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Abstract

A numerical model to study passive scalar advection is described. The advecting
velocity field is computed by solving the incompressible Navier-Stokes equation. The
method uses a semi-implicit multigrid algorithm to compute the divergence-free veloc-
ity at each grid point. The finite differences are second-order accurate and centered
in space. However, the traditional second-order compact finite differencing of the
Poisson equation for the pressure field is shown not to conserve energy in the inviscid
limit. We have designed a non-compact finite differencing for the Laplacian in the
pressure equation that conserves energy and affords second-order accuracy. A new
numerical method for advection is also developed. This method, which we call parcel
advection, is applied to study transport due to electro-osmosis and electrophoresis.
The numerical experiments show that parcel advection predicts the evolution of a
passively traveling scalar pulse to high accuracy without requiring the addition of

any artificial diffusion.



UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled A Fully Lagrangian Advection
Scheme for Electro-Osmeotic Flow submitted by M. Jahrul Alam in partial fulfillment of

the requirements for the degree of Master of Science in Applied Mathematics.

QA C Browrrmen

Dr. John C. Bowman (Supervisor)

)l

Dr. Walter Allegretto (Chau‘)

D/

Dr. Chris Backhouse
(Electrical and Computer Engineering)

~

~

/ )
Drweﬂ@ ~—

Dae: Qct R /2000



Acknowledgements

I would like to express my sincere thanks to my supervisor, Dr. John C Bowman.
This work would not have been completed without his guidance and enthusiasm. I
would also like to thank my wife, Jesmin Sultana, for her continued encouragement.
Many other people helped me with encouragement, suggestions and in proof reading.
Without producing a long list of them, I am grateful to every one who helped me in

different ways to complete the thesis.



Contents

1 INTRODUCTION

1.1 Motivation . . . . . . . . . . . L e e
1.2 Physical background . . . . . . ..o Lo oo Lo
1.3 Electrophoresis . . - . . . . . . L Lo o
1.4 Electro-osmosis . . . - . . . o o ..o e e e e e

2 MODEL DEVELOPMENT

2.1 Charge balance equation . . . . . .. ... ..o
2.2 The governing equations . . . . . .. .. ..o
2.2.1 Solving for the pressure . . . . . . . . . . ... ... ...
2.2.2 Determination of the electricforce. . . . . . . . . ... .. ..
2.2.3 The model equations . . . .. . . . . ... ... ... ...
2.3 Scalings for the variables . . . . . ... ... ...

2.3.1 Dimensionless equation of motion . . . . . . . . . ... .. ..



2.4 Geometry and boundary conditions . . . . . . . . . ... .. oL 24
2.4.1 The computational geometry . . . . . . . . . .. ... L. 24
2.4.2 Boundary condition on the potential field . . . . . . . . . . .. 26
2.4.3 Boundary condition on the pressure . . . . . . . . ... ... 27
2.4.4 Boundary condition on the velocity field . . . . . ... .. .. 28
2.4.5 Boundary condition on the concentration field . . . . . . . .. 28
2.4.6 Boundary condition on the fluxes . . . . . . . . . ... .. .. 29

2.5 Conservation laws and the Kolmogorov hypothesis . . . . . . . . . .. 29

DISCRETIZATION 30

3.1 Numerical grid . . . . . . . .. . Lo 30

3.2 Spatial discretization . - . . . . .. .. . Lo Lo 33
3.2.1 Discretization of the luxes . . . . . . . . . . . ... ... ... 36
3.2.2 Discretization of a Laplacian operator . . . . . . . . .. .. .. 36
3.2.3 Finite differencing of the pressure term . . . . . . . . . . . .. 36
3.2.4 Semi-discrete version of the governing equations . . . . . . . . 39

3.3 Temporal discretization . . . . . . . . . . .. ..o 39
3.3.1 Stability problem with the advective derivative . . . . . . . .. 40

3.4 Multigrid Poisson solver . . . . .. ... ..o oL 45

3.5 Parceladvection . . . . . . . . ... Lo Lo Lo 47



3.5.1 Advectionstage . . . . . . ... ..o 49

3.5.2 Calculating the area of the overlapping cells . . . . . . .. .. 51
3.5.3 Area-weighted average velocity . . . ... ... ... ... .. 51
3.5.4 Contribution of concentration to overlapping cells . . . . . . . 52

3.5.5 Parcelinjection . . . . . . ... ... 52

3.5.6 Parcelsource . . . . .. . .. ... 53

3.6 Implementation of the boundary conditions . . . . . . . . . .. .. .. 53
4 NUMERICAL ANALYSIS AND RESULTS 56
4.1 Numericalsolvers . . . . . . . . . ... oo 56
4.1.1 Numerical simulation parameters . . . . . . . . . . .. .. .. 57
4.1.2 Pressure Poissonsolver . . . . . . .. ... Lo 58
4.1.3 Crank-Nicholsonsolver . . . . . . .. . . ... ... ... .. 63

4.2 Numerical simulation of electro-osmotic low . . . . . . . . .. .. .. 66
4.2.1 General characteristics of Poiseuille and electro-osmotic flow . 71
4.2.2 Electrokinetic effect on the velocity profile . . . . . . . . . .. 74
4.2.3 Poiseuille flow vs. electro-osmotic low . . . . . . ... .. .. 77

4.3 Passive advection of the concentration field . . . . . . . . ... .. .. 77
4.3.1 Passiveadvection . . . . . . .. ..o oo 79

4.3.2 The concentration distribution . . . . . . . . . . . . .. . ... 82



5 CONCLUSION
5.1 DiSCUSSION . - . -« o o i o e e e e e e e e e e e e e e e e e e e

5.2 Future work . . . . . . . . o e e e e e e e e e e e e e e

A Debye-Hiickel approximation

B Theoretical analysis
B.l1 Comservationlaws . . . . . . . . . . .. Lo
B.2 Fourier analysis of the equation of motion . . . . .. . . ... .. ..
B.3 Kolmogorov’s spectral picture . . . . . . . .. ...

B.4 Kolmogorov-type argument . . . . . . . . . . . . ...

93

93

96

98



List of Figures

N
3]

3.1

3.3

4.1

4.3

A schematic diagram of the Debye layer. . . . . . ... ... ... ..
A schematic diagram of a microfluidic chip.. . . . .. .. . . ... ..

Total velocity of ions in response to electrzic field. . . . . . ... . ..

Internal potential ¥ for A/Ap =300. . . . .. . ... ... ... ...

The computational geometry (overhead view) . . ... ... ... ..

A schematic grid. . . . . . . .. L. oL
Advection of a parcel. . . . . . ... .. oo

Contribution of a parcel to overlapping ceslls. . . . . . .. . ... ...

Conservation of energy for compact and mon-compact pressure formu-

[ation. . . . . s e e e e e e e e e e e e e e e

Conservation of enstrophy for compact anid non-compact pressure for-

mulation. . . . . . e e e e e e e e e e e e e e e e e e e e e e

The distribution of pressure in a two-dim+ensional channel. Black cor-

responds to 0 and white corresponds to 120pU%. . . . . . . ... . ..

10

16

25

62



4.4 External potential field ¢. Black corresponds to 0 and white corre-
sponds to ®Pg. - . - . L L.l 64

4.5 Potential ¥» due to the space charge. Black corresponds to —¢ and

white corresponds to 0. . . . . . . . . .. oL oL 65

4.6 Early development of the z (streamwise) component of the velocity
field due to a pressure drop and a potential drop (at ¢ = 0.015A/U).

Black corresponds to 0 and white corresponds to 5.1U. . . . . . . .. 67

4.7 Fully developed z (streamwise) component of the velocity field due to
a pressure drop and a potential drop. Black corresponds to 0 and white

corresponds to 4.7U. . . . ... .o oL Lo o o 68

4.8 Fully developed z (streamwise) component of the velocity due to a
pure electro-osmotic velocity field. Black corresponds to 0 and white

corresponds to 5.1U. . . . . . . .. ..o 69

4.9 Background pressure-driven velocity field v,. Black corresponds to 0

and white corresponds t0 0.038U. . . . . . . . ... ... L. .. 70
4.10 Computed pressure-driven velocity profile. . . . . . .. ... ... .. 72
4.11 Simulated electro-osmotic velocity profile. . . . . . ... .. ... .. 73
4.12 Electro-osmotic velocity profile at various values of n in mol/m3. . . 75
4.13 A cross-channel microfluidic device and the computational domain. . 76

4.14 Velocity profile due to a pressure drop and a potential drop. . . . . . 78



4.15

4.16

4.17

4.18

4.19

4.20

4.23

NN

4.2

Concentration field predicted by the parcel advection algorithm after a
few time steps, where the velocity field is explicitly known. The large
pixels illustrate the coarse graining of output quantities in the parcel

advection scheme. . . . . . . . . . . . . . . . . . .. ..

Initial distribution of the concentration. Black corresponds to 0 and

white corresponds to 1. . . . . . . .. ... ...
BEarly distributionof C. . . . . . . . . . .. ... ...

Passive advection of the concentration field by a first-order upwind

method. Black corresponds to 0 and white corresponds to 1. . . . . .

The concentration field advected by an electro-osmotic flow and a
pressure-driven flow. Black corresponds to 0 and white corresponds

to 1. . . . e e e e e e e e e e e e

The concentration field advected by a pure electro-osmotic flow. Black

corresponds to 0 and white corresponds to 1. . . . . . . .. ... ..

The concentration field in simulation (c) advected by a flow, where
the pressure effect is neglected explicitly. The resulting violation of
incompressibility produces spurious results. Black corresponds to 0

and white corresponds to 1.2. . . . . . . . . ..o

The concentration field C due to pressure-driven flow in the absence
of an electric field. Black corresponds to 0 and white corresponds to

0.028U. . . . . e e e e
Distribution of C along the center line in simulation (a) and (b). . . .

Distribution of C in simulation (c). . . . . . .. . ... ... ... ..

80

81

83

86

87

88

90



4.25 Concentration distribution along the center line for simulation (d), with

the electric field absent. . . . . . . . . . . . . . o . ... ...



Chapter 1

INTRODUCTION

1.1 Motivation

Many practical problems in science and engineering, especially in the field of fluid
dynamics, involve passive advection of scalar quantities. A scalar field is said to be
passive if its amplitude is small enough not to affect appreciably the density and the
other physical properties of the fluid (Leslie 1973, p.156). One of the most important
passive advection problems associated with the application of an electric field to a
mixture of charged species in solution is capillary electrophoresis (Culbertson & Jor-
genson 1994). Extensive experimental studies of capillary electrophoresis have been
performed (Jorgenson & Lukacs 1981) in the field of microfluidics and chemical anal-

ysis of biological fluids—for example, protein separation and/or DNA transport. In



laboratory experiments, the solvent flow could be directed along a specified capillary
by the application of appropriate voltages (Harrison et al. 1992). In most of these
experiments, the sample was injected with electro-osmotic flow driven by an applied
potential along the channel (Harrison et al. 1993; Seiler et al. 1994). In the case of a
cross-channel device, the shape of the injected sample, which is an important param-
eter that influences the resolution of the separated zones during the electrophoresis,
depends primarily on the electro-osmotic flow pattern at the intersection of the chan-
nels. The electro-osmotic flow itself is influenced by various parameters, such as the
Reynolds number, applied potential gradient, and electrophoretic mobility. Until now
many experimental and theoretical investigations have been performed to determine
the parameters that give the most desirable shape of the injected sample. An analyt-
ical attempt to investigate electro-osmotic flow in a single long uniform capillary can
be found in Rice & Whitehead (1965), Burgreen & Nakache (1964), and Andreev &
Lisin (1993). Two-dimensional computer simulations of electrokinetic injection and
transport for a cross-channel device are described in Ermakov et al. (1998, 2000). A
steady-state three-dimensional simulation (Patankar & Hu 1998) was performed to
study the electro-osmotic flow in a cross-channel microfluidic device. However, rel-
atively little attention has been paid to the advection of a charged species either in

numerical simulations or in theoretical studies.

Over the last few decades, there has been an increasing interest in the field of

computational fluid dynamics. A number of numerical algorithms have been devised



for the simulation of many practical problems in science and engineering that involve
passive advection of scalar quantities and lead to partial differential equations of the
hyperbolic type. Scalar transport phenomenon naturally arise in a wide variety of
applications. One particular example that we will be dealing with throughout this
study is the separation of chemical species by capillary electrophoresis. A major diffi-
culty which has enlivened research in this area is the problem of simulating advection.
The special difficulty associated with these simulations is the formation of shock and
contact discontinuities. With minor modifications, the first solution for representing
shock and contact discontinuities was proposed by Neumann & Richtmyer (1950).
However, certain disadvantages of von Neumann and Richtmyer’s approach have led
to continued efforts in developing more convenient, more accurate, and/or more el-
egant solutions. An elementary approach in modeling advection on a computer is
the finite difference method. In the area of computational fluid dynamics there have
been two basic approaches to applying the finite difference method to the governing
partial differential equations. One is the Eulerian approach and the other is the La-
grangian approach. The Eulerian approach deals with a system of coordinates that
is fixed in space. On the other hand the Lagrangian approach deals with a system
of coordinates which follows the fluid as it moves. The first hydrodynamic initial
value problems that were tried on a computer were one dimensional in space (Schulz
1964). In one dimension the arguments in favour of a Lagrangian over an Eulerian

formulation are almost overwhelming. Eulerian codes in general are not as accurate



and have additional troubles. If the system is compressed, definition is lost due to the
fixed-in-space nature of the coordinates in Eulerian codes, in contrast to the fixed-in-
the-material nature of the coordinates in Lagrangian codes. One of the most severe
drawbacks of the Eulerian method is the difficulty found in dealing correctly with
the advective term v - Vv. In the case of scalar advection, if the scalar quantity
is the concentration of the tracer field, this quantity must always be non-negative.
Without proper handling of the advective term, the numerical solution can go uncon-
ditionally unstable, producing negative concentration or spurious wiggles (Tannehill
et al. 1997). There are a wide variety of finite-difference approaches that can be used
to represent the advective derivative on a numerical grid. Unfortunately all of them
must respect a Courant-Friedrich—Lewy criterion to remain stable, (e.g. see Press
et al. (1997)). In addition, they not only suffer from dispersive and diffusive error but
also destroy the conservative properties of the equation (Press et al. 1997). Histor-
ically, the first alternative was the unconditionally stable method of characteristics
introduced by Courant et al. (1952) sometimes referred to as the CIR scheme (LeV-
eque 1990). Since this method uses interpolation based on the nearest grid point, in
spite of the unconditional stability of the method, its overall performance is affected
by the inherent computational damping associated with the interpolation (Ritchie
1986). To address this problem, Ritchie (1986) proposed to decompose the displace-
ment vector into the sum of two vectors, one of which goes to the nearest grid point.

The other vector, the residual, is treated with an Eulerian method. However, the



method of Ritchie still introduces dispersion of the Eulerian component (Staniforth &
Cote 1991). Another attractive way of handling the solution of advection-dominated
flow problems in complex geometries is the finite element method. However at high
Reynolds numbers, standard Galerkin-based finite element methods are not suitable

and must be stabilized (Minev & Ethier 1999).

The aim of this study is to develop a fully Lagrangian algorithm for simulating

passive scalar advection by electro-osmotic flow.

1.2 Physical background

The phenomena that we will be dealing with throughout this study are the effects
associated with the movement of ionic solution near a charged interface (Morrison
& Stukel 1970). It plays an important role in many diverse natural and techno-
logical processes such as in the biotechnology industry, biochemical, and biological
research. Electrophoresis has sufficient resolving power to distinguish between long-
chain polynucleotides. Sample sizes for electrophoresis are in the nanoliter range.
The bulk behavior of a solution of charged particles is a complicating feature. This
becomes more complicated because of the dynamics of the diffuse space charge that
arises from the response of the ions to the charged interface (Levine & Neale 1976).

However, if this complication is ignored, the dynamics of a small charged particle in



an ionic solution can be understood from the description of the electric fields and

forces in the fluid and on the particle (Ermakov et al. 2000).

Let us consider an electrophoresis system consisting of a channel with a rectangular
cross section filled with a buffering medium across which a voltage is applied. A
schematic diagram of the electric double layer that develops at the charged interface
and the diffuse outer layer of the double layer is shown in Fig. 1.1. Suppose that
the wall of the channel is negatively charged and a positive voltage is applied at
the input reservoir on the left end of the channel. Because of the applied voltage,
positive charges will move toward the negative electrode (Reed & Morrison 1976).
The overall dynamics is associated with two types of phenomena: electrophoresis and

electro-osmosis.

1.3 Electrophoresis

Electrophoresis refers to the migration of charged electrical species that are dissolved
or suspended in an electrolyte through which an electric current is passed (Moyer
& Gorin 1990). Cations migrate toward the negatively charged electrode (cathode)
and anions are attracted toward the positively charged electrode (anode). Neutral
solutes are not attracted to either electrode. Conventionally, electrophoresis has been
performed in layers of gel or paper (Bier 1959). The advantages of conducting elec-

trophoresis in capillaries was highlighted by Jorgenson & Lukacs (1981).



1.4 Electro-osmosis

Electro-osmotic flow in micro-channels is crit:ical to the design and process control
of various on-chip microfluidic devices such ass modern instruments used in chemical
analysis and biomedical diagnostics. Generallly, all the solid-liquid interfaces have
electrical charge. These electrical charges will attract the counter-ions in the electri-
cally neutral liquid; hence there is a layer of lliquid near the solid surface where the
counter-ion concentration is higher than the oco-ion concentration (Arulanandam &
Li 2000). In other words, there is a layer neasr the charged interface that has a net
electrical charge concentrated in a small volurme. When an electrical field is applied
to the liquid, the excess counter-ions in the Deebye layer will move under the applied
electrical field. These ions will migrate to the electrode that has opposite sign. The
moving ions will interact frictionally with the ssurrounding fluid, pulling it with them
and generating a motion of the bulk liquid. Tnis is the so-called electro-osmotic flow.
The rate of electro-osmotic flow is generally gzreater than the electrophoretic migra-
tion velocity of the individual species. The tootal velocity of a species is the vector
sum of the electro-osmotic velocity and elect:rophoretic velocity. Even though the
species move according to their charge within the capillary, the electro-osmotic flow
rate is sometimes sufficient to sweep all the positive, negative and neutral species in

one direction (Skoog et al. 1998). This is illusttrated in Fig. 1.3.
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Chapter 2

MODEL DEVELOPMENT

2.1 Charge balance equation

In order to understand the dynamics near a charged interface, a description of the
forces that act in the fluid and particles is essential. The fundamental equations
of motion for electro-osmotic flow and passive scalar advection will be described in
Section 2.2. First, it is necessary to have an understanding of the electrical force and
charge balance equations. One may explain the effect of an applied potential on a

charged species from the following simple mathematical argument (Gadl et al. 1980).

Assume that we have a species with net charge @, which is suspended in a fluid
that behaves as a perfect insulator. If a uniform time-independent electric field £ is

applied, a force, QF , will act on it. The result is the migration of the particle toward

11



the electrode that has opposite sign. Once the particle starts to move from rest, a
frictional force fv acts in the opposite direction, where f is the frictional coefficient
and v is the velocity of the particle relative to the surrounding fluid. If m is the
mass of the particle, one can write the following differential equation according to

Newton'’s law of motion,

dv
_— = — 9
m— QE — fuv, (2.1)
or,
dv f QF
T m' T, (2:2)
The solution of (2.2) is
v= QTE + Ce =,

Since we are dealing with micron or smaller sized particles, for a typical charged
particle, the factor f/m in the exponential term is order of 10 s™! (Gadl et al
1980). Therefore, for times longer than 107 '*s, the exponential term is negligibly

small. Thus, we can write

~ QF
~

This implies that if the electric field is turned on, the particle accelerates rapidly until

v (2.3)

the electrical force is balanced by the frictional force. Then it migrates at a constant
velocity, which is known as the electrophoretic velocity. In reality, the presence of an
ionic shield around the particle results in electrophoretic friction and consequently

the electrophoretic velocities are slower than those predicted by (2.3).

12



An important parameter in electrophoretic separation is the electrophoretic mo-
bility. This parameter is defined as velocity per unit electrical force and is usually

denoted by g. That is,

Therefore, if two species differ either in charge or in frictional force, they will be
separated from each other by an electric field. The frictional force depends on the
size and shape of the species. This suggests that species of different size will move

with different speeds.

In order to find an expression for the force exerted on a fluid, we first need to
establish equations that will determine the charge density and electric field intensity
from the potential field. The electric field intensity E is related to the potential ¢
by

E=-V¢,

From Maxwell’s equations, we know that

where p, is the space charge density and € is the permittivity of the medium. This

implies that & satisfies a Poisson equation:

W@:-%_ (2.4)

13



In the case of electro-osmosis, the solid-liquid interface has an electrical charge. In
contact with the solution, this charged interface will have a certain potential, known
as the ¢ potential. In the absence of an externally applied electric field, positively and
negatively charged ions in the electrolyte solution give rise to this potential. Hence
the total potential & will have a contribution due to the charge at the walls and
another contribution from the externally applied electric field. It is thus convenient
to decompose @ as

e =p -+,

where ¢ is the potential due to the externally applied electric field and % is the
potential due to the space charges inside the domain. Since the applied potential

arises only from the charges outside the domain, it satisfies Laplace’s equation,

Vip =0. (2.5)

Using (2.4) and (2.5), it can be shown that the potential 1 can be calculated from

the Poisson equation,

Vi = L. (2.6)

The potential v is characterized by the Debye layer thickness Ap, which is given by

» _ kTe

X = (2.7)

e?n’
where k is the Boltzmann constant, T is the absolute temperature, e is the elementary

charge, and n is the concentration of ions.

14



At a distance from the wall greater than the Debye length V4 will have a negli-

gible contribution to the electric field intensity. Therefore,
E=-Vyp

is a very good approximation. For further simplification, we use the Debye-Hiickel

approximation (see Appendix A)
Vi = = 2.8
Y= '/\‘2—111 ; (2.8)
D
where Ap is defined by (2.7).

The space charge density p. can be expressed in terms of the potential field

from (2.6) and (2.8),

9o = €
e /\%

/. (2.9)
For a rectangular domain with a Neumann boundary condition in the y direction and

Dirichlet boundary condition in the z direction, one can find a solution to (2.8) (see

Fig. 2.1), which is given by

_cosh[(y — h/2)/Ao]

(2.10)
cosh(z\";)

U(y) =

where A is the width of the domain. This solution states that 1 vanishes rapidly as
y — h/2 if A\p, given by (2.7), is small compared with A. Thus there exists a layer

near the wall where the potential drop is steep and falls off rapidly far from the wall.

15
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2.2 The governing equatioms

The problem of electrophoresis is mathematically similar to the problem of passive
scalar advection. The mathematical model tIhat represents the passive advection
problem in case of electrophoresis can be form-.ulated using the principles of conser-
vation of mass, momentum and species (charge ). The detailed derivation of the fluid
equations can be found in Schlichting (1968) amd Kundu (1990) and therefore is not
described here. However, we need to make somne basic assumptions to come up with
a simplified set of equations from the above mertioned conservation laws. We assume
that the fluid is incompressible and Newtonian with uniform physical properties and
that the concentration of the chemical species dissolved in the fluid is dynamically
passive. The complicating structure near the so-lid liquid interface is ignored since the
thickness of the Debye layer is small compared writh the characteristic length scale. A
fluid is said to be incompressible if the material clerivative of the density is zero. When
the rate of strain is linearly related to the stresss, a fluid is called Newtonian. The
dissolved chemical species may lead to a violat.ion of the Newtonian behavior of the
fluid (Kundu 1990, p. 93). However, if the cons«centration is dynamically passive, the
Newionian assumption is a reasonable approxirnation (Patankar & Hu 1998). Under

these assumptions we can write down the followving partial differential equations,

Conservation of mass

— +V . (vp) =0, (2.11)
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Momentum

88—1; +(v-V)v = —%VP + vV + F, (2.12)
Incompressibility
9p
ol . =0 2.13
En +v-Vp , ( )
Species
aa—f +V.T'=DV?C. (2.14)

where v(x, t) is the fluid velocity, P(z,t) is the pressure, p is the fluid density (as-
sumed to be constant), F(x,t) is the electrical force per unit mass, v is the kinematic
viscosity of fluid, and C(z,t) is the concentration of the chemical species dissolved
in the fluid. It is assumed that the advected field C is dilute and does not affect the

fluid density p. The concentration flux T is given by
= (v+uFE)C,

where p is the electrophoretic mobility (assumed to be constant).

Now (2.11) can be used to reduce (2.13) to the form

V.v=0. (2.15)

Thus we have three partial differential equations (2.12, 2.14, 2.15) to solve for three
variables v, P and C. In order to solve these equations we need to know the value
of F as well. Note that the concentration appears only in the species conservation

equation directly, so that (2.12) and (2.15) are decoupled from (2.14), under the
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assumption that the fluid properties are independent of the concentration. Once the
velocity field has been computed, we can find the concentration distribution. To
compute the advecting velocity, we need to solve the momentum equations coupled

with the equations for the pressure and electrical fields.

There are two fundamental approaches to solve (2.12): one is the primitive-
variable approach, where the velocity is solved for directly, and the other is the
derived-variable approach, where one automatically enforces (2.15) by solving for the
velocity vector potential A, where v = V x A. Although the second approach has
some advantages, its attractiveness is lost when applied to three-dimensional flow
(Tannehill et al. 1997). Moreover, there are complications in implementing the pres-
sure boundary condition in the vector potential formulation. Although only a two-
dimensional code is described in this work, the algorithm has been designed so that
it can readily be generalized to a full three-dimensional model. Hence we opt for the
former approach, where one solves directly for the velocity variable. Implementation

of the incompressibility condition (2.15) then requires special care.

2.2.1 Solving for the pressure

The momentum equation is solved for the velocity components using the best available
estimate for the pressure distribution. The pressure field is estimated in such a way

that a divergence-free velocity field is achieved. An equation for pressure can be
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derived by simply taking the divergence of (2.12),

ov 1 1 2
V. [§+(U-V)vJ =V- [—;VP+uV v—{—F].

Using (2.15) we obtain a Poisson equation, which can be solved for P,
VP =pV -G, (2.16)

where

G=F —v-Vv.

An efficient multigrid Poisson solver (Bowman et al. 2000) is used to solve this elliptic
partial differential equation. The velocity and pressure fields are related in such a way
that the pressure field will self-consistently adjust to maintain the solenoidal nature

of the velocity field.

2.2.2 Determination of the electric force
The force exerted by the applied electric field on a unit volume of fluid containing a
space charge density p. is given by

pF = p.E,

so that F YV . (2.17)

_ €
pAD

Upon solving (2.5) and (2.8), we can evaluate the electric force F' from (2.17).
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2.2.3 The model equations

Using a tilde to denote dimensional quantities, the governing equations can be written,

using (2.15) as

Jdv - 1= = - € -~
—+0-Vo=—--VP+iVd+—9Va3, 2.18
5 p avVe (2.18)
C s e. eA E s
§+0-VC=anp-VC+DV2C, (2.19)
6215=,5V"-[ < 7,564,5—’5-6’6}, (2.20)
PAD
— - 1 -
v2v=:\T/7 (2.21)
D
V35 =0. (2.22)

2.3 Scalings for the variables

The governing equation can now be non-dimensionalized by defining a characteristic
length scale and a characteristic velocity scale. An important application of electro-
osmotic flow is in nanotechnology and microtechnology, where the typical length
scales are 107%m and 107° m, respectively. Since the flow characteristics in electro-
osmotic pumping are dynamically similar to channel flow, we chose the width h of
the capillary tube used in the laboratory experiments as our characteristic length
scale. The observed velocity U of a sample in a typical experiment is taken as a

characteristic velocity scale.
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Accordingly, we introduce the following nondimensional variables, using a tilde to

to denote the corresponding dimensional variables.

i
T =7
B
‘U—E,
U
=
p
P =
o =2
By’
0
(U c

Here the applied voltage drop ® g at the input reservoir is the characteristic external
potential field and the potential due to the charge at the walls is normalized to the

wall potential (.

2.3.1 Dimensionless equation of motion

If we substitute the expressions for the dimensional variables into (2.18)—(2.22), we

obtain
U Bvl_U_2( .V)v—_U_2vp+f7_U:v2v+Q£_E_/v
R ot R ~Th 2 o opap Yy
Uuoc U Sy . D_,
EE'{"}; ’UV) = 72 (quoV)C+h2V C,
U _, 1 (Py € 2



¢ ¢

VY=g
D
)
h—fvch = 0.

In dimensionless variables, these equations take the form

?9_::] +v-Vu=-VP+1,Vv+avVop,
aa—f—f-v-VC':uV:p-VC'-%-UcVzC:

VP =V .(avVyp —v-Vv),
Vi = &%,
Vi =0,

where

o = CCDHE _ C@Hezn
T pUY T pURT’

v
Vv = g
D
Ve = 'U-_h1
_ A%
H= TUh
» h®* hZ%’n
K= = ——.
AL kTe

Some typical values for different scales can be used to estimate v, and v, (Patankar

& Hu 1998; Crabtree et al. 2000); z.e.,

a length scale, h~ 5 x 10™°m,
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a velocity scale, U ~ 1073,
diffusion coefficient, D ~ 10~''m?/s,
kinemitic viscosity of fluid, » ~ 107°m?/s.

Using these typical values, we find that v, ~ 20 and v, ~ 10~*. Hence the velocity

field is dominated by viscosity and the concentration field is dominated by advection.

Equation (2.23)-(2.27) are five equations with five unknowns and they make a
closed system. The fact that (2.26) and (2.27) are time independent can be exploited

in a numerical implementation of this system of equations.

2.4 Geometry and boundary conditions

2.4.1 The computational geometry

We are interested in modeling passive advection in a simple geometry throughout
this study. Widely used laboratory instruments for capillary electrophoresis are de-
signed with L-shaped, T-shaped or curved channels. More recently, computers have
been used in modeling electrophoretic transport and extensive investigations have
been performed both theoretically and experimentally. As well, mathematical mod-
els have been developed (Allison & Nambi 1994). Early mathematical models were

one-dimensional and equations were simplified to one dimension based on arbitrary
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Figure 2.2: The computational geometry (overhead view)
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initial and boundary conditions (Andreev & Lisin 1993; Bowen et al. 1976; Burgreen
& Nakache 1964). Recently, a three-dimensional simulation has been performed to
analyze steady-state electro-osmotic flow (Patankar & Hu 1998) and has indicated
that the vertical component of velocity is small compared with that of the horizontal
component. We are mainly interested in simulating passive advection, where the ve-
locity field is specified by an unsteady flow. The advection in the vertical direction
by such a velocity field can be neglected. Thus in this work we restrict our attention

to a two-dimensional flow. In our simulation, the computational domain is given by
Q= {(33, y) : Tmin S z S Tmax; Ymin S y S yma.x}y

which represents the along-channel cross section of the capillary, as illustrated in

Fig. (2.2).

2.4.2 Boundary condition on the potential field

Usually an electric field is applied in the along-channel direction by imposing a voltage
drop between two of the opposing reservoirs depicted in Fig. 1.2. A Dirichlet boundary
condition is used at the input and output reservoir. We use the non-dimensional

value 1 at the input boundary and 0 at the output boundary for ¢:

Sp(z:mim y) =1 and (p(xmaxv y) = 0.
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We use a Neumann boundary condition at the walls (Levine & Neale 1:976),

()%} _ Jp _
—éz/—(:z:,ymm) =0 and a—y(:r,,ymax) =0.

For the potential due to the charge in the fluid, we use a Dirickhlet boundary
condition on the walls. To model a solid-liquid interface that has a negatzive charge, we
use the non-dimensional value —1 for ¥ at the walls. We use a Neumzann boundary

condition for ¥ at the inlet and outlet boundaries:

o ~ oy
_a?(xmin’ y) =0 and —a—a—:(xmaxy y) - 07
’LL’(x, ymm) = —1 and L/J(:E, ymax) = —1

2.4.3 Boundary condition on the pressure

When the sample solution starts moving in response to an applied elesctric field, the
fluid height in the input and output reservoir may change. This will i:mpose a pres-
sure gradient along the channel. Using a Dirichlet boundary condition, we specify
the dimensionless pressure values at the input and output boundaries.. A Neumann
boundary condition is used for the pressure at the walls. Thus, the bo-undary condi-

tions on P are the similar to that used by Sidilkover & Ascher (1995).

P(iﬁmm,y) =F, and P(xmax: y) = P,

oP P
- in)] — d — yYmax) — Y,
5y (T, Ymin) =0 an By (T, Ymax) =0

where Py and P, are the pressures at the input and output reservoirs, respectively.
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2.4.4 Boundary condition on the velocity field

We use a no-slip boundary condition on the walls, which is a good approximation.
To determine the boundary condition at the input and output boundaries, we assume
that the channel is infinitely long and we want to start from a position and trun-
cate the channel at some other location. Taking this into consideration, we adopt a

Neumann boundary condition at the input and output boundaries:

dv ov
a_x(xmin) y) =0 and %(zmax’ y) - 07

V(Z, Ymin) =0 and v(z,Ymax) = 0.

2.4.5 Boundary condition on the concentration field

For the concentration field, we use a Neumann boundary condition on the walls and

a Dirichlet boundary condition at the input and output:

C(xminn y) = CO7 C(xmam y) - Cl7

ocC oC
%(fﬂ,ym) =0 and Eg(x:ymax) =0,

where Cpy and C] are the concentrations in the input and output reservoirs, respec-

tively.
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2.4.6 Boundary condition on the fluxes

It is also necessary to impose an additional boundary condition for fluxes in order to
finite difference the momentum and concentration equations. A Neumann boundary
condition is used on ', at the inlet and outlet boundaries and a Dirichlet condition

is used on I'y at the walls:

or, ar, ~
E(zmﬁnyy) = %—(Imaxy y) =0,

Fy($7 ymin) - Py(x, ymax) = 0.

2.5 Conservation laws and the Kolmogorov hypoth-

esis

In the limit of no forcing and dissipation, (2.23)—(2.25) possess four quadratic invari-
ants: the energy (mean-squared velocity), the enstrophy (mean-squared vorticity),
the mean-squared concentration, and the cross correlation of the vorticity and con-
centration fields. In Appendix B, these conserved quantities are defined and discussed
in detail. The application of the Kolmogorov hypothesis to derive the spectrum of

the mean-squared concentration is also discussed in Appendix B.
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Chapter 3

DISCRETIZATION

3.1 Numerical grid

Since electro-osmosis obeys a nonlinear system of differential equations, it is advanta-
geous to study the phenomenon numerically. Because of the underlying nonlinearity,
exact analytical solutions to the governing equations of motion for fluid flow do not
exist in most cases. Numerical computation can provide approximate solutions to the
fully nonlinear model. A detailed discussion of a computational approach to fluid flow
is not the aim of this study. Rather, we want to note that the constitutive continuum
equations can never hope to be called exact and numerical simulations deal with some
sort of discrete approximation to the continuum equation. The act of discretization

may change not only the quantitative accuracy but also the qualitative behaviour of
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the equation. Also there is no uniquely defined form for a discrete approximation to
the continuum equation. On the other hand there are few rigorous stability analyses,
error estimates, or convergence proofs for a system of nonlinear partial differential

equations (Roache 1972).

Let us sub-divide the computational domain into a finite number of sub-domains
which we will call ‘cells’ and define a grid Q;, where [ denotes the resolution of the grid.
A suitable difference approximation to a differential operator can then be constructed

on ; by using Taylor series expansion. To construct a uniform grid €2; on the domain
Q= {(m7 y) : Tmin S z S Tmax; Ymin S y S ymax}y
we define grid points (z;, y;) as follows,

IL'i='I:h,_- N i=l,2,...,nz,

he = Zit172 — Ti1/2,

hy = Yit172 — Yi-1/2:
where h, is the length of a cell, h, is the width of a cell, n. is the number of cells
in the z direction and n, is the number of cells in the y direction. In Fig. (3.1) we

show a fine grid in the two-dimensional case, where the dotted lines correspond to

the cell boundary. Let us now consider the initial-boundary value problem
Lou=fq z€,

Laou = faq T € 01,
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where 9Q is the boundary of the computational domain. The differential operators
Lo and Lzn may depend both on time and space. Upon suitable discretization, we

get a discrete set of equations on a grid ; (Hackbusch 1985),
Ly =fi z:€Q,

where

Ly, =
Laq,

In order to construct }Ch, , we need to discretize Lo and Lgq on each grid ; both in
space and time. Although a standard finite difference approximation to a derivative
in a finite difference grid is second-order central in space, difficulties are encountered
in handling passive advection. We have therefore developed a new method to model

properly the advective term v - VC, where C is a scalar field.

3.2 Spatial discretization

In order to solve a system of partial differential equations on a computer, we have
to derive a discrete version of our continuous equations. In this section we will
describe spatial discretization and obtain a semi-discrete version of the governing
partial differential equations. It is convenient to write down the equation of motion in
a flux-conservative form using the incompressibility condition and Laplace’s equation

for the external potential. We re-write the flux conservative version of (2.23)—(2.24)
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below,

g_: +V- ('U'U) = —-VP+ V,,Vz'v + a'IpV@’
%i: + V- [(v — V) C] = . V*C.

In a compact notation the equations take the form

%—?+V-I‘=VV2U+f(U),

where U ,T', v, f are defined as follows

Vz
U - vy 5
C
v, 0O 0
v = 0 Uy 0 1
0 0 Ve
; dy _ oP
Ua:z: oz
dyp OP
= Y————| >
f U~ 5
0
|
r=\|r,1|.
e
VLU
sz = )
Uy Vs

(3-1)

(3-2)

(3:3)



Uz Uy

Fvy = ?
UyUy
v:C — ,u-g—(pC' — ,ug—(pC’
te= Do o0
v,C — u—agC — u%C

The velocity, concentration, pressure, potential, and fluxes are approximated at
the centroid of each cell as cell-averaged quantities. We will be using a second-order
accurate centered-in-space finite difference formula to evaluate the derivatives on the

numerical grid. For example, for any function F'(z), we evaluate

OF\  Fi—Fi,
(az ) . 2h, (3-4)

Generally, second derivatives with respect to z are evaluated to second-order accu-

racy:

?

OF\ _ Fiyp — Fiyp
oz ) ; - h

(5. (5)
(32_17) _ O / ii1/2 9z ) ;_1/2

Oz? h ’ (3.5)

Fio1 —2F,+ Fi
— hi .

(3.6)

Difficulties can arise in applying these formulae to model practical problems on a

computer. We can handle these troubles by appealing to the underlying physics.



3.2.1 Discretization of the fluxes

We calculate derivatives of fluxes directly with the centered difference formula given

by (3.4)

3.2.2 Discretization of a Laplacian operator

We adopt the usual second-order formula (3.6) to evaluate the Laplacian operator.

Hence the finite difference formula for the Laplacian takes the form

o Uiprj — 2Uij+Uim1y | Uigrl — 2Uiy + Uil
Viu = e + 52 - (3.7)
z y

This compact finite difference formula is used to solve (2.26) and (2.27).

3.2.3 Finite differencing of the pressure term

The pressure gradient term that appears in the momentum equation causes addi-
tional difficulties when one attempts to solve the Navier—Stokes equation numerically
(Tannehill et al. 1997). First of all, one needs to decouple the pressure term from

the original equation and evaluate the pressure in each cell. This pressure is then
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used as a source term for the original equation (Tanneehill et al. 1997). Pressure acts
in such a way as to keep each parcel of fluid incomp:-ressible. It can be shown that
pressure varies linearly with the length of the chanmel in the case of channel flow
(Kundu 1990). We can calculate the pressure gradiernt with a second-order central

finite difference formula:

opP B - Pi_i_j
9z ) ; - 2h, ’

OP\ _ Bjn — B
dy - ’

Since the pressure Poisson equation is derived by tak<ing the divergence of the mo-
mentum equation, the Laplacian in this case should be treated as a divergence of
a gradient. We adopt the following formula for the Laplacian that appears in the

pressure Poisson equation,

er=[2(2)] +[2(Z)).

ap 8P
(%_I:)iq'-l,j_ (%I’:')i—u + (ay)i,_;j-i—l (3y) -1

o, 2h,
_ Pi+2’j - 2Pi‘j -+ Pi_Q,]' " .Pi’J'+2 -— 2'Pivj + Pi,j—2 )
4h3 4}2;‘3

This differencing is second-order accurate and centraal in space. It differs from the
compact differencing of the Laplacian in that it keepos the velocity field divergence
free; this ensures that the advective term in the mormentum equation will conserve
energy and enstrophy if there is no forcing and dissirpation (see Appendix B). Let

us write down the spatially discretized momentum equiation in the absence of forcing
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and dissipation.

8’01;’]'

ot

+ v - Vivgj = ~V P, (3-8)
where the discrete operator V; is defined by

Fitrj— Fic1j .
Sh. 1 on,

Fijer — Fijo .
V1F= Jtl d ly.

If we use the non-compact discretization
Vi-[v; - Viv;; + VP =0 (3.9)
to calculate the pressure, then (3.8) will preserve the incompressibility of the flow:
Vi-v;; =0.

This in turn guarantees that the energy and enstrophy are conserved in the limit of

no dissipation or forcing (see Appendix B).

To compare these two discretizations for the pressure equation, we calculate two
quadratic invariants, energy and enstrophy, using a fifth-order Runge-Kutta inte-
grator. It is found that both energy and enstrophy are conserved to high accuracy
only if the non-compact formula is used to calculate the pressure. We present results
from our numerical simulation in Figs. 4.1 and 4.2 to show the necessity of using this

non-compact finite difference formula for the Laplacian of the pressure.
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3.2.4 Semi-discrete version of the governing equations

A semi-discrete approximation to (2.23) and (2.24) is given by

an,j + ri+1,j - ri—l,j + ri,j+1 - ri,j—l

— UV s+ fiy
D TR Shy vV + fis

where U ; is a compact notation for U(ih;, jhy) and ihg, jh, are the values of
and y at grid points ¢ and j. In order to evaluate f;; we also need to solve three

elliptic differential equations of the following form

Viu = f(u),
where _
P
u = (ro 3
Y

f(u) = 0

3.3 Temporal discretization

The temporal discretization of hyperbolic partial differential equations is a little trick-

ier. A time derivative can be discretized by using a forward difference formula in the
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following way:
(9ul _uttl—qn
ot T ’

The advantage of using a forward difference formula is that one can predict quantities
for the future by using information only from the present. The temporal discretization
should be handled very carefully. In the case of a pure advection equation, the
spatial discretization of the advective term that is described in the previous section
may introduce an unexpected instability in the numerical scheme. To avoid such a
difficulty, one may look for an alternate spatial discretization that provides stability.
It has been pointed out that the instability that is encountered in solving an advection
equation on a computer arises not only because of the discretization of the advective
term, but also because the time scale of this term is not being properly modeled.
This has been explained in Press et al. (1997, and refs. therein) and Tannehill et al.

(1997).

3.3.1 Stability problem with the advective derivative

Let us consider a one-dimensional linear advection equation

8y 8w

B TV Y

A forward time centered space representation of the above equation is given by

n+1 n n n
\Ili — \Pi =7 \Iji-i-l — \Ili—l

T ' 2h ’
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where U7 stands for ¥(z;, ¢,) and z; and ¢, denote the i-th grid point and n-th time

step, respectively.

To realize how this discrete equation approximates the original continuous equa-
tion, a differential equation can be obtained from the discrete equation in the following

form (Tannehill et al. 1997, and refs. therein),

ov o Vi1 8% o .2
5t TU8s = "3 a2 TORY)

This is the partial differential equation that we are actually solving instead of the
original one. The leading-order term on the right hand side is in the form of a
negative diffusion and this is the source of instability since a diffusion coefficient has
always to be positive. To address this problem, the alternate approach is to change

the spatial discretization in the following way (Press et al. 1997):

. nq’?“‘l’?-l f n 0
\I,r_z-z—l _ \If:" —; - 1 v; > )
1 R
T g g
Tt i1 i 4 n
—v; — R If V; < 0.

is satisfied. In this case we obtain

or 0¥  vh, 8% 5
e +U3:c == (1—C'u)5m—2+0(r,h )-

The upwind method makes the scheme stable by adding a velocity-dependent viscosity
to the original equation. The coefficient of the leading-order even derivative term in
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the truncation error measures the extra diffusion imposed by the numerical method
(Tannehill et al. 1997). The coefficient of the leading term on the right-hand side of
the above equation will be small if a very fine grid is used. However, if there is a small
viscosity in the original equation, which is the case for an advection-dominated flow,
the second-order central formula could provide a stable solution for a fine grid with a
sufficiently small time step (Tannehill et al. 1997). If the Courant limit is violated, the
leading term again becomes negative, making the scheme unstable. The artificially
imposed viscosity dampens the solution rapidly and we fail to accomplish our original
goal. From this simple example, it is seen that viscosity plays an important role in
removing numerical instability. It is clear that changing the spatial discretization is
not the best way to handle an advective derivative. It is also important to note that if
there is enough viscosity in the original equation to defeat the negative viscosity that
is seen in the previous equation, a second-order central approximation to the advective
derivative would still provide a stable numerical scheme. Our temporal discretization
is based on this observation. Since we are dealing with electro-osmotic flow, the
Reynolds number in this case is usually small (Patankar & Hu 1998). That is, for the
experimental scales and velocities we are interested in, the viscous forces dominate
the inertial forces. We have seen that the numerical scheme has problems if there is
not enough viscosity in the original equation. One way of solving this problem is to
treat the advective term and the viscous term separately. Since (2.23) has sufficient

viscosity for an Eulerian method to be stable, we concentrate the nonlinearity in the
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advective term explicitly on the right-hand side as a source term, and for the viscous
term we use a Crank—Nicholson method (Richtmyer & Morton 1957; Jia 1998). The

discretized momentum equation is

n+1 n

Vij  — Vi n n
B - I — 2V2(v P+ ol) + ST,

where we have incorporated the advective derivative, pressure force and body force

explicitly as a source in S. This in turn requires the solution of the linear system of

equations
(I - -—V2> n+l = (I >'v + 7S (v}; (3.10)
t.e.,
L',('r)'u“’1 = L(—7)v]; +TS(v7;), (3.11)
where the operator L is defined by
L(r)=1I— ”;Tv? (3.12)

The linear system (3.11) can be solved using the iterative method described in the

next section.

For the concentration equation, we treat advection and diffusion separately. Let
C denote the solution of the pure advection equation

a—C——{-'v VC’—O
ot

with the initial condition
C(z,0) =C
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Since the velocity field is computed from the momentum equation, the advection can
be done easily in a Lagrangian frame. We can then combine advection and diffusion

in the following way:

crrl—Cr. -
1,7 1,] _ YCx72 n+1 n

e (C,—,,- + cl.,].) - (3.13)

This procedure is known as operator splitting (Ames 1977; Press et al. 1997). Equa-

tion (3.13) requires the solution of another linear system of equations, which is similar

to (3.10). Thus, in a compact notation we can write down the following linear system

of equations,

L(rU™ = L(—7)U™ + rS(U™), (3.14)

where U is given by (3.3), and the source vector S is given by

For the momentum equation, we treat both advection and diffusion in an Eulerian

frame. Thus, v™ = v".

The overall semi-implicit algorithm is summarized below:

1. Calculate the source S for each equation.

2. Evaluate the quantity U™.

44



3. Evaluate the expression

L(—7)U" +180™).
4. Invert the operator £(7) to get
Ut = £7Nr) (£(-n)0™ + 7S(0™))

for the new time level.

A multigrid solver, developed by Bowman et al. (2000), is used to invert the opera-

tor L.

3.4 Multigrid Poisson solver

A linear system of equations arises once the time-dependent partial differential equa-
tions are discretized both in space and time. The Helmholtz equation LU = f, where
L is defined by (3.12), can be solved using the multigrid solver developed by Bow-
man et al. (2000). Because the multigrid method is described in detail by Hackbusch
(1985), Briggs (1987), Press et al. (1997), Tannehill et al. (1997), we provide only a

short description of this efficient iterative method.

A number of iterative methods do exist to solve a Poisson and Helmholtz equa-
tions. Without going into details of the traditional iterative methods, usually termed

relaxation methods, we note that classical iterative methods converge very slowly
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when solving large linear systems and the convergence rate depends on the number of
grid points in the computational domain (Press et al. 1997). A multigrid algorithm
offers convergence rates that are independent of the number of grid points and is
very effective for solving large scale computation-intensive problems (Briggs 1987).
The algorithm iterates on a hierarchy of consecutively coarser and coarser grids until
convergence is reached. Considerable computational time is saved by exploiting the

fast convergence of relaxation methods on the coarse grids.

The construction of a multigrid iteration is based on the observation that relax-
ation converges very slowly as h — 0, where & is the grid size. In Fourier space,
smooth components of the error (low wavenumbers) are only slightly reduced in ampli-
tude; non-smooth components (high wavenumbers) are reduced by a large amount in
each iteration. Multigrid iteration exploits the fact that a component which is smooth
on a fine grid appears as a non-smooth function on a coarser grid. The implemen-
tation of a complete multigrid iteration requires smoothing the error, restriction
of the defect from the fine to the coarse grid, solving the coarse grid error equation,
and interpolation of the coarse grid error to the fine grid. However solving the
coarse grid error equation is not a straight-forward task. Depending on the number
of grid points in the coarse grid, one moves recursively to coarser and coarser grids
until the coarse grid solution is achieved exactly or easily. Smoothing may have two
steps: pre-smoothing and post-smoothing. Pre-smoothing smoothes the non-smooth

component of error before restricting to the coarser grid. Post-smoothing does the
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same after interpolation. A typical multigrid iteration, starting with the finest grid,

can be described as follows:

Start with any initial guess on the given grid.
e Smooth the error on the grid.
e Restrict the defect to a coarser grid.

e Solve the coarse grid error equation by applying the above three steps recur-

sively.

e Interpolate the error from the coarsest grid to a finer grid, obtaining the smooth
error in the finer grid, and repeat the interpolation recursively until the finest

grid is reached.
e Update the initial guess in the finest grid.
This completes one cycle of a multigrid iteration. We adopt this algorithm to solve

the three equations (2.25, 2.26, 2.27) and the linear system of equations (3.14) that

arises after discretization both in space and time.

3.5 Parcel advection

The basic idea of the parcel advection algorithm is based on Lagrangian coordinates.
For simplicity, let us consider the one-dimensional linear advection equation which,
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in Eulerian notation, is usually written as

9C(z,1) , 9C(z.t) _

ot oz 0 (3.15)

This equation may also be written using Lagrangian notation as
dC’(E(t) t) =20 (3.16)
dt 1 - ’ -
where the Lagrangian trajectory, £(t), is given by the solution of
d
—&(t) = u.
Z€(t) =

Equation (3.15) can then be obtained from (3.16) by applying the Chain Rule. Equa-
tion (3.16) states that the scalar C(z,t) is constant in time along a fluid path or
trajectory, £(z(t),t). If C(z,t) is known at some reference time and location on the
path, this value is propagated along the trajectory. The trajectory described by (3.15)
is given by

E(:r(t—%—7‘),t)—§(1:(t),t)=/tﬂ’udtzuT

if 7 is sufficiently small. Thus if a scalar quantity is evaluated at £(z(¢),t), the quan-
tity will be advected in a time interval 7 to the location &(z(t+7),t) = £(z(¢),t)+ur.
Having this fundamental idea in mind, let us adopt a uniform square grid and model
the fluid as a collection of square fluid parcels, each of the same size as a grid cell.
Initially these parcels each occupy exactly one cell of the grid and contain the con-
centration initially prescribed to that cell. There is a mean velocity associated with

each parcel, which is calculated as an area-weighted average of the fluid velocities of
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the cells it overlaps. Initially it overlaps just one cell, but it could overlap as many
as four cells. This mean velocity is used to advect the cell undistorted, so that after
each time step, the parcel is still square. The advection of a fluid parcel is shown in

Fig. (3.2)(b).

3.5.1 Advection stage

In Fig. (3.2)(a), we show a particular parcel, which initially occupies one cell in the
grid. The velocity and concentration of the parcel is the same as that of the cell. With
this velocity the parcel is advected along the trajectory and may overlap as many as
four cells. The velocity associated with the parcel is determined as an area-weighted
average velocity of the velocities of the overlapping cells. Let the initial velocity v of
this parcel be equal to the velocity at the centroid of the cell that the parcel initially
occupies. In time 7, the parcel is advected to the position shown in Fig. 3.2(b).
After each advection, the parcel gains velocity from the overlapping cells. In Fig. 3.3,
we show the new position of the parcel and the areas of the overlapping cells. We

calculate the new position of the parcel with the Euler step

gl =¢" + o

That is, the coordinates of the centroid of the parcel, (£7,&}), after n time steps is

given by



(2)

(b)

Figure 3.2: Advection of a parcel.
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E;‘-&;‘ + vy T,

where (£27',£;7") is the previous position of the parcel.

3.5.2 Calculating the area of the overlapping cells

Let us denote the overlapping areas by A;, A, A3, and A, as shown in Fig. 3.3. We

ai= (] -2 (w[R] +-):
a= (2= [2) (w 2]+ 9)
=( ) re) (s —[%D
w=(e-[E) - 1ED

3.5.3 Area-weighted average velocity

Assume that the parcel now overlaps four cells. The velocities of these cells are
vy, Va2, U3, and vs, as shown in Fig. 3.2(d). The new velocity v of a parcel is then

calculated according to

="
DA
i=1
With this new velocity, the parcel is advected one time step and the procedure is

repeated.
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3.5.4 Contribution of concentration to overlapping cells

Once a parcel is advected, it distributes the concentration that it carries among
the overlapping cells. This concentration is distributed among the overlapping cells
according to the overlapped areas. If the parcel overlaps an area A; of a cell, the
amount of concentration, A; C/A, where A is the area of the cell and C is the

concentration of the advected parcel, will be distributed to that cell.

3.5.5 Parcel injection

At the very beginning of a run, each cell in the grid has one parcel of fluid. When
a parcel is advected from a boundary cell into the computational domain, that cell
requires another parcel to fill the place of an advected parcel. This is done by parcel
injection. Since we have no-slip boundary conditions at the wall, no parcel will try
to cross the wall. Once a parcel reaches a cell on the wall, it will achieve a zero
velocity in the direction normal to the wall and will not be able to cross the wall
boundary. On the out-flow boundary, parcels may freely leave the domain. On the
in-flow boundary, the parcel advection code always assumes an infinite reservoir of
input. When a parcel advances into the domain, the in-flow boundary cell gets a

parcel from the input reservoir.



3.5.6 Parcel source

The algorithm described above can been generalized to incorporate parcel diffusion
and other sources or sinks. The sources are first calculated on an Eulerian grid
(e.g. using the Crank—Nicholson method described in Sec. 4.1.3). Just prior to
advecting each parcel, the parcels in a given cell are given a contribution from the
sources in the cells they overlap, weighted by the relative overlapping areas. When
advecting a non-negative scalar such as a concentration, it is important to ensure
that the concentration does not become negative. The parcels, with their updated

concentration values, are then advected as usual.

3.6 Implementation of the boundary conditions

In order to solve the discretized equations, we need to implement the proper boundary
conditions. We have described different boundary conditions that we need to apply
in our numerical simulation. One needs to be careful in implementing boundary
conditions when the simulation requires a sequence of grids. We add one more layer
of cells in each direction of the grid, which we call ghost cells. An extra layer of cells
are necessary to impose a Neumann boundary condition. We call this type of grid a
Neumann grid. To incorporate Dirichlet type boundary conditions we do not need

ghost cells since quantities are known at the boundary in this case. However, our



system of equations consists of different differential equations and different types of
boundary conditions have to be used. One way of doing this is to use different type
of grids. Since we need to use both type of boundary conditions at the same time, it

is convenient to impose all the boundary conditions on the same type of grid.
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Figure 3.3: Contribution of a parcel to overlapping cells.
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Chapter 4

NUMERICAL ANALYSIS AND

RESULTS

4.1 Numerical solvers

In order to implement the algorithm described in the previous chapter, we have devel-
oped a C™" module for the general purpose, object-oriented, initial value code TRIAD.
Triad provides general facilities for parameter input, parsing, generic integration al-
gorithms, dynamic time stepping, and a restart facility. One important step of our
numerical scheme is to invert a Poisson equation for the pressure. Another compu-
tationally expensive step is to invert the Crank-Nicholson linear system. We have

successfully developed a new scheme to handle passive advection without introducing
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artificial diffusion.

4.1.1 Numerical simulation parameters

Here, we evaluate all of the non-dimensional parameters that are described earlier
in Sec. 2.3.1. These parameters depend on various scales. The non-dimensional pa-
rameters have been evaluated from characteristic length and velocity scales based
on typical laboratory experiments (Crabtree et al. 2000). We summarize below the
characteristic scales and the non-dimensional parameters used in our numerical ex-

periments.

Length scale, h =35 x 10™°m,

Length of the channel, H =20A =1 x 10™°m,
Velocity scale, U =1x 107%m/s,
Pressure scale, pU? =1073Pa,

Applied voltage at the input, &gy = 70V,
Applied pressure at the input, Py = 120 x pU?,
Kinematic viscosity of water, v = 10"°m?/s,
Diffusion coefficient, D = 10"''m?/s,
Electrophoretic mobility, i = 1.4 x 1078m?/Vs,

Zeta potential, (=0.1V,
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Temperature, 7 = 300K,
Permitivity of water, e = 80.4 x 8.85 x 10712 C?/(Nm?),
Ton density, n = 34 x 107® mole/m?,
Debye layer thickness, Ap = 2.4 x 10~ % m,
Computational grid, 1025 x 65.

The thickness of the Debye layer is typically (1 — 100)nm, which can not be resolved
in the numerical grid unless the grid size is very small. We use a value of ion density n

that produces a Debye layer such that it can be resolved in the numerical simulation.

The values for the dimensionless parameters that are defined in section 2.3.1 are

v, = 20,

v, =2x 1074,
a =9 x 10°
k2 = 4.4 x 10%,
© = 20.

4.1.2 Pressure Poisson solver

As described in Sec. 3.2.3, the role of pressure in maintaining the incompressibility of

the velocity field is respected by carefully discretizing the pressure Poisson equation.
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Inverting the discrete Poisson equation is one of the more expensive computational
steps because the pressure field has to be computed at each time step to enforce the
incompressibility condition. The discrete Poisson equation is solved using a multigrid
Poisson solver. The pressure solver is found to be convergent in 100 iterations on the
very first time step with a computational grid of 1025 x 65, where the aspect ratio of
the channel is 20 : 1. In each of the subsequent time steps, convergence is achieved
in ten iterations because the solver is initialized with the pressure values that were
computed in the previous time step, providing an excellent initial guess for the current
iteration. It is shown shown in Appendix B.1 that the energy and the enstrophy are
conserved in the absence of forcing and dissipation. To test this numerically, (2.23)
was solved without forcing and dissipation using a fifth order Runge-Kutta integrator.
In Fig. 4.1 and Fig. 4.2, the numerically calculated energy and enstrophy is plotted.
Discretization of the pressure Poisson equation using the non-compact formula is thus
seen to conserve both energy and enstrophy to high accuracy. Accurate calculation
of the energy and enstrophy is very desirable in computational fluid dynamics, since
these two quantities are thought to be of fundamental importance in the cascade
dynamics. For the simple case of two-dimensional flow in a rectangular channel, the
mean pressure varies linearly with the length of the channel (Kundu 1990). The

result from the pressure-Poisson solver is shown in Fig. 4.3.
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Figure 4.1: Conservation of energy for compact and non-compact pressure formula-

tion.
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Figure 4.2: Conservation of enstrophy for compact and non-compact pressure formu-

lation.
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Figure 4.3: The distribution of pressure in a two-dimensional channel. Black corre-

sponds to 0 and white corresponds to 120pU?2.
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4.1.3 Crank—Nicholson solver

The viscous term is treated with unconditional stability at the expense of using a
Crank—Nicholson method. The nonlinearity associated with the advective term in
the momentum equation is treated explicitly on the right-hand side. The body force
term is evaluated at each cell centroid by solving (2.26) and (2.27). Since (2.26)
and (2.27) are independent of time, they only need to be solved once; the resulting
body force is then stored for later use. Figs. 4.4 and 4.5 show that the distribution
of the external potential and the potential due to the charges at walls. The value of

1 is characterized by the non-dimensional parameter x which is defined by

Since & is so large (because of the small Debye thickness), most of the effect of the
body force is concentrated near the walls. From Fig. 4.4, we see that ¢ does not
depend on y and ¢ varies linearly with z. From Figs. 4.4 and 4.5, it is clear that the
intensity of the body force is higher near the wall. Inverting a large sparse matrix, by
means of a traditional iterative technique, is computationally expensive (Press et al.
1997). We have developed a C*¥% Crank-Nicholson solver around a core recursive
multigrid routine. The Crank—Nicholson solver is based on an efficient multigrid

solver that solves the Helmholtz equation

Viu+ du = f,
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Figure 4.4: External potential field ¢. Black corresponds to 0 and white corresponds

to @H-
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Figure 4.5: Potential 1 due to the space charge. Black corresponds to —¢ and white

corresponds to 0.
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where )\ is a constant and f is the source function. A red-black ordered Gauss—Seidel
smoother is used to reduce the non-smooth component of the error in the fine grid.
The divergence-free velocity computed in the previous time step is used as an initial

guess. It is found that the Crank—Nicholson solver converges in about 10 iterations.

The z component of the velocity field is shown in Fig. 4.6 and 4.7. Fig. 4.6 shows
an early stage of the velocity field and Fig. 4.7 shows the fully developed velocity
field. This velocity field is dominated by electro-osmosis, with little effect from the
pressure drop. We see that the velocity is higher near the walls than in the cent;er of
the channel. In a real experiment, reduction of the effect of pressure is desirable. Since
a sample is injected from the input reservoir to the output reservoir, a pressure drop
may develop if the surface levels of liquid in each of the reservoirs are not maintained
at the same height. The velocity field associated with pure electro-osmotic flow is

shown in Fig. 4.8 and the background pressure driven flow is presented in Fig. 4.9.

4.2 Numerical simulation of electro-osmotic flow

The numerical code developed throughout this study has been tested to simulate
passive advection by electro-osmotic flow. A wide variety of experimental results
as well as analytical results of arbitrarily simplified models do exist in this case.
Therefore, it is much easier to analyze the qualitative behavior of the numerical

results for such a problem. We compare the flow characteristics computed by the
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Figure 4.6: Early development of the z (streamwise) component of the velocity field
due to a pressure drop and a potential drop (at ¢t = 0.015h/U). Black corresponds to

0 and white corresponds to 5.1U.
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Figure 4.7: Fully developed z (streamwise) component of the velocity field due to a
pressure drop and a potential drop. Black corresponds to 0 and white corresponds to

4.7U.
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Figure 4.8: Fully developed z (streamwise) component of the velocity due to a pure

electro-osmotic velocity field. Black corresponds to O and white corresponds to 5.1U.
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Figure 4.9: Background pressure-driven velocity field v,. Black corresponds to 0 and

white corresponds to 0.038U.
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numerical code with the analytical and experimental results. The numerical results
are found to be in qualitative agreement with known theoretical and experimental
behaviour. The results of numerical experiments are summarized in the following

subsections.

4.2.1 General characteristics of Poiseuille and electro-osmotic

flow

Many theoretical and experimental studies have been done to explain the fundamen-
tal characteristics of pressure-driven and electro-osmotic low (Bowen et al. 1976; Rice
& Whitehead 1965; Burgreen & Nakache 1964). Fig. 4.10 and 4.11 show the veloc-
ity profile for a Poiseuille flow and an electro-osmotic flow. The velocity has been
scaled by the average velocity of a charged species observed in a typical experiment
in the laboratory (Crabtree et al. 2000). A pressure-driven flow, generally termed
Poiseuille flow, is generated by a pressure drop along the length of a channel. It
has a parabolic profile. Electro-osmotic flow is generated by the Debye layer at the
walls (Moyer & Gorin 1990). Having a flat velocity profile, it enhances the separation
resolution of electrophoresis (Crabtree et al. 2000). The velocity field is independent

of z coordinate. The numerical velocity field is shown in Fig. 4.8 and 4.9.

71



Poiseuille velocity profile
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Figure 4.10: Computed pressure-driven velocity profile.
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Electro-osmotic velocity profile(fully developed)
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Figure 4.11: Simulated electro-osmotic velocity profile.
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4.2.2 Electrokinetic effect on the velocity profile

In this section we study the electrokinetic effect in a very fine capillary channel of
rectangular cross-section, in the presence of an applied pressure drop and potential
drop. The Debye layer thickness Ap is small compared to the width £ of the channel.
The ratiok = o plays an important role in electrokinetic flow in a narrow capillary.
The thickness of the Debye layer depends on the bulk ionic concentration of the liquid
inside the capillary. A decrease of bulk concentration will increase the Debye thickness
and decrease k. Since the Debye layer causes electro-osmotic flow, a change in the
non-dimensional parameter x will affect the electro-osmotic velocity profile. This
effect was studied theoretically by Rice & Whitehead (1965) using a one-dimensional
mathematical model. We present in Fig. 4.12 the electro-osmotic velocity profile for
different values of effective ion density n for a two-dimensional channel. For large
values of n (and hence k) we see that the velocity has a flat profile except for a
narrow region near the wall. This is the expected electro-osmotic velocity profile. As
n becomes smaller, divergence from electro-osmotic flow becomes noticeable. For low
values of n, the velocity profile takes on a parabolic form, due to the overlapping of

the Debye layer with the entire cross-section. When the Debye thickness is comparable

with the characteristic length scale k, 1 becomes important far away from the walls.
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Electro-osmotic velocity profile
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Figure 4.12: Electro-osmotic velocity profile at various values of n in mol/m3.
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Figure 4.13: A cross-channel microfluidic device and the computational domain.
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4.2.3 Poiseuille flow vs. electro-osmotic low

In many experiments in the laboratory, a cross-channel microfluidic device is used as
shown in Fig. 4.13. Initially the height of the liquid is kept the same in all reservoirs.
When the sample solution begins to move towards the separation junction, the liquid
height of sample input and sample output reservoirs changes. Thus a pressure-driven
flow is imposed in the direction opposite to that of electro-osmotic flow. It is necessary
to arrange the sample species in such a way that it can move in response to the
electric field (Patankar & Hu 1998). Electro-osmotic flow does this very efficiently.
The presence of a pressure-driven flow in the opposite direction affects the role of the
electro-osmotic flow. In Figs. 4.10 and 4.11 we compare pressure-driven and electro-
osmotic velocity profiles, where both velocities are in the same direction. In Fig. 4.14,
we illustrate passive advection for a velocity field that is a combination of Poiseuille

and electro-osmotic flow.

4.3 Passive advection of the concentration field

Diffusion of the injected sample is typically very small in the case of electrophoresis
(Patankar & Hu 1998). For the experimental parameters, the dimensionless diffu-
sion coefficient v. = 2 x 10™* is so small that diffusion is much weaker than the

electrophoretic motion. This is illustrated in Fig. 4.19. The weak pressure gradient
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Electro-osmotic velocity profile with a pressure drop
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Figure 4.14: Velocity profile due to a pressure drop and a potential drop.
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produces a small velocity and a very long time is required to transport a sample from
the input to output reservoirs. We observe significant diffusion even though v, is so

small (see Fig. 4.25).

4.3.1 Passive advection

We present here the advection of a passive scalar by a prescribed velocity field. In
this two-dimensional simulation, we solved a pure advection equation with the parcel

advection algorithm, where the non-dimensional velocity field is given by
1
ve=sul-y), v =0. (4.1)

We also tried several other flows including flow with rotation and shear. Passive
advection of C by the parabolic velocity field (4.1) is shown in Fig. 4.15. Parcel
advection can predict passive advection more accurately than an Eulerian (or even
semi-Lagrangian) code. The parcels are advected in Lagrangian coordinates using
an area-weighted average velocity from the cells. This does not require the addition
of any artificial diffusion either explicitly or implicitly. Next, parcel advection was
applied to the passive advection model described in Sec. 2.2, where the velocity field
is obtained by numerical solution of the incompressible Navier-Stokes equation. The
initial distribution of C is shown in Fig. 4.16. In Figs. 4.18 and 4.19 we compare the
advection of C by a first-order upwind method written in flux-conservative form and

by the parcel advection method, respectively. The stability of the upwind scheme
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Figure 4.15: Concentration field pre=dicted by the parcel advection algorithm after a
few time steps, where the velocity fielld is explicitly known. The large pixels illustrate

the coarse graining of output quantiities in the parcel advection scheme.
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Figure 4.16: Initial distribution of the concentration. Black corresponds to 0 and

white corresponds to 1.
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has been achieved at the expense of an artificial diffusion, which is not present in the
parcel advection results. These results establish that the Lagrangian parcel advection

method is more faithful to the underlying physics than the Eulerian upwind scheme.

4.3.2 The concentration distribution

Numerical experiments have been performed to understand the concentration distri-
bution in a passive advection problem. A passively traveling rectangular-shaped pulse
in C has been simulated with the parcel advection algorithm. The distribution of

C is plotted in Fig. 4.17 at the beginning of the simulation.

We perform four different simulations: (a) flow driven by a potential drop and a
pressure drop; (b) flow driven by only a potential drop; (c) flow with the pressure
term explicitly removed from the momentum equation; (d) flow driven by only a
pressure drop. Case (c) is rather unphysical. However, it is done to emphasize the
necessity of retaining the pressure term even when the pressure drop is very small.
Figs. 4.19, 4.20, and 4.21 show the concentration fields in these three simulations.
In Figs. 4.23 and 4.24, we show the concentration distribution sampled at z = 15,
y = 0.5. The effect of pressure on electro-osmotic flow can be understood if we
compare Fig. 4.19 with Fig. 4.20. The curved pulse of C in Fig. 4.19 is due to
the background pressure-driven flow. The effect of the pressure drop is very small

compared with that of the external potential drop; that is, the parabolic effect in
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Figure 4.17: Early distribution of C.
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Fig. 4.19 is weaker than the osmotic effect. The effect of only a pressure drop but
without potential drop on the concentration field is shown in Fig. 4.22. We observe
that the parcel advection code can follow a passively traveling pulse of a certain scalar

quantity without introducing any numerical diffusion.
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Figure 4.18: Passive advection of the concentration field by a first-order upwind

method. Black corresponds to 0 and white corresponds to 1.
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Figure 4.19: The concentration field advected by an electro-osmotic flow and a

pressure-driven flow. Black corresponds to 0 and white corresponds to 1.
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Figure 4.20: The concentration field advected by a pure electro-osmotic flow. Black

corresponds to 0 and white corresponds to 1.
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Figure 4.21: The concentration field in simulation (c) advected by a flow, where the
pressure effect is neglected explicitly. The resulting violation of incompressibility

produces spurious results. Black corresponds to 0 and white corresponds to 1.2.
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Figure 4.22: The concentration field C' due to pressure-driven flow in the absence of

an electric field. Black corresponds to 0 and white corresponds to 0.028U.
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Figure 4.23: Distribution of C along the center line ina simulation (a) and (b).
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Figure 4.25: Concentration distribution along the center line for simulation (d), with

the electric field absent.
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Chapter 5

CONCLUSION

5.1 Discussion

The main contribution of this work was the development of a new numerical method,
parcel advection, to simulate passive advection by electro-osmotic flow. A semi-
implicit finite difference method was used to solve the incompressible Navier-Stokes
equation, which prescribes the advective velocity field everywhere in the domain.
The fluid is modeled as a collection of parcels, each of which has a mean velocity,
a mean concentration and a mean position. We used an Eulerian grid to solve the
momentum equation. The fluid body force is evaluated by solving a Laplace equation
and a Helmholtz equation. The pressure is calculated at each cell centroid by solving

a Poisson equation. We used a different stencil to discretize the Laplacian of the
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pressure Poisson equation. This differencing is central in space and still affords second-
order accuracy. However, the usual compact stencil for a Laplacian differencing does
not provide a divergence-free velocity. Therefore, it was essential to deviate from the
traditional compact formula to ensure a divergence-free velocity in each numerical

computation.

A C** multigrid Crank—Nicholson solver has been developed for handling the
viscous terms, which for the velocity equations are dominant. This solver converges
rapidly, independent of the number of grid points. Once the velocity field is updated
via the Navier—Stokes equation, the concentration equation is solved in Lagrangian
coordinates using the parcel advection algorithm. At each time step, a parcel is
assigned new velocities according to an area-weighted average of the fluid velocities in
the cells it overlaps. In a similar manner parcels distribute their concentration to the
cells they overlap. The parcel advection algorithm was found to work very nicely if the
velocity field is already known. Although the Eulerian upwind method can provide
a stable numerical scheme for passive advection, it introduces too much numerical
diffusion for the problem at hand. Moreover, in the case where a concentration field
is advected, an upwind scheme does not guarantee that the evolved scalar remains

everywhere non-negative.

Parcel advection differs significantly from the particle-in-cell method developed
in Los Alamos in 1955 and later variations such as the cloud-in-cell methods. Par-
cel advection uses distributed square parcels of grid size having nonuniform scalar
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values, instead of many uniform particles per cell. The fluid is modeled as being fun-
damentally composed of parcels, not particles, so the algorithm can readily handle
nonuniform particle densities without losing resolution. Like certain refinements of
the original particle-in-cell method, parcel advection uses area weighting instead of
the nearest grid-point method in the calculation of grid (output) quantities, thereby
reducing statistical noise. Our parcel advection algorithm treats diffusion using a tra-
ditional Eulerian scheme via operator splitting), rather than introducing a heuristic

collision operator, as is done in many particle-in-cell codes.

One alternate to the upwind method is the flux-corrected transport algorithm
of Boris & Book (1964). The ideas underlying this Eulerian method are based on
Lagrangian considerations. Although this method can ensure positivity of the trans-
ported quantity and has been tested for several applications (Boris & Book 1976),
the enormous amount of numerical diffusion forced the algorithm to introduce an
anti-diffusion stage (Boris & Book 1964). The anti-diffusion stage of this algorithm
is somehow problem-dependent and must be adjusted according to the particular
problem (Boris & Book 1964), although it has been shown to work for a square-wave

problem much better than the upwinding method did.

The numerical experiments were conducted to explain transport phenomenon such
as electro-osmosis, passive advection, and diffusion. Although the simulations were
two-dimensional, this is thought to be a good approximation to describe passive

transport by electro-osmotic flow (Patankar & Hu 1998). Furthermore, the numerical
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code has been designed so that it can be readily generalized to three dimensions. Our
simulations emphasize that diffusion cannot be neglected if the duration of advection
is comparable with the diffusion time scale. Pressure effects could in principle halt,
retard or reverse electro-osmotic pumping. The flat velocity profile of electro-osmotic
flow show that such a pumping allows the sample species to be arranged so that each
species can be ready to move in response to the electric field. In the case of a flow
driven by a small pressure gradient, diffusion was noticeable because the duration of

the advection was comparable to the diffusion time scale.

We notice that a number of numerical schemes do exist to solve an advection
equation. Numerical solutions of an advection equation by various schemes can be
found in a number of references (Holt 1984; LeVeque 1990; Tannehill et al. 1997).
However, if there is a sharp gradient in the solution, the Eulerian numerical methods
have difficulties (Woodward & Colella 1984; LeVeque 1990). We found that our parcel
advection algorithm predicted the solution of an advection equation very well, even

when a sharp gradient exists in the solution.

5.2 Future work

Throughout this study, the parcel advection algorithm has been tested and applied
to study two-dimensional passive advection in a rectangular geometry. The results

were found to be surprisingly good. This algorithm can be readily extended to three
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dimensions. Until now, parcel distortion has been neglected, but should be taken into
account. Once parcel stretching and rotation are considered, this algorithm can be
applied successfully to flows with shear. A semi-implicit numerical scheme has been
used to prescribe the velocity field. Applying the parcel advection scheme itself to
update the parcel velocities each time step has been left as a future task. It is also
necessary to generalize our simulations to complex geometries since the devices used
in real-life experiments sometimes have shapes more complicated than a rectangular

channel. The parcel advection algorithm can easily be implemented in any geometry.

An alternate way of successfully representing complex geometry in a numerical
grid is the finite element method. Since the Debye thickness, which plays a major
role in producing electro-osmotic flow, is very small compared with the cell size, it
would be better to use a very fine grid near the wall. To address this problem and
corner effects in complicated geometries successfully, a finite element simulation of
electrophoretic transport would be a significant contribution to this field. It has been
observed that an application of the multigrid method to finite element discretization

is not difficult.
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Appendix A

Debye-Huckel approximation

The space charge density can be written as:
Pe = Nie — Nee,
where
n;e is the ionic charge density,
nee is the electronic charge density.

The potential ¥ satisfies the Poisson equation

vz'lr/) = —&1
€

which can be written as

eV = —e(n; — ne). (A1)
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The distribution of electrons in space is assumed to be a Gibbs distribution. This

implies that
_ () ey
Ne = > — ).
e n,’ exp ( KT) :
where
K is the Boltzmann constant
and

T is the absolute temperature.

This is known as the Boltzmann relation.

We know that the Boltzmann constant is 1.38 x 1072J/K and e is 1.6 x 1071°C.
Taking a typical value for the potential, ¥ = 0.1V, it is reasonable to assume that

| <« 1. Therefore, we can write the electron distribution as:

/
~n@® (14 ik .
fle = Tie ( “"KT)

el
|27

Hence, (A.1) can be written as

eV = —e(n; —n.)

=—en®(1-1- -K—T—

e2nOv

KT
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where
KTe

A\ = m is the squared Debye length.
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Appendix B

Theoretical analysis

B.1 Conservation laws

Here we review the theories of Obukhov, Corrsin, and Batchelor to predict the inertial-
range wavenumber behaviour of the spectrum C(k) of a scalar field that is advected
by high-Reynolds number turbulence. The spectrum of a scalar field depends on the

Schmidt number that is defined by
S. = —. (B.1)

The origin of these theories is the work of Kolmogorov in 1941, where the famous
k—3/3 scaling law of the inertial range energy spectrum of homogeneous isotropic three-
dimensional turbulence was proposed (Kolmogorov 1941). Since then, numerical and
experimental investigations have been performed to verify the scaling law, which
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was originally derived based on dimensional arguments. The original Kolmogorov
spectrum was extended to the two-dimensional case by Kraichnan (1971). Recently,
a correction to the original Kolmogorov energy spectrum was derived by Bowman
(1996). Corrsin (1951) argued that the Kolmogorov hypothesis can be extended to

the spectrum of a scalar (mean-squared concentration).

We start our discussion by describing the four quadratic integral invariants in
z space. When the flow is inviscid, the diffusion of the scalar field is neglected,
and the forcing is absent, the energy F (mean-squared velocity) and mean-squared
concentration C are invariant both in two- and three-dimensional turbulence. In
two-dimensional turbulence, two additional quantities are conserved by the inviscid
dynamics, the enstrophy Z (mean-squared vorticity) and cross-correlation of vorticity
and concentration I. The four quantities £, C, Z ,and I are related to the fields v

and C by

E = %/vgdx,

C = —l-/C'zdx
2 b
1

Z = —/w2dx,

2
[—1 Cuwd.
—-5 wax,

where the scalar w is the magnitude of the vorticity

w =V X .

Energy is conserved in two and three dimension since in the absence of dissipation
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and forcing, (2.23) leads to

g:-'v-V'v—VP.

Then

§—E— = — v-?gda:

ot ot
:—/v-V<gj+P>dm

:—/V- [(%—2-{-1—")1}} da:—{—/(g—z—f—P) (V -v)de
0.

The second integral vanishes due to the incompressibility condition (2.15) and the
first integral vanishes if the flux (v?/2 + P) v vanishes on the boundary or if periodic

boundary conditions are used.

The mean-squared concentration C is conserved in two and three dimensions when

the diffusion coefficient D = 0 since (2.14) then leads to

acC

= -V - (@C —uVeC)+C(V -v) —uCV?p

= —-V-(vC — uVeC).

Therefore,

oc ocC
% /C—a?dm

= —/CV - (vC — uVC)dz
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C2 2
=—/V- ('u—2——,quo%—) dx

In two dimensions we have the two additional quadratic invariants Z and I. If the
velocity field is two dimensional, there is no dependence in the z direction, it follows
that w = V X v = w2. Taking the curl of (2.12), when the flow is inviscid and forcing

is absent, we get the vorticity equation for 2-D flow:

%(;i +v-Vw=0.
Thus,
9z _ / w2
ot ot
w2
= 0.
Again,

oI ocC
5{— /C——d T—/w—é?dm
=—3 C"v-de:z:—%/wv-VCdm-i—;l)—/wchp-VC’dm

F

1

Again, the surface integrals vanish because of the boundary conditions. If p = 0
we see that I is conserved. Note that mean-squared concentration C but not the

cross-correlation I is conserved in the presence of the electrophoretic term.
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B.2 Fourier analysis of the equation of motion

In this section we will give a brief description of the Fourier analysis of the equations
of motion. The principal reason for using Fourier analysis is that this converts spatial
differential operators into multipliers, giving us a relatively simple picture of the

underlying physics. Further details of Fourier analysis is illustrated by Stuart (1961).

Any differentiable periodic function f{x) with a period 27 can be decomposed

into the Fourier series

fl@)=3 Fee®=,

k=—oc0

where the Fourier coefficients F}, are given by

Lj2
== / f(z)e *=dz.

L/2

In the limit of L — oo we can define a Fourier transform pair

flx) = / F(k)e*=dk,
F(k) = 2“/ f(z)e *=dz.

In the case of a scalar transport, we must consider fluctuations about a constant mean
level of concentration. For the velocity field we may choose a system of coordinates in
which the constant mean velocity is zero. We restrict our attention to homogeneous
and isotropic fields. This implies that statistical quantities do not depend upon ab-
solute position in space. We decompose instantaneous variables into a mean and a
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fluctuation from the mean. We assume that constant mean velocity is zero with re-
spect to the system of coordinates and concentration field fluctuates about a constant
mean fluctuation. With this assumption, the fluctuating quantities satisfy the same

equations. The equations of motion can be written using tensor notation:

Ov;

L= B.2

8vi c"? apP 2
- )=— ) B.3
8t + amm (vmvl) 3:1:,— +Vv Vi, ( )

ac 9 \

—_— _— e “C. B.4
ey + . (v C) = DV-C (B.4)

Note that summation over repeated indices is implied.

If we take the Fourier transform of (B.2)—(B.4), the effect will be to replace the
differential operator 8/8z; by its analogous wavenumber ik; So we can write the

Fourier transform of (B.2)—(B.4) as:

kui(k) =0, (B-5)
(%+wm)mmw=%@Pmr—mm/fpww—pmm@x (B.6)
(% + DkQ) C(k) = —ikm/d"‘pum(p)C(k ~p). (B.7)

After multiplying (B.6) by k; and summing over ¢ we get

sk

P(k) = -1

‘/fpww—pmam,

where we have used the incompressibility constraint (B.5) and ¢ is replaced with j for

convenience.
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Hence (B.6) can be written as (Leslie 1973; McComb 1996)

((% + Vk?) ui(k) = Mijm (k) / d’p uj(k — p)um(p),

where

A/ij(k) =1 ( 152 — kméij>

has the following properties:
Mijm(—k) = —M;jm(k),
Mijm (k) = —tkm Pi;(K),

kik;
k2

Pi(k) =& —
Note that the energy is defined by

1 o

where () denotes an ensemble average.

The mean-squared concentration is defined by

1 le o]
e = 5(C(@)C(=)) _/0 (k) dk.

(B.8)

An equation for the energy spectrum F(k) can derived from (B.8) as below:

(% + 2uk2) E(k) =T(k),

(B.9)

where the right hand side, which arises from the non-linear terms of (B.8), satisfies

/ T(k) dk = 0.
0
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Further details of this is explained by Leslie (1973) and McComb (1996). It then
follows that the nonlinear term T'(k) conserves energy in the inviscid limit. Let II(k)
be the rate of energy transfer from wavenumbers lower than £ to wavenumbers higher

than & (e.g., see Bowman (1996))
k) = [ T do. (B-11)
k
Integrating (B.9), we obtain

% /k°° E(p)dp + /°° 2up°E(p)dp = /1: T(p) dp. (B.12)

k

The rate of loss of energy by viscous dissipation is given by
()= [ wrEw)dp. (B.13)
k
Thus,
d o0
% | E@ydp =Ti(k) - <(i). (B.14)
k

In a steady state the above equation implies that
II(k) = (k). (B.15)

An equation for the mean-squared concentration C(k) can be written as (McComb
1996):

<%+apy>cwy=nwx (B.16)

where T.(k) satisfies
/ T.(k)dk = 0.
0

108



Like the energy nonlinearity, T.(k) conserves the mean-squared concentration. An

analogous equation to (B.15) can be written for the concentration field as:
Hc(k) = Ec(k)7 (B’17)

where II.(k) is the total rate of concentration transfer from all wavenumbers lower
than £ and to all wavenumbers higher than & and &, is the rate at which the mean-

squared concentration is destroyed by molecular diffusivity.

B.3 Kolmogorov’s spectral picture

The usual interpretation of (B.9) (and similarly (B.16)) is that the energy in the
system at small k& is transferred by the nonlinear term T'(k) to large k where it is
dissipated by the viscous term. The overall effect of the nonlinear term is the energy
cascade. If we integrate (B.9) by setting the nonlinear term equal to zero and make

the time dependence explicit we obtain
E(k,t) = E(k, to) exp (—2vk?*t).

It is clear that the decay of energy is faster for higher values of k. Kolmogorov noted
that energy is dissipated primarily at high wavenumbers. In a range of intermediate
wavenumbers, which he calls the inertial subrange, energy is cascaded downscale.
The lower wavenumber limit of this range is determined by the size of the eddies

that contain most of the turbulent kinetic energy (McComb 1996, and refs. therein).

109



On dimensional grounds, he introduced a characteristiic length scale (v3/¢) /4 which
is now termed as the Kolmogorov microscale. The in-verse of this is normally taken
as the maximum possible wavenumber in the inertial. transfer range, which we will

denote by k,, which is given by

= ()"

One can verify that E(k) has dimension L3*T~2 and .¢ has dimension LT3 (Leslie
1973). According to the Kolmogorov theory, E(k) is imdependent of v in the inertial
subrange but does depend on k and . It follows thaat the spectrum function E(k)

takes the form

E(k) o (g)¥% k53, (B.18)

LST—2 (LZT—3)2/3 LS/S,

which is the famous Kolmogorov k=% law.

B.4 Kolmogorov-type argumentt

It was postulated by Corrsin (1951) that the Kolmogorov hypothesis can be applied
to the spectrum of mean-squared concentration. The general increase of gradients of
C caused by the irregular stirring action of the nonlirmear term was realized to be a
transfer between different Fourier components of the distribution of C. Unlike the
upper limit of inertial range of energy transfer, it wazs proposed that the molecular
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diffusion produces a cut-off in the concentration spectrum which is given by

Batchelor (1959) argued that the proposed diffusion cut-off k. is only valid for S < 1

and concluded that for S. > 1 the cut-off would be

kp = (V;"’)I’

where we refer to Icgl as the Batchelor microscale.

We begin with a systematic review of the dimensional analysis made by Obukhov
(1949) and Corrsin (1951) based on the Kolmogorov hypothesis. Without going to

their detailed arguments, we note that the expression

e

is an obvious extension of the form for the Kolmogorov dissipation wavenumber, which
is given by
1
E\1%
bo=(5)"
v V3
We assume that the spectrum is a power law. For wavenumbers much smaller than

either k. or k,, simple dimensional analysis results in

C(k) ~ e.e™3k™5, (B.19)
where ¢, is the rate at which mean-squared concentration is destroyed by molecular
diffusivity.
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The Kolmogorov energy spectrum was modified by Bowman (1996), who suggested

the modification

4\ 3 .
E(k) = (5) LRV k) (k< ko), (B-20)

where £ is proportional to the energy transfer rate € and x(k) is a correction factor

given by
G
x(k) = 1= 2 (1—x0), (B-21)
where
xo = 48%kg*E3(ko)/3 = x(ko) > 0. (B.22)

Kolmogorov suggested that the inertial energy transfer is a local phenomenon and
that the transfer over a large wavenumber range is very small. We consider the fact
that concentration is not created or destroyed within the inertial-range and interac-
tion between eddies is the mechanism that redistributes it among the inertial-range

of wavenumbers.

Due to the locality hypothesis of Kolmogorov, €. should be proportional to the
total concentration (~ kC(k)) in wavenumbers near k£ and to some effective rate of

shear 1 which acts to distort the flow structures of scale k~'. That is

£c ~ nkC(k). (B.23)
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Following Kraichnan (1971) and Bowman (1996), the rate of shear 7 is given by
k
7~ [ PE@. (B.24)
0

In the case of the energy spectrum we have, in analogy with (B.23),

e ~ nkE(k). (B.25)
Using (B.20) in (B.25), we obtain
n ~ PR Px 3 (k). (B-26)
Now (B.23) implies that
C(k) ~ ;—k

Therefore, the concentration spectrum C(k) can be expressed in the following form
C(k) ~ g™ RE™53x 13 (k). (B.27)

However, in the case of the concentration spectrum, there are an infinite number of
constants of motion and so taking a universal value of the proportionality coefficient

in (B.19) is questionable (Kraichnan 1968).

It has been pointed out that the concentration spectrum becomes more com-
plicated in the presence of an additional quantity, the Schmidt number (Batchelor

1959; Leslie 1973), which is defined by (B.1).
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One can define two regimes:

o If S. w1 =2>v«D,

o If S.>1=v>D.

So if we compare viscous cutoff with the diffusion cutoff, we get
k. << k, incaseof S, <« 1

and
k. >k, in case of 5. > 1.

Either the Obukhov—Corrsin law (B.19) or the modified Obukhov—Corrsin law (B.27)
is valid only for wavenumbers much smaller than either k. or k,. We discuss below

two wavenumber regimes, namely, k. K £ < k, and k, K bk < k. .

Case k. < k <« k, : Batchelor pointed out that in the case of D > v, k. < k,
(Batchelor 1959; Leslie 1973). Hence the scalar spectrum will fall off much more
rapidly than the energy spectrum for wavenumbers p that are higher than k.. Hence
the convolution integral in (B.7) will be dominated by p < k.. In the inertial range,

where £ and ¢, are independent of k, it follows from (B.25) and (B.23) that
C(k) ~ E(k).
Following Batchelor (1959) and McComb (1996), we can write down C(k) as below:

C(k) ~ D3k E(k). (B.28)
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Upon substituting the expression for E(k) from (B.20) we get
C(k) ~ 6662/3D—3k—17/3x—1/3(k)’ (B.29)

where x(k) is given by (B.21)

Case k, < k < k. Batchelor’s model of turbulent fluid: Here we describe
the viscous-advection range based on Batchelor’s model of turbulent fluid (Batchelor
1959). If we look at the spectrum of velocity gradients, which is k>F(k), it can be

noticed that (Leslie 1973)
K E(k) ~ k'/3 if k<k,.

Since E(k) falls off rapidly for wave numbers k that are larger than k,, the spectrum
of velocity gradient also decreases in this region. Hence the spectrum of velocity
gradient has a maximum near k = k,. Batchelor assumes that g_:- will virtually be
constant over regions of space of linear dimensions roughly k;! = (¢ /5)1/ *. These
regions are called as ‘blobs’ of fluid. Because of the incompressibility constraint,
each blob will have a constant volume. The changes of shape of blobs or siraining
motion causes the mean-squared concentration to be transfered to higher and higher

wavenumbers.
Let the motion of the fluid in a blob be specified by
u=qaz, v=pL[Py, w=7yz.
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The incompressibility condition (2.15) leads to
a+B8+v=0. (B.30)

If two of these parameters are positive then an initially spherical blob will be distorted
into a flat disc. If two of these parameters are negative, this initially spherical blob

will be distorted into a needle shape.

Let + be the most negative rate of strain parameter and z be the direction of least
principal rate of stain. Following Batchelor (1959) and Leslie (1973), one can write

down

Iy ~ na(e/v)"2 (B.31)

Batchelor infers from experimental evidence that
ny ~ 0.05.

Thus, if the blob is strained in one direction, say the z direction, the variations of C
will be concentrated only in that direction. In such a situation one may approximate

the non-linear term by the Fourier transform of (B.16) (Leslie 1973)
d
12 2-(CC) (B.32)

Inserting this approximation into (B.16) we obtain

T.(6) = bl (#6258 c®)

= g (KC(R)).
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A stationary solution of (B.16) would then require that

2DKC(k) = —m% (kC(K)),

2Dk d(kC(k))
AT = e

2
Dk = In(kC(k)) + const,

2
C(k) ~ k™ lexp (—DL )

ol

So that

2
C(k) ~klexp (———’%——) .

n1(§)1/2

If we look at the exponential term, we see that

DEk? 1 [N\ kN2
- - _ | _— 1.
MmO - (A) (1») <

Thus we can write the spectrum function in the following form

C(k) ~ kL.

(B.33)

(B.34)

This is the Batchelor formula for the mean-squared concentration. Thus if S, > 1,

which is the case for most of the fluid, the mean-squared concentration satisfies the

Batchelor spectrum for wave numbers higher than &, but lower than k..

In this discussion, we have obtained the correction (B.27) to the Obukhov-Corrsin

law (B.19). This correction is similar to that proposed by Bowman (1996) for the

three-dimensional energy inertial range.

117



Bibliography

[Allison & Nambi 1994]

[Ames 1977]

[Andreev & Lisin 1993]
[Arulanandam & Li 2000]

[Batchelor 1959]

[Bier 1959]

S. A. Allison & P. Nambi, Macromolecules, 27:1413,

1994.

W. F. Ames, Numerical Methods for Partial Differ-
ential Equations, Academic Press, San Diego, Cali-

fornia, 1977.

V. P. Andreev & E. E. Lisin, Chromatograhia,

37:202, 1993.

S. Arulanandam & D. Q. Li, Journal of Colloid and

Interface Science, 225:421, 2000.

G. Batchelor, J.Fluid.Mech., 49:113, 1959.

M. Bier, Electrophoresis:Theory, methods and ap-
plications, Academic Press, San Diego, California,

1959.

118



[Boris & Book 1964|

[Boris & Book 1976]

[Bowen et al. 1976]

[Bowman et al. 2000]

[Bowman 1996]

[Briggs 1987]

[Burgreen & Nakache 1964]

[Corrsin 1951]

[Courant et al. 1952]

[Crabtree et al. 2000]

J. Boris & D. Book, Journal of Computational

Physics, 11:38, 1964.

J. Boris & D. Book, Methods in Computational

Physics, 16:85, 1976.

B. D. Bowen, S. Levine, & N. Epstein, Journal of

Colloid and Interface Science, 54:375, 1976.

J. C. Bowman, A. Zeiler, & D. Biskamp, Journal of

Computational Physics, 158:239, 2000.

J. C. Bowman, J.Fluid.Mech., 1996.

W. L. Briggs, A multigrid tutorial, SIAM, Pennsyl-

vania, 1987.

D. Burgreen & F. R. Nakache, J. Phys. Chem..,

68:1084, 1964.

S. Corrsin, Journal Applied Physics, 22:469, 1951.

R. Courant, E. Isaacson, & M. Rees, Comm. Pure

Appl. Math., 5:243, 1952.

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, &
C. J. Backhouse, Microchip injection and separation
anomalies due to siphoning., Unpublished., 2000.

119



[Culbertson & Jorgenson 1994] C. T. Culbertsoon & J. W. Jorgenson, Anal. Chem.,

[Ermakov et al. 1998]

[Ermakov et al. 2000]

[Gadl et al. 1980]

[Hackbusch 1985}

[Harrison et al. 1992]

[Harrison et al. 1993]

[Holt 1984]

[Jia 1998]

66:955, 1994.

S. V. Ermakov_ S. C. Jacobson, & J. M. Ramsey,

Anal. Chem., 700:4494, 1998.

S. V. Ermakov_ S. C. Jacobson, & J. M. Ramsey,

Anal. Chem., 15:3512, 2000.

0. Gaal, G. A.. Medgyesi, & L. Vereczkey, FElec-
trophoresis in #&he Separation of Biological Macro-

molecules, John: Wiley & Sons, New York, 1980.

W. Hackbusch, Multigrid methods and applications,

Springer-Verlag_, New York, 1985.

D. J. Harrison, A. M. Z., F. H. Ludi, & H. M. Wid-

mer, Anal. Chemn., 64:1926, 1992.

D. J. Harrison, P. G. Glavina, & A. Manz, Sens.

Actuators, 10:1#07, 1993.

M. Holt, Numerical Methods in Fluid Dynamics,

Springer-Verlag_ New York, 1984.

W. Jia, Transactions of the Japan Society for Aero-

nautical and Sp.ace Sciences, 41:105, 1998.

120



[Jorgenson & Lukacs 1981]

[Kolmogorov 1941]

[Kraichnan 1968]
[Kraichnan 1971]

[Kundu 1990]

[Leslie 1973]

[LeVeque 1990]

[Levine & Neale 1976]

[McComb 1996]

[Minev & Ethier 1999]

[Morrison & Stukel 1970]

J. W. Jorgenson & K. D. Lukacs, Anal. Chem.,

53:1292, 1981.

A. N. Kolmogorov, C. R. Acad. Sci. U.S.S.R., 30:301,

1941.

R. H. Kraichnan, The Physics of Fluid, 11:945, 1968.

R. H. Kraichnan, J. Fluid. Mech., 47:525, 1971.

P. K. Kundu, Fluid Mechanics, Academic Press, San

Diego, California, 1990.

D. Leslie, Developments in the theory of turbulence,

Clarendon Press, Oxford, 1973.

R. J. LeVeque, Numerical Methods for Conservation

Laws, Birkhauser Verlag, Boston, 1990.

S. Levine & G. H. Neale, Journal of Colloid and

Interface Science, 47:520, 1976.

W. D. McComb, The Physics of Fluid Turbulence,

Clarendon Press, Oxford, 1996.

P. D. Minev & C. R. Ethier, Journal, 5, 1999.

F. A. Morrison, JR. & J. J. Stukel, Journal of Colloid
and Interface Science, 33:88, 1970.

121



[Moyer & Gorin 1990]

[Neumann & Richtmyer 1950]

[Obukhov 1949]

[Patankar & Hu 1998]

[Press et al. 1997]

[Reed & Morrison 1976]

[Rice & Whitehead 1965]

[Richtmyer & Morton 1957]

H. A. A. L. S. Moyer & M. H. Gorin, Electrophoresis
of proteins and the chemistry of cell surfaces, Aca-

demic Press, San Diego, California, 1990.

J. V. Neumann & R. D. Richtmyer, J. Appl. Phys.,

21:232, 1950.

A. M. Obukhov, Izv. Akad. Nauk, 13:58, 1949.

N. A. Patankar & H. H. Hu, Anal. Chem, 70:1870,

1998.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, &
B. P. Flannery, Numerical Recipes in C: The art
of scientific computing, Cambridge University Press,

Cambridge, 1997.

L. D. Reed & F. A. Morrison, Jr., Journal of Colloid

and Interface Science, 54:117, 1976.

C. Rice & R. Whitehead, The Journal of Physical

Chemistry, 69:4017, 1965.

R. D. Richtmyer & K. W. Morton, Difference Meth-
ods for Initial-Value Problems, Interscience Publish-

ers, New York, 1957.

122



[Ritchie 1986]

[Roache 1972]

[Schlichting 1968]

[Schulz 1964]

[Seiler et al. 1994]

[Sidilkover & Ascher 1995]

[Skoog et al. 1998]

[Staniforth & Cote 1991]

[Stuart 1961]

H. Ritchie, American Meteorological Society,

114:135, 1986.

P. J. Roache, Computational fluid dynamics, Her-

mosa publishers, Albuquerque, 1972.

H. Schlichting, Boundary-Layer Theory, McGraw-

Hill Book Company, New York, 1968.

W. D. Schulz, Methods in Computational Physics,

3:1, 1964.

K. Seiler, H. Z. Fan, K. Fluri, & D. J. Harrison, Anal.

Chem, 66:3485, 1994.

D. Sidilkover & U. M. Ascher, Computational and

Applied Mathematics, 14:21, 1995.

D. A. Skoog, F. J. Holler, & T. A. Nieman, Prin-
ciples of Instrumental Analysis, Sanunders College

Publishing, Chicago, 1998.

A. Staniforth & J. Cote, American Mathematical

Society, 119:2206, 1991.

R. Stuart, An introduction to Fourier analysis, John

Wiley and Sons Inc, New York, 1961.

123



[Tannehill et al. 1997] J. C. Tannehill, D. A. Anderson, & R. H. Pletcher,

Computational Fluid Mechanics and Heat transfer,

Taylor and Francis, 1997.

[Woodward & Colella 1984] P. Woodward & P. Colella, Journal of Computational

Physics, 54:115, 1984.

124



