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Abstract

Mountain pine beetle (MPB) in Canada have spread well beyond their historical
range. Accurate modelling of the long-term dynamics of MPB is critical for assess-
ing the risk of further expansion and informing management strategies, particularly
in the context of climate change and variable forest resilience. Most previous models
have focused on capturing a single outbreak without tree replacement. While these
models are useful for understanding MPB biology and outbreak dynamics, they can-
not accurately model long-term forest dynamics. Past models that incorporate forest
growth tend to simplify beetle dynamics. We present a new model that couples forest
growth to MPB population dynamics and accurately captures key aspects of MPB
biology, including a threshold for the number of beetles needed to overcome tree de-
fenses and beetle aggregation that facilitates mass attacks. These mechanisms lead
to a demographic Allee effect, which is known to be important in beetle population
dynamics. We show that as forest resilience decreases, a fold bifurcation emerges and
there is a stable fixed point with a non-zero MPB population. We derive conditions
for the existence of this equilibrium. We then simulate biologically relevant scenarios
and show that the beetle population approaches this equilibrium with transient boom
and bust cycles with period related to the time of forest recovery. As forest resilience
decreases, the Allee threshold also decreases. Thus, if host resilience decreases under
climate change, for example under increased stress from drought, then the lower Allee
threshold makes transient outbreaks more likely to occur in the future.
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1 Introduction

The most recent mountain pine beetle (MPB, Dendroctonus ponderosae) out-
break has killed more than 18 million hectares of mainly lodgepole pine (Pinus
contorta) forests in western Canada, with large economic impacts from the loss
of merchantable pine (Corbett et al. 2016; Dhar et al. 2016). Climate change
has facilitated MPB incursion into novel habitats, and outbreaks are expected
to become more frequent and severe (Logan et al. 2003; Mitton and Ferrenberg
2012; Janes et al. 2014; Bentz et al. 2022). MPB is now threatening further east-
ward spread into the boreal forest and, if successful, could spread across Canada
(Safranyik et al. 2010; Cullingham et al. 2011; Burns et al. 2019). Modelling
the long-term dynamics of MPB in the face of global warming and changing
forest resilience is central to assessing the risk of further spread and informing
management strategies.

There are several key biological elements that must be included to accurately
model MPB population dynamics. Beetle development largely follows a one-
year development cycle, where adult beetles disperse in the summer to colonize
new hosts and then lay eggs inside of the trees. The larvae then hatch and
overwinter in the tree before pupating in the spring (Safranyik andWilson 2006).
Small trees do not have thick enough phloem to support egg galleries and beetle
development, and so beetles tend to attack only older and larger trees (Amman
1972; Safranyik and Wilson 2006). To overcome tree defenses, including toxic
resin, beetles must attack trees in large groups as a mass attack (Raffa and
Berryman 1983; Safranyik and Wilson 2006; Goodsman et al. 2016). Beetles
achieve this at low population densities by aggregating on local scales, with
pheromones signalling to other beetles which tree is under attack (Berryman
et al. 1985; Safranyik and Wilson 2006). This process generates an Allee effect,
where at very low population densities beetles are unable to attack in large
enough numbers to overcome tree defenses. Trees that have been successfully
colonized by beetles are generally killed. By the following summer, their needles
turn red from a lack of moisture and the trees are called “red tops”. Over the
next few years, their needles turn gray and fall off. These trees are called “gray
snags”.

To this point, models of MPB outbreaks largely focus on accurately captur-
ing the dynamics of a single outbreak (Heavilin and Powell 2008; Goodsman
et al. 2016). The model of Goodsman et al. (2016) produces realistic dynamics
by including important aspects of MPB biology, including beetle aggregation
and a strong Allee effect. However, models of a single outbreak without forest
regrowth cannot predict the long-term effect of different control measures, or
tree resilience. In particular, as MPB spreads beyond its historical range there
is uncertainty in the resistance of novel host species (Cullingham et al. 2011) as
well as evidence that tree resistance to MPB is dependent on historical contact
(Cudmore et al. 2010). On the other hand, the model of Duncan et al. (2015),
which does include forest age structure, does not include important aspects
MPB biology such as an Allee effect or beetle aggregation.

Here, we combine elements of the MPB model of Goodsman et al. (2016)
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Variable Description
ji,t Juvenile trees in the ith age class in year t

Jt Total juvenile trees in year t, Jt =
∑N

i=1 ji
St Susceptible trees in year t
Bt Beetles in year t
It Infested (green) trees in year t
mt Mean number of beetles per susceptible tree, mt = Bt/St

Parameter Description
T Total number of trees in the stand
N Number of juvenile age classes
s Juvenile annual survival
c Beetles produced per successfully infested tree
k Beetle aggregation
φ Threshold for successful beetle attack
κ Beetle aggregation in the Hill approximation
Φ Threshold for successful beetle attack in the Hill approximation

Table 1 Variables and parameters in the model

with the forest age structure model in Duncan et al. (2015). In doing so, we
create a new model that accurately captures both MPB and forest dynamics
and therefore allows us to address long-term questions related to beetle popu-
lation dynamics, particularly under dynamic forest resilience. In Section 2, we
present the model. In Section 3, we study fixed points and derive conditions
for a positive fixed point to exist, which biologically can be thought of as the
conditions required for an outbreak. In Section 4, we analyze the stability of
each fixed point and show that a fold bifurcation gives rise to the non-trivial
fixed points. In Section 5 we present numerical simulations of our model and
consider the case where MPB immigrates into a stand without an existing MPB
population.

2 Specifying the model

In this section, we derive the model and define the relevant variables. Because
of the annual life cycle of MPB, the model is discrete in time and all variables
are indexed with a time t that indicates the year. Table 1 provides a summary
of the variables and parameters in the model.

2.1 Definition of variables

We follow Duncan et al. (2015) in defining the variables we use to track the forest
structure and beetle populations. We divide trees into juvenile, susceptible, and
infested classes. We further divide juvenile trees into N age classes, with each
class representing a year of growth. We let ji,t be the number of trees in the

4



ith juvenile age class in the spring of year t (the number of juvenile trees is
measured in terms of the shade equivalent of adult trees, as we assume the
forest is light limited). The total number of juvenile trees in the spring is then

Jt =
∑N

i=1 ji,t. We let St be the number of trees large enough to be susceptible
to MPB infestation in the spring of year t. We let Bt be the number of beetles
that emerge in the summer of year t from last year’s infested trees. We let the
number of newly infested trees in the summer of year t be It.

Because pine forests are shade intolerant (Safranyik and Wilson 2006; Dun-
can et al. 2015), we track infested trees until they no longer shade the forest
floor. We assume that trees that have been infested more than two years ago
do not have enough needles to produce substantial shade (Safranyik and Wilson
2006). The number of red tops in the spring of year t is then given by It−1, or
the number of infested trees from the previous summer, and the number of gray
snags in the spring of year t is given by It−2.

2.2 Forest dynamics

The forest dynamics are modeled as in Duncan et al. (2015) (see Figs. 1 and 2
there for life cycle diagrams). We assume that juvenile trees have some natural
probability of survival s from one year to the next, with their mortality then
equal to d = 1 − s. If they survive, they advance to the next age class. This
means that

ji+1,t+1 = sji,t, for i = 1, . . . , N − 1. (1)

Juvenile trees that survive from the Nth age class become susceptible trees.
We assume that susceptible trees have no natural mortality, and die only upon
being infested by beetles. Thus, in any year, susceptible trees either escape
infestation and remain susceptible, or are infested by beetles. The number of
susceptible trees in the following year is then given by

St+1 = St − It + sjN,t. (2)

Note that the number of infested trees must be less than the number of suscep-
tible trees in a year, and so this equation remains positive. Mathematically, the
equation we derive in the following section for It guarantees that It ≤ St.

For seedling recruitment, we assume that seedlings germinate wherever there
is available light, and that growth is not limited by seeds (as in Duncan et al.
(2015) and Křivan et al. (2016)). These are reasonable assumptions as MPB
outbreaks are known to provide openings for new growth (Amman 1977; Axelson
et al. 2009), and for lodgepole pine in particular, the dominant MPB host, there
is typically a very large seed bank as cones are serotinous and do not germinate
until after disturbance. These disturbances are typically fire (Johnson and Fryer
1989), though MPB attacks may also trigger seed release (Teste et al. 2011).
We therefore allow new seedlings to take the place of all juvenile trees that died
in the previous year as well as all gray snags old enough to no longer shade the
forest floor. The number of new seedlings is then given by

j1,t+1 = dJt + It−2. (3)
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Because of our assumption that seedlings replace all trees that no longer
shade the forest floor, the total number of trees T inventoried in the spring is
conserved from year to year. The total number of trees is given by

T = Jt + St + It−1 + It−2. (4)

To see that this is conserved, set T = Jt+1+St+1+ It+ It−1 and substitute (1),
(2), and (3).

2.3 Beetle dynamics

Our model for the number of emerging beetles is based on Goodsman et al.
(2016), but here we make use of the general site based framework following
Brännström and Sumpter (2005) and Anazawa (2009). We can use this frame-
work to derive models mechanistically from first principles, which gives them
biological grounding. Consider a large number of sites St (susceptible trees) at
time t. Let p(i;Bt) be the probability of i individuals at a site given Bt total
individuals (beetles). We assume that all sites are equally suitable. Let n(i)
be the number of individuals that emerge from infested sites the following year.
Then, the total number of individuals that emerge in the following year, Bt+1,
from the St sites in the previous year is given by

Bt+1 = St

∑
i

n(i)p(i;Bt). (5)

This equation generally leads to different functional responses depending on
what we assume for the distribution of individuals over sites and the number of
individuals emerging from each site (Brännström and Sumpter 2005; Anazawa
2009).

We can derive the functional form for infestation in Goodsman et al. (2016)
in this framework by assuming that the beetles are aggregated and that there
is some threshold at each site below which the beetles cannot successfully re-
produce. This models the beetle aggregation due to pheromones as well as the
natural defenses of the tree, which are key biological aspects of beetle population
dynamics. Note that we track only female beetles, as they infest the trees.

To model aggregation, we assume (as in Goodsman et al. (2016)) that the
beetles are distributed according to a negative binomial distribution with mean
mt = Bt/St and aggregation parameter k, where low k corresponds to high
aggregation and high k corresponds to low aggregation,

p(i;Bt) = NB(i;mt = Bt/St, k) =
kk

Γ(k)

Γ(k + i)

Γ(i+ 1)

(mt)
i

(k +mt)k+i
. (6)

We then assume that the beetle productivity c is constant as long as the number
of beetles attacking a tree is above the threshold φ required to overcome tree
defenses. This is equivalent to assuming contest competition, where by contrast
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scramble competition would lead to overcompensation at high beetle densities
(Brännström and Sumpter 2005; Anazawa 2009). Then,

n(i) =

{
c, if i > φ

0, otherwise.
(7)

Thus, each tree produces either c or 0 beetles, and the number of trees killed
depends on how the beetles distribute themselves amongst the trees according
to p(i;Bt).

Inserting the biologically motivated (6) and (7) in (5), we find

Bt+1 = cSt (1− F (mt; k, φ)) , (8)

where

F (mt; k, φ) =

φ∑
i=0

NB(i;mt, k) = I

(
k

k +mt
; k, φ+ 1

)
, (9)

and I(x; a, b) is the cumulative distribution function of the negative binomial
distribution, which is the regularized incomplete beta function. Note that here
we have changed the order of the variables and parameters in the function F
compared to the negative binomial distribution. This is convenient as in the
model we take the aggregation k and the threshold φ to be fixed parameters,
while the number of beetles is the dependent variable and changes over time
with the population dynamics of B and S.

As in Goodsman et al. (2016), we identify this function F as a survival
function for the susceptible trees. That is, the number of surviving trees in each
year is given by F (mt)St. We plot the function F for several values of k and
φ in Fig. 1 to show how different levels of aggregation and different thresholds
for tree defenses change the fraction of trees that survive. Since the number
of surviving trees is given by F (mt)St, the number of infested trees It can be
identified as

It = St (1− F (mt; k, φ)) . (10)

and so, substituting into (8), we can write

Bt+1 = cIt. (11)

2.4 Approximation of survival function

The survival function derived in the previous section can be quite challenging
to work with analytically. To make progress analyzing this model, it is useful
to approximate the survival function with a Hill function, as in Křivan et al.
(2016). We denote this approximation as F̃ (m), which is equal to

F̃ (m) =
Φκ

mκ +Φκ
, (12)
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Fig. 1 The survival function F (mt; k, φ) for different values of the aggregation
parameter k and the threshold φ

or alternatively

1− F̃ (m) =
1

1 + (Φ/m)κ
. (13)

The parameter Φ approximates the threshold number of beetles φ, and κ ap-
proximates the beetle aggregation parameter k, with lower κ corresponding to
higher levels of aggregation and with beetles spread uniformly in the limit as
κ → ∞. These functions do not correspond perfectly, but the approximation
works well for many values of the parameters by setting Φ = φ and then find-
ing κ by minimizing the square of the difference for fixed k, ie. minimizing∫ c

0
dm

(
1− F (m)− 1

1+(Φ/m)κ

)2
. We compare the Hill function and the full

survival function for a few different values of k in Fig. 2.
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Fig. 2 Comparison of the full function 1 − F (m; k, φ) to the Hill function
approximation. We set Φ = φ = 200 and set κ by minimizing the difference
between the functions with k = 1, 5, 10, 50

Note that this approximation does not work well for high aggregation (small
k), as in this limit the Allee threshold becomes less important. When fitting their
model to infestation data from Willmore Wilderness Park in Alberta, Canada,
Goodsman et al. (2016) find a best fit value of k ≈ 0.003. We do not find
that this is a good direct comparison to the model presented here as this is for
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a spatial extension of their model with beetle dispersal and immigration, and
does not allow for new trees to enter the susceptible class (ie. s = 0). We note
additionally that fitting the aggregation parameter is sensitive to the spatial
grain and scale of the data, and the best fit value may prefer larger values
at different spatial scales. In what follows we make use of the Hill function
approximation and assume that beetles are not strongly aggregated. However,
similar analysis could be carried out with a different approximation in the case
k ≪ 1 (Appendix A).

2.5 Model summary

To finalize the equations defining the model, we first obtain an expression for
St+1 that does not depend on It by substituting (10) into (2),

St+1 = StF (mt; k, φ) + sjN,t. (14)

We then rewrite (3) so that the right-hand side depends only on quantities
observed at time t. We use the conservation of the total number of trees T (4)
and substitute for It−2. We then use Bt/c = It−1 to substitute for It−1 and
obtain

j1,t+1 = T − sJt − St −Bt/c. (15)

In summary, our model consists of (1), (8), (14), and (15), which we write again
here for clarity as

j1,t+1 = T − sJt − St −Bt/c, (16)

ji+1,t+1 = sji,t for i = 1, . . . , N − 1, (17)

St+1 = F (mt; k, φ)St + sjN,t, (18)

Bt+1 = c(1− F (mt; k, φ))St, (19)

where Jt =
∑N

i=1 ji,t.

2.6 Nondimensionalization

We can now nondimensionalize the model. Let

j̃i,t =
ji,t
T

, for i = 1, . . . , N, (20)

S̃t =
St

T
, (21)

B̃t =
Bt

cT
, (22)

m̃t =
B̃t

S̃t

=
mt

c
, (23)
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and rewrite the equations above after dividing through by T to obtain

j̃1,t+1 = 1− sJ̃t − S̃t − B̃t, (24)

j̃i+1,t+1 = sj̃i,t, for i = 1, . . . , N − 1, (25)

S̃t+1 = F (cm̃t; k, φ)S̃t + sj̃N,t, (26)

B̃t+1 = (1− F (cm̃t; k, φ))S̃t. (27)

This removes T as a parameter and thus J̃ and S̃ represent the fraction of total
trees (4) rather than the number of trees. B̃ has also been normalized by the
number of beetles that emerge at a site, c, so it can now be thought of as the
fraction of infested trees from the previous year by using (11).

To further reduce the number of parameters, we would have to rescale either
φ or k with c to remove one as a parameter. This is not possible with the defi-
nition of F in (9). However, with the Hill approximation outlined above in (13),
we find that Φ/c appears together and can therefore be defined as a new param-
eter, θ = Φ/c, which is a measure of host resilience. The nondimensionalized
equations are then

j̃1,t+1 = 1− sJ̃t − S̃t − B̃t, (28)

j̃i+1,t+1 = sj̃i,t, for i = 1, . . . , N − 1, (29)

S̃t+1 =
1

1 + (m/θ)κ
S̃t + sj̃N,t, (30)

B̃t+1 =
1

1 + (θ/m)κ
S̃t. (31)

In the analysis that follows, we use the equations that carry dimension (16)–
(19) as well as the nondimensionalized equations (28)–(31) because the full
survival function F cannot be nondimensionalized in this way. Nonetheless, we
drop the tildes for notational simplicity and specify when we make use of the
nondimensionalized equations.

This nondimensionalization is particularly useful biologically because both
the threshold Φ and the number of emerging beetles c could be modified under
changes in tree resilience, but at this point it is not well understood how these
vary in trees with genetic resilience (Six et al. 2018). This nondimensionalization
shows that either decreasing the threshold or increasing the number of emerging
beetles have the same effect on the dynamics.

3 Fixed points

In this section, we solve for the fixed points of the model. We show that there
is always a trivial fixed point without beetles and that there can be one or two
additional non-trivial fixed points. We then solve for the values of the variables
at these non-trivial fixed points. Finally, we use the Hill function approximation
to derive the condition for the appearance of the non-trivial fixed points and at
what critical value they appear.
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3.1 Derivation of the fixed points

We begin by dropping the time indices on (16)–(19). When there are no beetles,
B = m = 0 and F (0) = 1, which inserting into (2) gives jN = 0 and thus
ji = J = 0, and finally using (4) gives S = T . Thus, at the trivial fixed point
there are no beetles and all trees are susceptible. Biologically, this is because
the model does not have mortality from causes other than pine beetle, and so
in the absence of beetles the trees all reach their susceptible age. In reality,
lodgepole pine are an early successional species often replaced by more shade
tolerant trees, and their dynamics are highly fire dependent (Johnson and Fryer
1989; Axelson et al. 2010; Taylor and Carroll 2003). However, this fixed point
makes some sense in a stand of pure lodgepole pine with very slow succession
and in the absence of fire.

More generally, at all fixed points (19) becomes B = c(1− F (m = B/S))S,
and dividing by S gives the mean number of beetles per tree at a fixed point,

m

c
= 1− F (m). (32)

This equation is important for understanding the dynamics of the model. In
general it must be solved numerically, but we can show that it has either 1, 2, or
3 roots, including the trivial root at m = 0. To understand this graphically, we
plot the function 1 − F (m) and m/c together in Fig. 3 for different parameter
values showing the number of roots. Intuitively, the function 1 − F (m) has
a monotonically increasing sigmoidal shape as it is 1 minus the cumulative
distribution function of the negative binomial distribution (see Fig. 1), and thus
a straight line that goes through 0 intersects this curve at the origin, and then
either never again, once, or twice more depending on the parameter values.
Mathematically, note that F ′(0) = 0, and so the line m/c is above 1 − F (m)
for small m, and because of the sigmoidal shape of 1− F (m) the lines intersect
once or twice more. More formally, we can show that the second derivative of
1 − F (m) − m/c has a unique zero for m > 0, and so 1 − F (m) − m/c = 0
has at most three roots for m > 0. Note that in the case of the Hill function
approximation, we can show this in a different way by deriving the conditions
for the appearance of additional roots (see Section 3.2).

To solve for the juvenile age classes at a fixed point, first note that the total
number of trees (4) at a fixed point is T = J + S + 2I = J + S + 2B/c, and so
we can write (16) for j1 as

j1 = dJ +B/c. (33)

We can then solve for the total number of juvenile trees J at a fixed point. From
(17), ji = si−1j1, and so

J =

N∑
i=1

si−1j1 =

N∑
i=1

si−1(dJ +B/c). (34)

Solving for J , we find

J =
1−D

dD

B

c
, (35)
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Fig. 3 Graphical solutions for the number of roots with changing model pa-
rameters k, φ, and c. The dashed lines show m/c and the solid lines show
1−F (m; k, φ), where the parameter being varied is shown in the legend. When
not varied, k = 10, φ = 200, and c = 500. The intermediate curve in each case
shows the value of the parameter where there is exactly one non-trivial root,
the darkest curve shows an example where there are two non-trivial roots, and
the lightest curve shows an example where there are no non-trivial roots

where D = sN . We substitute this back into our expressions for j1 to find
j1 = B/(cD) and derive a formula for the number of juveniles in age class i.
Having specified ji and m at the fixed points, we can use the equation for T (4)
to solve uniquely for S and B after solving the equation for m. The final set of
equations to obtain the fixed points of the model are

ji =
si−1B

cD
, (36)

J =
1−D

dD

B

c
, (37)

m

c
= 1− F (m), (38)

S =
B

m
, (39)

B =
mcdDT

cdD +m(1−D + 2dD)
. (40)

3.2 Conditions for non-trivial fixed points using the Hill
function approximation

Given that F is a complicated function, the equation form at the fixed point (32)
cannot typically be solved analytically. However, we can use the Hill function
approximation introduced earlier to approximate the parameter values required
for non-trivial fixed points. The existence of these non-trivial fixed points is
required for pine beetle outbreaks to occur as without them the population
goes towards the trivial fixed point and the beetles die out (see Section 4).

Using the Hill function approximation (13), the equation for the fixed points
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(32) becomes
m

c
=

1

1 + (Φ/m)κ
. (41)

Assuming m ̸= 0 (ie. assuming beetles are present), this can be rewritten as
mκ − cmκ−1 + Φκ = 0. When this equation has roots with m > 0, there exist
non-trivial fixed points with a positive number of beetles. Therefore we want to
find the conditions on this equation such that there are roots where m > 0. Let

g(m) = mκ − cmκ−1 +Φκ. (42)

The derivative of g(m) is then

g′(m) = mκ−2(κm− c(κ− 1)), (43)

which has a unique zero at

m∗ = c(κ− 1)/κ. (44)

Since g(0) > 0, and limm→∞ g(m) = limm→∞ mκ > 0, and the derivative of
the function has a unique zero at m∗, the function only has roots if g(m∗) ≤ 0.
More precisely, g(m) has one root if g(m∗) = 0, two roots if g(m∗) < 0, and no
roots if g(m∗) > 0. Substituting m∗ in to g(m), we find

g(m∗) = Φκ − cκ
(
κ− 1

κ

)κ−1
1

κ
. (45)

Rearranging (45) with g(m∗) < 0 then gives the condition on the parameters
such that we have two roots,

θ =
Φ

c
≤ (κ− 1)

κ−1
κ

1

κ
, (46)

where θ = Φ/c is the nondimensionalized resilience parameter introduced earlier.
When this condition is satisfied, there are positive, non-trivial solutions to

(41), and therefore fixed points with a positive population of beetles. This
means that it possible for beetle outbreaks to occur. We have exactly one root
when this condition is equal to zero. This occurs at

θ∗ = (κ− 1)
κ−1
κ

1

κ
. (47)

Biologically, the condition in (46) makes sense in the limit of large κ (low
aggregation) as the condition becomes Φ < c. In other words, the number of
beetles that emerge per tree must be greater than the threshold when the beetles
are uniformly distributed. In the limit of small κ (strong aggregation), the
behaviour is initially somewhat counter intuitive. Because the right-hand side
of (46) increases monotonically from 0.5 to 1 for κ > 2, as beetles become more
aggregated the right-hand side decreases. This puts a stricter upper bound on
the ratio of the threshold and beetle productivity as the beetles become more
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aggregated. We can see this in Fig. 3 for the full function with changing k,
where as the beetle aggregation increases (decreasing k) with other parameters
fixed, the non-trivial fixed points disappear. This behaviour can be understood
because the number of beetles produced per infested tree is constant regardless
of how strongly the beetles aggregate on a single tree. This means that as
beetles aggregate more strongly onto fewer trees, fewer beetles are produced the
following year.

4 Stability analysis

In this section, we analyze the stability of the fixed points found in the previous
section. We show that the trivial fixed point is stable with both the full function
and the Hill function approximation. Using the Hill function approximation, we
then show that the smaller (in terms of number of beetles) of the two non-trivial
fixed points is unstable. Finally, again using the Hill function approximation,
we show that a fold bifurcation occurs at m∗ and θ∗, and therefore that in the
local neighbourhood of the critical point the upper of the two non-trivial fixed
points is stable.

To analyze the local stability of the model, we expand (16)–(19) about the
fixed points. Writing the variables as a vector x = (j1, j2, . . . , S,B), we rewrite
the model as xt+1 = f(xt), where the function f is determined by the right-hand
side of (16)–(19). Expanding around a fixed point x = x0 gives

xt+1 = x0 +A(x0)(xt − x0) +O(||x||2) (48)

where A is the Jacobian matrix given by the expansion of f at the fixed point.
We can write the Jacobian for the model explicitly as the N + 2 dimensional
square matrix

A =



−s −s ... −s −1 −1/c
s 0 ... 0 0 0
0 s ... 0 0 0
...

... ...
...

...
...

0 0 ... s F (m)−m∂F (m)
∂m

∂F (m)
∂m

0 0 ... 0 c(1− F (m)) + cm∂F (m)
∂m −c∂F (m)

∂m


, (49)

where the mean number of beetles at the fixed point is m.
We can write the characteristic polynomial P of this matrix analytically,

where

P (λ) =

N+2∑
i=0

aiλ
i, (50)
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and the ai coefficients are

aN+2 = 1, (51)

aN+1 = s− F (m) + (m+ c)
∂F (m)

∂m
, (52)

ai =

(
s(s− F (m)) + (s(m+ c)− c)

∂F (m)

∂m

)
sN−i, for i = 2, ..., N,

(53)

a1 =

(
s(1− F (m)) + (s(m+ c)− c)

∂F (m)

∂m

)
sN−1, (54)

a0 =

(
1− F (m) +m

∂F (m)

∂m

)
sN . (55)

4.1 Stability of the trivial fixed point

We here use Rouché’s theorem to show that the trivial fixed point is always sta-
ble for both the full function and the Hill function approximation. Biologically,
this means that when the forest consists of susceptible trees and no beetles it is
stable.

Rouché’s theorem states that for two complex functions g1 and g2 in the
region K with closed contour ∂K, if |g2| < |g1| on the contour ∂K, then g1
and g1 + g2 have the same number of zeroes inside K. This theorem can be
used to bound roots of polynomials. To bound the roots of the characteristic
polynomial P (50), we write g2(z) =

∑N+1
i=0 aiλ

i and g1(z) = aN+2λ
N+2, so

P = g1 + g2. We know that g1 has N + 2 roots at λ = 0. If |g2| < |g1| on the
boundary of the disk centered on the origin with radius R (R > 0), then by
Rouché’s theorem P = g1 + g2 also has N + 2 roots inside the disk. Writing
|g2| < |g1|, we find ∣∣aN+2λ

N+2
∣∣ > ∣∣∣∣∣

N+1∑
i=0

aiλ
i

∣∣∣∣∣ . (56)

On the boundary,
∑

i |ai|Ri ≥
∣∣∑

i aiλ
i
∣∣ since R is the maximum value of λ on

the disk, and (56) then becomes

|aN+2|RN+2 >

N+1∑
i=0

|ai|Ri, (57)

which is therefore a sufficient condition for the roots of P to be bounded within
the disk with radius R.

We can apply this approach to the analysis of the stability of a fixed point.
If all roots of the characteristic equation are less than 1, the fixed point is locally
stable. This corresponds to the spectral radius of the Jacobian being less than
1. Thus, if P satisfies (57) with R = 1 at a fixed point, it has has all N + 2
roots within a disk of radius 1, and therefore that fixed point is locally stable.
If the condition in (57) is not satisfied, we cannot determine the stability of the
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fixed point. We now write the condition (57) with R = 1 using the definitions
of the ai for (50) and find

1 >

∣∣∣∣1− F (m) +m
∂F (m)

∂m

∣∣∣∣ sN+

∣∣∣∣s(1− F (m)) + (s(m+ c)− c)
∂F (m)

∂m

∣∣∣∣ sN−1+∣∣∣∣s(s− F (m)) + (s(m+ c)− c)
∂F (m)

∂m

∣∣∣∣ N∑
i=2

sN−i+

∣∣∣∣s− F (m) + (m+ c)
∂F (m)

∂m

∣∣∣∣ .
(58)

At the trivial fixed point, m = 0, F (0) = 0, and ∂F (m)
∂m

∣∣∣
0
= 0. We can

evaluate the remaining sum over s analytically as 0 < s < 1 to simplify (58)
and obtain

1 > |s(s− 1)|
(
1− sN−1

1− s

)
+ |s− 1| = 1− sN . (59)

This condition is true given that 0 < s < 1, since s is the probability of survival
of a juvenile tree. Therefore, (57) is satisfied for the trivial fixed point with
R = 1 and thus by Rouché’s theorem all roots of the characteristic polynomial
at the trivial fixed point are within the unit disk. Thus, the trivial fixed point
is stable. Biologically, this makes sense as we know the beetles have an Allee
effect.

4.2 Stability of the non-trivial fixed points

We now turn to the analysis of the non-trivial fixed points. To make progress
analytically, we use the Hill function approximation. We show that the smaller
(in terms of number of beetles) of the two non-trivial fixed points is always
unstable using the Jury stability criterion.

In n dimensions, the Jury stability criterion requires the construction of a
table with 2n− 3 rows to test n+1 conditions on the characteristic polynomial
P at a fixed point. If all of the conditions are satisfied, the fixed point is stable.
This becomes difficult analytically with higher dimensional systems. However,
as soon as any condition is not met, we can conclude the fixed point is unstable.

In this case, we use only the first condition, which requires that P (1) > 0.
For the characteristic polynomial in (50), we find

P (1) =

N+2∑
i=1

ai =

(
sN (m+ c) +

(
1− sN+1

1− s

)
m

)(
1

c
+

∂F (m)

∂m

)
. (60)

The term inside the first parentheses in (60) is always positive, as 0 < s < 1,
m ≥ 0, and c > 0. Therefore to determine the sign of (60), we only need to
consider the term inside the second parentheses. The requirement that P (1) > 0
can therefore be written as

1

c
+

∂F (m)

∂m
> 0. (61)
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To make further progress, we now use the Hill function approximation for
F , F̃ (12). The partial derivative of the Hill function approximation is

∂F̃ (m)

∂m
=

∂

∂m

(
Φκ

mκ +Φκ

)
= −

(
1− F̃ (m)

)
F̃ (m)

κ

m
. (62)

At a fixed point, we have 1− F̃ (m) = m/c, and so we can rewrite (62) as

∂F̃ (m)

∂m
= −

(
1− m

c

) κ

c
. (63)

We substitute (63) in to (61) to rewrite the condition in terms of m as

m >
c(κ− 1)

κ
= m∗ (64)

where m∗ is given by (44) and is the value where we have exactly one non-trivial
fixed point.

Thus, the condition that P (1) > 0 is only satisfied if m > m∗. We have two
non-trivial fixed points, one with m < m∗ and one with m > m∗. Therefore,
the smaller of these two fixed points is always unstable. Note that we cannot
conclude anything about the stability of the larger fixed point from this case
without testing other conditions.

4.3 Bifurcation analysis

We here show that our model undergoes a fold bifurcation at m = m∗ by making
use of center manifold theory. As in the examples in the previous paragraph,
it is the appearance of these new fixed points that give rise to outbreaks in our
model. This bifurcation results in one stable and one unstable fixed point. As
we have already shown that the smaller of the two fixed points is unstable, we
conclude that the larger fixed point is stable in the immediate neighbourhood
of the bifurcation.

To setup the bifurcation analysis, we start with the nondimensionalized equa-
tions using the Hill approximation (28)–(31). We define shifted variables, which
we denote with a bar, such that they are 0 at the critical fixed point when
m = m∗ (44) with θ = θ∗ (47). The shifted variables are

j̄i = ji −
si−1B∗

D
, for i = 1, . . . , N, (65)

J̄ = J − 1−D

dD
B∗, (66)

S̄ = S − κ

κ− 1
B∗, (67)

B̄ = B −B∗, (68)

θ̄ = θ − θ∗, (69)
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where B∗ can be obtained by setting m = m∗ in (40). Note that when m = m∗

and θ = θ∗, F̃ (m∗) = 1/κ. Substituting these shifted variables in to our model
(28)–(31) gives the shifted equations

j̄1,t+1 = −sJ̄t − S̄t − B̄t, (70)

j̄i+1,t+1 = sj̄i,t for i = 1, . . . , N − 1, (71)

S̄t+1 = F̃

(
B̄t +B∗

S̄t + κ/(κ− 1)B∗

)(
S̄t +

κ

κ− 1
B∗
)

+ sj̄N,t −
B∗

κ− 1
(72)

B̄t+1 =

(
1− F̃

(
B̄t +B∗

S̄t + κ/(κ− 1)B∗

))
S̄t

− κ

κ− 1
B∗F̃

(
B̄t +B∗

S̄t + κ/(κ− 1)B∗

)
+

B∗

κ− 1
, (73)

where J̄t =
∑N

i=1 j̄i,t. We then write the variables as a vector x̄ = (j̄1, j̄2, . . . , S̄, B̄),
and rewrite the shifted equations as x̄t+1 = f̄(x̄t, θ̄). We Taylor expand f̄(x̄, θ̄)
around the critical fixed point x̄ = 0 with θ̄ = 0 to obtain

f̄(x̄, 0) = Ax̄+H(x̄, x̄)/2 +O(||x̄||3), (74)

where A is the Jacobian evaluated at x̄ = 0 and the ith element of H(x, y) is
defined as

Hi(x, y) =

N+2∑
j,k=1

∂2f̄i(ξ, 0)

∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk. (75)

With the notation established, we now make use of center manifold theory
following Kuznetsov (2004) to show that the model undergoes a fold bifurcation
at the critical fixed point x̄ = 0 with θ̄ = 0.

First, in order to show that the dynamics of the system can be reduced to a
1-dimensional center manifold, we must show that the Jacobian at the critical
point has a simple eigenvalue of λ = 1. We calculate the Jacobian at the critical
point and find

A =



−s −s ... −s −1 −1
s 0 ... 0 0 0
0 s ... 0 0 0
...

... ...
...

...
...

0 0 ... s 1 −1
0 0 ... 0 0 1


. (76)

The characteristic equation is then

λN+2 + (s− 2)λN+1 + (1− s)2
N−2∑
i=0

siλN−i + (1− s)sN−1λ = 0. (77)
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Taking out the factors corresponding to the roots at λ = 0 and λ = 1 leaves

λ(λ− 1)

(
λN − (1− s)

N−1∑
i=0

siλN−1−i

)
= 0, (78)

and so the Jacobian has a root at λ = 1. We must then show that this root is a
simple root, which we do by showing the polynomial λN−(1−s)

∑N−1
i=0 siλN−1−i

in (78) does not have λ = 1 as a root. We apply Rouché’s Theorem as in (57)
to show that all of the roots are less than one as long as

1 >

N−1∑
i=0

∣∣(1− s)si
∣∣ = 1− sN . (79)

This conditions is satisfied as 0 < s < 1, and so all of the remaining roots of
(78) are less than one. Therefore, we have shown that the Jacobian has a simple
root of λ = 1 at the critical point, and thus that the dynamics can be reduced to
the 1-dimensional eigenspace spanned by the eigenvector associated with λ = 1.

Next, we have to show that the dynamics of this reduced system have a fold
bifurcation at the critical point. We define p and q as the adjoint eigenvector
and the eigenvector corresponding to λ = 1, respectively, (ie. AT p = p and
Aq = q), and normalize them such that ⟨p, q⟩ = 1, where ⟨·, ·⟩ is the scalar
product. We can then show the restriction to the center manifold takes the
form ut+1 = ut + bu2

t , where ut lives on the 1-dimensional center manifold and
b can be calculated as

b =
1

2
⟨p,B(q, q)⟩ . (80)

As long as b ̸= 0, the system undergoes a fold bifurcation at the critical point.
The eigenvector corresponding to λ = 1 is

q =



1
sN
1

sN−1

. . .
1
s

− 1+sN−2sN+1

dsN

1

 , (81)

and the normalized adjoint eigenvector corresponding to λ = 1 is

p =


0
0
. . .
0
0
1

 . (82)

Given that the only nonzero element of p is the final element, we only need to
calculate the final element of B(q, q) in order to calculate the coefficient b in
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(80). The final element of B(q, q) is

BN+2(q, q) =
∂2
(
1− F̃

(
B̄+B∗

S̄+κ/(κ−1)B∗

))(
S̄ + κ

κ−1B
∗
)

∂S̄2

∣∣∣∣∣∣
S̄=B̄=0

(
−1 + sN − 2sN+1

dsN

)2

+ 2
∂2
(
1− F̃

(
B̄+B∗

S̄+κ/(κ−1)B∗

))(
S̄ + κ

κ−1B
∗
)

∂S̄∂B̄

∣∣∣∣∣∣
S̄=B̄=0

(
−1 + sN − 2sN+1

dsN

)

+
∂2
(
1− F̃

(
B̄+B∗

S̄+κ/(κ−1)B∗

))(
S̄ + κ

κ−1B
∗
)

∂B̄2

∣∣∣∣∣∣
S̄=B̄=0

(1)
2

=− (κ− 1)3

κ2(B∗)3
, (83)

and so

b = − 1

κ2

(
κ− 1

B∗

)3

. (84)

This is not zero as long as κ > 1 and we have a non-zero number of beetles,
both of which are true at the non-trivial fixed point. Therefore, the system
undergoes a fold bifurcation at the critical point.

To summarize, we have shown that at the critical point m = m∗ with θ = θ∗,
the Jacobian has a simple eigenvalue λ = 1 and therefore the dynamics can be
reduced to a one dimensional center manifold with ut+1 = ut + bu2

t . We have
also shown that the coefficient b is not zero, and so there is a fold bifurcation
at the critical point. With θ as the bifurcation parameter, this means we go
from zero positive fixed points for θ > θ∗ to two positive fixed points for θ < θ∗,
where one is stable and one is unstable near the critical point. Because we have
shown that the smaller of these two fixed points is always unstable, the larger
fixed point that appears is stable in the neighbourhood of the critical point.

5 Numerical results

In this section, we analyze the dynamics and stability of the model numerically.
We test the stability of the non-trivial fixed points with the original F function
and compare it to our analytical results using the Hill function approximation.
We then simulate the system with different initial conditions to investigate its
transient dynamics as it approaches the stable fixed points.

In all of the following simulations and figures, we fix the number of years
before trees become susceptible at N = 50 and the juvenile survival rate at
s = 0.99, as in Duncan et al. (2015). The biological plausibility of the number
of years before trees become susceptible can be seen in Fig. 8 of Safranyik and
Wilson (2006), where they find a few attacked trees below age 50 but many
more between 50 and 60. The plausibility of the juvenile survival rate can be
seen in Fig. 3 in Johnson and Fryer (1989), where the lodgepole pine mortality
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per 5 year interval for stands less than 50 years old varies between 0.001 and
0.1. Alternatively, we can calculate s ≈ 0.99 using 15 year seedling survival
rates for lodgepole, hybrid, and jack pine from Rweyongeza et al. (2007). The
qualitative results discussed below are not sensitive to these exact values.

5.1 Numerical stability of the non-trivial fixed points

We first study the bifurcation in θ numerically and compare the results obtained
with the Hill function approximation F̃ (12) and the original F function (9).
To make this comparison, we use dimensional parameters as the nondimension-
alization we used relies on the Hill function approximation (see Section 2.6).
We fix c = 500, which is similar to the value derived from data in Goodsman
et al. (2016), and k = 10, which gives κ ≈ 4.9 when minimizing the difference
between the functions (see Section 2.4). We then vary the threshold parameter
(φ in the original function and Φ for the Hill function approximation) in integer
increments from 1 to c. We use integer increments as the number of attacking
beetles must be integer valued (mathematically this threshold must be integer
valued given the definition as the sum over the negative binomial distribution
in (9)). Figure 4 shows the resulting bifurcation diagram, where solid lines are
stable and dashed lines are unstable. The stability is determined numerically
by calculating the spectral radius of the Jacobian. The bottom curve here cor-
responds to the trivial fixed point, and the additional curves that appear below
a critical threshold correspond to the non-trivial fixed points. The non-trivial
fixed points were calculated by numerically solving (32) with both the original
function and the Hill function. We note that the original function and the Hill
function have similar stability properties, even if the bifurcation occurs at a
slightly lower value of the threshold parameter for the original function.

We next compare the numerical results to our analytic results. First, we
notice that the trivial fixed point is indeed stable for all parameter values for
both the original function and the Hill function approximation. In the case of
the Hill function approximation, we find that the derived critical values of m∗

(44) and θ∗ (47) (marked by a star in Fig. 4) accurately predict the value of the
threshold where the non-trivial fixed points appear. Additionally, the smaller of
the two-non trivial fixed points appears unstable for all parameter values where
it exists, as predicted.

However, the numerical results seem to indicate that the larger of the non-
trivial fixed points is in fact unstable near the critical point in both cases,
while the analytical results show that this point should be stable, at least near
the critical point when using the Hill function approximation. We plot the
spectral radius of all three fixed points in the Hill function case very near to
the critical point in Fig. 5. Note that here we have nondimensionalized so the
resilience parameter θ is now continuous, and have fixed the aggregation at
κ = 5. We see that in the immediate neighbourhood of the critical point, when
the non-trivial fixed points first appear, the upper fixed point is indeed stable
for a very small range of the bifurcation parameter θ. The spectral radius then
increases slightly above one for a small range of θ before returning below one as θ
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Fig. 4 The bifurcation diagram in the threshold parameter with the numerical
results of the original survival function F (m) and the Hill function approxima-
tion. We set k = 10 and c = 500 for the full function, and for the Hill function
we set φ = Φ and minimize the difference between the functions to obtain
κ ≈ 4.9. Solid lines are stable and dashed lines are unstable. The star indicates
the critical point for the Hill function approximation with m∗ = c(κ− 1)/κ and
θ∗ = Φ/c = (κ− 1)(κ−1)/κ/κ

decreases. We note that the real and imaginary parts of the dominant eigenvalue
are both positive over the range of θ in Fig. 5. Importantly, The parameter range
where the spectral radius is greater than one is small, here extending only from
θ ≈ 0.598 − 0.606. With c = 500, this corresponds to φ ≈ 299 − 303, or only
about four integer values for the threshold. We find numerically that the size
of this unstable region decreases when increasing the number of generations
N , but does not change when varying the aggregation parameter. Dynamical
numerical simulations for this range of θ are characterized by small oscillations
in the number of beetles near the fixed point that can last for thousands of
years. We note that Schreiber (2003) finds similar behaviour where previously
stable fixed points can become unstable when oscillating populations have an
Allee effect, as oscillations below the Allee threshold can lead to extinction.
Given the time scale of these oscillations and the small range of tree resilience
leading to this behaviour, this apparent bifurcation is unlikely to be important
biologically. See Appendix B for more information about the dynamics very
near the critical point.

5.2 Immigrating beetle population

We now simulate the time dynamics of the model with biologically motivated
initial conditions. We initialize a forest stand entirely with juvenile trees and no
MPB. This even-aged forest structure could result from large scale forest fires
that level entire stands (Safranyik and Wilson 2006). We then introduce MPB
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Fig. 5 The spectral radius of each fixed point using the Hill approximation
and nondimensionalizing to remove c as a parameter. We set the aggregation
parameter at κ = 5

into the system at each time step. Biologically, these beetles could represent
beetles flying in from an adjacent infested stand, or endemic beetle populations
that exist in weakened trees between outbreaks. Eventually, as the trees grow
and become susceptible, if there are enough immigrating beetles they cause an
outbreak.

We simulate the model for 500 years using the Hill function approximation,
though we note that results with the original function are similar. In addition
to fixing N = 50 and s = 0.99 as mentioned above, we fix κ = 5, Φ = 200
and c = 500 (θ = 0.4, though we leave the dimensional parameters). These
parameter values ensure that there is a non-trivial stable solution (Fig. 4). We
additionally set the total number of trees T = 1 so that ji,t and St can be
interpreted as fractions of the total number of trees (4). We introduce 50 beetles
at each time step to represent beetles that are coming from infested trees outside
of the local stand.

We plot the number of susceptible trees and beetles over time in three dif-
ferent ways in Fig 6. We first plot the beetle dynamics over a long time scale in
Fig. 6a, then zoom in to the dynamics of a single transient outbreak in Fig. 6b,
and finally plot the number of beetles versus the number of trees in Fig. 6c.
Note that the number of beetles we plot here does not include the additional
immigrating beetles, only the beetles from locally infested trees.

On a long time scale, Fig. 6a shows that the values of susceptible trees
and beetles eventually tend toward their equilibrium values as predicted by the
stability analysis (grey lines in Fig. 6a), but that there are large transients in
their population sizes. The transients occur because every time there is a peak
in the number of susceptible trees from the initial cohort of juveniles, the beetles
infest these trees and their population peaks in the following year, reducing the
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susceptible tree population below its equilibrium value. The beetle population
then collapses as they are left with no susceptible trees to infest. We can see
this in Fig. 6b.

The transients can be interpreted as outbreaks, and the period is set by the
recovery time of the forest. With N = 50, the beetle outbreaks peak every 53
years. This is because the susceptible trees peak N + 2 = 52 years after they
are infested when the seedlings replacing the infested trees become susceptible
themselves, and then the beetles peak the following year. Eventually, we reach
an equilibrium where the number of successful beetle attacks corresponds exactly
to the number of trees that became susceptible that year.

Figure 6c shows another way to visualize the dynamics. Here we start at the
origin, with no beetles or susceptible trees, and then the number of susceptible
trees increases without changing the number of beetles. The beetles then infest
nearly all of the susceptible trees and their population peaks, before collapsing
in the following year. This results in a spiral-like pattern as the number of
beetles and trees settle to their equilibrium values (marked by a dark circle in
Fig. 6c).

The magnitude of the transients can be reduced with alternative initial con-
ditions. If the system is initialized very close to the upper fixed point with
a geometric distribution for the juvenile trees, for example, the transient out-
breaks are very small as the system settles to equilibrium. However, this re-
quires precise initial conditions that are unlikely biologically, especially given
that lodgepole pine is heavily fire dependent.

In addition to beetle outbreak dynamics, our model allows us to analyze the
change in forest structure over time. Figure 7 shows the fraction of trees in each
age class, including the susceptible trees (marked by S on the x-axis). We see
that the structure changes gradually from the initial condition with all trees as
seedlings to the geometric distribution predicted in (36). At each time, there is
a peak that represents the cohort of trees regrowing after being killed by MPB.
This peak decays over time as the forest reaches its equilibrium structure, which
is also when the transient beetle outbreaks end. At very long times, the fraction
of trees moving into the susceptible class will be exactly equal to the fraction
killed by pine beetle.

Finally, we consider how these dynamics change as we vary the immigrating
beetle population and the tree defense threshold. We run simulations forward in
time for 500 years with initial conditions as in the previous simulation in Fig. 6.
We again use the Hill function approximation and set κ = 5 and c = 500, and
set the initial condition to j1,0 = 1 with all other variables set to 0. For each
simulation, we set the number of added beetles to be between 0 and 200 in
increments of 25. In the previous simulation, we added these beetles at each
time step for the entire simulation. Here, we add beetles for a fixed duration
that varies between 50 and 400 years in increments of 25. This allows us to test
if the added beetles are able to force the system to its non-trivial equilibrium,
or if the local beetle population collapses when beetles are no longer added. We
do these simulations for three values of the threshold, Φ = 150, 200, and 250.

Figure 8 shows the maximum number of beetles at any point in the run
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Fig. 6 Simulation of the model with the Hill function approximation. We set
the parameter values to κ = 5, Φ = 200, and c = 500 (θ = 0.4) with the
initial condition j1,0 = 1 and all other variables set to 0. At each time step,
we add 50 beetles that are assumed to migrate from adjacent stands. (a) shows
the evolution of the number of susceptible trees St and beetles Bt over a very
long time with a grey horizontal line indicating the equilibrium values of each,
(b) shows the same simulation over a single outbreak, and (c) shows the same
simulation again over time in the phase plane with a dark circle overlaid at the
equilibrium point. The plotted number of beetles does not include the added
immigrating beetles
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Fig. 7 The age structure of the forest over time. The simulation is as in Fig. 6,
with the Hill function approximation and parameter values κ = 5, Φ = 200, and
c = 500 (θ = 0.4) with initial condition j1,0 = 1 and all other variables set to 0.
At each time step, we add 50 beetles that are assumed to migrate from adjacent
stands. The fraction of susceptible trees is shown as the 51st age class

for each combination of parameters. Note that this does not depend on the
duration of immigration, which makes sense as the first transient outbreak is
the largest (see Fig. 6). It is interesting that the maximum number of beetles
does not increase monotonically with the number of immigrating beetles. This
is because when the trees first become susceptible there are not enough beetles
to consume all of the susceptible trees, and so the beetle population grows for
a few time steps (see the first transient in Fig. 6a). At intermediate numbers of
added beetles, the beetle population has a few years to grow to a large transient
population. At higher number of added beetles, the beetle population peaks
the first year after the trees become susceptible as they consume a large enough
fraction of the trees that their population decreases after the first year. This
makes the first peak in beetle population lower relative to more intermediate
numbers of added beetles. When the number of added beetles is very large,
then the first transient can be even larger as the beetles consume a very large
fraction of the susceptible trees.

Additionally, Fig. 8 outlines a region in black where the beetle population is
non-zero at the end of 500 time steps. This effectively means that the local beetle
population persists in the absence of added beetles and the system tends towards
the upper equilibrium point. In general, the duration of immigration needed for
local beetle persistence decreases as the number of added beetles increases. This
is because the system settles more quickly to the upper equilibrium when the
immigrating beetles cannot immediately consume all available susceptible trees.
In other words, as the number of immigrating beetles increases, the susceptible
tree population crashes further below the equilibrium value and therefore it
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Fig. 8 The effects on simulation outcomes of changing the number of beetles
immigrating and the duration of their immigration for three values of the thresh-
old Φ. We run the simulation for 500 time steps and set it up as in Fig. 6, with
the Hill function approximation and parameter values κ = 5 and c = 500, with
initial condition j1,0 = 1 and all other variables set to 0. We vary the number of
beetles added at each time step from 0 to 200 in increments of 25, and we vary
the duration of the invasion from 50 to 400 time steps (years) in increments of
25. The colour of the cell indicates the maximum number of beetles present in
the stand at any time step (not including the immigrating beetles). The region
outlined in black indicates that there is a non-zero beetle population remaining
at the end of the simulation

takes more transient outbreaks for the population to approach the equilibrium
point.

6 Discussion

The model we have introduced here combines key elements of MPB population
dynamics with a forest age structure and therefore allows us to study the long-
term behaviour of MPB. We find that outbreaks in this model are characterized
by short transient outbreaks with frequency set by the age of recovery of the
forest. In forests where the resilience is above a certain level, MPB populations
always die out, but when the resilience is below a threshold level, forests are
susceptible to MPB outbreaks. In susceptible stands, decreasing forest resilience
decreases the Allee threshold, thereby making them more likely to be infested
by MPB.

Insect outbreaks in general are often characterized by large boom and bust
cycles (Barbosa and Schultz 1987), and these dynamics are frequently under-
stood mathematically in terms of bifurcation theory where the appearance of
new fixed points or the exchange of stability of existing fixed points can lead to
sudden changes in population numbers. For example in the models of spruce
budworm (Ludwig et al. 1978; Hassell et al. 1999) or experimentally in flour bee-
tles (Cushing et al. 2002). This has also been true in the case of MPB (Heavilin
and Powell 2008; Goodsman et al. 2016). In our model, we have shown that
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there is a fold bifurcation at a critical value of forest resilience where the sudden
appearance of additional fixed points can lead to beetle outbreaks (Fig. 4).

In the nondimensionalized version of our model, the forest resilience is de-
scribed by the parameter θ, which is the equal to the threshold for the number
of beetles needed to successfully overcome tree defenses divided by the bee-
tle productivity. Thus, a decrease in forest resilience could result either from
a decrease in the threshold of beetles needed for a successful attack, which
could correspond to weakened trees under drought (Logan et al. 2003; Alfaro
et al. 2010), or an increase in the beetle productivity per tree, which could be
due to warmer temperatures reducing over winter mortality (Bentz et al. 2022;
Safranyik and Wilson 2006). In both cases, climate change is likely to increase
the magnitude of these effects. Robbins et al. (2022) recently quantified the ef-
fects of climate change with a similar species of bark beetle and found that tree
mortality was increased by around 30% because of warming. Understanding
how MPB dynamics will continue to shift under climate change will require ad-
ditional work quantifying its current effects and new modelling efforts to predict
these changes in the future.

When there are beetle outbreaks in this model, there are large transients in
the number of beetles where the beetle population can briefly reach up to 40
times its equilibrium value (Fig. 8). These transients are larger in magnitude
with more uniform tree age distributions as they settle to the geometric dis-
tribution at the upper fixed point. The even-aged stand structures that yield
larger transient beetle populations are plausible in real forests as large scale fires
reset the forest age structure (Safranyik and Wilson 2006), though note that in
practice the combination of fire, logging and forestry practices, and MPB leads
to complicated forest age structures (Taylor and Carroll 2003; Safranyik and
Wilson 2006; Axelson et al. 2009; Axelson et al. 2010). In reality then, it is un-
likely that forests will ever settle into the predicted geometric age distribution
as it takes hundreds of years for the transient outbreaks to dissipate (Fig. 6a).

We note that the recurrent transient outbreaks we see in our dynamical
simulations occur because we have introduced an immigrating beetle population.
While here we have introduced them continuously for convenience, this is not
necessary for recurrent outbreaks. With our initial conditions, after the initial
cohort of susceptible trees are infested, there is little regrowth for the next
N + 2 years. Rather than continuously introducing beetles, we could instead
introduce immigrating beetles periodically when there is a larger susceptible
tree population. This could represent appropriate conditions for an endemic to
epidemic transition, where endemic beetles living in weaker trees are able to take
advantage of the new cohort of susceptible trees and then spread to infest new
stands (Safranyik and Wilson 2006). Alternatively, we could initialize the forest
with a different structure, closer to equilibrium, so that the beetle population
is self-sustaining after a short initial introduction. In other words, in a more
mixed age forest, a shorter burst of immigrating beetles can lead to recurrent
outbreaks, though the outbreaks will be much smaller in magnitude.

The period of the transient beetle outbreaks observed in this model is driven
by the age structure of the forest. This type of single generation oscillation,
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where the period of the oscillation is driven by the time it takes for a cohort of
immature individuals to mature and then produce a new cohort of immature
individuals, can be seen in many age structured or time delay population models
(May 1974; McCauley and Murdoch 1987; Jansen et al. 1990). However, these
models typically predict stable oscillations rather than the transient behaviour
observed here, which is likely because these models do not include an Allee ef-
fect and include overcompensation in addition to a time lag. This means the
population crashes at high densities due to overcompensation, but recovers after
a time lag as the population can recover even at low densities. Here we require
immigrating beetles to overcome the Allee effect, and there is no overcompen-
sation in the beetle dynamics. Despite that, the mechanism is similar, where
existing trees suppress new growth until MPB kill enough susceptible trees to
clear canopy space for a new cohort of juvenile trees. We note that given the
relatively simple juvenile dynamics in this model, it may be possible to translate
the model into a lower dimensional system with delays, as Hassell et al. (1999)
did with the complicated age structured model of spruce budworm presented in
Jones (1979).

The recent outbreaks in Western Canada are largely consistent with the
conclusions from our model. In British Columbia, outbreaks have been found
to occur every 30 to 40 years (Alfaro et al. 2010; Axelson et al. 2009), which
is similar to the outbreak frequency we found with the parameter values in our
simulations. We could easily reduce the time between outbreaks by changing
the number of years it takes for a seedling to become susceptible, N . We note
also that Duncan et al. (2015) reduced the time between outbreaks in their
model with a variety of methods (including spatial dynamics) that should also
be applicable here. In Alberta, MPB populations attacked large areas of novel
hosts but have since declined. In the context of this model, this would be
the first of a series of transient outbreaks of decreasing amplitude. We would
therefore expect large outbreaks to return in less than 50 years as the forests
regrow and new host trees become available.

Given that our model is constructed from the models presented in Duncan
et al. (2015) and Goodsman et al. (2016), we compare our qualitative results
to those models. We first compare with the model in Goodsman et al. (2016),
where we note that our model is identical to that model when trees are not
replaced, ie. when s = 0. The purpose of extending their model was to be
able to answer questions on longer time scales, and so here we compare the
dynamics of a single outbreak. They find that with very strong aggregation and
appropriate initial conditions, the mean number of beetles per tree becomes
fixed and then slowly decreases to 0. In our model, the mean number of beetles
per tree would also go to the upper fixed point, but it would remain there as
the trees infested would be balanced by the new trees entering the susceptible
class. Thus, with very strong aggregation, we find that tree replacement is on
a relevant time scale as beetles are able to aggregate effectively on even a small
number of susceptible trees and the beetle population does not decrease. With
weaker beetle aggregation, beetle populations go extinct in very few time steps
even if starting above the Allee threshold in the Goodsman et al. (2016) model,
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and so outbreaks are very short in time. In our model, tree replacement can
extend these outbreaks to more biologically reasonable lengths.

The qualitative behaviour of our model is quite different from the behaviour
of the Duncan et al. (2015) model. That model does not have an Allee effect,
something we know to be important for MPB (Boone et al. 2011). They find
cyclic outbreak solutions resulting from overcompensation, where beetles out-
break approximately every 120 years. We do not find any oscillatory solutions
in our model, and instead beetle outbreaks are transients with magnitude de-
pendent on the initial conditions and with a frequency set by the age of recovery
of the forest. Additionally, the outbreaks in our model are shorter in duration
with a faster collapse of the beetle population and tend to produce fewer infested
trees than the cyclic ones observed in the Duncan et al. (2015) model.

Finally, we consider several possible extensions of the model introduced here.
First, we could extend the model to include a less resilient tree class. MPB main-
tain endemic populations by attacking trees already weakened by other pests,
disease, or age (Raffa and Berryman 1983; Boone et al. 2011; Bleiker et al.
2014). A lower resiliency tree class may allow for beetle persistence between
boom and bust cycles without the need for immigrating beetles. Second, a
spatial extension of this model would allow us to answer how these transient
outbreaks spread over space rather than over time, and would allow us to con-
sider relevant spatial inhomogeneity in pine resilience (Cudmore et al. 2010;
Cullingham et al. 2011; Burns et al. 2019). Third, while our survival function
F captures several key aspects of MPB biology, others could be included. For
example, beetles are also able to signal when host defenses have been overcome
to prevent further aggregation (Raffa and Berryman 1983; Safranyik and Wilson
2006). This means that the survival function likely overestimates the number
of surviving trees with high beetle populations, as when beetles are numerous
they do not aggregate as strongly. One option to account for this would be to
let k be a function of m, with higher aggregation at lower beetle number. Using
numerical simulations, we find that this makes it easier for beetles to invade
at low numbers under certain conditions. Biologically, beetles may also want
to avoid too many attacks on a single tree as the beetle larvae have negative
density dependence (Raffa and Berryman 1983). We could account for this by
modifying the function in (7) to account for this negative density dependence
in the same way as in Goodsman et al. (2017), although we would no longer be
able to study the system analytically. Finally, on larger spatial scales, beetles
may only attack a fraction α of trees in the stand, in which case we could as-
sume the beetles are distributed according to a zero-inflated negative binomial
distribution in order to derive the function F . This leads to a functional re-
sponse similar to Goodsman et al. (2017) and may allow for a better fit to data
depending on the size of the stand.

Long-term models like this one are important given that the focus for MPB
management in recent years has moved from intensive management of single
outbreaks to long-term forest management and risk assessment. The model we
developed here allows us to study how changes in forest resilience will affect
long-term forest and MPB dynamics. This will be increasingly relevant as MPB
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continues to spread to novel hosts and as host resiliency is expected to decrease
under climate change.
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A Small k approximation for F

For aggregation levels that are very high, k ≪ 1, we can expand the survival
function (9) around k = 0 to obtain the following approximation

1− F (m; k, φ) ≈

{
0 m < m0

−k
(
log
(

kφ
m

)
+ γ
)

m > m0,
(85)

where γ is the Euler gamma number, and we can determine m0 by solving

log
(

kφ
m

)
+ γ = 0 to obtain m0 = kφeγ .

The analysis that follows is similar to that using the Hill function approx-
imation, although note that in this case the equation for the fixed points (32)
can be solved directly in terms of the Lambert W function. In other words,
with this approximation, m/c = 1− F (m; k, φ) can be solved for m to obtain

m = −ckW{0,−1}

(
−φ

c
eγ
)

(86)

where theW0 branch is the intermediate (unstable) solution and theW−1 branch
is the larger (predominately stable) solution. As φ/c → e−γ−1, the two solutions
converge to a single unique value m∗

k = ck, as W0(1/e) = W−1(1/e) = −1.
Additionally, for φ/c ≤ e−γ−1 ≈ 0.205 there is no solution (because W (x) does
not have real solutions for x < −1/e). This means that the threshold must be
less than about 20% of the number of beetles emerging per tree for the existence
of the outbreak equilibrium. The stability analysis of these fixed points follows
similarly.

B Stability near the bifurcation point

Analytically, using the Hill function approximation, we find that there is a fold
bifurcation at m = m∗ (44), and that the upper branch of the solution very
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Fig. 9 The spectral radius of the upper branch near the bifurcation point with
κ = 5. The vertical lines indicate the values of θ chosen for the dynamical
simulation in Fig. 11. The subplots show different ranges of θ, where the second
subplot is very close to the critical point. Note that the two vertical lines in the
second subplot overlap in the first subplot

near the bifurcation point must be stable. However, in Fig. 4 the upper branch
appears unstable numerically near the critical m∗. Here we show numerically
that very near the bifurcation point the upper branch is indeed stable, but that
it very quickly loses stability before regaining it at a slightly smaller value of
θ. The dynamical simulations near equilibrium for values of θ in this regime
show that the mean number of beetles m oscillates rapidly before eventually
stabilizing or losing stability. However, even in the case where stability is lost,
the simulations often show positive numbers of beetles over times much longer
than those relevant biologically.

Figure 9 shows the spectral radius of the upper branch very near the bifur-
cation point. This is similar to Fig. 5 in the main text, but over a much smaller
range of θ and only for the upper branch. The second subplot shows that the
spectral radius is less than one only very near the critical point, before quickly
increasing to greater than one. We additionally plot the real and imaginary
parts of the dominant eigenvalue separately in Fig. 10, which are both positive
over this range of θ. As neither are zero when the spectral radius crosses one,
we suspect the system may undergo consecutive Neimark-Sacker bifurcations
wherein the oscillations around the fixed points either spiral towards or away
from the fixed point.

We simulate the system for four values of θ to test what the dynamics of
the system look like very near the bifurcation point in Fig. 11. We set the first
of these values of θ to be near enough to the critical point to be in the stable
region (halfway between where the spectral radius crosses one and the critical
value of θ∗). We set the next values of θ to be at the maximum value of the
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Fig. 10 The real and imaginary parts of the dominant eigenvalue of the upper
branch near the bifurcation point with κ = 5. The subplots show different
ranges of θ, where the second subplot is very close to the critical point

spectral radius, halfway between the values of θ where the spectral radius crosses
one, and very near the final point where the spectral radius crosses one. These
values of θ are shown as vertical lines in Fig. 9. We set the initial values of all
parameters and variables to their critical values and simulate forward in time
for thousands of years. Note that unlike the simulations in the main text, there
are no additional immigrating beetles in this case as we start the simulation
close to equilibrium.

The first simulation very near the bifurcation point does indeed settle to the
stable mean number of beetles in a damped oscillation. For the value of θ where
the spectral radius is at its maximum, the number of beetles remains non-zero
for around 200 time steps (years) before collapsing. For the next two values of
θ, even though the spectral radius is greater than 1, the mean number of beetles
oscillates consistently for thousands of years. Thus, even though this fixed point
is technically unstable, it is nearly stable for biologically relevant time scales.

For the second largest value of θ, we additionally test how this time to
extinction depends on the initial mean number of beetles and plot the results
in Fig. 12. We find that small variations in the initial conditions can lead to
thousands of time steps difference for the time to extinction. However, as long
as there are enough beetles initially, the time to extinction is long enough that
the beetle population is effectively stable for biologically relevant time scales.

37



0 1000 2000 3000 4000
Time (Years)

0.7995

0.8000

0.8005

0.8010

0.8015

m
, M

ea
n 

nu
m

be
r 

of
 b

ee
tle

s

= 0.6062864

0 1000 2000 3000 4000
Time (Years)

0.0

0.2

0.4

0.6

0.8

= 0.6062800

0 1000 2000 3000 4000
Time (Years)

0.0

0.2

0.4

0.6

0.8

m
, M

ea
n 

nu
m

be
r 

of
 b

ee
tle

s

= 0.6024200

0 1000 2000 3000 4000
Time (Years)

0.80

0.82

0.84

0.86

0.88

= 0.5990000

Fig. 11 The mean number of beetles from dynamical simulations near the
bifurcation point with κ = 5. We set the initial conditions to the critical values
for all variables. The value of θ is given in each subplot and is also indicated in
Fig. 9. The horizontal line is the critical value of m = m∗ = (κ− 1)/κ
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Fig. 12 The time to extinction for the beetle population with small variations
in the initial mean number of beetles at θ = 0.60242. The vertical line shows
the critical point m∗. Note that when the initial mean number of beetles is
small, the time to extinction is very short, between 6 and 13 years for the range
considered here
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