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ABSTRACT

Previously described dielectric measurement techniques that utilize a
perturbation technique via a resonant test cavity have a loss tangent
measurement range that is limited to two to three orders of magnitude. A new
resonant cavity method is presented that extends the loss tangent measurement
range to four orders of magnitude, and is suitable for obtaining dielectric data
required for curing certain rubber materials whose loss tangents vary by four
orders of magnitude.

A modified resonant coaxial cavity has been designed and is used as the
test cavity. A quasi-TEM mode, at about 2.45 GHz, is used for measuring the
dielectric properties of materials. This method utilizes two measurement modes.
One mode, the contact mode, is used for measuring the properties of low loss
materials, while properties of high loss materials are measured using the partial
contact mode. In the partial contact mode, a fixed air gap is introduced above the
test specimen that reduces resonator sample loading, thereby extending the
measurable loss tangent range for lossy dielectrics.

Cavity field solutions are found using a two-dimensional finite difference
frequency domain (FDFD) technique. Simulated resonant frequency, Q-factor
and loading factor provide data for three theoretical calibration curves that are
used for dielectric determination.

An automatic measuring and heating system is implemented that utilizes

the test cavity, a reflectometer and an analog controller. The frequency response



of the test cavity is obtained by use of the reflectometer. An analog circuit
controls the temperature of the test specimen. A small cylindrical test specimen
contained within the resonant cavity can be heated and tested simultaneously
via a computer data acquisition program.

The dynamic range for measuring relative dielectric constant is
1.03 < ¢,"< 30 while for measuring loss tangent the range is 0.0001 < tand < 1.63 .
Uncertainty sources in the dielectric determination are examined. Room
temperature complex dielectric constant measurements obtained from a number
of commercial materials are compared with the manufacturer’s specified data,
showing a good agreement between the two. Finally, dielectric properties of five
rubber materials were measured from room temperature to 120°C and their

complex dielectric constant versus temperature behavior is discussed.
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CHAPTER 1
INTRODUCTION

1.1 Thesis Objective

Knowledge of a material's dielectric properties is required in order to
design and to control its microwave heating process within a given temperature
and frequency range. The material's dielectric properties are measured with a
dielectrometer. With the addition of heating hardware, the dielectrometer can
also be used for controlling the temperature of the test specimen and hence can
be used for determining dielectric properties of a material as a function of both
frequency and temperature.

This thesis is devoted to designing a dielectrometer that has an extended
dielectric loss measurement range. The dielectrometer will be used to measure
the dielectric properties of high loss uncured rubber sheets that are commercially

cured using a microwave heating process.

1.2 Application

The use of microwaves to cure rubber has greatly increased during the
past 30 years. Microwave energy is used to cure hundreds of millions of pounds
of rubber a year [1]. The merits of this process are a fast curing time, an

enhanced rubber product and an efficient curing process [1-3].



1.3 Thesis Content Overview

Chapter 2 begins with a brief summary of the subject of material heating
via microwave energy. Then, a literature review is presented that describes a
number of dielectric measurement techniques.

In Chapter 3 an outline of the dielectrometer design constraints is given.
The resonant cavity design follows and then the design of the heater is
described. Finally, the interface between the reflectometer and the resonant
cavity is described.

In Chapter 4 the procedure for determining a material's complex dielectric
constant with the dielectrometer is given. First the perturbation technique for a
dielectrically loaded resonant cavity is described. Then, an analytical
relationship between the complex dielectric constant of a test specimen and the
change in the cavity’s resonant frequency and Q-factor is developed. A finite
difference frequency domain (FDFD) method is introduced to numerically
calculate the empty and loaded cavity’s electric and magnetic fields, and to
determine a test specimen's complex dielectric constant.

In Chapter 5 the microwave characteristics of the empty and loaded
cavities are described, including field configurations and a comparison of the
measured and simulated resonant frequencies for the two modes of cavity
operation. Then, numerically calculated calibration curves for determining a
material’'s complex dielectric constant are given in both a graphical and a

polynomial format.



In Chapter 6 the limits of the dynamic range of the dielectrometer are
evaluated. Their dependence upon measurement sensitivity and accuracy of test
equipment is described.

In Chapter 7 a description of the algorithms used in the data acquisition
computer program are given. Calibration and measurement procedures are
described. Measured dielectric properties of four commercial materials are
tabulated alongside the manufacturer’s specified values in order to verify the
dielectric measurement method proposed. Finally, new dielectric data for five
Royalene rubber materials is presented and discussed.

In Chapter 8 the measurement accuracy of the reflectometer is analyzed in
order to predict uncertainty in the dielectric measurements.

Relevant conclusions are presented in Chapter 9. The limitations of the
dielectrometer that has been developed are discussed and suggestions for

improvements are made.



CHAPTER 2
THEORETICAL BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

In this chapter the theory for microwave heating is presented. A literature
review is then necessary so as to determine an appropriate method of measuring
the dielectric properties of the rubber sheets. A number of dielectric

measurement techniques are described.

2.2 Theoretical Background

In the literature a great deal of work has been reported in regard to
deriving heating rate models for materials heated via microwave energy at both
the macroscopic and microscopic levels [4-5]. An introduction to the subject of
microwave heating of materials is given at the macroscopic level. To this end, the
power dissipation, Pp, corresponding to an electric field intensity, E, along with
a dielectric material's complex dielectric constant, €* = €' - je", are related to the
total input microwave power, P, corresponding to an electric field intensity, Eo,
delivered to the dielectric material.

The time rate of temperature change of a material is calculated using the
heat conduction equation [5] given by

%l‘_ = C—lp-(Q' +&VT) 21)



where T is temperature (°C), t is time (s), Q' is the heat generation term (W-m™),
p is the material density (kg-m™), C is its specific heat (J-kg'-°C™) and «x is the
material's thermal conductivity (J-(m-s)*°C™). Assuming a uniform
temperature profile throughout the heated material, the following simplification
can be made

KV’T=0 (2.2)
and Eq. (2.1) can be re-written as

ar_Q (2.3)
d¢¢ Cp

In the case of microwave heating of a material, Q' represents the internal heat
generation at a point. For non-magnetic materials, the time-average power
dissipated in a material volume, V, resulting from molecular mass mechanisms

[4] is given by

P, = [ E, -JldV=%La|Ell2dV=%I’a)e"|E|lde (2.4)

1
2
where E; = E(x, y, z, f, €*) is the peak electric field at the point of interest and ¢
and ¢" are the total effective conductivity and loss factor respectively and o =
2nf. Re-writing Eq.(2.4) in point form gives the time average power density at a

point as

dP, 1 2
= pp = ~we'lE, 2.5
dv, “Po=2%¢ 2 @3)




which, incidentally, represents the internal heat generation term described

) . dP
reviously, ie.,, Q' = —2 |
P y Q av,

Now, Eq.(2.3) can be re-written in terms of the electric field intensity, E,
within the material and its complex dielectric constant, €' - je", i.e.

Tl g

Copp

(e ansE ) (2.6)

8"
where tand = —.
£

The electric field intensity, E; within a material is not explicitly known.
For simple material shapes, E, is found using the value of the material's relative
dielectric constant, ¢, along with either the known electric field, Eo, of the
incident wave striking the material interface or the corresponding input
microwave power, P, Some simple cases that relate these quantities are
outlined. If the electric field, Eq, strikes parallel to the interface, the electric field,

E, inside the material is given by [8]

E ~—2—E @.7).

i I+J;r70

Conversely if the electric field, Eo, is perpendicular to the interface, then the

electric field, E,, is [8]
1

E, = ——E, (2.8).
&



For the case when a uniform plane wave is propagating in an infinite, lossless

material, the input power, Py, and electric field intensity, E; are related by [9]

E[ - 21P (2.9)

Al

where A is the cross-sectional area transverse to the direction of propagation, no
is the free space wave impedance (no = 377Q), and Py, is the total power in Watts
delivered through area A, into a volume of material of thickness, d. In practice
the assumption can be made that a finite lossy material with volume Ad retains a
near uniform electric field intensity, E.. Re-writing Eq.(2.6) utilizing Eq. (2.9)
results in

dT _2afms  &"(MP, (2.10)
dt A Dpy(THe

where ¢, is the permittivity of free space (~885x10™"? F/m).

For the general case, the electric field intensity, E, within a material is
found from the Helmholtz equation (8]

V’E, +wuc’E, =0 (2.11)
where p is the material's permeability. In this equation, the complex dielectric
constant, £*, is the only parameter that describes the electric behavior of the
material. Apparently in order to solve Eq.(2.11) and hence Eq.(2.6), the
temperature dependent dielectric properties of a material are required. These
quantities are only found via measurement within a given temperature and

frequency range.



For this thesis project, the dielectric measurement technique utilized must
meet the following conditions. Complex dielectric constant must be measured at
a frequency of f, = 2.45 GHz. The temperature range of interest is 20 °C < T <120
°C. Loss tangents of the materials vary between 0.001<tan5 <10, while their
relative dielectric constants vary between 3.0 < g,' < 30.0. Test material thickness

is t= 2.0 mm.

2.3 Literature Review

Since the late 1940's a large number of dielectric measurement techniques
have been developed. Short and open circuited waveguide techniques are used
for measuring a material's dielectric properties over a wide range of frequencies
[10-13]. Many scientists have used various cavity perturbation techniques for
testing relatively small test specimens with a large range of loss tangents and
dielectric constants [14-31]. At millimeter and sub-millimeter wavelengths, open
resonators are utilized for measuring dielectric properties of materials used in
ray-optic applications [32-33]. Open-ended coaxial probes are commonly used in
broadband dielectric measurements of liquids [34-42].

One of the earliest developed and most practical dielectric measurement
methods is the short circuited waveguide technique [10-11, 43]. In this method, a
material completely fills a short-circuited section of waveguide and the

material's dielectric properties are determined from the loaded waveguide's



measured complex reflection coefficient. One of the requirements of this method

is that the test specimen thickness must be approximately t ~ ij-, where £ is the

wavelength of the microwave test signal fed to the loaded waveguide [43].

Utilizing this technique, a large range of loss tangents, 0001<tans<10 and
relative dielectric constants, 2.00 < grl <1000, can be measured over a broad range

of temperatures 20 °C < T < 500 °C and frequencies, 0.30 GHz < f < 24.0 GHz.
Von Hippel characterized the dielectric properties of many materials as a
function of frequency and temperature utilizing this technique [10].

An open circuited waveguide is used for measuring the dielectric
properties of a material completely covering the open and flanged end of a
waveguide. Complex dielectric constant of a material is found from the
measured input admittance of the waveguide [12-13]. As with the short-circuited

waveguide method, a large range of loss tangents, 0001 <tané <10 and relative

dielectric constants, 200<¢ <1000 can be measured over a broad range of

frequencies, 0.30 GHz < f < 24.0 GHz.

At the Industrial, Scientific and Medical (ISM) frequencies of f = 915 MHz
and f = 2450 MHz, relatively large test specimens are required if either a short or
open circuit waveguide dielectric measurement technique is employed.
Comparable measurement results are achieved utilizing a resonant cavity
perturbation technique that requires a much smaller test specimen [14-31]. For

this technique, the dielectric properties of a test specimen are determined by



measuring the changes in the resonant cavity's resonant frequency and Q-factor
after test specimen insertion into the resonant cavity [14-31].

Many different implementations of the cavity perturbation technique have
been reported [14-31]. Some implementations offer the advantage of the resonant
cavity being used for both heating the test specimen at a particular cavity
resonant frequency or mode while being used to measure the specimen's
dielectric properties at a second cavity resonant frequency or mode [17-19, 22, 23,
28]. This has the advantage of maintaining the resonant cavity at room
temperature while heating the test specimen to high temperatures thus achieving
quite favorable accuracy in the dielectric measurements [17-19, 22, 23, 28].

Utilizing ihe cavity perturbation technique, a loss tangent and dielectric
constant measurement range that covers two orders of magnitude is achieved
[14-31]. The dielectric constant measurement range is limited by the perturbation

condition that states the relative shift in the cavity's resonant frequency can not

Af,

0

Af,

0

exceed < 1%. For resonant frequency shifts that exceed > 1%, the

perturbation formula breaks down when determining a test specimen's relative
dielectric constant. Loss tangent measurement range is limited to two orders of
magnitude since Q-factor measurement uncertainty at both the minimum and
maximum measurable loss tangent values approaches critical values [8].

At millimeter and sub-millimeter wavelengths the physical size and Q-

factor of a resonant cavity operating in a low order mode may be too small to be
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useful [44]. One way to avoid these difficulties is to remove the sidewalls of a
cavity resonator thus leaving two parallel metal plates [32-33, 44]. A more stable
configuration utilizes either spherical or parabolic-shaped reflecting mirrors to
focus and confine the energy to a stable mode pattern.

One common application of these devices is dielectric measurements of
materials at optical frequencies. For this measurement method, a dielectric
specimen is placed at the location, between the two mirrors where the beam-
width of the microwave signal is minimum. A material's dielectric properties are
found by using ray-optic analysis where the measured changes in the resonator's
resonant frequency and Q-factor are again utilized along with the measured
mirror separation and radius of curvature of the mirrors used [32-33]. This
method is used for finding the dielectric properties of low loss dielectric
materials used in both short-millimeter wave circuit components and quasi-
optical elements such as windows, lenses, beam-splitters and substrates. Low
loss measurements of tand ~ 5x10° have been reported for these devices [33].
Afsar et al. [32] reported a loss tangent measurement range of 5x10~° < tand <
136 x 107. An upper loss tangent value of tand =~ 0.01 should be achievable using
an open resonator.

Although cavity perturbation techniques are used for measuring the
dielectric properties of high loss liquids [8, 16], an open coaxial probe technique
permits measurement of a liquid's dielectric properties over a broadband of

frequencies and the test setup required is quite simple [34-42]. An open-ended

11



probe consists of a truncated section of coaxial line, with an optional extension of
a ground plane [42]. In this method, the material under test is placed flush with
the probe and values of the complex permittivity are then determined from the
measurement of the input impedance of the probe [42]. One critical criterion for
this technique is that good contact between the probe and the material under test
is maintained [42]. In the literature relative loss factor measurement ranges of 0.1
< g" < 250 and relative dielectric constant measurement ranges of 2.0 < g/ < 110
have been reported utilizing this technique [34-42]. One drawback of this
technique is that it does not provide accurate results for low permittivity and
low loss materials [36].

The short-circuit waveguide, the open-circuit waveguide, open resonator
and open coaxial probe dielectric measurement techniques are not suitable for
our problem based upon the following reasoning. For the short-circuited
waveguide technique, a relatively large test specimen volume is required at a
frequency of f, = 2.45 GHz. In addition, the test specimen has to be machined to
precisely fit the waveguide. Neither of these requirements is practical. Major
foreseeable problems with an open waveguide technique include maintaining a
uniform waveguide to test specimen contact and a uniform temperature profile
throughout the test specimen volume when heated. At a frequency of f, = 2.45
GHz, the required physical size of an open resonator and test specimen makes it
impractical to pursue this type of dielectric measurement technique. A major

drawback of the open ended coaxial probe technique is that when the probe is
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heated the outer conductor of the coaxial probe heats faster than the inner
conductor [42]. This causes the outer conductor to expand more than the inner
conductor, producing an air gap between the inner conductor and a solid
material under test [42]. This air gap can lead to errors as high as 300% in the
relative loss factor measurement [42].

Instead, a cavity perturbation technique is selected to fulfill the
measurement requirements of this project. This technique is very conducive to
performing dielectric measurements at a frequency of f, = 2.45 GHz. All of the
conditions outlined at the beginning of this section, apart from the loss tangent
measurement range, are achievable using a standard cavity perturbation
technique. With test equipment available the measurement and data acquisition
process are easily automated permitting good repeatability in measured results
if "averaging" techniques are utilized. Using a cavity perturbation technique
allows for a uniform temperature profile to be maintained throughout a small
test specimen. The only major technical issue to overcome is extending the loss
tangent measurement range beyond two orders of magnitude. In the following
chapters, the design, simulated and measured operation of a resonant cavity that
has a loss tangent measurement range that covers four orders of magnitude is

described.
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CHAPTER 3
DIELECTROMETER DESIGN

3.1 Introduction

In order to make elevated temperature dielectric measurements, an
experimental dielectrometer was implemented as shown in the block diagram of
Figure 3.1. The reflectometer measures the frequency response of the test cavity
at approximately 2.45 GHz. The temperature of the cavity ard test specimen was
monitored by two thermocouples. The heater, consisting of two power resistors
controlled by an analog temperature controller, was used to heat the insulated
cavity and test specimen.

Design details of this dielectrometer consisting of a hybrid coaxial cavity,

a reflectometer, a temperature controlled heater and thermometer are presented.

Reflectom eter
(2.45 GHz)
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13

T est specim en

Figure 3.1 Experimental dielectrometer for elevated temperature dielectric
measurements.
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3.2 Cavity Design

3.2.1 Design Considerations

Four technical criteria must be met by the design of this test cavity. First,
the resonant frequency of this cavity is f, ~ 2.45 GHz. Second, the magnitude of
the unloaded cavity Q-factor must be large enough to allow for adequate loss
tangent measurement resolution. Third, in order to achieve maximum frequency
sensitivity to load variation, the test specimen must be placed in a strong electric
field region. Finally. since any dielectric loading of the test cavity degrades its
input impedance match, the input impedance of the empty test cavity must be
well matched to its feed line so as to realize a loss tangent measurement range of
0.001 < tand <1.0.

To maintain reasonable accuracy in the dielectric measurements, the test

specimen loading on the cavity must satisfy the following two perturbation

< 1%, and the

A
assumptions: the relative shift in resonant frequency is ‘—t:g
)

loaded cavity Q-factor is Q; > % .

To achieve these technical criteria and measurement accuracy conditions a
resonator as shown in Figure 3.2 was used. The resonator consists of four parts: a
half-wavelength coaxial resonator, a cylindrical parallel plate waveguide section,
a low impedance coaxial transmission line and a coupling loop. A resonant

frequency of f, ~ 2.45 GHz and a Q-factor of approximately Q, ~ 2900 is initially
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set by the half wavelength coaxial resonator. Dielectric test specimens lie at the
center of the cylindrical parallel plate waveguide, a strong electric field region.
A transmission line extending from z = L to z = L + d. (see Figure 3.2) permits
energy to be coupled via the magnetic field from the coaxial resonator to the
cylindrical parallel plate waveguide. A wire loop, situated within the test cavity,
connected to the microwave feed line through the cavity's input port excites
electric and magnetic fields within the test cavity as well as setting the cavity's
input impedance.

In order to insert a dielectric within the cavity, the coaxial resonator is
separated from the specimen mounting plate as shown in Figure 3.2. Electrical
contact between the coaxial resonator and the test specimen mount is maintained
via phosphorbronze spring fingers on the specimen mounting plate.

To cover a large loss tangent range, the resonant cavity is used in either a
"contact" or a "partial contact" mode. In the contact mode the test specimen
contacts both plates of the parallel plate waveguide, as shown in illustration a) of
Figure 3.2. Conversely for the partial contact mode, the length of the center
conductor of the coaxial resonator is reduced. This causes a corresponding
increase in the spacing between the plates of the parallel plate waveguide, so
that the test specimen now contacts only the lower plate of the parallel plate
waveguide as shown in illustration b) of Figure 3.2. This causes a reduction in
the field energy within the test specimen, thereby, maintaining reasonable Q-

factors while permitting higher loss materials to be measured. Use of the two test
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L =60.3 mm (contact mode), 59.3 mm (partial contact mode), d, = 2.0 mm
(contact mode), 3.0 mm (partial contact mode) and d; = 3.1 mm.

Figure 3.2  Cross-section of the cavity structure of the dielectrometer.
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modes allows for a loss tangent measurement range that covers

0.0001 < tand <1.6.

3.2.2 Design of the Cavity
A. Cavity Radius
At a given resonant frequency, the unloaded Q-factor of a coaxial cavity is

proportional to the radius of its inner and outer conductor, r, and r,. The

unloaded Q-factor is a maximum value when LN 3.58 [37]. A ratio of L 4.0
T L,

was chosen to simplify the dimensioning in the FDFD model. This cavity radius
ratio causes the unloaded cavity Q-factor to be reduced by approximately 5% as
compared to the Q-factor of a cavity that has the optimum radius ratio. The
radial cavity dimensions were chosen to be r, = 7.0mm and r, = 28.0mm .

To insure that this design prevents higher order modes to propagate
within this cavity at f = 2.45 GHz, the cut-off frequency of the lowest order
transverse mode has been calculated. For a cylindrical coaxial line with

r, =7.0mm and r, =28.0mm the TE, mode has a cut-off frequency of f.~ 2.728
GHz [37]. Thus, no transverse modes will exist at the desired resonant frequency

of f, ~ 2.45 GHz.
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B. Inner Conductor Length
The half wavelength coaxial section sets the approximate resonant
frequency to f = ¢/2L where L is the length of the center conductor and ¢ is the

resonant frequency [44]. Since the parallel plate waveguide is capacitive, the

length of the center conductor must be slightly shorter than L = %Q, where 1, is

the resonant wavelength, in order to set the cavity's resonant frequency properly.
The length of the half wavelength coaxial section should be between
60.0mm < L <62.5mm in order to obtain a cavity resonant frequency of

approximately f, ~ 2.45 GHz.

C. Plate Separation of the Cylindrical Parallel Plate Waveguide

Optimum plate separation of the cylindrical parallel plate waveguide was
determined by the test specimen’s thickness and dielectric loss. Since low loss
materials do not increase cavity losses significantly, low loss specimens are
tested in the contact mode. This test mode is characterized by the plate
separation being equivalent to the available test specimen thickness, d, = t = 2.0
mm. On the other hand, high loss dielectrics increase cavity losses excessively if
tested using the contact mode. Thus to reduce specimen loading on the cavity an
air gap between the test specimen and the top plate of the parallel plate
waveguide was introduced. This causes a corresponding increase in the plate

separation, a key factor in setting the loaded cavity Q-factor for the partial
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contact mode. In order to maintain the measurement condition that states that Q,

> —%’- a loaded cavity Q-factor that exceeds Q, = 1000 is necessary for all testing

conditions. Via results obtained from a numerical simulation technique, the plate

separation was selected to be d, = 3.0 mm.

D. Low Impedance Coaxial Transmission Line

To optimize energy coupling between the coaxial resonant structure and
the parallel plate waveguide structure, a transmission line impedance matched
to both structures is required. The impedance’s of the coaxial resonator at z = L
and the cylindrical parallel plate waveguide at z = L + d, are Z = 0. To achieve
an impedance match at both of these planes, the input impedance of the
transmission line as seen by both microwave structures must be Z;, = 0. The
characteristic impedance of this section of air-filled transmission line [46-47] is

given by

ol
e \o (3.1).
To obtain a characteristic line impedance that approaches Z, ~ 0, the radius of
the transmission line, r,, should be between r,> r, > 0.95r,. For a short section of
a low impedance transmission line, input impedance as seen by either the

resonant coaxial section or the parallel plate waveguide is approximately given

by
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Z,=2,+jiZ,A (3.2)
where Z, is the characteristic impedance of the transmission line, B is the
propagation constant of the microwave signal, | is the length of the transmission
line and Z, is the impedance of either the resonant coaxial section at z = L or the
parallel plate waveguide at z = L + d; depending at which reference plane Zi, is

being evaluated. Thus to obtain an impedance match between the microwave
networks the transmission line length, d,, should be d, << % A low impedance

transmission line matched to the coaxial resonator at z = L and the parallel plate
waveguide at z = L + d, is realized with a transmission line that has a radius of

r, =27.0 mm and a length of d, =3.1 mm.

E. Test Specimen Dimensions and Position

Since the cavity fields are axially symmetric, the specimen shape is
selected to be cylindrical. The cylindrical dimensions of the test specimen are
dependent on both the electric field’s radial distribution within the cylindrical
parallel plate waveguide and the dimensions of the raw materials to be tested.
Within the cylindrical parallel plate waveguide the electric field’s radial
distribution is proportional to the first order Bessel function of the first kind. To
maintain a relatively uniform electric field distribution throughout the test
specimen while achieving maximum frequency sensitivity to load variation, a

test specimen diameter of 2r, =10.0mm is chosen.
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F. Coupling Loop

A wire loop, commonly referred to as a coupling loop, excites electric and
magnetic fields within the test cavity, as well as setting the cavity's input
impedance. The coupling loop is connected to the cavity's input port and is
terminated at the boundary z = 0 (see Figure 3.2). Current flowing on the
coupling loop excites evanescent TE and TM modes in the vicinity of the
coupling loop, while a resonant quasi-TEM mode is excited in the rest of the
cavity structure when the frequency of the exciting signal is at or near the
cavity's resonant frequency. The impedance of the coupling loop and hence the
input impedance of the cavity is set by the effective cross sectional area of the

coupling loop with respect to the r - z plane [48].

3.3 Temperature Controller Design

A temperature-controlled heater is designed for heating test specimens
contained within the resonator from 20°C to 120°C. An analog electronic circuit
monitors the specimen and cavity temperatures by thermocouples and a digital
thermometer while it controls two power resistors that heat both the test

specimen and the resonant cavity.



3.3.1 Temperature Control Circuit Design

An analog controller regulates the temperature of the test specimen. The
control circuit consists of a voltage amplifier, a comparator, a B]T transistor and
a relay switch. A system diagram, with component values, is presented in Figure
3.3. A non-inverting amplifier with a gain of A, = 57 converts the D.C.
thermocouple voltage of the test specimen mount from the millivoit range to the
0 to 15 D.C. Volt range [49]. This amplified thermocouple voltage provides one
input signal to a comparator, while the other input is a user-controlled voltage
that corresponds to a desired test specimen temperature setpoint. While the
amplified thermocouple voltage is less than the user controlled voltage, the
comparator's output is approximately Vo =~ +15V thus saturating Q, and causes
the power relay to close [50-51]. When the amplified thermocouple voltage is
equal to or greater than the setpoint voltage, the comparator's output is Vo = -15
V causing the transistor to turn off which opens the relay coil. The relay box
provides 120 V at 15 A, AC to two 300 Q power resistors connected in parallel
producing 96 W of power for heating the test specimen mount. The temperature
of the test specimen and its mount are monitored by a digital thermometer
connected to two thermocouples that have an overall temperature measurement

uncertainty of AT = +2.2 °C [52].
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Figure 3.3  Circuit schematic for the analog controller.

3.4 Reflectometer Interface

A reflectometer provides a swept microwave test signal to the test cavity
and monitors the cavity's frequency response. A synthesized sweep oscillator,
model number HP 83752A, provides the swept frequency microwave signal.
The range of the frequency sweep is set by the user. A scalar network analyzer,

model number HP 8757D, monitors the reflection coefficient of the cavity's input
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port over the same user defined frequency sweep range via two directional
couplers and two diode detectors. The directional couplers, (Waveline
Incorporated, serial numbers 5714 and 5715) have a coupling factor of 20 dB and
30 dB directivity and sample both the incident and reflected signals supplied by
the sweep oscillator and reflected by the test cavity respectively. The sampled
signals, modulated 30 kHz square waves, are demodulated using diode
detectors connected to the directional couplers and their output is sent to the
scalar network analyzer. From the reflection coefficient spectrum, the cavity's
resonant frequency is determined and the cavity Q-factor is calculated from five

different power bandwidths.



CHAPTER 4

DIELECTRIC CONSTANT DETERMINATION USING A FINITE
DIFFERENCE FREQUENCY DOMAIN METHOD

4.1 Introduction

The relative dielectric constant and loss factor, g,' and g,", of a material

can be found by measuring the perturbation of a resonant cavity that occurs
upon insertion of the material. Relative dielectric constant, g,', is obtained by

measuring the shift in resonant frequency of the cavity, Af, , and the relative loss

factor, ¢ )

r

is obtained by measuring the change in the Q-factor, AQ,. Relative

dielectric constant and loss factor are related to shift in resonant frequency and
change in Q-factor, respectively, through the perturbation formula. Application
of the perturbation formula requires knowledge of the electric and magnetic
fields in the perturbed cavity. These fields are calculated numerically with a
finite difference frequency domain method.

The FDFD numerical algorithm and problem solving approach are
presented first. Following this, procedures for calculating mean electric stored
energy, mean magnetic stored energy and power dissipation in the cavity are
developed. These quantities are necessary to determine the resonant frequency,
f,, and Q-factor, Q of the cylindrical cavity. Guidelines for selecting the grid

structure for the problem domain are given. The known fields in a simple short-
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circuited coaxial resonator of length L. = — are then computed to verify the

(NS W

algorithms employed. Analytically calculated and numerically computed
resonances are compared. The electromagnetic field solutions for the % coaxial

resonator are then presented in graphical format.

4.2 Relating Dielectric Constant to Cavity Field Perturbations
The complex resonant frequency, Q, of a resonator is defined as
)
Q, =w, + JE—C"S 4.1)

where o, is the angular resonant frequency and Q is the quality factor of the
cavity.

When a small, non-magnetic, dielectric specimen is inserted into the test

cavity the relative change in the cavity’s complex resonant frequency, A§° , [44]
0

is given by

- .[(8:2 - sr'l )SOE: : E‘.’dv
Q,-Q v

I —-—
Q, [(£:6E} E, + moH; -Hy)dv
VC

[

4.2)

where 4, is the permeability of free space (42 x10™ A/m ) » E is the electric field

intensity, H is the magnetic field intensity, and V. and V, are the cavity and

test material volumes. Subscripts 1 and 2 designate values before and after test
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material insertion and an asterisk denotes the complex conjugate. Re-writing

Eq.(4.2) in terms of Q and f [44] results in

Q-Q f-f .(1 1) Af, (1)
2 = +] - ==+ JA[ — 4.3),
Q, £, \2Q, 2Q.) £ \2q (#3)

f, — f
provided that (—I-J <<1,and M <<1.
2Q b

Here f =2—a;t- is the frequency in Hertz and Af is the resonant frequency shift of

the cavity caused by test specimen insertion. Combining Eq.(4.2) and (4.3) we get

- [(en - €)&E; ‘E dv
Vo (4.4).

f, 2Q/  [(&E; -E, + wH;] -H,)dv
VC

It is useful to separate Eq.(4.4) into its real and imaginary parts

(& =g [E;-E,dv
Afy %o (4.5)
z - . L] :
f, [(&E}Ey + sH; -H,)dv
Ve

& & [E;-Edv
Vo (4.6).

1
2Q, I(eoE, -E, + gH; - H,)dv
vc

At this point, it is necessary to evaluate the integrals on the right hand side of
Eqs.(4.5) and (4.6). Following the perturbation assumptions stated in the
previous chapter, when the integrals in Eqs. (4.5) and (4.6) are evaluated, the
quantities yielded are real. For simple resonant structures, the loaded cavity

fields E, and H, are approximately equal to the empty cavity fields E, and H,



[53-55]. However, since the hybrid coaxial cavity is a complex geometric
structure, the cavity fields E, and H, are not equivalent to the empty cavity
fields E, and H,. A numerical computation of the cavity fields E, and H, within
the test cavity is necessary to evaluate the integrals in Egs.(4.5) and (4.6).

These calculated field solutions are also used to determine the mean
stored electric and magnetic energies and the wall losses in the cavity. The Q-
factor of the cavity can thus be determined. Calculation of mean electric and
magnetic stored energy also provides the basis for determining the resonant
frequency. Indeed, the frequency of excitation is progressively incremented until
the computed mean electric and magnetic stored energies are equal, at which

point the cavity is deemed to be at resonance.

4.3 HERZ Program
HERZ (H-field, E-field, r-z geometry) [56] is a FDFD numerical simulator
that models cylindrically symmetric electromagnetic field problems for which
the electric fields have radial and axial components (r,z) while the magnetic
fields have only an azimuthal component (¢).
Time-harmonic solutions for such problems are of the form
E = E,(r,2)+ E(1,2) 4.7)

H =H,(r,2) 4.8)
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Assuming an ¢™ time dependence, the integral form of Maxwell’s

equations can be expressed as

dE-dl = —jou [[H-ds 4.9)

§H-di = (o + jwe) [[E-ds (4.10)
The finite difference algorithm is applied on the rectangular grid structure
shown in Figure 4.1. By discretization of Eq.(4.9) the azimuthal field component,
H,, is computed at the center of every grid block [56]. The resulting linear
equations are of the form

a,E, +b E +c E, +d E =¢ H (4.11)

c PR, TR T,
where a;; through e, ; depend on the grid dimensions Ar, and Az;. We now set

rH, =H, (4.12)
where r is the radial distance from the axis of symmetry to the center of an
individual grid block [56].

By discretization of Eq.(4.10) each of the electric field components
appearing in Eq.(4.11) are now written in terms of the magnetic fields at the
center of each of the adjacent grid blocks. The resulting equations are of the form

AyHy +BH,  +C H, +DH, +EH, =0 (4.13)
where the coefficients A;; to E;; are given in terms of the angular frequency, o,

the electrical properties, o, ¢°

T

and u, and the radial locations, r;,, and

dimensions of the pertinent grid blocks, A, and Az, [57]. Each of the N grid
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blocks referred to by indices i, j may have distinct electrical properties o, ¢’

T

and g4 and is described by an equation of the form of Equation (4.13). The N

equations are solved by Gaussian elimination for all values of H}, and hence H,.
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FIGURE 4.1 The finite difference grid structure used in HERZ. All magnetic
field components are azimuthally directed and are computed at the
grid centers, while the electric field components are computed on
the grid boundaries.
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Problem excitation may be both or either magnetic and electric. Electric field
excitation may be specified on the perimeter of the problem domain only. At all
other locations in the problem domain the electric field excitation is set to zero.
Magnetic field excitation may be specified at the center of any grid block in the
problem domain. Both magnitude and phase of the electric and magnetic field
vectors must be specified.

Except at the location where the electric field excitation is specified, the
perimeter of the problem domain is taken to be a perfect conductor, and where,

hence, Eungential is set to zero [56].

4.4 Algorithms for Finding Resonant Frequency and Q-Factor of a
Circular Cylindrical Resonant Cavity

To permit calculation of the resonant frequency, f,, and Q-factor, Q, of
the empty cavity, two subroutines were added to the existing program HERZ.
One subroutine calculates the mean electric and magnetic stored energies within
the cavity for a range of frequencies. The frequency at which these quantities are
equal is taken to be the resonant frequency of the cavity. The other subroutine
calculates power dissipation in the cavity walls and the test specimen and is

used to determine the empty and loaded cavity Q-factors.
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4.4.1 Algorithm for Calculating Electric and Magnetic Mean Stored Energies
The mean magnetic and electric stored energies are calculated for each

grid block within the cavity. These energies are then summed. The mean

electrical stored energy, dW, , stored in grid block i, j, at co-ordinates r,z, is

given by

2

2
+ )e,: &, ArAZ, (4.14)

E

:kl

dW,_ = %(IE

where IEr.‘,l and l]-:ZH are the magnitudes of the peak radial and axial electric

field components, ¢ is the grid block’s relative dielectric constant, r, is the
radial position and Ar, is the radial thickness and Az, is the axial thickness of
grid block i, j. The mean stored magnetic energy, dW,, , in grid block i, j is
1 2

dw,, = §|H,”| o ALAZ, (4.15)
where |H ﬁ,| is the magnitude of the peak azimuthal magnetic field of grid block
L J-
The total mean electric stored energy W, is

I J
We =2 D dW (4.16)

i=1 j=1

and the total mean magnetic stored energy W, is
LYEDWN (4.17)

where [ and J are the total number of axial and radial grid blocks respectively.
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The resonant frequency shift is the difference between the resonant
frequency of the loaded cavity and that of the empty cavity. Calculating the
resonant frequency shifts that occur when the cavity is loaded with a dielectric
whose relative dielectric constant is given a large range of different values,
permits one to establish a relationship between the relative dielectric constant of
a test specimen and the resonant frequency shift it produces when inserted into

the test cavity.

4.4.2 Algorithm for Calculating Power Dissipation
To determine the loss factor, sr", of a test specimen, the change in Q-

factor, AQq, of the cavity that occurs when the specimen is introduced must be
calculated. As previously stated, the loaded cavity Q-factor is defined as

2W,

—p—NE__ 4.18
“p, +P, (4.18)

Q.

The mean electric stored energy, W, , is calculated from Eqs.(4.14) and (4.16). The
calculation of cavity wall losses, P, , and dielectric losses, P,, is described below.
Conductor losses in the cavity, P, are calculated at the surface of each

grid block adjacent to a cavity wall. Four cases must be considered in order to
calculate the total power dissipation per grid block. With reference to Figure 4.1
the four cases are:

(1). If grid block i~1,j is a conductor then the power dissipation,

dP,, .., at the inner most boundary of grid block i, j is
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,'|2n{ri - -AE'i)Azj (4.19)

i-L,j
(2). If grid block i+1,j is a conductor then the power dissipation,

dP,,. ., on the outer most boundary of grid block i, j is

DU,
de,
l#!j

(3). If grid block i, j— 1 is a conductor then the power dissipation,

HY | r +—-1) (4.20)

dPy;, on the left boundary of grid block i, j is

, WU,
dPwy = 20,
i, jm1

(4). If grid block i,j+1 is a conductor then the power dissipation,

2

AL (4.21)

H"

dP,

Wij?

WU,
dPy.. = ’
Wiy 20,1

Here IH',:J is the magnitude of the azimuthal magnetic field extrapolated from

on the right boundary of grid block i, j is

HY, m‘iAlg (4.22).

the center of grid block i, j, to its boundary, and the conductivity, o, of the grid
block boundary is the conductivity of the cavity wall. The total power
dissipation at the cavity walls adjacent to grid block i, j, is the sum of the RHS of
Equations (4.16) through (4.22). The total power dissipation caused by all wall

losses, P, is

P, = izj:dpw 4.23).
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Power dissipation in the i, j subvolume of the perturbing specimen is

En.|2 +[E., ’)ij (4.24)

by, = O'Lj(
where o, is the conductivity of the dielectric and is defined by
0,; = o(tand) & & (4.25).

The total power losses, P, in the dielectric perturbing specimen are

P, =YY dp, (4.26).

=1 j=1
With W, Pw and Pp known, Q, can be calcuiated from Eq.(4.18). Calculating the
changes in Q factor of the resonant cavity that occur when the cavity is loaded
with a dielectric whose tan$ is given a large range of different values, permits
one to establish a relationship between the tand of a test specimen and the
change in Q-factor it produces when inserted into the test cavity.

The results of the foregoing numerical calculations permit one to deduce

the relative dielectric constant ¢ and loss tangent tan3 of a test specimen from

the experimentally measured shifts in resonant frequency and Q factor of the test

cavity.

4.5 Grid Structure for the Problem Domain

To achieve results within 0.5% uncertainty, it was found during the

course of repeated numerical simulations that no grid block dimensions should



be larger than A/15. As well, the problem domain should utilize a large number
of grid blocks.

The size of grid blocks used within subdomains, such as the test specimen
and in regions where the electromagnetic fields change rapidly in space, should
be at least five times smaller than would be the case if a uniform grid block size
were employed throughout the problem domain. Generally, grid block
dimensions at media interfaces that yielded satisfactory results, were, in the
radial direction less than 0.04% of the wavelength, and in the axial direction, less
than 0.01% of the wavelength.

The available computer memory permits a maximum of 5999 grid blocks.
The test cavity nominally contains 85 grid blocks in the axial direction and 70
grid blocks in the radial direction, for a total of 5950 grid blocks. This total
includes the dielectric specimen, 10.0 mm in diameter and 2.0 mm in thickness,
which occupies 506 grid blocks in the contact mode, 23 in the radial direction
and 22 in the axial direction. While for the partial contact mode, the dielectric
specimen occupies 460 grid blocks, 23 in the radial direction and 20 in the axial
direction.

A large number of grid blocks are required to represent the cylindrical
parallel plate waveguide region since energy storage within the dielectric, which
is located in this region, must be calculated very accurately. A large number of
grid blocks are also required to represent the low impedance transmission line.

Together these two regions occupy less than 4% of the cavity volume but require
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approximately 20% of the total number of grid blocks used. In the cylindrical
parallel plate waveguide region there are typically 2170 grid blocks (70 radial
and 31 axial) for the partial contact mode and 1470 grid blocks (70 radial and 21
axial) for the contact mode. The low impedance coaxial transmission line is
typically represented by 180 grid blocks (18 radial and 10 axial).

For the cavity Q-factor calculation, the conductivity of the brass walls is
taken to be 1.1x10’(Qum) . Finally, the cavity is excited by specifying a peak

magnetic field of 0.5 % at a phase of 0° at the center of the grid block adjacent

to the surface of the inner conductor of the coaxial section and the short circuit

boundary of the resonator wall at z=0.

4.6 A Simple Test of the Algorithm for Finding Resonant Frequency

A simple example is presented for testing the algorithm on a simple
cylindrically symmetric short-circuited % coaxial resonator. The frequency of

excitation is continuously incremented until the computed mean stored electric
energy equals the computed mean stored magnetic energy, at which point the

cavity is deemed to be resonant. The general time harmonic field solutions are

[53]
1, = oo 27,
2nr A,
4 601 27 (4.27)
IlEr =—r_9'Sin(Z )



where I, is the peak TEM current, 1, is the resonant wavelength, r is the radial

position, and z is the axial position. Given these field solutions, the mean stored
electric and magnetic energies, and power dissipation in the cavity walls can be
analytically calculated at resonance. These results can then be compared to the
corresponding numerical results obtained with HERZ.

The cavity dimensions will be similar to those of the coaxial portion of the
hybrid coaxial dielectrometer. Cavity length is L = 6.075 cm, yielding a
theoretical resonant frequency of f, = 2.469 GHz. The inner conductor radius is
7.00 mm and the outer conductor radius is 28.00 mm. 70 grid blocks in the radial
direction, and 69 grid blocks in the axial direction represent the coaxial cavity.

The inner conductor occupies 37 grid blocks in the radial direction. The magnetic

field excitation of 0.5 ‘ym at a phase of 0° and the conductivity of the brass walls

is 1.1 x10’(Qm) ™', as for the cavity described in the previous section.

The results presented in Table 4.1 indicate that there is excellent
agreement between analytically calculated values and those calculated
numerically with the HERZ program. These results give confidence that HERZ
can accurately model cylindrically symmetric resonators. Figures 4.2 and 4.3
display the electric and magnetic field distributions described by Eq.(4.27).
These distributions may be compared to the numerically calculated field

distributions for the hybrid coaxial cavity shown in Figures 5.1, 5.3, 5.4 and 5.6.

39



Table4.1 Comparison between analytically calculated and numerically

calculated parameters for a resonant empty short-circuited %

coaxial resonator.

Analytically Numerically Magnitude of
Calculated Calculated with difference (%)
HERZ
Resonant
frequency (GHz) 2.469 2.468 0.057
Mean magnetic
stored energy 1.018 1.018 0.0
(107%))
Mean electric
stored energy 1.018 1.018 0.0
(107%])
Power dissipated
(10°W) 9.390 9.395 0.054
Q-factor 3364 3361 0.097

4.7 Conclusion

The numerical procedures presented in this chapter lead to the empty and
loaded cavity field solutions of the hybrid coaxial cavity. These field solutions,
in conjunction with the perturbation formula along with measured resonant
frequency shift and Q-factor shift are used to determine the complex relative
dielectric constant of a test specimen contained within the hybrid coaxial cavity

dielectrometer.
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A two-dimensional (r, z) plot of the magnitude of the radial electric
field distribution, E,, within a resonant empty short-circuited %

coaxial cavity. The inner conductor extends from z = 0 cm to z »
608 cm and r = 0 cm to r = 0.7 cm. The half wavelength is
measured along the z-direction. The resonant frequency is fo =
2.469 GHz. Note the zero tangential electrical field intensity at the
cavity end walls, and the maximum electric field intensity at the
cavity mid plane.

41



0.45

= 0.26

i
Q
o
T 024
=]
E
]
<

Figure 4.3

,,,,,

0.04
0.02 003 opos 006

z(m)

A two-dimensional (r, z) plot of the magnitude of the azimuthal
magnetic field distribution, H, within a resonant empty short-

circuited % coaxial cavity. The inner conductor extends from z = 0

cm to z = 6.08 cm and r = 0 cm to r = 0.7 cm. The half wavelength is
measured along the z-direction. The resonant frequency is fo =
2.469 GHz. Note the maximum tangential magnetic field intensity
at the cavity end walls, and the zero magnetic field intensity at the
cavity mid plane.
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CHAPTER 5

MICROWAVE CHARACTERISTICS OF THE EMPTY AND
LOADED CAVITY

5.1 Introduction

In this chapter the hybrid coaxial cavity's analytic, simulated and
measured electromagnetic characteristics at resonance are described. The
analytical field solutions for the regions within the two primary microwave
structures are described. As well, the field solution for the dielectrically loaded
cavity is supplied. Numerically calculated field solutions are displayed
graphically for the empty cavity as well as the cavity loaded with a lossless
specimen whose relative dielectric constant is &' = 10. Then numerically
calculated Q-factors are presented for both the contact and partial contact modes.
The empty cavity's measured resonant frequency is then compared to the
numerically computed value. Finally, polynomial relationships are established

that relate g, to Afo and tand to AQ, for both cavity configurations.

5.2 Cavity Field Solution

A simple analytic field solution for the cavity does not exist since a low
impedance transmission line is used for coupling the two primary microwave
structures. However, for both the main coaxial resonator and the cylindrical

parallel plate waveguide section analytic field solutions do exist and are
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presented below. Solutions obtained from the FDFD program, HERZ, for this

cavity structure are verified against these analytical resuits.

5.2.1. Half Wavelength Coaxial Section
As previously stated, the hybrid coaxial cavity's resonant frequency and
Q-factor are mainly determined by the resonant coaxial section. Recalling that

the field solutions for a half-wavelength resonant coaxial cavity [54] are given by

I 2%
-l
. 27er° Aoz

[

|

{ (5.1).
|LEr = -O—Io'sin(ggz]

r A,
a similar field pattern should be observed within the resonant coaxial section of
the hybrid coaxial cavity. If one was to graph the solutions of Eq.(5.1) assuming
that [p ~ 22.0 mA, Ag = 12.24 cm, and 0.7 cm <r <28 cm and 0 < z < 6.03 cm and
compare those plots to the numerical solutions displayed in Figures 5.1 and 5.2
for 0 < z < 6.03 cm and 0.7 cm < r < 2.8 cm, essentially identical plotted results

would be observed between the numeric and analytic solutions.

5.2.2. Cylindrical Parallel Plate Waveguide Section
When the frequency of the electromagnetic fields within this structure is
below the cutoff frequency of the TE, mode, the structure acts as a radial

transmission line [58]. Since this geometric structure does not have a TEM



resonance, its field solutions, for all frequencies below the cutoff frequency of the

TE,, mode [58], are described by:

-
P =
Ao
;P ) (5.2)
E, =A0Jo(-—7-tr)
l P

where 7, is the intrinsic impedance of free space, J, and J, are the first and
second order Bessel functions of the first kind and A, is the amplitude of the
axial electric field at r = 0. The analytical solutions described above are only
valid for 0 < r < 2.4 cm (see Figure 3.2) because the radial discontinuity between
2.7 cm < r < 2.8 cm (see Figure 3.2) causes multiple higher order mode reflections
in and around this boundary. For Eq.(5.2), it is assumed that Ao~ 12.24 cm, 0 <r

<2.4 cm and A, is determined from the numerically calculated solution.

5.2.3 Low Impedance Transmission Line and Surrounding Region

A simple analytic solution similar to those given in Eqs.(5.1) and (5.2)
does not exist for the low impedance transmission line coupling the two other
structures. One of the short falls of the finite difference and finite element
numerical techniques is accurately predicting field solutions in and around
cavity discontinuities [8]. Indeed, the mode matching technique is best suited for
modeling cavity field solutions in regions around discontinuities [59]. However,

mode matching analysis of the axial discontinuity at r = r; was beyond the scope

45



of this thesis. However, it should be pointed out that reactive evanescent TMo
modes exist in the region near this radial discontinuity around z=Land z =L +
d,, causing multiple reflections at this transmission line boundary [59]. Since a
finite difference technique was used, the numerical solutions shown in Figures
5.1 - 5.6 are not correct for 6.03 cm < z < 6.38 cm. However because of the
relatively small volume, surface area and length of this transmission line in
comparison to the overall cavity structure, numerical results provided by the

FDFD program, HERZ, are deemed acceptable for the hybrid coaxial cavity.

5.2.4 Loaded Cavity Field Solution
When a dielectric specimen of radius, r, (see Figure 3.2), is placed in the

cylindrical parallel plate waveguide, the waveguide's field patterns are
described by [58]

for0<r<r,

1, =2 77y (22 5

|5 1

o 2

{ (5.3)
lE, = AOJO(EE e r)
| A

for 24cm > r > r,
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(5.4)

where Y, and Y, are the first and second order Bessel functions of the second

kind and B, and C, are the coefficients of the first and second order Bessel
functions. Their values are found by equating the respective field solutions of
Egs.(5.3) and (5.4) atr = r,.

If one was to graph the solutions of Egs.(5.3) and (5.4) assuming Ao ~ 12.24
cm, 0 <r < 2.4 cm, 6.6cm > z > 6.4cm, and Ao, Bo, and G are calculated utilizing
the numerical solution at the boundary r = 0.5 cm, essentially identical results
would be observed between the numerical and analytic solutions. Similar resuits
would be observed when the numerical results of Figures 5.4 and 5.6 for 0.7cm <
r < 2.8cm and 0 < z < 6.03 cm are compared to a graphical representation of
Eq.(5.1) for 0.7cm < r < 2.8cm, 0 < z < 6.03cm, provided that I, = 22.0mA, and do =

12.24 cm.
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Figure 5.1 A two-dimensional (r, z) plot of the magnitude of the radial electric
field distribution, E, within the empty hybrid coaxial cavity
displayed along side a half cavity cross-section.
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cavity displayed along side a half cavity cross section.
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Figure 5.4 A two dimensional (r, z) magnitude plot of the radial electric field
distribution, E,, within the loaded cavity operating in the contact
mode containing a material with a relative dielectric constant of ¢.’
= 10 displayed alongside a half cavity cross-section.
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Figure5.5 A two dimensional (r, z) plot of the magnitude of the axial electric
field distribution, E, within the loaded cavity operating in the
contact mode, containing a material with a relative dielectric
constant of €, = 10, displayed alongside a half cavity cross-section.
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magnetic field distribution, H,, within the loaded cavity operating
in the contact mode containing a material with a relative dielectric
constant of €’ = 10, displayed alongside a half cavity cross-section.
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5.3 Empty Cavity Q-factor and Resonant Frequency

From the perturbation arguments derived in Chapter 4, both the empty
and loaded cavity Q-factors are required for determining the loss factor of a test
specimen. The FDFD program, HERZ, is used to calculate the power dissipation
and unloaded Q-factor of the cavity, the results of which are given in Table 5.1.
For these calculations, the conductivity of the brass walls is assumed to be

o=11x10"(Qm)" and the wall currents have a peak value of I = 22.0 mA which
corresponds to a peak magpnetic field of 0.5 “ym at a phase of 0° as described in

Section 4.6 of the previous chapter. The HERZ simulation program does not have
the capability of accurately modeling the effects of the spring finger contacts or
the deleterious effects of the higher order TMo, modes within and surrounding
the low impedance coaxial transmission line. Both of these shortcomings of the
simulation program cause the calculated power dissipation in the cavity walls to
differ from the actual cavity power dissipation value. Conductivity of the cavity
walls was not measured and the value in the simulation program corresponds to

the manufacturer's specification for the brass used in constructing this cavity.

However this conductivity value could vary by up to +£20% (i.e. 0.9 x 10°(Qm)~" <

o < 13x107(Qm)™" ). If an uncertainty window of +20% in calculated unloaded

cavity power dissipation and Q-factor is permitted, experimental and numerical

results for unloaded cavity Q-factor compare favorably.



Table 5.1 Numerically calculated power dissipation and unloaded Q-factor
values for both the unloaded contact and partial contact cavity
configurations.

Unloaded Q-factor Unloaded Q-factor
(Measured) (Theoretical)
Contact mode ~2800 3247
Partial contact mode ~2935 3294

As stated in Chapter 4, resonant frequency is determined by finding the

frequency at which mean electric stored energy equals mean magnetic stored

energy. Thus to determine a cavity's resonant frequency, HERZ computes mean

electric and magnetic stored energies at individual frequencies over a

predetermined frequency range. At the simulated resonant frequency, the

absolute difference between mean electric stored energy and mean magnetic

stored energy will be a minimum. To verify the validity of these numerical

results, a comparison of numerical and measured resonant frequencies is made

in Table 5.2, given below. From these results it is shown that HERZ predicts

resonant frequency accurately.

Table5.2  Numerically calculated and measured resonant frequencies for
both the unloaded contact and partial contact cavity configurations.
Resonant frequency | Measured resonant Percent
predicted by frequency, f,(GHz) | difference (%)
HERZ, f,(GHz)
Contact mode 2.436 2.427 0.35
Partial contact 2.479 2.479 0.016
mode
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5.4 Equations for Dielectric Determination

When a test specimen is inserted into a resonant cavity, its relative
dielectric constant, €., and loss tangent, tand, are determined from the loaded
cavity’s measured resonant frequency shift, Af,, and Q-factor, Q, respectively.
Numerical frequency and Q-factor data for the loaded resonator are generated
by the FDFD program, HERZ, for a range of ¢, and tand values. From these data,
least squares polynomial equations are constructed which relate € to Af, and
tand to Qu, Qc, F and g,/ for both the contact and partial contact test modes.

These equations are:

e (Afo) = 1+a|Af| +a,|Af)" +a|Af]’ +K (5.5)
l ’ [3 2 I

= =bytbg, +by(g ) +by(e ) 4K (5.6)
!

Q) = Qo +6,5, +¢,(5, ) +e5(5, ) +K (5.7)

- (18] - (g-3)

where filling factor, F, is defined as the ratio of mean stored electrical energy in
the dielectric specimen to that in the test cavity and K represents the higher
order terms of the infinite series in Eq. (5.5) through Eq.(5.7).

The coefficients of Eq.(5.5) through Eq.(5.7) are tabulated in Tables 5.3
and 5.4 for both test modes. These numerically generated data are plotted in

Figures 5.7 - 5.12 along with the cavity parameters used to determine them.



Utilizing Eqs.(5.5) - (5.8) and the loaded cavity’s measured resonant
frequency shift, Af,, and Q-factor, Q. relative dielectric constant, €, and loss
tangent, tang, of a test specimen situated within the cavity can be found. First, to
determine a specimen’s relative dielectric constant, ¢,’, the resonant frequency
shift, Afo, of the resonant cavity is measured. Then, this measured value would
be used in the appropriate form of Eq.(5.5), depending on test mode utilization,
to calculate the specimen’s relative dielectric constant. Once the relative
dielectric constant is determined, values for Eqgs.(5.6) and (5.7) can then be
ascertained using the appropriate forms of Eq.(5.6) and Eq.(5.7). In conjunction
with the measured cavity Q-factor, Q., values found from Eq.(5.6) and Eq.(5.7)
are utilized to determine a specimen’s loss tangent, via Eq.(5.8).

These calibration equations are incorporated into HPBASIC computer
programs (see Chapter 7) that control the measurement and test equipment
which serve to measure changes in the test cavity’s resonant frequency and Q-
factor. From this measured data, the complex dielectric constant of a test

specimen is determined.

Table5.3  Coefficients of the calibration equations for the contact mode.

Equation Coefficient values
5.5 a0 a az as ag as as
1.0 | 7.71E-1 | -2.1E-2 | 4.55E-4 | -6.06E-6 | 3.53E-8 0.0
56 bo b1 bz b3 b4 bs b6
1185 | -595.3 | 14282 | -18.96 1.41 -5.53E-2 | 8.83E-4
5.7 Co Q C2 (] Cs Cs Cs
2800 | -11.35 | -1.5801 | 1.3E-2 | -7.9E-3 | -2.38E-4 | 1.88E-5
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Table 5.4 Coefficients of the calibration equations for the partial contact
mode.
Equation Coefficient values
55 ao a az as ay as as
1.0 -1.77 10.61 -13.91 9.24 -3.12 | 5.03E-1
5.6 b b, b, b, b, bs b
1363 -265.7 59.95 -5.78 | 2.97E-1 | -7.66E-3 | 7.77E-5
5.7 Co ] C2 C3 Cs Cs Ce
2930 -5.53 2.37E-1 | 2.39E-2 | -3.33E-3 | 1.37E-4 | -1.90E-6
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Calibration curve for determining relative dielectric constant of a
test specimen while the cavity is operated in the contact mode (fo =
242 GHz, coaxial center conductor length, L = 60.2 mm, test
specimen dimensions: r, = 5.0 mm, d; = 2.0 mm, see Figure 3.2).
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Calibration curve for determining relative dielectric constant of a
test specimen while the cavity is operated in the partial contact
mode (fo = 2.48 GHz, coaxial center conductor length, L = 59.2 mm,
test specimen dimensions: ry = 5.0 mm, d, = 2.0 mm, see Figure
3.2).
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Relative Dielectric Constant

Calibration curve for determining the inverse cavity filling factor
(F)* while the cavity is operated in the contact mode (fo = 2.42
GHz, coaxial center conductor length, L = 60.2 mm, test specimen
dimensions: r, = 5.0 mm, d; = 2.0 mm, see Figure 3.2).
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Figure 5.10 Calibration curve for determining the inverse cavity filling factor
(F)* while the cavity is operated in the partial contact mode (fo =
248 GHz, coaxial center conductor length, L = 59.2 mm, test
specimen dimensions: ry = 5.0 mm, d, = 2.0 mm, see Figure 3.2).
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Figure 5.11 Calibration curve for determining cavity Q-factor while testing is
performed in the contact mode (fo ~ 2.42 GHz, coaxial center
conductor length, L = 60.2 mm, test specimen dimensions: r, = 5.0
mm, d; = 2.0 mm, see Figure 3.2). Conductivity of the cavity walls
is assumed to be 1.1 x10"(Qm)™" -
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Figure 5.12 Calibration curve for determining cavity Q-factor for testing
performed in the partial contact mode (fo ~ 2.48 GHz, coaxial center
conductor length, L ~ 59.2 mm, test specimen dimensions: ry = 5.0
mm, d; ~ 2.0 mm, see Figure 3.2). Conductivity of the cavity walls
is assumed to be 1.1 x 10’ (Cam) ™.

5.5 Conclusion

Numerically calculated resonant frequencies and empty cavity Q-factors
were found and compared to experimental data. Field solutions found from the
FDFD program, HERZ compared favorably to analytical solutions found for
similar structures. These results give confidence in the HERZ simulation
program. Finally, polynomials that relate measured cavity performance to a test
specimen’s complex dielectric constant have been established.

Now that the resonant field patterns of this cavity have been computed

and resonant frequencies and Q-factors of the empty and loaded cavities can be
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predicted, measurement limits based on cavity perturbation conditions are

determined for this device in the next chapter.
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CHAPTER 6
DYNAMIC MEASUREMENT RANGE OF THE
DIELECTROMETER

6.1 Introduction

A large dynamic measurement range is achieved through variable
geometry of the cavity. In essence two cavity structures are utilized and
measurement limits for each loaded cavity geometry are evaluated. The
evaluation of the dynamic measurement range of this device is quite involved
since all of the following must be considered: mean stored electrical energy in a
test specimen, increase in cavity losses caused by the dielectric specimen,
frequency sensitivity of the sweep oscillator and effects of the reflectometer's
directional couplers. An evaluation that takes into account all of these factors is

performed using both numerical and measured results.

6.2 Relative Dielectric Constant Measurement Range

Loaded cavity geometry along with the perturbation condition,

Af| <
f0

1%, sets the upper limit of measurable dielectric constant for the contact mode.

Recall from the perturbation formula Eq.(4.5) that the relative shift in the loaded

cavity’s resonant frequency is related to the ratio of mean energy stored in the

test specimen to that in the test cavity. This energy ratio is calculated within the
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FDFD program HERZ and numerical results indicate that to avoid violating this
perturbation condition, the maximum measurable relative dielectric constant of a
test specimen is & max =16.

The upper limit of measurable dielectric constant for the partial contact
mode is set solely by the loaded cavity geometry. Introducing an air gap above
the test specimen will cause the perturbation of the test cavity to saturate. In
other words, there is a limit on the amount of electromagnetic energy a test
specimen can store when using the partial contact mode. The perturbation of the
test cavity is defined as saturated when this energy storage limit is virtually
achieved. Utilizing the simulation program, HERZ, a number of different air gap
heights were simulated. For a plate separation of d; = 3.0 mm (see Figure 3.2)
saturation of the cavity perturbation would occur when the relative dielectric
constant of a test specimen exceeded &’ 2 30.0. Thus, the upper limit of
measurable relative dielectric constant for the partial contact mode was set at ¢’
=30.0.

In order to evaluate the minimum measurable relative dielectric constant,
& mins the frequency sensitivity of the sweep oscillator that provides the
microwave signal to the test cavity is required. Frequency sensitivity of the
sweep oscillator was found to be Alaf| = 0.01 MHz. The derivative of the

polynomial that relates ¢ and Af, must now be evaluated for a test cavity

resonant frequency shift of Af,= 0.0, corresponding to a test specimen of relaiive



dielectric constant g ~ 1.0, and for the aforementioned frequency sensitivity
value, AIAfOI = 0.01 MHz. For these conditions, the uncertainty in measured
relative dielectric constant for the contact mode is Ae,’ = 0.03 and Ae,” = 0.05 for
the partial contact mode. Thus, the minimum relative dielectric constant
measurable in the contact mode is g min = 1.03 and &’ mn = 1.05 for the partial

contact mode.

6.3 Loss Factor or Loss Tangent Measurement Range

6.3.1 Minimum Measurable Loss Tangent
A loaded test cavity's minimum measurable loss tangent is set by the
specimen's filling factor, F, (a ratio of the mean electrical energy stored in the test

specimen to that stored in the test cavity), on the test cavity, Q measurement

uncertainty, %, and as will be shown, the empty cavity Q-factor, Qo. Analysis

of the loaded cavity's lower loss limit, tandm», will begin by determining when

the Q change caused by the test specimen's dielectric loss, namely,

1 1 l 1
Al =l o]l —-—x— 6.1
(Q) (QL QOJ Qo ©1
is approximately equivalent to the Q-measurement uncertainty
et t. 1 2‘9) 6.2
A(o)wo—ao QO‘QO(Q 2

A

where — is the relative error in the Q measurement.
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Equating Eq.(6.1) and Eq.(6.2) gives

Q X 6.3).
QB Q
From perturbation theory, the Q-factor of a dielectric specimen in a resonant

cavity [8] is given by

L Fans (6.4)

D

Placing the results of Eq.(6.4) into Eq.(6.3) results in

QFtans = % (6.5)

Therefore, a minimum loss tangent can be defined as

_ ! Q)
tand,,., = QF ( Q (6.6)

mmn

In order to evaluate Eq.(6.6), values for empty cavity Q-factor, Qo, cavity

filling factor, F,, and Q-measurement uncertainty, %, are required. The empty

cavity Q-factor is measured from the cavity's frequency response. Typical Q-
factor values are 2900 and 2800 for the partial contact mode and contact mode,
respectively. The cavity filling factor, F, is a function of the test specimen's
relative dielectric constant, i.e. Fi(g,"). Filling factor values for both test modes are
calculated with the FDFD program HERZ. Typical values are provided in Table

6.1, note the larger values for the contact mode as compared to the partial contact

mode. Q-measurement uncertainty, % , is dependent upon both the directivities



of the directional couplers used in the reflectometer and the magnitude of the
measured reflection coefficient of the cavity's input port at its resonant frequency
[8, 60]. For given coupler directivities, D = 30 dB and D = 40 dB, an analysis of

Q-measurement uncertainty, %, as a function of the magnitude of the cavity's

input port reflection coefficient at f, was performed by Xi [8] and these results,
see Figure 6.1, were used to calculate values for Eq.(6.6). When testing a low loss
specimen, the loaded cavity's reflection coefficient at f, was approximately |~
0.2. This value was selected since cavity lcading on the feed-line remained
virtually unchanged from the empty cavity condition when low loss specimens
were tested. Utilizing Figure 6.1, Table 6.1, Eq.(6.6) and the unloaded Q-factors
previously given, minimum loss tangent values for various relative dielectric

constants were calculated and are listed in Table 6.2.

Table 6.1 Filling factor as a function of relative dielectric constant for both
the contact and partial contact modes.

F, (Contact mode) F, (Partial contact mode)
& = 23x 107 9.68 x 10~
& = 15.74 x 107 9.09 x 10™*
e =16 77.99 x 10~ 6.55 x 10~
g =30 N/A 429 x 10™
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Figure 6.1 Relative error in measured Q-factor versus the reflection
coefficient, |Io|, at the resonant frequency for a reflectometer
directivity of D = 30 and 40 dB.

6.3.2 Maximum Measurable Loss Tangent

In order to determine the maximum measurable loss tangent, tandm.», it is
first necessary to relate the loaded cavity Q-factor, Qo, to the unloaded cavity Q-
factor, Qw, via the test cavity's coupling coefficient or normalized input
impedance, R. Following an analysis similar to Xi [8], theses quantities are
related in the following manner.

Assume a resonant cavity with an input impedance of Z(fo)) = Z, is

connected to a transmission line of characteristic impedance Z = Z,. The loaded



circuit Q-factor, Q. c, the transmission line Q-factor, Qexr, and the cavity Q-factor,

Qo are related by
—_— (67)

Since the input impedance of the cavity at its resonant frequency is equivalent to
the characteristic impedance of the transmission line, we have a matched
condition and the transmission line Q-factor, Qexr, is equivalent to the cavity Q-
factor, Qq, i.e.,

Qo = Quxr (68)

and Eq.(6.7) can be re-written in the following form

1 2
—_— = 6.9
W "Q, (6.9)
or alternatively
Q, =2Q, (6.10).

Now suppose a lossy dielectric specimen is inserted into the resonant

cavity. The cavity Q-factor, Qo, now takes the form

—_————— (6.11)
where Qw is the Q-factor resulting from wall losses within the cavity and Qp is
the Q-factor considering dielectric losses. With the insertion of the lossy

dielectric, the cavity's input impedance is no longer equivalent to the

transmission line's characteristic impedance. To find the cavity's input
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impedance at resonance, an equivalent circuit analog is used. Eq.(6.11) is re-

written in the following form

I Z, R,
2% o 6.12
Q, ol @l (6.12)

where a series resonance is assumed, ax is the resonant frequency in radians, L is
the equivalent inductance, Z, is the resistance of the unloaded resonant circuit
and Rp is the resistance of the dielectric load. Re-writing Eq.(6.12) by
normalizing Rp by Z, results in

1 Zy
- %L(1+RD)

(6.13)

where R, = -[%’-
1]

Now redefine the wall loss Q-factor value, Qw, and one can obtain the following

relationship
1 % (6.14).
Qv ol
Placing the result from Eq.(6.14) into Eq.(6.13), it follows that
1 1 —
_ __(] + RD) (6.15).
0 w
Eq.(6.15) can be rewritten in the following form
1 R
—_— 6.16
"o, (6.16)

where R is the normalized input impedance of the loaded resonant cavity given

by
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R=R, +1 (6.17).
A resonant cavity with R> 1.0 is defined as being over-coupled to its feed line,
as is the case described in Eq.(6.17). An analogous result to Eq.(6.16) for parallel

resonance is given by

1

1 (6.18)
Q RQy
where R is described by
-~ R,
== 6.19).
R Ry +1 (6.19)

A resonant cavity with R < 1.0 is defined as being under-coupled to its feed line,
as is the case described in Eq.(6.19).
Eq.(6.16) and Eq.(6.18) can be used for relating the empty cavity Q-factor,
Qw, to the loaded cavity Q-factor, Q, for the cases when the loaded cavity is
either under-coupled or over-coupled to its feed line. For the over-coupled case,
empty cavity Q-factor is related to the loaded cavity Q-factor [8] by
Qw =RQ, (6.20).
Conversely for the under-coupled case, empty and loaded cavity Q-factors are

related [8] by

Qw = (621)

|2

As a result of the cavity geometry utilized for our dielectrometer, the

loaded test cavity is under-coupled to its feed line. Thus utilizing Eq.(6.11) in



Eq.(6.21) values for the maximum measurable loss tangent, tandm.x, Of a test

specimen can be found as follows

R=2o ‘ - (6.22).
Qu (L _‘_) 1+ Qu
QW +QD QD

The cavity's input port reflection coefficient,

[,|, at its resonant frequency can

then be expressed in terms of Qu a5
D

Quw

_1I-R__Q 6.23).

|r°|—l+ﬁ—(_)l+2 (6.23)
Qp

Utilizing Eq.(6.4) the Q-factor ratio, g—w, can be written in the following form

D

Qu

- 6.24).
Q. Q,Ftand (6.24)

For a given maximum Q-factor ratio, (gw) , Eq. (6.24) can be re-written as

&)
QD max
tand,, = QuF, (6.25).

At this point, it is necessary to select the maximum value of the Q-factor

ratio, (Q—W) . To maintain reasonable accuracy in loss tangent measurements,

b i

Atand < 10% when D = 40 dB, a maximum reflection coefficient value of

say,
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|r°| = 0.5 is selected. This value corresponds to a maximum Q-factor ratio,

(91) ,of (Q_W.) <20.
Qp

max D max
Utilizing Table 6.1, Eq.(6.25) and the unloaded cavity Q-factors previously
given, maximum loss tangent values for various relative dielectric constants

were calculated and are listed in Table 6.2.

Table 6.2 Loss tangent limits as a function of relative dielectric constant.
CONTACT MODE PARTIAL CONTACT MODE
tandmin tandmax tandmin tandmax
& =2 0.004 0.386 0.0089 0.72
& =8 0.0006 0.060 0.0088 0.77
& =16 0.0001 0.093 0.0132 1.05
e =30 N/A N/A 0.0202 1.63

6.3.3 Discussion

From values calculated utilizing Eq.(6.6) and Eq.(6.25) there is a range of
loss tangent values, 0.0088 < tand < 0.386, over which either test mode can be
used. In order to determine which test mode to employ, a test specimen whose
loss tangent falls into this range must be tested using both the contact and partial
contact modes. Resonant frequency reflection coefficient values for both loaded
cavity configurations are then compared. To obtain accurate measurement

results, the test mode that has the smaller reflection coefficient value at the
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loaded cavity's resonant frequency must be utilized. Application of this rule has
the advantage of maintaining accurate measurement results for a large range of
loss values because relatively large Q-factors are maintained while the
magnitude of the normalized input impedance of the resonant cavity remains

close to unity.

6.4 Conclusion

For our dielectrometer the relative dielectric constant and loss tangent
measurement limits have been evaluated. The relative dielectric constant

measurement range is 103 < ¢’ <300 and the loss tangent measurement range is
0.0001 < £"< 1.63. The design goal of attaining four orders of magnitude in loss
tangent measurement range has been achieved with the constraint of using an

adjustable cavity geometry.
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CHAPTER 7
MEASUREMENT PROCEDURES AND RESULTS

7.1 Introduction

In this chapter a description of the algorithms used in the data acquisition
computer program are given. The test specimen and dielectrometer calibrations
are described. To verify the dielectric measurement method proposed, the
measured dielectric properties of four commercial materials are presented. Then
elevated temperature permittivity measurement procedures are outlined.

Finally, new dielectric data for five rubber materials is presented and discussed.

7.2 Measuring Cavity Frequency Response

In order to measure the cavity’s resonant frequency and Q-factor and
hence calculate the complex dielectric constant of a test specimen, an HPBASIC
computer program was used to control the reflectometer. The HPBASIC
program set the frequency band and the sweep time of an HP87352A
synthesized sweeper. It also controlled many internal settings of an HP8757D
scalar network analyzer. A description of how to determine the cavity’s resonant

frequency and Q-factor accurately is given below.
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7.2.1 Resonant Frequency and Q-factor Determination

To find a value of the loaded cavity’s resonant frequency, 15 consecutive
resonant frequency measurements were averaged. This procedure reduces
frequency uncertainty caused by short-term drift of the frequency synthesizer.

In order to improve Q-factor measurement repeatability and accuracy, the
multiple bandwidth measurement method was utilized. Cavity Q-factors were
measured utilizing five different bandwidths. This procedure reduces Q-factor
measurement uncertainty resulting from an asymmetric resonance curve
(dispersion), the frequency uncertainty caused by short-term drift of the
synthesizer and return loss measurement uncertainty caused by the
reflectometer.

In order to determine the empty or loaded cavity Q-factor utilizing
multiple bandwidths, the following methodology was used. The general loaded
cavity Q-factor, Q, , [61] is given by

fo
Q, =a3x(1+R) (7.1)

where R is the normalized input impedance of the cavity at resonance. It is
determined from the measured reflection coefficient value at the cavity’'s

resonant frequency in the following manner

R- (7.2)
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Af is the bandwidth between power reflection points and ¢ is termed the

bandwidth parameter [61], and is given by

(7.3)

where [[’wl is the magnitude of the cavity’s complex reflection coefficient at the

power points of interest and is described by

rﬂ

Ir,f = x(l + 2) (7.4)
where x is the power reflection ratio. Values of x are selected based upon both a

given ||, and the analysis of Q-factor uncertainty as a function of |rw| (see

Appendix 2). Based on this uncertainty analysis, values of x are chosen so that
uncertainty in averaged Q-factor, (QL).., is minimized. In Table 7.1, x values are

listed for a range of resonant frequency return loss values.

Table 7.1 Power reflection ratios utilized in calculating cavity Q-factor.

Return Loss Value at the Power reflection ratio (x)
Cavity’s Resonant Frequency
(dB)
1 2 3 4 5
>15 (Ir,| <0.178) 0.1 0.25 0.5 0.75 0.9
15> RL >10 (0.178 > |r,| > 0.316) | 0.25 0.4 0.5 0.6 0.75
10>RL>3(0.316 > |r,| >0.707) | 04 0.45 0.5 0.55 0.6




Q-factors were measured three times for each of the five bandwidths and
a weighted average of the measured data was then calculated. The weighted Q-

factor value was determined by

in.(QL).
Q) ==%— (7.5)

ave 15
z n,

where (Q.); is one of the fifteen individual Q-factor measurements and n; is the
weighting factor.
The weighting factor, n, is used to improve Q-factor measurement

accuracy, when using the multiple bandwidth method. Analyzing Q.
uncertainty as a function of |rw| the following observations are made (see

Appendix 2). In practice, high accuracy Q-factor measurements are made using

the half-power bandwidth. Conversely, when the reflection coefficient value

used for determining bandwidth, , approaches either the resonant frequency

FPP

reflection coefficient value,

1y

, or unity, Eq.(7.1) tends to critical values and

uncertainty in Q-factor, Q., tends to infinity. Thus the weighting factor, n;, is

selected to be maximum at the half power points and decreases to zero as the

reflection coefficient value used for determining bandwidth,

rW

, approaches

either the resonant frequency reflection coefficient value,

[,|, or unity. Thus a

simple weighting function that meets these criteria is given by
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_ 2 l+|l“ I2 2

ni(|1“w| )=1-]r,| '2(—20—)-|fw| (7.6)
The major advantage of this approach is that high accuracy Q-factors are
weighted heavily while low accuracy Q-factors are weighted lightly thus

yielding more accurate averaged Q-factors.

7.3 Test Specimen and Dielectrometer Calibration

7.3.1 Test Specimen Size

Nominal test specimen dimensions were r = 5.0mm and t =2.0mm. The
maximum allowable variation in the volume of the test specimen was 5%. Test
specimen thickness should be within +0.5% of the nominal thickness, while its

radius should be within *2.0% of the nominal radius.

7.3.2 HPBASIC Calibration Programs

In the next section, three HPBASIC programs, CAL, CAL1 and CAL2, are
used for calibration of the dielectrometer. The HPBASIC program, CAL, is used
only for measuring the resonant frequency and Q-factor of the unloaded cavity.
CAL1 is used only for measuring the changes in the cavity’s resonant frequency
and Q-factor between the unloaded and loaded cavity conditions. The HPBASIC

program, CAL2, calculates a test specimen’s complex relative dielectric constant,
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for only the constant temperature condition. Common operational characteristics
of each of the three HPBASIC programs include:

1. Each program prompts the user to choose the number of resonant
frequency and Q-factor measurement combinations that are made
while the program runs. One measurement combination is one
resonant frequency and Q-factor measurement.

2. Between consecutive measurement combinations, the program pauses
and awaits user permission to continue running.

3. After the last resonant frequency and Q-factor measurement

combination, the program terminates.

7.3.3 Dielectrometer Calibration
After having set up the measurement and heating system as described by
the block diagram of Figure 3.1, the following steps should be taken before
dielectric measurements over a temperature range are performed on a test
specimen.
1. Warm-up test equipment for at least an hour and a half to stabilize the
R.F. oscillator.
2. Calibrate reflectometer with a short circuit.
3. Run HPBASIC calibration program, CAL, keeping the half wavelength
coaxial resonator fixed to the specimen mounting plate until the

calibration program terminates running.
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a. Verify from measurement results that resonant frequency
stability is within +0.005MHz and that the Q factor stability is
within 1%.

b. The number of averaged resonant frequency and Q-factor
combinations determined during one program run should be
between five and ten.

4. If the resonant frequency and Q-factor stability requirements have not
been achieved, allow test equipment to warm up for an additional 15
minutes and then repeat Step 2.

5. Repeat steps 2 and 3 for the following case. Before running calibration
program, CAL, remove the half wavelength coaxial resonator from the
base of the test specimen mounting plate (see Figure 3.2), then replace
the coaxial resonator on the mounting plate. Begin running calibration
program, CAL, to determine averaged resonant frequency and Q-
factor. After the first measurement combination is made, remove the
coaxial resonator from the mounting plate and then replace the
resonator on the mounting plate. Allow the calibration program to
continue running to determine the second measurement combination.
Repeat this process until the calibration program terminates running.

6. Run the HPBASIC program, CAL1, for measuring resonant frequency

and Q-factor of a cavity loaded with a commercial dielectric. The
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number of measurement combinations should be equivalent to the

number of calibration dielectric test specimens available.

a. For calibration specimens with similar dielectric constants,
resonant frequency stability should be within +0.15MHz, and Q-
factor stability should be within 1.0%. A larger resonant frequency
shift uncertainty is permitted since the calibration specimens
utilized vary in volume by +5%.

7. Run the HPBASIC program, CAL2, for measuring the dielectric
properties of calibration dielectric test specimens. The number of
measurement combinations should be equivalent to the number of
calibration dielectric test specimens available.

a. Resulting dielectric data should be within 3.0% of their values
specified by the manufacturer and measured loss tangent should
be less than the specified limit of tand < 0.002 (contact mode) or
tand < 0.02 (partial contact mode).

b. If these conditions are not met return to Step 2 and begin
dielectrometer calibration again.

8. Once the system is calibrated, place insulation around the cavity. Once

this is done, elevated temperature dielectric testing can be performed.
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7.4 Verification of Dielectric Measurement Technique

To verify the dielectric measurement method presented in this thesis,
dielectric properties of commercial materials were measured at room
temperature. Results are listed in Tables 7.2 and 7.3, along with data specified by

the manufacturer for comparison.

Table7.2  Dielectric data for Eccosorb HiK500 materials measured using the

contact mode and dielectric data specified by the manufacturer.

Material name Eccosorb HiK500 Eccosorb HiK500 | Eccosorb HiK500
K4 K8 K12
(&) 4.00+£0.03 8.00+0.15 12.1+0.2
(&) specrfied 4.00 £3% 8.00 +3% 12.00 £3%
(tan &) porea <0.001 <0.0006 <0.00013
(tan &) cisea <0.002 <0.002 <0.002
Table 7.3 Dielectric data for Eccosorb HiK500 materials measured using the
partial contact mode and dielectric data specified by the
manufacturer.
Material Eccosorb Eccosorb Eccosorb Eccosorb
name HiK500 K4 HiK500 K8 HiK500 K12 | HiK500 K20
(€)) measured 41+05 7.910.2 12.1£0.2 20.5+1.5
(€)) specitied 4.00 +3% 8.00 £3% 12.00£3% 20.0+10%
(tand) e <0.009 <0.009 <0.01 <0.015
(tand) . 6e <0.002 <0.002 <0.002 <0.002

The commercial Eccosorb materials are a solid ceramic and they have the

following dielectric properties, s,' =4,8,12,20 and tané < 0.002. The discrepancy
in measured relative dielectric constant between this work and data supplied by
the manufacturer, was less than 3% for materials with dielectric constants of ¢ =
4, 8 and 12 and less than 10% for the material with a relative dielectric constant

Of gr’ = 20.



It was not possible to measure the Eccosorb materials’ specific loss
tangent values since the dielectrometer did not have the necessary Q-factor
measurement sensitivity. However when tested in the contact mode, maximum
loss tangent values found for Eccosorb materials’ K4, K8 and K12 were less than
the maximum values specified by the manufacturer. Thus, the loss tangent
measurement approach used for the contact mode is validated. For the partial
contact mode, minimum measurable loss tangents exceeded the maximum
values specified for each of the Eccosorb materials. Thus, a systematic validation
of the loss tangent measurement approach for the pardal contact mode was not

possible using these materials.

7.5 Elevated Temperature Permittivity Measurement Procedure

Two HP BASIC programs, RUBDIELA (partial contact mode) and
RUBDIELB (contact mode) running on an HP200 computer controlled the swept
frequency reflectometer. The basic procedure for measuring a test specimen’s
complex dielectric constant over temperature must follow the steps outlined
below;

(1) calibrate the reflectometer by replacing the cavity with a coaxial short circuit;
(2) measure the empty cavity’s resonant frequency and Q-factor, and insure that

the measurement of each of these parameters is repeatable;



(3) heat the cavity containing the test specimen and measure the resonant
frequency shift and loaded cavity Q-factor at each temperature set point
assigned;

(4) calculate the dielectric properties of the test specimen from the measured
changes in resonant frequency and Q-factor between the empty and loaded

cavity conditions.

7.6 Elevated Temperature Dielectric Measurements

In this section, measured dielectric properties of the five Royalene rubber
materials over the temperature range of 20°C to 120°C are given. Before these
results are presented, however, changes in resonant frequency and Q-factor
caused by cavity heating are given in a graphical format for both the contact and

partial contact modes.

7.6.1. Cavity Heating and Changes in Empty Cavity Frequency Response

Two power resistors attached to the underside of the test specimen
mounting plate (see Figure 3.2) heat the cavity. Heating of the cavity causes it to
expand and change shape, thereby lowering its resonant frequency. Spring
finger contact is also affected when the cavity is heated, having the deleterious

effect of lowering the cavity's Q-factor.
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There are two ways to predict changes in the empty cavity’s resonant
frequency and Q-factor resulting from cavity heating. One way is to use a
numerical simulation. The other is to directly measure resonant frequency and Q
of the empty cavity at selected temperatures.

Within the numerical simulation, cavity dimensions are changed so as to
reflect changes in cavity temperature. The coefficient of linear expansion for
brass is used to predict the increase in the cavity's radial and axial dimensions at
specific temperatures. However, because of the heating scheme employed, the
temperature profile of the cavity is not uniform throughout its length, and hence
simulated results based on uniform expansion are inaccurate.

An experimental approach is the only reliable method to find the empty
cavity's resonant frequency and Q as a function of temperature for this particular
dielectrometer configuration. Using a reflectometer, the empty cavity's resonant
frequency and Q are measured at selected temperatures. Empty cavity elevated
temperature characteristics were measured a number of times to assure
repeatability. After measurement repeatability is verified, equations that relate
resonant frequencies and Q-factors to the cavity's elevated temperature are
established.

Figures 7.1 and 7.2 show the absolute decrease in the empty cavity’s
resonant frequency as the cavity was heated from room temperature to 120°C for
both the contact and partial contact modes. The temperature dependent empty

cavity Q-factors, for both the contact and partial contact modes, are shown in
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Figures 7.3 and 7.4. Linear approximations to these curves were used in
calculating the final data.

The HPBASIC programs RUBDIELA (partial contact mode) and
RUBDIELB (contact mode) contain functions that calculate the temperature
dependent unloaded cavity resonant frequencies and Q-factors. During dielectric
testing, the interface to the HPBASIC program prompted the user to input the
measured set point temperature of the test specimen. Once the temperature is
entered, the HPBASIC program calculated the unloaded cavity’s adjusted
resonant frequency and Q-factor. Next, resonant frequency and Q-factor shifts of
the resonant cavity were determined and the test specimen’s dielectric properties
were calculated. Following a dielectric measurement at temperature, T, the test
specimen was heated to the next set point temperature and the above process
would be repeated once temperature stability was achieved. This continued until

the maximum set point temperature was attained.
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Figure7.1  Decrease in empty cavity resonant frequency when heating the test
cavity from 20°C to 125°C (contact mode).
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Figure72  Decrease in empty cavity resonant frequency when heating the test
cavity from 20°C to 125°C (partial contact mode).
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Figure 7.3  Decrease in empty cavity Q-factor when heating the test cavity
from 20°C to 125°C (contact mode).
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Figure74 Decrease in empty cavity Q-factor when heating the test cavity
from 20°C to 125°C (partial contact mode).
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7.6.2 Experimental Results and Discussion

Dielectric properties of the five Royalene rubber materials were measured
and the results are presented in Table 7.4. Relative dielectric constants and loss
tangents are plotted as a function of temperature in Figures 7.5 and 7.6. In Table
7.5, the chemical constituent levels of each of the five Royalene rubber materials

are listed.

Table 7.4 Measured room temperature dielectric properties of five Royalene
rubber materials. Materials’ A, B, C and E were tested using the
partial contact mode, while the contact mode was used for testing

material D.

Royalene Rubber Material c tand
Royalene A 18.4+0.2 0.355+ 0.005
Royalene B 9.0+0.2 0.101+0.001
Royalene C 12.2+0.3 0.2401 0.006
Royalene D 4131 0.01 0.0059+ 0.0002
Royalene E 10.9+0.2 0.1594 + 0.005

All five Royalene rubber materials were heated to 120°C. However, the
dielectric properties of Royalene A, Royalene B and Royalene E did not change
above 80°C. The dielectric properties of Royalene C and Royalene D did not
change above temperatures of 70°C .

Royalene A had the highest relative dielectric constant and loss factor of
the five Royalene rubber materials. It also exhibited the largest change in its

dielectric properties with temperature. Its relative dielectric constant at 80°C



increased by over 50% from its room temperature value while its relative loss

factor increased by over 400%.

Table 7.5 Chemical constituent levels of each of the five Royalene rubber
materials tested.

Royalene Royalene | Royalene | Royalene | Royalene | Royalene
rubber A B C D E
material
ROYALENE 100.0 100.0 100.0 100.0 100.0
3356
N 660 GPF 100.0 72.0 58.0 420 28.0
BLACK
N550 FEF 50.0 36.0 29.0 21.0 14.0
BLACK
YORK 45.0 45.0 45.0 45.0 45.0
WHITING
ZINC OXIDE 10.0 10. 10.0 10.0 10.0
ZINC 1.5 15 1.5 1.5 1.5
STEARATE
RHENOSOR 10.0 10.0 10.0 10.0 10.0
BC/GW
SUNPAR 110.0 90.0 80.0 70.0 60.0
2280
MISTRON - 62.0 93.0 127.0 158.0
VAPOR
MBT 1.5 1.5 1.5 1.5 1.5
RUTAZATE 1.5 1.5 1.5 1.5 1.5
SULFADS 1.2 1.2 1.2 1.2 1.2
TUEX 1.0 1.0 1.0 1.0 1.0
SULFUR 1.5 1.5 1.5 1.5 1.5
TOTAL 433.2 433.2 433.2 433.2 433.2
% CARBON 35 25 20 15 10
BLACK

Royalene D had the smallest relative dielectric constant of the five

Royalene rubber materials. Its relative dielectric constant changed only slightly
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over the temperature testing range while its relative loss factor doubled. Also, its
loss tangent was more than an order of magnitude lower than that of the other
Royalene rubber materials.

Royalene B, Royalene C and Royalene E exhibited similar temperature
behavior over the temperature range of 20°C to 120°C. Their relative dielectric
constants varied between 9.0 and 15.0 and their relative loss factors varied
between 0.90 and 5.25.

These Royalene rubber materials each contain different levels of chemical
constituents. No correlation between the dielectric data obtained and the

chemical constituent levels of the Royalene rubber materials was attempted.

7.7 Conclusions

Algorithms for determining accurate cavity resonant frequencies and Q-
factors over temperature are given. Room temperature dielectric measurements
performed on the Eccosorb materials fully validated the contact mode
measurement method and in part validated the partial contact mode
measurement method. Measured dielectric properties of the five Royalene
rubber materials, Royalene A, B, C, D and E, over the temperature range of 20°C
to 120°C are presented. To determine the uncertainty in the measured dielectric
data, a prediction of the accuracy of the measurement system is required. In the
next chapter, an uncertainty analysis of the reflectometer is performed so as to
predict the dielectric measurement accuracy.
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CHAPTER 8

UNCERTAINTY ANALYSIS OF THE REFLECTOMETER AND
EFFECTS ON DIELECTRIC MEASUREMENT ACCURACY

8.1 Introduction

In this chapter the measurement accuracy of the reflectometer is analyzed
in order to predict uncertainty in the dielectric measurements. Dielectric
measurement uncertainty is determined for both measured dielectric constant
and loss tangent. In Appendix 2, detailed derivations of the equations used in

this chapter are given.

8.2 Analysis of Reflectometer Uncertainty upon the Dielectric
Measurement Accuracy

8.2.1 Relative Dielectric Constant Measurement Uncertainty Analysis

Assuming room temperature conditions and a 2 mm thick test specimen
with a 5 mm radius, uncertainty in the specimen's measured dielectric properties
attributable to reflectometer uncertainties are given below.

Uncertainty in the measured dielectric constant is dependent upon the
frequency stability (Af = £0.005MHz) of the synthesized sweep oscillator. When
determining the uncertainty in the resonant frequency shift of the cavity, the
frequency uncertainty doubles since one adds the uncertainty of the measured

empty cavity resonant frequency to the uncertainty of the shifted resonant
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frequency of the loaded cavity. Thus, the uncertainty in the measured resonant
frequency shift of the test cavity is A(Afo) = 10.01 MHz.
To estimate uncertainty in measured dielectric constant, the partial

derivative of the relative dielectric constant, Ag,’, versus resonant frequency shift,

[Afo|, behavior needs to be examined, i.e.

86| = =2 alaf, (8.1)
Fae
where —%__ s the slope of the dielectric constant versus resonant frequency

Alasi)

shift function and A|Af,| is the uncertainty in the measured resonant frequency

shift. An analytical expression for the uncertainty of the measured relative

’
dielectric constant, |A¢,

, of a test specimen is given by

86| = (2, + 20,/ | + 3 At +4a, a6, +x (alat,) 8.2)

where A|Af,| = 0.01 MHz, a; are the polynomial coefficients of Eq.(5.5) and K
represents all additional correspcnding higher order terms. Using the coefficient
values from Tables 5.3 and 5.4 uncertainty in measured relative dielectric
constant for both the contact and partial contact modes are given in Tables 8.1

and 8.2.



Table 8.1 Uncertainty in measured relative dielectric constant for the contact
mode.
t‘-}' 2.00 4.00 8.00 12.00 14.00 16.00
| Ae " 0.0085 0.0073 0.0052 0.0036 0.0030 | 0.0024
Ag' 0.43 0.18 0.065 0.030 0.021 0.015
g |”
Table 8.2 Uncertainty in measured relative dielectric constant for the partial
contact mode.
6}' 2.00 4.00 10.00 15.00 20.00 30.00
I As " 0.024 0.031 0.070 0.097 0.19 0.32 0.48
Ag’ 12 0.78 0.97 13 1.6 1.6
’ (]
£

8.2.2 Loss Tangent Measurement Uncertainty Analysis

Uncertainty in measured loss tangent is a function of both uncertainty in

the measured Q of the loaded cavity and the uncertainty in the test specimen'’s

relative dielectric constant. Uncertainty in measured Q-factor, for a resonant

cavity is dependent upon both the directivity of the reflectometer’s directional

couplers and the cavity's return loss value at its resonant frequency. For a given

directional coupler directivity value, D, uncertainty in measured Q-factor is

determined as a function of the cavity’s measured input impedance [8, 59]. In

order to evaluate the relative uncertainty in a test specimen’s measured loss

tangent resulting from uncertainty in the measured input impedance of the

cavity, one uses the following equation (see Appendix 2)
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(8.3)

where [Am':"; is the relative uncertainty in a test specimen’s measured loss
Q

AQ

tangent resulting from the measurement in the cavity’s Q and =Q-— can be treated

as an average relative error in Q measurements. To obtain high accuracy Q-
factors, coupler directivity should be large (D 2 40 dB) while the magnitude of
the normalized input impedance should be unity. Measured loss tangent

Atand

uncertainty can remain low, < 5% when D > 40 dB and the cavity’s

measured reflection coefficient is || < 0.2 [8]. Tables 8.3 and 8.4 present
uncertainty data in the measured loss tangent of a test specimen attributable to

uncertainty in measured Q-factor for the contact and partial contact modes.

Table 8.3 Uncertainty in measured loss tangent for the contact mode as a
function of directivity, D and relative dielectric constant, &.'.
g 2.00 4.00 8.00 12.00 14.00 16.00
Atnd % | 189 18.8 19.0 19.3 19.5 19.5
m$ |p - 3048
Atans % 5.9 5.8 6.0 6.3 6.5 6.5
und ip - 4048
Table8.4  Uncertainty in measured loss tangent for the partial contact mode
as a function of directivity, D and relative dielectric constant, €.
g 2.00 | 4.00 8.00 10.00 15.00 20.00 | 30.00
Atand % | 185 | 183 18.6 18.7 19.0 19.5 20.3
J |p - 30dB
Aang % | 55 53 5.6 5.7 6.0 6.5 7.3
s |p - 4048
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Uncertainty in a test specimen’s measured relative dielectric constant also

causes uncertainty in its measured loss tangent as shown below

’ 1 2 , ,
{Atat:n;{ ’ J 1 [c,+2c2€, :3«:3'(5, ) 4»!(]15“:r +|¢£rl (8.4)
ér A(J_] Qc™ (&)
Qo

where A(L] is the measured change in the cavity’s inverse Q-factor, Qc(erl) is
0

the cavity Q-factor when loaded with a lossless dielectric, £ is the error transfer

function, K represents all additional corresponding higher order terms and Ae,'
is the uncertainty in the test specimen’s measured relative dielectric constant
(details of the derivation of Eq.(8.4) are given in Appendix 2). In Tables 8.5 and
8.6, uncertainties in measured loss tangent attributable to uncertainty in

measured dielectric constant are listed as functions of directivity and relative

dielectric constant, er' , for both test modes. It is apparent from the results in
both tables that uncertainty in loss tangent as a function of dielectric constant is
essentially independent of the coupler directivity. As well, the loss tangent
measurement uncertainty values listed in the Tables 8.5 and 8.6 are significantly
smaller in magnitude than those listed in Tables 8.3 and 8.4. Thus the major
contributor to overall loss tangent measurement uncertainty is return loss

measurement and coupler directivity.



Table8.5  Uncertainty in measured loss tangent attributable to uncertainty in
measured dielectric constant for the contact mode as a function of

directivity, D and relative dielectric constant, s,' .

c ' 2.00 4.00 8.00 12.00 14.00 16.00
Atand % 05 0.3 03 0.4 03 03
tmnd |p - 3048
Atand % 0.6 0.6 04 0.8 0.8 0.8
and |p - 40dB

Table 8.6 Uncertainty in measured loss tangent attributable to measured
dielectric constant for the partial contact mode as a function of

directivity, D and relative dielectric constant, g,' .

. 2.00 4.00 8.00 10.00 15.00 20.00 30.00
Atan§ % | 0.2 0.05 04 0.5 0.8 1.2 35
wnd |p =308
Atans % | 0.3 0.2 0.6 0.6 1.0 1.2 6.8
uns |p = 40dB

8.3 Overall Effect of Reflectometer Uncertainty on Dielectric
Measurement Accuracy

The overall dielectric measurement uncertainty is the summation of all
the uncertainty contributions. In Tables 8.7 and 8.8, the overall uncertainty in
measured dielectric constant and loss tangent as a function of directivity and
dielectric constant is given. It is apparent from the results listed that the
uncertainty in measured dielectric constant is quite acceptable. Loss tangent
measurement accuracy improves when couplers with high directivity are
utilized. In addition, measurement accuracy between the test modes is
comparable. Measured data for this work used a reflectometer with a directivity

of D >30 dB.
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Table 8.7

constant and loss tangent (contact mode).

Overall reflectometer uncertainty in the measurement of dielectric

' 2.00 4.00 12.00 14.00 16.00
l Ae 'l 0.0085 0.0073 0.0052 0.0036 0.0030 | 0.0024
Ag’ "y 0.43 0.18 0.065 0.030 0.021 0.015
e|”
Atand % 19.4 19.1 19.7 19.7 19.8
s |p - 3048
Aung % 6.5 6.3 7.6 7.3 7.3
and |p - 40dB
Table 8.8 Overall reflectometer uncertainty in the measurement of dielectric
constant and loss tangent g)artiai contact mode).
e 2.00 4.00 8.00 10.00 15.00 | 20.00 | 30.00
\ Ae 0.024 0.031 0.070 0.097 0.19 032 | 048
Ae’ o 1.2 0.78 0.88 0.97 13 1.6 1.6
e |”
At % | 187 18.4 19.0 19.2 19.8 20.7 | 238
s |p - 30d8
Atand % 5.8 55 6.2 6.3 7.0 7.7 139
and |p - 4048

8.4 Conclusions

An uncertainty analysis of the reflectometer was performed. The results
found indicate that the measurement accuracy is comparable to that listed in the
literature for measurement of both dielectric constant and loss tangent. In

Appendix 2, derivations of the equations used in this chapter are presented.
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CHAPTER 9

CONCLUSION

A microwave dielectrometer has been presented which is capable of
measuring a material’s complex dielectric constant for temperatures up to 120°C,
at 2.45 GHz over a range of 1.03 < g’ < 30.0 and 0.0001 < tand < 1.63. The
following features characterize this system.

A hybrid coaxial cavity that has a complex internal geometry was used
for microwave testing. A cylindrical parallel plate waveguide section contained
a dielectric test specimen. The length of the coaxial section mainly determined
resonant frequency of the cavity. Magnetic energy was coupled to the cylindrical
parallel plate waveguide from the half wavelength coaxial section via a low
impedance coaxial transmission line. By virtue of a strongly focused E-field in
the center of the cylindrical parallel plate waveguide, a high measurement
sensitivity has been achieved.

By using two different modes of operation, this dielectrometer was used
to measure a large range of loss tangents or loss factors (4 orders of magnitude).
The partial contact mode allowed loss tangent measurements to be made on
materials whose loss tangent ranged between 1.0 >tand > 0.01. Dielectric
measurements on low loss materials (0.01 > tand > 0.0001) were made in the

contact mode.
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Dielectric data was determined from measured changes in resonator
parameters and numerically calculated calibration curves. Calibration curves
were obtained by numerically simulating specific test specimen and test cavity
characteristics.

Field patterns within the test cavity could be approximated by analytical
solutions for a half wavelength coaxial resonator and a radial transmission line.

Within the coaxial section, electric and magnetic field characteristics mirror field
solutions for an ideal % resonant coaxial cavity. Electric and magnetic field

characteristics for the cylindrical parallel plate waveguide were found to be
nearly identical to field patterns for the radial transmission line.

Resonance characteristics of the hybrid coaxial cavity were calculated
using a finite difference frequency domain technique. Electric and magnetic
mean stored energies were calculated and these quantities were used for
determining a cylindrical cavity's resonant frequency. Power losses in the cavity
walls and in a test specimen were calculated and these quantities were used for
determining loaded cavity Q-factor.

The dynamic measurement range was limited by the measurement
sensitivity of the reflectometer. The limiting factor for low loss measurement
limits was uncertainty in return loss measurements, while the limiting factor for

extending the dielectric constant measurement range was test specimen loading
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on the test cavity. For the partial contact mode, there was not enough frequency
sensitivity to measure relative dielectric constants that exceeded &, > 30.

Uncertainties in determined dielectric data attributable to the
reflectometer were examined in detail. Analysis showed that measurement of
dielectric constant is highly accurate, while measurement of loss tangent has a
maximum uncertainty of less than 25% when testing very high loss materials.
This measurement accuracy is comparable to other dielectrometers described in
the literature.

Problems with this dielectrometer include its lack of portability, difficulty
in changing inner conductor length as well as the necessity to remove the half
wavelength coaxial resonator from atop the specimen mounting plate in order to
place a test specimen within the testing apparatus.

To improve measurement repeatability and accuracy, an alternative
cavity configuration must be utilized. One possibility, a single piece resonant
cavity, would require a different test specimen insertion technique. One possible
insertion technique is to use a modified re-entrant cavity technique. Also, inner
conductor length will have to be adjusted externally. A technique for doing this
is described by Tian [48].

The result of this project is a microwave dielectrometer that can measure a
wide range of loss tangents over a desired temperature range. As well, dielectric
data obtained as functions of temperature will be useful for developing a

microwave curing process for the five Royalene rubber materials tested. With
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dielectric data obtained as a function of temperature, the resulting curing
process can be optimized so as to minimize energy usage and curing duration.
Chemical and mechanical properties of microwave cured rubbers will not be
differentiable from those of conventionally cured rubbers.

This thesis work has laid the basis for an understanding of the
characteristics of the hybrid coaxial cavity dielectrometer. As well, this work will
promote further development of this device. An improved test specimen
insertion scheme should be developed for this device. Finally, a contribution has
been made to the study of the microwave dielectric properties of rubber as a

function of temperature.
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APPENDIX1

THE HERZ SIMULATION PROGRAM

This appendix gives the entire FORTRAN?77 code for the finite difference

frequency domain program called HERZ. Documentation of the code is

contained within the following listing provided. The code was originally written

by F. Vermeulen and subsequently modified by T. Reeves to include subroutines

for calculation of mean stored energy, losses, Q-factor, and resonant frequency.

Al.l HERZ Program

noononnonnononNnnnnOnNnnOnnNONONONON

PROGRAM HERZCOMPLEXMU

THIS PROGRAM CALCULATES THE 2-DIMENSIONAL TIME
HARMONIC MAGNETIC AND ELECTRIC FIELD DISTRIBUTIONS FOR
CERTAIN PROBLEMS THAT EXHIBIT CYLINDRICAL SYMMETRY.
THE RADIAL DIRECTION IS R, AND THE AXIAL DIRECTION IS Z.
THE FIELDS THAT ARE CALCULATED ARE THE
CIRCUMFERENTIALLY DIRECTED MAGNETIC FIELD AND THE
RADIALLY ANDAXIALLY DIRECTED ELECTRIC FIELDS. THE
PROBLEM DOMAIN IS SUBDIVIDED INTO GRID BLOCKS HAVING
VARIABLE RADIAL AND AXIAL DIMENSIONS. THE ELECTRICAL
CONDUCTIVITY, RELATIVE DIELECTRIC CONSTANT, AND
COMPLEX RELATIVE MAGNETIC PERMEABILITY OF EACH GRID
BLOCK ARE SPECIFIED. THE GRID BLOCKS MAY HAVE ARBITRARY
ELECTRICAL PROPERTIES.

PROBLEM EXCITATION IS ACHIEVED BY SPECIFYING THE
MAGNITUDES AND PHASES OF THE TANGENTIAL ELECTRIC
EXCITATION FIELDS EVERYWHERE ONTHE BOUNDARY, AND THE
MAGNITUDES AND PHASES OF THE CIRCUMFERENTIAL
MAGNETIC EXCITATION FIELDS AT THE CENTER OF EVERY GRID
BLOCK.

A SINGLE LAYER OF "PHANTOM" GRID BLOCKS BORDERS ON
EACH OF THE FOUR SIDES OF THE PROBLEM DOMAIN. THE
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"PHANTOM" GRID BLOCKS ADJACENT TO THE AXIS OF SYMMETRY
ARE GIVEN ZERO ELECTRICAL CONDUCTIVITY, AND THOSE
ADJACENT TO THE REMAINING THREE SIDES INFINITE
ELECTRICAL CONDUCTIVITY. THIS ARTIFICE MAKES IT POSSIBLE
TO USE THE SAME ALGORITHM REPEATEDLY TO GENERATE AS
MANY EQUATIONS FOR THE MAGNETIC FIELD H AS THERE ARE
GRID BLOCKS IN THE PROBLEM DOMAIN. THESE EQUATIONS
HAVE THE FORM KK*RH=F,WHERE KK IS THE SYMMETRIC
COEFFICIENT MATRIX, F IS THE EXCITATION VECTOR, AND RIS
RADIAL DISTANCE. THE COEFFICIENTS KK OF THESE EQUATIONS
ARE STORED IN A COMPRESSED COEFFICIENT MATRIX K WHICH
IS THEN USED TO SOLVE THE EQUATIONS BY GAUSSIAN
ELIMINATION TO YIELD RH. THE MAGNETIC FIELD DISTRIBUTION
H IS THEN USED TO SOLVE FOR THE ELECTRIC FIEI.D
DISTRIBUTION E.

ADDENDUM -- JULY 11,1996

[F THE HERZ PROGRAM IS USED TO MODEL A RESONANT CAVITY,
THE QUALITY FACTOR AND RESONANT FREQUENCY CAN BE
DETERMINED FOR THE CAVITY. THE RESONANT FREQUENCY IS
FOUND BY FINDING THE FREQUENCY AT WHICH THE ELECTRIC
STORED ENERGY EQUALS MAGNETIC STORED ENERGY WITHIN
THE CAVITY. THE QUALITY FACTOR IS CALCULATED BY FINDING
THE TOTAL POWER DISSIPATED IN THE CAVITY, AND FINDING
THE TOTAL ELECTRIC AND MAGNETIC ENERGY STORED IN THE
CAVITY. IF ONE IS NOT USING THE PROGRAM FOR THE PURPOSES
OF ANALYSING A RESONANT CAVITY BLOCK OUT THE CALL FOR
THE SUBROUTINES ENERGY AND POWER1, AS WELL, BLOCK OUT
THE INCREMENTING OF THE FREQUENCY AND QUALITY FACTOR
CALCULATION.

NN ONONONONOONONOONON

INPUT VARIABLES

ADDENDUM -- JULY 11, 1996

ND - THE NUMBER OF FREQUENCY INCREMENTS THAT WILL BE
USED

nNonnNnononnnn

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM
DOMAIN
NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN
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NN ONONNONOOOOhONONONOHhONOONOOOOOOON

DELTAR(NR) - VECTOR CONTAINING THE BLOCK DIMENSIONS IN
THE RADIAL DIRECTION, STARTING WITH THE BLOCK
NEAREST THE AXIS (M)
DELTAZ(NZ) - VECTOR CONTAINING THE BLOCK DIMENSIONS IN
THE AXIAL DIRECTION, STARTING WITH THE BLOCK
NEAREST THE ORIGIN (M)
NREG - THE NUMBER OF REGIONS OF DIFFERENT ELECTRICAL
PROPERTIES THAT ARE OVERLAID TO DEFINE THE
ELECTRICAL PROPERTIES OF THE PROBLEM DOMAIN
DOMIND(4,NREG) - ARRAY THAT DEFINES THE GRID INDICES OF
THE BOUNDARIES OF ALL REGIONS. ITS N'TH COLUMN
CONSISTS OF MINI, MAXI, MINJ, MAX] OF THE N'TH REGION,
WHERE
MINI - THE INTEGER INDEX THAT DEFINES FOR
ANY REGION THE LINE OF GRID BLOCKS PARALLEL
TO AND NEAREST THE AXIS

MAXI - THE INTEGER INDEX THAT DEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PARALLEL TO
AND FURTHEST FROM THE AXIS

MIN]J - THE INTEGER INDEX THAT DEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PERPENDICULAR
TO THE AXIS AND NEAREST THE ORIGIN

MAX] - THE INTEGER INDEX THAT DEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PERPENDICULAR
TO THE AXIS AND FURTHEST FROM ORIGIN

DOMPRP(4,NREG) - ARRAY WHOSE N'TH COLUMN CONSISTS OF
SIGMA (ELECTRICAL CONDUCTIVITY S/M), EPSREL

(RELATIVE DIELECTRIC CONSTANT), MUREL (RELATIVE REAL

MAGNETIC PERMEABILITY), AND MURELI (RELATIVE IMAGINARY

MAGNETIC PERMEABILITY) OF THE N'TH REGION

FREQ - FREQUENCY OF OPERATION (HZ)

EXCMAG(2*(NR+NZ)) - VECTOR CONTAINING THE MAGNITUDES
OF THE TANGENTIAL ELECTRIC EXCITATION FIELDS EVERY-
WHERE ON THE BOUNDARY. A DATA VALUE HAS TO BE ENTERED
FOR EVERY GRID BLOCK ADJACENT TO THE BOUNDARY,
INCLUDING THOSE ADJACENT TO THE AXIS OF SYMMETRY. THE
FIRST DATA VALUE REPRESENTS THE RADIALLY OUTWARD
DIRECTED EXCITATION FIELD AT THE GRID BLOCK NEAREST THE
ORIGIN. THE DATA VALUES THAT FOLLOW REPRESENT
RADIALLY OUTWARD DIRECTED EXCITATION FIELDS IN THE
SAME PLANE AS THE FIRST DATA VALUE, BUT AT SUCCESSIVELY
LARGER RADI. PROCEEDING IN A COUNTERCLOCKWISE
DIRECTION ALONG THE BOUNDARY, AFTER NR DATA VALUES
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HAVE BEEN ENTERED FOR RADIAL EXCITATION FIELDS, NZ DATA
VALUES ARE ENTERED FOR THE Z-DIRECTED EXCITATION FIELDS
AT THE OUTER BOUNDARY. CONTINUING IN A
COUNTERCLOCKWISE DIRECTION, A FURTHER NR DATA VALUES
ARE ENTERED FOR THE RADIALLY OUTWARD DIRECTED
EXCITATION FIELD, STARTING WITH THE FIELD FURTHEST FROM
THE AXIS. LASTLY, MOVING ALONG THE AXIS IN THE NEGATIVE
Z-DIRECTION, THE LAST NZ Z-DIRECTED EXCITATION FIELDS ARE
ENTERED AS DATA. THE LAST ELEMENT IN THE VECTOR IS THE Z-
DIRECTED ELECTRIC EXCITATION FIELD ON THE AXIS AND
NEAREST THE ORIGIN (V/M).

EXCANG(2*(NR+NZ)) - VECTOR CONTAINING THE PHASES
CORRESPONDING TO EXCMAG(2*(NR+NZ)) (DEGREES)

HCOLMG(NRNZ) - VECTOR CONTAINING THE MAGNITUDES OF
THE CIRCUMFERENTIAL MAGNETIC EXCITATION FIELD AT
THE CENTER OF EVERY DOMAIN GRID BLOCK SPECIFIED IN
COLUMN ORDER (A/M)

HCOLAN(NRNZ) - VECTOR CONTAINING THE PHASES
CORRESPONDING TO HCOLMG(NRNZ) (DEGREES)

HROWMG(NRNZ) - VECTOR CONTAINING THE MAGNITUDES OF
THE CIRCUMFERENTIAL MAGNETIC EXCITATION FIELD AT
THE CENTER OF EVERY DOMAIN GRID BLOCK SPECIFIED IN
ROW ORDER(A/M). THOSE VALUES OF THE
CIRCUMFERENTIAL MAGNETIC EXCITATION FIELD THAT
HAVE ALREADY BEEN SPECIFIED AS HCOLMG(NRNZ) ARE
SPECIFIED HERE AS 0.0.

HROWAN(NRNZ) - VECTOR CONTAINING THE PHASES
CORRESPONDING TO HROWMG(NRNZ) (DEGREES). THOSE
VALUES OF THE CIRCUMFERENTIAL MAGNETIC
EXCITATION FIELD THAT HAVE ALREADY BEEN SPECIFIED
AS HCOLAN(NRNZ) ARE SPECIFIED HERE AS 0.0.

ADDENDUM — JULY 11, 1996

RS(NR,NZ) - ARRAY CONTAINING THE RESISTANCE OF EACH
DOMAIN GRID BLOCK USED FOR CALCULATING THE
CONDUCTING SURFACE'S RESISTANCE

NOaNONOHONNNHNONNNNNNONHNNNNNNOONNONNONNONONNONN

C--—em- OUTPUT VARIABLES

HMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
MAGNETIC FIELD INTENSITIES AT THE CENTERS OF ALL
GRID BLOCKS (A/M)

HANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF MAGNETIC
FIELD INTENSITIES AT THE CENTERS OF ALL GRID BLOCKS
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(DEGREES)

ERMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
RADIAL ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF CALL GRID BLOCKS (V/M)

ERANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF RADIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF ALL GRID BLOCKS (DEGREES)

EZMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
AXIAL ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF ALL GRID BLOCKS (V/M)

EZANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF AXIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF ALL GRID BLOCKS (DEGREES)

HTRATE(NR,NZ) - TIME AVERAGE HEATING RATE AT THE
CENTERS OF ALL GRID BLOCKS (W/M*3)

ADDENDUM --- JULY 11, 1996

JOUL(NR,NZ) - ARRAY CONTAINING THE ELECTRICAL STORED
ENERGY IN EACH DOMAIN GRID BLOCK

JOUL1(NR,NZ) - ARRAY CONTAINING THE MAGNETIC STORED
ENERGY IN EACH DOMAIN GRID BLOCK

POW - THE TOTAL POWER DISSIPATED IN THE CAVITY

POWER(NR,NZ) - ARRAY CONTAINING THE POWER DISSIPATED IN
EACH DOMAIN GRID BLOCK

QUAL(ND) - VECTOR CONTAINING THE QUALITY FACTOR OF THE
CAVITY

TOTEN - THE TOTAL ELECTRICAL ENERGY STORED IN THE
CAVITY

TOTEN1 - THE TOTAL MAGNETIC ENERGY STORED IN THE CAVITY

ZIN - INPUT IMPEDANCE AT THE PLANE PERPENDICULAR TO THE
AXIS AND THROUGH THE ORIGIN (OHMS)

VARIABLES USED WITHIN PROGRAM

nNononnonn

ADDENDUM --- JULY 11, 1996
DELTA - THE SIZE OF THE FREQUENCY INCREMENT
DELTAF(ND) - THE SIZE OF THE FREQUENCY DROP OR GAIN

NR1 - NR+1
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NZ1-NZ+1

NPERI - 2*(NR+NZ)

NRNZ - NR*NZ

SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON
OF EVERY DOMAIN AND PHANTOM GRID BLOCK

WMU(NR,NZ) - ARRAY CONTAINING W*MU OF EVERY DOMAIN
GRID BLOCK, WHERE MU IS THE ABSOLUTE COMPLEX
PERMEABILITY

R(0:NR1) - VECTOR THAT CONTAINS ALL THE RADIAL DISTANCES
FROM THE AXIS TO THE CENTER OF EVERY GRID BLOCK.
ARBITRARY VALUES FOR THE RADIAL DISTANCES TO THE
CENTERS OF THE INNERMOST AND OUTERMOST PHANTOM
GRID BLOCKS ARE LOCATED IN R(0) AND R(NR1).

DELR(0:NR1) - VECTOR THAT CONTAINS ALL RADIAL GRID BLOCK
DIMENSIONS. ARBITRARY RADIAL GRID BLOCK
DIMENSIONS FOR THE INNERMOST AND OUTERMOST
PHANTOM GRID BLOCKS ARE LOCATED IN DELR(0) AND
DELR(NR1).

Z(NZ) - VECTOR THAT CONTAINS ALL THE AXIAL DISTANCES
FROM THE ORIGIN TO THE CENTER OF EVERY DOMAIN
GRID BLOCK

DELZ(0:NZ1) - VECTOR THAT CONTAINS ALL AXIAL GRID BLOCK
DIMENSIONS. ARBITRARY AXIAL GRID BLOCK DIMENSIONS
FOR THE PHANTOM GRID BLOCKS NEAREST AND
FURTHEST FROM THE ORIGIN ARE LOCATED IN DELZ(0)
AND DELZ(NZ1).

KK(NRNZ,NRNZ) - SYMMETRIC ARRAY OF THE COMPLEX
COEFFICIENTS KK OF THE EQUATIONS KK*H = F. THE
COEFFICIENT MATRIX KK IS COMPUTED AND STORED ONLY
FOR INITIAL TESTING OF THIS PROGRAM.

K(NRNZ,NR1) - ARRAY OF THE COMPLEX COEFFICIENTS OF THE
COMPRESSED MATRIX K. NOTE THAT NR1 IS THE HALF
BANDWIDTH OF THE MATRIX KK (INCLUDING THE
DIAGONAL).

KCOPY(NRNZ,NR1) - A COPY OF K(NRNZ,NR1). KCOPY IS USED BY
SUBROUTINE GAUSEL AND RETURNED TO THE MAIN
PROGRAM IN ALTERED FORM.

HEXC(NRNZ) - COMPLEX VECTOR CONTAINING THE
CONSOLIDATED COLUMN PRIORITY AND ROW PRIORITY
COMPLEX MAGNETIC EXCITATION FIELDS, IN COLUMN
ORDER

F(NRNZ) - COMPLEX VECTOR WHOSE ELEMENTS RECEIVE
CONTRIBUTIONS FROM THE REAL AND IMAGINARY PARTS
OF THE COMPLEX EXCITATION VOLTAGES CONSTRUCTED
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FROM EXCMAG(NPERI), EXCANG(NPERI), DELR(0:NR1) AND
DELZ(0:NZ1). CONTRIBUTIONS TO F ARE ALSO MADE BY
THE MAGNETIC EXCITATION FIELDS HCOLMG(NRNZ),
HCOLAN(NRNZ), HROWMG(NRNZ), AND HROWAN(NRNZ).

FCOPY(NRNZ) - A COPY OF F(NRNZ). FCOPY IS USED BY
SUBROUTINE GAUSEL AND RETURNED TO THE MAIN
PROGRAM IN ALTERED FORM.

RH(NRNZ) - COMPLEX VECTOR RH WHOSE ELEMENTS ARE THE
SOLUTION TO KK*RH = F. RH IS THE PRODUCT
(RADIALDISTANCE)*(MAGNETIC FIELD INTENSITY).

ADDENDUM - JULY 11, 1996

WED(NR,NZ) - ARRAY CONTAINING W*IMAG(EPS) OF EVERY
DOMAIN GRID  BLOCK WHERE IMAG(EPS) IS THE
IMAGINARY PART OF THE COMPLEX PERMITTIVITY

NN ONNNHNONN

N

DIMENSIONING AND DECLARATION OF INPUT AND OUTPUT
VARIABLES
INTEGER NR, NZ, NREG, ND
CHEABHHHARABRARHHHHBHBRBRBHHHHRURHRRBERRARHRAH R AR B HHAARAH
INPUT OF FIRST DATA SET
IF ONLY ELECTRIC EXCITATION IS PRESENT CHOOSE NR,NZ.GE.1!
[F ONLY MAGNETIC EXCITATION, OR ELECTRIC AND MAGNETIC
EXCITATION IS PRESENT, CHOOSE NR,NZ.GE.3!
ND SHOULD ALWAYS BE SET TO AN ODD NUMBER

N

nNoonnn

PARAMETER (NR=70, NZ=85, NREG=6, ND=1)
CHEBHARBHR BB RRBRRARR RSB R
INTEGER DOMIND(4,NREG), NPERI, NRNZ, L1,COUNT
REAL DELTAR(NR), DELTAZ(NZ), DOMPRP(4,NREG)
PARAMETER (NPERI=2*(NR+NZ))
REAL FREQ, EXCMAG(NPERI), EXCANG(NPERI)
REAL FREQ1(ND)
PARAMETER (NRNZ=NR*NZ)
REAL HCOLMG(NRNZ), HCOLAN(NRNZ), HROWMG(NRNZ)
REAL HROWAN(NRNZ)

REAL HMAG(NR,NZ), HANG(NR,NZ), ERMAG(NR,NZ)
REAL ERANG(NR,NZ), FREQO, QO, DEL

REAL EZMAG(NR,NZ), EZANG(NR,NZ)

REAL QUAL(ND), JOUL(NR,NZ), POWER(NR,NZ), TOTEN
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C

REAL POW, JOUL1(NR,NZ), TOTEN1, POW1(NR,NZ)
REAL RA,ZA,EZO(NRNZ),EZ,ANG
CHARACTER*1 TAB

*2345678901234567890123456789012345678901234567890123456789012345

C
C

DIMENSIONING AND DECLARATION OF VARIABLES USED
WITHIN PROGRAM

INTEGER NR1,NZ1

PARAMETER (NR1=NR+1, NZ1=NZ+1)

COMPLEX SIGJWE(0:NR1,0:NZ1), WMU(NR,NZ), TAND, FL
REAL R(0:NR1), DELR(0:NR1), Z(NZ), DELZ(0:NZ1), DTOTEN
REAL PO1(NR,NZ), PO2(NR,NZ), PO3(NR,NZ), PO4(NR,NZ)
REAL RS(0:NR1,0:NZ1),FREQ2

REAL WEPSD1, WED(NR,NZ), EPSREL1(NR,NZ)

REAL DELTAF(ND), DELTA, QUALI1, JOULD(NR,NZ), TOTEND
COMPLEX K(NRNZ,NR1), KCOPY(NRNZ,NR1), HEXC(NRNZ)
COMPLEX F(NRNZ)

COMPLEX FCOPY(NRNZ), RH(NRNZ)

TAB=CHAR(9)

CHEHHHHHHHHBHHHBBRBH BB BB RBRBBRBHHBHB BB BRI R R R B B

C

aonnn 0N

INPUT OF REMAINING DATA SET

DATA DELTAR /5*.0001,14*.0003,2*.0001,6*.000025,1*.00005,3*.0001,
4*.0004,20*.001,2*.0003,2*.0001,
1*.00005,1*.00003,9*.00001333333333/

DATA DELTAZ /36*.001677222222222 4*.00035,1*.000175,2*.000075,

1*.00002,1*.000004,2*.000001,1*.000004,1*.000015,

1*.00006,1*.0002,3*.0006,2*.0004475,1*.000125,

1*.00004,3*.00001,4*.00002,15*.0001266666666666,

3*.0004166666,2*.001875/

C NEXT LINE: MINLMAXI,MIN],MAX]

nnnnn

DATA DOMIND /1, 70, 1, 85,
5,35, 1, 46,
5, 55, 47, 59,
1,71, 81, 83,
1,52, 84, 85,
1, 2,1, 45/

C NEXTLINE: SIGMA, EPSREL,MUREL,MURELI

nnoonn

DATA DOMPRP /0.0, 1.0, 1.0, 0.0,
1.0e30, 1.0, 1.0, 0.0,
1.0e30, 1.0, 1.0, 0.0,
1.0e30, 1.0, 1.0, 0.0,
1.0e30, 1.0, 1.0, 0.0,
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C 1.0e30, 1.0, 1.0, 0.0/

DATA FREQ /2.435525¢9/
DATA FREQO /2.435525e9/

DATA EXCMAG /310*0.0/
DATA EXCANG /310*0.0/

DATA HCOLMG /35%0.0,0.5,5914*0.0/
DATA HCOLAN /5950%0.0/

DATA HROWMG /5950*0.0/

DATA HROWAN /5950%0.0/

C INVOKE OR DELETE: 1. DECLARATION COMPLEX KK(NRNZ,NRNZ)

C 2.CALL TO SUBROUTINE TESTKK

CHH##BHAH IR R R RRRA R RR R RARAAA R BH A
*2345678901234567890123456789012345678901234567890123456789012345

C e e
C

OPEN (UNIT=4, FILE="HCOMR2' STATUS='"NEW")
OPEN (UNIT=7, FILE='ERCOMR2' STATUS="NEW")
OPEN (UNIT=8, FILE='EZCOMR2' STATUS="NEW')
OPEN (UNIT=14, FILE="HCOMZ' STATUS='"NEW')
OPEN (UNIT=17, FILE="ERCOMZ' STATUS="NEW")
OPEN (UNIT=18, FILE="EZCOMZ' STATUS='NEW")
OPEN (UNIT=40, FILE='QUAL'STATUS=NEW")
OPEN (UNIT=50, FILE='QUAL2',STATUS='NEW")
OPEN (UNIT=60, FILE="PROG1D' STATUS="NEW")

nNnonnn

C
C CALCULATION OF THE RESONANT FREQUENCY
C
COUNT=0
SUM=0.0
DELTA=1.0E3
DO 99 L1=1,ND
FREQ=2.435525¢9
SUM=(L1-ND)
DELTAF(L1)=DELTA*SUM
FREQ1(L1)=FREQ+DELTAF(L1)
FREQ=FREQI(L1)
DEL=FREQO-FREQ
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C__._
C

C ASSIGNMENT OF ELECTRICAL PROPERTIES TO ALL DOMAIN
C AND PHANTOM GRID BLOCKS

C

CALL ASSIGN
C (NR,NZ,NR1,NZ1,NPERI,NREG,DOMIND,DOMPRP, FREQ EXCMAG,
C SIGJWE,WED,WEPSD1,R,PROG1,L1,EPSREL1,FREQO,WMU)

C
C CALCULATION OF THE RADIAL DISTANCES TO THE CENTERS
C  OF ALL DOMAIN GRID BLOCKS
SUM=0.0
DO 10 [=1,NR
R(I)=SUM+DELTAR(I)/ 2.0
SUM=SUM+DELTAR(])

10 CONTINUE
C ASSIGNMENT OF ARBITRARY RADIAL DISTANCES TO THE
C  CENTERS OF PHANTOM GRID BLOCKS THAT ARE ADJACENT TO
C  THE AXIS AND FURTHEST FROM THE AXIS
R(0)=1.0
R(NR1)=1.0

C
C CONSTRUCTION OF THE VECTOR DELR(0:NR1) THAT

C CONTAINS THE RADIAL DIMENSIONS OF THE PROBLEM DOMAIN
C

C

C

GRIDBLOCKS, AS WELL AS ARBITRARY RADIAL DIMENSIONS FOR
THE PHANTOM GRID BLOCKS THAT ARE ADJACENT TO THE AXIS
AND FURTHEST FROM THE AXIS.
DO 12 I=1L.NR
DELR(I)=DELTAR(])
12  CONTINUE
DELR(0)=1.0
DELR(NR1)=1.0

C
C CALCULATION OF THE AXIAL DISTANCES TO THE CENTERS OF
C  ALL DOMAIN GRID BLOCKS
SUM=0.0
DO 14 J=<1,NZ
Z(J)=SUM+DELTAZ(J)/2.0
SUM=SUM+DELTAZ())
14  CONTINUE
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C CONSTRUCTION OF THE VECTOR DELZ(0:NZ1) THAT

C CONTAINS THE AXIAL DIMENSIONS OF THE PROBLEM DOMAIN
C GRIDBLOCKS, AS WELL AS ARBITRARY AXIAL DIMENSIONS FOR
C THE PHANTOM GRID BLOCKS THAT ARE NEAREST TO AND

C FURTHEST FROM THE ORIGIN

DO 16 J=1,NZ
DELZ(J)=DELTAZ())
16  CONTINUE

DELZ(0)=1.0

DELZ(NZ1)=1.0

COMPUTATION OF THE COMPRESSED COEFFICIENT ARRAY K
CALL
COEFFK(NR,NZ,NR1,NZ1,R,DELR,DELZ SIGJWE,WMU,NRNZK,

C PROG1)

C

COMPUTATION OF THE CONTRIBUTION TO THE COMPLEX
C EXCITATION VOLTAGES F BY THE ELECTRIC EXCITATION ON
C THE BOUNDARIES OF THE PROBLEM DOMAIN. THIS
C
C

C
C

COMPUTATION DOES NOT CHANGE THE COMPRESSED
COEFFICIENT ARRAY K.

CALL VOLTF
C (EXCMAG,EXCANG,NR,NR1,NZ,NZ1,NRNZ NPERI,DELR,DELZ,
C F,PROGI)

nn

COMPUTATION OF THE CONTRIBUTION TO THE COMPLEX
EXCITATION VOLTAGES F BY THE MAGNETIC EXCITATION

WITHIN THE PROBLEM DOMAIN. THIS COMPUTATION CHANGES

THE COMPRESSED COEFFICIENT ARRAY K IF MAGNETIC

EXCITATION IS PRESENT.

CALL MGNETF

(HCOLMG, HCOLAN, HROWMG, HROWAN, NR, NR1, NZ, NRNZ,
R,K,E,HEXC)

nnnon

NN

DO 20 J=1,NR1
DO 22 1=1,NRNZ
KCOPY(L])=K(L])
2 CONTINUE
20 CONTINUE
C
C A COPY OF THE EXCITATION VOLTAGE VECTOR F IS PLACED
C INTO FCOPY
DO 24 I=1,NRNZ
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FCOPY(I)=F(1)
24 CONTINUE

C
C COMPUTATION OF THE VECTOR RH BY GAUSSIAN
C ELIMINATION
CALL GAUSEL (NRNZ,NR1,KCOPY,FCOPY,RH)
C
C
C

COMPUTATION OF THE RADIAL ELECTRIC FIELD ARRAY AND
THE AXIAL ELECTRIC FIELD ARRAY

CALL GAUSEL (NRNZ,NR1,KCOPY,FCOPY,RH,PROG1)

CALL EFIELD (NR,NZ,NR1,NZ1,NRNZ NPERI,DELR,DELZ,R SIGJWE,
EXCMAG,EXCANG,RH,HEXC,ERMAG,ERANG,EZMAG,EZANG,
PROG1)

COMPUTATION OF TIME AVERAGE ELECTRICAL HEATING
RATES
CALL HOT (NR,NZ,NR1,NZ1,SIGJWE,ERMAG,EZMAG,HTRATE)

C
C
C
C
C

C COMPUTATION OF HMAG(NR,NZ) AND HANG(NR,NZ) FROM
C RH
C

PI=3.141592654
DO 30 J=1,NZ
DO 40 I=1,NR
M=I+(-1)*NR
HMAG(1,])=CABS(RH(M))/R(I)
IF(HMAG(IJ).EQ.0.0) THEN
HANG(L])=0.0
ELSE
HANG(I,])=(180.0/ PI)*ATAN2(AIMAG(RH(M)), REAL(RH(M)))
END IF
40 CONTINUE
30 CONTINUE
C COMPUTATION OF TOAL ELECTRICAL AND MAGNETIC ENERGY
C  IN THE CAVITY
CALL ENERGY
C (NRNZNR1,NZ1,ERMAGEZMAG,DELZ,R,DELR,TOTEN SIGJWE,
C JOUL, JOUL1,HMAG,TOTEN1,EPSREL1,DTOTEN, TOTEND,JOULD)
WRITE(60,*) TOTEN,TOTEN1,DTOTEN,FREQ,DEL
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COMPUTATION OF POWER DISSIPATED IN THE CAVITY

CALL POWER1
(NR,NZ,NR1,NZ1,ERMAG,EZMAG,HMAG,DELZ,R,DELR SIGJWE,
WED,WMU, POWER,POW,FREQ, PO1, PO2,PO3,PO4,RS,POW1,
PROGI)

FL=2*TOTEND/ (TOTEN+TOTENT1)
QUAL=PI*FREQ*(TOTEN+TOTEN1)/POW
WRITE(60,10) QUAL

FORMAT (1X,'QUALITY FACTOR IS 'F5.8)
WRITE (60,20) FREQ

FORMAT (1X," THE FREQUENCY IS 'E15.8)
WRITE (60,37) FL

FORMAT (1X, THE FILLING FACTOR IS 'E15.8)
CONTINUE

C RESULTS OF CALCULATIOINS ARE WRITTEN TO NEW FILES

C
C

*2345678901234567890123456789012345678901234567890123456789012345
C——— -

'OUTHRZ', 'HCOMR', 'HCOMZ', 'ERCOMR', 'ERCOMZ', 'EZCOMR,
'EZCOMZ', 'HEATR','HEATZ', PROG1"QUAL', 'QUALT'

CALL OUTPUT

(NR,NZ,NRNZ,NR1,RH,R,Z HMAG,HANG,ERMAG,ERANG, EZMAG,
EZANG)

STOP
END

C

NNONON
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SUBROUTINE ASSIGN

C (NR,NZ,NR1,NZ1,NPERILNREG,DOMIND,DOMPRP, FREQ,EXCMAG,
SIGJWE,WED,WEPSD1,R,PROG1,L1,EPSREL1,FREQO,WMU)

THIS SUBROUTINE ASSIGNS ELECTRICAL PROPERTIES TO EVERY
DOMAIN AND PHANTOM GRID BLOCK

INPUT VARIABLES

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN
NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN
NR1 - NR+1

NZ1 - NZ+1

NPERI - 2*(NR+NZ)

NREG -THE NUMBER OF REGIONS OF DIFFERENT ELECTRICAL
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PROPERTIES THAT ARE OVERLAID TO DEFINE THE ELECTRICAL
PROPERTIES OF THE PROBLEM DOMAIN

DOMIND(4,NREG) - ARRAY THAT DEFINES THE GRID INDICES OF
THE BOUNDARIES OF ALL REGIONS. ITS N'TH COLUMN CONSISTS
OF MINI, MAXI, MIN]J, MAX] OF THE N'TH REGION

DOMPRP(4,NREG) - ARRAY WHOSE N'TH COLUMN CONSISTS OF
SIGMA (ELECTRICAL CONDUCTIVITY), EPSREL (RELATIVE
DIELECTRIC CONSTANT), MUREL (RELATIVE MAGNETIC
PERMEABILITY), AND MURELI (RELATIVE IMAGINARY MAGNETIC
PERMEABILITY) OF THE
N'TH REGION

FREQ - FREQUENCY OF OPERATION

EXCMAG(NPERI) - MAGNITUDES OF THE R AND Z-DIRECTED
TANGENTIAL ELECTRIC EXCITATION FIELDS AT THE BOUNDARY

onoonnnnnannnnonNnnnn

OUTPUT VARIABLES
SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON OF
EVERY DOMAIN AND PHANTOM GRID BLOCK
WMU(NR,NZ) - ARRAY CONTAINING W*MU OF EVERY DOMAIN GRID
BLOCK, WHERE MU IS THE ABSOLUTE COMPLEX PERMEABILITY
WED(NR,NZ) - ARRAY CONTAINING W*IMAG(EPS) OF EVERY DOMAIN
GRID BLOCK WHERE IMAG(EPS) IS THE IMAGINARY PART OF THE
COMPLEX PERMITTIVITY

nNonnnnnn

INTEGER NR,NZ

INTEGER NREG,DOMIND(4,NREG)

REAL DOMPRP(4,NREG), FREQ, EXCMAG(NPERI), MUNOT
REAL WEPSD1,EPSREL1(NR,NZ)

REAL WED(NR,NZ),EPS

COMPLEX SIGJWE(0:NR1,0:NZ1), WMU(NR,NZ)

PI=3.141592654
EPSNOT=1.0E-9/ (36.0"P1I)
MUNOT=4.0*PI*1.0E-7
W=2.0*PI*FREQ
C
C ASSIGN SIGMA+JW*EPSILON AND W*MU TO EVERY DOMAIN
C  GRID BLOCK
DO 10 N=1,NREG
MINI=DOMIND(1,N)
MAXI=DOMIND(2,N)
MINJ=DOMIND(3,N)
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MAXJ=DOMIND(4,N)
SIG=DOMPRP(1,N)

IF ((SIG.GT.0.00).AND.(SIG.LT.1.0e30)) THEN
SIG=SIG*FREQ/FREQO

ELSE

END IF

EPS=DCMPRI{(2,N
WEPS=W*DOMPRP(2,N)*EPSNOT
OMEGMU=W*DOMPRP(3,N)*MUNOT
OMEGMI=W*DOMPRP(4,N)*MUNOT

IF (SIG.EQ.0.0) THEN

WEPSD1=0.0

ELSE

WEPSD1=SIG/W

END IF

DO 20 I=MINI,MAXI
DO 30 J=MIN],MAX]
EPSREL1(L,])=EPS
SIGJWE(L,J)=CMPLX(SIG,WEPS)
WMU(LJ)=CMPLX(OMEGMU,-OMEGMI)
WED(L,J)=WEPSD1

30 CONTINUE

20 CONTINUE

10 CONTINUE

C

C ASSIGN ZERO ELECTRICAL CONDUCTIVITY TO THOSE

C  PHANTOM GRID BLOCKS ADJACENT TO AXIS AT WHOSE
C  LOCATION A ZERO TANGENTIAL ELECTRIC EXCITATION FIELD IS
C  SPECIFIED, AND INFINITE ELECTRICAL CONDUCTIVITY TO ALL
C  OTHER PHANTOM GRID BLOCKS
DO 40 I=1,NR

SIGJWE(I,0)=CMPLX(1.0E30,0.0)

SIGJWE(I,NZ1)=CMPLX(1.0E30,0.0)
40 CONTINUE

DO 50 J=1,NZ
IF (EXCMAG(NPERI+1-]).EQ.0.0) THEN
SIGJWE(0,J)=CMPLX(0.0,0.0)
ELSE
SIGJWE(0,])=CMPLX(1.0E30,0.0)
END IF
SIGJWE(NR1,J)=CMPLX(1.0E30,0.0)
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50

CONTINUE
RETURN
END

00

annnnn
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SUBROUTINE COEFFK(NR,NZ,NR1,NZ1,R,DELR,DELZ,SIGJWE,WMU,
NRNZ,K,PROG1)

THIS SUBROUTINE COMPUTES THE COEFFICIENTS K OF THE
COMPRESSED COEFFICIENT ARRAY K

INPUT VARIABLES

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DCMAIN

NR1-NR+1

NZ1-NZ +1

R(0:NR1) - VECTOR THAT CONTAINS THE RADIAL DISTANCES FROM
THE AXIS TO THE CENTER OF EVERY DOMAIN AND
PHANTOM GRID BLOCK

DELR(0:NR1) - VECTOR THAT CONTAINS THE RADIAL GRID BLOCK
DIMENSIONS OF EVERY DOMAIN AND PHANTOM GRID
BLOCK

DELZ(0:NZ1) - VECTOR THAT CONTAINS THE AXIAL GRID BLOCK
DIMENSIONS OF EVERY DOMAIN AND PHANTOM GRID
BLOCK

SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON OF

EVERY DOMAIN AND PHANTOM GRID BLOCK.

WMU(NR,NZ) - ARRAY CONTAINING W*MU OF EVERY DOMAIN GRID

BLOCK, WHERE MU IS THE ABSOLUTE COMPLEX
PERMEABILITY
NRNZ - NR*NZ

OUTPUT VARIABLES
K(NRNZ,NR1) - COMPRESSED COEFFICIENT ARRAY

INTEGER NR,NZ,NR1,NZ1,NRNZ
REAL R(0:NR1), DELR(0:NR1), DELZ(0:NZ1)
COMPLEX SIGJWE(0:NR1,0:NZ1), WMU(NR,NZ)
COMPLEX K(NRNZ,NR1)

129



COMPLEX B,C,D,K1,K2,K3,K4,K5
C INITIALIZE THE ENTIRE ARRAY K(NRNZ,NR1) TO ZERO
DO 10 J=1,NR1
DO 20 I=1NRNZ
K(LJ)=(0.0,0.0)
20 CONTINUE
10  CONTINUE
C
C

CALCULATE THE COEFFICIENTS OF K(NRNZ,NR1)

DO 30 J=1,NZ
DO 40 I=1,NR
A=-2.0*DELZ(j)
B=SIGJWE(I-1,J)*(R(I-1)+DELR(I-1)/4.0)*DELR(I-1)
C=SIGJWE(LJ)*(R(I)-DELR(I)/4.0)*DELR(I)
K2=A/(B+C)

A=-2.0*DELR(I)/R(l)
B=SIGJWE(LJ)*DELZ())
C=SIGJWE(IJ+1)*DELZ(J+1)
K3=A/(B+C)

A=-2.0*DELZ())
B=SIGJWE(L])*(R(I)+DELR(I)/4.0)*DELR(I)

=SIGJWE(I+1,J)*(R(I+1)-DELR(1+1)/4.0)*DELR(I+1)
K4=A/(B+C)

A=-2.0*DELR(I)/R(])
B=SIGJWE(L,]-1)*DELZ(J-1)
C=SIGJWE(L]J)*DELZ())
K5=A/(B+C)

D=(0.0,1.0)*WMU(LJ)*DELR(I)*DELZ(J)/ R(l)

K1=D-K2-K3-K4-K5
M=I+NR*(-1)
K(M,1)=K1
C COEFFICIENTS KK ARE CALCULATED ONLY FOR THOSE H
C  THAT LIE IN GRID BLOCKS WITHIN THE PROBLEM DOMAIN
IF(.LT.NZ) K(M,1+NR)=K3

IF(ILLT.NR) K(M,2)=K4
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CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE VOLTF
(EXCMAG,EXCANG,NR,NR1,NZ,NZ1,NRNZ,NPERI,DELR,
DELZ,F,PROG1)

THIS SUBROUTINE CALCULATES THE CONTRIBUTIONS BY THE
ELECTRIC EXCITATION FIELDS ON ALL FOUR DOMAIN
BOUNDARIES TO THE COMPLEX EXCITATION VOLTAGES F IN THE
EQUATION KK*RH=F

INPUT VARIABLES

EXCMAG(NPERI) - MAGNITUDES OF THE R AND Z-DIRECTED
TANGENTIAL ELECTRIC EXCITATION FIELDS AT THE
BOUNDARY

EXCANG(NPERI) - VECTOR CONTAINING THE PHASES
CORRESPONDING TO EXCMAG(NPERI) (DEGREES)

NR - NUMBER OF DOMAIN GRID BLOCKS IN THE RADIAL
DIRECTION

NR1-NR +1

NZ - NUMBER OF DOMAIN GRID BLOCKS IN THE AXIAL
DIRECTION

NZ1-NZ+1

NRNZ - NR*NZ

NPERI - 2*(NR+NZ)

DELR(0:NR1) - VECTOR THAT CONTAINS ALL RADIAL GRID BLOCK

DIMENSIONS
DELZ(0:NZ1) - VECTOR THAT CONTAINS ALL AXIAL GRID BLOCK
DIMENSIONS

OUTPUT VARIABLE
F(NRNZ) - COMPLEX EXCITATION VOLTAGES F IN THE EQUATION
KK*H=F

INTEGER NR,NR1,NZ,NZ1,NRNZ,NPERI
REAL EXCMAG(NPERI),EXCANG(NPERI), DELR(0:NR1)
REAL DELZ(0:NZ1)
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COMPLEX F(NRNZ)
C INITIALIZE F(NRNZ) TO ZERO
DO 5 NF=1,NRNZ
F(NF)=CMPLX(0.0,0.0)
5  CONTINUE

C

CALCULATE THE CONTRIBUTIONS TO F(NRNZ)
FACTOR=3.141592654,/180.0

DO 10 I=1,NR

EXCANR=EXCANG(I)*FACTOR
FREAL=EXCMAG(I)*COS(EXCANR)*DELR(I)
FIMAG=EXCMAG(I)*SIN(EXCANR)*DELR(I)
F(I)=CMPLX(FREAL,FIMAG)

10 CONTINUE

DO 20 I=1,NR
NEXC=NZ+2*NR+1-I
EXCANR=EXCANG(NEXC)*FACTOR
FREAL=EXCMAG(NEXC)*COS(EXCANR)*DELR(I)
FIMAG=EXCMAG(NEXC)*SIN(EXCANR)*DELR(I)
F((NZ-1)*NR+I)=F((NZ-I)*NR+I)-CMPLX(FREAL,FIMAG)

20 CONTINUE

DO 30 J=1,NZ
NEXC=NR+]
EXCANR=EXCANG(NEXC)*FACTOR
FREAL=EXCMAG(NEXC)*COS(EXCANR)*DELZ(J)
FIMAG=EXCMAG(NEXC)*SIN(EXCANR)*DELZ(j))
F(NRY))=F(NR*J)+*CMPLX(FREAL FIMAG)

30 CONTINUE

DO 40 J=1,NZ
NEXC=NPERI+1-]
EXCANR=EXCANG(NEXC)*FACTOR
FREAL=EXCMAG(NEXC)*COS(EXCANR)*DELZ(j)
FIMAG=EXCMAG(NEXC)*SIN(EXCANR)*DELZ(])
F((-1)*NR+1)=F((J-1)*NR+1)-CMPLX(FREAL FIMAG)

40 CONTINUE
RETURN
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END
C234567890123456789012345678901234567890123456789012345678901234
C — o
C

SUBROUTINE MGNETF
C (HCOLMGHCOLAN,HROWMGHROWAN,NR,NR1,NZ,
C NRNZ-R K FHEXC, PROGI1)

THIS SUBROUTINE CALCULATES THE CONTRIBUTION TO THE
COMPLEX EXCITATION VOLTAGES F BY THE MAGNETIC
EXCITATION WITHIN THE PROBLEM DOMAIN. THIS SUBROUTINE
CHANGES THE COMPRESSED COEFFICIENT ARRAY K IF
MAGNETIC EXCITATION IS PRESENT.

INPUT VARIABLES
HCOLMG(NRNZ) - VECTOR CONTAINING THE MAGNITUDES OF THE
CIRCUMFERENTIAL MAGNETIC EXCITATION FIELD SPECIFIED IN
COLUMN ORDER (A/M)
HCOLAN(NRNZ) - VECTOR CONTAINING THE PHASES
CORRESPONDING TO HCOLMG(NRNZ) (DEGREES)
HROWMG(NRNZ) - VECTOR CONTAINING THE MAGNITUDES OF THE
CIRCUMFERENTIAL MAGNETIC EXCITATION FIELD SPECIFIED IN
ROW ORDER (A/M). THOSE VALUES OF THE CIRCUMFERENTIAL
MAGNETIC EXCITATION FIELD THAT HAVE ALREADY BEEN
SPECIFIED AS HCOLMG(NRNZ) ARE SPECIFIED HERE AS 0.0.

HROWAN(NRNZ) - VECTOR CONTAINING THE PHASES
CORRESPONDING TO HROWMG(NRNZ) (DEGREES). THOSE
VALUES OF THE CIRCUMFERENTIAL MAGNETIC EXCITATION
FIELD THAT HAVE ALREADY BEEN SPECIFIED AS HCOLAN(NRNZ)
ARE SPECIFIED HERE AS 0.0.

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NR1 - NR+1

NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NRNZ - NR*NZ

R(0:NR1) - VECTOR THAT CONTAINS ALL THE RADIAL DISTANCES
FROM THE AXIS TO THE CENTER OF EVERY GRID BLOCK.
ARBITRARY VALUES FOR THE RADIAL DISTANCES TO THE
CENTERS OF THE INNERMOST AND OUTERMOST PHANTOM GRID
BLOCKS ARE LOCATED IN R(0) AND R(NR1).

K(NRNZ,NR1) - ARRAY OF THE COMPLEX COEFFICIENTS OF THE
COMPRESSED MATRIX K. NOTE THAT NR1 IS THE HALF
BANDWIDTH OF THE MATRIX KK (INCLUDING THE
DIAGONAL).THIS SUBROUTINE CHANGES THE COMPRESSED
MATRIX K IF MAGNETIC EXCITATION IS PRESENT.
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C F(NRNZ) - COMPLEX VECTOR F WHOSE ELEMENTS RECEIVE
CONTRIBUTIONS FROM THE REAL AND IMAGINARY PARTS OF
THE COMPLEX EXCITATION VOLTAGES. IN THIS SUBROUTINE
FURTHER CONTRIBUTIONS TO F ARE MADE BY THE MAGNETIC
EXCITATION FIELDS HCOLMG(NRNZ), HCOLAN(NRNZ),
HROWMG(NRNZ), AND HROWAN(NRNZ).

NnnNnnOnnOnn

OUTPUT VARIABLES

C K(NRNZNR1) - ALTERED COMPRESSED COEFFICIENT MATRIX

C F(NRNZ) - COMPLEX EXCITATION VECTOR IN THE EQUATION

C KK*RH=F

C

C VARIABLES USED WITHIN SUBROUTINE

C HEXC(NRNZ) - COMPLEX VECTOR CONTAINING THE CONSOLIDATED
C COLUMN PRIORITY AND ROW PRIORITY COMPLEX MAGNETIC

C EXCITATION FIELDS, IN COLUMN ORDER

C
INTEGER NR,NR1,NZ,NRNZ,L]
REAL HCOLMG(NRNZ),HCOLAN(NRNZ), HROWMG(NRNZ)
REAL HROWAN(NRNZ)
REAL R(0:NR1)
COMPLEX K(NRNZ,NR1),F(NRNZ),HEXC(NRNZ)

C

C INITIALIZE HEXC(NRNZ) TO ZERO

DO 10 M=1,NRNZ
HEXC(M)=CMPLX(0.0,0.0)
10  CONTINUE
C
C ASSIGN VALUES TO HEXC(M) USING THE MAGNETIC FIELD
C EXCITATION ENTERED IN COLUMN ORDER
FACTOR=3.141592654/180.0
DO 20 M=1,NRNZ
IFHCOLMG(M).NE.0.0) THEN
HXCANR=HCOLAN(M)*FACTOR
HREAL=HCOLMG(M)*COS(HXCANR)
HIMAG=HCOLMG(M)*SIN(HXCANR)
HEXC(M)=CMPLX(HREAL,HIMAG)
END IF
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20 CONTINUE
C
C ADD TO HEXC(M) THE MAGNETIC FIELD EXCITATION
C  ENTERED IN ROW ORDER
DO 30 M=1,NRNZ
J=1+(M-1)/NR
I=M-(J-1)*NR
MM=(I-1)*NZ+]
IF(HROWMG(MM).NE.0.0) THEN
HXCANR=HROWAN(MM)*FACTOR
HREAL=HROWMG(MM)*COS(HXCANR)
HIMAG=HROWMG(MM)*SIN(HXCANR)
HEXC(M)=HEXC(M)+CMPLX(HREAL,HIMAG)
END IF
30 CONTINUE
C
C

BEGIN MODIFICATION OF K AND F

DO 40 M=1,NRNZ
FIRST MODIFICATION OF K AND F. NOTE THAT ANY E FIELD ON
BOUNDARY ADJACENT TO GRID BLOCK M WILL NOW BE
IGNORED BY BEING OVERWRITTEN.

IF(CABS(HEXC(M)).NE.0.0) THEN

J=1+(M-1)/NR

I=M-(-1)*NR

F(M)=HEXC(M)*R(])

K(M,1)=CMPLX(1.0,0.0)

Nnonon

USING ALL BUT THE FIRST COEFFICIENT OF THE COMPRESSED
C COEFFICIENT MATRIX K IN ROW M, SUBTRACT SUCCESSIVE

C VALUES OF COEFFICIENT*RH FROM SUCCESSIVE VALUES OF F
C
C

C
C

BELOW F(M), AND THEN REPLACE EACH OF THE COEFFICIENTS
USED BY ZERO IN THE COMPRESSED COEFFICIENT MATRIX K

DO 50 N=2,NR1
IF((M-1+N).LE.NRNZ) THEN
F(M-1+N)=F(M-1+N)-K(M,N)*HEXC(M)*R(I)
ELSE

END IF

IF((M-1+N).LE.NRNZ) THEN
K(M,N)=CMPLX(0.0,0.0)

ELSE
135



50

C
C
C
C
C
C
C

60

END IF
CONTINUE

----———- USING ALL BUT THE FIRST COEFFICIENT OF THE COMPRESSED

COEFFICIENT MATRIX K ON THE UPSLANTING TO RIGHT
DIAGONAL THROUGH K(M,1), SUBTRACT SUCCESSIVE VALUES OF
COEFFICIENT*RH FROM SUCCESSIVE VALUES OF F ABOVE F(M),
AND THEN REPLACE EACH OF THE COEFFICIENTS USED BY ZERO
IN THE COMPRESSED COEFFICIENT MATRIX K

DO 60 N=2,NR1

[F((M+1-N).GT.0) THEN
F(M+1-N)=F(M+1-N)-K(M+1-N,N)*HEXC(M)*R(])
ELSE

END IF

IF((M+1-N).GT.0) THEN
K(M+1-N,N)=CMPLX(0.0,0.0)

ELSE
END IF

CONTINUE
END IF
CONTINUE
RETURN
END

nononnononNnnn 000N

SUBROUTINE GAUSEL (NSIZE,MBAND K F,H,PROG1)

THIS ROUTINE SOLVES THE LINEAR ALGEBRAIC SYSTEM OF
EQUATIONS KK*H=F BY GAUSSIAN ELIMINATION WITHOUT
PIVOTING. THE MATRIX KK IS SYMMETRIC AND BANDED. ROWS
IN THE UPPER TRIANGLE OF THE MATRIX KK ARE SHIFTED TO
THE LEFT UNTIL THE DIAGONAL TERMS ARE IN THE FIRST
COLUMN OF THE COMPRESSED MATRIX K. THIS SUBROUTINE
OPERATES DIRECTLY ON K. THE SOLUTION IS RETURNED IN THE
VECTOR H.

C-—---- INPUT VARIABLES

C NSIZE - ORDER OF MATRIX KK

C MBAND - HALF BANDWIDTH OF KK (INCLUDING DIAGONAL)
C K(NSIZE,MBAND) - COMPRESSED COEFFICIENT MATRIX
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C F(NSIZE) - EXCITATION VECTOR

C

C OUTPUT VARIABLES

C H(NSIZE) - MAGNETIC FIELD VECTOR
C

INTEGER NSIZE,MBAND
COMPLEX K(NSIZE,MBAND)
COMPLEX F(NSIZE)
COMPLEX H(NSIZE)
COMPLEX C

THE ABOVE DIMENSION STATEMENTS PERMIT AN R-Z PROBLEM
DOMAIN CONSISTING OF A TOTAL OF NSIZE GRID BLOCKS

NnOnNN

NSIZM1=NSIZE-1
FORWARD REDUCTION OF MATRIX
DO 30 N=1,NSIZM1
DO 20 L=2,MBAND
I=N+L-1
IF((K(N,L).EQ.(0.0,0.0)).0R.(.GT.NSIZE)) GO TO 20
C=K(N,L)/K(N,1)
J=0

C

DO 10 M=L L MBAND

J=j+1

K(L))=K(L])-C*K(N.M)
10 CONTINUE

K(N,L)=C
20 CONTINUE
30 CONTINUE
C FORWARD REDUCTION OF RIGHT HAND SIDE
DO 60 N=1,NSIZM1
DO 50 L=2,MBAND
[=N+L-1
IF(L.LE.NSIZE) F(I)=F(I)-K(N,L)*F(N)
50 CONTINUE
F(N)=F(N)/K(N,1)
60 CONTINUE
F(NSIZE)=F(NSIZE)/ K(NSZIE,1)
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C BACK SUBSTITUTION
H(NSIZE)=F(NSIZE)
DO 90 N=1,NSIZM1
J=NSIZE-N
H()=F()
DO 80 L=2,MBAND
M=]+L-1
IF(M.LE.NSIZE) H()=H(J)-K(J,L)*H(M)
80 CONTINUE
90 CONTINUE
RETURN
END
C
C___
C

SUBROUTINE EFIELD (NR,NZ,NR1,NZ1,NRNZ,NPERI,DELR,DELZ,
C RSIGJWE EXCMAG,EXCANG,RH, HEXC,ERMAG,ERANG,
C EZMAG,EZANG,PROG1)

THIS SUBROUTINE COMPUTES THE MAGNITUDES AND PHASE
ANGLES OF THE RADIAL AND AXIAL ELECTRIC FIELD
INTENSITIES AT THE CENTERS OF ALL GRID BLOCKS

INPUT VARIABLES

NR - NUMBER OF DOMAIN GRID BLOCKS IN THE RADIAL
DIRECTION

NZ - NUMBER OF DOMAIN GRID BLOCKS IN THE AXIAL DIRECTION

NR1 - NR+1

NZ1- NZ+1

NRNZ - NR*NZ

NPERI - 2*(NR+NZ)

DELR(0:NR1) - VECTOR THAT CONTAINS ALL RADIAL GRID BLOCK
DIMENSIONS

DELZ(0:NZ1) - VECTOR THAT CONTAINS ALL AXIAL GRID BLOCK
DIMENSIONS

R(0:NR1) - VECTOR THAT CONTAINS THE RADIAL DISTANCES FROM
THE AXIS TO THE CENTER OF EVERY DOMAIN AND PHANTOM
GRID BLOCK

SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON OF
EVERY DOMAIN AND PHANTOM GRID BLOCK

EXCMAG(NPERI) - VECTOR CONTAINING THE MAGNITUDE OF THE

\TANGENTIAL ELECTRIC FIELD VECTOR EVERYWHERE ON THE
BOUNDARY

nonnnonnnNnNnONONNONOONONOONNONNN
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EXCANG(NPERI) - VECTOR CONTAINING THE ANGLE OF THE
TANGENTIAL ELECTRIC FIELD VECTOR EVERYWHERE ON THE
BOUNDARY

RH(NRNZ) - THE PRODUCT (RADIAL DISTANCE)*(MAGNETIC FIELD
INTENSITY)

HEXC(NRNZ) - COMPLEX VECTOR CONTAINING THE CONSOLIDATED
COLUMN PRIORITY AND ROW PRIORITY COMPLEX MAGNETIC
EXCITATION FIELDS, IN COLUMN ORDER

---—-——- OUTPUT VARIABLES

ERMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
RADIAL ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF ALL GRID BLOCKS (V/M)

ERANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF RADIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (DEGREES)

EZMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF AXIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (V/M)

EZANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF AXIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (DEGREES)

INTEGER NR,NZ,NR1,NZ1,NRNZ,NPERI
REAL DELR(0:NR1), DELZ(0:NZ1), R(0:NR1)

COMPLEX SIGJWE(0:NR1,0:NZ1), RH(NRNZ), HEXC(NRNZ)
REAL EXCMAG(NPERI), EXCANG(NPERI)

REAL ERMAG(NR,NZ), ERANG(NR,NZ), EZMAG(NR,NZ)
REAL EZANG(NR,NZ)

COMPLEX A1,A2,A3,A4,A5,A6,ASAVE

REAL B

------—- SUBROUTINE VOLTF USES THE ELECTRIC EXCITATION AT THE

BOUNDARIES TO GENERATE THE ELEMENTS OF THE COMPLEX

EXCITATION VECTOR F. IF MAGNETIC EXCITATION IS SPECIFIED
FOR A GRID BLOCK ADJACENT TO A BOUNDARY OF THE
DOMAIN, THEN THE SUBROUTINE MGNETF OVERWRITES THE
ELEMENT IN VECTOR F CORRESPONDING TO THAT GRID BLOCK.
HENCE, THE ELECTRIC EXCITATION AT THE BOUNDARY OF THAT
GRID BLOCK IS NOW IGNORED. IN THIS SUBROUTINE WE USE
EXTRAPOLATION TO GENERATE THE ELECTRIC FIELD
COMPONENT PARALLEL TO THE BOUNDARY AT THE CENTER OF
THE GRID BLOCK ADJACENT TO THE BOUNDARY WHENEVER
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C
C
C
C

nonnn

MAGNETIC EXCITATION IS PRESENT ADJACENT TO A BOUNDARY.

ASSIGNMENT OF MAGNITUDE AND ANGLE OF RADIAL

ELECTRIC FIELD INTENSITY AT THE CENTER OF EVERY DOMAIN

GRID BLOCK
FACTOR=180.0/3.141592654

DO 10 I=1,NR
ANGLE=EXCANG(I)/FACTOR
EREAL=EXCMAG(I)*COS(ANGLE)
EIMAG=EXCMAG(I)*SIN(ANGLE)
A1=CMPLX(EREAL,EIMAG)

DO 20 J=1,NZ
IF (.LEQ.NZ) THEN
ANGLE=EXCANG(NZ+2*NR+1-I)/FACTOR
EREAL=EXCMAG(NZ+2*NR+1-[)*COS(ANGLE)
EIMAG=EXCMAG(NZ+2*NR+1-I)*SIN(ANGLE)
A5=CMPLX(EREAL,EIMAG)

ELSE

A2=RH((J-1)*NR+I)-RH(*NR+I)

B=2.0/R(l)
A4=SIGJWE(L])*DELZ(J)+SIGIWE(J+1)*DELZ(J+1)
A5=A2*B/A4

END IF

A6=(A1+A5)/2.0

ERMAG(LJ)=CABS(A6)

IF(ERMAG(L]).EQ.0.0) THEN

ERANG(L,]J)=0.0

ELSE
ERANG(L])=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
END IF

[F MAGNETIC EXCITATION IS PRESENT ADJACENT TO BOUNDARY
EXTRAPOLATE AND THEN OVERWRITE THE RADIAL ELECTRIC

FIELD INTENSITY IN DOMAIN GRID BLOCK ADJACENT TO
BOUNDARY
IF(J.EQ.2.AND.CABS(HEXC(I)).NE.0.0) THEN
A6=A1+0.5*DELZ(1)*(A1-A5)/ DELZ(2)
ERMAG(I,1)=CABS(A6)
IF(ERMAG(I,1).EQ.0.0) THEN
ERANG(,1)=0.0
ELSE
ERANG(I,1)=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
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END IF
END IF

IF (J.EQ.NZ.AND.CABS(HEXC((NZ-1)*NR+I)).NE.0.0) THEN
A6=A1+0.5*DELZ(NZ)*(A1-ASAVE)/ DELZ(NZ-1)
ERMAG(I,NZ)=CABS(A6)

I[F(ERMAG(I,NZ).EQ.0.0) THEN

ERANG(I,NZ)=0.0

ELSE
ERANG(I,NZ)=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
END IF

END IF

ASAVE=A1l
Al1=A5

20 CONTINUE
10 CONTINUE

C

C--—————- ASSIGNMENT OF MAGNITUDE AND ANGLE OF AXIAL

C ELECTRIC FIELD INTENSITY AT THE CENTER OF EVERY DOMAIN

C GRID BLOCK. THE AXTAL ELECTRIC FIELD INTENSITY IN THE

C DOMAIN GRID BLOCK ADJACENT TO THE CENTRAL AXIS IS

C CALCULATED BY EXTRAPOLATION WHEN ELECTRIC EXCITATION
C IS PRESENT ON THE CENTRAL AXIS AND ALSO WHEN MAGNETIC
C EXCITATION IS PRESENT ADJACENT TO CENTRAL AXIS.

DO 40J=1,NZ
ANGLE=EXCANG(NR+])/FACTOR
EREAL=EXCMAG(NR+])*COS(ANGLE)
EIMAG=EXCMAG(NR+])*SIN(ANGLE)
A1=CMPLX(EREAL,EIMAG)

IF(NR.EQ.1) THEN
ANGLE=EXCANG(NPERI+1-])/FACTOR
EREAL=EXCMAG(NPERI+1-]J)*COS(ANGLE)
EIMAG=EXCMAG(NPERI+1-J)*SIN(ANGLE)
A5=CMPLX(EREAL EIMAG)

A6=(A1+A5)/2.0

EZMAG(1,])=CABS(A6)

IF(EZMAG(1,]).EQ.0.0) THEN

EZANG(1,])=0.0

ELSE
EZANG(1,]))=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
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END IF
ELSE

DO 50 I=NR,2,-1
A2=2.0*(RH(NR*(J-1)+I)-RH(NR*(J-1)+I-1))
A3=SIGJWE(I-1,])*(R(I-1)+DELR(I-1)/4.0)*DELR(I-1)
A4=SIGJWE(L])*(R(I)-DELR(1}/4.0)*DELR(I)
AS5=A2/(A3+A4)

A6=(A1+A5)/2.0

EZMAG(L])=CABS(A6)

IF(EZMAG(L]).EQ.0.0) THEN

EZANG(L])=0.0

ELSE
EZANG(L])=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
END IF

IF(LEQ.2) THEN
A6=A5+(A5-A1)*(0.5*DELR(1))/ DELR(2)
EZMAG(1,])=CABS(A6)

IF(EZMAG(1,]).EQ.0.0) THEN

EZANG(1,])=0.0

ELSE
EZANG(1,])=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
END IF

END IF

IF MAGNETIC EXCITATION IS PRESENT ADJACENT TO OUTER
BOUNDARY EXTRAPOLATE AND THEN OVERWRITE THE RADIAL
ELECTRIC FIELD INTENSITY IN DOMAIN GRID BLOCK ADJACENT
TO BOUNDARY

IF(.EQ.NR-1.AND.CABS(HEXC(J*NR)).NE.0.0) THEN
A6=A1+0.5*DELR(NR)*(A1-A5)/ DELR(NR-1)
EZMAG(NR,])=CABS(A6)

IF(EZMAG(NR,J).EQ.0.0) THEN

EZANG(NR,])=0.0

ELSE
EZANG(NR,])=FACTOR*ATAN2(AIMAG(A6),REAL(A6))
END IF

END IF

Al1=A5
CONTINUE
END IF
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40 CONTINUE
RETURN
END

SUBROUTINE HOT (NR,NZ,NR1,NZ1,SIGJWE ERMAG,EZMAG,HTRATE)

THIS SUBROUTINE CALCULATES THE TIME AVERAGE HEATING
RATES AT THE CENTERS OF ALL DOMAIN GRID BLOCKS. IF SIGMA
OF A GRID BLOCK EQUALS 1.0E30, THEN HTRATE FOR THAT GRID
BLOCK IS SET TO ZERO!

INPUT VARIABLES

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NR1 - NR+1

NZ1 - NZ+1

SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON OF
EVERY DOMAIN AND PHANTOM GRID BLOCK

ERMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
RADIAL ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF ALL GRID BLOCKS (V/M)

EZMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF AXIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (V/M)

OUTPUT VARIABLE
HTRATE(NR,NZ) - TIME AVERAGE HEATING RATE AT THE CENTERS
OF ALL GRID BLOCKS (W/M*3)

nnnonnononaonnnnNnononNnnOnNnNnNnNnNn N0

INTEGER NR,NZ,NR1,NZ1
COMPLEX SIGJWE(0:NR1,0:NZ1)
REAL ERMAG(NR,NZ),EZMAG(NR,NZ),HTRATE(NR,NZ)
C
C CALCULATE HEATING RATE AT THE CENTERS OF ALL GRID
C  BLOCKS
DO 10 J=1,NZ
DO 20 I=1,NR
IF (REAL(SIGJWE(L])).EQ.1.0E30) THEN
HTRATE(L})=0.0
ELSE
HTRATE(I])=0.5*REAL(SIGJWE(L]))*
C (ERMAG(I,])**2+EZMAG(L])**2)
END IF

143



20

CONTINUE

10 CONTINUE
RETURN
END
C ______
C ADDENDUM - JULY 11, 1996
SUBROUTINE ENERGY
C (NR,NZ,NR1,NZ1,ERMAG,EZMAG,DELZ,R,DELR, TOTEN,SIGJWE,
C JOUL,JOUL1, HMAG,TOTEN1,EPSREL1,DTOTEN,TOTEND,JOULD)

nonononnnonnnnNnhnnnNnNOhNOHNOHONDONONOHOHOONONN

THIS SUBROUTINE CALCULATES THE TIME AVERAGE ELECTRICAL
AND MAGNETIC STORED ENERGY IN ALL OF THE DOMAIN GRID
BLOCKS. IF SIGMA OF A GRID BLOCK DOES NOT EQUAL ZERO
THEN JOUL(LJ) AND JOUL1(L}J) IS SET TO ZERO. FINALLY, THE
TOTAL ENERGY STORED IN THE CAVITY IS CALCULATED BY
SUMMING EACH GRID BLOCK COMPONENT

INPUT VARIABLES

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NR1 - NR+1

NZ1 - NZ+1

SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON OF
EVERY DOMAIN AND PHANTOM GRID BLOCK

ERMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
RADIAL ELECTRIC FIELD INTENSITY COMPONENTS AT THE
CENTERS OF ALL GRID BLOCKS (V/M)

EZMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF AXIAL
ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (V/M)

HMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
MAGNETIC FIELD INTENSITIES AT THE CENTERS OF ALL GRID
BLOCKS (A/M)

R(0:NR1) - VECTOR THAT CONTAINS ALL THE RADIAL DISTANCES
FROM THE AXIS TO THE CENTER OF EVERY GRID BLOCK.
ARBITRARY VALUESC FOR THE RADIAL DISTANCES TO THE
CENTERS OF THE INNERMOST AND OUTERMOST PHANTOM GRID
BLOCKS ARE LOCATED IN R(0) AND R(NR1).

DELR(0:NR1) - VECTOR THAT CONTAINS ALL RADIAL GRID BLOCK
DIMENSIONS. ARBITRARY RADIAL GRID BLOCK DIMENSIONS FOR
THE INNERMOST AND OUTERMOST PHANTOM GRID BLOCKS ARE
LOCATED IN DELR(0) AND DELR(NR1).

DELZ(0:NZ1) - VECTOR THAT CONTAINS ALL AXIAL GRID BLOCK
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DIMENSIONS. ARBITRARY AXIAL GRID BLOCK DIMENSIONS FOR
THE PHANTOM GRID BLOCKS NEAREST AND FURTHEST FROM
THE ORIGIN ARE LOCATED IN DELZ(0) AND DELZ(NZ1).

N

OUTPUT VARIABLES

JOUL(NR,NZ) - ARRAY CONTAINING THE ELECTRICAL STORED
ENERGY IN EACH DOMAIN GRID BLOCK

JOUL1(NR,NZ) - ARRAY CONTAINING THE MAGNETIC STORED
ENERGY IN EACH DOMAIN GRID BLOCK

TOTEN - THE TOTAL ELECTRICAL ENERGY STORED IN THE
CAVITY

TOTEN1 - THE TOTAL MAGNETIC ENERGY STORED IN THE CAVITY

NN NN

INTEGER NR,NZ,NR1,NZ1

REAL ERMAG(NR,NZ),EZMAG(NR,NZ),DELZ(0:NZ1),R(0:NR1)
REAL EPSNOT,PIJOUL1(NR,NZ),MUNOT,HMAG(NR,NZ),DTOTEN
REAL DELR(0:NR1),JOUL(NR,NZ), TOTEN,TOTEN1,EPSREL1(NR,NZ)
REAL JOULD(NR,NZ),TOTEND

COMPLEX SIGJWE(0:NR1,0:NZ1)

C SET THE INITIAL CONDITION OF NO ENERGY IN THE CAVITY

TOTEN=0.0
TOTEN1=0.0
DTOTEN=0.0

C
C CALCULATE THE ELECTRICAL AND MAGNETIC ENERGIES IN
C THE CAVITY

DO 50 J=1,NZ
DO 60 I=1,NR
R(0)=0.0
IF(REAL(SIGJWE(L])).GT.1.0E+5) THEN
JOUL(L})=0.0
ELSE
PI=3.141592654
EPSNOT=1.0e-9/(36.0*PI)
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50

MUNOT=PI*4.0e-7
JOUL(LJ)=0.5*EPSNOT*EPSREL1(1,])*PI*DELZ(J)*

C ((R()+DELR(I)/2.0)**2-(R(I)-DELR(I)/2.0)**2)*
C (ERMAG(L])*2+EZMAG(L})**2)

JOUL1(L]J)=0.5*MUNOT*PI*DELZ(J)*(HMAG(L])**2)*

C ((R()+DELR(I)/2.0)**2-(R(I)-DELR(I)/2.0)**2)

TOTEN=TOTEN+JOUL(L))
TOTEN1=TOTEN1+JOULI1(L))
END IF

CONTINUE
CONTINUE

DTOTEN=TOTEN1-TOTEN
RETURN
END

NNN
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ADDENDUM --- JULY 11, 1996

SUBROUTINE POWER1

(NR,NZ,NR1,NZ1,ERMAG,EZMAG HMAG,DELZ,R,DELR SIGJWE,
WED,WMU,POWER,POW,FREQ,PO1,PO2,PO3,PO4,RS,POW1,PROG1)
THIS SUBROUTINE CALCULATES THE TOTAL POWER DISSIPATED
IN EACH DOMAIN GRID BLOCK AND FOR THE ENTIRE CAVITY. IF
SIGMA OF A GRID BLOCK IS SET TO ZERO THEN POWER(]]) IS SET
TO ZERO. THE TOTAL POWER IS FOUND BY SUMMING EACH GRID
BLOCK COMPONENT

INPUT VARIABLES

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NR1 - NR+1

NZ1-NZ+1

SIGJWE(0:NR1,0:NZ1) - ARRAY CONTAINING SIGMA +JW*EPSILON OF
EVERY DOMAIN AND PHANTOM GRID BLOCK

ERMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF RADIAL

ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (V/M)
EZMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF AXIAL
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N

ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (V/M)

FREQ - FREQUENCY OF OPERATION (HZ)

HMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
MAGNETIC FIELD INTENSITIES AT THE CENTERS OF ALL GRID
BLOCKS (A/M)

R(0:NR1) - VECTOR THAT CONTAINS ALL THE RADIAL DISTANCES
FROM THE AXIS TO THE CENTER OF EVERY GRID BLOCK.
ARBITRARY VALUES FOR THE RADIAL DISTANCES TO THE
CENTERS OF THE INNERMOST AND OUTERMOST PHANTOM GRID
BLOCKS ARE LOCATED IN R(0) AND R(NR1).

DELR(0:NR1) - VECTOR THAT CONTAINS ALL RADIAL GRID BLOCK
DIMENSIONS. ARBITRARY RADIAL GRID BLOCK DIMENSIONS FOR
THE INNERMOST AND OUTERMOST PHANTOM GRID BLOCKS ARE
LOCATED IN DELR(0) AND DELR(NR1).

DELZ(0:NZ1) - VECTOR THAT CONTAINS ALL AXIAL GRID BLOCK
DIMENSIONS. ARBITRARY AXIAL GRID BLOCK DIMENSION FOR
THE PHANTOM GRID BLOCKS NEAREST AND FURTHEST FROM
THE ORIGIN ARE LOCATED IN DELZ(0) AND DELZ(NZ1).

RS(0:NR1,0:NZ1) - ARRAY CONTAINING THE RESISTANCE OF EACH
DOMAIN GRID BLOCK USED CALCULATING THE CONDUCTING
SURFACE'S RESISTANCE

WED(NR,NZ) - ARRAY CONTAINING W*IMAG(EPS) OF EVERY
DOMAIN GRID BLOCK WHERE IMAG(EPS) IS THE IMAGINARY
PART OF THE COMPLEX PERMITTIVITY

WMU(NR,NZ) - ARRAY CONTAINING W*MU OF EVERY DOMAIN
GRID BLOCK, WHERE MU IS THE ABSOLUTE COMPLEX
PERMEABILITY

OUTPUT VARIABLES

POW - THE TOTAL POWER DISSIPATED IN THE CAVITY
POWER(NR,NZ) - ARRAY CONTAINING THE POWER DISSIPATED IN
EACH DOMAIN GRID BLOCK

INTEGER NR,NZ,NR1,NZ1
REAL ERMAG(NR,NZ),EZMAG(NR,NZ), HMAG(NR,NZ),
REAL R(0:NR1),DELZ(0:NZ1),DELR(0:NR1)

REAL WED(NR,NZ),POWER(NR,NZ),RS(0:NR1,0:NZ1)
REAL PO1(NR,NZ),PO2(NR,NZ),PO3(NR,NZ),PO4(NR,NZ)
REAL POW,FREQ, POW1(NR,NZ)

COMPLEX SIGJWE(0:NR1,0:NZ1), WMU(NR,NZ)

SETTING THE INITIAL POWER DISSIPATION TO ZERO
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POW=0.0
P1=3.141592654
SUM1=0.0
SUM=0.0

CALCULATING THE RESISTANCE OF EACH GRID BLOCK

NON

CON=1.1E+7
DO 40 I=1,NR
RS(I,0)=SQRT(REAL(WMU(1,1))/(2*CON))
RS(I,NZ1)=SQRT(REAL(WMU(I,NZ))/ (2*CON))
40 CONTINUE

DO 45 ]=1,NZ
RS(NR1,])=SQRT(REAL(WMU(NR,J))/ (2*CON))
45 CONTINUE

DO 10 J=1,NZ
DO 20 I=1,NR
IF (REAL(SIGJWE(L,])).GT.1.0¢5) THEN
RS(LJ)=SQRT(REAL(WMU(L]))/ (2*CON))

ELSE
RS(LJ)=0.0
END IF
20 CONTINUE
10 CONTINUE
C
C CALCULATING THE POWER DISSIPATED
C
DO 50 J=1,NZ
DO 60 I=1,NR
C
C CALCULATING THE POWER DISSIPATED IN THE DIELECTRIC
C
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C
C
C

60
50

IF ((REAL(SIGJWE(L])).LT.1.0¢5).AND.
(REAL(SIGJWE(L))).GT.0.0)) THEN

POWER(L])=WED(LJ)*(ERMAG(L])*2+EZMAG(L])**2)*
2*PI*FREQ*R(I)*PI*DELZ(J)*DELR(I)

ELSE
END IF

CALCULATING THE POWER DISSIPATED IN THE BOUNDARY
WALLS

IF (REAL(SIGJWE(I-1,))).GT.1.0E5) THEN
PO1(L])=HMAG(L])**2*PI*DELZ(J)*(R(I)-DELR(I)/ 2.0)*
RS(I-1])*(R(I)/ (R(I)-DELR(I)/ 2.0))**2

ELSE

END IF

IF (REAL(SIGJWE(I+1,])).GT.1.0E5) THEN
PO2(L,])=HMAG(L])**2*PI*DELZ(J)*(R(I)+ DELR(I)/ 2.0)*
RS(I+LJ)*(R(1)/ (R(I)+DELR(I)/2.0))"*2

ELSE

END IF

IF (REAL(SIGJWE(L,J-1)).GT.1.0E5) THEN
PO3(LJ)=HMAG(LJ)**2*PI*R(I)*DELR(I)*RS(L}-1)
ELSE

END IF

IF (REAL(SIGJWE(L,J+1)).GT.1.0E5) THEN
PO4(1,])=HMAG(L])**2*PI*R(I)*DELR(I)*RS(I,}+1)
ELSE

END IF

SUM=SUM+POWER(],))
POW1(L])=PO1(LJ)+PO2(L,])+PO3(1])+PO4(L])

SUM1=SUM1+POW1(1])
CONTINUE

CONTINUE

POW=SUM1+SUM
RETURN
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END

SUBROUTINE OUTPUT

C (NR,NZNRNZNR1,RH,R,ZHMAG,HANG,ERMAG,ERANG,
C EZMAG,EZANG)

THIS SUBROUTINE WRITES TO NEW FILES 'OUTHRZ', 'HCOMR|,
'HCOMZ','ERCOMR’, 'ERCOMZ', 'EZCOMR', 'EZCOMZ', ' HEATR,
'HEATZ', PROG1','QUAL', 'QUALYT

INPUT VARIABLES

ND - THE NUMBER OF FREQUENCY INCREMENTS THAT WILL BE
TESTED

NR - NUMBER OF RADIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NZ - NUMBER OF AXIAL GRID BLOCKS IN THE PROBLEM DOMAIN

NRNZ - NR*NZ

NR1 - NR+1

RH(NRNZ) - COMPLEX VECTOR RH WHOSE ELEMENTS ARE THE
SOLUTION TO KK*RH=F. RH IS THE PRODUCT (RADIAL
DISTANCE)*(MAGNETIC FIELD INTENSITY).

R(0:NR1) - VECTOR THAT CONTAINS ALL THE RADIAL DISTANCES
FROM THE AXIS TO THE CENTER OF EVERY GRID BLOCK.
ARBITRARY VALUES FOR THE RADIAL DISTANCES TO THE
CENTERS OF THE INNERMOST AND OUTERMOST PHANTOM GRID
BLOCKS ARE LOCATED IN R(0) AND R(NR1).

Z(NZ) - VECTOR THAT CONTAINS ALL THE AXIAL DISTANCES FROM
THE ORIGIN TO THE CENTER OF EVERY DOMAIN GRID BLOCK

HMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF
MAGNETIC FIELD INTENSITIES AT THE CENTERS OF ALL GRID
BLOCKS (A/M)

HANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF MAGNETIC
FIELD INTENSITIES AT THE CENTERS OF ALL GRID BLOCKS
(DEGREES)

ERMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF RADIAL

ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (V/M)

ERANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF RADIAL

ELECTRIC CFIELD INTENSITY COMPONENTS AT THE CENTERS OF
ALL GRID BLOCKS (DEGREES)

EZMAG(NR,NZ) - ARRAY CONTAINING THE MAGNITUDES OF AXIAL

ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF
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C  ALL GRID BLOCKS (V/M)

C EZANG(NR,NZ) - ARRAY CONTAINING THE ANGLES OF AXIAL

C  ELECTRIC FIELD INTENSITY COMPONENTS AT THE CENTERS OF

C  ALL GRID BLOCKS (DEGREES)

C HTRATE(NR,NZ) - TIME AVERAGE HEATING RATE AT THE CENTERS

C  OF ALL GRID BLOCKS (W/M**3)

C JOUL(NRNZ) - ARRAY CONTAINING THE ELECTRICAL STORED

C  ENERGY IN EACH DOMAIN GRID BLOCK

C JOULI(NR,NZ) - ARRAY CONTAINING THE MAGNETIC STORED

C  ENERGY IN EACH DOMAIN GRID BLOCK

POW - THE TOTAL POWER DISSIPATED IN THE CAVITY

POWER(NR,NZ) - ARRAY CONTAINING THE POWER DISSIPATED IN
EACH DOMAIN GRID BLOCK

QUAL(ND) - VECTOR CONTAINING THE QUALITY FACTOR OF THE
CAVITY

TOTEN - THE TOTAL ELECTRICAL ENERGY STORED IN THE CAVITY

TOTEN1 - THE TOTAL MAGNETIC ENERGY STORED IN THE CAVITY

nNnnonNnnOnNnNnnnnNn

DIMENSIONING OF INPUT VARIABLES

INTEGER NR,NZ,NRNZ
COMPLEX RH(NRNZ)

REAL R(0:NR1), Z(NZ)

REAL HMAG(NR,NZ), HANG(NR,NZ), ERMAG(NR,NZ)
REAL ERANG(NR,NZ), EZMAG(NR,NZ), EZANG(NR,NZ)

CHARACTER*1 TAB
TAB=CHAR(9)

DO 300 J=1,NZ
DO 310 I=1,NR
WRITE(4,*) R(I), TAB,Z(J), TAB,HMAG(I,]), TAB,HANG(L,])
310 CONTINUE
300 CONTINUE

DO 400 I=1,NR
DO 410 J=1,NZ
WRITE(14,*) R(I), TAB,Z(J), TAB,HMAG(L]), TAB,HANG(L))
410 CONTINUE
400 CONTINUE

DO 320 J=1,NZ
DO 330 I=1,NR
WRITE(7,*) R(I), TAB,Z(J), TAB,ERMAG(LJ), TAB,ERANG(L})
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330 CONTINUE
320 CONTINUE

DO 420 I=1,NR
DO 430 J=1,NZ
WRITE(17,%) R(I), TAB,Z(J), TAB,ERMAG(L}J), TAB,ERANG(L)])
430 CONTINUE
420 CONTINUE

DO 340 J=1,NZ
DO 350 I=1,NR
WRITE(S,*) R(I), TAB,Z(J), TAB,EZMAG(L,]), TAB,EZANG(L])
350 CONTINUE
340 CONTINUE

DO 440 I=1,NR
DO 450 J=1,NZ
WRITE(18,*) R(I), TAB,Z(J), TAB,EZMAG(L,]), TAB,EZANG(L])
450 CONTINUE
440 CONTINUE

DO 500 J=1,NZ

DO 510 I=1,NR

WRITE (20,*) R(l), TAB, Z(J), TAB, HTRATE(L])
510 CONTINUE
500 CONTINUE
C
DO 600 I=1,NR

DO 610 ]=1,NZ

WRITE (30,%) R(I), TAB, Z(J), TAB, HTRATE(L))
610 CONTINUE
600 CONTINUE
C

RETURN
END

C___

*2345678901234567890123456789012345678901234567890123456789012345
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APPENDIX 2

EVALUATION OF Q-MEASUREMENT AND LOSS TANGENT
UNCERTAINTY

This appendix covers the uncertainty analysis of the measured cavity Q-
factor, Qn, determined via the reflectometer. This uncertainty mainly originates

from uncertainties in measured return loss. Next, uncertainty in measured loss

1
tangent is analyzed in terms of measured Q-factor shift, A(Q_) , and relative

0

dielectric constant, g,’.

A2.1 Uncertainty of Measured Q-factor
Measured Q-factor includes losses of the test cavity and the reflectometer.

Measured Q-factor, Qn, can be analytically represented by

f,
Q. =@ (A2.1)
Afldl
where (A2.2)
and ll“w| is the bandwidth reflection coefficient, and Af ,, is the bandwidth

between power points of return loss, RL = -x dB. Taking the partial derivative of

Eq.(A2.1) with respect to bandwidth reflection coefficient, [, |, yields,
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Irwl(l—lror) £,
S (1], [) A

Simplifying Eq.(A2.3) in order to utilize the measured Q-factor expression in

(A2.3).

Eq(A2.1), yields

2
A, (-] | Ir,.| -Ir,

= (A2.4).
41“""' { PPI ] Al \/l |rpv| J'rpvl IF IZ | |r"" lr

Re-writing Eq.(A2.4) in terms of Eqs.(A2.1) and (A2.2) yields

K [ |l

7 ~ Qn
Arw| i ](lrp,,| -Ir.f)

Which can be re-arranged to give the normalized uncertainty in measured Q-

(A2.5).

ppl

factor,

AQ, [1 IF ] |F Id'l‘ vv|
- (A2.6).
R el (- Inf)

In practice, return loss, RL, is measured and is related to || by
RL = -20log(|) (A2.7).
From this definition, uncertainty in return loss is
dRL ( 20 ) 1
—_— = | == A2.8).
arl = ~\into/ ] (A25)

Re-writing Eq.(A2.8) so it can be utilized in Eq.(A2.6) in terms of the bandwidth

reflection coefficient, |I‘w| , yields
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T o (dlrs)) = (1"10)| | dRL (A29).

The return loss uncertainty can be rewritten in terms of the reflectometer’s

directivity, D, and the bandwidth reflection coefficient, op| 7 ie.,
T
dRL = 20log| 1 + (A2.10)
Il
_—9
where Irp| = 10®  [60] (A2.11).

Utilizing Eqs.(A2.9) and (A2.11), Eq.(A2.6) can be written in a format where

relative uncertainty in measured Q-factor can be easily calculated from known

values of

AQ. _ 1‘|1q0|2 IFWIZ

r)
= 3 - - m[n - (A2.12).
% b (e i) Il

A
In Figure A2.1, relative uncertainty in measured Q-factor, Q. is plotted

versus bandwidth reflection coefficient,

reflection coefficient values, I‘ol . The directional coupler directivity is D = 30 dB

for this analysis.
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Uncertainty in measured Q vs. reflection coefficient
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Figure A2.1 Relative uncertainty in measured Q-factor versus the
bandwidth reflection coefficient, |

frequency reflection coefficient values, |Io|, for a
reflectometer directivity of D = 30 dB {8].

, for various resonant

156



A2.2 Uncertainties in the Loss Tangent Measurement
Uncertainty in measured loss tangent is calculated using Eq.(5.8).

Calculating partial derivatives of Eq.(5.8) with respect to the relative dielectric
constant, g/, and Q-factor shift, A(Q—l) , [8],[28] results in
0

A 4,

1
ag'F z “\Q,

T

(A2.13)

)

The total uncertainty in loss tangent, tan§, is given by the sum of Eqs.(A2.13)

1
3 (A2.14).

and (A2.14), i.e.,

1((%) O{A(Qo) , ;)(1

-_ Ag, '+ j £,
Atang = &' \Qo (A2.15).

Normalizing Eq. (A2.15) to tan¢ yields

1 I |
fla) o 4 )
Atand _ Q, 1 Q, , F 1 ,
i A(_l_) +A(L) . Ag,'+ . (l) Ag, (A2.16).
Q, Q, K

This equation indicates that the relative uncertainty in measured tand is

composed of three parts, the part caused by the uncertainty in the Q-

measurement
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{43) ,
|:Atan5:| _ Q// _ AQQ° - AQ,Q¢ (A2.17)
Q

tand A(‘l—) QrQ(Qe —Qy)
Q,

and two parts caused by uncertainty in measured relative dielectric constant

[Atana] - ”{A[él‘ )] 5(%) L, (A218).

tand a (LJ 676',' AE‘,+ d‘;’,' (l] &
o, R
QL +Qy)

In analyzing Eq.(A2.17), if the approximation is made that Q =~ -

and that AQ, = AQ, = Aa » Eq.(A2.17) becomes

[Am‘s] = -—DzAQ 3 (A2.19)
Q

tand Q.Q,
and hence
Aand] _ _AQ
[ — ]Q =-2 3 (A2.20)

provided that %— <Q,. % can be treated as an average relative uncertainty in

Q measurements.

Evaluating the partial derivative in the first term on the right hand side of

Eq.(A2.18) yields

) HG) el e e
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]
where b—g—,((—) aj =0, and Qc(s,') is the cavity Q-factor dependent upon
F N me
test specimen dielectric constant. Substituting for Qc(gr ') from Eq.(5.7) in the

derivative term of the right-hand side of Eq.(A2.21) yields

a);ffr ') = (cl +2¢z(5r')+3c3(5r ')2 """‘:4(("")3 +) (A222)

where ¢; are polynomial coefficients of Eq.(5.7) as listed in Chapter 5.
Re-writing the partial derivative of the second term on the right hand side

of Eq.(A2.18), utilizing Eq.(5.6) yields

L) < (o420, (6)+ o) sab(e)r)  (a22

where b; are polynomial coefficients of Eq.(5.6) as listed in Chapter 5.
At this point, the two terms on the right hand side of Eq.(A2.18) can be re-

written in terms of Eqs.(A2.22) and (A2.23), as

| 5(“(6‘“)} C aer (or2e(a) e )

2 Aet = 2 (A2.24)
e e
1) "
and SR e = (b, +2b,(6 )+ 3by(5) ) (A2.25).
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In order to estimate the worst case uncertainty in Eq.(A2.24) the minimum value

of Q-factor shift, A(al-) , must be used. In Chapter 6, minimum Q-factor
°“ min

shift values were determined and an analytical expression is given by

1 ) AQ 1
— == A2.26
A(Qo T Qe (A220)

A
where —Q-Q— is the relative uncertainty in measured Q-factor as determined in the

last section. Typical values are (Ag) = (0.09 when D=30dB,

o) . T,,| = 0707 and
min

AQ

Ir,| <025 and (—) = 0.025 when D=40dB, [[,| =0.707 and |r,| <0.25.
Q / min

"

Re-writing Eq.(A2.25) in a more usable form, first replace the filling

factor, F, with the expression given in Eq.(5.6), i.e.

(1) - by (e e+ w2z

Now Eq.(A2.25) can be re-written as

,')2 +4b, (s, ’)3+...

- t = A ]
% H A&’ = A& [ by +b,(5,)+ by(5 ) +by(5,) +-.
F

b, +2b,(&,")+3b, (e,

(A2.28).

In the literature, the polynomial ratio on the right hand side, of Eq(A3.16) is

commonly referred to as the error transfer function, ¢, i.e.
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_ [, +2b,(5)+3by(5)" +ab,(5) +.
b, + bl(é‘r ') + bz(é‘, ')2 + b3(5r ')J+...

(A2.29).

In Figures A2.2 and A2.3, the error transfer function, £, is plotted as a function

of relative dielectric constant for both modes of cavity operation.

0.5 Y ¥ T
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03 = -~

0. o -

Emor Transfer Function Value

Figure A2.2 Error transfer function, i.e. the relative error in the loss tangent
measurement resulting for an error of Ae, = 1.0 in the measured
dielectric constant for the contact mode.
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Figure A2.3 Error transfer function, i.e. the relative error in the loss tangent
measurement resulting for an error of Ae,’ = 1.0 in the measured
dielectric constant for the partial contact mode.
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At this point the uncertainties given in Eqs.(A2.20), (A2.24) and (A2.25) can be

summed to find the total relative uncertainty in loss tangent, i.e.,

Ag,' (c, + 202(6} ') + 303(8,’)2 +)

{2 (Qc(&)) ‘

+lag'¢g  (A230).
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APPENDIX 3

MEASUREMENT UNCERTAINTY ATTRIBUTABLE TO THE
TEST SPECIMEN AND CAVITY HEATING

In Chapter 8, an uncertainty analysis of the reflectometer was performed.
However to analyze the measurement accuracy of the entire test setup, the
uncertainty in the dielectric measurement attributable to test specimen

dimensional uncertainty and cavity heating must also be analyzed.

A3.1 Variation in Test Specimen Dimensions

In any dielectric measurement system, dimensional variations of the test
specimen cause uncertainty in the test specimen’s measured complex dielectric
constant. Because the plate separation of the parallel plate waveguide is
essentially constant, the uncertainty in measured thickness of the test specimen
must be considered in analyzing the measurement accuracy of this
dielectrometer. For this measurement technique, uncertainty in measured
thickness contributes significantly to ¢,' uncertainty while measured diameter
uncertainty is comparatively negligible. Consider for example, the case when
uncertainty in the test specimen thickness is At = -0.01 mm. Suppose the test
specimen has a complex dielectric constant, ¢, and a radius of r = 5.0 mm. Now
to determine the thickness dependent uncertainty in the dielectric constant

measurement, a specimen with a reduced thickness of t = 1.99 mm, r = 5.0 mm
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and complex dielectric constant, £°, is modeled using the HERZ program.
Obviously the resonant frequency shift caused by this smaller specimen will be
less than of the larger (t = 2.0 mm) specimen. In order to appreciate the full
effects of dimensional uncertainty in the dielectric constant measurement,
Figures A3.1 and A3.2 display the relative difference between the dielectric
constant predicted assuming a test specimen with t = 2.00 mm and r = 5.0 mm
and the dielectric constant predicted assuming a test specimen with t = 1.99 mm
and r = 5.0 mm. Figures A3.1 and A3.2 display uncertainty in measured
dielectric constant for both the contact and partial contact modes respectively.

In comparing data from Figures A3.1 and A3.2 to that given in Tables 8.1
and 8.2, variations in test specimen dimensions have a far more significant effect
on dielectric constant measurement accuracy than uncertainty caused by the
reflectometer. When measuring relative dielectric constants that are ' < 10.0, the
uncertainty of both measurement modes is comparable. However, for ¢/ > 10.0,
superior relative dielectric constant measurement accuracy is attained using the

partial contact mode.
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Figure A3.1 Relative uncertainty in measured dielectric constant for a test
specimen with a thickness uncertainty of 0.5% and of radius r = 5.0

mm (contact mode).
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Figure A3.2 Relative uncertainty in measured dielectric constant for a test
specimen with a thickness uncertainty of 0.5% and of radius r =
5.0 mm (partial contact mode).
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A3.2 Measurement Uncertainty Attributable to Cavity Heating

Cavity heating introduces another variable in the dielectric measurement,
namely temperature, T. Since unloaded cavity resonant frequency and Q-factor
are temperature dependent, temperature measurement uncertainty is introduced
to the dielectric determination. At the maximum temperature of 120°C,
mechanical changes in the test cavity caused by heating linearly decrease the
cavity’s resonant frequency by 4 MHz and its unloaded Q-factor by
approximately 200 as compared to room temperature values. From the fit of the
empirical data (see Chapter 7, Section 6) it was found that the slope of measured
resonant frequency versus temperature was 10.04 MHz/°C and the slope of
measured Q-factor versus temperature was +2.0 (°C)?. Below, uncertainty in
measured dielectric properties are analyzed as a function of temperature, T.

An estimate in temperature dependent dielectric constant uncertainty is
found by taking the partial derivative of the relative dielectric constant function,

er (Afy), with respect to temperature, T, i.e.

lag| = %(e,’(&o))AT (A3.1)

where AT is the uncertainty in measured temperature. Eq.(5.5) gives an
expression for the relative dielectric constant function. Taking the partial

derivative of Eq.(5.5) with respect to temperature, T, yields

i(g

2 ((a6,)) = (a, +22at] + 3ok f +..) (s (A32)
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where %ﬂAfoD = 0.04 MHz/°C is the slope of measured resonant frequency per
degree Celsius and a; are polynomial coefficients of Eq.(5.5) as listed in Chapter
5. Replacing the right hand side of Eq.(A3.2) into the partial term, —(e,'(Af 0)),
of Eq.(A3.1) yields the following

(A3.3).

a1 = (o, +2a,]ag]+ 3a,jag] +..) 2 (lat)) AT

In Tables A3.1 and A3.2 tabulated values for Eq.(A3.3) are listed for both modes

of cavity operation, temperature uncertainty, AT, is set to AT = 1 °C for this

analysis.
Table A3.1 Uncertainty in relative dielectric constant as a function of
temperature (per °C), contact mode.
& 2.00 4.00 8.00 12.00 14.00 16.00
| Ae .| 0.030 0.025 0.017 0.011 0.0085 0.0066
| A 1.4 0.61 0.21 0.091 0.061 0.022
— %
q"

Table A3.2 Uncertainty in relative dielectric constant
temperature (per °C), partial contact mode.

as a function of

& 2.00 4.00 8.00 10.00 15.00 20.00 30.00
| Ae 1 0.081 0.12 0.27 0.38 0.75 1.2 1.9
l A 6}1 % 4.1 3.0 34 3.8 5.0 5.8 6.3
8 1
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To estimate temperature dependent loss tangent measurement

uncertainty, the partial derivative of the loss tangent function, tan&(%,A(-—Ql—D ,
1 0

is taken with respect to temperature, T, i.e.

-9 LA
Atané = ar[tand(ﬂ ,A( QOJDAT (A3.4).

Eq.(5.8) gives an analytical expression for the loss tangent function. Taking the

partial derivative of Eq.(5.8) with respect to temperature, the following
expression is obtained

i ola) - (R E R

— — A= ==l =18l = |+ =l Al = ||l = A3.5).
é‘r[m{ﬂ o)) ~\a\w) Mo, @\ o \w) B
To evaluate the first partial derivative term on the right hand side of

Eq.(A3.5), gf-[%) , Eq.(5.6) is utilized, i.e.,
1

%(%.) = (bI +2b,(5,")+3b,(5,") +...)% (A3.6)

where % is the slope in relative dielectric constant per degree Celsius, and b;

are polynomial coefficients of Eq.(5.6) as listed in Chapter 5. Values for % are

found utilizing Eq.(A3.2) and -gr-(lAfol) = 0.04 MHz/°C.
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To evaluate the second partial derivative term on the right hand side of
J 1

Eq.(A3.5), —( ( Q )] utilize the partial derivative of Eq.(5.7) with respect to
0

temperature, T, as follows
) 2w
A% 7, o) ke A

where ég;[_(—g') is the slope in unloaded cavity Q-factor, as a function of relative

dielectric constant, &/, per degree Celsius. Re-writing the partial derivative of the

last term of Eq.(A3.7) utilizing Eq.(5.7) yields

éQ;Ef' ) = (%(co(l"))) +(cl +2¢,(¢) + 3c3(£,')2+...) %I‘L (A3.8)

where %(CO(T)) = 2.0 (°C)"'is the slope of the empty cavity Q-factor per degree

Celsius and c; are polynomial coefficients of Eq.(5.8) as listed in Chapter 5.

Replacing the expressions found in Egs.(A3.6) and (A3.8) into Eq.(A3.4)

yields Atan6=((b +2b,(£,) +3b,(,) +. )a“’"( Qlo))AT +

(c,+2c2(s,')+3c,( )+) 5(Co(T)) |
(Qc(é‘,')) K

&. '
e A39
or At ( )

normalizing Eq.(A3.9) with respect to loss tangent, tan3, yields
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[wnd 1 L (b,+2b2(g,')+3b3(g,')2+...)%5r'—' AT +

=)

c, +2¢,(&.') +3c 8,'2+--- '
e+ 268 )+ 304(s) ) i 2 (A3.10).

A( QL) (Qc(&))’ a

+

In Tables A3.3 and A3.4, temperature dependent uncertainty in the loss tangent

measurement is listed as a function of directivity for both modes of cavity

operation. For this analysis, temperature uncertainty is set to AT =1.0 °C.

Table A3.3 Temperature dependent loss tangent measurement uncertainty
(per °C) listed as a function of directivity and relative dielectric

constant, contact mode.
g 2.00 4.00 8.00 12.00 14.00 16.00
Ané % 2.0 1.5 1.2 1.2 0.8 09
@nd |p = 3048
Atané % 3.6 29 24 2.4 2.2 2.6
wnd ip = 40dB

Table A3.4 Temperature dependent loss tangent measurement uncertainty
(per °C) listed as a function of directivity and relative dielectric

constant, partial contact mode.
&' 2.00 4.00 8.00 | 1000} 15.00 20.00 30.00
Atand % 08 0.2 0.8 18 31 4.3 13.7
and |p = 30dB
Auns % 12 0.6 14 22 38 45 26.9
uné [p = 4048
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From the data presented in Tables A3.4 and A3.5, it is apparent that quite
accurate loss tangent measurements can be made over temperature. The

exception being dielectric materials tested in the partial contact mode that have a

relative dielectric constant approaching &' = 30.0.
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