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Abstract We present an analytical solution for buoyancy-driven “filling box”
flows in axisymmetric porous media having closed bottom and side boundaries.
The flow consists first and foremost of a descending, point source plume. When
plume fluid reaches the (horizontal) bottom boundary, it begins to flow radi-
ally outward in the form of an axisymmetric gravity current. The leading edge
of the gravity current advances with time as t1/2 until it reaches the verti-
cal sidewalls. At this point, the flow is characterized by a vertically-ascending
“first front” that steadily advects towards the plume source. We assume the

plume to be in a Darcy regime, i.e. Re
<∼ O(10), with Pe > O(1), where Re and

Pe are respectively the Reynolds and Péclet numbers, and derive a similarity
solution for the plume by applying a boundary layer approximation. Formu-
las are thereby obtained for the vertical variation of the plume volume flux
and area-averaged concentration. The former result shows important qualita-
tive differences with the analogue equation derived in the limit Pe < O(1).
In particular, the plume volume flux is now predicted to explicitly depend on
the reservoir permeability, plume buoyancy flux and fluid viscosity. The grav-
ity current problem is likewise solved using a self-similar solution, this time
adapted from the work of Lyle et al. (J. Fluid Mech. vol. 543, 293–302, 2005)
but connected to the outflow conditions of the plume. Finally, in solving for the
motion of the first front, we apply a volume flux balance equation and thereby
estimate the time scale required for the first front to advect from the bottom of
the control volume to the source elevation. By synthesizing the above results,
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we can estimate the total volume of source fluid and mass of solute that can
be injected into an axisymmetric reservoir without overflow. Predictions can
also be made for the time-variable mean concentration of this contaminated
fluid layer, which must obviously be less than the source concentration.

Keywords Porous media · Filling box flows · Buoyant convection ·
Plumes/thermals · Gravity currents · Dispersion/diffusion

1 Introduction

The term “filling box flows” was first coined by Baines & Turner in 1969 [2] in
their study of buoyant convection from an isolated source in a closed cylindrical
control volume devoid of porous media. Since then filling box flows have been
studied extensively because of their applicability to numerous environmental
and industrial scenarios, e.g. in volcanic and submarine pumice eruptions [23],
hydrothermal plumes [20] and building ventilation [9]. A recent theoretical and
similitude laboratory experimental extension of the filling box methodology
has been to the case of porous media plumes that rise or fall within “leaky”
[16] or closed [17] aquifers. The latter case is of particular interest because of
its applicability to numerous geophysical and industrial scenarios, for instance,
(i) injection of hot water underground for the purpose of thermal storage in a
confined reservoir [5], (ii) injection, and subsequent dissolution, of supercritical
CO2 into deep saline aquifers for purposes of sequestering the CO2 that is
produced as a result of localized industrial activities, e.g. coal combustion for
power generation [3], (iii) dense plumes generated as a result of leakages from
landfills, waste piles or composting facilities that subsequently contaminate
potable groundwater [7,12,13], (iv) disposal by re-injection of the produced
water associated with either shale gas or heavy oil activities [1,19]. In each
case, a comprehensive analytical description of the flow requires combination of
vertical convection and the primarily horizontal flow that follows when plume
fluid reaches an impermeable horizontal boundary.

In this spirit, a central objective of the present contribution is to expand
upon existing descriptions of porous media filling box flows by extending the
Cartesian analysis employed in Sahu & Flynn [17] to an axisymmetric geom-
etry. Such an extension is not at all trivial; for instance, it provides an op-
portunity to supplement a well-established, but physically counter-intuitive,
expression for the plume volume flux – see (1) and the corresponding discussion
below. A further objective of our research is to clarify the mathematical treat-
ment of the different components of the dispersion tensor under the boundary
layer approximation and thereby justify, more carefully than before, why some
of these terms can be safely ignored.

As suggested by the schematics of figure 1, we divide our problem into
three constituent parts comprising the plume, gravity current and the first
front. Although the plume shown in figure 1 is negatively-buoyant, it should be
understood that dynamically equivalent results are expected if the plume rises
rather than falls, provided, of course, that the flow is Boussinseq, i.e. density
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Fig. 1: Schematic of a filling box flow in an axisymmetric geometry. (a) and (c)
represent, respectively, the top view and front view of the plume and gravity
current. (b) and (d) represent, respectively, the top and front view of the plume
and the first front.

differences are less than about 10%. Note that in either orientation, we assume
that the plume originates from a compact source and thereafter propagates
through a uniform porous medium. The gravity current describes the radially
outward motion of the discharged plume fluid over an impermeable horizontal
boundary. Unlike the studies of Neufeld et al. [10] and Roes et al. [16], we do
not include any localized sinks in this bottom boundary and so the gravity
current outflow is uniform in all directions. Finally the first front describes the
primarily vertical motion of this discharged plume fluid after the leading edge
of the gravity current has reached the impermeable vertical walls that define
the sidewalls of the control volume.

A solution for axisymmetric plumes falling through an unbounded porous
medium can be derived from a Wooding (1963)-type [22] boundary layer ap-
proximation using a constant value for the dispersion coefficient. On this basis,
and supposing that dispersion is, in fact, dominated by molecular diffusion
effects, the plume volume flux, Q, can be shown to vary with the vertical
distance, x, from the source as

Q = 8πDdφx . (1)

(see equation 7.5.34 of Phillips [15], section 9.10 of Turcotte & Schubert [21]
and equation 3.1 of Roes et al. [16]). Here Dd is the solute molecular diffusion
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coefficient and φ is the porosity. This equation is notable for several reasons.
Firstly, and as suggested above, it assumes that mechanical dispersion is sub-
ordinate to molecular diffusion. Thus the Péclet number, which is defined as
the ratio of mass transfer by mechanical dispersion to mass transfer by diffu-

sion, is Pe =
dUτ

Dd
< O(1), where d is the mean grain size, U is the transport

velocity and τ (> 1) is the tortuosity constant, which is defined as the ratio of
the actual path length traveled by a solute molecule to the distance it would
travel in a free medium. Conversely when Pe > O(1), a situation not at all
uncommon in practice, mechanical dispersion effects dominate over molecular
diffusion and must therefore be taken into account when evaluating the mass
transfer. In this case, the diffusion coefficient must be replaced by a disper-
sion tensor whose components depend on the flow velocity. More specifically,
the components of the dispersion tensor are associated with the normal and
tangential directions of the longitudinal and radial components of the velocity
field as explained by Ogata [11] and reviewed in greater detail below.

Equation (1) is also notable for the fact that Q is independent of the plume
buoyancy flux, F . This prediction, though mathematically consistent, is quite
different from the corresponding result for a line source plume for which

Q =

(
36DdφFkΛ

2x

ν

)1/3

(2)

where Λ is the width of the line source, k is the permeability and ν is the
kinematic viscosity [15]. Note, moreover, that free plumes, whether axisym-
metric or 2D planar both predict Q to vary with F – see e.g. (5) and (16)
of Baines & Turner [2]. Equations (1) and (2) also differ in that the plume
volume flux depends on k and ν only in the latter instance. Thus one of the
strong motivations for extending the analysis of Sahu & Flynn [17] to the case
of an axisymmetric plume issuing from a point source is to determine whether
the unusual functional form of (1) is somehow preserved. Indeed, as we illus-
trate below, by specifically considering Pe > O(1), it is possible to derive a
self-similar solution for Q that more closely conforms to (2) and the related
expressions from free plume theory.

The second part of the filling box flow consists of a gravity current, which
is formed when dense plume fluid reaches the bottom impermeable boundary.
In this case, the plume acts as a distributed source of dense fluid for the
axisymmetric gravity current; the plume volume flux and mean reduced gravity
at the bottom of the control volume are therefore needed in order to correctly
specify the gravity current inflow conditions. Lyle et al. (2005) studied the
axisymmetric gravity current problem both theoretically and experimentally,
but in a radially infinite ambient. We adopt their theoretical solution, couple
it with the equations describing the descending plume and finally present a
solution for the horizontal motion of the discharged plume fluid in a finite
ambient.

Note finally that as the gravity current propagates radially outward, it
gets progressively thinner. At a particular point in time, tR, the (well-defined)
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leading edge of the gravity current reaches the cylindrical sidewall. We develop
estimates for tR and also the height profile of the gravity current at this instant
in time. The latter piece of information is needed when modelling the subse-
quent motion of the discharged plume fluid back towards the plume source.
This primarily vertical motion is characterized by a so-called first front, which
separates dense fluid below from fresh ambient fluid above. The shape of this
first front obviously matches that of the gravity current when t = tR but its
slope subsequently decreases as the first front advects upwards. We follow the
approach of volume flux balance, presented by Sahu & Flynn [17] for the rec-
tilinear case, and derive an equation that describes the temporal evolution of
the first front. Thus the motion of the first front will be shown to depend on
both the solution of the plume and the gravity current problems.

The rest of the manuscript is organized as follows: we present a theoretical
solution for the plume, gravity current and first front in sections 2, 3 and 4,
respectively. Thereafter section 5 shows the output of our composite analytical
model, discusses the key time scales associated with a filling box flow and
identifies conditions associated with a maximal filling of the control volume.
Finally, section 6 summarizes the work as a whole and briefly identifies topics
for further study.

2 Plume

The flows exhibited schematically in figure 1 are assumed to be both Boussi-
nesq and miscible. Flow speeds are small enough that the flow remains lami-
nar but large enough so that Pe > O(1). We further assume that the porous
medium is uniform and saturated. Therefore the governing equations, i.e. mass
continuity, momentum conservation in x and r, solute transport by advection-
dispersion and a (linear) equation of state, are respectively given by

∂u

∂x
+
∂v

∂r
= 0 , (3)

1

ρ0

∂P

∂x
+
ν

k
u =

gρ

ρ0
, (4)

1

ρ0

∂P

∂r
+
ν

k
v = 0 , (5)

1

φ

[
u
∂C

∂x
+ v

∂C

∂r

]
=

∂

∂x

(
Dxx

∂C

∂x
+Dxr

∂C

∂r

)
+

1

r

∂

∂r

(
Drxr

∂C

∂x
+Drrr

∂C

∂r

)
,(6)

ρ = ρ∞(1 + βC) . (7)

Here u and v are the transport velocities in the axial and radial directions,
respectively. Meanwhile, P is the fluid pressure, C is the solute concentration, β
is the solute contraction coefficient and ρ is the fluid density, which approaches
a constant value of ρ∞ in the far-field limit, r →∞. Furthermore, Dxx, Dxr,
Drx and Drr are respectively the components of the axial and radial dispersion
coefficients in the tangential and normal directions.
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By combining (4) and (5), it can be shown that

ν

k

(
∂u

∂r
− ∂v

∂x

)
=

g

ρ0

∂ρ

∂r
. (8)

Next, by applying the former of Wooding’s two boundary layer conditions [22],
we conclude ∣∣∣∣∂v∂x

∣∣∣∣� ∣∣∣∣∂u∂r
∣∣∣∣ . (9)

Incorporating (7) and (9) into (8) gives

∂u

∂r
=
gβk

ν

∂C

∂r
. (10)

Regarding the right-hand side of (6) and following Scheidegger [18], the
dispersion coefficients can be defined in terms of the axial velocity as follows:
Dxx = αxxu, Dxr = αxru, Drx = αrxu and Drr = αrru, where αxx, αxr,
αrx and αrr are the corresponding dispersivity constants whose values vary
between 0.01 to 1 cm [4]. Therefore (6) can be written as

1

φ

[
u
∂C

∂x
+ v

∂C

∂r

]
=

∂

∂x

[
u

(
αxx

∂C

∂x
+ αxr

∂C

∂r

)]
+

1

r

∂

∂r

[
ur

(
αrx

∂C

∂x
+ αrr

∂C

∂r

)]
.

(11)
Scheidegger [18] further suggests that the tangential components of the dis-
persivity are larger than the normal components, and therefore αxx � αxr
and αrr � αrx. Also, from Wooding’s latter boundary layer condition [22], we
have ∣∣∣∣∂C∂x

∣∣∣∣� ∣∣∣∣∂C∂r
∣∣∣∣ . (12)

Thus, it can be shown that∣∣∣∣αxx ∂C∂x
∣∣∣∣ ∼ ∣∣∣∣αxr ∂C∂r

∣∣∣∣ and

∣∣∣∣αrx ∂C∂x
∣∣∣∣� ∣∣∣∣αrr ∂C∂r

∣∣∣∣ . (13)

However, on performing a scaling analysis and remembering that axial length
scales are much larger than their radial counterparts, we find∣∣∣∣ ∂∂x

(
uαxr

∂C

∂r

)∣∣∣∣ ∼ ∣∣∣∣1r ∂∂r
(
urαrx

∂C

∂x

)∣∣∣∣ , (14)

which suggests that only the final term on the right hand side of (11) is dy-
namically significant. In other words, (11) can be rewritten in the following
approximate form:

u
∂C

∂x
+ v

∂C

∂r
=
φ

r

∂

∂r

(
urαrr

∂C

∂r

)
. (15)

Hereafter we refer αrr to simply as α.
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We now introduce a streamfunction, ψ, such that u =
1

r

∂ψ

∂r
and v =

−1

r

∂ψ

∂x
. Therefore on further substitution, (10) and (15) respectively become

1

r

∂2ψ

∂r2
− 1

r2
∂ψ

∂r
=
gβk

ν

∂C

∂r
, (16)

∂ψ

∂r

∂C

∂x
− ∂ψ

∂x

∂C

∂r
= αφ

(
∂2ψ

∂r2
∂C

∂r
+
∂ψ

∂r

∂2C

∂r2

)
. (17)

We seek a self-similar solution to (16) and (17) of the form

ψ = A1x
pF(η), C = A2x

qG(η) (18)

where η = A3
r

xm
is the self-similar variable and A1, A2 and A3 are constants

to be determined shortly. Substituting (18) into (16) and further simplifying
gives

ηF ′′ −F ′ =
gβk

ν

A2

A1

r2xq

xp
G′ =

gβk

ν

A2

A1A2
3

[
A3r

x(p−q)/2

]2
G′ (19)

Self-similarity requires that p−q = 2m so that η = A3
r

x(p−q)/2
andA2 =

ν

gβk
A1A

2
3.

Upon making these substitutions, (19) simplifies dramatically, i.e.

ηF ′′ −F ′ = η2G′ . (20)

From (18), and remembering that the solute concentration is maximal at r = 0
and vanishingly small when r →∞, we have the following boundary conditions
to be applied in conjunction with (20): G′ = 0 at η = 0 and G = 0 when
r → ∞. We shall apply the former boundary condition later; employing the
latter boundary condition now, it can be shown that (20) has a general solution
of the form

G =
F ′

η
. (21)

We now repeat the above process but focus attention on (17) rather than
(16). Substituting (18) into (17), it can be shown that

F ′(qG −mG′η)− (pF −mF ′η)G′ = αφx(1−2m)A2
3(F ′′G′ + F ′G′′) . (22)

By selecting m = 1/2 and A3 = 1/
√
αφ, (22) reduces to the following simpler

form:

F ′′G′ + F ′G′′ − qF ′G + pFG′ = 0 . (23)

To determine p and q, we recall that the buoyancy flux, F , is constant and
equal to its source value, F0. Thus

2π

∫ ∞
0

ug′r dr = F0 . (24)
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Here g′ = g
ρ− ρ∞
ρ∞

= gβC is the reduced gravity of the plume. Substituting

(18) into (24), shows that

2πxp+qA1A2gβ

∫ ∞
0

F ′Gdr = F0 , (25)

and this in turn implies p+ q = 0. Recalling p− q = 2m = 1, we conclude that
p = 1/2 and q = −1/2. Also, with reference to (25), and remembering that

A2 =
ν

gβk
A1A

2
3 and A3 = 1/

√
αφ, it is easy to verify that

A1 =

(
F0kαφ

2πν

1∫∞
0
F ′G dη

)1/2

.

Using the above results, (23) takes the form

F ′′G′ + F ′G′′ + 1
2F
′G + 1

2FG
′ = 0 . (26)

After combining (21) and (26), and with some algebra, we get

G′′ + G
′

η
+ G = 0. (27)

G therefore represents a Bessel function of first kind, J0(η), and can be ex-
pressed in integral form as

G = J0(η) =
2

π

∫ π/2

0

cos (η sin θ) dθ . (28)

Before applying this solution to the problem at hand, we recall the assump-
tion that Pe > O(1), or Drr = αu. In the region close to the plume centerline
where flow velocities are comparatively large, this approximation is certainly
appropriate, however, the above assumption breaks down as we move to the
far-field, which is characterized by much smaller vertical (and radial) veloci-
ties. We therefore divide our solution into an inner region where Pe > O(1)
and an outer region where Pe ≤ O(1). In determining the appropriate bound-
ary between the inner and outer region, recall that G represents the solute
concentration (see equation 18), whose value cannot become negative. There-
fore the inner region is formally defined by η ≤ ηmax = 2.4048 for which G ≥ 0
[24]. In the outer region, we assume, consistent with the analysis of Sahu &
Flynn [17], that the fluid velocity and solute concentration are identically zero.
Thus, in place of (27), it is more appropriate to write

G =

 2

π

∫ π/2

0

cos (η sin θ) dθ, η ≤ ηmax

0, η > ηmax .

(29)
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Fig. 2: Analytical solution obtained for the self-similar functions G and F of
(18) vs. the self-similar variable, η.

Furthermore, by considering the relationship between G and F ′ from (21), the
solution for G can be extended to find F such that

F =

 2

π

∫ η

0

∫ π/2

0

cos (η sin θ) dθ dη, η ≤ ηmax

1.2485, η > ηmax .

(30)

The variation of F and G with η are presented in figure 2. By combining (29)
and (30) with (18), a contour plot may be drawn that shows the variation of
u/u0 or, equivalently, C/C0 with x/H and r/H where u0 and C0 are the plume
vertical velocity and solute concentration at the source and H is the control
volume height – see figure 3. Note that u and C therefore vary in proportion
to one another.

With a formula for ψ to hand, it is straightforward to evaluate the plume
volume flux, Q, i.e.

Q = 2π

∫ ∞
0

udr =

[
2π
F0kαφ

ν

(∫∞
0
F ′ dη

)2∫∞
0
F ′2

η dη
x

]1/2
. (31)

From the solution presented in figure 2, we have

(∫∞
0
F ′ dη

)2∫∞
0
F ′2

η dη
= 2. Thus the

volume flux for an ideal plume with Pe > O(1) and Drr = αu is given simply
by

Q =

(
4πF0kαφ

ν
x

)1/2

. (32)

On comparing this result with (1), our result shows that the plume volume
flux depends not only on the porosity, but also on the plume buoyancy flux,
the reservoir permeability and the fluid kinematic viscosity, all of which seems
very reasonable on physical grounds. Another potentially significant difference
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with (1) is that this previous equation predicts Q ∝ x, whereas our solution
predicts a more conservative result, namely Q ∝ x1/2.

Because the plume buoyancy flux is constant, it is straightforward to obtain
an expression for the plume mean reduced gravity, averaged over the cross
section. The corresponding formula,

ḡ′ = gβC̄ =

(
F0ν

4πkαφ

1

x

)1/2

, (33)

unambiguously specifies the connection between ḡ′, C̄, F0 and x. For (32) and
(33) to be applicable to a nonideal plume, for which the source volume flux
is not vanishingly small, we back-extrapolate our result so that Q = 0 at a
virtual source defined by x = −x0 [6], [22]. Thus

x0 =
νQ2

0

4πF0kαφ
=

νQ0

4πg′0kαφ
, (34)

where g′0 is the reduced gravity of the source fluid. Therefore for a nonideal
plume, the volume flux and mean reduced gravity are given, respectively, by

Q =

[
4πF0kαφ

ν
(x+ x0)

]1/2
. (35)

and

ḡ′ = gβC̄ =

[
F0ν

4πkαφ

1

(x+ x0)

]1/2
. (36)

Substituting x0 using (34) and expressing (35) and (36) in non-dimensional
form yields

Q

Q0
=

[
1 +

4πg′0kαφH

Q0ν

( x
H

)]1/2
and

ḡ′

g′0
=

[
1 +

4πg′0kαφH

Q0ν

( x
H

)]−1/2
,

(37)
The functional variation of Q/Q0 and ḡ′/g′0 is depicted in the left- and right-
hand side panels of figure 4, respectively.

The above results apply to a time-independent flow and so do not fully
capture the dynamics associated with the initiation of dense source fluid and
the thermal that results therefrom. Plumes and thermals share some similar-
ities, of course, but also some important differences. In the former case, for
instance, entrainment occurs only laterally whereas in the latter case, ambient
fluid may also be entrained along the descending underside of the thermal.
With this caveat in mind, we nonetheless proceed to estimate, on the basis of
the previous formulas, the time interval, tP , between activating the source and
observing plume fluid along the lower impermeable boundary of the control
volume. The average axial plume velocity at any arbitrary elevation is given
by

U(x) ≡ Q(x)

Ap
=

[
4F0k

η4maxπναφ

1

(x+ x0)

]1/2
(38)
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Fig. 3: [Colour online] Contours showing the variation of u/u0 or C/C0 with
x/H and r/H where u0 and C0 are respectively the plume vertical velocity
and solute concentration at the source.

where the plume cross-sectional area is given by Ap = πb2 = παφη2maxx. By
extension, the mean value of U(x) in a control volume having height H is given
by

Ū =
1

H

∫ H

0

U(x) dx =

(
16F0k

πη4maxναφ

)1/2 [
(H + x0)1/2 − x1/20

]
. (39)

Employing this result, the time required for the plume to traverse a vertical
distance H is estimated as

tP =

(
πη4maxναφ

16F0k

)1/2
H[

(H + x0)1/2 − x1/20

] . (40)

Below, we shall compare tP against other relevant time-scales of the flow
e.g. those due to the gravity current and ascending first front.

3 Gravity current

As the dense plume reaches the impermeable bottom of the cylindrical control
volume, it transitions to a gravity current and propagates radially outward.
Assuming a hydrostatic pressure condition, and adapting the self-similar so-
lution presented by Lyle et al. [8], we may describe the motion of the gravity
current as outlined below.

According to Darcy’s law, the outward radial velocity of the discharged
dense fluid can be expressed as a function of the slope of the interface that
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Fig. 4: [Colour online] Variation of Q/Q0 (left-hand side panel) and ḡ′/g′0
(right-hand side panel) with x/H and g′0kαφH/(Q0ν) – see (37).

separates this fluid from the overlying ambient, i.e.

vg = −
kg′g
ν

∂h

∂r
. (41)

Here h is the interface height as depicted in figure 1 and g′g is the mean reduced
gravity calculated at x = H using (36).

Local volume flux balance states that the difference of the volumetric inflow
and outflow at any radial location r must be balanced by the time rate of
change of the interface height at the same location. Expressing this balance
mathematically yields

φ
∂h

∂t
+

1

r

∂

∂r
(rvgh) = 0 . (42)

On combining (41) and (42), we find that

∂h

∂t
− S

r

∂

∂r

(
rh
∂h

∂r

)
= 0 , (43)

where S =
kg′

νφ
. The above equation is a nonlinear heat equation and is subject

to the following boundary conditions:

h(rN , t− tP ) = 0 and 2πφ

∫ rN (t−tP )

0

rh(r, t− tP ) dr = Vg(t− tP ) . (44)

Here rN is the radial distance measured from the origin to the gravity current
leading edge (or nose) and Vg is the total volume of fluid discharged by the
plume up till time t− tP > 0. The former boundary condition states that the
height of the gravity current at its leading edge is always zero. By contrast, the
latter boundary condition states that the amount of the dense fluid contained
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Fig. 5: Dimensionless gravity current height H vs dimensionless radius y.

within the gravity current must equal Vg. Following Lyle et al.’s approach, we
define a self-similar solution of the form

h(r, t−tP ) = ξ2N

(
Qg
S

)1/2

H (y) where ξ(r, t−tP ) =
r

(SQg)1/4(t− tP )1/2
.

(45)
Here 0 ≤ y = ξ/ξN ≤ 1 and ξN = ξ(rN , t− tP ) is the dimensionless radius of
the leading edge. On substituting (45) into (43), we obtain

yH′′H+ yH′H′ +H′H+
y2

2
H′ = 0, (46)

subject to the boundary conditions

H(1) = 0 and

[
2π

∫ 1

0

yH dy

]−1/4
= ξN . (47)

To find a solution to the above ode, a shooting method is employed. Graphical
results are presented in figure 5 and the value of ξN is found to equal 1.19.
These results match very well with figures 2 and 3 of Lyle et al. [8].

Using the above equations, the radius of the gravity current as a function
of time t > tP can be given as

rN = ξN (SQg)
1/4(t− tP )1/2 . (48)

On the other hand, the time required for the gravity current to reach the
sidewalls of the cylindrical control volume, located at r = R, can be found
from

tR =
R

ξN (SQg)1/4
, (49)
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where we assume that the plume radius at x = H is negligible compared to
R. In light of this definition, (48) can be simplified to read

rN
R

=

(
t− tP
tR

)1/2

where t > tP . (50)

Finally we can also calculate the mean height of the gravity current at t =
tR + tP from the following equation:

h̄tR =
1

R

∫ R

0

h(y, tR) dr = ξ2N

(
Qg
S

)1/2 ∫ 1

0

H dy = ξ2N

(
Qg
S

)1/2

H̄. (51)

From the numerical solution presented in figure 5, we find that H̄ ≡
∫ 1

0

H dy =

0.2641. This result will be used in the following section where we describe the
evolution of the flow for t > tR.

4 First front

Once the gravity current reaches the impermeable sidewall, dense fluid begins
moving upward and thus turns into a primarily vertical flow. As noted above,
the interface between this ascending dense fluid and the ambient fluid is termed
as the first front [2]. In the analogue Cartesian problem [17], we observe that
the curvature of the first front is comparatively high initially but then relaxes
as the first front approaches the plume source. We expect similar behaviour
here and so focus on the variable of greatest dynamical significance, namely
the mean elevation, h̄, of the first front, averaged over the cross sectional area
of the control volume. Further following Sahu & Flynn [17], we can apply a
volume flux balance approach to find h̄ vs. time i.e.

φAŪf (h̄) = Q(H − h̄). (52)

Here A = πR2 is the control volume cross-sectional area and Ūf =
dh̄

dt
is the

mean advection speed of the first front, averaged over A. On substituting Q
from (35) it can be shown that

h̄2 = H + x0 −

[
(H + x0 − h̄1)1/2 − (t2 − t1)

A

(
F0kπα

νφ

)1/2
]2

(53)

where h̄2 − h̄1 is the mean vertical distance travelled by the first front over a
time interval t2 − t1. By setting h̄2 = H and h̄1 = h̄tR , we can estimate the
time, tH , required by the first front to advect from the bottom to the top of
the control volume. Thus

tH = A

(
νφ

F0kπα

)1/2 [
(H + x0 − h̄tR)1/2 − x1/20

]
. (54)
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Fig. 6: Time scales
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,
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R2

η2maxαφH
for φ = 0.1, 0.3.

5 Discussion

In the above sections we have separately considered solutions for the plume,
gravity current and first front. The latter two solutions are applicable for a
closed box or reservoir with an open upper boundary whose radius is signifi-
cantly larger than the maximum plume radius i.e. R� bmax. On substituting
bmax = ηmax(αφH)1/2, where ηmax = 2.4048, we get

R2

η2maxαφH
� 1. (55)

For real geophysical flows, the horizontal length-scale is usually much larger
than the vertical length scale; moreover φ < 0.38 [14], α < 0.01 m [4], and
therefore the above criteria is well satisfied.

In the context of filling box flows, an important parameter is the time, tT ,
required to completely fill the control volume void space with contaminated
fluid. For t > tT , we expect contaminated fluid overflow and, possibly, the
advection of contaminated fluid above the elevation of the source. We calculate
tT by superposition, i.e.

tT = tP + tR + tH , (56)

and focus attention on cases where (55) is valid. Plotting tP , tR and tH

vs.
R2

η2maxαφH
shows that tH is typically much larger than either tP or tR

(see figure 6). In our subsequent analysis, it is therefore appropriate to as-
sume tT ≈ tH where tH is given by (54) with h̄tR → 0. On the basis of this
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Fig. 7: [Colour online] Volume ratio Vt/Vc vs. t/tH for various VT /V (see
equation 59).

approximation, it is possible to simplify (53). To wit

h̄ =

[
1−

(
1− t

tH

)2
]
H , (57)

where h̄ is the mean height of the first front at time t. Thus, based on the
time of injection, the mean depth and volume, Vc, of the contaminated layer
can be straightforwardly predicted. In particular, Vc is given by

Vc = φAh̄ = φA

[
1−

(
1− t

tH

)2
]
H . (58)

Conversely, the volume of injected source fluid is simply Vt = Q0t. With Vc
and Vt to hand, we can compute their ratio from

Vt
Vc

=
VT
V

t

tH

1[
1−

(
1− t

tH

)2] , (59)

where V = Vc(t = tH) = φAH is the pore volume and VT = Vt(t = tH) =
Q0tH is the total volume of source fluid that can be injected up to the point
of overflow.

Having calculated the volume of the contaminated layer, an estimate for
the associated mean reduced gravity, ḡ′c, can be obtained from simple mass
balance, i.e.

ρ̄cVc = ρ0Vt + ρ∞(Vc − Vt) . (60)
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Here ρ0 is the density of the source fluid, ρ∞ is the reservoir fluid density at
t = 0 and ρ̄c is the mean density of the contaminated fluid. Manipulation of
(60) gives

ρ̄c − ρ∞
ρ∞

=
ρ0 − ρ∞
ρ∞

Vt
Vc

or
ḡ′c
g′0

=
Vt
Vc
, (61)

where g′0 is the reduced gravity of the source fluid.

Figure 7 shows the variation of Vt/Vc with t/tH for various VT /V . The

maximum value of ḡ′c, realized when t = tH , is g′0
VT
V

. Using the definitions of

VT , V , (34) and (54), it can be shown that VT /V varies with x0/H as

VT
V

=
2x0
H

[(
1 +

H

x0

)1/2

− 1

]
(62)

(see figure 8). Thus as x0/H increases, so too does (i) the total volume of
fluid injected up to the point of overflow relative to the pore volume, and,
(ii) the final mean reduced gravity of the contaminated layer relative to the
source reduced gravity. In turn, and for constant k, φ and H, (34) shows that
larger VT /V is associated, respectively, with larger and smaller Q0 and g′0
whereby entrainment into the plume is comparatively modest. Whereas the
latter conclusion applies for arbitrarily small g′0, it cannot necessarily be said
that the former applies for arbitrarily large Q0: large source volumes fluxes are
associated with large flow velocities so that the Reynolds number restriction

Re
<∼ O(10) must eventually be violated. More specifically, let us suppose a

source diameter of d0 = 2b0 so that the source discharge velocity is given by

U0 =
4Q0

πd20
. Now on recalling that the Reynolds number in porous media is
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vs. νQ0/(πgkαφH) for various g′0/g (see equation 65).

defined as Re =
dU0

ν
, we can conclude

Q0 ≤
5πνd20

2d
. (63)

Using above results, we can also calculate the mass, MT , of solute that can
be sequestered up until t = tH from

MT = C0VT (64)

where C0 =
g′0
gβ

is the solute concentration of the source fluid – see (7). Then

by combining (64) with (54) and (34), it can be shown that

MTβ

V
=

νQ0

2πgkαφH

[(
1 +

4πgkαφH

νQ0

g′0
g

)1/2

− 1

]
. (65)

The variation of
MTβ

V
with

νQ0

πgkαφH
and

g′0
g

is shown in figure 9, which sug-

gests that for a fixed pore volume, V, a larger mass of solute can be sequestered
for larger Q0 and g′0.

6 Conclusions

In this manuscript a solution for filling box flows in axisymmetric porous
media, which has closed lower horizontal and side vertical boundaries, is pre-
sented. This filling box model consists of three interrelated flow components:
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(i) a negatively-buoyant axisymmetric plume, (ii) a radially spreading gravity
current consisting of plume fluid discharged along the bottom boundary, and
(iii) an upwelling-type flow that develops after the gravity current reaches the
sidewalls.

The plume is assumed to be in Darcy regime with Pe > O(1); moreover,
the flow is Boussinesq and miscible. In section 2, we derive a novel similarity
solution assuming an unstratified ambient and present formulas for the plume
volume flux, Q, reduced gravity, ḡ′, and the time, tP , required for the plume to
reach the bottom of the control volume respectively in (35), (36) and (40). It is
found that Q and ḡ′ vary respectively as x1/2 and x−1/2, whereas in previous
studies with Pe < O(1) it has been shown in that Q ∝ x and ḡ′ ∝ x−1.
We also argue that the new solution is more reasonable on physical grounds
compared to the previous solution that Q and g′ now depend on the buoyancy
flux, viscosity and permeability, in addition to the porosity.

The above results are extended to derive a solution for the gravity cur-
rent flow, where Q and ḡ′ calculated at the bottom, x = H, of the control
volume dictate the gravity current source volume flux and reduced gravity, re-
spectively. We adapt the similarity solution of Lyle et al. [8], which is derived
by combining Darcy’s law and a mass balance equation. By synthesizing the
similarity solutions for plume and gravity current flow, we present in figure 5
a solution for the gravity current height profile. Moreover (49) gives the cor-
responding amount of time, tR, required for the gravity current front to reach
the vertical sidewalls, which are located a radial distance R from the plume
source.

Finally when t > tP + tR, the dense plume discharge starts advecting
upward towards the source elevation. There exists an interface between this
dense fluid and the overlying ambient fluid which is termed the first front. An
equation that describes the temporal evolution of the first front is derived in
section 4 based on a volume flux balance borrowed from Sahu & Flynn [17].
We thereby obtain an estimate for the time, tH � tP , tR, required for the first
front to advect all the way to the elevation of the source.

In section 5, we estimate via (59) the total volume, VT , of source fluid that
can be injected into a reservoir of pore volume V = φAH = φπR2H up to the
point of overflow. For fixed reservoir properties and dimensions, larger VT can
be realized by respectively increasing and decreasing the source volume flux
and source reduced gravity (or concentration). The corresponding maximum
reduced gravity of the contaminated layer, consisting of source fluid plus am-
bient fluid entrained into the descending plume, is given by (61). Finally (65)
gives an expression for the total mass of solute sequestered, again up till the
point of overflow. In contrast to VT , figure 9 confirms that it is advantageous
to increase both the source volume flux and source concentration assuming
the objective is to sequester as much of the solute as possible.

The current research is conducted assuming a Darcy flow regime with uni-
form porosity and permeability and miscible fluids. However, real geological
reservoirs are characterized by spatial variations in φ and therefore k. In future,
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therefore, we will study filling box flows in porous medium with nonuniform
permeability.
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