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Abstract 

 

Accurate assessment of how animals distribute themselves across the landscape is an essential 

component of ecological research. Ecologists often conduct surveys to subsample a 

representative portion of an area of interest and extrapolate their findings to a larger region. 

Acoustic surveys are frequently used to study a variety of organisms including birds, which rely 

on acoustic communication and vocalize regularly. The development of autonomous recording 

units (ARUs) has greatly increased the popularity of acoustic surveys, due to the ability to record 

surveys and leave recording equipment unattended for extended periods of time. However, 

variation in the detectability of wildlife is difficult to quantify, and can be strongly influenced by 

the focal species, the surrounding environment, and method of recording and processing data. 

Furthermore, count data from ARUs are typically considered to be indices of abundance, and 

obtaining density requires significantly more effort and data. My objectives were to investigate 

and quantify variables that influence detectability, determine how variation in detectability 

influences estimates of relative abundance, describe methods to address and correct for variation 

in detectability, and develop methods to efficiently estimate animal density using ARUs. I found 

that detectability is greatly influenced by the surrounding environment and that detectability 

greatly differs between open and closed vegetation types. Ignoring variation in detectability can 

lead to estimates of relative abundance in open vegetation types that are more than double that of 

closed vegetation types, due to increases in the area sampled by ARUs. Furthermore, 

detectability is influenced by the type of recorder used, and while sometimes equivalent to the 

detectability of human observers, standardization of detectability is required to properly integrate 

data from multiple sources. Finally, I presented methods to predict correction factors for 
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different species and vegetation types based on the generalized sound characteristics of their 

vocalizations or songs. These correction factors should offset differences in detectability between 

different environmental conditions without the need for calibration studies. I also present a new 

method for estimating animal density from ARUs by estimating the distance of a vocalizing 

individual from the sound level measured on an audio recording. I show that these estimates are 

more accurate and objective than distance estimation in human observers and can provide 

estimates of animal density through conventional distance sampling. Integrating and 

standardizing data from ARUs and other sources is important when looking at large-scale 

ecological patterns. My research contributes to the growing number of studies that investigate 

variation in detectability of acoustic signals in different environments and the implication on 

wildlife surveys. I also provide innovative methods which should increase the versatility, quality 

and accuracy of data obtained from audio recordings and allow ecologists to integrate data from 

multiple sources to answer questions at different ecological scales.  
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Chapter 1. Introduction 

 

ACOUSTIC COMMUNICATION IN BIRDS 

Acoustic communication, particularly bird song, has a variety of functions including 

territorial defence, species recognition, mate attraction, and sexual selection. One of the most 

important functions of bird song is for establishing and maintaining territories. Individuals use 

bird song to signal that an area is occupied, which has shown to significantly decrease territorial 

intrusion (Peek 1972). This serves as a deterrence to reduce physical conflict, allowing 

individuals to conserve energy and resources instead of chasing intruding individuals (Catchpole 

and Slater 2008). Bird song also plays an important role in species recognition, both for 

identifying conspecifics and sympatric individuals that may occupy a similar niche. This allows 

individuals to defend territories from competitors of the same species, or closely related species 

that may compete for the same resources (Matyjasiak 2004). Species recognition also allows 

females to identify potential mates of the same species (Clayton 1990).  

Bird song also plays an important role in mate attraction and sexual selection. Song is a 

reliable indicator of male quality, which females use during mate selection in many species. 

Trade-offs between the time spent singing and foraging means that males in higher quality 

territories can spend more time singing (Reid 1987). Frequent singing also means higher 

metabolic costs to an individual as well (Ward et al. 2004). The quality of the actual song is also 

an honest indicator of mate quality; certain syllables and traits such as frequency range and trill 

rates can be more costly to perform (Podos 1996).  Females respond preferentially to males that 

consistently perform at physical and physiological limits (Ballentine et al. 2004) as high quality 

mates can afford the energy expenditure and costs relative to lower quality individuals. 
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Emphasis on acoustic communication, at frequently and regular intervals, means that bird 

song can be used as reliable index of presence, abundance, and diversity. In temperate regions, 

singing patterns follow regular cycles, both daily (i.e. dawn chorus) and seasonally (i.e. breeding 

cycle in migratory species). Thus, ecologists routinely use bird song as a proxy for population 

status to answer a multitude of questions related to ecological themes. 

 

ACOUSTIC MONITORING IN ECOLOGY 

 Making ecological inferences requires accurate assessment of how animals distribute 

themselves across the landscape. Censusing large areas is logistically and financially unrealistic 

in most cases, therefore ecologists often conduct surveys to subsample locations believed to be 

representative of the entire area and extrapolate the results to make inferences about the entire 

population. Surveys are also used when contrasting animal distribution across different variables 

or treatments by examining differences in animal occupancy, abundance, density or diversity. 

Therefore, data that are inaccurate or not representative of the treatment or region of interest 

could result in masking of biological patterns and inaccurate assessment of abundance and 

population. 

Acoustic surveys are used extensively in ecological research to successfully study a 

variety of organisms in terrestrial, freshwater, and marine ecosystems. In particular, acoustic 

surveys targeting avian species are frequently used because many species rely on acoustic 

communication and will vocalize consistently and at regular intervals (Catchpole and Slater 

2008). One of the most widely used methods to sample avian populations is through the use of 

point counts. Traditionally, human observers travel to predetermined locations and record 
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detections of each species for a specific duration of time. While there are instances where 

individuals may be detected visually, the majority of avian detections from point counts are often 

aural, particularly in vegetated environments where visibility is poor (Rosenstock et al. 2002). 

Therefore, acoustic surveys are a particularly attractive substitute to traditional counts. Data 

obtained through acoustic surveys can be used to estimate the abundance, density, occupancy, or 

diversity of local populations and communities. 

 While the basic requirement for acoustic monitoring is the use of an acoustic sensor and 

the ability to record the surrounding acoustic environment, one of the biggest technological 

advances that has popularized its use is the development of autonomous recording units (ARUs). 

ARUs are acoustic sensors that can be programed to record at set intervals, or on a specific 

schedule, and can therefore be left unattended in the field for extended durations. Concerns over 

observers not detecting individuals that are present during field surveys has led to repeated visit 

approaches to account for variable detection probability (Kéry et al. 2005). ARUs allow for an 

unlimited number of repeated visits without an increase in labor due to the ability to schedule 

surveys, while still only having to visit a site twice (once to deploy, and once to pick-up the 

ARU). ARUs can also be used to sample multiple locations simultaneously, when an insufficient 

number of field observers are available to cover the same area. Another major benefit is the 

ability to sample locations that are logistically difficult without requiring an observer be present. 

For example, ARUs can be deployed during the day in wetlands and scheduled to record at night 

for nocturnal species when access would be unfeasible.  

 Finally, the ability to record surveys and store them as a permanent record can reduce 

observer effects on data collection in two ways. First, the presence of observers in the field can 

influence animal behavior (Gutzwiller and Marcum 1997). The use of ARUs means an observer 
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will not be present during the survey and any effect of observer presence can be avoided. 

Second, transcription of audio recordings can reduce observer bias compared to identification of 

species and individuals in the field. Recordings can be reviewed by multiple observers and as 

many times as necessary. Unknown or uncommon species can also be checked against reference 

recordings to ensure accurate identification.  

 One of the largest disadvantages to using acoustic surveys is storage and processing of 

audio recordings (Shonfield and Bayne 2017). High quality audio recordings require a relatively 

high amount of storage space and finding a physical or virtual location to back up and maintain 

data that is also easily accessible for data processing can be logistically or financially difficult. 

Processing of audio recordings also takes up considerable time and effort. While acoustic 

surveys can decrease field effort considerably, raw recordings often require manual 

interpretation, although methods for computer-based recognition are increasing in use. Finally, 

the up-front cost along with long-term maintenance (i.e. repairs, microphones, batteries, etc.) for 

audio recording equipment is significantly more than surveys conducted by human observers. 

Equipment failure in the field can also go unnoticed for extended periods of time, particularly 

with ARUs and could lead to extensive loss of data (Shonfield and Bayne 2017). 

 

ACOUSTIC TECHNOLOGY 

 Early acoustic recording technology consisted of all-purpose field recorders or 

repurposed commercial audio equipment. These early iterations typically had trade-offs between 

battery life, on-board data storage, portability, cost, and durability. More recently, commercial 

wildlife recorders have become readily available such as SongMeter recorders from Wildlife 
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Acoustics (www.wildlifeacoustics.com) and Swift recorders from the Cornell Lab of 

Ornithology (www.birds.cornell.edu/brp/swift/). Improvements to these devices have resulted in 

recording units that are more customizable, have longer battery life, more data storage 

capabilities, are lighter, more durable, and more affordable, increasing their accessibility and 

popularity in monitoring programs and in wildlife research. Open-source options such as 

AudioMoth (Hill et al. 2018) have further increased customizability and affordability.  

 One of the biggest challenges in dealing with bioacoustic datasets is efficient processing 

of field recordings. ARUs can generate large volumes of data which must be processed before 

answering ecological questions. Automated recognition is an approach that involves training a 

computer algorithm to classify acoustic signals. Each classified signal is assigned a probability 

value, a measure of how likely a signal is to be the focal or target species. Users can set a pre-

defined probability threshold so that only signals of a certain quality are classified for further 

review. There are several approaches used for automated recognition and species detection, some 

of the most common including spectrogram cross-correlation (Katz et al. 2016), band-pass 

filtering (Charif et al. 2010), and convolutional neural networks (Abadi et al. 2015). The increase 

in processing efficiency relative to manual transcription of acoustic recordings, combined with 

ease of collecting data using ARUs, makes acoustic monitoring an appealing option for 

ecological research.  

 

DETECTABILITY 

 For birds and many other taxonomic groups, imperfect detectability means that only a 

portion of the target species are counted and can be defined as: 
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𝑝 =
𝑐

𝑁
 

where c is the number of individuals counted, N is the number of individuals present during a 

survey, and p is the probability of detection, or detectability (Johnson 2008). When detectability 

is consistent or variation in detectability is low, count data is strongly correlated the number of 

animals present and can provide a reliable index of abundance. However, when variation in 

detectability is high, the value of count data decreases because the relationship between 

abundance and the number of individuals counted becomes unclear (Johnson 2008, Rigby 2016). 

Variation in detectability is complicated to account for because variation in the number of 

counted individuals can covary with the number of animals present and their detectability 

(Johnson 2008). Therefore, one of the biggest challenges is to separate variation in detectability 

from changes in abundance, and failing to account for variation in detectability can lead to 

inaccurate assessment of animal populations. 

A variety of methods are used to address variation in detectability such as repeated visits 

to the same location (Kéry et al. 2005), double observer approaches (Nichols et al. 2000), and 

modelling the decrease in number of detections with distance from an observer (Buckland et al. 

1993). However, a major hurdle when conducting acoustic surveys is controlling for variation in 

detectability due to differential attenuation of sound signals. Under free field conditions, sound 

amplitude is expected to attenuate at approximately 6dB for every doubling of distance between 

the signaler and receiver (Wiley and Richards 1982). However, environmental conditions cause 

attenuation in excess of what is predicted from free field conditions and is directly related to the 

environment sound signals travel through. Free field conditions are rarely met outside of 
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laboratory settings and can influence detectability and the resulting estimates of abundance, 

density, occupancy, or diversity of the target species or community.  

 Many factors can influence detectability of a signal including the surrounding vegetation 

characteristics, local atmospheric conditions, species-specific vocalization traits, recording 

technology used to conduct surveys, and the method used to process audio recordings. Vegetated 

environments increase scattering, reverberation, and absorption of acoustic signals (Padgham 

2004, Pacifici et al. 2008) and local atmospheric conditions change the density of air through 

which signals propagate (Harris 1966). Vocalization structure also has a large influence on signal 

propagation and can vary greatly between species. Certain vocalization characteristics can also 

interact with the surrounding environment, adding further complexity when trying to account for 

variation. For example, high frequency signals attenuate at a higher rate, and are absorbed more 

in vegetation environments than open environments relative to low frequency signals (Forrest 

1994). Vocalizations resembling pure sine waves can propagate further in vegetated 

environments (Morton 1975, Brumm and Naguib 2009), but trills are used by species in open 

environments to maximize signal transmission (Wiley 1991, Brumm and Naguib 2009).  

The equipment and settings used for recording can greatly affect detectability during 

processing of audio recordings. Different combinations of microphones and audio recorders will 

vary in frequency response, dynamic range, sensitivity, and signal-to-noise ratio. Sampling rate, 

bit depth, and compression format also influences sound quality and are programable on many 

different devices. Audio processing can also introduce variation in detectability whether through 

human observers or automated recognition. Detectability between observers can be influenced by 

age, skill level, and experience (Pearson et al. 1995, Helzner et al. 2005) and automated 

recognition software can produce different results depending on the training dataset, the method 
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or type of recognizer, and probability threshold used (Knight et al. 2017). Variation due to 

equipment and processing procedures are less problematic because they can easily be addressed 

by standardizing equipment and interpretation of audio recordings. However, variation in 

detectability due to the surrounding environment can be much more problematic due to the 

complexity and number of factors present.  

 

CURRENT METHODS 

 Bioacoustic datasets most commonly provide information on the presence or absence of 

species or are used as an index for relative abundance (Johnson 2008). This requires careful 

consideration and control of factors that may influence detectability between treatments of 

interest at the experimental design or analysis phases. Previous studies have suggested 

quantifying differences in detectability or detection area to create statistical offsets for correcting 

variable detectability (Solymos et al. 2013, Darras et al. 2016, MacLaren et al. 2018). Others 

have suggested using a cost-weighed approach to model sound attenuation in heterogenous 

habitats based on measurable parameters associated with factors that may influence sound 

attenuation (Royle 2018).  

Estimates of animal density are often desirable because it converts count data to a 

common standard that can be used to compare animal numbers between different datasets, 

research programs, or regions (Solymos et al. 2013). This requires accounting for availability 

(individuals that are present but don’t vocalize) and declining detectability with increasing 

distance (Buckland et al. 1993). Availability can be addressed using removal modelling 

(Farnsworth et al. 2002), however determining the distance over which sound travels and the 
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area covered by a survey is an essential part of density estimation which is problematic due to 

issues with variable detectability described previously. Established methods to estimate animal 

density from bioacoustic datasets are typically labor-intensive or statistically complex and 

require the use of time-synchronized ARUs to localize individuals and estimate density through 

spatially-explicit capture-recapture models (Dawson and Efford 2009, Efford et al. 2009). More 

recently, signal strength has been used as a proxy for distance in combination with conventional 

distance sampling models as a less labor-intensive alternative (Darras et al. 2018b, Sebastian-

Gonzalez et al. 2018).  

 

THESIS OBJECTIVES 

 One of the main issues with acoustic surveys is controlling for variation in detectability 

due to the surrounding environment, between species, and across different recording devices. As 

a result, these surveys often yield estimates of relative animal abundance because detectability is 

hard to quantify and detection distances for different species in different environments are often 

unknown. Methods for estimating true animal abundance or density often use grids of ARUs or 

require substantial preliminary analysis. My thesis aims to investigate and quantify sources of 

environmental and species related variation in detectability and detection distance, determine 

how these sources of bias influence the results of point counts if not accounted for, and provide 

recommendations and methods for addressing variable detectability and estimating the 

abundance and density of acoustic animals using ARUs.  

In chapter 2, I investigate the influence of roads on sound attenuation and discuss 

potential biases in survey results for roadside sampling programs such as the North American 
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Breeding Bird Survey. In chapter 3, I test the performance of four different acoustic recorders to 

determine how much variation is associated with the recording technology used during an 

acoustic survey. I also compare the performance of these acoustic recorders to human observers 

and discuss methods to integrate data from multiple point count sources for analysis. In chapter 

4, I study the effect of vegetation type and species-specific sound characteristics on detection 

probability and detection distance. I also propose a method of correcting for variable 

detectability using sound playback experiments and model predictions to estimate correction 

factors based on the sound parameters for a given species. In chapter 5, I propose a method for 

estimating the density of wildlife populations using conventional distance sampling by predicting 

the distance of a vocalizing individual based on the relative sound level calculated by automated 

recognition software. I present case studies of two different species, the Ovenbird (Seiurus 

aurocapilla) and the Common Nighthawk (Chordeiles minor) and run simulations to compare 

the accuracy of density estimates from this method, estimates where distance estimation error 

from human observers is considered, and the true density from the simulation. In chapter 6, I 

summarize my findings from the aforementioned chapters, discuss the current state of the field 

and the implications for survey and monitoring programs, and provide recommendations and 

suggestions for future research on this topic.   
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Chapter 2. Sound attenuation in forest and roadside environments: implication for 

avian point count surveys 

 

INTRODUCTION 

One of the largest datasets available to ornithologists in North America is the Breeding 

Bird Survey (hereafter BBS). Many advances in our knowledge of birds have come from the 

BBS (U.S. Geological Survey 2009). However, there is concern that the road-side nature of this 

survey may provide biased estimates of bird abundance and trends relative to non-BBS 

monitoring and research done off-road (Bart et al. 1995, Keller and Scallan 1999, Lawler and 

O’Connor 2004), particularly when combining both types of data for analysis. Roadside habitats 

differ from forest interior habitats in a number of ways that could alter our understanding of 

avian abundance and diversity patterns. It is known that roadside habitats often have differences 

in vegetation composition and structure (Keller and Scallan 1999), physical characteristics (road 

salts, sediments, etc.; Trombulak and Frissell 2000), and levels of ambient noise (Parris and 

Schneider 2008) relative to the forest interior. Traffic volume can also vary and to control for 

this, BBS surveys are often conducted along relatively low use and secondary roads where 

alterations to the environment by traffic are minimized (Droege 1990). However, studies of 

sound transmission suggest that the distance at which sounds can be detected will vary between 

open and closed (more dense) environments (Fricke 1984). If this is the case, roadside surveys, 

such as those utilized by the BBS, may be confounded by the open linear environments that 

necessarily define roads if compared to off-road surveys. 

Attenuation and degradation of acoustic signals are directly related to the distance the 

signal must travel. Wiley and Richards (1982) state that under free field conditions, all sounds 
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are expected to attenuate at ~6dB each time the distance between the source and the observer is 

doubled (inverse distance law). Free field conditions are rarely met outside of the laboratory as 

the composition of the sound path can result in attenuation in excess of what is predicted by the 

inverse distance law. Several factors can affect excess attenuation. Scattering and reverberation 

effects are higher when vegetation is present and thus could increase the attenuation of sound 

(Wiener and Keast 1959, Richards and Wiley 1980, Yang et al. 2013). Although scattering can 

reduce the transmitting energy of any frequency, this effect is especially significant for higher 

frequency sounds, since shorter wavelengths are less able to pass around obstructing objects than 

sounds produced at lower frequencies (Piercy et al. 1977). Roadsides are more open along their 

path, so the acoustic environment could differ greatly from that of the forest interior. In addition 

to lower vegetation density along transmission paths, roadsides differ in surface composition 

characteristics. Decreased porosity on roads can decrease attenuation by lowering the impedance 

characteristics of the road surface (Aylor 1972). Finally, local atmospheric conditions can vary 

when comparing roadside to interior locations. Environmental gradients such as wind and 

temperature can differ between roadsides and interior areas and are often stronger in open areas 

which can result in higher attenuation (Wiener and Keast 1959, Morton 1975, Trombulak and 

Frissell 2000). Overall, differences between roadside and forest areas suggest the distance bird 

vocalizations transmit could differ from the forest interior considerably, potentially leading to 

biased estimation of avian abundance for studies combining roadside and non-roadside data. 

To evaluate whether the distance over which sounds could be detected differed between 

sounds produced along open transmission paths parallel to the road, forest edge, and forested 

transmission paths perpendicular to roads, we played back and re-recorded a series of pure tones 

and different bird songs along forestry roads in boreal conifer and deciduous forests stands. 
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These roads were selected because they are relatively free of confounding variables found along 

most roads (e.g., noise, traffic, surrounding development). Differing vegetation structure can 

influence sound (Aylor 1972), thus we chose two of the main forest types in the boreal forest. A 

common assumption is that the detection area is circular. If transmission is altered along 

roadways in comparison to interior areas, we predicted directionally dependent differences in 

detectability between the forest interior, forest edge, and road transects would be observed. We 

had three objectives. First, measure how sound attenuation is influenced by roads and forest type 

by calculating excess attenuation for each type of transmission path. Second, determine if sound 

transmission of bird song is differentially affected by roads and forest type by determining the 

distances at which sounds can be detected by observers listening to sound playbacks and the 

environmental factors that influence them. Finally, calculate the effective area surveyed and 

develop statistical correction factors to standardize count data obtained from on and off-road 

sites. 

 

METHODS 

Field Playbacks 

We conducted 600 playback trials at 30 different distances between the recorder and the 

playback unit (hereafter stations) between July 22 and August 24, 2014. Ten transects each were 

placed along forestry roads, forest edges, and within the forest interior at least 50m from the road 

(Fig. 2.1). Forest transects were located perpendicular to roads in sites where the vegetation path 

was representative of a single forest class. In this region, tree diversity is low and forest stands 

are often composed of a single species. Half of transects were in deciduous dominated forest 

(defined as at least 65% deciduous, with the dominant species being Trembling Aspen, Populus 
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tremuloides) and half in coniferous dominated forest (defined as at least 65% coniferous, with 

the dominant species being White Spruce, Picea glauca, or Black Spruce, Picea mariana). 

Dominance was determined by estimating forest composition at four points per transect every 

250m. The research was done near Calling Lake, Alberta, Canada (55.21°, -113.19°). Each 

playback was done between 08:00 – 20:00 MST during late summer to reduce the chance of 

recording actual bird sounds. Average wind speed, temperature, and humidity were recorded 

using a handheld weather monitor (Kestrel 4000) for the duration of each playback. Wind levels 

at the start of each trial were less than or equal to Beaufort scale of 2 and averaged 1.3 ± 1.4 km 

(SD) per hour. Temperature averaged 24.7 ± 5.1 degrees Celsius. Relative humidity was 58.3 ± 

14.1%. The date and order (forest vs road) of playback at each site was selected by alternating 

between forested and road transects. Roads were low-use (<1 vehicle per hour) dirt or gravel 

forestry roads. Recordings were done in absence of vehicle traffic.  

We broadcast 36 known sounds from an Alpine digital CD Receiver (CDE-122) 

connected to an Alpine 6.5-inch speaker and tweeter set (SPR-60) contained within a wooden 

box (25x29x38cm) at 30 standardized distances ranging from 12 to 1312 meters measured using 

GPS (GARMIN GPSmap 78, accuracy ± 3m) at each transect. The speaker was placed so it 

faced directly at the recorder at a height of 1.5 metres, a height similar to other avian playback 

studies (Maynard et al. 2012, Koloff and Mennill 2013, Sandoval et al. 2015). At each site, a 

Song Meter SM2+ Automated Audio Recorder (Wildlife Acoustics, Maynard, MA, USA) was 

set to continuously record (sampling rate 44.1 kHz, bit depth 16, .wav format). Recording units 

were located at the forest edge and road and the speaker was moved to each distance interval for 

playback. Forest edge was defined as the transition between the mature trees and the ditch of the 

road where the forest ends with a distinct edge. The road was defined as the transition between 
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the ditch and the actual road surface. For the road and forest edge transect, the playback unit was 

placed at the forest edge and broadcast to both road and forest edge recorders simultaneously. 

For forest transects, the recording and playback unit were located separately within a continuous 

stand of deciduous or coniferous forest to best simulate a bird calling from within an interior 

forest environment.  

Playbacks at each station consisted of a 5:10 minute sequence beginning with an 

escalating series of one second pure (sine wave) tones following ½ octave intervals (1000, 1414, 

2000, 2828, 4000, 5656, 8000 hertz). We used Adobe Audition CS6 (Adobe Systems Inc.) to 

generate these sounds. These tones were followed by a series of vocalizations of boreal bird and 

amphibian species selected to represent a range of frequencies and song complexities including 

(in no particular order): Clay-coloured Sparrow (Spizella pallida, CCSP), Black and White 

Warbler (Mniotilta varia, BAWW), Lincoln’s Sparrow (Melospiza lincolnii, LISP), Brown-

headed Cowbird (Molothrus ater, BHCO), Red-breasted Nuthatch (Sitta canadensis, RBNU), 

Bay-breasted Warbler (Setophaga castanea, BBWA), Dark-eyed Junco (Junco hyemalis, DEJU), 

White-throated Sparrow (Zonotrichia albicollis, WTSP), Cape May Warbler (Setophaga tigrina, 

CMWA), Common Raven (Corvus corax, CORA), Belted Kingfisher (Megaceryle alcyon, 

BEKI), Olive-sided Flycatcher (Contopus cooperi, OSFL), Pine Siskin (Carduelis pinus, PISI), 

Tennessee Warbler (Leiothlypis peregrina, TEWA), Warbling Vireo (Vireo gilvus, WAVI), 

Rose-breasted Grosbeak (Pheucticus ludovicianus, RBGR), Ovenbird (Seiurus aurocapilla, 

OVEN), Yellow Rail (Coturnicops noveboracensis, YERA), Western Toad (Anaxyrus boreas, 

WETO), Canadian Toad (Bufo hemiophrys, CATO), Northern Saw-whet Owl (Aegolius 

acadicus, NSWO), Boreal Owl (Aegolius funereus, BOOW), Great Gray Owl (Strix nebulosa, 

GGOW), Long-eared Owl (Asio otus, LEOW), and Barred Owl (Strix varia, BADO). We used a 
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two second interval between calls to avoid signal overlap. This sequence was broadcast at an 

SPL of 90dB (re 20 µPa) which we normalized using the peak amplitude (maximum volume) of 

each sound in Adobe Audition CS6 and calibrated using a handheld sound level meter (Sper 

Scientific 840018) measuring the 1000Hz tone one meter from the speaker (based on fast-time 

A-weighting). 

 

Sound Processing 

 Recorded playbacks were isolated from continuous recordings using Audition and 

individual sounds from each sequence were clipped into individual sound files (n=27143) using 

an automated script and the ‘textgrid’ function in Praat V5.4.06 (Boersma and Weenik 2015). 

These clips were randomized and joined together in sets of 10 sounds with 2 second spacing to 

create a single sequence of randomized sounds using an automated batch script. These sequences 

were given to six observers who identified any detectable sounds by sight, using visual scanning 

of spectrograms in Adobe Audition (window type: Blackman-Harris; window length: 2048), and 

by sound, using standardized volume levels and headphones, simultaneously. Volume levels 

were selected to maximize amplitude and detections while avoiding any risk of hearing damage. 

Fifteen percent of sounds were blank ambient background sound consisting of low levels of wind 

and vegetation noise normally present in recordings to control for false positive identifications. 

Randomization of sounds removed an observer’s ability to predict which sounds would occur in 

what order although observers were aware of all possible species that could be presented. 

 The inverse distance law predicts sound pressure levels will attenuate at a specific rate 

(Berg and Stork 2004). However, vegetation can alter attenuation rate. We measured relative 

sound pressure level (SPL) of the pure tones (n=5656) using a batch process selection table 
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function in Raven Pro version 1.4 (Charif et al. 2010). We calculated averaged background noise 

levels within the same bandwidth of each measured tone at hourly intervals for each site (n=5) to 

determine baseline power level of each transect. We removed data at distances where the SPL of 

pure tones dropped to the levels of ambient background noise. While it is still possible to detect 

sounds below this level, it is no longer possible to measure SPL. Measurements were conducted 

on a selection of 0.4s duration and 100Hz bandwidth for each clip (i.e. for 1000Hz – 950 to 

1050Hz selection) by calculating power spectral density summed over the frequency range of the 

selection (window type: Hann; window length: 256). We chose a shorter section of each pure 

tone and avoided doing measurements at the onset or end to avoid acoustic distortion. We then 

calculated excess attenuation from what would be predicted based on the inverse distance law 

using: 

Eq. 1. 𝐸𝑋𝐶𝐸𝑆𝑆𝑆𝑃𝐿 = (𝑆𝑃𝐿12.5 −  𝑆𝑃𝐿𝑖) − (20 ∗ log10 (
𝑑𝑖

12.5
)) 

 

Here, SPL12.5 is the SPL at 12.5m, SPLi is the SPL for ‘i’ distance, and di is the distance ‘i’ in 

metres at which each tone was recorded. We used SPL at 12.5m as a reference value because it 

was the closest distance measured and calculated excess attenuation for each distance beyond 

12.5m for each individual transect. 

 

Sound Attenuation and Excess Attenuation 

We used Akaike’s Information Criterion (Burnham and Anderson 2002) to rank linear 

mixed models (lmer function, lme4 package, in program R - Bates et al. 2015) that predicted the 

effect of distance, frequency, transect and vegetation type, and weather on sound attenuation and 

excess attenuation. We ranked models with all tones pooled together to investigate the effect of 
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frequency between different tones. We also tested models for each individual tone to investigate 

effects on sound by the environment for each frequency separately. Site was included as a 

random effect. The best model for each tone was selected using the lowest AICc and ∆AIC 

values (Appendix 1.1.2). For model selection where ∆AICc <2, we selected the most 

parsimonious model as our best model (Arnold 2010). We found a strong negative correlation 

between humidity and temperature (r = -0.77). Humidity was weighted higher during preliminary 

model selection, so temperature was dropped from our full models to avoid issues with 

collinearity as both variables influence attenuation (Harris 1966). Log transformed distance had 

higher model weight in preliminary analyses and was included over untransformed distance in 

subsequent analyses. We reported marginal (R2
m) R2

 values to provide information on variation 

due to fixed effects, and conditional (R2
c) R

2 values to provide information on variation due to 

fixed and random effects for each final model (Nakagawa and Schielzeth 2013, r.squaredGLMM 

function, MuMIn package, Barton 2015). 

 

Effect on Observer Detection 

Generalized linear models were ranked using AICc for each species and tone to predict 

observer detection probability (Appendix 1.1.4). We randomly partitioned data into 70% training 

data and 30% testing data and performed cross-validation on our models. These models predicted 

the probability of an observer detecting a given species or tone as a function of weather, distance, 

and transect type (road, forest edge, or forest) in each forest type (deciduous or coniferous). 

Similarly, we modelled detection data with all species pooled and included the minimum 

frequency of each species to investigate a species-specific frequency effect. Minimum frequency 

is defined as the lowest frequency measured over the duration of each species-specific sound. 
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Finally, we validated our best model for each species and tone by determining AUC statistics and 

receiver-operator curves using our testing data (roc function, pROC package, Robin et al. 2011; 

Appendix 1.1.4).  

We performed a Monte Carlo simulation to determine if statistical differences existed 

between detection distance in forests, forest edge, and roads as well as for deciduous and 

coniferous forest types. This was done to determine the scale of effective detection radius 

(hereafter EDR) correction required between different combinations of transect and forest types 

(see below). We generated coefficients (n=1000) using maximum likelihood estimates and 

variance covariance matrix from the original model and calculated 90% confidence intervals of 

the predicted values for each species when making comparisons. If statistical differences did not 

exist between certain combinations of transect and forest, we assumed correction was not 

necessary.  

We investigated differences in wind speed, relative humidity, and temperature at forest 

interior and roadside sites using a linear mixed model in R (R Core Team 2015, lmer function, 

lme4 package, Bates et al. 2015) to account for variation in site, date, and time. We used ordinal 

date and time on a continuous scale of minutes relative to average sunrise time for the days of 

sampling. We included site as a random effect. 

 

Calculating correction factors to standardize count data 

We developed correction factors for each species and tone by calculating a ratio of the 

effective area sampled when in the forest, on roads, and at forest edges (AForest : ARoad: AForestEdge). 

To do this, we followed a half-normal detection function often used in the distance sampling 

literature to calculate effective detection radius (EDR: Solymos et al. 2013). EDR is the 
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parameter, τ, in the half-normal detection function: p(d) = exp(-d2/ τ2). EDR is defined as the 

distance at which number of individual birds detected outside τ is equal to the number of missed 

individuals within τ. We ran our GLMs with a fixed intercept at 0, complimentary log-log link 

(“cloglog”) function, and binomial distribution. Interaction with distance was included in models 

for all parameters of interest but main effects were excluded to accommodate a fixed intercept. 

This allowed us to calculate EDR using a linear modelling framework. We transformed distance 

to x = -d2 before modelling so that distance was a linear predictor. We estimated EDR for all 

species and tones on roads, forest edges, and within forests by summing the beta coefficients of 

variables related to distance in our best models (β). We calculated EDR using: τ = (1/β)0.5. 

Finally, we determined the effective area sampled for the forest using the formula for area of a 

circle (AForest = π τForest
2). We presented two scenarios for effective area sampled on a road, a 

simple ellipse (ARoad/ForestEdge = π τForest τRoad/ForestEdge) and a more complicated equation 

(Appendix 1.3.1) taking into account the angle of detection and proportion of distance travelled 

through forest versus road. The ratio of AForest /ARoad/ForestEdge is the correction factor for a given 

species or tone which can be used to multiply roadside or forest count data to allow for 

standardization (Appendix 1.3.2).  

 

RESULTS   

Estimating Sound Attenuation and Excess Attenuation for Pure Tones of Different Frequencies 

 Relative SPL attenuated at a higher rate with increasing frequency when all tones were 

pooled together (Fig. 2.2). Relative SPL was also negatively influenced by distance for all tones. 

The top performing model for each individual tone included log(Distance) and transect while 
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omitting weather variables with the exception of the 8000Hz tone. Tones that were transmitted 

through forests attenuated at a higher rate than along forest edges or roads in both coniferous and 

deciduous vegetation types (Fig 2.2). For 8000Hz tones, wind negatively influenced relative 

SPL. For all models assessing influences on relative SPL the R2
m was >0.71 and R2

c >0.77 

(Appendix 1.1.2).  

 Excess attenuation increased with distance at all frequencies and at higher frequencies 

with all tones pooled together. The top performing model for each individual tone was the same 

as for relative SPL and included log(Distance) and transect while omitting weather variables. At 

8000Hz, the top performing model included wind. Tones had higher excess attenuation when 

transmitted through the forest interior for both vegetation types (Fig. 2.2). All tones transmitted 

along roads and forest edges initially had lower attenuation than expected from free field 

environments. At 8000Hz, wind increased rates of excess attenuation. For all models assessing 

influences on excess attenuation the R2
m was >0.39 and R2

c >0.52 (Appendix 1.1.3). 

 

Estimating Effects of Transect Type and Weather on Detectability 

 Detectability declined with distance at different rates for different transect and forest type 

combinations. Detectability decreased with increasing frequency (Fig. 2.3). The top performing 

model for each species varied. A global model including distance, transect type, humidity, and 

wind was the top performing model for 13 species and two pure tones. A model excluding wind 

and humidity was selected for 12 species and six pure tones (BEKI, PISI, BBWA, TEWA, 

CMWA, LISP, YERA, WTSP, OSFL, RBGR, WAVI, DEJU, 1000Hz, 1414Hz, 4000Hz, 

5656Hz, 8000Hz). Wind had a variable effect on detectability where four species appeared to be 
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positively influenced (CCSP, BAWW, OVEN, BHCO) and eleven negatively influenced 

(BOOW, NSWO, LEOW, BADO, WETO, CORA, RBNU, GGOW, CATO, 2000Hz, 2828Hz). 

Humidity had a positive effect on detectability for 15 species (BOOW, NSWO, LEOW, BADO, 

WETO, CORA, RBNU, BAWW, CATO, OVEN, BHCO, 2000Hz, 2828Hz). The top model for 

8000Hz included observer as an important parameter for detection probability.  

Environmental gradients differed between roads and the forest interior. Wind speed was 

lower within the forest (mean ± SD; 0.9 ± 1.1 km per hour) than on roads (1.8 ± 3.4 km per hour; 

Fig. 2.4). Humidity decreased with time on roads and in forests but decreased faster on roads 

than in forests over the day (forest: 56.4 ± 12.5%, road: 60.2 ± 15.4%; Fig. 2.4). We did not find 

strong support for a transect effect on temperature (forest: 26.3 ± 3.4 degrees Celsius, road: 23.1 

± 6.0 degrees Celsius) but observed a positive relationship with time of day (Fig. 2.4). 

 We compared Monte Carlo 90% confidence intervals to investigate differences between 

each combination of transect/forest type. We found probability of detection was higher on road 

compared to interior forest for every combination of forest type for almost all species (Fig. 2.5). 

Similarly, we found detection to be higher for roads compared to interior forest with the 

exception of the comparison between deciduous forest edge and deciduous interior forests. 

Comparisons for several species showed higher detectability on roads of both forest types versus 

deciduous forest edges (BEKI, DEJU, LISP, OSFL, PISI, RBGR, TEWA, WAVI, YERA). Five 

species differed between deciduous and coniferous forest edges (BEKI, DEJU, LISP, PISI, 

RBGR; Appendix 1.4). We found no differences between road transects or interior forest 

transects of different forest types, aside from some of the pure tones. Owls (NSWO, BOOW, 

GGOW, LEOW, BADO) and lower frequency pure tones (1000, 1414, 2000, 2828Hz) did not 

differ between any combination of transect or forest type. AUC values for test data were >0.90 



23 

 

for most species (Appendix 1.1.4). The lowest frequency tones (1000, 1414, 2000) and four owl 

species (BADO, GGOW, LEOW, NSWO) were 0.90>ROC>0.80. A single tone (2000Hz) had 

0.80>ROC>0.70 (AUC=0.7993).  

 

Estimating Effective Detection Radius, Effective Survey Area, and Corrections for Roads, Forest 

Edges, and Forests 

 We combined roads and interior forests of different forest types into single categories 

because we found no difference between forest types for both categories. Although we found 

differences with five species when comparing forest edge transects of different forest types, we 

collapsed them into a single category as well to simplify effective area estimation, increase 

robustness of EDR estimates, and provide corrections for the ‘broadest’ group possible to make 

it more applicable to researchers wishing to use our data. We then estimated EDR and effective 

survey area for the three transect types, and calculated correction factors for comparing 

detections from different transects (Appendix 1.3.2). A correction factor of one indicates the 

transmission of vocalizations is not influenced by transect and the same effective area is 

surveyed regardless of whether a point count is done at a roadside or the forest interior. 

Deviations from one indicate increasing difference between transects. Calculated correction 

factors varied depending on how strongly transmission of bird calls was influenced by being in 

the forest interior in comparison to road and forest edge. High frequency songbirds generally had 

smaller EDR values than lower frequency species like owls and higher frequency sounds had 

greater difference in EDR between the forest and road indicating high attenuation along forest 

transects (Fig. 2.3). Pure tones had some of the largest EDR values but the correction varied by 



24 

 

frequency. Correction factors for road-forest comparisons were the largest, followed by forest 

edge-forest, and road-forest edge, in descending order.  

 

DISCUSSION 

Sound attenuation in forests often differs from open environments due to differences in 

microclimate, vegetation density, and forest structure, which can cause variable scattering and 

absorption of sound waves (Wiener and Keast 1959, Richards and Wiley 1980). We compared 

sound attenuation and detection distances in roadside and forested transects. Attenuation of pure 

tones increased at a greater rate in forests than on roads or forest edges, and as frequency 

increased, suggesting that scattering or absorption by vegetation plays an important role in sound 

transmission. This trend in frequency is supported by past findings which suggest that higher 

frequencies attenuate faster for this reason (Piercy et al. 1977). Similarly, excess attenuation was 

higher in forests than along roads although we found no clear pattern in frequency. Sound 

attenuated less than what was expected from the inverse distance law when transmitted along 

roads at distances close to the source, possibly because the road surface and corridor reflects 

sound leading to less attenuation (Bullen and Fricke 1976).  

Detection was mainly influenced by distance and transect type. The magnitude of this 

effect was much larger for forest interior transects than forest edge or road transects and most 

sounds had greater detection distances on roads than in forests. Monte Carlo analysis in all owl 

species and the four lowest frequency tones did not show a significant effect of transect type 

(Appendix 1.4), but during AIC model selection all species and sounds included transect as an 

important parameter. This suggests the overlapping confidence intervals found during Monte 

Carlo simulation are a result of a large degree of uncertainty and variance in detection for those 
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species and sounds, instead of small differences in point predictions. We also found these low 

frequency species to have the lowest AUC values during model validation. All sounds with AUC 

<0.90 also had overlapping confidence intervals for all transects during Monte Carlo simulations. 

Due to the nature of our study design, sounds with larger detection distances had more detections 

and less non-detections which increases uncertainty in slope estimation for our models. We 

suggest that lower frequency sounds are more prone to variability in detection and statistical 

uncertainty resulting in larger confidence intervals and decreasing model fit during validation.  

We found higher frequency sounds had lower detection probability and detection distance 

when calculating EDR (Fig. 2.3). When ranking species and tones in descending order of 

correction value required to standardize counts, we found that passerines and high frequency 

tones required larger corrections in comparison to owls and lower frequency tones. This suggests 

that low frequency sounds are less prone to attenuation in forests, which is in line with previous 

literature (Fricke 1984). Detection probability of high frequency sounds declined faster, but EDR 

for some of these species was over twice the distance on road compared to forest (Appendix 

1.3.2). We propose that when surveying songbirds, the effective area sampled is almost always 

larger when sampling from a road leading to inflated counts of species when surveys are done 

from roads relative to the actual abundance in the forest interior. For the 8000Hz frequency tone, 

we found observer to be an important parameter. We believe this to be a result of human hearing 

ability as this sound approaches the upper threshold of the human hearing range. Some observers 

were able to identify these tones while others were unable to detect them consistently, regardless 

of distance. Observer hearing ability can be influenced by a variety of factors such as age or sex 

(Pearson et al. 1995, Helzner et al. 2005). Our observers consisted of a combination of men and 

women between the age of 18-25 to reduce any observer-related hearing differences. 
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Furthermore, the randomized nature of our study design means that observer bias towards any 

specific transect or distance should not be an issue.  

We found mixed results for differences in attenuation between road and forest edge. Four 

tones (1414, 2000, 2828, 8000Hz) had no difference in relative attenuation between the two 

transect types while the road transect for three tones (1000, 4000, 5656Hz) had slightly higher 

attenuation than the forest edge. This contrasts with the patterns we see in our EDR estimates. 

We speculate that this results from our broadcasts at shorter distances having to travel slightly 

longer to the road ARU than the edge ARU due to how we set up the study design (Fig. 2.1). 

This can impact our reference values and influence our measures of relative SPL. At greater 

distances, this difference decreases and becomes less important as it becomes less than the error 

of the GPS units we used to measure distance. Ultimately, this should not affect our estimates of 

EDR as they were based on binary detection data and all sounds were detected at smaller 

distances.  

The 4000Hz tone and some species with a minimum frequency close to 4000Hz (WTSP, 

WAVI, PISI) had higher than normal EDRs for what our models predicted. We have two 

possible explanations for this. First, the frequency sensitivity of the human ear peaks around 

4000Hz meaning human observers should be able to better detect these frequencies. Second, the 

frequency response of our playback speaker was slightly higher when measuring SPL for the 

4000Hz tone. We believe the pattern seen for observer detection of sounds near 4000Hz to result 

from a combination of these two factors. However, since we use the relative difference for EDR 

between roadside and off-road transects, this does not influence the calculation of correction 

factors.  
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Our models for lower frequency species generally include weather parameters in the top 

model for predicting detectability. We found models for 15 species included weather variables 

and of these species, only three were high frequency passerines (BAWW, OVEN, CCSP). The 

rest, including CORA, RBNU, all owl species, and pure tones from 2000-2828Hz, are generally 

lower frequency and have higher EDRs. However, our pure tone attenuation models did not 

include any weather variables with the exception of 8000Hz. We propose two possible 

explanations for this observation. First, wind and associated abiotic noise from vegetation 

usually occupy lower frequency bands and could influence detection by masking signals more 

than high frequency sounds. This affects an observer’s ability to identify a sound but does not 

decrease SPL. Second, larger EDR estimates associated with many of these species and sounds 

means a greater distance between signal and receiver for weather to influence sound 

transmission.  

Local atmospheric conditions also influenced detection probability although this effect 

was much weaker than distance or transect type. Patterns seen in the effect of wind on detection 

probability suggest a decrease in detection probability is influenced primarily by the interaction 

of wind and vegetation. We found no negative effect of wind when playback was done on roads 

but a significant effect on forest edges where vegetation was present for species models 

containing weather. This suggests increasing wind causes vegetation noise which reduces 

detection probability at the lower frequency range due to signal overlap with sounds like rustling 

vegetation. Detection modelling associated wind with an increased detection probability for four 

species (BAWW, CCSP, OVEN, and BHCO). We can think of no logical reason for this result 

and may be caused by some error in our measurements of wind speed. We did not find any effect 

of wind in the interior forest but the overall level of wind was lower than on the road or forest 



28 

 

edge. However, we measured wind speed at ground level which is not necessarily representative 

of wind speed at canopy height where birds may call from. Future studies should consider 

measuring wind using the Beaufort scale as this is related to canopy wind speed and is used 

during point counts to account for wind related noise. Our study design also minimizes effects of 

wind by deliberately sampling during periods of low wind velocity. Therefore, our study may not 

be informative regarding the effect of wind. Relative humidity had a negative relationship with 

detection probability but since we found strong correlation with temperature, further studies are 

needed to separate the importance of each of these variables.  

Our conclusion about how to correct EDR between road-based and forest surveys 

assumes that playback experiments adequately represent how real bird sounds propagate through 

forests and along roads, and how observers detect them. Our choice of recordings, broadcast and 

recording equipment, as well as volume settings are not necessarily reflective of the conditions 

of a standard BBS point count although 90dB is within the range of what is considered natural 

amplitudes in many species (Brumm 2004, Patricelli et al. 2007). However, several of our EDR 

values are many times higher than published EDRs for real birds such as those from the Boreal 

Avian Modelling Project (BAM; www.borealbirds.ca) suggesting that our broadcasts could be 

much louder than the singing volume of some species. Height from which a signal is broadcast 

relative to height at which is received is known to influence sound attenuation. Increasing source 

or receiver height can decrease attenuation (Padgham 2004, Brumm and Naguib 2009). 

However, we always broadcasted sounds from the same height for roads (from the forest edge), 

forest edges, and within the interior forest. Improved roads with pavement or gravel are often 

elevated above the surrounding landscape which means the observer may be elevated as well for 

roadside surveys, possibly increasing detection distance even further. We strongly emphasize the 

http://www.borealbirds.ca/
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importance of using our EDR measurements as a relative comparison between treatments. The 

value in these results lies not with the raw EDR measures, which may be unrealistically high (i.e. 

we estimate Ovenbird EDR to be 204m compared to published data suggesting an EDR of 84m; 

Cumming et al. 2011). However, the correction factors that are calculated from our approach 

represent percentages that will remain the same regardless of the actual EDR. We presented 

correction factors based on two different shapes, a simple ellipse and a shape which factors the 

angle of detection to the road and the proportion of the signal that travels through the road 

compared to the forest. We believe the ellipse to be at the upper bound of the effective area 

surveyed while the other shape to be at the lower end. Realistically, detection area and correction 

values are likely somewhere between these two values as the road corridor may act to propagate 

sound (i.e. less attenuation than expected at close distances) suggesting that while sound 

travelling directly through the forest may attenuate at a given rate, we can’t discount a proximity 

effect of the road. Instead, we believe some sort of gradient effect is more realistic as sound 

travels spherically from the source and could still be carried by the road corridor. Sound 

attenuation through the road/forest interface is complicated and not fully understood and our 

models are our best approximation of the processes that are occurring. 

The narrow gravel or dirt roads we studied may also have differed from some of the 

wider roads on which many BBS routes are located. Narrow roads likely have less influence on 

sound attenuation than wider roads because the total volume of the hemisphere around the sound 

source is lower. In addition, more improved roads tend to have wider ditch width that is often 

maintained by haying or mowing activities. The low-use forestry roads we studied generally had 

sharp shoulders and narrow ditches which terminated sharply at the forest edge. Furthermore, our 

classification of deciduous and conifer forests along roadways may not be as accurate within 
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interior forests as some form of early stage vegetation was usually present on forest edges and 

generally favoured fast-growing aspen that were quite dense. Finally, our comparison of EDR 

between roads and the interior forest may represent a more extreme outcome than what is 

realistic. During roadside point counts, most bird detections are from within the forest itself and 

the distribution of vocalizing individuals within the area of detection may not be homogenous. 

Thus, while some birds will call from at or near the forest edge and be detected at greater 

distances, most birds will vocalize from within the forest interior.  

Nevertheless, our results demonstrate that differential transmission along open road 

corridors may significantly alter observer bird counts, a situation particularly relevant when 

comparing roadside data such as the BBS to off-road surveys. Detection radius of birds in a 

homogenous forested habitat is assumed to be circular. With roadside surveys, this detection 

radius becomes elliptical in shape. Our results suggest that, for some species, area surveyed can 

more than double when surveying from a road rather than within the interior forest. This yields 

avian estimates that can be twice as large if we assume area surveyed is constant between those 

two environments. Having this type of information is fundamental for interpreting results from 

any type of avian point count, as different species can be detected at different maximum 

distances in different environments (Schieck 1997). When making relative comparisons of bird 

counts between environmental factors (i.e. on versus off-road, different forest types, etc.), we 

suggest using statistical methods, such as distance sampling, to correct for inequalities in 

detectability (Marques et al. 2010). However, roads present a directionally dependent effect on 

sound attenuation which cannot be solved using conventional distance sampling. Our results 

allow us to quantify this pattern to estimate effect on survey area and help address this challenge 

as first approximations. As we strive to understand how avian populations are changing across 
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landscapes, it is important to ensure that we do not make incorrect assessments because we have 

failed to meet the underlying assumptions of our survey methods.  
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Figure 2.1. Sampling design schematic for playback experiments. Wildlife Acoustics SM2 

recorders were placed on the forest edge (1) and on the road (2) and playbacks were conducted to 

both recorders simultaneously along a transect following the forest edge. For forested playbacks, 

recorders were placed within the interior forest (3) and playbacks transects ran perpendicular to 

the road. 
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Figure 2.2. Predicted values for the effect of frequency on attenuation of relative SPL (A), 

attenuation of relative SPL along different transects for a 1000Hz pure sine wav (B) and excess 

attenuation from what is expected from the inverse distance law (C) for a 1000Hz pure sine wave 

with distance. The reference value for relative SPL measurements was defined as the measured 

voltage for each transect at a distance of 12.5 metres and theoretical slope backward fit to zero in 

the absence of data. Predictions are calculated from measurements of relative SPL and plotted 

with 95% confidence intervals. 
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Figure 2.3. Influence of minimum frequency on effective detection distance (EDR) for each 

species (A) and tone (B) along different transects with 95% confidence intervals.  
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Figure 2.4. Regression lines for wind speed (A), relative humidity (B), and temperature (C) over 

time for road and forest transects with 95% confidence intervals. Time indicates elapsed time in 

minutes since average sunrise for sample period. 
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Figure 2.5. Probability of detecting Tennessee Warbler (TEWA), Ovenbird (OVEN), Olive-sided Flycatcher (OSFL), and Northern 

Saw-whet Owl (NSWO) with distance and transect type. Predictions are calculated from binomial detection data and plotted with 95% 

confidence intervals.  
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Chapter 3. Experimentally derived detection distances from audio recordings and 

human observers enable integrated analysis of point count data 

 

INTRODUCTION  

There is growing interest in combining data from multiple point count studies to draw 

inferences about environmental processes influencing birds at larger spatial and temporal scales 

than the original studies intended (Cumming et al. 2010). Traditionally, human observers have 

collected point count data (hereafter HPC) by identifying species using acoustic and visual cues 

while following standardized protocols (Ralph et al. 1995). However, many differences exist 

between HPC studies in the point count methods used (i.e. duration of count, fixed or unlimited 

distance counts; Matsuoka et al. 2014). As well, concerns about human observers not detecting 

species that are present during a single visit have led to calls for replicating effort at the same 

locations (Royle and Nichols 2003, Kéry et al. 2005). The use of repeated point counts at the 

same location within a season to account for varying detection probability among visits has 

increased interest in the use of autonomous recording units (ARUs; Hobson et al. 2002, 

Haselmayer and Quinn 2000).  

A major benefit of ARUs is that humans only visit each location twice and spend time 

only deploying and picking the ARU. The ARU itself can record over an extended period and 

create an almost unlimited number of repeated surveys of virtually any duration (Hobson et al. 

2002, Haselmayer and Quinn 2000). Human observers are more likely to detect some species 

visually which can increase the odds of detection, although visual detection area is likely much 

smaller than aural detection area in heavily vegetated environments (Haselmayer and Quinn 
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2000, Hutto and Stutzman 2009). Human observers can also estimate distances to individual 

birds to enable the use of a bounded point count radius and/or distance-based density estimation 

(Buckland et al. 1993). The relative importance of being able to cost-effectively conduct 

repeated visits via ARUs versus estimate distance via HPC is unclear in terms of accuracy and 

precision when assessing trend and status of birds. Regardless, to make the best use of point 

count data, ornithologists need to evaluate ways to standardize HPC and ARU data to use both 

data types in the same analyses.  

To accurately use data from different point count datasets, ornithologists have converted 

counts to a common standard, which is typically density (Sólymos et al. 2013). Estimating 

density of birds using point counts requires: 1) accounting for individuals that are available to be 

detected but do not vocalize or are not seen (Farnsworth et al. 2002, Dawson and Efford 2009); 

and 2) accounting for declining detection of more distant individuals (Buckland et al. 1993). 

Removal sampling can address the problem of animal availability based on multiple time 

intervals that can exist for both HPC and ARU data. However, the second problem of correcting 

for the area sampled and the distance over which birds are counted is more fundamental. Sound 

travels different distances depending on the vegetation and atmospheric conditions occurring 

between the signaler and the receiver (Padgham 2004; Pacifici et al. 2008, Tarrero et al. 2008; 

Holland 2001, Simons et al. 2007). Detectability can also vary between observers depending on 

factors such as age, sex, and experience (Pearson et al. 1995; Helzner et al. 2005). To compare 

the observed number of bird detections between point counts in two separate studies or in two 

separate vegetation types within the same study, ornithologists should account for the distance 

travelled by bird song and effective area sampled (Yip et al. 2017a). Otherwise, biases in our 

understanding of habitat selection, population status, and temporal trend may occur if 
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environmental conditions influencing sound transmission significantly differ between sites and 

times.  

There are three main approaches for calculating the area over which bird sounds are 

detected and thus converted to density: 1) fixed-distance point counts, hereafter FIXED (Hutto et 

al. 1986, Petit et al. 1995); 2) Maximum Detected Distance (MDD) at which a given species can 

be detected (Emlen and DeJong 1981, Rosenberg and Blancher 2005); or 3) Effective Detection 

Radius (EDR) based on distance-sampling methods (Buckland et al. 1993). The FIXED approach 

does not seem to be possible for ARU-based point counts because signal strength from a species, 

and hence accuracy of distance estimation will differ due to sound absorption and reflectance 

varying among environmental conditions (Petit et al. 1995, Padgham 2004; Pacifici et al. 2008). 

In addition, such approaches discard a lot of useful data on birds that are detected past the fixed 

distance. In contrast, ornithologists can calculate MDD and EDR for a species from ARU-based 

data if: 1) there are known distances to recordings of birds, and 2) if there is some 

simultaneously collected distance data from HPC for which MDD or EDR and ARUs can be 

compared and calibrated. Partners in Flight has used MDD to estimate population sizes 

(Rosenberg and Blancher 2005), but the Partners in Flight approach to estimating MDD is coarse 

and does not consider vegetation or atmospheric effects that influence MDD, leading to concerns 

about this approach when calculating density (Thogmartin et al. 2006). EDR accounts for the 

decline in detectability as the distance from an observer increases, but like the FIXED approach, 

EDR varies among species and environmental conditions, and reliable EDR estimates depend on 

well-trained field observers, accurate distance estimation, and point count methods meeting 

assumptions of distance sampling (Buckland et al. 1993). 



42 

 

Understanding how microphone and recording settings influence the area sampled for 

birds is crucial to ensuring that long-term monitoring and comparisons made between studies are 

valid using ARU techniques. Research programs and monitoring agencies have different 

preferences, goals, and budgets, which influences the type of ARU they decide to use and these 

must be calibrated to account for differences in area sampled if results are to be compared. 

Availability of different ARUs also changes over time as ARUs are continuously improved.  

Our approach to comparing ARU models and how far they detect birds relative to human 

observers relies on using song broadcasts of known amplitude and distance. Distance based 

broadcasts where a sound is played at varying distances from the observer or recorder are labour-

intensive. A potential alternative could involve using a relatively limited number of distances 

when conducting broadcast trials but varying the volume (amplitude) of the broadcast speaker 

between ambient background levels and the upper range that birds are known to sing.  

Quantifying the relationship between amplitude and distance of different species for different 

ARUs could be a cost-effective way of ensuring that all ARUs are calibrated to a known and 

documented standard. While the true relationship between amplitude and distance is unknown, 

this approach effectively identifies relative differences among ARUs. 

 We had three objectives. First, we developed and tested two field broadcast and 

modelling methods to evaluate how detection of birds is influenced by distance, ARU type, 

amplitude, and environmental variables relative to HPC. We did this by broadcasting sounds 

with varying frequencies and under different vegetation conditions over a range of distances. We 

then tested which sounds were detected by HPC in the field and when listening to ARU 

recordings in the lab. Second, we used known principles of sound physics to estimate EDR and 

MDD for various species. Third, we provided an approach for standardizing HPC and ARU data 
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in the same analysis by creating generalized correction factors and a simple approach to 

calibration that that can be used to standardize raw counts to density regardless of the method of 

sampling.  

 

METHODS 

Using known distance data to estimate effects of recorder technology, vegetation, weather, 

and species on detection radius 

Study area 

We collected data near Calling Lake (55°11’ N, 113°12’ W) and Lac la Biche, Alberta 

(54°38’ N, 111°58’ W) in August, 2014. We conducted our surveys in August to reduce the 

chance of confusing broadcasted sounds (see below) with the songs of real birds. Broadcasts 

took place between 07:00 – 20:00 MST. We recorded broadcasted sounds that we used in our 

study at a total of 20 sites using ARUs (10 road sites, 5 coniferous forests, and 5 deciduous 

forests). Coniferous sites consisted primarily of white spruce (Picea glauca) while deciduous 

sites consisted primarily of trembling aspen (Populus tremuloides). Road sites occurred on flat, 

low-use forestry roads composed of gravel and clay. At a subset of the 20 sites (8 road, 4 

coniferous, and 4 deciduous), observers stood adjacent to the ARUs and indicated which 

broadcasted sounds they were able to detect. 

Data collection 

At each site, we broadcasted known sounds from varying distances (see below) and 

evaluated whether or not a human observer could detect them. At the same time and location, we 

also recorded the broadcast sounds on four types of ARUs. All recordings made by the ARUs 



44 

 

used 2-channel stereo recordings at 44 kHz and 16-bit .wav format. The four ARUs were: 1) 

Wildlife Acoustics’ SongMeter SM2+ GPS-enabled recording units equipped with SMX-II 

weatherproof microphones (5 units); 2) Wildlife Acoustics’ SM3 ARUs (5 units); 3) RiverForks 

CZM recorders (2 units); and 4) Zoom H1 handheld recorders (3 units). We broadcasted sounds 

with an Alpine ® SPR-60, 6-1/2” car speaker/tweeter and an Alpine ® UTE-42BT car 

stereo/audio player (Gentec Int’l, Markham, Ontario), both installed into an 11” (width) x 10” 

(depth) x 15” (height) plywood speaker box, along a transect from 12 to 1312m. We placed the 

speaker at 25m intervals for the first 400m, 50m intervals between 400-800m, and 100m 

intervals for broadcasts beyond 800m. The same sequence of calls was broadcast at each 

distance. On forested transects where the ARU was not visible from the transmitting unit, we 

used a GPS and compass to properly align the speaker towards the ARU.  

The broadcasted sequence began with a series of 7 pure tones (at frequencies of 1000Hz, 

1414Hz, 2000Hz, 2828Hz, 4000Hz, 5656Hz, and 8000Hz) generated using Adobe Audition 

CS6. The song sequence following the tones consisted of 23 boreal bird species and two 

amphibian species broadcast in the following order: Clay-colored Sparrow (Spizella pallida) 

(CCSP), Black-and-White Warbler (Mniotilta varia) (BAWW), Lincoln’s Sparrow (Melospiza 

lincolnii) (LISP), Brown-headed Cowbird (Molothrus ater) (BHCO), Red-breasted Nuthatch 

(Sitta canadensis) (RBNU), Bay-breasted Warbler (Setophaga castanea) (CMWA), Dark-eyed 

Junco (Junco hyemalis) (DEJU), White-throated Sparrow (Zonotrichia albicollis) (WTSP), Cape 

May Warbler (Setophaga tigrina) (CMWA), Common Raven (Corvus corax) (CORA), Belted 

Kingfisher (Megaceryle alcyon) (BEKI), Olive-sided Flycatcher (Contopus cooperi) (OSFL), 

Pine Siskin (Cardeulis pinus) (PISI), Tennessee Warbler (Oreothlypis peregrina) (TEWA), 

Warbling Vireo (Vireo gilvus) (WAVI), Rose-breasted Grosbeak (Pheucticus ludovicianus) 
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(RBGR), Ovenbird (Seiurus aurocapila) (OVEN), Yellow Rail (Coturnicops novaeboracensis) 

(YERA), Western Toad (Anaxyrus boreas) (WETO), Canadian Toad (Anaxyrus hemiophrys) 

(CATO), Northern Saw-Whet Owl (Aegolius acadicus) (NSWO), Boreal Owl (Aegolius 

funereus) (BOOW), Long-eared Owl (Asio otus) (LEOW), Great Grey Owl (Strix nebulosa) 

(GGOW), and Barred Owl (Strix varia) (BADO). We selected these species for a variety of song 

characteristics that may affect probability of detection (pitch, song length). All sounds were 

normalized in Audition to bring peak amplitude to a standardized level. We broadcasted sounds 

at 90dB, which we measured 1m from the speaker system (based on fast-time A-weighting) 

using a handheld sound meter (Sper Scientific 840018).  

At each transect, we attached each of the 4 ARU types to a tree or post at a height of 

1.5m. This was the same height as the speaker broadcasting the recordings at the starting point of 

the transect and we chose transects with minimal elevational change. For each point along a 

transect, we recorded the time of the broadcast and distance of the broadcast speaker from the 

ARUs and human observer using a GPS (+/- 3m). We also measured temperature, humidity, and 

wind speed during each broadcast using a Kestrel 3000 pocket weather meter. Following the end 

of the broadcasted sequence, the first observer moved the speaker an additional 25m along the 

transect and the process was repeated. 

We clipped recordings into individual files for each distance from each type of ARU. 

Observers in the lab listened to these files at 90dB and noted which species and tones they could 

identify and detect for each distance and each type of ARU recording. For this experiment, 

observers in the lab listened to tones and songs in the recordings in the original sequence that the 

tones and songs were broadcast to make things directly comparable to the HPC. For pure tones, 

observers only had to identify that a tone was present, not what frequency was broadcast. Using 
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this method, we generated a large dataset of detections or non-detections from sounds that were 

known to have occurred (n = 96,502). During the HPC, the observer in the field recorded 

whether they could hear and correctly identify each sound as it was broadcast in sequence. 

Modelling sources of variation influencing detection of sounds 

We divided data randomly into 70% training data (n = 1,898 for each species or tone, 

without replacement) for model development and 30% test data (n = 813 for each species or 

tone) for model validation (sample function, R [R Core Team 2013]). We assessed the 

detection/non-detection of each species or tone using generalized linear models (glm function, R 

[R Core Team 2013]) with a binomial error family. All models included distance as a predictor 

of whether a tone or song was detected. We used a model where distance was the only predictor 

as a null model, where p(d) declined with distance at the same rate in different habitats, in 

different weather conditions, and for human observers versus different ARU brands. We 

compared this null model to 11 candidate models (Table 3.1). For the weather models, we had 

considered temperature as well, but dropped that variable because it was positively correlated 

with humidity. 

We used Akaike’s Information Criterion to rank the relative fit of models (Burnham and 

Anderson 2002, Arnold 2010). To assess the absolute model fit or goodness-of-fit of the top 

AIC-ranked model, we used the area-under-the-curve (AUC) within receiver-operator curves for 

each species as a test statistic (roc function, pROC package, R [Robin et al. 2011]). AUC 

measures the proportion of actual detections and non-detections that were correctly predicted by 

the best model as opposed to false negatives or positives. We calculated AUC for the test data set 

excluded from model generation. We rated models with AUC > 0.70 as having sufficient ability 

to correctly predict if a song or tone was or was not detected (Vanagas 2004). 
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Estimating effective detection radius for different sounds 

EDR gives the radius of the circle where the expected number of available individuals not 

detected within the distance equals the expected number of the detected individuals outside of 

that distance (Buckland et al. 1993). We estimated EDR for our Calling Lake dataset with a 

separate set of models rather than the set used for modelling detectability. The shape of the 

distance function describes how detection probability attenuates as a function of broadcast 

speaker distance (d) from the ARUs and human observer. The distance function is a strictly 

monotonic decreasing function with increasing distance. There are many different mathematical 

formulations to describe this shape, however we chose the half-normal distance function because 

of its simplicity, as well as the fact that its standard deviation parameter (τ) is directly 

interpretable as effective detection radius (EDR) for unlimited (i.e. not truncated) point counts in 

bird surveys (Sólymos et al. 2013). In the half-normal distance function, detection at a given 

distance can be modeled as p(d) = exp(-d2/τ2) in which detection declines as object distance (d) 

from the observer increases, but declines at a slower rate as τ increases. We transformed distance 

in metres to -d2 prior to modeling to linearize the relationship. We used the coefficients for 

different predictors in the best model to calculate EDR for each species or tone for different 

vegetation types, human observers, and ARU types. In all models, we set the intercept to zero so 

that p(d) = 1 at d = 0, and used a complementary log-log link function instead of the usual logit 

link function for GLMs with a binomial dependent variable, to simplify the estimation of EDR 

and approximate a log-linear model (Yip et al. 2017a). EDR was estimated as τ = (1/β)0.5, where 

β is the sum of coefficients for the main effect of distance (transformed as -d2) and any 

interaction effects with -d2 (for example: βARU[relative to human observer]+ β -d
2+ βHabitat[relative to coniferous 

forest]). After calculating EDR for the human observer and each ARU type, we then calculated a 
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correction factor for the effective area sampled by each ARU type relative to human observers 

(A’/A = EDR2
ARU’/EDR2

human) in each vegetation type. This correction factor can be used to 

standardize the area parameter for animal density when comparing data from ARUs and human 

observers. 

We performed Monte Carlo simulations to 1) estimate uncertainty in EDR point estimates 

for each sound, and 2) test for statistical differences between different vegetation types. We 

generated coefficients (n=1000) using maximum-likelihood estimates and variance-covariance 

matrices from the original models to calculate 90% confidence intervals from the predicted 

values (Appendix 2.3.1; Yip et al. 2017a). We omitted EDR estimates that 1) failed to solve due 

to lack of non-detections in the raw data, or 2) failed to generate confidence intervals due to high 

uncertainty when predicting from the original model. 

We estimated MDD for the same data by selecting the largest distance with a correctly 

identified detection based on the 95% quantile of positive detections for each species. We 

estimated MDD separately for ARUs and human observers using the same data for our EDR 

calculations to compare results from both approaches. After estimating MDD, we calculated the 

maximum area sampled and correction factors for each ARU type relative to human observers 

(A’/A = MDD2
ARU’/MDD2

human) in each vegetation type, using the same method as for calculating 

correction factors for EDR. 

Using known distance data to estimate effects of sound amplitude on detection 

Study area 

We used known distance data and broadcasts of the same species and tones to explore 

effects of sound amplitude on detection by ARUs. We conducted the amplitude study from 
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September - October 2014 in the Blackfoot-Cooking Lake Natural Area (53°25’ N, 112°49’ W) 

near Edmonton, Alberta from 09:00 – 16:00 MST. We placed ten transects in open vegetation (> 

75% grass cover, < 5% shrub cover, 0% tree cover) and ten in denser vegetation (mature 

deciduous stands composed primarily of trembling aspen [Populus tremuloides] with small 

amounts of balsam poplar [P. balsamifera] and white spruce [Picea glauca]).  

Data collection 

At each transect we placed a SM2+ ARU in the same setup as the previous experiment 

and broadcasted songs and tones from a distance of 50, 100, and 150m away. We broadcast each 

song or tone at 11 sound pressure levels (a-weighted SPL, a measure of sound pressure relative 

to the threshold for human hearing) from 40 to 90 dB at 5 dB increments (=23 songs*11 

amplitudes = 253 sounds played at each of the three distances). Each sequence of sounds at each 

amplitude lasted 1:43 and the full broadcast for all amplitudes was 18:53. For each distance 

within a transect, we noted temperature, humidity, and wind speed values averaged over the 

duration of the broadcast using a handheld Kestrel 3000 handheld weather metre (Nielsen-

Kellerman Co., Boothwyn, Pennsylvania).  

Following field data collection, we used the programs PRAAT © version 5.4 and Adobe 

Audition © version 5.0 to cut all recordings into separate clips for each call on the recording and 

labelled calls according to site type (open or closed), site number (1 – 10), species call/tone, and 

amplitude. We randomized the clipped files by shuffling them with generic empty clips 

(containing only ambient background noise). Without knowing the file contents, 4 volunteers 

trained in avian call detection and recognition listened to and labelled each sound clip by 

whether or not a call was heard, and if so, of what species.  
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Modelling sources of variation influencing detection of sounds 

As in the HPC/ARU study, we used GLMs with intercept set to 0, distance transformed 

to -d2, and a complimentary log-log link function to model whether or not a given song or tone 

was detected by observers listening to the ARU recordings. For each species or tone, we used a 

model where additive effects of distance and SPL were the only predictors of detection as a null 

model, where p(d) declined with distance at the same rate in different habitats and weather 

conditions, and varied with broadcast amplitude. We compared this null model to five candidate 

models (Table 3.4). We followed the same procedure for assessing the relative fit of the above 

GLMs using AIC, and assessed the goodness-of-fit of the highest ranked or most parsimonious 

model for each species, using AUC statistics and receiver operating curves as in the HPC/ARU 

experiment (Table 3.5).  

Estimating effective detection radius for different sounds 

We used the coefficients for different predictors in the best model to calculate EDR for 

each species or tone for different vegetation types and SPLs as with the previous experiment. 

EDR was estimated as τ = (1/β)0.5, where β is the sum of coefficients for the main effect of 

distance (transformed as -d2) and any interaction effects with -d2 (for example: βSPL[45-90 dB in 5-dB 

increments]+ β-d
2+ βOpen habitat[relative to closed habitat]). We estimated uncertainty using the same Monte 

Carlo method to calculate 90% confidence intervals for our EDR estimates. We did not estimate 

MDD for our second experiment due to a lack of precision with our distance variables (only 

three were used). 
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RESULTS 

Using known distance data to estimate effects of recorder technology, vegetation type, 

weather, species detection 

Effective detection radii for humans and ARUs in different vegetation types with known-distance 

data 

Detectability declined as distance to sound increased for all species and tones (mean ± 

SD across all models βx = 1.312x10-5 ± 1.399x10-5; Table 3.3). Declines in detection rate were 

greater in both coniferous (mean βconiferous = -0.165 ± 1.066 relative to road) and deciduous (mean 

βdeciduous = -1.482 ± 1.456 relative to road) vegetation types in comparison to open roadside 

transects (Fig. 3.1). 90% confidence intervals for our estimates of EDR from human detection 

data showed significant differences between roadside and forested detection distance for 18 of 32 

sounds (5656Hz, 8000Hz, BAWW, BEKI, BHCO, BLWA, CCSP, DEJU, LISP, OSFL, OVEN, 

PISI, RBGR, RBNU, TEWA, WAVI, WTSP, YERA; Table 3.2). We were unable to assess 

roadside confidence intervals for five sounds (1414Hz, 2828Hz, CMWA, BOOW, NSWO) due 

to undefined EDR estimates. We found no significant difference in detection distance between 

coniferous or deciduous vegetation types. ARU type also influenced detectability although this 

varied depending on the species or tone present. However, detectability was generally higher for 

human observers relative to ARUs (mean relative to human: βSM2 = -2.108 ± 1.312, βSM3 = -0.963 

± 1.086, βRiverForks = -1.181 ± 1.353, βZoom = -1.643 ± 1.407; Fig. 3.1). All top performing models 

included distance, transect type, and ARU type as important predictors (Table 3.2). The top 

performing model for 16 species and tones (1000Hz, 1414Hz, 2000Hz, BADO, CMWA, 

BOOW, CATO, CORA, GGOW, LEOW, NSWO, OSFL, RBGR, RBNU, WETO, WTSP) 

included humidity which positively influenced detectability for all sounds with the exception of 
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CMWA (mean βhumidity = 0.020 ± 0.013). Three species (CATO, WETO, YERA) had wind in 

their top performing model which also had a positive influence (mean βwind = 0.191 ± 0.046). 

Interaction effects between ARU and transect type were part of the top performing model for 

seven sounds (BADO, BAWW, CMWA, BOOW, GGOW, LEOW, TEWA) indicating that 

detectability varied with both the type of ARU and the transect the sounds were broadcast 

through. For these sounds, detectability declines suddenly relative to ARUs as distance increases, 

particularly in coniferous vegetation types. Mean (± SD) wind speed averaged over the duration 

of the broadcast sequence at each distance along a transect was 1.1 ± 1.4km/h. Mean 

temperatures during each broadcast was 23.7 ± 6.5 oC. Relative humidity was 59.0 ± 18.9%. 

Performance for all models was excellent (AUC: min = 0.9180, max = 0.9659, median = 0.9647; 

Table 3.2).  

EDR and MDD values showed consistent differences between humans and different 

ARUs (Mean ± SD EDR for all sounds: Human = 494 ± 233m, SM2 = 421 ± 188m, SM3 = 461 

± 198m, RiverForks = 470 ± 222m, Zoom = 431 ± 183m; MDD: Human = 567 ± 266m, SM2 = 

427 ± 235m, SM3 = 485 ± 231m, RiverForks = 516 ± 250m, Zoom = 442 ± 208m; Fig. 3.2; 

Appendix 2.1-2.2). Species and tones with lower detection probability (e.g. higher frequency 

tones, CMWA, BAWW, BLWA, YERA) had smaller EDR values than species with higher 

detection probability (e.g. lower-frequency tones, RBGR, toads, owls). EDR and MDD values 

were generally higher along roadsides than in forests (Mean EDR: Roadside = 612 ± 182m, 

Coniferous = 365 ± 114m, Deciduous = 378 ± 163m; Mean MDD: Roadside = 674 ± 227m, 

Coniferous = 364 ± 155m, Deciduous = 425 ± 221m). Human observers were consistently able 

to hear farther than the ARUs and had higher EDR and MDD values. SM2s had the lowest EDR 

and MDD values (mean ratios across all sounds: EDRSM2/EDRHuman = 0.789 ± 0.624; 
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MDDSM2/MDDHuman = 0.558 ± 0.212; Fig. 3.2). RiverForks (EDRRiverForks/EDRHuman = 0.940 ± 

0.680; MDDRiverForks/MDDHuman = 0.861 ± 0.354) and SM3 (EDRSM3/EDRHuman = 0.897 ± 0.137; 

MDDSM3/MDDHuman = 0.770 ± 0.259) had the most similar detection distance relative to humans. 

These ratios increased at higher sound frequencies for the SM2 and RiverForks but decreased 

with Zoom recorders (Fig. 3.2; Appendix 2.1-2.2). Thus, SM2s require larger correction factors 

(=[EDRSM2/EDRHuman]
-1) than other types of ARUs relative to humans. 

 

Using known distance data to estimate effects of sound amplitude on detection 

Effective detection radii for sounds at different amplitudes in different vegetation types 

For all species and tones in the sound amplitude study, detection probability declined 

with increasing distance (mean ± SD across all models βx = 2.913x10-4 ± 1.476x10-4; Table 3.6) 

and decreasing sound amplitude (mean βSPL = 0.183 ± 0.037). Probability of detection at a given 

distance was higher in open vegetation than in closed vegetation (mean βOpenHabitat = 1.983 ± 

0.899, relative to closed habitat). The best model predicting detection of each species or tone 

generally included distance, vegetation type, and amplitude (Table 3.5). Four sounds (1414Hz, 

LEOW, YERA) included wind in their top performing model, two sounds (4000Hz, WETO) 

included humidity, and one sound (CMWA) included both wind and humidity. Wind negatively 

influenced detectability (mean βWind = -0.168 ± 0.076) for all four sounds while humidity had a 

positive effect for CMWA (βHumidity = 0.023) and WETO (βHumidity = 0.042) but negative for 

4000Hz (βHumidity = -0.036). Mean wind speed averaged over the duration of the broadcast 

sequence at each distance along a transect was 4.0 ± 2.8km/h. Mean temperatures during each 

broadcast was 15.2 ± 6.4oC. Relative humidity was 50.5 ± 14.2%. Performance for all models 

was excellent (AUC: min = 0.8705, max = 0.9836, median = 0.9495; Table 3.5).  
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As in the human-ARU comparison study, species with relatively low detection 

probability (e.g. BAWW, CMWA) had smaller EDR values than species with relatively high 

detection probability (e.g. owls; Appendix 2.3). EDR values were generally higher in open 

vegetation than closed vegetation and increased as sound amplitude increased. When sounds 

were pooled into one general model, we found no significant interaction effects between SPL 

and the type of sound (i.e. species or tone) indicating a consistent positive relationship between 

EDR and SPL for all sounds broadcasted (Fig. 3.3). Many EDR values were undefined at higher 

broadcast SPL in open vegetation due to an inadequate number of non-detections. For EDR to be 

defined, non-detections must occur at the furthest distances which did not occur at higher sound 

amplitudes. 

 

DISCUSSION 

Detectability of avian vocalizations can be influenced by the surrounding environment 

(Darras et al. 2016, Yip et al. 2017a) and by the methods used to record and identify 

observations (Haselmayer and Quinn 2000). We compared detection distances of different ARUs 

as well as human observers in the field and found differences in detectability depending on 

which method was used. Using the ARU-human comparison calculated here, we conclude that 

ARU data can be integrated with HPC datasets into larger analyses to increase the scope of 

inferences made about birds (Cummings et al. 2010). For example, EDR has been estimated for 

over 100 species by the Boreal Avian Modelling Project (hereafter BAM; www.borealbirds.ca) 

using human-based distance estimation. Similarly, MDD for all North American species have 

been agreed upon by Partners in Flight (hereafter PIF; Rosenberg and Blancher 2005). For 

example, BAM estimates EDR for BAWW to be 50.1m and PIF uses a MDD value of 100m 

http://www.borealbirds.ca/
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(PIF Science Committee 2013). Thus, for surveys in deciduous forest using an SM2 wildlife 

recorder, the EDR correction factor calculated from our study would be 0.757 and the MDD 

correction factor 0.779 (Appendix 2.1-2.2). The corrected EDR would then be 37.9m and 

corrected MDD would be 77.9m for counts done using an SM2 in similar habitat. Ornithologists 

can directly compare density estimates from HPC and ARU data after standardizing both data 

types using this technique, enabling organizations like BAM or PIF to augment their existing 

HPC data with ARU data.  

Human field observers had the highest detectability and detection distances in 

comparison to recordings from the SM2s, SM3s, RiverForks, and Zoom recorders. SM2s had the 

lowest detectability and detection distances followed by Zoom recorders, RiverForks, and SM3s. 

The use of ARUs to record animals introduces additional static, white noise, and electronic 

interference during the detection process of avian vocalizations, likely contributing to the 

patterns of decreasing detectability from recordings. However, we presented observers with a 

limited variety of species and sounds and in the first experiment, observers knew the order that 

the sounds would be occurring. When sounds are unpredictable and there is uncertainty about 

what species may be present, detections from recordings will likely increase relative to field 

surveys from humans due to the opportunity to double check observations in a lab-based 

environment. 

Probability of detecting species declined more rapidly with increasing distance in closed 

vegetation than in open vegetation in both of our experiments (first experiment: roadside vs 

forest, second experiment: open grassland vs closed forest). These results are consistent with 

previously documented differences in detection between vegetation types (Schieck 1997, Pacifici 

et al. 2008). However, we observed differences in the effect of weather variables between 
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experiments which may have been due to the distance over which the experiments occurred. 

Weather effects were influential for sounds with larger EDR values (17/32 sounds; Table 3.2) in 

our first experiment as in Holland (2001) and Simons et al. (2007), but were not as prevalent in 

our second experiment (6/32 sounds; Table 3.5). In our second experiment, broadcasts only 

occurred to a maximum of 150m, meaning weather variables may not have as much distance 

over which to act on broadcasted signals, suggesting there may be an interaction between 

weather conditions, distance, and sound transmission. Humidity had a consistently positive effect 

on detectability except for one species (CMWA) in our first experiment and one tone (4000Hz) 

in our second. However, the relationship between wind and detectability differed between the 

first (positive relationship) and second (negative relationship) experiment although wind was not 

included in many of our top performing models. We did not record the direction of the wind 

relative to the direction of our broadcasts, which may have contributed to this pattern. We also 

recorded higher but more consistent wind speeds in our second experiment relative to the first. A 

more limited range of wind speeds in the second experiment may be the reason wind was not 

included in those models as often. Knowing how factors like weather influences the area 

sampled is crucial to converting counts from ARUs and humans to accurate density estimates 

and is an area that we argue needs more work. 

We found that EDR was consistently, positively correlated with broadcast SPL regardless 

of species (Fig. 3.3). This is important for two reasons. First, we broadcast sounds at 90dB which 

we believe to be the upper range of amplitudes that birds might vocalize at (Brumm 2004, 

Patricelli et al. 2007). We also had our speaker oriented directly at the receiver which may result 

in unrealistic and overestimated EDRs. However, the importance of this study lies in the relative 

difference in EDR between treatments, which should remain the same regardless of SPL. Given 
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that EDR increased consistently with SPL for all species (Fig. 3.3), we believe singing volume 

could be estimated for real birds using predictions from our EDR models, corrections factors, 

and applying our model predictions to EDRs from BAM’s human based estimates of EDR, albeit 

with varying degrees of uncertainty depending on model performance. This would also be under 

the assumption that EDRs estimated from BAM were calculated under similar conditions and 

that human observers estimate EDR accurately. It is not clear how accurate EDR measurements 

are by humans and our results show the importance of environmental variables such as the 

openness of the surrounding environment. Although our best performing models suggest that 

EDR increases consistently with SPL for most sounds, there were outlier sounds (BADO, 

LEOW) where EDR increased differently relative to the general trend (Fig. 3.3), possibly due to 

uncertainty in our EDR estimates. 

The second reason that the consistent response of EDR to SPL is important is that it may 

provide a simpler way to calibrate ARUs to humans and each other. More recorder models are 

becoming available and the ones currently in use are routinely being updated with newer models, 

which have different gain settings, sensitivities, and residual electronic noise. All of these factors 

influence the area sampled for birds relative to humans and other ARUs (Rempel et al. 2005). 

Sound frequency acted differently on each recorder suggesting that microphone frequency 

response plays a role in detectability. Detectability decreased and differences in EDR and 

resulting correction factors increased with frequency for SM2s while the opposite was observed 

with SM3s and Zoom recorders (Fig. 3.2). The method we used to compare EDR between 

various recorders and human observers in our first experiment provided high resolution 

information on relative differences in detection distance, but was time consuming to carry out. 

We argue that, in the future, we could calibrate EDR at different amplitudes for multiple brands 
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of ARUs using relatively few distances as in our second experiment, since EDR decreased 

consistently for most sounds as SPL declines and would be comparable to the relative difference 

in EDR at 90dB. This would allow researchers to calculate a correction factor more quickly 

based on the relative difference.  

Our results provide further evidence supporting conclusions of previous researchers 

(Haselmayer and Quinn 2000, Hobson et al. 2002, Celis-Murillo et al. 2009) that the counts 

derived from both ARUs and human observers are relatively comparable. However, our study 

tested detectability under relatively controlled conditions through broadcasts and with a limited 

variety of species and sounds. The results found in this study may differ when field observers 

must identify overlapping vocalizations, unfamiliar species, or sounds in acoustically busy 

sampling periods which would likely have a larger influence on detectability than with ARUs. 

Although human observers appeared to generally detect more of the broadcasted sounds than 

different ARUs (particularly the SM2+), EDR and effective area sampled by some ARUs was 

comparable to that for human observers for some species. Furthermore, differences between 

recorders should be irrelevant if we can standardize data from different sources by offsetting 

varying detection distances and areas of ARUs. Influences of weather on EDR can be controlled 

to an extent by survey protocol (e.g. survey only when wind is <2 on the Beaufort scale, when 

there is no rain, etc.) and corrections for variables such as vegetation/habitat type can be 

calculated separately (Yip et al. 2017a) and applied in conjunction with corrections calculated in 

this study.  

Although we demonstrate that simultaneous comparisons of HPC and ARU data 

potentially enable the calculation of EDR and densities of birds from ARU recordings, this 

approach still relies on accurate distance estimation during HPCs, an assumption that is 
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frequently violated during avian surveys (Alldredge et al. 2007, Nadeau and Conway 2012). 

Errors in distance estimation can bias EDR and bird density calculations and will persist when 

using our correction approach for ARU data. There are also factors unrelated to distance 

estimation that should be also considered before collating these two types of point counts for the 

same analysis. First, some detections in HPC may be only visual, particularly of rare or of quiet 

species that are unavailable to ARUs, or rarely vocalizing species that are unlikely to be detected 

in short-duration recordings (Haselmayer and Quinn 2000, Hutto and Stutzman 2009). Second, 

as ARUs provide a permanent record for review, there may be a negative bias associated with 

species detection in HPC relative to ARU recordings as people listening to ARU data can re-

listen to a sound (Tegeler et al. 2012). This bias could be modelled as observer effects. 

Calibration of ARUs should also be an important part of the permanent record. Microphone 

sensitivity can decrease with use (Turgeon et al. 2017) and influence the area surveyed. 

Microphone quality should be checked regularly to ensure minimal variation in detection 

distance within recorder models. Variation in detectability between observers can be large and 

influence results in both HPC and from ARU recordings in part due to differences in hearing 

ability and experience identifying species (Sauer et al. 1994). Observer variation within ARU 

point counts is likely lower than HPC as a permanent record allows multiple observers to process 

recordings and double check unknown species. Our study should minimize inter-observer 

variability because observers were presented with a limited number of sounds which they could 

review prior to the experiment. Observers were also comprised of males and females between the 

ages of 18-28 who are more likely to have similar hearing levels (Emlen and DeJong 1992).  

Our objectives were to investigate relative differences between ARUs and HPC. We provide 

methods for standardizing and correcting detection distances to derive avian densities from 
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ARUs by accounting for differences in the area surveyed through each method. We used the 

ecosystems presented in this study as a case study to demonstrate application of this method, 

however these methods can be applied to other habitat types to broaden their use. This approach 

to density estimation would be more logistically feasible and affordable than studies using 

microphone arrays to obtain density (Efford and Dawson 2009). Integration of data from ARUs 

and HPCs could allow for larger meta-analyses to make environmental inferences about 

interactions between birds and the environment at larger spatial scales (Cumming et al. 2010). 
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Table 3.1. Candidate models to be compared against a null distance model for the ARU 

experiment. 

Model Parameters 

D*V+A*V+H Distance * Vegetation + ARU Type * Vegetation + Humidity 

D*V+A*V+W+H Distance * Vegetation + ARU Type * Vegetation + Wind + Humidity 

D*V+A*V+W Distance * Vegetation + ARU Type * Vegetation + Wind 

D*V+A*V Distance * Vegetation + ARU Type * Vegetation 

D*V+A+H Distance * Vegetation + ARU Type + Humidity 

D*V+A+W+H Distance * Vegetation + ARU Type + Wind + Humidity 

D*V+A+W Distance * Vegetation + ARU Type + Wind 

D+V*A Distance + Vegetation * ARU Type 

D*V+A Distance * Vegetation + ARU Type 

D+V+A Distance + Vegetation + ARU Type 

null Distance 
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Table 3.2. Model selection for factors influencing detection probability of different sounds for 

the ARU experiment and AUC statistics on test data for the top AIC-ranked model testing 

differences in detection distance between multiple models of ARU. All sounds used the same 

models for selection. We selected top models using lowest AICc value and ∆AICc. For multiple 

models with ∆AICc < 2, we selected the simplest model with fewest parameters (Arnold et al. 

2010). “df” is the degrees of freedom and “logLik” is the log likelihood value for that particular 

model. “*” indicates variable interactions. 

Sound Model df logLik AICc ∆AIC AICw AUC 

1000Hz 
D*V+A+H 11 -678.06 1378.21 0 0.51881 

0.9441 
null 2 -916.19 1836.39 458.183 0 

1414Hz 
D*V+A+H 11 -689.35 1400.8 0 0.49834 

0.9360 
null 2 -936.46 1876.91 476.112 0 

2000Hz 
D*V+A+H 11 -623.6 1269.31 0 0.6919 

0.9672 
null 2 -942.84 1889.69 620.382 0 

2828Hz 
D*V+A 10 -659.49 1339.06 1.21257 0.21324 

0.9636 
null 2 -1036.5 2077.1 739.249 0 

4000Hz 
D*V+A 10 -618.16 1256.4 0.44416 0.28574 

0.9648 
null 2 -1047.1 2098.23 842.276 0 

5656Hz 
D*V+A 10 -534.65 1089.37 0.49016 0.29669 

0.9752 
null 2 -914.53 1833.06 744.179 0 

8000Hz 
D*V+A 10 -391.46 802.998 1.89928 0.13075 

0.9856 
null 2 -647.63 1299.26 498.162 0 

BADO 
D*V+A*V+H 19 -965.55 1969.38 0 0.70662 

0.9203 
null 2 -1215 2434.02 464.639 0 

BAWW 
D*V+A*V 18 -379.28 794.816 1.30815 0.18797 

0.9862 
null 2 -646.36 1296.73 503.219 0 

BEKI 
D*V+A 10 -556.69 1133.46 0.08014 0.24845 

0.9758 
null 2 -924.58 1853.17 719.793 0 

BHCO 
D*V+A 10 -622.73 1265.54 1.04612 0.14687 

0.9662 
null 2 -1006.3 2016.59 752.104 0 

BLWA 
D*V+A 10 -444.07 908.223 0.75359 0.29277 

0.9858 
null 2 -763.45 1530.91 623.443 0 

BOOW 
D*V+A*V+H 19 -827.59 1693.47 0 0.54341 

0.9436 
null 2 -1074.3 2152.68 459.214 0 

CATO 
D*V+A+W+H 12 -733.55 1491.24 0.23228 0.46589 

0.9416 
null 2 -1007.2 2018.32 527.319 0 

CCSP 
D*V+A 10 -468.75 957.582 0 0.35225 

0.9859 
null 2 -897.44 1798.89 841.306 0 

CMWA 
D*V+A*V+H 19 -368.18 774.646 0 0.65587 

0.9865 
null 2 -641 1286.01 511.363 0 

CORA 
D*V+A+H 11 -735.12 1492.33 0.92028 0.28789 

0.9490 
null 2 -1172.7 2349.34 857.927 0 

DEJU 
D*V+A 10 -590.54 1201.15 1.62045 0.11057 

0.9765 
null 2 -1026.7 2057.33 857.799 0 

GGOW D*V+A*V+H 19 -855.99 1750.26 0 0.73321 0.9483 
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null 2 -1142 2288.09 537.832 0 

LEOW 
D*V+A*V+H 19 -892.55 1823.39 0.08974 0.48878 

0.9180 
null 2 -1258.4 2520.75 697.458 0 

LISP 
D*V+A 10 -628.42 1276.92 0 0.29553 

0.9655 
null 2 -1062.2 2128.4 851.48 0 

NSWO 
D*V+A+H 11 -852.58 1727.25 0 0.47978 

0.9359 
null 2 -1115.4 2234.75 507.495 0 

OSFL 
D*V+A+H 11 -688.72 1399.54 0 0.58399 

0.9564 
null 2 -1097.5 2198.97 799.422 0 

OVEN 
D*V+A 10 -575.18 1170.44 0 0.27342 

0.9789 
null 2 -1010.3 2024.55 854.107 0 

PISI 
D*V+A 10 -508.41 1036.89 0 0.37464 

0.9829 
null 2 -900.73 1805.46 768.572 0 

RBGR 
D*V+A+H 11 -737.08 1496.26 0 0.64593 

0.9634 
null 2 -1171.1 2346.27 850.011 0 

RBNU 
D*V+A+H 11 -671.8 1365.71 0 0.42648 

0.9602 
null 2 -1107.2 2218.38 852.67 0 

TEWA 
D*V+A*V 18 -508.71 1053.67 1.96814 0.17829 

0.9786 
null 2 -910.98 1825.97 774.272 0 

WAVI 
D*V+A 10 -588.4 1196.88 0 0.38132 

0.9740 
null 2 -1014.6 2033.14 836.257 0 

WETO 
D*V+A+W+H 12 -825.33 1674.79 0 0.63449 

0.9302 
null 2 -1085.2 2174.5 499.706 0 

WTSP 
D*V+A+H 11 -661.53 1345.16 0 0.61309 

0.9711 
null 2 -1065.4 2134.85 789.682 0 

YERA 
D*V+A+W 11 -447.41 916.932 0 0.54501 

0.9776 
null 2 -699.65 1403.31 486.381 0 
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Table 3.3. Model coefficients (recorder type, habitat type, distance, interactions between habitat type and distance, wind, humidity) for 

the top AIC-ranked model predicting probability of detecting each species and tone with RiverForks (RF), SM2, SM3, and Zoom 

(Zm) recorders, in listening trials conducted at 20 transects near Calling Lake and Lac La Biche, Alberta, Canada in 2014. x is equal to 

-(Distance)2. The reference level for coniferous (Co) and deciduous (Dec) habitat is roadside habitat. “NA” means that variable was 

not included in the top model for that sound. “*” indicates variable interactions. 

Sound Int. x Co Dec RF SM2 SM3 Zm Wind Humidity x*Co x*Dec Co*RF Co*SM2 Co*SM3 Co*Zm Dec*RF Dec*SM2 Dec*SM3 Dec*Zm 

1000 Hz 
3.54 ± 
0.46 

2.84E-06 ± 
2.54E-07 

-1.48 ± 
0.36 

-1.58 
± 0.35 

-0.58 
± 0.31 

-1.28 
± 0.30 

-1.18 
± 0.30 

-1.23 
± 0.30 NA 

3.07E-02 ± 
5.94E-03 

3.11E-06 ± 
6.22E-07 

1.52E-06 ± 
5.11E-07 NA NA NA NA NA NA NA NA 

1414 Hz 
3.72 ± 

0.47 

3.08E-06 ± 

2.53E-07 

-1.67 ± 

0.35 

-1.68 

± 0.34 

-0.73 

± 0.32 

-1.43 

± 0.31 

-1.16 

± 0.31 

-1.65 

± 0.31 NA 

3.17E-02 ± 

5.79E-03 

2.95E-06 ± 

6.46E-07 

1.47E-06 ± 

5.26E-07 NA NA NA NA NA NA NA NA 

2000 Hz 
4.04 ± 

0.44 

3.70E-06 ± 

2.83E-07 

-1.20 ± 

0.42 

-1.99 

± 0.36 

-0.61 

± 0.30 

-1.07 

± 0.30 

-0.39 

± 0.30 

-1.09 

± 0.30 NA 

2.30E-02 ± 

5.94E-03 

6.64E-06 ± 

1.01E-06 

1.44E-06 ± 

5.93E-07 NA NA NA NA NA NA NA NA 

2828 Hz 
5.02 ± 
0.35 

4.07E-06 ± 
2.87E-07 

-0.81 ± 
0.42 

-2.13 
± 0.34 

-0.11 
± 0.30 

-1.24 
± 0.29 

-0.20 
± 0.30 

-0.82 
± 0.29 NA NA 

1.05E-05 ± 
1.46E-06 

2.15E-06 ± 
7.06E-07 NA NA NA NA NA NA NA NA 

4000 Hz 
5.21 ± 

0.37 

6.66E-06 ± 

4.84E-07 

-0.25 ± 

0.54 

-2.68 

± 0.37 

-0.31 

± 0.30 

-1.02 

± 0.30 

0.22 ± 

0.31 

-0.85 

± 0.30 NA NA 

2.27E-05 ± 

3.26E-06 

5.42E-06 ± 

1.36E-06 NA NA NA NA NA NA NA NA 

5656 Hz 
5.78 ± 

0.44 

1.49E-05 ± 

1.05E-06 

-1.22 ± 

0.53 

-2.40 

± 0.47 

-0.66 

± 0.33 

-1.55 

± 0.33 

-0.06 

± 0.34 

-0.68 

± 0.33 NA NA 

2.34E-05 ± 

4.38E-06 

2.72E-05 ± 

4.95E-06 NA NA NA NA NA NA NA NA 

8000 Hz 
6.66 ± 
0.52 

5.17E-05 ± 
3.99E-06 

-1.03 ± 
0.46 

-0.48 
± 0.57 

-1.62 
± 0.41 

-4.34 
± 0.46 

-2.31 
± 0.42 

-3.28 
± 0.44 NA NA 

4.19E-05 ± 
1.13E-05 

1.11E-04 ± 
2.11E-05 NA NA NA NA NA NA NA NA 

BADO 
3.91 ± 

0.57 

4.37E-06 ± 

3.22E-07 

-1.18 ± 

0.76 

-2.69 

± 0.62 

-2.48 

± 0.49 

-2.96 

± 0.50 

-2.18 

± 0.50 

-3.54 

± 0.50 NA 

2.73E-02 ± 

4.63E-03 

4.66E-06 ± 

1.02E-06 

9.00E-07 ± 

6.64E-07 

-0.36 ± 

0.74 

-0.05 ± 

0.76 0.34 ± 0.75 

0.78 ± 

0.76 

2.18 ± 

0.66 2.29 ± 0.66 1.04 ± 0.64 

1.59 ± 

0.64 

BAWW 
8.57 ± 

0.82 

4.55E-05 ± 

3.84E-06 

-1.20 ± 

1.40 

-4.78 

± 1.11 

-4.53 

± 0.67 

-4.74 

± 0.68 

-2.72 

± 0.64 

-4.84 

± 0.69 NA NA 

5.43E-05 ± 

1.39E-05 

5.91E-05 ± 

1.54E-05 

0.16 ± 

1.20 0.12 ± 1.22 0.09 ± 1.11 

1.44 ± 

1.15 

4.66 ± 

1.05 5.04 ± 1.07 2.47 ± 1 

3.40 ± 

1.05 

BBWA 
9.37 ± 
1.01 

5.61E-05 ± 
4.80E-06 

-1.13 ± 
1.49 

3.58 ± 
2.62 

-4.54 
± 0.71 

-6.10 
± 0.77 

-4.00 
± 0.72 

-5.30 
± 0.74 NA 

-0.0196 ± 
0.00732 

1.01E-04 ± 
2.47E-05 

2.15E-04 ± 
5.33E-05 

1.29 ± 
1.26 0.85 ± 1.40 1.38 ± 1.25 

2.22 ± 
1.28 

-0.14 ± 
1.74 

-1.52 ± 
2.19 

-4.24 ± 
2.20 

-3.92 ± 
2.31 

BEKI 
4.48 ± 

0.35 

1.49E-05 ± 

1.02E-06 

9.08E-04 

± 0.43 

-0.40 

± 0.44 

-0.94 

± 0.33 

-2.26 

± 0.32 

-0.24 

± 0.33 

-0.91 

± 0.32 NA NA 

3.96E-05 ± 

5.89E-06 

5.47E-06 ± 

8.35E-06 NA NA NA NA NA NA NA NA 

BHCO 
4.58 ± 

0.32 

1.05E-05 ± 

6.94E-07 

-0.28 ± 

0.41 

-1.60 

± 0.35 

-0.82 

± 0.29 

-2.06 

± 0.29 

-0.32 

± 0.30 

-0.61 

± 0.30 NA NA 

2.86E-05 ± 

4.04E-06 

2.17E-05 ± 

3.79E-06 NA NA NA NA NA NA NA NA 

BLWA 
4.79 ± 
0.39 

2.76E-05 ± 
2.21E-06 

-0.21 ± 
0.53 

-1.18 
± 0.45 

-0.97 
± 0.34 

-1.82 
± 0.34 

-0.52 
± 0.35 

-1.03 
± 0.35 NA NA 

6.02E-05 ± 
1.12E-05 

5.11E-05 ± 
1.02E-05 NA NA NA NA NA NA NA NA 

BOOW 
3.82 ± 

0.53 

4.12E-06 ± 

2.94E-07 

-0.72 ± 

0.73 

-2.23 

± 0.60 

-0.86 

± 0.47 

-1.08 

± 0.48 

-1.36 

± 0.46 

-2.51 

± 0.45 NA 

2.00E-02 ± 

4.97E-03 

3.68E-06 ± 

8.09E-07 

2.15E-06 ± 

7.26E-07 

-0.97 ± 

0.74 

-1.42 ± 

0.75 

-0.34 ± 

0.72 

0.32 ± 

0.72 

0.54 ± 

0.66 1.45 ± 0.68 1.12 ± 0.65 

1.22 ± 

0.63 

CATO 
1.09 ± 

0.40 

4.64E-06 ± 

3.52E-07 

0.52 ± 

0.40 

-0.40 

± 0.28 

-0.43 

± 0.27 

-1.70 

± 0.26 

-0.64 

± 0.28 

-0.96 

± 0.27 

0.24 ± 

0.08 

3.66E-02 ± 

5.10E-03 

1.72E-05 ± 

2.61E-06 

3.34E-06 ± 

1.01E-06 NA NA NA NA NA NA NA NA 

CCSP 
5.81 ± 
0.43 

1.66E-05 ± 
1.17E-06 

-0.93 ± 
0.46 

-0.85 
± 0.51 

-1.72 
± 0.36 

-2.22 
± 0.36 

-0.93 
± 0.36 

-1.89 
± 0.37 NA NA 

2.79E-05 ± 
4.78E-06 

6.33E-05 ± 
9.80E-06 NA NA NA NA NA NA NA NA 
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CORA 
3.15 ± 
0.42 

5.41E-06 ± 
3.74E-07 

1.68 ± 
0.61 

-1.83 
± 0.28 

-0.21 
± 0.29 

-1.35 
± 0.28 

-0.70 
± 0.29 

-1.17 
± 0.28 NA 

1.84E-02 ± 
5.09E-03 

4.25E-05 ± 
5.51E-06 

5.44E-06 ± 
1.4E-06 NA NA NA NA NA NA NA NA 

DEJU 
5.02 ± 

0.36 

1.12E-05 ± 

7.42E-07 

-0.33 ± 

0.43 

-1.08 

± 0.40 

-1.34 

± 0.33 

-2.10 

± 0.33 

-0.78 

± 0.33 

-1.26 

± 0.32 NA NA 

3.10E-05 ± 

4.51E-06 

3.70E-05 ± 

5.60E-06 NA NA NA NA NA NA NA NA 

GGOW 
3.17 ± 

0.48 

4.13E-06 ± 

3.00E-07 

-0.94 ± 

0.66 

-1.35 

± 0.60 

-2.08 

± 0.41 

-2.05 

± 0.42 

-1.55 

± 0.42 

-2.74 

± 0.41 NA 

2.54E-02 ± 

4.74E-03 

1.15E-05 ± 

1.61E-06 

3.71E-06 ± 

8.79E-07 

1.32 ± 

0.69 0.28 ± 0.71 1.38 ± 0.71 

1.90 ± 

0.69 

1.08 ± 

0.63 1.60 ± 0.66 0.64 ± 0.64 

0.87 ± 

0.62 

LEOW 
6.12 ± 
0.77 

5.11E-06 ± 
3.79E-07 

0.04 ± 
1.27 

-4.58 
± 0.82 

-5.19 
± 0.67 

-5.26 
± 0.67 

-4.22 
± 0.66 

-5.58 
± 0.69 NA 

2.51E-02 ± 
4.73E-03 

1.40E-05 
±2.26E-06 

3.83E-07 ± 
7.43E-07 

-0.49 ± 
1.18 

-1.05 ± 
1.19 1.90 ± 1.12 

0.32 ± 
1.15 

4.16 ± 
0.81 4.45 ± 0.82 2.26 ± 0.79 

3.42 ± 
0.82 

LISP 
4.80 ± 

0.34 

1.02E-05 ± 

6.82E-07 

0.46 ± 

0.55 

-1.78 

± 0.35 

-0.93 

± 0.30 

-1.75 

± 0.30 

-0.69 

± 0.30 

-0.82 

± 0.30 NA NA 

3.84E-05 ± 

5.77E-06 

1.94E-05 ± 

3.43E-06 NA NA NA NA NA NA NA NA 

NSWO 
3.32 ± 

0.39 

4.28E-06 ± 

2.96E-07 

-1.49 ± 

0.30 

-1.86 

± 0.28 

0.65 ± 

0.27 

-0.44 

± 0.25 

-0.18 

± 0.24 

-0.94 

± 0.24 NA 

1.32E-02 ± 

4.70E-03 

5.95E-06 ± 

1.07E-06 

2.94E-07 ± 

5.70E-07 NA NA NA NA NA NA NA NA 

OSFL 
3.18 ± 

0.43 

7.36E-06 ± 

5.11E-07 

1.55 ± 

0.68 

-2.06 

± 0.31 

-0.15 

± 0.28 

-1.13 

± 0.28 

0.01 ± 

0.28 

-0.48 

± 0.28 NA 

1.82E-02 ± 

5.46E-03 

3.91E-05 ± 

5.60E-06 

5.52E-06 ± 

1.65E-06 NA NA NA NA NA NA NA NA 

OVEN 
5.38 ± 

0.38 

1.21E-05 ± 

8.18E-07 

-0.38 ± 

0.44 

-1.51 

± 0.39 

-1.49 

± 0.33 

-2.39 

± 0.34 

-1.22 

± 0.33 

-1.40 

± 0.33 NA NA 

3.16E-05 ± 

4.70E-06 

3.16E-05 ± 

5.04E-06 NA NA NA NA NA NA NA NA 

PISI 
5.16 ± 

0.38 

1.49E-05 ± 

1.03E-06 

-0.36 ± 

0.47 

-1.09 

± 0.45 

-1.27 

± 0.33 

-1.91 

± 0.34 

-0.72 

± 0.32 

-0.91 

± 0.33 NA NA 

3.36E-05 ± 

5.29E-06 

4.50E-05 ± 

7.08E-06 NA NA NA NA NA NA NA NA 

RBGR 
2.97 ± 
0.39 

4.67E-06 ± 
3.24E-07 

1.19 ± 
0.55 

-1.68 
± 0.27 

0.26 ± 
0.27 

-0.99 
± 0.25 

0.06 ± 
0.27 

-0.34 
± 0.26 NA 

0.01193 ± 
0.004757 

3.59E-05 ± 
4.65E-06 

4.54E-06 ± 
1.12E-06 NA NA NA NA NA NA NA NA 

RBNU 
3.23 ± 

0.43 

4.61E-06 ± 

3.14E-07 

1.53 ± 

0.63 

-1.54 

± 0.29 

-0.27 

± 0.29 

-1.42 

± 0.28 

-0.24 

± 0.29 

-0.72 

± 0.29 NA 

1.82E-02 ± 

5.33E-03 

3.21E-05 ± 

4.49E-06 

5.27E-06 ± 

1.07E-06 NA NA NA NA NA NA NA NA 

TEWA 
4.96 ± 

0.49 

1.83E-05 ± 

1.37E-06 

2.50 ± 

1.32 

-0.07 

± 1.00 

-1.87 

± 0.47 

-2.91 

± 0.48 

-1.05 

± 0.50 

-1.22 

± 0.48 NA NA 

6.83E-05 ± 

1.20E-05 

7.19E-05 ± 

1.28E-05 

-1.79 ± 

1.13 

-2.62 ± 

1.24 

-2.61 ± 

1.13 

-3.17 ± 

1.19 

-0.47 ± 

0.96 0.51 ± 0.99 

-0.82 ± 

0.92 

-1.34 ± 

0.96 

WAVI 
4.62 ± 
0.34 

1.13E-05 ± 
7.54E-07 

-0.05 ± 
0.49 

-2 ± 
0.36 

-0.52 
± 0.30 

-1.52 
± 0.30 

-0.17 
± 0.30 

-0.71 
± 0.30 NA NA 

3.48E-05 ± 
5.18E-06 

2.16E-05 ± 
3.98E-06 NA NA NA NA NA NA NA NA 

WETO 
0.82 ± 

0.37 

3.72E-06 ± 

2.92E-07 

0.62 ± 

0.33 

0.23 ± 

0.27 

-0.41 

± 0.25 

-1.67 

± 0.24 

-0.84 

± 0.25 

-1.44 

± 0.24 

0.15 ± 

0.06 

3.21E-02 ± 

4.65E-03 

1.21E-05 ± 

1.91E-06 

6.41E-06 ± 

1.20E-06 NA NA NA NA NA NA NA NA 

WTSP 
3.67 ± 

0.42 

5.97E-06 ± 

4.18E-07 

0.62 ± 

0.55 

-2.18 

± 0.30 

-0.06 

± 0.29 

-1.03 

± 0.27 

0.09 ± 

0.29 

-0.44 

± 0.28 NA 

1.15E-02 ± 

4.95E-03 

2.56E-05 ± 

3.78E-06 

3.95E-06 ± 

1.23E-06 NA NA NA NA NA NA NA NA 

YEAR 
3.78 ± 

0.37 

2.55E-05 ± 

2.10E-06 

0.86 ± 

0.53 

0.48 ± 

0.52 

-0.96 

± 0.35 

-2.65 

± 0.35 

-0.60 

± 0.36 

-1.23 

± 0.35 

0.18 ± 

0.07 NA 

7.10E-05 ± 

1.28E-05 

8.27E-05 ± 

1.51E-05 NA NA NA NA NA NA NA NA 
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Table 3.4. Candidate models to be compared against a null distance model for the SPL 

experiment. 

Model Parameters 

D*V+S+W+H Distance * Vegetation + SPL + Wind + Humidity 

D*V+S+H Distance * Vegetation + SPL + Humidity 

D*V+S+W Distance * Vegetation + SPL + Wind 

D*V+S Distance * Vegetation + SPL 

D+S+V Distance + SPL + Vegetation 

null Distance 
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Table 3.5. Model selection for factors influencing detection probability of different sounds for 

the SPL experiment and AUC statistics on test data for the top AIC-ranked model testing 

differences in detection with varying SPL. All sounds used the same models for selection. We 

selected top models using lowest AICc value and ∆AICc. For multiple models with ∆AICc < 2, 

we selected the simplest model with fewest parameters (Arnold et al. 2010). “df” is the degrees 

of freedom and “logLik” is the log likelihood value for that particular model. “*” indicates 

variable interactions. 

Sound Model df logLik AICc ∆AIC AICw AUC 

1000Hz 
D+S+V 4 -174.77 357.624 1.02958 0.23285 

0.8989 
null 3 -204.68 415.407 58.8134 0 

1414Hz 
D*V+S+W 6 -157 326.164 0 0.70592 

0.9337 
null 3 -212.93 431.9 105.736 0 

2000Hz 
D*V+S 5 -130.41 270.956 0 0.47529 

0.9376 
null 3 -196.99 400.037 129.08 0 

2828Hz 
D+S+V 4 -128.21 264.511 1.05645 0.18359 

0.9530 
null 3 -183.54 373.134 109.679 0 

4000Hz 
D*V+S+H 6 -137.36 286.892 0 0.65231 

0.9286 
null 3 -200.76 407.57 120.678 0 

5656Hz 
D*V+S 5 -134.05 278.227 0 0.47408 

0.9468 
null 3 -219.32 444.684 166.457 0 

8000Hz 
D+S+V 4 -145.2 298.489 0 0.4728 

0.8732 
null 3 -154.28 314.617 16.1271 0.00015 

BADO 
D*V+S 5 -174.47 359.069 0.04153 0.29076 

0.9026 
null 3 -184.18 374.401 15.3734 0.00014 

BAWW 
D*V+S 5 -121.15 252.422 0.17268 0.34988 

0.9484 
null 3 -188.9 383.846 131.597 0 

BEKI 
D*V+S 5 -94.142 198.408 0 0.43996 

0.9669 
null 3 -179.37 364.798 166.39 0 

BHCO 
D*V+S 5 -138.66 287.446 0 0.51571 

0.9150 
null 3 -231.26 468.563 181.116 0 

BLWA 
D*V+S 5 -122.69 255.513 0 0.41554 

0.9556 
null 3 -185.04 376.137 120.623 0 

BOOW 
D*V+S 5 -141.16 292.459 0 0.44656 

0.9473 
null 3 -168.2 342.459 50.0003 0 

CATO 
D+S+V 4 -125.29 258.672 0.65638 0.26736 

0.9612 
null 3 -173.07 352.203 94.1878 0 

CCSP 
D*V+S 5 -110.37 230.876 0 0.34889 

0.9627 
null 3 -212.21 430.469 199.593 0 

CMWA 
D*V+S+W+H 7 -115.55 245.34 0 0.57437 

0.8705 
null 3 -140.1 286.247 40.907 0 

CORA 
D*V+S 5 -131.11 272.361 1.91579 0.20263 

0.9286 
null 3 -190.52 387.094 116.648 0 

DEJU 
D*V+S 5 -121.69 253.499 0 0.50504 

0.9476 
null 3 -221.87 449.795 196.296 0 

GGOW D+S+V 4 -154.01 316.097 1.41848 0.19217 0.9205 
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null 3 -177.89 361.824 47.1454 0 

LEOW 
D*V+S+W 6 -167.41 347.01 0 0.58855 

0.9505 
null 3 -173.06 352.173 5.16266 0.04454 

LISP 
D*V+S 5 -107.61 225.361 0 0.53271 

0.9808 
null 3 -197.36 400.777 175.416 0 

NSWO 
D*V+S 5 -152.5 315.116 0 0.4052 

0.9113 
null 3 -209.02 424.082 108.967 0 

OSFL 
D*V+S 5 -126.27 262.68 0 0.44356 

0.9836 
null 3 -193.46 392.968 130.289 0 

OVEN 
D*V+S 5 -99.705 209.536 0 0.53143 

0.9649 
null 3 -213.27 432.587 223.051 0 

PISI 
D*V+S 5 -103.87 217.868 0.38708 0.32376 

0.9721 
null 3 -216.71 439.46 221.979 0 

RBGR 
D*V+S 5 -149.31 308.756 0.53372 0.2544 

0.9569 
null 3 -208.46 422.974 114.752 0 

RBNU 
D*V+S 5 -95.736 201.6 0 0.40291 

0.9823 
null 3 -187.34 380.727 179.127 0 

TEWA 
D*V+S 5 -94.862 199.85 0 0.51786 

0.9828 
null 3 -155.97 317.992 118.142 0 

WAVI 
D*V+S 5 -110.61 231.344 0 0.32514 

0.9561 
null 3 -187.42 380.898 149.554 0 

WETO 
D*V+S+H 6 -134.66 281.524 0 0.68689 

0.9363 
null 3 -180.56 367.18 85.656 0 

WTSP 
D*V+S 5 -97.034 204.205 0 0.40879 

0.9708 
null 3 -190.93 387.906 183.701 0 

YERA 
D*V+S+W 6 -96.075 204.342 0 0.43954 

0.9650 
null 3 -134.19 274.437 70.0948 0 
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Table 3.6. Model coefficients (amplitude, distance, habitat type, interactions between habitat type and distance, wind, humidity) for 

the top AIC-ranked model predicting probability of detecting each species and tone, in listening trials conducted along 20 transects in 

the Blackfoot-Cooking Lake Natural Area near Edmonton, Alberta, Canada in 2014. x is equal to -(Distance)2. SPL = amplitude (dB). 

The reference level for open habitat is closed habitat. “NA” means that variable was not included in the top model for that sound. 

Sound Intercept x HabitatOPEN SPL Wind Humidity x*HabitatOPEN 

1000Hz -5.522 ± 0.8325 1.05E-04 ± 2.09E-05 2.151 ± 0.3579 0.1075 ± 0.01356 NA NA NA 

1414Hz -9.444 ± 1.16 1.74E-04 ± 3.29E-05 2.505 ± 0.6005 0.181 ± 0.02048 -0.1651 ± 0.06309 NA -4.16E-05 ± 4.16E-05 

2000Hz -8.87 ± 1.232 2.05E-04 ± 3.60E-05 1.999 ± 0.6706 0.1708 ± 0.02141 NA NA -1.39E-04 ± 4.89E-05 

2828Hz -9.332 ± 1.204 1.55E-04 ± 2.55E-05 3.335 ± 0.4805 0.1725 ± 0.0205 NA NA NA 

4000Hz -8.304 ± 1.295 2.06E-04 ± 3.96E-05 3.444 ± 0.7512 0.1861 ± 0.02251 NA -0.0356 ± 0.01425 6.09E-05 ± 4.81E-05 

5656Hz -8.75 ± 1.184 2.91E-04 ± 4.59E-05 2.197 ± 0.6653 0.1569 ± 0.01883 NA NA -1.68E-04 ± 5.14E-05 

8000Hz -8.673 ± 1.214 1.52E-04 ± 2.90E-05 1.334 ± 0.3882 0.1071 ± 0.01543 NA NA NA 

BADO -8.549 ± 1.046 1.73E-04 ± 3.29E-05 0.5262 ± 0.544 0.1614 ± 0.01756 NA NA -6.68E-05 ± 4.02E-05 

BAWW -11.46 ± 1.605 4.53E-04 ± 9.51E-05 2.023 ± 0.778 0.1832 ± 0.02288 NA NA -2.77E-04 ± 9.32E-05 

BEKI -15.62 ± 2.215 5.49E-04 ± 1.21E-04 2.134 ± 0.8948 0.2316 ± 0.03046 NA NA -4.11E-04 ± 1.19E-04 

BHCO -11.11 ± 1.447 3.37E-04 ± 5.96E-05 2.265 ± 0.6906 0.1859 ± 0.02231 NA NA -2.31E-04 ± 6.24E-05 

BLWA -10.33 ± 1.472 4.09E-04 ± 9.06E-05 1.271 ± 0.7414 0.1591 ± 0.01998 NA NA -2.95E-04 ± 9.21E-05 

BOOW -7.506 ± 1.05 1.85E-04 ± 3.42E-05 0.9213 ± 0.6025 0.1457 ± 0.01773 NA NA -8.26E-05 ± 4.37E-05 

CATO -12.3 ± 1.453 1.38E-04 ± 2.60E-05 2.844 ± 0.4705 0.1898 ± 0.02177 NA NA NA 

CCSP -13.21 ± 1.783 5.16E-04 ± 9.73E-05 2.498 ± 0.794 0.221 ± 0.02743 NA NA -3.60E-04 ± 9.33E-05 

CMWA -12.48 ± 2.066 2.82E-04 ± 9.71E-05 1.866 ± 0.7697 0.1466 ± 0.0229 -0.05099 ± 0.1022 0.02312 ± 0.016 -8.02E-05 ± 1.01E-04 

CORA -12.54 ± 1.567 2.33E-04 ± 4.63E-05 1.486 ± 0.6848 0.2076 ± 0.02417 NA NA -1.50E-04 ± 5.13E-05 

DEJU -11.94 ± 1.577 3.22E-04 ± 5.93E-05 2.774 ± 0.7522 0.1919 ± 0.02333 NA NA -1.96E-04 ± 6.31E-05 

GGOW -9.475 ± 1.07 1.31E-04 ± 2.39E-05 2.06 ± 0.3742 0.1564 ± 0.0168 NA NA NA 

LEOW -7.861 ± 0.9351 1.02E-04 ± 2.97E-05 0.5742 ± 0.527 0.1354 ± 0.01439 -0.09756 ± 0.05937 NA 6.13E-06 ± 3.86E-05 

LISP -11.07 ± 1.461 3.68E-04 ± 7.15E-05 1.741 ± 0.6862 0.1805 ± 0.02161 NA NA -2.49E-04 ± 7.50E-05 

NSWO -10.13 ± 1.253 2.57E-04 ± 3.77E-05 0.8892 ± 0.6186 0.184 ± 0.02056 NA NA -1.91E-04 ± 4.64E-05 

OSFL -8.271 ± 1.1 2.19E-04 ± 3.94E-05 2.247 ± 0.6157 0.145 ± 0.01765 NA NA -9.70E-05 ± 4.50E-05 

OVEN -14.44 ± 2.058 4.93E-04 ± 1.03E-04 3.408 ± 0.959 0.2366 ± 0.03041 NA NA -2.80E-04 ± 9.77E-05 

PISI -13.97 ± 1.972 5.63E-04 ± 1.13E-04 2.798 ± 0.9211 0.2329 ± 0.0294 NA NA -4.07E-04 ± 1.09E-04 

RBGR -9.132 ± 1.157 2.59E-04 ± 4.40E-05 0.6957 ± 0.598 0.1522 ± 0.01721 NA NA -1.92E-04 ± 4.89E-05 

RBNU -12.5 ± 1.646 3.32E-04 ± 5.34E-05 2.046 ± 0.777 0.2222 ± 0.02729 NA NA -2.24E-04 ± 5.73E-05 

TEWA -15.43 ± 2.033 4.40E-04 ± 1.11E-04 2.095 ± 0.8189 0.2191 ± 0.02727 NA NA -2.87E-04 ± 1.11E-04 

WAVI -12.28 ± 1.496 4.03E-04 ± 7.74E-05 1.22 ± 0.71 0.2048 ± 0.02313 NA NA -2.99E-04 ± 8.00E-05 
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WETO -13.72 ± 1.78 2.04E-04 ± 3.84E-05 1.527 ± 0.649 0.19 ± 0.02214 NA 0.04153 ± 0.01314 -1.18E-04 ± 4.55E-05 

WTSP -11.42 ± 1.575 2.44E-04 ± 4.56E-05 3.909 ± 0.858 0.2021 ± 0.02622 NA NA -1.01E-04 ± 5.44E-05 

YERA -14.08 ± 2.14 3.79E-04 ± 1.21E-04 1.593 ± 0.8316 0.1949 ± 0.02761 -0.1427 ± 0.09392 NA -2.44E-04 ± 1.22E-04 
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Figure 3.1. Probability of detecting OSFL with distance from ARU in (A) open (roadside) and 

closed (forested) habitat, and (B) with human observers, RiverForks, SM2, SM3, and Zoom 

recorders. Predictions are calculated from binomial detection data and plotted with 95% 

confidence intervals.  
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Figure 3.2. Correction factors for (A) EDR and (B) MDD of various ARU types at different 

frequencies. ARUs are in comparison to human detection as a reference. Correction factors are 

calculated using a ratio of detection area of ARU to detection area of a field observer (Appendix 

2.1-2.2). Correction factors less than 1 mean smaller detection distances than human observers in 

the field and can be applied to ARU data to standardize it with data from HPC. 
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Figure 3.3.  Influence of the sound pressure level (dB) of our song broadcasts on EDR for tones, owls, songbirds, and all other species, 

plotted separately. We found no statistically significant interaction between different species/tones although EDR for two species of 

owl (GGOW and LEOW) appear to increase at a greater rate with distance than other sounds.
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Chapter 4. Correcting for environmental variation in avian detectability using 

playback experiments 

 

INTRODUCTION 

The use of passive monitoring technology is increasing in ecological research as a less 

invasive alternative to traditional surveys and sampling methods such as point and transect 

surveys and mark-recapture approaches. In particular, passive acoustic monitoring has been used 

by wildlife researchers to successfully study a variety of taxa, including birds (Wilson and Bayne 

2018, Shonfield et al. 2018), amphibians (Corn et al. 2011), bats (Parkins and Clark 2015), 

cetaceans (Stimpert et al. 2015), and fish (Luczkovich et al. 2008). Developments in acoustic 

monitoring technology have resulted in higher quality recordings and lower cost devices. 

Autonomous recording units (ARUs) allow the user to program the duration, timing, and number 

of recordings that occur at a location. Computer recognition software further increases the 

efficiency of ARUs by automating the detection process for target species (Knight et al. 2017). 

Application and future use of this technology, as well as current constraints and limitations have 

been well documented and reviewed as passive acoustic monitoring becomes more widespread 

(Shonfield and Bayne 2017, Gibb et al. 2018).  

One major concern with acoustic monitoring, whether by ARUs or traditional methods, is 

controlling for variation in detectability for species of interest. In a free field environment, 

acoustic signals attenuate at a predictable rate due to spherical spreading (Wiley and Richards 

1982). However, excess attenuation and degradation of acoustic signals beyond what is predicted 

from free field calculations are directly related to the environment they pass through. Densely 
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vegetated environments may increase scattering, refraction, and reverberation of sound waves 

(Richards and Wiley 1980, Yang et al. 2013) and atmospheric properties such as temperature and 

humidity can interacts with sound waves (Morton 1975). Vocalization structure also strongly 

influences signal propagation and varies among species. For example, higher frequency 

vocalizations are absorbed by the surrounding environment at a higher rate (Forrest 1994) and 

pure tone or whistle-like vocalizations can be enhanced in forested environments (Morton 1975, 

Brumm and Naguib 2009). Furthermore, species inhabiting open habitats are more likely than 

forest species to use trills to maximize signal propagation (Wiley 1991, Brumm and Naguib 

2009). In biodiversity surveys that rely heavily on acoustic detections, failure to take into 

account differences in detectability and sound attenuation across various environments could 

lead to inaccurate assessments of animal relative abundance, density, diversity, and occupancy 

(Denes et al. 2015). Several approaches have been suggested to correct for variable detectability 

from environmental sources, particularly from vegetation variation. Royle (2018) proposed using 

a non-Euclidean cost-weighted distance approach to model sound attenuation in heterogeneous 

vegetation. Solymos et al. (2013) and Yip et al. (2017) suggested the use of statistical offsets to 

correct for changes in survey radius due to variable detectability. Other studies have further 

quantified detectability and detection distance for different environments (Darras et al. 2016; 

MacLaren et al. 2018).  

While accounting for variation in detectability is recommended, there are numerous 

factors that need to be considered when conducting surveys. These include the distance of the 

animal from observer or sensor, ability or skill when interpreting animal presence, behaviour of 

the signaller, and the acoustic environment which influences attenuation of sound signals 

between the source and receiver (Johnson 2008). Addressing some or all of these variables may 
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be logistically or financially difficult, particularly with large monitoring or survey programs. 

Previous studies have investigated sound transmission and detectability with respect to 

vegetation type (Richards 1981, Darras et al. 2016, MacLaren et al. 2018) and weather 

(Anderson and Ohmart 1977), and all advocated for taking these factors into account when 

correcting for detectability. However, the relative contribution of each of these factors to the total 

amount of bias in population estimates is not well understood. 

We investigate the effect of environmental and species-specific variables on the 

detectability of avian and anuran vocalizations by human observers through sound playback 

experiments at known distances. Our objectives were to 1) evaluate the effect and relative 

importance of local atmospheric conditions, vegetation types, and song structure on the ability of 

signals to be detected, 2) compare possible biases in population size estimation resulting from 

these factors, and 3) present a method for standardizing variable detection probability using 

generalized song characteristics and discuss recommendations for implementing these 

corrections in acoustic monitoring. We aim to help researchers prioritize the most important 

factors when accounting for bias in population estimates due to variable detection probability 

and provide a method to decrease bias and increase accuracy when assessing species abundance, 

distribution, and diversity.  

 

METHODS 

Data Collection 

We collected data in various locations throughout north-east Alberta between 26 July and 

16 October 2014. We conducted field broadcasts across 57 different site transects, in seven 
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different environments including grassland (n = 7), graminoid fen (n = 4), black-spruce bog (n = 

10), conifer-dominated upland (n = 4), deciduous-dominated upland (n = 4), road corridors (n = 

10), and forest edge (n = 10). We selected sites using the Alberta Vegetation Inventory (AVI) in 

locations with at least 1.5km of homogenous vegetation and visually confirmed by field 

observers. These environments represent the wide range of forest and feature types found in the 

parkland and boreal forest regions of Northern Alberta. We broadcast 31 different sounds and 

species at 30 different standardized distances at regular intervals from 12 to 1312m for each 

transect for a total of 1710 unique locations. The broadcast sequence consisted of six 1-second 

pure tones escalating in half-octave intervals (1000Hz, 1414Hz, 2000Hz, 2828Hz, 4000Hz, 

5656Hz) followed by recordings of 25 avian and amphibian species obtained from Thayer’s 

Birding Software (version 3.0) selected to represent a variety of frequencies and song 

complexities in the following order: Clay-coloured Sparrow (Spizella pallida, CCSP), Black-

and-white Warbler (Mniotilta varia, BAWW), Lincoln’s Sparrow (Melospiza lincolnii, LISP), 

Brown-headed Cowbird (Molothrus ater, BHCO), Red-breasted Nuthatch (Sitta canadensis, 

RBNU), Bay-breasted Warbler (Setophaga castanea, BBWA), Dark-eyed Junco (Junco 

hyemalis, DEJU), White-throated Sparrow (Zonotrichia albicollis, WTSP), Cape May Warbler 

(Setophaga tigrina, CMWA), Common Raven (Corvus corax, CORA), Belted Kingfisher 

(Megaceryle alcyon, BEKI), Olive-sided Flycatcher (Contopus cooperi, OSFL), Pine Siskin 

(Spinus pinus, PISI), Tennessee Warbler (Oreothlypis peregrina, TEWA), Warbling Vireo 

(Vireo gilvus, WAVI), Rose-breasted Grosbeak (Pheucticus ludovicianus, RBGR), Ovenbird 

(Seiurus aurocapilla, OVEN), Yellow Rail (Coturnicops noveboracensis, YERA), Western Toad 

(Anaxyrus boreas, WETO), Canadian Toad (Bufo hemiophrys, CATO), Northern Saw-whet Owl 

(Aegolius acadicus, NSWO), Boreal Owl (Aegolius funereus, BOOW), Great Gray Owl (Strix 
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nebulosa, GGOW), Long-eared Owl (Asio otus, LEOW), and Barred Owl (Strix varia, BADO). 

All sounds were separated by a two second interval to avoid overlap of signals. We normalized 

all sounds using peak amplitude and broadcast at a sound pressure level (SPL) of 90dB (re 20 

µPA) which was calibrated using a handheld sound meter (Sper Scientific 840018) and 

measuring the 1000Hz tone at one metre from the speaker (fast-time A-weighting).  

Sounds were broadcast from an Alpine digital receiver (CDE-122) paired with an Alpine 

6.5 inch speaker/tweeter combination (SPR-60) mounted on a tripod 1.5m above the ground and 

recorded at standardized distances between 12 and 1312 m using a Wildlife Acoustics Song 

Meter SM2+ automated audio recorder in WAV format at a sampling rate of 44.1kHz, 16 bit 

depth, and default gain. Broadcasts were conducted at 25 m intervals from 12 to 412 m, 50m 

intervals from 412 to 612m, and 100m intervals from 612 to 1312 m. Following each broadcast, 

the speaker apparatus was moved to the next distance at that transect. Distance was measured 

with a handheld GPS (GARMIN GPSmap 78, accuracy ± 3m). The direction of the speaker was 

oriented towards the audio recorder during each broadcast by taking the bearing of the audio 

recorder using GPS. Average wind speed, temperature, and relative humidity was measured 

during each broadcast using a handheld weather monitor (Kestrel 4000).  

Sound Processing 

 We clipped individual sounds from continuous recordings using an automated script in 

Praat 5.4.06 (Boersma and Weenink 2015). Sounds were randomized and presented to 12 

observers who identified sounds and species by 1) visual scanning of spectrograms in Adobe 

Audition (window type: Blackman-Harris; window length: 2048), and 2) using standardized 

volumes and headphones. We inserted blank clips consisting of ambient background noise and 
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low levels of wind and vegetation noise to control for false positive identification. We generated 

a dataset of binomial data with positive identifications and known missed detections (including 

false negative and incorrect identifications) from these observations.  

 We measured acoustic parameters for each sound and species using the original playback 

file used for broadcasts. We calculated minimum frequency as the lowest peak frequency at any 

point in the spectrogram, bandwidth as the difference between the maximum frequency and 

minimum frequency, and syllable rate as the number of syllables (repeated elements) divided by 

the duration of the sound in seconds for sounds with repeated elements. All measurements were 

done using visual inspection of spectrograms.  

Modelling Effects of Song Structure, Vegetation, and Environmental Conditions 

 First, we fit generalized linear mixed models (GLMMs) with a binomial distribution and 

logit link with the probability of detecting a sound or species as the response and known distance 

of playback as a predictor term. We built a set of candidate models that included environmental 

predictors (vegetation type, wind, temperature, and humidity) and song structure predictors 

(syllable rate, bandwidth, and minimum frequency). We also included two-way interactions 

between distance and vegetation type, wind and vegetation type, and vegetation type and each 

song structure predictor in our model selection process because sound attenuation rate is known 

to vary based on sound structure variables and in different environments. Continuous predictor 

terms were centred and standardized prior to modelling and variance inflation factors (VIF) were 

calculated to test for collinearity (Naimi et al. 2014). We used small sample size corrected 

Akaike’s Information Criterion (AICc) to rank and select the model with the lowest AICc or the 

simplest model when multiple candidate models had ΔAICc less than 2 (Arnold 2010). We 
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calculated intraclass correlation coefficients (ICC) to determine if site or observer were 

important random effects (defined as ICC > 0.30) and did not include them in model selection 

(ICC < 0.08 for both terms). However, we included sound type as a random effect to account for 

pseudo-replication of song structure predictors because each sound had identical structural 

values. Finally, we used commonality analysis (Nimon and Oswald 2013) to investigate relative 

explained variation by each predictor in the final model and whether explained variation between 

environmental and sound structure parameters were related.  

 Next, we fit generalized linear models (GLMs) with the same data distribution and link 

function for each species or sound individually to investigate patterns between species. We used 

the same model selection process to build a list of candidate models for each species that 

included distance, vegetation type, wind, temperature, and humidity as predictor terms for 

probability of detection. We included two-way interactions between distance and vegetation 

type, and wind and vegetation type in the selection process as well. We did not include any 

random effects in these models after calculating site and observer ICC coefficients for each 

species (all site ICC < 0.15; all observer ICC < 0.05). 

Pairwise Comparison of Detectability Across Vegetation Types 

 We estimated effective detection radius (EDR) for each sound and species, in each 

vegetation type. EDR is defined as the distance at which the number of detections greater than 

this distance is equal to the number of detections missed within this distance (Buckland et al. 

2001). We used a half-normal detection function estimated from our binomial detection data and 

fit with GLMs with a binomial distribution, fixed zero intercept, and complementary log-log 

(“cloglog”) link (see Yip et al. 2017). We used a Monte Carlo simulation to test for significant 



81 

 

differences in detectability between vegetation types. We used the above-mentioned GLMs to 

generate coefficients (n = 1000) using maximum-likelihood estimates and variance co-variance 

matrices to calculate 90% confidence intervals for EDR for each species in each vegetation type. 

We excluded species and vegetation type combinations when GLMs had convergence issues (i.e. 

< 95% successful convergence) which inflated confidence intervals due to an insufficient number 

of missed detections. We compared overlap between confidence intervals to test for statistical 

differences for each species. Vegetation types with confidence intervals that did not overlap were 

considered significantly different.  

Estimating Corrections to Survey Area 

 We estimated EDR for each species with different classifications for vegetation to 

calculate correction factors which can be applied to survey data to offset variation in detectability 

caused by the surrounding vegetation type. We estimated EDR for 1) each species, with 

surrounding vegetation classified as “open” (road, forest edge, graminoid fen, and grassland) or 

“closed” (conifer forest, deciduous forest, treed bog) canopy, and 2) each species, with 

surrounding vegetation categorized by vegetation type. We then calculated the area over which 

each species could be detected (i.e. A = pi(EDR)2). We calculated correction factors for “open” 

relative to “closed” canopy, and different vegetation types relative to forest edge by taking the 

ratio of area surveyed for each species in each vegetation type over the area surveyed for each 

species in the reference vegetation type.  

We modelled correction factors and song characteristics using each species and sound as 

a replicate, to predict the correction factors that should be used for a given vegetation type and 

species combination and to evaluate accuracy of predictions. We also used linear regression with 
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correction factor as the response variable and vegetation type and song characteristics as 

predictors, and leave-one-out (LOO) cross validation to predict correction factors that could be 

used for species in these vegetation types that were not included in our playback surveys. We 

calculated error in predicted correction factors by calculating the difference in predicted values 

from cross-validation and the true value. We also calculated relative error by dividing the true 

value by the predicted value so that prediction accuracy across different vegetation types or 

species were comparable.  

 

RESULTS 

Effects of Song Structure, Vegetation, and Environmental Conditions 

 The top performing model when pooling all sounds and species included distance, 

vegetation type, minimum frequency, bandwidth, wind, temperature, and humidity as predictor 

variables. Two-way interactions between distance and vegetation type, wind and vegetation type, 

minimum frequency and vegetation type, and bandwidth and vegetation type were also 

significant. Detectability decreased as distance of broadcast increased, however this effect 

differed among vegetation types (Appendix 3.1). Detectability was also negatively related to 

minimum frequency and bandwidth and declined faster in closed vegetation (coniferous forest, 

deciduous forest, and treed bog) compared to open vegetation (road, forest edge, graminoid fen, 

and grassland). Temperature and wind had a negative effect on detectability and humidity had a 

positive effect.  

 When each species or sound was modelled individually, each top performing model 

included a negative effect of distance, vegetation type, and a two-way interaction between 
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distance and vegetation type (Appendix 3.2). All but six species included a two-way interaction 

between vegetation type and wind. Of these six species, BBWA and LISP did not include any 

weather variables, YERA and CATO included negative effect of temperature, and OVEN and 

PISI included a positive effect of humidity (Appendix 3.3). PISI also included a positive effect of 

temperature while CATO included a negative effect. All other sounds included a two-way 

interaction between wind and vegetation type indicating differential effects on detectability. 10 

species (4000Hz, BEKI, BHCO, CCSP, CMWA, DEJU, OSFL, RBGR, TEWA, WAVI) did not 

have any other weather covariates included in the top model. Six species (1000Hz, 2828Hz, 

BADO, GGOW, NSWO, WETO) included temperature as a generally negative additional 

significant predictor, four species (1414Hz, 2000Hz, CORA, RBNU) included a positive effect 

of humidity, and five species (5656Hz, BAWW, BOOW, LEOW, WTSP) included both 

humidity and temperature.  

 Distance was the primary predictor explaining probability of detection. In the pooled 

model, distance was associated with 65.37% of explained unique variation (Appendix 3.4). 

Vegetation type (8.32%), minimum sound frequency (6.56%), and sound bandwidth (10.15%) 

were also importance sources of explained unique variation. While included in the top 

performing model, environmental covariates including wind (0.12%), humidity (0.21%), and 

temperature (0.04%) provided limited explained unique variation relative to other predictors. The 

proportions of unique variation explained by each predictor was similar when each species was 

modelled individually. Distance was the most important predictor, explaining 79.82 ± 6.60% 

(mean ± SD). Vegetation type explained 10.72 ± 2.73%, wind was 0.36 ± 0.45%, humidity was 

0.82 ± 0.56%, and temperature was 1.42 ± 1.53%. Minimum frequency was positively related to 
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the proportion of unique variation explained by distance (P = 0.005, Fig. 1a) and negatively 

related to the proportion explained by vegetation (P = 0.008, Fig. 1b).  

Differences Across Vegetation Type 

We omitted 65 different species/vegetation type combinations from pairwise comparison 

due to insufficient convergence leaving 152 unique species/vegetation type combinations. Nine 

species (CATO, BOOW, BADO, GGOW, NSWO, LEOW, WETO, 1000Hz, and 2828Hz) were 

omitted completely. Single vegetation types were omitted for two other species (YERA and 

RBGR). When comparing detectability between vegetation types for each species, we found 

statistical differences in detectability generally depended on the “openness” of vegetation (Fig. 

2). Within most species, detectability was similar for closed vegetation types including black-

spruce bog, coniferous forest, and deciduous forest. Open vegetation types, including road, forest 

edge, grassland, and graminoid fen, were not significantly different from each other. However, 

for most species, open vegetation types had significantly higher detectability than closed 

vegetation types. Three species (BAWW, WTSP, and 5656Hz) did not have any significant 

differences in detectability for any of the vegetation types tested.  

Application of Correction Factors to Survey Data 

 We calculated correction factors (Table 1) for “open” relative to “closed” canopy cover 

and found open canopy environments resulted in an average of 363.4% (± 98.7% SD) greater 

area surveyed than closed canopy environments. We then compared area surveyed and calculated 

correction factors (Table 2) for each specific vegetation type relative to forest edge for each 

species and found smaller average survey area for bog (408.2 ± 140.2%), coniferous forest 

(331.2 ± 158.5%), deciduous forest (202.0 ± 59.1%), and graminoid fen (19.4 ± 103.1%). We 
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found average survey area increased for road (32.2 ± 21.2%) and grassland (11.1 ± 63.4%) 

relative to forest edge as well.  

 Mean prediction error for correction factors by species was 0.696 ± 0.416 and relative 

error was 34.0 ± 27.0% (Fig. 3). Owl species (NSWO, BOOW, GGOW, LEOW, BADO), and 

higher frequency songbirds (BBWA, BAWW) had higher relative error than other species. Mean 

prediction error for correction factors by vegetation type was 0.686 ± 0.357 and relative error 

was 34.1% ± 13.4% (Fig. 3). Mean relative error was higher for open vegetation types (44.9%) 

than closed vegetation types (23.4%).  

 

DISCUSSION 

 We demonstrate that detectability is strongly influenced by the surrounding environment. 

Differences in microclimate, vegetation type, and vocalization structure causes variation in 

sound attenuation due to scattering, absorption, and refraction (Richards and Wiley 1980, Morton 

1975, Wiley 1991, Brumm and Naguib 2009, Yang et al. 2013). We evaluated the effect of 

atmospheric covariates (temperature, humidity, and wind), vegetation, and frequency/bandwidth 

of sound and found that all variables were important in predicting changes in detectability of 

signals in human observers. Distance was selected in all models predicting detection probability 

as expected due to the spherical spreading (Wiley and Richards 1982). Interactions between 

distance and vegetation type were also important as detectability declined with distance at 

different rates depending on the surrounding vegetation. Wind was important for most species, 

and interactions between wind and vegetation were present, indicating that wind influenced 

detectability differently based on the vegetation present. This is likely due to changes in ambient 
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noise associated with vegetation movement, although the mechanism remains unclear. Finally, 

temperature and humidity were included in the pooled model, but only some of the species-

specific models showed an influence on detectability, suggesting these predictors may not be as 

important as other variables in the model. Evaluating the relative contributions of each predictor 

to the final models indicates distance contributes the majority of variation to detection 

probability (~80%). The next most important predictors were vegetation (~10% across species-

specific models), frequency (~6% in pooled model), and bandwidth (~10% in pooled model). 

Atmospheric covariates had the least influence on detection probability with the most important 

being temperature (~1.5%) and wind and humidity both being < 1%.  

 We found sound bandwidth and frequency to be of similar importance to vegetation when 

modelling detection probability. Patterns in this study for both of these traits follow common 

themes from the literature where propagation of acoustic signals is maximized for the 

environment that species typically inhabits (Morton 1975, Brumm and Naguib 2009). Higher 

frequency sounds are subject to increased scattering, reverberation, and absorption by forested 

environments resulting in shorter distances over which such species can be observed. We found 

that the detectability of higher frequency vocalizations were lower in the forested vegetation 

types (black-spruce bog, upland deciduous, and upland coniferous) and the significant interaction 

between vegetation and frequency indicated that detectability declined at a faster rate in these 

vegetation types as well. Additionally, the variation explained by environmental factors depends 

on sound frequency. Higher frequency sounds attenuate faster and are less likely to be influenced 

by the surrounding environment. We found the distance of a sound to explain more variation as 

frequency increased, due to spherical spreading being the most important factor influencing 

sound attenuation. Inversely, vegetation explained less variation with increasing frequency due 
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to a decreasing distance over which the surrounding environment could influence the 

propagation of a signal. Pure sine waves have lower rates of excess attenuation due to scattering, 

reverberation, and absorption effects from vegetation (Richards and Wiley 1980). We found that 

lower bandwidth sounds (which have more sound energy focused into a narrow frequency range) 

had a similar pattern. Detectability of sounds decreased with increasing bandwidth, and detection 

probability declined even faster in forested habitats as bandwidth increased.  

 Vegetation type was an important predictor for detection probability in all models, 

however we were interested in how vegetation type would influence estimation of abundance, 

density, or occupancy if not accounted for. In general, we found the specific type of vegetation 

was less important than if the environment was ‘open’ or ‘closed’. Closed habitats increase the 

amount of scattering, refraction, and absorption due to an increased number of physical obstacles 

that influence sound waves. Furthermore, closed vegetation had less of an influence on lower 

frequency sounds and these sounds were less likely to have a significantly lower detection 

distance in closed than in open vegetation types. These findings are well supported in the 

literature, however, what is not discussed in detail is the bias differences in detection distance 

and detectability may have on estimates of animal numbers. Based on our results, assuming 

consistent detectability in open and closed vegetation types can result in up to 360% bias in 

estimates of animal numbers. When assuming consistent detectability in specific vegetation 

types, this bias can increase to 10-400%. We found variables which decrease detectability to 

have a greater influence on bias due to the geometry of a circle, where a decrease in detection 

radius results in a non-linear decrease to survey area.  

 While quantifying bias demonstrates the implications of ignoring detectability across 

variable vegetation, our main objective was to provide a potential solution that is applicable 
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outside of the narrow range of species tested in this study. We present a method to correct for 

detectability across different vegetation types using broadcasts of different species with a 

predictive error of approximately 40%. This is a significant improvement from biases we 

calculated as high as 400%. We present correction factors to standardize open versus closed 

environments and forest edge relative to other vegetation types as we believe these are applicable 

to many situations where monitoring occurs across heterogenous landscapes. However, 

correction factors and predictive error will vary depending on the vegetation or environments 

being standardized. Furthermore, we found predictive error to be higher at the low end of the 

frequency spectrum. We believe a low number of species in these frequency bands decreases 

predictive performance of our model. Increasing the number of species and different species 

vocalization traits included in this study would greatly increase predictive performance and 

estimation of correction factors. Similar studies have examined the relationship between 

detectability and species characteristics or phylogeny (Solymos et al. 2018). However, our 

method utilizes sound playback to estimate correction factors which can be useful when existing 

data on detectability for a species or vegetation type is limited. 

 We modelled correction factors using sound structure as predictive variables rather than 

species, to show that generalized song characteristics can be used to estimate correction factors 

for species. The success of this approach broadens the applicability of our methods, as it suggests 

that a correction factor can be estimated even when playbacks have not been conducted for that 

species. However, accurate prediction requires an adequate number of species be included in the 

playback calibration dataset, especially in the frequency and bandwidth range of the species to be 

predicted. In general, accuracy will increase when more species playbacks are included in 

predictive models. The correction factors described in this study can be used to standardize 
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estimates of relative abundance between different vegetation types by offsetting for differences 

in detectability, detection distances, and survey area. In cases where survey area is unknown, 

correction factors can be applied to count data to adjust the number of individuals counted based 

on changes in detection distance and area surveyed. Correction factors can also be used when 

estimating animal density, if an existing value for density or survey area is already known (i.e. 

the boreal avian modelling project; www.boreabirds.ca). In this case, density or survey area can 

be adjusted using correction factors depending on the species and habitat type of the original 

value and the vegetation type to be predicted. 

 Our results contribute to a growing amount of evidence that avian detectability can be 

strongly influenced by the surrounding environment. More importantly, we provide a method 

using sound playbacks to estimate correction factors necessary to standardize detectability, 

which is useful when existing detection data is not readily available. Admittedly, the sample size 

of avian species included in this study is small and may not be representative of other systems. 

However, we strongly believe that the accuracy of this approach will improve with the inclusion 

of more species and the effort required to standardize detectability using this method is low 

enough to be easily accessible by most wildlife managers and researchers.  As we continue to 

improve and refine methods for estimating wildlife populations, we hope to contribute another 

tool to the toolkit of wildlife biologists and ecologists. 
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Table 4.1. Correction factors to standardize area surveyed for closed canopy vegetation relative 

to open canopy. Area surveyed in open canopy vegetation can result in more area surveyed and 

more individuals detected, and correction factors can be used to offset the difference in detection 

due to sampling radius for closed canopy vegetation. 

Species Correction Factor 

Barred owl 3.98 

Black-and-white warbler 3.53 

Bay-breasted warbler 3.00 

Belted Kingfisher 3.92 

Brown-headed cowbird 4.58 

Boreal owl 6.35 

Canadian toad 4.64 

Clay-coloured sparrow 4.73 

Cape-may warbler 3.47 

Common raven 5.27 

Dark-eyed junco 5.34 

Great gray owl 4.24 

Long-eared owl 3.61 

Lincoln’s sparrow 4.86 

Northern saw-whet owl 5.10 

Olive-sided flycatcher 4.51 

Ovenbird 5.57 

Pine siskin 4.99 

Rose-breasted grosbeak 6.04 

Red-breasted nuthatch 6.13 

Tennessee warbler 2.71 

Warbling vireo 4.73 

Western toad 6.13 

White-throated sparrow 4.61 

Yellow rail 3.80 
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Table 4.2. Correction factors to standardize area surveyed for forest edge relative to other 

vegetation types. Area surveyed along forest edges can result in variation in area surveyed and 

individuals detected, and correction factors can be used to offset the difference in detection due 

to sampling radius for different vegetation types. 

Species Bog Conifer Deciduous Graminoid Fen Grassland Road 

Barred owl 5.72 3.63 1.84 2.15 - 0.37 

Black-and-white warbler 3.04 3.23 2.98 0.58 1.09 0.82 

Bay-breasted warbler 4.53 2.49 3.45 0.68 2.49 1.09 

Belted Kingfisher 3.29 2.77 2.96 0.54 0.71 0.72 

Brown-headed cowbird 5.95 3.34 3.33 0.82 0.76 0.80 

Boreal owl 4.59 3.74 2.34 0.14 - 0.13 

Canadian toad 4.36 5.48 3.15 1.49 0.53 0.88 

Clay-coloured sparrow 5.15 3.86 3.45 0.76 0.95 0.72 

Cape-may warbler 3.04 3.45 2.87 0.81 0.97 0.79 

Common raven 7.05 4.72 2.93 1.48 0.71 0.61 

Dark-eyed junco 5.57 5.78 3.50 1.12 0.88 0.71 

Great gray owl 8.10 6.09 2.85 3.09 0.53 0.78 

Long-eared owl 7.64 8.89 3.60 5.27 3.00 1.14 

Lincoln’s sparrow 6.18 3.55 3.25 0.77 0.84 0.70 

Northern saw-whet owl 5.22 4.49 2.55 0.79 0.12 0.59 

Olive-sided flycatcher 5.14 2.69 2.49 0.74 0.58 0.53 

Ovenbird 6.55 4.68 4.12 0.86 0.93 0.77 

Pine siskin 4.91 4.64 3.63 0.90 0.86 0.73 

Rose-breasted grosbeak 6.23 4.44 3.66 1.27 0.51 0.57 

Red-breasted nuthatch 5.16 4.29 3.11 1.19 0.39 0.39 

Tennessee warbler 3.58 3.46 1.38 0.77 0.70 0.79 

Warbling vireo 4.85 3.42 3.05 0.75 0.73 0.64 

Western toad 4.29 8.10 2.81 1.34 0.47 0.50 

White-throated sparrow 4.03 4.13 3.32 0.76 1.08 0.57 

Yellow rail 2.88 2.43 2.87 0.78 0.59 0.62 
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Figure 4.1. Effect of minimum frequency on the percent of total unique variation explained by 

distance (A) and vegetation (B). Predictions are plotted with 95% confidence intervals. 
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Figure 4.2. Differences in effective detection radius (EDR) for Lincoln Sparrow, Ovenbird, Belted Kingfisher, and Red-breasted 

Nuthatch in different vegetation types. 90% confidence intervals for EDR were estimated using Monte Carlo simulation. 
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Figure 4.3. Mean error (left) and relative mean error (right) for predicting correction factors for vegetation type (A) and species (B). 

Prediction error for species (B) are plotted against vocalization frequency. Error bars represent standard deviation
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Chapter 5. Sound level measurements from audio recordings provide objective 

distance estimates for distance sampling wildlife populations 

 

INTRODUCTION 

Estimating density is a fundamental objective of wildlife management. Distance sampling 

corrects for the decline in detection probability that occurs as distance from an animal to the 

observer increases (Buckland et al. 2001) and is among the most widely used approaches for 

estimating animal density. Distance sampling has five key assumptions: 1) distance to 

individuals is measured independent of animal movement, 2) individuals are perfectly detected at 

zero distance, 3) distance is measured without error, 4) individuals are detected at their initial 

location, and 5) individuals are not double counted (Table 5.1). Distance sampling is commonly 

applied to acoustic surveys (Buckland et al. 2001), where a human surveyor estimates the 

distance of a sound signal. However, the assumptions of distance sampling are often violated 

when distances are estimated by human surveyors (Table 5.1; Scott et al. 1981, Alldredge et al. 

2007, Nadeau and Conway 2012). 

We focus on the assumption that distance is measured without error (hereafter “distance 

estimation assumption”; Table 5.1). Field evaluations of point count surveys by human surveyors 

have found distance estimates are generally inaccurate and often biased, and as a result, often 

binned into distance intervals (e.g. 0-50, 50-100, > 100 m). Estimates of distance by humans can 

range from 0.25 to almost 30 times the true distance (Scott et al. 1981, Nadeau and Conway 

2012), and error often increases with distance (Nadeau and Conway 2012). After comparing 

human distance estimates to true distances, Alldredge et al. (2007) concluded that humans cannot 
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accurately estimate distances over 65 m. A human’s ability to determine distance from aural cues 

can be hindered by environmental effects on sound attenuation and degradation (Wiley and 

Richards 1982, Pacifici et al. 2008, Yip et al. 2017b), as well as interference from background 

noise (Simons et al. 2007). Estimates by people can also be biased and are often clumped 

because training and experience create bias and variation in distance estimates (Scott and 

Ramsay 1981, Alldredge et al. 2007, Simons et al. 2007). 

Audio recordings present an opportunity to remove the subjectivity from distance 

estimation and potentially reduce estimation error. The relative sound level (RSL) of an acoustic 

signal in audio recordings has a predictable logarithmic relationship with distance and has the 

potential to be used as a proxy for estimating density in a distance sampling framework (Yip et 

al. 2017a). RSL is a relative measure of the energy of a sound signal at the point when sound 

waves reach a microphone and can be measured using acoustic software programs. RSL is 

generally measured in decibels (dB) that are relative to the maximum output of the microphone. 

In the absence of environmental factors that affect sound propagation, every doubling of distance 

results in a decrease in RSL of 6 dB due to spherical spreading (Wiley and Richards 1982). The 

potential for RSL to predict distance is not well understood and may be influenced by 

environmental factors, such as vegetation density, that affect spherical spreading via changes in 

attenuation (Darras et al. 2016). Distance prediction with RSL may also vary between species 

depending on the degree of directionality of each species’ vocalizations (Catchpole and Slater 

2008).  

RSL distance prediction could be applied to audio recordings from autonomous recording 

units (ARUs), which are increasingly used to conduct ecological surveys (Shonfield and Bayne 

2017) and have several advantages over human surveys that are consistent with the assumptions 
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of distance sampling (Table 5.1). Previously, distance sampling with ARUs has been hindered by 

an assumed inability to estimate distance to a signal in a recording (Dawson and Efford 2009), 

and so has only been applied to ARU array datasets with localized individuals (Cato 1998, 

McDonald and Fox 1999), which are laborious to collect (Mellinger et al. 2007). More recently, 

distance sampling has been applied to point count ARU datasets via human estimation of 

distance on recordings (Darras et al. 2018b) and via distance prediction from RSL (Sebastián-

González et al. 2018). We propose that distance can be automatically estimated from sound 

recordings with a four-step process: 1) Build a calibration dataset of a focal species recorded at 

known distance; 2) train a recognizer with signal recognition technology (Knight et al. 2017, 

Priyardarshani et al. 2018) to detect the focal species and measure RSL of each detection; 3) 

determine the source level (i.e., intercept) and attenuation rate (i.e., slope) of RSL relative to 

distance with a regression model; and 4) use the recognizer to automatically extract RSL of 

species detections from recordings of unknown distance and predict distance with the estimated 

regression equation. 

We present a rigorous test of whether RSL distance prediction removes subjectivity and 

reduces error compared to human estimated distances. First, we tested whether RSL can be used 

to estimate distance by manually and automatically measuring RSL from calibration recordings 

of wild, free-ranging birds, predicting distance with the RSL measurements, and comparing to 

known distances of those recordings. We then compared the error in RSL predicted distances to 

human estimated error extracted from a literature case study to demonstrate that RSL distance 

prediction can reduce distance estimation bias and error. We also determined the sample size for 

calibration recordings that were required to reach an a priori threshold of variation in distance 

estimation error to help users determine the best approach for calibration recording collection. To 
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examine whether RSL distance prediction violated the distance sampling assumption that 

distances are measured without error, we simulated ARU point count surveys and compared the 

true simulated estimate to density estimates from known distance, to those from RSL predicted 

distance, and to those contaminated with the human estimated error extracted from the literature. 

 

METHODS 

Calibration data collection 

We collected acoustic recordings of live birds recorded at known horizontal distance 

(hereafter “known distance”) for two bird species with contrasting acoustic characteristics, the 

Common Nighthawk (Chordeiles minor, CONI) and Ovenbird (Seiurus aurocapilla, OVEN). 

The two species differ in acoustic signal complexity that could affect the error rate of RSL 

distance prediction. OVEN has a complex multi-phrased song that is 2.5-4.0 s in length 

(Porneluzi et al. 2011; Fig. 5.1), whereas CONI produces a simple single-note vocalization that is 

~ 0.3 s in length (Fig. 5.1). The two species also differ in acoustic behavior that could lead to 

differences in sound transmission, affecting RSL distance prediction. OVEN sing from an above-

ground perch at a mean height of 8.8 m (Lein 1981), while CONI call from the wing above the 

forest canopy (Brigham et al. 2011).  

 We determined OVEN singing locations using an acoustic location system (ALS) placed 

at seven mixedwood sites in Alberta, Canada during June 2016 (see Wilson and Bayne 2018 for 

detailed methods). The ALS used 30 GPS-enabled SM3 ARUs equipped with external SMM-A1 

microphones (Wildlife Acoustics, Concord, MA, USA) placed an average of 33.9 m (± 0.52 m 

SE) apart in a 5 x 5 grid, with a transect of five microphones extended from the centre of each 



99 

 

grid (Fig. 5.2). OVEN vocalizations (n = 160) were localized with the microphone grids using 

time to arrival methods. Accuracy of localization determined through playback experiments was 

2.03 m (± 0.55 m SE). We determined the horizontal distance of each vocalization to each of the 

ten microphones in the centre of the array to create a dataset of 1600 known distance clips (Fig. 

5.2). We then clipped each vocalization using the tuneR R package (Ligges et al. 2016, R Core 

Team 2017), adding a buffer of 2 seconds to the beginning and end of the vocalization for further 

RSL measurement.  

We collected acoustic recordings of CONI with known locations by attracting males to a 

transect of SM4 ARUs (Wildlife Acoustics, Concord, MA, USA) using conspecific broadcast 

calls (Appendix 4.1; Fig. 5.2). The transect approach is an efficient method of collecting 

calibration recordings because it simultaneously records the calls of the same individual at 

multiple distances. We used an 800 m long transect that consisted of 15 ARUs placed at 

standardized distances along a linear feature. An observer stood at the beginning of the transect 

and recorded the time in milliseconds, height, horizontal distance, and bearing of every CONI 

vocalization. We minimized distance estimation error by using the same observer for all 

observations, by the observer calibrating their horizontal and vertical distance estimates with a 

laser range finder prior to every observation period, and by limiting observations to those within 

20 m horizontal distance of the observer, because human surveyor distance estimation error is 

minimized at short distances (Nadeau and Conway 2012). We note that there is likely 5-10 m of 

error in our known distance estimates due to this method. We collected recordings an hour before 

sunset at eight transects in July 2016. We measured temperature, wind speed, and humidity 

during each survey using a Kestrel 3000 (Kestrel Meters, Minneapolis, MN, USA). We played 

an airhorn from the beginning of the transect at the start of the recording period and subsequently 
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clipped the recordings at the airhorn to synchronize the target vocalizations therein. We used the 

seewave package (Sueur et al. 2008) in R to clip each of 147 unmasked detections from each of 

the 15 recordings along the transect as 0.7 s clips for a total of 2205 clips (Fig. 5.1). 

Human estimated error 

We extracted human observer error from the literature to compare to our RSL estimated 

distances. Of the four known field tests of human observer distance estimation error, Nadeau and 

Conway (2012) was the only paper from which it was feasible to extract raw data. We 

emphasize, however, that human observation distance estimation can vary based on a variety of 

factors (Simons et al. 2007, Nadeau and Conway 2012), and that this comparison may not be 

representative of all human observer distance estimation. We used WebPlotDigitizer (Rohatgi 

2017) to extract raw data from Figure 1b, which depicted distance estimation error against 

measured distance. We tested for heteroscedasticity of the extracted data using a Breusch-Pagan 

test (Breusch and Pagan 1979) and found error to be homoscedastic (BP = 0.013, P = 0.91). 

Since distance estimation error from human surveyors did not significantly change with distance 

from observer, we used the mean and standard deviation of the extracted data to add error values 

randomly sampled from a normal distribution to every known distance value from the OVEN 

and CONI manual measurement datasets. We constrained the resultant distances (hereafter 

“human estimated distances”) to positive values. 

RSL measurement 

We measured RSL with two different methods: manual measurement and recognizer 

measurement. Ultimately, we were interested in using recognizer measurement to automate RSL 

distance prediction, but wanted to confirm the RSL measurements were sufficiently precise via 
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comparison with manually extracted measurements because the RSL measurement will 

ultimately depend on the accuracy of the temporal and frequency boundaries within which the 

measurement is taken. 

Manual measurement - We measured RSL manually from the clips of known distance of 

both species in Raven Pro 1.5 (Charif et al. 2010) using a 512-point Hamming window 

spectrogram for visualization. We used the max power function to measure RSL for each 

vocalization by selecting the smallest possible area around the vocalization (Bioacoustics 

Research Program 2014). We measured RSL from all clips where the target individual was 

detected and the vocalization was not masked by vocalizations of non-target individuals. We 

only used data points at distances where the RSL exceeded the level of ambient background 

noise (≤ 200 m for OVEN, ≤ 500 m for CONI). 

Recognizer measurement - We also used automated signal recognition to automate the 

RSL extraction process using convolutional neural network (CNN) recognizers (Knight et al. 

2017). We trained one recognizer for each species as moving window recognizers in the 

TensorFlow (Abadi et al. 2015) framework with the Python API for model training and 

definition (Appendix 4.2). We then processed the clips of known distance with the corresponding 

species recognizer to measure RSL of each clip, excluding clips of known distance beyond the 

same distance thresholds used for manual measurement. The recognizers output a time series of 

scores and RSL estimates generated from spectrogram inputs. We visually and aurally reviewed 

every hit for each species to confirm detections of the target individual and removed any hits 

where there was masking by non-target individuals. Analysis was conducted in Python (van 

Rossum 1995) version 3.5, using librosa (McFee et al. 2017) for audio loading and spectrogram 

generation, and scipy (Jones et al. 2001) for signal filtering. 
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Statistical analysis 

Distance estimation - We fit generalized linear mixed models with a Gaussian 

distribution and log link function with known distance as the response and RSL as a second-

order polynomial term for all four species-method datasets (hereafter referred to as: “OVEN 

manual", “OVEN recognizer”, “CONI manual”, “CONI recognizer”). We selected a second-

order polynomial term after preliminary comparison to linear and log models using small sample 

size corrected Akaike’s Information Criterion (AICc). We built global models that included time 

of day, score (recognizer only), vertical height (CONI only), and any relevant interactions 

(Appendix 4.3). We modelled horizontal distance with vertical height as a covariate for CONI 

instead of calculating and modelling Euclidean distance because most applications of distance 

estimates, including distance sampling, require estimates of horizontal distance. In addition, we 

were interested in determining the relative importance of vertical distance in RSL distance 

prediction because in most applications of RSL distance prediction, vertical height will be 

unknown. All predictors, including RSL, were centered and standardized prior to modelling. We 

tested for collinearity between predictors by calculating the variance inflation factor (VIF) in a 

stepwise procedure for each predictor (Naimi et al. 2014). We retained all predictors for model 

selection (max VIF = 2.81). We excluded weather covariates to make this approach more 

generalizable because preliminary analyses indicated they were relatively small contributors to 

overall explained variance (Appendix 4.4). To further emphasize generalizability, we also 

calculated intraclass correlation coefficients (ICC) to determine importance of site, location 

within the ALS grid, and individual as random effects and removed any random effects with an 

ICC greater than 0.30 (A. Zuur and E. Ieno personal communication), leaving station as a 

random effect for both OVEN datasets (Appendix 4.5). We then used AICc to rank models and 
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selected the model with the lowest AICc or the most parsimonious model when multiple 

candidate models had ∆AICc < 2 (Arnold 2010; Appendix 4.3). We partitioned relative 

importance of each variable included in the best model for each dataset using commonality 

analysis, which provides the unique variance explained by a predictor and common variance 

shared by two or more predictors (Nimon and Oswald 2013).  

We used 10-fold cross-validation to build a dataset of RSL distances for each of the four 

species-method combinations by fitting the trained regression model to the withheld data from 

each fold (Mosteller and Tukey 1968). We excluded random effects from distance prediction to 

test the generalizability of our method beyond the calibration dataset. We calculated the 

magnitude of error (hereafter “distance estimation error”) as the absolute value of the difference 

between RSL predicted distance and known distance, and direction of mean error (hereafter 

“error bias”) as the RSL predicted distance minus known distance. We tested whether error bias 

differed from zero using a one-sample t-test for each dataset, and for differences in error bias 

between manual and recognizer approaches with independent two-sample t-tests for each 

species. Validation accuracy is reported as the mean adjusted R2 between observed and fitted 

values from cross validation.  

We then used bootstrapping to determine the sampling effort required to create a suitable 

calibration dataset. We used a uniform distribution to randomly select a sample size for each 

species-method combination. We calculated absolute error using the same 10-fold cross-

validation technique described above and calculated the coefficient of variation for different 

sample sizes at intervals of 20 samples. We estimated the sample size required to reach a 

coefficient of variation value of five, where variation in absolute error stabilized with increasing 

sample size.  
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Distance sampling - We used stochastic simulation to generate individual animal 

locations with a known population density to test whether RSL predicted distances produced 

accurate density estimates. We simulated OVEN and CONI locations within a 400-ha square 

survey plot with a random uniform distribution (Fig. 5.3). We imposed a minimum inter-

individual distance of 40 m for OVEN and 100 m for CONI to represent territoriality. We 

determined the number of animal locations (i.e., population density) using random Poisson 

deviates with an average of 160 CONI (0.4 CONI / ha; Knight unpublished data) and 240 OVEN 

(0.6 OVEN / ha; Lankau et al. 2013). We repeated this simulation 50 times to represent a typical 

avian point count survey program.  

Next, we simulated single-ARU point count locations at the centre of the square survey 

plot. We calculated the known distance and probability of detection for each individual in each 

simulation. We calculated the probability of detection using a half-normal detection function 

generated from binomial recognizer results of OVEN and CONI vocalizations at known 

distances that were detected or missed (see Yip et al. 2017a for details). We used the distribution 

of errors from our distance estimation models to simulate RSL for each known distance using 

mean error bias and standard deviation as a function of distance. We then used those simulated 

RSL measurements in our previously fitted models for distance prediction to generate RSL 

predicted distances for each individual in each simulation. We also used the distribution of errors 

from the human estimated distances extracted from Nadeau and Conway (2012) to generate 

human estimated distances for each individual in each simulation. 

Finally, we used distance sampling to estimate the density with point count surveys in 

each simulation using the known distances, RSL predicted distances, and human estimated 

distances. For each set of distances, we used AICc to rank, compare, and select conventional 
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distance sampling models with combinations of uniform, half normal, and hazard rate key 

functions and cosine and polynomial adjustment terms (MRDS package; Thomas et al. 2010; 

Appendix 4.6). We used 83% confidence intervals to determine if there were statistical 

differences in density estimates produced from known distances, RSL predicted distances, and 

human estimated distances (Krzywinski and Altman 2013). 

 

RESULTS 

We hand measured the RSL in 691 of the 1600 OVEN clips and 716 of the 2205 CONI 

clips. The maximum known distance that an individual was detected at with manual 

measurement was 187 m for OVEN and 500 m for CONI. After validation, the recognizer 

detected and measured RSL of 673 OVEN clips and 1223 CONI clips. The maximum known 

distance that an individual was detected at by the recognizer was 149 m for OVEN and 500 m for 

CONI. 

We extracted 168 of 206 data points from Figure 1b in Nadeau and Conway (2012). We 

were unable to extract the remaining 38 data points due to overlap. The mean estimation error of 

the data we extracted was 42.5 m (± 84.8 m SD), which was similar to that reported in Nadeau 

and Conway (2012; 39 ± 79 m SD). 

Distance estimation 

RSL decreased with increasing distance and explained at least 93.4% of the total 

partitioned R2 in all models except the OVEN recognizer model, where RSL and score combined 

explained 95.2% of total partitioned R2 (Fig. 5.4; Appendix 4.4; Appendix 4.7). The selected 
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models for OVEN distance estimation included a negative effect of time of day. The selected 

models for CONI included estimated vertical height of CONI as a positive predictor and time 

after sunset. Both models for recognizer measurement also included score. Adjusted R2 between 

fitted and observed data in cross validation was between 0.61 and 0.73 for all models. 

Distance estimation error was significantly greater than zero for all datasets but was 

lower for OVEN than CONI (Fig. 5.5; Appendix 4.8). Distance estimation error from manual 

measurements was higher than error from recognizer measurements for CONI (P < 0.001), but 

not for OVEN (P = 0.187; Appendix 4.8). Absolute distance estimation error was 14.69 m (± 

12.24 m SD) for OVEN manual measurement, 13.85 m (± 10.75 m SD) for OVEN recognizer 

measurement, 47.64 m (± 40.83 m SD) for CONI manual measurement, and 37.62 m (± 38.19 m 

SD) for CONI recognizer measurement.  

Mean error bias was significantly greater than zero for OVEN but not for CONI (P < 

0.001, P > 0.05; Fig. 5.5; Appendix 4.8). There was no significant difference in error bias 

between manual measurement and recognizer measurement for either species (all P > 0.05; 

Appendix 4.8). Mean error bias was 5.66 m (± 18.27 m SD) for OVEN manual measurement, 

4.15 m (± 17.04 m SD) for OVEN recognizer measurement, -0.31 m (± 62.76 m SD) for CONI 

manual measurement, and 0.39 m (± 53.61 m SD) for CONI recognizer measurement. 

Variation in estimates of absolute error decreased with sample size (Fig. 5.6). A sample 

size of approximately 300 measurements was sufficient to reach the a priori threshold coefficient 

of variation (CV = 5) for all datasets (OVEN manual: 350; OVEN recognizer: 290; CONI 

manual: 250, CONI recognizer: 340). 

Distance sampling 
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 There was no significant difference between the density estimates produced with known 

distance and RSL predicted distance; however, the density estimate from manually measured 

RSL distance estimates was lower than true simulation density for OVEN (Fig. 5.7).  Density 

estimates produced from human estimated distances were lower than density estimates from 

known distance and true simulation density for both species.  

 

DISCUSSION 

We show that relative sound level (RSL) can be used to estimate distance from 

autonomous recording units (ARUs) and is an improvement over human distance estimation. 

Distance estimation by observers in the field can be inaccurate with systematic or clumped error 

due to differences in skill, perception, and time since training (Alldredge et al. 2007, Camp 2007, 

Nadeau and Conway 2012). We found RSL distances were not clumped, and while models 

slightly overestimated smaller distances and underestimated greater distances, there was no 

significant error bias in CONI datasets and low error bias in OVEN datasets relative to reported 

error bias from human estimates of distance. Previous studies have reported mean error bias for 

human surveyors of -10.1% to 9.0% for distances up to 70 m (Scott et al. 1981), 7.6 m (± 21.4 m 

SD) for distances up to 98 m (Alldredge et al. 2007), -9 m (± 47 m SD) for distances up to 239 m 

(Nadeau and Conway 2012), and 53.3 m (± 58.6 m SD) for distances up to 500 m (Murray et al. 

2011). Significant error bias in our RSL distances was 5.66 m (± 18.27 m SD) for OVEN manual 

measurement and 4.15 m (± 17.04 m SD) for OVEN recognizer measurement. Additionally, RSL 

provides individual distances instead of distance bins commonly used in bird counts. Our method 

of estimating error bias through cross-validation may provide optimistic results compared to 
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distances predicted from a separate dataset but suggests less error than human surveyors. We 

note, however, that the human error that we extracted and compared to our RSL distance 

estimates is a case study and may not be representative because human observation distance 

estimation can vary based on a variety of factors (Simons et al. 2007, Nadeau and Conway 

2012). In fact, the error bias reported in Nadeau and Conway (2012) is lower than the other case 

studies summarized above. 

RSL distance prediction removes human subjectivity from distance estimation, and we 

suggest that automating extracting RSL estimates with recognizers further removes human 

subjectivity. We found that both distance estimation error and error bias were lower when we 

measured RSL with a recognizer. In contrast, the distance estimation error from manually 

measured RSL was large enough to significantly reduce the density estimate for OVEN. We 

suggest that automated RSL measurement with a recognizer is more accurate than manual 

measurement because it removes human subjectivity, variation, and error. Automated RSL 

measurement also improves the efficiency of the distance estimation process. 

The improvement in distance estimation accuracy resulted in more accurate density 

estimates from distance sampling. We used simulation to show that the density estimates derived 

from RSL estimated distances did not differ from density estimates derived from known 

distances, despite the presence of some error and bias. Our results suggest that RSL distance 

prediction does not violate the assumption of distance sampling that distances are measured 

without error (Table 5.1). Density estimates should be relatively unaffected if distance estimation 

is unbiased on average, unless error in distance estimation is large (Buckland et al. 2001). In 

comparison, density estimates from human estimated distances were significantly lower than 

density estimates from known distance, likely due to human overestimation of distance in the 
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dataset extracted from Nadeau and Conway (2012). We suggest that application of RSL distance 

prediction to real field recordings would improve compliance with the distance estimation 

assumption of distance sampling (Table 5.1), which is normally violated when using distances 

estimated by human surveyors (Buckland et al. 2001). RSL distance prediction also removes the 

subjectivity of human estimation, which can exacerbate bias in distance estimates (Sebastián-

González et al. 2018). Future work should test whether distance sampling models that 

statistically incorporate quantified error in RSL estimated distance can further improve the 

accuracy of density estimates (Borchers et al. 2010). 

Despite the improvement in distance estimates and density estimates from RSL distance 

prediction, some error remained in the RSL predicted distances. We investigated the residuals of 

the fitted models and found no correlation with any of our measured covariates, which suggests 

the remaining bias is due to an unmeasured covariate. The distance estimation error in our RSL 

distances is likely due to variation in individual acoustic behavior, such as vocalization 

directionality, height, and intensity. Animal vocalizations are not omnidirectional and the amount 

of spherical spreading can vary with signal type (Patricelli et al. 2007, Catchpole and Slater 

2008). Sebastián-González et al. (2018) argue that directionality will not lead to biased density 

estimation if cues are oriented randomly relative to the ARU because they will average out. 

Height can also affect RSL because sounds emitted at greater heights suffer less attenuation than 

sounds emitted near the ground (Marten and Marler 1977), and we found that including vertical 

height as a covariate improved the parsimony of RSL distances. Alldredge et al. (2007) found 

that directionality of broadcast calls affected human surveyor estimation error, but height did not; 

however, they only tested to 12 m height, compared with up to 100 m height for our CONI. We 

also found that distance predictions were affected by time of day, which may be due to 
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behavioral variation in the amplitude of bird song, with stronger levels earlier in the day 

(Porneluzi et al. 2011). This time-varying effect is also related to the assumption of perfect 

observability at zero distance, as availability and behavioral components are known to affect 

overall detectability (Sólymos et al. 2013). Finally, vegetation structure could also contribute to 

variation in RSL (Johnson 2008). We controlled for vegetative structure within each dataset by 

selecting study sites with similar vegetation, but there may have been differences between sites 

that introduced some variation in RSL distances.  

Distance sampling from single point count ARUs has been infrequently attempted 

because the sampling radius of ARUs is typically unknown and may vary depending on recorder 

technology, vegetation, weather, and species (Yip et al. 2017b, Darras et al. 2018a). We found 

RSL was the main predictor of distance (93.4 - 99.7% total partitioned R2), and several recent 

studies suggest that a reliable relationship between RSL and distance can be established for 

various taxa. Darras et al. (2018b) found that human listeners can estimate distance from 

recordings with 0.76-0.96 correlation with true distance for five species. Sebastián-González et 

al. (2018) found that sound power explained 37.45% of deviance in known distance of Hawaiˊi 

ˊAmakihi (Chlorodrepanis virens). Both studies, however, did not quantify distance estimation 

error and only included known distances up to 80 m and 40 m, respectively. We suggest that 

distance sampling with RSL predicted distances from ARU recordings may be an easier method 

of density estimation than the spatially explicit capture-recapture (SECR) method because RSL 

distance prediction requires only one microphone (Dawson and Efford 2009). RSL distance 

prediction may also improve efficiency of distance estimation, as ARU deployment generally 

requires less time than field observations conducted by trained observers (Holmes et al. 2014).  
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RSL distance prediction does, however, require calibration recordings to establish the 

relationship between RSL and distance for the focal species. Calibration recordings can also be 

used for other applications, such as estimating distance by ear (Darras et al. 2018b) or setting 

recognizer classification thresholds (Knight and Bayne 2018). We showed that although RSL 

prediction error was smallest when we fit our model with our entire dataset (673 - 1223 clips), 

the reduction in error was minimal for datasets greater than 300 calibration recordings. We 

therefore suggest that the time required to collect calibration recordings for RSL distance should 

not be prohibitive for most species. We emphasize that calibration datasets for RSL distance 

prediction should be representative of the field recordings that the predictive model will be 

applied to. Distance estimation models should not be used across habitat types because 

attenuation varies with vegetation unless effective detection radius is tested for generalizability 

across vegetation types or corrected for with standardized variation (Yip et al. 2017a, b) or 

incorporating an attenuation coefficient (Royle 2018). Further, microphones for collecting 

calibration data and field recordings should be calibrated to the same standards to avoid bias in 

RSL measurements. 

There are three known methods for developing calibration datasets. The first and most 

precise method, which we used here for OVEN, uses triangulation from an acoustic location 

system (ALS); however, this method is laborious to set up and post-process to obtain individual 

locations. We do not suggest this “ALS method” for anyone who does not already use an ALS 

for their focal species. The second method, introduced here for CONI, uses broadcast calls to 

attract an individual to a transect of recorders and a human surveyor to estimate bird location 

relative to that transect. This “transect method” requires only two to three hours of time each day 

for several days, produces an even distribution of known distances, and can also be used to 
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control the known distances measured. The disadvantage of this method is that the precision of 

known distances is lower than triangulation, but precision could be improved if the focal species 

is one that sings from a perch and thus can be located with a laser rangefinder and compass. The 

third method, presented by Sebastián-González et al. (2018), involves walking the study area and 

manually recording vocalizing individuals that are visually detected while simultaneously 

measuring distance with a laser range-finder. A similar variant, presented by Darras et al. 

(2018b), involves conducting a point count survey with a human observer and an ARU, and 

measuring distance to any visual detections of vocalizing individuals. This “opportunistic 

method” requires a similar amount of field time as the broadcast-transect method, and likely has 

similar precision of known distances. The disadvantage of the haphazard method is that there is 

little control over the range of known distances recorded, and it may be difficult to obtain 

recordings at close range and far range, resulting in a RSL distance prediction model that does 

not perform well across all distances. We therefore recommend using the broadcast-transect 

method unless the acoustic behaviour of the focal species is altered by broadcast calls. Similar 

transect designs have been used in other acoustic studies to understand the effects of sound 

attenuation (Meyer et al. 2013, Yip et al. 2017a).  

We thus conclude that RSL distance prediction is an accessible method that can be used 

to remove subjectivity, improve accuracy, and reduce bias of distance estimates and density 

estimates for most species. RSL distance prediction can also be used to improve the efficiency of 

density estimation because it can be applied to ARU recordings in an automated fashion. RSL 

predicted distances can be used in distance sampling to produce unbiased density estimates and 

thus not violate the assumption that distances are measured without error. Minimizing error in 
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distance estimation is important for reducing error in density predictions from distance sampling 

(Buckland et al. 2001) and may prevent erroneous conclusions about wildlife populations. 
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Table 5.1. Violations of distance sampling assumptions and solutions to violations for point 

surveys conducted by human surveyors and ARUs. Multiple violations to the same assumption 

and corresponding solutions are lettered.  

Distance 

sampling 

assumption 

Violation by 

human 

surveyor 

surveys 

Solution for human 

surveyor surveys 

Violation by 

ARU surveys 

Solution for ARU 

surveys 

Advantage of 

ARU surveys 

1. Distance to 

individuals is 

measured 

independent 

of animal 

movement 

Only if 

sampling 

design is not 

randomly 

selected 

(Buckland et 

al. 2015). 

Correct for bias by 

separating availability 

and detection 

functions (Marques et 

al. 2010). 

Only if 

sampling design 

is not randomly 

selected 

(Buckland et al. 

2015). 

Correct for bias by 

separating 

availability and 

detection functions 

(Marques et al. 

2010). 

None 

2. Individuals 

are perfectly 

detected at 

zero distance 

a. Availability 

bias: if 

individuals at 

zero distance 

are not 

available for 

detection (e.g., 

does not 

vocalize). 

b. Perception 

bias: if 

observer fails 

to detect an 

individual. 

a. Availability bias: 

Estimate proportion 

of available animals if 

availability is static, 

including any relevant 

covariates 

(Diefenbach et al. 

2007, Thomson et al. 

2012); incorporate 

intermittent 

availability pattern 

with hidden Markov 

models (Borchers et 

al. 2013, Langrock et 

al. 2013). 

b. Perception bias: 

Mark-recapture 

methods, double 

observer survey. 

a. Availability 

bias: if 

individuals at 

zero distance 

are not 

available for 

detection (e.g., 

does not 

vocalize). 

a. Availability 

bias: assume 

100% availability 

by increasing 

sampling period to 

match vocalization 

availability 

(Barlow et al. 

2013); other 

statistical methods 

used for human 

surveyors. 

Permanent 

record from 

ARU 

recordings 

can be used to 

eliminate 

perception 

bias. 
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3. Distance is 

measured 

without error. 

Significant 

error and bias 

in distance 

estimation by 

human 

surveyors. 

Use a laser 

rangefinder to obtain 

estimates; integrate 

measurement error in 

distance sampling 

models (Borchers et 

al. 2010). 

Often unknown 

for point count 

surveys (but see 

Darras et al. 

2018b). Current 

methods rely on 

costly array 

designs and 

localization. 

RSL distance 

prediction (this 

paper); 

integrate 

measurement error 

in distance 

sampling models 

(Borchers et al. 

2010). 

Error from 

RSL distance 

predictions 

small enough 

to not violate 

the 

assumption. 

4. Individuals 

are detected 

at their initial 

location. 

a. Individuals 

move around 

during survey. 

b. Individuals 

avoid the 

human 

surveyor. 

a. Snapshot method 

(Buckland 2006). 

b. Allow individuals 

to “settle” before 

starting survey; revise 

methods if double 

observer data 

indicates avoidance 

(Buckland et al. 

2015). 

a. Individuals 

move around 

during survey. 

a. Initial location 

assumed to be first 

vocalization event 

Individuals 

less likely to 

be influenced 

by presence 

of ARU than 

human 

surveyor. 

5. Individuals 

are not 

double-

counted. 

a. Movement 

of individuals 

during count 

can result in 

an individual 

being counted 

twice. 

a. Cue counting (Hiby 

1985, Buckland et al. 

2015). 

a. Movement of 

individuals 

during count 

can result in an 

individual being 

counted twice. 

b. Individuals 

can be difficult 

to separate 

without 

directional cues 

(unavailable for 

mono 

recordings). 

a. Cue counting 

(Hiby 1985, 

Buckland et al. 

2015). 

b. Separation of 

individuals using 

multichannel 

recordings 

(Dawson and 

Efford 2009). 

Permanent 

record from 

ARU 

recordings 

can provide a 

more accurate 

cue count. 

*Availability bias and perception bias can be hard to separate. 
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Figure 5.1. A) Spectrograms of a single call of an individual Ovenbird (Seiurus aurocapilla; 

OVEN) recorded at five microphones at varying distances, as determined by acoustic 

localization from an array of autonomous recording units (ARUs). B) Spectrograms of a single 

call of an individual Common Nighthawk (Chordeiles minor; CONI) recorded at ten 

microphones at varying distances, as determined by attraction of the bird with conspecific 

broadcast calls to the beginning of a transect of ARUs. 
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Figure 5.2. A) Autonomous recording unit (ARU) microphone array set-up at a wellsite (black 

square) for the localization of individual Ovenbird (Seiurus aurocapilla; OVEN) vocalizations. 

B) Autonomous recording unit (ARU) microphone transect set-up along a linear feature (parallel 

lines) for the localization of individual Common Nighthawk (Chordeiles minor; CONI) 

vocalizations. An individual CONI was attracted with conspecific broadcast calls to the 

beginning of each transect, where an observer estimated the vertical and horizontal distance and 

bearing to the bird from the beginning of the transect for each vocalization. 
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Figure 5.3. Example of CONI survey data generated through simulation. Each point represents 

the location of a vocalizing individual. The circle represents the effective detection radius for 

CONI at a survey location which is used to generate a set of detections and distances to 

individuals.  
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Figure 5.4. Relative sound level (RSL) estimated distance relative to known distance for Ovenbird (Seiurus aurocapilla; OVEN) and 

Common Nighthawk (Chordeiles minor; CONI) measured manually and with a recognizer. RSL predicted distance was predicted 

from generalized linear models for each species-method combination. Black line indicates no bias or error between known distance 

and RSL predicted distance. 
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Figure 5.5. Distance estimation error and error bias of relative sound level (RSL) estimated distance for Ovenbird (Seiurus 

aurocapilla; OVEN) and Common Nighthawk (Chordeiles minor; CONI) measured manually and with a recognizer. Distance 

estimation error was calculated as the absolute value of the difference between RSL predicted distance and known distance. Error bias 

was calculated as the RSL predicted distance minus known distance. Known distances for both species were calculated as distance 
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between the autonomous recording unit (ARU) and the individual bird at the time of vocalization. Error bars represent standard error. 

* indicate significant differences between measurement methods for distance estimation error and + indicates significant difference 

(relative to zero) for error bias.  
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Figure 5.6. Bootstrapped distance estimation error for manual and recognizer RSL measurements of Ovenbird (Seiurus aurocapilla; 

OVEN) and Common Nighthawk (Chordeiles minor; CONI) recordings relative to sample size.  
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Figure 5.7. Density estimates of simulated Ovenbird (Seiurus aurocapilla; OVEN) and Common Nighthawk (Chordeiles minor; 

CONI) distributions using known distances, distances estimated from relative sound level (RSL) measured manually, with recognizer, 

and human surveyor distance estimation error. Mean error is presented with 83% confidence intervals. * indicate significant difference 

of density estimate from true simulation density represented by dashed line. Density estimates with different letters are significantly 

different.
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Chapter 6. Discussion 

 

 In this thesis, I present research on factors responsible for variable detectability during 

avian surveys and ways to account for them, implications for ignoring detectability, and methods 

for estimating abundance and density from bioacoustic data. In chapter 2, I investigated 

differences in detectability, sound attenuation, and survey radius between roadside and 

traditional point counts and found that roadside surveys could result in a detection radius that is 

more than twice as large as a survey within interior forest. From a biological perspective, there 

are many variables that could influence avian surveys conducted from roadside locations. 

However, my findings indicated that from a sound physics perspective, the acoustic environment 

differs significantly and could lead to serious implications if combining roadside and traditional 

point count data. To address this, I presented a method to account for differences in detectability 

between these two environments using statistical offsets. 

 Continued improvement, innovation, and availability of commercially developed wildlife 

recording devices means that a variety of different equipment is available to researchers. 

However, combining data from different sources to answer larger-scale ecological questions 

when detectability differs between equipment is still a concern. Furthermore, integration with 

data collected using traditional point counts could be useful for historical analyses and trend-

monitoring. In chapter 3, I examined differences in detectability and detection distance between 

four commercially available acoustic recording devices. I also compared these devices to 

detectability in human observers so that acoustic and human point count data can be 

standardized. I found that detectability and detection distance was highest in human observers 

relative to acoustic recording devices, and that significant variation between devices existed as 
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well. The use of recording equipment introduces interference, static, and white noise into the 

detection process, likely lowering detectability on audio recordings relative to observations in the 

field. However, in this scenario, observers were only presented with a limited number of sounds 

and could learn to anticipate which species would be presented. Detection from audio recordings 

likely performs better when species are unpredictable due to the ability to double-check 

detections in a controlled environment. Finally, I presented a method similar to chapter 2 for 

standardization of bioacoustic data from multiple sources using statistical offsets. The ability to 

combine data from a variety of sources is of significant value when answering ecological 

questions about how birds interact with their environment at larger spatial scales.  

 In chapter 2 and 3, I presented methods for calculating statistical offsets using playback 

experiments for standardization of data from locations in different acoustic environments or from 

different sources. However, in both studies we only used 25 species, which is less useful for 

ecologists wishing to apply these methods to focal species not included in our experiments. In 

chapter 4, I similarly used sound playback experiments to quantify differences in detectability for 

different vegetation types and calculate statistical offsets. I used vegetation type and generalized 

species vocalization traits to predict offsets that could reduce bias in estimating animal 

abundance or density to less than 40%. I also quantified relative contributions from vegetation 

type, species vocalization traits, and local atmospheric conditions to determine the most 

important factors to account for when correcting for variable detectability. Species traits and 

vegetation were the most important factors and weather conditions contributed a very small 

amount of variation. Accounting for variation in detectability in different environments is 

recommended, however in acoustic monitoring this often requires pilot studies to study the 

relationship between sound attenuation and the environment a signal passes through for each 



126 

 

individual species of interest. This method allows researchers to predicting offsets that account 

for detectability without having to conduct time consuming preliminary studies when calibration 

datasets already exist. 

 The preceding chapters recommend the use of statistical offsets to standardize variable 

detection probability during acoustic surveys. However, count data produced by these surveys 

generally provide measures of relative abundance unless additional statistical approaches are 

applied. Animal density is often the preferred metric when assessing wildlife populations as it is 

a common standard that is comparable across different study programs, regions, and datasets. In 

chapter 5, I presented methods to estimate animal density using point counts and conventional 

distance sampling (Buckland et al. 2001). By building a simple calibration dataset, I demonstrate 

that measurements of relative sound level (RSL) from automated recognition software can be 

used to estimate the distance of vocalizing birds more accurately than human observers resulting 

in better accuracy and precision for estimate of animal density. This method is much more 

efficient than using sensor grids to estimate density (Dawson and Efford 2009, Efford et al. 

2009), more objective than distance estimates from human observers using audio recordings 

(Darras et al. 2018b) or in the field (Alldredge et al. 2007, Nadeau and Conway 2012), and 

produces a more suitable calibration dataset relative to other similar methods.  

 An ongoing challenge for acoustic monitoring is standardization of data and survey 

design. Detection probability and detection distance are influenced by numerous factors which 

make comparing data from different treatments, datasets, or survey designs difficult. In chapter 

2, 3, and 4, I presented methods to standardize measures of relative abundance from a variety of 

sources by investigating differences in detection probability and survey area for variables of 

interest. Incorporating variable detectability is essential for avian surveys and could lead to 
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significant error if not accounted for (Denes et al. 2015). Survey design also varies greatly in the 

literature (Gibb et al. 2018). Survey durations range from one minute to hours depending on the 

focal species and the arrangement of sensors changes depending on research objectives. 

Integrating data from sources where survey design differs is often complicated and require 

advance statistical methods (Solymos et al 2013), and in these situations measures of animal 

density can be preferable to relative abundance.  

 The results of this thesis indicate the importance of acknowledging variable detectability 

from sound attenuation during analysis, and the potential implications of assuming constant 

detectability across a range of variables studied here. Variation in detectability can mask 

biological patterns or lead to erroneous conclusions based on results not representative of the 

study system. While it is possible to reduce variation through careful selection of study design 

parameters, some variables, particularly those tied to research questions or objectives (i.e. 

surveying species in different habitats or conditions), are difficult to account for until the 

analysis stage. In this case, I suggest standardizing detectability through methods presented in 

this thesis. I also present the relative effects of different variables on detectability to assist with 

prioritizing the most important factors in complicated study systems. In particular, this 

methodology is particularly relevant to surveys or monitoring programs where locations are 

sampled using a single acoustic recording unit, where typical approaches for standardizing 

detectability in traditional surveys are no longer applicable.   

Estimating animal density from acoustic recordings can be done using grids of 

synchronized autonomous recording units (ARUs) and simultaneous detections of individuals 

across these grids using spatially-explicit capture-recapture (SECR; Dawson and Efford 2009, 

Efford et al. 2009) or acoustic localization (Wilson and Bayne 2018) approaches. These grids 
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provide high-resolution data on habitat associations for the focal species, however these studies 

usually focus on small-scale objectives as they are too equipment, labor, time, and processing 

intensive to answer questions at large ecological scales. Previously, estimating animal density 

from a single acoustic sensor was problematic because survey area, a fundamental component for 

estimating density, was unknown. In the past year, the findings I present in chapter 5, along with 

research by Sebastian-Gonzalez et al. (2018) and Darras et al. (2018), suggest that the strength of 

a signal on an audio recording is a reliable indicator for the distance of that signal. RSL was 

responsible for at least 90% of variation in distance estimation models. In combination with 

conventional distance sampling (Buckland et al. 2001), this method can provide results with 

higher accuracy than human observers and can be used to answer questions at larger scales as the 

number of sensors and the labor required to deploy them are no longer limiting factors.  

 Acoustic monitoring is becoming increasingly popular and recording equipment is also 

developing rapidly as demand increases. Turnover in available equipment for research programs 

is high as support and maintenance for older recording units is phased out. In chapter 3, I 

propose methods to standardize data from four of the most popular recording units at the time. 

However, the advancement and diversity of options currently available for acoustic monitoring 

means that the equipment tested may no longer be available, or better options have become 

available. It is unrealistic to use the methods presented in chapter 3 on every model of acoustic 

recorder available today. Instead, future research should investigate the effect of frequency 

response, dynamic range, sensitivity, and signal-to-noise ratio on detectability. Data from 

different recording units can then be standardized using statistical offsets predicted from these 

variables, which should be readily available from the manufacturer, as described in the methods 

for chapter 4. Modelling equipment specifications and predicting statistical offsets requires only 
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an initial calibration study be performed and does not require collecting data for additional 

recording units as they are released if equipment specifications are known.  

 There is considerable future potential for increased automation and processing efficiency 

within acoustic monitoring technology. Wildlife Acoustics has tested ARUs capable of remote 

data uploads using cellular or satellite networks. The ability to connect these devices to an 

external power supply also means that ARUs could be run using solar power or other renewable 

sources. Without restrictions on data storage and power supply, ARUs could be deployed 

indefinitely for long-term monitoring programs with the added benefit of real-time data 

processing. Automated recognition methods are also in the early stages of development and are 

constantly undergoing streamlining and improvement (Knight et al. 2017, Knight and Bayne 

2018). Continued advancement in the accuracy and accessibility of multi-species classifiers 

(Knight et al. 2019) increases the possibility for remote data collection with automated 

workflows that are capable of community-based monitoring. Current logistical challenges for 

acoustic monitoring involve the storage and interpretation of audio recordings (Shonfield and 

Bayne 2017). ARUs are capable of generating a high volume of data, but one of the biggest 

limiting steps is interpretation, which still typically involves manual listening by human 

observers. The development of accurate, readily accessible multi-species classifiers for 

interpretation of animal communities would greatly reduce the processing time required and 

reduce the need for storage of audio recordings awaiting processing. Furthermore, in an 

automated workflow, recordings could be uploaded via cellular or satellite networks and 

processed automatically by multi-species classifiers to generate community data at large spatial 

scales with little effort. If audio recordings do not need to be retained for other uses, the ability to 

interpret recordings automatically and in real-time would remove the need to store them 
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completely or allow for conversion to high-compression formats to reduce storage requirements 

substantially. 

 Acoustic monitoring, like many other remote sensing tools, uses cutting edge 

developments in the computer sciences and in technology to address ecological and 

management-based objectives. While technological advancement has increased substantially 

with the rise in popularity of acoustic monitoring, methodological and analytical approaches that 

focus on traditional surveys need to be updated to deal with the challenges of acoustic data as 

well. Development of monitoring methods greatly increases our ability to collect a variety data, 

using ARUs, point counts, and through citizen-science sources such as eBird. However, 

integration of datasets from multiple sources requires standardization of data to be useful. 

Research presented in this thesis builds a foundation to facilitate the integration of avian data 

from multiple sources and environments by standardizing indices for relative abundance and 

describing methods to converting acoustic count data into more versatile forms such as animal 

abundance or density.  
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Appendix 1 

 

Table 1.1 – Model selection for differences in weather between road and interior forest. Wind, 

temperature, and humidity all used the same models for selection. We selected top models using 

lowest AICc value and ∆AICc. For multiple models with ∆AICc < 2, we selected the simplest 

model with fewest parameters (Arnold et al. 2010). Marginal (R2
m) and conditional (R2

c) are 

listed. 

Model Parameters 

global with interaction Transect*Time + random effect: Site 

global Transect + Time + Date + random effect: Site 

time, date Time + Date + random effect: Site 

transect, date Transect + Date + random effect: Site 

transect, time Transect + Time + random effect: Site 

date Date + random effect: Site 

time Time + random effect: Site 

transect Transect + random effect: Site 

null Random effect: Site only 

 

 Model df logLik AICc ∆AICc AICw R2
m R2

c 

Wind 
transect 4 -882.220 1772.5 0 0.767 

0.0986 0.4624 
null 3 -884.582 1775.5 2.70 0.199 

Humidity 
transect, time 5 -2036.328 4082.8 0 0.592 

0.1686 0.6978 
null 3 -2094.006 4194.1 111.29 0 

Temperature 
time 4 -1350.695 2709.5 1.52 0.271 

0.1551 0.7825 
null 3 -1412.013 2830.1 122.13 0 

 

Table 1.2 – Model selection for factors influencing relative SPL of pure tones. We selected top 

models using lowest AICc value and ∆AICc. For multiple models with ∆AICc < 2, we selected 

the simplest model with fewest parameters (Arnold et al. 2010). For each individual tone, we 
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subset for each frequency and removed the frequency variable from models. Marginal (R2
m) and 

conditional (R2
c) are listed. 

Model Parameters 

global.interaction Distance*transect + frequency + transect*wind + humidity 

wind.interaction Distance*transect + frequency + transect*wind 

noweather.interaction Distance*transect + frequency 

global Distance + transect + frequency + wind + humidity 

wind Distance + transect + frequency + wind 

noweather Distance + transect + frequency 

frequency Distance + frequency 

null Distance 

 

Tone Model df logLik AICc ∆AICc AICw R2
m R2

c 

Pooled 
noweather.interaction 20 -13039.38 26119.0 0 0.951 

0.7192 0.7739 
null 4 -13292.08 26592.2 473.18 0 

1000 
noweather.interaction 14 -2147.507 4322.8 0 0.862 

0.7291 0.8064 
null 4 -2185.518 4379.1 56.32 0 

1414 
noweather.interaction 14 -2228.726 4486.1 0 0.772 

0.7191 0.7953 
null 4 -2266.819 4541.7 55.60 0 

2000 
noweather.interaction 14 -2277.080 4582.8 0 0.673 

0.7293 0.7834 
null 4 -2316.579 4641.2 58.41 0 

2828 
noweather.interaction 14 -2011.228 4051.2 0.55 0.413 

0.7262 0.8131 
null 4 -2051.229 4110.5 59.89 0 

4000 
noweather.interaction 14 -1857.681 3744.2 0.92 0.367 

0.7173 0.8141 
null 4 -1894.656 3797.4 54.14 0 

5656 
noweather.interaction 14 -1500.182 3029.4 1.54 0.295 

0.7185 0.7769 
null 4 -1533.001 3074.1 46.25 0 

8000 
wind.interaction 20 -780.026 1604.0 0 0.882 

0.7881 0.8379 
null 1 -814.901 1638.0 33.96 0 

 

Table 1.3 – Model selection for factors influencing excess attenuation of pure tones. We selected 

top models using lowest AICc value and ∆AICc. For multiple models with ∆AICc < 2, we 

selected the simplest model with fewest parameters (Arnold et al. 2010). For each individual 
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tone, we subset for each frequency and removed the frequency variable from models. Marginal 

(R2
m) and conditional (R2

c) are listed. 

Model Parameters 

global.interaction Distance*transect + frequency + transect*wind + humidity 

wind.interaction Distance*transect + frequency + transect*wind 

noweather.interaction Distance*transect + frequency 

global Distance + transect + frequency + wind + humidity 

wind Distance + transect + frequency + wind 

noweather Distance + transect + frequency 

frequency Distance + frequency 

null Distance 

 

Tone Model df logLik AICc ∆AICc AICw R2
m R2

c 

Pooled 
noweather.interaction 20 -13162.03 26364.3 0 0.935 

0.4190 0.5275 
null 4 -13279.36 26566.7 202.44 0 

1000 
noweather.interaction 14 -2147.507 4322.8 0 0.862 

0.3893 0.5637 
null 4 -2192.194 4392.5 69.68 0 

1414 
noweather.interaction 14 -2228.726 4486.1 0 0.772 

0.3960 0.5600 
null 4 -2275.504 4559.1 72.97 0 

2000 
noweather.interaction 14 -2277.080 4582.8 0 0.673 

0.4986 0.5987 
null 4 -2323.311 4654.7 71.87 0 

2828 
noweather.interaction 14 -2011.228 4051.2 0.55 0.413 

0.4178 0.6027 
null 4 -2055.961 4120.0 69.36 0 

4000 
noweather.interaction 14 -1857.681 3744.2 0.92 0.367 

0.5507 0.7046 
null 4 -1903.949 3816.0 72.73 0 

5656 
noweather.interaction 14 -1500.182 3029.4 1.54 0.295 

0.4883 0.5944 
null 4 -1540.917 3089.9 62.09 0 

8000 
wind.interaction 20 -780.026 1604.0 0 0.882 

0.5720 0.6727 
null 1 -825.689 1659.6 55.54 0 

 

Table 1.4 – Model selection for detection by species. We selected top models using lowest AICc 

value and ∆AICc. For multiple models with ∆AICc < 2, we selected the simplest model with 

fewest parameters (Arnold et al. 2010). AUC statistics for top performing models are listed. 
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Model Parameters 

global Distance + Transect:Distance + Wind:Distance + Humidity:Distance 

global.observer Distance + Transect:Distance + Wind:Distance + Humidity:Distance + Observer:Distance 

wind Distance + Transect:Distance + Wind:Distance 

wind.observer Distance + Transect:Distance + Wind:Distance + Observer:Distance 

noweather Distance + Transect:Distance 

noweather.observer Distance + Transect:Distance + Observer:Distance 

null Distance 

 

Species Model df logLik AICc ∆AICc AICw AUC 

LEOW 
global 8 -428.989 874.1 0 0.774 

0.8845 
null 1 -479.997 962 87.85 0 

OSFL 
noweather 6 -379.154 770.4 0.59 0.347 

0.9482 
null 1 -408.348 818.7 48.89 0 

BHCO 
global 8 -325.856 667.9 0 0.649 

0.9506 
null 1 -356.978 716 48.08 0 

CORA 
global 8 -395.542 807.3 0 0.631 

0.9595 
null 1 -435.913 873.8 66.58 0 

GGOW 
global 8 -445.007 906.2 0 0.965 

0.8623 
null 1 -478.016 958 51.85 0 

BEKI 
noweather 6 -256.283 524.7 0 0.546 

0.9829 
null 1 -281.774 565.6 40.89 0 

TEWA 
noweather 6 -249.288 510.7 1 0.223 

0.9755 
null 1 -273.573 549.2 39.47 0 

PISI 
noweather 6 -297.023 606.1 0 0.575 

0.9762 
null 1 -336.868 675.7 69.59 0 

RBGR 
noweather 6 -391.925 796 1.74 0.242 

0.9633 
null 1 -432.064 866.1 71.92 0 

OVEN 
global 8 -315.063 646.3 0 0.779 

0.9757 
null 1 -359.52 721 74.75 0 

WAVI 
noweather 6 -319.048 650.2 0 0.499 

0.9795 
null 1 -350.715 703.4 53.24 0 

RBNU 
global 8 -400.352 816.9 0 0.822 

0.928 
null 1 -450.332 902.7 85.79 0 

CMWA 
noweather 6 -232.894 477.9 0.25 0.258 

0.9814 
null 1 -252.938 507.9 30.25 0 

DEJU 
noweather 6 -311.332 634.8 0 0.485 

0.9662 
null 1 -352.8 707.6 72.84 0 
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BOOW 
global 8 -441.127 898.4 0 0.752 

0.9055 
null 1 -477.066 956.1 57.71 0 

BAWW 
global 8 -238.445 493.1 0 0.757 

0.9707 
null 1 -266.607 535.2 42.16 0 

CCSP 
global 8 -293.157 602.5 0 0.838 

0.9802 
null 1 -332.407 666.8 64.33 0 

NSWO 
global 8 -425.371 866.9 0 0.728 

0.8958 
null 1 -455.92 913.8 46.93 0 

BBWA 
noweather 6 -213.717 439.5 0.05 0.395 

0.9731 
null 1 -223.787 449.6 10.1 0.003 

WTSP 
noweather 6 -394.838 801.8 1.58 0.263 

0.9672 
null 1 -430.662 863.3 63.14 0 

BADO 
global 8 -448.993 914.2 0 0.901 

0.8337 
null 1 -480.858 963.7 49.56 0 

LISP 
noweather 6 -329.579 671.3 1.82 0.141 

0.9731 
null 1 -359.433 720.9 51.44 0 

4000Hz 
noweather 6 -410.985 834.1 0 0.619 

0.9522 
null 1 -434.755 871.5 37.44 0 

1414Hz 
noweather 6 -450.015 912.1 0 0.863 

0.8281 
null 1 -472.454 946.9 34.78 0 

1000Hz 
noweather 6 -445.292 902.7 0 0.697 

0.8854 
null 1 -473.595 949.2 46.51 0 

8000Hz 
noweather.observer 11 -261.061 544.4 0 0.488 

0.9576 
null 1 -282.809 567.6 23.19 0 

5656Hz 
noweather 6 -350.718 713.5 0 0.596 

0.9695 
null 1 -368.349 738.7 25.17 0 

2828Hz 
global 8 -433.323 882.8 0 0.594 

0.9444 
null 1 -457.328 916.7 33.84 0 

2000Hz 
global 8 -443.186 902.5 0 0.988 

0.7993 
null 1 -470.43 942.9 40.32 0 

WETO 
global 7 -253.574 521.4 0 0.97 

0.9167 
null 1 -296.63 595.3 73.91 0 

CATO 
global 7 -258.735 531.7 0 0.849 

0.9282 
null 1 -282.85 567.7 36.03 0 

YERA 
noweather 5 -144.213 298.5 0 0.456 

0.9717 
null 1 -153.026 308.1 9.52 0.004 
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Table 2.1 – Model coefficients from the top selected model for each weather factor. Interior 

forest is the reference level for transect (factor levels: road, forest).  

Factor (intercept) Transect Time 

Wind 0.8433 0.8931  

Humidity 82.098455 -1.646832 -0.049581 

Temperature 17.293320  0.016094 
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Table 2.2 – Model coefficients from the top selected model predicting relative SPL for each tone. Transects are coded as EC – Edge 

Coniferous, ED – Edge Deciduous, FC – Forest Coniferous, FD – Forest Deciduous, and RC – Road Coniferous. Road Deciduous is 

the reference level for transect type. 1000Hz is the reference level for frequency. 

Tone Intercept log(Distance) EC ED FD FC RC 

Pooled 138.5762 -13.0722 -6.1373 -7.9116 0.8934 4.3047 -4.9869 

 

Tone Dist:EC Dist:ED Dist:FC Dist:FD Dist:RC 1414Hz 2000Hz 2828Hz 4000Hz 5656Hz 8000Hz 

Pooled 0.9381 0.5685 -2.6383 -2.1796 0.5302 -1.8855 -1.9234 -2.5307 -1.6052 -5.1473 -10.7848 

 

Tone Intercept log(Distance) EC ED FD FC RC 

1000Hz 126.8015 -11.259 -1.2923 -7.0242 4.7928 15.7249 1.3262 

1414Hz 119.897 -10.5146 6.9808 7.0598 17.6089 19.3498 5.309 

2000Hz 138.64 -13.1234 -15.4127 -8.3396 -3.7987 -9.2298 -12.7929 

2828Hz 136.9885 -13.1312 -10.1561 -9.436 4.5636 7.6209 -6.355 

4000Hz 145.0618 -14.3424 -0.8352 -13.2805 -2.938 2.7846 -7.7243 

5656Hz 152.393 -16.3598 -15.0276 -19.7347 -11.5844 -2.8565 -12.853 

8000Hz 139.6096 -15.8022 13.2916 -6.3893 3.555 1.235 7.6346 

 

Tone Dist:EC Dist:ED Dist:FC Dist:FD Dist:RC Wind Wind:EC Wind:ED Wind:FC Wind:FD Wind:RC 

1000Hz 0.3212 0.6708 -2.7762 -3.6499 -0.3151       

1414Hz -0.7249 -1.737 -4.6825 -4.2258 -1.0584       

2000Hz 2.4383 0.2757 -2.1237 -0.4143 1.6709       

2828Hz 1.561 0.5081 -3.4959 -2.8109 0.6647       

4000Hz -0.3323 1.3556 -2.9065 -2.5111 1.0617       

5656Hz 1.8703 2.7251 -1.0718 -1.5649 1.5521       

8000Hz -3.1848 0.5518 -3.0787 -0.874 -1.5229 -0.34 -0.2941 0.2481 -0.4179 -1.2779 -1.6701 
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Table 2.3 – Model coefficients from the top selected model predicting excess attenuation for each tone. Transects are coded as EC – 

Edge Coniferous, ED – Edge Deciduous, FC – Forest Coniferous, FD – Forest Deciduous, and RC – Road Coniferous. Road 

Deciduous is the reference level for transect type. 1000Hz is the reference level for frequency. 

Tone Intercept log(Distance) EC ED FD FC RC 

Pooled -14.1677 4.1551 1.0258 -2.9286 -6.0306 -7.5223 1.0499 

 

Tone Dist:EC Dist:ED Dist:FC Dist:FD Dist:RC 1414Hz 2000Hz 2828Hz 4000Hz 5656Hz 8000Hz 

Pooled -0.6756 0.2036 3.0125 2.0958 -0.0937 -1.2580 -1.1472 1.6019 1.2816 2.5302 5.1141 

 

Tone Intercept log(Distance) EC ED FD FC RC 

1000Hz -3.9136 2.6116 -0.9206 0.3678 -19.3041 -7.8727 -2.1503 

1414Hz -3.6124 1.8433 -5.4448 -7.0191 -18.8716 -15.5865 -3.8103 

2000Hz -15.0534 4.4270 6.7456 2.0121 0.7753 -6.8923 5.1254 

2828Hz -16.7120 4.4380 7.3782 2.4371 -6.3596 -7.5808 3.0758 

4000Hz -21.3914 5.6733 -0.6565 -0.3044 -3.5388 -2.8835 3.8406 

5656Hz -28.0633 7.6801 -0.2978 7.7395 -1.1527 1.4407 0.6643 

8000Hz -24.99968 7.27556 -8.45742 0.76245 5.43475 -4.97803 -2.49632 

 

Tone Dist:EC Dist:ED Dist:FC Dist:FD Dist:RC Wind Wind:EC Wind:ED Wind:FC Wind:FD Wind:RC 

1000Hz -0.2570 -0.7074 2.7204 3.6683 0.2088       
1414Hz 0.1208 1.7255 4.7354 4.2728 0.9992       
2000Hz -2.1235 -0.2776 2.1278 0.4785 -1.6867       
2828Hz -1.2060 -0.4646 3.5372 2.8391 0.4770       
4000Hz -0.3560 -1.3359 2.8623 2.4668 -0.2509       
5656Hz -0.5366 -2.6529 0.8933 1.5897 -0.5800       
8000Hz 2.49072 -0.14919 2.81782 0.26290 0.51193 0.61736 -1.84030 -1.29307 -0.02129 -1.31768 0.74896 
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Table 2.4 – Model coefficients from the top selected model for each species. “x” is –distance^2. Transects are coded as EC – Edge 

Coniferous, ED – Edge Deciduous, FC – Forest Coniferous, FD – Forest Deciduous, and RC – Road Coniferous. Road Deciduous is 

the reference level for transect type. Intercept is fixed at 0 for all models. Main effects for all parameters except distance excluded 

from models to allow fixed intercept. MinFreq is minimum frequency of a species or tone (Hz).  

Species MinFreq x x:EC x:ED x:FC x:FD x:RC x:Wind x:Humidity 

BEKI 4484 8.00E-06 -1.09E-06 9.84E-06 2.34E-05 1.99E-05 -6.16E-07   
PISI 3561 5.20E-06 -1.28E-06 2.97E-06 2.50E-05 1.28E-05 -2.03E-06   
BOOW 603 2.91E-06 2.96E-07 9.24E-07 2.06E-06 1.23E-06 -1.60E-07 -2.57E-07 -3.52E-08 

NSWO 909 3.20E-06 -3.37E-07 5.47E-07 2.39E-06 9.07E-07 -6.95E-07 -4.13E-07 -2.23E-08 

BBWA 7007 1.88E-05 -5.91E-06 2.16E-06 1.40E-05 2.63E-05 -1.72E-06   
TEWA 4134 9.81E-06 -1.51E-06 4.70E-06 3.10E-05 2.10E-05 -2.14E-06   
LEOW 1137 4.76E-06 4.34E-07 1.50E-07 2.02E-06 6.05E-07 6.42E-07 -3.20E-07 -6.56E-08 

CMWA 6758 1.04E-05 -6.79E-07 7.42E-06 3.23E-05 2.12E-05 -3.71E-07   
BADO 420 3.38E-06 4.80E-07 3.97E-07 1.21E-06 7.33E-08 2.69E-07 -3.64E-07 -4.07E-08 

WETO 1167 6.55E-06 6.33E-07 1.53E-06 2.02E-05 NA 3.48E-07 -3.54E-07 -8.04E-08 

CORA 1021 5.22E-06 5.58E-07 1.24E-06 5.85E-06 2.89E-06 2.22E-07 -1.65E-07 -6.27E-08 

RBNU 1027 4.70E-06 6.11E-07 1.43E-06 4.75E-06 3.04E-06 -3.03E-08 -1.18E-07 -6.24E-08 

LISP 2333 3.59E-06 -4.91E-07 2.77E-06 1.35E-05 7.60E-06 -8.72E-07   
CCSP 4297 9.54E-06 3.92E-07 3.98E-06 2.00E-05 1.49E-05 1.02E-07 3.13E-07 -9.66E-08 

GGOW 572 3.52E-06 2.41E-07 2.45E-07 1.73E-06 3.33E-07 3.10E-07 -2.12E-07 -4.59E-08 

YERA 1327 1.24E-05 2.33E-06 1.52E-05 4.86E-05 NA 1.11E-06   
WTSP 3059 1.47E-06 -3.16E-07 9.95E-07 5.93E-06 2.99E-06 -9.18E-07   
BAWW 6353 1.30E-05 2.44E-06 6.84E-06 2.79E-05 2.81E-05 3.62E-06 1.85E-06 -1.42E-07 

OSFL 1729 1.91E-06 1.70E-07 1.91E-06 7.05E-06 3.75E-06 -7.40E-07   
RBGR 1308 1.34E-06 -2.99E-07 1.68E-06 6.03E-06 4.63E-06 -5.85E-07   
WAVI 3537 3.51E-06 7.64E-07 2.60E-06 1.74E-05 1.01E-05 -4.27E-07   
CATO 1265 4.76E-06 1.48E-07 2.59E-07 1.09E-05 NA 2.16E-07 -1.10E-07 -5.44E-08 

OVEN 3955 7.50E-06 2.22E-07 1.14E-06 2.27E-05 1.25E-05 -5.69E-07 3.61E-07 -7.20E-08 

DEJU 2860 4.33E-06 -1.21E-06 3.89E-06 2.22E-05 9.99E-06 -1.58E-06   
BHCO 4821 7.80E-06 -1.66E-07 2.35E-06 1.32E-05 9.18E-06 -2.57E-07 1.96E-07 -7.16E-08 
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2000Hz 2000 2.27E-06 -6.91E-08 1.86E-07 1.66E-06 3.03E-07 -7.67E-08 -4.88E-08 -3.21E-08 

4000Hz 4000 1.63E-06 -6.49E-07 6.42E-07 2.67E-06 2.49E-06 -9.66E-07   
2828Hz 2828 2.45E-06 -2.50E-07 7.46E-07 2.46E-06 1.03E-06 2.80E-07 -1.55E-07 -2.51E-08 

5656Hz 5656 3.58E-06 -9.05E-07 7.94E-07 4.76E-06 6.38E-06 -8.30E-07   
8000Hz 8000 1.71E-05 -4.69E-06 -2.67E-06 -7.14E-06 6.55E-06 -7.26E-06   
1000Hz 1000 2.13E-07 -7.22E-09 3.47E-07 2.63E-06 1.20E-06 -3.49E-07   
1414Hz 1414 3.88E-07 -3.13E-07 2.00E-07 2.17E-06 3.70E-07 -5.16E-07   
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Figure 3.1 – Shapes used to estimate area surveyed for interior forests and roads/edges under two scenarios where “a” is the detection 

distance along roads/edges and “b” is the detection distance through the interior forest. Survey area is estimated assuming a circular 

detection area using the formula for area of a circle – AForest = π τForest
2 (A). The first scenario for estimating area on roads/edges 

assumes an elliptical detection area using the formula for area of an ellipse - ARoad/ForestEdge = π τForest τRoad/ForestEdge (B). The second 

scenario solves for an integral that estimates area based on the proportion of sound travelling through the road corridor and interior 

forest at a given angle, assuming a road width of 15m (C) using the following: 

#w=road width in metres 

#x=forest detection distance 

#y=road detection distance 

#z=edge detection distance 

w=15 

####Calculate Road Detection Area#### 

  theta.not=asin(w/(2*y)) 

  I1=(pi-(2*theta.not))*(x^2) 

  I2=w*(1-(x/y))*log((tan((pi-theta.not)/2))/(tan(theta.not/2))) 

  I3=((w^2)/4)*((1-(x/y))^2)*((1/tan(theta.not))-(1/tan(pi-theta.not))) 
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  I4=2*(theta.not)*(y^2) 

  A1=I1+I2+I3+I4 

   

  ####Calculate Forest Detection Area#### 

  A2=pi*x^2 

   

  ####Calculate Edge Detection Area#### 

  theta.not=asin(w/(2*y)) 

  I1=(pi-(2*theta.not))*(x^2) 

  I2=w*(1-(x/z))*log((tan((pi-theta.not)/2))/(tan(theta.not/2))) 

  I3=((w^2)/4)*((1-(x/z))^2)*((1/tan(theta.not))-(1/tan(pi-theta.not))) 

  I4=2*(theta.not)*(z^2) 

  A3=I1+I2+I3+I4 

   

  ####Calculate Correction Ratios#### 

  C1=A1/A2 

  C2=A1/A3 

  C3=A3/A2 
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Table 3.2 – Effective detection radius (metres), area surveyed (metres2), and correction factors for road-forest, road-edge, and edge-

forest comparisons, listed in descending order of road:forest correction factor.  

Scenario 1: Correction factors assuming survey area along a road or edge is elliptical 

Species 
Effective Detection Radius (EDR) Area Surveyed Correction Factor 

ROAD EDGE FOREST A:ROAD A:EDGE A:FOREST Aroad:Aedge Aroad:Aforest Aedge:Aforest 

PISI 498.73 422.81 212.09 332305.20 281719.24 141316.25 1.1796 2.3515 1.9935 

WAVI 550.98 440.73 247.22 427919.25 342291.70 192002.02 1.2502 2.2287 1.7828 

YERA 279.98 219.89 128.12 112695.96 88508.33 51572.23 1.2733 2.1852 1.7162 

WETO 401.06 374.69 195.06 245766.94 229611.88 119532.78 1.0704 2.0561 1.9209 

CMWA 328.74 290.74 166.16 171607.71 151768.63 86739.58 1.1307 1.9784 1.7497 

BEKI 360.81 307.13 184.21 208802.16 177738.08 106601.20 1.1748 1.9587 1.6673 

4000Hz 941.94 804.91 487.48 1442539.55 1232689.31 746551.38 1.1702 1.9323 1.6512 

DEJU 396.30 360.65 215.36 268121.17 244003.06 145701.41 1.0988 1.8402 1.6747 

CATO 461.52 456.14 254.05 368347.33 364053.91 202760.10 1.0118 1.8167 1.7955 

8000Hz 257.68 242.79 193.82 208597.35 185193.35 118013.66 1.1264 1.7676 1.5693 

OVEN 358.38 338.72 203.53 229154.10 216588.19 130144.37 1.0580 1.7608 1.6642 

5656Hz 563.87 538.73 331.99 588097.28 561876.54 346255.38 1.0467 1.6984 1.6227 

RBGR 561.70 507.50 339.57 599211.10 541396.31 362244.61 1.1068 1.6542 1.4946 

CCSP 315.60 293.87 192.45 190810.73 177674.54 116354.55 1.0739 1.6399 1.5270 

TEWA 248.23 232.53 152.77 119137.67 111602.26 73322.33 1.0675 1.6248 1.5221 

BAWW 243.56 231.16 152.80 116918.51 110965.93 73351.02 1.0536 1.5940 1.5128 

LISP 374.98 345.88 239.49 282132.30 260234.59 180190.44 1.0841 1.5657 1.4442 

BHCO 350.30 332.75 228.59 251563.24 238963.93 164162.63 1.0527 1.5324 1.4557 

WTSP 551.39 499.44 361.99 627059.67 567976.36 411670.31 1.1040 1.5232 1.3797 

OSFL 498.45 434.47 329.78 516418.85 450135.04 341670.42 1.1473 1.5115 1.3175 

BBWA 236.37 247.17 162.64 120771.79 126293.56 83100.53 0.9563 1.4533 1.5198 

1000Hz 696.63 640.06 504.79 1104740.53 1015029.60 800506.97 1.0884 1.3801 1.2680 
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1414Hz 696.63 640.06 504.79 1104740.53 1015029.60 800506.97 1.0884 1.3801 1.2680 

RBNU 466.44 423.13 347.41 509086.46 461822.04 379179.35 1.1023 1.3426 1.2180 

CORA 435.21 407.28 333.61 456119.02 426848.18 349636.66 1.0686 1.3046 1.2208 

NSWO 603.47 561.68 466.78 884955.69 823664.80 684505.80 1.0744 1.2928 1.2033 

BOOW 611.79 546.92 481.19 924860.80 826790.11 727431.03 1.1186 1.2714 1.1366 

2828Hz 621.70 614.98 498.63 973893.33 963365.17 781100.48 1.0109 1.2468 1.2333 

2000Hz 649.01 637.34 561.63 1145119.53 1124529.99 990944.36 1.0183 1.1556 1.1348 

GGOW 531.42 524.88 490.74 819286.55 809207.35 756565.03 1.0125 1.0829 1.0696 

LEOW 456.52 459.69 430.46 617360.85 621652.27 582127.17 0.9931 1.0605 1.0679 

BADO 557.79 532.86 529.92 928618.06 887099.52 882218.28 1.0468 1.0526 1.0055 

 

Scenario 2: Correction factors assuming survey area is equal to proportion of distance on open road and through forest 

Species 
Effective Detection Radius (EDR) Area Surveyed Correction Factor 

ROAD EDGE FOREST A:ROAD A:EDGE A:FOREST Aroad:Aedge Aroad:Aforest Aedge:Aforest 

YERA 279.98 219.89 128.12 56197.98 54068.47 51572.23 1.0394 1.0897 1.0484 

PISI 498.73 422.81 212.09 149999.73 147271.24 141316.25 1.0185 1.0614 1.0421 

CMWA 328.74 290.74 166.16 91683.28 90299.43 86739.58 1.0153 1.0570 1.0410 

WETO 401.06 374.69 195.06 125784.64 124810.52 119532.78 1.0078 1.0523 1.0442 

BEKI 360.81 307.13 184.21 111966.36 110033.90 106601.20 1.0176 1.0503 1.0322 

WAVI 550.98 440.73 247.22 201197.35 197285.18 192002.02 1.0198 1.0479 1.0275 

TEWA 248.23 232.53 152.77 76234.57 75660.63 73322.33 1.0076 1.0397 1.0319 

BAWW 243.56 231.16 152.80 76120.52 75666.26 73351.02 1.0060 1.0378 1.0316 

DEJU 396.30 360.65 215.36 151193.60 149890.31 145701.41 1.0087 1.0377 1.0287 

OVEN 358.38 338.72 203.53 134848.79 134123.65 130144.37 1.0054 1.0361 1.0306 

CCSP 315.60 293.87 192.45 120101.01 119308.68 116354.55 1.0066 1.0322 1.0254 

CATO 461.52 456.14 254.05 209049.21 208847.71 202760.10 1.0010 1.0310 1.0300 

BBWA 236.37 247.17 162.64 85351.29 85756.42 83100.53 0.9953 1.0271 1.0320 

LISP 374.98 345.88 239.49 184305.18 183256.29 180190.44 1.0057 1.0228 1.0170 

BHCO 350.30 332.75 228.59 167861.10 167223.86 164162.63 1.0038 1.0225 1.0186 



 

166 
 

5656Hz 563.87 538.73 331.99 353273.58 352347.30 346255.38 1.0026 1.0203 1.0176 

RBGR 561.70 507.50 339.57 368968.04 367015.80 362244.61 1.0053 1.0186 1.0132 

4000Hz 941.94 804.91 487.48 760265.21 755347.31 746551.38 1.0065 1.0184 1.0118 

OSFL 498.45 434.47 329.78 346780.19 344547.71 341670.42 1.0065 1.0150 1.0084 

WTSP 551.39 499.44 361.99 417403.72 415558.84 411670.31 1.0044 1.0139 1.0094 

RBNU 466.44 423.13 347.41 382787.08 381305.65 379179.35 1.0039 1.0095 1.0056 

CORA 435.21 407.28 333.61 352718.04 351757.36 349636.66 1.0027 1.0088 1.0061 

1000Hz 696.63 640.06 504.79 806305.52 804341.54 800506.97 1.0024 1.0072 1.0048 

1414Hz 696.63 640.06 504.79 806305.52 804341.54 800506.97 1.0024 1.0072 1.0048 

NSWO 603.47 561.68 466.78 688641.14 687215.86 684505.80 1.0021 1.0060 1.0040 

BOOW 611.79 546.92 481.19 731381.70 729238.74 727431.03 1.0029 1.0054 1.0025 

2828Hz 621.70 614.98 498.63 784823.07 784589.54 781100.48 1.0003 1.0048 1.0045 

2000Hz 649.01 637.34 561.63 993586.63 993198.15 990944.35 1.0004 1.0027 1.0023 

GGOW 531.42 524.88 490.74 757796.94 757587.32 756565.03 1.0003 1.0016 1.0014 

LEOW 456.52 459.69 430.46 582917.04 583018.89 582127.17 0.9998 1.0014 1.0015 

BAOW 557.79 532.86 529.92 883061.93 882303.16 882218.28 1.0009 1.0010 1.0001 

8000Hz 144.30 158.40 237.55 174405.36 174502.30 177276.37 0.9994 0.9838 0.9844 
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Table 4 – Monte Carlo simulations to compare differences in effective detection radius for different transect and forest types for 

different species. 90% confidence intervals are generated from resampling of fitted values from the original model (n=1000). “***” 

indicates no overlap in confidence intervals, “NO DATA” indicates there was no data available to make comparison, and “NA” 

indicates an undefined effective detection radius calculation due to an insufficient number of non-detections. Abbreviations for letter 

codes are combinations of transect and forest type: R – Road, E – Edge, F – Forest, C – Conifer, and D – Deciduous. 

Species 

RC-

RD 

EC-

ED 

FD-

FC 

RC-

EC 

RC-

ED 

RD-

EC 

RD-

ED 

EC-

FC 

EC-

FD 

ED-

FC 

ED-

FD 

RC-

FC 

RC-

FD 

RD-

FC 

RD-

FD 

BBWA               *** ***   ***   ***   *** 

BEKI   ***     ***   *** *** ***     *** *** *** *** 

CMWA               *** *** ***   *** *** *** *** 

DEJU   ***     ***   *** *** *** ***   *** *** *** *** 

LISP   ***     ***     *** *** ***   *** *** *** *** 

OSFL         ***   *** *** *** ***   *** *** *** *** 

PISI   ***     ***     *** *** *** *** *** *** *** *** 

RBGR   ***     ***   *** *** *** ***   *** *** *** *** 

TEWA         ***     *** *** ***   *** *** *** *** 

WAVI         ***     *** *** *** *** *** *** *** *** 

WTSP NA     NA NA     *** *** ***   NA NA *** *** 

YERA     

NO 

DATA       *** *** 

NO 

DATA   

NO 

DATA *** 

NO 

DATA *** 

NO 

DATA 

BAWW               *** ***     *** *** *** *** 

BHCO               *** *** ***   *** *** *** *** 

CCSP               *** *** ***   *** *** *** *** 

CORA               ***   ***   ***   ***   

OVEN               *** *** *** *** *** *** *** *** 

RBNU               ***       ***   ***   
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CATO     

NO 

DATA         *** 

NO 

DATA *** 

NO 

DATA *** 

NO 

DATA *** 

NO 

DATA 

WETO     

NO 

DATA         *** 

NO 

DATA *** 

NO 

DATA *** 

NO 

DATA *** 

NO 

DATA 

NSWO                               

BOOW                               

GGOW                               

LEOW                               

BADO                               

1000Hz NA NA *** NA NA NA NA NA NA NA NA NA NA NA NA 

1414Hz NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

2000Hz   NA   NA   NA   NA NA             

2828Hz                               

4000Hz NA ***   NA NA     *** ***     NA NA *** *** 

5656Hz               *** ***   *** *** *** *** *** 

8000Hz                        ***     
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Appendix 2 

 

Table 1. Detection radius, detection area, and correction factors calculated for EDR for different songs and tones detected by four 

brands of autonomous recording units (ARUs), from listening trials conducted at 20 transects near Calling Lake and Lac La Biche, 

Alberta, Canada in 2014. Correction factors are relative to human observers in the field and are calculated using a ratio of ARU to 

Field Observer detection areas. Values less than 1 indicate a smaller detection area relative to human observers and values greater than 

1 indicate greater detection area relative to human observers. Correction factors can be applied to ARU data to standardize survey 

areas with those of observers in the field. “NA” indicates EDR values that could not be solved by our models due to uncertainty 

caused by insufficient non-detections. 

Sound Habitat 

Effective Detection Radius (m)  ± 90% CI Effective Detection Area (m2) EDR Correction Factor 

Human 
RiverFor
ks SM2 SM3 Zoom Human 

RiverFor
ks SM2 SM3 Zoom Human RiverForks 

S

M
2 SM3 Zoom 

1000H

z Conifer 

612 ± 

118 

586 ± 

106 549 ± 91 553 ± 87 540 ± 84 

117527

6 1077627 946839 961247 915295 1.0000 0.9169 

0.805

6 

0.817

9 

0.778

8 

1000H
z 

Deciduo
us 

676 ± 
141 

642 ± 
119 

594 ± 
105 

600 ± 
105 583 ± 98 

143676
7 1293480 

110952
2 

112935
9 

106645
5 1.0000 0.9003 

0.772
2 

0.786
0 

0.742
3 

1000H

z Road 

1078 ± 

611 

952 ± 

376 

815 ± 

254 

829 ± 

245 

786 ± 

223 

365003

3 2848426 

208658

4 

215786

5 

193930

1 1.0000 0.7804 

0.571

7 

0.591

2 

0.531

3 
1414H

z Conifer 

601 ± 

110 568 ± 94 536 ± 86 545 ± 85 529 ± 82 

113541

8 1014684 902944 934322 879387 1.0000 0.8937 

0.795

3 

0.822

9 

0.774

5 

1414H
z 

Deciduo
us 

658 ± 
127 

615 ± 
113 575 ± 93 

587 ± 
100 566 ± 91 

135933
4 1189839 

103905
9 

108082
8 

100798
6 1.0000 0.8753 

0.764
4 

0.795
1 

0.741
5 

1414H

z Road NA 

903 ± 

323 

788 ± 

224 

818 ± 

237 

766 ± 

200 NA 2560424 

195114

4 

210381

4 

184437

9 NA NA NA NA NA 
2000H

z Conifer 

567 ± 

105 553 ± 92 531 ± 86 551 ± 92 533 ± 85 

101063

7 961422 887345 952392 893324 1.0000 0.9513 

0.878

0 

0.942

4 

0.883

9 

2000H
z 

Deciduo
us 

680 ± 
142 

656 ± 
128 

621 ± 
115 

652 ± 
126 

624 ± 
115 

145273
0 1353163 

121088
7 

133534
3 

122204
8 1.0000 0.9315 

0.833
5 

0.919
2 

0.841
2 
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2000H
z Road 1223 ± 0 

1099 ± 
610 

953 ± 
396 

1079 ± 
537 

964 ± 
406 

469853
4 3795315 

285458
2 

365838
8 

291739
3 1.0000 0.8078 

0.607
5 

0.778
6 

0.620
9 

2828H

z Conifer 566 ± 98 570 ± 96 536 ± 85 571 ± 96 549 ± 89 

100577

0 1019704 903720 

102291

0 948115 1.0000 1.0139 

0.898

5 

1.017

0 

0.942

7 
2828H

z 

Deciduo

us 

707 ± 

150 

715 ± 

146 

652 ± 

121 

717 ± 

150 

676 ± 

130 

157069

1 1604941 

133522

7 

161289

6 

143446

5 1.0000 1.0218 

0.850

1 

1.026

9 

0.913

3 

2828H
z Road NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

4000H

z Conifer 450 ± 74 451 ± 74 439 ± 72 458 ± 76 432 ± 68 635063 639295 604230 658029 587147 1.0000 1.0067 

0.951

4 

1.036

2 

0.924

5 
4000H

z 

Deciduo

us 495 ± 85 497 ± 84 481 ± 81 506 ± 93 473 ± 73 771104 777352 726114 805228 701584 1.0000 1.0081 

0.941

7 

1.044

3 

0.909

8 

4000H

z Road 

1308 ± 

783 

1346 ± 

679 

1093 ± 

465 NA 

1006 ± 

326 

537093

0 5689426 

375178

3 NA 

317771

7 1.0000 1.0593 

0.698

5 NA 

0.591

7 

5656H

z Conifer 358 ± 62 351 ± 60 333 ± 52 361 ± 63 348 ± 57 403523 387750 347486 408884 381134 1.0000 0.9609 

0.861

1 

1.013

3 

0.944

5 
5656H

z 

Deciduo

us 301 ± 52 297 ± 49 285 ± 45 302 ± 52 295 ± 47 284257 276339 255260 286907 272962 1.0000 0.9721 

0.898

0 

1.009

3 

0.960

3 

5656H
z Road 

743 ± 
210 

686 ± 
168 

571 ± 
135 

765 ± 
207 

664 ± 
161 

173481
0 1476581 

102451
5 

183843
9 

138502
7 1.0000 0.8511 

0.590
6 

1.059
7 

0.798
4 

8000H

z Conifer 219 ± 46 203 ± 37 150 ± 26 198 ± 34 184 ± 30 150853 129882 70873 123612 106319 1.0000 0.8610 

0.469

8 

0.819

4 

0.704

8 
8000H

z 

Deciduo

us 173 ± 41 165 ± 35 132 ± 24 162 ± 33 154 ± 29 93671 85135 55077 82396 74337 1.0000 0.9089 

0.588

0 

0.879

6 

0.793

6 

8000H
z Road 

439 ± 
111 342 ± 77 187 ± 45 320 ± 74 268 ± 61 605363 367344 109498 321258 225806 1.0000 0.6068 

0.180
9 

0.530
7 

0.373
0 

BADO Conifer 

550 ± 

117 476 ± 81 459 ± 77 464 ± 74 407 ± 56 951248 711751 660835 676513 519872 1.0000 0.7482 

0.694

7 

0.711

2 

0.546

5 

BADO 

Deciduo

us 

658 ± 

166 

541 ± 

100 516 ± 88 524 ± 90 445 ± 64 

136213

2 919221 836029 861281 622494 1.0000 0.6748 

0.613

8 

0.632

3 

0.457

0 

BADO Road 

842 ± 

360 

630 ± 

155 

591 ± 

134 

603 ± 

133 491 ± 88 

222982

5 1246571 

109835

4 

114235

6 757137 1.0000 0.5590 

0.492

6 

0.512

3 

0.339

6 

BAW
W Conifer 238 ± 50 206 ± 35 201 ± 33 221 ± 42 201 ± 35 178608 132841 127386 153547 127431 1.0000 0.7438 

0.713
2 

0.859
7 

0.713
5 

BAW

W 

Deciduo

us 213 ± 43 189 ± 33 185 ± 31 200 ± 36 185 ± 32 142657 111873 107979 126205 108011 1.0000 0.7842 

0.756

9 

0.884

7 

0.757

1 
BAW

W Road 

515 ± 

126 319 ± 71 304 ± 67 388 ± 89 304 ± 70 834320 319744 289867 473396 290097 1.0000 0.3832 

0.347

4 

0.567

4 

0.347

7 

BEKI Conifer 294 ± 50 286 ± 46 257 ± 39 297 ± 51 287 ± 46 272203 256849 207309 277682 258925 1.0000 0.9436 
0.761
6 

1.020
1 

0.951
2 

BEKI 

Deciduo

us 224 ± 39 221 ± 38 206 ± 31 226 ± 42 221 ± 37 158083 152779 133765 159915 153511 1.0000 0.9664 

0.846

2 

1.011

6 

0.971

1 

BEKI Road 

619 ± 

160 

550 ± 

123 401 ± 84 

647 ± 

156 

559 ± 

125 

120232

5 951184 504616 

131712

2 980290 1.0000 0.7911 

0.419

7 

1.095

5 

0.815

3 

BHCO Conifer 341 ± 58 333 ± 54 293 ± 42 339 ± 58 334 ± 55 366090 348880 269548 361559 350184 1.0000 0.9530 
0.736
3 

0.987
6 

0.956
6 

BHCO 

Deciduo

us 318 ± 54 312 ± 50 278 ± 41 317 ± 52 312 ± 51 318681 305559 242938 315242 306559 1.0000 0.9588 

0.762

3 

0.989

2 

0.962

0 

BHCO Road 

811 ± 

241 

717 ± 

178 

467 ± 

102 

784 ± 

209 

724 ± 

180 

206752

0 1617024 683986 

193087

4 

164543

2 1.0000 0.7821 

0.330

8 

0.933

9 

0.795

8 
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BLW
A Conifer 220 ± 40 209 ± 36 199 ± 32 214 ± 37 209 ± 36 151680 137797 124066 144512 137427 1.0000 0.9085 

0.817
9 

0.952
7 

0.906
0 

BLW

A 

Deciduo

us 197 ± 36 189 ± 33 181 ± 29 193 ± 33 189 ± 32 121478 112408 103100 116837 112162 1.0000 0.9253 

0.848

7 

0.961

8 

0.923

3 
BLW

A Road 

517 ± 

136 414 ± 94 346 ± 80 

458 ± 

108 412 ± 93 838861 538708 376011 658290 533089 1.0000 0.6422 

0.448

2 

0.784

7 

0.635

5 

BOO
W Conifer 

593 ± 
127 

548 ± 
105 536 ± 99 529 ± 90 473 ± 74 

110617
2 944125 903878 879743 702424 1.0000 0.8535 

0.817
1 

0.795
3 

0.635
0 

BOO

W 

Deciduo

us 

665 ± 

156 

603 ± 

117 

588 ± 

115 

578 ± 

106 507 ± 76 

138922

4 1142871 

108442

0 

104986

6 806810 1.0000 0.8227 

0.780

6 

0.755

7 

0.580

8 
BOO

W Road NA 

827 ± 

287 

788 ± 

259 

766 ± 

220 

620 ± 

133 NA 2150999 

195288

7 

184361

2 

120575

0 NA NA NA NA NA 

CATO Conifer 369 ± 54 360 ± 52 345 ± 47 358 ± 52 346 ± 48 428512 407623 372931 402582 375217 1.0000 0.9513 

0.870

3 

0.939

5 

0.875

6 

CATO 

Deciduo

us 453 ± 79 437 ± 70 409 ± 61 433 ± 70 411 ± 60 644911 598735 526759 587920 531331 1.0000 0.9284 

0.816

8 

0.911

6 

0.823

9 

CATO Road 

527 ± 

110 

501 ± 

100 461 ± 82 495 ± 99 464 ± 86 871521 789262 668798 770577 676186 1.0000 0.9056 

0.767

4 

0.884

2 

0.775

9 

CCSP Conifer 323 ± 56 304 ± 50 288 ± 45 313 ± 56 306 ± 49 327909 290576 259790 308570 293834 1.0000 0.8861 
0.792
3 

0.941
0 

0.896
1 

CCSP 

Deciduo

us 221 ± 38 215 ± 35 208 ± 33 218 ± 37 215 ± 36 153281 144597 136545 148918 145399 1.0000 0.9433 

0.890

8 

0.971

5 

0.948

6 

CCSP Road 

717 ± 

192 

561 ± 

129 

474 ± 

104 

627 ± 

153 

572 ± 

135 

161592

1 989455 704981 

123460

4 

102827

3 1.0000 0.6123 

0.436

3 

0.764

0 

0.636

3 

CMW
A Conifer 204 ± 58 171 ± 37 143 ± 29 178 ± 42 163 ± 35 130129 92195 64544 99939 83796 1.0000 0.7085 

0.496
0 

0.768
0 

0.643
9 

CMW

A 

Deciduo

us 183 ± 50 159 ± 34 136 ± 25 164 ± 36 152 ± 31 105434 79073 57826 84702 72813 1.0000 0.7500 

0.548

5 

0.803

4 

0.690

6 

CMW

A Road NA 

272 ± 

101 189 ± 53 

303 ± 

128 243 ± 80 NA 232105 111667 288352 185335 NA NA NA NA NA 

CORA Conifer 339 ± 52 336 ± 51 324 ± 45 335 ± 49 324 ± 46 360271 355630 329144 351526 328965 1.0000 0.9871 

0.913

6 

0.975

7 

0.913

1 

CORA 
Deciduo
us 402 ± 64 398 ± 62 377 ± 55 395 ± 61 377 ± 54 506688 497556 447208 489560 446878 1.0000 0.9820 

0.882
6 

0.966
2 

0.882
0 

CORA Road 

617 ± 

162 

604 ± 

149 

538 ± 

117 

593 ± 

141 

538 ± 

112 

119548

1 1145859 909937 

110432

2 908571 1.0000 0.9585 

0.761

1 

0.923

7 

0.760

0 

DEJU Conifer 338 ± 58 325 ± 53 305 ± 47 332 ± 56 323 ± 51 359372 331614 291619 345693 328565 1.0000 0.9228 

0.811

5 

0.961

9 

0.914

3 

DEJU 
Deciduo
us 272 ± 48 265 ± 44 253 ± 39 268 ± 47 264 ± 44 231936 220049 201693 226161 218702 1.0000 0.9487 

0.869
6 

0.975
1 

0.942
9 

DEJU Road 

857 ± 

266 

691 ± 

166 

543 ± 

124 

765 ± 

205 

677 ± 

168 

230682

4 1500568 925935 

183958

4 

144008

4 1.0000 0.6505 

0.401

4 

0.797

5 

0.624

3 
GGO

W Conifer 451 ± 81 406 ± 62 417 ± 68 410 ± 61 370 ± 48 640105 517272 545437 528611 430366 1.0000 0.8081 

0.852

1 

0.825

8 

0.672

3 

GGO
W 

Deciduo
us 

552 ± 
113 474 ± 76 492 ± 86 482 ± 78 420 ± 59 958741 707208 760929 728575 554202 1.0000 0.7376 

0.793
7 

0.759
9 

0.578
1 

GGO

W Road 

754 ± 

288 

585 ± 

131 

619 ± 

163 

598 ± 

144 491 ± 88 

178713

9 1074656 

120380

0 

112478

1 757050 1.0000 0.6013 

0.673

6 

0.629

4 

0.423

6 
LEO

W Conifer 439 ± 79 375 ± 52 376 ± 53 384 ± 56 350 ± 46 604238 442240 444761 463471 384757 1.0000 0.7319 

0.736

1 

0.767

0 

0.636

8 
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LEO
W 

Deciduo
us 

604 ± 
142 464 ± 78 466 ± 76 481 ± 81 419 ± 61 

114780
1 676832 682755 727862 550874 1.0000 0.5897 

0.594
8 

0.634
1 

0.479
9 

LEO

W Road 

761 ± 

298 

525 ± 

110 

528 ± 

109 

550 ± 

121 462 ± 81 

181837

8 864916 874612 950033 669342 1.0000 0.4757 

0.481

0 

0.522

5 

0.368

1 

LISP Conifer 340 ± 56 335 ± 55 311 ± 46 335 ± 54 331 ± 53 362661 353478 303974 353358 344209 1.0000 0.9747 

0.838

2 

0.974

3 

0.949

1 

LISP 
Deciduo
us 315 ± 55 312 ± 51 292 ± 44 312 ± 51 308 ± 51 312364 305527 267827 305438 298578 1.0000 0.9781 

0.857
4 

0.977
8 

0.955
9 

LISP Road 

883 ± 

291 

815 ± 

222 

582 ± 

133 

814 ± 

227 

757 ± 

199 

245059

5 2084615 

106334

7 

208045

7 

179894

7 1.0000 0.8507 

0.433

9 

0.849

0 

0.734

1 
NSW

O Conifer 

514 ± 

101 

520 ± 

101 492 ± 86 490 ± 85 461 ± 75 831479 848211 759484 755817 666715 1.0000 1.0201 

0.913

4 

0.909

0 

0.801

8 

NSW

O 

Deciduo

us 

654 ± 

150 

664 ± 

155 

609 ± 

125 

606 ± 

120 553 ± 98 

134215

4 1386295 

116403

8 

115544

6 959430 1.0000 1.0329 

0.867

3 

0.860

9 

0.714

8 

NSW

O Road NA 

1019 ± 

570 

846 ± 

344 

840 ± 

304 

712 ± 

200 NA 3261993 

225076

9 

221886

7 

159362

8 NA NA NA NA NA 

OSFL Conifer 360 ± 57 356 ± 56 337 ± 49 359 ± 57 350 ± 54 407639 399089 357836 403974 385462 1.0000 0.9790 

0.877

8 

0.991

0 

0.945

6 

OSFL 
Deciduo
us 385 ± 66 381 ± 63 358 ± 55 383 ± 65 373 ± 62 466053 454911 402075 461269 437290 1.0000 0.9761 

0.862
7 

0.989
7 

0.938
3 

OSFL Road 

672 ± 

237 

649 ± 

204 

552 ± 

139 

662 ± 

216 

614 ± 

182 

141979

1 1321209 956249 

137630

6 

118278

1 1.0000 0.9306 

0.673

5 

0.969

4 

0.833

1 

OVEN Conifer 325 ± 52 315 ± 47 298 ± 43 319 ± 49 313 ± 46 331061 311820 278854 319042 308335 1.0000 0.9419 

0.842

3 

0.963

7 

0.931

4 

OVEN 
Deciduo
us 268 ± 46 262 ± 43 252 ± 39 264 ± 43 261 ± 41 225414 216326 199929 219777 214643 1.0000 0.9597 

0.886
9 

0.975
0 

0.952
2 

OVEN Road 

810 ± 

241 

688 ± 

167 

550 ± 

131 

729 ± 

201 

670 ± 

165 

205978

9 1488393 951477 

166868

6 

141220

4 1.0000 0.7226 

0.461

9 

0.810

1 

0.685

6 

PISI Conifer 309 ± 54 296 ± 48 281 ± 44 305 ± 52 298 ± 48 299449 275404 248338 292895 278887 1.0000 0.9197 

0.829

3 

0.978

1 

0.931

3 

PISI 

Deciduo

us 251 ± 44 244 ± 41 236 ± 36 249 ± 43 245 ± 43 198113 187294 174370 195222 188899 1.0000 0.9454 

0.880

2 

0.985

4 

0.953

5 

PISI Road 
690 ± 
184 

576 ± 
134 

484 ± 
105 

654 ± 
157 

590 ± 
138 

149482
3 1041080 737311 

134461
1 

109267
0 1.0000 0.6965 

0.493
2 

0.899
5 

0.731
0 

RBGR Conifer 352 ± 54 355 ± 53 337 ± 48 357 ± 55 345 ± 49 388454 396463 357506 399853 372913 1.0000 1.0206 

0.920

3 

1.029

3 

0.960

0 

RBGR 

Deciduo

us 460 ± 82 468 ± 82 429 ± 67 472 ± 80 445 ± 72 665431 689281 579496 699595 621090 1.0000 1.0358 

0.870

9 

1.051

3 

0.933

4 

RBGR Road 
724 ± 
246 

757 ± 
265 

619 ± 
161 

772 ± 
271 

667 ± 
191 

164660
5 1800795 

120458
7 

187293
6 

139939
4 1.0000 1.0936 

0.731
6 

1.137
5 

0.849
9 

RBNU Conifer 384 ± 54 383 ± 53 367 ± 49 385 ± 55 372 ± 52 462807 462006 422414 464594 435349 1.0000 0.9983 

0.912

7 

1.003

9 

0.940

7 

RBNU 

Deciduo

us 457 ± 71 457 ± 71 429 ± 62 459 ± 70 438 ± 63 657096 655483 578549 660704 603090 1.0000 0.9975 

0.880

5 

1.005

5 

0.917

8 

RBNU Road 
686 ± 
200 

685 ± 
189 

601 ± 
143 

691 ± 
189 

626 ± 
146 

148055
2 1472391 

113373
7 

149899
5 

123197
7 1.0000 0.9945 

0.765
8 

1.012
5 

0.832
1 

TEW

A Conifer 242 ± 44 227 ± 36 205 ± 30 237 ± 41 232 ± 37 184312 161263 131965 176926 168614 1.0000 0.8749 

0.716

0 

0.959

9 

0.914

8 
TEW

A 

Deciduo

us 200 ± 39 191 ± 34 177 ± 28 197 ± 37 194 ± 36 125623 114471 98887 122147 118127 1.0000 0.9112 

0.787

2 

0.972

3 

0.940

3 
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TEW
A Road 

625 ± 
159 447 ± 98 328 ± 71 

553 ± 
138 

491 ± 
115 

122715
2 628779 337030 960241 757566 1.0000 0.5124 

0.274
6 

0.782
5 

0.617
3 

WAVI Conifer 325 ± 54 319 ± 52 299 ± 44 324 ± 51 318 ± 50 330968 320161 280277 329029 317975 1.0000 0.9673 

0.846

8 

0.994

1 

0.960

7 

WAVI 

Deciduo

us 283 ± 48 280 ± 48 266 ± 42 283 ± 47 279 ± 47 252295 245966 221726 251166 244673 1.0000 0.9749 

0.878

8 

0.995

5 

0.969

8 

WAVI Road 
787 ± 
239 

719 ± 
181 

548 ± 
125 

774 ± 
219 

707 ± 
172 

194615
3 1623847 943138 

188098
1 

156912
6 1.0000 0.8344 

0.484
6 

0.966
5 

0.806
3 

WET

O Conifer 340 ± 47 327 ± 44 312 ± 40 326 ± 43 306 ± 37 364208 335585 305270 333213 293587 1.0000 0.9214 

0.838

2 

0.914

9 

0.806

1 
WET

O 

Deciduo

us 386 ± 57 367 ± 53 346 ± 47 365 ± 51 337 ± 44 468266 421989 375143 418246 357653 1.0000 0.9012 

0.801

1 

0.893

2 

0.763

8 

WET

O Road 449 ± 84 419 ± 75 388 ± 61 417 ± 73 377 ± 59 633332 551529 474144 545152 446545 1.0000 0.8708 

0.748

7 

0.860

8 

0.705

1 

WTSP Conifer 398 ± 65 394 ± 64 379 ± 57 404 ± 70 394 ± 64 497421 488406 450744 512106 487937 1.0000 0.9819 

0.906

2 

1.029

5 

0.980

9 

WTSP 

Deciduo

us 427 ± 67 423 ± 66 404 ± 61 434 ± 70 422 ± 66 572980 561051 511915 592552 560432 1.0000 0.9792 

0.893

4 

1.034

2 

0.978

1 

WTSP Road 
721 ± 
239 

700 ± 
218 

623 ± 
169 

758 ± 
289 

699 ± 
214 

163489
1 1541379 

121973
6 

180500
2 

153671
4 1.0000 0.9428 

0.746
1 

1.104
1 

0.939
9 

YERA Conifer 212 ± 44 568 ± 41 536 ± 28 207 ± 43 203 ± 39 140596 1014684 902944 134210 129845 1.0000 7.2170 

6.422

3 

0.954

6 

0.923

5 

YERA 

Deciduo

us 188 ± 39 183 ± 37 158 ± 27 185 ± 37 182 ± 35 111247 105054 78683 107211 104407 1.0000 0.9443 

0.707

3 

0.963

7 

0.938

5 

YERA Road 
442 ± 
119 384 ± 92 244 ± 55 

402 ± 
108 379 ± 98 614773 463702 187026 508896 451357 1.0000 0.7543 

0.304
2 

0.827
8 

0.734
2 
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Table 2. Detection radius, detection area, and correction factors calculated for MDD of different songs and tones detected by four 

brands of autonomous recording units (ARUs), from listening trials conducted at 20 transects near Calling Lake and Lac La Biche, 

Alberta, Canada in 2014. Correction factors are relative to human observers in the field and are calculated using a ratio of ARU to 

Field Observer detection areas. Values less than 1 indicate a smaller detection area relative to human observers and values greater than 

1 indicate greater detection area relative to human observers. Correction factors can be applied to ARU data to standardize survey 

areas with those of observers in the field.  

Sound Habitat 
Maximum Detection Distance (m) Maximum Detection Area (m2) MDD Correction Factor 

Human RiverForks SM2 SM3 Zoom Human RiverForks SM2 SM3 Zoom Human RiverForks SM2 SM3 Zoom 

1000Hz Conifer 913 813 763 563 513 2615867 2073942 1826542 994020 825159 1.0000 0.7928 0.6983 0.3800 0.3154 

1000Hz Deciduous 913 763 763 713 713 2615867 1826542 1826542 1594849 1594849 1.0000 0.6983 0.6983 0.6097 0.6097 

1000Hz Road 1113 1113 913 1013 1013 3888212 3888212 2615867 3220623 3220623 1.0000 1.0000 0.6728 0.8283 0.8283 

1414Hz Conifer 913 763 763 563 463 2615867 1826542 1826542 994020 672006 1.0000 0.6983 0.6983 0.3800 0.2569 

1414Hz Deciduous 813 763 713 713 713 2073942 1826542 1594849 1594849 1594849 1.0000 0.8807 0.7690 0.7690 0.7690 

1414Hz Road 1113 1113 913 1013 1013 3888212 3888212 2615867 3220623 3220623 1.0000 1.0000 0.6728 0.8283 0.8283 

2000Hz Conifer 513 663 613 563 463 825159 1378865 1178588 994020 672006 1.0000 1.6710 1.4283 1.2046 0.8144 

2000Hz Deciduous 763 713 613 713 713 1826542 1594849 1178588 1594849 1594849 1.0000 0.8732 0.6453 0.8732 0.8732 

2000Hz Road 1113 1013 913 1013 913 3888212 3220623 2615867 3220623 2615867 1.0000 0.8283 0.6728 0.8283 0.6728 

2828Hz Conifer 513 613 363 513 413 825159 1178588 412825 825159 534562 1.0000 1.4283 0.5003 1.0000 0.6478 

2828Hz Deciduous 713 763 513 663 663 1594849 1826542 825159 1378865 1378865 1.0000 1.1453 0.5174 0.8646 0.8646 

2828Hz Road 913 1013 813 1013 913 2615867 3220623 2073942 3220623 2615867 1.0000 1.2312 0.7928 1.2312 1.0000 

4000Hz Conifer 413 388 363 388 363 534562 471730 412825 471730 412825 1.0000 0.8825 0.7723 0.8825 0.7723 

4000Hz Deciduous 513 513 388 513 413 825159 825159 471730 825159 534562 1.0000 1.0000 0.5717 1.0000 0.6478 

4000Hz Road 763 813 763 813 713 1826542 2073942 1826542 2073942 1594849 1.0000 1.1354 1.0000 1.1354 0.8732 

5656Hz Conifer 413 313 288 313 313 534562 306796 259672 306796 306796 1.0000 0.5739 0.4858 0.5739 0.5739 

5656Hz Deciduous 338 288 213 363 363 357847 259672 141863 412825 412825 1.0000 0.7257 0.3964 1.1536 1.1536 

5656Hz Road 563 563 513 613 563 994020 994020 825159 1178588 994020 1.0000 1.0000 0.8301 1.1857 1.0000 

8000Hz Conifer 238 188 163 188 188 177205 110447 82958 110447 110447 1.0000 0.6233 0.4681 0.6233 0.6233 

8000Hz Deciduous 188 188 113 163 138 110447 110447 39761 82958 59396 1.0000 1.0000 0.3600 0.7511 0.5378 

8000Hz Road 363 338 188 313 288 412825 357847 110447 306796 259672 1.0000 0.8668 0.2675 0.7432 0.6290 

BADO Conifer 813 463 388 463 363 2073942 672006 471730 672006 412825 1.0000 0.3240 0.2275 0.3240 0.1991 

BADO Deciduous 913 1013 763 513 338 2615867 3220623 1826542 825159 357847 1.0000 1.2312 0.6983 0.3154 0.1368 

BADO Road 1113 763 763 763 663 3888212 1826542 1826542 1826542 1378865 1.0000 0.4698 0.4698 0.4698 0.3546 

BAWW Conifer 263 163 138 213 238 216475 82958 59396 141863 177205 1.0000 0.3832 0.2744 0.6553 0.8186 

BAWW Deciduous 213 213 188 213 163 141863 141863 110447 141863 82958 1.0000 1.0000 0.7785 1.0000 0.5848 

BAWW Road 413 313 313 338 288 534562 306796 306796 357847 259672 1.0000 0.5739 0.5739 0.6694 0.4858 
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BEKI Conifer 313 288 238 263 288 306796 259672 177205 216475 259672 1.0000 0.8464 0.5776 0.7056 0.8464 

BEKI Deciduous 263 263 213 213 188 216475 216475 141863 141863 110447 1.0000 1.0000 0.6553 0.6553 0.5102 

BEKI Road 513 463 388 563 513 825159 672006 471730 994020 825159 1.0000 0.8144 0.5717 1.2046 1.0000 

BHCO Conifer 338 313 263 313 313 357847 306796 216475 306796 306796 1.0000 0.8573 0.6049 0.8573 0.8573 

BHCO Deciduous 388 313 213 313 413 471730 306796 141863 306796 534562 1.0000 0.6504 0.3007 0.6504 1.1332 

BHCO Road 663 613 413 663 613 1378865 1178588 534562 1378865 1178588 1.0000 0.8548 0.3877 1.0000 0.8548 

BLWA Conifer 213 238 163 213 238 141863 177205 82958 141863 177205 1.0000 1.2491 0.5848 1.0000 1.2491 

BLWA Deciduous 263 188 138 213 138 216475 110447 59396 141863 59396 1.0000 0.5102 0.2744 0.6553 0.2744 

BLWA Road 463 363 338 388 388 672006 412825 357847 471730 471730 1.0000 0.6143 0.5325 0.7020 0.7020 

BOOW Conifer 813 613 463 563 413 2073942 1178588 672006 994020 534562 1.0000 0.5683 0.3240 0.4793 0.2578 

BOOW Deciduous 763 713 763 563 363 1826542 1594849 1826542 994020 412825 1.0000 0.8732 1.0000 0.5442 0.2260 

BOOW Road 1113 913 813 913 763 3888212 2615867 2073942 2615867 1826542 1.0000 0.6728 0.5334 0.6728 0.4698 

CATO Conifer 413 463 288 338 338 534562 672006 259672 357847 357847 1.0000 1.2571 0.4858 0.6694 0.6694 

CATO Deciduous 663 563 463 563 563 1378865 994020 672006 994020 994020 1.0000 0.7209 0.4874 0.7209 0.7209 

CATO Road 913 813 763 763 663 2615867 2073942 1826542 1826542 1378865 1.0000 0.7928 0.6983 0.6983 0.5271 

CCSP Conifer 338 313 238 288 313 357847 306796 177205 259672 306796 1.0000 0.8573 0.4952 0.7257 0.8573 

CCSP Deciduous 213 213 213 238 188 141863 141863 141863 177205 110447 1.0000 1.0000 1.0000 1.2491 0.7785 

CCSP Road 563 463 413 513 513 994020 672006 534562 825159 825159 1.0000 0.6760 0.5378 0.8301 0.8301 

CMWA Conifer 213 138 113 163 188 141863 59396 39761 82958 110447 1.0000 0.4187 0.2803 0.5848 0.7785 

CMWA Deciduous 213 188 113 113 88 141863 110447 39761 39761 24053 1.0000 0.7785 0.2803 0.2803 0.1696 

CMWA Road 413 263 213 288 263 534562 216475 141863 259672 216475 1.0000 0.4050 0.2654 0.4858 0.4050 

CORA Conifer 363 363 288 313 288 412825 412825 259672 306796 259672 1.0000 1.0000 0.6290 0.7432 0.6290 

CORA Deciduous 663 463 338 413 363 1378865 672006 357847 534562 412825 1.0000 0.4874 0.2595 0.3877 0.2994 

CORA Road 813 813 713 813 713 2073942 2073942 1594849 2073942 1594849 1.0000 1.0000 0.7690 1.0000 0.7690 

DEJU Conifer 388 313 238 313 313 471730 306796 177205 306796 306796 1.0000 0.6504 0.3757 0.6504 0.6504 

DEJU Deciduous 363 288 213 238 263 412825 259672 141863 177205 216475 1.0000 0.6290 0.3436 0.4293 0.5244 

DEJU Road 613 613 463 663 563 1178588 1178588 672006 1378865 994020 1.0000 1.0000 0.5702 1.1699 0.8434 

GGOW Conifer 513 463 463 413 388 825159 672006 672006 534562 471730 1.0000 0.8144 0.8144 0.6478 0.5717 

GGOW Deciduous 763 663 713 463 338 1826542 1378865 1594849 672006 357847 1.0000 0.7549 0.8732 0.3679 0.1959 

GGOW Road 1113 763 813 813 663 3888212 1826542 2073942 2073942 1378865 1.0000 0.4698 0.5334 0.5334 0.3546 

LEOW Conifer 613 338 288 463 338 1178588 357847 259672 672006 357847 1.0000 0.3036 0.2203 0.5702 0.3036 

LEOW Deciduous 913 763 763 388 338 2615867 1826542 1826542 471730 357847 1.0000 0.6983 0.6983 0.1803 0.1368 

LEOW Road 1113 713 763 813 663 3888212 1594849 1826542 2073942 1378865 1.0000 0.4102 0.4698 0.5334 0.3546 

LISP Conifer 338 313 263 313 313 357847 306796 216475 306796 306796 1.0000 0.8573 0.6049 0.8573 0.8573 

LISP Deciduous 363 313 213 363 413 412825 306796 141863 412825 534562 1.0000 0.7432 0.3436 1.0000 1.2949 

LISP Road 663 663 513 663 663 1378865 1378865 825159 1378865 1378865 1.0000 1.0000 0.5984 1.0000 1.0000 

NSWO Conifer 463 813 388 413 388 672006 2073942 471730 534562 471730 1.0000 3.0862 0.7020 0.7955 0.7020 

NSWO Deciduous 763 913 663 563 613 1826542 2615867 1378865 994020 1178588 1.0000 1.4321 0.7549 0.5442 0.6453 

NSWO Road 1013 913 813 813 763 3220623 2615867 2073942 2073942 1826542 1.0000 0.8122 0.6440 0.6440 0.5671 

OSFL Conifer 363 338 288 338 338 412825 357847 259672 357847 357847 1.0000 0.8668 0.6290 0.8668 0.8668 

OSFL Deciduous 563 513 288 463 388 994020 825159 259672 672006 471730 1.0000 0.8301 0.2612 0.6760 0.4746 

OSFL Road 713 713 613 763 713 1594849 1594849 1178588 1826542 1594849 1.0000 1.0000 0.7390 1.1453 1.0000 

OVEN Conifer 338 313 263 313 313 357847 306796 216475 306796 306796 1.0000 0.8573 0.6049 0.8573 0.8573 

OVEN Deciduous 413 238 213 238 213 534562 177205 141863 177205 141863 1.0000 0.3315 0.2654 0.3315 0.2654 

OVEN Road 613 613 513 663 563 1178588 1178588 825159 1378865 994020 1.0000 1.0000 0.7001 1.1699 0.8434 

PISI Conifer 338 288 213 288 288 357847 259672 141863 259672 259672 1.0000 0.7257 0.3964 0.7257 0.7257 

PISI Deciduous 363 288 213 213 213 412825 259672 141863 141863 141863 1.0000 0.6290 0.3436 0.3436 0.3436 
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PISI Road 563 513 413 563 513 994020 825159 534562 994020 825159 1.0000 0.8301 0.5378 1.0000 0.8301 

RBGR Conifer 363 363 288 338 338 412825 412825 259672 357847 357847 1.0000 1.0000 0.6290 0.8668 0.8668 

RBGR Deciduous 513 613 388 563 513 825159 1178588 471730 994020 825159 1.0000 1.4283 0.5717 1.2046 1.0000 

RBGR Road 813 813 713 913 763 2073942 2073942 1594849 2615867 1826542 1.0000 1.0000 0.7690 1.2613 0.8807 

RBNU Conifer 413 388 313 388 338 534562 471730 306796 471730 357847 1.0000 0.8825 0.5739 0.8825 0.6694 

RBNU Deciduous 663 563 338 563 513 1378865 994020 357847 994020 825159 1.0000 0.7209 0.2595 0.7209 0.5984 

RBNU Road 813 813 763 813 763 2073942 2073942 1826542 2073942 1826542 1.0000 1.0000 0.8807 1.0000 0.8807 

TEWA Conifer 288 238 138 238 238 259672 177205 59396 177205 177205 1.0000 0.6824 0.2287 0.6824 0.6824 

TEWA Deciduous 238 213 138 213 163 177205 141863 59396 141863 82958 1.0000 0.8006 0.3352 0.8006 0.4681 

TEWA Road 513 388 338 513 413 825159 471730 357847 825159 534562 1.0000 0.5717 0.4337 1.0000 0.6478 

WAVI Conifer 313 313 263 313 313 306796 306796 216475 306796 306796 1.0000 1.0000 0.7056 1.0000 1.0000 

WAVI Deciduous 313 363 238 263 263 306796 412825 177205 216475 216475 1.0000 1.3456 0.5776 0.7056 0.7056 

WAVI Road 613 613 513 663 563 1178588 1178588 825159 1378865 994020 1.0000 1.0000 0.7001 1.1699 0.8434 

WETO Conifer 513 413 288 338 313 825159 534562 259672 357847 306796 1.0000 0.6478 0.3147 0.4337 0.3718 

WETO Deciduous 463 563 363 463 363 672006 994020 412825 672006 412825 1.0000 1.4792 0.6143 1.0000 0.6143 

WETO Road 1013 763 713 813 663 3220623 1826542 1594849 2073942 1378865 1.0000 0.5671 0.4952 0.6440 0.4281 

WTSP Conifer 413 388 313 388 388 534562 471730 306796 471730 471730 1.0000 0.8825 0.5739 0.8825 0.8825 

WTSP Deciduous 613 613 338 463 463 1178588 1178588 357847 672006 672006 1.0000 1.0000 0.3036 0.5702 0.5702 

WTSP Road 813 763 713 813 763 2073942 1826542 1594849 2073942 1826542 1.0000 0.8807 0.7690 1.0000 0.8807 

YERA Conifer 238 213 138 163 188 177205 141863 59396 82958 110447 1.0000 0.8006 0.3352 0.4681 0.6233 

YERA Deciduous 213 138 138 188 213 141863 59396 59396 110447 141863 1.0000 0.4187 0.4187 0.7785 1.0000 

YERA Road 413 388 313 413 363 534562 471730 306796 534562 412825 1.0000 0.8825 0.5739 1.0000 0.7723 
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Table 3. Effective detection radius (EDR) for SM2 recorders at different sound pressure levels (SPL) in open and closed habitat for 

different songs and tones. Data were collected from listening trials conducted along 20 transects in the Blackfoot-Cooking Lake 

Natural Area near Edmonton, Alberta, Canada in 2014. “NA” values indicate undefined EDR due to an insufficient number of non-

detections at that SPL for that species. 

Sound 

Sound Pressure Level ± 90% CI (m) 

Closed Habitat Open Habitat 

40dB 45dB 50dB 55dB 60dB 65dB 70dB 75dB 80dB 85dB 90dB 40dB 45dB 50dB 55dB 60dB 65dB 70dB 75dB 80dB 

85d

B 

90d

B 

1000H
z 

71 ± 
25 

75 ± 
26 

93 ± 
35 

123 ± 
62 NA NA NA NA NA NA NA 

95 ± 
61 

105 ± 
76 NA NA NA NA NA NA NA NA NA 

1414H

z 

38 ± 

17 

57 ± 

22 

66 ± 

19 

82 ± 

29 

81 ± 

28 NA NA NA NA NA NA 

44 ± 

26 

86 ± 

73 NA NA NA NA NA NA NA NA NA 
2000H

z 

62 ± 

19 

75 ± 

22 

89 ± 

31 

92 ± 

32 

110 ± 

62 

107 ± 

56 NA NA NA NA NA 

87 ± 

53 NA NA NA NA NA NA NA NA NA NA 

2828H
z 

47 ± 
14 

53 ± 
15 

58 ± 
18 

58 ± 
18 

61 ± 
22 NA NA NA NA NA NA 

79 ± 
49 NA NA NA NA NA NA NA NA NA NA 

4000H

z 

58 ± 

22 

67 ± 

20 

71 ± 

23 

85 ± 

41 NA NA 

96 ± 

60 NA NA NA NA 

84 ± 

70 NA NA NA NA NA NA NA NA NA NA 

5656H

z 

46 ± 

11 

44 ± 

12 

49 ± 

12 

54 ± 

12 

57 ± 

17 

78 ± 

43 

58 ± 

19 

60 ± 

20 NA NA NA 

83 ± 

48 

72 ± 

42 NA NA NA NA NA NA NA NA NA 
8000H

z 

48 ± 

20 

29 ± 

26 

29 ± 

25 12 ± 1 

53 ± 

24 

47 ± 

22 

59 ± 

23 

72 ± 

26 

64 ± 

24 

86 ± 

36 

91 ± 

40 

56 ± 

31 

31 ± 

29 30 ± 27 12 ± 1 

64 ± 

38 

54 ± 

33 

76 ± 

45 

109 ± 

76 

87 ± 

48 NA NA 

BAD
O 12 ± 1 

44 ± 
21 

64 ± 
27 

86 ± 
37 

121 ± 
68 NA NA NA NA NA NA 12 ± 1 

47 ± 
25 72 ± 39 

110 ± 
79 NA NA NA NA NA NA NA 

BAW

W 12 ± 1 

29 ± 

25 

46 ± 

16 

49 ± 

18 

56 ± 

15 

60 ± 

16 

67 ± 

19 

69 ± 

21 

71 ± 

22 NA 

89 ± 

44 12 ± 1 

32 ± 

33 63 ± 38 71 ± 49 

98 ± 

63 NA NA NA NA NA NA 

BEKI 12 ± 1 

34 ± 

14 12 ± 1 

39 ± 

13 

39 ± 

13 

49 ± 

13 

53 ± 

17 

53 ± 

16 

55 ± 

19 

83 ± 

59 NA 12 ± 1 

45 ± 

30 12 ± 1 60 ± 40 

59 ± 

38 NA NA NA NA NA NA 

BHCO 
45 ± 
13 

45 ± 
15 

51 ± 
14 

58 ± 
13 

60 ± 
15 

66 ± 
23 

73 ± 
30 

74 ± 
28 

90 ± 
50 NA NA 

64 ± 
36 

66 ± 
41 93 ± 69 NA NA NA NA NA NA NA NA 

BLW

A 12 ± 1 12 ± 1 

28 ± 

23 

54 ± 

15 

59 ± 

18 

63 ± 

16 

74 ± 

22 

76 ± 

26 

83 ± 

33 

80 ± 

31 

83 ± 

34 12 ± 1 12 ± 1 30 ± 28 79 ± 43 

97 ± 

72 

117 ± 

90 NA NA NA NA NA 

BOO

W 

58 ± 

24 

63 ± 

23 

81 ± 

29 

109 ± 

48 NA NA NA NA NA NA NA 

69 ± 

41 

79 ± 

45 NA NA NA NA NA NA NA NA NA 

CATO 10 ± 1 
30 ± 
26 

52 ± 
22 

62 ± 
19 

77 ± 
23 

82 ± 
27 

109 ± 
57 

114 ± 
72 NA NA NA 11 ± 1 

32 ± 
31 68 ± 46 93 ± 58 NA NA NA NA NA NA NA 

CCSP 12 ± 1 

33 ± 

28 

37 ± 

14 

51 ± 

13 

55 ± 

14 

60 ± 

19 

59 ± 

18 

84 ± 

47 

61 ± 

19 NA NA 12 ± 1 

41 ± 

42 48 ± 32 NA NA NA NA NA NA NA NA 
CMW

A 

38 ± 

16 12 ± 1 12 ± 1 

38 ± 

17 

34 ± 

14 

39 ± 

16 

44 ± 

17 

53 ± 

18 

57 ± 

21 

57 ± 

23 

63 ± 

28 

44 ± 

26 12 ± 1 12 ± 1 45 ± 28 

38 ± 

21 

47 ± 

27 

56 ± 

33 

79 ± 

57 NA NA NA 
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CORA 12 ± 1 
35 ± 
30 

53 ± 
15 

60 ± 
16 

65 ± 
17 

70 ± 
21 

79 ± 
31 

106 ± 
74 NA NA NA 12 ± 1 

40 ± 
42 83 ± 53 NA NA NA NA NA NA NA NA 

DEJU 12 ± 1 

37 ± 

14 

46 ± 

11 

51 ± 

11 

55 ± 

14 

57 ± 

16 

66 ± 

26 

96 ± 

56 

74 ± 

44 NA NA 12 ± 1 

50 ± 

35 83 ± 49 NA NA NA NA NA NA NA NA 
GGO

W 12 ± 1 

34 ± 

31 

55 ± 

24 

73 ± 

23 

93 ± 

39 

97 ± 

38 

120 ± 

76 NA NA NA NA 12 ± 1 

37 ± 

36 66 ± 42 

113 ± 

83 NA NA NA NA NA NA NA 

LEO
W 12 ± 1 

34 ± 
31 

51 ± 
26 

59 ± 
34 

102 ± 
60 NA NA NA NA NA NA 12 ± 1 

35 ± 
32 52 ± 28 61 ± 40 

114 ± 
93 NA NA NA NA NA NA 

LISP 12 ± 1 

33 ± 

28 

34 ± 

30 

54 ± 

13 

63 ± 

18 

68 ± 

21 

81 ± 

44 

72 ± 

25 

94 ± 

57 

101 ± 

80 NA 12 ± 1 

39 ± 

40 40 ± 43 

100 ± 

66 NA NA NA NA NA NA NA 
NSW

O 

34 ± 

29 

47 ± 

20 

60 ± 

19 

84 ± 

26 

97 ± 

39 NA 

117 ± 

79 

104 ± 

45 NA NA NA 

37 ± 

35 

57 ± 

34 86 ± 54 NA NA NA NA NA NA NA NA 

OSFL 

39 ± 

18 

56 ± 

18 

68 ± 

19 

75 ± 

20 

85 ± 

31 

85 ± 

26 

94 ± 

43 NA NA NA NA 

44 ± 

27 

77 ± 

45 

124 ± 

118 NA NA NA NA NA NA NA NA 

OVEN 12 ± 1 

34 ± 

12 

42 ± 

12 

46 ± 

11 

49 ± 

14 

49 ± 

13 

52 ± 

16 

60 ± 

27 NA NA NA 12 ± 1 

47 ± 

29 78 ± 57 NA NA NA NA NA NA NA NA 

PISI 12 ± 1 

32 ± 

12 

40 ± 

11 

47 ± 

12 

51 ± 

14 

51 ± 

13 

54 ± 

16 

56 ± 

19 

91 ± 

63 NA NA 12 ± 1 

40 ± 

24 64 ± 38 

114 ± 

104 NA NA NA NA NA NA NA 

RBGR 12 ± 1 
37 ± 
15 

58 ± 
17 

28 ± 
23 

67 ± 
19 

78 ± 
27 

74 ± 
25 

111 ± 
81 NA NA NA 12 ± 1 

43 ± 
24 

103 ± 
88 31 ± 29 NA NA NA NA NA NA NA 

RBNU 

30 ± 

23 

37 ± 

14 

48 ± 

12 

50 ± 

12 

53 ± 

16 

61 ± 

32 

62 ± 

27 NA NA NA NA 

36 ± 

36 

52 ± 

40 NA NA NA NA NA NA NA NA NA 
TEW

A 11 ± 1 11 ± 1 11 ± 1 11 ± 1 

48 ± 

16 

52 ± 

15 

57 ± 

17 

60 ± 

19 

67 ± 

29 

69 ± 

30 NA 12 ± 1 11 ± 1 12 ± 1 12 ± 1 

76 ± 

51 

97 ± 

68 NA NA NA NA NA 

WAVI 12 ± 1 
33 ± 
28 

44 ± 
18 

29 ± 
25 

62 ± 
17 

68 ± 
19 

72 ± 
22 

76 ± 
28 NA NA NA 12 ± 1 

37 ± 
39 56 ± 41 32 ± 32 NA NA NA NA NA NA NA 

WET

O 

29 ± 

24 

29 ± 

25 

49 ± 

17 

57 ± 

18 

62 ± 

20 

66 ± 

23 

73 ± 

29 NA NA NA NA 

31 ± 

30 

32 ± 

30 64 ± 34 85 ± 55 NA NA NA NA NA NA NA 

WTSP 

38 ± 

14 

47 ± 

12 

48 ± 

12 

52 ± 

15 

62 ± 

27 

55 ± 

19 NA NA NA NA NA 

56 ± 

41 NA NA NA NA NA NA NA NA NA NA 

YERA 

29 ± 

25 11 ± 1 11 ± 1 11 ± 1 

34 ± 

31 

37 ± 

16 

59 ± 

21 

63 ± 

20 

79 ± 

42 

77 ± 

37 

80 ± 

40 

32 ± 

31 11 ± 1 12 ± 1 12 ± 1 

40 ± 

44 

43 ± 

28 NA NA NA NA NA 
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Appendix 3 

 

Table 1. Model coefficients for generalized linear models for the effects of distance, vegetation 

type, sound characteristics, and atmospheric conditions on the probability of detecting a sound, 

with all species pooled. 

Variable β Standard Error z p 

Intercept -2.696 0.140 -19.285 0.000 

Distance -4.723 0.122 -38.680 0.000 

Conifer Forest 0.957 0.134 7.158 0.000 

Deciduous Forest 1.493 0.102 14.660 0.000 

Graminoid Fen 3.779 0.125 30.121 0.000 

Forest Edge 3.289 0.090 36.499 0.000 

Grassland 3.339 0.111 30.219 0.000 

Road 3.764 0.090 41.594 0.000 

Wind -0.007 0.083 -0.085 0.932 

Minimum Frequency -0.798 0.123 -6.483 0.000 

Bandwidth -1.166 0.124 -9.434 0.000 

Humidity 0.164 0.024 6.883 0.000 

Temperature -0.172 0.029 -5.900 0.000 

Distance*Conifer Forest -0.503 0.189 -2.656 0.008 

Distance*Deciduous Forest 1.345 0.149 9.054 0.000 

Distance*Graminoid Fen 1.618 0.168 9.652 0.000 

Distance*Forest Edge 1.850 0.137 13.481 0.000 

Distance*Grassland 1.812 0.147 12.303 0.000 

Distance*Road 1.939 0.135 14.318 0.000 

Wind*Conifer Forest 1.126 0.142 7.926 0.000 

Wind*Deciduous Forest 0.103 0.114 0.905 0.366 

Wind*Graminoid Fen -0.784 0.117 -6.706 0.000 

Wind*Forest Edge -0.473 0.096 -4.921 0.000 

Wind*Grassland -0.094 0.087 -1.074 0.283 

Wind*Road 0.214 0.097 2.199 0.028 

Minimum Frequency*Conifer Forest -0.219 0.068 -3.237 0.001 

Minimum Frequency*Deciduous Forest -0.152 0.061 -2.519 0.012 

Minimum Frequency*Graminoid Fen 0.068 0.078 0.870 0.385 

Minimum Frequency*Forest Edge -0.235 0.059 -3.978 0.000 

Minimum Frequency*Grassland -0.359 0.067 -5.335 0.000 

Minimum Frequency*Road -0.307 0.058 -5.255 0.000 

Bandwidth*Conifer Forest -0.217 0.072 -2.993 0.003 

Bandwidth*Deciduous Forest -0.089 0.064 -1.392 0.164 
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Bandwidth*Graminoid Fen 0.172 0.081 2.112 0.035 

Bandwidth*Forest Edge -0.242 0.063 -3.809 0.000 

Bandwidth*Grassland -0.076 0.070 -1.079 0.280 

Bandwidth*Road -0.239 0.062 -3.822 0.000 

 

Table 2. Top performing model for each species estimating the effect of distance, vegetation 

type, and atmospheric conditions on the probability of detection. We selected models based on 

small sample size corrected AIC.  

Species Model 

1000 Hz Distance*Vegetation + Wind*Vegetation + Temp 

1414 Hz Distance*Vegetation + Wind*Vegetation + Humidity 

2000 Hz Distance*Vegetation + Wind*Vegetation + Humidity 

2828 Hz Distance*Vegetation + Wind*Vegetation + Temp 

4000 Hz Distance*Vegetation + Wind*Vegetation 

5656 Hz Distance*Vegetation + Wind*Vegetation + Humidity + Temp 

Barred owl Distance*Vegetation + Wind*Vegetation + Temp 

Bay-breasted warbler Distance*Vegetation 

Belted kingfisher Distance*Vegetation + Wind*Vegetation 

Black-and-white warbler Distance*Vegetation + Wind*Vegetation + Humidity + Temp 

Boreal owl Distance*Vegetation + Wind*Vegetation + Humidity + Temp 

Brown-headed cowbird Distance*Vegetation + Wind*Vegetation 

Canadian toad Distance*Vegetation + Wind + Temp 

Cape-may warbler Distance*Vegetation + Wind*Vegetation 

Clay-coloured sparrow Distance*Vegetation + Wind*Vegetation 

Common raven Distance*Vegetation + Wind*Vegetation + Humidity 

Dark-eyed junco Distance*Vegetation + Wind*Vegetation 

Great gray owl Distance*Vegetation + Wind*Vegetation + Temp 

Lincoln's sparrow Distance*Vegetation 

Long-eared owl Distance*Vegetation + Wind*Vegetation + Humidity + Temp 

Northern saw-whet owl Distance*Vegetation + Wind*Vegetation + Temp 

Olive-sided flycatcher Distance*Vegetation + Wind*Vegetation 

Ovenbird Distance*Vegetation + Humidity 

Pine siskin Distance*Vegetation + Temp + Humidity 

Red-breasted nuthatch Distance*Vegetation + Wind*Vegetation + Humidity 

Rose-breasted grosbeak Distance*Vegetation + Wind*Vegetation 

Tennessee warbler Distance*Vegetation + Wind*Vegetation 

Warbling vireo Distance*Vegetation + Wind*Vegetation 

Western toad Distance*Vegetation + Wind*Vegetation + Temp 

White-throated sparrow Distance*Vegetation + Wind*Vegetation + Humidity + Temp 

Yellow rail Distance*Vegetation + Temp 
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Table 3. Model coefficients for generalized linear models for the effects of distance, vegetation type, and atmospheric conditions on 

the probability of detecting a sound, for each species. 

Variable 

Interc

ept 

Distan

ce 

Distance*Conifer 

Forest 

Distance*Deciduous 

Forest 

Distance*Forest 

Edge 

Distance*Gramino

id Fen 

Distance*Gras

sland 

Distance*R

oad 

1000 Hz 6.950 -0.008 -0.002 0.002 0.003 0.001 0.004 0.003 

1414 Hz 2.627 -0.008 -0.006 0.002 0.003 -0.001 0.002 0.003 

2000 Hz 1.608 -0.007 -0.003 0.003 0.001 -0.003 0.002 0.002 

2828 Hz 5.531 -0.010 0.000 0.002 0.002 0.001 -0.001 0.003 

4000 Hz 3.312 -0.013 0.000 0.000 0.004 -0.002 0.000 0.003 

5656 Hz 2.831 -0.032 0.017 0.016 0.019 0.019 0.007 0.018 

Barred owl 5.035 -0.007 0.000 0.003 0.002 0.002 0.004 0.003 

Black-and-white 

warbler 1.955 -0.045 -0.006 -0.020 0.023 0.025 0.021 0.025 

Bay-breasted 

warbler 13.254 -0.118 0.087 0.071 0.098 0.105 0.074 0.095 

Belted kingfisher 12.804 -0.075 0.031 0.043 0.057 0.061 0.055 0.059 

Brown-headed 

cowbird 12.742 -0.070 0.048 0.049 0.057 0.060 0.056 0.059 

Boreal owl 4.402 -0.010 -0.003 0.002 0.006 0.005 0.006 0.006 

Canadian toad 7.137 -0.013 -0.008 -0.002 0.006 0.005 0.005 0.005 

Clay-coloured 

sparrow 13.321 -0.077 0.038 0.037 0.058 0.063 0.059 0.064 

Cape-may warbler 9.646 -0.059 -0.023 0.009 0.034 0.043 0.035 0.037 

Common raven 2.886 -0.022 -0.005 0.011 0.014 0.015 0.018 0.016 

Dark-eyed junco 9.096 -0.051 -0.004 0.025 0.037 0.038 0.031 0.038 

Great gray owl 5.761 -0.009 -0.002 0.004 0.004 0.002 0.004 0.004 

Long-eared owl 3.687 -0.006 -0.005 0.001 0.001 0.001 0.002 0.001 

Lincoln's sparrow 14.717 -0.078 0.050 0.054 0.066 0.067 0.062 0.065 

Northern saw-whet 

owl 5.086 -0.011 -0.009 0.004 0.004 0.006 0.005 0.004 
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Olive-sided 

flycatcher 6.140 -0.027 0.011 0.013 0.016 0.015 0.015 0.018 

Ovenbird 8.929 -0.056 0.029 0.021 0.044 0.044 0.040 0.046 

Pine siskin 4.816 -0.044 0.005 0.014 0.029 0.031 0.025 0.029 

Rose-breasted 

grosbeak 5.779 -0.023 0.000 0.010 0.013 0.011 0.015 0.016 

Red-breasted 

nuthatch 2.119 -0.014 -0.011 0.003 0.006 -0.003 0.005 0.008 

Tennessee warbler 7.327 -0.048 0.008 0.031 0.030 0.037 0.033 0.032 

Warbling vireo 9.660 -0.052 0.025 0.025 0.032 0.040 0.036 0.040 

Western toad 7.931 -0.014 -0.012 0.002 0.008 0.005 0.007 0.009 

White-throated 

sparrow 1.705 -0.021 -0.007 0.005 0.011 0.008 0.002 0.013 

Yellow rail 10.364 -0.069 0.019 0.010 0.042 0.047 0.053 0.053 

 

Variable 

Conifer 

Forest 

Wind*Conifer 

Forest 

Deciduous 

Forest 

Wind*Deciduous 

Forest 

Forest 

Edge 

Wind*Forest 

Edge 

Graminoid 

Fen 

Wind*Graminoid 

Fen 

1000 Hz -0.154 2.124 -0.177 0.147 0.487 0.351 2.859 0.356 

1414 Hz 1.243 2.812 -1.467 0.574 0.076 0.406 1.774 0.380 

2000 Hz 1.419 1.661 -0.737 0.233 2.729 -0.010 4.080 -0.044 

2828 Hz -0.510 1.306 -1.038 0.386 1.956 -0.287 2.775 -0.250 

4000 Hz 0.566 0.981 0.805 0.016 2.632 -0.521 6.435 -0.671 

5656 Hz -2.469 -0.583 -2.722 -0.330 0.126 -1.035 1.531 -1.564 

Barred owl 0.249 1.434 -0.193 0.269 0.746 0.442 2.093 -0.121 

Black-and-white 

warbler 2.270 -1.860 4.426 -0.691 0.382 -1.328 2.354 -1.563 

Bay-breasted 

warbler -9.486  -7.425  -9.014  -10.946  

Belted kingfisher -4.629 -1.232 -7.645 0.292 -7.416 -0.031 -5.896 -0.347 

Brown-headed 

cowbird -7.874 -0.244 -8.043 -0.328 -6.776 -0.775 -6.335 -0.994 

Boreal owl 0.847 2.607 0.456 -0.009 -1.684 0.539 0.217 0.331 

Canadian toad 2.120  1.784  0.315  1.019  
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Clay-coloured 

sparrow -5.460 -0.822 -5.144 -0.192 -5.501 -1.117 -4.337 -1.527 

Cape-may warbler 2.875 -1.544 -1.699 0.496 -2.608 -0.131 -3.849 -0.105 

Common raven 1.871 2.700 -1.295 -0.009 0.280 -0.324 -0.138 -0.497 

Dark-eyed junco 1.142 -1.082 -3.483 -0.501 -2.508 -1.078 -3.044 -0.913 

Great gray owl 0.628 2.246 -0.641 0.351 0.185 0.488 2.601 -0.177 

Long-eared owl 1.313 1.870 0.211 0.445 1.009 0.652 0.679 0.327 

Lincoln's sparrow -8.387  -9.293  -10.129  -9.906  
Northern saw-whet 

owl 2.564 3.603 -0.236 0.055 1.136 0.100 0.554 0.003 

Olive-sided 

flycatcher -1.831 0.517 -1.989 -0.287 -0.171 -0.560 1.294 -0.494 

Ovenbird -4.716  -2.732  -5.582  -4.917  

Pine siskin -0.832  -1.975  -2.746  -3.354  
Rose-breasted 

grosbeak 0.672 1.208 -1.732 -0.267 0.984 -0.710 2.207 -0.719 

Red-breasted 

nuthatch 3.780 3.163 0.284 -0.087 1.685 -0.514 9.133 -1.039 

Tennessee warbler -0.972 -1.227 -4.324 -0.037 -1.858 -0.541 -2.769 -0.530 

Warbling vireo -3.866 -0.097 -3.555 -0.271 -1.613 -0.462 -2.584 -0.840 

Western toad 1.462 2.433 0.704 -0.949 -0.719 0.067 3.590 -0.525 

White-throated 

sparrow 2.936 0.651 -0.745 -0.316 0.370 -1.058 3.449 -1.397 

Yellow rail -2.208  -1.322  -3.404  -3.281  

 

Variable Grassland Wind*Grassland Road Wind*Road Humidity Temperature Wind 

1000 Hz -1.301 0.534 0.851 0.615  -0.100 -0.599 

1414 Hz 0.872 0.380 -0.210 0.613 0.041  -0.475 

2000 Hz 1.742 -0.019 1.602 0.226 0.034  -0.035 

2828 Hz 3.308 -0.133 0.391 0.246  -0.048 0.050 

4000 Hz 3.589 -0.287 3.669 -0.373   0.314 

5656 Hz 5.735 -0.942 0.134 -0.681 0.024 0.086 0.782 

Barred owl -0.423 0.183 0.859 0.532  -0.083 -0.259 
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Black-and-white warbler 0.866 -0.843 -0.837 -0.669 0.039 0.085 0.811 

Bay-breasted warbler -6.765  -8.451     

Belted kingfisher -6.041 0.117 -8.257 0.439   -0.204 

Brown-headed cowbird -6.551 -0.395 -8.289 -0.373   0.366 

Boreal owl -0.965 0.379 -0.408 0.474 0.022 -0.051 -0.420 

Canadian toad 1.038  1.316   -0.117 -0.130 

Clay-coloured sparrow -6.778 -0.533 -8.280 -0.370   0.496 

Cape-may warbler -3.710 0.376 -3.876 0.501   -0.437 

Common raven -1.501 -0.200 -1.287 0.137 0.038  0.067 

Dark-eyed junco -0.634 -0.558 -3.679 -0.360   0.469 

Great gray owl -1.314 0.411 0.458 0.463  -0.087 -0.413 

Long-eared owl -0.864 0.455 0.976 0.838 0.017 -0.076 -0.543 

Lincoln's sparrow -7.735  -8.781     

Northern saw-whet owl 0.168 0.185 0.751 0.490  -0.062 -0.186 

Olive-sided flycatcher 0.781 -0.243 -1.178 -0.059   0.278 

Ovenbird -3.222  -5.903  0.025   

Pine siskin 0.208  -1.817  0.027 0.064  

Rose-breasted grosbeak -0.237 -0.316 -0.311 -0.332   0.301 

Red-breasted nuthatch 3.510 -0.441 0.849 -0.290 0.022  0.395 

Tennessee warbler -2.908 -0.026 -2.749 0.044   0.048 

Warbling vireo -3.743 0.004 -4.829 0.095   0.151 

Western toad -0.612 0.197 -1.084 0.424  -0.144 -0.281 

White-throated sparrow 6.467 -1.033 0.119 -0.941 0.039 0.065 1.001 

Yellow rail -5.503  -5.099   -0.068  
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Table 4. Commonality coefficients and % total variation reporting unique variation explained by 

each predictor variable and shared variation for combinations of independent predictors.   

Variables Coefficient 

% Total 

Variation 

Distance 0.342 0.653 

Vegetation 0.044 0.083 

Wind 0.001 0.001 

Minimum Frequency 0.034 0.066 

Bandwidth 0.053 0.101 

Humidity 0.001 0.002 

Temperature 0.000 0.000 

Distance,Vegetation 0.010 0.019 

Distance,Wind 0.006 0.011 

Vegetation,Wind 0.001 0.001 

Distance,Minimum Frequency 0.000 0.000 

Vegetation,Minimum Frequency 0.000 0.001 

Wind,Minimum Frequency 0.000 0.000 

Distance,Bandwidth 0.000 0.000 

Vegetation,Bandwidth 0.000 0.000 

Wind,Bandwidth 0.000 0.000 

Minimum Frequency,Bandwidth -0.010 -0.020 

Distance,Humidity 0.017 0.032 

Vegetation,Humidity 0.000 -0.001 

Wind,Humidity 0.000 0.000 

Minimum Frequency,Humidity 0.000 0.000 

Bandwidth,Humidity 0.000 0.000 

Distance,Temperature 0.000 0.000 

Vegetation,Temperature 0.002 0.004 

Wind,Temperature 0.000 0.000 

Minimum Frequency,Temperature 0.000 0.000 

Bandwidth,Temperature 0.000 0.000 

Humidity,Temperature 0.003 0.006 

Distance,Vegetation,Wind -0.007 -0.014 

Distance,Vegetation,Minimum Frequency 0.000 0.000 

Distance,Wind,Minimum Frequency 0.000 0.000 

Vegetation,Wind,Minimum Frequency 0.000 0.000 

Distance,Vegetation,Bandwidth 0.000 0.000 

Distance,Wind,Bandwidth 0.000 0.000 

Vegetation,Wind,Bandwidth 0.000 0.000 

Distance,Minimum Frequency,Bandwidth 0.000 0.000 

Vegetation,Minimum Frequency,Bandwidth 0.000 0.000 
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Wind,Minimum Frequency,Bandwidth 0.000 0.000 

Distance,Vegetation,Humidity -0.001 -0.001 

Distance,Wind,Humidity 0.002 0.003 

Vegetation,Wind,Humidity 0.000 -0.001 

Distance,Minimum Frequency,Humidity 0.000 0.000 

Vegetation,Minimum Frequency,Humidity 0.000 0.000 

Wind,Minimum Frequency,Humidity 0.000 0.000 

Distance,Bandwidth,Humidity 0.000 0.000 

Vegetation,Bandwidth,Humidity 0.000 0.000 

Wind,Bandwidth,Humidity 0.000 0.000 

Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Distance,Vegetation,Temperature 0.001 0.002 

Distance,Wind,Temperature 0.000 0.000 

Vegetation,Wind,Temperature 0.002 0.004 

Distance,Minimum Frequency,Temperature 0.000 0.000 

Vegetation,Minimum Frequency,Temperature 0.000 0.000 

Wind,Minimum Frequency,Temperature 0.000 0.000 

Distance,Bandwidth,Temperature 0.000 0.000 

Vegetation,Bandwidth,Temperature 0.000 0.000 

Wind,Bandwidth,Temperature 0.000 0.000 

Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Distance,Humidity,Temperature 0.021 0.040 

Vegetation,Humidity,Temperature 0.002 0.003 

Wind,Humidity,Temperature 0.000 0.000 

Minimum Frequency,Humidity,Temperature 0.000 0.000 

Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency 0.000 0.000 

Distance,Vegetation,Wind,Bandwidth 0.000 0.000 

Distance,Vegetation,Minimum Frequency,Bandwidth 0.000 0.000 

Distance,Wind,Minimum Frequency,Bandwidth 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Bandwidth 0.000 0.000 

Distance,Vegetation,Wind,Humidity 0.000 -0.001 

Distance,Vegetation,Minimum Frequency,Humidity 0.000 0.000 

Distance,Wind,Minimum Frequency,Humidity 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Humidity 0.000 0.000 

Distance,Vegetation,Bandwidth,Humidity 0.000 0.000 

Distance,Wind,Bandwidth,Humidity 0.000 0.000 

Vegetation,Wind,Bandwidth,Humidity 0.000 0.000 

Distance,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Vegetation,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Wind,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Distance,Vegetation,Wind,Temperature -0.001 -0.003 

Distance,Vegetation,Minimum Frequency,Temperature 0.000 0.000 



 

187 
 

Distance,Wind,Minimum Frequency,Temperature 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Temperature 0.000 0.000 

Distance,Vegetation,Bandwidth,Temperature 0.000 0.000 

Distance,Wind,Bandwidth,Temperature 0.000 0.000 

Vegetation,Wind,Bandwidth,Temperature 0.000 0.000 

Distance,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Vegetation,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Wind,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Distance,Vegetation,Humidity,Temperature 0.005 0.009 

Distance,Wind,Humidity,Temperature -0.001 -0.002 

Vegetation,Wind,Humidity,Temperature 0.001 0.001 

Distance,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Vegetation,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Wind,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Distance,Bandwidth,Humidity,Temperature 0.000 0.000 

Vegetation,Bandwidth,Humidity,Temperature 0.000 0.000 

Wind,Bandwidth,Humidity,Temperature 0.000 0.000 

Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency,Bandwidth 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency,Humidity 0.000 0.000 

Distance,Vegetation,Wind,Bandwidth,Humidity 0.000 0.000 

Distance,Vegetation,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Distance,Wind,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Bandwidth,Temperature 0.000 0.000 

Distance,Vegetation,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Distance,Wind,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Humidity,Temperature 0.000 -0.001 

Distance,Vegetation,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Distance,Wind,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Distance,Vegetation,Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Wind,Bandwidth,Humidity,Temperature 0.000 0.000 

Vegetation,Wind,Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Vegetation,Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Wind,Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency,Bandwidth,Humidity 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency,Bandwidth,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Minimum Frequency,Humidity,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Bandwidth,Humidity,Temperature 0.000 0.000 
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Distance,Vegetation,Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Wind,Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Vegetation,Wind,Minimum Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 

Distance,Vegetation,Wind,Minimum 

Frequency,Bandwidth,Humidity,Temperature 0.000 0.000 
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Appendix 4 

 

Appendix 4.1 – Detailed calibration data collection materials & methods 

Ovenbird 

See Wilson and Bayne 2018.  

 

Common Nighthawk 

We collected acoustic recordings of Common Nighthawks (Chordeiles minor) with known 

locations by attracting male Common Nighthawks to the beginning of a transect of ARUs using 

conspecific broadcast calls. An observer stood at the beginning of the transect and recorded the 

time stamp, height, horizontal distance, and bearing of every vocalization from the target 

individual. We subsequently excluded all detections greater than 20 m in horizontal distance 

from the observer to minimize any observer bias in distance estimation. We collected recordings 

at eight transects between July 13 and July 20, 2016, starting at 1 hour before sunset and ending 

at sunset, when Common Nighthawks are most active. Each transect consisted of 15 ARUs 

placed at standardized distances along a linear feature (Fig. 3) and we played an airhorn at the 

start of the recording period from the beginning of the transect. Following acoustic data 

collection, we clipped each of the recordings at the airhorn to synchronize them. Next, we 

visually confirmed the timestamp of each vocalization of the target individual and identified any 

vocalizations that were masked by the broadcast call. We then used the seewave package (Sueur, 
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Aubin & Simonis 2008) in R to clip each unmasked detection from each of the 17 recordings 

along the transect as 0.7 s clips for further RSL measurement. 

 

Site Selection 

We selected transects within a study area north of Fort McMurray, Alberta, Canada where 

Common Nighthawks are known to be abundant. The study area was at the southern extent of the 

Athabasca Plain jack pine (Pinus banksia) forest that was burned in 2011. The resultant 

vegetation was a forested matrix containing a mix of clear cuts, jack pine forest, fallen burned 

pines, and standing burned snags, with regenerating jack pine saplings distributed throughout. 

The study area was accessible by vehicle on non-paved roads, and was subject to other 

anthropogenic influence including clearcuts, water and transmission lines, and open-pit bitumen 

mines. 

 

We determined the starting point for each transect (n = 8) by observing territorial male Common 

Nighthawks and selecting those that responded aggressively to conspecific broadcast calls of 

vocalizations and mechanical wingboom sounds. Reconnaissance was conducted along non-

paved roads within the study area. 

 

Acoustic Data Collection 

We collected recordings of Common Nighthawks with known distances by attracting the 

territorial male Common Nighthawk to the first ARU at each transect with the same conspecific 
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broadcast call of vocalizations and mechanical wingboom sounds. Each transect comprised 15 

ARUs placed at standardized distances along a non-paved road. Along each transect, we placed 

the ARUs at 0 m, 30 m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m, 240 m, 300 m, 400 m, 500 m, 

600 m, 700 m, and 800 m from the broadcast call. We confirmed the distances between ARUs to 

the nearest metre by seeking agreement between a hand-held GPS and a laser range-finder. We 

used Song Meter SM4 ARUs (Wildlife Acoustics Inc.) to collect the recordings and time-

synchronized each unit to ± 1 s with a Garmin GPS extension. Recordings had a 48 kHz 

sampling rate and a 16 bit depth. 

 

We collected hour-long recordings starting at 30 minutes before sunset and ending 30 minutes 

after sunset, when Common Nighthawks are most vocally active. We played an airhorn at the 

beginning of the recording session to ensure the recordings could be synced for analysis. A 

single observer was stationed at the beginning of the transect to observe each vocalization of the 

target individual because there were other Common Nighthawks vocalizing during the recording 

session at each transect. The observer collected observations of each vocalization that the target 

nighthawk emitted within 20 horizontal metres of the broadcast call. The observer time-stamped 

each observed vocalization using the ClikTrack app on an iPhone 5 so that we could identify that 

vocalization within the recordings during processing. The observer also estimated the vertical 

and horizontal distance of the target nighthawk for each observed vocalization so that we could 

correct the known distances of each recording for the position of the target individual. The 

observer calibrated their vertical distance estimations at the beginning of each recording session 

by measuring the vertical height to the target Common Nighthawk with a laser-range finder. The 

observer similarly calibrated their horizontal distance estimations by measuring the horizontal 
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height to various objects in the nearby area with a laser-range finder. All observations were 

collected by a single observer. 

 

Acoustic Localization 

We collected acoustic recordings of Common Nighthawks with known locations by attracting 

male Common Nighthawks to the beginning of a transect of ARUs using conspecific broadcast 

calls. An observer stood at the beginning of the transect and recorded the time stamp, height, 

horizontal distance, and bearing of every vocalization from the target individual relative to the 

first ARU (0 m). We subsequently excluded all detections greater than 20 m in horizontal 

distance from the observer to minimize any observer bias in distance estimation. We collected 

recordings at eight transects between July 13 and July 20, 2016, starting at 1 hour before sunset 

and ending at sunset, when Common Nighthawks are most active. Each transect consisted of 15 

ARUs placed at standardized distances along a linear feature (Fig. 3) and we played an airhorn at 

the start of the recording period from the beginning of the transect. Following acoustic data 

collection, we clipped each of the recordings at the airhorn to synchronize them and remove the 

time it took for sound to travel to each ARU. Next, we visually confirmed the timestamp of each 

vocalization of the target individual and identified any vocalizations that were masked by the 

broadcast call. In total, we selected 100 vocalizations for localization. We then used the seewave 

package (Sueur, Aubin & Simonis 2008) in R to clip each unmasked detection from the full 

length recording to a 0.7 s long clip. Finally, we corrected the distance of each clip for the 

position of the target bird by calculating the Euclidean distance between the bird’s location and 
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the ARU. The resultant dataset comprised 1500 0.7 s clips of Common Nighthawk calls at a 

known distance with approximately 5-10 m of human surveyor error. 

 

References 

Sueur J., T. Aubin, and C. Simonis. 2008. Seewave: a free modular tool for sound analysis and 

synthesis. Bioacoustics. 18: 213-226. doi: 10.1080/09524622.2008.9753600 

 

 

 

Appendix 4.2 – Detailed recognizer training and automated relative sound level (RSL) 

estimation 

We down-sampled audio files to 22050 Hz for efficient processing and high-pass filtered the 

files to remove low frequency noise. We then calculated spectrograms using the short-time 

Fourier transform (STFT) and converted sound power to decibel (dB) units. We extracted a time 

series of sound power estimates from the spectrograms by taking the maxima along the first axis, 

resulting in a single value for each column in a given spectrogram. We then down-sampled the 

time series by max-pooling (segmenting the time series into non-overlapping blocks and 

retaining the max value in each block) to match the sampling rate of the CNN recognizer output. 

Each detection made by the recognizer therefore had an associated estimate of the local sound 

power. We conducted RSL analysis in Python (van Rossum 1995) version 3.5, using librosa 

(McFee et al. 2017) for audio loading and spectrogram generation, and scipy (Jones et al. 2001) 

for signal filtering. 
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Automated audio processing parameters 

Audio sample rate: 22050 Hz 

Audio filtering: high-pass 4th-order digital Butterworth filter, cutoff frequency 1 kHz 

STFT: FFT window size 128 samples, 50% window overlap, blackman window function 

Max-pooling block size: 16 

Score threshold: 0.01 
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Appendix 4.3 - Model selection for GLMs predicting distance. 
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Table 3.1. Candidate model parameters. RSL refers to relative sound level, Vertical to the 

vertical height of the individual (m), and Sunset to the time after sunset (min).  

Dataset Model Parameters 

OVEN 

Manual 

Null RSL + RSL2 

Log log(RSL) 

R+T RSL+ RSL2 + Time 

OVEN 

Recognizer 

Null RSL + RSL2 

R+Sc RSL + RSL2 + Score 

R+Sc+T RSL + RSL2 + Score + Time 

R+T RSL + RSL2 + Time 

CONI Manual R+V+Snt RSL + RSL2 + Vertical + Sunset 

R+V RSL + RSL2 + Vertical 

R+Snt RSL + RSL2 + Sunset 

Log log(RSL) 

Null RSL+ RSL2 

CONI 

Recognizer 

Null RSL + RSL2 

R+ Sc RSL + RSL2 + Score 

R+V RSL + RSL2 + Vertical 

R+Snt RSL + RSL2 + Sunset 

R+Sc+V RSL + RSL2 + Score + Vertical 

R+Sc+Snt RSL + RSL2 + Score + Sunset 

R+V+Snt RSL + RSL2 + Vertical + Sunset 

R+Sc+V+Sn RSL + RSL2 + Score + Vertical + Sunset 

 

Table 3.2. Model selection output. Models selected for use in analysis are in bold. 

Dataset Model df logLik AICc ΔAICc AICw 



 

196 
 

OVEN Manual R+T 6 -2692.95 5398.00 0.00 0.947 

Null 5 -2696.85 5403.80 5.77 0.053 

Log 4 -2849.48 5707.00 308.99 0.00 

OVEN Recognizer R+Sc+T 7 -2722.65 5459.50 0.00 1.00 

R+Sc 6 -2735.81 5483.70 24.27 0.00 

R+T 6 -2867.39 5746.90 287.44 0.00 

Null 5 -2872.95 5756.00 296.52 0.00 

CONI Manual R+V+Snt 6 -3971.70 7955.50 0.00 1.00 

R+V 5 -3987.71 7985.50 29.98 0.00 

R+Snt 5 -3992.58 7995.20 39.71 0.00 

Null 4 -4004.96 8018.00 62.44 0.00 

Log 3 -4043.15 8092.30 136.80 0.00 

CONI Recognizer R+Sc+Snt 6 -6576.14 13164.40 0.00 0.69 

R+Sc+V+Snt 7 -6575.95 13166.00 1.64 0.31 

R+Sc+V 6 -6583.59 13179.20 14.89 0.00 

R+Sc 5 -6587.49 13185.00 20.68 0.00 

R+Snt 5 -6592.29 13194.60 30.27 0.00 

R+V+Snt 6 -6592.04 13196.20 31.79 0.00 

R+V 5 -6597.81 13205.70 41.30 0.00 

Null 4 -6601.08 13210.20 45.84 0.00 
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Appendix 4.4 - Commonality analysis 

Table 4.1. Results of commonality analysis. Total refers to partitioned contribution to total R2 of 

model. 

Dataset Variables Coefficient Total 

OVEN Manual RSL 0.660 0.934 

 Time 0.006 0.009 

 RSL, Time 0.040 0.057 

OVEN Recognizer RSL 0.084 0.136 

 Score 0.152 0.245 

 Time 0.017 0.027 

 RSL, Score 0.353 0.570 

 RSL, Time 0.011 0.018 

 Score, Time -0.006 -0.010 

 RSL, Score, Time 0.008 0.013 

CONI Manual RSL 0.639 0.990 

 Sunset 0.023 0.036 

 Vertical 0.017 0.026 

 RSL, Sunset -0.021 -0.032 

 RSL, Vertical -0.013 -0.021 

 Sunset, Vertical 0.003 0.004 

 RSL, Sunset, Vertical -0.002 -0.004 

CONI Recognizer RSL 0.715 0.997 

 Vertical 0.004 0.010 

 RSL, Vertical -0.002 -0.003 
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Appendix 4.5 - Intraclass correlation coefficients (ICC) for selecting random effects in 

GLMs 

Table 5.1. Intraclass correlation coefficients (ICC) for selecting random effects in GLMs. 

Random effects included in final models highlighted in bold. 

Species Method Transect Station Individual 

OVEN 

manual - 0.723 0.104 

recognizer - 0.637 0.074 

CONI 

manual 0.014 - - 

recognizer 0.014 - - 
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Appendix 4.6 - Distance sampling model selection. 

Table 6.1. Candidate distance sampling models for OVEN known distances. Selected model is in 

bold. 

Detection Function Adjustment Term AIC 

Half Normal None 2891.977 

Uniform Cosine 2892.099 

Hazard Rate Cosine 2895.905 

Hazard Rate Polynomial 2895.905 

 

Table 6.2. Candidate distance sampling models for OVEN manual measurements. Selected 

model is in bold. 

Detection Function Adjustment Term AICc 

Half Normal Cosine 4022.527 

Half Normal Polynomial 4024.205 

Uniform Cosine 4023.195 

Hazard Rate Cosine 4026.08 

Hazard Rate Polynomial 4025.2 

 

Table 6.3. Candidate distance sampling models for OVEN recognizer measurements. Selected 

model is in bold. 

Detection Function Adjustment Term AICc 

Half Normal Cosine 4103.783 

Half Normal Polynomial 4111.829 

Uniform Cosine 4105.862 
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Hazard Rate Cosine 4107.048 

Hazard Rate Polynomial 4105.116 

 

Table 6.4. Candidate distance sampling models for OVEN human error predicted distances. 

Selected model is in bold. 

Detection Function Adjustment Term AIC 

Half Normal None 2819.015 

Uniform Cosine 2846.84 

Hazard Rate Cosine 2821.145 

Hazard Rate Polynomial 2824.815 

 

Table 6.5. Candidate distance sampling models for CONI known distances. Selected model is in 

bold. 

Detection Function Adjustment Term AIC 

Half Normal None 20956.791 

Uniform Cosine 20976.499 

Hazard Rate Cosine 20958.961 

Hazard Rate Polynomial 20960.614 

 

Table 6.6. Candidate distance sampling models for CONI manual measurements. Selected model 

is in bold. 

Detection Function Adjustment Term AICc 

Half Normal Cosine 32166.021 

Half Normal Polynomial 32172.993 
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Uniform Cosine 32167.368 

Hazard Rate Cosine 32165.481 

Hazard Rate Polynomial 32169.966 

 

Table 6.7. Candidate distance sampling models for CONI recognizer measurements. Selected 

model is in bold. 

Detection Function Adjustment Term AICc 

Half Normal Cosine 29059.706 

Half Normal Polynomial 29059.861 

Uniform Cosine 29060.213 

Hazard Rate Cosine 29059.564 

Hazard Rate Polynomial 29060.834 

 

Table 6.8. Candidate distance sampling models for CONI human error predicted distances. 

Selected model is in bold. 

Detection Function Adjustment Term AIC 

Half Normal None 18179.814 

Uniform Cosine 18231.291 

Hazard Rate Cosine 18246.8 

Hazard Rate Polynomial 18192.598 
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Appendix 4.7 - Model Coefficients for GLMs predicting distance. 

Table 7.1. Model coefficients (± SE) from the top selected model for each dataset. RSL refers to 

relative sound level, Vertical to vertical height (m), and Sunset to time after sunset (min). 

Model Intercept RSL RSL2 Score Vertical Time Sunset 

OVEN 

Manual 

4.394 ± 

0.039 

-0.354 

± 

0.010 

-0.091 ± 

0.006 

  -0.016 

± 

0.006 

 

OVEN 

CNN 

4.299 ± 

0.042 

-0.147 

± 

0.009 

-0.047 ± 

0.006 

-0.168 

± 0.009 

 -0.039 

± 

0.007 

 

CONI 

Manual 

4.924 ± 

0.022 

-0.724 

± 

0.035 

-0.150 ± 

0.022 

 0.093 ± 

0.014 

 -0.084 

± 0.014 

CONI 

CNN 

4.841 ± 

0.015 

-0.749 

± 

0.023 

-0.100 ± 

0.012 

0.047 ± 

0.008 

  0.042 ± 

0.009 
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Appendix 4.8 - Distance estimation error and post-hoc comparisons. 

Table 8.1. One sample t-tests to test for significant deviation of error from zero.  

Species/Method One sample t-test (Error Bias) One sample t-test (Absolute) 

 t df p cohen’s d t df p cohen’s d 

OVEN Manual 8.140 690 1.84E-15 0.310 31.548 690 2.20E-16 1.200 

OVEN Recognizer 6.324 672 4.66E-10 0.244 33.4247 672 2.20E-16 1.288 

CONI Manual -0.133 715 0.894 -0.005 30.935 715 2.20E-16 1.167 

CONI Recognizer 0.252 1222 0.801 0.007 35.503 1222 2.20E-16 0.985 

 

Table 8.2. Two sample t-tests to test for significant differences between RSL measurement 

methods. 

Species/Method Two-sample t-test (Absolute) Two-sample t-test (Error Bias) 

 t df p cohen’s d t df p cohen’s d 

OVEN Manual 

1.346 1347.8 0.179 0.073 -1.572 1359.5 0.116 0.085 

OVEN Recognizer 

CONI Manual 

5.339 1417.4 1.09E-07 0.253 -0.250 1315.9 0.803 0.012 

CONI Recognizer 

 

 


