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Abstract—International space station (ISS) is a grand invention
for human beings to have a chance at exploring the outer space.
Its operation is completely dependent on the autonomous power
distribution system which transforms energy by solar arrays from
the sun. There is a high demand for a reliable monitoring system
that can accurately and timely detect and localize faults in its
power system for the special working environment of the ISS.
In this paper, a fault detection and localization (FDL) based on
multi-dimensional time-series trend extracted shapelet (MTES)
method was proposed. A fast shapelet discovery was created to
accelerate the process of extracting shape features from time-
series signals collected from the ISS electrical power distri-
bution system (EPDS). Then the techniques of randomization
and information gain were exploited for the further shapelet
selection. Finally, multi-dimensional time-series classification for
FDL was solved by a designed random forest classifier. The
real-time FDL measurement instrument was emulated on the
Xilinxr VCU128 FPGA board, while a hardware-in-the-loop
(HIL) testing platform was established to verify the effectiveness,
execution speed, and accuracy of the MTES method. Comparing
with other state-of-the-art data-driven methods, higher accuracy
(above 96%) and easier hardware implementation were achieved
using MTES.

Index Terms—Electrical power distribution system, fault
detection and localization, hardware-in-the-loop tests, multi-
dimensional time-series classification, shapelets.
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LUT Lookup Table
LVDC Low-voltage Direct Current
MBSU Main Bus Switching Unit
MG Microgrid
MTES Multi-dimensional Time-series Trend Extracted

Shapelet
OSP Optimal Split Point
PP Piecewise Point
PPS Primary Power System
PVM Photovoltaic Power Module
SARJ Solar Alpha Rotary Joint
SAX Symbolic Aggregate approXimation
SPS Secondary Power System
SSU Sequential Shunt Unit
TSC Time-series Classification

I. INTRODUCTION

Curiosity for the origin of life propels the exploration in
outer space. The construction of international space station
(ISS) is one of the momentous steps in spaceflight history.
The ISS is a multi-nation collaborative project serving as
a space environment laboratory for a variety of scientific
researches and a low Earth orbit staging base for long-duration
missions [2], [3]. The ISS power system is a low-voltage direct
current (LVDC) microgrid (MG) supplied by solar arrays.
Harsh environment of outer space brings critical challenges
to the measurement, instrumentation, monitoring, and power
distribution system protection [4], [5]. Any electrical failure
could result in unsafe operation and delay in the planned
work schedules. For instance, the loss of one Main Bus
Switching Unit (MBSU) of the ISS limited the power capacity
to 75% of nominal until it could be replaced in 2012 [6].
Therefore, developing an intelligent monitoring system that
can detect and localize faults in real-time is crucial for the
ISS [7], [8]. Currently, machine learning and data-oriented
strategies, which are able to learn intrinsic principles from
the measured system dataset, are promising for the field of
monitoring, fault detection, and prediction [9]. Artificial neural
networks (ANNs) [10] and convolutional neural networks
(CNNs) [11] classifiers were applied to identify faults in
photovoltaic systems. Aeroengine remaining life was estimated
using bidirectional long short-term memory (LSTM) network
[12]. A reinforcement-learning-based algorithm was designed
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Fig. 1. Overview of the ISS [1].

to make an unmanned aerial vehicles able to adjust its control
policy in a dynamic environment [13]. The data collected from
the ISS are time series, so the essence of fault detection and
localization (FDL) is time-series classification (TSC).

One of key steps of the data-driven TSC is feature engi-
neering which extracts appropriate features from raw data.
For time series, the form of features can be time-series, time-
domain and frequency-domain as well as shape features. Time-
series features are obtained by simply normalizing without
complex computations [14], but redundant and disturbing in-
formation contained in these features may increase difficulties
of learning principles by the FDL method. Time-domain and
frequency-domain features are commonly extracted from raw
time series using signal processing methods, such as wavelet
transform [15], fast Fourier transform (FFT) [16], Hilbert-
Huang transform (HHT) [17] and so on. However, signal
processing is usually time-consuming and elaborate feature
selection is required. Shape features have recently attracted
great attention since the concept of shapelet was proposed
in 2009 [18]. Shapelet-based methods [19], [20] convey the
relationship between inputs and outputs explicitly by seeking
out the shape feature representations of each class.

The most challenging step in shapelet-based methods is to
discover appropriate shapelets from time series quickly and
efficiently. Space search approaches, optimization of objective

functions, random selection and so forth have been explored to
accelerate the process of shapelet discovery. A symbolic rep-
resentation using Symbolic Aggregate approXimation (SAX)
transformed the time series into a discrete and low-dimensional
space, over which shapelet candidates could be searched faster
in [21]. Shapelet learning [22], [23] was regarded as a machine
learning optimization task. In [24], [25], randomization was
applied to reduce the size of the shapelet candidate set to
avoid exhaustive searching. Although these methods could
give solution to the task, they were not intuitive enough.
In addition, most of them were merely applicable to one-
dimensional time-series instances. Multiple sensor signals are
collected from the ISS power distribution system. Each signal
provides complementary information for identifying different
faults. These signals form data with multi-dimensional time
series which are necessary to be processed simultaneously.

In this paper, a multi-dimensional time-series trend extracted
shapelet-based (MTES) method for the FDL of ISS EPDS
is proposed. There are three steps: fast shapelet discovery,
shapelet selection and classification. In the first step, infor-
mative shapelet candidates with multi-trend are elaborately
picked out from raw time series data. Randomization and
information gain are utilized to find the best top-k shapelets in
the second step. Finally, the FDL with multi-dimensional time
series is solved by a random forest classifier based on Bayesian
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probability features. Besides, correlation-based feature subset
selection method [26] is applied to reduce the redundant
features (namely associated shapelets) for testing in real time.
A hardware-in-the-loop (HIL) real-time emulation platform
was established to validate the proposed MTES method. The
FDL algorithm is implemented on the Xilinxr VCU128 FPGA
board [27], serving as a fault detection instrument, and it was
integrated into the VCU118 FPGA board based ISS real-time
emulator for FDL. To summarize, the main contributions of
this paper are:

• We design a fast shapelet discovery method to intuitively
pick out informative shapelet candidates with multi-trend
from raw time series data. Piecewise linearization quickly
separates a long time series into linear subsequences.
Then multiple consecutive subsequences together consti-
tute a multi-trend shapelet candidate. Shapelets merging
is utilized to eliminate redundant candidates in advance.

• We select the best top-k shapelets using information gain
and randomization.

• We train a random forest classifier based on a Bayesian
probability table deduced from multi-dimensional time
series. Besides, correlation-based feature subset selection
method is applied to reduce the number of shapelets at the
testing stage for the FDL in a computationally efficient
manner.

• We conduct HIL real-time emulation experiment on
FPGA to verify the effectiveness of the real-time FDL
application. In addition, comparison with other state-of-
the-art methods proved the advantages of the proposed
MTES method in both accuracy and resource consump-
tion.

The remainder of this paper is organized as follows: Section
II describes the model of the ISS power system and various
normal and faulty conditions simulated in Matlab. Section III
elaborates the definitions and notations involved in the pro-
posed MTES method. The detailed algorithms and procedures
for FDL step-by-step are illustrated in Section IV. Section V
provides an elaborate account of the experimental design for
HIL testing of the FDL. Section VI presents the discussion of
the experimental results including data preparation, selected
shapelet, FDL results for the ISS system and comparison with
other methods, followed by the conclusions in Section VII.

II. OVERVIEW OF ISS EPDS

The general electrical power distribution system (EPDS)
of ISS employs multi-stage arrangements of power sources,
energy storage, control systems, and electronic devices that all
operate cooperatively at various system dispositions. Overview
of the ISS structure is presented in Figure 1 [1]. For sim-
plicity, only the left half of the ISS EPDS is modeled as in
Figure 2 [28], since the EPDS basically adopts a bilaterally
symmetric structure. A typical multi-bus channelized electrical
distribution system is adopted in MG of ISS, which generally
consists of eight basically self-sustained independent power
channels, two of which constitute a photovoltaic power module
(PVM), coupling via transformers to transport electricity based
on requirements and system capacity. Each power channel

Fig. 2. Detailed half EPDS of the ISS [28].

consists of the primary power system (PPS), solar array wing
(SAW), sequential shunt units (SSUs), energy storage system
(ESS), secondary power system (SPS), and numerous elec-
tronic components to produce, store, and transfer electricity
as an isolated source. The PPS features 160V bus voltage,
stores and provides electricity during insolation and eclipse
respectively. For tracking the sun position and adjusting the
angle as the ISS orbits the Earth, Solar Alpha Rotary Joints
(SARJs) and Beta Gimbal Assemblies (BGAs) of the pointing
system are designed. The sequential shunt units (SSUs) enable
each SAW severally isolated or connected from PPS. The SPS
couples with PPS through MBSUs which convert the main
bus voltage to 120V and provide electricity downstream to
international segments and loads. In this work, one PVM in
ISS is established in Matlab/Simulink [29] as a study case to
verify the proposed FDL method.

A. Selected Conditions

Out of a total of 22 conditions, 1 normal and 21 faulty
conditions, which may occur in the SAW, PVM, SSU, MBSU,
SPS, ESS, pointing system, and electrical power consuming
equipments (EPCEs), are modeled, simulated and summarized
in Table I. All aforementioned cases might be caused by miss-
orientation from sun [30], out of range temperature, shading
[31], sensor failures [32], switch position failures [33], loss of
components [34], limits condition mismatches [35] etc., which
would have serious consequences for ISS’s in-orbit life span.

III. DEFINITIONS AND NOTATIONS

A. Time-Series Dataset

X = {x1, x2, · · · , xn} is a single-dimensional time series
(a sensor signal), which contains n temporally ordered values
with equal time intervals. Multi-dimensional time series M =
{X1,X2, · · · ,Xd} (an instance) are composed of d series. A
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TABLE I
CONDITIONS MODELED IN THE ISS EPDS.

Locations Descriptions Conditions

None No fault F0

SAW

Shading condition F1
Temperature out of range (> 60◦C) F2
Temperature out of range (< −180◦C) F3
Solar cells line-to-line fault F4
Bypass diode fault F5
Degradation F6
Solar cells bridging fault F7
Maximum power point tracking fault F8
Converter open circuit F9

PVM Power channel open circuit F10

SSU SSU short circuit F11

MBSU MBSU open circuit F12

SPS SPS open circuit F13

ESS
Loss of orbital replacement unit (ORU) F14
Battery cells line-to-line fault F15
Cells balancing fault F16
Converter open circuit F17

Pointing SARJ and BGA open circuit F18
system Sensor failures (control fault) F19

EPCEs
DDCU open circuit F20
DACU open circuit F21

time-series dataset includes m instances, expressed as SM =
{M1,M2, · · · ,Mm}.

B. Shapelet
Shapelet is a discriminative subsequence of time series

belonging to a specific class that can maximally represent the
shape feature of the class, proposed by Ye and Keogh for the
first time in 2009 [18].

C. Distance Between Time Series and Subsequence
X = {x1, x2, · · · , xn} is a time series and SX =

{sx1, sx2, · · · , sxl} is a subsequence with length l. Xk,l =
{xk, xk+1, · · · , xk+l−1} (1 ≤ k ≤ n− l+1) is a partial series
of the time series X with the same length l. Then the distance
between X and SX is defined as the minimum of distances
between Xk,l and SX:

d (X,SX) = min (D (Xk,l,SX)). (1)

The distance between Xk,l and SX is given as:

D (Xk,l,SX) =

√√√√1

l

l∑
i=1

(xi − sxi)2. (2)

D. Entropy
A time series dataset SM contains two classes (A and B)

of instances. If the proportion of subset made up of class A is
p (A) and the proportion of class B is p (B), then the entropy
of SM is expressed as:

E (SM ) = −p (A) log (p (A))− p (B) log (p (B)). (3)

E. Information Gain
Suppose that a time series dataset SM is split into two

subsets SM1 and SM2, the information gain is computed as:

G (SM ) = E (SM )− |SM1|
|SM |

E (SM1)−
|SM2|
|SM |

E (SM2).

(4)

F. Optimal Split Point
For notation ease, we assume that SM is a single-

dimensional time series dataset here. Calculate distances be-
tween the shapelet SX and each series in SM and sort them
in non-descending order as:

OrderList = {d1, d2 · · · dm} , d1 ≤ d2 ≤ · · · ≤ dm. (5)

Obtain split points SP (i) by computing thresholds dSP (i) =
(di + di+1)/2, i = 1, 2, · · · ,m−1. Then SM can be split into
two subsets according to the SP (i), i.e. the series satisfying
d ≤ dSP (i) belong to SM1, otherwise belong to SM2.
Information gains of all the SP (i) can be calculated and the
one with maximum information gain is defined as the optimal
split point (OSP).

G. Trend Feature
Suppose that the linear regression equation y = kx + b

can fit a piece of time series. The discretized slope k is
regarded as the trend feature of the time series. The discretized
slope k is derived by the rule as follows: if the fitting
line parallels with x-axis, k = 0; if the angle between
the line and x-axis in (10◦, 20◦), k = 2; if the angle in
(−20◦,−10◦), k = −2, and so on. Therefore, the set of k
is {k|k = −9,−8, · · · , 0, · · · 8, 9}.

H. Overall Significance of Linear Regression Equation
Linear regression is used to fit a time series. Only when

the correlation coefficient R2 and P-value of F-test satisfy
R2 ≥ 0.5 and P ≤ 0.05 [36], the overall significance level
can achieve. Otherwise, we call the linear regression equation
is not statistically significant.

I. Piecewise Point
When the linear regression for a time series can not reach

the significance level, piecewise linearization is required to
separate the series into several sections. The point separating
two sections is called piecewise point (PP). The mathematical
definition is the point having the maximum of absolute value
of the differences between the series (X = {x1, x2, · · · , xn})
and regression line (Y = {y1, y2, · · · , yn}):

|yPP − xPP | = max (|Y −X|). (6)

J. Informatization Representation of Shapelet
In this work, a shapelet is composed of multiple sequential

subsequences with different trend features. Assume that the
trend feature vector is K = {k1, k2, k3}, the length vector
is L = {l1, l2, l3} and the data point vector is X =
{x1, x2, · · · , xl1+l2+l3}, then we represent the shapelet as
IX = {K,L,X} (i.e. informatization representation of the
shapelet).
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K. Similar Shapelets

IXi = {Ki,Li,Xi} and IXj = {Kj ,Lj ,Xj} are two
shapelets. If Ki = Kj and Li = Lj , then we call IXi and
IXj are similar, denoted as IXi ∼ IXj .

L. Shapelets Merging

If u shapelets are similar IXi ∼ IXj ∼ . . . ∼
IXp, i.e. Ki = Kj = · · · = Kp = K and
Li = Lj = · · · = Lp = L, then we will merge
them into a new shapelet IXfuse = {K,L,Xfuse},
where Xfuse =

{
xfuse1 , xfuse2 , · · · , xfusel1+l2+l3

}
, xfuseq =(

xiq + xjq + · · ·+ xpq
)/
u, q = 1, 2, · · · , l1 + l2 + l3.

M. Shapelet Information Integration

IX = {K,L,X} is a shapelet, where K = {k, k, k} and
L = {l1, l2, l3}. The trend features of the subsequences made
up of the shapelet are the same, so we integrate its information
and re-write it as IX = {k, l1 + l2 + l3,X}.

N. Time-Series Splitting

SX = {k, l,X} is the information representation of
a time series. We will split it into three subsequences
when necessary as SX1 = {k, l/3,X1}, SX2 =
{k, l/3,X2} and SX3 = {k, l/3,X3}, where X1 ={
x1, x2, · · · , xl/3

}
, X2 =

{
xl/3+1, xl/3+2, · · · , x2l/3

}
,

X3 =
{
x2l/3+1, x2l/3+2, · · · , xl

}
. These subsequences have

the same trend feature as the original time series, 1/3 of the
length and equally distributed data points.

IV. PROPOSED METHOD

The essence of the FDL for the ISS power system is
multi-dimensional TSC since the sensor signals collected
from the system are time series data. Shapelet-based methods
have recently attracted great attention in the field of TSC.
Most machine learning methods establish the intrinsic rules
between input time series and output classes implicitly, but
shapelet-based methods can present the relationship explicitly
by seeking out the shape features corresponding to each class.
In this work, a multi-dimensional time-series trend extracted
shapelet-based method to solve the FDL problem for the ISS is
proposed. Details of the method are presented in this section.

A. Fast Shapelet Discovery

The most important but time-consuming step of shapelet-
based methods is collecting appropriate shapelet candidates
from raw time series dataset, called the shapelet discovery
procedure. In the MTES method, a shapelet discovery ap-
proach is proposed, which can speedily pick out contributing
shape features and narrow the range of shapelet candidates.
It includes three steps: time series piecewise linearization,
multi-trend extracted based shapelet discovery and shapelet
merging. At the training stage, the goal is to find shapelets
of each sensor signal, so only single-dimensional time series
shapelet extraction is considered at this point, while the multi-
dimensional time series will be involved in Section III E at
the testing stage.

Fig. 3. Time-series piecewise linearization and multi-trend extracted based
shapelet discovery step.

1) Time Series Piecewise Linearization: Trend changing
is regarded as the shape feature (or trend feature) of time
series. Piecewise linearization is utilized to analyze these
features. First, a time series is equally distributed into five
zones. Second, linear regression is implemented in each zone
respectively. When the linear regression equation is not statis-
tically significant, a PP is selected and new linear regression
is applied on the section divided by the PP. According to
the above division principle, each zone can be separated
into several pieces by PPs. One piece of the subsequence,
named linear subsequence, can be fit by a linear equation with
information of trend feature k, length l and data points X . An
example of piecewise linearization step in Zone 3 is depicted
in Figure 3 (a) and (b). Finally, all the linear subsequences
together recombine the original time series.

2) Multi-Trend Extracted Based Shapelet Discovery:
Shapelet is a discriminative subsequence of time series be-
longing to a specific class that can maximally represent the
shape feature of the class, so it should not be a straight line
segment. In this paper, multiple sequential linear subsequences
are connected to be selected as a shapelet candidate because
adjacent linear subsequences usually have different trend fea-
tures. For instance, the first two zones of the time series are
separated into 5 pieces as shown in Figure 3 (c). If the number
of linear sequences comprising a shaplet candidate is set to 3,
then linear subsequences 1 2 3 , 2 3 4 and 3 4 5 are
respectively connected as three candidates.

3) Shapelets Merging in One Class: In the training dataset,
we assume that all instances belonging to the same class
should have similar shapelets. To find these similar shapelets,
one instance is randomly chosen and shapelet candidates are
extracted through the aforementioned steps. Suppose that IX1

is a shapelet, then the similar shapelet IX in other instance X
is the specific subsequence SX . The distance between SX
and IX1 equals the distance between X and IX1, expressed
as:

IX = {SX|D (SX, IX1) = d (X, IX1)}. (7)

Finally, shapelet merging is applied to all the similar shapelets
belonging to the same class and the set of candidates is
obtained.
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The proposed fast shapelet discovery approach based on
multi-trend extraction is summarized in Algorithm 1.

Algorithm 1 Fast shapelet discovery approach based on multi-
trend extraction
Input: training dataset DStrain

1: for i = 1:Nclass do
2: X1 = RandomOneSample(DStrain(i))
3: for j = 1:Nsignal do
4: SX1= PiecewiseLinearization(X1(j))
5: SC1 = ShapeletDiscovery(SX1)
6: for p = 1:size(SC1) do
7: for q = 2:Nsample do
8: X = AnotherSample(DStrain(i))
9: IX1 = SC1(p)

10: IX(q) = {SX|D(SX, IX1)
= d(X(j), IX1)}

11: SC(i, j, p) = ShapeletMerge(IX1, IX)

12: return the set of shapelet candidates SC

B. Key Points of Fast Shapelet Discovery

The main points for appropriately applying the proposed fast
shapelet discovery approach are emphasized in this subsection.

1) Minimum Length of Shapelet: When the time series has
high frequency fluctuation, the linear subsequences separated
by piecewise linearization may contain too small number
of data points, which leads to shapelet candidates with not
enough data information. For example, the time series below
in Figure 4 (a) is divided into 12 small pieces marked in
different colors. The three linear subsequences, pointed by the
arrows, are supposed to be connected as a shapelet, but each
of these subsequences only includes 2 data points and thus the
shapelet has simply 4 points in total, which is definitely not
enough. Therefore, we set the minimum length of a shapelet.
If the length cannot reach the minimum level, more linear
subsequences will be combine to form a shapelet, as the
shapelet candidate above in Figure 4 (a).

2) Maximum Length of Shapelet: By contrast, when the
time series is too smooth, the linear subsequence may contain
too many data points, which causes too long shapelet. To solve
this problem, firstly, the entire time series is equally distributed
into five zones. Secondly, we set the maximum length of a
linear sequence that should less than 2/3 of the zone length.
Thus the maximum length of a shapelet can be guaranteed less
than 2/5 of the whole series. Although the maximum length,
which should be considered on a case-by-case basis, may be
exclusively suitable for this study, the similar rule could be
applied for other cases. In Figure 4 (b), the linear regression
for the subsequence in zone 4 can reach significance level. In
this case, time-series splitting is used to further separate it into
3 smaller linear subsequences marked in different colors.

3) Eliminating Redundancy: Although shapelet 1 and
shapelet 2 in Figure 5 are not exactly the same, they have
similar shape or trend, so it is not necessary to keep both
of them in the candidate set. To eliminating this kind of
redundancy, we use shapelets merging to create a new shapelet,

Fig. 4. Shapelet discovery from smooth time series.

Fig. 5. Merging of similar shapelets.

like the one on the bottom in figure, as a representation of all
similar shapelets.

4) Coordinate Transformation: The criteria to distinguish
whether a time series belongs to the class, from which a
shapelet is extracted, is whether the distance between the
series and shapelet is less than the preset threshold. How-
ever, even though the shapes or trends of time series look
similar, the ranges may have large discrepancy, which could
result in misclassification of the similar time series if directly
comparing the distances using raw data. Therefore, coordinate
transformation is implemented to normalize the range of
subsequences of the time series and the shapelet in [0,1] before
computing the distances, as displayed in Figure 6.

C. Shapelet Selection

The shapelet candidate set is acquired after preceding the
fast shapelet discovery. Then the best top-k shapelets for each
class are required to be further selected. Three steps for this
purpose are describing as follows.

1) Determination of Distance Threshold: The distance
threshold δ for each shapelet is extremely important. If the
distance between the time series of a instance and the shapelet
from a specific class is not larger than δ, it is more likely that
the instance belongs to the class. Otherwise, it should belong
to other classes. We set the threshold on the optimal split point
(i.e. δ = dOSP) and preserve the maximum information gain
of the shapelet.

2) Calculation of Bayesian Probability: In the training
dataset, Bayesian probability can provide the probability of
correct classification of a shapelet according to its distance
threshold. Two events are defined as:

Event Y: the distance between a time series and a shapelet
is not larger than δ.

Event N: the distance between a time series and a shapelet
is larger than δ.

Suppose that S is the instance space, F1, F2, · · · , Fn are
diverse classes among S. On the basis of the Bayes’ theorem,
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Fig. 6. Coordinate transformation for similarity computation.

Fig. 7. Proposed multi-dimensional time-series trend extracted shapelet-based
FDL method for ISS EPDS.

the probabilities of the instance belonging to a class when the
event Y or N occurs are:

P (Fi|Y ) =
P (Y |Fi)P (Fi)

n∑
j=1

P (Y |Fj)P (Fj)
, (8)

P (Fi|N) =
P (N |Fi)P (Fi)

n∑
j=1

P (N |Fj)P (Fj)
. (9)

These probabilities are kept as information with a shapelet and
will be exploited at the subsequent testing stage.

3) Best Top-K Shapelet Selection: To further accelerate
the training speed, shapelets are randomly sampled from the
candidate set with upper-limit quantity. Then these sampled
shapelets are sorted in descending order in terms of the
information gain, and the front k shapelets are the best top-k
selection. The procedure of the shapelet selection is explained
in Algorithm 2.

D. Random Forest Classifier Based on Bayesian Probabilities
for Multi-dimensional Time Series Classification

In this subsection, a random forest classifier is designed to
solve multi-dimension time series classification at the testing
stage. Taking one instance as an example. First, distances
between sensor signal time series and corresponding top-k
shapelets are calculated. Second, Bayesian probabilities are
obtained in accordance to the relationship between distances
and thresholds. Third, the average of k Bayesian probabilities
represents the probability that the instance belongs to a specific
class with respect to each signal. At this point, a Bayesian

Algorithm 2 Best top-k shapelets selection
Input: training dataset DStrain, shapelet candidates set SC,

and upper-limit of randomly sampled TotalShapelets
1: for j = 1:Nsignal do
2: X = DStrain(i)
3: for i = 1:Nclass do
4: Nshapelet = size(SC(i, j))
5: p = 0
6: while p < Nshapelet

&& p < TotalShapelets do
7: p++
8: IX = RandomOneShapelet(SC(i, j))
9: for q = 1:Nsample do

10: Distances = d(X(q), IX)

11: Gain(p), δ(p) = FindOSP(Distances)
12: Probabilities(p)

= BayesianProbability(δ,Distances)
13: Quality = AssessCandidate(Gain)
14: KbestShapelets(i, j)

= AddShapelet(IX,Quality)
15: return the best top-k shapelets KbestShapelets,

distance threshold of each shapelet δ,
information gain Gain,
and Bayesian probability Probabilities

Fig. 8. Top-level fault measuring system FPGA hardware execution latency.

probability table with the size of Nclass ×Nsignal is acquired.
Finally, each probability element in the table is treated as
a single feature for the random forest classifier, which is
exploited to solve the multi-dimensional FDL problem. While
training the classifier, the worth of features are evaluated by
considering the individual predictive ability of each feature
in accordance with the correlation-based feature subset selec-
tion [26] approach. The selected features (namely associated
shapelets) excluding redundancy are retained at the subsequent
testing stage.

E. Multi-Dimensional Time-Series Trend Extracted Shapelet-
Based Method

In summary, the proposed MTES method for FDL of the ISS
power system is illustrated in Figure 7. First, a multi-trend ex-
tracted based fast shapelet discovery approach is implemented
to collected the set of shapelet candidates. Second, the best
top-k shapelets for each class is further selected in terms of
information gain. Finally, the system condition is evaluated by
the random forest classifier based on Bayesian probabilities.
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V. COMPREHENSIVE HARDWARE-IN-THE-LOOP
EXPERIMENTAL SETUP FOR THE PROPOSED FDL METHOD

This section presents the validation of the proposed FDL
algorithm through HIL real-time emulation testing. The hard-
ware platform used for testing consists of two Xilinxr FPGA
boards. The first board, VCU118 [37], hosts the mathematical
model of the ISS, enables it in real-time and provides realistic
virtual stimuli for the measurement hardware. The second
board, VCU128 [38], serves as the measuring instrument for
implementing the proposed algorithm. It collects data from
the emulator and provides fault classification information at
the user observation terminal.

A. ISS System Emulator

The ISS real-time emulation platform is deployed on the
VCU118, consisting of a substantial allocation of computa-
tional resources including 1,182,240 LUTs, 2,364,480 FFs,
and 6,840 DSPs. The electrical components of the ISS, such
as PVs, switches, and converters, are described by mathe-
matical models in the form of ordinary differential equations
(ODEs) in state-space representation. The nonlinear elements
are solved using the implicit Trapezoidal integration rule,
with a prescribed integration step-size of 10µs. The proposed
model adheres to the electrical topology and voltage bus
specifications of the ISS [29]. It utilizes real solar radiation
data as the excitation source and generates signals in real-time,
employing the IEEE single-precision floating-point format.
These signals are then transmitted to the fault detector for
analysis and detection. Two external interfaces are employed
by the emulator, namely FPGA mezzanine card (FMC) and
dual small form-factor pluggable (QSFP), as illustrated on the
left side of Figure 9. The FMC interface converts discrete sim-
ulation signals into analog signals through a digital to analog
(DAC) adapter, which are then displayed on the Tektronixr

DPO 7054 oscilloscope for real-time observation of key circuit
voltage and current waveforms by the user. Simultaneously, the
circuit signals are stored in random access memory (RAM) and
transmitted to the faults measuring instrument via an appropri-
ate transmission control protocol/internet protocol (TCP/IP),
which will be elaborated in the next section.

B. Fault Measuring Instrument

The fault measurement instrument, also known as the FDL
monitor, is implemented on the Xilinxr VCU128 FPGA
board, featuring 4,032 BRAMs, 9,024 DSPs, 2,607,360 FFs,
and 1,303,680 LUTs. In this context, BRAM is employed for
the retention of substantial data volumes, DSP is harnessed
for digital signal processing, FF serves the purpose of state
retention and control, and LUT finds application in the imple-
mentation of logical functions. These resources collectively
constitute the foundational components of an FPGA, empow-
ering it to facilitate a diverse range of applications spanning
digital logic and signal processing. The latency and resource
consumption of the real-time FDL algorithms are summarized
in Table II. The total latency for computing a 500-step instance
is less than a sampling time (i.e. 10µs), which means that the

real-time FDL is able to be realized with FPGA acceleration.
Figure 8 illustrates the top-level algorithmic diagram of the
fault measurement system. The system comprises 25 signal in-
puts, and 69 distinct shapelets are evaluated as worthy features
for the classifier. Following signal normalization, Bayesian
probability (8) or (9) is obtained based on the calculated
distances using (2). These 69 computations are independent,
thus permitting concurrent processing, yielding 69 outputs and
consuming 54 delays. Thus far, encompassing signal input,
distance computation, and result output, the complete Bayesian
table process consumes a total of 134 delays. The 69 inputs
are directed to the random forest for logical decision-making,
consuming 284 delays. Ultimately, an 8-bit binary is outputted
to illuminate LEDs, effectuating fault detection.

The ISS emulator and FDL monitor communicate and
exchange data through the QSFP interface. Both boards, be-
longing to the Xilinxr UltraScale™ series, feature identical in-
terfaces, with 2-lane and 4-lane options available respectively,
facilitating scalable interconnection. The communication pro-
tocol used is the Aurora LogiCORE™ IP core, which facilitates
seamless integration of Xilinxr transceivers. The selected
Aurora 64B/66B is a lightweight, scalable, and open-access
link-layer protocol used for high-speed serial communication,
providing a low-cost, high data-rate, and flexible solution for
building serial data channels with throughput from 500 Mbps
to over 400 Gbps [39].

The top-level interface for HIL testing of FDL is as follows.
For the data transmission/acquisition end (VCU118), it con-
sists of two four-channel QSFP interfaces, with each channel
wired to a gigabit transceiver (GTY). Each clock rising edge
can transmit a maximum of 2 × 4 × 64 bits of data to the
receiver. Due to the numerous detection signals (25×32 bits),
all signals are written to RAM for storage, and then read and
sent via the Aurora IP. For the receiver end (VCU128), it
includes four four-channel QSFP interfaces. The data collected
through QSFP-GTY is written to the RAM. Once all the
required signals are ready within one sampling interval, the
deployed algorithm reads the signals to achieve FDL. As
for the user observation end, the 8-bit width general purpose
input/outputs (GPIO) LED are utilized, theoretically capable
of displaying 28 different classification results, sufficient to
demonstrate the 22 different faults designed in this experiment.
The above process and the entire HIL FPGAs integration
platform is illustrated in Figure 9. The efficiency (time &
resource consumption) of this FDL topology largely depends
on the Aurora protocol and the length of user-transmitted
data. According to [39], the user data bytes of this design
is 100 < 800 < 1000, with framing efficiency ranging from
96.12% to 99.18%. The resource consumption and latency
requirements for Aurora IP are shown in Table II.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results for the ISS EPDS are elaborated
to verify the proposed MTES based FDL method in this sec-
tion. Training and testing dataset are both collected from the
established Matlab model. As listed in Table I, 22 conditions
in total are considered to be classified.
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Fig. 9. Hardware-in-the-loop testing for fault measuring design of the ISS system implemented on multiple FPGA-based instruments.

TABLE II
SPECIFICS OF HARDWARE RESOURCE CONSUMPTION AND LATENCY.

ISS Emulator Xilinxr VCU118 FPGA
BRAM DSP FF LUT Latency (µs)

Total 6.22% 40.48% 10.08% 24.52% 10

FDL Monitor Xilinxr VCU128 FPGA
BRAM DSP FF LUT Latency (µs)

Bayesian Table 29 4 5,502 80,248 1.34

Random Forest 4 0 2,808 59,388 2.84

Total 33 (0%) 0 (0%) 8,310 (0%) 139,636 (11%) 4.18

Xilinxr Aurora Protocol
BRAM DSP FF LUT Latency (µs)

0 0 2,000 7,000 4

A. Data Preparation
The model of the ISS system is created in Matlab to simulate

different system conditions including 1 normal and 21 faulty
ones. The power of ISS strongly relies on photovoltaic power
modules. Therefore, the illumination intensity has significant
effect on the system. The cycle period of illumination is
normalized from 90 minutes to 20s in this model. Data
sampling starts after the system reaches the steady-state (20s
in this case). The start sampling point are evenly distributed
points between 20s to 40s for training, while random points
are picked between the same time range for testing. 500 time
steps at a sampling frequency of 100kHz are collected for one
signal, and faults are injected between 100th to 200th time-
step. For each instance, there are 25 voltage and current signals
as displayed in Table III. Finally, 100 instances per condition
for training and 60 for testing are prepared.

B. Selected Shapelet
At the off-line training stage, best top-k shapelets for each

condition of each signal are picked out by the proposed MTES

TABLE III
SIGNALS FOR EACH SAMPLE DATA COLLECTED FROM SIMULATED MODEL.

Location Signals Tabs

PVM Output voltage of 1st SAW uw1

Output voltage of 2nd SAW uw2

Output current of 1st SAW iw1

Output current of 2nd SAW iw2

Total output current ipvm
Output power difference with
irradiance input power

pdiff

MBSU Voltage of 120V bus u120

Voltage of 160V bus u160

ESS Output voltage of six BATS ub1∼6

Output current of battery group ibg
Branch current ibat
Total output voltage ubat

Pointing Output voltage of motor upmotor

system Output current of motor ipmotor

Branch current ipoint

Sun position tracking difference xdiff

Load DC branch current idc
DC voltage udc

AC branch current iac
AC voltage uac

method. Four examples of shapelets are presented in Figure
10, where the shape in red is a shapelet extracted from the first
class (or condition) of the signal as shown on top of each sub-
figure. Other two are the same signal collected under diverse
conditions. It is clear that the shapelet can match the time
series belonging to the same class better, which validates that
the selected shapelets have the ability of representing the shape
feature of the specific class.
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Fig. 10. Examples of the shapelet selection: (a) output current of the 1st SAW
(iw1); (b) branch current of ESS (ibat); (c) voltage of 120V bus (u120); (d)
branch current of pointing system (ipoint).

C. FDL Results for the ISS Power System

In the FDL experiment, testing datasets are collected from
the emulated model to validate the effectiveness of the pro-
posed method. Finally, the accuracy reaches over 96.29%.
Specifically, there are 1271 in 1320 instances that are correctly
classified. Major discrepancy happen between Fault 4 and 6
(13 errors) as well as Fault 8, 9 and 10 (7 errors). It is
reasonable to expect some misclassification, because under
lower illumination intensity, the differentiation between vari-
ation trends of time series in different conditions becomes
significantly lower. In the EPDS model, the entire period
of illumination is emulated and the dataset contains samples
collected under diverse illumination including a proportion of
low intensity. For instance, (a) and (b) of Figures 11, 12, 13
and 14 are time series of two different conditions under lower
illumination. It is obvious that discrimination between (c) and
(d), which are samples collected under higher illumination, is
much easier than (a) and (b). Therefore, if higher confidence
level is given to the evaluation with high illumination, most
misclassification can be corrected.

D. Comparison with Other Data-Driven Methods

State-of-the-art data-driven methods, such as recurrent neu-
ral network (RNN), gated recurrent unit (GRU) and convo-
lutional neural network (CNN), are prevailing for the so-
lution of time-series classification. Comparative experiments
are conducted to demonstrate advantages of the proposed
MTES method. Datasets of training and testing for different
methods are the same. The architectures of networks are
decided by trial and error experiments in consideration of
less time consumption with reasonable accuracy and resource
utilization. The input of networks is 25 features from a batch

Fig. 11. Example of emulated signal of iw1: (a) Fault 4 under low
illumination; (b) Fault 6 under low illumination; (c) Fault 4 under high
illumination; (d) Fault 6 under high illumination.

Fig. 12. Example of emulated signal of uw2: (a) Fault 10 under low
illumination; (b) Fault 9 under low illumination; (c) Fault 10 under high
illumination; (d) Fault 9 under high illumination.

size of samples. RNN and GRU have one RNN/GRU layer
with 32 hidden units. While a kernel size of 2 is applied to
each of the 8 filters for CNN1D layer which is connected
to a maxpool layer sliding a window of height 5 across
the output of CNN1D layer. Then one fully connected layer
with 16 hidden units filtered by ReLU activation function is
linked. The output layer is a fully connected layer cascaded
to a softmax classifier having 22 classes. The batch size for
training is 64, and the optimizer is Adam with the learning
rate of 0.001. The hardware resource consumption, latency
and accuracy of the three methods are shown in Table IV.
Compared with Table II, the algorithm of MTES method
is simpler to implement on FPGA since it consumes much
less execution time and hardware resources than others. More
importantly, the accuracy for FDL using MTES is obviously
higher.
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Fig. 13. Example of emulated signal of pdiff : (a) Fault 8 under low
illumination; (b) Fault 9 under low illumination; (c) Fault 8 under high
illumination; (d) Fault 9 under high illumination.

Fig. 14. Example of emulated signal of uw1: (a) Fault 8 under low
illumination; (b) Fault 10 under low illumination; (c) Fault 8 under high
illumination; (d) Fault 10 under high illumination.

VII. CONCLUSION

A shapelet-based multi-dimensional time-series classifica-
tion method for real-time FDL on the ISS EPDS is proposed in
this work. A multi-trend extracted shapelet discovery approach
was created to fast extract shape features from raw time-series
signals. Then best top-k shapelets were further selected from
the shapelet candidate set using randomization and information
gain. The selected shapelets manifested that they had the abil-
ity of representing the shape feature of the specific class. Fi-
nally, faults were detected and localized by a designed random
forest classifier, which learned from a Bayesian probability
table combining information of all multi-dimensional time
series. Besides, shapelets for testing in real time were further
shrunk by the correlation-based feature subset selection. The
experiment showed that over 96% accuracy was achieved.
With the help of the FPGA hardware implementation, system
conditions can be estimated in less than 10µs to realize the
real-time FDL, which was verified through the HIL real-time

TABLE IV
SPECIFICS OF HARDWARE RESOURCE CONSUMPTION, LATENCY, AND

ACCURACY OF OTHER METHODS.

BRAM DSP FF LUT Latency (ms) Accuracy
RNN 457 3,038 380,026 601,996 0.248 67.95%
GRU 457 6,112 544,075 1,103,740 0.566 89.84%
CNN 112 1,438 124,043 234,833 1.087 88.11%

emulation testing. Comparing with other state-of-the-art data-
driven methods, MTES method reached better classification
accuracy with much less time and resource consumption on
hardware.

The application of MTES method could be extended to
any TSC tasks having clear clue of signal variation trend.
Furthermore, the classification accuracy should be guaranteed
as long as the trend in a class is definite and consistent, even
without tremendous data support. On the contrary, misclas-
sification may be made if the trend is variable in one class
or not obviously different between classes. This also was the
reason that misclassifications were made occasionally in this
study. The signal trends between two faults became similar
on the condition of low illumination intensity, which could be
avoided by increasing the confidence level of the evaluation
with higher illumination for the FDL task of the ISS.

REFERENCES

[1] R. C. Dempsey, D. E. Contella, D. H. Korth, M. L. Lammers, C. R.
McMillan, E. Nel-son, R. J. Renfrew, B. T. Smith, S. A. Stover,
and E. A. V. Cise, “The international space station: operating
an outpost in the new frontier.” https://www.nasa.gov/feature/
new-nasa-e-book-offers-inside-look-at-space-station-flight-controllers,
2018. [Online].

[2] NASA, “Reference guide to the international space station.” https://www.
nasa.gov/pdf/508318main ISS ref guide nov2010.pdf, 2010. [Online].

[3] J. Zhenhua, L. Shengyi, and R. A. Dougal, “Design and testing of
spacecraft power systems using VTB,” IEEE Trans. Aerosp. Electron.
Syst., vol. 39, no. 3, pp. 976–989, 2003.

[4] Y. Sun, L. Guo, Y. Wang, Z. Ma, and Y. Niu, “Fault diagnosis for space
utilisation,” J. Eng., vol. 2019, no. 23, pp. 8770–8775.

[5] K. Kim, M. Capell, A. Lebedev, G. Viertel, and J. Yang, “A power
distribution system for the ams experiment on the International Space
Station,” J. Instrum., vol. 1, no. 12, p. T12001, 2006.

[6] M. Boucher, “Critical space station spacewalk a
success.” http://spaceref.com/international-space-station/
critical-space-station-spacewalk-a-success.html, 2012. [Online].

[7] S. J. Lu, P. Siqueira, V. Vijayendra, H. Chandrikakutty, and R. Tessier,
“Real-time differential signal phase estimation for space-based systems
using FPGAs,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2,
pp. 1192–1209, 2013.

[8] P. P. Lin and K. Jules, “An intelligent system for monitoring the micro-
gravity environment quality on-board the international space station,”
IEEE Trans. Instrum. Meas., vol. 51, no. 5, pp. 1002–1009, 2002.

[9] M. Khanafer and S. Shirmohammadi, “Applied AI in instrumentation
and measurement: the deep learning revolution,” IEEE Instrum. Meas.
Mag., vol. 23, no. 3, pp. 10–17, 2020.

[10] I. M. Karmacharya and R. Gokaraju, “Fault location in ungrounded
photovoltaic system using wavelets and ANN,” IEEE Trans. on Power
Del., vol. 33, no. 2, pp. 549–559, 2018.

[11] F. Aziz, A. Ul Haq, S. Ahmad, Y. Mahmoud, M. Jalal, and U.
Ali, “A novel convolutional neural network-based approach for fault
classification in photovoltaic arrays,” IEEE Access, vol. 8, pp. 41889–
41904, 2020.

[12] C. Chen, N. Lu, B. Jiang, Y. Xing, and Z. Zhu, “Prediction interval
estimation of aeroengine remaining useful life based on bidirectional
long short-term memory network,” IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–13, 2021.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2023.3336447

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 01,2023 at 16:05:32 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



12

[13] B. Ma, Z. Liu, Q. Dang, W. Zhao, J. Wang, Y. Cheng, and Z. Yuan,
“Deep reinforcement learning of UAV tracking control under wind
disturbances environments,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–
13, 2023.

[14] Q. Liu, T. Liang, Z. Huang, and V. Dinavahi, “Real-time FPGA-based
hardware neural network for fault detection and isolation in more electric
aircraft,” IEEE Access, vol. 7, pp. 159831 – 159841, 2019.

[15] J. J. Q. Yu, Y. Hou, A. Y. S. Lam, and V. O. K. Li, “Intelligent
fault detection scheme for microgrids with wavelet-based deep neural
networks,” IEEE Trans. on Smart Grid, vol. 10, no. 2, pp. 1694–1703,
2019.

[16] D. K. Asl, A. Hamedi, M. Shadaei, H. Samet, and T. Ghanbari, “A non-
iterative method based on fast fourier transform and least square for
fault locating in DC microgrids,” in EEEIC / I CPS Europe, pp. 1–5,
2020.

[17] K. Thattai, A. Sahoo, and J. Ravishankar, “On-line and off-line fault
detection techniques for inverter based islanded microgrid,” in CPE-
POWERENG, pp. 1–6, 2018.

[18] L. Ye and E. Keogh, “Time series shapelets: A new primitive for data
mining,” in Proc. 15th ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining, p. 947–956, 2009.

[19] Z. Li, R. Outbib, S. Giurgea, and D. Hissel, “Fault diagnosis for
PEMFC systems in consideration of dynamic behaviors and spatial
inhomogeneity,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 3–
11, 2019.

[20] X. Yang, Y. Zheng, Y. Zhang, D. S.-H. Wong, and W. Yang, “Bearing
remaining useful life prediction based on regression shapalet and graph
neural network,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022.

[21] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm
for discovering time series shapelets,” in Proc. 2013 SIAM Int. Conf.
Data Mining, pp. 668–676, 2013.

[22] H. Zhao, Z. Pan, and W. Tao, “Regularized shapelet learning for scalable
time series classification,” Computer Netw., vol. 173, pp. 107–171, 2019.

[23] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learn-
ing time-series shapelets,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, p. 392–401, 2014.

[24] X. Renard, M. Rifqi, W. Erray, and M. Detyniecki, “Random-shapelet:
An algorithm for fast shapelet discovery,” in IEEE Int. Conf. DSAA,
pp. 1–10, 2015.

[25] Q. Meng and P. Pu, “RLS: An efficient time series clustering method
based on u-shapelets,” Intell. Data Anal., vol. 22, no. 4, pp. 767–785,
2018.

[26] M. A. Hall, Correlation-Based Feature Selection for Machine Learning.
PhD thesis, The University of Waikato, Hamilton, New Zealand, 1998.

[27] V. Dinavahi and N. Lin, Real-Time Electromagnetic Transient Simulation
of AC-DC Networks. Piscataway, NJ, USA: Wiley, 2021.

[28] A. M. McNelis, R. F. Beach, J. F. Soeder, N. B. McNelis, R. May,
T. P. Dever, and L. Trase, “Simulation and control lab development for
power and energy management for NASA manned deep space missions,”
in 12th Int. Energy Convers. Eng. Conf., pp. 1–8, 2014.

[29] W. Chen, S. Zhang, and V. Dinavahi, “Real-time ML-assisted hardware-
in-the-loop electro-thermal emulation of LVDC microgrid on the interna-
tional space station,” IEEE Open J. Power Electron., vol. 3, pp. 168–181,
2022.

[30] I. Al-Zyoud and K. Khorasani, “Neural network-based actuator fault
diagnosis for attitude control subsystem of a satellite,” in World Autom.
Congr., pp. 1–6, 2006.

[31] M. S. Arani and M. A. Hejazi, “The comprehensive study of electrical
faults in PV arrays,” Journal of Electrical and Computer Engineering,
vol. 2016, pp. 1–10, 2016.

[32] E. Aghabarari and C. J. Adams, “Off-nominal conditions and caution and
warning techniques for the electric power system for the international
space station,” in IECEC-97 Proc. 32nd Intersociety Energy Conv. Eng.
Conf., vol. 4, pp. 2246–2251, 1997.

[33] A. Mehmood, H. A. Sher, A. F. Murtaza, and K. Al-Haddad, “A
diode-based fault detection, classification, and localization method for
photovoltaic array,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.

[34] M. K. Alam, F. Khan, J. Johnson, and J. Flicker, “A comprehensive re-
view of catastrophic faults in PV arrays: Types, detection, and mitigation
techniques,” IEEE J. Photovolt., vol. 5, no. 3, p. 982–997, 2015.

[35] T. Kwa-Sur, Y. Lifeng, and N. Dravid, “Modeling the protection system
components of the space station electric power system,” IEEE Trans.
Aerosp. Electron. Syst., vol. 30, no. 3, pp. 800–808, 1994.

[36] G. Di Leo and F. Sardanelli, “Statistical significance: p value, 0.05
threshold, and applications to radiomics—reasons for a conservative
approach,” European Radiology Experimental, vol. 4, no. 18, pp. 1–8,
2020.

[37] Xilinx, “VCU118 evaluation board user guide.” https:
//www.xilinx.com/support/documentation/boards and kits/vcu118/
ug1224-vcu118-eval-bd.pdf, 2018. [Online].

[38] Xilinx, “VCU128 evaluation board user guide.” https:
//www.xilinx.com/support/documentation/boards and kits/vcu128/
ug1302-vcu128-eval-bd.pdf, 2018. [Online].

[39] Aurora 64B/66B LogiCORE IP Product Guide, PG074(V11.2). San Jose,
CA, USA: Xilinx Inc., 2017.

Qin Liu (Student Member, IEEE) received the
B.Eng. degree in measurement and control technol-
ogy and instrument from Beijing Jiaotong Univer-
sity, Beijing, China, in 2013, and the Ph.D. degree
in mechanical engineering from Beijing Jiaotong
University in 2021. She was a visiting Ph.D. stu-
dent in Electrical and Computer Engineering at the
University of Alberta, Edmonton, Alberta, Canada,
from 2018 to 2020. Her research interests include
real-time simulation and control of power systems,
hardware acceleration, and machine learning-based

fault diagnosis.

Weiran Chen (Student Member, IEEE) re-
ceived the B.Eng. degree in electrical engineering
from Harbin Engineering University, Harbin, Hei-
longjiang, China, in 2018. He is currently pursuing
the Ph.D. degree in electrical and computer en-
gineering at the University of Alberta, Edmonton,
AB, Canada. His research interests include real-
time simulation of power systems, power electronic
systems, and field programmable gate arrays.

Venkata Dinavahi (Fellow, IEEE) received the
B.Eng. degree in electrical engineering from Visves-
varaya National Institute of Technology (VNIT),
Nagpur, India, in 1993, the M.Tech. degree in elec-
trical engineering from the Indian Institute of Tech-
nology (IIT) Kanpur, India, in 1996, and the Ph.D.
degree in electrical and computer engineering from
the University of Toronto, Ontario, Canada, in 2000.
He is currently a Professor with the Department of
Electrical and Computer Engineering, University of
Alberta, Edmonton, Alberta, Canada. He is a Fellow

of the Engineering Institute of Canada (EIC) and a Fellow of the Asia-Pacific
Artificial Intelligence Association (AAIA). His research interests include real-
time simulation of power systems and power electronic systems, electromag-
netic transients, device-level modeling, artificial intelligence machine learning,
large-scale systems, and parallel and distributed computing.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2023.3336447

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 01,2023 at 16:05:32 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY




