
CFD modeling of geobag stability for riverbank erosion protection
structures

by

Saman Shabani

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical engineering
University of Alberta

© Saman Shabani, 2023



Abstract

Riverbank erosion poses significant environmental and infrastructural challenges, in-

cluding soil loss, damage to infrastructure, flooding, and threats to wildlife and vege-

tation. Erosion control structures are essential for mitigating this issue, and geobags

have been used as a fundamental element of revetment structures since the 1970s.

The use of geobags offers numerous advantages over traditional rip-rap, such as long-

term durability, cost-efficiency, eco-friendliness, and environmental safety. One of the

key benefits of geobag revetments is the stability they provide for communities living

along riverbanks, fostering economic development in the surrounding areas. To ensure

the effective design of such structures, a comprehensive understanding of geobag sta-

bility under hydraulic loading conditions is crucial. Despite numerous fluvial studies

focusing on the stability of geobags, none have specifically investigated the drag and

friction forces acting on a single bag under current loading conditions. Additionally,

no computational fluid dynamics (CFD) study has previously simulated the motion

and movement of submerged geobags. In order to fill this knowledge gap, the present

study employed a transient CFD model to simulate the movement of geobags at the

bottom of the channel, utilizing the technique of Overset mesh. The image process-

ing technique is also implemented to determine the exact edges and shape of bags

before failure at the bottom of the channel. Through the simulation, the drag and

friction force affecting a single geobag were determined. The effects of shape, material

and filling ratio of the geobags were investigated. Ultimately, the failure velocity of

geobags which follow the same shape was determined.

ii



Preface

This dissertation represents an independent and original work by the au-

thor, Saman Shabani. No part of this thesis has been previously published.

The numerical simulations conducted in this research have been validated

using data obtained by Kendra White in T. Blench Hydraulic Laboratory

at the University Of Alberta.

iii



Acknowledgements

I would like to express my deep and sincere gratitude to all those who have sup-

ported me throughout this thesis journey. First and foremost, I am deeply indebted

to my supervisors Dr. Carlos F Lange and Dr. Yuntong She, for their valuable

guidance, inspiration and constant encouragement and unwavering support. I would

like to thank them for being wonderful mentors and teachers to me, and I have been

extremely lucky to have supervisors who care about my work.

My deepest appreciation goes to my family, especially my sister, Simin, and my

brother-in-law, Ali, for their unwavering belief in my abilities and constant encourage-

ment. Their love and support have motivated me to overcome challenges and pursue

excellence.

I would like to thank you, my colleagues and members of the CFD-Lab and my

friends, especially Dr. Fatemeh Razavi, for their support and help in this journey.

I would like to offer my sincere appreciation to the faculty members at The Univer-

sity of Alberta and the staff at the Northwest Hydraulic Consultants (NHC) company

for providing an enriching academic environment and resources that have contributed

to the success of this work.

I express my sincere gratitude to NSERC for providing funding for this project.

Your generous contributions have provided me with the opportunity to pursue scien-

tific endeavours. Thank you for contributing to the advancement of knowledge and

innovation in this field. Lastly, I would like to express my gratitude to all the par-

ticipants and individuals who contributed to this research, without whom this work

would not have been possible.

iv



Table of Contents

1 Introduction 1

1.1 State of the Art Review . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Geobag Coastal Structures . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Geobag Riverbank Structures . . . . . . . . . . . . . . . . . . 6

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Methods and Procedure 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Channel flume and properties of geobags in Experiment . . . . . . . . 13

2.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Image processing for edge detection using OpenCV2 . . . . . . 15

2.3.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Geobag and hydrodynamic forces . . . . . . . . . . . . . . . . 20

2.3.4 Stability of Geobag . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Model Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Computational setup and boundary conditions . . . . . . . . . 24

2.4.3 Verification and Validation . . . . . . . . . . . . . . . . . . . 30

2.5 Determining the effective-coefficient of geobag . . . . . . . . . . . . . 33

2.6 Determining Friction Coefficient . . . . . . . . . . . . . . . . . . . . . 33

3 Results and Discussion 35

3.1 Geometry of geobags prior to failure . . . . . . . . . . . . . . . . . . 35

3.2 The friction coefficient of bags . . . . . . . . . . . . . . . . . . . . . . 36

3.3 The effective coefficient of bags . . . . . . . . . . . . . . . . . . . . . 38

3.4 Effects of shape on the incipient motion of geobag . . . . . . . . . . 40

v



3.5 Effects of material on the incipient motion of the geobag . . . . . . . 49

3.6 Effects of filling ratio on the incipient motion of geobag . . . . . . . 58

3.7 The hypothetical geobag . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Conclusion 72

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



List of Tables

2.1 Material properties of geobag in the experiment . . . . . . . . . . . . 14

2.2 Material properties of the simulated geobag . . . . . . . . . . . . . . 29

3.1 The angle of friction and friction coefficient of geobag under dry and

wet conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Effective Coefficient domain for geobags . . . . . . . . . . . . . . . . 40

3.3 Material properties of the hypothetical geobag . . . . . . . . . . . . 65

3.4 Average of Drag and Friction force affects the hypothetical geobag . 67

vii



List of Figures

1.1 Maroochydore beach revetment[2] . . . . . . . . . . . . . . . . . . . 2

1.2 Image of sand-filled geotextile bags used for the Brahmaputra-Jamuna

River in 1997 (near the Sirajganj town) [6] . . . . . . . . . . . . . . . 3

1.3 Sand filled geotextile container projects for shoreline protection (2009)[2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Three elements of geobags for field study in Jaumana river (2009)[4] 7

2.1 A geobag in the channel flume at the T. Blench Hydraulics Laboratory

at the University of Alberta [36] . . . . . . . . . . . . . . . . . . . . 15

2.2 Flowchart of image processing . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Example input image, after segmentation, and the final output . . . 17

2.4 Rectangular prism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Forces acting on a submerged geobag . . . . . . . . . . . . . . . . . . 20

2.6 Creating the geometry in Space Claim . . . . . . . . . . . . . . . . . 23

2.7 Schematic of the computational domain and boundary conditions . . 25

2.8 Meshing of subdomain and domain . . . . . . . . . . . . . . . . . . . 26

2.9 Locations of velocity profile measured upstream and on top of the

cement bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Comparing the velocity profiles of experimental data vs numerical sim-

ulation of the cement bag . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Geobag on the inclined surface . . . . . . . . . . . . . . . . . . . . . 34

3.1 Geometry of cloth and geotextile bags used for modeling (C denotes

cloth bag; G denotes geotextile bag; 1, 2, 3 indicates a fill ratio of 54%,

69%, and 84%, respectively) . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Effective coefficient for Geotextile bags . . . . . . . . . . . . . . . . . 41

3.3 Effective coefficient for cloth bags . . . . . . . . . . . . . . . . . . . . 42

3.4 Pathlines of velocity magnitude at failure velocity 0.51 m/s for G1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Pathlines of velocity magnitude at failure velocity 0.63 m/s for G1 even 43

viii



3.6 Pathlines of velocity magnitude at failure velocity 0.75 m/s for G1

upstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Contour of static and total pressure at failure velocity (0.51 m/s) for

G1 downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Contour of static and total pressure at failure velocity (0.63 m/s) for

G1 even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Contour of static and total pressure at failure velocity (0.75 m/s) for

G1 upstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Plot of the center of mass at failure velocities for G1 downstream, even,

and upstream with the effective coefficient (0.27 for G1 downstream,

0.26 for G1 even, 1 for G1 upstream ) . . . . . . . . . . . . . . . . . . 47

3.11 Drag and friction forces at failure velocity 0.51 m/s for G1 downstream

with the effective coefficient (0.27) . . . . . . . . . . . . . . . . . . . . 48

3.12 Drag and friction forces at failure velocity 0.63 m/s for G1 even with

the effective coefficient (0.26) . . . . . . . . . . . . . . . . . . . . . . 48

3.13 Drag and friction forces at failure velocity 0.75 m/s for G1 upstream

with the effective coefficient (1) . . . . . . . . . . . . . . . . . . . . . 49

3.14 Contour of velocity magnitude at failure velocity (0.75 m/s) for C1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.15 Contour of velocity magnitude at failure velocity (0.51 m/s) for G1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.16 Contour of static and total pressure at failure velocity (0.75 m/s) for

C1 downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.17 Contour of static and total pressure at failure velocity (0.51 m/s) for

G1 downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.18 Vector plot of velocity magnitude at failure velocity of 0.75 m/s for C1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.19 Vector plot of velocity magnitude at failure velocity of 0.51 m/s for G1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.20 Plot of drag versus friction force at failure velocity 0.75 m/s for C1

downstream with the effective coefficient (0.75) . . . . . . . . . . . . 56

3.21 Plot of drag versus friction force at failure velocity 0.51 m/s for G1

downstream with the effective coefficient (0.27) . . . . . . . . . . . . 56

3.22 Pathlines of velocity magnitude at failure velocity 0.75 m/s for C1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.23 Pathlines of velocity magnitude at failure velocity 0.51 m/s for G1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



3.24 Contour of velocity magnitude at failure velocity (0.51 m/s) for G1

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.25 Contour of velocity magnitude at failure velocity (0.61 m/s) for G2

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.26 Contour of velocity magnitude at failure velocity (0.78 m/s) for G3

downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.27 Contour of static and total pressure at failure velocity (0.51 m/s) for

G1 downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.28 Contour of static and total pressure at failure velocity (0.61 m/s) for

G2 downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.29 Contour of static and total pressure at failure velocity (0.78 m/s) for

G3 downstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.30 Plot of the drag versus friction force at failure velocity 0.51 m/s for G1

downstream with the effective coefficient (0.27) . . . . . . . . . . . . 64

3.31 Plot of the drag versus friction force at failure velocity 0.61 m/s for G2

downstream with the effective coefficient (0.27) . . . . . . . . . . . . 64

3.32 Plot of the drag versus friction force at failure velocity 0.78 m/s for G3

downstream with the effective coefficient (0.27) . . . . . . . . . . . . 65

3.33 Geometry of the hypothetical geobag . . . . . . . . . . . . . . . . . . 66

3.34 Contour of static pressure at failure velocity 0.95 m/s for the hypo-

thetical geobag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.35 Contour of total pressure at failure velocity 0.95 m/s for the hypothet-

ical geobag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.36 Vector plots of velocity magnitude at failure velocity 0.95 m/s for the

hypothetical geobag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.37 Pathlines the velocity profile at failure velocity 0.95 m/s for g1 down-

stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.38 Plot of the drag and friction force versus time at a velocity lower than

failure 0.9 m/s for the hypothetical geobag . . . . . . . . . . . . . . . 70

3.39 Plot of the drag and friction force versus time at failure velocity 0.95

m/s for the hypothetical geobag . . . . . . . . . . . . . . . . . . . . . 71

x



List of Symbols

Latin

δij Kronecker delta

vĠ⃗ Translational motion for centre of gravity

u̇ temporal flow acceleration

ϵ Dissipation rate of turbulence

µ Molecular viscosity

µs Coefficient of static friction

ρ Density of the fluid

ρs Density of sand

ρw Density of water

σk Model constant

τwall Shear wall

ωB⃗ Angular vector of rigid body

FG⃗ Force vector due to gravity

MB
⃗ Moment vector for the body

a Length of rectangle

AT Horizontal cross-sectional area

b Width of rectangle

c Height

C1ϵ, C2ϵ Model constant

CD Drag Coefficient

CL Lift coefficient

CM Inertia Coefficient

xi



FD Drag force

FI Inertia force

FL Lift force

FW Weight

g gravitational acceleration

Gϵ Generation of turbulence dissipation rate

Gk generation of turbulence kinematic energy due to mean velocity gradient

k Turbulence kinetic energy

L Inertia tensor

m Mass

r radius of sphere

t Turbulence viscosity

u Velocity

u∗ Friction velocity in the near wall region

uoverturning The minimum near-bed velocity for overturning

uslide The minimum near-bed velocity for sliding

ux, uy, uz Velocity component in x, y and z direction

V Volume

y distance from the wall

y+ y-plus

Yϵ dissipation of turbulence dissipation rate

Yk dissipation of turbulence kinematic energy

xii



Abbreviations

6DOF Six Degrees of Freedom.

CFD Computational Fluid Dynamics.

COBRAS Cornell Breaking Waves and Structures.

DEM Discrete Element Method.

FEM Finite Element Method.

FSI Fluid-structure Interactions.

GSCs Geotextile Sand Containers.

k-epsilon turbulent kinetic energy-the rate of dissipation of the turbulent kinetic

energy.

OpenCV Open Source Computer Vision Library.

OpenFOAM Open-Source Open Field Operation and Manipulation.

RANS Reynolds Average Naiver-Stokes Equations.

RGB Red, Green and Blue.

UDF User Defined Function.

VOF Volume Of Fluids.

xiii



Chapter 1

Introduction

Geobags, which are also known as geotextile sand containers, are flexible bags that

are filled with sand or other materials and arranged in specific patterns, providing

stability, strength, and protection against floods and erosion caused by natural dis-

asters. Geobag is an innovative solution that has been used to manage soil erosion

and control sediment in a wide range of civil engineering projects, including shore-

lines and riverbanks. Cost-effective, environmentally friendly and rapid mobilization

during emergencies are a couple of advantages of using geobags over traditional hard

material. Some of the common applications of the geobags are as follows:

1. Geobags have been used to protect shorelines, dams and harbours from erosion

caused by wave loading and current loading.

2. Soil erosion is a major problem leading to deforestation, floods and loss of fertilized

lands. Geobags serve as a solution to mitigate soil erosion.

3. Slopes prone to soil erosion and landslides can be stabilized using geobags.

4. Geobags play a role in restoring and preserving ecosystems that are at risk due to

erosion and habitat loss.

1



Geobags have found extensive application along shorelines and riverbanks as a

protective measure against soil erosion. Maroochydore Beach is located south of

Maroochy River in southeast Queensland, Australia, which includes river and ocean

frontage. In November 2000, erosion became a serious problem for Maroochydore

Beach in a way that adversely affected the foreshore and caravan park during the

imminent cyclonic season. As shown in Figure 1.1, non-woven geotextile units were

filled and placed in the dunal system as a defence barrier. Observations showed

stability higher than expected during high-wave attacks[1].

Figure 1.1: Maroochydore beach revetment[2]

The Brahmaputra River and Maroochydore Beach are an example of the appli-

cation of geobags. The Brahmaputra River originates in the Himalayas, and flows

through China, India, and Bangladesh, eventually entering the Bay of Bengal. The

Jamuna refers to the last 250 km of the reach in Bangladesh. The bank of the river

is susceptible to erosion of unconsolidated sandy oil, which, combined with floods,

causes large-scale devastation in this countryside. The population of Bangladesh is

over 1200 people per square kilometre, and as a result of erosion along the Jamuna

and Padma rivers, an estimated 2.2 million people have been displaced since the

1970s [3]. Additionally, the continued loss of land affects the economic development
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of Bangladesh and keeps the residents in poverty. As a solution to these issues, ero-

sion protection structures consisting of geobags have been constructed to improve

riverbank stability [3–5]. Figure 1.2 shows the geotextile bags utilized on the bank of

the Brahmaputra River.

Figure 1.2: Image of sand-filled geotextile bags used for the Brahmaputra-Jamuna
River in 1997 (near the Sirajganj town) [6]

1.1 State of the Art Review

The use of geobags is widespread in coastal engineering, riverbank protection, and

shore protection. By creating a physical barrier, geobags prevent soil erosion and

further damage to riverbanks and shorelines. The bags are usually arranged in rows

along the bank, filled with sand, gravel, or other materials to create stable and erosion-

proof structures. Geobags can provide long-lasting protection for the soil and reduce

erosion on shorelines and riverbanks when installed appropriately.

1.1.1 Geobag Coastal Structures

Several studies attempted to gain a better understanding of the performance of geobag

structures in coastal environments, where the wave action dominates [7–12]. Figure

1.3 shows the application of geobag for shoreline protection. Shoreline protection
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studies generally fall into one of the following categories: 1) Geobag design specifica-

tions, 2) Geobag construction specifications, 3) Mechanical properties of geobags, and

4) Hydraulic forces influencing geobags. Design specification of the geobags is sum-

marized in its materials specifications, including sand and fabric. Research conducted

by Saathoff et al. [13] demonstrates that the sand with d50 falls within the range of

15 to 25 mm, suitable for shoreline and Bezuijen et al.[14] showed that using dry and

clean sand as a filling material can reduce the risk of tearing the bags. The length

of the geobags is 1.22 to 2 times the width of the bag. However, the thickness might

vary as a result of the filling ratio [1, 13]. Numerous field and laboratory studies [2,

15–17] indicate that the filling ratio of 80% is the most acceptable filling ratio among

coastal protection owing to its superior stability performance.

Figure 1.3: Sand filled geotextile container projects for shoreline protection (2009)[2]

Construction specification of geobags coastal structures is primarily focused on the

thickness of the protection work, geobag placement, and structural slope, which affect

the failure mechanism of geobags. The failure mechanism needs to define the concept

of the incipient motion of geobags. Pilarczyk explained the concept of ”incipient ve-

locity” of geobag, which is defined as the velocity required to initiate the movement of

geobag revetments. Shirlal and Mallidi [18] conducted a physical model to determine
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the stability of a submerged reef constructed from GSC in three distinct alignments:

parallel, perpendicular, and flemish. The parallel alignment, when utilizing two layers

of geotextiles, emerged as the only stable configuration among these three. Another

pivotal construction parameter is geobag structure slope. According to the available

studies, the most commonly used slope for coastal applications are 1V:1H, and 1V:2H

[7, 19–21], but, the slope can vary depending on the design wave height and erosion

pattern [22].

Mechanical properties play a crucial role in the stability of the geobags. Permeabil-

ity, deformation and internal friction are the most important mechanical properties

of geobags. The deformation and permeability of the geotextile sand containers were

investigated by Recio and Oumeraci [23]. Their findings indicate that the total forces

and moments that affect the geobags displacement depend on the wave propagation

inside the internal gaps between the geobags. Additionally, the deformation of geo-

textile sand bags happens in the latter part of the bags due to the accumulation of

the sand in the seaward end of the bags, leading to a reduction in contact area with

neighboring bags. The angle of friction is another significant parameter for studying

the mechanical properties of geobags. Kim et al., and Krahn et al. [24, 25], utilizing

large shear boxes to ascertain friction angles under varying loads, determined that

the average angle of friction was 30◦.

The hydraulic forces that affect the stability of geobags were investigated by Kim

et al., Pilarczyk et al., and Recio and Oumeraci [21, 24, 26]. Failure occurs due to

inertia, drag and lift forces affecting the geobags. According to studies, overlapping,

sliding, puncturing, pullout, and toe scour are the most common modes of failure

in coastal applications[16, 27, 28]. Recio and Oumeraci [23] conducted laboratory

tests to investigate hydrodynamic forces, specifically focusing on drag and lift effects.

They determined the drag and lift coefficients associated with these forces. Their

study indicates a uniform lift coefficient across bags positioned at the top, middle,

and bottom of the geobags structure. However, large variations were observed for the
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drag coefficients, which ranged from 4 to 15 for top bags, 2.5 to 9 for middle bags,

and 0.5 to 3 for bottom bags.

A couple of studies investigated the mechanical and hydrodynamic properties that

affect the geobags. Among these studies, the only published numerical study focused

on determining the hydrodynamic and frictional forces that affect the geobags is done

by Recio and Oumeraci [21]. Recio and Oumeraci’s study utilized the ”COBRAS-

UDEC,” which is a RANS-VOF model based on Reynolds-Averaged Navier-Stokes

equations and Volume Of Fluids to represent the displacement of the geobags with

three different angles of friction 8◦, 18◦ and 28◦. Their finding shows that larger

displacement is for smaller angles of friction. Nonetheless, additional numerical re-

search is necessary to comprehensively determine the impact of hydrodynamic forces

affecting the geobag.

1.1.2 Geobag Riverbank Structures

Coastal studies provide some insight in terms of geobags’ physical and mechanical

properties. However, due to differences in hydraulic loading, coastal-based studies

where wave action is prevalent cannot be used to determine how geobag performs in

riverbank revetments.

Riverbank revetments in the Brahmaputra river in Bangladesh consist of three

main components, as shown in Figure 1.4 [4]:

i) The slope protection area under water, which helps to prevent riverbank erosion

ii) The slope protection, as is above a low water level, to prevent current erosion and

wave erosion during flood seasons.

iii) Toe protection by means of falling aprons to prevent riverbed scouring from un-

dermining slope protection.

Determining the stable slope for geotextile sand containers investigated by NHC

for the Brahmaputra River in Bangladesh, [29]. The stable slope needs to be started

underwater to reduce the load on the bank and increase the safety factor for the
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Figure 1.4: Three elements of geobags for field study in Jaumana river (2009)[4]

stability of the slope. Initially, geobags are dumped along the shoreline and shallow

section of the riverbank in a massive heap, which self-launches into deeper water. This

‘falling apron’ enables better protection against toe scouring and typically launches

to a geotechnically stable slope of 1V:2H (V = vertical, H =horizontal). The falling

apron is a key component of the geobag revetment structure design, as sections of

the rivers are too deep to allow for direct placement of the geobags. According to the

findings of this experiment, the optimal stable slope for underwater areas is 1V:2H.

The required slope for concrete blocks, however, is 1V:5H, which is not stable for

geotextile bags[4]. Other revetment configuration studies concentrated on redirecting

the fluid flow and maintaining the desired water depth to protect the riverbanks from

erosion [30, 31]. The redirecting main flow studies can be categorized into three differ-

ent groups, namely, porcupine, geobag, and a combination of porcupine and geobag

(hybrid). Oberhargemann [4], Aamir and Sharma [32] revealed that the implementa-

tion of both porcupine and geobag layouts led to notable reductions in flow velocity

and encouraged sediment deposition. However, the design of training works needs to

be tested before deploying in large rivers. Several researchers used numerical river

models to overcome the limitations of river training work studies. Gao et al. [33]
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utilized a 3D-dimensional hydrodynamic model developed in Ansys Fluent to model

concrete tetrahedral frame revetments. Kakati et al. [34] used the three-dimensional

hydrodynamic open-source Open Field Operation and Manipulation (OpenFOAM)

for modeling the geobag and porcupine structures. The numerical model was em-

ployed to assess three types of structures: the porcupine screen, the geobag screen,

and a hybrid layout. From these analyses, it became evident that the hybrid layout

exhibited a more effective reduction in velocity compared to the geobags. However,

this study did not model the movement of geobag in the flow field. Further research

needs to be done to explore the onset of geobag motion under various flow conditions.

The study of geobag failure mechanisms primarily focused on the examination of

the filling ratio of geobags and the hydrodynamic forces influencing these bags. It ap-

pears that geobags with an optimal fill ratio demonstrate greater stability. Thompson

et al. [35] found that the stability of geobag is a function of the filling percentage and

flexibility of geobags. They proposed a different value for the ”stability coefficient,”

which is influenced by both the filling ratio and flexibility of geobags. Geobags with

a higher stability coefficient show less stability. Their study showed that the sand-

bags with a filling ratio of 84% to 95% exhibit the highest stability, and the stability

coefficient for the filling ratio above 80% is considered 0.07. Analyzing the fail-

ure mechanism of geobags also required understanding the impact of hydrodynamic

forces on these structures. Pilarcyk [26] defined the failure or incipient motion of

geobags when the lift, drag and inertia force exceeds the contact and cohesion forces

and weight of the submerged elements. A couple of studies focused on determining

the drag and lift forces affecting a group of geobags. Zhu et al. [20] conducted a lab-

oratory investigation to study the incipient motion of the sandbag dike located in the

lower reach of the Changjiang River. The sandbags were placed in the channel bed

in two configurations: parallel and perpendicular to the flow direction. The results

indicate that the lift coefficient approaches zero for both configurations, indicating

the negligible role of lift force in initiating the motion of the sandbags. White [36]
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examined the stability of individual geobags under different fill ratios, bag materials,

and shapes, considering both flat and sloped beds. According to their study, geobags

with higher fill ratios and more flexibility demonstrated improved levels of stability.

Additionally, the material of the geobags was examined by comparing the geotextile

and cloth bags throughout the experiment. The geotextile bags indicated a consistent

shape progression during the test, and a clear trend was observed for failure velocities

when considering the initial shape of the bags. The cloth bags, However, exhibited

a lack of definitive pattern in their shape progression due to inherent variability.

Thompson et al. [37] used Computational Fluid dynamics (CFD) to determine the

hydrodynamic forces that affect the geobags. According to this study, the drag coeffi-

cient for multiple geobags was found to be 0.02. Their study did not quantify the lift

force, as the model did not replicate the conditions beneath the geobags. Akter et al.

investigated the failure mode of geotextile sand containers on the riverbank with the

laboratory experiment and the Discrete element method (DEM)[38, 39]. The critical

velocity was determined through the experiment to use in a DEM simulation. With

the DEM model, the drag coefficient and lift coefficient were found to be 0.5 and 0.8,

respectively, which are the average drag and lift coefficients for all geobags.

1.2 Motivation

Riverbank erosion is one of the major environmental issues in different parts of the

world, and there is an urgent need to mitigate the problem. Geobag containers filled

with sand or other materials are known to be an effective method for protecting the

riverbank and shorelines from erosion due to their flexibility and being economically

friendly. Nevertheless, geobags are not well understood in terms of their design and

performance under various hydraulic conditions, and better modeling and optimiza-

tion tools are needed to improve their efficiency.

Computational Fluid Dynamics (CFD) is a powerful tool for simulating fluid flow and

predicting forces and pressures acting on structures. A numerical model of geobag
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behaviour using CFD provides a method for studying fluid-structure interactions and

evaluating different geobag configurations under various flow conditions. Engineers

and researchers can benefit from this information to better understand geobags and

optimize their designs. Such a study can help develop more effective and sustainable

solutions for riverbank and shoreline protection, which are crucial for alleviating the

impacts of erosion and floods.

1.3 Research gap

Numerous investigations focused on the stability and failure mechanism of geobags.

However, a notable gap exists in research specifically targeting the stability of in-

dividual geobags under current loading. None of these studies have addressed the

determination of drag and friction forces exerted on a geobag under current loading.

The drag force is generated by the interaction and contact of the geobag with a fluid

flow. Friction is the resistance to relative motion between geobag, fluid layers, and

the bottom of the channel sliding against each other. Additionally, no CFD studies

have determined the motion and movement of geobags. While a few studies have

employed the overset and dynamic mesh technique to simulate the movement of solid

objects within channels [40, 41], no CFD study has yet applied the overset mesh ap-

proach to model the motion and movement of geobags. The overset mesh combines

two different meshing forms in a CFD simulation and allows different zones to move

relative to each other while maintaining mesh quality.

To bridge this gap in existing research, this study employs a transient three-

dimensional (3-D) CFD model to comprehensively analyze the drag and friction forces

influencing a single geobag located at the bottom of the channel. The utilization of

an overset and dynamic mesh ensures an accurate representation of the motion of

a geobag. Furthermore, since the deformation underflow cannot yet be numerically

predicted, the image processing technique is implemented to precisely capture the

shape of the geobag before failure for effective CFD modeling. This study provides
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the details of the numerical simulation process, facilitating an exploration into geobag

behaviour under current loading. Finally, the results and conclusions of the current

investigation are provided.

1.4 Research Objective

The objective of this thesis is to employ a transient three-dimensional (3-D) Com-

putational Fluid Dynamics (CFD) model to simulate the motion and movement of

geobag using dynamic and/or overset mesh. This study analyzes hydrodynamic forces

affecting the geobag and examines flow characteristics around the geobag. The spe-

cific research objectives include:

1. Development of a valid CFD Model: First aim is to create a transient three-

dimensional CFD model which is able to accurately simulate the fluid dynamics near

and around the geobags for the riverbank applications. This model is validated with

experimental study to ensure the accuracy and reliability of the model.

2. Determining the shape of the geobag with image processing: The shape

of the bag plays a crucial role in the onset of movement of the geobag. The objective

is to specify the exact shape of the geobag before failure and utilize that image to

create the corresponding model geometry.

3. Study of the velocity and flow pattern: Examine the velocity distribution

around the geobag and flow patterns at various flow rates. To analyze the boundary

layer and velocity profile for all geobags, two different flow rates are investigated be-

fore the failure of the geobag and after the failure of the geobag. Additionally, flow

separation and any recirculation zone could be identified by analyzing the contours

of the velocity around the bags.

4. Determining the hydrodynamic forces on the geobag: Hydrodynamic

forces of the geobag, including drag and lift force, can be evaluated with CFD mod-

eling of flow around the bag. Additionally, the drag and lift coefficient for all bags

can be achieved.
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5. Determining the friction coefficient and friction force: The friction coef-

ficient on geobags with different fabrics will be measured with an experimental test,

and then, the objective is to determine the friction force for each geobag, which pre-

vents the onset of the movement.

7. Model the movement of each geobag with dynamic and/or overset

mesh: Develop a CFD model using dynamic and/or overset mesh to model the onset

of movement of a geobag in the channel. Additionally, a 6DOF solver was used to

determine the center of mass of geobag at each time-step of the simulation to measure

the movement of geobag.

1.5 Thesis Outline

A brief overview of the contents of the different chapters of this thesis is presented in

this section.

Chapter 1, provides a general introduction to the research and describes different

applications of the geobag. Additionally, the motivation behind this research is pre-

sented. This chapter provides a comprehensive overview of literature published on

the study of geobag for riverbank and coastal application. The research gaps and the

objective of the project are identified in this chapter.

Chapter 2, discusses the configuration of a transient three-dimensional CFD model of

a geobag in a laboratory channel. The details of the modeling and meshing method

are explained.

Chapter 3 offers a detailed breakdown of the drag and friction forces acting on indi-

vidual geobags at each time step of the transient simulation. The forces acting on a

geobag at failure are shown. The movement and motion of geobag are presented, and

the effects of different factors, including the shape of the bag, filling ratio, material

and velocity, on the incipient motion of geobag are provided.

Chapter 4, discusses the main conclusion of the present study and suggests recom-

mendations for future works.
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Chapter 2

Methods and Procedure

2.1 Introduction

Computational Fluid Dynamics (CFD) modeling is a cost-effective solution and valu-

able tool for analyzing the performance of many fluid flow problems. In this thesis,

advanced techniques of modelling were used to model and analyze the performance

of geobags used in the riverbank protection structures. With CFD modeling, geobag

simulation can reduce the time and cost associated with physical testing and trial-

and-error design. Additionally, CFD modeling can potentially help engineers and

designers gain a better understanding of complex fluid-structure interaction and de-

velop more effective solutions. This chapter describes the different steps involved in

CFD modeling of geobags, which includes Image processing of geobags, 3D modeling

of geobags, defining the boundary conditions, and mesh generation. Additionally, the

dynamic mesh techniques utilized in this simulation are highlighted in this chapter.

Finally, the experimental part of this study, which involves determining the friction

coefficient of geobags is also provided at the end of this chapter.

2.2 Channel flume and properties of geobags in

Experiment

The current study utilized data and findings from a previous laboratory investigation

conducted by White [36]. The experiments were conducted in a long recirculating
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flume 1.2 m wide and 25 m long, located at the T. Blench Hydraulics Laboratory at

the University of Alberta as shown in Figure 2.1. The sidewalls of the channel were

made of glass, and the bed was roofing asphalt (Manning’s n = 0.0016). The flow

depth was 0.3 m, and the slope of the bed was zero. The flow depth was measured

with a point gauge with an accuracy of +/- 0.5 mm. 9 cloth bags and 9 geotextile bags

with varying fill ratios and different initial shapes were studied. Table 2.1 provides

detailed characteristics of all the geobags utilized in this investigation. The fill ratio

is calculated by dividing the actual mass of the geobag by its mass when fully filled

with sand. The density, thickness and mass mentioned in the Table were measured

for the geobags.

Table 2.1: Material properties of geobag in the experiment

Name Material Initial shape Fill ratio% Density of geobag (kg/m3) Thickness of geobag (m) Mass (kg)

C1

Cloth Downstream 54 1716 0.014 0.234

Cloth Even 54 1716 0.014 0.234

Cloth Upstream 54 1716 0.014 0.234

C2

Cloth Downstream 69 1628 0.015 0.299

Cloth Even 69 1628 0.015 0.299

Cloth Upstream 69 1628 0.015 0.299

C3

Cloth Downstream 84 1788 0.022 0.364

Cloth Even 84 1788 0.022 0.364

Cloth Upstream 84 1788 0.022 0.364

G1

Geotextile Downstream 54 1609 0.017 0.234

Geotextile Even 54 1609 0.017 0.234

Geotextile Upstream 54 1609 0.017 0.234

G2

Geotextile Downstream 69 1807 0.021 0.299

Geotextile Even 69 1807 0.021 0.299

Geotextile Upstream 69 1807 0.021 0.299

G3

Geotextile Downstream 84 1804 0.025 0.364

Geotextile Even 84 1804 0.025 0.364

Geotextile Upstream 84 1804 0.025 0.364
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Figure 2.1: A geobag in the channel flume at the T. Blench Hydraulics Laboratory
at the University of Alberta [36]

2.3 Numerical Simulation

2.3.1 Image processing for edge detection using OpenCV2

Previous studies [36] showed that the shape of the geobag can greatly affect its sta-

bility. As the deformation of the geobag is not modeled, it is crucial to determine

the shape of the geobag prior to failure before modeling it in ANSYS Fluent. This

was achieved by using image processing techniques to extract the edges and shape of

the submerged geobag from the images taken in the laboratory experiments by White

[36]. OpenCV2 is an applicable library that focuses more on real-time applications

[42]. This library is officially written for the C++ language; but, it is also available

for Python. In this study, OpenCV2 was used as a machine-learning package to ana-

lyze image patterns of geobags in Python. The images were processed to determine

the borders of the geobag for simulation with Ansys Fluent. This process makes the

objects more clearly visible and fills the small holes in the objects. Figure 2.2 shows

the different steps of image processing of geobags in the context of this research.
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Figure 2.2: Flowchart of image processing

The input image is in the RGB form. Thresholding, which is a type of image

segmentation that changes the pixel of the image to make it easier to analyze, converts

the image from RGB colour into a binary image that is simply black and white. This

is a way to select areas of interest in the image and ignore the parts that are not

of concern. In the denoising step, the background noise is removed while the edges

remain, helping to reveal a smoother image. The next step is erosion and dilation.

Dilation means adding pixels to the boundary of the image to make the boundary

more visible, while erosion removes excessive pixels from some boundaries of the

image. The number of added or removed pixels from the image depends on the shape

and size of the structuring element used in the image processing. Figure 2.3 shows

an example input image, after segmentation, and the final output.
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Figure 2.3: Example input image, after segmentation, and the final output

2.3.2 Governing equations

CFD simulation solves the partial differential equations governing the fluid flows.

Calculations are based on mass, momentum, and energy balance from fundamental

fluid dynamics. CFD solves the equations iteratively, resulting in overall residuals. A

residual is the sum of the imbalances of all the computation cells for a general variable,

which is related to the numerical error in the discretized equations. Convergence

is determined by summing the error in all control volumes and overall discretized

equations. In this simulation, the fluid is assumed to be continuous, and velocity,
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density, pressure, etc., are described as macroscopic properties.

The 3D continuity equation for an incompressible fluid is as follows:

div
−→
V = 0 (2.1)

The following equation represents the conservation of momentum equations for

turbulence flow, the so-called Reynolds Averaged Navier-Stokes (RANS) equations.

During the process of Reynolds averaging, an extra stress tensor, known as Reynolds

Stress, emerges. In order to solve the RANS equations, it becomes necessary to

express the Reynolds stress tensor in relation to the mean flow properties.
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u′
iu

′
j is defined as the Reynolds stress tensor and represents the fluctuation of the

velocity field. The incorporation of this non-linear Reynolds stress term required

further modeling to complete the RANS equations for the solution. As a result,

numerous turbulence models have been developed.

The widely used K-epsilon turbulence model is used in this study. The turbulence

kinetic energy, k, and its rate of dissipation, ϵ, are calculated from the following

equations:

∂

∂t
(ρk) +

∂

∂xi

(ρkui) =
∂
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[(µ+
µt

σk

)
∂k
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] +Gk +Gb − ρϵ− YM + Sk (2.3)

∂
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∂
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µt
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)
∂ϵ

∂xj

] + C1ϵ
∂ϵ

∂xj

(Gk + C3ϵGb)− C2ϵρ
ϵ2

k
+ Sϵ (2.4)

In these equations, ρ is the density of the fluid, k is the turbulence kinetic energy,

µt is the turbulence viscosity, u is the velocity component in the x direction, µ is the

molecular viscosity, σk is a model constant, ϵ is the turbulent dissipation rate, δij
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is the Kronecker delta, Gk is defined as the generation of turbulence kinetic energy

due to mean velocity gradients, YM is the dissipation of turbulence kinetic energy,

C1ϵ and C2ϵ are model constants, Gϵ is the generation of turbulence dissipation rate,

Yϵ, Sϵ, Sk, Gb is the dissipation of turbulence dissipation rate, user-defined source,

user-defined source and production of TKE due to buoyancy, respectively.

The Six Degree Of Freedom (6DOF) solver solves the equation of motion for solid

bodies in addition to the Navier-Stokes equation for the fluid flows. This solver

determines the forces and moments acting on the rigid body due to fluid flow. The

forces and moments are used to calculate the translational and angular motion of the

center of mass for the object. Using equations of motion, the 6DOF solver calculates

translation and rotation of the object. In this equation, the reference point is situated

at the bottom-left corner of the geobag. The equations of motion for a solid body in

the fluid are as follows[43]:

−→νĠ =
1

m

∑︂−→
f G (2.5)

In this equation, −→νĠ is the translational acceleration which is for the center of gravity,

m is the mass, and
−→
f G is the force vector acting on the center of gravity.

−→ωB
̇ = L−1(

∑︂−−→
MB −−→ωB × L−→ωB) (2.6)

where −→ωB
̇ and

−→
MB are the angular motion of the object and the moment vector for

the body, L is the inertia tensor, and −→ωB is defined as angular acceleration vector of

the rigid body.

Determining the center of mass and mass moment of inertia is necessary to obtain

the correct simulation result. The mass moment of inertia for a rectangular prism,

as shown in Figure 2.4, is calculated from the following formulas:
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Figure 2.4: Rectangular prism

⎡⎢⎢⎢⎣
1
12
m(a2 + b2) 0 0

0 1
12
m(b2 + c2) 0

0 0 1
12
m(c2 + a2)

⎤⎥⎥⎥⎦ (2.7)

Geobags modelled in this thesis do not have symmetrical shapes. The Ansys Me-

chanical model and Ansys Fluent were used to determine the actual center of mass

and mass moment of inertia for the bags.

2.3.3 Geobag and hydrodynamic forces

CFD was used primarily to model the stability of the submerged geobags. This study

evaluated the hydrodynamic forces acting on the geobag, namely, drag, buoyancy,

and lift force. The drag, inertia, and lift forces were calculated by the Ansys Fluent.

Figure 2.5 shows the diagram of forces acting on the submerged geobag.

Figure 2.5: Forces acting on a submerged geobag
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The drag force is calculated from the following formula:

FD =
1

2
CDρwAsu

2 (2.8)

Where ρw is the density of water, CD is the dimensionless coefficient of drag, u is

the mean flow velocity, and As is cross-sectional area normal to the flow [9].

Where CM is the inertia coefficient and V is the volume of geobag and u̇ is the

flow acceleration
(︁
∂u
∂t

)︁
.

The lift force is calculated according to the following formula:

FL =
1

2
CLρwATu

2 (2.9)

Where CL is the dimensionless lift coefficient, AT is the horizontal cross-sectional

area of the geobag. The drag and lift forces are calculated based on the pressure

differences and viscous shear forces acting on the surface of the geobag by Ansys

Fluent. The weight force is caused by the weight of the geobag under buoyancy,

which is determined from the following formula:

Fw = (ρs − ρw)V g (2.10)

Where V is the volume and ρs is the density of geobag, respectively.

2.3.4 Stability of Geobag

Two modes of failure must be considered in the study of the stability of the geobags

[44, 45].

Sliding occurs when

FD > µs(Fw − FL) (2.11)
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Where µs is the coefficient of static friction, which was determined in this study

with a simple experiment that will be discussed in section 3. The minimum depth-

averaged velocity for sliding (uslide) can be computed from the following formula

[46]. As this study exclusively examined the sliding mode of failure, the term (uslide)

represents the failure velocity of the geobag:

1

2
CDρwATu

2
slide > µsFw − µs(

1

2
CLρwALu

2
slide) (2.12)

1

2
× CDρwATu

2
slide + µs(

1

2
CLρwALu

2
slide) > µsFw (2.13)

uslide =

√︄
µsFw

0.5ρf (CDAT + CLALµs)
(2.14)

Overturning occurs when the sum of the drag, and lift force moments exceed the

gravitational moments[46]

FDLD + FLLL > FWLW (2.15)

Where LD, LL, LW are the moment arms of the drag, lift, and gravitational forces.

Then, the minimum depth-averaged velocity for geobag for overturning is determined

from the following formula:

1

2
CDsρwATu

2
overturningLD +

1

2
CLρwALu

2
overturningLL > FWLW (2.16)

uoverturning =

√︄
FWLW

0.5ρf (CDATLD + CLALLL)
(2.17)
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2.4 Model Implementation

2.4.1 Model Geometry

After the edges and borders of a geobag were generated by image processing, the image

was imported to Ansys Space Claim software to create the geometry for simulation.

Figure 2.6 shows how the geometry is created in the space claim software. This study

considered two different materials, cloth, and geotextile bags, and three filling ratios

54%, 69%, and 84%, three initial shapes, upstream heavy, even, and downstream

heavy, with the same dimensions (10 cm x 15 cm). Therefore, eighteen images were

imported into Space Claim to create geometries of submerged geobags.

Figure 2.6: Creating the geometry in Space Claim

For this modelling, the geometry is approximated by extruding the cross-section.

This is because we only had the side-view photos of the geobags. It is a simplified

model with a bigger volume than the real geobag. Therefore, two different cases can

be considered for the modelling of geobag.
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The first case is to consider the same density as the experimental study. With a

bigger volume caused by the extrusion, the mass of the geobag is larger than in the

experimental study. As a result, the bag will start moving at a higher flow velocity

compared to the failure velocity determined in the experimental study.

The second case is to consider the same mass as the experimental study. In this

case, since the volume is larger than in the experimental case, it is required to decrease

the density to arrive at the same mass. In this way, the bag will start moving at the

same flow velocity as that in the experimental study. Therefore, for this study, the

mass of geobags is the same as in the experimental study.

2.4.2 Computational setup and boundary conditions

Figure 2.7 shows the computational domain and boundary conditions of the 3D ge-

ometry. The geobag is located at a 1cm distance from the bottom of the channel.

This is because the overset mesh needs to be at least four layers of mesh distance

between the geobag and the wall. The domain size was tested to ensure that the

smallest changes in flow around the geobag will be captured. In addition, the effects

of sides and top boundaries on the geobag were minimized by domain independence

analysis. The two side walls and the top of the domain were considered zero-shear

walls since only part of the channel was modelled. Dynamic mesh and overset mesh

were explored for this study.

a) Dynamic mesh

Dynamic mesh setting in Ansys Fluent consists of three meshing methods and four

options. Three different methods include smoothing, layering, and re-meshing. Select-

ing the correct dynamic mesh methods and options is essential for avoiding negative

volume errors in Ansys Fluent. The layering method adds or removes layers of cells

based on the height of the cells and only works for structured meshes. The smooth-

ing method allows cells of the mesh to stretch and contract. All deforming zones
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Figure 2.7: Schematic of the computational domain and boundary conditions

with dynamic boundaries can be modeled with this method, and it is most suitable

for tetrahedral cells. However, the smoothing method is not appropriate for large de-

forming boundaries, which are used in this simulation. The last method is re-meshing,

which works by the desired level of skewness. Skewness is the ratio of the length of

the longest edge of an element to the minimum length between two opposite faces

of the element. During the re-meshing process, the software checks the skewness of

elements for the new mesh. If the skewness of the new mesh exceeded the maximum

allowable value, the re-meshing process started to improve the quality of the mesh.

The problem with this method is that the quality of the mesh, especially within the

boundary layer, decreases significantly. Therefore, the re-meshing method is not ap-

plicable to the modeling of this simulation. The other CFD software of Ansys, CFX,

was also considered for this study but only offers the re-meshing method of dynamic

mesh, which always diverged in tests. For this reason, CFX was rejected in favor of

Fluent, which offers the overset mesh method. An overset mesh allows large relative

motion between different components and moves the layers without deforming the

mesh.

25



b) Overset mesh

Overset mesh, which is also known as Chimera mesh, is a technique in Ansys Fluent

that allows the simulation of complex fluid-structure interactions in which one or

more objects move around the surrounding fluid. Each overset mesh comprises two

main parts; The first one is the background mesh, which is static mesh and covers

the entire domain and cannot be moved. The second part is the component mesh,

which could be one or more objects meshed independently. The component mesh is

the dynamic part of the mesh, and, in this study, it consists of the subdomain and the

geobag. The spatial grid comprises an inhomogeneous grid with finer mesh around

the geobag and bottom of the channel and a coarser mesh close to the other domain

boundaries. The component mesh (geobag and subdomain) is an unstructured grid

generated with Ansys Meshing, and the background mesh is a structured grid created

with Ansys ICEM. Figure 2.8 shows the meshing of the flow domain.

Figure 2.8: Meshing of subdomain and domain
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For this simulation, only overset mesh with 6DOF and Implicit Update was used in

the dynamic mesh menu to model the geobag in the channel. The details of the 6DOF

option are mentioned in part d of section 2.4.2. The implicit update is an algorithm in

which the deformation is accounted for implicitly by solving the governing equations

without calculating the boundary motion explicitly. This approach helps to avoid re-

meshing. The mesh is updated based on velocity and acceleration and the boundary

motion. The governing equations for the next time step are solved based on the new

mesh. The implicit update helps to maintain the quality of the boundary layer mesh

during the simulation.

c) Solver Setting

The numerical models were created using Ansys Fluent. The software solves 3D

RANS, which resolves mass and momentum transfer. For this study, a transient

solver is chosen to numerically simulate the movement of the submerged geobag. The

pressure-based solver has been used with a wide range of flow velocities from 0.44 to

1.06 m/s. The motion of the component mesh can be defined with boundary profiles

or user-defined functions.

d) User-defined function and 6DOF properties

The 6DOF solver, based on the flow around the geobag and the geobag properties,

moves the dynamic zone to the next time step. Two macros were used in the 6DOF

solver to simulate the geobag at the bottom of the channel. This was achieved through

the user-defined function (UDF). A UDF is a function that can be dynamically loaded

with the Ansys Fluent solver, enhancing the standard features of the code [47]. For

this study, two different UDFs have been used with the 6DOF solver. First, the 6DOF

solver required the definition of desired properties with UDF, which comprise mass,

moments, products of inertia, external forces and moments, and the body constraints.

The DEFINE-SDOF-PROPERTIES macro was used to define various properties of
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the geobag for the 6DOF solver. These properties include mass, mass moment of

inertia, and friction force. This macro works best to simulate a solid body in the flow

field.

The second UDF is the DEFINE-CONTACT macro, which was used to determine

the response to a contact detection in the Ansys Fluent. Contact detection was

used to identify component mesh that will have contact with the other surfaces in

the background mesh. Without contact detection, the bag in the component mesh

simply crosses the boundary wall in the background mesh. After the simulation

starts, the geobag moves downward due to the weight of the bag and stops at the

threshold distance, which is defined as the same distance (1 cm from the bottom of

the channel), then moves in the direction of the flow depending on the momentum

exchange between the geobag and the fluid. It is worth mentioning that there is a

thin layer of fluid between the bag and the bottom of channel. In the context of

Ansys Fluent, a potential solution to address this interaction is to establish a porous

medium at the contact zone. This approach effectively restricts fluid movement within

this specific region, preventing any flow through the contact interface. However, the

porous medium option is not available for the overset mesh model in Ansys Version

2022 R2 or older versions that are used for this simulation. Therefore, a thin layer of

water existed between the geobag and the bottom of the channel.

e) Material properties

The fluid used in the present study is liquid water with a dynamic viscosity of 0.001003

kg/(m s) and a density of 998 kg/m3. The density, initial shape, filling ratio, mass,

and thickness of the bags are according to Table 2.2. The gravitational acceleration

is 9.81 m/s, and the atmospheric pressure is 101.325 kPa. It is worth mentioning that

the density and volume for Table 2.2 are different compared with material properties

of the experimental study of Table 2.1. This is because the geometry of the bags was

created from the side-view photos of the bag, and the image of the bags was extruded
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to create the geometry. As a result, the extruded image possesses a greater volume

than the physical bag. To match the experiment’s mass, it’s necessary to reduce the

density of this extruded geometry.

Table 2.2: Material properties of the simulated geobag

Name Material Initial shape Fill ratio Density (kg/m3) Thickness (m) Mass (kg) Volume (m3)

C1

Cloth Downstream 54 1289.39 0.014 0.234 0.000181

Cloth Even 54 1499.4232 0.014 0.234 0.000156

Cloth Upstream 54 1448.9 0.014 0.234 0.000161

C2

Cloth Downstream 69 1320.2 0.015 0.299 0.000177

Cloth Even 69 1413.177 0.015 0.299 0.000212

Cloth Upstream 69 1471.836 0.015 0.299 0.000228

C3

Cloth Downstream 84 1471.836 0.022 0.364 0.000247

Cloth Even 84 1445.878 0.022 0.364 0.000251

Cloth Upstream 84 1434.595 0.022 0.364 0.000253

G1

Geotextile Downstream 54 1325.178 0.017 0.234 0.000176

Geotextile Even 54 1235.154 0.017 0.234 0.000189

Geotextile Upstream 54 1230.607 0.017 0.234 0.00019

G2

Geotextile Downstream 69 1692.97 0.021 0.299 0.000176

Geotextile Even 69 1352.51 0.021 0.299 0.000221

Geotextile Upstream 69 1310.081 0.021 0.299 0.000228

G3

Geotextile Downstream 84 1427.52 0.025 0.364 0.000254

Geotextile Even 84 1414.196 0.025 0.364 0.000257

Geotextile Upstream 84 1412.604 0.025 0.364 0.000257

f) Near Wall Treatment

Near Wall Treatment (NWT) is a technique which is used in CFD simulations to

model a turbulence flow near the wall. Due to the chaotic and unpredictable motion of

fluid particles in turbulent flows, it is difficult to predict thoroughly how flow behaves

near solid objects. The NWT technique is able to capture the viscous forces’ effects

on the flow. The NWT divided the wall boundary layer into three different zones.

The viscous sub-layer (y+ < 5) is a layer which is in direct contact with the solid wall.

The flow behaviour of the fluid in this layer is dominated by its viscosity. This viscous

sublayer is typically very thin, only a few micrometers thick, and proportional to the
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molecular viscosity of the fluid. The next layer is the buffer layer (5 < y+ < 30),

which is immediately above the viscous sublayer. In this region, the fluid is affected

by both the viscosity of the fluid and the turbulent eddies in the outer region of the

flow. The last layer is the log-law region (y+ > 30), which is the outermost region. In

this region, the turbulence eddies are fully-developed and can be modeled with high

Reynolds number turbulence models, such as the Reynolds-Averaged Navier-Stokes

(RANS).

The y+ is a dimensionless parameter that represents the normalized distance of wall-

adjacent nodes of mesh from the wall. The y+ is calculated from the following formula:

y+ =
ρwu∗y

µw

(2.18)

In this equation, u∗ is defined as friction velocity in the near wall region, and y is the

distance from the wall. The friction velocity can be determined from the following

formula:

u∗ =

√︃
τwall

ρw
(2.19)

Where τwall is defined as the shear stress acting on the walls. The y+ value over the

bag changes from 0.00004 to 24.9.

2.4.3 Verification and Validation

Validation process of the overset mesh technique encompasses a comparison between

the velocity profile obtained from the computational fluid dynamics (CFD) model

and the experimental data available from White [36].

The measurements taken in the experiment with a cement bag were used to validate

the model. The cement bag employed in the experiment possesses dimensions of 18

cm in length and 14 cm in width, entirely filled with cement. The choice of a cement

bag, rather than a geotextile or cloth bag, stems from the fact that the shape of the

cement bag remained unchanged throughout the experiment, as it was filled solely
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with concrete. In contrast, geotextile and cloth bags filled with sand experienced

changes in shape over time. Hence, the velocity profiles of the cement bag were

utilized for validation purposes instead of geotextile or cloth bags. The velocity profile

was measured at five different locations: A-M, B-M, C-M, D-M, and E-M. Figure 2.9

shows the top view of the geobag and the location of the measured velocities.

Figure 2.9: Locations of velocity profile measured upstream and on top of the cement
bag

Figure 2.10 shows the velocity profiles of the cement bag at different locations. The

average error for the A-M location, positioned before the bag, is determined to be

2.8%. Subsequently, the average errors for the B-M, C-M, D-M, and E-M locations

are calculated as 3.4%, 4.2%, 6.8%, and 6.7%, respectively. Given that the errors

across all plots are below 7%, it can be concluded that the overset mesh effectively

represents the experimental data, which demonstrates the suitability of the overset

mesh for accurately simulating the physical behaviour of the system.
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Figure 2.10: Comparing the velocity profiles of experimental data vs numerical sim-
ulation of the cement bag
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2.5 Determining the effective-coefficient of geobag

The modeling of geobags positioned at the bottom of the channel presents certain

limitations due to the presence of the thin layer of water between the bag and the

bottom of the channel, which arises from the requirement of having a minimum of

four layers of nodes between the bag and the domain wall in overset mesh modeling

to prevent divergence. As a result, this thin layer negatively affects the precise net

force determination in the vertical direction.

To address this issue, an effective coefficient was introduced into the simulation

to compensate for the inherent shortcomings of the User Defined Function (UDF) in

accurately incorporating the weight of the bag when calculating the summation of

forces in the vertical direction. The effective coefficient was determined by dividing

the drag force by its corresponding friction force at the time of maximum drag. The

highest limit corresponds to failure velocity, and the lowest value corresponds to

the maximum stable velocity of the geobag, and a range of effective coefficients was

determined for each scenario. The intent was to create a correction that makes the

resulting friction force equal to the drag force at the failure velocity. The effective

coefficient was then multiplied by the friction force to simulate the movement of

geobag at the failure velocity.

2.6 Determining Friction Coefficient

Laboratory experiments were conducted to determine the friction coefficient between

the geobag and the flume bed. The friction coefficient is the tangent of the angle

of friction, which represents the angle at which an object, in this case, the geobag,

initiates sliding on an inclined surface. In the experiment, the geobag was carefully

positioned on a ramp. The ramp was made of roofing asphalt (Manning’s n = 0.0016)

since it represented the launched slope of geobags in the field. The angle of the ramp

was gradually increased until the geobag began to slide. At this critical point, the
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angle of the ramp was measured, providing the angle of friction. By taking the

tangent of the angle of friction, the static coefficient of friction can be determined

[48]. Geobags were tested in dry and wet conditions. In the dry condition tests, both

the geobag and inclined surface were devoid of moisture, while in the wet conditions,

the bag was placed in the box of water, and then the geobag was placed on the

inclined wet surface. Each test was repeated three times, increasing the precision of

the results. Figure 2.11 shows the geotextile and cloth bags placed on the inclined

surface. This coefficient serves as a crucial parameter in assessing the interaction

between the geobag and the fluid flow, aiding in the prediction and analysis of the

geobag’s motion and stability. Three different geobags, namely cloth, geotextile, and

cement bags, were tested to measure the friction coefficient of the bags. The results

of this section are presented in the next chapter.

Figure 2.11: Geobag on the inclined surface
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Chapter 3

Results and Discussion

3.1 Geometry of geobags prior to failure

The 18 scenarios investigated in the laboratory experiment [36] were considered in this

study. For each scenario, the side view image taken just before failure was processed

to generate the geometrical representation required in the CFD modeling. Figure 3.1

shows the geometry of all 18 scenarios. Each bag was arranged to have three different

initial shapes, namely upstream heavy, downstream heavy, and even shape. The ”Up-

stream heavy shape” denotes a configuration in which there is a greater concentration

of sand towards the upstream end of the geobag. Conversely, the ”Downstream heavy

shape” signifies a configuration where there is a higher concentration of sand in the

downstream section of the geobag. Lastly, the ”Even shape” indicates a balanced

distribution of sand throughout the geobag. For each bag, three filling ratios (54%,

69%, and 84%) were used.
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Figure 3.1: Geometry of cloth and geotextile bags used for modeling (C denotes cloth
bag; G denotes geotextile bag; 1, 2, 3 indicates a fill ratio of 54%, 69%, and 84%,
respectively)

3.2 The friction coefficient of bags

Table 3.1 summarizes the angle of friction for both dry and wet geobags determined

in the laboratory test. It can be seen that the friction angle and friction coefficient

of the cement bag placed on the wet surface are significantly lower than when placed

on the dry surface. This is due to the lubricating effect of water on the inclined

surface, facilitating the downward movement of the cement geobag at a smaller angle.

However, this is not the case for the geotextile and cloth geobags. Water did not serve

as a lubricant in these cases; instead, it adversely affected the friction behaviour at

the interface, leading to an increase in the angle of friction and, subsequently, the

friction coefficient between the bag and the wet surface.

A possible explanation is that the water content present in the wet geotextile and

cloth geobags, initiated capillary forces between the sand grains. These capillary
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forces induce cohesion among the sand grains and promote adhesion between the

sand grains and the bag material. As a result, a stronger cohesion between the wet

geobag and the inclined surface is established, ultimately leading to an increase in

the friction angle for wet geobags. Thus, the presence of capillary pressure exerts a

considerable influence, contributing to an amplified angle of friction. The capillary

pressure causes uncertainty in the test for determining the friction coefficient. For

this study, the dry coefficient is employed instead of the wet coefficient due to the

unpredictable nature introduced by capillary pressure in wet conditions.

Table 3.1: The angle of friction and friction coefficient of geobag under dry and wet
conditions

- Material Weight dry
Dry Friction Average Friction

Wet Angle
Friction Average Friction

Angle coefficient coefficient coefficient coefficient

1 Cement 1113.6g

28 0.53

0.49

15 0.26

0.2425 0.46 13 0.23

26 0.48 14 0.24

2 Geotextile 375g

48 1.11

1.123

57 1.53

1.6448 1.11 59 1.66

49 1.15 60 1.73

3 Geotextile 319.2g

46 1.03

1.03

60 1.73

1.6847 1 58 1.6

45 1.07 60 1.73

4 Cloth 732.2g

43 0.93

0.943

49 1.15

1.1145 1 46 1.03

42 0.9 49 1.15

5 Cloth 919.2g

43 0.93

0.965

48 1.11

1.0344 0.965 45 1

45 1 45 1

6 Cloth 306.2g

46 1.03

1.06

48 1.11

1.08345 1 48 1.11

46 1.03 46 1.03
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3.3 The effective coefficient of bags

The range of the effective coefficient domain is provided in Table 3.2 for all geobags.

By carefully examining the overlapping regions, the bags can be classified into five

groups, as shown in Figures 3.2 and 3.3 for geotextile and cloth bags, respectively.

It is evident that a significant degree of overlap exists among bags with comparable

configurations. Notably, all downstream heavy shapes G1, G2, and G3 overlap at a

specific range of effective coefficients and are therefore classified in Group B. More-

over, G1, G2, and G3, even shapes exhibit similar shapes before failure and overlap

at a range of effective coefficients, placing them in Group C. However, no evident

overlapping was observed for the upstream heavy geotextile bags, and they are cate-

gorized in Group A. This can be clarified by considering that the downstream portion

of the bag moved upward prior to its failure, and the cross-sectional area for the drag

force and, consequently, the drag force changed considerably before the failure.

The shape of cloth bags before failure is considerably different compared to their

geotextile counterparts. Notably, all cloth bags with a downstream heavy initial shape

displayed a similar shape just before failure which was denoted by a specific range

of effective coefficients. Furthermore, C3-even, a specific downstream cloth bag, is

characterized by a very similar shape observed in the other bags within this group,

resulting in their classification under Group D. C3-even and C2 and C3-downstream

shape did not experience failure in the experiment at the highest velocity setpoint of

1.08 m/s due to pump capacity limit[36]. Therefore, the upper bound of the effective

coefficient could not be determined.

The remaining cloth bags did not display any similarity in terms of their shape.

The range of effective coefficients also did not show any overlaps. This lack of overlap

arises due to two potential factors: either the shape of the bags prior to failure is

unattainable, or the bags experienced significant folding prior to failure, rendering

accurate anticipation challenging.
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Based on the bag shape and Table 3.2, a key observation is that the effective

coefficient tends to decrease as the bag shape becomes more similar to that of an

airfoil. The effective coefficient is the ratio of drag force to friction force obtained

from Fluent, and the friction force is calculated by subtracting the lift from the

weight force, which is then multiplied by the friction coefficient. A smaller value of

the effective coefficient indicates that the model-calculated friction force needs to be

corrected more due to a significant underestimation of the lift force. This was the

case for the bags with more streamlined shapes (e.g. the geotextile bags with an

even shape), the lift force is important for triggering failure, while CFD significantly

underestimates the lift.

For the bags with a bulky and irregular front (e.g. G1-upstream, the cloth bags

with a downstream heavy shape, C2-even, C3-even), the simulated lift force is closer to

its physical value and thus needs less correction. This occurs because the simulated

lift force is closer to its physical value, in comparison to the streamlined shapes.

Consequently, the simulated friction force is less overestimated, resulting in a higher

effective coefficient for bags with bulky shapes. As the values of the effective coefficient

approach the unity, it means that less correction is needed.

To facilitate simulation and analysis interpretation within the same group, a single

effective coefficient value was chosen for each group. Specifically, values of 0.27, 0.26,

and 0.75 were assigned to Groups B, C, and D, respectively. Each of these values was

selected based on being in the range of effective coefficient of all bags of the given

group. Typically, these values are in the middle of the ranges to avoid margin values

for friction force.

39



Table 3.2: Effective Coefficient domain for geobags

Name Material Initial shape Fill ratio Failure velocity Maximum stable velocity Effective Coefficient*

C1

Cloth Downstream 54 0.75 0.71 0.63-0.76

Cloth Even 54 0.76 0.71 0.16-0.19

Cloth Upstream 54 0.79 0.76 0.23-0.29

C2

Cloth Downstream 69 0.96 0.91 0.79-1

Cloth Even 69 0.86 0.81 0.2-0.75

Cloth Upstream 69 0.9 0.85 0.44-0.52

C3

Cloth Downstream 84 1.01 0.96 0.71-1

Cloth Even 84 1.08 0.96 0.59-1

Cloth Upstream 84 0.97 0.87 0.33-0.43

G1

Geotextile Downstream 54 0.51 0.49 0.12-0.28

Geotextile Even 54 0.63 0.61 0.147-0.28

Geotextile Upstream 54 0.75 0.71 0.875-1

G2

Geotextile Downstream 69 0.61 0.55 0.24-0.28

Geotextile Even 69 0.74 0.72 0.26-0.28

Geotextile Upstream 69 0.81 0.77 0.399-0.411

G3

Geotextile Downstream 84 0.78 0.74 0.21-0.26

Geotextile Even 84 0.78 0.76 0.24-0.26

Geotextile Upstream 84 0.94 0.92 0.245-0.263

Note: The higher value of the effective coefficient corresponds to the failure velocity and the lower value

corresponds to the maximum stable velocity.

3.4 Effects of shape on the incipient motion of

geobag

The bag with the same filling ratio but three different shapes was compared to assess

the effect of shape on geobag stability. It is crucial to note that the shape of the bags

modeled in this study represents their final shape just before failure. As a result, the

bags may have experienced folding or significant changes in shape before reaching the

failure point.

Figures 3.23, 3.5, and 3.6 depict pathlines of velocity magnitude for G1 down-

stream, G1 even, and G1 upstream shapes, respectively, at their corresponding failure
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Figure 3.2: Effective coefficient for Geotextile bags

velocities. The velocity changes from 0 to 0.62 m/s for the G1 downstream shape,

whereas, for the even and upstream shapes, the maximum velocity reaches 0.76 and

0.9 m/s, respectively. No re-circulation zone is observed in any of these figures. How-

ever, the G1 upstream shape experiences higher turbulence due to the blunt shape of

the geobag.

According to the parallel lab experiment [36], the downstream heavy bag failed

at lower velocities, suggesting that this bag is less stable as compared to the other

two shapes[36]. This could be explained based on the shape of the geobag. Since the

geotextile fabric is less flexible, the shape of the bag did not change much from the

initial shape and was less susceptible to folding. As a result, the lift force plays a key

role in the failure of the geotextile bags, and geobag begins to lift in response to the

incoming flow. Since the downstream heavy shape is lighter in the upstream front,
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Figure 3.3: Effective coefficient for cloth bags

the bag is less stable, and lifting can happen sooner in response to upcoming flow.

On the other hand, the even and upstream-heavy shapes failed at higher velocities,

implying a higher level of stability. This can be explained by the shape of the bags.

The geobag is denser in the upstream region of the even and upstream shape bags,

meaning that a higher amount of lift force is required to overcome the resisting force

for the even and upstream heavy bags.
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Figure 3.4: Pathlines of velocity magnitude at failure velocity 0.51 m/s for G1 down-
stream

Figure 3.5: Pathlines of velocity magnitude at failure velocity 0.63 m/s for G1 even
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Figure 3.6: Pathlines of velocity magnitude at failure velocity 0.75 m/s for G1 up-
stream

Figures 3.7, 3.8, and 3.9 present the contours of static and total pressure for the

G1 downstream, G1 even, and G1 upstream shapes of the geobags, respectively.

Notably, the upstream heavy bag experienced the highest values of static pressure.

The upstream heavy shape is denser in the region facing the upcoming flow, and the

blunt shape causes a re-circulation zone and an area of higher pressure on top of the

bag. The area of higher pressure on top and lower pressure on the bottom of the bag

decreased the lift force, and as a result, a higher drag force was required to overcome

the friction force and move the bag. The contours of static and total pressure for

downstream heavy shape show a lower pressure difference between the front and rear

of the bag. This is because the bag is lighter in the region of the upcoming flow, and

failure happens at lower velocities since a lower lift force is required to lift the front

of the bag and start the incipient motion of the bag at a lower pressure drag value.
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Figure 3.7: Contour of static and total pressure at failure velocity (0.51 m/s) for G1
downstream

Figure 3.8: Contour of static and total pressure at failure velocity (0.63 m/s) for G1
even

45



Figure 3.9: Contour of static and total pressure at failure velocity (0.75 m/s) for G1
upstream

Figure 3.10 compares the movement of geotextile bags during the simulation by

examining the location of the center of mass versus time. In this Figure, the reference

point is situated at the bottom-left corner of the geobag. Among the three bags of

different shapes, the G1-even shape experienced the most significant displacement

among the three bags. In contrast, G1 downstream and upstream shapes did not

experience significant movement.

It is essential to mention that the rotational movement of the geobags was re-

stricted in the simulation, limiting their motion to translational movement only. Con-

sequently, there was no observed movement or motion in other directions, emphasizing

the focus on translational displacement along the flow direction.
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Figure 3.10: Plot of the center of mass at failure velocities for G1 downstream, even,
and upstream with the effective coefficient (0.27 for G1 downstream, 0.26 for G1 even,
1 for G1 upstream )

Figures 3.11, 3.12 and 3.13 show the computed drag and friction forces versus time

at their corresponding failure velocity for G1 downstream, G1 even, and G1 upstream

shapes of the geobags. There is an initial change of drag and friction force before

reaching a stable value. This abrupt variation arose from the occurrence of contact

detection within the simulation during the initial time step. This phenomenon is due

to the discretization process, and calculation error happens at the time of contact.

The geobags started to move when the drag force exceeded the friction force during

the simulation. This happens at the velocity of 0.51 m/s for G1 downstream while the

failure velocities are 0.63 m/s and 0.75 m/s for G1 even and G1 upstream, respectively.

Although all cases have the same mass, G1-upstream experienced the smallest lift and

the highest friction force among the three cases (Figure 3.13).
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Figure 3.11: Drag and friction forces at failure velocity 0.51 m/s for G1 downstream
with the effective coefficient (0.27)

Figure 3.12: Drag and friction forces at failure velocity 0.63 m/s for G1 even with
the effective coefficient (0.26)
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Figure 3.13: Drag and friction forces at failure velocity 0.75 m/s for G1 upstream
with the effective coefficient (1)

3.5 Effects of material on the incipient motion of

the geobag

This section compared the impact of the geobag material. To explore this aspect, two

different geobags, each with the same filling ratio and shape but constructed from dif-

ferent materials, namely cloth, and geotextile, were compared. For this purpose, one

representative geobag, which is the downstream shapes of both the cloth and geotex-

tile bags, is examined to assess the material-dependent effects on the characteristics

of the geobag. Different fabrics utilized in creating the geobags exhibit varying levels

of flexibility. Increased flexibility leads to a greater propensity for geobags to fold

and alter their shape prior to failure.
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Figure 3.14: Contour of velocity magnitude at failure velocity (0.75 m/s) for C1
downstream

Figure 3.15: Contour of velocity magnitude at failure velocity (0.51 m/s) for G1
downstream

Figures 3.14 and 3.24 compared the velocity magnitude contours for two different

downstream configurations, C1 downstream and G1 downstream, at their respective

failure velocities. The failure velocities were 0.75 m/s for C1 downstream and 0.51 m/s

for G1 downstream. Although the bags have the same weight and both of them have

the downstream initial shape, the cloth bag has a higher failure velocity compared to

50



the geotextile bag. This is because the geotextile bags are less flexible and begin to

lift from the approaching flow. This is not the case for cloth bags since cloth bags are

either compressed or folded in on themselves due to higher flexibility. This explained

the lift force for the failure of geotextile bags and the lower failure velocity for starting

the incipient motion of geobag.

Figures 3.16 and 3.27 provide the contours of static and total pressure distribution

for the C1 and G1 downstream geobags, respectively, at their respective failure ve-

locities. Since the geotextile bag has less flexibility and is more streamlined in shape,

the pressure of oncoming flow upstream of the bag causes lifting of the bag even at

lower velocities. The incipient motion occurs at a lower velocity.

The pressure of upcoming flow folded the bag due to the higher flexibility of the

cloth bag, This folding is clearly visible in the upstream section of the cloth bag.

Therefore, the effect of the lift force is lower in a cloth bag and contributes to higher

stability of the cloth bag.
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Figure 3.16: Contour of static and total pressure at failure velocity (0.75 m/s) for C1
downstream
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Figure 3.17: Contour of static and total pressure at failure velocity (0.51 m/s) for G1
downstream
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Figure 3.18 shows the vector plot of velocity magnitude for the C1 downstream

configuration at its respective failure velocity of 0.75 m/s. The vector plot shows the

re-circulation zone on top of the cloth bag. As the fluid cannot follow the curvature

of the bag surface and detaches from it, the flow separates from the surface and

moves in the opposite direction, forming a re-circulation zone. The re-circulation

zone occurred as a result of higher pressure differences around the bag, leading to a

stronger adverse pressure gradient. The flexibility of the cloth bag makes it deform

and adapt to changing flow conditions. In the presence of the re-circulation zone, the

cloth bag experienced more significant and frequent deformations due to variations in

flow velocity and direction, which caused the bag to be more stable and less affected

by lift force. Similarly, Figure 3.19 displays the vector plot for the G1 downstream

configuration at a failure velocity of 0.51 m/s. No re-circulation zone is observed in

the G1 downstream shape, and less flexibility of the geotextile bag causes lifting of

the bag in lower velocities, which makes it less stable compared with cloth bag.

Figure 3.18: Vector plot of velocity magnitude at failure velocity of 0.75 m/s for C1
downstream
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Figure 3.19: Vector plot of velocity magnitude at failure velocity of 0.51 m/s for G1
downstream

Figures 3.20 and 3.21 provide the plots of force versus time for drag and friction

force in the modeling of geobag, offering a comprehensive understanding of the forces

acting on the geobag during the simulation. Both C1 and G1 downstream shapes are

plotted at the failure velocities of the geobag, signifying the critical point where the

bags cannot sustain the flow conditions and experience failure. Even though both

bags have the same weight, the drag force for the cloth bag is considerably higher

than the geotextile bag. This can be related to the flexibility of the cloth bag since

the C1 downstream shape experiences considerable changes in shape and fold before

failure happens. A flexible geobag can deform due to fluid forces. The cloth bag

remains stable at the higher velocity, which may be due to the upstream side of the

cloth bag folding on top of itself. As a result, the cloth bag experiences less lift force

and remains stable at higher velocities.
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Figure 3.20: Plot of drag versus friction force at failure velocity 0.75 m/s for C1
downstream with the effective coefficient (0.75)

Figure 3.21: Plot of drag versus friction force at failure velocity 0.51 m/s for G1
downstream with the effective coefficient (0.27)
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Figures 3.22 and 3.23 show the pathlines of velocity magnitude for C1 and G1

downstream shapes, respectively. Pathlines represent individual fluid particles as they

move through the flow field. The pathlines reveal the separation and re-circulation

on top of the cloth bag. The pathlines show where the fluid flow detaches from the

surface of the cloth bag and forms re-circulation zones.

Figure 3.22: Pathlines of velocity magnitude at failure velocity 0.75 m/s for C1
downstream

Figure 3.23: Pathlines of velocity magnitude at failure velocity 0.51 m/s for G1
downstream
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In total, when evaluating the impact of material on geobag, it can be summarized

as how much the material causes the flexibility of the geobag. As evidenced by the

findings, cloth bags exhibit a higher degree of flexibility when compared to their

geotextile counterparts. This heightened flexibility results in a substantial alteration

of shape and folding of the bag on top of itself prior to failure. This causes a decrease

in lift force for cloth bag. As a result, the cloth bags remain stable at higher velocities

compared with geotextile bags.

3.6 Effects of filling ratio on the incipient motion

of geobag

This section focuses on exploring the effect of filling ratio variation on the behavior of

geobag under turbulent flow conditions. By comparing three geotextile bags with dif-

ferent filling ratios while keeping other parameters constant, the aim is to investigate

the weight of the bag on the incipient motion.

Figures 3.24,3.25 ,3.26 and provide a comparison of velocity magnitude contours

for three different geobags: G1 downstream, G2 downstream, and G3 downstream,

each with varying filling ratios of 54%, 69%, and 84%, respectively. Thompson et al,

[35] show that bags with filling ratios of 80% are the most stable, and Pliarczyk et

al,[26] indicated that a filling ratio of 80% prevents the sands from moving inside the

bag. This means that bags with a higher filling ratio fail at higher velocities. The

average failure velocities for G1 downstream, G2 downstream, and G3 downstream

are measured at 0.51 m/s, 0.61 m/s, and 0.78 m/s, respectively [36]. This can be

explained based on the weight of bags in the simulation.

Bags with a higher filling ratio experience higher gravitational and friction force

require higher velocity and consequently, higher lift force to counteract this gravita-

tional force and stay on the bottom of the channel. As a result, bags with a higher

fill ratio require higher velocity to start the incipient motion.
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Figure 3.24: Contour of velocity magnitude at failure velocity (0.51 m/s) for G1
downstream

Figure 3.25: Contour of velocity magnitude at failure velocity (0.61 m/s) for G2
downstream
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Figure 3.26: Contour of velocity magnitude at failure velocity (0.78 m/s) for G3
downstream

The contour of the total and static pressure for G1, G2, and G3 downstream

geotextile bags is provided in Figures 3.27, 3.28, and 3.29. The highest static pressure

is observed on the surface of the geobag facing the fluid flow, which is because the fluid

flow comes to a complete stop at the surface of the geobag due to no-slip conditions.

As the fluid flows across the upstream and moves towards the downstream of the

geobag, the velocity increases and static pressure decreases. The pressure difference

between these two regions causes pressure drag. In addition, the area with lower

static pressure on top of the bag in the upstream region causes the bag to experience

lift and makes the bag lighter, and decreases the friction force of the bag. This makes

the bag move even with low drag force. This can explain why the G1 downstream

shape has less stability and moves even with a lower drag force.
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Figure 3.27: Contour of static and total pressure at failure velocity (0.51 m/s) for G1
downstream
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Figure 3.28: Contour of static and total pressure at failure velocity (0.61 m/s) for G2
downstream
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Figure 3.29: Contour of static and total pressure at failure velocity (0.78 m/s) for G3
downstream

Figures 3.30, 3.31, 3.32 and provide the plots of drag and friction forces versus

time for the G1, G2, and G3 downstream shapes of geobags. All three figures are

plotted at the failure velocity of the geobags, ensuring a consistent comparison under

similar flow conditions. Drag force for G1 and G2 downstream at time steps of 0.01

to 0.03 seconds became more than the friction force and experienced the motion of

geobag. For the G3 downstream, however, drag is more than the friction force at all

timesteps, which shows considerable displacement for G3 downstream in the direction

of the flow.
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Figure 3.30: Plot of the drag versus friction force at failure velocity 0.51 m/s for G1
downstream with the effective coefficient (0.27)

Figure 3.31: Plot of the drag versus friction force at failure velocity 0.61 m/s for G2
downstream with the effective coefficient (0.27)
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Figure 3.32: Plot of the drag versus friction force at failure velocity 0.78 m/s for G3
downstream with the effective coefficient (0.27)

3.7 The hypothetical geobag

Given the thorough comparisons conducted in the preceding sections, it becomes

feasible that it is possible to compare any new shape of the geobag with groups of

geobags presented in Figures 3.2 and 3.3 as long as they follow similar patterns. The

objective of this section is to facilitate the comparison of any geobag with shapes re-

sembling those presented in the mentioned figures, allowing for the determination of

their failure velocities in the channel. For this purpose, one representative hypothet-

ical geobag, which follows the shape of group B, is presented in this section. Table

3.3 shows the properties of the hypothetical geobag.

Table 3.3: Material properties of the hypothetical geobag

Material Density (kg/m3) Mass (kg) Volume (m3)

Geotextile 1532.9 0.25 0.00016
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It is worth mentioning that the effective coefficient for the hypothetical geobag is

selected based on the effective coefficient of group B. Therefore, the effective coefficient

0.26, which is representative of group B, is selected for the hypothetical geobag as

well.

Figure 3.33 shows the geometry of the hypothetical geobag. A detailed analysis

of the hypothetical geobag is presented with various visualizations and plots at both

the failure velocity and the maximum stable velocity. Contours of static and total

pressure and plots of the center of mass and forces versus time are presented in this

section. This approach allows us to investigate the effects of changing velocity on the

behaviour of the hypothetical geobag.

Figure 3.33: Geometry of the hypothetical geobag

The hypothetical geobag is simulated using an effective coefficient of 0.26, similar

to group B, and the inlet velocity of the channel increased gradually by 0.05 m/s until

the failure happened at a velocity of 0.95 m/s. Therefore, the plots and contours are

presented at the velocity of 0.95 m/s and the maximum stable velocity, which is 0.9

m/s. Table 3.4 shows the average drag and friction force at maximum stable velocity

and failure velocity of the hypothetical geobag.
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Table 3.4: Average of Drag and Friction force affects the hypothetical geobag

Velocity (m/s) Drag force (N) Friction force (N)

Failure velocity (0.95 m/s) 0.157 0.19

Maximum stable velocity (0.9 m/s) 0.14 0.199

Figures 3.34 and 3.35 provide the contour of static and total pressure for the

hypothetical geobag at the failure velocity of 0.95 m/s. The upstream of the geobag

flow comes to a complete stop due to the presence of the geobag obstructing the

flow. The fluid particles have to divert their path and flow around the geobag. This

redirection of flow creates an area of low pressure on the upstream side of the body. On

the downstream of geobag, the fluid particles re-converge after having flowed around

the body. This re-convergence leads to a region of increased pressure compared to

the upstream. The pressure difference between the upstream and downstream sides

of the geobag contributes to a higher pressure drag force. This force acts in the

direction opposite to the motion of the body and opposes its movement through the

fluid, which in turn leads to resistance against the motion.
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Figure 3.34: Contour of static pressure at failure velocity 0.95 m/s for the hypothetical
geobag

Figure 3.35: Contour of total pressure at failure velocity 0.95 m/s for the hypothetical
geobag
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Figures 3.36 and 3.37 show the vector plots and pathlines of velocity magnitude

at the failure velocity of the hypothetical geobag. According to the plots, no re-

circulation zone can be observed for the hypothetical geobag, and arrows of the vector

plots show areas with lower velocity magnitude around the geobag as a result of no-

slip conditions of the geobag.

Figure 3.36: Vector plots of velocity magnitude at failure velocity 0.95 m/s for the
hypothetical geobag

Figure 3.37: Pathlines the velocity profile at failure velocity 0.95 m/s for g1 down-
stream
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Figure 3.38 presents the plot of drag and friction force versus time at the velocity

of 0.9 m/s. Since this velocity is less than the failure velocity of the geobag, the

friction force becomes more than the drag force, and the bag is not able to move.

In contrast, Figure 3.39 shows the plots of drag and friction force versus time at the

failure velocity of the geobag, which is 0.95 m/s. The bag only experienced movement

at a range of timesteps 0.01 to 0.03 seconds within the timestep of the simulation.

Figure 3.38: Plot of the drag and friction force versus time at a velocity lower than
failure 0.9 m/s for the hypothetical geobag
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Figure 3.39: Plot of the drag and friction force versus time at failure velocity 0.95
m/s for the hypothetical geobag

In summary, the outcomes of the hypothetical geobag indicate that it is possible

to model and determine the failure velocity of geobags that have similar patterns, as

presented in Figures 3.2 and 3.3.
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Chapter 4

Conclusion

4.1 Summary

This thesis employs the overset mesh technique to model the behavior of the geobag

at the bottom of the channel, aiming to analyze its motion and failure with different

materials, shapes, and fill ratios of geobags. The final chapter presented a compre-

hensive summary of the achievements and conclusions derived from this study.

In the initial phase of this study, the primary objective was to determine the precise

shape of the geobags before failure. To accomplish this, an image processing technique

was employed to identify the edges of the geobags. Subsequently, the overset mesh

technique was utilized to create an accurate model of the geobag positioned at the

bottom of the channel. However, it became evident that the overset mesh approach

had limitations in effectively modeling the geobag at the bottom of the channel.

To overcome these limitations and achieve a more precise representation, two dis-

tinct User Defined Functions (UDFs) were introduced. The first UDF, known as

the DEFINE-CONTACT macro, served to establish a threshold distance between

the geobag and the bottom of the channel to prevent divergence. The second UDF,

known as DEFINE-SDOF-PROPERTIES (6DOF) macro, was responsible for defining

the mass and mass moment of inertia of the geobag. Additionally, since the geobag

was not ideally situated at the bottom of the channel, the friction force had to be

defined as an external force within the 6DOF macro.
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Furthermore, the Ansys Fluent used in this study has certain limitations when it

comes to accurately incorporating the weight of the bag and calculating the net forces

during the simulation. To address this issue, a coefficient referred to as the ”effective

coefficient” has been introduced. This effective coefficient is carefully defined to ensure

the precise determination of the net force in the vertical direction.

In the final phase of this study, the focus shifts to determining the friction coeffi-

cient of the geobags, a crucial parameter required for accurately simulating different

materials of the geobags at the bottom of the channel.

Once the model was thoroughly verified and validated against experimental data,

the subsequent section presents the outcomes of this study:

1. The verification and validation process involves comparing the velocity profiles

at various locations of the cement bags with available experimental data. However,

it is worth noting that the cloth and geotextile bags were not considered for the ver-

ification and validation of the results. The reason for excluding these bags is that

they were filled with sand, leading to changes in their shape over time during the

experiment. The velocity measurements were taken at the beginning of the exper-

iment when the shape of the bags had not undergone significant alterations. As a

result, for the validation of the cloth and geotextile bags with the experimental re-

sults, it becomes essential to utilize the initial shape of the geobags at the bottom

of the channel. This approach ensures that the validation process accurately reflects

the behavior of the bag with the initial shape when the velocity measurements were

obtained and minimizes the influence of shape changes during the experiment.

2. This study involved the analysis of 18 geobags used to model the movement of

them at the bottom of the channel. Due to filling the bags with sand, their shape un-

dergoes changes during the experiment. However, the simulation did not account for

the flexibility of the geobags in the modeling process. Therefore, it becomes crucial
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to obtain the precise final shape of the bags before their failure to accurately simulate

their behavior. To address this challenge, the image processing technique was em-

ployed. This technique enables the accurate determination of the edges and borders

of the geobags, thereby providing the exact geometry required for the modeling of

the geobags in the channel.

3. To overcome the software limitations in accurately calculating net forces in the

vertical direction, an effective coefficient was introduced. This coefficient allows for

a precise determination of the friction force, which is calculated by multiplying the

net forces in the y-direction with the friction coefficient. A domain is defined for the

effective coefficient to ensure that the friction force becomes less than the drag force

at failure velocity, allowing for movement of the bag in the flow direction. Conversely,

at velocities lower than failure, the effective coefficient was adjusted to make the fric-

tion force greater than the drag force, preventing unnecessary bag movements.

4. The experimental part of this study focused on determining the friction coeffi-

cients of geobags made from three different materials: cloth, geotextile, and cement

bags. The friction coefficient measurements were conducted under two conditions:

dry and wet. In dry conditions, the friction coefficient for both geotextile and cloth

bags was found to be lower than in wet conditions. This difference can be attributed

to capillary pressure within the geobags in unsaturated geobag, leading to increased

cohesion and adhesion between the sand grains and the fabric of the geobag. As a

result, the friction between the geobag and the inclined surface is higher in wet con-

ditions. On the other hand, for the cement bag, the friction force in wet conditions

was observed to be lower than the dry test. This is because water acts as a lubricant

between the cement bag and the inclined surface, reducing the frictional resistance.

5. The study revealed that geobags with the same shape before failure exhibited
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overlapping ranges of the effective coefficient. This suggests that the failure of the

geobags is highly dependent on their final shape before reaching the failure point.

6. This thesis investigated the effects of different materials on the geobag to un-

derstand how the material of the bag can affect the motion of geobag at the bottom

of the channel. The cloth bags are more stable than their geotextile bag counterpart.

This is because the cloth bags either compressed or folded before failure due to the

higher flexibility of cloth bags whereas the geotextile bags began to lift from to up-

coming flow. Therefore, the lift force plays a key role in the failure of geotextile bags

and contributes to lower stability of geotextile bags compared with cloth bags.

7. Three geotextile bags with varying filling ratios were tested to examine the

impact of filling ratio and weight on the stability of the geobags. It was observed

that geobags with lower fill ratios move at lower velocities. This could be explained

by static pressure affecting the geobag. The upcoming flow causes areas with high

pressure upstream of the bag and as the fluid flows to the downstream side, the static

pressure decreases and creates areas with lower pressure downstream. the pressure

difference causes pressure drag. In addition, the area of low pressure on top of the

upstream causes sucking up the bag and bags to become lighter, and the friction force

decreases as a result of increasing lift force, which makes the bag move even with a

lower drag force.

8. This study investigated the impact of the shape of geotextile bags using a single

geobag with three different shapes: downstream, even, and upstream shape. The

findings indicated that the upstream shape of the geobag required higher failure ve-

locities to initiate movement in the direction of the flow. This can be attributed to the

higher density of the bag on the side of the upcoming fluid flow, leading to increased

resistance and requiring greater forces for beginning the movement. Conversely, the
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downstream shapes exhibited movement at considerably lower failure velocities. This

is because of the lift force affecting the geotextile bags. Since the geotextile bag has

less flexibility, it experiences lifting due to the incoming flow. The lift force makes

that bag move at lower velocities.

10. In the concluding phase of this thesis, a hypothetical geobag was created based

on the patterns observed in the geobags investigated throughout the study. Notably,

it was observed that it is feasible to determine the failure velocities of any geobag

that follows the same shape as presented in this study.
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4.2 Future works

Finally, some suggestions for further research are presented here:

1. The simulation faced several challenges arising from the limitations of Ansys

Fluent in modeling solid bodies at the bottom of the channel using dynamic mesh

techniques. For future research, it would be beneficial to explore alternative software

options with superior capabilities for modeling solid bodies within the fluid flow, such

as STAR-CCM+.

2. In this study, the flexibility and deformation of the geobags were not taken

into account during the modeling process. To address this limitation in future re-

search, a promising approach would be to incorporate Fluid-Structure Interactions

(FSI) techniques. By utilizing FSI, the modeling can accurately consider the dy-

namic behaviour, flexibility, and deformation of the geobags in response to fluid flow

conditions, providing a more comprehensive and realistic representation of their per-

formance.

3. This study solely focuses on modeling cloth and geotextile bags. However, for

future research, it would be beneficial to explore the effects of using different materi-

als for geobags in simulations.

4. The present study focused solely on investigating geobags on a flat channel.

However, for future research, a valuable extension could be modeling geobags on

inclined surfaces. This would allow us to observe and analyze the effects of the angle

of the inclined surface on the failure of geobag.
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