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Abstract

Semi-quantitative image scoring systems have been developed to assess

various forms of arthritis through assignment of numerical scores

corresponding to the extent of lesion presence within an image. Such scoring

methodologies allow researchers to systematically record differences between

patients and within the same patient over time, allowing for detailed analyses

of imaging findings as they relate to disease severity, treatment response, and

various clinical markers. The level of detail, or granularity, contained within a

scoring system influences the ability of the score to convey smaller differences

or changes in lesion extent between images, but can also impact the reliability

of scores assigned to the same images by different readers as well as the

amount of time and effort required of readers. This thesis examines how

scoring granularity impacts the utility of semi-quantitative image data, as well

as inter-rater reliability.

Chapter 1 contains a study of inflammatory and structural lesion scoring in

the sacroiliac joint of ankylosing spondylitis patients at different levels of

granularity, showing how analysis of semi-quantitative scoring data can

produce different results depending on which reader’s data is used.

Chapters 2 and 3 both deal in semi-quantitative scoring of bone marrow

lesions in knee osteoarthritis patients. Chapter 2 demonstrates how reliability
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of scoring can–but does not always– decrease as the regions of interest

decrease in size, while chapter 3 covers an extensive analysis of bone marrow

lesions at different levels of detailed scoring, and explores the use of an

artificial intelligence-generated semi-quantitative scoring output to test these

results in a larger dataset. This final chapter suggests a justification for scoring

in granular detail, and makes a case for the need to ensure training of artificial

intelligence algorithms is targeted for reliable detailed scoring.
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Preface

Chapter 1 of this thesis is in the revision stage with Acta Radiologica, and,

assuming acceptance, will be published as “Wichuk S, et al.

“Algorithm-generated sacroiliac joint MRI predictors of axial Spondyloarthritis:

An analysis of the Assessment of SpondyloArthritis International Society

MRImagine Study dataset” in Acta Radiologica 2024. S. Wichuk

conceptualized the study, performed the data analysis, and wrote the

manuscript with the input of the listed co-authors.

Chapters 2 and 3 are intended to be individual manuscripts for publication in

an appropriate rheumatology journal, but have not yet reached the submission

stage at the time of thesis submission. Again, S. Wichuk conceptualized these

studies, performed the data analysis, and completed all writing.

All other contents of the thesis is original unpublished work by S. Wichuk.
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INTRODUCTION

What can we learn from images?

Both forms of arthritis discussed in this work-–osteoarthritis of the knee

(OA) and axial spondyloarthritis(axSpA)–-have varying presentations in the

clinic and varying implications for a patient’s quality of life and prognosis.

Factors such as phenotype
1,2

and current stage of disease
3,4

can influence the

relative ease of a physician’s diagnostic and prognostic determinations
5,6

as

well as selection of appropriate treatment plans. While patient history, clinical

assessments of mobility
7,8
, measurements of certain laboratory markers

9
, and

self-reporting of symptoms and health-related functioning in daily life
10,11

are

integral to the picture of a patient’s diagnosis and current disease state, these

can lack either sensitivity or specificity for diagnostic and prognostic variables,

even when considered together.

Various medical imaging protocols in arthritis can aid in developing a

clearer snapshot of current disease activity and progression over time, bringing

to light aspects of pathology that have not yet manifested clinically or have

undergone change between clinic visits. Plain radiographs (x-rays) are a crucial

factor in diagnosis and serve as the hallmark of structural disease progression

in both OA and axSpA
12–14

. Cartilage loss and joint space narrowing are

detected and monitored using using knee radiographs, for example, while

https://paperpile.com/c/0EiaVR/nt7HM+FCke9
https://paperpile.com/c/0EiaVR/4gomB+P31FC
https://paperpile.com/c/0EiaVR/4ViPO+z3xZI
https://paperpile.com/c/0EiaVR/TTc95+rCC6b
https://paperpile.com/c/0EiaVR/g665w
https://paperpile.com/c/0EiaVR/o793u+L2oQX
https://paperpile.com/c/0EiaVR/XCE0G+px1Gj+BzySu
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x-rays of the pelvis and spine can display the sclerotic changes (hardening of

subchondral bone), joint space narrowing, and eventual fusion of the sacroiliac

joints and vertebrae associated with axial spondyloarthritis.

Although x-rays are relatively quick and cost-effective to obtain, and are

used extensively in patient care and as research endpoints, they are

2-dimensional and nonideal for visualizing certain aspects of the anatomy–for

example, soft tissue and structures obstructed by other structures in the plane

of view. They are also insensitive to disease progression over shorter periods of

time
15,16

. More recently developed magnetic resonance imaging (MRI)

techniques help overcome some of these issues, shedding light on the

pathophysiology of both diseases and allowing for earlier lesion detection and

observation of smaller longitudinal changes compared to plain radiographs

17,18
. Structures are visualized more completely through many cross-sectional

slices, providing a robust representation of the size and location of lesions. The

variety of lesions that can be observed on MRI also far exceeds what can be

discerned from x-ray. Fluid-sensitive sequences can be evaluated for

inflammatory lesions, while fine structural details are sharply visualized on

T1W sequences, allowing for detection of abnormalities such as small erosions

of the cortical bone and infiltration of fatty tissue into the subchondral bone.

Semi-quantitative scoring

Given the treasure trove of information contained within these images, it

is pragmatic to collect and analyze imaging data to investigate its relationships

https://paperpile.com/c/0EiaVR/dJgFm+NOosL
https://paperpile.com/c/0EiaVR/IM2hb+OObgP
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to diagnosis, prognosis, and severity of symptoms and impairment. Large scale

analyses of qualitative findings, such as those derived from a radiologist’s

report, are challenging due to the need for conversion into standardized data.

This conversion requires nuanced but consistent interpretation of text by a

data custodian, which can be especially difficult due to a lack of standardized

language amongst radiologists
19,20

. Furthermore, standard-of-care reporting is

not done with a research end-use in mind, and may not explicitly cover the

data points of interest for research and clinical trials.

Semi-quantitative scoring methodologies aim to navigate such problems

by allowing researchers to record and interpret findings via carefully developed

operational definitions of lesion appearance, location, and size
1
. The resulting

numerical scores are indicative of the extent of disease pathology across one or

several domains.

In addition to eliminating any subjective interpretation of the imaging

report by an end-user, these scoring systems have the potential to minimize the

subjectivity of an image reader’s own interpretations by explicitly defining what

they should be looking for and how their observations should be recorded.

Figure 1 shows an example of an online semi-quantitative scoring interface for

spinal lesions typical of axSpA, available to readers upon the completion of an

extensive training module covering lesion definitions, scoring locations, and

1 Although this work focuses on semi-quantitative scoring systems developed for research and clinical
trials in arthritis, image scoring systems have also been developed to standardize image interpretation in
a clinical setting. These include the Reporting and Data Systems (RADS) for breast, thyroid, liver, and
more.

https://paperpile.com/c/0EiaVR/LKwHJ+jKYw0
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descriptions of potential error sources. Additionally, an example of interactive

training material for sacroiliac joint scoring calibration can be seen in Figure 2.

Figure 1. Example of semi-quantitative scoring of spinal lesions (CanDen

system) in axial spondyloarthritis MRI

Figure 2. Screenshot from training module for structural lesion scoring on

sacroiliac joint MRI according to the Spondyloarthritis Research Consortium of

Canada (SPARCC) Structural SIJ Score (SSS). The calibration module provides
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real-time feedback to the user, indicating whether their assigned scores are

considered correct according to the methodology.

Scoring granularity

There are many approaches to scoring methodology development, and

when interpreting the resultant data, it is important to consider how the score

has been derived and exactly what it is measuring
21
. Depending on the

methodology, scores may be assigned at different levels of granularity (detail).

This can apply when distinguishing between lesion subtypes (eg. a system

where all bone marrow edema receives the same score vs. one where “intense”

bone marrow edema receives an additional score) or size of scoring regions (eg.

a system that assigns one dichotomous score for lesion presence within the

entire knee joint vs. a system that incorporates dichotomous scoring for lesion

presence within many subdivisions of the joint). As the approach to scoring

becomes more granular, there is an increased potential to extract finer

differences both between cases and over time within the same case.

In the knee bone marrow lesion (BML) scoring templates shown in the

left and center frames of Figure 3, the methodologically-defined regions are

quite broad and rely on the reader’s evaluation of the percentage of each region

occupied by a BML. Their estimate of this percentage is recorded in

wide-ranging categories rather than on a continuous scale (<10%, 10-25%,

>25%; and <33%, 33-66%, and >66% for the scoring systems shown in the left

https://paperpile.com/c/0EiaVR/SToIz
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and center, respectively)
22,23

, and as a result, lesions of considerable variation

in size may receive the same score.

The frame on the right shows smaller, more numerous scoring regions

defined by the Knee MRI Inflammation Scoring System (KIMRISS) that are each

meant to be scored dichotomously for BML presence in that region.
24
Rather

than relying on the reader’s estimate of size, a BML score is based on the

number of these small regions it occupies. This should theoretically allow for

more consistent detection of small differences, while also providing additional

easily interpretable information about where lesions are located. For example,

while a score indicating a bone marrow lesion in “<10% of the weight-bearing

region” only tells us there is a small focal lesion somewhere in that region, a

score in the KIMRISS region labeled “FC1” tells us it is in the anterior part of

the region, immediately adjacent to the tibiofemoral joint.

Left:Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd.; center:

Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

reserved.All rights reserved; Right: Copyright © 2014-2024 CARE ARTHRITIS LTD.

https://paperpile.com/c/0EiaVR/vRiVk+IbQH
https://paperpile.com/c/0EiaVR/AbYh
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Figure 3. Bone marrow lesion (BML) scoring regions in the femur and

tibia as defined by Whole Organ MR Score (WORMS) (left), MRI Osteoarthritis

Knee Score (MOAKS)(center), and the Knee Inflammation MRI Score (KIMRISS)

(right).

Utility and Feasibility

Scoring interfaces have progressed over time from tedious Excel

spreadsheet data entry to online modules complete with ready-made scoring

region template overlays and one-click score assignment. However, the time

required of an expert reader (often a radiologist) to learn the rules of a system,

calibrate, and input scoring remains nontrivial and tends to increase alongside

the level of scoring detail required. When optimizing a semi-quantitative

scoring system for the level of granular detail captured, the utility of increased

detail over a lesser degree of detail is an important consideration. If analyses

show that very detailed scoring of lesion extent in small increments across

small anatomical subdivisions does not provide any additional insight into

relationships to disease state or outcomes when compared to a “yes or no”

assessment of lesion presence across an entire scan, the former may not be

worth the added time and energy expenditure.

Reliability

In addition to utility, the level of detail captured by a scoring system can

also affect reliability between different readers. Although semi-quantitative

methodologies aim to minimize subjectivity of scoring, the number of discrete

observations that must be recorded in a single case increases with scoring
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granularity, producing more chances for discrepancy between different

observers. An overall score derived from many observations recorded through

a more granular framework can show improved reliability compared to a score

that combines fewer discrete observations
25
. While sources of discrepancy may

“come out in the wash” when all granular components are combined, they may

have more impact when granular components are analyzed separately. The

finer distinctions created by more detailed scoring can only be taken at face

value if readers demonstrate consistent agreement on these fine distinctions. If

there is a demonstrated tendency toward reader disagreement, data generated

by the system may contain a certain amount of noise or error and must be

analyzed with this in mind.

Technological advances

There has been continual advancement in artificial intelligence (AI)

algorithms trained to detect disease pathology from imaging, which, over time,

may eliminate the need for human-generated semi-quantitative scoring

altogether
26–29

. AI can be tailored to extract data of interest, free from the

constraint of expert time and energy required to read images. However, optimal

granularity still must be sought during algorithm development, focusing on

reliability with human observers to ensure a high signal-to-noise ratio in the

data output. Utility also continues to be an important consideration, as

fine-tuning algorithms to produce reliable data at a high level of granularity is

likely to require significant time and attention. It is important that

https://paperpile.com/c/0EiaVR/r1CS
https://paperpile.com/c/0EiaVR/2wPDR+IBbiL+XtPN+JYnpe
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development efforts are directed toward obtaining data that provides useful

information.

It is worth noting that, with specific regard to arthritis and other

rheumatic diseases, the Outcome Measures in Rheumatology (OMERACT)

organization has systematically developed criteria for choosing imaging

measurement instruments, including semi-quantitative scores, for research

and clinical trials
21,30

. To be widely accepted as valid, measurements produced

by artificial intelligence will be expected to pass OMERACT’s Core Instrument

Set Filter, which comprises three arms: 1)Truth (does the measurement really

represent what it is supposed to measure), 2)Discrimination (can the

measurement discern between groups of interest or detect longitudinal

changes?), and 3) Feasibility (is obtaining the measurement practical?). Utility

and reliability, referenced above, fall under the Discrimination and Truth arms,

respectively.

The following three manuscripts each deal with semi-quantitative

arthritis imaging data in a way that centers the question of granularity and its

relationship to either utility, reliability, or both. Chapter 1 deals with total

scores that result from scoring input made at different levels of granularity,

showing that sum scores derived from a more granular scoring framework

increases the consistency of diagnostic predictors derived from different

readers’ data. Chapter 2 is an in-depth reliability analysis of individual

components of a granular scoring framework, demonstrating differences in

https://paperpile.com/c/0EiaVR/SToIz+SwLAJ
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reliability of individual observations depending on anatomical locations.

Chapter 3 explores the relationship of individual granular components of a

knee scoring system to clinical outcomes, showing that finer distinctions

between cases may be more predictive than differences between broad

assessments. It also examines reliability between artificial intelligence and

human-generated scores.
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CHAPTER 1

Title: Algorithm-generated sacroiliac joint MRI predictors of axial

Spondyloarthritis: An analysis of the Assessment of SpondyloArthritis

International Society MRImagine Study dataset

Abstract

Background: The Assessment of SpondyloArthritis international Society (ASAS)

MRImagine study provides global and semi-quantitative scoring of 12 types of

active and structural sacroiliac joint (SIJ) MRI lesions, plus additional

diagnostic and clinical data from 135 patients presenting with symptoms of

axial spondyloarthritis (axSpA). Some SIJ MRI lesion types or combinations

thereof may be more strongly tied to a positive axSpA diagnosis than others.

Purpose: To use Chi-Squared Automatic Interaction Detection Algorithm

(CHAID) to identify combinations of MRI lesions from a multi-feature image

scoring system that are strongly predictive of a positive axSpA diagnosis and

analyze whether predictor selection is affected by level of scoring granularity.

Methods: We applied CHAID and traditional logistic regression techniques to

active and structural MRI lesion data using axSpA diagnosis by a

rheumatologist as the outcome variable. Results: Subchondral bone marrow

edema (BME) was the most significant predictor in CHAID decision-trees

generated at all levels of granularity [OR=13.75 (3.13-60.35) for detailed mean

reader scores]. In the absence of BME, presence of fat lesions served as a

strong predictor of axSpA at the lowest level of granularity.[OR (95% CI) 6.38
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(2.56-30.96) for majority reader agreement] . The strength of odds ratios for

diagnosis based on the predictors selected by CHAID generally increased with

increased scoring granularity. Conclusion: Our findings highlight the strength

of the relationship of BME and fat lesions on MRI to rheumatologist’s diagnosis

of SpA and consistencies in scoring among calibrated experts. The CHAID

algorithm can be helpful in automating analysis of relationships between lesion

types and diagnosis within complex multivariable image scoring system data

sets across different levels of granularity.

Keywords: MR-Imaging, Outcomes Analysis, Joints, Observer Performance,

Statistics, Skeletal-Axial

Introduction

The Chi-Squared Automatic Interaction Detection (CHAID) algorithm is a

statistical method which automatically distills the most important predictors,

and combinations thereof, from datasets with many potentially predictive

variables. (1) When optimized using high-quality training and validation

datasets, the result may inform clinical decision-making through a visual

flowchart of important factors that lead to a particular diagnostic or prognostic

odds ratio (OR).

Over the past 15 years, multiple diagnostic imaging studies have applied

CHAID to identify individual or combinations of image features most predictive
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of a specified diagnostic outcome. For example, a group of researchers have

published several studies using results of a CHAID model of 17 breast MRI

descriptors to create risk categories for various predefined outcomes(
31
),

potentially simplifying estimation of patient risk and adding clarity to clinical

decision-making processes. Use of CHAID-generated decision trees has also

been suggested in MRI liver tumour evaluation(
32
), MRI axial skeleton tumour

evaluation(
33
), osteoporosis screening via dental radiographs(

34
), and more.

The approach is best utilized where comprehensive descriptive or

semi-quantitative image evaluation data are available in combination with an

external diagnostic gold standard or outcome measure of interest, on a sample

large enough to allow for robust sample sizes in subcategories following the

initial split of the tree.

When many potential predictors exist and may be significant in

particular combinations with one another, an algorithm such as CHAID

circumvents the need to manually build an unwieldy exploratory multiple

regression model factoring in every imaginable interaction between variables.

At the same time, in contrast to more advanced “black box” machine learning

techniques increasingly utilized in outcome prediction, CHAID provides

transparency in predictor selection, creating results that are immediately

accessible and translatable to a human observer. CHAID runs chi-squared

analyses between each independent variable entered into the model and the

https://paperpile.com/c/0EiaVR/kxmJ
https://paperpile.com/c/0EiaVR/AaAvS
https://paperpile.com/c/0EiaVR/DMUuH
https://paperpile.com/c/0EiaVR/OvFpE
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chosen dependent variable, and first splits the sample into two or more

categorical groups according to the strongest predictive variable found (i.e.

lowest significant p-value after automatic correction for multiple tests). It then

repeats chi-squared analyses of remaining independent variables on the subset

of cases within each of the categorical groups formed in the initial split to find

the variable with most significant predictive power therein. It again splits the

cases into further subgroups according to the most significant variable and

cut-off value identified, and repeats until no further significant predictors are

found within subcategories formed in the previous step. The final result is a

decision tree with at least two terminal nodes or “leaves” (Figure 1). Each of

these terminal nodes possesses a distinct OR for the outcome given the

independent variable value or combination of independent variable values it

represents. The software used in this study allows for the inclusion of both

categorical and continuous variables, automatically splitting the values of the

latter into distinct categorical bins, or groups separated by cut-off points, prior

to running the analysis. The number of bins included may be pre-defined by

the user based on the nature of the data.

Objective

We performed CHAID analysis on the Assessment of SpondyloArthritis

international Society (ASAS) MRImagine study sacroiliac joint MRI dataset,

seeking to identify strongly predictive combinations of MRI lesions from this



15

multi-feature image scoring system, and to analyze whether predictor selection

is affected by level of scoring granularity.

Methods

Data Available

ASAS MRImagine study imaging data were derived from an international

multi-center cohort of patients with chronic back pain of unknown origin

beginning prior to age 45 and symptoms considered suspicious for axial

spondyloarthritis (axSpA) [mean (SD) symptom duration 7.4 (7.5) years]. Global

and semi-quantitative MRI scoring of the sacroiliac joint (SIJ) was completed by

7 expert readers from the ASAS MRI Working Group for different types of active

and structural lesions indicative of axSpA, using semi-coronal STIR and T1

scans. Complete STIR and T1 sequences were available in DICOM format on

135 cases, from which active and structural lesions observed in axSpA were

scored dichotomously in an electronic case report form for global presence on

the scan (yes/no), overall presence on the sacral and iliac side of both left and

right SIJs (yes/no for sacral and iliac portions of each joint) without regard to

number of slices affected, and semi-quantitatively for the sum of lesions

present throughout the entire readable portion of the scan (slices with at least

1cm of vertical height visible). At the semi-quantitative level of granularity,

lesion presence was recorded on each scorable slice in upper and lower

portions of each joint (i.e. halves) for fat metaplasia in joint space (backfill) and

ankylosis, and upper and lower portions of both sacral and iliac side of each
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joint on each slice (i.e. quadrants) for all other lesions. Active and structural

lesion scores were assigned according to definitions standardized by

international consensus of experts from the ASAS MRI Working Group (
35
). In

global scoring, images were evaluated for 5 types of active lesions [subchondral

bone marrow edema (BME), capsulitis, inflammation in an erosion cavity,

enthesitis outside the SIJ, and joint space fluid], and 7 types of structural

lesions (erosion, subchondral fat lesion (fat), subchondral fat lesion >1cm in

width (fat >1cm), fat metaplasia in erosion cavity, sclerosis, ankylosis, and

bone bud). Detailed semi-quantitative scores were recorded for all

aforementioned structural lesion types, but only subchondral BME in the

active category. The study also recorded an independent rheumatologist’s

diagnosis of axSpA (yes/no) for each case, assigned with consideration of

clinical workup, laboratory, and imaging findings, without access to any MRI

scoring data from the central study readers. Clinical and demographic data

were retained for research purposes, but in light of the small sample size

relative to the number of MRI variables of interest available, these were not

included in the models for this preliminary study to avoid overfitting.

Statistical Methods

Using Medcalc v. 20.027 and IBM SPSS v. 28.0., CHAID analyses were

performed on SIJ MRI scoring data of 135 cases in the ASAS MRImagine cohort

with detailed active and structural scoring data available, using

rheumatologist’s diagnosis as the dependent variable. The minimum numbers

https://paperpile.com/c/0EiaVR/sUqx6
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of cases required for parent and child nodes of the CHAID tree (i.e. categories

allowed to be split into subcategories and resulting subcategories) were set to

10 and 5, respectively, and each tree was validated using the software’s built-in

10-fold cross-validation feature. Overarching model versions were created at

three different levels of granularity using available independent variables as

follows:

Model 1) Global presence of each of the 12 active and structural

variables; yes/no for entire scan

Model 2) 2-Dimensional semi-quantitative scoring; number of joint sides

(range 0-4) or joints (for joint space enhancement, backfill and ankylosis only,

range 0-2) positive for each of the 12 active and structural variables, without

regard to number of MRI slices affected.

Model 3) 3-Dimensional semi-quantitative scores for each of the 8 active

and structural variables for which this data was recorded, summing up all

lesions in each quadrant in all slices affected.

CHAID was performed on all 3 models using individual and majority

reader data (> 4 readers agree yes/no for model 1, and 7-reader mean score for

models 2 and 3) producing a total of 24 decision trees. An example of software

output is provided in Figure 1. Odds Ratios were calculated for each node of

each decision tree to indicate the odds of positive diagnosis in the presence or

absence of the indicated lesion or combination of lesions, in cases of multi-level
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trees. The plain software output was also converted to a pictographic

representation of the specific MRI lesions demonstrating predictive utility

In order to discern whether CHAID provides any insight over and above

more traditional statistical techniques, uni- and multi-variable logistic

regression analyses were also performed.

Results

Of 135 cases analyzed, 97 (71.9%) received a positive diagnosis

for axSpA. Subchondral BME was the most commonly scored MRI lesion in the

dataset (33.3%), followed by erosion (22.2%), fat (20.7%) and sclerosis (19.3%)

(Table 1). While more prevalent in the axSpA positive cohort, lesions typical of

axSpA were found in both axSpA-positive and axSpA-negative cases. Complete

descriptive data on lesion incidence are available in Tables 1-3.

Regression

Model 1 (Global): In univariable logistic regression of model 1 majority

reader agreement variables, subchondral BME, erosion, and fat were all found

to be significant [ORs of 8.91 (95% CI 2.56-30.96), 15.78 (95% CI

20.66-120.55), and 14.27 (95% CI 1.86-109.25) respectively for a positive

rheumatologist’s AxSpA diagnosis.] (Supplementary Table S1). However, when

all lesion variables with p<0.20 in univariable regression were entered together
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into a multivariable model, only subchondral BME was found to be significant

(OR 5.10, 95% CI 1.22-21.43) (Supplementary Table S2)

Model 2 (2-Dimensional): Using majority reader agreement data,

univariable logistic regression of variables used in model 2 showed statistically

significant increased odds of axSpA diagnosis with an increase in number of

joint sides or joints with subchondral BME (OR=2.76 95% CI 1.51 to 5.05),

inflammation in an erosion cavity (OR=299E+003 95% CI 1.11to 80.7E+009),

joint fluid (OR=5.59, 95% CI 1.02 to 30.81), sclerosis (2.43, 95% CI 1.02 to

5.81), erosion (OR=3.27, 95% CI1.39 to 7.71), and fat (OR=2.73, 95% CI=1.23

to 6.08) (Supplementary Table S3). No significant variable emerged when all

lesion scores with p<0.20 in univariable analysis were entered together into a

multivariable model. (Supplementary Table S4)

Model 3 (3-Dimensional): When univariable logistic regression was run

on model 3 variables, an increase in subchondral BME (OR=1.90, 95% CI

1.13-3.27), erosion (OR=1.28, 95% CI 1.05-1.56), and fat (OR=1.16, 95% CI

1.00-1.35) was associated with significantly increased odds of axSpA diagnosis.

(Supplementary Table S5). Subchondral BME was the only variable associated

with an increased odds of axSpA diagnosis in multivariable analysis (OR=2.16,

95% CI 1.10-4.20). (Supplementary Table S6)
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CHAID

Using model 1 (global) variables, between 1 and 3 independent variables

were retained in the CHAID tree depending on which reader’s data was

included. Subchondral BME was found to be the most significant predictor of

axSpA diagnosis for the initial split of the tree for 4 of 7 readers, as well as the

majority reader agreement data. Among these 4 readers and the majority

reader agreement data, there was an inconsistency between variables retained

in subcategories of cases with and without subchondral BME. After accounting

for the presence or absence of BME, further significant predictors included fat

(Figure 2), erosion (Figure 5), and bone bud (Figure 9), depending on the

reader, while two readers’ data showed no further significant predictors

(Figures 6,7). The majority reader data model stratified cases in the

subchondral BME-absent subcategory by presence of fat, resulting in an OR of

6.38 (95% CI 2.56-30.96) for positive axSpA diagnosis for cases without

subchondral BME where fat was present vs. an OR of 0.08 (95% CI 0.02-0.29)

for cases with neither subchondral BME nor fat present (Figure 2). Among the

3 readers whose data did not show subchondral BME to be the most significant

predictor, erosion was found to be the most significant predictor for 2 readers

(Figures 3,8), while fat was found to be the most significant predictor for the

other (Figure 4).

CHAID trees produced from model 2 (2D semi-quantitative) variables

showed the same structure as global models for 4 of the 7 readers. For two of
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the other 3 readers, tree-depth was reduced by one level (Figures 11,12), while

for the third, subchondral BME in more than one joint side was required for

significant diagnostic prediction. In cases where BME was present in one

quadrant or less, inflammation at site of erosion became a significant predictor

of axSpA (OR=6.38, Figure 13). The all-reader mean data followed this same

pattern, wherein the first tree-split was created by mean subchondral BME

score of >0.43, and inflammation in an erosion cavity >0 was shown to be the

most significant predictor of axSpA diagnosis in cases with subchondral BME

<0.43 [OR=6.38(2.56-30.96)] (Figure 10).

When detailed semi-quantitative scoring data was entered into the model

(3), all but one reader’s data showed BME score to be the most significant

predictor for axSpA, with no further tree levels (ORs ranging from 9.01-28.54,

Figures 15,17-21). The same was true for all-reader mean data [OR=13.75

(3.13-60.35, Figure 14]. A single reader’s data produced a tree where a fat

score >6 was the most significant predictor of axSpA [OR=14.61(1.91-111.79),

Figure 16], with no further predictors detected. Odds ratios for axSpA

diagnosis produced from these single-level trees were generally higher than any

of the other trees produced by previous models.
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Discussion

This study analyzed a multiple-feature axSpA MRI score data set at 3

different levels of scoring granularity using both traditional regression

techniques and the Chi-Squared Automatic Interaction Detection (CHAID)

algorithm. The objective was to evaluate whether CHAID could play a role in

determining the most important features of an image scoring system

containing multiple types of lesions potentially associated with a diagnosis.

Assuming no a priori knowledge of particular combinations of lesions serving

as strong diagnostic predictors compared to single lesion types alone, a

comprehensive exploratory regression model would need to include every

possible interaction term. The 12-lesion scoring system featured in this paper

(models 1 and 2) would require inclusion of 66 interaction terms just to explore

all two–variable combinations, or 220 for three-variable combinations, making

for near-untenable manual input and difficult interpretation. In contrast, the

CHAID package in SPSS 28.0 can search behind the scenes and detect

significant interactions of in a matter of a few seconds.

Although these analyses were limited by a sample size of 135, making it

less likely for lower levels of the CHAID tree to contain enough cases for any

variable to achieve significance, all models produced a tree with at least two

levels. The importance of considering predictor combinations is illustrated in

both Model 1 (global lesion presence) and Model 2 (number of joints/joint sides

affected) analyses of combined reader data, where CHAID produced a tree
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depth of two variables with very high contrasting odds ratios at the terminal

nodes, while multiple logistic regression found only a single variable significant

in model 1 and none in model 2. Given that simple logistic regression found

several other statistically significant MRI variables associated with diagnosis, it

is reasonable to suspect that with a larger sample size, CHAID may produce

more complex trees incorporating these additional variables. Given the

relatively large number of lesion types available for analysis, the algorithm

makes quick work of checking for all possible combinations of interaction

effects when compared to the manual process of creating new variables

representing combinations of variable conditions.

Using CHAID to analyze the ASAS MRImagine study data, we were also

able to examine how a comprehensive set of MRI lesion variables interact when

scored at different levels of granularity (with granularity increasing from model

1 to model 3). When scoring dichotomously for lesion presence on the entire

scan (model 1), majority reader data showed that presence of subchondral

BME was the strongest predictor of a positive diagnosis, but presence of fat

was nearly as predictive of a positive diagnosis in the absence of BME. The

number of joint sides with presence of subchondral BME was also shown to be

the strongest predictor of axSpA diagnosis in model 2, with presence of erosion

in the absence of BME also serving as a strong predictor.

For most readers, as well as mean reader scores, BME again served as a

strong predictor in the more granular Model 3 data. When detailed



24

semi-quantitative scores were entered, CHAID produced single-level trees with

cut-offs for BME score greater than 2 for most readers (>=1 for mean scores).

Resulting ORs from the nodes of these detailed scoring data trees were

generally larger in magnitude than ORs from global trees that included more

than one predictor. Considering this, it seems that semi-quantifying lesions, or

at least evaluating whether the case meets a certain threshold value for optimal

number and/or size of lesions is important for diagnostic discernment. Again,

it seems likely that an analysis of a larger data set may produce classification

trees with larger combinations of semi-quantitative data and help produce

decision-trees with specific cut-off values for several lesion types.

The difference in individual readers’ CHAID trees draws attention to

possible challenges with reader reliability or scoring styles in this particular

methodology. In most cases, predictors selected by majority reader data

produced similar diagnostic odds within each individual reader’s scoring data.

Occasional deviations from the majority reader pattern emerged in readers who

were particularly sensitive to certain lesion types (e.g. fat) compared to other

readers. Overall, BME emerged as the single most important predictor of axSpA

diagnosis in this dataset. In the absence of BME, lesions holding the most

predictive power varied amongst readers at all levels of granularity, showing

that individual reader style may impact the diagnostic utility of certain lesion

types in their particular scoring data. Previous studies on this same data have

shown weaker inter-rater reliability in certain lesion types such as backfill and

erosion. The fact that these lesion types do not show up in any node of most



25

readers’ classification trees may point to their lower utility in diagnostic

discernment or may simply be reflective of their lower occurrence in this

particular sample.

Our results generally align with previous analyses of detailed (model 3)

scoring data by the ASAS MRI working group (8) that showed BME was more

sensitive and specific for axSpA diagnosis at baseline than any other lesion, as

well as in other axSpA cohorts
36
. In these previous analyses, erosion was the

most specific and sensitive structural lesion for diagnosis when all lesions were

considered independently In this study, CHAID identified that fat lesions can

suggest a diagnosis of axSpA in patients without current BME, a finding more

difficult to uncover by conventional area under the curve or regression

analyses of this dataset, though consistent with previous findings in other

axSpA cohorts
37
. One major limitation of our current analysis is the exclusion

of clinical and other imaging data (eg. radiography of pelvis and spine) from the

model—a choice made due to the small sample size available relative to the

already large number of MRI variables of interest. The occurrence of MRI

lesions in the context of these other clinical manifestations of axSpA must be

considered in order to paint a complete picture of their relevance to the

diagnostic process (
38–40

Due to potential overfitting of the model and an

underpowered sample, analyses should be repeated in a much larger dataset

with models containing all relevant non-MRI clinical information, possibly with

the aid of future imaging assessment technology (for example, deep-learning

https://paperpile.com/c/0EiaVR/fwMG
https://paperpile.com/c/0EiaVR/YS5j
https://paperpile.com/c/0EiaVR/8qlI+NPWT+yUyD
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extracted lesion scoring) to ease the burden of expert time required to yield a

powerful sample size.

In conclusion, we found that the CHAID algorithm can be helpful in

automating analysis of relationships between lesion types and diagnosis within

complex multivariable image scoring system data sets across different levels of

granularity. Our findings highlight the strength of the relationship of BME and

fat lesions on MRI to rheumatologist’s diagnosis of SpA.
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Table 1.1. Descriptive table for Model 1: Number (%) of cases where majority

readers agree lesion present (global) on SIJ MRI
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Lesion All

(n=135)

AxSpA=N

o (n=38)

AxSpA=Ye

s (n=97)

Subchondral BME 45 (33.3%) 3 (7.9%) 42 (43.3%)

Inflammation positive MRI

according to ASAS definition

25 (18.5%) 0 (0%) 25 (25.8%)

Inflammation in an erosion cavity 15 (11.1%) 0 (0%) 15 (15.5%)

Joint Fluid 12 (8.9%) 2 (5.3%) 10 (10.3%)

Capsule Inflammation 3 (2.2%) 0 (0%) 3 (3.1%)

Enthesitis 5 (3.7%) 0 (0%) 5 (5.2%)

Sclerosis 26 (19.3%) 3 (7.9%) 23 (23.7%)

Erosion 30 (22.2%) 1 (2.6%) 29 (29.9%)

Fat Lesion 28 (20.7%) 1 (2.6%) 27 (27.8%)

Fat Lesion >1cm 14 (10.4%) 1 (2.6%) 13 (13.4%)
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Fat metaplasia in an erosion

cavity (Backfill)

12 (8.9%) 1 (2.6%) 11 (11.3%)

Bone Bud 1 (0.7%) 1 (2.6%) 1 (1.0%)

Ankylosis 6 (4.4%) 1 (2.6%) 6 (6.2%)

Table 1.2. Descriptive table for Model 2: Mean (SD) of All-Reader Mean

2-Dimensional lesion score

Lesion All (n=135) AxSpA=No

(n=38)

AxSpA=Yes

(n=97)

Subchondral Bone Marrow

Edema

0.73 (1.05) 0.22 (0.41) 0.94 (1.15)

Inflammation in an erosion

cavity

0.15 (0.33) 0.00 (0.02) 0.21 (0.37)

Joint Fluid 0.18 (0.32) 0.09 (0.23) 0.22 (0.34)
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Capsule Inflammation 0.04 (0.18) 0.00 (0.00) 0.05 (0.21)

Sclerosis 0.40 (0.18) 0.23 (0.55) 0.46 (0.60)

Erosion 0.56 (0.91) 0.16 (0.53) 0.72 (0.98)

Fat Lesion 0.50 (0.90) 0.15 (0.64) 0.63 (0.95)

Fat Lesion> 1cm 0.23 (0.58) 0.06 (0.28) 0.30 (0.65)

Fat metaplasia in an erosion

cavity (Backfill)

0.13 (0.32) 0.03 (0.16) 0.17 (0.36)

Bone Bud 0.05 (0.14) 0.04 (0.12) 0.05 (0.14)

Ankylosis 0.07 (0.28) 0.01 (0.05) 0.09 (0.33)

Table 1.3. Descriptive table for Model 3: Mean (SD) of All-reader Mean

3-Dimensional detailed lesion scores.
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Lesion All

(n=135)

AxSpA=No

(n=38)

AxSpA=Yes

(n=97)

BME 3.97

(10.32)

0.34 (0.62) 5.39 (11.88)

Sclerosis 1.75

(3.91)

0.86 (2.18) 2.11 (4.37)

Erosion 2.46

(4.64)

0.62 (2.29) 3.18 (5.11)

Fat Lesion 2.73

(6.13)

0.77 (4.33) 3.50 (6.56)

Fat Lesion >1cm 1.37

(3.74)

0.45 (2.76) 1.72 (4.01)

Fat metaplasia in an erosion

cavity (Backfill)

0.55

(1.59)

0.12 (0.70) 0.72 (1.80)
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Bone Bud 0.07

(0.19)

0.06 (0.17) 0.07 (0.20)

Ankylosis 0.51

(3.59)

0.01 (0.07) 0.71 (4.23)
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Figure 1.1. Chi-Square Automated Interaction Detection (CHAID) Classification

tree for rheumatologist’s diagnosis of spondyloarthritis, using majority

reader agreement data for global presence of MRI lesions (model 1).
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Figures 1.2-1.20: Geometrical representation of variation in Reader

Classification Trees
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Legend:

Figures 1.2-1.9. Model 1: Global Presence of Lesions (Yes/No).
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Figure 1.10-1.13. Model 2: 2-Dimensional Quadrant Scores. Reader trees omitted where

identical to Model 1.
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Figures 1.14-1.21. Model 3: 3-Dimensional Detailed Quadrant Scoring
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Supplementary Tables

Table 1.S1. Univariate logistic regression analysis of majority reader agreement

data on global presence of lesions (Model 1)

Variable (Majority of

Readers Agree Lesion is

Present)

Odds Ratio 95% CI p-val

ue
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Subchondral Bone Marrow

Edema

8.91 2.56 to 30.96 0.001

Inflammation in an erosion

cavity **

-- - -

Joint Fluid 2.79 0.60 to 12.98 0.192

Capsule Inflammation** -- -

Enthesitis -- -- -

Sclerosis 3.63 1.02 to 12.89 0.166

Erosion 15.78 2.07 to 120.55 0.047

Fat Lesion 14.27 1.89 to 109.25 0.011

Fat Lesion >=1cm 5.73 0.72 to 45.40 0.099

Backfill 4.73 0.59 to 38.00 0.144

Bone Bud ** -- -- -

Anklylosis** -- -- -

* variables with p<0.20 entered into multivariable model.

** model could not be fitted due to perfect or quasi-perfect separation in

sample

Table 1.S2. Multivariable logistic regression of majority reader global lesion

presence data, entering variables with p<0.20 in univariable logistic regression

(Model 1)
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Variable (Majority of

Readers Agree Lesion is

Present)

Odds Ratio 95% CI p-value

Subchondral Bone Marrow

Edema

8.91 2.56 to 30.96 0.001

Inflammation in an erosion

cavity **

1.41 x 10
9

-- --

Joint Fluid 2.79 0.60 to 12.98 0.192

Capsule Inflammation** -- -- --

Enthesitis ** -- -- --

Sclerosis 3.63 1.02 to 12.89 0.166

Erosion 15.78 2.07 to

120.55

0.047

Fat Lesion 14.27 1.89 to

109.25

0.011

Fat Lesion >=1cm 5.73 0.72 to 45.40 0.099

Backfill 4.73 0.59 to 38.00 0.144

Bone Bud ** -- --

Anklylosis ** -- --

** model could not be fitted due to perfect or quasi-perfect separation in

sample
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Table 1.S3. Univariable Logistic Regression of Mean 2-Dimensional Quadrant

Scores (Model 2)

Variable (Mean of 7 Readers) Odds

Ratio

95% CI p-value

Subchondral Bone Marrow

Edema

3.99 1.62 to 9.79 0.003*

Inflammation in an erosion

cavity

299E+00

3

1.11 to

80.70E+009

0.048*

Joint Fluid 5.59 1.02 to 30.81 0.048*

Capsule Inflammation** -- -- --

Sclerosis 2.43 1.02 to 5.81 0.046*

Erosion 3.27 1.39 to 7.71 0.007*

Fat Lesion 2.73 1.23 to 6.08 0.014*

Fat Lesion >1cm 4.34 0.94 to 20.11 0.061*

Backfill 17.35 0.86 to 348.76 0.062*

Bone Bud 1.65 0.09 to 30.60 0.738

Ankylosis 48.94 0.11 to 21891.33 0.212

* variables with p<0.20 entered into multivariable model.

** model could not be fitted due to perfect or quasi-perfect separation in

sample
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Table 1.S4. Multivariable Logistic Regression of mean 2-Dimensional

Quadrant Scores (Model 2)

Variable (7 Reader Mean

2-Dimensional Score)

Odds ratio 95% CI p-value

Subchondral Bone Marrow

Edema

2.97 0.91 to 9.65 0.070

Inflammation in an erosion

cavity

167E+006 0.00 to 8.70E+18 0.133

Joint Fluid 0.49 0.05 to 5.38 0.561

Sclerosis 1.01 0.32 to 3.17 0.984

Erosion 0.23 0.04 to 1.42 0.114

Fat Lesion 1.97 0.46 to 8.35 0.359

Fat Lesion >1cm 0.93 0.08 to 10.19 0.952

Backfill 2.32 0.03 to 176.71 0.704

Table 1.S5. Univariable logistic regression of mean 3-Dimensional

semi-quantitative lesion scores (Model 3)

Variable (7-Reader Mean) Odds Ratio 95% CI p-value
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Subchondral Bone Marrow

Edema

1.92 1.13 to 3.27 0.015*

Sclerosis 1.16 0.96 to 1.40 0.120*

Erosion 1.28 1.05 to 1.56 0.016*

Fat Lesion 1.16 1.00 to 1.35 0.047*

Fat Lesion >1cm 1.18 0.97 to 1.45 0.101

Backfill 1.76 0.94 to 3.29 0.079*

Bone bud 1.47 0.18 to 12.20 0.723

Ankylosis 2.46 0.13 to 1039.19 0.283

* variables with p<0.20 entered into multivariable model.

Table 1.S6. Multivariable logistic regression of Model 3 7-reader mean

semi-quantitative lesion scores

Variable (7 Reader Mean 3D

Detailed Score)

Odds

ratio

95% CI P

Subchondral Bone Marrow

Edema

2.16 1.09 to 4.28 0.027

Sclerosis 0.86 0.67 to 1.10 0.229

Erosion 0.89 0.66 to 1.19 0.415

Fat Lesion 1.53 0.70 to 3.32 0.285

Fat Lesion >1cm 0.58 0.20 to 1.66 0.307

Backfill 1.25 0.54 to 2.87 0.600
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* variables with p<0.20 entered into multivariable model.

CHAPTER 2

Title: Reliability and sources of discrepancy in granular semi-quantitative bone

marrow lesion scoring on knee MRI: a Study using KIMRISS

Background:

Subchondral bone marrow lesions (BML) on fluid-sensitive MRI are an

important manifestation of osteoarthritis (OA)
41,42

) and have been shown to be

associated with pain
43,44

,
45
, structural changes

46,47
, and eventual knee

replacement surgery
48
. BMLs may be present to varying extents and in varying

patterns throughout the knee and can have myriad causes, both traumatic and

non-traumatic
41
. Their presence as it relates to OA diagnosis, prognosis, and

disease severity has been described qualitatively
41
, and several different

semi-quantitative scoring methods have been developed to measure BMLs in

OA, including the Whole Organ MRI Score (WORMS)
49
, Boston-Leeds

Osteoarthritis Knee Score (BLOKS)
50
), the MRI Osteoarthritis Knee Score

(MOAKS)
23
, and the Outcome Measures in Rheumatology (OMERACT) Knee

Inflammation MRI Scoring System (KIMRISS)
24,51

. All of these scoring methods

semi-quantify BML to different degrees of detail using pre-specified rules for

https://paperpile.com/c/0EiaVR/jsCQT+4u64F
https://paperpile.com/c/0EiaVR/Nx78+YGLGB
https://paperpile.com/c/0EiaVR/SdJgz
https://paperpile.com/c/0EiaVR/sHAnr+rgJF4
https://paperpile.com/c/0EiaVR/F8YsS
https://paperpile.com/c/0EiaVR/jsCQT
https://paperpile.com/c/0EiaVR/jsCQT
https://paperpile.com/c/0EiaVR/3BzqW
https://paperpile.com/c/0EiaVR/UTWfj
https://paperpile.com/c/0EiaVR/IbQH
https://paperpile.com/c/0EiaVR/2WRof+AbYh
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regional subdivision and, in some cases, recording lesion size within

subregions.

Data derived through these types of semi-quantitative medical image

scoring systems can be an important tool in hypothesis-driven or exploratory

analysis of factors associated with diagnosis, disease severity, disease

progression, and treatment efficacy
52
, and the assignment of a

semi-quantitative image score using pre-established rules has the potential to

elucidate in detail the difference in lesion severity between cases and/or

longitudinal changes in lesions. An operationally defined numerical score

allows for a moresomewhat objective and nuanced analysis of imaging findings

as they relate to laboratory markers, other imaging modality findings (eg. the

relationship of active manifestations of disease on MR to accumulated

structural changes visible on MRI or plain radiographs
46,53

), or patient

self-report measures (eg. pain, function, and quality of life).

Furthermore, scoring methodology-defined subdivisions of an

anatomical region may bring to light relationships of lesion presence at a

particular location to certain outcomes not captured by a score summarizing

the broader region. It has already been demonstrated, for example, that BML in

the medial compartment of the knee is more significantly associated with

eventual knee replacement surgery compared to other regions
54
.

Meaningful analysis of semi-quantitative data requires demonstrable

consistency and reliability in scoring between different readers. As long as

https://paperpile.com/c/0EiaVR/3F3w
https://paperpile.com/c/0EiaVR/sHAnr+Y1bqb
https://paperpile.com/c/0EiaVR/gYr0L
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human expert readers are required to generate this data, the value of time

spent scoring images is a serious consideration and demands optimization.

Small differences between cases or time points may be detected, and the

significance of lesion presence in particular quantities or locations within an

anatomical structure may be discovered or clarified through detailed scoring

data analyses, but only if there is reasonable assurance that this data is

reliable. If the data is not reliable enough to be used in such analyses, the

semi-quantitative assessment may not provide enough value for time spent.

With all of this in mind, the design of any semi-quantitative scoring

methodology must strike a balance between reliability of scoring data output,

utility of the data generated, and feasibility for raters. Ideally, a scoring system

provides enough information to the end-user that its value in research and

analysis exceeds that of any dichotomous or qualitative assessment that could

be extracted from a standard radiologist’s report.

This paper aims first and foremost to evaluate the reliability aspect of

BML scoring optimization by examining data derived from the KIMRISS

methodology. KIMRISS provides data on an increased number of predefined

scoring regions in the sagittal plane over previous methodologies, resulting in

smaller scoring regions that are each assessed dichotomously for lesion

presence rather than both presence and size. Previous studies have shown very

good inter-rater reliability for the total KIMRISS score summarizing the extent

of BML across all regions and slices, but analyses of the reliability for smaller

subregions have yet to be published. Here, we assess reliability of scoring
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down to the smallest of sub-regions to explore the extent to which a more

granular analysis of relationships between lesion location and outcomes is

feasible. Further to the reliability assessment, we have examined some

potential sources of discrepancy in scoring, as these could be a guiding factor

in modification or exclusion of certain scoring regions from such in-depth

analyses.

Methods:

KIMRISS Scoring:

8 readers trained and calibrated in the KIMRISS methodology scored

BML on n=61 knee MRIs from the osteoarthritis initiative (OAI) dataset.

Using a web-based module, readers place prefabricated grid overlays onto the

patella, femur, and tibia and indicate the slice numbers defining the borders of

the lateral, intercondylar, and medial regions of the tibiofemoral joint (anchor

slices). Scoring was carried out in each grid square on all slices between the

outer lateral and outer medial boundaries.

Data Analysis:

Inter-rater reliability of scoring by all readers was assessed via

intraclass correlation coefficient (ICC) for the entire knee; each component of

the knee (patella, femur, tibia); the medial, lateral and intercondylar portions of

the whole knee and its components; the all-slice sum of each of the 28

individual grid squares defined by the KIMRISS overlay (Figure 1); individual
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tibial and femoral grid square scores in the medial, lateral, and intercondylar

compartments; and finally the aforementioned medial and lateral compartment

scores further subdivided into 6 groups of slices medially to laterally (Figure 2).

In search of possible sources of inter-rater discrepancy due to slice

selection, we used a subset of 3 readers to tally up instances of disagreement

on the slice assignment for medial, lateral, and intercondylar grid anchors and

the absolute difference in slice number between readers.

Additionally, to check for possible discrepancy in granular scoring due to

differing placement and/or sizing of the grid within a single sagittal slice, we

attempted to identify instances where the same lesion may have been assigned

to different grid squares by different readers. In order for an instance to be

counted, we used individual slice data to locate grid squares scored positively

by one reader and negatively by a second reader, where an immediately

adjacent grid square was scored positively by the second reader but not the

first reader. (Adjacent square definition and syntax shown in supplementary

figure). A percentage of possible adjacent grid square scores for the same

lesion between readers was calculated in each region by dividing the number of

instances of adjacent grid square scoring between readers by the total number

of scoring discrepancies between those readers in that region.

Results:

The 8 reader two-way mixed absolute agreement ICC (95% CI) for the

total sum of BML across all regions was 0.72 (0.58 to 0.82). The ICC (95% CI)
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for the total sum of BML was highest in the femur [0.84 (0.76-0.90)] compared

to the tibia and patella [ ICC (95%) 0.73 (0.63-0.81), and 0.80 (0.71-0.87),

respectively].

Scoring ranges and ICCs of individual grid squares across all slices are

shown in Table 1 and Figure 1, respectively. The 8-reader ICC for BML at each

scoring location was very good (>=0.80) or good (0.70-0.80) for 17/28 (61%) of

the grid regions . The lowest ICCs occurred at the inferior patella [P4; ICC=0.52

], a small interior region of the femur [mean (SD) ICC=0.49 (0.26)], and the two

most posterior regions of the tibia [mean (SD) ICC=0.41 (0.26) and 0.31 (0.33)].

Lower reliability was also found in regions of the tibia not immediately adjacent

to the tibiofemoral joint (ICC range: 0.60-0.67) as well as posterior

non-articular regions of the femur (ICC range: 0.59-0.65). Regions with a

broader range of overall incidence of BML tended to demonstrate higher

reliability, but this was not always the case. For example, the data showed

similar mean (SD) scores in the weight bearing regions of the femur vs. the

below subchondral regions of the tibia, but much higher reliability in the

former.

After further subdividing regions medially to laterally, highest overall

reliability amongst all KIMRISS grid squares occurred in the central slices of

the lateral compartment of the femur (median ICC=0.72) and the innermost

slices of the medial compartment of the tibia (median ICC=0.42). (Table 2.2).
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Lowest overall reliability occurred in the central slices of the medial

compartment of the femur (median ICC=0.15) and the medialmost slices of the

medial compartment of the tibia (median ICC= 0.28) (full schematics of each

coronal subregion shown in supplementary figures 1 a-f).

An analysis of anchor placement showed the greatest discrepancy in

slice assignment at the medial edge of the intercondylar region in the femur,

with a slice discrepancy of >3 slices in up to 56% of cases. The readers’

placement of all other anchors (lateral edge, lateral intercondyle, medial

intercondyle in both femur and tibia and the medial and lateral edges in the

patella) fell within 3 slices of one another 92-100% of the time.

Taking into account the findings for all reader pairs within each grid

square, adjacent grid square analysis showed that placement of lesions in

neighbouring regions between readers occurred at a mean rate of less than

4.3% of scoring discrepancies at each location. However, certain reader pairs

may have placed the same lesion into discrepant regions at a rate of more than

10% of total scoring discrepancies at T5, T11, FP3, and FT2 (17.9%, 16.7%,

12.5%, and 11.6%, respectively).

Discussion:

Inter-rater reliability of granular scoring locations varied substantially

between different regions of the knee.
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Reduced intra-class correlation coefficients for BML were seen as the

regions analyzed became smaller. This is somewhat expected, as the numerator

of the ICC formula includes between-case variation which has a tendency to

decrease as the maximum possible score decreases.
55

Smaller regions with a

narrower range of possible scores require lower between-reader variability

(entered into the denominator of the equation) to produce high ICCs.

That being said, the reliability of certain regions remained more robust

even when subdivided into smaller coronal sections compared to other regions

with similar range and between-case variability of scoring. This was

particularly true of the anterior portion of the femur in the lateral

compartment. The reliability of some of the smaller regions was incalculable

due to limited incidence of BML scoring within those locations, especially at the

medialmost slices of the femur and posterior tibia.

The anchor slice selection discrepancy at the intercondylar edge of the

medial condyle may be a cause of discrepancy within the medial compartment,

although reliability suffered more in the outermost medial compartment

compared to the inner medial compartment. This may be due to the

distribution of scores within these regions.

Scoring discrepancy due to variation in grid sizing or placement,

identified by positive scores in adjacent grid squares by different readers, did

not appear with high frequency, but did happen to occur among certain reader

pairs in regions that had lower reliability at all levels of analysis. This may

https://paperpile.com/c/0EiaVR/LHmvL
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provide a case for combining data at these regions, such as T5/T55 at the

posterior tibia prior to including it in any location-specific outcomes analyses.

Achievement of fair to good all-slice score reliability in 25/28 KIMRISS

grid regions suggests this scoring data carries a reasonable degree of validity.

Further division of this data into the coronal plane presents certain reliability

challenges particularly in the medial slices, which may be a function of the

distribution of BMLs within this particular dataset. As previous studies show

the importance of medially located BMLs in prediction of disease progression, it

may be prudent to optimize scoring subregions within this compartment for

reliability so more detailed analyses can be carried out.

As advancements are made in automated full quantification of BML

volume in the knee
56
, it may be important to clarify if and how quantification

should be segmented into regions that provide the clearest picture of the

image’s relevance to clinical outcomes. Semi-quantitative scoring datasets such

as the one studied here can provide insight into how this should be done.

https://paperpile.com/c/0EiaVR/87SqV
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Figure 2.1. KIMRISS grid region labels with 8-reader mean ICC from baseline

knee MRIs from the Osteoarthritis Initiative dataset (n=61).

Table 2.1. 8-reader mean (SD) BML score at each KIMRISS grid region (colour

coded according to ICC in Fig 1.)
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Patella Femur Tibia

Region Mean

(SD)

Region Mean (SD) Region Mea

n

(SD)

P1 2.0 (2.5) Trochlea

r

FT1 1.8 (2.7) Subchond

ral Region

T1 1.6

(2.8)

P2 2.5 (2.6) FT2 0.6 (2.0) T2 1.8

(3.0)

P3 1.9 (2.3) FT3 2.6 (3.0) T3 1.9

(3.1)

P4 0.6 (1.1) FT4 0.8 (2.1) T4 1.4

(2.5)

Weight-

bearing

FC1 1.3 (2.2) T5 0.5

(1.0)

FC2 0.6 (1.9) Below

Subchond

ral Region

T11 0.6

(1.7)

FC3 0.8 (2.0) T22 0.8

(1.9)

FC4 0.3 (1.4) T33 0.8

(1.8)
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FC5 0.5 (1.6) T44 0.6

(1.5)

FC6 0.2 (0.8) T55 0.2

(0.6)

Posterio

r

FP1 0.4 (0.9)

FP2 0.2 (0.7)

FP3 0.2 (0.6)

FP4 0.1 (0.5)

Table 2.2. Summary of ICCs across individual femoral and tibial KIMRISS grid

subregions, subdivided medially to laterally.
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Figure 2.2. 3D views of of reliability in KIMRISS grid squares subdivided

medially to laterally

Supplementary Figure 2.S1 a-d. 8-Reader intraclass correlation coefficients of

bone marrow lesion scoring in the knee at different levels of granularity. a.
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all-slice whole bone scores; b. all-slice scores divided into large subregions; c.

all-slice KIMRISS-defined grid square regions; d. KIMRISS-defined grid square

regions subdivided into slice groupings in the coronal plane a. b. c. d.
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Supplementary Figure 2.S2. Methodology used to assess possible assignment

of same lesion to different grid squares by different readers.

In KIMRISS, BML is scored on on T2-Fat Suppressed or T1 (check) MRI

in the sagittal plane. Users place grid squares

CHAPTER 3
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Title: Evaluation of an Artificial Intelligence Algorithm to Generate

Semi-quantitative Bone Marrow Lesion Scores

Purpose

Bone marrow lesions (BML) are an important feature on fluid-sensitive

magnetic resonance imaging (MRI) of Knee Osteoarthritis (OA)
57
, and the size

and specific location of BML within the knee may have differential impact on

clinical measures and outcomes
43 58

,
59
. Granular scoring of BML is

time-consuming for human readers, but allows for detection of small changes

over time in addition to producing a record of precise lesion location. As

automated BML scoring methods are developed, detailed lesion location

information could be preserved while eliminating the burden of scoring time.

Here, we aim to demonstrate the value of recording the precise location of BML

compared to less granular approaches, and perform preliminary validation on

an AI algorithm which produces semi-quantitative BML scores analogous to

those generated by human experts.

Methods

Human reader scoring data analysis

8 calibrated readers scored 62 sagittal knee MRIs from the Osteoarthritis

Initiative dataset using the Knee Inflammation MRI Scoring System

https://paperpile.com/c/0EiaVR/2G5g
https://paperpile.com/c/0EiaVR/Nx78
https://paperpile.com/c/0EiaVR/lpwG
https://paperpile.com/c/0EiaVR/qJWL
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(KIMRISS
24,25

), which incorporates an overlay template to score 28 predefined

locations (grid squares) in the femur, tibia, and patella for the presence of BML.

Mean BML scores were calculated at the following levels of granularity (Figure

1): 1a. whole femur, patella, and tibia across all slices; 1b.femur, patella, and

tibia divided into lateral, intercondylar, and medial coronal subregions;

2a.Neighboring grid square scores combined into larger regions across all

slices; 2b. combined regions divided into coronal subregions; 3a. A total score

for each of the 28 individual grid squares summed across all slices; and 3b.

Scores for each individual grid square subdivided into coronal subregions.

Univariable logistic regression for eventual arthroplasty was performed on BML

scores at each described level of granularity. To examine the relationship of

BML location to patient self-report measures of pain, stiffness, and function,

correlations to the relevant Western Ontario and McMaster Universities

Arthritis Index (WOMAC)
60
scores were measured at all levels of granularity via

Kendall’s Tau.

To identify possible interactions between granular BML scoring locations,

individual coronally subdivided grid square scores were entered into the

Chi-Squared Automatic Interaction Detection (CHAID) algorithm using SPSS

v.29.01
31
. to produce a decision-tree for eventual arthroplasty. The minimum

number of cases for the parent and child nodes of the CHAID tree were set to

10 and 5, respectively, and 10-fold cross-validation was performed.

https://paperpile.com/c/0EiaVR/r1CS+AbYh
https://paperpile.com/c/0EiaVR/gH1L
https://paperpile.com/c/0EiaVR/kxmJ
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Automated BML Scoring evaluation:

A custom iMaskRCNN deep learning model was trained on 700 MRI slices

using corresponding pixel-wise bone marrow lesion segmentation derived from

expert KIMRISS scores and their corresponding grid template placements.
28

The algorithm was trained to automatically segment bone, cartilage and BMLs,

and identify areas of interest (femoral and tibial heads, patella) for automatic

placement of the KIMRISS grid template. The combined result of BML

segmentation and grid template placement is then translatable to an

automated KIMRISS score (iKIMRISS).

This algorithm was first run on the above n=62 osteoarthritis cases with

corresponding human reader KIMRISS scoring available. The program

generated an output quantifying the total number of pixels contained within

the boundaries of each square of the KIMRISS template, along with its

prediction of the number of BML pixels within that square. Because the size of

each grid square in the template varies between cases and across slices within

an individual MRI, a “BML percentage” for each square was calculated by

dividing the number of BML pixels by the total number of pixels assigned. This

BML percentage was converted to a dichotomous iKIMRISS score for each grid

location (0 or 1 for negative and positive BML score) using three different

thresholds (>0%, >10%, and >20%).

Prior to any formal analysis, the AI-generated data was checked for

instances of false negative and false positive scores on the 3922 individual MRI

https://paperpile.com/c/0EiaVR/XtPN


62

slices comprising these cases, using majority (>5) human reader agreement for

a positive lesion as the standard for a positive score, and positive lesion

assignment from <1 reader as the standard for a negative score . False negative

and positive scores by the AI were checked for “adjacent grid square

assignment” (eg. a false positive score with a false negative score in a

neighboring region or vice versa), to determine if errors resulted from

discrepant grid template placement rather than discrepancy in lesion detection.

Images were checked visually to identify any other underlying causes of

disagreements, and the AI developer used this feedback to adjust the algorithm

to improve accuracy. The results displayed in this manuscript are derived from

the third and latest adjustment to the algorithm (Figure)

Figure 3.1. Bone marrow lesions, extracted by deep-learning in lateral femur

and patella, with automatically placed KIMRISS grid overlay and accompanying

human reader score assignment. Slice 26 (top row) demonstrates full

agreement with expert human reader data, while slice 27 (bottom) shows

partial agreement. Note that the “BML” schematic in the third column

represents positive grid scores assigned by deep-learning according to the

presence of any amount of BML within the boundaries of each region, prior to
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setting pixel area percentage thresholds for positive BML score.

Intra-class correlation coefficients
61
for reliability compared to 8-reader

mean human KIMRISS scores were calculated at the level of whole knee, whole

bone, grouped neighboring grid square regions, and individual grid squares

across all MRI slices, as well as in lateral, intercondylar, and medial

compartments. Analyses were repeated on scores generated from different BML

pixel percentage thresholds to determine which threshold produced the most

reliable KIMRISS translation.

Analysis of large dataset:

The deep-learning iKIMRISS algorithm was run on baseline MRI from

n=1631 knees from the Osteoarthritis Initiative dataset where accompanying

clinical and follow-up data on arthroplasty were available. Patients younger

than 50 years of age were excluded due to their low likelihood of qualifying for

arthroplasty due to age.

https://paperpile.com/c/0EiaVR/QCHh
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A rough evaluation of consistency with human reader BML assessment

was performed using a subset of n=836 subjects with human reader-generated

MRI Osteoarthritis Knee (MOAKS) BML scores available in the dataset
23
.

Kendall’s tau rank correlations were calculated for iKIMRISS scores for the

entire femur, tibia, and patella vs. MOAKS readers’ evaluation of the number of

bone marrow lesions in each of these regions. Correlation calculations were

also performed on the lateral and medial compartments of each bone , and the

number of lesions in the supraspinous tibia (MOAKS) was compared to the

iKIMRISS score in the intercondylar tibia. Analogous MOAKS data on the

intercondylar region of the femur was not available for analysis. More granular

analysis of smaller regions within each bone was not possible due to

differences in scoring region assignment between the two methodologies.

To evaluate predictive utility of the deep learning-extracted iKIMRISS

BML scores for eventual knee replacement, logistic regression was performed

at all levels of scoring location granularity for the outcome of any knee

replacement surgery recorded within the ten year follow-up period.

Associations with WOMAC pain, stiffness, and function scores were evaluated

using Kendall’s Tau rank correlation.

Finally, the CHAID algorithm with 10-fold cross-validation was applied to

coronally subdivided individual grid square iKIMRISS BML scores to assess

whether lesion presence in any particular combination of locations is predictive

of eventual arthroplasty. In light of the increased sample size compared to the

https://paperpile.com/c/0EiaVR/IbQH
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previous human reader data analysis, minimum case numbers for parent and

child nodes were increased to 200 and 100, respectively.

Results:

Human Reader Scoring Data:

In the small test dataset, 13 (21%) patients underwent subsequent

arthroplasty.

Logistic regression performed on whole bone and combined region all-slice

scores (1a. and 2a. described above) found no significant relationships between

BML and subsequent arthroplasty. From the all-slice scores for individual grid

squares (3a. above), one anterior tibial region, T2, was significant [Odds

Ratio(OR)(95% CI): 1.2 (1.0-1.5)]. (Figure 3.3)

When the same analyses were performed on coronally subdivided scores , no

lateral or intercondylar regions emerged as significant predictors). Within

medial slices, whole bone scores (1b. above) had no significant relationship to

arthroplasty, while two combined grid regions (2b. above) in the anterior tibia

were significantly associated with arthroplasty [T1/T11: OR (95% CI): 1.5

(1.09-2.2) and T2/T22: OR (95% CI):1.3 (1.0-1.7)]. Stronger associations with

arthroplasty were found in the medial portion of individual grid square scores

(3b. above), namely in one small weight-bearing region of the femur [FC1: OR

(95% CI): 2.6 (1.2-5.5)], and one small region of the posterior femur [FP3: OR

(95% CI) 3.8 (1.3-10.1)] (Figure 3.4).



66

Figure 3.2. Map of BML scoring regions analyzed at three different levels of

granularity

Figure 3.3. Significant Odds Ratios for arthroplasty from bone marrow lesion

across all scoring regions (n.s.=not significant)
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Figure 3.4. Significant Odds Ratios for arthroplasty from bone marrow lesion

scores across coronally-subdivided regions. Results shown are from medial

slices only, as analysis of lateral and intercondylar scores yielded no significant

predictors.

The overall strength of of Kendall’s Tau correlation for BML to WOMAC

Pain increased as smaller regions were analyzed (Table 2), with the strongest

correlation occurring in the medial weight-bearing femur [FC5: 0.53 (95% CI

0.38-0.74)]. The same pattern was observed in correlations to WOMAC

Stiffness and Function, with the same medial femoral region bearing the

highest significance [FC5: 0.45 (95% CI 0.38-0.74) and 0.53 (95% CI 0.41-0.63)

for stiffness and function, respectively].

The CHAID Decision Tree Model showed that, when examined in

combination, scores at the medial posterior femur (FP1), intercondylar central

tibia (T3), and trochlear region of the femur (FT3) are the best predictors of

eventual arthroplasty, producing an area under the curve (AUC) of 0.91 (95%

https://d.docs.live.net/89ac375cc820d6ae/Desktop/Fall%202022%20KIMRISS%20granular%20reliability/clinical%20outcomes%20paper/BML%20clinical%20outcome%20paper%20draft%202023.docx#_msocom_1
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CI 0.81-0.97), with sensitivity (95% CI) of 0.92 (0.74-0.99) and specificity (95%

CI) of 0.90 (0.77-0.97). (Figure 3.5)

Figure 3.5. CHAID-generated decision tree for eventual knee replacement

considering coronally-subdivided individual KIMRISS grid square scores

derived from 8-reader mean human scoring data.
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Deep Learning-Generated iKIMRISS data:

Reliability in comparison to human data:

Descriptive data for lesion incidence among both human and

algorithm-generated scoring is available in Table 3.1. In the n=62 cases with

complete human-generated KIMRISS data available,the algorithm achieved

poor reliability when compared to total human KIMRISS scores at the level of

the whole joint, requiring a BML pixel-labeling threshold of >=20% to for

positive score assignment in each square in order to reach a maximum ICC

(95% CI) of 0.25 (0-0.47). When analyzing each of the femur, tibia, and patella

on its own, promising moderate agreement with human scoring was found in

the tibia, producing an ICC (95% CI) of 0.61 (0.43-0.75) when using a 20%

BML pixel labeling threshold for each grid square. Scoring was least reliable in

the femur [all slice ICC (95%) of 0.17 (0-0.40) with 20% BML pixel labeling

threshold], and suboptimal in the patella [all slice ICC (95%) of 0.31 with 20%

BML pixel labeling threshold]. When whole bone scores were subdivided into

lateral, medial, and intercondylar compartments, highest agreement with

human scoring was found in the medial femur and tibia [ICC (95%): 0.41

(0.18-0.6) and 0.65 (0.48-0.78), respectively]. Reliability in the patella was

highest in the lateral compartment [ICC (95%): 0.5 (0.28-0.66)].
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After further reducing the region size into groups of neighbouring grid

squares, the trochlear (FT) and posterior (FP) regions of the femur showed good

reliability in the lateral slices only [ICC 95%: 0.78 (0.66-0.86) and 0.74

(0.59-0.84), respectively], while the central weight-bearing portion of the femur

(FCs) only achieved an ICC (95%) of 0.43 at best in the medial compartment.

iKIMRISS scores in the tibia showed good reliability in the two most anterior

regions (T1T11 and T2T22), achieving ICCs as high as 0.79 (0.67-0.87) in

T2T22 when considering all slice scores, and 0.71 in lateral T1T11 when

coronally subdivided. By comparison, ICCs were reduced in the central and

posterior regions of the tibia, ranging from 0.11-0.64 for regions

T33T33,T4T44, and T5T55.

At the level of the individual grid squares, highest reliability was again

seen in the tibia, specifically the anterior portions of the bone directly adjacent

to the joint space (T1, T2), with all-slice ICCs (95% CI) of 0.78 (0.66-0.87), and

081 (0.70-0.88), respectively. Higher reliability was seen in the medial and

intercondylar slices than the lateral slices. Very poor reliability was shown in

each of the central rid regions (FPs), with ICCs ranging from 0.01-0.19 when

considering all slices, reaching only as high as 0.34 (95% CI 0.09-0.55) in the

lateral portion of FC1. Scores in the posterior region showed similarly poor

ICCs, ranging from 0.13-0.31 when considering all slices, but moderate

improvement when considering lateral slices only, reaching as high as 0.56

(95% CI 0.35-0.71) and 0.74 (95% CI 0.6-0.84) for FP2 and FP3, respectively.

One trochlear region, FT1, showed moderate reliability in all-slice scores {ICC
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(95%) 0.68 (0.52-0.80)] and very good reliability in lateral slices only [0.89

(0.82-0.93)], but ICCs elsewhere in the trochlea were otherwise low (0.00-0.37)

when considering either all-slice or coronally subdivided scores. There was

moderate agreement in the upper half of the patella [95% CI 0.52 (0.3-0.68)

and 0.69 (0.53-0.81) for all slice scores in P1 and P2, respectively], with

reduced agreement in P3 and P4 [0.47 (0.25-0.65) and 0.35 (0.1-0.56),

respectively]. Medial slices in these regions had very poor reliability (ranging

from 0.0-0.25) when compared to lateral slices (ranging 0.42-0.61).

Table 3.1. Descriptive data of distribution of human KIMRISS scores and deep

learning-extracted iKIMRISS scores for n=61 test cases at the level of whole

bone and individual grid squares.

Mean Human Reader KIMRISS score iKIMRISS score
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0-99.

5

10.4

(14.8)

0-82

.5

6.6

(12.1

)

0-3

7.5

2.2

(6.1)

0-1

7

1.5

(2.9)

0-8
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0-1
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8

(14
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12.2

(13.9)

0-21

.6

4.3

(5.6)

0-1

.5

0.1

(0.3)

0-1

1.1

1.5

(2.2)

0-6

0

13.4

(11.9)

0-6

0

9.2

(11)

0-

7

0.8

(1.

6) 0-17

3.4

(4.7)

FC1

0-12.

3

1.3

(2.2)

0-10

.1

0.7

(1.7)

0-4

.5

0.3

(0.9)

0-3

.6

0.3

(0.7)

0-1

0

1.1

(1.8) 0-3

0.4

(0.7)

0-

9

0.7

(1.

7) 0-0 0 (0)



72

FC2

0-13.
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0.9

(1.
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8
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0.2

(0.6)
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Table 3.2. 2-way consistency intra-class correlation coefficients (ICC) for deep

learning-generated whole bone iKIMRISS scores compared to mean of 8

human reader scores on n=62 cases with complete human scoring data

available. ICCs are shown for iKIMRISS scores calculated according to different
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thresholds for the percentage of BML pixels in each grid square required to

assign a positive score (20%, 10%, 0%).

20% BML pixel

threshold

10% BML pixel

threshold

0% BML pixel

threshold

ICC 95% CI ICC 95% CI ICC 95% CI

Whole Knee All

Slices 0.25 (0-0.47) 0.22 (-0.03-0.45) 0.13 (-0.12-0.37)

Whole Knee

Lateral 0.32 (0.08-0.53) 0.28 (0.03-0.49) 0.18 (-0.07-0.41)

Whole Knee

Medial 0.55 (-0.07-0.41) 0.49 (0.08-0.53) 0.32 (-0.08-0.41)

Whole Knee

Intercondylar 0.42 (-0.07-0.41) 0.34 (0.08-0.53) 0.17 (-0.12-0.37)

Femur All Slices 0.17 (-0.09-0.4) 0.12 (-0.14-0.36) 0.05 (-0.21-0.29)

Femur Lateral 0.31 (0.06-0.52) 0.27 (0.02-0.49) 0.16 (-0.09-0.39)

Femur Medial 0.41 (0.18-0.6) 0.37 (0.14-0.57) 0.22 (-0.03-0.44)

Femur

Intercondylar 0.15 (-0.1-0.39) 0.12 (-0.14-0.36) 0.04 (-0.21-0.29)

Tibia All Slices 0.61 (0.43-0.75) 0.56 (0.36-0.71) 0.35 (0.11-0.55)

Tibia Lateral 0.39 (0.16-0.59) 0.35 (0.11-0.55) 0.22 (-0.03-0.45)

Tibia Medial 0.65 (0.48-0.78) 0.57 (0.38-0.72) 0.41 (0.18-0.6)

Tibia

Intercondylar 0.65 (0.48-0.78) 0.57 (0.37-0.72) 0.33 (0.09-0.54)

Patella All Slices 0.31 (0.06-0.52) 0.32 (0.08-0.53) 0.28 (0.03-0.49)
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Patella Lateral 0.50 (0.28-0.66) 0.46 (0.24-0.64) 0.39 (0.15-0.58)

Patella Medial 0.18 (-0.08-0.41) 0.12 (-0.14-0.36) 0.09 (-0.17-0.33)

Patella

Intercondylar 0.37 (0.14-0.57) 0.32 (0.08-0.53) 0.27 (0.02-0.49)

Table 3.3. 2-way mixed intra-class correlation coefficients (ICC) for deep

learning-generated iKIMRISS scores in grouped neighbouring regions

compared to mean of 8 human reader scores on n=62 cases with complete

human scoring data available. ICCs are shown for iKIMRISS scores calculated

according to different thresholds for the percentage of BML pixels in each grid

square required to assign a positive score (20%, 10%, 0%).

20% BML pixel

threshold

10% BML pixel

threshold

0% BML pixel

threshold

ICC 95% CI ICC 95% CI ICC 95% CI

FCs All Slice 0.32 (0.07-0.53) 0.29 (0.04-0.51) 0.14 (-0.12-0.39)

FCs Lateral 0.31 (0.06-0.52) 0.28 (0.02-0.5) 0.15 (-0.11-0.39)

FCs Medial 0.43 (0.19-0.62) 0.45 (0.22-0.63) 0.41 (0.17-0.6)

FCs

Intercondylar 0.19 (-0.07-0.43) 0.20 (-0.05-0.44) 0.07 (-0.19-0.32)

FPs All Slice 0.32 (0.07-0.53) 0.36 (0.12-0.57) 0.12 (-0.14-0.36)
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FPs Lateral 0.74 (0.59-0.84) 0.70 (0.54-0.81) 0.15 (-0.11-0.39)

FPs Medial 0.17 (-0.09-0.4) 0.13 (-0.13-0.38) 0.08 (-0.18-0.33)

FPs

Intercondylar na na na

FTs All Slice 0.46 (0.23-0.64) 0.30 (0.05-0.52) 0.16 (-0.1-0.4)

FTs Lateral 0.78 (0.66-0.86) 0.69 (0.53-0.81) 0.50 (0.28-0.67)

FTs Medial 0.11 (-0.15-0.36) 0.09 (-0.17-0.33) 0.04 (-0.22-0.3)

FTs

Intercondylar 0.20 (-0.06-0.43) 0.10 (-0.16-0.35) 0.08 (-0.18-0.33)

T1T11 All Slice 0.76 (0.63-0.85) 0.62 (0.43-0.75) 0.31 (0.06-0.53)

T1T11 Lateral 0.71 (0.55-0.82) 0.49 (0.27-0.67) 0.15 (-0.11-0.39)

T1T11 Medial 0.53 (0.31-0.69) 0.41 (0.17-0.6) 0.34 (0.09-0.55)

T1T11

Intercondylar 0.67 (0.5-0.79) 0.54 (0.33-0.7) 0.40 (0.16-0.6)

T2T22 All Slice 0.79 (0.67-0.87) 0.74 (0.59-0.84) 0.41 (0.17-0.6)

T2T22 Lateral 0.66 (0.48-0.78) 0.56 (0.36-0.72) 0.27 (0.02-0.49)

T2T22 Medial 0.67 (0.5-0.79) 0.61 (0.42-0.75) 0.48 (0.26-0.66)

T2T22

Intercondylar 0.70 (0.55-0.81) 0.65 (0.48-0.78) 0.36 (0.12-0.57)

T3T33 All Slice 0.67 (0.5-0.79) 0.62 (0.43-0.75) 0.50 (0.28-0.67)

T3T33 Lateral 0.41 (0.17-0.6) 0.34 (0.1-0.55) 0.29 (0.04-0.51)

T3T33 Medial 0.74 (0.6-0.84) 0.71 (0.55-0.82) 0.46 (0.23-0.64)

T3T33

Intercondylar 0.56 (0.35-0.71) 0.50 (0.28-0.67) 0.39 (0.15-0.59)
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T4T44 All Slice 0.47 (0.24-0.65) 0.44 (0.21-0.63) 0.34 (0.09-0.55)

T4T44 Lateral 0.16 (-0.1-0.4) 0.14 (-0.12-0.38) 0.14 (-0.12-0.38)

T4T44 Medial 0.64 (0.45-0.77) 0.59 (0.39-0.73) 0.46 (0.23-0.64)

T4T44

Intercondylar 0.55 (0.34-0.7) 0.47 (0.24-0.65) 0.29 (0.04-0.51)

T5T55 All Slice 0.23 (-0.03-0.46) 0.22 (-0.03-0.45) 0.14 (-0.12-0.38)

T5T55 Lateral 0.11 (-0.15-0.36) 0.12 (-0.14-0.37) 0.07 (-0.19-0.32)

T5T55 Medial 0.41 (0.17-0.6) 0.28 (0.03-0.5) 0.17 (-0.09-0.41)

T5T55

Intercondylar 0.37 (0.13-0.57) 0.33 (0.08-0.54) 0.15 (-0.12-0.39)

Table 3.4. 2-way consistency intra-class correlation coefficients (ICC) for deep

learning-generated iKIMRISS scores in individual grid square regions

compared to mean of 8 human reader scores on n=62 cases with complete

human scoring data available. For ease of viewing, ICCs are shown for

iKIMRISS scores calculated according to 20% BML pixel threshold only.

All Slices Lateral Medial Intercondylar

ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI
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FC1 0.19

(-0.07-0.

43) 0.34 (0.09-0.55) 0.29

(0.04-0.5

1)

0.00 (-0.26-0.2

6)

FC2 0.03

(-0.23-0.

29) 0.07

(-0.19-0.3

2) 0.08

(-0.18-0.

33) 0.00

(-0.26-0.2

6)

FC3 0.03

(-0.23-0.

28) -0.01

(-0.27-0.2

5) 0.05

(-0.21-0.

3) na

FC4 0.01

(-0.24-0.

27) 0.00

(-0.25-0.2

6) 0.00

(-0.25-0.

26) 0.00

(-0.26-0.2

6)

FC5 0.01

(-0.24-0.

27) -0.05 (-0.3-0.21) 0.20

(-0.06-0.

43) 0.00

(-0.26-0.2

6)

FC6 0.08

(-0.18-0.

33) 0.02

(-0.24-0.2

7) 0.27

(0.01-0.4

9) 0.00

(-0.26-0.2

6)

FP1 0.15

(-0.11-0.

39) 0.23

(-0.03-0.4

6) 0.15

(-0.11-0.

39) na

FP2 0.21

(-0.05-0.

44) 0.56 (0.35-0.71) 0.13

(-0.13-0.

37) na

FP3 0.31

(0.06-0.5

2) 0.74 (0.6-0.84) 0.06

(-0.2-0.3

1) na

FP4 0.13

(-0.13-0.

37) 0.42 (0.18-0.61) 0.10

(-0.16-0.

35) na

FT1 0.68 (0.52-0.8) 0.89 (0.82-0.93) 0.09

(0.17-0.3

4) 0.16 (-0.1-0.4)

FT2 0.06

(-0.2-0.3

1) 0.26 (0.01-0.49) 0.02

(-0.24-0.

27) -0.01

(-0.27-0.2

4)

FT3 0.27

(0.01-0.4

9) 0.21

(-0.05-0.4

4) 0.11

(-0.15-0.

35) 0.37

(0.12-0.5

7)

FT4 0.00

(-0.26-0.

26) 0.21

(-0.05-0.4

4) 0.11

(-0.15-0.

35) 0.00

(-0.26-0.2

6)

T1 0.78

(0.66-0.8

7) 0.55 (0.35-0.71) 0.63

(0.45-0.7

6) 0.70

(0.54-0.8

1)

T2 0.81 (0.7-0.88) 0.49 (0.27-0.66) 0.69 (0.53-0.8) 0.65

(0.48-0.7

8)
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T3 0.75

(0.61-0.8

5) 0.50 (0.28-0.67) 0.73

(0.59-0.8

3) 0.52 (0.3-0.68)

T4 0.54 (0.33-0.7) 0.32 (0.07-0.53) 0.73

(0.59-0.8

3) 0.48

(0.25-0.6

5)

T5 0.22

(-0.04-0.

45) 0.19

(-0.07-0.4

3) 0.56

(0.35-0.7

1) 0.50

(0.28-0.6

7)

T11 0.63

(0.45-0.7

6) 0.77 (0.64-0.86) 0.25

(-0.01-0.

47) 0.57

(0.36-0.7

2)

T22 0.71

(0.55-0.8

2) 0.69 (0.53-0.8) 0.53

(0.32-0.6

9) 0.74 (0.6-0.84)

T33 0.51

(0.29-0.6

8) 0.29 (0.04-0.51) 0.62

(0.44-0.7

6) 0.54 (0.32-0.7)

T44 0.35 (0.1-0.55) 0.05 (-0.21-0.3) 0.45

(0.22-0.6

3) 0.48

(0.25-0.6

5)

T55 0.16 (-0.1-0.4) 0.00

(-0.26-0.2

6) 0.13

(-0.13-0.

37) 0.21

(-0.05-0.4

5)

P1 0.52 (0.3-0.68) 0.52 (0.31-0.69) 0.25 (0-0.48) 0.45

(0.21-0.6

3)

P2 0.69

(0.53-0.8

1) 0.61 (0.42-0.75) 0.18

(-0.08-0.

42) 0.52

(0.31-0.6

9)

P3 0.47

(0.25-0.6

5) 0.42 (0.18-0.61) 0.07

(-0.19-0.

32) 0.22

(-0.04-0.4

5)

P4 0.35 (0.1-0.56) 0.42 (0.18-0.61) -0.02

(-0.27-0.

24) 0.06

(-0.2-0.31

)

In the large dataset, rank correlations comparing iKIMRISS scores to

number of MOAKS BMLs were low to moderate at the level of the whole knee

[Kendall’s Tau (95% CI): 0.267 (0.226-0.308), 0.293 (0.249-0.342),and 0.333

(0.281-0.38) for all slice, lateral, and medial compartments respectively]. Much
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stronger correlation occurred in the medial tibia [Tau (95% CI): 0.62

(0.58-0.664)] compared to the lateral and intercondylar tibia [[Tau (95%

CI)(0.222 (0.149-0.291) and 0.319 (0.261-0.380), respectively], while femoral

scores showed moderate correlation in both lateral and medial compartments

[0.327 (0.281-0.377) and 0.319 (0.272-0.367), respectively]. There was

essentially no correlation at all between medial patella iKIMRISS and MOAKS

scores [0.06 (0.000-0.129)], but moderate correlation was seen in the lateral

patella [0.356 (0.3-0.398].

Table 3.5. Rank correlations between iKIMRISS scores vs. number of Bone

Marrow Lesions assigned by human MOAKS readers in n=836 patients with

human reader data available.

Kendall's

Tau 95% CI p

Whole Knee All Slice 0.267 (0.226-0.308) <0.0001

Whole Knee Medial 0.333 (0.281-0.380) <0.0001

Whole Knee Lateral 0.293 (0.249-0.342) <0.0001

Femur All Slice 0.294 (0.247-0.329) <0.0001

Femur Medial 0.319 (0.367-0.272) <0.0001

Femur Lateral 0.326 (0.377-0.281) <0.0001

Tibia All Slice 0.378 (0.418-0.336) <0.0001



81

Tibia Medial 0.621 (0.580-0.664) <0.0001

Tibia Lateral 0.222 (0.291-0.149) <0.0001

Tibia Intercondyle 0.319 (0.261-0.380) <0.0001

Patella All Slice 0.278 (0.235-0.321) <0.0001

Patella Medial 0.0619 (0.000-0.129) 0.0074

Patella Lateral 0.356 (0.300-0.398) <0.0001

Associations between iKIMRISS and clinical measures:

Knee replacement surgery occurred within the ten year follow-up period

after the MRI occurred in 196/1631 (12.%) of cases analyzed.

Significant results from the univariable logistic regression are displayed

below (Figures 3.6a-d). None of the iKIMRISS whole bone scores were found to

be predictive of eventual arthroplasty, aside from a relatively small but

statistically significant OR (95% CI) of 1.1 (1.0-1.1) in the medial portion of the

tibia. Overall, many regions at the other two levels of scoring granularity

showed weak but statistically significant ORs. These were relatively uniform

across the board (ORs ranging from 1.1-1.9), with the strongest odds ratios

found in the medial grid square scores for FC1 and FC3 in the weight-bearing

femur [OR (95% CI): 1.7(1.4-1.9) and (1.9 (1.4-2.6), respectively] and T11 in

the anterior tibia (1.7 (1.3-2.0). One significant, though weak, negative
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association with eventual arthroplasty was found in the lateral patella region

labeled P3 [OR (95% CI): 0.9 (0.9-1.0)].

When coronally subdivided individual grid square regions were entered

into the CHAID algorithm, a combination of medial T1 (anterior tibia), lateral

FP1 (posterior femur), and medial T2 (anterior tibia) scores was found to have

the best predictive utility for eventual arthroplasty (Figure).

Figure 3.6a. Significant odds ratios for knee arthroplasty in n=1631 baseline

MRIs from the Osteoarthritis Initiative according to deep learning-generated

iKIMRISS scores in all available MRI slices. Note: Significant ORs rounding to

1.0 are displayed, but regions are not highlighted.

Figure 3.6b. Significant odds ratios for knee arthroplasty in n=1631 baseline

MRIs from the Osteoarthritis Initiative according to deep learning-generated
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iKIMRISS scores in lateral compartment of the knee joint. Note: Significant ORs

rounding to 1.0 are displayed, but regions are not highlighted.

Figure 3.6c. Significant odds ratios for knee arthroplasty in n=1631 baseline

MRIs from the Osteoarthritis Initiative according to iKIMRISS scores in the

medial compartment of the knee joint. Note: Significant ORs rounding to 1.0

are displayed, but regions are not highlighted.

Figure 3.6d. Significant odds ratios for knee arthroplasty in n=1631 baseline

MRIs from the Osteoarthritis Initiative according to deep learning-generated
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iKIMRISS scores in intercondylar compartment of the knee joint. Note:

Significant ORs rounding to 1.0 are displayed, but regions are not highlighted.

Figure 3.7. CHAID generated decision tree for eventual knee replacement

considering coronally subdivided individual iKIMRISS grid square scores

extracted by deep-learning.
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Discussion

In our smaller sample where human reader KIMRISS data was available,

the clinical relevance of bone marrow lesions occurring at specific small

locations of the knee was apparent from analysis of scores at several different

levels of granularity. While the overall incidence of BML at the level of the

whole bone did not show any strong relationships to clinical measures or

outcomes, significant relationships began to appear as the data for smaller

subdivisions was analyzed. This was true for both relationship of BML to

patient self-report measures of pain, stiffness, and disability, as well as

predictive capacity for total knee replacement surgery during the follow-up

period. This may indicate that there is added value in recording

semi-quantitative assessment of bone marrow lesions in smaller, more granular

anatomical locations rather than limiting this to broader regions.

BMLs in the medial compartment of the joint have previously been linked

to to eventual arthroplasty,
62 63

which is consistent with the results from this

dataset, and our analysis demonstrated stronger ORs for this outcome when

examining BML location in greater detail within the medial joint compared to

larger summed regions. The same pattern was observed when analyzing

WOMAC pain, stiffness, and function scores. However, due to the smaller size

of the human KIMRISS dataset (n=62) and the high number of BML scoring

locations analyzed, overfitting of models is quite likely, and the results from

https://paperpile.com/c/0EiaVR/sLev
https://paperpile.com/c/0EiaVR/bKsJ
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individual coronally subdivided grid square scores may not necessarily be

considered valid without further testing.

In order to repeat analyses again in a substantially larger dataset, we

attempted to overcome the obstacle of expert time requirement for manual

KIMRISS scoring by applying a newly developed deep-learning algorithm to

n=1631 MRIs from the Osteoarthritis Initiative dataset . This algorithm,

dubbed “iKIMRISS”, aims to approximate the KIMRISS scoring methodology by

using automated detection of bone marrow lesions combined with automatic

placement of grid location templates. The results of the clinical measure and

outcome analyses of the iKIMRISS data in this large dataset showed a similar

pattern of increased significance of BML presence in smaller specific regions as

scoring granularity increased from the level of the whole bone to the level of

coronally-subdivided grid regions, though effect sizes were generally weaker

and there were fewer stand-out regions of interest.

Despite a robust sample size that should should theoretically produce

results translatable to the broader osteoarthritis population, the quality of the

BML data extracted by the current version of the algorithm presents extensive

limitations. Its reliability when compared to the small dataset of human expert

KIMRISS scores was spotty and significantly poorer across all levels of

granularity compared to reliability previously demonstrated between different

human readers. In the absence of human KIMRISS scores for comparison,

correlations to the somewhat analogous MOAKS BML scores across coronal
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subdivisions of the femur, tibia, and patella were not particularly strong, and

showed similar reliability patterns to those demonstrated by the ICC analysis

in the small dataset. Scores in the femur were particularly inconsistent with

human reader assessment by either methodology, which is notable considering

this tends to be an area of higher reliability amongst human reader pairs.

This lack of reliability suggests that the iKIMRISS algorithm requires

additional training in order to more closely approximate human scores, even in

the most broadly defined regions. While it is time-consuming and beyond the

scope of this study to examine every single MRI slice analyzed by the algorithm,

spot-checks of the algorithm’s output superimposed onto the images show

promising segmentation of BML. However, there are also instances of failure to

distinguish hyperintense signal representing a true lesion vs. hyperintense

signal caused by various types of artifact
64
. An example of this can be seen in

the figure below, where an area of slightly increased signal in the femur has

resulted in the assignment of positive BML scores in many grid squares in the

femur across several slices, despite unequivocal agreement by expert human

readers that no lesion is present in the femur (Figure).

https://paperpile.com/c/0EiaVR/GGdr
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Figure 3.8. An example of widespread false positive lesion assignment by

deep-learning in the femur (rows 1,2, and 3) and patella (row 3).

We attempted to minimize discrepancies using the data output from the

current iteration of the algorithm, including imposing a threshold for the

percentage of a grid square occupied by BML pixels required to assign a

positive score. This would prevent overscoring caused by the automated

assignment of a positive score from a very small cluster of BML pixels that may

be overlooked by a human reader. The algorithm’s probability threshold for

BML classification was also adjusted after reviewing instances of false negative

and false positive scores in order to optimize reliability. However, the results of

our reliability analyses show that these measures alone were not enough to

achieve adequate reliability with human reader scores. At present, we can not

be sure that signal is outweighing noise when it comes to these deep
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learning-generated scores, even at the lowest level of granularity. The algorithm

is still in the early stages of development, and while it is unfortunate that we

can not yet draw conclusions from these analyses, the preliminary results do

make a case for continuing to refine the algorithm. The next step is to provide

more ground truth data (human generated BML segmentation and grid

template placements) from a wide variety of cases to the algorithm for

additional training so it may navigate different presentations of the

knee–including those containing artifact–while producing BML scores more

comparable to those generated by humans. Once this is complete to the point

of achieving high reliability, more complete and readily-interpretable analyses

can be carried out on this large clinical dataset.

CONCLUSIONS AND FURTHER WORK

Previous work has shown that semi-quantitative scoring systems

capturing more granular detail can improve inter-rater reliability when all

granular observations are added together into a total score. This is supported

in the opening chapter by the increased similarity seen between decision-trees

from multiple readers’ granular axSpA SIJ scoring data when compared to

global scoring data. It could be that more detailed, rigid scoring frameworks

eliminate some subjectivity and more sharply focus readers’ assessments,

allowing for systematic capture of small differences or changes overall.
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However, when analyzed individually, isolated granular observations may

present with inter-rater reliability challenges. Certain discrepancies between

readers, such as slice selection or grid template placement, may be somewhat

negated when all scores are lumped together, becoming apparent only when

finer distinctions are analyzed (eg. separating medial slices from intercondylar

slices, weight-bearing region of the femur from posterior femur, etc.). As shown

in the KIMRISS human reader reliability chapter, certain anatomical locations

may be more affected by inter-rater disagreement than others. If there is a

possibility that individual granular components of a score (e.g. BML presence

in certain KIMRISS grid square locations on certain slices) serve as significant

clinical predictors or correlates, it is important to search for sources of

discrepancy within these components and attempt to calibrate readers or

algorithms for increased reliability on a granular level.

Moving forward, the sort of granular reliability analyses carried out in

this thesis could be used to inform adjustments to scoring methodology or

training methods, both for human readers and automated systems. While this

work has dealt only with single timepoint status scores, it would be particularly

beneficial to perform the same analyses on longitudinal change data, as change

capture is one very important function of semi-quantitative methodology and

may present with different reliability challenges and potential for utility.
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