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Abstract

Accurate steady-state analysis of power converters are essential for converter de-

sign and optimization. Steady-state responses are also useful for component selection,

loss calculation, identification of soft switching operation, and small signal modeling

of power converters. Normally, a brute-force simulation is carried out to achieve the

steady-state response; however, due to the zero initial conditions assumption, the

simulation time in such methods is not efficient and fast. An accurate steady-state

response, however, can be obtained if the initial conditions at the beginning of a

switching cycle of the converter are accurately known. In this thesis, a non-iterative

improved Laplace based theorem and enhanced state vector algorithm are proposed

to calculate the steady-state initial conditions of the power converters.

The proposed methods use the system’s switching time and state space represen-

tation to calculate the system’s initial vector. However, assuming the switching times

as known inputs is not valid for all types of converters, such as the case of convert-

ers with uncontrolled switches or converters operating in discontinuous conduction

mode. The proposed method is further modified to address this challenge by using

the bisection approach to find the switching time of the converters that feature a

monotonic function of the switching time. Then, a Switching Time Estimator (STE)

is proposed to remove the monotonic function limitation on the type of converters

since it uses a general-purpose simulator to find the uncontrolled events’ switching

time.

The thesis also discusses the extension of the proposed approaches to AC-DC and

DC-AC converters, which are more challenging as multiple frequencies and variable

amplitudes are involved. These challenges are overcome by modifying the period

that the method will be applied and using a piecewise linear approximation of AC
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sources. Furthermore, the thesis discusses the steady-state analysis of the closed loop

power converters. To calculate the initial vector of closed loop systems, the proposed

Switching Time Estimator (STE) is modified to update the state of the controller.

Several examples are provided in each chapter to demonstrate the speed of the

proposed method compared to the existing approaches. In addition, the proposed

method uses the calculated initial vector to achieve the steady-state waveforms of

each converter, which are then compared to the Power Simulation (PSIM) generated

waveforms to show the accuracy of the proposed method.
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Chapter 1

Introduction

Power converters’ response typically consists of a transient and steady-state inter-

val, as shown in Fig. 1.1. During the transient, the state variables of the converter

have different values at the beginning and end of a switching period; however, in the

steady-state interval, the state variables have the same values at the beginning and

end of the switching period, and the waveform repeats itself. Although the transient

behavior of the converter can be used for designing the controller and choosing the

rating of the components, the steady-state characteristics of the converter are more

valuable because of their use in converter analysis and design. These steady-state

characteristics are required for loss calculation, identification of soft switching oper-

ations, and small-signal modeling of the power converters [1]-[6].

In this thesis, the focus is on proposing a new approach to find the steady-state

response of the power converters. Generally, steady-state waveforms can be found

if the initial condition of all the converter states, also known as steady-state initial

conditions, are known at the beginning of a switching cycle [7]. However, finding the

steady-state initial conditions of the power converters is not a straightforward task

1



Chapter 1. Introduction

( )t

t

Figure 1.1: Response of a power converter with a zero initial condition,

showing its state variable going through a transient before reaching steady

state.

because power electronic systems are hybrid systems composed of continuous states

(i.e., capacitor voltages and inductor currents) and switching events, which cause

the system to become nonlinear and make finding the steady-state initial conditions

challenging [8], [9]. In addition, in power converters, continuous states and switching

events not only coexist but also deeply interact with each other and co-determine

the operating mode of the system. For instance, in power converters with diode, the

switching time depends on the systems’ states, and the values of the states themselves

depend on the diode’s switching time, making the steady-state analysis of the system

even more complicated.

Normally, simulation software is used to find the steady-state waveforms of the

power converter. This software should go through transient before reaching the

2



Chapter 1. Introduction

steady-state response, which can be time-consuming since the simulation’s time step

should be chosen much smaller than the switching frequency. Different methods are

proposed to avoid this problem by calculating the steady-state initial conditions of

the system at the start of the switching interval and then using this initial vector to

generate the steady-state waveforms [7]. These methods can be divided into two main

groups: 1) the iterative approaches and 2) non-iterative approaches. The iterative

approaches can be time consuming to find the steady-state initial vector, and some

of these methods, such as the Newton Raohson based approaches, have convergence

problems. On the other hand, the non-iterative methods are fast and accurate; how-

ever, they normally cannot be generalized for all types of converters. For example,

these methods cannot be used for converters with control loops and AC sources. In

addition, these methods have limitations for converters with uncontrolled switching

events [10], [11].

Considering the challenges that exist in calculating the initial vector of the power

converter, an appropriate approach needs to be proposed to calculate the initial con-

ditions of the power converters with uncontrolled switching events, AC sources, and

control loops. In addition, the proposed approach should have good speed and accu-

racy in the calculation of the initial vector.

1.1 Review of Existing Steady-State Calculation

Methods

In this section, different existing analysis methods for calculating the steady-state

initial conditions have been reviewed to clearly illustrate the advantages and limita-

tions of each method.

3



Chapter 1. Introduction

1.1.1 Brute-Force Method

The Brute-Force simulation is the most straightforward technique that starts from

an arbitrarily initial operating point (typically zero initial conditions) and runs a

simulation over small time steps until the system’s response passes the transient

and the results of the simulation indicate that the system is sufficiently close to

the steady-state operation, as shown in Fig. 1.2. This method is usually a very

time-consuming simulation, going through hundreds to thousands of switching cycles,

depending on how far the initial operating point is separated from the eventual steady-

state operating point [12], [13].

t

( )t

Figure 1.2: Generating the steady-state waveform using brute-force method

starting from zero initial conditions.

In the brute-force based methods, the formulation of network equations mainly

falls into two categories: 1) the nodal analysis method adopted by PSIM [14], and 2)

the state-space approach employed by Simulink [15]. Compared with the nodal anal-

ysis method, the state-space approach is more suitable for power electronic system

4
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simulation as the state-space matrices are independent of step size, so a variable-step

solver can be used to obtain faster simulation speed [16]. Based on the state-space

approach, a discrete state event driven method is recently proposed that uses a vari-

able step and variable order method to further increase the speed of the simulation.

However, the method still needs to pass the transient, which can be time consuming

[17], [18].

1.1.2 Newton Raphson

In this method, the vector function F (x0), which represents the change of the state

vector over one switching period, is first defined as follows:

F (x0) = x0 − xm (1.1)

where x0 is the value of the state vector at the start of the period, and xm is the

value of the state vector at the end of the period. The power converter reaches the

steady-state operation when the value of x0 and xm are equal, resulting in F (x0)

being equal to the null vector. So, the problem of finding the steady-state solution of

the power converter is reduced to finding the appropriate initial condition that leads

to :

F (x0) = 0 (1.2)

A wide variety of the Newton Raphson based approaches have been proposed to

solve this equation numerically. The main idea is that if the xj
0 in the jth iteration

does not satisfy (1.2), then a correction vector ∆xj
0 should be determined so that

F (xj
0 + ∆xj

0) will become equal to zero vector [19]. To calculate the ∆xj
0, first, the

5



Chapter 1. Introduction

Taylor series expansion of the system can be written as follows:

F (xj
0 +∆xj

0) = F (xj
0) +

∂F (xj
0)

∂xj
0

T
∆xj

0 +Higher Order Terms

= F (xj
0) + J(xj

0)∆xj
0 +Higher Order Terms

(1.3)

where J(xj
0) is the Jacobian matrix of the function F (xj

0) evaluated at xj
0. If the

higher-order terms in (1.3) are ignored, the ∆xj
0 can be calculated as follows:

F (xj
0 +∆xj

0) ≈ F (xj
0) + J(xj

0)∆xj
0 = 0 (1.4)

giving

∆xj
0 = −

[
J(xj

0)
]−1

F (xj
0) (1.5)

As shown in the equation (1.5), the calculation of the Jacobian matrix is necessary

to find the ∆xj
0. Various Newton-based methods differ in how the Jacobian matrix is

calculated [20]-[27]. A technique based on the adjoint network approach to calculate

the Jacobian matrix is proposed in [20]. However, this approach considered the

switching time constant and independent of the states of the system, which is not

the case in power converters with uncontrolled switching events. To solve this issue,

the switching time sensitivities are considered in the process of finding the Jacobian

matrix in [26] and [27]. In addition, a more general approach to calculate the Jacobian

matrix is Broyden’s update method, which has also been implemented in the PLECS

software [28]. In this method, the simulation will run for one period, and then based

on the results, the jacobian matrix gets updated, as shown in Fig. 1.3.

This method can be used for closed loop converters and converters with AC sources.

In addition, the method can analyze converters with uncontrolled switching events.

However, the Jacobian calculation becomes tedious, and convergence is not guaran-

teed for more-complicated topologies with many energy storage elements or simple

topologies with many parasitic elements [29]-[31].
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t

( )t

Figure 1.3: Generating the steady-state waveform using Newton Raphson

with Broyden’s update method (PLECS software).

1.1.3 Laplace Based Method

Laplace based method determines the initial values for the steady-state solution of a

constant-coefficient nonhomogeneous ordinary differential equation with periodic and

discontinuous input [32]-[34]. It is a non-iterative method based on analysis that can

provide the equations to find the steady state initial conditions, which can then be

used to achieve the steady state waveforms, as shown in Fig. 1.4.

Although the Laplace based method can find the solution accurately, as a gen-

eral simulation tool, it has some challenges. First, finding the ordinary differential

equation of the system, which the method uses in its formulation, may not be a

straightforward step for a complicated topology. Moreover, this method will result

in an explicit equation in interior switch-network converters, where the switching

action reconfigures the interconnection between the converter’s energy storage ele-

ments, such as the Boost converter. Such explicit equations should then be solved

7
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t

( )t

Figure 1.4: Generating the steady-state waveform using the Laplace based

method.

numerically, which can be time-consuming. Furthermore, for converters with uncon-

trolled switching events, the solution is not systematic as more explicit equations

are achieved by the method, which should be solved numerically. It is worth noting

that the Laplace based method is not developed and studied for converters with the

control loop or AC sources.

1.1.4 State Vector Algorithm (SVA)

State Vector Algorithm (SVA) is another non-iterative method to calculate the initial

conditions of the power converters [35]-[44]. This method tries to find the steady-state

initial conditions by equating the initial state vector and state vector at the end of the

period. Although it is an accurate and fast method to calculate the steady-state initial

conditions, it can not be used for converters with a singular characteristic matrix such

as a Zeta converter because the inverse of the characteristic matrix must be calculated

to find the steady-state initial conditions. To solve this problem, Augmented SVA is

proposed in [45], where the input are considered as states of the system to calculate

8



Chapter 1. Introduction

the initial vector without using the inverse of the characteristic matrix. However,

both methods require the duration of each switching interval before calculating the

initial conditions, which is not the case in converters with passive switching events

such as converters operating in DCM. Moreover, these methods can not be used to

calculate the initial vector of the converters with AC sources or control loops.

1.2 Objectives

The main objective of this thesis is to find a general approach to calculate the steady-

state initial conditions of power converter systems. These initial conditions can then

be used to find the steady-state waveforms, which are essential for converter analysis

and design. Several methods are investigated, and new approaches are proposed to

address existing limitations. Briefly, the main objectives of this thesis are:

1. To propose new approaches to find the initial vector of the power converter

system with high accuracy and low computational time. The improved Laplace

based theorem (ILBT) and Enhanced SVA are proposed. The ILBT improves

the speed of the conventional Laplace based theorem by using the state space

representation of the system in its formulation. In addition, ILBT can be

expanded to analyze the converters with time variable characteristic matrices

such as Boost. Furthermore, Enhanced SVA is proposed to solve the problems

of the conventional SVA while increasing speed and accuracy.

2. To analyze the power converters with uncontrolled switching events. The bi-

section and Switching Time Estimator (STE) methods are proposed to find

the switching time of uncontrolled events. The STE method, which uses the

general-purpose simulator to find the switching intervals, is proposed to remove

9



Chapter 1. Introduction

the monotonic function limitation on the bisection approach.

3. To find the initial vector of the AC-DC and DC-AC converters. The Enhanced

SVA is modified to be applied to the largest existing period in the circuit and

uses the piecewise constant approximation of the AC sources in its calculation

process.

4. To calculate the initial conditions of the closed loop power converters. A new

approach is proposed to find the steady-state initial conditions of the controller

as well as the power converter circuit. This approach uses the modified STE

method to update the states of the controller.

5. To verify the accuracy and speed of the proposed methods by comparing re-

sults with the steady-state results of the simulation software and with existing

approaches.

1.3 Thesis Outline

Chapter 2 of this thesis first discusses how to model the power electronic systems.

Then it presents an improved Laplace based theorem (ILBT) along with mathematical

proof of the theorem. This method is proposed to solve the problems of calculating

the initial conditions in the interior switch-network converters and finding the ODE

of the system that the Laplace based theorem (LBT) faced. In addition, an Enhanced

SVA is also proposed to solve the problems of the conventional SVA and improve the

speed of calculating the initial vector by using the Taylor series and adaptive order

selection. Finally, several examples are discussed to show the speed and advantages of

the proposed methods over the existing approaches. Moreover, in each example, after

finding the steady-state initial conditions, the steady-state waveforms are drawn, and

10
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a comparison with the PSIM generated steady-state waveforms are provided to show

the accuracy of the proposed approaches.

In chapter 3, two methods are proposed to find the initial vector of the convert-

ers with uncontrolled switching events. The first method can analyze the converter

with the monotonic function of the switching time, and it uses the bisection approach

and Enhanced SVA to find the uncontrolled events’ switching time and initial condi-

tions. The second method is the STE, which does not have the monotonic function

constraint and can be applied to a wide range of converters. This method uses the

general-purpose simulator to find the uncontrolled events’ switching time, and it uses

Enhanced SVA to calculate the steady-state initial conditions. Ultimately in several

examples, the speed and accuracy of the proposed methods are validated by compar-

ing their results with the steady-state analysis tool of the PLECS. In addition, the

steady-state generated waveforms are also gets compared with the PSIM results.

Calculating the steady-state initial conditions of the closed loop circuit, AC-DC,

and DC-AC power converters are discussed in chapter 4. First, Enhanced SVA is

expanded to AC-DC and DC-AC converters by modifying the period that the method

will be applied to and using the piecewise linear approximation of the AC sources.

Then, the STE is modified to update the controller’s state to analyze the closed

loop power converters. Finally, some examples are provided to show the speed and

accuracy of the proposed methods compared to the results of the PLECS and PSIM

software.

Finally, the thesis is concluded in Chapter 5, and suggestions for the future work

of this research are presented.
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Chapter 2

Alternative Steady-State Analysis

Methods

Many of design specifications in a power electronic system are given in terms of

the system’s steady-state characteristics, so it is extremely valuable to determine

the steady-state waveforms of the power converters. In general, the steady-state

waveforms can be found if the initial condition of all the converter states, also known

as steady-state initial conditions, are known at the beginning of a switching cycle.

As discussed in section 1.1, various methods have been proposed to find the

steady-state initial conditions of the converter; however, these methods have sev-

eral limitations. In this chapter, two new approaches are proposed to address these

limitations and increase the accuracy and speed in finding the steady-state initial con-

ditions of the power converters. The first one is an Improved Laplace Based Theorem

(ILBT) that solves the problems of LBT, including calculating the initial conditions

in interior switch-network converters and finding the ordinary differential equation

(ODE) of the circuit. Although ILBT can be used for many converters and does not
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have the situations of the LBT, it cannot be used to analyze the converters whose

characteristic matrix has zero eigenvalues, such as the converters operating in DCM

mode. In addition, this method suffers from the high number of integrals, which

should be calculated separately. Accordingly, an Enhanced State Vector algorithm

(SVA) is proposed that overcomes these problems. This method is based on the Con-

ventional SVA and uses the Taylor series and adaptive order selection to increase the

speed of the approach and solve the problem of analyzing converters with a singular

characteristic matrix that exists in Conventional SVA. The performance of the pro-

posed methods is further investigated by providing several examples and comparing

the results with other existing methods. In addition, the accuracy of the generated

steady-state waveforms using the Enhanced SVA is shown by comparing the results

with the PSIM steady-state results.

2.1 Mathematical Modelling of Power Electronic

Systems

To find the steady-state initial conditions of the power converter system, first, it is

crucial to accurately model the system. Power electronic systems are hybrid dynamic

systems that contain continuous states and discrete events. Continuous states are

modeled using the state space representation, while discrete events are defined as the

trigger of change in the system configuration.

2.1.1 Modelling of Continuous States

The system is often modeled by m different linear topologies to make the study of

continuous states tractable. In the case of a power electronic circuit consisting of nsw

switches, there is 2nsw different possible combination of these switches, which results

in different linear topologies; however, normally only a limited number m of these

13



Chapter 2. Alternative Steady-State Analysis Methods

linear configurations are physically feasible. These piece-wise linear systems can be

modeled using the state space equations:

ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t) +Diu(t)
1 ≤ i ≤ m (2.1)

where x is n × 1 state vector which contains the independent state variables of the

system, voltage of the capacitors, and current of the inductors, y is p × 1 output

matrix containing the output of the circuit, and u is l × 1 the input vector. A, B,

C, and D are the system matrices that are determined base on the configuration of

the circuit and the component values. The subscript i indicates that the matrix is

associated with ith topologies.

1t0t 2t 3
t

2m
t 1m

t
m
t

t

0x
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2m
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x

m
x

T

( )t

Figure 2.1: Illustration of a first order switching power converter system with

m switching intervals in one switching cycle.

The following convention for symbols is adopted to keep track of the state vari-

ables’ values during one switching cycle. The symbol xi−1 represents the value of the

state vector at the start of the ith interval, while the symbol xi represents the value
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of the state vector at the end of the ith interval. Similarly, the symbols yi−1 and

yi stand for the value of the output vector at the start and end of the ith interval,

respectively. The symbol ti represents the time duration that the system stays in the

ith interval. Without any loss of generality, it is assumed that the system enters the

1st interval at the start of a switching cycle, followed by the 2nd, the 3rd, · · · , and it

is in the mth interval right before the end of a switching cycle. The waveform of one

transient cycle of a first-order switching system with m different interval is illustrated

in Fig. 2.1.

2.1.2 Definition of Switching Events

As mentioned, the discrete events cause the system to exit the ith interval, and the

new topology will be formed. These switching actions can be divided into two main

groups:

1. Controlled switching events: The gating signal determines the switching

time of these events, typically including the switching of controllable power

semiconductor switches.

2. Uncontrolled switching events: The switching time of these events is a

function of a certain output variable, say the qth component of the output

vector yi drops to zero as a signal to change the system topology. For example,

when the current through the diode of a voltage step-up (boost) converter drops

from a positive value to zero, the converter goes into a new topology in which

neither the transistor nor the diode is conducting.

Finding the exact time of these switching events is essential in calculating the steady-

state initial condition of the system. So the approach must be able to find the
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switching time of the uncontrolled events as well. Two methods will be proposed in

the next chapter to address this issue. In this chapter, the assumption is that all the

switching intervals are known, and the focus is on finding a fast and accurate approach

to calculate the steady-state initial conditions of the power converter systems.

2.2 Laplace Based Theorem (LBT)

Laplace Based Theorem (LBT) was proposed in [34] to predict an accurate steady-

state solution of power converters. This approach finds the appropriate steady-state

initial condition of the power converter circuit modeled by ordinary differential equa-

tions (ODE) with discontinuous and periodic input. The following equation can be

written for a power converter modeled by an ODE with periodic input:

p(D)x(t) = f(t) (2.2)

where, f(t) is a periodic input with period T that can have any finite number of dis-

continuities, and x(t) is the ODE response. In addition, D = d
dt

is the differentiation

operator, and p(·) is the characteristic polynomial:

p(D) =
n∑

k=0

akD
k (2.3)

The characteristic polynomial has n roots, denoted by sj. To apply the LBT to these

equations, the following steps must be taken.

1. Obtain the ODE of the converter passive components.

2. Find the Laplace transform of the ODE, which results in:

p(s)x(s)− g(s) = f(s) (2.4)

16



Chapter 2. Alternative Steady-State Analysis Methods

here p(s) is the characteristic polynomial in the Laplace domain for which the

differentiation operator has been changed to Laplace variable s, and f(s) is the

Laplace transform of the input function:

f(s) =

T∫
0

f(t)e−stdt

1− e−sT
(2.5)

And g(s) is a function of initial conditions of x(t):

g(s) = x0ans
n−1 + (x0an−1 + x1an)s

n−2 + · · · =
n−1∑
k=0

bks
k

x(0) = x0, x(1)(0) = x1, · · · x(n−1)(0) = xn−1

(2.6)

3. After finding f(s) and g(s), assuming x0, . . . , xn−1 are n unknown initial con-

ditions, form the following n set of equations g (sj) = −f (sj) for all roots of

p(s), and then solve them to find x0, . . . , xn−1.

4. Now that the initial conditions at the start of each period at steady-state are

known, solve the ODE to find the x(t).

Figure 2.2: RL circuit with square wave input.

To illustrate the procedure of applying the LBT method to power circuits, a

simple RL circuit is discussed here. Fig. 2.2 shows the configuration of the circuit

with square wave input, which is a periodic and discontinuous function. Although the

steady-state waveform of this circuit can not be easily found using the conventional

method, the LBT is used to find the response in the following steps.
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Step 1: The system ODE is obtained as:

di(t)

dt
+Ri(t) = vin(t) (2.7)

Step 2: Finding the Laplace transform of the ODE results in:

(Ls+R)I(s)− LI0 = Vin(s) (2.8)

Vin(s) =
A(1− e−0.5Ts)

s(1 + e−0.5Ts)
(2.9)

where A and T are the input’s amplitude and period, respectively.

Step 3: The only root of characteristic equation is sj = −R
L

then I0 is found by

solving the Vin(sj = −R/L) = LI0 as:

I0 =

(
A

R

)
1− e

TR
2L

1 + e
TR
2L

(2.10)

Step 4: Now using this initial condition, the ODE can be solved to find the steady-

state waveform of the i(t). Fig. 2.3 shows steady-state voltage across R obtained by

(2.11). 
i(t) = A

R

(
1− 2e

TR
2L

1+e
TR
2L

e−
R
L
t

)
0 ≤ t < T

2

i(t) = −A
R

(
1− 2e

TR
2L

1+e
TR
2L

e−
R
L
t

)
T
2
≤ t < T

(2.11)

Although the LBT is a powerful tool to find the steady-state of the power con-

verters, it can be improved to achieve the followings. First, applying this method to

the system’s state-space representation can increase the speed of the method, which

is not fully studied. In addition, although LBT can be used to find the steady-state

initial conditions of the circuit that the switching actions do not change the connec-

tion of the storage element (Edge switch-network converters), if the switching actions
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Figure 2.3: Obtained vR(t) using LBT.

change the connection of the storage element (Interior switch-network converters)

such as Boost, Cuck, and DAB, the LBT method results in an explicit equation that

should be solved using the numerical method.

2.3 Improved Laplace Based Theorem (ILBT)

Improved Laplace Based Theorem (ILBT) is proposed in this section to find the

steady-state initial conditions of the power converter systems. This approach uses

the state space representation of the power converters in its formulation, and it will be

applied to the Edge switch-network converter in the next section. Then, by combining

the time domain response of the state space model of the power converters with the

formulation of the ILBT, the steady-state initial conditions of the Interior switch-

network converters will be calculated.

Improved Laplace Based Theorem. As discussed in section 2.1, the power con-

verter with constant characteristic matrix, can be modeled as:

ẋ(t) = Ax(t) +Bu(t) (2.12)

A and B are constant matrices, and u(t) is the periodic input function. Using the
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ILBT, steady-state initial condition of the (2.12) can be found using the following

equation:

x (0) = −

(
n∑

j=1

G(sj)

)−1( n∑
j=1

H (sj)U(sj)

)
(2.13)

where U(sj) is the Laplace transform of the input function and sj is the Eigenvalue

of the matrix A, which can be found by solving the equation Det (sI − A) = 0. In

addition, G (s) and H (s) are a function of A and B:

G (s) = adj (sI − A) (2.14)

H (s) = adj (sI − A)B (2.15)

here I is a n dimensional identity matrix.

Proof. To prove the theorem, it is assumed that x(t) is the steady-state periodic

solution, then the necessary initial conditions for this are obtained. x1p(t) is defined

to be the truncated version of x(t) which is equal to x(t) for 0 < t < T and zero

anywhere else. Since x(t) is the steady-state periodic solution, its Laplace transform

can be written as:

X(s) =
X1p(s)

1− e−sT
(2.16)

Based on this equation, the Laplace transform of the x1p(t) is:

X1p(s) = X(s)×
(
1− e−sT

)
(2.17)

The Laplace transform of the x(t) can also be calculated using the (2.12) as follows:

X (s) = (sI − A)−1x (0) + (sI − A)−1BU (s)

=
1

φ(s)
G (s)x (0) +

1

φ(s)
G (s)BU (s)

(2.18)
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where φ(s) = Det(sI − A) and G (s) = adj(sI − A). If the (2.18) is substituted in

(2.17):

X1p (s) =
1

φ(s)
G (s)x (0)×

(
1− e−sT

)
+

1

φ(s)
G (s)BU (s)×

(
1− e−sT

) (2.19)

By replacing G (s)B with H (s) and U (s)
(
1− e−sT

)
with U1p (s), (2.19) can be

written as follows:

X1p (s) =
1

φ(s)
G (s)x (0)

(
1− e−sT

)
+

1

φ(s)
H (s)U1p (s) (2.20)

X1p (s) =
1

φ(s)
G (s)x (0)− 1

φ(s)
G (s)x (0) e−sT

+
1

φ(s)
H (s)U1p (s)

(2.21)

Taking inverse Laplace from both sides results in:

X1p (t) = L−1

(
1

φ(s)
G (s)x (0)

)
− L−1

(
1

φ(s)
G (s)x (0) e−sT

)
+ L−1

(
1

φ(s)
H (s)U1p (s)

) (2.22)

Consider sj are roots of the characteristic equation φ(s) = 0, using the Heaviside

expansion theorem followings are obtained.

L−1

(
1

φ(s)
G (s)x (0)

)
=

n∑
j=1

esjt
1

φ′ (sj)
G (sj)x (0) (2.23)

L−1

(
1

φ(s)
H (s)

)
=

n∑
j=1

esjt
1

φ′(sj)
H (sj) = q(t) (2.24)
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L−1

(
1

φ(s)
H (s)U1p (s)

)
= q(t) ∗ u1p (t) =

t∫
0

u1p (τ)q (t− τ) dτ

=

t∫
0

u1p (τ)
n∑

j=1

esj(t−τ)

φ′(sj)
H (sj) dτ

(2.25)

If (2.25) and (2.23) are substituted in (2.22):

x1p (t) =
n∑

j=1

esjt
1

φ′ (sj)
G (sj)x (0)−

n∑
j=1

esj(t−T ) 1

φ′ (sj)
G (sj)x (0)

+

t∫
0

u1p (τ)
n∑

j=1

esj(t−τ)

φ′(sj)
H (sj) dτ

(2.26)

For t > T , u1p (τ) = 0 that results in:

t∫
0

u1p (τ)
n∑

j=1

esj(t−τ)

φ′(sj)
H (sj) dτ =

T∫
0

u1p (τ)
n∑

j=1

esj(t−τ)

φ′(sj)
H (sj) dτ

=
n∑

j=1

esjt

φ′(sj)
H (sj)

T∫
0

u1p (τ) e
−sjτdτ

(2.27)

Therefore x1p (t) for t > T is:

x1p (t) =
n∑

j=1

esjt
1

φ′ (sj)
G (sj)x (0)−

n∑
j=1

esj(t−T ) 1

φ′ (sj)
G (sj)x (0)

+
n∑

j=1

esjt

φ′(sj)
H (sj)

T∫
0

u1p (τ) e
−sjτdτ

(2.28)

Combining all terms of the (2.28) results in the following equation for the x1p (t):

x1p (t) =
n∑

j=1

esjt

φ′ (sj)
(G (sj)x (0)

(
1− e−sjT

)
+H (sj)

T∫
0

u1p (τ) e
−sjτdτ)

(2.29)
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As it can be seen for t > T , x1p (t) is the summation of some exponential terms. Since

esjt are linearly independent functions then x1p (t) is zero for t > T if and only if all

the coefficients of the exponential terms are equal to zero:

G (sj)x (0)
(
1− e−sjT

)
+H (sj)

T∫
0

u1p (τ) e
−sjτdτ = 0 (2.30)

G (sj)x (0) = −H (sj)

T∫
0

u1p (τ) e
−sjτdτ

(1− e−sjT )
(2.31)

G (sj)x (0) = −H (sj)U (sj) (2.32)

The (2.33) contains n equation which are linearly dependent, Det (G (sj)) = 0. To

find n independent equation from this set of equations, summation of the equations

for j = 1, . . . , n is a used, which results in:

n∑
j=1

G (sj)x (0) = −
n∑

j=1

H (sj)U (sj) (2.33)

So based on this equation, the steady-state initial conditions of the system can be

calculated as follows:

x (0) = −

(
n∑

j=1

G(sj)

)−1( n∑
j=1

H (sj)U(sj)

)
(2.34)

2.3.1 Improved Laplace Based Theorem (ILBT) for Edge

Switch-Network Converters

In the Edge switch-network converters, the switching action of the converter’s switches

does not reconfigure the interconnection between its energy storage elements, so the
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system characteristic matrix is constant, and the system can be modeled as shown in

(2.12). Therefore the step to find the initial conditions of the Edge switch-network

converters can be summarized as follow (Fig. 2.4):

1. Find the Eigenvalue of the characteristic polynomial matrix (A).

2. Calculate the G(sj) and H(sj) using (2.14) and (2.15).

3. Find the system’s initial condition from equation (2.13).

yes

No

Start

Calculate the steady state 

initial condition of the system 

using the eq. 2.13 

Stop

Find the eigenvalue of 

the characteristic 

polynomial matrix       

Calculate the 

Figure 2.4: Flowchart detailing the ILBT method for edge switch-network

converters.
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2.3.2 Improved Laplace Based Theorem (ILBT) for Interior

Switch-Network Converters

In the previous section proposed ILBT was used for converters modeled by state space

representation and constant characteristic matrix (Edge switch-network converters).

However, in the Interior switch-network converters such as boost and Zeta, the char-

acteristic matrix is time-varying, and the converters can be modeled by piece-wise

linear state space representation as:

ẋ(t) = Aix(t) +Biu(t) 1 ≤ i ≤ m (2.35)

This model consists of m equations that can be combined and written in the following

form:

ẋ(t) = A(t)x(t) +B(t)u(t) (2.36)

A(t) = Am + Ā1d1(t) + Ā2d2(t) + · · ·+ Ām−1dm−1(t) (2.37)

B(t) = Bm + B̄1d1(t) + B̄2d2(t) + · · ·+ B̄m−1dm−1(t) (2.38)

where the di(t) for i = 1, . . . ,m − 1 is a periodic step function that is equal to one

during the ith switching interval and zero anywhere else in each switching period (T )

as shown in Fig. 2.5. Matrices Āi and B̄i are chosen in such a way that by adding

Am and Bm, the value of Ai and Bi are obtained during the ith interval:

Āi = Ai − Am

B̄i = Bi −Bm

(2.39)

If (2.37) is substituted in (2.36):

ẋ(t) = Amx(t) + I(Ā1d1(t)x(t) + Ā2d2(t)x(t) + · · ·

+Ām−1dm−1(t)x(t) +B(t)u(t)) = Amx(t) + Iunew(t)
(2.40)
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Figure 2.5: Signal di(t) during one switching period.

In (2.40), the time-varying parts are considered as input of the system, and the

characteristic matrix is constant, so the ILBT can be applied to this system. Using

(2.13), the steady-state initial conditions of this system can be calculated as:

x (0) = −

(
n∑

j=1

G(sj)

)−1( n∑
j=1

H (sj)Unew(sj)

)

G(s) = adj (sI − Am) H(s) = G(s)I = G(s)

(2.41)

Here H(s) and G(s) are equal because B is an identity matrix, moreover sj are the

eigenvalues of the Am. Now the steady-state initial conditions can be found if the

Laplace transpose of unew(t) can be calculated. Laplace transform of unew(t) can be

written as:

Unew(s) = Ā1L {d1(t)x(t)}+ Ā2L {d2(t)x(t)}+ · · ·

+ Ām−1L {dm−1(t)x(t)}+ L {B(t)u(t)}
(2.42)

The last term in (2.42) can easily be calculated because both B(t) and u(t) are known,

so the main problem in calculating this equation is finding the Laplace of di(t)x(t)

due to the dependency on the states of the system. Since di(t)x(t) is a periodic

function its Laplace transform can be written as:

L {di(t)x(t)} =
1

1− e−Ts

T∫
0

e−stdi(t)x(t)dt (2.43)
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In one switching period, di(t) is one for ti−1 < t < ti and zero anywhere else, so this

equation can be further simplify as:

L {di(t)x(t)} =
1

1− e−Ts

ti∫
ti−1

e−stxi(t)dt (2.44)

In (2.44), xi(t) is equal to x(t) for ti−1 < t < ti, and during this interval the system

can be represented by the following linear equation:

ẋi(t) =
(
Am + Āi

)
xi(t) +

(
Bm + B̄i

)
u(t) (2.45)

The analytical expression for the state vector xi(t) in (2.45) can be determined using

the following equation:

xi(t) = e(t−ti−1)(Am+Ai)x(ti−1) +

t∫
ti−1

e(t−τ)(Am+Ai)
(
Bm + B̄i

)
u(τ)dτ (2.46)

By substituting (2.46) in (2.44), the Laplace transform of di(t)x(t) could be written

as:

L {di(t)x(t)} =
1

1− e−Ts


ti∫

ti−1

e−ste(t−ti−1)(Am+Ai)x(ti−1)dt

+

ti∫
ti−1

t∫
ti−1

e(t−τ)(Am+Ai)
(
Bm + B̄i

)
u(τ)dτdt


(2.47)

The only unknown variable in (2.47) is the initial value x(ti−1) that can be calcu-

lated recursively based on the steady-state initial conditions of the system using the
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following equation:

x(ti−1) = e(ti−1−ti−2)(Am+Ai−1)x(ti−2)

+

ti−1∫
ti−2

e(ti−1−τ)(Am+Ai−1)
(
Bm + B̄i−1

)
u(τ)dτ

(2.48)

After finding the unknown variable in (2.47) using (2.48), the steady-state initial

condition of the system can be found. The steps to find the initial conditions of the

Interior switch-network converters can be summarized as follow (Fig. 2.6):

1. Find the Eigenvalue of the characteristic polynomial matrix (Am).

2. Calculate the
n∑

j=1

G(sj).

3. Using (2.48), find the x(ti−1) based on x(0) for i = 1, . . . ,m− 1 .

4. Calculate the Unew(sj) for j = 1, . . . , n using (2.42) and(2.47)

5. Find the steady-state initial condition of the system using (2.41)

The Improved Laplace Based Theorem (ILBT) can calculate the steady-state ini-

tial conditions of the Interior switch-network converters without using the numerical

methods and uses state space representation in its formulation, which can increase

the speed of the method. Using ILBT, for a power converter with m switching inter-

vals and n independent states, m × (3n + 1) integrals should be calculated.Another

assumption is that ILBT requires the characteristic matrix not to have zero eigen-

value because
n∑

j=1

G(sj) will be non-invertible. Therefore, ILBT cannot be used for

converters that operate in discontinuous conduction mode(DCM) or converters with

complex topologies. A new approach based on the State Vector Algorithm (SVA) is

proposed in the following sections, which does not have these limitations.
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No

Find the steady state initial 

condition of the system using 

(2.41)

Stop

Start

Find the eigenvalue of 

the characteristic 

polynomial matrix       

No

yes

No

Figure 2.6: Flowchart of finding the steady-state initial conditions of the

interior switch-network using ILBT.
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2.4 Conventional State Vector Algorithm (SVA)

Conventional SVA was first proposed in [45], which is a non-iterative method that

tries to calculate the steady-state initial vector of (2.1) by finding the value of the state

vector at the end of the period (xm) based on the initial vector (x0) and equating

them. For this purpose, finding x(t), which is the state trajectory of the system

during ith interval, is the first step in the method. The x(t) in each switching interval

is the solution of the (2.1), which is shown here:

x(t) = eAi(t−ti−1)x(ti−1) +
∫ t

ti−1
eAi(t−τ)Biudτ

1 ≤ i ≤ m

ti ≤ t < ti−1

(2.49)

where ti−1 and x(ti−1) are the time and state vector at the start of the ith interval,

respectively. After finding the state trajectory of the system during ith interval, the

value of the state vector at t = ti can be expressed as:

x(ti) = Φix(ti−1) + Γi (2.50)

Φi = eAidiT (2.51)

Γi =

∫ ti

ti−1

eAi(ti−τ)Biudτ = A−1
i (eAidiT − I)Biu (2.52)

In (2.50), x(ti) is expressed based on x(ti−1), so the value of the state vector at the

end of the period (xm) can be calculated recursively based on the initial vector (x0).

xm = ΦmΦm−1 · · ·Φ1x0 + ΦmΦm−1 · · ·Φ2Γ1 + · · ·+ ΦmΓm−1 + Γm (2.53)

During the steady-state operation, the power converter is periodic with period T that

implies (xm) and (x0) are equal when the system reaches the steady-state. Fig. 2.7
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shows a steady-state operation of a first-order system with three different topologies.

Therefore, equating xm with x0 and solving the recursive equation results in the

following equation:

x0 = (I − ΦmΦm−1 · · ·Φ1)
−1(ΦmΦm−1 · · ·Φ2Γ1 + · · ·+ ΦmΓm−1 + Γm) (2.54)

t
0t 1t 3t2t

0x

1x

2x

3x

T

( )t

Figure 2.7: Steady-state operation of a first-order system with three switch-

ing intervals.

The steps to find the steady-state initial condition of the power converter system

using the conventional SVA can be summarized as follow (Fig. 2.8):

1. Find Φi and Γi using (2.51) and (2.52).

2. Calculate the steady-state initial condition using (2.54).

The SVA does not need any integral calculation in the process of finding the steady-

state initial condition of the power converter. However, it faces the following prob-

lems:

• When the characteristic matrix Ai of the circuit is singular (such as Boost

converter), Γi cannot be computed using (2.52) as the inverse matrix (A−1
i ) is

required.
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• The matrix exponential calculations may become computationally burdensome.

• Equation (2.54) contains 2m terms (m for Φi and m for Γi) that must be

calculated separately, which can be time-consuming.

To solve the aforementioned shortcomings in the calculation of steady-state condition,

a new approach based on the State Vector Algorithm (SVA) is proposed in the next

section, which is faster than conventional SVA and can be applied to a wide range of

converters.

yes

Find the steady state initial 

condition of the system using 

(2.54)

Stop

Start

No

Figure 2.8: Algorithm of finding the initial vector of the power converters

using the conventional SVA.
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2.5 Proposed Enhanced State Vector Algorithm

(SVA)

Here, a new method based on the state vector algorithm is proposed, which uses the

Taylor series of eAt to solve the problem of converters with a non-invertible charac-

teristic matrix such as the Boost converter. In addition, the number of terms that

should be calculated separately is reduced by using the Taylor series. Moreover, this

method uses an adaptive order selection to reduce the calculation time of the matrix

exponential and further increase the speed of calculating the steady-state initial con-

ditions.

2.5.1 Taylor Series of eAt

The exponential of the matrix A, denoted by eAt, is the n×n matrix. The Taylor

series of this function can be written as:

eAt = I +
∞∑
n=1

Antn

n!
(2.55)

If the Taylor series of eAt is substituted in (2.54), Γi and Φi can be written as:

Φi =

[
I +

∞∑
n=1

An
i (ti − ti−1)

n

n!

]
(2.56)

Γi =

[
∞∑
n=1

An−1
i (ti − ti−1)

n

n!

]
BiU (2.57)
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Start

γ

γγ

End

No

yes

Figure 2.9: Flowchart of the adaptive order selection embedded in the cal-

culation of λiapprox .

Equations (2.56) and (2.57) does not have the problem of singular Ai, because instead

of integrating eAi(ti−τ), which results in A−1
i , Taylor series’ terms are integrated that

are integrable polynomial terms. In addition, Φi and Γi have a common term that

can be reused in the calculation process to reduce the number of terms that must
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be calculated separately in equation (2.54) and improve the speed of the algorithm.

Therefore, first λi is determined, and then using this value, Φi and Γi can be calculated

as follows:

λi =
∞∑
n=1

An−1
i (ti − ti−1)

n

n!
(2.58)

Φi = [I + Aiλi] (2.59)

Γi = λiBiU (2.60)

The proposed Enhanced SVA requires an infinite sum in equation (2.58). The

following section discusses how to efficiently calculate this infinite sum while main-

taining accuracy.

2.5.2 Adaptive Order Selection

Generally, in the calculation of λi, the Taylor series will be truncated at the term of

kth order, and λiapprox is defined as:

λi ≈ λiapprox =
k∑

n=1

An−1
i (ti − ti−1)

n

n!
(2.61)

The choice of k is important because if a small number is selected, accuracy will be

lost, and if a large number is selected, the calculation will become time-consuming.

In addition, the choice of k depends on the circuit configuration, and to maintain

accuracy, it must increase as the complexity of the circuit increases. Therefore, to

choose an appropriate k, the rate of change is defined as:

εi =
λi − λiapprox

λiapprox

=

Ak
i (ti−ti−1)

k+1

k+1!
+O(k + 2)

λiapprox

≈
Ak

i (ti−ti−1)
k+1

k+1!

λiapprox

=
γk+1

λiapprox

(2.62)
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In this equation, the difference between λi and λiapprox is equal to the sum of the terms

of order higher than k, which is approximated by (k + 1)th term. Now, k should be

chosen as the smallest possible number that makes the rate of change in equation

(2.62) less than the absolute tolerance (abstol).

Based on (2.62), an adaptive order selection totally embedded in the calculation

of Φi and Γi can be proposed, as shown in Fig. 2.9. First, the initial value of the

λiapprox is set to ti − ti−1. Then the (k + 1)th term of the Taylor series (γk+1) is

determined and used to calculate the rate of change. If the rate of change is greater

than absolute tolerance, γk+1 is used to find a new λiapprox . Otherwise, λiapprox is used

to determine Φi and Γi. This method has the advantage of the reusability of the

increments for both adaptive order selection and calculation of λiapprox . Therefore, no

extra computational costs have to be entailed to choose an appropriate k.

2.6 Simulation Results

In this section, several examples are provided to show the speed and accuracy of

the proposed ILBT and Enhanced SVA methods in finding the steady-state initial

conditions of the power converter systems. The proposed ILBT and Enhanced SVA

methods are implemented in the Script of PSIM, and Fig. 2.10 shows the block

diagram of these methods. The first block has the task of constructing the steady-

state representation of the power converter circuit from the incident matrix and circuit

parameter. The detail of automatic generation of the system matrices Ak, Bk, Ck, Dk

is discussed in Appendix A. After that, the steady-state initial conditions will be

calculated using these matrices and the switching times of the power switches. Finally,

(2.49) is used to draw the steady-state waveforms of the converters, which are then

compared to the generated waveforms of the PSIM software to show the accuracy

of these methods. In addition, the results of ILBT and Enhanced SVA methods are
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compared with LBT and conventional SVA to show the advantages of the proposed

approaches.

Figure 2.10: Block diagram of the proposed ILBT and Enhanced SVA.

2.6.1 Buck Converter

Buck converter in Fig. 2.11 is considered as the first example. In this circuit, the

parameters are chosen as shown in Table 2.1:

RLVin D
Q

L

Cout

Figure 2.11: Schematic diagram of the Buck converter.

The simulation time of different methods to calculate the steady-state initial

vector of this converter is shown in Table 2.2. These results show that by using the

state space representation of the system, ILBT can calculate the steady-state initial

vector faster than LBT. In addition, the Enhanced SVA reduces the simulation time

by around three orders of magnitude compared to the Conventional SVA due to the

fast calculation of the exponential function of the matrix and the reduction of the

terms needed for this method.
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Table 2.1: System parameters of the Buck converter.

Parameter Value

Input voltage Vin 24v

Filter inductance L 40µH

Output capacitance Cout 22µF

Load resistance RL 5Ω

Switching frequency fs 100kHz

Duty cycle D 0.73

Table 2.2: The simulation time required to converge to a steady-state in the

circuit of Fig. 2.11.

Method Simulation time (ms)

LBT 18.043

ILBT 10.043

Conventional SVA 4.747

Enhanced SVA 1.772

The ILBT and Enhanced SVA calculate the following vector as the initial vector of

the converter:  IL(0)

VCout(0)

 =

 2.91158

17.54026

 (2.63)

To show the accuracy of the ILBT and Enhanced SVA results, after finding the

initial vector of the buck converter, these methods use (2.49) to draw the steady-

state waveform of the converter. Fig 2.12 compares the results of the methods with

PSIM, which shows a complete match between the results.
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(a)

(b)

Figure 2.12: Steady-state waveforms of the Buck converter: (a) Inductor’s

current, (b) Output voltage.

2.6.2 Dual Active Bridge Converter

As an example of a converter system with variable characteristic polynomial, Dual

Active Bridge(DAB), as shown in Fig. 2.13, is studied. In this circuit, due to the

switching action of the converter, the connection of the storage elements will change,

which results in a variable characteristic matrix.

sL sR

m
L

1
n

2
: n

1
Q

2
Q

3
Q

4
Q

6
Q

5
Q

7
Q

8
Q

Cout RLVin

Figure 2.13: Schematic diagram of the Dual Active Bridge converter.
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In addition, the magnetizing inductance of the transformer is also added to show the

accuracy of the proposed ILBT and Enhanced SVA methods in finding the steady-

state initial condition. The value of this magnetizing inductance and other circuit

parameters are shown in Table 2.3.

Table 2.3: System parameters of the Dual Active Bridge converter.

Parameter Value

Input voltage Vin 35v

Series inductance Ls 90µH

Series resistance Rs 2Ω

Magnetizing inductance Lm 3mH

Transformer turn ratio n1 : n2 1

Output capacitance Cout 33µF

Load resistance RL 1kΩ

Switching frequency fs 200kHz

Table 2.4: The simulation time required for different steady-state solvers to

find the initial conditions of the Dual Active Bridge.

Method Simulation time (ms)

LBT −

ILBT 104.7988

Conventional SVA 30.5203

Enhanced SVA 6.3643

The computation time required for the different algorithms is shown in Table 2.4.

The LBT simulation time is not reported due to its problem in solving the circuit

with the variable characteristic polynomial as discussed in section 2.2. In addition,
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the results show that the Enhanced SVA outperforms other methods and can find

steady-state initial vector faster than other methods. To show the accuracy of the

proposed methods, the steady-state waveforms generated using (2.49) are compared

to PSIM results in Fig. 2.14.

(a)

(b)

(c)

Figure 2.14: steady-state waveforms of the Dual Active Bridge converter:

(a) Current of series inductor, (b) Magnetizing current, (c) Output voltage.
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2.6.3 Cuk Converter with Parasitic Components

Fig. 2.15 shows a Cuk converter with MOSFET parasitic components. This example

is provided to show the capability of the ILBT and Enhanced SVA methods in ana-

lyzing the circuit with complicated behavior such as the ringing effect.

mr

mc

ml

sr

Q

Vin

1
L

D

1
C

Cout

2
L

RL

Figure 2.15: Cuk converter with parasitic capacitance and inductance of the

MOSFET.

Table 2.5: System parameters of the Cuk converter.

Parameter Value

Input voltage Vin 100v

Input inductance L1 780µH

Output inductance L2 540µH

Parasitic inductance lm 0.2nH

Parasitic resistance rs 10mΩ

MOSFET resistance rm 2.5mΩ

Input capacitance C1 47µF

Output capacitance C2 54µF

Drain to source capacitance cm 180pF

Load resistance RL 83Ω

Duty cycle D 0.73

Switching frequency fs 100kHz
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The parameters of this Cuk converter are listed in Table 2.5, and the steady-state

initial condition of this converter, using the proposed methods, is found as follows:

IL1(0)

IL2(0)

ILm(0)

VC1(0)

VCout(0)

VCm(0)


=



8.3520

- 2.5773

3.198e - 5

370.2112

- 269.981

370.2112


(2.64)

Table 2.6: The simulation time required to find the steady-state initial con-

ditions of the Cuk converter.

Method Simulation time (ms)

LBT −

ILBT 87.1445

Conventional SVA 22.7578

Enhanced SVA 4.7456

Table 2.6 shows the performance of the different methods. In this case, the

Enhanced SVA converged faster than the conventional SVA algorithm and ILBT. In

this circuit, due to the variable characteristic matrix, LBT cannot converge to the

solution. Moreover, the proposed ILBT and Enhanced SVA, after finding the initial

vector, can use (2.49) to draw the inductor current (Ilm), capacitor voltage (Vcm), and

the output voltage (VCout) waveform. To show the accuracy of the proposed methods,

the waveforms are compared with the results produced by PSIM software, as shown

in Fig. 2.16.
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(a)

(b)

(c)

Figure 2.16: Waveforms of the Cuk converter during the steady-state oper-

ation: (a) Output voltage, (b) Voltage of cm, (c) Current of lm.

2.6.4 Zeta Converter

As mentioned in section 2.4, conventional SVA cannot find the initial vector of the

converters with a singular characteristic matrix; however, the proposed Enhanced

SVA solved this problem by using the Taylor series. In addition, this method has
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better computational speed than the conventional SVA. A Zeta converter, as shown in

Fig. 2.17, is provided here to show the capability of the proposed ILBT and Enhanced

SVA in handling the converter with the singular characteristic matrix. The converter

parameters are listed in Table 2.7.

Vin

1
C

Cout

2
L

1
L RL

Q

D

Figure 2.17: Circuit configuration of Zeta converter.

Table 2.7: System parameters of the Zeta converter.

Parameter Value

Input voltage Vin 100v

Input inductance L1 780µH

Output inductance L2 540µH

Input capacitance C1 47µF

Output capacitance Cout 54µF

Load resistance RL 83Ω

Duty cycle D 0.73

Switching frequency fs 100kHz

Using the proposed ILBT and Enhanced SVA, the steady-state initial conditions of

this converter are calculated as follows:
IL1(0)

IL2(0)

VC1(0)

VCout(0)

 =


8.33987

2.58118

−270.61888

270.38945

 (2.65)
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(a)

(b)

(c)

(d)

Figure 2.18: Waveforms of the Zeta converter during steady-state operation:

(a) Current of L1, (b) Current of L2, (b) Voltage of C1, (c) Output voltage.
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Table 2.8 shows the performance of the different methods. In this case, the Enhanced

SVA converged faster compared to the ILBT. In addition, the conventional SVA

solver cannot find this circuit’s steady-state initial vector due to the singularity of

the characteristic matrix. Furthermore, LBT has a problem finding this circuit’s

steady-state initial condition because the characteristic matrix is time-variable. To

show the accuracy of the ILBT and Enhanced SVA, the steady-state waveforms of the

converter are generated based on the calculated initial conditions, and the waveforms

are compared with the PSIM results in Fig. 2.18.

Table 2.8: Simulation time of the different steady-state solver for finding the

initial vector of the Zeta converter.

Method Simulation time (ms)

LBT −

ILBT 60.978

Conventional SVA −

Enhanced SVA 4.492

2.6.5 Boost Converter Operating in DCM

Fig. 2.19 illustrates the overall circuit of the Boost converter operating in discon-

tinuous conduction mode. The circuit parameters of this Boost converter are listed

in Table 2.9. This example shows that none of the other methods can calculate the

system’s steady-state initial conditions except for Enhanced SVA.

RLVin

D

Q

L

Cout

Figure 2.19: Boost converter operating in DCM.
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Table 2.9: System parameters of the Boost converter.

Parameter Value

Input voltage Vin 46v

Inductance L 5µH

Output capacitance Cout 13µF

Load resistance RL 15Ω

Duty cycle D 0.14

Switching frequency fs 100kHz

Table 2.10 shows the simulation time for the Enhanced SVA. However, the simula-

tion time for other methods is not reported because the steady-state initial conditions

of the system cannot be calculated due to the converter’s singular Ai and variable

characteristic matrix. The Enhanced SVA calculates the initial condition of the cir-

cuit as follows:  IL(0)

VCout(0)

 =

 3.1819e−5

56.4357

 (2.66)

Table 2.10: Simulation time required for Boost converter operating in DCM.

Method Simulation time (ms)

LBT −

ILBT −

Conventional SVA −

Enhanced SVA 2.961

Finally, after finding the boost converter’s initial vector, the circuit’s steady-state

waveforms are plotted using (2.49). The comparison of these waveforms with the

48



Chapter 2. Alternative Steady-State Analysis Methods

PSIM generated results is shown in Fig. 2.20.

(a)

(b)

Figure 2.20: steady-state waveforms in the Boost converter: (a) Output

voltage, (b) Inductor current.

2.7 Summary

This chapter proposed two new methods to find the steady-state initial conditions

of the power converter systems. The first method was the improved Laplace based

theorem (ILBT), which solved the problem of finding the differential equation of

the system associated with LBT. In addition, ILBT can be used to analyze the

converter with a variable characteristic matrix like Boost, Cuck, and DAB. Then the

Enhanced state vector algorithm (SVA) was proposed, which used the Taylor series
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and adaptive order selection to solve the problems associated with conventional SVA,

such as the inability to analyze the converters with a singular characteristic matrix.

Finally, several examples were provided to show the speed and capability of the

proposed ILBT and Enhanced SVA. Moreover, to show the accuracy of the methods,

steady-state waveforms of each converter are generated after calculating the initial

conditions, and a comparison of these waveforms with generated waveforms of the

PSIM is provided.
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Chapter 3

Steady-State Analysis of

Converters with Uncontrolled

Switching Events

In the previous chapter, two new methods were proposed to calculate the steady-

state initial conditions of the power converters. The first method was ILBT, which

uses a time-consuming integration process, and it faced the issue in the converters

that their characteristic matrix has zero eigenvalues. To overcome these challenges,

the Enhanced SVA was proposed. Although the proposed Enhanced SVA has good

speed and accuracy, the switching intervals of the converters were considered known

variables, which is not the case in converters with uncontrolled switching events such

as resonant converters.

To apply the Enhanced SVA to converters with uncontrolled switching events,

the occurrence time of these switching events should be found. Then the switch-

ing intervals of the converter can be calculated, which are required to calculate the
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steady-state initial conditions of the converter. This chapter proposes two meth-

ods to find the switching time of uncontrolled events. Firstly, an iterative method

based on bisection is proposed to find the switching time of the converters with the

monotonic function of switching time. Although this method is fast and simple to

implement, using it for converters with more than one unknown switching time can

be complicated, and convergence is not guaranteed. Moreover, it cannot be used for

converters with the non-monotonic function of switching time, such as the resonant

LLC converter. Accordingly, Switching Time Estimator (STE) mechanism using the

general-purpose simulator tool is proposed that overcomes the problems associated

with the bisection method. The feasibility of the proposed methods is shown by pro-

viding several examples and comparing the results with PSIM results. Furthermore,

the results of the PLECS steady-state analysis tool are provided in the simulation

section to show the superiority of the proposed method.

3.1 Determination of Switching Intervals Using Bi-

section Method

As mentioned, in all of the approaches discussed in the previous chapter, the assump-

tion was that the duration of each switching interval is a known variable and can be

used directly in the calculation of the steady-state initial conditions, which is not the

case in the converter with uncontrolled switching events. So, a general approach for

calculating the steady-state initial conditions must be able to find the switching time

of the uncontrolled event.

Unlike controlled switching events that the switching time was determined based

on the gating signal of the switches; the switching time of the uncontrolled events is
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(a)

(b)

Figure 3.1: Detecting of diodes’ switching events. (a) Turn-OFF event,

(b) Turn-ON event.

a function of the states of the system, which means these uncontrolled events happen

when a trigger variable crosses a corresponding threshold (Trth). For example, as

illustrated in Fig. 3.1a, for the turn-off event of a diode, the trigger variable should

be defined as the device current iD(t) and the corresponding threshold condition value

will be Trth = 0 A, since an on-state diode will only be turned off when its device

current drops to 0 A. Likewise, for the turn-on event of a diode, as presented in

Fig. 3.1b, the trigger variable should be defined as the device voltage vD(t) and the

corresponding threshold condition value will be Trth = 0.7 V. The trigger equations

can be written as follow:

Trth = (xt)q ⇒ Trth = (Ct)qx(tsw) + (Dt)qu (3.1)
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where (Dt)q and (Ct)q represent the qth row of Dt and Ct, respectively. The trigger

vector yt is a set of pt output variables obtained for detecting uncontrolled events.

The index q changes for each uncontrolled switching event since the exit from each

topology is typically associated with a different trigger variable.

x(tsw) in the trigger equation is function of value of states at the start of switching

interval (xi−1) and switching time (tsw), as shown in (3.2). In addition, as discussed

in the previous chapter, (xi−1) is a function of the initial condition of the system (x0),

which is a function of switching time (tsw) itself. So (3.1) is a function of tsw, and

the switching time (tsw) can be found from this equation.

x(tsw) = eAi(tsw−ti−1)x(ti−1) +

∫ tsw

ti−1

eAi(tsw−τ)Biudτ (3.2)

Now the problem of finding the switching time is transformed into finding a root of

a function, which can be solved using different techniques. The choice of the algorithm

depends on the characteristic of the circuit. For instance, a bisection method is

suited to find the switching time in the converters with the monotonic function of tsw

because this search algorithm halves the search interval in each iteration resulting in a

significant computational advantage. Furthermore, the greater the required accuracy,

the better the bisection search performs relative to an exhaustive search.

To find the switching time (tsw) using the bisection method, the first step is

to determine the absolute lower and upper bounds based on physical insights into

the converter’s operation, and consider the initial guess of the switching time as an

average of lower and upper bounds. Then in the next step, using the Enhanced SVA

approach, the initial conditions of the converter for the initial guess, upper and lower

bound of the switching time are calculated. Then, x(tsw) is calculated using these

initial conditions, which can be used to calculate the value of the equation (3.1). In

the last step, the initial guess for the switching time will be updated based on the
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previous step’s results. The search terminates when a solution is found such that the

error in the calculation of (3.1) becomes less than a pre-determined error bound (ε).

A flowchart of the steps involved in the proposed approach is shown in Fig. 3.2.

yes

No

Start

Find switching 

time of controlled 

switching events

Determine the upper and lower 

bound for  switching time of 

uncontrolled switching events 

Find an initial guess for 

uncontrolled switching 

time (     ) based on the 

searching algorithm

Stop

Update the 

initial guess 

(     ) based 

on the search 

algorithm

Use the Enhanced SVA 

to find the initial vector

Does the initial 

guess (     ) and 

steady state initial 

vector stisfy the 

equation (3.1)?

Figure 3.2: Flowchart detailing the process of using the bisection method.

Although this method is fast and can easily be implemented, it faces two main

drawbacks. First of all, so far, the number of unknown switching times (tsw) in the

power converter circuit was one, which is not the case in all of the power convert-
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ers. If the number of unknown switching times is more than one, then using the

bisection approach can be complicated, and convergence is not guaranteed. In ad-

dition, the bisection approach can only be applied to the power converters with a

monotonic function of tsw. For instance, in the Boost converter operating in DCM

mode (Fig. 3.3), the current of the diode is a monotonic function of the switching

time (tsw), and the acceptable switching time is when the current of the diode crosses

zero as shown in the Fig. 3.4.

D

Q

Figure 3.3: Boost converter operating in DCM (duty ration is equal

to 0.14 and switching frequency is 100kHz).

Figure 3.4: The current of the Boost converter’s diode as function of switch-

ing time.

56



Chapter 3. Analysis of Converters with Uncontrolled Switching Events

Figure 3.5: The current of the LLC’s diode as function of switching time.

However, in the LLC converter of Fig. 3.12, the diode’s current is a non-monotonic

function of switching time (tsw), which means its first derivative change sign in the

range of lower and upper bounds of switching time. As can be seen from Fig. 3.5,

in this converter, the diode’s current based on the switching time (tsw) has more

than one root, but only one of these roots is the acceptable operating point of the

system, which is specified using a red circle. These converters cause a problem for

the bisection method in the process of finding the switching time, so there is a need

for a more general approach that can be easily implemented in the Enhanced SVA

approach and solve the issues mentioned above.

3.2 Switching Time Estimator Mechanism Using

the General-Purpose Simulator

This section proposes a new method to address the issues that the bisection method

faced in finding the switching time of uncontrolled events in the power converters.
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This new approach uses a general-purpose simulator such as PSIM in combination

with Enhanced SVA to find the system’s steady-state initial condition. First, an ini-

tial guess for the switching times (tsw) is obtained by running the General-purpose

simulator for one switching period starting with the zero initial conditions, and the

switching intervals are calculated using the results of the general-purpose simulator.

Then, Enhanced SVA uses these switching intervals to calculate the steady-state ini-

tial conditions of the circuit associated with the reported initial guess of the switching

times. Again simulation will be run using the new initial conditions, and the same

procedure will be continued until the convergence to the steady-state initial condi-

tions happens. Here, the Enhanced SVA has been implemented in the Script of PSIM

software, and the PSIM engine itself is used as a general-purpose simulator, as shown

in Fig. 3.6.

Enhanced SVA

(Script)

Switching times (     )

General Purpose 

Simulator

(Psim)

Rate of 

Change 

Limiter

Convergence 

Criterion

Stop Flag

Figure 3.6: Block diagram of the Switching Time Estimator

To indicate when the convergence happens and the iteration should stop, a relative

error will be defined as follows:

el =

∣∣xPsimj
[l]− xj[l]

∣∣
Max {|xj[l]| , xmin}

l = 1, . . . , n (3.3)

where xPsimj
is the value of the state variables at the end of the switching period

in the jth iteration generated by the general-purpose simulator. Moreover, xmin is a
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small constant used to suppress large relative errors in the state variables that are

close to zero. Now the convergence criterion is based on the requirement that the

maximum relative error e in the state variables should be smaller than a prescribed

limit η. The maximum relative error e and the convergence criterion are defined as:

e = Max (el) l = 1, . . . , n (3.4)

e < η (3.5)

where η is the specified error limit. Once the convergence criterion is satisfied, the

general-purpose simulator can be used to generate the steady-state waveforms or to

extract other features of the steady-state solution.

As shown in Fig. 3.6, the new initial condition calculated using the Enhanced

SVA approach will pass a rate limiter block. This is mainly due to the start of the

simulation from zero initial conditions, which can cause large variations in the state

variables at the start of the simulation. This large variation can cause a convergence

problem in the method, so the rate limiter, as shown in Fig. 3.7, is added to the

system to solve this issue.

Figure 3.7: Configuration of the rate limiter block.

In the rate limiter block, first, the change in the initial state vector (∆xj) of

the system is calculated by differentiating the results of the Enhanced SVA method
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(xSV Aj
) and the initial vector of the previous iteration (xj−1). Then, if the change in

the initial state vector is less than 10% of the initial vector of the previous iteration

(xj−1), the change is acceptable, and this value will be used to find the new initial

condition of the system (xj). Otherwise, the change in the initial state vector is

limited to the maximum rate of limit (∆xjmax), which is defined by:

∆xjmax = 0.1×Max
{
|xj−1| ,

∣∣xSV Aj
− xj−1

∣∣} (3.6)

This approach does not have the issues that the bisection method was facing

in finding the switching times and can be used for different types of converters. In

addition, using a general-purpose simulator such as PSIM for finding the switching

intervals results in an accurate calculation of the switching times of uncontrolled

events. In the next section, several examples show the accuracy and speed of the

proposed method.

3.3 Simulation Results

Several examples are discussed in this section to show the proposed methods’ capabil-

ity in finding the power converters’ steady-state initial conditions with uncontrolled

switching events. The STE method and bisection approach are applied to each circuit

to calculate the steady-state initial conditions, and then the results are compared.

Moreover, to show the advantages of the proposed methods, results are compared to

the PLECS steady-state analysis tool, which uses the Newton Raphson with Broy-

den’s update method. Finally, after finding the steady-state initial conditions of the

power circuit using the STE method, the general-purpose simulator will run for one

more switching period to generate the steady-state waveforms. These results are then

compared to the steady-state waveforms generated by the PSIM software to show the
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accuracy of this method.

3.3.1 Buck Converter Operating in DCM

In the first example, a simple buck converter operating in DCM will be studied, as

shown in Fig. 3.8. The circuit’s parameters are chosen as shown in Table 3.1.

RLVin D
Q

L

Cout

Figure 3.8: Circuit configuration of the Buck converter operating in DCM.

Table 3.1: System parameters of the Buck converter.

Parameter Value

Input voltage Vin 24v

Filter inductance L 20µH

Output capacitance Cout 22µF

Load resistance RL 20Ω

Switching frequency fs 100kHz

Duty cycle D 0.6

The number of iterations required to find the steady-state initial vector of this

converter using bisection, STE method, and PLECS are shown in Table 3.2. These
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results indicate that all of the approaches can converge to the steady-state initial

conditions of the system. The PLECS has a better performance than the other

methods in this example, which is mainly due to the usage of the Newton Raphson in

the steady-state analysis tool. Although using Newton Raphson increases the speed

of PLECS in finding the steady-state characteristic of the simple topologies, it causes

a convergence problem in complicated systems such as the LLC and series resonant

converter.

Table 3.2: The number of iterations required to converge to a steady-state

in the circuit of Fig. 3.8.

Method Iteration

PLECS (NR) 10

Bisection method 19

STE method 33

The STE and Bisection methods calculate the initial vector of the converter as

follows:  IL(0)

VCout(0)

 =

 - 0.000107718

17.1865

 (3.7)

After finding this initial vector, the general-purpose simulator can draw the steady-

state waveforms of the converter. To show the accuracy of the STE and Bisec-

tion methods, these results are then compared to the PSIM generated waveforms in

Fig. 3.9.
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(a)

(b)

Figure 3.9: Steady-state waveforms of the Buck converter operating in the

DCM: (a) Inductor’s current, (b) Output voltage.

3.3.2 Series Resonant Converter (SRC)

To show the speed and accuracy of the STE method over the bisection and PLECS

software, a Series resonant converter is studied here. The simulation of this circuit

using existing software can be time-consuming due to its complicated behavior. In

addition, steady-state solvers typically face a problem in calculating this circuit’s

steady-state characteristics, making it a good benchmark for the proposed method.

The overall circuit of the SRC is illustrated in Fig. 3.10.

The parameters of this series resonant converter are listed in Table 3.3, and the

steady-state initial condition of this converter, using the STE and Bisection methods,
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1
Q
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: n

Cout RL

Figure 3.10: Schematic diagram of the Series resonant converter

is calculated as follows: 
ILr(0)

VCr(0)

VCout(0)

 =


- 8.3412e - 06

- 16.6293

99.9498

 (3.8)

Table 3.3: System parameters of the SRC.

Parameter Value

Input voltage Vin 100v

Inductance of resonant tank Lr 2.2µH

Capacitance of resonant tank Cr 0.94µF

Transformer turn ratio n1 : n2 1

Output capacitance Cout 200µF

Load resistance RL 16Ω

Switching frequency fs 100kHz

The number of iterations required to find the steady-state characteristics of the

circuits using different methods is reported in Table 3.4. Based on these results, the

STE method is faster than other methods in finding the steady-state initial condition.

In addition, the PLECS steady-state analysis tool cannot converge to the converter’s

steady-state solution because it uses the Newton Raphson in its calculation, which
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(a)

(b)

(c)

Figure 3.11: Steady-state waveforms of the SRC: (a)The current of the reso-

nant tank’s inductor, (b)Voltage of the resonant tank’s capacitor, (c) Output

Voltage.

has well-documented issues with convergence in complex circuits. Finally, the pro-

posed STE and Bisection methods can draw the steady-state waveforms by running

the general-purpose simulator for one switching period starting with the steady-state

initial conditions. To show the accuracy of the proposed methods, the waveforms are

compared with the results generated by PSIM software, as shown in Fig. 3.11.
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Table 3.4: The number of iterations required for different steady-state solvers

to find the initial vector of the SRC.

Method Iteration

PLECS (NR) −

Bisection method 21

STE method 17

3.3.3 LLC Converter

In this section, the LLC converter is studied to show the advantages of the STE

method and how the other methods fail to find the steady-state initial conditions

of the circuit. Fig. 3.12 illustrates the overall circuit configuration of this power

converter, and the system parameters are listed in Table 3.5.

1
Q

2
Q

3Q 4Q

Vin
1
n

2
: n

Cout RL

Figure 3.12: Schematic diagram of the LLC converter

The proposed STE method calculates the initial conditions of the circuit as fol-

lows: 
ILs(0)

ILm(0)

VCs(0)

VCout(0)

 =


- 2.02548

- 16.7723

- 2.02547

100.479

 (3.9)
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Table 3.5: System parameters of the LLC converter.

Parameter Value

Input voltage Vin 100v

Series inductance Ls 2.2µH

Series capacitance Cs 0.94µF

Magnetizing inductance Lm 122µH

Output capacitance Cout 200µF

Load resistance RL 16Ω

Switching frequency fs 100kHz

After finding these initial conditions of the LLC converter, the steady-state waveforms

of the circuit are plotted using the general-purpose simulator. The drawn waveforms

are compared with the PSIM generated results in Fig. 3.13 to show the accuracy of

this approach.

Table 3.6: The number of iterations required to find the steady-state initial

conditions of the LLC converter.

Method Iteration

PLECS (NR) −

Bisection method −

STE method 97

The number of iterations required for different methods is shown in Table 3.6. As

can be seen, only the STE method can find the steady-state initial conditions of the

system. The steady-state analysis tool of PLECS cannot find the initial vector due

to the usage of the Newton Raphson, which has the convergence problem in circuits

with complicated topology. Moreover, as mentioned before, the bisection method

cannot be used for the LLC converter because the diode’s current is a non-monotonic

function of the switching time, as shown in Fig. 3.5.
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(a)

(b)

(c)

(d)

Figure 3.13: Waveforms of the LLC converter during the steady-state oper-

ation: (a) Current of the series inductance, (b) Current of the magnetizing

inductance, (b) Voltage of the series capacitance, (c)Output voltage.
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3.4 Summary

In this chapter, two methods were proposed to find the switching time (tsw) of un-

controlled events in power converters. The first method is bisection which is a com-

putationally efficient and accurate approach, but it is limited to the converters with

the monotonic function of the switching time, which causes a problem in circuits

with complex behavior such as LLC converter. The proposed STE method solves

this issue by suing a general-purpose simulator for finding the switching intervals.

This approach has the advantage of good accuracy in calculating the switching time

because of using the general-purpose simulator. Finally, several examples are pro-

vided to compare the computational speed of the proposed STE method with other

methods. Moreover, to show the accuracy of this method, after finding the steady-

state initial conditions, the general-purpose simulator is used to draw the steady-state

waveforms, which are then compared to the PSIM generated waveforms.
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Chapter 4

Steady-State of Closed Loop,

DC–AC, and AC–DC Converters

In previous chapters, new approaches have been proposed to find the steady-state

initial conditions of the power converters with controlled and uncontrolled switching

events. These steady-state initial conditions can then be used to generate the steady-

state waveforms of the circuit, which are necessary for the analysis and design of

power converters. Although the methods proposed in the previous chapters have

good speed and accuracy, only the converters operating in an open loop mood were

studied using these methods. In addition, all of the methods proposed in the previous

chapters were applied to DC-DC converters, and no DC–AC or AC–DC converter has

been studied.

This chapter first, it will be explained how to find the steady-state initial condi-

tion of the DC–AC and AC–DC Converters using the Enhanced SVA. The approach

is implemented in the script of PSIM, which is used to generate the steady-state

waveforms of the converters. In the second part of the chapter, the closed loop sys-

tem is studied. To apply the Enhanced SVA to closed loop systems, a STE method
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proposed in the previous chapter is modified to update the states of the controller in

each iteration. Finally, the performance of the proposed methods is further investi-

gated by providing several examples.

4.1 Application of Enhanced SVA to DC–AC and

AC–DC Converters

The proposed Enhanced SVA in the previous chapters can find the steady-state initial

conditions of the power converters with good speed and accuracy, but it was only

applied to DC-DC converters. This subsection expands this method to DC–AC and

AC–DC Converters.
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Figure 4.1: Illustration of a first order switching power converter with m

switching intervals operating in steady-state.

As described in section 2.5, the Enhanced SVA calculates power converter sys-

tem’s steady-state initial conditions by finding the states’ value at the end of the

switching period (xm) based on the system’s initial condition (x0). Then, by assum-

ing that the system is operating in a steady-state, it finds the initial conditions by

equating the xm and x0 (Fig. 4.1). The formulation of the method is repeated here

for convenience:

xm = ΦmΦm−1 · · ·Φ1x0 + ΦmΦm−1 · · ·Φ2Γ1 + · · ·+ ΦmΓm−1 + Γm (4.1)

x0 = [I − ΦmΦm−1 · · ·Φ1]
−1[ΦmΦm−1 · · ·Φ2Γ1 + · · ·+ ΦmΓm−1 + Γm] (4.2)
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( )t

t

Figure 4.2: Illustration of a first-order power converter operating in steady-

state with m switching interval in each switching period, and the frequency

modulation ratio equals mf .

Figure 4.3: Piecewise constant approximation of an AC source.
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This method can be used when the period of the states’ waveform is equal to the

switching period, which usually happens in the DC-DC converters. However, when

the converter is connected to AC sources or outputs AC signal, the steady-state

waveforms are periodic, with a period equal to a more slowly varying signal. For

instance, Fig. 4.2 shows the power converter that its steady-state waveforms are

periodic with a period higher than the switching period. Suppose the Enhanced SVA

is applied to the first switching period of this system. In that case, the calculated

steady-state initial conditions are wrong because the assumption of the equality of xm

and x0 is not correct anymore. To solve this issue, the period should be considered

as the largest existing period in the circuit, which is T in this example. Generally, if

the circuit consists of m switching intervals in each switching period (Tsw), and the

frequency modulation ratio is equal to mf , the steady-state initial conditions of the

system using the Enhanced SVA can be calculated as follows:

x0 =[I − ΦmfmΦmfm−1 × · · · × Φ(mf−1)m+1Φ(mf−1)mΦ(mf−1)m−1 × · · ·

× Φ2Φ1]
−1[ΦmfmΦmfm−1 × · · · × Φ(mf−1)m+1Φ(mf−1)mΦ(mf−1)m−1

× · · · × Φ2Γ1 + · · ·+ ΦmfmΓmfm−1 + Γmfm]

(4.3)

where

Φi = [I + Aiλi] (4.4)

Γi = λiBiU (4.5)

λi =
k∑

n=1

An−1
i (ti − ti−1)

n

n!
(4.6)

In the calculation of Γi using (4.5), the input vector (u) was considered to only

have DC sources, such as the full bridge inverter connected to load. However, this

is not the case in converters with AC sources such as grid-connected inverters. To

solve this problem, the value of the AC sources can be considered as a constant

input source during each switching interval where its value is equal to the value of
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AC sources in the middle of the switching interval. For instance, Fig. 4.3 shows the

piecewise constant approximation of the AC sources used in the Enhanced SVA. In

this signal, the intervals are not equal because each interval’s duration depends on

the circuit’s switching time.

4.2 Simulation Results of DC–AC and AC–DC Con-

verters

In this section, two examples are provided to show the increase in the speed of conver-

gence towards the steady-state solution of the AC-DC and DC-AC power converter

using the Enhanced SVA method. Each example is also studied by the steady-state

analysis tool of the PLECS software, and the results are compared to the proposed

approach for showing the method’s speed. Furthermore, to show the accuracy of the

proposed method, after finding the initial conditions, the waveforms of the system

will be drawn using the general-purpose simulator, and the results will be compared

to the generated steady-state waveforms of the PSIM software.

4.2.1 Full Bridge Inverter Connected to the Load

As an example of a DC-AC converter, the full bridge inverter connected to the load

is studied. The system configuration is shown in Fig. 4.4, and the parameters of this

circuit are listed in Table 4.1.

L1
Q

2
Q

3
Q

4
Q

Vin Cout RL

Figure 4.4: Circuit configuration of full bridge inverter connected to the load.
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Table 4.1: System parameters of the full bridge inverter.

Parameter Value

Input voltage Vin 110v

Inductance L 0.3mH

Output capacitance Cout 1mF

Load resistance RL 16kΩ

Switching frequency fs 10kHz

Frequency of modulation signal fm 50Hz

Figure 4.5: Inductor’s current waveform of the full bridge inverter generated

by the PSIM software.

The simulation of this type of converter can be time-consuming using the existing

method since the switching time should be chosen small compared to the output signal

period. Fig. 4.5 shows the transient of the inductor’s current that the PSIM software

calculated before finding the steady-state. The PSIM needs to simulate more than
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100 grid cycles before reaching the steady-state, which is time-consuming. However,

the proposed approach can find the steady-state initial conditions in one iteration,

and the results are as follows: IL(0)

VCout(0)

 =

 35.6001

-0.1154

 (4.7)

After finding the initial conditions of the power converter, steady-state waveforms are

drawn by simulating the circuit for one period using the general-purpose simulator.

The comparison of the results with the PSIM generated waveforms is shown in Fig. 4.6

to show the method’s accuracy.

(a)

(b)

Figure 4.6: Waveforms of the full bridge inverter during the steady-

state operation: (a) Output voltage, (b) Inductor current.
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Finally, the PLECS’s steady-state analysis tool is used to find the initial vector of

this power converter. Table. 4.2 compares the results of finding a steady-state solution

using the PLECS software and Enhanced SVA method. Using the Enhanced SVA,

the number of simulation runs is reduced to one compared to the PLECS software,

which needs eleven iterations.

Table 4.2: The number of iterations required for different steady-state solvers

to find the initial vector of the full bridge inverter.

Method Iteration

PLECS (NR) 11

Enhanced SVA 1

4.2.2 Grid Connected Inverter

Fig. 4.7 shows a full bridge inverter connected to the grid. This example shows the

application of the Enhanced SVA in circuits with AC sources. The parameters of this

circuit are listed in Table 4.3.

L1
Q

2
Q

3
Q

4
Q

Vin

R

Figure 4.7: Schematic diagram of the grid connected inverter.

To show the method’s accuracy, calculated initial conditions by the proposed

method are used to generate the steady-state waveform, and the comparison with
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PSIM generated waveform is shown in Fig. 4.8. Although the piecewise constant

approximation is used in the calculation of the initial conditions using the Enhanced

SVA, the result perfectly matches the PSIM generated waveform.

Table 4.3: System parameters of the grid connected inverter.

Parameter Value

Input voltage Vin 400v

Inductance L 2mH

Resistance R 4Ω

Frequency of AC source fg 50Hz

Amplitude of AC source Vg 320v

Phase of AC source ϕg π/18

Switching frequency fs 10kHz

Amplitude modulation ratio ma 0.8

Figure 4.8: Inductor’s current during the steady-state operation in the grid

connected inverter.
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Table. 4.4 shows the performance of the PLECS software and Enhanced SVA.

Enhanced SVA can find the initial conditions in one iteration; however, the PLECS

uses Newton Raphson methods, so it needs sixteen iterations to converge to the

steady-state initial conditions.

Table 4.4: The number of iterations required to find the steady-state initial

conditions of the grid connected inverter.

Method Iteration

PLECS (NR) 16

Enhanced SVA 1

4.3 Study of Closed Loop Converters Using En-

hanced SVA

To find the steady-state waveform of the power converters operating with the con-

troller, it is necessary to find the steady-state initial conditions of the controller as

well as the power converter. For instance, Fig. 4.9 shows the buck converter with the

PI controller, and the output of the integrator is an additional state of the system.

So the proper method must be able to find the steady-state value of this state at the

start of the period as well as the steady-state initial conditions of the power circuit.

The control system and power circuit can be modeled using the state space rep-

resentation as follows:  ẋ

ẋc

 = As

 x

xc

+Bsu (4.8)

where xc is the states of the controller, and x is the states of the power circuit. Then

the Enhanced SVA can use the system matrices (As and Bs) in its formulation (2.54)
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RLVin D

Q L

Cout

Figure 4.9: Circuit configuration of closed loop Buck converter.

to find the steady-state initial conditions of the controller and the power circuit.

However, most systems with the controller cannot be modeled in the form of (4.8),

and even if they can, the computer generation of the state space of the whole system

can be challenging as there might be some nonlinear blocks in the loop. The STE

mechanism proposed in the previous chapter is modified to address these issues and

calculate the initial vector of the closed loop systems.

Enhanced SVA

(Script)

Switching times (     )

General Purpose 

Simulator

(Psim)

Rate of 

Change 

Limiter

Convergence 

Criterion

Stop Flag

Figure 4.10: Block diagram of the modified STE method.
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In this approach, first, the general-purpose simulator simulates the whole system

for one period and returns the switching times (tsw) and the states of the converter at

the end of the period to the Enhanced SVA. The Enhanced SVA then uses this infor-

mation to find the steady-state initial condition of the power circuit. Then the states

of the power circuit will be updated, while the states of the control system will remain

the same, and the system again will be simulated using the general purpose-simulator.

The same procedure will be continued until the convergence to the steady-state initial

conditions happens. In addition, this method uses the rate limiter block as shown in

Fig. 4.10, which performs the same task as what is discussed and demonstrated in

Fig. 3.7.

To indicate when the convergence happens, and the iteration should stop, the relative

error will be defined as follows:

el =

∣∣xPsimj
[l]− xj[l]

∣∣
Max {|xj[l]| , xmin}

l = 1, . . . , n (4.9)

In addition, the convergence criterion is based on the requirement that the maximum

relative error e in the state variables should be smaller than a predetermined limit η.

e = Max (el) l = 1, . . . , n (4.10)

e < η (4.11)

where η is the specified error limit. Once this condition is met, the iteration should

stop, and the steady-state initial conditions are found. Finally, the general-purpose

simulator can simulate the circuit for one period starting from the calculated initial

vector to draw the steady-state waveforms of the system.
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4.4 Simulation of Closed Loop Phase-Shifted Full

Bridge Converter

As an example of the closed loop power electronic system, Phase-Shifted full bridge

converter with a PI controller is studied here to show the accuracy of the proposed

approach in calculating the steady-state initial conditions of the closed loop power

converter system. The schematic of this regulated converter is shown in Fig. 4.11.

The parameters associated with this converter’s power stage and controller are listed

in Table. 4.5.

1
Q

3
Q

Vin

2
Q

4
Q

1
n

2
: n

Cout RL

Figure 4.11: Circuit configuration of the phase-shifted full bridge converter

with PI controller

This power converter topology is studied here because, in addition to the PI

controller, it has uncontrolled switching events caused by the diode bridge. So it is a

good benchmark to show the application of the modified STE method in finding the
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steady-state initial condition of the closed loop power converter with uncontrolled

events. In this circuit, in addition to the states of the power circuit, it is required

to find the state of the controller, which is the output of the integral block (xI).

The steady-state initial conditions of the circuit can be calculated using the proposed

method as follows: 
IL(0)

VCout(0)

xI(0)

 =


6.49530e - 06

13.8639

0.00373791

 (4.12)

Table 4.5: System parameters of the Phase-shifted full bridge converter

Parameter Value

Input voltage Vin 35v

Inductance L 30µH

Output capacitance Cout 200µF

Resistance R 5Ω

Transformer turn ratio n1 : n2 1

Reference voltage Vref 14

Proportional gain KP .01

Integral gain KI 100/3

Switching frequency fs 10kHz

Using the calculated initial conditions the general-purpose simulator can simulate

the circuit for one period to draw the steady-state waveforms. Fig. 4.12 compares the

results of the proposed method with the PSIM generated waveform. In addition, since

this closed loop circuit contains uncontrolled switches and operates in discontinuous

conduction mode, the Newton Raphson based methods, such as PLECS’s steady-

state analysis tool, cannot find the steady-state solution, as shown in Table. 4.6.

83



Chapter 4. Steady-State of Closed Loop, DC–AC, and AC–DC Converters

Table 4.6: The number of iterations required to converge to a steady-state

in the Phase-shifted full bridge converter with PI controller.

Method Iteration

PLECS (NR) −

Enhanced SVA 129

(a)

(b)

(c)

Figure 4.12: Steady-state waveforms of the Phase-shifted full bridge con-

verter: (a) Inductor’s current, (b) Output voltage, (c) Output of the con-

troller (phase shift).
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4.5 Summary

In this chapter, first, the estimation of steady-state initial conditions of the DC-AC

and AC-DC converters using Enhanced SVA is discussed. For this purpose, it is

shown that the period in which Enhanced SVA will be used should be considered as

the largest existing period in the circuit, and if the circuit contains an AC source,

the piecewise constant approximation of the source should be used in the calculation

of the Γi. In the second part, the estimation of steady state initial conditions for

closed loop power converters is provided by modifying the STE mechanism proposed

in the previous chapter. In addition, several examples are provided to verify the

effectiveness, speed, and accuracy of the methods. Moreover, in each example, the

comparison between the proposed method and the steady-state analysis tool of the

PLECS is provided, and the steady-state generated waveforms are compared to the

PSIM generated waveforms.
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Summary and Future Work

5.1 Summary of Contributions

In this thesis, new approaches were proposed to calculate the steady-state initial

conditions of the power converter systems. The main contributions and conclusions

of this thesis are summarized below.

(i) Improved Laplace Based Method (ILBT) is proposed to solve the problem of

analyzing the interior switch-network converter using the LBT. In addition, the

speed of initial vector calculation is increased using the state space model of

the system in the ILBT formulation instead of the ODE representation, which

was used in the LBT.

(ii) Enhanced SVA is proposed, which uses the Taylor series and adaptive order

selection to solve the problem of the singular characteristic matrix in conven-

tional SVA and increase the method’s speed. In addition, several simulation

examples show that the Enhanced SVA is the fastest approach to analyze the
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power converters compared to the other existing methods. Moreover, it does

have the limitation of the existing methods, and can be used to analyse the

wide range of converters.

(iii) The bisection and STE method were proposed to calculate the initial vector

of the converters with uncontrolled switching events, such as the converters

operating in discontinuous conduction mode. The bisection approach was only

able to analyze the converter with the monotonic function of the switching

time. However, the STE method used the general-purpose simulator to find

the uncontrolled event’s switching time, so it did not face the limitation of the

bisection method.

(iv) The steady state initial conditions of the AC-DC and DC-AC converters are

calculated by applying the Enhanced SVA to the largest existing period in the

circuit and using the piecewise constant approximation of the AC sources in

the calculation process.

(v) The steady-state initial conditions of the closed loop power converters are cal-

culated by modifying the STE method to update the states of the controller at

each iteration.

(vi) Steady-state waveforms are drawn using the proposed approaches for several

examples, and a comparison with the PSIM generated steady-state waveforms

are provided to show the accuracy of the methods.

5.2 Suggested Future Work

There are a number of directions that this research can be taken to; some of the most

promising ones are suggested as follows:
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(i) This thesis presented a new mathematical method for funding the steady-state

initial condition. In the next stage of the research, this approach can be used

for the accurate analysis of complicated power converter topology to useful

information, such as a plot of voltage gain or range of the ZVS, for designing

the power converter.

(ii) The proposed methods in this thesis considered all elements linear except the

switches. As the next step, the application of the proposed methods to the

converters with the nonlinear component can be investigated.

(iii) The proposed method in chapter 4 for calculating the steady-state initial con-

dition of the closed loop converters was only used to study the circuit with

a simple controller. As the proposed method is general and could be used for

more complicated control systems, the proposed method could be used to study

the converter with a more complicated control structure in the next stage of

the research.
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Appendix A

Computer Formulation of State

Equations

ILBT and Enhanced SVA were proposed in chapter two to calculate the steady-state

initial conditions of the power converter systems. These methods use the state space

representation of the system in their formulation, so the state space derivation method

is required to generate the system matrices Ai, Bi, Ci, Di from the circuit’s parameter

and configuration [46]-[54]. Since power converter circuits contain switching actions

that change the circuit configuration, an appropriate method must be able to find

the state space matrices for each of these configurations. For instance, in the case of

the buck converter, the circuit has two switching intervals (Fig. A.1), and the state

space representation for these switching intervals is shown here.

A1 =

 0 −1
L

1
Cout

−1
RLCout

 B1 =

 1
L

0

 (A.1)

A2 =

 0 −1
L

1
Cout

−1
RLCout

 B2 =

 0

0

 (A.2)
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RLVin D

Q L

Cout

RLVin

L

Cout Vin RL

L

Cout

Figure A.1: The circuit configuration of the buck converter during each

switching interval.

So two steps must be taken to find the state equations of the system. First, a

change in circuit configuration must be detected, which can be done using the method

proposed in chapter three to find the switching time of the power converters. Using

that method, each switching time indicates the change in the circuit configuration,

and the circuit’s configuration can be determined based on the switches that turn

off or on. In the second step, there is a need for an approach to generate the state

equation of each configuration, which will be discussed in this section.

A.1 Circuit Identification

To find the state space model of a network, it is important to identify and store the

network interconnections and parameters in the digital computer. So, in this section,

first, the fundamentals of graph theory which are applicable to circuit analysis, are

discussed.
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Figure A.2: Network and its associated graph.

Any network obeys three basic laws: the Kirchhoff voltage law (KVL), the Kirch-

hoff current law (KCL), and the elements’ law (branch characteristics). The first two

laws, KVL and KCL, are linear algebraic constraints on branch voltages and currents

and are independent of the branch characteristics. So, a complete description of the

network model must then contain the following information:

1. How the branches are connected.

2. The reference directions for branch currents and voltages.

3. The branch characteristics.

A.1.1 Network Graph

One natural and simple way to depict items 1 and 2 is to draw a directed graph Gd

associated with the given network N , according to the following rule: replace each

two-terminal element with a line segment called a branch, with an arrow in the same

direction as the assumed positive current through that branch. Thus, the directed
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graph Gd gives complete information for items 1 and 2. For example, Fig. A.2a shows

a network N , and Fig. A.2b shows the directed graph Gd associated with N . Based on

this directed graph following basic concepts can be defined in the network topology.

(A) Path: A set of branches (b1, b2, . . . , bn) in Gd is called a path between two nodes

Vj and Vk if the branches can be labeled such that

• Consecutive branches bi and bi+1 always have a common endpoint.

• No node of Gd is the endpoint of more than two branches in the set.

• Vj is the endpoint of exactly one branch in the set, and so is Vk.

For example, in Fig. A.3, branches
(

d h i b
)
form a path between nodes

1 and 2.

Figure A.3: Sample of graph.

(B) Connected Graph: A graphGd is said to be connected if a path exists between

any two nodes of the graph.

(C) Loop (Circuit): A subgraph Gs of a graph Gd is called a loop if

• Gs is connected.

• Every node of Gs has precisely two branches of Gs incident at it.

For example, in Fig. A.3, the branches (a b c d) form a loop.
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(D) Tree: A subgraph Gs of a connected graph Gd is called a tree if

• Gs is connected.

• Gs, contains all nodes of Gd.

• Gs has no loops.

For example, in Fig. A.3, the branches (a e d g i) form a tree. Moreover,

the branches that belong to a tree T are called tree branches, and those which

do not belong to a tree T are called links (chords). All the links of a given tree

T form what is called a cotree Tc with respect to the tree T .

(E) Cutset: A set of branches of a connected graph Gd is said to be a cutset if

• The removal of the set of branches (but not their endpoints) results in a

graph that is not connected.

• After the removal of the set of branches, the restoration of any one branch

from the set will result in a connected graph again.

For example, in Fig. A.3, branches (a e d) form a cutset.

A.1.2 Incidence Matrix

Although the graph Gd defined here completely describes the interconnection and

the reference directions of the branches of a network, it is not in a form suitable for

storing in a digital computer. To solve this issue, the information contained in a

directed graph Gd can be completely stored in a matrix called an incidence matrix

(Aa). For a directed graph Gd with n nodes and b branches, the incidence matrix

defined to be an n× b matrix:

Aa = [aij] (A.3)
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where

aij = 1 if branch j is incident at node i, and the arrow is pointing away from

node i.

aij = −1 if branch j is incident at node i, and the arrow is pointing toward

node i.

aij = 0 if branch j is not incident at node i.

For example, for the directed graph of Fig. A.2b

a b c d e f incident branche

Aa =

node 1

2

3

4


1 0 1 0 0 −1

−1 1 0 0 1 0

0 0 −1 1 −1 0

0 −1 0 −1 0 1


(acf)

(abe)

(cde)

(bdf)

(A.4)

Since every branch is connected to two distinct nodes, every column of Aa has exactly

two nonzero elements, a 1 and a −1, with the rest being zeros. Any one row of Aa

can be deleted without losing information because this deleted row may be restored

correctly whenever necessary by observing the rule that every column of Aa must add

up to zero. A matrix obtained from Aa by deleting any one row is called a reduced

incidence matrix and is denoted by A, which can be partitioned as:

A = [AT | AL] (A.5)

where the columns of AT correspond to the tree branches of a chosen tree T , and the

columns of AL correspond to the links.

Let the branch currents of the network N be represented by a column vector i(t)

of order b×1. Let the columns of A and the rows of i be arranged in the same branch

order, that is, the k th column of A and kth row of i correspond to the same branch
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of Gd. Then KCL, when applied to all nodes, can be expressed very compactly as

one matrix equation:

Ai = 0 (A.6)

A.1.3 Cutset Matrix

A general form of the KCL states that the algebraic sum of all currents through a

cutset, from one part to the other, is zero at all times. For example, applying the

generalized KCL to Fig. A.2b, we can write:

ia + ic − if = 0

ic + ie + ib − if = 0

etc.

A cutset matrix is introduced to express the generalized KCL equations compactly

as a single matrix. For a directed graph Gd with b branches and ne oriented cutsets,

we define the cutset matrix to be an ne × b matrix:

Da = [dij]

where

dij = 1 if branch j is in cutset i, and their directions agree.

d1j = −1 if branch j is in cutset i, and their directions oppose.

dij = 0 if branch j is not in cutset i.

Figure A.4: Construction of the cutset matrix for a directed graph.
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For example, there are six cutsets in Fig. A.4, and the cutset matrix is:

a b c d e branches in the cutset

Da =

Cutset 1

2

3

4

5

6



1 1 0 1 0

0 0 −1 1 0

1 1 0 0 1

0 0 1 0 −1

0 0 0 1 −1

−1 −1 −1 0 0



(abc)

(cd)

(de)

(abd)

(abe)

(ce)

(A.7)

This matrix is comprised of a set of nc rows that are not linearly independent.

Any submatrix of Da that consists of the maximum number of independent rows of

Da is called a basic cutset matrix and is denoted by Db, which has n − 1 rows. A

systematic method of constructing a basic cutset matrix is through the aid of a tree

T . Each tree branch of T together with some links in the associated cotree Tc forms

a cutset, the fundamental cutset for that tree branch. For a connected graph with n

nodes, there are n − 1 tree branches, and hence n − 1 fundamental cutsets for each

chosen tree. A submatrix of Da constructed with the n − 1 fundamental cutsets is

called a fundamental cutset matrix, and is denoted by D.

For example, in Fig. A.4, if T is chosen to consist of branches aec, then the funda-

mental cutset matrix is:

a c e b d

D =


1 0 0 1 1

0 1 0 0 −1

0 0 1 0 −1

 (A.8)

From the way the D matrix is defined, any D matrix can be partitioned as:

D =
[
1 DL

]
(A.9)
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where the columns of 1 correspond to tree branches and the columns ofDL correspond

to links. Using D generalized KCL can be expressed compactly as:

Di = 0 (A.10)

A.2 Computer Generation of Topological Matri-

ces

So far, A and D matrices have been defined, and it has been discussed how to find

them from the graph of the network. This section shows how a digital computer may

generate these matrices.

The generation of A is extremely simple. First, all elements of the matrix A

are set to zero. Then, consecutive integers are assigned to the branches and nodes

of a network graph. Finally, if branch k is connected between nodes i and j, with

the reference arrow pointing toward node j, two nonzero elements of Aa are then

generated: aik = 1 and ajk = −1.

To generate D, the computer must first choose a tree T . Very often, T must

be chosen with some preference as to the order of the different types of network

elements included in the tree. For example, the particular tree used in formulating

the state equations is required to have the following preferred order of element types:

independent voltage sources, controlled voltage sources, capacitances, resistances, and

inductances. Therefore, we have two problems to consider:

1. Find a tree T with a given preference of network element types for inclusion in

the tree.

2. Find the fundamental cutset matrix D relative to the chosen tree T .
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To solve these problems, elementary row operations on A are used in the following

sections.

A.2.1 Finding a Tree

For finding a tree, first, columns of A must be arranged from left to right in the

order corresponding to the desired preference of element types. Then, since any n−1

linearly independent columns of A form a tree, the problem is simply to pick an

independent set of n − 1 columns, starting from the leftmost column and moving

successively to the right.

The recognition of a set of linearly independent columns is made easier by reduc-

ing A to the echelon form through a series of elementary row operations as follows:

Type 1. Interchange of two rows.

Type 2. Multiplication of any row by a nonzero scalar constant.

Type 3. Replacement of the jth row by the sum of the jth row and α times the kth

row, where k ̸= j and α is any scalar constant.

Here is an example of an echelon matrix.

Note that the dashed line has the form of a stair. Below the stair, all elements are

zero. Each element above the stair and immediately to the right of the vertical dashed

lines is always a +1.
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For the present case, the matrix A is (n − 1) × b and has n − 1 independent

columns. A may be reduced to the following typical echelon form:

where each × indicates a +1,−1, or 0 . Here, n − 1 rows in the Aech starts with 1.

The n−1 columns of Aech corresponding to these 1’s form an upper triangular matrix

and therefore are linearly independent. Since elementary row operations do not affect

the linear independence or dependence of a set of columns, the corresponding n − 1

columns of A are also linearly independent, and the corresponding n − 1 branches

form a tree. In choosing the n − 1 columns from Aech , columns have been favored

to the left. Thus, the specified element-type preference requirement has been taken

care of automatically.

A.2.2 Generation of D

Assume that a tree T has been chosen and that the matrices A and D are partitioned

as

A = [AT | AL]

D = [1ρ | DL]
(A.11)

Then as proven in [54], D can be found using the following equations:

D = [1ρ | DL] = A−1
T [AT | AL] = A−1

T A (A.12)
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(A.12) is the key to the matrix method of generating D. It says that if first A−1
T is

found, and then premultiply A by A−1
T , the result is D. However, it is an inefficient

approach because it should calculate the A−1
T . To solve this issue, elementary row

operations will be used. For performing an elementary row operation on a matrix Q,

the product εQ can be calculated [54]. Where ε is the elementary matrix obtained

by performing the intended row operation on the identity matrix. In addition, if Q

is a nonsingular square matrix, we can always find a sequence of m elementary row

operations that reduce Q to an identity matrix.

εm . . . ε3ε2ε1Q = 1 (A.13)

where εk indicates a type of elementary row operation (k = 1, 2, or3). From (A.13)

the following equation can be written:

Q−1 = εm . . . ε3ε2ε1 (A.14)

and

Q = ε−1
1 ε−1

1 ε−1
3 . . . ε−1

m (A.15)

(A.15) shows that any nonsingular matrix is expressible as the product of some ele-

mentary matrices. Now the A−1
T in (A.12) can be written as follows:

A−1
T = εm . . . ε3ε2ε1 (A.16)

So D is equal to:

D = A−1
T A = ( εm . . . ε3ε2ε1)A (A.17)

This equation means that D may be obtained from A by performing a sequence of

elementary row operations on A. In addition, the following equation shows that the
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required sequence of row operations is just those operations which, when performed

on AT will result in an identity matrix.

A−1
T AT =

(
εm . . . ε3ε2ε1

)
AT = 1 (A.18)

Putting these two facts together, following an alternative method of generating

D from A is possible. Perform elementary row operations on A to reduce AT to an

identity matrix. The resulting matrix is D when this state is attained.

A.3 State Space Derivation

This section discusses an algorithm to find the state space of the network. The

algorithm uses the incidence matrix and circuit parameters (capacitance, inductance,

resistance, and admittance matrices) as input. The circuit parameters obey the

following equations:

vRJ = RJ iRJ iRJ = GJ vRJ

iRL = GLvRL vRL = RLiRL

(A.19)

C :

 iCJ

iCL

 =

 CJ 0

0 CL

 d

dt

 vCJ

vCL

 (A.20)

L :

 vLJ

vLL

 =

 LJJ LJL

LLJ LLL

 d

dt

 iLJ

iLL

 (A.21)

Using these inputs, the algorithm will take the following steps to generate the state

space equations:

1. Selection of a tree j that contains the following:

(a) All independent voltage sources.
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(b) No independent current sources.

(c) As many capacitors as possible.

(d) As few inductors as possible.

Such a tree, called a normal tree, can always be constructed using the matrix

procedure described in Section A.2.1. The subscript J for the normal tree

and L for the links (cotree) is used to indicate the branches of the circuits. In

addition, after finding this tree a suitable choice for the state variables is vCJ

and iLL [54].

2. Calculate the cutset matrix (D) using the method proposed in section A.2.2,

and write the fundamental cutset (KCL) equations for the network as follows:

EJ CJ RJ LJ JL LL RL CL

Di =


1EJ 0 0 0 F11 F12 F13 F14

0 1CJ 0 0 F21 F22 F23 F24

0 0 1RJ 0 F31 F32 F33 0

0 0 0 1LJ F41 F42 0 0

 i = 0
(A.22)

using this equation, the submatrices F11 to F44 can be found.

3. Calculation of R and G matrices using the following equations:

G = GJ + F33GLF
t
33

R = RL + F t
33RJF33

(A.23)

4. Find the state space equations of the network using the following equations [54]:

M (0) d

dt

 vCJ

iLL

 = A(0)

 vCJ

iLL

+B(0)

 vEJ

iJL

+B1
(0) d

dt

 vEJ

iLL

 (A.24)

M (0) =

 CJ + F24CLF
t
24 0

0 (LLL − F t
42LJL − LLJF42 + F t

42LJJF42)

 (A.25)
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A(0) =

 −F23R
−1F t

23 (−F22 + F23R
−1F t

33RJF32)

(F t
22 − F t

32G
−1F33GLF

t
23) −F t

32G
−1F32

 (A.26)

B(0) =

 −F23R
−1F13 (−F21 + F23R

−1F t
33RJF31)

(F t
12 − F t

32G
−1F33GLF

t
13) −F t

32G
−1F31

 (A.27)

B
(0)
1 =

 −F24CLF
t
14 0

0 −F t
42LJJF41 + LLJF41

 (A.28)

Then, premultiplying both sides of (A.24) by
[
M (0)

]−1
, results in the following

equation:

˙̂x = Ax̂+Bu+B1u̇ (A.29)

where

A =
[
M (0)

]−1
A(0)

B =
[
M (0)

]−1
B(0)

B1 =
[
M (0)

]−1
B

(0)
1

(A.30)

The derivative of the input vector u appears in (A.29), which can be removed

by a simple change of variables:

x = x̂−B1u (A.31)

Putting (A.31) into (A.29) results in:

ẋ = Ax+ (B + AB1)u (A.32)

which is the state space equation of the network.

To illustrate the procedure of generating the state space equations of the network,

a circuit of Fig. A.5 is discussed here. This circuit has mutual inductances, and the
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Figure A.5: A typical network.

inductance matrix is: 
v6

v8

v9

 =


4 −1 −1

−1 2 −1

−1 −1 2

 d

dt


i6

i8

i9

 (A.33)

To find the state space matrices of this circuit, the following steps must be taken:

Step 1: A proper tree consisting of branches 1, 2, 3, 4, 5, and 6 is chosen, as shown

in Fig. A.5. Moreover, the states of the circuit are v2, v3, i8, and i9 based on this

choice of proper tree.

Step 2: The cutset matrix with respect to the proper tree is found to be:

D =



1 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 −1 0 −1 0 1

0 0 1 0 0 0 0 0 −1 0 1 −1

0 0 0 1 0 0 0 1 1 0 0 0

0 0 0 0 1 0 −1 0 0 0 −1 0

0 0 0 0 0 1 0 1 1 0 0 0


(A.34)

from which F11 to F44 is identified as follows:

F11 = 0, F12 =
[
0 0

]
, F13 =

[
1 0

]
F14 = 0
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F21 =

 0

0

 , F22 =

 −1 0

0 −1

 , F23 =

 −1 0

0 1

 , F24 =

 1

−1



F31 =

 0

−1

 , F32 =

 1 1

0 0

 , F33 =

 0 0

0 −1


F41 = 0, F42 =

[
1 1

]
Step 3: R and G matrices are calculated:

G =

 1 0

0 0.5

+

 0 0

0 −1

 2 0

0 4

 0 0

0 −1

 =

 1 0

0 4.5


R =

 0.5 0

0 0.25

+

 0 0

0 −1

 1 0

0 2

 0 0

0 −1

 =

 0.5 0

0 2.25

 (A.35)

Step 4: Finally, M (0), A(0), B(0), and M
(0)
1 can be calculated using the matrices found

in the previous steps:

M(0) =


7 −5 0 0

−5 9 0 0

0 0 8 5

0 0 5 8

 (A.36)

A(0) =


−2 0 1 0

0 −4
9

0 1

−1 0 −1 −1

0 −1 −1 −1

 (A.37)

B(0) =


2 0

0 8
9

0 0

0 0

 (A.38)
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B1
(0) = 0 (A.39)

By substituting (A.36)-(A.39) into (A.29), the state space equation of the network of

Fig. A.5 can be written as follows:

d

dt


v2

v3

i8

i9

 =


− 9

19
− 10

171
9
38

5
38

− 5
19

− 14
171

5
38

7
38

− 8
39

5
39

− 1
13

− 1
13

5
39

− 8
39

− 1
13

− 1
13




v2

v3

i8

i9



+


9
19

20
171

5
19

28
171

0 0

0 0


 v1

i7


(A.40)
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