedom 

while moment loads of 7500 N mm in flexion, extension, and lateral bending were applied to 

the superior surface of the L1 vertebral body. Loads were also applied as in the validation 

section for each model. Although the methodologies of load application are numerically 

different between Model 3 and the ANSYS models (Models 1 and 2), the overall validation 

and speed results are expected to be similar considering that sparse direct matrix solvers were 

used in each case. The number of sub steps for each model and each loading case were adjusted 

for optimal convergence (i.e. lowest number of iterations) in a preliminary analysis step. Timed 

simulations were run on the same workstation (CPU and GPU) to determine the accuracy and 

computation speed of each model. Accuracy was evaluated by comparing the L1 centroid 

rotation of each model. Upon collecting the results, Model 3 was compared to each ANSYS 

model (Model 1 and Model 2) in terms of accuracy and computation speed. 

4.3 Results 

4.3.1 Validation 

Validation results can be seen in Figure 4-4 and Figure 4-5, in which each model falls within 

the range of previously well-validated models for the tested loading scenarios.  
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Figure 4-4: L1-5 range of motion (RoM) of the conventional and proposed models compared 
to previously well-validated models from literature, as published by Dreischarf [30]. The red 
bar represents the median of previous models while the error bars represent the range. 

 

Figure 4-5: L1-5 vertebral body rotation of conventional and proposed model compared to 
the most and least stiff well-validated models shown by Dreischarf [30]. 



116 
 

Therefore, all models are valid for displacement curves and RoM in flexion, extension, and 

lateral bending. Additionally, Model 3’s displacement curves and RoM closely matched Model 

2’s responses. 

4.3.2 Comparison 

See Figure 4-6 and Figure 4-7 for computation time and L1 centroid RoM comparisons, 

respectively, between the CUDA and ANSYS (conventional and proposed) models. Also, see 

Table 4-1 for the collection of all accuracy and speed results, including a breakdown of the 

simulation time into time per iteration along with matrix build (formulation) time and linear 

matrix solve time.  

 

Table 4-1: Speed comparison between all models 

Loading Case Model RoM 
(degrees) Substeps 

Number 
of 
Iterations 

Time (s) Time/Iteration 
(s) 

Flexion Model 1 19.1030 4 20 282.2000 14.1100 
 Model 2 17.9685 4 21 185.7700 8.8462 

 Model 3 17.9536 3 13 13.2517 1.0194 

Extension Model 1 14.8591 3 16 221.8200 13.8638 
 Model 2 13.8409 3 15 135.5800 9.0387 
 Model 3 16.8003 3 13 13.1578 1.0121 

Lateral 
Bending 
Right 

Model 1 14.3400 3 16 258.7600 16.1725 

 Model 2 13.7052 3 16 145.0700 9.0669 
 Model 3 13.7601 4 11 11.1892 1.0172 

Lateral 
Bending Left Model 1 14.5210 3 14 228.8600 16.3471 
 Model 2 13.9555 3 14 131.6500 9.4036 
 Model 3 13.6541 5 10 10.1978 1.0198 
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Figure 4-6: Speed comparison for the running the entire CUDA program (Model 3) including 
comparison to the ANSYS conventional and proposed models (Models 1 and 2). 

 

Figure 4-7: Comparison of top surface displacement between the CUDA program (Model 3) 
and the ANSYS conventional and proposed models (Models 1 and 2). 
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As with the validation stage, Model 3 and Model 2 demonstrated similar accuracy with only 

small differences from Model 1. As in Chapter 2, Model 2 was stiffer than Model 1, while 

Model 3 was slightly stiffer than Model 2. All models were still within the range of previously 

well-validated models in literature [30]. On the other hand, Model 3 exhibited vast increases 

in speed compared to either ANSYS model. Model 3 had average overall speed-ups of 20.9X 

and 12.5X compared to the conventional and proposed models, respectively, while the speed-

ups per iteration were ~14.6X and ~8.6X. As seen in Table 4-1, Model 3 exhibited lower 

iterations to convergence, which explains the higher overall speed-ups compared to the speed-

ups per iteration. The greatest overall speed-up was 23.1X (lateral bending) and 14.0X 

(flexion) and the lowest speed-up was 16.9X (extension) and 10.3X (extension), compared to 

the conventional and proposed models, respectively. The overall speed-up resulted from both 

the time per iteration, where Model 3 was exceptionally efficient, and slightly lower number 

of iterations for Model 3. Clearly, Model 3 demonstrated substantial efficiencies during the 

formulation phase. 

4.4 Discussion 

Feasibility of real-time FE lumbar spine simulations was tested by developing an accurate 

model of a lumbar spine using generic methdologies along with a custom CUDA program that 

optimized computation speed on a high-performance GPU. Therefore, the current study 

represents the state-of-the-art in technological capability and the maximum achievable 

computation speed with a single GPU card. Multiple GPU cards may be used to increase speed, 

but clinical feasibility would decrease in terms of cost. Still, as GPU technology rapidly 

improves, the custom CUDA program may be easily updated and used to achieve faster 

computation speeds. That being stated, although the accuracy compared well with the ANSYS 
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result, the computation speed was greatly improved at ~13 seconds (0.08 Hz) but not quite 

“real-time” (which would be approximately 30 Hz) [2]. Hence, the latency in computing the 

current lumbar spine model’s response would prevent effective feedback to the clinician, 

among other model limitations. Therefore, the current FE lumbar spine model, including GPU 

implementation, does not meet feasibility criteria for real-time simulation. To address areas 

where speed may be improved, all stages of model and program development must be 

analyzed. Regardless, the current study demonstrated success towards speeding up generic FE 

lumbar spine models and represents a foundation from which prospective development may 

be based upon. 

4.4.1 Finite Element Lumbar Spine Model 

The current study built upon the FE lumbar spine model developed during Chapter 2. In 

Chapter 2, a conventional model was developed based on previous methodologies, then a 

proposed model was generated like Model 1 but with simpler elements and materials. In the 

current study, Model 3 was created from Model 2 (without facet contact) by building the same 

elements (without strain enhancement) and materials on top of the TL formulation instead of 

the ULJ formulation used by ANSYS, along with a new composite element type for the annulus 

fibrosus. Although differences in element types and materials existed between the models, all 

were constructed from the same geometry. Even though contact was removed for the current 

study, all models were valid for flexion and lateral bending loads, plus extension for 

displacement response. Accordingly, the changes of formulation and annulus fibrosus elements 

between the CUDA and proposed models caused minimal differences in results between the 

models. Likely, the most significant difference was caused by the lack of strain enhancement 

in Model 3, resulting in its increased stiffness response. Still, the strain enhancement was not 
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necessary since Model 3 demonstrated similar validation curves to both the conventional and 

proposed models. 

Once each model was determined valid for realistic lumbar spine displacements in the tested 

loading scenarios, they were compared based on accuracy and speed. Considering the loading 

scenarios were identical to the validation stage (only less sub steps), accuracy results did not 

deviate significantly from the validation results. Hence, all models demonstrated similar 

accuracy. On the other hand, computational speed was enormously different between the 

models. Some of the decreased overall computation time is attributed to improved convergence 

resulting from the relaxed convergence criteria of Model 3, considering the speed-up per 

iteration was much less than the overall speed-up. Although optimized for Model 3, the relaxed 

convergence criteria showed that model accuracy can still be achieved for lumbar spine models 

under these circumstances, and therefore, relaxed convergence criteria should be used for real-

time FE spine simulations. Still, Model 3 demonstrated substantial efficiencies in computation 

over the ANSYS models. The TL formulation requires less computation per element than the 

ULJ formulation, especially without strain enhancement. Also, the CUDA program used single 

precision instead of double precision used by ANSYS, which would increase the speed by 2X, 

but the overall increase was considerably more than 2X so further computational efficiencies 

were clearly present. Use of the Cholesky solver from the Intel MKL library added to the 

improved speed over ANSYS’s sparse direct solver. Another source of considerable speed-up 

was the creation of new composite elements for the annulus fibrosus. The composite element 

effectively removed 11 744 spring elements from the model by combining them with the 

tetrahedral elements. Not only did they decrease the number of block launches (11 744 divided 

by 128 equals approximately 91 less blocks), but they decreased the overall amount of 
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computations since strain calculations for the fibers were included in the tetrahedral element 

rather than explicitly computed for separate spring elements. Accuracy was not lost by using 

the composite elements either since they are numerically similar to separate tetrahedral and 

spring elements. Probably the largest increase in speed-up was a result of GPU implementation. 

Even with all the differences between Model 3 and the proposed ANSYS model, their accuracy 

is nearly identical, which exhibits the power of these methods for lumbar spine models 

developed using generic methodologies. Numerous differences between the CUDA and 

proposed model contributed to the overall massive computational speed-up, but their 

individual contributions were not investigated in the current study. Further study focusing on 

the contributions of each change would determine areas of effort for future work in speeding 

up models similar to lumbar spine models built using generic methodologies. 

Although the current study demonstrated massive increases in computation speed over 

conventional methods, further improvements could still be made. As presented by Shirazi-Adl 

[48], the vertebral bodies and posterior elements tend to act as rigid bodies. Some researchers 

have used OpenSim and AnyBody software to generate musculoskeletal dynamic models, in 

which the vertebrae were simplified as rigid bodies and the intervertebral disc was simplified 

by a single stiffness element. Their models have been used to investigate spinal muscle forces 

and vertebral displacements in orthopedics [113], ergonomics [114], [115], and rehabilitation 

applications [116], [118]. Such a model could be developed from the same geometry as the 

current study, validated, and compared to Model 3 to determine if this significant 

approximation would be useful. However, as considered in Chapter 2, numerical instabilities 

would exist in a vertebral rigid-body model and its utility would be decreased since 
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displacements and strains within the vertebral bodies could not be computed. Still, this could 

be a promising avenue of future work and requires additional study. 

4.4.2 GPU Implementation 

The current study used the CUDA program developed during Chapter 3 as a basis for GPU 

implementation of Model 3. Some features, including global memory coalescing of varying 

elements types and indexing arrays for the fiber and ligament nodes, were added to 

accommodate Model 3 into the CUDA program. In conjunction with Model 3 formulations, 

these features ensured that the CUDA program ran Model 3 optimally. Otherwise, the CUDA 

program was nearly identical to the one developed from Chapter 3. 

GPU implementation of Model 3 demonstrated clear computational improvements over CPU 

implementation of the ANSYS models. Building the stiffness matrix and force vector at each 

Newton-Raphson iteration in parallel was substantially more efficient than on the CPU using 

ANSYS, in which Model 3 had an average formulation time of 0.05 seconds per iteration using 

the NVIDIA Titan Black GPU. This result shows the power of the GPU for real-time nonlinear 

FE computation. Furthermore, the linear solve phase of the CUDA program was highly 

efficient for Model 3. With a speed-up of 20.9X over Model 1, Model 3 was clearly the best 

candidate for prospective real-time scenarios, and it is largely a result of GPU implementation. 

Yet, Model 3 does not exhibit real-time solving time, with an overall average computation time 

of 11.9 seconds for the entire loading. Considering that most computation time is spent during 

the linear solve phase, improved linear solver algorithms (especially implemented on GPUs) 

should be focused on for future study. Regardless, as GPUs and CPUs are improved with 
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technological advancements, Model 3 may approach real-time speeds since the CUDA 

program is readily scalable to other computer workstations.  

4.4.3 Application to Real-Time Clinic 

Some studies have developed spine models for biomechanics research [41], [46], implant 

design [31], or scoliotic brace design [58], and others have developed real-time simulation 

techniques for various biomedical applications [2], [3], such as brain surgery [21]. The current 

study represents the first attempt at developing real-time simulation techniques for generic FE 

lumbar spine modelling methdologies towards bringing lumbar spine models into real-time 

clinical scenarios. For application into any clinical scenario, validation of that specific model 

is still required. Feasibility of real-time spine simulations was tested by developing an accurate 

model of a lumbar spine along with a custom CUDA program that optimized computation 

speed on a high-performance GPU. Hence, the current study represents the state-of-the-art in 

technological capability and close to the maximum achievable computation speed with a single 

GPU card in conjunction with a commonplace CPU. Multiple GPU cards and a faster CPU 

may be used to increase speed, but clinical feasibility would decrease in terms of cost. Still, as 

GPU technology rapidly improves, the custom CUDA program may be readily updated and 

used to achieve faster computation speeds. That being stated, although the accuracy compared 

well with the ANSYS models, the computation speed was greatly improved but not quite “real-

time”, since each iteration required approximately 1 second. Although a slower loading rate 

would be more realistic, each iteration is still too slow for the model to compute real-time spine 

response to the smallest loadings. Actual computation for applied loading depends upon the 

loading rate, where full RoM motions likely would not occur within 1 second but still faster 

than 12 seconds, although further study is required. In realistic clinical scenarios, physiologic 
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moments are typically not directly applied by the clinician, instead forces would likely be 

applied as a single pressure rather than coupled forces approximating a moment. An ideal real-

time spine simulation would update the spine deformation response as the load is applied 

(depending on loading rate), but since each iteration of the current CUDA model solves in 

greater than one second, it is not yet feasible. For example, fast postero-anterior point loadings 

at rates of approximately 0.5 seconds are applied during SMT [29]. For this application, a real-

time model likely would require two iterations at least, therefore each iteration must be less 

than 0.25 seconds. Hence, the latency in computing the spine model’s response would prevent 

effective feedback to the clinician for that application. Longer latencies may be acceptable for 

other applications, such as scoliosis bracing, but faster speeds would improve the simulation 

considerably including the uptake of the prospective technology. Additionally, the absence of 

facet contact further reduces the feasibility of Model 3 for most clinical scenarios, in which a 

separate investigation into real-time FE contact algorithms is necessary to improve Model 3’s 

clinical viability. Likewise, implementation into any real-time clinical scenario requires model 

validation for that specific application, which is a considerable challenge itself. Prospective 

models may be developed using the generic methodologies presented by the current study, but 

they would still need to cross the barrier of validation before implementation. Therefore, the 

current CUDA model, including GPU implementation, is not feasible for real-time simulation.  

To address areas where speed may be improved, all stages of model development must undergo 

further investigation by building upon the results and discussions presented by the current 

study. For example, model building methodology could make greater approximations on the 

spinal tissues and GPU implementation of a sparse direct linear matrix solver could both result 

in real-time computation speeds for lumbar spine models. 
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4.4.4 Limitations and Future Work 

Although the current study was successful in developing a simulation of a generic lumbar spine 

model that demonstrated massive increases in computation speed, Model 3 and CUDA 

program possess noticeable limitations and require further development before clinical 

application. Since it was built from Model 2, Model 3 exhibits the similar limitation of 

instability with compression loading; therefore, it is only applicable to scenarios where the 

patient is in a prone or supine position instead of standing [121]–[123]. Also, the current study 

only tested a lumbar spine model in the absence of contact conditions; therefore, the 

conclusions are useful only for contact-less lumbar spine models and model validation would 

still need to be conducted for each specific application. Likewise, the current model exhibits a 

severe limitation: it doesn’t include contact conditions, hence it is not applicable to scenarios 

involving significant facet joint forces, such as loadings including or combined with axial 

rotation, which includes most clinical scenarios. Real-time simulation of contact is a 

considerable challenge that is highly dependent on the model geometry and FE formulations 

used in the base model. The prospective development of real-time facet contact algorithms can 

be directed from the work presented here. Therefore, facet contact and thoracic spine modelling 

are areas for future work building on the current study. Apart from spine modelling and 

program development, two other areas of research require further work to bring spine 

simulations into real-time clinical scenarios: fast generation and validation of patient-specific 

spine models for each shape and size of person that enters the clinic; and a man-machine 

interface to allow the clinician to interact with the spine simulation in real-time. Some research 

has been done towards generation of patient-specific spine models in which vertebrae were 

parameterized and measured [134], although much work is still required to create a clinically 
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useful model. On the other hand, a three-dimensional image projector using laser scanning 

technology that is under development has successful projected and tracked spine images onto 

uneven back surfaces [135], but a spine simulation has not yet been implemented into the 

system.  

4.5 Conclusion 

A custom CUDA program was developed using previous work in GPU implementation of FE 

methods along with some novel techniques. Plus, a generic contact-less FE lumbar spine model 

was developed considering GPU implementation and solved using the CUDA program. 

Results of the simulation determined that the real-time CUDA model (Model 3) and CUDA 

program were valid for displacements in flexion, extension, and lateral bending, while being 

massively faster than conventional models and CPU programs (i.e. ANSYS) but not fast 

enough for real-time spine simulations. However, the proposed methods may be readily 

adapted to faster CPUs and GPUs with more cores and higher compute capabilities, which 

could approach real-time computation speeds. Upon investigating the largest computational 

bottleneck, it was determined that computation speeds could also be significantly improved by 

developing a faster GPU implemented Cholesky factorization linear solver. Apart from 

computational speed, other barriers to clinical application exist: real-time facet contact, 

parametric modelling, and user interaction. The current study provides a basis from which 

further development towards real-time clinical application may be constructed, especially for 

real-time contact algorithms. The current study determined that the proposed spine model and 

GPU implementation did not meet the speed requirement for real-time simulation, although it 

did highlight the potential of the proposed methods and future work to achieve the speed 
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requirement. Regardless, the current study represents progress towards implementing spine 

models into real-time clinical scenarios.  
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Chapter 5   Discussion and Conclusion 

 The primary goal of the proposed work was to construct a generic contact-less FE lumbar 

spine simulation using real-time FE techniques. From this primary goal, three specific aims 

were realized: build a proposed FE lumbar spine model using a generic methodology with 

parallel computing in mind (Specific Aim 1); develop real-time FE techniques for spine model 

materials (Specific Aim 2); and apply the real-time FE techniques to the proposed FE lumbar 

spine model without facet contact (Specific Aim 3). Chapter 2 addressed Specific Aim 1, 

Chapter 3 accomplished Specific Aim 2, and Chapter 4 achieved Specific Aim 3. Upon 

completion of Specific Aim 3, conclusions drawn from each investigation can be compared to 

the primary goal of the thesis. Still, some considerations must be made regarding the 

limitations of the proposed work and supplementary applications that the outputs of the current 

study may be utilized for as well. 

Through the developments of Chapter 2, the proposed FE lumbar spine model (referring to the 

model identification used in Chapter 2) met the prerequisite criteria: it was validated against 

literature data for gross physiologic loadings; it was significantly faster than conventional 

models; and it was more readily parallelizable than any other model investigated. Nonetheless, 

another model (referred to as the mixed model) that could be faster, but less parallelizable, was 

introduced within the discussion. The mixed model may exhibit certain advantages over the 

proposed model including better accuracy and stability with potentially similar computation 

speed. A significant limitation of the proposed model was its inability to converge for the full 

follower load, whereas the mixed model would probably converge for all applied loadings (yet 

untested). Still, the proposed model exhibited better parallelism than the mixed model 
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theoretically; and therefore, the current work continued with the proposed model given the 

prospective GPU implementation in which improved parallelism provided massive 

computation speed-ups. However, the mixed model has considerable potential for real-time 

simulation. The results from Chapter 3 and Chapter 4 showed that the parallel (GPU 

implemented) portion of the simulation was restricted to the element building stage between 

Newton-Raphson iterations, while the linear solving stage was implemented sequentially (on 

the CPU). Additionally, the computation time spent during the element building stage was 

considerably lower than expected at approximately 0.045 seconds, while the linear solving 

stage was approximately 1 second. Although the 0.045 second computation time represents the 

lowest possible element build time (given the current GPU implementation), mixed model 

element build times would likely be slightly longer. This observation arises from the 

impressive computation speed of the GPU for the tetrahedral elements of the proposed model, 

whereas building the reduced integration hexahedral elements requires approximately 

quadruple the calculations as tetrahedral elements [80]. Also, the mixed model has 

significantly less elements than the proposed model, which results in less kernel launches for 

linear matrix building. Since the number of nodes does not change between the mixed and 

proposed models, the computation time for linear solve stage would likely be similar, although 

further testing is necessary to determine if the sparsity pattern, thus matrix factorization, 

remains the same. Even if the computation time for element building triples for the mixed 

model, the overall increase in computation time would be minimal at approximately ~0.15 

seconds per Newton-Raphson iteration. Furthermore, that computation time would decrease 

with prospective GPU hardware improvements (i.e. using the newer Titan Z instead of the 
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Titan Black). Regardless, further investigation and testing is necessary to prove these potential 

claims. 

Results and discussion from Chapter 3 demonstrated that previous real-time simulation 

techniques were insufficient for spine material models. Thus, a novel GPU implementation 

was developed specifically for spine material models, which was actually a hybrid GPU/CPU 

implementation considering that it used both processors. The runtime of the proposed GPU 

implementation was broken down into two parts: element build time on the GPU and linear 

matrix solve time on the CPU. As shown in the previous paragraph, the element build time was 

exceptionally fast while the slowest part of the algorithm is the linear matrix solver; and 

therefore, improving the computation speed of the linear solver would greatly improve the 

overall computation speed. Computation speed on the GPU can readily be increased with 

improved GPU hardware in the form of increased number of microprocessors, considering the 

parallel nature of the proposed GPU implementation. On the other hand, computation speed 

on the CPU is only increased through faster processors considering its sequential processing 

nature. Hence, increasing parallelism of the linear solver would reveal quicker computation 

speeds than improving the solver itself. Coupled with the element build and linear solve times 

shown in Chapter 4, improvements to the current work should focus on two things: 

implementing the linear solve phase onto the GPU and/or decreasing the number of 

calculations required by the linear solve phase. Effective GPU implementation of linear matrix 

solving is a difficult challenge considering the sequential nature of linear solving. Various 

developers are working on implementing linear solvers onto GPUs through diverse means 

[136], [137]. Still, streamlining the direct sparse linear solver by analyzing the factorization 

steps may allow a reduction in the number of calculations. To that end, a precomputed indexing 
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array could be created that directly refers to the factorized version of the linear stiffness matrix 

instead of the unfactorized linear matrix, thereby skipping the factorization step which 

consumes the most time in the linear solver. Specifically, an ideal linear solver for the real-

time simulation would be a streamlined version of a GPU implemented Cholesky factorization. 

Therefore, further investigation should focus on parallelizing and streamlining the linear solver 

for the simulation to approach real-time speeds. 

Chapter 4 built upon the developments from Chapter 2 and Chapter 3. A novel composite 

element type was developed using the spine model mesh from Chapter 2 within the GPU 

implementation from Chapter 3. In Chapter 4, Models 1 and 2 referred to the conventional 

model and the proposed model solved in ANSYS, respectively, while Model 3 referred to the 

proposed model (with a couple alterations) solved in a custom CUDA program. As such, the 

annulus fibrosus was effectively represented in Model 3 (following the model identification of 

Chapter 4) using a fraction of the elements with no loss in accuracy. Reducing the element 

count, with only a small increase in calculations per element, decreases the overall computation 

time significantly by reducing the number of kernel launches. Yet, further study is required for 

the actual contribution of this novel formulation for the annulus fibrosus to the computation 

speed. Also, Model 3 exploited the TL formulation as opposed to the ULJ formulation used by 

Model 2 (Model 3 was built with the same element types and material properties as Model 2). 

As discussed in Chapter 3, the TL formulation requires more memory but considerably less 

calculations than the ULJ formulation. However, although global memory access times are 

lengthy and register/shared memory is limited, GPU implementation of the ULJ formulation 

has not been tested against the TL formulation. Plus, element build times were minimal so 

differences in computation time between the formulations may be small as well, although the 



132 
 

accuracy and stability gain would be likely negligible using the ULJ formulation. Yet, 

considering the stability issues associated with lumbar spine models, effective evaluation of 

the ULJ formulation against the TL formulation may provide helpful results and would require 

another investigation similar to Chapter 3. 

One limitation of the current work is that only fully-deformable FE models were investigated; 

neither beam models [138] nor mass-spring systems [81], [139] were considered. Although 

significantly faster, neither of these types of models provide the accuracy or biomechanical 

information offered by FE models [81]. Hence, the current study explored the creation of a 

real-time FE model given current technology to determine real-time capability at minimal loss 

in accuracy. In this manner, the current work approached the problem by starting with an FE 

model and applied real-time FE techniques to increase computation speed. Nonetheless, an 

opposite approach could be attempted: start with a beam or mass-spring model that has real-

time speeds and improve accuracy via theoretical means until validated. Although an attractive 

approach, such models by nature would reach an apex of theoretical accuracy, at which 

increased accuracy would involve applying FE formulations anyways. Furthermore, 

biomechanical information, such as strain and stress, are highly inaccurate or missing entirely 

for beam or mass-spring models. Using the FE method, biomechanical information and 

accuracy is effectively guaranteed, in which computation speed has no theoretical limit but 

only a practical technological limit. In other words, the FE model approach was considerably 

more scalable than the simplified model approach. Nonetheless, the simplified models were 

not tested in the current work; and therefore, further study would be necessary to determine 

viability for real-time lumbar spine simulation. Still, considering the promising results of the 
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current work, future work should build upon the FE model approach rather than the simplified 

model approach.  

Apart from the computational successes, the current study did not include contact formulations 

in the facet joints, significantly limiting its applicability to scenarios where facet joint forces 

were not significant, such as scenarios that only involve the spinal column [55] or low facet 

joint forces such as flexion and lateral bending only [32]. Also, the limited compression 

loading further restricts the direct clinical applicability of the proposed real-time model (Model 

3) to prone or supine positions, which represents many surgical spinal interventions. 

Considering the prevalence of facet joint and compression forces in lumbar spine 

biomechanics, these deficiencies severely limit the proposed real-time model. However, 

contact formulations were out of scope for the current thesis and they require a separate 

investigation in themselves, as done for other real-time biomechanical simulations approaches 

[85]. Considerations for prospective contact formulation include: the TL framework; using the 

penalty or augmented Lagrange formulations to ensure positive definiteness of the linear 

stiffness matrix; search methods that include triangular surfaces; optimal increments to balance 

speed and stability (not too small resulting in a large amount of substeps and not too large 

resulting in convergence issues); and others. Creation of a new contact formulation may be 

necessary that preserves the sparsity pattern (and thus factorization) of the linear stiffness 

matrix.  Given the complexity of compression loading for the entire lumbar spine (via the 

follower load method), application of the follower load also requires further in-depth 

investigation to determine how to apply the increments of loading with stability, efficiency, 

and accuracy. For the follower loading, another novel load application method may be 

necessary to reduce the amount of increments essential for stable load application. 



134 
 

Notwithstanding, the proposed work provides a proven foundation from which to build real-

time contact formulations and follower loadings upon.  

Using the generic lumbar modelling methodology developed by the proposed work as a basis, 

application-specific models may be generated for a wide variety of applications. As done for 

many other application-specific models [31], [55], [122], [123], generic modelling 

methodologies [38], [51], [104] may be used as a guide for prospective models. In future 

models, validation must be conducted for each specific application: the proposed real-time 

model is only valid for displacement outputs in flexion and lateral bending.  

Still, the proposed work is novel to the area of real-time FE spine simulation, and it provides 

foundational work towards applying spine simulations into clinical scenarios that would 

benefit from real-time biomechanical feedback. Real-time clinical scenarios would include 

SMT to avoid adverse events, scoliosis bracing to ensure spine straightness, spine arthroplasty 

surgery to ensure that the implant placement allows good physiologic movement, and other 

examples, all of which were out of scope for the proposed thesis but rather provided motivation 

for the work. 

Given the results from Chapter 4 for lumbar spines in the absence of contact, the proposed 

real-time FE techniques presented in Chapter 3 could readily be applied to other biomechanical 

models. Especially, the proposed techniques can be readily applied to thoracic or cervical spine 

models without facet contact. Some other real-time FE techniques have been applied to other 

biomechanical situations, including brain surgery [88] and surgical cutting [3], but the 

investigation from Chapter 3 proved those FE techniques to be insufficient for spine models. 

Consequently, similar biomechanical situations involving bone connected to nearly-
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incompressible materials, such as joint manipulations or surgery, could benefit significantly 

from the application of the proposed real-time FE techniques. Yet, each situation has vastly 

different models and constraints that require considerable investigations in themselves. 

Although the idea exhibits exciting potential, further study and development is necessary to 

integrate the proposed real-time FE techniques into other clinical situations, which would be 

vastly different for each scenario. 

As seen in Chapter 4, the overall biomechanical results from the GPU-implemented real-time 

model closely resembled the purely CPU-implemented proposed model at effectively zero loss 

in accuracy for gross physiologic movements. In comparison with the primary objective of the 

thesis, the resulting model accomplishes accurate biomechanical displacements for gross 

physiologic movements but not at real-time speeds. Still, the proposed real-time spine model 

demonstrated substantial computation speed increases over previous models, in addition to 

improved scalability to upgraded computer hardware. 

5.1  Conclusion 

The primary objective of the proposed thesis was to generate a generic modelling methodology 

for creating a finite element lumbar spine model without facet contact that demonstrated 

significant increases in computation speed over previous models. Finite element models of the 

spine have been well investigated and validated for specific applications across numerous 

studies throughout literature. Likewise, a considerable body of work focusing on developing 

real-time finite element techniques for biomechanical models using graphics processing units 

has arisen recently. Yet, no current studies have combined these two areas of research to create 

a real-time finite element spine model. The proposed thesis explored the development and 
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validation (for gross physiologic movements) of a real-time finite element lumbar spine model 

by applying real-time finite element techniques to a fully-deformable finite element model of 

the lumbar spine disregarding facet contact. Through investigation, current methods were 

determined insufficient for developing a real-time lumbar spine model; and therefore, a novel 

spine modelling methodology and novel finite element techniques were proposed to fill that 

gap in knowledge. Accordingly, a GPU-implemented finite element model of a contact-less 

lumbar spine was developed that demonstrated massive improvements in computation speed 

at minimal loss in accuracy for gross physiologic movements. Although the resulting model 

did not exhibit real-time capability, the current study proved its exciting potential for real-time 

simulation and laid a solid foundation for further development. Specifically, the current study 

established that GPU implementation of the linear solver stage would greatly increase the 

computation speed further, including improvement of the scalability for the entire simulation 

to prospective GPU hardware developments. Even so, with the real-time barrier addressed 

through the current work, the other two barriers to clinical application, virtual haptic-visual 

feedback interaction and automatic patient-specific model generation (including validation), 

may now be addressed. Results from the current study show that should spine simulation be 

implemented into the clinic, a desktop computer with a moderately powerful GPU would 

provide the necessary computation power. Also, each patient-specific model must be 

comprised of a finite element mesh.  

Therefore, the proposed PhD thesis delivered the following novel and significant contributions 

to the field of real-time lumbar spine simulations: 
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• Development and validation of a lumbar spine model meshed purely with linear 

tetrahedral elements that demonstrated improved computation speed and parallelism 

over conventional models. The proposed generic modelling methodology may be used 

to develop prospective spine models that exhibit accuracy and improved computation 

speed. 

• GPU-implemented real-time finite element techniques that are accurate and stable for 

almost all biological material models, especially nearly-incompressible materials, for 

which previous methods were unsuccessful. Although designed and effective for spine 

models, the proposed real-time techniques may be useful in many clinical scenarios 

involving virtual biomechanical simulations. 

• Formulation and implementation of a novel composite element type comprising the 

annulus fibrosus that significantly decreases the number of elements in the model at no 

loss in accuracy. This novel element can be used to improve the computation speed of 

prospective models involving the annulus fibrosus. The development and prospective 

testing of this composite element type will be disseminated at a related conference in 

the near future. 

• Development and validation (for gross physiologic movements) of a novel finite 

element lumbar spine model without contact, including CUDA program, that 

demonstrated massive increases in computation speed over previous models. Although 

not real-time, the proposed work produced a solid foundation in the field of real-time 

spine simulations, upon which future developments will be built. 
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5.2 Future Work 

This thesis not only made significant contributions towards implementing finite element spine 

models into clinical situations, but also laid the groundwork for future studies plus 

improvements to the current work. Based on the current work, future directions include: 

• Implement facet contact into the spine simulation. Although facet joint forces are 

significant in the lumbar spine’s response many biomechanical loadings, the current 

model does not include facet contact. Some previous work has attempted to integrate 

contact into real-time biomechanical simulations [3], [9], [85], but further work is 

necessary for the current spine model. Considering that axial rotation and postero-

anterior forces cause noteworthy facet joint forces through spinal response, contact 

formulations must be added to the simulation before testing its validity for those 

scenarios. 

• Improve the stability of the real-time lumbar model for compression loadings via 

follower load [68]. Allowing compression loadings, and additionally combined 

loadings, would enhance applicability of the real-time lumbar model to a broader range 

of applications involving standing positions. 

• Streamline the linear matrix solve stage of the finite element method. Calculations 

comprising the direct sparse matrix solver must be analyzed and shortened where 

possible by taking advantage of characteristics unique to finite element analysis. For 

example, an indexing array may be generated that relates nodal calculations directly to 

the factorized version of the linear matrix at the point just before backwards 

substitution. 
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• Implementation of the direct linear matrix solver on the graphics processing unit. 

Currently, the linear solver is implemented on the central processing unit, but 

implementation onto the graphics processing unit would likely improve both 

computation speed and scalability, especially considering the computational potential 

of prospective graphics processing units over central processing units. For the proposed 

spine models of the current study, effective parallel implementation of a direct linear 

matrix solver is a considerable challenge and would require novel methods. 

• Creation of an interactive interface between the clinician and the model. The spine 

simulation could be integrated into the virtual space of a visual tracking-projection 

system [135] or a Hololens (Microsoft). With haptic feedback included (plus some 

further real-time simulation developments), the clinician could effectively interact with 

the model and receive real-time biomechanical feedback. 

• Creation and validation (for specific clinical applications) of a parametric finite element 

spine model that can morph to match any patient that enters the clinic. General usage 

of the real-time spine simulation requires automatic generation of patient-specific spine 

models. Considering the overall vision concerning real-time simulation, the proposed 

real-time spine model could be used as a basis for building the parametric model. The 

method for generation of patient-specific models (possibly using a parametric model 

as a basis) would depend upon the specific clinical application. For example, scoliosis 

models could potentially be generated from medical imaging scans given their 

availability during treatment, but anthropometric data with a statistical-type model 
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would be necessary for spinal manipulation therapy where medical imaging is typically 

not available. 

• Development of thoracic and cervical spine models using the proposed spine modelling 

methodology and real-time finite element techniques. The current study focused only 

on the lumbar spine, but most clinical applications include the thoracic and cervical 

spine as well. The current study could be used as a guide towards developing real-time 

thoracic and cervical spine models. 

• Test the real-time capability of a mixed model, as discussed in Chapter 2, instead of a 

purely tetrahedral model to improve accuracy and stability. The element building stage 

of the finite element analysis was minimal for the tetrahedral model and the mixed 

model would certainly be slower, but whether it is still sufficiently fast must be 

determined. 

• Development of real-time biomechanical models for other clinical scenarios using the 

proposed real-time finite element techniques. The proposed techniques and modelling 

methodology could greatly improve computation speeds for other biomechanical 

models that are less complex than the spine geometrically and materialistically but that 

include near-incompressibility, such as hip or knee joint models. For example, 

following the methodologies used by the current study, real-time models for knee or 

hip arthroplasties could be developed then used clinically to improve surgeon training 

and surgery outcomes, in addition to potential physiotherapy applications.  
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Appendix A   Derivation of Matrices for Linear Tetrahedral 

Elements 

Tetrahedral elements are comprised of four nodes with linear shape functions to describe global 

coordinates and displacements in the element. Locations and displacements within the element 

are mapped from isoparametric coordinates to global coordinates using a weighted sum of 

shape functions, by: 

𝑥𝑥0 = �𝑁𝑁𝑖𝑖𝑥𝑥𝑖𝑖

4

𝑖𝑖=1

= (1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)𝑥𝑥1 + 𝑟𝑟𝑥𝑥2 + 𝑠𝑠𝑥𝑥3 + 𝑡𝑡𝑥𝑥4 (𝐴𝐴 − 1) 

𝑢𝑢 = �𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖

4

𝑖𝑖=1

= (1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)𝑢𝑢1 + 𝑟𝑟𝑢𝑢2 + 𝑠𝑠𝑢𝑢3 + 𝑡𝑡𝑢𝑢4 (𝐴𝐴 − 2) 

where y and z are defined similar to x plus v and w defined similar to u. Note that during the 

analysis, the nodal locations are only calculated once in the original configuration. Also, note 

that the subscripts refer to the node number within the element. Also, as seen through Equations 

(A-3) through (A-6), the shape functions for linear tetrahedral elements are: 

𝑁𝑁1 = 1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡 (𝐴𝐴 − 3) 

𝑁𝑁2 = 𝑟𝑟 (𝐴𝐴 − 4) 

𝑁𝑁3 = 𝑠𝑠 (𝐴𝐴 − 5) 

𝑁𝑁4 = 𝑡𝑡 (𝐴𝐴 − 6) 
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To corroborate the relationship between global and isoparametric coordinates, the derivatives 

must be determined which leads to the generation of the Jacobian. The derivatives of global 

coordinates with respect to isoparametric coordinates are calculated by: 

𝜕𝜕 𝑥𝑥0

𝜕𝜕𝑟𝑟
= 𝑥𝑥2 − 𝑥𝑥1 (𝐴𝐴 − 7) 

𝜕𝜕 𝑥𝑥0

𝜕𝜕𝑠𝑠
= 𝑥𝑥3 − 𝑥𝑥1 (𝐴𝐴 − 8) 

𝜕𝜕 𝑥𝑥0

𝜕𝜕𝑡𝑡
= 𝑥𝑥4 − 𝑥𝑥1 (𝐴𝐴 − 9) 

The Jacobian matrix for the linear tetrahedral element can be built from Equations (A-7) 

through (A-9): 

𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝑱𝑱
𝝏𝝏

𝝏𝝏 𝒙𝒙𝟎𝟎
⇒  𝑱𝑱 = �

𝑥𝑥2 − 𝑥𝑥1 𝑦𝑦2 − 𝑦𝑦1 𝑧𝑧2 − 𝑧𝑧1
𝑥𝑥3 − 𝑥𝑥1 𝑦𝑦3 − 𝑦𝑦1 𝑧𝑧3 − 𝑧𝑧1
𝑥𝑥4 − 𝑥𝑥1 𝑦𝑦4 − 𝑦𝑦1 𝑧𝑧4 − 𝑧𝑧1

� (𝐴𝐴 − 10) 

Using Equation (A-10), an expression for the derivative of u with respect to x in the TL 

framework may be determined: 

𝜕𝜕𝑢𝑢
𝜕𝜕 𝑥𝑥0

=
𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕 𝑥𝑥0

𝑢𝑢𝑖𝑖 = 𝑁𝑁𝑖𝑖,1 =
𝜕𝜕(1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)

𝜕𝜕 𝑥𝑥0
𝑢𝑢1 +

𝜕𝜕𝑟𝑟
𝜕𝜕 𝑥𝑥0

𝑢𝑢2 +
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑥𝑥0

𝑢𝑢3 +
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑥𝑥0

𝑢𝑢4 (𝐴𝐴 − 11) 

𝜕𝜕𝑢𝑢
𝜕𝜕 𝑦𝑦0

=
𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕 𝑦𝑦0

𝑢𝑢𝑖𝑖 = 𝑁𝑁𝑖𝑖,2 =
𝜕𝜕(1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)

𝜕𝜕 𝑦𝑦0
𝑢𝑢1 +

𝜕𝜕𝑟𝑟
𝜕𝜕 𝑦𝑦0

𝑢𝑢2 +
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑦𝑦0

𝑢𝑢3 +
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑦𝑦0

𝑢𝑢4 (𝐴𝐴 − 12) 

𝜕𝜕𝑢𝑢
𝜕𝜕 𝑧𝑧0

=
𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕 𝑧𝑧0

𝑢𝑢𝑖𝑖 = 𝑁𝑁𝑖𝑖,3 =
𝜕𝜕(1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)

𝜕𝜕 𝑧𝑧0
𝑢𝑢1 +

𝜕𝜕𝑟𝑟
𝜕𝜕 𝑧𝑧0

𝑢𝑢2 +
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑧𝑧0

𝑢𝑢3 +
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑧𝑧0

𝑢𝑢4 (𝐴𝐴 − 13) 

where the derivatives for v and w are defined similarly and i is summed from 1 to 4. 
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Considering Equation (A-10), the inverse of the Jacobian is required to determine the partial 

derivatives of isoparametric coordinates with respect to global coordinates: 

𝑱𝑱−𝟏𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑁𝑁2,1 =

𝜕𝜕𝑟𝑟
𝜕𝜕 𝑥𝑥0

𝑁𝑁3,1 =
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑥𝑥0

𝑁𝑁4,1 =
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑥𝑥0

𝑁𝑁2,2 =
𝜕𝜕𝑟𝑟
𝜕𝜕 𝑦𝑦0

𝑁𝑁3,2 =
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑦𝑦0

𝑁𝑁4,2 =
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑦𝑦0

𝑁𝑁2,3 =
𝜕𝜕𝑟𝑟
𝜕𝜕 𝑧𝑧0

𝑁𝑁3,3 =
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑧𝑧0

𝑁𝑁4,3 =
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑧𝑧0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

=
1

det(𝑱𝑱)
�

(𝑦𝑦31𝑧𝑧41 − 𝑦𝑦41𝑧𝑧31) (𝑦𝑦41𝑧𝑧21 − 𝑦𝑦21𝑧𝑧41) (𝑦𝑦21𝑧𝑧31 − 𝑦𝑦31𝑧𝑧21)
(𝑥𝑥41𝑧𝑧31 − 𝑥𝑥31𝑧𝑧41) (𝑥𝑥21𝑧𝑧41 − 𝑥𝑥41𝑧𝑧21) (𝑥𝑥31𝑧𝑧21 − 𝑥𝑥21𝑧𝑧31)
(𝑥𝑥31𝑦𝑦41 − 𝑥𝑥41𝑦𝑦31) (𝑥𝑥41𝑦𝑦21 − 𝑥𝑥21𝑦𝑦41) (𝑥𝑥21𝑦𝑦31 − 𝑥𝑥31𝑦𝑦21)

� (𝐴𝐴 − 14) 

Where det(𝑱𝑱) = 𝑥𝑥21𝑦𝑦31𝑧𝑧41 + 𝑥𝑥31𝑦𝑦41𝑧𝑧21 + 𝑥𝑥41𝑦𝑦21𝑧𝑧31 − 𝑥𝑥41𝑦𝑦31𝑧𝑧21 − 𝑥𝑥31𝑦𝑦21𝑧𝑧41 − 𝑥𝑥21𝑦𝑦41𝑧𝑧31 

and 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖. 

As well, the final shape function derivatives in the TL framework may be found using the 

inverse Jacobian: 

𝑁𝑁1,1 =
𝜕𝜕(1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)

𝜕𝜕 𝑥𝑥0
=

𝜕𝜕1
𝜕𝜕 𝑥𝑥0

−
𝜕𝜕𝑟𝑟
𝜕𝜕 𝑥𝑥0

−
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑥𝑥0

−
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑥𝑥0

(𝐴𝐴 − 15) 

=
1

det(𝑱𝑱)
(𝑦𝑦24𝑧𝑧32 − 𝑦𝑦23𝑧𝑧42)  

𝑁𝑁1,2 =
𝜕𝜕(1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)

𝜕𝜕 𝑦𝑦0
=

𝜕𝜕1
𝜕𝜕 𝑦𝑦0

−
𝜕𝜕𝑟𝑟
𝜕𝜕 𝑦𝑦0

−
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑦𝑦0

−
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑦𝑦0

(𝐴𝐴 − 16) 

=
1

det(𝑱𝑱)
(𝑥𝑥32𝑧𝑧24 − 𝑥𝑥42𝑧𝑧23) 
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𝑁𝑁1,3 =
𝜕𝜕(1 − 𝑟𝑟 − 𝑠𝑠 − 𝑡𝑡)

𝜕𝜕 𝑧𝑧0
=

𝜕𝜕1
𝜕𝜕 𝑧𝑧0

−
𝜕𝜕𝑟𝑟
𝜕𝜕 𝑧𝑧0

−
𝜕𝜕𝑠𝑠
𝜕𝜕 𝑧𝑧0

−
𝜕𝜕𝑡𝑡
𝜕𝜕 𝑧𝑧0

(𝐴𝐴 − 17) 

=
1

det(𝑱𝑱)
(𝑥𝑥24𝑦𝑦32 − 𝑥𝑥23𝑦𝑦42) 

Note that the inverse Jacobian does not depend on isoparametric parameters; hence it is 

constant across the tetrahedral element. Also, since the framework is TL, the original nodal 

coordinates are constant throughout the analysis; and therefore, the inverse Jacobian (ie shape 

function derivatives) can be pre-calculated once and stored during FE analysis (ie does not 

require recalculation at each Newton-Raphson iteration). 

Given Equations (A-15) to (A-17) for the shape function derivatives and since 𝑢𝑢𝑡𝑡 𝑖𝑖 is calculated 

for each node at each Newton-Raphson iteration, the element displacement gradient may be 

generated: 

𝑢𝑢0𝑡𝑡 ,𝑖𝑖 = �𝑁𝑁𝑖𝑖,𝑖𝑖 𝑢𝑢𝑖𝑖𝑡𝑡
4

𝑖𝑖=1

(𝐴𝐴 − 18) 

𝑣𝑣0𝑡𝑡 ,𝑖𝑖 = �𝑁𝑁𝑖𝑖,𝑖𝑖 𝑣𝑣𝑖𝑖𝑡𝑡
4

𝑖𝑖=1

(𝐴𝐴 − 19) 

𝑤𝑤0𝑡𝑡 ,𝑖𝑖 = �𝑁𝑁𝑖𝑖,𝑖𝑖 𝑤𝑤𝑖𝑖
𝑡𝑡

4

𝑖𝑖=1

(𝐴𝐴 − 20) 

Given Equations (1-15) and (1-16), the strain at the current configuration can be found 

including expressions for 𝑒𝑒0 𝑖𝑖𝑖𝑖 and 𝜂𝜂0 𝑖𝑖𝑖𝑖: 
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𝑒𝑒0 11 =
1

det(𝐉𝐉)
�𝑁𝑁𝑖𝑖,1𝑢𝑢𝑖𝑖 + 𝑢𝑢0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,1𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,1𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,1𝑤𝑤𝑖𝑖� (𝐴𝐴 − 21) 

𝑒𝑒0 22 =
1

det(𝐉𝐉)
�𝑁𝑁𝑖𝑖,2𝑣𝑣𝑖𝑖 + 𝑢𝑢0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,2𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,2𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,2𝑤𝑤𝑖𝑖� (𝐴𝐴 − 22) 

𝑒𝑒0 33 =
1

det(𝐉𝐉)
�𝑁𝑁𝑖𝑖,3𝑤𝑤𝑖𝑖 + 𝑢𝑢0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,3𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,3𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,3𝑤𝑤𝑖𝑖� (𝐴𝐴 − 23) 

𝑒𝑒0 23 =
1

2 det(𝐉𝐉)
�
𝑁𝑁𝑖𝑖,2𝑤𝑤𝑖𝑖 + 𝑁𝑁𝑖𝑖,3𝑣𝑣𝑖𝑖 + 𝑢𝑢0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,2𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,2𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,2𝑤𝑤𝑖𝑖

+ 𝑢𝑢0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,3𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,3𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,3𝑤𝑤𝑖𝑖
� (𝐴𝐴 − 24) 

𝑒𝑒0 13 =
1

2 det(𝐉𝐉)
�
𝑁𝑁𝑖𝑖,1𝑤𝑤𝑖𝑖 + 𝑁𝑁𝑖𝑖,3𝑢𝑢𝑖𝑖 + 𝑢𝑢0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,1𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,1𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,1𝑤𝑤𝑖𝑖

+ 𝑢𝑢0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,3𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,3𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,3𝑤𝑤𝑖𝑖
� (𝐴𝐴 − 25) 

𝑒𝑒0 12 =
1

2 det(𝐉𝐉)
�
𝑁𝑁𝑖𝑖,2𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝑣𝑣𝑖𝑖 + 𝑢𝑢0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,2𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,2𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,2𝑤𝑤𝑖𝑖

+ 𝑢𝑢0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,1𝑢𝑢𝑖𝑖 + 𝑣𝑣0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,1𝑣𝑣𝑖𝑖 + 𝑤𝑤0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,1𝑤𝑤𝑖𝑖
� (𝐴𝐴 − 26) 

where 𝒖𝒖𝒊𝒊 = [𝑢𝑢𝑖𝑖 𝑣𝑣𝑖𝑖 𝑤𝑤𝑖𝑖]𝑇𝑇 is either 𝜟𝜟𝒖𝒖 (incremental displacement) or 𝜹𝜹𝒖𝒖 (virtual 

displacement). 

δΔ 𝜂𝜂0 11 =
1

det(𝑱𝑱)
�𝑁𝑁𝑖𝑖,1𝛿𝛿𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,1Δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝛿𝛿𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,1Δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝛿𝛿𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,1Δ𝑤𝑤𝑖𝑖� (𝐴𝐴 − 27) 

δΔ 𝜂𝜂0 22 =
1

det(𝑱𝑱)
�𝑁𝑁𝑖𝑖,2𝛿𝛿𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,2Δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,2𝛿𝛿𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,2Δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,2𝛿𝛿𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,2Δ𝑤𝑤𝑖𝑖� (𝐴𝐴 − 28) 

δΔ 𝜂𝜂0 33 =
1

det(𝑱𝑱)
�𝑁𝑁𝑖𝑖,3𝛿𝛿𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,3𝛿𝛿𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,3𝛿𝛿𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑤𝑤𝑖𝑖� (𝐴𝐴 − 29) 

δΔ 𝜂𝜂0 23 =
1

2 det(𝑱𝑱)
�
𝑁𝑁𝑖𝑖,2𝛿𝛿𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,2𝛿𝛿𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,2𝛿𝛿𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑤𝑤𝑖𝑖

+𝑁𝑁𝑖𝑖,2Δ𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,3δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,2Δ𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,3δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,2Δ𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,3δ𝑤𝑤𝑖𝑖
� (𝐴𝐴 − 30) 
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δΔ 𝜂𝜂0 13 =
1

2 det(𝑱𝑱)
�
𝑁𝑁𝑖𝑖,1𝛿𝛿𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝛿𝛿𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝛿𝛿𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,3Δ𝑤𝑤𝑖𝑖

+𝑁𝑁𝑖𝑖,1Δ𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,3δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,1Δ𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,3δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,1Δ𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,3δ𝑤𝑤𝑖𝑖
� (𝐴𝐴 − 31) 

δΔ 𝜂𝜂0 12 =
1

2 det(𝑱𝑱)
�
𝑁𝑁𝑖𝑖,1𝛿𝛿𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,2Δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝛿𝛿𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,2Δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,1𝛿𝛿𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,2Δ𝑤𝑤𝑖𝑖

+𝑁𝑁𝑖𝑖,1Δ𝑢𝑢𝑖𝑖𝑁𝑁𝑖𝑖,2δ𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑖𝑖,1Δ𝑣𝑣𝑖𝑖𝑁𝑁𝑖𝑖,2δ𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑖𝑖,1Δ𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,2δ𝑤𝑤𝑖𝑖
� (𝐴𝐴 − 32) 

From Equations (A-21) to (A-32), the strain displacement matrices can be generated by 

factoring out the incremental and virtual displacement terms, by: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒11
𝑒𝑒22
𝑒𝑒33
𝑒𝑒23
𝑒𝑒13
𝑒𝑒12⎦

⎥
⎥
⎥
⎥
⎤

= 𝒆𝒆� = 𝑩𝑩𝒖𝒖 = (𝑩𝑩𝑳𝑳𝟎𝟎 + 𝑩𝑩𝑳𝑳𝟏𝟏)𝒖𝒖

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑁1,1 0 0 𝑁𝑁2,1 0 0 𝑁𝑁3,1 0 0 𝑁𝑁4,1 0 0

0 𝑁𝑁2,1 0 0 𝑁𝑁2,2 0 0 𝑁𝑁3,2 0 0 𝑁𝑁4,2 0
0 0 𝑁𝑁1,3 0 0 𝑁𝑁2,3 0 0 𝑁𝑁3,3 0 0 𝑁𝑁4,3
0 𝑁𝑁1,3 𝑁𝑁1,2 0 𝑁𝑁2,3 𝑁𝑁2,2 0 𝑁𝑁3,3 𝑁𝑁3,2 0 𝑁𝑁4,3 𝑁𝑁4,2
𝑁𝑁1,3 0 𝑁𝑁1,1 𝑁𝑁2,3 0 𝑁𝑁2,1 𝑁𝑁3,3 0 𝑁𝑁3,1 𝑁𝑁4,3 0 𝑁𝑁4,1
𝑁𝑁1,2 𝑁𝑁1,1 0 𝑁𝑁2,2 𝑁𝑁2,1 0 𝑁𝑁3,2 𝑁𝑁3,1 0 𝑁𝑁4,2 𝑁𝑁4,1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

+[𝑩𝑩𝑳𝑳𝟏𝟏𝟏𝟏 𝑩𝑩𝑳𝑳𝟏𝟏𝟐𝟐 𝑩𝑩𝑳𝑳𝟏𝟏𝟑𝟑 𝑩𝑩𝑳𝑳𝟏𝟏𝟒𝟒] ⎠

⎟
⎟
⎟
⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑢𝑢1
𝑣𝑣1
𝑤𝑤1
𝑢𝑢2
𝑣𝑣2
𝑤𝑤2
𝑢𝑢3
𝑣𝑣3
𝑤𝑤3
𝑢𝑢4
𝑣𝑣4
𝑤𝑤4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(𝐴𝐴 − 33)

 

 

𝑩𝑩𝑳𝑳𝟏𝟏𝒊𝒊 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑢𝑢0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,1 𝑣𝑣0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,1 𝑤𝑤0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,1

𝑢𝑢0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,2 𝑣𝑣0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,2 𝑤𝑤0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,2
𝑢𝑢0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,3 𝑣𝑣0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,3 𝑤𝑤0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,3

� 𝑢𝑢0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,3 + 𝑢𝑢0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,2� � 𝑣𝑣0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,3 + 𝑣𝑣0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,2� � 𝑤𝑤0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,3 + 𝑤𝑤0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,2�
� 𝑢𝑢0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,3 + 𝑢𝑢0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,1� � 𝑣𝑣0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,3 + 𝑣𝑣0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,1� � 𝑤𝑤0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,3 + 𝑤𝑤0𝑡𝑡 ,3𝑁𝑁𝑖𝑖,1�
( 𝑢𝑢0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,2 + 𝑢𝑢0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,1 � 𝑣𝑣0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,2 + 𝑣𝑣0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,1� � 𝑤𝑤0𝑡𝑡 ,1𝑁𝑁𝑖𝑖,2 + 𝑤𝑤0𝑡𝑡 ,2𝑁𝑁𝑖𝑖,1�⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Note that with the strain definitions, the strain is constant throughout the element and doesn’t 

rely on the isoparametric variables. Therefore, the presented formulation for tetrahedral 

elements corresponds to full integration (one Gauss integration point). Considering Equation 

(A-33), 𝑩𝑩𝑳𝑳𝟎𝟎 can be pre-computed at the original configuration and stored for all other 

iterations, while 𝑩𝑩𝑳𝑳𝟏𝟏 represents the initial displacement effect and must be computed at each 

iteration. When compared to Equation (1-21), Equation (A-33) represents strain in the first 

term on the left hand side and the second term on the right hand side: 

� 𝐶𝐶0 𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
𝑖𝑖−1Δ 𝑒𝑒0 𝑟𝑟𝑟𝑟

𝑖𝑖 𝛿𝛿 𝑒𝑒0 𝑖𝑖𝑖𝑖𝑑𝑑 𝑉𝑉0
𝑉𝑉0

= 𝜹𝜹𝒖𝒖𝑇𝑇 𝑲𝑲𝑳𝑳𝜟𝜟𝒖𝒖 = 𝜹𝜹𝒖𝒖𝑇𝑇 �𝑩𝑩𝑳𝑳
𝑻𝑻𝑪𝑪𝑩𝑩𝑳𝑳 𝑉𝑉0 �𝜟𝜟𝒖𝒖 (𝐴𝐴 − 34) 

� 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖
𝑖𝑖−1𝛿𝛿 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡

𝑖𝑖𝑖𝑖
𝑖𝑖−1𝑑𝑑 𝑉𝑉0

𝑉𝑉0
= 𝜹𝜹𝒖𝒖𝑇𝑇 𝑭𝑭 = 𝜹𝜹𝒖𝒖𝑇𝑇 �𝑩𝑩𝑳𝑳

𝑻𝑻𝑺𝑺� 𝑉𝑉0 � (𝐴𝐴 − 35) 

where 𝐒𝐒� = [𝑆𝑆11 𝑆𝑆22 𝑆𝑆33 𝑆𝑆23 𝑆𝑆13 𝑆𝑆12]𝑇𝑇. 

The matrix for remaining unknown term representing nonlinear (i.e. geometric) stiffness in 

Equation (1-21) is generated by: 

� 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
𝑖𝑖𝑖𝑖 𝛿𝛿Δ 𝜂𝜂0 𝑖𝑖𝑖𝑖 𝑑𝑑 𝑉𝑉0

𝑉𝑉0
 

= �
𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
11𝛿𝛿Δ 𝜂𝜂0 11 + 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡

22𝛿𝛿Δ 𝜂𝜂0 22 + 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
33𝛿𝛿Δ 𝜂𝜂0 33

+2 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
23𝛿𝛿Δ 𝜂𝜂0 23 + 2 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡

13𝛿𝛿Δ 𝜂𝜂0 13 + 2 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡
12𝛿𝛿Δ 𝜂𝜂0 12

� 𝑉𝑉0 (𝐴𝐴 − 36) 

⇒ 𝜹𝜹𝒖𝒖𝑇𝑇 𝑲𝑲𝑵𝑵𝑳𝑳 𝜟𝜟𝒖𝒖 
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= 𝜹𝜹𝒖𝒖𝑇𝑇

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑀𝑀11 0 0 𝑀𝑀12 0 0 𝑀𝑀13 0 0 𝑀𝑀14 0 0

0 𝑀𝑀11 0 0 𝑀𝑀12 0 0 𝑀𝑀13 0 0 𝑀𝑀14 0
0 0 𝑀𝑀11 0 0 𝑀𝑀12 0 0 𝑀𝑀13 0 0 𝑀𝑀14
𝑀𝑀12 0 0 𝑀𝑀22 0 0 𝑀𝑀23 0 0 𝑀𝑀24 0 0

0 𝑀𝑀12 0 0 𝑀𝑀22 0 0 𝑀𝑀23 0 0 𝑀𝑀24 0
0 0 𝑀𝑀12 0 0 𝑀𝑀22 0 0 𝑀𝑀23 0 0 𝑀𝑀24
𝑀𝑀13 0 0 𝑀𝑀23 0 0 𝑀𝑀33 0 0 𝑀𝑀34 0 0

0 𝑀𝑀13 0 0 𝑀𝑀23 0 0 𝑀𝑀33 0 0 𝑀𝑀34 0
0 0 𝑀𝑀13 0 0 𝑀𝑀23 0 0 𝑀𝑀33 0 0 𝑀𝑀34
𝑀𝑀14 0 0 𝑀𝑀24 0 0 𝑀𝑀34 0 0 𝑀𝑀44 0 0

0 𝑀𝑀14 0 0 𝑀𝑀24 0 0 𝑀𝑀34 0 0 𝑀𝑀44 0
0 0 𝑀𝑀14 0 0 𝑀𝑀24 0 0 𝑀𝑀34 0 0 𝑀𝑀44⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝜟𝜟𝒖𝒖 (𝐴𝐴 − 37) 

𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖 = �𝑆𝑆𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖,𝑖𝑖𝑁𝑁𝑖𝑖,𝑖𝑖� 𝑉𝑉0  

where k,l are summed in each direction from 1 to 3. 

When compared to Equation (1-21), Equation (A-34) is added to Equation (A-37) to get the 

nonlinear stiffness matrix for the tetrahedral element. 

Therefore, all matrices in Equation (1-22) are generated for the linear tetrahedral elements. The 

material property matrix and stress vector are derived in Appendix C for the various materials 

comprising the spine. Linear tetrahedral typically make up the solid components of the spine, 

such as the vertebrae, cortical bone, endplates, annulus fibrosus matrix, and nucleus pulposus. 
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Appendix B   Derivation of Matrices for Linear Tension-Only 

Spring Elements 

Linear spring elements are comprised of a one-dimensional line connecting two nodes at either 

end. Considering that the elements are one-dimensional, the derivation is different than for the 

linear tetrahedral elements. The ensuing formulation follows an FE methods course notes 

offered through the University of Colorado [140]. First, the axial GL strain must be derived: 

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡 = 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡
11 =

𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝜕𝜕 𝑥𝑥0
+

1
2
��
𝜕𝜕 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝜕𝜕 𝑥𝑥0
�
2

+ �
𝜕𝜕 𝑣𝑣𝑡𝑡+Δ𝑡𝑡

𝜕𝜕 𝑥𝑥0
�
2

+ �
𝜕𝜕 𝑤𝑤𝑡𝑡+Δ𝑡𝑡

𝜕𝜕 𝑥𝑥0
�
2

� 

⇒ 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡 =
𝑑𝑑 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑑𝑑 𝑥𝑥0
+

1
2

 �
𝑑𝑑 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

𝑑𝑑 𝑥𝑥0
�
2

=
𝐿𝐿 − 𝐿𝐿0

𝐿𝐿0
+
�𝐿𝐿 − 𝐿𝐿0 �

2

2 𝐿𝐿0 2  

⇒ 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡 =
2 𝐿𝐿0 𝐿𝐿 − 2 𝐿𝐿0 2 + 𝐿𝐿2 − 2 𝐿𝐿0 𝐿𝐿 + 𝐿𝐿0 2

2 𝐿𝐿0 2 =
𝐿𝐿2 − 𝐿𝐿0 2

2 𝐿𝐿0 2 (𝐵𝐵 − 1) 

where 𝜀𝜀11 is the axial strain along the length of the element rather than the global strain in the 

x-direction. 

Note that all variables in Equation (B-1) are in the element coordinate system and only axial 

variables contribute to the axial strain, thus v and w are zero. Also, constant strain is assumed 

throughout the element, thus 𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

= 𝐿𝐿− 𝐿𝐿0

𝐿𝐿0
. Note that with the constant strain definition, the strain 

calculation doesn’t rely on the isoparametric variables. Therefore, like the linear tetrahedral 

elements, the presented formulation for spring elements corresponds to full integration (one 

Gauss integration point). Also, note in Equation (B-1) that the original length, 𝐿𝐿0  is calculated 
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once at the beginning of the analysis and does not change throughout the analysis. The formula 

to calculate the original length and current length of the element is: 

𝐿𝐿0 = � 𝑥𝑥0 2 − 𝑥𝑥0 1�
2

+ � 𝑦𝑦0 2 − 𝑦𝑦0 1�
2

+ � 𝑧𝑧0 2 − 𝑧𝑧0 1�
2 (𝐵𝐵 − 2) 

𝐿𝐿2 = � 𝑥𝑥0 21 + 𝑢𝑢𝑡𝑡+Δ𝑡𝑡
21�

2
+ � 𝑦𝑦0 21 + 𝑣𝑣𝑡𝑡+Δ𝑡𝑡

21�
2

+ � 𝑧𝑧0 21 + 𝑤𝑤𝑡𝑡+Δ𝑡𝑡
21�

2 (𝐵𝐵 − 3) 

where 𝑥𝑥21 = 𝑥𝑥2 − 𝑥𝑥1. 

Looking at Equation (B-1), the current length, L, must be related to displacement to integrate 

the spring element into the general FE equation, Equation (B-3). 

The directional cosines may be used to simplify the calculations: 

𝑐𝑐𝑥𝑥 =
𝑥𝑥21
𝐿𝐿0

(𝐵𝐵 − 4) 

𝑐𝑐𝑦𝑦 =
𝑦𝑦21
𝐿𝐿0

(𝐵𝐵 − 5) 

𝑐𝑐𝑧𝑧 =
𝑧𝑧21
𝐿𝐿0

(𝐵𝐵 − 6) 

Equation (B-3) is inserted into Equation (B-1) in terms of displacement: 

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡  2 𝐿𝐿0 2 = � 𝑥𝑥0 21
2 + 2 𝑥𝑥0 21 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

21 + 𝑢𝑢𝑡𝑡+Δ𝑡𝑡
21
2 + 𝑦𝑦0 21

2 + 2 𝑦𝑦0 21 𝑣𝑣𝑡𝑡+Δ𝑡𝑡
21 + 𝑣𝑣𝑡𝑡+Δ𝑡𝑡

21
2 + 𝑧𝑧0 21

2

+ 2 𝑧𝑧0 21 𝑤𝑤𝑡𝑡+Δ𝑡𝑡
21 + 𝑤𝑤𝑡𝑡+Δ𝑡𝑡

21
2 � − � 𝑥𝑥0 21

2 + 𝑦𝑦0 21
2 + 𝑧𝑧0 21

2 �  

⇒ 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡 = 

2 𝑥𝑥0 21 𝑢𝑢𝑡𝑡+Δ𝑡𝑡
21 + 2 𝑦𝑦0 21 𝑣𝑣𝑡𝑡+Δ𝑡𝑡

21 + 2 𝑧𝑧0 21 𝑢𝑢𝑡𝑡+Δ𝑡𝑡
21 + 𝑢𝑢𝑡𝑡+Δ𝑡𝑡

21
2 + 𝑣𝑣𝑡𝑡+Δ𝑡𝑡

21
2 + 𝑤𝑤𝑡𝑡+Δ𝑡𝑡

21
2

2 𝐿𝐿0 2 (𝐵𝐵 − 4) 



172 
 

From Equations (1-5) and (1-6), the GL strain can be broken down into its incremental 

components: 

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡 = 𝜖𝜖0𝑡𝑡 + 𝜖𝜖0  

𝜖𝜖0𝑡𝑡+Δ𝑡𝑡  2𝐿𝐿02 = 2 𝑥𝑥0 21� 𝑢𝑢𝑡𝑡 21 + 𝑢𝑢21� + 2 𝑦𝑦0 21� 𝑣𝑣𝑡𝑡 21 + 𝑣𝑣21� + 2 𝑧𝑧0 21� 𝑤𝑤𝑡𝑡 21 + 𝑤𝑤21�

+ � 𝑢𝑢𝑡𝑡 21 + 𝑢𝑢21�
2

+ � 𝑣𝑣𝑡𝑡 21 + 𝑣𝑣21�
2

+ � 𝑤𝑤𝑡𝑡 21 + 𝑤𝑤21�
2
 

= 2 𝑥𝑥0 21 𝑢𝑢𝑡𝑡 21 + 2 𝑦𝑦0 21 𝑣𝑣𝑡𝑡 21 + 2 𝑧𝑧0 21 𝑤𝑤𝑡𝑡 21 + 𝑢𝑢𝑡𝑡 21
2 + 𝑣𝑣𝑡𝑡 21

2 + 𝑤𝑤𝑡𝑡 21
2 + 2 𝑥𝑥𝑡𝑡 21𝑢𝑢21

+ 2 𝑦𝑦𝑡𝑡 21𝑣𝑣21 + 2 𝑧𝑧𝑡𝑡 21𝑤𝑤21 + 𝑢𝑢212 + 𝑣𝑣212 + 𝑤𝑤21
2  

⇒ 𝜖𝜖0𝑡𝑡 =
2 𝑥𝑥0 21 𝑢𝑢𝑡𝑡 21 + 2 𝑦𝑦0 21 𝑣𝑣𝑡𝑡 21 + 2 𝑧𝑧0 21 𝑤𝑤𝑡𝑡 21 + 𝑢𝑢𝑡𝑡 21

2 + 𝑣𝑣𝑡𝑡 21
2 + 𝑤𝑤𝑡𝑡 21

2

2 𝐿𝐿0 2 (𝐵𝐵 − 5) 

⇒ 𝜖𝜖0 =
2 𝑥𝑥𝑡𝑡 21𝑢𝑢21 + 2 𝑦𝑦𝑡𝑡 21𝑣𝑣21 + 2 𝑧𝑧𝑡𝑡 21𝑤𝑤21 + 𝑢𝑢212 + 𝑣𝑣212 + 𝑤𝑤21

2

2 𝐿𝐿0 2 (𝐵𝐵 − 6) 

Where 𝑥𝑥𝑡𝑡 = 𝑥𝑥0 + 𝑢𝑢𝑡𝑡 . 

Given Equation (1-2), the linear and nonlinear components of the GL strain increment can be 

derived and simplified using the cosine Equations (B-4) to (B-6): 

𝜖𝜖0 = 𝑒𝑒0 + 𝜂𝜂0  

⇒ 𝑒𝑒0 =
𝑥𝑥𝑡𝑡 21𝑢𝑢21 + 𝑦𝑦𝑡𝑡 21𝑣𝑣21 + 𝑧𝑧𝑡𝑡 21𝑤𝑤21

𝐿𝐿0 2 =
𝑐𝑐𝑡𝑡 𝑥𝑥𝑢𝑢21 + 𝑐𝑐𝑡𝑡 𝑦𝑦𝑣𝑣21 + 𝑐𝑐𝑡𝑡 𝑧𝑧𝑤𝑤21

𝐿𝐿0 2 (𝐵𝐵 − 7) 

⇒ 𝜂𝜂0 =
𝑢𝑢212 + 𝑣𝑣212 + 𝑤𝑤21

2

2 𝐿𝐿0 2 (𝐵𝐵 − 8) 
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To determine the strain displacement matrices for input into Equation (1-22), the variation of 

the nonlinear incremental GL strain component must be generated: 

𝛿𝛿Δ 𝜂𝜂0 =
Δ𝑢𝑢21𝛿𝛿𝑢𝑢21 + Δ𝑣𝑣21𝛿𝛿𝑣𝑣21 + Δ𝑤𝑤21𝛿𝛿𝑤𝑤21

𝐿𝐿0 2 (𝐵𝐵 − 9) 

where Δ𝑢𝑢21 = Δ𝑢𝑢2 − Δ𝑢𝑢1 and 𝛿𝛿𝑢𝑢21 = 𝛿𝛿𝑢𝑢2 − 𝛿𝛿𝑢𝑢1. 

Equation (B-7) can readily be converted into matrix form: 

𝑒𝑒0 = 𝑩𝑩𝒖𝒖 =
1
𝐿𝐿0

[−𝑐𝑐𝑥𝑥 −𝑐𝑐𝑦𝑦 −𝑐𝑐𝑧𝑧 𝑐𝑐𝑥𝑥 𝑐𝑐𝑦𝑦 𝑐𝑐𝑧𝑧] [𝑢𝑢1 𝑣𝑣1 𝑤𝑤1 𝑢𝑢2 𝑣𝑣2 𝑤𝑤2]𝑇𝑇 (𝐵𝐵 − 10) 

From Equation (1-22) and considering that 𝐶𝐶1111 = 𝐸𝐸 in a one-dimensional element, the 

expression for the linear stiffness matrix is generated: 

� 𝐶𝐶0 1111
𝑖𝑖−1 Δ 𝑒𝑒0 𝑖𝑖 𝛿𝛿 𝑒𝑒0 𝑑𝑑 𝑉𝑉0

𝑉𝑉0
= 𝜹𝜹𝒖𝒖 𝑲𝑲𝑳𝑳𝜟𝜟𝒖𝒖 = 𝜹𝜹𝒖𝒖 � 𝐸𝐸𝑡𝑡 𝑩𝑩𝑳𝑳

𝑻𝑻𝑩𝑩𝑳𝑳 𝑉𝑉0 �𝜟𝜟𝒖𝒖 

= 𝜹𝜹𝒖𝒖𝑇𝑇
𝐸𝐸𝑡𝑡 𝐴𝐴0

𝐿𝐿0

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑐𝑐𝑥𝑥2 𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧 −𝑐𝑐𝑥𝑥2 −𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 −𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧
𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 𝑐𝑐𝑦𝑦2 𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧 −𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 −𝑐𝑐𝑦𝑦2 −𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧
𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧 𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧 𝑐𝑐𝑧𝑧2 −𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧 −𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧 −𝑐𝑐𝑧𝑧2

−𝑐𝑐𝑥𝑥2 −𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 −𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧 𝑐𝑐𝑥𝑥2 𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧
−𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 −𝑐𝑐𝑦𝑦2 −𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧 𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 𝑐𝑐𝑦𝑦2 𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧
−𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧 −𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧 −𝑐𝑐𝑧𝑧2 𝑐𝑐𝑥𝑥𝑐𝑐𝑧𝑧 𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧 𝑐𝑐𝑧𝑧2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝜟𝜟𝒖𝒖 (𝐵𝐵 − 11) 

Likewise, the expression for the nonlinear (i.e. geometric) stiffness matrix is generated 

considering that the PK2 stress is 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡 = 𝐹𝐹𝑡𝑡+Δ𝑡𝑡

𝐴𝐴0
: 

� 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡 𝛿𝛿Δ 𝜂𝜂0 𝑑𝑑 𝑉𝑉0
𝑉𝑉0

=
𝐹𝐹𝑡𝑡+Δ𝑡𝑡

𝐴𝐴0
𝑉𝑉0 𝛿𝛿Δ 𝜂𝜂0  
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= 𝜹𝜹𝒖𝒖𝑇𝑇
𝐹𝐹𝑡𝑡+Δ𝑡𝑡

𝐿𝐿0
 

⎣
⎢
⎢
⎢
⎢
⎡

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 𝜟𝜟𝒖𝒖 (𝐵𝐵 − 12) 

Lastly, the expression for the out-of-balance force vector is generated: 

� 𝑆𝑆0𝑡𝑡+Δ𝑡𝑡 𝑖𝑖−1𝛿𝛿 𝜖𝜖0𝑡𝑡+Δ𝑡𝑡 𝑖𝑖−1𝑑𝑑 𝑉𝑉0
𝑉𝑉0

= 𝜹𝜹𝒖𝒖𝑇𝑇 �
𝐹𝐹𝑡𝑡+𝛥𝛥𝑡𝑡

𝐴𝐴0
𝑩𝑩𝑳𝑳
𝑻𝑻 𝑉𝑉0 � 

= 𝜹𝜹𝒖𝒖𝑇𝑇 𝐹𝐹𝑡𝑡+Δ𝑡𝑡  [−𝑐𝑐𝑥𝑥 −𝑐𝑐𝑦𝑦 −𝑐𝑐𝑧𝑧 𝑐𝑐𝑥𝑥 𝑐𝑐𝑦𝑦 𝑐𝑐𝑧𝑧]𝑇𝑇 (𝐵𝐵 − 13) 

Therefore, all matrices in Equation (1-22) are generated for the linear spring elements. The 

stiffness and ligament force at each iteration is determined directly from the force-

displacement curve of the ligament, where the elements only add force and stiffness to the 

overall model when they are in tension. The tension-only spring elements are used to generate 

the ligaments only.  

  



175 
 

Appendix C   Derivation of Material Property Matrices 

Various material models were used to represent the various biomechanical materials present 

in the spine. The material models used were: linear elastic isotropic for the cartilage endplates, 

posterior elements, and nucleus pulposus; linear elastic orthotropic for the cancellous bone and 

cortical bone; and Mooney-Rivlin hyperelastic for the annulus fibrosus. Note that all 

derivations are calculated within the TL formulation for the current configuration (𝑡𝑡) with 

reference to the initial configuration (0) (so the left super- and sub-scripts have been removed 

for this section). To implement the material models into the FE program considering Equation 

(1-22), mathematical relations between PK2 stress and GL strain must be found. In the 

nonlinear elastic material region, PK2 is related to GL strain via the strain energy density of 

the material: 

𝑺𝑺 =
𝜕𝜕𝑊𝑊
𝜕𝜕𝝐𝝐

(𝐶𝐶 − 1) 

At each increment of Equation (1-21), the tangential material property matrix, 𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟, must be 

calculated as the linear portion of the nonlinear material curve at the current GL strain: 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝜖𝜖𝑟𝑟𝑟𝑟 (𝐶𝐶 − 2) 

The linear elastic isotropic models are based off the Saint Venant-Kirchhoff model. The strain 

energy density function and resulting relation derived using Equation (C-1) are: 

𝑊𝑊 =
𝜆𝜆
2

(𝜖𝜖𝑖𝑖𝑖𝑖)2 + 𝜇𝜇𝜖𝜖𝑖𝑖𝑖𝑖2 (𝐶𝐶 − 3) 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝜆𝜆𝜖𝜖𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇𝜖𝜖𝑖𝑖𝑖𝑖 (𝐶𝐶 − 4) 
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𝜆𝜆 =
𝐸𝐸𝜈𝜈

(1 + 𝜈𝜈)(1− 2𝜈𝜈) 

𝜇𝜇 =
𝐸𝐸

2(1 + 𝜈𝜈) 

where 𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta and 𝜆𝜆 and 𝜇𝜇 are Lame constants. 

Note that the Saint Venant-Kirchhoff model is an extension of Hooke’s law into the nonlinear 

deformation regime. 

The material property tensor can be derived by comparing Equations (C-4) and (C-2): 

𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 = 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑟𝑟𝑟𝑟 + 𝜇𝜇�𝛿𝛿𝑖𝑖𝑟𝑟𝛿𝛿𝑖𝑖𝑟𝑟 + 𝛿𝛿𝑖𝑖𝑟𝑟𝛿𝛿𝑖𝑖𝑟𝑟� (𝐶𝐶 − 5) 

Then, the material property matrix can be derived: 

𝑪𝑪 = 𝜆𝜆

⎣
⎢
⎢
⎢
⎢
⎡
(1 − 𝜈𝜈) 𝜈𝜈 𝜈𝜈 0 0 0

𝜈𝜈 (1 − 𝜈𝜈) 𝜈𝜈 0 0 0
𝜈𝜈 𝜈𝜈 (1 − 𝜈𝜈) 0 0 0
0 0 0 2𝜇𝜇 0 0
0 0 0 0 2𝜇𝜇 0
0 0 0 0 0 2𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎤

(𝐶𝐶 − 6) 

Considering 𝝐𝝐� = [𝜖𝜖11 𝜖𝜖22 𝜖𝜖33 𝜖𝜖23 𝜖𝜖13 𝜖𝜖12]𝑇𝑇 and 𝑺𝑺� =

[𝑆𝑆11 𝑆𝑆22 𝑆𝑆33 𝑆𝑆23 𝑆𝑆13 𝑆𝑆12]𝑇𝑇 are the vectors forms of the PK2 stress and GL strains, 

respectively. Clearly, the material property matrix for Saint Venant-Kirchhoff materials are 

constant during the entire analysis. 

For linear elastic orthotropic materials, a similar relation may be derived from the Saint 

Venant-Kirchhoff model for orthotropic materials. The compliance matrix in each direction is:  
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⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖11
𝜖𝜖22
𝜖𝜖33
𝜖𝜖23
𝜖𝜖13
𝜖𝜖12⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝐸11

−
𝜈𝜈21
𝐸𝐸22

−
𝜈𝜈31
𝐸𝐸33

0 0 0

−
𝜈𝜈12
𝐸𝐸11

1
𝐸𝐸22

−
𝜈𝜈32
𝐸𝐸33

0 0 0

−
𝜈𝜈13
𝐸𝐸11

−
𝜈𝜈23
𝐸𝐸22

1
𝐸𝐸33

0 0 0

0 0 0
1

2𝐺𝐺23
0 0

0 0 0 0
1

2𝐺𝐺31
0

0 0 0 0 0
1

2𝐺𝐺12⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑆𝑆11
𝑆𝑆22
𝑆𝑆33
𝑆𝑆23
𝑆𝑆13
𝑆𝑆12⎦

⎥
⎥
⎥
⎥
⎤

(𝐶𝐶 − 7) 

where 𝜈𝜈21
𝐸𝐸22

= 𝜈𝜈12
𝐸𝐸11

, 𝜈𝜈31
𝐸𝐸33

= 𝜈𝜈13
𝐸𝐸11

, and 𝜈𝜈32
𝐸𝐸33

= 𝜈𝜈23
𝐸𝐸22

 to satisfy symmetry and positive definiteness, which 

ensure positive strain energy. 

Note that orthotropic materials have three orthogonal symmetry planes and that the strains in 

each direction are found more readily than the stresses in each direction. 

To obtain the stiffness matrix (i.e. material property matrix), the inverse of the compliance 

matrix must be calculated: 
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𝑪𝑪 (𝐶𝐶 − 8) 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐸𝐸11(𝐸𝐸22 − 𝜈𝜈232 𝐸𝐸33)

𝐸𝐸22Δ
𝐸𝐸22𝜈𝜈12 + 𝜈𝜈13𝜈𝜈23𝐸𝐸33

Δ
𝐸𝐸33(𝜈𝜈13 + 𝜈𝜈23𝜈𝜈12)

Δ
0 0 0

𝐸𝐸22𝜈𝜈12 + 𝜈𝜈13𝜈𝜈23𝐸𝐸33
Δ

𝐸𝐸22(𝐸𝐸11 − 𝜈𝜈232 𝐸𝐸33)
𝐸𝐸11Δ

𝐸𝐸33(𝐸𝐸11𝜈𝜈23 + 𝜈𝜈13𝜈𝜈12𝐸𝐸22)
𝐸𝐸11Δ

0 0 0

𝐸𝐸33(𝜈𝜈13 + 𝜈𝜈23𝜈𝜈12)
Δ

𝐸𝐸33(𝐸𝐸11𝜈𝜈23 + 𝜈𝜈13𝜈𝜈12𝐸𝐸22)
𝐸𝐸11Δ

𝐸𝐸33(𝐸𝐸11 − 𝜈𝜈122 𝐸𝐸22)
𝐸𝐸11Δ

0 0 0

0 0 0 2𝐺𝐺23 0 0
0 0 0 0 2𝐺𝐺31 0
0 0 0 0 0 2𝐺𝐺12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where here Δ = 1 − 𝜈𝜈122 𝐸𝐸22
𝐸𝐸11

− 𝜈𝜈232 𝐸𝐸33
𝐸𝐸22

− 𝜈𝜈132 𝐸𝐸33
𝐸𝐸11

− 2𝜈𝜈12𝜈𝜈23𝜈𝜈13𝐸𝐸33
𝐸𝐸11

. 

Note that the material property matrix is again constant throughout the FE analysis. 

For the following derivation regarding Mooney-Rivlin material, the right Cauchy-Green 

tensor, denoted by 𝐷𝐷𝑖𝑖𝑖𝑖, is more useful than the GL strain tensor. The relation between the right 

Cauchy-Green tensor and the GL strain tensor is: 

𝐷𝐷𝑖𝑖𝑖𝑖 = 2𝜖𝜖𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖 (𝐶𝐶 − 9) 

The ensuing derivation follows work done by Sussman & Bathe [141]. For Mooney-Rivlin 

hyperelastic material including compressibility, the strain energy density function is: 

𝑊𝑊 = 𝐶𝐶01(𝐼𝐼2� − 3) + 𝐶𝐶10(𝐼𝐼1� − 3) +
𝜅𝜅
2

(𝐽𝐽 − 1)2 (𝐶𝐶 − 10) 

where 𝐽𝐽 = 𝐼𝐼3
1
2 = det(𝐃𝐃)

1
2 is the determinant of the deformation gradient tensor (𝐼𝐼3 is the third 

invariant of the right Cauchy-Green tensor), 𝐼𝐼2� = 𝐽𝐽−
2
3𝐼𝐼2 is the reduced second invariant (𝐼𝐼2 is 

the second invariant) of the right Cauchy-Green tensor, 𝐼𝐼1� = 𝐽𝐽−
4
3𝐼𝐼1 is the reduced first invariant 
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(𝐼𝐼1 is the first invariant) of the right Cauchy-Green tensor, 𝐶𝐶01 and 𝐶𝐶10 are Mooney-Rivlin 

constants, and 𝜅𝜅 is the bulk modulus. The formulae for the Cauchy-Green tensor invariants 

are: 

𝐼𝐼1 = 𝐷𝐷11 + 𝐷𝐷22 + 𝐷𝐷33 (𝐶𝐶 − 11) 

𝐼𝐼2 = 𝐷𝐷11𝐷𝐷22 + 𝐷𝐷11𝐷𝐷33 + 𝐷𝐷22𝐷𝐷33 − 𝐷𝐷122 − 𝐷𝐷132 − 𝐷𝐷232 (𝐶𝐶 − 12) 

The relationship between the right Cauchy-Green tensor and the PK2 stress is updated by: 

𝑆𝑆𝑖𝑖𝑖𝑖 =
𝜕𝜕𝑊𝑊
𝜕𝜕𝐷𝐷𝑖𝑖𝑖𝑖

+
𝜕𝜕𝑊𝑊
𝜕𝜕𝐷𝐷𝑖𝑖𝑖𝑖

(𝐶𝐶 − 13) 

Inserting Equation (C-10) into Equation (C-13), the PK2 stress is calculated: 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐶𝐶10(𝐼𝐼1�)𝑖𝑖𝑖𝑖∗ + 𝐶𝐶01(𝐼𝐼2�)𝑖𝑖𝑖𝑖∗ + 𝜅𝜅(𝐽𝐽 − 1)(𝐽𝐽)𝑖𝑖𝑖𝑖∗ (𝐶𝐶 − 14) 

where ( )𝑖𝑖𝑖𝑖∗ = 𝜕𝜕( )
𝜕𝜕𝐷𝐷𝑖𝑖𝑗𝑗

+ 𝜕𝜕( )
𝜕𝜕𝐷𝐷𝑗𝑗𝑖𝑖

. Hence, the unknown relations in Equation (C-14) are: 

(𝐼𝐼1�)𝑖𝑖𝑖𝑖∗ = 𝐼𝐼3
−13(𝐼𝐼1)𝑖𝑖𝑖𝑖∗ −

1
3
𝐼𝐼1𝐼𝐼3

−43(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ (𝐶𝐶 − 15) 

(𝐼𝐼2�)𝑖𝑖𝑖𝑖∗ = 𝐼𝐼3
−23(𝐼𝐼2)𝑖𝑖𝑖𝑖∗ −

2
3
𝐼𝐼2𝐼𝐼3

−53(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ (𝐶𝐶 − 16) 

(𝐽𝐽)𝑖𝑖𝑖𝑖∗ =
1
2
𝐼𝐼3
−12(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ (𝐶𝐶 − 17) 

where the invariant derivatives are given by Equations (C-18) to (C-20). 

(𝐼𝐼1)𝑖𝑖𝑖𝑖∗ = 2𝛿𝛿𝑖𝑖𝑖𝑖 (𝐶𝐶 − 18) 
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(𝐼𝐼2)𝑖𝑖𝑖𝑖∗ = 2𝐼𝐼1𝛿𝛿𝑖𝑖𝑖𝑖 − 2𝐷𝐷𝑖𝑖𝑖𝑖 (𝐶𝐶 − 19) 

(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ =
1
2
�𝜀𝜀�̂�𝑖𝑖𝑖𝑐𝑐𝜀𝜀�̂�𝑖𝑑𝑑𝑗𝑗 + 𝜀𝜀�̂�𝑖𝑖𝑖𝑐𝑐𝜀𝜀�̂�𝑖𝑑𝑑𝑗𝑗�𝐷𝐷𝑖𝑖𝑑𝑑𝐷𝐷𝑐𝑐𝑗𝑗 (𝐶𝐶 − 20) 

where 𝜀𝜀�̂�𝑖𝑖𝑖𝑖𝑖 is the permutation tensor. 

By substituting Equations (C-15) through (C-20) into Equation (C-14), the PK2 stress at each 

iteration for Mooney-Rivlin materials is calculated. Note that PK2 stress is directly calculated 

in this manner rather than multiplying by the tangential material property matrix. 

For the tangential material property matrix of Mooney-Rivlin materials at each iteration, 

Equation (C-2) implies that the second derivative of the strain energy density must be 

calculated: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 =
𝜕𝜕𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝐷𝐷𝑟𝑟𝑟𝑟

+
𝜕𝜕𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝐷𝐷𝑟𝑟𝑟𝑟

(𝐶𝐶 − 21) 

Inserting Equation (C-14) into Equation (C-21), the tangential material property matrix is 

derived: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 = 𝐶𝐶10(𝐼𝐼1�)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ + 𝐶𝐶01(𝐼𝐼2�)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ + 𝜅𝜅�(𝐽𝐽)𝑖𝑖𝑖𝑖∗ (𝐽𝐽)𝑟𝑟𝑟𝑟∗ + (𝐽𝐽 − 1)(𝐽𝐽)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ � (𝐶𝐶 − 22) 

where ( )𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ =
𝜕𝜕( )𝑖𝑖𝑗𝑗

∗

𝜕𝜕𝐷𝐷𝑟𝑟𝑟𝑟
+

𝜕𝜕( )𝑖𝑖𝑗𝑗
∗

𝜕𝜕𝐷𝐷𝑟𝑟𝑟𝑟
.  

Hence, the unknown relations in Equation (C-22) are: 

(𝐼𝐼1�)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ = 𝐼𝐼3
−13(𝐼𝐼1)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ −

1
3
𝐼𝐼3
−43�2𝛿𝛿𝑖𝑖𝑖𝑖(𝐼𝐼3)𝑟𝑟𝑟𝑟∗ + 2𝛿𝛿𝑟𝑟𝑟𝑟(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ + 𝐼𝐼1(𝐼𝐼3)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ � 
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+
4
9
𝐼𝐼1𝐼𝐼3

−73(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ (𝐼𝐼3)𝑟𝑟𝑟𝑟∗ (𝐶𝐶 − 23) 

(𝐼𝐼2�)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ = 𝐼𝐼3
−23(𝐼𝐼2)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ −

2
3
𝐼𝐼3
−53 ��2𝛿𝛿𝑖𝑖𝑖𝑖𝐼𝐼1 − 2𝐷𝐷𝑖𝑖𝑖𝑖�(𝐼𝐼3)𝑟𝑟𝑟𝑟∗ + (2𝛿𝛿𝑟𝑟𝑟𝑟𝐼𝐼1 − 2𝐶𝐶𝑟𝑟𝑟𝑟)(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ + 𝐼𝐼2(𝐼𝐼3)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ � 

+
10
9
𝐼𝐼2𝐼𝐼3

−83(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ (𝐼𝐼3)𝑟𝑟𝑟𝑟∗ (𝐶𝐶 − 24) 

(𝐽𝐽)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ = −
1
4
𝐼𝐼3
−32(𝐼𝐼3)𝑖𝑖𝑖𝑖∗ (𝐼𝐼3)𝑟𝑟𝑟𝑟∗ +

1
2
𝐼𝐼3
−12(𝐼𝐼3)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ (𝐶𝐶 − 25) 

where the unknown invariant derivatives are given by: 

(𝐼𝐼1)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ = 0 (𝐶𝐶 − 26) 

(𝐼𝐼2)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ = 4𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑟𝑟𝑟𝑟 − 2�𝛿𝛿𝑖𝑖𝑟𝑟𝛿𝛿𝑖𝑖𝑟𝑟 + 𝛿𝛿𝑖𝑖𝑟𝑟𝛿𝛿𝑖𝑖𝑟𝑟� (𝐶𝐶 − 27) 

(𝐼𝐼3)𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟∗∗ = �𝜀𝜀�̂�𝑖𝑟𝑟𝑐𝑐𝜀𝜀�̂�𝑖𝑟𝑟𝑗𝑗 + 𝜀𝜀�̂�𝑖𝑟𝑟𝑐𝑐𝜀𝜀�̂�𝑖𝑟𝑟𝑗𝑗 + 𝜀𝜀�̂�𝑖𝑟𝑟𝑐𝑐𝜀𝜀�̂�𝑖𝑟𝑟𝑗𝑗 + 𝜀𝜀�̂�𝑖𝑟𝑟𝑐𝑐𝜀𝜀�̂�𝑖𝑟𝑟𝑗𝑗�𝐷𝐷𝑐𝑐𝑗𝑗 (𝐶𝐶 − 28) 

By substituting Equations (C-23) to (C-28) into Equation (C-22), the tangential material 

property matrix for Mooney-Rivlin material is calculated at each iteration, as required by 

Equation (1-21). When generating the matrix from Equation (C-22), the symmetry of the 

matrix must be noted, meaning that for 𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟: 𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖; 𝑟𝑟𝑠𝑠 = 𝑠𝑠𝑟𝑟; and 𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑠𝑠. As such, the 

resulting matrix has only 21 entries: 

𝑪𝑪 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶1111 𝐶𝐶1122 𝐶𝐶1133 𝐶𝐶1123 𝐶𝐶1113 𝐶𝐶1112
𝐶𝐶1122 𝐶𝐶2222 𝐶𝐶2233 𝐶𝐶2223 𝐶𝐶2213 𝐶𝐶2212
𝐶𝐶1133 𝐶𝐶2233 𝐶𝐶3333 𝐶𝐶3323 𝐶𝐶3313 𝐶𝐶3312
𝐶𝐶1123 𝐶𝐶2223 𝐶𝐶3323 𝐶𝐶2323 𝐶𝐶2313 𝐶𝐶2312
𝐶𝐶1113 𝐶𝐶2213 𝐶𝐶3313 𝐶𝐶2313 𝐶𝐶1313 𝐶𝐶1312
𝐶𝐶1112 𝐶𝐶2212 𝐶𝐶3312 𝐶𝐶2312 𝐶𝐶1312 𝐶𝐶1212⎦

⎥
⎥
⎥
⎥
⎤

(𝐶𝐶 − 29)  
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Appendix D   Transformation Matrix 

For the rule of mixtures in a composite material, such as the annulus fibrosus, the fibers must 

be rotated into the coordinate system of the bulk material. Therefore, the fibers must be 

multiplied by a transformation matrix before adding their stiffness and stress contributions to 

the bulk material to form the material property matrix representing the composite material. 

When given two coordinate systems (one for the bulk material and one for the fibers) defined 

by basis vectors, a rotation matrix may be specified to map vectors from one coordinate system 

(i.e. the fiber) to the other (i.e. the bulk material): 

𝑒𝑒𝑖𝑖 = 𝑹𝑹 𝑒𝑒𝑗𝑗 (𝐷𝐷 − 1) 

where 𝑒𝑒𝑖𝑖 is the set of basis vectors for the bulk material coordinate system, 𝑒𝑒𝑗𝑗 is for the fibre 

coordinate system, and R is the rotation matrix. 

The fiber direction is at given angles, 𝜃𝜃 and 𝜙𝜙, within the bulk material. Hence, R may be 

determined by: 

𝑹𝑹 = �
𝑏𝑏1 = cos(𝜃𝜃) cos(𝜙𝜙) 𝑏𝑏2 = sin(𝜃𝜃) sin(𝜙𝜙) 𝑏𝑏3 = sin(𝜃𝜃)

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3
𝑖𝑖1 𝑖𝑖2 𝑖𝑖3

� (𝐷𝐷 − 2) 

Note that the fiber exhibits uniaxial stiffness; and therefore, it’s material property matrix is 

given by: 

𝑪𝑪𝑭𝑭 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐸𝐸 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

(𝐷𝐷 − 3) 
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The rotation matrix presented in Equation (D-2) must then converted into a second-rank 

transformation matrix, T, to transform the second-order tensor of stress:  

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖 

𝑻𝑻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑏𝑏11 𝑏𝑏22 𝑏𝑏32 𝑏𝑏2𝑏𝑏3 𝑏𝑏1𝑏𝑏3 𝑏𝑏1𝑏𝑏1
𝑚𝑚1
2 𝑚𝑚2

2 𝑚𝑚3
2 𝑚𝑚2𝑚𝑚3 𝑚𝑚1𝑚𝑚3 𝑚𝑚1𝑚𝑚2

𝑖𝑖12 𝑖𝑖22 𝑖𝑖32 𝑖𝑖2𝑖𝑖3 𝑖𝑖1𝑖𝑖3 𝑖𝑖1𝑖𝑖2
2𝑚𝑚1𝑖𝑖1 2𝑚𝑚2𝑖𝑖2 2𝑚𝑚3𝑖𝑖3 𝑖𝑖2𝑚𝑚3 + 𝑖𝑖3𝑚𝑚2 𝑚𝑚1𝑖𝑖3 + 𝑚𝑚3𝑖𝑖1 𝑖𝑖1𝑚𝑚2 + 𝑖𝑖2𝑚𝑚1
2𝑏𝑏1𝑖𝑖1 2 𝑏𝑏2𝑖𝑖2 2𝑏𝑏3𝑖𝑖3 𝑏𝑏2𝑖𝑖3 + 𝑏𝑏3𝑖𝑖2 𝑏𝑏1𝑖𝑖3 + 𝑏𝑏3𝑖𝑖1 𝑏𝑏1𝑖𝑖2 + 𝑏𝑏2𝑖𝑖1
2𝑏𝑏1𝑚𝑚1 2𝑏𝑏2𝑚𝑚2 2𝑏𝑏3𝑚𝑚3 𝑏𝑏2𝑚𝑚3 + 𝑏𝑏3𝑚𝑚2 𝑏𝑏1𝑚𝑚3 + 𝑏𝑏3𝑚𝑚1 𝑏𝑏1𝑚𝑚2 + 𝑏𝑏2𝑚𝑚1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

(𝐷𝐷 − 4) 

Consider that stress is transformed in its vector form, in which the vector form (considering 

symmetry of the stress tensor) is given by Equation (A-35). 

Therefore, transformation matrix, T, as a second-rank tensor may be used to directly transform 

stress from the fiber coordinate system into the bulk material coordinate system. To transform 

the material property matrix of the fiber into the bulk material coordinate system, the second-

rank transformation matrix must be converted into a fourth-rank transformation matrix, as done 

in Equation (4-3). Therefore, the transformation matrix in Equations (4-3) and (4-4) becomes: 

𝑻𝑻𝑇𝑇𝑪𝑪𝑭𝑭 = 𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑏𝑏1

2 0 0 0 0 0
𝑏𝑏22 0 0 0 0 0
𝑏𝑏32 0 0 0 0 0
𝑏𝑏2𝑏𝑏3 0 0 0 0 0
𝑏𝑏1𝑏𝑏3 0 0 0 0 0
𝑏𝑏1𝑏𝑏2 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

⇒ 𝑻𝑻 =

⎣
⎢
⎢
⎢
⎢
⎡𝑏𝑏1
2 𝑏𝑏22 𝑏𝑏32 𝑏𝑏2𝑏𝑏3 𝑏𝑏1𝑏𝑏3 𝑏𝑏1𝑏𝑏2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

(𝐷𝐷 − 5)  
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Appendix E   CUDA Program Code 

The CUDA real-time program, RealTimeSim.cu, accepted five text files as inputs that 

represented the spine model mesh in addition to vector and matrix assembly indexing arrays 

in preparation for the model solving. These five text files were: NODE_LOC.txt; 

ELEMENT_IND_EDIT.txt,. To obtain these text files, certain files were output from ANSYS 

for processing in a CUDA preparation program (written in C++): a node location text file; an 

element indexing file that included element and material type identification numbers for each 

element. The CUDA preparation program, CUDAprep.cpp, reorganized the ANSYS files for 

usage within the CUDA real-time program, where ANSYS were input to the CUDA 

preparation program and the above mentioned text files were output (for input to the CUDA 

real-time program). Please see below the code for the CUDAprep.cpp program and the 

RealTimeSim.cu program. 

CUDAprep.cpp 

// CreateSharedMemIndex.cpp : Defines the entry point for the console application. 
// 
 
#include <fstream> 
#include <iostream> 
#include <sstream> 
#include <string> 
#include <vector> 
#include <algorithm> 
#include <set> 
#include <unordered_set> 
#include <stdio.h> 
 
#define BLOCK_SIZE 32 
 
using namespace std; 
using std::cin; 
using std::cout; 
using std::endl; 
 
int main(int argc) 
{ 
 
 float a1; 
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 int count = 0; 
 float a2, a3, a4; 
 const int global_dof = 3; 
 vector<float> node_loc; 
 
 string line; 
 ifstream infile("NODE_LOC_BEFORE.txt");  
 ifstream infile2("ELEMENT_IND_EDIT.txt"); 
 ifstream infile4("F_NODES.txt"); 
 ifstream infile7("BC_NODES.txt"); 
 ifstream infile5("AF_NODES.txt"); 
 if (infile.is_open()) { 
  while (getline(infile, line)) 
  { 
 
   infile >> a1 >> a2 >> a3 >> a4; 
   node_loc.push_back(a2); 
   node_loc.push_back(a3); 
   node_loc.push_back(a4); 
   //printf("Count %i Node %i: Location %f %f %f\n", count + 1, a1, node_loc[count * 3], 
node_loc[count * 3 + 1], node_loc[count * 3 + 2]); 
   count++; 
 
  } 
  infile.close(); 
 } 
 else cout << "Unable to open node file" << endl; 
 
 int node_loc_size = (int)node_loc.size(); 
 int node_count = (int)node_loc.size() / global_dof; 
 float* node_loc_array = new float[node_loc_size]; 
 for (int i = 0; i < node_loc_size; i++) { 
  node_loc_array[i] = node_loc[i]; 
 } 
 
 float b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14; 
 long count2 = 0; 
 vector<float> element_ind_vector; 
 vector<float> element_mat_vec; 
 vector<float> element_type_vec; 
 vector<float> element_real_vec; 
 vector<float> element_sec_vec; 
 vector<float> element_num_vec; 
 const int nodes_per_tet = 4; 
 const int nodes_per_shell = 3; 
 const int nodes_per_lig = 2; 
 const int nodes_per_fib = 2; 
 const int tet_element_dof = 12; 
 const int lig_element_dof = 6; 
 int max = 0; 
 int temp = 0; 
 int ind = 0; 
 int total_dof = 0; 
 
 //Initiate outfiles before the goto Error 
 ofstream outfile2("SHARED_GLOBAL_ASSEMBLY_IND.txt"); 
 ofstream outfile_err("ERROR_CHECK.txt"); 
 ofstream outfile_csr("OUTFILE_CSR.txt"); 
 ofstream outfile8("AF_IND_PRESSURE.txt");  // Adjust this when adding spine model back in 
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       //Initiate vectors before the goto Error 
 vector<int> shell_nodes; 
 vector<int> P_nodes_vec; 
 
 string line2; 
 
 if (infile2.is_open()) 
 { 
  while (getline(infile2, line2)) 
  { 
 
   infile2 >> b1 >> b2 >> b3 >> b4 >> b5 >> b6 >> b7 >> b8 >> b9 >> b10 >> b11 >> b12 >> 
b13 >> b14; 
   element_ind_vector.push_back(b1 - 1); 
   element_ind_vector.push_back(b2 - 1); 
   element_ind_vector.push_back(b3 - 1); 
   element_ind_vector.push_back(b5 - 1); 
   element_mat_vec.push_back(b9); 
   element_type_vec.push_back(b10); 
   element_real_vec.push_back(b11); 
   element_sec_vec.push_back(b12); 
   element_num_vec.push_back(b14); 
   count2++; 
 
  } 
  infile2.close(); 
 } 
 else cout << "Unable to open element file" << endl; 
 
 // Collect all force nodes 
 //****************Ensure to add the "rotation node" at the end of the F_NODES array before running this code 
 vector<int> f_nodes_vec; 
 count = 0; 
 
 string line4; 
 if (infile4.is_open()) { 
  while (getline(infile4, line4)) 
  { 
 
   infile4 >> a1 >> a2 >> a3 >> a4; 
   f_nodes_vec.push_back((int)a1 - 1); 
   //printf("Count %i Node %i: Location %f %f %f\n", count + 1, a1, node_loc[count * 3], 
node_loc[count * 3 + 1], node_loc[count * 3 + 2]); 
   count++; 
 
  } 
  infile4.close(); 
 } 
 else cout << "Unable to open f_node file" << endl; 
 
 int f_nodes_size = (int)f_nodes_vec.size(); // f_nodes_size-2 gives the element count.  was +1 
 int f_node_count = f_nodes_size; 
 int* f_nodes = new int[f_nodes_size]; 
 for (int i = 0; i < f_nodes_size; i++) { 
  f_nodes[i] = f_nodes_vec[i]; 
 } 
 
 vector<int> bc_nodes_vec; 
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 int BC_count = 0; 
 if (infile7.is_open()) { 
  while (getline(infile7, line4)) 
  { 
 
   infile7 >> a1 >> a2 >> a3 >> a4; 
   bc_nodes_vec.push_back((int)a1 - 1); 
   //printf("Count %i Node %i: Location %f %f %f\n", count + 1, a1, node_loc[count * 3], 
node_loc[count * 3 + 1], node_loc[count * 3 + 2]); 
   BC_count++; 
 
  } 
  infile7.close(); 
 } 
 else cout << "Unable to open f_node file" << endl; 
 
 ////Collect AF_NODES and INDEXING 
 vector<int> af_nodes_vec; 
 float af2; 
 int af_count = 0; 
 if (infile5.is_open()) { 
  while (getline(infile5, line4)) 
  { 
   infile5 >> b1 >> af2; 
   af_nodes_vec.push_back((int)b1 - 1); 
   af_nodes_vec.push_back((int)af2 - 1); 
   af_count++; 
  } 
  infile5.close(); 
 } 
 else cout << "Unable to open af_nodes file" << endl; 
 
 int buff_size = (int)element_mat_vec.size(); 
 int file_element_count = buff_size; 
 int* element_ind = new int[(int)element_ind_vector.size()]; 
 int* element_mat = new int[buff_size]; 
 int* element_type = new int[(int)element_type_vec.size()]; 
 int* element_real = new int[(int)element_real_vec.size()]; 
 int* element_sec = new int[(int)element_sec_vec.size()]; 
 int* element_num = new int[(int)element_num_vec.size()]; 
 int solid_element_count = 0; 
 int met_element_count = 0; 
 int shell_element_count = 0; 
 int lig_count = 0; 
 
 while (element_type_vec[solid_element_count] == 24.0f) { 
  element_ind[solid_element_count * nodes_per_tet] = (int)element_ind_vector[solid_element_count * 
nodes_per_tet]; 
  element_ind[solid_element_count * nodes_per_tet + 1] = (int)element_ind_vector[solid_element_count 
* nodes_per_tet + 1]; 
  element_ind[solid_element_count * nodes_per_tet + 2] = (int)element_ind_vector[solid_element_count 
* nodes_per_tet + 2]; 
  element_ind[solid_element_count * nodes_per_tet + 3] = (int)element_ind_vector[solid_element_count 
* nodes_per_tet + 3]; 
  element_mat[solid_element_count] = int(element_mat_vec[solid_element_count]); 
  element_type[solid_element_count] = (int)element_type_vec[solid_element_count]; 
  element_real[solid_element_count] = (int)element_real_vec[solid_element_count]; 
  element_sec[solid_element_count] = (int)element_sec_vec[solid_element_count]; 
  element_num[solid_element_count] = (int)element_num_vec[solid_element_count]; 
  solid_element_count++; 
 } 
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 cout << "solid_element_count = " << solid_element_count << endl; 
 
 while (element_type_vec[solid_element_count + met_element_count] == 27.0f) { 
  //while (file_element_count > (solid_element_count + met_element_count + shell_element_count + 
lig_count)){ 
  element_ind[(solid_element_count + met_element_count) * nodes_per_tet] = 
(int)element_ind_vector[(solid_element_count + met_element_count) * nodes_per_tet]; 
  element_ind[(solid_element_count + met_element_count) * nodes_per_tet + 1] = 
(int)element_ind_vector[(solid_element_count + met_element_count) * nodes_per_tet + 1]; 
  element_ind[(solid_element_count + met_element_count) * nodes_per_tet + 2] = 
(int)element_ind_vector[(solid_element_count + met_element_count) * nodes_per_tet + 2]; 
  element_ind[(solid_element_count + met_element_count) * nodes_per_tet + 3] = 
(int)element_ind_vector[(solid_element_count + met_element_count) * nodes_per_tet + 3]; 
  element_mat[(solid_element_count + met_element_count)] = 
int(element_mat_vec[(solid_element_count + met_element_count)]); 
  element_type[(solid_element_count + met_element_count)] = 
(int)element_type_vec[(solid_element_count + met_element_count)]; 
  element_real[(solid_element_count + met_element_count)] = 
(int)element_real_vec[(solid_element_count + met_element_count)]; 
  element_sec[(solid_element_count + met_element_count)] = 
(int)element_sec_vec[(solid_element_count + met_element_count)]; 
  element_num[(solid_element_count + met_element_count)] = 
(int)element_num_vec[(solid_element_count + met_element_count)]; 
  met_element_count++; 
 } 
 if (element_type_vec[(solid_element_count + met_element_count) + shell_element_count] == 24.0f) { 
  cout << "Error in element order: please re-order in Excel" << endl; 
  cin.get(); 
 } 
 
 cout << "met_element_count = " << met_element_count << endl; 
 
 //*****************************Adjust element_ind to *nodes_per_tet only (there will be empty unsused 
spaces within the array - but quicker access to elements)*********************************************** 
 //****************************Fill unused spaces with -
1***************************************************************************************************
******************* 
 while (element_type_vec[solid_element_count + met_element_count + shell_element_count] == 26.0f) { 
  element_ind[((solid_element_count + met_element_count + shell_element_count)*nodes_per_tet)] = 
(int)element_ind_vector[((solid_element_count + met_element_count) + shell_element_count)*nodes_per_tet]; 
  element_ind[((solid_element_count + met_element_count + shell_element_count)*nodes_per_tet) + 1] 
= (int)element_ind_vector[(((solid_element_count + met_element_count) + shell_element_count)*nodes_per_tet) + 1]; 
  element_ind[((solid_element_count + met_element_count + shell_element_count)*nodes_per_tet) + 2] 
= (int)element_ind_vector[(((solid_element_count + met_element_count) + shell_element_count)*nodes_per_tet) + 2]; 
  element_ind[((solid_element_count + met_element_count + shell_element_count)*nodes_per_tet) + 3] 
= -1; 
  element_mat[(solid_element_count + met_element_count) + shell_element_count] = 
(int)element_mat_vec[(solid_element_count + met_element_count) + shell_element_count]; 
  element_type[(solid_element_count + met_element_count) + shell_element_count] = 
(int)element_type_vec[(solid_element_count + met_element_count) + shell_element_count]; 
  element_real[(solid_element_count + met_element_count) + shell_element_count] = 
(int)element_real_vec[(solid_element_count + met_element_count) + shell_element_count]; 
  element_sec[(solid_element_count + met_element_count) + shell_element_count] = 
(int)element_sec_vec[(solid_element_count + met_element_count) + shell_element_count]; 
  element_num[(solid_element_count + met_element_count) + shell_element_count] = 
(int)element_num_vec[(solid_element_count + met_element_count) + shell_element_count]; 
  shell_element_count++; 
 } 
 if ((element_type_vec[(solid_element_count + met_element_count) + shell_element_count] == 24.0f) || 
(element_type_vec[solid_element_count + met_element_count + shell_element_count] == 27.0f)) { 
  cout << "Error in element order: please re-order in Excel" << endl; 
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  cin.get(); 
 } 
 
 cout << "shell_element_count = " << shell_element_count << endl; 
 
 while (file_element_count > ((solid_element_count + met_element_count) + shell_element_count + lig_count)) { 
  if (element_type_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count] 
== 25.0f) { 
   element_ind[((solid_element_count + met_element_count + shell_element_count + 
lig_count)*nodes_per_tet)] 
    = (int)element_ind_vector[((solid_element_count + met_element_count) + 
shell_element_count + lig_count)*nodes_per_tet]; 
   element_ind[((solid_element_count + met_element_count + shell_element_count + 
lig_count)*nodes_per_tet) + 1] 
    = (int)element_ind_vector[(((solid_element_count + met_element_count) + 
shell_element_count + lig_count)*nodes_per_tet) + 1]; 
   element_ind[((solid_element_count + met_element_count + shell_element_count + 
lig_count)*nodes_per_tet) + 2] = -1; 
   element_ind[((solid_element_count + met_element_count + shell_element_count + 
lig_count)*nodes_per_tet) + 3] = -1; 
   element_mat[(solid_element_count + met_element_count) + shell_element_count + lig_count] 
= (int)element_mat_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count]; 
   element_type[(solid_element_count + met_element_count) + shell_element_count + 
lig_count] = (int)element_type_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count]; 
   element_real[(solid_element_count + met_element_count) + shell_element_count + lig_count] 
= (int)element_real_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count]; 
   element_sec[(solid_element_count + met_element_count) + shell_element_count + lig_count] 
= (int)element_sec_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count]; 
   element_num[(solid_element_count + met_element_count) + shell_element_count + 
lig_count] = (int)element_num_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count]; 
  } 
  else if ((element_type_vec[(solid_element_count + met_element_count) + shell_element_count + 
lig_count] == 24.0f) || (element_type_vec[(solid_element_count + met_element_count) + shell_element_count + lig_count] 
== 26.0f)) { 
   cout << "Error in element order: please re-order in Excel" << endl; 
   cin.get(); 
   break; 
  } 
  lig_count++; 
 } 
 
 cout << "lig_count = " << lig_count << endl; 
 
 // total count 
 int total_element_count = (solid_element_count + met_element_count) + shell_element_count + lig_count; 
 printf("total_element_count = %i | count2 = %i | file_element_size = %i\n", total_element_count, count2, 
file_element_count); 
 
 float x12, x13, x14, x23, x24, x34; 
 float y12, y13, y14, y23, y24, y34; 
 float z12, z13, z14, z23, z24, z34; 
 int temp_node; 
 float detD = 0; 
 float element_nloc[nodes_per_tet*global_dof]; 
 float* volume = new float[solid_element_count + met_element_count]; 
 
 for (int i = 0; i < (solid_element_count + met_element_count); i++) { 
  for (int a = 0; a < nodes_per_tet; a++) { 
   for (int j = 0; j < global_dof; j++) { 
    element_nloc[a*global_dof + j] = node_loc_array[element_ind[(i*nodes_per_tet) + 
a] * global_dof + j]; 
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   } 
  } 
  x12 = element_nloc[0 * global_dof] - element_nloc[1 * global_dof]; 
  x13 = element_nloc[0 * global_dof] - element_nloc[2 * global_dof]; 
  x14 = element_nloc[0 * global_dof] - element_nloc[3 * global_dof]; 
  x23 = element_nloc[1 * global_dof] - element_nloc[2 * global_dof]; 
  x24 = element_nloc[1 * global_dof] - element_nloc[3 * global_dof]; 
  x34 = element_nloc[2 * global_dof] - element_nloc[3 * global_dof]; 
  y12 = element_nloc[0 * global_dof + 1] - element_nloc[1 * global_dof + 1]; 
  y13 = element_nloc[0 * global_dof + 1] - element_nloc[2 * global_dof + 1]; 
  y14 = element_nloc[0 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
  y23 = element_nloc[1 * global_dof + 1] - element_nloc[2 * global_dof + 1]; 
  y24 = element_nloc[1 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
  y34 = element_nloc[2 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
  z12 = element_nloc[0 * global_dof + 2] - element_nloc[1 * global_dof + 2]; 
  z13 = element_nloc[0 * global_dof + 2] - element_nloc[2 * global_dof + 2]; 
  z14 = element_nloc[0 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
  z23 = element_nloc[1 * global_dof + 2] - element_nloc[2 * global_dof + 2]; 
  z24 = element_nloc[1 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
  z34 = element_nloc[2 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
  detD = -(x12*y13*z14) - (x13*y14*z12) - (x14*y12*z13) + (x14*y13*z12) + (x13*y12*z14) + 
(x12*y14*z13); 
  volume[i] = detD / 6.0f; 
  if (volume[i] <= 0.0f) { 
   temp_node = element_ind[(i*nodes_per_tet)]; 
   element_ind[(i*nodes_per_tet)] = element_ind[(i*nodes_per_tet) + 1]; 
   element_ind[(i*nodes_per_tet) + 1] = temp_node; 
   for (int a = 0; a < nodes_per_tet; a++) { 
    for (int j = 0; j < global_dof; j++) { 
     element_nloc[a*global_dof + j] = 
node_loc_array[element_ind[(i*nodes_per_tet) + a] * global_dof + j]; 
    } 
   } 
   x12 = element_nloc[0 * global_dof] - element_nloc[1 * global_dof]; 
   x13 = element_nloc[0 * global_dof] - element_nloc[2 * global_dof]; 
   x14 = element_nloc[0 * global_dof] - element_nloc[3 * global_dof]; 
   x23 = element_nloc[1 * global_dof] - element_nloc[2 * global_dof]; 
   x24 = element_nloc[1 * global_dof] - element_nloc[3 * global_dof]; 
   x34 = element_nloc[2 * global_dof] - element_nloc[3 * global_dof]; 
   y12 = element_nloc[0 * global_dof + 1] - element_nloc[1 * global_dof + 1]; 
   y13 = element_nloc[0 * global_dof + 1] - element_nloc[2 * global_dof + 1]; 
   y14 = element_nloc[0 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
   y23 = element_nloc[1 * global_dof + 1] - element_nloc[2 * global_dof + 1]; 
   y24 = element_nloc[1 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
   y34 = element_nloc[2 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
   z12 = element_nloc[0 * global_dof + 2] - element_nloc[1 * global_dof + 2]; 
   z13 = element_nloc[0 * global_dof + 2] - element_nloc[2 * global_dof + 2]; 
   z14 = element_nloc[0 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
   z23 = element_nloc[1 * global_dof + 2] - element_nloc[2 * global_dof + 2]; 
   z24 = element_nloc[1 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
   z34 = element_nloc[2 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
   detD = -(x12*y13*z14) - (x13*y14*z12) - (x14*y12*z13) + (x14*y13*z12) + (x13*y12*z14) 
+ (x12*y14*z13); 
   volume[i] = detD / 6.0f; 
  } 
  if (volume[i] <= 0.0f) { 
   cout << "Still Bad volume!!!! " << i << ": " << volume[i] << endl; 
   printf("Element nodes: %i %i %i %i\n", element_ind[i*nodes_per_tet], 
element_ind[(i*nodes_per_tet) + 1], element_ind[(i*nodes_per_tet) + 2], element_ind[(i*nodes_per_tet) + 3]); 
   printf("Node location 1: %6.2f %6.2f %6.2f\n", element_nloc[0], element_nloc[1], 
element_nloc[2]); 
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   printf("Node location 2: %6.2f %6.2f %6.2f\n", element_nloc[1 * global_dof], element_nloc[1 
* global_dof + 1], element_nloc[1 * global_dof + 2]); 
   printf("Node location 3: %6.2f %6.2f %6.2f\n", element_nloc[2 * global_dof], element_nloc[2 
* global_dof + 1], element_nloc[2 * global_dof + 2]); 
   printf("Node location 4: %6.2f %6.2f %6.2f\n", element_nloc[3 * global_dof], element_nloc[3 
* global_dof + 1], element_nloc[3 * global_dof + 2]); 
   printf("Node location 1 before: %6.2f %6.2f %6.2f\n", 
node_loc_array[element_ind[(i*nodes_per_tet) + 0] * global_dof + 0], node_loc_array[element_ind[(i*nodes_per_tet) + 0] 
* global_dof + 1], 
    node_loc_array[element_ind[(i*nodes_per_tet) + 0] * global_dof + 2]); 
   cin.get(); 
  } 
 } 
 // Eliminate shell elements but modify the tets attached to shell elements 
 bool shell_flag1 = false; 
 bool shell_flag2 = false; 
 bool shell_flag3 = false; 
 for (int i = 0; i < solid_element_count; i++) { 
  shell_flag1 = false; 
  shell_flag2 = false; 
  shell_flag3 = false; 
  if (element_mat[i] == 3) { 
   for (int j = (solid_element_count + met_element_count); j < (shell_element_count + 
solid_element_count + met_element_count); j++) { 
    for (int k = 0; k < nodes_per_tet; k++) { 
     for (int l = 0; l < nodes_per_shell; l++) { 
      if ((element_ind[i*nodes_per_tet + k] == 
element_ind[j*nodes_per_tet + l]) && (shell_flag1 == false)) { 
       shell_flag1 = true; 
       break; 
      } 
      else if ((shell_flag1 == true) && (shell_flag2 == false) && 
(element_ind[i*nodes_per_tet + k] == element_ind[j*nodes_per_tet + l])) { 
       shell_flag2 = true; 
       break; 
      } 
      else if ((shell_flag1 == true) && (shell_flag2 == true) && 
(element_ind[i*nodes_per_tet + k] == element_ind[j*nodes_per_tet + l])) { 
       shell_flag3 = true; 
       break; 
      } 
     } 
     if ((shell_flag1 == true) && (shell_flag2 == true) && (shell_flag3 == 
true)) break; 
    } 
    if ((shell_flag1 == true) && (shell_flag2 == true) && (shell_flag3 == true)) { 
     element_mat[i] = 26; 
     break; 
    } 
   } 
  } 
 } 
 // Adjust BC_nodes 
 int* bc_nodes = new int[BC_count]; 
 for (int i = 0; i < BC_count; i++) { 
  bc_nodes[i] = bc_nodes_vec[i]; 
 } 
 // Re-organize element order for efficient adding of stiffness dof - avoid atomic add by considering BLOCK_SIZE 
 int node_ind = 0; 
 bool block_flag = false; 
 bool node_flag = false; 
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 bool node_flag2 = false; 
 int swap_buff = 0; 
 int node_ind2 = 0; 
 bool first_run = false; 
 int itr_count = 0; 
 int block_ind = 0; 
 int allowed_count = 0; // number of allowed node conflicts 
 int conflict_count1 = 0; 
 int conflict_count2 = 0; 
 int GRID_SIZE1 = (total_element_count / BLOCK_SIZE) + 1; 
 while (!block_flag) { 
  for (int i = 0; i < GRID_SIZE1; i++){ 
   block_ind = i; 
   for (int j = 1; j < BLOCK_SIZE; j++){ 
    node_flag = true; 
    node_ind = i*BLOCK_SIZE + j; 
    if (node_ind >= total_element_count) break; 
    first_run = true; 
    allowed_count = 0; 
    conflict_count1 = 0; 
    conflict_count2 = 0; 
    block_flag = true; 
    while (node_flag && block_flag) { 
     node_flag2 = true; 
     while (node_flag2 && block_flag){ 
      node_flag2 = false; 
      for (int k = 0; k < BLOCK_SIZE; k++){ 
       if (k != j){ 
        node_ind2 = i*BLOCK_SIZE + k; 
        if (node_ind2 >= total_element_count) 
break; 
        for (int l = 0; l < nodes_per_tet; l++){ 
         for (int m = 0; m < nodes_per_tet; 
m++){ 
          if 
(element_ind[node_ind*nodes_per_tet + l] == element_ind[node_ind2*nodes_per_tet + m]){ 
          
 conflict_count1++; 
           if 
(conflict_count1 > allowed_count){ 
           
 node_flag2 = true; 
           
 block_ind++; 
           
 node_ind = block_ind*BLOCK_SIZE; 
           
 conflict_count1 = 0; 
            if 
(node_ind >= total_element_count) { 
            
 node_ind += BLOCK_SIZE; 
            
 node_ind %= GRID_SIZE1*BLOCK_SIZE; 
            
 block_ind = 0; 
            } 
            if 
(block_ind == i) block_flag = false; 
           
 break; 
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           } 
          } 
         } 
         if (node_flag2 == true) break; 
        } 
        if (node_flag2 == true) break; 
       } 
      } 
     } 
     node_flag = false; 
     for (int k = 0; k < BLOCK_SIZE; k++){ 
      if (k != j){ 
       node_ind2 = block_ind*BLOCK_SIZE + k; 
       if (node_ind2 >= total_element_count) break; 
       for (int l = 0; l < nodes_per_tet; l++){ 
        for (int m = 0; m < nodes_per_tet; m++){ 
         if 
(element_ind[node_ind2*nodes_per_tet + l] == element_ind[(i*BLOCK_SIZE + j)*nodes_per_tet + m]){ 
          conflict_count2++; 
          if (conflict_count2 > 
allowed_count){ 
           node_flag = 
true; 
           block_ind++; 
           node_ind = 
block_ind*BLOCK_SIZE; 
          
 conflict_count2 = 0; 
           if (node_ind 
>= total_element_count) { 
           
 node_ind += BLOCK_SIZE; 
           
 node_ind %= GRID_SIZE1*BLOCK_SIZE; 
           
 block_ind = 0; 
           } 
           if (block_ind 
== i) block_flag = false; 
           break; 
          } 
         } 
        } 
        if (node_flag == true) break; 
       } 
       if (node_flag == true) break; 
      } 
     } 
     if ((node_flag || node_flag2) && (!block_flag)){ 
      allowed_count++; 
      block_flag = true; 
     } 
    } 
    for (int k = 0; k < nodes_per_tet; k++) { 
     swap_buff = element_ind[node_ind*nodes_per_tet + k]; 
     element_ind[node_ind*nodes_per_tet + k] = 
element_ind[(i*BLOCK_SIZE + j)*nodes_per_tet + k]; 
     element_ind[(i*BLOCK_SIZE + j)*nodes_per_tet + k] = swap_buff; 
    } 
    swap_buff = element_mat[node_ind]; 
    element_mat[node_ind] = element_mat[(i*BLOCK_SIZE + j)]; 
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    element_mat[(i*BLOCK_SIZE + j)] = swap_buff; 
    swap_buff = element_type[node_ind]; 
    element_type[node_ind] = element_type[(i*BLOCK_SIZE + j)]; 
    element_type[(i*BLOCK_SIZE + j)] = swap_buff; 
    swap_buff = element_sec[node_ind]; 
    element_sec[node_ind] = element_sec[(i*BLOCK_SIZE + j)]; 
    element_sec[(i*BLOCK_SIZE + j)] = swap_buff; 
    swap_buff = element_real[node_ind]; 
    element_real[node_ind] = element_real[(i*BLOCK_SIZE + j)]; 
    element_real[(i*BLOCK_SIZE + j)] = swap_buff; 
   } 
  } 
  block_flag = true; 
  if (itr_count > 10) block_flag = true; 
  else { 
   for (int i = 0; i < GRID_SIZE1; i++){ 
    for (int j = 0; j < BLOCK_SIZE; j++){ 
     for (int k = j + 1; k < BLOCK_SIZE; k++){ 
      if ((i*BLOCK_SIZE + k) >= total_element_count) break; 
      for (int l = 0; l < nodes_per_tet; l++){ 
       for (int m = 0; m < nodes_per_tet; m++){ 
        if (element_ind[(i*BLOCK_SIZE + 
j)*nodes_per_tet + l] == element_ind[(i*BLOCK_SIZE + k)*nodes_per_tet + m]){ 
         block_flag = false; 
         goto err_skip; 
        } 
       } 
      } 
     } 
    } 
   } 
  } 
 err_skip: 
  itr_count++; 
  cout << "itr " << itr_count << endl; 
 } 
 
 // Double check 
 if (outfile_err.is_open()){ 
  outfile_err << "Error File" << endl; 
  for (int i = 0; i < GRID_SIZE1; i++){ 
   for (int j = 0; j < BLOCK_SIZE; j++){ 
    for (int k = j + 1; k < BLOCK_SIZE; k++){ 
     if ((i*BLOCK_SIZE + k) >= total_element_count) break; 
     for (int l = 0; l < nodes_per_tet; l++){ 
      for (int m = 0; m < nodes_per_tet; m++){ 
       if (element_ind[(i*BLOCK_SIZE + j)*nodes_per_tet 
+ l] == element_ind[(i*BLOCK_SIZE + k)*nodes_per_tet + m]){ 
        //printf("issue with block %i and element 
(within block) %i\n", i, j / nodes_per_tet); 
        outfile_err << "issue with block " << i << " 
and element (within block) " << j << endl; 
       } 
      } 
     } 
    } 
   } 
  } 
  outfile_err.close(); 
 } 
 else cout << "Error file not open" << endl; 
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 printf("Done the BLOCK check\n"); 
 
 //**********************************************For no reorganization of the 
element_ind_buff******************************************************************* 
 vector<int> element_ind_buff((buff_size - shell_element_count)*nodes_per_tet 
  + ((BLOCK_SIZE - (((buff_size - shell_element_count)) % BLOCK_SIZE)))*nodes_per_tet, -1); 
 vector<int> element_mat_buff(buff_size - shell_element_count + (BLOCK_SIZE - ((buff_size - 
shell_element_count) % BLOCK_SIZE)), -1); 
 vector<int> element_type_buff((buff_size - shell_element_count) + (BLOCK_SIZE - ((buff_size - 
shell_element_count) % BLOCK_SIZE)), -1); 
 vector<int> element_real_buff((buff_size - shell_element_count) + (BLOCK_SIZE - ((buff_size - 
shell_element_count) % BLOCK_SIZE)), -1); 
 vector<int> element_sec_buff((buff_size - shell_element_count) + (BLOCK_SIZE - ((buff_size - 
shell_element_count) % BLOCK_SIZE)), -1); 
 vector<int> tet_fiber_ind_buff(((buff_size - shell_element_count) + (BLOCK_SIZE - ((buff_size - 
shell_element_count) % BLOCK_SIZE))), -1); 
 node_ind = 0; 
 for (int i = 0; i < (buff_size); i++) { 
  if (element_type[i] != 26) { 
   for (int j = 0; j < nodes_per_tet; j++) { 
    element_ind_buff[node_ind*nodes_per_tet + j] = element_ind[i*nodes_per_tet + j]; 
   } 
   element_mat_buff[node_ind] = element_mat[i]; 
   //if (element_type[i] == 24) element_type_buff[node_ind] = 27; 
   //else element_type_buff[node_ind] = element_type[i]; 
   element_type_buff[node_ind] = element_type[i]; 
   element_real_buff[node_ind] = element_real[i]; 
   element_sec_buff[node_ind] = element_sec[i]; 
   //tet_fiber_ind_buff[i] = tet_fiber_ind_vec[i]; 
   node_ind++; 
  } 
 } 
 
 total_element_count = buff_size - shell_element_count + (BLOCK_SIZE - ((buff_size - shell_element_count) % 
BLOCK_SIZE)); 
 int actual_element_count = node_ind; 
 printf("total_element_count = %i, actual_element_count = %i\n", total_element_count, actual_element_count); 
 //******************************************************************************************
********************************************************************************* 
 
 total_dof = node_count*global_dof; 
 
 // Prep for CSR storage 
 vector< vector<int> > element_csr(node_count); 
 int* node_type = new int[node_count]; 
 for (int i = 0; i < node_count; i++) { 
  node_type[i] = -1; 
 } 
 int node_ind3 = 0; 
 bool csr_flag = false; 
 for (int i = 0; i < total_element_count; i++) { 
  for (int j = 0; j < nodes_per_tet; j++) { 
   node_ind = element_ind_buff[i*nodes_per_tet + j]; 
   for (int k = 0; k < nodes_per_tet; k++) { 
    node_ind3 = element_ind_buff[i*nodes_per_tet + k]; 
    if ((node_ind != -1) && (node_ind3 != -1)) 
element_csr[node_ind].push_back(node_ind3); 
   } 
  } 
 } 
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 vector< unordered_set<int> > s(node_count); 
 size_t size; 
 for (int j = 0; j < node_count; j++) { 
  for (int i : element_csr[j]) 
   s[j].insert(i); 
  element_csr[j].assign(s[j].begin(), s[j].end()); 
  sort(element_csr[j].begin(), element_csr[j].end()); 
 } 
 
 // Check to see if every node is there 
 for (int k = 0; k < node_count; k++) { 
  csr_flag = false; 
  //for (int i = 0; i < node_count; i++) { 
  size = element_csr[k].size(); 
  for (unsigned j = 0; j < size; j++) { 
   if (k == element_csr[k][j]) { 
    csr_flag = true; 
    break; 
   } 
  } 
  //if (csr_flag == true) break; 
  //} 
  if (csr_flag == false) { 
   printf("OMG ERROR. node %i. Press enter\n", k); 
   cin.get(); 
  } 
 } 
 
 vector<int> stiff_IA; 
 vector<int> stiff_JA; 
 stiff_IA.push_back(0); 
 int IA_count = 0; 
 for (int i = 0; i < node_count; i++) { 
  for (int o = 0; o < global_dof; o++) { 
   IA_count = 0; 
   size = element_csr[i].size(); 
   for (int j = 0; j < (int)size; j++) { 
    node_ind = element_csr[i][j]; 
    for (int l = 0; l < global_dof; l++) { 
     if ((node_ind*global_dof + l) >= (i*global_dof + o)) { // uncomment for 
sym 
      IA_count++; 
      stiff_JA.push_back(node_ind*global_dof + l); 
     } 
    } 
   } 
   stiff_IA.push_back(stiff_IA[i*global_dof + o] + IA_count); 
  } 
 } 
 
 int* stiff_JA_buff = new int[stiff_IA[total_dof]]; 
 for (int i = 0; i < stiff_IA[total_dof]; i++) { 
  stiff_JA_buff[i] = stiff_JA[i]; 
 } 
 FILE* csr_col_file; 
 errno_t err; 
 if ((err = fopen_s(&csr_col_file, "CSR_COLUMN.binary", "wb")) != 0) 
  printf("CSR_COLUMN file not opened\n"); 
 else fwrite(stiff_JA_buff, 1, stiff_IA[total_dof] * sizeof(int), csr_col_file); 
 fclose(csr_col_file); 
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 int* stiff_IA_buff = new int[total_dof + 1]; 
 for (int i = 0; i < (total_dof + 1); i++) stiff_IA_buff[i] = stiff_IA[i]; 
 FILE* csr_row_file; 
 if ((err = fopen_s(&csr_row_file, "CSR_ROW.binary", "wb")) != 0) 
  printf("CSR_ROW file not opened\n"); 
 else fwrite(stiff_IA_buff, 1, (total_dof + 1) * sizeof(int), csr_row_file); 
 fclose(csr_row_file); 
 
 ////Check element_ind_buff 
 //vector<int> e_check; 
 //bool e_c_flag = false; 
 //for (int k = 0; k < p_node_count; k++){ 
 // e_check.push_back(-2); 
 //} 
 //for (int i = 0; i < (int)element_ind_buff.size(); i++){ 
 // if ((element_ind_buff[i] >= 0) && (element_ind_buff[i] < p_node_count)){ 
 //  e_check[element_ind_buff[i]] = element_ind_buff[i]; 
 // } 
 // else if ((element_ind_buff[i] != -1) && (element_type_buff[i/nodes_per_tet] == 27)) 
 //  printf("error at location %i with value %i\n", i, element_ind_buff[i]); 
 //} 
 //for (int k = 0; k < p_node_count; k++){ 
 // if (e_check[k] != k){ 
 //  e_c_flag = true; 
 //  printf("element k = %i is missing.  e_check[k] = %i\n", k, e_check[k]); 
 // } 
 //} 
 //if (e_c_flag == true){ 
 // cout << "some elements are missing. See above" << endl; 
 //} 
 //else cout << "all elements are fine" << endl; 
 
 //vector<int> af_ind_buff((((int)element_sec_vec.size() + f_elem_count) + (BLOCK_SIZE - 
(((int)element_sec_vec.size() + f_elem_count) % BLOCK_SIZE)))*nodes_per_fib, -1); 
 //Create ****INDEX***** array for the CSR stiffness matrix array for storing stiffness non-zero values 
 int ematrix_ref_size = tet_element_dof*tet_element_dof; 
 int stiff_ind_j_size = total_element_count*ematrix_ref_size; // 144 indexes for each element  
 int* stiff_ind_j = new int[stiff_ind_j_size]; 
 node_ind2 = 0; 
 int node_ind_ind = 0; 
 int node_ind_ind2 = 0; 
 int node_ind_m = 0; 
 int node_ind_n = 0; 
 int node_ind_j = 0; 
 int node_ind_l = 0; 
 bool stiff_ind_flag = false; 
 for (int i = 0; i < total_element_count; i++) { 
  if (element_type_buff[i] == 24) { 
   for (int j = 0; j < nodes_per_tet; j++) { 
    node_ind = element_ind_buff[i*nodes_per_tet + j]; 
    for (int m = 0; m < global_dof; m++) { 
     for (int l = j; l < nodes_per_tet; l++) { // j for sym 
      node_ind2 = element_ind_buff[i*nodes_per_tet + l]; 
      for (int n = 0; n < global_dof; n++) { 
       if (node_ind > node_ind2) { 
        node_ind_ind = node_ind2; 
        node_ind_ind2 = node_ind; 
        node_ind_m = n; 
        node_ind_n = m; 
        node_ind_j = l; 
        node_ind_l = j; 



198 
 

       } 
       else { node_ind_ind = node_ind; node_ind_ind2 = 
node_ind2; node_ind_m = m; node_ind_n = n; node_ind_j = j; node_ind_l = l; } 
       //node_ind_ind = node_ind; node_ind_ind2 = 
node_ind2; node_ind_m = m; node_ind_n = n; node_ind_j = j; node_ind_l = l; // comment out for sym 
       for (int k = stiff_IA[node_ind_ind*global_dof + 
node_ind_m]; k < stiff_IA[node_ind_ind*global_dof + node_ind_m + 1]; k++) { 
        if ((node_ind_ind2*global_dof + 
node_ind_n) == stiff_JA[k]) { 
         stiff_ind_j[(i * ematrix_ref_size) + 
((j*global_dof + m) * tet_element_dof) + l*global_dof + n] = k; 
         break; 
        } 
       } 
      } 
     } 
    } 
   } 
   for (int j = (tet_element_dof*tet_element_dof); j < ematrix_ref_size; j++) { 
    stiff_ind_j[(i*ematrix_ref_size) + j] = -1; 
   } 
  } 
  else if (element_type_buff[i] == 25) { 
   for (int j = 0; j < nodes_per_lig; j++) { 
    node_ind = element_ind_buff[i*nodes_per_tet + j]; 
    for (int m = 0; m < global_dof; m++) { 
     for (int l = j; l < nodes_per_lig; l++) { // j 
      node_ind2 = element_ind_buff[i*nodes_per_tet + l]; 
      for (int n = 0; n < global_dof; n++) { 
       if (node_ind > node_ind2) { 
        node_ind_ind = node_ind2; 
        node_ind_ind2 = node_ind; 
        node_ind_m = n; 
        node_ind_n = m; 
        node_ind_j = l; 
        node_ind_l = j; 
       } 
       else { node_ind_ind = node_ind; node_ind_ind2 = 
node_ind2; node_ind_m = m; node_ind_n = n; node_ind_j = j; node_ind_l = l; } 
       //node_ind_ind = node_ind; node_ind_ind2 = 
node_ind2; node_ind_m = m; node_ind_n = n; node_ind_j = j; node_ind_l = l; // comment out for sym 
       for (int k = stiff_IA[node_ind_ind*global_dof + 
node_ind_m]; k < stiff_IA[node_ind_ind*global_dof + node_ind_m + 1]; k++) { 
        if ((node_ind_ind2*global_dof + 
node_ind_n) == stiff_JA[k]) { 
         stiff_ind_j[(i * ematrix_ref_size) + 
((j*global_dof + m) * lig_element_dof) + l*global_dof + n] = k; 
         break; 
        } 
       } 
      } 
     } 
    } 
   } 
   for (int j = (lig_element_dof*lig_element_dof); j < ematrix_ref_size; j++) { 
    stiff_ind_j[(i*ematrix_ref_size) + j] = -1; 
   } 
  } 
  else if ((element_type_buff[i] == -1)) { //Need to change this once force elements are incorporated 
   for (int j = 0; j < ematrix_ref_size; j++) { 
    stiff_ind_j[(i * ematrix_ref_size) + j] = -1; 



199 
 

   } 
  } 
  else printf("unknown element type for i=%i\n", i); 
 } 
 ////check if k from 0 to A_non_zeros 
 //for (int k = 0; k < stiff_IA[(int)stiff_IA.size() - 1]; k++){ 
 // stiff_ind_flag = false; 
 // for (int l = 0; l < ematrix_ref_size*(int)element_mat_buff.size(); l++){ 
 //  if (k == stiff_ind_j[l]){ 
 //   stiff_ind_flag = true; 
 //   break; 
 //  } 
 // } 
 // if (stiff_ind_flag == false){ 
 //  printf("k = %i is missing from stiff_ind_j\n", k); 
 // } 
 //} 
 
 //stiff_ind_flag = false; 
 //for (int i = 0; i < (int)element_mat_buff.size()*ematrix_ref_size; i++) { 
 // if ((stiff_ind_j[i] >= stiff_IA[(int)stiff_IA.size() - 1]) || (stiff_ind_j[i] < -1)) { 
 //  stiff_ind_j[i] = -1; 
 //  //printf("k = %i is missing from stiff_ind_j\n", i); 
 //  //stiff_ind_flag = true; 
 // } 
 //} 
 
 //if (stiff_ind_flag == true) { 
 // printf("FAILURE occurred, see above for specific dof in the element array\n"); 
 // goto Error; 
 //} 
 
 int* element_i_buff = new int[element_mat_buff.size()*(8)]; 
 for (int i = 0; i < (int)element_mat_buff.size(); i++) { 
  for (int j = 0; j < nodes_per_tet; j++) element_i_buff[i * 8 + j] = element_ind_buff[i*nodes_per_tet + j]; 
  element_i_buff[i * 8 + 4] = element_mat_buff[i]; 
  element_i_buff[i * 8 + 5] = element_type_buff[i]; 
  element_i_buff[i * 8 + 6] = element_real_buff[i]; 
  element_i_buff[i * 8 + 7] = element_sec_buff[i]; 
 } 
 FILE* element_i_file; 
 if ((err = fopen_s(&element_i_file, "ELEMENT_IND_I.binary", "wb")) != 0) 
  printf("ELEMENT_IND_I file not opened\n"); 
 else fwrite(element_i_buff, 1, element_mat_buff.size() * 8 * sizeof(int), element_i_file); 
 fclose(element_i_file); 
 
 FILE* stiff_ind_j_file; 
 if ((err = fopen_s(&stiff_ind_j_file, "ELEMENT_IND_J.binary", "wb")) != 0) 
  printf("ELEMENT_IND_J file not opened\n"); 
 else fwrite(stiff_ind_j, 1, stiff_ind_j_size * sizeof(int), stiff_ind_j_file); 
 fclose(stiff_ind_j_file); 
 
 FILE* bc_nodes_adj_file; 
 if ((err = fopen_s(&bc_nodes_adj_file, "BC_NODES_PRESSURE.binary", "wb")) != 0) 
  printf("BC_NODES_PRESSURE file not opened\n"); 
 else fwrite(bc_nodes, 1, BC_count * sizeof(int), bc_nodes_adj_file); 
 fclose(bc_nodes_adj_file); 
 
 for (int i = af_count; i < total_element_count; i++) { 
  af_nodes_vec.push_back(-1); 
  af_nodes_vec.push_back(-1); 
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 } 
 if (outfile8.is_open()) { 
  outfile8 << "AF_IND_PRESSURE" << endl; 
  for (int i = 0; i < (int)element_mat_buff.size() - 1; i++) { 
   for (int j = 0; j < nodes_per_fib; j++) { 
    outfile8.width(8); 
    outfile8 << af_nodes_vec[i*nodes_per_fib + j]; 
   } 
   outfile8 << endl; 
  } 
  for (int j = 0; j < nodes_per_fib; j++) { 
   outfile8.width(8); 
   outfile8 << af_nodes_vec[((int)element_mat_buff.size() - 1)*nodes_per_fib + j]; 
  } 
  outfile8.close(); 
 } 
 else cout << "Unable to create file8" << endl; 
 
 //****************************************************Vector assembly 
matrices************************************** 
 //Create arrays for fast vector assembly using shared memory 
 int GRID_SIZE = ((int)element_mat_buff.size() / BLOCK_SIZE) + 1; 
 int* share_local_element_ind = new int[GRID_SIZE*BLOCK_SIZE*nodes_per_tet]; 
 int* share_global_element_ind = new int[GRID_SIZE*BLOCK_SIZE*nodes_per_tet]; 
 int* vec = NULL; 
 
 { 
  for (int i = 0; i < GRID_SIZE*BLOCK_SIZE*nodes_per_tet; i++) { 
   share_global_element_ind[i] = 0; 
   share_local_element_ind[i] = 0; 
  } 
 } 
 
 { 
  for (int a = 0; a < GRID_SIZE; a++) { 
   for (int i = 0; i < BLOCK_SIZE; i++) { 
    if ((a*BLOCK_SIZE + i)<(int)element_mat_buff.size()) { 
     for (int j = 0; j < nodes_per_tet; j++) { 
      if (element_ind_buff[((a*BLOCK_SIZE + i)*nodes_per_tet) + 
j] > max) { 
       max = element_ind_buff[((a*BLOCK_SIZE + 
i)*nodes_per_tet) + j]; 
      } 
     } 
    } 
   } 
 
   vec = new int[max + 1]; 
   fill(vec, vec + max + 1, 0); 
   temp = 0; 
   { 
    for (int i = 0; i < BLOCK_SIZE; i++) { 
     if ((a*BLOCK_SIZE + i)<(int)element_mat_buff.size()) { 
      for (int j = 0; j < nodes_per_tet; j++) { 
       ind = element_ind_buff[((a*BLOCK_SIZE + 
i)*nodes_per_tet) + j]; 
       if (vec[ind]) { 
        share_local_element_ind[((a*BLOCK_SIZE 
+ i)*nodes_per_tet) + j] = vec[ind]; 
       
 share_global_element_ind[((a*BLOCK_SIZE + i)*nodes_per_tet) + j] = 0; 
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       } 
       else { 
        share_local_element_ind[((a*BLOCK_SIZE 
+ i)*nodes_per_tet) + j] = temp; 
       
 share_global_element_ind[((a*BLOCK_SIZE + i)*nodes_per_tet) + j] = 1; 
        vec[ind] = temp; 
        temp++; 
       } 
      } 
     } 
    } 
   } 
  } 
 } 
 
 FILE* share_assembly_file; 
 if ((err = fopen_s(&share_assembly_file, "SHARED_ASSEMBLY_IND.binary", "wb")) != 0) 
  printf("SHARED_ASSEMBLY_IND file not opened\n"); 
 else fwrite(share_local_element_ind, 1, GRID_SIZE*BLOCK_SIZE*nodes_per_tet * sizeof(int), 
share_assembly_file); 
 fclose(share_assembly_file); 
 
 if (outfile2.is_open()) { 
  outfile2 << "SHARED_GLOBAL_ASSEMBLY_IND" << endl; 
  for (int i = 0; i < BLOCK_SIZE*GRID_SIZE - 1; i++) { 
   for (int j = 0; j < nodes_per_tet; j++) { 
    outfile2.width(12); 
    outfile2 << left << share_global_element_ind[i * nodes_per_tet + j]; 
   } 
   outfile2 << endl; 
  } 
  for (int j = 0; j < nodes_per_tet; j++) { 
   outfile2.width(12); 
   outfile2 << left << share_global_element_ind[(BLOCK_SIZE*GRID_SIZE - 1) * 
nodes_per_tet + j]; 
  } 
  outfile2.close(); 
 } 
 else cout << "Unable to create file" << endl; 
 
 vector<float>().swap(element_ind_vector); 
 vector<float>().swap(element_type_vec); 
 vector<float>().swap(element_num_vec); 
 vector<float>().swap(node_loc); 
 vector<int>().swap(f_nodes_vec); 
 
 cout << "Done!!" << endl; 
 cin.get(); 
 
 return 0; 
} 
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RealTimeSim.cu 

 
// CUDA headers 
#define _USE_MATH_DEFINES 
#include <cuda.h> 
#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 
#include <cublas_v2.h> 
#define BLOCK_SIZE 128 
 
// Windows headers 
#include <iostream> 
#include <stdio.h> 
#include <fstream> 
#include <sstream> 
#include <string> 
#include <vector> 
#include <algorithm> 
 
// MKL headers 
#include <stdlib.h> 
#include "mkl.h" 
#include "mkl_types.h" 
#include "mkl_blas.h" 
#include "mkl_rci.h" 
#include "mkl_service.h" 
#include "math.h" 
 
#include "mkl_pardiso.h" 
 
using namespace std; 
using std::cin; 
using std::cout; 
using std::endl; 
 
// Global variables 
const int global_dof = 3; 
const int nodes_per_tet = 4; 
const int nodes_per_lig = 2; 
const int nodes_per_fib = 2; 
const int tet_element_dof = 12; 
const int force_node_dof = 6; 
const float substep_size = 0.333333333333333333333333333333333333333333f; 
const int ematrix_ref_size = tet_element_dof*tet_element_dof; 
int total_node_count; 
int solid_element_count; 
int lig_count; 
int blank_count; 
int A_non_zeros; 
int csr_row_size; 
int BC_node_count; 
int BC_stiff_count; 
int F_node_count; 
int total_dof; 
int total_element_count; 
int GRID_SIZE1; 
int GRID_SIZE2; 
int GRID_SIZE12; 
int GRID_SIZE22; 
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int GRID_SIZE32; 
int GRID_SIZE0; 
int GRID_SIZE52; 
int GRID_SIZE01; 
int GRID_SIZE5; 
int GRID_SIZE6; 
int GRID_SIZE_BC; 
int GRID_SIZE_NON_ZEROS; 
int GRID_SIZE_ORIG; 
int GRID_SIZE_ORIG1; 
 
int GRID_SIZE_P; 
 
// Non-cuda function declaration 
cudaError_t RealTimeSim(float* nodes_x, int* element_i, int* element_j, int* csr_row, int* csr_col, int* 
share_element_ind, float* ma_params, 
 bool* share_bool_ind, int* type_ind, int* body_ind, int* sec_ind, int* BC_node_ind, int* F_ind, int* 
BCapply_ind, float* BCapply_stiff, int* fib_ind, float* h_force); 
 
//**************CUDA functions for calculating stiffness matrices (and add together to get matrix A for solver) and nodal 
forces (to get vector b for solver)************** 
__global__ void PreStiffCalculations(int* element_nodes, int* type_ind, int* body_ind, float* nodes, float* IntDeriv, float* 
volumes, float* BL0, float* lig_lengths0, 
 float* local_coords, float* local_coords0, int total_node_count) { 
 const int size = 72; 
 register float x_diff = 0; 
 register float y_diff = 0; 
 register float z_diff = 0; 
 register int vb_node = 0; 
 register int ground_node = 0; 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < solid_element_count; ind += blockDim.x * 
gridDim.x){ 
 int ind = blockIdx.x*blockDim.x + threadIdx.x; 
 //if (ind < (solid_element_count + mixed_element_count + shell_element_count + lig_count)){ 
 if (type_ind[ind] == 24) { // change back to 24 
  register float x12, x13, x14, x23, x24, x34; 
  register float y12, y13, y14, y23, y24, y34; 
  register float z12, z13, z14, z23, z24, z34; 
  register float element_nloc[nodes_per_tet*global_dof]; 
  register float r_intderiv[tet_element_dof]; 
  register float detD; 
  for (int a = 0; a < nodes_per_tet; a++) { 
   for (int i = 0; i < global_dof; i++) { 
    element_nloc[a*global_dof + i] = nodes[element_nodes[(ind*nodes_per_tet) + a] * 
global_dof + i]; 
   } 
  } 
  // Calculate node differences 
  x12 = element_nloc[0 * global_dof] - element_nloc[1 * global_dof]; 
  x13 = element_nloc[0 * global_dof] - element_nloc[2 * global_dof]; 
  x14 = element_nloc[0 * global_dof] - element_nloc[3 * global_dof]; 
  x23 = element_nloc[1 * global_dof] - element_nloc[2 * global_dof]; 
  x24 = element_nloc[1 * global_dof] - element_nloc[3 * global_dof]; 
  x34 = element_nloc[2 * global_dof] - element_nloc[3 * global_dof]; 
  y12 = element_nloc[0 * global_dof + 1] - element_nloc[1 * global_dof + 1]; 
  y13 = element_nloc[0 * global_dof + 1] - element_nloc[2 * global_dof + 1]; 
  y14 = element_nloc[0 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
  y23 = element_nloc[1 * global_dof + 1] - element_nloc[2 * global_dof + 1]; 
  y24 = element_nloc[1 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
  y34 = element_nloc[2 * global_dof + 1] - element_nloc[3 * global_dof + 1]; 
  z12 = element_nloc[0 * global_dof + 2] - element_nloc[1 * global_dof + 2]; 
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  z13 = element_nloc[0 * global_dof + 2] - element_nloc[2 * global_dof + 2]; 
  z14 = element_nloc[0 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
  z23 = element_nloc[1 * global_dof + 2] - element_nloc[2 * global_dof + 2]; 
  z24 = element_nloc[1 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
  z34 = element_nloc[2 * global_dof + 2] - element_nloc[3 * global_dof + 2]; 
  // Calculate determinant of D matrix 
  detD = -(x12*y13*z14) - (x13*y14*z12) - (x14*y12*z13) + (x14*y13*z12) + (x13*y12*z14) + 
(x12*y14*z13); 
  volumes[ind] = detD * 0.1666666666666666f; 
  { 
   if (detD != 0.0f) { 
    r_intderiv[0] = ((y24*z23) - (y23*z24)) / detD; 
    r_intderiv[1] = ((x23*z24) - (x24*z23)) / detD; 
    r_intderiv[2] = ((x24*y23) - (x23*y24)) / detD; 
    r_intderiv[3] = ((y13*z34) - (y34*z13)) / detD; 
    r_intderiv[4] = ((x34*z13) - (x13*z34)) / detD; 
    r_intderiv[5] = ((x13*y34) - (x34*y13)) / detD; 
    r_intderiv[6] = ((y24*z14) - (y14*z24)) / detD; 
    r_intderiv[7] = ((x14*z24) - (x24*z14)) / detD; 
    r_intderiv[8] = ((x24*y14) - (x14*y24)) / detD; 
    r_intderiv[9] = (-(y13*z12) + (y12*z13)) / detD; 
    r_intderiv[10] = (-(x12*z13) + (x13*z12)) / detD; 
    r_intderiv[11] = (-(x13*y12) + (x12*y13)) / detD; 
   } 
   else if (detD < 0.0f) { 
    printf("Error!! negative volume"); 
    r_intderiv[0] = ((y24*z23) - (y23*z24)) / detD; 
    r_intderiv[1] = ((x23*z24) - (x24*z23)) / detD; 
    r_intderiv[2] = ((x24*y23) - (x23*y24)) / detD; 
    r_intderiv[3] = ((y13*z34) - (y34*z13)) / detD; 
    r_intderiv[4] = ((x34*z13) - (x13*z34)) / detD; 
    r_intderiv[5] = ((x13*y34) - (x34*y13)) / detD; 
    r_intderiv[6] = ((y24*z14) - (y14*z24)) / detD; 
    r_intderiv[7] = ((x14*z24) - (x24*z14)) / detD; 
    r_intderiv[8] = ((x24*y14) - (x14*y24)) / detD; 
    r_intderiv[9] = (-(y13*z12) + (y12*z13)) / detD; 
    r_intderiv[10] = (-(x12*z13) + (x13*z12)) / detD; 
    r_intderiv[11] = (-(x13*y12) + (x12*y13)) / detD; 
   } 
   else { 
    printf("Error!! zero volume at ind = %i", ind); 
    r_intderiv[0] = 0.0f; 
    r_intderiv[1] = 0.0f; 
    r_intderiv[2] = 0.0f; 
    r_intderiv[3] = 0.0f; 
    r_intderiv[4] = 0.0f; 
    r_intderiv[5] = 0.0f; 
    r_intderiv[6] = 0.0f; 
    r_intderiv[7] = 0.0f; 
    r_intderiv[8] = 0.0f; 
    r_intderiv[9] = 0.0f; 
    r_intderiv[10] = 0.0f; 
    r_intderiv[11] = 0.0f; 
   } 
  } 
  // Fill BL0 matrix from interpolation derivatives 
  BL0[(size*blockDim.x*blockIdx.x) + (0 * blockDim.x) + threadIdx.x] = r_intderiv[0]; 
  BL0[(size*blockDim.x*blockIdx.x) + (1 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (2 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (3 * blockDim.x) + threadIdx.x] = r_intderiv[3]; 
  BL0[(size*blockDim.x*blockIdx.x) + (4 * blockDim.x) + threadIdx.x] = 0.0f; 
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  BL0[(size*blockDim.x*blockIdx.x) + (5 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (6 * blockDim.x) + threadIdx.x] = r_intderiv[6]; 
  BL0[(size*blockDim.x*blockIdx.x) + (7 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (8 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (9 * blockDim.x) + threadIdx.x] = r_intderiv[9]; 
  BL0[(size*blockDim.x*blockIdx.x) + (10 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (11 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (12 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (13 * blockDim.x) + threadIdx.x] = r_intderiv[1]; 
  BL0[(size*blockDim.x*blockIdx.x) + (14 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (15 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (16 * blockDim.x) + threadIdx.x] = r_intderiv[4]; 
  BL0[(size*blockDim.x*blockIdx.x) + (17 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (18 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (19 * blockDim.x) + threadIdx.x] = r_intderiv[7]; 
  BL0[(size*blockDim.x*blockIdx.x) + (20 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (21 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (22 * blockDim.x) + threadIdx.x] = r_intderiv[10]; 
  BL0[(size*blockDim.x*blockIdx.x) + (23 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (24 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (25 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (26 * blockDim.x) + threadIdx.x] = r_intderiv[2]; 
  BL0[(size*blockDim.x*blockIdx.x) + (27 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (28 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (29 * blockDim.x) + threadIdx.x] = r_intderiv[5]; 
  BL0[(size*blockDim.x*blockIdx.x) + (30 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (31 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (32 * blockDim.x) + threadIdx.x] = r_intderiv[8]; 
  BL0[(size*blockDim.x*blockIdx.x) + (33 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (34 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (35 * blockDim.x) + threadIdx.x] = r_intderiv[11]; 
  BL0[(size*blockDim.x*blockIdx.x) + (36 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (37 * blockDim.x) + threadIdx.x] = r_intderiv[2]; 
  BL0[(size*blockDim.x*blockIdx.x) + (38 * blockDim.x) + threadIdx.x] = r_intderiv[1]; 
  BL0[(size*blockDim.x*blockIdx.x) + (39 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (40 * blockDim.x) + threadIdx.x] = r_intderiv[5]; 
  BL0[(size*blockDim.x*blockIdx.x) + (41 * blockDim.x) + threadIdx.x] = r_intderiv[4]; 
  BL0[(size*blockDim.x*blockIdx.x) + (42 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (43 * blockDim.x) + threadIdx.x] = r_intderiv[8]; 
  BL0[(size*blockDim.x*blockIdx.x) + (44 * blockDim.x) + threadIdx.x] = r_intderiv[7]; 
  BL0[(size*blockDim.x*blockIdx.x) + (45 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (46 * blockDim.x) + threadIdx.x] = r_intderiv[11]; 
  BL0[(size*blockDim.x*blockIdx.x) + (47 * blockDim.x) + threadIdx.x] = r_intderiv[10]; 
  BL0[(size*blockDim.x*blockIdx.x) + (48 * blockDim.x) + threadIdx.x] = r_intderiv[2]; 
  BL0[(size*blockDim.x*blockIdx.x) + (49 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (50 * blockDim.x) + threadIdx.x] = r_intderiv[0]; 
  BL0[(size*blockDim.x*blockIdx.x) + (51 * blockDim.x) + threadIdx.x] = r_intderiv[5]; 
  BL0[(size*blockDim.x*blockIdx.x) + (52 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (53 * blockDim.x) + threadIdx.x] = r_intderiv[3]; 
  BL0[(size*blockDim.x*blockIdx.x) + (54 * blockDim.x) + threadIdx.x] = r_intderiv[8]; 
  BL0[(size*blockDim.x*blockIdx.x) + (55 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (56 * blockDim.x) + threadIdx.x] = r_intderiv[6]; 
  BL0[(size*blockDim.x*blockIdx.x) + (57 * blockDim.x) + threadIdx.x] = r_intderiv[11]; 
  BL0[(size*blockDim.x*blockIdx.x) + (58 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (59 * blockDim.x) + threadIdx.x] = r_intderiv[9]; 
  BL0[(size*blockDim.x*blockIdx.x) + (60 * blockDim.x) + threadIdx.x] = r_intderiv[1]; 
  BL0[(size*blockDim.x*blockIdx.x) + (61 * blockDim.x) + threadIdx.x] = r_intderiv[0]; 
  BL0[(size*blockDim.x*blockIdx.x) + (62 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (63 * blockDim.x) + threadIdx.x] = r_intderiv[4]; 
  BL0[(size*blockDim.x*blockIdx.x) + (64 * blockDim.x) + threadIdx.x] = r_intderiv[3]; 
  BL0[(size*blockDim.x*blockIdx.x) + (65 * blockDim.x) + threadIdx.x] = 0.0f; 
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  BL0[(size*blockDim.x*blockIdx.x) + (66 * blockDim.x) + threadIdx.x] = r_intderiv[7]; 
  BL0[(size*blockDim.x*blockIdx.x) + (67 * blockDim.x) + threadIdx.x] = r_intderiv[6]; 
  BL0[(size*blockDim.x*blockIdx.x) + (68 * blockDim.x) + threadIdx.x] = 0.0f; 
  BL0[(size*blockDim.x*blockIdx.x) + (69 * blockDim.x) + threadIdx.x] = r_intderiv[10]; 
  BL0[(size*blockDim.x*blockIdx.x) + (70 * blockDim.x) + threadIdx.x] = r_intderiv[9]; 
  BL0[(size*blockDim.x*blockIdx.x) + (71 * blockDim.x) + threadIdx.x] = 0.0f; 
 
  // Fill BNL matrix from interpolation derivatives (holds values used in both IntDeriv and BNL 
calculations) 
  for (int i = 0; i < tet_element_dof; i++) { 
   IntDeriv[(tet_element_dof*blockDim.x*blockIdx.x) + (i*blockDim.x) + threadIdx.x] = 
r_intderiv[i]; 
  } 
 } 
 //for (int ind = blockIdx.x*blockDim.x + threadIdx.x; (ind >= (solid_element_count+shell_element_count)) && 
(ind < (solid_element_count + lig_count + shell_element_count)); ind += blockDim.x*gridDim.x){ 
 else if (type_ind[ind] == 25) { 
  vb_node = element_nodes[(ind*nodes_per_tet)]; 
  ground_node = element_nodes[(ind*nodes_per_tet) + 1]; 
 
  x_diff = nodes[ground_node*global_dof] - nodes[vb_node*global_dof]; 
  y_diff = nodes[ground_node*global_dof + 1] - nodes[vb_node*global_dof + 1]; 
  z_diff = nodes[ground_node*global_dof + 2] - nodes[vb_node*global_dof + 2]; 
 
  lig_lengths0[ind] = sqrtf((x_diff*x_diff) + (y_diff*y_diff) + (z_diff*z_diff)); 
 } 
} 
__global__ void FibLengths0(float* fib_lengths_0, float* global_coords, int* fib_ind, int* body_ind, int 
total_element_count) { 
 int ind = blockIdx.x*blockDim.x + threadIdx.x; 
 register float fib_x; 
 register float fib_y; 
 register float fib_z; 
 register int node1; 
 register int node2; 
 
 if (ind < total_element_count) { 
 
  if (body_ind[ind] == 3) { 
   // Calculate fiber lengths squared for strain calculations in other functions 
   node1 = fib_ind[ind*nodes_per_fib]; 
   node2 = fib_ind[ind*nodes_per_fib + 1]; 
   fib_x = global_coords[node2*global_dof] - global_coords[node1*global_dof]; 
   fib_y = global_coords[node2*global_dof + 1] - global_coords[node1*global_dof + 1]; 
   fib_z = global_coords[node2*global_dof + 2] - global_coords[node1*global_dof + 2]; 
   fib_lengths_0[ind] = (fib_x*fib_x) + (fib_y*fib_y) + (fib_z*fib_z); 
  } 
 } 
} 
__global__ void SolidStiffness(float* K_matrix, float* BL0, float* IntDeriv, float* volumes, float* node_loc, float* 
u_global_vector, float* u_vector, float* u_increment, float* b_vector, 
 float* b_global, int* BC_nodes, int* d_element_ind, int* type_ind, int* dof_ind, int* body_ind, int* sec_ind, float 
BC_value, float* lig_lengths0, int* fib_nodes, float* fib_length0, 
 float* local_coords, float* local_coords0, int total_node_count) { 
 const int Bsize = 72; 
 const int CBsize = 78; 
 const int Csize = 21; 
 const int C_cols = 6; 
 const int strain_size = 6; 
 const int Ssize = 6; 
 // Material constants 
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 const float AF_1 = 0.56f;// 0.18f; 0.56f 
 const float AF_2 = 0.14f;// 0.045f; 0.14f 
 const float AF_k = 13.9997f; //4.35f; d=0.14286 -> 13.9997 
 const float Ex_vert = 140.0f; 
 const float Ey_vert = 200.0f; 
 const float Ez_vert = 140.0f; 
 const float Gxy_vert = 48.3f; 
 const float Gzy_vert = 48.3f; 
 const float Gzx_vert = 48.3f; 
 const float pryz_vert = 0.315f; 
 const float prxz_vert = 0.45f; 
 const float prxy_vert = 0.315f; 
 const float Ex_cort = 11300.0f; //11300 
 const float Ey_cort = 22000.0f;//11300 
 const float Ez_cort = 11300.0f;//22000 
 const float Gxy_cort = 5400.0f;//3800 
 const float Gzy_cort = 5400.0f;//5400 
 const float Gzx_cort = 3800.0f;//5400 
 const float pryz_cort = 0.203f;//0.203 
 const float prxz_cort = 0.484f;//0.203 
 const float prxy_cort = 0.203f;//0.484 
 const float E_post = 3500.0f; // change back to 3500 
 const float nu_post = 0.25f; //change back to 0.25 
 const float E_NP = 1.0f; // 1 
 const float nu_NP = 0.49958f; // 0.49999f 
 const float E_end = 23.8f; // 23.8f 
 const float nu_end = 0.4f; // 0.4f 
 __shared__ float CB[CBsize*BLOCK_SIZE]; // 78 for MET elements (s_u_vector has the other 12 spaces 
necessary) 
 __shared__ float s_u_vector[tet_element_dof*BLOCK_SIZE]; // also holds the invar3 calcs necessary for 
Mooney-Rivlin and the shell_strain (6 spaces) 
 __shared__ float AF_l[global_dof*BLOCK_SIZE]; 
 __shared__ float AF_V_M[BLOCK_SIZE]; 
 //all above are __shared__ 
 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < solid_element_count; ind += blockDim.x * 
gridDim.x){ 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 if ((type_ind[ind] == 24)) { 
  // register memory for thread 
  register int node_ind = 0; 
  register float del = 0.0f; // also used for J3 Mooney-Rivlin calc 
  register float sum = 0.0f; 
  register float fib_force; 
  register float l_vector[3][3]; // also holds the invar_deriv calcs for Mooney_Rivlin 
  register float BL[Bsize]; 
  register float CMatrix[Csize]; 
  register float r_IntDeriv[tet_element_dof]; 
  register float r_strain[strain_size]; // also holds Cauchy-Green deformation components 
  register float AF_E;//Also used for modified element pressure and modified Jacob 
  register float AF_V;//Also used for original jacob 
  register int kind = 0; 
 
  // Move global memory to register/shared memory 
  { 
   for (int k = 0; k < tet_element_dof; k++) { 
    s_u_vector[(k*blockDim.x) + threadIdx.x] = 
u_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (k*blockDim.x) + threadIdx.x]; 
    r_IntDeriv[k] = IntDeriv[(tet_element_dof*blockDim.x*blockIdx.x) + 
(k*blockDim.x) + threadIdx.x]; 
   } 
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  } 
  // Calculate l_vector for BL 
  { 
   for (int i = 0; i < global_dof; i++) { 
    for (int j = 0; j < global_dof; j++) { 
     l_vector[i][j] = 0.0f; 
     for (int k = 0; k < nodes_per_tet; k++) { 
      l_vector[i][j] += (r_IntDeriv[global_dof*k + j] * 
s_u_vector[((global_dof*k + i)*blockDim.x) + threadIdx.x]); 
     } 
    } 
   } 
  } 
  // Calculate BL 
  for (int k = 0; k < global_dof; k++) { 
   for (int i = 0; i < nodes_per_tet; i++) { 
    for (int j = 0; j < global_dof; j++) { 
     BL[k*tet_element_dof + i*global_dof + j] = ((r_IntDeriv[i*global_dof + 
k] * l_vector[j][k]) + 
      BL0[(Bsize*blockDim.x*blockIdx.x) + ((k*tet_element_dof + 
i*global_dof + j)*blockDim.x) + threadIdx.x]); 
    } 
   } 
  } 
  for (int i = 0; i < nodes_per_tet; i++) { 
   for (int j = 0; j < global_dof; j++) { 
    BL[36 + i*global_dof + j] = ((r_IntDeriv[i*global_dof + 2] * l_vector[j][1]) + 
(r_IntDeriv[i*global_dof + 1] * l_vector[j][2]) + 
     BL0[(Bsize*blockDim.x*blockIdx.x) + ((36 + i*global_dof + 
j)*blockDim.x) + threadIdx.x]); 
   } 
  } 
  for (int i = 0; i < nodes_per_tet; i++) { 
   for (int j = 0; j < global_dof; j++) { 
    BL[48 + i*global_dof + j] = ((r_IntDeriv[i*global_dof + 2] * l_vector[j][0]) + 
(r_IntDeriv[i*global_dof] * l_vector[j][2]) + 
     BL0[(Bsize*blockDim.x*blockIdx.x) + ((48 + i*global_dof + 
j)*blockDim.x) + threadIdx.x]); 
   } 
  } 
  for (int i = 0; i < nodes_per_tet; i++) { 
   for (int j = 0; j < global_dof; j++) { 
    BL[60 + i*global_dof + j] = ((r_IntDeriv[i*global_dof + 1] * l_vector[j][0]) + 
(r_IntDeriv[i*global_dof] * l_vector[j][1]) + 
     BL0[(Bsize*blockDim.x*blockIdx.x) + ((60 + i*global_dof + 
j)*blockDim.x) + threadIdx.x]); 
   } 
  } 
  // Compute strain from BL and u 
  r_strain[0] = l_vector[0][0]; 
  r_strain[1] = l_vector[1][1]; 
  r_strain[2] = l_vector[2][2]; 
  r_strain[3] = 0.5f*(l_vector[1][2] + l_vector[2][1]); 
  r_strain[4] = 0.5f*(l_vector[0][2] + l_vector[2][0]); 
  r_strain[5] = 0.5f*(l_vector[0][1] + l_vector[1][0]); 
  for (int k = 0; k < global_dof; k++) { 
   r_strain[0] += 0.5f*(l_vector[k][0] * l_vector[k][0]); 
   r_strain[1] += 0.5f*(l_vector[k][1] * l_vector[k][1]); 
   r_strain[2] += 0.5f*(l_vector[k][2] * l_vector[k][2]); 
   r_strain[3] += 0.5f*(l_vector[k][1] * l_vector[k][2]); 
   r_strain[4] += 0.5f*(l_vector[k][0] * l_vector[k][2]); 
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   r_strain[5] += 0.5f*(l_vector[k][0] * l_vector[k][1]); 
  } 
 
  //Calculate KL by defining materials based on each body and multiplying by BL.  Select threads based 
on which body the elements belong to 
  switch (body_ind[ind]) 
  { 
  case(1): 
   // CMatrix is symmetric, so only half of the matrix is stored 
   del = 1.0f - ((prxy_vert*prxy_vert*Ey_vert) / Ex_vert) - ((pryz_vert*pryz_vert*Ez_vert) / 
Ey_vert) - ((prxz_vert*prxz_vert*Ez_vert) / Ex_vert) - ((2.0f*prxy_vert*pryz_vert*prxz_vert*Ez_vert) / Ex_vert); 
   CMatrix[0] = (Ey_vert - (pryz_vert*pryz_vert*Ez_vert))*(Ex_vert / (Ey_vert*del)); 
   CMatrix[1] = ((Ey_vert*prxy_vert) + (prxz_vert*pryz_vert*Ez_vert)) / del; 
   CMatrix[2] = (prxz_vert + (pryz_vert*prxy_vert))*(Ez_vert / del); 
   CMatrix[3] = 0; 
   CMatrix[4] = 0; 
   CMatrix[5] = 0; 
   CMatrix[6] = (Ex_vert - (prxz_vert*prxz_vert*Ez_vert))*(Ey_vert / (Ex_vert*del)); 
   CMatrix[7] = ((Ex_vert*pryz_vert) + (prxz_vert*prxy_vert*Ey_vert))*(Ez_vert / 
(Ex_vert*del)); 
   CMatrix[8] = 0; 
   CMatrix[9] = 0; 
   CMatrix[10] = 0; 
   CMatrix[11] = (Ex_vert - (prxy_vert*prxy_vert*Ey_vert))*(Ez_vert / (Ex_vert*del)); 
   CMatrix[12] = 0; 
   CMatrix[13] = 0; 
   CMatrix[14] = 0; 
   CMatrix[15] = Gzy_vert; 
   CMatrix[16] = 0; 
   CMatrix[17] = 0; 
   CMatrix[18] = Gzx_vert; 
   CMatrix[19] = 0; 
   CMatrix[20] = Gxy_vert; 
   //Adjust strain for shear strain 
   r_strain[3] *= 2.0f; 
   r_strain[4] *= 2.0f; 
   r_strain[5] *= 2.0f; 
   { 
    for (int i = 0; i < Ssize; i++) { 
     sum = 0.0f; 
     // below Cmatrix diagonal (columns) 
     kind = i; 
     for (int k = 0; k < i; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind += C_cols - k - 1; 
     } 
     // above CMatrix diagonal (rows) 
     kind = i*C_cols - i*(i - 1) / 2; 
     for (int k = i; k < C_cols; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind++; 
     } 
     s_u_vector[i*blockDim.x + threadIdx.x] = sum; 
    } 
   } 
   break; 
  case(26): 
   // CMatrix is symmetric, so only half of the matrix is stored 
   del = 1.0f - ((prxy_cort*prxy_cort*Ey_cort) / Ex_cort) - ((pryz_cort*pryz_cort*Ez_cort) / 
Ey_cort) - ((prxz_cort*prxz_cort*Ez_cort) / Ex_cort) - ((2.0f*prxy_cort*pryz_cort*prxz_cort*Ez_cort) / Ex_cort); 
   CMatrix[0] = (Ey_cort - (pryz_cort*pryz_cort*Ez_cort))*(Ex_cort / (Ey_cort*del)); 
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   CMatrix[1] = ((Ey_cort*prxy_cort) + (prxz_cort*pryz_cort*Ez_cort)) / del; 
   CMatrix[2] = (prxz_cort + (pryz_cort*prxy_cort))*(Ez_cort / del); 
   CMatrix[3] = 0; 
   CMatrix[4] = 0; 
   CMatrix[5] = 0; 
   CMatrix[6] = (Ex_cort - (prxz_cort*prxz_cort*Ez_cort))*(Ey_cort / (Ex_cort*del)); 
   CMatrix[7] = ((Ex_cort*pryz_cort) + (prxz_cort*prxy_cort*Ey_cort))*(Ez_cort / 
(Ex_cort*del)); 
   CMatrix[8] = 0; 
   CMatrix[9] = 0; 
   CMatrix[10] = 0; 
   CMatrix[11] = (Ex_cort - (prxy_cort*prxy_cort*Ey_cort))*(Ez_cort / (Ex_cort*del)); 
   CMatrix[12] = 0; 
   CMatrix[13] = 0; 
   CMatrix[14] = 0; 
   CMatrix[15] = Gzy_cort; 
   CMatrix[16] = 0; 
   CMatrix[17] = 0; 
   CMatrix[18] = Gzx_cort; 
   CMatrix[19] = 0; 
   CMatrix[20] = Gxy_cort; 
 
   //Adjust strain for shear strain 
   r_strain[3] *= 2.0f; 
   r_strain[4] *= 2.0f; 
   r_strain[5] *= 2.0f; 
   { 
    for (int i = 0; i < Ssize; i++) { 
     sum = 0.0f; 
     // below Cmatrix diagonal (columns) 
     kind = i; 
     for (int k = 0; k < i; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind += C_cols - k - 1; 
     } 
     // above CMatrix diagonal (rows) 
     kind = i*C_cols - i*(i - 1) / 2; 
     for (int k = i; k < C_cols; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind++; 
     } 
     s_u_vector[i*blockDim.x + threadIdx.x] = sum; 
    } 
   } 
 
   break; 
  case(2): 
 
   // CMatrix is symmetric, so only half of the matrix is stored 
   del = E_NP / ((1.0f + nu_NP)*(1.0f - (2.0f*nu_NP))); 
   CMatrix[0] = del*(1.0f - nu_NP); 
   CMatrix[1] = del*nu_NP; 
   CMatrix[2] = del*nu_NP; 
   CMatrix[3] = 0; 
   CMatrix[4] = 0; 
   CMatrix[5] = 0; 
   CMatrix[6] = del*(1.0f - nu_NP); 
   CMatrix[7] = del*nu_NP; 
   CMatrix[8] = 0; 
   CMatrix[9] = 0; 
   CMatrix[10] = 0; 
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   CMatrix[11] = del*(1.0f - nu_NP); 
   CMatrix[12] = 0; 
   CMatrix[13] = 0; 
   CMatrix[14] = 0; 
   CMatrix[15] = del*(0.5f - nu_NP); 
   CMatrix[16] = 0; 
   CMatrix[17] = 0; 
   CMatrix[18] = del*(0.5f - nu_NP); 
   CMatrix[19] = 0; 
   CMatrix[20] = del*(0.5f - nu_NP); 
   //Adjust strain for shear strain 
   r_strain[3] *= 2.0f; 
   r_strain[4] *= 2.0f; 
   r_strain[5] *= 2.0f; 
   { 
    for (int i = 0; i < Ssize; i++) { 
     sum = 0.0f; 
     // below Cmatrix diagonal (columns) 
     kind = i; 
     for (int k = 0; k < i; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind += C_cols - k - 1; 
     } 
     // above CMatrix diagonal (rows) 
     kind = i*C_cols - i*(i - 1) / 2; 
     for (int k = i; k < C_cols; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind++; 
     } 
     s_u_vector[i*blockDim.x + threadIdx.x] = sum; 
    } 
   } 
 
   break; 
  case(3): 
   // Annulus Fibrosus 
   //********************NOTE THAT THE NONLINEAR PORTION OF THE FIBRE 
STIFFNESS (AS PER TL BAR FORMULATION) HAS NOT YET BEEN ADDED TO THE STIFFNESS MATRIX FOR 
THIS ELEMENT****************** 
   // Calculate C_matrix as a Mooney-Rivlin material with elastic fibres added to it (iso-strain) 
   // Update fiber direction 
   // Update the fib_dir 
   kind = fib_nodes[ind*nodes_per_fib]; //kind is 0 
   node_ind = fib_nodes[ind*nodes_per_fib + 1]; //node_ind is 1 
   AF_l[threadIdx.x + (0 * blockDim.x)] = node_loc[node_ind * global_dof] - node_loc[kind * 
global_dof]; 
   AF_l[threadIdx.x + (1 * blockDim.x)] = node_loc[node_ind*global_dof + 1] - 
node_loc[kind*global_dof + 1]; 
   AF_l[threadIdx.x + (2 * blockDim.x)] = node_loc[node_ind*global_dof + 2] - 
node_loc[kind*global_dof + 2]; 
   l_vector[0][0] = (AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)]) + (AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)]) 
    + (AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
// fib_length 
   l_vector[0][1] = fib_length0[ind]; // fib_length0 
   sum = (l_vector[0][0] - l_vector[0][1]) / (2.0f*l_vector[0][1]); 
   l_vector[0][0] = sqrtf(l_vector[0][1]); // was l_vector[0][0] 
   AF_l[threadIdx.x + (0 * blockDim.x)] = AF_l[threadIdx.x + (0 * blockDim.x)] / 
l_vector[0][0]; 
   AF_l[threadIdx.x + (1 * blockDim.x)] = AF_l[threadIdx.x + (1 * blockDim.x)] / 
l_vector[0][0]; 
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   AF_l[threadIdx.x + (2 * blockDim.x)] = AF_l[threadIdx.x + (2 * blockDim.x)] / 
l_vector[0][0]; 
   // Determine stiffness (and volume proportion) based on annulus layer and strain range 
   switch (sec_ind[ind]) { 
   case(1): 
    AF_V = 0.23f; 
    del = 1.0f; //Not actually the stiffness but scale factor multiplied to stifness below 
    break; 
   case(2): 
    AF_V = 0.17f; 
    del = 0.9f; 
    break; 
   case(3): 
    AF_V = 0.11f; 
    del = 0.75f; 
    break; 
   case(4): 
    AF_V = 0.05f; 
    del = 0.65; 
    break; 
   default: 
    break; 
   } 
   if ((sum >= 0.0f) && (sum < 0.02f)) { 
    AF_E = 600.0f*del; 
    fib_force = AF_E*sum; 
   } 
   else if ((sum >= 0.02f) && (sum < 0.06f)) { 
    AF_E = 1061.1f*del; 
    fib_force = AF_E*(sum - 0.02f) + (del*12.0f); 
   } 
   else if ((sum >= 0.06f) && (sum < 0.11f)) { 
    AF_E = 455.56f*del; 
    fib_force = AF_E*(sum - 0.06f) + (del*54.444f); 
   } 
   else if (sum >= 0.11f) { 
    AF_E = 188.143f*del; 
    fib_force = AF_E*(sum - 0.11f) + (del*77.222f); 
   } 
   else { 
    AF_E = 0.0f; 
    fib_force = 0.0f; 
   } 
   AF_E *= AF_V; 
   AF_V_M[threadIdx.x] = 1.0f - AF_V; 
   // Precalculations for the C_matrix 
   // Calculate components of Cauchy-Green matrix using strain array (write back regular strain 
later) 
   CB[0 * blockDim.x + threadIdx.x] = 2.0f*r_strain[0] + 1.0f; 
   CB[1 * blockDim.x + threadIdx.x] = 2.0f*r_strain[1] + 1.0f; 
   CB[2 * blockDim.x + threadIdx.x] = 2.0f*r_strain[2] + 1.0f; 
   CB[3 * blockDim.x + threadIdx.x] = 2.0f*r_strain[3]; 
   CB[4 * blockDim.x + threadIdx.x] = 2.0f*r_strain[4]; 
   CB[5 * blockDim.x + threadIdx.x] = 2.0f*r_strain[5]; 
   // Calculate invariants 
   l_vector[0][0] = CB[0 * blockDim.x + threadIdx.x] + CB[1 * blockDim.x + threadIdx.x] + 
CB[2 * blockDim.x + threadIdx.x]; 
   l_vector[0][1] = (CB[0 * blockDim.x + threadIdx.x] * CB[1 * blockDim.x + threadIdx.x]) + 
(CB[0 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + threadIdx.x]) 
    + (CB[1 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + threadIdx.x]) - (CB[3 
* blockDim.x + threadIdx.x] * CB[3 * blockDim.x + threadIdx.x]) 
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    - (CB[4 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + threadIdx.x]) - (CB[5 
* blockDim.x + threadIdx.x] * CB[5 * blockDim.x + threadIdx.x]); 
   l_vector[0][2] = (CB[0 * blockDim.x + threadIdx.x] * CB[1 * blockDim.x + threadIdx.x] * 
CB[2 * blockDim.x + threadIdx.x]) 
    + (2.0f*CB[3 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + threadIdx.x] * 
CB[5 * blockDim.x + threadIdx.x]) 
    - (CB[0 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + threadIdx.x] * CB[3 * 
blockDim.x + threadIdx.x]) 
    - (CB[1 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + threadIdx.x] * CB[4 * 
blockDim.x + threadIdx.x]) 
    - (CB[2 * blockDim.x + threadIdx.x] * CB[5 * blockDim.x + threadIdx.x] * CB[5 * 
blockDim.x + threadIdx.x]); 
   // Calculate derivative of third invariant 
   l_vector[1][0] = 2.0f*((CB[1 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + 
threadIdx.x]) - (CB[3 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + threadIdx.x])); 
   l_vector[1][1] = 2.0f*((CB[0 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + 
threadIdx.x]) - (CB[4 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + threadIdx.x])); 
   l_vector[1][2] = 2.0f*((CB[0 * blockDim.x + threadIdx.x] * CB[1 * blockDim.x + 
threadIdx.x]) - (CB[5 * blockDim.x + threadIdx.x] * CB[5 * blockDim.x + threadIdx.x])); 
   l_vector[2][0] = 2.0f*((CB[5 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + 
threadIdx.x]) - (CB[3 * blockDim.x + threadIdx.x] * CB[0 * blockDim.x + threadIdx.x])); 
   l_vector[2][1] = 2.0f*((CB[5 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + 
threadIdx.x]) - (CB[4 * blockDim.x + threadIdx.x] * CB[1 * blockDim.x + threadIdx.x])); 
   l_vector[2][2] = 2.0f*((CB[4 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + 
threadIdx.x]) - (CB[5 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + threadIdx.x])); 
   // Calculate third invariant of deformation gradient 
   del = sqrtf(l_vector[0][2]); 
   // Calculate third invariant roots 
   s_u_vector[0 * blockDim.x + threadIdx.x] = 1.0f / (2.0f*del); 
   s_u_vector[1 * blockDim.x + threadIdx.x] = 1.0f / cbrtf(l_vector[0][2]); 
   s_u_vector[2 * blockDim.x + threadIdx.x] = s_u_vector[1 * blockDim.x + threadIdx.x] * 
s_u_vector[1 * blockDim.x + threadIdx.x]; 
   s_u_vector[3 * blockDim.x + threadIdx.x] = s_u_vector[2 * blockDim.x + threadIdx.x] * 
s_u_vector[2 * blockDim.x + threadIdx.x]; 
   s_u_vector[4 * blockDim.x + threadIdx.x] = s_u_vector[3 * blockDim.x + threadIdx.x] * 
s_u_vector[1 * blockDim.x + threadIdx.x]; 
   s_u_vector[5 * blockDim.x + threadIdx.x] = s_u_vector[4 * blockDim.x + threadIdx.x] * 
s_u_vector[2 * blockDim.x + threadIdx.x]; 
   s_u_vector[6 * blockDim.x + threadIdx.x] = s_u_vector[3 * blockDim.x + threadIdx.x] * 
s_u_vector[3 * blockDim.x + threadIdx.x]; 
   s_u_vector[7 * blockDim.x + threadIdx.x] = 8.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * 
s_u_vector[0 * blockDim.x + threadIdx.x] * s_u_vector[0 * blockDim.x + threadIdx.x]; 
   // Adjust third invariant roots to include common calculations for C_Matrix  
   s_u_vector[8 * blockDim.x + threadIdx.x] = s_u_vector[0 * blockDim.x + threadIdx.x] * 
s_u_vector[0 * blockDim.x + threadIdx.x]; 
   s_u_vector[0 * blockDim.x + threadIdx.x] *= 2.0f; 
   s_u_vector[1 * blockDim.x + threadIdx.x] *= 2.0f; 
   s_u_vector[2 * blockDim.x + threadIdx.x] *= 2.0f; 
   s_u_vector[3 * blockDim.x + threadIdx.x] *= -0.6666666666667f; 
   s_u_vector[4 * blockDim.x + threadIdx.x] *= -1.3333333333f; 
   s_u_vector[5 * blockDim.x + threadIdx.x] *= 0.444444444f*l_vector[0][0]; 
   s_u_vector[6 * blockDim.x + threadIdx.x] *= 1.11111111111f*l_vector[0][1]; 
   s_u_vector[7 * blockDim.x + threadIdx.x] *= -0.25f; 
   del -= 1.0f; 
   // Fill components of C_Matrix **************************Adjust for AF_V_M 
   CMatrix[0] = (AF_V_M[threadIdx.x] * ((AF_1*((2.0f*s_u_vector[3 * blockDim.x + 
threadIdx.x] * l_vector[1][0]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[1][0]))) 
    + (AF_2*((2.0f*s_u_vector[4 * blockDim.x + threadIdx.x] * (l_vector[0][0] - CB[0 
* blockDim.x + threadIdx.x])*l_vector[1][0]) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][0]))) 
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    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][0]) + (del*s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[1][0]))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * blockDim.x)]); 
   CMatrix[1] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
(l_vector[1][0] + l_vector[1][1] + (2.0f*l_vector[0][0] * CB[2 * blockDim.x + threadIdx.x]))) + (s_u_vector[5 * blockDim.x 
+ threadIdx.x] * l_vector[1][0] * l_vector[1][1]))) 
    + (AF_2*((2.0f*s_u_vector[2 * blockDim.x + threadIdx.x]) + (s_u_vector[4 * 
blockDim.x + threadIdx.x] * (((l_vector[0][0] - CB[0 * blockDim.x + threadIdx.x])*l_vector[1][1]) 
     + ((l_vector[0][0] - CB[1 * blockDim.x + threadIdx.x])*l_vector[1][0]) + 
(2.0f*l_vector[0][1] * CB[2 * blockDim.x + threadIdx.x]))) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][1]))) 
    + (AF_k*((del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][1]) + (2.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + threadIdx.x]))) 
     + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][1]))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)]); 
   CMatrix[2] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
(l_vector[1][0] + l_vector[1][2] + (2.0f*l_vector[0][0] * CB[1 * blockDim.x + threadIdx.x]))) + (s_u_vector[5 * blockDim.x 
+ threadIdx.x] * l_vector[1][0] * l_vector[1][2]))) 
    + (AF_2*((2.0f*s_u_vector[2 * blockDim.x + threadIdx.x]) + (s_u_vector[4 * 
blockDim.x + threadIdx.x] * (((l_vector[0][0] - CB[0 * blockDim.x + threadIdx.x])*l_vector[1][2]) 
     + ((l_vector[0][0] - CB[2 * blockDim.x + threadIdx.x])*l_vector[1][0]) + 
(2.0f*l_vector[0][1] * CB[1 * blockDim.x + threadIdx.x]))) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][2]))) 
    + (AF_k*((del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][2]) + (2.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * CB[1 * blockDim.x + threadIdx.x]))) 
     + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[1][2]))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[3] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
(l_vector[2][0] - (2.0f*l_vector[0][0] * CB[3 * blockDim.x + threadIdx.x]))) + (s_u_vector[5 * blockDim.x + threadIdx.x] * 
l_vector[1][0] * l_vector[2][0]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][0] * 
(l_vector[0][0] - CB[0 * blockDim.x + threadIdx.x])) - (CB[3 * blockDim.x + threadIdx.x] * l_vector[1][0]) - 
(2.0f*l_vector[0][1] * CB[3 * blockDim.x + threadIdx.x]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[2][0]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[2][0]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[2][0]) - 
    (2.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[4] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[2][1]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[2][1]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][1] * 
(l_vector[0][0] - CB[0 * blockDim.x + threadIdx.x])) - (CB[4 * blockDim.x + threadIdx.x] * l_vector[1][0]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[2][1]))) 
    + (AF_k*((s_u_vector[7 * blockDim.x + threadIdx.x] * del*l_vector[1][0] * 
l_vector[2][1]) + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[2][1]))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[5] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[2][2]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[2][2]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][2] * 
(l_vector[0][0] - CB[0 * blockDim.x + threadIdx.x])) - (CB[5 * blockDim.x + threadIdx.x] * l_vector[1][0]))) 
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     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][0] * 
l_vector[2][2]))) 
    + (AF_k*((s_u_vector[7 * blockDim.x + threadIdx.x] * del*l_vector[1][0] * 
l_vector[2][2]) + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][0] * l_vector[2][2]))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)]); 
   CMatrix[6] = (AF_V_M[threadIdx.x] * ((AF_1*((2.0f*s_u_vector[3 * blockDim.x + 
threadIdx.x] * l_vector[1][1]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[1][1]))) 
    + (AF_2*((2.0f*s_u_vector[4 * blockDim.x + threadIdx.x] * (l_vector[0][0] - CB[1 
* blockDim.x + threadIdx.x])*l_vector[1][1]) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[1][1]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[1][1]) + (del*s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[1][1]))))) 
    + (AF_E*AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)]); 
   CMatrix[7] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
(l_vector[1][1] + l_vector[1][2] + (2.0f*l_vector[0][0] * CB[0 * blockDim.x + threadIdx.x]))) + (s_u_vector[5 * blockDim.x 
+ threadIdx.x] * l_vector[1][1] * l_vector[1][2]))) 
    + (AF_2*((2.0f*s_u_vector[2 * blockDim.x + threadIdx.x]) + (s_u_vector[4 * 
blockDim.x + threadIdx.x] * (((l_vector[0][0] - CB[1 * blockDim.x + threadIdx.x])*l_vector[1][2]) 
     + ((l_vector[0][0] - CB[2 * blockDim.x + threadIdx.x])*l_vector[1][1]) + 
(2.0f*l_vector[0][1] * CB[0 * blockDim.x + threadIdx.x]))) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[1][2]))) 
    + (AF_k*((del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[1][2]) + (2.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * CB[0 * blockDim.x + threadIdx.x]))) 
     + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[1][2]))))) 
    + (AF_E*AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[8] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[2][0]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[2][0]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][0] * 
(l_vector[0][0] - CB[1 * blockDim.x + threadIdx.x])) - (CB[3 * blockDim.x + threadIdx.x] * l_vector[1][1]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[2][0]))) 
    + (AF_k*((s_u_vector[7 * blockDim.x + threadIdx.x] * del*l_vector[1][1] * 
l_vector[2][0]) + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[2][0]))))) 
    + (AF_E*AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[9] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] * 
(l_vector[2][1] - (2.0f*l_vector[0][0] * CB[4 * blockDim.x + threadIdx.x]))) + (s_u_vector[5 * blockDim.x + threadIdx.x] * 
l_vector[1][1] * l_vector[2][1]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][1] * 
(l_vector[0][0] - CB[1 * blockDim.x + threadIdx.x])) - (CB[4 * blockDim.x + threadIdx.x] * l_vector[1][1]) - 
(2.0f*l_vector[0][1] * CB[4 * blockDim.x + threadIdx.x]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[2][1]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[2][1]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[2][1]) - 
    (2.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[10] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[2][2]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[2][2]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][2] * 
(l_vector[0][0] - CB[1 * blockDim.x + threadIdx.x])) - (CB[5 * blockDim.x + threadIdx.x] * l_vector[1][1]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][1] * 
l_vector[2][2]))) 
    + (AF_k*((s_u_vector[7 * blockDim.x + threadIdx.x] * del*l_vector[1][1] * 
l_vector[2][2]) + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][1] * l_vector[2][2]))))) 
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    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)]); 
   CMatrix[11] = (AF_V_M[threadIdx.x] * ((AF_1*((2.0f*s_u_vector[3 * blockDim.x + 
threadIdx.x] * l_vector[1][2]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[1][2]))) 
    + (AF_2*((2.0f*s_u_vector[4 * blockDim.x + threadIdx.x] * (l_vector[0][0] - CB[2 
* blockDim.x + threadIdx.x])*l_vector[1][2]) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][2] * 
l_vector[1][2]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][2] * 
l_vector[1][2]) + (del*s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[1][2]))))) 
    + (AF_E*AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[12] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[2][0]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[2][0]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][0] * 
(l_vector[0][0] - CB[2 * blockDim.x + threadIdx.x])) - (CB[3 * blockDim.x + threadIdx.x] * l_vector[1][2]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][2] * 
l_vector[2][0]))) 
    + (AF_k*((s_u_vector[7 * blockDim.x + threadIdx.x] * del*l_vector[1][2] * 
l_vector[2][0]) + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[2][0]))))) 
    + (AF_E*AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (2 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[13] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[2][1]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[2][1]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][1] * 
(l_vector[0][0] - CB[2 * blockDim.x + threadIdx.x])) - (CB[4 * blockDim.x + threadIdx.x] * l_vector[1][2]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][2] * 
l_vector[2][1]))) 
    + (AF_k*((s_u_vector[7 * blockDim.x + threadIdx.x] * del*l_vector[1][2] * 
l_vector[2][1]) + (s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[2][1]))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (2 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[14] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* (l_vector[2][2] - (2.0f*l_vector[0][0] * CB[5 * blockDim.x + threadIdx.x]))) + (s_u_vector[5 * blockDim.x + threadIdx.x] 
* l_vector[1][2] * l_vector[2][2]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((l_vector[2][2] * 
(l_vector[0][0] - CB[2 * blockDim.x + threadIdx.x])) - (CB[5 * blockDim.x + threadIdx.x] * l_vector[1][2]) - 
(2.0f*l_vector[0][1] * CB[5 * blockDim.x + threadIdx.x]))) 
     + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[1][2] * 
l_vector[2][2]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[1][2] * 
l_vector[2][2]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[1][2] * l_vector[2][2]) - 
    (2.0f*s_u_vector[0 * blockDim.x + threadIdx.x] * CB[5 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[15] = (AF_V_M[threadIdx.x] * ((AF_1*((-s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[0][0] * CB[0 * blockDim.x + threadIdx.x]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[2][0] * 
l_vector[2][0]))) 
    + (AF_2*((-s_u_vector[4 * blockDim.x + threadIdx.x] * ((2.0f*CB[3 * blockDim.x 
+ threadIdx.x] * l_vector[2][0]) + (l_vector[0][1] * CB[0 * blockDim.x + threadIdx.x]))) + 
    (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[2][0] * l_vector[2][0]) - 
s_u_vector[2 * blockDim.x + threadIdx.x])) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[2][0] * 
l_vector[2][0]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[2][0] * l_vector[2][0]) - 
    (s_u_vector[0 * blockDim.x + threadIdx.x] * CB[0 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[16] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[0][0] * CB[5 * blockDim.x + threadIdx.x]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[2][1] * 
l_vector[2][0]))) 
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    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((-CB[4 * blockDim.x + 
threadIdx.x] * l_vector[2][0]) - (CB[3 * blockDim.x + threadIdx.x] * l_vector[2][1]) + (l_vector[0][1] * CB[5 * blockDim.x 
+ threadIdx.x]))) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[2][1] * l_vector[2][0]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[2][1] * 
l_vector[2][0]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[2][1] * l_vector[2][0]) + 
    (s_u_vector[0 * blockDim.x + threadIdx.x] * CB[5 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[17] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[0][0] * CB[4 * blockDim.x + threadIdx.x]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[2][2] * 
l_vector[2][0]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((-CB[5 * blockDim.x + 
threadIdx.x] * l_vector[2][0]) - (CB[3 * blockDim.x + threadIdx.x] * l_vector[2][2]) + (l_vector[0][1] * CB[4 * blockDim.x 
+ threadIdx.x]))) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[2][2] * l_vector[2][0]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[2][2] * 
l_vector[2][0]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[2][2] * l_vector[2][0]) + 
    (s_u_vector[0 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (1 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[18] = (AF_V_M[threadIdx.x] * ((AF_1*((-s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[0][0] * CB[1 * blockDim.x + threadIdx.x]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[2][1] * 
l_vector[2][1]))) 
    + (AF_2*((-s_u_vector[4 * blockDim.x + threadIdx.x] * ((2.0f*CB[4 * blockDim.x 
+ threadIdx.x] * l_vector[2][1]) + (l_vector[0][1] * CB[1 * blockDim.x + threadIdx.x]))) + 
    (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[2][1] * l_vector[2][1]) - 
s_u_vector[2 * blockDim.x + threadIdx.x])) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[2][1] * 
l_vector[2][1]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[2][1] * l_vector[2][1]) - 
    (s_u_vector[0 * blockDim.x + threadIdx.x] * CB[1 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[19] = (AF_V_M[threadIdx.x] * ((AF_1*((s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[0][0] * CB[3 * blockDim.x + threadIdx.x]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[2][2] * 
l_vector[2][1]))) 
    + (AF_2*((s_u_vector[4 * blockDim.x + threadIdx.x] * ((-CB[5 * blockDim.x + 
threadIdx.x] * l_vector[2][1]) - (CB[4 * blockDim.x + threadIdx.x] * l_vector[2][2]) + (l_vector[0][1] * CB[3 * blockDim.x 
+ threadIdx.x]))) + (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[2][2] * l_vector[2][1]))) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[2][2] * 
l_vector[2][1]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[2][2] * l_vector[2][1]) + 
    (s_u_vector[0 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (2 * blockDim.x)]); 
   CMatrix[20] = (AF_V_M[threadIdx.x] * ((AF_1*((-s_u_vector[3 * blockDim.x + threadIdx.x] 
* l_vector[0][0] * CB[2 * blockDim.x + threadIdx.x]) + (s_u_vector[5 * blockDim.x + threadIdx.x] * l_vector[2][2] * 
l_vector[2][2]))) 
    + (AF_2*((-s_u_vector[4 * blockDim.x + threadIdx.x] * ((2.0f*CB[5 * blockDim.x 
+ threadIdx.x] * l_vector[2][2]) + (l_vector[0][1] * CB[2 * blockDim.x + threadIdx.x]))) + 
    (s_u_vector[6 * blockDim.x + threadIdx.x] * l_vector[2][2] * l_vector[2][2]) - 
s_u_vector[2 * blockDim.x + threadIdx.x])) 
    + (AF_k*((s_u_vector[8 * blockDim.x + threadIdx.x] * l_vector[2][2] * 
l_vector[2][2]) + (del*((s_u_vector[7 * blockDim.x + threadIdx.x] * l_vector[2][2] * l_vector[2][2]) - 
    (s_u_vector[0 * blockDim.x + threadIdx.x] * CB[2 * blockDim.x + 
threadIdx.x]))))))) 
    + (AF_E*AF_l[threadIdx.x + (0 * blockDim.x)] * AF_l[threadIdx.x + (0 * 
blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)] * AF_l[threadIdx.x + (1 * blockDim.x)]); 
   s_u_vector[3 * blockDim.x + threadIdx.x] = s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[0][0] * 0.5f; 
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   s_u_vector[4 * blockDim.x + threadIdx.x] = s_u_vector[4 * blockDim.x + threadIdx.x] * 
l_vector[0][1] * 0.5f; 
   del *= AF_k; 
   //r_strain is actually stress 
   r_strain[0] = (AF_V_M[threadIdx.x] * ((AF_1*(s_u_vector[1 * blockDim.x + threadIdx.x] + 
(s_u_vector[3 * blockDim.x + threadIdx.x] * l_vector[1][0]))) 
    + (AF_2*((s_u_vector[2 * blockDim.x + threadIdx.x] * (l_vector[0][0] - CB[0 * 
blockDim.x + threadIdx.x])) + (s_u_vector[4 * blockDim.x + threadIdx.x] * l_vector[1][0]))) + (del*l_vector[1][0]))) 
    + (AF_V*(fib_force*AF_l[0 * blockDim.x + threadIdx.x] * AF_l[0 * blockDim.x + 
threadIdx.x])); 
   r_strain[1] = (AF_V_M[threadIdx.x] * ((AF_1*(s_u_vector[1 * blockDim.x + threadIdx.x] + 
(s_u_vector[3 * blockDim.x + threadIdx.x] * l_vector[1][1]))) 
    + (AF_2*((s_u_vector[2 * blockDim.x + threadIdx.x] * (l_vector[0][0] - CB[1 * 
blockDim.x + threadIdx.x])) + (s_u_vector[4 * blockDim.x + threadIdx.x] * l_vector[1][1]))) + (del*l_vector[1][0]))) 
    + (AF_V*(fib_force*AF_l[1 * blockDim.x + threadIdx.x] * AF_l[1 * blockDim.x + 
threadIdx.x])); 
   r_strain[2] = (AF_V_M[threadIdx.x] * ((AF_1*(s_u_vector[1 * blockDim.x + threadIdx.x] + 
(s_u_vector[3 * blockDim.x + threadIdx.x] * l_vector[1][2]))) 
    + (AF_2*((s_u_vector[2 * blockDim.x + threadIdx.x] * (l_vector[0][0] - CB[2 * 
blockDim.x + threadIdx.x])) + (s_u_vector[4 * blockDim.x + threadIdx.x] * l_vector[1][2]))) + (del*l_vector[1][0]))) 
    + (AF_V*(fib_force*AF_l[2 * blockDim.x + threadIdx.x] * AF_l[2 * blockDim.x + 
threadIdx.x])); 
   r_strain[3] = ((AF_V_M[threadIdx.x] * ((AF_1*s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[2][0]) 
    + (AF_2*((-s_u_vector[2 * blockDim.x + threadIdx.x] * CB[3 * blockDim.x + 
threadIdx.x]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * l_vector[2][0]))) + (del*l_vector[2][0]))) 
    + (AF_V*(fib_force*AF_l[1 * blockDim.x + threadIdx.x] * AF_l[2 * blockDim.x + 
threadIdx.x]))); 
   r_strain[4] = ((AF_V_M[threadIdx.x] * ((AF_1*s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[2][1]) 
    + (AF_2*((-s_u_vector[2 * blockDim.x + threadIdx.x] * CB[4 * blockDim.x + 
threadIdx.x]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * l_vector[2][1]))) + (del*l_vector[2][1]))) 
    + (AF_V*(fib_force*AF_l[0 * blockDim.x + threadIdx.x] * AF_l[2 * blockDim.x + 
threadIdx.x]))); 
   r_strain[5] = ((AF_V_M[threadIdx.x] * ((AF_1*s_u_vector[3 * blockDim.x + threadIdx.x] * 
l_vector[2][2]) 
    + (AF_2*((-s_u_vector[2 * blockDim.x + threadIdx.x] * CB[5 * blockDim.x + 
threadIdx.x]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * l_vector[2][2]))) + (del*l_vector[2][2]))) 
    + (AF_V*(fib_force*AF_l[0 * blockDim.x + threadIdx.x] * AF_l[1 * blockDim.x + 
threadIdx.x]))); 
   for (int i = 0; i < Ssize; i++) s_u_vector[i*blockDim.x + threadIdx.x] = r_strain[i]; 
 
   break; 
  case(13): // Posterior elements 
      // CMatrix is symmetric, so only half of the matrix is stored 
   del = E_post / ((1.0f + nu_post)*(1.0f - (2.0f*nu_post))); 
   CMatrix[0] = del*(1.0f - nu_post); 
   CMatrix[1] = del*nu_post; 
   CMatrix[2] = del*nu_post; 
   CMatrix[3] = 0; 
   CMatrix[4] = 0; 
   CMatrix[5] = 0; 
   CMatrix[6] = del*(1.0f - nu_post); 
   CMatrix[7] = del*nu_post; 
   CMatrix[8] = 0; 
   CMatrix[9] = 0; 
   CMatrix[10] = 0; 
   CMatrix[11] = del*(1.0f - nu_post); 
   CMatrix[12] = 0; 
   CMatrix[13] = 0; 
   CMatrix[14] = 0; 
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   CMatrix[15] = del*(0.5f - nu_post); 
   CMatrix[16] = 0; 
   CMatrix[17] = 0; 
   CMatrix[18] = del*(0.5f - nu_post); 
   CMatrix[19] = 0; 
   CMatrix[20] = del*(0.5f - nu_post); 
 
   //Adjust strain for shear strain 
   r_strain[3] *= 2.0f; 
   r_strain[4] *= 2.0f; 
   r_strain[5] *= 2.0f; 
   { 
    for (int i = 0; i < Ssize; i++) { 
     sum = 0.0f; 
     // below Cmatrix diagonal (columns) 
     kind = i; 
     for (int k = 0; k < i; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind += C_cols - k - 1; 
     } 
     // above CMatrix diagonal (rows) 
     kind = i*C_cols - i*(i - 1) / 2; 
     for (int k = i; k < C_cols; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind++; 
     } 
     s_u_vector[i*blockDim.x + threadIdx.x] = sum; 
    } 
   } 
   break; 
  case(14): // Cartilage Endplate 
      // CMatrix is symmetric, so only half of the matrix is stored 
   del = E_end / ((1.0f + nu_end)*(1.0f - (2.0f*nu_end))); 
   CMatrix[0] = del*(1.0f - nu_end); 
   CMatrix[1] = del*nu_end; 
   CMatrix[2] = del*nu_end; 
   CMatrix[3] = 0; 
   CMatrix[4] = 0; 
   CMatrix[5] = 0; 
   CMatrix[6] = del*(1.0f - nu_end); 
   CMatrix[7] = del*nu_end; 
   CMatrix[8] = 0; 
   CMatrix[9] = 0; 
   CMatrix[10] = 0; 
   CMatrix[11] = del*(1.0f - nu_end); 
   CMatrix[12] = 0; 
   CMatrix[13] = 0; 
   CMatrix[14] = 0; 
   CMatrix[15] = del*(0.5f - nu_end); 
   CMatrix[16] = 0; 
   CMatrix[17] = 0; 
   CMatrix[18] = del*(0.5f - nu_end); 
   CMatrix[19] = 0; 
   CMatrix[20] = del*(0.5f - nu_end); 
 
   //Adjust strain for shear strain 
   r_strain[3] *= 2.0f; 
   r_strain[4] *= 2.0f; 
   r_strain[5] *= 2.0f; 
   { 
    for (int i = 0; i < Ssize; i++) { 
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     sum = 0.0f; 
     // below Cmatrix diagonal (columns) 
     kind = i; 
     for (int k = 0; k < i; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind += C_cols - k - 1; 
     } 
     // above CMatrix diagonal (rows) 
     kind = i*C_cols - i*(i - 1) / 2; 
     for (int k = i; k < C_cols; k++) { 
      sum += CMatrix[kind] * r_strain[k]; 
      kind++; 
     } 
     s_u_vector[i*blockDim.x + threadIdx.x] = sum; 
    } 
   } 
   break; 
  default: 
   break; 
  } 
 
  AF_V_M[threadIdx.x] = volumes[ind]; 
 
  // Compute CBLpart1 and store in register memory using symmetric matrix indexing 
  { 
   for (int i = 0; i < C_cols; i++) { 
    for (int j = 0; j < tet_element_dof; j++) { 
     sum = 0.0f; 
     // below Cmatrix diagonal (columns) 
     kind = i; 
     for (int k = 0; k < i; k++) { 
      sum += CMatrix[kind] * BL[k*tet_element_dof + j]; 
      kind += C_cols - k - 1; 
     } 
     // above CMatrix diagonal (rows) 
     kind = i*C_cols - i*(i - 1) / 2; 
     for (int k = i; k < C_cols; k++) { 
      sum += CMatrix[kind] * BL[k*tet_element_dof + j]; 
      kind++; 
     } 
     CB[((i*tet_element_dof + j)*blockDim.x) + threadIdx.x] = sum; 
    } 
   } 
  } 
  // Compute KL 
  { 
   for (int i = 0; i < tet_element_dof; i++) { 
    for (int j = i; j < tet_element_dof; j++) { // j=i for sym 
     sum = 0.0f; 
     kind = dof_ind[(ind*ematrix_ref_size) + i*tet_element_dof + j]; 
     for (int k = 0; k < C_cols; k++) 
      sum += BL[k*tet_element_dof + i] * CB[((k*tet_element_dof + 
j)*blockDim.x) + threadIdx.x]; 
     sum *= AF_V_M[threadIdx.x]; 
     atomicAdd(&K_matrix[kind], sum); 
    } 
   } 
  } 
  // Also calculate nodal force vector for each element 
  { 
   for (int j = 0; j < tet_element_dof; j++) { 
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    sum = 0.0f; 
    for (int k = 0; k < C_cols; k++) 
     sum += BL[k*tet_element_dof + j] * s_u_vector[k*blockDim.x + 
threadIdx.x]; 
    b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (j*blockDim.x) + 
threadIdx.x] = sum*AF_V_M[threadIdx.x]; 
   } 
  } 
  // Same procedure to calculate KNL 
  // Compute BNLT*S 
  { 
   BL[0] = (s_u_vector[0 * blockDim.x + threadIdx.x] * r_IntDeriv[0]) + (s_u_vector[5 * 
blockDim.x + threadIdx.x] * r_IntDeriv[1]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[2]); 
   BL[1] = (s_u_vector[5 * blockDim.x + threadIdx.x] * r_IntDeriv[0]) + (s_u_vector[1 * 
blockDim.x + threadIdx.x] * r_IntDeriv[1]) + (s_u_vector[3 * blockDim.x + threadIdx.x] * r_IntDeriv[2]); 
   BL[2] = (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[0]) + (s_u_vector[3 * 
blockDim.x + threadIdx.x] * r_IntDeriv[1]) + (s_u_vector[2 * blockDim.x + threadIdx.x] * r_IntDeriv[2]); 
   BL[3] = (s_u_vector[0 * blockDim.x + threadIdx.x] * r_IntDeriv[3]) + (s_u_vector[5 * 
blockDim.x + threadIdx.x] * r_IntDeriv[4]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[5]); 
   BL[4] = (s_u_vector[5 * blockDim.x + threadIdx.x] * r_IntDeriv[3]) + (s_u_vector[1 * 
blockDim.x + threadIdx.x] * r_IntDeriv[4]) + (s_u_vector[3 * blockDim.x + threadIdx.x] * r_IntDeriv[5]); 
   BL[5] = (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[3]) + (s_u_vector[3 * 
blockDim.x + threadIdx.x] * r_IntDeriv[4]) + (s_u_vector[2 * blockDim.x + threadIdx.x] * r_IntDeriv[5]); 
   BL[6] = (s_u_vector[0 * blockDim.x + threadIdx.x] * r_IntDeriv[6]) + (s_u_vector[5 * 
blockDim.x + threadIdx.x] * r_IntDeriv[7]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[8]); 
   BL[7] = (s_u_vector[5 * blockDim.x + threadIdx.x] * r_IntDeriv[6]) + (s_u_vector[1 * 
blockDim.x + threadIdx.x] * r_IntDeriv[7]) + (s_u_vector[3 * blockDim.x + threadIdx.x] * r_IntDeriv[8]); 
   BL[8] = (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[6]) + (s_u_vector[3 * 
blockDim.x + threadIdx.x] * r_IntDeriv[7]) + (s_u_vector[2 * blockDim.x + threadIdx.x] * r_IntDeriv[8]); 
   BL[9] = (s_u_vector[0 * blockDim.x + threadIdx.x] * r_IntDeriv[9]) + (s_u_vector[5 * 
blockDim.x + threadIdx.x] * r_IntDeriv[10]) + (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[11]); 
   BL[10] = (s_u_vector[5 * blockDim.x + threadIdx.x] * r_IntDeriv[9]) + (s_u_vector[1 * 
blockDim.x + threadIdx.x] * r_IntDeriv[10]) + (s_u_vector[3 * blockDim.x + threadIdx.x] * r_IntDeriv[11]); 
   BL[11] = (s_u_vector[4 * blockDim.x + threadIdx.x] * r_IntDeriv[9]) + (s_u_vector[3 * 
blockDim.x + threadIdx.x] * r_IntDeriv[10]) + (s_u_vector[2 * blockDim.x + threadIdx.x] * r_IntDeriv[11]); 
  } 
  { 
   // Compute KNL (using CB as intermediary) and add to KL 
   CB[(0 * blockDim.x) + threadIdx.x] = ((BL[0] * r_IntDeriv[0]) + (BL[1] * r_IntDeriv[1]) + 
(BL[2] * r_IntDeriv[2]))*AF_V_M[threadIdx.x]; 
   CB[(1 * blockDim.x) + threadIdx.x] = ((BL[0] * r_IntDeriv[3]) + (BL[1] * r_IntDeriv[4]) + 
(BL[2] * r_IntDeriv[5]))*AF_V_M[threadIdx.x];//=4 
   CB[(2 * blockDim.x) + threadIdx.x] = ((BL[0] * r_IntDeriv[6]) + (BL[1] * r_IntDeriv[7]) + 
(BL[2] * r_IntDeriv[8]))*AF_V_M[threadIdx.x];//=8 
   CB[(3 * blockDim.x) + threadIdx.x] = ((BL[0] * r_IntDeriv[9]) + (BL[1] * r_IntDeriv[10]) + 
(BL[2] * r_IntDeriv[11]))*AF_V_M[threadIdx.x];//=12 
   CB[(5 * blockDim.x) + threadIdx.x] = ((BL[3] * r_IntDeriv[3]) + (BL[4] * r_IntDeriv[4]) + 
(BL[5] * r_IntDeriv[5]))*AF_V_M[threadIdx.x]; 
   CB[(6 * blockDim.x) + threadIdx.x] = ((BL[3] * r_IntDeriv[6]) + (BL[4] * r_IntDeriv[7]) + 
(BL[5] * r_IntDeriv[8]))*AF_V_M[threadIdx.x];//=9 
   CB[(7 * blockDim.x) + threadIdx.x] = ((BL[3] * r_IntDeriv[9]) + (BL[4] * r_IntDeriv[10]) + 
(BL[5] * r_IntDeriv[11]))*AF_V_M[threadIdx.x];//=13 
   CB[(10 * blockDim.x) + threadIdx.x] = ((BL[6] * r_IntDeriv[6]) + (BL[7] * r_IntDeriv[7]) + 
(BL[8] * r_IntDeriv[8]))*AF_V_M[threadIdx.x]; 
   CB[(11 * blockDim.x) + threadIdx.x] = ((BL[6] * r_IntDeriv[9]) + (BL[7] * r_IntDeriv[10]) + 
(BL[8] * r_IntDeriv[11]))*AF_V_M[threadIdx.x];//=14 
   CB[(15 * blockDim.x) + threadIdx.x] = ((BL[9] * r_IntDeriv[9]) + (BL[10] * r_IntDeriv[10]) 
+ (BL[11] * r_IntDeriv[11]))*AF_V_M[threadIdx.x]; 
 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 0]], CB[(0 * blockDim.x) + 
threadIdx.x]); 
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   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 3]], CB[(1 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 6]], CB[(2 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 9]], CB[(3 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 13]], CB[(0 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 16]], CB[(1 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 19]], CB[(2 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 22]], CB[(3 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 26]], CB[(0 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 29]], CB[(1 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 32]], CB[(2 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 35]], CB[(3 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 36]], CB[(1 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 39]], CB[(5 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 42]], CB[(6 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 45]], CB[(7 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 49]], CB[(1 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 52]], CB[(5 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 55]], CB[(6 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 58]], CB[(7 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 62]], CB[(1 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 65]], CB[(5 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 68]], CB[(6 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 71]], CB[(7 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 72]], CB[(2 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 75]], CB[(6 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 78]], CB[(10 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 81]], CB[(11 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 85]], CB[(2 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 88]], CB[(6 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 91]], CB[(10 * blockDim.x) + 
threadIdx.x]); 
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   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 94]], CB[(11 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 98]], CB[(2 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 101]], CB[(6 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 104]], CB[(10 * blockDim.x) + 
threadIdx.x]); 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 107]], CB[(11 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 108]], CB[(3 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 111]], CB[(7 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 114]], CB[(11 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 117]], CB[(15 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 121]], CB[(3 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 124]], CB[(7 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 127]], CB[(11 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 130]], CB[(15 * blockDim.x) + 
threadIdx.x]); 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 134]], CB[(3 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 137]], CB[(7 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   //atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 140]], CB[(11 * blockDim.x) + 
threadIdx.x]); // remove for sym 
   atomicAdd(&K_matrix[dof_ind[(ind*ematrix_ref_size) + 143]], CB[(15 * blockDim.x) + 
threadIdx.x]);  
  } 
 } 
 // Calculate stiffness matrix for ligaments 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; (ind >= solid_element_count) && (ind < 
(solid_element_count + lig_count)); ind += blockDim.x * gridDim.x){ 
 else if ((type_ind[ind] == 25)) 
 { 
  register float lig_linstiffness; 
  register float lig_nonlinstiffness; 
  register float r_lig_cosines[global_dof]; 
  register float r_lig_force; 
  register float r_lig_E; 
  register float r_lig_lengths0 = lig_lengths0[ind]; 
  register float r_lengths; 
  register float r_lig_disp; 
  register float x_diff = 0; 
  register float y_diff = 0; 
  register float z_diff = 0; 
  register float sum = 0.0f; 
  register int vb_node = 0; 
  register int ground_node = 0; 
  // Calculate the current lig length 
  vb_node = d_element_ind[(ind*nodes_per_tet)]; 
  ground_node = d_element_ind[(ind*nodes_per_tet) + 1]; 
 
  x_diff = node_loc[ground_node*global_dof] - node_loc[vb_node*global_dof]; 
  y_diff = node_loc[ground_node*global_dof + 1] - node_loc[vb_node*global_dof + 1]; 
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  z_diff = node_loc[ground_node*global_dof + 2] - node_loc[vb_node*global_dof + 2]; 
 
  r_lig_cosines[0] = x_diff / r_lig_lengths0; 
  r_lig_cosines[1] = y_diff / r_lig_lengths0; 
  r_lig_cosines[2] = z_diff / r_lig_lengths0; 
 
  r_lengths = (x_diff*x_diff) + (y_diff*y_diff) + (z_diff*z_diff); 
  r_lig_disp = sqrtf(r_lengths) - r_lig_lengths0; 
 
  r_lig_E = 0.0f; 
  r_lig_force = 0.0f; 
  switch (body_ind[ind]) 
  { 
  case(5): //ALL 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 0.27f)) { 
    r_lig_E = 44.0741f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
   } 
   else if ((r_lig_disp >= 0.27f) && (r_lig_disp < 0.51f)) { 
    r_lig_E = 202.4167f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.27f)*r_lig_E) + (11.9f / 4.0f); 
   } 
   else if ((r_lig_disp >= 0.51f) && (r_lig_disp < 0.92f)) { 
    r_lig_E = 280.2439f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.51f)*r_lig_E) + (60.48f / 4.0f); 
   } 
   else { 
    r_lig_E = 1091.375f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.92f)*r_lig_E) + (175.38f / 4.0f); 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  case(6): // PLL 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 0.9f)) { 
    r_lig_E = 0.6667f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
   } 
   else if ((r_lig_disp >= 0.9f) && (r_lig_disp < 1.0f)) { 
    r_lig_E = 12.0f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.9f)*r_lig_E) + (0.6f / 4.0f); 
   } 
   else if ((r_lig_disp >= 1.0f) && (r_lig_disp < 1.2f)) { 
    r_lig_E = 66.0f / 4.0f; 
    r_lig_force = ((r_lig_disp - 1.0f)*r_lig_E) + (1.8f / 4.0f); 
   } 
   else if ((r_lig_disp >= 1.2f) && (r_lig_disp < 1.4f)) { 
    r_lig_E = 345.0f / 4.0f; 
    r_lig_force = ((r_lig_disp - 1.2f)*r_lig_E) + (15.0f / 4.0f); 
   } 
   else { 
    r_lig_E = 300.0f / 4.0f; 
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    r_lig_force = ((r_lig_disp - 1.4f)*r_lig_E) + (84.0f / 4.0f); 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  case(7): //SSL 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 7.9987f)) { 
    r_lig_E = 1.499994f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
   } 
   else if ((r_lig_disp >= 7.9987f) && (r_lig_disp < 9.9984f)) { 
    r_lig_E = 3.179977f; 
    r_lig_force = ((r_lig_disp - 7.9987f)*r_lig_E) + 11.998f; 
   } 
   else if ((r_lig_disp >= 9.9984f) && (r_lig_disp < 13.998f)) { 
    r_lig_E = 20.39879f; 
    r_lig_force = ((r_lig_disp - 9.9984f)*r_lig_E) + 18.357f; 
   } 
   else { 
    r_lig_E = 49.95609f; 
    r_lig_force = ((r_lig_disp - 13.998f)*r_lig_E) + 99.944f; 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  case(8): // ISL 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 2.155f)) { 
    r_lig_E = 0.846088f / 4.0f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
   } 
   else if ((r_lig_disp >= 2.155f) && (r_lig_disp < 3.1232f)) { 
    r_lig_E = 0.885478f / 4.0f; 
    r_lig_force = ((r_lig_disp - 2.155f)*r_lig_E) + (1.82332f / 4.0f); 
   } 
   else if ((r_lig_disp >= 3.1232f) && (r_lig_disp < 4.6848f)) { 
    r_lig_E = 8.820031f / 4.0f; 
    r_lig_force = ((r_lig_disp - 3.1232f)*r_lig_E) + (2.68064f / 4.0f); 
   } 
   else { 
    r_lig_E = 14.42259f / 4.0f; 
    r_lig_force = ((r_lig_disp - 4.6848f)*r_lig_E) + (16.454f / 4.0f); 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  case(9): // TL 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 5.069f)) { 
    r_lig_E = 0.300059f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
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   } 
   else if ((r_lig_disp >= 5.069f) && (r_lig_disp < 6.489f)) { 
    r_lig_E = 3.209155f; 
    r_lig_force = ((r_lig_disp - 5.069f)*r_lig_E) + 1.521f; 
   } 
   else { 
    r_lig_E = 16.08076f; 
    r_lig_force = ((r_lig_disp - 6.489f)*r_lig_E) + 6.078f; 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  case(10): // LF (ligamentum flavum) 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 3.0f)) { 
    r_lig_E = 0.033333f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
   } 
   else if ((r_lig_disp >= 3.0f) && (r_lig_disp < 3.5f)) { 
    r_lig_E = 9.8f; 
    r_lig_force = ((r_lig_disp - 3.0f)*r_lig_E) + 0.1f; 
   } 
   else if ((r_lig_disp >= 3.5f) && (r_lig_disp < 4.5f)) { 
    r_lig_E = 5.0f; 
    r_lig_force = ((r_lig_disp - 3.5f)*r_lig_E) + 5.0f; 
   } 
   else if ((r_lig_disp >= 4.5f) && (r_lig_disp < 5.0f)) { 
    r_lig_E = 30.0f; 
    r_lig_force = ((r_lig_disp - 4.5f)*r_lig_E) + 10.0f; 
   } 
   else { 
    r_lig_E = 70.0f; 
    r_lig_force = ((r_lig_disp - 5.0f)*r_lig_E) + 25.0f; 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  case(11): // FL (Facet capsulary ligament) 
   if (r_lig_disp < -0.000001f) { 
    r_lig_E = 0.0f; 
    r_lig_disp = 0.0f; 
    r_lig_force = 0.0f; 
   } 
   else if ((r_lig_disp >= -0.000001f) && (r_lig_disp < 1.0f)) { 
    r_lig_E = 0.1f; 
    r_lig_force = ((r_lig_disp - 0.0f)*r_lig_E) + 0.0f; 
   } 
   else if ((r_lig_disp >= 1.0f) && (r_lig_disp < 2.0f)) { 
    r_lig_E = 2.9f; 
    r_lig_force = ((r_lig_disp - 1.0f)*r_lig_E) + 0.1f; 
   } 
   else if ((r_lig_disp >= 2.0f) && (r_lig_disp < 2.4f)) { 
    r_lig_E = 7.5f; 
    r_lig_force = ((r_lig_disp - 2.0f)*r_lig_E) + 3.0f; 
   } 
   else if ((r_lig_disp >= 2.4f) && (r_lig_disp < 2.7f)) { 
    r_lig_E = 30.0f; 
    r_lig_force = ((r_lig_disp - 2.4f)*r_lig_E) + 6.0f; 
   } 
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   else { 
    r_lig_E = 33.3333f; 
    r_lig_force = ((r_lig_disp - 2.7f)*r_lig_E) + 15.0f; 
   } 
   lig_linstiffness = r_lig_E; 
   break; 
  default: 
   break; 
  } 
 
  lig_nonlinstiffness = r_lig_force / r_lig_lengths0; 
  // Ligament linear stiffness matrix ***SYMMETRICAL*** 
  sum = (lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[0]) + lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 0]], sum); 
  sum = lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[1]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 1]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 6]], sum); // remove for sym 
  sum = lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 2]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 12]], sum); // remove for sym 
  sum = (-1.0f*lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[0]) - lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 3]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 18]], sum); // remove for sym 
  sum = -1.0f*lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[1]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 4]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 24]], sum); // remove for sym 
  sum = -1.0f*lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 5]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 30]], sum); // remove for sym 
  sum = (lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[1]) + lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 7]], sum); 
  sum = lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 8]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 13]], sum); // remove for sym 
  sum = -1.0f*lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[1]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 9]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 19]], sum); // remove for sym 
  sum = (-1.0f*lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[1]) - lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 10]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 25]], sum); // remove for sym 
  sum = -1.0f*lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 11]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 31]], sum); // remove for sym 
  sum = (lig_linstiffness*r_lig_cosines[2] * r_lig_cosines[2]) + lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 14]], sum); 
  sum = -1.0f*lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 15]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 20]], sum); // remove for sym 
  sum = -1.0f*lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 16]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 26]], sum); // remove for sym 
  sum = (-1.0f*lig_linstiffness*r_lig_cosines[2] * r_lig_cosines[2]) - lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 17]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 32]], sum); // remove for sym 
  sum = (lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[0]) + lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 21]], sum); 
  sum = lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[1]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 22]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 27]], sum); // remove for sym 
  sum = lig_linstiffness*r_lig_cosines[0] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 23]], sum); 
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  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 33]], sum); // remove for sym 
  sum = (lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[1]) + lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 28]], sum); 
  sum = lig_linstiffness*r_lig_cosines[1] * r_lig_cosines[2]; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 29]], sum); 
  //atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 34]], sum); // remove for sym 
  sum = (lig_linstiffness*r_lig_cosines[2] * r_lig_cosines[2]) + lig_nonlinstiffness; 
  atomicAdd(&K_matrix[dof_ind[ind*ematrix_ref_size + 35]], sum); 
 
  // ligament nodal force vector 
  b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (0 * blockDim.x) + threadIdx.x] = -r_lig_force * 
r_lig_cosines[0]; 
  b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (1 * blockDim.x) + threadIdx.x] = -r_lig_force * 
r_lig_cosines[1]; 
  b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (2 * blockDim.x) + threadIdx.x] = -r_lig_force * 
r_lig_cosines[2]; 
  b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (3 * blockDim.x) + threadIdx.x] = r_lig_force * 
r_lig_cosines[0]; 
  b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (4 * blockDim.x) + threadIdx.x] = r_lig_force * 
r_lig_cosines[1]; 
  b_vector[(tet_element_dof*blockDim.x*blockIdx.x) + (5 * blockDim.x) + threadIdx.x] = r_lig_force * 
r_lig_cosines[2]; 
 
 } 
 
 else if (type_ind[ind] != -1) printf("SOMETHING IS WRONG IN SOLID_STIFFNESS AT ind = %i with 
type_ind[ind] == %i\n", ind, type_ind[ind]); 
 
} 
//***************************CUDA functions used within the 
solver************************************************************************** 
__global__ void VectorAssembly(float* vector_elements, float* vector_global, int* element_node_index, int* type_ind, 
int* body_ind, int* share_element_ind, bool* share_bool_ind, int node_count) { 
 register int global_vec_ind = 0; 
 register int local_vec_ind = 0; 
 register bool local_bool_ind = false; 
 __shared__ float local_assembly[BLOCK_SIZE*nodes_per_tet*global_dof]; 
 // Initialize shared memory with zeros 
 for (int i = threadIdx.x; i < BLOCK_SIZE*nodes_per_tet*global_dof; i += blockDim.x) { 
  local_assembly[i] = 0.0f; 
 } 
 __syncthreads(); 
 
 register int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < solid_element_count; ind += blockDim.x * 
gridDim.x){ 
 if (type_ind[ind] == 24) { // change back to 24 
  { 
   for (int a = 0; a < nodes_per_tet; a++) { 
    local_vec_ind = share_element_ind[(ind*nodes_per_tet) + a]; 
    for (int i = 0; i < global_dof; i++) { 
     atomicAdd(&local_assembly[(local_vec_ind*global_dof) + i], 
vector_elements[(tet_element_dof*blockDim.x*blockIdx.x) + (((a*global_dof) + i)*blockDim.x) + threadIdx.x]); 
 
    } 
   } 
  } 
  __syncthreads(); 
  { 
   for (int a = 0; a < nodes_per_tet; a++) { 
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    local_bool_ind = share_bool_ind[(ind*nodes_per_tet) + a]; 
    if (local_bool_ind == true) { 
     global_vec_ind = element_node_index[(ind*nodes_per_tet) + a]; 
     local_vec_ind = share_element_ind[(ind*nodes_per_tet) + a]; 
     for (int i = 0; i < global_dof; i++) { 
      atomicAdd(&vector_global[(global_vec_ind*global_dof) + i], 
local_assembly[(local_vec_ind*global_dof) + i]); 
     } 
    } 
   } 
  } 
 } 
 else if (type_ind[ind] == 25) { 
  { 
   for (int a = 0; a < nodes_per_lig; a++) { 
    local_vec_ind = share_element_ind[(ind*nodes_per_tet) + a]; 
    for (int i = 0; i < global_dof; i++) { 
     atomicAdd(&local_assembly[(local_vec_ind*global_dof) + i], 
vector_elements[(tet_element_dof*blockDim.x*blockIdx.x) + (((a*global_dof) + i)*blockDim.x) + threadIdx.x]); 
 
    } 
   } 
  } 
  __syncthreads(); 
  { 
   for (int a = 0; a < nodes_per_lig; a++) { 
    local_bool_ind = share_bool_ind[(ind*nodes_per_tet) + a]; 
    if (local_bool_ind == true) { 
     local_vec_ind = share_element_ind[(ind*nodes_per_tet) + a]; 
     global_vec_ind = element_node_index[(ind*nodes_per_tet) + a]; 
     for (int i = 0; i < global_dof; i++) { 
      atomicAdd(&vector_global[(global_vec_ind*global_dof) + i], 
local_assembly[(local_vec_ind*global_dof) + i]); 
     } 
    } 
   } 
  } 
 } 
} 
__global__ void VectorDisassembly(float* global_vector, float* element_vector, int* element_nodes_index, int* type_ind, 
int* body_ind, int node_count) { 
 register int global_vec_ind = 0; 
 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < solid_element_count; ind += blockDim.x * 
gridDim.x){ 
 int ind = blockIdx.x*blockDim.x + threadIdx.x; 
 if ((type_ind[ind] == 24)) { //change back to 24 
  { 
   for (int a = 0; a < nodes_per_tet; a++) { 
    global_vec_ind = element_nodes_index[(ind*nodes_per_tet) + a]; 
    for (int i = 0; i < global_dof; i++) { 
     element_vector[(tet_element_dof*blockDim.x*blockIdx.x) + 
(((a*global_dof) + i)*blockDim.x) + threadIdx.x] = global_vector[(global_vec_ind*global_dof) + i]; 
    } 
   } 
  } 
 } 
 else if ((type_ind[ind] == 25)) { 
  { 
   for (int a = 0; a < nodes_per_lig; a++) { 
    global_vec_ind = element_nodes_index[(ind*nodes_per_tet) + a]; 
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    for (int i = 0; i < global_dof; i++) 
     element_vector[(tet_element_dof*blockDim.x*blockIdx.x) + 
(((a*global_dof) + i)*blockDim.x) + threadIdx.x] = global_vector[(global_vec_ind*global_dof) + i]; 
   } 
  } 
 } 
} 
__global__ void VectorSubtraction(float* vector1, float* vector2, float* vector_result, int total_dof) { 
 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < total_dof; ind += blockDim.x * gridDim.x){ 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 if (ind < total_dof) { 
  vector_result[ind] = vector1[ind] - vector2[ind]; 
 } 
} 
__global__ void ScalarOne(float* scalar) { 
 *scalar = 1.0f; 
} 
__global__ void fillzeros(float* fill, int max_elements) { 
 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < max_elements; ind += blockDim.x * gridDim.x){ 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 if (ind < max_elements) { 
  fill[ind] = 0.0f; 
 } 
} 
__global__ void fillones(float* fill, int max_elements) { 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < max_elements; ind += blockDim.x * gridDim.x){ 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 if (ind < max_elements) { 
  { 
   for (int i = 0; i < tet_element_dof; i++) 
    fill[(tet_element_dof*blockDim.x*blockIdx.x) + (i*blockDim.x) + threadIdx.x] = 
0.0f; 
  } 
 } 
} 
// Update the solution vector 
__global__ void UpdateSolNodes(float* x_coordinates, float* u_coordinates, float* u_vector, int node_size) { 
 //for (int ind = blockIdx.x * blockDim.x + threadIdx.x; ind < node_size; ind += blockDim.x * gridDim.x){ 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 register float r_u_vector; 
 if (ind < node_size) { 
  r_u_vector = u_vector[ind]; 
  u_coordinates[ind] += r_u_vector; 
  x_coordinates[ind] += r_u_vector; 
 } 
} 
// Load application function for non-remote-point method 
__global__ void ForcePressure(float* b_vector, float* force, int* f_nodes, int f_node_count, int node_count) { 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 
 if (ind < node_count) { 
  for (int i = 0; i < f_node_count; i++) { 
   if (ind == f_nodes[i]) { 
    for (int i = 0; i < global_dof; i++) b_vector[ind*global_dof + i] = force[i] / 
(float)f_node_count; 
   } 
  } 
 } 
} 



231 
 

// Load application function for non-remote-point method 
__global__ void MomentPressure(float* b_vector, float* nodes_x, int* f_nodes, float* ma_params, int f_node_count, int 
node_count) { 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 
 if (ind < node_count) { 
  for (int i = 0; i < f_node_count; i++) { 
   if (ind == f_nodes[i]) { 
    //if (nodes_x[ind*global_dof + 2] < ma_params[0]) b_vector[ind*global_dof + 2] = 
ma_params[1] * (nodes_x[i*global_dof + 2] - ma_params[0]); 
    //else if (nodes_x[ind*global_dof + 2] > ma_params[0]) b_vector[ind*global_dof + 
2] = ma_params[2] * (nodes_x[i*global_dof + 2] - ma_params[0]); 
    if (nodes_x[ind*global_dof + 2] < ma_params[0]) { // 2 fe 0 lb 
     if (nodes_x[ind*global_dof + 0] > ma_params[1]) 
b_vector[ind*global_dof + 1] = -ma_params[2]; // 0 fe 2 lb 
     else b_vector[ind*global_dof + 1] = -ma_params[3]; 
    } 
    else { 
     if (nodes_x[ind*global_dof + 0] > ma_params[1]) 
b_vector[ind*global_dof + 1] = ma_params[4]; // 0 fe 2 lb 
     else b_vector[ind*global_dof + 1] = ma_params[5]; 
    } 
   } 
  } 
 } 
 
} 
__global__ void ApplyBC(float* K_matrix, float* b_vector, int* BC_nodes, int* BCapply_ind, float* BCapply_stiff, float 
BC_value, int BC_node_count, int BC_stiff_count, int Ksize, 
 int total_node_count) { 
 int ind = blockDim.x*blockIdx.x + threadIdx.x; 
 
 if (ind < BC_stiff_count) { 
  K_matrix[BCapply_ind[ind]] = BCapply_stiff[ind]; 
 } 
 if (ind < BC_node_count) { 
  for (int i = 0; i < global_dof; i++) { 
   b_vector[BC_nodes[ind] * global_dof + i] = BC_value; 
  } 
 } 
} 
__global__ void HydrostaticStress(float* h_stress, float* IntDeriv, float* volumes, float* u_vector, float* node_loc, int* 
d_element_ind, int* type_ind, int* body_ind) { 
 int ind = blockIdx.x*blockDim.x + threadIdx.x; 
 const int strain_size = 6; 
 const float E_NP = 1.0f; 
 const float nu_NP = 0.49f; 
 const int C_cols = 6; 
 if ((type_ind[ind] == 24) && (body_ind[ind] == 2)) { 
  // register memory for thread 
  register float r_h_stress = 0.0f; 
  register float del = E_NP / ((1.0f + nu_NP)*(1.0f - (2.0f*nu_NP)));; // also used for J3 Mooney-Rivlin 
calc 
  register float sum = 0.0f; 
  register float l_vector[3][3]; // also holds the invar_deriv calcs for Mooney_Rivlin 
  register float r_u_vector[tet_element_dof]; 
  register float r_x_vector[tet_element_dof]; 
  register float r_IntDeriv[tet_element_dof]; 
  register float r_strain[strain_size]; 
  register float r_stress_vector[strain_size]; 
  register float F_tensor[3][3]; 



232 
 

  register float r_stress_PK2[3][3]; 
  register float r_stress_Cauchy[3][3]; 
  register float CMatrix[C_cols][C_cols] = { 
   { del*(1.0f - nu_NP), del*nu_NP, del*nu_NP, 0.0f, 0.0f, 0.0f }, 
   { del*nu_NP, del*(1.0f - nu_NP), del*nu_NP, 0.0f, 0.0f, 0.0f }, 
   { del*nu_NP, del*nu_NP, del*(1.0f - nu_NP), 0.0f, 0.0f, 0.0f }, 
   { 0.0f, 0.0f, 0.0f, del*(0.5f - nu_NP), 0.0f, 0.0f }, 
   { 0.0f, 0.0f, 0.0f, 0.0f, del*(0.5f - nu_NP), 0.0f }, 
   { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, del*(0.5f - nu_NP) } 
  }; 
 
  // Move global memory to register/shared memory 
  { 
   for (int k = 0; k < tet_element_dof; k++) { 
    r_u_vector[k] = u_vector[(tet_element_dof*blockDim.x*blockIdx.x) + 
(k*blockDim.x) + threadIdx.x]; 
    r_IntDeriv[k] = IntDeriv[(tet_element_dof*blockDim.x*blockIdx.x) + 
(k*blockDim.x) + threadIdx.x]; 
   } 
   for (int i = 0; i < nodes_per_tet; i++) { 
    for (int j = 0; j < global_dof; j++) r_x_vector[i*global_dof + j] = 
node_loc[d_element_ind[ind*nodes_per_tet + i] * global_dof + j]; 
   } 
  } 
  // Calculate l_vector and F_tensor.  Could use F=I+l_vector instead if speed is an issue 
  { 
   for (int i = 0; i < global_dof; i++) { 
    for (int j = 0; j < global_dof; j++) { 
     l_vector[i][j] = 0.0f; 
     F_tensor[i][j] = 0.0f; 
     for (int k = 0; k < nodes_per_tet; k++) { 
      l_vector[i][j] += (r_IntDeriv[global_dof*k + j] * 
r_u_vector[global_dof*k + i]); 
      F_tensor[i][j] += (r_IntDeriv[global_dof*k + j] * 
r_x_vector[k*global_dof + i]); 
     } 
    } 
   } 
  } 
 
  // Compute strain from BL and u 
  r_strain[0] = l_vector[0][0]; 
  r_strain[1] = l_vector[1][1]; 
  r_strain[2] = l_vector[2][2]; 
  r_strain[3] = 0.5f*(l_vector[1][2] + l_vector[2][1]); 
  r_strain[4] = 0.5f*(l_vector[0][2] + l_vector[2][0]); 
  r_strain[5] = 0.5f*(l_vector[0][1] + l_vector[1][0]); 
  for (int k = 0; k < global_dof; k++) { 
   r_strain[0] += 0.5f*(l_vector[k][0] * l_vector[k][0]); 
   r_strain[1] += 0.5f*(l_vector[k][1] * l_vector[k][1]); 
   r_strain[2] += 0.5f*(l_vector[k][2] * l_vector[k][2]); 
   r_strain[3] += 0.5f*(l_vector[k][1] * l_vector[k][2]); 
   r_strain[4] += 0.5f*(l_vector[k][0] * l_vector[k][2]); 
   r_strain[5] += 0.5f*(l_vector[k][0] * l_vector[k][1]); 
  } 
 
  //Adjust strain for shear strain 
  r_strain[3] *= 2.0f; 
  r_strain[4] *= 2.0f; 
  r_strain[5] *= 2.0f; 
  { 
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   for (int i = 0; i < C_cols; i++) { 
    sum = 0.0f; 
    // below Cmatrix diagonal (columns) 
    for (int k = 0; k < C_cols; k++) { 
     sum += CMatrix[i][k] * r_strain[k]; 
    } 
    r_stress_vector[i] = sum; 
   } 
  } 
  r_stress_PK2[0][0] = r_stress_vector[0]; r_stress_PK2[1][1] = r_stress_vector[1]; r_stress_PK2[2][2] = 
r_stress_vector[2]; 
  r_stress_PK2[0][1] = r_stress_vector[5]; r_stress_PK2[1][0] = r_stress_vector[5]; 
  r_stress_PK2[0][2] = r_stress_vector[4]; r_stress_PK2[2][0] = r_stress_vector[4]; 
  r_stress_PK2[1][2] = r_stress_vector[3]; r_stress_PK2[2][1] = r_stress_vector[3]; 
  del = (F_tensor[0][0] * F_tensor[1][1] * F_tensor[2][2]) + (F_tensor[0][1] * F_tensor[1][2] * 
F_tensor[2][0]) + (F_tensor[0][2] * F_tensor[1][0] * F_tensor[2][1]) 
   - (F_tensor[0][2] * F_tensor[1][1] * F_tensor[2][0]) - (F_tensor[0][1] * F_tensor[1][0] * 
F_tensor[2][2]) - (F_tensor[0][0] * F_tensor[1][2] * F_tensor[2][1]); 
  del = 1.0f / del; 
  for (int i = 0; i < global_dof; i++) { 
   for (int j = 0; j < global_dof; j++) { 
    sum = 0.0f; 
    for (int k = 0; k < global_dof; k++) { 
     for (int l = 0; l < global_dof; l++) { 
      sum += F_tensor[i][k] * r_stress_PK2[k][l] * F_tensor[j][l]; 
     } 
    } 
    r_stress_Cauchy[i][j] = sum*del; 
   } 
  } 
  //sum = 0.0f; 
  //for (int i = 0; i < global_dof; i++) sum += r_stress_Cauchy[i][i]; 
  r_h_stress = 0.333333333333333f * (r_stress_Cauchy[0][0] + r_stress_Cauchy[1][1] + 
r_stress_Cauchy[2][2]); 
  h_stress[ind] = r_h_stress; 
 } 
 else h_stress[ind] = 0.0f; 
} 
// Main function 
int main(int argc, char *argv[]) 
{ 
 // Vectors to collect data from files 
 vector<float> node_loc_vec; 
 vector<int> element_i_vec; 
 vector<int> element_j_vec; 
 vector<int> csr_column_vec; 
 vector<int> csr_row_vec; 
 vector<int> element_mat_vec; 
 vector<int> element_type_vec; 
 vector<int> element_sec_vec; 
 vector<int> share_element_vec; 
 vector<bool> share_bool_vec; 
 vector<int> BC_node_vec; 
 vector<int> fib_ind_vec; 
 vector<int> f_ind_vec; 
 // Open the files that have the nodes and elements 
 ifstream all_node_file("NODE_LOC_BEFORE.txt"); 
 ifstream share_bool_file("SHARED_GLOBAL_ASSEMBLY_IND.txt"); 
 ifstream fib_ind_file("AF_IND_PRESSURE.txt"); 
 ifstream f_ind_file("F_NODES.txt"); // from ANSYS (therefore base 1) so minus 1 
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           // No need to minus 1 - already 
handled in the other program 
 string line; 
 float nbuffer1; 
 float nbuffer2, nbuffer3, nbuffer4; 
 int bbuffer1, bbuffer2, bbuffer3, bbuffer4; 
 //*******************************Use vectors to read from files, then copy vectors into 
arrays************************* 
 // collect all nodes 
 if (all_node_file.is_open()) 
 { 
  while (getline(all_node_file, line)) 
  { 
   all_node_file >> nbuffer1 >> nbuffer2 >> nbuffer3 >> nbuffer4; 
   node_loc_vec.push_back(nbuffer2); 
   node_loc_vec.push_back(nbuffer3); 
   node_loc_vec.push_back(nbuffer4); 
  } 
  all_node_file.close(); 
 } 
 else cout << "Unable to open file1." << endl; 
 
 vector<int> element_i_buff; 
 ifstream element_i_file("ELEMENT_IND_I.binary", ios::binary); 
 element_i_file.unsetf(ios::skipws); 
 streampos fileSize; 
 element_i_file.seekg(0, ios::end); 
 fileSize = element_i_file.tellg(); 
 element_i_file.seekg(0, ios::beg); 
 element_i_buff.resize(fileSize / sizeof(int)); 
 element_i_file.read((char *)element_i_buff.data(), fileSize); 
 
 for (int i = 0; i < (int)element_i_buff.size() / 8; i++) { 
  element_i_vec.push_back(element_i_buff[i * 8]); 
  element_i_vec.push_back(element_i_buff[i * 8 + 1]); 
  element_i_vec.push_back(element_i_buff[i * 8 + 2]); 
  element_i_vec.push_back(element_i_buff[i * 8 + 3]); 
  element_mat_vec.push_back(element_i_buff[i * 8 + 4]); 
  element_type_vec.push_back(element_i_buff[i * 8 + 5]); 
  element_sec_vec.push_back(element_i_buff[i * 8 + 7]); 
 } 
 
 ifstream element_j_file("ELEMENT_IND_J.binary", ios::binary); 
 element_j_file.unsetf(ios::skipws); 
 element_j_file.seekg(0, ios::end); 
 fileSize = element_j_file.tellg(); 
 element_j_file.seekg(0, ios::beg); 
 element_j_vec.resize(fileSize / sizeof(int)); 
 element_j_file.read((char *)element_j_vec.data(), fileSize); 
 
 ifstream csr_column_file("CSR_COLUMN.binary", ios::binary); 
 csr_column_file.unsetf(ios::skipws); 
 csr_column_file.seekg(0, ios::end); 
 fileSize = csr_column_file.tellg(); 
 csr_column_file.seekg(0, ios::beg); 
 csr_column_vec.resize(fileSize / sizeof(int)); 
 csr_column_file.read((char *)csr_column_vec.data(), fileSize); 
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 ifstream csr_row_file("CSR_ROW.binary", ios::binary); 
 csr_row_file.unsetf(ios::skipws); 
 csr_row_file.seekg(0, ios::end); 
 fileSize = csr_row_file.tellg(); 
 csr_row_file.seekg(0, ios::beg); 
 csr_row_vec.resize(fileSize / sizeof(int)); 
 csr_row_file.read((char *)csr_row_vec.data(), fileSize); 
 
 ifstream share_element_file("SHARED_ASSEMBLY_IND.binary", ios::binary); 
 share_element_file.unsetf(ios::skipws); 
 share_element_file.seekg(0, ios::end); 
 fileSize = share_element_file.tellg(); 
 share_element_file.seekg(0, ios::beg); 
 share_element_vec.resize(fileSize / sizeof(int)); 
 share_element_file.read((char *)share_element_vec.data(), fileSize); 
 
 if (share_bool_file.is_open()) 
 { 
  while (getline(share_bool_file, line)) 
  { 
   share_bool_file >> bbuffer1 >> bbuffer2 >> bbuffer3 >> bbuffer4; 
   share_bool_vec.push_back(bbuffer1 != 0); 
   share_bool_vec.push_back(bbuffer2 != 0); 
   share_bool_vec.push_back(bbuffer3 != 0); 
   share_bool_vec.push_back(bbuffer4 != 0); 
  } 
  share_bool_file.close(); 
 } 
 else cout << "Unable to open share bool file." << endl; 
 
 ifstream BC_node_file("BC_NODES_PRESSURE.binary", ios::binary); 
 BC_node_file.unsetf(ios::skipws); 
 BC_node_file.seekg(0, ios::end); 
 fileSize = BC_node_file.tellg(); 
 BC_node_file.seekg(0, ios::beg); 
 BC_node_vec.resize(fileSize / sizeof(int)); 
 BC_node_file.read((char *)BC_node_vec.data(), fileSize); 
 
 // collect nodes for BC application 
 if (f_ind_file.is_open()) 
 { 
  while (getline(f_ind_file, line)) 
  { 
   f_ind_file >> nbuffer1 >> nbuffer2 >> nbuffer3 >> nbuffer4; 
   f_ind_vec.push_back((int)nbuffer1 - 1); 
  } 
  f_ind_file.close(); 
 } 
 else cout << "Unable to open F node file." << endl; 
 // Collect the array for the annulus fibres 
 if (fib_ind_file.is_open()) { 
  while (getline(fib_ind_file, line)) { 
   fib_ind_file >> nbuffer2 >> nbuffer3; 
   fib_ind_vec.push_back((int)nbuffer2); 
   fib_ind_vec.push_back((int)nbuffer3); 
  } 
  fib_ind_file.close(); 
 } 
 else cout << "Unable to open fib node file." << endl; 
 
 // Copy vectors into arrays 
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 //for (int i = 0; i < (int)element_ki_vec.size(); i++) { printf("element_ki_vec[%i + %i] = %i\n", i / nodes_per_tet, i 
% nodes_per_tet, element_ki_vec[i]); cin.get(); } 
 
 // Element index organized and optimized for the different element types 
 int* element_i = new int[element_i_vec.size()]; 
 int* body_ind = new int[element_mat_vec.size()]; // material ID for each element 
 int* sec_ind = new int[element_sec_vec.size()]; 
 int* type_ind = new int[element_type_vec.size()]; 
 solid_element_count = 0; 
 lig_count = 0; 
 blank_count = 0; 
 total_element_count = 0; 
 while (total_element_count < element_mat_vec.size()) { 
  if (element_type_vec[total_element_count] == 24) { // 24 
   element_i[total_element_count*nodes_per_tet] = 
element_i_vec[total_element_count*nodes_per_tet]; 
   element_i[total_element_count*nodes_per_tet + 1] = 
element_i_vec[total_element_count*nodes_per_tet + 1]; 
   element_i[total_element_count*nodes_per_tet + 2] = 
element_i_vec[total_element_count*nodes_per_tet + 2]; 
   element_i[total_element_count*nodes_per_tet + 3] = 
element_i_vec[total_element_count*nodes_per_tet + 3]; 
   if (element_mat_vec[total_element_count] == 3) { // 3 
    body_ind[total_element_count] = 1; // cancellous bone 
   } 
   else if (element_mat_vec[total_element_count] == 26) { // 3 
    body_ind[total_element_count] = 26; // cortical bone 
   } 
   else if ((element_mat_vec[total_element_count] == 24)) { //24 
    body_ind[total_element_count] = 3; // annulus fibrosus 
    if ((element_sec_vec[total_element_count] == 15) || 
(element_sec_vec[total_element_count] == 19)) { 
     sec_ind[total_element_count] = 1; 
    } 
    else if ((element_sec_vec[total_element_count] == 14) || 
(element_sec_vec[total_element_count] == 4)) { 
     sec_ind[total_element_count] = 2; 
    } 
    else if ((element_sec_vec[total_element_count] == 1) || 
(element_sec_vec[total_element_count] == 16)) { 
     sec_ind[total_element_count] = 3; 
    } 
    else if ((element_sec_vec[total_element_count] == 5) || 
(element_sec_vec[total_element_count] == 17)) { 
     sec_ind[total_element_count] = 4; 
    } 
    else { 
     cout << "Section numbers for annulus fibrosus don't match: please adjust 
section numbers" << endl; 
     cin.get(); 
    } 
   } 
   else if ((element_mat_vec[total_element_count] == 4) || 
(element_mat_vec[total_element_count] == 1)) { // 4 
    body_ind[total_element_count] = 13; // posterior elements 
   } 
   else if (element_mat_vec[total_element_count] == 5) { //5 
    body_ind[total_element_count] = 14; // cartilage endplate 
   } 
   else if (element_mat_vec[(total_element_count)] == 2) { // change this back to 2 
    body_ind[(total_element_count)] = 2; 
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   } 
   else { 
    cout << "Material numbers don't match, please adjust material numbers" << endl; 
    cin.get(); 
   } 
   solid_element_count++; 
  } 
  else if (element_type_vec[total_element_count] == 25) { 
   element_i[total_element_count*nodes_per_tet] = 
element_i_vec[total_element_count*nodes_per_tet]; 
   element_i[total_element_count*nodes_per_tet + 1] = 
element_i_vec[total_element_count*nodes_per_tet + 1]; 
   element_i[total_element_count*nodes_per_tet + 2] = -1; 
   element_i[(total_element_count*nodes_per_tet) + 3] = -1; 
   if (element_sec_vec[total_element_count] == 50) { //35 ALL 50 
    body_ind[total_element_count] = 5; 
   } 
   else if (element_sec_vec[total_element_count] == 51) {//36 PLL 51 
    body_ind[total_element_count] = 6; 
   } 
   else if (element_sec_vec[total_element_count] == 52) {//37 SSL 52 
    body_ind[total_element_count] = 7; 
   } 
   else if (element_sec_vec[total_element_count] == 53) {//38 ISL 53 
    body_ind[total_element_count] = 8; 
   } 
   else if ((element_sec_vec[total_element_count] == 54) || 
(element_sec_vec[total_element_count] == 55)) {//40 39 TL 54 55 
    body_ind[total_element_count] = 9; 
   } 
   else if ((element_sec_vec[total_element_count] == 56) || 
(element_sec_vec[total_element_count] == 57)) {//41 42 LF 56 57 
    body_ind[total_element_count] = 10; 
   } 
   else if ((element_sec_vec[total_element_count] == 58) || 
(element_sec_vec[total_element_count] == 59)) {//43 44 FL 58 59 
    body_ind[total_element_count] = 11; 
   } 
   else { 
    cout << "Material numbers didn't match: Please renumber the material numbers" << 
endl; 
    cin.get(); 
   } 
   lig_count++; 
  } 
  else if ((element_type_vec[total_element_count] == -1)) { 
   element_i[(total_element_count)*nodes_per_tet] = -1; 
   element_i[(total_element_count)*nodes_per_tet + 1] = -1; 
   element_i[(total_element_count)*nodes_per_tet + 2] = -1; 
   element_i[(total_element_count)*nodes_per_tet + 3] = -1; 
   body_ind[total_element_count] = -1; 
   blank_count++; 
  } 
  else { 
   cout << "Error: element type number doesn't exist" << endl; 
   cin.get(); 
  } 
  type_ind[total_element_count] = element_type_vec[total_element_count]; 
  total_element_count++; 
 } 
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 int* element_j = new int[(total_element_count)*ematrix_ref_size]; 
 for (int i = 0; i < total_element_count; i++) { 
  for (int j = 0; j < ematrix_ref_size; j++) { 
   element_j[(i*ematrix_ref_size) + j] = element_j_vec[(i*ematrix_ref_size) + j]; 
  } 
 } 
 
 csr_row_size = (int)csr_row_vec.size(); 
 int* csr_row = new int[csr_row_size]; 
 for (int i = 0; i < csr_row_size; i++) { 
  csr_row[i] = csr_row_vec[i]; 
 } 
 A_non_zeros = (int)csr_column_vec.size(); 
 int* csr_col = new int[A_non_zeros]; 
 for (int i = 0; i < A_non_zeros; i++) { 
  csr_col[i] = csr_column_vec[i]; 
 } 
 
 F_node_count = (int)f_ind_vec.size(); 
 int* F_ind = new int[F_node_count]; 
 for (int i = 0; i < F_node_count; i++) { 
  F_ind[i] = f_ind_vec[i]; 
 } 
 // Node locations 
 //auto max_rotdof_node = max_element(std::begin(shell_rotdof_vec), std::end(shell_rotdof_vec)); 
 //total_shellnode_count = *max_rotdof_node + 1; 
 int node_loc_size = (int)node_loc_vec.size(); // adjust here for adding force_elements 
 total_node_count = ((int)node_loc_vec.size() / global_dof); // and here 
 total_dof = node_loc_size; 
 float* nodes_x = new float[total_dof]; 
 for (int i = 0; i < (int)node_loc_size; i++) { 
  nodes_x[i] = node_loc_vec[i]; 
 } 
 
 BC_node_count = (int)BC_node_vec.size(); 
 int* BC_node_ind = new int[BC_node_count + 1]; 
 for (int i = 0; i < BC_node_count; i++) { 
  BC_node_ind[i] = BC_node_vec[i]; 
 } 
 int* share_element_ind = new int[share_element_vec.size()]; 
 for (int i = 0; i < (int)share_element_vec.size(); i++) { 
  share_element_ind[i] = share_element_vec[i]; 
 } 
 bool* share_bool_ind = new bool[share_bool_vec.size()]; 
 for (int i = 0; i < share_bool_vec.size(); i++) { 
  share_bool_ind[i] = share_bool_vec[i]; 
 } 
 int* fib_ind = new int[(int)fib_ind_vec.size()]; 
 for (int i = 0; i < fib_ind_vec.size(); i++) { 
  fib_ind[i] = (int)fib_ind_vec[i]; 
 } 
 
 // Prep an indexing array for applying the boundary conditions 
 vector<int> BCapply_ind0_vec; 
 vector<int> BCapply_ind1; 
 vector<float> BCapply_stiff_vec; 
 //force_BC for applying BC to the force elements <- 0 for 0 force and 1 for all other forces 
 float* h_force = new float[force_node_dof]; 
 h_force[0] = 0.0f; 
 h_force[1] = 0.0f; 
 h_force[2] = 0.0f; //1000000.0f or 600.0f 
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 h_force[3] = -7652.0f; //7652.0f 
 h_force[4] = 0.0f;  
 h_force[5] = 0.0f; // 7100.0f 
 
 // Find moment application parameters ******FOR FLEXION/EXTENSION 
ONLY***************************************************** 0=2 and 2=0 
 float* ma_para = new float[6]; // includes (in order) z_mid_line, x_mid_line, m_left_ant, m_right_ant, 
m_left_post, m_right_post 
 float y_length_ant = nodes_x[F_ind[0] * global_dof + 2], y_length_post = nodes_x[F_ind[0] * global_dof + 2], 
d_length = 0.0f, m_force[2] = { 0.0f,0.0f }, r_force = 0.0f; //"..global_dof+2" fe "+0" lb 
 float z_length_left_ave = 0.0f, z_length_right_ave = 0.0f, z_ratio; //x_length_post_ave/ant_ave for bending 
 float f_ave_left_ant, f_ave_right_ant, f_ave_left_post, f_ave_right_post; 
 vector<int> F_nodes_left_ant; 
 vector<int> F_nodes_right_ant; 
 vector<int> F_nodes_left_post; 
 vector<int> F_nodes_right_post; 
 ma_para[0] = 0.0f; 
 ma_para[1] = 0.0f; 
 for (int i = 0; i < F_node_count; i++) { 
  ma_para[0] += nodes_x[F_ind[i] * global_dof + 2]; //2 fe 0 lb 
  ma_para[1] += nodes_x[F_ind[i] * global_dof + 0]; //0 fe 2 lb 
  if (nodes_x[F_ind[i] * global_dof + 2] < y_length_ant) y_length_ant = nodes_x[F_ind[i] * global_dof + 
2]; // negative z-direction (anterior) 2 fe 0 lb 
  else if (nodes_x[F_ind[i] * global_dof + 2] >= y_length_post) y_length_post = nodes_x[F_ind[i] * 
global_dof + 2]; // positive z-direction (posterior) 2 fe 0 lb 
 } 
 ma_para[0] = ma_para[0] / F_node_count; 
 ma_para[1] = ma_para[1] / F_node_count; 
 for (int i = 0; i < F_node_count; i++) { 
  if (nodes_x[F_ind[i] * global_dof + 0] > ma_para[1]) z_length_left_ave += (nodes_x[F_ind[i] * 
global_dof + 0] - ma_para[1]); // 0 fe 2 lb 
  else if (nodes_x[F_ind[i] * global_dof + 0] <= ma_para[1]) z_length_right_ave += (ma_para[1] - 
nodes_x[F_ind[i] * global_dof + 0]); // 0 fe 2 lb 
 } 
 y_length_ant = y_length_ant - ma_para[0]; 
 y_length_post = y_length_post - ma_para[0]; 
 z_length_left_ave = z_length_left_ave / F_node_count; 
 z_length_right_ave = z_length_right_ave / F_node_count; 
 //z_ratio = z_length_right_ave / z_length_left_ave; 
 z_ratio = 0.639f; // 0.639f for flexion/extension 1.800f for lateral bending 
 for (int i = 0; i < F_node_count; i++) { 
  if (nodes_x[F_ind[i] * global_dof + 2] < ma_para[0]) { // 2 fe 0 lb 
   if (nodes_x[F_ind[i] * global_dof + 0] < ma_para[1]) F_nodes_right_ant.push_back(F_ind[i]); 
// 0 fe 2 lb 
   else F_nodes_left_ant.push_back(F_ind[i]); 
 
  } 
  else if (nodes_x[F_ind[i] * global_dof + 2] >= ma_para[0]) { // 2 fe 0 lb 
   if (nodes_x[F_ind[i] * global_dof + 0] < ma_para[1]) 
F_nodes_right_post.push_back(F_ind[i]); //0 fe 2 lb 
   else F_nodes_left_post.push_back(F_ind[i]); 
  } 
 } 
 d_length = (abs(y_length_ant) + abs(y_length_post)) / 4.0f; 
 r_force = h_force[3] / (2.0f*d_length); // 3 fe 5 lb 
 m_force[0] = (r_force*z_ratio) / (1.0f + z_ratio); // left because z_length_right_ave in ratio numerator 
 m_force[1] = r_force - m_force[0]; 
 f_ave_left_ant = m_force[0] / F_nodes_left_ant.size(); 
 f_ave_right_ant = m_force[1] / F_nodes_right_ant.size(); 
 f_ave_left_post = m_force[0] / F_nodes_left_post.size(); 
 f_ave_right_post = m_force[1] / F_nodes_right_post.size(); 
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 ma_para[2] = f_ave_left_ant; 
 ma_para[3] = f_ave_right_ant; 
 ma_para[4] = f_ave_left_post; 
 ma_para[5] = f_ave_right_post; 
 // Check resultant moment and force 
 float sum = 0.0f; 
 float F_result = 0.0f; 
 float M_result[2] = { 0.0f,0.0f }; 
 for (int i = 0; i < (int)F_nodes_left_ant.size(); i++) { 
  sum = -ma_para[2]; 
  M_result[0] += sum*(nodes_x[F_nodes_left_ant[i] * global_dof + 2] - ma_para[0]); // 2 fe 0 lb 
  M_result[1] += sum*(nodes_x[F_nodes_left_ant[i] * global_dof + 0] - ma_para[1]); // 0 fe 2 lb 
  F_result += sum; 
 } 
 for (int i = 0; i < (int)F_nodes_right_ant.size(); i++) { 
  sum = -ma_para[3]; 
  M_result[0] += sum*(nodes_x[F_nodes_right_ant[i] * global_dof + 2] - ma_para[0]); // 2 fe 0 lb 
  M_result[1] += sum*(nodes_x[F_nodes_right_ant[i] * global_dof + 0] - ma_para[1]); // 0 fe 2 lb 
  F_result += sum; 
 } 
 for (int i = 0; i < (int)F_nodes_left_post.size(); i++) { 
  sum = ma_para[4]; 
  M_result[0] += sum*(nodes_x[F_nodes_left_post[i] * global_dof + 2] - ma_para[0]); // 2 fe 0 lb 
  M_result[1] += sum*(nodes_x[F_nodes_left_post[i] * global_dof + 0] - ma_para[1]); // 0 fe 2 lb 
  F_result += sum; 
 } 
 for (int i = 0; i < (int)F_nodes_right_post.size(); i++) { 
  sum = ma_para[5]; 
  M_result[0] += sum*(nodes_x[F_nodes_right_post[i] * global_dof + 2] - ma_para[0]); // 2 fe 0 lb 
  M_result[1] += sum*(nodes_x[F_nodes_right_post[i] * global_dof + 0] - ma_para[1]); // 0 fe 2 lb 
  F_result += sum; 
 } 
 printf("\n\n**Check the resultant moment and force.\nF_result = %f\nh_force[3] = %f while M_result = %f, 
M_result_dir = %f\n", 
  F_result, h_force[3], M_result[0], M_result[1]); 
 //cin.get(); 
 
 // Indexing arrays for applying the boundary conditions 
 bool BC_flag = false; 
 for (int i = 0; i < total_node_count; i++) { 
  BC_flag = false; 
  for (int j = 0; j < BC_node_count; j++) { 
   if (i == BC_node_ind[j]) { 
    BC_flag = true; break; 
   } 
  } 
  if (BC_flag == true) { 
   for (int j = 0; j < global_dof; j++) { 
    for (int k = csr_row[i*global_dof + j]; k < csr_row[i*global_dof + j + 1]; k++) { 
     if ((i*global_dof + j) == csr_col[k]) { 
      BCapply_ind1.push_back(k); 
     } 
     else { 
      BCapply_ind0_vec.push_back(k); 
      BCapply_stiff_vec.push_back(0.0f); 
     } 
    } 
   } 
  } 
  else { 
   for (int j = 0; j < global_dof; j++) { 
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    for (int k = csr_row[i*global_dof + j]; k < csr_row[i*global_dof + j + 1]; k++) { 
     for (int l = 0; l < BC_node_count; l++) { 
      if (csr_col[k] == (BC_node_ind[l] * global_dof)) { 
       for (int m = 0; m < global_dof; m++) { 
        BCapply_ind0_vec.push_back(k + m); 
        BCapply_stiff_vec.push_back(0.0f); 
       } 
       break; 
      } 
     } 
    } 
   } 
  } 
 } 
 
 for (int i = 0; i < (int)BCapply_ind1.size(); i++) { 
  BCapply_ind0_vec.push_back(BCapply_ind1[i]); 
  BCapply_stiff_vec.push_back(1.0f); 
 } 
 BC_stiff_count = (int)BCapply_ind0_vec.size(); 
 int* BCapply_ind = new int[BC_stiff_count]; 
 float* BCapply_stiff = new float[BC_stiff_count]; 
 for (int i = 0; i < BC_stiff_count; i++) { 
  BCapply_ind[i] = BCapply_ind0_vec[i]; 
  BCapply_stiff[i] = BCapply_stiff_vec[i]; 
 } 
 
 GRID_SIZE_NON_ZEROS = (A_non_zeros / BLOCK_SIZE) + 1; 
 GRID_SIZE1 = (total_element_count / BLOCK_SIZE); 
 GRID_SIZE2 = (solid_element_count / BLOCK_SIZE); 
 GRID_SIZE12 = (lig_count / BLOCK_SIZE); 
 GRID_SIZE0 = (total_dof / BLOCK_SIZE) + 1; 
 GRID_SIZE01 = ((total_node_count) / BLOCK_SIZE) + 1; 
 GRID_SIZE_BC = (BC_stiff_count / BLOCK_SIZE) + 1; 
 
 cout << "File read successful: nodes and elements acquired." << endl; 
 //system("pause"); 
 
 // cuda Error checking while performing calculations 
 cudaError_t cudaStatus = RealTimeSim(nodes_x, element_i, element_j, csr_row, csr_col, share_element_ind, 
ma_para, share_bool_ind, type_ind, body_ind, sec_ind, 
  BC_node_ind, F_ind, BCapply_ind, BCapply_stiff, fib_ind, h_force); 
 if (cudaStatus != cudaSuccess) { 
  fprintf(stderr, "\nRealTimeSim failed!\n"); 
  cin.get(); 
  return 1; 
 } 
 
 // Show success! 
 cout << "Simulation success!!" << endl; 
 
 // cudaDeviceReset must be called before exiting in order for profiling and 
 // tracing tools such as Nsight and Visual Profiler to show complete traces. 
 cudaStatus = cudaDeviceReset(); 
 if (cudaStatus != cudaSuccess) { 
  fprintf(stderr, "cudaDeviceReset failed!"); 
  return 1; 
 } 
 
 // Write updated nodes to file 
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 cout << "Program Complete" << endl; 
 cin.get(); 
 
 return 0; 
} 
 
// Proper pardiso_error checking will make debugging easier 
cudaError_t RealTimeSim(float* nodes_x, int* element_i, int* element_j, int* csr_row, int* csr_col, int* 
share_element_ind, float* ma_params, 
 bool* share_bool_ind, int* type_ind, int* body_ind, int* sec_ind, int* BC_node_ind, int* f_ind, int* 
BCapply_ind, float* BCapply_stiff, int* fib_ind, float* h_force) 
{ 
 cudaError_t cudaStatus; 
 
 // device variables to move data from host   
 float* d_nodes_x = NULL; 
 float* d_nodes_x_prev = NULL; 
 float* d_nodes_x0 = NULL; 
 int* d_element_i = NULL; 
 int* d_element_j = NULL; 
 int* d_csr_row = NULL; 
 int* d_csr_col = NULL; 
 int* d_share_element_ind = NULL; 
 bool* d_share_bool_ind = NULL; 
 int* d_type_ind = NULL; 
 int* d_body_ind = NULL; 
 int* d_sec_ind = NULL; 
 int* d_BC_node_ind = NULL; 
 int* d_F_ind = NULL; 
 int* d_BCapply_ind = NULL; 
 float* d_BCapply_stiff = NULL; 
 int* d_fib_ind = NULL; 
 float* d_ma_params = NULL; 
 float* d_h_stress = NULL; 
 float* h_h_stress = NULL; 
 // Initialize stiffness matrices and force vectors 
 const int solid_BLsize = 72; 
 float* solid_inter_constants = NULL; 
 float* solid_element_volumes = NULL; 
 float* solid_BL0 = NULL; 
 float* matrix_A = NULL; 
 float* matrix_A_prev = NULL; 
 float* lig_lengths0 = NULL; 
 float* fib_lengths0_2 = NULL; 
 // boundary condition and forces  
 float BC_value = 0.0f; 
 float* d_force = NULL; 
 float* d_local_coords0 = NULL; 
 float* d_local_coords = NULL; 
 float *h_force_step = new float[global_dof * 2]; 
 float *h_step_size = new float[global_dof * 2]; 
 float *h_previous_step = new float[global_dof * 2]; 
 for (int i = 0; i < (global_dof * 2); i++) { 
  h_force_step[i] = h_force[i]; 
  h_step_size[i] = h_force[i]; 
  h_previous_step[i] = 0.0f; 
 } 
 float* h_ma_step = new float[6]; 
 float* h_ma_force = new float[6]; 
 float* h_ma_previous = new float[6]; 
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 h_ma_force[0] = ma_params[0]; h_ma_force[1] = ma_params[1]; h_ma_step[0] = ma_params[0]; h_ma_step[1] = 
ma_params[1]; 
 for (int i = 2; i < 6; i++) { h_ma_force[i] = substep_size * ma_params[i]; h_ma_step[i] = substep_size * 
ma_params[i]; } // *substep_size breaks force into two substeps (see non_substep = substep_size) 
 h_ma_previous[0] = ma_params[0]; h_ma_previous[1] = ma_params[1]; 
 for (int i = 2; i < 6; i++) h_ma_previous[i] = 0.0f; 
 float* d_force_step = NULL; 
 // Initialize variables for preconditioned gradient solver 
 float* u_global = NULL; 
 float* u_sol_global = NULL; 
 float* u_sol_global_prev = NULL; 
 float* b_global = NULL; 
 float* r_global = NULL; 
 float* f_global = NULL; 
 float* f_global_prev = NULL; 
 float* u_elements = NULL; 
 float* u_sol_elements = NULL; 
 float* f_elements = NULL; 
 //float etol_d = 1.0f; 
 int NR_itr = 0; 
 float substep = 0.0f; 
 float non_substep = substep_size; // breaks force into two substeps 
 int total_steps = int( 1.0f / substep_size); 
 float* x_substeps = NULL; 
 x_substeps = (float*)malloc(total_dof*total_steps * sizeof(float)); 
 int step_count = 0; 
 int NR_itr_max = 10; 
 int total_itr = 0; 
 float* del_u_norm = NULL; 
 float* u_norm = NULL; 
 float* rf_diff_norm = NULL; 
 float* ext_force_norm = NULL; 
 float* h_rf_diff_norm = NULL; 
 h_rf_diff_norm = (float*)malloc(sizeof(float)); 
 float* h_rf_diff_norm2 = NULL; 
 h_rf_diff_norm2 = (float*)malloc(sizeof(float)); 
 float* h_ext_force_norm = NULL; 
 h_ext_force_norm = (float*)malloc(sizeof(float)); 
 float* h_del_u_norm = NULL; 
 h_del_u_norm = (float*)malloc(sizeof(float)); 
 float* h_del_u_norm2 = NULL; 
 h_del_u_norm2 = (float*)malloc(sizeof(float)); 
 float* h_u_norm = NULL; 
 h_u_norm = (float*)malloc(sizeof(float)); 
 h_h_stress = (float*)malloc(total_element_count * sizeof(float)); 
 cublasHandle_t handle; 
 cudaEvent_t start, stop, start_matrix, stop_matrix, start_solve, stop_solve; 
 float millisecond = 0.0f; 
 float millisecond_matrix = 0.0f; 
 float millisecond_solve = 0.0f; 
 float* hf_matrix_A = NULL; 
 hf_matrix_A = (float*)malloc(A_non_zeros * sizeof(float)); 
 float* hf_b_global = NULL; 
 hf_b_global = (float*)malloc(2 * total_dof * sizeof(float)); 
 float* hf_u_global = NULL; 
 hf_u_global = (float*)malloc(total_dof * sizeof(float)); 
 
 //***for calculating location and orientation of the remote node 
 float remote_node_before[global_dof] = { 0.0f, 0.0f, 0.0f }; 
 for (int j = 0; j < global_dof; j++) { 
  remote_node_before[j] = 0.0f; 
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  for (int i = 0; i < F_node_count; i++) remote_node_before[j] += nodes_x[f_ind[i] * global_dof + j]; 
 } 
 for (int j = 0; j < global_dof; j++) remote_node_before[j] = remote_node_before[j] / F_node_count; 
 float* remote_loc_coord_before = new float[F_node_count*global_dof]; 
 for (int i = 0; i < F_node_count; i++) { 
  for (int j = 0; j < global_dof; j++) remote_loc_coord_before[i*global_dof + j] = nodes_x[f_ind[i] * 
global_dof + j] - remote_node_before[j]; 
 } 
 
 // PARDISO variables 
 //*******************************REMEMBER THAT PARDISO IS INDEX BASE 
ONE********************************************************* 
 MKL_INT mtype = 2;       /* -2 Real symmetric indefinite; 2 symmetric positive definite; 1 Real structurally 
symmetric 11 Real nonsymmetric */ 
 MKL_INT n_total = total_dof; 
 MKL_INT* p_csr_row = new MKL_INT[total_dof + 1]; 
 MKL_INT* p_csr_col = new MKL_INT[A_non_zeros]; 
 for (int i = 0; i < total_dof + 1; i++) { 
  p_csr_row[i] = csr_row[i] + 1; 
 } 
 for (int i = 0; i < A_non_zeros; i++) { 
  p_csr_col[i] = csr_col[i] + 1; 
 } 
 MKL_INT nrhs = 1;     /* Number of right hand sides. */ 
 void *pt[64]; /* Internal solver memory pointer pt, */ 
      /* Pardiso control parameters. */ 
 MKL_INT iparm[64]; 
 MKL_INT maxfct, mnum, phase, pardiso_error, msglvl; 
 /* Auxiliary variables. */ 
 MKL_INT p_i; 
 float ddum;          /* Float dummy */ 
 MKL_INT idum;         /* Integer dummy. */ 
        /* -------------------------------------------------------------------- */ 
        /* .. Setup Pardiso control parameters. */ 
        /* -------------------------------------------------------------------- */ 
 for (p_i = 0; p_i < 64; p_i++) 
 { 
  iparm[p_i] = 0; 
 } 
 iparm[0] = 1;         /* No solver default */ 
 iparm[1] = 2;         /* Fill-in reordering from METIS */ 
 iparm[3] = 0;         /* No iterative-direct algorithm */ 
 iparm[4] = 0;         /* No user fill-in reducing permutation */ 
 iparm[5] = 0;         /* Write solution into x */ 
 iparm[6] = 0;         /* Not in use */ 
 iparm[7] = 2;         /* Max numbers of iterative refinement steps */ 
 iparm[8] = 0;         /* Not in use */ 
 iparm[9] = 13;        /* Perturb the pivot elements with 1E-13 */ 
 iparm[10] = 1;        /* Use nonsymmetric permutation and scaling MPS */ 
 iparm[11] = 0;        /* Not in use */ 
 iparm[12] = 0;        /* Maximum weighted matching algorithm is switched-off (default for symmetric). Try 
iparm[12] = 1 in case of inappropriate accuracy */ 
 iparm[13] = 0;        /* Output: Number of perturbed pivots */ 
 iparm[14] = 0;        /* Not in use */ 
 iparm[15] = 0;        /* Not in use */ 
 iparm[16] = 0;        /* Not in use */ 
 iparm[17] = -1;       /* Output: Number of nonzeros in the factor LU */ 
 iparm[18] = -1;       /* Output: Mflops for LU factorization */ 
 iparm[19] = 0;        /* Output: Numbers of CG Iterations */ 
 iparm[27] = 1;    /* for single precision Intel MKL PARDISO */ 
 maxfct = 1;           /* Maximum number of numerical factorizations. */ 
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 mnum = 1;         /* Which factorization to use. */ 
 msglvl = 0;           /* Print statistical information in file */ 
 pardiso_error = 0;            /* Initialize pardiso_error flag */ 
          /* -------------------------------------------------
------------------- */ 
          /* .. Initialize the internal solver memory 
pointer. This is only */ 
          /* necessary for the FIRST call of the 
PARDISO solver. */ 
          /* -------------------------------------------------
------------------- */ 
 for (p_i = 0; p_i < 64; p_i++) 
 { 
  pt[p_i] = 0; 
 } 
 
 // Choose which GPU to run on, change this on a multi-GPU system. 
 cudaStatus = cudaSetDevice(0); 
 //memory checks; 
 size_t free_byte; 
 size_t total_byte; 
 
 cudaStatus = cudaMemGetInfo(&free_byte, &total_byte); 
 double free_db = (double)free_byte; 
 double total_db = (double)total_byte; 
 double used_db = total_db - free_db; 
 printf("GPU memory usage before cudaMalloc: used = %f MB, free = %f MB, total = %f MB\n", used_db / 
1024.0 / 1024.0, free_db / 1024.0 / 1024.0, total_db / 1024.0 / 1024.0); 
 // allocate GPU buffers 
 cudaStatus = cudaMalloc(&d_nodes_x, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_nodes_x_prev, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_nodes_x0, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_element_i, ((total_element_count*nodes_per_tet)) * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_element_j, ((total_element_count*ematrix_ref_size)) * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_csr_row, csr_row_size * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_csr_col, A_non_zeros * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_share_element_ind, GRID_SIZE1*BLOCK_SIZE*nodes_per_tet * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_share_bool_ind, GRID_SIZE1*BLOCK_SIZE*nodes_per_tet * sizeof(bool)); 
 cudaStatus = cudaMalloc(&d_type_ind, total_element_count * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_body_ind, total_element_count * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_sec_ind, total_element_count * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_BC_node_ind, BC_node_count * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_F_ind, F_node_count * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_BCapply_ind, BC_stiff_count * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_BCapply_stiff, BC_stiff_count * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_fib_ind, total_element_count*nodes_per_fib * sizeof(int)); 
 cudaStatus = cudaMalloc(&d_ma_params, 6 * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_h_stress, total_element_count * sizeof(float)); 
 
 // Move memory from host to device 
 cudaStatus = cudaMemcpy(d_nodes_x, nodes_x, total_dof * sizeof(float), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_nodes_x_prev, nodes_x, total_dof * sizeof(float), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_nodes_x0, nodes_x, total_dof * sizeof(float), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_element_i, element_i, ((total_element_count*nodes_per_tet)) * sizeof(int), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_element_j, element_j, ((total_element_count*ematrix_ref_size)) * sizeof(int), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_csr_row, csr_row, csr_row_size * sizeof(int), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_csr_col, csr_col, A_non_zeros * sizeof(int), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_share_element_ind, share_element_ind, 
GRID_SIZE1*BLOCK_SIZE*nodes_per_tet * sizeof(int), cudaMemcpyHostToDevice); 
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 cudaStatus = cudaMemcpy(d_share_bool_ind, share_bool_ind, GRID_SIZE1*BLOCK_SIZE*nodes_per_tet * 
sizeof(bool), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_type_ind, type_ind, total_element_count * sizeof(int), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_body_ind, body_ind, total_element_count * sizeof(int), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_sec_ind, sec_ind, total_element_count * sizeof(int), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_BC_node_ind, BC_node_ind, BC_node_count * sizeof(int), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_F_ind, f_ind, F_node_count * sizeof(int), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_BCapply_ind, BCapply_ind, BC_stiff_count * sizeof(int), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_BCapply_stiff, BCapply_stiff, BC_stiff_count * sizeof(float), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_fib_ind, fib_ind, total_element_count * nodes_per_fib * sizeof(int), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_ma_params, h_ma_force, 6 * sizeof(float), cudaMemcpyHostToDevice); 
 
 // Matrices for precalculations 
 cudaStatus = cudaMalloc(&solid_inter_constants, ((total_element_count*tet_element_dof) + 
(BLOCK_SIZE*tet_element_dof)) * sizeof(float)); 
 cudaStatus = cudaMalloc(&solid_element_volumes, total_element_count * sizeof(float)); 
 cudaStatus = cudaMalloc(&solid_BL0, ((total_element_count*solid_BLsize) + (BLOCK_SIZE*solid_BLsize)) * 
sizeof(float)); 
 cudaStatus = cudaMalloc(&lig_lengths0, total_element_count * sizeof(float)); 
 cudaStatus = cudaMalloc(&matrix_A, A_non_zeros * sizeof(float)); 
 cudaStatus = cudaMalloc(&matrix_A_prev, A_non_zeros * sizeof(float)); 
 cudaStatus = cudaMalloc(&fib_lengths0_2, total_element_count * sizeof(float)); 
 
 // Vectors for preconditioned gradient solver 
 cudaStatus = cudaMalloc(&u_global, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&b_global, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&r_global, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&f_global, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&f_global_prev, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&u_sol_global, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&u_sol_global_prev, total_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&u_elements, ((total_element_count*tet_element_dof) + 
(BLOCK_SIZE*tet_element_dof)) * sizeof(float)); 
 cudaStatus = cudaMalloc(&u_sol_elements, ((total_element_count*tet_element_dof) + 
(BLOCK_SIZE*tet_element_dof)) * sizeof(float)); 
 cudaStatus = cudaMalloc(&f_elements, ((total_element_count*tet_element_dof) + 
(BLOCK_SIZE*tet_element_dof)) * sizeof(float)); 
 cudaStatus = cudaMalloc(&del_u_norm, sizeof(float)); 
 cudaStatus = cudaMalloc(&ext_force_norm, sizeof(float)); 
 cudaStatus = cudaMalloc(&u_norm, sizeof(float)); 
 cudaStatus = cudaMalloc(&rf_diff_norm, sizeof(float)); 
 
 cudaStatus = cudaMalloc(&d_force, force_node_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_force_step, force_node_dof * sizeof(float)); 
 cudaStatus = cudaPeekAtLastError(); 
 cudaStatus = cudaMemcpy(d_force, h_force, force_node_dof * sizeof(float), cudaMemcpyHostToDevice); 
 cudaStatus = cudaMemcpy(d_force_step, h_force_step, force_node_dof * sizeof(float), 
cudaMemcpyHostToDevice); 
 cudaStatus = cudaPeekAtLastError(); 
 cudaStatus = cudaMalloc(&d_local_coords0, total_element_count*tet_element_dof * sizeof(float)); 
 cudaStatus = cudaMalloc(&d_local_coords, total_element_count*tet_element_dof * sizeof(float)); 
 
 cudaStatus = cudaGetLastError(); 
 if (cudaStatus != cudaSuccess) { 
  fprintf(stderr, "solid cudaMalloc failed!"); 
  goto Error; 
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 } 
 
 cudaStatus = cudaMemGetInfo(&free_byte, &total_byte); 
 free_db = (double)free_byte; 
 total_db = (double)total_byte; 
 used_db = total_db - free_db; 
 printf("GPU memory usage after cudaMalloc: used = %f MB, free = %f MB, total = %f MB\n", used_db / 1024.0 / 
1024.0, free_db / 1024.0 / 1024.0, total_db / 1024.0 / 1024.0); 
 
 // Get cublas ready for solver 
 cublasCreate(&handle); 
 cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_DEVICE); 
 // Get time recording ready 
 cudaEventCreate(&start); 
 cudaEventCreate(&stop); 
 cudaEventCreate(&start_matrix); 
 cudaEventCreate(&stop_matrix); 
 cudaEventCreate(&start_solve); 
 cudaEventCreate(&stop_solve); 
 
 //******************************************************************************************
************************************************************************************ 
 //******************************************************************************************
************************************************************************************ 
 //           
       SOLVER PREP 
 //******************************************************************************************
************************************************************************************ 
 //******************************************************************************************
************************************************************************************ 
 printf("\nPreparing the model...\n******USING %i SOLVER******\n", mtype); 
 //cin.get(); 
 
 // Precalculations for stiffness matrix 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(u_sol_global, total_dof); 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(u_sol_global_prev, total_dof); 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(u_global, total_dof); 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(b_global, total_dof); 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(f_global_prev, total_dof); 
 fillones << < GRID_SIZE1, BLOCK_SIZE >> >(f_elements, ((total_element_count*tet_element_dof) + 
(BLOCK_SIZE*tet_element_dof)));  // actually filling with zeros 
 
 VectorDisassembly << < GRID_SIZE1, BLOCK_SIZE >> >(u_sol_global, u_sol_elements, d_element_i, 
d_type_ind, d_body_ind, total_node_count); 
 
 VectorDisassembly << < GRID_SIZE1, BLOCK_SIZE >> >(u_global, u_elements, d_element_i, d_type_ind, 
d_body_ind, total_node_count); 
 FibLengths0 << < GRID_SIZE1, BLOCK_SIZE >> >(fib_lengths0_2, d_nodes_x, d_fib_ind, d_body_ind, 
total_element_count); 
 
 PreStiffCalculations << < GRID_SIZE1, BLOCK_SIZE >> >(d_element_i, d_type_ind, d_body_ind, d_nodes_x, 
solid_inter_constants, solid_element_volumes, solid_BL0, lig_lengths0, 
  d_local_coords, d_local_coords0, total_node_count); 
 
 //****************************If force application was done like a 
pressure******************************** 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(r_global, total_dof); 
 //ForcePressure << <GRID_SIZE01, BLOCK_SIZE >> >(r_global, d_force_step, d_F_ind, F_node_count, 
total_node_count); 
 MomentPressure << <GRID_SIZE01, BLOCK_SIZE >> > (r_global, d_nodes_x0, d_F_ind, d_ma_params, 
F_node_count, total_node_count); 
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 // Calculate stiffness matrix and force vector including preconditioner 
 fillzeros << <GRID_SIZE_NON_ZEROS, BLOCK_SIZE >> >(matrix_A, A_non_zeros); 
 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(f_global, total_dof); 
 SolidStiffness << < GRID_SIZE1, BLOCK_SIZE >> >(matrix_A, solid_BL0, solid_inter_constants, 
solid_element_volumes, d_nodes_x, u_sol_global, u_sol_elements, u_elements, f_elements, f_global, 
  d_BC_node_ind, d_element_i, d_type_ind, d_element_j, d_body_ind, d_sec_ind, BC_value, 
lig_lengths0, d_fib_ind, fib_lengths0_2, d_local_coords, d_local_coords0, total_node_count); 
 cublasScopy(handle, A_non_zeros, matrix_A, 1, matrix_A_prev, 1); 
 
 VectorAssembly << < GRID_SIZE1, BLOCK_SIZE >> >(f_elements, f_global, d_element_i, d_type_ind, 
d_body_ind, d_share_element_ind, d_share_bool_ind, total_node_count); 
 
 VectorSubtraction << <GRID_SIZE0, BLOCK_SIZE >> >(r_global, f_global, b_global, total_dof); 
 
 cublasSnrm2(handle, total_dof, b_global, 1, ext_force_norm); 
 cudaMemcpy(h_ext_force_norm, ext_force_norm, sizeof(float), cudaMemcpyDeviceToHost); 
 cout << "\nRF limit = " << *h_ext_force_norm << endl; 
 cublasSnrm2(handle, total_dof, b_global, 1, ext_force_norm); 
 
 ApplyBC << <GRID_SIZE_BC, BLOCK_SIZE >> >(matrix_A, b_global, d_BC_node_ind, d_BCapply_ind, 
d_BCapply_stiff, BC_value, BC_node_count, BC_stiff_count, A_non_zeros, total_node_count); 
 
 cudaMemcpy(hf_matrix_A, matrix_A, A_non_zeros * sizeof(float), cudaMemcpyDeviceToHost); 
 phase = 11; 
 PARDISO(pt, &maxfct, &mnum, &mtype, &phase, &n_total, hf_matrix_A, p_csr_row, p_csr_col, &idum, 
&nrhs, iparm, &msglvl, &ddum, &ddum, &pardiso_error); 
 if (pardiso_error != 0) 
 { 
  printf("\nERROR during symbolic factorization: %d\n", pardiso_error); 
  goto Error; 
 } 
 printf("\nReordering completed ... "); 
 printf("\nNumber of nonzeros in factors = %d", iparm[17]); 
 printf("\nNumber of factorization MFLOPS = %d\n", iparm[18]); 
 
 //******************************************************************************************
************************************************************************************ 
 //******************************************************************************************
************************************************************************************ 
 //           
       SOLVER 
 //******************************************************************************************
************************************************************************************ 
 //******************************************************************************************
************************************************************************************ 
 
 printf("\nBeginning to solve...\n"); 
 //cin.get(); 
 
 cudaEventRecord(start, 0); 
 
 cudaEventRecord(start_solve, 0); 
 cudaMemcpy(hf_b_global, b_global, n_total * sizeof(float), cudaMemcpyDeviceToHost); 
 phase = 23; 
 PARDISO(pt, &maxfct, &mnum, &mtype, &phase, 
  &n_total, hf_matrix_A, p_csr_row, p_csr_col, &idum, &nrhs, iparm, &msglvl, hf_b_global, 
hf_u_global, &pardiso_error); 
 cudaMemcpy(u_global, hf_u_global, n_total * sizeof(float), cudaMemcpyHostToDevice); 
 cudaEventRecord(stop_solve, 0); 
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 cudaEventSynchronize(stop_solve); 
 cudaEventElapsedTime(&millisecond_solve, start_solve, stop_solve); 
 
 //**********************************************First 
iteration*************************************************************************** 
 cudaEventRecord(start_matrix, 0); 
 
 NR_itr = 1; 
 
 UpdateSolNodes << < GRID_SIZE0, BLOCK_SIZE >> >(d_nodes_x, u_sol_global, u_global, total_dof); 
 
 VectorDisassembly << < GRID_SIZE1, BLOCK_SIZE >> >(u_sol_global, u_sol_elements, d_element_i, 
d_type_ind, d_body_ind, total_node_count); 
 VectorDisassembly << < GRID_SIZE1, BLOCK_SIZE >> >(u_global, u_elements, d_element_i, d_type_ind, 
d_body_ind, total_node_count); 
 
 cublasSnrm2(handle, total_dof, u_global, 1, del_u_norm); 
 cudaMemcpy(h_del_u_norm, del_u_norm, sizeof(float), cudaMemcpyDeviceToHost); 
 // Calculate stiffness matrix and force vector including preconditioner 
 fillzeros << <GRID_SIZE_NON_ZEROS, BLOCK_SIZE >> >(matrix_A, A_non_zeros); 
 fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(f_global, total_dof); 
 SolidStiffness << < GRID_SIZE1, BLOCK_SIZE >> >(matrix_A, solid_BL0, solid_inter_constants, 
solid_element_volumes, d_nodes_x, u_sol_global, u_sol_elements, u_elements, f_elements, f_global, 
  d_BC_node_ind, d_element_i, d_type_ind, d_element_j, d_body_ind, d_sec_ind, BC_value, 
lig_lengths0, d_fib_ind, fib_lengths0_2, d_local_coords, d_local_coords0, total_node_count); 
 
 fillones << < GRID_SIZE1, BLOCK_SIZE >> >(u_sol_elements, ((total_element_count*tet_element_dof) + 
(BLOCK_SIZE*tet_element_dof)));  // actually filling with zeros 
 VectorAssembly << < GRID_SIZE1, BLOCK_SIZE >> > (f_elements, f_global, d_element_i, d_type_ind, 
d_body_ind, d_share_element_ind, d_share_bool_ind, total_node_count); 
 
 VectorSubtraction << <GRID_SIZE0, BLOCK_SIZE >> >(r_global, f_global, b_global, total_dof); 
 
 ApplyBC << <GRID_SIZE_BC, BLOCK_SIZE >> >(matrix_A, b_global, d_BC_node_ind, d_BCapply_ind, 
d_BCapply_stiff, BC_value, BC_node_count, BC_stiff_count, A_non_zeros, total_node_count); 
 
 cublasSnrm2(handle, total_dof, b_global, 1, rf_diff_norm); 
 cublasSnrm2(handle, total_dof, u_sol_global, 1, u_norm); 
 cudaMemcpy(h_rf_diff_norm, rf_diff_norm, sizeof(float), cudaMemcpyDeviceToHost); 
 cudaMemcpy(h_u_norm, u_norm, sizeof(float), cudaMemcpyDeviceToHost); 
 
 cout << "\nU iteration = " << *h_del_u_norm << endl; 
 cout << "RF iteration = " << *h_rf_diff_norm << endl; 
 if (isnan(*h_del_u_norm) || isnan(*h_rf_diff_norm)) goto Error; 
 
 NR_itr++; 
 
 cudaEventRecord(stop_matrix, 0); 
 cudaEventSynchronize(stop_matrix); 
 cudaEventElapsedTime(&millisecond_matrix, start_matrix, stop_matrix); 
 printf("Elapsed time for matrix build is: %f\n", millisecond_matrix / 1000.0f); 
 printf("Elapsed time for matrix solve is: %f\n", millisecond_solve / 1000.0f); 
 
 *h_rf_diff_norm2 = 10000.0f; 
 *h_del_u_norm2 = 100000.0f; 
 total_itr = 1; 
 // Running in two substeps 
 while (substep < 1.0f) { 
  NR_itr = 1; 
  //****************************************************************Next 
iterations******************************************************************** 
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  //while ((((*h_del_u_norm > 20.0f) && (*h_del_u_norm2 > 20.0f)) && ((*h_rf_diff_norm > 110.0f) || 
(*h_rf_diff_norm2 > 125.0f))) && (NR_itr < NR_itr_max)) { 
  //while ((NR_itr < NR_itr_max)) { 
  //while ((((*h_del_u_norm / *h_u_norm) > etol_d) || (*h_rf_diff_norm > h_etol_f)) && (NR_itr < 
NR_itr_max)){ 
  while (((*h_del_u_norm > 21.0f) || (*h_rf_diff_norm > 200.0f)) && (NR_itr < NR_itr_max)){ 
 
   *h_rf_diff_norm2 = *h_rf_diff_norm; 
   *h_del_u_norm2 = *h_del_u_norm; 
 
   cudaEventRecord(start_solve, 0); 
   cudaMemcpy(hf_matrix_A, matrix_A, A_non_zeros * sizeof(float), 
cudaMemcpyDeviceToHost); 
   cudaMemcpy(hf_b_global, b_global, n_total * sizeof(float), cudaMemcpyDeviceToHost); 
   phase = 23; 
   PARDISO(pt, &maxfct, &mnum, &mtype, &phase, 
    &n_total, hf_matrix_A, p_csr_row, p_csr_col, &idum, &nrhs, iparm, &msglvl, 
hf_b_global, hf_u_global, &pardiso_error); 
   cudaMemcpy(u_global, hf_u_global, n_total * sizeof(float), cudaMemcpyHostToDevice); 
   cudaEventRecord(stop_solve, 0); 
   cudaEventSynchronize(stop_solve); 
   cudaEventElapsedTime(&millisecond_solve, start_solve, stop_solve); 
 
   //***************************************************************end K del_u = 
R-F ****************************************************************************************** 
   cudaEventRecord(start_matrix, 0); 
 
   UpdateSolNodes << < GRID_SIZE0, BLOCK_SIZE >> >(d_nodes_x, u_sol_global, 
u_global, total_dof); 
   fillones << < GRID_SIZE1, BLOCK_SIZE >> >(f_elements, 
((total_element_count*tet_element_dof) + (BLOCK_SIZE*tet_element_dof)));  // actually filling with zeros 
   VectorDisassembly << < GRID_SIZE1, BLOCK_SIZE >> >(u_sol_global, u_sol_elements, 
d_element_i, d_type_ind, d_body_ind, total_node_count); 
   VectorDisassembly << < GRID_SIZE1, BLOCK_SIZE >> >(u_global, u_elements, 
d_element_i, d_type_ind, d_body_ind, total_node_count); 
 
   cublasSnrm2(handle, total_dof, u_global, 1, del_u_norm); 
   cudaMemcpy(h_del_u_norm, del_u_norm, sizeof(float), cudaMemcpyDeviceToHost); 
   // Calculate stiffness matrix and force vector including preconditioner 
   fillzeros << <GRID_SIZE_NON_ZEROS, BLOCK_SIZE >> >(matrix_A, A_non_zeros); 
   fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(f_global, total_dof); 
   SolidStiffness << < GRID_SIZE1, BLOCK_SIZE >> >(matrix_A, solid_BL0, 
solid_inter_constants, solid_element_volumes, d_nodes_x, u_sol_global, u_sol_elements, u_elements, f_elements, f_global, 
    d_BC_node_ind, d_element_i, d_type_ind, d_element_j, d_body_ind, d_sec_ind, 
BC_value, lig_lengths0, d_fib_ind, fib_lengths0_2, d_local_coords, d_local_coords0, 
    total_node_count); 
 
   VectorAssembly << < GRID_SIZE1, BLOCK_SIZE >> >(f_elements, f_global, d_element_i, 
d_type_ind, d_body_ind, d_share_element_ind, d_share_bool_ind, total_node_count); 
   VectorSubtraction << <GRID_SIZE0, BLOCK_SIZE >> >(r_global, f_global, b_global, 
total_dof); 
 
   ApplyBC << <GRID_SIZE_BC, BLOCK_SIZE >> >(matrix_A, b_global, d_BC_node_ind, 
d_BCapply_ind, d_BCapply_stiff, BC_value, BC_node_count, BC_stiff_count, A_non_zeros, total_node_count); 
 
   cublasSnrm2(handle, total_dof, b_global, 1, rf_diff_norm); 
   cublasSnrm2(handle, total_dof, u_sol_global, 1, u_norm); 
   cudaMemcpy(h_rf_diff_norm, rf_diff_norm, sizeof(float), cudaMemcpyDeviceToHost); 
   cudaMemcpy(h_u_norm, u_norm, sizeof(float), cudaMemcpyDeviceToHost); 
 
   cout << "\nU iteration = " << *h_del_u_norm << endl; 
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   cout << "RFu iteration = " << *h_rf_diff_norm << endl; 
 
   NR_itr++; 
   total_itr++; 
 
   cudaEventRecord(stop_matrix, 0); 
   cudaEventSynchronize(stop_matrix); 
   cudaEventElapsedTime(&millisecond_matrix, start_matrix, stop_matrix); 
   printf("Elapsed time for matrix build is: %f\n", millisecond_matrix / 1000.0f); 
   printf("Elapsed time for matrix solve is: %f\n", millisecond_solve / 1000.0f); 
  } 
 
  //if (NR_itr == NR_itr_max) { 
  // cout << "\nMax NR iterations reached" << endl; 
  //} 
 
  h_ma_force[2] += h_ma_step[2]; h_ma_force[3] += h_ma_step[3]; h_ma_force[4] += h_ma_step[4]; 
h_ma_force[5] += h_ma_step[5]; 
  cout << "*******************SUBSTEP CONVERGED**************" << endl; 
  substep += non_substep; 
  cudaMemcpy(&x_substeps[step_count*total_dof], d_nodes_x, total_dof*sizeof(float), 
cudaMemcpyDeviceToHost); 
  step_count++; 
  *h_rf_diff_norm = 10000.0f; 
  *h_del_u_norm = 10000.0f; 
  *h_rf_diff_norm2 = 100000.0f; 
  *h_del_u_norm2 = 100000.0f; 
  //cudaMemcpy(d_force_step, h_force_step, force_node_dof * sizeof(float), 
cudaMemcpyHostToDevice); 
  cudaMemcpy(d_ma_params, h_ma_force, 6 * sizeof(float), cudaMemcpyHostToDevice); 
  fillzeros << < GRID_SIZE0, BLOCK_SIZE >> >(r_global, total_dof); 
  //ForcePressure << <GRID_SIZE01, BLOCK_SIZE >> >(r_global, d_force_step, d_F_ind, 
F_node_count, total_node_count); 
  MomentPressure << <GRID_SIZE01, BLOCK_SIZE >> > (r_global, d_nodes_x0, d_F_ind, 
d_ma_params, F_node_count, total_node_count); 
  VectorSubtraction << <GRID_SIZE0, BLOCK_SIZE >> >(r_global, f_global, b_global, total_dof); 
  ApplyBC << <GRID_SIZE_BC, BLOCK_SIZE >> >(matrix_A, b_global, d_BC_node_ind, 
d_BCapply_ind, d_BCapply_stiff, BC_value, BC_node_count, BC_stiff_count, A_non_zeros, total_node_count); 
 
  cublasSnrm2(handle, total_dof, r_global, 1, ext_force_norm); 
  cudaMemcpy(h_ext_force_norm, ext_force_norm, sizeof(float), cudaMemcpyDeviceToHost); 
  //cout << "\nRF limit = " << *h_ext_force_norm << endl; 
  cublasSnrm2(handle, total_dof, b_global, 1, ext_force_norm); 
 
 } 
 
 
Error: 
 //if (mkl_error != MKL_DSS_SUCCESS) printf("Solver returned pardiso_error code %d\n", mkl_error); 
 cudaMemcpy(nodes_x, d_nodes_x, total_dof * sizeof(float), cudaMemcpyDeviceToHost); 
 cudaMemcpy(hf_u_global, u_sol_global, total_dof * sizeof(float), cudaMemcpyDeviceToHost); 
 
 // Record time 
 cudaEventRecord(stop, 0); 
 cudaEventSynchronize(stop); 
 cudaEventElapsedTime(&millisecond, start, stop); 
 
 printf("\nTotal number of iterations: %i\n", total_itr); 
 printf("Elapsed time is: %f\n", millisecond / 1000.0f); 
 //system("pause"); 
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 // Determine hydrostatic stress in the nucleus pulposus 
 HydrostaticStress << <GRID_SIZE1, BLOCK_SIZE >> > (d_h_stress, solid_inter_constants, 
solid_element_volumes, u_sol_elements, d_nodes_x, d_element_i, d_type_ind, d_body_ind); 
 cudaMemcpy(h_h_stress, d_h_stress, total_element_count * sizeof(float), cudaMemcpyDeviceToHost); 
 
 // F_ELEM file for determining remote node disp and angle 
 float* remote_node_after = NULL; 
 remote_node_after = (float*)malloc(total_steps*2 * global_dof * sizeof(float)); 
 float* f_angles = new float[global_dof*F_node_count]; 
 float n_length = 0.0f; 
 float n_dir_before[3] = { 0.0f, 0.0f, 0.0f }; 
 float n_dir_after[3] = { 0.0f, 0.0f, 0.0f }; 
 float n_dir_angle[3] = { 0.0f, 0.0f, 0.0f }; 
 float l_vector[3][3]; 
 float sum; 
 float del; 
 float gamma; 
 float remote_node_after_coords[global_dof] = { 0.0f, 0.0f, 0.0f }; 
 for (int step = 0; step < total_steps; step++) { 
  for (int j = 0; j < global_dof; j++) { 
   remote_node_after_coords[j] = 0.0f; 
   for (int i = 0; i < F_node_count; i++) remote_node_after_coords[j] += 
x_substeps[step*total_dof + f_ind[i] * global_dof + j]; 
  } 
  for (int j = 0; j < global_dof; j++) remote_node_after_coords[j] = remote_node_after_coords[j] / 
F_node_count; 
  float* remote_loc_coord_after = new float[F_node_count*global_dof]; 
  for (int i = 0; i < F_node_count; i++) { 
   for (int j = 0; j < global_dof; j++) remote_loc_coord_after[i*global_dof + j] = 
x_substeps[step*total_dof + f_ind[i] * global_dof + j] - remote_node_after_coords[j]; 
  } 
  for (int i = 0; i < global_dof; i++) remote_node_after[step*6 + i] = remote_node_after_coords[i] - 
remote_node_before[i]; // Due to translation 
            
            
       // Rotation is calculated from LOCAL COORDINATES NOT 
NORMAL VECTORS 
  for (int i = 0; i < F_node_count; i++) { 
   n_length = sqrtf((remote_loc_coord_before[i*global_dof + 0] * 
remote_loc_coord_before[i*global_dof + 0]) + (remote_loc_coord_before[i*global_dof + 1] * 
remote_loc_coord_before[i*global_dof + 1]) 
    + (remote_loc_coord_before[i*global_dof + 2] * 
remote_loc_coord_before[i*global_dof + 2])); 
   n_dir_before[0] = remote_loc_coord_before[i*global_dof + 0] / n_length; 
   n_dir_before[1] = remote_loc_coord_before[i*global_dof + 1] / n_length; 
   n_dir_before[2] = remote_loc_coord_before[i*global_dof + 2] / n_length; 
   n_length = sqrtf((remote_loc_coord_after[i*global_dof + 0] * 
remote_loc_coord_after[i*global_dof + 0]) + (remote_loc_coord_after[i*global_dof + 1] * 
remote_loc_coord_after[i*global_dof + 1]) 
    + (remote_loc_coord_after[i*global_dof + 2] * 
remote_loc_coord_after[i*global_dof + 2])); 
   n_dir_after[0] = remote_loc_coord_after[i*global_dof + 0] / n_length; 
   n_dir_after[1] = remote_loc_coord_after[i*global_dof + 1] / n_length; 
   n_dir_after[2] = remote_loc_coord_after[i*global_dof + 2] / n_length; 
   n_dir_angle[0] = (n_dir_before[1] * n_dir_after[2]) - (n_dir_before[2] * n_dir_after[1]); 
   n_dir_angle[1] = (n_dir_before[2] * n_dir_after[0]) - (n_dir_before[0] * n_dir_after[2]); 
   n_dir_angle[2] = (n_dir_before[0] * n_dir_after[1]) - (n_dir_before[1] * n_dir_after[0]); 
   sum = sqrtf((n_dir_angle[0] * n_dir_angle[0]) + (n_dir_angle[1] * n_dir_angle[1]) + 
(n_dir_angle[2] * n_dir_angle[2])); 
   del = (n_dir_before[0] * n_dir_after[0]) + (n_dir_before[1] * n_dir_after[1]) + 
(n_dir_before[2] * n_dir_after[2]); 
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   gamma = (1.0f - del) / (sum*sum); 
   l_vector[0][0] = 1.0f - (gamma*(n_dir_angle[2] * n_dir_angle[2] + n_dir_angle[1] * 
n_dir_angle[1])); 
   l_vector[0][1] = -(n_dir_angle[2]) + (gamma*n_dir_angle[1] * n_dir_angle[0]); 
   l_vector[0][2] = (n_dir_angle[1]) + (gamma*n_dir_angle[0] * n_dir_angle[2]); 
   l_vector[1][0] = (n_dir_angle[2]) + (gamma*n_dir_angle[0] * n_dir_angle[1]); 
   l_vector[1][1] = 1.0f - (gamma*(n_dir_angle[0] * n_dir_angle[0] + n_dir_angle[2] * 
n_dir_angle[2])); 
   l_vector[1][2] = -(n_dir_angle[0]) + (gamma*n_dir_angle[1] * n_dir_angle[2]); 
   l_vector[2][0] = -(n_dir_angle[1]) + (gamma*n_dir_angle[0] * n_dir_angle[2]); 
   l_vector[2][1] = (n_dir_angle[0]) + (gamma*n_dir_angle[1] * n_dir_angle[2]); 
   l_vector[2][2] = 1.0f - (gamma*(n_dir_angle[0] * n_dir_angle[0] + n_dir_angle[1] * 
n_dir_angle[1])); 
   sum = acosf((l_vector[0][0] + l_vector[1][1] + l_vector[2][2] - 1.0f) / 2.0f); 
   gamma = sqrtf(((l_vector[2][1] - l_vector[1][2])*(l_vector[2][1] - l_vector[1][2])) + 
((l_vector[0][2] - l_vector[2][0])*(l_vector[0][2] - l_vector[2][0])) 
    + ((l_vector[1][0] - l_vector[0][1])*(l_vector[1][0] - l_vector[0][1]))); 
   f_angles[i*global_dof + 0] = sum*((l_vector[2][1] - l_vector[1][2]) / gamma); 
   f_angles[i*global_dof + 1] = sum*((l_vector[0][2] - l_vector[2][0]) / gamma); 
   f_angles[i*global_dof + 2] = sum*((l_vector[1][0] - l_vector[0][1]) / gamma); 
  } 
  int max_node[3] = { 0,0,0 }; 
  for (int j = 0; j < global_dof; j++) { 
   sum = f_angles[0 * global_dof + j]; 
   for (int i = 1; i < F_node_count; i++) { 
    if (abs(sum) < abs(f_angles[i*global_dof + j])) { 
     sum = f_angles[i*global_dof + j]; 
     max_node[j] = i; // Find maximum rotation vector (in negative direction).  
Max occurs in x-direction 
    } 
   } 
  } 
  for (int j = 0; j < global_dof; j++) remote_node_after[step*6 + global_dof + j] = f_angles[max_node[0] 
* global_dof + j]; 
 } 
 
 ////Get local coords of slave node and store in l_vector 
 //float local_loc[global_dof]; 
 //float* f_angle_disp = new float[global_dof*F_node_count]; 
 //float* f_disp = new float[global_dof*F_node_count]; 
 //sum = sqrtf((remote_node_after[3] * remote_node_after[3]) + (remote_node_after[4] * remote_node_after[4]) + 
(remote_node_after[5] * remote_node_after[5])); 
 //if (sum != 0.0f) { 
 // del = (sinf(sum*0.5f) / (0.5f*sum)); 
 // sum = sinf(sum) / sum; 
 //} 
 //else { 
 // sum = 0.0f; 
 // del = 0.0f; 
 //} 
 //del *= del; 
 //l_vector[0][0] = 1.0f - (0.5f*del*(remote_node_after[4] * remote_node_after[4] + remote_node_after[5] * 
remote_node_after[5])); 
 //l_vector[0][1] = -(sum*remote_node_after[5]) + (0.5f*del*remote_node_after[4] * remote_node_after[3]); 
 //l_vector[0][2] = (sum*remote_node_after[4]) + (0.5f*del*remote_node_after[3] * remote_node_after[5]); 
 //l_vector[1][0] = (sum*remote_node_after[5]) + (0.5f*del*remote_node_after[4] * remote_node_after[3]); 
 //l_vector[1][1] = 1.0f - (0.5f*del*(remote_node_after[5] * remote_node_after[5] + remote_node_after[3] * 
remote_node_after[3])); 
 //l_vector[1][2] = -(sum*remote_node_after[3]) + (0.5f*del*remote_node_after[4] * remote_node_after[5]); 
 //l_vector[2][0] = -(sum*remote_node_after[4]) + (0.5f*del*remote_node_after[3] * remote_node_after[5]); 
 //l_vector[2][1] = (sum*remote_node_after[3]) + (0.5f*del*remote_node_after[5] * remote_node_after[4]); 
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 //l_vector[2][2] = 1.0f - (0.5f*del*(remote_node_after[3] * remote_node_after[3] + remote_node_after[4] * 
remote_node_after[4])); 
 //int count = 0; 
 //for (int i = 0; i < F_node_count; i++) { 
 // for (int k = 0; k < global_dof; k++) { 
 //  local_loc[k] = 0.0f; 
 //  for (int l = 0; l < global_dof; l++) { 
 //   local_loc[k] += l_vector[k][l] * remote_loc_coord_before[i*global_dof + l]; 
 //  } 
 //  f_angle_disp[i*global_dof + k] = local_loc[k] - remote_loc_coord_before[i*global_dof + k]; 
 //  f_disp[i*global_dof + k] = remote_node_after[k] + f_angle_disp[i*global_dof + k]; 
 //  sum = f_disp[i*global_dof + k] - hf_u_global[f_ind[i] * global_dof + k]; 
 //  if (abs(sum) > 0.5f) { 
 //   //printf("Angle doesn't work for f_node i = %i and j = %i\n", i, k); 
 //   count++; 
 //  } 
 // } 
 //} 
 //printf("Inaccurate count = %i\n", count); 
 
 /* -------------------------------------------------------------------- */ 
 /* .. Termination and release of memory for PARDISO. */ 
 /* -------------------------------------------------------------------- */ 
 phase = -1;           /* Release internal memory. */ 
 PARDISO(pt, &maxfct, &mnum, &mtype, &phase, 
  &n_total, &ddum, p_csr_row, p_csr_col, &idum, &nrhs, 
  iparm, &msglvl, &ddum, &ddum, &pardiso_error); 
 
 cublasDestroy(handle); 
 
 // cudaFree() each variable if pardiso_error occurs 
 cudaFree(d_nodes_x); 
 cudaFree(d_nodes_x_prev); 
 cudaFree(d_nodes_x0); 
 cudaFree(d_element_i); 
 cudaFree(d_element_j); 
 cudaFree(d_csr_col); 
 cudaFree(d_csr_row); 
 cudaFree(d_share_element_ind); 
 cudaFree(d_share_bool_ind); 
 cudaFree(d_type_ind); 
 cudaFree(d_body_ind); 
 cudaFree(d_sec_ind); 
 cudaFree(d_BC_node_ind); 
 cudaFree(d_BCapply_ind); 
 cudaFree(d_BCapply_stiff); 
 cudaFree(d_fib_ind); 
 cudaFree(solid_inter_constants); 
 cudaFree(solid_BL0); 
 cudaFree(solid_element_volumes); 
 cudaFree(lig_lengths0); 
 cudaFree(matrix_A); 
 cudaFree(fib_lengths0_2); 
 cudaFree(u_global); 
 cudaFree(r_global); 
 cudaFree(f_global); 
 cudaFree(f_global_prev); 
 cudaFree(u_sol_global); 
 cudaFree(u_sol_global_prev); 
 cudaFree(b_global); 
 cudaFree(u_elements); 
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 cudaFree(u_sol_elements); 
 cudaFree(f_elements); 
 cudaFree(u_norm); 
 cudaFree(rf_diff_norm); 
 cudaFree(del_u_norm); 
 cudaFree(ext_force_norm); 
 cudaFree(d_force); 
 cudaFree(d_force_step); 
 cudaFree(d_local_coords0); 
 
 //ofstream outfile_sol_orig("u_sol_global6_orig.txt"); 
 ofstream outfile_sol_orig("u_substeps.txt"); 
 if (outfile_sol_orig.is_open()) { 
  outfile_sol_orig << " " << endl; 
  for (int i = 0; i < total_node_count; i++) { 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << i; 
   for (int j = 0; j < global_dof; j++) { 
    outfile_sol_orig.width(15); 
    outfile_sol_orig << left << hf_u_global[global_dof*i + j]; 
   } 
   outfile_sol_orig << endl; 
  } 
  for (int k = 0; k < total_steps; k++) { 
   outfile_sol_orig << left << "Step = " << k << endl; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << total_node_count; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << remote_node_after[k * 6 + 0]; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << remote_node_after[k * 6 + 1]; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << remote_node_after[k * 6 + 2]; 
   outfile_sol_orig << endl; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << total_node_count + 1; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << remote_node_after[k * 6 + 3]; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << remote_node_after[k * 6 + 4]; 
   outfile_sol_orig.width(15); 
   outfile_sol_orig << left << remote_node_after[k * 6 + 5]; 
   outfile_sol_orig << endl; 
  } 
  outfile_sol_orig.close(); 
 } 
 else cout << "Unable to create force_node_steps file" << endl; 
 
 ofstream outfile_nodes("NODE_LOC_AFTER2.txt"); 
 if (outfile_nodes.is_open()) { 
  outfile_nodes << " " << endl; 
  for (int i = 0; i < total_node_count; i++) { 
   outfile_nodes.width(15); 
   outfile_nodes << right << i + 1; 
   for (int j = 0; j < global_dof; j++) { 
    outfile_nodes.width(15); 
    outfile_nodes << right << nodes_x[global_dof*i + j]; 
   } 
   outfile_nodes << endl; 
  } 
  outfile_nodes.close(); 



256 
 

 } 
 else cout << "Unable to create NODES_LOC_AFTER file" << endl; 
 
 ofstream outfile_stress("HYDRO_STRESS.txt"); 
 if (outfile_stress.is_open()) { 
  outfile_stress << " " << endl; 
  for (int i = 0; i < total_element_count; i++) { 
   outfile_stress.width(15); 
   outfile_stress << right << i; 
   outfile_stress.width(15); 
   outfile_stress << right << h_h_stress[i]; 
   outfile_stress << endl; 
  } 
  outfile_stress.close(); 
 } 
 else cout << "Unable to create NODES_LOC_AFTER file" << endl; 
 
 return cudaStatus; 
} 
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