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ABSTRACT 

Coagulation is the coalescence or aggregation of one or more small particles, 

or clusters of particles, to form larger clusters. The reverse procedure, which 

involves the break-up of large particles into smaller ones, is called fragmenta­

tion. 

This thesis investigates the coagulation-fragmentation model. This model is 

described by an infinite set of nonlinear ODEs which can be transformed into 

a nonlinear PDE by means of a generating function. Our goal is to determine 

formulas for the number of size k clusters at time, t, and the total number of 

clusters at t. This requires deriving and solving the appropriate PDE. We will 

also discuss the total mass of the system which is needed to solve this PDE. 

As well, we investigate a phenomenon known as gelation. Gelation is the 

break-down of conservation of mass. Specifically, our focus will be on whether 

the addition of fragmentation to a coagulation model delays gelation. 
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Chapter 1 

Introduction 

Coagulation is the formation of larger clusters from smaller clusters. The 

rate at which this occurs is described by the coagulation kernel, Kjtk, where 

j , k € N are the size of the clusters. A cluster of size k means it is a polymer 

made up of k particles (known as a monomer). Fragmentation is the reverse 

process (i.e. large clusters breaking apart to form smaller clusters). The rate 

at which this occurs is described by the fragmentation kernel, Ljtk. As well, we 

assume binary collisions between clusters. This means that at one time a clus­

ter coalesces with another cluster only or fragments into exactly two smaller 

pieces. The simplest coagulation and fragmentation processes are illustrated 

in Figures 1.1a and 1.1b, respectively. 

Because of the simplicity of this model, it has applications ranging from medi­

cal sciences, botany and chemistry to astrophysics and meteorology [7, 2, 4,14], 

(*)o + o - ^ — cP 

(b)^ _ A i _ o + o 
Figure 1.1: Elementary coagulation and fragmentation models. 
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In these fields, coagulation and fragmentation processes are conveniently used 

to model colloidal systems. For example, the coagulation-fragmentation model 

can describe the simultaneous polymerization-depolymerization of long chains 

of monomers [4]. In hematology, the coagulation model has been used to 

describe the formation of rouleaux, which are clusters of red blood cells resem­

bling stacks of coins [14]. 

This area of research began in 1916 when Smoluchowski [23, 24] introduced 

his coagulation equation, 

(1-1) ^ = \Y^Kj,k_jNjNk„j-'£Kj,kNjNk. 
3=1 j=l 

Equation (1.1) represents the rate of change in the number of size k clusters 

per unit volume, Nk(t), that are coalescing at time, t > 0. A detailed expla­

nation will be provided in Chapter 2. Smoluchowski determined a solution for 

(1.1) under a constant coagulation kernel with monodisperse initial condition. 

Monodisperse initial condition means, at time zero, there is only one cluster 

of size one present, no other clusters exist. 

Of popular interest is the coagulation model with product kernel, K^k = jk, 

because a paradoxical phenomenon known as gelation occurs. Gelation is the 

break down of conservation of mass in the system and is physically interpreted 

as the creation of an infinite size cluster (called a superparticle or gel). Its 

definition suggests that gelation maybe physically invalid. However consider, 

for example, the formation of a hail ball which represents the creation of a 

superparticle. Part of the mass of the system (i.e. the water droplets in the 

cloud) is transported to this superparticle (i.e. the hail ball); that is, gelation 

occurs. After gelation, the gel coexists with the remaining system. Towards 

this Ziff and Stell [26] proved the existence of post-gelation solutions. McLeod 

[11] proved without the occurrence of gelation, no solution exists for all time. 

Naturally, a couple of questions arise: what is the pre-gelation behaviour as 

opposed to the post-gelation behaviour and when is the gelation time (the time 
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at which constant mass first fails)? A thorough explanation of these questions 

can be found in [25, 19, 8, 15, 16, 22]. 

Other coagulation kernels have also been investigated because it may be de­

sirable to control the production of Nk(t) by adjusting the coagulation kernel. 

The coagulation model with kernels Kjik = j + k and Kik = A + B(j + k) 

have been studied in [19, 3, 15] where A and B are positive real numbers. The 

bilinear coagulation kernel, Kjk = A + B{j + k) + Cjk, where C € R>o, has 

been studied in [16]. 

The coagulation-fragmentation model, 

o o - A;—1 

(1-2) + J2 Li^j+k - 2 Yl L:*-iN>» 
j = l 3=1 

is investigated in this thesis. Equation (1.2) represents the rate of change 

in the number density of k size clusters at time, t, due to both coalescence 

and fragmentation. The first introduction of fragmentation to the coagulation 

model appears in Blatz and Tobolosky's 1944 paper [4]. They determined 

a particular solution for the constant coagulation and fragmentation kernels. 

Some time later, for the same kernels, Barrow determined an implicit solution 

to Nk(t) in the continuous case of (1.2). Nonetheless, literature about (1.2) 

is sparse especially in comparison to its coagulation counterpart because the 

addition of fragmentation greatly complicates the model. Most of the literature 

focuses on existence and uniqueness solutions [12, 21, 20, 18, 6] with very few 

discussing explicit solutions for (1.2). This shortcoming motivates part of the 

work in this thesis. 

A recent highlight of the coagulation-fragmentation model is the investigation 

of gelation. It is logical to assume with the addition of fragmentation that 

gelation time will increase because fragmentation counteracts the effect of 

coagulation therefore delaying the formation of a superparticle which charac-
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terizes gelation. Furthermore, da Costa [6] proved that, for sufficiently strong 

fragmentation, gelation is suppressed. But what defines 'strong' fragmenta­

tion? This is partially answered in Escobedo et al. [10, 9] for the continuous 

analogue of (1.2). They proved f o r 0 < a < / ? < l , 7 € R and 

Kih = ftf + fka, LiM = (1 + j + ky 

that gelation occurs if A > 1 and 7 < ^ p where A = a + /?. Gelation also 

occurs if initial conditions are sufficiently large, A > 1 and ^ < 7 < A — 2. 

There is no gelation if A > 1 and 7 > A — 2 which loosely defines strong 

fragmentation. 

The case when a = /? = 1 and 7 = 0 (which corresponds to Kjjk = 2jk and 

Ljtk = 1), is a borderline case in Escobedo et al. [9] and whether gelation 

occurs or not is unknown. Because of this, there is particular interest about 

the gelation phenomenon for general kernels, Kj)k = p2jk and Lj<k = b where p 

and b are real constants. Brunelle et al. [5] proved analytically for Kiik = p2jk 

and b = ep2Mi, where Mi is total pre-gelation mass, that mass is conserved for 

e > 6. For smaller e, a numerical approach suggests gelation time also tends 

to infinity. One of the goals in this thesis is to attempt a more analytical 

approach to determining gelation time. 

1.1 Format of Thesis 

In this thesis, the coagulation-fragmentation model will be solved for different 

cases of Kjtk = A + B(j + k) + Cjk with Ljtk = b € R>o and arbitrary initial 

condition. The main focus will be on three physical quantities: the total mass 

at time t, Mi(t), the total number of clusters at t, M0(t), and the number of 

clusters at t,Nk(t). 

The first chapter explains the derivation of (1.2) and how to transform it into 

a PDE. Each of the next four chapters will investigate Mi(t),M0{t) and Nk(t) 
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of the coagulation-fragmentation PDE associated with one of the following 

coagulation kernels: the constant kernel, A, the sum kernel, B(j + k), the 

constant-sum kernel, A + B(j + k), and the product kernel, Cjk with b as the 

fragmentation kernel for each. 

In the constant kernel chapter, an exact solution for Mx{t) and M0(t) is eas­

ily determined. An inductive procedure is established to determine an exact 

formula for Nk(t). 

The sum kernel chapter is divided into two sections. The first discusses 

the solution to the coagulation model and the second is its corresponding 

coagulation-fragmentation model. Although the first section involves already 

published work [3], the results from the coagulation model are crucial for when 

fragmentation is added. An exact solution for M0(t) is readily found, deter­

mining Mi(t) relies on [1] and an approximate formula for Nk(t) is determined. 

Similarly, the constant-sum kernel chapter is organized in the same way. The 

first section reproduces the results of the coagulation model [3] and the second 

section uses these results to solve its coagulation-fragmentation counterpart. 

Again, an exact solution for Mo(t) is determined while a solution for Mi(t) 

relies on [1] and an approximate formula for Nk(t) is found. 

The product kernel chapter is the most challenging but eminent model. The 

first section determines the solution for the coagulation model, which was 

first solved in [25]. In the second section, we extend the pre-gelation work of 

Brunelle et al. [5] by proving analytically that gelation time increases with 

the addition of fragmentation. A by-product of investigating gelation time are 

pre-gelation solutions to Mi(t) and M0(t). 

In the final chapter, a summary of the results for each model is reviewed. As 

well, a comparison of M0(t), M\(t) and Nk(t) is discussed. Lastly, some future 

research avenues are suggested for the work begun in this thesis. 

5 



Chapter 2 

Derivation of the 

Coagulation-Fragmentation 

Model 

We are interested in a model that describes the rate of change of k size clusters. 

Clusters of size k can be created in two ways. The first is from small clusters 

coalescing to form one size k cluster. The second method is from a large cluster 

fragmenting into size k clusters. We must also take into account the formation 

of clusters with size not k. This can result by forming clusters of size greater 

than k or by breaking apart clusters of size less than k. 

Let j , k € N. Denote 

Nk(t) as the number of size k clusters per unit volume at time t € [0, oo), 

Mo(t) (= SfcLi Nk(t)) as the total number of clusters per unit volume at t, 

M0O( = YlT=i kNk(t)j as the total mass per unit volume at t, 

Kjtk := coagulation kernel acting on clusters of size j and k, 

Lj)k := fragmentation kernel acting on clusters of size j and k. 

For physical reasons, Nk{t), MQ(t) and Afi(t) are assumed to be finite. 
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The total number of possible collisions between clusters of size j and k — j is 

NjNk-j. Since Kj^-i is the rate at which they coalesce, the total number of 

coalescence from these collisions is Kj^-jNjNk^j. Therefore, the total number 

of clusters of size k created in this manner is 

1 fe_1 

(2-1) -YtKilk-iNiN^. 

The factor of 1/2 is to avoid double counting since NjNk-j — Nk-jNj. 

Another way to form clusters of size k is through fragmentation. Since Nj+k 

is the total number of clusters of size j + k and Liik is the rate at which a size 

j + k cluster can fragment into a cluster of size k, then the total number of 

clusters of size k formed in this manner is 
oo 

(2-2) J>;,fciV;+fc. 

Meanwhile, clusters of size k can become bigger by coalescing with clusters of 

size j . The total number of clusters formed in this way is 
oo 

(2-3) J2K^N^-
3=1 

And clusters of size k can fragment to form even smaller clusters. The total 

number of clusters created in this manner is 

1 fc-i 

(2-4) -£%*_, •#* . 

Combining (2.1), (2.2), (2.3), and (2.4), the rate of change of size k clusters 

can be modelled by 

^ j r = \ E *»-*"*"»-* - E ******> 
oo 1 fc—1 

(2-5) + ^2 Li,kNj+k - - Y^ Ljt-jNk. 
j = i j=i 
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This is an infinite system of nonlinear ODEs which can be transformed into a 

PDE by applying a generating function. 

2.1 Deriving the PDE 

From related literature, it is common to use a generating function to trans­

form (2.5) into a PDE. Choosing the simplest generating function, </>(x,t) = 

J2kLi xkNk(t) for x € [0,1] and time, t <E [0, oo), will work nicely. 

Differentiating <f>(x, t) with respect to t, 

(2.6) 
d(j>(x,t) 

dt E< 
k=l 

.dNk{t) 
dt 

and substituting (2.5) into (2.6), 

d(/)(x, t) 
dt = E*k 1 fc—1 oo 

fc=i L j=i 

oo 

j = l 

fc-1 

(2.7) 

Let the coagulation kernel be, Kjyk = A + B(j + fc) + Cjk, and the fragmen­

tation kernel be a constant, Lj>k = b, where A, B, C and b are positive real 

numbers. Substituting into (2.7), 



d<}>(x, t) 

at 

+ B 

+ C 

+ b 

= A 

+ B 

+ C 

+ b 

fc-i 

3=1 

k=i i= i 

£ ( A + fl(fc + j) + Cjk)NjNk + J2bNj+k -^J2bN* 
i j=i 

1 oo fc—1 oo oo 

5 Exfc E ̂ ^w - E **** E ^ 
fe=i j=i fc=i i=i 
.. oo fc—1 oo oo 

aE^E*^*-*-£**** E(*+JW 
fc=i j=i fc=i j=i 

- OO fc—1 OO OO 

oE^E^-^^^-i-E^^E^'^-
fc=l j = l fc= 

oo oo oo fc—1 

E^E^-lE^E^ 
_fc=l j = l fc=l j = l 
^ OO OO OO Ou 

^E^E^-E^E^ 
• fc=i j= i fc=i k=i 
00 oo oo oo oo oo 

J2 xkNk YlkxkN* - E kxl°Nk E Nk - E ̂  EkNk 

, f c = l fc=l fc=l fc=l fc= 
1 oo oo oo oo 

- ]T kxkNk J2jxjNj - J2 kxhNk E fciVfe 

fc=l 3=1 fc=l 

oo i—1 1 °° 

EE^-^E^^-D 
_. / oo \ 2 oo oo 

HE^O -E*^2> 
\fc=l / fc=l fc=l 

( oo oo \ oo 

J>feiVfc - £ JVfc ) £fccfcWb - ] [Vw f c2>JV f c 
fc=i fc=i / fc=i fc=i 

1 / oo \ * oo oo 
\fc=l / fc=l fc=l 

fc=l 

fc=l 

+ B 

+ c 

fc=l fc=l 

(2 .8 ) + b 
oo i 1 / °° °° 

E ^ ^ + H-E^ f e ^+E^ 
.i=i x * \ k=i fc=i > 



with initial condition 
CO 

w(v,0) = h(v):=J2e~kVNk(°)-
fc=i 

In this case we have 

(2.13) M0(t)=w(0,t), M0(0) = h{0) =: hQ, 

(2.14) Mi(t) = - ~ ^ ~ , MM = -h'{0) =: -tf0. 

Remark 2.1. 
oo 

ft(u) = /i"(«) = ^2e~kvNk{0) =$• h(v) > 0 and monotone decreasing, 

oo 

h'(v) = — Y^ ke~kvNk(0) =$• ft'(v) < 0 and monotone increasing. 
J b = l 

The ̂ (x, t) generating function will be used to solve Kitk = A (constant kernel) 

while the w(v,t) generating function will be used to solve Kjtk = B(J+k) (sum 

kernel), Kjtk = A + B(J + k) (constant-sum kernel) and Kjk = Cjk (product 

kernel). Deciding on which generating function to use is based on related 

literature, trial and error which leads to the last factor, previous experience. 

Once 4>(x,t) is known, the number of k size clusters at time t is described as 

1 dfyl 
(2.15) Nk(t) k\dxk 

lx=0 

by applying Taylor series expansion to </>(x,t). From the definition of <f>(x,t), 

it is clear dk<f>/dxh exists for all k. 
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Chapter 3 

Coagulation-Fragmentation 

Model with Constant Kernel 

The pure coagulation model (i.e. Ljyk = 0) with constant kernel, K^k = 1, and 

a monodisperse initial condition, h(x) = x, was first solved by Smoluchowski 

[23, 24] in the early 1900s. In this chapter, fragmentation is added to Smolu-

chowski's coagulation model (that is, Ljtk = b > 0). Our contribution to his 

research is deriving the corresponding formula for Nk(t) which is original work. 

For A,b>0,B = C 

(3.1) 

0, (2.9) becomes 

1 d(j>{x,t) t b d(f> _ . 
</>' - < / > M 0 + 6 -6 + 

(j> — xM0 

x-1 

with the initial condition </>(x, 0) = h(x). The method of characteristics will be 

used to solve this quasilinear PDE. Let z = <j> and introduce the parameters, 

s and £. Consider the corresponding characteristic equations 

(3.2) 

Clearly, t 

(3.3) 

ds 1, t(£,0) = 0. 

dx 1 , 
T = -OX, 
dt 2 ' 

*(&0) = £. 
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By the method of separation of variables, 

(3.4) x(t,t) = te$u. 

<3-5> %=A -z2 - M0z + b 
1 z - xMQ 

2z+-x^r 
z(t,0) = h(S). 

Remark 3.1. Define £ = Z(x,t) to be the inverse function of x = X(£,t) 

provided 5X(£, t)/d£ ^ 0. With the exception of the constant kernel case, 

| (x, t) is not known explicitly. This definition will be used throughout this 

thesis. 

Before solving (3.5), M\(t) and M0(t) must be determined. Since Mi(t) = 

d<f>(l,t)/dx by (2.11), then logically we would differentiate (3.1) with respect 

to x and evaluate x at 1 to determine Mi(t). 

dMi(t) 
dt 

= AM0(t)Mi(t) - AMQ(i)Mx{t) 

+ b 
1 d24>{\, t) (&-M0(t))(x-l)-<f>(x,t) + xM0(t) 

2 dx2 + lim 
x-*l (X - l ) 2 

by substituting in (2.10) and (2.11). Using l'Hopital's rule to evaluate the 

limit, 
dMAt) n d2(j>^ , _Li,0«^(M)<oo 

which means 

Mi (t) = m for t < tg 

where m (= h[ by (2.11)) is a positive real number and 

d2(j> 
(3.6) tg:= sup{£ € (0, oo] | ̂ -2(1,*) < 00}. 

Lemma 3.1. Mi(t) = m for all t (i.e. tg = 00 / 

Proof 

Since <f>(x,t) — z(£(x,t),t) by Remark 3.1, then 

d<t>(x,t) _ dz(i(X,t),t)di(x,t) __ 2 £ % M 

dx d£ dx 

13 
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The last equality comes from differentiating x = X(£(x,t),t) with respect to 

x. If x = 1 and dX(£(l,t),t)/d£ ^ 0, then 

as(e(i ,0,t) 

U ; 3X(f(l,t),t) 

Since 3A"(|(l,t),t)/d£ = e2M > 0 for all t, then Af^t) is well-defined for all 

t € [0, oo) (i.e. no shocks exist). Thus, Mx(t) = m for all t which means there 

is conservation of mass in the system for all time. • 

This supports the mass conservation results of Theorem 3.6 in Ball and Carr 

[!]• 

Remark 3.2. If tg ^ oo, then gelation occurs. Historically, the concept for the 

proof in Lemma 3.1 originates from Ziff and Stell [26] who described gelation 

as the formation of a shock wave solution. 

Since M0(t) = </>(!, t), to determine M0(i), evaluate x = 1 for (3.1) and sub­

stitute in Mi(t) = m, 

- ^ = Mo(t) = - - M o 2 - -Mo + -m. 

This is a Riccati Equation which is separable and integrable. If M0(t) ^ oi, a2, 

rewrite it as 
M0(t) A 

(Afo-Oi)(Af0-o2) 2 

where 

, „ „ , b i b 2 Abm 
(3'7) a^-2l + 2 V ^ + - ^ ' 
,„ ^ b i b 2 Abm 

Applying partial fraction decomposition and then integrating with the initial 

condition, Mo(0) = hi, 

ai(/ii - 02) - a2(/i! - oi)e"2(°i-a)* 
(3.9) M0(t) -

fti - o 2 - (/ii - a i ) e _ T ( a i - ° 2 ) t 

14 



which is a special case of equation (13) in Brunelle et al. [5]. Since a2 < 0 and 

M0(t) represents a physical quantity, then the only non-permissible value is 

M0(t) ^ ai. Furthermore, the only time M0(t) = ai is at t = oo and hi = ax. 

From (3.9), for the pure coagulation model, that is, 6 = 0, 

2hi 
M0(t) = 

Ahit + 2' 

In the presence of only coagulation, lim^oo M0(t) = 0 while with the addition 

of fragmentation, limt_>00Mo(<) = ai > 0. This is to be expected because 

during coagulation clusters can only aggregate to form larger clusters thus 

decreasing the number of clusters until eventually none are left. While frag­

mentation counteracts the growth of clusters and the emptying of the system 

observed in pure coagulation does not occur. As well, the leading behaviour 

of Mo(t) for the coagulation and coagulation-fragmentation model is 2/At and 

M0(t) ~ ax + (hi-;|)fr-a»)e-$('»i-«a)« where (oi - a2) > 0, respectively. It is 

interesting to note that both leading behaviours have decay rates but faster 

decay when fragmentation is present. 

We are now ready to solve (3.5), but finding an exact solution is difficult. 

Instead, consider the following alternate approach. 

(j>{x,t) = z{xe-l*h\t) by (3.4) 

d2(f>, . d2z Ut +\„-bt (x,t) = —(xe—*bt,t)e 
dx^ ' ' d£ 

i£^=w<{xe 't)e • ' € 

Then 

(3.10) N&) = ^(0,t)e-ibt = j m d * by (2.15) 

15 



where for all j 

and since z(£, 0) = /i(£), the initial conditions are 

fj(0) = h^(0)=:fj0 =i 1 
* ty(0) = -pfjo. 

Ultimately, only Nj(t) is of interest, thus it is sufficient to just find a formula 

for fj(t) instead of attempting to solve (3.5). 

To begin deriving an expression for /,(£), differentiate (3.5) with respect to £, 

d (dz\ dz dz 

di\&;)=Azd-rAModi 

+ b 
ldz ( j - e^M0(t)Mef - 1) - e¥ (z - ^ M , ( f ) ) 

2d$+ ( £ e " - l ) 2 

after substituting in (3.4). Upon differentiating several times, a pattern emerges. 

Writing in general form, the suggested pattern for j = 1 is, 

"(ff-Moe") (*-Mrfe*)e*' 5 <9z , , . , 6. dz . <9z 

(3.H) 

and for j € N>2 is, 

(*e* - 1 ) (£e? - l)2 
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dj dz , ... b.djz 

, v ^ (A dnz&-nz . &z , 
A^\ 1 n+_ n„ _ + Az— + b 

£z \nj «e- ^-« 
fdz 

at? 
0>Z 1 , V ^ n!9£" 

deteS-1 t£ ( £e" - l )W 
to. ibt 

( - l ) J ' + 1 i ! ( | - M 0 e f ) e i ^ M ( - 1 ) ^ ! ( 2 - M 0 ^ f )e^ 
H r - s (- _ 

(4ef - iy 

A dnz &~nz fj - Is 

(ee? - iy+i 
j odd 

n 

+b 

dim) + Az 
&z 

w & tz &f-iy-^ 
( - l ) J + 1 J K f f - M 0 e " ) e ^ (-l)ij\(z - M 0 ^ f )eT 

T kt i" 

KCT - 1)> (f ef _ iy+i 
j even 

(3.12) 

We now prove the veracity of Equation 3.12. 

Proof (by induction) 

Step 1: Show the j ; = 2 case is true. 

Differentiating (3.5) twice with respect to £, 

^2 ®z __ / ^ d2z d2z 
+ Az—-AM0— 

+ b 
ldh 

+ 
£z_ 
dp 

2d? ( £ e * - l ) 

On the other hand, from (3.12) 

n ( g - M o C T ) e T ( ^ - M o l ^ e f 

(£e? - l)2 (£eT - 1)3 

a2 d* . , , , b,d2z A(dz 
—- + {AM0--)W = A[M 

+ Az a? 

+ 6 ae _ 2, (f-Moe^ 2 , M ^ f 
( & S - 1 ) ( C e " - l ) 2 ( ^ - 1 ) 3 

Both expressions are identical, therefore, the j = 2 case is true. 
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Step 2: Assume the j = k case is true, 

(i.e. assume (3.12) is true). 

Step 3: Show the fc + 1 case is true. 

Assume k is odd =£• k + 1 is even. Differentiate the assumption in Step 2 with 

respect to £, 

dfc+1 9z < **, b.dk+1z , ^ *v 
n=i W 

gn+lzdk-nz gnzgk-n+lz 

Mn+1 dZk~n + dZn d(k~n+1 

tdzdkz . dk+1z 
d(d(k 

fc-i 

'W •fc+i 

k\ 
+ £(-*) ^ 

<9fc+12 1 <9fc2 ea 
J ^ + ^ f - l ~ # * ( £ e f -1 )2 

(£e" - i)*+i-» (|eT - i)fc+a-n 

(_l)*jb! ( | _ M0ef ) e ^ (* + l)(-l)fcfc! (2 - M0£e") e ^ 

(£ef _ l)fc+l (£e£ _ l)fe+2 

Recall the well known combinations identity, 

(V fk + V 

{ n j 

( k y 

This identity and its proof can be found in [13] on page 36. Substituting in 

this identity and grouping like terms, the k + 1 equation is recovered. (For a 

detailed explanation, please refer to Appendix A.) That is, 

dk+1 dz 
d£*+1 dt 

+ Az 
dk+1z 
Q£k+1 

fc—1 

,AI. b.&+1z A^(k + l\dnzdk+1-nz J ks 

!"„,.,, . k I -i Mb-t-1 - n (k+lY. &»z _ (*+ l -n ) t t 

/ ak±l 
O 2 Z 

+ b 
^ /•£„£ lU-n+2 

+ 

^ ^ " - 1 ^ (£e¥ - 1)* 

(_l)fc+2(fc + 1 ) ! ( | _ M o e f ) e ^ ^ M ) f c + 1 ( f c + 1 ) ! ( 2 _ M ^ e t ) e ^ 

(£e? - i)*+i + (&% - l)fe+2 
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The even case can be derived in a similar manner. Therefore, by the principle 

of mathematical induction, (3.12) is true. • 

Looking at (3.11) and (3.12), everything is known except for z. The following 

Lemma will be essential in resolving this obstacle. 

Lemma 3.2. z(0, t) = 0 for all t e [0, oo). 

Proof 

z{£it) = 0(xe^-,t) since x(£,t) = £e*bt 

oo 

=» 2(0, t) = <f>(0, t) = J2 0kNk(t) = 0. • 

We now have all the results necessary to derive expressions for fj(t). 

For j = 1, evaluating £ = 0 into (3.11) and applying Lemma 3.2, 

(3.13) Mt) + (AM0(t) + l)Mt) = bM0(t)e$, /i(0) = / 0 1 

where fi(t) = dfi(t)/dt. This notation will be occasionally used throughout 

this thesis. 

For j G N>2, evaluating £ = 0 into (3.12) and applying Lemma 3.2, 

-bj\[f1(t)~M0(t)e
bi]eit:^i, j odd 

. ~ W i ( « ) - MoWeTje^^, j even 

(3.14) 

with the initial conditions fj(0) = fj0-
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Using the integrating factor, 

/j,(t) = {hi - a2 - (hi - ai)e 2 )Je * , MO) = (01-02) 

to solve (3.13), 

/l(f) = > ( « ! - < + ^ 
MO 4M<) L 

2(o2-fci)(o1-fci)(e»*-l) 

01 ft2, 
(3.15) - - ( a 2 - ftO^e"^' - 1) - - ( 0 1 - hi)2(e-Aait - 1) 

O2 Oi 

To solve (3.14) will be much more involved. First notice, all the ODEs have 

/j,(t) as its integrating factor, which means proving the integrals, 

/ j ( * ) M * ) - / i 0 ( O i - O 2 ) 2 = 

AEl I ffnfj-nVdi-b^fu^fMli 
„=1 \nj -JO n=2nlJ° 

-bj\ / W ) - M0{t)e*}e^ndi, j odd 
•_ ° 

n=2 

^ even 

(3.16) 

exist is sufficient in proving (3.14) can be solved. This will be done using a 

proof by (strong) induction since the integrals from (3.16) are of /„ where 

n<j. 

Prove the integrals of (3.16) exist. 

Proof (sketch) 

By strong induction, we assume the integrals of (3.16) exist for j = 1,2,.., fc 

which means they are continuous for [0, t], t e (0,00). These continuous in­

tegrals become the continuous integrands for the k + 1 case. Since these 
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integrands are continuous on [0,t], then their integrals exist on the same in­

terval. • 

A more detailed proof can be found in Appendix B. 

Therefore, by (3.10) and (3.16) a formula for the number of j size clusters at 

time t is 

Nj(t) 

e-f6t 

mt) fj0(ai - a2)2+ 

i-1 A\ ft 

Jo 

e-*M 

iW) 
> - l -I rt 

i=± 

j odd 

%\JIJ^+AK&)IM 
n=2

n'-Jo Jo 

j even 

(3.17) 

To the best of our knowledge, (3.17), which describes the behaviour of any 

size j cluster in a coagulation-fragmentation model with constant coagulation 

and fragmentation kernels and arbitrary initial condition, is an original result. 

A simple example of Nj(t) for j = 1,2,3 with a monodisperse initial condition 

will now be considered. This example recovers the particular solution deter­

mined in Blatz and Tobolsky [4] after rescaling their fragmentation kernel by 

1/2. 

Example 3.1. To determine the simplest Nj(i) for j = 1,2,3, let A = b = 1 

and h(x) = x (monodisperse initial condition) which implies hi — h(l) = 1 

and m = h[ = ft'(l) = 1. Thus, by (3.9) 

Oi(l - oa) - o2(l - ai)e-5<ai-°a>' 
M0(t) = 

l - a 2 - ( l - a i ) e " ~ * ( a i ~ ° 2 ) t 
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M0(t) 

Ni(t) 

N2(t) 

N3(t) 

lim 
t—»oo 

1 + ^ = 0.6180 

1-4 = °-382° 
1 - 3 ^ = 0,459 

9 - 4y/5 = 0.0557 

Table 3.1: limt_oo Af0(t),Nj(t) for j = 1,2,3. 

where by (3.7) and (3.8) 

fti = -:~ + pV^ and o2 H* 
And by (3.15) and (3.16) 

/ i ( * ) M<) 
2 e 3 ' -

(-1 + >/5)(3 + >/5)2(e^1+^)t - 1) 
4(1 + v/5) 

, (1 + v^5)(-3 + y^^Ce^ 1 - ^ ' - 1) , 0 
_| _—_ _ 1_ ^ 

flit) 
fi(t) 

4(- l + \/5) 

( 5 ^ + ll)e* + 2e -^ -2 )* + 2 e ^ + 2 ) t + i(V5+2)t , 10(15+ 7y/5y 

-7 - 3VE + 2e~^ 

f3(t) = — [(60^5 + 132)ef4 + (9 - 3 V 5 ) e ^ 3 + ^ + (9 + 3v/5)e*<s-^>« 

-yS-t. 60 (95 + 43\/5)(26 + lOy^ - lle~ ^ *) g, 
'TT ( _ 7 _ 3 v ^ + 2 e - ^ )2 

where 

Therefore by (3.10) 

e 2 ' 

iV1(t) = /1(t)e-5, iV2(t) = i/2(t)c-* and ^a(t) = U(t)e-t*. 
2 D 
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Figure 3.1: Graphical representation of M0(t) and Nj(t) for j = 1,2,3. 

From the positive limits in Table 3.1, it is clear that M0{t),Ni(t),N2(t) and 

N3(t) support the earlier result that clusters are present for all time when 

fragmentation is present. From Figure 3.1, it is clear M0(t),Ni(t),N2(t) and 

N3(t), which are physical quantities, are greater than zero with M0(t) greater 

than Ni(t),N2(t) and N3(t) since M0(t) represents the total number of clusters. 

As well, Afo(0) = iVi(0) - 1 and N2(0) = N3(0) = 0 corroborates with the 

monodisperse initial condition. 

With a monodisperse initial condition, Ni(t) initially decreases while N2(t) is 

increasing because size 1 clusters coalesce to form size 2 clusters, soon though 

fragmentation begins and the opposing processes eventually reach a positive 

equilibrium. The shape of N3(t) also supports this observation. Another 

interesting observation is Ari(t) > N2(t) > N3(t) V t > 0. In other words, the 

bigger the clusters the less of them there are. Physically this makes sense since 

it takes more small clusters to make just one bigger cluster. 

Remark 3.3. By letting b = 0 in this chapter, the pure coagulation case can 

be recovered. 
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Chapter 4 

Coagulation-Fragmentation 

Model with Sum Kernel 

4.1 Coagulation Model 

In 1986, Lu [3] solved the pure coagulation model with sum kernel K^ = j + k 

and an arbitrary initial condition. He transformed (1.1) into one term and then 

applied an exponential generating function, one which is different from w(v, t), 

to solve the associated PDE. In order to solve the coagulation-fragmentation 

case, solutions from the pure coagulation model are required; therefore, a 

modified version of Lu's work is reproduced below. Instead of initially applying 

a transformation, (2.12) will be used with a general sum kernel, Kijk = B(i+j). 

For B > 0, A = C = b = 0, (2.12) becomes 

(4.1) ^ - B(M0 - w)^- = -BwMl 

with initial condition w(v,0) = h(v). The method of characteristics will be 

used to solve this quasilinear PDE. Letting z = w and introducing the param-
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eters, s and £, the characteristic equations are 

t(<U) = o. (4.2) 

Clearly, t = s. 

(4.3) 

(4.4) 

dt 
ds 

! = - * < * . . 

§=-**„, z(0,t) = h(O-

Before solving (4.3) and (4.4), Mx(t) and Af0(i) must be determined. 

Using the same technique from Chapter 3 to determine Mi(t), 

Mi{t) = m for t < tg 

where m (= —h'0 by (2.14)) is a positive real number and tg defined by (3.6). 

Shirvani and van Roessel's 1992 paper [16] proved M\(t) = m for all t. In 

the constant model, conservation of mass for all time was directly proven by 

relying on dv/d£ (refer to Lemma 3.1). That cannot be used here because 

v(£,t) depends on M\(t). For the same reason, Lemma 3.1 cannot be applied 

to any of the other models. 

Using the same technique from Chapter 3 to determine M0(t), 

M0(t) = h0e-Bmt 

for all t with the initial condition M0(0) = hQ. Since Brnt > 0, then clearly 

M0(t) has an exponential decay and limt^ooMo^) = 0. In the constant co­

agulation model, M0(t) also has a decay rate but it is of algebraic form and 

lim^ooMo^) = 0. 

With M0 = h0e~~Bmt and Mx = m, it is clear the solutions to the characteristic 

equations are 

(4.5) z(£,t) = h(S)e-Bmt, 

(4.6) »(£, t) = -^tJ}l{e-Bmt _1) + c 

m 
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No further pure coagulation results are required for the coagulation-fragmentation 

model. 

4.2 Coagulation-Fragmentation Model 

In this section, fragmentation will be added to Lu's coagulation results with 

the sum kernel (that is, K^k = B(j + k) and %& = b). Our goal is to solve 

the corresponding PDE which leads to formulas for Nk{t),M0(t) and Mi(t). 

Determining a formula for Nk(t) is original work. 

For A = C = 0, B > 0 and b = eB > 0, (2.12) becomes 

(4.7, %-B (Mo -w) + - — = -BMiw + eB 
2J dv 

1 w-Moe~v 

-w + 
1 

with the initial condition w(u,0) = h(v). The method of characteristics will 

be used to solve this quasilinear PDE. Letting z = w and introducing the 

parameters, s and £, the characteristic equations are 

(4.8) 

Clearly, t = 

(4.9) 

(4.10) 

= s. 

dz 
~dl~ 

ds 
L, t(£,0) = 0 

dv ,-..„, . eB ,„ „. 
— = -B(MQ-z)-—, v(Z,ti) = t 

= -BMxz + eB 
"1 z-M0e~v' 
2 + e~v-l 

, «&o) = = *(0 

Before solving (4.9) and (4.10), Mi(t) and M0(t) must be determined. 

Using the same technique from Chapter 3 to determine Mi(t) and M0(t), 

Mi(t) = m, 

, , / N em / , em 
M0(t) = -—— + lh0- — 

2m + e \ 2m + e 

-S(m+f)t 
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for t < tg where m is a positive real number and tg defined by (3.6). In Ball 

and Carr's 1989 paper ([1], Theorem 3.6), they proved Mi(t) = m for all t. 

Therefore, the above equations for Mi(t) and M0(t) are valid for all t. A 

continuous version of M0(t) can be found in [2]. 

Remark 4.1. A neat way to check whether M0(i) is correct is by setting e = 0 

and recovering M0(t) for the coagulation case. This check can be used for all 

the remaining cases. 

Recall in the coagulation case, M0(t) = h0e~Bmt and with the addition of 

fragmentation, M0(t) = ^ + (fto - -^)e~B{m+i)t where B(m + f )t > 0. 

Both equations for M0(t) decay exponentially but faster when fragmentation 

is present. Also, as t —• oo, the limits for M0(t) are 0 in the coagulation case 

and 2^7 > 0 (i.e. some clusters remain in the system) in the coagulation-

fragmentation model. Similar observations for the constant model were also 

noted. 

Finding an exact solution for (4.10) is difficult. For the constant kernel case, 

determining z relied on explicitly knowing x(£, t) (which corresponds to v(£, t) 

in this chapter). But that method cannot be applied here because dv/d£ 

depends on z. Instead, the solution can be approximated by considering a 

regular perturbation expansion about e > 0, 

* = £>„(£, t)e». 

Furthermore, the leading behaviour of the solution can be approximated from 

just the first two terms of this series. In other words, 

z & z0 + ezi. 

Similarly, 

v wuo + evi, 

M0 wMoo + eMai, 

Mi w M\a + eMu. 
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Exact solutions for M0 and Mi are known, which means M00, M0i, M10 and 

Mn are all known. Therefore, the problem becomes determining v0,V\, ZQ and 

Z\. Since v0 and z0 are solutions for e = 0 (i.e. b = 0), it has already been 

solved in Section 4.1. That is, from (4.6), 

(4.11) MZ,t) = 
HO - ho 

m 
(1 -Bmt ) + Z 

and from (4.5), 

(4.12) z0(^t) = h(Oe-Bmt. 

Thus the problem reduces to just rinding z\ and V\. 

To determine Z\, consider approximating (4.10) so that 

^ + e ^ « -J5(Mio(t) + £MU(«) - |)(«b + e*i) 

(4.13) + e£ 
(20 + ezi) - c-(*»+a'1)(Afoo + eMoi) 

g-(«o+«>i) _ J 

Expanding and considering only order e terms, 

^o -Mooe-" 0 ! 
- J - + 5Mi02i = £Mn2o + —«o + B 
at l e-»0 _ 1 

(4.14) 
B. 

5Mn2o + — (zb - 2M00) + B 
Zo-M{ 00 

g-wo 
2l(£,0) = 0 

In a similar manner, the approximation for vi is 

(4.15) ^ = -B(Af01(«) - *i) - | , ^(£,0) - 0. 

By series expanding M0{t) and M\(t), 

M00(t) = h0e-Bmt, 

M01(t) = ~^Bh0e-Bn 

Mw{t) = m, 

M„(t) = 0. 

Series expanding Mo(t) was done on Maple. 
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Remark 4.2. M0o(£) is identical to the coagulation case which it should be. 

As well, lim^oo Moo(i)+€M0i(t) = f while lim^oo M0(t) = -—-^ ~ § by series 

expanding around e. These simple verifications can be used on the other cases 

as well. 

By applying the integrating factor, ip(£,t) = eBmt on (4.14), 

*i(£, t) = §(fc(0 - 2ho)te~Bmt + Be-BmtF(£,t) 

where 

'0 

for all t e [0, oo) and £ e [0, oo) 

*<«•«> = / £ & £ i « <*(«•«) - * ^ < ' -«"")+« 

We now prove F(01) exists for £ € [0, oo) with £ € [0, oo) fixed. 

Proof 

Case 1 : £ > 0, t > 0 

If v0(£,i) ^ 0 for all t =» the integrand is continuous, then F(£,£) exists. 

From Remark 2.1, /i'(£) is continuous and monotone increasing implies h'(0) < 

h'(c) for all c> 0. By the Mean Value Theorem, there exists a c 6 (0,£) such 

t h a t h>{c) = hHUM 

HO - HO) 
h'(0) < 

£ 
=$, 1 > — \ 1 L — L i ) m = -h'(0) > 0 and /i is decreasing by Remark 2.1 

£m 

=• _i < M i L z M ( i - c-Bmf) since - 1 < {e~Bn* - 1) < 0, Bm > 0 
£m 

^ o < Miki^ (1 _ e -w } + ^ = ^ ^ 
m 

Therefore, q>(£,*) 7̂  0 =• F(£,*) exists. 

Case 2 : £ = 0, t > 0 

If £ = 0, then 

F(0,«) = -h'0 f eBmldt = m f eBmEdt since m = -/i'0 
7o Jo 
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by the Dominated Convergence Theorem. Solving the integral, 

(eBmt __ i \ 

F(0,t)=[€
 B

 l j . 

Case 3 : £ > 0, t = 0 =» F(£, i) = 0. D 

With zi(£,t) known, (4.15) is determined to be 

Mt, t) = -Bt- ~(h(t) - ho)te-Bmt - J - (m ho-l) (e~Bmt - 1) 
(h(Q-ho _ \ 

2mv"K^J ",u/"v' 2m \ m J 

+ B2(h(O~h0) fe-B™F(Z,r)dr 
Jo 

We have now found the leading order solution to (4.7), 

w{v,t) KZ0(i(v,t),t) + ez1(£{v,t),t) 

=h(i(v,t))e-Bmt 

(4.16) + e (^(h(i(v, t)) - 2h0)te~Bmt + Be-BmtF{£{ v,t),t)j 

for t € [0, oo) with |(u,t) (defined in Remark 3.1) determined from v(£, t) « 
uo(6*) + et>i (£>*)• By (2.15), we have an implicit approximation for Nk(t), 

which to our knowledge is an original result. 
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Chapter 5 

Coagulation-Fragmentation 

Model with Constant-Sum 

Kernel 

5.1 Coagulation Model 

Lu [3] is also credited with solving the pure coagulation model with a constant-

sum kernel, K^k = A+B(i-\- j), and arbitrary initial condition. Once again he 

transformed equation (1.1) into one term and then applied the </> generating 

function. To determine the coagulation-fragmentation model, solutions from 

the coagulation model are again needed. Thus, Lu's work will be recreated 

but without applying a transformation. 

For A, B > 0, C = b = 0, the PDE, (2.12), becomes 

(5.1) ^ - B(M0 - w)^ = ^w2 - (AM0 + BM1)w 

with the initial condition w(v,0) = h(v). The method of characteristics will 

be used to solve this quasilinear PDE. Letting z = w and introducing the 
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parameters, s and £, the characteristic equations are 

(5.2) ^ = 1, t(0,€) = 0. 

Clearly, t — s. 

(5.3) ^ = _ 5 ( M o - z ) , v(0,O = C 

dz A 
(5.4) - = -z2 - (AM0 + BMx)z, 2(0,0 = /»(«• 

Before solving (5.3) and (5.4), M\(t) and M0(t) must be determined. 

Using the same technique from Chapter 3 to determine Mi(t) and M0(t), 

Mi(t) = m for £ < tg 

where m is a positive real number and tg defined by (3.6). By Shirvani and 

van Roessel's theorem [16], M\(t) — m for all t. With this result 

2h0Bm 
° W = (25m + Ah0)e

Bmt - Ah0 

for all t with the initial condition M0(0) = ho. 

M0(t) has an exponential decay and limf_,ooM0(<) = 0 which are identical re­

sults to the sum model. The observation, l im^^ M0(t) = 0, has now occurred 

in all three different cases of the coagulation model. As well, in this model 

^o(t) ~ 2B^+Ahoe~Bmt- A decay rate for the leading order behaviour of M0(t) 

has now occurred in all three models. 

With M0(t) and Mi{t) known, (5.4), which is a Bernoulli equation, and (5.3) 

are determined to be 

{ ' *' ' {2Bm + Ah0{l-e-Bmt))(2Bm + A{h0-h(O(l-e-Bmt)Y 

(5.6) t/& *) = £ - ™ In ( l + ^(h0 - h(m ~ e-Bmt)) • 

Absolute values are not required for In because A, B, m > 0 and h(£) decreas­

ing by Remark 2.1 implies 1 + j§^{h0 - h(Q)(l - e~Bmi) > 0 alU > 0. 

32 



Remark 5.1. In this remark, the verification idea of Remark 4.1 is extended. 

By setting A = 0 (or B = 0), Mo(t) for the sum (or constant) coagulation 

model can be recovered. This is a good way to check whether M0(t) was 

correctly determined. In fact, v(£,i) and z(£,t) can be verified in an identical 

fashion. 

No further pure coagulation results are required for the coagulation-fragmentation 

model. 

5.2 Coagulation-Fragmentation Model 

In this section, fragmentation will be added to Lu's pure coagulation results 

with the constant-sum kernel (that is, Ki>k = A + B(j + k) and L^ — b). Our 

goal is to solve the corresponding PDE which leads to formulas for Nk(t), M0(t) 

and Mi(t). Determining a formula for Nk(t) is original work. 

For A, B > 0, C = 0 and b = eAB > 0, (2.12) becomes 
dw dw 

(M0 -W) + Y dv 

(5.7) —w2 - AM0w - BMiW + eAB 
1 w; - M0e~v 

-w-\ — 
2 e-" - 1 

with the initial condition w(v,o) — h(v). The method of characteristics will 

be used to solve this quasilinear PDE. Letting z = w and introducing the 

parameters, s and £, the characteristic equations are 
dt 

(5.8) 

Clearly, t = s. 

(5.9) 

dz A 2 

~di~~2Z 

(5.10) 

ds = 1, <(&0) = 0. 

dv 
~dl 

= -B(M0 - z) eAB 
«&0) = f 

(AM0 + BMi)z + eAB 
1 w — M0e~v 
_-) »— 
2 e-v - 1 

*(£,0) = /i(0. 
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Before solving (5.10), Mi{t) and M0(t) must be determined. 

Applying the method from Chapter 3 to determine Mx(t) and M0(t), 

Mi(t) = m, 

M (t) = a i (ho-Q2)-a2(/ to-ai)e^ ( a i- a 2 ) t 

ho-ai- {ho - aJe-H"1-** 

for t < tg where m is a positive real number, tg defined by (3.6) and 

B ( eA\ B* ( iA\ _ 

B ( eA\ [B*7 IAV ~~ 
i r+Tj-v^vm +Tj+ e B m-a-i — 

Ball and Carr's paper ([1], Theorem 3.6) proved Mi(t) = m for all t; therefore, 

the above equations for Mx (t) and M0(t) are true for all t. A continuous version 

of M0(t) can be found in [2]. 

We see l i m ^ M0(t) = d > 0 and M0(t) ~ Oi + I S o ^ a ^ a ! ^ - ! ^ ) * 

where (ax —02) > 0. It is apparent with the addition of fragmentation clusters 

remain in the system as t —• 00. The leading behaviour of M0(t) is again an 

exponential decay. Furthermore, M0(t) with fragmentation decays faster than 

its coagulation counterpart. These same observations were noted in both the 

constant and sum model. 

Finding an exact solution for (5.10) is difficult. Instead, the approximation 

technique used in Section 4.2 will be applied here. Therefore, 

dz 
-£ - (Azo-AM0o - BM10)zi = -{AMm + BMn)zo 

(5.11) +AB 1 zo-Moo 
-z0 - Moo + 2 e~v° -1 

zi(£,0) = 0 

(5.12) ^ = _ 5 ( M o i - 2 o i + | ) , vi(£,0) = 0 

where 
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. (2Bm)2h(Oe-Bm* 
(25m + Afto(l - e-B"tt))(25m + A(hQ - /i(£)(l - e"Bmt))' 

«b&«) = £ - ^ f 1" ( l + ^ ( A o - h(0)(l - e"Bmt)) , 

2hoBme-Bmt 

Moo(t) = 

M0i(t) = 

2Bm + Ah>(l-e-Bmty 

-A[Ahl{A + 25)e-2Brot + 2B{A + B)h0m{Ah0 + 2Bm)te~Bmt 

+2B(-Ahl + 2Ah0m + 25m2)] 

2{2Bm + Aho(l - e~Bmt)f 

Mw(t) = m, 

Mu(*) = 0. 

Series expanding Mo{t) was again done on Maple. 

Applying the integrating factor, V(£, *) = eBmt(l + ̂ (ho -h(£))(l -e~Bmt))2 

with V(^,0) = l,on (5.11) 

«i(&*M£i*) = - A J MQ1zoi;di+AB / V> Q*b - M)o J i t 

(5.13) + A 5 f\pZ-°^M™di. 
Jo e - ^ - 1 

The first integral has an explicit solution but is extremely complicated because 

the coefficients have been left arbitrary. Once specific values are assigned 

the solution will simplify greatly. The second integral is easily and neatly 

solvable. The third integral cannot be explicitly solved and for convenience 

will be denoted as 

G(6 0 =AB £ ^ t) Z0{%t^f *> di 

ft 1 . A(^o-Ht))(\ _ p-Brrd\ 

=AB(h(0 - h0) / sf^ ^ ]-B di. 
' Jo e-e(l + ^ ~ y » ( l - e-B™*))™ - 1 

We now prove G(£, t) exists t e [0, oo) with £ e [0, oo) fixed. 

Proof 
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Case 1 : £ ^ 0 

If e-*(l + AV*]£®) (1 -e~Bml))^ - 1 ^ 0 for all t then, G($, t) exists. Suppose 

not. Assume, there exists some f such that e ~ e ( l + i 4 ^ ^ ^ (l-e~Bro*)ffi-l = 

0. Isolating for t, 

__ j - l_ / 2Bm(e™-l)\ 
' ~ Bm \ A(h0 - h(0) ) ' 

By the assumption and Bm > 0, 

In 1 - , , ,V , ' < 0 <*• 0 < 1 - v / < 1. 
^ A(h0 - /i(0) J Mho - MO) 

Considering 0 < 1 - 2ff_f(^
1}, then 

since /i is monotone decreasing by Remark 2.1 

=» ^ ( e ^ - 1) < ~ ( / t ( ^ ~ / t o ) = _ft'(c)7 by the Mean Value Theroem 

where c € (0,£) 

=> (e^g — 1) < — h'0 since ft' is monotone decreasing by Remark 2.1 

£.A 
=» since m = -ti0 > 0, then (ek - 1) < k (*) where fc = ^ > 0. 

2r> 

On the other hand, defining f(k) = ek — 1 — k =>• /'(fc) = efc — 1 > 0 since 

fc > 0 =» / is increasing for all fc > 0. With /(0) = 0 and / increasing, then 

f >0=> ek — I > k which contradicts (*). 

Case 2 : £ = 0 

If £ = 0, then 

G ( ° ' ( ) ° f m ^ M " ' - / ' / ' A B m e - ^ i since m = - „ i 

by the Dominated Convergence Theorem. Solving the integral, 

G(0,t) = A(eBmt-l). 

Therefore, G(£, t) exists. • 
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Solving (5.13) on Maple, 

*i(&*M£.<) » [ -A{h(£)(Aho + 25m)(252 / i(0m(^0 + 2Bm) ln(2Bm) 

+Aho[-2i4(A + B)ho(fto - MO) - 5(3A + 2B)(2ho - h{£))m - 4(Bm)2}) 

+Bh(Om(Aho + 2#m)2([2£m(£/i(0 + Ah0) + A2h0(h0 - h{0)]t 

-2Bh(0 \n({AhQ + 2Bm)eBmt - Ah0))}e2Bmt 

+2A2h0{2A2(A + B)hlh(0(H0 - ho) - 2AB(AA + W)h2
0h{Om 

-2B2(2B + 5A)h0h(Z)m2 + 2B2(2A + B)h2{Om2 + AB{6A + bB)h0h
2{Om 

-4B3h(£)m3 + 2B2h2(Orn(Ah0 + 2Bm) \xv{2Bm) 

+B2h{£)m(h(£) - h0)(Ah0 + 2Bm)H 

-2B2h2{£)m{Aho 4- 2Bm) ln((Afto + 2Bm)eBmt - Ah0) }eBmt 

-A3B(A + 2B)h2
0h(O(h(O - ho)m(Ah0 + 2Bm)t 

+2A3B2hlh2(Om ln((Ah0 + 2Bm)eBmt - Ah0) 

-A3h0h(0{2h0(h(t) - h0)(Ah0{A + B) + 2B2m) + 2B2h0h{£)m ln(2Bm) 

-Bm(2B{2h0 - h(£))m + Aho{6h0 - 5/i(0))}] 
2Bh0m(Aho + 2Bm)((Aho + 2Bm)eBmt - Ah0)

2 

_ A2(/io-/i(Q)2(e-^-l) ABh2(Q _ Mo_ M _ „ 
25m2 ho{2Bm + Ah0)

 { 2BmK '' 
A{A{hp - h(Q) + 2Bm}{Bm(2ho - ft(Q) + Ah0(h0 - h(Q)}t 

2m(2Bm + Ah0) +W,V-

Absolute values are not required for In since Bm > 0 

=> Aho + 2Bm > Aho 

=> (Ah0 + 2Bm)eBmt > Ah0 since eBmt > 1 

which also implies =» 1 > -rrr-(e~Bmt - 1) H 2BmK ' 

for all t > 0. As well, this proves ln((A/i0 + 2Bm)eBmt — Ah0) is continuous 

for all t. Furthermore, l/t/>(£, t) is also continuous for all t since /i is monotone 

decreasing by Remark 2.1 and 1 — e~Bmi > 0, 
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=> (l + 2 ^ ( ^ o - ^ ) ) ( l - e - B m t ) ) 2 > l 

=> i>(U) = eBmf(l + ^ ( f t o - fc(0)(l - e-Bmt))2 > 0 

for all t. Therefore, Zi(£,t) is continuous for all t. 

With Zi(£,t) known, (5.12) is calculated to be 

ft ft An 
t/i(£,t) = -B I M0idi+ B / zxdt- —t 

Jo Jo * 
A AB] {A + B)(Ah0 + 2B,)teBmt 

2 + + 2 J * + (25m + Ah0)e
Bmt - Ah0 

+ 
2A(Aho + Bh0 + Bm) 1 1_1 f* 

.(25m + Ah0)e
Bmt - Ah0 ~ 25mJ + J0

 Zl 
Ah0 + 2Bm 

While the first integral is easily solved, the second cannot be completely de­

termined but since Zi(£,t) is continuous for all t € [0, oo) then its integral 

exists. 

We have now found a leading order solution to the coagulation-fragmentation 

model, (5.7), 

w(v,t) » z0(i(v,t),t) + ez!(i(v,t),t) 

for t € [0, oo) with £(v,t) (defined in Remark 3.1) determined from v(£,t) « 

Vo(£,t) + «>i (£>*)• By (2.15), we have found an implicit approximation for 

Nk(t), which to our knowledge is an original result. 
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Chapter 6 

Coagulation-Fragmentation 

Model with Product Kernel 

6.1 Coagulation Model 

The pure coagulation model for Kj^ = jk with an arbitrary initial condition 

was solved for all time by Ziff et al. [25]. They solved the model using a 

slightly different generating function than w(v,t). We reproduce the work of 

Ziff et al. using w(v,t) because the results are needed in Section 6.2. 

For C> 0 and A = B = b = 0, the PDE, (2.12), becomes 

(6.1) dJ±A-CM^ = C0 

at av 2 2\dv) 

with the initial condition w(v, 0) = h(v). The method of characteristics will 

be used to solve this nonlinear PDE. Letting z — w,p — dw/dv,q = dw/dt, 

(6.1) becomes 

F(v,t,z,p,q):=q-C -p2+pMx 
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And introducing the parameters, s and £, the characteristic equations are 

dt dF 
(6.2) 

Clearly, t — s. 

ds dq 
= 1, *(£,0) = 0. 

(6.3) ^ = ^ = _C(p + M1), «&0) = £ 

(6-4) f = P ^ + ^ = -CP(P + M 0 + <?> *& 0) = Kt)-

(6.5) 
dp dF dF „ ... _ ..,, . 

dq OF OF _ • _ „. ^ 
(66) Tt--m-^ = -CpM-^0)-c 

where &{, = Afi(0). 

|(fc'«))2 " fc'(flft£ 

Clearly, first solving (6.5) is necessary in determining the other characteristic 

equations and luckily it is easily evaluated to be 

(6.7) P& *) = *'(«• 

From this the remaining characteristic equations are determined to be 

(6.8) u(e,t) = -Ch'(Ot-C I Mi(t)dt + £, 
Jo 

(6.9) *tt,t) = - |(A'(0)2t + M0, 

(6.10) g&t) = CW(0 Mi(t) + ±h'(t) 

Thus far, we have made no restrictions on t and therefore (6.7) to (6.10) are 

valid for all time. However, in order to determine explicit solutions for v(£, t) 

and </(£,£) requires knowing M\(t). 
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Using the same technique from Chapter 3 to determine Mx{t) and M0(t), 

Mi it) =m, 
Q 

Mo(t) = - -mH + ho, M0(0) = ho 

for t < tg where m is a positive real number and tg denned by (3.6). In Shirvani 

and van Roessel's paper [16], they proved M\{t) = m up to t < tg only. This 

means gelation occurs. At this point, we would usually compare M0(t) with the 

others from the previous cases. However, because of the gelation phenomenon, 

to make a comparison would not seem prudent. 

Equations (6.8) and (6.10) are evaluated to be, 

(6.11) v(£,i) = -C(/i'(£) + m)t + 4 for t < tg, 

m + \h\i) (6.12) q(Z,t) = Ch'(0 

while (6.7) and (6.9) are valid for all time 

for t < tg, 

Post-gelation results will not be determined as they are unnecessary for the 

next section. 

Recall from Remark 3.2 that gelation corresponds to a shock in the solution 

of (6.1). A shock is characterized by dw/dv becoming infinite or dv/d£, = 0. 

Therefore, differentiating (6.8) and setting it equal to zero, 

dv{i,t) 

The shock occurs at 

= -Ch"{i)t + 1 = 0. 

(6.13) ^ _ ^ - = : r . ( o 

and the first time it occurs is known as the gelation time, 
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since h" is monotone decreasing by Remark 2.1. 

To clarify the notation for gelation time, tg is a generic gelation time while 

tgo := gelation time for the pure coagulation model, 

tg€ := gelation time for the coagulation-fragmentation model. 

6.2 Coagulation-Fragmentation Model 

In this section, the gelation time for the coagulation-fragmentation model (that 

is, Kjjk = Cjk and L^k = b) is investigated. 

For C > 0, A = B = 0 and b = eC > 0, (2.12) becomes 

(114, %-C Mx + 
dw C ( dw 

2J dv dv 
+ eB 

1 w - M0e~v 

-w -\ — 
2 e-v - 1 

with the initial condition w(v, 0) = h{v). The method of characteristics will 

be applied to this nonlinear PDE. Letting z = w,p = dw/dv,q = dw/dt and 

introducing the parameters, s and £, the characteristic equations as illustrated 

in Section 6.1 are 

(6.15) 

Clearly, t = s. 

(6.16) 

dt 
ds = 1, i(e,o) = o. 

^^-Cip + M,)-^, »&0) = £ 

(6.17) ^ = _Cp(p + M 1 ) -^p + ?, 2(£,0) = M£)-

<™> ! - c i ^ f - c I 1 
2 + c-" - 1 

P, P(^,O) = /I'(0. 
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dq 
-CpMi + eC 

q-e-vM0 q 
e-v - 1 2 

iw tw i t * ^ ?(€,o) = c i(/i'(0)2-^'(0^ +ec 

(6.19) 

where h0 = M0(0) and h'0 = M^O). 

Using the same technique from Chapter 3 to determine Mi(t) and M0(£), 

Mi(t) =m, 

M0(t) —m- — + (hQ - m + — )e'^ct, M0(0) = ho 

for t < tg where m is a positive real number and £9 defined by (3.6). The 

equation for M0{t) is a special case of equation 13 from Brunelle et al. [5]. 

And as discussed in Section 6.1, no comparison of M0(t) will be made. 

At this point we would usually find a solution to (6.14). But due to the 

difficulties of finding a solution, we limit our investigation to gelation time. 

Brunelle et al. [5] proved numerically for the case of a monodisperse initial 

condition that gelation time tends to infinity for a critical value, ec. In the 

paper, Mi{t) is computed to be constant for t € [0,10). Then extrapolating 

at t = 10, Mi (10) is no longer constant at e ^ 1.43 = ec. However, there still 

lacks a rigorous proof whether gelation occurs. Our contribution is to show 

analytically that gelation time for pure coagulation occurs earlier than when 

fragmentation is added (that is, tgo <t9t). Physically, this is because fragmen­

tation counteracts the effect of coagulation therefore delaying the formation 

of a superparticle, which characterizes gelation. 

Theorem 6.1. tgo < t9e for the case of a monodisperse initial condition 

Proof 

The approximation technique from Section 4.2 will once again be called upon. 

However, since we are only interested in gelation time, we concentrate our 
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approximation on 

<*»> £ ~ 
, , 2 1 , $ - C 

where for £ < tg 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

C P i - f , t;1($,0) = 0 

[e- - ( ,o-M 0 0 ) / l 1 \ 1 
(e-«»-l)2 \ 2 e - " o - l ^ u . 

*>(£,*) = - | c ( f c ' ( 0 ) 2 * +MO, 

«b(&t) = - < W O + m)t + e, 

Pb(£,t)=ft'(0, 

, PiK,0) = 0 

Series expanding M0(t) was determined on Maple. 

Since the right-hand side of (6.21) is known, integrating the ODE, 

Pi(£,*) = - C -b(0 

+C 

o(0 e°«)'-« - 1 

(m , y(o\ 
W(o o«); 

- c MO - ftp 
MO 

1 
e»(0*-€ - l e-€ - l 

l n | l - e - ° ^ ^ € | - l n | l - e c | +ffc'(0* 

for t < t9 where 

MO =C-(/i'(0 - h{,), 

&(0 =^C-((h'(0)2 - m2) = ^ C ( h ' ( 0 - /i0)(/*'(0 + fc'0). 

Therefore, (6.20) is 

-c MO - feo 
a»(0 

ln | l -c-°^ f + { | - ln | l -e e | 

(6.26) +C MO-ft. * + f W + | 

for £ < tg where 

o(0 e - e - 1 4 

F(£, t)= f In |l - e-° ( € ) f + € | d«. 
Jo 
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At id = £/a(£)> In |1 — e~°^'+5| is discontinuous. To remedy this, we rewrite 

F(£,t) as an improper integral, 

rd _ 

'" di F((,t) = lim | / ln(e-a(e)f+e - \)di + / ln(l - e'
a{^^) 

d^>U [Jo id 

In Section 6.1, to determine gelation time, we solved t for dv(£,t)/dt = 0. In 

this case, v(£,t) « v0{£,t) + evi(4, t) does not allow t to be isolated. Since 

our actual goal is to show tgo < t9e, it suffices to prove Ti(4) > 0 where 

T(£,e) := T0(0 + e7\(4) (from Section 6.1, T0(0 = ££% ) such that 

3v«,T(£,e)) 
94 

0. 

Furthermore, since 

<M4, r & €)) ^aVo(^, r & e)] + ^ ( 4 , r(4, e)) 
d£ 9e 9C 

^ 0 ( ^ ^ ( 0 + 6^(0) 9^ (4 , ^ (0 + 6^(0) 
94 + 94 

then applying Taylor series expansion 

9uo(4,T0(4)) 
d^ + e ^(0^o(4,r0(0) + 9Vl(4,r0(O) 0. 

d4dt 94 

Since dv0/d£ = 0 (this is from determining gelation time for the pure coagu­

lation model), this implies 

(6.27) Ti(0 « -
a«i(€.Jb(0) 

a^9t 

Therefore, to prove tgo < t9i, we must show Ti(4) given in (6.27) is greater 

than zero. 
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Figure 6.1: Graphical representation of Ti(£). 

By applying (6.26) and (6.23), 

&>i(€,0 
( ™ ( 1 + e-«)< + l ) In |1 - c ^ - * - 1 ^ ! + F(|,«) 

- l n | l - e ? | + « + e - c - l 
i c - M n l l - e ^ " ' - 1 ^ ! * 

- | ( l - e - ^ + l e ( e _ , _ 1 ) t + ? ( _ e _ ^ + i ) + 

1 _ e(e-«-l)t+« 
3F(£i) + e« 

dt 1 - e * 

+ ; <"»> ' 2 ( 1 - e - £ ) - 4-

where the arbitrary initial condition has been replaced with the monodisperse 

initial condition, h(£) = e~€, and C — 1. Since Tb(£) = ef from (6.13) and by 

substituting (6.28) into (6.27), then 

2e* - In(e* - 1) e2« / 1 + e~*\ F( | , e«) e« dF{£, e*) 

(H£) ^i(0 « (e_€ 1 1 ) 2 ' + 4 i^x _ e -€ J + (i -l'e-«)2 + e-€ _ i ^ 

where 

F(£,e<) = lim / ln(e<e"*-x>f+* - l)dt+ f ln(l - e ^ " * - 1 ^ ) ^ 
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Since it appears Ti(0) is undefined, we consider £ > 0 for Ti(£). This means 

gelation time cannot occur at £ = 0 and this will be validated once t9c is 

known. 

Prom Figure 6.1, Ti(£) appears positive for all £. Since Ti(£) has a critical 

value at £ = 0.3098, lim^0+ 7\(£) = lim^ooTi^) = oo and Ti(£) continuous 

for all £ > 0, then T\(£) has an absolute minimum at £ = 0.3098. Therefore, 

Ti{0 > Ti(0.3098) « 4.94 for all £. 

Therefore, t^ < tgt for /i(£) = e~* and C = 1. D 

To the best of our knowledge, Theorem 6.1 is an original result. 
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Chapter 7 

Summary and Conclusions 

In this thesis, the coagulation-fragmentation equation was investigated with 

various coagulation kernels and constant fragmentation kernel. 

Chapters 1 and 2 discussed the history, applications and derivation of the 

coagulation-fragmentation model. 

In Chapter 3, we investigated the coagulation-fragmentation model with a 

constant coagulation kernel and arbitrary initial condition. The associated 

PDE required knowing M0(t) and Mi(t) which was published in [5] and [1], 

respectively. An exact and explicit equation for Nk(t), which until now was 

unknown, was determined using an inductive argument. This is the only model 

where an exact formula was found; but the formula has one shortcoming: 

before determining Nk(t), the previous ones, that is, Ni(t), N2(t), ..., iVfc_1(i), 

must first be determined. Lastly, an example for Nk(t) with monodisperse 

initial condition was considered. 

The next two chapters involved the sum {Kitk = B(j + fc)) and constant-

sum (Kjtk — A+ B(j + fc)) coagulation-fragmentation models with arbitrary 

initial conditions. Each chapter began with a review of its pure coagulation 

counterpart, which Lu [3] established in 1987. The second section determined 

48 



Kjtk = A 

KiM = B(j + k) 

Kj>k = A + B(j + k) 

Hk = 0 

0 

0 

0 

L3,k = b 

6 , 1 / 62 . 46m 
1A ^ 2 V ~& "*" A 

em 
2m+ e 

B( eA\ IB2 ( eA\2
 n 

Table 7.1: A comparison of limt-.oo M0(t) between the pure coagulation model 

and the coagulation-fragmentation model. 

an implicit leading order formula of Nk(t), which is an original result, for the 

coagulation-fragmentation model. Due to the challenges of solving the PDE, a 

regular perturbation expansion was applied. Another obstacle was not being 

able to invert v(£,t) which resulted in only an implicit solution for Nk(t). A 

by-product of investigating Nk(t) were the previously known solutions of M0(t) 

[2] and Mx(t) [1]. 

In Chapter 6, we extended the work of Brunelle et al. [5] and obtained the 

original result that gelation time for the pure coagulation model occurs sooner 

than when fragmentation is added (refer to Theorem 6.1) under a monodisperse 

initial condition. The pure coagulation results needed to prove Theorem 6.1 

were borrowed from [25]. 

Since exact formulas of Afo(t) are known for the constant, sum and constant-

sum coagulation-fragmentation models, a comparison amongst the models and 

their pure coagulation versions is considered. In all three models, it is clear 

from Table 7.1 that under pure coagulation, limt_>ooM0(i) = 0 while the 

coagulation-fragmentation model has limt_ooM0(t) > 0. In the continuous 

case, a similar observation that M0(t) approaches a positive limit was dis­

cussed in [2]. Physically, this makes sense because the presence of fragmenta­

tion counteracts the aggregation of clusters and the emptying of the system 
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Kjjk = A 

KJM = B(j + k) 

Kjtk = A + B{j + k) 

Ljtk = 0 

2 

At 

h0e~Bmt 

2hoBm r-Bmt 
2Bm+Aho 

Lj,k = b 

a | C n - o i ) ( o 1 - o 2 ) c - 4 ( o , - a « V 
hi-<»2 

where 
n b , 1 / 62 , 46m 
a i - " 2 3 + 2 V ^ + ^T 
„ _ 6 1 / b2 , 4(>m ft2- - 2 l _ 2 V A* + ~ 

2r+e
+c»--.^ ("+!)' 

( / io-oi)(oi-a2) 4 ( 0 1 _ a ^ t 
1 ho—(12 

where 

O! = - J (m + f ) + v^f (m + f )2 + efim 

a2 = - f (m + f ) - y/% (m + f )2 + eBm 

Table 7.2: A comparison of the leading behaviour of Mo(t) between the pure 

coagulation model and the coagulation-fragmentation model. 

observed under pure coagulation does not occur. Also, from Table 7.2, it is 

clear M0(t) decays whether fragmentation is present or not but the decay is 

faster once fragmentation appears. 

The comparison of Mi(t) is simple. From [1, 16], we know any combination of 

Kj}k — A + B(j + k) leads to conservation of total mass. This is true whether 

the fragmentation kernel is Lj)k = b or 0. For Kj<k = Cjk, it is only known that 

mass is lost for the pure coagulation model [16]. However, we have established 

that gelation occurs sooner when fragmentation is not present. 

A comparison of Nk(t) is lacking. Since only the constant model resulted in 

an exact solution of Nk(t), it does not seem prudent to establish a comparison 

between the models. 
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7.1 Future Work 

In this thesis, we investigated the coagulation-fragmentation model with a 

bilinear kernel and a constant fragmentation kernel. But what if the fragmen­

tation kernel was changed to a bilinear kernel? As was done in this thesis, 

special cases of the bilinear fragmentation kernel can be investigated. Of par­

ticular interest would be the case of both coagulation and fragmentation kernel 

being products. Gelation may not even occur in this situation. 

It would also be desirable to find exact equations for JVfc(t) for the sum and 

constant-sum coagulation-fragmentation models. This could be achieved by 

modifying the generating function to form a more workable PDE or trans­

forming (1.2) into two terms as Lu did in [3] for the pure coagulation model. 

Once exact solutions are known, a comparison between the constant, sum and 

constant-sum models for Nk(t) can be investigated. Are the equations for 

Nk(t) similar to M0(t)7 Do they have similar properties? Does the equation 

for Nk(t) behave differently for k small as opposed to k large? 

For the product model, Theorem 6.1 can be expanded by showing for suf­

ficiently large e, gelation is suppressed which would support the numerical 

results in [5]. We can also determine Nk(t) and post-gelation behaviour using 

some of the suggestions discussed in the previous paragraph. 
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Appendix A 

Proof of (3.12) : Step 2 Details 

dk+1 dz .,„ e.dk+1z 

d^Tt+^-Jdf-
* ' # 

fc+i ^E 
n=l vn 

dzdkz dk+1z 
+ d£de+ Zd^ + b 

dk+i 

dn+1zdk~nz drzdk-n+lz~ 

dkz e~t 

E fc! 

n-1 

+ (-l)*+1fc! 

(|eT - i)*+i-» (£e* - i)*+2-» 

d£2 (£e* - l)fe f - 1 V = + I (&* - 1) 

+ 
(-l)fejfc! ( | - M0e^) ef (jfe + l)(-l)fcfc! [2 - M0£e"l e 

(fc+l)6t 
2 

(£ef - i)*+i (£ef - i)*+2 

Applying the combinatorics' identity 

'k+V f k ' 

<n- 1, 

and combining the 3rd and 2nd last terms, 
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fc-1 

dk+1 dz e dk+1z y-. 
d£fc+* dt + ( ° 2jd£fc+1 frf I n i de»d£fc-»+1 

n = l 

fe-l 
2 ^(k\dnzd*-2z ^ dnzdk-n+lz JzdkZ . dk+1Z 

________________ I A I. A *v 

+ b 
dk+h dkz _ 

e 2 
fc-i 

n flffk-n+1 

2 UZWZ I 
+Ad£~de+Azd(k+i 

k\ {-D^&ie*?* 
d e f c + 1 ^ T - l ~ d F ( ^ _ i ) 2 + ^ d (£e*-l) 

+£ 

+ 

|fc+l—n 

(fc-l)M 
2 

nf (£e£ - i)*+a-n T V " i ; ""W{£e*-l)k 

(_l)(*+2)(jfe + l)! ( I - M0e") e™ (fc + l)!(-l)fe [z - M 0 ^ ) e * ^ 

n=2 

( ^ T - 1)*+1 (£eT - l)fc+2 

After merging the third sum with v4g|4f, then relabelling it with m = n — 1 

and subtracting from the second sum 

rffe+1 & . _ , , , • e,dfe+1z A^fk+l\ dnzdk~n+lz 
d£k+1 dt 

n = l n d£nd£ rfc-n+l 

+ A 

dki 

.¥, 

( ,_±i > 

^ 2 > 
+ Az 

dfc+1Z 

„£ f c + 1 + 6 > + 1 z 1 

_ »-' fc! ( - l ) f c -g^e"^ 
1- \ _ J : _ i _ 

d£k &% - l)2 £_ n ! (£e* - l)fe+1-" 
fc-l „ | /*—11 f c-"< i" zP ( ' ' " l ' l2'" ) ' " r t -4- 1 r ^ J2 i^_i (fc-i)tt 

w \ (fc+pfct 
- • e 2 

+ 
(_l)(*+2)(fc + l)! ( g _ M0e*) e ^ (jfc + l)!(-l)fc (z - M0&%) 

(fe* - i)fc+i (£e" - i)*+a 

(fc-l)M H 

Coupling the 2nd and 3rd sum with (-l)fc+1fc!^f e ^ / ~ and - f £ — ^ ~ 
d« ( f e T - l ) * "« ( € e T - l ) : 

respectively, 
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dk+1 dz .... e^k+1 

+ A{M0 - - ) 
esd

k+iz 
k-i 

2 

d ^ 1 dt 2Jd£k+l =̂ E k + 1 \ dnz dk-n+1z 

n = l 

+ A 
fc+i 

V 2 / 

' fc±i > 

a 2 z 

^ 2 > 

+ Az 
d fc+1Z 

•fc+1 # ' 
+ 6 

n 
dfc+i 

n ffCk-n+1 d(,nd£ 

d£k+l £eS - 1 

+ £ 
k k\(-lf-n^eii^^{k+\-n) 

d£n 

n=2 

fc 

n! (£eT - i)fc+2-» 

+ 

(jfe+ !)!(-!)* (z -Mrfe^e^ 

^ fcl (-l^ffie*** | ( -D ( f c + 2 ) ( f c+ l ) ! ( | -M 0 e f )e 
fcto 
2 

(^ f - l)fe+2 

Finally, by relabelling the 3rd sum with n = m — 1 and uniting with the 2nd 

sum, 

dk+1 dz ejk+1z ^f1 

d ^ 1 dt 
^»# t ,« • ̂  . v ^ /fc+M dnzdk+1~nz . 

+ A ( M - 5 t e = A E I „ )dedeTI=;r+ V¥ 
fc \ / d ^ * 

2;d£*+1 

+ v4z 
d f c + 1z 
d£fc+x + 6 

dfe+1 1 

n=l n M 2 

d£fe+1£e 2 l n=2 

fc+l-n(fe+l)!<r* <fc+l.Tn>w 

n! djn ^_ly^-..xz_^_^e j 

( ^ e i - l)«=-«+2 

( - l ) f c + 2 ( fc+l) ! ( | -M 0 ef)e^ ( - l )^ ( ib + !)!(*- A f „ f r g ) e ^ 

(£ef - i)*+i (£gf _ l)fc+2 

as desired. 
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Appendix B 

Detailed Proof of (3.16) 

We now prove the integrals of (3.16) exist. 

Proof: (by strong induction) 

Step 1: Show the j = 2 case is true. 

In other words, show 

/: (t)n(t) - /J(oi - a2f = A I fludt -2b I f^ftdt + 2b f M0e
b'ijdt 

Jo Jo Jo 

exists. The middle and last terms can be explicitly solved. The first term 

cannot be explicitly determined but can be shown to exist by proving the 

integrand, fifi, is continuous. To prove continuity of 

/io(ai - «2)2 + 2e(hi - ai)(hi - a2)(e^ - 1) 

-e—(fo - a2)2(e-A'2' - 1) + e-(h - a i ) 2 ^ 1 ' - 1) 
/ & * = — * ? a i 

(hi — a2 — (hi — aije * )2e 2 

we must show its denominator^ 0 for all t e [0,00). 

Prove (hi - a2 - (hi - a1)e"~A('V')t)2eA(<Vii)t ^ 0. for all t € [0,00) 

Proof: (by contradiction) 

Suppose there exists for some t € [0,00) such that 
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[hi — a2 — (/ix — ai)e * ye 2 = 0 

ftl — (Jo A(g1-g ;2)t 
«=> 7 = e 2 

/ i i — a,\ 

^ r - 2 , fhi-a2 

•£> £ = -7T r In A(a\ — a2) \ / i i — fti, 

A(ai - o2) 
<£» In I } < 0 would satisfy the assumption since -77—-—^ < 0 

<* 0 < ^ ^ < 1 . 
A l l — ^1 

But (3.7) and (3.8) => ai > a2 =*• /ii - ai > hi - a2 =» f^- > 1 which con­

tradicts the assumption. Therefore, fffj, is continuous, which means / fludi 
Jo 

exists. It has now been shown case j; = 2 is true. 

Step 2: Assume the j = 1,2,.., k cases are true. 

(i.e. assume the integrals of (3.16) all exist). 

Step 3: Show the k + 1 case is true. 

Without lose of generality, assume k is even =$> k + 1 is odd. We have to show 

the following integrals: 

f - f (k+l-n)bt f t r / \ , , , , ! { , « " 
/ fnfk+i-nfidt, / fne

 2 (jdt, and / [fi{t) - Mo{t)e*\e * /jdt 
Jo Jo Jo 

all exist. The last integral can be solved explicitly by substituting in (3.15) 

and (3.9). To show the first integral exists will require a bit more work. First, 

assume n and k + 1 - n are both odd. (All the different even and odd combi­

nations can be shown in an identical manner.) Since n < k and k + 1 — n < k 

for all n = 1,..., —, replace fnfk+i-n with (3.16) which, by the assumption in 

step 2, exists. Since (3.16) exists, then it must also be continuous. Therefore, 
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/ fnfk+1-ntldt = I 
Jo Jo 

/„o(oi - a2)
2 , A 

I* ^SOi"-'* 
-r fie 2 jurfr / / i r - M 0 r e » e 2 ^ 

/(*+l-n)o(Ol - «2)2 + ^ 5 ^ I • ) / fifk+l-n-i(J*dr 

k—n (fc + 1 — n)! /"' (fc+i-n-i). 

t = 2 7o 
"judr 

-6(fc + 1 - n)! / [/i(r) - M o M e T j e ^ ^ d r dt 

exists. The existence of the second integral is achieved in the same 

Therefore, by the principle of mathematical induction, (3.16) is true. 
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