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Abstract

In recent days, hyperelastic composites (i.e., elastomeric composites reinforced with

fibers) have shown promising outcomes in various engineering applications involv-

ing tissue engineering, shape-morphing structures, microfluidics, wearable devices,

biomechanics, and soft robotics. Typically, elastomeric materials can sustain a large

range of strains e.g., Ecoflex can sustain up to 10 times its initial length. When

the elastomeric materials are used in conjunction with systematically arranged con-

tinuous fibers such as fiber mesh and interpenetrating networks, they display a dis-

tinct strain-stiffening phenomenon, known as J-shaped stress-strain behavior. This

unique characteristic makes elastomeric composite highly useful in tissue engineering,

biomedical, and other engineering applications. Moreover, when elastomeric materi-

als are filled with nanofibers, their mechanical, conductive, and dielectric properties

can be improved greatly making them proper candidates for the design of flexible

and wearable electronic devices. Due to the great potential of these materials, the

modeling of hyperelastic composites has become a subject of intense study during

the last few decades. The primary motivation behind this research study is to de-

velop a generalized and complete hyperelastic model for the fiber-reinforced composite

material. The presented generalized model may accommodate some unique features

including, higher-order gradient continua, precise characterization of fiber reinforce-

ment, pseudoelasticity, damage mechanics, and multi-scale capability that makes the

model uniquely versatile in the modeling and design of hyperelastic composites. The

existing hyperelastic models fail to attain this level of versatility.

We started by presenting a continuum model for hyperelastic material reinforced
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with unidirectional fibers resistant to flexure and extension. Which is then refined to

accommodate bi-directional fibers having different orientations (i.e., 45 and 90-degree

orientations), different types of nonlinear extension potential (i.e., polynomial and ex-

ponential), and torsional resistance. The response of elastomeric matrix material is

characterized by using the Moony-Rivlin strain energy potential. The kinematics of

the embedded fibers are formulated via the first and second gradient of continuum

deformations through which the stretch, bending, and torsional responses of fibers

are modeled. By means of variational principles and a virtual work statement, the

Euler equilibrium equation and the associated boundary conditions are derived. The

system is then numerically solved via custom-built numerical procedures. The results

from the generalized model demonstrate excellent correspondence to the experimen-

tal results in capturing the deformations and mechanical responses under different

loading conditions including pure bending, uniaxial tension, and out-of-plane defor-

mations. The model is then further refined by introducing damage parameters and

damage functions inspired by Ogden Roxburgh’s model and Weibull’s fiber damage

model. The obtained models can successfully predict the Mullins effects in biologi-

cal soft tissues and damage mechanics due to fiber breakage. Furthermore, we have

extended our model to accommodate the size, orientation effects, and volume frac-

tion of the reinforcing fibers by introducing the shear-lag, Krenchel orientation, and

energy fraction parameters, respectively. This extension allows the model to pre-

dict the responses of nanofiber-reinforced hyperelastic composites having different

micromechanical characterizations. We also propose a non-uniform interface stiffness

parameter to incorporate the damage mechanics of nanofiber-reinforced elastomeric

composites due to interfacial debonding. The resulting model closely assimilates both

the gradual and rapid debonding processes of a certain type of soft/stiff matrix-based

nanocomposite. The practical utility of the presented generalized model may be ex-

pected in the design and analysis of elastomeric composites for different engineering

applications.
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Chapter 1

Introduction

We begin this chapter with a brief introduction to fiber-reinforced hyperelastic com-

posite materials, presented in section 1.1. In section 1.2, some applications of the

hyperelastic composite are presented in various engineering fields. Some background

on the constitutive modeling of the hyperelastic material is discussed in section 1.3.

In section 1.4, the goals and motivations of the present study are outlined. Lastly, in

section 1.5, the structure of the thesis is discussed.

1.1 Hyperelastic composite material

Hyperelastic composites are a special class of materials that undergo large elastic

deformations and return to their initial shape when the load is removed. These ma-

terials show both a nonlinear material behavior as well as large shape changes [1].

A hyperelastic composite is a complex multi-component system where an elastomer

or other hyperelastic-type matrix material is reinforced with either continuous fibers

or nanofiber materials. One of the prominent examples of hyperelastic composite

material is elastomeric composite. The properties of these composites depend on the

type of elastomer (or mixtures of elastomers) as well as the type of fillers or fibers

used and their arrangements in the matrix [2]. Depending on the types of reinforce-

ment used for the composite material, it can be broadly classified into two major

categories: elastomeric matrix reinforced with long continuous fiber and elastomeric

matrix reinforced with nanofillers or short fibers.

Typically, elastomeric materials can sustain a large range of strains e.g., Ecoflex

can sustain up to 10 times its initial length. When the elastomeric materials are
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used in conjunction with systematically arranged fibers such as fiber mesh and in-

terpenetrating networks, they display a distinct strain-stiffening phenomenon, known

as J-shaped stress-strain behavior [3]-[4]. These unique characteristics of elastomeric

composites make them suitable for a large number of engineering applications. In

particular, J-shaped stress-strain behavior is commonly observed in many soft bio-

logical tissues, such as arteries, veins, cardiac muscles, skin, and tendons [5]-[6]. A

considerable number of studies have been devoted to the fabrication and analysis of

synthetic composites that can sustain J-shape stiffening in order to imitate closely the

response of such soft biological tissues [4], [7]. Another interesting application of these

materials lies in the development of shape-morphing structures [8]. Shape-morphing

structures can be very practical in considerable applications including aircraft wings,

deployable structures, and soft robotics. On the other hand, elastomeric composites

reinforced with nanofillers are also very practical in engineering applications including

flexible sensors and wearable devices due to their improved mechanical, thermal, con-

ductive, and dielectric properties. For example, nanocomposites of barium titanate-

filled Ecoflex or polydimethylsiloxane (PDMS) are excellent candidates in wearable

sensor applications due to their excellent flexibility and capacitive properties [9]. The

nanocomposite of carbon nanotube (CNT) in silicone-vinyl-methyl-silicone (VMQ)

elastomer is useful in silicone-based stretchable electronics [10].

Due to these promising applications of elastomeric composites in recent years,

the modeling of hyperelastic composites has become a subject of intense study. The

primary theme of this thesis is to present a generalized hyperelastic model for elas-

tomeric composites that may help to understand better the deformation kinematics,

mechanical response, and damage mechanics of these composites. Such a model

would be highly beneficial in the precise modeling and design of engineering devices

and structures made up of elastomeric composites.

1.2 Applications of hyperelastic composites

In recent days, hyperelastic composites, such as elastomeric composites reinforced

with fiber or nanofillers have found numerous promising applications in various engi-

neering fields involving biomedical applications, wearable devices, soft robotics, and
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shape-morphing structures. In this section, the applications of hyperelastic compos-

ites are discussed in more detail.

1.2.1 Biomedical application

Elastomeric materials reinforced with fibers have consistently been the subject of

intense study [11]–[16] for their practical importance in biomaterial science and engi-

neering including in the areas of tissue engineering and biomechanics. When the elas-

tomeric matrix materials are used in conjunction with systematically arranged fiber

families they form highly elastic materials that display direction-dependent properties

(orthotropic properties) and sustain rapid strain stiffening response at low strain lev-

els (20%–50%), known as ‘ J-shaped’ stress-strain behavior [4]. In fact, J-shaped and

orthotropic stress-strain behaviors are the characteristics of the biological materials

such as blood vessels, tendons, muscles, skin, ligaments, cartilage, and other tissues

([5], [7], and [17]). This, in turn, suggests that biological tissues may be mimicked

via the systematic adjustment and/or optimization of the mechanical responses of

elastomeric composites. For example, one such interesting case can be found in [7]

(see, Fig. 1.1 (a)). In [7], authors tried to mimic the J-shaped stress-strain behavior

using an elastomeric composite for producing the Windkessal effect, which ensures

continuous flow of blood through the aorta. This new material made from elastomeric

composite may be used to replace the non-compliant plastic tube found in the ex vivo

heart perfusion device which is used to preserve the donor in a warm beating state

during transfer between extraction and implantation surgeries [7]. Another interesting

case can be found in [18], where a skin-inspired stretchable electronic circuit is de-

veloped made up of elastomeric composite with programmable mechanical properties

(see, Fig. 1.1 (b)). Sudhanshu et. al in [19], developed a 3D printed mechanically rep-

resentative aortic model made of gelatin fiber reinforced silicone (GFRS) composite,

that may contribute to the improvement in the transcatheter aortic valve replacement

(TAVR) treatment (see, Fig. 1.2). Some studies have also been carried out ([20], and

[21]–[28]) to model the pseudoelastic nature of highly elastic biological soft tissues

found in the flight muscles using anisotropic hyperelastic composites which might be

beneficial in designing soft-bodied robots with multimodal locomotion.
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Figure 1.1: (a) An illustration of fabricated aorta from elastomeric composite [7]. (b)
skin-inspired stretchable electronic circuit [18].

1.2.2 Wearable devices

Recently, hyperelastic nanocomposites reinforced with nanofillers have found numer-

ous promising applications related to wearable and highly flexible sensors, as reported

in multiple research studies ([29]–[32], and [33]-[34]). These ultra-stretchable sensors

possess great potential in human motion monitoring (see, Fig. 1.3), medical rehabil-

itation, health monitoring, human-computer interaction, and soft robots ([29]–[32],

and [34]). Authors in [29], developed an ultra-stretchable sensor made up of multi-

walled carbon nanotubes (MWCNTs) and a highly stretchable elastomeric material

(Ecoflex) which turns out to be as soft as the human skin. The sensor demonstrates

high stretchability with outstanding linearity up to 200% strain which makes it suit-

able for various human motion detections (e.g., finger bending (Fig. 1.3 (d)), walking

(Fig. 1.3 (g)) and speaking (Fig. 1.3 (c)). Gu et. al. presented a stretchable
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Figure 1.2: (a) 3D printed aortic model of silicone (scale bar = 10 mm), (b) GFRS
aortic model after postprocessing (scale bar = 10 mm), (c) Printed silicon model
reinforced with gelatin fibers (scale bar = 10 mm), (d) Tensile tests results of the
materials [19].

strain sensor based on the modulation of optical transmittance of carbon nanotube

(CNT)-embedded Ecoflex, which exhibits good stretchability (ε ∼ 400%), high lin-

earity (R2 > 0.98), excellent stability, high sensitivity (gauge factor ∼ 30), and small

hysteresis (∼ 1.8%) [30]. The sensor is further implemented to detect the bending

motions of the fingers, neck movements (Fig. 1.3 (b)), and subtle human motions.

In [35], a very high strain, up to 620% was able to measure using a flexible sensor

made up of CNT and elastomeric matrix which is ∼ 120 times greater than those

of conventional metallic strain sensors. Zhang et. al. [33] reported a highly stretch-

able, flexible, and sensitive mono-filament tensile strain sensor, based on multi-walled

carbon nanotubes/Ecoflex nanocomposites which provided good linearity (10.77%),

low hysteresis (1.63%), good stability (6000 cycles under 100% strain), and ultra-high
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strain range (ε = 1300%). There are other applications of highly flexible capacitive

sensors made from PDMS or Ecoflex matrix, filled with various dielectric nanofillers

i.e., Barium titanate, CCTO, Ag-Nanowire, etc. [36]-[37].

Figure 1.3: Illustration of different wearable sensors made from elastomeric nanocom-
posite for human motion detection in various locations.[29]–[32]

1.2.3 Soft robotics

The advantages of soft robots have rapidly been gaining the attention of the robotics

community. Soft robotics can help us understand living creatures better as we can

recreate them with more life-like movements and bodies. Furthermore, it provides

increased flexibility and gentle manipulation of delicate objects [38]. Its flexible body

allows it to fit through narrow openings in order to reach normally inaccessible loca-

tions [39]. Elastomeric composites reinforced with fibers are very promising materials

in soft robotics applications. In [39], a fiber-reinforced soft elastomer is used to
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build inflatable hemispherical and conical membranes inspired by the mantles found

in nature [39] (see, Fig. 1.4). It has been demonstrated that the variable material

properties afforded by the fiber reinforcement with intersecting fiber patterns help

the structure to deform into a prescribed hemispherical geometry when inflated. It is

also found that the geometry is constrained to a specified configuration even when the

internal pressure and external load changes [39]. A practical application for the mem-

brane was presented in [39], where the membrane is used to control the buoyancy of

a bioinspired autonomous underwater robot. Cacucciolo et. al. [40] developed a soft

bending fluidic actuator using fiber-reinforced hyperelastic material. Fiber-reinforced

elastomeric composites are likewise used in the development of soft grippers [41] (see,

Fig. 1.5).

Figure 1.4: fiber-reinforced elastomeric membrane at various stages of the inflation
test [39]

Figure 1.5: Pneumatic soft gripper [41].
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1.2.4 Shape-morphing structures

The concept of shape-morphing structure is becoming exceedingly appealing nowa-

days, especially in the field of aerospace. The use of morphing technology can make

aerospace structures aerodynamically more optimized [8]. Reinforced hyperelastic

composites may be a very promising candidate for self-morphing technology due to

their tailor-made mechanical properties, increased flexibility, and tear resistance. In

engineering terms, the word morphing is referred to continuous shape change in a

structure or object i.e., no discrete parts are moved relative to each other but one en-

tity deforms upon actuation [8]. As an example, on an aircraft wing this could mean

that a hinged aileron and/or flap would be replaced by a shape-morphing structure

that can transform its surface area and camber (shape) without opening gaps in and

between itself and the main wing, as a result, the aerodynamics efficiency could be

improved a great deal [8], [42]. At the NASA Dryden Flight Research Center, a

shape-morphing structure was experimented with in an aircraft where six wing lead-

ing edges (three on each wing) and two trailing edge segments (one on each wing)

employed flexible, smooth upper surfaces made out of flexible composite material and

actuated by hydraulic actuators which were used to vary the wing camber [8]. Lock-

heed Martin Skunk Works [8], [43] has been focusing on a folding wing concept i.e.,

out-of-plane morphing and targeting to achieve a 2− 8 times increase in wing surface

area which can be applied to small UAV for US Air Force missions (see, Fig. 1.6 (a)).

Hypercomp and NextGen Aeronautics [8], [44] derived a sliding wing concept, i.e.,

in-plane morphing, also called Batwing (see, Fig. 1.6 (b)). NextGen tested a 45kg

remote-controlled model in 2006 that can change sweep from 15◦ to 35◦ and wing

area by 40% in five to ten seconds. It has a silicone elastomeric composite skin with

reinforcing fibers as an underlying ribbon structure to improve out-of-plane stiffness

that can stretch up to 100% (see, Fig. 1.6 (b)). Kikuta [45] experimentally tested

flexible composite material made up of Tecoflex 80 (a hyperelastic matrix reinforced

with woven material like Spandura) to investigate the material’s viability as morph-

ing skins that could be useful in an aircraft wing. Based on the research findings of

Kota et. al. [46] and Weiss [47], the FlexSys company designed and manufactured an

aerofoil section made up from compliant structures, the Mission Adaptive Compliant
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Wing (MACW) (see, Fig. 1.6 (c)) which can change the camber by morphing the

trailing and leading edges. The compliant structures consist of flexible membranes

acting as the primary aerodynamic structure and are reinforced by a network of fairly

rigid longitudinal or radiating tubular hollow veins containing a fluid.

Figure 1.6: (a) Lockheed Martin’s Z-wing morphing concept. (b) NextGen’s Batwing
morphing concept. (c) FlexSys MACW installed on White Knight for flight tests [48].

Another potential application of shape-morphing structures is in the development

of flexible actuators made up of elastomeric composites. McKibben first developed

such flexible actuators which are also called pneumatic artificial muscle (PAM) actua-

tors that are made up of a tube-like membrane reinforced with a fiber mesh arranged

in a double helical weave, called an inflatable inner bladder. The inner bladder can

be pneumatically pressurized causing a lengthwise contraction and radial expansion.

Typical materials used for the membrane are latex or silicone rubber while nylon is

normally used for the reinforcing fibers [8]. Devereux and Tyler [49], later on, showed

how PAMs could be used for morphing applications. The shape morphing can be

achieved by embedding several braided composite tubes (PAMs) into an elastomeric
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matrix making a multi-cellular FMC adaptive structure [8] (see, Fig. 1.7).

Figure 1.7: PAM actuators [50] and pressurisation scheme of actuators in an elastomer
matrix [51].

1.3 Background on the constitutive modeling of

hyperelastic materials

The study of the mechanical response of hyperelastic composite materials is getting

intensive attention due to their promising applications. Elastomer composites ex-

hibit large deformation, and the stress-strain response is typically non-linear. Due

to the complexity, high-precision prediction of the mechanical behavior for this type

of material cannot be achieved without dedicated and reliable hyperelastic constitu-

tive models [52]. In this section, a brief classification of the hyperelastic constitutive

models from the existing literature is presented.

Elastomeric composite can deform nonlinearly with large deformation, and it can

almost completely recover its original configuration when the external force is removed

[53]. Due to this nature, the constitutive models of such material are generally rep-

resented by an energy density function (W) rather than a direct stress-strain relation

[53]. The hyperelastic constitutive models can be broadly classified into 3 categories:

Phenomenological models, Micromechanical network models, and hybrid models [53].

1.3.1 Phenomenological models:

These models are based on fitting the experimental data of mechanical response via

mathematical equations and in most cases, the material parameters do not have any

physical meaning [53]-[54]. Phenomenological models [55]–[60] may be further divided

into series function model, power law, exponential or logarithmic function model, and
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limiting chain extensibility models [53]. These models can be expressed via stretch

ratio [61], strain invariant or using the both [62]-[63]. Some of the most popular

examples of Phenomenological models are presented below:

1.3.1.1 Fung:

Fung model can capture complex behaviors typically observed in living tissues and

it serves as a starting point for many bioengineering modeling [64]. For isotropic

material, the energy density function based on the Fung model can be expressed with

respect to the principal stretches (λi) as follows:

W =
1

2

[︂
a
(︁
λ21 + λ22 + λ23 − 3

)︁
+ b
(︂
ec(λ

2
1+λ2

2+λ2
3−3) − 1

)︂]︂
. (1.1)

1.3.1.2 Mooney-Rivlin:

In Mooney-Rivlin hyperelastic material model, the strain energy density function is

expressed as a linear combination of the two invariants of the left Cauchy-Green de-

formation tensor. The model was proposed by Melvin Mooney in 1940 and expressed

in terms of invariants by Ronald Rivlin in 1948 [65]. For an incompressible material,

the strain energy density function based on the incompressible Mooney-Rivlin model

can be expressed as follows:

W = C1 [(I1 − 3) + C2 (I1 − 3)] , (1.2)

where the 1st and 2nd invariants I1 and I2 can be expressed as:

I1 = λ21 + λ22 + λ23, (1.3)

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1.

1.3.1.3 Ogden:

The Ogden model can describe the non-linear stress-strain behavior of complex ma-

terials such as rubbers, polymers, and biological tissue. The model was developed by

Raymond Ogden in 1972 [66] and for incompressible material, the Ogden model can

be expressed as follows:

W =
N∑︂
p=1

µp

αp

(︂
λ
αp

1 + λ
αp

2 + λ
−αp

2 λ
−αp

3 − 3
)︂
. (1.4)
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1.3.1.4 Polynomial:

The polynomial hyperelastic material model is a phenomenological model of rubber

elasticity. In this model, the strain energy density function is in the form of a poly-

nomial involving the two invariants I1 and I2 of the left Cauchy-Green deformation

tensor [67]. Based on the incompressible Polynomial model, the strain energy density

function can be expressed as follows:

W =
N∑︂

i,j=1

Cij (I1 − 3)i (I2 − 3)j . (1.5)

Other popular Phenomenological models include: Saint Venant-Kirchhoff, Yeoh,

and Marlow [68].

1.3.2 Micromechanical network models:

Micromechanical network models are based on the physical and statistical methods of

polymer chain networks and material microstructure [53]. The material parameters of

micromechanical network models do have physical interpretations and can explain the

relationship between microstructures and properties of the material [53]. According

to the statistical characteristics of macromolecular chains, micromechanical network

models can be further divided into three types [53]: Gaussian chain network mod-

els [69], non-Gaussian chain network models [70]-[71], and mixed micromechanical

network models [72]–[75]. Some of the most popular examples of Micromechanical

network models are presented below:

1.3.2.1 Arruda-Boyce model

The Arruda–Boyce model is a hyperelastic constitutive model that describes the me-

chanical behaviors of rubber and other polymeric substances. This model is based

on the statistical mechanics of a material with a cubic representative volume element

containing eight chains along the diagonal directions [76]. This model was published

by Ellen Arruda and Mary Cunningham Boyce in 1993. The strain energy density

function for the incompressible Arruda–Boyce model is given by

W = NKBθ
√
n

[︃
βλchain −

√
n ln

(︃
sinh β

β

)︃]︃
, (1.6)
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where n is the number of chain segments, KB is the Boltzmann constant, θ is the

temperature in kelvins, N is the number of chains in the network of a cross-linked

polymer, λchain =
√︂

I1
3
, β = Γ−1

(︂
λchain√

n

)︂
. Where, I1 is the first invarient of the

Cauchy-Green deformation tensor and Γ−1(x) is the inverse Langevin function.

1.3.2.2 Neo-Hookean model

Neo-Hookean is a hyperelastic model similar to Hooke’s law, that can be used for

predicting the nonlinear stress-strain behavior of materials undergoing large defor-

mations. The neo-Hookean model is based on the statistical thermodynamics of

cross-linked polymer chains, which is usable for plastics and rubber-like substances

[77]. The model was proposed by Ronald Rivlin in 1948. The strain energy density

function based on the incompressible neo-Hookean model can be presented as follows

W = C1(II − 3). (1.7)

1.3.3 Hybrid models

There are also some hybrid models which are developed as a combination of the

phenomenological and micromechanical network models. Some of the popular hybrid

models are as follows:

1.3.3.1 Gent

The Gent hyperelastic material model is a hybrid type model of rubber elasticity that

is based on the concept of limiting chain extensibility. In this model, the strain energy

density function is designed such that it has a singularity when the first invariant (I1)

of the left Cauchy-Green deformation tensor reaches a limiting value (Im) [78]. The

strain energy density function based on the Gent model can be presented as follows

W =
µJm
2

ln

(︃
1− I1 − 3

Im − 3

)︃
, (1.8)

where µ is the shear modulus.

1.3.3.2 Van der waals

The Van der Waals strain energy potential for a rubber material is analogous to the

equations of state of a real gas [79]. The strain energy potential for Van der Waals
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model for an incompressible material can be presented as follows

U = µ{−(λ2m − 3) [ln(1− η) + η]− 2

3
a

(︄
Ĩ − 3

2

)︄ 3
2

}, (1.9)

where Ĩ = (1 − β)I1 + βI2, η =
√︂

Ĩ−3
λ2
m−3

, λm is the locking stretch, a is the global

interaction parameter, and β is a linear mixing parameter.

1.3.4 Hyperelastic composite models

In the hyperelastic models for the composite material, an isotropic part of the energy

density function (typically, Mooney-Rivlin or Neo-Hookean type) is combined with

a fiber energy potential. The isotropic part resembles the response of the matrix

material whereas the fiber energy potential part resembles the fiber’s response. Some

of the popular hyperelastic models for composites are briefly discussed as follows:

1.3.4.1 Holzapfel model

Holzapfel model consists of two parts in the energy density function, where the Neo-

Hookean type isotropic part (Wiso) presents the non-collagenous tissues (matrix), and

the anisotropic part (Wani) describes the collagen fibers under an α angle typically

with respect to the hoop direction of a hollow organ [80]. The energy density function

based on the Holzapfel model can be presented as follows:

W = Wiso(I1) +Wani(I4, I6) + u(J), (1.10)

=
µ

2
(I1 − 3) +

k1H
2k2H

{exp[k2H(I4 − 1)2]− 1}+ k1H
2k2H

{exp[k2H(I6 − 1)2]

−1}}+ 1

2

[︃
2(1 + ν)

3(1− 2ν)
µ

]︃
(J − 1),

where kiH are the material parameters, I1 is the 1st invariant of the Cauchy-Green

tensor (C), I4 = a0 · Ca0, and I6 = g0 · Cg0. Here, a0 = [0 cosα sinα]T and g0 =

[0 cosα− sinα]T are the unit direction vectors of two fiber families.

1.3.4.2 Modified Fung model

In [81]-[82], a modified Fung model is presented by combining a matrix portion (Neo-

Hookean type) and a fiber portion of the energy density function. The energy density
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function based on the modified Fung model can be presented as follows:

W =
µ

2
(I1 − 3) + C[exp{Qiso(E)} − 1], (1.11)

where Qiso(E) = c1(E
2
1 +E2

2 +E2
3) + 2c2(E1E2 +E2E3 +E3E1), C & ci are the fiber

parameters and Ei are the principal Green–Lagrange strains.

1.4 Goals and Motivations: A generalized higher-

order gradient hyperelastic model for compos-

ites

The primary motivation behind this thesis work is to develop a generalized and com-

plete hyperelastic model for the fiber-reinforced composite material. In the most

generalized form, the energy density function based on the proposed higher-order

gradient hyperelastic composite model may be expressed as follows:

W = (1− α)dmWmatrix(F) + α[η0dfWext(ε1, ε2, ς) +
1

2
C1g1 · g1

+
1

2
C2g2 · g2 +

1

2
Tg1 · g2], (1.12)

where Wmatrix is the energy function for the hyperelastic matrix material. For Neo-

Hookean type material, Wmatrix = µ
2
(I1 − 3) and for Mooner-Rivlin type material,

Wmatrix = µ
2
(I1−3)+ λ

2
(I2−3). The termWext(ε1, ε2, ς) is the fiber extension potential

function. Based on the type of fiber being used, we can choose from the following

different options (see, chapter 4 for more details),

Quadratic function: Wext =
1

2
E1(ςε1)

2 +
1

2
E2(ςε2)

2,

3rd order polynomial function: Wext =
1

2
E11(ςε1)

2 +
1

3
E12(ςε1)

3

+
1

2
E21(ςε2)

2 +
1

3
E22(ςε2)

3,

Exponential function: Wext = E11(E12ςε1 − 1)eE12ςε1

+E21(E22ςε2 − 1)eE22ςε2 .
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Here, the strain variables (i.e., ε1 and ε2) may be defined using the following two

definitions:

Green-Lagrange strain: ε1 =
1

2
(FD · FD−1) , ε2 =

1

2
(FL · FL−1) ,

Euler-Almansi strain: ε1 =
1

2

(︃
1− 1

FD · FD

)︃
, ε2 =

1

2

(︃
1− 1

FL · FL

)︃
,

where D and L are direction vectors of the fiber.

The higher order terms, 1
2
C1g1 ·g1+

1
2
C2g2 ·g2 and

1
2
Tg1 ·g2 represent the bending

and torsional potentials of the fibers, respectively, where g1 = ∇[FD]D and g2 =

∇[FL]L are the Geodesic curvatures. Further, α is the energy density parameter, η0

is the Krenchel orientation factor and ς is the shear-lag parameter. The latter two

parameters can be expressed as follows (see, chapter 7 for more details):

η0 =
8

15
+

8

21
⟨P2 cos θ⟩+

3

35
⟨P4 cos θ⟩ , and (1.13)

ς =

[︃
1

2L

∫︂ L

−L

(︃
1− cosh (βx)

cosh (βL)

)︃
dx

]︃
, (1.14)

where β =
√︂

Keff

Egh
and Keff = K0 − fun(ε̂)e−6.7( x

L)
2

is the interface stiffness. Also,

fun(ε̂) is the damage characterizing function, pertaining to the reduction of interface

stiffness induced by the debonding at the interface, which may be expressed as

fun(ε̂) = aΓ (ε̂− ε̂cric) (1 + ε̂cric)
b . (1.15)

In the above, Γ (ε̂− ε̂cric) is referred to as the damage activation function which is

switched from inactive mode to active mode when the overall strain of the material

(ε̂) exceeds a critical value (ε̂cric). The activation of the interface damage function is

governed by the condition:

Γ(x) =

{︃
x ≤ 0; Γ(x) = 0 (inactive mode)

x > 0; Γ(x) = x (active mode)

}︃
. (1.16)

Moreover, the parameters dm and df are called the damage variables, which may be

decided from the following two options (see, chapter 6 for more details):

Ogden-Roxburgh model : dm = df = 1− 1

r
erf

[︃
1

m+BWm

(︂
Wm − W̃ (F )

)︂]︃
,

Weibull fiber damage model: df = 1− e−δAγ̂m

, dm = 1.
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The obtained generalized model is able to accommodate multiple features includ-

ing, higher-order gradient continua, precise characterization of fiber reinforcement,

pseudoelasticity, damage mechanics, and multi-scale modeling capabilities. These

features make the proposed model very useful in assimilating the hyperelastic re-

sponse of fiber-reinforced composite material under different applications. All the

existing hyperelastic models that are discussed in the previous section fail to harbor

this level of versatility. These unique features of the proposed model are discussed

here in more detail.

1.4.1 Higher-order gradient continua

All of the existing hyperelastic models that are presented in the previous section are

based on first-order continuum theory. Thus they may not be able to accurately

predict the mechanical responses under different deformation modes [83]. That’s

because using first-order continuum theory it is not possible to incorporate complete

kinematics of the fibers. In order to overcome such deficiency we have proposed

a higher-order gradient-based continuum model. Refining the first-order theory by

considering a higher gradient of deformation it is possible to incorporate the bending

and torsional resistance of the fibers along with the extension into the modes of

deformations, thus complete kinematics of fiber is captured [84] (see, Fig. 1.12).

There are several advantages that can be obtained when higher gradient deformation

is considered, which are discussed below in more detail.

Microstructural characterization:

Higher gradient theory allows more detailed characterization of the continua with

distinct microstructures [84], thus it may produce a more accurate prediction of the

microstructural changes within the composite. Higher gradient theory can accommo-

date the relative rotation or rate of changes in angles/lengths at material points of

an elastic body [84]. On the other hand, the classical 1st gradient theory is only able

to describe the overall changes in the lengths/angles but they fail to capture relative

changes between each material point (see, Fig. 1.8). In Fig. 1.9, the effectiveness

of the higher gradient model in assimilating the microstructural changes in a fiber

mesh-reinforced elastomeric composite material is demonstrated (which is discussed
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further in chapter 4).

(a) (b)

Figure 1.8: (a) Changes in lengths/angles from first gradient [84]. (b) Rate of changes
in lengths/angles (relative changes) from second gradient [84].

Figure 1.9: Local configurations of the fiber mesh at 50% elongation of PES3/Ecoflex-
0050 composite.

Smooth transitions of shear strain fields:

Recent studies reveal that higher gradient theory can accurately predict the smooth

transitions of shear strain fields (see, [85]–[88]). From Fig. 1.10 it can be noted, as

we move from the classical 1st gradient model to the 3rd gradient model, it leads

to smooth and dilatational shear angle distributions throughout the entire domain

of interest. Other examples of smooth shear angle distributions obtained from a

higher-order gradient model are discussed in chapter 4 in more detail.
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Figure 1.10: Shear angle contours: first gradient (left), second gradient (middle),
third gradient (right).

Accurate prediction of large deformation:

It is found that the classical first-gradient theory is not accurate enough when talking

about large deformation because it takes only up to the first (linear) order of defor-

mations thus it may not be able to capture highly nonlinear and large deformation

typically observed in hyperelastic composites [84], [89]. We have found that using a

higher-order gradient model, it is possible to capture large extensions (i.e., up to 10

times the initial length) which is discussed in more detail in chapter 7.

Complete kinematic descriptions of the reinforcing fibers:

The classical first gradient theory can only accommodate the extension potential of

fibers, which is described using the deformation gradient tensor (F). Whereas bend-

ing and torsional potentials of fibers are described using geodesic curvatures (i.e., g1

and g2), which are second gradient terms, thus it is necessary to have a higher order

model to accommodate these potentials (see, Fig. 1.11). Since higher-order the-

ory can capture the complete kinematics of the reinforcing fibers by accommodating

extension, bending, and torsional potentials, it can produce more accurate results in

different deformation modes like tension, bending, twisting, out of plane deformations

etc. [84], [90].

Figure 1.11: Comparison of classical and higher order theory [84].
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Let’s take an example to clarify the concept further. When a tensile load is applied

to an elastic material reinforced with bidirectional fiber, different types of deformation

(i.e., extension, bending, torsion) may occur simultaneously within the fiber mesh at

different locations (see, Fig. 1.12). As it may be noted from the figure, the fiber

colored in green is stretched and bent at the same time, thus it requires both extension

and bending potential to fully describe the deformation. Further, the changes in the

intersection of two fibers as indicated at point D requires the torsional potential term.

This example illustrates the necessity to consider a generalized energy density function

including extension, bending, and torsional potentials of the fiber mesh to describe

the complete kinematics of the reinforcing fibers. Such a generalization can not be

achieved using the classical model since it only allows to incorporate the extension

potential of fibers.

Figure 1.12: Differnet types of localized deformations in fiber mesh under uniaxial
tension loading.

1.4.2 Precise characterization of fiber reinforcement

In the proposed model, we have incorporated direction vectors of fibers allowing

precise characterization of fiber orientation within the composite material, i.e., uni-

directional, bidirectional, fiber mesh at an angle, etc. (see, Fig. 1.13). Moreover,

in the proposed model it is possible to easily modify the extension potential func-

tion of the fibers to address both linear and non-linear (i.e., polynomial, exponential,

logarithmic, etc.) elastic response of fibers.
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Figure 1.13: Fiber’s direction vectors for different orientations of fibers.

1.4.3 Pseudoelasticity & damage mechanics

To assimilate the pseudoelastic response and damage mechanics of the hyperelastic

composite, we have incorporated two types of damage variables into the proposed en-

ergy density function. One of the damage variables is inspired by the Ogden-Roxburgh

model [91], which describes the Mullins effect of the hyperelastic composite. The

Mullins effect is a kind of pseudoelastic phenomenon where the material undergoes

an instantaneous and irreversible softening process, which is caused due to the inter-

nal structural changes in the matrix and fiber (see, Fig. 1.14 (left)). Whereas the

other damage variable is inspired by the Weibull fiber damage model [92] which may

accommodate the damage mechanics due to the breakage of individual load-carrying

fibers (see, Fig. 1.14 (right)). More detailed discussions with corresponding results

are presented in chapter 6.

Figure 1.14: Psudoelastic behaviors of hyperelastic composite: Mullins effect caused
by the internal structural changes (left); Damage mechanics due to individual fiber
breakage (right).
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1.4.4 Multi-scale modeling

Finally, we have incorporated the shear-lag parameter and Krenchel orientation pa-

rameters into the proposed energy density function which allows accommodating the

size and orientation effects of the fibers, respectively. The shear-lag parameter relates

the reinforcing capabilities of the fibers with their nano/microstructural character-

ization, i.e., length, thickness, aspect ratio, and interface stiffness. We have also

augmented the interface stiffness parameter by integrating the interfacial debonding

process that leads to the softening of the strain-strain response. Moreover, we have

introduced the energy fraction parameter which is related to the volume fraction of

fiber. These extensions of the strain energy density function allow the model to as-

similate the response of nono/short fiber reinforced hyperelastic composite material,

either with aligned or random orientations. With the help of these parameters, the

proposed model attains multi-scale modeling capabilities. More details with corre-

sponding results are presented in chapter 7.

1.5 Structure of Thesis

This thesis consists of six main chapters plus an introduction and conclusion. In the

following section, the main topics for each chapter are briefly introduced.

In chapter 2, the effect of higher gradient terms in the deformation of a continuum

is presented and some comparisons are made between the results of classical 1st gradi-

ent and higher gradient models. In this chapter, a third-gradient continuum model is

developed for the deformation analysis of an elastic solid, reinforced with fibers resis-

tant to flexure. The continuum model is framed in the second strain gradient elasticity

theory within which the kinematics of fibers are formulated, and subsequently inte-

grated into the models of deformations. It is found that the higher gradient model

can produce smooth and dilatational shear angle distributions whereas the classical

model fails to produce such a smooth shear angle distribution. Two case studies are

also presented through the in-house experimental settings of crystalline nano-cellulose

(CNC) fiber composites and Nylon-6 fiber Neoprene rubber composites, which illus-

trate that the obtained solutions successfully can predict the deformation profiles of

both composites.
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Chapter 3, presents a model for the mechanics of a soft hyperelastic material re-

inforced with unidirectional fibers, resistant to flexure and extension. In this chapter,

the strain energy potential of the composite is refined by the Mooney Rivlin model to

accommodate the hyperelastic behaviors of the matrix material. The elastic modulus

of the four different types of fibers and material parameters of Ecoflex-0050 are ob-

tained from the uniaxial tensions test experimental data. The results are compared

against the experimental data demonstrating that the obtained model assimilates the

responses of the Ecoflex-0050 elastomer-fiber composite subjected to uni-axial ten-

sion and successfully predicts the J-shaped stress-strain behavior and the deformation

profiles.

Chapter 4, demonstrates the development of a series of continuum-based predic-

tion models to accommodate the nonlinear responses of both the matrix material

and the reinforcing fibers in a hyperelastic matrix material. The kinematics of the

embedded fibers, including the torsional kinematics between two adjoining fibers, are

formulated via the first and second gradient of continuum deformations. A set of

in-house experiments are presented for the purpose of cross-examination and model

implementation. The obtained models successfully predict the strain-stiffening re-

sponses of the elastomer–polyester fiber composites together with other key design

considerations such as deformation profiles, shear strain distributions, and the de-

formed configurations of a local unit fiber mesh. The Euler–Almansi strain integrated

model is also presented through which the strain-softening behaviors of a certain type

of polyurethane fiber composites are predicted.

A three-dimensional model for the mechanics of elastic/hyperelastic materials re-

inforced with bidirectional fibers is presented in chapter 5. A dimension reduction

process is applied to the resulting three-dimensional model through which a com-

patible two-dimensional model describing both the in-plane and out-of-plane defor-

mations of thin elastic films reinforced with fiber mesh are obtained. It is demon-

strated that the proposed model successfully predicts key design considerations of

fiber mesh-reinforced composite films including stress-strain responses, deformation

profiles, shear strain distributions, and local structure (a unit fiber mesh) deforma-

tions.

Chapter 6, presents a comprehensive analytical platform for modeling the pseudo-

23



elastic response of hyperelastic material reinforced with nonlinear fibers. In this

chapter, two distinct pseudo-elastic behaviors generally observed in hyperelastic com-

posites are accommodated within the proposed models which are the Mullins effect

and damage mechanics due to fiber breakage. It is demonstrated that the obtained

models successfully predict the Mullins effect of the human aorta in both longitudinal

and circumferential directions. Also, the proposed model can assimilate the Mullins

effect observed in soft biological tissue like Manduca Muscle. Moreover, by comparing

against the in-house experiment results of elastomeric composite, is shown that the

proposed model can closely simulate the damage mechanics, deformation profiles, and

shear angles profiles of the elastomeric composite.

Chapter 7, discusses a multiscale continuum model for the mechanics of hypere-

lastic nanocomposites reinforced with randomly oriented fibers. The shear leg and

Krenchel orientation parameters are incorporated into the model, through which the

size and orientation effects of the short fibers are computed. Molecular dynamic

simulations are also performed to obtain the microscopic responses of the graphene-

reinforced composites with three distinct configurations of graphene sheets which are

then incorporated into the proposed continuum model. The results are compared

against the experimental data demonstrating that the obtained model can assimilate

the hyperextension of nanocomposite and the continuum damage mechanics of two

different nanocomposites induced by the interfacial debonding.

Throughout all chapters, we make use of a number of well-established symbols and

conventions such as AT , A−1, A∗ and tr(A). These are the transpose, the inverse,

the cofactor and the trace of a tensor A, respectively. The tensor product of vectors

is indicated by interposing the symbol ⊗ and the Euclidian inner product of tensors

A,B is defined by A · B = tr(ABT ); the associated norm i
√
A · A. The symbol

“|·|” is used to denote the usual Euclidian norm of vectors. Latin and Greek indices

take values in {1, 2} and, when repeated, are summed over their ranges. Lastly, the

notation FA stands for the tensor-valued derivatives of a scalar-valued function F (A).
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Chapter 2

Mechanics of third-gradient
continua reinforced with fibers
resistance to flexure in finite plane
elastostatics

In section 2.1, we develop kinematics and equilibrium equations. Moreover, we con-

sider a case of a Neo-Hookian material reinforced with a single family of fibers in

section 2.1.2. Through the method of virtual work and the computation of variational

derivatives, the corresponding Euler equilibrium equation is derived, in the form of

coupled Partial Differential Equations. In section 2.2, we present the derivation of the

necessary boundary conditions. In section 2.3, a set of numerical solutions is obtained

via a finite element analysis which is compared against the experimental data.

2.1 Kinematics

We introduce the vector field D representing the unit tangent to the fiber’s trajectory

in the reference configuration. The orientation of particular fibers is then given by,

λ = |d| = ds

dS
and τ = λ−1d, (2.1)

where

d = FD. (2.2)

In the above, d is the unit tangent to the fiber trajectory in the current configu-

ration and F is the first gradient of the deformation function (χ(X)); i.e.

F = ∇χ(X). (2.3)
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Eq. (2.2) can be derived by taking the derivative of r(S) = χ(X(S)), upon making the

identifications D = X′(S) and d = r′(S). We denote that, unless otherwise specified,

primes refer to derivatives with respect to arclength along a fiber (i.e. (∗)′ = d(∗)/dS).

Accordingly, from Eq. (2.2), the geodesic curvature of an arc (r (S)) is expressed in

terms of F and d as

g = r
′′
=
d(r′ (S))

dS
=
∂(FD)

∂X

dX

dS
= ∇[FD]D. (2.4)

In a typical environment, most of the fibers are straight prior to deformations. Even

slightly curved fibers can be regarded as ‘fairly straight’ fibers considering their length

scales against the matrix materials. This further leads to the assumption of vanishing

gradient fields of the unit tangent in the reference configuration (i.e. ∇D = 0). Hence,

Eqs (2.4) reduce to

g = ∇F(D⊗D). (2.5)

We now introduce the commonly used conventions of the second gradient of defor-

mations:

∇F ≡ G, (2.6)

where the compatibility condition of G can be seen as

GiAB = FiA,B = FiB,A = GiBA. (2.7)

Accordingly, Eq. (2.5) becomes

g = G(D⊗D) = g(G,D). (2.8)

Based on the above kinematical setting, authors in [93] propose the following energy

density function in the continuum description of an elastic solid reinforced with fibers

resistant to flexure:

W (F,G) = ˆ︂W (F) +W (G), W (G) ≡ 1

2
C (F) |g|2 , (2.9)

where C(F) refers to the material properties of the fibers and is, in general, indepen-

dent of the deformation gradient; i.e.

C(F) = C. (2.10)
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In this model (Eq. (2.9)), the fibers’ bending energy is presumed to be dependent

entirely on the second gradient of deformations, G, which facilitates the develop-

ment of the associated mathematical framework. The concept has been widely and

successfully adopted in the relevant studies (see, for example, [90], [94]–[97]).

In the present study, we propose a more comprehensive model by introducing

the third gradient of deformations into the model of deformations. For this purpose,

we compute the rate of changes in curvature (the third gradient of deformations) at

points on the fibers as

α = r
′′′
=
d(∇[FD]D)

dS
=
∂(∇[FD]D)

∂X

dX

dS
= [∇{∇[FD]D}]D

= [∇{∇[FD]}D+∇[FD](∇D)]D, (2.11)

through which the interactions between the fibers and the surrounding matrix may be

characterized. Further, we formulate the follow in the same sprit as Eqs. (2.5)-(2.8)

that

α = ∇(∇F)(D⊗D⊗D),

∇(∇F) = ∇(G) ≡ H, and

α = H(D⊗D⊗D) = α(H,D). (2.12)

Thus, the energy potential associated with the third gradient of deformations is in-

corporated and yields

W (F,G, H) = ˆ︂W (F)+W (G)+W (H), W (G) ≡ 1

2
C (F) |g|2 , W (H) ≡ 1

2
A (F) |α|2 .

(2.13)

Here, the third gradient of deformations H is defined by

∇[∇G] = ∇G ≡ H, (2.14)

which accounts for the rate of change in the fibers’ curvature. The phenomenological

implications vis a vis the third gradient of deformations (e.g. interactions between

fibers and a matrix material), and the identification of the associated coefficient (here,

denoted as A), are addressed in the literature [98]–[104]. Our emphasis here is on

the development of a mathematical frame work, and the associated analyses, in order

to provide the more general and comprehensive description of fiber composites with
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fibers resistant to flexure. It is also noted that, in the forgoing analysis, the parameter

A is assumed to be independent of the deformation gradient, similar to Eq. (2.10).

That is

A(F) = A. (2.15)

We adopt the variational principles in the derivations of the Euler equations and

the associated boundary conditions. To obtain the desired expressions, we evaluated

the induced energy variation of the response function with respect to F, G, and H as

Ẇ (F, G, H) = WF·Ḟ+WG·Ġ+WH · Ḣ, (2.16)

where the superposed dot refers to the derivatives with respect to a parameter ϵ

at a fixed value (e.g. ϵ = 0 at equilibrium) that labels a one-parameter family of

deformations. Similarly, Eq. (2.13), yields

Ẇ (G) = Cg · ġ and Ẇ (H) = Aα · α̇. (2.17)

Now, taking derivatives of Eqs. (2.5) and (2.12) with respect to ϵ (e.g. ġ = Ġ(D⊗D)),

and substituting them into Eq. (2.17), we obtain

Ẇ (G) = Cg· ·g = Cgjej·ĠiABDADBei = CgiĠiABDADB, and

Ẇ (H) = Aα· ·
α = Aαjej·Ḣ iABCDADBDCei = AαiḢ iABCDADBDC . (2.18)

But, the above are also equivalent to

Ẇ (G) = WG ·
·
G = WGiAB

(ei⊗EA⊗EB⊗)ĠjCD(ej⊗EC⊗ED) = WGiAB
ĠiAB and

Ẇ (H) = WH · Ḣ = WHiABC
(ei⊗EA⊗EB⊗EC)ḢjDEF (ej⊗ED⊗EE⊗EF ) (2.19)

= WHiABC
Ḣ iABC .

Hence, we compare Eqs. (2.18)-(2.19) and obtain

∂W

∂GiAB

= CgiDADB and
∂W

∂HiABC

= AαiDADBDC , (2.20)

or

WG = Cg ⊗D⊗D and WG = Aα⊗D⊗D⊗D. (2.21)

In general, volumetric changes in the materials’ deformations are energetically expen-

sive processes (see, for example, [105]-[106]). Thus, for the desired application, the
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energy density function, Eq. (2.13), is augmented by the condition of bulk incom-

pressibility such that

U(F, G, H, p) = W (F,G, H)− p(J − 1), (2.22)

where J is determinant of F and p is a Lagrange-multiplied filed. We continue by

using the identity J̇ = JF ·Ḟ = F∗ · Ḟ, and obtain the variational derivative of the

above as

U̇ = (WF − pF∗)·Ḟ+WG·Ġ+WH · Ḣ, (2.23)

or, equivalently,

U̇ = (WFiA
− pF ∗

iA)Ḟ iA+WGiAB
ĠiAB+WHiABC

Ḣ iABC . (2.24)

Clearly, the obtained variational form (2.23) is dependent on both the second

and the third gradient of deformations as intended; i.e. The rate of change in cur-

vature is now incorporated into the model of deformations via the third gradient of

deformations.

2.1.1 Equilibrium

The derivation of the Euler equation and boundary conditions arising in second-

gradient elasticity are well documented in [101] and [107]-[108]. There authors for-

mulate the weak form of the equilibrium equations by employing the principles of the

virtual work statement:
·
E = P, (2.25)

where P is the virtual work of the applied load and the superposed dot refers to

the variational and/or Gateâux derivative. In this section, we present a variational

formulation which accounts for the third gradient of the continuum deformation by

means of iterated integrations by parts (see, for example, [98]–[102]). To proceed, we

express the strain energy of the system as

E =

∫︂
Ω

U(F, G, H, p)dA, (2.26)

where Ω is the domain occupied by a fiber-matrix material. Since the conservative

loads are characterized by the existence of a potential L, such that P = L̇, the problem
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of determining equilibrium deformations is reduced to the problem of minimizing the

potential energy E − L. Hence we find

·
E =

∫︂
Ω

U̇(F, G, H, p)dA. (2.27)

Also, from Eq. (2.19), the energy variations with respect to the second and third

gradient of deformations (i.e. G and H) can be expressed as

∂W

∂GiAB

·
GiAB =

∂W

∂GiAB

ui,AB and

∂W

∂HiABC

·
H iABC =

∂W

∂HiABC

ui,ABC , (2.28)

where

ui = χ̇i (2.29)

is the variation of the position field χ(X). Applying integration by parts, Eq. (2.28)

yields

∂W

∂GiAB

ui,AB =

(︃
∂W

∂GiAB

ui,A

)︃
,B

−
(︃

∂W

∂GiAB

)︃
,B

ui,A and

∂W

∂HiABC

ui,ABC =

(︃
∂W

∂HiABC

ui,AB

)︃
,C

−
(︃

∂W

∂HiABC

)︃
,C

ui,AB. (2.30)

We now substitute Eqs. (2.24) and (2.30) into Eq. (2.27), and thereby obtain

·
E =

∫︂
Ω

[

(︃
∂W

∂FiA

− pF ∗
iA

)︃
·

·
FiA +

(︃
∂W

∂GiAB

ui,A

)︃
,B

−
(︃

∂W

∂GiAB

)︃
,B

ui,A

+

(︃
∂W

∂HiABC

ui,AB

)︃
,C

−
(︃

∂W

∂HiABC

)︃
,C

ui,AB]dA. (2.31)

Invoking Green-Stoke’s theorem, the above further reduces to

·
E =

∫︂
Ω

[
∂W

∂FiA

− pF ∗
iA −

(︃
∂W

∂GiAB

)︃
,B

]ui,AdA−
∫︂
Ω

(︃
∂W

∂HiABC

)︃
,C

ui,ABdA

+

∫︂
∂Ω

[

(︃
∂W

∂GiAB

ui,A

)︃
NB +

(︃
∂W

∂HiABC

ui,AB

)︃
NC ]dS, (2.32)

where N is the rightward unit normal to the boundary ∂Ω. To obtain the expression

of the Piola stresses, we again apply the integration by parts on
(︂

∂W
∂HiABC

)︂
,C
ui,AB; i.e.(︃

∂W

∂HiABC

)︃
,C

ui,AB = (

(︃
∂W

∂HiABC

)︃
,C

ui,A),B −
(︃

∂W

∂HiABC

)︃
,CB

ui,A, (2.33)
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and thus obtain from the second integral of the Eq. (2.32) that∫︂
Ω

(︃
∂W

∂HiABC

)︃
,C

ui,ABdA =

∫︂
Ω

(

(︃
∂W

∂HiABC

)︃
,C

ui,A),B−
(︃

∂W

∂HiABC

)︃
,CB

ui,AdA. (2.34)

But, Eq. (2.34) is equivalent to∫︂
Ω

(︃
∂W

∂HiABC

)︃
,C

ui,ABdA =

∫︂
∂Ω

(

(︃
∂W

∂HiABC

)︃
,C

ui,A)NBdS−
∫︂
Ω

(︃
∂W

∂HiABC

)︃
,CB

ui,AdA,

(2.35)

in which we again applied the Green-Stokes theorem. We then substitute Eq. (2.35)

into Eq. (2.32) and subsequently obtain

·
E =

∫︂
Ω

[
∂W

∂FiA

− pF ∗
iA −

(︃
∂W

∂GiAB

)︃
,B

]ui,AdA− [−
∫︂
Ω

(︃
∂W

∂HiABC

)︃
,CB

ui,AdA

+

∫︂
∂Ω

(

(︃
∂W

∂HiABC

)︃
,C

ui,A)NBdS] +

∫︂
∂Ω

[

(︃
∂W

∂GiAB

ui,A

)︃
NB

+

(︃
∂W

∂HiABC

ui,AB

)︃
NC ]dS. (2.36)

Now, Eq. (2.36) may be recast as

·
E =

∫︂
Ω

PiA

·
FiAdA+

∫︂
∂Ω

[{ ∂W

∂GiAB

−
(︃

∂W

∂HiABC

)︃
,C

}ui,ANB +
∂W

∂HiABC

ui,ABNC ]dS,

(2.37)

where

PiA =
∂W

∂FiA

− pF ∗
iA −

(︃
∂W

∂GiAB

)︃
,B

+

(︃
∂W

∂HiABC

)︃
,CB

(2.38)

is the expression of the Piola stress. It is evident from Eq. (2.38) that the resulting

stress fields are dependent on both the second and third gradient of deformations.

Also, it may be necessary to write the above equations in the tensorial form for the

sake of clarity and completeness, especially for the terms which are obtained from the

results of a multilinear transformations of higher-order tensors with mixed bases:

·
E =

∫︂
Ω

P ·
·
FdA+

∫︂
∂Ω

[W T
GF

T ·N+W T
H(∇F)T ·N− (Div(WH))

TFT ·N]dS; (2.39)

and

P = WF − pF∗ −Div(WG) +Div(Div(WH)). (2.40)

In the case of initially straight fibers (i.e. ∇D = 0), we evaluate from Eqs. (2.20)

that (︃
∂W

∂GiAB

)︃
,B

= Cgi,BDADB and

(︃
∂W

∂HiABC

)︃
,CB

= Aαi,BCDADBDC , (2.41)
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and thus reduce Eq. (2.38) to

PiA =
∂W

∂FiA

− pF ∗
iA − Cgi,BDADB + Aαi,BCDADBDC . (2.42)

Finally, Eq. (2.42) satisfies

PiA,A = 0 or Div(P) = 0, (2.43)

which can be served as the Euler equilibrium equation for the reinforced solids occu-

pying the domain of Ω.

2.1.2 Example: Neo-Hookean materials

In the case of Neo-Hookean materials, the energy density function is given by

W (I1, I3) =
µ

2
(I1 − 3)− µ log I3 +

λ

2
(log I3)

2, (2.44)

where µ and λ are the material constants, and I1 and I3 are respectively the first

and third invariants of the deformation gradient tensor. By setting I3 = 1, the

incompressible model can be obtained as

W (I1) =
µ

2
(I1 − 3) =

µ

2
(F · F− 3). (2.45)

Now taking the derivative of the above with respect to F and subsequently substitut-

ing it into Eq. (2.42), we find

PiA = µFiA − pF ∗
iA − Cgi,BDADB + Aαi,BCDADBDC , (2.46)

which is the expression of the Piola stress for the reinforced solid of Neo-Hookean

type. Hence, the corresponding Euler equilibrium equation satisfies

PiA,A = µFiA,A − p,AF
∗
iA − Cgi,ABDADB + Aαi,ABCDADBDC = 0, (2.47)

where we use the Piola’s identity (i.e. F ∗
iA,A = 0).

For example, we consider the reinforced solid which consists of initially straight

fibers such that

D = E1 (i.e. D1 = 1 and D2 = 0), (2.48)
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and is subjected to finite plain deformaitons. Then, the equilibrium equation (2.47)

reduces to

PiA,A = µFiA,A − p,AF
∗
iA − Cgi,11 + Aαi,111 = 0.

Further, we evaluate from Eqs. (2.5) and (2.12) that

gi = Fi1,1, αi = Fi1,11, FiA = χi,A, F
∗
iA = εijεABFjB, (2.49)

where εij is the 2-D permutation, ε12 = −ε21 = 1, ε11 = ε22 = 0. Consequently,

invoking Eqs. (2.48)-(2.49), together with the constraint of the bulk incompressibility

(i.e. detF = 1), we deliver the following system of PDEs,

PiA,Ae1 = (µχi,AA − p,AεijεABχj,B − Cχi,1111 + Aχi,111111)e1 = 0 and (2.50)

χ1,1χ2,2 − χ1,2χ2,1 = 1, (2.51)

which solves for χ1, χ2 and p.

2.2 Boundary conditions

In this section, we present rigorous derivations vis a vis the admissible boundary con-

ditions which arise in the third gradient of virtual displacement. Due to the presence

of the high order terms, the corresponding formulation turns out to be mathemati-

cally quite involved. However the resulting expressions of boundary conditions are in

relatively simple formats and thus, mathematically tractable. To proceed, we apply

the decomposition PiAui,A = (PiAui),A−PiA,Aui as in Eq. (2.30) and obtain from Eq.

(2.37) that

·
E =

∫︂
∂Ω

PiAuiNAdS −
∫︂
Ω

PiA,AuidA+

∫︂
∂Ω

[{ ∂W

∂GiAB

−
(︃

∂W

∂HiABC

)︃
,C

}ui,ANB

+
∂W

∂HiABC

ui,ABNC ]dS. (2.52)

Here, the Green-Stoke’s theorem is applied in the first term of Eq. (2.52). Since the

Euler equation, PiA,A = 0, holds in Ω, the above reduces to

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[{ ∂W

∂GiAB

−
(︃

∂W

∂HiABC

)︃
,C

}ui,ANB +
∂W

∂HiABC

ui,ABNC ]dS.

(2.53)
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Now, we project ∇u onto the normal and tangential direction and thereby obtain

∇u =∇u(T⊗T)+∇u(N⊗N) = u′⊗T+ u,N⊗N, (2.54)

such that u
′
and u,N are respectively the tangential and normal derivatives of u on

∂Ω; i.e.

u
′

i = ui,ATA, ui,N = ui,ANA, (2.55)

where T = X
′
(S) = k×N defines the unit tangent to ∂Ω, and N is the associ-

ated unit normal to the boundary. Thus, invoking Eqs. (2.54)-(2.55), ui,A can be

decomposed into

ui,A =
dui
ds

ds

dXA

+
dui
dN

dN

dXA

= u
′

iTA + ui,NNA, (2.56)

and similarly for ui,AB,

ui,AB = u
′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + ui,N(N
′

ATB +NA,NNB)

+u
′

i,N(NATB + TANB) + ui,NNNANB. (2.57)

Substituting the above results into Eq. (2.53) then yields

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂w

{︄(︃
∂W

∂GiAB

)︃
−
(︃

∂W

∂HiABC

)︃
,C

}︄(︂
u

′

iTANB + ui,NNANB

)︂
dS

+

∫︂
∂Ω

∂W

∂HiABC

[u
′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + ui,N(N
′

ATB +NA,NNB)

+u
′

i,N(NATB + TANB) + ui,NNNANB]NCdS. (2.58)

In order to extract the admissible boundary conditions from Eq. (2.58), we make use

of iterated integrations by parts. For example,

∂W

∂GiAB

TANBu
′

i =

(︃
∂W

∂GiAB

TANBui

)︃′

−
(︃

∂W

∂GiAB

TANB

)︃′

ui, (2.59)

∂W

∂HiABC

(NATBNC + TANBNC)u
′

i,N

= [
∂W

∂HiABC

(NATBNC + TANBNC)ui,N ]
′ − [

∂W

∂HiABC

(NATBNC

+TANBNC)]
′′
ui,N , (2.60)
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∂W

∂HiABC

TATBNCu
′′

i

=

(︃
∂W

∂HiABC

TATBNCui

)︃′′

+

(︃
∂W

∂HiABC

TATBNC

)︃′′

ui

−2

[︄(︃
∂W

∂HiABC

TATBNC

)︃′

ui

]︄′

, (2.61)

and similarly for other terms in Eq. (2.58). Consequently, Eq. (2.58) becomes

·
E =

∫︂
∂Ω

[PiANA − { ∂W

∂GiAB

TANB −
(︃

∂W

∂HiABC

)︃
,C

TANB}
′
]uidS

−
∫︂
∂Ω

[{ ∂W

∂HiABC

(T
′

ATBNC + TA,NNBNC)}
′
+

(︃
∂W

∂HiABC

TATBNC

)︃′′

]uidS

+

∫︂
∂Ω

[{ ∂W

∂GiAB

TANB −
(︃

∂W

∂HiABC

)︃
,C

TANB − 2

(︃
∂W

∂HiABC

TATBNC

)︃′

}ui]
′
dS

+

∫︂
∂Ω

[
∂W

∂HiABC

(T
′

ATBNC + TA,NNBNC)ui]
′
dS +

∫︂
∂Ω

[
∂W

∂HiABC

(NATBNC

+TANBNC)ui,N ]
′
dS +

∫︂
∂Ω

[{
(︃

∂W

∂GiAB

)︃
−
(︃

∂W

∂HiABC

)︃
,C

}NANB +
∂W

∂HiABC

(N
′

ATB

+NA,NNB)NC ]ui,NdS −
∫︂
∂Ω

[{ ∂W

∂HiABC

(NATBNC + TANBNC)}
′
]ui,NdS

+

∫︂
∂Ω

(︃
∂W

∂HiABC

TATBNCui

)︃′′

dS +

∫︂
∂Ω

∂W

∂HiABC

ui,NNNANBNCdS. (2.62)
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But, in view of Eqs. (2.20) and (2.41) (e.g., ∂W
∂GiAB

= CgiDADB,
(︂

∂W
∂GiAB

)︂
,B

=

Cgi,BDADB etc. . . ), the above may be recast as

·
E =

∫︂
∂Ω

[PiANA − {(Cgi − Aαi,CDC)DATADBNB}
′ − {AαiDCNC(DAT

′

ADBTB

+DATA,NDBNB)}
′
]uidS +

∫︂
∂Ω

[(AαiDATADBTBDCNC)
′′
]uidS

+
∑︂⃦⃦⃦

Aαi(DAT
′

ADBTBDCNC +DATA,NDBNBDCNC)ui

⃦⃦⃦
+
∑︂⃦⃦⃦

[(Cgi − Aαi,CDC)DATADBNB − 2 (AαiDATADBTBDCNC)
′
]ui

⃦⃦⃦
+
∑︂

∥Aαi(DANADBTBDCNC +DATADBNBDCNC)ui,N∥

+
∑︂⃦⃦⃦⃦

d

ds
(AαiDATADBTBNCDCui)

⃦⃦⃦⃦
+

∫︂
∂Ω

[(Cgi − Aαi,CDC)DANADBNB

+AαiDCNC(DAN
′

ADBTB +DANA,NDBNB)]ui,NdS

−
∫︂
∂Ω

[{AαiDADBDC(NATBNC + TANBNC)}
′
ui,N ]dS

+

∫︂
∂Ω

(AαiDANADBNBDCNCui,NN)dS, (2.63)

where the double bar symbol refers to the jump across the discontinuities on the

boundary ∂Ω (i.e. ∥∗∥ = (∗)+ − (∗)−) and the sum refers to the collection of all

discontinuities. Since the virtual work statement (
·
E = P ) implies that the admissible

mechanical powers are of the form

P =

∫︂
∂wt

tiuidS +

∫︂
∂w

miui,NdS +

∫︂
∂w

riui,NNdS +
∑︂

fiui +
∑︂

hiui,N , (2.64)

By comparing Eqs. (2.63) and (2.64), we find that

t = PN+
d2

ds2
[Aα(D ·T)2(D ·N)]

− d

ds
[(Cg − A(∇α)D)(D ·T)(D ·N)− Aα(D ·N)(D ·T)(D ·T′

)

+Aα(D ·N)2(D ·T,N)],

m = (Cg − A(∇α)D)(D ·N)2 + Aα(D ·N)[(D ·N′
)(D ·T)

+(D ·N,N)(D ·N)]− d

ds
[2Aα(D ·T)(D ·N)2],
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r = Aα(D ·N)3,

f = (Cg − A(∇α)D)(D ·T)(D ·N)− d

ds
[2Aα(D ·T)2(D ·N)]

+Aα[(D ·T′
)(D ·T)(D ·N) + (D ·T,N)(D ·N)2],

d

ds
[f ] =

d

ds
[Aα(D ·T)(D ·N)],

h = 2Aα((D ·T)(D ·N)2, (2.65)

where t,m, and f are the expressions of edge tractions, edge moments and the corner

forces, respectively. More importantly, unlike those from the second gradient models,

additional boundary conditions (i.e. r, d
ds
[f ] and h) appeared as a result of the

introduction of the third gradient of deformations. These boundary conditions are

the set of admissible contact interactions that can be sustained by third gradient

continua (see, also, [98], [100]-[101] and references therein). In fact, such interaction

forces are in conjugation with the Piola-type triple stress and are necessary to capture

the internal energy contributions to the contact interactions on edges and points of

Cauchy cuts [100],[109]. In the present case, this would mean the effects of local

interactions between the fiber and matrix on the adjoined deformation fields.

The proposed model has a close similarity to the theory of micropolar elasticity,

which admits additional degrees of freedom associated with the rotation of a local

point (microstructure) pertaining to couple stresses. Within the description of the

proposed model, this is achieved via the computation of the third gradient of the

continuum deformation; i.e. the rate of changes in curvature (local point rotations),

which is determined by the imposition of the triple forces (e.g., r,h) on the desired

boundaries. Therefore, the proposed model can be used as an alternative 2D Cosserat

theory of non-linear elasticity.

In a typical environment where fibers are aligned along the directions of either

normal and/or tangential to the boundary (e.g., rectangular boundaries), we compute

(D ·T)(D ·N) = 0 and ∇T = ∇N = 0, (2.66)
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and thereby reduce Eq. (2.65) to

t = PN,

m = [Cg − A(∇α)D](D ·N)2,

r = Aα(D ·N)3,

f = 0,

d

ds
[f ] = 0,

h = 0, (2.67)

where

PiA = µFiA − pF ∗
iA − Cgi,BDADB + Aαi,BCDADBDC ,

gi = FiA,BDADB and αi = FiA,BCDADBDC . (2.68)

Hence, in this case (Eq. (2.66)), r is the only meaningful boundary force associated

with the third gradient of deformations (i.e. f , f
′
and h are identically vanishes),

which is required to obtain the unique solution. We note here that the clarification

of such triple forces and associated boundary conditions (Eq. (2.65)) may be of

particular mechanical interest to practitioners and theoreticians alike. In this regard,

a number of cases are examined throughout the following section. However, the

attempts are intrinsically limited due to the paucity of experimental resources which

certainly deserve further researches.

Lastly, by imposing the admissible set of boundary conditions (Eq. (2.67)), the

solution of the PDE system (Eqs. (2.50)-(2.51)) can be obtained via commercial

packages (e.g. Matlab, COMSOL etc. . . ).

2.3 Results and discussion

For the purpose of demonstration, we simulate a set of numerical solutions describing

the deformations of a rectangular composite that is reinforced with fibers resistant to

flexure and subjected to the double force m (bending moment) and triple force r (see,

Fig. 2.1). More precisely, a half problem is considered in which the corresponding
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Figure 2.1: Schematic of problem

boundary conditions are prescribed as

m1 = Cχ1,11 − Aχ1,1111 =M/µ, r1 = Aχ1,111 = r/µ,

m2 = Cχ2,11 − Aχ2,1111 = 0, r2 = Aχ2,111 = 0,

χ1 = 0, χ2 = 0, at x = c, (2.69)

and symmetric boundary conditions are imposed at x = 0. It is noted that, unless

otherwise specified, the corresponding data are obtained under the normalized setting

(e.g. C
µ
= 150, A

µ
= 50 etc...). Also, here and henceforth, we conveniently refer to

material constants associated with the Piola-type double stress and triple stress (i.e.

C and A) as the ‘double stress parameter’ and ‘triple stress parameter’, respectively.

The obtained solutions in Fig. 2.2 illustrate gradual decreases in deformed con-

figurations of the composite with increasing double stress parameter, C (bending

stiffness of fibers), which also agrees with the results in [96] and [110]. Further, the

corresponding deformation fields in Figs 2.3-2.4 demonstrate sensitivity to both the

triple stress parameter, A, and the triple force, r, as intended, and accommodate

the solutions from the second gradient model [96] and [110] when the third gradient

effects are removed (see, Fig. 2.5).

More importantly, we examine shear strain fields and the associated shear angle

distributions over the domain of interest in order to have a more in-depth understand-

ing of the influences of the third gradient of deformations. In the analysis, the shear
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Figure 2.2: Deformed configurations with respect to C/µ.

Figure 2.3: Deformed configurations with respect to A/µ.
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Figure 2.4: Deformed configurations with respect to r/µ.

Figure 2.5: Comparison of the deformed configurations between the third gradient
model and the second gradient model.
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strain gradients and shear angles are computed using the following relations [111]:

ϕ′ =
u′′2(1 + u′1)− u′2u

′′
1

u′22 + (1 + u′1)
2
, (2.70)

and

ϕ = tan−1(
χ2,1 − χ1,1

2 + χ1,1 + χ2,1

). (2.71)

It is shown in Fig. 2.6 that the magnitudes of shear strains either gradually increase

or decrease with respect to the signs of applied triple force; i.e. the shear strain

increases when r > 0 and decreases with r < 0. This further leads to the smooth and

dilatational shear angle distributions throughout the entire domain of interest where

the rate of dilatation is governed by the triple force r. In other words, when the

composite is subjected to the double force m, the proposed model predicts multiple

configurations of shear angle distributions, depending on the applied triple force r,

whereas only one configuration (smooth but non-dilatational distribution) is possible

within the description of the strain gradient theory (see, for example, [85]-[86], and

[112]). Indeed, the shear angle distribution from the result of the second gradient

continuum model is the special case of those predicted by the obtained solution in

the limit of the vanishing triple force (i.e. r = 0, see, Fig. 2.8). This also can be seen

directly from Eqs. (2.47), (2.67) and (2.68). For example, by setting r = 0, we find

from Eq. (2.67) that,

r = Aα(D ·N)3 = 0. (2.72)

Accordingly, the boundary conditions in Eq.(2.67) and the expression of the Piola-

type stress (Eq.(2.68)) reduce to

t = PN, m = Cg(D ·N)2, and (2.73)

PiA = µFiA − pF ∗
iA − Cgi,BDADB. (2.74)

Similarly, by invoking Eq. (2.72), the system of coupled PDEs (Eq. (2.47)) becomes

PiA,A = µFiA,A − p,AF
∗
iA − Cgi,ABDADB = 0. (2.75)

The triple force r is meaningful only if its conjugate pair exists: the Piola-type

triple stress. In the present case, the stress expression in Eq. (2.46) is a combina-

tion of the Piola-type stress (µFiA), double stress (Cgi,BDADB), and triple stress
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Figure 2.6: Shear strain gradients with respect to r : r > 0 (left) and r < 0 (right).

Figure 2.7: Shear angle contours with respect to r : r > 0 (left) and r < 0 (right).

(Aαi,BCDADBDC) such that the third gradient of the deformation term in Eq. (2.46)

(i.e., Aαi,BCDADBDC) can be interpreted as the energy pair of the applied triple

force r. The same statement holds in cases of the second gradient continuum models.

For example, the Piola-type double stress (Cgi,BDADB) is the energy conjugate to

the double force m (see, also, [99] and [109]).

Lastly, we summarize the associated field distributions predicted, respectively, by

the first, second and third gradient continuum models for the purpose of comparison.

Figure 2.8: Shear angle contours: first gradient (left), second gradient (middle), third
gradient (right).
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In the summary, the second strain gradient, strain gradient, shear angle, deformation

gradient and boundary conditions are denoted as SSG, SG, SA, DG and BCs, re-

spectively. It is evident from Table. 1 that the N th order continuum model predicts

continuous (but not necessarily smooth) shear strain gradient fields up to (N-1 )th

order. For example, the second order continuum model predicts the first gradient of

the shear strain fields (SG), see, case b) in Table. 2.1. Further, in order to uniquely

determine such fields, the corresponding N th order forces are required, which can be

imposed on the desired boundaries only if there exists their energy couple, the N th

order gradient of the deformation map (see, DG and BCs in Table. 2.1).

Table 2.1: Field distributions predicted by the Nth-order gradient continuum model.

2.3.1 Characterization of the triple stress parameter

In the previous section, we observed that the responses of the composite, and the

associated shear strain and shear angle distributions are sensitive to boundary forces
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(i.e. double and triple forces) and, in particular, their energy couples via the N th

order stress parameters (i.e. C and A). The double stress parameter C represents

the bending rigidity of a fiber such that each fiber family has their own unique C

values, obtained from bending experiments. However, little has been devoted to the

characterization of the parameter A mainly due to the complex nature of mechani-

cal interactions on edges and points (see, also, [99]-[100], and [109]). Hence, in this

section, we address this deficiency and investigate whether there exists a unique char-

acteristic constant A associated with the Piola-Type triple stress. The accuracy and

utility of the proposed model are also examined via comparison with the experimental

results.

Two sets of experiments were designed for this purpose (see, Figs. 2.9-2.10):

a three point bending test of a Crystalline Nanocellulose (CNC) fiber composite

(C = 150Gpa, µ = 1Gpa); and a bending test of a Nylon-6 Fiber Neoprene Rubber

composite (C = 2000Mpa, µ = 1Mpa), which is clamped on both ends. In both

experiments, the out-of-plane direction (x3) is aligned with either the loading cylinder

or the guide clamps. This setting is a particular case of the proposed model when

c ≫ d. The resulting displacements are simultaneously recorded via the MTS load

cell and high speed camera.

Figure 2.9: CNC fiber composites bending test: Experimental data and theoretical
predictions.

Figs. 2.9 and 2.11 illustrate that the proposed model successfully predicts the
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Figure 2.10: Nylon-6 fiber neoprene rubber composite experimental setup.

deformation profiles of both the CNC fiber composite and Nylon fiber composite

with a maximum error of less then 2%. But more importantly, the results in Fig.

2.12 indicate that there exists a certain range of values for A which minimize the

prediction errors. Further, we found that these characteristic numbers are unique for

each composite and not affected by either the types of boundary conditions or the

applied loadings (e.g., r,m, see, Fig. 2.12). Therefore, it is inferred that A is indeed

an intrinsic property of the examined composites pertaining to the Piola-type triple

stress, and can be uniquely determined for each case. For example, A = 127 for CNC

fiber composite and A = 0.825 for Nylon rubber composite. Here, we may refer to A

as the triple modulus of composites for use in analogous studies.

Lastly, we note that the obtained results can be further extended to encompass

more practically important problems: determining the triple modulus of the com-

posites subjected to different loading conditions (e.g., Bias extension); examining the

existence of the triple modulus for an arbitrary composite; analyzing the effects of the

residual Piola-type triple stresses on the mechanical responses of a composite. The

researches on these subjects are currently underway and our intention is to report

elsewhere when we collect enough case studies.
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Figure 2.11: Nylon-6 fiber neoprene rubber composite: Experimental data and theo-
retical predictions.

Figure 2.12: Maximum error with respect to A: CNC fiber composite (left), Neoprene
rubber composite (right).
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2.4 Finite element analysis of the 4th order cou-

pled PDE

The resulting systems of PDEs (Eqs. (2.46)-(2.51)) is 6th order differential equations

with coupled non-linear terms. The case of such less regular PDEs deserve delicate

mathematical treatment as done similarly in [96] and [110] and is of particular practi-

cal interest. Therefore, it is not trivial to demonstrate numerical analysis procedures

regarding FE analysis.

For preprocessing, Eqs. (2.50)-(2.51) may be recast as

µ
(︁
Q+ χ1,22

)︁
− Aχ2,2 +Bχ2,1 − CQ,11 + AS,11 = 0,

µ
(︁
R + χ2,22

)︁
+ Aχ1,2 −Bχ1,1 − CR,11 + AT,11 = 0,

Q− χ1,11 = 0,

R− χ2,11 = 0,

S −Q,11 = 0,

T −R,11 = 0,

A− µ(Q+ χ1,22)− CS = 0,

B − µ(R + χ2,22)− CT = 0, (2.76)

where Q = χ1,11, R = χ2,11, S = Q,11 and T = R,11. Thus, we reduced the order

of deferential equations from three coupled equations of 6th order to eight coupled

equations of 2nd order. In particular, the non-linear terms (e.g. Aχ2,2, Bχ2,1 etc...) in

the above equations can be systematically treated via the Picard iterative procedure;

−Ainitialχ
initial
2,2 +Binitialχ

initial
2,1 =⇒ −A0χ

0
2,2 +B0χ

0
2,1,

Ainitialχ
initial
1,2 −Binitialχ

initial
1,1 =⇒ A0χ

0
1,2 −B0χ

0
1,1, (2.77)

where the values of A and B continue to be updated based on their previous estima-

tions (e.g. A1 and B1 are refreshed by their previous pair of A0 and B0) as iteration

progresses. Hence, we generalize the above expression for N number of iterations as

−AN−1χ
N−1
2,2 +BN−1χ

N−1
2,1 =⇒ −ANχ

N
2,2 +BNχ

N
2,1,

AN−1χ
N−1
1,2 −BN−1χ

N−1
1,1 =⇒ ANχ

N
1,2 −BNχ

N
1,1, (2.78)
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in which the number of iteration can be determined by a convergence criteria.

In addition, the weighted forms of Eq. (2.76) is obtained by

0 =

∫︂
Ωe

w1(µ
(︁
Q+ χ1,22

)︁
− Aχ2,2 +Bχ2,1 − CQ,11 + AS,11)dΩ,

0 =

∫︂
Ωe

w2(µ
(︁
R + χ2,22

)︁
+ Aχ1,2 −Bχ1,1 − CR,11 + AT,11)dΩ,

0 =

∫︂
Ωe

w3(Q− χ1,11)dΩ,

0 =

∫︂
Ωe

w4(R− χ2,11)dΩ,

0 =

∫︂
Ωe

w5(S −Q,11)dΩ,

0 =

∫︂
Ωe

w6(T −R,11)dΩ,

0 =

∫︂
Ωe

w7(A− µ(Q+ χ1,22)− CS)dΩ,

0 =

∫︂
Ωe

w8(B − µ(R + χ2,22)− CT )dΩ. (2.79)

Applying integration by parts and Green-stokes theorem (e.g. µ

∫︂
Ωe

w1χ1,22dΩ =

−µ
∫︂
Ωe

w1,2χ1,2dΩ + µ

∫︂
Ωe

w1χ1,2NdΓ), we obtain from the above that

0 =

∫︂
Ωe

(µw1Q− µw1,2χ1,2 − w1A0χ2,2 + w1B0χ2,1 + Cw1,1Q,1 − Aw1,1S,1)dΩ

+

∫︂
∂Γe

µw1χ1,2NdΓ−
∫︂
∂Γe

Cw1Q,1NdΓ +

∫︂
∂Γe

Aw1S,1NdΓ,

0 =

∫︂
Ωe

(µw2R− µw2,2χ2,2 + w2A0χ1,2 − w2B0χ1,1 + Cw2,1R,1 − Aw2,1T,1)dΩ

+

∫︂
∂Γe

µw2χ2,2NdΓ−
∫︂
∂Γe

Cw2R,1NdΓ +

∫︂
∂Γe

Aw2T,1NdΓ,
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0 =

∫︂
Ωe

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γe

w3χ1,1NdΓ,

0 =

∫︂
Ωe

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γe

w4χ2,1NdΓ,

0 =

∫︂
Ωe

(w5S + w5,1Q,1)dΩ−
∫︂
∂Γe

w5Q,1NdΓ,

0 =

∫︂
Ωe

(w6T + w6,1R,1)dΩ−
∫︂
∂Γe

w6R,1NdΓ,

0 =

∫︂
Ωe

w7(A0 − µQ− CS − µw7,2χ1,2)dΩ−
∫︂
∂Γe

µw7χ1,2NdΓ

0 =

∫︂
Ωe

w8(B0 − µR− CT − µw8,2χ1,2)dΩ−
∫︂
∂Γe

µw7χ2,2NdΓ, (2.80)

where Ω, ∂Γ and N are the domain of interest, the associated boundary, and the

rightward unit normal to the boundary ∂Γ in the sense of the Green-stoke’s theorem,

respectively. The unknowns, χ1, χ2, Q, R, S, T, A and B can be written in the form

of Lagrangian polynomial as

(∗) =
n=4∑︂
j=1

[(∗)jΨj(x, y)]. (2.81)

Thus, the test function w is obtained by

wm =
n=4∑︂
i=1

wi
mΨi(x, y) and m = 1, 2, 3, ..., 8. (2.82)

Here, wi is weight of the test function and Ψi(x, y) are the shape functions for the

4-node rectangular elements such that

Ψ1 =
(x− c)(y − d)

cd
,Ψ2 =

x(y − d)

−cd
, Ψ3 =

xy

cd
and Ψ4 =

y(x− c)

−cd
. (2.83)

By means of Eq. (2.81), Eq. (2.80) can be rewritten in terms of Lagrangian polyno-

50



mial representation as

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(µΨiΨj + CΨi,1Ψj,1)dΩ}Qj −
n∑︂

i,j=1

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ1j

−
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiA0Ψj,2 −ΨiB0Ψj,1)dΩ}χ2j −
n∑︂

i,j=1

{
∫︂
Ωe

(AΨi,1Ψj,1)dΩ}Sj

+

∫︂
∂Γe

(µΨiχ1,2)NdΓ−
∫︂
∂Γe

(CΨiQ,1)NdΓ +

∫︂
∂Γe

AΨiS,1NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(µΨiΨj + CΨi,1Ψj,1)dΩ}Rj −
n∑︂

i,j=1

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ2j

+
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiA0Ψj,2 −ΨiB0Ψj,1)dΩ}χ1j −
n∑︂

i,j=1

{
∫︂
Ωe

(AΨi,1Ψj,1)dΩ}Tj

+

∫︂
∂Γe

(µΨiχ2,2)NdΓ−
∫︂
∂Γe

(CΨiR,1)NdΓ +

∫︂
∂Γe

AΨiT,1NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Qj +
n∑︂

i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ1j −
∫︂
∂Γe

(Ψiχ1,1)NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Rj +
n∑︂

i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ2j −
∫︂
∂Γe

(Ψiχ2,1)NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Sj +
n∑︂

i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}Qj −
∫︂
∂Γe

(ΨiQ,1)NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Tj +
n∑︂

i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}Rj −
∫︂
∂Γe

(ΨiR,1)NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Aj −
n∑︂

i,j=1

{
∫︂
Ωe

(µΨiΨj)dΩ}Qj −
n∑︂

i,j=1

{
∫︂
Ωe

(CΨiΨj)dΩ}Sj

−
n∑︂

i,j=1

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ1j +

∫︂
∂Γe

(µΨiχ1,2)NdΓ,

0 =
n∑︂

i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Bj −
n∑︂

i,j=1

{
∫︂
Ωe

(µΨiΨj)dΩ}Rj −
n∑︂

i,j=1

{
∫︂
Ωe

(CΨiΨj)dΩ}Tj

−
n∑︂

i,j=1

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ2j +

∫︂
∂Γe

(µΨiχ2,2)NdΓ. (2.84)

Now, for the lolcal stiffness matrices and forcing vectors for each elements, we

find
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⎡⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎦
Local

⎡⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎦
Local

=

⎡⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎦
Local

, (2.85)

or alternatively, in a compact form,

[︁
K11

ij

]︁
[χi

1] = [F 1
i ] for i, j = 1, 2, 3, 4, (2.86)

where [︁
K11

ij

]︁
=

∫︂
Ωe

(µΨi,2Ψj,2)dΩ, (2.87)

and

[F 1
i ] = −µ

∫︂
∂Γe

Ψiχ1,2NdΓ + C

∫︂
∂Γe

ΨiQ,1NdΓ−
∫︂
∂Γe

AΨiS,1NdΓ. (2.88)

Accordingly, the unknowns (i.e. Q, R, S, T, A and B) can be expressed as

Qi = {χi
1},11, Ri = {χi

2},11, Si = {Qi},11 etc... (2.89)

Finally, we repeat the same procedures for the rest of components (e.g.
[︁
K21

ij

]︁
[χi

2] =

[F 2
i ] etc...) and, thereby obtain the following systems of equations (in the Global

form) for each individual elements.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] . . . . [K17] [K18]
[K21] [K22] . . . . [K27] [K28]
[K31] [K32] . . . . [K37] [K38]
[K41] [K42] . . . . [K47] [K48]
[K51] [K52] . . . . [K57] [K58]
[K61] [K62] . . . . [K67] [K68]
[K71] [K72] . . . . [K77] [K78]
[K81] [K82] . . . . [K87] [K88]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Global

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{χi
1}

{χi
2}

Qi

Ri

Ai

Bi

Si

Ti

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Global

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F 1
i }

{F 2}
{F 3}
{F 4}
{F 5}
{F 6}
{F 7}
{F 8}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Global

.

(2.90)

In the simulation, the following convergence criteria are used for both nonlinear terms;

|An+1 − An| = e1 ≤ ε, |Bn+1 −Bn| = e2 ≤ ε and ε = maximum error = 10−4,

(2.91)

which demonstrate fast convergence within 20 iterations (see, Table. 2.2)
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Table 2.2: Maximum numerical errors with respect to the number of iterations.

Number of iteration Mximum error
1 1.2e-01
5 5.7e-02
10 3.5e-03
17 9.2e-05
20 5.0e-05

2.5 Denouement

In this chapter, we present a second gradient-based continuum model for the me-

chanics of an elastic solid reinforced with extensible fibers and subjected to plane

deformations. The fibers are presumed as continuously distributed spatial rods of

Kirchhoff type, under which the kinematics of fibers has been formulated via the

second and third gradient of continuum deformations. By means of the variational

principles and the virtual work statement, the Euler equations and the associated nec-

essary boundary conditions are obtained. The energy density function of Spencer and

Soldatos type is augmented by the third gradient of deformations to accommodate

the third gradient continua and the associated bulk incompressibility.

The presented model is solved using finite element analysis method. The proposed

model predicts smooth and dilatational shear angle distributions, as opposed to those

obtained from the first and second-gradient theory where the resulting shear zones

are either non-dilatational or non-smooth. Case studies are also performed through

the inhouse experimental settings of crystalline nanocellulose (CNC) fiber composites

and Nylon-6 fiberNeoprene rubber composites, which illustrate that the obtained

solutions successfully predict the deformation profiles of both composites.
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Chapter 3

A model for hyperelastic materials
reinforced with fibers resistance to
extension and flexure

In sections 3.1 and 3.2, we develop the kinematics of the reinforcing fibers and equi-

librium equations, respectively. The boundary conditions are presented in section 3.3.

In section 3.4, a case of Mooner-Rvilin type hyperelastic material is considered as the

matrix material which is reinforced with unidirectional fibers. Through the method of

virtual work and the computation of variational derivatives, the corresponding Euler

equilibrium equation is derived, forming a set of coupled Partial Differential Equa-

tions, which is solved using the finite element method. In section 3.5, the prediction

performance of the presented model is compared against a set of in-house experimental

data.

3.1 Kinematics

Our intention throughout this section is to establish the kinematical framework which

will be used in the constitutive formulations of hyperelastic matrix-fiber composites.

We note that, in the forgoing development, a unidirectional fiber-reinforced compos-

ites are considered for the sake of simplicity. The cases of bidirectional fibers can be

readily implemented to the proposed model using the similar approaches as done in

[86] and [113].

Let r(s) is the parametric curve which represents fibers’ trajectory on the deformed

configuration and let τ be the unit tangent in the direction of increasing s. We also
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define X(S) and S as the counter parts of r(s) and s in the reference configuration.

The orientation of a particular fiber is then defined by

λ = |d| and λτ = d; λ ≡ ds

dS
and τ ≡ dr(s)

ds
, (3.1)

where

d = FD, F =λτ ⊗D, (3.2)

and F is the gradient of the deformation function (χ(X)). Eq. (3.2) are obtained

by taking the derivative of r(s(S)) = χ(X(S)) with respect to arclength parameters

S and ultimately s, upon making the identifications D =dX/dS. Here, d(∗)/dS

and d(∗)/ds refer to the arclength derivatives of (∗) along fibers’ directions in the

reference and deformed configurations, respectively. Eq. (3.2) can be projected using

the orthonormal bases of {EA : reference} and {ei : current} to yield

λτ i = di = FiADA for D = DAEA and d = dei. (3.3)

which may also used in the later sections.

The expression for geodesic curvature of a parametric curve (r (s)) is then obtained

from Eqs. (3.2)-(3.3) that

g ≡ r
′′
=
d(r(S)

dS
)

dS
=
∂(FD)

∂X

∂X

∂S
= ∇[FD]D. (3.4)

In general, most of the fibers are straight prior to deformations. Even slightly curved

fibers can be idealized as ‘fairly straight’ fibers, considering their length scales with

respect to that of matrix materials. This indicates that the gradients of unit tangents

in the reference configuration are vanishes identically (i.e. ∇D = 0). Hence, Eq.

(3.4) reduces to

g =∇F(D⊗D) = G(D⊗D), (3.5)

where we employ the convention of the second gradient of deformations as

∇F ≡ G, and (3.6)

GiAB = FiA,B = FiB,A = GiBA (3.7)

is the compatibility condition of G. For the desired applications, we propose the

following strain energy function:

W (F,G) = ˆ︂W (F) +W (G), W (G) ≡ 1

2
C (F) |g|2 , (3.8)

55



where the response of the fiber materials are governed by both the first and second

gradient of deformations. Further, C (F) refers to the material property associated

with the bending motions of fibers which, in general, independent of the deformation

gradient (i.e. C (F) = C). Eq. (3.8) is consistent with the model proposed by [93]

that, in the case of a single family of fibers, the dependence of the strain energy on

G occurs through g such that

W (G) = W (g(G)). (3.9)

In particular, we introduce the strain energy function which addresses the fiber’s

resistance to extension as

W (ε) =
1

2
Eε2, and (3.10)

ε =
1

2
(λ2 − 1), (3.11)

where E is a modulus pertaining to the fiber’s extension and the expression of λ2 can

be obtained from Eq. (3.3):

λ2 = FD · FD = FTFD ·D = (FTF) ·D⊗D. (3.12)

It is inferred from Eq. (3.12) that the fiber’s extension is F dependent via ε (i.e.

ε = ε(F)). Thus, the strain energy function Eq. (3.8) is now augmented by Eq.

(3.10) to yields

W (F, ε(F),g(G)) = W (F) +
1

2
Eε2 +

1

2
C |g(G)|2 . (3.13)

For uses in the derivation of Euler equations and the associated boundary conditions,

we continue by evaluating the induced energy variation of the response function (Eq.

(3.13)) with respect to F, ε, and g as

Ẇ (F, ε,g) = WF·Ḟ+Wεε̇+Wg·ġ. (3.14)

Here, the superposed dot refers to derivatives with respect to a parameter ε at the

particular configuration of the composite (ε = 0) that labels a one-parameter family

of deformations.

The desired expressions for the variational derivatives can be obtained from Eqs.

(3.10)-(3.13) that

ε̇ =
1

2
(λ2 − 1)̇ =

1

2
(FD · FD− 1)̇ = FD · ḞD = FD⊗D · Ḟ, (3.15)
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Wε = Eε, and Wg = Cg. (3.16)

Hence, the above lead to

Wεε̇ = Eεε̇ = E[
1

2
{(FTF) ·D⊗D−1}][FD⊗D]·Ḟ (3.17)

Wgġ =Cg · ġ = G(D⊗D) · Ġ(D⊗D) = (Cg ⊗D⊗D) · Ġ, (3.18)

where, from Eq. (3.5), g = G(D⊗D).

Finally, combining Eqs. (3.14)-(3.18), we find

Ẇ (F, ε,g) = WF·Ḟ+E[
1

2
{(FTF) ·D⊗D−1}][FD⊗D]·Ḟ+ (Cg ⊗D⊗D) · Ġ.

(3.19)

or equivalently

Ẇ (F, ε,g) = WFiA
Ḟ iA +

E

2
(FjCFjDDCDD − 1)(FiBDBDA)Ḟ iA + CgiDADBĠiAB.

(3.20)

3.2 Equilibrium

The derivation of the Euler equation and boundary conditions arsing in second-

gradient elasticity is well studied [98], [101], and [107]-[108]. We reformulate the

results in the present context for the sake of clarity and completeness, and, in par-

ticular, for the purpose of establishing the connections between the applied loads

and the deformations. The weak form of the equilibrium equations is given by the

virtual-work statement
·
E = P, (3.21a)

where P is the virtual power of the applied loads and the superposed dot refers to

the variational and/or Gateâux derivative;

E =

∫︂
Ω

W (F, ε,g) dA (3.22a)

is the strain energy. In general, volumetric changes in materials’ deformations are

energetically expensive processes and thus are typically constrained in the constitutive

modeling of engineering materials (see, [105]-[106]). To accommodate the condition
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of the bulk incompressibility, the strain energy potential is augmented by the weak

form, p(J − 1); i.e.,

U = W − p(J − 1) and E =

∫︂
Ω

U (F, ε,g) dA, (3.23)

where J is determinant of F and p is a constitutively indeterminate scalar field. The

associated variation is then given by

U̇ = Ẇ − pJ̇, and J̇ = JFF · Ḟ = F
∗·Ḟ. (3.24)

It is noted that conservative loads are characterized by the existence of a potential

L such that P = L̇. Thus the problem of determining equilibrium deformations is

reduced to the problem of minimizing the potential energy, E − L. In the present

case, this means

Ė =

∫︂
Ω

U̇ (F, ε,g,p) dA. (3.25)

We now substitute Eqs. (3.21a) and (3.24) into Eq. (3.25) and thereby obtain

Ė =

∫︂
Ω

[WFiA
ui,A +

E

2
(FjCFjDDCDD − 1)(FiBDBDA)ui,A + C(giDADB)ui,AB

−pF ∗
iAuiA]dA, (3.26)

where ui = χ̇i is the variation of the position field. Applying integration by part on

C(giDADBG)ui,AB we find

C(giDADB)ui,AB = C(giDADBui,A),B − C(giDADB),Bui,A. (3.27)

Thus from the above, Eq. (3.26) may be recast as

Ė =

∫︂
Ω

[{WFiA
+
E

2
(FjCFjDDCDD − 1)(FiBDBDA)− pF ∗

iA − C(giDADB),B}ui,A

+C(giDADBui,A),B]dA. (3.28)

But Eq. (3.28) is equivalent to

Ė =

∫︂
Ω

[WFiA
+
E

2
(FjCFjDDCDD − 1)(FiBDBDA)− pF ∗

iA − C(giDADB),B]ui,AdA

+

∫︂
∂Ω

C(giDADBui,A)NBdS, (3.29)

where NA is the rightward unit normal to ∂Ω in the sense of Green–Stokes theorem.
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Consequently, we find

Ė =

∫︂
Ω

PiAui,AdA+

∫︂
∂Ω

C(giDADBui,A)NBdS, (3.30)

where

PiA = WFiA
+
E

2
(FjCFjDDCDD − 1)(FiBDBDA)− pF ∗

iA − C(giDADB),B (3.31)

is the expression of the Piola type stress. Also, for initially straight fiber (see, Eqs.

(3.4)-(3.5)), the above further reduces to

PiA = WFiA
+
E

2
(FjCFjDDCDD − 1)(FiBDBDA)− pF ∗

iA − Cgi,BDADB. (3.32)

Thus the Euler equation is obtained by

PiA,A = 0 or Div(P) = 0, (3.33)

which holds in Ω.

3.3 Boundary conditions

Applying integration by part on Eq. (3.30) (i.e. PiAui,A = (PiAui),A − (PiA),Aui), we

find
·
E =

∫︂
Ω

[(PiAui),A − PiA,Aui]dA

∫︂
∂Ω

C(giDADBui,A)NBdS. (3.34)

The above may be recast as

·
E =

∫︂
∂Ω

[PiAuiNA + C(giDADBui,A)NB]dS −
∫︂
Ω

PiA,AuidA. (3.35)

With the Euler equation (PiA,A = 0) satisfied on Ω, Eq. (3.30) becomes

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

C(giDADBui,A)NBdS. (3.36)

Now, we project ∇u onto the normal and tangent directions as;

∇u =∇u(T⊗T)+∇u(N⊗N) = u′⊗T+ u,N⊗N (3.37)

where T = X
′
(s) = k×N is the unit tangent to the boundary ∂Ω; and u

′
and u,N are

the tangential and normal derivatives of u on ∂Ω (i.e. u
′
i = ui,ATA, ui,N = ui,ANA).

Accordingly, Eq. (3.36) is then decomposed to

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

CgiDADB

(︂
u

′

iTANB + ui,NNANB

)︂
dS. (3.38)
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Since,

CgiDADBTANBu
′

i = (CgiDADBTANBui)
′
− (CgiDADBTANB)

′
ui, (3.39)

we obtain from Eq. (3.38) that

·
E =

∫︂
∂Ω

[PiANA − (CgiDADBTANB)
′
]uidS +

∫︂
∂Ω

CgiDADBui,NNANBdS

+

∫︂
∂Ω

(CgiDADBTANBui)
′
dS. (3.40)

The above can be rewritten as

·
E =

∫︂
∂Ω

[PiANA − (CgiDATADBNB)
′
]uidS +

∫︂
∂Ω

CgiDANADBNBui,NdS

−
∑︂

∥CgiDATADBNBui∥ , (3.41)

where the double bar symbol refers to the jump across the discontinuities on the

boundary ∂Ω (i.e. ∥∗∥ = (∗)+ − (∗)−) and the sum refers to the collection of all

discontinuities.

It follows from Eq. (3.21a) that admissible powers are of the form

P =

∫︂
∂wt

tiuidS +

∫︂
∂w

miui,NdS +
∑︂

fiui. (3.42)

Hence, by comparing Eqs. (3.41) and (3.42), we obtain

ti = PiANA − d

dS
[CgiDATADBNB],

mi = CgiDANADBNB,

fi = CgiDATADBNBui, (3.43)

which are the expressions of edge tractions, edge moments and the corner forces,

respectively.

For instance, if the fiber’s directions are either normal or tangential to the bound-

ary (i.e. (D ·T)(D ·N) = 0 ), Eq. (3.43) furnishes

ti = PiANA,

mi = CgiDANADBNB,

fi = 0, (3.44)
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where

PiA = WFiA
+
E

2
(FjCFjDDCDD − 1)(FiBDBDA)− pF ∗

iA − Cgi,BDADB,

gi,B = FiC,BDDCDD (see, Eq. (3.5)). (3.45)

Thus, the solution of Eq. (3.33) can be uniquely determined by imposing the admis-

sible set of boundary conditions in Eq. (3.43).

3.4 Hyperelastic matrix material – fiber compos-

ites

Based on the constitutive framework discussed in the previous sections, we develop

a prediction model which describes the responses of hyperelastic matrix material –

composites such as carbon fiber reinforced polymers and elastomeric composites. For

this purpose, we employ the Mooney rivlin strain energy potential which is widely

adopted in the large deformation analyses (see, also, [105]-[106]);

W (F) =
µ

2
(I1 − 3) +

λ

2
(I2 − 3), (3.46)

where I1 and I2 are the principal invariants of the deformation gradient tensor defined

respectively by

I1 = tr(FTF) and I2 =
1

2
[(tr(FTF))2 − tr((FTF)2)]. (3.47)

Since (I1)F = 2F and (I2)F = 2F(I1I−FT ·F) (see, [114]), the variational derivative

of Eq. (3.46) can be evaluated as

WF·Ḟ = [
µ

2
(I1)F+

λ

2
(I2)F]·Ḟ = [µF+λF{(F · F)I− FTF}]·Ḟ, (3.48)

Therefore, we find from Eq. (3.32) that

P = PiA(ei⊗EA)

= [µFiA+λFiB(FjCFjCδAB−FjAFjB) +
1

2
E(FiBFjCFjC)DADBDDDD − 1

2
EFiBDADB

−Cgi,BDADB − pF ∗
iA](ei⊗EA), (3.49)

which may be served as the expression of the Piola stress for soft composite materials.

Further, the corresponding Euler equilibrium equation can be derived as

0 = Div(P) = PiA,Aei = [µFiA,A+λ{FiB(FjCFjCδAB−FjAFjB)},A−Cgi,ABDADB

−p,AF ∗
iA +

1

2
E(FiBFjCFjC),ADADBDDDD − 1

2
EFiB,ADADB]ei, (3.50)
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which hold on Ω.

In the above, µ and λ are the material constants of a hyperelastic matrix material

of Mooney rivlin type, and E and C are, respectively the extension and bending

modulus of fibers. For example, if the soft composite material reinforced with a

single family of fibers (i.e. D = E1, D1 = 1, D2 = 0 with the modulus E and C),

Eq. (3.50) furnishes

0 = [µχi,AA − p,AεijεABχj,B+λ(χi,AAχj,Cχj,C + χi,Aχj,CAχj,C + χi,Aχj,Cχj,CA

−χi,BAχj,Aχj,B − χi,Bχj,AAχj,B − χi,Bχj,Aχj,BA) +
1

2
E(χi,11χj,1χj,1

+χi,1χj,11χj,1 + χi,1χj,1χj,11)−
1

2
EFi1,1 − Cχi,1111]ei, (3.51)

where FiA = χi,A = ∂χi

∂XA
, F ∗

iA = εijεABFjB, and εij is the 2-D permutation; ε12 =

−ε21 = 1, ε11 = −ε22 = 0. Performing Einstein summation and some efforts, we

arrive

0 = µ(χ1,11 + χ1,22)− p,1χ2,2 + p,2χ2,1+λ(χ1,11χ2,2χ2,2 + χ1,22χ2,1χ2,1

+2χ1,1χ2,21χ2,2 + 2χ1,2χ2,12χ2,1 − χ1,21χ2,1χ2,2 − χ1,12χ2,2χ2,1

−χ1,2χ2,11χ2,2 − χ1,1χ2,22χ2,1 − χ1,2χ2,1χ2,21 − χ1,1χ2,2χ2,12)

+
1

2
E(3χ1,11χ1,1χ1,1 + χ1,11χ2,1χ2,1 + 2χ2,11χ1,1χ2,1)− Cχ1,1111, (3.52)

0 = µ(χ2,11 + χ2,22)− p,2χ1,1 + p,1χ1,2+λ(χ2,11χ1,2χ1,2 + χ2,22χ1,1χ1,1

+2χ2,1χ1,21χ1,2 + 2χ2,2χ1,12χ1,1 − χ2,21χ1,1χ1,2 − χ2,12χ1,2χ1,1

−χ2,2χ1,11χ1,2 − χ2,1χ1,22χ1,1 − χ2,2χ1,1χ1,21 − χ2,1χ1,2χ1,12)

+
1

2
E(3χ2,11χ2,1χ2,1 + χ2,11χ1,1χ1,1 + 2χ1,11χ2,1χ1,1)− Cχ2,1111, (3.53)

which together with the constraint of the bulk incompressibility;

detF = χ1,1χ2,2 − χ1,2χ2,1 = 1, (3.54)

solves the unknown potentials of χ1, χ2 and p. The solutions can be uniquely deter-

mined by imposing the admissible boundary conditions presented in Eq. (3.44). For

the common rectangular samples where D ·T = 0 and D ·N = 1, Eq. (3.44) takes
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the following form

t1 = P11, t2 = 0,

m1 = Cg1, m2 = 0,

f1 = f2 = 0, (3.55)

where from Eqs. (3.5) and (3.49), the expressions of P11 and g1 can be obtained

respectively as

P11 = µχ1,1+λ(χ1,1χ2,2χ2,2−χ1,2χ2,1χ2,2) +
1

2
Eχ1,1(χ1,1χ1,1 + χ2,1χ2,1

+χ1,2χ1,2 +2,1 χ2,22,1χ2,2)−
1

2
Eχ1,1−Cχ1,111 − pχ2,2,

g1 = G111D1D1 = χ1,11. (3.56)

The numerical solution of the obtained PDE system (Eqs. (3.52)-(3.54)) can be

accommodated via commercial packages (e.g. Matlab, COMSOL etc. . . ).

3.4.1 Consideration of linear theory

Although the proposed model is intended for large deformation analyses, the devel-

opment of the compatible linear model may be of practical interest especially when

the induced deformations are determined to be ‘small ’. In such cases, the linear the-

ory may supply reasonable alternatives with reduced computational reassures. Our

intention here is to investigate the possibility of the compatible linear model for the

materials of the Mooney Rivlin type within the description of superposed incremental

deformations.

We consider superposed ‘small ’ deformations defined by

χ = χo + ϵχ̇ ; |ϵ| ≪ 1, (3.57)

where (∗̇) = ∂(∗)/∂ε, χ̇ = u and (∗)o denote configuration of ∗ evaluated at ϵ = 0,

(∗̇) = ∂(∗)/∂ε. Here caution needs to be taken that the present notation is not con-

fused with the one used for the variational computation. Accordingly, the deformation

gradient tensor can be expressed as

F = Fo + ϵ∇u, where Ḟ = ∇u. (3.58)
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In a typical environment, the body is initially undeformed and stress free (i.e. at

ε = 0, Fo = I and Po = 0). This can be accommodated by imposing the initial

conditions of

Fo = I and Po = 0, at ε = 0, (3.59)

from which Eq. (3.58) reduces to

F = I+ ε∇u, (3.60)

and successively yields

F−1 = I− ϵ∇u+o(ϵ) and J = detF =1 + ϵ divu+o(ϵ). (3.61a)

Also, in view of Eq. (3.57), we expand Eq. (3.33) as

Div(P) = Div(Po) + ϵDiv(Ṗ) + o(ϵ) = 0. (3.62)

Dividing the above by ϵ and letting ϵ → 0, we find the following linearized Euler

equation.

Div(Ṗ) = 0 or Ṗ iA,A = 0 (3.63)

The expression of Ṗ iA in the above Euler equation can be obtained from Eq. (3.45)

that

Ṗ iA = (WFiA
)̇ + E[Ḟ jC(FjD)oDCDD][(FiB)oDBDA)]− ġi,BDADB

+
E

2
[(FjC)o(FjD)oDCDD − 1](Ḟ iBDBDA)− ṗ(F ∗

iA)o − pḞ
∗
iA. (3.64)

Since (FjD)o = δjD and (F ∗
iA)o = δiA at ϵ = 0, Eq. (3.64) further reduces to

Ṗ iA = (WFiA
)̇ + Euj,BDADBDiDj − ṗδiA − pḞ

∗
iA − ui,BCDDCDDDADB, (3.65)

where δjCδjDDCDD = DCDC = 1 and ġi,B = Ḟ iC,BDDCDD. We note that, in the

above equation, the initial director field D is represented by the current basis (i.e.

Diei) not by the reference frame (i.e. DAEA). This is due to the collapse of two

different bases which arises in small deformations superposed on large (i.e. ei ≡ EA;

see, also, [105]-[106]). Hence, the associated tensor operations are possible without

violating the bases mismatches.
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Now, for the Mooney Rivlin strain energy, we find from Eqs. (3.48)-(3.49) that

(WFiA
)̇ = µḞ iA + λḞ iB(δjCδjCδAB − δjAδjB) + λδiB(2Ḟ jCδjCδAB − Ḟ jAδjB − δjAḞ jB)

= µḞ iA + 2λḞBBδiA − λḞAi. (3.66)

The substitution of Eq. (3.66) into Eq. (3.64) then furnishes

Ṗ iA = µui,A−λuA,i+Euj,BDADBDiDj− ṗδiA−poḞ
∗
iA−ui,BCDDCDDDADB, (3.67)

,where po = µ to recover the initial stress free state at ϵ = 0 (i.e. (Ṗ iA)ϵ=0 = 0), and

ḞBB = uB,B vanishes from the linearized condition of bulk incompressibility; i.e.,

(J − 1)̇ = (F ∗
iA)o Ḟ iA = δiAui,A = uA,A = 0. (3.68)

Thus, using the identities of Ḟ
∗
iA,A = 0 (Piola’s identity ) and (ṗδiA),A = ṗ,AδiA = ṗ,i,

the expression of Ṗ iA,A can be subsequently formulated as

Ṗ iA,A = µui,AA−λuA,iA+Euj,ABDADBDiDj−ṗ,i−ui,ABCDDCDDDADB = 0. (3.69)

But, from the compatibility condition of uA,iA together with Eq. (3.69), it can be

shown that

uA,iA = uA,Ai = (uA,A)i = 0. (3.70)

Consequently, Eq. (3.69) becomes

Ṗ iA,A = µui,AA + Euj,ABDADBDiDj − ṗ,i − ui,ABCDDCDDDADB = 0, (3.71)

which can be served as the compatible linear Euler equation for the materials of

Mooney Rivlin type.

We remark that the linearized equations derived from the proposed model (Eq

(3.71)) is the same as those obtained from the setting of the Neo Hookean model.

This is mainly due to the fact that the influence of the higher-order invariant term

I2 in the Mooney Rivlin energy potential is gradually diminished as entering into the

small deformation regime. Since the existence of the high-order invariant term I2 is

the primary distinction between the Mooney Rivlin and Neo Hookean models, the

above would mean that the two models become essentially identical within the pre-

scription of superposed incremental deformations. Therefore, the linear consideration

of the Mooney Rivlin may not be necessary in the present cases. Thet corresponding

solutions of Eqs. (3.68) and (3.71) and the necessary boundary conditions can be

found in [86] and [115].
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3.5 Model implementation and discussions

A comparison with experimental results is presented in this section to demonstrate

the accuracy and utility of the proposed model. We designed the uniaxial tension

test of four different types of elastomeric composites that are reinforced, respectively,

by polyester fibers (PES-2, PES-3) and nylon/spandex fibers (NSP-8515, NSP-8020).

Ecoflex 0050 is used for the matrix materials for both cases, which is known to be one

of the promising materials in biomechanical applications for its high tear resistance

and large extensibility. The reinforced elastomeric composites were fabricated in

three-layer configuration using layer by layer method. First, Ecoflex 0050 elastomer

was prepared by mixing two components (a base and curing agent) in 1 : 1 ratio

and subsequent degassing in a vacuum chamber to remove entrapped bubbles. The

second layer of long fibers was then placed flat on elastomer and allowed to wet at

the interface. A small amount of elastomer was poured and rolled over the fibers to

wet it again and to fill the gaps between pores and level the second layer. Lastly,

a sufficient amount of elastomer was poured over the second layer and placed into

the film applicator rod to yields uniform film. The dimensions of the fabricated

elastomeric materials and composites were measured using a caliper and an aspect

ratio of length-to-width was kept as 2 : 1 for all samples. Instron 5943 (Illinois Tool

Works Inc., USA) was used to measure stress-strain responses the prepared composites

(See, Fig. 3.1). The extension rate was set 10mm per minute to avoid/minimize

viscous responses. The stress-strain curves and deformations on each material points

were simultaneously recorded for the comparisons with the prediction results from

the proposed model.

The material parameters of the matrix material (i.e. λ and µ ) was determined

from the experimental data of Ecoflex-0050 (see, Fig. 3.2) using the Mooney-Rivlin

model. The elastic modulus of fibers (i.e. Eand C) were obtained from the stress-

strain curve of the two different fibers (Fig. 3.3(b)) in which we used the formula

[116]

E =
P

a− λ(a)
(1− λ

′
(a)) (3.72)

Here, P and a are respectively, stress and extension ratio of fibers while λ(a) is the

stretch ratio in the orthogonal direction from the stress-strain data of fibers (Fig.
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Figure 3.1: Experimental set up: Elastomeric composite sample (50mm × 25mm)
under uniaxial tension test.

3.3(b)). The obtained material properties are then used as the input parameters of

the obtained PDEs (see, Eqs. (3.64) and (3.65)) which are numerically solved via the

custom-built algorithm. In the assimilations, the applied load P11 is computed from

Eq. (3.49) that

P11 = µχ1,1+λ(χ1,1χ2,2χ2,2−χ1,2χ2,1χ2,2) +
1

2
Eχ1,1(χ1,1χ1,1 + χ2,1χ2,1

+χ1,2χ1,2 +2,1 χ2,22,1χ2,2)−
1

2
Eχ1,1−Cχ1,111 − pχ2,2 (3.73)

and the associated boundary conditions are prescribed as follows (see, Fig. 3.4)

t1 = P11, t2 = P12 = 0, at X1 = a,−a and

t1 = P21 = 0, t2 = P22 = 0, at X2 = b,−b (3.74)

In addition, the following Holzapfel model [117] is also employed in the prediction

of the experimental results and is subsequently compared with the proposed model:

W =
c

2
(I1 − 3) +

k1
2k2

∑︂
i=4,6

{exp[k2(Ii − 1)2]− 1}, (3.75)

where c is the property of matrix and k1 and k2 are empirical fitting parameters

pertaining to the composites. The Holzapfel model is widely adopted in biomate-

rials applications such as mimicking natural aorta, vein, and cartilage, aortic valve

where the J-shaped strain-stiffening response ([5], [7], [17], and [118]) and significant
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Figure 3.2: Stress-strain curves: Ecoflex-0050 and Mooney-Rivlin curve fitting.

Figure 3.3: (a) Stress-strain: PES-2 and PES-3 fibers. (b) Stress-strain: NSP-8515
and NSP-8020 fibers.
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Figure 3.4: Schematic of the problem: 2a = 50mm and 2b = 25mm.

anisotropy [6],[119] are the essential design considerations. Our intension here is to

seek the potential applications of the proposed model in the design and analysis of such

biocompatible materials that can be implanted to replace or repair damaged/missing

tissue.

A comparison among the stress-strain curves obtained from the experimental data,

the proposed model and the Holzapfel model are presented in Fig. 3.5 and 3.6. It is

shown in Figs. 3.5 and 3.6 that the proposed model successfully predict the J-shaped

stress-strain responses of the composites regardless of the different strain-stiffening

rates. The Holzapfel model also produces reasonably accurate estimations of the

stress-strain curves of the tested samples except the slight deviations in the transition

(i.e., strain-stiffening) regimes of PES-3 and NSP-8515 composites where rapid strain-

stiffening responses are observed at a low strain level. In other words, the Holzapfel

model is less sensitive to the steep variations of the stress-strain curve than the

proposed model. Such limited sensitivity may not compromise the overall prediction

accuracy of the model. However, it may be potential disadvantage, especially when

mimicking biological tissues, considering the fact that one of the primary requirements

of the theoretical model is the ability to predict rapid strain-stiffening behaviors at a

low level of strain, which is also known to be a characteristic of most biological tissues

([5],[17]).

More importantly, unlike the Holzapfel model in which the empirical constants
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Figure 3.5: Stress-strain curves from different prediction models: PES-2 and PES-3.

k1 and k2 are obtained from the fabricated composites, the proposed model predicts

the resultant properties of desired composites prior to the composition as long as the

material parameters of matrix materials and fibers are provided (i.e. no empirical

curve fitting of the composite is necessary). This may be of more practical interest,

especially in the design stage of composites. Since the responses of the intended com-

posites can be predetermined using the proposed model, through which the required

resources in the sample productions may be minimized.

In addition to the abovementioned technical merits, the proposed model provides

the quantitative predictions of other key design considerations such as deformation

profiles and contours. Fig. 3.7 (a)–(d) illustrate the χ1 and χ2 deformation profiles

of the polyester fiber-composites (PES-2, PES-3) at different strain levels. Despite

the inevitable uncertainties (e.g., image processing and curve fitting), the deforma-

tion profiles from the experiment and the theoretical predictions demonstrate close

agreement throughout the entire domain of interest. In the case of the nylon/spandex

fiber-composites (NSP-8515, NSP-8020), the proposed model accurately predicts the

χ1 deformations (axial elongation) of both samples (see, Fig. 3.8 (a)–(c)), yet has
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Figure 3.6: Stress-strain curves from different prediction models: NSP-8020 (left) and
NSP-8515 (right)

limitations in the prediction of χ2 deformations, especially those in the NSP-8515

composites at lower strain levels ( Fig. 3.8 (d)). This may be due to the NSP-8515

fibers’ resistance along the χ2 direction within the composites, which hinders the χ2

deformation. We speculate that the bidirectional fiber model may be suitable for

the deformation analysis of NSP-8515 fiber-composites. Further research on these

cases is, however, beyond the scope of the present study, yet is certainly of practical

interest. The graphical comparisons between the theoretical prediction and experi-

mental result for the cases of the PES-3 sample at 50% and 100% elongations, and

the NSP-8020 sample at 167% and 235% elongations are presented in Figs. 3.9-3.10

for the purpose of cross-examination with the deformation data obtained in Figs. 3.7

and 3.8. The plotted deformation contours are the norms of displacement fields (i.e.√︁
χ2
1 + χ2

2) and demonstrate reasonably close agreement with the deformed configu-

rations of both composite samples. The same comparisons are made for the PES-2

and NSP-8515 cases, which again indicate close correspondence with experiments ex-

cept NSP-8515 at 50% elongation (see, also, Fig. 3.8 (d)). However, these have been

intentionally omitted for the sake of conciseness.

Further, the corresponding stress fields become “Piola type double stress”(see, for

example, [99],[109], and [111]) due to the introduction of bending stiffness of fibers into

the model of continuum deformation (second-gradient continuum). In other words,

the resulting stress fields now depend both on the axial stiffness (E) and bending

stiffness (C) of fibers (see, Eq. (3.73) ). More detailed discussions regarding the
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Figure 3.7: Deformation profiles: (a) χ1 (PES-2); (b) χ2 (PES-2); (c) χ1 (PES-3); (d)
χ2 (PES-3).

qualitive sensitivity of the deformation, stress and strain fields with respect to the

material parameters of fibers can be found in [86] and [115]. In the present case,

the J-shaped stress-strain response of a certain composite tends to be stiffer with

increasing bending modulus of fibers.

Overall, the proposed model successfully predicts the various important mechani-

cal responses of the tested elastomeric composites and therefore may also serve as an

alternative of the Holzapfel model in the design and analysis of biomimetic compos-

ites, especially those exhibiting significant strain-stiffening responses at a low level of

strain.
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Figure 3.8: Deformation profiles: (a) χ1 (NSP-8020); (b) χ2 (NSP-8020); (c) χ1 (NSP-
8515); (d) χ2 (NSP-8515).

3.6 Finite element analysis of the 4th order cou-

pled PDE

The systems of PDEs in Eqs. (3.52)-(3.54) are 4th order differential equations with

coupled non-linear terms. The case of such less regular PDEs deserve delicate math-

ematical treatment and is of particular practical interest. Hence, it is not trivial to

demonstrate the associated numerical analysis procedures. For preprocessing, Eqs.
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Figure 3.9: Comparisons of the overall deformations: PES-3 at 50% (left) and 100%
(right) elongations.

Figure 3.10: Comparisons of the overall deformations: NSP-8020 at 167% (left) and
235% (right) elongations.

(3.52)-(3.54) may be recast as

0 = µ(Q+ χ1,22)− Aχ2,2 +Bχ2,1 − CQ,11+λ(QFF + χ1,22DD + 2Cχ2,21F

+2Eχ2,12D − χ1,21DF − χ1,12FD − ERF − Cχ2,22D − EDχ2,21 − CFχ2,12)

−1

2
EQ+

1

2
E(3Qχ1,1χ1,1 +Qχ2,1χ2,1 + 2Rχ1,1χ2,1)

0 = µ(χR + χ2,22)−Bχ1,1 + Aχ1,2 − CR,11+λ(REE + χ2,22CC + 2Dχ1,21E

+2Fχ1,12C − χ2,21CE − χ2,12EC − FQE −Dχ1,22C − FCχ1,21 −DEχ1,12)

−1

2
ER +

1

2
E(3Rχ2,1χ2,1 +Rχ1,1χ1,1 + 2Qχ2,1χ1,1)
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0 = Q− χ1,11,

0 = R− χ2,11,

0 = C − χ1,1,

0 = D − χ2,1,

0 = E − χ1,2,

0 = F − χ2,2,

0 = A− µ(Q+ χ1,22)− CQ,11,

0 = B − µ(R + χ2,22)− CR,11, (3.76)

where Q = χ1,11, R = χ2,11, C = χ1,1, D = χ2,1, E = χ1,2, F = χ2,2. Thus, the order

of differential equations is reduced from the three coupled equations of 4th order to

ten coupled equations of 2nd order. In particular, the non-linear terms in the above

equations (e.g. Aχ2,2, Bχ2,1 etc...) can be systematically treated via the following

Picard iterative procedure;

−Ainitialχinitial
2,2 +Binitialχinitial

2,1 =⇒ −A0χ
0
2,2 +B0χ

0
2,1

Ainitialχinitial
1,2 −Binitialχinitial

1,1 =⇒ A0χ
0
1,2 −B0χ

0
1,1, (3.77)

where the estimated values of A and B continue to be updated based on their previous

estimations (e.g. A1 and B1 are refreshed by their previous pair of Ao and Bo) as

iteration progresses and similarly for other non-linear terms.

Further, we find the weight forms of Eq. (3.76) as

75



0 =

∫︂
Ω

w1(µ(Q+ χ1,22)− A0χ2,2 +B0χ2,1 − CQ,11+λ(QF0F0 + χ1,22D0D0

+2C0χ2,21F0 + 2E0χ2,12D0 − χ1,21D0F0 − χ1,12F0D0 − E0RF0 − C0χ2,22D0

−E0D0χ2,21 − C0F0χ2,12)−
1

2
Ew1Q+

1

2
Ew1(3QC

2
0 +QD2

0 + 2RC0D0))dΩ

0 =

∫︂
Ω

w2(µ(R + χ2,22)−B0χ1,1 + A0χ1,2 − CR,11+λ(RE0E0 + χ2,22C0C0

+2D0χ1,21E0 + 2F0χ1,12C0 − χ2,21C0E0 − χ2,12E0C0 − F0QE0 −D0χ1,22C0

−F0C0χ1,21 −D0E0χ1,12)−
1

2
Ew2R +

1

2
w2E(3RD

2
0 +RC2

0 + 2QD0C0))dΩ

0 =

∫︂
Ω

w3(Q− χ1,11)dΩ,

0 =

∫︂
Ω

w4(R− χ2,11)dΩ,

0 =

∫︂
Ω

w5(C − χ1,1)dΩ,

0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ,

0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

w9(A0 − µ(Q+ χ1,22)− CQ,11)dΩ,

0 =

∫︂
Ω

w10(B0 − µ(R + χ2,22)− CR,11)dΩ, (3.78)

Hence, applying integration by part and Green-stokes theorem, (e.g. µ

∫︂
Ωe

w1χ1,22dΩ =

−µ
∫︂
Ωe

w1,2χ1,2dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ) the final weak forms of Eq. (3.78) can be ob-
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tained as follows

0 =

∫︂
Ω

(w1µQ− µw1,2χ1,2 − w1A0χ2,2 + w1B0χ2,1 + Cw1,1Q,1+λw1QF0F0

−λw1,2χ1,2D0D0 − 2λw1,1C0χ2,2F0 − 2λw1,2E0χ2,1D0 + λw1,1χ1,2D0F0

+λw1,2χ1,1F0D0 − λw1E0RF0 + λw1,2C0χ2,2D0 + λw1,1E0D0χ2,2

+λw1,2C0F0χ2,1 +
1

2
Ew1Q+

1

2
Ew1(3QC

2
0 +QD2

0 + 2RC0D0))dΩ

+

∫︂
∂Γ

µw1χ1,2NdΓ−
∫︂
∂Γ

Cw1Q,1NdΓ +

∫︂
∂Γ

λw1χ1,2D0D0NdΓ

+2

∫︂
∂Γ

λw1C0χ2,2F0NdΓ + 2

∫︂
∂Γ

λw1E0χ2,1D0NdΓ−
∫︂
∂Γ

λw1χ1,1F0D0NdΓ

−
∫︂
∂Γ

λw1χ1,2D0F0NdΓ−
∫︂
∂Γ

λw1C0χ2,2D0NdΓ−
∫︂
∂Γ

λw1E0D0χ2,2NdΓ

−
∫︂
∂Γ

λw1C0F0χ2,1NdΓ

0 =

∫︂
Ω

(w2µR− µw2,2χ2,2 − w2B0χ1,1 + w2A0χ1,2 + Cw2,1R,1+λw2RE0E0

−λw2,2χ2,2C0C0 − 2λw2,1D0χ1,2E0 − 2λw2,2F0χ1,1C0 + λw2,1χ2,2C0E0

+λw2,2χ2,1E0C0 − λw2F0QE0 + λw2,2D0χ1,2C0 + λw2,1F0C0χ1,2

+λw2,2D0E0χ1,1 −
1

2
Ew2R +

1

2
w2E(3RD

2
0 +RC2

0 + 2QD0C0))dΩ

+

∫︂
∂Γ

µw2χ2,2NdΓ−
∫︂
∂Γ

Cw2R,1NdΓ +

∫︂
∂Γ

λw2χ2,2C0C0NdΓ

+2

∫︂
∂Γ

λw2D0χ1,2E0NdΓ + 2

∫︂
∂Γ

λw2F0C0χ1,1NdΓ−
∫︂
∂Γ

λw2D0χ1,2C0NdΓ

−
∫︂
∂Γ

λw2χ2,2C0E0NdΓ−
∫︂
∂Γ

λw2F0C0χ1,2NdΓ−
∫︂
∂Γ

λw2χ2,1E0C0NdΓ

−
∫︂
∂Γ

λw2D0E0χ1,1NdΓ
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0 =

∫︂
Ω

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γ

w3χ1,1NdΓ

0 =

∫︂
Ω

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γ

w4,1χ2,1NdΓ

0 =

∫︂
Ω

(w5C − w5χ1,1)dΩ

0 =

∫︂
Ω

(w6D − w6χ2,1)dΩ,

0 =

∫︂
Ω

(w7E − w7χ1,2)dΩ,

0 =

∫︂
Ω

(w8F − w8χ2,2)dΩ,

0 =

∫︂
Ω

(w9A− µw9Q+ µw9,2χ1,2 + Cw9,1Q,1)dΩ−
∫︂
∂Γ

µw9χ1,2NdΓ

−
∫︂
∂Γ

Cw9Q,1NdΓ

0 =

∫︂
Ω

(w10B − µw10R + µw10,2χ2,2 + Cw10,1R,1)dΩ−
∫︂
∂Γ

µw10χ2,2NdΓ

−
∫︂
∂Γ

Cw10R,1NdΓ (3.79)

where Ω, ∂Γ and N are, respectively the domain of interest, the associated boundary,

and the rightward unit normal to the boundary ∂Γ in the sense of the Green-stoke’s

theorem. The unknowns, χ1, χ2, Q, R,C,D,E, F, A and B can be written in the

form of Lagrangian polynomial such that

(∗) =
n=4∑︂
j=1

[(∗)jΨj(x, y)]. (3.80)

Thus, the test function w is found to be

w =
n=4∑︂
i=1

wiΨi(x, y); i = 1, 2, 3, 4, and j = 1, 2, 3, 4, (3.81)

where wi is weight of the test function and Ψi(x, y) are the shape functions; Ψ1 =
(x−2)(y−1)

2
, Ψ2 =

x(y−1)
−2

, Ψ3 =
xy
2
and Ψ4 =

y(x−2)
−2

. By means of Eq. (3.80), Eq. (3.79)
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may be recast in terms of Lagrangian polynomial as

0 =
∑︂

{
∫︂
Ωe

(λΨi,1Ψj,2D0F0 + λΨi,2Ψj,1F0D0 − µΨi,2Ψj,2 − λΨi,2Ψj,2D0D0)dΩ}χ1j

+
∑︂

{
∫︂
Ωe

(ΨiΨj,1B0 −ΨiΨj,2A0 − 2λΨi,1Ψj,2C0F0 − 2λΨi,2Ψj,1E0D0

+λΨi,2Ψj,2C0D0 + λΨi,1Ψj,2E0D0 + λΨi,2Ψj,1C0F0)dΩ}χ2j +
∑︂

{
∫︂
Ωe

(µΨiΨj

+CΨi,1Ψj,1+λΨiΨjF0F0 +
1

2
EΨiΨj +

3

2
EΨiΨjC

2
0 +

1

2
EΨiΨjD

2
0)dΩ}Qj

+
∑︂

{
∫︂
Ωe

(−λΨiΨjE0F0 + EΨiΨjC0D0)dΩ}Rj +

∫︂
∂Γ

(µΨiχ1,2)NdΓ

−
∫︂
∂Γ

(CΨiQ,1)NdΓ +

∫︂
∂Γ

(λΨiχ1,2D0D0)NdΓ +

∫︂
∂Γ

(2λΨiC0χ2,2F0)NdΓ

+2

∫︂
∂Γ

(λΨiE0D0χ2,1)NdΓ−
∫︂
∂Γ

(λΨiχ1,2D0F0)NdΓ−
∫︂
∂Γ

(λΨiC0χ2,2D0)NdΓ

−
∫︂
∂Γ

(λΨiE0D0χ2,2)NdΓ−
∫︂
∂Γ

(λΨiC0F0χ2,1)NdΓ−
∫︂
∂Γ

(λΨiχ1,1F0D0)NdΓ

0 =
∑︂

{
∫︂
Ωe

(−ΨiΨj,1B0 +ΨiΨj,2A0 − 2λΨi,1Ψj,2D0E0 + λΨi,1Ψj,2F0C0

−2λΨi,2Ψj,1F0C0λΨi,2Ψj,2D0C0 + λΨi,2Ψj,1D0E0)dΩ}χ1j

+
∑︂

{
∫︂
Ωe

(−µΨi,2Ψj,2 − λΨi,2Ψj,2C0C0 + λΨi,1Ψj,2C0E0

+λΨi,2Ψj,1E0C0)dΩ}χ2j +
∑︂

{
∫︂
Ωe

(−λΨiΨjF0E0 + EΨiΨjC0D0)dΩ}Qj

+
∑︂

{
∫︂
Ωe

(µΨiΨj + CΨi,1Ψj,1+λΨiΨjE0E0 +
1

2
EΨiΨj +

3

2
EΨiΨjD

2
0

+
1

2
EΨiΨjC

2
0)dΩ}Rj +

∫︂
∂Γ

(µΨiχ2,2)NdΓ−
∫︂
∂Γ

(CΨiR,1)NdΓ

+

∫︂
∂Γ

(λΨiχ2,2C0C0)NdΓ + 2

∫︂
∂Γ

(λΨiD0χ1,2E0)NdΓ + 2

∫︂
∂Γ

(λΨiF0C0χ1,1)NdΓ

−
∫︂
∂Γ

(λΨiχ2,2C0E0)NdΓ−
∫︂
∂Γ

(λΨiχ2,1E0C0)NdΓ−
∫︂
∂Γ

(λΨiD0χ1,2C0)NdΓ

−
∫︂
∂Γ

(λΨiD0E0χ1,1)NdΓ−
∫︂
∂Γ

(λΨiF0C0χ1,2)NdΓ
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0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Qj +
∑︂

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ1j −
∫︂
∂Γe

(Ψiχ1,1)NdΓ,

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Rj +
∑︂

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ2j −
∫︂
∂Γe

(Ψiχ2,1)NdΓ,

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Cj −
∑︂

{
∫︂
Ωe

(ΨiΨj,1)dΩ}χ1j

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Dj −
∑︂

{
∫︂
Ωe

(ΨiΨj,1)dΩ}χ2j

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Ej −
∑︂

{
∫︂
Ωe

(ΨiΨj,2)dΩ}χ1j

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Fj −
∑︂

{
∫︂
Ωe

(ΨiΨj,2)dΩ}χ2j

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Aj +
∑︂

{
∫︂
Ωe

(−µΨiΨj + CΨi,1Ψj,1)dΩ}Qj

+
∑︂

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ1j −
∫︂
∂Γe

(µΨiχ1,2)NdΓ−
∫︂
∂Γ

(CΨiQ,1)NdΓ

0 =
∑︂

{
∫︂
Ωe

(ΨiΨj)dΩ}Bj +
∑︂

{
∫︂
Ωe

(−µΨiΨj + CΨi,1Ψj,1)dΩ}Rj

+
∑︂

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ2j −
∫︂
∂Γe

(µΨiχ2,2)NdΓ−
∫︂
∂Γ

(CΨiR,1)NdΓ(3.82)

Now, for the lolcal stiffness matrices and forcing vectors for each elements, we find⎡⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎦
Local

⎡⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎦
Local

=

⎡⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎦
Local

, (3.83)

where[︁
K11

ij

]︁
=

∫︂
Ω

(λΨi,1Ψj,2D0F0 +λΨi,2Ψj,1F0D0 −µΨi,2Ψj,2 −λΨi,2Ψj,2D0D0)dΩ, (3.84)

and

{F 1
i } =

∫︂
∂Γ

µwiχ1,2NdΓ−
∫︂
∂Γ

CwiQ,1NdΓ +

∫︂
∂Γ

λwiχ1,2D0D0NdΓ

+2

∫︂
∂Γ

λwiC0χ2,2F0NdΓ + 2

∫︂
∂Γ

λwiE0χ2,1D0NdΓ

−
∫︂
∂Γ

λwiχ1,2D0F0NdΓ−
∫︂
∂Γ

λwiC0χ2,2D0NdΓ

−
∫︂
∂Γ

λwiE0D0χ2,2NdΓ−
∫︂
∂Γ

λwiC0F0χ2,1NdΓ

−
∫︂
∂Γ

λwiχ1,1F0D0NdΓ. (3.85)
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Thus, the unknowns (i.e. χ1, χ2, Q, R,C,D,E, F, A and B) can be expressed as

Qi = {χi
1},11, Ri = {χi

2},11, Si = {Qi},11 etc..., (3.86)

and similarly for the rest of unknowns.

Consequently, we obtain the following systems of equations (in the Global form)

for each individual elements as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] [K13] . . . . . [K19] [K110]
[K21] [K22] [K23] . . . . . [K29] [K210]
[K31] [K32] [K33] . . . . . [K39] [K310]
[K41] [K42] [K43] . . . . . [K49] [K410]
[K51] [K52] [K53] . . . . . [K59] [K510]
[K61] [K62] [K63] . . . . . [K69] [K610]
[K71] [K72] [K73] . . . . . [K79] [K710]
[K81] [K82] [K83] . . . . . [K89] [K810]
[K91] [K92] [K93] . . . . . [K99] [K910]
[K101] [K102] [K103] . . . . . [K109] [K1010]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi
1

χi
2

Qi

Ri

Ai

Bi

Ci

Di

Ei

Fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F1}
{F2}
{F3}
{F4}
{F5}
{F6}
{F7}
{F8}
{F9}
{F10}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.87)

In the simulation, we set the following convergence criteria,

|An+1 − An| = e1 ≤ ε, |Bn+1 −Bn| = e2 ≤ ε and ε = maximum error = 10−4,

(3.88)

which demonstrate fast convergence within 20 iterations (see, Table. 3.1).

Table 3.1: Maximum numerical errors with respect to the number of iterations.

Number of iteration Mximum error
1 1.2e-01
5 6.4e-02
10 3.4e-03
15 1.4e-04
20 4.1e-05

3.7 Denouement

In this chapter, a second-order continuum model is presented for the mechanics of

a hyperelastic matrix material reinforced with unidirectional fibers in finite plane
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elastostatics. The elastic resistance of fibers against stretch and flexure are integrated

into the models of the continuum deformation via the first and second gradient of

deformations, respectively. To accommodate the hyperelastic responses of the matrix

material, the strain energy function of the composite is refined by the Mooney-Rivlin

model. Within the framework of the second gradient theory, the Euler equation and

necessary boundary conditions are also derived using the variational principles and the

virtual work statement. These, in turn, furnish a highly nonlinear PDE from which

a set of numerical solutions describing the hyperelastic responses of the composites

are obtained via the custom-built numerical procedures.

It is also demonstrated that the presented model successfully predicts rapid strain-

stiffening behavior of the Ecoflex/polyester fiber composite at a low strain level.

Further, the deformation profiles of the composites are computed which demonstrate

good agreement with the in-house experiment data.
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Chapter 4

Mechanics of hyperelastic
composites reinforced with
nonlinear elastic fibrous materials

In section 4.1, the kinematics is presented for hyperelastic material reinforced with

unidirectional fibers. The equilibrium and boundary conditions are presented in section

4.2. In section 4.3, the fiber potential function is refined to incorporate three distinct

types of nonlinear response. The kinematics of bi-directional fiber mesh embedded in

a hyperelastic matrix material is discussed in section 4.4. In section 4.5, the in-house

experimental setup is discussed in detail. In section 4.6, the prediction performance

of the presented models is compared against the in-house experimental data.

4.1 Kinematics of fibers embedded in a hyperelas-

tic matrix material

In this section, we present the kinematics of fibers that will be used in the constitutive

formulation of a hyperelastic matrix-fiber composite reinforced with nonlinear elastic

and extensible fibers. Emphasis is placed on the derivations of compact kinematic

descriptions for a unidirectional fiber family in terms of the first and second gradient

of continuum deformations. The cases of bidirectional fiber meshes with a particular

mesh orientation will be discussed separately in later sections.

Let r(s) is the parametric curve of fibers’ trajectory on the deformed configuration

and τ be the unit tangent in the direction of increasing arclength parameter s. We also

define X(S) and S as the counter parts of r(s) and s in the reference configuration.
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The configuration of a particular fiber is then obtained by

λ = |d| and λτ = d; λ ≡ ds

dS
and τ ≡ dr(s)

ds
, (4.1)

where

d = FD, F =λτ ⊗D, (4.2)

and F is the gradient of the deformation function (χ(X)). Eq. (4.2) can be obtained

via the successive differentiation of r(s(S)) = χ(X(S)) with respect to the referential

position vector X(S) and the arclength parameter S using chain rule, upon making

the identification of D =dX/dS. Here, d(∗)/dS and d(∗)/ds refer to the arclength

derivatives of (∗) along fibers’ directions, respectively in the reference and deformed

configurations. Eq. (4.2) may be projected using the orthonormal bases of {EA :

reference} and {ei : current} to yield

λτ i = di = FiADA for D = DAEA, d = dei. (4.3)

Further, using Eqs. (4.1)-(4.2), we find

λ2 = FD · FD = FTF ·D⊗D, (4.4)

which will also be used in the later sections.

Now, the geodesic curvature of a parametric curve (r (s)) is then formulated from

Eqs. (4.2)-(4.3) that

g ≡ r
′′
=
d(r(S)

dS
)

dS
=
∂(FD)

∂X

∂X

∂S
= ∇[FD]D. (4.5)

In general, most of the fibers are straight prior to deformations. Even slightly curved

fibers may be idealized as ‘fairly straight’ fibers, considering their length scales com-

paring with those of matrix materials. This further suggests that the gradient of the

unit tangent in the reference configuration identically vanishes; i.e.,

∇D = 0. (4.6)

Thus, Eq. (4.5) deduces

g =∇F(D⊗D) = G(D⊗D), (4.7)
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where we adopt the convention of the second gradient of deformations as

∇F ≡ G, and (4.8)

the associated compatibility condition of G is given by

GiAB = FiA,B = FiB,A = GiBA. (4.9)

The forging developments purports that the responses of an elastic material rein-

forced with fibers may be characterized by the first and second gradient of continuum

deformations such that

W (F, ε,g) = W (F) +
1

2
C(F)g(G)·g(G), (4.10)

whereW (F) refers the energy function of a matrix material. In particular, the second

term in the above (1/2[C(F)g(G)·g(G)]) is the fiber’s bending energy potential of

Spencer and Soldatos type [93] which presumes that the bending responses of fibers

are dependent entirely on the second gradient of continuum deformations via the

geodesic curvature of fibers;

g = g(G). (4.11)

The associated modulus C(F) is, in general, independent of the deformation gradient

(i.e. C(F) = C). The postulation of Spencer and Soldatos [93] has been widely and

successfully adopted in the relevant subjects of studies (see, for example, [86], [95],

[96], [110], [113], [115], and [120]). It is also noted that the invariance requirements

(i.e. frame indefference) arising in the second gradient deformation remain valid for

the finite elastic deformations of general continuum bodies [121]-[122] and for the

cases of hyperelastic soft tissues [123], and hence, have been adopted in the present

study without further proof.

To accommodate the cases of nonlinear extensible fibers exhibiting rapid strain-

stiffening at low strain level (see, for example, Fig. 2 in [7] and Fig. 7 in [124]), we

augment the potential of Eq. (4.10) as

W (F, ε,g) = W (F) +W (ε) +
1

2
Cg · g, (4.12)

where W (ε) is the potential energy function characterizing the states of fiber’s exten-

sibility and ε is the corresponding strain measure.
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Applications vis a vis particular types of energy functions of fibers (W (ε)) and the

associated strain measures will be discussed, separately, in later sections. Further, in

this study, we adopt the Mooney-Rivlin strain energy potential for the descriptions of

hyperelastic matrix materials which has been widely adopted in the large deformation

analyses (see, also, [105]-[106] and references therein):

W (F) =
µ

2
(I1 − 3) +

κ

2
(I2 − 3), (4.13)

where I1 and I2 are the principal invariants of the deformation gradient tensor defined,

respectively, by

I1 = tr(FTF) and I2 =
1

2
[(tr(FTF))2 − tr((FTF)2)]. (4.14)

Based on the obtained kinematic formulations for the fibers and matrix materials, we

now evaluate the induced energy variation of the response function (Eq. (4.12)) as

Ẇ (F, ε,g) = W (F)F·Ḟ+W (ε)εεF·Ḟ+ Cg · ġ, (4.15)

which will be used in the derivation of the Euler equations and the associated

boundary conditions. Here, the superposed dot refers to the variational derivatives

with respect to a parameter ϵ at the particular configuration of the composite (i.e.

ϵ = 0) that labels a one-parameter family of deformations.

Lastly, the expressions for the associated energy variations with respect to the

first and second gradient of continuum deformations can be obtained, respectively, as

WF·Ḟ = [
µ

2
(I1)F+

κ

2
(I2)F]·Ḟ = [µF+κF{(F · F)I− FTF}]·Ḟ, (4.16)

where (I1)F = 2F, (I2)F = 2F(I1I− FT · F) (see, [114]), and

Cg · ġ(4.6)−(4.7)
= Cg · Ġ(D⊗D) = (Cg ⊗D⊗D) · Ġ. (4.17)

4.2 Equilibrium & Boundary conditions

In the present study, the framework of the virtual work statement is adopted in

the formulations of the Euler equilibrium equations and the associated boundary

conditions. To initiate the derivation, we evaluate the potential energy of the system

as

E =

∫︂
Ω

W (F, ε,g) dA. (4.18)
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Hence, the weak form of the equilibrium equation can be obtained by the virtual-work

statement,
·
E = P, (4.19)

where P is the virtual power of the applied loads and the superposed dot denotes the

variational and/or Gateâux derivative. Here, the conservative loads are characterized

by the existence of a potential L such that P = L̇. Accordingly, the problem of

determining equilibrium deformations is reduced to the problem of minimizing the

potential energy, E − L. In the present context, this would mean that

Ė =

∫︂
Ω

Ẇ (F, ε,g) dA. (4.20)

In general, volumetric changes in materials’ deformations are energetically expensive

processes and therefore are typically constrained in the constitutive modeling of en-

gineering materials (see, also, [105]-[106]). This can be achieved by augmenting the

condition of bulk incompressibility (i.e. p(J − 1)) on the strain energy potential (Eq.

(4.10)) such that

U(F, ε,g,p) = W (F) +W (ε) +
1

2
Cg · g − p(J − 1) , (4.21)

where J is determinant of F and p is a constitutively indeterminate Lagrange multi-

plier field. Therefore, Eq. (4.20) becomes

Ė =

∫︂
Ω

U̇(F, ε,g,p)dA. (4.22)

In view of Eqs. (4.15) and (4.21), the associated energy variation then furnishes

U̇ = W (F)F·Ḟ+W (ε)εεF·Ḟ+ Cg · ġ − pJ̇, and J̇ = JFF · Ḟ = F
∗·Ḟ. (4.23)

We continue by substituting Eqs. (4.16), (4.17) and (4.23) into Eq.(4.22) and thereby

obtain

Ė =

∫︂
Ω

[{µF+κF{(F · F)I− FTF}+WεεF−pF∗}·Ḟ+ (Cg⊗D⊗D) · Ġ]dA, (4.24)

or, equivalently,

Ė =

∫︂
Ω

[(µFiA+κFiB(FjCFjCδAB−FjAFjB)+WεεFiA
−pF ∗

iA)χ̇i,A+C(giDADB)χ̇i,AB]dA,

(4.25)
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where Ḟ iA = χ̇i,A and ĠiAB = χ̇i,AB are the variations of the first and second gradient

of deformations.

The framework of variational principles arising in the second-gradient finite elas-

ticity has been well established in the literature (see, for example, [98], [101], [107]

and [108], ). Here, we apply the results in the present context to formulate the Euler

equation and the associated boundary conditions, and further to identify relations

between the applied loads sustained by the second-gradient continua and their en-

ergy couple pertaining to the Piola-type double stresses. It is also noted that, in the

forthcoming derivations, we use the component forms of vectors and tensors (e.g. Eq.

(4.25)) for the sake of clarity and conciseness.

Now, applying integration by part on the last term of Eq. (4.25), we find

C(giDADB)χ̇i,AB = C(giDADBχ̇i,A),B − C(giDADB),Bχ̇i,A. (4.26)

Substituting the above into Eq. (4.25) then yields

Ė =

∫︂
Ω

[(µFiA+κFiB(FjCFjCδAB−FjAFjB) +WεεFiA
− pF ∗

iA)χ̇i,A − C(giDADB),Bχ̇i,A

+C(giDADBχ̇i,A),B]dA. (4.27)

Eq. (4.27) further reduces to

Ė =

∫︂
Ω

[µFiA+κFiB(FjCFjCδAB−FjAFjB) +WεεFiA
− pF ∗

iA − C(giDADB),B]χ̇i,AdA

+

∫︂
∂Ω

C(giDADBχ̇i,A)NBdS, (4.28)

where NB is the rightward unit normal to ∂Ω in the sense of the Green–Stokes’

theorem. To extract the desired expression, Eq. (4.28) may be recast as

Ė =

∫︂
Ω

PiAχ̇i,AdA+

∫︂
∂Ω

C(giDADBχ̇i,A)NBdS, (4.29)

where

PiA = µFiA+κFiB(FjCFjCδAB−FjAFjB) +WεεFiA
− pF ∗

iA − C(giDADB),B (4.30)

is the formulation of the Piola type stress. In the case of initially straight fibers (see,

Eq. (4.6)), the above can be simplified to

PiA = µFiA+κFiB(FjCFjCδAB−FjAFjB) +WεεFiA
− pF ∗

iA − Cgi,BDADB. (4.31)
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Hence, the Euler equilibrium equation satisfies

PiA,A = 0 or Div(P) = 0, (4.32)

which holds in Ω.

To derive the expressions of the associated boundary conditions, we again apply

integration by part on Eq. (4.29) (i.e. PiAχ̇i,A = (PiAχ̇i),A − (PiA),Aχ̇i) and obtain

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

C(giDADBχ̇i,A)NBdS −
∫︂
Ω

PiA,Aχ̇idA, (4.33)

where the Green-Stokes’ theorem is applied in the first term of the above, i.e.,∫︂
Ω

(PiAχ̇i),AdA =

∫︂
∂Ω

PiAχ̇iNAdS. (4.34)

Since the Euler equation (PiA,A = 0) holds in Ω, Eq. (4.33) reduces to

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

C(giDADBχ̇i,A)NBdS. (4.35)

We now decompose χ̇i,A into

χ̇i,A =
∂χ̇i

∂S

∂S

∂XA

+
∂χ̇i

∂N

∂N

∂XA

= χ̇′
iTA + χ̇i,N

NA, (4.36)

where TA = ∂S/∂XA and NA = ∂N/∂XA are respectively, the unit tangent and

normal to the boundary ∂Ω. Combining Eqs. (4.35)-(4.36) then furnishes

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

CgiDADB

(︂
χ̇′
iTANB + χ̇i,N

NANB

)︂
dS. (4.37)

In addition, since

CgiDADBTANBχ̇
′
i = (CgiDADBTANBχ̇i)

′
− (CgiDADBTANB)

′
χ̇i, (4.38)

Eq. (4.37) becomes

·
E =

∫︂
∂Ω

[PiANA − (CgiDADBTANB)
′
]χ̇idS +

∫︂
∂Ω

CgiDADBχ̇i,N
NANBdS

+

∫︂
∂Ω

(CgiDADBTANBχ̇i)
′
dS. (4.39)

The above may be recast to yield the standard form:

·
E =

∫︂
∂Ω

[PiANA − (CgiDATADBNB)
′
]χ̇idS +

∫︂
∂Ω

CgiDANADBNBχ̇i,N
dS

+
∑︂

∥CgiDATADBNBχ̇i∥ , (4.40)
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where the double bar symbol refers to the jump across the discontinuities on the

boundary ∂Ω (i.e. ∥∗∥ = (∗)+ − (∗)−) and the sum denotes the collection of all

discontinuities.

Lastly, it follows from Eq. (4.19) that the admissible mechanical powers take the

following form

P =

∫︂
∂wt

tiχ̇idS +

∫︂
∂w

miχ̇i,N
dS +

∑︂
fiχ̇i. (4.41)

Thus, by comparing Eqs. (4.39) and (4.40), we conclude that

ti = PiANA − d

dS
[CgiDATADBNB],

mi = CgiDANADBNB,

fi = CgiDATADBNB, (4.42)

where ti,mi, and fi are the expressions of edge tractions, edge moments and the corner

forces, respectively. It should be pointed out here that the stress expression in Eq.

(4.30) is a combination of the Piola-type stress (µFiA+κFiB(FjCFjCδAB−FjAFjB) +

WεεFiA
− pF ∗

iA) and double stress (C(giDADB),B) such that the second gradient of

the deformation term (i.e. C(giDADB),B) can be interpreted as the energy conjugate

to the admissible double force mi when it is prescribed on the desired boundaries.

4.3 Modeling of hyperelastic composites

Of central importance in this work is the incorporation of nonlinear responses (e.g.

strain-stiffening behaviors) of fibers into the models of continuum deformations. In

this section, we propose two different types of energy potentials in the descriptions of

fibers (based on the Green-Lagrange strain measure) which exhibit moderate strain-

stiffening and rapid strain-stiffening responses. Emphasis is placed on the derivation

of compact and viable mathematical models while maintaining the rigor and sufficient

generality in the associated constitutive formulations.

In cases of one-dimensional structures (e.g. fibers and wires), the Green-Lagrange

strain is defined by (see, also, [105]-[106])

ε =
1

2

(︁
λ2 − 1

)︁
. (4.43)
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Hence, in view of Eq. (4.4), we find

ε =
1

2
(FD · FD−1) =

1

2
(FiAFiBDADB−1) . (4.44)

Accordingly, the variational derivatives of ε can be evaluated as

ε̇ = εF·Ḟ =
∂(1/2)(FD · FD− 1)

∂F
·Ḟ = F(D⊗D) · Ḟ, or equivalently,

ε̇ = εFiA
Ḟ iA = FiBDBDAḞ iA, (4.45)

which will be used in the forthcoming variational formulations.

4.3.1 Fibers with moderate strain-stiffening behavior: Poly-
nomial potentials

The mechanical responses of the polyester (PES) fibers may be mimicked by using

the following polynomial form of energy potential:

W (ε) =
1

3
E1ε

3 +
1

2
E2ε

2. (4.46)

In the above, E1 and E2 are the material parameters, characterizing the moderate

strain-stiffening behaviors of the PES fibers which can be determined by fitting the

stress-strain curves of the PES fibers in the similar manner as in the Mooney-Rivlin

model. We note here that the use of higher order polynomials (e.g. ε5, ε4 etc...) may

provide better fittings and thus lead to more accurate predictions. At the same time,

the efficiency of the resulting models may be substantially compromised. We found

that, after extensive trials, the proposed cubic polynomial yields reasonably accurate

prediction results without much loss of computational efficiency. In this respect,

performance analysis via the cross-examination with the inhouse experimental results

will also be discussed separately in later sections.

Now, from Eqs. (4.44)-(4.45), the variational derivative of Eq. (4.46) can be

formulated as

Ẇ (ε) = WεεFiA
Ḟ iA=(E1ε

2 + E2ε)εFiA
Ḟ iA

= [
E1

4
(FD · FD−1)2 +

E2

2
(FD · FD−1)]F(D⊗D) · Ḟ

= [
E1

4
(FjCFjDDCDD)(FkEFkFDEDF ) +

(E2 − E1)

2
FjCFjDDCDD

+
(E1 − 2E2)

4
]FiBDBDAχ̇i,A. (4.47)
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Therefore, the expression of the Piola stress (Eq. (4.31)) becomes

PiA = µFiA+κFiB(FjCFjCδAB−FjAFjB)− pF ∗
iA − Cgi,BDADB

+[
E1

4
(FjCFjDDCDD)(FkEFkFDEDF ) +

(E2 − E1)

2
FjCFjDDCDD

+
(E1 − 2E2)

4
]FiBDBDA. (4.48)

For the desired applications (uniaxial and single family of fibers, i.e. D = D1E1), the

above may be further reduced to

PiA = µFiA + κFiB(FjCFjCδAB − FjAFjB)− pF ∗
iA − CFi1,11DA

+[
E1

4
(Fj1Fj1)(Fk1Fk1) +

(E2 − E1)

2
Fj1Fj1 +

(E1 − 2E2)

4
]Fi1DA,(4.49)

where, gi,B = FiC,BDDCDD from Eqs. (4.6)-(4.8). Further, since the Euler equation

(PiA,A = 0) holds in Ω, the above satisfies

0 = PiA,A = µχi,AA + κ(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + κχi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B + [
E1

4
(2χj,11χj,1χk,1χk,1

+2χj,1χj,1χk,11χk,1) + (E2 − E1)χj,11χj,1]χi,1 − Cχi,1111

+[
E1

4
(χj,1χj,1)(χk,1χk,1) +

(E2 − E1)

2
χj,1χj,1 +

(E1 − 2E2)

4
]χi,11, (4.50)

where FiA = χi,A = ∂χi/∂XA, F
∗
iA = εijεABFjB, and εij is the 2-D permutation;

ε12 = −ε21 = 1, ε11 = −ε22 = 0. Eq. (4.50) together with the constraint of the bulk

incompressibility,

detF = χ1,1χ2,2 − χ1,2χ2,1 = 1, (4.51)

solve the unknown potentials of χ1, χ2 and p which describe the mechanical responses

of hyperelastic composites with moderate strain-stiffening behaviors.

Lastly, the admissible boundary conditions (Eq. (4.42) ) in the case of rectan-

gular shaped samples (i.e. D ·T = 0 & D ·N = 1 or D ·T = 1 & D ·N = 0 on the

boundaries) furnish

t1 = P11, t2 = 0,

m1 = Cg1, m2 = 0,

f1 = f2 = 0, (4.52)
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from which the corresponding deformation mappings can be uniquely determined.

Further, in view of Eqs. (4.7) and (4.49), we obtain the expressions of P11 and g1,

respectively, as

P11 = µχ1,1+κχ1,B(χj,Cχj,Cδ1B−χj,1χj,B)−Cχ1,111 − pχ2,2

+[
E1

4
(χj,1χj,1χk,1χk,1) +

(E2 − E1)

2
χj,1χj,1 +

(E1 − 2E2)

4
]χ1,1,

g1 = G111D1D1 = χ1,11. (4.53)

The numerical solution of the above system of PDEs (Eqs. (4.50)-(4.51)) can be

accommodated via commercial packages (e.g. Matlab, COMSOL etc. . . ).

4.3.2 Fibers with rapid strain-stiffening behavior: Exponen-
tial potentials

For fibers exhibiting rapid strain-stiffening responses at low strain level such as the

Nylon/Spandex (NSP) fibers (see, also, [7] and [125]), the polynomial types of energy

potentials may not be suitable to capture sharp changes in stress-strain responses of

NSP fibers. In this case, the following exponential potential may be considered:

W (ε) = E1(E2ε− 1)eE2ε = E1(E2ε− 1)e(exp(E2ε)), (4.54)

where the material parameters E1 and E2 can be determined by fitting the stress-

strain curves of NSP fibers.

In view of Eqs. (4.44)-(4.45), we find the variational derivatives of Eq. (4.54) as

Ẇ (ε) = WεεFiA
Ḟ iA=E1E

2
2εe(exp(E2ε))εFiA

Ḟ iA (4.55)

=
E1E

2
2

2
(FD · FD−1) e[exp(

E2

2
(FD · FD−1))]F(D⊗D) · Ḟ

=
E1E

2
2

2
(FkEFkFDEDF−1) e[exp(

E2

2
(FjCFjDDCDD−1))]FiBDBDAχ̇i,A.

Hence, the expression of the Piola stress can be obtained by

PiA = µFiA+κFiB(FjCFjCδAB−FjAFjB)− pF ∗
iA − Cgi,BDADB (4.56)

+
E1E

2
2

2
(FkEFkFDEDF−1) e[exp(

E2

2
(FjCFjDDCDD−1))]FiBDBDA.

93



Similarly as in the polynomial case, the above becomes, in the case of uniaxial and

single family of fibers (i.e. D = D1E1), that

PiA = µFiA+κFiB(FjCFjCδAB−FjAFjB)− pF ∗
iA − CFi1,11DA

+
E1E

2
2

2
(Fk1Fk1−1) e[exp(

E2

2
(Fj1Fj1−1))]Fi1DA, (4.57)

from which, we derive the following Euler equilibrium equation:

0 = PiA,A = µχi,AA + κ(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + κχi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B

−Cχi,1111 + E1E
2
2

(︁
χk,11χk,1−1

)︁
e[exp(

E2

2

(︁
χj,1χj,1−1

)︁
)]χi,1

+
E1E

2
2

2

(︁
χk,1χk,1−1

)︁
e[exp(

E2

2

(︁
χj,1χj,1−1

)︁
)][E2χj,11χj,1χi,1 − χi,11], (4.58)

which holds in Ω. Since the NSP fiber composite specimens are fabricated and tested

under the same inhouse experimental settings as those in the PES fiber-composite

cases, the same boundary conditions (Eq. (4.52)) can be used without further mod-

ification except the expression of the Piola stress, P11 ,which can be obtained from

Eq. (4.57) that

P11 = µχ1,1+κχ1,B(χj,Cχj,Cδ1B−χj,1χj,B)−Cχ1,111 − pχ2,2

+
E1E

2
2

2

(︁
χk,1χk,1−1

)︁
e[exp(

E2

2

(︁
χj,1χj,1−1

)︁
)]χ1,1. (4.59)

The numerical solutions of the resulting system of PDEs (i.e. Eq. (4.58) and Eq.

(4.51)) can be uniquely determined by imposing the admissible boundary conditions

(Eq. (4.52)) to yield the explicit deformation mappings of the NSP fiber-composites

exhibiting rapid stress-strain behaviors. The corresponding simulation results and

comparisons with the experimental data will be discussed separately in later sections.

4.3.3 Consideration of the Euler-Almansi finite strain mea-
sure

The proposed model may also be employed in the analysis of the strain-softening

responses of fiber-composites such as polydimethylsiloxane (PDMS) composite and

polyurethane (integrated with polydopamine (PU/D)) composite (see, for example,
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[126]-[127]). For the desired application, we may consider the Euler-Almansi finite

strain measure defined by

ε =
1

2

(︃
1− 1

λ2

)︃
. (4.60)

Also, in the forthcoming model derivation, the polynomial energy potential of fibers is

considered for the sake of clear and concise demonstration. The cases of exponential

potentials can be easily implemented via the similar approaches as done in this section.

Now, the substitution of Eq. (4.4) into Eq. (4.60) furnishes

ε =
1

2

(︃
1− 1

FD · FD

)︃
=

1

2

(︃
1− 1

FiAFiBDADB

)︃
. (4.61)

The variational derivatives of ε can then be evaluated as

ε̇ = εF·Ḟ =
∂(1/2)[1− (FD · FD)−1]

∂F
·Ḟ =

1

2
(FD · FD)−2∂FD · FD

∂F
·Ḟ(4.62)

=
F(D⊗D) · Ḟ
(FD · FD)−2

,

or, in the component form,

ε̇ = εFiA
Ḟ iA =

FiBDBDAḞ iA

(FjCFjDDCDD)2
. (4.63)

Further, in view of (4.46)-(4.47), we compute the corresponding variational derivatives

of W (ε) as

Ẇ (ε) = WεεFiA
Ḟ iA=(E1ε

2 + E2ε)εFiA
Ḟ iA

= [
E1

4

(︃
1− 1

FD · FD

)︃2

+
E2

2

(︃
1− 1

FD · FD

)︃
]
F(D⊗D) · Ḟ
(FD · FD)−2

(4.64)

= [
E1

4

1

(FkEFkFDEDF )2
− (

E1 + E2

2
)

1

FkEFkFDEDF

+(
E1

4
+
E2

2
)]

FiBDBDA

(FjCFjDDCDD)
2 χ̇i,A.

Hence, it is customary to show

PiA = µFiA+κFiB(FjCFjCδAB−FjAFjB)− pF ∗
iA − Cgi,BDADB

+[
E1

4

1

(FkEFkFDEDF )2
− (

E1 + E2

2
)

1

FkEFkFDEDF

(4.65)

+(
E1

4
+
E2

2
)]

FiBDBDA

(FjCFjDDCDD)
2 .
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For uniaxial and single family of fibers (i.e. D = D1E1), this reduces to

PiA = µFiA + κFiB(FjCFjCδAB − FjAFjB)− pF ∗
iA − CFi1,11DA

+[
E1

4

1

(Fk1Fk1)2
− (

E1 + E2

2
)

1

Fk1Fk1

+(
E1

4
+
E2

2
)]

Fi1DA

(Fj1Fj1)
2 . (4.66)

Consequently, we obtain the following Euler equilibrium equation

0 = PiA,A = µχi,AA + κ(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + κχi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA) + [
E1

4

1

(χk,1χk,1)
2
− (

E1 + E2

2
)

1

χk,1χk,1

+(
E1

4
+
E2

2
)](

χi,11

(χj,1χj,1)
2 −

4χi,1χk,11χk,1

(χj,1χj,1)
3 ) + [(E1 + E2)

χj,11χj,1

(χk,1χk,1)
4

−E1

χj,11χj,1

(χk,1χk,1)
5
]χi,1 − p,AεijεABχj,B − Cχi,1111. (4.67)

The corresponding deformation map, describing strain-softening behavior of the com-

posites, can then be completely determined from Eqs. (4.51), (4.52) and (4.67). It

is noted here that, in the Euler- Almansi cases, we were unable to conduct inhouse

experiment due to the ongoing pandemic crisis. Instead, comparisons with the exist-

ing results in the literature have been made which will be discussed together with the

other proposed models in later sections.

4.4 Hyperelastic materials reinforced with bidirec-

tional fibers

In this section, we develop a continuum model which describes the mechanical re-

sponses of hyperelastic materials reinforced with fiber mesh. The fiber mesh is em-

bedded in the matrix material with 45 degrees orientation (see, Fig. 4.1) such that

it forms a distinct pantographic sheet like structure within the matrix material. For

the stated purpose, we define unit vectors L and M to identify the fibers’ trajectories

in reference configuration:

L =
dX(S, U)

dS
and M =

dX(S, U)

dU
, (4.68)

where S and U are, respectively, the arclength parameters in the directions of L and

M.
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Here, we confine our attention to the case of initially uniform and orthogonal fiber

mesh (i.e. L ·M = 0, see, also, Fig. 4.1) for the sake of simplicity and conciseness.

The cases of non-orthogonal meshes with different orientation angles can be readily

accommodated via the simple modification of fibers’ director fields (e.g. L· M =cosα

etc. . . ), but the presumed orthogonality and the orientation of fiber mesh suffice

to extract the important aspects of the intended model and, further, the desired

applications.

Figure 4.1: Schematics of fiber mesh prior and after deformations.

The stretch and orientation of a particular fiber after deformations are then defined

by (see, also, Eqs. (4.1)-(4.2))

λ = |η| = ds

dS
, γ = |τ | = du

dU
and (

dr

ds
) = l = λ−1η, (

dr

du
) = m = γ−1τ , (4.69)

where

λl = FL and γm = FM, (4.70)

and l, m, s and u are the counter parts of L, M, S, and U in the current configuration.

Eq. (4.70) together with the presumed orthogonality (i.e. L ·M = 0) furnish a useful

fiber decomposition of the deformation gradient tensor:

F =λl⊗ L+γm⊗M. (4.71)

which will also be used in the forthcoming model derivation. Hence, the geodesic

curvatures of a parametric curve (r (s, u)) can be formulated from Eqs. (4.69)-(4.70)

that

g1 =
d2r(S)

dS2
=
d(r(S)

dS
)

dS
=
∂(FL)

∂X

∂X

∂S
= ∇[FL]L, and (4.72)
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g2 =
d2r(U)

dU2
=
d(r(U)

dU
)

dU
=
∂(FM)

∂X

∂X

∂U
= ∇[FM]M. (4.73)

In the case of initially straight fibers (see, Eq. (4.6)), the above reduces to

g1 = ∇F(L⊗ L) = G(L⊗ L) and g2 = ∇F(M⊗M) = G(M⊗M). (4.74)

The forgoing developments suggest that the mechanical responses of the fiber mesh

can be described by the following energy function:

Wfiber = W (ε1, ε2) +
1

2
C(g1·g1+g2·g2) +

1

2
Tg1·g2, (4.75)

where terms with gα·gα and g1·g2 account for the bending and torsional kinematics of

the fiber mesh, respectively (see, Fig. 4.1), and C and T are the associated moduli. In

particular, the energy potential of W (ε1, ε2) in Eq. (4.75) characterizes the responses

of the fiber mesh against extensions, which may take the following compact quadratic

form for the purpose of clear and concise demonstration.

W (ε1, ε2) =
1

2
E(ε21 + ε22). (4.76)

Further, invoking Eqs. (4.43) and (4.70), the expressions for the associated strains

can be found as

ε1 =
1

2

(︁
λ2 − 1

)︁
=

1

2
(FL · FL−1) and ε2 =

1

2

(︁
γ2 − 1

)︁
=

1

2
(FM · FM−1) . (4.77)

It should also be noted that the refinement of W (ε1, ε2) to accommodate the more

general responses of the fiber mesh is straightforward using the results from the cases

of the polynomial and exponential potentials, discussed in the previous sections.

Now, we use chain rule in the form

Ẇ fiber = W (ε1, ε2)ε1(ε1)F·Ḟ+W (ε1, ε2)ε2(ε2)F·Ḟ+C(g1·ġ1+g2·ġ2)

+
T

2
(ġ1·g2 + g1·ġ2), (4.78)

and thereby obtain the variational derivative of Wfiber as

Ẇ fiber =
E

2
[(FL · FL−1)F(L⊗ L)+ (FM · FM−1)F(M⊗M)] · Ḟ

+C(g1 ⊗ L⊗ L+ g2 ⊗M⊗M) · Ġ+
T

2
(g2 ⊗ L⊗ L+ g1 ⊗M⊗M)·Ġ

=
E

2
[(FjCFjDLCLD−1)FiBLBLA+(FjCFjDMCMD−1)FiBMBMA]χ̇i,A

+CGiCD(LALBLCLD+MAMBMCMD)χ̇i,AB+
T

2
GiCD(LALBMCMD

+MAMBLCLD)χ̇i,AB. (4.79)
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Using the similar procedures as in Eqs. (4.24)-(4.28), it can be easily shown that

PiA = µFiA + κFiB(FjCFjCδAB − FjAFjB)− pF ∗
iA

+
E

2
[(FjCFjDLCLD − 1)FiBLALB + (FjCFjDMCMD − 1)FiBMAMB]

+CGiCD,B(LALBLCLD+MAMBMCMD)+
T

2
GiCD,B(LALBMCMD

+MAMBLCLD). (4.80)

Hence, the Euler equilibrium equation is obtained:

0 = PiA,A = µχi,AA + κ(χi,AAχj,Cχj,C − χi,ABχj,Aχj,B) + κχi,B(2χj,BCχj,C

−χj,AAχj,B − χj,Aχj,AB)− p,AεijεABχj,B +
E

2
(χi,ABχj,Cχj,D

+χi,Bχj,ACχj,D + χi,Bχj,Cχj,D,A)LALBLCLD − E

2
χi,ABLALB

+
E

2
(χi,ABχj,Cχj,D + χi,Bχj,ACχj,D + χi,Bχj,Cχj,AD)MAMBMCMD

−E
2
χi,ABMAMB + Cχi,ABCD(LALBLCLD+MAMBMCMD)

+
T

2
χi,ABCD(LALBMCMD+MAMBLCLD), (4.81)

which holds in Ω. With this satisfied, the corresponding boundary condition can be

formulated as

ti = PiANA − d

dS
[(C(g1)i +

T

2
(g2)i)LATALBNB + (C(g2)i +

T

2
(g1)i)MATAMBNB],

mi = (C(g1)i +
T

2
(g2)i)LANALBNB + (C(g2)i +

T

2
(g1)i)MANAMBNB,

fi = (C(g1)i +
T

2
(g2)i)LATALBNB + (C(g2)i +

T

2
(g1)i)MATAMBNB, (4.82)

by applying the same procedure as demonstrated in Eqs. (4.33)-(4.38). Lastly, since

the fiber mesh is oriented at a 45 degree angle with respect to the reference coordinate

frame (see, Fig. 4.1), we find

L = L1E1 + L2E2 = cos(π/4)E1 − sin(π/4)E2,

M = M1E1+M2E2 = cos (π/4)E1+sin (π/4)E2. (4.83)

The implementation of the obtained model and comparisons with the experimental

results will be discussed in the following sections.
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4.5 Materials and methods

4.5.1 Materials

a) Elastomer matrix: Ecoflex 0050 used in the inhouse experiment was manufac-

tured from Smooth-On, Inc. This is used as the matrix materials for all the fabricated

fiber composite samples for the proposed experiment. Ecoflex 0050 is known to be one

of the promising materials in biomechanical applications for its high tear resistance

and large extensibility up to 1000% [128]–[130].

b) Fibrous reinforcements: In the experiment, four different types of fibers are

considered. Two of them are fabrics composed of 85% nylon / 15% spandex (NSP-

8515), and 80% nylon / 20% spandex (NSP-8020) blend which were obtained from the

local store Marshall’s Fabrics (Telio, Montreal, CA). Other two samples are surgical

polyester knit which are referred to as PETKM2005 (PES-2) and PETKM2006 (PES-

3), fabricated from the Surgical Mesh (Brookfield, CT, USA).

4.5.2 Sample preparation

a) Elastomeric material preparation: Ecoflex 0050 is a room-temperature-

vulcanizing (RTV) silicone which was prepared by mixing two components (a base

and curing agent) in 1:1 ratio and subsequent degassing in a vacuum to remove the

entrapped bubbles.

b) Fiber/fiber mesh – elastomer composite preparation: For the experi-

ments, we prepared four different types of fiber/fiber mesh – Ecoflex 0050 composite

samples that are reinforced, respectively, with polyester fibers (PES-2, PES-3) and

nylon/spandex fibers (NSP-8515, NSP-8020), forming unidirectional and/or bidirec-

tional (pantographic) arrays within the matrix material (see, Fig. 4.2 (c) and Fig.

4.3). The dimension of fabricated composite samples is 50mm × 25mm, keeping an

aspect ratio of 2:1 (length-to-with). The reinforced elastomer composites were fab-

ricated in a three-layer configuration using a layer by layer method. The schematic

diagram of the sample preparation and the local structures of the fabricated com-

posite samples are shown in Figs. 4.2-4.3. To prepare the bottom elastomer layer,

a sufficient amount of elastomer mixture was poured on a glass substrate and rolled

using the film applicator rod to make a uniform film (see, Fig. 4.2 (a)). The second
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layer of fiber/fiber mesh was then placed flat on elastomer and allowed to soak at the

interface (Fig. 4.2 (b)). A small amount of elastomer was then poured and rolled

over the fiber/fiber mesh to wet it again and to fill the gaps between pores and level

the second layer. To make a third layer, a sufficient amount of elastomer was poured

over the second layer and a uniform film was created using a film applicator rod. We

note here that the thickness of the fiber/fiber mesh remains constant and is specific to

each material used in the experiment. However, the thickness of the elastomer matrix

layers on the top and bottom of the second layer (fiber/fiber mesh) may be varied,

which nevertheless can be controlled by the amount of poured matrix substance and

the area of rolling surface.

Figure 4.2: Sample preparation: (a) schematic diagram of composite sample prepa-
ration; (b) composite structure; (c) Local structure images of fabricated composite
samples: PES-2 (left), PES-3 (right).
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4.5.3 Uniaxial tensile test of the Ecoflex 0050 - fiber/fiber
mesh composites

The width, length and thickness of the prepared Ecoflex 0050 matrix material and

composite samples were measured using a caliper. An aspect ratio of length-to-width

was maintained as 2:1 in all cases. Instron 5943 (Illinois Tool Works Inc., USA) was

used to measure the stress-strain responses of the Ecoflex 0050 and the composites

(see, Fig. 4.3). The test apparatus recorded the displacement and force as a function

of time for each uniaxial tensile test. The extension rate was set to be 2.5mm/min

for all cases to avoid/minimize the viscous responses.

4.5.4 Data Collection and Analysis

The uniaxial tensile test results were then used to determine the mechanical responses

of the matrix, fibers, fiber meshes and composites. To compute strains, the displace-

ment and gauge length were used. The corresponding stresses were calculated from

the applied load and the cross-sectional area of the samples. For example, the princi-

pal strains and the engineering stresses were calculated using the relations of ε = ∆l/lo

and σ = F/Ao = F/(woto), respectively, where lo is the original sample length, wo is

the initial width, and to is the initial thickness which were measured using a caliper.

The amount of extension, ∆l, was then calculated as ∆l = l− lo where l is the current

length. To analyze the local microstructure deformations of the reinforced compos-

ites, mesh grids of 1.5mm × 1.5mm were printed on the surfaces of each sample (see,

Fig. 4.2 (c)). A Sony A6000 camera was used to capture the deformed images of the

fiber meshes and the printed mesh grids which were then compared with the simula-

tion results, predicted from the proposed model. The orientations of the fiber meshes

prior to the deformation are shown in Fig. 4.2 (c) (PES-2 (left) and PES-3 (right))

where the fiber lines are orthogonal to each other and are tilted to form an angle of

45 degrees with respect to the longitudinal and transverse directions. The pore sizes

of PES-2 and PES-3 fiber meshes are, respectively, 1mm×1mm and 1.5mm×1.5mm

(see, Fig. 4.2 (c)).
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Figure 4.3: Experimental set up (top): uniaxial tensile test of elastomeric composite
(25mm × 50mm). Schematic illustration of the uniaxial strain of the unreinforced
and reinforced elastomers (bottom).

4.6 Model implementation and discussions

A model implementation and comparison with experimental results are presented in

this section to demonstrate the accuracy and utility of the proposed models. The

response of Ecoflex 0050 (matrix material) is characterized by using the Mooney-

Rivlin model (Eq. (4.13)) and the corresponding material parameters are found to

be µ = 0.082 MPa and κ = 0.01 Mpa, respectively, with the fitting error less than

2% (see, Fig. 4.4). The obtained µ and κ values will then be used in the forthcom-

ing analyses as the modulus of the matrix material. The schematic illustration of

the model implementations is illustrated in Fig. 4.5, where E1 and E2 are the ma-

terial parameters of the fibers, which will be determined using the proposed energy

potentials (i.e. Eqs. (4.46) and (4.54)).

103



Figure 4.4: Stress-strain curves: Ecoflex-0050 and the Mooney Rivlin model.

4.6.1 Cases of the polynomial potential: PES-2 and PES-3
composites

The stress-strain curves of PES-2 and PES-3 fibers are shown in Fig. 4.6, where grad-

ual stiffening phenomena are observed in both cases. Such moderate strain-stiffening

responses of fibers may be accommodated by the proposed polynomial energy po-

tential (Eq. (4.46)), from which the characterization parameters of fibers can be

determined as E1 = 3.45 MPa and E2 = 0.65 MPa for PES-2, and E1 = 2.35 MPa

and E2 = −0.2 MPa for PES-3 (see, Fig. 4.6).

Hence, the energy potential of the PES-2 composite can be obtained from Eqs. (4.13),

(4.21), and (4.46) that

U(F, ε,g,p) =
0.082

2
(I1−3)+

0.01

2
(I2−3)+

3.45

3
ε3+

0.65

2
ε2+

1

2
g · g−p(J−1), (4.84)

which, together with the Eq. (4.50), furnishes the following Euler equilibrium equa-

tion:

0 = PiA,A = 0.01(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + 0.01χi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B + [
3.45

4
(2χj,11χj,1χk,1χk,1

+2χj,1χj,1χk,11χk,1)− 2.8χj,11χj,1]χi,1 + 0.082χi,AA

+[
3.45

4
(χj,1χj,1)(χk,1χk,1)−

2.8

2
χj,1χj,1 +

2.15

4
]χi,11 − χi,1111. (4.85)
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Figure 4.5: Schematic of the problem (unidirectional fiber composite): 2a = 50mm
and 2b = 25mm.

The solutions of the above system of PDEs can be uniquely determined by imposing

the boundary conditions of (see, Fig. 4.5)

t1 = P11, t2 = P12 = 0 at X1 = a, − a and

t1 = P21 = 0, t2 = P22 = 0 at X2 = b, − b. (4.86)

In the present study, we employ the Finite Element Method (FEM) to obtain the

numerical solution of the PDEs system. Repeating the same process as illustrated

in the above, the case of the PES-3 composite can also be simulated using the input

parameters of E1 = 2.35 MPa and E2 = −0.2 MPa.

It is shown in Fig. 4.7 that the proposed model successfully predicts the moderate

strain-stiffening behaviors of the PES composites. More importantly, the proposed

model directly estimates the resultant stress-strain curves of the intended composites,

prior to the fabrication, by utilizing the predetermined material parameters of the

matrix and fiber materials (i.e. no empirical back-fitting of the fabricated composites

is required in the proposed model). This may be of more practical interest in the

design of composite materials by reducing the fabrication cost of sample composites,

since the responses of the intended composite can be instantly pre-estimated via the

proposed model.

Lastly, considering the sharp variations in the fiber data readings (Fig. 4.6), re-

peated tests for fine tuning of the material parameters (E1 and E2) may be necessary
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Figure 4.6: Stress-strain curves: PES-2 & PES-3 fibers and polynomial model of
W (ε) = 1

3
E1ε

3 + 1
2
E2ε

2

which, however, were limited due to the shortage in fiber sample supplies during the

current pandemic. At the same time, this may not necessarily restrict the practical

utility of the proposed model, since the model provides reasonably accurate predic-

tions in the general strain-stiffening responses of both the raw fiber materials and the

resulting composites.

4.6.2 Cases of the exponential potential: NSP-8515 and NSP-
8020 composites

Although, the polynomial energy potential demonstrated sufficient accuracy in the

predictions of fiber composites with moderate strain-stiffening responses, it may not

be ideal for the analyses of fibers and the resulting composites exhibiting rapid strain-

stiffening behaviors, especially those arising at low strain levels (see, Fig. 4.8). In

this case, an exponential form of energy potential (Eq. (4.54)) may be sought as a

promising alternative through which the responses of NSP fibers can be character-

ized via the material parameters; E1 = 0.12MPa and E2 = 1.25MPa for NSP-8020,
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Figure 4.7: Stress-strain curves of PES composites predicted by the proposed poly-
nomial model.

and E1 = 0.155MPa and E2 = 1.525MPa for NSP-8515, respectively. It is evident

from Fig. 4.8 that the exponential energy potential provides sufficiently accurate de-

scriptions of the stress-strain responses of NSP fibers unlike those estimated by the

polynomial potential.

Figure 4.8: Stress-strain curves: NSP-8515 & NSP-8020 fibers and Exponential model
of W (ε) = E1(E2ε− 1)eE2ε.

Therefore, combining the results in Eqs. (4.13), (4.21), and (4.54) the following
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energy potential may be proposed for the constitutive description of the NSP-8020

composites

U(F, ε,g,p) =
0.082

2
(I1 − 3) +

0.01

2
(I2 − 3) + 0.12(1.25ε− 1)e(exp(1.25ε))

+
1

2
g · g − p(J − 1), (4.87)

and thereby furnishes (see, Eqs. (4.57)-(4.58))

0 = PiA,A = 0.01(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B)0.01χi,B(2χj,CBχj,C (4.88)

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B − χi,1111

+0.1875
(︁
χk,11χk,1−1

)︁
e[exp(

1.25

2

(︁
χj,1χj,1−1

)︁
)]χi,1 + 0.082χi,AA

+
0.1875

2

(︁
χk,1χk,1−1

)︁
e[exp(

1.25

2

(︁
χj,1χj,1−1

)︁
)][1.25χj,11χj,1χi,1 − χi,11],

which serves as the associated Euler equilibrium equation. The solution of Eq. (4.88)

is then obtained by imposing the admissible sets of boundary conditions as depicted in

Eq. (4.86). The case of the NSP 8515 composite can also be simulated with the config-

uration parameters of E1 = 0.155MPa and E2 = 1.525MPa, via the same procedure

as demonstrated in the above and the corresponding results are summarized in Fig.

4.9. As illustrated in Fig. 4.9, the proposed exponential model accurately predicts

the J-shaped stress-strain response of both the NSP-8020 and NSP-8515 composites

for all strain levels. Similar to the polynomial case, only the pre-estimated material

parameters of the matrix material and the NSP fibers are required in the predictions

of the resultant properties of the intended composites and thus, no backfitting of the

fabricated composite is necessary.

We remark that, in practice, the polynomial energy potential may be used for

improved computational efficiency where strain-stiffening responses are insignificant.

For composites exhibiting rapid strain-stiffening behaviors (J-shaped stress-strain re-

sponses), the exponential energy potential may better be considered to achieve greater

prediction accuracy.

4.6.3 Cases of Euler-Almansi finite strain: PDMS and PU/D
composites

The proposed model is sufficiently general to accommodate the strain-softening re-

sponses of fiber composites. In this section, we adopt the experimental results from
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Figure 4.9: Stress-strain curves of the NSP composites predicted by the proposed
exponential model.

Figure 4.10: Stress-strain curves: PDMS and PU/D matrix materials.

the works of [126]-[127] and demonstrate the performance of the proposed Euler-

Almansi strain integrated model. The tensile tests of two different types of compos-

ite materials are considered for this purpose. One is polydimethylsiloxane (PDMS)

composites reinforced with graphite nanoplatelets (GNP) [126] and the other one is

polyurethane (PU/D)- graphene nanocomposites [127].

Using Eq. (4.13) and the tensile test results in Fig. 4.10, the material parameters

of PDMS and PU/D matrix materials are identified, respectively, as µ = 0.19MPa

and κ = 0.04MPa, and µ = 0.26MPa and κ = 0.5MPa which are then integrated

into the energy potential of the polynomial type (Eq. (4.46)).

For example, in the case of the PDMS composite, we find

U(F, ε,g,p) =
0.19

2
(I1−3)+

0.04

2
(I2−3)− 53

3
ε3+

12.7

2
ε2+

1

2
g · g−p(J−1), (4.89)

109



where the corresponding energy variation of the GNP fibers, within Euler-Almansi

strain measure, can be evaluated as (see, also, Eqs. (4.60)-(4.62))

Ẇ (ε) = WεεFiA
Ḟ iA=(−53ε2 + 12.7E2ε)εFiA

Ḟ iA

= [
−53

4(FkEFkFDEDF )2
+

40.3

2FkEFkFDEDF

− 6. 9]
FiBDBDA

(FjCFjDDCDD)
2 χ̇i,A.(4.90)

Hence, we obtain the following Euler equilibrium equation (refer, Eqs. (4.66)-(4.67))

0 = PiA,A = 0.04(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + 0.04χi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA) + [
−53

4(χk,1χk,1)
2
+

40.3

2χk,1χk,1

− 6. 9](
χi,11

(χj,1χj,1)
2

−
4χi,1χk,11χk,1

(χj,1χj,1)
3 ) + 0.19χi,AA + [−40.3

χj,11χj,1

(χk,1χk,1)
4
+ 53

χj,11χj,1

(χk,1χk,1)
5
]χi,1

−p,AεijεABχj,B − χi,1111, (4.91)

which solves the responses of the PDMS composites subjected to axial tension (im-

posed via Eq. (4.86)). The same procedure may be repeated with the configuration

parameters of µ = 0.26MPa, κ = 0.5MPa, E1 = −4.5MPa and E2 = 18.7MPa for

the case of the PU/D graphene nanocomposites.

The results in Fig. 4.11 indicate that the obtained Euler-Almansi integrated

model produces reasonably accurate estimations of the stress-strain curves of both the

PDMS-GNP and the PU/D-graphene composites experiencing strain-softening. By

integrating the previously obtained results of the higher order polynomial and/or ex-

ponential types of energy potentials, the proposed model can be further generalized to

accommodate a wide range of composites exhibiting more aggressive strain-softening

responses. However, due to the paucity of experimental resources (especially with

the current pandemic), attempts for quantitative and qualitative analyses vis a vis

the strain-softening behaviors of various types of composites are substantially limited

which certainly deserve further attention.

4.6.4 Cases of bidirectional fiber composites: Ecoflex 0050 -
PES fiber mesh

In this section, we demonstrate the implementation of the obtained bidirectional

model in the deformation and local structure analyses of Ecoflex 0050 matrix mate-

rial reinforced with PES fiber mesh. The problem description of the bidirectional fiber
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Figure 4.11: Stress-strain curves of PDMS & PU/D composites predicted by Euler-
Almansi strain integrated model.

composite subjected to axial tension with 45 degrees orientation of PES fiber mesh

is illustrated in Fig. 4.12. The corresponding material parameters of Ecoflex 0050

matrix material (µ = 0.1013MPa, κ = −0.14MPa), PES-2 (E = 3.21MPa,C =

1.962MPa, T = 2.2MPa) and PES-3 (E = 1.457MPa,C = 0.874MPa, T = 7MPa)

fiber meshes are obtained from the inhouse experiments. We note that the torsional

parameter of PES fiber mesh (T ) which is coupled with the deformation angles be-

tween the two fibers (i.e. g1·g2; see, also, Fig. 4.1) were indirectly measured using

the deformed configuration of the composites (see, Fig. 4.17).

Figure 4.12: Schematic of the problem (bidirectional fiber composite): 2a = 50mm
and 2b = 25mm.

Thus, from Eqs. (4.13), (4.21), (4.51), and (4.75)-(4.76), we find in the case of
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the PES-2 fiber mesh composite that

U(F, ε,g,p) =
0.082

2
(I1 − 3) +

0.01

2
(I2 − 3) +

3.21

2
(ε21 + ε22) +

1.962

2
(g1·g1+g2·g2)

+
2.2

2
g1·g2 − p(J − 1), (4.92)

and thereby obtain the following Euler equilibrium equation (see, Eqs. (4.80)-(4.81))

0 = PiA,A = 0.082χi,AA + 0.01(χi,ABχj,Aχj,B − χi,AAχj,Cχj,C) + 0.01χi,B(2χj,BCχj,C

−χj,AAχj,B − χj,Aχj,AB)− p,AεijεABχj,B +
3.21

2
(χi,ABχj,Cχj,D + χi,Bχj,ACχj,D

+χi,Bχj,Cχj,D,A)LALBLCLD − 3.21

2
χi,ABLALB +

3.21

2
(χi,ABχj,Cχj,D + χi,Bχj,ACχj,D

+χi,Bχj,Cχj,AD)MAMBMCMD − 3.21

2
χi,ABMAMB +

1.962

2
χi,ABCD(LALBLCLD

+MAMBMCMD)+
2.2

2
χi,ABCD(LALBMCMD+MAMBLCLD), (4.93)

which, together with Eqs. (4.82)-(4.83) and (4.86), solve unknown potentials of χ1

and χ2. The same procedure can be performed for the PES-3 fiber mesh composite

with the parameters of E = 1.457MPa,C = 0.874MPa and T = 7MPa. The

obtained solutions are then post-processed via the mapping:

χ = χ1(X)e1+χ2(X)e2 (Deformed position),where X =X1E1+X2E2 (Initial position),

(4.94)

to obtain the deformed configuration of the composites for further deformation anal-

yses. Fig. 4.13 illustrates the averaged mesh angle distributions of the PES fiber

mesh composites at 50% elongation. It is observed that the PES-2 fiber mesh com-

posite experiences more drastic mesh angle changes than those of the PES-3 case, as

approach the center zone where the maximum shear deformation arises. The rate of

change in mesh angle configurations is primarily associated with the torsional rigidity

of the two orthogonally aligned fibers. In the proposed model, this is accommodated

by the torsional kinematics between two adjoining fibers via the parameter T (see,

Eq. (4.75) and Fig. 4.1). For example, higher T value will result moderate/small

angle changes and vice versa (see, also, the sensitivity analysis of T in Fig. 4.17). As

a result, the proposed bidirectional model closely estimates the mesh angle distribu-

tions of both the PES-2 and the PES-3 fiber mesh composites throughout the entire
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Figure 4.13: Mesh angle distributions at 50% elongation: PES-2 (top), PES-3 (bot-
tom).
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domain of interest (see, Fig. 4.13).

In particular, using the deformation map (Eq. (4.94)), we compute the deforma-

tion and orientation of the local structure of the composites (i.e. a unit cell structure

of the PES fiber meshes). The results are then compared with those obtained from

the experimental results to examine prediction accuracy of the proposed model. The

magnified images in Fig. 4.14 clearly indicate that the deformation profiles simulated

from the obtained bidirectional model demonstrate good agreement with the local

configurations of the deformed fiber mesh in both PES-2 and PES-3 cases.

We also estimate the deformation profiles and the associated shear strain distri-

butions of the PES composites to evaluate the utility and accuracy of the proposed

model in macroscale deformation analyses. Using the individual cell structures of the

PES fiber meshes and the mesh grid of 1.5mm × 1.5mm, printed on the surfaces of

the PES composites, the material points of the deformed composites at the intersec-

tions of the mesh grids are post-processed via the Matlab image processing toolbox

and are subsequently used to plot the shear strain distributions. For the purposes

of cross-examination, the deformation maps of χ1 and χ2 are also computed directly

from the proposed bidirectional model (i.e. Eqs. (4.92)-(4.93)) through which the

corresponding shear strains are computed via the relation:

γxy = α + β, where tan−1(
χ2,1

1 + χ1,1

) = α and tan−1(
χ1,2

1 + χ2,2

) = β. (4.95)

It is apparent from the results in Fig. 4.15 that the proposed bidirectional model suc-

cessfully assimilates the shear strain distributions of both the PES-2 and the PES-3

composites at 50% and 100% strain levels. More importantly, the proposed model

predicts the smooth and continuous shear strain fields throughout the entire domain

of interest as opposed to those obtained from the classical (first-order) continuum

theory where significant discontinuities are observed (see, also, [85]–[88]). The phe-

nomenologically compatible results, in the cases of pantographic structures (without

matrix materials), can also be found in the work of [85], [112] (see, for example, Figs.

13, 14 and 18 in [112]).

Lastly, Fig. 4.16 (a)-(d) illustrate the χ1 and χ2 deformation profiles of the PES
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Figure 4.14: Local configurations of the fiber mesh at 50% elongation: PES-2 (top),
PES-3 (bottom).
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Figure 4.15: Shear strain distributions: PES-2 50% (top); PES-3 50% (middle); PES-
2 100% (bottom).

composites at 50%, 93% and 100% elongations. In the plots, the corresponding

deformation profiles are normalized by their initial length scales (i.e. Lo and Wo)

for compact demonstrations. Despite the uncertainties arising in the Matlab image
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processing and curve fittings, the proposed bidirectional model produces reasonably

accurate predictions of the overall deformation profiles of the composites in all strain

levels except the χ2 profiles at 93% (PES-2) and 100% (PES-3) strain levels. This

discrepancy may be attributable to the use of Mooney-Rivlin strain energy in the

modeling of Ecoflex 0050 matrix material, knowing the fact that Mooney-Rivlin model

is generally valid for strains less than 100% elongation (see, [105]-[106]). It is rational

to believe that a more comprehensive type of energy potential such as Ogden model

[106] may be suitable for these cases which is, however, beyond the scope of the

present study, yet is certainly of more practical interest.

Figure 4.16: Deformation profiles: (a) χ1 (PES-2); (b) χ2 (PES-2); (c) χ1 (PES-3);
(a) χ2 (PES-3).
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4.7 Finite element analysis of the 4th order cou-

pled PDE

To demonstrate the finite element analysis (FEA) procedures, we have chosen the

system of PDEs obtained from the Euler – Almansi strain integrate model, which is

the most general form of the PDEs system among all reported cases. The rest of the

cases will follow the similar process.

The system of PDEs in Eqs. (4.51) and (4.91) are 4th order coupled differential

equations. The case of such less regular PDEs system deserves delicate mathematical

treatment and is of particular practical interest. Therefore, it may not be trivial to

report the associated FEA procedure. For preprocessing, Eqs. (4.51) and (4.91) may

be rearranged into the following form:

0 = µ(Q+ χ1,22) + κ(Q+ E,2)(CC + EE +DD + FF )

−κ(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+[
E1

4

1

(CC +DD)2
− (

E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)]

(
Q

(CC +DD)2
− 4C(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2

− E1

(CC +DD)3
]
(QC +RD)C

(CC +DD)2
− A0χ2,2 +B0χ2,1 − cQ,11,
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0 = µ(R + χ2,22) + κ(R + F,2)(CC + EE +DD + FF )

−κ(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+[
E1

4

1

(CC +DD)2
− (

E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)]

(
R

(CC +DD)2
− 4D(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2

− E1

(CC +DD)3
]
(QC +RD)D

(CC +DD)2
+ A0χ1,2 −B0χ1,1 − cR,11,

0 = Q− χ1,11, 0 = R− χ2,11, 0 = C − χ1,1, 0 = D − χ2,1,

0 = E − χ1,2, 0 = F − χ2,2, 0 = A− µ(Q+ χ1,22)− cQ,11,

0 = B − µ(R + χ2,22)− cR,11, (4.96)

where Q = χ1,11, R = χ2,11, C = χ1,1, D = χ2,1, E = χ1,2, and F = χ2,2. Hence,

the order of differential equations is reduced from the three coupled equations of the

4th order to ten coupled equations of the 2nd order. Especially, the non-linear terms

in the above equations (e.g. Aχ2,2, Bχ2,1 etc...) can be systematically treated via the

Picard iterative procedure and/or Newton method;

−Ainitialχinitial
2,2 +Binitialχinitial

2,1 =⇒ −A0χ
0
2,2 +B0χ

0
2,1

Ainitialχinitial
1,2 −Binitialχinitial

1,1 =⇒ A0χ
0
1,2 −B0χ

0
1,1, (4.97)

where the estimated values of A, B continue to be updated based on their previous

estimations (e.g. A1 and B1 are refreshed by their previous estimations of Ao and

Bo) as iteration progresses and similarly for the rest of non-linear terms.
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Also, the weight forms of Eq. (4.96) can be found as

0 =

∫︂
Ω

w1(µ(Q+ χ1,22) + κ(Q+ E,2)(CC + EE +DD + FF )

−κ(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+[
E1

4

1

(CC +DD)2
− (

E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)]

(
Q

(CC +DD)2
− 4C(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2

− E1

(CC +DD)3
]
(QC +RD)C

(CC +DD)2
− A0χ2,2 +B0χ2,1 − cQ,11)dΩ,

0 =

∫︂
Ω

w2(µ(R + χ2,22) + κ(R + F,2)(CC + EE +DD + FF )

−κ(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+[
E1

4

1

(CC +DD)2
− (

E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)]

(
R

(CC +DD)2
− 4D(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2

− E1

(CC +DD)3
]
(QC +RD)D

(CC +DD)2
+ A0χ1,2 −B0χ1,1 − cR,11)dΩ,
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0 =

∫︂
Ω

w3(Q− χ1,11)dΩ, 0 =

∫︂
Ω

w4(R− χ2,11)dΩ,

0 =

∫︂
Ω

w5(C − χ1,1)dΩ, 0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ, 0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

w9(A− µ(Q+ χ1,22)− cQ,11)dΩ,

0 =

∫︂
Ω

w10(B − µ(R + χ2,22)− cR,11)dΩ. (4.98)

Thus, we apply integration by part and the Green-Stokes’ theorem, (e.g. µ

∫︂
Ωe

w1χ1,22dΩ =

−µ
∫︂
Ωe

w1,2χ1,2dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ) and thereby obtain the following weak forms of

Eq. (4.98)

0 =

∫︂
Ω

(µw1Q− µw1,2χ1,2 + κw1(Q+ E,2)(CC + EE +DD + FF )

−κw1(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κw1(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+[
E1

4

1

(CC +DD)2
− (

E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)]

(
Q

(CC +DD)2
− 4C(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2

− E1

(CC +DD)3
]w1

(QC +RD)C

(CC +DD)2
− A0w1χ2,2 +B0w1χ2,1 + cw1,1Q,1)dΩ

+µ

∫︂
∂Γ

w1χ1,2NdΓ− c

∫︂
∂Γ

w1Q,1NdΓ,
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0 =

∫︂
Ω

(w2µR− w2,2µχ2,2 + κw2(R + F,2)(CC + EE +DD + FF )

−κw2(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κw2(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+[
E1

4

1

(CC +DD)2
− (

E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)]

(
R

(CC +DD)2
− 4D(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2

− E1

(CC +DD)3
]w2

(QC +RD)D

(CC +DD)2
+ A0w2χ1,2 −B0w2χ1,1 + cw2,1R,1)dΩ

+µ

∫︂
∂Γ

w2χ2,2NdΓ− c

∫︂
∂Γ

w2R,1NdΓ,

0 =

∫︂
Ω

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γ

w3χ1,1NdΓ,

0 =

∫︂
Ω

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γ

w4,1χ2,1NdΓ,

0 =

∫︂
Ω

(w5C − w5χ1,1)dΩ, 0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ, 0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

(w9A− µw9Q+ µw9,2χ1,2 + cw9,1Q,1)dΩ−
∫︂
∂Γ

µw9χ1,2NdΓ

−
∫︂
∂Γ

cw9Q,1NdΓ,

0 =

∫︂
Ω

(w10B − µw10R + µw10,2χ2,2 + cw10,1R,1)dΩ−
∫︂
∂Γ

µw10χ2,2NdΓ

−
∫︂
∂Γ

cw10R,1NdΓ, (4.99)

where Ω, ∂Γ and N are, respectively the domain of interest, the associated boundary,

and the rightward unit normal to the boundary ∂Γ in the sense of the Green-Stokes’

theorem. The unknown potentials of χ1, χ2, Q, R,C,D,E, F, A and B can be

expressed in the form of Lagrangian polynomial that

(∗) =
n=4∑︂
j=1

[(∗)jΨj(x, y)]. (4.100)
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Accordingly, the test function w is found to be

wm =
n=4∑︂
i=1

wi
mΨi(x, y); i = 1, 2, 3, 4, and m = 1, 2, 3, 4, ...10 (4.101)

where wi is the weight of the test function and Ψi(x, y) are the associated shape

functions; Ψ1 = (x−2)(y−1)
2

, Ψ2 = x(y−1)
−2

, Ψ3 = xy
2

and Ψ4 = y(x−2)
−2

. Invoking Eq.

(4.100), (4.99) can be recast in terms of Lagrangian polynomial representation as

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(µΨiΨjQj − µΨi,2Ψj,2χ1j + κ(ΨiΨjQj +Ψi,2Ψj,2Ej)(CC + EE

+DD + FF )− κ(ΨiΨjQj +ΨiΨj,2Cj +ΨiΨj,1Ej +ΨiΨj,2Ej)(CC + CE

+EC + EE +DD +DF + FD + FF ) + κ(C + E)(2ΨiΨjQCj

+2ΨiΨj,1EjE + 2ΨiΨj,2CjC + 2ΨiΨj,2EjE −ΨiΨjQC −ΨiΨjQE

−ΨiΨj,2EjC −ΨiΨj,2EjE −ΨiΨjCQ−ΨiΨj,1CEj −ΨiΨj,2ECj

−ΨiΨj,2EEj + 2ΨiΨjRD + 2ΨiΨj,1FjF + 2ΨiΨj,2DjD + 2ΨiΨj,2FjF

−ΨiΨjRD −ΨiΨjRF −ΨiΨj,2FjD −ΨiΨj,2FjF −ΨiΨjDR

−ΨiΨj,1DFj −ΨiΨj,2FDj −ΨiΨj,2FFj) + [
E1

4

1

(CC +DD)2

−(
E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)](

Q

(CC +DD)2

−4C(QC +RD)

(CC +DD)3
) + [

E1 + E2

(CC +DD)2
− E1

(CC +DD)3
]

(QC +RD)ΨiΨjCj

(CC +DD)2
− A0ΨiΨj,2χ2j +B0ΨiΨj,1χ2j

+cΨi,1Ψj,1Qj)dΩ}+
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ1,2NdΓ− c

∫︂
∂Γe

ΨiQ,1NdΓ},
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0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(µΨiΨjRj − µΨi,2Ψj,2χ2j + κ(ΨiΨjRj +Ψi,2Ψj,2Fj)(CC + EE

+DD + FF )− κ(ΨiΨjR +ΨiΨj,2Dj +ΨiΨj,1Fj +ΨiΨj,2Fj)(CC + CE

+EC + EE +DD +DF + FD + FF ) + κw2(D + F )(2ΨiΨjQCj

+2ΨiΨj,1EjE + 2ΨiΨj,2CjC + 2ΨiΨj,2EjE −ΨiΨjQC −ΨiΨjQE

−ΨiΨj,2EjC −ΨiΨj,2EjE −ΨiΨjCQ−ΨiΨj,1CEj −ΨiΨj,2ECj

−ΨiΨj,2EEj + 2ΨiΨjRD + 2ΨiΨj,1FjF + 2ΨiΨj,2DjD + 2ΨiΨj,2FjF

−ΨiΨjRD −ΨiΨjRF −ΨiΨj,2FjD −ΨiΨj,2FjF −ΨiΨjDR

−ΨiΨj,1DFj −ΨiΨj,2FDj −ΨiΨj,2FFj) + [
E1

4

1

(CC +DD)2

−(
E1 + E2

2
)

1

(CC +DD)
+ (

E1

4
+
E2

2
)](

R

(CC +DD)2
− 4D(QC +RD)

(CC +DD)3
)

+[
E1 + E2

(CC +DD)2
− E1

(CC +DD)3
]
(QC +RD)ΨiΨjDj

(CC +DD)2
+ A0ΨiΨj,2χ1j

−B0ΨiΨj,1χ1j + cΨi,1Ψj,1Rj)dΩ}+
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ2,2NdΓ− c

∫︂
∂Γe

ΨiR,1NdΓ},
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0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Qj +
n=4∑︂
i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ1j −
n=4∑︂
i=1

{
∫︂
∂Γe

(Ψiχ1,1)NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Rj +
n=4∑︂
i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ2j −
n=4∑︂
i=1

{
∫︂
∂Γe

(Ψiχ2,1)NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Cj −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,1)dΩ}χ1j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Dj −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,1)dΩ}χ2j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Ej −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,2)dΩ}χ1j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Fj −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,2)dΩ}χ2j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Aj +
n=4∑︂
i,j=1

{
∫︂
Ωe

(−µΨiΨj + cΨi,1Ψj,1)dΩ}Qj

+
n=4∑︂
i,j=1

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ1j −
n=4∑︂
i=1

{
∫︂
∂Γe

(µΨiχ1,2)NdΓ−
∫︂
∂Γe

(cΨiQ,1)NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Bj +
n=4∑︂
i,j=1

{
∫︂
Ωe

(−µΨiΨj + cΨi,1Ψj,1)dΩ}Rj

+
n=4∑︂
i,j=1

{
∫︂
Ωe

(µΨi,2Ψj,2)dΩ}χ2j −
n=4∑︂
i=1

{
∫︂
∂Γe

(µΨiχ2,2)NdΓ

−
∫︂
∂Γe

(cΨiR,1)NdΓ}. (4.102)

Now, for the local stiffness matrices and forcing vectors for each elements, we find⎡⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎦
Local

⎡⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎦
Local

=

⎡⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎦
Local

, (4.103)

where [︁
K11

ij

]︁
=

∫︂
Ω

(−µΨi,2Ψj,2)dΩ, (4.104)

and

{F 1
i } = −µ

∫︂
∂Γe

wiχ1,2NdΓ + c

∫︂
∂Γe

wiQ,1NdΓ. (4.105)
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Thus, the unknown potentials (i.e. χ1, χ2, Q, R,C,D,E, F, A and B) can be

expressed as

Qi = {χi
1},11, Ri = {χi

2},11, Si = {Qi},11 etc..., (4.106)

and similarly for the rest of unknowns.

Consequently, we obtain the following systems of equations (in the Global form)

for each individual elements as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] . . . . . . [K19] [K110]
[K21] [K22] . . . . . . [K29] [K210]
[K31] [K32] . . . . . . [K39] [K310]
[K41] [K42] . . . . . . [K49] [K410]
[K51] [K52] . . . . . . [K59] [K510]
[K61] [K62] . . . . . . [K69] [K610]
[K71] [K72] . . . . . . [K79] [K710]
[K81] [K82] . . . . . . [K89] [K810]
[K91] [K92] . . . . . . [K99] [K910]
[K101] [K102] . . . . . . [K109] [K1010]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi
1

χi
2

Qi

Ri

Ai

Bi

Ci

Di

Ei

Fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F1}
{F2}
{F3}
{F4}
{F5}
{F6}
{F7}
{F8}
{F9}
{F10}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.107)

In the simulation, we employed the following convergence criteria

|An+1 − An| = e1 ≤ ε, |Bn+1 −Bn| = e2 ≤ ε, where ε = maximum error = 10−10,

(4.108)

which demonstrates fast convergence within 10 iterations using FEniCS nonlinear

solver (see, Table. 4.1).

Table 4.1: Maximum numerical errors with respect to the number of iterations.

Number of iteration Mximum error
1 5.392e-0
2 8.079e-01
3 6.588e-02
5 3.765e-10
7 1.25e-17

It should be also noted here that, in the case of the exponential energy potential,

we expanded the corresponding exponential terms using the Taylor series up to the

first 5 terms (e.g. ex = 1 + x
1!
+ x2

2!
+ x3

3!
+ x4

4!
) to facilitate the numerical analysis of

FE process.
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4.8 Sensitivity test of parameters C and T

In order to figure out the parameters related to the higher gradient terms (i.e., C

and T ) we have performed the sensitivity test by analyzing how the deformation is

affected as the numerical values of the parameters are changed. The deformation

profiles with respect to torsional parameter T are illustrated in Fig. 4.17. It can be

noted that the deformation angles of the PES fiber mesh composites decrease with

increasing torsional rigidity (T ). In Fig. 4.18-4.19, deformation profiles with respect

to bending stiffness parameter C are illustrated.

Figure 4.17: Deformation configurations with respect to T : PES-2 (up); PES-3 (bot-
tom).

4.9 Denouement

In this chapter, a comprehensive analytical platform for the mechanics of a hyper-

elastic materials reinforced with fibrous materials is presented in finite plane elas-

tostatics. The hyperelastic response of the elastomeric matrix material is accom-

modated by the Mooney-Rivlin model, while the nonlinear stress-strain behaviors of

the reinforcing fibers are assimilated via the custom designed energy potentials of

the polynomial/exponential types. The kinematics of reinforcing fibers are formu-

lated by their position and direction fields and are subsequently integrated into the

127



Figure 4.18: Deformation profiles of unidirectional PES composites with respect to
C.

models of continuum deformation via the first and second gradient of deformations.

In particular, we proposed three different types of strain energy functions based on

the polynomial, exponential and Euler-Almansi strain which describe, respectively,

the moderate strain-stiffening, rapid strain-stiffening and strain-softening responses

of elastomeric composites. Within the framework of variational principles and virtual

work statement, the Euler equilibrium equation and the necessary boundary condi-

tions are derived. These, together with the constraint of the bulk incompressibility,

furnish systems of coupled nonlinear PDEs from which a set of numerical solutions

describing the hyperelastic responses of the elastomeric composites are obtained via

the custom-built Finite Element Analysis (FEA) procedure. A series of inhouse ex-

periments were also designed and performed for the purpose of model implementation

and cross-validation.

We demonstrated that the presented models successfully predict the moderate

strain-stiffening and rapid strain-stiffening behaviors (J-shaped stress-stress responses)
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Figure 4.19: Deformation profiles of unidirectional NSP composites with respect to
C.

of the elastomeric composites. The strain-softening responses of PDMS and PU/D

composites are also predicted with reasonable accuracy by the Euler-Almansi strain

integrated model. The case of an elastomeric matrix material reinforced with a

polyester fiber mesh is also simulated using the presented bidirectional model from

which complete deformation profiles and shear strain distributions are obtained, which

demonstrate good agreement with the inhouse experimental results. Further, the so-

lutions from the bidirectional model closely simulate the deformation angles between

the two adjoining fibers and the deformed configurations of the local mesh structures.
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Chapter 5

A three-dimensional continuum
model for the mechanics of an
elastic medium reinforced with
fibrous materials

In section 5.1, the kinematics is presented for a thin hyperelastic film reinforced with

bidirectional fibers in a three-dimensional setting. Within the framework of differential

geometry and strain-gradient elasticity, the general kinematics of bidirectional fibers

are formulated. The equilibrium and boundary conditions are presented in section

5.2. In section 5.3, the Mooney-Rivlin type energy model is integrated into the energy

density function to accommodate the hyperelastic response of the matrix film. In

section 5.5, different case studies related to the out-of-plane deformations of elastic

films are presented to demonstrate the practical utilities of the presented model.

5.1 Kinematics

The kinematic framework of fibers that will be used in the constitutive formulations

of matrix-fiber composite systems is presented in this section. Emphasis is placed

on obtaining compact kinematic descriptions for a bidirectional fiber meshes while

maintaining the rigor and sufficient generality in the corresponding derivations. It is

also noted that the applications of differential geometry in the problems pertaining

to elastic surfaces are well established in the literature (see, for example, and the

references therein). Here, we reformulated the results into the present context for the
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sake of clarity and completeness.

Let θi be the convected coordinate to label material points of the composite re-

garded as a three-dimensional continuum in R3, yet much like a plate structure with

finite thickness (see, Fig. 5.1). We define the position fields X(θi) and r(θi) repre-

senting, respectively, a material point of a reference body B and a deformed body b.

These parameterization furnish natural basis,

Gi=
∂X

∂θi
=
∂XA

∂θi
EA and gi=

∂r

∂θi
=
∂rj

∂θi
ej, (5.1)

where {EA}3A=1 and {ej}3j=1 are Cartesian basis vectors in reference and deformed

configurations, respectively. The gi are linearly independent; i.e. gi · gj × gk =

εijk = eijk
√
g and g = det(gij), where eijk refers to the permutation tensor (e.g.

e123 = e231 = 1, e213 = e132 = −1, e112 = e223 = 0 etc...). The matrix of the metric

gij = gi · gj is positive-definite (i.e. g > 0) rendering the existence of dual metric

gij = (gij)
−1 from which the dual basis may be computed as gi = gijgj. Hence, it is

straightforward to show

gi · gj =
∂θi

∂rk
ek ·

∂rl

∂θj
el = δij and g

ijgjk = δik, (5.2)

where δik is the Kronecker delta. The same results can be obtained for the case of the

natural basis in B as

Gij = Gi ·Gj, G = det(Gij), G
i = GijGj, G

i ·Gj = δij and G
ijGjk = δik, (5.3)

which will also be used in the forgoing model derivation.

Of central importance in the proposed work is the incorporation of the second

gradient effects of fibers (i.e. fiber bending and torsion between two adjoining fibers)

into the models of continuum deformations. In the present context, this requires the

second covariant derivative of the position field r(θi);

r;ij = r,ij − Γ̄
k
ijr,k; (evaluated with respect to the metric of B) (5.4)

where

Γ̄
k
ij = Gi,j ·Gk = −Gi ·Gk

,j, (5.5)

is the Levi-Civita connection coefficient induced by the natural coordinates in B. It

should also note that the same holds true in a deformed body b such that

Γk
ij = gi,j · gk = −gi · gk

,j. (5.6)
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Consider now an elastic continuum reinforced with two families of fibers that are

continuously distributed throughout the matrix material. The fibers are presumed

to be convected material curves with no relative slipping such that their kinematics

and constitutive structures can be determined by their position and director fields

[131]-[132] from which the main characteristics of the local macroscopic behaviors

of the corresponding composites may be captured. The unit tangents to the fibers’

trajectories in the referential body B are denoted by

L =
dX(S, U)

dS
and M =

dX(S, U)

dU
, (5.7)

where S and U are, respectively, the arclength parameters in the increasing directions

of L and M (see, Fig. 5.1). In the present study, we limit our attention to the case

of initially uniform and orthogonal fibers (i.e. L ·M = 0) for the sake of concise-

ness and clarity. Refinements of the model to accommodate initially non-orthogonal

fibers are straightforward via the simple modification of fibers’ director fields (e.g.

L ·M =cosα). However, the presumed restriction suffices to extract the important

aspects of the intended model and, further, the desired applications. The stretch and

Figure 5.1: Schematic of the matrix-fiber composite system.

orientation of particular fibers are then computed as

λ = |η| = ds

dS
, γ = |ζ| = du

dU
and (

dr

ds
) = l = λ−1η, (

dr

du
) = m = γ−1ζ, (5.8)

where

λl = FL and γm = FM, (5.9)

132



and F is the gradient of the deformation function:

F =
dχ(X)

dX
= gi ⊗Gi. (5.10)

Eq. (5.9) can be obtained via the successive differentiation of r(s(S)) = χ(X(S)) with

respect to the referential position vector X(S) and the arclength parameter S using

chain rule, upon making the identification of L =dX/dS and l =dχ/ds and similarly

for M and m (i.e. M =dX/dU and m =dχ/du). Here, d(∗)/dS and d(∗)/ds refer to

the arclength derivatives of (∗) along fibers’ directions, respectively in the reference

and deformed configurations. Eq. (5.9) together with the presumed orthogonality

(i.e. L ·M = 0) furnish a useful fiber decomposition of the deformation gradient

tensor:

F =λl⊗ L+γm⊗M, (5.11)

or equivalently,

gi
(5.3),(5.10)

= FGi
(5.11)
= λlLi + γmMi. (5.12)

Hence, for example, we write

L =LiGi, M =M iGi, l =l
igi and m =migi, (5.13)

and thereby obtain from Eqs. (5.9) and (5.12) that

λli = Li and γmi =M i, (5.14)

which relate contravariant components of unit tangents of fibers. Similarly, invoking

the decomposition of

gi = (gil) · l+ (gim) ·m = lil+mim, (5.15)

the covariant components are related by (see, Eqs. (5.12) and (5.15))

λli = Li and γmi =Mi. (5.16)

Now, the expressions for the geodesic curvatures of a parametric curve (r(s, u)) can

be obtained from Eqs. (5.8)-(5.9) that

c1 =
d2r(S)

dS2
=
d(r(S)

dS
)

dS
=
∂(FL)

∂X

∂X

∂S
= ∇[FL]L, and (5.17)
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c2 =
d2r(U)

dU2
=
d(r(U)

dU
)

dU
=
∂(FM)

∂X

∂X

∂U
= ∇[FM]M. (5.18)

In a typical environment, most of the fibers are straight prior to deformations. Even

slightly curved fibers may be viewed as ‘locally straight’ fibers, considering their

relatively high aspect ratios. Applying the idealization of initially straight fibers, Eqs

(5.17)-(5.18) are then meaningfully simplified to

c1 = ∇F(L⊗ L) and c2 = ∇F(M⊗M); ∵ ∇L =∇M = 0, (5.19)

where ∇F is the second gradient of deformation. Invoking chain rule on Eq. (5.10),

this is found to be

∇F = (Γi
jk − Γ̄

i
jk)gi⊗Gj⊗Gk. (5.20)

The forgoing development suggests that the mechanical responses of a matrix-fiber

systems may be characterized by the following energy function:

W (F, ε, c1, c2) = W (F)matrix+W (ε1, ε2)fiber+
1

2
C1c1·c1+

1

2
C2c2·c2+

1

2
Tc1·c2, (5.21)

where cα·cα and c1·c2 are account for, respectively, the bending and torsional kine-

matics of the fibers (see, for example, Fig. 5.4 (c)), and Cα and T are the asso-

ciated moduli which are, in general, independent of the deformation gradient (i.e.

Cα(F) = Cα and T (F) = T ). The quadratic strain energy potentials of cα are based

on the postulation of Spencer and Soldatos [93] which has been widely and success-

fully adopted in the relevant subjects of studies (see, for example, [90], [96], [115], and

[120]). The energy function ofW (F)matrix describes the responses of matrix materials.

For example, in the case of an incompressible Neo-Hookean material, we find

W (F)matrix = µ(F · F− 3). (5.22)

Further, W (ε1, ε2)fiber characterizes the response of fibers against extension, which

may take the following simple quadratic form of Green-Lagrange type for the purpose

of a concise and compact demonstration

W (ε1, ε2)fiber =
1

2
E1ε

2
1 +

1

2
E2ε

2
2, (5.23)

where the expressions for the associated strains can be found as

ε1 =
1

2

(︁
λ2 − 1

)︁ (5.9)
=

1

2
(FL · FL−1) and ε2 =

1

2

(︁
γ2 − 1

)︁ (5.9)
=

1

2
(FM · FM−1) .

(5.24)
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It should be also noted here that one may choose different forms of energy potentials

to accommodate particular types of materials. For example, the combination of the

Mooney-Rivlin energy potential (for matrix materials) and cubic polynomial poten-

tials (for fibers; e.g. W (ε)fiber = 1
3
E1ε

3 + 1
2
E2ε

2) may be considered to assimilate

hyperelastic responses of elastomeric composites which will be discussed further in

later sections. Lastly, volumetric changes in materials’ deformations are, in generally,

energetically expensive process and thus are constrained in the constitutive modeling

of most engineering materials (see, for example, [105]-[106]). In the present context,

this can be accommodated by augmenting the proposed energy potential (Eq. (5.21))

using the constraint of bulk incompressibility (i.e. p(J − 1)) from which we find

U(F, ε, c1, c2,p) = µ(F · F− 3) +
1

2
E1ε

2
1 +

1

2
E2ε

2
2 +

1

2
C1c1·c1+

1

2
C2c2·c2 +

1

2
Tc1·c2

−p(J − 1) , (5.25)

where J is determinant of F and p is a constitutively indeterminate Lagrange multi-

plier field.

5.2 Equilibrium and boundary conditions

In this section, the derivations of the Euler equilibrium equations and the associ-

ated boundary conditions are presented in light of the virtual work statement and

variational principles. The relevant theoretical frameworks pertaining to the second-

gradient elasticity are well established in the dedicated literature ([98], [101], [107],

[108]). For the stated purpose, we evaluate the potential energy of the system as

E =

∫︂
B
U(F, ε, c1, c2,p)dV. (5.26)

The weak form of the Euler equilibrium equation may then be formulated by employ-

ing the virtual-work statement
·
E = P, (5.27)

where P is the virtual power of the applied loads and the superposed dot denotes the

variational and/or Gateâux derivative. Since the conservative loads are characterized

by the existence of a potential L such that P = L̇, the problem of determining equi-

librium deformations is reduced to the problem of minimizing the potential energy,

135



E − L. In the present case, this would mean that

Ė =

∫︂
B
U̇(F, ε, c1, c2,p)dV. (5.28)

5.2.1 Variational formulation

We continue by evaluating the induced energy variation of the response function

(5.21) as

U̇(F, ε, c1, c2,p) = Ẇ (F)matrix + Ẇ (ε1, ε2)fiber + C1c1·ċ1 + C2c2·ċ2 +
1

2
T ċ1·c2

+
1

2
Tc1·ċ2 − [p(J − 1)]̇. (5.29)

In the above, the superposed dot refers to the variational derivatives with respect

to ϵ at the particular configuration of the composite (i.e. ϵ = 0) that labels a one-

parameter family of deformations. To derive the desired expressions, we evaluate the

variational derivative of Eq. (5.10):

Ḟ = ġi ⊗Gi = u,i ⊗Gi; ∵ Ġ
i
= 0, (5.30)

where u = ṙ is the derivative of the deformation map, r, with respect to ϵ.

Thus, from Eqs. (5.11), (5.14) and (5.22), we find

Ẇ (F)matrix = µF · Ḟ =µ(λl⊗ L+γm⊗M) · (u,i ⊗Gi)

= µ(LiLj +M iM j)gi·u,j, (5.31)

or equivalently

Ẇ (F)matrix = µF · Ḟ =µ(gi ⊗Gi) · (u,j ⊗Gj) = µGijgi·u,j, (5.32)

from which it can be also seen that

Gij = LiLj +M iM j. (5.33)

Further, invoking the chain rule, we obtain from Eq. (5.23) that

Ẇ (ε1, ε2)fiber = E1ε1(ε1)F·Ḟ+ E2ε2(ε2)F·Ḟ, (5.34)

where the expression of (ε1)F·Ḟ can be formulated (see, Eq. (5.24)) as

(ε1)F·Ḟ =
∂(1/2)(FL · FL− 1)

∂F
·Ḟ = F(L⊗ L) · Ḟ =LiLjgi·u,j, (5.35)
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and similarly for (ε2)F·Ḟ; i.e.,

(ε2)F·Ḟ = F(M⊗M) · Ḟ =M iM jgi·u,j. (5.36)

Thus, for example, we evaluate

ε1(ε1)F·Ḟ =
1

2
(FL · FL−1)LiLjgi·u,j =

1

2

(︁
gklL

kLl−1
)︁
LiLjgi·u,j, (5.37)

and thereby obtain

Ẇ (ε1, ε2)fiber = [
E1

2

(︁
gklL

kLl−1
)︁
LiLj +

E2

2

(︁
gklM

kM l−1
)︁
M iM j]gi·u,j. (5.38)

We now consider the induced energy variations associated with the curvatures of

fibers (i.e. cα·ċβ). In view of Eqs. (5.19), we obtain

ċ1 = (∇F)̇ (L⊗ L) and ċ2 = (∇F)̇ (M⊗M). (5.39)

The above requires the variational derivative of the second gradient of the deforma-

tion. Using Eq. (5.20), this is found to be

(∇F)̇ =Γ̇
i

jkgi⊗Gj⊗Gk + (Γi
jk − Γ̄

i
jk)u,i⊗Gj⊗Gk. (5.40)

To obtain the expressions of Γ̇
i

jk , the differentiation of Eq. (5.6) yields

Γ̇
i

jk = (gj,k · gi)̇ = u;jk · gi + gj,k · ġi, (5.41)

where u;jk = ġj,k is the second covariant derivative of u = ṙ.We then use the identity

of gi = gilgl and Eq. (5.2) to equate

ġi = ġilgl + gilġl = −gimgnlġmngl + gilġl; ∵ (gimgmn)̇ = (δin)̇ = 0. (5.42)

Since ġmn = (gm · gn)̇, the above may be recast as

ġi = −(gimġm · gl)gl − (gi · ġn)g
n + gilġl = −(gi · ġn)g

n, (5.43)

where (gimġm · gl)gl is the projections of gimġm onto gl basis. The substitution of

Eqs. (5.41) and (5.43) into Eq. (5.40) then furnishes

(∇F)̇ = (gi · u;jk − Γn
jkg

i · u,n)gi⊗Gj⊗Gk + (Γi
jk − Γ̄

i
jk)u,i⊗Gj⊗Gk. (5.44)
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Hence, we find from Eqs. (5.39) and (5.44) that

c1·ċ1 = cl1gilL
jLkgi · u;jk − ci1Γ̄

j
lkL

lLkgi · u,j, (5.45)

where it can be readily shown that

−(Γn
jkg

i · u,n)c1·(gi⊗Gj⊗Gk)(L⊗ L) + Γi
jkc1·(u,i⊗Gj⊗Gk)(L⊗ L) = 0. (5.46)

Similarly, we derive

c2·ċ2 = cl2gilM
jMkgi · u;jk − ci2Γ̄

j
lkM

lMkgi · u,j,

c1·ċ2 = cl1gilM
jMkgi · u;jk − ci1Γ̄

j
lkM

lMkgi · u,j, and

c2·ċ1 = cl2gilL
jLkgi · u;jk − ci2Γ̄

j
lkL

lLkgi · u,j, (5.47)

where

ci1gi = (Γi
jk − Γ̄

i
jk)L

jLkgi and c
i
2gi = (Γi

jk − Γ̄
i
jk)M

jMkgi (5.48)

(refer, Eqs. (5.19)-(5.20)).

To obtain the expression for the last term of Eq. (5.29), we evaluate

J̇ = JF·Ḟ = F
∗·Ḟ =J(gi⊗Gi)·Ḟ, (5.49)

and thus find

[p(J − 1)]̇ = pJ̇ = pJgj·u,j, (5.50)

where

J =

√︃
g

G
. (5.51)

Lastly, we note here that the invariance requirements arising in the second gradient

deformation remain valid for the cases of the finite elastic deformations of general

continuum bodies [89],[121] and hyperelastic soft membranes [123], and therefore,

have been adopted in the present study without further proof.

5.2.2 Euler equilibrium equation

The virtual-work statement (Eq. (5.27)) together with Eqs. (5.28)-(5.29) suggest

that

·
E =

∫︂
B
[Ẇ (F)matrix + Ẇ (ε1, ε2)fiber + C1c1·ċ1 + C2c2·ċ2 +

1

2
T ċ1·c2

+
1

2
Tc1·ċ2 − {p(J − 1)}̇]dV. (5.52)
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To proceed, we substitute the previously obtained expressions (see, Eqs. (5.32),

(5.38), (5.45), (5.47) and (5.50)) into Eq. (5.52) and rearrange them to a bilinear

form in u;jk and u,j ;

·
E =

∫︂
B
[µGij +

E1

2

(︁
gklL

kLl−1
)︁
LiLj +

E2

2

(︁
gklM

kM l−1
)︁
M iM j]gi·u,jdV

−
∫︂
B
[C1c

i
1Γ̄

j
lkL

lLk + C2c
i
2Γ̄

j
lkM

lMk +
T

2
ci1Γ̄

j
lkM

lMk +
T

2
ci2Γ̄

j
lkL

lLk + pJgji]gi·u,jdV

+

∫︂
B
(C1c

i
1L

jLk + C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk)gi · u;jkdV, (5.53)

where we use the identities of gilg
i = gl on Eq. (5.47) and gj = gig

ji on Eq. (5.50).

Further, the integration by part of the last term of Eq. (5.53) yields

(C1c
i
1L

jLk + C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk)gi · u;jk

= [(C1c
i
1L

jLk + C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk)gi · u,j];k

−[(C1c
i
1L

jLk + C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk)gi];k · u,j. (5.54)

Substituting the above into Eq. (5.53), we then obtain

·
E =

∫︂
B
[{µGij +

E1

2

(︁
gklL

kLl−1
)︁
LiLj +

E2

2

(︁
gklM

kM l−1
)︁
M iM j − C1c

i
1Γ̄

j
lkL

lLk

−C2c
i
2Γ̄

j
lkM

lMk − T

2
ci1Γ̄

j
lkM

lMk − T

2
ci2Γ̄

j
lkL

lLk − pJgji}gi − {(C1c
i
1L

jLk

+C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk)gi};k]·u,jdV +

∫︂
B
[(C1c

i
1L

jLk

+C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk)gi · u,j];kdV. (5.55)

Eq. (5.55) may be further reduces to

·
E =

∫︂
B
[φijgi − (ψijkgi);k]·u,jdV +

∫︂
∂B
ψijkνkgi · u,jdA, (5.56)

where ν = viG
i is the rightward unit normal to ∂B in the sense of the Green-Stokes’

theorem and

φij = µGij +
E1

2

(︁
gklL

kLl−1
)︁
LiLj +

E2

2

(︁
gklM

kM l−1
)︁
M iM j

−Γ̄
j
lk(C1c

i
1L

lLk − C2c
i
2M

lMk − T

2
ci1M

lMk − T

2
ci2L

lLk)− pJgji,

ψijk = C1c
i
1L

jLk + C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk. (5.57)
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In the absence of distributed loads, it follows from Eq. (5.27) that the Euler equilib-

rium equation, holding in B, satisfies

[φijgi − (ψijkgi);k];j = 0, (5.58)

where, from Eqs. (5.4) and (5.6), we find

gi;k = (Γj
ik − Γ̄

j
ik)gj. (5.59)

5.2.3 Boundary conditions

To derive the expressions of the associated boundary conditions, we again apply

integration by part on the first integral of Eq. (5.56) and thereby obtain,

·
E =

∫︂
B
[{φijgi−(ψijkgi);k}·u];jdV −

∫︂
B
[φijgi−(ψijkgi);k];j·u,jdV +

∫︂
∂B
ψijkνkgi ·u,jdA.

(5.60)

Since the Euler equilibrium equation satisfies in B (i.e. [φijgi − (ψijkgi);k];j = 0), Eq.

(5.60) reduces to

·
E =

∫︂
∂B
[φijgi − (ψijkgi);k]νj·udA+

∫︂
∂B
ψijkνkgi · u,jdA, (5.61)

where the Green-Stokes’ theorem is applied on the first term of Eq. (5.61).

Now, we decompose u,j to

u,j =
∂u

∂s

∂s

∂θj
+
∂u

∂ν

∂ν

∂θj
= u′τ j + u,ννj, (5.62)

where τ = τ iG
i = N× ν is the unit tangent to the boundary ∂B and u′ and u,ν are,

respectively, the tangential and normal derivatives of u on ∂B (i.e. u′ = ∂u/∂s and

u,ν = ∂u/∂ν). The substitution of the above into the second integral of Eq. (5.61)

furnishes

·
E =

∫︂
∂B
[φijgi−(ψijkgi);k]νj·udA+

∫︂
∂B
ψijkτ jνkgi·u′dA+

∫︂
∂B
ψijkνjνkgi·u,νdA. (5.63)

We continue by applying integration by part on the second integral of the above and

thereby obtain

·
E =

∫︂
∂B
[φijνjgi − (ψijkgi);kνj − (ψijkτ jνkgi)

′]·udA+

∫︂
∂B
[ψijkτ jνkgi · u]′dA

+

∫︂
∂B
ψijkνjνkgi · u,νdA. (5.64)
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Eq. (5.64) may be recast into the following standard form:

·
E =

∫︂
∂B
[φijνjgi − (ψijkgi);kνj − (ψijkτ jνkgi)

′]·udA+

∫︂
∂B
ψijkνjνkgi · u,νdA

−
n∑︂

l=1

⃦⃦
ψijkτ jνkgi

⃦⃦
l
· ul, (5.65)

where the double bar symbol refers to the forward jump as the discontinuities of the

boundary ∂B is traversed (i.e. ∥∗∥ = (∗)+− (∗)−) and the sum denotes the collection

of all discontinuities.

It follows from Eq. (5.65) that the admissible mechanical powers are of the form

(see, also, [20], [101], and [133])

P =

∫︂
∂Bt

t · udA+

∫︂
∂Bm

m · u,νdA+
n∑︂

l=1

fl·ul. (5.66)

Therefore, by comparing Eqs. (5.65) and (5.66), we conclude that

t = φijνjgi − (ψijkgi);kνj − (ψijkτ jνkgi)
′,

m = ψijkνjνkgi, and

fl = −ψijkτ jνkgi, (5.67)

where t, m and fl are, respectively, the edge traction and edge moment and the lth

corner force.

Lastly, we remark that the edge moments (double force) in Eq. (5.67), ψijkνjνkgi,

is the result of the second gradient of deformations sustained by the second-grade

continua and can be interpreted as the energy couple to the Piola-type double stress,

when it is prescribed on the boundaries (see, also, [86] and [112]).

5.3 Consideration of hyperelastic composites

Contemporary composite materials often exhibit nonlinear hyperelastic behaviors as

an intrinsic property. For example, when carbon-fibers and/or fibrous reinforce-

ments are used together with elastomeric matrix materials, they display unique

strain-stiffening responses, also referred to as ‘J-shaped’ stress-strain behaviors [3]-[4].

Such distinct nonlinear responses of hyperelastic composites can be readily accom-

modated by the proposed model via the refinement of the energy potentials of fibers,
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W (ε1, ε2)fiber, and matrix materials, W (F)matrix. For the desired application, we

replace the energy potential of W (F)matrix using the Mooney Rivlin strain energy;

W (F)matrix =
µ

2
(I1 − 3) +

κ

2
(I2 − 3), (5.68)

from which the non-linear stress-strain responses of matrix materials may be char-

acterized via the two material parameters of µ and κ. In the above, I1 and I2 are the

principal invariants of the deformation gradient tensor which are defined, respectively,

by

I1 = tr(FTF) and I2 =
1

2
[(tr(FTF))2 − tr((FTF)2)]. (5.69)

Since (I1)F = 2F and (I2)F = 2F(I1I − FT · F) (see, also, [114]), the variational

derivative of Eq. (5.68) can be evaluated as

Ẇ (F)matrix = [
µ

2
(I1)F+

κ

2
(I2)F]·Ḟ = [µF+κF{(F · F)I− FTF}]·Ḟ. (5.70)

The substitution of Eqs. (5.10) and (5.30) into the above then yields

Ẇ (F)matrix = [µGij + κgkl(G
klGij −GikGlj)]gi·u,j, (5.71)

where from Eqs. (5.15) and (5.33), we find

Gij = LiLj +M iM j and gij = lilj +mimj +cos γ(limj + ljmi); l ·m =cos γ, (5.72)

where γ is an angle between the two families of fibers (non-orthogonal in general) in

the deformed configuration.

To accommodate the nonlinear stress-stain responses of fibers, we consider the

following energy potential of the polynomial type

W (ε1, ε2) =
1

3
E1

1ε
3
1 +

1

2
E1

2ε
2
1 +

1

3
E2

1ε
3
2 +

1

2
E2

2ε
2
2, (5.73)

where ε1 and ε2 denote the strain measures of the two different fiber families and E1
α

and E2
α are the associated material parameters. Using the chain rule, the variational

derivative of Eq. (5.73) can be evaluated as

Ẇ (ε1, ε2)fiber = (E1
1ε

2
1 + E1

2ε1)(ε1)F·Ḟ+(E2
1ε

2
2 + E2

2ε2)(ε2)F·Ḟ. (5.74)
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Further, invoking the results in Eqs. (5.10) and (5.24), it can be readily seen that

E1
1ε

2
1 + E1

2ε1 =
E1

1

4
(FL · FL−1)2 +

E1
2

2
(FL · FL−1)

=
E1

1

4
gklgmnL

kLlLmLn + gklL
kLl (E

1
2 − E1

1)

2

+
(E1

1 − 2E1
2)

4
, (5.75)

and similarly for

E2
1ε

2
2 + E2

2ε2 =
E2

1

4
gklgmnM

kM lMmMn + gklM
kM l (E

2
2 − E2

1)

2

+
(E2

1 − 2E2
2)

4
. (5.76)

Now, we substitute Eqs. (5.35)-(5.36), and (5.75)-(5.76) into Eq. (5.74) and thereby

obtain

Ẇ (ε1, ε2)fiber = [
E1

1

4
gklgmnL

kLlLmLn + gklL
kLl (E

1
2 − E1

1)

2
+
E1

1 − 2E1
2

4
]LiLjgi·u,j

+[
E2

1

4
gklgmnM

kM lMmMn + gklM
kM l (E

2
2 − E2

1)

2

+
E2

1 − 2E2
2

4
]M iM jgi·u,j. (5.77)

Hence, in view of Eqs. (5.71) and (5.77), the virtual-work statement of the fiber-

matrix system (Eq. (5.52)) then furnishes

·
E =

∫︂
B
[{µGij + κgkl(G

klGij −GikGlj) + (
E1

1

4
gklgmnL

kLlLmLn + gklL
kLl (E

1
2 − E1

1)

2

+
E1

1 − 2E1
2

4
)LiLj + (

E2
1

4
gklgmnM

kM lMmMn + gklM
kM l (E

2
2 − E2

1)

2

+
E2

1 − 2E2
2

4
)M iM j}gi·u,j + C1c1·ċ1 + C2c2·ċ2 +

1

2
T ċ1·c2

+
1

2
Tc1·ċ2 − {p(J − 1)}̇]dV. (5.78)

Consequently, proceeding the same spirit as in Eqs. (5.53)-(5.56), we find that

φij = µGij + κgkl(G
klGij −GikGlj) + (

E1
1

4
gklgmnL

kLlLmLn + gklL
kLl (E

1
2 − E1

1)

2

+
E1

1 − 2E1
2

4
)LiLj + (

E2
1

4
gklgmnM

kM lMmMn + gklM
kM l (E

2
2 − E2

1)

2

+
E2

1 − 2E2
2

4
)M iM j − Γ̄

j
lk(C1c

i
1L

lLk − C2c
i
2M

lMk − T

2
ci1M

lMk

−T
2
ci2L

lLk)− pJgji,

ψijk = C1c
i
1L

jLk + C2c
i
2M

jMk +
T

2
ci1M

jMk +
T

2
ci2L

jLk, (5.79)
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which satisfies the following equilibrium equation, holding in B,

[φijgi − (ψijkgi);k];j = 0. (5.80)

The associated boundary conditions can also be derived via the same procedures as

done in Eqs. (5.60)-(5.66) which turn out to be the same form as in Eq. (5.67) except

the expressions for φij and ψijk that are obtained in Eq. (5.79). Implementations of

the obtained nonlinear model toward the particular types of hyperelastic composites

will be discussed, separately, in later sections.

5.4 Model implementations

In this section, we present the implementation of the proposed model in the orthonor-

mal Cartesian basis (θ = θiei) to examine its performance and practical utility. The

associated results and comparisons with the experimental data sets will be discussed

separately in the next section.

Let us consider an initially flat rectangular-shaped fiber composite with finite

thickness (in X3 direction) and its boundaries are aligned with the referential coordi-

nate directions. Hence, it is assumed that the curvilinear coordinates, θi, are initially

coincide with the referential Cartesian frame XA (i.e. θi ≡ XA) and are orthogonal

prior to deformations. Further, the fibers’ trajectories are presumed to be initially

straight and remain fairly straight within a finite local regime after deformations and

thus their respective natural basis, gi, may be inferred to be locally a function of

referential coordinate (i.e. gi = gi(X
A)). More general cases can be easily accommo-

dated by using the appropriate curvilinear coordinates such as spherical, elliptical and

polar coordinates. However, the presumed orthogonality framed in the orthonormal

Cartesian coordinates suffices to extract the important aspect of the proposed model.

Within this prescription, we deduce

Gi =
∂X

∂θi
=

∂X

∂XA
=
∂XBEB

∂XA
= δBAEB = EA,

Gi =
∂θi

∂X
=
∂XA

∂X
=

∂XA

∂XBEB

= EA,

Gij = Gi·Gj = EA·EB ≡ GAB, G
ij = EA·EB ≡ GAB

and Gj = GiG
ij = EA(EA·EB) = EB. (5.81)
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Hence, the associated Levi-Civita connection coefficient identically vanishes; i.e.

Γ̄
k
ij = Gi,j ·Gk = EA,B·EC = 0; (∵ EA,B =

∂EA

∂XB
= 0). (5.82)

It is noted that the above results do not necessarily mean that the natural curvilinear

basis (gi) induced by the deformed body, b, merges into the Lagrangian frame of

reference (ei). In fact, it can be seen that

gi=
∂r

∂θi
=
∂rjej
∂XA

= FjAej ≡ gA, (5.83)

where FiA = ∂ri/∂XA are the components of the deformation gradient tensor and

ei = dr/dxi is the Lagrangian frame of reference. Further, using Eq. (5.83), we

reduce gi,j and gi to

gi,j =
∂(FiAei)

∂θj
=
∂(FiAei)

∂XB
= FiA,Bei ≡ gA,B,

gi =
∂θi

∂r
=
∂XA

∂r
=
∂XA

∂rjej
= (FjA)

−1ej ≡ gA, (5.84)

and thereby obtain

Γk
ij = gi,j · gk = gA,B · gC = FiA,Bei · (FjC)

−1ej = FiA,B(FiC)
−1 ≡ ΓC

AB,

gij = gi·gj = gA·gB

(5.83)
= FiAFiB ≡ gAB, (5.85)

and gij = gi·gj = gA·gB (5.84)
= (FiAFiB)

−1 ≡ gAB,

which are, respectively, the Levi-Civita connection coefficients, the metric and the

dual metric induced by the coordinates in b. Lastly, combining the results in Eqs.

(5.82)-(5.85), the covariant derivative of gi can be evaluated as

gi;j = (Γk
ij − Γ̄

k
ij)gk

(5.82)
= ΓC

ABgC
(5.83),(5.85)

= FiA,B(FiC)
−1FjCej = FiA,Bei ≡ gA;B,

(5.86)

where (FiC)
−1FjC = (∂XC/∂ri)(∂rj/∂XC) = δij.

As a direct consequence of the results in Eqs. (5.81)-(5.85), the terms in Eqs.
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(5.79)-(5.80)) now become, for example,

(µGijgi);j = (µGABgA);B = [µ(EA·EB)FiAei];B = (µδABFiAei);B = µFiB,Bei,

(gklL
kLlLiLjgi);j = (gCDL

ALBLCLDgA);B = (FiAFjCFjDL
ALBLCLDei);B

= (FiAFjCFjD),BL
ALBLCLDei,

(pJgjigi);j = (pJgBAgA);B = (pJ(FiAFiB)
−1FjAej);B = (pF ∗

iBei);B = p,BF
∗
iBei,

and [ci1L
jLkgi);k];j = [(Γi

mn − Γ̄
i
mn)L

mLnLjLkgi);k];j = [ΓA
DEL

DLELBLCgA);C ];B

= [(FjD,E(FjA)
−1FiAL

DLELBLCei);C ];B

= FiA,BCDL
ALBLCLDei, (5.87)

where we use the identities of JF−1
iA = F ∗

iA and F ∗
iA,A = 0 (the Piola identity). Thus,

the equilibrium equation (Eqs. (5.79)-(5.80)) may be reformulated into the flowing

form for the desired applications;

0 = [µFiA,A − p,AF
∗
iA +

E1

2
(FiBFjCFjD),AL

ALBLCLD − E1

2
FiB,AL

ALB

+
E2

2
(FiBFjCFjD),AM

AMBMCMD − E2

2
FiB,AM

AMB + C1FiB,ACDL
ALBLCLD

+C2FiB,ACDM
AMBMCMD+

T

2
FiB,ACD(L

ALBMCMD+MAMBLCLD)]ei,(5.88)

which hold in B. In addition, we recast the associated boundary conditions (Eq.

(5.67) ) as

t = φABgAνB − (ψABCgA);CνB − (ψABCτBνCgA)
′,

m = ψABCνBνCgA, and f = −ψABCτBνCgA, (5.89)

where

φABgA = [µFiB +
E1

2
[(FjCFjDL

CLD − 1)FiAL
ALB +

E2

2
[(FjCFjDM

CMD

−1)FiAM
AMB − pF ∗

iB]ei,

ψABCgA = [FiA,DL
ALB(C1L

CLD +
T

2
MCMD) + FiA,DM

AMB(C2M
CMD

+
T

2
LCLD)]ei. (5.90)

Lastly, invoking the results in Eq. (5.87) together with the evaluations of higher order
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terms arising in the mapping of nonlinear stress-stain responses, we obtain

(κgklG
klGijgi);j = (κgCDG

CDGABgA);B = (κFjCFjCFiBei);B

= κ(FjCFjCFiB),Bei,

(gklgmnM
kM lMmMngi);j = (gCDgEFM

CMDMEMFgA);B

= (FjCFjDFkEFkFM
CMDMEMFFiAei),B

= (FjCFjDFkEFkFFiA),BM
CMDMEMFei, (5.91)

and similarly for other higher order terms (e.g. (gklgmnL
kLlLmLngi);j, (κgklG

ikGljgi);j

etc...). Thus, the case of hyperelastic composites can be readily implemented as (see,

Eqs. (5.77), and (5.79)-(5.80))

0 = [µFiA,A + κ(FjCFjCFiA − FjAFjBFiB),A − p,AF
∗
iA

+
E1

1

4
(FjCFjDFkEFkFFiB),AL

ALBLCLDLELF

+
(E1

2 − E1
1)

2
(FiBFjCFjD),AL

ALBLCLD +
E1

1 − 2E1
2

4
FiB,AL

ALB

+
E2

1

4
(FjCFjDFkEFkFFiB),AM

AMBMCMDMEMF (5.92)

+
(E2

2 − E2
1)

2
(FiBFjCFjD),AM

AMBMCMD +
E2

1 − 2E2
2

4
FiB,AM

AMB

+FiB,ACD(C1L
ALBLCLD+C2M

AMBMCMD+
T

2
LALBMCMD+

T

2
MAMBLCLD)]ei.

It is noted that the corresponding boundary conditions (Eqs. (5.89)-(5.90)) remain

intact except the expression of φABgA which is found to be

φABgA = [µFiB + κFiA(FjCFjCδAB − FjAFjB) +
E1

1 − 2E1
2

2
(FiAL

ALB)

+
E2

1 − 2E2
2

2
(FiAM

AMB) + FiAFjCFjDFkEFkF (
E1

1

4
LALBLCLDLELF

+
E2

1

4
MAMBMCMDMEMF ) + FiAFjCFjD(

E1
2 − E1

1

2
LALBLCLD

+
E2

2 − E2
1

2
MAMBMCMD)− pF ∗

iB]ei. (5.93)

5.5 Results and discussions

Comparisons with the inhouse experimental results and contemporary applications in

the literature are presented in this section to demonstrate the performance and po-

tential utility of the obtained model. For the stated purpose, we consider the uniaxial
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tensile test of elastomeric composites, spherical indentation of Polyactic acid (PLA)

composites and Deployable Composite Boom (DCB). Emphasis is placed on the char-

acterization of the stress-strain responses and deformation analyses of intended com-

posites while maintaining compactness and relative simplicity in the corresponding

model implementation.

5.5.1 Uniaxial Tension of Hyperelastic Composite

The inhouse uniaxial tension test of elastomeric composites reinforced with polyester

fibers (PES-2 and PES-3) are considered in this section. This is a special case of the

proposed model where the elastomeric composite is subjected to finite plane defor-

mation that the fiber’s directors remain in a plane, with no out-of-plane components

(i.e. M3 = L3 = χ3 = 0) and the corresponding deformations (i.e. χ1 and χ2) are in-

dependent of the out-of-plane coordinate (X3). Ecoflex 0050 (Smooth-on Inc., USA)

is used as the matrix material which is considered to be one of the promising mate-

rials in biomechanical applications for its high tear resistance and large extensibility

[128]-[130]. The reinforced elastomer composite films were fabricated in a three-layer

configuration using a layer by layer method (Fig. 5.2 (a)). The effective dimension

of the samples is 50mm× 25mm; keeping an aspect ratio of 2 : 1 and the actual size

of fabricated composites is 78mm× 25mm with the end allowance of 14mm to avoid

end effects caused by the grips of the testing machine (see, Fig. 5.2 (c)). Instron 5943

(Illinois Tool Works Inc., USA) is used to measure the stress-strain responses of the

Ecoflex 0050, PES fibers, and the composites (see, Fig. 5.2 (b)). The test apparatus

records the displacement and force as a function of time for each uniaxial tensile test

and the corresponding extension rate was set to be 2.5mm/min to avoid/minimize

possible viscous responses (see, also, [134]–[136]). The response of Ecoflex 0050

(matrix material) is characterized by using the Mooney-Rivlin model and the cor-

responding material parameters are found to be µ = 0.1013 MPa and κ = −0.14

Mpa, respectively (see, Fig. 5.3 (left)). Further, the strain-stiffening responses of

PES-2 and PES-3 fibers may be accommodated by the proposed polynomial energy

potential (Eq. (5.73)) with the characterization parameters of E1
1 = E2

1 = 3.45MPa,

E1
2 = E2

2 = 0.65MPa for PES-2, and E1
1 = E2

1 = 2.35MPa , E1
2 = E2

2 = −0.2MPa

for PES-3 (Fig. 5.3 (right)). Hence, in view of Eqs. (5.21), (5.68) and (5.73), the

148



Figure 5.2: Sample preparation (a) and experimental set up for the uniaxial tension
test (b)-(c).

following energy potential may be considered for the constitutive description of the

PES-2 composite

U(F, ε,g,p) =
0.1013

2
(I1 − 3)− 0.14

2
(I2 − 3) +

3.45

3
(ε31 + ε32) +

0.65

2
(ε21 + ε22)

+
1

2
(g1·g1+g2·g2) +

2.2

2
g1·g2 − p(J − 1), (5.94)

from which the corresponding Euler equilibrium equation can be obtained as (see,

also, Eqs. (5.79)-(5.80) and (5.92))

0 = [0.1013χi,AA − 0.14(χj,Cχj,Cχi,A − χj,Aχj,BχiB),A − p,Aχ
∗
i,A

+
3.45

4
(χj,Cχj,Dχk,Eχk,Fχi,B),AL

ALBLCLDLELF +
3.45− 1.3

4
χi,BAM

AMB

+
(0.65− 3.45)

2
(χi,Bχj,Cχj,D),AL

ALBLCLD +
3.45− 1.3

4
χi,BAL

ALB

+
3.45

4
(χj,Cχj,Dχk,Eχk,Fχi,B),AM

AMBMCMDMEMF (5.95)

+
(0.65− 3.45)

2
(χi,Bχj,Cχj,D),AM

AMBMCMD

+χi,BACD(0.5L
ALBLCLD+0.5MAMBMCMD+

2.2

2
LALBMCMD+

2.2

2
MAMBLCLD)]ei.
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Figure 5.3: Stress-strain curves: Ecoflex-0050 and the Mooney Rivlin model (left);
Stress-strain curves: PES-2 & PES-3 fibers and polynomial model (W (ε) = 1

3
E1ε

3 +
1
2
E2ε

2) (right).

In the above, εij is the 2-D permutation; ε12 = −ε21 = 1, ε11 = ε22 = 0. Eq. (5.95)

together with the condition of the bulk incompressibility,

detF = χ1,1χ2,2 − χ1,2χ2,1 = 1, (5.96)

determines the unknown potentials of χ1, χ2 and p which describes the nonlinear

responses of the Ecoflex0050-PES composite.

Lastly, the admissible boundary conditions (Eqs. (5.89)-(5.90), and (5.93)) in the

case of rectangular shaped samples (see, Fig. 5.4 (a)-(b)) furnish

t1 = φA1χ1,A − (ψA1Cχ1,A);C − (ψA21χ1,A)
′, t2 = 0 at X1 = a, − a, and

t1 = 0, t2 = 0 at X2 = b, − b, (5.97)

where

φABχi,Aei = [µχi,B + κχi,A(χj,Cχj,CδAB − χj,Aχj,B) +
3.45− 0.65

2
(χi,AL

ALB)

+
3.45− 0.65

2
(χi,AM

AMB) + χi,Aχj,Cχj,Dχk,Eχk,F (
3.45

4
LALBLCLDLELF

+
3.45

4
MAMBMCMDMEMF ) + χi,Aχj,Cχj,D(

0.65− 3.45

2
LALBLCLD

+
0.65− 3.45

2
MAMBMCMD)− pχ∗

i,B]ei, and

ψABCχi,Aei = [χi,ADL
ALB(0.5LCLD +

2.2

2
MCMD) + χi,ADM

AMB(0.5MCMD

+
2.2

2
LCLD)]ei. (5.98)
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Eqs. (5.97)-(5.98) can be obtained by replacing gA = FjAej on the left side of the Eq.

(5.90)2 and Eq. (5.93) while substituting the fibers’ directors (i.e. L = L1E1+L
2E2 =

cos(π/4)E1−sin(π/4)E2 andM =M1E1+M2E2 = cos(π/4)E1+sin(π/4)E2) and the

normal and tangential vectors of the designated boundary (i.e. ν = ν1E1+ν2E2 = E1

and τ = τ 1E1 + τ 2E2 = E2, see, also, Fig. 5.4 (a)-(c)). Repeating the same pro-

cedure as demonstrated in Eqs. (5.94)-(5.98), the case of PES-3 composite can

also be simulated with the configuration parameters of E1
1 = E2

1 = 2.35MPa and

E1
2 = E2

2 = −0.2MPa. Fig. 5.5 illustrates the stress-strain curves of the Ecoflex0050-

Figure 5.4: Schematic of the problem : 2a = 50mm and 2b = 25mm (a); Sample
orientation(b); Kinematics of bidirectional fiber mesh under uniaxial tension (c).

PES composite reinforced, respectively, by the PES-2 and PES-3 fibers. It is evident

that the proposed model successfully predicts the strain-stiffening responses of the

composites by integrating the predetermined material parameters of the Ecoflex ma-

trix material and the PES fibers. This may be of practical interest, especially in

the design stage, since the mechanical responses of the intended composite can be

instantly estimated using the proposed model. In addition, the general deformation

profiles of the PES composite can be evaluated via the mapping:

χ = χ1(X)e2 + χ2(X)e2, (5.99)

whereX =X1E1+X2E2 is the initial position. The corresponding deformation profiles
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Figure 5.5: Stress-strain curves of PES composites predicted by the proposed model.

are then superposed on the experimental images of PES-2 and PES-3 composite

samples at 50% elongation (see, Fig. 5.6). Despite the uncertainties arising in the

image processing and fittings, the deformation profiles from the proposed bidirectional

model and the uniaxial tension experiment demonstrate close agreement throughout

the entire domain of interest for both the PES-2 and the PES-3 cases. Lastly, the

shear strain distributions of the PES composites are computed to examine the utility

and accuracy of the proposed model in the local microstructure deformation analysis

of the reinforced composites. Using the mesh grids of 1.5mm × 1.5mm, printed on

the surfaces of the PES composites, the material points of the deformed composite

are recorded via the Matlab image processing toolbox from which the corresponding

shear angle configurations are estimated. Also, the deformation maps of χ1 and χ2,

obtained directly from the proposed bidirectional model, are post-processed using the

relation:

γxy = α + β where α = tan−1(
χ2,1

1 + χ1,1

) and β = tan−1(
χ1,2

1 + χ2,2

) (5.100)

to evaluate the shear strain distributions of the resulting composites. The shear

strain distribution results in Fig. 5.7 (bottom images of (a) and (b)) indicate that
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Figure 5.6: Deformation profiles at 50% elongation: PES-2 (top), PES-3 (bottom).

the proposed model successfully predicts the smooth and continuous shear strain

fields throughout the entire domain of interest which also show good agreement with

the in-house experiments (upper images of (a) and (b)) unlike those estimated by

the traditional continuum theory (first-order) where substantial discontinuities are

observed (see, also, [85], [87], [110]).

5.5.2 Draping of PLA- fabric Composites

Thermoplastic composites reinforced with fibrous materials have drawn increased

amount of attention in recent years due to their enhanced properties in strength

and toughness together with high service temperatures which make them a promis-

ing candidate in aerospace, engineering and biological applications [137]-[138]. The

Polyether-Ketone-Ketone (PEKK), Polyether-Ether-Ketone (PEEK) and Polylactic

Acid (PLA) are three common types of thermoplastic matrix materials. The appli-

cations of which, however, are somewhat limited in their raw form due to the low

impact strength and brittleness [137], [139]–[142]. The properties of these thermo-
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(a)

(b)

Figure 5.7: Shear strain distribution of PES2 at 50% elongation; experiement (top),
simulation (bottom). (b) Shear strain distribution of PES3 at 50% elongation; ex-
periement (top), simulation (bottom).
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plastic materials can be effectively enhanced by using natural fiber reinforcements

such as bamboo fibers [138] which has also drawn renewed attention for their easy

accessibility, renewability, CO2 neutrality and non-toxicity [143]-[144]. In this sec-

tion, we present the implementation of the proposed model in the characterization

and deformation analysis of the PLA matrix material reinforced with natural bam-

boo fibers. For the stated purpose, we consider the PLA-bamboo fabric composite

subjected to out-of-plane deformations in E3 direction such that the corresponding

response functions, unlike those in the uniaxial tension case, no longer remain in a

plane (i.e. χ = χ1(X)e2 + χ2(X)e2 + χ3(X)e3) and similarly for the rest of cases

in the next section. The referred drape test in Fig. 5.8 is designed to evaluate the

stretching deformation of a composite sheet under punching load (typically with a

hemispherical punch) which is one of the common experimental settings for study-

ing the formality of a thin composite sheet also known as Eichsen test [145]-[146].

The response of the PLA matrix material is characterize by using the Mooney-Rivlin

Figure 5.8: Experiment setup for the drape test of PLA-bamboo fabric composite
[138].

model with the configuration parameters of µ = −10 Gpa and κ = 11 GPa (see,
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Fig. 5.9). The material parameters of a bidirectional bamboo fabrics are identified

as E1 = E2 = 45.45 GPa and C1 = C2 = 28 GPa, respectively, based on the work

of [147]-[148]. Therefore, combining Eqs. (5.21), (5.23) and (5.68), we may propose

Figure 5.9: Stress-strain curves: PLA thermoplastic matrix material [149] and the
Mooney-Rivlin model.

the following energy potential for the constitutive description of the PLA-bamboo

composite

U(F, ε,g,p) =
−10

2
(I1 − 3) +

11

2
(I2 − 3) +

45.45

2
(ε21 + ε22) +

28

2
(g1·g1+g2·g2)

+
2.5

2
g1·g2 − p(J − 1), (5.101)

and thereby obtain the associated equilibrium equation as

0 = PiA,A = −10χi,AA + 11(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + 11χi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AF
∗
iA + 45.45χj,11χj,1χi,1

+(
45.45

2
χj,1χj,1 −

45.45

2
)χi,11 + 45.45χj,22χj,2χi,2 + (

45.45

2
χj,2χj,2

−45.45

2
)χi,22 +

28

2
(χi,1111 + χi,2222)+

2.5

2
(χi,1122 + χi,2211), (5.102)

156



where F ∗
iA = εmniεpqAχp,mχq,n. The solution of the above system of PDEs can be

determined by imposing the boundary conditions of (see, Fig. 5.10)

χ1 = χ2 = χ3 = 0 at X1 = a, − a and

χ1 = χ2 = χ3 = 0 at X2 = b, − b.

χ3 = f(X1) = −0.66X2
1 + 0.66 at the cross section D −D′

χ3 = f(X2) = −0.66X2
2 + 0.66 at the cross section C − C ′, (5.103)

where f(X1) and f(X2) are the shape profile functions describing the hemispher-

ical punch head. As illustrated in Fig. 5.11, the proposed model closely assimilates

the resultant stress-strain responses (Fig. 5.11 (left)) and the overall deformation

contours (Fig. 5.11 (right)) of the PLA-bamboo composite.

Figure 5.10: Boundary condition for draping over a hemisphere.

For the more in-depth analysis vis a vis the local deformations of the composite,

we also perform the Grid Strain Analysis (GSA) which quantifies strain differences

of grids prior and after the deformations [138]. The surface of a sheet marked with a

series of square grids (see, #1(undeformed grids) and #2 (deformed grids) in Fig.5.12

(left)) is took from the work of [138] for the purpose of comparison. The grid map

contour image in the right side of Fig. 5.12 (#3 (undeformed grid) and #4 (deformed

grid)) is obtained by solving the resulting PDEs (Eq. (5.102)). It is evident that the

proposed bidirectional model produces reasonably accurate prediction in the local

deformation of PLA-fiber composite throughout the domain of interest (refer, the

comparison images in Fig. 5.12 (mid)).
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Figure 5.11: PLA-bamboo composite: stress-strain curve (left), deformation contour
(right).

Lastly, we mention that the proposed model may be used in the design and charac-

terization of thermoplastic composites reinforced with various types of natural fibers

by interchanging energy potentials and material parameters for both fibers and matrix

materials. Further studies in this regard are certainly of more practical interest which,

however, were limited in the present study due to the paucity of the experimental

resource.

Figure 5.12: Deformed and undeformed configurations of unit grids obtained from
the drape experiment of Bamboo fabrics / PLA Composite (left) [138] and proposed
model (right).

5.5.3 Case studies in Self-Deployable Booms for Space Ap-
plications

Deployable structures such as solar sails and reflector antennas are widely studied for

space applications due to the limited storage capacity in launch vehicles [150]–[153].
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These deployable structures can be packaged into a small volume prior to launch-

ing and unfolded into large configurations during the operation state [150]. Among

various types of deployable structures, thin-walled deployable composite structures

made of high strain composites have drawn increasing attention in recent years for

their superior stiffness, strength and ultralight weight characteristics [153]–[156]. In

particular, a thin-walled deployable composite boom (DCB), which is folded elasti-

cally into smaller configurations can be self-recovered to its initial unfolded state by

releasing the stored strain energy. During the coiling process, the boom undergoes

compressive deformations to form a flattening state through which the strain energy

can be effectively stored into the system [150] (see, highlighted deformation line (red)

in Fig. 5.13). The stored strain energy is then used as a ‘recovering’ energy for self-

deploy. Hence, it is important to study the compressive deformation responses for

the design and operation of DCBs.

Figure 5.13: Compressive deformation of DCB during coiling process [150].

In this section, we employ the obtained model in the analysis of the coiling re-

sponses of a DCB which is made up of an epoxy resin laminate sheet reinforced

with carbon fibers. The response of the epoxy resin matrix material is characterized

by the Mooney-Rivlin model with the configuration parameters of µ = −10 GPa

and κ = 11.09 GPa, respectively (see, Fig. 5.14). Further, the material parame-

ters of bidirectional carbon fiber mesh are found to be E1 = E2 = 228 GPa and

C1 = C2 = 69 GPa. Together, the following energy potential may be proposed for

the constitutive description of the DCB.

U(F, ε,g,p) =
−10

2
(I1 − 3) +

11.09

2
(I2 − 3)

228

2
(ε21 + ε22) +

69

2
(g1·g1+g2·g2)

+
50

2
g1·g2 − p(J − 1). (5.104)
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Figure 5.14: Stress-strain curves: epoxy resin matrix material [157] and the Mooney
Rivlin-model.

Hence, the corresponding Euler equilibrium equation furnishes

0 = PiA,A = −10χi,AA + 11.09(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + 11.09χi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B + 228χj,11χj,1χi,1 + (
228

2
χj,1χj,1

−228

2
)χi,11 + 228χj,22χj,2χi,2 + (

228

2
χj,2χj,2 −

228

2
)χi,22 +

69

2
(χi,1111

+χi,2222)+
50

2
(χi,1122 + χi,2211). (5.105)

The solutions of the above system of PDEs can be determined by imposing the bound-

ary conditions as depicted in Fig. 5.15 and Eq. (5.106), where fs(X2) is the shape

function representing the initial shape profile of the boom and f(P ) is a function of

P which becomes zero when P = 0.

χ1 = 0 at X1 = a, − a and χ3 = fs(X2){1− f(P )} at X1 = a, where

fs(X2) = 0.3386{ 1

1 + e−22(X2−0.25)
− 1

1 + e−22(X2−0.75)
} and

f(P ) = 0.0238P 3 − 0.2301P 2 + 0.7729P. (5.106)
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Figure 5.15: Schematic of the problem.

In the analysis, we consider two configurations of the boom which are the cross-

sectional profiles (configuration “1”) and the longitudinal deformation profiles (con-

figuration “2”) (see, also, Fig. 5.16 (a)-(b)). As illustrated in Figs. 5.16 (c)-5.17, the

proposed bidirectional model successfully assimilate the general deformations of the

boom. More precisely, it is observed that the magnitude of the cross-sectional profile

of the boom (Config-1) is inversely proportional to the applied flattening force (refer,

Fig. 5.17). Also, the longitudinal deformation profiles (Config-2) become ‘straight’

with the increasing bond parameter, T, at the intersection of the two orthogonally

aligned fibers; i.e., the resulting longitudinal curvatures of the boom become less sen-

sitive to the applied flattening force (see, Fig. 5.16(c)). The result suggests that the

recovering energy may be further maximized (without considering higher strength

materials for both matrix and reinforcing materials) by enhancing the fiber-to-fiber

bond at the intersections.

Predictions from the proposed model are also cross-examined with the progressive

flattening test results (compressions) of the DCB [154]. The experimental setup for

the flattening test is illustrated in Fig. 5.18 (a), where the carbon-fiber reinforced

epoxy composite samples of the half boom sections are loaded in the screw driven

load frame. The incremental displacement is applied at the rate of 0.02mm/s via

horizontal roller and the corresponding load-deformation readings are recorded using

optical instruments (see, further details in [154]). It is seen from Fig. 5.18 (b) that

the proposed model closely simulates the force-displacement responses of the DCB
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(a)

(b)

Figure 5.16: Cross-sectional profile (Config-1) and longitudinal deformation profile
(Config-2) of the DCB. (b) Config-1 and Config-2 indicated on the actual DCB. (c)
Longitudinal deformation profiles with respect to the torsional rigidity of fibers.

subjected to progressive flattening which arises during the coiling and/or folding pro-

cesses. Lastly, we compute the shear strain distributions of the DCM with respect to

the strain components of γxy, γxz and γyz. Unlike those estimated from the first gradi-

ent theory, where significant discontinuities are observed (see, [85], [87]), the proposed

model predicts the smooth and continuous shear strain distributions throughout the

entire domain of interest. More precisely, the maximum in-plane shear strain (γxy)

is observed at the clamped end (Fig. 5.19 (top left)) whereas the out-of-plane shear

strain components (γxz, γyz) gradually increase as they approach the line of contact

where the flattening force is applied (Fig.5.19 (top right)-(bottom)) The results may
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Figure 5.17: Cross-sectional profiles of the DCB with respect to the varying flattening
force.

Figure 5.18: (a) Experimental setup for the flattening test. (b) Comparison of the
load-deflection curve between the theoretical prediction and experimental data in
[154].

be further employed to compute the amount of total strain energy stored into the

boom structure during the packaging which can be converted to ‘restoring’ energy

in the event of self-deployment. In addition to the aforementioned applications, the

proposed model reproduces the equilibrium shapes of Hypar shell structures under

arbitrary prescribed edge conditions [158]. In fact, the obtained model accommo-

dates a more wide class of Hyper shell deformation structures via the generalized

edge conditions of the form:

χ3(X1, X2) = aX1X2 + bX2
1 + cX2

2 + dX1 + eX2 + f, (5.107)

where a, b, c, d, e and f are constant fields from which various types of edge conditions

may be assimilated (see, Fig. 5.20).

The focal length variations of tunable elastomeric lens with respect to the vary-
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Figure 5.19: Shear strain distributions of the DCM: γxy (top left), γxz (top right) and
γyz (bottom).

ing applied voltage [159] can also be predicted by employing the proposed model in

the limit of vanishing fiber parameters. In the simulation, the changes in electrode

voltages are applied using the following boundary conditions;

∂χ3

∂X1

+
∂χ3

∂X2

= (aV 2 + bV + c){A(X1 +X2) +B}, (5.108)

where a, b, c, A and B are the empirical constants which can be determined by fitting

the applied voltage. It is evident from Fig. 5.21 that the proposed model produces

reasonably accurate predictions in both the general deformation profiles (Fig. 5.21

(a)-(b)) and the focal length variations of the tunable elastomeric lens (see, Fig. 5.21

(right)). Further research in this regard is beyond the scope of the present study due

to the paucity of available data, yet it is certainly of more practical interest.

5.6 Finite element analysis of the 4th order cou-

pled PDE

The systems of PDEs in Eqs. (5.92)-(5.93) are 4th order differential equations

with coupled
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Figure 5.20: Deformed surfaces of Hypar shells: (a) Saddle-shape, (b)Saddle-shape
(same magnitude with opposite curvatures), (c) Rotation and translation of straight
lines, (d) Rotation and translation of curves.

non-linear terms. The case of such less regular PDEs deserve delicate mathe-

matical treatment and is of particular practical interest. Hence, it is not trivial to

demonstrate the associated numerical analysis procedures. For preprocessing, Eq.

(5.92) may be recast as
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Figure 5.21: (a) Elastomeric lens profile from the experiment [159]. (the red dashed
line corresponds to the prediction of the lens profile from proposed model), (b) De-
formed lens profile from the proposed model, Focal length variations with respect to
the applied voltage (right).

For i = 1:

0 = µ(Q+ χ1,22) + κ(Q+ E,2)(CC + EE +DD + FF +MM +NN)− κ(Q+ C,2

+E,1 + E,2)(CC + CD +DD +DF +MM +MN + EC + EE + FD + FF

+NM +NN) + κ(C + E)(2QC + 2E,1E + 2C,2C + 2UE −QC −QE − E,2C

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1 − FD,2

−FF,2 − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2N,1N + 2M,2M + 2N,2N

−M,1M −M,1N −N,2M −N,2N +MM,1 −MN,1 −NM,2 −MM,2)

+[
E11

4
(2QCCC + 2QCDD + 2QCMM + 2RDCC + 2RDDD + 2RDMM

+2M,1MCC + 2M,1MDD + 2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M

+2DDQC + 2DDRD + 2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M)

+(E12 − E11)(QC +RD +M,1M)]C + [
E11

4
(CC +DD +MM)2

+
(E12 − E11)

2
(CC +DD +MM) +

(E11 − 2E12)

4
]Q+ [

E21

4
(2E,2DDD

+2E,2DFF + 2E,2ENN + 2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE

+2SNFF + 2SNNN + 2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E

+2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)(E,2E

+F,2F + SN)]E + [
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE + FF +NN)

+
(E21 − 2E22)

4
]Q−C1Q,11−C2U,22 − τU,11 − τQ,22
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For i = 2:

0 = µ(R + χ2,22) + κ(R + F,2)(CC + EE +DD + FF +MM +NN)− κ(R +D,2

+F,1 + F,2)(CC + CD +DD +DF +MM +MN + EC + EE + FD + FF

+NM +NN) + κ(D + F )(2QC + 2E,1E + 2C,2C + 2UE −QC −QE

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1 − FD,2

−FF,2 − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2N,1N + 2M,2M

+2N,2N −M,1M −M,1N −N,2M −N,2N +MM,1 −MN,1 −NM,2 −MM,2)

+[
E11

4
(2QCCC + 2QCDD + 2QCMM + 2RDCC + 2RDDD + 2RDMM

+2M,1MCC + 2M,1MDD + 2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M

+2DDQC + 2DDRD + 2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M)

+(E12 − E11)(QC +RD +M,1M)]D + [
E11

4
(CC +DD +MM)2

+
(E12 − E11)

2
(CC +DD +MM) +

(E11 − 2E12)

4
]R + [

E21

4
(2E,2DDD

+2E,2DFF + 2E,2ENN + 2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE

+2SNFF + 2SNNN + 2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E

+2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)

(E,2E + F,2F + SN)]F + [
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE

+FF +NN) +
(E21 − 2E22)

4
]R−C1R,11−C2V,22 − τV,11 − τR,22
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For i = 3:

0 = µ(T + χ3,22) + κ(T +N,2)(CC + EE +DD + FF +MM +NN)− κ(T +M,2

+N,1 +N,2)(CC + CD +DD +DF +MM +MN + EC + EE + FD + FF

+NM +NN) + κ(M +N)(2QC + 2E,1E + 2C,2C + 2UE −QC −QE − E,2C

−E,2E − CQ− CE,1 − EC,2 − EE,2 + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F +DR−DF,1 − FD,2 − FF,2 + 2N,1N + 2M,2M

+2N,2N −M,1M −M,1N −N,2M −N,2N +MM,1 −MN,1 −NM,2 −MM,2)

+[
E11

4
(2QCCC + 2QCDD + 2QCMM + 2RDCC + 2RDDD + 2RDMM

+2M,1MCC + 2M,1MDD + 2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M

+2DDQC + 2DDRD + 2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M)

+(E12 − E11)(QC +RD +M,1M)]M + [
E11

4
(CC +DD +MM)2

+
(E12 − E11)

2
(CC +DD +MM) +

(E11 − 2E12)

4
]T + [

E21

4
(2E,2DDD

+2E,2DFF + 2E,2ENN + 2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE

+2SNFF + 2SNNN + 2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E

+2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)

(E,2E + F,2F + SN)]N + [
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE

+FF +NN) +
(E21 − 2E22)

4
]T−C1T,11−C2S,22 − τS,11 − τT,22

+
1

2
(A0DN − A0FM −B0CN +B0FM)

0 = Q− χ1,11, 0 = R− χ2,11, 0 = C − χ1,1, 0 = D − χ2,1,

0 = E − χ1,2, 0 = F − χ2,2, 0 = A− µ(Q+ χ1,22)− cQ,11,

0 = B − µ(R + χ2,22)− cR,11, 0 =M − χ3,1, 0 = N − χ3,2,

0 = U − χ1,22, 0 = V − χ2,22, 0 = T − χ3,11, 0 = S − χ3,22. (5.109)

where Q = χ1,11, R = χ2,11, T = χ3,11, C = χ1,1, D = χ2,1,M = χ3,1, E =

χ1,2, F = χ2,2, N = χ3,2, U = χ1,22, V = χ2,22 and S = χ3,22. Hence, the order of

differential equations is reduced from the three coupled equations of the 4th order to

seventeen coupled equations of the 2nd order. Especially, the non-linear terms in the
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above equations (e.g. Aχ2,2, Bχ2,1 etc...) can be systematically treated via the Picard

iterative procedure and/or Newton method;

−Ainitialχinitial
2,2 +Binitialχinitial

2,1 =⇒ −A0χ
0
2,2 +B0χ

0
2,1

Ainitialχinitial
1,2 −Binitialχinitial

1,1 =⇒ A0χ
0
1,2 −B0χ

0
1,1, (5.110)

where the estimated values of A, B continue to be updated based on their previous

estimations (e.g. A1 and B1 are refreshed by their previous estimations of Ao and

Bo) as iteration progresses and similarly for the rest of non-linear terms.

Also, the weight forms of Eq. (5.109) can be found as

0 =

∫︂
Ω

w1{µ(Q+ χ1,22) + κ(Q+ E,2)(CC + EE +DD + FF +MM +NN)

−κ(Q+ C,2 + E,1 + E,2)(CC + CD +DD +DF +MM +MN + EC

+EE + FD + FF +NM +NN) + κ(C + E)(2QC + 2E,1E + 2C,2C

+2UE −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1

−FD,2 − FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M −M,1N −N,2M

−N,2N +MM,1 −MN,1 −NM,2 −MM,2) + [
E11

4
(2QCCC + 2QCDD

+2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)(QC

+RD +M,1M)]C + [
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC +DD

+MM) +
(E11 − 2E12)

4
]Q+ [

E21

4
(2E,2DDD + 2E,2DFF + 2E,2ENN

+2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF + 2SNNN

+2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F + 2FFSN

+2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)(E,2E + F,2F + SN)]E

+[
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE + FF +NN)

+
(E21 − 2E22)

4
]Q−C1Q,11−C2U,22 − τU,11 − τQ,22}dΩ
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0 =

∫︂
Ω

w2{µ(R + χ2,22) + κ(R + F,2)(CC + EE +DD + FF +MM +NN)

−κ(R +D,2 + F,1 + F,2)(CC + CD +DD +DF +MM +MN + EC

+EE + FD + FF +NM +NN) + κ(D + F )(2QC + 2E,1E + 2C,2C

+2UE −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1

−FD,2 − FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M −M,1N −N,2M

−N,2N +MM,1 −MN,1 −NM,2 −MM,2) + [
E11

4
(2QCCC + 2QCDD

+2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)(QC

+RD +M,1M)]D + [
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC +DD

+MM) +
(E11 − 2E12)

4
]R + [

E21

4
(2E,2DDD + 2E,2DFF + 2E,2ENN

+2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF + 2SNNN

+2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F + 2FFSN

+2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)(E,2E + F,2F + SN)]F

+[
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE + FF +NN)

+
(E21 − 2E22)

4
]R−C1R,11−C2V,22 − τV,11 − τR,22}dΩ
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0 =

∫︂
Ω

w3{µ(T + χ3,22) + κ(T +N,2)(CC + EE +DD + FF +MM +NN)− κ(T

+M,2 +N,1 +N,2)(CC + CD +DD +DF +MM +MN + EC + EE + FD + FF

+NM +NN) + κ(M +N)(2QC + 2E,1E + 2C,2C + 2UE −QC −QE − E,2C

−E,2E − CQ− CE,1 − EC,2 − EE,2 + 2F,1F + 2D,2D + 2F,2F −RD −RF

−F,2D − F,2F +DR−DF,1 − FD,2 − FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M

−M,1N −N,2M −N,2N +MM,1 −MN,1 −NM,2 −MM,2) + [
E11

4
(2QCCC

+2QCDD + 2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC

+2M,1MDD + 2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC

+2DDRD + 2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)

(QC +RD +M,1M)]M + [
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC +DD

+MM) +
(E11 − 2E12)

4
]T + [

E21

4
(2E,2DDD + 2E,2DFF + 2E,2ENN

+2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF + 2SNNN + 2EEE,2E

+2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F

+2NNSN)(E22 − E21)(E,2E + F,2F + SN)]N + [
E21

4
(EE + FF +NN)2

+
(E22 − E21)

2
(EE + FF +NN) +

(E21 − 2E22)

4
]T−C1T,11−C2S,22 − τS,11

−τT,22 +
1

2
(A0DN − A0FM −B0CN +B0FM)}dΩ

0 =

∫︂
Ω

w4(Q− χ1,11)dΩ, 0 =

∫︂
Ω

w5(R− χ2,11)dΩ, 0 =

∫︂
Ω

w6(T − χ3,11)dΩ,

0 =

∫︂
Ω

w7(C − χ1,1)dΩ, 0 =

∫︂
Ω

w8(D − χ2,1)dΩ, 0 =

∫︂
Ω

w9(M − χ3,1)dΩ,

0 =

∫︂
Ω

w10(E − χ1,2)dΩ, 0 =

∫︂
Ω

w11(F − χ2,2)dΩ, 0 =

∫︂
Ω

w12(N − χ3,2)dΩ,

0 =

∫︂
Ω

w13(U − χ1,22)dΩ, 0 =

∫︂
Ω

w14(V − χ2,22)dΩ, 0 =

∫︂
Ω

w15(S − χ3,22)dΩ,

0 =

∫︂
Ω

w16(A− µ(Q+ χ1,22)− C1Q,11 − C2U,22)dΩ,

0 =

∫︂
Ω

w17(B − µ(R + χ2,22)− C1R,11 − C2V,22)dΩ. (5.111)

Thus, we apply integration by part and the Green-Stokes’ theorem, (e.g. µ

∫︂
Ωe

w1χ1,22dΩ =

−µ
∫︂
Ωe

w1,2χ1,2dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ) and thereby obtain the following weak forms of
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Eq. (5.111)

0 =

∫︂
Ω

{µw1Q− µw1,2χ1,2 + w1κ(Q+ E,2)(CC + EE +DD + FF +MM +NN)

−w1κ(Q+ C,2 + E,1 + E,2)(CC + CD +DD +DF +MM +MN + EC

+EE + FD + FF +NM +NN) + w1κ(C + E)(2QC + 2E,1E + 2C,2C

+2UE −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1

−FD,2 − FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M −M,1N −N,2M

−N,2N +MM,1 −MN,1 −NM,2 −MM,2) + w1[
E11

4
(2QCCC

+2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2QCDD + 2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M)

+(E12 − E11)(QC +RD +M,1M)]C + w1[
E11

4
(CC +DD +MM)2

+
(E12 − E11)

2
(CC +DD +MM) +

(E11 − 2E12)

4
]Q

+w1[
E21

4
(2E,2DDD + 2E,2DFF + 2E,2ENN + 2F,2FEE + 2F,2FFF

+2F,2FNN + 2SNEE + 2SNFF + 2SNNN + 2EEE,2E + 2EEF,2F

+2EESN + 2FFE,2E + 2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F

+2NNSN)(E22 − E21)(E,2E + F,2F + SN)]E + w1[
E21

4
(EE + FF

+NN)2 +
(E22 − E21)

2
(EE + FF +NN) +

(E21 − 2E22)

4
]Q

+w1,1C1Q,1+w1,2C2U,2+w1,1τU,1+w1,2τQ,2}dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ

−C1

∫︂
∂Γ

w1Q,1NdΓ− C2

∫︂
∂Γ

w1U,2NdΓ− τ

∫︂
∂Γ

w1U,1NdΓ

−τ
∫︂
∂Γ

w1Q,2NdΓ,
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0 =

∫︂
Ω

{µw2R− µw2,2χ2,2 + w2κ(R + F,2)(CC + EE +DD + FF +MM +NN)

−w2κ(R +D,2 + F,1 + F,2)(CC + CD +DD +DF +MM +MN + EC

+EE + FD + FF +NM +NN) + κw2(D + F )(2QC + 2E,1E + 2C,2C

+2UE −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2F,1F

+2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1 − FD,2 − FF,2

+2N,1N + 2M,2M + 2N,2N −M,1M −M,1N −N,2M −N,2N +MM,1

−MN,1 −NM,2 −MM,2) + w2[
E11

4
(2QCCC + 2QCDD + 2QCMM

+2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)

(QC +RD +M,1M)]D + w2[
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC

+DD +MM) +
(E11 − 2E12)

4
]R + w2[

E21

4
(2E,2DDD + 2E,2DFF

+2E,2ENN + 2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF

+2SNNN + 2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F

+2FFSN + 2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)(E,2E + F,2F

+SN)]F + w2[
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE + FF +NN)

+
(E21 − 2E22)

4
]R+w2,1C1R,1+w2,2C2V,2+w2,1τV,1+w2,2τR,2}dΩ

+µ

∫︂
∂Γ

w2χ2,2NdΓ− C1

∫︂
∂Γ

w2R,1NdΓ− C2

∫︂
∂Γ

w2V,2NdΓ

−τ
∫︂
∂Γ

w2V,1NdΓ− τ

∫︂
∂Γ

w2R,2NdΓ,
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0 =

∫︂
Ω

{µw3T − µw3,2χ3,2 + w3κ(T +N,2)(CC + EE +DD + FF +MM +NN)

−w3κ(T +M,2 +N,1 +N,2)(CC + CD +DD +DF +MM +MN + EC

+EE + FD + FF +NM +NN) + w3κ(M +N)(2QC + 2E,1E + 2C,2C

+2UE −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2F,1F

+2D,2D + 2F,2F −RD −RF − F,2D − F,2F +DR−DF,1 − FD,2

−FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M −M,1N −N,2M −N,2N

+MM,1 −MN,1 −NM,2 −MM,2) + w3[
E11

4
(2QCCC + 2QCDD

+2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)(QC

+RD +M,1M)]M + w3[
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC

+DD +MM) +
(E11 − 2E12)

4
]T + w3[

E21

4
(2E,2DDD + 2E,2DFF

+2E,2ENN + 2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF

+2SNNN + 2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F

+2FFSN + 2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)(E,2E + F,2F

+SN)]N + w3[
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE + FF +NN)

+
(E21 − 2E22)

4
]T+w3,1C1T,1+w3,2C2S,2+w3,1τS,1+w3,2τT,2

+
1

2
(w3A0DN − w3A0FM − w3B0CN + w3B0FM)}dΩ

+µ

∫︂
∂Γ

w3χ3,2NdΓ− C1

∫︂
∂Γ

w3T,1NdΓ− C2

∫︂
∂Γ

w3S,2NdΓ

−τ
∫︂
∂Γ

w3S,1NdΓ− τ

∫︂
∂Γ

w3T,2NdΓ,
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0 =

∫︂
Ω

(w4Q+ w3,1χ1,1)dΩ−
∫︂
∂Γ

w4χ1,1NdΓ,

0 =

∫︂
Ω

(w5R + w5,1χ2,1)dΩ−
∫︂
∂Γ

w5χ2,1NdΓ,

0 =

∫︂
Ω

(w6T + w6,1χ3,1)dΩ−
∫︂
∂Γ

w6χ3,1NdΓ,

0 =

∫︂
Ω

(w7C − w7χ1,1)dΩ, 0 =

∫︂
Ω

w8(D − χ2,1)dΩ, 0 =

∫︂
Ω

w9(M − χ3,1)dΩ,

0 =

∫︂
Ω

w10(E − χ1,2)dΩ, 0 =

∫︂
Ω

w11(F − χ2,2)dΩ, 0 =

∫︂
Ω

w12(N − χ3,2)dΩ,

0 =

∫︂
Ω

(w13U + w13,2χ1,2)dΩ−
∫︂
∂Γ

w13χ1,2NdΓ,

0 =

∫︂
Ω

(w14V + w14,2χ2,2)dΩ−
∫︂
∂Γ

w14χ2,2NdΓ,

0 =

∫︂
Ω

(w15S + w15,2χ3,2)dΩ−
∫︂
∂Γ

w15χ3,2NdΓ,

0 =

∫︂
Ω

(w16A− µw16Q+ µw16,2χ1,2 + C1w16,1Q,1 + C2w16,2U,2)dΩ

−
∫︂
∂Γ

µw16χ1,2NdΓ−
∫︂
∂Γ

C1w16Q,1NdΓ−
∫︂
∂Γ

C2w16U,2NdΓ,

0 =

∫︂
Ω

(w17B − µw17R + µw17,2χ2,2 + C1w17,1R,1 + C2w17,2V,2)dΩ

−
∫︂
∂Γ

µw17χ2,2NdΓ−
∫︂
∂Γ

C1w17R,1NdΓ−
∫︂
∂Γ

C2w17V,2NdΓ (5.112)

where Ω, ∂Γ and N are, respectively the domain of interest, the associated boundary,

and the rightward unit normal to the boundary ∂Γ in the sense of the Green-Stokes’

theorem. The unknown potentials of χ1, χ2, χ3, Q, R,C,D,E, F, T, S, U, V,M,N, A

and B can be expressed in the form of Lagrangian polynomial that

(∗) =
n=4∑︂
j=1

[(∗)jΨj(x, y)]. (5.113)

Accordingly, the test function w is found to be

wm =
n=4∑︂
i=1

wi
mΨi(x, y); i = 1, 2, 3, 4, and m = 1, 2, 3, 4, ...10 (5.114)

where wi is the weight of the test function and Ψi(x, y) are the associated shape

functions; Ψ1 = (x−2)(y−1)
2

, Ψ2 = x(y−1)
−2

, Ψ3 = xy
2

and Ψ4 = y(x−2)
−2

. Invoking Eq.
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(5.113), (5.112) can be recast in terms of Lagrangian polynomial representation as

0 =
n=4∑︂
i,j=1

[

∫︂
Ωe

{µΨiΨjQj − µΨi,2Ψj,2χ1j + κ(ΨiΨjQ+ΨiΨj,2Ej)(CC + EE +DD

+FF +MM +NN)− κ(ΨiΨjQ+ΨiΨj,2Cj +ΨiΨj,1Ej +ΨiΨj,2Ej)(CC + CD

+DD +DF +MM +MN + EC + EE + FD + FF +NM +NN) + κ(ΨiΨjCj

+ΨiΨjEj)(2QC + 2E,1E + 2C,2C + 2UE −QC −QE − E,2C − E,2E − CQ

−CE,1 − EC,2 − EE,2 + 2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F

+DR−DF,1 − FD,2 − FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M −M,1N

−N,2M −N,2N +MM,1 −MN,1 −NM,2 −MM,2) + [
E11

4
(2QCCC + 2QCDD

+2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)(QC

+RD +M,1M)]ΨiΨjCj + [
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC

+DD +MM) +
(E11 − 2E12)

4
]ΨiΨjQj + [

E21

4
(2E,2DDD + 2E,2DFF

+2E,2ENN + 2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF

+2SNNN + 2EEE,2E + 2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F

+2FFSN + 2NNE,2E + 2NNF,2F + 2NNSN)(E22 − E21)(E,2E + F,2F

+SN)]ΨiΨjEj + [
E21

4
(EE + FF +NN)2 +

(E22 − E21)

2
(EE + FF

+NN) +
(E21 − 2E22)

4
]ΨiΨjQj+Ψi,1Ψj,1C1Qj+Ψi,2Ψj,2C2Uj

+Ψi,1Ψj,1τUj+Ψi,2Ψj,2τQj}dΩ] +
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ1,2NdΓ

−C1

∫︂
∂Γe

ΨiQ,1NdΓ− C2

∫︂
∂Γe

ΨiU,2NdΓ− τ

∫︂
∂Γe

ΨiU,1NdΓ

−τ
∫︂
∂Γe

ΨiQ,2NdΓ},

176



0 =
n=4∑︂
i,j=1

[

∫︂
Ωe

{µΨiΨjRj − µΨi,2Ψj,2χ2j + κ(ΨiΨjRj +ΨiΨj,2Fj)(CC + EE +DD

+FF +MM +NN)− κ(ΨiΨjRj +ΨiΨj,2Dj +ΨiΨj,1Fj +ΨiΨj,2Fj)(CC + CD

+DD +DF +MM +MN + EC + EE + FD + FF +NM +NN) + κ(ΨiΨjDj

+ΨiΨjFj)(2QC + 2E,1E + 2C,2C + 2UE −QC −QE − E,2C − E,2E − CQ

−CE,1 − EC,2 − EE,2 + 2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F

+DR−DF,1 − FD,2 − FF,2 + 2N,1N + 2M,2M + 2N,2N −M,1M −M,1N

−N,2M −N,2N +MM,1 −MN,1 −NM,2 −MM,2) + [
E11

4
(2QCCC + 2QCDD

+2QCMM + 2RDCC + 2RDDD + 2RDMM + 2M,1MCC + 2M,1MDD

+2M,1MMM + 2CCQC + 2CCRD + 2CCM,1M + 2DDQC + 2DDRD

+2DDM,1M + 2MMQC + 2MMD,1D + 2MMM,1M) + (E12 − E11)(QC

+RD +M,1M)]ΨiΨjDj + [
E11

4
(CC +DD +MM)2 +

(E12 − E11)

2
(CC +DD

+MM) +
(E11 − 2E12)

4
]ΨiΨjRj + [

E21

4
(2E,2DDD + 2E,2DFF + 2E,2ENN

+2F,2FEE + 2F,2FFF + 2F,2FNN + 2SNEE + 2SNFF + 2SNNN + 2EEE,2E

+2EEF,2F + 2EESN + 2FFE,2E + 2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F

+2NNSN)(E22 − E21)(E,2E + F,2F + SN)]ΨiΨjFj + [
E21

4
(EE + FF +NN)2

+
(E22 − E21)

2
(EE + FF +NN) +

(E21 − 2E22)

4
]ΨiΨjRj+Ψi,1Ψj,1C1Rj

+Ψi,2Ψj,2C2Vj+Ψi,1Ψj,1τVj+Ψi,2Ψj,2τRj}dΩ] +
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ2,2NdΓ

−C1

∫︂
∂Γe

ΨiR,1NdΓ− C2

∫︂
∂Γe

ΨiV,2NdΓ− τ

∫︂
∂Γe

ΨiV,1NdΓ

−τ
∫︂
∂Γe

ΨiR,2NdΓ},
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0 =
n=4∑︂
i,j=1

[

∫︂
Ωe

{µΨiΨjTj − µΨi,2Ψj,2χ3j + κ(ΨiΨjTj +ΨiΨj,2Nj)(CC + EE +DD

+FF +MM +NN)− κ(ΨiΨjTj +ΨiΨj,2Mj +ΨiΨj,1Nj +ΨiΨj,2Nj)(CC

+CD +DD +DF +MM +MN + EC + EE + FD + FF +NM +NN)

+κ(ΨiΨjMj +ΨiΨjNj)(2QC + 2E,1E + 2C,2C + 2UE −QC

−QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2F,1F + 2D,2D

+2F,2F −RD −RF − F,2D − F,2F +DR−DF,1 − FD,2 − FF,2 + 2N,1N

+2M,2M + 2N,2N −M,1M −M,1N −N,2M −N,2N +MM,1 −MN,1 −NM,2

−MM,2) + [
E11

4
(2QCCC + 2QCDD + 2QCMM + 2RDCC + 2RDDD

+2RDMM + 2M,1MCC + 2M,1MDD + 2M,1MMM + 2CCQC + 2CCRD

+2CCM,1M + 2DDQC + 2DDRD + 2DDM,1M + 2MMQC + 2MMD,1D

+2MMM,1M) + (E12 − E11)(QC +RD +M,1M)]ΨiΨjMj + [
E11

4
(CC

+DD +MM)2 +
(E12 − E11)

2
(CC +DD +MM) +

(E11 − 2E12)

4
]ΨiΨjTj

+[
E21

4
(2E,2DDD + 2E,2DFF + 2E,2ENN + 2F,2FEE + 2F,2FFF

+2F,2FNN + 2SNEE + 2SNFF + 2SNNN + 2EEE,2E + 2EEF,2F

+2EESN + 2FFE,2E + 2FFF,2F + 2FFSN + 2NNE,2E + 2NNF,2F

+2NNSN)(E22 − E21)(E,2E + F,2F + SN)]ΨiΨjNj + [
E21

4
(EE + FF

+NN)2 +
(E22 − E21)

2
(EE + FF +NN) +

(E21 − 2E22)

4
]ΨiΨjTj

+Ψi,1Ψj,1C1Tj+Ψi,2Ψj,2C2Sj+Ψi,1Ψj,1τSj+Ψi,2Ψj,2τTj +
1

2
(ΨiΨjA0DNj

−ΨiΨjA0FMj −ΨiΨjB0CNj +ΨiΨjB0FMj)}dΩ]

+
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ3,2NdΓ− C1

∫︂
∂Γe

ΨiT,1NdΓ− C2

∫︂
∂Γe

ΨiS,2NdΓ

−τ
∫︂
∂Γe

ΨiS,1NdΓ− τ

∫︂
∂Γe

ΨiT,2NdΓ},
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0 =
n=4∑︂
i,j=1

(ΨiΨjQ+Ψi,1Ψj,1χ1j)dΩ−
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ1,1NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjRj +ΨiΨj,1χ2j)dΩ−
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ2,1NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjTj +ΨiΨj,1χ3j)dΩ−
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ3,1NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjCj −ΨiΨj,1χ1j)dΩ, 0 =
n=4∑︂
i,j=1

(ΨiΨjD −ΨiΨj,1χ2j)dΩ,

0 =
n=4∑︂
i,j=1

(ΨiΨjMj −ΨiΨj,1χ3j)dΩ,

0 =
n=4∑︂
i,j=1

(ΨiΨjEj −ΨiΨj,2χ1j)dΩ, 0 =
n=4∑︂
i,j=1

(ΨiΨjFj −ΨiΨj,2χ2j)dΩ,

0 =
n=4∑︂
i,j=1

(ΨiΨjNj −ΨiΨj,2χ3j)dΩ,

0 =
n=4∑︂
i,j=1

[(ΨiΨjUj +ΨiΨj,2χ1j)dΩ−
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ1,2NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjVj +ΨiΨj,2χ2j)dΩ−
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ2,2NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjSj +ΨiΨj,2χ3j)dΩ−
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ3,2NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjAj − µΨiΨjQj + µΨi,2Ψj,2χ1j + C1Ψi,1Ψj,1Qj + C2Ψi,2Ψj,2Uj)dΩ

−
n=4∑︂
i=1

{
∫︂
∂Γe

µΨiχ1,2NdΓ−
∫︂
∂Γe

C1ΨiQ,1NdΓ−
∫︂
∂Γe

C2ΨiU,2NdΓ},

0 =
n=4∑︂
i,j=1

[(ΨiΨjBj − µΨiΨjRj + µΨi,2Ψj,2χ2j + C1Ψi,1Ψj,1Rj + C2Ψi,2Ψj,2Vj)dΩ

−
n=4∑︂
i=1

{
∫︂
∂Γe

µw17χ2,2NdΓ−
∫︂
∂Γe

C1w17R,1NdΓ−
∫︂
∂Γe

C2ΨiV,2NdΓ}, (5.115)
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Now, for the local stiffness matrices and forcing vectors for each elements, we find⎡⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎦
Local

⎡⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎦
Local

=

⎡⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎦
Local

, (5.116)

where [︁
K11

ij

]︁
=

∫︂
Ω

(−µΨi,2Ψj,2)dΩ, (5.117)

and

{F 1
i } = µ

∫︂
∂Γe

Ψiχ1,2NdΓ− C1

∫︂
∂Γe

ΨiQ,1NdΓ− C2

∫︂
∂Γe

ΨiU,2NdΓ− τ

∫︂
∂Γe

ΨiU,1NdΓ

−τ
∫︂
∂Γe

ΨiQ,2NdΓ (5.118)

Thus, the unknown potentials (i.e. Q, R,C,D,E, F, T, S, U, V,M,N, A and B) can

be expressed as

Qi = {χi
1},11, Ri = {χi

2},11 etc..., (5.119)

and similarly for the rest of unknowns.

In the simulation, we employed the following convergence criteria

|An+1 − An| = e1 ≤ ε, |Bn+1 −Bn| = e2 ≤ ε, where ε = maximum error = 10−10,

(5.120)

which demonstrates fast convergence within 12 iterations using FEniCS nonlinear

solver (see, 5.1).

Table 5.1: Maximum numerical errors with respect to the number of iterations.

Number of iteration Mximum error
1 8.384e-01
2 7.022e-02
3 9.674e-02
5 4.088e-01
7 3.599e+00
10 6.195e-03
11 5.0795e-07
12 6.703e-14
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5.7 Denouement

In this chapter, a three-dimensional continuum model describing the elastic / hy-

perelastic responses of bidirectional fibrous composite materials is presented in fi-

nite elastostatics. The mechanics of matrix-fiber composite system is modeled via

the Neo-Hookean strain energy potential and the Green-Lagrange strain measure in

quadratic form which are then refined, respectively, by the Mooney Rivlin model and

the high-order polynomial energy potential of fibers to accommodate the nonlinear

hyperelastic responses of elastomeric composites. Emphasis is placed on the incorpo-

ration of both the in-plane and out-of-plane kinematics into the continuum model of

the matrix-fiber system while maintaining the rigor and sufficient generality in the

corresponding derivations. The three-dimensional bending and stretch of a fiber and

the twist between the two adjoining fibers are formulated via the first and second

gradient of continuum deformations. Within the framework of variational princi-

ples and virtual work statement, the Euler equilibrium equation and the associated

boundary conditions are formulated. The solutions of the former are obtained via the

custom-built FEA procedure which are subsequently cross-examined with the inhouse

experimental data sets and existing results in the dedicated literature.

It is demonstrated that the presented model produces the complete deformation

map of the PLA-bamboo composite together with the resultant stress-strain response

when it is subjected to draping over a hemisphere. Deformation analysis pertaining

to the local structures (a unit fiber mesh) is also performed via the GSA method

illustrating that there is a good agreement in the grid map contour images obtained,

respectively, from the proposed model and the experimental result in the dedicated

literature. An analysis of the coiling responses of a thin-walled DCB reinforced with

carbon fiber mesh is also presented. Solutions from the obtained two-dimensional

model successfully predict the force-displacement response of the DCB subjected to

progressive flattening which arises during the coiling process. In addition, the de-

formation profiles and the associated shear strain distributions predicted from the

proposed model suggest that the recovering energy of the DCB may be further max-

imized, without considering higher strength materials for the matrix and reinforcing

materials, by enhancing the fiber-to-fiber bond at the intersection. Lastly, imple-
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mentations toward series of engineering problems such as the hyperelastic responses

of elastomeric composites, the equilibrium shapes of Hypar shell structures and the

focal length variations of tunable elastomeric lens have been considered implying the

versatility of the proposed model in various engineering applications.
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Chapter 6

A pseudo-elastic model for
hyperelastic composites reinforced
with nonlinear elastic fibrous
materials

In section 6.1, the kinematics is presented for a hyperelastic material reinforced with

bidirectional fibers. The 3rd order polynomial extension potential is used to accommo-

date the nonlinear response of the fiber and the Mooney-Rivlin model is used to address

the hyperelastic response of the matrix material. The equilibrium and boundary condi-

tions are presented in section 6.2. In section 6.3, two distinct kinds of pseudo-elastic

behaviors are incorporated within the model. In section 6.4, the utilities of the mod-

els are demonstrated by comparing them against both in-house experiment data and

experimental data from existing literature.

6.1 Kinematics of fibers embedded in a hyperelas-

tic matrix material

In this section, we present a continuum model that describes the mechanical responses

of biological soft tissues. For the stated purpose, a model of hyperelastic materials

reinforced with nonlinear elastic and extensible fiber mesh is developed where the

fibers are organized in a bidirectional arrangement.

Let the unit vectors D and M be the fibers’ trajectories in reference configuration
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are defined as follows:

D =
dX(S, U)

dS
and M =

dX(S, U)

dU
, (6.1)

where S and U are, respectively, the arclength parameters in the directions of D

and M. For the sake of mathematical tractability and conciseness, we confine our

attention to the case of initially uniform and orthogonal fiber mesh (i.e. D ·M = 0,

see, also, Fig. 6.1). The assumed orthogonality and uniformity of the fiber mesh is

deemed sufficient to extract the important aspects of the intended model and, further,

the desired applications. The cases of non-orthogonal fibers with different orientation

angles can be readily accommodated via the simple modification of fibers’ director

fields (e.g. D· M =cosα etc. . . ). Let’s now define r(u) and r(s) to be the parametric

Figure 6.1: Schematics of bidirectional fibers (intial configuration).

curves of fibers’ tragectories on the deformed (current) configuration. Also, d, m, s,

and u are the counter parts of D, M, S, and U in the current configuration. Further,

η and τ are the unit tangents in the directions of increasing arclength parameters u

and s, respectively. The stretch and orientation of a particular fiber after deformations

are then defined by:

λ = |η| = ds

dS
, γ = |τ | = du

dU
and (

dr

ds
) = d = λ−1η, (

dr

du
) = m = γ−1τ , (6.2)

where

λd = FD and γm = FM. (6.3)

Here, F is the gradient of the deformation function (χ(X)). Eq. (6.3) together with

the presumed orthogonality (i.e. D ·M = 0) furnish a useful fiber decomposition of
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the deformation gradient tensor:

F =λd⊗D+γm⊗M, (6.4)

which will be used in the forthcoming model derivation. Hence, the geodesic cur-

vatures of a parametric curve (r (s, u)) can be formulated from Eqs. (6.2)-(6.3) as

follows:

g1 =
d2r(S)

dS2
=
d(r(S)

dS
)

dS
=
∂(FD)

∂X

∂X

∂S
= ∇[FD]D, and (6.5)

g2 =
d2r(U)

dU2
=
d(r(U)

dU
)

dU
=
∂(FM)

∂X

∂X

∂U
= ∇[FM]M. (6.6)

In the case of initially straight fibers, the above reduces to

g1 = ∇F(D⊗D) = G(D⊗D) and g2 = ∇F(M⊗M) = G(M⊗M). (6.7)

The forgoing developments suggest that the mechanical responses of the fiber mesh

can be described by the following energy function:

Wfiber = W (ε1, ε2) +
1

2
C(g1·g1+g2·g2) +

1

2
Tg1·g2. (6.8)

Here, the second term in the above (1
2
C(g1·g1+g2·g2)) is the fiber’s bending en-

ergy potential of Spencer and Soldatos type [93] which presumes that the bending

responses of fibers are dependent entirely on the second gradient of continuum de-

formations via the geodesic curvature of fibers. Also, the term 1
2
Tg1·g2 accounts for

the torsional kinematics of the fiber mesh. Here, C and T are the associated moduli

of the reinforcing fiber mesh. In particular, the energy potential of W (ε1, ε2) in Eq.

(6.8) characterizes the responses of the fiber mesh against extensions, which will be

discussed next in more details.

6.1.1 Modeling the nonlinear response of fibers

Soft biological tissues are complex fiber-reinforced composite structures. Mechani-

cal behaviors of these materials are strongly influenced by the concentrations and

structural arrangements of constituents such as collagen and elastin [160]. Flexible

collagen fibers are one of the most abundant structural proteins, constituting about

30− 40% of all body proteins in most mammals [161]. This collagen fiber is the main

185



load-carrying element in a wide variety of soft tissues like tendons, ligaments, blood

vessels, skins, articular cartilages, etc. [160]. Biomaterials reinforced with collagen

fibers typically exhibit nonlinear stress-strain response which may be described as

follows. The mechanics of soft tissues follow two distinct deformation regimes [162]-

[163]. Initially, the collagen is oriented in a random pattern. Once a load is applied,

these randomly oriented collagen fibers readily start to reorient along the direction

of the applied load. During this deformation regime, the material demonstrates low

stiffness because the response is largely determined by the elastin matrix rather than

the collagen fibers [163]-[164]. As more stretch is applied to the material, the colla-

gen fibers straighten even more and realign parallel to one another. At this phase,

more load is required to induce further elongation because the collagen is now started

to take most of the load [162]–[164]. This process may continue until the fibers are

mostly aligned in the direction of the applied load [163]. Furthermore, due to the

complex orientation pattern of the collagen fibers, soft tissues behave anisotropically

showing different stiffnesses in the orthogonal directions [160]. To accommodate such

anisotropic non-linear response of collagen fiber reinforced biomaterials, we have intro-

duced polynomial type nonlinear energy potential, W (ε1, ε2) for the fibers’ extension

as follows,

W (ε1, ε2) =
1

3
E11ε

3
1 +

1

2
E12ε

2
1 +

1

3
E21ε

3
2 +

1

2
E22ε

2
2. (6.9)

Here, E1j and E2j representing the fiber tensile parameters in longitudinal and trans-

verse directions, respectively. Now, the expressions for the associated strains can be

found as follows:

ε1 =
1

2

(︁
λ2 − 1

)︁
=

1

2
(FD · FD−1) and ε2 =

1

2

(︁
γ2 − 1

)︁
=

1

2
(FM · FM−1) . (6.10)

In variational form we can write,

ε̇1 = ε1FḞ = λλ̇ = FD · ḞD =tr(FD⊗ ḞD) =tr((FD⊗D)Ḟ
T
)

= F(D⊗D) · Ḟ, (6.11)

ε̇2 = ε2FḞ =γγ̇ = FM · ḞM =tr(FM⊗ ḞM) =tr((FM⊗M)Ḟ
T
)

= F(M⊗M) · Ḟ. (6.12)
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In components notation we can write:

F(D⊗D) · Ḟ = FjB(ej ⊗ EB)DCDD(EC ⊗ ED) · Ḟ iA(ei ⊗ EA)

= FjBDCDDδBC(ej ⊗ ED) · Ḟ iA(ei ⊗ EA)

= FjBDBDDḞ iAδijδDA

= FiBDBDAḞ iA. (6.13)

Let, Ḟ iA = ui,A. Then we can write:

F(D⊗D) · Ḟ = FiBDBDAui,A, (6.14)

F(M⊗M) · Ḟ = FiBMBMAui,A. (6.15)

Similarly,

FD.FD = FjCFjDDCDD, (6.16)

FM.FM = FjCFjDMCMD. (6.17)

Further, we can also obtain,

(FD · FD−1)2 = (FD · FD)(FD · FD)−2(FD · FD) + 1 (6.18)

= (FjCFjDDCDD)(FkEFkFDEDF )− 2FjCFjDDCDD + 1,

(FM · FM−1)2 = (FM · FM)(FM · FM)−2(FM · FM) + 1 (6.19)

= (FjCFjDMCMD)(FkEFkFMEMF )− 2FjCFjDMCMD + 1,

(FD · FD−1)3 = (FD · FD)(FD · FD)(FD · FD)−3(FD · FD)(FD · FD)

+3(FD · FD)−1

= (FjCFjDDCDD − 1)3 (6.20)

= (FjCFjDDCDD)(FkEFkFDEDF )(FlMFlNDMDN)

−3(FjCFjDMCMD)(FkEFkFDEDF ) + 3(FjCFjDDCDD)− 1,

(FM · FM−1)3 = (FM · FM)(FM · FM)(FM · FM)−3(FM · FM)(FM · FM)

+3(FM · FM)−1

= (FjCFjDMCMD − 1)3 (6.21)

= (FjCFjDMCMD)(FkEFkFMEMF )(FlMFlNMMMN)

−3(FjCFjDMCMD)(FkEFkFMEMF ) + 3(FjCFjDMCMD)− 1.
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These expressions in component notation would be directly used in the later deriva-

tion. We then express Eq. (6.8) in variational form using the chain rule as

Ẇ fiber = W (ε1, ε2)ε1(ε1)F·Ḟ+W (ε1, ε2)ε2(ε2)F·Ḟ+C(g1·ġ1+g2·ġ2)

+
T

2
(ġ1·g2 + g1·ġ2), (6.22)

where, W (ε1, ε2)ε1 = E11ε
2
1 + E12ε1 and W (ε1, ε2)ε2 = E21ε

2
2 + E22ε2. Thereby we

obtain the variational derivative of Wfiber as

Ẇ fiber(F, ε1, ε2,g) = [{1
4
E11 (FD · FD−1)2 +

1

2
E12 (FD · FD−1)}ε1F

+{1
4
E21 (FM · FM−1)2 +

1

2
E22 (FM · FM−1)}ε2F]·Ḟ

+C(g1·ġ1 + g2·ġ2) + T (g1·ġ2 + g1·ġ2). (6.23)

Here, the superposed dot refers to the variational derivatives with respect to a pa-

rameter ϵ at the particular configuration of the composite (i.e., ϵ = 0) that labels a

one-parameter family of deformations.

6.1.2 Modeling the hyperelastic matrix material

Bio-fibers like collagen are generally embedded in extracellular matrix protein (e.g.,

elastin). These matrix proteins are usually described as hyperelastic materials [165].

In this study, we adopt the Mooney-Rivlin energy potential for the descriptions of

hyperelastic matrix materials which has been widely adopted in the large deformation

analyses (see, also, [105]-[106] and references therein):

W (F) =
µ

2
(I1 − 3) +

κ

2
(I2 − 3), (6.24)

where I1 and I2 are the principal invariants of the deformation gradient tensor defined,

respectively, by

I1 = tr(FTF) and I2 =
1

2
[(tr(FTF))2 − tr((FTF)2)], (6.25)

based on the obtained kinematic formulations for the fibers and matrix materials.

The expressions for the associated energy variations can be obtained as

WF·Ḟ = [
µ

2
(I1)F+

κ

2
(I2)F]·Ḟ = [µF+κF{(F · F)I− FTF}]·Ḟ, (6.26)
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where (I1)F = 2F and (I2)F = 2F(I1I − FT · F). By combining the terms from Eq.

(6.24) with the energy potential of the fiber mesh in Eq. (6.8), we get the energy

function of the hyperelastic composite as follows:

W (F,ε,g) =
µ

2
(I1 − 3) +

κ

2
(I2 − 3) +

1

3
E11ε

3
1 +

1

2
E12ε

2
1 +

1

3
E21ε

3
2

+
1

2
E22ε

2
2 +

1

2
C(g1·g1+g2·g2) +

1

2
Tg1·g2. (6.27)

Lastly, we evaluate the induced energy variation of the response function for the

hyperelastic composite in Eq. (6.27) as follows

Ẇ (F, ε,g) = W (F)F·Ḟ+ Ẇ fiber

= W (F)F·Ḟ+W (ε1, ε2)ε1(ε1)F·Ḟ+W (ε1, ε2)ε2(ε2)F·Ḟ+C(g1·ġ1+g2·ġ2)

+
T

2
(ġ1·g2 + g1·ġ2). (6.28)

This will be used in the derivations of the Euler equations and the associated boundary

conditions, as presented in the next section.

6.2 Equilibrium & Boundary conditions

In the present study, the framework of the virtual work statement is adopted in

the formulations of the Euler equilibrium equations and the associated boundary

conditions. To begin the derivation, we evaluate the potential energy of the system

as

E =

∫︂
Ω

W (F, ε1, ε2,g1,g2) dA. (6.29)

Hence, the weak form of the equilibrium equation can be obtained by the virtual-work

statement,
·
E = P, (6.30)

where P is the virtual power of the applied loads and the superposed dot denotes the

variational and/or Gateâux derivative. Here, the conservative loads are characterized

by the existence of a potential L such that P = L̇. Accordingly, the problem of

determining equilibrium deformations is reduced to the problem of minimizing the

potential energy, E − L. In the present context, this would mean that

Ė =

∫︂
Ω

Ẇ (F, ε1, ε2,g1,g2) dA. (6.31)
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In general, volumetric changes in materials’ deformations are energetically expensive

processes and therefore are typically constrained in the constitutive modeling of en-

gineering materials (see, also, [105]-[106]). This can be achieved by augmenting the

condition of bulk incompressibility (i.e., p(J − 1)) on the strain energy potential such

that

U(F, ε,g,p) = W (F) +W (ε1, ε2) +
1

2
C(g1·g1+g2·g2) +

1

2
Tg1·g2 − p(J − 1) , (6.32)

where, J is determinant of F and p is a constitutively indeterminate Lagrange mul-

tiplier field. Therefore, Eq. (6.31) becomes

Ė =

∫︂
Ω

U̇(F, ε1, ε2,g1,g2,p)dA. (6.33)

In view of Eqs. (6.23), (6.28), and (6.32), the associated energy variation then fur-

nishes

U̇ = [{µF+κF{(F · F)I− FTF}+ {1
4
E11 (FD · FD−1)2 +

1

2
E12 (FD · FD−1)}ε1F

+{1
4
E21 (FM · FM−1)2 +

1

2
E22 (FM · FM−1)}ε2F]·Ḟ

+C(g1·ġ1 + g2·ġ2) + T (g1·ġ2 + g2·ġ1)− pJ̇, (6.34)

and J̇ = JFF · Ḟ = F
∗·Ḟ.

Now, using Eq. (6.7) we thereby obtain:

U̇ =

∫︂
Ω

[{µF+κF{(F · F)I− FTF}+W (ε1, ε2)ε1(ε1)F +W (ε1, ε2)ε2(ε2)F

−pF∗}·Ḟ+ {Cg1 ⊗D⊗D+Cg2 ⊗M⊗M+ Tg1 ⊗M⊗M

+Tg2 ⊗D⊗D} · Ġ]dA, (6.35)

or, equivalently using index notation,

Ė =

∫︂
Ω

[{µFiA+κFiB(FjCFjCδAB−FjAFjB) +W (ε1, ε2)ε1(ε1)FiA
+W (ε1, ε2)ε2(ε2)FiA

−pF ∗
iA}χ̇i,A+{C(g1DADB) + C(g2MAMB) + T (g1MAMB)

+T (g2DADB)}χ̇i,AB]dA, (6.36)

where Ḟ iA = χ̇i,A and ĠiAB = χ̇i,AB are the variations of the first and second gradient

of deformations. It is also noted that, in the forthcoming derivations, we use the
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component forms of vectors and tensors (e.g. Eq. (6.36)) for the sake of clarity and

conciseness.

Now, applying integration by part on the last 4 higher-gradient terms of Eq.

(6.36), we find

C(GiCDDCDDDADB)χ̇i,AB = C(GiCDDCDDDADBχ̇i,A),B (6.37)

−C(GiCDDCDDDADB),Bχ̇i,A.

T (GiCDDCDDMAMB)χ̇i,AB = T (GiCDDCDDMAMBχ̇i,A),B (6.38)

−T (GiCDDCDDMAMB),Bχ̇i,A.

Similarly, we can do the same for the rest of the higher-gradient terms. Substituting

these into Eq. (6.36) then yields

Ė =

∫︂
Ω

[{µFiA+κFiB(FjCFjCδAB−FjAFjB) +W (ε1, ε2)ε1(ε1)FiA

+W (ε1, ε2)ε2(ε2)FiA
− pF ∗

iA}χ̇i,A − {C(g1DADB),B

+C(g2MAMB),B + T (g1MAMB),B + T (g2DADB),B}χ̇i,A

+C(g1DADBχ̇i,A),B + C(g2MAMBχ̇i,A),B + C(g1MAMBχ̇i,A),B

+C(g2DADBχ̇i,A),B]dA. (6.39)

Applying the Green–Stokes’ theorem, Eq. (6.39) further reduces to

Ė =

∫︂
Ω

[µFiA+κFiB(FjCFjCδAB−FjAFjB) +W (ε1, ε2)ε1(ε1)FiA
+W (ε1, ε2)ε2(ε2)FiA

−pF ∗
iAχ̇i,A − C(g1DADB),B − C(g2MAMB),B − T (g1MAMB),B

−T (g2DADB),B]χ̇i,A +

∫︂
∂Ω

[C(g1DADBχ̇i,A) + C(g2MAMBχ̇i,A)

+T (g1MAMBχ̇i,A) + T (g2DADBχ̇i,A)]NBdS, (6.40)

where NB is the rightward unit normal to ∂Ω in the sense of the Green–Stokes’

theorem. To extract the desired expression, Eq. (6.40) may be recast as

Ė =

∫︂
Ω

PiAχ̇i,AdA+

∫︂
∂Ω

[C(g1DADBχ̇i,A) + C(g2MAMBχ̇i,A) + T (g1MAMBχ̇i,A)

+T (g2DADBχ̇i,A)]NBdS, (6.41)
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where

PiA = µFiA + κFiB(FjCFjCδAB − FjAFjB) + [
E1

4
(FjCFjDDCDD)(FkEFkFDEDF )

+
(E2 − E1)

2
FjCFjDDCDD +

(E1 − 2E2)

4
]FiBDBDA + [

E21

4
(FjCFjDMCMD)

(FkEFkFMEMF ) +
(E22 − E21)

2
FjCFjDMCMD +

(E21 − 2E22)

4
]FiBMBMA

−pF ∗
iA − CFiC,DB(DADBDCDD +MAMBMCMD)

−TFiC,DB(DADBMCMD +DADBMCMD), (6.42)

is the formulation of the Piola type stress. Now considering the orthogonal orientation

of fibers (see, Fig. 6.1), we find

D = D1E1 +D2E2 = (1) cos(0)E1 + (1) sin(0)E2 = E1,

M = M1E1+M2E2 = (1) cos (π/2)E1+(1) sin (π/2)E2 = E2. (6.43)

The Euler equilibrium equation satisfies

PiA,A = 0 or Div(P) = 0, (6.44)

which holds in Ω.Hence, using FjA = χi,A the Euler equilibrium equation is obtained

as follows:

0 = PiA,A = µχi,AA + κ(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + κχi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B + [
E11

4
(2χj,11χj,1χk,1χk,1

+2χj,1χj,1χk,11χk,1) + (E12 − E11)χj,11χj,1]χi,1 + [
E11

4
(χj,1χj,1)(χk,1χk,1)

+
(E12 − E11)

2
χj,1χj,1 +

(E11 − 2E12)

4
]χi,11 + [

E21

4
(2χj,22χj,2χk,2χk,2

+2χj,2χj,2χk,22χk,2) + (E22 − E21)χj,22χj,2]χi,2 + [
E21

4
(χj,2χj,2)(χk,2χk,2)

+
(E22 − E21)

2
χj,2χj,2 +

(E21 − 2E22)

4
]χi,22 − C(χi,1111 + χi,2222)

−T (χi,1122 + χi,2211). (6.45)

To derive the expressions of the associated boundary conditions, we again apply

integration by part on Eq. (6.41) (i.e. PiAχ̇i,A = (PiAχ̇i),A − (PiA),Aχ̇i) and obtain

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

{C(g1DADBχ̇i,A) + C(g2MAMBχ̇i,A) + T (g1MAMBχ̇i,A)

+T (g2DADBχ̇i,A)}NBdS,−
∫︂
Ω

PiA,Aχ̇idA, (6.46)
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where the Green-Stokes’ theorem is applied in the first term of the above, i.e.,∫︂
Ω

(PiAχ̇i),AdA =

∫︂
∂Ω

PiAχ̇iNAdS. (6.47)

Since the Euler equation (PiA,A = 0) holds in Ω, Eq. (6.46) reduces to

·
E =

∫︂
∂Ω

PiAχ̇iNAdS ++

∫︂
∂Ω

{C(g1DADBχ̇i,A) + C(g2iMAMBχ̇i,A) + T (g1iMAMBχ̇i,A)

+T (g2iDADBχ̇i,A)}NBdS. (6.48)

We now decompose χ̇i,A into

χ̇i,A =
∂χ̇i

∂S

∂S

∂XA

+
∂χ̇i

∂N

∂N

∂XA

= χ̇′
iTA + χ̇i,N

NA, (6.49)

where TA = ∂S/∂XA and NA = ∂N/∂XA are respectively, the unit tangent and

normal to the boundary ∂Ω. Combining Eqs. (6.48) and (6.49) then furnishes:

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

Cg1DADB

(︂
χ̇′
iTANB + χ̇i,N

NANB

)︂
dS +

∫︂
∂Ω

Cg2MAMB(︂
χ̇′
iTANB + χ̇i,N

NANB

)︂
dS +

∫︂
∂Ω

Tg1MAMB

(︂
χ̇′
iTANB + χ̇i,N

NANB

)︂
dS

+

∫︂
∂Ω

Tg2DADB

(︂
χ̇′
iTANB + χ̇i,N

NANB

)︂
dS. (6.50)

In addition, since

Cg1DADBTANBχ̇
′
i = (Cg1DADBTANBχ̇i)

′
− (Cg1DADBTANB)

′
χ̇i, (6.51)

Eq. (6.50) becomes

·
E =

∫︂
∂Ω

[PiANA − (Cg1DADBTANB)
′ − (Cg2MAMBTANB)

′

−(Tg1MAMBTANB)
′ − (Tg2DADBTANB)

′
]χ̇idS

+

∫︂
∂Ω

Cg1DADBχ̇i,N
NANBdS +

∫︂
∂Ω

(Cg1DADBTANBχ̇i)
′
dS

+

∫︂
∂Ω

Cg2MAMBχ̇i,N
NANBdS +

∫︂
∂Ω

(Cg2MAMBTANBχ̇i)
′
dS

+

∫︂
∂Ω

Tg1MAMBχ̇i,N
NANBdS +

∫︂
∂Ω

(Tg1MAMBTANBχ̇i)
′
dS

+

∫︂
∂Ω

Tg2DADBχ̇i,N
NANBdS +

∫︂
∂Ω

(Tg2DADBTANBχ̇i)
′
dS. (6.52)
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The above may be recast to yield the standard form:

·
E =

∫︂
∂Ω

[PiANA − (Cg1DATADBNB)
′ − (Cg2MATAMBNB)

′

−(Tg1MATAMBNB)
′ − (Tg2DATADBNB)

′
]χ̇idS

+

∫︂
∂Ω

Cg1DANADBNBχ̇i,N
dS +

∑︂
∥Cg1DATADBNBχ̇i∥ dS

+

∫︂
∂Ω

Cg2MAMBχ̇i,N
NANBdS +

∑︂
∥Cg2MATAMBNBχ̇i∥ dS

+

∫︂
∂Ω

Tg1MAMBχ̇i,N
NANBdS +

∑︂
∥Tg1MATAMBNBχ̇i∥ dS

+

∫︂
∂Ω

Tg2DADBχ̇i,N
NANBdS +

∑︂
∥Tg2DATADBNBχ̇i∥ dS, (6.53)

where the double bar symbol refers to the jump across the discontinuities on the

boundary ∂Ω (i.e. ∥∗∥ = (∗)+ − (∗)−) and the sum denotes the collection of all

discontinuities.

Lastly, it follows that the admissible mechanical powers take the following form

P =

∫︂
∂wt

tiχ̇idS +

∫︂
∂w

miχ̇i,N
dS +

∑︂
fiχ̇i. (6.54)

Thus, by comparing Eqs. (6.53) and (6.54), we conclude that

ti = PiANA − d

dS
[(CGiCDDCDD + TGiCDMCMD)DATADBNB

+(CGiCDMCMD + TGiCDDCDD)MATAMBNB],

mi = (CGiCDDCDD + TGiCDMCMD)DANADBNB + (CGiCDMCMD

+TGiCDDCDD)MANAMBNB,

fi = (CGiCDDCDD + TGiCDMCMD)DATADBNB + (CGiCDMCMD

+TGiCDDCDD)MATAMBNB, (6.55)

where ti, mi, and fi are the expressions of edge tractions, edge moments, and the

corner forces, respectively. It should be pointed out here that the stress expression

is a combination of the Piola-type stress PiA and double stress (i.e., C(g1DADB),B +

C(g2MAMB),B+T (g1MAMB),B+T (g2DADB),B) such that the second gradient of the

deformation term (i.e., C(g1DADB),B+C(g2MAMB),B+T (g1MAMB),B+T (g2DADB),B)

can be interpreted as the energy conjugate to the admissible double force mi when it
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Figure 6.2: Schematic of the problem.

is prescribed on the desired boundaries. The solutions of the above system of PDEs

may be determined by imposing the following boundary conditions (see, Fig. 6.2) and

the corresponding results are discussed in the model implementation and discussion

section.

t1 = P11, t2 = P12 = 0 at X1 = a,−a and

t1 = P21 = 0, t2 = P22 = 0 at X2 = b,−b. (6.56)

6.3 Model for Pseudoelastic Behaviour of hypere-

lastic composite

In this section, we present two distinct models for assimilating the pseudoelastic

behaviours of hyperelastic composite reinforced with bidirectional fibers. We first

present a model describing the Mullins effect of the hyperelastic composite where

the material undergoes an instantaneous and irreversible softening process. Next,

the Weibull fiber damage model is presented which can accommodate the damage

mechanics due to fiber breakage.

6.3.1 Model for Mullins effect

It has been observed that in many hyperelastic materials an instantaneous and ir-

reversible softening of the stress-strain response takes place, which is described as

the Mullins effect [91]. Mullins effect can be observed in biological soft tissues like,
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aortic tissue, skin, muscles, etc. [166]. The Mullins effect can be caused by multiple

phenomena related to changes in the internal structure which progress continuously

as the material is stretched. These include (see, fig. 6.3): physical disentanglement

of polymer chains in the elastin-rich matrix (fig. 6.3 (b)), decrease in the interactions

between polymer molecules and filler surfaces at the interface (fig. 6.3 (a)), filler net-

work breakdown (fig. 6.3 (c)), and chain scission of polymer molecules in the matrix

[167].

Figure 6.3: Schematics of the internal structural changes leading to the Mullins effect
[167].

In an idealized form, the Mullins effect can be described in the following way.

When previously non-loaded (also called the virgin state) material is loaded to a cer-

tain amount of strain, the obtained stress-strain curve is called the primary loading

curve. From any point on this primary loading curve if we start to unload (sub-

maximal unloading), the unloading stress-strain curve does not coincide with the

primary loading curve and a stress softening is attained. Now if we start loading

again (submaximal loading), the obtained loading curve coincides with the submaxi-

mal unloading curve. Thus, in this subsequent loading-unloading curve (submaximal

loading/unloading) the material behaves like an elastic material. When the stress

value returns to the previous stress maximum (which was just prior to the start of

unloading), the primary loading curve continues [166]. While operating on the pri-
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mary loading curve, the damage can be regarded as taking place continuously [91].

That is the reason the stress softening phenomena is evident on unloading from any

point on the primary loading path, and damage increases with the magnitude of the

strain on that path [91].

To model the Mullins effect of hyperelastic composite reinforced by nonlinear

fiber, we incorporate the damage parameter η and damage function ϕ(η) inspired

by Ogden-Roxburgh Model [91] into the proposed energy function in Eq. (6.27) as

follows:

W (F, ε1, ε2,g) = η{W (F) +W (ε1, ε2)}+ ϕ(η) +W (g1, g2)

= η{µ
2
(I1 − 3) +

κ

2
(I2 − 3) +

1

3
E11ε

3
1 +

1

2
E12ε

2
1 +

1

3
E21ε

3
2 +

1

2
E22ε

2
2}

+ϕ(η) +
1

2
C(g1·g1 + g2·g2) +

T

2
(g1·g2 + g2·g1), (6.57)

The role of the parameter η can be interpreted from Ogden-Roxburgh Model as fol-

lows. During a deformation process, η may be either in active or inactive mode. When

it is inactive, the material does not have any internal damage and correspondingly,

η = 1 [91]. In this case, the stress-strain response of the material follows the primary

loading curve. However, from any point on this primary loading curve if we start

to unload, η becomes activated. When η is in active mode, it is determined by the

following equation [91],[168]:

η = 1− 1

r
erf

[︃
1

m+ βWm

(︂
Wm − W̃ (F )

)︂]︃
= 1− 1

r
erf[

1

m+ βWm

(Wm − µ

2
(I1 − 3)− κ

2
(I2 − 3)− 1

3
E11ε

3 − 1

2
E12ε

2

−1

3
E21ε

3
2 −

1

2
E22ε

2
2)], (6.58)

where Wm is the maximum potential energy that the material has experienced just

prior to the start of unloading. We can treatWm as a constant which does not change

during submaximal loading and unloading. The parameters r and β are dimensionless,

while the parameter m has the dimensions of energy. These parameters are subject

to the restrictions r ⩾ 1, β ⩾ 0, and m ⩾ 0 (also, the parameters β and m cannot

both be zero). The parameter m controls the degree of damage occurs at low strain

levels. If m = 0, there is a significant amount of damage at low strain levels. On the
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other hand, a nonzero m leads to little or no damage at low strain levels. Whereas

the parameter r controls the amount of damage, as r increases, the damage decreases.

This behavior follows from the fact that the larger the value of r, lesser the damage

variable η can deviate from unity thus producing less damage. The term W̃ (F )

is the potential energy function containing the potential of the hyperelastic matrix

and extension potential of the fiber mesh. In Fig. 6.4, a flowchart is presented for

the current model which demonstrates the operation of Mullins effect of hyperelastic

composite.

Figure 6.4: Flowchart of the model for Mullins effect of hyperelastic composite (where,
εmis the strain level at which unloading is started).

Now, we can wrtie the Eq. (6.57) in variational form as

Ẇ (F, ε1, ε2,g) = ηFiA
WḞ iA + ηWεεFiA

Ḟ iA

= ηF{W (F) +W (ε1, ε2)}·Ḟ+ η{W (F)F +W (ε1, ε2)ε1ε1F·Ḟ

+W (ε1, ε2)ε2ε2F}·Ḟ+ C(g1·ġ1 + g2·ġ2) + T (g1·ġ2

+g1·ġ2). (6.59)
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Using Eq. (6.23) we can rewrite Eq. (6.59) as,

Ẇ (F, ε1, ε2,g) = ηF{W (F) +
1

24
E11 (FD · FD−1)3 +

1

8
E12 (FD · FD−1)2

+
1

24
E21 (FD · FD−1)3 +

1

8
E22 (FD · FD−1)2}·Ḟ

+η[W (F)F + {1
4
E11 (FD · FD−1)2 +

1

2
E12 (FD · FD−1)}ε1F

+{1
4
E21 (FM · FM−1)2 +

1

2
E22 (FM · FM−1)}ε2F]·Ḟ

+C(g1·ġ1 + g2·ġ2) + T (g1·ġ2 + g1·ġ2). (6.60)

Again, ϕ(η) referred to as the damage function, which is a smooth function of its

argument, η and, for consistency, when η = 1, ϕ(η) becomes 0. The function ϕ(η)

depends, throughWm, on the point at which unloading starts, which can be expressed

as follows (see, [91])

ϕ(η) =

1∫︂
0

f(η)dη + (1− η)Wm. (6.61)

The function f is defined such a way that, f(1) = 1 and f(ηm) = Wm. Here, ηm is

the minimum value of η which is atttained when the material is fully unloaded from a

submaximal loading state. From [91], we can write ϕ(η) in variational form as follows:

ϕ̇(η) =
∂ϕ(η)

∂η
η̇ = [−m erf−1(r(η − 1))−Wm]ηF Ḟ . (6.62)

Also to note that, at ηm, ϕ(ηm) can be interpreted as the residual (non-recoverable)

energy, which is a measure of the energy required to cause the damage in the material

[91]. In a uniaxial test such as simple tension, ϕ(ηm) is the area between the primary

loading curve and the relevant unloading curve. In the above, erf−1(∗) is the inverse

of error function, which has properties particularly well suited to this purpose as

described by [91]. Now using the expressions derived through Eqs. (6.10)-(6.21), we
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can write the Eq. (6.60) in component form as,

Ẇ (F, ε1, ε2,g) = [W (F ) +W (ε1, ε2)]ηFḞ iA + η[µFiA + κFiB(FjCFjCδAB

−FjAFjB) + {E11

4
(FjCFjDDCDD)(FkEFkFDEDF )

+
(E12 − E11)

2
FjCFjDDCDD +

(E11 − 2E12)

4
}FiBDBDA

+
E21

4
{(FjCFjDMCMD)(FkEFkFMEMF )

+
(E22 − E21)

2
FjCFjDMCMD +

(E21 − 2E22)

4
}FiBMBMA]Ḟ iA

−pF ∗
iA − CFiC,D(DADBDCDD +MAMBMCMD)Ḟ iA,B

−TFiC,D(DADBMCMD +DADBMCMD)Ḟ iA,B

+
∂ϕ(η)

∂η
ηFḞ iA, (6.63)

where the variational form of η can be obtained as,

η̇ = ηF·Ḟ =
1

r(m+ βWm)

2√
π
exp[−

(︃
1

m+ βWm

{Wm − W̃ (F )}
)︃2

]W (F)F·Ḟ

η̇ = ϱ[µFiA + κFiB(FjCFjCδAB − FjAFjB) + {E11

4
(FjCFjDDCDD)(FkEFkFDEDF )

+
(E12 − E11)

2
FjCFjDDCDD +

(E11 − 2E12)

4
}FiBDBDA

+{E21

4
(FjCFjDMCMD)(FkEFkFMEMF ) +

(E22 − E21)

2
FjCFjDMCMD

+
(E21 − 2E22)

4
}FiBMBMA]Ḟ iA. (6.64)

In the above,

ϱ =
1

r(m+ βWm)

2√
π
exp[−

(︃
1

m+ βWm

{Wm − W̃ (F )}
)︃2

]. (6.65)

Now, following the same process as described through Eqs. (6.29)-(6.42), we can

obtain the following expression of the Piola type stress.

PiA = η[µFiA + κFiB(FjCFjCδAB − FjAFjB)

+{E11

4
(Fj1Fj1)(Fk1Fk1) +

(E12 − E11)

2
Fj1Fj1 +

(E11 − 2E12)

4
}Fi1DA

+{E21

4
(Fj2Fj2)(Fk2Fk2) +

(E22 − E21)

2
Fj2Fj2 +

(E21 − 2E22)

4
}Fi2MA]

+[W (F ) +W (ε1, ε2)]ηF − pF ∗
iA − CFiC,DB(DADBDCDD +MAMBMCMD)

−TFiC,DB(DADBMCMD +DADBMCMD) +

(︃
∂ϕ(η)

∂η
ηF

)︃
iA

. (6.66)
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Taking divergent of PiA we then obtain the following equilibrium equations:

PiA,A = η,A[µFiA + κFiB(FjCFjCδAB − FjAFjB)

+{E11

4
(Fj1Fj1)(Fk1Fk1) +

(E12 − E11)

2
Fj1Fj1 +

(E11 − 2E12)

4
}Fi1D1DA

+{E21

4
(Fj2Fj2)(Fk2Fk2) +

(E22 − E21)

2
Fj2Fj2 +

(E21 − 2E22)

4
}Fi2M2MA]

+η[µFiA,A + κFiB,A(FjCFjCδAB − FjAFjB) + κFiB(2FjC,AFjCδAB − FjA,AFjB

−FjAFjB,A) + {E11

4
(2Fj1,AFj1Fk1Fk1 + 2Fj1Fj1Fk1,AFk1) + (E12

−E11)Fj1,AFj1}Fi1,ADA + {E21

4
(2Fj2,AFj2Fk2Fk2 + 2Fj2Fj2Fk2,AFk2)

+(E22 − E21)Fj2,AFj2}Fi2,AMA] + [W (F ) +W (ε1, ε2)],AηF + [W (F )

+W (ε1, ε2)]{ηF},A − p,AF
∗
iA,A − C(Fi1,111 + Fi2,222)− T (Fi1,122 + Fi2,211)

+

[︃(︃
∂ϕ(η)

∂η
ηF

)︃
iA

]︃
,A

. (6.67)

In the above,

{ηF},A =

(︄
1

r(m+ βWm)

2√
π
exp[−

(︃
1

m+ βWm

{Wm − W̃ (F )}
)︃2

]

)︄
,A

W (F)F

+ϱ{W (F)F},A

=
1

r(m+ βWm)

2√
π
ϱ [W (F)F]

2 {W (F)F},A + ϱ{W (F)F},A

= {W (F)F},A
(︃

1

r(m+ βWm)

2√
π
ϱ [W (F)F]

2 + ϱ

)︃
= [µFiA + κFiB(FjCFjCδAB − FjAFjB) + {E11

4
(FjCFjDDCDD)(FkEFkFDEDF )

+
(E12 − E11)

2
FjCFjDDCDD +

(E11 − 2E12)

4
}FiBDBDA

+{E21

4
(FjCFjDMCMD)(FkEFkFMEMF ) +

(E22 − E21)

2
FjCFjDMCMD

+
(E21 − 2E22)

4
}FiBMBMA],A

(︃
1

r(m+ βWm)

2√
π
ϱ [W (F)F]

2 + ϱ

)︃
, (6.68)
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η,A = (ηF )iC FiC,A = ϱW (F)FFiC,A

= ϱ[µFiC + κ(FiBFjDFjDδCB − FiBFjCFjB) + {E11

4
(FjRFjDDRDD)

(FkTFkLDTDL) +
(E12 − E11)

2
FjEFjDDEDD +

(E11 − 2E12)

4
}FiBDBDC

+{E21

4
(FjCFjDMCMD)(FkEFkFMEMF ) +

(E22 − E21)

2
FjCFjDMCMD

+
(E21 − 2E22)

4
}FiBMBMC ]FiC,A, (6.69)

and also,

ϕ̇(η) =
∂ϕ(η)

∂η
η̇ =

∂ϕ(η)

∂η
ηF Ḟ (6.70)

= [−(m+ βWm) erf
−1(r(η − 1))−Wm]ηF Ḟ

= [−(m+ βWm) erf
−1(r(η − 1))−Wm]ϱ[µFiA + κFiB(FjCFjCδAB − FjAFjB)

+{E11

4
(Fj1Fj1)(Fk1Fk1) +

(E12 − E11)

2
Fj1Fj1 +

(E11 − 2E12)

4
}Fi1DA

+{E21

4
(Fj2Fj2)(Fk2Fk2) +

(E22 − E21)

2
Fj2Fj2 +

(E21 − 2E22)

4
}Fi2MA]Ḟ ,

{︃(︃
∂ϕ(η)

∂η
ηF

)︃
iA

}︃
,A

=

(︄[︃
∂ϕ(η)

∂η

]︃
,A

ηF +
∂ϕ(η)

∂η
{ηF},A

)︄
(6.71)

=
[︁
−(m+ βWm) erf

−1(r(η − 1))−Wm

]︁
,A
ηF

+[−(m+ βWm) erf
−1(r(η − 1))−Wm]{ηF},A

= −r(m+ βWm)

√
π

2
exp[erf−1{r(η − 1)}]2η,AηF

+[−(m+ βWm) erf
−1(r(η − 1))−Wm]{ηF},A.

6.3.2 Weibull fiber damage model

Let’s consider a hyperelastic composite is subjected to tensile stress in the fibers’

direction. In such a case, the matrix carries only a small portion of the applied

load, thus no damage is likely to occur in the matrix during such loading. Then, the

ultimate tensile strength of the composite can be accurately predicted by computing

the strength of a bundle of fibers [169]. Fibers’ strength can be expressed as a function

of the effective length, δ which determines how much of the fiber strength is actually

used in a composite. Starting at a fiber’s breaking point, the effective length is the

length over which a fiber recovers a large percentage of its load [169]. As tensile load
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is slowly applied to a bundle of fibers within a composite, the weaker fibers (i.e., with

large flaw sizes) begin to fail and the stress on the remaining unbroken fibers increases

accordingly [169]. Weibull expression is used to describe the cumulative probability

that a fiber of length δ will fail at or below an effective stretch, γ̂ (also termed as

damage threshold). This cumulative probability represents the damage characterizing

term, d as follows [92]:

d = 1− e−δαγ̂m

, (6.72)

where, δ is the effective fiber length, m is the dispersion of fiber strength, and α is

defined by the follwoing expression:

α =
1

σ̃m
0 L0

= [
Γ(1 + 1

m
)

σ̃av

]m
1

L0

. (6.73)

In the above, Γ is the gamma function, σ̃av is the average strength of the fiber bundle

for a gauge length L0. In practice it is often reported as a product δα, where δα =
(σcr)−m

me
and σcr is the maximum (or critical) bundle strength. Lastly, the updated

damage threshold, γ̂ can be given by the highest value of stretch experienced by the

material.

γ̂ = max(λm, λD). (6.74)

Here, λm is the current stretch and λD is the highest stretch in the history of the

material. The damage threshold is always updated by the largest of these two values.

At the very begining, it is necessary to provide an initial damage threshold as an input,

which is the amount of stretch where damage starts to develop in the material. For any

stretch below this initial damage threshold, the damage variable remains inactive and

correspondingly, d = 1. This indicates no damage present in the material. Whenever

the stretch reaches the initial damage threshold, the damage variable, d becomes

activated and it is calculated using Eq. (6.72). From this point, d becomes non-

zero which indicates the presence of damage within the material. When the stretch

exceeds the initial damage threshold, the corresponding stretch value is recorded as

λD and γ̂ gets updated from Eqn. (6.74). From this updated vlaue of γ̂, the damage

variable d is calculated again from Eqn. (6.72). A flowchart of the Weibull damage

model is presented in Fig. 6.5.

Now, introducing the damage variable, d (see, Eq. 6.72) in Eq. (6.42) we can
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Figure 6.5: Flowchart of Weibull fiber damage model for hyperelastic composite.

rewrite the Piola stress expression as follows:

PiA = µFiA + κFiB(FjCFjCδAB − FjAFjB) + (1− e−δαγ̂m

)[
E1

4
(FjCFjDDCDD)

(FkEFkFDEDF ) +
(E12 − E11)

2
FjCFjDDCDD +

(E11 − 2E12)

4
]FiBDBDA

+(1− e−δαγ̂m

)[
E21

4
(FjCFjDMCMD)(FkEFkFMEMF )

+
(E22 − E21)

2
FjCFjDMCMD +

(E21 − 2E22)

4
]FiBMBMA − pF ∗

iA

−CFiC,DB(DADBDCDD +MAMBMCMD)− TFiC,DB(DADBMCMD

+DADBMCMD). (6.75)

Replacing FiA = χi,A on Eqn. (6.75) and taking divergence, we then write the equi-
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libirum equations as follows:

0 = PiA,A = µχi,AA + κ(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B) + κχi,B(2χj,CBχj,C

−χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B + (1− e−δαγ̂m

)[
E11

4
(2χj,11χj,1χk,1χk,1

+2χj,1χj,1χk,11χk,1) + (E12 − E11)χj,11χj,1]χi,1 + (1− e−δαγ̂m

)[
(E11 − 2E12)

4

+
(E12 − E11)

2
χj,1χj,1 +

E11

4
(χj,1χj,1)(χk,1χk,1)]χi,11 + (1− e−δαγ̂m

)

[
E21

4
(2χj,22χj,2χk,2χk,2 + 2χj,2χj,2χk,22χk,2) + (E22 − E21)χj,22χj,2]χi,2

+(1− e−δαγ̂m

)[
E21

4
(χj,2χj,2)(χk,2χk,2) +

(E22 − E21)

2
χj,2χj,2

+
(E21 − 2E22)

4
]χi,22 − C(χi,1111 + χi,2222)−T (χi,1122 + χi,2211). (6.76)

6.4 Model implementation and discussions

6.4.1 Mullins effect in biological soft tissues

In this present section, we implement the proposed model in assimilating the Mullins

effect in biological soft tissues. First, we present the Mullins effect in human aortic

tissue. Then we discuss the Mullins effect in Manduca muscle.

Human aorta

The main conduit for blood delivery called the aorta, is an elastic artery that consists

of three distinct layers: the tunica intima, the tunica media, and the tunica adven-

titia [170]. The media is separated from the intima by an internal elastic lamina.

The intima which is primarily involved in metabolic processes provides a negligible

mechanical contribution to the wall resistance in young and healthy individuals [170]-

[171]. Whereas media has the primary mechanical contribution, which supports the

aortic wall against the physiological blood pressure [170]. The media is composed

of as many as 70 fenestrated medial lamellar units, consisting of two adjacent elas-

tic lamellae (involving elastin), which are interspersed with a layer of collagen fibers

[170]. This structural arrangement of the medial lamellar unit can be thought of as

analogous to the 3-layer configuration of an elastomeric composite reinforced with

bi-directional fibers (as shown in Fig. 6.6). Where the matrix layer of elastin lamella
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is a rubber-like protein with a modulus ranging from 0.6 to 1 MPa [7]. This layer is

someway similar to the elastomeric matrix material, like Ecoflex. The collagen fiber

layer at the middle of two adjacent elastin lamellae, which is stiff and relatively in-

extensible with a modulus of around 1 GPa [7], can be represented by a bidirectional

fiber mesh layer with nonlinear properties. Further, the anisotropic nature of the

aorta may be accommodated by considering different tensile properties for the fibers

in each direction of the bidirectional fiber mesh layer.

Figure 6.6: Structural analogy of medial lamellar unit (left) with 3-layer configuration
of Ecoflex-0050 composite reinforced with bidirectional fiber mesh [170].

Elastomeric material, like Ecoflex-0050, is a very suitable biomedical material

because of its biocompatibility, nearly instantaneous response to stresses, and fully

reversible deformation. The stiffness of rubber-like elastin lamella in the medial lamel-

lar unit varies between 0.6 to 1 MPa [7]. This range is closely related to the stiffness of

Ecoflex-0050, where we have calculated the slope of the stress-strain curve of Ecoflex-

0050 varies between 0.15 MPa to 0.9 MPa. Due to this close correspondence of

properties between Ecoflex and elastin lamella, Ecoflex-0050 has been used to imitate

the elastin lamella of the human aorta (for example, see, [7]). For this same reason,

we also used Ecoflex-0050 for modeling the matrix material of the biocomposite in

the present study. Ecoflex-0050 is characterized using the Mooney-Rivlin model and

we obtain the fitting parameters, µ = 0.082 MPa and κ = 0.01 MPa (see, Fig. 6.7).

The proposed model is compared against the experimental data from [166], where

cyclic uniaxial tension tests were performed on the samples of human thoracic aorta
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Figure 6.7: Mooney-Rivlin characterization of experimental stress strain data for
Ecoflex-0050 matrix.

using the MTS Mini Bionix testing machine. In order to illustrate the Mullins effect

in human aorta, two samples of human thoracic aorta were selected from cadaveric

donors. The samples were resected in the circumferential and longitudinal directions

with respect to the natural configuration of an artery (as shown in Fig. 6.8). The

arteries were stored in a physiological solution at a temperature of about 5◦C till

the beginning of the experiment. All experiments were performed within 48 hours

after the death. The temperature during the test was 23◦C. The extensions and

loading forces were measured by the MTS testing machine. Using the proposed

model, we characterize the primary stress-strain response of both the longitudinal

and circumferential samples and the tension parameters of the fiber in each direction

i.e., E11, E21, E21, and E22 are obtained. The obtained results with fiber orientations

in the model are illustrated in Figs. 6.8 - 6.9 . The bending modulus (C) and torsion

modulus (T ) are chosen to be 0.55MPa.

Once the fiber and matrix parameters are obtained, we compare the results from

our model with the cyclic loading-unloading experimental data, representing Mullins

effect from [166]. For comparing the Mullins effect, two sets of submaximal unload-

ing data from the experiment were taken into consideration with unloadings starting

from 10% and 20% strain, respectively from the primary loading curve. It has been

observed that the proposed model can simulate the Mullins effect for both the lon-
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Figure 6.8: Fiber orientation with tensile modulus for longitudinal and circumferential
samples of aorta.

gitudinal and circumferential samples of the human aorta with good accuracy. For

both of these cases, unloading is initiated using the proposed model from 3 different

positions along the primary loading curve which are at 10%, 15%, and 20% strain.

Thus we obtain three submaximal unloading curves along with the primary loading

curve from the porposed model, through which we were able to precisely identify the

three parameters associated with the Mullins effect i.e., m, r, and β. For the longitu-

dinal case, the obtained parameters are m = 0.0034, r = 1.65, and β = 0.397, whereas

for the circumferential case m = 0.0012, r = 1.015, and β = 0.096. The comparisons

for the longitudinal and circumferential cases are presented in Figs. 6.10 and 6.11,

respectively.

Manduca muscle

Studying the cyclic responses of larval muscles, e.g., the muscles from the larva of

Manduca sexta, may be beneficial in the constructions and numerical simulations of

soft-bodied robots with multimodal locomotion [20]. Furthermore, the flight muscle

of Manduca sexta is reported to be an emerging model system for biophysical studies

of muscle contraction [172]. These larval muscles are synchronous muscles [21]-[22],
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Figure 6.9: Comparison of stress-strain results from the model and experiment for
longitudinal and circumferential samples [166].

where each contraction is coupled with neural stimulation. It has been also proposed

that the flight muscle of Manduca sexta can be used as a comparative model system

to possibly elucidate some aspects of mammalian cardiac muscle due to their similar

physiological properties, for example, both cardiac and flight muscle of Manduca have

large amplitudes of cyclical strain during contraction [23],[172]. The cyclic responses

of these larval muscles exhibit pseudoelastic behavior described by the Mullins effect.

During the last decades, some studies have been carried out to characterize the pseu-

doelastic nature of larval muscles, specifically from the larva of Manduca sexta [20]–

[28]. These larval muscles are complex composites with profound anisotropy, which is

very distinct from either amorphous or crystalline materials [20]. Each muscle fiber

contains aligned actin and myosin filaments within an amorphous matrix material

composed of proteins, lipids, and polysaccharides [20]. In addition, these muscles

also contain molecularly massive elastic proteins such as titin which are being in-

vestigated extensively in several studies [173]–[177]. This giant elastic protein titin

with folded domains results in interesting characteristics like asymmetric properties,

time-dependent stretching, and shortening during load cycling [20].

The stress-strain response of the Manduca muscle is found to be nonlinear and
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Figure 6.10: Comparison of Mullins effect between the results form the proposed
model and experiment data for longitudinal sample of aorta [166].

Figure 6.11: Comparison of Mullins effect between the results form the proposed
model and experiment data for circumferential sample of aorta [166].

capable of large deformations [20]. Moreover, Manduca muscles were found to be

elastomeric and dissipate work with each strain cycle (pseudoelasticity), undergoing

stress softening on repeated cycling (the Mullins effect) [20]. Manduca larval muscles

are attached directly to apodemes, infoldings of the cuticle wall due to the absence

of a stiff skeleton. The muscles are organized in repeated segments corresponding

to the body segments, in layers [20]. For demonstrating the utility of the proposed

model in assimilating the pseudoelastic properties of the Manduca larval muscles, we

adopted the experiment from [20]. Test data were gathered for the ventral interior

lateral (VIL) muscle of the third abdominal segment (A3) (see, Fig. 6.12). A3

VIL is one of the largest larval muscles, comprising 14 fibers [28]. A3 VIL was
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Figure 6.12: The location of the ventral interior lateral (VIL) muscle within the
Manduca sexta caterpillar is illustrated . [178]-[179].

chosen because during crawling, VIL reaches its highest stress during the lengthening

portion of its strain cycle, suggesting that its passive properties play an important role

in its biological function [20]. The muscle was dissected out in physiological saline

along with a small portion of the attached cuticle at each end. The preparation

was transferred to a horizontal saline bath, with one end pinned to an elastomer

platform in the bath and the other secured by a hook to an Aurora 300B-LR lever arm

ergometer that administered strain cycling while measuring force [20]. The periodic

loading, unloading, and reloading tests were performed using constant strain rates

representative of those encountered in nature [20]. The initial distance of the pinned

connections at each end of the muscle was used to determine the longitudinal strain.

The reference length of the muscle was found to be 5.5 mm [20]. The nominal stress

was determined as the ratio of the axial force to the cross-sectional area, measured

in the reference configuration [20]. The magnitude of the cross-sectional area of

the muscle tested and used to determine the nominal stress was 0.4 mm2 [20]. The

sample was stretched up to 1.18 and then unloaded to its undeformed state. Using our

proposed model, we have assimilated the stress-strain cycle response of the Manduca

muscle sample. The best result is obtained with the following parameters in our

model, E11 = E21 = 1.85MPa, E12 = E22 = 0.06MPa,C = T = 0.21MPa, r =

1.025, m = 0.0035, and β = 1.075. For the matrix material, we have used similar

properties (µ = 0.082 MPa and κ = 0.01 MPa) of Ecoflex-0050 elastomer. The

result is compared against the experimental data in Fig 6.13. The figure shows that

the proposed model can effectively assimilate the Mullins effect type pseudoelastic
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behavior of the muscle.
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Figure 6.13: Comparison of Mullins effect between the results form the proposed
model and experiment data for Manduca muscle [20].

6.4.2 Weibull fiber damage of Ecoflex/PES composite

In this section, we implement the proposed Weibull damage model (as presented in

Eqn. (6.76)) to demonstrate the utility of the model in assimilating the damage

mechanics of an elastomeric composite induced by fiber breakage. The results are

compared against our in-house experimental data. For the experiments, we have

selected Ecoflex-0050 as the elastomeric matrix material, which was manufactured

by Smooth-On, Inc. Ecoflex-0050 is known to be one of the promising materials in

biomechanical applications for its high tear resistance and large extensibility up to

1000% [128]-[130]. Ecoflex-0050 is a room-temperature-vulcanizing (RTV) silicone

that was prepared by mixing two components (a base and curing agent) in 1:1 ratio

and subsequently degassing in a vacuum to remove the entrapped bubbles. For the

reinforcing fiber, we have selected a surgical polyester knitted mesh which is referred

to as PETKM2006 (PES-3), fabricated by the Surgical Mesh (Brookfield, CT, USA).

The effective dimension of fabricated composite samples is 50mm × 25mm, keeping
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an aspect ratio of 2:1 (length-to-with). The actual size of fabricated composites was

78mm × 25mm with an end allowance of 14mm at each side of the sample. The

reinforced elastomer composites were fabricated in a three-layer configuration using a

layer-by-layer method. The schematic diagram of the sample preparation and 3-layer

configuration of the composite are shown in Figs. 6.14 (b) - 6.14 (c). To prepare the

bottom elastomer layer, a sufficient amount of elastomer mixture was poured on a

glass substrate and rolled using the film applicator rod to make a uniform film (see,

Fig. 6.14 (b)). The second layer of fiber mesh was then placed flat on the elastomer

and allowed to soak at the interface. A small amount of elastomer was then poured

and rolled over the fiber mesh to wet it again and to fill the gaps between pores and

level the second layer. To make the third layer, a sufficient amount of elastomer was

poured over the second layer and a uniform film was created using a film applicator

rod. The width, length, and thickness of the prepared Ecoflex-0050 matrix material,

raw fiber, and composite samples were measured using a caliper. An aspect ratio

of length-to-width was maintained as 2:1. Instron 5943 (Illinois Tool Works Inc.,

USA) was used to measure the stress-strain responses of the Ecoflex-0050, the raw

fiber PES3, and the composite (see, Fig. 6.14 (a)). The test apparatus recorded

the displacement and force as a function of time for each uniaxial tensile test. The

extension rate was set to be 2.5mm/min for all cases to avoid/minimize the viscous

responses [134]–[136].

The uniaxial tensile test results were then used to determine the mechanical re-

sponses of the matrix, fibers, and composites. To compute strains, the displacement

and gauge length were used. The corresponding stresses were calculated from the

applied load and the cross-sectional area of the samples. For example, the principal

strains and the engineering stresses were calculated using the relations of ε = ∆l/lo

and σ = F/Ao = F/(woto), respectively, where lo is the original sample length, wo is

the initial width, and to is the initial thickness which were measured using a caliper.

The amount of extension, ∆l, was then calculated as ∆l = l− lo where l is the current

length. To analyze the local microstructure deformations of the reinforced compos-

ites, mesh grids of 1.5mm × 1.5mm were printed on the surfaces of each sample. A

Sony A6000 camera was used to capture the deformed images of the fiber meshes

and the printed mesh grids which were then compared with the simulation results,
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Figure 6.14: (a) Experimental setup for the uniaxial test. (b) Fabrication of the
composite laminate. (c) 3-layer configuration of the Ecoflex-0050 / PES3 composite.

predicted from the proposed model.

In Fig. 6.15 (a) the stress-strain response of the PES-3 fiber is characterized using

the polynomial model and we obtain the tension parameters of the PES3 fiber as,

E11 = E21 = 2.35MPa and E12 = E22 = −0.2MPa. The bending modulus (C)

and torsion modulus (T ) are chosen to be 1MPa and 7MPa, respectively. For the

Ecoflex 0050 matrix material, we have used Mooney-Rivlin model to characterize the

experimental stress-strain response with the following matrix parameters µ = 0.082

MPa and κ = 0.01 MPa, this result is shown in Fig. 6.15 (b).

These obtained parameters are used in the proposed model which is then solved
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Figure 6.15: (a) Polynomial characterization of experimental stress-strain data for
raw PES-3 fiber sample. (b) Mooney-Rivlin characterization of experimental stress-
strain data for Ecoflex-0050 matrix.

using the FEA method and we obtained the response of the composite material. In

Fig. 6.16 (a) and (b) the χ1 and χ2 deformation profiles are compared against the

experimental data at 50% and 100% elongations, respectively. From the figure, good

agreement between the experimental data and simulated results from the proposed

model may be observed.
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Figure 6.16: Comparison of deformation profiles between experiement data and pro-
posed model for Ecoflex 0050/PES3 composite of (a) χ1 deformation; (b) χ2 defor-
mation.

We have also compared the shear angle distribution within the composite against

the experiment for 50% and 100% elongations of the composite, which also shows

good agreement with the experimental finding. This comparison results for 50% and
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100% elongation are presented in Fig. 6.17 (a) and (b), respectively. Also, it can be

noted that the proposed model is able to generate smooth and continuous shear angle

distribution, which is not possible using the classical first gradient theory (see, [87]).

(a)

(b)

Figure 6.17: Comparison of shear angle distribution between experiement (top) and
proposed model (bottom) for (a) 50% elongation; (b) 100% elongation.

Lastly, we compare the stress-strain results of the Ecoflex-0050/PES3 composite

from the proposed model against the experiment data, which is presented in Fig. 6.18.

It may be observed from the figure that the proposed model is able to predict the non-
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linear stress-strain response and also the damage mechanics of the composite with

good accuracy. In Fig. 6.18, the no-damage and damage regions are illustrated. The

no-damage region is defined within the strain range where, either there is no-damage

(applicable only for initial loading case) or damage does not grow. While in the

damage region, damage continues to grow. During the no-damage region (see, curve

OA in Fig. 6.18 ), our model behaves like a fully elastic material with damage variable

(see, Eq. (6.72)), d = 1. For this specific case, strain at 1.17 is set as the initial damage

threshold, which is obtained from the experiment data. When the strain from our

simulation crosses the initial damage threshold, the material enters into the damage

region (see, curve AB in Fig. 6.18 ). At the same time, the pseudoelastic model

becomes activated and the value of d changes with the increase of strain following the

relation described in Eq. (6.72). Simultaneously, the damage threshold is updated

with this new strain value. Now, at any point in the damage region, if we start to

unload, the material again follows an elastic nonlinear response but with a reduced

stiffness (see, curve BO in Fig. 6.18 ), where the E1 and E2 are multiplied with d.

During this unloading phase, the value of d remains unchanged and no additional

damage grows. The process repeats this way. In the proposed model, we use the

parameters δα = 0.0005 and m = 20.

Figure 6.18: Comparison of stress-strain results between experiment and proposed
model for Ecoflex-0050/PES3 composite.
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From the cyclic stress-strain graph obtained from repeated loading and unloading,

it is also possible to estimate the dissipated energy density and recovered energy

density of the composite material. The dissipated and recovered energy is illustrated

in Fig. 6.19. The area between any successive loading and unloading curves represents

the dissipated energy for that cycle and the area under the unloading curve represents

the recovered energy. From the assimilated cyclic stress-strain graph of Ecoflex-

Figure 6.19: Illustration of dissipated energy and recovered energy in cyclic stress-
strain graph.

0050/PES3 composite, we are able to estimate the dissipated and recovered energy

density, which is illustrated in Fig. 6.20. The energy density is calculated via the

area integration using the Trapezoidal rule method. For the first loading-unloading

cycle, we have obtained the dissipated energy density 246MJ
m3 , for the 2nd and 3rd

cycles we have obtained 127MJ
m3 and 180MJ

m3 , respectively. The final recovered energy

density is found to be 904MJ
m3 .

6.5 Finite element analysis of the 4th order cou-

pled PDE

To demonstrate the finite element analysis (FEA) procedures, we have chosen the

system of PDEs obtained from the Weibull fiber damage model. The rest of the cases

will follow the similar process.
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Figure 6.20: Estimation of dissipated and recovered energy from the cyclic stress-
strain results of Ecoflex / PES3 composite.

The system of PDEs in Eqs. (6.76) represent systems of 4th order coupled dif-

ferential equations. The case of such less regular PDEs system deserves delicate

mathematical treatment and is of particular practical interest. Therefore, it may not

be trivial to report the associated FEA procedure. For preprocessing, Eqs. (6.76)

may be rearranged into the following form:
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0 = µ(Q+ χ1,22) + κ(Q+ E,2)(CC + EE +DD + FF )

−κ(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

−A0χ2,2 +B0χ2,1 + (1− e−δαγ̂m

)[
E11

4
{2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)}+ (E12 − E11)(QC +RD)]C

+(1− e−δαγ̂m

)[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]Q

+(1− e−δαγ̂m

)[
E21

4
{2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )}+ (E22 − E21)(SE +NF )]E

+(1− e−δαγ̂m

)[
E21

4
(EE + FF )(EE + FF )

+
(E22 − E21)

2
(EE + FF ) +

(E21 − 2E22)

4
]S

−C(Q,11 + S,22)−T (Q,22 + S,11),
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0 = µ(R + χ2,22) + κ(R + F,2)(CC + EE +DD + FF )

−κ(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

−A0χ2,2 +B0χ2,1 + (1− e−δαγ̂m

)[
E11

4
{2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)}+ (E12 − E11)(QC +RD)]D

+(1− e−δαγ̂m

)[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]R

+(1− e−δαγ̂m

)[
E21

4
{2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )}+ (E22 − E21)(SE +NF )]F

+(1− e−δαγ̂m

)[
E21

4
(EE + FF )(EE + FF )

+
(E22 − E21)

2
(EE + FF ) +

(E21 − 2E22)

4
]N

−C(R,11 +N,22)−T (R,22 +N,11),

0 = Q− χ1,11, 0 = R− χ2,11, 0 = C − χ1,1, 0 = D − χ2,1,

0 = E − χ1,2, 0 = F − χ2,2, 0 = A− µ(Q+ χ1,22)− cQ,11,

0 = B − µ(R + χ2,22)− cR,11, 0 = S − χ1,22, 0 = N − χ2,22 (6.77)

where Q = χ1,11, R = χ2,11, C = χ1,1, D = χ2,1, E = χ1,2, F = χ2,2, S = χ1,22 and

N = χ2,22. Hence, the order of differential equations is reduced from the three coupled

equations of the 4th order to 12 coupled equations of the 2nd order. Especially, the

non-linear terms in the above equations (e.g. Aχ2,2, Bχ2,1 etc...) can be systematically

treated via the Picard iterative procedure and/or Newton method;

−Ainitialχinitial
2,2 +Binitialχinitial

2,1 =⇒ −A0χ
0
2,2 +B0χ

0
2,1

Ainitialχinitial
1,2 −Binitialχinitial

1,1 =⇒ A0χ
0
1,2 −B0χ

0
1,1, (6.78)

where the estimated values of A, B continue to be updated based on their previous

estimations (e.g. A1 and B1 are refreshed by their previous estimations of Ao and

221



Bo) as iteration progresses and similarly for the rest of non-linear terms. Also, the

weight forms of Eq. (6.77) can be found as

0 =

∫︂
Ω

w1{µ(Q+ χ1,22) + κ(Q+ E,2)(CC + EE +DD + FF )

−κ(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

−A0χ2,2 +B0χ2,1 + (1− e−δαγ̂m

)[
E11

4
{2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)}+ (E12 − E11)(QC +RD)]C

+(1− e−δαγ̂m

)[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]Q

+(1− e−δαγ̂m

)[
E21

4
{2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )}+ (E22 − E21)(SE +NF )]E

+(1− e−δαγ̂m

)[
E21

4
(EE + FF )(EE + FF )

+
(E22 − E21)

2
(EE + FF ) +

(E21 − 2E22)

4
]S

−c(Q,11 + S,22)−T (Q,22 + S,11)}dΩ,
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0 =

∫︂
Ω

w2{µ(R + χ2,22) + κ(R + F,2)(CC + EE +DD + FF )

−κ(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κ(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

−A0χ2,2 +B0χ2,1 + (1− e−δαγ̂m

)[
E11

4
{2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)}+ (E12 − E11)(QC +RD)]D

+(1− e−δαγ̂m

)[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]R

+(1− e−δαγ̂m

)[
E21

4
{2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )}+ (E22 − E21)(SE +NF )]F

+(1− e−δαγ̂m

)[
E21

4
(EE + FF )(EE + FF )

+
(E22 − E21)

2
(EE + FF ) +

(E21 − 2E22)

4
]N

−c(R,11 +N,22)−T (R,22 +N,11)}dΩ,

0 =

∫︂
Ω

w3(Q− χ1,11)dΩ, 0 =

∫︂
Ω

w4(R− χ2,11)dΩ,

0 =

∫︂
Ω

w5(C − χ1,1)dΩ, 0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ, 0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

w9(S − χ1,22)dΩ, 0 =

∫︂
Ω

w10(N − χ2,22)dΩ,

0 =

∫︂
Ω

w11(A− µ(Q+ χ1,22)− cQ,11)dΩ,

0 =

∫︂
Ω

w12(B − µ(R + χ2,22)− cR,11)dΩ. (6.79)

Thus, we apply integration by part and the Green-Stokes’ theorem, (e.g. µ

∫︂
Ωe

w1χ1,22dΩ =

−µ
∫︂
Ωe

w1,2χ1,2dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ) and thereby obtain the following weak forms of

Eq. (6.79)
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0 =

∫︂
Ω

{µw1Q− µw1,2χ1,2 + κw1(Q+ E,2)(CC + EE +DD + FF )

−κw1(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κw1(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+(1− e−δαγ̂m

)w1[
E11

4
(2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)) + (E12 − E11)(QC +RD)]C

+(1− e−δαγ̂m

)w1[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]Q

+(1− e−δαγ̂m

)w1[
E21

4
(2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )) + (E22 − E21)(SE +NF )]E

+(1− e−δαγ̂m

)w1[
E21

4
(EE + FF )(EE + FF )

+
(E22 − E21)

2
(EE + FF ) +

(E21 − 2E22)

4
]S

+c(w1,1Q,1 + w1,2S,2)+T (w1,2Q,2 + w1,1S,1)

−A0w1χ2,2 +B0w1χ2,1}dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ

−c
∫︂
∂Γ

w1Q,1NdΓ− c

∫︂
∂Γ

w1S,2NdΓ− T

∫︂
∂Γ

w1Q,2NdΓ

−T
∫︂
∂Γ

w1S,1NdΓ,
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0 =

∫︂
Ω

{w2µR− w2,2µχ2,2 + κw2(R + F,2)(CC + EE +DD + FF )

−κw2(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + κw2(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+(1− e−δαγ̂m

)w2[
E11

4
(2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)) + (E12 − E11)(QC +RD)]D

+(1− e−δαγ̂m

)w2[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]R

+(1− e−δαγ̂m

)w2[
E21

4
(2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )) + (E22 − E21)(SE +NF )]F

+(1− e−δαγ̂m

)w2[
E21

4
(EE + FF )(EE + FF )

+
(E22 − E21)

2
(EE + FF ) +

(E21 − 2E22)

4
]N

+c(w2,1R,1 + w2,2N,2)+T (w2,2R,2 + w2,1N,1)

+A0w2χ1,2 −B0w2χ1,1}dΩ + µ

∫︂
∂Γ

w2χ2,2NdΓ

−c
∫︂
∂Γ

w2R,1NdΓ− c

∫︂
∂Γ

w2N,2NdΓ− T

∫︂
∂Γ

w2R,2NdΓ

−T
∫︂
∂Γ

w2N,1NdΓ,
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0 =

∫︂
Ω

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γ

w3χ1,1NdΓ,

0 =

∫︂
Ω

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γ

w4,1χ2,1NdΓ,

0 =

∫︂
Ω

(w5C − w5χ1,1)dΩ, 0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ, 0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

(w9,2S + w9,2χ1,2)dΩ−
∫︂
∂Γ

w9χ1,2NdΓ,

0 =

∫︂
Ω

(w10,2N + w10,2χ2,2)dΩ−
∫︂
∂Γ

w10χ2,2NdΓ,

0 =

∫︂
Ω

(w11A− µw1Q+ µw11,2χ1,2 + cw11,1Q,1)dΩ−
∫︂
∂Γ

µw11χ1,2NdΓ

−
∫︂
∂Γ

cw11Q,1NdΓ,

0 =

∫︂
Ω

(w12B − µw12R + µw12,2χ2,2 + cw12,1R,1)dΩ−
∫︂
∂Γ

µw12χ2,2NdΓ

−
∫︂
∂Γ

cw12R,1NdΓ, (6.80)

where Ω, ∂Γ and N are, respectively the domain of interest, the associated boundary,

and the rightward unit normal to the boundary ∂Γ in the sense of the Green-Stokes’

theorem. The unknown potentials of χ1, χ2, Q, R,C,D,E, F, S,N, A and B can be

expressed in the form of Lagrangian polynomial that

(∗) =
n=4∑︂
j=1

[(∗)jΨj(x, y)]. (6.81)

Accordingly, the test function w is found to be

wm =
n=4∑︂
i=1

wi
mΨi(x, y); i = 1, 2, 3, 4, and m = 1, 2, 3, 4, ...10 (6.82)

where wi is the weight of the test function and Ψi(x, y) are the associated shape

functions; Ψ1 = (x−2)(y−1)
2

, Ψ2 = x(y−1)
−2

, Ψ3 = xy
2

and Ψ4 = y(x−2)
−2

. Invoking Eq.

(6.81), (6.80) can be recast in terms of Lagrangian polynomial representation as
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0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(µΨiΨjQj − µΨi,2Ψj,2χ1j + κ(ΨiΨjQj +Ψi,2Ψj,2Ej)(CC + EE

+DD + FF )− κ(ΨiΨjQj +ΨiΨj,2Cj +ΨiΨj,1Ej +ΨiΨj,2Ej)(CC + CE

+EC + EE +DD +DF + FD + FF ) + κ(C + E)(2ΨiΨjQCj + 2ΨiΨj,1EjE

+2ΨiΨj,2CjC + 2ΨiΨj,2EjE −ΨiΨjQC −ΨiΨjQE −ΨiΨj,2EjC

−ΨiΨj,2EjE −ΨiΨjCQ−ΨiΨj,1CEj −ΨiΨj,2ECj −ΨiΨj,2EEj + 2ΨiΨjRD

+2ΨiΨj,1FjF + 2ΨiΨj,2DjD + 2ΨiΨj,2FjF −ΨiΨjRD −ΨiΨjRF −ΨiΨj,2FjD

−ΨiΨj,2FjF −ΨiΨjDR−ΨiΨj,1DFj −ΨiΨj,2FDj −ΨiΨj,2FFj)

+(1− e−δαγ̂m

)Ψi[
E11

4
(2(QC +RD)(CC +DD) + 2(CC +DD)(QC +RD))

+(E12 − E11)(QC +RD)]ΨjCj + (1− e−δαγ̂m

)Ψi[
E11

4
(CC +DD)(CC +DD)

+
(E12 − E11)

2
(CC +DD) +

(E11 − 2E12)

4
]ΨjQj + (1− e−δαγ̂m

)Ψi[
E21

4
(2(SD

+NF )(EE + FF ) + 2(EE + FF )(SE +NF )) + (E22 − E21)(SE +NF )]ΨjEj

+(1− e−δαγ̂m

)Ψi[
E21

4
(EE + FF )(EE + FF ) +

(E22 − E21)

2
(EE + FF )

+
(E21 − 2E22)

4
]ΨjSj + c(Ψi,1Ψj,1Qj +Ψi,2Ψj,2Sj)+T (Ψi,1Ψj,2Qj +Ψi,1Ψj,1Sj)

−A0ΨiΨj,2χ2j +B0ΨiΨj,1χ2j)dΩ}+
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ1,2NdΓ− c

∫︂
∂Γe

ΨiQ,1NdΓ

−c
∫︂
∂Γ

ΨiS,2NdΓ− T

∫︂
∂Γ

ΨiQ,2NdΓ− T

∫︂
∂Γ

ΨiS,1NdΓ},
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0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(µΨiΨjRj − µΨi,2Ψj,2χ2j + κ(ΨiΨjRj +Ψi,2Ψj,2Fj)(CC + EE

+DD + FF )− κ(ΨiΨjR +ΨiΨj,2Dj +ΨiΨj,1Fj +ΨiΨj,2Fj)(CC + CE

+EC + EE +DD +DF + FD + FF ) + κw2(D + F )(2ΨiΨjQCj

+2ΨiΨj,1EjE + 2ΨiΨj,2CjC + 2ΨiΨj,2EjE −ΨiΨjQC −ΨiΨjQE

−ΨiΨj,2EjC −ΨiΨj,2EjE −ΨiΨjCQ−ΨiΨj,1CEj −ΨiΨj,2ECj

−ΨiΨj,2EEj + 2ΨiΨjRD + 2ΨiΨj,1FjF + 2ΨiΨj,2DjD + 2ΨiΨj,2FjF

−ΨiΨjRD −ΨiΨjRF −ΨiΨj,2FjD −ΨiΨj,2FjF −ΨiΨjDR−ΨiΨj,1DFj

−ΨiΨj,2FDj −ΨiΨj,2FFj) + (1− e−δαγ̂m

)Ψi[
E11

4
(2(QC +RD)(CC +DD)

+2(CC +DD)(QC +RD)) + (E12 − E11)(QC +RD)]ΨjDj(1− e−δαγ̂m

)

Ψi[
E11

4
(CC +DD)(CC +DD) +

(E12 − E11)

2
(CC +DD)

+
(E11 − 2E12)

4
]ΨjRj + (1− e−δαγ̂m

)Ψi[
E21

4
(2(SD +NF )(EE + FF )

+2(EE + FF )(SE +NF )) + (E22 − E21)(SE +NF )]ΨjFj + (1− e−δαγ̂m

)

Ψi[
E21

4
(EE + FF )(EE + FF ) +

(E22 − E21)

2
(EE + FF )

+
(E21 − 2E22)

4
]ΨjNj + c(Ψi,1Ψj,1Rj +Ψi,2Ψj,2Nj)+T (Ψi,2Ψj,2Rj

+Ψi,1Ψj,1Nj) + A0ΨiΨj,2χ1j −B0ΨiΨj,1χ1j + cΨi,1Ψj,1Rj)dΩ}

+
n=4∑︂
i=1

{µ
∫︂
∂Γe

Ψiχ2,2NdΓ− c

∫︂
∂Γe

ΨiR,1NdΓ− c

∫︂
∂Γ

ΨiN,2NdΓ

−T
∫︂
∂Γ

ΨiR,2NdΓ− T

∫︂
∂Γ

ΨiN,1NdΓ},
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0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjQjdΩ}+
n=4∑︂
i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1χ1jdΩ} −
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ1,1NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjRjdΩ}+
n=4∑︂
i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1χ2jdΩ} −
n=4∑︂
i=1

{
∫︂
∂Γe

Ψiχ2,1NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjCjdΩ} −
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨj,1χ1jdΩ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjDjdΩ} −
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨj,1χ2jdΩ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjEjdΩ} −
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨj,2χ1jdΩ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjFjdΩ} −
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨj,2χ2jdΩ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ω

(Ψi,2ΨjSj +Ψi,2Ψj,2χ1j)dΩ} −
∫︂
∂Γ

Ψiχ1,2NdΓ,

0 =
n=4∑︂
i,j=1

{
∫︂
Ω

(Ψi,2ΨjNj +Ψi,2Ψj,2χ2j)dΩ} −
∫︂
∂Γ

Ψiχ2,2NdΓ,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjdΩ}Aj +
n=4∑︂
i,j=1

{
∫︂
Ωe

(−µΨiΨj + cΨi,1Ψj,1)dΩ}Qj

+
n=4∑︂
i,j=1

{
∫︂
Ωe

µΨi,2Ψj,2χ1jdΩ} −
n=4∑︂
i=1

{
∫︂
∂Γe

µΨiχ1,2NdΓ−
∫︂
∂Γe

cΨiQ,1NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

ΨiΨjBjdΩ}+
n=4∑︂
i,j=1

{
∫︂
Ωe

(−µΨiΨj + cΨi,1Ψj,1Rj)dΩ}

+
n=4∑︂
i,j=1

{
∫︂
Ωe

µΨi,2Ψj,2χ2jdΩ} −
n=4∑︂
i=1

{
∫︂
∂Γe

µΨiχ2,2NdΓ

−
∫︂
∂Γe

cΨiR,1NdΓ}. (6.83)

Now, for the local stiffness matrices and forcing vectors for each elements, we find⎡⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎦
Local

⎡⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎦
Local

=

⎡⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎦
Local

, (6.84)
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where [︁
K11

ij

]︁
=

∫︂
Ω

(−µΨi,2Ψj,2)dΩ, (6.85)

and

{F 1
i } = −µ

∫︂
∂Γe

wiχ1,2NdΓ + c

∫︂
∂Γe

wiQ,1NdΓ. (6.86)

Thus, the unknown potentials (i.e. χ1, χ2, Q, R,C,D,E, F, A and B) can be

expressed as

Qi = {χi
1},11, Ri = {χi

2},11, Si = {Qi},11 etc..., (6.87)

and similarly for the rest of unknowns.

Consequently, we obtain the following systems of equations (in the Global form)

for each individual elements as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[︁
K0101

ij

]︁ [︁
K0102

ij

]︁
. . . . . . . .

[︁
K0111

ij

]︁ [︁
K0112

ij

]︁[︁
K0201

ij

]︁ [︁
K0202

ij

]︁
. . . . . . . .

[︁
K0211

ij

]︁ [︁
K0212

ij

]︁[︁
K0301

ij

]︁ [︁
K0302

ij

]︁
. . . . . . . .

[︁
K0311

ij

]︁ [︁
K0312

ij

]︁[︁
K0401

ij

]︁ [︁
K0402

ij

]︁
. . . . . . . .

[︁
K0411

ij

]︁ [︁
K0412

ij

]︁[︁
K0501

ij

]︁ [︁
K0502

ij

]︁
. . . . . . . .

[︁
K0511

ij

]︁ [︁
K0512

ij

]︁[︁
K0601

ij

]︁ [︁
K0602

ij

]︁
. . . . . . . .

[︁
K0611

ij

]︁ [︁
K0612

ij

]︁[︁
K0701

ij

]︁ [︁
K0702

ij

]︁
. . . . . . . .

[︁
K0711

ij

]︁ [︁
K0712

ij

]︁[︁
K0801

ij

]︁ [︁
K0802

ij

]︁
. . . . . . . .

[︁
K0811

ij

]︁ [︁
K0812

ij

]︁[︁
K0901

ij

]︁ [︁
K0902

ij

]︁
. . . . . . . .

[︁
K0911

ij

]︁ [︁
K0912

ij

]︁[︁
K1001

ij

]︁ [︁
K1002

ij

]︁
. . . . . . . .

[︁
K1011

ij

]︁ [︁
K1012

ij

]︁[︁
K1101

ij

]︁ [︁
K1102

ij

]︁
. . . . . . . .

[︁
K1111

ij

]︁ [︁
K1112

ij

]︁[︁
K1201

ij

]︁ [︁
K1202

ij

]︁
. . . . . . . .

[︁
K1211

ij

]︁ [︁
K1212

ij

]︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi
1

χi
2

Qi

Ri

Ci

Di

Ei

Fi

Si

Ni

Ai

Bi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F1}
{F2}
{F3}
{F4}
{F5}
{F6}
{F7}
{F8}
{F9}
{F10}
{F11}
{F12}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.88)

In the simulation, we employed the following convergence criteria

|An+1 − An| = e1 ≤ ε, |Bn+1 −Bn| = e2 ≤ ε, where ε = maximum error = 10−10,

which demonstrates fast (quadratic) convergence within just 5 iterations using FEn-

iCS nonlinear solver (see, 6.1).

6.6 Denouement

In this chapter, continuum model for the mechanics of a hyperelastic materials rein-

forced with fibrous materials is presented in finite plane elastostatics. The hyperelastic

response of the elastomeric matrix material is accommodated by the Mooney-Rivlin
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Table 6.1: Maximum numerical errors with respect to the number of iterations.

Number of iteration Mximum error
1 1.000e-00
2 2.934e-00
3 1.132e-02
4 2.976e-07
5 7.416e-14

model, while the nonlinear stress-strain behaviors of the reinforcing fibers are as-

similated via the custom designed energy potentials of the polynomial types. The

kinematics of reinforcing fibers are formulated by their position and direction fields

and are subsequently integrated into the models of continuum deformation via the

first and second gradient of deformations. We have implemented two different types

of pseudo-elastic behaviors of the soft composite. To accommodate the Mullin’s effect

observed in the soft biological tissues, we have incorporated the damage parameter

and damage function with the proposed model inspired from the Ogden and Rox-

burgh’s model. Moreover, to capture the softening phenomena as a result of the bond

rupture and fiber damage we have included the Weibull damage variable in our model.

Within the framework of variational principles and virtual work statement, the Eu-

ler equilibrium equation and the necessary boundary conditions are derived. These,

together with the constraint of the bulk incompressibility, furnish systems of coupled

nonlinear PDEs from which a set of numerical solutions describing the pseudo-elastic

responses of the soft composites are obtained via the custom-built Finite Element

Analysis (FEA) procedure. Finally, the utilities of the presented models are justified

by comparing them with the data from multiple experiments.

We demonstrated that the model successfully predict the Mullins effect of human

aorta in both longitudinal and circumferential direction. Also the proposed model can

simulate the Mullins effect observed in soft biological tissue like Manduca Muscle. To

test the utility of the proposed model in capturing the softening due to fiber damage,

the model was compared against the in house experiment results of polyester fiber

reinforced ecoflex elastomeric composite. Where it can be observed that the model

can closely simulate the fiber damage phenomena, deformation profiles and shear

angles profiles of the elastomeric composite.
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Chapter 7

A multiscale continuum model for
the mechanics of hyperelastic
composite reinforced with
nanofibers

In section 7.1, we present two distinct stages pertaining to the modeling of randomly

oriented nanofiber-reinforced hyperelastic composite. In section 7.1.1, the kinematics

is presented for unidirectional fibers embedded in a hyperelastic matrix material. In

section 7.1.2, the obtained unidirectional fiber system is transformed into a randomly

oriented short fiber-matrix system by employing the concepts of shear lag and Krenchel

orientation parameters. The equilibrium and boundary conditions are derived in sec-

tion 7.2. In section 7.3, the interfacial debonding-induced damage mechanics is pre-

sented for the hyperelastic nanocomposite material. In section 7.4, the utility of the

presented model is demonstrated by comparing it against MD simulation results and

experimental results from the existing literature.

7.1 Kinematics of fibers embedded in a hyperelas-

tic matrix material

In this section, we present three distinct stages pertaining to the modeling of fiber-

reinforced composites, where randomly oriented nanofibers are embedded in a hy-

perelastic matrix material (see, Fig. 7.1). We begin with the derivation of compact

kinematic descriptions for a unidirectional fiber family in terms of the first and sec-
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ond gradient of continuum deformations (Fig. 7.1 (a)). This offers a more general

mapping of fiber kinematics including stretch and bending responses resulting in phe-

nomenologically relevant predictions such as smooth and continuous shear strain dis-

tributions (see, for example, [87],[125], and [180]). We then reformulate the obtained

unidirectional model into an aligned short fiber-matrix system by employing the con-

cept of shear lag parameter (Fig. 7.1 (b)). The continuum shear lag theory accounts

for the effects of fiber’s characteristic dimension toward the mechanical responses of

composites [181]-[182]. For example, the reinforcing performance of fibers becomes

intensified with increasing fiber aspect ratios as the tensile stress in the fibers may

build up to the maximum load-carrying capacity and vice versa [181]. The shear lag

parameter integrated model is expected to capture the responses of composites with

respect to the size of fibers. Lastly, we adopt the Krenchel orientation factor through

which the configurations of aligned fibers may be transformed into randomly oriented

nanofibers (Fig. 7.1 (c)). As also reported in [183], one could achieve a more com-

prehensive and accurate prediction of the mechanical responses of fiber composites

by implementing the Krenchel orientation and shear lag parameter.

Figure 7.1: Illustration of the development of nanofiber composite model.
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7.1.1 Development of the unidirectional fiber-matrix system

Let r(s) be the parametric curve of fibers’ trajectory on the deformed configuration

and τ be the unit tangent in the direction of increasing arclength parameter s. We

also defineX(S) and S as the counterparts of r(s) and s in the reference configuration.

The configuration of a particular fiber is then obtained by

λ = |d| and λτ = d; λ ≡ ds

dS
and τ ≡ dr(s)

ds
, (7.1)

where

d = FD, F =λτ ⊗D, (7.2)

and F is the gradient of the deformation function (χ(X)). Eq. (7.2) can be obtained

via the successive differentiation of r(s(S)) = χ(X(S)) with respect to the referential

position vector X(S) and the arclength parameter S using chain rule, upon making

the identification of D =dX/dS. Here, d(∗)/dS and d(∗)/ds refer to the arclength

derivatives of (∗) along fibers’ directions, respectively, in the reference and deformed

configurations. Eq. (7.2) may be projected using the orthonormal bases of {EA :

reference} and {ei : current} to yield

λτ i = di = FiADA for D = DAEA, d = dei. (7.3)

Further, using Eqs. (7.1)-(7.2), we find

λ2 = FD · FD = FTF ·D⊗D, (7.4)

which will also be used in the later sections.

Now, the Green-Lagrange strain is defined by (see, also, [105] and [106])

ε =
1

2

(︁
λ2 − 1

)︁
. (7.5)

Hence, in view of Eq. (7.4), we find

ε =
1

2
(FD · FD−1) =

1

2
(FiAFiBDADB−1) . (7.6)

Accordingly, the variational derivatives of ε can be evaluated as

ε̇ = εF·Ḟ =
∂(1/2)(FD · FD− 1)

∂F
·Ḟ = F(D⊗D) · Ḟ, or equivalently,

ε̇ = εFiA
Ḟ iA = FiBDBDAḞ iA, (7.7)
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where the superposed dot (∗̇) refers to the variational derivatives with respect to a

parameter ϵ at the particular configuration of the composite (i.e., ϵ = 0) that labels

a one-parameter family of deformations. The tensile responses of the unidirectional

continuous fibers may be represented by a simple quadratic form of the energy po-

tential as follows:

W (ε) =
1

2
Eε2. (7.8)

In the above, E is the material parameter, characterizing the tensile or elastic modulus

of the fibers. From Eqs. (7.6)-(7.7), the variational derivative of Eq. (7.8) can be

formulated as

Ẇ (ε) = WεεFiA
Ḟ iA=(Eε)εFiA

Ḟ iA

= [
E

2
(FD · FD−1)]F(D⊗D) · Ḟ (7.9)

= [
E

2
FjCFjDDCDD − 1]FiBDBDAḞ iA.

The geodesic curvature of a parametric curve (r (s)) is then formulated from Eqs.

(7.2)-(7.3) that

g ≡ r
′′
=
d(dr(S)

dS
)

dS
=
∂(FD)

∂X

∂X

∂S
= ∇[FD]D. (7.10)

In general, most of the fibers are straight prior to deformations. Even slightly curved

fibers may be idealized as ‘fairly straight’ fibers, considering their length scales with

respect to the characteristic dimension of matrix materials. This further suggests

that the gradient of the unit tangent in the reference configuration vanishes; i.e.,

∇D = 0. (7.11)

Thus, Eq. (7.10) deduces

g =∇F(D⊗D) = G(D⊗D), (7.12)

where we adopt the convention of the second gradient of deformations as

∇F ≡ G, and (7.13)

the associated compatibility condition of G is given by

GiAB = FiA,B = FiB,A = GiBA. (7.14)
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The bending response of the fiber can be represented as follows:

W (g) =
1

2
Cg · g.

Here, 1
2
Cg · g is the fiber’s bending energy potential of Spencer and Soldatos type

[93] which presumes that the bending responses of fibers are dependent entirely on

the second gradient of continuum deformations via the geodesic curvature of fibers;

g = g(G). (7.15)

The associated modulus C is the bending modulus of the fiber. The postulation

of Spencer and Soldatos has been widely and successfully adopted in the relevant

subjects of studies (see, for example, [85], [111]–[113], [115], and [120]). The associated

variational derivative can be computed as

Ẇ (g) = Cg · ġ(7.11)−(7.12)
= Cg · Ġ(D⊗D) = (Cg ⊗D⊗D) · Ġ. (7.16)

The forging developments suggest that the responses of an elastic material re-

inforced with fibers may be expressed by the first and second gradient of continuum

deformations that

W (F, ε,g) = W (F) +
1

2
Eε2 +

1

2
Cg · g, (7.17)

where W (F) refers to the energy function of matrix material. In the present study,

we adopt the Mooney-Rivlin strain energy potential for the characterization of hy-

perelastic matrix materials (see, also, [105]-[106]):

W (F) =
µ

2
(I1 − 3) +

κ

2
(I2 − 3), (7.18)

where I1 and I2 are the principal invariants of the deformation gradient tensor defined

by

I1 = tr(FTF) and I2 =
1

2
[(tr(FTF))2 − tr((FTF)2)]. (7.19)

Now, we may write the energy function of matrix material, W (F), in variational form

as follows:

WF·Ḟ = [
µ

2
(I1)F+

κ

2
(I2)F]·Ḟ = [µF+κF{(F · F)I− FTF}]·Ḟ, (7.20)

where (I1)F = 2F and (I2)F = 2F(I1I− FT · F).
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Lastly, we evaluate the induced energy variation of the response function (Eq.

(7.17)) as

Ẇ (F, ε,g) = W (F)F·Ḟ+W (ε)εεF·Ḟ+ Cg · ġ, (7.21)

which will be used in the derivation of Euler equilibrium equation and the associated

boundary conditions.

7.1.2 Transformation to the randomly oriented fiber-matrix
system

In the previous section, we derived the kinematic expressions of continuous unidirec-

tional fibers embedded in a hyperelastic matrix material. In this section, we refor-

mulate the obtained expressions into a randomly oriented fiber-matrix system. To

proceed, we introduce the following energy potential based on Eq. (7.17)

W (F, ε,g) = (1− α)
[︂µ
2
(I1 − 3) +

κ

2
(I2 − 3)

]︂
+ α

[︃
1

2
Eε2 +

1

2
Cg · g

]︃
, (7.22)

where α is the energy fraction parameter pertaining to the fiber volume fraction of

composites. In the case of composite materials reinforced with discontinuous fibers,

the load is transmitted from the matrix to the fibers through the mechanisms of

interfacial shear stress transfer [184]-[185]. It has been reported that the stress transfer

has a strong dependence on the size of the fibers, which may be described by the shear

lag theory [181]-[182]. When the aspect ratio of fiber is small, the strain along the

axial direction of the fiber is minimized due to the weak stress transfer at the interface.

The corresponding strain distribution along the fiber appears to be in dome shape

(see, gray line in Fig. 7.2). As the aspect ratio of the fiber increases, the strain in

the fiber builds up and becomes more uniform over the axial domain (see, red line in

Fig. 7.2) resulting an enhanced reinforcing performance of fibers.

Based on the shear lag theory [186], we define the following expression of nl,

which is the ratio of fiber strain, εfiber(x), to the matrix strain, εm. This strain ratio

parameter, nl allows us to accommodate the relation between the fiber strain and the

aspect ratio.

nl =
εfiber(x)

εm
=

(︃
1− cosh (βx)

cosh (βL)

)︃
, (7.23)

β =

√︄
K

Egh
. (7.24)
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Figure 7.2: Schematics of short fiber-reinforced composites unit cell (left, middle) and
axial strain distribution of a fiber (right).

In the above, K is the parameter pertaining to the stiffness of the interface which

may be obtained through Molecular dynamics (MD) simulation (see, later section),

L is the half-length of the fiber, h is the thickness of the fiber, and Eg is the Young’s

modulus of the fiber. By plotting nl =
εfiber(x)

εm
with respect to the nondimensional

fiber length coordinate, x/L, we obtain the axial strain distribution of a fiber (see,

for example, Fig. 7.2). Now, evaluating the integration of the parameter nl over the

length of the fiber, we obtain the shear lag parameter, also reported as fiber length

distribution factor (see, also, [183]) as follows:

ς =

[︃
1

2L

∫︂ L

−L

(︃
1− cosh (βx)

cosh (βL)

)︃
dx

]︃
(7.25)

=

(︃
1− tanh(βL)

βL

)︃
.

Hence, from Eq. (7.8), we find

W (ε) =
1

2
Eg (ςε)

2 (7.26)

=
1

2
Eg

(︃
1− tanh(βL)

βL

)︃2

ε2.

The substitution of Eq. (7.26) into Eq. (7.22) then yields

W (F, ε,g) = (1− α)[
µ

2
(I1 − 3) +

κ

2
(I2 − 3)] + α[

1

2
Eg

(︃
1− tanh(βL)

βL

)︃2

ε2

+
1

2
Cg · g]. (7.27)

Lastly, we introduce the following Krenchel orientation factor (see, [187]-[188]) to
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transform the aligned short fibers into randomly oriented fibers

η0 =
8

15
+

8

21
⟨P2 cos θ⟩+

3

35
⟨P4 cos θ⟩ , (7.28)

where P2 cos θ and P4 cos θ may be obtained from experimental measurements of the

angular dependence of the polarized Raman scattering intensities (see, for example,

[187]-[189]). For perfectly oriented (aligned) fibers, P2 cos θ = P4 cos θ = 1 while for

randomly oriented fibers, P2 cos θ = P4 cos θ = 0. Hence, substituting Eq. (7.28) into

(7.27), we find

W (F, ε,g) = (1− α)[
µ

2
(I1 − 3) +

κ

2
(I2 − 3)] + α[

1

2
η0Eg

(︃
1− tanh(βL)

βL

)︃2

ε2

+
1

2
Cg · g]. (7.29)

The Eq. (7.29) may be used to characterize the responses of a hyperelastic matrix

material reinforced with randomly oriented nanofibers. The implementations of the

proposed energy potential (Eq. (7.29)) and the associated derivations will be dis-

cussed in the following sections.

7.2 Equilibrium & Boundary conditions

The Euler equilibrium equations and the associated boundary conditions will be de-

rived in this section within the framework of the virtual work statement and varia-

tional principles. To proceed, we evaluate the potential energy of the system as

E =

∫︂
Ω

W (F, ε,g) dA. (7.30)

Hence, the weak form of the equilibrium equation is obtained via the virtual work

statement,
·
E = P, (7.31)

where P is the virtual power of the applied loads and the superposed dot denotes the

variational derivative. In the above, the conservative loads are characterized by the

existence of a potential L such that P = L̇. Thus, the problem of determining equi-

librium deformations is reduced to the problem of minimizing the potential energy,

E − L. In the present problem, this furnishes

Ė =

∫︂
Ω

Ẇ (F, ε,g) dA. (7.32)
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We note that volumetric changes in materials’ deformations are, in general, energet-

ically expensive processes and therefore are typically constrained in the constitutive

modeling of engineering materials (see, also, [105]-[106]). This may be achieved by

augmenting the condition of bulk incompressibility (i.e., p(J − 1)) on the proposed

energy potential (Eq. (7.29)) that

U(F, ε,g,p) = (1− α)W (F) + αη0ς
2W (ε) +

1

2
αCg · g − p(J − 1) , (7.33)

where J is determinant of F and p is a constitutively indeterminate Lagrange multi-

plier field. In the above, W (F) and W (ε) can be found from Eqs. (7.18) and (7.8),

respectively. Thus, Eq. (7.32) becomes

Ė =

∫︂
Ω

U̇(F, ε,g,p)dA. (7.34)

In view of Eqs. (7.21) and (7.33), the associated energy variation yields

U̇ = (1− α)W (F)F·Ḟ+ αη0ς
2W (ε)εεF·Ḟ+ αCg · ġ − pJ̇, and J̇ = JFF · Ḟ = F

∗·Ḟ.

(7.35)

The substitution of Eqs. (7.16), (7.20) and (7.35) into Eq.(7.34) then furnishes

Ė =

∫︂
Ω

[{(1− α)µF+(1− α)κF((F · F)I− FTF) + αη0ς
2WεεF − pF∗}·Ḟ

+α(Cg ⊗D⊗D) · Ġ]dA, (7.36)

or in components form,

Ė =

∫︂
Ω

[{(1− α)µFiA+(1− α)κFiB(FjCFjCδAB−FjAFjB) + αη0ς
2WεεFiA

−pF ∗
iA}χ̇i,A+αC(giDADB)χ̇i,AB]dA, (7.37)

where Ḟ iA = χ̇i,A and ĠiAB = χ̇i,AB are the variations of the first and second gradient

of deformations. In the above,Wε can be evaluated as Eε and εFiA
can be found in Eq.

(7.7). We note here that, in the forthcoming derivations, we use the component forms

of vectors and tensors (e.g., Eq. (7.37)) for the sake of clarity and and mathematical

tractability.

Now, applying integration by part on the last term of Eq. (7.37), we find

αC(giDADB)χ̇i,AB = αC(giDADBχ̇i,A),B − αC(giDADB),Bχ̇i,A. (7.38)
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Substituting the above into Eq. (7.37) then yields

Ė =

∫︂
Ω

[{(1− α)µFiA+(1− α)κFiB(FjCFjCδAB−FjAFjB) + αη0ς
2WεεFiA

−pF ∗
iA}χ̇i,A − αC(giDADB),Bχ̇i,A + αC(giDADBχ̇i,A),B]dA. (7.39)

Applying Green–Stokes’ theorem in the last term, we reduce Eq. (7.39) to

Ė =

∫︂
Ω

[(1− α)µFiA+(1− α)κFiB(FjCFjCδAB−FjAFjB) + αη0ς
2WεεFiA

− pF ∗
iA

−αC(giDADB),B]χ̇i,AdA+

∫︂
∂Ω

αC(giDADBχ̇i,A)NBdS, (7.40)

where NB is the rightward unit normal to ∂Ω in the sense of Green–Stokes’ theorem.

Eq. (7.40) may be rewrite as

Ė =

∫︂
Ω

PiAχ̇i,AdA+

∫︂
∂Ω

αC(giDADBχ̇i,A)NBdS, (7.41)

where

PiA = (1− α)µFiA+(1− α)κFiB(FjCFjCδAB−FjAFjB)− pF ∗
iA − αC(giDADB),B

+αη0ς
2Eg

2
(FjCFjDDCDD − 1)FiBDBDA, (7.42)

is the formulation of the Piola type stress. Further, in the case of initially straight

fibers (see, Eq. (7.11)), the above can be simplified to

PiA = (1− α)µFiA+(1− α)κFiB(FjCFjCδAB−FjAFjB)− pF ∗
iA − αCgi,BDADB

+αη0ς
2Eg

2
(FjCFjDDCDD − 1)FiBDBDA. (7.43)

Hence, the Euler equilibrium equation satisfies

PiA,A = 0 or Div(P) = 0, which holds in Ω. (7.44)

In view of Eqs. (7.11)-(7.13) and (7.43), we obtain the following Euler Equilibrium

equation as

0 = PiA,A = (1− α)µχi,AA + (1− α)κ(χi,AAχj,Cχj,C − χi,BAχj,Aχj,B)

+(1− α)κχi,B(2χj,CBχj,C − χj,AAχj,B − χj,Aχj,BA)− p,AεijεABχj,B

−αCχi,ABCDDADBDCDD + αη0ς
2Eg

2
(χj,Cχj,Dχi,B),ADADBDCDD

−αη0ς2
Eg

2
χi,BADBDA, (7.45)
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where FiA = χi,A = ∂χi/∂XA, gi,AB = χi,ABCDDADBDCDD, F
∗
iA = εijεABFjB, and

εij is the 2-D permutation; ε12 = −ε21 = 1, ε11 = −ε22 = 0. Eq. (7.45) together with

the constraint of the bulk incompressibility,

detF = χ1,1χ2,2 − χ1,2χ2,1 = 1, (7.46)

solve the unknown potentials of χ1, χ2, and p which describe the mechanical responses

of the nanofiber reinforced hyperelastic composites material. The numerical solution

of the above system of Partial Differential Equations (PDEs) (Eqs. (7.45)-(7.46))

may be accommodated via commercial packages (e.g., MATLAB, COMSOL etc.).

We now derive the expressions of the associated boundary conditions. For the

stated purpose, we apply integration by part on Eq. (7.41) (i.e., PiAχ̇i,A = (PiAχ̇i),A−

(PiA),Aχ̇i) and obtain

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

αC(giDADBχ̇i,A)NBdS −
∫︂
Ω

PiA,Aχ̇idA, (7.47)

where the Green-Stokes’ theorem is applied in the first term of the above, i.e.,∫︂
Ω

(PiAχ̇i),AdA =

∫︂
∂Ω

PiAχ̇iNAdS. (7.48)

Since the Euler equation (PiA,A = 0) holds in Ω, Eq. (7.47) reduces to

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

αC(giDADBχ̇i,A)NBdS. (7.49)

The decomposition of χ̇i,A now furnishes

χ̇i,A =
∂χ̇i

∂S

∂S

∂XA

+
∂χ̇i

∂N

∂N

∂XA

= χ̇′
iTA + χ̇i,N

NA, (7.50)

where TA = ∂S/∂XA and NA = ∂N/∂XA are respectively, the unit tangent and

normal to the boundary ∂Ω. Combining Eqs. (7.49)-(7.50), we obtain

·
E =

∫︂
∂Ω

PiAχ̇iNAdS +

∫︂
∂Ω

αCgiDADB

(︂
χ̇′
iTANB + χ̇i,N

NANB

)︂
dS. (7.51)

In addition, since

αCgiDADBTANBχ̇
′
i = (αCgiDADBTANBχ̇i)

′
− (αCgiDADBTANB)

′
χ̇i, (7.52)

Eq. (7.51) becomes

·
E =

∫︂
∂Ω

[PiANA − (αCgiDADBTANB)
′
]χ̇idS +

∫︂
∂Ω

αCgiDADBχ̇i,N
NANBdS

+

∫︂
∂Ω

(αCgiDADBTANBχ̇i)
′
dS. (7.53)
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The above may be recast to yield the standard form:

·
E =

∫︂
∂Ω

[PiANA − (αCgiDATADBNB)
′
]χ̇idS +

∫︂
∂Ω

αCgiDANADBNBχ̇i,N
dS

+
∑︂

∥αCgiDATADBNBχ̇i∥ , (7.54)

where the double bar symbol refers to the jump across the discontinuities on the

boundary ∂Ω (i.e., ∥∗∥ = (∗)+ − (∗)−) and the sum denotes the collection of all

discontinuities.

Lastly, it follows from Eq. (7.31) that the admissible mechanical powers take the

following form

P =

∫︂
∂wt

tiχ̇idS +

∫︂
∂w

miχ̇i,N
dS +

∑︂
fiχ̇i. (7.55)

Thus, by comparing Eqs. (7.54) and (7.55), we conclude that

ti = PiANA − d

dS
[αCgiDATADBNB],

mi = αCgiDANADBNB,

fi = αCgiDATADBNB, (7.56)

where ti, mi, and fi are the expressions of edge tractions, edge moments, and the cor-

ner forces, respectively. It is also noted here that the stress expression in Eq. (7.42) is

a combination of the Piola-type stress ((1−α)µFiA+(1−α)κFiB(FjCFjCδAB−FjAFjB)+

αη0ς
2WεεFiA

− pF ∗
iA) and double stress (αC(giDADB),B) such that the second gradi-

ent of the deformation term (i.e., αC(giDADB),B) may be interpreted as the energy

conjugate to the admissible double force mi when it is prescribed on the desired

boundaries of the composite.

The solutions of the above system of PDEs may be determined by imposing the

following boundary conditions (see, Fig. 7.3) and the corresponding results are dis-

cussed in the model implementation and discussion section.

t1 = P11, t2 = P12 = 0 at X1 = a,−a and

t1 = P21 = 0, t2 = P22 = 0 at X2 = b,−b. (7.57)
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Figure 7.3: Schematic of the problem.

7.3 Model for damage mechanics of short/nano

fiber-reinforced composite due to interfacial

debondings

When nanofiber-reinforced composite experiences sufficiently high strain exceeding

a certain threshold, the interfaces between the nanofibers and matrix material are

damaged. It has been experimentally observed that when the strain is increased to

a sufficiently high magnitude, the strain distribution along the interface of nanofiber

and matrix material changes from a dome-shaped to an M-shaped distribution ([184]

and [190]) (see, also, Fig. 7.10 (b) and 7.12 (b)). Other studies indicate that, espe-

cially for those with long fibers, multiple drops in the strain distributions are observed

along the middle portion of the fiber interface [191]-[192]. In the present study, we

confine our analysis to the cases of M-shaped axial strain distributions for the sake

of increased visibility and mathematical tractability. The cases of multiple dropped

strain distributions may readily be accommodated by modifying the proposed inter-

face stiffness function. The strain drop along the interface is due to the debonding

between the matrix and fiber, resulting in accumulated damages on the interface [184].

This further causes a reduction in the interface stiffness moduli, K. To accommodate

such a reduction in K and, further, to assimilate the M-shaped axial strain distri-

bution along the interface, we proposed the following non-uniform interface stiffness
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potential

Keff = K0 − fun(ε̂)e−6.7( x
L)

2

, (7.58)

where fun(ε̂) is the damage characterizing function, pertaining to the reduction of

interface stiffness which may be expressed as

fun(ε̂) = aΓ (ε̂− ε̂cric) (1 + ε̂cric)
b . (7.59)

In the above, Γ (ε̂− ε̂cric) is referred to as the damage activation function which

is switched from inactive mode to active mode when the critical value (in this case

critical strain, ε̂cric) is exceeded. In the above, ε̂ refers to the overall strain of the

material, computed as the ratio of change in length of the composite to the initial

length. The proposed interface damage function (Eqs. (7.58)-(7.59)) is inspired by

the Weibull damage model [92], which has been successfully adopted to simulate the

fiber damages in the composites [193]-[194]. The activation of the interface damage

function is governed by the condition:

Γ(x) =

{︃
x ≤ 0; Γ(x) = 0 (inactive mode)

x > 0; Γ(x) = x (active mode)

}︃
. (7.60)

Hence, when the overall strain of the composite (ε̂) is below a critical threshold (ε̂cric),

Γ (ε̂− ε̂cric) remains inactivated (the corresponding value of Γ is zero). Accordingly,

there is no interfacial debonding present and we expect to obtain a dome-shaped

distribution of strain at the interface. When ε̂ exceeds ε̂cric, interfacial debonding

process initiates (the corresponding value of Γ is non-zero) and, hence, M-shaped

axial strain distribution is expected. The corresponding critical value of the threshold

(ε̂cric) may be obtained via the proposed MD simulation presented in the later section.

The parameter a and b in Eq. (7.59) dictates the rate of the debonding process and

they depend on the types of nanofiber and matrix material. It has been found that,

when the nanofibers are embedded in a stiffer matrix material (e.g., Polyethylene

terephthalate (PET)), the damage progresses rapidly which corresponds to high a

and b values. On the other hand, when the nanofibers are embedded in a soft matrix

material (e.g., ecoflex, Polydimethylsiloxane (PDMS), etc.), the interfacial damage

gradually takes place which may be assimilated by low a and b values.
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Now, using Keff we define the shear lag parameter as follows:

βeff =

√︄
Keff

Egh
, (7.61)

nl =

(︄
1−

cosh
(︁
βeffx

)︁
cosh

(︁
βeffL

)︁)︄ , (7.62)

ς =

[︄
1

2L

∫︂ L

−L

(︄
1−

cosh
(︁
βeffx

)︁
cosh

(︁
βeffL

)︁)︄ dx]︄ . (7.63)

A similar process as presented in Eqs. (7.26) - (7.29) may be followed in order to

obtain the expression of the energy function

W (F, ε,g) = (1− α)
[︂µ
2
(I1 − 3) +

κ

2
(I2 − 3)

]︂
+ α

[︃
1

2
η0Egς

2ε2 +
1

2
Cg · g

]︃
. (7.64)

7.4 Model implementation and discussions

In this section, the implementation of the proposed model along with the MD simu-

lation results are presented. We begin with the atomistic simulations for the micro-

mechanical responses of the three distinct types of graphene-reinforced Polyethylene

terephthalate (PET) nanocomposites with altered/defective interfaces. We then dis-

cuss the damage mechanics of the composite systems due to interfacial debonding

of two distinct types of nanocomposites addressing both gradual and rapid debond-

ing processes at the interfaces. Lastly, using the obtained model, we assimilate the

deformation configurations of a highly stretchable elastomeric nanocomposite.

7.4.1 Atomistic molecular dynamics simulations

In order to apply the proposed model to predict the effective elastic properties of

single-layer graphene/polymer nanocomposites with varying interfacial imperfection,

the damage parameter K (interface stiffness), Eg, and h defined in Eqs. (7.23)-(7.24)

and elastic properties of the matrix material were determined using the atomistic

molecular dynamics simulation procedures presented in [195]. For the sake of com-

pleteness and coherence, the MD simulation procedures to obtain all the required

parameters are summarized in this section. In general, the interface between defect-

free graphene and typical engineering polymer is weak in nature, thus, a cohesive shear
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lag model needs to be used to predict the damage-dependent properties of nanocom-

posites. As has been discussed in detail, structural defects formed in graphene alter

not only the elasticity of graphene but also the interfacial damage parameters. There-

fore, we considered pristine, hydroxylated, and Thrower-Stone-Wales (TSW) defected

graphene embedded in Polyethylene terephthalate (PET) matrix to validate the per-

formance of the proposed model.

Figure 7.4: Molecular models of PET matrix, PET chain, and Graphene/PET
nanocomposites [195].

To construct the molecular unit cell representing fully aligned nanocomposites, an

amorphous PET matrix consisting of 16 PET chains polymerized with 10 ethylene

terephthalate monomers and each defected graphene were constructed respectively.

The dimension of pure PET matrix is approximately 32.73Å × 32.73Å × 32.73Å.

Three single layer graphenes were modeled as reinforcement: pristine, 10 TSW de-

fected and 10 hydroxilated graphene respectively. By laminating two PET matrices

and one graphene as shown in Fig. 7.4, the transversely isotropic nanocomposites

could be modeled. The thickness of graphene (h) is 3.4Å which has been widely used

for the equivalent continuum description of graphene [196]-[197]. The volume frac-

tion of graphene in each nanocomposite is nearly 4.6%. To eliminate the finite size

effect, all periodic boundary conditions was applied to the unit cell. All the molecular

structures were equilibrated at 300K and 1atm before each production run to derive

the elastic constants of graphene, PET matrix and nanocomposites. The dimension

nanocomposites are approximately 33.97Å×34.09Å×68Å. The number of atoms con-

sidered in each molecular model is enough to derive thermodynamic properties of the
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systems in equilibrating and predicting the mechanical properties of each structures

with Virial theorem.

To draw the stress-strain curves of nanocomposites and to obtain elastic moduli,

longitudinal tension and longitudinal shearing were applied to the unit cell with finite

true strain rate of 0.0002/psec. Within 2% of elastic strain, the longitudinal Young’s

modulus of nanocomposites was determined. In the same manner, the Young’s modu-

lus of pure PET was determined. The elastic modulus of graphene Eg was determined

from the dynamic tensile simulation of each graphene at 300K. To predict the tan-

gential damage initiation at the interface, the shear stress in PET matrix according to

the applied shear strain to the nanocomposites was determined. Fig. 7.11 shows the

variation of shear stress in 10 hydroxylated graphene under the longitudinal shearing

of nanocomposites unit cell. The overall variation of shear stress including a sudden

drop down will be discussed in the later section.

The damage parameter K was determined from the mode II interfacial sliding

simulation of the graphene-PET laminate model. For the sliding simulation, the

nanocomposites unit cell shown in Fig. 7.11 was modified into a finite two-layer

structure with a vacuum area below the graphene by eliminating the periodic bound-

ary condition along the through-the-thickness direction of graphene. To draw the

sliding distance-traction relationship, graphene was tangentially displaced with a ve-

locity of 0.025Å/4psec while the upper part of PET was frozen. Lastly, the slope of

traction-displacement relationship within 2Å of sliding displacement was determined

as the damage parameter K.

All the interfacial parameters and properties of nanocomposites determined from

MD simulations are arranged in Table-1 according to the type of structural defect

in graphene, where EL, GL, and Gg are the longitudinal Young’s modulus of the

composite, shear modulus of the composite, and shear modulus of the graphene,

respectively. To validate the performance of proposed model in predicting responses

of nanocomposites with damaged interface, the data arranged in Table 7.1 were used in

the proposed model and conventional Mori-Tanaka model to predict the longitudinal

Young’s modulus of nanocomposites at varying aspect ratios of graphene.
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Table 7.1: Interfacial parameters and properties of nanocomposites determined from
MD simulations.

Graphene/PET K[GPa/nm] Eg[GPa] Gg[GPa] h[nm] EL[GPa] GL[GPa]
Pristine 0.173 1023 397 0.34 49.03 0.07

Hydroxylated 3.03 956 386 0.34 45.47 0.77
TSW Decfected 0.931 335 156 0.34 23.36 0.76

PET − − − − 3.09 1.06

7.4.2 Micromechanics of PET-Graphene nanocomposite us-
ing MD integrated continuum model

In this section, we estimate the Young’s modulus of PET-Graphene nanocomposite

with respect to the varying aspect ratios of fibers by employing the proposed model.

The required values of parameters (i.e., h,Eg, K, and C = Gg) in Eq. (7.29) are

obtained from the MD simulation as summarized in the Table-1. The energy fraction,

α is assumed to be equivalent to the fiber volume fraction, 4.6%. The Mooney-Rivlin

parameters are chosen as µ = 1.026 GPa and κ = 0, which produce the same response

of the PET matrix with the modulus of EL = 3.09 GPa (refer, Table-1). For the

Krenchel orientation factor (η0), we consider the case of perfectly aligned fibers with

P2 cos θ = P4 cos θ = 1, and, hence obtain η0 = 1 from Eq. (7.28).

(a) (b)

Figure 7.5: (a) Young’s modulus VS aspect ratio plot for pristine graphene-reinforced
PET case. (b) MD model of the pristine graphene sheet [195].

In our model, we consider different cases of nanofiber reinforcements by varying

the aspect ratios of graphene sheets (S = 2L/h) between 10 to 10000. For each case,

we solve our model using the finite element method with uniaxial tensile loading
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(a) (b)

Figure 7.6: (a) Young’s modulus VS aspect ratio plot for hydroxylated graphene-
reinforced PET case. (b) MD model of the hydroxylated graphene sheet [195].

(as shown in Fig. 7.3), and stress-strain responses are obtained. From the stress-

strain responses, we calculate the longitudinal Young’s modulus (EL) using the initial

tangent modulus expression, EL =
(︁
dσ
dε

)︁
ε=0

. Hence, we obtain the Young’s modulus of

the composite with different aspect ratios of the graphene sheet. We repeat the same

procedure for three different configurations of altered/defective graphene interfaces

embedded in PET matrix. The obtained results from the proposed continuum model

for the cases of pristine, hydroxylated, and TSW defected graphene embedded in PET

matrix are presented through Figs. 7.5-7.7. The estimations using the modified Mori-

Tanaka model (see, [195]) are also presented for the purpose of cross-examination. It

is found that the longitudinal Young’s modulus of nanocomposites determined from

the proposed continuum model and Mori-Tanaka (M-T) model converge to nearly

49GPa, 45GPa, and 19GPa for the pristine, hydroxylated, and TSW defected cases,

respectively. The converged values of the longitudinal Young’s modulus agree fairly

well with the MD simulation results shown in Table 7.1 (EL[GPa]) for the cases of

infinitely long graphene. Therefore, it is suggested that the proposed model may

be used as an effective alternative in predicting the stiffness of PET composite, and

perhaps similar kinds of materials, with altered/defective graphene interfaces.

Lastly, using Eqs. (7.23)-(7.24), we estimate the strain distributions along the

graphene-PET interface with respect to the varying aspect ratios (Fig. 7.8). The
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(a) (b)

Figure 7.7: (a) Young’s modulus VS aspect ratio plot for TSW defected graphene-
reinforced PET case. (b) MD model of the TSW defected graphene sheet [195].

dome-shaped axial strain distribution is predicted when the aspect ratio is small

enough. In this case, the ratio of fiber strain (εfiber(x)) to matrix strain (εm) is well

below 1, which further suggests that strain transfer from fibers to matrix material is

substantially limited. As the aspect ratio increases, the strain distributions become

more uniform, especially in the midsection, and the corresponding
εfiber(x)

εm
ratio con-

verges to 1. The result indicates that a strong load transfer between the fiber and

matrix is achieved and, hence the reinforcing effect of fibers is maximized.
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Figure 7.8: Strain distributions along the fiber with respect to varying aspect ratios;
(a) pristine, (b) hydroxylated, (c) TSW defected graphene cases.
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7.4.3 Prediction of damage mechanics of nanofiber compos-
ites due to interfacial debonding

In this section, the obtained model developed through Eqs. (7.58) - (7.64) is used

to assimilate the damage mechanics of nanocomposites induced by the debonding

process of fibers at the interface. Debonding at the interface is a type of damage

typically observed in nanocomposites due to the weak nature of the interface between

the relatively soft matrix material and stiff fibers (see, for example, [184] and [190]-

[192]). To demonstrate the utility of the proposed model in assimilating the damage

mechanics, we analyze two distinct cases. In the first case, we consider a soft matrix-

based nanocomposite, where it is generally observed that the damage progression is

gradual and may sustain relatively large strain during the damage phase. In the latter

case, a relatively stiff matrix-based nanocomposite is considered, which generally

undergoes rapid damage and breaks off within a very small strain range during the

damage phase.

Gradual debonding of soft matrix-based nanocomposites

In this case, we consider nanocomposite made from cellulose nanofiber (CNF) / car-

bon nanotube (CNT) nano-network reinforced Polydimethylsiloxane (PDMS). Poly-

dimethylsiloxane (PDMS) is a widely used polymer in various applications, including

wearable/implantable devices and microfluidics, owing to its biocompatibility, optical

transparency, and flexibility [198]-[199]. When CNF/CNT nano-networks are embed-

ded in the PDMS, it produces a conductive-based material which is very useful in the

manufacture of flexible electronic devices [200]. In [200], CNF/CNT film is prepared

via mixing and vacuum filtration. The CNF/CNT film is then served as a template

to develop nanocomposite via the immersion process. In the resulting composite, the

CNF/CNT nano-networks provided both improved mechanical strength and electrical

conductivity due to the nano-network structures and the continuous electronic trans-

mittance pathways in the nanocomposite. From the experiment, it is found that the

CNF/CNT film forms a rigid structure with tensile strength, Young’s modulus, and a

fracture strain of 61.7MPa, 5132MPa, and 1.1%, respectively. The volume fraction

of CNF/CNT is found to be 76.3%. We use the Mooney-Rivlin model to characterize
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the PDMS matrix material, the results are shown in Fig. 7.9. The values of all the

parameters that are used in the proposed model (developed through Eqs. (7.58) -

(7.64)) are summarized in Table 7.2.
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Figure 7.9: Mooney-Rivlin characterization of PDMS matrix [200].

Table 7.2: Interfacial parameters and properties of CNF/CNT nano-networks rein-
forced PDMS nanocomposite.

We solve the obtained model using the finite element method with uniaxial ten-

sile load applied (as shown in Fig. 7.3) and the stress-strain responses are estimated

from the solution. The results are then compared with the experimental data pre-

sented in [200], where a uniaxial tensile test was performed for the CNF/CNT nano-

network reinforced PDMS nanocomposite sample using a universal material-testing

machine at room temperature (see, Fig. 7.10 (a)). It is observed that the proposed

model successfully predicts the nonlinear stress-strain (strain-softening) response of

the nanocomposite with good accuracy (maximum error of 4.4%). As the strain of

the material is increased beyond 1.2% (which is the critical strain value chosen for

this case), the stiffness of the material is predicted to be progressively decreased with
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the activation of the proposed damage function (see, Eqs. (7.59)-(7.60)). From the

Eqs. (7.61)-(7.62), we also estimate the
εfiber(x)

εm
distributions along the fiber (see,

Fig. 7.10 (b)). Up until 1.2% strain of the composite, the distribution appears to

be dome-shaped. Once the overall composite strain increases beyond 1.2%, the pro-

file gradually changes from dome-shaped to M-shaped distributions indicating the

initiation of debonding at the interface.
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Figure 7.10: (a) Stress-strain plot of CNF/CNT nano-network reinforced PDMS com-
posite [200]. (b) Strain distribution along the fiber with respect to varying strain levels
of the composite.

Rapid debonding of stiff matrix-based nanocomposites

To demonstrate the performance of the proposed model in predicting the rapid

debonding damages, we consider the case of the PET matrix material reinforced with

hydroxylated graphene. The values of the interfacial parameters and properties of the

nanocomposite are obtained from the proposed MD simulation which is summarized

in Table-1. The critical strain value (ε̂cric) at which the debonding is initiated at the

interface is predicted through the assimilation of tangential damage initiation pro-

cess. For this purpose, the shear stress in graphene-reinforced PET nanocomposite is

determined from the MD simulation. In Fig. 7.11 (a), the shear stress with respect

to longitudinal shear strain (γxy) is presented for the case of hydorxylated graphene-

reinforced PET composite. It is observed from Fig. 7.11 (a) that the stress drops

sharply in the strain range between 0.07 − 0.08, which indicates possible tangential

damage initiation at the interface. From the obtained value of γxy, we then estimate

254



the critical normal strain (ε̂cric) using the following relation;

ε̂cric =
γxyβL

4 tanh (βL)
. (7.65)

Figure 7.11: Graphene shear stress VS composites applied strain under longitudinal.
Shear of nanocomposite (left). Nanocomposites under longitudinal shearing (MD
simulation) (right) [195].

To compare the results from the continuum model with the experimental data,

we consider the experiment performed in [201], where graphene-reinforced PET com-

posite is tested under uniaxial tensile loading. The volume fraction of graphene in

the composite sample is found to be 5%, thus α = 5 is used in the continuum model.

For the Krenchel orientation factor (η0), we chose randomly oriented fibers with

P2 cos θ = P4 cos θ = 0, and we get η0 =
8
15
. The aspect ratio is found to be, S = 500.

After conversion, we obtained ε̂cric = 2.3% by using Eq. (7.65). In the Eq. (7.59), we

used a = 5.77, b = 7, and ε̂cric = 2.3%. The obtained model is then solved using the

custom-built finite element procedure and the corresponding results are summarized

in Fig. 7.12. The stress-strain results in Fig. 7.12 (a) indicate that the proposed

model successfully predicts the rapid damage progression of the composite with good

accuracy (the maximum error is 2.5%). More precisely, as the strain of the material

is increased beyond 2.3% (which is the critical strain value), the stiffness of the mate-

rial is predicted to be rapidly decreased with the activation of the proposed damage

function (see, Eqs. (7.59)-(7.60)). Fig. 7.12 (b) illustrates the changes in the strain
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distributions along the fiber as the overall strain of the composite is increased. Up un-

til 2.3% strain, the distribution appears to be dome-shaped. As the overall composite

strain exceeds 2.3%, the profile changes from dome-shaped to M-shaped distribution

which further indicates the initiation of debonding process at the interface.
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Figure 7.12: (a) Stress-strain plot of graphene-reinforced PET composite [201]. (b)
Strain distributions along the fiber with respect to varying strain levels of the com-
posite.

7.4.4 Deformation analysis of Hyperelastic nanocomposite

In this section, we examine the performance of the proposed model in assimilating

large deformation of an elastomeric nanocomposite. For the demonstration purpose,

the experimental results of multi-walled carbon nanotubes (MWCNTs) reinforced

Ecoflex-0030 elastomeric nanocomposite is chosen from the work of [29] because of its

ability to withstand an exceptionally large strain (up to 10 times to its initial dimen-

sion). Due to its highly flexible characteristics, Ecoflex matrix-based nanocomposite

may be used in many applications involving flexible electronic devices, wearable sen-

sors, and soft robotics ([29]-[30],[34], and [202]). The nanocomposite sample is made

from multi-walled carbon nanotubes (MWCNTs) embedded in the highly stretchable

elastomeric matrix, Ecoflex-0030. The sample is tested under uniaxial tensile loading

(see, further details in [29]). We characterize the responses of Ecoflex-0030 matrix us-

ing the Mooney-Rivlin model with the configuration parameters of µ = 0.01MPa and

κ = 0.002MPa, respectively (see, Fig. 7.13 ). The values of all the parameters that

are used in the proposed model are summarized in the Table 7.3. The stress-strain

256



responses obtained from the proposed model and the experimental work of [29] are

presented in Fig. 7.14. The result indicates that the proposed model closely assimi-

lates the non-linear (strain-stiffening) responses of the nanocomposite with maximum

prediction error of 3.5%.
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Figure 7.13: Stress-strain characterization of Ecoflex-0030 matrix using Mooney-
Rivlin Model.

Table 7.3: Properties of MWCNTs/Ecoflex-0030 nanocomposite.

Eg[GPa] h[nm] K0[MPa/nm] S µ[MPa] κ[MPa] α C[GPa] η0
900 65 0.65 460 0.01 0.002 1% 361 8

15

In Fig. 7.15, the deformation contours of the nanocomposite are presented at

different stretch levels (up to 10 times) and the corresponding deformation contours

are calculated as the norms of displacement fields, i.e.,
√︁
χ2
1 + χ2

2. It is observed that

the deformation profiles closely resemble the deformation of a hyperelastic material

under tension. Especially, the change in the lateral dimension along the length of the

material follows a smooth parabolic curve that is typically observed in the hypere-

lastic material under uniaxial tensile loading ([125],[180], and [35]). The existence of

second gradient term allows the proposed model to capture the smooth and nonlinear

deformation profile by regularizing any discontinuities that arise from the classical

first gradient model, the similar phenomena is also discussed in [203].

Lastly, the corresponding shear strain distributions are computed through the de-
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Figure 7.14: Stress-strain curves (left) and deformed configurations at different
stretches (right) for MWCNTs reinforced Ecoflex-0030 composite [29].

formation maps of χ1 and χ2 by using the relations: γxy = α+β, where tan−1
(︂

χ2,1

1+χ1,1

)︂
=

α, tan−1
(︂

χ1,2

1+χ2,2

)︂
= β and the results are presented in Fig. 7.16. It is apparent from

Fig. 7.16 that the proposed model produces smooth and continuous shear strain fields

throughout the entire domain of interest, unlike those obtained from the classical

(first-order) continuum theory, where the corresponding shear strain fields experience

significant discontinuities (see, for example, [85], [87], and [112]). In Fig. 7.16, three

Figure 7.15: Deformation contours of MWCNTs/Ecoflex-0030 nanocomposite at dif-
ferent stretches.

distinct shear angle zones may be clearly visible. The dark blue regions close to the

left and right edges of the domain represent low shear angle regions. The dark red

area near the center of the domain represents high shear angle region. Whereas, the

areas in between low and high shear regions represent transition regions, where the

shear angle changes smoothly transitioning from low to high shear. In Fig. 7.16,

three internal parameters (i.e., lm, γm, θ ) are defined to quantify the changes within
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the shear angle fields at different stretch levels. It may be observed that as the stretch

increases, the length of the high shear zone, lm (where l0 is the undeformed length of

the material) and maximum shear angle value, γm both increase. Whereas, the tip

angle, θ of the high shear zone decreases with increasing stretch.

Figure 7.16: Shear strain contours of MWCNTs/Ecoflex-0030 nanocomposite at dif-
ferent stretches.

7.5 Finite element analysis of the 4th order cou-

pled PDE:

The system of PDEs in Eq. (7.45) are 4th order coupled differential equations. The

case of such less regular PDE system deserves delicate mathematical treatment and

is of particular practical interest. Therefore, it may not be trivial to report the

associated FEA procedure. After performing the Einstein summation and applying

D = E1 (i.e., D1 = 1, D2 = 0), Eq. (7.45) may be rearranged into the following form:

0 = (1− α)µ(Q+ χ1,22) + (1− α)κ(Q+ E,2)(CC + EE +DD + FF )

−(1− α)κ(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + (1− α)κ(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+αη0ς
2Eg

2
(CCχ1,1 +DDχ1,1),1 − αη0ς

2Eg

2
Q

−A0χ2,2 +B0χ2,1 − αcQ,11,
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0 = (1− α)µ(R + χ2,22) + (1− α)κ(R + F,2)(CC + EE +DD + FF )

−(1− α)κ(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD

+DF + FD + FF ) + (1− α)κ(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1

−EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D + 2F,2F −RD

−RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+αη0ς
2Eg

2
(CCχ2,1 +DDχ2,1),1 − αη0ς

2Eg

2
R

+A0χ1,2 −B0χ1,1 − αcR,11,

0 = Q− χ1,11,

0 = R− χ2,11,

0 = C − χ1,1,

0 = D − χ2,1,

0 = E − χ1,2,

0 = F − χ2,2,

0 = A− (1− α)µ(Q+ χ1,22)− αcQ,11,

0 = B − (1− α)µ(R + χ2,22)− αcR,11, (7.66)

where Q = χ1,11, R = χ2,11, C = χ1,1, D = χ2,1, E = χ1,2, and F = χ2,2. Hence,

the differential equations are transformed from the three coupled equations of the 4th

order to ten coupled equations of the 2nd order. Especially, the non-linear terms in

the above equations (e.g., Aχ2,2, Bχ2,1 etc...) may be systematically treated via the

Picard iterative procedure and/or Newton method;

−Ainitialχinitial
2,2 +Binitialχinitial

2,1 =⇒ −A0χ
0
2,2 +B0χ

0
2,1

Ainitialχinitial
1,2 −Binitialχinitial

1,1 =⇒ A0χ
0
1,2 −B0χ

0
1,1, (7.67)

where the estimated values of A, B continue to be updated based on their previous

estimations (e.g., A1 and B1 are refreshed by their previous estimations of Ao and

Bo) as iteration progresses and similarly for the rest of non-linear terms.
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Also, the weight forms of Eq. (7.66) can be found as

0 =

∫︂
Ω

w1{(1− α)µ(Q+ χ1,22) + (1− α)κ(Q+ E,2)(CC + EE +DD + FF )

−(1− α)κ(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE +DD +DF + FD

+FF ) + (1− α)κ(C + E)(2QC + 2E,1E + 2C,2C + 2E,2E −QC −QE

−E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D

+2F,2F −RD −RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+αη0ς
2Eg

2
(CCχ1,1 +DDχ1,1),1 − αη0ς

2Eg

2
Q− A0χ2,2 +B0χ2,1

−αcQ,11}dΩ,

0 =

∫︂
Ω

w2{(1− α)µ(R + χ2,22) + (1− α)κ(R + F,2)(CC + EE +DD + FF )

−(1− α)κ(R +D,2 + F,1 + F,2)(CC + CE + EC + EE +DD +DF + FD

+FF ) + (1− α)κ(D + F )(2QC + 2E,1E + 2C,2C + 2E,2E −QC −QE

−E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2RD + 2F,1F + 2D,2D

+2F,2F −RD −RF − F,2D − F,2F −DR−DF,1 − FD,2 − FF,2)

+αη0ς
2Eg

2
(CCχ2,1 +DDχ2,1),1 − αη0ς

2Eg

2
R + A0χ1,2 −B0χ1,1

−αcR,11}dΩ,

0 =

∫︂
Ω

w3(Q− χ1,11)dΩ,

0 =

∫︂
Ω

w4(R− χ2,11)dΩ,

0 =

∫︂
Ω

w5(C − χ1,1)dΩ,

0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ,

0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

w9(A− (1− α)µ(Q+ χ1,22)− αcQ,11)dΩ,

0 =

∫︂
Ω

w10(B − (1− α)µ(R + χ2,22)− αcR,11)dΩ. (7.68)
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Thus, we apply integration by part and the Green-Stokes’ theorem, (e.g., µ

∫︂
Ωe

w1χ1,22dΩ =

−µ
∫︂
Ωe

w1,2χ1,2dΩ + µ

∫︂
∂Γ

w1χ1,2NdΓ) and thereby obtain the following weak forms of

Eq. (7.68):

0 =

∫︂
Ω

{(1− α)µw1Q− (1− α)µw1,2χ1,2 + (1− α)κw1(Q+ E,2)(CC + EE

+DD + FF )− (1− α)κw1(Q+ C,2 + E,1 + E,2)(CC + CE + EC + EE

+DD +DF + FD + FF ) + (1− α)κw1(C + E)(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2RD

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F −DR−DF,1

−FD,2 − FF,2) + αη0ς
2Eg

2
w1(CCχ1,1 +DDχ1,1),1 − αη0ς

2w1
Eg

2
Q

−A0w1χ2,2 +B0w1χ2,1 + αcw1,1Q,1}dΩ− cα

∫︂
∂Γ

w1Q,1NdΓ

+(1− α)µ

∫︂
∂Γ

w1χ1,2NdΓ,

0 =

∫︂
Ω

{(1− α)w2µR− (1− α)w2,2µχ2,2 + (1− α)κw2(R + F,2)(CC + EE

+DD + FF )− (1− α)κw2(R +D,2 + F,1 + F,2)(CC + CE + EC + EE

+DD +DF + FD + FF ) + (1− α)κw2(D + F )(2QC + 2E,1E + 2C,2C

+2E,2E −QC −QE − E,2C − E,2E − CQ− CE,1 − EC,2 − EE,2 + 2RD

+2F,1F + 2D,2D + 2F,2F −RD −RF − F,2D − F,2F −DR−DF,1

−FD,2 − FF,2) + αη0ς
2Eg

2
w2(CCχ2,1 +DDχ2,1),1 − αη0ς

2w2
Eg

2
R

+A0w2χ1,2 −B0w2χ1,1 + αcw2,1R,1}dΩ− αc

∫︂
∂Γ

w2R,1NdΓ

+(1− α)µ

∫︂
∂Γ

w2χ2,2NdΓ,
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0 =

∫︂
Ω

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γ

w3χ1,1NdΓ,

0 =

∫︂
Ω

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γ

w4,1χ2,1NdΓ,

0 =

∫︂
Ω

(w5C − w5χ1,1)dΩ,

0 =

∫︂
Ω

w6(D − χ2,1)dΩ,

0 =

∫︂
Ω

w7(E − χ1,2)dΩ,

0 =

∫︂
Ω

w8(F − χ2,2)dΩ,

0 =

∫︂
Ω

(w9A− (1− α)µw9Q+ (1− α)µw9,2χ1,2 + αcw9,1Q,1)dΩ

−
∫︂
∂Γ

(1− α)µw9χ1,2NdΓ−
∫︂
∂Γ

αcw9Q,1NdΓ,

0 =

∫︂
Ω

(w10B − (1− α)µw10R + (1− α)µw10,2χ2,2 + αcw10,1R,1)dΩ

−
∫︂
∂Γ

(1− α)µw10χ2,2NdΓ−
∫︂
∂Γ

αcw10R,1NdΓ, (7.69)

where Ω, ∂Γ, and N are respectively, the domain of interest, the associated boundary,

and the rightward unit normal to the boundary ∂Γ in the sense of the Green-Stokes’

theorem. The unknown potentials of χ1, χ2, Q, R,C,D,E, F, A, and B may be

expressed in the form of Lagrangian polynomial that

(∗) =
n=4∑︂
j=1

[(∗)jΨj(x, y)]. (7.70)

Accordingly, the test function w is found to be

wm =
n=4∑︂
i=1

wi
mΨi(x, y); i = 1, 2, 3, 4, and m = 1, 2, 3, 4, .....10, (7.71)

where wi is the weight of the test function and Ψi(x, y) are the associated shape

functions; Ψ1 = (x−2)(y−1)
2

, Ψ2 = x(y−1)
−2

, Ψ3 = xy
2
, and Ψ4 = y(x−2)

−2
. Invoking Eq.

(7.70), the Eq. (7.69) can be recast in terms of Lagrangian polynomial representation

as
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0 =
n=4∑︂
i,j=1

∫︂
Ωe

{(1− α)µΨiΨjQj − (1− α)µΨi,2Ψj,2χ1j + (1− α)κ(ΨiΨjQj +Ψi,2Ψj,2Ej)

(CC + EE +DD + FF )− (1− α)κ(ΨiΨjQ+ΨiΨj,2Cj +ΨiΨj,1Ej +ΨiΨj,2Ej)

(CC + CE + EC + EE +DD +DF + FD + FF ) + (1− α)κ(C + E)(2ΨiΨjQCj

+2ΨiΨj,1EjE + 2ΨiΨj,2CjC + 2ΨiΨj,2EjE −ΨiΨjQC −ΨiΨjQE −ΨiΨj,2EjC

−ΨiΨj,2EjE −ΨiΨjCQ−ΨiΨj,1CEj −ΨiΨj,2ECj −ΨiΨj,2EEj + 2ΨiΨjRD

+2ΨiΨj,1FjF + 2ΨiΨj,2DjD + 2ΨiΨj,2FjF −ΨiΨjRD −ΨiΨjRF −ΨiΨj,2FjD

−ΨiΨj,2FjF −ΨiΨjDR−ΨiΨj,1DFj −ΨiΨj,2FDj −ΨiΨj,2FFj)

+αη0ς
2Eg

2
(2ΨiΨj,1QCχ1,1 +ΨiΨj,1CCQ,1 + 2ΨiΨj,1RDχ1,1 +ΨiΨj,1DDQ,1)

−αη0ς2ΨiΨj
Eg

2
Q− A0ΨiΨj,2χ2j +B0ΨiΨj,1χ2j + αcΨi,1Ψj,1Qj}dΩ

+
n=4∑︂
i=1

{(1− α)µ

∫︂
∂Γe

wiχ1,2NdΓ− αc

∫︂
∂Γe

wiQ,1NdΓ},

0 =
n=4∑︂
i,j=1

∫︂
Ωe

{(1− α)µΨiΨjRj − (1− α)µΨi,2Ψj,2χ2j + (1− α)µ(ΨiΨjRj +Ψi,2Ψj,2Fj)

(CC + EE +DD + FF )− (1− α)µ(ΨiΨjR +ΨiΨj,2Dj +ΨiΨj,1Fj +ΨiΨj,2Fj)

(CC + CE + EC + EE +DD +DF + FD + FF ) + (1− α)µw2(D + F )(2ΨiΨjQCj

+2ΨiΨj,1EjE + 2ΨiΨj,2CjC + 2ΨiΨj,2EjE −ΨiΨjQC −ΨiΨjQE −ΨiΨj,2EjC

−ΨiΨj,2EjE −ΨiΨjCQ−ΨiΨj,1CEj −ΨiΨj,2ECj −ΨiΨj,2EEj + 2ΨiΨjRD

+2ΨiΨj,1FjF + 2ΨiΨj,2DjD + 2ΨiΨj,2FjF −ΨiΨjRD −ΨiΨjRF −ΨiΨj,2FjD

−ΨiΨj,2FjF −ΨiΨjDR−ΨiΨj,1DFj −ΨiΨj,2FDj −ΨiΨj,2FFj)

+αη0ς
2Eg

2
(2ΨiΨj,1QCχ1,1 +ΨiΨj,1CCQ,1 + 2ΨiΨj,1RDχ2,1 +ΨiΨj,1DDR,1)

−αη0ς2ΨiΨj
Eg

2
R + A0ΨiΨj,2χ1j −B0ΨiΨj,1χ1j + αcΨi,1Ψj,1Rj}dΩ

+
n=4∑︂
i=1

{(1− α)µ

∫︂
∂Γe

wiχ2,2NdΓ− αc

∫︂
∂Γe

wiR,1NdΓ},
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0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Qj +
n=4∑︂
i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ1j −
n=4∑︂
i=1

∫︂
∂Γe

(Ψiχ1,1)NdΓ,

0 =
n=4∑︂
i,j=1

∫︂
Ωe

(w4R + w4,1χ2,1)dΩ−
n=4∑︂
i=1

∫︂
∂Γe

w4,1χ2,1NdΓ,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Rj +
n=4∑︂
i,j=1

{
∫︂
Ωe

Ψi,1Ψj,1)dΩ}χ2j −
n=4∑︂
i=1

∫︂
∂Γe

(Ψiχ2,1)NdΓ,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Cj −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,1)dΩ}χ1j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Dj −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,1)dΩ}χ2j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Ej −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,2)dΩ}χ1j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Fj −
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj,2)dΩ}χ2j,

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Aj +
n=4∑︂
i,j=1

{
∫︂
Ωe

(−(1− α)µΨiΨj + αcΨi,1Ψj,1)dΩ}Qj

+
n=4∑︂
i,j=1

{
∫︂
Ωe

(1− α)(µΨi,2Ψj,2)dΩ}χ1j −
n=4∑︂
i=1

{
∫︂
∂Γe

(1− α)(µΨiχ1,2)NdΓ

−
∫︂
∂Γe

(αcΨiQ,1)NdΓ},

0 =
n=4∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨj)dΩ}Bj +
n=4∑︂
i,j=1

∫︂
Ωe

{−(1− α)µΨiΨj + αcΨi,1Ψj,1}dΩRj

+
n=4∑︂
i,j=1

{
∫︂
Ωe

(1− α)(µΨi,2Ψj,2)dΩ}χ2j −
n=4∑︂
i=1

{
∫︂
∂Γe

(1− α)(µΨiχ2,2)NdΓ

−
∫︂
∂Γe

(αcΨiR,1)NdΓ}. (7.72)

Now, for the local stiffness matrices and forcing vectors for each element, we find⎡⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎦
Local

⎡⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎦
Local

=

⎡⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎦
Local

, (7.73)

where [︁
K11

ij

]︁
=

∫︂
Ωe

{−(1− α)µΨi,2Ψj,2}dΩ, (7.74)
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and

{F 1
i } = −µ

∫︂
∂Γe

wiχ1,2NdΓ + c

∫︂
∂Γe

wiQ,1NdΓ. (7.75)

Thus, the unknown potentials (i.e., χ1, χ2, Q, R,C,D,E, F, A, and B) can be

expressed as

Qi = {χi
1},11, Ri = {χi

2},11, etc..., (7.76)

and similarly for the rest of unknowns.

Consequently, we obtain the following systems of equations (in the Global form)

for each individual element as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] . . . . . . [K19] [K110]
[K21] [K22] . . . . . . [K29] [K210]
[K31] [K32] . . . . . . [K39] [K310]
[K41] [K42] . . . . . . [K49] [K410]
[K51] [K52] . . . . . . [K59] [K510]
[K61] [K62] . . . . . . [K69] [K610]
[K71] [K72] . . . . . . [K79] [K710]
[K81] [K82] . . . . . . [K89] [K810]
[K91] [K92] . . . . . . [K99] [K910]
[K101] [K102] . . . . . . [K109] [K1010]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi
1

χi
2

Qi

Ri

Ci

Di

Ei

Fi

Ai

Bi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F1}
{F2}
{F3}
{F4}
{F5}
{F6}
{F7}
{F8}
{F9}
{F10}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.77)

In the simulation, we employed the following convergence criteria

|An+1 − An| = e1 ≤ ε, |Bn+1 −Bn| = e2 ≤ ε, where ε = maximum error = 10−10,

which demonstrates fast (quadratic) convergence within just 5 iterations using FEn-

iCS nonlinear solver (see, 7.4).

Table 7.4: Maximum numerical errors with respect to the number of iterations.

Number of iteration Mximum error
1 2.623e+01
2 8.035e-02
3 1.226-04
4 1.295e-08
5 3.888e-15

7.6 Denouement

In this chapter, a multiscale continuum model for the mechanics of hyperelastic

nanocomposites reinforced with randomly oriented fibers is presented in finite plane
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elastostatics. This includes the refinement of a set of strain energy potential of fibers

in light of the shear lag theory and the orientation model of Krenchel. The kinematics

of embedded fibers, including bending and extension responses, are formulated via

the first and second gradient of continuum deformations and subsequently incorpo-

rated into the model describing the mechanical responses of the fiber-matrix system.

The non-linear (strain-stiffening) responses of matrix material are characterized by

using the Mooney-Rivlin strain energy potential. Within the framework of variational

principles and a virtual work statement, the Euler equilibrium equation and the as-

sociated boundary conditions are derived. The resulting equations are in the form

of the systems of coupled nonlinear PDEs from which a set of numerical solutions

describing the hyperelastic responses of the elastomeric nanocomposites are obtained

via the custom-built FEA procedure. Atomistic molecular dynamics (MD) simulation

is also performed to obtain micromechanical properties of fiber composites which are

then integrated into the proposed multiscale continuum model.

Throughout the cross-examination with the existing experimental results and MD

simulations, we show that the presented model successfully estimates the stiffness of

the graphene fiber reinforced composite with respect to varying fiber’s aspect ratio.

The obtained model demonstrates equivalent (and/or better) predictions performance

over the conventional mean-field micromechanical predictive model (Mori-Tanaka)

and hence, may serve as an alternative to the Mori-Tanaka model. Further, we

extend the obtained model by proposing a non-uniform interface stiffness parame-

ter (inspired by the Weibull damage model) to assimilate the damage mechanics of

nanofiber-reinforced elastomeric composites induced by interfacial debonding. It is

found that the results from the generalized model closely assimilate both the gradual

and rapid debonding processes of a certain type of soft/stiff matrix-based nanocom-

posite. Lastly, we consider the hyperextension of MWCNTs/Ecoflex elastomeric

nanocomposite material. The results demonstrate that the proposed model predicts

non-linear stress-strain response (strain-stiffening) of the composite with reasonable

accuracy and produces smooth and continuous shear strain distributions throughout

the domain of interest.
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Chapter 8

Conclusion and Future works

8.1 Conclusion

In this thesis, we have presented a generalized higher-order gradient-based contin-

uum model for the fiber-reinforced hyperelastic composite material. In each chapter

of this thesis, we have step-by-step refined the model ultimately leading to a general-

ized continuum model that can incorporate multiple features including, higher-order

gradient continua, precise characterization of fiber reinforcement, pseudoelasticity,

damage mechanics, and multi-scale capability. All these combinedly make the pre-

sented model uniquely versatile in the modeling and design of hyperelastic composites.

The roadmap of this research work is presented below briefly.

We start with a third-order gradient composite model where Neo-Hookean type

hyperelastic matrix material is reinforced by unidirectional fibers having resistance

in flexure (see, chapter 2). The results from the presented model convey some under-

standing of the effects of higher-gradient terms on the solution fields. It is observed

that the higher gradient model is able to produce smooth and dilatational shear an-

gle distribution. Also, the third gradient term affects the changes in the curvature

of fibers. Next, we refine the energy density function by incorporating the fiber

extension potential term along with bending resistance and considering the Mooney-

Rivlin potential for the hyperelastic matrix material (see, chapter 3). The obtained

results demonstrate that the model is able to capture large deformation under uniax-

ial loading and provide reasonably accurate predictions of the deformation profiles.

After that, we further generalize the energy density function by incorporating bi-

directional fibers having different orientations (i.e., 45 and 90-degree orientations),
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different types of nonlinear extension potential (i.e., polynomial and exponential),

and torsional resistance (see, chapter 4 and 5). The results from the generalized

model demonstrate excellent correspondence to the experimental results in capturing

the deformations and mechanical responses under different loading conditions includ-

ing uniaxial tension, and out-of-plane deformations. To incorporate pseudoelasticity,

the model is then further extended by introducing damage parameters and damage

functions inspired by Ogden Roxburgh’s model and Weibull’s fiber damage model

(see, chapter 6). It is demonstrated that the obtained model can successfully predict

the Mullins effects in biological soft tissues and strain softening due to fiber breakage.

Furthermore, we have augmented our model to accommodate the size, orientation

effects, and volume fraction of the reinforcing fibers by introducing the shear-lag,

Krenchel orientation, and energy fraction parameters, respectively (see, chapter 7).

This adaptation allows the model to predict the responses of nanofiber-reinforced

hyperelastic composites having different micromechanical characterizations. Also, It

allows the multi-scale capability of the model by incorporating the effects of some mi-

cro/nanoscale properties (e.g., interface stiffness, volume fraction, fiber aspect ratio,

etc...). Again, we propose a non-uniform interface stiffness parameter to incorporate

the damage mechanics of nanofiber-reinforced elastomeric composites due to interfa-

cial debonding. The resulting model closely assimilates both the gradual and rapid

debonding processes of a certain type of soft/stiff matrix-based nanocomposite.

This generalization of the presented model leads to the following conclusion:

� The higher gradient term has strong effects on the shear angle fields. By in-

creasing the order of the continuum model, it is possible to produce a more

smooth and dilatational shear angle distribution.

� The higher-order gradient model allows us to accurately capture the local mi-

crostructural changes in the continua.

� The presented model is able to predict very large deformation, i.e., extension

up to 10 times the initial length of the domain.

� The presented model is able to accommodate different types of fiber reinforce-

ment including, unidirectional continuous fibers and bidirectional continuous
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fibers having different orientations. Moreover, the model can also accommo-

date different types of fiber responses by utilizing multiple types of extension

potential functions.

� By incorporating damage parameters, the presented model is able to capture

Mullins effect and strain softening due to fiber breakage.

� The presented model is able to accommodate micro/nano structural character-

izations of the short / nanofibers and capture the effects of these parameters on

the mechanical responses of the composite.

� The presented model is able to capture the strain-softening effect of the com-

posites induced by both gradual and rapid debonding processes.

8.2 Contributions of the proposed model to the

scientific community

The generalized hyperelastic model for composite material presented in this thesis

work can make valuable contributions to the scientific community. In this study, we

have developed a higher-order gradient-based hyperelastic model that can accommo-

date the complete kinematic description of fiber reinforcement by incorporating the

extension, bending, and torsional potentials of fiber reinforcement, which the exist-

ing classical models fail to accommodate. With the help of higher gradient theory,

the presented model can also produce precise characterizations of microstructures,

and prediction of large & nonlinear deformation. Furthermore, the presented model

provides the means to predict the response of the composite material prior to its

fabrication by only utilizing the properties of its constituents, which the existing clas-

sical models can not. Moreover, the proposed model can likewise accommodate the

size effect of fiber reinforcement, pseudoelastic response, and damage mechanics of

the composite. This level of versatility is unprecedented in the existing literature in

terms of the modeling of hyperelastic composites. All these capabilities make our

model very useful in the design and analysis of hyperelastic composites, which may

help to extend our knowledge regarding the mechanics of these materials.
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8.3 Future Works

We already mentioned in the introduction section that hyperelastic composite ma-

terials have great potential in various engineering applications involving biomedical

applications, shape-morphing structures, soft robotics, and wearable devices. The

proposed model may be deemed useful in the design of such engineering devices and

structures made up of hyperelastic composite materials. Moreover, the proposed

model may be useful in analyzing complex biocomposites like chitin with helical fiber

arrangement or other types of similar composites with complex fiber arrangements.

The present work opens the gate to new possibilities for further research into the

hyperelastic composite based on multiscale modeling approach. The proposed model

may be further investigated along with molecular dynamics simulation to have a bet-

ter understanding of the damage mechanics induced by the deboning process at the

interface of matrix and fiber, which may allow us to further refine our model by uti-

lizing micro or nanomechanics-based damage characterizing function. Furthermore,

using the presented model alongside molecular dynamics simulation it might be also

possible to have a better understating of pseudoelastic behavior like the Mullins effect,

where we may relate the associated parameters with micromechanical characteristics

of the fibers.

The model at hand can pave the way for further research related to damage

mechanics and the pseudoelastic studies of hyperelastic composite. Till now, the

proposed model can accommodate up to only a few cycles of pseudoelastic loading-

unloading. It may be possible to further extend the model so that it can capture

the pseudoelastic behavior under a large number of cycles. The present work may

be further extended to analyze the problems related to fracture mechanics and crack

propagation, especially from soft composite materials. For this purpose, it is necessary

to further investigate the non-recoverable portion of the energy density function and

come up with a suitable governing equation for the damage variable that is able

to capture the damage progression in fiber-reinforced soft materials. Finally, the

viscoelastic materials may also be analyzed in a similar mathematical framework

with custom-built fiber potential functions.
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