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Chapter 1

Introduction

1.1 Overview

The main objective of this work is to produce a formal environment for proving 
theorems in graph theory. The goal is to create a library suitable towards verifying 
the correctness of several well-known graph algorithms, in terms of graph operations. 
This paper discusses the conceptual differences between textbooks proofs and formal 
proofs, and difficulties in translating from the former into the latter. In particular, 
this paper discusses how Dijkstra’s single-source shortest path algorithm, P rim ’s 
minimum weight spanning tree algorithm, and Ford/Fulkerson’s maximum network 
flow algorithm are all formalized using the MlZAR proof system.

1.2 Formalized m athem atics

One of the goals of formalized mathematics is to take mathematical knowledge and 
express it in such a way tha t automated processing is possible. Not only would such 
formalized proofs be verifiable by machine and completely rigorous, but would also 
form a searchable database. There is also hope that such a library may be mined 
for new results, or prove useful to automated theorem provers. Currently, there 
are quite a number of automated proof assistants in use around the world, such as 
M iz a r , HOL, and COQ.

1.3 Mizar

The proof assistant system used for this particular project is called MlZAR. Started 
in 1973 by Andrzej Trybulec, the M iz a r  project is one of the oldest of all active 
proof systems. M iz a r  consists of two main components -  the verifier and the M iz a r  
Mathematical Library (m m l). The verifier takes a M iz a r  article -  a text written 
according to M iz a r  syntax -  and checks the file for logical errors. The m m l is 
a knowledge management system for mathematics, and is a database containing 
thousands of mathematical definitions and over thirty thousand facts. The MML is 
built on the axioms of the Tarski Grothendieck set theory. MlZAR’s proof checker 
is based on classical first-order logic, furnished with some machinery for forming 
infinite schemes of statement.

1
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One of the advantages of MlZAR is the readability of M lZAR proofs. For example, 
suppose we would like to prove tha t there are no isolated vertices (vertices with 
degree 0) in a non trivial connected graph. We present a M iz a r  proof of this fact:

theorem tGCONNECTOl: 
fo r  G b e in g  non t r i v i a l  connected _Graph,

v b e in g  Vertex of G ho lds not (v i s  i s o l a t e d )
proof

l e t  G be non t r i v i a l  connected _Graph, v be Vertex of G; 
c o n s id er  v l , v 2  b e in g  Vertex o f  G such th a t

Al: v l  <> v2 by GLIB_000:22; :: <> means not equal
now per c a s e s ;

suppose v l  = v; then  
v2 <> v by Al;
hence ex u b e in g  V ertex of G s t  u <> v; 

end;
suppose v l  <> v;

hence ex u b e in g  V ertex of G s t  u <> v; 
end;

end; then  co n s id er  u b e ing  V ertex of G such th a t  
A2: u <> v;

co n s id er  W b e in g  Walk o f  G such th a t  
A3: W is_Walk_from u ,v  by dGCONNECT;
A4: W . f i r s t () = u & W .la s tO  = v by A3, GLIB_001:def 23; then  
A5: v in  W .v e r t ic e s () by GLIB_001:93;

W i s  non t r i v i a l  by A2, A4, GLIB_001:131; 
hence not v i s  i s o l a t e d  by A5, GLIB_001:139;

end;

In this proof, we first let G be some arbitrary graph and let v be some vertex of 
G. We then consider two distinct vertices v \  and v2, which must exist because the 
graph is non trivial. At least one of these vertices must be different from v, so we 
consider one such vertex u. The graph is connected, therefore we can now consider 
a walk W  which goes from u to v. W  is non trivial (i.e. has at least one edge), so 
any vertex along it is not isolated, hence v is not isolated.

Readability is an im portant benefit, allowing people who may not necessarily 
know how to use M iz a r  to still understand M iz a r  articles. Recently M iz a r ’s 
syntax has gained popularity, and has been ported into other proof assistant systems 
such as HOL and Isar.

1.4 Related Works

In 1990, Hryniewiecki[9] formalized some basic graph structures in MlZAR, which 
was followed subsequently by articles from Rudnicki, Nakamura, and Chen[12, 13, 
14, 15]. Chen also showed a proof of correctness for D ijkstra’s algorithm [4], al
though his proof approach is completely different than ours. Instead of dealing 
with basic graph operations, Chen simulates operations on an array containing the 
graph information and temporary data necessary for the algorithm. A formaliza
tion of Prim ’s algorithm via the B event-based approach may be found in [1, 8]. A 
HOL-based formalization of graph search algorithms was done in [23],

2
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1.5 Organization of the Paper

Chapter 2 introduces the graph primitives available and formal definitions of com
putational machinery. Chapter 3 discusses the issue of translating a textbook proof 
to a formal Mizar proof - the difficulties involved and the different type of reasoning 
required. Chapter 4 explains how formal proofs of correctness are done for Dijk
stra’s algorithm, Prim ’s algorithm and Ford/Fulkerson’s algorithm. We conclude 
our paper in Chapter 5. In addition there are two appendices tha t give more tech
nical information regarding our alternate approach to MlZAR structures, as well as 
details of the graph library environment prepared for MlZAR.

3
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Chapter 2

Basic Terminology and Graph  
Prim itives

2.1 Graphs, Subgraphs and Walks

For our purposes, a graph is composed of a non-empty set of vertices, a set of edges, 
and two functions mapping edges to source and target vertices respectively. An edge 
e is said to be incident to a vertex v if the source or target of e is v.  We say that 
the edge e joins vertices v \  and V2 if v\ is the source of e and v2 is target of e or 
vice versa. The edge e directly joins vertices v\ and V2 if «i is the source of e, and 
V2 is the target of e.

A subgraph of G is a graph whose vertices and edges are a subset of G, where 
edges have the same source and target vertex as in G. Given a non-empty subset of 
vertices V, and a subset of edges E  whose incident vertices are all elements of V, we 
say that the subgraph induced by V  and E  is the graph formed by only considering 
the vertices V  and the edges E.

For a graph G, there is the idea of a walk of G. A walk is a finite sequence of 
odd length composed of vertices and edges of G that alternate -  v q , e\ ,  V \ , . . . , en , vn . 
The first element of a walk is always is vertex, and every edge in the walk joins its 
two neighboring vertices. If every e, (1 < i < n) directly joins the vertices 1 and 
Vi, we say tha t the walk is directed. The length of a walk is the number of edges in 
it, and we say tha t a walk is trivial if it has no edges.

A trail is walk with distinct edges. A path is a trail tha t repeats no vertices 
other than perhaps the first and last. In M iz a r , we signify tha t a walk is directed 
by the prefix D, for example a DPath refers to a directed path.

A walk is said to be closed if its first vertex is the same as its last. A Cycle is 
a path  that is non trivial and closed. If a graph has no cycles in it, we say that 
the graph is acyclic. A graph is connected if for any two vertices, there exist a walk 
between them. If there exists a walk from v\ to V2, we say tha t V2 is reachable from 
v i . A tree is a graph that is connected and acyclic.

2.2 Additional graph features

In this paper, we will be dealing with three additional features on graphs - weights, 
edge-labels and vertex-labels. Not only do these features play im portant roles in the

4
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three graph algorithms we deal with, but they are also applicable to other graph 
topics such as graph coloring and graph traversals.

In general, weights may take on any value, but in the context of this paper, 
we will assume tha t weights are all real numbers. To distinguish which subset of 
features we are interested in, we will use the prefix W for weighted graphs, E for 
edge-labeled graphs, and V for vertex-labeled graphs. For example, a WEGraph is a 
weighted graph with edge-labels. For weighted graphs, each edge in the graph is 
associated with a weight. On the other hand, it is not necessary that every edge 
requires a label in an EGraph. Similarly, not all vertices require labels in a VGraph.

For the three algorithms we are concerned with, we deal w ith very basic graph 
operations. In fact, the only type of operation required is the ability to assign labels. 
For our work, we introduce two methods of modifying the labeling of a graph. The 
first is where we completely specify a labeling, and the second is setting the label for 
a particular element. For example, given a labeling L, we can assign it to a EGraph 
G using the function G. s e t  (E L ab e lS e lec to r, L). For a VGraph, the function is 
named G. s e t  (V L abelS e lec to r, L). If we want to assign a particular value x  to 
edge e in the EGraph G, we can use the operation G. labelE dge (e ,x ) . Similarly, for 
a VGraph, we have an operation named G. la b e lV e rte x  (v , x ) . These four simple 
graph operations form the basis of all the algorithms which we proved correct.

We should point out here that we focus on proving the correctness of algorithms, 
and have left out proofs regarding complexity. There are two main reasons for this. 
First of all, in order to properly discuss complexity, we need to formalize the exact 
machine on which the algorithm runs. Designing and formalizing such a machine is 
a large undertaking beyond the scope of our current work. Secondly, even given the 
exact machine, the cost of graph operations may be different due to the method of 
implementation. For example, the cost of checking for the existence of an edge in a 
graph represented by an adjacency m atrix is different than if the graph is represented 
by an adjacency list.

2.3 Formal notion of an algorithm

We also need to formalize the notion of an algorithm. In texts we often think of 
an algorithm as a sequence of operations which modify a graph. Formally, when we 
modify an object, it is no longer the same object, therefore we must treat algorithms 
slightly differently. Consider an infinite sequence of graphs Go, G i, G2, . . . ,  which we 
call a computation sequence. An algorithm defines a computation sequence, usually 
by initializing the graph Go and specifying the basic graph operations that create 
Gn+i from Gn for any value of n. When we say an algorithm halts, we mean that 
there exists a n where Gn — Gn+i in its computation sequence. For an algorithm 
that halts, we say tha t the lifespan of the computation sequence is the first n  such 
that Gn — Gn.fi- The result of a halting algorithm is G ufespan. Later in our proofs, 
we will often use the short-form Gn to represent the n th term  of a computation 
sequence when it is clear which algorithm we are talking about.

5
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Chapter 3

Translation Problem s

There are four main obstacles we faced when translating a textbook proof found in a 
book to a M iz a r  proof: Definitional difficulties, conceptual differences, incomplete 
details, and extra assumptions.

3.1 Definitional difficulties

Definitional difficulties are problems encountered when trying to characterize a con
cept formally. When defining a concept in a formalized manner, there are two main 
concerns - accuracy and usability. In order for a formal definition of a concept to be 
accurate, it must capture all the necessary details regarding the concept, without 
leaving anything out.

Take for example the definition of a walk of a graph. From West [22]:

1.2.2. Definition. A Walk is a list v q , ei, v \ , . . . ,  e&, of vertices and 
edges such tha t for 1 < i < k, the edge e* has endpoints Vi-\ and V i”

Now suppose we translate this to mean: “A Walk is a finite sequence composed 
of vertices and edges where every even element is an edge tha t joins the element 
before it to the element after it.” These two definitions may seem identical; however 
this translation is not accurate. It is true tha t any walk is also a Walk, but the 
converse is not true. According to the second definition, a sequence consisting of a 
single edge would also constitute as a Walk, yet this goes against West’s definition. 
Due to this inherent difference, it may not be possible to prove facts regarding Walks 
which are true for walks or vice versa, such as “The first element of a Walk is a 
vertex” .

Another facet of accuracy is dealing with textbook definitions that are inconsis
tent. While general concepts remain the same, different texts usually have slightly 
different characterizations. This is especially common in the graph literature. A 
case in point is the idea of a path:

In Cormen[5], a path is what we would consider a walk:

A path  of length k from a vertex u to a vertex v! in a graph G =  (V, E) 
is a sequence <  v q , v \ ,  V 2 ,  ■ ■ ■, U/t > of vertices such tha t u  —  v q , v !  —  V k ,  

and (v i- 1 ,Vi) G E  for i =  1 ,2 , . . . ,  k.

6
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According to Behzad[3], a path may not have any repeated vertices, which means 
that it automatically does not repeat any edges, and can not be closed:

A u — v path is a u — v walk in which no vertex is repeated.

Prom Valiente[21] comes another different notion of a path:

A trail is a walk with no repeated arcs, and a path  is a trail with no 
repeated vertices (except, possibly, the initial and final vertices).

While all definitions may have their qualities, we have tried to select the most 
consistent definitions among various texts, which in this case is Valiente’s notion of 
a path.

Even though a definition may be accurate, it may not be ideal in terms of usabil
ity. Sometimes it is better to include extra details simply to make the formalized 
concept easier to manipulate. Again, we use walks as an example. In the previous 
formalization of graphs done in Mizar[9], a walk (called a Chain) is characterized 
only as a finite sequence of edges. This definition also implicitly expresses the ex
istence of a finite sequence of vertices, whose neighboring elements are joined by 
corresponding elements of the Chain. In the current work, a walk is defined as a 
single alternating sequence of both vertices and edges. The issue with the edge-only 
definition of a walk is tha t the implied finite sequence of vertices is not necessarily 
unique. When dealing with a walk consisting of a single edge, the order in which 
the two vertices occur in the vertex sequence can be in either position. This creates 
more work for the author, since both vertex sequences may need to be considered 
during proofs. W ith the current approach, the order in which the vertices occur 
along the walk is completely specified, thus avoiding the need for case analysis.

Too much information in a definition can also be a hindrance. Take for example 
the previous definition of a subgraph in MlZAR[9]:

:: Note: x c= y means x i s  a su b set  of  y

d e f i n i t i o n  l e t  G be Graph;
mode Subgraph of G -> Graph means :: GRAPH_l:def 17

th e  V e r t ic e s  of  i t  c= th e  V e r t ic e s  o f  G & 
th e  Edges of  i t  c= th e  Edges o f  G & 
fo r  e s t  e in  th e  Edges of  i t  h o ld s  

( th e  Source of  i t ) . e  = (th e  Source o f  G ) .e  &
(th e  Target of i t ) . e  = ( th e  Target o f  G ) .e  &
(th e  Source of  G ) .e  in  th e  V e r t ic e s  o f  i t  &
(th e  Target of  G ) .e  in  th e  V e r t ic e s  o f  i t ;

end;

It turns out tha t for any subgraph, we do not need to claim that the source and 
target of any edge are vertices -  this information can be derived from the rest of 
the definition. Including this fact in the definition results in extra unnecessary work 
when we want to show something is a subgraph.

Often a new definition is built upon previous definitions. A common pitfall is to 
overlook the nature of these previous definitions. As an example, we consider the 
notion of an edge joining two vertices. In the previous MlZAR work on graphs[9], a 
predicate was introduced to capture this notion:

7
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d e f i n i t i o n  l e t  G; l e t  x ,  y be V ertex of  G; l e t  v be s e t ;
pred v j o in s  x ,  y means 

:: GRAPH_1:def 9
( (th e  Source of  G ). v = x & ( th e  Target of  G ).v  = y) or 
( (th e  Source of  G ).v  = y & ( th e  Target of  G ).v  = x ) ;

end;

Based on this definition, one might think that if e jo in s  vi,V2 , then e is an edge 
of G. Unfortunately, this is not true, because of the way the dot operator for a 
function is defined in MlZAR:

d e f i n i t i o n  l e t  f , x ;
func f . x  -> s e t  means 

:: FUNCT_l:def 4 
[ x , i t ]  in  f  i f  x in  dom f  o th erw ise  i t  = -Q; 

end;

For a value that is not in the domain of a function, the dot operator returns 
the empty set. Thus if e is not an edge of G, and v\ and V2  are both equal to the 
empty set, e would still join v\,V2 ■ In order to prevent this, we introduced a new 
join predicate which has the extra constraint tha t e must be an edge of G:

d e f i n i t i o n  l e t  G be _Graph, x , y , e  be s e t ;
pred e Jo in s  x ,y ,G  means 

:: GLIB_000:def 14 : :dJ0IN
e in  the_Edges_of G &
( ( (the_Source_of G ).e  = x & (th e_T arget_o f  G ).e  = y) or 

( (the_Source_of G ).e  = y & (th e_T arget_o f  G ).e  = x ) ) ;
end;

Another point to consider when defining a concept is the typing of its arguments. 
The jo in  predicate was defined on vertices of G. Intuitively, this makes sense 
because we really are only dealing with vertices of G, however this is an unnecessary 
condition that can actually be derived from the Jo in  predicate -  if e Jo in s  v±,V2 ,G 
then vi,V 2  must be vertices of G. For this reason, we expanded the type of the 
Jo in s  prediate to accept sets as arguments, instead of limiting ourselves to vertices. 
Avoiding unnecessary narrowing of argument types is generally a good idea in MlZAR 
to avoid casting. For example, instead of writing:

f o r  G1 b e ing  _Graph, G2 b e ing  Subgraph o f  Gl,  
v l , v 2  being  Vertex of G2, e b e in g  s e t  h o ld s  

e j o in s  v l , v 2  im p l ie s
( fo r  u l ,u 2  b e in g  Vertex o f  Gl s t  v l  = u l  & v2 = u2 

holds  e j o i n s  u l , u 2 ) ;

we can write:

f o r  Gl being  _Graph, G2 b e in g  Subgraph of Gl, 
e , v l , v 2  b e in g  s e t  ho lds  

e Jo in s  v l ,v 2 ,G 2  im p l ie s  e J o in s  v l , v 2 ,G l ;

which we feel is much easier to read and understand.
Unfortunately, there is no sure-fire way to avoid definitional problems. From 

personal experience, even following the guidelines listed, the only way to tell if a 
definition is truly good is through applied use in future articles.

8
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3.2 Conceptual differences

Although textbook proofs and formal proofs share much in terms of logic, there 
are a number of conceptual details that need to be addressed. First is the idea of 
identity of a object. In textbooks, when dealing with a graph algorithm, the notion 
of “updating a graph” comes up frequently - e.g. labeling a vertex or coloring an 
edge. This suggests that the updated graph is the same object as the original graph, 
which is convenient when discussing the end result of the algorithm. Unfortunately, 
this doesn’t hold true from a formalized point of view - the updated graph is no 
longer the same object as the original graph. Two structures are identical if and 
only if all their components are the same, including labels.

One example of this problem with identity occurs when we try  to count graphs, 
such as the number of components of a graph. In textbooks this notion seems to be 
well defined, yet there is a fundamental issue tha t must be resolved. We begin with 
some definitions from West [22]:

1.1.16. Definition. A subgraph of a graph G is a graph H  such that 
V (H )  C V(G) and E (H )  C E(G) and the assignment of endpoint to 
edges in H  is the same as in G.

1.2.8. Definition. The components of a graph G are its maximal 
connected subgraphs.

A problem occurs when we consider some extra features regarding graphs, such 
as labels. Let G be a graph, and H \ be an unlabeled component of G. Now suppose 
we let H 2  be a copy of H i, except with one of its vertices labeled. Although these 
two components have identical vertices and edges, they are no longer truly identical. 
However, both are still components of G, and would each be counted. In a textbook, 
H i and H 2  are considered to be equal, hence they would only be counted once.

There are several ways around this problem. One way would be to restrict the 
definition of subgraph to being graphs with no extra features such as labels. Using 
this approach, two subgraphs having the same vertices and edges must be identical, 
thus would be counted only once. Unfortunately, this approach means tha t we will 
have to create new definitions of subgraphs every time we have a new feature we 
would like to introduce, such as the weights needed for minimal spanning subtrees or 
shortest path subtrees. A less restrictive solution is to be more specific about what 
we are counting. In this example, we are counting components, which only takes 
vertices and edges into consideration, therefore we only count components that have 
no extra features other than vertices and edges. This solution is easily extendible for 
other structures with features tha t we may wish to count -  for example if we were 
counting the number of minimal spanning trees in a graph, we could restrict our 
count to such minimal spanning trees with only vertices, edges and weights. Another 
solution to this problem is to not count structures, but to count representatives. For 
example, instead of counting actual components in a graph, we counted the subsets 
of vertices which induced components.

Another major conceptual difference between textbook proofs and formalized 
proofs is the amount of background knowledge required. W ith advanced topics, texts 
often do not need to define basic concepts such as walks, or prove theorems that 
are generally known. On the other hand, for a formal proof, all these background
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concepts must be first defined and proven. It may come as a surprise as to how 
quickly the amount of work spirals when proving what seems to be a trivial theorem. 
To illustrate this point, we show only the graph-theory related background concepts 
required for a basic fact regarding trees:

Theorem: A finite graph G(V,, E) is a tree if and only if it is connected 
and \V\ =  \E\ +  1.

Background concepts: Graphs, finite graphs, tree graphs, connected 
graphs, acyclic graphs, walks, order of a graph, size of a graph, cycles, 
non trivial walks, closed walks, paths, induced subgraphs, cut-vertices, 
isolated vertices, loopless graphs, degree of a vertex, components of a 
graph, number of components in a graph, subwalks of a walk, appending 
two walks, cutting a walk, removing a section from a walk.

We consider the proof of this theorem found in Behzad [3]:

Exercise 2.6 Show tha t if G is a (p, q) graph for which q < p  — 1, then G 
is disconnected.

Theorem 5.2 A (p, q) graph is a tree if and only if it is acyclic and 
p = q + l.
Theorem 5.3 A (p, q) graph G is a tree if and only if G is connected and 
p = q + l.
Proof Let G be a (p, q) tree. By definition G is connected and by Theo
rem 5.2, p — q + 1. For the converse, we assume G is a connected (p, q) 
graph with p =  q +  1. It suffices to show that G is acyclic. If G contains 
a cycle C  and e is an edge of C, then G — e is a connected graph of order 
p having p — 2 edges. This is impossible by Exercise 2.6; therefore, G is 
acyclic and is a tree.

While it is not easy to accurately gauge how much longer the M iz a r  proof of this 
theorem is, a rough estimate would be about 2 to 10 times longer. For comparison, 
we include the M iz a r  version of this proof, although it must be noted tha t the 
majority of work is done in previous theorems.

theorem tGTREE03: : :tGTREE03 
fo r  G b e in g  f i n i t e  _Graph ho ld s  

G i s  T r e e - l ik e  i f f
G i s  connected & G .ord er()  = G .s i z e O  + 1 proof  

l e t  G be f i n i t e  _Graph;
thus G i s  T r e e - l ik e  im p l ie s  G i s  connected &

G .ord er()  = G .s i z e O  + 1 by dGTREE, tGTREE02; 
assume

A l : G i s  connected & G .orderQ  = G .s i z e O  + 1; 
now assume not G i s  a c y c l i c ; then

c o n s id er  W b e in g  Walk of G such th a t  
Bl: W i s  C y c le - l ik e  by dGACYCLIC; 

s e t  e = choose  W .edges( ) ;  
c o n s id er  G2 b e in g  removeEdge o f  G,e;
W i s  non t r i v i a l  by B l ,  GLIB_001:def 30; then  
W .edges() <> { }  by GLIB_001:140; then
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B2: e in  W .edges( ) ;  then
B3: G2 i s  connected by A l,  B l ,  tGC0NNECT04;
B4: G 2 .order() = G .ord er() &

G 2 .s i z e ( )  + 1 = G .s i z e O  by B2,GLIB_000:48; then
B5: G 2.order()  = G 2 .s i z e ( )  + 1 + 1 by Al; then  

G2. s i z e () + 1 + 1 <= G2. s i z e ( )  + 1 + 0  
by B3,tGC0NNECT_GF01; then  

1 <= 0 by REAL.1:53;  
hence c o n tr a d ic t io n ;

end;
hence G i s  T r e e - l ik e  by A l,  dGTREE;

end;

W ith the creation of this graph library, it is hoped tha t the majority of basic 
concepts required for future proofs will be minimized and once stated will be heavily 
reused.

There are also difficulties introduced by our particular formalization of an al
gorithm. First of all, there is the issue of temporary data. In textbooks, we may 
encounter algorithms that require extra information that is modified and accessed 
dynamically, stored in a temporary data structure such as a priority queue. Our 
computation sequence consists only of graphs, therefore any such temporary infor
mation must be captured in the structure of the graph instead. Our solution to 
this is the use of labels. For example, we keep track of best costs to each vertex in 
Dijkstra’a algorithm using vertex labels. Not only is temporary data handled this 
way, but also static data such as the structure of the graph itself. Because of the way 
we formalizalized our algorithm machinery, we manipulate graphs differently than 
what is normally done in texts. As mentioned in the previous section, our graph 
operations consist of only routines which manipulate labels. By doing this, we pre
serve the information regarding the structure of the graph, keeping it available for 
the algorithm.

3.3 Incom plete details

In textbook proofs, authors rarely explain every single detail regarding correctness. 
This is often a sensible thing to do - saving the casual reader from pages and pages 
of what may very well be trivial details. These extra proof details are left to the 
more interested readers to figure out on their own. This luxury of passing along the 
work to the reader is not available to formal proof authors. For this reason, formal 
proofs tend to be longer than regular textbook proofs.

We take another example from West [22]:

1.2.10 Remark. Components are pairwise-disjoint; no two share a vertex. 
Adding an edge with endpoints in distinct components combines them 
into one component. Thus adding an edge decreases the number of 
components by 0 or 1, and deleting an edge increases the number of 
components by 0 or 1 .

1.2.11 Proposition. Every graph with n  vertices and k edges has at least 
n — k components.

11
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Proof: An n-vertex graph with no edges has n  components. By Remark 
1.2 .10, each edge added reduces this by at most 1, so when k edges have 
been added the number of components is still at least n — k.

West’s proof is short and logically sound, however it gives no details regarding 
why a n-vertex graph with no edges has n  components. This may be trivially 
obvious to a human reader, but take a moment to think about how one might go 
about proving this formally. Our MlZAR proof required roughly sixty lines, where 
we showed equality by showing that the number of components is less than or equal 
to the number of vertices, and vice versa.

3.4 Extra Assum ptions

In most of the surveyed literature, proofs regarding graphs are not as strong as they 
could be, primarily due to unnecessary assumptions. For example, it is common 
practice in graph literature to only consider graphs tha t are simple and loopless. 
These two conditions make proofs easier to consider, since a pair of vertices can then 
uniquely distinguish an edge. However, many of the theorems thus proven about 
simple graphs are also true for general graphs. Similarly, many graph algorithms 
do perform correctly, even given non-simple graphs. Another example comes from 
the proof of P rim ’s minimum spanning tree algorithm from a text by M anber[ll]. 
For the proof of correctness, it is assumed that the costs of edges are all distinct. 
While this guarantees that there is only one minimal spanning tree, this assumption 
is unnecessary and weakens the scope of the proof.

Ironically, these extra assumptions result in more work for formal proof authors. 
If lucky, proving the theorem without the extra assumption requires very little work - 
for example, prove the theorem as stated in the book assuming the extra assumption, 
and then prove it again without. If unlucky, the textbook proof falls apart, and a 
completely different proof is required.

One problem with textbook proofs is that these extra assumptions may be easily 
overlooked. As an example, consider the following claim from Baase[2]:

Lemma 8.1 In a connected, weighted graph G =  (V , E , W), if T\ and T 2  

are two spanning trees tha t have the MST property, then they have the 
same total weight.

Proof The proof is by induction on k, the number of edges tha t are in 
T\ and not in T2  ■ (There are likewise exactly k edges in T2 tha t are not 
in Ti. The base case is k =  0; in this case, and T2 are identical, so 
they have the same weight.

For k > 0 assume the lemma holds for trees tha t differ by j  edges, 
where 0 <  j  < k. Let uv be a minimum-weight edges tha t is in one 
of the trees T\ or T2 but not both. Assume uv  6  T2; the case when 
uv € Ti is symmetrical. Consider the (unique) path  from u to v in 
T\ : wq, vj: . . . ,  wp, where wq =  u, wp = v, and p  > 2. This path  must 
contain some edge tha t is not in T2. (Why?) . . . .

The hidden assumption here is that the graph is simple. If there are multiple 
edges between u and v of minimal weight, the path  from u to v in T\ does not

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



necessarily need to have length greater than two. This assumption is not necessary, 
because minimal spanning trees are well-defined for non-simple graphs. As a side 
note, the question “Why?” in brackets serves as a good example of how textbook 
authors pass along work to the reader.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Formalizing proofs of 
correctness

In this section, we will outline proofs of correctness for three well-known graph 
algorithms and discuss some of the issues we encountered while doing so. To give 
the reader a taste of the type of work required behind a formal MlZAR article, we 
will provide a large amount of detail for the proof of D ijkstra’s algorithm, while 
sketching outlines for the other two.

4.1 D ijkstra’s Single Source Shortest Path Algorithm

4.1 .1  T h e S ingle Source Sh ortest P a th  P rob lem

Given a directed weighted graph and a starting vertex, it is interesting to find 
minimum-weight directed paths from the start vertex to all other vertices. This col
lection of paths forms a directed tree rooted at the start vertex. D ijkstra’s algorithm 
finds such a directed tree, given the restriction tha t all weights are nonnegative. The 
underlying idea is a greedy approach - building the tree one edge at a time, with 
preference to the next closest vertex. In the following section we will examine the 
process of translating a textbook version of D ijkstra’s algorithm to a formalized 
M iz a r  version.

4.1 .2  D ijk stra ’s A lgorith m  - T extb ook  version

We quote a description of Dijkstra’s algorithm from Baase [2]. Note here that d(u, v) 
represents the shortest distance from vertex u to v, and W (uv) represents the weight 
of the edge uv.

dijkstraSSSP(G,n) / /  OUTLINE 

Initialize all vertices as unseen.

Start the tree with the specified source vertex s; reclassify it as tree; 

define d(s, s) = 0 .

Reclassify all vertices adjacent to s as fringe.

While there are fringe vertices:
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* Select an edge between a tree vertex t and a fringe vertex v  such that 
(d(s,t) + W (tv))  is minimum;

* Reclassify v as tree] add edge tv  to the tree;
* define d(s,v) =  ((d(s,t) +  W (tv))).
* Reclassify all unseen vertices adjacent to v as fringe.

Basically, D ijkstra’s algorithm grows a shortest-path tree from the source vertex 
s by adding vertices one at a time. Vertices are added in order of non-decreasing 
shortest distance from s.

4 .1 .3  Form al defin itions

In order to begin formalizing Dijkstra’s algorithm, we first need to formally define 
the desired result - a shortest-path tree:

Definition 4.1.1 Given a weighted graph G and a vertex v of G, a directed shortest 
path tree of G rooted at v is a weighted subtree of G such that for any vertex x  in 
G, there exists a directed path W 2  from v to x  in G, such that for any directed path
W \ from v to x  in G, the cost of W 2  < the cost of W \.

T h e  t e x t  w ritten  in typewriter font is the actual MlZAR definition, which the  
reader shou ld  be able to read w ith  the  usual effort.

d e f i n i t i o n  l e t  Gl be r e a l -w e ig h te d  WGraph, G2 be WSubgraph o f  G l ,
v be s e t ;

pred G2 is_m incost_D Tree_rooted_at v means 
G2 i s  T r e e - l ik e  & 

f o r  x b e in g  Vertex of G2 ho lds
ex W2 b e in g  DPath of G2 s t  W2 is_Walk_from v ,x  & 
f o r  Wl b e in g  DPath o f  Gl s t  Wl is_Walk_from v ,x  ho ld s  

W 2.cost( )  < = W l .c o s t ( ) ;
end;

Note that this definition does not state tha t a directed shortest-path tree is 
spanning. This is to handle the unnecessary assumption being made in the textbook 
algorithm tha t the input graph is connected. Even on a disconnected graph, we can 
show tha t D ijkstra’s algorithm produces a shortest-path tree, covering all vertices 
tha t are reachable in a directed sense from the source vertex.

We now make some conceptual changes to the textbook algorithm. The graphs 
tha t we will work with will have vertex-labels and edge-labels in addition to weights. 
Instead of labeling vertices unseen, we will simply not give them a label, and in
stead of labeling vertices by tree, we will label them with their shortest distance 
from v, (what the textbook version calls d). This is an example of using labels 
to store temporary information vital to the algorithm. Also, it is not necessary to 
label vertices fringe, because we simply look for edges between labeled vertices and 
unlabeled vertices.

We completely specify the Dijkstra com putation sequence by supplying an initial 
graph and a transition function. Our initial WEVGraph is identical to the weighted 
input graph with respect to vertices, edges, and weights on edges, but has no labels 
on the edges, and just a single label of 0 on v. We give the function mapping a 
weighted input graph to our desired initial graph a name:

15
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D efin itio n  4.1.2 Given a weighted graph G and a vertex v of G, the function  
DIJK: INIT((7, v) returns a WEVGraph whose structure is identical to G, but has 
no labels on any edges, and a label of 0 on v.

d e f i n i t i o n  l e t  G be r e a l -w e ig h te d  WGraph, s r c  be Vertex o f  G; 
func DIJK :Init(G , sr c )  -> real-WEV WEVGraph equals

G. s e t (E L a b e lS e le c to r , { > ) . s e t (V L a b e lS e le c to r , s r c . — >0);

We must force that the edge-labeling be cleared, otherwise we inherit whatever 
edge-labeling the original input graph G may have had.

The transition function is conditional, based on the existence of an edge going 
from a labeled vertex to an unlabeled vertex. Note that this condition is identical 
to the one tested in the while loop of the textbook algorithm. To simplify matters, 
we define a function which returns a set of candidate edges:

D efin itio n  4.1.3 Given a weighted vertex-labeled graph G, we define the function 
DIJK:NextBestEdges (G) to return a subset of edges of G. An edge e is in this 
subset i f  and only if the source of e is labeled and the target of e is unlabeled, and 
the sum of the vertex-label at the source of e along with the weight of e is minimal 
among all edges going from a labeled vertex to an unlabeled one.

d e f i n i t i o n  l e t  G be r e a l -w e ig h te d  r e a l - v l a b e l e d  WVGraph;
func DIJK:NextBestEdges(G) -> Subset o f  the_Edges_of G means 

f o r  e l  being  s e t  ho ld s  e l  in  i t  i f f
e l  DSJoins G .la b e le d V O ,th e _ V e r t ic e s _ o f  G \  G .lab e led V O ,G  & 
f o r  e2 be ing  s e t  s t  e2 DSJoins G .la b e le d V O ,

th e _ V e r t ic e s _ o f  G \  G .lab e led V O ,G  ho ld s  
(the_VLabel_of G ). ( (the_Source_of  G ) . e l )  +

(the_W eight_of G ) .e l  <=
(the_VLabel_of G ). ( (the_Source_of  G ) .e2 )  +

(the_W eight_of G ).e2;

We can now define the transition function as follows:

D efin itio n  4.1.4 Given a weighted edge-labeled vertex-labeled graph G, the function  
DIJK: S tep (Cr) returns G if  DIJK: NextBestEdges (G) is empty, otherwise it selects 
some edge e from  DIJK .-NextBestEdges (G) and returns a graph which inherits the 
structure of G, but with an extra label o f 1 on e, and the sum of the vertex-label on 
the source of e and the weight of e on the label of the target of e.

d e f i n i t i o n  l e t  G be real-WEV WEVGraph; 
s e t  e = choose DIJK:N extB estE dges(G ); 
func DIJK:Step(G) -> real-WEV WEVGraph eq u a ls  

G i f  DIJK:NextBestEdges(G) = {> o th erw ise  
G. la b e lE d g e (e , 1 ) . la b e lV e r te x ( (the_T arget_of  G ). e ,

(the_VLabel_of G ). ( ( the_Source_of G ) .e )  + 
(the_W eight_of G ) . e ) ;

end;

Here we set a value of 1 on the label of edges although this value is completely 
arbitrary. It must be defined in order to show tha t DIJK: S tep (G) is truly a function. 
In addition, to show that D IJK :S tep (G) is a function, we need tha t the selection
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process used to choose the arbitrary edge e from DIJK: N e x tB e s tE d g e s  (G) also be 
a function (i.e, given identical candidate sets, the edge selected would be the same). 
(This is what the choose function does in Mizar)[20].

W ith both the initial graph and transition function formally defined, we are now 
ready to define the Dijkstra computation sequence:

D efin ition  4.1.5 Given a weighted graph G and a vertex v of G, we define the 
function  DIJK: CompSeq(G, v) to return the sequence of WEVGraphs where the first 
element of the sequence is DIJK: I n i t  (G, v ), and every other element in the sequence 
is attained by applying the function  DIJK :Step to the element before it.

: :  Mote: C.->x r e f e r s  to  th e  x - t h  element o f  th e  computation sequence C 
d e f i n i t i o n  l e t  G be r e a l -w e ig h te d  WGraph, sr c  be V ertex o f  G; 

func DIJK:CompSeq(G,src) -> real-WEV WEVGraphSeq means 
i t . - > 0  = D IJ K :In it (G ,src )  &
fo r  n b e in g  Nat h o ld s  i t . - > ( n + l )  = D I J K :S te p ( i t . - > n ) ;

end;

Our transition function returns its argument if there are no candidate edges, 
therefore if there are no such edges in Gn, then Gn+\ = Gn, effectively halting our 
algorithm. Recall that with our formal approach, the final graph we are interested in 
is the one at which the sequence begins to repeat, assuming the algorithm terminates. 
For convenience, we define another function to return this final graph:

D efin ition  4.1.6 Given a weighted graph G and a vertex v of G, the function  
DIJK: SSSP(G', v) returns the WEVGraph that is the result of the computation se
quence DIJK:CompSeq(G, v ).

d e f i n i t i o n  l e t  G be r e a l -w e ig h te d  WGraph, s r c  be V ertex o f  G; 
func DIJK:SSSP(G,src) -> real-WEV WEVGraph equals  

DIJK:CompSeq(G,src). R e s u l t ( ) ;
end;

This concludes the formal definitions required for D ijkstra’s algorithm. A key 
point to notice about these definitions is tha t they are as general as possible - the 
machinery is not restricted to non-negatively weighted graphs, or even finite graphs. 
These extra conditions are only necessary when we try to prove theorems.

4 .1 .4  P rovin g correctness

The first thing we will need to show is tha t the computation sequence we defined is 
halting. We now build towards this by proving some simple lemmas.

L em m a 4.1.1 For any finite WEVGraph G, the number of labeled vertices in the 
graph D IJK :Step(G ) is one more than the number of labeled vertices in G if  and 
only if  DIJK: NextBestEdges (G) is non-empty.

theorem tDSTEPOl: : :tDSTEP01
f o r  G b e in g  f i n i t e  real-WEV WEVGraph h o ld s

card DIJK:Step(G) . la b e led V O  = card G .labeledV O  + 1 i f f  
DIJK:NextBestEdges(G) <> { }
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Proof: =t> Assume that the number of labeled vertices in the graph D IJK :Step(G ) is 
exactly one more than the number of labeled vertices in the graph G. Suppose that 
DIJK:N extBestEdges(G) is empty. In this case, by definition 4.1.4, DIJK:Step(G) 
=  G, which leads to a contradiction. Thus DIJK:NextBestEdges (G) is not empty.

4= Assume that DIJK: NextBestEdges (G) is not empty. In this case, by defini
tion of DIJK:Step, we label the previously unlabeled target vertex of the selected 
candidate edge. Hence the number of labeled vertices in D IJK :Step(G ) is one 
greater tha t the number of labeled vertices in G. □

L em m a 4 .1 .2  For any finite weighted graph G and vertex v, the set of labeled ver
tices in the n th element o/DIJK:CompSeq(G, v) is a subset of the vertices reachable 
from v by a directed walk in G.

theorem tDCS03:
f o r  G b e in g  f i n i t e  r e a l -w e ig h te d  WGraph, v b e ing  Vertex o f  G, 

n b e in g  Nat h o ld sa  
(D IJK :C om pSeq(G ,src),->n).labeledV O  c= G.reachableDFrom(v)

Proof: Proof by induction. In the base case, the only labeled vertex is v, which is 
reachable from itself. For the inductive step, we only add a new label to a vertex if 
it is adjacent to a candidate edge and a previously labeled vertex. By the inductive 
assumption, the previously labeled vertex is reachable from v. By taking some 
directed walk from v to the previously labeled vertex, and adding the candidate 
edge, we get that the newly labeled vertex is also reachable from v. □

L em m a 4.1.3 For any finite weighted graph G, and vertex v of G, the set of 
candidate edges returned by DIJK:NextBestEdges applied on the n th element of 
DIJK: CompSeqCG, v) is empty i f  and only i f  the set of labeled vertices in the n th 
element is equal to the set o f all vertices reachable from v by a directed walk in G.

theorem tDCS05: 
f o r  G b e ing  f i n i t e  r e a l -w e ig h te d  WGraph, v be ing  

Vertex o f  G, n b e in g  Nat ho ld s
DIJK:NextBestEdges(DIJK:CompSeq(G,src).->n) = { }  i f f
(DIJK:CompSeqCG,src).->n).labeledVO = G.reachableDFrom(v);

Proof: =4- Assume that DIJK:NextBestEdges(Gn) is empty. Now suppose the 
set of labeled vertices in Gn is not the same as the set of all vertices reachable 
from v. From Lemma 4.1.2, this means tha t set of labeled vertices in Gn is a strict 
subset of the vertices reachable from v. Because of this, there must exist some 
unlabeled vertex x  of G tha t is reachable from v by some directed walk W . Let y 
be the first vertex along this walk tha t is not labeled in Gn. y can not be the first 
vertex of W  because the first vertex is v, which has been labeled for every graph in 
the computation sequence. This means tha t there exists an edge e th a t comes right 
before vertex y, which joins a labeled vertex to an unlabeled vertex. Let E  represent 
the set of edges which join a labeled vertex to an unlabeled vertex. E  is a subset of 
the edges of G, which is finite, therefore E  is also finite. In addition, E  is non-empty, 
since e is in E. Because E  is finite and non-empty, we can then select a candidate 
edge out of it - i.e. an edge tha t minimize the sum of the label at the source of the 
edge and the weight of the edge among all edges of E. However, this candidate edge
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is an element of DIJK: NextBestEdges (Gn) , which leads to our desired contradiction 
since we assumed D IJK:NextBestEdges(Gn) to be empty. Hence the set of labeled 
vertices in Gn is equal to the set of vertices reachable from v by a directed walk in 
G.

<= Assume that the set of labeled vertices in Gn is equal to the set of all vertices 
reachable from v by a directed walk in G. If DIJK:BestEdges (G n) is not empty, 
then by Lemma 4.1.1, the number of vertices labeled in Gn+i will be one more than 
the number of vertices reachable from v. This would be impossible since by Lemma
4.1.2, we know that the set of labeled vertices in Gn+i is a subset of the reachable 
vertices. □

L em m a 4.1.4 For any finite weighted graph G, and vertex v, the number of labeled 
vertices in the n th element of DIJK:CompSeqCG, v) — min(n + 1, #  of vertices 
reachable from v by a directed walk in G).

theorem tDCS06:
fo r  G b e in g  f i n i t e  r e a l -w e ig h te d  WGraph, v b e in g  Vertex o f  G, 

n b e in g  Nat
h o ld s  Card (DIJK:CompSeqCG,v).->n).labeledVO = 

m in (n + l , card(G .reachableDFrom(v)) )

Proof: The proof is by induction. Let r  be the number of vertices reachable from 
v by a directed walk in G. When n =  0, the n th element is actually DIJK: I n i t  (G, v ) , 
so there is only one labeled vertex -  v. r is at least one because v is reachable from 
itself, therefore the min(0 +  1, r) =  1. Thus the base case holds.

Assuming that the claim is true for some arbitrary n, we now show tha t it 
remains true for n + 1. By definition 4.1.5, Gn+i =  DIJK: S tep (G „). There are two 
cases to consider. First suppose tha t DIJK:NextBestEdges(G„) is empty. In this 
case, Gn+\ =  Gn, so by the inductive assumption, the number of labeled vertices 
in Gnpi is min(n + 1, r). By Lemma 4.1.3, the number of labeled vertices in 
Gn+1 =  r. therefore r  =  m in(n  + 1). This means tha t r  < n + 1, and by transitivity, 
r < n + 1 + 1. Thus the number of labeled vertices in Gn+i =  r =  m in (n  +  1 +  1, r). 
Now suppose tha t D IJK:NextBestEdges(G„) is not empty. In this case, Gn+i =  
DIJK: S tep (G n), and by Lemma 4.1.3, the set of labeled vertices in Gn is not equal 
to the set of all vertices reachable from v by a directed walk in G. Along with 
Lemma 4.1.2, this means that the set of labeled vertices in Gn is a strict subset 
of the vertices reachable from v by a directed walk in G, hence their cardinalities 
can not be the same. By the inductive assumption, the number of labeled vertices 
in Gn = m in(n  +  1, r), but since this number can not be r, it must be n  +  1 with 
n +  1 < r. By Lemma 4.1.1, the number of labeled vertices in Gn+i is then n +  1 +1. 
n +  1 +  1 < =  r, hence the number of labeled vertices in Gn+\ =  m in (n  +  1 +  1, r). 
□
T h eo re m  4.1.5 For any finite weighted graph G and vertex v, the computation 
sequence DIJK:CompSeqCG, v) halts.

theorem tDIJKOl:
fo r  G b e in g  f i n i t e  r e a l -w e ig h te d  WGraph, s r c  b e in g  V ertex  o f  G 

ho ld s  DIJK:CompSeqCG,src) i s  h a l t in g
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Proof: In order to show tha t DIJK: CompSeqCG, v) halts, we need to find an 
n, such that the n th and n +  1th elements of DIJK:CompSeqCG,v) are identical. 
Set n  to be equal to the number of vertices tha t are reachable from v via directed 
walks in G. Let Gn,Gn+\ be the n th and n +  1th elements of DIJK: CompSeqCG, v ) . 
We will show tha t Gn =  Gn+\. By Definition 4.1.5, Gn+i — DIJK: S tep (Gn). 
If DIJK:NextBestEdges(Gn) is empty, then Gn+i = D IJK :S tep(G ra) =  Gn (by 
Def 4.1.4) and we are done. Otherwise, suppose DIJK: NextBestEdges (Gn) is not 
empty. By Lemma 4.1.1, the number of labeled vertices in Gn+i is then one more 
than the number of labeled vertices in Gn. However, by Lemma 4.1.4, the number 
of labeled vertices in Gn =  m in(n  + 1  ,n ) = n, and the number of labeled vertices in 
Gn.fi =  m in((n  +  1), n) =  n. Therefore DIJK:N extBestEdges(G re) must be empty 
and G: ti — G"/j-|-x*

For D ijkstra’s algorithm, we can even prove the exact iteration at which the 
algorithm terminates:

T h eo re m  4.1.6 For any finite weighted graph G and vertex v, the lifespan of 
DIJK: CompSeqCG, v) is equal to one less than the number of vertices reachable from  
v via a directed walk in G.

theorem tDIJK02:
f o r  G b e in g  f i n i t e  r e a l -w e ig h te d  WGraph, 

src  b e in g  Vertex of G ho ld s  
DIJK:CompSeqCG,src).LifespanO+1 = card G.reachableDFrom(src)

Proof: Set k =  (the number of vertices reachable from v via a directed walk in 
G) — l. The vertex v is reachable from v, which means k is nonnegative, hence we 
can safely talk about the graphs G/.. and G^+i- From Lemma 4.1.4, there axe the 
same number of labeled vertices in Gk as in Gk+i- Combined with Lemma 4.1.1, 
we get that DIJK:NextBestEdges (G*,) is empty, which also means tha t G*, =  G^+i 
by Definition 4.1.4. We still need to show tha t k  is the earliest point at which the 
sequence repeats. This turns out to be fairly simply to show, since for any other 
n < k, the number of vertices in Gn and Gn+1 differ by one, according to Lemma 
4.1.4. □

Now that we have shown tha t the algorithm halts, as well as the exact point 
at which it does so, we prove tha t the end result gives us information about a 
shortest-path subtree whose vertices are all those reachable from the source vertex 
via a directed walk. In addition, we will show tha t the label on each vertex in the 
subtree is labeled with the shortest distance between it and the source.

T h eo re m  4 .1 .7  For any finite WGraph G and vertex v, the set of vertices labeled 
in DIJK:SSSP(G, v) is the set of vertices reachable from v via a directed walk in G.

theorem tDIJK03:
fo r  G b e in g  f i n i t e  r e a l -w e ig h te d  WGraph, sr c  b e in g  V ertex o f  G 

h o ld s  DIJK:SSSP(G, s r c ) . labeledV O  = G.reachableDFrom(src)

Proof: Let R  represent the set of vertices reachable from v via a directed walk 
in G, and L  represent the vertices labeled in DIJK: SSSP(G,n). Suppose L  ^  R.
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By Lemma 4.1.2, this means that L C R, hence \L\ < |J2|. However, from Theorem
4.1.6 and Lemma 4.1.4 we get that \L\ =  |il |, giving us our contradiction. □

Lemma 4.1.8 For any finite WGraph G and vertex v, the edges labeled in the n th 
element o f DIJK: CompSeqCG, v) is a subset of the edges between the vertices labeled 
in the n th element of DIJK: CompSeqCG, v ) .

fo r  G b e in g  f i n i t e  r e a l -w e ig h te d  WGraph, src  b e in g  Vertex o f  G, 
n b e in g  Nat h o ld s  

DIJK:CompSeqCG,src). ->n).labeledE C ) c=
(DIJK:CompSeqCG,src).->n). edgesBetweenC

(DIJK:CompSeqCG,src). - > n ) . labe ledV O

Proof: P roof is by induction. In the base case, no edges are labeled, hence the 
condition holds trivially. Now assume the condition is true for some arbitrary n. 
If DIJK: NextBestEdges (Gn, v) is empty, then Gn+\ =  Gn , therefore the condition 
is true by our inductive assumption. If DIJK: NextBestEdges (Gn, v) is non-empty, 
we add a new edge e to our labeling e, as well as the unlabeled target vertex of e. 
Both of the vertices that e joins are labeled in Gn+1, therefore the condition holds 
for n +■ 1. □

L em m a 4 .1 .9  For any finite WGraph G with nonnegative-weights, and vertex v, 
any weighted subgraph induced by the labeled vertices and edges in the n th element 
o/DIJK:CompSeq((r„,«) forms a directed shortest-path tree of G rooted at v. In 
addition, every vertex labeled in the n th element of DIJK:CompSeqCG,?;) is marked 
with the m inimum cost of a directed walk from v to it.

theorem tDCS08:
fo r  G b e in g  f i n i t e  non n egative -w e igh ted  WGraph, 

sr c  b e in g  Vertex o f  G, n be ing  Nat,
G2 b e in g  inducedWSubgraph of G,

(D IJK :C om pSeqC G ,src).->n).labeledV O ,
(DIJK:CompSeqCG,src).->n).labeledEC)  

h o ld s  G2 is_m incost_D Tree_rooted_at s r c  & 
f o r  v b e in g  Vertex o f G

s t  v in  (DIJK:CompSeqCG,src). - > n ) . labeledV O  
h o ld s  G .m in_D Path_cost(src ,v)  =

(the_VLabel_of (DIJK :Com pSeq(G ,src).->n)).v

Proof: Proof is by induction. In the base case, there are no edges labeled, and v 
is the only vertex labeled, hence the induced weighted subgraph forms a tree. The 
label at v is 0 , which is the absolute minimum cost of a walk in a nonnegative- 
weighted graph, hence the graph is a directed shortest-path tree of G rooted at v. 
For any given n, assume the condition holds. If DIJK: NextBestEdges (Gn) is empty, 
then Gn+i =  Gn, hence the condition holds by the inductive assumption. Otherwise, 
there is one new edge e th a t is now labeled in Gn+i, as well as the target vertex of e, 
which we call t. Let W S n and W S n + 1 be some arbitrary weighted subgraphs induced 
by the labeled edges and vertices in Gn and Gn+1, respectively. By Lemma 4.1.8, 
we know that the labeled edges are a subset of the labeled vertices, therefore we are 
safe to talk about such induced subgraphs. The labeled vertices and edges of Gn are 
a subset of the labeled vertices and in Gn+1, therefore W S n is a weighted subgraph
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of W S n-)-i. From the inductive assumption, W S n is a directed tree, therefore it is 
connected. We can use this to show tha t W 5n-|_x is also connected. Consider any 
two distinct vertices in W S n+1, which we call x and y. If x  ^  t and y ^  t, then 
x  and y are vertices in W S n, hence there exists a directed walk in W S n tha t goes 
from one to the other. W S n is a subgraph of W S n+1, so this walk also exists in 
W S n+1- On the other hand, without loss of generality, suppose y — t. We can 
consider a directed walk in W S n from x  to the source vertex of e, which is also a 
walk in W S n+i- Appending the edge e to the end of this walk gives us a directed 
walk tha t goes from x  to y , thus showing that W S n+\ is connected. The number of 
vertices in W S n+i is one more than the number of vertices in W S n, and the same 
holds true for the number of edges. Being a tree, W S n has one more vertex than 
edge, and using the above fact, the same must hold for W 5 n+ i. This condition, 
along with W 5n+i being connected is enough to show tha t W S n+\ is a directed tree 
rooted at v.

We still need to show that W S n+\ forms a directed shortest-path tree and that 
labels are marked with minimum costs from v. Consider some vertex x  in W S n+
If x  t, then x is a vertex in W  Sn, and by the inductive assumption, there exists 
a directed path  in W S n going from v to x of minimum cost. Such a directed path 
is also a directed path  in W S n+\. Here we still need to show tha t the cost of such 
a path  does not change, but this is true, since W S n is a weighted subgraph of 
W S n+1- If x — i, then consider some minimum cost directed path  in W S n from 
v to the source vertex of e. Such a directed path  is also a path  in W S n+1, and 
we can append the edge e to get a directed walk P  tha t runs from v to t. Neither 
e nor t were in Gn, therefore this P  is actually a directed path. The cost of P  
is the sum of the minimum-cost path  from v to the source vertex of e and the 
cost of e. By the inductive argument, this is also equal to sum of the value of the 
label at the source vertex of e with the cost of e. Recall tha t e is an element of 
DIJK -.NextBestEdges (Gn) , and therefore the sum of the vertex-label at the source 
of e along with the weight of e is minimal among all edges going from a labeled 
vertex to an unlabeled one 4.1.3. We need to show tha t P  has minimum cost, which 
is done by contradiction. Suppose there exists a directed path  M  from v to t with a 
cost strictly less than the cost of P. Let u be the first vertex of M  tha t is unlabeled 
in Gn. Such a vertex must exist since t  is unlabeled, and in addition, u will not be 
the first vertex of M , since v is labeled. By our choice of e, the cost of P  is less 
than or equal to the subpath of M  formed by considering the section from v up to
u. Gn has the same nonnegative weights as G, therefore the cost of this subpath is 
less than  or equal to the cost of M . Hence, by transitivity, the cost of P  is less than 
or equal to the cost of M , which gives us our desired contradiction. □

T h e o re m  4.1.10 For any finite WGraph G with nonnegative-weights, and vertex v, 
any weighted subgraph induced by the labeled vertices and edges in DIJK:SSSP(G, v) 
forms a directed shortest-path tree of G rooted at v. In addition, any vertex that is 
reachable via a directed walk in G is labeled in DIJK:SSSP(G, v) with the shortest 
cost of a directed path from v to it.

theorem tDIJK04
f o r  G b e ing  f i n i t e  non n egative -w e igh ted  WGraph,

sr c  b e in g  V ertex of G, G2 b e in g  inducedWSubgraph o f  G,
D IJ K :S S S P (G ,src ) . la b e led V O ,
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DIJK :SSSP(G ,src). lab e led E O  h o ld s  
G2 is_m incost_DTree_rooted_at sr c  &
f o r  v b e in g  Vertex o f G s t  v in  G.reachableDFrom(src) ho ld s  

v in  th e _ V e r t ic e s _ o f  G2 &
G.m in_D P ath_cost(src , v) = (the_VLabel_of DIJK:SSSP(G, s r c ) ) . v

Proof: DIJK:SSSP(G, v) is an element of DI JK: CompSeqCG, v ) , hence most of 
what we want to prove comes from 4.1.9. We get that all reachable vertices are 
labeled in DIJK:SSSP(G,u) from 4.1.7.

This concludes our English translation of the MlZAR proof of correctness for 
Dijkstra’s algorithm.

4.1 .5  D iscu ssion

As this was the first graph algorithm to be verified in M izar , the majority of the 
work went towards establishing the necessary background objects needed, such as 
the notion of trees, walks and components. As an illustration, the total number of 
lines we used to define machinery specific to D ijkstra’s algorithm and for proving 
the correctness of the algorithm was roughly 1400, while we had to write over 18000 
lines to cover all the necessary background library definitions and theorems.

4.2 Prim ’s Minimum-W eight Spanning Tree Algorithm

Prim ’s algorithm for finding minimum spanning trees was the second graph algo
rithm  we verified in M izar . Interestingly, none of the texts we checked had proofs 
tha t could handle graphs with multiple edges between vertices, although Prim ’s 
algorithm still works correctly on such graphs.

4.2 .1  T h e M inim um -W eight Spanning Tree P rob lem

Given a graph G, we say that a subgraph H  spans the vertices of G if the vertices of 
G are identical to the vertices of H . For a connected graph G, it can be shown that 
there exist subtrees that spans the vertices of G. Given a weighted graph, Prim ’s 
algorithm finds such a spanning subtree with minimum total edge weights. Minimum 
spanning trees have a variety of practical applications such as in communication and 
transportation networks.

4 .2 .2  P r im ’s A lgorith m  - T extb ook  version

Prim ’s algorithm for finding minimum spanning trees is a classic example of a greedy 
algorithm. Skiena [19] describes Prim ’s algorithm as follows:

Prim-MST(G)

Select an arbitrary vertex s to start the tree from.

While (there are still nontree vertices)
• Select the edge of minimum weight between a tree and nontree 

vertex
■ Add the selected edge and vertex to the tree Tprim.
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In order to prove correctness in MlZAR, we must first adjust this algorithm 
slightly. Instead of growing a tree, we will simply label the edges and vertices that 
are involved, leaving the underlying graph intact. We need this information in order 
to properly define a transition function for the computation sequence. Here is our 
mo difed Prim ’s algorithm:

Input: A finite connected graph G 

Output: A minimum-weight spanning tree of G.

Pseudo-code:

1. Label all vertices as unseen.

2 . Arbitrarily select some vertex of G to mark as seen

3. While there are edges going from a seen vertex to an unseen vertex:

(a) Select an edge e, going from a seen vertex u to an unseen vertex v such 
tha t the weight of e is minimal among all edges going from seen vertices 
to unseen vertices.

(b) Mark e and v as seen

The machinery for Prim ’s algorithm is quite similar to the one created for dealing 
with Dijkstra’s algorithm. The only main difference is which edges we select as 
candidates and how to label them.

4.2 .3  P rovin g  correctness

Before we begin, we present a proof found at [10]:

Let P  be a connected, weighted graph. At every iteration of Prim ’s 
algorithm, an edge must be found tha t connects a vertex in a subgraph 
to a vertex outside the subgraph. Since P  is connected, there will always 
be a path  to every vertex. The output Y  of P rim ’s algorithm is a tree, 
because the edge and vertex added to Y  are connected to other vertices 
and edges of Y  and at no iteration is a circuit created since each edge 
added connects two vertices in two disconnected sets. Also, Y  includes 
all vertices from P  because Y  is a tree with n  vertices, same as P. 
Therefore, Y  is a spanning tree for P.

Let Y\ be any minimal spanning tree for P. If Y  =  Yi, then the proof 
is complete. If not, there is an edge in Y  tha t is not in Y\. Let e be the 
first edge tha t was added when Y  was constructed. Let V  be the set of 
vertices of Y  — e. Then one endpoint of e is in Y  and another is not.
Since Yi is a spanning tree of P, there is a path  in Yi joining the two 
endpoints. As one travels along the path, one must encounter an edge 
/  joining a vertex in V  to one tha t is not in V. Now, at the iteration 
when e was added to Y , f  could also have been added and it would be 
added instead of e if its weight was less than  e. Since /  was not added, 
we conclude tha t w( f )  > w(e).
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Let Y2 be the tree obtained by removing /  and adding e from Y\. It 
shows that Y2 is a tree tha t is more common with Y  than with Yi. If 
Y2 equals Y , QED. If not, we can find a tree, I 3 with one more edge in 
common with Y  than Y2  and so forth. Continuing this way produces a 
tree tha t is more in common with Y  than with the preceding tree. Since 
there are finite number of edges in Y , the sequence is finite, so there 
will eventually be a tree, Y/,., which is identical to Y. This shows Y  is a 
minimal spanning tree.

Unlike some of the other proofs we encountered, (e.g. [2]), this proof does not 
rely on G being a simple graph. To an unattentive reader, this proof may seem sim
ple and logically sound. Unfortunately though, there is something seriously wrong 
with this proof. In some cases, the edge /  in Yi is an edge tha t is also in Y. This 
means that adding the edge e and then removing the edge /  does not increase the 
number of edges in common with Y. We outline a similar but correct proof below, 
which is the one we translated into M iz a r :

Let v\ be the arbitrary vertex tha t we selected to grow our minimum spanning 
tree from. To prove that the algorithm halts, we can show tha t at the n th step of the 
computation, the number of labeled vertices =  m in(n  +  1,#  of vertices reachable 
from ui). This gives that the lifespan of our algorithm is exactly one less than  the 
number of vertices reachable from iq, and that in the final result all vertices are 
labeled. Our proof is done via induction, similar to the proof regarding the lifespan 
of Dijkstra’s algorithm.

We need to show that any graph induced by the labeled edges and vertices in 
the final result of Prim ’s algorithm forms a tree. This is actually true for any graph 
in our computation sequence - a fact we also prove by induction. In the base case, 
there is only a single vertex labeled, and no edges which forms a trivial tree. For the 
inductive step, we are adding a new edge tha t is incident to a vertex in the previous 
tree and a new vertex, which guarantees that the new graph is also a tree.

The last thing to show is that the spanning tree is minimal. Let P  be a weighted 
subgraph induced by the labeled vertices and edges in Prim ’s result. Assume tha t P  
is not minimal. Consider a minimum spanning tree M  tha t has the highest number 
of edges in common with P. There is also one extra tie-breaking condition for the 
selection of M . Let en represent the edge labeled in the n th step of the algorithm. 
We select M  such tha t it shares the edges ei, e2, . . . ,  for as large a value of k as 
possible. In other words, up to the klh step, P rim ’s algorithm choose edges tha t are 
in M , but the edge ek+i is not in M . We can safely talk about the edge since 
there must be some edge in M  th a t is not in P, otherwise P  would share the same 
vertices, edges, and weights as M  and therefore be minimal. Let s and t  be the 
vertices adjacent to e^+i, where t is vertex unlabeled in Gk- Appending e*+i to the 
unique path from s to t  in M  forms a cycle. Because s is labeled, and t  is unlabeled, 
we can find some edge e u  that is along the path  from s to t in M  tha t goes from an 
unlabeled vertex to a labeled vertex in Gk- Let M 2  be the graph formed by adding 
the edge e^+i to M  while removing e ^ .  M 2  still has the same number of vertices 
and edges as M , and is also connected, therefore is a tree. The vertices have not 
changed, therefore M 2  is a spanning tree. By our choice of ek+i, the weight of 
is greater than or equal to the weight of e ^ i ,  hence the weight of M 2  is less than or
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equal to tha t M . However, M  is a minimal, therefore M 2  must also be a minimal 
spanning tree.

We now show a contradiction by proving tha t M 2  should have been selected in 
lieu of M . There are two cases to consider. If is not an edge in P, then the total 
number of edges that M 2  shares in common with P  is one greater than  the number 
of edges M  shares with P, which contradicts with our choice of M . If e u  is an edge 
of P , then the total number of edges tha t M 2  shares in common with P  is identical 
to the number of edges M  shares with P. From our choice of M , this means that 
M 2  contains the edges ei, 6 2 , ■ ■ ■, e* for some value 1 < i < k, i ^  k  otherwise M 2  

would contain the edges ei, e2, . . . ,  e*,, ek+i, which contradicts our choice of M . Only 
eM was removed from M , which means tha t is one of the edges ei, e2, • • •, e*. 
However all vertices incident to any of the edges ei, e2, . . . ,  e* are already labeled in 
Gk, while t is unlabeled, giving us our desired contradiction.

4 .2 .4  D iscu ssion

There were two main issues when dealing with Prim ’s algorithm. The first was 
finding a correct proof that was suitable for use for graphs tha t were not necessarily 
simple. Realistically, only a single edge of minimum cost should be considered 
if there are multiple edges between two vertices, while self-looping edges may be 
discarded, however we felt it was im portant to formalize a proof tha t handled these 
cases properly. The other main issue was formalizing the cost of a subgraph - namely 
getting the sum of all the weights of all the edges in a subgraph. Summation is a 
tricky obstacle in MlZAR, and it was necessary to augment the machinery from 
[17, 18] in order to create a proper definition. Although the mml continues to 
improve, there are still many concepts tha t have not been formalized tha t may be 
interesting towards graphs. For example, in order to properly deal with planar 
graphs, we would need a proof of the Jordan Curve theorem, which is still a major 
uncompleted project in M iz a r .

As this was our second algorithm to be proven, most of the background work was 
already done. In terms of writing, it took roughly 4500 lines to define and prove all 
the material directly relating to Prim ’s algorithm, while another 400 lines was used 
towards adding additional background material. The reason why P rim ’s algorithm 
requires so many more lines than Dijkstra’s algorithm is mainly due to  dealing with 
the summations.

On a side note, it was during our work on Prim ’s algorithm tha t we decided 
that M iz a r ’s built-in system for structures was not sufficient for graphs, hence we 
started to use our own attribute-based system. See Appendix A for more information 
regarding MlZAR structures.

4.3 Ford &: Fulkerson’s M aximum Network Flow Algo
rithm

4.3 .1  T he M axim um  N etw ork  F low  P rob lem

Given a directed graph G with capacities on each edge, a source vertex s and a 
sink vertex t, we say that G has a valid flow from s to t if two conditions hold. 
The first is that every edge e has a value assigned between zero and the capacity
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on e, which we call the flow on e. The second condition is tha t for every vertex v 
other than  s and t, the sum of the flows on all edges directed into v is equal to the 
sum of the flows on all edges coming out of v. This second condition is often called 
conservation of flow. For a graph that has a valid flow, we define the value of the 
flow to be equal to the sum of flows on edges going into the sink minus the sum of 
the flows on edges coming out of the sink. In the maximum network flow problem, 
we are asked to find an assignment of values on edges tha t results in the maximum 
possible flow value.

4.3 .2  F ord /F u lk erson ’s M axim um  N etw ork  F low  A lgorith m

The algorithm which we proved correct using M iz a r  is credited to Ford and Fulk
erson. The basic idea behind the algorithm is finding and increasing the flow along 
augmenting paths. Augmenting paths are paths from s to t  along which flow can 
be increased.

The pseudo-code of the algorithm is very simple to state: [5]: 
F o r d - F u lk e r s o n - M e t h o d ( G ,  s, t )

1. initialize flow /  to 0

2. w hile  there exists an augmenting path p

3. do augment flow /  along p

4. r e tu r n  /

The proof of the algorithm relies on the claim that a graph has maximum flow 
if and only if it does not have any augmenting paths. This proof is quite well doc
umented and referred to as the Max-flow Min-cut theorem[7]. Because our M iz a r  
proof is very similar to the proofs found in several texts [5, 22], we focus more on 
the details regarding how we formalize the algorithm machinery itself.

Every edge in our input graph is assigned a capacity tha t does not change, 
thereby making them equivalent to weights. We will be modifying the flow along 
each edge, therefore we use edge-labels to represent the amount of flow on each 
edge. Hence, each element of our main computation sequence will be composed of 
WEGraphs.

The unique feature of the Ford/ Fulkerson algorithm versus the two other al
gorithms we have formalized is the use of subroutines. We can break down the 
Ford/Fulkerson algorithm into three subroutines:

1. Testing for the existence of an augmenting path in a graph.

2. Extracting an augmenting path, if one exists.

3. Increasing the flow along a given augmenting path.

In order to test a finite graph G for augmenting paths from source s to sink t 
we introduced an algorithm tha t creates a computation sequence defined as follows.

Initialize Go as the graph having the same structure as G, but with s labeled 
with the value 1. The value is really arbitrary, but marks tha t the source vertex is in 
the set of labeled vertices. For any value n, the graph Gn+i is attained by checking
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for candidate edges in Gn. An edge is a candidate if flow can be increased along it. 
There are two types of candidate edges - forward labeling, and backwards labeling. 
An edge e is forward labeling if the source vertex of e is labeled, the target vertex of 
e is unlabeled and the current flow on e is strictly less than the capacity on e. An 
edge e is backward labeling if the target vertex of e is labeled, the source vertex of e 
is unlabeled, and the current flow on e is strictly greater than  zero. If no candidates 
edge exist we define Gn =  Gn+i, otherwise we select an arbitrary candidate edge e, 
and label its currently unlabeled source or target vertex with the name of the edge.

In MlZAR, our algorithm machinery looks very similar to tha t of P rim ’s and 
Dijkstra’s, with the notion of a set of candidate edges, a step function.

d e f in i t io n  l e t  G be r e a l-w e ig h te d  r e a l- e la b e le d  WEVGraph; 
func AP:N extBestEdges(G ) -> Subset o f the_E dges_of G means 

fo r  e b e in g  s e t  h o ld s e in  i t  i f f
(e is_ fo r w a r d _ la b e lin g _ in  G or e is_ b a ck w a rd _ la b e lin g _ in  G );

end;

d e f in i t io n  l e t  G be r e a l-w e ig h te d  r e a l- e la b e le d  WEVGraph; 
s e t  e = choose AP:N extB estE dges(G );
func AP:Step(G) -> r e a l-w e ig h te d  r e a l- e la b e le d  WEVGraph eq u a ls  

G i f  AP:NextBestEdges(G) = I I ,
G .la b e lV er tex ((th e_ S o u rce_ o f G ) .e , e ) i f  

AP:NextBestEdges(G) <> { }  &
n ot (th e_S ou rce_of G ).e  in  G .labeledV O  o th erw ise  

G .la b e lV e r te x ((th e_ T a rg e t_ o f G ) .e , e ) ;
end;

d e f in i t io n  l e t  G be r e a l-w e ig h te d  r e a l- e la b e le d  WEGraph, 
sou rce be V ertex o f G; 

func AP:CompSeq(G,source) -> r e a l-w e ig h te d  r e a l - e la b e le d
WEVGraphSeq means 

i t . - > 0  = G .se t(V L a b e lS e le c to r , sou rce . — > 1) & 
fo r  n b e in g  Nat h o ld s i t . - > ( n + l )  = A P : S t e p ( i t .- > n ) ;

end;

d e f in i t io n  l e t  G be r e a l-w e ig h te d  r e a l- e la b e le d  WEGraph, 
sou rce  be V ertex o f G; 

func AP:FindAugPath(G ,source) -> r e a l-w e ig h te d  r e a l- e la b e le d
WEVGraph eq u a ls

AP:CompSeqCG,source). R esu lt 0 ;
end;

We show tha t this algorithm halts via contradiction. If there is no n  such that 
Gn — Gn+i, it must be tha t there is always some candidate edge in Gn. However, 
whenever there is a candidate edge, an unlabeled vertex becomes labeled and there 
are only a finite number of unlabeled vertices.

We can show tha t for any point in the computation sequence there exists an 
augmenting path  from the source to any vertex tha t is labeled. This is done by 
induction, and showing tha t adding a candidate edge to an augmenting path  results 
in a new augmenting path. In our proof, we also show tha t all vertices for which 
there exists an augmenting path from the source will be labeled in the final result 
of our computation sequence. Hence, in order to determine if a given graph has any
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augmenting paths from source to sink, it is sufficient to check if the sink is labeled 
in the final result of the algorithm.

There is still the issue of extracting the augmenting path, assuming it exists. The 
routine th a t we build for this purpose relies on the labels on the vertices produced 
by the previous algorithm. Because each labeled vertex other than the source gives 
us the candidate edge tha t the algorithm chose in order to reach tha t particular 
vertex, we can build an augmenting path by following edges backwards from the 
sink. We defined a function in MlZAR that did exactly this:

d e f in i t io n  l e t  G be f i n i t e  r e a l-w e ig h te d  r e a l - e la b e le d  WEGraph, 
s o u r c e ,s in k  be V ertex o f G;

func AP: GetAugPath(G, so u r c e , s in k ) -> v e r t e x - d is t in c t
augm enting Path o f G means

i t  is_W alk_from  so u r c e ,s in k  &
fo r  n b e in g  even Nat s t  n in  dom i t  h o ld s

i t . n  = (the_V L abel_of AP:FindA ugPath(G ,source)) . ( i t . ( n + 1 ) )  i f  
(s in k  in  A P :F indA ugP ath(G ,source).labeledV Q ) o th erw ise  
i t  = G .w a lk O f(so u rce);

This is a conditional function tha t depends on whether the sink has been labeled 
by the previous algorithm for finding augmenting paths. It returns the unique 
augmenting path  from source to sink as found in AP: G et A ugPath (G, source).

The last subroutine takes the augmenting path  we have extracted and increases 
the flow along it. For a forward labeling edge, we can increase the flow at most 
(capacity - current flow) units. For a backwards labeling edge, we increase the flow 
along the path  by decreasing it for that edge at most (current flow) units. These two 
limits are necessary to preserve that the graph has valid flow. Given an augmenting 
walk W , we define the tolerance of W  as the minimum of all possible flow increases 
along the edges of W . In order to increase the flow safely along the path  P , we 
increase the flow along forward labeling edges and decrease flow along backwards 
labeling edges by the tolerance of P . The new edge labeling resulting from this 
looks as follows in MlZAR:

d e f in i t io n  l e t  G be r e a l-w e ig h te d  r e a l- e la b e le d  WEGraph,
P be augm enting Path o f G; 

func FF:PushFlow(G,P) -> ManySortedSet o f  the_E dges_of G means 
( fo r  e b e in g  s e t  s t  e in  the_E dges_of G & not e in  P .e d g e s ()  

h o ld s i t . e  = (the_E L abel_of G ).e )  &
(fo r  n b e in g  odd Nat s t  n < le n  P h o ld s  

(P .(n + 1) D Joins P .n , P .(n + 2 ),G  im p lie s
i t . ( P . ( n + 1 ) )  = (the_E L abel_of G ). ( P .( n + l) ) + P .t o le r a n c e ( ) )  &

(not P .(n + 1 ) D Joins P .n ,P .(n + 2 ),G  im p lie s  
i t . ( P . ( n + 1 ) )  = (the_E L abel_of G ). ( P . ( n + l ) ) - P . t o l e r a n c e ( ) ) ) ;

end;

Basically, this function does not modify the flow on edges tha t are not part of P , and 
increases or decreases the amount of flow as necessary for forwards and backwards 
labeling edges of P .

W ith these three subroutines defined, we can now build the machinery for the 
main Ford/Fulkerson algorithm:
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d e f in i t io n  l e t  G be r e a l-w e ig h te d  r e a l- e la b e le d  WEGraph,
P be augmenting Path o f G; 

func FF:AugmentPath(G,P) -> r e a l-w e ig h te d  r e a l - e la b e le d
c o m p le te -e la b e led  WEGraph eq u a ls  

G. se t(E L a b e lS e le c to r , FF:PushFlow(G, P ))
end;

d e f in i t io n  l e t  G be f i n i t e  r e a l-w e ig h te d  r e a l- e la b e le d  
c o m p le te -e la b e led  WEGraph, 

s in k , sou rce be V ertex o f  G; 
func FF:Step(G , so u rce , s in k ) ->  f i n i t e  r e a l-w e ig h te d

r e a l- e la b e le d  c o m p le te -e la b e le d  
WEGraph eq u a ls  

FF:AugmentPath(G, AP:GetAugPath(G, so u r c e , s in k ) ) 
i f  s in k  in  A P :F indA ugP ath(G ,source).labeledV O  

o th erw ise  G; 
end;

d e f in i t io n  l e t  G be f i n i t e  r e a l-w e ig h te d  WGraph, 
s o u r c e ,s in k  be V ertex o f  G; 

func FF:C om pSeq(G ,source,sink) -> f i n i t e  r e a l-w e ig h te d
r e a l- e la b e le d  c o m p le te -e la b e le d  
WEGraphSeq means 

i t . - > 0  = G .se t(E L a b e lS e le c to r , th e_E dges_of G — > 0) & 
fo r  n b e in g  Nat h o ld s  ex so u r c e ’ , s in k ’ b e in g  V ertex  o f  i t . - > n  

s t  s o u r c e ’ = sou rce  & s in k ’ = s in k  & 
i t . - > ( n + l )  = F F :S te p ( it .-> n ,s o u r c e ’ , s in k ’ ) ;

end;

d e f in i t io n  l e t  G be f i n i t e  r e a l-w e ig h te d  WGraph, 
s in k ,s o u r c e  be V ertex o f  G; 

func FF:MaxFlow(G, so u r c e , s in k ) -> f i n i t e  r e a l-w e ig h te d
r e a l- e la b e le d  c o m p le te -e la b e le d  
WEGraph eq u a ls  

F F :C o m p S eq (G ,so u rce ,s in k ).R esu ltO ; 
end;

Initially , F ord/F ulkerson  sets the flows on  each o f th e  edges to  0, thereby pro
ducing a graph w ith  valid  flow. In the step  function , it assigns th e  new  lab el
ing produced by augm enting  th e  p ath  from  th e  source to  th e  sink  as found by  
AP: Get AugPathCG, source, s in k ) , assum ing th a t such  a w alk w as found in  by the  
subroutine AP :F in d A u g P a th (G , source) . G iven n on -n egative  ra tion a l w eights, we 
can show  th a t th e  F ord/F ulkerson  com p u tation  sequence h a lts  b ecau se  each itera
tion  increases th e  to ta l flow, w hich  is lim ited  by th e  cap acities o f  th e  edges going in  
and out o f th e  sink. B y  th e  M ax-flow  M in-cut theorem , w e know  th a t the flow is 
m axim al because there are no m ore augm enting p ath s from  th e  source to  the sink  
w hen  we reach th e  resu lt o f  com p u tation  sequence.

4 .3 .3  D iscu ssion

T h e m achinery required for th e  F ord/Fulkerson algorithm  is m ore in tricate th an  the  
other two prev iou sly  covered algorithm s, however breaking dow n th e  algorithm  into
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simple subroutines made the proof much easer to handle. Our proof required roughly 
5200 lines, and we added another 400 lines towards background library materials. 
The two main lemmas that help prove the Max-flow Min-cut theorem deal with 
showing that the flow can be measured along a source/sink cut. As seen in [6], this 
is done mainly by manipulating sums, hence our proof followed very closely with the 
books. As far as we know, this is the first formalized proof of the Ford/Fulkerson 
algorithm.
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Chapter 5 

Conclusion

Establishing an extensive library of graph definitions and facts was a focal point 
for our work. By proving the correctness of algorithms of Dijkstra, Prim and 
Ford/Fulkerson, we have begun to show tha t our library is robust and suitable 
for use towards more complex graph algorithms. Currently the prepared library is 
already in use by another student who is in the process of verifying an algorithm for 
recognizing triangulated graphs, with the intention of working in the field of perfect 
graphs.

There are many conceptual differences and technical difficulties when translating 
a proof from a textbook form to M iz a r , but at the same time, there are many 
benefits of having a mechanized proof, such as automated verification and the ability 
for cataloging. It is also feasible tha t with future work, actual code may be extracted 
mechanically from these correctness proofs. While the length of a textbook proof is 
almost always much shorter than a formal MlZAR proof, we would like to point out 
tha t the majority of work is often directed towards proving background materials.

Future work will continue to expand the graph library to touch upon a variety of 
other topics. Suitable choices that MlZAR are quite adept at handling at the moment 
include perfect graphs, intersection graphs, graph coloring and graph isomorphism.
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A ppendix A

Graph Structures in Mizar

A lth ou gh  MlZAR provides b u ilt-in  support for dealing w ith  structures, it  has been  
decided  th a t a different approach w ould  b e m ore su itab le  for dealing w ith  graphs. 
W e begin  b y  providing som e background inform ation ab ou t sy stem  o f structures  
currently in  place.

A .l  Mizar Structures

There are situations when we wish to formalize facts regarding an object which is 
composed of a number of other entities. Examples of such cases include the familiar 
algebraic structures of groups and rings. In MlZAR, structures are internally handled 
as a finite collection of objects with specific types. The individual components 
of a structure are identified by the selectors of the structure. MlZAR provides 
special support for structures—allowing them to be defined without justifications 
for correctness or existence. In addition, M iz a r  has built-in support for defining 
inheritance among structures.

T h e general syn tax  o f  structures as g iven  in  MlZAR gram m ar is

s tr u c t  [ (A n cestors) ] S tructure-Sym bol [ over Loci ]
(# F ie ld s  # );

m m l contains quite a number o f various structures, they are extensively used in 
developing abstract algebra. These structures form an inheritance hierarchy where 
e.g. double loop structure (the backbone for rings and fields) is derived from a 
multiplicative loop structure with unity and an additive loop structure with zero. 
See [16] for details of algebraic structures and the inheritance mechanism.

MML contains also som e treatm ent o f graphs w here th e  basic structure is defined  
in  GRAPH-1 [9]:

d e f in i t io n
s t r u c t  M ultiG raphStruct (#

V e r t ic e s , Edges -> s e t ,
Sou rce , T arget -> F u nction  o f th e  E d ges, th e  V e r t ic e s

# ) ;
end;
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struct MultiGraphStruct 
(# Vertices, Edges -> set,

Source, Target -> Function of the Edges, the Vertices
#) ;

struct (MultiGraphStruct) struct (MultiGraphStruct) struct (MultiGraphStruct)
WGraphStruct EGraphStruct VGraphStruct

(# . . . (it  . . . (it  . . .
Weight -> ELabel -> VLabel ->
ManySortedSet of the Edges PartFunc of the Edges PartFunc of the Vertices

#); #); #);

struct (WGraphStruct, EGraphStruct) struct (WGraphStruct, VGraphStruct) struct (EGraphStruct, VGraphStruct)
, WEGraphStruct WVGraphStruct EVGraphStruct

(# . . . (# . . . ( t  . . .
Weight -> Weight -> ELabel ->
ManySortedSet of the Edges ManySortedSet of the Edges PartFunc of the Edges

ELabel -> VLabel -> VLabel ->
PartFunc of the Edges PartFunc of the Vertices PartFunc of the Vertices

#); #); #);

struct (WEGraphStruct, WVGraphStruct, EVGraphStruct) WEVGraphStruct
(# Vertices, Edges -> set,

Source, Target -> Function of the Edges, the Vertices, 
Height -> ManySortedSet of the Edges,
ELabel -> (PartFunc of the Edges),
VLabel -> PartFunc of the Vertices

#);

Figure A .l: Possible hierarchy of graph structures. (Note tha t the . . . serve as 
space savers instead of repeating the fields from the M u ltiG rap h S tru c t.)

The above defines M ultiG raphS truct as an aggregate composed of two sets called 
V e rtic e s  and Edges and two functions Source and T arge t, which map edges to 
their endpoints. Then mode Graph is defined as a M ultiG raphS truct with non 
empty set of V e rtic e s . However, as for our needs, MML contains only the very 
basic facts about graphs, and we had to essentially start from scratch although 
originally we planned to reuse whatever was available about graphs. Unfortunately, 
this has led to some difficulties as we needed to perform such operations on graphs 
that are rarely performed on the familiar algebraic structures, e.g. updates of the 
values of components.
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A .2 Graphs in the current m odel of structures

We have attem pted to use the currently available M iz a r  structures for our needs. 
The starting point was the above mentioned M u ltiG r a p h S tr u c t  from which we have 
derived 7 additional graph structures as shown in Figure A .I. In order to deal with 
graph algorithms on weighted graphs, there was a need to add three extra fields: 
weights on edges, labels on vertices, and labels on edges. They have been added one 
at a time as not all algorithms need all of them.

Once the graph structures were available we needed to define a number of func
tions and modes involving them. This led to quite a number of complications. We 
will illustrate them  on two examples: one involves a function for labeling vertices 
and the other concerns a mode involving the concept of subgraph.

When dealing with graph algorithms, it is handy to have a set of helper functions 
which return graphs, such as functions which label a given vertex by a given value. 
Such a function, for any arguments, must return a unique object having a specified 
type. In order to guarantee uniqueness, any such function returning a structure 
must return a special, exact form of the structure. To achieve this, MlZAR employs 
the attribute s t r i c t  which says tha t a unique set of fields is present in a structure. 
To illustrate the issue, let us consider this example: a s t r i c t  M u lt iG r a p h S tr u c t  is 
a structure with only vertices, edges, source and target, and not any other structure 
derived from (prefixed by) M u ltiG r a p h S tr u c t. However, when we have an object 
of type M u ltiG r a p h S tr u c t (without knowing whether it is s t r i c t ) ,  then we really 
do not know whether there are any other fields in the object besides the original 
four: V e r t ic e s ,  E d ges, S o u rce , and T a r g e t. It is so, as any object derived (directly 
or not) from M u ltiG r a p h S tr u c t  can always be considered as a M u ltiG r a p h S tr u c t  
despite it having additional fields.

Let us have a closer look at the following functor:

d e f in i t io n  l e t  G be VGraph, v be V ertex o f  G, x be s e t ;  
fu n c G .la b e lV e r te x (v ,x )  ->  s t r i c t  VGraph means

(th e  G raphStruct o f  i t )  = (th e  G raphStruct o f G) &
(th e  VLabel o f  i t )  = (th e  VLabel o f G) +* (v . — > x ) ;

This function, whose name is . la b e lV e r t e x  and which is used in infix notation 
with one left argument and two right ones, would accept as the left param eter any 
structure derived from VGraph, e.g. WVGraph. However, the return type of this 
function is s t r i c t  VGraph meaning tha t we would lose all information about the 
original type of the argument. Thus if the argument of this function is a WVGraph 
then the weight information is not preserved because we return  a strict VGraph. 
Intuitively, labeling a vertex should not influence the weights (or any other fields 
besides V Label) in a graph, and we would like to have this information explicit. 
Unfortunately, M iz a r  does not allow this to be expressed easily: field selectors are 
not first class objects and we cannot quantify over them. Therefore we cannot say 
that all possible fields, other than V L abel, have not been changed.

There are several ways to work around this. We could introduce separate labeling 
functions, which return  different types. For example, for WVGraphs:

d e f in i t io n  l e t  G be WVGraph, v be V ertex o f  G, x be s e t ;  
fu n c G. la b e lV e r te x (v ,x )  -> s t r i c t  WVGraph means

(th e  WGraphStruct of i t )  = (th e  WGraphStruct o f G) &
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( th e  VLabel o f  i t )  = (th e  VLabel o f  G) +* (v . — > x ) ;

Unfortunately, this means that we may need to define many such functions, one for 
each combination of features we would like to see in a graph. The number of such 
functions grows linearly with the number of structures we derive, and the latter 
can grow exponentially with the number of features tha t we introduce. Add in the 
customary theorems for each function, and the amount of work required to maintain 
such a library of helper functions becomes immense. Due to the differing output 
types of the functions we would have to maintain quite a number of very similar 
theorems concerning these functions.

Another alternative to reclaiming the lost information is to build more helper 
functions which copy selectors from one structure to the next. For example:

d e f in i t io n  l e t  G be VGraph, G2 be WGraph;
assume th e  Edges o f G = th e  Edges o f  G2;

func G. copyWeight_WV(G2) -> s t r i c t  WVGraph means 
th e  VGraphStruct o f i t  = th e  VGraphStruct o f  G &
th e  Weight o f  i t  = th e  Weight o f G2;

c o r r e c tn e s s  Oproof end; 
end;

We could then compose the two functions to get the WVGraph tha t we originally 
wanted: G. la b e lV e r t e x  ( v , x )  . copyW eight_W V(G). This is somewhat better than 
the previous approach, but we still need various versions of copy functions in order 
to deal with all the different types of graphs we would like to consider.

Both these approaches require quite a lot of extra function definitions which are 
essentially identical to one another. Ideally, we would like to have a function that 
takes in some type of a graph, modifies a vertex label, and returns the same type of 
graph. The function should only modify the vertex labels, and leave all the other 
fields of the output graph same as in the input graph. Unfortunately, there simply 
is no way to specify such a function using M iz a r ’s built-in structures.

One could consider overcoming this problem by defining all such functions just 
on the WEVGraph but in doing so we would make adding any field in the future quite 
unpleasant as we would just postpone the problem. Also, methodologically it seems 
desirable to define all functions and formulate all theorems about objects whose 
type is as wide as possible and not as narrow as it is convenient.

Let us now look at the concept of subgraph. The basic notion is defined in 
GRAPH_l[9]

d e f in i t io n  l e t  G be Graph; 
mode Subgraph o f G ->  Graph means 

th e  V e r t ic e s  o f  i t  c= th e  V e r t ic e s  o f  G & 
th e  Edges o f i t  c= th e  Edges o f G & 
fo r  v s t  v in  th e  Edges o f i t  h o ld s  

(th e  Source o f i t ) . v  = (th e  Source o f G ).v  &
(th e  T arget o f  i t ) . v  = (th e  T arget o f G ).v  fc
(th e  Source o f G ).v  in  th e  V e r t ic e s  o f i t  &
(th e  T arget o f  G ).v  in  th e  V e r t ic e s  o f i t ;

end;
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When treating the Dijkstra algorithm, in order to talk about a shortest-path subtree, 
it was necessary to define the concept of a weighted subgraph, WSubgraph, whose 
definition could look like this:

d e f in i t io n  l e t  G be WGraph;
mode WSubgraph o f G -> WGraph means 

i t  i s  Subgraph o f G &
th e  Weight o f i t  = th e  Weight o f G I th e  Edges o f  i t

A WSubgraph is clearly a subgraph, which is a narrower type, but here we can 
only assign it the type WGraph in order to access the W eight selector. Using this 
definition M iz a r  automatically knows that a WSubgraph is a WGraph, but it does 
not automatically know that it is also a subgraph of G. This is unsatisfactory as the 
entire machinery built for subgraphs is not directly available. As an example, let us 
look at the following attribute:

d e f in i t io n  l e t  G be Graph, G2 be Subgraph o f G; 
a t t r  G2 i s  spanning means

th e  V e r t ic e s  o f G2 = th e  V e r t ic e s  o f  G;
end;

Now if we have an object w which is of type WSubgraph o f  G, we cannot directly 
say that

w i s  spanning

as WSubgraph o f  G is not automatically perceived as a Subgraph o f  G. In order to 
say it, we must use an additional object in order to cast the type:

fo r  wl b e in g  Subgraph o f G s t  w = wl h o ld s  wl i s  spanning

T h is ty p e  castin g  is necessary as MlZAR does not see tw o typ es o f  an object sim ul
tan eou sly  if  one o f  th e  ty p es is not derived from  th e  other.

A lth ou gh  none o f th e  above obstacles was crucial, th ey  seem ed  sufficiently in
convenient such th a t we have decided to  pursue an  a ltern ative treatm en t o f  graphs 
in  MlZAR; esp ecia lly  th a t there was not m uch th a t we could  have reused th a t was 
already in  MML.

A .3 Im plem enting aggregates via attributes

The underlying idea behind our alternate approach to aggregate objects is to have 
selectors as first class objects and thus resigning completely from using the built- 
in structures. The M iz a r  machinery of attributes plays the central role in our 
approach. Instead of fixing which collection of fields are part of an aggregate, we 
define what it means for an object to have some particular field. For example, a 
graph having some associated weight function would have the attribute  [W eigh ted ] , 
while a graph having labeled vertices would have the attribu te [V L a b e le d ] .

To start, we define a G ra p h S tru ct as a finite function whose domain is a subset 
of natural numbers:

d e f in i t io n
mode G raphStruct -> f i n i t e  F u nction  means :: GLIB_000:def 1

dom i t  c= NAT;
end;
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Although the domain could have been any fixed set, we use natural numbers for 
convenience. For each selector we are interested in, a functor is defined tha t returns 
a unique natural number:

d e f in i t io n
func V e r te x S e le c to r  -> Mat eq u als 1
func E d g eS electo r  -> Nat eq u als 2
func S o u r c e S e le c to r  -> Nat eq u als 3
func T a r g e tS e le c to r  -> Nat eq u als 4
func W eigh tS e lector  -> Nat eq u a ls 5
func E L ab elS e lector  -> Nat eq u a ls 6
func V L ab elS elector  -> Nat eq u a ls 7

end;

For each selector, another functor is introduced to simulate M iz a r ’s built-in version 
of a selector. (Note the very similar naming.):

d e f in i t io n  l e t  G be GraphStruct;
func th e _ V e r tic e s _ o f  G eq u a ls G .V er tex S e lec to r ;
func th e_E dges_of G eq u a ls G .E d geS elector;
func th e_S ou rce_of G eq u a ls G .S o u rceS e lec to r ;
func th e_T arget_o f G eq u a ls G .T a r g e tS e le c to r ;

end;

We can then define attributes which tell us the selector tha t is present, as well as 
type information:

d e f in i t io n  l e t  G be GraphStruct; 
a t t r  G i s  [G rap h -lik e] means

V e r te x S e le c to r  in  dom G & E d g eS electo r  in  dom G &
S o u r c e S e le c to r  in  dom G & T a r g e tS e le c to r  in  dom G & 
th e _ V e r t ic e s _ o f  G i s  non empty s e t  & 
th e_S ou rce_of G i s  F unction  o f the_E dges_of G,

th e _ V e r t ic e s _ o f  G & 
th e_ T a rg et_ o f G i s  F unction  o f the_E dges_of G,

th e _ V e r t ic e s _ o f  G;

a t t r  G i s  [W eighted] means 
W eig h tS e lecto r  in  dom G &
G .W eigh tS elector i s  ManySortedSet o f the_E dges_of G;

a t t r  G i s  [ELabeled] means 
E L a b elS e lecto r  in  dom G & 
ex f  b e in g  F unction  

s t  G .E L ab elS elector = f  & dom f  c= th e_E d ges_of G;

a t t r  G i s  [VLabeled] means 
V L ab elS elector  in  dom G & 
ex f  b e in g  F unction  

s t  G .V L ab elS elector = f  & dom f  c= th e _ V e r t ic e s _ o f  G;
end;

U nlike th e  b u ilt-in  MlZAR structures, w e have to  show  th a t ob jects o f  th e  new  
com pound  typ es ex ist. W ith  our three features besides th e  backbone fields o f  each  
graph, we have 8 different kinds o f graphs we could  p o ssib ly  deal w ith . T h e good
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news is tha t we can do this in one single shot by proving the following existential 
cluster:

r e g i s t r a t io n
c lu s t e r  [G raph-like] [W eighted] [ELabeled] [VLabeled]

G raphStruct; 
e x is t e n c e  p roof . . .  end; 

end;

Now tha t we showed that such compound objects exist, we can assign them indi
vidual modes for each subset of features:

d e f in i t io n
mode _Graph i s  [G raph-like] G raphStruct; 

end;

d e f in i t io n
mode WGraph i s [W eighted] _Graph;
mode EGraph i s [ELabeled] _Graph;
mode VGraph i s [VLabeled] _Graph;
mode WEGraph i s [W eighted] [ELabeled] _Graph;
mode WVGraph i s [W eighted] [VLabeled] _Graph;
mode EVGraph i s [ELabeled] [VLabeled] _Graph;
mode WEVGraph i s [W eighted] [ELabeled] [VLabeled] _Graph;

end;

Thanks to the M iz a r  attribute system, we get automatic inheritance. For example, 
MlZAR automatically knows tha t a WEVGraph is a WGraph, a VGraph and even a 
EVGraph, without us having to prove anything.

A feature found in  the M iz a r  implementation of structures tha t we have to 
emulate by hand is the previously automatic typing of selectors. For example, in 
M u ltiG r a p h S tr u c t , MlZAR understands tha t t h e  S o u rce  is a function from th e  
E dges to th e  V e r t ic e s .  We can do the same by redefinitions for various types of 
arguments.

d e f in i t io n  l e t  G be _Graph;
r e d e f in e  func th e _ V e r tic e s _ o f  G -> non empty s e t ;

r e d e f in e  func th e_S ou rce_of G ->
F u nction  o f the_E dges_of G, th e _ V e r t ic e s _ o f  G;

r e d e f in e  func th e_T arget_o f G ->
F u nction  o f the_E dges_of G, th e _ V e r t ic e s _ o f  G;

end;

A .4 How attributes solve our problems

Using our implementation of aggregates via attributes, we can address the two 
limitations we mentioned in Section A.2, simply because we have more control over 
the fields.

Given a selector, we can now replace the field associated with tha t particular 
selector, while leaving the other fields intact. An example of a function that accom
plishes this task looks like this:
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d e f in i t io n  l e t  G be G raphStruct, n be N at, x be s e t ;  
func G .s e t (n ,x )  -> GraphStruct eq u a ls  

G +* (n . — > x ) ;
end;

where G +* (n . —> x ) is MlZAR lingo for overwriting G at n by x. W ith this in 
hand, we return  to our primitive graph helper function of labeling a vertex. Using 
attributes, the function now looks like;

d e f in i t io n  l e t  G be VGraph, v ,x  be s e t ;  
func G. la b e lV e r te x (v , x) -> VGraph eq u a ls

G. se t(V L a b e lS e le c to r , the_V L abel_of G +* ( v . — > x )) i f  
v in  th e _ V e r tic e s_ o f  G o th erw ise  G;

If we try  to label a WVGraph, the weight information gets preserved. Nonetheless, 
M iz a r  doesn’t recognize this automatically and sees the result as only a VGraph. 
However, now that the associated weight is an attribute, we can solve this using 
functorial clusters:

r e g i s t r a t io n  l e t  G be WVGraph, v ,x  be s e t ;
c lu s t e r  G .la b e lV e r te x (v ,x )  ->  [W eigh ted ]; 

end;

r e g is t r a t io n  l e t  G be EVGraph, v ,x  be s e t ;
c lu s t e r  G .la b e lV e r te x (v ,x )  -> [E L ab eled ]; 

end;

Now we have a more convenient labeling function. Using M iz a r ’s built-in treatm ent 
of structures, we would have needed many different functions, but with our imple
mentation, we only need one, along with a couple of functorial clusters. However, 
we still have to prove several simple to state and prove theorems tha t say which 
selectors have not been affected by the labeling function, like the following

theorem  :: GLIB_003:46
fo r  G b e in g  WVGraph, v ,x  b e in g  s e t  h o ld s

the_W eight_of G = the_W eight_of G .la b e lV e r te x (v ,x ) ;

theorem  :: GLIB_003:47
fo r  G b e in g  EVGraph, v ,x  b e in g  s e t  h o ld s

the_E L abel_of G = the_E L abel_of G .la b e lV e r te x (v ,x ) ;

Since now we have only one update function, the number of such theorems will be 
quite small.

The second troubling issue we mentioned in Section A.2 deals with WSubgraphs. 
A subgraph is now defined as

d e f in i t io n  l e t  G be _Graph;
mode Subgraph of G -> _Graph means :: GLIB_000:def 29

th e _ V e r tic e s_ o f  i t  c= th e _ V e r t ic e s _ o f  G & 
the_E dges_of i t  c= the_E dges_of G & 
fo r  e b e in g  s e t  s t  e in  the_E dges_of i t  h o ld s  

(th e_S ou rce_of i t ) . e  = (th e_S ou rce_of G ).e  &
(th e_T arget_o f i t ) . e  = (th e_ T a rg et_ o f G ).e ;

end;
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Now, that the property of having a weight is an attribute, we can talk about sub
graphs that are weighted, i.e. [W eig h ted ] Subgraph o f  G. This is not quite the 
same as a WSubgraph, because the weights are not necessarily inherited from G. 
W hat we need is another attribute which states this fact:

d e f in i t io n  l e t  G be WGraph, G2 be [W eighted] Subgraph o f G; 
a t t r  G2 i s  w e ig h t - in h e r it in g  means 

the_W eight_of G2 = (the_W eight_of G) I the_E dges_of G2; 
end;

W e now define the m ode WSubgraph:

d e f in i t io n  l e t  G be WGraph;
mode WSubgraph o f G i s  w e ig h t - in h e r it in g

( [W eighted] Subgraph o f G );
end;

O nce again, thanks to  the M iz a r  a ttr ib u te  system , M iz a r  a u tom atica lly  under
stands th at a WSubgraph o f  G is a  Subgraph o f  G, yet also a WGraph because it is 
b oth  [W eigh ted ] and a-G rap h .

W e should  m ention  another feature th a t is b u ilt-in  to  MlZAR structures th a t we 
have not em ulated  so far is strictness. MlZAR syn tax  allow s us to  extract a strict 
part ou t of a structure. For exam ple, for an ob ject G o f ty p e  W VGraphStruct, we 
can ta lk  about t h e  W G raphStruct o f  G w hich  gives us a s t r i c t  W VGraphStruct. 
W ith  our attr ib u te  approach, we can do th e  sam e by specify ing  th e  selector set o f a 
graph, using a  fu n ction  such as this:

d e f in i t io n  l e t  G be G raphStruct, X be s e t ;  
func G .|X  -> GraphStruct eq u a ls  

G I X;

As in the case of labeling a vertex, we use functional clusters to show which features 
are carried over:

d e f in i t io n
func W GraphSelectors -> non empty f i n i t e  Subset o f NAT eq u a ls  

{V e r te x S e le c to r , E d g eS e lec to r , S o u r c e S e le c to r , T a r g e tS e le c to r ,  
W e ig h tS e le c to r } ;

end;

r e g is t r a t io n  l e t  G be WGraph;
c lu s t e r  G .| W GraphSelectors -> [G rap h -lik e] [W eigh ted ]; 

end;

In our dealing with graphs, getting past these two limitations were of paramount 
importance. We feel that our implementation of aggregates via attributes has pre
served all the benefits of the current MlZAR implementation of structures, yet has 
given us the extra flexibility to address many issues tha t we have faced.
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A ppendix B

The Mizar Graph Library

This appendix is designed to give a brief overview of the definitions we created for 
the M iz a r  graph library. Unlike syntax currently found in M iz a r ,  we simulate the 
dot-operator method accessor syntax popular in object oriented languages such as 
Java.

B .l  GraphStructs

The mode G raphS truct is the basic structure we use to represent graphs.

B .1.1  G raphStruct F unctions

•  th e _ V e r tic e s_ o f  G -> s e t

— Accesses the Vertices component of the GraphStruct G

•  the_E dges_of G -> s e t

-  Accesses the Edge component of the GraphStruct G 

« th e_S ou rce_of G -> s e t

— Accesses the Source component of the GraphStruct G

•  th e_T arget_of G -> s e t

-  Accesses the Target component of the GraphStruct G

•  G .s e t (n ,x )  -> GraphStruct

— Sets the component indexed by n to be x

•  G.|X -> GraphStruct

-  Returns the GraphStruct formed by reducing the feature set to X

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B .1 .2  G raphS truct A ttr ib u tes

•  [G ra p h -lik e]

— A GraphStruct G is [G raph-like] if it contains the features Vertices, 
Edges, Source and Target. In addition, th e _ V e r t ic e s _ o f  G must be a non
empty set, and both th e_S ou rce_of G and th e_T arget_o f G are functions 
mapping the_E dges_of G to th e _ V e r tic e s_ o f  G.

•  [W eighted]

— A GraphStruct G is [W eighted] if it contains the Weight feature. In 
addition, the Weight must be a  ManySortedSet o f  th e_E d ges_of G.

•  [ELabeled]

— A GraphStruct G is [ELabeled] if it contains the Edge-Label feature. In 
addition, the Edge-Label must be a function whose domain is subset of 
the_E dges_of G.

•  [W eighted]

— A GraphStruct G is [VLabeled] if it contains the Vertex-Label feature. In 
addition, the Vertex-Label must be a function whose domain is a subset 
of th e _ V e r t ic e s _ o f  G.

B.2 Graphs

A _Graph is a [G rap h -lik e] G raphStruct, and is the basic unit tha t we deal with. 

B .2.1  G raph A ttr ib u tes

•  G i s  f i n i t e

— Means tha t both the set of vertices and edges of G are finite sets

•  G i s  lo o p le s s

— Means th a t there are no edges in G tha t have the same source and target 
vertex

•  G i s  t r i v i a l

— Means tha t G has only one vertex

•  G i s  n on -m u lti

— Means tha t there is at most one undirected edge between any two vertices

•  G i s  non-D m ulti

— Means tha t there is at most one directed edge between any two vertices

•  G i s  sim ple
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— Means tha t G is loopless and non-multi

•  G i s  Dsim ple

— Means that G is loopless and non-Dmulti

•  G i s  connected

— Means tha t there exists a walk between any two vertices of G

•  G i s  a c y c l ic

— Means tha t there does not exists a Cycle-like walk in G

•  G i s  T r e e - l ik e

— Means tha t G is acyclic and connected

B .2 .2  G raph A ccessors

•  th e _ V e r t ic e s _ o f  G -> non empty s e t

— The set of vertices in the graph G

•  the_E dges_of G -> s e t

— The set of edges in the graph G

•  th e_S ou rce_of G -> F unction  o f th e_E dges_of G, th e _ V e r t ic e s _ o f  G

— The function mapping an edge to its source vertex.

•  th e_ T a rg et_ o f G -> F unction  o f th e_E dges_of G, th e _ V e r t ic e s _ o f  G

— The function mapping an edge to its target vertex.

B .2 .3  G raph C reators

•  createG raph(V , E , S , T) -> _Graph

— Creates the graph using V as the vertices, E as the edges, S as the source 
function, and T as the target function.

B .2 .4  G raph F unctions

•  G. edgesBetw een(X ) -> S ubset o f  the_E dges_of G

— Returns the set of all edges whose source and target vertex are both in 
the set X

•  G. edgesInO ut(X ) -> Subset o f the_E dges_of G

— Returns the set of all edges whose source or target vertex is in the set X

•  G .ed gesIn to(X ) -> Subset o f  the_E dges_of G
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— Returns the set of all edges whose target vertex is in the set X

•  G.edgesOutOf(X) -> Subset o f th e_E dges_of G

— Returns the set of all edges whose source vertex is in the set X

•  G .o rd er() -> C ardinal

— Returns the number of vertices in G

•  G .s iz e O  -> C ardinal

— Returns the number of edges in G

•  G .a llW alk sO  -> Subset of ( (th e _ V e r tic e s_ o f  G )\/(th e _ E d g e s_ o f G))*

— Returns the set of all walks in G

•  G .a l lT r a i ls O  -> Subset o f G .a llW alksQ

— Returns the set of all trails in G

•  G .a llP a th sO  -> Subset o f G .a l lT r a i ls O

— Returns the set of all paths in G

•  G .allD W alksO  -> Subset o f G .a llW alksQ

— Returns the set of all directed walks in G

•  G .a llD T r a ilsQ  -> Subset o f G .a l lT r a i ls O

— Returns the set of all directed trails in G

•  G .a llD P a th sO  -> Subset o f G .a llD T r a ilsO

— Returns the set of all directed paths in G

•  G .reachableFrom (v) -> non empty Subset o f  th e _ V e r t ic e s _ o f  G

— Returns the set of all vertices tha t are reachable via a walk from v

•  G .reachableDFrom (v) -> non empty Subset o f  th e _ V e r t ic e s _ o f  G

— Returns the set of all vertices tha t are reachable via a directed walk from 
v

•  G .reachableDFrom (v) -> non empty Subset o f th e _ V e r t ic e s _ o f  G

— Returns the set of all vertices tha t are reachable via a directed walk from
v

•  G. com ponentSet() ->  non empty Subset o f b o o l th e _ V e r t ic e s _ o f  G

— Returns the set of all subsets which form a component in G

•  G. numcomponent()  ->  C ardinal

— Returns the number of components in G
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B.2.5 Graph Predicates

•  e J o in s  x ,y ,G

— True if e is an edge tha t joins the vertices x  and y  in the graph G.

•  e D Joins x ,y  ,G

— True if e is an edge that has x  as its source vertex and y as its target 
vertex in the graph G

•  e S Jo in s X,Y,G

— True if e is an edge whose joins an element of the set X  to an element of 
the set Y  in the graph G

•  e DSJoins X,Y,G

— True if e is an edge whose source vertex is a element of the set X  and 
whose target vertex is an element of the set Y  with respect to the graph 
G

•  G1 == G2

— True if the G1 and G2 share the same Vertices, Edges, Source and Target

•  G1 c= G2

— True if the G1 is a subgraph of G2

•  G1 c< G2

— True if the G 1 is a strict subgraph of G2

•  G is_D T ree_rooted _at v

— True if the G is a directed tree rooted at the vertex v

B.3 Subgraph of G 

B .3 .1  Subgraph a ttrib u tes

•  SG i s  spanning

— Means tha t SG  has the same vertices as G

•  SG i s  C om ponent-like

— Means tha t SG  is maximal connected subgraph
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B.4 Induced Subgraphs

•  inducedSubgraph of G, V,E -> Subgraph o f G

— A subgraph of G whose vertices are V  and edges are E

•  inducedSubgraph of G,V -> Subgraph o f G

— A subgraph of G whose vertices are V  and whose edges are all those that 
are between members of V

•  inducedSubgraph of G,V -> Subgraph o f G

— A subgraph of G whose vertices are V  and whose edges are all those that 
are between members of V

•  rem oveV ertex o f G,v -> inducedSubgraph o f G, th e _ V e r tic e s _ o f  G \  {v}

— A graph formed by removing the vertex v from G

•  rem oveV ertices of G,V -> inducedSubgraph o f G, th e _ V e r t ic e s _ o f  G \  V

— A graph formed by removing the vertices in V  from G

•  removeEdge o f G,e -> inducedSubgraph o f G, th e _ V e r t ic e s _ o f  G,

the_E dges_of G \  fe>

— A graph formed by removing the edge e from G

•  removeEdge o f G,E -> inducedSubgraph o f G, th e _ V e r tic e s _ o f  G,

th e_E dges_of G \  E

— A graph formed by removing the edges in E  from G

B.5 Vertex of G 

B .5 .1  V ertex  Functions

•  v .a d j ( e )  -> V ertex o f G

— The vertex adjacent to e other than  v

•  v . ed gesIn O  -> Subset o f th e  Edges o f G

— The set of edges whose target vertex is v

•  v . edgesO ut() -> Subset o f th e  Edges o f G

— The set of edges whose source vertex is v

•  v .ed gesIn O u tQ  -> Subset o f  th e  Edges o f G

— The set of edges whose source or target vertex is v
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•  v .in D e g r e e ()  -> C ardinal

-  The number of edges going into v

•  v . ou tD egree() -> C ardinal

-  The number of edges going out of v

•  v .d e g r e e O  -> C ardinal

-  The sum of the number of edges going into v with the number of edges 
coming out of v.

•  v . in N eig h b o rs() -> Subset o f th e _ V e r t ic e s _ o f  G

-  The set of all vertices that have edges coming out of them and going into
v

•  v . ou tN eigh b ors() -> Subset o f th e _ V e r t ic e s _ o f  G

-  The set of all vertices that have edges going into them tha t come from v

•  v .a llN e ig h b o r sO  -> Subset o f th e _ V e r t ic e s _ o f  G

-  The set of all vertices that are reachable from v via a single edge.

B .5 .2  V ertex  a ttrib u tes

•  v i s  i s o la t e d

-  Means that no edges are incident with v

•  v i s  en d vertex

-  Means that exactly one non-loop edge is incident to v

•  v i s  c u t -v e r te x

-  Means that removing v from G increases the number of components

B.6 M anySortedSet of NAT

A ManySortedSet of NAT is a function whose domain is the set of natural numbers. 
We can think of this as an infinite sequence, indexed by the natural numbers.

B .6 .1  M an yS orted S et o f  N A T  a ttr ib u tes

•  F i s  G rap h -y ie ld in g

-  Means that every element of F  is a _Graph

•  F i s  h a lt in g

-  Means that there exists some n  such tha t the the n th element of F  is 
identical to the n  +  1th element of F.
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B .6 .2  M anySortedSet o f N A T  functions

•  F . L ife sp a n Q  -> Nat

— The minimum value n such tha t nth element of F  is identical to the n + I th 
element of F, assuming F  is halting. Otherwise 0.

•  F .R e s u lt () -> Nat

— The F .L ifesp an ()tft element of F.

B.T GraphSeq

A GraphSeq is a Graph-yielding ManySortedSet of NAT. We use this to model 
the computation sequence defined by an algorithm.

B .7 .1  G raphSeq attrib u tes

Every a ttribu te defined for graphs is repeated as an attribute for GraphSeqs, with 
the meaning that every graph in the sequence has that particular attribute.

•  GSq i s  f i n i t e

— Means every element of GSq is finite

•  GSq i s  lo o p le s s

— Means every element of GSq is loopless

•  GSq i s  t r i v i a l

— Means every element of GSq is trivial

•  GSq i s  n o n - t r iv ia l

— Means every element of GSq is non-trivial

•  GSq i s  non -m u lti

— Means every element of GSq is non-multi

•  GSq i s  sim ple

— Means every element of GSq is simple

•  GSq i s  connected

— Means every element of the GSq is connected

•  GSq i s  [W eighted]

— Means every element of GSq is weighted

•  GSq i s  [ELabeled]

— Means every element of GSq is edge-labeled
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•  GSq i s  [VLabeled]

— Means every element of GSq is vertex-labeled

•  GSq i s  r e a l-w e ig h te d

— Means every element of the WGraphSeq GSq is real-weighted

•  GSq i s  n o n n eg a tiv e-w eig h ted

— Means every element of the WGraphSeq GSq is nonnegative-weighted

•  GSq i s  n a tu ra l-w e ig h ted

— Means every element of the WGraphSeq GSq is natural-weighted

•  GSq i s  c o m p le te -e la b e led

— Means every element of the EGraphSeq GSq is complete-elabeled

•  GSq i s  r e a l - e la b e le d

— Means every element of the EGraphSeq GSq is real-elabeled

•  GSq i s  r e a l-v la b e le d

— Means every element of the VGraphSeq GSq is real-vlabeled

•  GSq i s  real-WEV

— Means every element of the WEVGraphSeq GSq is real-WEV

B .7 .2  G raphSeq functions

•  GSq.->x -> _Graph

— This function returns the x th element of the GraphSeq GSq. It is identical 
to the standard dot operator, but we needed a new one tha t returned a 
_Graph so tha t we can use it to cluster graph attributes. This would not 
be possible with the standard dot operator because M iz a r  would see the 
returned object as a set instead of a _Graph.

— For example, given a f i n i t e  GraphSeq GSq, we can register the cluster 
GSq.->x -> f i n i t e ,  thus letting MlZAR automatically know tha t GSq. ->x  
is a finite graph.

B.8 Walk of G 

B .8 .1  W alk functions

•  G.walkOf(v) -> Walk o f G

— Returns the trivial walk consisting of the single vertex v

•  G .w a lk O f(x ,e ,y ) -> Walk o f G
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— Returns the walk consisting of x  followed by e followed by y

•  W .f ir s tO  -> V ertex o f G

— Returns the first vertex of W

•  W .la stQ  -> V ertex o f G

— Returns the last vertex of W

•  W .vertexA t(n ) -> V ertex o f G

— Returns the vertex at the n th position of W

•  W .reverse() -> Walk of G

— Returns W  in reverse

•  W1. append(W2) -> Walk o f G

— Returns the walk formed by appending the walk W 2  to W 1

•  W .cut(m ,n) -> Walk o f G

— Returns the walk formed by only considering from the m th position to 
the n th position of W .

•  W.remove(m,n) -> Walk o f G

— Returns the walk formed by removing the section between the m th posi
tion to the n th position of W .

•  W.addEdge(e) -> Walk o f G

— Returns the walk formed by adding the edge e to the end of W

•  W .vertexSeqQ  -> V ertexSeq o f G

— Returns the sequence of vertices in W

•  W .edgeSeqO -> EdgeSeq o f G

— Returns the sequence of edges in W

•  W .v e r t ic e s () -> f i n i t e  Subset o f  th e _ V e r tic e s _ o f  G

— Returns the set of vertices tha t are in W

•  W .edges() -> f i n i t e  Subset o f the_E dges_of G

— Returns the set of edges tha t are in W

•  W. le n g th () -> Nat

— Returns the number of edges tha t are in W

•  W .fin d (v) -> odd Nat
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-  Returns the index of the first time the vertex v occurs in W

•  W .find(n) -> odd Nat

-  Returns the index of the first time the vertex at n th position occurs in W

•  W .rfin d (v) -> odd Nat

-  Returns the index of the last time the vertex v occurs in W

•  W .rfind(n) -> odd Nat

-  Returns the index of the last time the vertex at n th position occurs in W

B .8 .2  W alk pred icates

•  W is_W alk_from u ,v

-  True if the first element of W  is u and the last element of W  is v

B .8 .3  W alk a ttr ib u tes

•  W i s  c lo se d

-  Means that the first vertex and last vertex of W  are the same

•  W i s  open

-  Means that W  is not closed

•  W i s  t r i v i a l

-  Means that the W  contains no edges

•  W i s  T r a i l - l ik e

-  Means that no edges are repeated in W

•  W i s  P a th - l ik e

-  Means tha t no edges are repeated in W  and the only vertices tha t may 
be repeated in W  are the first and last vertex

•  W i s  v e r t e x - d i s t in c t

-  Means tha t no vertices are repeated in W

•  W i s  C ir c u i t - l ik e

-  Means that W  is closed, Trail-like, and non trivial

•  W i s  P a th - l ik e

-  Means that W  is closed, Path-like, and non trivial
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B.8.4 M odes of Walks

•  Subwalk o f W

— A Subwalk of W  is a walk that shares the same first and last vertex as 
W , whose edges are a subsequence of the edges of W .

B.9 Graphs with Features

A WGraph is a [W eighted] _Graph, while a EGraph is a [ELabeled] .Graph and a 
VGraph is a [W eighted] .Graph.

B .9.1  A ccessors for G raphs w ith  Features

•  th e .W e ig h t .o f  G -> ManySortedSet o f  th e .E d g e s .o f  G

— The weight function of the W Graph G

•  th e .E L a b e l.o f  G -> F unction

— The edge-labeling function of the EGraph G

•  th e .V L a b e l.o f  G -> F unction

— The vertex-labeling function of the VGraph G

B .9 .2 F unctions for G raphs w ith  Features

•  G .lab eled E O  -> Subset o f  th e .E d g e s .o f  G

— The set of edges that are labeled in the EGraph G

•  G .la b e lE d g e (e ,x )  -> EGraph

— The graph formed by labeling the edge e with the value x

•  G. lab eled V O  -> Subset o f t h e .V e r t ic e s .o f  G

— The set of vertices tha t are labeled in the VGraph G

•  G .la b e lV e r te x (v ,x )  -> VGraph

— The graph formed by labeling the vertex v with the value x

•  G.m in .D P a th .c o s t(x , y) ->  R eal

— The minimum cost of a path tha t goes from x  to y  in the finite real- 
weighted WGraph G

— The sum of all the weights on all the edges in the finite real-weighted 
WGraph G

•  G. allW Subgraphs() -> non empty s e t

— The set of all strict weighted subgraphs of the WGraph G
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B .9 .3 A ttributes for Featured Graphs

•  G i s  r e a l-w e ig h te d

— Means tha t the weights in the WGraph G have real values

•  G i s  n o n eg a tiv e -w e ig h ted

— Means tha t the weights in the WGraph G have non-negative values

•  G i s  n a tu ra l-w e ig h ted

— Means tha t the weights in the WGraph G have natural values

•  G i s  r e a l - e la b e le d

-  Means tha t the edge-labels in the EGraph G have real values

•  G i s  c o m p le te -e la b e led

— Means tha t the every edge in the EGraph G has a label

•  G i s  r e a l - v la b e le d

-  Means tha t the vertex-labels in the VGraph G have real values

•  G i s  real-WEV

— Means tha t the weights, edge-labels and vertex-labels in the WEVGraph G 
are all real values

B .9 .4 A ttr ib u tes  for Featured Subgraphs

•  G2 i s  w e ig h t - in h e r it in g

-  Means tha t the weights in the [Weighted] Subgraph G2 are copied from 
G

•  G2 i s  e la b e l - in h e r i t in g

-  Means tha t the edge-labels in the [ELabeled] Subgraph G 2 are copied 
from G

•  G2 i s  v la b e l - in h e r i t in g

— Means tha t the vertex-labels in the [VLabeled] Subgraph G2 are copied 
from G

B .9 .5 F unctions for W alks in Featured G raphs

•  W .weightSeqO  -> FinSequence

-  Returns the sequence of weights on the edges of TF in a weighted graph.

•  W .co st() -> R eal

-  Returns the sum of the weights on all the edges of IF  in a real-weighted 
WGraph
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B .9 .6 P red ica tes  for Featured G raphs

•  W is_m incost_D Path_from  x ,y

— True if TF is a path from x to y with minimum cost in the re a l-w e ig h te d  
WGraph G.

•  W .c o s t() -> Real

— Returns the sum of the weights on all the edges of W  in a real-weighted 
WGraph
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