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1 Introduction

1.1 Background

Stream and river ecosystems are shaped by their physical environment of unidirec-
tional water flow. Questions of population persistence in river ecosystems must nec-
essarily consider the effect of the water flow on populations in space and time. To
complicate matters, this water flow can vary tremendously with seasonal fluctuations
of water runoff and snow melt.

How can populations persist in streams when they are being constantly washed
downstream? This so-called drift paradox (Muller 1982) has engaged biologists and
mathematicians in a series of modeling efforts using reaction-advection-diffusion e-
quations to describe the population densities in space and time. The early paper of
Speirs and Gurney (2001) uses a modification of Fisher’s equation that includes ad-
vection to show the existence of a critical flow rate in the stream, below which the
populations will persist, and above which the population will wash out, much as a
chemostat population will persist or wash out in low flow and high flow conditions.

The approach of Speirs and Gurney (2001) employs classical mathematical meth-
ods of population spreading speeds and critical domain size. The spreading speed for
Fisher’s equation, 2

√
rD where r is the intrinsic growth rate and D is the diffusion

coefficient (Aronson and Weinberger 1975), yields the critical advection velocity vc,
below which stream populations will persist, and above which they will wash out.
This can be understood intuitively: when the advection velocity v exactly matches
the spreading speed 2

√
rD, the population is washed downstream by water flow at

the same speed it is moving upstream by the combined effects of growth (r) and dif-
fusion (D). Speirs and Gurney (2001) show the critical domain size Lc exists for all
advection velocities that lie below the critical value (0 < v < vc) and that the critical
domain size approaches infinity as v approaches vc. Biologically, this is interpreted
as implying that stream populations will persist if the advection speed falls below
a threshold value, and there is a sufficiently large stretch of stream available. This
theory has been tested empirically by Walks (2007) who related the persistence of
plankton in flowing water to stream advection velocities. A mathematical review of
the ideas in Speirs and Gurney (2001) can be found in Lewis et al. (2009).

Extensions to the theory have focused on increasingly realistic models for the
stream populations. These include stationary and mobile compartments to describe
subpopulations on the benthos and in the stream (Pachepsky et al. 2005), non-diffusive
dispersal of stream populations that can include long-distance jumps (Lutscher et al.
2005), spatially varying stream environments (Lutscher et al. 2006), spatial inter-
actions between competitors in the stream environment (Lutscher et al. 2007) and
periodic fluctuations in environmental conditions (Jin and Lewis 2011, 2012).

Despite these extensions to the theory, the models have been limited to the case
where the stream environment is predictable. Although convenient from a modelling
perspective, this is inaccurate. For example stream flows not only vary by an order
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of magnitude between spring and fall seasons (Abrahamsson and Hakanson 1998),
they also vary unpredictably from year to year (Anderson et al. 2006). While some
models exist for spreading populations in randomly fluctuating (Neubert et al. 2000)
environments, none have investigated persistence and spread in environments such as
streams, where unidirectional flow predominates.

In this paper we investigate persistence of populations in periodic and randomly
fluctuating environments with predominantly unidirectional flow. Our mathematical
model is based on a discrete-time and continuous-space dynamical system that takes
the form of an integrodifference equation. In the next section we develop a modelling
background for integrodifference models.

1.2 Integrodifference models

We consider organisms with separate growth and dispersal stages. Dispersal is as-
sumed to be continuous in space and occurring over a fixed time interval (the disper-
sal event) while growth is independent of space, but depends on the local population
density. Denoting nt(x) as the population density at stage t, the growth dynamics are
modeled by

f (nt) = nt(x)g(nt(x)), (1)

where f is a nonnegative monotonically increasing function. The function g(n) is the
per capita growth rate and we assume the maximum per capita growth rate is found
as n approaches zero. The dispersal dynamics are modelled by the integral equation

I[nt ](x) =
∫

Ω
K(x,y)nt(y)dy, (2)

where the dispersal kernel K(x,y) models the probability density associated with an
individual, that starts at y, settling at x during the dispersal event. We assume that K
is a continuous nonnegative function with area one when integrated with respect to x
over the real line for all fixed y. The combined model for growth and dispersal is then
given by the the nonlinear integrodifference model

nt+1(x) =
∫

Ω
K(x,y) f (nt(y))dy. (3)

Equations of the form (3) were first formulated to study gene flow and selection
(Slatkin 1973), and were only later applied in ecological settings (Kot and Schaffer
1986). As written, equation (3) assumes an unstructured population that grows in the
stream benthos, and disperses through the stream and settles back to the benthos each
time step. Although the population is assumed to be unstructured, an extension of the
model can be used to describe stage-structured populations where dispersal varies
from stage to stage (Lutscher and Lewis 2004).

We consider a habitat Ω = [x0,y0] for some x0 < y0. For such a bounded domain
Ω the model (3) assumes that the organism can disperse across the boundary, but there
is no source term from outside the boundary. This is the case if conditions outside Ω
are unfavorable to growth and survival or if the organism cannot disperse back into
the habitat Ω once it has left. This would be the case for a stretch of suitable habitat
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Fig. 1 Sample dispersal kernels: (a) Laplace kernel (4) with a = 4 (dashed) and a = 1.5 (solid); (b) Asym-
metric Laplace kernel (5) with identical parameter values as (a) and v = 4.

in a stream, surrounded by unsuitable habitat, where the organism cannot survive. A
non-aquatic example is of a plant whose seeds are blown across the edge of a field
into a parking lot or other unsuitable region.

1.2.1 The Dispersal Kernel

The dispersal kernel K can take a variety of forms. If an individual at y moves ran-
domly for a fixed amount of time T and then settles, the dispersal kernel is a Gaussian
with variance 2DT where D is the diffusion coefficient associated with the random
movement. Alternatively, if the randomly moving individual settles at a constant rate
β > 0 then, after a sufficiently long period of time, the kernel approaches a Laplace
distribution

K(x,y) =
a
2

e−a|x−y| (4)

where a =
√

β
D (Neubert et al. 1995). Figure 1(a) shows two sample Laplace kernels

with a = 4 and a = 1.5 for the habitat Ω = [−1,1]. Note that the kernel for the larger
value a = 4 corresponds to a higher probability of the organism settling in Ω , which
is consistent with the higher value of a arising from a larger settling rate or a smaller
diffusion coefficient.

If, in addition, an organism experiences a unidirectional flow with velocity v (e.g.,
stream flow or wind) the kernel takes the form

K(x,y) =

{
Aea1(x−y) x < y
Aea2(x−y) x ≥ y,

(5)

where the rate constants ai are defined in terms of the advection velocity v, settling
rate β , and diffusion coefficient D by

a1,2 =
v

2D
±
√

v2

4D2 +
β
D

and A =
a1a2

a2 −a1
=

β√
v2 +4βD
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(Lutscher et al. 2005). Figure 1(b) shows the same kernels in 1(a), but now with an
advective velocity v = 4. The derivation of (5) assumes a separation of time scales
between settling and dispersal to employ a partial differential equation describing the
time-dependent probability density z(t,x) of an individual that starts moving at point
y at time t = 0 via advection (due to the flow), diffusion (as a first approximation to
variability in the flow speed and direction), and settles at rate β :

zt = Dzxx − vzx −β z, z(0,x) = δ0(x− y). (6)

The density of settling points at x is then given by

k(x) =
∫ ∞

0
β z(t,x)dt. (7)

Integrating (6) over 0 < t < ∞ yields an ordinary differential equation for k

D
β

k′′(x)− v
β

k′(x)− k(x) =−δ0(x− y) (8)

defined on the real line −∞ < x < ∞ whose solution is K(x,y), as defined by (5). Here
it is assumed that the dispersing individual does not modify its movement in response
to the domain boundary. If such behaviour is included, it gives rise to boundary con-
ditions for (8) which modifies the associated Green’s function for K (Lutscher et al.
2005, Appendix E).

Two quantities that are derived from the dispersal kernel and are relevant to our
modelling considerations are the dispersal success function and the redistribution
function. The dispersal success function s(y) indicates the probability that individual
starting at y successfully settles in the habitat Ω after the dispersal event:

s(y) =
∫

Ω
K(x,y)dx. (9)

Since K(x,y)≥ 0 and
∫
R K(x,y0)dx = 1 for any y0 we have 0 ≤ s(y)≤ 1. The redis-

tribution function r(x), on the other hand, corresponds to an area release experiment;
if N individuals are released uniformly over the patch, then after one dispersal event
the expected density of individuals is Nr(x) where

r(x) =
∫

Ω
K(x,y)dy. (10)

By way of contrast with the dispersal success function s, the redistribution function
r needs not be bounded above by 1 for all x. However, for symmetric kernels the
two functions are identical. Figure 2 shows an example of the dispersal success and
redistribution functions for an asymmetric Laplace kernel on Ω = [−1,1].

The dispersal success function provides a means to approximate the principal
eigenvalue of the linearization of (3), which itself can be used as a measure of popula-
tion persistence (see Section 1.3.1). More specifically, let λ1(K) denote the principal
eigenvalue of the linearization of (3) at the equilibrium solution n∗(x) = 0 and ϕ an
associated positive eigenfunction, i.e.,

λ1(K)ϕ(x) = R
∫

Ω
K(x,y)ϕ(y)dy, (11)
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Fig. 2 Asymmetric Laplace kernel (a) and the corresponding dispersal success function (b) and redistri-
bution function (c). Parameter values for the kernel are a = 4 and v = 4 in equation (5). The dot in (b)
indicates the dispersal success for location y2 which corresponds to the area of the shaded kernel in (a).

where R = f ′(0). It has been shown in Lutscher et al. (2005) that λ1(K) is a strictly
increasing function of L. If we assume

∫
Ω ϕ(y)dy = 1 and integrate (11) over the

habitat we obtain the following relation between λ1(K) and the dispersal success
function s(y):

λ1(K) = R
∫

Ω
s(y)ϕ(y)dy. (12)

Taking the approximation ϕ(x)≈ 1
L , we can estimate λ1(K) by

λ1(K)≈ λa,1 :=
R
L

∫
Ω

s(y)dy (13)

which is known as the dispersal success approximation. To illustrate, Figure 3 shows
the dispersal success approximation (13) compared to the principal eigenvalue λ1(K)
as a function of stream length for a sample kernel.
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Fig. 3 The principal eigenvalue λ1(K) and the dispersal success approximation λa,1 for linearization of
(3) with f ′(0) = 1.2 and asymmetric kernel K with D = 1, β = 1, and v = 0.1. Note that λa,1 tends to
underestimate λ1(K) as the domain length increases.
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1.2.2 Including Temporal Variation

In this paper we consider a generalization of model (3) that allows for the kind of
temporal variation in growth and dispersal that is found in stream ecosystems. We
focus on including the inter-annual variations in growth and dispersal that arise from
temporally fluctuating environments. An organism in such an environment experi-
ences different growth and dispersal dynamics, depending on the year. In this case
the model (3) becomes

nt+1(x) =
∫

Ω
Kt(x,y) ft(nt(y))dy (14)

where Kt denotes the t th time step dispersal kernel and ft(n) the growth dynamics at
time step t.

1.3 Mathematical Setting

We briefly review the mathematical setting and known results for population persis-
tence in the context of integrodifference equations. We restrict our attention to the
case where K(x,y) = K(x−y) is a difference kernel, expressed in terms of the differ-
ence between the settling location x and the starting point y. Although this includes
the case of symmetric distance kernels where K(x,y) = K(|x− y|) (such as (4)), we
do not require symmetry since we are particularly interested in the case where K is
an asymmetric advective kernel such as (5). We assume the population densities are
given by elements of C(Ω), the Banach space of continuous real-valued functions de-
fined on Ω . We first discuss the constant kernel case, then review some known results
for temporally varying kernels.

1.3.1 Constant Environments

We can rewrite equation (3) as

nt+1(x) = F(nt)(x) (15)

where F : C(Ω)→C(Ω) is the nonlinear Hammerstein operator

F(n)(x) =
∫

Ω
K(x− y) f (n(y))dy. (16)

If f and K(x,y) are continuous, then it follows from the Arzelà-Ascoli theorem that F
is a compact operator. Moreover, since K ≥ 0 and f ≥ 0, the operator F is a positive
operator, mapping the cone of nonnegative functions C+(Ω) into itself.

The linearization of (15) at the equilibrium n∗(x)= 0 takes the form of a Fredholm
equation of the first kind

nt+1(x) = L (nt)(x) = R
∫

Ω
K(x− y)nt(y)dy (17)
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where L = F ′(0) is the Fréchet derivative of F at n∗(x) = 0 and R = f ′(0) is the ge-
ometric growth rate for the population (Van Kirk and Lewis 1997). Since the Fréchet
derivative of a compact operator is compact (Krasnoselskii 1964b), the operator L
is a compact bounded linear operator.

A further assumption regarding the positivity of L allows one to connect the
population dynamics of (15) with the spectral properties of L . Namely, we say the
operator L is strongly positive if for any continuous function n ≥ 0 there exists a
power t = t(n) such that L t(n)(x) > 0 for all x ∈ Ω . Biologically, this condition
implies that on a connected habitat repeated application of the kernel will allow an
individual that starts at any point y ∈ Ω to eventually access all other points x in
Ω (Lutscher and Lewis 2004, Condition A4). In this case, the Krein-Rutman theorem
applies, and it follows that L has a principal eigenvalue λ1 > 0 such that |λ | < λ1
for all other eigenvalues and λ1 is the only eigenvalue associated with a positive
eigenfunction ϕ . Our assumptions on K imply that the zero solution of (15) is linearly
stable when λ1 < 1 and unstable when λ1 > 1. Moreover, for λ1 > 1 there exists a
nontrivial equilibrium solution of (15) (Hardin et al. (1990), see also Van Kirk and
Lewis (1997) for the L2(Ω) case).

Within this context, the principal eigenvalue λ1 is equal to the spectral radius of
the operator L which, by the Gelfand formula, can be expressed as

λ1 = r(L ) = lim
t→∞

∥L t∥1/t = inf
t≥1

∥L t∥1/t (18)

where

∥L ∥= sup
ϕ∈C(Ω)\{0}

∥L ϕ∥∞

∥ϕ∥∞

and || · ||∞ is the sup norm on C(Ω) (Krasnoselskii 1964a,b). In particular, λ1 ≤∥L ∥.
Moreover, if we consider a positive eigenfunction ϕ1 and integrate the associated
equation

λ1ϕ1(x) = R
∫

Ω
K(x,y)ϕ1(y)dy,

we have

λ1

∫
Ω

ϕ1(y)dy = R
∫

Ω
s(y)ϕ1(y)dy ≤ R

∫
Ω

ϕ1(y)dy, (19)

where we used the fact that 0 ≤ s(y)≤ 1. Thus, λ1 ≤ R = f ′(0). If we assume there is
dispersal loss from all points in the domain then s< 1 and we obtain a strict inequality

λ1 < R = f ′(0). (20)

We can interpret (20) biologically as indicating that dispersal loss will reduce the
growth rate below the intrinsic growth rate for the non-spatial model.
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1.3.2 Temporally Varying Environments

A series of papers by Hardin and colleagues (Hardin et al. 1988a,b, 1990) consider
the case where the Hammerstein operator is time-dependent so that

nt+1(x) = Ft(nt)(x) (21)

where
Ft(n)(x) =

∫
Ω

Kt(x− y) f (n(y))dy, (22)

with Kt having parameters that are chosen randomly from some set (defining the al-
lowable range of environmental conditions). Here the linearized operator Lt = F ′

t (0)
is time-dependent, so the eigenvalue analysis discussed in the previous section does
not apply. However, they show that population persistence can still be understood via
the limit of operator norms

r = lim
t→∞

∥Lt ◦ · · · ◦L2 ◦L1∥1/t (23)

which acts as an effective spectral radius for the time-varying setting. Hardin et al.
(1988a) derive conditions under which the limit (23) exists, and show how the quan-
tity r determines long-term population persistence or extinction for solutions of (21).
The limit r is similar to the dominant Lyapunov exponent (stochastic growth rate) of
random matrix products, which has been applied to determine population persistence
for a structured population in both correlated and uncorrelated random environments
(e.g., Benaı̈m and Schreiber (2009)) and coexistence for interacting structured popu-
lations living in a random environment (e.g., Roth and Schreiber (2014)).

We consider (22) in the context of growth and dispersal in streams for the case of
periodic and random dispersal parameters and show the Hardin et al. framework can
be adapted to our setting. A range of different types of growth rates (and related elas-
ticities) of populations have been introduced and used to study population dynamics
in random environments (see e.g., Tuljapurkar (1990) and Tuljapurkar et al. (2003)).
In this paper we consider population persistence via an asymptotic growth rate

Λ := lim
t→∞

[∫
Ω

nt(x)dx
]1/t

, (24)

where nt(x) is defined by the system

nt+1(x) = Lt(nt)(x) =
∫

Ω
Kt(x− y) f ′t (0)nt(y)dy (25)

with nonzero initial condition n0(x) ≥ 0. We will prove that Λ = r, and hence, nu-
merically, we can calculate Λ to determine population persistence or extinction. We
use this to consider several examples in the context of randomly fluctuating river
populations.

Note that if A is the infinitesimal generator of a continuous semigroup T (t) =
{etA}t≥0, the spectral bound of A is defined as

s(A) = sup{Re(λ ) | λ ∈ σ(A)},
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where σ(A) is the spectrum of A (with s(A) = −∞ if σ(A) = /0) and the type (expo-
nential growth bound) of the semigroup T (t) is defined as

ω0 = lim
t→∞

log ||T (t)||
t

.

For many generators A it is known that −∞ ≤ s(A) ≤ ω0 < ∞ (see e.g., Hille and
Phillips (1957)) and the conditions for the equality of these two quantities have been
studied (Greiner et al. (1981); Kato (1982); Thieme (2009)). The quantities s(A) and
ω0 have also been used to derive persistence conditions for population models in
temporally homogeneous or heterogeneous environments (see e.g., Thieme (2009)).
In this current work, r and Λ , as defined by (23) and (24), are analogous to the spectral
bound and type for the infinitesimal generator A of a continuous semigroup T . Thus
this work can be considered as a generalization of the idea of s(A) = ω0 and using
such quantities to determine population persistence.

1.4 Outline of the paper

In this paper, we study the integro-difference equation (15) for population persistence
in temporally varying advective environments. In Section 2, we study the integro-
difference equation with alternating kernels and growth rates in a periodically vary-
ing environment and obtain an explicit method to calculate the principal eigenvalue
for the two-stage process. We also give the approximation of the principal eigenvalue
by virtue of the dispersal success function and the redistribution function. In Section
3, we study the model in a randomly varying advective environment, where both the
growth rate and the dispersal kernel are random. This contrasts with the earlier work
by Hardin et al. (1988a), where only the growth rate fluctuated randomly. We derive
the persistence metric r, similar to (23) and obtain its equivalence to the asymptotic
growth rate (24). We also provide exact formula for the asymptotic growth rate when
kernels take an asymmetric advective form (5) with randomly chosen parameters.
This allows us to explicitly calculate population growth rates in randomly fluctuating
river environments. Our various methods for calculating persistence and growth met-
rics are illustrated using numerical examples for models describing randomly fluctu-
ating rivers. A short discussion completes the paper in Section 4.

2 Alternating Kernel Model

We consider a deterministic case of time-varying kernels for the linearized model
(17). In particular, we consider the case of alternating kernels K1(x,y) and K2(x,y)
with associated growth rates R1 and R2. We can consider the two stages in succession
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using the linearized model (17) as:

nt+2(x) = R2

∫
Ω

K2(x,y)nt+1(y)dy

= R2

∫
Ω

K2(x,y)
[

R1

∫
Ω

K1(y,z)nt(z)dz
]

dy

= R1R2

∫
Ω

∫
Ω

K2(x,y)K1(y,z)nt(z)dzdy

= R1R2

∫
Ω

K(x,z)nt(z)dz

where
K(x,z) =

∫
Ω

K2(x,y)K1(y,z)dy. (26)

In this way, the two-stage model can be considered as a single model (for two stages)
via

nt+1(x) = R
∫

Ω
K(x,y)nt(y)dy, (27)

where K is defined by (26) and R = R1R2.
Let λ1 be the principal eigenvalue associated with the two-stage model (27). The

results in Section 1.3.1 imply the zero solution is unstable if λ1 > 1 and it is stable if
λ1 < 1. Hence, the population persists if λ1 > 1 and the population will be extinct if
λ1 < 1. It follows from estimate (20) that

λ1 ≤ R1R2. (28)

Since the principal eigenvalue λ1 for the two-stage process models two years of popu-
lation dynamics, the quantity

√
λ1 would be an effective single year growth estimate.

In this sense, estimate (28) says the effective annual growth rate is bounded above by
the geometric mean of the two year growth rates.

We can gain further insight into the two-stage λ1 by working directly with the
eigenfunction equation. Suppose λ ̸= 0 is an eigenvalue associated with an eigen-
function ϕ for (27). Then

R1R2

∫
Ω

K(x,y)ϕ(y)dy = λ ϕ(x), (29)

where K is the two-step kernel (26). Let ψ be defined by

ψ(x) = R1

∫
Ω

K1(x,y)ϕ(y)dy. (30)

Then ϕ solves (29) if and only if

ϕ(x) =
R2

λ

∫
Ω

K2(x,y)ψ(y)dy. (31)

Now suppose K1 and K2 are advective dispersal kernels of the form (5) for some
β1,D1,v1 and β2,D2,v2. Differentiating (30) and using (8) for K1 we have

ψ ′′(x) =
v1

D1
ψ ′(x)+

β1

D1
ψ(x)− β1

D1
R1 ϕ(x). (32)
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Similarly, differentiating (31) and using (8) for K2 we have

ϕ ′′(x) =
v2

D2
ϕ ′(x)+

β2

D2
ϕ(x)− β2

D2

R2

λ
ψ(x). (33)

It follows that the eigenfunction ϕ solves the fourth order equation

ϕ (4)−Bϕ (3)−
(

β1

D1
+

β2

D2
− v1v2

D1D2

)
ϕ (2)+Cϕ ′+

β1β2

D1D2

(
1− R1R2

λ

)
ϕ = 0, (34)

where

B =

[
v1

D1
+

v2

D2

]
and C =

[
v1β2 +β1v2

D1D2

]
.

The boundary conditions can be determined as follows. Suppose Ω = [0,L]. First,
differentiating (30) and (31) and using the definition of K we have

ϕ ′ (0) = a1,2 ϕ (0) (35)
ϕ ′ (L) = a2,2 ϕ (L) (36)

and

ψ ′ (0) = a1,1 ψ (0) (37)
ψ ′ (L) = a2,1 ψ (L) (38)

where ai, j denotes the constant ai in (5) for the kernel K j. Next, differentiating (33),
using (37)-(38) and (33) we obtain two additional boundary conditions:

ϕ ′′′ (0) =
(

a1,1 +
v2

D2

)
ϕ ′′ (0)−a1,1

v2

D2
ϕ ′ (0)+

β2

D2
(a1,2 −a1,1)ϕ(0), (39)

ϕ ′′′ (L) =
(

a2,1 +
v2

D2

)
ϕ ′′ (L)−a2,1

v2

D2
ϕ ′ (L)+

β2

D2
(a2,2 −a2,1)ϕ(L). (40)

The differential equation (34) together with the four boundary conditions (35)-
(36) and (39)-(40) comprise a fourth-order boundary-value problem for the eigenpair
(λ ,ϕ) of (29) in the case of two-stage advective kernels. The general solution of
equation (34) has the form

ϕ(x) = c1er1x + c2er2x + c3er3x + c4er4x (41)

where ri ∈ C are the roots of the associated characteristic polynomial. Applying the
boundary conditions to ϕ yields a fourth-order linear system of the form Ac = 0 for
the coefficients c = [c1 c2 c3 c4]

T . This system admits a nontrivial solution, and hence
ϕ in (41) is nontrivial, only if detA = 0, which, for a fixed domain length L, defines
an implicit equation for λ . Solving detA = 0, we then obtain the principal eigenvalue
λ1 = λ1,twostep of the two-stage operator. To illustrate, we derive the fourth order
boundary value problem for (27) in the symmetric kernel case in Appendix 5.1. We
also note that this process can be used to determine the critical domain length by
setting λ = 1 and determining conditions on L for which the fourth-order system
admits a nontrivial solution (see e.g., Jin and Lewis (2011)).
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Fig. 4 The relationship between the principal eigenvalue of (29) for the alternating kernel model and
average flow velocity v̄ = (v1 +v2)/2. Parameters are: R1 = 1.2, R2 = 1.5, D1 = 1, D2 = 1, β1 = 1, β2 = 1,
Ω = [0,L] with L = 20.

Example 1 To illustrate how the principal eigenvalue λ1,twostep of (29) depends on
flow velocities we consider the case of variable flow rates v1 and v2, but with fixed
mean v̄ = (v1 + v2)/2 for a habitat Ω = [0,L] with L = 20, R1 = 1.2, R2 = 1.5, D1 =
D2 = 1, β1 = β2 = 1.

As the flow rates v1 and v2 vary, while keeping v̄ fixed, the value of λ1,twostep varies
within some interval. Figure 4 shows the possible values of λ1,twostep as a function the
average of flow velocity v̄ ∈ [0,20]. Overall, λ1,twostep decreases with v̄. When the
average v̄ is sufficiently small (i.e., v̄ < v̄1), then λ1,twostep > 1 regardless of v1 and v2,
which corresponds to persistence of the population; when v̄ is sufficiently large (i.e.,
v̄ > v̄2), then λ1,twostep < 1 regardless of v1 and v2, which corresponds to extinction.
For moderate values of v̄ (i.e., v̄1 < v̄ < v̄2), different combinations of v1 and v2
may lead to λ1,twostep > 1 or λ1,twostep < 1, and hence, the population can persist or
go extinct in different fluctuating flows even though the mean of flow velocity is
constant.

For a fixed mean v̄, we can also consider λ1,twostep as a function of the variation
in flow |v1 − v2|. Figure 5(a) illustrates this for the case v̄ = 1.3. Note that λ1,twostep
is an increasing function of |v1 − v2|. For this average flow velocity, the smaller the
variation between v1 and v2, the smaller the possibility that the population can persist
in the river.

If we fix v1 and vary only v2, then Figure 5(b) shows that λ1,twostep is a decreasing
function of v2. This coincides with the fact that, when the flow velocity in one step is
constant, then the larger the flow velocity in the second step, the harder it is for the
population to persist in the river.
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Fig. 5 (a) The relationship between the principal eigenvalue for (29) for the alternating kernel model
and the difference of v1 and v2 while keeping the average flow fixed at v̄ = (v1 + v2)/2 = 1.3. (b) The
relationship between the principal eigenvalue for (29) for the two-stage model and v2 where v1 = 0.1. The
other parameters are: R1 = 1.2, R2 = 1.5, D1 = D2 = 1, β1 = β2 = 1, and Ω = [0,L] with L = 20.
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Fig. 6 The relation between the critical domain size and v2 for the alternating kernel model with v1 = 0.1,
R1 = 1.2, R2 = 1.5, D1 = D2 = 1, and β1 = β2 = 1. As v2 → 3, the critical domain size approaches infinity.

Example 2 To illustrate how one can study critical domain size questions in this set-
ting we consider the case of fixing v1 = 0.1 and determining the critical domain length
as a function of v2 (leaving the other parameters as in Example 1). We can study this
by setting λ = 1 in (34) and determining conditions on L for which the fourth-order
system admits a nontrivial solution. An example is shown in Figure 6. As one might
expect, as v2 increases the critical domain length increases, with L approaching infin-
ity as v2 tends to some value. Since the critical domain size represents the minimal
length of the river such that population can persists, this observation implies that
the higher the flow the more difficult it is for the population to persist in the river,
consistent with earlier results in Lutscher et al. (2005) and Jin and Lewis (2011).
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Finally, we note that, similar to the dispersal success approximation in (13), we
can use redistribution and dispersal success to approximate λ1,twostep as

λ1,twostep ≈ λa,12 :=
R1R2

L

∫
Ω

s2(y)r1(y)dy, (42)

where r1 is the redistribution function corresponding to K1 and s2 is the dispersal
success function corresponding to K2. In Appendix 5.2 we include an example com-
paring this approximation with λ1,twostep for different domain lengths L.

The differential equation approach in this section for alternating kernels can be
generalized to the case of a sequence of n kernels (Jacobsen and McAdam (2014)).
However, we will instead turn to the case of random kernels, and in particular, asym-
metric Laplace kernels whose parameters are chosen from a given distribution.

3 Random Kernel Model

In this section, we consider the model

nt+1(x) = Ft(nt)(x) =
∫

Ω
Kt(x− y) ft(nt(y))dy, (43)

where ft and Kt denote “random” growth and dispersal kernels at step t. We apply the
theory of Hardin et al. (1988a,b, 1990) to the random difference kernel model (43)
and show that the long-term population persistence or extinction can be determined
by the generalized spectral radius r defined by (23). We also define another quantity
Λ (as in (24)), which is mathematically equivalent to r, is computationally easier to
work with, and most importantly has a biological meaning of the asymptotic growth
rate of the population. We use this alternate framework to consider several examples
for random kernels.

3.1 Persistence Metrics

First, for notational clarity, we rewrite (43) as

nt+1(x) = Fαt (nt)(x) :=
∫

Ω
Kαt (x− y) fαt (nt(y))dy (44)

where {αt}t≥0 is a sequence of independent identically distributed random variables
taking values in an index set A (representing the range of environmental conditions).
We make the following assumptions on the kernels Kαt and growth functions fαt :

(C1) 1. For each α ∈ A , Kα(x− y) is continuous for x,y ∈ Ω .
2. There exists constants K > 0 and K such that

K ≤ Kα(x− y)≤ K for all α ∈ A and x,y ∈ Ω .

(C2) 1. For any α ∈ A , fα : R→ [0,∞) is continuous with fα(u) = 0 for all u ≤ 0.
2. There exists m > 0, f > 0, and f > 0, such that for any α ∈ A ,

(a) fα(u) is an increasing function in u.
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(b) 0 ≤ fα(u)≤ m for all u ∈C+(Ω).
(c) If 0 < v < u then fα (u)

u < fα (v)
v .

(d) fα is right differentiable at 0. For simplicity, we denote the right deriva-
tive as f ′α(0).

(e) fα (u)
u → f ′α(0) as u → 0+, uniformly for α ∈ A

(f) f = inf
α∈A

f ′α(0)≤ f ′α(0)≤ f

(g) For b = mK|Ω |, there exists f1 = inf
α∈A

fα(b)> 0.

(C3) There exists α∗ ∈ A such that Fα(u)≤ Fα∗(u) for all α ∈ A and u ∈C+(Ω).

Under these assumptions it can be shown (see Appendix 5.3) that the framework
of Hardin et al. (1988a) can be applied to the nonlinear model (44), which yields the
following result:

Theorem 1 Assume that Fαt (αt ∈ A for t ∈ N) defined by (44) satisfies (C1)- (C3).
For nonzero initial data n0 ∈C+(Ω), the population nt of (44) converges in distribu-
tion to a stationary distribution µ∗, independent of n0, that is either concentrated at
0 ∈C+(Ω) (extinction) or supported in C+(Ω)\{0} (persistence).

Moreover, let
r = lim

t→∞
∥Lαt ◦ · · · ◦Lα1∥

1/t , (45)

where αt ∈A for all t ≥ 1 and Lαt := F ′
αt
(0) is the linearization of Fαt at n = 0. The

following results hold:

(a) If r < 1, then the population will go extinct.
(b) If r > 1, then the population will persist.

The quantity (45) provides a means to study population persistence for our inte-
grodifference stream model in the context of random dispersal and growth, within the
framework of the hypotheses (C1)-(C3). We now show there is an alternate metric for
(44), which can also be used to analyze persistence of the population, is numerically
easier to work with, and has a clear biological interpretation.

Consider the linearization of (44) at the trivial solution

nt+1(x) = Rαt

∫
Ω

Kαt (x− y)nt(y)dy, (46)

where Rαt = f ′αt
(0). Let nt(x) be the solution of (46) for initial value n0 ∈C+(Ω)\{0}.

Then the average growth rate of the population over the first t steps can be written as

Average growth rate over first t steps =
[ ∫

Ω nt(x)dx∫
Ω n0(x)dx

]1/t

.

Define the limit of this average as

Λ := lim
t→∞

[ ∫
Ω nt(x)dx∫
Ω n0(x)dx

]1/t

. (47)

In this sense, the limiting constant Λ represents the asymptotic growth rate of the
population.
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In Appendix 5.4 we show the limit in (47) exists and is independent of the initial
function n0 ∈C+(Ω)\{0}, so the definition in (47) can be simplified to

Λ = lim
t→∞

[∫
Ω

nt(x)dx
]1/t

(48)

for any n0 ∈C+(Ω)\{0}. Furthermore, as we state in the theorem below, the asymp-
totic growth rate Λ and the constant r are equal. The proof of this theorem, provided
in Appendix 5.4, also includes the proof of the existence of the limit in (47) and the
equivalence of (47) and (48).

Theorem 2 Let r and Λ be defined in (45) and (48), respectively. Then Λ = r.

Remark 1 It follows from Theorems 1 and 2 that if Λ > 1, the population will be
persistent and if Λ < 1, the population will go extinct. Thus population persistence or
extinction can be studied by computing Λ for the iterates nt of the linear model (46)
(recalling Rαt and Kαt change at each step).

We illustrate applications of Theorem 2 for several examples of (46), using Λ to
determine population persistence or extinction. For simplicity, we use (48) to approx-
imate Λ .

Example 3 (Random Two Kernel model) Consider (46) where the kernel Kt is chosen
at random from one of two asymmetric advective kernels K1 and K2, with equal prob-
ability. For Ki as in (5), we assume v1 = 0.1,v2 = 1, D1 = D2 = 1, and β1 = β2 = 1.
Since we are effectively flipping a coin to determine the kernel Kt we call this the
“coin-flip kernel model” or CFK model. We assume Rt = 1.2 if Kt = K1 and Rt = 1.5,
if Kt = K2.

First, in Figure 7 we illustrate sample rates of convergence for Λ for different
initial conditions by plotting the tth-approximation of Λ defined by (48)

Λt :=
(∫

Ω
nt(x)dx

)1/t

(49)

for two different initial states n0 = 1/20 and n0 = π/20sin(πx/20), on a habitat
Ω = [0,20]. Notice Λt converges to the same value of Λ ≈ 1.22 for each initial state
and at roughly the same rate.

Next, we compare the principal eigenvalue for the alternating kernel model from
Section 2 with the value of Λ for the random CFK model. Figure 8 shows a plot
of the principal eigenvalue λ1,twostep of the alternating kernel model (27) (using the
same parameters from the CFK model) with Λ for the the CFK model (46). The
principal eigenvalue of the alternating kernel model appears to match well with Λ for
the random model.

Example 4 (Log-normal Flow Velocities) Our next example considers (46) with the
flow rate for kernel Kt chosen from a log-normal distribution (keeping the other pa-
rameters fixed). We consider the relation between the asymptotic growth rate Λ as a
function of the variance in flow rate, while maintaining a fixed mean.
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Fig. 9 Probability density functions for a log-normal distribution with fixed mean v̄ = 0.95 and variance
ν = 1.5 (solid) and 0.5 (dashed). Note that the occasional higher flow values for the higher variance case
are balanced by more frequent lower flow rates in order to keep the mean fixed.

First, to illustrate the log-normal distribution, Figure 9 shows the probability den-
sity function for a log-normal distribution with a fixed mean for two different vari-
ances.

Figure 10 shows an example of how the asymptotic growth rate Λ depends on
the variance of flow velocity, assuming a fixed mean. We see that Λ tends to increase
as the variance increases. For a single step kernel with mean flow velocity v = 0.95,
the associated principal eigenvalue λ1 < 1, corresponding to extinction. However, if
we increase the variance while keeping the mean fixed, the higher flow velocities are
balanced by more frequent low flow velocities which provide favorable conditions
for survival. The values of Λ are estimated by computing Λt for t >> 1. We note that
the numerical results are identical for Ω = [0,L] and Ω = [−L/2,L/2].

Figure 11 shows how Λ depends on the variance ν of the log-normal flow rate v
for three different fixed means µ = 0.9, 0.95 and 1. Consistent with what one might
expect, the higher the average flow rate the smaller Λ is, and hence, the harder it is
for the population to persist. Again, the values of Λ are estimates based on Λt for
large t.

3.2 Explicit Calculation for Λt

In this section we compute an exact formula for the approximation Λt of the asymp-
totic growth rate Λ . For notational simplicity, we write Kαt as Kt and Rαt as Rt .
Beginning with a uniform initial density n0(x) = 1 on the habitat Ω , we have

Λ1 =
∫

Ω
n1(x)dx =

∫
Ω

(
R1

∫
Ω

K1(x,y)dy
)

dx = R1

∫
Ω

∫
Ω

K1(x,y)dxdy

= R1

∫
Ω

s1(y)dy,
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Fig. 10 Plot of asymptotic growth rate Λ for (46) vs. the variance of the flow velocity. The flow velocities
in Kt are chosen from a log-normal distribution with mean fixed at 0.95. The other parameters are held
constant at R = 1.2, D = 1, β = 1 and Ω = [0,L] with L = 20. The values of Λ are approximated by
plotting Λt for large t.
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Fig. 11 Plot of asymptotic growth rate Λ for (46) vs. the variance of the flow velocity for three different
fixed means. The flow velocities in Kt are chosen from a log-normal distribution with means fixed at
0.9,0.95, and 1. The other parameters are held constant at R = 1.2, D = 1, β = 1, and Ω = [0,L] with
L = 20. The values of Λ are approximated by plotting Λt for large t.
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where s1(y) is the dispersal success function for the kernel K1. Similarly,

Λ2 =

(∫
Ω

(
R2

∫
Ω

K2(x,y)n1(y)dy
)

dx
)1/2

=

(
R1R2

∫
Ω

∫
Ω

∫
Ω

K2(x,y)K1(y,z)dzdydx
)1/2

=

(
R1R2

∫
Ω

∫
Ω

K2(x,y)r1(y)dydx
)1/2

=

(
R1R2

∫
Ω

s2(y)r1(y)dy
)1/2

where s2(y) is the dispersal success function for K2 and r1(y) is the redistribution
function for K1. Continuing, we have

Λ3 =

(
R1R2R3

∫
Ω

∫
Ω

s3(y)K2(y,z)r1(z)dydz
)1/3

(50)

Λ4 =

(
R1R2R3R4

∫
Ω

∫
Ω

∫
Ω

s4(z3)K3(z3,z2)K2(z2,z1)r1(z1)dz3 dz2 dz1

)1/4

(51)

and, in general, for t > 3 we have

Λt = R
1/t
t M1/t

t (52)

where Rt = R1R2 · · ·Rt and

Mt =
∫

Ω
· · ·
∫

Ω︸ ︷︷ ︸
t−1 terms

st(zt−1)
t−1

∏
i=2

Ki(zi,zi−1)r1(z1)dzt−1 . . .dz1 (53)

=
∫

Ω
· · ·
∫

Ω︸ ︷︷ ︸
t+1 terms

t

∏
i=1

Ki(zi,zi−1)dzt . . .dz0. (54)

We can compute this exactly when the kernels Ki are advective kernels (5) with
random parameters vi,βi and Di, provided no two sets of kernels parameters repeat
themselves exactly (which is reasonable in the case of random parameter values).
Roughly speaking, each population stage will be represented by a sum of exponen-
tials, although the number of terms grows at each step. More precisely, for t ∈ N

nt(x) = Rt

(
ρ0,t +

t

∑
j=1

ρa j ,t ea jx +
t

∑
j=1

ρb j ,t eb jx

)
(55)

where a j := a1 and b j := a2 in definition (5) for kernel K j, and ρr,t are certain com-
putable coefficients that depend on the kernels up to step t (their precise form is in-
teresting but not essential so we present them in Appendix 5.5). If Ω = (−L/2,L/2),
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Fig. 12 Calculations of Λt from (56) for the case of a lognormal distribution with mean 0.95 and variance
1.5 (remaining setup as in Example 4). (a) t = 1, . . .20; the data shows a reasonable trend (b) t = 1, . . .40;
after about t = 20 the results are simply noise due to error accumulation.

then by integrating equation (55) on Ω we obtain an exact expression for Λt :

Λt = R
1/t
t

[
Lρ0,t +2

t

∑
j=1

(ρa j ,t

a j
sinh

a jL
2

+
ρb j ,t

b j
sinh

b jL
2

)]1/t

. (56)

Although (56) provides an exact formula for Λt for the random kernel case, it is
not particularly stable for numerical calculations due to error accumulation in light
of the many small divisors that appear in the coefficients ρr,t (e.g., see (72)-(74) in
Appendix 5.5). This issue is compounded by the fact that our previous calculations of
Λt via numerical integration of (48) showed that the convergence to Λ is fairly slow
(e.g., see Figure 7). Figure 12 illustrates an application of (56) for a specific case of
Example 4 with lognormal flow velocities.

4 Discussion

Even though classical ecological models assume environmental uniformity, the true
natural environment shows a high degree of temporal variability. While the yearly
specifics of the environmental variations rarely can be predicted, the general nature
of the variability, as measured over many years, can be described statistically. One e-
merging challenge in mathematical biology has been to incorporate such measures of
environmental variability into mathematical models for population persistence (see,
for example, Benaı̈m and Schreiber (2009); Tuljapurkar (1990); Tuljapurkar et al.
(2003); Schreiber (2010); Roth and Schreiber (2014)). Although much recent mathe-
matical attention has focused on this challenge, the pioneering work by Hardin et al.
(1988a) actually provided mathematical tools to understand variability for integrod-
ifference equations, as long as a quarter of a century ago.

While the mathematical foundation of our work rests on the seminal papers by
Hardin et al. (1988a,b, 1990), the methods we developed here have extend the ap-
proach significantly, and also transform the rather abstract results into concrete appli-
cations for the dynamics of river populations. Specifically, and perhaps most impor-
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tantly, we have connected the Hardin et al. (1988a) metric r (45) to a more biological-
ly reasonable equivalent metric, the asymptotic growth rate of the linearized operator,
Λ (48). Indeed, we established the mathematical equivalence of r and Λ and inter-
preted this equivalence in terms of equivalent persistence metrics for the underlying
stochastic, nonlinear dynamical system (44). Recall that r and Λ are defined as

r = lim
t→∞

∥Lαt ◦ · · · ◦Lα1∥
1/t ,

where Lαt maps from C(Ω) to C(Ω), and

Λ := lim
t→∞

[∫
Ω

nt(x)dx
]1/t

.

We can rewrite Λ as

Λ = lim
t→∞

[
||nt ||L1(Ω)

]1/t
= lim

t→∞

[
||Lαt ◦ · · · ◦Lα1(n0)||L1(Ω)

]1/t
,

which yields Λ = lim
t→∞

∥Lαt ◦ · · · ◦Lα1∥1/t , but in this case each Lαt is considered

to map from L1(Ω) to L1(Ω). Therefore, we can interpret our result mathematically
as stating that, when studying population persistence for our random model (44), it
does not matter whether the function space is chosen as C(Ω) or L1(Ω). However,
this result extends beyond the rather narrow mathematical interpretation given above;
the asymptotic growth rate Λ has more biological significance and can be easier to
calculate than r.

The connection between r and Λ has allowed us to infer persistence properties of
the nonlinear stochastic dynamical system, describing population growth and disper-
sal in rivers, based on Λ . In particular, it means that our explicit calculations of the
asymptotic growth rate for river systems with asymmetric exponential dispersal (56)
can be rigorously connected to persistence in the associated nonlinear system.

In our analysis we also developed a connection between periodically fluctuat-
ing river system, with asymmetric exponential dispersal, and a differential operator
describing growth of an associated eigenfunction. Numerical results show a close
concordance of persistence thresholds for the alternating kernel model, where good
and bad years alternate, and those for a related coin flip kernel model, where good
and bad years are chosen randomly with equal probability (Figure 8).

The class of models in this paper can be generally applied to river or stream popu-
lations, where unidirectional flow dominates. However, particular stream populations
are likely to require more detailed and specific models. One advantage of a general
model is the ability to draw general conclusions. What can be concluded, in gener-
al, from the models in this paper regarding the role of variability in persistence in
streams and rivers? First, longer streams (Figure 3) and lower flow rates (Figures 4,
5b) increase likelihood of persistence, and higher flow streams must be longer, pro-
viding more habitat, if populations are to persist (Figure 6). These, by themselves are
not new theoretical results, and have been understood theoretically since the work of
(Speirs and Gurney 2001). However, a closer look at Figure 4 shows that the vari-
ability in the flow velocity, as given in the alternating kernel model, can determine
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persistence outcomes as much as the mean velocity. Specifically, increased variabili-
ty gives an increased probability of persistence (Figure 5a). Here the effects of flow
rate variation do not simply average out, and the beneficial effect of a low-flow pe-
riod more than compensates for the detrimental effect of a corresponding high-flow
period. This relationship between flow variability and persistence holds over to the
more complex case where the dispersal kernel is randomly from a family where the
flow velocity is drawn from a continuous probability density function, such as a log-
normal distribution (Figures 9-11). We considered variations of the parameters in the
positive space for the two-step alternating kernel model and the random model and
made numerous simulations for the dependence of λ1,twostep and Λ on the variance of
the flow velocity v. In all our simulations, λ1,twostep and Λ are increasing functions of
the variance of v. While we are not able to theoretically prove this result for these two
models, Figures 4, 5, and 9-11 were typical numerical examples chosen to illustrate
the calculations.

Although our model, with uncorrelated random environments, showed that in-
creasing temporal variations can promote population persistence, this phenomenon
may not hold in other settings. For example, it has been shown that for a given aver-
age population growth rate, temporal variations in the growth rate may increase the
risk of extinction; see e.g., Lewontin and Cohen (1969); Turelli (1978); Lande (1993);
Halley and Iwasa (1999). Positive temporal autocorrelations in environmental condi-
tions can decrease or increase extinction risk depending on other features; see, e.g.,
Schwager et al. (2006); Heino et al. (2000); Ripa and Lundberg (1996). In particular,
positive autocorrelations in temporal fluctuations can disrupt predator-prey coexis-
tence (Roth and Schreiber 2014). In more general and realistic situations where there
are environmental variations in space and time, the effect of interactions between
temporal correlations, spatial heterogeneity and dispersal on population persistence
becomes even more complex. For instance, metapopulations whose expected fitness
in every patch is less than 1 can persist if there are positive temporal autocorrelations
in relative fitness, sufficiently weak spatial correlations, and intermediate rates of dis-
persal between patches (Schreiber 2010). More recently, Roth and Schreiber (2014)
develop a coexistence criterion for interacting structured populations in stochastic
environments and show, among other applications, that autocorrelations in temporal
fluctuations can interfere with coexistence in predator-prey models.

There is much further work that could be done. In this paper, we did not specifi-
cally address the critical domain size problem, other than illustrate how our method
can be applied for an example with alternating kernels (Example 2). It is not our
purpose here to study how the critical domain size is influenced by the variation of
different factors, but this could be an interesting avenue for future work, especially
for the random model, which would build upon the work for integrodifference equa-
tions in Kot and Schaffer (1986) for symmetric dispersal kernels and Hardin et al.
(1988a,b, 1990); Van Kirk and Lewis (1997, 1999); Latore et al. (1999) for more
general dispersal kernels, including environmental heterogeneity both in space and in
time.
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5 Appendix

5.1 Explicit solution for the principal eigenvalue for the alternating kernel model
(27) in the symmetric case

Consider the case of the alternating kernel model (27) where

K1(x) =
a1

2
e−a1|x| and K2(x) =

a2

2
e−a2|x|

are symmetric kernels with a1 =
√

β1/D1 and a2 =
√

β2/D2. In this case, the boundary-
value problem (34) becomes

ϕ (4)(x)−aϕ (2)(x)+d ϕ(x) = 0, (57)

where

a =
(
a2

1 +a2
2
)

and d = a2
1a2

2

(
1− R1R2

λ

)
(58)

and the boundary conditions are

ϕ ′ (0) = a2 ϕ (0) (59)
ϕ ′ (L) = −a2 ϕ (L) (60)

ϕ ′′′ (0) = a1ϕ ′′ (0)+a2
2 (a2 −a1)ϕ (0) (61)

ϕ ′′′ (L) = −a1ϕ ′′ (L)−a2
2 (a2 −a1)ϕ (L) . (62)

The characteristic equation for (57) is r4 −ar2 +d = 0 with roots±

√
a+

√
a2 −4d
2

,±

√
a−

√
a2 −4d
2

 . (63)

The first two roots are real and since d < 0 (by estimate (28)), the second two roots are
complex (and purely imaginary). If we denote the real roots by ±r and the complex
roots by ±ik then the general solution of (57) is

y(x) = c1 coshrx+ c2 sinhrx+ c3 coskx+ c4 sinkx.

By shifting the domain from [0,L] to [−L/2,L/2] we can use symmetry to reduce this
to

y(x) = c1 coshrx+ c3 coskx.

Applying the boundary conditions (59) and (61) (which now hold at −L/2) we obtain
the 2×2 system of equations for c1 and c3:(

a2 cosh rL
2 + r sinh rL

2

)
c1 +

(
a2 cos kL

2 − k sin kL
2

)
c3 = 0,(

(a1r2 +a2
2(a2 −a1))cosh rL

2 + r3 sinh rL
2

)
c1

+
(
k3 sin kL

2 − (a1k2 −a2
2(a2 −a1))cos kL

2

)
c3 = 0.
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This system admits a nontrivial solution only if the determinant of the coefficient
matrix is zero, which yields an equation of the form

F(L,a1,a2,R1R2,λ ) = 0 (64)

which implicitly defines the principal eigenvalue λ1,twostep. Furthermore, by setting
λ = 1 in (64), we obtain an implicit equation for the critical domain length L =
L(a1,a2,R1R2).

5.2 Redistribution and Dispersal Success Approximations for Alternating Kernel
Model

Suppose ϕ1 is an eigenfunction associated with the alternating kernel model, i.e., ϕ1
solves

λ1,twostep ϕ1(x) = R1R2

∫
Ω

K(x,y)ϕ1(y)dy (65)

where K is the two-stage kernel (26). Integrating (65) over Ω yields

λ1,twostep

∫
Ω

ϕ1(x)dx = R1R2

∫
Ω

∫
Ω

K(x,y)ϕ1(y)dydx

= R1R2

∫
Ω

[∫
Ω

K(x,y)dx
]

ϕ1(y)dy

= R1R2

∫
Ω

s(y)ϕ1(y)dy,

where s(y) is the dispersal success function for K. If Ω = [0,L] and we use the ap-
proximation ϕ1 ≈ 1/L we obtain

λ1,twostep ≈
R1R2

L

∫
Ω

s(y)dy =
R1R2

L

∫
Ω

∫
Ω

∫
Ω

K2(x,z)K1(z,y)dzdxdy

=
R1R2

L

∫
Ω

∫
Ω

s2(z)K1(z,y)dzdy

=
R1R2

L

∫
Ω

s2(z)r1(z)dz.

Therefore, we obtain the approximation

λ1,twostep ≈ λa,12 :=
R1R2

L

∫
Ω

s2(y)r1(y)dy (66)

which approximates λ1,twostep in terms of the dispersal success function (9) for K2
and redistribution function (10) for K1.

To compare the estimates for the alternating kernel model we consider (27) on
Ω = [0,L] with kernels K1 and K2 defined by (5). We denote the dispersal success
approximations for the single stage case with either K1 or K2 as

λ1(K1)≈ λa,1 :=
R1

L

∫
Ω

s1(y)dy, (67)
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λ1(K2)≈ λa,2 :=
R2

L

∫
Ω

s2(y)dy. (68)

Figure 13 shows an example of the comparison of the approximations for the prin-
cipal eigenvalues of the single stage and two stage operators with λ1,twostep, the actual
principal eigenvalue, obtained by solving the boundary value problem (34)-(40). The
principal eigenvalues λ1,twostep and (λ1,twostep)

1/2 both increase as L increases (as one
would expect), λa,1 underestimates λ1,twostep but λa,2 overestimates λ1,twostep. The ge-
ometric mean (λa,1λa,2)

1/2 of one year approximations appears to provide a good
estimate for (λ1,twostep)

1/2 when L is not too large, but it overestimates (λ1,twostep)
1/2

when L is large. The geometric mean (λa,1λa,2)
1/2 also tends to underestimate the

two-step approximation (λa,12)
1/2, which itself overestimates the actual persistence

measure (λ1,twostep)
1/2. One should note that this conclusion is based on the results

for the single model and the two-stage model with chosen parameters in the example.
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Fig. 13 Comparison of principal eigenvalues with dispersal success approximations for the single and
two-stage model as a function of stream length L. Parameter values are: R1 = 1.2, R2 = 1.5, D1 = D2 = 1,
β1 = β2 = 1, v1 = 0.1, and v2 = 1.

5.3 Proof of Theorem 1

First we recall some preliminary facts from Hardin et al. (1988a, 1990). Consider the
general model:

xt+1(ω) = Fαt (xt(ω)), (69)
where t = 0,1,2, · · · , ω ∈ Ω , Ω is a compact set in Rn for some n ≥ 1, and x0 ∈
C+(Ω). They consider the following assumptions:
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(C0) αt is a sequence of independent identically distributed random variables in some
index set A .

(H1) For each α ∈ A , Fα is a continuous map of C+(Ω) into itself such that Fα(x) =
0 ∈C+(Ω) if and only if x = 0 ∈C+(Ω).

(H2) If x,y ∈C+(Ω) and x ≥ y then Fα(x)≥ Fα(y).
(H3) There exists b > 0 such that for x ∈C+(Ω)

(a) ∥Fα(x)∥∞ ≤ b for all α ∈ A whenever ∥x∥∞ ≤ b;
(b) there exists t (depending on x ∈C+(Ω)) such that ∥Fαt ◦ · · · ◦Fα0 x∥∞ < b for

all α0, · · · ,αt ∈ A ;
(c) there exists d > 0 such that Fα(b)≥ d for all α ∈ A .

(H4) Let Bb = {x ∈ C+(Ω) : ∥x∥∞ ≤ b} where b is as in (H3). Then there is some
compact set D ⊂C+(Ω) such that Fα(Bb)⊂ D for all α ∈ A .

(H5) There exists h > 0 such that ∥Fα(x)∥∞ ≤ h∥x∥∞ for all α ∈ A and x ∈C+(Ω).
(H6) There exists ξ > 0 such that Fα(Bb)⊂ Kξ where Kξ = {x ∈C+(Ω) : x ≥ ξ∥x∥∞}.
(H7) For each a > 0 there exists a continuous function τ : (0,1] → (0,1] such that

τ(s)> s for s ∈ (0,1) and τ(s)Fα(x)≤ Fα(sx) for all α ∈ A and x ∈C+(Ω) for
which a ≤ x ≤ b.

(H8) Fα is Fréchet differentiable (with respect to C+(Ω)) at 0 ∈C+(Ω). We write Lα
for the derivative F ′

α(0).
(H9) There exists a function N :R+→ [0,1] such that lim

u→0+
N(u)= 1 and N(∥x∥∞)Lα x≤

Fα(x)≤ Lα x for x ∈C+(Ω).
The above assumptions imply the following additional conditions:
(H10) (a) If x,y ∈C(Ω) and x ≤ y then Lα x ≤ Lα y for all α ∈ A .

(b) ∥Lα∥= sup{∥Lα x∥∞ : x ∈C(Ω),∥x∥∞ = 1}= ∥Lα(1)∥∞ for all α ∈ A .
(c) ∥Lα∥ ≤ h for all α ∈ A .
(d) Lα(C+(Ω))⊂ Kξ for all α ∈ A .

(H11) There exists γ > 0 such that if x ∈ Kξ and ∥x∥∞ ≤ b then Fα(x) ≥ γ∥x∥∞ for all
α ∈ A .

Under these assumptions Hardin et al. (1988a) prove the following theorems for
persistence:
Theorem 4.2 Suppose the model (69) satisfies (C0), (H1)-(H7) and that x0 ̸= 0,
x0 ∈ C+(Ω) with probability one. Then xt converges in distribution to a stationary
distribution µ∗, independent of x0, such that either µ∗({0}) = 0 or µ∗({0}) = 1.
Lemma 5.1 Suppose {Lαt} satisfies (C0) and (H10)(c). Then lim

t→∞
∥Lαt ◦· · ·◦Lα1∥1/t

exists with probability one and is a constant r (independent of the initial state).
Theorem 5.3 Suppose Fα satisfies (C0), (H1)-(H9) and that x0 ̸= 0,x0 ∈C+(Ω) with
probability one. Let µ∗ be as in Theorem 4.2.

(a) If r < 1, then µ∗({0}) = 1 and xt → 0 with probability one.
(b) If r > 1, then µ∗({0}) = 0.

Therefore, in order to prove Theorem 1 we first verify that

Fα(n)(x) =
∫

Ω
Kα(x− y) fα(n(y))dy

(as in (44)) with the hypotheses (C1)-(C3) satisfies (H1)-(H9). For notational sim-
plicity we write |Ω |=

∫
Ω dy.
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(H1) For any α ∈ A , the continuity of Fα in C+(Ω) follows from the continuity as-
sumption on Kα and fα . Moreover, (C1) and (C2) imply that Fα(u) = 0 if and
only if u = 0.

(H2) By the monotonicity of fα , for any α ∈ A and u ≥ v in C+(Ω) we have

Fα(u) =
∫

Ω
Kα(x− y) fα(u(y))dy ≥

∫
Ω

Kα(x− y) fα(v(y))dy = Fα(v).

(H3) (a) Recall by (C2)(b), that fα(u)≤ m. Let b = mK|Ω |. Then for any α ∈ A and
u ∈C+(Ω) with ∥u∥∞ ≤ b, we have

∥Fα(u)∥∞ = max
x∈Ω

∫
Ω

Kα(x− y) fα(u(y))dy

≤ max
x∈Ω

∫
Ω

Kα(x− y) fα(b)dy ≤ mK|Ω |= b.

(b) Similar to (a), the bound fα(u)≤ m implies ∥Fα(u)∥∞ ≤ b for all α ∈ A and
u ∈C+(Ω), hence (H3)(b) holds for all t > 0.

(c) Let d = f1K|Ω |. Then d > 0 and for any α ∈ A ,

Fα(b) =
∫

Ω
Kα(x− y) fα(b)dy ≥ f1 K |Ω |= d.

(H4) First we show that Fα is compact for each α ∈A . Let {uk} be a bounded sequence
in C(Ω). Then for any α ∈ A we have

∥Fα(uk)∥∞ = max
x∈Ω

∣∣∣∣∫Ω
Kα(x− y) fα(uk(y))dy

∣∣∣∣≤ mK|Ω |= b

which shows {Fα(uk)} is uniformly bounded. Next, for any x1,x2 ∈ Ω we have

|Fα(uk)(x1)−Fα(uk)(x2)| =
∣∣∣∣∫Ω

[Kα(x1 − y)−Kα(x2 − y)] fα(uk(y))dy
∣∣∣∣

≤ m
∫

Ω
|Kα(x1 − y)−Kα(x2 − y)|dy.

Since Kα is continuous, it follows {Fα(uk)} is equicontinuous. Thus, by the
Arzelà-Ascoli theorem, {Fα(uk)} has a convergent subsequence which implies
Fα is a compact map. Therefore, for any α ∈ A , Fα(Bb) is compact. By assump-
tion (C3), Fα(Bb) ⊂ Fα∗(Bb) for all α ∈ A . Let D = Fα∗(Bb). Then we have
Fα(Bb)⊂ D for all α ∈ A . Therefore, (H4) is true.

(H5) Since fα(u)≤ f ′α(0)u for all u ≥ 0 and f ′α(0) ∈ [ f , f ], it follows that

∥Fα(u)∥∞ ≤ max
x∈Ω

∫
Ω

Kα(x− y) f ′α(0)u(y)dy ≤ h∥u∥∞,

where h = f K |Ω |.
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(H6) For any u∈Bb we have Fα(u)∈Bb ⊂C+(Ω). We want ξ > 0 such that Fα(u)(x)≥
ξ∥Fα(u)∥∞ for all x ∈ Ω . Similar to the estimate in (H5), for any x ∈ Ω we have

Fα(u)(x)≤ f K
∫

Ω
u(y)dy.

Thus ∥Fα(u)∥∞ ≤ f K
∫

Ω u(y)dy, and hence∫
Ω

u(y)dy ≥ ∥Fα(u)∥∞

f K
.

On the other hand, by (C2), for any u ∈ Bb and y ∈ Ω we have fα (b)
b ≤ fα (u(y))

u(y) ,
and hence

Fα(u)(x) =
∫

Ω
Kα(x− y) fα(u(y))dy

≥
∫

Ω
Kα(x− y)

fα(b)
b

u(y)dy

≥
f1 K
b

∫
Ω

u(y)dy

≥
f1K
b

∥Fα(u)∥∞

f K
=

f1

b f
K
K
∥Fα(u)∥∞.

This implies (H6) holds with ξ =
f1
b f

K
K . Moreover, ξ ∈ (0,1) by the choice of f1,

b, f , K and K.
(H7) We show that there exists τ(s) such that fα(su)≥ τ(s) fα(u). To this end, let a> 0

with a≤ b. By (C2), for any s∈ (0,1), u> 0 and α ∈A , we have fα(su)/ fα(u)>
s. Define τ : (0,1] → (0,1] by τ(s) = min

α∈A ,a≤u≤b

fα (su)
fα (u)

. Then τ(s) > s, for all

s ∈ (0,1) and fα (su)
fα (u)

≥ τ(s) for any α ∈ A , s ∈ (0,1), a ≤ u ≤ b. Then for any
s ∈ (0,1) and a ≤ u ≤ b,

Fα(su)(x) =
∫

Ω
Kα(x− y) fα(su(y))dy ≥

∫
Ω

Kα(x− y)τ(s) fα(u(y))dy

= τ(s)
∫

Ω
Kα(x− y) fα(u(y))dy

= τ(s)Fα(u)(x).

(H8) The Fréchet derivative of Fα (in C+(Ω)) is the linear operator on C+(Ω) given
by

Lα(u) := F ′
α(0)(u)(x) =

∫
Ω

Kα(x− y) f ′α(0)u(y)dy.

(H9) By (C2), fα(u)≤ f ′α(0)u for all u ∈C+(Ω) and α ∈ A . Thus

Fα(u) =
∫

Ω
Kα(x− y) fα(u(y))dy ≤

∫
Ω

Kα(x− y) f ′α(0)u(y)dy = Lα(u)
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for all u ∈C+(Ω). For each α ∈ A , define Nα : [0,∞)→ [0,1] by

Nα(u) =


fα(u)
f ′α(0)u

, if u > 0,

1, if u = 0.

Then lim
u→0+

Nα(u) = 1 for any α ∈A . Let N(u) = min
α∈A

Nα(u). It follows from the

limit of Nα and choice of N(u) that lim
u→0+

N(u) = 1. By (C2), we have

fα(u(x))
u(x)

≥ fα(∥u∥∞)

∥u∥∞

and hence,
fα(u(x))

u(x) f ′α(0)
≥ fα(∥u∥∞)

∥u∥∞ f ′α(0)
,

i.e., Nα(u(x))≥ Nα(∥u∥∞). Moreover,

Fα(u)(x) =
∫

Ω
Kα(x− y) fα(u(y))dy =

∫
Ω

Kα(x− y) f ′α(0)u(y)Nα(u(y))dy

≥
∫

Ω
Kα(x− y) f ′α(0)u(y)Nα(∥u∥∞)dy

= Nα(∥u∥∞)Lα(u)(x)

≥ N(∥u∥∞)Lα(u)(x).

Items (H10) and (H11) follow from the earlier properties. For the sake of clarity,
we include the additional proofs.

(H10) (a) For any u,v ∈C(Ω) with u ≤ v and x ∈ Ω ,

Lα(u)(x)=
∫

Ω
Kα(x−y) f ′α(0)u(y)dy≤

∫
Ω

Kα(x−y) f ′α(0)v(y)dy=Lα(v)(x).

(b) If ∥u∥∞ ≤ 1 then u(x) ≤ 1 for all x, and it follows from monotonicity of
Lα that Lα(u) ≤ Lα(1), hence ∥Lα(u)∥∞ ≤ ∥Lα(1)∥∞ and so ∥Lα∥ =

sup
∥u∥∞=1

∥Lα(u)∥∞ = ∥Lα(1)∥∞ for all α ∈ A .

(c) By a similar calculation as in (H5), it follows

∥Lα u∥∞ ≤ h∥u∥∞

for all α ∈ A and u ∈C(Ω), which implies that ∥Lα∥ ≤ h = f K|Ω | for all
α ∈ A .

(d) Let u ∈C+(Ω) and α ∈ A . For any x ∈ Ω , we have

∥Lα(u)∥∞ ≤ f K
∫

Ω
u(y)dy and hence

∫
Ω

u(y)dy ≥ ∥Lα(u)∥∞

f K
.

Thus for any x ∈ Ω ,

Lα(u)(x) =
∫

Ω
Kα(x− y) f ′α(0)u(y)dy ≥ f K

∫
Ω

u(y)dy ≥
f K

f K
∥Lα(u)∥∞.
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Since f1 = inf
α∈A

fα(b)≤ inf
α∈A

f ′α(0)b = f b, we have f ≥ f1/b, and hence, for

any x ∈ Ω ,

Lα(u)(x)≥
f K

f K
∥Lα(u)∥∞ ≥

f1K

b f K
∥Lα(u)∥∞ = ξ ∥Lα(u)∥∞.

(H11) Assume that u ∈ Kξ with ∥u∥∞ ≤ b. Then u(x) ≥ ξ∥u∥∞ and for any α ∈ A we
have

Fα(u)≥ Fα(ξ ∥u∥∞) = Fα

(
ξ∥u∥∞

b
b
)
.

Since ξ∥u∥∞
b ≤ 1, it follows from (H3) and (H7) that

Fα(u)≥ Fα

(
ξ∥u∥∞

b
b
)
≥ ξ∥u∥∞

b
Fα(b)≥

ξ∥u∥∞

b
d = γ∥u∥∞

where γ = ξ d/b.

By (H1) - (H9) it follows from Theorem 4.2 in Hardin et al. (1988a) that for all
n0 ̸= 0, n0 ∈C+(Ω) with probability one, nt converges in distribution to a stationary
distribution µ∗, independent of n0, such that either µ∗({0}) = 0 or µ∗({0}) = 1. By
(H10)(c) we know ∥Lα∥∞ ≤ h for all α ∈ A . Thus from Lemma 5.1 in Hardin et al.
(1988a) it follows that lim

t→∞
∥Lαt ◦· · ·◦Lα1∥1/t exists with probability one, and hence

we can define a constant r as

r = lim
t→∞

∥Lαt ◦ · · · ◦Lα1∥
1/t .

Finally, it follows from Theorem 5.3 in Hardin et al. (1988a) that if r < 1, then
µ∗({0}) = 1 and nt → 0 with probability one and if r > 1, then µ∗({0}) = 0. In
this sense, if r < 1 then, in the long run, the population density approaches zero with
probability one (extinction), while if r > 1 the population density will not approach
zero, and hence persists.

5.4 Proof of Theorem 2

First, we consider the case of constant initial data. Let nt(x) be the solution of (46)
with initial function n0(x) =C > 0. Note that

∥nt∥∞ = sup
x∈Ω

nt(x) = sup
x∈Ω

Lαt ◦ · · · ◦Lα1 n0(x)≤ ∥Lαt ◦ · · · ◦Lα1∥∥n0∥∞.

Thus,(∫
Ω

nt(x)dx
)1/t

≤ (∥nt∥∞ |Ω |)1/t ≤ ∥Lαt ◦ · · · ◦Lα1∥
1/t (∥n0∥∞ |Ω |)1/t .
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Since lim
t→∞

(∥n0∥∞ |Ω |)1/t = 1, the above inequality implies

limsup
t→∞

(∫
Ω

nt(x)dx
)1/t

≤ limsup
t→∞

∥Lαt ◦ · · · ◦Lα1∥
1/t (∥n0∥∞ |Ω |)1/t

= lim
t→∞

∥Lαt ◦ · · · ◦Lα1∥
1/t = r.

On the other hand, (H10)(b) implies ∥Lα∥ = ∥Lα(1)∥∞ for all α ∈ A . By a
similar argument as in the proof of (H10)(b), it follows

∥Lαt ◦ · · · ◦Lα1∥= ∥Lαt ◦ · · · ◦Lα1(1)∥∞

for all α1, · · · ,αt ∈ A . Therefore,

r = lim
t→∞

∥Lαt ◦ · · · ◦Lα1∥
1/t = lim

t→∞
∥Lαt ◦ · · · ◦Lα1(1)∥

1/t
∞ .

Consider the sequence {nt(x)}t∈N. By (H10)(d) there exists ξ ∈ (0,1) such that
Lαt (C+(Ω))⊂Kξ for all αt ∈A , where Kξ = {u∈C+(Ω) : u(x)≥ ξ∥u∥∞, for all x∈
Ω} (in terms of the kernels and growth functions, ξ = f1K/(b f K), as shown in (H6)).
In particular, for each t ∈ N, nt(x)≥ ξ∥nt∥∞. Note that

nt(x) = Lαt ◦ · · · ◦Lα1(C) =C ·Lαt ◦ · · · ◦Lα1(1), ∀t ≥ 0.

Therefore, ∫
Ω

nt(x)dx ≥ ξ∥nt∥∞ |Ω | = ξ |Ω |C · ∥Lαt ◦ · · · ◦Lα1(1)∥∞

= ξ |Ω |C · ∥Lαt ◦ · · · ◦Lα1∥.

Since lim
t→∞

(ξ∥Ω∥C)1/t = 1, we have

liminf
t→∞

(∫
Ω

nt(x)dx
)1/t

≥ liminf
t→∞

(ξ |Ω |C)1/t · ∥Lαt ◦ · · · ◦Lα1∥
1/t = r.

Therefore, for the solution nt(x) of (46) with the initial function n0(x) ≡ C > 0,
we have

r ≤ liminf
t→∞

(∫
Ω

nt(x)dx
)1/t

≤ limsup
t→∞

(∫
Ω

nt(x)dx
)1/t

≤ r,

which implies that lim
t→∞

(
∫

Ω nt(x)dx)1/t exists and

lim
t→∞

(∫
Ω

nt(x)dx
)1/t

= r.

Now let nt(x) be a solution of (46) with initial function n0 ∈ C+(Ω)\{0}. If
n0(x0) = 0 for some x0 ∈ Ω , then by (H10)(d) we know n1(x) > 0 in Ω so, shift-
ing by one if necessary, we can assume n0(x) > 0 for all x ∈ Ω . Since Ω is closed
and bounded, there exist constants m, m with 0 < m ≤ m such that m ≤ n0(x)≤ m for
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x ∈ Ω . Let nt(x) and nt(x) be solutions of (46) with initial functions n0(x) ≡ m and
n0(x)≡ m, respectively. Then by the above result for constant initial data, we have

r = lim
t→∞

(∫
Ω

nt(x)dx
)1/t

≤ lim
t→∞

(∫
Ω

nt(x)dx
)1/t

≤ lim
t→∞

(∫
Ω

nt(x)dx
)1/t

= r.

Therefore, lim
t→∞

(
∫

Ω nt(x)dx)1/t = r.

We have shown that lim
t→∞

(
∫

Ω nt(x)dx)1/t = r for any solution of (46) with initial

value n0 ∈ C+(Ω)\{0}. Furthermore, if n0 ∈ C+(Ω)\{0}, then
∫

Ω n0(x)dx > 0 and
hence lim

t→∞
(
∫

Ω n0(x)dx)1/t = 1. Therefore, the limit in (47) exists, and

Λ := lim
t→∞

[ ∫
Ω nt(x)dx∫
Ω n0(x)dx

]1/t

= lim
t→∞

[∫
Ω

nt(x)dx
]1/t

= r,

independent of the initial function n0 ∈ C+(Ω)\{0}. This completes the proof of
Theorem 2.

5.5 Explicit solution for random asymmetric exponential kernels

Here we present the details for the dispersal success approximations (52) when the
kernels Kt are random advective kernels of the form (5), i.e.,

Kt(x) =

{
At eat x if x < 0
At ebt x if x ≥ 0,

(70)

where the rate constants are defined by:

at =
v

2D
+

√
v2

4D2 +
β
D
, bt =

v
2D

−
√

v2

4D2 +
β
D
, and At =

atbt

bt −at

where v is advection velocity, β is the settling rate , and D is the diffusion coefficient
for the kernel Kt . The key step is the following lemma which can be shown by a direct
integration:

Lemma 1 Let Ω = (−L/2,L/2) and suppose Kt(x− y) is an asymmetric advective
kernel of the form (70). If γ /∈ {at ,bt}, then∫

Ω
Kt(x− y)eγy dy = c0,t(γ)eγx + ca,t(γ)eat x + cb,t(γ)ebt x (71)

where

c0,t(γ) =
at bt

(γ −at)(γ −bt)
(72)

ca,t(γ) =
at bt

(bt −at)(γ −at)
e

L
2 (γ−at ) (73)

cb,t(γ) =
−at bt

(bt −at)(γ −bt)
e−

L
2 (γ−bt ) (74)
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Now consider the model

nt+1(x) = Rt

∫
Ω

Kt(x− y)nt(y)dy

where Kt is an asymmetric advective kernel (70). If n0(x) = 1, then from Lemma 1
with γ = 0 we have

n1(x) = R1

∫
Ω

K1(x− y)n0(y)dy (75)

= R1(c0,1(0)+ ca,1(0)ea1x + cb,1(0)eb1x) (76)

where cr,1(0) are defined by (72)-(74). Continuing, we have

n2(x) = R2

∫
Ω

K2(x− y)n1(y)dy

= R1R2

∫
Ω

K2(x− y)(c0,1(0)+ ca,1(0)ea1x + cb,1(0)eb1x).

If the rate constants a2,b2 /∈ {a1,b1} then we can apply Lemma 1 again to conclude

n2(x) = R1R2

∫
Ω

K2(x− y)(c0,1(0)+ ca,1(0)ea1x + cb,1(0)eb1x)

= R1R2

(
ρ0,2 +ρa1,2ea1x +ρb1,2eb1x +ρa2,2ea2x +ρb2,2eb2x

)
where

ρ0,2 = c0,1(0)c0,2(0)
ρa1,2 = ca,1(0)c0,2(a1)

ρb1,2 = cb,1(0)c0,2(b1)

ρa2,2 = c0,1(0)ca,2(0)+ ca,1(0)ca,2(a1)+ cb,1(0)ca,2(b1)

ρb2,2 = c0,1(0)cb,2(0)+ ca,1(0)cb,2(a1)+ cb,1(0)cb,2(b1)

and the constants cr, j(θ) are defined by (72)-(74). We can continue in this manner to
obtain nt(x) for all t, as long as Lemma 1 applies, which will be true provided at each
step the rate constants at ,bt /∈ {a1,b1,a2,b2, . . . ,at−1,bt−1}. Assuming this, we can
recursively define the coefficients ρr,t of erx in nt(x) as follows. Let

ρ0,1 = c0,1(0) ρa1,1 = ca,1(0) ρb1,1 = cb,1(0).

Then, by (76), we have

n1(x) = R1

(
< ρ0,1,ρa,1,ρb,1 > ·< 1,ea1x,eb1x >

)
.

Similarly, for t = 2 we have

n2(x) = R1R2

(
< ρ0,2,ρa1,2,ρb1,2,ρa2,2,ρb2,2 > ·< 1,ea1x,eb1x,ea2x,eb2x >

)
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where 
ρ0,2
ρa1,2
ρb1,2
ρa2,2
ρb2,2

=


c0,2(0) 0 0

0 c0,2(a1) 0
0 0 c0,2(b1)

ca,2(0) ca,2(a1) ca,2(b1)
cb,2(0) cb,2(a1) cb,2(b1)


 ρ0,1

ρa1,1
ρb1,1

 .
Similarly,

n3(x) = R1R2R3 ( < ρ0,3,ρa1,3,ρb1,3,ρa2,3,ρb2,3,ρa3,3,ρb3,3 >

· < 1,ea1x,eb1x,ea2x,eb2x,ea3x,eb3x >
)

where 

ρ0,3
ρa1,3
ρb1,3
ρa2,3
ρb2,3
ρa3,3
ρb3,3


=



c0,3(0) 0 0 0 0
0 c0,3(a1) 0 0 0
0 0 c0,3(b1) 0 0
0 0 0 c0,3(a2) 0
0 0 0 0 c0,3(b2)

ca,3(0) ca,3(a1) ca,3(b1) ca,3(a2) ca,3(b2)
cb,3(0) cb,3(a1) cb,3(b1) cb,3(a2) cb,3(b2)




ρ0,2
ρa1,2
ρb1,2
ρa2,2
ρb2,2

 (77)

In general, nt(x) has the form

nt(x) = Rt

(
ρ0,t +

t

∑
j=1

(
ρa j ,t ea jx +ρb j ,t eb jx

))
(78)

where Rt = R1R2 · · ·Rt and Pt =< ρ0,t ,ρa1,t ,ρb1,t , · · · ,ρat ,t ,ρbt ,t > is defined recur-
sively by

Pt =



c0,t(0) 0 · · · 0
0 c0,t(a1)

c0,t(b1)
...

...
. . .

c0,t(a2) 0
0 · · · 0 c0,t(b2)

ca,t(0) ca,t(a1) ca,t(b1) · · · ca,t(at−1) ca,t(bt−1)
cb,t(0) cb,t(a1) cb,t(b1) · · · cb,t(at−1) cb,t(bt−1)


Pt−1 (79)

By integrating (78) from −L/2 to L/2 we obtain the exact form of Λt :

Λt = R
1/t
t

(
Lρ0,t +2

t

∑
j=1

(ρa j ,t

a j
sinh

a jL
2

+
ρb j ,t

b j
sinh

b jL
2

))1/t

. (80)
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