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� We formulate a basic toxin-dependent population model.

� We investigate the effect of mercury on the persistence of rainbow trout population.
� Our results are consistent with surface water quality guidance in Alberta.
� Our model can be used to develop the guideline for the protection of aquatic life.
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a b s t r a c t

Mathematical models have been widely applied to perform chemical risk assessments on biological
populations for a variety of ecotoxicological processes. In this paper, by introducing a dose-dependent
mortality rate function, we formulate a toxin-dependent aquatic population model that integrates
mortality as toxin effect in addition to considering the effects of toxin on growth and recruitment. The
model describes the direct effect of toxin on population by treating the concentration of toxin in the
environment as a parameter. The model is more convenient to connect with data than traditional
differential equation models that describe the interaction between toxin and population. We analyze the
positive invariant region and the stability of boundary and interior steady states. The model is connected
to experimental data via model parametrization. In particular, we consider the toxic effects of mercury on
rainbow trout (Oncorhynchus mykiss) and obtain an appropriate range for each model parameter. The
parameter estimates are then used to illustrate the long-time behavior of the population under
investigation. The numerical results provide threshold values of toxin concentration in the environment
to keep the population from extirpation. The findings are consistent with surface water quality
guidelines. It may be appropriate to apply our model to other species and other chemicals of interest
to consider guideline development.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Anthropogenic and natural environmental contaminants are a
common problem and a source of concern to ecosystem health.
Industrial contaminants may arise as a result of air emissions,
water releases, water seepage, air deposition or solid waste.
Contaminants of concern may also be transported through natural
systems as a result of weathering or leaching. Contaminants such
as petroleum hydrocarbons, heavy metals and pesticides can cause
ll rights reserved.

alberta.ca (H. Wang),
toxic effects when released into aquatic environments. The US
Environmental Protection Agency (EPA) has designated 126 prior-
ity pollutants and the Canadian Council of Ministers of the
Environment (CCME) has a list of priority chemicals of concern
for the protection of aquatic life. These priority substances include
metals and organic compounds. USEPA and CCME have established
a series of guidelines aiming to derive ambient water quality
criteria for aquatic life for priority chemicals.

The effect of a toxic chemical can, in principle, be exerted on all
levels of the biological hierarchy, from cells to organs to organisms to
populations to entire ecosystems. Over the past several decades,
ecotoxicological models have been applied increasingly to perform
chemical risk assessments on a variety of ecological processes. These
models include population models (scalar abundance, life history,
individual-based, and metapopulation), ecosystem models (food-web,
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aquatic and terrestrial), landscape models, and toxicity-extrapolation
models (Bartell et al., 2003; Galic et al., 2010; Pastorok et al., 2003;
Pastorok et al.). The selection of specific models for addressing an
ecological risk issue depends on the habitat, endpoints, and chemicals
of interest, the balance between model complexity and availability of
data, the degree of site specificity of available models, and the risk
issue (Pastorok et al.,). A comprehensive review on the realism,
relevance, and applicability of different types of models from the
perspective of assessing risks posed by toxic chemicals is provided in
Bartell et al. (2003) and Pastorok et al.

In practice, applying population models to chemical risk
assessment is more cost-effective than using ecosystem and land-
scape models (Pastorok et al., 2003). For instance, toxin-dependent
individual-based models and matrix population models are widely
used to address the risk issue (Galic et al., 2010). Individual-based
models include several key individual-level processes, such as
behavior, growth, survival, and reproduction success. However,
ignoring population-or higher-level effects and focusing only on
individual-level endpoints can lead to inaccurate risk estimates
and possible errors in environmental management decisions
(Pastorok et al., 2003). The matrix models are often used to
describe the fish and wildlife dynamic where survival rate and
fecundity are functions of the age or stage to which an organism
belongs. However, assessing the effects of toxin on vital rates in
fish and wildlife population requires data on life-cycle toxicity
testing. More often than not, the available population data is much
more incomplete, numerous assumptions must be made to calcu-
late age/stage-specific survival and fecundity (Pastorok et al.).

In this study, we investigate the effect of contaminants dis-
solved in water on fish population dynamics using a toxin-
dependent differential equation model. Literature search results
show that relatively few researchers use differential equation
models to assess the effects of toxins on population dynamics.
In a series of papers, Hallam et al. (1983), Hallam and Clark (1983),
and Luna and Hallam (1987) modeled the interaction between
toxin in the environment and population by assuming that the
growth rate of population density linearly depends upon the
toxicant concentration in the population but did not consider
the effect of environmental toxin on the population carrying
capacity. Freedman and Shukla (1991) and Thomas et al. (1996)
therefore modified these models by allowing the carrying capacity
to also be dependent on the exogeneous introduction of toxin.
A common feature of those models is that the population growth
rate is modeled by the logistic equation. We point out that it is not
easy to quantitatively analyze the effect of toxin on the carrying
capacity of the population. Thieme (2003) proposed a model using
the Beverton–Holt equation instead of the logistic equation to
describe the growth rate of population. The Beverton–Holt formula
allows us to differentiate between the impacts of the toxin on food
uptake, food conversion, and biomass gain. However, in his model
the toxin concentration in the population only affects the growth
rate of the population, but not the mortality rate of the population.

In consideration of the fact that the concentration of toxin in the
environment, in reality, is not affected significantly by the metabolic
process of population, in this paper, we mainly focus on the effect of
toxin on population and ignore the influence of population on the
concentration of toxin in the environment. By introducing a dose-
dependent mortality rate function, we derive a basic toxin-dependent
aquatic population model which extends Thieme's model. In particu-
lar, we use the power law to reflect the relationship between toxin
concentration per unit population biomass (body burden) and popula-
tion mortality rate. Our model consists of two equations. One equation
describes the population growth rate where the birth and death rates
are explicit functions of body burden. The other one is the balance
equation for the body burden which describes the accumulation and
dilution of toxin in the organisms body.
The main objective of this study is to investigate the effect of
toxin on the population-level endpoints inferred from individual-
level endpoints. To this end, we choose a native, threatened, fish
species in North America, rainbow trout, as the study focus, and
consider the effect of mercury on its dynamics through increased
mortality and reduced reproductive success. Existing data and
published studies for rainbow trout and mercury are used to
estimate the reasonable range of all model parameters. The
estimated parameters are then used to understand the effect of
toxin on the long-time behavior of a population and make
predictions on the effect of mercury on population stability and
persistence.

The rest of the paper is organized as follows. In Section 2, we
develop a toxin-dependent aquatic population model. In Section 3,
we present a qualitative analysis for the model. We analyze the
positive invariant region and investigate the existence and stabi-
lity of boundary and interior equilibrium. In Section 4, we connect
the model to experimental data via model parametrization.
In Section 5, the results of model parametrization are used to
numerically solve the model, and the results of the effect of the
toxin on the end behavior of the population are provided. Finally a
brief discussion section completes the paper.
2. Model formulation

The state variables of the model are x¼ xðtÞ, the concentration of
biomass of the population in g/L at time t; I¼ I(t), the concentration of
toxin in μg=L in the population biomass at time t; E¼E(t), concentra-
tion of toxin in μg=L in the environment at time t; y¼y(t), the
concentration of toxin per unit population biomass in μg=g at time t
(body burden).

A model for the interaction between population and toxin is
proposed in Thieme (2003) as follows:

dx
dt

¼ ½βðx; yÞ−μ�x
dI
dt

¼ aEx−½ηþ ξþ μ�I
dE
dt

¼ −aExþ ½ηþ qμ�I−θE þ uðtÞ

y¼ I
x

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:1Þ

with appropriate initial conditions.
The first equation presents a generic description of the growth

of the population under the influence of the toxin, while the
second and third equations are balance equations for the concen-
tration of the toxin contained in the individuals of the population
and dissolved in the aquatic environment.

The positive constant μ represents the per unit biomass loss
rate of the population due to death, and βðx; yÞ denotes the per unit
rate of biomass growth of the population. The toxin uptake rate by
the population from the environment, aEx, is modeled according
to the Law of Mass Action and is proportional to both the
concentration of toxin in the environment and the concentration
of population biomass. The positive constants η and ξ are per unit
rates of toxin egestion and depuration, respectively due to the
metabolic processes of the population. q∈½0;1� is a fixed fraction by
which the internal toxin is recycled into the environment. The
parameter θ denotes the per unit rate of environmental detox-
ification. The time-dependent function u in the third equation
stands for the exogenous input of toxin into the environment.

It is instructive to write down the equation for the body burden y.
Since

y′¼ I′
x
−y

x′
x
¼ aE−½ηþ ξþ μ�y−y½βðx; yÞ−μ�;
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we obtain

y′¼ aE−½ηþ ξþ βðx; yÞ�y:

We point out that the concentration of biomass of the popula-
tion, in reality, is usually very low, the concentration of toxin in the
environment therefore is not affected significantly by death or
metabolic processes of the population. In other words, the con-
centration of toxin in the environment is mainly determined by
external conditions such as the exogenous input of toxin, decom-
position by sunlight or hydrolysis. For this reason, we regard the
concentration of toxin in the environment as a parameter in
this study.

In addition, notice that in the model (2.1), the toxin only affects
the per unit biomass growth rate, but not the per unit biomass
death rate. To amend this, we introduce a dose-dependent func-
tion which measures the effect of toxin upon mortality rate and
consider the following basic toxin-dependent population model:

dx
dt

¼ ½βðx; yÞ−μðyÞ�x
dy
dt

¼ aE−½sþ βðx; yÞ�y;

8>><
>>: ð2:2Þ

where s¼ ηþ ξ. We let

βðx; yÞ ¼ α1½1−α2y�þ
1þ α3x

; ð2:3Þ

with positive constants αi (i¼1,2,3) and ½r�þ ¼max 0; rf g being the
positive part of a real number r. A derivation of the above
expression from a resource-consumer model via a time scale
argument is presented in Thieme (2003).

In 1992, the committee on toxicology of the National Research
Council recommended the use of the power law to study the
relationship between toxin concentration and mortality rate and it
has since been shown to fit the data well (Miller and Janszen,
2000). Thus, taking natural mortality rate into account, we let

μðyÞ ¼ kyl þm; ð2:4Þ

where k, l, and m are positive constants.
The variables and parameters for the basic models (2.2)–(2.4)

which we shall investigate are listed in Table 1.
3. Mathematical analysis

In this section, we assume for convenience that l¼1, hence
the mortality rate function takes the linear form: μðyÞ ¼ kyþm.
Table 1
List of variables and parameters.

Symbol Definition Unit

x(t) Concentration of biomass at time t g/L
y(t) Body burden at time t μg=g
β Gain rate of the population day−1

μ Loss rate of the population day−1

a Uptake coefficient day−1

E Concentration of toxin in the environment μg=L
s Egestion and depuration rate day−1

α1 Maximum growth rate day−1

α2 Effect coefficient of toxin on the growth of population g=μg
α3 Crowding effect L/g
k Coefficient of power function day−1

l Exponent of power function
m Natural mortality rate day−1
We rescale the systems (2.2)–(2.4) by setting

~x ¼ α3x; ~y ¼ α2y; ~t ¼ α1t; ~k ¼ k
α1α2

; ~m ¼ m
α1

; ~a ¼ α2aE
α1

;

~s ¼ s
α1

:

We drop the tildes for convenience, so that the system (2.2)
becomes

dx
dt

¼ ½1−y�þ
1þ x

−ky−m
� �

x

dy
dt

¼ a− sþ ½1−y�þ
1þ x

� �
y:

8>>><
>>>:

ð3:1Þ
3.1. Basic results

We shall first show that all solutions initiating in the non-
negative cone are eventually uniformly bounded and enter a
certain region as described below.

Theorem 3.1. The system (3.1) is dissipative with a positively
invariant set Ω defined by

Ω¼ ðx; yÞ∈R2
þ : 0oxo 1

m
;0oyo a

s

� �
:

Proof. Positivity obviously holds for the system. On the upper
boundary of Ω, y¼ a=s; x∈½0; 1=m�; dy=dt ≤a−sða=sÞ ¼ 0. On the
right boundary of Ω, x¼ 1=m; y∈ð0; a=s�; dx=dto1−mð1=mÞ ¼ 0.
Therefore, all orbits starting from Ω cannot escape from its
boundary. □

The next Theorem shows that the nonexistence of limit cycles
when k≥1.

Theorem 3.2. If k≥1, then the system (3.1) has no nontrivial periodic
solution.

Proof. The vector field defined by system (3.1) is locally Lipschitz-
continuous in Ω, which guarantees the existence and uniqueness
of solutions of system (3.1).
If a≤s; the vector field is C1, Bendixson's Criterion implies the

desired conclusion.
However, this vector field is not C1 if a4s, so the classical

Dulac's criterion cannot be applied. Fortunately, there is a general-
ized Dulac's criterion for locally Lipschitz-continuous planar
systems

dx
dt

¼ f ðxÞ; x∈Ω⊂R2: ð3:2Þ

If Ω is a simply connected, bounded, open subset of R2, and there
exist a C1 function χ : Ω-R and a constant c40 such that

divðχðxÞf ðxÞÞ≤−c; a:e: in Ω;

then every compact limit set of (3.2) in Ω consists of equilibria and
every compact invariant set of (3.2) in Ω is a set of equilibria and
heteroclinic orbits containing no heteroclinic cycles, for instance, see
Theorem 9 in Sanchez (2005); here a heteroclinic cycle is a Jordan
curve that consists of equilibria and heteroclinic (or homoclinic)
orbits of (3.2). Let Ω1 ¼ ðx; yÞ∈R2

þ : 0oxo
�

1=m;0oyo1g and
Ω2 ¼ ðx; yÞ∈R2

þ : 0oxo1=m;1oyoa=s
� �

: We choose χðx; yÞ ¼ 1.



Table 2
The existence of boundary and interior equilibrium.

Condition Boundary equilibrium Interior equilibrium

m≥1; a≥s E0 None
m≥1; aos E1 None
0omo1;Ros; a≥s E0 None
0omo1;Ros;R≤aos E1 None
0omo1;Ros; aoR E1 E2
0omo1;R≥s; a≥R E0 None
0omo1;R≥s;s≤aoR E0 E2
0omo1;R≥s; aos E1 E2
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Simple computations yield that in region Ω1,

divðχðxÞf ðxÞÞ ¼ yð1þ 2xÞ
ð1þ xÞ2

−
x

ð1þ xÞ2
−ky−m−s

≤ð1−kÞy− x

ð1þ xÞ2
−m−s

≤−m−s:

In region Ω2,

divðχðxÞf ðxÞÞ ¼−ky−m−s≤−m−s:

Define c¼mþ s40. The generalized Dulac's criterion can be
applied to system (3.1) in Ω and thus the proof is completed. □

3.2. Existence of equilibria

In order to explore the equilibrium, we set the vector field in
(3.1) equal to 0 and obtain the equilibrium equations

½1−y�þ
1þ x

−ky−m
� �

x¼ 0;

a− sþ ½1−y�þ
1þ x

� �
y¼ 0:

From the first equation, we have

x¼ 0 or
½1−y�þ
1þ x

¼ kyþm:

x¼0 will give rise to so called boundary equilibrium (extinction
equilibrium) ð0; ynÞ. Substituting x¼0 into the second equilibrium
equation, we obtain

a¼ ðsþ ½1−yn�þÞyn≕ϕðynÞ:
We notice that ϕð0Þ ¼ 0 and ϕðyÞ-∞ as y-∞: So there is always a
positive solution to this equation and we will have at least one
boundary equilibrium.

Actually, if a≥s; then we have only one boundary equilibrium

E0 ¼ 0;
a
s

� 	
:

If aos; then we can solve

ðsþ ð1−ynÞÞyn ¼ a: ð3:3Þ
to get another boundary equilibrium ð0; ynÞ with yno1. In fact,
solving (3.3) yields

yn ¼
1þ s7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
2

;

Clearly, if aos, then ð1þ sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
=2Þ41 and

ð1þ s−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
=2Þo1. That is to say, If aos, we have only

one boundary equilibrium

E1 ¼ 0;
1þ s−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
2

0
@

1
A:

Let us turn to the alternative x40 and ð½1−y�þÞ=1þ x¼ kyþm.
This will give rise to a so called interior equilibrium (survival
equilibrium) ðx⋆; y⋆Þ. Substituting ð½1−y�þÞ=1þ x¼ kyþm into the
second equilibrium equation leads to

a¼ ðsþ ky⋆ þmÞy⋆:
Since y⋆40, we get

y⋆ ¼
−s−mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþmÞ2 þ 4ka

q
2k

:

Thus, the interior equilibrium exists if and only if y⋆o1 and
ð1−y⋆=ky⋆ þmÞ−140 are satisfied. This leads to the following
conditions:

0omo1; ao min kþ sþm;
ð1−mÞðksþ sþmþ kÞ

ðkþ 1Þ2

( )
:

Notice that

ð1−mÞðksþ sþmþ kÞ
ðkþ 1Þ2

o ðkþ sþmÞðkþ 1Þ
ðkþ 1Þ2

o ðkþ sþmÞðkþ 1Þ2
ðkþ 1Þ2

¼ kþ sþm:

Therefore, the system (3.1) has interior equilibrium

E2 ¼
1−y⋆

ky⋆ þm
−1; y⋆

� �
;

if and only if the following conditions hold:

0omo1; ao ð1−mÞðksþ sþmþ kÞ
ðkþ 1Þ2

: ¼ R: ð3:4Þ

According to the above discussion, depending on the values of
m; a; s, and R. The existence of boundary and interior equilibria
and corresponding conditions required are summarized in Table 2.

From Table 2, we see that the extinction equilibria always exist.
In particular, if the uptake rate is greater than the elimination rate
(the sum of egestion rate and depuration rate), i.e., a≥s, then we
have the extinction equilibrium E0 with body burden y41. If the
uptake rate is less than the elimination rate, i.e., a≥s, then we have
extinction equilibrium E0 with body burden yo1. The survival
equilibrium exists if and only if the natural mortality rate m is
less than 1 and the uptake rate is less than the threshold value,
R, which is determined by the elimination rate, s, and the values of
k, l, m in the expression of the mortality rate function.

3.3. Stability of equilibria
Theorem 3.3. The boundary equilibria E0 or E1 are globally asymp-
totically stable if threshold conditions are not satisfied.

Proof. Since the y coordinates of E0 is greater than 1, the Jacobian
matrix of system (3.1) satisfies

JðE0Þ ¼
−k a

s−m 0
0 −s

� �
:

The eigenvalues of JðE0Þ are both negative, hence E0 is locally
asymptotically stable.
Since the y coordinates of E1 is less than 1, the Jacobian matrix

evaluated at E1 satisfies

JðE1Þ ¼
1−yn−kyn−m 0

ð1−ynÞyn −s−1þ 2yn

 !
:

Thus, the eigenvalues of JðE1Þ are

λ1 ¼ 1−yn−kyn−m¼ 1−m−ðkþ 1Þ
1þ s−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
2

o0;
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λ2 ¼ −s−1þ ð1þ s−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
Þ ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2−4a

q
o0:

Hence, E1 is locally asymptotically stable.
If a≥s, only the boundary equilibrium E0 is feasible. Because

solutions are bounded, the solutions must converge to E0.
Similarly, If aos, only the boundary equilibrium E1 is feasible, E1

is globally asymptotically stable. □

Theorem 3.4. Assume that the interior equilibrium E2 exists, then E2
is locally asymptotically stable if

ðk2 þ 3kÞðy⋆Þ2 þ ð2km−2kþ 3mþ sÞy⋆ þm2−2m−so0: ð3:5Þ

Proof. Since the y coordinates of E2 is less than 1, the Jacobian
matrix evaluated at E2 satisfies

JðE2Þ ¼
1−y⋆

ð1þx⋆Þ2 −ky
⋆−m − x⋆

1þx⋆ −kx
⋆

ð1−y⋆Þy⋆
ð1þx⋆Þ2 −s− 1−2y⋆

1þx⋆

0
B@

1
CA:

Noticing that x⋆ ¼ ð1−y⋆=ky⋆ þmÞ−1; we have

TrðJðE2ÞÞ ¼
ðky⋆ þmÞ2

1−y⋆
−ky⋆−m−s−

ð1−2y⋆Þðky⋆ þmÞ
1−y⋆

;

detðJðE2ÞÞ ¼
ðky⋆ þmÞðky⋆ þ y⋆−1þmÞð2ky⋆ þ sþmÞ

y⋆−1
:

Since 0oy⋆o ð1−m=kþ 1Þ, detðJðE2ÞÞ40.
It is easy to check that TrðJðE2ÞÞo0 if (3.5) holds. □

Remark 1. Since 0oy⋆o ð1−m=kþ 1Þ, clearly, TrðJðE2ÞÞjy⋆ ¼ 0o0
and

TrðJðE2ÞÞjy⋆ ¼ ð1−mÞ=ðkþ1Þ ¼−
2mþ kþ ksþ s−1

kþ 1
:

Therefore, a simpler sufficient condition on the locally asympto-
tically stability of E2 is 2mþ kþ ksþ s41.

4. Parameterization

In this section we describe the parameterization of (2.2)–(2.4).
While the model is general, we choose to apply it to a representative
species, rainbow trout (Oncorhynchus mykiss), and consider the effect
of mercury on the fish dynamics. Rainbow trout is found widely
throughout the world. However some populations such as the native
rainbow trout population in the Athabasca River, Alberta, and rainbow
trout found in watersheds west of the Cascade Mountains in the U.S.
are threatened (http://albertafishingguide.com/fish/rainbow-trout;
http://www.fws.gov/northeast/wssnfh/pdfs/RAINBOW1.pdf). Mercury
may be released into the aquatic environment in states of relatively
low toxicity, but will be transformed into highly toxic states, namely
methylmercury. Mercury's harmful effects on fish include death,
reduced reproduction, slower growth and development, and abnormal
behavior (Eisler, 1987).

4.1. Functional form for mortality rate μðyÞ

To investigate the relationship between the concentration of
methylmercury per unit biomass of rainbow trout (body burden)
and the mortality rate, we use the data from an experiment in
which the percent mortality of rainbow trout injected with
methylmercury over a 15 day period was recorded (Hawryshyn
and Mackay, 1979). The findings are in agreement with a later
evaluation of other studies which found that whole body concen-
trations of 10–20 μg=g methylmercury could be lethal to fish
(Niimi and Kissoon, 1994).
To apply the experimental data from Hawryshyn and Mackay
(1979) to estimate constants k and l in (2.4), we introduce a
Poisson process to describe survival probability which corresponds
to percent mortality of rainbow trout. A Poisson process says that
if our time step, h, is sufficiently small then the probability of an
event occurring is roughly proportional to h (Grimmett and
Stirzaker). Let p(t) be the probability that an individual survives
until time t and pðt þ hjtÞ be the probability that an individual
which lives until time t will survive until time t+h. Then by the
Possion process, the probability that an individual dies over the
time interval h is

1−pðt þ hjtÞ ¼ λhþ oðhÞ:
Thus,

pðt þ hÞ ¼ pðtÞpðt þ hjtÞ ¼ pðtÞð1−λhþ oðhÞÞ
Hence,

pðt þ hÞ−pðtÞ ¼−λhpðtÞ þ oðhÞ
Dividing through by h and letting h-0, we get

p′ðtÞ ¼−λpðtÞ;
it follows that the probability of survival and mortality are

pðtÞ ¼ e−λt

and

1−e−λt≔p0ðtÞ;
respectively. We set λ¼ kyl and obtain

p0ðtÞ ¼ 1−exp −kylt
n o

:

Using the above mortality rate function and employing Matlab
routine LSQCURVEFIT to fit the data in Hawryshyn and Mackay
(1979), we obtain parameter estimates k¼ 0:00398; l¼ 1:489 with
95% confidence intervals k∈½0:000864; 0:00710�, l∈½0:274; 2:705�.
The fitting results are plotted in Fig. 1.

As for the natural mortality rate, m, we take m∈½1=ð365� 6Þ;
1=ð365� 4Þ� in day−1 since the usual life span of rainbow trouts is
four to six years (http://www3.northern.edu/natsource/FISH/
Rainbo1.htm).

4.2. Maximum gain rate of biomass: α1

Both reproduction and individual growth result in the gain of
population biomass. To measure the maximum gain rate of
biomass, we let α1 ¼ cα̂1, here c is a scaling factor which lies in
the range of no growth to immediate growth, for instance, setting
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Jw¼weight of juveniles and Aw¼weight of adults, we have

Jw
Aw

≤c≤
Aw

Aw
¼ 1:

We choose Jw¼21.7 g and Aw¼553.5 g which are mean weights
of juveniles and adults rainbow trout from Anderson et al. (1997)
and get c∈½0:0392;1�.

The maximum reproduction rate of fish at low population sizes is
estimated in Myers et al. (1999) by employing variance components
models and examining a database of over 700 spawner-recruitment
series. The estimated results show that the maximum annual repro-
duction rate, denoted by ~α , over seven species from the Salmonidae
family is ~α∈½18:9104; 38:6456�, Letting exp 365α̂1f g ¼ ~α, we obtain an
intrinsic reproduction rate α̂1 ¼ ½0:0081; 0:010� in day−1. To shrink the
range of α1, we take the midpoint of the estimate interval for c and
obtain the estimate: α1∈½0:0042; 0:0052� in day−1.
eyed eggs were exposed in mercury environment for 20 days) with the percent
survival function (S¼ exp −α2yt

� �
) output with estimated parameters.
4.3. Effect of toxin on reproduction and growth: α2

It is not easy to incorporate the separate effects of the toxin on
reproduction and on individual growth into a single parameter. For
simplicity, we only consider the effect of toxin on fish reproduc-
tion to estimate α2. The effects of mercury on the reproduction of
fish and amphibians have been studied in Birge et al. (1979).
Therein, eyed eggs of the rainbow trout were treated from 10 days
pre-hatching through 10 days post-hatching, the data about the
relationships between the body burden of embryo-larval stages of
rainbow trout and the percent survival are recorded.

To use the data from Birge et al. (1979) to estimate α2, we first
assume that the mortality rate of embryo-larval stages (denoted by L)
of rainbow trout linearly depends on the body burden, in particular,
we have

dL
dt

¼−α2yL:

So

LðtÞ ¼ Lð0Þe−α2yt :

Letting L(0)¼1, we define percent survival of embryo-larval stages,
denoted by S, as

S¼ e−α2yt :

We fit the data from Birge et al. (1979) to the above survival
function (see Fig. 2) and obtain α2 ¼ 0:495 day−1.

Note that the term ½1−α2y�þ in the basic model represents the
fraction of successful reproduction which linearly depends on the
body burden y. We roughly think of the successful reproduction as
an eyed egg being able to survival until it becomes a fry, which is
the first time the trout acts like a fish. We assume that it takes T
days for an eyed eggs to become a fry. From the life cycle of
rainbow trout (Miranda), we find that it takes about 20–80 days
for the embryos to develop. Once the egg hatches, it is referred to
as an alevin. It will take the alevin two to three weeks to become a
fry. Therefore, we choose T∈½34; 101� in days. Since the probability
that an eyed egg survives until it becomes a fry (i.e., successful
reproduction) is

e−α2yT≈1−α2Ty:

Letting α2 ¼ α2T , we obtain α2∈½16:83; 49:99� in g=μg.
4.4. Crowding effect: α3

If there is no effect of the toxin, the first equation of (2.2) can be
written as

dx
dt

¼ α1
1þ α3x

−m
� �

x¼
ðα1−mÞ 1−

x
K

� 	
x

1þ α3x
; ð4:1Þ

with

K ¼ α1−m
mα3

: ð4:2Þ

Notice that α1−m is always positive from the estimated values
for α1 and m. It is not difficult to check that K plays the role of the
carrying capacity as with the logistic equation.

In Johnson and Hasler (1954), the authors investigate the level
of carrying capacity for a population of rainbow trout living in
several small lakes and analyze the factors governing growth and
carrying capacity. The carrying capacity of the rainbow trout
population was estimated to be approximately 50 pounds per
acre. Since the average depth of those lakes is between 5 m and
8 m, simple calculation gives the range of carrying capacity:
k∈½0:000701; 0:00112� in g/L. Taking the ranges of α1 and m into
account, we obtain that α3∈½4618:5; 14701:2� in L/g.

The uptake of the methylmercury appears to follow a two-stage
processes (Rodgers and Beamish, 1982). A portion of the uptaken
methylmercury remains associated with dietary components
which are not assimilated and are eliminated rapidly with the
feces. The remaining fraction of uptaken methylmercury is
absorbed across the gut and incorporated into tissues. This
assimilated fraction of uptaken methylmercury is depurated by
the kidney, liver and possibly gills. According to the system (2.2),
we need to estimate the uptake coefficient a, egestion rate η and
depuration rate ξ. The egestion rates are highly positively corre-
lated with daily food ingestion rate which may not be easy to
measure (Murtaugh, 1984). For simplicity, quantitatively, we con-
sider the following simpler model related to the second equation
of (2.2):

dy
dt

¼ aE−½ξþ βðx; yÞ�y;

where a is the assimilation coefficient. In what follows, we will
estimate the assimilation coefficient a and depuration rate ξ
instead of a, η and ξ in the model (2.2).
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4.5. Assimilation coefficient: a

The relationship between concentration of methylmercury in
water E ðμg=LÞ, methylmercury consumption rate C (ng/L per day),
and methylmercury assimilation rate aE ðμg=g per day) can be
described by the regression equation (Phillips and Buhler, 1978)

aE¼ 0:084E þ 0:00068C:

Furthermore, The relationship between E and C (ng/L per day) can
be described by C¼dE, d∈½111:43; 150:77�. Simple calculation yield
that a∈½0:1598; 0:1865�.

4.6. Depuration rate: ξ

In Rodgers and Beamish (1982), the authors investigate the
dynamics of dietary methylmercury in rainbow trout which were
fed with diets containing 0, 25, 45, 75, 95 mg Hg kg−1 methylmer-
cury for 84 days at meal sizes of 1% and 2% day−1 and to satiation.
Experimental results show that methylmercury was depurated
more rapidly in fish fed with the larger meal size. We take the full
range of calculated daily depuration rates for methylmercury by
rainbow trout, that is, ξ∈½0:00516; 0:00733� in day−1.
5. Numerical results

In this section, the resulting parameter estimates are used to
numerically solve the basic models (2.2)–(2.4). Note that the
estimated values of parameters are given by certain intervals.
In our numerical simulations, we plan to deal with those para-
meters in the following two ways: (1) We take the midpoint of
intervals as the corresponding parameter values and make deter-
ministic simulations. (2) We regard all parameters as triangle
distribution random variables where the most probable value are
midpoints of the corresponding intervals and run simulations.
More precisely, we randomly choose a value for each parameter (in
the triangle distribution) which is fixed for each simulation.

5.1. Simulations with fixed parameters

We begin by understanding how the concentration of toxin in
the environment affects the population biomass level. We describe
the bifurcation dynamics as E changes from 0 to 0:005 μg=L which
is represented in Fig. 3. It can be observed that the threshold value
of E for the population extinction is around 0:0045 μg=L even
though the stable population level becomes very low as E reaches
around 0:0011 μg=L.
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Fig. 3. The stable population level when the bifurcation parameter E∈½0; 0:005� in
μg=L.
We then compare the levels of population biomass and
corresponding body burden under the conditions of three different
toxin levels in the environment, E¼ 0;0006; 0:0012; 0:012 μg=L.
Thus, we simulate the model for 20 years (7300 days) and the
numerical results are plotted in Fig. 4. In particular, the Fig. 4
shows that the population biomass reaches stable levels when
E¼ 0:0006 μg=L. However, the population will become extirpated
after about 4380 days (12 years) when E¼0.012 in μg=L, and when
E¼0.0012 μg=L the population will not go extinct after 20 years
even though it is very low.

5.2. Simulations with random parameters

We assume that all parameters, except E, which are given by
certain intervals are random variables with triangle distributions
over the corresponding intervals and simulate the model for 20
years. We run 1000 realizations. The resulting histogram on the
probability of population extinction as E changes discretely from
0.001 to 0:005 μg=L is presented in Fig. 5. Clearly, the probability of
population extirpation increases from 0 to 1 as the concentration
of toxicant in environment increases from 0.001 to 0.005 in μg=L.
We point out that these simulation results replenish the determi-
nistic results since the bifurcation diagram (Fig. 3) shows that the
population decreases from a low level until it become extirpated
when E increases from 0.0011 to 0:0045 μg=L.

These results can be compared to the water quality guidelines
for the protection of aquatic life in Alberta. For methylmercury, the
acute guideline is 0:002 μg=L and the chronic guideline is
0:001 μg=L (Alberta Environment, 1999). Acute guidelines are
ordinarily defined as having no noticeable effect on aquatic life,
while chronic guidelines may start to show some effects on the
most sensitive species. The model results shows noticeable effects
at comparable concentrations to the guidelines.

We also assume that parameter E is a random variable with
triangle distribution over the interval [0.001, 0.005] in μg=L and
plot the results of 100 realizations in Fig. 6.
6. Discussion

Mathematic models are useful tools for evaluating the ecologi-
cal significance of observed or predicted effects of toxic chemicals
on individual organisms and population dynamics. Few differen-
tial equation models have been developed to describe population-
toxin interaction. These interactions are usually described by a
system which contains components representing the population
density, the concentration of toxin in an organism, and the
environmental concentration of toxin. Such models have been
investigated via a qualitative approach. In this paper, we assumed
that the population does little or no regulation of toxin in the
environment, the concentration of toxin in the environment hence
is treated as a parameter. We consider the direct influence of toxin
on the population vital rates which is implemented through the
body burden. Our toxin-dependent population model can be
connected to data much more easily than traditional population-
toxin interaction models.

Our study is both qualitative and quantitative. The results of
qualitative model analysis shows that the extinction equilibrium
always exists and is asymptotically stable, and the survival
equilibrium exists only if the threshold condition (3.4) holds.
Moreover, if the concentration of toxin in the environment (or if
the toxin input into the environment) is appropriately controlled,
the threshold condition (3.5) is satisfied, the population will
persist. On the quantitative side, we connect the model to
experimental data via model parametrization. In particular, we
consider the toxic effects of mercury on rainbow trout and obtain
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Fig. 4. Comparison of population biomass (left) and body burden (right) between different toxin levels. Solid lines ðE¼ 0:0006 μg=LÞ, dash lines ðE¼ 0:0012 μg=LÞ, dash-dot
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Fig. 5. Probability of extinction for different toxin concentrations in the environ-
ment. Simulations are based on 1000 samples.
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Fig. 6. 100 stochastic realizations of population biomass for 20 years using the
stochastic parameters which have triangle distributions over corresponding intervals.
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Fig. 7. A special example of bifurcation diagram using nonlinear growth rate
function βðx; yÞ ¼ α1ð½1−α2y�þÞ0:5=ð1þ α3xÞ.
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an appropriate range for each parameter. The parameter estimates
are then used to illustrate the long-time behavior of the popula-
tion under investigation. The numerical results provide the thresh-
old value of toxin concentration in the environment to keep the
population from extirpation. The findings are consistent (within
the same order of magnitude) with surface water quality guideline.
This is very promising in such a crude model. This indicates that it
may be appropriate to expand the tool to consider other species
and other chemicals of interest to consider guideline development.
The long-term simulations of the model indicate that a stable
population level by the end of 20 years almost linearly depends on
the bifurcation parameter E, the concentration of toxin in the
environment (see Fig. 3). This is due to the fact that the rate of
change of the population biomass almost linearly depends upon
the body burden y and the body burden linearly depends upon E.
As a special example, we let

βðx; yÞ ¼ α1ð½1−α2y�þÞ0:5
1þ α3x

:

Using the same parameter estimate values we obtain the bifurca-
tion diagram presented in Fig. 7. The big jump in the bifurcation
diagram curve indicates that the toxin in the environment has
little effect on the persistence of the population as its concentra-
tion E is less than the threshold value (around 0:0015 μg=L).
However the population will become extirpated after 20 years
when E is greater than the threshold value.

Our model extends Thieme's model by introducing a power
function to reflect the relationship between body burden and
population mortality rate. Considering that a threshold of effect of
body burden on the mortality rate may exists, i.e., a sufficiently
low toxin concentration is not lethal, one can use the following
mortality rate function

μðyÞ ¼ kð½y−h�þÞl þm;

where k, h, l, m are positive constants. To see the change in the
population dynamics resulting from this modification, we use the
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lethal rate function, kð½y−h�þÞl, to fit the same data as we used in
Section 4.1. We obtain parameter estimates: k¼0.00498, l¼1.406,
h¼0.2745. By using the above mortality rate function and para-
meter estimates, and the same values for other parameters as we
obtained in the Section 4, we get the same bifurcation diagram as
Fig. 3. This implies that the introduction of a threshold h does not
change the end behavior of the population. In fact, when the body
burden y in Eq. (2.4) is sufficient low, say lower than the above
threshold h, simple calculation shows that lethal rate by toxin is
very low such that the population mortality rate is mainly
determined by natural mortality rate m.

The basic toxin-dependent model (2.2)–(2.4) describes direct
population–toxin interactions. As an application of the mathema-
tical model (2.2)–(2.4), we investigate the effect of mercury on the
persistence and likelihood of extinction of an rainbow trout
(Oncorhynchus mykiss) population. We point out that the impact
of mercury bioaccumulation on fishing and aquatic life has been
well studied. For instance, many laboratory experiments have been
conducted to study the effect of mercury on the reproduction,
growth and mortality of fish (Birge et al., 1979; Hawryshyn and
Mackay, 1979; Niimi and Kissoon, 1994; Rodgers and Beamish,
1982). In a series of papers, Trudel and Rasmussen (1997, 2001,
2006) and Trudel et al. (2000) used a mercury mass balance model
which is very similar to the second equation of (2.1) to predict
mercury accumulation in fish. The mercury mass model presented
in those studies provided a flexible framework for understanding
the factors affecting the concentration of mercury in fish. However,
they did not consider the effect of mercury on the population
dynamics. In this study, we connect the basic population–toxin
interaction model to experimental data via model parametrization
and investigate the effect of the concentration of mercury per unit
population biomass (body burden) on the long-time behavior,
such as the persistence and likelihood of extinction, of the rainbow
trout population.

There is much to be done for future work. In our model, the
function β represents the growth and reproduction combined
which limit the applicability of the model. Juvenile individuals
have the same concentration of toxin as adults. In order to
separate the effects of the toxin on growth and reproduction,
and taking it into account the fact that juveniles and adults have
different responses to toxins, we will develop a stage-structured
model for the population subject to toxins in the environment. In
general, the intake of toxin, egestion may depend on age, weight,
and/or size. For this reason, a weight/age/size structured model
may need to be constructed.
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