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Abstract

The subject of this thesis is the development of model based fault detection 

(FD) techniques for induction motors.

During the past twenty years, several techniques for induction motor fault 

detection have been developed. Most of them are signal-based and knowledge- 

based methods. With the development of advanced modern control theory, it 

is possible to develop model-based FD techniques for induction motors since 

the induction motor model is understood. The purpose of this thesis is to de­

velop model-based schemes for induction motor fault detection. Specifically, 

observers are employed to detect the faults. Robustness to disturbances is also 

considered. The motor model is tested on a laboratory experimental setup.

The motor faults considered in this thesis are shorted stator windings and 

broken rotor bars. Since they are hard to simulate on a physical motor be­

cause of the damage, a PC-based real-time simulator is used to simulate the 

motor under faulty conditions, and the designed FD schemes are then imple­

mented on it.
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Chapter 1 

Introduction

1
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1.1 Overview

The induction motor (IM) has a wide range of applications in various indus­

tries to convert electrical power into mechanical power, for example, in pumps 

and ventilators. Indeed, in the industrialized countries, the entire electrical 

power available is mainly consumed by AC motors, wherein most are induc­

tion motors [1]. Safety, reliability, and performance are some of the major 

concerns of their applications. With the high reliability requirement, the is­

sues of induction motor fault detection are of increasing importance.

Usually, a fault detection scheme makes use of the available knowledge (model) 

of the system in normal operations to generate (compute) an output signal of 

interest. When faults occur in the system, by comparing the true measure­

ment of the output signal and the estimated one based on the system knowl­

edge (model) in normal operations, discrepancies can be obtained which is also 

called the residual (signal). Such a residual can indicate the abnormal con­

ditions of the system caused by faults. Fault detection can be performed by 

checking the “size” of the residual. In an ideal case where there are no unknown 

inputs or disturbances, fault detection follows a simple logic: if the residual 

is zero, then there are no faults present; otherwise faults occurred. This idea 

of fault detection is also referred to as “analytical redundancy” compared to 

“hardware redundancy” for detecting the faults. The major advantage of the 

analytical redundancy method is that no additional hardware components are 

required to realize a fault detection algorithm. The algorithm can be imple­

mented via software on the same computers used for process control. In many 

cases, the measurements necessary to control the process are also sufficient for 

the fault detection algorithm so that no additional sensors have to be installed 

[2]-

Fault detection of induction motors has concentrated on sensing failures in 

one of three major components, the stator, the rotor, and the bearings. Ap-

2
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proaches to fault detection can be classified into three groups: signal-based 

techniques, knowledge-based techniques, and model-based techniques. This 

thesis will focus on model-based techniques, particularly for induction motors. 

Due to the development of advanced model control theory, model-based ap­

proaches to fault detection in dynamic systems have been receiving more and 

more attention over the last 30 years. However, compared to signal-based and 

knowledge-based techniques, they are relative new in the area of fault detection 

for induction motor and only account for 10% of the literature. This is because 

induction motors are highly nonlinear systems, while most model-based fault 

detection techniques are for linear systems.

In general, nonlinear model-based fault detection is hard or even impossible. 

However, by considering specific types of nonlinear models, different techniques 

for model-based nonlinear fault detection method can be developed. In this 

thesis, the induction motor is of particular interest. Despite the fact of being a 

highly nonlinear system, the modeling of induction motors is well understood. 

Furthermore, development of modern control theories make it possible to de­

velop methods to achieve fault detection for induction motors.

Real time simulation for electric systems and drives is receiving more and 

more attention in recent years. It provides a low cost and yet effective way 

for system testing and rapid prototyping of control systems. Since induction 

motors with stator fault and rotor fault are hard to be simulated on a physical 

motor because of the damage to the motor, a real-time simulator is a good 

choice to simulate the induction motor in faulty conditions.

1.2 Objectives

The aim of this thesis is to develop observers to provide contributions in the 

field of induction motor fault detection and to apply real-time simulation to the 

designed schemes, more specifically, a bilinear observer and an unknown input

3
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observer are discussed. The overall fault detection scheme is shown in Figure 

1.1. Since the induction motor is modeled in a two-phase reference frame, 

its measurements (stator current and motor speed) are transformed into this 

reference frame. The observer provides the estimates of stator current and 

motor speed of a healthy motor. Any difference between the estimates and 

the real measurements will indicate a faulty condition.

3-phase to 
2- phase 

conversion

Induction Motor

+ X
ObserverDC Motor

Residual signal

Figure 1.1: Fault detection system for an induction motor

The objectives of the thesis are as follows:

1. Develop observers that are insensitive to load disturbance and imbalance 

of the three phase power supply, but sensitive to considered faults.

2. Analyze the stability of the designed observers.

3. Implement the designed fault detection schemes on the RTX-LAB real­

time digital simulator.

1.3 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 - Literature Review

4
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Reviews existing techniques for induction motor fault detection, and intro­

duces some basic concepts needed later in the thesis. The design part of 

Chapter 4 relies heavily on theory introduced in this chapter. RTX-LAB real­

time simulator, which is used in Chapter 5 is also introduced.

Chapter 3 - Induction M otor M odeling and Experimental Valida­

tion

Describes the dynamic model of a symmetrical three-phase induction motor 

with a squirrel cage rotor. The model is written as a fifth order, nonlinear 

state-space model with stator current, rotor flux and motor speed as state 

variables. The two phase dq reference frame is discussed. In order to perform 

fault detection, it is necessary to model the faults. Two types of faults, namely, 

stator windings fault and broken rotor bars , are considered and they are mod­

eled as abrupt change of stator and rotor resistance, respectively. Finally, the 

laboratory experimental setup used to validate the mathematical model of the 

model is discussed. Experiments were performed on a 2hp induction motor.

Chapter 4 - Fault D etection Observer Design for Induction Motors

The induction motor fault detection is described. The purpose is to use bilin­

ear observer and unknown input observer to generate a residual signal that is 

insensitive to disturbances and sensitive to fault only. First it is discussed how 

the bilinear observer is designed by writing the motor model in its bilinear 

form with the motor speed as a time-varying parameter. The stability of the 

linear time-varying system is analyzed based on Lyapunov method. Then the 

design of the unknown input observer is described. It is an extension of the 

linear unknown input observer, but makes the use of the complete nonlinear 

model of the induction motor.

Chapter 5 - Real Time Simulation

In this chapter, a fully digital real-time simulation of the observer-based fault 

detection schemes for an induction motor using RT-Lab software is presented. 

Satisfactory results are obtained with a fixed time-step of 100 us. The chapter

5
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starts with the RTX-LAB implementation of the observers, and a variety of 

simulation results under different scenarios are provided. It follows that the 

designed bilinear observer and unknown input observer are robust to load dis­

turbance and power supply imbalance. This chapter ends with discussions by 

comparing the two observers.

Chapter 6 - Conclusions

This chapter contains conclusions and recommendations for further work.

6
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Chapter 2 

Literature Review

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The chapter reviews existing techniques for induction motor fault detection. 

The basic concepts of model based fault detection and the RTX-LAB real-time 

simulator needed in this thesis later are also included.

2.1 Existing Techniques for Induction Motor 
Fault Detection

Induction motors are widely used equipment of many industrial processes. 

Safety, reliability, and performance are some of the major concerns of its ap­

plications. With the high reliability requirement, issues of induction motor 

fault detection and diagnosis are of increasing importance. For these reasons, 

during the past twenty years, there have been continually increasing interests 

and investigation on induction motor fault detection and diagnosis. Fault de­

tection and diagnosis schemes for induction motors are intended to provide 

advanced warnings of the incipient faults, so that corrective action can be 

taken to prevent economical losses or danger for the personnel working in the 

industrial environment.

In general, fault detection scheme of induction motors is concentrated on 

sensing failures in one of the three major components, the stator, the ro­

tor, and the bearings. Approaches to detection of those faults can be classified 

into three groups: signal-based techniques, knowledge-based techniques, and 

model-based techniques.

2.1.1 Signal-Based Fault D etection  Techniques for In­
duction M otors

The most commonly used signal-based fault detection technique is motor cur­

rent signature analysis, known as MCSA. This method analyzes motor current 

to detect faults in a three-phase induction motor while it is still operating. The

8
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first progress toward the development of an online stator winding fault monitor 

using MCSA was proposed by Williamson and Mirzoian [5], and the majority 

of the methods developed since then to detect insulation failures are based 

on this technique. MCSA is based on the fact that faults will have effects on 

the spectrum of the motor current and thus can be detected by analyzing the 

spectral components. Based on this technique, the motor current spectrum 

has been monitored to detect mechanical failure related to stator winding 

problems (insulation degradation, breakdown leading to short-circuits, etc.), 

eccentricity or broken rotor bars [8]-[10].

However, owing to the following difficulties, practical application of MCSA 

is much more complicated and many problems have not been solved [11].

• There are other components that may exist in the stator current spec­

trum, for example, harmonics because of supply voltage distortion or 

load variations, and harmonics caused by background noise.

• The current spectrum is very sensitive to the accuracy of line frequency 

measurement.

• Induction motors are driven by power electronics systems. Normally 

these power electronic controllers have robust stabilization ability, thus 

a motor fault may not show up because of the controller. In other words, 

the inner fault is covered by the perfect performance of the controller [11], 

This makes signal-based approaches more difficult to apply.

2.1.2 K nowledge-Based Fault D etection  Techniques for 
Induction M otors

Artificial Neural Network (ANN) is another method used for induction motor 

fault detection. It was first proposed by Chow et al. [13]. They have primarily 

considered incipient faults for single-phase motors. [14] proposed the use of 

ANN for identifying different types of external faults on three-phase induction

9
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motors. A variety of schemes based on ANN have been developed since then. 

In [15], the ANN techniques including feed-forward back propagation net­

works (FFBPN) and self organizing maps (SOM), are investigated. Common 

induction motor faults such as bearing faults, stator winding faults, unbal­

anced rotor and broken rotor bars are considered. The ANNs were trained 

and tested using dynamic measurements of stator currents and mechanical vi­

bration signals. The effects of different network structures and the training 

set sizes on the performance of the ANNs are discussed. In [16], vibration 

analysis has been employed to study the health conditions of a brand new

1.5 hp squirrel cage induction motor. Two types of faults were selected for 

study: the bearing fault, which was simulated by a mechanical modification 

on the front bearing house; and the imbalance in supply, which was simu­

lated by adjusting the supply voltages. In recent years, pattern recognition 

technique based on ANN is playing a significant role to identify the incipient 

faults of induction motors. Such a scheme has been proposed to detect the 

incipient faults of induction motors in [17]. The design, implementation and 

dynamic updating of this type of system has been illustrated with an example.

Neural networks are very good modeling tools for highly non-linear systems. 

Due to this modeling abilities, neural network is an ideal method for generating 

residuals. The main drawback is due to the difficulties to perform neural net­

work training [2], For example, ANN should be trained by a number of samples 

before it can be used for diagnosis. The samples for training have important 

effect on the performance of the ANN and therefore should be carefully chosen. 

A solution to this problem is made by Chow [18], who combined the Fuzzy and 

ANN technology into the diagnosis system. The trained system can not only 

provide accurate fault detection, but also provide the heuristics with the use of 

fuzzy rules and fuzzy member functions. It has better performance than ANN. 

However, the system is still sensitive to load and other interference. Another 

drawback of artificial neural networks is their lack of transparency in human 

understandable terms [2]. These weaknesses have limited their applications.

10
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2.1.3 M odel-Based Fault D etection

Model-based approach to fault detection in dynamic systems has been receiv­

ing more and more attention over the last 30 years. The basic idea of model- 

based fault detection is to use an accurate model of the system to mimic the 

real process behavior. If a fault occurs, the residual signal, which indicates 

the difference between the real system and the model behaviors, can be used 

to identify the faults. Figure 2.1 gives a schematic description of the model- 

based fault detection and diagnosis scheme. The key of this approach lies in 

the use of the process model. The process model (e.g., an observer) represents 

the fault-free process. Driven by the same process input, the process model 

delivers an estimation of the measured process variables. Comparing the esti­

mated outputs with the measured outputs yields the so-called residual signals, 

and faults are thus detected by setting fixed or variable thresholds on residual 

signals.

Process OutputProcess Input

Residual Fault

Residual Generation

Decision
Making

Process
Model

Process

Figure 2.1: Structure of model-based fault detection scheme

The major advantage of model-based fault detection is that no additional 

hardware components are required in order to realize a fault detection al­

gorithm. A model-based fault detection algorithm can be implemented via 

software on the same computers used for process control. In many cases, the

11
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measurements necessary to control the process are also sufficient for the fault 

detection algorithm so that no additional sensors have to be installed [2]. Un­

der these circumstances, only additional storage capacity and possibly greater 

computer power is needed for the implementation of a model-based fault detec­

tion algorithm. This saves money, space and gives more reliability. However, a 

perfectly accurate mathematical model of a physical system is never available. 

There is always a mismatch between the actual process and its mathematical 

model even under no fault conditions. This causes difficulties in its applica­

tions because this may cause false alarms and missed alarms [2]. To overcome 

this problem, a number of methods have been proposed in the literature, for 

example, the Unknown Input Observer(UIO) [22].

Model-based fault detection in general consists of two steps: residual gen­

eration and decision making.

a) Residual generation Residual generation is the key part of this ap­

proach. The purpose is to generate a fault indicating signal, called residual, 

using available inputs and outputs from the process. This residual should in­

dicate that a fault has occurred. It should normally be zero or close to zero 

under no fault condition, whilst distinguishably different from zero when a 

fault occurs. This means that the residual is characteristically independent of 

process inputs and outputs in ideal conditions.

b) Decision making The generated residuals are examined for the likeli­

hood of faults and a decision rule is then applied to determine if any faults have 

occurred. A decision rule can be a simple threshold test on the instantaneous 

values or moving averages of the residuals. For instance, in an ideal case where 

there are no model uncertainties and no disturbances, a decision rule could be 

a simple logic: if the residual is zero, then no faults; otherwise, faults occurred.

The generation of residuals is the main part of model-based fault detection. 

The design of fault indication signals is normally achieved through a compar­

ison between measured signals with their estimates, where the estimates are

12
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generated using the mathematical model of the process.

2.2 Observer-Based Residual Generation

A variety of methods are available in literature for residual generation and 

most commonly used methods are parameter estimation, parity equations, 

and observer-based approaches. They are well-known techniques and a com­

prehensive surrey of these methods can be found in [2]. In this thesis, the 

scope is limited to observer-based residual generation.

The basic idea behind the observer-based residual generation is to estimate 

the outputs of the system from the measurements by using Luenberger ob­

servers, unknown input observers (UIO), Beard fault detection filter(BFDF), 

combined UIO and BFDF, eigen-structure assignment method, etc. [32] [53]. 

The output estimation error is therefore used as residual. This thesis will fo­

cus on Luenberger observer based and unknown input observer based methods 

for nonlinear systems. Some basic results on these two types of observers for 

linear systems are reviewed first.

2.2.1 Luenberger Observers

A device that estimates or observes state variables of a system is called a state 

observer. A state observer utilizes measurements of the system inputs and 

outputs and a model of the system based on differential or difference equations. 

In the deterministic case, when no random noise is present, the Luenberger 

observer is used for time-invariant systems with known parameters. Consider 

a n-dimensional state equation

x{t) =  Ax(t) +  Bu(t)

y(t) =  Cx(t) +  Du(t) (2.1)

13
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where A  G R nyn, B  G R nyp. C  G Rmyn, and D G R myp are given matrices. 

The input u(t) G R pyl and the output y{t) g  i?m xl are available. The state 

vector x(t) G R nyl, however, is not available. The Luenberger observer es­

timates state x(t) from u(t) and y(t) with the knowledge of A, B, and C, as 

shown in equation (2.2).

x(t) =  Ax(t) +  Bu(t) + L[y(t) -  y(t)]

y(t) =  Cx(t) +  Du(t) (2.2)

where x(t) is the estimate of the state x(t), L G R nym is a constant gain ma­

trix. The Luenberger observer contains a correcting term L[y(t) — y(t)], which 

reflects the difference between the actual measurement and the estimation of 

the current output. If the difference is zero, no correction is needed. If the 

difference is nonzero, with the gain L properly designed, the difference will 

drive the estimated state to the actual state. Inclusion of this correction term 

ensures stability and convergence of the observer even when the system being 

observed is unstable.

Define the error between the actual state and the estimated state as

e(f) =  x(t) — x(t)

It follows that

e(t) =  (A -  LC)e(t) (2.3)

Equation (2.3) governs the estimation error. If all eigenvalues of A  — LC  can 

be assigned arbitrarily, then we can control the rate for e(t) to approach zero 

or, equivalently, for the estimated state to approach actual state.

Luenberger observers are typically used for linear time-invariant systems and 

the system matrices A, B, and C are assumed exactly known. However, a 

perfect model of the system is never available. When there exist model uncer­

tainties, the estimation error may not approach to zero and the Luenberger

14
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observer may even become unstable. In this case, an unknown input observer 

(UIO) is a good choice for state estimation and fault detection.

2.2.2 Unknown Input Observers

The most important task in model-based fault detection is the generation of 

residuals which are independent of disturbances [2]. Unknown input observer 

is the most commonly used approach to achieve this goal. The principle of UIO 

is to make the output estimation error (residual) decoupled from the unknown 

inputs or disturbances. Uncertainties in system modeling can be considered 

as unknown inputs. Although the unknown inputs vector is unknown, its dis­

tribution matrix is usually assumed known.

This approach was originally proposed by Watanabe and Himmelblau [19], 

who considered the sensor fault detection problem for systems with modeling 

uncertainties. Later, the approach was generalized by Patton [20] and Prank 

[21] in order to perform fault detection for both sensors and actuators. Very 

important contributions to this subject made by Patton et al. can be found 

in [22], where the structure of a full order UIO for fault detection purpose was 

obtained and the necessary and sufficient existence conditions as well as the 

design procedure were given. The details of UIO theory will be described in 

Section 4.2 of this thesis.

Model-based approach to fault detection in dynamic systems has been re­

ceiving more and more attention over the last 30 years. However, compared 

to signal-based and knowledge-based techniques, it is relatively new in the 

applications of induction motor fault detection. It only accounts for 10% of 

the literature. In [23], a diagnostic procedure for induction motors working in 

closed loop was developed. It uses a nonlinear tracking controller made of an 

observer and a feedback-linearizing module to generate residual signals used 

for fault diagnosis. In [24], a model-based fault detection and diagnosis system

15
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was compared to the more traditional signal-based motor fault estimator. It 

was shown that the model-based one has better performance in terms of miti­

gating the adverse effects caused by false alarms. [3] showed that an induction 

motor could be represented by a bilinear model and a bilinear observer was 

designed to detect current sensor faults.

2.3 Real-Time Simulation

With the increasing complexity of power electronic systems and their wide use 

in industries, and with the increasing pressure for reduced time-to-market and 

costs, the need for extensive simulation is inevitable. Real-time simulation of 

electric systems and drives plays an important role in rapid prototyping and 

testing of new circuit topologies and control strategies [25].

Digital real-time simulation has been used for years and many commercial 

products have been developed. However, the real-time simulation of electrical 

systems presents a challenge for several reasons. The main reason is that elec­

trical systems have higher bandwidth than mechanical systems and therefore 

command smaller simulation time steps [26]. RT-Lab from Opal-RT Tech­

nologies provides a good solution to this problem. It can currently work at a 

sampling time below 10^s [27]. It is now widely used by high-tech industries, 

including electric systems and drives [25] - [28], automotive [29] - [30], and 

aeronautics industries (aircraft flight control, satellite control), as the main 

tool for rapid prototyping of complex engineering systems in a cost-effective 

and secure manner, while reducing the time-to-market.

RT-Lab is a distributed digital real-time platform. A typical configuration of 

RT-Lab consists of command stations, target nodes, the communication links 

(FireWire and Ethernet), and I/O  boards, as shown in figure 2.2. The com­

mand station servers as the user interface for accessing the targets, and is used 

for editing and modifying models. The target nodes are real-time processing

16
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and communication computers interconnected by an Ethernet adapter. These 

computers can also include a real-time communication interface like FireWire, 

as well as I/O  boards for accessing external equipment.

Ethernet
Real plant

I/Os
Target
node

Target
node

Target
node

Command
station

Command
station

Command
station

Figure 2.2: Configuration of RT-Lab

RT-Lab uses the popular Matlab/Simulink as a front-end for editing and view­

ing graphic models in block-diagram format. The block diagrams made with 

Matlab/Simulink first have to be separated into subsystems and inserted ap­

propriate communication blocks. Each subsystem is then automatically coded 

in C program and compiled for execution by the target node. Once the com­

pilation is done, RT-lab automatically distributes its calculations among the 

target processors [31].

In this thesis, the real-time simulation of the designed induction motor fault 

detection scheme is performed and is successfully implemented in RT-Lab soft­

ware package. Satisfactory results are obtained with a fixed time-step of 100/xs.
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Chapter 3 

Induction Motor M odeling and 
Experimental Validation
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In this chapter, modeling of induction motors and induction motor faults 

is presented, and the experimental validation of the model is performed. First, 

in Section 3.1, the voltage equations and flux equations of an induction motor 

with squirrel cage rotor and three star connected stator windings are derived 

in three-phase frame (abc frame), using magnetic coupled circuit theory [33]. 

A number of assumptions are made in order to obtain a simple model. Be­

cause those equations are in motor natural frame (three-phase frame), they 

contain time-varying parameters, making it not a practical model. To elimi­

nate the time-varying terms, in Section 3.2, the model in three phase frame 

is transformed into a two-phase dq reference frame. The induction motor dq 

model is derived both in stationary reference frame and synchronously rotat­

ing reference frame. In order to allow a observer-based fault detection scheme, 

a state-space model of the induction motor is also derived in this section. 

Section 3.3 includes the simulation results of the motor model in stationary 

reference frame and synchronously rotating reference frame. It shows that the 

dq quantities are constants in steady-state in the synchronously rotating ref­

erence frame and it will be our choice for the rest of the thesis.

An experiment is performed on a laboratory system with a 2 HP induction 

motor, and the results are given in Section 3.4. Section 3.5 describes the mod­

eling of the faults. Two types of faults, broken rotor bars and shorted-circuit 

in stator windings, are considered. They are modeled as abrupt changes in 

rotor resistance and stator resistance, respectively.

3.1 M odeling of the Squirrel Cage Induction  
Motor

This section describes the dynamic model of a symmetrical three-phase induc­

tion motor with a squirrel cage rotor. The induction motor mainly consists of 

two parts, the stator and the rotor. Figure 3.1 shows a cross-section view of a 

three phase, squirrel caged induction motor [35].
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Figure 3.1: Cross-section View of Induction Motor [35]

The rotor is rotating inside the stator separated by an air gap, and the ro­

tor is built from parallel conductors short-circuited by a ring at each end, as 

shown in Figure 3.2 [35]. Such a rotor can be represented by a three-phase 

rotor winding with short-circuits at the end. The windings of the three stator 

coils (A, B and C) are distributed sinusoidally displaced by 120 degrees. The 

stator shown is of the one-pole pair type, meaning that the coils will produce 

one magnetic north and one magnetic south pole. Often a motor will be con­

structed with several pole pairs by connecting coils in parallel and displacing 

the coils by 120/np degrees, where np is the number of pole pairs. This works 

as a gearing giving a larger torque and a slower mechanical rotational speed.

The stator windings are supplied with sinusoidal voltages to create a rotating 

magnetic field. When the rotor and the magnetic field of the stator rotate at 

different speeds, currents will be induced in the rotor windings. These cur­

rents result in a magneto-motive force perpendicular to the current and to the 

magnetic field resulting in a torque on the rotor.

A common approach to modeling induction machine is to use the magnetic 

coupled circuit theory [34]. The machine is described as a set of multiple cou-
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Figure 3.2: Squirrel Cage Rotor [35]

pled circuits defined by self- and mutual- inductances. The result is a set of 

differential equations, some of which are non-linear. This is not very practical 

due to the complexity.

u sA

*s -̂ \  neutral
V

VLooooo11sC

sB /

u sB

Figure 3.3: Star connected stator windings [35]

To obtain a simplified model, a number of assumptions are made in practice. 

Classical assumptions include that [35]:

•  The motor is symmetrical.
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• The rotor is concentric and the air gap has a constant width.

• The stator windings are star connected (see Figure 3.3) and the neutral 

is isolated.

• The ends of the rotor bars are short circuited.

• The flux density is radial in the air gap.

• The coil resistances and inductances are constant.

One simplification resulting from these assumptions is that the rotor can be 

treated as three phase short-circuited windings distributed the same way as 

the stator coil. With the above assumptions, the voltage equations and the 

flux equations of the magnetically coupled stator and rotor windings can be 

written in matrix form as [34]:

where vabc=[va vb vc]T represents voltage, iabc=[ia ib ic]T the current, Aatc=[Aa

to-stator and rotor-to-rotor winding inductances and are given in [34]. To 

differentiate from dq frame later, the subscript “abc” is used for the abc frame. 

Msr(9r) and Mjs(8r) are the matrices representing the mutual inductances 

between the stator and the rotor. They are dependent on the rotor angle, that 

is

Rs ŝabc T P ŝabc

R r^rabc  4 “ P ^rabc  —  d  

Lsisabc T M sr(̂ 9r)irabc

(3.1)

Afe Ac]t  the flux, R=diag{R R  R}  the resistance. The subscript “s” represents 

stator quantities, while “r” rotor quantities. Ls and Lr are matrices of stator-

Msr(0r) =  Mjs{Br)

cos(np9r) cos{np6r +  |7r)
Lsr cos(np9r — §7r) cos(np8r)

cos{np6r + |7r) cos(np9r — |7r)

cos{np9r — \ tx) 
cos(np8r +  |7r) 

cos(np9r)
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where nv is the number of pole pairs, Lar the peak value of stator to rotor 

mutual inductance, 6r the angle between the axes of the stator and the rotor. 

Denote uy the rotor electrical rotating speed in radian, then 6r can be expressed 

as

Note that for the idealized machine, those equations are coupled through the 

mutual inductances between the windings. In particular, the stator-to-rotor 

coupling terms are a function of rotor position; thus, when the rotor rotates, 

these coupling terms vary with time.

To eliminate the time-varying inductances, in power electronic, induction ma­

chine model is transformed into an arbitrary dq reference frame, in which the 

differential equations with time-varying inductances become differential equa­

tions with constant inductances.

3.2 Induction Motor M odel in Arbitrary dq 
Reference Frames

The idealized three phase induction machine model has time-varying terms, 

and the dq transformation is used to facilitate the computation. Abc frame to 

dq frame transformation is shown in Figure 3.4. Depending on the rotating 

speed of the dq axes, two reference frames are commonly used in the analysis of 

induction machines. They are stationary reference frame, which is fixed to the 

stator, and synchronously rotating reference frame, which is rotating with the 

synchronous frequency. Each has an advantage for some purpose. Stationary 

reference frame is a natural choice for the supply network, thus in this frame, 

the dq variables of the motor are the same as those of the supply. It is conve­

nient when the supply network is large or complex [34]. In the synchronously 

rotating reference frame, the dq variables become constant in steady-state. It 

is a convenient choice for fault detection purpose.
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A formal mathematical derivation of machine model in dq reference frames 

can be found in [34], The following transformation converts the motor quanti­

ties from abc frame (motor natural frame) to an arbitrary dq reference frame, 

which is rotating at an angular speed of u e.

cos{9) cos(9 — hr) cos{9  +  hr) 
sin{9) s in(9  — \ t t )  s in(9  +  | t t )

(3.2)

where 9 is the angle between the q-axis of the reference frame and the a-axis 

of the stationary stator winding. It can be expressed as follows:

m f  u e( t )d t  +  0(0) 
Jo

Applying transformation (3.2) to (3.1), the motor model in stationary reference 

frame and synchronously rotating reference frame can be derived by setting 

oje = 0 , and uoe = u s. respectively, where u s is the synchronous angular speed.

b -ax is

COe
q-ax is

2k a-ax is

d -ax isc -ax is

Figure 3.4: abc/dq  frame transformation
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3.2.1 M otor M odel in Stationary Frame

Since the stationary frame is fixed to stator, its rotating speed is zero. By 

applying transformation (3.2) to (3.1) and setting uie = 0, the voltage equations 

and flux equations can be obtained as follows:

• Voltage equations in stationary reference frame

where subscript “dq” represent the dq component of corresponding quantities 

and Lm the magnetizing inductance.

3.2.2 M otor M odel in Synchronously R otating Frame

By applying transformation (3.2) to (3.1) and setting uie =  uis, the voltage 

equations and flux equations in synchronously rotating frame can be obtained 

as follows:

• Voltage equations in synchronously rotating frame

Uqs P ^ q s  d~  R s ^ q s

V d a  —  P ^ d s  d~  R a ^ d a

'Vqf' — P^qr ^r^dv d~ '̂r' q̂r — d

V/fa* — P^dr d- &r^qr d- Rr^dr ~  A

(3.3)

(3.4)

(3.5)

(3.6)

• Flux equations in stationary reference frame

(3.7)

(3.8)

(3.9) 

(3.10)

Vqs P^qs d- Rsiqs d" hds\ds

Vds P^ds d- Rs^ds Ms\qs

Vqr P^qr d- (^’,s ^ r ) ̂ dr d” Ry ' r/r — 0

Vdr P^dr ^ r ) ̂ qr d” Rr ĉlr — 0

(3.11)

(3.12)

(3.13)

(3.14)
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• Flux equations in synchronously rotating frame

Aqs Lsiqs T T ijiiijr (3.15)

ds ^s^ds “F Lmidr (3.16)

A qT LrXqr T LmXq$ (3.17)

dr h r idr' ~F Lmids (3.18)

3.2.3 M echanical System

The mechanical rotational speed u>m is affected by the electro-magnetic torque 

Te and the load torque Tj,.

J ^  = Te + TL (3.19)

where
3

Te — 2 ̂ 'pi.̂ qr'i’dr ^dr^gr)

2Up(^dsiqs ^qs^ds)
3
~î 'pIJm(J/dr'i'qs ĝr̂ ds) (3.20)

where np is the number of pole pairs. J  is the collective moment of inertia of the 

rotor and the load, assuming the shaft to be rigid. Tl contains the actual load 

along with the speed-dependent viscous and coulomb friction. The electrical 

rotational speed u>r is defined as

u r — 0r =  npu m (3-21)

Equations (3.3) to (3.21) form the model used in motor simulation given in

section 3.3 and the state space model used in observer design.

3.2.4 A  State-Space M odel of the Induction M otor

In this section, a state-space model of induction motor is given, which is to be 

used for the observer design.
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The state space model of the induction motor depends on the selection of the 

reference frame. Since the dq variables in synchronously rotating frame are 

constants in steady state, we shall use this frame to derive the state-space 

model.

Equation (3.11) to (3.20) represent the dynamics of the induction motor in 

synchronously rotating frame. Re-write them in state space form as:

x(t) =  f(x(t)) + Bu(t) 

y(t) = Cx(t) (3.22)

where

=  [xi x2 x 3 x4 x5]T

—  [ * q s  i d s  ^ q s  ds

- 7 x 1 (t) +  otf3xz(t) -  npf3x5( t )x4(t) -  uJsx 2(t)' 
- 7  x 2(t) +  a/3x4( t ) +  npf3x5( t )xs ( t) +  cuax i ( t )  
a L mx i ( t ) -  ax s ( t )  +  npx 5{t )x4(t) -  u sx 4(t) 
a L mx 2(t) -  a x 4( t ) -  npx 5( t )x3(t) + u sx 3(t) 

■{x4( t )x i { t )  -  x 3( t )x2(t)) +  ±Tl2 npjfr^

B  =

r 1
crLs

0

0

0

0

0
1

crLs
0

0

0

c  =
1 0 0 0 0 
0 1 0  0 0 
0 0 0 0 1

< 7  =
Rr

I* ̂  1. I.

o _  Bm _  LmRr Rs
P oLsLr oLsL l oLs
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The rest of the symbols used are listed in table 3.1.

This is a fifth-order, highly nonlinear model because of the coupling between 

the mechanical part (motor mechanical speed) and the electrical part (rotor 

fluxes). This state-space model shall be used in observer design in chapter 4.

3.3 Simulation of Induction motor

In this section, the simulation study of the induction motor model developed 

in section 3.2 is carried out. To do so, equation (3.3) - (3.21) have to be 

rearranged to be suitable for Simulink implementation. Note that the operator 

p has been replaced by operator 1/s since Simulink deals with integrator better 

than with differentiator.

• Simulation o f the model in stationary reference frame

Stator and rotor fluxes can be expressed as follows:

X q s  — i ^ q s  R s ^ q s ) (3.23)

^ d s  ~ ~ { V d s  R s ^ d s )  
S

(3.24)

X qr i ^ r X d r  R r ^ q r )
S

(3.25)

^ d r  = (  U)r \ q r (3.26)

Stator and rotor currents can be expressed as follows:

V  =  7 - V - T ^ V  (3.27)LiX

ids = y-^ds — -jr^^dr (3.28)Lix Lix

V  =  ^  V  -  (3.29)
■Lx Lix

idr = ~r-^dr — -p-  (3.30)L*x L/x

where Lx = LsLr — L/L.
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• Simulation of the m odel in synchronously rotating reference 

frame

Stator and rotor fluxes can be expressed as follows:

\qs (̂ Qs •R's'iqs ^s^ds) (3.31)

^ds fads Rs’i'ds T ^s^qs') (3.32)5

Xqr = ~(Wr^dr Rr^qr ~~ ^s^d/r) (3.33)

\dr = ~ ( OJrXqr R^idr ^s^gr) (3.34)5

Stator and rotor currents can be expressed as follows:

V  =  ^  V  (3-35)
X LiX

ids =  y-^ds -  y ~^dr (3.36)
^X X

iqr =  y \ r  — ~ y \ s  (3.37)
■L'x

idr =  y X d r - ^ y X d s  (3.38)
X ^X

• M otor mechanical rotating speed

From equation (3.19) to (3.21), the mechanical speed of the motor can 

be obtained as

doj 3
= 2 np(^dsiqs ~  \sUs)  +  Th (3.39)

Note that the equation of the mechanical part is same in both reference frames.

• Simulation Results

Figure 3.5 shows stator phase A current responses, motor speed, and the 

torque, respectively, obtained from equation (3.23) to (3.39) without load. 

It must be said that both reference frames (stationary and synchronous) as 

well as the state space model give the same simulation results since they are 

different representations of the same motor. The validity of the motor model 

is thus achieved. The model will be further validated in section 3.4 in an ex­

periment.
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(b)
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T  v

0 0.5 1 1.5 2 2.5 3 3.5
(c)

Figure 3.5: Simulation outputs of the induction motor without load (a) Stator 
current (b) Speed response (c) Torque response
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All simulations are done in Matlab/Simulink. Motor characteristics are listed 

in Table 3.1.

Figure 3.6 shows the dq components of the stator phase A current in syn­

chronous reference frame. It can be seen that the dq components of the motor 

quantities in synchronous frame become constants in steady state, which makes 

it easier to analyze the fault effects later. Therefore, we shall use the model 

in the synchronous reference frame for the observer design and analysis later.

<
c
23O
O
to

0.5 1.5 2.5 3.5
(a)

14 

<  12 

£ 10

0.5 1.5 2.5 3.5
(b)

Figure 3.6: Stator current in synchronous frame (a) q component (b) d com­
ponent
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3.4 Experimental Validation of Induction Mo­
tor Model

In this section, an experiment is performed on a laboratory induction motor 

under normal operation to validate the mathematical model of the motor given 

in section 3.2. This can be done by comparing the actual outputs from the 

experiment with the simulated outputs from the mathematical model.

3.4.1 Experim ent Setup

The experiment is set up as in Figure 3.7 and Figure 3.8. A PC is connected 

to the motor to receive and analyze the measurements, eg. stator current and 

motor speed. The inverter is used to provide the three-phase stator voltage. 

An encoder is connected to the shaft to measure the speed. The DC motor 

allows the simulation of load torque.

Figure 3.7: Experiment Setup

The induction motor has two pole pairs (np =  2), a squirrel-cage rotor, and 

three star connected stator windings. Its nominal power is 2HP. The mea-
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Induction
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Figure 3.8: Experimental Setup

surement are stator current and motor angular speed. The parameters of the 

induction motor were identified as

R s = 3.35D, R r = 2.40, Ls =  7.6e — 3 H,

Lr = 8 .6 e -  3H, Lm = 1.048e -  3H

All parameters are listed in Table 3.1.

Table 3.1: Induction motor parameters
Description Par am. Values

Stator resistance R s 3.35 ohms
Rotor resistance R r 2.4 ohms

Stator inductance Ls 7.6e-3H
Rotor inductance 8.6e-3H

Mutual inductance Lm 1.048e-3H
Moment of inertia J 0.01 Kg.m 2

Number of pole pairs Tip 2

Line to line Input voltage V 208V
Stator voltage frequency f 60Hz

Rating s 2 HP

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.2 Experim ental R esults

The inputs of the squirrel cage induction motor are the three-phase voltages, 

their fundamental frequency, and the load torque. The outputs are the three- 

phase currents and the motor mechanical speed. However, the dq model re­

quires all three-phase variables be transformed to the two-phase synchronously 

rotating frame. Consequently, the three-phase stator currents from the exper­

iment have to be transformed to synchronous dq frame for comparison, as 

shown in Figure 3.9.

K *ib.mat

ic.mat

theta

Figure 3.9: Transforming three phase stator current into synchronous dq frame

Three-phase currents are first converted to two-phase stationary frame using 

(3.40) and then from the stationary frame to the synchronously rotating frame 

using (3.41) as follows:

(3.40)
isqs _
iSds

r 2 i 1- n3 3 3 *as
i b s

0 1 1
V3 VsJ J 'C S

ielqs _
}ds.

cos(6 e) —sin{0 e) 
sin(9e) cos(Qe)

qs
ids.

(3.41)

where the superscript “s” refers to stationary frame and superscript “e” refers 

to the synchronously rotating frame. The angle, 6 e is the angle between the 

axis of the two frames and is calculated directly by integrating the frequency
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of the input three-phase voltage, los.

0 e =  [  u sdt +  0 e(0 ) 
Jo

Figure 3.10 and Figure 3.11 show the comparison results between the experi­

ment and the mathematical model. There is a relative big difference between 

the experiment and the mathematical model during the startup. This is be­

cause: 1) The rotor initial angular position is unknown in the experiment. 2) 

The motor model is under some assumptions. The model may not be able to 

capture all dynamic behaviors during startup. 3) The rotor parameters (re­

sistance and inductance) are heavily depending on its working condition. For 

example, the rotor resistance will vary with the temperature. On the other 

hand, the outputs (stator currents) from the mathematical model are close 

enough to those of the experiment, despite of unknown initial rotor position 

and inaccurate motor parameters. Thus the mathematical model is validated. 

This model will be used for observer design.

3.5 M odeling of Faults

During the operation of induction motors, a number of faults of electrical 

and mechanical parts may occur. The four main kinds of faults in induction 

machines are:

1. Winding faults: short-circuits of stator windings, short-circuits of rotor 

windings, broken rotor bars, broken rings of the rotor.

2. Faults of the magnetic circuit: air-gap asymmetry.

3. Faults of motor mechanical system: mainly bearing failures.

4. Instrumentation faults: the encoder, voltage sensors and current sensor 

faults.

All these faults are connected with some particular phenomena: electrical,
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Figure 3.10: Comparison of stator phase A current (a) q component (b) d 
component

or magnetic.

Among the above faults, stator/rotor winding faults are the main contrib­

utor to motor failures. According to a survey [36], winding faults and bearing 

failures account for 46% and 40% of all motor faults, respectively, while other 

failures take 14%. Therefore, fault detection schemes are usually designed for 

the three main induction machine components: the stator, the rotor and the 

bearings. In this thesis, two major types of faults are considered: the broken 

rotor bars and shorted-circuit in stator windings.

It has been mentioned that signal-based fault detection techniques are focused 

on analyzing the specific components of the motor currents to detect faults. 

They do not need models of systems or faults. However, for model-based
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Figure 3.11: Detailed comparison of stator phase A current (a) q component 
(b) d component

techniques, it is necessary to model the faults. Broken rotor bars and stator 

winding faults have direct influences on motor parameters, and researchers 

have modeled them differently for specific purposes. In [23], faults are mod­

eled as abrupt changes in stator resistance and rotor resistance, ignoring the 

changes in leakage inductance and mutual inductance. However, it failed to 

provide details of calculating those changes. In [37], broken rotor bar was 

modeled, but the stator winding faults were not considered. In this section, 

we will model the two types of faults as changes in resistances only as in [23], 

and give the details on how to compute the resistance changes.

• M odeling o f broken rotor bars

Assume the motor has a total number of N  rotor bars, and a number of 

n bars are broken per phase. In general, in this case, the self inductance 

and mutual inductance between the stator and the rotor will not change,
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but the rotor resistance will increase.

Denoting R ra, Rrb, and R rc phase A, phase B, and phase C resistance 

of rotor, Rr the rotor resistance, Rbar the resistance of each rotor bar, 

R'r the rotor resistance when there are broken bars, A R r the change of 

rotor resistance. Usually we have

Rij* — R ij'q̂ —

Since rotors are in parallel connection within one phase,

Rbar 3 Rbar
R r

f  iV

7->/ Rbar 3 Rbi
r f  -  n N - Z n

= =  =  (3.42)

• M odeling of stator winding fault - shorted turns

Assume the stator has a number of N  turns and Aj turns are shorted. 

In this case, the stator resistance, self inductance, and even the mutual 

inductance between rotor and stator will all change. However, for sim­

plicity, we only consider changes in resistances.

Denoting R sa, R^ ,  and R sc phase A, phase B, and phase C resistance 

of stator, R s the stator resistance, R!s the stator resistance when there 

are shorted turns, A R s the change of stator resistance. Usually we have

R s Rsa Rsb Rsc

N  -  A
X- =  - 1 ^ R °

TV-
A R s = R S -R>s = ^ R s (3.43)
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We have modeled rotor and stator faults occurred at time to as abrupt changes 

of the corresponding parameters in the motor model, as shown in equation 

(3.44).

Rr(t) =  R,- +  A/tj. • l( t  — to)

R s(t) = R s +  A Rs ■ l(t  — to) (3.44)

where l(-) is a step function.
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Chapter 4 

Fault Detection Observer 
Design for Induction Motors
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Observer-based methods for fault detection and isolation (FDI) have been 

widely used for systems for whose precise mathematical models can be found 

([38], [39], [40] and [41]). Many of these methods, however, are based on linear 

observers. Because most practical systems show certain nonlinearities, these 

methods generally only work well within small operating range. Nonlinear 

observer based FDI methods have been studied in [42], [43], but most methods 

are only effective for specific classes of nonlinear systems. Also, the stability of 

the observer is difficult to guarantee [39]. In this theses, two observers, namely, 

a bilinear observer and an unknown input observer have been developed for 

the induction motor system.

4.1 Bilinear Observer Based Fault Detection

This section describes the design of a bilinear observer for induction motors. 

Its stability is proved.

4.1.1 A  Bilinear Observer

Bilinear models form a more usable class of nonlinear system models. They 

are used to represent a wide variety of processes and systems including nu­

clear reactor systems, hydraulic drive systems, gas-burning furnace [44] and 

induction machines. Although the control of bilinear systems is well developed 

[45], [46], FDI for bilinear systems is seldom studied. In [47], Hara and Furuta 

considered the state estimation of bilinear systems, and presented existence 

conditions and design procedures for a minimal-order state observer for such 

systems. The same problem has been considered in [48], where the Lyapunov 

method was used to design a stable state observer. The norm of the estimation 

error in this method decays to zero exponentially irrespective of the input, al­

though the error itself depends on the input. [49] considered bilinear systems 

with unknown inputs, and presented the design of robust state observers of
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full order and minimal order. Recently, a general approach to FDI for bilinear 

systems, the so-called bilinear fault detection observer (BFDO) method, was 

proposed in [50] and a reduced order bilinear fault detection observer, which 

is an extension of the linear unknown input observer, was successfully applied 

to a furnace system for residual generation [51].

Consider the following bilinear system:

x(t) =  [A) +  +  [Bo + '^2qj (t)Bj ]u(t) (4.1)
iei jeJ

y(t) =  Cx(t) (4.2)

where x(t) £ R n, u(t) £ Rp, and y(t) £ R m are system state, input and 

output, respectively; I  = {1 , ■ • w } ,  J  =  (1, ■ • -JmaxY, A , A  e  R n*n\ B 0,

Bj £ R nyp] pi(t) and qj(t) are inputs or time-varying components lying within

certain bounds, that is,

Pi <Pi(t) < p f , i  € I  (4.3)

qj <Qj(t) < q f , j  E J  (4.4)

For system (4.1) and (4.2), an observer which reconstructs the state x(t) using 

measurement y(t) and input u(t) is given as follows:

x(t) = [ A  +  ^2pj{t)Ai]x(t) + [B0 + Qj(t)Bj]u(t)
i€l j£J

-  [Lo + Y ^  Pi(t)Li] (y(t) -  y(t)) (4.5)
iei

y(t) = Cx( t) (4.6)

where x(t) £ Rn is the state estimate; L0 L* £ Rnxm are observer gain matri­

ces to be designed.

Define the estimation error as:

e{t) =  x(t) — x(t) (4.7)
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Then, the estimation error e(t) satisfies the following equation:

e(t) — x(t) — x(t)

=  [Aq + 53pi(i)i4i]e(t) + [L0 + -  y(t))
iei iei

= (A + ^ 2 p i ( t ) A i  + L 0C  + 'Y^Pi(t)LiC)e(t )  
iei iei

=  [(A + L0C) + ^Ppj(t)(A + LiC)]e(t) (4.8)
iei

It follows from (4.8) that if L 0 and Li are constructed so that

(A) + L qC ) + 'ŝ p i { t ) { A i  + L iC )
iei

is stable for all Pi(t) satisfying (4.3), then x(t) will converge to x(t).

4.1.2 Bilinear Observer Design for Induction M otors

In order to design a bilinear observer, we re-write the induction motor model 

in a bilinear form of 4.1 and 4.2.

The induction motor represented by (3.22) is highly nonlinear because of the 

coupling between the electrical part and the mechanical part. How to decou­

ple them is an interesting research topic. Since the motor mechanical speed 

is measurable in our case, it can be treated as an input parameter. Thus the 

induction motor in (3.22) becomes a fourth order linear time-varying system:

xi — —7 x 1 -1- a(3x3 — npf3ujX4 — u sx 2 (4.9)

x 2 =  - 7 x2 -I- a/3x4 +  np/3ux3 +  u sx  1 (4.10)

x 3 = a Lmxi — ax 3  +  npu x  4 — u sX4  (4-11)

X4 = aLmx  2 — ax 4  — npujx3 +  u>sx 3 (4-12)

Rewrite above equations in matrix form as:

x(t) =  A(u(t)) +  Bu(t) (4.13)

y(t) =  Cx(t) (4.14)
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where

x = [xi x 2 x z x4]T

- 7 - u a a/3 —np(3u)
LOs - 7 npf3u a/3

a L m 0 —a npu  — cos
0 aL m —npu! +  u s —a

B

r l
crL s

0

0

0

0
1

u L s

0

0

c 1 0 0 0 0 
0 1 0  0 0

Further inspection of matrix A shows that it has a bilinear structure, and this 

can be seen clearly as follows:

where

A =

X =  {A +  N u )x  +  Bu

y =  Cx

- 7 —ujs a/3 0  '

u s — 7  0 a/3 A n  A 12

aLm 0  —a -LOs A 2i A  22

0 OiLm Los —a

(4.15)

0 0 0 np/3
0 0 npl3 0 'An n 12

0 0 0 Tip n 21 n 22

0 0 -Up 0

where and N,tJ, i = 1,2, j  = 1,2 are 2 x 2  submatrices by partitioning A  

and N.  The motor mechanical speed u  is an input parameter.
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A full order Luenberger-type observer is designed as:

x = (A + N l u ) x  — L(u)(y — y) + Bu  

V — Cx (4.16)

where L(u)  is the observer gain. Generally, it is a function of the bilinear 

input parameter u>. We write the observer gain in the following form :

L(oj) =  L\  -|- L2uj

The error dynamics of the designed bilinear observer becomes:

e — x — x

= (A + N u ) e  + ( L 1 + L 2 u j ) ( y - y )

—  (A T Noj -F L\C  -T L 2 Cuj')e

— [(A +  L\C)  +  (N  +  L 2 C)uj]e

= A e(cu)e (4.17)

The design objective is to design Li and L 2 such that the above autonomous 

state equation is stable.

L\ and L 2 are designed such that

L XC = -An +  A 0  

—A21 0
and L2C - A n  0  

—A21 0

Hence,

A +  L XC = A A12 

0  A22
n  + l 2c

0  n 12 

0  n 22
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Finally,

A e(u) = A + LxC + (N + L 2 C)uj

A yli2 +  N 1 2W 
0  A 22  +  ./V22W

— Ai 0 aj3 —np(3ui
0 — A2 np(3u> a/3
0 0 —a nvu> — u.
0 0 LOs — npLU —a

(4.18)

where A =  diag{—Xi — A2 }, Aj and A2 are two positive constants.

It can be shown that the eigenvalues of the observer error dynamics are — Ai, 

—A2 , and a pair of complex conjugate, —adtj (u )3 — npu). The first two eigen­

values can be assigned arbitrarily, but the last two are not assignable. They 

are determined by motor parameters, and are located in the left-half s-plane 

since a  is positive. So all four eigenvalues can be placed in the left-half of 

s-plane. Generally speaking, for a time-varying system, negative eigenvalues 

can not guarantee the stability. However, for induction motors, stability can 

be achieved because the time-varying parameter, motor speed, changes much 

slower than the states, the error of stator current and the error of rotor flux. 

The next section gives a proof of stability of the designed bilinear observer.

4.1.3 Stability A nalysis of Bilinear Observers

Consider a positive Lyapunov function for system (4.17):

V(e,u)  =  eTF(u)e  > 0

where

F(u) = diag{fi(u)}, /*(u)  > 0 , i = 1,2,3,4

then

V  = eT[ATe {u)F{u) +  F{u)ATe (u) +  F(io)\e

(4.19)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For induction motors, the motor speed u  is changing much slow and it can be 

treated as a slowly time-varying parameter. Assume that

then

F{uj) =  diag{fi(oj)} = 0, i = 1,2,3,4

V  = er [Al(u)F(u) + F(u)Al(u)]e  

= er P{oj)e

To make V  < 0, we need P(uj) to be negative definite for all motor speed.

A  B T  
B  CLemma 4.1 Let M  be a symmetric matrix. Partition M  as M  

where A  G R nxn is invertible, A > (<) 0,B e  C  G R ^ ) A m - n )

S  =  C  — BA~ 1 B T is the Schur complement of C. Then M  > (<) 0 if and only 

if S > (<) 0.

Proof:

Let x  be any vector with right dimension. For any x, choose y = —A~ 1 B Tx. 

We have

xTSx  =  xT(C — B A _1 B t )x 

= (y + A~ 1 B Tx)TA{y + A~ 1 B Tx ) +  xT(C -  BA~lB T)x 

= yT Ay + yT B Tx  +  xF By  +  xTCx

= [yT xT}

=  z t M z

then

S  > 0 M  > 0

S  < 0 M  < 0

'A B T' y
B  C X

Hence the proof.
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For induction motors,

P(w) = A * ( u ) F ( u )  +  F ( u ) A e ( v )

'  -A! 0  0 0 7 i M 0 0 0

0 - a 2 0 0 0 / 2 H 0 0

a/3 npf3uj —a u s — npu 0 0 M “ ) 0

—np/3uj a/3 npu) — u)s —a 0 0 0 h(u)_

/ i M 0 0

0 / 2 M 0

0 0 / s H
0 0 0

0 -A i 0
0 0 -A
0 0  0

M<») 0  0

a/3 —np(3u
np/3ui a/3
—a npoj — ios 

cos — npu> —a

-2 X i f i 0 a/5/i —npf3uf\
0 —2A 2/ 2 np/3uf2 a/5/2

a/5/i np/3uf2 ~2a f 3 (ws -  npio) ( f 4

-ripPuf-L a/5/2 (w, -  npu) (f 4  -  f 3) - 2 a f 4

'A B T~ 
~  B  C

where

a _  —2 Ai/i(u;) 0

L 0  —2 A2/ 2H

„  =  [ a/3fi(u) np/3uf2 (u)
[ - n pP(Ajfi(u) a/3f2 (u) _

r  =  [ - 2 a f 3 (u) (us -  npu ) ( fA(u) -  / 3 (w))
[(w8 -  npu ) ( f 4 (u>) -  / 3 (w)) - 2 a f 4 (u>)

The Schur complement of C is:

T - 2 <*A + 2 g i  + :!lS !£  ( w . - n , * . ) ( A - / > ) - 5 = ^  + = ^ '

L h - ^ X / W s ) - 2^ +  = = ? £ *  - 2 «A + =?S i! l +  s^ £l
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Let

A M  =  A M , A M  -  A M , Ai =  a 2 =  a

then
a2/32+rip/32a;2

S M  =  2A
A M  -  2a A M  

0

To make P M  negative definite, we need:

i.e.

(4.20)

So given A M , we can always find A M  according to (4.20), such that S(uj) 

is negative definite. According to Lemma 4.1, -PM  is negative definite. Thus 

stability of the bilinear observer is guaranteed. This is to say that the observer 

error will converge to zero in fault-free cases. On the other hand, when faults 

occurred, the error will be nonzero, indicating faulty conditions.

4.1.4 Experim ental Validation of the Convergency of 
the Bilinear Observer

In order to validate the convergence of the bilinear observer, we apply the 

stator voltages from the experiment to the observer. The observer outputs, 

dq components of stator current are then compared to the experimental mea­

surements, which have been converted into dq frame. The comparison results 

are shown in Fig. 4.1. It follows that the differences are very small in steady 

state. Thus the convergence of the designed observer is validated.
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Figure 4.1: Errors of stator current (a) q component (b) d component

4.2 Unknown Input Observers

4.2.1 Theory of Unknown Input Observers

Conventional Luenberger observer assumes all inputs are known and measur­

able. However, in practice, there are many situations where some of system 

inputs are unmeasurable. In those cases the conventional observer may not 

work and an unknown input observer is a good choice. The basic principle 

of the unknown input observer is to decouple the unknown input terms from 

the known ones. In the applications of UIO for fault detection, by properly 

choosing the observer matrices, one can generate a residual, in which the ef­

fect of unknown inputs is decoupled from the state estimation errors caused 

by faults. This residual can then be used as the indication of faults. This is 

the idea behind the so-called robust fault detection.
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Many approaches for designing unknown input observers have been proposed 

after the work of Wang et al. Fairman et al. [54] proposed the singular value 

decomposition method. Park and Stein [55] studied the simultaneous estima­

tion problem for both states and unknown inputs. Chen, Patton, and Zhang 

[22] designed a full-order UIO and successfully applied it to a jet engine sys­

tem. In their paper, they presented a rigorous mathematical foundation in 

designing a full-order UIO. The necessary and sufficient conditions for the ex­

istence of the UIO are given and thoroughly proved. We adopt the linear UIO 

technique, and extend it to nonlinear systems, especially to the induction mo­

tor system for the purpose of fault detection.

Consider a system with additive uncertainties (unknown inputs) described 

by the following equations:

x(t) =  Ax(t) -f Bu(t) + Edd(t)

y(t) =  Cx(t) (4.21)

where x(t) E R n is the state vector, y(t) e  R m is the output vector, u(t) e  RP 

is the input vector, and d(t) E R q is a time-varying vector representing the 

unknown inputs (disturbances). Ed E R nxq is the distribution matrix repre­

senting the structure of the unknown inputs. Note that matrices A, B and C 

correspond to the state space description of a linear, time invariant system.

A full-order observer for system (4.21) is constructed as follows:

z(t) =  Fz(t)  +  TB u( t ) +  K y( t ) 

x (t) = z(t) +  Hy(t) (4.22)

where x(t) E R n is the estimated state vector, z(t) E Rn is the state vector 

of the full-order unknown input observer, and F, T, K, H are matrices to be 

designed to decouple the effect of the unknown input from the estimation error. 

The observer described by (4.22) is illustrated in Figure 4.2.
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Figure 4.2: A full-order linear unknown input observer

By applying observer (4.22) to system (4.21), the state estimation error e(t) =  

x{t) — x(t) is governed by the following equation:

e(f) =  x(t) — x(t)

=  Ax{t) +  Bu(t) +  Edd(t) — z(t) — Hy(t )

=  Ax(t) + Bu(t) +  Edd(t) — Fz( t ) — TBu(t)

— {Ki + K 2 )y(t) -  HC[Ax(t) +  Bu(t) + Edd{t)] 

=  (A -  H C A -  K!C)x(t)  -  Fz(t) -  K 2 y(t) 

+ [(/ -  H C ) -  T\Bu(t)  +  ( /  -  HC)Edd{t) 

= ( A -  H C A -  K\C)e(t) + [(A -  H C A  -  K iC) -  F]z(t) 

+[{A -  H C A  -  K ^ H  -  K 2 ]y(t) 

+ [(/ -  HC) -  T\Bu(t) + ( I -  HC)Edd(t)

where K  = Ki + K 2. By definition, an observer is called an unknown input 

observer for system (4.21), if its state estimation error vector approaches zero 

asymptotically regardless of the presence of the unknown input (disturbance)

in the system, [22], For (4.22) to be an unknown input observer for the system
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(4.21), the following relationships must hold for matrices F, T, K, and H.

( /  -  H C )Ed =  0 (4.23)

T  = I  — H C  (4.24)

F  = A — H C A -  K XC  (4.25)

K 2  = F H  (4.26)

Given above relationships, the state estimation error reduces to:

e(t) = Fe(t) (4.27)

By selecting a stable matrix F (i.e., all eigenvalues are in the left half plane), 

e(t) will be made to approach zero asymptotically despite of the disturbances. 

According to the definition, (4.22) is an UIO of (4.21). The design of the UIO 

involves, first of all, selecting a stable matrix F and then solving equations 

(4.23) - (4.26).

It has to be pointed out that an UIO may not exist for a linear system descried 

by (4.21). The next theorem gives the necessary and sufficient conditions for

(4.22) to be an UIO of (4.21).

Theorem 4.1: Necessary and sufficient conditions for (4.22) to be an UIO 

for the system defined by (4.21) are:

(i) rank(CEd) =  rank(Ed)

(ii) (C , Ai) is detectable,

where A\ =  A — H C A

The proof can be found in [22].

Remark 1 The disturbance matrix Ed is assumed to have full column rank. 

If not, the following rank decomposition can be applied to matrix Ed:

Edd(t) =  EiE2d(t)
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where E\ is a full column rank matrix and E 2 d(t) can be considered as a new 

unknown input.

Remark 2 Condition (i) ensures that equation (4.23) is solvable for H. In

[22], a special solution of H was given as H  =  [(CE)TCE]~1 (CE)T. To sat­

isfy condition (i), the number of independent rows of matrix C must not be 

less than the number of the independent columns of the matrix Ed. This 

means that the maximum number of disturbances that are decoupled can not 

be larger than the number of the independent measurements, y(t). Condition 

(ii) ensures that F = A \—K iC  can be made Hurwitz by properly designing K\.

Remark 3 The matrix K i, which can be chosen to obtain a stable matrix 

F, is not unique. This design freedom can be exploited for other design objec­

tives, for example, to make the residual have directional properties that can 

be utilized to fulfil the fault isolation task [22].

4.2.2 D esign of An Unknown Input Observer for Fault 
D etection  of Induction M otors

Consider induction motor nonlinear model described by (3.22). Also consider 

a disturbance A Tl acting on the nominal load torque Tl , and the actual load 

torque becomes Tl +  A Tl - In addition, we consider stator and rotor faults 

resulting in abrupt changes in stator and rotor resistance, as described in 

section 3.5. Then the induction motor with these faults and load disturbance 

can be described as follows:

x(t)

y(t)
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— A x(t) +  B u(t) +  f a(x(t)) +  Edd(t) +  Ef f { t ) (4.28)

=  Cx(t) (4.29)
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where

- 7 U s a/3 0 0
U a - 7 0 a/3 0

aLm 0 —a - U 3 0
0 aLm U s —a 0
0 0 0 0 e

Matrix A contains the coefficients of the linear terms. A small value e is in­

troduced here to make matrix A full rank. Matrices B and C are same as 

in (3.22). The vector f a(x(t)), which contains all the nonlinear terms of the 

motor model is shown as follows:

fa{x) =

—np(3x 5 X 4  

npfSx5x3 
np/3x*,Xi 

- n p(3x5x 3  

/ i ( x 4® i -  x2x3) +  'If  - ex5

Edd(t) and E f f ( t ) are vectors caused by load disturbance and faults, respec­

tively.

Edd(t) =

' O '

0

0

0
1

. j  J

• A Tr

~ ctL., x'l Ai?6. aL L̂2XiARr + ^X sA R r

E f f ( t ) =
— - ^ x 2A R s — -E ^x-iA R ,. +  -f-x^A R r

crL s < r L ,L l

1
<tLs
0

0

0

0

Rr — -^-x^ARr
x2A  R r — j^X iA R r

<tL3lz
0

Lm
o’
0

0

1
crL3

0

0
0

0
_J£l
<tL8L

0
Lm

0
0
0

0

JL

_i_

o r

0
0
0
0

0
A

0
__1_

0 0 0 0

x iA R s 
X\ARr 
x 2A R s 
x2A  Rr 
X3 A R s 
X3A  Rj- 
X iA R s 
XiARr
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where d(t) =  A  Tl is load disturbance and f{ t )  — [aqA Ra x i A R r x2A  Rs 

x2A R r £3 A Rs x$ARr X4ARa X4ARr]r  the fault induced vector.

A full-order observer is constructed as

z{t) =  Tfa{x(t)) +  Fz(t) +  TB u(t) +  K y(t)

x(t) -  z(t) + H y(t) (4.30)

Here we adopt the structure of linear UIO, but insert additional nonlinear 

terms in the observer dynamics. The state estimation error is shown to be:

e(t) = x(t) — x(t)

= A x(t) +  Bu{t) +  fa(x(t)) + Edd(t) +  Ef f ( t )  -  z(t) -  Hy{t)

= A x(t) +  Bu(t) +  f a(x(t)) + Edd(t) +  Ef f ( t )

- T f a(x(t) -  Fz(t) -  T B u it) -  (K\ +  K 2 )y(t)

—HC[Ax(t) + Bu(t) +  f a(x(t)) + E dd(t) +  E f f(t)]

= ( A -  H C A -  K\C)e{t) +  [(/ -  H C )fa(x(t)) -  T f a(x(t))]

+[(A -  H C A -  KxC) -  F\z(t)

+[(A -  H C A -  K iC )H  -  K 2 \y(t)

+ [(/ -  HC) -  T \B u(t)

+ ( /  -  H C )Edd(t)

+ ( /  -  HC) Ef f ( t )  (4.31)

where K  = K \ +  K 2- As in linear case, if the equations (4.23) to (4.26) are 

true, the state estimation error reduces to

e(t) =  Fe(t) + T [fa(x(t)) -  f a(x(t))} +  T E dd(t) +  T E f f (t )

If we linearize the nonlinear term f a(x(t)) in the neighborhood of the estimated 

state, we have

e(t) = Fe{t) +  U(t)=m <t) + T E dd{t) +  T E f f(t )

= Fe(t) +  T A A {x{t)}e(t) +  T E dd{t) + T E f f (t )
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where

^ { i « }  =  ^ p u («)=iW

0 0 0 - npPx5 (t) —nPPx<i(t)
0 0 np(3x5 (t) 0 np(3x3 (t)
0 0 0 npx 5 (t) npXi(t)
0 0 - npx 5 (t) 0 - npx 3 (t)

fix 4 - f i x  3 - f lX2 /IX i —e

At this point, we rewrite the state estimation error as

e(t) = {F + TA A {x(t)})e(t)  +  T E dd(t) +  T E f f ( t )  (4.32)

The objective is to design H,  T,  F . K\  and K 2, such that the following relations 

hold:

(I -  H C )Ed = 0 (4.33)

(I -  H C )Ef  ±  0 (4.34)

T  = I  — H C (4.35)

F  = A -  H C A  -  K \C (4.36)

F  +  T A 4{s(t)}  is Hurwitz (4.37)

K 2 = F H (4.38)

Then (4.27) becomes:

e(t) =  (F + TA A {x(t)})e(t)  +  T E f f(t )  (4.39)

Compared to (4.27), (4.39) has two extra terms, A 4 { i(t)}  and Ef f ( t ) .  The 

former is resulted from the nonlinear part f a(x) in the model and the latter is 

from the faults. Since F  + T A A {x (t)}  can be made Hurwitz by designing K\ 

properly, e{t) will be independent of the disturbance and be affected by the 

faults only.

The structure of the designed UIO for induction motor is illustrated in figure 

4.3. It has a similar structure as linear UIO. The difference is the nonlinear
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Figure 4.3: A full-order unknown input observer for induction motors 

term in the induction motor model is inserted in the observer dynamics.

The design procedure is as follows:

1. Choose T and com pute H

The matrix H satisfying (4.33) and (4.34) is not unique and thus is matrix T. 

In paper [53], the authors have concluded the conditions under which (4.33) is 

solvable and have given a special solution of H. They did not include condition 

(4.34), and the fault detection was achieved by using the design freedom of 

matrix K \. Because of the structure of the induction motor model and the 

considered faults, the matrix H can not be calculated the way as in [53]. Oth­

erwise the effect of both faults and disturbances on the estimation error will 

be eliminated, thus the faults can not be detected. Here we first choose T 

based on the following considerations:

(1) T E d = 0

(2 ) T E f ?  0

(3) H is solvable from (4.35).

(4) Choose T such that the eigenvalues of F  + T A A {x(t)}  are only a 

function of £5 , the estimated motor speed, and are independent of the rest of
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state estimates. This could be achieved by considering the specific structure 

of A^4{x(t)}. By doing so, a constant matrix K \ can be used to make (4.39) 

stable.

Based on above considerations, the matrix T is chosen as

T  =

0 0 0 0'  

1 0  0 0 
0 1 0  0 
4  0  1 0

0 0 0 0 0

Then H is computed from (4.35) as

H  =

and

0

0
_ i_

P
0

0

0

0

0  
_ 1

p

0

0

0

0

1

A, ==  A — H C A  = T A

~7 - u s aft 0 O'
UJS ~7 0 aft 0

= — ̂  +  aL m Us
0

0 0

UJs
p ~  jg +  OlLm LUS 0 0

0 0 0 0 0 .

T A A {x(t)}

0 0 0
0  0  npftx 5

0 0 0
0 0 0
0 0 0

-npftx 5 

0  

0  

0  

0

—npftx  4 

npftxs 
0  

0  

0

Notice that all elements in the last row of T are zeros. In this case, the speed 

estimation error x5 — x5 only depends on F from (4.39) in normal operations
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and it will converge to zero as long as F has all stable eigenvalues. Due to this 

fact, T A A {x (t)}  can be written as the following by replacing x5 with u>:

0 0 0 —np(3u) —npPx4

0 0 np(3u) 0 np(3x3

T A A {x(t)}  = 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0

2. Check w h e th er th e  following existing conditions a re  satisfied

(i) rank(CEd) — rank(Ed)

(ii) (C, Ai) is detectable, where A\ =  A — H C A

From induction motor model (4.28) - (4.29), 

rank(CEd) =  rank(Ed) = 1

Hence there exists an UIO for induction motor model described by (4.29).

3. D esign K i such th a t  F  — A\ + T A A {x (t)}  — K iC  is H urw itz

C
CAi

rank( n  A 2  ) =  5 => (C, A{) is detectable,

Denote

A = Ai_ + T A A {x (t)}

a/3
np(3ujp/3uj a/3

0  - u s
LUS 0

0  0

—np/3u) -n pf3xi
np(3x?>

0  

0  

0

0

^ 1 1  ^ 1 2  
0  0
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where

i n  =

- 7 - o js a(3 —npf3u
LUS - 7 np(3uj a/3

 ̂+  aL m iOs
P

0 - 0 J S

P
—  -p +  o t L m OJs 0

^ 1 2  =

—npf3x 4 

np/3x 3 

0  

0

Partition C as:

C  = 'Cn  0 '
0  C22

where Cn — 1 0  0 0 
0 1 0  0 C,22

Let K i have the following form:

K, K u  K 12 
0 k 22

Then

F = A 1 +  T A A {x(t)}  

= A - K x C

KxC

i n i l 2

11

Cn 0  '

_ 0 0 0  K 22 0 C22

i n — K n C n i l 2 — ^ 1 2

0 - K 22
(4.40)

It follows that the states estimates £ 3  and £ 4  do not affect the eigenvalues of 

F. Denote Fn  =  i n  — K n C n . Since {C n ,A n)  is detectable, Fn  can be made 

Hurwitz by choosing K n- In fact, following the similar procedure as in bilinear
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observer stability analysis in Section 4.1.3, the stability of the observer error 

dynamics in (4.39) can be verified. K n  can be designed using pole placement 

and K 2 2  is selected as a positive number.

4. C om pute  m atrices F, K 2, and  K

After T, H and K \ are determined, F, K 2 and thus K can be finally computed 

as:

F  = A — H C A -  K XC 

K 2 = FH  

K  — K i + K 2

Following the above design procedure, an unknown input observer is designed 

for the induction motor used in Section 3.4. By substituting the parameters 

in Table 3.1 in the motor model, the observer gains are obtained by placing 

poles of (4.39) at [-20 -20 -50 -50 -20] as follows:

'-277.3021 -753.9822 O' 700 377 1.258 0 0  '

753.9822 -277.3021 0 377 700 0 1258 0

-2.7773 -13.0618 0 , F  = -0.8 6.7 0 -377 0

13.0618 -2.7773 0 -6.7 -0 .8 377 0 0

0 0 2 0 - 0  0 0  0 - 2 0

'-21.1640 0 0  ' '-298.4671 -753.9822 O'
0 -21.1640 0 753.9822 -298.4661 0

0 6.3424 0 K  = -2.7773 -6.7194 0

-6.3424 0 0 6.7194 -2.7773 0

0 0 - 2 0 0 0 0

R em ark  In Section 4.1, a bilinear observer is introduced but without con­

sidering robustness to the disturbances. However, it is possible to apply the 

concept and conditions of an unknown input observer to the induction motor 

bilinear model. In another word, one can design a robust bilinear observer 

base FD for induction motors. This would be left as one of the future work.
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Implementation of Induction  
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In this chapter, a real-time simulation of the observer-based fault detection 

schemes for an induction motor using RT-Lab software is presented. Satisfac­

tory results are obtained with a fixed time-step of 100 //s. The chapter starts 

with the RT-Lab implementation of the observers, and a variety of simulation 

results under different scenarios are provided. It follows that the designed 

bilinear observer and unknown input observer are robust to load disturbance 

and power supply imbalance.

5.1 RT-Lab Real-time Simulation Software

The designed bilinear observer and unknown input observer have been imple­

mented using RT-Lab software package, as shown in figure 5.1.

faults

Isqd

Induction 
motor model

Residual

Observer
Isq d

real-time simulator

Figure 5.1: RT-Lab simulation

RT-Lab is an industrial-grade software for engineers who use mathematical 

block diagrams for simulation, control, and related applications. It uses the 

popular Matlab/Simulink for editing and viewing graphic models in block- 

diagram format. The block diagrams made with Matlab/Simulink can be used 

by RT-Lab to generate necessary code for real-time simulations on a single or 

more target processors. However, Matlab/Simulink block diagrams have to 

be separated into subsystems and inserted appropriate communication blocks
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before they are executed by RT-Lab.

RT-Lab recognizes three types of subsystems [31]: (1) Console subsystem, 

which is the station operating under Windows XP, where the user interacts 

with the system. It contains all the Matlab/Simulink blocks related to ac­

quiring and viewing data. (2) Master subsystem, which is responsible for 

the model’s real-time calculation and for the overall synchronization of the 

network. There can be only one master subsystem in one model. (3) Slave 

subsystem is also responsible for performing calculations in the model and is 

driven by the master subsystem. A model may contain several slave subsys­

tems.

Once the model is grouped into console and computation subsystems, spe­

cial blocks called OpComm blocks must be inserted into the subsystems. In 

RT-Lab, a computation subsystem waits for reception of all signals before it is 

able to start calculation. OpComm blocks are used to intercept all incoming 

signals before sending them to computation blocks within a given subsystem.

The system given in Fig. 5.1 is implemented in RTX-Lab as in Fig. 5.2 

and Fig. 5.3. It is distributed over two target nodes. The first node, acting 

as master subsystem (SM-IM Model), computes the induction motor model in 

real-time; the second one, acting as slave subsystem (SS-Observer), computes 

in real-time the observer. SC-User-Interface is the console. It contains the 

input signals, manual switches, and signal visualization.

TARGETHOST

Console 
U ser Interface

M aster Node 
I.M. Model

Slave Node 
Observer

Figure 5.2: RTX-Lab simulation diagram
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load_d_out

Rr_f_out

load_out

A_d_ou

soureeB_ii

load_in

luad_d_ii

Rr_t_in

siminfo

yj

SM_IM Model (Master)

R TX -LA B real-tim e sim ulator

SM_Observer (slave)

Figure 5.3: RT-Lab graphic model of observer-based IM fault detection

5.2 Real-tim e Simulation Results

RT-Lab requires that the time factor equal to 1 in order to get accurate results. 

By testing, a step size of 100/rs is chosen, which results no overrun with a time 

factor of 1. Two types of disturbances are considered: 1) A load torque of -5

N.m is disturbed by step changes. 2) The magnitude of the stator phase A

voltage is increased by 1 0 %, making the three phase input voltage unbalanced. 

We also consider two types of faults: stator shorted winding turns and bro­

ken rotor bars, which result in abrupt changes in stator resistance and rotor

resistance, respectively. The considered disturbances and faults are shown in 

Figure 5.4.

The observers were simulated in the following cases:

Case 1  No faults but two types of disturbances present

Case 2 Rotor fault without disturbances

Case 3 Stator fault without disturbances

Case 4 Rotor fault with two types of disturbances present.

Case 5 Stator fault with two types of disturbances present.

It was pointed out that two of the bilinear observer poles are assignable and
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(d)

Figure 5.4: Disturbance and fault signals used in simulation (a) Stator phase 
A voltage (b) Load torque (c) Rotor resistance (d) Stator resistance

the other two are not but located on the left-half of s-plane. In the simulation, 

the two assignable eigenvalues are placed at [-100 -100]. For the UIO, the poles 

are placed at [-20 -20 -50 -50 -20]. Since the rotor fluxes are not measurable, 

we will use dq components of stator current for fault detection. Figure 5.5 - 

Figure 5.9 show the real-time simulation results of the BLO and UIO for the 

above five cases. Figure 5.5 shows that when there are no faults occurred, 

the estimation error of stator current (residual) converges to zero regardless 

of the presence of the disturbances, which is as expected. This means that 

the observers can estimate the current of a healthy motor. In Figure 5.6 - 

5.9, where rotor and stator faults occurred, the observers captured the abrupt 

changes in the resistance, producing nonzero residual. Note that, for the bi­

linear observer, the error of motor speed diverges even in normal conditions; 

on the other hand, for the unknown input observer, the error of motor speed 

stays to be zero despite of the faults. For this reason, the speed error can not
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be used as residual.

-1 0

Error of sta to r current (I ) (A)

7j^ /̂\ZV\AAA/VWWWWWwwwwwwv^^^~ -̂-------
r Error of sta to r current ( ld#) (A)

Error of motor speed  (rad/s)

Error of sta to r current ( i ) (A)

Error of sta tor current ( i . ) (A)

Error of motor spe6d

Figure 5.5: Estimation error of case 1, where there are no fault but the dis­
turbances present (a) Bilinear observer: the errors of stator current go to zero 
regardless of the disturbances, but the speed error diverges. For this reason, 
the speed error of the BLO can not be used as residual signal, (b) Unknown 
input observer: The estimation errors converge to zero regardless of the dis­
turbances.
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Figure 5.6: Estimation error of case 2, where rotor resistance increased by 
20% at t  =  2 second. The observers captured the fault and the error of stator 
currents become nonzero at the time fault occurred, (a) Bilinear observer: 
the speed error diverges (b) Unknown input observer: the speed error is zero 
despite of the fault. For this reason, the speed error of the UIO can not be 
used as residual signal.
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Figure 5.7: Estimation error of case 3, where stator resistance increased by 
20% at t =  2 second. The observers captured the fault and the error of stator 
currents become nonzero at the time fault occurred, (a) Bilinear observer: 
the speed error diverges (b) Unknown input observer: the speed error is zero 
despite of the fault.
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Figure 5.8: Estimation error of case 4, where the rotor resistance increased by 
20% at t =  2 second with two types of disturbances present. The estimation 
errors of stator current become nonzero at the time fault occurred, thus the 
fault is detected, (a) Bilinear observer: speed error diverges (b) Unknown 
input observer: the speed error stays to be zero despite of the fault.
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Figure 5.9: Estimation error of case 5, where the stator fault happened at 
t =  2 second with two types of disturbances present. The estimation errors 
of stator current become nonzero at the time fault occurred, thus the fault 
is detected, (a) Bilinear observer: speed error diverges (b) Unknown input 
observer: the speed error stays to be zero despite of the fault.
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Chapter 6 

Conclusions
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This thesis demonstrated how model-based, specifically, observer-based 

techniques could be applied to induction motor fault detection problem. This 

chapter concludes on the work presented in this thesis and gives recommenda­

tions for further work.

6.1 Conclusions

The following general conclusions can be drawn from the work in this thesis:

1. Model-based approach to fault detection in dynamic systems has been 

receiving more and more attention in recent years because of the development 

of the modern control theory. It is a good method for fault detection when the 

process model is known. However, it is seldom studied in the field of induction 

motor fault detection. Since the induction motor model is well-understood, it 

is worth to be studied.

2. The induction motor is originally modeled in its three-phase frame. 

However the model equations contain time-varying parameters because of the 

coupling between the mechanical part and electrical part. To eliminate these 

time-varying parameters, the equations are transformed to two-phase reference 

frames. Different reference frame has advantages for some purposes. We have 

shown that synchronously rotating frame is a good choice for induction motor 

fault detection, in which the state variables become constants in steady state.

3. The induction motor model has a strong bilinear structure if the mo­

tor speed is treated as a time-varying parameter, thus a bilinear observer is a 

good choice for estimating the states of a healthy motor. Two eigenvalues of 

the bilinear observer are not assignable. They are determined by the motor 

parameters and are located on the left-half of s-plane. However, negative eigen­

values can not guarantee the stability of a time-varying system. An analysis of 

the observer error dynamics shows that the stability can be guaranteed since
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the motor speed is changing slowly.

4. Unknown input observers are ideal methods for systems with unknown 

inputs, and they have been well developed for linear systems. By considering 

the specific induction motor model, a fault detection unknown input observer, 

which makes use of the complete nonlinear model of the induction motor, is 

developed in this thesis. It is insensitive to the disturbances and sensitive to 

faults only. It is an extension of the linear unknown input observer. In the 

design, instead treating the nonlinearities as disturbances, which will increase 

the number of unknown inputs, they are incorporated into the system matrix 

of the error dynamics.

6.2 Recommendations for Further Work

The following topics would benefit from further work:

• Robustness

The designed observers are robust to load disturbance and power supply 

imbalance. However, the parameter variation is not considered. In fact, 

the rotor resistance depends on working conditions, and the rotor resis­

tance will vary when the temperature varies. Generally speaking, model 

uncertainties can be treated as unknown input terms, but it is almost 

impossible to perfectly decouple them from the residual signal. In this 

case, one can use the optimization based fault detection method.

• UIO for bilinear model

It could be seen that the UIO design eventually leads to designing an 

observer for a bilinear subsystem. So it is possible to design an unknown 

input observer based on the induction motor bilinear model.

• Hardware-in-the-Loop

RT-Lab facilities real-time simulation with hardware-in-the-loop. A fu-
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ture work could be done by including a real induction motor into real­

time simulation via RT-Lab I/O  boards to test the fault detection schemes.
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