el S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions ¢t

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 KI1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta
Fast. Adaptive Region Growing for Irnage Segmentation

by
Yian Leng Chang @

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillinent of the requirements for the degree

of Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta

FALL 1993

I * National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des seivices bibliographiques

395 Wellington Streel
Ottawa, Ontarno
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellngton
Ottawa (Ontano)

Ot Notres e fivoenn it

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa theése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88119-4

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Yian Leng Chang

TITLE OF THESIS: Fast Adaptive Region Growing for Image Segimentation

DEGREL: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1993

Pernussion is hereby granted to UNIVERSITY OF ALBERTA LIBRARY to
reproduce single copies of this thesis and to lend or sell such copics for private,
scholarly or scientific rescarch purposes oniy.,

The author reserves other publication rights, and neither the thesis not exten-
sive extracts from it may be printed or otherwise reproduced without the author’s

written permission,

(Signed)
Permanent Address:
2 St. Helier's Avenue

'\ SINGAPORE 1955
Date: Atx.awsf 6 1443

Manifest plainness, (
Embrace simplicity,

Reduce selfishness,

Have few desires.

Lao-tze
604 531 B."

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research, for aceeptance, a thesis entitled Fast Adaptive
Region Growing for Image Segmentation submitted by Yian Leng Chang
in partial fullillment of the requirements for the degree of Doctor of Philosophy.

e /; /
..... Hioafv A

X. Li (supervisor)

AL Basu

1/ Schacfli

/. b
II. Zhang “ R

\

L A

L. S. Davis, University of Maryland

Date: Aw’dmt é’qus

Abstract

Image segmentation is a process that produces a meaningfal partition of an image
such that each segment in the partition corresponds to an entity in a scene. In
this project, we propose a simple and general region growing framework for image
segmentation. The region growing process is guided by regional feature analysis;
no parameter tuning or a priori knowledge about the image is required. Also,
our algorithm is fast and suitable for parallelization.

An undirected graph is used to represent an image in a region growing, pro
cess. A vertex in the graph denotes an image region, and an are indicates the
adjacency relationship of two regions. Whenever two connected vertices satis(y
a certain merge criterion, they are merged into one. Region growing is an ag,
glomerative and iterative process which terminates when no more vertices in the
graph can be merged. Since a merge operation affects only a neighborhood of the
graph, many pairs of vertices can be merged independently at the same time.

A new merge decision rule, called the Fast-merge Adaptive eriterion, is pro
posed in this study. Instead of comparing the difference of two feature means
with a predefined threshold, we assess the homogeneity of two merging regions
from their feature distributions. This results in an algorithm that is robust with
respect to various image characteristics. When several regions are homogencous
enough to merge with a given region, the Fast-merge policy is applicd 1o seleet
a region for the binary merge. Fast-merge enhances the gnality of segientation.
More importantly, it minimizes the number of merge rejections and results in a
fast region growing process that is also amenable to parallelization.

Our algorithm is tested on the BBN TC2000 shared memory multiproces-
sors. Experimental results show that the algorithm produces a balanced load on
thc processors, and maintains a high degree of parallelism throughout the seg.
mentation process. A distributed implementation on a network of SPARC work:
stations is also described. Through theoretical analysis and empirical stadies, we
have shown that our aigorithm requires shorter processing times and produces
better segmentations than the existing Best-merge Fixed Threshold algorithm.

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Xiaobo Li,
for guiding me through the research and the preparation of this thesis. I am
thankful for the unrestricted access to all resources at his disposal, and for his
unfailing confidence in my motivation and capability. During his short “vacation”
at_home from his sabbatical visit in the United States, he sacrificed precious
weekend afternoons with his family to go through pages of proofs with me on
the whiteboard. At the final stage of this pro; :ct, despite reading was painful
and difficult due to his eye injury, he meticulously read every draft of my thesis
and provided timely and constructive feedback. The successful completion of this
project owes much to his insights and dedication.

I would also like to thank the members of my examining committee, Dr.
Jonathan Schaeffer, Dr. Anup Basu, Dr. Jack Mowchenko, Dr. Hong Zhang, and
Dr. Larry Davis, for carefully reading this thesis and making positive criticisms.

In the course of this project, I benefited from the discussions with many
mdividuals: the electronic mail exchanges with Dr. Richard C. Dubes (Michigan
State University), Dr. Clark Y. Bie (University of Waterloo), and Dr. Kenneth
I. Laws (SRI) helped me to gain better insight on textural measures and the seg-
mentation problem; Nesrine Abbas helped me to look at the region growing prob-
lem from the graph-theoretic perspective; Steve Sutphen and Andrew Mullhaupt
tirelessly directed me in identifying the performance bottleneck of my SPARC
implementation, and suggested many useful ways to alleviate the paging prob-
lem: Paul Lu, our local TC2000 expert, had given me many useful pointers on
using the machine; Brent Gorda and Linda Woods (Lawrence Livermore National
Laboratory) provided excellent technical support on the TC2000, thus enabling
me to complete my experiment on schedule.

This thesis is dedicated to Shuang, my husband, who so graciously endured
the neglect since 1 started on this project, and so cheerfully proceeded to marry
me despite the project seemed never ending. Without his encouragement and
understanding, this thesis would never have been completed. I am also grateful

to my parents, brothers and sisters, for their unconditional wholehearted support
on whatever I pursue, and for their love and care. To all my friends, 1 thank
them for always being there when I needed them.

Finally, I would like to acknowledge the financial support of the Deport
ment of Computing Science, University of Alberta. Special thanks to Lawrence
Livermore National Laboratory for the access to their TC2000 system; PANMI
Laboratory at the University of Waterloo for supplying the Brodatz texture set;
PRIM Laboratory at the Michigan State University for providing me with several
intensity images for my experiment.

Contents

1 Introduction 1
1.1 Image Segmentation: Definition and Goal 1
1.2 Motivation and Objectives 2
1.3 Why Region Growing 3
[4 ScopeofStudy .. oo oo 4
1.5 Outlincof Presentation 5
2 Related Work 7
2.1 Thresholdingo o o L T
22 Clustering . . . o o L o e 8
2.3 Boundary Approach Lo L. 9
24 Region Growing e 9
2.5 Other Segmentation Approaches 13
2.6 The Use of Varying Threshold in Region Growing 14
2.7 Parallel Region Growing Models and Implementations 16
3 The Adaptive Homogeneity Test 18
3.1 Definitions © .00 L 18
3.2 Homogeneity Tests 19

3.3 Comparing the Fixed Threshold and the Adaptive Tests 24

4 FAS — The Fast Adaptive Segmentation Algorithm

4.1
4.2
4.3
4.4

The Graph Model 0.0 ...
The Region Growing Process
The Merge Criterion
More Segmentation Results
4.4.1 Sensitivity to Small Regions
4.4.2 Robustness on Noisy Images
4.4.3 Applicability on Natural Grayscale Images .
4.4.4 Using Multiple Features

5 A Shared Memory SPMD Implementation

5.1
5.2
5.3

5.4

5.5

6.1
6.2
6.3

The TC2000 Environment
Sequential Region Growing
The Parallel Process
5.3.1 Data Distribution and Results Gathering . .
5.3.2 Feature Computation and Graph Building .
5.3.3 Region Merging and Shared Memory Access
Experimental Results
5.4.1 Parallel Segmentation Time
5.4.2 Load Partitioning
5.4.3 Number of Processors -

Effects of Image Characteristics on Timing

Other Implementations

Image Seaming
The SIMD Approach
Split-and-Merge L.,

........

bt
90
98

9K

D

6.4 The Distributed Approach © o0 00 00000 Lo
6.4.1 Inter processor Merge Approach . . . 00000000 L.
6.4.2 Local Merge Approacho 0oL L
6.4.3 Distributed Timing Resultso

Conclusions and Future Work

The Co-occurrence Texture Measure
Normality Test on Texture Features
Lemmas and Proofs

More Images and Segmentations

Bibliography

List of Figures

3.1

3.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Fixed Threshold and Adaptive Segmentations 2|
Contrast histograrus of three textures00 0000 0. 22
Data structure conversions in region growing L. 38
The sequential FAS merge phase 39
Composition of a merge criterion L. 41
Fixed Threshold segmentationson M4 15
Adaptive segmentationson M400 16
Selection policies and segmentations L. 52
Texture codesof M2and M3, nh
Image M2 nh
Image M3 56
Segmentations of MZand M3o nT
Image M4 (no noisc added) 00 54
Segmentationsof M4 oo)
Image M5, increased noise level top-down 6l
Image M6, increased noise level left-right, 62

Segmentationsof M5 L Lo 63

118 Segmentations of MG 0000000000 o o L
419 MI9 and segmentations . . . 0oL L Lo oo
420 M20 and segmentations . . . 0oL 0oL 0oL
4210 M2 and segmentations 000000 0L L.
422 M22 and segmentations L0 0 L0 e
123 “lexture layout inimage MI120 0 00 0 0000000
1.21 Single-feature segmentationsof M120 000 oL,
1.25 Two-feature segmentationsof MI12
4.26 Three-feature segmentationsof M12
5.27 Sequential timing on a set of grayscale images
5.28 Initial load distribution on the TC2000
5.29 A logical view of the TC2000 parallel region growing process . .

5.30 Parallel timing on grayscale image M7
5.31 Parallel timing on textured image M13
532 Parallel timing on a set of grayscale images
533 FAS and BFS parallel timingon M7.
531 FAS and BFS merge timeratioon M7
5.35 Load distribution by FASand BFS
5.36 Texture (DO5) of image M13
5.37 Texture (D55) of image M14
538 Texture (D77) of image M15
5.39 Tmage MI6 . . L L L L
540 Tmage MIT . o o
541 Texture layout inimage MIS

65
66
67
63
70
7l

Lr Y
72

~3
(S

6.42 Distributed processing timeon M7 0oL, Lo

6.43 Distributed timing ratioon M7 oL 1140
6.44 Distributed processing timeon MST L. Hi
6.45 Distributed timing ratioon MS7T L
6.46 Distributed Fast-merge timing analysis 12
6.47 Distributed Best-merge timing analysis 112
6.48 Distributed Fast-merge timing analysison M7 113
6.49 Distributed Best-merge timing analysison M7 b
D.50 M7 and segmentations 128
D.51 M8 and segmentations 129
D.52 M9 and segmentations 130
D.53 M10 and segmentations 131
D.54 M11 and segmentations 132

D.55 M23 and segmentations L. 133

List of Tables

it
-1

G.15

6.16

Contrast means and standard deviations of three textures 22
Mergeability o 44
Boundary accuracy L L 47
Average number of merge rejections L L. L. L. 48
Average number of iterations. L. L L L. 49
Summary of merge criteria performance. 50
FAS sequential timing on the grayscale images (in seconds) 76

BFS sequential timing on the grayscale images (in seconds) 76
Parallel timing on the grayscale images 86
Sequential to parallel merge time ratio on the grayscale images . . 86
PE Load distribution using FASon M7 89
PE load distribution using BFSon M7 90
Sequential timing on a set of textured images 93
FAS parallel timing on the textured images. 93

Fast-merge timing (in seconds) on a set of 512 x 512 grayscale images107

Best-merge timing (in seconds) on a set of 512 x 512 grayscale images107T

6.17 Fast-merge timing (in seconds) on a set of 256 X 256 grayscale images 108
6.18 Best-merge timing (in seconds) on a set of 256 x 256 grayscale images 108

6.19 Fast-merge timing percentages on distributed (py), serial (p,). and
communication (p.) subprocesses L L 0L L 100

6.20 Best-merge timing percentages on distributed (py), serial (p,), and
communication (p.) subprocesses L. L. 1O

B.21 Shapiro-Wilk test results on texture features 120

Chapter 1

Introduction

1.1 Image Segmentation: Definition and Goal

[n computer vision, a scenc refers to the physical environment of interest; an
image is a two-dimensional projection of the scene, and the output of a sensor
used to see this environment. An image, in image processing terminology, is often
a two-dimensional array of pixels. From the computational perspective, a pixel
is simply a number or a vector of numbers.

A computer vision system recovers useful information about a scene from
images. Before such a system can make some sense from an image, it will usually
have to obtain a meaningful partition of the image such that each segment in this
partition corresponds to an entity in the scene. This image partitioning process
is known as image segmentation. In the algorithmic sense, image segmentation
is a process that assigns a label to each image pixel or pixel block according to
some criteria. At the end of that process, all spatially connected pixels or blocks
with the same label constitute an image region.

Image segmentation is a very important problem that has been the subject
of extensive research in computer vision over the past decades. It is a low-level
image operation carried out at the initial stage of an image analysis process, where
in many cases no a priori knowledge about the objects in a scene is available. The
primary purpose of segmentation is to provide sufficient information to support

higher level reasoning in the vision system. The suecess of a vision task often
relies on good segmentations.

Image segmentation is also a difficult and ill-defined problem [8]. It is the
nature of segmentation that its definition and quality cannot be formulated pre-
cisely. There is no ground truth for the segmentation of any real image, no
objective and scientific measure for the quality of such a segmentation. To illus:
trate our point, we quote the following definition of a good segmentation given
by Haralick ¢t al. [28]:

“Regions of an image segmentation should be uniform and homoge
neous with respect to some characteristic such as gray tone or tex-
ture. Region interiors should be simple and without many small holes.
Adjacent regions of a segmentation should have significant different,
values with respect to the characteristic on which they are uniform.
Boundaries of each segment should be simple, not ragged, and must,
be partially accurate....”

Despite the decades of effort, we are unable to define an image region anywhere
more precise than it being “uniform and homogencous with respect to some char-
acteristic”. In fact, this rather vague condition has served as a working criterion
for most segmentation algorithins.

1.2 Motivation and Objectives

Besides being an important and difficult problem, segmentation on any nontrivial
image is a tedious and time consuming process. In order to produce useful resnlts,
segmentation methods tend to be ad hoc and application specific. It is unreal-
istic to strive for a general-purpose segmentation algorithm that will decompose
arbitrary images into meaningful parts. However, a flexible and effective segmen-
tation model which can be easily tailored for specific applications is a worthwhile
endeavor. It is our ultimate goal that through this study on region growing, a
better understanding on the segmentation problem can he achieved.

The main objectives of this project are itemized as follows:

e To provide a simple, flezible and effective segmentation algorithin thal can
be easily adapted to specific applicaiions

Our goal is to provide a general segmentation framework that can be ea«ily
tailored to work well for specific applications on a wide range of computer
systems. In region growing, such adaptations include feature measure and
feature window size selections. There are two aspects on the generality of
our method. First, our model should be simple, application-independent,
and be able to provide reasonable segmentations even without e prior:
knowledge about the images to be segmented. Furthermore, our algo-
rithm should allow efficient implementations on widely accessible computer
systems, including conventional single-processor machines, distributed net-
works and shared memory multiprocessor systems.

o To improve segmentation results by allowing local image characteristics to
guide the segmentation process
Current region growing methods use predefined thresholds for the entire
image and/or throughout the region growing process. Since image proper-
ties vary with locations of the image, an adaptive approach that is guided
by these local variations would produce better segmentation results. In our
adaptive region growing algorithm, parameters required by the merging de-
cision would be computed automatically based on local property measures.
Our method would not require parameter tuning or a priori knowledge
about an image, although domain-specific knowledge may be incorporated
into the algorithm to improve performance.

o To achicve fast segmentation by harnessing the computational power of mul-
tiprocessor systems
Image understanding systems often have stringent requirement on process
turn around time. Therefore, the speed of a segmentation process is an
important measure on the usefulness of the algorithm. To achieve fast seg-
mentation, our region growing algorithm is simple and can be easily and
cfficiently implemented on multiprocessor systems.

In summary, we want to propose a simple, easy to use and effective region
growing framework that can produce fast, satisfactory segmentations on a wide
range of images.

1.3 Why Region Growing

Although the multitude of alternatives make it impossible to adjudge that a
particular segmentation method is clearly a superior selection for treating the

problem at hand, we decide to study the region growing approach for the following
reasons:

1. Region growing has proven to be an effective segmentation approach for
a variety of applications [12, 28, 50, 62, 70]. For example, it is more ro-
bust with respect to noise and image data irregularities compared to edge
detection segmentation [23]. Region growing is a general and applicable
segmentation method for a wide range of images.

2. We believe that spatial information is indispensable for producing good seg-
mentations, and region growing provides a natural, effective way to incor
porate spatial and image feature information in the segmentation process.
Segmentation by thresholding and clustering lack this property [28].

3. It is easier to customize a region growing algorithm than other segmentation
methods for specific classes of images. In region growing, the domain-
specific module, namely the feature extraction from image pixels, is casily
replaceable without affecting other parts of the algorithm.

4. Region merges can be performed simultaneously in region growing, making
the process well suited for parallelization, and has the potential to provide
very fast segmentation.

1.4 Scope of Study

Our goal of this project is to provide a general and effective region growing maodel.
As a result, no a priori knowledge, such as the number of regions or the shapes
and sizes of regions, are required by our algorithm. Also, no attempt is made
to customize our algorithm to suit a particular application or a class of images.
The selection of feature measure and feature window size, though crucial to the
success of the segmentation process, are not dealt with in great detail due to their
domain-dependent nature.

To increase the usefulness of our algorithm, we design it with widely accessi-
ble machine architectures in mind. These architectures include the conventional
single processor machine, general SIMD, MIMD, and distributed systems. Our
design does not attempt to accommodate architectures that are not easily acces-
sible, e.g. the pyramid machine.

Fnhancement procedures that are common pre- and post-processings for
segmentation, such as noise smoothing, small region elimination, and boundary
refinement, are not included in this study. This is because such procedures are
often application-dependent. In addition, the robustness of our algorithm allows
us to place little emphasis on enhancement issues.

Reports on region growing algorithms in the literature exhibit at least one
of the following drawbacks making accurate reproduction of results impossible:
Mathematical formulas are not stated explicitly: algorithms are not clearly speci-
fied; parameters are not given; details of test images are not provided; timing per-
formance are not presented. In the evaluation of parallel performance, a fair and
nnbiased comparison is impossible due to differences in machine architectures.
Because of these difficulties, instead of implementing specific multiple-threshold
merging criteria in the literature, we compare our adaptive criterion with the
most general and widely used Fixed Threshold method [10, 28, 63, 67, 70]. On
the control of merging order, the Best-merge paradigm which was adopted in
several recent studies [48, 63, 67] is used to compare against our Fast-merge
paradigm.

1.5 Outline of Presentation

In the next chapter, we give an overview on segmentation techniques, followed
by a summary on existing work related to the major focus of this thesis, namely
adaptive and parallel region growing.

Chapter 3 presents the two-dimensional random field image model. and pro-
vides formal definitions of region growing, the Fixed Threshold and the Adaptive
homogeneity tests. An intuitive explanation of our adaptive approach is given,
followed by an analytical comparison on the two tests using probability theory.

The Fast Adaptive Segmentation (FAS) algorithm is described in Chapter
4. In this chapter, we define the graph model for region growing, and provide an
overview of the region growing process. The merge criterion, which is the main
focus of this study, is examined in detail. We also present experimental results on
the evaluation and comparison of several merge criteria. Four sets of experiments
are presented in the final section. These experiments are designed to assess the
FAS algorithm on its sensitivity to small regions, its robustness on noisy images,
grayscale image segmentation, and the use of multiple features in segmentation.
Comparisons are made on the FAS and the existing Best-merge Fixed Threshold

6

(BFS) algorithms.

A shared memory SPMD region growing model is presented in Chapter 5.
We describe the TC2000 implementations of the FAS and the BES algorithms.
Sequential and parallel timing results from the two algorithms on grayscale and
textured images are discussed and compared. Further experiments are performed
to investigate the effects of several image characteristics on segmentation timing.

In Chapter 6, we discuss other possible implementations of the region grow-
ing algorithm on different computational models. Strengths and weaknesses of
the various approaches are examined. A distributed implementation on a network
of workstations is given in detail.

We give our concluding remarks in Chapter 7. We also suggest several av-
enues for the further study of the region growing problem.

Chapter 2

Related Work

This chapter presents an overview on image segmentation by outlining the four
common techniques: thresholding, clustering, boundary approach, and region
growing. In the latter sections, we survey work done on using varying thresholds
for region growing, and parallel region growing.

2.1 Thresholding

The simplest form of thresholding is to divide image pixels into two groups ac-
cording to a single gray-level threshold. The threshold is determined from the
valley between two modes in the image histogram. This method, known as point-
dependent global thresholding [54], works well for segmenting simple bimodal
images containing objects on uniform backgrounds. Global thresholding refers
to the use of a single threshold for the entire image, whereas point-dependent
means that the threshold is determined solely from the gray-level of each pixel.
If the threshold is determined from some local property, for example the gray-
level distribution in the neighborhood of each pixel, then the method is said to
be region-dependent.

In local thresholding, an image is partitioned into sub-images and a thresh-
old is determined for each of the sub-images. As in global thresholding, the

~1

threshold in a local thresholding method can be point- or region-dependent. A
smoothing technique is usually applied to climinate gray-level discontinuitios at
the boundaries of sub-images. Local thresholding techuiques are useful for im-
ages with region feature distributions having a high level of overlap. A large
number of methods have been proposed for threshold selection in thresholding,
techniques [23, 41, 54, 66).

Although thresholding works reasonably well on a wide class of images, it
has a number of disadvantages. Since thresholding does not apply any spatial
information in the segmentation process, many images can have the same his-
togram. As a result, a priori knowledge is required to segment the images. Also,
regions in the final segmentation may not be contiguous. The determination of
an accurate threshold is difficult and not always achievable using the existing
methods.

2.2 Clustering

Segmentation by clustering [14, 23, 28, 37, 61] can be considered the multidimen-
sional extension of thresholding. This approach is based on the assumption that
each region forms a distinct cluster in the hyperspace of characteristic features.
Often, the Euclidean distance is used for measuring dissimilarity between feature
vectors computed from pixel blocks. A clustering algorithm [65] is performed on
the feature vectors. The resulting clusters are then mapped back to the spatial
domain. An edge finding process may follow to define the region houndaries.

Clustering is an iterative and highly compute-intensive process. In terms of
segmentation performance, the clustering approach has several drawbacks: The
technique will fail when the distinct cluster assumption is not satisfied. Also,
since the number of image segments is not known in general, popular clustering
methods, such as the square-error Forgy’s algorithm and any approach that is
based on mixture decomposition [34], may not be applied efficiently. Further-
more, as in thresholding, the inherent image spatial information has not been
successfully incorporated in the clustering approach.

2.3 Boundary Approach

A boundary approach [23, 27, 32] is a segmentation technique based on the de-
tection of discontinuity in an image. This method can be broken down into two
steps: edge clement extraction and boundary formation. In the first step, an
edge detection operator, such as a high pass filter or a gradient operator, is ap-
plied everywhere on an image to extract edge elements. The main purpose of the
second step is to eliminate false edges and streaks, and combining -treaks into
bhonndaries. Thinning or skeletonizing on edges may be applied before edges are
connected. Heuristic search, dynamic programming, relaxation, and curve fitting
are possible techniques used for boundary formation.

The boundary approach is suitable for simple scenes containing man-made
objects where edges are clear and predominant, such as the “blocks” world of
robotics. On natural, noisy, or more complex images (eg. textured images), a
houndary method often fails to produce satisfactory segmentations. More specif-
ically, since a boundary approach is based on the detection of discontinuity and
not all discontinuities signify region boundaries, extra edges are formed in seg-
mentation. Also, when the transitions between regions are not abrupt enough,
edges will not form closed connected curves. Hence region boundaries will have

gaps.

Although edge element extraction can be parallelized with high efficiency,
boundary formation is inherently sequential. Moreover, due to the variations
on boundary length and boundary density on an image, work partitioning is
especially difficult in a parallel implementation.

2.4 Region Growing

In the segmentation surveys by Zucker [70] and Haralick and Shapiro [28], region
growing encompasses a large number of segmentation methods. Stated loosely,
a region growing algorithm forms image regions by using the spatial information
and characteristic feature of image data. Contrary to what the name implies,
the region formation process can be agglomerative, divisive, or a combination of
both. Existing region growing algorithms differ in the criteria used for region
merging and splitting, and the way features are extracted.

We illustrate a region growing process by presenting the early work of Muerle

and Allen [43]. The process has the following steps:

—

. Divide the image into initial regions (say 4 x | pixels).

2. Compute a feature measure from each initial region, e.g. the average gray
tone intensity.

3. Beginning with the first region in the upper left-hand coraer, compare its
feature with each of its neighboring region to determine if they are similar.
If the feature difference is less than a predefined value, merge the two regions
and update the feature measure.

4. Continue growing the region until no neighbors remain which can he merged.
Label the region as a completed region.

5. Move to the next incomplete region, and repeat these steps until all regions
are labelled.

Zucker [70] named the above approach the Regional Neighbor Search. It is
a sequential process that forms regions by agglomeration. In the agglomerative
approaches described in Perry [48] and Raafat [50], some seed rogions are selected
after step 1. Seed regions are chosen as small groups of initial regions having the
most uniform or homogeneous feature values. The merging process begins from
these regions.

Region growing can also be a top-down process [52]. That is, the process
starts with the whole image as a single region and successively divides regions into
smaller regions [47]. The process stops when all regions satisfy an appropriate
homogeneity criterion. Compared with the previous agglomerative approach, the
splitting approach has the advantage of a decreased overall computation. Non-
homogeneous areas in the image are isolated by the partitioning process so that
additional processing can be devoted to these arcas.

To achieve efficient implementation, the split operation has to divide a region
into regular, equal sized sub-regions. Often, the quadtree data structure is nsed
in splitting, allowing a region to split into 4 regions. All regions have dimensions
of the form 2%, where k is a positive integer. At the end of the splitting process,
the result is a group of square regions of various sizes. To produce the final
segmentation, a grouping or merging process is required to examine and join
adjacent regions.

The previous paragraph has described the split-and-merge 10, 11, 13, 31]
approach - a region growing process that combines both region merging and

H

splitting. We now examine the pyramid split-and-merge model discussed in [10].
'The algorithm uses the quadratic picture tree which has N +1 levels for an 2V x 2V
image. The leaf nodes of the tree correspond to single pixels in the image and the
root. (level 0) represents the entire image. Except for the leaf nodes, each node of
the tree has four children. The entire tree structure forms a pyramid, with nodes
of a level correspond to a pyramid plane

To save memory and computation time, an intermediate level | in the tree
is selected to start the segmentation. The set of all nodes at that level is called
the segmentation set and cach one of them represents a square sub-image of size
2021 % 21=1 Fach square has its region number, and the segmentation set is stored
in the memory in a matrix form. Since a single pixel has no texture information,
split-and-merge proceeds down to regions of & x k pixels (eg. k = 8) instead of
reaching the leaf nodes,

Beginning at the segmentation level [, the merge operations propagate to-
wards the highest level while the split operations propagate towards level k of
the pyramid. A merging criterion for any region R may be defined as in (2.1).
Nodes that do not satisfy the merging criterion are said to satisfy the splitting
criterion.

(Ill(l;l.‘((r'l, (/'2, /'3, C',|) - 7711:71(0], CQ, Cg, 04)) < TC (21)

In (2.1), T- is a preassigned threshold and C; is the feature vector of a successor
region of R,

The split-and-merge algorithm given in [10] is described as follows. The
merge aid split operations can occur at the same time:

I. Initialization The segmentation matrix is initialized so that all entries
correspond to a I'level node are assigned the same region number. That is,
the image is first partitioned into 2! x 2! regions. Subsequently, node values
are initialized from level &k to I. The feature measure of a parent node is the
average feature of its four sons (2.2), with exceptions for the level k nodes
which have texture measures as node values.

1
("'pnrenl = Z(Cl + C-z + C3 + C4) (22)

2. Merging: From segmentation level to level N Each level | node in the
segmentation set is traversed to check if any four nodes, sharing the same
parent node at level [+ 1 satisfy the merging criterion. If they do, the four

nodes are considered a single region. The four nodes in the segmentation
set are then replaced by their parent node in the sense that the four corre
sponding blocks in the segmentation set matrix are labelled by a single new
region number. Node value of the parent node is recomputed using (2.2).
Node traversing in the segmentation set is repeated and propagated to the
top of the pyramid until no node replacement oceurs or the highest level of
the pyramid is reached.

3. Splitting: From segmentation level to level k' Meanwhile, a node at the
initial segmentation set is tested using the splitting criterion. If the splitting
criterion is satisfied, a node is replaced by its children in the segmentation
set in the sense that the original block in the segmentation set matrix is
split into four blocks, each labelled by four different region numbers, ‘T'he
test is recursively applied to the children until level & is reached,

4. Grouping The intermediate image at this stage is a collection of square
regions of varying sizes. Grouping is necessary to combine adjacent regions
of similar features. The data structures required are the region adjacency
graph (whose nodes correspond to regions and branches connecting nodes
correspond to adjacent regions) and a stack. A depth-first search is per-
formed on the graph, and adjacent regions that satisfy the merging criterion
are combined.

5. Small region elimination After the grouping operation, small isolated
regions within large regions and those along the boundary arcas are merged
with the most similar regions adjacent to them.

In the above algorithm, Chen and Pavlidis [10] usc the co-occurrence ma-
trix as texture measure. The major disadvantages of split-and-merge are the
blocky, unnatural boundaries in resulting segmentations, and the high memory
requirements in the splitting, merging and grouping procedures.

Recent split-and-merge algorithms [12, 62, 67] do not adopt the pyramid
model. In these implementations, split and merge are two distinet processing,
phases. The main purpose of the split process is to reduce processing by rapidly
identifying large homogeneous regions. However, in parallel 1egion growing where
key implementation issues are very different from that on the Von Nemmann
machine, the split process does not necessarily shorten the total processing time,
A detailed discussion is given in Section 6.3.

2.5 Other Segmentation Approaches

There exist many other segmentation algorithms that do not fit precisely into the
calegories given in the previous sections. Some of these techniques are hybrids
of the fonr mentioned approaches, and others are based on paradigms which are
widely used for solving problems unrelated to image segmentation. Most of these
techniques are designed to work well on specific classes of images, for examples
textured, range, biomedical, remote sensing images. We complete our discussion
on segmentation approaches by naming a few of these methods.

Markov Random Field model-based algorithms [13, 20, 22, 38] have been
proposed to segment textured and other natural images. They are optimization
algorithms and can be loosely classified into three categories: simulated anneal-
ing, iterated conditional modes, and maximizer of the posterior marginals. These
methods have a sound theoretical basis. However, due to difficulties in implemen-
tation, assumptions on image data and approximations to actual models often
need to be made. The application of these methods are restricted to the types
of images which conform to the assumptions of their respective mathematical
models.

In range image segmentation, Yokoya and Levine [69] based their hybrid
method on the computation of partial derivatives. A region-based and two edge-
based segmentations are obtained by using three differential geometric properties.
The three segmentations are then combined to produce the final results.

To segment cytoplasmn images, Aggawal and Bacus [1], and Cahn et al. [7)
suggested two hybrid algorithms. In these algorithms, thresholding is first per-
formed on a cytoplasm image to extract the nucleus, a clustering technique is
then applied to segment the cytoplasm. In the hybrid algorithm for blood cell
neutrophil images given by Mui et al. [44], the initially thresholding process pro-
vides information on the number of clusters and cluster center locations for the
latter clustering process.

Thresholding and region growing approaches have also been unified. Tsuji
and Tomita [64] apply thresholding on texture images to identify points that are
homogeneous with respect to some feature measure. These points then serve as
seeds for the region growing process.

13

2.6 The Use of Varying Threshold in Region

Growing

In region growing, the merging decision for two regions is often based on com-
paring the difference of their feature mecasures with a predefined value known as
the segmentation threshold. The selection of an appropriate threshold is crucial
to the success of a region growing process. Without domain-specific knowledge,
segmentation is a tedious process involving repeated executions of a segmentation
algorithm using different thresholds until a satisfactory segmentation is obtained.
Although single thresholds may be sufficient to segment simple images, multiple
thresholds are often required to produce segmentations of more complex images.
The trial and error process on single threshold determination is even more imprac-
tical for multiple-threshold segmentations. As a result, most multiple-threshold
region growing algorithms rely on domain-specific knowledge to determine the
thresholds.

In the existing multiple-threshold region growing algorithms, either position-
varied or time-varied thresholds are used. In position-varied threshold region
growing, position-dependent thresholds, usually determined from a priori knowl-
edge about an image, are applied on different parts of the image. Time-varied
threshold region growing, less common than the position-varied method, refers to
the application of varying thresholds during different stages of the region growing
process. Due to the lack of a standard test image set, no detailed comparisons
among the various multiple-threshold approaches have been reported in the lit-
erature. Unlike the existing methods, our adaptive algorithm does not, require
priori knowledge and it uses both position- and time-varied thresholds that are
computed automatically in the region growing process.

It has long been realized that a single constant threshold is often inade-
quate for segmenting an image. Harlow and Eiscenbeis [30] suggested the use
of position-dependent thresholds for the segmentation of radiographic images.
Their approach applies position-dependent thresholds on an image using priori
knowledge represented as an image semantic tree. For example, the semantic
tree of a chest X-ray has the nodes closest to the root representing the left, right,
lungs, and heart; and the left lung node leads to nodes for the ribs and lung
background. Each node of this tree is associated with a threshold suitable for
segmenting the intended region.

In a range image segmentation algorithm, Taylor, Savini, and Reeves [62)
control the order of merge attempts by gradually relaxing the homogencity cri-

terion in the process. A strict threshold that gives many small but homogeneous
regions is applied on the entire image at the beginning of the merging process,
then successively larger thresholds are used to create larger regions in the sub-
sequent iterations. This dynamic merge relaxation technique helps to improve
segmentation results significantly. No detail is given on the threshold relaxation

process.

As in the above mentioned algorithms, several other adaptive or multiple-
threshold region growing algorithms, such as those described in [35, 56, 68], are
designed for specific applications and require domain-specific knowledge to de-
termine segmentation thresholds. An initial effort in general adaptive region
growing is presented in [12]. In this study, Chen, Lin, and Chen developed an ap-
proach to automatically compute position-dependent thresholds using localized
characteristic features. The determination of region homogeneity is treated as a
sequence of decision problems in terms of predicates in their hypothesis model.
Several thresholds are used in the algorithm for decision tests to be applied at
different stages under different conditions in the process. When image data does
not conform to assumptions made in the mathematical model, heuristic rules are
applied. To compute these position-dependent thresholds, histogram analysis on
co-occurrence features are performed on overlapped rectangular windows of the
image prior to region growing. Segmentations on four natural scene and aerial
images, and four X-ray scans of the corpus colosum and pituitary gland were
reported.

Our algorithm differs from the existing adaptive methods in the simplicity
and generality of our adaptive homogeneity test. We base our feature histogram
analysis on regions formed in the merging process; no domain-specific knowledge
is necessary. The determination of adaptive thresholds is integrated in the region
merging process so that the thresholds are position- as well as time-varied. Unlike
the hypothesis model given by Chen et al., our adaptive test can be applied on
features having non-normal, arbitrary distributions. In this study, we compare
our simple and general purpose adaptive approach with the simple and still widely
used fixed threshold method.

2.7 Parallel Region Growing Models and Im-

plementations

Pietikainen and Rosenfeld [49], Burt et al. [6] suggested a linked pyramid compu-
tational model for parallel split-and-merge. The proposed pyramid structure is a
layered arrangement of square arrays in which cach array is half as long and wide
as the array below it. A father-son relationship which may be updated at cach
iteration is defined between nodes of adjacent layers, Segmentation is a multi-
resolution, iterative process. The results from each node of the pyramid are used
to adjust and improve performance of some other nodes in the next iteration. No
timing results on this algorithm were published.

Tilton and Cox [63] presented two single-instruction multiple-data stream
(SIMD) model algorithms for segmenting Landsat images using the pure merge
approach. In the first method, an image is subdivided into N x M regions, with
each region being mapped onto an individual processor. In each iteration, a simi-
larity measure between each pair of adjacent regions is computed. The algorithm
terminates if the globally best similarity measure is less than a preset minimum.
Otherwise, this pair of regions is merged. This algorithm was implemented on
a Massively Parallel Processor (MPP) and has a time complexity of O(N x M).
The second SIMD algorithm is designed for a reconfigurable parallel machine
such as the ZMOB. It has a time complexity of N x M(1 — Q)= where) is
the percentage of merges in each iteration and I is the total number of iterations.
The improvement was achieved by using tables to store feature values and adja-
cency relationships of regions. Since the sizes of these tables decrease with cach
iteration, the computational requirement also decreases. The pixel-based MPP
algorithm was tested on a panchromatic aircraft scanner image but no timing
performance of the algorithm was reported.

Another SIMD region growing approach implemented on the MPP was given
by Willebeek-LeMair and Reeves [67]. The pixels of an image are spatially
mapped onto a mesh-connected SIMD architecture. A recursive split phase alt
the beginning of the process divides an image into homogencous, square regions
of various dimensions. The subsequent merge phase is an iterative process that
uses the Best-merge criterion (that will be discussed in detail in Chapter 4) to
merge adjacent region pairs. An embedded tree structure, for linking together
pixels belonging to the same region, facilitates the routing of information along
irregularly shaped regions and boundaries. If d; is the longest path between two
points in region 7, the primitives for creating the embedded trees, gathering and

16

distributing information to all region points have a time complexity of O(dmqz),
where d,,0z is the maximum of all d;’s in the image. The value of d; depends
on the size and shape of a region. For example, a simple blob-like region has a
smaller d; than a spiral region of the same size. The number of iterations required
to complete the merging process also depends on the shape of the image regions.

Willebeek-LeMair and Reeves [67] also presented a message passing multiple-
instruction multiple-data stream (MIMD) model for medium grain parallel region
growing. Their MIMD algorithm was implemented on a iPSC/2 hypercube ma-
chine. Initially, an image is partitioned into equal sized blocks and mapped
onto a two-dimensional array of processors. As in the SIMD algorithm, a top-
down split process is invoked to rapidly deal with very large regions. Adjacent
processors will then exchange boundary information to update data structures
before the iterative merge process is initiated. A merge may be local to a pro-
cessor (intra-processor merge) or involve regions hosted by different processors
(inter-processor merge). An inter-processor merge incurs communication and
synchronization costs that are not present in an intra-processor merge. In the
message passing implementation, process synchronization is a complicated issue
that requires careful handling. Since it is impossible to determine the best work-
load partition for the processors before run time, processor utilization is also an
implementation concern.

On the MPP, the SIMD algorithm given in [67] requires 22 iterations and
takes 3.05 seconds to merge a 20 x 52 pixels rectangular object. The same al-
gorithm requires 24 iterations and 2.89 seconds to merge a 36 pixel diameter
circular object. The split process takes about 3.4 milliseconds for both objects.
The MIMD algorithm performance on the iPSC/2 depends on the mapping of
region data to processors. In a four-processor run with the rectangular object
shared by two processors, about 67 and 23 milliseconds are required by the split
and merge processes respectively. The circular object, when shared by all four
processors, requires 62 and 46 milliseconds to split and merge.

A coarse grain parallel segmentation approach, known as image seaming,
was proposed by Chen and Pavlidis [9]. In their method, an image is decomposed
into overlapping tiles and then independently processed by individual processors.
Seaming refers to the assembling of results from these processors. In the seaming
phase, two or more cut regions are merged if enough evidence suggests that they
belong to the same region in the whole image. The segmentation results are
then relabelled. Segmentations of a 512 x 512 aerial image are obtained from
a sequential split-and-merge algorithm and the parallel seaming algorithm, and
the results were compared. For a 64 x 64 image, a total speed factor of 2.4 is
recorded using four processors on the SEQUENT machine.

17

Chapter 3

The Adaptive Homogeneity Test

The homogeneity test is an important component of a region growing algorithm.
The quality of segmentations produced by a region growing algorithm is greatly
determined by its homogeneity test. In this chapter, we propose a new test,
called the Adaptive horiogeneity test. Our test is shown, both empirically and
analytically, to be superior to the widely used Fixed Threshold test.

3.1 Definitions

We adopt the region growing definition given in [12, 67, 70]. Let an image [be
represented by a two-dimensional array of pixels. An image region R is defined as
a connected subset of I that is homogeneous with respect to some image proper-
ties such as grayscale or texture. Let H be a logical predicate on a homogencity
measure defined on region R such that

true if R is homogeneous,
H(R) = (3.1)

false otherwise.

A segmentation of an image is a partition of I into regions R;, i =1,...,m
satisfying the following conditions:

18

LI =Ug, it

2. kN R; = ¢, 1 <4,7<m, and 7 # 3.

3. H(R;) = true for all .

4. H(I;U R;) = false, 1<2,5<m, t#), and R, R; are adjacent.

Conditions 1 and 2 state that every pixel of a segmented image belongs to a
region, and the regions are non-overlapping. In region growing segmentation, an
image is first divided into many small, usually equal sized, primitive regions
that satisfy condition 3. These primitive regions are then repeatedly merged to
form larger regions until condition 4 is fulfilled. A region is a spatially connected
set of primitive regions. The logical predicate H is called the homogeneity test.

To further discuss the homogeneity test, we introduce the widely used two-
dimensional random field image model [11, 17, 20]. The stochastic nature of this
model makes it particularly suitable for modelling textured images and images
with high degrees of irregularities. We view an image as a two-dimensional ran-
dom field, with each random variable describing a property of a primitive region.
In region growing, such properties can be the average gray-tone value or some
textural feature that are useful in distinguishing regions in the segmentation pro-
cess. For example, if we choose gray-tone level as the property measure and let
(7 represent this random variable, then the probability of ¢ having a gray-level
¢ can be written as

Jalg) = Pr(G = g). (3.2)
We called fg the probability density function of G.

Using this model, a homogeneous image region is represented by a set of
random variables having the same distribution function; different regions are
definedd by different distribution functions. Consequently, the objective of a region
growing process is to produce a spatial partition of the random field in such a way
that random variables within each group have the same distribution function.

3.2 Homogeneity Tests

In a binary merge, cach of the two regions subjected to a homogeneity test is
assumed to be homogeneous. The homogeneity test attempts to answer the ques-
tion: “If the two regions are merged, will the resulting region be homogeneous?”.

19

The regions are allowed to merge only if the test result is positive. Existing region
growing algorithms differ in the definitions of their homogeneity tests.

In most existing region growing algorithms [10, 11, 28, 67], a predefined, fixed
threshold ¢ is applied on the entire image, throughout the process, to decide if
any two regions can be merged. We refer to these methods as Fixed Threshold
region growing.

Let R; and R; be two regions that are made up of n and m primitive regions,
respectively. That is, R; = {Xi1,..., X} and R; = {Xj1,..., X;u}. Also, lot
X; and X; denote the means of the random variables of R; and Rj, respectively.
Then, the Fixed Threshold homogeneity test with threshold ¢ on the regions
R; and R; is defined as

true il |X; — X;| <e,
H(R:\JR;) = | i (3.33)

false otherwise.

If an appropriate threshold is found, the Fixed Threshold test is simple and
efficient to implement. However, in many cases, there may not be a threshold
which possesses the ideal separating power for the entire image due to the diver-
sity of regional feature homogeneities. In such a case, a threshold that works well
for one region may be too small or too large for another region. Fven if a good
threshold does exist for an image, there is no reliable method for finding it.

To illustrate the importance of incorporating regional feature variation in the
homogeneity test, we give a segmentation example as shown in Figure 3.1. The
test image M1 in (a) is a simple three-segment image composed of the Brodats
textures [4] D05, D16, and D24. In the following discussion, these texture codes
will be used to identify the segments. We use the co-occurrence contrast feature
in the segmentation of M1. The definitions of co-occurrence features used in this
study are given in Appendix A.

The contrast feature histograms given in Figure 3.2 are constructed using an
equal number of feature values from the three textures. The means and standard
deviations of these contrast measures are given in Table 3.1. It is clear that the
three segments in M1 have different contrast variations.

Figure 3.1(c) and (d) give the segmentations of the Fixed Threshold method
using different thresholds. Despite careful adjustments on the threshold, the
Fixed Threshold method fails to produce a satisfactory segmentation. Due to
the large contrast variation of the D16 segment, a large threshold is needed Lo
merge this segment into one region. However, if a threshold of greater than 0.25

20

21

is applied, the left D24 and right D05 regions would be incorrectly merged into
one, while the upper D16 segment still consists of a group of small regions. The
Fixed Threshold segmentation on M1 shows that a single fixed threshold on the
contrast measure may not work well on differentiating multiple textures.

D16

(c) Fixed Threshold segmentation of M1 (d) Fixed Threshold segmentation of M1
(threshold=0.25) (threshold=0.26)

Figure 3.1: Fixed Threshold and Adaptive Segmentations

The Contrast Feature Distributions

co0 E] | T T | | l
D05 ——

D16 ~---

500 | D24 _

400 | | -

300 f b
200 F o

frequency

100 | i
nl.

IRy
oeraenapa |

|
|
1
|
|
|
|
1

L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
texture measure

Figure 3.2: Contrast histograms of three textures

Table 3.1: Contrast means and standard deviations of three textures

Texture || mean s.d.
D05 0.0855 | 0.0309
D16 0.3493 | 0.1067
D24 0.1615 | 0.0444

A diverse degree of region homogeneity as shown in the above example is a
common occurrence in real images. For image M1, there may be a feature, differ-
ent from the contrast, that can result in a better segmentation using the Fixed
Threshold method. Nevertheless, if it exists, such a feature can only be found

to

after a thorongh analysis on many features of the three composition textures. It
would be more fruitful to seek a homogeneity test that can overcome the region
feature variation problem directly.

Stated loosely, a threshold specifies the allowance for which feature values
within a region can deviate. A segmentation threshold is therefore a feature-
and region-dependent parameter. In our Adaptive homogeneity test, we base
the homogeneity decision on the feature distributions of the two regions under
examination. From the feature histogram of a region, we estimate a range, called
the Adaptive range (41,46;), within which the central A portion of the region
feature values lie. The usecr-defined parameter A (0 < A < 1) is called the
Adaptive parameter. Suppose a region R; has feature values { X,..., Xix} where
cach X;; is identically distributed, and the feature mean of R; is X; = 0| Xi;/n.
Given a A, for each region R; in the image, we define the region’s Adaptive range
(i1, 2:2) by the following relations:

P7'(€,‘| < X{j < [,’2) =) and (34)
Pr(t; < X,'j) = PT‘(X,']' < é’n) = 1—;—/\ (3.5)

For two regions to be considered homogeneous, we require that each region’s
[cature mean falls within the other region’s Adaptive range. The Adaptive
homogeneity test on regions R; and R; is defined as

true if € < X; < ;2 and 4 < X; < lis,
H(R:|JR;) = 7! & P (3.6)

false otherwise.

In our experiment, it is found that A € (0.80,0.85) produce good segmenta-
tions. For example, if A = 0.80, the Adaptive homogeneity test in Equation 3.6
states that regions R; and R; are considered homogeneous if X; falls within the
central 80% range of R;, and X; falls within that of R;.

In the segmentation example given in Figure 3.1, comparing the Mi seg-
mentations in (a) and (b), it is clear that the result from the Adaptive method
is better than that from the Fixed Threshold method. We summarize the advan-
tages of the Adaptive test as follows. A theoretical analysis on the homogeneity
tests is given in the next section, and experimental results are given in Chapter 4
to substantiate these claims.

o It results in a robust region growing algorithm.
Since merge decisions are based on locally computed feature means and

variations, the segmentation algorithm is robust with respect to region fea
ture homogeneity.

e It is easy to use.
The Adaptive parameter A can be kept at a fixed value for different images,
and the Adaptive range for cach region is computed antomatically. There
is no parameter tuning as in the Fixed Threshold method. Also, no a priori
knowledge of an image is assumed.

e It is efficient to implement.
Although the Adaptive test is more complex than the Fixed Threshold test,
it is still simple enough to be implemented efficiently.

3.3 Comparing the Fixed Threshold and the

Adaptive Tests

In this section, we provide a formal analysis of the Fixed Threshold and the
Adaptive homogeneity tests using probability theory.

Consider three regions Ry, R;, and Rz with fcature values {Z,,..., 7, },
{X1,..., Xn, }s and {Y1,..., Y., }, respectively. Region £ is formed by n; primi-
tive regions, where n; is also called the size of R;. Let the feature means of the

three regions be Z, X, and Y.

In the following analysis, we assume the feature random variables X,. ¥, and
Z; to be independently distributed. In addition, all random variables within the
same region are assumed to be identically and normally distributed. The vididity
of the normality assumption is substantiated by the Shapiro-Wilk test performed
on five feature measures over twenty textures. Details of the test are given in
Appendix B. Although the normality assumption is required in the following
proofs, it should be noted that application of the FAS algorithm is not restrieted
to normally distributed features.

Definition 3.1 (Normal distribution)

1 ” (z—4)? e
X ~ N(/l,,O') = Pru< X < v) = 75 / ¢ o dr lef Pyl ou,0)
T Ju
o, u,n € R, a .-).

We use the notation N(p, o) for a normal distribution with mean g and
variance o The shorthand notation Py(gp, 0,1, v) is nsed to represent the arca
under the normal distribution N(p, o) from u to v.

The following Lemmas are used for proving the latter theorems. The sliori-

. ny . . N . .
hand notation & is used to indicate that a certain cquality holds due to Lemma
n. The proofs of these lemmas are given in Appendix C.

Lemma 3.1 (Shift)

Pn(pyoyu,v) = Pn(pp — a,0,u — a,v — a), a € R.

Lemma 3.2 (Halves)

Pn(pyo =€+ €) = 2Py(py 0,1+ €) = 2Py(0,0,0,¢).

Lemma 3.3 (Negation)
Px(p,0,-0,0) = Py(—p,0,-4,0).

Lemma 3.4 (Conversion to Standard Normal)

Pr(0,0,0,6) = Py(0, 1,0, f) L g ‘7).
(o3

ag

Lemma 3.5 (Conversion to Exponential)
L (VR o der] —vl—p vl—yp
Paloua, —elool) = —= [V gy & __py , .
Vilget VT Ve Vi

Lemma 3.6

Py (0. %.0. () > Px(0.0,0,), n>1.

20

Lemma 3.7

If oy>0, and Pyx(0,01,0,0,)= Px(0,002.0,03), then (> (,.

Lemma 3.8
Pg(a,d) > Pg(b,c) f a<b<Lce<d

Lemma 3.9

Pz(a,b) < Pg(c,d) if a<b<e<d<0, d—v>b-a.

Lemma 3.10
Pg(a,b) < Pg(c,d) if a<b<0, ¢c<0<d, d—e¢>b—u.

Lemma 3.11

Pg(a,b) < Pg(e,d) if a<b<O0<c<d, |b]|>]c], d—c>b-—a.

Suppose regions Ry and Rz are homogeneous and X;, Y; ~ N(py, a,) for all
2,7 ~vhere 1 <7< ny and 1 <7 < nj. Region Ry, not homoegencous with /£, or
R3. as afeature distribution Z; ~ N(uy,) for all £ where | < &k <ny. We say
that i?; and Rj are two independent and identically distributed (i.i.d.) regions,
while R; and R, are two non-i.i.d. regions. Also, let ¢ be the threshold used in
the Fixed Threshold test, and A be the Adaptive parameter.

We will examine the probabilities for the region pair (Ry, i) and (Iy, I2)) 1o
pass the Adaptive and the Fixed Threshold tests. We denote these probabilities
using Pia, Pir, P4, and P,r. The suffixes A and F represent, the Adaptive and
Fixed Threshold tests respectively; 7 indicates that feature random variables of
the two regions are i.i.d., as in the case of (R, R3); and n indicates that feature
random variables of the two regions are not i.i.d., as in the case of (Hy, I1)).
Ideally, we would like P, Pig to be close to 1, and Py, Poa to be close to 0.

We want to show that Adaptive is a better homogeneity test than Fixed
Threshold by proving the following:

o When feature random variables of two regions are i.i.d. and the homogeneity
test should be passed, Pir has a lower bound of 0 while P4 has a lower
bound of A%, (Theorems 3.1 and 3.2)

e When feature random variables of two regiorns are not i.i.d. and the homo-
geneity test should not be passed, for some A and relation between A and
¢ so that Py = P4, we have P,p > P, if some general conditions on the
region sizes and feature variances are satisfied. (Theorem 3.3)

From properties of the normal distribution on sample means [19, 39], we have
X ~ N(pz, o0/ /1), Y ~ N(uz,a'-z/\/v_z_g), _and Z ~ N(pu;,00/\/m). Also,
(X =Y)~ N(0, 02(—\/‘7—7.2- + —\/—:_;)), and (X —Z) ~ N(p2 - 1, -f‘-ﬁ + 7"1_;-) Since
the normal distribution is symmetrical about the distribution mean, we can de-
note the Adaptive range of Ry using (u1 — &y, g1 + £1), and that of regions R; and
If;; as ([t2 - 42,/12 + €2).

According to the definitions of the Fixed Threshold and Adaptive tests given
in equations 3.3 and 3.6, the probabilities P4, P;r, Pya, and P,r can be written
as follows:

o Probability of passing the Fixed Threshold test on two i.i.d. regions R, and Rj:

Pr ¥ PrX-¥|<e)
= Pr(-e<X -V <)
1 1
= PN(Oa 0'2(T2 + —-71—3)’ —€, 6)
B2 . 1 1
- 2PN(OaU2(2 + n3)7076)'

e Probability of passing the Adaptive test on two i.i.d. regions R, and Rj:

I'),'A dér PT'([Lz - 82 < Xl < Uy + gz A pg— [2 < }_/ < U2 +E2)

Pr(p, —lo < X < py+0)Pr(p; — 0 < Y < py + £3)
02

0'1
I’N(/l;z,—\/’%,ﬂ’z —lay 2 + &) Pn(p2, —\/-7—5,#2 — b, pi2 + £2)

I

[2.2]

21 0py0, 22,0, 6,)2Pn(0, -2, 0, £,).

\/71_‘2) ,—na ’

e Probability of passing the Fixed Threshold test on two non-i.i.d. regions
R, and R;:

P % PrX-2|<¢

[&)
-1

= Pr(—e< X -7Z<¢)
a. a

= RV(/I-'Z_NIQ_{_"*'_]\—(»()-
Ty N

-

e Probability of passing the Adaptive test on two non-i.i.d. regions Ky and Iy

&

PnA P7'([l] —61 < .\—f < [y +(’1 A 1 *('2 <7< 2 + (3)

= PT'(/[] - ('] < i’ < [+ p[)[’l'(/lg - fg < Z < f2 + (‘-‘3)

g g .
= PN(lLZa \/7‘:’—2’/‘1 ['Ih/l'l + Cl)PN(/lh _ﬁ’/l;’ - {2~/[2 -+ (.’)

Theorem 3.1 The probability of two i.i.d. regions passing the Fired Threshold
test decreases when the standard deviation of their feature distribulion function
increases. That is, lim, . Pir = 0.

Proof.

Consider two i.i.d. regions of sizes ny and ny sharing the feature distribution
N(p,0).

Let (A= ¢, then P =2Pn(0,4,0,c¢) B, 25(3),

= tum) =
limy_co S(§) = limg—eo S(5) = limg_0 5(5) = 0.
Therefore, limy,_.oo P;r = 0.)

Theorem 3.2 The probability of two i.i.d. regions passing the Adaplive test has
a lower bound of \2. That is, P;qy > A%

Proof.

Consider two 1.i.d. regicns of sizes ny,nz > 1 sharing the feature distribution

N(p,0).

3.6]
Pn(0,%,0,¢) Y Pn(0,5,0,0) = 3,
Pn(0, %=,0,0) y PN(OUOI)—-;-,
Pia =2Pn(0, 7=,0,0)2Pn (0, 72=,0,£) > 4 (3)(3) = A%, 0

9IQ

st

Theorem 3.2 says that regardless of the feature distribution parameters, it is
guaranteed that the probability of two i.i.d. regions passing the Adaptive test is
at least A% or 0.64 (A = 0.8) in practice. On the other hand, as stated in Theo-
rem 3.1, the same event can have a probability as low as 0 if the Fixed Threshold
test is used; the larger the standard deviation of the feature distribution, the
lower is the probability.

We now look at the implications of these two theorems. If an image has a
varied degree of region feature variations, and a relatively small fixed threshold
needs to be used because of the closeness of some region feature means, then the
Fixed Threshold method would have difficulties merging homogeneous regions,
especially for those regions with high feature variations. Conversely, the Adap-
tive method is consistently good in merging homogeneous regions, regardless of
their feature variations. This result is consistent with our observation in the
segmentation of image M1 (Figure 3.1).

Besides allowing homogeneous regions to merge, it is equally important for a
good homogeneity test to ascertain that non-homogeneous regions would not be
merged. In the remaining theorem, we will prove that under a general condition
on region sizes, if a Fixed Threshold test and an Adaptive test are equally good
in merging homogeneous regions, then the Adaptive test would have a lower
probability than the Fixed Threshold test of allowing the merging of two non-
homogeneous regions.

To prove the next theorem, we need to present the lemmas which specify the
condition for a Fixed Threshold and an Adaptive tests to be equally good in
merging homogeneous regions.

Lemma 3.12 If Py(0,0,—¢,{) = X, and £ = co where ¢ is a constant, then if
A > 0.8, we have ¢ > 1.28.

Proof.

Given a fixed X > 0.80, Py(0,0,0,¢) % 5(£) > 0.40
From the standard normal distribution function (Tables in [19, 39]), £ > 1.28.

Therefore, ¢ > 1.28. 0O

Lemma 3.13 If A > 0.80 and Py(0,0,—(,€) = A, then Pir = Py = 1 for any
two t.i.d. regions with sizes greater than 8 if we set € = 3¢.

Proof.

From Lemma 3.12, if A > 0.8 and ¢ = co, then ¢ > 1.28.

Consider two i.i.d. regions of sizes ny and ny having the feature distribution

N(p,o).
Pr(0,-=,0,0) 2 (%) = $(finge) ~ L for iz > 3.

Similarly, Py(0, =0, = 3 for /3 > 3.

Therefore, P4 =~ 1.

P = s (;Tﬂj—l—))
V2 (D

Let € =3¢ = 3co, then Pp =25 (\/ﬁ‘+\/n—‘/”2“3) I for /g > 2, /ny > 2.
|

Theorem 3.3 If A > 0.80, Py = Pir for regions Ry and Ry, an ﬁ* <Ak L oor
ny < 4n,, where ny, o, and ny, oy are the size and standard deviation of I{z and
Ry respectively, then P,a < P,r for regions Ry and R;.

Proof.

For A > 0.80, and choosing € = 3¢,, Lemma 3.13 states that i = Py =~ |
for regions R; and Rj. Let us now consider the probabilitics of merging the two
non-i.i.d. regions R, and R,.

Using the Fixed Threshold test with ¢ = 31.’2,

(P
. — — y —— 3@ ,3 - - 9
Por = Pn(pa — 1y \/n_2+\/n—1 2 32) [Nt — ja

With py — py = p, €y =4, and \}’—f—; + —\/57_1; =0,

‘/’21 ‘{)Z)

\/— \/_f’

3.5] 1 =30 —p -
Pur = Pn(p,0',—-30,30) "= —py (2 —F 2)
F N(ﬂ 7) ﬁ k \/‘ZJ’ \/‘20

Using the Adaptive test,

Poa = Pn(pay, —=,m1 — by + 4) Pn(jiy, —— \/ sy = by pig).

b
N

Ja

Sinee 0 < Py(.,.,u,v) < 1, for any finite u and v,

= P < Pn(pe2,—= ik 3 ’fl,lll'*'{—’l)[(ﬂz—ﬂla —51,[1)

12 \/71,-
Ty (23]
\/ﬁ;’lt'z #27 \/Tl_

Consider the following two cases:

Poa < Pn(pu, — Oy 0+ 47) el Pn(p1 — —{5,05).

Yo 1o a oy
Case . If 5= \/_ 27177, let _\/flf =0.
Case 22 Otherwise, if 2\/n; > /ny, l.et A =o.
n2
—\;—2—- > Z\/n_ oy > J\/Qo‘l

If 2/m, > /n;, then o3> 0.

By Lemma 3.7, we have €; > ¢;,

= P'nA < PN(”'). — 1,0, '—glagl) < PN(,u2 _ﬂlaaa_gh[?)’

Recall that jiy — py = i, and £, = £.
Also, let o' =ta (recall that o/ = -2 4 2L

= Ve T Um)

For both of the above cases, we have

[3.5] 1 —l—pu -y
Poa < Py(p,0,-0,0) = —Pg | —=—, ——~|.
1 n(w, o) v E(V20 \/50)

Case 1: a——-‘/L- and 72_— <2—\/11L—' =>1<t<3,
Case 2: az\/"—%and——\/i—z—->27—,ﬁ =>1<t<2,

p <LP~(*(7_/‘ - u) 1 L —tl —tu tf——t,u)
nA \/7? E \/Eo- \/_0- \/— \/—to-) \/ito- .
Recall that

Pur = Px(p, to, —36,38) = \/I_P (jg_w" 3\2:)

;. —t—tpu J t(’—t,u s =3 —p , 33—

il
) = —, T = ——— § =
! NP VTR Vto TR

p = —t—tpu, g=1tl—tu, r=-30—yu, s=30— pu.

and

and

31

32

Since ¢ > 0, from Lemma 3.12 we have { > 0. And, from Lemma 3.3, we can
assume g > 0.

We deduce the following relations:

p <0, r <0, P <gq, s,
g—p=20<6{=5s—r, and
g<s since s—q=B-)+{~1)u>

e If p>r, e, 0>y, then r < p < q < s.

By Lemma 3.8, Pg(p',¢') < Pe(',s').
Therefore, P,gy < P,f.

o lf p<r, ie,l< —,u, there are the following two casces:

~If ¢g<m 1e,1f€§t+3;4, then p< g <r < s.
If s <0, by Lemma3.9, Pg(p',q') < P+,).
Otherwise, by Lemma 3.10, Pg(p',q') < Pr(+,+').
= Pua < Pour.

—If g>r ie,if £>¢ ¢+3/‘ then p <r < g < s.
Since q—p<s—r, ¢—r+r—p<s—qtqg—r = r-p<s—q.
If r<0<gq, |r|= 3(3 + > 30— 3u > |ql,
by Lemma 3.11, Pg(p',»') < Pg(q,s).
If g<0<s, by Lemma3.10, Pg(p',’) < Pu({,s").
Otherwise, s <0, and by Lemma 3.9, Pr(p',') < Pr({,s").
Pg(p' ') < Pe(q', ')
= Pe(p',v') + Pe(r',¢') < Pe(r',¢') + Prlq' + &)
= Pe(p',q¢') < Pe(r',¢').
= Pra < Pur. 8

Theorem 3.3 states that when the Fixed Threshold and the Adaptive tests
are almost equally likely to merge two i.i.d. regions, the Adaptive test is less
likely to merge two non-i.i.d. regions if either of the following two conditions is
satisfied. The sizes and standard deviations of the two non-homogencons regions
are denoted by n;,n,, and oy, 0.

. ;é <4 - The ratio of feature standard deviation to region size of one
region must not be greater than four times of that of the other region.

o 1y < 4ny - The size of one region must not be greater than four times
the size of the other region.

Iiquivalently, we can say that Theorem 3.3 may not hold if s > ok oand
> ny. Obviously, this is a much more restrictive condition than the ones
under which the theorem applies. Therefore, only in a minority of the cases,
given Py = Py we cannot conclude that P,p > P,4. And in these cases, it is
not, certain which of the two tests is superior.

The above theorems deal with homogeneity test results on individual region
pairs. We will now relate these results to the entire image which is a system of
regions. '

Suppose we select the threshold for the Fixed Threshold test according to
the region in an image which has the largest feature variation. Then, Pp &~ 1
for all regions. However, P, will also be large and may cause non-homogeneous
regions to merge. For the Adaptive test, P,y = 1 is always true if A > 0.8. And
in most, cases, Pya < P,r. Unless the distances between feature means of most
adjacent region pairs are larger than the threshold, the segmentation produced
by the Fixed Threshold method will be over-merged.

On the other hand, if the threshold is selected according to the region with
the smallest feature variation, then except for this region, P;r will be too small
for all other regions in the image. For the Adaptive test, Piy & 1 for all re-
gions if A < 0.8. The segmentation produced by the Fixed Threshold method is
fragmented.

Il an intermediate threshold is selected, although Pir =2 1 for regions with
small feature variations, we will have P, < P;4 = 1 for the rest. And, for those
regions with small feature variations, P,y < P,r. In the segmentation produced
by the Fixed Threshold method, certain regions may be fragmented while the
others may be over-merged.

We have proved, by probability theory, that the Adaptive test is more
promising than the Fixed Threshold test. More segmentation experiments which
support the results of this analysis are presented in Chapters 4 and 5.

33

Chapter 4

FAS — The Fast Adaptive

Segmentation Algorithm

The selection test, in conjunction with the homogencity test, form the merge
criterion. In this chapter, we examine several merge criteria in detail. The
criteria are assessed based on the quality of segmentations they produce and the
timing requirements of their region growing processes. The Adaptive Fast-ierge
criterion, which gives the best performance, is adopted in our algorithm. We also
introduce the graph model, and present, the complete Fast Adaptive Segmentation
(FAS) algorithm.

4.1 The Graph Model

An image graph model, similar to that described in [67, 70], is adopted in our
study. We represent an image as a disjoint set of regions (vertices), and a set of
edges connecting adjacent regions. At the beginning of a region growing process,
an image is divided into a number of small primitive regions and a feature value
is extracted from each one of them. We view a feature valne as a random variable
(Section 3.1). During the iterative region merging process, adjacent, regions may

34

merge thereby increasing the sizes of regions and reducing the total number of
regions. When no more merges are possible, each vertex of the graph represents
an image region in the final segmentation.

More formally, an image graph G is a quadruple < V, E, L, f >, where
V is a finite set of vertices or regions,
I2 CV x Vis aset of undirected edges,
L is a set of labels, and
J:VULE — Lis afunction that assigns a label to each edge and vertex of G.

In the following discussion, we denote vertices using p, ¢, 7, s, and use epq to
represent the edge connecting vertices p and ¢. Since the graph is undirected,
¢y 15 the same as eg,. In our study, the vertex and edge labels are real numbers,
L € R. If region p has n, feature values z,,x,,.. - Tn,, We label p by its feature
mean. An edge e, is labelled by the absolute difference of the labels of p and q.

That is,
ﬂ.p

/=== peW, (1)
P =1
and
flew) = 1f(p) — f(9)] epg € E. (4.2)

A merge, M(p,q), is a graph transformation operation that combines the
vertices p, ¢ into a new vertex r. It is also called an edge contraction as the edge
epq 18 removed. We write

G Me9) o, (4.3)
The graph G has vertex r and all other vertices of G except p and q. For any
vertex s in G, €, and ey, are merged into the single edge e, in G, and e, is
removed. Other edges of G are included in G’. In our model, the label of the
new vertex r can be written as

nof(p) + 1. f(q
PRSS CEXNI0) »
np + Ny
Note that a merge always reduces the total number of regions by one, and the
total number of edges by at least one.

A decision function, called the merge criterion, determines whether two
regions should be merged. The decision function is defined to be false if two
regions p and g are not adjacent (e,; € E). A detailed discussion on the merge
criterion is given in Section 4.3. The region growing models considered in this
study differ in the definitions of their merge criteria.

The region growing process is a sequence of merges on the image graph.
Coray et al. [16] defined the set of terminally order-independent (TO1) problems
which different merge sequences will arrive at the same segmentation. In order to
be TOI, merge decisions on all region pairs must not be affected by any subsequent
merges. In other words, if we assign a true or false value to every edge in the initial
graph according to the decision function on the corresponding region pair, we can
forr ach region of the final segmentation by simply jeining all primitive regions
conuccted by true edges. Only a trivial labeling function and merge decision can
result in a TOI model. TOI region growing is therefore not very useful.

The region growing models in this study are order-dependent, or equiva-
lently merge operations are non-transitive. :That is, different merge sequences
will produce different segmentations. Depending on the merging eriterion, the
number of possible merge sequences differ. Since we do not. choose among the
merge sequences, and there is no way of knowing in advance if one sequence would
produce a better segmentation or require a shorter processing time than another,
we define our merge criterion in such a way that segmentation produced from
any of the possible merge sequences is satisfactory.

4.2 The Region Growing Process

Although we describe the region growing process as a sequence of merges, cor-
tain merges can in fact be carried out simultancously. As cach merge is a local
operation involving only a small neighborhood of the graph, at any time during
the process, many pairs of vertices may satisfy the merging criterion and can be
merged independently at the same time. Since all merges have equal priority,
they could be performed simultaneously.

Before we examine the merge criterion in detail, a brief understanding of the
region growing process is necessary. The following paragraphs give an overview
of the three phases of a region growing process. More detailed issues are given in
Chapter 5.

¢ Graph Building
Graph building refers to the initial setup phase of the region growing pro-
cess. This phase includes the reading of image data from a file, the com-
putation of feature values for all initial primitive regions, and the building
of the graph data structures. In a parallel implementation, it also includes

process initialization, workload partitioning among all participating proces-
sors, and the data distribution to the processors.

At the beginning of the process, every primitive region is represented by
a vertex. The graph is in the form of a grid with each vertex having four
neighbors. As the merging process progresses, the numbers of vertices and
edges decrease, and the grid is transformed into an irregular planar graph.
Figure 4.3 shows the data structures used in various phases of the region

growing process.

The Merge Phase

Region merging is an iterative process; every vertex is regularly checked for
a possible merge with one of its neighbors. The repetitions are necessary
because every merge changes the topology of the graph and the labels on
certain vertices and edges. For example, a merge attempt that failed on
vertices p and ¢ may succeed after one of p or ¢’s neighbor has been merged.

Every region in the image graph is given an equal chance to grow in
the merge process. Hence, during an iteration, every vertex is examined
exactly once for a possible merge. Even if a merge succeeded in merging
p and ¢ into r, the new vertex r will not be examined again in the same
iteration. However, r may participate in a later merge if one of its neighbors
is examined and that resulted in a merge with r.

A vertex that is connected to several vertices may be permitted to
merge with none, one, or several of its neighbors using a given homogeneity
test. In practice, it is too expensive and also unnecessary to perform the
homogeneity test on all neighbors of a vertex. It is more efficient to maintain
the list of edges of a vertex in ascending order of their labels, and only
examine a vertex with its closest neighbor for a possible merge.

The ordering of merge attempts on vertices depends on the implemen-
tation and computational model. For example, in a SIMD implementation,
every vertex in the graph is examined at the same instant. On a sequential
system, all vertices are examined in the same linear order in each iteration.
In a MIMD or a distributed implementation, vertices assigned to the same
processor are examined linearly while merges are carried out concurrently
on all the processors.

Pseudo code for the sequential FAS merge phase is given in Figure 4.4.

Process Termination
The merge phase terminates when no more merges are possible on the

Image

N1xN2 pixels

BN

\L Feature Computation

Feature Arra!

MI1xM2 feature values |
(Ml=<NI; M2=<N2) J

Graph Building

Initial Image Graph

MI1xM2 grid
vertex=primitive region

l Region Merging

Final Image Graph

irregular planar graph
with S vertices

vertex=set of primitive regions

i Output

Segmentation

M1xM2 labels; S segments

segment=set of primitive regions
having the same label

N

J

Figure 4.3: Data structure conversions in region growing

39

v list of all vertices (regions) in the image graph
L, list of all edges, sorted by the edge label, connecting to vertex p
A, list of all primitive regions constituting region p

merge « {true
repeat. until merge = false
merge — false
for cach pe V. {
select vertex g where e, is the first member of E,
if p and ¢ pass the adaptive test {
merge « lruc
compute feature mean of region pU ¢
A, — AU A,
Frew — null
delete ¢p,
for cach €, € £, {
recompute label of e,,
add e,s to E,,, in sorted order
}
for cach ¢ € B, {
if Cys ¢ Enrw {
recompute label of eg,
add e45 to Fyey in sorted order
}
}
delete ¢

[;P — [Enrw

Figure 4.4: The sequential FAS merge phase

graph. At this stage, each vertex in the graph represents a region in the
final segmentation. Segmentation is presented as a two-dimensional array
of labels, with all entries having the same label constitute a region.

We now take a rough look at the time complexities of the above deseribed
region growing process. Let us assume that the cost of inspecting the wmerge
criterion is {., and the cost of merging any two regions, f,,, is approximately
a constant. (By assuming that region feature distributions are normal. henee
using sample variances to estimate the Adaptive ranges, ¢, is a constant.) Let
M and N be the total numbers of regions at the beginning and the end of the
region growing process on a given image, respectively. Using the binary merge
paradigm, it is obvious that every merge reduces the total number of regions by
one. Therefore, there are M — N merges in the segmentation process.

The best case timing occurs when every merge attempt results in a merge.
That is, the minimum cost of the process is (M — N)(t. + t,,) and the lower
bound time complexity is O(M). The worst casc scenario happens when every
iteration results in only one merge. In this case, the total cost of the process is
(M =N)tp+t. ML i Thus, the upper bound time complexity of the algorithm
is O(M?). Without knowledge about the distribution of the process convergent,
rate, a more realistic average cost of the algorithm cannot be expressed in a closed
form.

4.3 The Merge Criterion

The main focus of our study is on the merge criterion - the way it aflects the
quality of segmentation and the processing time. Generally, a merge eriterion
consists of two parts: a homogeneity test and a selection policy. Two adjacent
regions need to pass the homogeneity test in order to be merged. When several
neighboring regions pass the homogeneity test to merge with a given region, a
selection policy is applied to choose one region among the several Lo participate
in the merge.

In Chapter 3, we have presented the Adaptive homogeneity test, and com-
pared this test with the existing Fixed Threshold test. In this section, we com-
plete the discussion on merge criterion by introducing our Fast-merge selection
policy, and evaluate the performance of several homogeneity test and selection
policy combinations. The relations among the various terminologics are depicted
in Figure 4.5.

40

Merge Criterion

[Ilnmogenelly Test , Felecunn Policy

<d / \\
(Fired Theeshold LAdnpllveJ 000

[Bcsl Mcrge Fls! Mergc (Fair-Merge) coo

Figure 4.5: Composition of a merge criterion
We consider the following three selection policies:

e Best-Merge

Initial studies on using the merge selection to improve segmentation are
presented in [63] and [67]. These parallel region growing algorithms adopt
a “Best-merge” paradigm that requires the edge connecting two merging
regions to be minimum with respect to both regions. Using the earlier

notations, we merge reglons p and ¢ under the Best-merge paradigm if

Jepq) =Mzm {f(epi)} =] {f(eJq)1 In other words, a region only merges

with the neighboring region that best satisfies the homogenelty requirement,
and the merge choice must be mutual for both regions. The strength of the
Best-merge approach is that different parallel runs on the same image would
produce the same segmentation due to the ordering imposed on the merge
sequence.

Fast-Merge

Regions in a Best-merge segmentation are very homogeneous because the
selection policy minimizes the increase in feature range with each merge.
However, on images which merge sequences do not allow for much par-
allelism, only marginal speedup can be achieved on parallel Best-merge
processes. The objective of Fast-merge is to remove this deficiency of the
Best-merge paradigm.

Min
We merge reglom p and q using the Fast-merge policy if f(eyg) = ¢ {f(ep))

Mi
or f(c,,,,) = _1 {f (€jq)}. That is, the value of the edge connecting the two
merging regions has to be a minimum with respect to either (not necessarily
both) of the regions. The most important improvement of Fast- -merge over

41

that of the existing Best-merge is the reduction in processing time. Also, as
shown in our experiments, Fast-merge helps to improve region mergeability,

Fair-Merge

In Fair-merge, all regions qualified to merge with a given region are con-
sidered equally suitable, and one is selected randomly for the merge. Fair-
merge is included in our discussion for completeness, as it and Best-merge
represent two extreme selection policies - Best-merge chooses the locally
most similar (“best”) region pair to merge while Fair-merge does not give
preference to any merge candidates.

To evaluate the different merge criteria, we designed an experiment to inves-

tigate the following four aspects of region growing. The first. two aspects measure
segmentation quality, while the latter two aspects concern processing time.

1.

Region Mergeability

Region mergeability refers to the degree of which regions that should be
merged are merged. In our experiment, we measure region mergeability us-
ing the number of regions in the final segmentation. When cach object in a
scene is presented by many instead of one or a few regions in a segmentation,
we say that the regions are under-merged, and describe the segmentation
as fragmented. Besides noise and irregularities present in the image data,
merge criteria also affect region mergeability.

Boundary Accuracy

The other most important aspect of segmentation quality is the accuracy
of region boundaries. In region growing, it is important that regions that
should not be merged remain as separate regions throughout the process. In
our experiment where the exact locations of region boundarics are known,
boundary accuracy is measured in the number of boundary units found in
these expected locations.

. Merge Rejections

In binary merge region growing, every merge reduces the number of regions
by one. Assuming that the cost for merging two regions is a constant
and we begin with the same number of primitive regions, different region
growing processes on the same image will require similar numbers of merges.
As a result, to compare the processing speed of different region growing
algorithms, the number of successful merges is not a key measure. Instead,
the number of merge rejections should be used.

If we process the same image using different merge criteria, the differences
in merge rejection costs are often substantial. Among the region grow-
ing algorithms in our study, the number of merge rejections is the only
major factor that accounts for the timing performance differences of the
algorithms.

4. Process Iterations
Ideally, in parallel region growing, merges in the same iteration are per-
formed at the same time. Therefore, the number of iterations required
in the region growing process is an indicator on the length of its parallel
processing time. The algorithm that requires fewer iterations will have a
shorter parallel processing time.

In our experiment, we use simple 50 x 50 images. Each image has two equal
sized regions that share a simple straight 50-unit boundary. We randomly gener-
ate data for the two regions from a pair of normal distributions having different
means and variances. That is, all values in a 25 x 50 region are normally, inde-
pendently, and identically distributed. For each pair of normal distributions, we
generate 100 test images. Three sets of distribution pairs with different distances
between the two means are used. We named the three image sets A, B and C.
The distance between the two means are largest in A and smallest in C. There-
fore, the segmentations in C are expected to have the least accurate boundaries.
In the Fixed Threshold segmentations, different thresholds are tested and results
of the best segmentations are reported. All six combinations of the two homo-
geneity tests and three selection policies are examined. Detailed results on the
four aspects of investigation are given in Tables 4.2 through 4.5. A summary is
given in Table 4.6.

Table 4.2 gives the percentages of segmentations having various numbers
of result regions. Best-merge produces very fragmented segmentations. In all
cases, over 80% of best-merge segmentations have over 100 regions. Using Fair-
merge and Fast-merge, the majority of Fixed Threshold segmentations have 11
to 50 regions, while almost all Adaptive segmentations have fewer than 5 regions.
Mergeabilities are consistent for sets A, B, and C.

In Table 4.3, we present the percentages of segmentation with boundary
accuracies over certain scores. The score for a perfect boundary is 50. Since
features of the two regions are most distinctive in case A, segmentations of set
A have the highest boundary accuracies. Although Best-merge segmentations
have high scores, the apparently good results are not significant due to the many
within-segment false boundaries present in the segmentations. The Adaptive
Fast-merge criterion produces the best boundaries, while Adaptive Fair-merge

43

Table 4.2: Mergeability

Number of Fixed Threshold (%) Adaptive (%)
Regions — || <10 [-50 [-100 | -150 [> 150 | <5 [-10 [S0] 100 [150 [> 160
Fair A o] 76 24 0 off too] o] o ol oo
B o| 79! 21 0 o100 of o 0 0 0
C 0| 76 24 0 0| 100 0 0 0 0 0
Fast A o[96 4 0 off s 14] 0 0 0 0
B 0| 96 4 0 0ff 8| 14| 0 0 0 0
C 0| 97 3 0 "0 90 to]| o 0 0 0
Best A o] of 14| 78) o 3| 11 A ED 48
B o] o 16| 77 7 0 I T 10| 33 49
C o o 13| 82 50 o] of o] 34 19

gives the poorest boundaries.

There are two types of merge rejections: Type | rejections happen when
the homogeneity test is failed, and Type II rejections are caused by the selection
policy. In our Fast-merge and Best-merge implementations, the list of edges of
a region vertex is maintained in ascending order of the edge labels. Thereflore,
when a vertex and its first neighbor are tested for a possible merge, the Fast-
merge criterion is always satisfied whereas the Best-merge criterion may fail if
this neighbor is closer to a third vertex. In Table 4.4, compared to the other
two selection policies, Best-merge also results in a much higher rejection rate in
the homogeneity test. This will be elaborated on later in ihis section. The edge
lists in Fair-merge are not sorted. As a result, the Fair-merge algorithm may not,
be testing a vertex with its neighbor that is most likely to pass the homogeneity
test. This explains the higher rejection rates compared to Fast-merge.

As shown in Table 4.5, Best-merge requires about 4 times as many iterations
as the other two selection policies. If Best-merge had provided better mergeabil-
ity, even more iterations would have been required to complete the segmentation
processes. Similarly, Fixed Threshold Fast-merge requires fewer iterations than
Adaptive Fast-merge because segmentations using the former criterion are more
fragmented. Naturally, the most relaxed Fair-merge policy requires the fewest
iterations.

In Figures 4.6 and 4.7, we show the six Fixed Threshold and Adaptive seg-
mentations of a 4-region textured image M4. The test image M4 is given in

(b) Fair-merge segmentation (c) Best-merge segmentation

Figure 4.6: Fixed Threshold segmentations on M4

(b) Fair-merge segmentation (c) Best-merge segmentation

Figure 4.7: Adaptive segmentations on M4

16

Table 4.3: Boundary accuracy

Scores Fixed Threshold (%) " Adaptive (%)
(Total=50) — |>40] >42]|>44[>46[>48][[>40]>42|>44]>4C][> 48
Fair Al 100 84| 74| 47| 14 8| 61| 36(17 2
B 83| 70| 49| 19 4 4| 24 8 .| 1
C 59| 24| 14 5 0 6 4 1 0 0
Fast Al 100 94| 87| 57| 20| 100 100 97, 82| 34
B 88| 70| 47| 15 1 9| 94| T4 48 7
C 57 34| 13 3 0 79) 69| 35 5 0
Best A 100 100 96| 81| 32 97| 97| 97| 83] 45
B 92| 82| 56| 29 3 9% 93 90| 44| 14
C 62| 33| 15 3 1 93| 76| 29 8 0

Figure 4.13. The best thresholds are used to obtain the segmentations in Fig-
ure 4.6. Any larger thresholds will result in the two regions on the right being
merged into one.

Table 4.6 provides a performance summary of the different merge criteria.
The “4” symbol indicates that a merge criterion performs well in a specified as-
pect; the “=” symbol indicates that the performance is unacceptable. When the
performance is moderate, the “o” label is used. The Adaptive Fast-Merge combi-
nation has shown to be consistently superior in the four aspects of investigations:
region mergeability, boundary accuracy, savings on merge rejections and process
iterations. Fixed Threshold Fast-merge criterion also provides reasonable results
although segmentations are more fragmented than using the Adaptive test. We
will now further examine the causes of several undesirable effects on the segmen-
tations.

In the following discussion, a segment refers to a connected area of an image
which corresponds to an object in a scene. In other words, a segment is a region
in the correct, final segmentation of an image. And all feature values in a segment
are identically distributed.

The high merge rejections and process iterations of Best-merge can be ex-
plained by examining the probabilities of merging two regions using the different
sclection policies. Let us consider a set of regions belonging to the same image
scgment. Let p be the probability of a given region R; passing a certain homo-
geneity test with one of its neighbors R;. Since the merge criterion is composed

47

Table 4.4: Average number of merge rejections

Fixed Threshold Adaptive

Type I | Type IT [Total || Type 1] Type 11 Total

Fair A 1032 - 1032 499 499
B 1023 - 1023 498 498

C 1028 - 1028 500 500

Fast A 489 ~ 489 353 - 353
B 482 - 482 358 - 3h8

C 480 - 480. 361 - 361

Best A 5784 7323 || 13107 3560 6056 |[9617
B 5731 7290 || 13021 3710 6280 | 9989

C 5700 7257 || 12957 2646 5947 || 9593

Type I: Failed homogeneity test Type 1I: Failed selection test

of two tests, the probability of merging R; and R; is

Pr (merge R; with R;)
= Pr(homogeneity test passed A selection test passed)
= p X Pr(selection test passed/homogeneity test passed).

Let d; and d; be the numbers of neighboring regions which satisfy the ho-
mogeneity test with R; and R;, respectively. Then,

1 1
Pr(Best-merge passed) = - X7

1 2

1] 1

Pr(Fast-merge passed) = Tt T
1 dy dydy

Pr{Fair-merge passed) = 1.

Suppose R; and R; satisfy the homogeneity test, that is d;,d, > 1. We have

p

dyd,

pldy +d, — 1)
dydy

Pr (merge R;, R; using Best-merge) =

IA

Pr(merge R;i, R; using Fast-merge) =

< Pr(merge Ri, R; using Fair-merge) = p.

Table 4.5: Average number of iterations

(| Fixed Threshold | Adaptive ||
Fair A 8.4 8.0
B 8.4 8.0
s 8.5 8.0
Fast A 9.1 12.5
B 9.1 12.5
1§ 9.1 12.6
Best A 15.6 - 44 .4
B 45.6 45.9
C 45.7 43.3

In our Best-merge and Fast-merge implementations, the list of edges con-
nected to a region node is maintained in sorted order. That is, we always examine
a given region and its (first) closest neighbor. In this case,

Pr (merge R;, R; using Best-merge) = d£
2
< Pr(merge R;, R; using Fast-merge) = p.

The above expression implies that if an average region has four neighbors,
then Best-merge is 4 times less likely to merge two regions than Fast-merge.
Suppose there are 10,000 merge attempts during an iteration of the region grow-
ing process, and assume that the probability of passing the homogeneity test
remains at 0.7. Using Best-merge there would be about 1750 merges and 8250
rejections, while Fast-merge may result in 7000 merges and 3000 rejections. Since
the total number of merges required to arrive at a certain segmentation is the
same, Best-merge will need many more iterations than Fast-merge to complete
the segmentation.

In a parallel region growing process, compared to Best-merge, Fast-merge
will allow many more merges to be carried out at the same time, encounter much
fewer merge rejections and require a much shorter time to produce a segmenta-
tion.

We have discussed the probability of passing the selection test using Best-
merge. In practice, Best-merge also reduces the probability of passing the ho-

49

Table 4.6: Summary of merge criteria performance

li I Fixed Threshold | Adaptive |
Fair | o Fragmented + Merge well
o Fair boundary - Bad boundary
o Fairly low merge rejections | + Low merge rejections
+ Few iterations + Few iterations
Fast | o Fragmented + Merge well
o Fair boundary + Good boundary
+ Low merge rejections + Low merge rejections
+ Few iterations + Few iterations
Best || - Very fragmented -~ Very fragmented
+ Good boundary + Good boundary
- High merge rejections - High merge rejections
-~ Many iterations - Many iterations
+ desirable ~ undesirable o tolerable

mogeneity test, and this causes fragmented segmentations. To explain the effect,
of Best-merge on the homogeneity test, we will first show that minimizing the
within-region variation is equivalent to maximizing the between-region variation.
The following scatter matrix analysis can be easily generalized to apply on any
d-dimensional feature vector. A similar analysis on partitional clustering is given
in [34].

During the region growing process, suppose the feature valies in i connected
regions are identically distributed and belong to the same image segment. Let,
{z:]1 < i < ni} denote the set of feature values of a region with size ng. Let the
feature mean of the kth region be my = (1/n;) St iei. And the grand feature

mean be m = (1/n) ©K . nymy, where n = PO TY
Then the scatter, S, for the segment is defined as
K nyg
S=) 3 (z; —m)% (4.5)

k=1 j=1

Note that S is a constant regardless of the final segmentation. We define the

"

scatter for the kth region as

ni

S® = 3" (; ~ mu)2. (4.6)

j=1

The within-region scatter, Sy, is defined as the sum of the region scatters,
Sw =) st (4.7)

Finally, the between-region scatter, Sg, is defined as the scatter for the group

means,
ng

K
Sp =YY (mi~m). (4.8)

k=1 j3=1

Writing z; — m = (my —m) + (z; — my), we have

K ny
S = Y S {(mk—m) + (x; — my)}?
k=1 j=1
KN ny — K ng
= 3 Y (mp—m)*+ DDz~ my) =2 35 (my — m)(z; — my)
k=1 j=1 k=1 j=1 k=1 j=1
K ny
= Sp+Sw -2 Z Z(mkwj — mz; — mi + mmy)
k=1 j=1

K K K

= Sg+Sw — Z(Z nkm',‘f. —m Z nEmy — Z ngm? + mnm)
k=1 k=1 k=1

= S+ Sw — 2(—mnm + mnm)

= Sp+ Sw.

Therefore, the total scatter of an image segment is divided into the within-
region scatter and the between-region scatter. Since S is a constant for a given
segment, minimizing Sy is the same as maximizing Sp. Intuitively, a small Sy
indicates that cach region in the set is compact and has a small within-region
variation, and a large Sp implies that the mean values of the regions form a loosely
bound set. The more compact are the individual regions, the more dispersed are
the region means.

Comparing the three selection policies, it is obvious that Best-merge will
give the most compact regions and hence the most dispersed region means. Our

51

homogeneity tests based merging decision on the difference between two region
means; the greater the difference, the less likely will the regions be allowed to
merge. As a result, compared to the other selection policies, a higher failure rate
on the homogeneity test is expected on Best-merge. When regions that should
be merged stop growing at an early stage, a fragmented segment will result,

Let us generalize the above scatter analysis from a single segment to the
entire image. The pulling apart of feature means observed in Best-merge in-
discriminately applies within segments as well as among segments. Fragmented
segments are no doubt undesirable, but the separation of feature means belonging
to different segments is often desirable, as it helps to resolve boundary ambiguities
and produce accurate boundaries.

B oy
(O

Threshold = §

Falr
l M,y \mn.u;
M(A,B) B

[
<

. Falr/Fant
Falr M(D,(B,(2) M(A(B,)
M(B,(C,D))
MIC,D) M(A,B)

BCD

AB c.D A /@
(O ®
[}
(b \L MIDABCH
@)

Al

(c)
Figure 4.8: Selection policies and segmentations

We illustrate the effect of selection policies on boundary accuracies using
a simple example given in Figure 4.8. A, B, C and D represent four regions.
The feature mean of a region is written on the node. The value on an edge
gives the difference between the two connected region means. For convenienee,
we assume the four regions to be the same size, and use the Fixed Threshold
test with the threshold being 5. Each transformation arrow is labelled with
the merge M(p,q), where p being the initiatory region. When a merge is only

(i)
nY

possible under certain policies, names of these policies are specified next to the
transformation arrow. Otherwise, a n.erge is achievable with either of the three
selection policies. To allow regions to have an equal chance to grow, a region
never initiates consecutive merges. The three possible segmentations are labelled
as (a), (b) and (¢) in the figure. Best-merge and Fast-merge will produce (a) only.
Depending on the order in which regions are tested, Fair-merge may produce any
of the three segmentations.

Suppuose there should be a boundary between regions B and C, although
the difference between the two feature means is too small to be rejected by the
homogeneity test. Also, regions A and B belong to one segment, while C and D
belong to a different segment. In this situation, Best-merge and Fast-merge will
still produce the correct segmentation given in 4.8(a), but Fair-merge is likely to
produce the less preferred segmentations given in (b) and (c). This explains the
poor boundaries by Fair-merge presented in Table 4.3.

The severe drawbacks of Best-merge are the fragmented segmentation it
produces and its slow processing speed. In addition, good parallel timing is not
achievable using Best-merge. Fair-merge does not have these discdvantages, but
it does not always produce good boundaries. Fast-merge combines the merits of
both Best-merge and Fair-merge to overcome their respective limitations. The re-
sults of a more coinprehensive experiment on Adaptive Fast-merge region growing
is given in Chapter 5.

4.4 More Segmentation Results

Segmentation experiments were performed on textured and grayscale images to
assess the performance of the FAS algorithm, and to substantiate the results of our
analysis. Some of these results have been presented in the carlier chapters. Tn this
section, several more tests are presented. A test is designed to appraise a specific
attribute of a segmentation algorithm, such as its sensitivity to small regions
and robustness to noise. In these tests, scgmentations produced by the existing
Best-merge Fixed Threshold segmentation algorithm (BFS) [67] are compared to
that of our Fast-merge Adaptive segmentation algorithm (IFAS).

The textured images used in our experiments were created using images of
natural textures given in the Brodatz album [4]. The co-occurrence features [29,
26], demonstrated as being effective measures for natural textures in a recent,
study by Ohanian and Dubes [46], are used in our experiments. Definitions of
these co-occurrence features are given in Appendix A. Other texture measures,
for examples Gabor filters, Law’s energy masks, fractal measures, can also he
applied in our algorithm.

4.4.1 Sensitivity to Small Regions

Image regions that contain useful information for a vision task may be of any
size. Therefore. it is important for a good segmentation algorithm to he able to
produce nccurate segmentations even on very small regions.

The two test images M2 and M3 used in this experiment are given in Figures
4.10 and 4.11. Figure 4.9 gives the Brodatz texture codes of the regions in M2
and M3. We will henceforth refer to the regions by their texture codes. Each of
these two inages has four textured regions, of which one is a small region. The
areas of regions D21 in M2 and M3 are about 1% and 0.5% of the total image size.
The co-occurrence contrast feature is used in the segmentation of these images.
The primitive regions are 8 x 8 pixels.

The segmentations of M2 and M3 by the FAS algorithm are given in Fig-
ure 4.12(a) and (b). The small regions D21 are evident in the segmentations.
Due to the coarse texture granularity of D05, several small regions also present
in ti.e segmentations of that region. As expccted from the analysis in Chapter 3,
the M2 and M3 segmentations produced by the BFS algorithin are fragmenied.
Region D21 in the M2 segmentation is reasonably evident (Figure 4.12(c)). How

o

ever, the smaller D21 region in the M3 segmentation appears to have been overly
merged with neighboring pixels. (Figure 4.12(d)).

D15

D24

: " Dos

Figure 4.9: Texture codes of M2 and M3

Figure 4.10: Image M2

<N
ot

3

: Image M:

igure 4.11

I

4.4.2 Robustness on Noisy Images

Noise may be introduced into an image at various stages ol a vision process.
Although noise from known sources may be removable by suitable image restora-
tion techniques, such procedures take time and it is desirable for a segmentation
algorithm to be able to produce good segmentations regardless of the presence of
noise. In this test, we evaluate the performance of the FAS algorithm on images
corrupted by a small degree of random noise.

The test images M4, M5, and M6, shown in Figures 4.13, 415, and 416,
are four-region textured images. Images M5 and MG are produced from M1 with
random noise added with increasing intensities in the top-down and left-right
directions, respectively. We use the correlation feature on 16 x 16 pixel blocks in
this experiment.

Both the FAS and BFS algorithms work well on the original image M4, The
FAS and BFS segmentations of M4 are given in Figure 4.14. Figures 4.17 and
4.18 show the segmentations of M5 and MG, respectively. On the noisy images
M5 and M6, we can see that the segmentations from the BI'S algorithm degrade
more severely with noise intensity compared to that from the FAS algorithin. On
the FAS segmentations, only the image sections with high noise intensities suffer
from poor region boundaries. For example, the lower section in Figure 4.17(a)
and the right section of Figure 4.18(a). Other parts of these segmentations are
close to that of the original image given in Figure 4.14(a). On the other hand,
the entire BFS segmentations on M5 and M6 (Figures 4.17(b) and 4.18(h)) are
affected by noise, even for the parts where the noise intensities are fow.

HN

59

3: Image M4 (no noise added)

B
.

Figure 4.1

G0

(a) FAS szgmentation of M4 (b) BFS segmentation of M4

Figure 4.14: Segmentationus of M4

ol

Figure 1.15: Iimage M5, increased noise level top-down

H

figure 4.16: Image M6, increased noise level left-right

63

(a) FAS segmentation of M5 (b) BFS segmentation of M5

Figure 4.17: Segmentations of M5

(a) FAS segmentation of M6 (b) BFS segmentation of M6

Figure 4.18: Segmentations of M6

4.4.3 Applicability on Natural Grayscale Images

The objective of this project is to provide a general segmentation framework that
can be easily customized to work on different types of images. We have so far
presented several segmentations on textured images. In this experiment, we show
that the FAS algorithm can also produce good segmentation on a wide range of
grayscale images.

Four natural 256-level grayscale images, M19 to M22, are given in Figures
4.19 to 4.22. In this experiment, we use pixel intensity as the feature measure;
each pixel is a primitive region in the region growing process. The FAS and
BFS segmentation results on this set of images are given in Figures 4.19 to 4.22.
The FAS algorithm produces consistently good segmentations on all four images.
All four FAS segmentations are obtained using A = 0.80. Applying the BI'S
algorithm on an image, we have to invoke the segmentation process using dif-
fovent threshold values until a satisfactory segmentation is obtained. The most,
satisfactory BFS results are given in the figures. For some images, no satisfac-
tory segmentation can be obtained using the BFS algorithm. For example, on
the BFS segmentations of image M19, (Figure 4.19(c) and (d)) the background
is fragmented regardless of the threshold applied; relaxing the threshold (Iig-
ure 4.19(d)) causes details on the building to be lost. The thresholds nsed in
segmenting the other three images are in the range of 15 to 30.

G4

[ig)

(b) FAS segmentation of M19

(a) Image M19

=20)

(d) BFS segmentation of M19
(threshold

(c) BFS segmentation of M19
(threshold = 15)

Figure 4.19: M19 and segmentations

(a) Image M20

(b) FAS segmentation of M20 (c) BFS segmentation of M20)

Figure 4.20: M20 and segmentations

(b) FAS segmentation of M21 (c) BFS segmentation of M21

Figure 4.21: M21 and segmentations

67

N

(b) FAS segmentation of M22 (c) BFS segmentation of M22

Figure 4.22: M22 and segmentations

4.4.4 Using Multiple Features

Single features may not always be sufficient to produce satisfactory segmenta-
tions, especially on complex textured images. In such cases, several features,
cach capable of differentiating different subsets of textures, need to be used to
improve oa the segmentations. In this test, we demonstrate that multiple features
can he incorporated quite easily and successfully in the FAS algorithm.

Test image M12 consists of sixteen equal sized texture regions. Figure 4.23
shows the sixteen textures, magnified and arranged in the same layout as in M12.
Three co-occurrence features, the contrast, entropy, and correlation measures,
ace computed from 16 x 16 pixel blocks in' the segmentation processes. The
segmentations obtained using single features, combinations of two-feature, and
three-feature are given in Figures 4.24 to 4.26. In all three figures, the left sub-
fignres are segmentations from the FAS algorithm, and the right sub-figures are
results from the BFS algorithm. '

Due to the diversity of textures in M12, both i~ 'AS and the BFS algo-
rithms cannot, successfully segment the image with any oue of the three features.
Adjacent textures that cannot be differentiated using o particular feature are
presented as single regions. When two features are used, some improvements
are shown on the segmentations. For both algorithms, the three-feature pro-
cesses give the best segmentations. From the figures, it is obvious that the FAS
segmentations are of a higher quality than the corresponding BFS segmentations.

For the BFS algorithm, we apply t"= conventional Euclidean distance mea-
sure in the consolidation of multiple v ares. That is, the square of individual
features of a region are added together to produce a single value. And this value
is then used as the feature value of the region. The main advantage of this ap-
proach is that only one threshold is necessary in the RFS process. Since the BFS
algorithm requires careful adjustments on the threshold, multiple-threshold BFS
can be formidable. In this approach, feature normalization may be required prior
to the computation of the Euclidean distance.

A different feature consolidation approach is used in the FAS algorithm.
In this approach, we treat each feature independently. The homogeneity test
is a composite test in the multiple-feature case — the composite homogeneity
test is passed only if the simple homogeneity test is passed on every feature.
In other words, we consider two regions to be homogeneous only if they are
homogencous with respect to every feature that are used in the segmentation
process. Therefore, for any two adjacent regions that should not be merged,
if any one feature in the set is capable of differentiating them, then these two

69

T

ged.

r

will not be incorrectly me

regliomns

M12

In image

Texture layout, i

23

Figure 4

(d) BFS, Contrast

(e¢) FAS, Correlation (f) BFS, Correlation

Figure 4.24: Single-feature segmentations of M12

-1
[

(c) FAS, Contrast-Correlation (d) BFS, Contrast-Correlation

Figure 4.25: Two-feature segmentations i M12

() FAS, Entropy-Contrast-Correlation (b) BFS, Entropy-Centr.st-Correlation

Figure 4.26: Three-feature segmentations of M12

Chapter 5

A Shared Memory SPMD

Implementation

We have conducted a detailed study on a SPMD (Single Program, Multiple Data)
region growing model on the shared memory TC2000 system. In this chapter,
we present the results of this study, and examine implementation issues of the
model. As in the previous chapters, we compare the performance of our FAS
algorithm to that of the existing BFS algorithm given in [67].

5.1 The TC2000 Environment

The BBN TC2000 [3] is a multiprocessor machine that employs shared memory
to store information. The TC2000 processors access the shared memory through
an interconnection network called the Butterfly switch. The processor is a Mo-
torola 88000 chip group comprised of an 88100 CPU chip and at least two 88200
cache/memory management unit chips. The system uses 34-bit addresses.

The TC2000 system which we use fur .ur experiinents was managed by
the Massively Parallel Computing Initiative (MPCI) project at the Lawrence
Livermore Naticnal Laboratory. The system has 128 processors; each processor

has 16 megabytes of memory constituting 2 gigabytes of global memory space.

The PCP [5, 25] programming model is used for our implementation on the
TC2000. PCP is a parallel extension of the C programming language which
employs the split-join parallel model. All processors start and end a program
execution at the same time, and sections of the code can be labelled to be executed
by a single master process or sulicams of processes. There are also primitives
for process synchronization, shared and private data management.

The following describes the way our timing results were recorded in the
TC2000 environment:

o Unless otherwise specified, “processing time” refers to the amount of time
taken from the initiation of t} - segmentation process until the segmentation
results have been stored in a file. “Merge time” refers to the time taken by
the merge phase only.

¢ Timing results are obtuined from the UNIX system function “getrusage”.
In each case, the sum of “system” and “user” times is reported.

e Timing results were obtained using the “benchmark” (single-job, uninter-
rupted) mode supported by the Gang Scheduler [24].

e A reported processing time is the average of three consccutive runs per-
formed on an image using the same number of proressors.

o When parallel processes require different amounts of time to comuplete a sep
mentation phase, the time taken by the slowest process is 174 ta caompunte
the total processing time.

e The FAS and the BFS programs are identical except for ite e e
menting the merge criteria. This applies to both the sequentiof and e o
implementations.

¢ A sequential segmentation time of an image always refers to Lhe best 't €2000
sequential time achievable on a given algorithm. Due to the larze - Lage
graphs, (256K vertices) the best sequential times of grayscale segmertations
in our experiment were achieved using the interleaved and cache memorics.
For the set of textured images, (16K vertices) the best, sequential times -vere
obtained using the cached local node memory.

¢ Due to system problems related to cache memory usage for parallel pro-
cesses, the parallel timing results reported in the following scctions were
obtained using the shared memory without the use of cache.

5.2 Sequential Region Growing

A sequential region growing algorithm is implemented so that results can be
nsed for the evaluation of the parallel implementation. Region merging in the
sequential algorithm is an iterative process. All existing vertices in the graph are
maintained in a doubly linked list. During each iteration, every vertex in the list
is checked onee for a possible merge. Once a vertex passes the merge criterion,
a merge will be performed before the next vertex in the list is examined. The
process continues until no more merges are possible in an iteration.

On systems with small memory capacities, paging often takes up a signifi-
cant amount of time due to the large memory requirement of the process. Careful
memory management, such as allocating heap memory in large blocks, does al-
leviate but does not solve the paging problem. On the TC2000, paging does not
pose a problem because a single processor can access the large shared memory. In
addition, unlike the SPMD version, fast cache memory can be used in a TC2000

sequential process.

Tables 5.7 and 5.8 give the TC2000 sequential timing results on a set of
512 x H512 grayscale images. The test images M7 to M1 are shown in D.50
to 1).54 in Appendix D. Processing time obtained by using different memory
policics available on the T'C2000 system are presented. “Local memory” refers
to the use of the memory subsystem local to the processor where the sequential
process resides, and the shared memory is unavailable to the process. When
the “interleaved memory™ is used, the TC2000 system maps logically contiguious
addresses to different memory subsystems. In particular, the interleaver maps
cach clump of 16 bytes to a different switch pori, and therefore to a different
memory subsystem. “Cony-back”, “write-through”, and “uncached” are different
modes of cache use. The former two modes differ in whether a write operation
on vy cache line will imniediavely initiate an update on the memory system.
Naturally, “uncached” inhibits the use of the ca~he memory.

Although cach memory subsystem in the TC2000 has 16 megabytes of mem-
ory, only about & megabytes of it is available to the user program. Therefore,
when only the local memory is used in the segmentation of a 512 x 512 image,
a high rate of pagefaults is incurred and this results in a slow process. In our
experiment, the use of the interleaved memory with the copy-back cache mode
provides the best sequential timings.

Comparing the rAS and the BFS sequential results given in Tables 5.7 and
5.8, we can conclude that the FAS algorithm provides faster segmentation pro-
cesses. Also, the variation on processing times among images is much smaller

-1

ot

using the FAS algorithm. The FAS and the BFS processing time vartations on
the set of images are depicted in Figure 5.27. It is clear that the BFS timings are
highly image-dependent.

Table 5.7: FAS sequential timing on the grayscale images (in seconds)

Image || Local Memory Interleaved Memory

Cached | Copy-back | Write-through [Uncached
M7 501.43 1 134.98 15838 363.87
M8 1121.30 147.84 170.29 419.01
M9 467.20 117.49 144.27 309.65
M10 769.10 124.32 1419.10 314129
Ml11 489.43 112.86 141.71 332.07

Table 5.8: BFS sequential timing on the grayscale images (in seconds)

Image || Local Memory Interleaved Memory

Cached | Copy-back | Write-through | Uncached
M7 981.50 175.42 203.22 613.25
M3 1274.59 210.51 23R8.87 R73.45
M9 1657.50 275.7T0 318.94 1274.70
M10 1095.88 144.41 181.56 416.09
M11 1453.13 446.59 H00.26 2602.26

5.3 The Parallel Process

Mapping a region growing process onto a sect of shared memory processors in-
volves the partitioning of workload among the processors. Since the computation
requirement of region growing is data-dependent and cannot be 2 srmined at
compile time, we adopt a simplc workload partitioning scheme 27+ issigns an
approximat - y equal division of an image to each processor. A - n.oJe of the
initial load distribution on a set of processors are shown in v 7280 After
individual processors have obtained their sub-images, the image g ., 1 is built in
parallei, with cooperation between processors sharing image division boundaries.

Ceruential timing on grayscale images
T T T T T
Lo FAS —— 7
BFS ----

0 300
0
0

n

(%)

!
|
!
!
!
|

.

b eeccm————

o

M11

=

M7 M8 M9
image

Figure 5.27: Sequential timing on a set of grayscale images

The subsequent region merging phase is an iterative process on individual pr.oae-
sors. In the merging phase, the team of processors perform independent n = -z
which update the global image graph at the same time. When no more merges e
possible, segmentation results are gathered from the processors and then written
to a file. Figure 5.29 depicts an overview of the parallel region growing process
on the TC2000.

In the following sections, we examine in detail the implementation issues
concerning each 1 the region growing phases.

5.3.1 Data Distribution and Results Gathering

In the distribution of image data to the multiple processors, we have found that
the most efficient method is to allow several processors to read different portions
of the image file into the shared meinory, then the rest of the processors copy the
relevant sub-portions for processing.

In region growing, the virtual processor network has a grid layout. In each

-1

-1

Pracessor array

PE.data
mapping

Figure 5.28: Initial load distribution on the T'C2000

row of the grid, we assign the left most processor to read a horizontal strip of
the image data from a file. All other members in the row then copy the relevant
data from the first processor to build their local subgraphs.

After the merging process has completed, individial processors copy their
results Lo a shared memory array. The master process will then store the results
in a file. This approach is found to be more efficient than having the master
process gather partial results from separate locations of the shared memory.

In Figur:s 5.30 and 5.31, we show a breakdown of the processing times on
images M7 (512 .. 512, grayscale) and M13 (1024 x 1024, textured) respectively.
In each figure, the curve closest to the X-axis giv.s the total time required to
read the image data, distribute this data among the processors, and build the
complete image graph. The next curve above the X-axis indicates the time taken
from the start of segmentation to completion of the region merging phase. The
vertical difference between the two higher curves gives the time taken to gather
and save the segmentation results.

In the segmentation of a 512 x 512 grayscale image, the total time taken
for data distribution and results gathering is abont 6.5 seconds, of which, about,
4.5 seconds are required for writing the results onto a sccondary storage. The
amount of time increases slightly when more than 25 processors are used in -

-1

-
(Processor 0

Start
Initialization

Processor N

\[Get subimage j

(Processor |

-
Get sublmage J‘/ o ‘ Get sublmage

-

Compute fentures Lo | Compute features -l ed Compute featnres
Build partia) gruph Build partial graph Ruild pnrlln! graph
\ /

/
1)

/ \

Merge regions . —{ - l Mergs reglons } -0 - -[Merge regions
A

-

) v

Write results to Write results to Write results to
shared array i ' shared array o shared array
J .

-

\ /
- v J
,
Synchronize
Writetodisk | | 2000 T°°°° communication
End ——> control flow
. J

Figure 5.29: A logical view of the TC2000 parallel region growing process

segmentation. Although 4 times larger in size, only about 0.3 second is required
to save the segmentation results of a 1024 x 102 textured image. This is because
the segmentation array of the textured image consists of 128 x 128 numbers,
compared to the 512 » 512 segmentation array obtained from a grayscale image.

5.3.2 Feature Computation and Graph Building

Feature computation refers to the extraction of a feature value from a pixel or
a neighborhood of pixels. In grayscale image segmentation, if the grayscale in-
tensity of a pixel is used as the feature value, feature computation is a trivial
task. However, in textured image segmentation where a feature value is always
computed from & neighborhood of pixels, the cost of computing all features is
a significant portion of the total segmentation cost. As an example, consid.
a sequential segmentation prccess on a 1024 x 1024 textured image. If 8 x
non-overlapping pixel blocks we used, the feature computation cost of a single
co-occurrence measure on the entire image is about 24 scconds. If three co-
occurrence measures are used, it will take about 47 seconds to compute all the
feature values. In each case, the computation of feature values constitutes 79%
and 65% of the total segmentation cost, respectively. Although texture feature
computation is expensive, the operations can be efficiently parallelized becanse
each computation involves only local data.

In our TC2000 implementations, feature computation is incorporated in the
graph building phase. A processor builds a partial graph on the rectangnlar
image division it has been assigned; feature values are computed and stored in
the vertices during the graph building process. Adjacent image divisions have
small overlaps to facilitate the seaming of partial graphs. In our graph model,
an edge is labelled by the difference between the feature valies of its connecting
vertices. Although the label of an edge connecting vertices belonging to two
adjaceat divisions can be computed from the overlap, the pointers to these vertices
need to be shared in the seaming process. After attempting several methods Lo
allow the sharing of pointer information, we find that the most efficient way < i
let each processor copy into a shared array the vertex pointers other processors
will require, and if already available, copy from the shared array thou.e pointer
information it needs. Since we adopt the 4-neighbor scheme (each image pixel has
a north, south, east, and west neighbors), the initial image graph has a regular
grid layout.

The times taken for the graph building phases in the segmentations of M7
:id M13 are given in Figures 5.30 and 5.31. In each figure, there is a notable

S

increase in graph building time when more than 25 processors arve used in the pro
cess. This undesirable effect cannot be eliminated or lessened by distributing the
shared pointer array on different memory subsystems. From onr observation, a
long graph building time is often caused by a few processors which take exeeption
ally long times to complete their graph building phases. Since the partial graphs
are approximately equal in size, memory switch contention is suspected to have
caused the delay. If there was some user control on application connnunication
graph and system network mapping, a better solution may be puossible.

5.3.3 Region Merging and Shared Memory Access

A merge operation on the region growing graph involves updates of the merging
vertices, edges connecting to them, and all vertices connecting to these edges. Tn
a parallel implementation where merges can be performed at the same time, i is
possible for a data field to be corrupted from simultancons updates. To preserve
data integrity under this hazardous situation, we apply locks on shared memory
data items.

In the graph data structure, every vertex is assigned a vnique identification
which is a positive number with the most significant bit serving as a lock. We
implement tl.e lock using several atomic instructions supported by the TC2000
hardware. Before proceeding with a merge, a process has to obtain the locks on
all involved vertices. Deadlock can occur if two processes locked some vertices
and wait for the release of vertices which happened to be held by the other
processor. To prevent deadlock from occurring, a process always locks the vertices
in ascending order of their identification numbers. Sometimes, while trying to
lock a list of vertices, a process may enconnter a vertex that has been locked by
another process. In this situation, the first process will relinquish all previously
locked vertices, sleep for a short interval of time, then repeat the merge attempt.
Only after a certain number of attempts have failed will the process proceed to
merge a different pair of vertices. In our experiment, a failed merge attempt due
to locked verticez is found to be a 1are occurrence.

Although the share memory coasists of a number of memory units, the
actual locations of data items are transparent to the user process. Therefore,
unlike the distributed implementation described in Chapter 6, a nser program
on the shared memory system need not differentiate between inter- and intra-
processor merges. Despite this convenience, to ensure an even distribution of
data in the shared memory so that network switch contention can be minimized,
our algorithm builds the initial subgraph on the memory subsystem focal to

A

]2

its processor. Sinee every process makes the most frequent aceesses to its own
subgraph, placing its subgraph in the local memory unit is logical.

The TC2000 system does not support cache memory usage in parallel pro-

cosses. Maintaining cache coherency is therefore the responsibility of the pro-
grammer. OQur parallel implementation does not make use of the cache memory.

However, Lo provide a conservative study on timing performance ratio, the se-
quential implementation uses interleaved memory with cache which provides the
best tiaing results.

In Figure 5.32, we compare the 24-processor parallel segmentations using the
IFAS and the BEFS algorithms. Again, results on the grayscale images M7 to M11
are shown. It is clear that compared to the BFS algorithm, the FAS algorithm
provides good, consistent timings on the set of images. More detailed results are
given in the next section.

FAS parallel timing on M7
60 T T T T T 1 I
- build graph -0—
; Y + merge regions ===
50 +‘ + save results -E--
4
s
. wrow i
i [N
o B
g 10 |- IR B
. LEa
+ A *
I% 0k ;_* EL R ~
! \ A G&8.g.g 580
s SR .
10 F bt
. W
Q 4 8 12 16 20

24 28
processors

Figure 5.30: Parallel timing on grayscale image M7

5.4 Experimental Results

In this section, we present the detailed parallel timing results of the set of

grayscale images. We also examine the distributions of workload on processors

eCc

(s

time

FAS pavallel timing cn MY

Y T T T T T
tuild graph -0
% sl e tenpiom =bes
\';‘ ootave peanltts cBree
1‘,| - \ -
O
b
“
- TV o 4
i1}
E
e
)
L o -
o 1 1 1 1 1
0 4 a 1. 1 0

Figure 5.31: Parallel timing on textured image M13

Parallel timing on 24 processors

120 T T T T T
]
FAL — '
MY e m——- 1
100 b ; Bl ! A
]]
L]]
1]
t L]
80 | | i .
]]
.] t
1]]
] 1)
1 []]
60 = i]) ! .
])] I
1) I]
1)]]
1)]]
40 i \ i | =
]) []
)) t t
] 1 t [}
]]])
20 - ! i] : i .
| L] l) i) []
1 1 1)]
I) i) 1
. i 1 1 | i l | l |
17 M8 M M0 "il

image

Figure 5.32: Parallel timing on a set of grayscale images

using the FAS and the BEFS algorithms, and suggest the appropriate number of
processors Lo use onour given problem size.

An important measure for assessing the performance of a parallel algorithm
is the timing ratio between the best sequential algorithm and the parallel algo-
rithm. This measure, known as “speedup”, has many definitions in the litera-
ture [2, 33, 60]. For example, the scquential and parallel runs may or may not be
carried ont on the same machine, the sequential algorithm may or may not be the
fastest. In this study, we measure the ratio between the best sequential and the
parallel processing times on the same machine using the same merge criterion.
More specifically, the best sequential time is the shortest runtime achievable on
a single-processor given the available memory access options on the TC2000. We
simply call our measure the timing ratio or the merge time ratio, depending
on whether the entire segmentation process or only the merge phase is being
evaluated. The term “speedup”™ is not used to avoid possible confusion.

5.4.1 Parallel Segmentation Time

Table 5.9 presents the FAS and the BFS parallel timings of images M7 to M11
using different numbers of processors. To provide a clearer comparison, the FAS
and BI'S timings on image M7 are depicted in Figure 5.33.

In the experiment, it is shown that the FAS algorithm gives good, consis-
tent parallel timing results on all five images, but parallel timings from the BIFS
algonithm are image-dependent. In addition, the change in BFS timings using
different, numbers of processors is inconsistent and unpredictable. In conjunction
with our earlier analysis (in Chapter 4) on the Best-merge selection policy, we
conclude that the BFS algorithm results in highly ordered and sequential seg-
mentation processes on some images - before a processor carries out a certain
obstructive merge, another processor cannot perform its merges.

Increasing the number of processors in a BFS process may help to reduce the
parallel processing time marginally. This is because by reducing the workload on
individual processors, size of their partial graphs are also reduced; consequently,
obstructive merges have higher chances of being performed sooner. Nevertheless,
further timing improvement is severely limited by the sequential nature of the
merge sejquence.

As is the convention in the literature on parallel timing performance [59],
times required for initial setup and final results gathering are not included in the

»

comparison of the sequential and parallel timings. In region growing segmenta
tion, we report the merge time ratio « btained by dividing the sequential merge
time by the parallel merge time on an image. The merge time ratios on the test
images M7 to MI11 are given in Table 5.10. As in the presentation of parallel
timing, a graphical illustration on the performance ratios of image M7 is piven
in Figure 5.34.

The excellent FAS merge time ratios for segmentations using helow 12 pro
cessors were achieved because most merges in the parallel processes involve local
memory updates; in the associated sequential segmentation which eniploys the
interleaved memory, a merge involves updating memory locations on diflerent
memory subsystems. By increasing the number of processors, task granufarity
decreases and more merges require the updates on non-local memory locations.
As a result, the merge time ratios become less desirable,

More sequential and parallel timing results on textured images are given in
Section 5.5.

N\

Table 5.9: Parallel timing on the grayscale images

Pl FAS (sec.) BFS (sec.)
M7] Ms[Mo[MIo] Mil] M7, Ms| M9[MIo] MIl
[i mso s rrs] 1243 1129 175.4 | 210.5 [275.7 [144.4 | 446.6
A 534 399 B398 37.7| 383 | 187.2 | 587.3 | 829.8 | 59.5 | 8119.9
6| 3351 330 267 27.0| 29.6 || 164.4 | 5204 | 442.4 | 44.9 | 4515.8
Sl 264 264 206 223 23.6 (| 1422 499.5 | 312.1 | 39.3 | 1032.8
10 270 21.3) 192 20.1| 20.8 | 117.7] 159.5 | 124.5| 31.9 | 1524.6
12 216 20,0 191 17.5| 188 | 80.3|244.0 | 200.7| 30.5| &36.8
M 1961 1921 162 162 | 17.0|| 56.7 | 154.6 | 83.9| 28.4 [1232.2
16| 186 | 17.0] 152 1511 16.2| 84.0 | 175.0 | 149.0 | 24.2 | 742.0
IRl 189 17.7] 149 152 164 || 820 172.0| 90.2| 23.7| 402.6
20 189 162 143 143| 152 59.3|128.9| 858 21.5| 7324
220 178] 17.5| 13.8] 144 | 147 49.7| 67.0| 879 204 | 5386
24 175 164 134 | 138 142 60.2] 72.2|101.0] 204! 301.9
261 168 15.0] 13.9] 143 150(37.6| R80.4 | 889 21.1| 3329
2% IR | 18.0| 14.8| 145 146 46.7| 88.5| 83.0| 21.3| 260.2
30 179 19.0] 15.0) 158 14.9| 64.5| 78.7| 97.2] 20.8| 250.0

Table 5.10:

Sequential to parallel merge time ratio on the grayscale images

PEs FAS BFS
l M7 | M8| M9 | Mio|[Mil | M7] M8]|M9|Mi0| Mil
44 27| 38| 33| 38| 33[09]03]03] 26| 0.1
6 47| 51| 54| 57| 45 1.1|04]| 06| 35| 0.1
84 63| 72| 73| 74| 61| 1.2{04]09]| 42| 04
10} 64| 9.1 86| 87| 73 15| 1.3]23| 54| 03
12 87(101) 87})109| 86 2305|114 56| 05
14 1100] 110 113 121 | 98| 33| 14| 34| 67| 04
16 || 10.5 | 12.8 | 126 | 13.6 | 10.8 || 22| 1.2 1.9 7.8| 0.6
I8 100123133 135] 11.2) 22| 1.2} 33| 80| 1.1
20 || 10.4 | 143|140} 15.0 | 126 | 3.2 1.7 3.5| 9.1| 0.6
220113124 | 142 15.1 | 127 3.8 | 3.4 | 34| 97| 08
241 11.9 | 143 | 154 | 16.1 | 13.6 || 3.1 3.1 29| 98| 0.9
26 |1 125 164|149 152 | 12.1| 54| 281 33| 9.0 14
28| 110 122]15.2| 154 | 12.8 | 4.1 | 25| 3.6 | 92| 1.7
30 || 11.3]11.2[13.0) 124|125 2.9 28] 3.0] 9.1| 1.8

Parallel timing on M7

S0 v T T T T T T
*
\ FAL 0
N RED 4=
\\
150 P \4 -
\
.- \‘
@ kS
[9] \
: 100 b \ -
y \
" YOt
A ’ \
s \\ I' \\ +
¥ L N /’
50 - N7 \\ P
-‘(
-O—O0—9—0—0—0—©
0 ! 1 1 1 | 1

0 4 b 12 16 20 24 28 3

procensor e
Figure 5.33: FAS and BFS parallel timing on M7

Sequential/Parallel merge Lime ratio on M7

1) ' 1 ¥ L] J
14 F FAS -0— o
BED o=
12
10 |
(0]
ot B e
e
]
131
6 -
4 =
2 b A ey i
T
0 1 1 1 1 1 1 1
0 4 8 12 16 20 24 m OL
Processors

Figure 5.34: FAS and BFS merge time ratio on M7

<1

5.4.2 Load Partitioning

Il present, the load imbalance problem in region growing is difficult to solve.
This is because region growing is a data-dependent problem in which behavior
and computational requirement cannot be determined at compile time. Unless
load imbalance is critical, dynamic load balancing is not feasible due to the high
cost. and difliculty in finding an optimal 'oad transfer solution.

Load imbalance is a serious performance problem in a region growing pro-
cest employing the Best-merge selection policy. The Best-merge policy has the
characteristic of imposing an order on the merges. In a parallel implementa-
tion, this results in a significant amount of time being spent on processing failed
merge attempts, Since the distribution of failed merges is highly uneven and
image-dependent, times taken for the parallel merge processes are also highly
uneven.,

However, by using the Fast-merge policy and a sufficient number of proces-
sors, we are able to obtain a fairly balanced load by evenly dividing an image
among the processors. That is, every processor works on an equally sized sub-
image at the beginning of the merge phase. In our implementation, the merge
process is so short that any small load imbalance has insignificant negative impact
on the overall performance.

Tables 5.11 and 5.12 give an example of processor load distribution using
the FAS and the BFS algorithms on the test image M7. Each row of the tables
gives three load measures that are recorded when the algorithms were run using
a specified number of processors. The three load measures are the amount of
time spent on the merge phase, the number of successful merges performed, and
the number of merge rejections encountered. For each measure, we present the
maximum. minimum and mean values of all the processors in a run. The standard
deviation, which indicates the variation of this measure among the processors, is
given in the fourth column. Note that the numbers of successful merges in both
tables are given in thousands, so are ihe numbers of merge rejections in the BFS
table.

From the two tables, it is clear that the distributions of successful merges on
the FAS and the BFS processes are cven and similar. However, the distributions
of merge rejections on the BFS processes are highly uneven compared to those on
the FAS processes. Consequently, the BFS merge times are much longer because
processes in a run have very different workload.

The graph in Figure 5.35 shows the individual processor merge times of the
FAS and the BFS processes on 16 processors. The same test image M7 is used

in both runs. It is clear that the BFS processes suffer a severe load imbalanee,
and the FAS processes have a well balanced load.

Table 5.11: PE Load distribution using FAS on M7

min | max | mean | o || min | max | mean [o[min | masx rnn'un] ‘o
4] 36.1] 415 38520649 65.3] 65.2] 0.17 || 430 | 2251 1254 | 658
6 || 20.2 | 22.6 21.3 1 0.8 {| 43.1 | 43.6 43.4 1 0,14 J08 R37 K191 216
8| 15.2 | 17.1 16.2 | 0.6 || 32.4 | 32.7 32.6 |1 0.09 143 829 368 | 2206
10 || 12.4 | 15.6 13.3({ 0.8 || 25.7 | 26.4 26.01 0.19 24 721 279 | 201
12 | 10.2 | 12.2 11.0] 0.5 21.5 | 21.9 21.71 0.09 21 ThhH 265 | 214
14 8.71 10.5 95104 | 184 18.7 IR.6] 0.10 42 T4l 205 | 191
16 7.7 9.7 831041 16.2] 16.4 16.3 | 0.05 12 618 18R | 160
18 6.8 9.0 76104 | 142 14.5 14.4 | 0.09 12| 1054 200 | 231
20 6.0 8.8 631051 1281 13.2 13.0] 0.10 2 161 143 131
22 5.7 8.5 6.4105 | 11,57 12.0 11.8 1 0.14 10 191 1381 112
24 5.2 8.1 571051 10.7 | 11.0 10.8 {1 0.09 H 443 I8 121
25 5.0 7.1 551041 102 10.6 10.4 1 0.09 H96 137 | 167
26 4.8 6.8 5.5 0.4 9.8 1 10.2 10.0] 0.13 396 112 9%
28 4.5 7.2 50]04 9.1 9.4 9.3 | 0.06 1 9hHR 124 | 183
30 4.3 6.4 4.6 0.3 8.5 8.8 8.6 { 0.08 9l 116 | 159

o

-]

5.4.3 Number of Processors

For any given computation problem, no matter how many processors are applied,
its parallel timing performance is limited by it sequential, non-parallelizable seg:
ment - this fact is stated in the well known Amdahl’s Law. Besides the sequential
segment of an algorithm, it is obvious that the size of a problem instance also
limits the maximum number of processors to use. Depending on system archi-
tecture, certain parallel overheads (e.g. process communication) may also grow
with the number of processors, thus putting a limit on the number of processors
used for solving the problem.

On the given problem size of a 512 x 512 grayscale image, it is shown in our
experiment that the maximum merge time ratio on the TC2000 is achicved on
about 25 processors.

PEs Merge Time (sec.) Successful Merges (K) Moerge Rejections

Table 5.12: PE load distribution using BFS on M7

Pl Merge Time (sec.) Successful Merges (K) . Merge Rejections (K)

min | max [mean | o [| min [max [mean | o | min | max | mean| o

40 58.11174.3] 112.0| 50.2 || 64.4 | 64.8 64.6 | 0.17 || 53.9 | 64.1 57.9 | 3.83
G 32.7] 1H3.8 754 | 1.5 || 42.6 | 43.3 43.1 | 0.28]| 33.4 | 46.1 38.9 | 4.08
81 26.6 | 132.5 63.0 | 43.5 4 32.0 | 32.5 32.3]10.15 (] 24.1 | 36.2 29.5] 3.42
10 {) 19.7 { 108.5 48.4 | 352 {| 25.4 | 26.1 25.8 1 0.20 |} 19.0 | 27.5 23.4 | 2.56
12 16.7 71.3 32.7119.6 | 21.2 | 21.7 2151 0.14 || 13.1 | 23.7 19.5 | 2.58
14] 14.1 47.4 25.0 | 12.6 || 18.1 | 18.7 18.410.14 || 12.8 | 19.6 16.7 | 1.72
16 {| 12.0 74.7 25,6 184 159] 16.3 16.1 | 0.11 || 10.3 | 17.9 14.8 1 1.74
IR || 10.1 72.6 24.1 | 18.4 || 14.1 | 14.6 14.3] 0.13 9.0 164 13.3 { 1.88%8°
20 9.6 50.1 19.3 { 13.1 || 12.6 | 13.1 12.9 | 0.12 7.71 14.6 11.8 | 1.62
22 8.3 40.6 1771 11.6 || 11.4 | 12.1 11.7 } 0.20 7.8 | 154 10.8 | 1.67
24 7.6 50.2 17.7 | 12.8 |} 10.5 | 10.9 10.7 | 0.10 571 12.3 9.9 1.49
25 7.4 44.7 1541 10.9 || 10.0 { 10.5 10.3 | 0.13 561 11.5 9.5 1.39
26 7.4 274 14.1 6.8 9.6 | 10.1 9.9 0.15 6.5 | 12.0 9.1 1.27
28 6.8 35.7 14.1 9.6 9.0 9.4 9.2 1 0.08 4.9 1 10.6 8.5 1.32
30 6.1 52.2 15.0] 13.5 8.3 8.8 8.6 0.11 4.2] 10.2 7.9 1.35

5.5 Effects of Image Characteristics on Timing

The objective of the following experiment is to examine the effects of several
image characteristics on timing performance. It is important for the timing re-
quirement of a segmentation algorithm to be predictable. That is, the timing
performance should be relatively insensitive to image characteristics such as re-
gion sizes, shapes, and feature distributions. In the previous sections, it has been
shown that the FAS timing requirements on natural images M7 to M11 are consis-
tent. In this section, we want to further verify through a control experiment that
the timing performance of the FAS algorithm is relatively image-independent.

The test images used in this experiment are constructed using textures from
the Brodatz album [4]. The same texture codes in [4] are used here to identify
the textures. Each image is 1024 x 1024 pixels in size. They are divided into
three groups:

o Group A: It consists of three textured images M13, M14, and M15. Each
image has only one region. Three textures with different degrees of coarse-

90

Twe lo-PE tuns on MY

80 T T T T T T T T T T T T T
! A —
70 BE =mm]
i
_ 60 = | .
&)] 1
Q | 1
a 50 | ! -
]]
]]
@ 1]
.,’.f 40 I] -
i | I -
]) t]]
CRRELY N R I R 1
q 1]]] (]]
- 20 b 14 . Lo .
] [)]] 1]]
] 1]] [} [} 1
] 1 .))] 1]] 4 1 1
10F Vb b N I A
] 1 1])]) [}] 1])]]]
]] 1 1 1])]) 1] []]] 1
0 lll ||{ Il! Ill Ill [T THIR FHIR (1 [T T T !l: ||I lll lll
1 2 3 4 65 6 7 8 9 1001112131415 10

proces SovU

Figure 5.35: Load distribution by FAS and BI'S

ness are chosen. The textures are shown in Figures 5.36, 5.37, and 5.38,

e Group B: The two images, M16 and MI17, in this group are given in
Figures 5.39 and 5.40. Each image is made up of the same two textures
D77 and D57. The region made up of texture D57 is a trapezinm in M16
but has a more complex spiral shape in image M17. The trapezinm and
spiral regions have the same size.

e Group C: A 4 x4 and an 8 x 8 texture mosaics are included in this group.
The images are named M12 and M18 respectively. The texture layouts of
these two images are shown in Figures 4.23 and 5.41.

We present the sequential segmentation times of all three groups of images in
Table 5.13. For group A and B images, processing times using one and three co-
occurrence features are reported. Only the 3-feature timings are given for images
M12 and M18 because these images can only be successfully segmented nsing
three features. In the experiment, the same features are used in the segmentation
of images within the same group. We can therefore assume that the feature
computation times of these processes are equal. In all segmentations, textare
windows of size 8 x 8 were used. That is, the size of the initial image graph has
128 x 128 vertices in each process.

9l

Following are some observations of the effects of image characteristics on

tining performanee:

I. Texture Feature Distribution
Among the three images in group A, image M13 has the longest segmen-
tation times using the FAS algorithm. The segmentation times on image
M13 is 4 and 13% longer than the times required on the other two images.
Also, the segmentation processes on M14 are about 3 and 12% shorter than

that on M13 and MI15.

Using the BIFS algorithm, image M13 also requires more time to segment.
Its segmentations take 92 and 139% longer than those of M14 and M15 in
the single feature case, and 100% longer than the 3-feature segmentation of
M14. Except for the single-feature BFS segmentation, image M14 always
has the shortest segmentation times. Its BFS segmentation processes are
are 92 and 102% shorter than the others.

Since the only difference among the three images is the texture, it is rea-
sonable to assume that texture feature distribution does have an effect on
the timing of both algorithms. Obviously, the BFS algorithm timing per-
formance is much more sensitive to texture feature distribution than the

FAS algorithm.

2. Region Shape
Using the FAS algorithm, the segmentations of image M16 are 5 and 7%

shorter than that of image M17. However, using the BFS algorithm, the
segmentation processes on M16 are 28 and 30% longer. The only difference
between images M16 and M17 is the shapes of their regions; image M16 has
a simple boundary between its two regions, while the regions in M17 have
a more complex and irregular boundary. Region shape appears to have an
opposite effect on the two algorithms. Overall, the effect of region shape
on the timing of the FAS algorithm is less significant than that on the BFS
algorithm.

3. Region Size

The size of each region in M12 is 4 times bigger than that in M18. Other-
wise, the two images are made up of the same sixteen textures arranged in
very similar layouts. Using the FAS and the BFS algorithms, image M18
requires 3 and 10% less time to be segmented, respectively. Intuitively, a
larger region will require more merges to form than a smaller region. Again,
the experiment shows that the effect of region size on the FAS algorithm is
less significant than that on the BFS algorithm.

For completeness, we give the FAS parallel timing vesults of the three image
groups in Table 5.14. The paralicl processing tine £, obtained on using n pro
cessors 1s recorded in seconds. Only single-featuve resuits are reported for images
MI13 to M17. Although each textured image is 1024 x 1021 pixels in size, the
initial graph has only 16K vertices (compared to 206K on a 512 X 512 grayscale
image) because texture features are extracted from 8 x 8 non-overlapping win
dows. Due to the small problem size, only up to 16 processors were nsed in this
experiment. The timing ratios, ;':, of the overall segmentation processes are also
given in Table 5.14.

Comparing the timing results of images within the same group, it is evident
that as in sequential segmentation, image characteristics have relatively small
effects on the FAS parallel timing performance.

Table 5.13: Sequential timing on a set of textured images

Image FAS (¢, sec.) BIS (1} seel)
1-Feature | 3-Feature || I-Feature | 3-Feature
MI3 37.49 59.30 162.30 126.01
Mi4 33.22 56.47 84.37 62.8!
M15 34.75 56.81 67.90 127.26
M16 32.59 55.18 64.36 96.19
M17 34.23 28.96 46.08 67.30
MI12 - 54.78 66.28
M18 - 53.43 60.48

Table 5.14: FAS parallel timing on the textured images

PEs M13 M14 MI15 M16 MI17 M12

n tw Bt B b g b | b | b]
A 179 211154 22165 210124 26150 23164 33
61125 3.0|11.0 3.0[11.7 3.0 9.0 36| 99 3.5 128 4.3
gl 99 38| 92 36| 90 39| 70 47| 93 BT 9.7 57T
10/l 8.1 46| 7.2 46| 67 52| 62 52| T8 44| K6 64
121l 63 59| 6.1 55| 67 52| 58 56| T2 A4X| 82 6T
14l 68 55| 66 50| 7.0 49| 56 59| 68 51| K4 65
16/ 63 60| 6.9 48| 7.1 49| 57 58| 65 52| 7.3 75|

My
174 8
12.5 4.3

7.8 6K
74 7.2
80 6.7

a3

age M13

im

of

)

Texture (DOS

2 5.36:

Figure

of image M14

Texture (D55)

Figure 5.37

Texture (D77) of image M15

Figure 5.38

R AREAS

230

SRR
RN

[y

.

N

)

PR

TN A\
SERBAY
£3 $240,
YERAVANY

: Image M16

Figure 5.39

96

9 <

ANAY

©
As
¥
el

: Image MI17

Figure 5.40

» M18

in image

Texture layout i

Figure 5.41

Chapter 6

Other Implementations

We have investigated the shared memory SPMD region growing model in Chap-
ter 5. In this chapter, we present and compare several other possible implementa-
tions of the region growing algorithms. The strengths and weaknesses of these dif-
ferent approaches are discussed. Among the approaches, the MIMD image seam-
ing, split-and-merge, and SIMD approaches have been studied in {9, 10, 63, 67].
We implemented the distributed region growing model on a network of worksta-
tions. The detailed distributed timing results are presented in Section 6.4.3.

6.1 Image Seaming

An intuitive parallel approach, named image seaming, was proposed by Chen and
Pavlidis [9]. lmage seaming is a direct divide-and-conquer solution to segmen-
tation. In this method, we divide an image among all the available processors
in the parallel system; each processor performs a segmentation on its sub-image
independently using the region growing or any other segmentation technique; we
then obtain the final segmentation by combining individual segmentations from
the processors.

Image seaming may appear to be an attractive approach because besides
the initial data distribution and the final result gathering, there is no process

98

communication or shared data access during the segmentation process. However,
a closer examination on the algorithm would reveal the complexities of the results
combining (seaming) process.

Suppose we divide the image into rectangular sub-images with overlapping
boundaries. We map these sub-images to processors arranged in a grid layout in
such a way where the spatial relations among sub-images are preserved. After
obtaining the sub-image segmentations, label information at the overlap arcas
are used to identify regions that span processors and produce a coherent segnien-
tation. There are two major difficulties in the scaming process:

e The labeling of overlap areas by different processors often do not agree be-
cause each processor labels the same area based on different image divisions.
There is no absolute solution to resolve these boundary ambiguities, and a
reliable heuristic for resolving label conflicts is difficult to define withont «
priori knowledge about the image.

e Using the rectangular image partition scheme, every processor has cither
two or four common boundaries to update, depending on the location of
the processor in the grid layout. If each common boundary is to be pro-
cessed only once, all boundary updates will need to be performed in some
sequential order. This is because an update involves the identification of re-
gions spanning more than one processors, and the labels have to propagate
along these spanned processors to result in a unique label for cach region.
Therefore, result-combining is a sequential process that is very difficult to
parallelize. We may attempt a relaxation result-combining technigue that
iteratively updates the common boundaries until there are no more changes
in region label. Although it will reduce processor idle time, such a method
will still require the propagation of region labels among processors and may
not always be faster than sequential seaming.

Though intuitive, image seaming is not a practical approach on complex
images, and images for which we have no a priori knowledge.

6.2 The SIMD Approach

The single-instruction multiple-data stream (SIMD) processor array machines
is a successful computational model in low-level image analysis [45, 51, 53]. A

9

typical SIMD processor machine consists of a regular lattice interconnection of
a large number of processing clements. Each processing element, ordinarily of
modest computing capabilitics, has access to its own local memory. The array
of processors compute in unison at all times, making these machines SIMD in
nature. Many low-level image operations, such as histogramming, convolution,
rank order filtering, have been efficiently implemented on SIMD architectures
using replicated data [45] and other techniques [18, 42]. High level model based
image interpretation has also been attempted using the SIMD model [45].

Although also a low-level image operation, the region growing process has a
monotonically decreasing degree of parallelism. There is a high degree of paral-
lelism at the beginning of the process because the number of regions is largest.
When the process progresses, the number of regions decreases and so does the

degree of parallelism.

In the SIMD computational model, execution is synchronized at the instruc-
tion level. At any instant, a processor either executes the same instruction as
other processors in the system, or it remains idle. Because of this restriction, it
is implausible to assign a group of primitive regions with an undetermined com-
putation requirement to each processor. If we assign one primitive region to each
processor, the system will assume the maximum degree of parallelism of the re-
gion growing problem. While the number of regions decreases in the process, the
number of processors remains a constant. If we maintain one region per processor
by transferring image data to an active processor in each merge operation, there
will be an increasing number of inactive processors in the system. Alternatively,
if region data are distributed among processors, later merges will become more
expensive due to high communication costs which are proportional to region size.
In terms of processor utilization and efficiency, SIMD is not an appropriate model
for region growing.

Willebeek-LeMair and Reeves [67] described a SIMD region growing ap-
proach on the MPP. Some of their results are given in Section 2.7.

6.3 Split-and-Merge

In the split-and-merge approach, the main objective of the split process is to
reduce the number of initial regions for the latter merge process so that the total
processing time can in turn be reduced.

100

The most efficient data structures for the split and merge processes are the
quadtree and graph respectively. The top-down split process recursively divides
an image into homogeneous regions represented by the leal nodes of a quadtree,
The quadtree is then converted to an adjacency graph, and a merge process
combines adjacent regions to produce the final segmentation. The merge process
is identical to the one in a our pure merge (bottom-up) region growing approach.

We have performed a small experiment to compare the timing performance
of sequential pure merge region growing and scquential split-and-merge. In the
split process, a parent region is divided into four equal sized child regions, and
a feature mean is computed on each child region. If the difference hetween the
maximum and minimum feature means exceeds a predefined threshold, the parent,
region is split into four, and the four child regions arce promoted to parents and
the split operation is recursively applied on each of them. Otherwise, if the
difference between the maximum and minimum feature means is not. greater than
the threshold, then the parent region remains as a whole region. The Adaptive
Fast-merge merge criterion is used in the merge process.

Our test image M2 (given in Chapter 4) is a 4-region textured image that
is 512 x 512 pixels in size. Using 8 x 8 pixel blocks to compute feature values,
the initial graph for the pure merge approach has 4096 vertices. After the split
process in the split-and-merge approach, we have 1294 regions. That is, on this
simple image that has only a few large regions, the split process has reduced the
number of vertices by about 3 times. On any real images with many moderately
sized regions, we would expect a much smaller reduction of graph size. Also,
the smaller the reduction on vertices, the longer are the split process and the
conversion of quadtree to graph. This is because it requires more split operations
to result in a deep quadtree, and the resulted large graph would also take a longer
time to build. Unless the rate of split is many times higher than the rate of merge,
the split phase may not serve to reduce the overall segmentation time. In onr
algorithm where the speed of the merge process has been greatly improved by the
Adaptive Fast-merge criterion, a split process is less useful and may even slow
down the segmentation process.

In our experiment, both approaches take about 8.3 seconds to compute the
feature values, and 0.1 second to save the results. In the pure merge approach,
graph building is incorporated into the feature computation process. The merge
process takes about 0.68 second to complete. As a result, the total segmentation
time for the pure merge approach is about 9.08 seconds. In split-and-merge,
the split process requires 0.19 second, it then takes 0.30 second to convert the
quadtree to a graph, and the merge process requires a further 0.34 second to
complete. Therefore, a total of 9.23 seconds is needed for the split-and-merge

101

l)l‘()('(‘.SS.

Although the above result is not sufficient to conclude that split-and-merge
is always slower than pure merge region growing, the following two observations
are noteworthy: '

e Feature computation ‘n textured image segmentation takes up a large pro-
portion of the total processing time. Unless the split process can also lower
feature computation cost, it will have little positive impact on the total
segmentation time.

e The conversion of quadtree to graph is a nontrivial process. To reduce
total processing time, any speed gained by the split process would have to
be large enough to offset the time taken for data structure conversion.

The above comparison on sequential pure merge and split-and-merge pro-
cesses is also applicable to their parallel implementations. In addition, a multiple-
instruction multiple-data stream (MIMD) split-and-merge process has the follow-
ing drawbacks:

In a MIMD model, no communication among processors or access to shared
memory is required in the split phase. However, converting a forest of quadtrees
(one quadtree per processor) to a global graph is a nontrivial task that requires
communication between processors sharing common image division boundaries.
This data structure conversion process is more expensive than the building of a
global graph from the image, because in the latter, all primitive regions have the
same size and shape, and the resulting graph always has a regular grid topology.

Also, compared to the pure merge approach, an extra process synchroniza-
tion point is required after the split phase in split-and-merge. In parallel process-
ing, such a global synchronization almost always increases processor idle times
and the total processing time.

If the merge process is well parallelized as in our algorithm, and a sufficient
number of processors is used so that the size of the partial graph at each processor
is kept small, then little can be gained by introducing the split process. This is
because a large initial graph is not a cause of long processing time in an efficient
MIMD pure merge approach. In this case, a split phase is likely to slow down
the segmentation process.

6.4 The Distributed Approach

A distributed system is a network of homogeneous or heterogencous processors
with each processor having its own memory unit that is not accessible by others.
Communication between any two processors is achieved through message passing.

Nowadays, a distributed network of machines is often the most accessible
system in a computing environment. Although it has a high processor commu-
nication cost compared to a shared memory or a massively parallel system, a
distributed algorithm on such a network is useful because the supporting archi-
tecture is readily available. Besides harnessing the otherwise unnsed CPU cycles,
problems with memory requirements which cannot be satisfied on single ma-
chines can take advantage of the large distributed memory space. In onr study,
two distributed region growing algorithms were implemented on the local net-
work before the TC2000 shared memory version was implemented via wide arca
network access. Through the early distributed experiment, we gained a better un-
derstanding of the region growing problem which facilitated the later experiment,
on the TC2000.

In our implementation, one of the processors in the distributed system, called
the host processor, is responsible for system initialization, input and output, load
partitioning, data distribution, and results gathering. After reading an image file,
the host partitions the image data into Ny x N, rectangular sub-images with small
overlaps at the boundaries. Each sub-image is then sent to the corresponding,
processor in a grid layout. Every processor builds a subgraph on its image data,
and exchanges edge information with processors having adjacent sub-images to
setup the global graph. The resulting graph has two types of edges: local edges
which connect vertices residing on the same processors, and inter-processor edges
which connect vertices of different processors. Each processor maintains its vertex
list. Region merging is an iterative process on individual processors. At the end
of the merging phase, node information is gathered by the host and then written
to a file. Due to the high communication cost in a distributed system, the sizes
of initial partial graphs in individual processors have to be reasonably large in
order to benefit from distributed processing.

In the next sections, we describe two distributed approaches: a complex
but naive implementation and its improved version. In the following discussion,
a merge that involves the update of at least one inter-processor edge is called
a inter-processor merge. Otherwise, it is called a local merge. A local merge
involves only vertices and edges residing on a single processor.

103

6.4.1 Inter-processor Mcrge Approach

Both inter-processor and local merges are performed with equal priority in this
approach. It is a straightforward mapping of the region growing problem on a
system of distributed processors.

To allow inter-processor merges in a distributed system, a sophisticated coop-
cration scheme is required to ensure deadlock-free processes. The host processor
maintains a reservation table for keeping track of the status of all processors. A
processor is either available, or it is busy participating in an inter-processor merge.
Whenever a processor finds a pair of vertices that satisfy the merge criterion, it
will check for any inter-processor edges that need to be updated in the merge.
If inter-processor edges are involved, then a request with a list of participating
processor names will be sent to the host. Depending on the availabilities of these
processors, the host will either update the reservation table and grant the merge,
or it will deny the request. The host is also responsible for informing all par-
ticipating processors to get ready for the merge. The inter-processor merge will
begin when all processors involved have completed their local merges in progress.
Upon completing the inter-processor merge, the initiatory processor will inform
the host to release all participated processors. This centralized communication
scheme is adopted to prevent deadlock from occurring.

As expected, an inter-processor merge is very expensive compared to a local,
intra-processor merge. The complexity of such a scheme makes the algorithm
difficult to debug and implement. Also, due to the high communication cost on
a network, the resulting program is very inefficient.

Although it is obvious that minimizing inter-processor edges will help to
improve performance, finding 2 minimum cost partition for an irregular graph is
a very diflicult problem. In region growing, since the graph topology changes with
every merge operation, maintaining a low cost partition is even more intractable.

6.4.2 Local Merge Approach

The local merge approach compromises the fair region growth policy for process-
ing speed. Only local merges are allowed in this approach. It should be noted that
cach pair of merging regions would still have to satisfy the Fixed Threshold test
and a selection policy. Experimental results show no visibie differences between
segmentations from the sequential and the local merge distributed processes.

104

Whenever a processor encounters a possible merge that involves inter-processor
edges, the merge will be abandoned and the next vertex in the list will be ex-
amined. The iterative process continues until no more local merges are possible.
The host is notified of the completion of a local process, then the partial graph of
this local process is transferred to the host. After all processors have completed
their local merges and data transfers, a sequential merge process will be initiated
at the host to complete the segmentation.

This approach is very simple and efficient compared to the inter-processor
merge approach. There is no communication among peer processors. The host
communicates with the other processors only during the initial data distribution
and the final results gathering phases. The local merge approach improves over
the inter-processor merge approach by minimizing on communication cost.

6.4.3 Distributed Timing Results

In this section, we examine the timing performarce of the local merge distributed
approach on a network of workstations. Each workstation is a SPARC IPC
with 8 megabytes of memory. The workstation network is connected by the
Ethernet. Two local merge algorithms, using the Fast-merge Fixed Threshold
and the existing Best-merge Fixed Threshold [67] merge criteria, are compared
in this experiment. In this section, we will simply refer to them as the Fast-merge
and the Best-merge algorithms.

Two sets of grayscale images are used, with five images in cach set. Those in
the first set are named M7 to M11, and each of them is 512 x 512 pixels in size.
These image are shown in Figures D.50 to D.54 in Appendix). Images in the
second set, MS7 to MS11, have the same contents as those in the first. However,
each image in this set is 256 x 256 in size. In the later discussion, we will refer
to the two sets as the large and small images.

Due to the high memory usage of the region growing algorithms, a sequential
or even a two-processor distributed process on a 512 x 512 image will cause a
high degree of paging. Therefore, the second set of 256 x 256 images is included
in the experiment so that timing results that are not effected by paging can he
assessed. Nevertheless, since images larger than 512 X 512 pixels are widely used
in image applications, we need to refer to the large image set for realistic timing
results.

Tables 6.15 to 6.18 give the distributed processing times (1, in scconds)

105

on the images using different numbers of processors (n). To further examine
the timing performance gain of the algorithms, we provide the sequential to
distributed timing ratio (;‘t) on the given image set. The results indicate that
the processing time of a Best-merge segmentation is image-dependent — different
images require very different processing times, and segmentations of some images
arc more parallelizable than others. On the contrary, the Fast-merge timing
differences between images are small. Also, the change in timing with the number

of processors is steady and predictable using the Fast-merge algorithm.

In Figures 6.42 to 6.45, we show the change in processing time and timing
ratio with the number of processors. Figures 6.42 and 6.43 present the Fast-merge
and Best-merge results on image M7. The latter two figures present those on the
small image MST7.

For the large images, the excellent timing ratios achieved on small numbers
of processors are partly due to the high levels of paging incurred in the single-
processor segmentations. The paging costs are especially high on the sequential
Best-merge processes due to the large number of merge rejections. Using more
than six processors would not further improve processing speed because the com-
munication cost also increases with the number of processors. For our given
problem size, the appropriate number of processors to use is six.

Tables 6.19 and 6.20 give the breakdowns on processing time of the local
merge approach. By categorizing every phase or activity of a distributed process
into distributed, serial, and communication, it helps to provide a better under-
standing on the behavior of the algorithms. In the local merge approach, only
the distributed merge phase is categorized as “distributed”. “Serial” activities
include file input and output, and the final merge process performed by the host.
The initial data distribution by the host and the final results gathering from the
distributed processes are classified as “communication”. In the two tables, the
percentages of time spent on these three types of activities are denoted by pa, ps,
and p., respectively. Figures 6.46 and 6.47 illustrate the py, ps, and p. timings of
two 4-processor runs of the Best-merge and Fast-merge algorithms, respectively.

From Table 6.20, it is clear that most Best-merge processes spend higher
percentages of time on the sequential merge phase than on the distributed merge
phase. This re-confirms our earlier conclusion about Best-merge in Chapter 4,
that the Best-merge merge sequence is highly ordered and few merges can be
performed independently at the same time.

In Table 6.19, a Fast-merge process has a relatively long distributed merge
phase compared to its sequential merge phase. This implies that a large propor-
tion of the segmentation work is done by the distributed merge processes using

106

the Fast-merge approach. Nevertheless, due to the high communication cost in
the distributed system, as the number of processors increases, the communica-

tion overhead will gradually offset the performance gain of the distributed merge

process. Also, since the local merge distributed algorithm is not completely par-
allelizable (there is always a sequential merge phase), the achievable performance
gain is limited.

On the Fast-merge and Best-merge segmentations of image M7, the change
in pq, ps, and p. with the number of processors can be observed in Figures 6.48
and 6.49.

Table 6.15: Fast-merge timing (in seconds) on a set of 512 x 512 grayscale images

PEs M7 M3 M9 M10 M1

n tn %t tn _::l; tﬂ- !.i tTl %,l; "'Il. ll;‘;
1] 91.6 ~196.6 - 1894 -1 86.7 - | 92.1
2459.1 1.5{605 16}605 15551 167632 1.5
41260 351265 3.6|256 35236 37291 3.2
6238 38245 39235 38214 4.1(269 34
8| 23.8 388|248 39241 3.7]228 3.8/[267 3.4

12 |} 28.3 3.2|27.7 3.5(283 3214265 3.3]20.0 3.2

16 || 27.5 33| 276 3.5|27.5 3.3]26.5 3.3|278 3.3

Table 6.16: Best-merge timing (in seconds) on a set of 512 x 512 grayscale images

PEs M7 M3 M9 M10 Mil
n th & o |t]t g b -
1{ 683.9 ~- 14014 - | 218.7 -1 171.1 - | 8324.4 g
21 346.6 2.0 190.5 2.1 147.0 1.5] 112.6 1.5 [34569 2.4
4] 2200 3.1|196.5 20| 89.5 24| 364 4.7]3095.3 2.7
6| 416.4 1.6 157.5 25| 117.6 1.9 372 4.6 | 3268.5 2.0
8| 206.6 3.3| 1625 25| 87.2 25| 41.0 42| 53404 1.4
12 || 182.2 38| 764 53| 1254 1.7} 49.4 3.5 | 3200.1 2.6
16 || 313.7 2.2| 96.8 4.1 93.1 23| 51.7 3.3[8993.8 0.9

107

Table 6.17: Fast-merge timing (in seconds) on a set of 256 x 256 grayscale images

PEs MS7 MS8 MS9 MS10 MS11
n & th & th £ ta th &
1124 -T118 - 95 -[91 -j133 -
2 83 15| 89 1.3[100 0993 10| 98 14
4l 66 19| 73 16| 85 11|76 12| 81 1.6
6|l 64 19| 74 16| 83 1.1[78 12| 79 17
8| 69 18| 7.8 1.5] 82 12|84 11| 84 1.6

Table 6.18: Best-merge timing (in seconds) on a set of 256 x 256 grayscale images

PEs MS7 MS3 MS9 MS10 MS11
n tn %t In Tlt tn i": ln ﬁ‘ 123 ’:“L
1 [44.4 -1 104.4 -113.9 -{ 11.7 - | 134.2 -
2| 42.0 1.1 90.7 1.2|140 10| 11.8 1.0| 816 1.6
4] 254 1.7 8.9 1.2]123 1.1]103 1.1 504 2.7
6| 35.6 12| 824 113|124 11115 1.0| 61.0 2.2
{1333 13{ 8.3 1.2]13.0 1.1]13.1 09| 548 24

109

Table 6.19: Fast-merge timing percentages on distributed (py), serial (p,), and
communication (p.) subprocesses

PEs M7 M8 M9 MI0O Ml

Pd Ps Pc|{Pd Ps Pc|Pd Ps Pe| Pd Ps Pd Py Pe
94 5 1|8 6 6|8 5 8|8&% 5 82 5 13
57 14 29 (52 15 33|50 13 3762 11 49 13 38
38 16 46|35 18 47|38 16 46|36 13 34 15 5l
28 17 55126 19 55|27 16 57(25 13 26 16 H8
16 16 68|16 18 66116 15 69|15 13 16 17 67
12 16 72|12 18 70|12 15 T73{11 13 13 16 71

)
~

ir)

tw —
—_ =

~1 =
S~ =1

Pe

— -
(=2 I

—
[=> 30 SR o S > T~ N

Table 6.20: Best-merge timing percentages on distributed (p.), serial (p,), and
communication (p.) subprocesses

PEs M7 M8 M9 MI10 Ml
Péi Ps DPc|Pd Ps PelPd Ps Pc|Pd Ps P | P4 Ps_ P

258 41 1l65 28 792 4 4|92 3 5|20 79 |
4112 78 1032 55 13|45 29 26|46 12 42|10 88 2
61 4 91 5|36 44 20f41 33 26|27 16 57| 3 96 1
8 6 8 12| 7 73 20134 36 30|18 16 66| 2 98 0
12 5 77 18|10 38 52| 9 60 31|10 17 73| I 98 |1
16| 2 8 12| 7 50 43({14 45 41| 7 15 78| 0 99 1

ratio

110

Distributed timing on M7
700

(512x512)
T T T T T T T T
\ Fast-merge ——
600 - E Best-merge .—+-- _
\
\
500 ! -
] '~.
o 400 F ! A i
[#] 1 II \
E -k\ l, \‘\
E 0 N /N A
iR \\ II \\ g
\}’-, \§- e
200F F e » J
100 |+ -
0 LT ¢ 1%
0 2 4

6 8 10 12 14
processors

16

Figure 6.42: Distributed processing time on M7

Sequential/distributed timing ratio on M7
5

(512x512)
T T T T T T T T
Fast-merge —
4 b Best-merge —+--
3 F -
2 F -
1 -
0 | i 1 | 1 ! 1 |
0 2 4 6 8 10 12 14 16
processors

Figure 6.43: Distributed timing ratio on M7

(sec)

time

ratio

a7

Distributed timing on M3S7 (250x250)

50 T T T T

45 B e Fast-merge -— “

S RBoat ~merge ~k--
40 | AN -
\\\

35 = AN ,/* ~~~~~~~ -1
\\ - -~

30 = N ’/' -

\\\ ”/

25 ¥ .

20 ‘ -

15 | ' -

10 F \\L i
\g © —O

5 F - .
0] 1 I 1
0 2 4 6 R

processors

Figure 6.44: Distributed processing time on MS7

Sequential/distributed timing ratio on MS7 (256x256)

3 T T T T
2.5 F Fast-merge -0— -
Best-merge —+--
2 F "
/I+\\
1.5 = ,/, \\\\ -
_*‘/', \\’f' _______ +
1 -
0.5 F -
0 1 1]]
0 2 4 6 8
processors

Figure 6.45: Distributed timing ratio on MS7

P

43

Distritmted Fast-merge 4-PE timing by activities

90

HO

70

60

Figure 6.46: Distributed Fast-merge timing analysis

Distributed Best-merge 4-PE timing by activities

20

80

70

60

50

40

30

20

10

Figure 6.47: Distributed Best-merge timing analysis

T T T T T

Distributed Pd —

Serial Pg.=-=-

Communication Pg =----
.l P O : ;o
) 1 1 [[
[1 [[']
[[[[[
i [| | [
M7 M8 M9 M10 M1l

image

T LI T ¥ |

Distributed Pd — !
, Serial Pz ---- !
H Communication Pc ----- !
] [}
[} [}
[} [}
' [}
[} [}
1)
t 1
¢ [}
[} [}
[} [}
[} 1
[} [}
i [}
1 ' :
] . 1
! . |
[} * 1
! H 1
1 1 ¢ H 1
]] T, H 1
[} [} L] 1
[}] [. 1
| [' |
1 [H i
1 1, H]
[} . [.o 1
r . . [[I [}
[N [[1
[H [[|
b : | 1t i
M7 M8 M9 M10 M11

image

112

time

13

Distributed Fast-merae M7 timing by avtivit jes

time (%)

100 T T T T T T T T
Distributed Pl -0—
Serial P —+--
80 | Communication pe -B-- 4
60 -]
40 .
20 -
+
0 IT{
0 2 4 6 8 10 12 14 L6

processors

Figure 6.48: Distributed Fast-merge timing analysis on M7

Distributed Best-merge M7 timing by activities

(%)

100 T T T T T T T]
I+\\
e ‘\\ __-4'
| P4 s SO '__-— a
8 0 ;‘_' ~___+_—
!
7
[
,I
60 - / Distributed pl -0—
/ Serial Poo—t--
Communication po -B--
40 -
20 -
0

0 2 4 6 8 10 12 14 16
processors

Figure 6.49: Distributed Best-merge timing analysis on M7

Chapter 7

Conclusions and Future Work

In this study, we proposed a new region merging decision test called the Fast-
merge Adaptive criterion. Our region growing method, called the Fast Adaptive
Segmentation (FAS) algorithm, is a simple and general method that has proven
to be superior to the existing Best-merge Fixed Threshold algorithm. Through
theoretical analysis and empirical studies, we have shown that the FAS algorithm
is robust and produces high quality segmentations.

In terms of processing speed, regardless of image characteristics such as
region sizes, shapes and feature distributions, the FAS algorithm provides con-
sistently fast segmentations. In addition, the FAS algorithm is amenable to
parallelization. The shared memory SPMD implementation of the algorithm has
produced good timing performance.

114

115

We summarize the main contributions of this study as follows:

o Proposed a simple and effective adaptive homogencity test for region grow-
ing.
The proposed Adaptive homogeneity test based merge decision on feature
distributions of the merging regions. The performance of the Adaptive test
bas been proven to be superior to the widely used Fixed Threshold test.
[ts effectiveness is also substantiated by extensive experiments on grayscale
and textured images. The Adaptive test is simple, casy to apply, and cfhi-
cient to implement compared to existing methods that use fixed thresholds
or varying thresholds in their segmentation processes.

o Achieved consistent, fast sequential segmentations on a wide range of im-
ages.
We identified the performance buttleneck of the existing Best-merge selee-
tion policy, and proposed a new Fast-merge policy that not only drastically
improves on segmentation speed, but also helps to produce segmentations of
better quality. Moreover, experimental results showed that the processing
speed of our algorithm is not sensitive to image characteristics.

o Proposed an efficient parallel region growing algorithm
Due to the Fast-merge policy, our region growing algorithm results in a
segmentation process with a high degree of parallclism, and a well balanced
load among parallel processes.

o Provided detailed, comprehensive studies of merge eriteria and parallel re-
gion growing.
Although the segmentation problem has been studiced for decades, there
has not been a detailed study of region growing merge criteria. Studies
on adaptive segmentation have mostly been restricted to domain-specific
images. Also, existing experiments on parallel segmentation have provided
little insight into the timing performance and segmentation quality of their
algorithms.

e Provided a general region growing framework that is casy lo use and can b
easily adapted for specific applications.
The segmentation algorithm that we have proposed does not apply only to
specific types of images. It is a general segmentation framework which can
be adapted to different image applications. Unlike methods which require
the use of user-defined thresholds, there is no need for parameter tuning in
our algorithm.

A limitation of the FAS algorithm is the applicability of the Adaptive homo-
geneity test on very small regions. The Adaptive ranges for merging two regions
are determined from the regions’ feature histograms. On very small regions con-
taining very few feature values, reliable Adaptive ranges cannot be determined.
In our implementation, we use only the Fast-merge policy to merge regions to a
minimum size, then apply the nonparametric Mann-Whitney test [15] to merge
regions to another minimum size where the Adaptive test can be reliably em-
ployed. Another undesirable characteristic of the FAS algorithm is the order
dependency of its segmentation results. Different parallel executions on the same
image may result in slightly different segmentations due to the different merg-
ing orders adopted by the processes. In our study, however, such differences in
segmentation results have shown to be minute and insignificant.

In the course of this project, we have directly or indirectly come across
several related problems that worth further investigation. These problems are
listed as follows:

e Although image segmentation is usually performed at the low-level process-
ing stage where a priori knowledge about objects in a scene is not avail-
able, in certain applications, such as the inspection of X-ray images, some
domain-specific information is available before the segmentation process.
The incorporation of a priori knowledge in the region growing algorithm
can help to produce more accurate segmentations.

e In order to achieve a good control on the process, region growing has been
restricted to binary merges. If possible, multiple-region merges will likely
to improve on processing speed.

e We have performed a preliminary experiment on using multiple-features in
region growing. A more comprehensive study on multiple-feature merge
criterion will further generalize the application of our region growing algo-
rithm.

e The memory requirement of a region growing process is high. Therefore,
for the segmentation of a moderately sized image, the degree of paging
between memory hierarchy levels can severely degrade timing performance.
The paging problem may be alleviated by defining a suitable mapping from
a two-dimensional image to the linear memory address space, coordinated
with an appropriate merging order.

116

Appendix A

The Co-occurrence Texture

Measure

Due to its good discrimination power for many texture types, the co-occurrence
texture measure is widely used in segmentation implementations [10, 40, 55].
The use of spatial distribution and dependence of pixel gray-tone to measure
texture was first proposed by Julesz in 1962 [36]. Haralick et al. later extended
the idea to two-dimensional spatial dependence of gray-tones in a co-occurrence
matrix for each fixed distance and angular spatial relationship {29, 26]. In a
recent study, Ohanian and Dubes [46] demonstrated that co-occurrence features
are more effective than Gabor filters, Markov Random Field, and Fractal features
for the classification of natural textures such as those from the Brodatz album [4].
Other performance comparisons of co-occurrence and other texture features can
be found in [21, 58].

We now give the definition of the co-occurrence matrix [26]. Bach entry
p(,7) in a matrix P;y denotes the number of pixel pairs with gray-tone 2, =
0,..,m — 1, separated at a spatial distance d at angle 0. A set of fourteen
textural features based on visual textural characteristics, statistics, information
theory and information measures of correlation are then derived from matrices
with various d and 8 values.

Let p'(i,7) = +p(i,7) be an entry of the normalized co-occurrence matrix,

117

where M = 05! "LO‘ p(z,7) is the normalization constant. Definitions of the

features used in this study are given below.

e Angular second-moment

m-1m-1
=23 > (G (A.1)
=0 3=0
e Contrast
m-— m-1m-1
f2= Zn (> Z i - j| = mn. (A.2)
n=0 1=0 ;=0
e Correlation el el - s gre s
f3 — 1=0 j=0 yp (21.7) - :u’r/l!l, (A3)
OOy

where gz, iy, 0z, and o, are the means and standard deviations of the
marginal distributions associated with p'(z, 7).

Inverse difference moment

m—1m-1

fa=5 S (1 +GE-5)%7") (A.4)

i=0 ;=0

Entropy

m-1m~1

f5="3 3 p(,7)log(p'(i,4))- (A.5)

1=0 j=0

The textured images used in the experiments of this project are generated
from the Brodatz texture album. The original images have 256 grayscale levels.
We quantize them to 8 levels before computing a co-occurrence matrix from each
non-overlapping window of size 8 x 8 or 16 x 16 pixels. Horizontal, vertical,
diagonal (0 € {0,45,90,135,180,225,270,315}) distance-1 (d = 1) neighbors
were used in our experiments.

118

Appendix B

Normality Test on Texture

Features

To substantiate the normal feature distribution assumption made in the homo-
geneity test analysis (Section 3.3), we perform the Shapiro-Wilk test for normality
on texture features computed from a set of natural textures.

The Shapiro-Wilk test [57] is a sensitive goodness-of-fit test for normality.
Some empirical studies [15] indicate that this test has good power in many sit-
uations when compared with many other tests of the composite hypothesis of
normality, including the Lilliefors test and the chi-square test.

The data used in the Shapiro-Wilk test consists of a random sample {ay, 2, ..., 2}
of size n associated with some unknown distribution function F'(x).

The test hypotheses are defined as follows:
Hy : F(z) is a normal distribution function with unspecificd mean and variance.
H, : F(z) is non normal.

The following procedure is used to compute the test statistic W:

1. Order the observations to obtain an ordered sample) <y, < ... < Y.

2. Compute S? =31 (y;i—§)* =&, (zi — &)

119

3. Compute b= X" ai(yiy1 — ¥i).
The a;’s are coeflicients given in a table.

4. Compute W = h?/S%

The decision rule of the test is to reject Ho at the level of significance « if
W is less than the o quantile given in a table. For the a; and W tables and other
details of this test, please refer to [15] and [57].

A total of one hundred Shapiro-Wilk tests on texture features were per-
formed; we examined five features on each of twenty textures from the Brodatz
album [4]. The features tested are the co-occurrence energy, entropy, contrast,
angular second-moment, and correlation (see Appendix A and [46]). In each test,
fifty non-adjacent 16x16 pixel blocks are used to compute the feature measures.
Since the objective of the normality test is to verify the “shape” of the distri-
bution without the interference of noise in the texture data, these fifty values
were ordered and a few outliers from each end of the sequence were excluded
before the statistic W is computed. Table B.21 gives the number of rejections on
cach feature at two levels of significance. Each entry in the table is the result of
twenty tests on the same feature from the different textures. We present two sets
of results ~with three and five outliers removed from each end of a sorted list of
50 values, leaving 44 and 40 samples for each test.

Table B.21: Shapiro-Wilk test results on texture features

Feature Number of rejections™

44 samples 40 samples

a=5% a=10%|a=5% a=10%

inergy 0 1 0 0
Entropy 10 12 5 6
Contrast 0 0 0 0
Angular second-moment 2 2 2 2
Correlation 0 0 0 0

* Each column contains results of 100 tests.

From the test results, we conclude that among the five features tested, only
the entropy feature has considerable high rejection rates. We also deduce that
many of the rejected entropy distributions failed the test due to irregularities
or noise in the textures rather than the “shape” of the distributions, since by
increasing the number of excluded outliers, the nuinber of rejections is reduced
drastically.

Appendix C

Lemmas and Proofs

The following are the proofs of the leminas given in Chapter 3:

Lemma 3.1 (Shift)

Pn(u,0,u,v) = Py(p — a,0,u— a,v—a),

Proof.

PN(#,O‘,U,U)

1 v (zmw?
/ e~ 2 dx
oVir Ju
1 v=—-a (+u—A2
/ e 2% dy,
o2t Ju—a
1 v=—-a —(p—a))?
/ ¢ 27 dy
u—a

o\lr

Pyn(p —a,0,u—a,v —a).

Lemma 3.2 (Halves)
PN([L,O‘,}I. —4p+ E) = 2PN(/‘9”7/‘»//' + f) = 2Pn(0,5,0,7).

Proof.

PN(”707N_£1I"'+€) =

1 4t

a\2n Ju-¢

12]

(== 2
¢ 202 dr

«a € R

r=y+ua,

dr = dy,

C}

l 1 T 2 14+f .r—u2
(/I c'(—zfﬁ‘de-i-/l ('Lm)—dr)
avi2r n—"F 1

’)N(/La g, i 63 /L) + P."’(/‘s gy i+ /)
Pn(0,0,—¢,0) + Pn(0,0,0,¢)

1 0 2
/2 e 22dx + Pn(0,0,0,()

o\2w
1 -£ 22
- / e~ dz + Py(0,5,0,()
ovV2r Jo
1
- oVirw

= 2Py(0,0,0,0).

=
nz
=

i

¢ w2
[et dy + Pu(0,0,0.0
1] R

Lemma 3.3 (Negation)
Pn(pyo,—0,8) = Py(—p,0,-4,0).

Proof.

w
—
—

Pn(0,0, =€ — 1,0 —)

Pn(0,0,—C+ p, 0+ 1)

1 £4p _ a2
e 22 dr

l)N([l,O', —fv (])
I)N(—/lﬂ g, —{s f)

= .~
e e
z
=

oV2r J-t4u

S
- e 22 dy, =—z, dy=—dz,
oV '/l’—u Y y Y

1 F—ut 2
= e_%’dy
oV2r J-t-u
= Py(0,0,—0—p,l— p).

Lemma 3.4 (Conversion to Standard Normal)

£ def o ¢
Px(0,0,0,0) = Py(0,1,0,~) ¥ 5(=).
g o
Proof.
1 €)
Px(0,0.0.6) = /(‘_z_a,df
o\2x Jo

tfa n'v\2
= / e - ady, ro= oy,

a\/27r

¢fo
— €
|

= PN(O,l,O.,"/G').

-2

Lemma 3.5 (Conversion to Exponential)

Pn(p,uo,—vl,vl) =

Proof.

Pn(p,uo,

ul—
721.“7

dr = ady.

ot [
\/— 2lua ﬁ

=

Definition C.1 (Exponential Function)

f(z) = e, z €R.

We state without proof the following properties of f(x):

P,

-~ L

NSy O

. f(z) is continuous for —oo < x < oo.

f(z) > 0 for —oo < & < 0.
Mmoo f(z) = limge oo f(z) = 0.
. f(z) < f(0) =1 for any xz # 0.

S
f
it

T

:l'

)
)
)=

z) is monotonously increasing over z € (—oc,0).

is monotonously decreasing over z € (0,0c).

f(=z) for —xc <z < o0,

ﬁuo

—vl,vl) = e 2(ua)
uo 77r -t
e (Fer !

= (l;l‘

\/— —vf ud\/:j

t=pn

1 75v ;L; R r—
- = ay, y= -

NS uo\2

._,,d def 1 Lp. —vl—qp ol —p
"V2uo)

0l

Lemma 3.6

Pn(0,Z,0,8) > Py(0,0,0,), n> 1.
n
Proof.
0,200 & Lpo, 2y L /%;e':zdm
Nanaa _\/T_FAE,\/id—\/TTO .
: Bs 1. 14 1 /7;'; g2
Pn(0,0,0,0) =" —Pg(0,—=)=—4 dx.
N(yava) \/7_('E(’\/:2_0') \/7?0 € T
Therefore,
nl £
n> 1.

>
V20 V2o’
nt 4
= /72'; e Tdr > /72-; e"zzda:,
0 0

= Py(0,2,0,6) > Pn(0,0,0,8).
n

O
Lemma 3.7
If oy>0, and Pn(0,01,0,¢;)= Pn(0,02,0,€;), then & >4,
Proof.
If oy >0, by Lemma3.6 Py(0,02,0,¢) > Pn(0,01,0,6).
= PN(0,0'Q,O,[l) > PN(0a021an2)
=6 > 0,. 0

Lemma 3.8
Fg(a,d) > Pg(b,c) if a<b<c<d.

Proof.

\ 4 —z? .
Pg(a,d) — Pg(b,c) = /e a’;z:—/b e " dx

b 2 d 2
/ e dx +/ e~ dx by Def. C.1.1, C.1.2,
> 0.

Lemma 3.9
Pg(a,b) < Pg(c,d) if a<b<e<d<0, d=¢>b-a.

Proof.

Let c<e<d suchthat d—e=0b-a.

From Def. C.1.1, C.1.5, and sincea < b < ¢ < d <0 wehave ['e™de < [4e="
d 2 . b 2
Pa(c,d) — Ps(a,b) = / e~ dir — / ¢ de

h 2
/ —xd.r+/ ’dr—/ e dr

[3
> / e~ dr > 0.
c

i

O
Lemma 3.10
Pg(a,b) < Pg(c,d) if a<b<0, ¢c<0<d, d=c2b—u.
Proof.
Let e<c¢ suchthat d=c—e, ie.0—e=d—c
d 0
Pi(c,d) — Pg(e,0) = / e~ dg — / e~ dx
4 0

= (/ —zd.’l:-i—/ e™* (l.z: / ~”(lt'-{—/ e dr)

= /—d == dx —/e e~ dz by Def. C.1.7,

> 0 by Del. G156, d=c~c.
By Lemma 3.9, Pg(e,0) > Pg(a,b) = Pg(c,d) > Pe(a,b). 0

Lemma 3.11
Pg(a,b) < Pg(c,d) if a<b<O<ce<d, |b|>]cf, d=c2b—ua.
Proof.

By Def. C.1.7, Pg(c,d) = Pe(—d,—c).

We have a < b< 0, —d< —c<0, b< —c,
By Lemma 3.9, Pr(—d,—c) > Pg(a,b).

= Pr(e,d) > Pg(a,b).

d—c>b—a.

Appendix D

More Images and Segmentations

A set of five 512 x 512 images, which represents different domains of natural
scences, were selected for our timing experiments on the TC2000 and the dis-
tributed SPARC workstation network described in Chapter 5 and Section 6.4.3
of Chapter 6, respectively. These images, M7 to M11, are given in Figures 1).50
to D.54. They are natural 256-level grayscale images of a portrait (M7), the
moon’s surface (M8), a chest X-ray (M9), an urban acrial view (M10), and text
(M11). Pixel intensity is the only feature used in the segmentations of these
images. The FAS and BFS segmentation results on this set of images are given
in Figures D.50 to D.54. The BFS segmentations reported are the most satisfac-
tory results among segmentations obtained by invoking the BFS process using
different thresholds.

127

128

(a) Image M7

(b) FAS segmentation of M7 (c) BFS segmentation of M7

Figure D.50: M7 and segmentations

(b) FAS segmentation of M8 (c) BFS segmentation of M8

Figure D.51: M8 and segmentations

130

i1 6l6

LA 4w

(b) FAS segmentation of M9 (c) BFS segmentation of M9

Figure D.52: M9 and segmentations

131

e

SRz
KIS

-

o~

(b) FAS segmentation of M10 (c) BFS segmentation of M10

Figure D.53: M10 and segmentations

(a) Image M11

Mity, Othep stacdard edarts,
Iz2d for curlily mrarupemsnis,

A S
Lo lEd, freeese
{

f
%

/S
’ S Eell s
"o A ST
(

fj

(b) FAS segmentation of M11

(c) BFS segmentation of M11

Figure D.54: M1l and segmentations

(a) Image M23, the author

(b) FAS segmentation of M23

Figure D.55:

(c) BFS segmentation of M23

M23 and segmentations

133

Bibliography

[1] Aggarwal, R. K., and Bacus, J. W. A multi-spectral approach for scene
analysis of cervical cytology smears. J. Histochem. Cytochem., 25:668-680,
1977.

[2] Almasi, G. S., and Gottlieb, A. Highly parallel computing. Ben-
jamin/Cummings, 1989.

(3] BBN Advanced Computers Inc. Inside the TC2000 computer. BBN Refer-
ence manual, 1990.

[4] Brodatz, P. Teztures. Reinhold, NewYork, 1968.

(5] Brooks III, E. D., Gorda, B. C., and Warren, K. W. The parallel C prepro-
cessor. The 1992 MPCI Yearly Report: Harnessing the Killer Micros, pages
58-68, 1992.

[6] Burt, P. J., and Rosenfeld, A. Segmentation and estimation of image re-
gion properties through cooperative hierarchical computation. /EEE Trans.
Systems Man Cybernet., 11(12):802-809, December 1981.

Cahn, R. L., Poulsen, R. S., 2and Toussaint, G. Segmentation of cervical cell
images. J. Histochem. Cytochem., 25:681-688, 1977.

[

=1

[8] Chellappa, R.. and Rosenfeld, A. Computer vision: attitudes, barriers, coun-
seling. Proc. Vision Interface, pages 1-7, 1992.

[9] Chen, M.-H., and Pavlidis, H. Image seaming for segmentation on paral-
lel architecture. IEEE Trans. Pattern Analy. Mach. Intell., 12(6):588-594,
1990.

[10] Chen, P. C., and Pavlidis, T. Segmentation by texture using a coocurrence
matrix and a split-and-merge algorithm. Comput. Graphics Image Process.,
10:172-182, 1979.

134

[11]

12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Chen, P. C., and Pavlidis, T. Image segmentation as an estimation problem,
Comput. Graphics Image Process., 12:153--172, 1980.

Chen, S-Y, Lin, W-C, and Chen, C-T. Split-and-merge image segmentation
based on localized feature analysis and statistical tesis. Comput. Vision
Graphics Image Process., 53:457-475, 1991,

Cohen, F. ., and Cooper A. B. Simple parallel hierarchical and relaxation
algorithms for segmenting noucausal Markovian random fields. [EFE Trans.
Pattern Anal. Machine Intell., 9(2):195-219, March 1987.

Coleman, G. B., and Andrews, H. C. Image segmentation by clustering.
Proc. IEEE, pages T73-785, 1979.

Conover, W. J. Practical nonparametric statistics. John Wiley & Sons, 1980,

Coray, G., Noetzel, A., and Se'kow, S. M. Order independence in local
clustering algorithms. Comput. Graphics Image Process., 4:120-132, 1975,

Cross, G. R., and Jain, A. K. Markov random field texture models. 1L
Trans. Pattern Anal. Machine Intell., 5(1):25-39, January 1983.

Cypher, R., and Sanz, J. L. C. SIMD achitectures and algorithms for image
processing. I[EEE Trans. Acoustics, Speech and Signal Proc., 37:2158 2173,
1989.

DeGroot, M. H. Probability and statistics. Addison-Wesley, 1986.

Derin, H., and Elliott, H. Modeling and segmentation of noisy and textured
images using gibbs random fields. IEEE Trans. Pattern Anal. Machine In-
tell., 9(1):39-55, January 1987.

Du Buf, J. M. H., Kardan M., and Spann, M. Texture feature performance
for image segmentation. Pattern Recognition, 23(3/4):291-309, 1990.

Dubes, R. C., Jain, A. K., Nadabar, S. G., and Chen, C. C. MRF model-
based algorithms for image segmentation. Proc. ICPR, pages 808 814, 1990,

Fu, K. S., and Mui, J. K. A survey on image segmentation. Pallern Recog-
nition, 13:3-16, 1981.

Gorda, B. C., and Brooks III, E. D. The MPCI gang scheduler. The 1991
MPCI Yearly Report: The Attack of the Killer Micros, pages 183 187, 1991,

[25)

(30
31
[32)
53]

[34]

[36]

[37]

(38]

Gorda, B. €., Warren, K. W, and Brooks IIl, E. D. Programming in PCP.
Technical Report UCRL-MA107029, Lawrence Livermore National Labora-

tory, 1991.

Haralick, R. M. Statistical and structural approaches ‘to texture. Proc.
ILEE, 67(5):786-804, May 1979.

Haralick, R. M. Edge and region analysis for digital image data. Comput.
Vision Graphics Image Process., 12:60-73, 1980.

Haralick, R. M., and Shapiro, L. G. Image segmentation techniques. Com-
put. Vision Graphics Image Process., 29(1):100-132, January 1985.

Haralick, R. M., Shanmugam K., and Dinstein 1. Textural features for image
classification. IEEE Trans. Systems Man Cybernet., 3(6):610-621, Novem-
ber 1973.

Harlow, C. A., and Eisenbeis, S. A. The analysis of radiographic images.
IEELE Trans. Computers, C-22:678-688, 1973.

Horowitz, S. L., and Pavlidis, T. A graph-theoretic approach to picture
processing. Comput. Graphics Image Process., 7:282-291, 1978.

Huang, J. S., and Tseng, D. H. Statistical theory of edge detection. Comput.
Vision Graphics Image Process., 43(3):337-346, 1988.

Hwang, K., and Briggs, F. A. Computer architecture and parallel processing.
McGraw Hill, New York, 1984.

Jain, A. K., and Dubes, R. C. Algorithms for clustering data. Prentice Hall,
1988.

Ji, L. Intelligent splitting in the chromosome domain. Pattern Recognition,
22(5):519-532, 1989.

Julesz B, Visual pattern discrimination. [RE Trans. Inform. Theory,
8(2):814-92, February 1962.

Keller, J. M., Chen, S., and Crownover, R. M. Texture description and
segmentation through fractal geometry. Comput. Vision Graphics Image
Process., 45(2):150-166, February 1989.

Lakshmanan, S., and Derin, H. Simultaneous parameter estimation and
segmentation of gibbs random fields using simulated annealing. IEEE Trans.
Pattern Anal. Machine Intell., 11(8):799-813, August 1989.

136

[39]

[40]

[41]

[42]

[43]

[44]

[46]

[47]

[48]

[49]

[50]

Larsen, R. J., and Marx, M. L. An introduction to mathematical statistics
and its applications. Prentice Hall, 1981.

Lee, H. S., Hodgson, R. M., and Wood, E. J. Texture measures for carpet
wear assessment. [EEE Trans. Pattern Anal. Mach. Intell., 10(1):92 105,
January 1988.

Lee, S. U., Chung, S. Y., and Park, R. H. A comparative performance study
of several global thresholding techniques for segmentation. Comput. Vision
Graphics Image Process., 52(2):171-190, 1990.

Little, J. J., Blelloch, G. E., and Cass, T. A. Algorithmic techniques for
computer vision on a fine-grained paralle! machine. IEEE Trans. Paltern
Anal. Mach. Intell., 11(3):244-257, Marcl: 1989.

Muerle, J. L., and Allen, D. C. Experimental evaluation of techniques for
automatic segmentation of objects in a complex scene. Pictorial Pallern
Recognition, pages 3-13, 1968.

Mui, J. K., Bacus, J. W., and Fu, K. S. A scene segmentation technique for
microscopic cell images. Proc. Symp. Computer Aided Diagnosis of Medical
Images, 76 CH1170-0C:99~106, 1976.

Narayanan, P. J. Effective use of SIMD machines for image analysis. Tech-
nical Report CAR-TR-635/CS-TR-2945, Center for Automation Rescarch,
Univ. of Maryland, August 1992.

Ohanian, P. P., and Dubes, R. C. Performance evaluation for four classes of
textural features. Pattern Recognition, 25(8):819-833, 1992.

Ohlander, R., Price, K., and Reddy, D. R. Picture segmentation ns::.,.
recursive region splitting method. Comput. Graphics Image Process., 5:31..
333, 1978.

Perry, A., and Lowe, D. G. Segmentation of textured images. Proc. CVER,
pages 319-325, 1989.

Pietikainen, M., and Rosenfeld, A. Image segmentation by texture using
pyramid node linking. [EEE Trans. Systems Man Cybernet., 11{(12):822:
825, December 1981.

Raafat, H. M., and Wong, A. K. C. Textured-based image segmentation.
Proc. CVPR, pages 1-7, 1986.

137

(51)

[52]

(59

(56]

57)
/58]
&
(60}

[61]

[62]

[63]

Reddaway, S. F., and Kruskal, C. P. A distributed array processor. F'irst
Annual Symposiuin on Computcr Achitecture, pages 61-65, 1973.

Robertson, T. V., Swain, P. H., and Fu, K. S. Multispectral image partition-
ing. Technical Report TR-EE 73-26, School of Engineering, Purdue Univ.,
Angust 1973,

Rushton, A. Reconfigurable processor array: a bit-sliced parallel computer.
MIT Press, Cambridge, MA, 1989.

Sahoo, P. K., Soltani, S., Wong, A. K. C., Chen, Y. C. A survey of thresh-
olding techniques. Comput. Vision Graphics Image Process., 41:233-260,

1988.

Sanz, J. L. C. Computing image texture features in parallel computers.
Proc. IEEE, 76(3):292-294, March 1988.

Schoenmakers, R. P. H. M., Wilkinson, G. G., and Schouten, T. E. Segmen-
tation of remotely-sensed images: a re-definition for operational applications.
International Geoscience and Remote Sensing Symposium, pages 1087-1090,
1991.

Shapiro, S. S., and Wilk, M. R. An analysis of variance test for normality.
Biometrika, 52(3 & 4):591-611, 1965.

Shen, H. C., and Bie, C. Y. C. Feature frequency matrixes as texture image
representation. Pattern Recognition Letters, 13:195-205, 1992.

Shi, H., and Schaeffer, J. Parallel sorting by regular sampling. J. Parallel
Distrib. Comput., 14(4):361-372, 1992.

Stone, H. S. High-performance computer architecture. Addison-Wesley,
1990.

Swain, P. H., and Fu, K. S. On the applications of nonparametric techniques
Lo crop classification problems. National Electronics Conf. Proc., 24:14-19,
1968.

Taylor, R. W., Savini, M., and Reeves, A. P. Fast segmentation of range im-
agery into planar regions. Comput. Vision Graphics Image Process., 45:42-
60, 1989.

Tilton, J. C., and Cox, S. C. Segmentation of remotely sensed data using
parallel region growing. 9th Int. Sym. on Machine Processing of Remotely
Sensed Data, pages 130-137, 1983.

139

(64] Tsuji, S, and Tomita, F. A structural analyzer for a class of textures, Com-
put. Graphics Image Process., 2:216-231, 1973. :

[65] Van Ryzin, J. Classification and clustering. Academic press, 1977,

(66]) Weszka, J. S. A survey of threshold selection techniquué. Comput. Vision
Graphics Image Process., 9:259-265, 1978.

[67] Willebeek-LeMair, M., and Reeves, A. P. Solving nonuniform problems
on SIMD computers: case study on region growing. J. Parallel and Dist.
Computing, 8:135-149, 1990.

[68] Wolf, G. Use of global information and a priori knowledge for segmentation
of objects: algorithms and applications. Biomedical Inage Processing and
Three-Dimensional Microscopy, SPIE 1660, pt. 1:397-408, 1992,

[69] Yokoya, N., and Levine, M. D. Range image segmentation based on dif-
ferential geometry: a hybrid approach. IEEE Trans. Pattern Analy. Mach.
Intell., 11(6):643-649, 1989.

[70] Zucker, S. W. Survey, region growing: childhood and adolescence. Comput.
Graphics Image Process., 5:382-399, 1976.

