
University of Alberta 
 
 
 

Testing the Internet State Management Mechanism 

 
by 

 
Andrew F. Tappenden 

 
 
 
 

A thesis submitted to the Faculty of Graduate Studies and Research  
in partial fulfillment of the requirements for the degree of  

 
 

Doctor of Philosophy 

in 

Software Engineering and Intelligent Systems 
 
 
 
 

Department of Electrical and Computer Engineering 
 
 
 
 
 

©Andrew F. Tappenden 

Spring 2010 
Edmonton, Alberta 

 

 
 
 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of 

this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. 
Where the thesis is converted to, or otherwise made available in digital form, the University of 

Alberta will advise potential users of the thesis of these terms. 
 

The author reserves all other publication and other rights in association with the copyright in the 
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof 

may be printed or otherwise reproduced in any material form whatsoever without the author's prior 
written permission. 

 



 
 
Examining Committee 
 
 
James Miller, Electrical and Computer Engineering 
 
 
Vicky Zhao, Electrical and Computer Engineering 
 
 
Mrinal Mandal, Electrical and Computer Engineering 
 
 
Eleni Stroulia, Computer Science 
 
 
Frank Maurer, Computer Science, University of Calgary 
 
 
 



 

 

Abstract 
This thesis presents an extensive survey of 100,000 websites as the basis 

for understanding the deployment of cookies across the Internet.  The 

survey indicates cookie deployment on the Internet is approaching 

universal levels.  The survey identifies the presence of P3P policies and 

dynamic web technologies as major predictors of cookie usage, and a 

number of significant relationships are established between the origin of 

the web application and cookie deployment.  Large associations are 

identified between third-party persistent cookie usage and a country’s e-

business environment. 

Cookie collection testing (CCT), a strategy for testing web 

applications, is presented.  Cookies maintained in a browser are explored 

in light of anti random testing techniques, culminating in the definition of 

seeding vectors as the basis for a scalable test suite.  Essentially CCT seeks 

to verify web application robustness against the modification—intentional 

or otherwise—of an application's internal state variables.  Automation of 

CCT is outlined through the definition of test oracles and evaluation 

criterion. 

Evolutionary adaptive random (eAR) testing is proposed for 

application to the cookie collection testing strategy.  A simulation study is 

undertaken to evaluate eAR against the current state-of-the-art in adaptive 

random testing—fixed size candidate set, restricted random testing, quasi-



 

 

random testing, and random testing.  eAR is demonstrated to be superior 

to the other techniques for block pattern simulations.  For fault patterns of 

increased complexity, eAR is shown to be comparable to the other 

methods.   

An empirical investigation of CCT is undertaken.  CCT is 

demonstrated to reveal defects within web applications, and is found to 

have a substantial fault-triggering rate.  Furthermore, CCT is 

demonstrated to interact with the underlying application, not just the 

technological platform upon which an application is implemented.  Both 

seeding and generated vectors are found to be useful in triggering defects.  

A synergetic relationship is found to exist between the seeding and 

generated vectors with respect to distinct fault detection.  Finally, a large 

significant relationship is established between structural and content 

similarity measures of web application responses, with a composite of the 

two similarity measures observed to be superior in the detection of faults.  

 



 

 

Acknowledgments 
Dr. James Miller is to be commended for his support as a teacher, 

supervisor, mentor, and friend.  His patience and guidance were pivotal in 

the development and construction of my dissertation, and without his 

support this work would not have been possible.  He is an excellent 

supervisor and even better on the squash court—where I have yet to best 

him.  For all these things I will always be grateful—thanks James. 

Without question Kristen Tappenden requires commendation for 

her contributions to this work.  As my de facto editor she has graciously 

provided countless hours of tedious work primping and polishing my 

manuscripts.  More than just a pretty face and a key eye for grammatical 

errors, she has given me the emotional support and guidance which only a 

partner can provide, and I am a better man for it. 

To my supportive parents, Alan and Connie Tappenden, I would 

like to acknowledge the decades of encouragement and belief in my ability.  

It is because of you that I have had the opportunity to pursue higher 

education, and for this I very am grateful.  I would also like to extent my 

gratitude to the Tappenden and Gruber families for their support and 

encouragement. 

Funding for this research was provided by the Natural Sciences and 

Engineering Research Council (NSERC) of Canada and iCORE.  The 

Department of Electrical and Computer Engineering at the University of 

Alberta is to be acknowledged for the numerous teaching opportunities 

provided during the tenure of my research. 

 



 

 

Table of Contents 

Chapter 1: Introduction .................................................................................1 

1.1 Thesis Contributions ......................................................................................... 3 
1.2 Thesis Outline ................................................................................................... 3 

Chapter 2: An Overview of Cookies, Web Application Testing, and Adaptive 

Random Testing............................................................................................ 5 

2.1 Cookies: Defining the HTTP State Mechanism................................................... 6 
2.2 Current Internet Surveys .................................................................................13 
2.3 Current Web Testing Strategies ...................................................................... 14 
2.4 Anti and Adaptive Random Testing..................................................................17 
2.5 Motivations for Research.................................................................................21 

Chapter 3: Cookies: A Deployment Study.................................................... 23 

3.1 Study Methodology.......................................................................................... 23 
3.1.1 Site Selection...................................................................................................................... 23 
3.1.2 Firefox Extension ..............................................................................................................24 
3.1.3 Study Implementation ...................................................................................................... 25 

3.2 Discussion of Results ...................................................................................... 25 
3.2.1 Success Rates..................................................................................................................... 25 
3.2.2 Number of Sites Using Cookies ........................................................................................26 
3.2.3 An In-Depth Look at the Number of Cookies per Site ..................................................... 27 
3.2.4 Cookie Usage vs. the Identification of Dynamic Web Technologies................................30 
3.2.5 Rank vs. Cookie Usage ...................................................................................................... 32 
3.2.6 Number of Cookies per Site .............................................................................................. 33 
3.2.7 Third-Party Cookies .......................................................................................................... 35 
3.2.8 Cookie Lifespan.................................................................................................................38 
3.2.9 Online Tracking & Web Bugs............................................................................................ 45 
3.2.10 P3P Policy Adoption and Cookie Usage .........................................................................46 

3.3 Real World Cookie Deployment .......................................................................51 
3.3.1 Case Study: Cookie Deployment Within a Single Site .......................................................51 

3.3.1.1 Third-Party Cookies: Web Bugs & Embedded Third-Party JavaScript ...................................... 52 
3.3.1.2 First-Party Cookies & the JSP Session Token............................................................................. 54 
3.3.1.3 Cookie Theft Testing: Knowing the Security Risks..................................................................... 58 
3.3.1.4 First-Party Surrogates & Third-Party Analytics ......................................................................... 59 

3.3.2 Error, Fault, Failure: Examples of Incorrect Cookie Assumptions ................................. 61 
3.3.3 Case Study: A Simple eBay Bidding Scenario ..................................................................66 

3.4 Summary of Results and Key Findings............................................................ 70 



 

 

Chapter 4: Cookie Usage Amongst Nations ..................................................72 

4.1 Survey Methodology........................................................................................ 73 
4.1.1 Research Questions ........................................................................................................... 73 
4.1.2 Resolution of Geographic Location................................................................................... 74 
4.1.3 Analysis Tools & Statistical Tests...................................................................................... 75 

4.2 Global Cookie Usage ........................................................................................77 
4.2.1 Number of Sites Surveyed per Country ............................................................................ 78 
4.2.2 Cookie Usage Within Each Country ................................................................................. 78 

4.3 Commercial Off The Shelf Cookie Deployment ............................................... 86 
4.3.1 Dynamic Web Application Frameworks ...........................................................................86 
4.3.2 Online Tracking & Advertising Technologies...................................................................92 
4.3.3 Web Analytics: Third-Party Internal Site Tracking Technologies...................................98 

4.4 Cookies: A Proxy for a Country's E-Readiness?..............................................101 
4.5 Summary of Results and Key Findings.......................................................... 104 

Chapter 5: Testing Web Applications With Respect to Cookies ..................105 

5.1 Testing Cookies: Input-Space Explosion........................................................ 106 
5.2 Cookie Testing Recommendations ................................................................ 108 
5.3 Cookie Collection Testing............................................................................... 111 
5.4 Automated Cookie Collection Testing ............................................................ 118 

5.4.1 Test Case Definition .........................................................................................................118 
5.4.2 Automated Test Oracles.................................................................................................. 120 
5.4.3 The Tree, Context & Composite Similarity Coefficients..................................................121 

5.4.3.1 The Tree Similarity Coefficient .................................................................................................. 121 
5.4.3.2 The Context Similarity Coefficient.............................................................................................123 
5.4.3.3 The Composite Similarity Coefficient ........................................................................................124 

5.5 Summary .......................................................................................................125 

Chapter 6: Evolutionary Adaptive Random Testing ................................... 127 

6.1 Evolutionary Adaptive Random Testing .........................................................129 
6.1.1 Genetic Algorithms .......................................................................................................... 129 
6.1.2 Genetic Algorithms & Software Testing...........................................................................131 
6.1.3 Evolutionary ART Definition ...........................................................................................131 
6.1.4 Evolutionary ART Runtime............................................................................................. 133 

6.2 Simulation Study ...........................................................................................134 
6.2.1 Research Questions ......................................................................................................... 134 
6.2.2 Experimental Design ...................................................................................................... 134 
6.2.3 Effectiveness Measure .................................................................................................... 136 
6.2.4 User-Perceived Latency Estimation ............................................................................... 138 
6.2.5 Analysis Tools ................................................................................................................. 139 

6.3 Experimental Results, and Discussion........................................................... 141 
6.3.1 Worst-Case Effectiveness .................................................................................................141 



 

 

6.3.2 Formal Analysis: ANOVA, Games-Howell, and Effect Size ........................................... 143 
6.3.3 Block Pattern Simulation Results................................................................................... 145 
6.3.4 Strip Pattern Simulation Results.................................................................................... 150 
6.3.5 Point Pattern Simulation Results ....................................................................................153 
6.3.6 Empirical Runtime Results..............................................................................................155 

6.4 Evolutionary Adaptive Random Testing and Cookie Collection Testing ......... 157 
6.4.1 Evolutionary Adaptive Random Testing Definition ....................................................... 159 

6.5 Summary of Results and Key Findings.......................................................... 160 

Chapter 7: Cookie Collection Testing: An Empirical Evaluation ................. 161 

7.1 Evaluation Methodology.................................................................................162 
7.1.1 Research Questions.......................................................................................................... 162 
7.1.2 Experimental Design ....................................................................................................... 162 
7.1.3 Test Application Selection............................................................................................... 163 
7.1.4 Analysis Tools .................................................................................................................. 164 

7.2 Experimental Results and Discussion ........................................................... 166 
7.2.1 Initial Findings – A Comparative Analysis ..................................................................... 166 
7.2.2 Tree vs. Context Similarity............................................................................................... 171 
7.2.3 The Pass/Fail Experiment: An ROC Evaluation .............................................................177 
7.2.4 Testing Results: Seeds and Generated Testing Vectors ................................................. 185 
7.2.5 Distinct Defects — A Proxy for Defect Identification ..................................................... 188 

7.3 Summary of Results and Key Findings ........................................................... 191 

Chapter 8: Conclusions and Recommendations.........................................194 

8.1 Summary of Key Contributions by Chapter ................................................... 194 
8.1.1 A Precise Cookie Definition............................................................................................. 194 
8.1.2 Cookie Deployment Survey............................................................................................. 194 
8.1.3 Cookie Usage Amongst Nations...................................................................................... 195 
8.1.4 Cookie Collection Testing................................................................................................ 196 
8.1.5 Evolutionary Adaptive Random Testing......................................................................... 196 
8.1.6 Empirical Evaluations......................................................................................................197 

8.2 Recommendations for Future Research ....................................................... 198 
8.2.1 Testing Web Applications ............................................................................................... 198 
8.2.2 Adaptive Random Testing ............................................................................................. 200 

Bibliography ............................................................................................. 202 

Appendix: A National Cookie Usage........................................................... 217 

Appendix B: CookieCruncher: Cookie Collection Test Harness..................223 

B.1 Cookie Collection Testing: The Manual Process ............................................ 224 
B.1.1 Test Case Definition ........................................................................................................224 



 

 

B.1.2 Test Input Generation..................................................................................................... 225 
B.1.3 Test Execution.................................................................................................................226 
B.1.4 Test Evaluation ............................................................................................................... 227 

B.2 CookieCruncher: An Automated Cookie Collection Testing Tool .................. 227 
B.2.1 CookieCruncher: An Overview of Basic Functionality ...................................................228 

B.3 Instrumented Browsing ............................................................................... 229 
B.4 Test Input Generation ...................................................................................231 

B.4.1 Browsing Report Analysis...............................................................................................232 
B.4.2 Generation of Seeding Vectors .......................................................................................232 
B.4.3 Evolutionary Adaptive Random Testing........................................................................ 233 

B.5 Test Execution & Evaluation ......................................................................... 233 
B.5.1 Testing Oracles................................................................................................................234 
B.5.2 The Tree, Context, and Composite Similarity Metrics................................................... 235 
B.5.3 Test Result Interpretations ............................................................................................ 235 

B.6 Testing Hooks & Application-Specific Considerations .................................. 236 
B.7 Extendibility and Future Plans ..................................................................... 237 
B.8 Summary ..................................................................................................... 238 

Appendix C: Testing Six Real-World Web Applications..............................239 

C.1 BugTracker.net ............................................................................................. 239 
C.1.1 Decision Tree & Use-Case Descriptions..........................................................................240 
C.1.2 Testing Hooks .................................................................................................................242 

C.2 e107 .............................................................................................................. 243 
C.2.1 Decision Tree & Use-Case Descriptions .........................................................................243 
C.2.2 Testing Hooks .................................................................................................................244 

C.3 GeekLog ....................................................................................................... 245 
C.3.1 Decision Tree & Use-Case Descriptions ......................................................................... 245 
C.3.2 Testing Hooks ................................................................................................................. 247 

C.4 phpBB2 & phpBB3........................................................................................ 247 
C.4.1 Decision Tree & Use-Case Descriptions .........................................................................248 
C.4.2 Testing Hooks .................................................................................................................249 

C.5 phpMyAdmin.................................................................................................251 
C.5.1 Decision Tree & Use-Case Descriptions ......................................................................... 251 
C.5.2 Testing Hooks ................................................................................................................. 253 

 



 

 

List of Tables 
Table 1-1. Cookie implementation and browser version.......................................................2 

Table 3-1. Inaccessible Sites ................................................................................................26 

Table 3-2. In-Depth Crawling Results from 40 Individual URLs.......................................29 

Table 3-3. Cookie Usage amongst Sites Utilizing Dynamic Technologies..........................30 

Table 3-4. Identifiable Dynamic Sties vs. Cookie Usage Contingency Table ..................... 31 

Table 3-5. Chi-Squared Test – Dynamic Technologies vs. Cookie Usage .......................... 31 

Table 3-6. Risk Assessment – Dynamic Technologies vs. Cookie Usage ........................... 31 

Table 3-7. Descriptive Statistics for Cookie Count Frequency Analysis .............................34 

Table 3-8. Third-Party and First-Party Cookie Usage per Site...........................................36 

Table 3-9.  Sessional and Persistent Cookie Usage per Site ...............................................38 

Table 3-10.  Persistent Cookie Lifespan ............................................................................. 40 

Table 3-11.  Cookie Lifespan: 1 Persistent Cookie vs. 53 Persistent Cookies......................42 

Table 3-12.  Cookie Lifespan vs. Number of Cookies per Site Contingency Table .............42 

Table 3-13.  Chi-Squared Tests for Table 3-12 ....................................................................43 

Table 3-14.  Risk Estimation for Table 3-13 ........................................................................43 

Table 3-15.  Sessional/Persistent vs. First-/Third-Party Cookies.......................................44 

Table 3-16.  Chi-Squared Tests For First-/Third-Party vs. Sessional/Persistent ..............44 

Table 3-17.  Risk Estimation for First-/Third-Party vs. Sessional/Persistent....................44 

Table 3-18.  Cookie Usage vs. P3P Policy Adoption............................................................47 

Table 3-19.  Chi-Squared Test Results for Cookie Usage vs. P3P Adoption.......................48 

Table 3-20.  Risk assessment for cookie usage vs. P3P adoption.......................................48 

Table 3-21.  Specific Cookie Usage vs. Sites with a Full P3P Policy....................................49 

Table 3-22.  Specific Cookie Usage vs. Sites with a Compact P3P Policy ...........................49 

Table 3-23.  Risk Assessment for Cookie Usage vs. Site with a Full P3P Policy ................50 

Table 3-24.  Risk Assessment for Cookie Usage vs. Site with a Compact P3P Policy ........50 

Table 3-25.  Third-Party Cookies for http://fossil.com ......................................................53 

Table 3-26.  First-Party Cookies for http://fossil.com .......................................................56 

Table 3-27. Cookies From Initial Request to http://www.ebay.com ................................67 

Table 3-28. Additional Cookies Deposited By the Bid on Item Usage Scenario ................70 

Table 4-1. Kolmogorov-Smirnov Tests For Normality........................................................ 81 

Table 4-2.  Mann-Whitney U Test For Russia vs. All Other Countries ..............................82 

Table 4-3. Dynamic Web Application Frameworks Associated Cookies ............................87 

Table 4-4.  Top 5 Third-Party Persistent Cookie Hosts Per Country .................................94 

Table 4-5.  Spearman’s ρ Correlations For Cookie Usage vs. E-Readiness Ranking ....... 103 



 

 

Table 5-1. eBay Bidding Scenario Cookie Testing Mapping ..............................................115 

Table 5-2. Test Case Definition ..........................................................................................119 

Table 5-3. An Example Test Case ...................................................................................... 120 

Table 6-1. ANOVA F-Test Results Amongst Each Of The Block, Strip, And Point Failure 

Patterns And For Simulation Failure Rates Of 0.01, 0.005, 0.002, And 0.001...... 143 

Table 6-2Test For Homogeneity Of Variances For Each Of The Block, Strip, And Point 

Failure Patterns And Failure Rates Of 0.01, 0.005, 0.002, And 0.001................... 143 

Table 6-3 Games-Howell Comparisons Of Block Error Pattern With Simulated Failure 

Rates: 0.01, 0.005, 0.002, And 0.001. ..................................................................... 144 

Table 6-4. Games-Howell Comparisons Of Strip Error Pattern With Simulated Failure 

Rates: 0.01, 0.005, 0.002, And 0.001. ..................................................................... 150 

Table 6-5. Games-Howell Comparisons Of Point Error Pattern With Simulated Failure 

Rates: 0.01, 0.005, 0.002, And 0.001. ..................................................................... 154 

Table 6-6. Relative Runtime Cost For eAR vs FSCS, and eAR vs RRT............................. 155 

Table 7-1.  Test Applications Summary ............................................................................. 163 

Table 7-2.  Test Application Cookie Usage Summary ....................................................... 164 

Table 7-3. Descriptive Statistics of Test Results ............................................................... 166 

Table 7-4.  Mann-Whitney U Tests Between Test Applications for Tree and Context 

Similarity................................................................................................................... 170 

Table 7-5.  Pearson Correlations: Tree vs. Context Similarity .......................................... 172 

Table 7-6. Pass/Fail Assignments Based Upon Manual Inspection ................................. 178 

Table 7-7.  ROC Area Under the Curve Summary............................................................. 182 

Table 7-8.  Derived Decision Threshold Classifiers .......................................................... 184 

Table 7-9. Testing Results for All, Seeding, and Generated Vectors ................................ 186 

Table 7-10.  Mann-Whitney U Test: Seeding vs. Generated Test Vectors ........................ 187 

Table 7-11.  Test Result Reduction via Distinct Results .................................................... 189 

Table 7-12.  Distinct Defects per Test Request.................................................................. 189 

Table 7-13.  Frequency Analysis of Distinct Defects per Test Request .............................190 

Table 7-14. Distinct Defect Detection Seeding vs. Generated Test Vectors.......................191 

Table A-1.  Cookie usage per site according to country..................................................... 217 

Table A-2.  Cookie usage according to country ................................................................ 220 

Table B-1. Test Case Definition .........................................................................................225 

Table C-1.  BugTracker.net Decision Tree & Use-Case Description ................................ 240 

Table C-2.  Bug Tracker.net Testing Hooks ......................................................................242 

Table C-3.  e107 Decision Tree & Use-Case Description...................................................243 

Table C-4.  e107 Testing Hooks .........................................................................................245 

Table C-5.  GeekLog Decision Tree & Use-Case Description............................................245 

Table C-6.  GeekLog Testing Hooks ..................................................................................247 



 

 

Table C-7.  phpBB Decision Tree & Use-Case Description .............................................. 248 

Table C-8.  phpBB2 Testing Hooks ...................................................................................250 

Table C-9.  phpBB3 Testing Hooks ...................................................................................250 

Table C-10.  phpMyAdmin Decision Tree & Use-Case Description..................................252 

Table C-11.  phpMyAdmin Testing Hooks.........................................................................253 



List of Figures 
Figure 2-1. Definition of the Set-Cookie Header................................................................... 7 

Figure 2-2. Definition of the Cookie Header.........................................................................8 

Figure 2-3. Definitions of attribute and value (Fielding et al., 1999) ..................................8 

Figure 2-4. Definitions of date and DIGIT (Fielding et al., 1999) ........................................9 

Figure 2-5. Definition of the domain=value Pair ............................................................... 10 

Figure 2-6. Definition of the max-age=value Pair ............................................................. 10 

Figure 2-7. Definition of the path=value Pair......................................................................11 

Figure 2-8. Definition of httponly and secure Attributes ................................................... 12 

Figure 3-1. Centile Analysis of Cookie Usage (Values Present Only in the Range [60:80])

.....................................................................................................................................33 

Figure 3-2. Number of Cookies per Site Histogram............................................................34 

Figure 3-3. Box Plots of the Number of Cookies per Site with and without Zeroes...........35 

Figure 3-4. Number of Cookies per Site vs. the Median Ratio of First- to Third-Party 

Cookies ........................................................................................................................ 37 

Figure 3-5.  Number of Cookies per Site vs. the Median Ratio of Sessional to Persistent 

Cookies ........................................................................................................................39 

Figure 3-6.  The Number of Non-Expired Cookies vs. Year ............................................... 41 

Figure 3-7.  Host Occurrence vs. Cumulative Percentage of Third-Party Persistent Cookies

.....................................................................................................................................45 

Figure 3-8. Documented Third-Party Cookie Inclusion From http://fossil.com ..............54 

Figure 3-9.  HTTP Headers from the Response to the Request for http://fossil.com....... 57 

Figure 3-10. Code extracted from webSPELL v4.0 (Verton, 2007)....................................63 

Figure 3-11. HTTP Response Headers from http://srx.main.ebay.com ...........................68 

Figure 3-12. HTTP Response Headers from http://www.ebay.com & 

http://rover.ebay.com ...............................................................................................69 

Figure 3-13.  Sequence of Requests Required to Bid on a Single Item...............................69 

Figure 4-1. Country Frequency Histogram .........................................................................78 

Figure 4-2.  Mean Number of Sites Using Specific Types Of Cookies Per Country ...........79 

Figure 4-3. Cookie Usage per Country ............................................................................... 80 

Figure 4-4.  Relative Effect Sizes for Russia vs. the World .................................................83 

Figure 4-5.  Eastern Asian Countries vs. the World............................................................84 

Figure 4-6.  Global Dynamic Web Application Framework Adoption .............................. 88 

Figure 4-7.  Cumulate Comparison Of Dynamic Web Framework Adoption Per Country89 



 

 

Figure 4-8.  Relative Occurrence Of The Dominant Technological Platforms Per Country

..................................................................................................................................... 91 

Figure 4-9. Top 5 Third-Party Persistent Hosts Per Country .............................................97 

Figure 4-10.  Web Analytics Technology Per Country ........................................................99 

Figure 5-1. Expiration Testing-Seeds Generated From Table 5-1......................................114 

Figure 5-2. Third-Party Host Testing-Seeds Generated From Table 5-1 ..........................114 

Figure 5-3. Compact P3P Policy Testing-Seeds Generated From Table 5-1......................115 

Figure 5-4. HttpOnly Testing-Seed Generated From Table 5-1........................................ 118 

Figure 5-5. Pseudo Code for the Tree Matching Algorithm (Yang, 1991)......................... 122 

Figure 5-6.  Tree Matching Example: Tree A (a) and Tree B (b) (Yang, 1991)................. 122 

Figure 5-7. Pseudo Code for the Content Extract Algorithm (Yue et al., 2007)............... 124 

Figure 6-1. Pseudo Code for the Genetic Algorithm. ........................................................ 130 

Figure 6-2. The Block (a), Strip (b), and Point (c) Failure Patterns Associated With The F-

Measure (T. Y. Chen, Kuo, & Merkel, 2006). ........................................................... 137 

Figure 6-3.  Box Plots Of Simulation Results For Block, Strip And Point Patterns With 

Failure Rates Of 0.01 And 0.005 For Each Of The Testing Algorithms .................. 140 

Figure 6-4.  Box Plots Of Simulation Results For Block, Strip And Point Patterns With 

Failure Rates Of 0.002, And 0.001 For Each Of The Testing Algorithms................141 

Figure 6-5. Testing Effectiveness For Block Pattern Simulations Of eAR, FSCS, RRT, And 

The Sobol Sequence Evaluated Against The RT Control Group. ............................. 145 

Figure 6-6.  Histograms Of the f-measure Frequency For eAR, FSCS, RRT Block Pattern 

Simulations With Failure Rates Of 0.01 And 0.001................................................. 147 

Figure 6-7.  Histograms Of First 100 f-measure Frequencies For eAR, FSCS, RRT Block 

Pattern Simulations With Failure Rates Of 0.01 And 0.001.................................... 148 

Figure 6-8. Testing Effectiveness For Strip Pattern Simulations Of eAR, FSCS, RRT, And 

The Sobol Sequence Evaluated Against The RT Control Group. ..............................151 

Figure 6-9. Testing Effectiveness For Point Pattern Simulations Of eAR, FSCS, RRT, And 

The Sobol Sequence Evaluated Against The RT Control Group. ............................. 153 

Figure 6-10. Mean Runtime Of eAR, FSCS, RRT, And The Sobol Sequence To Generate 

The nth Test Case. ...................................................................................................... 156 

Figure 6-11.  Asymptotic Runtime Comparisons .............................................................. 158 

Figure 7-1.  Box Plots Of The Tree Similarity Coefficient ................................................. 168 

Figure 7-2.  Box Plots Of The Context Similarity Coefficient ........................................... 168 

Figure 7-3.  Box Plots Of The Composite Similarity Coefficient....................................... 169 

Figure 7-4.  Context vs. Tree Similarity for All Applications ............................................ 173 

Figure 7-5.  Context vs. Tree Similarity for BugTracker.net ............................................. 174 

Figure 7-6.  Context vs. Tree Similarity for e107............................................................... 174 

Figure 7-7.  Context vs. Tree Similarity for GeekLog ........................................................ 175 



 

 

Figure 7-8.  Context vs. Tree Similarity for phpBB2......................................................... 175 

Figure 7-9.  Context vs. Tree Similarity for phpBB3......................................................... 176 

Figure 7-10.  Context vs. Tree Similarity for phpMyAdmin.............................................. 176 

Figure 7-11. ROC Analysis: BugTracker.net ...................................................................... 179 

Figure 7-12. ROC Analysis: e107........................................................................................180 

Figure 7-13. ROC Analysis: GeekLog.................................................................................180 

Figure 7-14. ROC Analysis: phpBB2.................................................................................. 181 

Figure 7-15. ROC Analysis: phpMyAdmin ........................................................................ 181 

Figure 7-16. ROC Analysis: All Results ............................................................................. 182 

Figure 7-17.  ROC Area Under the Curve Comparison...................................................... 183 

Figure 7-18.  Defect Detection Rates for All, Seeding, and Generated Vectors................ 185 

Figure 7-19.  Box Plots of Fault Detection Rates for All, Seeding, and Generated Vectors

................................................................................................................................... 186 

Figure 7-20.  Box Plots of Test Result Reductions via Distinct Results ...........................188 

Figure B-1. The Four Step Cookie Collection Process .......................................................224 

Figure B-2.  CookieCruncher's Three Step Testing Process............................................. 228 

Figure B-3.  The Three-Step Instrumented Browsing Process ........................................ 230 

Figure B-4.  CookieCruncher's Test Generation Process ..................................................232 

Figure B-5. Test Evaluation & Execution Cycle.................................................................234 

 

 



 

  1 

 

Chapter 1 

 

Introduction 
 

In the last 20 years there has been a major shift in the computing 

paradigm, driven primarily by the widespread adoption of the Internet and 

associated technologies.  The Internet allows for the exchange of 

information via the HyperText Transfer Protocol (HTTP).  In response to 

the stateless nature of HTTP requests and the growing complexity of web 

applications, a HTTP state management mechanism has evolved (Kristol, 

2001; Kristol & Montulli, 1997, 2000).   The fundamental component of 

this mechanism is the HTTP cookie (cookie).  

Since their inception in 19941, cookies have existed in the realm of 

implementation-specific details, rather than within a state of formal 

specification.  The evolution of the cookie specification from the initial 

1994 Netscape implementation (Netscape Communications Corporation, 

undated) to the most recent cookie specification, RFC 2965 (Kristol & 

Montulli, 2000), published in 2000, has been chronicled by Kristol, one of 

the principle authors and participants in the formal definition of the 

cookie mechanism (2001).  Although a formal specification has existed for 

cookies since RFC 2109 (Kristol & Montulli, 1997), cookie technology 

continues to evolve, further distancing implementation details from the 

specifications.  Since the release of the RFC 2965 specification, many user-

agents (browsers) have been reluctant to adhere to the most recent 

specification, primarily due to the lack of adoption by the two major 

players—Internet Explorer (IE) and Firefox (Mozilla / Netscape).  In fact, 

                                                   
1 Cookies first appeared in the initial public release of the Netscape Navigator browser in 
September of 1994 (Kristol, 2001). 



 

  2 

 

RFC 2965 has yet to find widespread adoption a full eight years after its 

release.  Further addendums, such as the HttpOnly option introduced by 

Microsoft as part of IE version 6 Service Pack 1 (IE6 SP1) (Microsoft Corp., 

2002, 2007), have been proposed and implemented, further distancing 

current implementations from the Internet Engineering Task Force (IETF) 

specification. 

Table 1-1. Cookie implementation and browser version 

Browser 
Version 

Netscape 
(1994) 

RFC 2109 
(1997) 

RFC 2965 
(2000) 

HttpOnly 
(2002) 

IE5     

IE6     

IE6 SP1     

IE7     

IE8     

Firefox < 2.0.0.5     

Firefox ≥ 2.0.0.5     

Firefox 3.0     

Firefox 3.5     

Netscape 9.0b3     

Safari 4.0.4     

Opera 10     

 

To date the only major browser currently supporting RFC 2965 is 

Opera, which based upon several recent polls has less than 1% market 

share (Net Applications, 2007; OneStat.com, 2007; The Counter.com, 

2007).  Despite the lack of support for RFC 2965, the HttpOnly addendum 

has found widespread adoption amongst all recent browsers. Table 1-1 

provides a summary of cookie support amongst various browsers; it is 

clear that the cookie technological landscape is anything but 

straightforward.  The incomplete specification and fluctuating 



 

  3 

 

implementations of cookies within browsing environments raises a 

number of important testing issues. This dissertation seeks to provide a 

clear picture of cookie usage across the Internet, and offer an effective 

testing strategy for web applications based around the HTTP state 

mechanism.   

1.1 Thesis Contributions 

It is our contention that cookies have been generally ignored and 

frequently omitted from many discussions within the literature, 

specifically in regards to the testing of web applications.  Current 

discussions have focused primarily on privacy concerns related to cookie 

usage and the proposal of new permutations of cookie technology (Alvin, 

2004; Juels, Jakobsson, & Jagatic, 2006; Park & Sandhu, 2000; Samar, 

1999). Discussions focusing on the testing of web applications that include 

an explicit mention of the HTTP state mechanism are sparse.  

This thesis presents the results of an investigation undertaken to 

highlight the prevalence of cookie deployment on the Internet, and 

provide an analysis of the heightened complexity associated with the 

verification and validation activities of applications that utilize cookies. 

The need for testing strategies that explicitly acknowledge cookies and the 

increased complexity that they encapsulate will be established, and a novel 

testing theory that is empirically demonstrated to detect faults within real-

world web applications will be presented.  

1.2 Thesis Outline 

The remainder of this dissertation will be organized as follows.  Chapter 2 

will present a definition of a cookie and an overview of the relevant works 

within the literature.  Chapter 3 will present the results of an extensive 

survey that was undertaken as part of the current study, revealing the 

nature of cookie deployment across the Internet.  Chapter 4 will provide 

further insights into current cookie usage with specific emphasis on 

country of origin and cookie-specific technologies.  Chapter 5 will present 



 

  4 

 

a testing strategy for testing cookie usage within web applications, with 

conclusions drawn from the surveys described in previous chapters.  

Chapter 6 will present a novel evolutionary adaptive random testing 

strategy that can be used as the basis for cookie collection testing.  Chapter 

7 presents the results of an empirical evaluation undertaken to assess the 

ability of the testing theory to detect faults within real-world web 

applications.  Finally, Chapter 8 summarizes the major contributions of 

this dissertation and recommends avenues of future research directly 

related to this work. 

 

 



 

  5 

 

Chapter 2 
 

An Overview of Cookies, 

Web Application Testing, 

and Adaptive Random Testing2 
 

The Internet has quickly become an indispensable medium upon which 

many facets of modern economies have come to rely. The widespread 

adoption of the Internet has enabled the emergence of a truly global 

economy, ubiquitously connecting people and businesses from all 

countries. Cookies, one of the fundamental Internet technologies, were 

integral in the establishment of e-commerce, revolutionizing both the way 

users could interact with web-applications, and the way in which these 

systems were developed.  Cookies enabled e-commerce sites to provide a 

state-based shopping experience to users, hence the omnipresent 

shopping cart metaphor. Although development of these types of 

applications was possible with previous technologies, cookies offered a 

simple, robust, built-in alternative on which the e-commerce industry 

could build applications through a single technology. 

The remainder of this chapter will be organized as follows: Section 

2.1 will provide a definition of the state-of-the-art regarding cookies. 

Section 2.2 will outline other investigations undertaken to understand the 

deployment of web-specific technologies across the Internet.  Section 2.3 

will discuss related work and motivations for the investigation with regard 

                                                   
2 A version of this chapter has been published. Tappenden, A. F., & Miller, J. (2008). A 
Three-Tiered Testing Strategy for Cookies. Paper presented at the Software Testing, 
Verification, and Validation, 2008 IEEE International Conference on. 



 

  6 

 

to testing web applications. Section 2.4 will outline the current state-of-the 

art in regards to anti random and adaptive random testing strategies.  

Finally, Section 2.5 will summarize the key motivations for the research 

undertaken within this dissertation. 

2.1 Cookies: Defining the HTTP State Mechanism 

The HTTP cookie was first introduced as a feature within the initial public 

release of Netscape Navigator in September of 1994 (Kristol, 2001).  Since 

Netscape's release, cookies have become an integral part of many web 

applications (Kristol, 2001; Kristol & Montulli, 1997, 2000).  Cookies have 

existed in a state of vendor-specific implementations, and while attempts 

have been made to standardize the usage of this technology across 

technological platforms—RFC 2109 (Kristol & Montulli, 1997) and RFC 

2965 (Kristol & Montulli, 2000)—standard compliance has yet to be 

achieved. 

All active cookie specifications outline two complementary HTTP 

headers, Set-Cookie and Cookie3, set by the server and client respectively.  

These two headers work in conjunction to provide four basic cookie 

operations to the application: create, read, update, and delete.  Create, 

update, and delete are all achieved through the Set-Cookie header, which 

is used by a HTTP server to store a name=value pair (a cookie) on a client 

machine.  Figure 2-1 provides an EBNF representation (ISO/IEC, 1996) of 

the grammar for the Set-Cookie header found amongst most browsers.  

This grammar is an adaptation and amalgamation of those found in 

Netscape's original HTTP Cookie Specification (NS Cookie) and RFC 2109 

(Kristol & Montulli, 1997; Netscape Communications Corporation, 

undated), and represents the majority of browser implementations.  RFC 

2965 is not included in the definition provided in Figure 2-1 because it is 

largely ignored by the majority of browser implementations (Net 

                                                   
3 RFC 2965 defines a Set-Cookie2 and Cookie2 headers to be used in place of or next to 
the Set-Cookie and Cookie headers. 



 

  7 

 

Applications, 2007; OneStat.com, 2007; The Counter.com, 2007).  The 

grammar presented does include the newest addition to cookie 

implementation, the HttpOnly (Microsoft Corp., 2002) addendum, as it is 

beginning to gain widespread adoption and is used by a substantial 

number of web-applications. 

Set-Cookie is a field implemented within an HTTP header sent from 

the server to the client as a response to a client request.  This header is 

subject to the grammatical rules of an HTTP header, as outlined in RFC 

2616 (Fielding et al., 1999).  One such provision that is assumed 

throughout the discussion is that any terminal (value between "") is 

considered to be case-insensitive unless otherwise stated.  The definitions 

of an attribute, value, date, and DIGIT (boldface non-terminals from 

Figure 2-1 and Figure 2-2) are taken directly from RFC 2616.  Definitions 

for the attribute and value non-terminals are provide in Figure 2-3, and 

date and DIGIT non-terminals in Figure 2-4.  Together these figures 

provide an EBNF grammatical definition of the Set-Cookie header field 

which has been adapted from RFC 2109 (Kristol & Montulli, 1997), NS 

Cookie (Netscape Communications Corporation, undated), and the 

HttpOnly (Microsoft Corp., 2002) addendum, to accurately reflect the 

current status of cookie implementations across the majority of browsers.  

set-cookie = "Set-Cookie: ", cookie; 
cookie = name, "=", value, {"; ",cookie-av}; 
name = attribute; 
cookie-av = ("comment=",value) 
 | ("domain=", value) 
 | ("max-age=", value | "expires=", date) 
 | ("path=", value) 
 | ("secure") 
 | ("version=",{DIGIT}+) 
 | ("httponly"); 
 (* only one of each attribute=value (av) 

can be included *) 

Figure 2-1. Definition of the Set-Cookie Header 

An EBNF definition of the Cookie*e header field is provided in 

Figure 2-2.  Similar to the Set-Cookie definition, the Cookie definition also 

relies upon the definition of attribute and value from RFC 2616 (Figure 



 

  8 

 

2-3).  Like the Set-cookie header, the Cookie header presented in Figure 

2-2 is an amalgamation of the RFC 2109 (Kristol & Montulli, 1997) and NS 

Cookie (Netscape Communications Corporation, undated) specifications; 

however, as the HttpOnly (Microsoft Corp., 2002) specification does not 

change the Cookie header, it is not relevant to the definition of the Cookie 

header field. 

 

cookie = "Cookie:", [cookie-version], 
cookie-value, {(";" | ","), 
cookie-value}; 

cookie-version = "$version", "=", value, (";" | ","); 
cookie-value = name, "=", value, [";", path], 

[";", domain]; 
name = attribute 
path = "$path", "=", value 
domain = "$domain", "=", value 

Figure 2-2. Definition of the Cookie Header 

 

attribute = token; 
value = token | quoted-string; 
 
token  = {CHAR – (tspecials | CTLs)} 
tspecials  = "(" | ")" | "<" | ">" | "@" | "," 
 | ";" | ":" | "\" | <"> | "/" | "[" 
 | "]" | "?" | "=" | "{" | "}" | SP  
 | HT; 
 
quoted-string = <">,{qdtext | quoted-pair},<">; 
qdtext  = TEXT - <">; 
quoted-pair  = "\", CHAR 
 
TEXT  = OCTET – (CTL – LWS); 
LWS  = [CRLF], {SP | HT}+; 
OCTET  = ? any 8-bit sequence of data ?; 
CHAR  = ? any US-ASCII character (0 - 127) ?; 
ALPHA  = ? any ASCII alphabetic character ? 
SP  = ? US-ASCII SP, space (32) ?; 
<">  = ? US-ASCII double-quote mark (34) ?; 
CTL  = ? any US-ASCII control character 

(0 - 31) and DEL (127) ?; 
HT  = ? US-ASCII HT, horizontal-tab (9) ?; 

Figure 2-3. Definitions of attribute and value (Fielding et al., 1999) 



 

  9 

 

date  = rfc1123-date | rfc850-date 
| asctime-date; 

rfc1123-date  = wkday,",",SP,date1,SP,time,SP,"GMT"; 
rfc850-date  = weekday,",",SP,date2,SP,time,SP,"GMT"; 
asctime-date  = wkday,SP,date3,SP,time,SP,4*DIGIT; 
date1  = 2DIGIT, SP, month, SP, 4*DIGIT;  
 (* day month year (e.g., 02 Jun 1982) *) 
date2  = 2*DIGIT, "-", month, "-", 2*DIGIT; 
 (*day-month-year (e.g., 02-Jun-82) *) 
date3 = month, SP, ( 2*DIGIT | ( SP, DIGIT )); 
 (* month day (e.g., Jun 2) *) 
time = 2*DIGIT, ":", 2*DIGIT, ":", 2*DIGIT; 
 (*00:00:00 - 23:59:59*) 
wkday = "Mon" | "Tue" | "Wed" | "Thu" | "Fri" 

| "Sat" | "Sun"; 
weekday = "Monday" | "Tuesday" | "Wednesday" 
 | "Thursday" | "Friday" | "Saturday" 
 | "Sunday"; 
month  = "Jan" | "Feb" | "Mar" | "Apr" | "May"  
 | "Jun" | "Jul" | "Aug" | "Sep" | "Oct" 
 | "Nov" | "Dec" ; 
DIGIT = "0" | "1" | "2" | "3" | "4" | "5" 
 | "6" | "7" | "8" | "9" 
SP  = ? US-ASCII SP, space (32) ? 

Figure 2-4. Definitions of date and DIGIT (Fielding et al., 1999) 

The Set-Cookie header has a number of optional attribute-value 

pairs (cookie-av in Figure 2-1) that can be associated with a cookie.  

According to the specifications, the ordering of the pairs is 

inconsequential; however, only one of each attribute-value pair can be 

present for a given cookie.  These pairs, often defined by the non-terminal 

value within the original specifications (Kristol & Montulli, 1997, 2000; 

Netscape Communications Corporation, undated), require further 

definition.  According to RFC 2109, the version={DIGIT}+ attribute-value 

pair is the only required cookie-av in the Set-Cookie header.  However, in 

practice this value is not required due to the overlapping implementations 

of the NS Cookie and RFC 2109 specifications, and is optional in the 

definition provided in Figure 2-1.  The version attribute-value pair is 

passed with a cookie from the server to a user-agent to identify that the 

cookie follows the standard outlined in RFC 2109.  This requires that the 

specific pair version=1 be passed along with a given cookie.  Nonetheless, 



 

  10 

 

due to the interwoven nature of the standards and implementations, this 

field is generally ignored. 

The domain attribute appears in the form domain=value.  With this 

option, a server can specify the domain for which a cookie is valid; the 

specified domain must domain match the request URI (Kristol & Montulli, 

1997).  Moreover, the specified domain must be contained within the 

request domain, i.e. x.y.com domain matches .y.com but y.com does not 

match .x.y.com.  Domain matching has been seen as a difficult procedure 

to implement, due to such external factors as the varying length of top-

level domains, e.g. .com and .co.uk, and the prospect of multiple servers 

existing within a single domain.  These problems have yet to be resolved 

(Kristol, 2001). However, for the purpose of this discussion we will ignore 

the domain matching aspect of the input validation and focus primarily on 

the underlying grammar of the attribute-value pair.  If the domain is 

explicitly set, that is the domain=value pair is specified for a given cookie, 

the value must start with a period, followed by two or more alphanumeric 

strings separated by a single period, as defined in Figure 2-5.  In the 

presence of the domain=value pair, a given cookie is valid within the 

explicitly defined domain (assuming that the value domain matches the 

request domain).  Cookies set without an explicit domain=value pair will 

have the value set, by default, to the domain of the request URI. 

domain-av = "domain=", ( domain-value 
| <">, domain-value, <">); 

domain-value = ".", alphanumeric, {".", 
alphanumeric}}; 

alphanumeric = {ALPHA|DIGIT}+ 

Figure 2-5. Definition of the domain=value Pair  

max-age-av = "max-age=", ( max-age-value 
| <">, max-age-value, <">); 

Max-age-value = {DIGIT}+ 

Figure 2-6. Definition of the max-age=value Pair 



 

  11 

 

The expiry attribute appears in one of two forms, either as 

expires=date or max-age=value.  Although these two forms have different 

grammars, they both work to provide the same functionality.  As specified 

previously, this attribute-value pair is optional, but only one occurrence of 

either of these two attribute-value pairs is valid.  The expires=date pair 

represents a specific date at which a cookie is set to expire and is defined 

in Figure 2-1 and Figure 2-4.  The max-age=value pair, on the other hand, 

defines the number of seconds that are to elapse before the cookie is no 

longer valid.  This value is a non-negative integer and its grammar is 

presented in Figure 2-6.  The presence of an expiry attribute-value pair 

(max-age=value or expires=date) defines the cookie as persistent (will be 

stored until the expiration), whereas its omission defines the cookie as a 

sessional cookie, i.e. the cookie will be deleted upon session termination 

(typically when a browser execution is terminated). 

The path=value attribute-value pair exists to define for which 

subset of URLs a cookie is valid.  Much like the domain attribute-value 

pair, the validity of the path value depends upon the original request URI.  

As noted by Kristol (Kristol, 2001), the process of validating the path value 

against the original URI is not strictly defined, and is outside the realm of 

a grammatical definition for the input.  The grammar for the path=value 

attribute pair is provided in Figure 2-7.  As with the other fields, the 

path=value pair is optional, and if it is not explicitly set, the path value will 

default to the path provided in the original request URI.  The final 

attribute-value pair within the Set-Cookie header is comment=value pair.  

This pair is optional and has no functional value to the client or server, but 

exists to provide the end-user or developer with information about the 

cookie. 

path-av = "path=", ( path-value, 
| <">, path-value, <">); 

path-value = {"/",alphanumeric} 
Alphanumeric = {ALPHA|DIGIT}+ 

Figure 2-7. Definition of the path=value Pair 



 

  12 

 

httponly = ε | "httponly"; 
   
secure = ε | "secure"; 

Figure 2-8. Definition of httponly and secure Attributes 

The final two Set-Cookie attributes do not have associated values 

and are defined in Figure 2-8. The httponly attribute, as previously noted, 

was defined by Microsoft as a deterrent to cookie theft through the use of 

malicious JavaScript, known as cross-site scripting (XSS) attacks.  This 

attribute has precisely two values, httponly or ε (not present) and 

indicates to the browser whether or not the document object within any 

embedded JavaScript should be granted access to this cookie and its 

associated values.  As the latest addendum to the cookie specification, this 

attribute is not supported by all browsers, and its presence could cause a 

cookie to be rejected by a strict user-agent.  The secure attribute, much 

like the httponly attribute, does not have an associated value and it 

provides instruction to the browser via its presence or omission.  The 

presence of this attribute instructs the browser to only send this cookie 

over “secure” channels.  The concept of what constitutes a “secure” cookie 

was defined in the NS Cookie specification (Netscape Communications 

Corporation, undated) as being any HTTP over SSL (HTTPS) connection.  

However, as of RFC 2109, the notion of a “secure” channel has become 

more ambiguous, with the idea being that the user-agent should allow the 

user to define which channels are secure (Kristol & Montulli, 1997).  

Although this ambiguity was introduced into the cookie specification, it 

has largely been ignored in favor of the original definition of HTTPS as a 

secure connection. 

The Cookie header, defined in Figure 2-2, is the primary way in 

which cookies are read by a web-application.  This header is passed by the 

client to the server as part of an HTTP request and contains several 

attribute-value pairs.  Similar to the Set-Cookie header, these pairs are 

almost identical to the version=value, domain=value, and path=value 



 

  13 

 

pairs defined in Figure 2-1, Figure 2-5, and Figure 2-7 respectively, except 

that a $ character is inserted at the beginning of the attribute to indicate 

that the value is not a cookie but a cookie attribute (see Figure 2-2).  The 

primary function of this header is to provide the required name=value 

pairing to the application.  The grammatical definition for this pairing 

provides very little insight into the values that can be passed within a 

cookie, and the majority of these values adhere to application-specific 

constraints which are not recoverable from the specifications. 

Together, the Set-Cookie and Cookie headers define and maintain a 

collection of cookies within a browser.  This collection of cookies is 

accessible to a web application based upon six criteria: domain, path, time, 

browser session, browser environment, and connection type.  These 

criteria relate directly to four of the attribute-value pairs defined within 

the cookie grammar: domain, path, expires/max-age, httponly, and 

secure.  

2.2 Current Internet Surveys 

In recent years, several studies of cookie usage have been 

conducted.  Unfortunately, many of these studies provide incomplete 

information due to limitations of the research.  Security Space, for 

example, produces a monthly cookie usage report (2006a), but explicitly 

states that the survey only considers the request for the HTML 

document—it does not load or execute any images, scripts or other objects 

embedded within the page.  Because of this omission, the results obtained 

from the Security Space survey do not accurately reflect the current 

technological landscape of modern cookie deployment within complex 

multifaceted web applications.  To further understand the ways in which 

cookies are currently being deployed across the Internet, a survey that 

fully loads and executes all objects within a webpage is required. 

Reay et al. (2006; 2007) conducted two investigations studying the 

adoption of the P3P privacy policy across a large cross-section of the 



 

  14 

 

Internet.  These studies incorporated the P3P implementation statistics 

collected from a pool of 100,000 sites, complete with geographic 

information, providing a breakdown of P3P usage on a nation-by-nation 

basis.  Although the primary concern of P3P policies is in relation to cookie 

usage (Cranor et al., 2006; W3C, 2006), these surveys unfortunately did 

not provide any insight into the cookie usage of the web applications 

surveyed. 

Other studies have explicitly examined the usage of dynamic web 

technologies such as ASP, Cold Fusion, JSP, and PHP.  A recent study 

conducted by Port80 Software examined the HTTP Header signatures 

from the Fortune 1000 Companies websites (Port80 Software, 2007).  

While this study provides insight into the distribution of dynamic web 

frameworks within the web, the sample size is limited and the technology 

detection mechanisms heavily favor dynamic-web technologies that come 

bundled with backend server software, such as ASP and JSP.  Another 

relevant survey conducted by Doyle and Lopes (2008) examined the 

breadth of dynamic web technologies currently employed by the web 

community.  While the survey provides an extensive list of potential 

technological platforms, it provides no insight into the deployment of 

these technologies. 

2.3 Current Web Testing Strategies 

While there have been several web application testing strategies proposed 

in the literature (Andrews, Offutt, & Alexander, 2005; Bellettini, 

Marchetto, & Trentini, 2005; Di Lucca, Fasolino, Faralli, & De Carlini, 

2002; Elbaum, Rothermel, Karre, & Fisher Ii, 2005; Kung, Liu, & Hsia, 

2000; Jeff Offutt & Wu, 2009; J. Offutt, Wu, Du, & Huang, 2004; Ricca & 

Tonella, 2001; Tappenden, Beatty, Miller, Geras, & Smith, 2005; Tonella & 

Ricca, 2004; Xu, Xu, & Jiang, 2005), there has been no proposal that 

adequately addresses the specific complexities resulting from the use of 

cookies in web applications.  The strategies proposed by Andrews et al. 



 

  15 

 

(2005),  Kung et al. (2000), and Xu, Xu, and Jiang (2005) simply do not 

address the role or effect of cookies in modern web applications.  

Strategies outlined by Bellettini et al. (2005), Kung et al. (2000), Elbaum 

et al. (2005), Ricca, and Tonella (2001), and Offutt et al. (2009; 2004) 

acknowledge the existence and usage of cookies within web applications 

but do not incorporate this novel application state mechanism into their 

work.  In a recent survey of the literature, Alalfi et al. (2009) compare a 

wide-array of modeling techniques for web applications, concluding that 

only three of the twenty-four models investigated consider cookies.  

Three testing strategies in the literature were found to incorporate 

cookies to a greater extent.  Tonella and Ricca suggest a two-layer model 

for the white-box testing of Web applications (2004), advocating the use of 

cookies as a mechanism within the testing strategy itself.  Their method 

utilizes a cookie to record trace information for JavaScript code executing 

on the client machine.  Although this represents a novel use of cookie 

technology, it does not advance the discussion regarding the testing of web 

applications utilizing cookies.  However, Tonella and Ricca's work (2004) 

presents an interesting scenario in which cookies usage is not merely 

limited to the simple task of maintaining state.  The cookies were not sent 

as part of an HTTP Header as initially defined by RFC 2109 (Kristol & 

Montulli, 1997) and RFC 2965 (Kristol & Montulli, 2000), but rather as 

part of a script running on a client browser.  This demonstrates that cookie 

usage and implementation has moved beyond a simple state token, and is 

becoming a complex programming paradigm unto itself. 

Di Lucca, Fasolino, Faralli, and De Carlini (2002) outline a testing 

strategy that involves the creation of a series of decision tables describing 

test cases.  This testing strategy and accompanying web application model 

acknowledges and incorporates cookies; however, the incorporation of 

cookies does not reflect the current utilization of cookies within modern 

web applications.  Di Lucca et al. categorize cookies as either the “state 

before test” or “expected state after test” (2002).  With this distinction in 



 

  16 

 

the testing framework, the cookies are simply a resulting state, rather than 

a driving force behind the test cases.  The strategy contains the implicit 

assumption that cookies only contain state information, and that 

modifying cookies only occurs once per HTTP GET request; that is, 

modifying cookies does not occur without the submission of a form or 

clicking of a hyperlink.  In modern web applications, this assumption is 

not valid.  Cookies can be created, modified or deleted in a variety of ways, 

as witnessed in the work of Tonella et al. (2004).  Although the work of Di 

Lucca et al. (2002) makes provisions for cookies within the testing 

framework, it does not provide an adequate testing strategy for dealing 

with the utilization of cookies in modern web applications. 

Tappenden et al. (2005) describe a security testing strategy for web 

applications that explicitly includes cookies.  However, as the testing 

strategy is constrained to security aspects of web applications, it does not 

address a large number of functional aspects of web applications, and is by 

no means comprehensive.  Notwithstanding, the testing strategy proposed 

by Tappenden et al. (2005) does highlight a major concern overlooked by 

testing strategies proposed by Tonella et al. (2004) and Di Lucca et al. 

(2002)—the potential that exists for the malicious exploitation of cookies.   

Because of their prominent use for session identification, cookies pose a 

significant threat to security for any web application.  Cross site scripting 

(XSS) is a very common type of attack executed on web applications and 

“[t]he most common behavior of XSS attacks … is to gather cookies” 

(Cook, 2003).  With ten to twenty-five XSS exploits found in commercial 

web applications each month (Cgisecurity.com, 2002) and the prevalence 

of cookie gathering, incorporating cookies into a testing strategy for web 

applications becomes an essential security priority.  Furthermore, with a 

new brand of exploitation coined “Cross Site Cooking” (Zalewski, 2006), 

the HTTP state mechanism is quickly becoming a major security liability 

for web applications. 



 

  17 

 

2.4 Anti and Adaptive Random Testing 

Anti random and adaptive random testing methodologies will be explored 

in this thesis as a potential solution for the testing of cookies within web 

applications.  Since the inception of adaptive random testing (ART) in 

2001 (T. Y. Chen, Tse, & Yu), a number of ART methods have been 

proposed (T. Y. Chen, De Hao, Tse, & Zongyuan, 2007; T. Y. Chen, Kuo, & 

Liu, 2007; T. Y. Chen, Kuo, Merkel, & Ng, 2003; T. Y. Chen, Leung, & 

Mak, 2004; T. Y. Chen & Merkel, 2006; T. Y. Chen, Merkel, Wong, & 

Eddy, 2004; T. Y. Chen et al., 2001), including most recently quasi-

random testing (T. Y. Chen & Merkel, 2007; Chi & Jones, 2006).  ART 

methodologies seek to increase the effectiveness of random testing by 

spreading the test cases evenly across the input domain.  This goal, similar 

to that of the Anti Random testing algorithm (Malaiya, 1995), involves the 

random generation of test cases with a selection criterion used to evaluate 

the best available candidate.   

Anti random testing prescribes the selection of test cases to 

maximize the Cartesian or Hamming distance from all previous test cases 

and has been shown to be effective through a series of empirical 

evaluations (Malaiya, 1995; von Mayrhause, Chen, Hajjar, Bai, & 

Anderson, 1998; Yin, Lebne-Dengel, & Malaiya, 1997).  Anti Random 

testing explicitly seeks to select test cases that are as far away as possible 

from all previous cases.  This method shares a number of similarities with 

ART. However, the distinct difference is that anti random testing does not 

contain random elements.  Currently, an effective, scalable 

implementation is not available.  Furthermore, not only is the anti random 

testing method computationally expensive, for any real-world testing 

scenario, it is simply intractable.  Although attempts have been made to 

correct this bottleneck (von Mayrhause et al., 1998), these methods remain 

ineffective when the input-space is "balanced", resulting in random test 

case selection. 



 

  18 

 

The basis for ART methodologies is rooted in the observation that 

faults often occur within failure regions, or error crystals within the input 

domain (Ammann & Knight, 1988; F. T. Chan, Chen, Mak, & Yu, 1996; T. 

Y. Chen & Merkel, 2007; Finelli, 1991).  The goal of anti random testing, 

ART methodologies and quasi-random testing is to spread the test cases 

evenly across the input domain to increase the likelihood of triggering a 

fault within the application.  A recent empirical analysis of thirteen ART 

strategies (Mayer & Schneckenburger, 2006) concluded that Fixed Size 

Candidate Set (FSCS) (F. T. Chan et al., 1996; T. Y. Chen, Leung et al., 

2004; T. Y. Chen et al., 2001), and Restricted Random Testing (RRT) (K. 

P. Chan, Chen, & Towey, 2002) were the two most effective ART methods 

currently available.  Accepting these findings, these two methods along 

with the quasi-random Sobol sequence are henceforth considered to 

represent the state-of-the-art in adaptive random testing. 

FSCS testing is an ART strategy that uses a distance-based selection 

criterion to evaluate a fixed set of randomly generated test case candidates 

(T. Y. Chen, Leung et al., 2004; T. Y. Chen et al., 2001).  An initial test case 

is selected at random, and for each subsequent test a group of k candidates 

are generated from which the candidate with the maximum-minimum 

distance from any other existing test case is selected.  As the size of the test 

set grows, so does the computational requirement for each subsequent 

test, as each candidate is evaluated against all existing tests.  For a test set 

with n elements, the time required to generate a subsequent test, 

FSCSn+1(k,n), grows linearly with the size of the test set, and FSCSn+1(k,n) 

∈ Ο (k·n).  However, k is fixed; and as n grows, the value of k becomes 

insignificant. Thus, FSCSn+1(k,n) ∈ Ο (n).  The execution of this method, 

when applied to the generation of a sequence of n test cases, results in an 

execution time of FSCS(k,n) ∈ Ο (k·n(n+1)/2), or FSCS(k,n) ∈ Ο (n2).  

Hence, the algorithm executes within the order of quadratic time.  

Optimization techniques, such as mirroring, have been introduced to 

reduce the computational footprint of FSCS (T. Y. Chen et al., 2003). 



 

  19 

 

However, even with these techniques, execution of the algorithm remains 

within the order of quadratic time. 

Like FSCS, RRT uses a distance-based selection criterion in the 

selection of subsequent test cases.  However, instead of a fixed set of 

candidates from which to choose the next test, RRT candidates are 

generated until one lies outside of the exclusion zone present around each 

existing test (K. Chan et al., 2002; K. P. Chan, Chen, Kuo, & Towey, 2004; 

T. Y. Chen, De Hao et al., 2007).  The size of the total exclusion zone 

(including overlapping zones) for the tests within the test set is 

proportional to the input domain, and is defined by the constant R.  

Because this value remains constant, the size of the exclusion zone around 

any test shrinks as the number of tests, n, within the test set increases.  

Because RRT does not have a fixed candidate set, and relies upon 

repetitious random selection for the generation of subsequent tests, 

calculation of the algorithm runtime is not meaningful.  In the worst case, 

the algorithm can become unresponsive if the entire input domain is 

excluded, or if randomly generated tests all lie within an exclusion zone.  

Despite these worst-case possibilities, empirically the algorithm has been 

demonstrated to perform on average within RRT(n) ∈ Ο (n2 log(n)) 

(Mayer & Schneckenburger, 2006). 

Quasi-random sequences are a set of mathematical sequences that 

are characterized by the low-discrepancy property, providing a sequence 

with a uniform distribution of values.  The low-discrepancy property 

exhibited by quasi-random sequences ensures that these sequences are 

constructed as evenly-spaced as mathematically possible.  One such 

algorithm is the Sobol sequence, as defined by Sobol (1967), and recently 

proposed for use within the field of software testing by Chi and Jones 

(2006).  The computation of the Sobol sequence is outlined by Fox (1986), 

and can be implemented with marginal computational cost; i.e., Sobol(n) 

∈ Ο (s[(log n)/log qs]2), where n is the number of points to be generated, s 

is the dimensions of the hypercube for which the points are generated, and 



 

  20 

 

qs is the first prime number greater than or equal to s.  This low 

computational cost is one of the primary benefits of quasi-random testing 

when compared to the increased computational complexity of ART 

methods.  Despite this benefit, quasi-random testing has a number of 

considerable limitations, one of which is the inherent deterministic nature 

of quasi-random sequences.  That is, the quasi-random sequences are not 

random, and subsequent execution of algorithms yield the same sequence.  

Attempts have been made to address this problem through the use of 

sequence scrambling (T. Y. Chen & Merkel, 2007).  However, an adequate 

scrambling method that retains the low-discrepancy of the quasi-random 

sequence, and is computationally feasible, is not currently available for 

real-world testing applications (i.e. problems larger than a two-

dimensional hypercube).  Despite this disadvantage, quasi-random testing 

remains an effective tool in a testing environment where the 

computational cost of generating test inputs is of principal importance. 

Genetic algorithms have been applied within a wide array of 

problem domains including software testing.  The use of genetic 

algorithms for test input generation has been the focus of numerous 

approaches (Harman et al., 2004; Michael, McGraw, & Schatz, 2001; Xiao, 

El-Attar, Reformat, & Miller, 2007). However, unlike ART, these 

approaches are based upon white-box code coverage metrics as an 

assessment of fitness.  Other adaptations within the software testing 

domain include, but are not limited to, the prioritization of pre-existing 

tests within a recursive test suite (Li, Harman, & Hierons, 2007), and the 

stress testing of distributed systems (Garousi, 2008; Garousi, Briand, & 

Labiche, 2008).  Although the application of evolutionary algorithms to 

various problem domains is not unique, the application of this technique 

for the generation of ART input data is novel. 



 

  21 

 

2.5 Motivations for Research 

Web application and development practices continue to mature and are 

constantly evolving.  To date, the cookie has played a crucial role in the 

development of the current e-commerce technological landscape.  While 

much is still changing within the web development paradigm, including 

the recent development of frameworks such as AJAX, cookies remain 

fundamental to web applications.  For example, consider Google's Gmail 

web application (2008).  Despite its heavy reliance on the AJAX 

framework, Gmail was still observed to set 21 cookies.  Clearly, cookies are 

essential even within an AJAX application.  As these applications continue 

to mature, cookie usage is expected to remain vital, as it is critical that 

these applications are able to function across a wide array of system 

configurations and browser versions.  Despite the heterogeneous nature of 

end-user web platforms, cookies remain a common denominator amongst 

all browsers.  Given this reality, future web endeavors must thoroughly 

understand the role that cookies play in the technological landscape in 

which web applications exist.   

As the primary state token for many applications, cookies serve as 

the glue holding internal components together.  In addition to this 

fundamental operation, cookies are increasingly utilized in more 

sophisticated situations such as for compiling user statistics.  This type of 

operation often involves multiple hosts and spans a time period of several 

years.  Such usage of cookies is often combined with equally sophisticated 

third-party web applications, whose execution is hidden from end-users.  

Although third-party cookie deployment raises a number of privacy issues, 

it is now commonplace on the Internet.  An increasing number of privacy-

conscious users routinely delete cookies, which threatens the validity of 

the statistics collected by web applications (comScore Inc., 2007b).  

Furthermore, this habitual removal of cookies was found to affect first- 

and third-party cookies equally (comScore Inc., 2007b), posing a threat to 

all web applications utilizing cookies—not just advertising and traffic 



 

  22 

 

management applications.  In addition to users actively removing cookies, 

third-party software agents are being developed that actively reject all 

third-party cookies, and selectively reject first-party persistent cookies on 

the basis of perceived functionality (Yue, Xie, & Wang, 2007).  These 

trends toward selective cookie rejection pose a significant challenge to the 

development of modern web applications—a challenge that is not 

adequately addressed by any of the current testing strategies. 



 

  23 

 

Chapter 3 

 

Cookies: A Deployment Study4 
 

In order to obtain an accurate picture of cookie usage within web 

applications, a rigorous survey of the Internet is required.  This chapter 

outlines the results of an extensive investigation undertaken to highlight 

the prevalence of cookie deployment on the Internet, and provide an 

analysis of the heightened complexity associated with their use.  The 

Internet survey that was undertaken is unique in that it was executed 

within a web-browsing environment, allowing for full loading and 

execution of all components at each of the surveyed sites. 

This chapter will demonstrate the need for testing strategies that 

explicitly acknowledge cookies and the increased complexity that they 

encapsulate.  The remainder of the chapter will be organized as follows: 

Section 3.1 will outline the Internet survey that was conducted; Section 3.2 

will present and discuss the significance of the results obtained; Section 

3.3 will relate the results of the survey to a number of real-world examples, 

and discuss the principle testing implications; finally, Section 3.4 will 

summarize the chapter highlighting the key contributions of the survey.  

3.1 Study Methodology 

3.1.1 Site Selection 

The Alexa top 100,000 list (2006b) was used as the starting point for the 

survey of cookie usage in web applications.  This list was selected for two 

                                                   
4 A version of this chapter has been published. Tappenden, A. F., & Miller, J. (2009). 
Cookies: A Deployment Study and the Testing Implications. ACM Trans. Web, 3(3), 1–
49. 



 

  24 

 

primary reasons.  First, the Alexa top 100,000 list represents a very large 

sample population, which allows for an accurate and representative 

sample of current Internet sites.  The second reason is that the list 

represents the most popular websites, based upon traffic information 

(Alexa Internet Inc., 2006a).  This “popularity” measure is based upon 

both the page views, number of pages viewed on a host, and the reach or 

number of different users who access a host (Alexa Internet Inc., 2006a).  

The Alexa ranking is a based on the geometric mean of the reach and 

views quantities.  Essentially, this ranking provides a list of the most 

popular 100,000 sites accessed on the Internet, comprising the vast 

majority of websites online users are likely to encounter.  According to 

Alexa (2006a), websites excluded from this list have less than a 0.00125% 

chance of being accessed by an average Internet user.  Hence this list may 

be considered a highly representative sample of the usable Internet.  While 

the sampling bias of the Alexa rating is well documented, it remains in use 

because it is the best of the currently available web ranking data (Baker, 

2007).  Furthermore, the Alexa top 100,000 list has been used in other 

academic studies, such as the investigation undertaken by Reay, Beatty, 

Dick and Miller (2007) to study the adoption of the P3P privacy policy.  

3.1.2 Firefox Extension 

Due to the large sample population (100,000 sites), the survey required an 

automated data gathering mechanism.  Hence, an extension for the 

Mozilla Firefox Internet browser (Mozilla Corporation, 2006) was 

produced. The extension accepts a list of URLs to survey, and then visits 

each URL, fully loading the page, associated images and JavaScript 

components.  Once the page finishes loading, the extension records all of 

the cookie information.  The data collected regarding individual cookies 

includes name, value, host, path, secure connection required and expiry 

date.  These fields all directly correspond to the specification provided in 

both RFC 2109 and 2965 (Kristol & Montulli, 1997, 2000).  Additional 



 

  25 

 

information, such as creation time and associated URL was also recorded 

for each cookie.  The extension used the browser to send a GET request to 

a web server specifically designed to parse the URL, and store the 

information for each site and cookie into a database for future analysis. 

3.1.3 Study Implementation 

Although the process was automated, supervision of the system was 

required due to the inability of the extension to deal with interactive 

client-side GUI events, such as dialog boxes.  If a site were to prompt the 

user with a dialog box, the automated process would stall, and require 

external input to continue; as a policy, ‘OK’ was selected for all dialog 

boxes, and ‘CANCEL’ was selected for all login prompts.  Other 

supervision was required in the case of sites crashing the web browser.  If 

this occurred, the survey was re-started at the URL of the site that crashed 

the server, and the survey continued.  Sites that could not be surveyed due 

to re-occurring crashing are not included in the results. 

3.2 Discussion of Results 

This section will discuss the major results and implications that were 

gathered from the survey.  These results provide a basis for discussions 

into the complexity of modern web applications. 

3.2.1 Success Rates 

The study resulted in cookie usage information being collected for 98,006 

individual websites.  The data collected represents 98% of the original list; 

Table 3-1 provides a summary of the reasons why the remaining sites were 

excluded.  As shown in Table 3-1 the majority of sites not surveyed 

contained missing DNS entries (50.5%), or incorrectly configured firewalls 

(31.5%).  The 1,994 sites that could not be surveyed highlight the rapid 

turnover and uncertainty present on the Internet today.  Web applications 

face intense time-to-market pressures and are often unprepared for 

incredibly high traffic volumes arising from growing Internet popularity.  



 

  26 

 

In the face of such pressures, many web applications simply grow too fast 

and have to be abandoned or shut down for server maintenance or 

upgrades; however, due to the competitive nature of the Internet 

marketplace, web applications that cannot handle large traffic volumes are 

often unsuccessful in the long term. 

Table 3-1. Inaccessible Sites 

Reason Number of Sites Percentage 
DNS not found 1,007 50.5% 
Port Closed or Filtered 629 31.5% 
Crashed Browser 95 4.8% 
Server Timed Out 263 13.2% 
Totals 1,994 100% 

3.2.2 Number of Sites Using Cookies 

The study conducted found that 67.4% (66,031) of the 98,006 Internet 

sites used cookies.  This percentage is much higher than suggested by a 

previous study conducted by Security Space (2006a), which suggests that 

only 24.6% of sites utilize cookies.  The discrepancy between the two 

studies arises from the differences in the survey methodologies utilized.  

The Security Space survey only looked for cookies from “web pages and 

not any images, applets, or other objects that may be contained in those 

pages” (2006a); that is, the survey did not fully load the web page and only 

the accessed the basic HTML source for the requested URL.  This is in 

direct contrast to the methodology of the current investigation, in which 

the web page was completely loaded including not only the HTML, but all 

related images, JavaScript components, and other objects.   

The most notable difference in the two approaches is that the 

current survey tabulates cookie usage arising from embedded images and 

JavaScript components.  As an example of this difference, take for instance 

the web application accessed by the URL http://www.apple.com.  At the 

time of the survey it was observed that the application utilized four 

cookies.  Upon more detailed manual inspection, it was found that this 

web application would not have been tabulated if surveyed by the 

technique outlined in the previous survey (Security Space, 2006a).  



 

  27 

 

Without loading any of the images, only two of four cookies were set on the 

client machine; accessing without JavaScript components resulted in only 

one of four cookies being present, and accessing without the JavaScript 

components and images resulted in zero of four cookies being present.  

Furthermore, when accessing the web application with JavaScript 

disabled, the application explicitly reported to the user that JavaScript 

must be enabled to properly view the page.  This web application explicitly 

required JavaScript to function properly, and the survey presented by 

Security Space simply did not support this technology.  In order to 

mitigate these false-negative identifications the rigorous survey 

methodology is required. 

The current study only accessed the initial page for each URL 

surveyed.  Some of the sites accessed were merely façades, providing a 

very simple interface to access subsequent dynamic content.  Examples of 

this instance include splash pages that did not provide any dynamic 

functionality, but merely included links to the dynamic areas of the web 

application, and pages that provided a language selection interface to 

enable users to select a supported internationalization.  These types of 

initial pages provide very limited functionality, and as a result some web 

applications that utilize cookies in subsequent browser interactions were 

not recorded.  Because of these instances, the results obtained in the 

survey, notably that 67.4% of sites that utilize cookies, should be 

considered as a minimum bound, as the survey included both interactive 

dynamic web applications and static web application front-ends.  

3.2.3 An In-Depth Look at the Number of Cookies per Site 

An in-depth study of a smaller subset of web applications, probing deeper 

into each application could be the basis for future research.  However, 

such an undertaking would require a very large pool of human and 

technological resources to achieve any reportable results in a feasible time 

schedule.  As a proof of concept, our survey implementation was adapted 



 

  28 

 

to survey a very small subset of the original sample space.  This 

exploration focused on 40 sites selected randomly from the original 

sample space of 100,000.  A list of subsequent URLs from each of the 40 

sites was produced using a third-party web crawling tool (Kals, 2007).  

This tool was executed with the same domain criterion (only URLs from 

the same domain were followed) and a maximum crawling depth of 5 

pages and running time of 10 minutes.  Of the 40 sites crawled, 28 crawls 

were prematurely stopped due to the 10 minute maximum crawling time 

condition, and the average crawling time per site was 8 minutes.  The 

initial list of 40 sites returned 23,990 further URLs for surveying.  These 

23,990 URLs were surveyed and compared against the baseline values for 

the site, provided by the survey of the initial page.  A summary of the 

results is presented in Table 3-2.  Although this analysis cannot be 

considered definitive due to the small sample size, the results suggest that 

the number of cookies present on the initial page account for 90% of the 

total cookies deployed by the web application.  This number is derived 

from the addition of the percentage of sites that set an equal number of 

cookies and the number of sites that set less than the original site.  It is 

important to note that although a specific URL may not set a cookie, it 

may still access the value stored in the cookie.  Furthermore, cookie 

modification is only possible through the re-creation of a cookie.  

Therefore, each subsequent cookie recorded could represent either the 

modification of an existing cookie or the creation of a new cookie; this 

distinction was ignored as part of this proof-of-concept exercise.   Further 

research into cookie usage within a single site is seen as a great 

complement to the study presented in this study, however the time 

requirements to perform such an in-depth study on a reasonably large 

cross-section of web applications is currently infeasible. 



 

  29 

 

Although the percentage of URLs that set more cookies than the 

original page is only 9.8%, there were 17 sites that set more than the 

original number of cookies on a subsequent page.  This number suggests 

that although the initial page is a reasonable indication of the number of 

cookies used on the majority of subsequent pages on a site, it cannot be 

considered as a reliable proxy for the maximum number of cookies used by 

every subsequent page for an entire site.  The biggest discrepancy between 

the number of cookies on the initial page, and the number of cookies used 

on an entire site, occurs when the initial page does not set any cookies.  Of 

Table 3-2. In-Depth Crawling Results from 40 Individual URLs 

Original URL 
# of 

URLs 
Original # 
of Cookies 

URLs With 
More 

Cookies 

URLs With 
Fewer Cookies 

URLs With 
Equal Cookies 

http://webster.edu/ 1365 0 62 5% 0 0% 1303 95% 
http://sanyo-dsc.com/ 347 0 1 0% 0 0% 346 100% 
http://www.citibank.be/ 947 0 495 52% 0 0% 452 48% 
http://profitinfo.com/ 95 0 19 20% 0 0% 76 80% 
http://8minutedating.com/ 771 0 97 13% 0 0% 674 87% 
http://businesstown.com/ 723 1 3 0% 90 12% 630 87% 
http://logis-de-france.fr/ 746 1 50 7% 103 14% 593 79% 
http://maurytoday.com/ 995 1 33 3% 24 2% 938 94% 
http://netook.com/ 37 1 15 41% 1 3% 21 57% 
http://www.oilcareers.com/ 1057 2 0 0% 1043 99% 14 1% 
http://www.murauchi.com/ 293 2 2 1% 19 6% 272 93% 
http://www.fancl.co.jp/ 1733 2 549 32% 1174 68% 10 1% 
http://gogen-allguide.com/ 1418 2 0 0% 0 0% 1418 100% 
http://amcham.org.eg/ 766 2 1 0% 88 11% 677 88% 
http://booklog.jp/ 641 3 0 0% 19 3% 622 97% 
http://zionsbank.com/ 612 3 65 11% 104 17% 443 72% 
http://www.ccgp.gov.cn/ 924 3 0 0% 923 100% 1 0% 
http://jpstu.com/ 816 3 1 0% 808 99% 7 1% 
http://evermp3.com/ 1226 3 0 0% 1026 84% 200 16% 
http://ianhardy.net/ 713 4 188 26% 6 1% 519 73% 
http://2hot4blog.com/ 161 4 0 0% 2 1% 159 99% 
http://sctv.co.id/ 700 4 0 0% 699 100% 1 0% 
http://emusician.com/ 712 5 2 0% 149 21% 561 79% 
http://cronica.com.mx/ 886 5 425 48% 457 52% 4 0% 
http://www.dublinevents.com/ 581 5 0 0% 0 0% 581 100% 
http://www.drjays.com/ 646 5 0 0% 37 6% 609 94% 
http://cupid.it/ 26 5 0 0% 24 92% 2 8% 
http://catholicpeople.com/ 57 5 0 0% 52 91% 5 9% 
http://www.soukai.com/ 275 6 0 0% 268 97% 7 3% 
http://zw-star.com/ 838 6 2 0% 835 100% 1 0% 
http://plivazdravlje.hr/ 205 6 12 6% 44 21% 149 73% 
http://www.simplemachines.org/ 289 6 8 3% 1 0% 280 97% 
http://thewotch.com/ 45 7 0 0% 16 36% 29 64% 
http://netsh.com/ 148 7 0 0% 147 99% 1 1% 
http://www.linuxquestions.org/ 251 8 107 43% 68 27% 76 30% 
http://www.sciaga.pl/ 120 10 17 14% 101 84% 2 2% 
http://www.kfz-auskunft.de/ 193 11 2 1% 190 98% 1 1% 
http://www.buzznet.com/ 246 12 205 83% 13 5% 28 11% 
http://www.record.pt/ 676 15 0 0% 673 100% 3 0% 
http://www.galveston.com 710 16 0 0% 668 94% 42 6% 
Totals 23990   2361 9.8% 9872 41.2% 11757 49.0% 

 



 

  30 

 

the 40 sites surveyed, 5 of the sites did not set any cookies on the initial 

page, and all 5 of those sites set cookies on subsequent pages.  This clearly 

articulates that the 67.4% of sites utilizing cookies must be viewed as a 

minimum bound on the number of sites that utilize cookies. 

3.2.4 Cookie Usage vs. the Identification of Dynamic Web 

Technologies 

Explicit separation of static and dynamic web sites was not feasible given 

the sheer volume of sites to be surveyed; however, the final redirected URL 

recorded in the survey can be used to identify sites that use dynamic web 

technology.  Using the collected information, a subset can be extracted 

containing the sites surveyed that use common web application 

programming languages, such as PHP, ASP, and JSP.  Furthermore, final 

URLs reflecting external data passed into the website via HTTP GET 

requests can also be identified by the presence of a “?” in the URL.  

Although this subset does not contain every web application surveyed, it 

does provide a set of URLs that are verified to be utilizing dynamic web 

technologies.  Table 3-3 provides a summary of the results obtained when 

looking at this specific subset of the sample population.  Within this 

subset, there is a much higher rate of cookie utilization, 86.5%, as 

compared to the general population.   

Table 3-3. Cookie Usage amongst Sites Utilizing Dynamic Technologies 

Dynamic 
Identifier 

Number of 
Sites 

Sites Utilizing Cookies Percentage 

.asp 2,939 2,725 92.7% 

.jsp 943 867 91.9% 

? 1,058 908 85.8% 

.php 1,917 1,434 78.8% 

Total 6,857 5,934 86.5% 

 



 

  31 

 

Table 3-4. Identifiable Dynamic Sties vs. Cookie Usage Contingency Table 

Cookies 
 

No Yes 
Total 

No 31052 60097 91149 Identifiable Dynamic 
Technology Yes 923 5934 6857 

Total 31975 66031 98006 

 

Table 3-5. Chi-Squared Test – Dynamic Technologies vs. Cookie Usage 

 Value 
Degrees of 

Freedom 

Asymptotic 
Significance 

(2-sided) 
Pearson Chi-Square 1231.950 1 .000 
Continuity Correction 1231.012 1 .000 
N of Valid Cases    98006 
 

Table 3-6. Risk Assessment – Dynamic Technologies vs. Cookie Usage 

95% Confidence 
Interval  

 
Value 

Upper Lower 

Odds Ratio for Cookies (No / Yes) 3.322 3.095 3.565 

For cohort Identifiable Dynamic Technology = No 1.067 1.064 1.070 
For cohort Identifiable Dynamic Technology = 
Yes 

.321 .300 .344 

N of Valid Cases  98006  

 

To further characterize this difference and determine if a 

statistically significant difference exists between the two populations, a 

chi-squared test with Yates correction was applied.  This analysis, applied 

to Table 3-4 and summarized in Table 3-5, identified the presence of a 

significant difference (χ2=1231.012 and p<0.05) between sites identified as 

using dynamic technologies and the others with respect to cookie usage.  A 

further relative risk assessment, summarized in Table 3-6, reveals that 

there was a 3.12 greater probability of cookie usage amongst sites that 

used identifiable dynamic web technologies.  This dramatic increase in 

cookie usage is attributed to the role of cookies in maintaining state 

information within web application frameworks.   



 

  32 

 

3.2.5 Rank vs. Cookie Usage 

The selection of the Alexa top 100,000 list provided the ability to evaluate 

the results of the survey against the reported rankings of the sites.  An 

easily identifiable relationship did not exist between the ranking of the site 

and the number of cookies used and is further supported by an observed 

linear correlation coefficient (R2) of 0.009.  The Alexa ranking mechanism 

has a well-understood bias, as it only collects information from Microsoft 

Internet Explorer (IE) clients when calculating their traffic statistics.  

Hence, Microsoft-oriented sites, specifically http://msn.com, the default 

start-page for IE, are likely to have their ranking inflated.  Conversely, 

popular Internet technology sites, such as Slashdot5 and Digg6, or non-

Microsoft platform specific sites, such as MacRumors7 and LinuxHQ8, 

experience rating suppression due to the disproportionate frequency of 

visits from a large numbers of non-IE clients.  According to three ongoing 

surveys, in October 2006, IE accounted for over 50% of all browsing 

activities (Net Applications, 2006; Nielsen//NetRatings, 2007; The 

Counter.com, 2006; W3 Schools, 2006), with two of the three surveys 

suggesting that IE accounts for over 80% of Internet traffic.  Although the 

Alexa rating does contain a bias towards IE clients, this effect is minimized 

due to the overwhelming market-share of IE.  

As an exploratory analysis, the dataset was divided into 100 

partitions, and plotted against the percentage of hosts that utilize cookies, 

as shown in Figure 3-1.  Upon visual inspection, a non-linear relationship 

between ranking and cookie utilization is observed; however, this 

relationship cannot be considered definitive due to the arbitrary nature of 

the partition selection.  This observed trend suggests that the more 

popular a site is; the more likely it is to use cookies. 

                                                   
5 http://slashdot.org 
6 http://digg.com 
7 http://www.macrumors.com 
8 http://www.linuxhq.com 



 

  33 

 

 

Figure 3-1. Centile Analysis of Cookie Usage (Values Present Only in the 

Range [60:80]) 

3.2.6 Number of Cookies per Site 

Cookies introduce another layer of complexity to web applications.  This 

subsection will focus upon the complexity added by the use of multiple 

cookies within a single web application.  Figure 3-2 provides a histogram 

showing the number of cookies per site surveyed.  It is observed that a 

small percentage (0.5%) of sites utilized more than 20 cookies, up to a 

maximum of 76 cookies.  Table 3-7 provides a number of descriptive 

statistics related to the cookie count frequency analysis.  To further 

understand the usage of multiple cookies, a box plot of the data, shown in 

Figure 3-3, reveals that the distribution has quartiles of 1, 3, and 6 when 

zero is excluded from the distribution, higher than that when zeroes were 

not excluded, 0, 1, and 4.  From the box-plots it is clear that the majority of 

sites utilizing cookies operate within the 1 to 6 cookie range and although 

there are sites that utilize upwards of 13 cookies (above the 95th 

percentile), it is not clear why a web application would utilize such large 

 60 !

 65 !

 70 !

 75 !

 80 !

0! 20! 40! 60! 80! 100!

Si
te

s 
U

si
ng

 C
oo

ki
e 

U
sa

ge
 (%

)!

Centile!



 

  34 

 

numbers of cookies, especially when one remembers that the survey only 

accessed the website homepage.  Clearly this phenomenon requires further 

investigation. 

Table 3-7. Descriptive Statistics for Cookie Count Frequency Analysis 

N 98006 
Mean 2.92 
Standard Error of Mean .012 
Median 1.00 
Mode 0 
Standard Deviation 3.898 
Variance 15.191 
Range 76 
Minimum 0 
Maximum 76 
Sum 286186 

25 0 
50 1 

Percentiles 

75 4 

 

 

 
Figure 3-2. Number of Cookies per Site Histogram 

 

0!

5,000!

10,000!

15,000!

20,000!

25,000!

30,000!

35,000!

0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10
!

11
!

12
!

13
!

14
!

15
!

16
!

17
!

18
!

19
!

20
!

>2
0!

N
um

be
r o

f S
ite

s!

Number of Cookies!



 

  35 

 

  
(a) (b) 

Figure 3-3. Box Plots of the Number of Cookies per Site with and without 

Zeroes 

3.2.7 Third-Party Cookies 

Cookies, and more specifically third-party cookies, have garnered public 

attention largely in part from media reports citing privacy concerns and 

cookie misuse (CBS News, 2002).  A third-party cookie, or unverifiable 

transaction (Kristol, 2001; Kristol & Montulli, 1997), occurs when a cookie 

is set for a domain other than the domain explicitly accessed by the user 

i.e. a cookie set for the host www.ads.com when viewing the page 

http://www.example.com.  This behavior is very common on the Internet, 

and is of key importance to the business model of many online advertising 

agencies.  Because of the prevalence of this type of occurrence, cookie 

specifications mandate that user agents (web browsers) must by default 

reject third-party cookies (Kristol, 2001; Kristol & Montulli, 1997, 2000).  

Although this behavior is defined in the cookie specification, it is not 

adhered to by the two most popular browser clients available today—

Internet Explorer (IE) and Firefox, which account for over 90% of all web 

N
um

be
r o

f C
oo

ki
es

 p
er

 S
ite

80

60

40

20

0

Page 1

N
um

be
r o

f C
oo

ki
es

 p
er

 S
ite

 (Z
er

os
 E

xc
lu

de
d)

80

60

40

20

0

Page 1



 

  36 

 

traffic, according to several ongoing surveys (Net Applications, 2006; The 

Counter.com, 2006; W3 Schools, 2006). 

The current survey collected 286,186 cookies in total, 56.6% 

(161,999) of which were set by the originating domain (first-party cookies), 

and 43.4% (124,187) that were set by external domains (third-party 

cookies).  Table 3-8 provides a summary of the number of sites that use 

first- and third-party cookies.  The key result shown in Table 3-8 is that 

54.3% of the sites surveyed utilize third-party cookies—technology that 

should disabled by default.  However, because the most common browsers 

are released with third-party cookies enabled, disabling these cookies 

would have significant repercussions on these applications.  This issue is 

further complicated for the 37.8% of applications that utilize a mixture of 

first- and third-party cookies.  It is not known how these applications 

would react if a subset of their internal state data was missing; this is not a 

typical test case for many software projects.  These complications arise 

simply from the prospect of strict user-agent adherence to the definition of 

cookies.  

Table 3-8. Third-Party and First-Party Cookie Usage per Site 

Cookie Combination Number of Sites Percentage 

First-Party Only 30,151 45.7% 

First-Party & Third-Party 24,979 37.8% 

Third-Party Only 10,901 16.5% 

 

Of the websites surveyed, those with a minimum of 27 cookies, with 

the exception of five cases, were found to have at least one first-party 

cookie.  Similarly, websites with a minimum of 27 cookies, with the 

exception of five cases, were found to have at least one third-party cookie.  

Figure 3-4 suggests that a non-linear relationship exists between the ratio 

of the median of the first-party to the median of the third-party cookies.  

This relationship suggests that the ratio of first- to third-party cookies 

increases inversely-proportional to the total number of cookies used on a 

site.  That is, as the number of cookies a site uses increases, the number of 



 

  37 

 

third-party cookies increases, while the number of first-party cookies 

remains relatively low.  This phenomenon is clearly observed in the two 

most extreme cases in which each site uses 76 cookies.  In the case of these 

two sites, the ratios of first- to third-party cookies were 2 to 74 and 3 to 73.  

In general, the median ratio of first- to third-party cookies remains above 

1.0 for sites containing 12 of fewer cookies, and remains below 1.0 for sites 

containing 13 or higher cookies.  For sites that utilize 6 or fewer cookies, 

the media ratio of first- to third-party cookies was greater than or equal to 

2.0.  That is, on average these sites were observed to utilized 2 or more 

times the number of first- than third-party cookies.  Conversely, on 

average, sites that utilized more than 24 cookies were observed to utilize 

more that twice the number of third- than first-party cookies.  

 
Figure 3-4. Number of Cookies per Site vs. the Median Ratio of First- to 

Third-Party Cookies 

 

0!

1!

2!

3!

4!

0! 10! 20! 30! 40! 50! 60! 70! 80!

M
ed

ia
n 

R
at

io
 o

f F
irs

t- 
to

 T
hi

rd
-P

ar
ty

 C
oo

ki
es
!

Number of Cookies per Site!



 

  38 

 

3.2.8 Cookie Lifespan 

As defined by RFC 2109, 2965 (Kristol & Montulli, 1997, 2000), cookies 

can contain a MAX-AGE  value;  this value defines the lifespan of the 

cookie, and determines if the cookie is a sessional or a persistent cookie.  

Sessional cookies only last for the client session and are deleted when the 

browser closes.  Persistent cookies, on the other hand, remain on the client 

machine until the defined expiry date (MAX-AGE value), deleted by the 

system based upon system resource utilization, or explicitly deleted by a 

user.  Of the 286,186 cookies surveyed, 39.3% (112,398) were sessional 

and 60.7% (173,788) were persistent.  As with first- and third-party 

cookies, sessional and persistent cookies often both exist within the same 

web application.  Table 3-9 provides a summary of the number of sites that 

use sessional and persistent cookies.  Websites with 23 or more cookies 

were observed to have at least one persistent cookie.  In fact, with the 

exception of two cases, every website with a minimum of 15 cookies had at 

least one persistent cookie.  Similarly, with the exception of three cases, all 

websites with a minimum of 18 cookies possessed at least one sessional 

cookie.   

Table 3-9.  Sessional and Persistent Cookie Usage per Site 

Cookie Combination Number of Sites Percentage 

Sessional Only 18,027 27.3% 

Sessional and Persistent 35,538 53.8% 

Persistent Only 12,466 18.9% 

 

The usage trends of sessional and persistent cookies within the 

same site were observed to be quite different than that observed for first- 

and third-party cookies.  Figure 3-5 suggests that a very different 

relationship exists between the ratio of the median of sessional to the 

median of persistent cookies, than that observed for first- to third-party 

cookies.  Although an easily identifiable relationship was not present, a 

very interesting trend was observed.  With the exception of four cases, the 

ratio of sessional to persistent cookies was bounded in the range (0.2, 1.0].  



 

  39 

 

All of the exceptions occurred in sites that utilized more that 38 cookies, 

and represented less than 0.1% of the sites surveyed.  This finding suggests 

that the majority of sites, that use more than one cookie, use a 

combination of sessional and persistent cookies; in fact, 74.1% of sites 

using multiple cookies utilized at least one sessional and persistent cookie.  

The observed bound in the ratio of medians further suggests that the 

majority of sites use more persistent than sessional cookies.  This 

seemingly static bound is in stark contrast to the occurrence observed in 

the ratio of the medians of first- to third party cookies. 

 
Figure 3-5.  Number of Cookies per Site vs. the Median Ratio of Sessional to 

Persistent Cookies 

Much like the ability to disable third party cookies, common 

browser clients also provide the ability to filter cookie requests based on 

the time-to-live duration.  Browsers can be configured to reject persistent 

cookies and only accept sessional cookies; and conversely, to treat every 

cookie as a sessional cookie, deleting persistent cookies each time the 

browser is terminated.  These configuration options, as mentioned in the 

0!

1!

2!

3!

4!

5!

6!

7!

0! 10! 20! 30! 40! 50! 60! 70! 80!

M
ed

ia
n 

R
at

io
 o

f S
es

si
on

al
 to

 P
er

si
st

en
t!

Number of Cookies per Site!



 

  40 

 

previous section, can have unforeseen effects on a web application, 

considering that different browser configurations can affect a subset of an 

application’s internal state information.  As shown in Table 3-9, 72.7% of 

web applications using cookies use at least one persistent cookie.  These 

persistent cookies are the most likely to be rejected or deleted prematurely 

due to the various built-in browser configurations.  Furthermore, it was 

observed that 74.1% of sites using multiple cookies utilize both persistent 

and sessional cookies in conjunction; it is unknown what affect the 

possible rejection of a subset of the system state information has on an 

application.  

Table 3-10.  Persistent Cookie Lifespan 

Cookie Lifespan 
Number of 

Cookies 
Percentage 

< 1 day 31,490 18.1 % 

< 1 week 17,529 10.1 % 

< 1 month (30 days) 12,114 7.0 % 

< 1 year 25,169 14.5 % 

< 1 decade 52,598 30.3 % 

≥ 1 decade 34,888 20.1 % 

 

Table 3-10 provides a summary of the various ranges in lifespan for 

persistent cookies.  From Table 3-10 it is observed that approximately half 

of all persistent cookies surveyed are set to live for over one year (50.4%), 

and one fifth of persistent cookies are set to live for over a decade.  

Although not shown in the Table 3-10, the survey unearthed a small 

number of cookies (131) that were set to live for longer that one century.   

A plot of the number of valid cookies vs. year, shown in Figure 3-6, 

exposes the existence of several key dates before which a large number of 

cookies are set to expire.  The most dramatic increase in the number of 

cookies expiring occurs in 2007, 2008, 2012, 2017, and 2039.  The initial 

two increases in expired cookies occur during the first two years, and 

appear to be consistent with an inverse relationship between the number 

of non-expired cookies and time.  Two smaller increases occur in 2012 and 

2017, suggesting that expiry dates within the range of 6 or 11 years are 



 

  41 

 

more prominent than others in the range of 3 – 30 years.  The final major 

increase in the number of expired cookies occurs in 2039.  This increase of 

9,205 was the second largest single year increase and was surpassed only 

by the increase during the first year.  This is a very interesting finding as 

this represents a period of 32 years, not a number of any significance when 

compared with its immediate predecessor or successor.  This dramatic 

increase is most likely the due to the known year 2038 problem that exists 

within many 32-bit operating systems that rely upon the POSIX time 

representation for the system clock.  This problem will culminate at 

03:14:07 UTC on Tuesday, January 19, 2038, at which point the system 

clocks will be reset to the year 1901.  It appears that the majority of web-

applications set cookies with expiry dates before this date, presumably to 

avoid having the cookies deleted, because the system could interpret the 

dates as being in the past. 

 

 
Figure 3-6.  The Number of Non-Expired Cookies vs. Year 

 

0!

10!

20!

30!

40!

50!

60!

2005! 2015! 2025! 2035! 2045! 2055! 2065! 2075! 2085! 2095! 2105!

N
on

-E
xp

ire
d 

C
oo

ki
es

 (T
ho

us
an

ds
)!

Year!



 

  42 

 

 

Table 3-11.  Cookie Lifespan: 1 Persistent Cookie vs. 53 Persistent Cookies 

Cookie Lifespan 1 Persistent Cookie 53 Persistent Cookies 

< 1 day 797 15.0 % 1 1.9 % 

< 1 week 496 9.3 % 0 0 % 

< 1 month (30 days) 522 9.8 % 0 0 % 

< 1 year 419 7.9 % 1 1.9 % 

< 1 decade 2,145 40.3 % 50 94.3 % 

≥ 1 decade 946 17.8 % 1 1.9 % 

 

Table 3-12.  Cookie Lifespan vs. Number of Cookies per Site Contingency 

Table 

Number of Cookies per Site 
 

> 1 Cookie 1 Cookie 
Total 

< 1 year 84068 2234 86302 
Cookie Lifespan 

≥ 1 year 84395 3091 87486 

Total 168463 5325 173788 

 

Table 3-11 highlights the individual cookie lifespan for sites that 

only set one cookie and the single site that uses the most persistent 

cookies—53.  The differences between the columns in Table 3-10 and Table 

3-11 suggest that a significant difference exists in the time-to-live duration 

of a cookie set by a site that only utilizes one persistent cookie.  To explore 

this difference, a contingency table was created and a chi-squared test with 

Yates correction was applied.  This analysis, Table 3-12 and summarized in 

Table 3-13 identified the presence of a significant difference (χ2=130.181 

and p<0.05) in cookie lifespan between persistent cookies originating 

from sites that use only one cookie and those using multiple cookies.  A 

further relative risk assessment, summarized in Table 3-14, revealed that 

there is a 1.3 greater probability of a lifespan over one year for those 

persistent cookies originating from sites with only one cookie than those 

originating from sites using multiple cookies. 



 

  43 

 

Table 3-13.  Chi-Squared Tests for Table 3-12 

 Value 
Degrees of 

Freedom 

Asymptotic 
Significance 

(2-sided) 
Pearson Chi-Square 130.499 1 .000 

Continuity Correction 130.181 1 .000 

N of Valid Cases    173788  

 

Table 3-14.  Risk Estimation for Table 3-13 

95% Confidence 
Interval 

  
  Value 

Upper Lower 
Odds Ratio for Lifespan 
(< 1year  / ≥ 1year) 

1.378 1.304 1.457 

For cohort:  
More Than One Cookie 

1.010 1.008 1.011 

For cohort: One Cookie .733 .694 .773 

N of Valid Cases    173788  
 

Several issues arise from the use of sessional and persistent cookies.  

Cookies are often the explicit target for very common cross-site scripting 

exploits (Cgisecurity.com, 2002; Cook, 2003; Fogie, 2006).  What security 

implications does the unauthorized access to a user’s cookie(s) have on a 

web application?  With a majority of cookies on the Internet being 

persistent, how does cookie theft affect the testing strategies used for a 

web application?  Issues arising due to the theft of persistent cookies are 

not the only security risks facing web applications; sessional cookies, 

although specified to be deleted at the end of a browsing session, can be 

modified.  Just like persistent cookies, these cookies can also be stolen and 

or modified to live for an undetermined period.  How will a web 

application respond if the assumption that sessional cookies are not 

permanent is false?  These questions are not only valid, but are necessary 

in ensuring that web applications can provide a secure and reliable 

operating environment to users over the Internet. 



 

  44 

 

Table 3-15.  Sessional/Persistent vs. First-/Third-Party Cookies 

 Sessional Persistent 
First-Party 77,499 27.1% 84,500 29.5% 
Third-Party 34,899 12.2% 89,288 31.2% 
  

Table 3-16.  Chi-Squared Tests For First-/Third-Party vs. 

Sessional/Persistent 

 
 
 

Value 
Degrees of 

Freedom 

Asymptotic 
Significance 

(2-sided) 
Pearson Chi-Square 11482.328 1 .000 
Continuity Correction 11481.501 1 .000 
N of Valid Cases    286186 
  

Table 3-17.  Risk Estimation for First-/Third-Party vs. Sessional/Persistent 

95% Confidence 
Interval 

 
Value 

Upper Lower 
Odds Ratio for Duration 
(Persistent / Sessional ) 

.426 .420 .433 

For cohort First-Party .705 .701 .710 

For cohort Third-Party 1.655 1.638 1.671 

N of Valid Cases    286186 

 

To gain a better understanding of how cookies are utilized in 

modern web applications, an integrated analysis of cookie lifespan and 

usage of third-party cookies is required. It can be seen from Table 3-15 

that the smallest contingent of cookies, 12.2%, are third-party sessional 

cookies.  More specifically, 26.1% of third-party cookies are sessional, 

whereas the majority of third-party cookies, 73.9% are persistent.  To 

further characterize these findings, a chi-squared test with Yates 

correction applied to the data in Table 3-15 and summarized Table 3-16, 

identified a significant difference (χ2=130.181 and p<0.05) between the 

number of first- and third-party cookies that were persistent.  A further 

risk assessment, summarized in Table 3-17, reveals that third-party 

cookies have a 1.66 greater probability of being persistent.  This increase in 

the probability amongst third-party cookies is attributed to the usage of 



 

  45 

 

third-party cookies within online advertising and tracking applications, an 

issue that will be discussed at length in the next section. 

3.2.9 Online Tracking & Web Bugs 

As mentioned in Section 3.2.7, third-party cookies have gained media 

attention due to privacy issues surrounding the tracking of online users.  A 

mechanism for this type of tracking conducted without the user’s 

knowledge has been labeled a web bug (Smith, 1999).  Web bugs, given 

their name due to the covert nature of the technology, are usually planted 

within an HTML page as a small invisible image, or as part of an 

advertisement.  Cookies used for these purposes are third-party and are 

often persistent, to facilitate the long-term tracking of user browsing 

habits.  To identify the cookies used as web bugs, the survey dataset was 

analyzed with respect to third-party persistent cookies.  This category of 

cookie was found to be predominantly set by a small number of Internet 

hosts, mainly comprising online advertisers.   

 
Figure 3-7.  Host Occurrence vs. Cumulative Percentage of Third-Party 

Persistent Cookies 

0%!

25%!

50%!

75%!

100%!

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f C
oo

ki
es
!

Host Occurrence Ranking!



 

  46 

 

To analyze this portion of the data, each cookie was examined on a 

per host basis.  For the purpose of the analysis, it was assumed that two 

hosts were equal if the second- and top-level domains were equal.  A list of 

hosts ranked in descending order, based upon number of third party 

persistent cookies set by the host, is graphed against the cumulative 

percentage of cookies set in Figure 3-7.  It is clear from the shape of the 

curve in Figure 3-7 that the majority of cookies come from a small 

minority of sites.  From Figure 3-7 two interesting ratios can be selected: 

an 80/5 and 90/20 ratio.  These ratios highlight the overwhelming use of 

this category of cookies by a small subset of the hosts.  Upon further 

inspection, the 5% and 20% account for a very small percentage of the 

overall number of hosts setting cookies, 0.4% and 1.4% respectively.  As 

assumed, persistent third-party cookies are used predominantly by a small 

number of Internet hosts.  This finding further confirms that the majority 

of third-party persistent cookies surveyed are used as part of an online 

identification and advertising endeavors. 

3.2.10 P3P Policy Adoption and Cookie Usage 

Internet Explorer (IE) poses a unique set of challenges to web applications 

in that, by default, it is set to reject any third-party cookies set by a third-

party host that does not contain a compact Platform for Privacy 

Preferences (P3P) policy.  P3P is a standard that exists to allow the 

automatic retrieval and interpretation of a privacy policy by a user agent 

(W3C, 2006).  IE also provides more stringent security settings, and on 

the predefined security zone setting of high, IE will reject all first-party 

and third party cookies from hosts without a compact P3P policy.  Due to 

the large market share of IE amongst browsers currently used on the 

Internet (Net Applications, 2006; The Counter.com, 2006; W3 Schools, 

2006), P3P adoption is mandatory for any host attempting to set a third-

party cookie and for those who wish to utilize cookies regardless of the 

security setting a user’s browser.    To study the relationship between P3P 



 

  47 

 

policy adoption and cookie usage the survey population was partition 

based upon the results of a recent survey conducted by Reay, Beatty, Dick 

and Miller (2007).  The survey conducted by Reay et al. surveyed 95,824 

sites from the same sample population; these sites cross-referenced with 

the current survey resulted in a new dataset of 94,552 sites with both P3P 

policy and cookie usage information.  This new population was then 

partitioned upon the presence of a valid full and compact P3P policy.  

These two partitions were evaluated against cookie usage from several 

perspectives, as shown in Table 3-18.  To further characterize the 

differences in populations, a number of chi-squared tests were 

undertaken, each yielding a significant difference for each of the partitions 

presented in Table 3-18.  These results will be presented and discussed in 

the remainder of this section. 

Table 3-18.  Cookie Usage vs. P3P Policy Adoption 

Cookies 
1st Party 
Cookies 

3rd Party 
Cookies 

Sessional 
Cookies 

Persistent 
Cookies  

Yes No Yes No Yes No Yes No Yes No 

With 
Full P3P 

1,911 375 1,768 518 1,161 1,125 1,549 737 1,611 675 

Without 
Full P3P 

62,020 30,246 51,621 40,645 33,678 58,588 50,320 41,946 45,057 47,209 

With 
Compact 
P3P 

1,942 259 1,759 442 1,117 1,084 1,517 684 1,647 554 

Without 
Compact 
P3P 

61,989 30,362 51,630 40,721 33,722 58,629 50,352 41,999 45,021 47,330 

 

The first partition of the population examined was P3P policy 

adoption vs. Cookie usage. A chi-squared test with Yates correction, 

summarized in Table 3-19, reveals that significant differences (χ2=272.485 

and p<0.05, χ2=436.510 and p<0.05) exist between those sites with valid 

P3P policies (full or compact) and those without.  A further relative risk 

assessment, summarized in Table 3-20 reveals that there was a 2.44 

greater probability of cookie usage amongst sites with a valid Full P3P 

policy, and a 3.60 greater probability amongst those with a compact P3P 

policy.  This is a significant increase in probability of a site using cookies, 



 

  48 

 

and is the single largest predictor of cookie usage identified by this survey.  

The increased probability of cookies usage is attributed to the close 

association of a compact P3P policy and cookies within the most widely 

used Internet browser—IE. 

Table 3-19.  Chi-Squared Test Results for Cookie Usage vs. P3P Adoption 

 
 Value 

Degrees of 
Freedom 

Asymptotic 
Significance 

(2-sided) 

Pearson Chi-Square 273.232 1 .000 Sites with a valid 
Full P3P Policy Continuity 

Correction 
272.485 1 .000 

Pearson Chi-Square 437.474 1 .000 Sites with a valid 
Compact P3P 
Policy 

Continuity 
Correction 

436.510 1 .000 

N of Valid Cases    94,552 

 

 Table 3-20.  Risk assessment for cookie usage vs. P3P adoption 

95% Confidence Interval  
 Value 

Upper Lower 

P3P Policy? = No 1.018 1.016 1.020 Sites with a valid 
Full P3P Policy P3P Policy? = Yes .410 .367 .457 

P3P Policy? = No 1.023 1.021 1.024 Sites with a valid 
Compact P3P Policy P3P Policy? = Yes .278 .245 .317 

N of Valid Cases   94,552 

 

To further understand the nature of the relationship between P3P 

adoption and cookie usage, chi-squared tests with Yates correction were 

applied with respect to first-party, third-party, sessional, and persistent 

cookies and full and compact P3P usage.  The results, summarized in 

Table 3-21 and Table 3-22, reveal a significant difference for each of the 

partitions.  To further characterize and compare these differences, risk 

assessments were complied for each partition and are summarized in 

Table 3-23 and Table 3-24.  The tests reveal that the presence of a valid 

full P3P policy is a predictor for the usage of all four sub-categories of 

cookies, especially first-party and persistent cookies which were found to 

have a 2.63 and 2.45 greater probabilities, respectively, than the sites 

without a valid full P3P policy.  This trend was also observed amongst sites 



 

  49 

 

with a valid compact P3P policy; however, a compact P3P policy was an 

even greater predictor of first-party and persistent cookies found to have a 

3.07 and 3.05 greater probabilities respectively.  This increase of first-

party and persistent cookies on sites with a compact P3P policy is again 

attributed to the usage of a compact P3P policy within IE.  

Table 3-21.  Specific Cookie Usage vs. Sites with a Full P3P Policy 

 
 Value 

Degrees of 
Freedom 

Asymptotic 
Significance 

(2-sided) 

Pearson Chi-Square 415.284 1 .000 1st-Party Cookies vs. 
Full P3P Policy Continuity Correction 414.414 1 .000 

Pearson Chi-Square 195.659 1 .000 3rd-Party Cookies vs.  
Full P3P Policy Continuity Correction 195.046 1 .000 

Pearson Chi-Square 157.486 1 .000 Sessional Cookies  vs. 
Full P3P Policy Continuity Correction 156.952 1 .000 

Pearson Chi-Square 417.868 1 .000 Persistent  Cookies vs. 
Full P3P Policy Continuity Correction 417.002 1 .000 

N of Valid Cases    94,552 

 

Table 3-22.  Specific Cookie Usage vs. Sites with a Compact P3P Policy 

  Value 
Degrees 

of 
Freedom 

Asymptotic 
Significance 

(2-sided) 

Pearson Chi-Square 504.230 1 .000 1st-Party Cookies vs. 
Compact P3P Policy Continuity Correction 503.253 1 .000 

Pearson Chi-Square 187.193 1 .000 3rd-Party Cookies vs. 
Compact P3P Policy Continuity Correction 186.582 1 .000 

Pearson Chi-Square 180.029 1 .000 Sessional Cookies vs. 
Compact P3P Policy Continuity Correction 179.448 1 .000 

Pearson Chi-Square 584.964 1 .000 Persistent Cookies vs. 
Compact P3P Policy Continuity Correction 583.921 1 .000 

N of Valid Cases    94,552 

 

The increase is much higher than those associated with third-party 

and sessional cookies, 1.77 and 1.89 amongst sites with full P3P polices, 

and 1.76 and 1.82 amongst those with compact P3P policies.  In-fact the 

probabilities associated with third-party and sessional cookies were within 

the 95% confidence interval for both the full and compact P3P policy, and 

although full P3P policy seems to possess a higher predictor indicator for 



 

  50 

 

third-party and sessional cookies, the difference cannot be considered 

significant, and it appears that the type of P3P policy does not have any 

differentiating affect on the probabilities of existence for these types of 

cookies.  The observed increase is not fully explained; however, it is 

believed that due to the significant correlation between P3P policy and 

third-party cookies, sites adopting P3P policies are principally concerned 

with cookies, suggesting that these sites are more likely to use all types of 

cookies, not just first-party or persistent cookies. 

Table 3-23.  Risk Assessment for Cookie Usage vs. Site with a Full P3P Policy 

95% Confidence Interval  
 Value 

Upper Lower 

P3P Policy? = No 1.021 1.019 1.023 First-Party Cookies vs. 
Full P3P Policy P3P Policy? = Yes .380 .345 .419 

P3P Policy? = No 1.015 1.013 1.017 Third-Party Cookies vs.  
Full P3P Policy P3P Policy? = Yes .565 .521 .613 

P3P Policy? = No 1.013 1.011 1.015 Sessional Cookies  vs. 
Full P3P Policy P3P Policy? = Yes .578 .530 .631 

P3P Policy? = No 1.021 1.019 1.023 Persistent  Cookies vs. 
Full P3P Policy P3P Policy? = Yes .408 .374 .446 

N of Valid Cases   94,552 

 

Table 3-24.  Risk Assessment for Cookie Usage vs. Site with a Compact P3P 

Policy 

95% Confidence 
Interval 

 
 Value 

Upper Lower 

P3P Policy? = No 1.021 1.019 1.023 First-Party Cookies vs. 
Compact P3P Policy P3P Policy? = Yes .380 .345 .419 

P3P Policy? = No 1.015 1.013 1.017 Third-Party Cookies vs. 
Compact P3P Policy P3P Policy? = Yes .565 .521 .613 

P3P Policy? = No 1.013 1.011 1.015 Sessional Cookies vs. 
Compact P3P Policy P3P Policy? = Yes .578 .530 .631 

P3P Policy? = No 1.021 1.019 1.023 Persistent Cookies vs. 
Compact P3P Policy P3P Policy? = Yes .408 .374 .446 

N of Valid Cases   94,552 

 

The fact that IE is the primary browser used on the Internet and 

that a P3P policy is required by the default IE settings, implies that IE 



 

  51 

 

compliance may be the main driver behind P3P policy adoption, 

specifically with respect to third-party cookies.  Any host with a P3P policy 

is therefore likely to set third-party cookies; however, on a host’s original 

site, as accessed by this survey, all cookies from the host will be considered 

first-party.  Due to the primary role of a P3P policy within IE the presence 

of a valid compact P3P policy suggests that these hosts have an increased 

interest in setting cookies; hence, the dramatic increase in first-party 

cookie usage amongst this partition.  The complementary increase 

observed with respect to persistent cookies within these partitions can also 

be attributed to IE and P3P compliance.  As discussed in Sections 3.2.8 

and 3.2.9, the primary roles of third-party cookies is for online advertising 

and information gathering, requiring cookies to be both third-party and 

persistent, in order to provide user-specific advertisements based upon the 

user’s online browsing tendencies.  This association between persistent 

and third-party cookies, and the resulting association between persistent 

cookies and P3P policies are attributed to the increased usage of both 

persistent and first-party cookies amongst sites which have a P3P policy. 

3.3 Real World Cookie Deployment 

3.3.1 Case Study: Cookie Deployment Within a Single Site 

To gain a better understanding of cookie deployment within a single site, 

one URL from the survey was selected for further investigation.  This 

analysis focused on the online storefront located at http://fossil.com, 

which was selected for three reasons: 

• The application was representative of typical e-commerce 

applications using the ubiquitous shopping cart metaphor.   

•  The application set a large number of cookies upon the initial visit 

and was within the 99th percentile of sites that set the highest 

number of cookies.   



 

  52 

 

• The site set a significant number of both first- and third-party 

cookies upon an initial visit, providing the opportunity to 

investigate the usage of first- and third-party cookies. 

This section will provide a brief analysis of the cookies used within the 

subject site, with comparisons to the results presented in the previous 

sections. 

3.3.1.1 Third-Party Cookies: Web Bugs & Embedded Third-

Party JavaScript 

The application located at http://fossil.com was found to use twenty 

cookies, nine of which were third-party.  The nine third-party cookies were 

set by seven different hosts and are summarized in Table 3-25.  Each of the 

third-party cookies were set by hosts responsible for over 80% of all third-

party persistent cookies as identified in Section 3.2.9.  The third-party 

cookies were all set by means indiscernible to an average Internet user, 

either as an invisible web-bug or through the use of third-party JavaScript 

scripts embedded within the application.  The site contained four web-

bugs, each a blank image with miniscule dimensions (0x0 or 1x1 pixels) 

that linked to a third-party advertising agent.  Each bug contained a series 

of variables that identified the originating site, and a number of other 

values that were not identifiable.  These four web-bugs were responsible 

for six of the nine third-party cookies, while embedded third-party 

JavaScript scripts were responsible for the remaining three third-party 

cookies. 

This practice of setting third-party cookies via embedded JavaScript 

scripts or web-bugs exemplifies the practice identified and censured as an 

unverifiable transaction in the original cookie specification (Kristol, 2001; 

Kristol & Montulli, 1997, 2000).  Although this type of cookie usage is not 

obvious to the average end-user, it is important to note that these third-

party agencies provide the application with elicited functionality.  The 

means of accomplishing this functionality, embedded third-party scripts 



 

  53 

 

and web-bugs, are implemented at the discretion of the original host.  

Further inspection of the page source reveals that the addition of these 

third-party audiences is well documented (with vendor-specific 

comments), along with the date on which they were added (see Figure 

3-8).  These third-party code segments represent COTS components that 

are included to fulfill a requirement of the system, albeit a requirement 

that is directly related to the business model of the application.  An 

examination of the site’s privacy policy acknowledges the use of cookies 

and web beacons (web-bugs).  However, the policy does not explicitly 

mention the use of third-party cookies, nor the fact that information is 

passed between the site and third parties using cookies. 

Table 3-25.  Third-Party Cookies for http://fossil.com 

Host Path Name Value Time to Live 

.yahoo.com / B dcm0mfp30lh7h&b=3&s=64 
30 years 2 months 4 
days 18 minutes 11 
seconds 

.google.com / PREF 
ID=c46876a2e3c6f7fa:TM=11
75110897:LM=1175110897:S=
c8BRBXDOWD6LOCyA 

30 years 9 months 18 
days 22 hours 32 
minutes 18 seconds 

.atdmt.com / AA002 
001175110911-
992108986/1176320511 

4 years 11 months 27 
days 4 hours 18 
minutes 12 seconds 

.advertising.com / C2 /TsCGZYcI04jFAH 
42 years 2 months 24 
days 18 hours 41 
minutes 54 seconds 

.doubleclick.net / id 800000cbaef6d9d 
2 years 11 months 29 
days 3 seconds 

.doubleclick.net / test_cookie CheckForPermission 15 minutes 3 seconds  

.imiclk.com / IMI 15036298851 
11 months 29 days 3 
seconds  

.imiclk.com / SG 

kZu96CvC%3Apg%3DT2tg%2
6apg%3DT2tj%26st%3DA2uj
%7Cabsplt%3Aab%3DA2b%5
E%5E1 

11 months 29 days 3 
seconds  

.perf.overture.com / SYSTEM_USER_ID 
9KEDE4CQ261MM70R1864H
F5RTS 

3 years 11 months 29 
days 2 seconds  

 

All of the nine third-party cookies listed in Table 3-25 were 

persistent, and six of the cookies were set to live for more than one year.  

Two of the three exceptions were set to expire after 364 days; the third 

expired after only 15 minutes.  The short-lived cookie by virtue of its name 

(test_cookie) functions to ensure that third-party cookies can be set, and 



 

  54 

 

was accompanied by a second cookie from the same domain that was set to 

expire after three years less a day.  Four of the nine cookies were set to live 

for more than 30 years, and the longest-living cookie was set to expire 

after 42 years, within the top 99th percentile of expiration dates 

encountered.  In fact, this cookie was set to expire beyond the 2038 limit 

exposed in Section 3.2.8. All of the expiry dates were found to be relative 

to their creation date; i.e. they represented an offset from their creation 

dates. 

 
Figure 3-8. Documented Third-Party Cookie Inclusion From 

http://fossil.com 

3.3.1.2 First-Party Cookies & the JSP Session Token 

The eleven first-party cookies summarized in Table 3-26 were set by two 

hosts, fossil.com and www.fossil.com.  Although both hosts share the 

same domain name and resolve to the same IP address, from a cookies 

perspective the two hostnames are considered distinct.  Any cookie set for 

the domain fossil.com is considered first-party for the domain 

www.fossil.com, but the reverse does not hold true (Kristol & Montulli, 

1997, 2000).  Although originating from the same host, the definition of 

these cookies as first- or third-party is dependant on the initial request.  

This raises a number of questions in view of current developments within 

the academic community, namely CookiePicker, a browser extension being 

598: … 
599:  
600: <!-- BEGIN ADVERTISING.COM TRACKING CODE (added 4/6/2006) --> 
601: <img src="http://leadback.advertising.com/adcedge/lb?site=69550  

1&srvc=1&betr=fossil_lb_cs=1&betq=1649=364429" width="1" height="1" 
border="0">  

602: <!-- END ADVERTISING.COM TRACKING CODE (added 4/6/2006) --> 
603:  
604: <!-- BEGIN: NEXTACTION ATLAS ACTION TAG (added 5/2/2006) -->   
605:   <img height="1" width="1" src="http://switch.atdmt.com/actio 

n/apmfos_homepage_1/v3/ato.CUSTOMERID/"/> 
606: <!-- END: NEXTACTION ATLAS ACTION TAG (added 5/2/2006)  --> 
607:  
608: <!-- BEGIN: I-MEDIA HOMEPAGE TRACKING TAG (added 5/2/2006) -->   
609:   <IFRAME SRC="http://www.imiclk.com/cgi/r.cgi?m=3&mid=kZu96Cv 

C&ptid=HOME" FRAMEBORDER="0" SCROLLING="NO" WIDTH="0" HEIGHT="0"> 
</IFRAME> 

610: <!-- END: I-MEDIA HOMEPAGE TRACKING TAG (added 5/2/200 
611: … 

 Lines 598 – 611 of http://www.fossil.com/jump.jsp 



 

  55 

 

developed by Yue et al. (2007).  CookiePicker provides automatic cookie 

filtration, rejecting all third-party cookies and selectively rejecting any 

non-output altering first-party persistent cookies.  This technology would, 

by default, reject half of the first-party cookies if the initial request were 

directed to http://fossil.com. This behavior is clearly unwarranted, and it 

emphasizes the need for careful consideration and testing when selecting 

all values associated with a cookie—name, value, host, path, secure, etc.  

This problem is further compounded by the default rejection of third-party 

cookies as outlined by the cookie specifications.  Although this behavior 

has not been widely adopted by the most popular browsers, these cookies 

still remain at heightened risk of rejection.  However, for the purposes of 

this discussion all of the cookies originating from either domain will be 

considered first-party, because the initial request to http://fossil.com was 

redirected to http://www.fossil.com, and all subsequent pages were 

served from the domain www.fossil.com. 

Six of the eleven first-party cookies were set in the HTTP header 

response to the original request for the URL (see Figure 3-9).  The initial 

request responded with the status 302 FOUND, indicating that the page 

exists at a different URL; therefore a second request was made to the URL 

specified by the value in the Location field of the response.  The request 

initially seeking http://fossil.com was redirected to the page 

http://www.fossil.com/jump.jsp on the host www.fossil.com.  The 

second request, responded to by the host www.fossil.com, is responsible 

for setting the majority of the first-party cookies, and in fact sets a second 

JSESSIONID cookie, with a distinct host and value.  As mentioned 

previously, all six of these cookies are considered to be first-party.  These 

six cookies, JSESSIONID (fossil.com), JSESSIONID (www.fossil.com), 

lastJVM_ID, mmlID, customer, and order are set in the method outlined 

by the original cookie specification (Kristol & Montulli, 1997, 2000), and 

work together to provide the basic functionality of the application’s 

shopping-cart checkout system. 



 

  56 

 

Table 3-26.  First-Party Cookies for http://fossil.com 

Host Path Name Value Time to Live 

fossil.com / JSESSIONID rXUl_C0HMSu5 Sessional 

www.fossil.com / 
ysm_CKAJTAOC
VD4V5RMM2B7
8CVG78KJ4 

ysm_PVAJTAOCVD4V5RMM2
B78CVG78KJ4:1&ysm_SNAJTA
OCVD4V5RMM2B78CVG78KJ4
:1175110910209&ysm_LDAJTA
OCVD4V5RMM2B78CVG78KJ4
:0 

Sessional 

www.fossil.com / JSESSIONID ska9q2OXv7Oh Sessional 

www.fossil.com / lastJVM_ID Secondary Sessional 

www.fossil.com / mmlID 118799436 
7 years 11 months 
28 days 0 seconds 

www.fossil.com / customer 135741968 
7 years 11 months 
28 days 0 seconds 

www.fossil.com / order 105172296 29 days 0 seconds 

.fossil.com / __utmz 
193564346.1175110911.1.1.utmcc
n=(direct)|utmcsr=(direct)|utm
cmd=(none) 

0 years 5 months 28 
days 12 hours 2 
seconds 

.fossil.com / __utmc 193564346 Sessional 

.fossil.com / __utmb 193564346 
30 minutes 2 
seconds 

.fossil.com / __utma 
193564346.1635159854.1175110
911.1175110911.1175110911.1 

30 years 9 months 
19 days 3 hours 18 
minutes 12 seconds 

 

Two of the cookies, JSESSIONID (from the host www.fossil.com) 

and order, work together to maintain the state of the virtual shopping cart.  

The system can sustain basic shopping-cart functionality with one of these 

two cookies present; however, if both the JSESSIONID and order cookies 

are deleted, the shopping cart state is lost.  The JSESSIONID cookie 

appears to do more than just maintain the shopping cart, when this cookie 

is deleted the application immediately (in the next HTTP header response) 

reinitializes the cookie and any of the other four cookies.  Apart from the 

JSESSIONID cookie, only the lastJVM_ID cookie reinitializes itself.  The 

JSESSIONID and lastJVM_ID are related to the JSP (JavaServer Pages) 

application framework and are automatically reinitialized.  The 

JSESSIONID cookie is the known state token for any JSP page, which 

explains the reinitialization of all missing cookies immediately following 

its removal.  It appears as though the application utilizes the JSESSIONID 

cookie to primarily maintain the shopping cart state, and that the order 

cookie, while maintaining the shopping cart in the absence of 



 

  57 

 

JSESSIONID, has no real function in the presence of the JESSIONID 

cookie. 

 
Figure 3-9.  HTTP Headers from the Response to the Request for 

http://fossil.com 

The customer cookie, unlike the order cookie, will recreate itself 

when it is needed.  The primary role of this cookie appears to be the 

identification of user-specific profiles within the site.  The cookie is 

recreated at two points in execution, during the checkout procedure and 

when a user logs into the site.  The customer cookie, if deleted, is recreated 

upon entering the checkout procedure or viewing user account pages.  This 

cookie is used to identify a user profile within a session, granting access to 

user specific information such as a product wish-list, address book, order 

history and most critically, stored credit-card and billing information.  As 

with the order cookie, once the initial identity is established (in this case at 

the login or checkout pages) the customer cookie is no longer necessary 

and will not be recreated except in the absence of the JSESSIONID cookie.  

http://fossil.com 

 

1: HTTP/1.1 302 Found 
2: Server: Microsoft-IIS/5.0 
3: Date: Thu, 19 Apr 2007 17:27:01 GMT 
4: Location: http://www.fossil.com/jump.jsp?itemID=0&itemType=HOME_PAGE 
5: Content-Length: 97 
6: Set-Cookie: JSESSIONID=lyBJchFIJ5pg; Path=/ 
7: Content-Type: text/html 

 

http://www.fossil.com/jump.jsp?itemID=0&itemType=HOME_PAGE 

   

1: HTTP/1.1 200 OK 
2: Server: Microsoft-IIS/5.0 
3: Date: Thu, 19 Apr 2007 17:27:29 GMT 
4: ETag: "AAAARIK4msa" 
5: Last-Modified: Thu, 19 Apr 2007 17:27:29 GMT 
6: Pragma: No-cache 
7: Expires: Thu, 01 Jan 1970 00:00:00 GMT 
8: Cache-Control: no-cache 
9: Set-Cookie: order=106378988; Path=/; Expires=Sat, 19-May-2007 

17:27:29 GMT 
10: Set-Cookie: customer=137490762; Path=/; Expires=Fri, 17-Apr-2015 

17:27:29 GMT 
11: Set-Cookie: mmlID=120287474; Path=/; Expires=Fri, 17-Apr-2015 

17:27:29 GMT 
12: Set-Cookie: lastJVM_ID=secondary; Path=/ 
13: Set-Cookie: lastJVM_ID=secondary; Path=/ 
14: Set-Cookie: JSESSIONID=rLEX5MI49kpb; Path=/ 
15: Content-Type: text/html 
 



 

  58 

 

Unlike the order cookie, the customer cookie does not provide the ability 

to sustain a user session without the presence of JSESSIONID; if the 

JSESSIONID cookie is deleted all customer identification state is lost 

regardless of the presence of the customer cookie.  This behavior further 

suggests that the JSESSIONID is the primary state identification 

mechanism and that the other cookies needlessly add increased 

complexity and limited redundancy to the system.  The function of the 

other first-party cookie mmlID was unidentifiable, as the cookie was never 

individually recreated at any point, and in the absence of the cookie the 

application continued to function without error. 

3.3.1.3 Cookie Theft Testing: Knowing the Security Risks 

Due to the prevalence of the JSESSIONID cookie and its role within the 

web application, a simple security test was undertaken regarding the theft 

of this seemingly omniscient cookie:   

1. A user accesses the application through http://www.fossil.com and 

clicks the “View Your Account” link.   

2. The user is then presented with a login form and logs into the 

system.  Once logged in, the system is verified to be inside the user 

account page where sensitive private information is available. 

3. The value of the JSESSIONID cookie is stolen, i.e. the value is stored 

to a temporary value. 

4. All cookies are removed from the user-agent. 

5. Steps 1-3 are repeated to ensure that user account information is no 

longer available, providing a base-case against which the final 

assertions are validated. 

6. All cookies are removed from the user-agent and the stolen 

JSESSIONID cookie is reintroduced. 

7. Steps 1-3 are repeated to verify that the sensitive information is not 

available (result of step 5). 



 

  59 

 

If correctly executed, this scenario verifies that an unauthorized party is 

not allowed to access user information via a stolen JSESSIONID cookie. 

When the above scenario was implemented, the test case failed at 

step 7, revealing the possibility of unauthorized access to user information.  

This finding was repeatable, and further investigation revealed that this 

vulnerability was present for connections coming from various IP 

addresses and user agents.  If a JSESSIONID cookie was to be stolen, this 

vulnerability exists from any remote host with the stolen cookie.  This is 

particularly disconcerting, considering that cookies are subject to 

numerous cross-site scripting vulnerabilities present in applications across 

the Internet (Cgisecurity.com, 2002; Cook, 2003).  This vulnerability 

hinges explicitly upon the ability for the JSESSIONID cookie to be stolen, 

and the fact that the user has not properly logged out of the system.  This 

risk must be properly understood and acknowledged by the stakeholders 

of the application, and deemed to be within acceptable risk criterion 

(Tappenden, Huynh, Miller, Geras, & Smith, 2006).  If the risk is deemed 

to be too great, steps must be taken to minimize the risk, such as greatly 

restricting the period of time over which any such cookie is valid, and 

ensuring that both the user agent (browser version) and IP address are 

validated against the cookie.  These suggestions, although not completely 

eliminating the risk, greatly reduce the risk of vulnerability exploitation.  

This type of testing involving cookies needs to be undertaken to ensure 

that the principle risks and implications of using such technology are fully 

understood and mitigated. 

3.3.1.4 First-Party Surrogates & Third-Party Analytics 

The final five first-party cookies, not set as part of the HTTP headers, 

share more in common with the third-party cookies than with the previous 

six first-party cookies.  These cookies are set by two embedded third-party 

JavaScript scripts and are the product of Google Analytics (2007) and 

Yahoo! Search Marketing (2006), the web-analytics branches of the two 



 

  60 

 

most popular search engines on the Internet (comScore Inc., 2007a; 

Nielsen//NetRatings, 2007).  The script attributed to Yahoo! was 

responsible for setting the single cookie with the name 

ysm_CKAJTAOCVD4V5RMM2B78CVG78KJ. From examination of the 

script that was used to deposit the cookie, it appears that the latter portion 

of the cookie name is a reference to the ID of the client, in this case 

identifying the domain www.fossil.com.  This cookie is repeatedly set on 

each page and is most likely used to track a user's browsing habits creating 

a customer profile based on the merchandise viewed or purchased. 

Google Analytics, on the other hand, is responsible for setting four 

first-party cookies: __utmz, __utmc, __utmb, and __utma.  These 

cookies are set by the embedded third-party JavaScript and appear to 

work in conjunction to track a user’s actions across a site.  The four 

cookies share the same sequence of numbers, 193564346, within their 

respective values.  This sequence most likely represents the ID of the host 

www.fossil.com, as this number remains constant across multiple 

sessions, regardless of client browser and IP address.  The cookies __utmb 

and __utmc both contain the same value, but appear to have different 

functions.  The __utmb cookie appears to be the primary cookie used to 

track the time a user spends viewing any one page, as it is the only cookie 

of the four that is continually reset on every page request.  With the _utmb 

cookie having a 30 minute expiry time, the third-party JavaScript can 

identify whether a user has viewed the page for a period of less than or 

greater than 30 minutes.  The __utmc cookie appears to have a similar 

function, as it is the only sessional cookie, and its presence would alert 

Google Analytics to the fact that the user has not closed the browser 

window between browsing pages. 

The other two cookies __utmz and __utma have much more 

complicated values.  The two cookies do share a second commonality, the 

number 1175110911, which appears to be an identifier unique to the user.  

These two cookies, containing similar information, have very different 



 

  61 

 

expiry dates.  The __utmz cookie is set to live for just under 6 months, and 

the __utma cookie is set to live for over thirty years.  It appears that these 

expiration values were deliberately selected as they do not share any 

commonality with the dates presented in Section 3.2.8.  One possible 

explanation for the dates is to avoid the deletion of the cookies based upon 

a time-to-live policy. 

The cookies set by Google Analytics and Yahoo! Search Marketing 

raise a number of interesting questions about the nature of first-party 

cookies.  These cookies, although set for the domain www.fossil.com, are 

explicitly used as part of a third-party analysis system and clearly illustrate 

the increased complexity novel cookie use adds to an application with 

respect to privacy, security, functionality and testing perspectives.  This 

increased complexity, and usage of surrogate first-party cookies by third-

party agents, suggests that third-party cookies are becoming less desirable 

to advertisers.  This is a puzzling phenomenon, especially in the light of 

recent studies that suggest that the majority of users who habitually delete 

cookies delete both first- and third-party cookies equally (comScore Inc., 

2007b). 

3.3.2 Error, Fault, Failure: Examples of Incorrect Cookie 

Assumptions 

Cookies, as the primary state mechanism for any web application, require 

careful consideration during the design, implementation, and testing 

phases of the software development lifecycle.  Frequently web applications 

are initially developed with a cavalier attitude that elevates time-to-market 

pressures above application robustness, resulting in an ever-increasing 

number of security and privacy faults.  Due to the extreme time-to-market 

pressures thrust upon web applications, cookies are often not given 

adequate consideration. This section will focus upon SQL injection 

vulnerabilities present within many web applications through the 

malicious modification of cookies.  A number of real world examples will 



 

  62 

 

be presented illustrating the faults found across a diverse selection of web 

applications leading to SQL Injection vulnerabilities (failures).  From these 

faults a number of erroneous assumptions regarding cookies will be 

discussed, further strengthening the case for the inclusion of cookies 

within any web application testing strategy. 

SQL Injection is defined as “an attack technique used to exploit 

web sites by altering backend SQL statements through manipulating 

application input” (Auger et al., 2005) and is inevitably tied directly to the 

passing of an unsanitized input into a SQL query.  Although all of the 

failures discussed are traced to this error, analysis of the underlying faults 

reveal a number of insidious and incorrect assumptions regarding cookies.  

The faults presented may seem trivial; however, these faults are all too 

common and are an unfortunate reality of the software development 

paradigm. 

Cookies, much like other inputs into a web application, are subject 

to malicious input manipulation and require server-side verification.  

Although this principle is basic, web applications continue to be plagued 

by input manipulation vulnerabilities, with attacks present across all types 

of inputs.  These vulnerabilities have been discovered across the broad 

spectrum of web applications, both within open source and commercial 

applications, and across a wide array of web programming languages.  

Despite the heightened awareness of input manipulation vulnerabilities in 

the web development community, applications continue to be plagued by 

these types of vulnerabilities, especially with respect to input from cookies.  

Unfortunately, cookies are often overlooked when implementing secure 

web applications, as is the case with Web+Center 4.0.1, and ASP based 

web application (SecuriTeam, 2004).  Web+Center is of particular interest 

because the application provides input verification for inputs for GET and 

POST requests, but does not filter cookie input.  This oversight reveals the 

erroneous assumption that input from cookies is always valid.  This 

vulnerability presents the opportunity to gain administrative privileges 



 

  63 

 

within the application.  Despite the efforts of the developers to verify GET 

and POST inputs, cookie input remains unverified and can lead to a 

serious breach in security.  All of the subsequent examples presented in 

this section share this common error at their core. 

 
Figure 3-10. Code extracted from webSPELL v4.0 (Verton, 2007) 

Many web applications attempt to validate a cookie based solely on 

its existence.  This type of check demonstrates the lack of understanding 

surrounding cookies, and further suggests that developers do not 

acknowledge the potential threat that unchecked cookies pose.  A number 

of web applications such as myBB (SecuriTeam, 2008), webSPELL 

(Verton, 2007), and NukeSentinel (Vind, 2007) all have security 

vulnerabilities stemming from the incorrect assumption that if a cookie 

exists, its value is valid.   Clearly this assumption is false, but these errors 

remain prevalent within released applications.  An example of a typical 

fault involved with these types of failures has been extracted from the 

webSPELL application and is provided in Figure 3-10.  The application 

checks only to see if the cookie exists, and fails to assess the validity of the 

data stored within the cookie before the value is passed into the database. 

There are a number of factors that affect cookie usage within a web 

application.  Browser version and configuration are the two most 

prominent client-side concerns when developing web applications, and 

$login_per_cookie = false; 
if(isset($_COOKIE['ws_auth']) AND !isset($_SESSION['ws_auth'])) {  
 $login_per_cookie = true; 
 $_SESSION['ws_auth'] = $_COOKIE['ws_auth']; 
} 
 
[…] 
 
if(stristr($_SESSION['ws_auth'], "userid")===FALSE){ 
 
 $authent = explode(":", $_SESSION['ws_auth']); 
 $ws_user = $authent[0]; 
 $ws_pwd = $authent[1]; 
 $check = safe_query("SELECT userID FROM ".PREFIX."user WHERE 

userID'$ws_user' AND password='$ws_pwd'");        
 while($ds=mysql_fetch_array($check)) { 
  $loggedin=true; 
  $userID=$ds['userID']; 
} 



 

  64 

 

browser compatibility testing is often an integral component to web-

application development.  Server-side configuration validation is also 

required for any web application that is to be deployed on a third-party 

server.  Applications that fail to validate server configurations are 

vulnerable to all forms of malicious input modification; such is the case for 

a number of vulnerabilities present in the following applications: PlaySMS 

(Rathaus, 2004), phpCoin (Secunia, 2005b), e107 (Secunia, 2006), 

PaFileDB (Secunia, 2005a), and myBB (SecuriTeam, 2008).  Each of these 

applications rely on two server configuration options, register_globals=off 

and magic_quotes_gpc=on, neither of which were verified.  The 

register_globals configuration provides access to any POST, GET or 

cookie value as though it were a global variable.  If set, this configuration 

option represents a security vulnerability for any uninitialized variable 

that is passed into an SQL query, and has been linked to both SQL 

injection and remote code execution vulnerabilities.  Such is the case for 

the application myBB version 1.3 (SecuriTeam, 2008).  An attacker can 

fabricate a new cookie and use it to pass a non-sanitized input into the 

database.  This vulnerability is truly unique from the others presented, as 

it provides the application with a spontaneous malicious cookie.  That is, 

the cookie containing the payload used to compromise the system is never 

created by the application.  Rather, the cookie is carefully crafted by the 

attacker to take the place of the uninitialized variable used within the 

application.  This type of vulnerability goes far beyond simple cookie 

tampering, and suggests that applications are vulnerable to spurious 

cookie creation. 

The magic_quotes_gpc is a server configuration option that a large 

number of web applications rely upon.  This option filters all text input 

(GET, POST and cookie) into the system, and automatically escapes all ' 

(single-quote), " (double quote), \ (backslash) and NULL characters with a 

backslash (PHP Group, 2008).  This option is often relied upon by 

developers as an input tampering security counter-measure.  Despite this 



 

  65 

 

reliance, a number of applications fail to verify the server configuration, 

leaving the applications vulnerable on servers with differing 

configurations.  The latest version of PHP has removed support for the 

magic_quotes_gpc option, effectively disabling this security measure on 

all servers with the latest software, and heightening the need for server 

configuration verification within a web application. 

Base64 encodings are a double-edged sword within web 

development.  On one hand they provide obfuscation to sensitive values 

stored within cookies and can act as a deterrent to malicious users; on the 

other they allow un-decoded malicious strings to pass into the application 

through security counter-measures, such as the magic_quotes_gpc 

configuration.  Such is the case in EazyPortal (Iron, 2008), NukeSentienal 

(Vind, 2007), and RevokeBB (BlackHawk, 2007), each of which contains 

an SQL Injection vulnerability due to Base64 encoded strings passing 

through security countermeasures and then being decoded and passed 

unsanitized into a query.  NukeSentienal v2.5.12 is a good example of this 

type of vulnerability.  NukeSentienal is a wrapper for the PHP-Nuke 

content-management application that exists to provide a subsequent layer 

of protection to the notoriously vulnerable PHP-Nuke.  This example 

reveals a number of potential incorrect assumptions: 

1. The author(s) assume that the cookie value is predictable and valid. 

2. The author(s) assume that an existing non-empty cookie is valid. 

3. The author(s) assume a false sense of security due to the use of 

Base64 encodings, believing that the obfuscation guarantees cookie 

integrity. 

4. The authors(s) assume that the magic_quotes_gpc configuration 

sanitizes every incoming value; an assumption which is false due to 

the nature of a Base64 encoded string. 

Due to the security focus of the NukeSentienal application, it is unlikely 

that the vulnerability stems from the first two assumptions.  It is likely that 

the use of Base64 encodings provided the developers with a false sense of 



 

  66 

 

security.  Although the precise error associated with each of the presented 

examples cannot be pinpointed, these examples illustrate the general lack 

of understanding with respect to cookie deployment that exists within the 

web development community.  As attested to in this section, the lack of 

understanding exists across technological platforms (PHP, ASP, JSP, etc.), 

and is observed amongst a wide variety of applications.  Considering the 

faults and vulnerabilities presented, testing strategies that explicitly 

address cookies are required to address the potential vulnerabilities that 

arise from the deployment of cookie technology. 

3.3.3 Case Study: A Simple eBay Bidding Scenario 

To further illustrate the increased complexity cookies add to web 

applications, the popular online auctioneering site eBay will be considered.  

eBay9 uses a number of cookies in the provision of services to both online 

buyers and sellers, providing a framework across which many online 

storefronts choose to operate.  This case study will document the usage of 

cookies by eBay across a simple session, suggesting areas in which unique 

testing paradigms arise. 

When first browsing to the URL http://www.ebay.com, 13 cookies 

are deposited on the client machine (See Table 3-27).  These cookies 

originate from two unique hosts, .ebay.com and .main.ebayrtm.com.  

Four of the cookies associated with .ebay.com were set within HTTP 

headers; dp1,  nonsession and s in response to the initial GET request, and 

npii in a subsequent GET request.  Although the npii cookie is defined for 

the host .ebay.com, it was set by the host rover.ebay.com whose domain 

matches ebay.com; the reverse however, does not hold true.  Due to this 

relationship, the npii cookie is explicitly cast to domain .ebay.com, 

highlighted in Figure 3-12.  The npii cookie also overwrites its associated 

path value, since by default cookies are set to the path contained within 

the initial GET request which, in this case, is specific to the third-party 

                                                   
9 http://www.ebay.com 



 

  67 

 

host.  Due to the third-party nature of this cookie, a P3P policy is attached 

to the response.  This policy is included to ensure the successful deposit of 

the npii cookie and was not included in initial response from .ebay.com as 

it is not required for the deposition of first-party cookies.  The two other 

cookies deposited by .ebay.com—ebay and lucky9, originated from 

embedded JavaScript scripts within the HTML document from the initial 

response. 

Table 3-27. Cookies From Initial Request to http://www.ebay.com 

Host Name Value Expiration 

.ebay.com dp1 bspref/-1.47c48478.14b85bd80^u1p/QEBf
X0BAX19AQA**49a5b7f8^ 

364 days 

.ebay.com ebay %5Ejs%3D1%5Ecos%3D1%5E Sessional 

.ebay.com npii btguid/57a577461180a0b583b47964ffe42a
5f49a5b7f9^ 

364 days 

.ebay.com lucky9 6887388 1 year, and 364 
days 

.ebay.com s CgAD4ACBHxdX4NTdhNTc3NDYxMTgw
YTBiNTgzYjQ3OTY0ZmZlNDJhNWZlFza
0 

Sessional 

.ebay.com nonsessi
on 

BAQAAARg5ShKPAAaAAMsAAUfEi4AxA
PIAAUfFCnAxAMoAIFEqhfg1N2E1Nzc0Nj
ExODBhMGI1ODNiNDc5NjRmZmU0Mm
E1ZroRF4vFwlUCjtxA/jfQ5zZr0B9R 

364 days 

.main.ebayrtm.com HT 1204061304787%02220%0457914%0636
658%03433%0460682%0633032%03245
%0432658%0622908%03224%0462089
%0638898%03223%0432336%0622773%
03222%0458278%0635533%03221%0460
969%0638009 

Sessional 

.main.ebayrtm.com RUA D1AQAAARg5ShKPAAY8oZ%2FwGUeE4
AwxTLQfMC8I3J%2BgNtbwLuQA17hi1vK
0RMORRjKS3AhEyigomE%2Fzi3RtXz2cf
qwTb8wsFh0M94DANX%2F%2FomCbt8a
pAAvLcGJentgyr37IyKExSf0eCASM5KeVt
MEH 

1 year and 364 
days 

.main.ebayrtm.com TC01 gB0OeleFGBAAAFADyW7AAAAAAAAMg
mhnAgeYMgUTMguDcAIzCFgA 

364 days 

.main.ebayrtm.com M01 AIAQgABgAE 364 days 

.main.ebayrtm.com A01 QBUAMIbtDAAAAAAAwMDPfYMqJm7A
nZhC 

364 days 

.main.ebayrtm.com C01 AAAAQ57AAAAAAAAA 364 days 

.main.ebayrtm.com PS T.0 364 days 

 

The final seven cookies were all deposited from the host 

.main.ebayrtm.com and set by HTTP response headers, as shown in 



 

  68 

 

Figure 3-11.  Similar to the npii cookie, these headers have an associated 

prerequisite P3P policy ensuring that the cookies can be placed within any 

browser implementing a P3P agent, primarily Internet Explorer as 

discussed in Section 3.2.10.  Despite the similarities, the P3P policy 

associated with the npii cookie is different from that associated with the 

seven .main.ebayrtm.com cookies.  This difference in P3P policy creates 

three unique sets of cookies: those without P3P policy, those with the 

policy from rover.ebay.com, and those with the policy from 

main.ebayrtm.com.  This further cookie partition enhances the complexity 

of testing issues surrounding cookies for the site, as cookies can be 

rejected on the basis of the three policies. 

 
Figure 3-11. HTTP Response Headers from http://srx.main.ebay.com 

GET http://srx.main.ebayrtm.com/rtm?RtmCmd&a=json&p=223:224:220:221:222:226:245:43
3&g=61175c3b1180a0b58376cb86ffdeb19a&uf=0&c=1H4sIAAAAAAAAAFMOyShVcEtNUjCyUDA0sDKyt
DIyVvANDlEwMjCw4OUqMLQwtjW2NDDn5UrOTLE1NIopNTAwMOTlAgB1phb%2BOAAAAA%3D%3D&ord=1204
219763943&e=USC:1&z=7&bw=950&enc=cp1252&cb=parent.vjo.dsf.assembly.VjClientAssembl
er._callback0 
 

HTTP/1.x 302 Moved Temporarily 
Server: Apache-Coyote/1.1 
Cache-Control: no-cache 
Expires: 0 
P3P: CP="CURa ADMa DEVa PSAo PSDo OUR BUS UNI PUR INT DEM STA PRE COM NAV OTC 
NOI DSP COR" 
Set-Cookie: PS=T.0; Domain=main.ebayrtm.com; Expires=Fri, 27-Feb-2009  
[...] 

 
GET http://srx.main.ebayrtm.com/rtm?RtmCmd&a=json&p=223:224:220:221:222:226:245:43
3&g=61175c3b1180a0b58376cb86ffdeb19a&uf=0&c=1H4sIAAAAAAAAAFMOyShVcEtNUjCyUDA0sDKyt
DIyVvANDlEwMjCw4OUqMLQwtjW2NDDn5UrOTLE1NIopNTAwMOTlAgB1phb%2BOAAAAA%3D%3D&ord=1204
219763943&e=USC:1&z=7&bw=950&enc=cp1252&cb=parent.vjo.dsf.assembly.VjClientAssembl
er._callback0&r=yes 
 

HTTP/1.x 200 OK 
Server: Apache-Coyote/1.1 
Cache-Control: no-cache 
Expires: 0 
P3P: CP="CURa ADMa DEVa PSAo PSDo OUR BUS UNI PUR INT DEM STA PRE COM NAV OTC
 NOI DSP COR" 
Set-Cookie: C01=AAAAQ57AAAAAAAAA; Domain=main.ebayrtm.com; Expires=Fri, 27-Fe
b-2009 17:29:24 GMT; Path=/rtm 
Set-Cookie: A01=QBUAJMOeFAAAAAAAQ6hHRxpVus1o7K; Domain=main.ebayrtm.com; Expi
res=Fri, 27-Feb-2009 17:29:24 GMT; Path=/rtm 
Set-Cookie: M01=AAIQAIAAAABCQ; Domain=main.ebayrtm.com; Expires=Fri, 27-Feb-2
009 17:29:24 GMT; Path=/rtm 
Set-Cookie: TC01=gBwCYXEGGBAAAFQCjjXBAAAAAAAkAA9wDQRxBA1KXAAAAxWDQdXBQ; Domai
n=main.ebayrtm.com; Expires=Fri, 27-Feb-2009 17:29:24 GMT; Path=/rtm 
Set-Cookie: RUA=D1AQAAARg5ShKPAAaQyMohDT%2Fv4Iz9g%2Bc5BWxpdhSnxOSneTtMdfSrqCd
6VYAsOo%2Fy4%2BnZrAoHjfYr70jfl1Inb4xWsps4pKaxrjQyKxJTWTQhXnP%2BUc%2Ba8fmpQJcS
1Nqg9Mzhw7m40spDTtrr30e%2F; Domain=main.ebayrtm.com; Expires=Sat, 27-Feb-2010
 17:29:24 GMT; Path=/rtm 
Set-Cookie: HT=1204219763943%02220%0457914%0636658%03433%0460682%0633032%0324
5%0432658%0622908%03224%0462089%0638898%03223%0458173%0636917%03222%0458278%0
635533%03221%0458895%0637139; Domain=main.ebayrtm.com Path=/rtm 
[...] 



 

  69 

 

 
Figure 3-12. HTTP Response Headers from http://www.ebay.com & 

http://rover.ebay.com 

 
Figure 3-13.  Sequence of Requests Required to Bid on a Single Item. 

To further explore the use of cookies by eBay, the simple usage 

scenario of bidding on an item was executed and the accumulated cookies 

were retrieved.  This simple scenario, mapped in Figure 3-13, consisted of 

five user-initiated requests from the initial page http://www.ebay.com, 

for a total of 6 loaded pages.  After execution of this scenario, the number 

of cookies stored within the browser jumped to 24 due to the creation of 11 

GET http://www.ebay.com/ 
 

HTTP/1.x 200 OK 
Server: Microsoft-IIS/5.0, Apache-Coyote/1.1 
Date: Thu, 28 Feb 2008 17:29:23 GMT 
Cneonction: close 
Set-Cookie: dp1=bspref/04b895673^u1p/QEBfX0BAX19AQA**49a822f3^; Domain=.ebay.
com; Expires=Sat, 27-Feb-2010 17:29:23 GMT; Path=/ 
Set-Cookie: nonsession=BAQAAARg5ShKPAAaAAMsAAUfG9nsxAPIAAUfHrXAxAMoAIFEs8PM2M
TE3NWMzYjExODBhMGI1ODM3NmNiODZmZmRlYjE5YeQn8mxMkByfuN1NYgnkGHF+BIRw; Domain=.
ebay.com; Expires=Fri, 27-Feb-2009 17:29:23 GMT; Path=/ 
Set-Cookie: s=CgAD4ACBHyEDzNjExNzVjM2IxMTgwYTBiNTgzNzZjYjg2ZmZkZWIxOWFp6sfS; 
Domain=.ebay.com; Path=/ 
[...] 

 
… 
 
GET http://rover.ebay.com/roversync/?site=0&mpt=1204219763771&tGuid=61175c3b1180
a0b58376cb86ffdeb19a 
 

HTTP/1.x 200 OK 
Server: Apache-Coyote/1.1 
Set-Cookie: npii=btguid/61175c3b1180a0b58376cb86ffdeb19a49a822f4^; Domain=.eb
ay.com; Expires=Fri, 27-Feb-2009 17:29:24 GMT; Path=/ 
P3P: CP="NOI CURa ADMa DEVa TAIa OUR BUS IND UNI COM NAV INT" 
[...] 
 



 

  70 

 

subsequent cookies presented in Table 3-28.  The cookies originated from 

five distinct hosts, two of which were responsible for the original 13 

cookies, .ebay.com and .ebayrtm.com.  Third-party hosts set more than 

half of the cookies, and all of the third-party cookies were persistent, with 

expiration values ranging from 30 days to over 29 years.  The exact 

purpose of each of these cookies could not be identified due to the 

techniques employed to obfuscate the values of the individual cookies; it is 

clear that the use of cookies by eBay goes beyond a simple state-

identification token. 

Table 3-28. Additional Cookies Deposited By the Bid on Item Usage Scenario 

Host Name Value Expiration 

.ebay.com ds1 ats/1204136160546 Sessional 

.ebay.com ds2 alss/0.foo%2bar47c6fa90^ Sessional 

.ebay.com npii btguid/5c1a15bd1180a0b583966e06ffe33
26049a6dbf8^ 

1 year and 364 
days 

.ebay.com secure_tick
et 

dXNlcmlkPTIyMjI2MTM5NXxwYWdldH
lwZT0yMTQyfHRpbWU9MTIzNTY3NTc
2MHxsYXN0X21vZD0xMjAyNjg0MDkyf
HVpX2xhc3RfbW9kPTExMjQyMTE4OT
N8cHJlZj0xNjM4NHxtYWM9UVJXR25
XMzBxTkxSaTFyMTJOTnhGMQ**g 

Sessional 

.ebay.com cid VMuhA8d9FAEaoGDs%231462259156 1 year 

.yahoo.com B 0g323ml3sba3u&b=3&s=h2 29 years 103 days 

.apmebf.com S 83kmku-795543469-1204136208667-po 4 years and 363 
days 

.mediaplex.com mojo1 s/71151818010/70 1 year 115 days 

.mediaplex.com svid 58222708638 1 year 115 days 

.ebayrtm.com CT 3.d2cf.47c5a8e1.ffffffffffffd8f1.1.47c5a94c
: 

30 days 

.ebayrtm.com RUP D1AQAAARg5ShKPAAY1xy5QqZ%2FoLV
XoI7Eiv0zPrgpSLkzts1C7A%2FeU72%2B
BTIHBfid062tguwidZyUhYZMyaKfa 

1 year and 364 
days 

 

3.4 Summary of Results and Key Findings 

There are many strategies currently established in the literature for testing 

web applications.  However, none of these strategies provide an effective 

means for dealing with cookies.  The results of this study have shown that 

more than two thirds of the most popular Internet sites utilize cookie 



 

  71 

 

technology.  This value is much higher amongst the subsets of Internet 

sites which utilize dynamic web technologies and P3P polices.   

Furthermore, we see that this technology is utilized by web applications 

regardless of their popularity.  Cookies are more frequently used on the 

Internet than JavaScript, StyleSheets Frames, Flash/Shockwave, GIFs, 

JPEGs, and PNGs (Security Space, 2006b).  It is clear that cookie 

technology has become a staple of modern web applications. 

The results of this study also highlight the complex role that cookies 

play within web applications.  Although the mode of the number of cookies 

used per site was one, of the majority of sites surveyed that utilized cookies 

(72.4%) deployed more than one cookie.  This suggests that web 

applications use cookies for more than just simple state identification.  

Furthermore, 52.1% of sites using multiple cookies used a mixture of both 

first- and third-party cookies, and 74.1% utilized a combination of 

persistent and sessional cookies.  These numbers suggest that the usage of 

cookies in web applications is not as simplistic as previously believed.  The 

survey found that the maximum number of cookies used for a single site 

was 76.  Clearly, cookie usage within many web applications is prolific and 

complex, and adequate testing of these applications requires a strategy 

that explicitly addresses the nature of cookie usage on the Internet. 



 

  72 

 

Chapter 4 

 

Cookie Usage Amongst 

Nations10 
 

Cookies are intertwined with modern online technologies, and are used 

extensively as the basic building block for state-based web applications.  

Despite this prevalence, very little research exists which specifically 

investigates cookies and their relationship with the technological aspects 

of web-applications.  This Chapter will present the first study to directly 

compare cookie usage and country of origin, providing a unique picture of 

the technological and economic environments associated with each 

country.  The Alexa top 100,000 list (2006b) presented in Chapter 3.1.1 

was leveraged as the basis for this study.  The data collected from within 

the cookie deployment study was augmented with geographic location 

information to provide insight into cookie deployment with respect to 

country of origin.  The results of this survey establish a significant 

relationship between the deployment of cookies by web applications and 

the maturity of a country's e-commerce environment. 

The remainder of the chapter will be organized as follows: Section 

4.1 will present the survey methodology and specific research questions; 

Sections 4.2 – 4.4 will present the results of the investigation, and Section 

4.5 will summarize the key findings, highlighting the most important 

results obtained within the survey. 

                                                   
10 A version of this chapter has been published. Tappenden, A. F., & Miler, J. (2009.). A 
Survey of Cookie Technology Usage Amongst Nations. Journal of Web Engineering, 8(3), 
211–244. 



 

  73 

 

4.1 Survey Methodology 

4.1.1 Research Questions 

An explosion in the number of global Internet users has been observed, 

especially within regions in which the Internet has had little penetration 

(Miniwatts Marketing Group, 2008).  Since 2000, Internet penetration 

has risen over 300% globally, and over 1000% in the least penetrated 

regions, Africa and the Middle East (Miniwatts Marketing Group, 2008).  

Given the increasingly global reach of Internet-based opportunities, many 

e-commerce companies are interested in targeting a truly global audience.  

These opportunities, unique to the Internet, present the ability to create a 

multi-national web presence with little overhead.  Concepts such as the 

Internationalisability of a software application are gaining momentum 

and becoming a principle concern for any global web application 

(Vijayaraghavan & Kaner, 2003).   This heightened interest in global web 

applications requires an increased knowledge of the global technological 

landscape, especially with regard to the technological platforms and 

normal usage patterns of web-specific technologies such as cookies.  To 

this end, a number of specific research questions were selected to provide 

a better understanding of the usage of cookies both globally and within 

specific nations. 

The following research questions motivate this study: 

Q1. Are cookies equally utilized across the globe? 

Q2. Given the explicit privacy concerns related to third-party 

cookies, is the usage of this technology consistent between 

nations? 

Q3. Are cookies set to expire as soon as possible (sessional vs. 

persistent), and is this constant across nations? 

Q4. Which web technologies dominate, and do regional 

variations exist? 



 

  74 

 

Q5. How prevalent are online advertisers (using third-party 

persistent cookies as indicators), both globally and amongst 

nations? 

Q6. How are cookies used for tracking users’ movements within a 

site, both globally and amongst nations? 

Q7. Does cookie deployment directly correlate with the maturity 

of a country’s e-commerce environment? 

These questions directly relate to the development of current and future 

web applications.  A thorough understanding of the best industrial 

practices pertaining to cookie usage globally, and within the country for 

which a specific product is targeted, can be of substantial benefit in the 

development of web applications.  The knowledge of empirical cookie 

usage is also of benefit to the larger web engineering community who 

seeks to advance the current state-of-the-art for these systems, specifically 

those who seek to produce high-quality support systems for web software 

endeavors.  To answer these questions a survey of the most popular 

100,000 sites was overlaid with the geographical origins each site, 

producing a pool of over 97,000 data points containing both the cookies 

set through the HTTP headers, images and scripts, and the geographical 

location from which the site originated.  This pool provided ample data 

from which the seven research questions could be addressed. 

4.1.2 Resolution of Geographic Location 

The Alexa top 100,000 list (2006b) presented in Chapter 3.1.1 was 

leveraged as the basis for this study.  The data collected from within the 

cookie deployment study was augmented with geographic location 

information to provide insight into cookie deployment with respect to 

country of origin.  Each site surveyed was mapped to the country from 

which the site was hosted.  The geographic location of these websites was 

derived by determining their IP address via the host program, and then 

comparing this address against a database of locations (i.e. countries) 



 

  75 

 

provided by IP2Location (IP2Location.com, 2006). This approach was 

required since the country code top-level domain is not a reliable indicator 

of the actual geographical location.  Of the 98,004 sites surveyed, 130 

nations were identified as the origin of 97,050 sites.  The remaining 956 

origins that could not be determined represent less than 1.0% of the total 

population, which is within in the error rate associated with the 

IP2Location mapping (IP2Location.com, 2006). 

4.1.3 Analysis Tools & Statistical Tests 

Due to the large pool of data gathered by the survey, SPSS was used to 

analyze the experimental data and generate box plots.  Because of the non-

parametric and ordinal nature of the data, the Mann-Whitney U test was 

utilized to confirm the existence of significant differences between the 

medians of various data populations.  The associated null hypothesis is 

that the two samples are drawn from the same population, i.e. populations 

that have equal probability distribution functions.  All null hypotheses 

presented within the chapter were rejected if the significance of the result 

was below the standard Type 1 error rate, 0.05. 

To further characterize the differences verified between sample 

populations, an effect size was calculated as an estimate of the size of the 

difference between the two populations.  Because the data is non-

parametric, Cliff’s δ (Cliff, 1993, 1996), a non-parametric effect size 

estimate, was used to characterize the difference between two populations.  

Cliff’s δ examines the probability that individual observations within one 

group are likely to be greater than the observations in the other group, 

given by the following equation  

 
δ = Pr(xi1>xj2) – Pr(xi1<xj2),

  
(4-1)

 where xi1 is a member of population one and xj2 is a member of population 

two.  This effect size has been empirically demonstrated to be superior to 

Cohen’s d and Hedges’ g when the data is non-parametric (Hess, Kromrey, 

Ferron, Hogarty, & Hines, 2005; Kromrey, Hogarty, Ferron, Hines, & 



 

  76 

 

Hess, 2005).  Essentially, this approach considers the ordinal, rather than 

the interval, properties of the data. The sample estimate of this statistic, 

Cliff’s delta is obtained by comparing each of the values within in one 

group to each in the other. The calculation of this sample statistic is given 

by 

 

€ 

δ =
# x1 > x2( )−# x1 − x2( )

nqn2
,  (4-2) 

where x1 and x2 are the individual members of each sample population; 

and n1 and n2 are the number of individuals within each sample. Cliff’s δ 

represents the degree of overlap between the two distributions and unlike 

Cohen’s d, Cliff’s effect size is bounded in the range [-1, 1] and takes the 

value of zero if the two distributions are identical.  To provide a linguistic 

interpretation of these differences, we will adopt the suggested values of 

Romano et al. (2006) and interpret a  δ > 0.147 as small, δ > 0.330 as 

medium, and δ > 0.474 as large differences (equivalent to the levels 

suggested by Cohen (1992) of 0.20, 0.50 and 0.80 respectively).  

Two alternatives exist for calculating the Cliff’s delta associated 

variance.  The consistent estimate of variance11 (Cliff, 1996) is presented, 

allowing for the construction of two asymmetric confidence limits at the 

95% confidence level around the δ value.  This estimate of variance, as 

stated by Cliff (1996), produces highly conservative confidence intervals 

and hypothesis testing should not be based upon these estimates.  Despite 

Cliff’s recommendation, the effect size was utilized to compare the 

differences existing between groups and provide a metric for determining 

the relative size of the differences between populations.  The risk that the 

tests did in fact measure beyond the 95% level is considered an acceptable 

risk given the nature of the analysis.  For the remainder of this chapter, the 

following interpretation will be adopted: if zero is included within the 

confidence interval surrounding Cliff’s δ, then the populations are 

                                                   
11 Kromrey et al. (2005) empirically demonstrated that the choice of variance procedure is 
relatively unimportant across a wide range of circumstances.  



 

  77 

 

considered equal; if the confidence interval is only negative then Group 2 

> Group 1; if it is only positive then Group 1 > Group 2. 

Finally Spearman’s ρ, a non-parametric test, was selected to 

calculate the correlation between the ordinal ranking of each nation and 

the cookie usage within the nation.  This correlation was chosen because of 

the ordinal nature of the ranking against which the dataset was compared. 

To further facilitate the analysis, the ρ values were converted into an 

equivalent Pearson’s r correlation coefficient as prescribed by Gilpin 

(1993).  These coefficients were then compared and attributed a measure 

of effect size—small, 0.1 < r ≤ 0.3; medium, 0.3 < r ≤ 0.5; and large, 0.5 < 

r ≤ 1; according to Cohen (1988, 1992). 

4.2 Global Cookie Usage 

The survey outlined in Section 4.1 was quite prolific in the generation of 

usable data from which the research questions could be effectively 

answered.  The survey generated the cookie-usage and geographical 

origins of over 97,000 sites with the identification of 130 nations as the 

origins of these sites.  Given the sheer volume of data extracted by this 

investigation, a smaller subset of data was selected for in-depth analysis 

within this chapter; however, a complete summary of the survey data is 

provided in Appendix A. 

Appendix A presents the data from two perspectives: Table A-1 

provides a breakdown of the number of sites surveyed for each country, 

and Table A-2 focuses on the number of cookies set by sites originating 

from each country.  Each appendix looks at six distinct cookies 

classifications: all, first-party, third-party, sessional, persistent and third-

party persistent cookies.  It is clear from the appendices that the dataset is 

quite large and a large discrepancy exists in the number of sites surveyed 

between nations.  Due to this discrepancy and the sheer size of the dataset, 

smaller subsets were selected and analyzed.  The remainder of this section 

will focus upon the nations from which at least 500 sites were surveyed. 



 

  78 

 

This subset contains 18 nations and represents the source of over 90% of 

the total number of sites surveyed.   

4.2.1 Number of Sites Surveyed per Country 

The number of sites surveyed per nation with at least 500 sties is 

presented in Figure 4-1; clearly the majority of the sites surveyed (44,673) 

had origins within the United States (US) with the next closest country 

China, with less than half the number of sites (17,196).  Due to the large 

discrepancy in populations per country, the analysis will focus upon values 

normalized against the number of sites surveyed for each country. 

 

 
Figure 4-1. Country Frequency Histogram 

4.2.2 Cookie Usage Within Each Country 

The countries identified within the survey were analyzed from six 

perspectives, overall cookie usage, first-party, third-party, sessional, 

persistent, and third-party persistent cookie usage.  This data is presented 

0! 10! 20! 30! 40! 50!

United States !
 China !
 Japan !

 United Kingdom !
 Canada !

 Germany !
 France !

 South Korea !
 Netherlands !
 Hong Kong !

 Taiwan !
 Spain !

 Russia !
 Australia !

 Turkey !
 Sweden !

 Israel !
 Italy !

Others!

Number of Sites (Thousands)!

C
ou

nt
ry

 o
f O

rig
in
!



 

  79 

 

with respect to the mean number of sites utilizing the specific cookie 

categories per country in Figure 4-2.  When comparing the countries that 

were the origin of at least 500 sites, it is observed that Russia, Japan and 

Hong Kong are outliers. Russia is observed to have a higher than average 

number of third-party and persistent cookies; Japan and Hong Kong are 

observed to have a lower than average usage of cookies.  Furthermore, 

Japan is also significantly below average for the usage of sessional cookies, 

whereas the mean of Hong Kong is within the 95th percentile of sessional 

cookies.  Both Japan and Hong Kong are within the 95th percentile first-

party, third-party and persistent cookies. 

 
Figure 4-2.  Mean Number of Sites Using Specific Types Of Cookies Per 

Country 

To further investigate cookie usage amongst these nations box-plots 

for each of five types of cookies are presented in Figure 4-3.  It is clear 

from the shape of each of the box-plots, and confirmed by the Kolmogrov-

Smirnov tests presented in Table 4-1, that the distribution of number of 

cookies per site is not normal within each country.   Due to the lack of an 

identifiable distribution of cookie usage per country, the remainder of the 

chapter will present a number of non-parametric statistical tests, as these 



 

  80 

 

tests do not rely upon the assumption that the sample is drawn from a 

known distribution. 

 
(a) Overall Cookie Usage per Country 

 
(b) First-Party per Country 

 
(c) Third-Party per Country 

 
(d) Sessional per Country 

 
(e) Persistent per Country 

 
(f) Third-Party Persistent  per 

Country 

Figure 4-3. Cookie Usage per Country 
 



 

  81 

 

Table 4-1. Kolmogorov-Smirnov12 Tests For Normality 

All Cookies 
First-Party 

Cookies 

Third-
Party 

Cookies 

Sessional 
Cookies 

Persistent 
Cookies 

Third-
Party 

Persistent 
Cookies 

 

K-S Sig. K-S Sig. K-S Sig. K-S Sig. K-S Sig. K-S Sig. 

US .230 .000 .259 .000 .316 .000 .267 .000 .263 .000 .352 .000 

China .211 .000 .247 .000 .336 .000 .263 .000 .289 .000 .454 .000 

Japan .281 .000 .325 .000 .376 .000 .341 .000 .311 .000 .436 .000 

UK .187 .000 .239 .000 .294 .000 .262 .000 .228 .000 .340 .000 

Canada .217 .000 .253 .000 .335 .000 .257 .000 .257 .000 .375 .000 

Germany .219 .000 .285 .000 .290 .000 .251 .000 .258 .000 .336 .000 

France .191 .000 .272 .000 .261 .000 .281 .000 .208 .000 .253 .000 

South Korea .240 .000 .271 .000 .361 .000 .269 .000 .336 .000 .423 .000 

Netherlands .211 .000 .282 .000 .286 .000 .261 .000 .240 .000 .319 .000 

Hong Kong .297 .000 .303 .000 .428 .000 .333 .000 .378 .000 .477 .000 

Taiwan .295 .000 .312 .000 .422 .000 .294 .000 .392 .000 .477 .000 

Spain .194 .000 .278 .000 .307 .000 .252 .000 .246 .000 .348 .000 

Russia .151 .000 .239 .000 .195 .000 .302 .000 .145 .000 .156 .000 

Australia .212 .000 .237 .000 .315 .000 .247 .000 .255 .000 .360 .000 

Turkey .265 .000 .315 .000 .347 .000 .267 .000 .329 .000 .412 .000 

Sweden .185 .000 .244 .000 .284 .000 .251 .000 .217 .000 .314 .000 

Israel .211 .000 .252 .000 .320 .000 .229 .000 .261 .000 .377 .000 

Italy .208 .000 .275 .000 .298 .000 .259 .000 .244 .000 .325 .000 

Others .210 .000 .278 .000 .310 .000 .256 .000 .254 .000 .356 .000 

 

As highlighted in Figure 4-2, sites originating from Russia use 

significantly more cookies than sites originating from the other countries.  

This trend is evident in Figure 4-3, as the median number of sites from 

Russia using persistent cookies exceeds that of any other country, and is 

equal to or greater than the 75th percentile of all other countries with the 

exception of France.   Similarly to persistent cookies, third-party cookies 

usage within Russia is also much more prominent, and the median of sites 

originating from Russia with respect to third-party cookie usage is only 

equaled by the 75th percentile of that of France, in fact all other countries 

have a 75th percentile less than the median of Russia.  This increased usage 

of both third-party and persistent cookies can be attributed to the 

significant disparity in the frequency of third-party persistent cookies 

within sites originating from Russia, attested to by Figure 4-3f.  The 

                                                   
12 with Lilliefors Significance Correction 



 

  82 

 

median frequency of Russian sites using third-party persistent cookies 

surpasses all other countries, and is above the 95th percentile of all but 

three countries—France, the Netherlands, and Sweden.  Although Russia 

is observed to have a higher than average overall cookie adoption 

frequency, these effects are not consistent with respect to first-party and 

sessional cookie usage, shown in Figure 4-3b and Figure 4-3d respectively, 

where very little difference between Russian sites and sites from other 

countries exists. 

Table 4-2.  Mann-Whitney U Test For Russia vs. All Other Countries 

 
All 

Cookies 
First-
Party 

Third-
Party 

Sessional Persistent 
Third-
Party 

Persistent 

Mann-Whitney U 2.29E+07 3.53E+07 1.80E+07 3.47E+07 2.00E+07 1.64E+07 

Z -18.952 -2.806 -28.751 -3.534 -23.876 -33.183 
Asymp. Sig. 
(2-tailed) 

0.000 0.005 0.000 0.000 0.000 0.000 

Cliff's Delta 0.388 0.056 0.518 0.069 0.464 0.561 

Upper Limit 0.350 0.036 0.482 0.031 0.428 0.525 

Lower Limit 0.424 0.035 0.553 0.108 0.499 0.595 

 

The Cliff’s δ effect-sizes and associated confidence intervals are 

presented alongside the Mann-Whitney values presented in Table 4-2 and 

in Figure 4-4.  It is clear from the effect-sizes that the largest disparity 

exists between Russia and the world with respect to persistent (δ = 0.464), 

third-party (δ = 0.518), and most notably third-party persistent cookies (δ 

= 0.561).  Much smaller differences exist amongst all (δ = 0.388), first-

party (δ = 0.056), and sessional (δ = 0.069) cookies. The difference with 

respect to sessional and first-party cookies does not warrant the 

classification of small, leading to the conclusion that the medium 

difference observed amongst overall cookie usage is due to the large 

differences existing between Russia and other countries with respect to 

third-party persistent cookies.  A ripple effect of this difference is observed 

in the medium and large differences existing in persistent and third-party 

cookies respectively, as third-party persistent cookies is defined as third-

party ∩ persistent.  Clearly sites originating in Russia are utilizing third-



 

  83 

 

party persistent cookies at a much higher rate then other countries, these 

effects will be studied further in Section 4.3.2. 

In direct contrast to the results observed for Russia, sites 

originating from Japan, Hong Kong, and Taiwan are observed to be 

consistently below average with respect to cookie usage.  This discrepancy 

is most pronounced with respect to first-party and sessional cookies, 

where the 75th percentile frequency for Japan, Hong Kong and Taiwan are 

all equal to that of the median frequency for all other countries with the 

exception of the Netherlands.  While it may be tempting to view this as a 

geographical issue, China does not follow this trend and South Korea posts 

a mixed set of results.  

 
Figure 4-4.  Relative Effect Sizes for Russia vs. the World 

To further characterize these differences, Cliff’s δ effect-sizes and 

associated confidence intervals were calculated for each of the eastern 

Asian countries13 with the results presented in Figure 4-5.  Hong Kong has 

                                                   
13 Country classifications provided by the United Nations Statistical Division (2007). 

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

All! First-Party!Third-Party!Sessional! Persistent!Third-Party 
Persistent!

Ef
fe

ct
 S

iz
e 

(C
lif

f's
 d

el
ta

)!

Type of Cookie!

large 

medium 

small 



 

  84 

 

the overall lowest cookie usage amongst all of the countries surveyed, as 

shown in Figure 4-5, this decreased overall level is due to less than average 

cookies usage with respect to all five categories of cookies.  Despite this 

general decrease in cookie usage, Hong Kong is not the minimum within 

each category of cookies.  Japan, for example, has lower sessional cookie 

adoption and the second lowest overall cookie adoption rate among the 

countries identified as the origins of at least 500 sites surveyed.  Unlike 

Hong Kong, this small difference is not as widespread across all five types 

of cookies and is seen as the results of decreased usage of first-party and 

sessional cookies.  Taiwan, on the other hand, is observed to have lower 

overall cookie adoption; however, this is primarily attributed to the small 

decrease in third-party persistent cookie adoption. 

 
Figure 4-5.  Eastern Asian Countries vs. the World 

China and South Korea present very different results, neither 

presenting a small difference in overall cookie usage, in fact the Cliff’s δ 

intervals for South Korea with respect to overall cookie usage encompass 

zero, indicating that with respect to overall cookie usage South Korea is 

-0.3!

-0.2!

-0.1!

0.0!

0.1!

0.2!

0.3!

Japan! Hong Kong! China! South Korea! Taiwan!

Ef
fe

ct
 S

iz
e 

(C
lif

f's
  D

el
ta

)!

Eastern Asian Country!
All Cookies! 1st Party! 3rd Party! Sessional! Persistent! 3rd Party Persitent!

small 

small 



 

  85 

 

similar to that of the rest of the world.  Because of the relationship 

between categories, cookies = (sessional ∪ persistent) = (first-party ∪ 

third-party), the equality observed between the global distribution and 

that of South Korea, with respect to all cookies, manifests itself as 

symmetric positive and negative disparities with respect to 

sessional/persistent and first-/third-party cookies.  China also presents a 

mixed set of results; however, these results are not as symmetric as those 

of South Korea.  With respect to third-party persistent cookies, China has a 

larger relative disparity than South Korea; this is very interesting 

especially considering the relatively large disparity amongst persistent 

cookies in South Korea, suggesting that persistent cookie usage in South 

Korea is distributed more evenly between first- and third-party cookies 

than in China. 

It is clear from these findings that the usage of cookies differs 

greatly based upon the geographical region in which the site originates, 

providing a clear answer to research question Q1—cookies are utilized 

across the globe, as cookies were found to be used in every country for 

which more than four sites were surveyed.  Although cookies are utilized 

globally cookie deployment was observed to vary greatly depending on the 

nation from which a site originates.  An answer to research questions Q2 

and Q3 are clearly illustrated by the dichotomy of cookie usage from sites 

originating in Russia versus those originating in Southeast Asia, and 

specifically Hong Kong—the distribution of first- versus third-party 

cookies and sessional versus persistent cookies are not consistent across 

nations.  While numerous reasons exist for this variance, including public 

perceptions of cookies, cultural sensitivities to privacy evasive 

technologies, the legal obligations and responsibilities of web applications, 

and the maturity of the e-commerce environment, it is important that 

anyone seeking to develop web applications within these nations 

understand these factors in order to correctly situate the software 

endeavour for success.  



 

  86 

 

4.3 Commercial Off The Shelf Cookie Deployment 

From the cookies collected by the survey two distinct groups emerged, 

those used as part of a dynamic web application framework, and those 

used for online tracking and advertising.  Although these cookies emerged 

from all categories of cookies, certain specific types of cookies were 

strongly related to specific technologies.  The discussion of these results 

will be partitioned into two sections: a discussion of dynamic web 

technologies and a discussion of online tracking and advertising 

technologies. 

4.3.1 Dynamic Web Application Frameworks 

The survey was able to identify five cookies associated directly with the 

state management mechanisms for five popular web application 

frameworks: ASP, PHP, ASP.NET, Java Servlet (JSP & J2EE), and Cold 

Fusion.  Each of these development environments provide an internal 

state management mechanism relying heavily upon cookie technology.  

Usage of these technologies is easily identifiable by the presence of the 

associated technology-specific cookie: ASPSESSIONID%14, PHPSESSID, 

ASP.NET_SessionId, JSESSIONID, and CFID, respectively.  A closer 

inspection of the associated cookies, summarized in Table 4-3, reveals that 

the vast majority of the cookies were first-party, and all but one of the 

technologies (Cold Fusion) exclusively used sessional cookies.  Cold Fusion 

uses a persistent cookie as the unique identifier for a user across a web-

session. This cookie, unlike the cookies from the other frameworks, is not 

set to be removed when the browser is closed, rather the majority of CFID 

cookies (81.9%) were set to be stored in the browser for at least 30 years 

(10,950 days).  The use of persistent cookies in association with dynamic 

web application frameworks is clearly in the minority, as the four highest 

occurring associated cookies were all nearly exclusively sessional.  

                                                   
14 % Represents a wildcard, these cookies share the same prefix ASPSESSION followed by 
a unique identifier. 



 

  87 

 

Although the majority of dynamic technology cookies were first-party, a 

percentage of the cookies were associated with third-party hosts, 

suggesting that third-party providers are using theses dynamic web 

technologies in the provision of third-party services.  The extent to which 

these services are of value to the end-user and/or the service provider 

cannot be assessed from these findings, due to the plethora of specific 

third-party advertising and user-tracking services available on the 

Internet, it is assumed that these cookies represent more direct end-user 

service provision.  

Table 4-3. Dynamic Web Application Frameworks Associated Cookies 

Dynamic Web 
Technology 

Cookie Name Occurrence 
(Number of Sites) 

First-Party 
(Number of Sites) 

Sessional 
(Number of Sites) 

ASP ASPSESSION%14 20875 21.3% 16917 81.0% 20874 99.9% 

PHP PHPSESSID 7379 7.5% 6028 87.1% 7052 95.6% 

ASP.NET ASP.NET_SessionID 5332 5.4% 3623 68.0% 5322 100% 

JSP JSESSIONID 5112 5.2% 3678 71.2% 5085 99.5% 

Cold Fusion CFID 1528 1.6% 1331 87.1% 1528 15.8% 

 

All four dynamic technology cookies were found to be within the 

99.9th percentile of reoccurring cookies amongst sites surveyed when 

ranked by cookie occurrence. In fact, ASP cookies where the most 

frequently retrieved cookies in this survey.  PHP, ASP.NET and JSP 

cookies where ranked sixth, seventh, and eighth most occurring cookies.  

The only cookies more popular were all associated with Google Analytics15 

or ASP, making PHP, ASP.NET, and JSP the third, fourth, and fifth most 

widely adopted technology encountered in the survey.  Cold Fusion rates 

where also quite high, ranking eleventh amongst the sites surveyed.  

Figure 4-6 presents the percentage of sites found using each of the 

identifiable web application frameworks.  ASP was found to be the most 

common technology globally, with adoption rates of 21.3%, more than 13 

points above the next closest competitor, PHP with 7.5%.  ASP.NET and 

JSP were clustered together with adoption rates of 5.4% and 5.2%, 

                                                   
15 Google Analytics was found to use a combination of four cookies, __utma, __utmb, 
__utmc, and __utmz. 



 

  88 

 

respectively, and Cold Fusion was a distant fifth with a 1.6% adoption rate.  

These global rates will serve as a basis for comparison against which 

individual country adoption can be measured. 

 

 
Figure 4-6.  Global Dynamic Web Application Framework Adoption 

A comparison of the adoption of dynamic web content frameworks 

amongst the 18 countries studied is provided in Figure 4-7.  The figure 

presents the cumulative percentage of each of the four dynamic 

technologies.  The cumulative percentages range from a low of 18.4% in 

Japan, to a high of 69.9% in Israel.  Japan having the lowest cumulative 

occurrence per site is in-line with the results obtained presented in Figure 

4-2, where Japan was the lower outlier with respect to sessional cookies.  

Although a low occurrence rate was uniform across all five technologies, 

Japan was found to possess the lowest occurrence rate for only ASP 

cookies, 7.0%, over 14 percentage points below the global average.  This 

trend was also observed for the related ASP.NET technology for which 

Japan again had the lowest occurrence rate, 1.8%. Hong Kong, like Japan, 

had a lower than average occurrence rate across all five technologies.  

Despite this technology-wide depression, Russia (23.8%) was found to 

have a lower cumulative occurrence rate than Hong Kong (29.1%), 

attributed primarily to the lower-than average adoption of ASP 

0% 

5% 

10% 

15% 

20% 

25% 

ASP PHP ASP.NET JSP Cold Fusion 

Pe
rc

en
ta

ge
 o

f S
ite

s 

Dynamic Web Technology 



 

  89 

 

technology.  Juxtaposed to Japan and Hong Kong, the UK presented 

higher than average occurrence rates for all five technologies; however, 

this did not translate into the UK having the highest cumulative rate 

amongst the countries studied, in fact six other countries posted higher 

rates—China, South Korea, Spain, Turkey, and Sweden.  Apart for Japan, 

Hong Kong, and the UK, all other countries displayed mixed results, 

suggesting that certain technologies are more and less prevalent within 

specific countries.  

 
Figure 4-7.  Cumulate Comparison Of Dynamic Web Framework Adoption 

Per Country 

Israel had the highest cumulative occurrence rate, attributed to 

higher than average rates with respect to ASP, PHP, and ASP.NET 

technologies.  On the other hand, the occurrence rates for JSP, and Cold 

Fusion cookies were below average.  Although within Israel PHP and JSP 

were observed to be above average, ASP technology was observed to have 

the highest occurrence of any country—48.7%.  This was over 27 

percentage points above the global average representing the single largest 

0%! 20%! 40%! 60%! 80%!

US!
China!
Japan!

UK!
Canada!

Germany!
France!

South Korea!
Netherlands!
Hong Kong!

Taiwan!
Spain!

Russia!
Australia!

Turkey!
Sweden!

Israel!
Italy!

Others!

Cumulative Percentage of Sites!

C
ou

nt
ry
!

ASP!
PHP!
ASP.NET!
JSP!
Cold Fusion!



 

  90 

 

disparity encountered.  The dominance of ASP within Israel is clear, as 

ASP accounts for more cookies than PHP, ASP.NET, JSP and Cold Fusion 

combined.  Despite being the global leader in cookie occurrence, ASP had 

lower than average rates amongst 11 of the 18 countries analyzed; however, 

this only translated into a net result of 3 countries where ASP was not the 

dominant technology.  The occurrence of this technology was most 

prevalent within Israel (48.7%), China (46.0%), and Turkey (41.4%), each 

of which posted rates more than 20 points above the global average 

(21.3%).  

PHP, the second most encountered technology, had lower than 

average rates in the top three countries (ranked by number of sites 

surveyed), US, China, and Japan.  Other than these three, PHP rates were 

only less than average in Hong Kong and Australia.  The difference was 

most pronounced in China, followed closely by Japan and Hong Kong, the 

US appeared to be just slightly below average, less than half of one percent 

lower than the average.  In fact, the US was observed to be below average 

with respect to ASP, PHP, ASP.NET, and JSP cookies, the only above 

average rate was with respect to Cold Fusion technology; however, it was a 

modest increase of less than one percentage point.  The largest disparity 

within the US was observed amongst ASP cookies, where the US was more 

than 7 percentage points below the global average.  All other technologies 

had disparities of less than 1 percent; it appears the usage of web 

application frameworks in the US, with the exception of ASP, is in 

harmony with global adoption rates. 

Cold Fusion, the least occurring technology encountered by the 

survey, was found to be above average in only five of the countries studied: 

Australia, Spain, US, UK, and Canada (ordered by descending occurrence 

rate).   Australia was observed to have the highest Cold Fusion cookie 

occurrence rate, more than two percentage points higher than the global 

average.  Cold fusion usage was lowest in South Korea with an occurrence 

rate 0.1%.  This represents the lowest occurrence rate for all dynamic web 



 

  91 

 

technologies across all 18 countries.  Despite having such a low occurrence 

rate of Cold Fusion cookies, South Korea had the highest rate of JSP 

cookies, 6.8 percentage points about the global average, and was the 

second highest with respect to PHP technology, falling closely behind 

France, the PHP frontrunner. 

 
Figure 4-8.  Relative Occurrence Of The Dominant Technological Platforms 

Per Country 

To answer research question Q4, a breakdown of the dominant 

platform and relative cookie occurrence rate per country is provided in 

Figure 4-8.  While ASP, PHP, JSP and Cold Fusion are all utilized globally, 

it is clear that the most dominant technology encountered was ASP.  PHP, 

the only other technology most frequently occurring amongst the countries 

analyzed, was observed within 3 countries—Germany (36.6%), 

Netherlands (35.7%), and Russia (41.5%); two of which, Germany and 

Netherlands, have the lowest relative occurrence rates amongst the 18 

countries.  Only three countries have a relative occurrence rate outside of 

the range 35-60%, China (70.1%), Turkey (64.0%), and Israel (69.7%), 

0%! 20%! 40%! 60%! 80%!

US!
China!
Japan!

UK!
Canada!

Germany!
France!

South Korea!
Netherlands!
Hong Kong!

Taiwan!
Spain!

Russia!
Australia!

Turkey!
Sweden!

Israel!
Italy!

Others!

Relative Occurrence Percentage!

C
ou

nt
ry
!

ASP!
PHP!



 

  92 

 

representing the least competitive markets with respect to dynamic web 

technologies. 

4.3.2 Online Tracking & Advertising Technologies 

Since the introduction of Cookies, online advertising providers have had a 

large stake in third-party cookie technology, specifically lobbying user-

agents and the Internet Engineering Steering Group to include default 

support for third-party cookies (Kristol, 2001). Despite the lobbing, RFC 

2109, and 2965 (Kristol & Montulli, 1997, 2000), the two latest cookie 

specifications, mandate that third-party cookies be rejected by default in 

any user-agent (web browser).  This standard has however been generally 

ignored by all major user-agents—Internet Explorer, Netscape, Firefox, 

Opera, and Safari.  Enabling third-party cookies by default allows Internet 

advertising networks to provided targeted advertisements to end-users.  

This targeting is only available due to the ability of advertisers to track 

Internet users across multiple sites and browsing sessions using third-

party cookies.  These third party cookies, often persistent in nature16, are 

used extensively to track users across multiple sites and sessions, 

providing targeted advertisements based upon the browsing tendencies 

and history of end-users.  Recently technologies, such as Google Analytics, 

have begun to use third-party embedded JavaScripts to provide tracking 

within a single site by setting first-party cookies.  These technologies are 

beginning to blur the lines between first-party and third-party cookies, 

presenting a significant challenge for users to assess the status of their 

online privacy. 

Third-party persistent cookies are the primary vehicle through 

which online advertisers have provided targeted advertisements to users 

across multiple sites and sessions.  These advertisements are often overt; 

however, the user-tracking methods are not and are often concealed from 

the Internet user using web bugging or web bugs (Smith, 1999).  This 

                                                   
16 71.8% of all third-party cookies encountered were persistent. 



 

  93 

 

process involves placing links to third-party objects, often very small 

images with dimensions measured in single digit number pixels.  These 

objects act to place cookies within the user-agent, without the consent of 

the user and are enabled by the default web-browser configurations of the 

majority of browsers.  To study these online advertising and tracking 

practices, third-party persistent cookies were analyzed with respect to the 

repeat occurrence of similar hosts.  A per-country list of the top 5 most 

occurring third-party persistent hosts has been compiled for each of the 18 

countries selected in Section 4.2 and is presented in Table 4-4 and 

graphically in Figure 4-9.  In the compilation of the dataset, two hosts 

were considered equal if the second-level domain (SLD) name matched.  

For example, hitbox.com the host responsible for the largest number of 

third-party persistent cookies (3969) was found to range across 503 

distinct domain names all sharing the common SLD, hitbox.com.  

Russia, as indicated in Section 4.2.2 was found to have the highest 

mean of sites that utilized third-party persistent cookies.  This trend is 

clearly aspirant in Figure 4-9 as Russia records the first, second, and third 

largest percentages for third-party persistent hosts—rambler.ru, list.ru, 

and yadro.ru, respectively.  In fact, the percentage of sites within Russia 

that have a cookie set by the largest occurring host rambler.ru (48.2%), 

was larger than the cumulative percentages of the top five hosts from any 

other country analyzed.  The two least occurring top five hosts within 

Russia, spylog.com, and adriver.ru were the fifth and sixth largest, falling 

short only of the French-specific host xiti.com.  Third-party persistent 

cookie usage within Russia appears to be driven by Russian-specific 

advertisers, as all five were located within Russia.  Although the hosts did 

set cookies for non-Russia sites, the majority of cookies, ranging from 73-

90%, were set while visiting Russian sites. 



 

  94 

 

Table 4-4.  Top 5 Third-Party Persistent Cookie Hosts Per Country 

The Top 5 Third-Party Persistent Cookie Hosts 
Country 

Host Percentage 
doubleclick.net 3.20% 
atdmt.com 2.79% 
2o7.net 2.68% 
hitbox.com 2.00% 

US 

fastclick.net 1.95% 
allyes.com 4.75% 
information.com 0.65% 
mozilla.org 0.65% 
revenue.net 0.60% 

China 

admin88.com 0.56% 
valuecommerce.com 3.18% 
tracer.jp 1.65% 
valueclick.ne.jp 1.11% 
2o7.net 1.01% 

Japan 

doubleclick.net 0.92% 
doubleclick.net 7.70% 
atdmt.com 4.61% 
hitbox.com 2.98% 
estat.com 2.55% 

UK 

adtech.de 2.49% 
doubleclick.net 3.76% 
hitbox.com 2.06% 
2o7.net 1.86% 
atdmt.com 1.82% 

Canada 

statcounter.com 1.39% 
ivwbox.de 9.08% 
doubleclick.net 4.11% 
falkag.de 3.69% 
adtech.de 2.32% 

Germany 

www.etracker.de 1.87% 
xiti.com 24.17% 
doubleclick.net 7.02% 
cybermonitor.com 4.90% 
estat.com 4.68% 

France 

weborama.fr 4.08% 
acecounter.com 3.85% 
logger.co.kr 2.39% 
nasmedia.co.kr 1.86% 
overture.com 1.40% 

South Korea 

realmedia.co.kr 1.17% 



 

  95 

 

The Top 5 Third-Party Persistent Cookie Hosts 
Country 

Host Percentage 
estat.com 7.22% 
doubleclick.net 5.50% 
sitestat.com 5.10% 
sexcounter.com 2.19% 

Netherlands 

onestat.com 2.05% 
imrworldwide.com 0.93% 
casalemedia.com 0.71% 
zedo.com 0.71% 
doubleclick.net 0.64% 

Hong Kong 

statcounter.com 0.64% 
hotrank.com.tw 4.16% 
cnyes.com 0.39% 
doubleclick.net 0.39% 
paypal.com 0.31% 

Taiwan 

hitbox.com 0.23% 
doubleclick.net 10.23% 
ojdinteractiva.com 8.67% 
imrworldwide.com 8.10% 
tradedoubler.com 2.45% 

Spain 

atdmt.com 1.72% 
rambler.ru 48.18% 
list.ru 38.15% 
yadro.ru 33.85% 
spylog.com 23.44% 

Russia 

adriver.ru 17.58% 
imrworldwide.com 8.22% 
doubleclick.net 7.18% 
adsfac.net 3.66% 
2o7.net 3.26% 

Australia 

sextracker.com 1.96% 
reklam.gittigidiyor.com 3.91% 
statcounter.com 2.16% 
mediainer.net 2.16% 
iyi.net 1.62% 

Turkey 

hbmediapro.com 1.21% 
imrworldwide.com 12.30% 
doubleclick.net 7.15% 
tradedoubler.com 7.15% 
research-int.se 6.29% 

Sweden 

admeta.com 3.43% 
imrworldwide.com 6.27% 
statcounter.com 3.43% 
walla.co.il 2.84% 
2o7.net 1.49% 

Israel 

atdmt.com 1.49% 



 

  96 

 

The Top 5 Third-Party Persistent Cookie Hosts 
Country 

Host Percentage 
imrworldwide.com 11.36% 
doubleclick.net 7.41% 
tradedoubler.com 3.79% 
shinystat.com 0.02% 

Italy 

neodatagroup.com 0.02% 

 

In strake contrast to the Russian results, Hong Kong was found to 

have the lowest percentage of sites setting third-party persistent cookies.  

This is reflected in the small percentage of sites for which third-party 

cookies are set.  Hong Kong is the only country analyzed to have all five 

host recorded for less than 1% of the sites, suggesting that the use of third-

party persistent cookies is spread across a wide variety of hosts, and no 

specific host has any substantial market share.  Each of the top five hosts 

present in Hong Kong were found to be used in a wide variety of other 

countries, and no host was found to be Hong Kong specific. Taiwan, on the 

other hand, the county with the second lowest third-party persistent 

cookie rate, was found to use third-party persistent cookies at the same 

rate as Hong Kong.  This similarity was confirmed by a Cliff’s delta 

analysis performed upon the two populations with respect to third-party 

persistent cookies (δ = -0.007 [-0.033, 0.020]).  Despite the similarity in 

third-party persistent cookie occurrence rates, Taiwan has a much 

different adoption rate than Hong Kong.  Taiwan, like many of the other 

countries has a country-specific host that dominates the third-party 

persistent cookie landscape, hotrank.com.tw.  This host is responsible for 

setting third-party persistent cookies on 4% of sites within Taiwan and is 

clearly the dominant host as the next closest host is only responsible for 

0.4% of the cookies.  Like the Russian-specific cookies, hotrank.com.tw is 

primarily used within Taiwan.  The two populations, Hong Kong and 

Taiwan present two very different pictures of third-party persistent cookie 

usage, Hong Kong, a wide variety of globally established hosts, and 

Taiwan, a market with a clear country-specific market leader. 



 

  97 

 

Like Taiwan, China, France, and Germany have a country-specific 

dominant host, allyes.com, xiti.com, and ivwbox.de, respectively.  All four 

of the hosts more than double the next closest competitor with respect to 

site occurrence percentage.  Other countries such as Japan, the UK, 

Canada, South Korea, Turkey, Sweden, Israel, and Italy have a clear front-

runner, although their dominance is not a pronounced as that found in the 

other countries. The Netherlands, Spain, Australia appear to have a two- 

or three-way competition between the most occurring hosts.  Finally, the 

US presents a much more competitive market with less than 1.5 

percentage points separating the first and fifth most prevalent hosts. 

 
Figure 4-9. Top 5 Third-Party Persistent Hosts Per Country 

Despite the number of country-specific hosts, cookies from 

doubleclick.net, were observed to be in the top five of 13 countries.  These 

cookies prevalence was unmatched by any other host, and was set by 2,713 

(2.8%) of sites encountered by the survey, the highest globally occurring 

third-party persistent host.  Cookies set by the next closest competitor, 

hitbox.com, were encountered on less than half of the number of sites as 

0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

40%!

45%!

50%!

Pe
rc

en
ta

ge
 o

f S
ite

s!

Country!



 

  98 

 

doubleclick.net, 1,221 (1.2%).  Furthermore, doubleclick.net was found 

within the top five hosts for each of the G7 countries, in fact, it was the top 

technology for the US, UK, and Canada, and second behind the country-

specific hosts in France and Germany.  Japan was the only G7 country in 

which doubleclick.net was not one of the top two hosts. 

Although third-party persistent cookies are deployed regardless of 

the country of origin, the usage of these cookies is not consistent between 

nations as a number of nation-specific cookies dominate locally.  While 

third-party cookie usage was found to be universal, differences in the rates 

at which these cookies are deployed were observed.  These findings answer 

research question Q5 providing insight into the tolerance of specific 

nations for this type of technological use.  Clearly in Russia, third-party 

cookies are ubiquitous, whereas in Hong Kong, developers should 

generally stay away from these types of technologies, as they do not appear 

to have widespread acceptance. 

4.3.3 Web Analytics: Third-Party Internal Site Tracking 

Technologies 

Third-party persistent cookies and web-bugs are not the only techniques 

employed to track users and provide content tailored to specific Internet 

users.  A growing number of sites are beginning to use third-party 

embedded JavaScript to set first-party cookies, which are used to collect 

data about users browsing habits providing the ability to produce user-

centric content, assessing which pages are most profitable. Although these 

goals are similar to that of advertisers, the resulting cookies are difficult to 

identify, as they do not share a common third-party host. 

An analysis, similar to that undertaken with respect to dynamic web 

technology was applied to the collection of over 200,000 cookies.  The 

distinct cookie names where ranked by occurrence and then analyzed from 

the perspective of the number of distinct hosts that set the cookies.  This 

analysis revealed several reoccurring cookie names, two of which were 



 

  99 

 

definitively traced to third parties, namely Google Analytics (2007) and 

Omniture SiteCatalyst (2007).  Google Analytics, traceable by the presence 

of four reoccurring cookies __utmc, __utma, __utmb, and __utmz, was 

set on 8.6% (8,411) of the sites surveyed, making it the second most widely 

found cookie-related technology encountered by the survey.  Omniture 

SiteCatalyst, like Google Analytics, was traceable by the presence of two 

unique cookies s_cc, and s_sq and was set by 1.7% (1,690) sites surveyed, 

ranking Omniture seventh for most encountered cookie-related web 

technology.  

 
Figure 4-10.  Web Analytics Technology Per Country 

A per-country breakdown of Google Analytics and Omniture 

SiteCatalyst is provided in Figure 4-10 Google Analytics is clearly the 

global market leader, evident by a market share, at the lowest point, of 2.5 

times that of Omniture.  The market appears to be much more competitive 

in the Australia, Canada, Germany, Israel, Japan, UK, and US with a 

market share ranging from 2.5 – 8.0 times higher than that of Omniture, 

compared to 16.5 – 75 in the other countries.  Google Analytics adoption 

0%! 5%! 10%! 15%! 20%!

US!
China!
Japan!

UK!
Canada!

Germany!
France!

South Korea!
Netherlands!
Hong Kong!

Taiwan!
Spain!

Russia!
Australia!

Turkey!
Sweden!

Israel!
Italy!

Percentage of Sites!

Google!
Analytics!
Omniture!
SiteCataylst!



 

  100 

 

rate ranges from a minimum of 1.9% in South Korea to a high of 18.4% in 

Spain.  Similarly to Google, Omniture’s lowest rating was in South Korea, 

where the technology was not encountered.  Australia posted Omniture’s 

highest rating (3.8%) and was the country with the smallest ratio of sites 

with Google versus Omniture cookies. 

In comparison to third-party persistent cookie based technologies 

presented in Table 4-4 and Figure 4-9, Google Analytics is the most used 

user-centric technology in all but five of the countries analyzed—China, 

France, South Korea, Russia, and Sweden.  Within China, France, and 

Sweden, Google ranked second falling behind the country-specific hosts of 

France (xiti.com) and China (allyes.com) and imrworldwide.com in 

Sweden.  In South Korea, where Google’s rate was the lowest of the 18 

countries studied, it ranked third behind two South Korean-specific hosts 

(acecounter.com, and logger.co.kr).  Russia, as previously noted, was very 

different from the other countries, and Google Analytics ranked eighth 

amongst user-centric technologies encountered. All eight of the cookies 

that ranked higher than Google were Russian-specific, further evidence 

that the Russian online marketplace is driven primarily by internal 

interactions. 

Hong Kong, despite the low adoption rate of third-party advertising 

cookies was found to have a Google Analytics occurrence rating of 3.6%, 

slightly higher than that of China. Google Analytics is the first third-party 

technology found used on more than 1% percent of sites from Hong Kong.  

Further investigation revealed a second Hong Kong-specific17 re-occurring 

cookie, identifiable by the name cdb_sid, found occurring on 3.5% of sites.  

Information pertaining to the technology responsible for setting the 

cdb_sid was not readily available and a direct link to any one technology 

could not be established.  Due to the re-occurring nature of this exclusively 

persistent cookie and the fact that the majority of cookies (88.9%) were 

first-party, it is assumed that these cookies fulfill a similar role to that of 

                                                   
17 Found occurring in less than 0.6% in any other country. 



 

  101 

 

Google Analytics and Omniture, however this cannot be explicitly 

confirmed.  Further evidence suggesting that this cookie is Google’s direct 

competitor within Hong Kong is the degree of overlap, or rather the lack 

there of, between sites setting these cookies.  Within Hong Kong the 

presence of cookies from Google Analytics, Omniture, and cdb_sid where 

found to be mutually exclusive, suggesting that these cookies are 

dichotomous to each other.   This exclusivity was also observed globally, 

where 98.7% of sites with these technologies were found to be mutually 

exclusive. 

Third-party web analytics is quickly becoming an important tool 

within the business model of any e-commerce endeavour.  Because cookies 

are a crucial component of these third-party software packages, the 

cookies are set as first-party, both sessional and persistent, to decrease the 

likelihood of rejection.  This application raises a number of privacy 

questions, as these cookies are set by embedded third-party scripts; a 

detail that is not explicitly revealed to the user.  While this study answers 

the research question Q6—how are cookies used to track a users 

movement within a site—they also elicit a number of further questions 

that are outside of the scope of this work.  Similar to the privacy concerns 

of unverified transactions associated with the usage of third-party cookies 

(Kristol, 2001), this type of cookie usage can be seen as invasive and is 

currently implemented without any opt-out mechanism for the average 

user.  Similar to the usage of third-party cookies, these issues have not 

crossed the tolerance threshold for the average Internet user, and as such 

remain in use globally. 

4.4 Cookies: A Proxy for a Country's E-Readiness? 

The annual e-readiness white paper published by the Economist 

Intelligence Unit “evaluates the technological, economic, political and 

social assets of 68 countries … and their cumulative impact on their 

respective information economies.” (Economist Intelligence Unit & IBM 



 

  102 

 

Institute for BusinessValue, 2006).  The ranking is comprised of the 

weighted accumulation of scores from nearly 100 criterions spanning six 

distinct categories—connectivity, business environment, consumer and 

business adoption, legal and policy environment, social and cultural 

environment, and supporting e-services.  Essentially, e-readiness provides 

a metric by which we can assess a country’s e-business environment, and 

how fertile the environment is with respect to Internet-based endeavours.  

Of the 68 countries identified in the e-readiness report, 66 of these 

countries were the geographical origin of at least one surveyed site.  66 of 

68 countries highlighted in the report represent 98% (96,365) of the sites 

surveyed and all 18 of the countries highlighted in Section 4.2 are ranked 

in the report. The e-readiness report was used to partition the survey 

results with respect to geographical origin of each site.  These partitions 

are analyzed with respect to six criteria: cookie usage, first-party cookie 

usage, third-party cookie usage, sessional cookie usage, and persistent 

cookie usage, and third-party persistent usage. 

To investigate the association between a country’s e-readiness 

ranking and their cookie usage, a series of Spearman’s ρ correlations were 

calculated and summarized in Table 4-5.  Significant correlations were 

observed amongst all forms of cookie usage with the exception of first-

party cookies.  All of the correlation coefficients represented negative 

trends suggesting that the higher the e-readiness rank of the host country, 

the more likely the site to use cookies, especially third-party persistent 

cookies. 



 

  103 

 

Table 4-5.  Spearman’s ρ Correlations For Cookie Usage vs. E-Readiness 

Ranking 

 Cookies 
First-Party 

Cookies 

Third-
Party 

Cookies 

Sessional 
Cookies 

Persistent 
Cookies 

Third-
Party 

Persistent 
Cookies 

Spearman’s ρ -.309 -.208 -.462 -.254 -.468 -.499 

Pearson’s r -.322 -.217 -.479 -.265 -.485 -.516 

Sig. (2-tailed) .012 .093 .000 .040 .000 .000 

N18 66 66 66 66 66 66 

 

From the ρ values in Table 4-5, we see that this correlation is 

strongest amongst third-party persistent cookies, and weakest for general 

cookie usage.  A small relationship exists between overall cookie usage and 

ranking. The classification of overall cookie usage as small is attributed to 

the correlation of rank and third-party persistent cookies suppressed 

amongst the general population of cookies.  Third-party and persistent 

cookies have medium correlations to ranking; the strongest relationship 

exists between third-party persistent cookies and e-readiness ranking.  

This large relationship between ranking and third-party persistent cookies 

suggests that the maturity of a country's e-business environment promotes 

the usage of third-party and persistent cookies, specifically third-party 

persistent cookies.  These findings further support the analysis in Section 

4.3.2; the majority of third-party persistent cookies are used within 

commercially viable environments to provide user-centric content.  Based 

upon the correlations revealed in Table 4-5 it is clear that cookie usage, 

specifically third-party and persistent cookies, are related to the maturity 

of a nation's e-commerce environment, providing an affirmative answer to 

research question Q7—third-party persistent cookies directly correlate 

with the maturity of a country's e-commerce environment. 

                                                   
18 N=66 because of the removal of the two countries that did not have any sites surveyed, 
and therefore could not be included in the Spearman's ρ correlations. 
 



 

  104 

 

4.5 Summary of Results and Key Findings 

Significant links were established by the survey with respect to the 

technological sources of first-party and sessional cookies.  These types of 

cookies were observed in abundance amongst web application 

development platforms, specifically ASP, PHP, JSP, and ASP.NET.  The 

clearest link was found with respect to sessional cookies comprising 99.0% 

of the technological-specific cookies, compared to only 28.7% of the non-

specific cookies collected.  This link was also observed amongst first-party 

cookies but not to the same degree—73.3% versus 49.0%.  It is clear that 

there is a relationship between first-party sessional cookies and dynamic 

web technologies.  Despite this relationship, technology-specific cookies 

only accounted for 37.2% of sessional cookies and 19.1% of first-party 

cookies, and although a clear link was found, it cannot be viewed as a 

definitive factor for this type of cookie usage. 

The survey highlights the prevalence of vendor-specific third-party 

technologies both globally and within specific countries.  Although the 

survey did find global leaders, such as doubleclick.net and Google 

Analytics, country-specific market providers such as rambler.ru, 

allyes.com, xiti.com, and ivwbox.de were also discovered.  These providers 

suggest that despite a globally dominated market, there is room for 

country-specific competitors, as is the case within Russia, France, 

Germany, China, Hong Kong, and South Korea.  This finding is of 

particular relevance to existing e-commerce ventures and those looking to 

break into the already saturated market. 

A direct correlation was identified between third-party persistent 

cookie usage and the status of a country's e-business environment, as 

determined by the e-readiness rankings (Economist Intelligence Unit & 

IBM Institute for BusinessValue, 2006).  This correlation, observed 

specifically amongst third-party persistent cookies, encapsulates the 

complexity of the relationship between cookie usage and country of origin. 

 



 

  105 

 

Chapter 5 

 

Testing Web Applications With 

Respect to Cookies19,20 
 

The previous chapters have demonstrated that cookies are used by over 

two-thirds of Internet sites, and by over 80% of sites identified as 

providing dynamic content.  With this level of adoption and the diverse 

user-agent implementations, testing web applications from the perspective 

of cookies becomes an increasingly important task.  Furthermore, given 

the state-based nature of cookies and the reliance upon this technology 

within modern web programming frameworks, the verification of cookies 

within web applications is essential.  This chapter outlines a novel cookie 

collection testing strategy.  This strategy is based on the excess of 280,000 

cookies studied in Chapters 3 and 4, and draws upon anti random testing 

principles to create an extendable cost-effective testing strategy for web 

applications. 

The remainder of this chapter is organized as follows: Section 5.1 

will outline the primary challenges associated with cookie testing; Section 

5.2 will provide a number of testing recommendations specifically drawn 

from the data reported in Chapter 3; Section 5.3 will present the cookie 

collection testing strategy; Section 5.4 will outline the major challenges 

                                                   
19 A version of this chapter has been published. Tappenden, A. F., & Miller, J. (2009). 
Cookies: A Deployment Study and the Testing Implications. ACM Trans. Web, 3(3), 1–
49. 
20 A version of this chapter has been published. Tappenden, A. F., & Miller, J. (2008). A 
Three-Tiered Testing Strategy for Cookies. Paper presented at the Software Testing, 
Verification, and Validation, 2008 IEEE International Conference on. 



 

  106 

 

overcome in relation to the automation of the testing framework, and 

Section 5.5 will provide a summary the chapter's key contributions. 

5.1 Testing Cookies: Input-Space Explosion 

The input-space for any modern software system is effectively infinite, and 

the primary goal of many testing strategies is to partition the infinite space 

into a finite number of sub-spaces or equivalence partitions.  Each 

subspace should ideally test a different facet of the software without 

overlap.  This partitioning is often done based upon the requirements 

(black-box testing), the underlying source code (white-box testing), or a 

hybrid of these two sources (gray-box testing).  Despite the partitions 

methodology used, each partition should be represented by a single (or a 

few) test case(s).  Testing cookies within a web application presents a 

similar challenge to that of traditional software systems: an effectively 

limitless input-space.  This is exemplified by the cookie usage within the 

case studies presented in Chapter 3.3.  Nebulous test cases can be 

fabricated by the selection of random combinations of cookies from within 

a cookie collection, but this is highly unlikely to be effective.  The size of 

the input space for a collection of n cookies is given by  

 
  

€ 

n
k
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

k=0

n

∑ = C0
n +C1

n ++Cn−1
n +Cn

n = 2n , (5-1) 

assuming that each cookie is a binary variable (present or absent).  The 

assumption of each cookie being a binary input is an oversimplification, 

and is useful only in demonstrating the input-space explosion.  Cookies are 

not simple binary inputs, and this fact helps to reinforce the claim that the 

input-space with respect to cookies is prohibitively large.  The input-space 

is further expanded when considering the sheer volume of subsequent 

pages involved within a web application.  There are two ways to calculate 

the input-space with respect to cookie collections for a multi-paged 

application.  The first method involves the assumption that the each 

individual request can be treated as an independent event; that all 



 

  107 

 

previous requests and associated cookies collections remain constant.  

This assumption, reflecting the stateless nature of HTTP requests, results 

in an input-space, for an application with p pages, given by 

 

€ 

p⋅
n
k
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

k=0

n

∑ = 2n p. (5-2) 

Despite the stateless nature of HTTP requests, web applications use 

cookies to provide stateful sessions to users.  This implementation of state 

across multiple HTTP requests suggests that the assumption of treating 

each request as independent, especially with respect to cookies, is unlikely 

to hold true.  The value given by  

 

€ 

np
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=0

n⋅p

∑ = 2np , (5-3) 

provides a more accurate representation of the input-space for any 

application that maintains state across multiple HTTP requests as it 

amalgamates the inputs for each individual request within a test case.  It is 

clear from each of the equations that the input space for a web application 

is susceptible to exponential explosion; input-space reduction techniques 

are therefore mandatory for any cookie testing strategy. 

To illustrate this input-space explosion, consider the eBay bidding 

scenario discussed in Chapter 3.3.3. The size of the input-space for cookie 

collection associated with the six-request usage scenario is over 16 million 

for a single request (5-1), over 100 million if each request is considered 

independent (5-2), and over 2x1043 if the sequence of requests are 

considered as a continuous input (5-3).  These examples are trivial when 

examined from an application-wide perspective.  As demonstrated in 

Chapter 3.2.3 and echoed within the eBay scenario, the values retrieved 

within the survey represent the cookies present only on the initial page; 

subsequent cookies and pages dramatically increase the size of the input-

space.  Of the 40 applications crawled in Chapter 3.2.3 and summarized in 

Table 3-2, the number of subsequent pages unearthed ranged between 26 

and 1733 with a mean of 599 pages.  The minimum collection of 5 cookies 



 

  108 

 

encountered in Chapter 3.2.3 balloons to over 832 test cases using 

equation (5-2), and over 1x1039 with equation (5-3). This collection of 

cookies was associated with the 26-page website—the smallest in terms of 

pages encountered in Chapter 3.2.3.  It must be stated that the assumption 

that all 26 pages actually represent differentiable units of dynamic code is 

very unlikely; however these crawls do represent distinct URLs most likely 

differentiated on the basis of the values passed into the system as part of a 

GET request.  Values present within a GET request are appended to the 

URL of the request and therefore provide an explanation as to the number 

of distinct URLs crawled within Chapter 3.2.3.  If all the URLs crawled 

were not differentiated on the basis of values passed via a GET request, 

then the URL must contain a request to a different page within the HTTP 

server.  Although these values cannot be verified to represent distinct 

pages, they encapsulate the inclusion of the other variables present within 

the system, and illustrate the limitless extent of the input space for a web 

application with respect to inputs from all avenues: cookies, GET, and 

POST requests.  In this case, it is pertinent then to examine the worst-case 

scenario discovered in Chapter 3.2.3.  The single largest input-space 

encountered was http://www.galveston.com, with 16 cookies set and 710 

URLs crawled, representing over 4x107 possibilities via equation (5-2), and 

over 5x103419 via equation (5-3).  Clearly this input-space cannot be tested 

using brute-force methods; cookie-specific testing strategies are needed to 

adequately validate any application with multiple cookie deployment. 

5.2 Cookie Testing Recommendations 

As outlined in Chapter 2, cookies have received little attention from the 

academic community with respect to software testing, and are being 

actively exploited.  As explored in Chapter 3.3.2, cookie exploitation is due 

to the number of cookie-related failures that permeate released software.  

Current conventions dictate that the cookie input space be divided into 

two partitions—present or absent—leading to the creation of systems that 



 

  109 

 

can tolerate the rejection of all cookies.  Although these are important 

partitions representing two of the most commonly encountered browser 

configurations, they are simply not sufficient to adequately validate the 

robustness required of a modern web application.  This leads to the release 

of software that is riddled with cookie-related bugs and security 

vulnerabilities.  Based on the current investigation, a number of testing 

partitions were elicited to form a basis for the equivalence partitioning of 

the cookie input space. 

The first, most obvious partition is to divide cookies according to 

date of expiration.  This partition seeks to separate sessional and 

persistent cookies on the basis of time.  The partitioning can be done to 

varying degrees, either two partitions split upon sessional and persistent 

lines or multiple partitions based upon expiry date.  This type of 

partitioning applied to the eBay usage scenario leads to the extraction of 9 

partitions—a dramatic reduction from over 16 million.  Utilizing this 

partitioning scheme, it quickly becomes obvious how advantageous it is, 

from a testing perspective, to have cookies that share the same expiration 

date. This trend is observed amongst the partitions expiring after 364 

days, 1 year and 115 days, 1 year and 364 days, and 4 years and 363 days.  

Due to the likelihood of occurrence of these partitions, testing the 

partitions should be considered mandatory for any applications using a 

mixture of sessional and persistent cookies—58.3% of sites using cookies 

as outlined in Chapter 3.2.8. 

Another useful partition is based upon third-party and first-party 

cookies.  This partition seeks to simulate the rejection of cookies based 

upon the host associated with the cookie.  By definition this partition is 

binary, and therefore provides granularity too limited for an effective 

testing strategy.  Despite the restrictive granularity, this type of testing 

should also be considered mandatory for any given web application since 

browser configurations allow users to reject all third-party cookies.  This 

type of testing is required for any application using a combination of first- 



 

  110 

 

and third- party cookies—37.8% of sites utilizing cookies as described in 

Chapter 3.2.7.  This testing is especially required for sites such as eBay, 

where third-party cookies are set from non-independent third-party hosts.  

Further granularity can be achieved by partitioning the cookies by distinct 

hosts, resulting in six partitions when applied to the eBay usage scenario.  

Other divisions can be elicited to provide further granularity.  Cookies can 

be subsequently partitioned by expiration date, providing four further 

partitions, first-party sessional or persistent, and third-party sessional or 

persistent.  The testing of the presence of these four partitions is of 

increased interest due to the continuing development of privacy protecting 

user-agents such as CookiePicker (Yue et al., 2007).  With an increasing 

number of user-agents available that reject cookies on the basis of a 

perceived invasion of privacy, web applications can no longer assume that 

testing the simple dichotomy of first- versus third-party cookies is 

sufficient. 

P3P user agents present an entirely new set of cookie partitions, 

based not on inherent cookie values, but rather upon the P3P policy of the 

host depositing the cookie.  As exemplified in the eBay usage scenario, 

partitioning of cookies based upon P3P policy is not always binary.  In the 

example, two distinct P3P policies were encountered, presenting the 

possibility of the inclusion and rejection of a specific set of cookies on the 

basis of P3P policy.  For any site utilizing third-party cookies as part of the 

core business-model of the system, as third-party cookies often are 

(Tezinde, Murphy, Nguyen, & Jenkinson, 2001), partitioning the cookie 

input-space on the basis of distinct P3P policy is critical.  The rejection of a 

subset of these cookies could have devastating financial repercussions. 

As demonstrated by both the Fossil and eBay case studies, 

described in Chapters 3.3.1 and 3.3.3 respectively, cookies are not only set 

as a field within an HTTP response.  Cookies can also be set through 

embedded JavaScript, allowing for the creation of increasingly complex 

user interfaces through AJAX technologies, but also allowing the theft of 



 

  111 

 

cookies and user-sessions through cross-site scripting attacks.  Cookies 

used and set within scripts must constitute another form of partition, 

further driving cookie-related test cases.  Cookies set via embedded scripts 

must be set to non HttpOnly, an addendum to the cookie specification 

allowing cookies to be inaccessible from within a JavaScript environment 

(Microsoft Corp., 2002).  These cookies are of particular vulnerability and 

are clearly destined for use within scripts embedded in the client-side 

application.  Partitioning the cookies based upon JavaScript usage is 

required to ensure that the application functions correctly on clients with 

configurations that reject embedded scripts, those that do not support 

scripts, or those that do not support the HttpOnly addendum.  Although 

the content of all cookies should be examined for the presence of sensitive 

information, the examination of non-HttpOnly cookies should be a top 

priority as these cookies are at the highest risk of theft. 

Testing issues surrounding cookies are numerous, and the 

reduction of cookie input space is one of many issues that must be 

explored within the testing community.  As attested by Chapter 3.3.2, 

malicious cookie input manipulation is a huge liability for any application 

that handles sensitive user information.  Testing of cookies must be 

extended beyond the collection of cookies present within an application, 

and must address the values passed into the application through cookies.  

These issues remain largely unresolved, and testing strategies are needed 

address cookie input manipulation. 

5.3 Cookie Collection Testing 

As outlined in Section 5.1, an exhaustive test-suite derived from the cookie 

collection input-space is not feasible due to exponential explosion.  

Although this set is manageable for web applications that utilize a small 

collection of cookies, a significant number of web applications are found 

using upwards of 10 cookies, as discussed in Chapter 3.2.3.  As web-

applications use an increasing number of cookies, the selection of test case 



 

  112 

 

reduction techniques that maintain testing effectiveness becomes an 

integral task.  One potential approach is anti random test case generation, 

initially defined by Malaiya (1995).  Anti random testing involves the 

selection of test cases to maximize the Cartesian or Hamming distance 

from all previous test cases and has been shown to be effective through a 

series of empirical evaluations (Malaiya, 1995; von Mayrhause et al., 1998; 

Yin et al., 1997). 

The practice of anti random testing is extended to testing cookies by 

assigning a cookie to a single binary value within a test vector ti, with 0 

representing an absent cookie, and 1 representing the presence of a cookie.  

The two initial test vectors defined by anti random algorithms (Malaiya, 

1995; von Mayrhause et al., 1998) pose two typical test cases, t=<0,0,…,0> 

and t=<1,1,…,1>, representing a case where no cookies are present, and a 

case where all of the defined cookies are present.  The two cases represent 

a complete rejection of cookies (browsers that are configured to reject 

cookies) and the total acceptance of cookies (assuming that all of the 

cookies are valid, accepted by the browser, and present to re-send to the 

server).  These two test cases represent the current assumption regarding 

cookies; i.e. that they are either all present, or all rejected.  To begin our 

discussion of anti random testing with respect to cookies, the question of 

random-seeding cannot be escaped, and is extremely pertinent. In this 

section, the testing recommendations will be incorporated into an anti 

random testing strategy as the seed for an anti random algorithm 

(Malaiya, 1995; von Mayrhause et al., 1998), providing an effective and 

efficient derivation of a robust testing suite. 

The first set of test vectors is based upon a cookie’s expiration date.  

These pairs, as mentioned previously, define the length of time for which a 

cookie is valid and should exist within the user-agent.  With this value, a 

set of test vectors can be constructed representing the presence/absence of 

specific cookies in the collection based upon the cookie expiration.  

Assuming that ti is a test vector in the test-suite T={t0,t1,…,ti,..,tn} and that 



 

  113 

 

each bit of ti maps directly to a single cookie within the collection, the 

selection of seeding test vectors based upon the expiry dates of a cookie 

collection is defined by the following algorithm: 

1. Set the initial test vector to contain all ones, i.e. t0 = <1, 1, …, 1> 

2. Set the test-bit to zero for any sessional cookie.  This vector will 

provide the basis (ti) for the following steps. 

3. Amongst the bits of ti that are present (value equal to one), find the 

cookie(s) with earliest expiration date. 

4. Set all of the bits in ti+1 to zero. 

5. Set all of the bits in ti+1 whose cookie has an expiry date beyond that 

found in Step 3 to one. 

6. Repeat Steps 3-6 for ti+1 until the ti does not contain any ones. 

The algorithm outlined above will create a set of test vectors that 

encapsulate the valid states of the cookie collection based solely upon the 

cookie expiration dates.  These values can be extracted from the HTTP 

responses, a browser session, or the application source code.  As an 

example, consider the test mapping of cookies extracted from the eBay 

bidding scenario presented in Table 5-1. The test-suite seed that exists 

after the above algorithm has been applied to this set of cookies is 

presented in Figure 5-1.  Applying this reduction algorithm leads to the 

creation of 10 testing-seeds, each of which can be used to validate the 

application and to create a robust testing-suite using the anti random 

algorithm.  This reduction, from over 16 million combinations down to 10 

seeding vectors, allows for the development of a manageable and 

extendable testing-suite for cookies within web applications. 

Third-party cookies comprise over 40% of the cookies used on the 

Internet.  These cookies, as mentioned in Chapter 3.2.7, have been the 

subject of contentious debate between those advocating privacy concerns 

and those whose business model is adversely affected by third-party cookie 

rejection (Kristol, 2001).  The result of the debate is the ability for users to 

configure browsers to reject third-party cookies.  Given this quagmire and 



 

  114 

 

the various domain-matching algorithms (Kristol, 2001), testing resources 

need to be allocated to these cookies to verify application robustness.  

From this perspective, testing-seeds should focus upon the rejection of 

third-party hosts, with an initial test vector reflecting the rejection of all 

third-party cookies, and a separate test vector for each host, reflecting 

host-specific rejection. An example of the seeding-vectors present within 

the test-suite, based upon the test mapping provided in Table 5-1 and 

third-party host is presented in Figure 5-2. 

 

 
Figure 5-1. Expiration Testing-Seeds Generated From Table 5-1  

 
Figure 5-2. Third-Party Host Testing-Seeds Generated From Table 5-1 

T = { <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>,

 <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0>, 

 <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0>, 

 <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0>, 

 <1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0>, 

 <1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>, 

 <1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>, 

 <1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>, 

 <1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>, 

 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> } 

 

T = { <0,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,1,1,1,1,1>,

 <1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>,

 <0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>,

 <0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,0,0,0,0,0>,

 <0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0>, 

 <0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> } 



 

  115 

 

 
Figure 5-3. Compact P3P Policy Testing-Seeds Generated From Table 5-1  

Table 5-1. eBay Bidding Scenario Cookie Testing Mapping 

Test Bit 
Cooke 
Name Expiration Host 

Compact 
P3P21 HttpOnly 

0 B 29 years 103 days .yahoo.com P3P1 — 
1 lucky9 4 years and 363 days .ebay.com No Policy — 
2 S 4 years and 363 days .apmebf.com P3P2 — 
3 RUA 1 year and 364 days .main.ebayrtm.com P3P3 — 
4 dp1 1 year and 364 days .ebay.com No Policy — 
5 npii 1 year and 364 days .ebay.com P3P4 — 
6 RUP 1 year and 364 days .ebayrtm.com P3P3 — 
7 mojo1 1 year 115 days .mediaplex.com P3P5 — 
8 svid 1 year 115 days .mediaplex.com P3P5 — 
9 cid 1 year .ebay.com No Policy — 

10 TC01 364 days .main.ebayrtm.com P3P3 — 
11 M01 364 days .main.ebayrtm.com P3P3 — 
12 A01 364 days .main.ebayrtm.com P3P3 — 
13 C01 364 days .main.ebayrtm.com P3P3 — 
14 PS 364 days .main.ebayrtm.com P3P3 — 
15 nonsession 364 days .ebay.com No Policy HttpOnly 
16 ns1 363 days .ebay.com No Policy HttpOnly 
17 CT 30 days .ebayrtm.com P3P3 — 
18 HT Sessional .main.ebayrtm.com P3P3 — 
19 s Sessional .ebay.com No Policy HttpOnly 
20 ebay Sessional .ebay.com No Policy — 
21 ds1 Sessional .ebay.com No Policy — 
22 ds2 Sessional .ebay.com No Policy — 
23 secure_ticket Sessional .ebay.com No Policy — 

 

Closely associated with third-party cookies, compact P3P policies 

provide a secondary layer of discretion for third-party cookies.  This adds 

another layer of complexity to testing web applications.  As observed in the 
                                                   
21 Compact P3P Policy Mapping: 
 
P3P1  = CAO DSP COR CUR ADM DEV TAI PSA PSD IVAi IVDi CONi TELo OTPi OUR DELi SAMi OTRi 

UNRi PUBi IND PHY ONL UNI PUR FIN COM NAV INT DEM CNT STA POL HEA PRE GOV 

P3P2  = NOI DSP DEVo TAIo COR PSA OUR IND NAV 

P3P3 = CURa ADMa DEVa PSAo PSDo OUR BUS UNI PUR INT DEM STA PRE COM NAV OTC NOI DSP 

COR 

P3P4 = NOI CURa ADMa DEVa TAIa OUR BUS IND UNI COM NAV INT 

P3P5 = NOI DSP COR PSAo PSDo OUR IND UNI COM NAV 

T = { <1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>,

 <0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>,

 <0,0,0,1,0,0,1,0,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0>,

 <0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>, 

 <0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> } 

 



 

  116 

 

eBay usage scenario, applications are no longer contained within a single 

host, but can be scattered across multiple hosts.  Within the scenario 

presented in Chapter 3.3.3, cookies were set with respect to six distinct 

hosts, five of which set third-party cookies and had an associated P3P 

policy (see Table 5-1). Similar to third-party hosts, seeding vectors should 

be devoted to P3P policies.  Seeding vectors representing the rejection of 

any one specific P3P policy should be included, blanking all of the test-bits 

within a test vector associated with the policy.  A special seeding-vector 

must be considered, representing the absence of all third-party cookies 

that do not have an associated P3P policy.  This vector represents the 

default behavior of Internet Explorer, as it is set to reject third-party 

cookies without a compact P3P Policy.  Figure 5-3 gives an example of the 

seeding-vectors present within the test-suite based on the test mapping 

provided in Table 5-1 and Compact P3P policy.  Due to the very close 

relationship of the compact P3P policy and third-party cookies, reported in 

Chapter 3.2.10, a certain degree of overlap was observed among the P3P 

and third-party vectors.  These three shared vectors stemmed from the 

inclusion of three web advertising components in the eBay application.  

These three hosts, among those discussed in Chapter 3.2.9, are known for 

providing user-centric advertisements, an essential component of the 

business model for many applications.  Despite this overlap, both the 

third-party host and P3P seeding vectors were able to elicit dichotomous 

vectors, further enhancing the test-suite.  One of the independent test 

vectors elicited by the P3P test case selection was the only vector found to 

explicitly test the npii cookie set by the host rover.ebay.com for the host 

.ebay.com, as discussed in the eBay usage scenario.  This cookie, the only 

cookie set by rover.ebay.com, was found to have a different P3P policy 

from the other third-party cookies set by .ebayrtm.com.  This difference in 

P3P policy suggests that the usage of this cookie is unique.  Although P3P 

policy and third-party host seeding vectors produce overlapping results, it 



 

  117 

 

is imperative to employ both strategies to validate any web application 

employing third-party cookies. 

JavaScript and other embedded objects within web applications 

pose yet another hurdle in the verification and validation of a web 

application.  JavaScript is used to provide end-users with a rich user-

interface, greatly increasing all aspects of usability within many web 

applications.  Although the benefits of JavaScript technology are plentiful, 

there are a large number of unwanted side effects associated with this 

technology, most notably cross site scripting (XSS) vulnerabilities 

(Cgisecurity.com, 2002; Cook, 2003).  XSS vulnerabilities exist within an 

application primarily due a user’s ability to post unsanitized custom 

content on or within a trusted page.  These exploits are typically employed 

in an attempt to steal session cookies, like the JSESSIONID cookie 

discussed within Chapter 3.3.1.3 (Cgisecurity.com, 2002).  To combat the 

security-compromising consequence resulting from the availability of 

cookies in the JavaScript environment, Microsoft introduced the HttpOnly 

addendum to the cookie specification (Microsoft Corp., 2002, 2007).  This 

addendum, designed to block scripts from accessing cookies flagged with 

the HttpOnly marker, has found widespread adoption and is prevalent 

within the most common browsers used today.  Like the other levels of 

discretion provided within web browsers, the HttpOnly addendum 

requires associated testing resources.  The testing activities associated 

with HttpOnly cookies should focus primarily on the absence of these 

cookies from the collection, simulating the unavailability of these cookies 

to JavaScript components and the possible rejection of these cookies by 

any user-agent that does not accept the HttpOnly addendum.  Depending 

on the fixture used for implementing testing within the application, the 

HttpOnly addendum becomes increasingly difficult to test because of the 

browser-specific implementations of the JavaScript environment.  Due to 

these complications, it is recommended that at the very least the 

application be tested without the presence of HttpOnly cookies.  Figure 



 

  118 

 

5-4 presents an example of the seeding-vectors present in the test-suite 

based on the HttpOnly addendum and the test mapping given in Table 5-1. 

 

 
Figure 5-4. HttpOnly Testing-Seed Generated From Table 5-1  

In this section we have presented a number of test vector seeds that 

can be used as a basis for the creation of subsequent anti random test 

cases.  These seeds should be amalgamated and used in combination to 

provide the basis for a robust cookie test-suite.  The test-suite created from 

these seeds should be used to test each page within the web application.  It 

is envisioned that this type of testing will be automated, using the pages 

present at the all cookies (<1,1,…, >) and no cookies (<0,0,….,0>) test 

vectors as oracles to evaluate the correctness of the application response. 

5.4 Automated Cookie Collection Testing 

Cookie collection testing, as described in Section 5.3, involves the testing 

of a web application from the perspective of modifying the collections of 

cookies stored within a user-agent.  Given the ability of this testing 

strategy to define large pools of testing data for any application, this 

process requires a computer-assisted testing harness that is capable of 

providing both a framework for test-data generation and an automated 

test execution and evaluation environment.   This section will provide a 

brief overview of the major challenges overcome through automation of 

the testing strategy.  An in-depth description of the automated testing tool, 

CookieCruncher, is provided in Appendix B. 

5.4.1 Test Case Definition 

Within an automated endeavor, a definition of a test case that is accurate 

and precise is necessary.  Test cases must accurately describe a set of pre-

conditions and inputs that constitute the test.  Accordingly, a test case 

must be able to reliably interact with the system; that is, apart from 

T = { <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0> } 

 



 

  119 

 

triggering a fault, a test case should consistently execute the application to 

a known state. 

Table 5-2. Test Case Definition 

Test Case ID 

Pre-Conditions: A list of HTTP Requests and associated inputs required 
bring an application to the known testing state. 

Test Request: The HTTP Request and associated inputs to be evaluated. 

Cookie Collection: A cookie collection representing the cookies present for to be 
sent with the Test Request. 

 

In order to arrive at a definition of a test case within a cookie 

collection process, the underlying model of test input-space must be 

decided upon and explicitly stated.  For the purpose of cookie collection 

testing, the model described in equation (5-2) has been selected as 

representative of cookie usage within a web application.  Essentially, this 

model considers the cookie collection of each page within a website as an 

independent end-point for a test.  A test case is therefore defined as a 

series of HTTP requests required to set the application state, the final 

HTTP request, and the collection of cookies present for the final request.  

Each of the HTTP requests in a test case includes the GET and/or POST 

request and any associated input data.  This definition is summarize in 

Table 5-2 and exemplified in Table 5-3. 

The example provided in Table 5-3 defines a test case in which a 

user browses to an application front-page, selects a link to log into the 

system, and inputs their credentials.  The final request wherein the user 

provides their credentials is the request currently under test, and is the 

only request that is subjected to cookie modification.  All other requests 

will be executed without modification.  The output of the test case is the 

HTTP response of the application to the request with a modified cookie 

collection.   It is assumed that the pre-conditions leading up to the final 

request are repeatable— an assumption that must be verified by the tester. 



 

  120 

 

Table 5-3. An Example Test Case 

System Login Test 0001 

Request(s) Input Data 

GET http://example.com  

Pre-Condition: 

GET http://exmaple.com/login.html  

Request Input Data Test Request: 

POST http://example.com/main.html username=test 

password=test 

Cookie Collection: loggedin = false 

userid=null 

 

5.4.2 Automated Test Oracles 

An automated evaluation of each test case requires the definition of an 

automatable oracle that can be used to detect the presence of a fault within 

the underlying system under test.  To fulfill this requirement, the results of 

two specific test-vectors were selected as the basis against which all results 

would be subsequently measured.  A vector representing the natural state 

of the cookie collection for a given test request and a zeros vector were 

selected as test oracles.   These vectors were selected as representative of 

two distinct and plausible cookie collections— two cookie collections that 

every web application should handle correctly.  The vector representing 

the unmodified collection defines a base-case in which no cookie collection 

modification has occurred.  The zeros vector, on the other hand, 

represents a direct contrast to the unmodified vector.  The zeros vector 

presents the application with a browsing environment devoid of cookies; 

essentially this is equivalent to accessing the page from a browser with 

cookies disabled.  In practice, these two vectors have been found quite 

effective at capturing the valid outputs related to cookie collection 

modification within real-world web applications. 



 

  121 

 

5.4.3 The Tree, Context & Composite Similarity Coefficients 

The selection of testing oracles is a fundamental component of the testing 

harness; of equal importance is the method by which testing results are 

compared against the oracles.  Two similarity coefficients were selected as 

a basis for test result evaluation.  The tree similarity and context similarity 

coefficients were first selected for HTML page difference detection by Yue, 

Xie and Wang (2007) and have been adopted for use within 

CookieCruncher.  A brief discussion of each of the metrics will follow and 

the novel composite similarity coefficient will be presented. 

5.4.3.1 The Tree Similarity Coefficient 

Given the rise of the Document Object Model (DOM) as the basis from 

which HTML and XML documents are interpreted, and the nature of DOM 

as a hierarchical structure (Mozilla Developer Center, 2009; W3C, 2005), 

the top-down tree edit distance (Selkow, 1977) has been employed for the 

identification of structural differences between DOM documents (Reis, 

Golgher, Silva, & Laender, 2004; Yue et al., 2007; Zhai & Liu, 2005).  A 

DOM tree is considered a rooted labeled ordered tree, because it has a 

single root node (Document), each node is defined to have a label, and the 

ordering of nodes is significant.  The Tree Matching algorithm, presented 

in Figure 5-5, has been demonstrated to be effective for detecting syntactic 

differences between two programs (Yang, 1991), and has recently been 

applied to DOM trees by (Yue et al., 2007).  The Tree Matching algorithm 

is the basis from which the tree similarity coefficient is calculated within 

CookieCruncher. 

The Tree Matching algorithm provides a measure of the number of 

matching pairs within the maximal matching of two trees.  For example, 

consider the two trees presented in Figure 5-6.  In this example there is 

only one maximal matching containing 7 pairs: (N1, N15), (N2, N16), (N6, 

N18), (N7, N19), (N5, N17), (N11, N20), and (N12, N22). 



 

  122 

 

Algorithm: Tree Matching ( A,B ) 
 
1. If the roots of the two trees A and B contain distinct symbols then return(0). 
2. m := the number of first-level subtrees of A. 
3. n := the number of first-level subtrees of B. 
4. Initialization,  M [ i,0 ] := 0 for i =  0, … , m. 

     M [ 0,j ] := 0 for j =  0, … , n. 
5. for i :=1 to m do 
6.  for j :=1 to n do 
7.   M [ i,j ]:= max ( M [ i,j-1 ], M [ i-1,j ], M [ i-1,j-1 ] + W [ i,j ]) 
8.    where W [ i,j ] = Tree Matching ( Ai, Bj ) 
9.     where Ai and Bj are the ith and jth first-level subtrees of A and B, respectively. 
10.  od 
11. od 
12. return ( M ( m, n ] + 1 ). 
 

 

Figure 5-5. Pseudo Code for the Tree Matching Algorithm (Yang, 1991). 

 

 

Figure 5-6.  Tree Matching Example: Tree A (a) and Tree B (b) (Yang, 1991) 

The maximal matching between two DOM trees can be a useful 

metric in determining the number of shared node pairs between two 

documents; however, this metric requires normalization to be useful as an 

oracle evaluation metric. Therefore, the Normalized DOM tree similarity 

coefficient was selected as the basis for all future comparisons (Yue et al., 

2007).  This normalized similarity metric is based upon the Jaccard 

similarity coefficient defined as 

h 

 

i 

 

j 

 

a 

 

d 

 

e 

 

f 

 

e 

 

d 

 

g 

 

c 

 

b 

 

c 

 

b

  

 

N1 

N2 N3 N4 N5 

N6 N7 N8 N9 N10 

N11 

N12 N13 N14 

a 

 

d 

 

e 

 

g 

 

h 

 

j 

 

c 

 

b

  

 

N15 

N16 N17 

N18 N19 

N20 

N21 

N22 

(a) (b) 



 

  123 

 

 

€ 

J A,B ( ) =
A∩ B( )
A∪ B( )

.  (5-4) 

The Jaccard similarity coefficient, or Jaccard index, measures the 

similarity and diversity between sets, and can be applied to measure the 

similarity between two DOM trees as 

 

€ 

Normalized Tree Similarity (A, B) =  TM(A,B)
A + B −TM(A,B)

,  (5-5) 

where A and B are the two trees for which the metric is calculated, 

TM(A,B) is the size of the maximal matching between A and B, and |A| 

and |B| are the number of nodes within A and B respectively.   

5.4.3.2 The Context Similarity Coefficient 

While the tree similarity coefficient provides a measure of the structural 

similarity between two DOM trees, the content of the DOM document, in 

terms of textual content present within the leaf-nodes, is independent of 

the tree similarity metric.  Changes within the value of the leaf-nodes can 

dramatically alter the content of an output document and are not 

detectable by the tree similarity metric.  In order to detect these changes a 

second similarity coefficient will be employed to specifically detect 

changes within the content of a DOM document. 

The context similarity coefficient will be used as the basis from 

which the similarity of the content within two DOM documents will be 

assessed (Sachindra, Neeraj, Raghu, & Sumit, 2003; Yue et al., 2007).  The 

context-similarity coefficient measures the similarity of DOM content 

within a context; that is, the metric is based upon the values stored within 

the textual leaf-nodes of a DOM tree and the path traversed through the 

tree to the leaf node.  Although this metric contains a structural 

component—the traversed path—the metric is independent of the tree 

similarity.  Changes within the textual leaf-nodes do not affect the tree 

similarity but will be reflected in the context similarity, and changes within 

the structural components of the DOM tree do not necessarily affect the 

context similarity but will be reflected in the tree similarity metric. 



 

  124 

 

Algorithm: ContentExtract(A, context ) 
 
1. Initialization, S := Ø; node := A.root.  
2. if node is a alpha-numeric text node then 
3.  cText := context + SEPARATOR + node.value. 
4.  S := S ∪ {cText}. 
5. elseif node is an element node then 
6.  currentContext := context + SEPARATOR + node.name. 
7.  n := the number of first-level subtrees of A. 
8.  for j := 1 to n do 
9.   S := S ∪ ContentExtract ( Ai, currentContext ) 

   where Ti is the ith first-level subtree of A. 
10.  od 
11. endif 
12. return (S) 
 

 

Figure 5-7. Pseudo Code for the Content Extract Algorithm (Yue et al., 2007). 

The content extraction algorithm (Yue et al., 2007) serves as the 

basis from which the context similarity metric is calculated, and is 

presented in Figure 5-7.  For any tree A, the context extraction algorithm 

will extract the set S which contains all of the context-content paths within 

the document.  A context-content path within the set S consists of the 

concatenation of the name of each of the nodes traversed, and the final 

textual content of the leaf-node.  The context similarity of two DOM 

documents is defined as 

€ 

Normalized Context Similarity (S1,S2) =
S1 ∩ S2
S1 ∪ S2

, (5-6) 

where S1 and S2 are the content-context sets extracted from each of the 

documents using the Content Extract algorithm.  Like the tree similarity 

coefficient, the normalized context similarity is based upon the Jaccard 

Index.  All subsequent discussions of context similarity are in reference 

this metric. 

5.4.3.3 The Composite Similarity Coefficient 

Between two DOM documents, the tree similarity metric provides a 

measure of the structural differences, and the context similarity metric a 



 

  125 

 

measure of the content differences.  Given the synergetic nature of the two 

metrics, the composite similarity coefficient is defined as 

€ 

Normalized Composite Similarity (TSim, CSim) =  TSim2 + CSim2

2
, (5-7) 

where TSim and CSim are the tree similarity and context similarity of two 

documents, respectively.  This metric is derived from the Euclidian 

distance of a (tree similarity, context similarity) data-point from the 

origin, and provides an equally weighted assessment of the structural and 

content differences between two documents.  The composite similarity 

coefficient is normalized and provides values in the range of [0 : 1], 

therefore allowing direct comparison between all three similarity metrics: 

tree, context and composite. 

5.5 Summary 

As clearly outlined in Section 5.1, input-space explosion is one of the 

primary challenges facing testing practitioners as they evaluate a web 

application.  As a potential solution, an extension of anti random testing 

practices has been introduced.  This solution outlined a number of cookie-

specific attributes upon which seeding test vectors can be constructed.  

The definition of these vectors can be used as the basis for testing cookies 

within any web application, and can be used as inputs into an anti random 

testing algorithm to create an automatable and extendable test suite.  This 

suite will contain the seeding vectors, ensuring the testing of the most 

common combinations of cookies, as well as a series of anti random 

generated test vectors existing to further validate the robustness of the 

application.  This testing strategy represents a major shift in the status of 

novel web technologies within the literature; cookies are no longer a fringe 

web technology that can be ignored. 

The framework outlined in Section 5.4 allows for the automation of 

the test execution and evaluation, two key components to any automated 

testing solution.  Through the selection of the all present and none present 



 

  126 

 

test vectors, web applications can be automatically evaluated against 

themselves, providing a low-cost testing framework for web application 

verification.  Further description of the testing harness developed 

specifically for cookie collection testing is provided in Appendix B, 

including discussions of the integration of other state-of-the-art testing 

strategies within the testing framework. 

 



 

  127 

 

Chapter 6 

 

Evolutionary Adaptive Random 

Testing22 
 

Software testing is a difficult task that involves balancing a number of 

competing factors such as resource utilization, time-to-market pressure, 

and the obligatory budget constraints.  As such, getting the biggest bang 

for your buck is not always a straightforward proposition (Whittaker, 

2000).  A wide range of testing strategies have been established in the 

literature, each possessing strengths and weaknesses; one such strategy is 

random testing (Agrawal, 1978; Duran & Ntafos, 1984; Loo & Tsai, 1988; 

Ntafos, 1998; Schneck, 1979).  Benefits of random testing include the low 

cost associated with the random generation of test cases, and the ease of 

automation associated with the technique.  Recently, there have been a 

number of methods suggested to increase the effectiveness of random 

testing (T. Y. Chen, De Hao et al., 2007; T. Y. Chen, Kuo et al., 2007; T. Y. 

Chen et al., 2003; T. Y. Chen, Leung et al., 2004; T. Y. Chen & Merkel, 

2006; T. Y. Chen, Merkel et al., 2004; T. Y. Chen et al., 2001).  These 

methods, termed Adaptive Random Testing (ART) (T. Y. Chen, Leung et 

al., 2004; T. Y. Chen et al., 2001), are centered on the assumption that 

failure-triggering inputs occur within clusters in the input domain 

(Ammann & Knight, 1988; F. T. Chan et al., 1996; K. P. Chan, Chen, Kuo, 

& Towey, 2004; Finelli, 1991).  Hence, ART methods seek to effectively 

                                                   
22 A version of this chapter has been published. Tappenden, A. F., & Miller, J. (2009). A 
Novel Evolutionary Approach for Adaptive Random Testing. IEEE Transactions on 
Reliability, 58(4), 619–633. 



 

  128 

 

detect faults by spreading the random test cases across the input domain, 

thereby increasing the likelihood of fault detection. 

ART is not the only testing technique that attempts to evenly 

distribute test cases across the input domain; Anti Random testing 

explicitly seeks to select test cases that are as far away as possible from all 

previous cases (Malaiya, 1995; von Mayrhause et al., 1998).  Anti random 

testing shares a number of similarities with ART.  However, the distinct 

difference between the two is that anti random testing does not contain 

random elements.  Currently, an effective, scalable implementation is not 

available.  Furthermore, not only is the anti random testing method 

computationally expensive, but for any real-world testing scenario, 

including cookie collection testing, it is simply intractable. 

Other investigations within the domain of adaptive random testing 

have focused upon the use of quasi-random sequences as drivers for the 

generation of test inputs (T. Y. Chen & Merkel, 2007; Chi & Jones, 2006).  

These investigations focus upon a specific group of mathematical 

sequences all characterized by the low-discrepancy property.  These 

sequences deterministically produce a series of m-tuples that fill an m-

dimensional hypercube more uniformly than pseudorandom numbers, as 

they maintain the low-discrepancy property.  The use of quasi-random 

sequences within the testing community is a relatively recent contribution 

(T. Y. Chen & Merkel, 2007; Chi & Jones, 2006).  These investigations 

have demonstrated the increased effectiveness of quasi-random sequences 

over pseudorandom or conventional random testing.  The main benefit of 

quasi-random testing is the inexpensive computational cost associated 

with the generation of testing sequences.  Limitations include the finite 

number of dimensions for which these algorithms are valid, and the 

limited number of distinct sequences that can be generated.  While 

alleviating these limitations is an ongoing topic of research, it has not been 

demonstrated that quasi-random sequences are more effective than the 

current ART strategies (T. Y. Chen & Merkel, 2007; Chi & Jones, 2006). 



 

  129 

 

A large gulf divides the computational overhead associated with the 

low-cost ART strategies, and the expensive, often intractable anti random 

algorithm (T. Y. Chen & Merkel, 2007; Chi & Jones, 2006).  While anti 

random testing calculates the optimal test case having a maximum 

distance from all other tests, ART strategies employ low-cost techniques to 

generate testing inputs that are more evenly spaced than random testing.  

This chapter seeks to bridge the gap between anti random and adaptive 

random strategies, using an evolutionary search algorithm to find an 

approximation for the test case that has the maximum distance from all 

previous test cases.  The novel application of an evolutionary algorithm to 

this problem dramatically lowers the cost (in terms of execution time) of 

finding the next anti random test case, and is within the same asymptotic 

runtime as the current ART methods.  The increased effectiveness of the 

evolutionary random testing method is demonstrated when compared 

against both the premiere ART methods and quasi-random testing. 

The remainder of this chapter is organized as follows. Section 6.1 

provides a detailed explanation of the application of an evolutionary 

search algorithm to the simulation study testing problem; Section 6.2 

outlines a simulation study undertaken to demonstrate the effectiveness of 

the evolutionary adaptive random testing; Section 6.3 provides a side-by-

side comparison and analysis of the proposed testing methodology, and 

the current state-of-the-art for ART, quasi-random, and random testing 

techniques; Section 6.4 outlines the application of evolutionary adaptive 

random testing within the context of cookie collection testing as defined in 

Chapter 5, and Section 6.5 summarizes this chapter's key findings. 

6.1 Evolutionary Adaptive Random Testing 

6.1.1 Genetic Algorithms 

The genetic algorithm is a well defined evolutionary search algorithm 

based upon the Darwinian process of natural selection (Holland, 1975).  

This approach, summarized by the pseudo code in Figure 6-1, involves the 



 

  130 

 

initialization of a population P, followed by the selection of the most 

suitable individuals within P based upon a predefined fitness function.  

These individuals are then combined and mutated, creating successive 

generations of the population P.   This process is repeated until the 

predefined stoppage criterion is met. 

Within the genetic algorithm, a set of randomly generated 

individuals comprise the initial population, with each individual 

representing a possible solution.  Each individual, known as a 

chromosome, can consist of a number of variables/parameters (genes).  A 

ranking of the chromosomes is possible through the application of the 

fitness function, and a bias selection mechanism is used to determine 

which chromosomes will be used as parents in the creation of the 

offspring that will populate the subsequent generation.  The creation of 

offspring is simulated through two processes: crossover, and mutation.  

The crossover operation selects the point at which the material from two 

parents will combine to create a new offspring.  The operation is regulated 

by the probability of the crossover parameter to the algorithm.  The 

mutation operation is defined for each gene within the offspring 

chromosome, and when triggered modifies the specific gene producing 

Genetic Algorithm: 
 
begin  
t ← 0 
initialize P(t) 
evaluate P(t) 
 while (not termination condition) do 
  t ← t + 1 
  select P(t) from P(t-1) according to evaluation 
  crossover P(t) according to crossover rate 
  mutate P(t) according to mutation rate 
  evaluate P(t) 
 end 
end 

 

Figure 6-1. Pseudo Code for the Genetic Algorithm. 



 

  131 

 

new unique offspring.  This process is regulated by the probability of the 

mutation parameter.  

6.1.2 Genetic Algorithms & Software Testing 

Genetic algorithms have been applied within a wide array of problem 

domains including software testing.  The use of genetic algorithms for test 

input generation has been the focus of numerous approaches (Harman et 

al., 2004; Michael et al., 2001; Xiao et al., 2007). However, unlike ART, 

these approaches are based upon white-box code coverage metrics as an 

assessment of fitness.  Other adaptations within the software testing 

domain include, but are not limited to, the prioritization of preexisting 

tests within a recursive test suite (Li et al., 2007), and the stress testing of 

distributed systems (Garousi, 2008; Garousi et al., 2008).  Although the 

application of evolutionary algorithms to various problem domains is not 

unique, the application of this technique for the generation of ART input 

data is novel. 

6.1.3 Evolutionary ART Definition 

The definition of the genetic algorithm used throughout the simulation 

study will be provided in terms of problem encoding, fitness function, 

selection mechanism, crossover, mutation, stoppage criterion, and 

population size. 

Encoding.  The simulation study that will be presented in Section 

6.2 approaches the testing problem of generating inputs for a two-

dimensional unit hypercube, i.e. input tuples ∈ [0,1]2.  To encode this 

problem, each chromosome consists of two real-valued genes, each 

encoded as a double precision floating-point number valid in the range 

[0,1].  

Fitness.  To provide the best coverage of testing inputs across the 

input domain, a Euclidian distance-based fitness function is defined as 



 

  132 

 

 
  

€ 

Fitness x,T( ) =min
y∈T

x1 − y1( )2 + x2 − y2( )2 ++ xn − yn( )2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (6-1) 

The value Fitness(x,T) is then assigned to each chromosome, and is used 

to select individuals for reproduction.  

Selection Mechanism.  The selection of parents for the creation 

of each individual within the subsequent generation was performed using 

the k-Deterministic Tournament selection algorithm.  This method selects 

k-random chromosomes from the general population, and chooses the 

best (the chromosome with the largest Fitness(x,T)) from the pool of k 

chromosomes.  Within this study, the size of the tournament pool k was 

defined as 2. 

Crossover.  The crossover process serves to create the offspring 

from two parents.  Single-point crossover was applied to the two 

chromosomes with a probability of crossover set at 0.6. 

Mutation.  Mutations could occur to any gene within an offspring 

chromosome.  Because each of the genes within the chromosome is a real-

valued double precision floating-point number, a subsequent parameter ε 

is defined to set the size of all mutations.  Within this study, the 

probability of mutation is defined as 0.1, and the size of the mutation, ε, 

was set at 0.01. 

Stoppage Criterion.  A number of different stoppage criteria 

exist for genetic algorithms, and a criterion is often chosen based 

specifically upon the degree of complexity of the search problem.  Within 

this study, a stoppage criterion of 100 generations was selected.  This 

stoppage criterion was selected due to its uniformity amongst all trial runs 

of the search algorithm, simplifying the runtime evaluation.  Other 

possible criteria include a successive number of generations without 

improvement, a target fitness goal, or an overall number of individual 

evaluations. 



 

  133 

 

Population Size.  Within this study, a constant population size of 

20 individuals was used.  The population size parameter was held constant 

to avoid the over-optimization of the parameters to the specific problem. 

6.1.4 Evolutionary ART Runtime 

The primary overhead associated with any genetic algorithm lies within 

the evaluation function.  As shown in the pseudo code provided in Figure 

5-5, a basic genetic algorithm has an asymptotic run time proportional to 

the number of executions of the loop, G.  This runtime, with respect to the 

stoppage criterion outlined previously, is a constant 100 loop executions.  

The 2-Deterministic Tournament algorithm implemented within this 

study requires a constant number of executions, which is scaled linearly 

based upon the population size |P|, defined as 20 individuals.  The 

crossover and mutation operations require a constant number of 

executions, and can be ignored with respect to the algorithm’s asymptotic 

runtime.   

The heaviest computational unit within the algorithm is the fitness 

function, as defined by (6-1).  The fitness function increases linearly with 

T, the number of existing test cases supplied as an input to the algorithm. 

The variable T was the only value within this study which was not held 

constant.  The resulting asymptotic runtime is eAR(|P|,G,T) ∈ Ο (|P|G·T).  

This can be further simplified to eAR(T) ∈ Ο (T), recognizing that |P| and 

G are constants, and as T >> |P|G, the values of |P| and G become 

insignificant.  This runtime is associated with the generation of a single 

test case.  Similar to the repeated iterations of the FSCS algorithm, the 

runtime associated with the generation of a sequence of n test cases for 

fixed |P| and G values is eAR(n,|P|,G) ∈ Ο (|P|G·n(n+1)/2).  Because |P| 

and G are constant, and become insignificant as n increases, the runtime 

can be simplified to the order of quadratic time complexity, eAR(n) ∈ 

Ο (n2).  Both the FSCS and eAR methods can be implemented within the 

order of n2 time, and RRT in the order of n2·log(n) time.  Hence, all 



 

  134 

 

approaches are computationally feasible in accordance with Cobham's 

thesis; a computational problem can be feasibly computed if it is within 

the order of polynomial time (Cobham, 1964). 

6.2 Simulation Study 

This section describes the study conducted to analyze evolutionary 

Adaptive Random Testing (eAR) as an alternative to FSCS, RRT, and the 

Sobol sequence to generate random test data for a generic software testing 

problem. 

6.2.1 Research Questions 

The following research questions motivated this study: 

Q1. Is the application of search-based algorithms appropriate within 

this domain? 

Q2. Which algorithm generates random testing data that most 

effectively reveals software defects? 

Q3. What is the user perceived latency of the algorithms? 

These questions directly relate to the selection of a testing algorithm for 

software testing practitioners, and should be carefully considered when 

selecting a random testing strategy. 

6.2.2 Experimental Design 

To analyze the effectiveness of each approach, twenty-five unique testing 

sequences were generated for each testing algorithm.  Due to the random 

nature of the non-deterministic testing methods analyzed, a single run 

would not provide an adequate sample from which to draw conclusions.  

Thus, twenty-five 10,000 test case sequences were generated for the eAR, 

FSCS, RRT, and RT algorithms.  Due to the deterministic nature of the 

Sobol Sequence, the first 10,000 members of the Sobol Sequence were 

used within the study.  The testing sequences were each generated from an 

input domain consisting of a two-dimensional unit hypercube, i.e. input 

tuples ∈ [0,1]2.  This simulation problem was selected due to its recurring 



 

  135 

 

use within the field of ART, therefore providing the ability for comparison 

against past, and future research within this topic (K. P. Chan et al., 2004; 

T. Y. Chen, De Hao et al., 2007; T. Y. Chen et al., 2003; T. Y. Chen, Leung 

et al., 2004; T. Y. Chen & Merkel, 2006, 2007; T. Y. Chen, Merkel et al., 

2004; T. Y. Chen et al., 2001; Mayer & Schneckenburger, 2006). 

Associated with each of the ART methods are a number of 

algorithm-specific parameters that were held constant for all simulations.  

The parameter values were selected based upon the recommended values 

found in the respective works, and the specified values in Section 6.1.3.  

The value k for the FSCS algorithm defines the size of the pool from which 

randomly generated test cases were selected.  For all simulations in this 

study, this value was held constant at k=10, in accordance with the 

recommendations of Chen et al. (T. Y. Chen, Leung et al., 2004).  

Similarly, for the RRT algorithm, the value of R determines the relative 

size of the restriction zone placed around any existing test case within the 

testing sequence; this value was held constant at R=1.5 as recommended 

in Chan et al. (K. P. Chan et al., 2004). 

The quasi-random Sobol sequence was generated by the GNU 

Scientific Library (Free Software Foundation, 2008), and was based on the 

works of Antonov & Saleev (Antonov & Saleev, 1980), and Bratley & Fox & 

Niederreiter (Bratley & Fox, 1988; Bratley, Fox, & Niederreiter, 1994; Fox, 

1986).  The deterministic process of generating input data based on the 

Sobol Sequence was unique to quasi-random testing, as only one set of test 

inputs is generated by the Sobol sequence, whereas 25 unique sequences 

were generated for each of the other testing strategies.  The parameters 

associated with eAR are outlined in Section 6.1.3, and are not repeated 

here for the sake of brevity.  The parameters remained constant, and were 

not altered in order to reduce the likelihood of problem-specific over-

optimization. 



 

  136 

 

6.2.3 Effectiveness Measure 

The selection of an adequate effectiveness measure was paramount to the 

validity of this work.  Several metrics were considered; however, the f-

measure proposed by Chen et al. (T. Y. Chen et al., 2006) was chosen due 

to its widespread use within the field (K. Chan et al., 2002; K. P. Chan et 

al., 2004; K. P. Chan, Chen, & Towey, 2006; T. Y. Chen, De Hao et al., 

2007; T. Y. Chen et al., 2006; T. Y. Chen, Kuo et al., 2007; T. Y. Chen et al., 

2003; T. Y. Chen, Leung et al., 2004; T. Y. Chen & Merkel, 2006, 2007; T. 

Y. Chen, Merkel et al., 2004; T. Y. Chen et al., 2001; Loo & Tsai, 1988; 

Mayer & Schneckenburger, 2006), and specific applicability to software 

testing.  The f-measure is calculated as the number of generated test cases 

required to detect a randomly generated fault-causing region within the 

input domain, i.e. the number of test cases generated before a test case 

located within an error region is generated.  The metric has been applied 

with respect to three distinct failure-causing patterns: Block, Strip, and 

Point. All three patters are presented graphically in Figure 6-2.  Due to the 

inherent random nature of the metric, multiple runs of the metric were 

required to obtain accurate results for each of the populations.  

Furthermore, the failure rate θ associated with each f-measure provides 

the ability to analyze the testing strategy across varying failure occurrence 

rates.  Failure rates of 0.01, 0.005, 0.002, and 0.001 were used to analyze 

the effectiveness of the testing methods.  For each of the non-deterministic 

test sequences (from Section 6.2.2), 1000 f-measure statistics were 

calculated for each fault-pattern, and failure rate.  This resulted in a 

population of 300,000 f-measures for each testing method, yielding a total 

population of 1,500,000 samples.  Because of the deterministic nature of 

the Sobol sequence, only one testing sequence could be generated.  To 

provide equal population sizes from which to draw statistical conclusions, 

25,000 f-measure statistics were calculated with respect to the quasi-

random testing sequence for each failure pattern and failure rate, 



 

  137 

 

producing an equal population size to that of the other testing methods 

studied. 

Clearly, the selection of the f-measure metric allows for the 

generation of large pools of simulation data; however, that alone does not 

suggest that the metric is the appropriate method to use within the context 

at hand.  One of the principle benefits of the f-measure metric is the direct 

correlation between it and the real-world testing effectiveness measure, 

namely cost.  The cost associated with any testing strategy is twofold: the 

initial cost of creating the test suite, and the cost associated with the 

implementation and execution of each subsequent test within the suite.  

For the random testing methods, the upfront costs are very low, as the test 

suite is generated automatically.  Therefore, when analyzing testing 

strategies within this domain, the cost associated with the number of tests 

required to trigger a fault is paramount.  As it is this cost that the f-

measure effectively simulates, it provides a clear indication of the 

effectiveness of a random testing strategy. 

Although the implementation of the three failure patterns was 

generally straightforward, a number of interesting situations surfaced 

during the process.   The block pattern was implemented by the selection 

of a random point within the unit hypercube around which a square was 

constructed.  In the case where a square could not be constructed due to 

the selection of a point close to one or more boundaries, the selection 

process was repeated until a square could be constructed that existed 

completely within the border of the hypercube.  The strip pattern was 

implemented as specified by Chen et al. (T. Y. Chen et al., 2006), whereby 

 
Figure 6-2. The Block (a), Strip (b), and Point (c) Failure Patterns 

Associated With The F-Measure (T. Y. Chen, Kuo, & Merkel, 2006). 



 

  138 

 

two points are selected: one on a horizontal boundary, and the other on 

the vertical boundary. These points together create a defined region 

centered about the line between the two points.  The point pattern was 

implemented by the selection of 10 random points from within the 

hypercube; around each point, a circular region was defined so that the 

sum of the constructed regions was equal to the simulation failure rate.  

Similar to the block pattern, the region was specified to lie completely 

within the boundaries of the unit hypercube.  Any point whose region was 

not completely within the bounds of the hypercube was rejected, and 

reselected.  Because of the restrictions placed upon the failure patterns, 

the area of the input domain around the boundaries of the hypercube was 

less likely to have any error region for both the block, and point patterns.  

The strip pattern as implemented cannot simulate a horizontal or vertical 

strip, or a strip that emanates and terminates from the two horizontal or 

vertical boundaries.  Despite these limitations, the implementation of the 

failure patterns is in-line with those used in the literature, providing the 

ability to clearly evaluate the study results within the context of current 

ART research (K. P. Chan, Chen, & Towey, 2006; T. Y. Chen et al., 2006; 

T. Y. Chen, Leung et al., 2004; T. Y. Chen & Merkel, 2007; Mayer & 

Schneckenburger, 2006). 

6.2.4 User-Perceived Latency Estimation 

ART techniques are based on two assumptions: that faults are located 

within clusters within the input domain, and that idle computational 

resources are available.  Essentially, ART methods trade off computation 

overhead in return for a higher quality random test input.  The crucial 

question for any testing practitioner with choosing a RT strategy is: which 

method can produce the most effective test inputs without incurring 

considerable overhead in the testing process?  Given the increasing 

processing power of modern computers, this question is often irrelevant as 

the computer-human interactions are commonly the bottleneck.  For any 



 

  139 

 

user-interactive testing scenario, it is unlikely that any of the ART methods 

will contain any human-perceivable overhead. 

Given the costs associated with user-interactive testing, test 

automation has become an attractive alternative for many software 

endeavors.  Automated software testing is uniquely suited to utilize ART 

methods.  Like the test generation process, automated testing can occur 

without human interaction.  In these cases, it is the automated test process 

that may be waiting for the generation of the next test input.  In such a 

scenario, assuming that the execution of a test is concurrent with the 

generation of the next test input, the deciding factor in which testing 

strategy to employ is dependent on the execution time of the test, and the 

size of the desired test suite.  For example, consider the system-level 

testing of any reasonably sized software endeavor; it is assumed that the 

cost of execution would greatly outweigh the computational overhead 

required for ART input generation. However, an empirical runtime 

analysis will be undertaken to confirm this assumption. 

To test this conjecture, each of the ART methods were implemented 

as an integrated program, written in C.  The program was further 

instrumented to measure the overhead cost (wall clock time) associated 

with the generation of the nth test case, when provided the previous n-1 

test cases.  One hundred runtime data points were generated in successive 

iterations of each of the four algorithms for the range [1,000:100,000] 

with intervals of 1000.  To minimize the possibility of noise due to 

interference from background processes, the benchmark was executed 100 

times, resulting in a pool of 100,000 data points from which the 

evaluation of the overhead costs of each algorithm was conducted. 

6.2.5 Analysis Tools 

Due to the large pools of data generated for each testing method, SPSS was 

used to analyze the experimental data, and generate box plots.  The 

ANOVA (ANalysis Of VAriance) package was used to analyze the 



 

  140 

 

differences between the testing methods, and to provide a statistical basis 

from which to draw conclusions of testing effectiveness.  The associated 

null hypothesis was that the means of the f-measure for each of the four 

methods are equal.  The null hypothesis was rejected if the significance of 

the result was below the standard Type 1 error rate, 0.05. 

 

 

 

 
 

Figure 6-3.  Box Plots Of Simulation Results For Block, Strip And Point 

Patterns With Failure Rates Of 0.01 And 0.005 For Each Of The Testing 

Algorithms 



 

  141 

 

6.3 Experimental Results, and Discussion 

6.3.1 Worst-Case Effectiveness 

The box plots presented in Figures 6-3 to 6-4 provide a graphical 

representation of the results of the study.  Initial conclusions can be drawn 

from a straightforward graphical analysis of the plots.  Scanning 

horizontally across the figures, it is clear from the shape of the plots and 

 

 

 
*  There were 11 strip failure patterns that could not be detected by the 10,000 inputs generated by the Sobol Series for failure rate θ = 0.001. 

Figure 6-4.  Box Plots Of Simulation Results For Block, Strip And Point 

Patterns With Failure Rates Of 0.002, And 0.001 For Each Of The Testing 

Algorithms. 

 



 

  142 

 

the increasing scale on the vertical axis that the varying failure rate has a 

scaling effect on the observed f-measure.  This scaling factor, while not 

linear, did not drastically affect the distribution of results for each of the 

testing methods.  Scanning horizontally across the figure, a dramatic 

change in spread, and worst-case outliers in the f-measure statistic is 

apparent for the ART methods, and Sobol sequence.  Conversely, RT 

appears unaffected by the alteration in the underlying fault pattern.  A 

difference is observed between the strip failure pattern, and the other 

methods with respect to quasi-random testing, although these differences 

between the testing methods appear to converge as the failure rate 

decreases. 

In terms of worst-case testing effectiveness, eAR, FSCS, RRT, and 

Sobol all outperform RT with respect to the block pattern simulations.  Of 

the three ART techniques, eAR exhibited the best worst-case f-measure for 

the block pattern simulations.  Except for a failure rate of 0.002, eAR 

exhibited the best worst-case f-measure of any of the techniques studied.  

At a failure rate of 0.002, the only other testing method with a lower 

worst-case f-measure was the Sobol sequence.  Furthermore, the values of 

the 75th, and 95th percentiles for eAR were lower than those for the FSCS, 

RRT, Sobol, and RT in all block pattern simulations. 

With respect to the strip pattern, the Sobol sequence exhibited the 

poorest worst-case testing performance.  Regardless of simulation failure 

rate, the Sobol sequence consistently reported the highest f-measure 

values, and was the only testing method that was unable to detect a fault 

pattern with a test sequence of 10,000 test inputs.  These undetected faults 

were present only for the strip pattern simulations with a failure rate of 

0.001, and could not be presented in the box plot in Figure 6-3.  Apart 

from the Sobol sequence, eAR, RRT, and RT each performed poorly at 

failure rates of 0.002, 0.005, and 0.001 respectively.  While the worst-case 

for FSCS was never the global maximum, the worst-case fault detection 

was poorer than the other ART methods for failure rates of 0.01, and 



 

  143 

 

0.001.  In terms of worst-case performance amongst the point pattern 

simulations, eAR outperformed the others testing methods in three of the 

four simulations, and was a close second to RRT in the fourth.  Similar to 

the results observed amongst the block patterns, the effectiveness of the 

ART methods in terms of worst-case, median, and the 75th percentile were 

observed to be lower than RT. 

Table 6-1. ANOVA F-Test Results Amongst Each Of The Block, Strip, And 

Point Failure Patterns And For Simulation Failure Rates Of 0.01, 0.005, 

0.002, And 0.001 

θ  = 0.01 θ  = 0.005 θ  = 0.002 θ  = 0.001 Failure 
Pattern F-Test Sig. F-Test Sig. F-Test Sig. F-Test Sig. 

Block 1259.739 .000 1445.439 .000 1403.759 .000 1402.280 .000 

Strip 117.240 .000 100.389 .000 52.962 .000 17.638 .000 

Point 25.039 .000 19.489 .000 30.865 .000 34.698 .000 

Table 6-2Test For Homogeneity Of Variances For Each Of The Block, Strip, 

And Point Failure Patterns And Failure Rates Of 0.01, 0.005, 0.002, And 

0.001 

θ  = 0.01 θ  = 0.005 θ  = 0.002 θ  = 0.001 
Failure 
Pattern Levene 

Statistic 
Sig. 

Levene 
Statistic 

Sig. 
Levene 

Statistic 
Sig. 

Levene 
Statistic 

Sig. 

Block 3262.136 .000 3492.818 .000 3336.524 .000 3071.961 .000 

Strip 166.840 .000 123.604 .000 84.542 .000 24.742 .000 

Point 89.833 .000 85.801 .000 127.152 .000 117.795 .000 

 

6.3.2 Formal Analysis: ANOVA, Games-Howell, and Effect Size 

To formally analyze the differences amongst the simulation results, an 

ANOVA test was performed on the populations for each simulated failure 

pattern and rate.  These results are summarized in Table 6-1, and serve to 

reveal significant differences between the populations.  To further 

characterize these differences, the Levene statistic was calculated for each 

failure pattern, and associated failure rate to determine if homogeneity of 

variance between populations could be assumed.  The Levene statistics, 



 

  144 

 

summarized in Table 6-2, yielded significant results for each failure rate, 

necessitating the rejection of the associated null hypothesis. Therefore, 

equal variances between populations could not be assumed.  

Given that the variances between the populations were not equal, 

the Games-Howell post hoc test was selected to determine if significant 

differences exist between the individual testing methods.  The results of 

the Games-Howell tests form the basis from which all subsequent 

comparisons are presented.  A detailed summary of this analysis is 

presented for each failure pattern (block, strip, and point) in Tables 6-3 to 

6-5.  The results specifically indicate the increased testing effectiveness of 

the evolutionary approach compared to the other approaches studied. 

To provide a standardized comparison of testing effectiveness for 

each of the testing methods, an effect size was calculated for each method 

for which a significant difference against RT was observed.  The effect sizes 

Table 6-3 Games-Howell Comparisons Of Block Error Pattern With Simulated 

Failure Rates: 0.01, 0.005, 0.002, And 0.001. 

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 
Algorithm (x) Algorithm (y) Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 

FSCS -.679 .491 -5.006* .000 -17.716* .000 -36.483* .000 

RRT -3.714* .000 -11.027* .000 -41.361* .000 -85.846* .000 

Sobol .570 .684 -3.301* .001 -43.711* .000 -162.421* .000 

eAR 

RT -33.009* .000 -73.361* .000 -191.455* .000 -399.896* .000 

eAR .679 .491 5.006* .000 17.716* .000 36.483* .000 

RRT -3.035* .000 -6.020* .000 -23.645* .000 -49.363* .000 

Sobol 1.249 .055 1.705 .355 -25.995* .000 -125.937* .000 

FSCS 

RT -32.330* .000 -68.355* .000 -173.739* .000 -363.413* .000 

eAR 3.714* .000 11.027* .000 41.361* .000 85.846* .000 

FSCS 3.035* .000 6.020* .000 23.645* .000 49.363* .000 

Sobol 4.284* .000 7.726* .000 -2.350 .889 -76.575* .000 

RRT 

RT -29.295* .000 -62.335* .000 -150.094* .000 -314.050* .000 

eAR -.570 .684 3.301* .001 43.711* .000 162.421* .000 

FSCS -1.249 .055 -1.705 .355 25.995* .000 125.937* .000 

RRT -4.284* .000 -7.726* .000 2.350 .889 76.575* .000 

Sobol 

RT -33.579* .000 -70.061* .000 -147.744* .000 -237.475* .000 

eAR 33.009* .000 73.361* .000 191.455* .000 399.896* .000 

FSCS 32.330* .000 68.355* .000 173.739* .000 363.413* .000 

RRT 29.295* .000 62.335* .000 150.094* .000 314.050* .000 

RT 

Sobol 33.579* .000 70.061* .000 147.744* .000 237.475* .000 

*  The mean difference is s-significant at the 0.05 level. 

 



 

  145 

 

were calculated using Cohen's d method (Cohen, 1988, 1992), and 

subsequently converted into a Pearson's r correlation for interpretation.  

Cohen offers the following interpretation: small effect size r = 0.1, medium 

r = 0.3, and large r = 0.5 (Cohen, 1988, 1992).  All remaining results will 

be presented in terms of increased testing effectiveness evaluated against 

the RT control group established within the study.   

6.3.3 Block Pattern Simulation Results 

As highlighted by the box plots, the largest gains in testing effectiveness 

were observed within the block failure pattern.  All of the testing methods 

(eAR, FSCS, RRT, and the Sobol sequence) significantly outperformed RT 

with respect to the block failure pattern, as verified by the significant 

differences reported by the Games-Howell test in Table 6-2.  The largest 

 

Figure 6-5. Testing Effectiveness For Block Pattern Simulations Of eAR, 

FSCS, RRT, And The Sobol Sequence Evaluated Against The RT Control 

Group. 

 

0.00!

0.10!

0.20!

0.30!

0.40!

0.50!

0.01! 0.005! 0.002! 0.001!

R
el

at
iv

e 
Te

st
in

g 
Ef

fe
ct

iv
en

es
ss

  
(N

or
m

al
iz

ed
 b

y 
R

an
do

m
 T

es
tin

g)
!

Block Pattern Failure Rate!

eAR! FSCS! RRT! Sobol!



 

  146 

 

observed increase in effectiveness (r = 0.178) was achieved by eAR in 

block pattern simulations with a failure rate of 0.001.  Figure 6-5 presents 

the effect size of the testing effectiveness of each of the strategies in the 

block pattern simulations.  This figure highlights the increased efficiency 

of eAR when contrasted against FSCS, and RRT for all block pattern 

simulations, and against the Sobol sequence for all simulations except for 

a failure rate of 0.01.  For the 0.01 failure rate, eAR (r = 0.086), and Sobol 

(r = 0.086) where observed to have similar testing effectiveness.  The 

Games-Howell comparisons indicated that eAR significantly outperformed 

all of the other methods studied for block pattern simulations at every 

failure rate except 0.01.  In the block pattern simulations with a failure 

rate of 0.01, a significant difference was not identified between eAR, FSCS, 

and Sobol by the Games-Howell tests. 

A significant difference was not observed between eAR, FSCS, and 

Sobol for failure rates of 0.01.  This exception may be attributable to the 

initial propensity of the eAR method to select test inputs that exist on the 

input domain boundary.  This tendency, a byproduct of the effectiveness of 

eAR in selecting values that are a maximal distance from all other test 

cases, produces a testing sequence that evenly spaces out test inputs across 

the entire input domain including the boundary values.  As a result, test 

inputs that exist on the input boundary are less likely to detect a block 

pattern failure, because these failures are defined to occur completely 

within the input domain boundaries.  For a boundary input to detect a 

block pattern failure, the edge of the failure region must be situated on the 

input boundary.  This initial impeding effect is observed in side-by-side 

comparisons of the f-measure distributions of the three ART methods for 

failure rates of 0.01, and 0.001, presented in Figure 6-6.  The distributions 

of both the FSCS, and RRT remain similar at both failure rates; however, 

the same cannot be said for eAR.  For simulations with a failure rate of 

0.01, the peak eAR f-measure frequency was observed to be in the range of 

40-45 test cases, with a steep rising trend to the peak.  While a similar 



 

  147 

 

peak was observed within the 0.001 failure rate distribution, the pitch of 

the trend was not nearly as steep, suggesting that the negative effect of the 

initial boundary inputs decreases as the failure rate decreases. 

  
(i) eAR (Failure Rate 0.01) (iv) eAR (Failure Rate 0.001) 

  
(ii)  FSCS (Failure Rate 0.01) (v)  FSCS (Failure Rate 0.001) 

  
(iii)  RRT (Failure Rate 0.01) (vi)  RRT (Failure Rate 0.001 

Figure 6-6.  Histograms Of the f-measure Frequency For eAR, FSCS, RRT 

Block Pattern Simulations With Failure Rates Of 0.01 And 0.001. 

To further understand the differences between eAR, and the other 

ART methods studied, the frequency of the first 100 f-measure statistics 

were examined for each of the three ART algorithms at failure levels of 

0.01, and 0.001, presented in Figure 6-7.  Similar to the box plot 

observations, it appears that a decrease in failure rate reduces the 

magnitude of the f-measure frequency, effectively flattening the 



 

  148 

 

distributions in the range [1:100] for block pattern simulations with a 

failure rate of 0.001. 

Particular attention is drawn to the f-measure values for eAR 

simulations for the second, and third test cases, for both the 0.01, and 

0.001 simulations.  Unlike the other test cases within the testing sequence, 

these two inputs are dramatically lower than any of the others.  These 

inputs were unique to eAR, and similar points were not observed within 

the first 100 test inputs of either FSCS, or RRT.  These two specific cases 

represent the two points furthest from the initial random point, 

corresponding to two opposite corners of the input domain.  These two 

  
(i) eAR (Failure Rate 0.01) (iv) eAR (Failure Rate 0.001) 

  
(ii)  FSCS (Failure Rate 0.01) (v)  FSCS (Failure Rate 0.001) 

  
(iii)  RRT (Failure Rate 0.01) (vi)  RRT (Failure Rate 0.001) 

Figure 6-7.  Histograms Of First 100 f-measure Frequencies For eAR, 

FSCS, RRT Block Pattern Simulations With Failure Rates Of 0.01 And 

0.001. 



 

  149 

 

points, which are very unlikely to detect a block pattern failure, are the 

most extreme examples of the negative effects of the initial boundary 

inputs selected by eAR.  Although these effects persist with a decreasing 

failure rate, the impact of these points is diminished due to the decreased 

number of faults found per test input. 

Despite the initial tendency of eAR to produce boundary test inputs, 

the effectiveness of the method remains on par (no significant difference 

found) with FSCS, and the Sobol Sequence; and significantly above RRT, 

and RT for failure rates of 0.01.  Because the tendency for the algorithm to 

select boundary values is most apparent in the initial inputs, the effect of 

this tendency is most pronounced for a failure rate of 0.01.  In fact, the 

median f-measure for a failure rate of 0.01 was found to be an order of 

magnitude lower than that for a failure rate of 0.001.  As the failure rate 

decreased, the f-measure was observed to increase, indicative of the 

increased difficulty of detecting smaller failure regions.  As the number of 

tests required to detect a fault increases, the impact of the decreased 

detection ability of the initial boundary values decreases.  This decreased 

impact of the initial boundary inputs is evidence by the observed results 

for failure rates lower than 0.01 in Figure 6-5, and by the significant 

Games-Howell results presented in Table 6-3. 

A general upward trend was observed between the testing 

effectiveness, and block pattern failure rate for the ART methods.  The 

greatest increase in ART effectiveness versus failure rate was observed for 

the eAR method, and the slowest rate for RRT.  The increase in eAR 

effectiveness is most likely a direct result of suppressing the initial 

tendency of the algorithm to select boundary values, as previously 

discussed.  The relationship between Sobol sequence testing effectiveness 

and failure rate was very different from that of the ART methods.  In all 

simulations with a failure rate lower than 0.005 the Sobol sequence 

decreased in effectiveness, whereas all of the ART methods demonstrated 

increased effectiveness.  This finding suggests that the performance of 



 

  150 

 

quasi-random testing strategies decreases with the failure rate.  However, 

this result cannot be considered definitive, and a more in-depth study of 

quasi-random testing is required to fully understand this trend. 

6.3.4 Strip Pattern Simulation Results 

With respect to the strip pattern, the Games-Howell comparisons 

presented in Table 6-4 confirm that the ART methods significantly 

outperformed RT for all failure rates.  Figure 6-8 presents the testing 

effectiveness in terms of effect size r for the strip pattern simulations.  This 

figure highlights an interesting situation; it represents the only failure 

pattern for which the effectiveness of the ART methods decrease with the 

failure rate.  It may be observed from Figure 6-8 that FSCS was the best 

performer, performing significantly better than RRT for failure rates of 

Table 6-4. Games-Howell Comparisons Of Strip Error Pattern With Simulated 

Failure Rates: 0.01, 0.005, 0.002, And 0.001. 

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 
Algorithm (x) Algorithm (y) Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 

FSCS 1.129 .564 4.536* .036 13.852* .008 24.046* .038 

RRT -1.329 .395 1.335 .918 11.463* .046 16.958 .270 

Sobol† -14.227* .000 -28.818* .000 -43.330* .000 -36.256* .001 

eAR 

RT -13.015* .000 -16.319* .000 -16.832* .001 -24.424* .042 

eAR -1.129 .564 -4.536* .036 -13.852* .008 -24.046* .038 

RRT -2.458* .010 -3.202 .242 -2.389 .978 -7.088 .915 

Sobol† -15.357* .000 -33.354* .000 -57.182* .000 -60.302* .000 

FSCS 

RT -14.144* .000 -20.855* .000 -30.684* .000 -48.470* .000 

eAR 1.329 .395 -1.335 .918 -11.463* .046 -16.958 .270 

FSCS 2.458* .010 3.202 .242 2.389 .978 7.088 .915 

Sobol† -12.898* .000 -30.152* .000 -54.793* .000 -53.214* .000 

RRT 

RT -11.686* .000 -17.653* .000 -28.295* .000 -41.382* .000 

eAR 14.227* .000 28.818* .000 43.330* .000 36.256* .001 

FSCS 15.357* .000 33.354* .000 57.182* .000 60.302* .000 

RRT 12.898* .000 30.152* .000 54.793* .000 53.214* .000 

Sobol† 

RT 1.213 .865 12.499* .000 26.498* .000 11.832 .697 

eAR 13.015* .000 16.319* .000 16.832* .001 24.424* .042 

FSCS 14.144* .000 20.855* .000 30.684* .000 48.470* .000 

RRT 11.686* .000 17.653* .000 28.295* .000 41.382* .000 

RT 

Sobol† -1.213 .865 -12.499* .000 -26.498* .000 -11.832 .697 

*  The mean difference is s-significant at the 0.05 level. 
†  There were 11 strip failure patterns that could not be detected by the 10,000 inputs generated by the Sobol Series for failure 
rate θ = 0.001. 

 



 

  151 

 

0.01; and significantly better than eAR for failure rates of 0.005, 0.002, 

and 0.001.  eAR (r = 0.032) was observed to have a higher effectiveness 

than RRT (r = 0.029) relative to RT for the failure rate of 0.01, but the 

mean difference between these two populations was not found to be 

significant.  Conversely, RRT was observed to have a greater effectiveness 

relative to RT for failure rates less than 0.01; however, the mean difference 

between the eAR and RRT populations was found to be significant in only 

one case, for a failure rate of 0.002. 

The Sobol sequence was the only testing method found to be 

significantly less effective than RT, both in terms of mean difference, and 

effect size.  For all simulated failure rates, the Sobol sequence was found to 

be significantly less effective than all three of the ART strategies; and for 

failures rates of 0.005, and 0.002, the Sobol sequence was even found to 

 
Figure 6-8. Testing Effectiveness For Strip Pattern Simulations Of eAR, 

FSCS, RRT, And The Sobol Sequence Evaluated Against The RT Control 

Group. 

-0.10!

-0.05!

0.00!

0.05!

0.10!

0.15!

0.20!

0.01! 0.005! 0.002! 0.001!

R
el

at
iv

e 
Te

st
in

g 
Ef

fe
ct

iv
en

es
ss

  
(N

or
m

al
iz

ed
 b

y 
R

an
do

m
 T

es
tin

g)
!

Strip Pattern Failure Rate!

eAR! FSCS! RRT! Sobol*!



 

  152 

 

be significantly less effective than RT.  This was a surprising result due to 

the increased testing effectiveness observed for the Sobol sequence with 

respect to the block failure pattern.  However, the result clearly 

demonstrates that a testing strategy can be adept at detecting a specific 

type of fault, in this case a fault characterized by its error region, while at 

the same time be quite inept at detecting other faults.  It is important to 

note that, although block, strip, and point patterns do not effectively cover 

the enormous breadth of possibilities of error regions, they do provide in 

this case sufficient variation to elicit the strengths and weaknesses of 

various testing strategies.  While the claim that ART methods are better or 

at least no worse than RT remains undisputed, it is clear that this claim 

should be rejected for the Sobol sequence.  Further study is required to 

hone quasi-random techniques to a point at which they perform at least as 

well as RT for faults characterized by strip failure regions. 

With respect to the testing effectiveness of the methods for strip 

pattern simulations, a distinct downward trend is observed in Figure 6-8 

when compared against Figure 6-5, and Figure 6-9.  This distinction 

suggests that the failure rate does not have the same effect on the testing 

effectiveness of ART for the strip pattern as was observed for the block and 

point patterns.  A generally upward trend was observed amongst ART 

methods for the block, and point patterns with a decreasing failure rate, 

while amongst the strip pattern simulations the opposite effect was 

observed.  While the block, and point patterns represent simple failure 

regions, each fixed about a stationary point or points, the strip pattern 

represents a linear relationship between two variables.  This increased 

complexity of the relationship between the two axes could be the cause of 

the observed anomaly; however, the exact cause of these results is not fully 

understood.  Despite the increased complexity encapsulated within the 

strip pattern, the three ART methods were found to significantly 

outperform RT at all failure rates. 



 

  153 

 

 
Figure 6-9. Testing Effectiveness For Point Pattern Simulations Of eAR, 

FSCS, RRT, And The Sobol Sequence Evaluated Against The RT Control 

Group. 

6.3.5 Point Pattern Simulation Results 

Point pattern simulation yielded results similar to the strip pattern; ART 

methods performed slightly better, and not worse than RT, with significant 

effect sizes ranging from r = 0.009 to r = 0.030.  All of the testing methods 

significantly outperformed RT with the exception of eAR at the failure rate 

0.01, where a significant difference between eAR and RT populations 

could not be verified by the Games-Howell test.  Comparisons between the 

individual testing methods revealed subtle differences between the testing 

results, suggesting that at lower failure rates the performance of the three 

ART methods, while indistinguishable, were significantly better than RT, 

and the Sobol sequence.  Of the twelve Games-Howell comparisons 

amongst ART methods presented in Table 6-5, only four were significant.  

At the failure rate of 0.01, eAR was observed to perform significantly 

worse than FSCS, and RRT; and at 0.005, eAR performed significantly 

-0.025!

0.000!

0.025!

0.050!

0.075!

0.100!

0.01! 0.005! 0.002! 0.001!

R
el

at
iv

e 
Te

st
in

g 
Ef

fe
ct

iv
en

es
ss

  
(N

or
m

al
iz

ed
 b

y 
R

an
do

m
 T

es
tin

g)
!

Point Pattern Failure Rate!

eAR! FSCS! RRT! Sobol!



 

  154 

 

worse than RRT.  After this threshold, the results of each of the three ART 

methods began to converge, and significant differences between the ART 

populations could not be verified.  This convergence suggests that, as the 

failure rate increases, the gains in testing effectiveness for failure regions 

similar to the point pattern are equal amongst the ART techniques. 

The mean difference observed between RT and eAR for the point 

pattern with a simulated failure rate of 0.01 was the only comparison 

against RT that was not verified to be significant.  This underachievement 

is attributed to the way in which the eAR method selects the initial 

boundary value test inputs. The point pattern as defined (T. Y. Chen et al., 

2006) requires that all points exist completely within the input boundary.  

This definition severely restricts boundary inputs to only detect a failure in 

the case when the circumference of the error region just touches the 

boundary at the point where the test resides.  Because of this definition, 

Table 6-5. Games-Howell Comparisons Of Point Error Pattern With 

Simulated Failure Rates: 0.01, 0.005, 0.002, And 0.001. 

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 
Algorithm (x) Algorithm (y) Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 
Mean Diff. 

(x-y) Sig. 

FSCS 2.848* .002 3.643 .119 5.645 .566 3.409 .991 

RRT 5.598* .000 7.007* .000 5.740 .548 9.027 .758 

Sobol 4.870* .000 2.089 .678 -10.313 .076 -33.947* .000 

eAR 

RT -.797 .874 -6.386* .001 -32.043* .000 -69.947* .000 

eAR -2.848* .002 -3.643 .119 -5.645 .566 -3.409 .991 

RRT 2.750* .003 3.364 .176 .095 1.000 5.619 .948 

Sobol 2.022 .082 -1.555 .865 -15.958* .001 -37.355* .000 

FSCS 

RT -3.645* .000 -10.029* .000 -37.688* .000 -73.356* .000 

eAR -5.598* .000 -7.007* .000 -5.740 .548 -9.027 .758 

FSCS -2.750* .003 -3.364 .176 -.095 1.000 -5.619 .948 

Sobol -.728 .889 -4.919* .016 -16.053* .001 -42.974* .000 

RRT 

RT -6.395* .000 -13.393* .000 -37.783* .000 -78.974* .000 

eAR -4.870* .000 -2.089 .678 10.313 .076 33.947* .000 

FSCS -2.022 .082 1.555 .865 15.958* .001 37.355* .000 

RRT .728 .889 4.919* .016 16.053* .001 42.974* .000 

Sobol 

RT -5.667* .000 -8.475* .000 -21.731* .000 -36.001* .000 

eAR .797 .874 6.386* .001 32.043* .000 69.947* .000 

FSCS 3.645* .000 10.029* .000 37.688* .000 73.356* .000 

RRT 6.395* .000 13.393* .000 37.783* .000 78.974* .000 

RT 

Sobol 5.667* .000 8.475* .000 21.731* .000 36.001* .000 

*  The mean difference is s-significant at the 0.05 level. 
 



 

  155 

 

test inputs that lay on the boundaries are unlikely to detect a point failure, 

and inputs that reside in any of the four corners simply cannot detect a 

failure region.  Although the inability to detect point pattern failure 

regions using inputs that exist within the boundary corner applies to all 

testing methods, this limitation most severely affects the performance of 

eAR because the algorithm initially selects at least one of the boundary 

corners.  As observed for the block pattern simulations, as the failure rate 

is decreased, the impact of the initial boundary inputs also decreases.  As 

such, for all failure rates above 0.01, eAR was found to perform 

significantly better than RT.  Furthermore, the significant disparity 

observed between eAR and the other testing methods was all but erased by 

a failure rate of 0.002 as the ART methods began to converge. 

As previously observed amongst the block and strip patterns, the 

Sobol sequence exhibited different behavior than the ART methods.  While 

the ART methods all displayed an upward trend in testing effectiveness, 

the Sobol sequence was the only testing method whose effectiveness did 

not increase with the failure rate (r = 0.014 for θ = 0.01, and r = 0.013 for 

θ = 0.001).  This trend was also observed for the block failure pattern, and 

suggests that for the testing of established software endeavors, i.e. mature 

software projects with a low failure rate, the Sobol sequence is not the best 

choice when compared to the state-of-the-art offerings from the ART 

community. 

6.3.6 Empirical Runtime Results 

Based on the definitions of the algorithms, and the associated runtime 

analysis, it is clear that differences in terms of computation costs exist 

between the algorithms studied.  The differences between the ART 

methods (eAR, FSCS, and RRT), and the Sobol sequence were directly 

proportional to the size of the test suite; the Sobol sequence required 

constant time to generate the next test case, and the ART methods 

increased linearly with the size of the test suite. 



 

  156 

 

To study the runtime differences between the four algorithms, an 

empirical analysis was conducted to demonstrate the performance costs 

associated with each algorithm.  The mean runtimes for each of the 

algorithms is presented in Figure 6-10.  On average, eAR and FSCS are 

differentiated by a factor of 5.3, while eAR and RRT are differentiated by a 

factor of 29.4.  As shown in Table 6-6, the runtime of eAR was at best only 

2.1 times worst than FSCS, and 1.4 times worst than RRT; at worst, the 

runtime of eAR was 8.4 times worse than FSCS, and 80.8 times worse 

than RRT.  

Table 6-6. Relative Runtime Cost For eAR vs FSCS, and eAR vs RRT. 

 Minimum Average Maximum 

eAR vs FSCS 2.1 5.3 8.4 

eAR vs RRT 1.4 29.4 80.8 
 

 
Figure 6-10. Mean Runtime Of eAR, FSCS, RRT, And The Sobol Sequence To 

Generate The nth Test Case. 

0.00!

0.02!

0.04!

0.06!

0.08!

0.10!

0.12!

0! 20000! 40000! 60000! 80000! 100000!

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(s
)!

nth Test Case!

eAR! FSCS! RRT! SOBOL!



 

  157 

 

The relative differences between eAR compared to FSCS and RRT 

are smaller than the theoretical worst-cases presented in Section 6.1.4.  

This discrepancy is explained by the conservative values chosen as 

parameters for eAR.  The genetic algorithm population converges upon a 

suitable solution quickly; and because the algorithm only recalculates the 

fitness for individuals with differing values from their parents, the 

algorithm's performance is greatly improved.  As mentioned in Section 

6.1.3, parameters controlling population size, crossover possibility, 

mutation possibility, and the stoppage criterion were held constant to 

avoid problem over-optimization; thus the worst-case runtime associated 

with these constants is conservative. 

Despite the difference in execution time between the testing 

algorithms, it is important to note that the runtime associated with each is 

marginal (less than 1 second).  The instrumented application was run on 

an Intel Core2 Quad Processor Q6700 (2.66 GHz) with 8 GB of RAM, and 

was able to compute the 100,000th eAR test case in less than 0.2 seconds.  

In this instance, the selection of the ART algorithm from a runtime cost 

standpoint was inconsequential, suggesting that the choice should be 

driven fundamentally by demonstrated testing effectiveness.  However, in 

practice, the costs of test generation should be weighed carefully against 

the cost of test case execution. 

6.4 Evolutionary Adaptive Random Testing and Cookie 

Collection Testing 

The use of the anti random testing algorithm for cookie collection testing 

is simply not feasible given the intractability of the anti random algorithm 

for test vectors of considerable length.  As anti random testing requires the 

iteration of the entire vector space, the asymptotic runtime is in the order 

of exponential complexity (anti random(t) ∈ Ο (2t), where t is the number 

of elements contained within a test vector).  This runtime complexity is not 



 

  158 

 

computationally feasible for any testing problem of considerable size 

(Cobham, 1964).   

Evolutionary adaptive random testing, on the other hand, is in the 

order of quadratic time complexity and is not tied to the number of 

elements within a test vector (eAR(n) ∈ Ο (n2), where n is the number of 

tests within the input test suite), but rather the size of the testing suite.  

Figure 6-11 presents a comparison of the asymptotic runtimes of the anti 

random and eAR testing algorithms.  This figure is based upon the range 

of cookies used by actual sites as documented in Chapter 3.2.6.  

Asymptotic runtime analysis only considers the upper bound of the growth 

rate of a function.  As such, it may be noted that the scaling effect which n 

 
Figure 6-11.  Asymptotic Runtime Comparisons 

 

1.E+00!

1.E+02!

1.E+04!

1.E+06!

1.E+08!

1.E+10!

1.E+12!

1.E+14!

1.E+16!

1.E+18!

1.E+20!

1.E+22!

0! 10! 20! 30! 40! 50! 60! 70! 80!

A
sy

m
pt

ot
ic

 R
un

tim
e 

Es
tim

at
io

n!

Number of Cookies!

Anti-Random (All values of n)! EAR (n=1)!
EAR (n=10)! EAR (n=100)!
EAR (n=1,000)! EAR (n=10,000)!



 

  159 

 

has upon eAR also pertains to the anti random testing algorithm applied 

across an entire test suite.  However, as displayed in Figure 6-11, the 

scaling effect was omitted from the asymptotic runtime analysis because it 

becomes insignificant in comparison to the size of the test vector for 

sufficiently large test vectors. 

6.4.1 Evolutionary Adaptive Random Testing Definition 

The definition of the eAR testing algorithm utilized within cookie 

collection testing will be provided in terms of problem encoding and 

fitness function—all other algorithm parameters including selection 

mechanism, crossover, mutation, stoppage criterion, and population size 

were consistent with Section 6.1.3. 

Encoding.  To encode the cookie collection testing problem, each 

test vector was comprised of one bit for each of the cookies present within 

a global cookie collection—one representing the presence of a cookie, zero 

representing its absence. 

Fitness.  To provide the best coverage of testing vectors across the 

input domain, the hamming distance was used as the basis for the fitness 

function (Malaiya, 1995).  The fitness function is defined as 

 

€ 

Fitness(x,T) =min
y∈T

xi − yi
i=0

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (6-2) 

where x is the vector (chromosome) for which the fitness is being 

calculated, T is the set of pre-existing test vectors, y is a test vector within 

T, and n is the number of elements within the test vector x.  The value 

Fitness(x,T) was then assigned to each chromosome x, and used to select 

individuals for reproduction.  

A detailed description of the testing harness developed for the 

automation of cookie collection testing is documented in Appendix B. 



 

  160 

 

6.5 Summary of Results and Key Findings 

ART techniques demonstrated the greatest gains in testing effectiveness 

for failure regions that are most closely represented by the block pattern.  

Evolutionary adaptive random testing was found to perform significantly 

better than all the other testing methods studied for block pattern 

simulations with failure rates below 0.01.  

Although the performance of eAR did not significantly exceed the 

other ART methods for point and strip pattern simulations, eAR was 

demonstrated to be of similar effectiveness, and of increased effectiveness 

compared to the Sobol sequence and RT.  While increases in testing 

effectiveness were observed for the ART methods in the strip and point 

patterns, these increases were not of the same magnitude as those 

achieved in the block pattern simulations.  These results are in agreement 

with previous claims that ART methods perform slightly better than, or at 

least no worse than, RT.  The effect sizes associated with the differences 

between ART and RT for point and strip pattern simulations showed an 

increased testing effectiveness ranging from r = 0.009 to r = 0.034.   

Although these differences are significant, they are not as large as those 

observed for the block pattern simulations (effect sizes ranging from r = 

0.074 to r = 0.178), representing a fivefold increase in testing effectiveness 

when comparing ART methods to RT. 

The results of the simulation study clearly answer the research 

questions posed in Section 6.2.1.  The application of an evolutionary 

search algorithm is applicable within the domain of ART.  Evolutionary 

adaptive random testing was found to offer the largest increase in 

effectiveness in block pattern simulations, the domain in which ART has 

been demonstrated most effective, and was shown to generate testing 

inputs with a marginal increase in overhead cost.  Based on the increased 

testing effectiveness, evolutionary adaptive random testing will be used for 

the generation of testing data for cookie collection testing. 

 



 

  161 

 

Chapter 7 

 

Cookie Collection Testing: 

An Empirical Evaluation 
 

Software testing has been defined by G. J. Myers as "the process of 

executing a program with the intent of finding errors" (1976, p. 6).  Given 

this singular purpose, empirical evaluations of testing theories focus upon 

one central concept—the ability of a testing theory to detect bugs.  The 

ability to detect defects must be evaluated against the costs associated with 

fault detection.  It is within this tension that modern testing strategies 

exist—seeking to maximize fault detection while minimizing testing effort. 

Cookie collection testing, as defined in Chapter 5 and implemented 

by the testing tool CookieCruncher in Appendix B, exists as a low-cost 

automated testing tool for modern web applications.  The automated 

nature of the tool allows for testers to quickly define and create testing 

suites uniquely suited to the cookie collections present within a web 

application.  Although this ability entails relatively low cost, it remains, 

until now, untested.  This chapter will examine cookie collection testing as 

implemented through the adaptation of Evolutionary Adaptive Random 

Testing, as describe in Chapter 6.4, providing concrete empirical evidence 

that the testing theory is an effective testing tool, capable of finding defects 

in real-world web applications. 

The remainder of the chapter will be organized as follows.  Section 

7.1 will outline the evaluation methodology used to assess the testing 

strategy; Section 7.2 will present empirical data drawn from a study of the 

testing strategy applied to six real-world web applications, with analysis 



 

  162 

 

and discussion of the results; finally, Section 7.3 will summarize the 

results and highlight the key findings.  

7.1 Evaluation Methodology 

As the first testing strategy to actively evaluate a web application from the 

perspective of cookie collection modification, the evaluation focused 

primarily upon the question of fault detection.  Within the testing strategy 

a number of comparisons were undertaken to understand which facets 

were the most cost-effective.  In order to evaluate the cookie collection 

testing strategy defined in Chapter 5 and implemented using evolutionary 

adaptive random testing as outlined in Chapter 6 an empirical evaluation 

was undertaken. 

7.1.1 Research Questions 

The empirical evaluation addressed the following research questions: 

 

Q1. Can cookie collection testing reveal defects in web applications? 

Q2. What is the relationship that exists between faults triggered by 

seeding and generated vectors? Are the two complementary, or 

does one supersede the other? 

Q3. How do web applications respond to cookie collection testing?  

Are the responses uniform or application-specific? 

Q4. Does a relationship exist between tree and context similarity 

coefficients?  

Q5. Are the tree similarity and context similarity coefficients useful at 

detecting web application defects? Is one superior or is a 

composite metric most effective? 

7.1.2 Experimental Design 

Six open source web applications were chosen as test subjects to which 

cookie collection testing was applied.  Due to the adaptive-random nature 

of test input generation, and the sheer size of test data generated, this 



 

  163 

 

process was automated through the use of the testing tool 

CookieCruncher.  Each of the six applications where subjected to use-case 

analysis from which application specific test cases were drawn.   

From each of the test-suites, a smaller subset of 100 test cases were 

randomly selected and analyzed manually from a binary perspective—Pass 

or Fail.   A test case was said to Pass if, and only if, the observable test 

result was deemed equivalent to that of the test oracle output.  This 

process required manual inspection due to noise present within the output 

of the applications (non-consistent artifacts within the normal operation 

of the web applications).  The results of the binary evaluation process were 

then used as a basis from which an optimal threshold-classification value 

could be assigned to each similarity coefficient. 

7.1.3 Test Application Selection 

Six open source web applications were selected for testing, based primarily 

on the underlying cookies each application represented.  Open source 

applications were used because of the ease of access to the underlying 

application, allowing repeatability of the experiments.  A summary of the 

applications is provided in Table 7-1. 

Table 7-1.  Test Applications Summary 

Web 
Application 

Tested 
Version 

Complexity 
Metric 
(LOC) 

URL  

BugTracker.net 3.2.5 52,147 http://ifdefined.com/bugtrackernet.html 

e107 0.7.16 175,265 http://e107.org/ 

GeekLog 1.5.0rc1 118,706 http://www.geeklog.net/ 

phpBB2 2.0.12 43,831 http://www.phpbb.com/ 

phpBB3 3.0.5  203,465 http://www.phpbb.com 

phpMyAdmin 3.2.1 194,870 http://www.phpmyadmin.net 

 

All of the selected applications were found to use cookies from a 

wide variety of categories, including first-party, sessional, persistent, 

httponly, and secure.  The cookie usage within the web applications ranged 

from three to ten.  Within the survey conducted in Chapter 3, it was found 



 

  164 

 

that sites having between one and ten cookies accounted for over 92% of 

web applications.  A summary of the cookie usage of each test application 

is presented in Table 7-2. 

Table 7-2.  Test Application Cookie Usage Summary 

Web Application Cookie 
Classification BugTracker.net e107 GeekLog phpBB2 phpBB3 phpMyAdmin 

All Cookies  5 5 8 3 4 10 

First-Party 5 5 8 3 4 10 

Sessional 2 3 1 2 4 1 

Persistent 3 2 7 1 0 9 

HttpOnly 1 0 0 0 3 9 

Secure 0 0 0 0 0 7 

Path Specific 2 1 1 1 1 1 

 

Other factors were considered in the selection of the test 

applications.  From a web-technologies perspective, the six applications 

employ a wide variety of platforms and methods for content delivery.  The 

selected applications also represent the two most commonly encountered 

web-programming languages, ASP and PHP, as described in Chapter 4.3.1.  

The applications are served by two competing HTTP server platforms, 

Apache HTTP Server and Microsoft's Internet Information Services (IIS), 

two database servers, mySQL and Microsoft SQL Server, and are run on 

three distinct platforms—Ubuntu Linux 9.04, Windows server 2008, and 

Mac OSX 10.6.  Furthermore, the selected applications employ a variety of 

underlying web-technologies and HTML elements such as AJAX, CSS, and 

Frames.  A brief description of each web application and its installation 

environment and related technologies is provided in Appendix C. 

7.1.4 Analysis Tools 

Given that the testing process is based upon adaptive-random techniques 

and the use of the automated testing tool, a large pool of testing data was 

available for analysis.  Because of the non-parametric nature of the data, 

the Mann-Whitney U test was selected to analyze the differences between 

testing results.  The null hypothesis of the Mann-Whitney U test is that the 

two groups of test-results come from a single population.  Essentially, this 



 

  165 

 

test will allow for the identification of a significant difference between two 

populations.  The null hypothesis for all statistical tests was rejected if the 

significance of the result was below the standard Type 1 error rate, 0.05.    

Analysis of the binary Pass/Fail experiment was conducted using 

the receiver operating characteristic (ROC) curve to assess the optimal 

decision-threshold classifier (Fawcett, 2003).  An ROC curve is a plot of 

the true-positive rate versus the false-positive rate under a variety of 

threshold values.  Each of the threshold values can be thought of as a 

trade-off between false-positive and false-negative identifications.  The 

area under the ROC curve provides an indication of the quality of the 

underlying diagnostic test.  An area of 1.0 represents a perfect test, and an 

area of 0.5 represents a random guess, equivalent to making a decision 

based upon the flip of a coin.  The ROC curve is used extensively in 

evaluation of medical diagnostic tests (Hanley & McNeil, 1982; Zweig & 

Campbell, 1993) and has recently become prevalent within the field of 

machine learning and data mining (Bradley, 1997; Fawcett, 2003).  ROC 

curves will be used to select threshold values for each test suite, and the 

area under the curve will be used as a primary means of comparing the 

effectiveness of each similarity coefficient.  

Finally, The Pearson product-moment correlation coefficient 

(Pearson's r) was selected to calculate the correlation between the 

similarity coefficients, and to deduce the relationships between these 

measures.  Pearson's r was chosen for its widespread use and robustness 

against non-normal data (Carroll, 1961; Nefzger & Drasgow, 1957; Rodgers 

& Nicewander, 1988). To further enhance this analysis, the Pearson 

coefficients were attributed a measure of effect size—small, 0.1 < r ≤ 0.3; 

medium, 0.3 < r ≤ 0.5; and large, 0.5 < r ≤ 1; according to Cohen (Cohen, 

1988, 1992). 



 

  166 

 

7.2 Experimental Results and Discussion 

7.2.1 Initial Findings – A Comparative Analysis 

The use of the automated testing tool enabled the definition and execution 

of 29,057 individual tests spread across 675 test requests.  This large test 

pool will serve as the basis for subsequent discussions and evaluations of 

the cookie collection testing strategy. A summary of the descriptive 

statistics of the test results for each of the six applications, based on the 

tree similarity, context similarity, and composite similarity coefficients, is 

presented in Table 7-3.  Although the distribution of Jaccard similarity 

coefficients is known to be asymptotically normal when the underlying 

populations are assumed to follow equiprobable multinomial distributions 

(McCormick, Lyons, & Hutcheson, 1992), this is not the case for the 

current data set, and the distribution of the testing results remains 

unidentified.  Because the data distribution was not identifiable, the 

following sections will employ robust non-parametric statistical tests and 

descriptions in the presentation and analysis of the testing results. 

Table 7-3. Descriptive Statistics of Test Results  

Web Application N Min. Max. Median Mode Range 

Tree Similarity 1440 .014 1.000 1.000 1.000 0.986 

Context Similarity 1440 .000 1.000 1.000 1.000 1.000 

BugTracker.net 

Composite Similarity 1440 .010 1.000 1.000 1.000 0.990 

Tree Similarity 1024 .235 1.000 0.996 1.000 0.765 

Context Similarity 1024 .203 1.000 0.957 1.000 0.797 

e107 

Composite Similarity 1024 .221 1.000 0.976 1.000 0.779 

Tree Similarity 2232 .577 1.000 1.000 1.000 0.423 

Context Similarity 2232 .366 1.000 0.979 1.000 0.634 

GeekLog 

Composite Similarity 2232 .507 1.000 0.990 1.000 0.493 

Tree Similarity 580 .839 1.000 1.000 1.000 0.161 

Context Similarity 580 .609 1.000 1.000 1.000 0.391 

phpBB2 

Composite Similarity 580 .733 1.000 1.000 1.000 0.267 

Tree Similarity 2080 1.000 1.000 1.000 1.000 0.000 

Context Similarity 2080 .864 1.000 1.000 1.000 0.136 

phpBB3 

Composite Similarity 2080 .935 1.000 1.000 1.000 0.065 

Tree Similarity 21701 .020 1.000 0.976 1.000 0.980 

Context Similarity 21701 .000 1.000 0.958 0.958 1.000 

phpMyAdmin 

Composite Similarity 21701 .014 1.000 0.967 0.967 0.986 

 



 

  167 

 

The values of the tree and context similarity coefficients can range 

between [0: 1] because of the use of the Jaccard similarity coefficient in the 

calculation of both measurements.  The composite similarity coefficient 

shares the same extreme values, given that is it the normalized Euclidian 

distance of a (tree similarity, context similarity) data point from the origin 

(0, 0), as described in equation (5-7).   This normalized range allows for 

direct comparison of the test results from the similarity coefficients across 

all test subjects.  To this end, Figures 7-1 to 7-3 provide box plots of the 

similarity coefficients for all six of the test applications.  Content similarity 

was observed to exist within the range of [0: 1], whereas tree similarity 

ranged from [0.014: 1].  This difference exists due to the definition of the 

DOM tree and its implementation within the Firefox browser (Mozilla 

Developer Center, 2009; W3C, 2005).  Because all DOM trees share a 

common root node (Document), the tree similarity coefficient always 

returns at least one common node.  In practice this phenomenon is not 

only limited to the document node, but extends to the HTML, HEAD, and 

BODY nodes as these are present within all HTML documents, and are 

automatically added by Firefox if the return document is not compliant.  

These common nodes are responsible for the observed differences between 

the context and tree similarity coefficients. 

While globally the similarity coefficients ranged between [0: 1], the 

lower bound values varied greatly between the different test subjects.  

BugTracker.net and phpMyAdmin were observed to have the largest 

spreads, with tree similarity coefficients ranging [0.014: 1.0] and 

[0.020: 1.0] respectively; they were also the only two test subjects with 

context coefficients ranging [0.0: 1.0].  The respective lower bound values 

for e107, GeekLog, and phpBB2 were 0.235, 0.577, and 0.839 for the tree 

similarity coefficient and 0.203, 0.366, and 0.609 for the context 

similarity coefficient.  phpBB3 had the smallest data spread amongst the 

six applications and was observed to have a tree similarity range of 

[1.0: 1.0] and a context similarity range of [0.864: 1.0].  This result is due 



 

  168 

 

to the maturity of phpBB3 and its robustness against cookie collection 

manipulation.   

 

 
Figure 7-1.  Box Plots Of The Tree Similarity Coefficient 

 

Figure 7-2.  Box Plots Of The Context Similarity Coefficient 

Web Applicaiton
phpMyAdminphpBB3phpBB2GeekLoge107BugTracker.net

Tr
ee

 S
im

ila
rit

y
1.0

0.8

0.6

0.4

0.2

0.0

Page 1

Web Applicaiton
phpMyAdminphpBB3phpBB2GeekLoge107BugTracker.net

C
on

te
xt

 S
im

ila
rit

y

1.0

0.8

0.6

0.4

0.2

0.0

Page 2



 

  169 

 

 

Figure 7-3.  Box Plots Of The Composite Similarity Coefficient 

Unlike for the lower bound values, both similarity coefficients 

attained the maximum upper bound value.  A similarity coefficient result 

of 1.0, indicating that two pages are identical, was the median result for 

both similarity coefficients in three of the six test subjects, and was the 

mode for across all applications save one—the context similarity for 

phpMyAdmin.  Although a perfect 1.0 should indicate equivalence, Section 

7.2.3 will establish a testing threshold for each of the applications, 

providing a limit at which it is likely that a fault has occurred.  Without 

such a threshold value, a test practitioner should simply organize the 

results in ascending order based on the composite similarity coefficient, 

and analyze system faults in the form a prioritized fault queue.  An 

individual assessment of the each of the test programs will be provided in 

Section 7.2.4, after a testing threshold has been established for each of the 

similarity coefficients. 

Web Applicaiton
phpMyAdminphpBB3phpBB2GeekLoge107BugTracker.net

C
om

po
si

te
 S

im
ila

rit
y

1.0

0.8

0.6

0.4

0.2

0.0

Page 3



 

  170 

 

Table 7-4.  Mann-Whitney U Tests Between Test Applications for Tree and 

Context Similarity 

Tree Similarity Context Similarity 
Web Application Mann-

Whitney U 
Z Sig. Mann-

Whitney U 
Z Sig. 

e107 4.801E+05 -18.530 0.000 3.392E+05 -25.837 0.000 

GeekLog 1.554E+06 -3.220 0.001 9.876E+05 -22.115 0.000 

phpBB2 3.838E+05 -5.624 0.000 4.043E+05 -1.859 0.063 

phpBB3 1.324E+06 -15.905 0.000 1.339E+06 -7.339 0.000 

BugTracker.net 

phpMyAdmin 4.891E+06 -43.811 0.000 5.277E+06 -48.662 0.000 

BugTracker.net 4.801E+05 -18.530 0.000 3.392E+05 -25.837 0.000 

GeekLog 6.722E+05 -25.651 0.000 8.500E+05 -12.046 0.000 

phpBB2 1.524E+05 -19.044 0.000 1.076E+05 -22.461 0.000 

phpBB3 5.054E+05 -36.135 0.000 5.056E+05 -26.335 0.000 

e107 

phpMyAdmin 6.806E+06 -21.014 0.000 1.100E+07 -0.637 0.524 

BugTracker.net 1.554E+06 -3.220 0.001 9.876E+05 -22.115 0.000 

e107 6.722E+05 -25.651 0.000 8.500E+05 -12.046 0.000 

phpBB2 6.110E+05 -4.368 0.000 3.563E+05 -17.941 0.000 

phpBB3 2.104E+06 -14.299 0.000 1.606E+06 -19.334 0.000 

GeekLog 

phpMyAdmin 6.552E+06 -57.005 0.000 1.631E+07 -28.903 0.000 

BugTracker.net 3.838E+05 -5.624 0.000 4.043E+05 -1.859 0.063 

e107 1.524E+05 -19.044 0.000 1.076E+05 -22.461 0.000 

GeekLog 6.110E+05 -4.368 0.000 3.563E+05 -17.941 0.000 

phpBB3 5.793E+05 -9.120 0.000 5.169E+05 -7.008 0.000 

phpBB2 

phpMyAdmin 8.654E+05 -35.555 0.000 1.413E+06 -37.554 0.000 

BugTracker.net 1.324E+06 -15.905 0.000 1.339E+06 -7.339 0.000 

e107 5.054E+05 -36.135 0.000 5.056E+05 -26.335 0.000 

GeekLog 2.104E+06 -14.299 0.000 1.606E+06 -19.334 0.000 

phpBB2 5.793E+05 -9.120 0.000 5.169E+05 -7.008 0.000 

phpBB3 

phpMyAdmin 2.114E+06 -68.603 0.000 7.155E+06 -58.788 0.000 

BugTracker.net 4.891E+06 -43.811 0.000 5.277E+06 -48.662 0.000 

e107 6.806E+06 -21.014 0.000 1.100E+07 -0.637 0.524 

GeekLog 6.552E+06 -57.005 0.000 1.631E+07 -28.903 0.000 

phpBB2 8.654E+05 -35.555 0.000 9.314E+05 -35.102 0.000 

phpMyAdmin 

phpBB3 2.114E+06 -68.603 0.000 7.155E+06 -58.788 0.000 

 

The box plots in Figures 7-1 to 7-3 indicate that each of the six test 

applications responded differently to the testing strategy.  To explore these 

differences and confirm the existence of significant differences between 

the testing applications, the Mann-Whitney U test was applied to the test 

results.  This analysis, summarized in Table 7-4, reveals significant 

differences between all of the test applications with respect to the tree 

similarity, and all except two with regard to context similarity.  Significant 



 

  171 

 

differences could not be indentified between the context similarity results 

for BugTracker.net and phpBB2, and e107 and phpMyAdmin.  The 

significant differences established between applications suggest that the 

testing strategy is interacting individually with each of the underlying 

applications, and uncovering application-specific faults. 

7.2.2 Tree vs. Context Similarity 

The tree similarity and context similarity coefficients provide a 

metric of the similarity between two HTML documents—tree similarity 

with respect to the structure of the DOM tree, and context similarity with 

respect to the text encapsulated within the document.  The composite 

similarity coefficient provides an equally weighted measure of the tree and 

context similarities.  These metrics were chosen for the current study due 

to the specific structure and typical content of web documents.  It is 

assumed that the two metrics are complementary; that is, generally when a 

context difference is detected, a tree difference should also be present, and 

vice-versa.  Although strictly speaking this is not the case—a context 

difference is independent of tree differences—a correlation analysis can be 

performed upon the two metrics to establish or reject the hypothesis that 

the two coefficients are directly related. 

To determine if a linear relationship exists between the tree and 

context similarity coefficients, the Pearson product-moment correlation 

coefficient (Pearson's r) analysis was applied to the test results.  This 

analysis was applied to the whole testing population and to each of the 

applications individually, and is summarized in Table 7-5. phpBB3 was 

excluded from this analysis because the tree similarity coefficient was 

constant across all tests. 



 

  172 

 

Table 7-5.  Pearson Correlations: Tree vs. Context Similarity  

Web Application Correlations 

Pearson Correlation r 0.767 

r2 0.588 

Sig. (2-tailed) 0.000 
Sum of Squares and 

Cross-products 
340.952 

Covariance 0.012 

All Applications 

N 29057 

Pearson Correlation 1.000 

r2 0.999 

Sig. (2-tailed) 0.000 
Sum of Squares and 

Cross-products 
139.290 

Covariance 0.097 

BugTracker.net 

N 1440 

Pearson Correlation 0.964 

r2 0.929 

Sig. (2-tailed) 0.000 
Sum of Squares and 

Cross-products 
19.145 

Covariance 0.019 

e107 

N 1024 

Pearson Correlation 0.925 

r2 0.856 

Sig. (2-tailed) 0.000 
Sum of Squares and 

Cross-products 
13.243 

Covariance 0.006 

GeekLog 

N 2232 

Pearson Correlation 0.939 

r2 0.881 

Sig. (2-tailed) 0.000 
Sum of Squares and 

Cross-products 
0.599 

Covariance 0.001 

phpBB2 

N 580 

Pearson Correlation 0.632 

r2 0.399 

Sig. (2-tailed) 0.000 
Sum of Squares and 

Cross-products 
157.110 

Covariance 0.007 

phpMyAdmin 

N 21701 

 



 

  173 

 

Significant correlations were established in all cases.  All of the 

correlations can be quantified as large (r > 0.5) (Cohen, 1988, 1992) 

indicating that a strong significant relation exists between tree and context 

similarity.  Figures 7-4 to 7-10 provide a scatter plot of the tree vs. context 

similarity values and the corresponding coefficient of determination (r2) of 

each significant relationship.  The coefficients of determination ranged 

between [0.399 : 0.999]; the strongest relationship was observed amongst 

the testing results of BugTracker.net and the weakest amongst 

phpMyAdmin.  

 

 
Figure 7-4.  Context vs. Tree Similarity for All Applications 

Context Similarity
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y

1.0

.8

.6

.4

.2

.0

phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

R Sq Linear = 0.588

Page 1



 

  174 

 

 
Figure 7-5.  Context vs. Tree Similarity for BugTracker.net 

 
Figure 7-6.  Context vs. Tree Similarity for e107 

Context Similarity Coefficient
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y 
Co

ef
fic

ie
nt

1.0

.8

.6

.4

.2

.0

Fit line for Total
phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

R Sq Linear = 0.999

Page 1

Context Similarity Coefficient
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y 
C

oe
ffi

ci
en

t

1.0

.8

.6

.4

.2

.0

Fit line for Total
phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

R Sq Linear = 0.93

Page 2



 

  175 

 

 
Figure 7-7.  Context vs. Tree Similarity for GeekLog 

 
Figure 7-8.  Context vs. Tree Similarity for phpBB2 

Context Similarity Coefficient
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y 
C

oe
ffi

ci
en

t

1.0

.8

.6

.4

.2

.0

Fit line for Total
phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

R Sq Linear = 0.856

Page 3

Context Similarity Coefficient
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y 
C

oe
ffi

ci
en

t

1.0

.8

.6

.4

.2

.0

Fit line for Total
phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

R Sq Linear = 0.881

Page 4



 

  176 

 

 
Figure 7-9.  Context vs. Tree Similarity for phpBB3 

 
Figure 7-10.  Context vs. Tree Similarity for phpMyAdmin 

 

Context Similarity Coefficient
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y 
C

oe
ffi

ci
en

t

1.0

.8

.6

.4

.2

.0

phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

Page 5

Context Similarity Coefficient
1.0.8.6.4.2.0

Tr
ee

 S
im

ila
rit

y 
C

oe
ffi

ci
en

t

1.0

.8

.6

.4

.2

.0

Fit line for Total
phpMyAdmin
phpBB3
phpBB2
GeekLog
e107
BugTracker.net

Web Application

R Sq Linear = 0.399

Page 6



 

  177 

 

7.2.3 The Pass/Fail Experiment: An ROC Evaluation 

It is clear from the box plots in Figures 7-4 to 7-10 and the tree vs. context 

similarity scatter plots presented in Figure 7-4 that the testing of the six 

test applications provided a spread of data, both in terms of tree and 

context similarity.  How to classify the data remains a pertinent question—

which points represent application faults?  From a graphical perspective, 

the results presented in Figures 7-5 and 7-8 are readily amenable to 

classification, given the large and easily identifiable separations between 

clumps of data-points. In contrast, other plots such as Figures 7-9 and 

7-10 do not present immediately obvious groupings and the selection of a 

pass/fail threshold with respect to these data points is not straightforward.   

To answer the question of which data points constitute faults, a 

receiver operator characteristic (ROC) analysis can be applied to a smaller 

sub-set of the data providing a putative decision-threshold classifier for 

each of the testing applications (Bradley, 1997; Fawcett, 2003; Zweig & 

Campbell, 1993).  An analysis of the area under the ROC curve (AUC) will 

also provide insight into the capabilities of each of the three similarity 

coefficients—tree, context, and composite.  Essentially, the larger the AUC 

for a particular test, the more accurate are its decisions (Fawcett, 2003).  

This measure will be used to assess which similarity coefficient is the most 

effective in regards to detecting page differences. 

For each of the applications, a sub-set of 100 test results was 

selected by dividing the data into two partitions based upon the value of 

the similarity coefficients.  The result was partitioned into two sets to 

increase the number of values selected within the bottom half of the range 

of each population.  Given that the median value for all of the testing 

results was greater than 0.95 and that the values ranged from 0 to 1, these 

partitions were necessary to evaluate both true positive and true negative 

results. Data was partitioned in two based upon the following ranges: 



 

  178 

 

 

€ 

min T( ) :
max T( ) −min T( )( )

2

⎡ 

⎣ 
⎢ 
⎢ 

⎞ 

⎠ 
⎟ ⎟ ,

max T( ) −min T( )( )
2

:min T( )
⎛ 

⎝ 
⎜ ⎜ 

⎤ 

⎦ 
⎥ 
⎥ 

,   

where T is the set of test results.   These partitions were constructed for 

each of the testing applications and for both the tree and context similarity 

coefficients.  The final subsets where constructed by the random selection 

of 25 test results from each of the four partitions, resulting in the selection 

of 100 test results on which the ROC analysis was performed. 

Table 7-6. Pass/Fail Assignments Based Upon Manual Inspection 

Web Application Classification Number of Cases 
BugTracker.net Pass 65 
 Fail 35 
e107 Pass 45 
 Fail 55 
GeekLog Pass 50 
 Fail 50 
phpBB2 Pass 76 
 Fail 24 
phpBB3 Pass 100 
 Fail 0 
phpMyAdmin Pass 26 
 Fail 74 

 

Manual inspections of each of the subsets provided the data 

necessary to conduct an ROC analysis on the populations—a binary 

classification of pass (1) or fail (0).  The results of this inspection are 

summarized in Table 7-6.  All applications, with the exception of phpBB3 

provided sufficient data upon which ROC analysis could be performed.  

Manual analysis of phpBB3 did not yield any faults, which is congruent 

with the lack of data distribution present amongst the tree similarity 

results, and the minor fluctuations present within the context similarity 

[0.864:1].  Furthermore, the testing hooks, described in Appendix B.6 and 

Appendix C.4.2, required for the execution of phpBB3 provided sufficient 

system-redundancy to function unhindered despite an incomplete cookie 

collection.  Given the popularity and maturity of the phpBB3 project, this 

finding is not surprising, and serves to illustrate that web applications are 



 

  179 

 

being actively developed that are robust against cookie collection 

modifications, especially given that faults have been identified in phpBB2, 

a previous version of the software. 

A ROC curve is the fundamental component of ROC analysis.  It 

presents the sensitivity (true-positive rate) versus the 1-specificity (false-

positive rate) under a number of varying threshold values derived from the 

underlying data. The ROC curve presents a cost/benefit analysis of the 

tradeoffs associated with each of the threshold values, facilitating the 

selection of an optimal decision threshold that minimizes false positive 

identifications while maximizing true positive assessments. 

 

 
Figure 7-11. ROC Analysis: BugTracker.net 

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line
Composite Similarity
Context Similarity
Tree Similarity

Source of the Curve

Diagonal segments are produced by ties.

Page 1



 

  180 

 

 
Figure 7-12. ROC Analysis: e107 

 
Figure 7-13. ROC Analysis: GeekLog 

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line
Composite Similarity
Context Similarity
Tree Similarity

Source of the Curve

Diagonal segments are produced by ties.

Page 2

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line
Composite Similarity
Context Similarity
Tree Similarity

Source of the Curve

Diagonal segments are produced by ties.

Page 3



 

  181 

 

 
Figure 7-14. ROC Analysis: phpBB2 

 

 
Figure 7-15. ROC Analysis: phpMyAdmin 

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line
Composite Similarity
Context Similarity
Tree Similarity

Source of the Curve

Diagonal segments are produced by ties.

Page 4

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line
Composite Similarity
Context Similarity
Tree Similarity

Source of the Curve

Diagonal segments are produced by ties.

Page 5



 

  182 

 

 
Figure 7-16. ROC Analysis: All Results 

Table 7-7.  ROC Area Under the Curve Summary 

Asymptotic 95% 
Confidence Interval Web Application 

Similarity 
Coefficient Area 

Std. 
Error 

Asymptotic 
Sig. Lower 

Bound 
Upper 
Bound 

Tree 0.958 0.020 0.000 0.918 0.997 

Context 0.965 0.017 0.000 0.930 0.999 

BugTracker.net 

Composite 0.958 0.020 0.000 0.918 0.997 

Tree 0.961 0.023 0.000 0.917 1.006 

Context 1.000 0.000 0.000 0.999 1.001 

e107 

Composite 1.000 0.000 0.000 0.999 1.001 

Tree 0.976 0.017 0.000 0.943 1.009 

Context 0.994 0.005 0.000 0.983 1.004 

GeekLog 

Composite 0.995 0.005 0.000 0.985 1.004 

Tree 0.792 0.065 0.000 0.665 0.919 

Context 0.802 0.062 0.000 0.679 0.924 

phpBB2 

Composite 0.838 0.056 0.000 0.728 0.948 

Tree 0.840 0.039 0.000 0.765 0.916 

Context 0.866 0.035 0.000 0.798 0.935 

phpMyAdmin 

Composite 0.896 0.031 0.000 0.835 0.957 

Tree 0.935 0.012 0.000 0.910 0.959 

Context 0.937 0.011 0.000 0.915 0.959 

All Applications 

Composite 0.947 0.010 0.000 0.927 0.968 

 

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line
Composite Similarity
Context Similarity
Tree Similarity

Source of the Curve

Diagonal segments are produced by ties.

Page 6



 

  183 

 

 

ROC curves were generated for the five web applications in which 

faults were detected, and are presented in Figures 7-11 to 7-15.  A 

composite ROC curve of all of the results is presented in Figure 7-16.  

Graphically, it is clear that in all cases the tree, context and composite 

similarity coefficients present a dramatic increase in diagnostic capability.  

Clearly the coefficients, as confirmed in Section 7.2.2, are linked; the ROC 

curves for tree and context similarity were observed to be very similar.  

The strongest dichotomies between true- and false-positives were 

observed for BugTracker.net, e107, and GeekLog, while the decision 

thresholds (elbows on the graphs) were not as pronounced for phpBB2 

and phpMyAdmin, suggesting that dichotomies contained more overlap 

for these applications. 

 
Figure 7-17.  ROC Area Under the Curve Comparison 

To further understand the ROC analysis, the area under the curve 

(AUC) was calculated for each similarity coefficient, as summarized in 

0.0! 0.2! 0.4! 0.6! 0.8! 1.0!

All Applications!

phpMyAdmin!

phpBB2!

GeekLog!

e107!

BugTracker.net!

Area Under the ROC Curve!

W
eb

 A
pp

lic
at

io
n!

Composite! Context! Tree!



 

  184 

 

Table 7-7 and presented graphically in Figure 7-17.  Given the AUC values, 

the diagnostic ability of each metric can be assessed, whereby the higher 

the AUC, the more accurate the decision metric.  In all cases, the tree 

similarity metric was smaller than the other metrics, and in all cases save 

one (BugTracker.net), the composite similarity metric was superior.  The 

AUC was significant in all cases, suggesting that the selection of tree and 

context similarity coefficients is warranted and is an effective oracle 

evaluation technique.   

Table 7-8.  Derived Decision Threshold Classifiers 

Web 
Application 

Similarity 
Coefficient 

Threshold 
Classifier 

True 
Positive Rate 

False 
Positive Rate 

Tree 0.553 91% 0% 

Context 0.503 91% 0% 
BugTracker.net 

Composite 0.535 91% 0% 

Tree 0.977 100% 6% 

Context 0.908 100% 2% 
E107 

Composite 0.955 100% 2% 

Tree 0.997 100% 42% 

Context 0.879 96% 0% 
GeekLog 

Composite 0.942 96% 0% 

Tree 0.997 100% 42% 

Context 0.965 92% 33% 
phpBB2 

Composite 0.998 88% 25% 

Tree 0.976 77% 19% 

Context 0.952 96% 23% 
phpMyAdmin 

Composite 0.959 96% 22% 

Tree 0.983 95% 11% 

Context 0.915 95% 13% 
All Programs 

Composite 0.960 94% 11% 

 

Accepting the findings of the AUC analysis, Table 7-8 presents a 

summary of the derived decision threshold classifiers for each of the test 

applications with the selected threshold classifier indicated in bold.  

Based upon the analysis of the 600 test results from the six web 

applications, the composite coefficient can be used to classify a difference 

between two web pages with a threshold of 0.960.  Although this value can 



 

  185 

 

be used as a general guideline, it is not definitive, and an application 

specific ROC analysis is required to support the selection of an effective 

decision threshold in practice. 

7.2.4 Testing Results: Seeds and Generated Testing Vectors 

The values for decision classification derived in the ROC analysis can be 

used to evaluate the final test result populations, providing an indication 

of the number of defects uncovered using the cookie collection testing 

strategy.  It must be stated that the decision classifiers have a certain 

amount of error associated with each classification, and these results only 

provide an estimate of the number of faults within each application; 

manual inspection and classification of each test case would be necessary 

for a perfect measurement.  

 
Figure 7-18.  Defect Detection Rates for All, Seeding, and Generated Vectors 

 

0%! 5%! 10%! 15%! 20%! 25%! 30%! 35%!

phpMyAdmin!

phpBB3!

phpBB2!

GeekLog!

e107!

BugTracker.net!

Defect Detection Rate!

W
eb

 A
pp

lic
at

io
n!

Generated Vectors! Seeds! All Tests!

* No faults were found within this application!



 

  186 

 

Table 7-9. Testing Results for All, Seeding, and Generated Vectors 

All Tests Seed Vectors Generated Vectors 
Web Application 

Tests Defects Tests Defects Tests Defects 

BugTracker.net  1,440   166   696   62   744   104  

e107  1,024   310   189   41   835   269  

GeekLog  2,232   225   567   93   1,665   132  

phpBB2  580   75   353   43   227   32  

phpBB3 2,080 0 401 0 1,679 0 

phpMyAdmin  21,701   6,429   1,401   174   20,300   6,255  

 

 
Figure 7-19.  Box Plots of Fault Detection Rates for All, Seeding, and 

Generated Vectors 

A summary of the number of test cases triggering a fault is 

presented in Table 7-9 and Figure 7-18 from three perspectives: all test 

vectors, seeding vectors, and generated vectors.  It is clear from the table 

that the testing strategy was effective in triggering faults within five of the 

six web applications tested.  In all of the applications except GeekLog, the 

fault detection rate (the percentage of test cases that triggered a fault) was 

higher amongst generated vectors than seeding vectors.  The fault 

Test Case Classification
Generated VectorsSeed VectorsAll Tests

D
ef

ec
t D

et
ec

tio
n 

R
at

e 
(%

)

3 5

3 0

2 5

2 0

1 5

1 0

5

Page 1



 

  187 

 

detection rate ranged between 10% – 30% for all tests, 9% – 21% amongst 

seeding vectors, and 8% – 32% for generated test vectors, as shown in 

Figure 7-19 (excluding phpBB3 for which no defects were found).  The 

highest fault detection rate occurred amongst generated vectors, 

suggesting that seeding vector testing alone does not accomplish adequate 

cookie collection testing.  

Table 7-10.  Mann-Whitney U Test: Seeding vs. Generated Test Vectors 

Web Application 
Tree 

Similarity 
Context 

Similarity 
Composite 
Similarity 

Mann-Whitney U 246390 236078.5 235962.5 
Wilcoxon W 523530 513218.5 513102.5 

Z -2.856 -4.701 -4.722 

BugTracker.net 

Asymp. Sig. (2-tailed) 0.004 0.000 0.000 
Mann-Whitney U 64929.5 45874 46349 

Wilcoxon W 413959.5 394904 395379 
Z -4.029 -9.065 -8.934 

e107 

Asymp. Sig. (2-tailed) 0.000 0.000 0.000 
Mann-Whitney U 430957 332256 332369.5 

Wilcoxon W 591985 1.72E+06 1.72E+06 
Z -6.131 -10.947 -10.938 

GeekLog 

Asymp. Sig. (2-tailed) 0.000 0.000 0.000 
Mann-Whitney U 39175.5 39326.5 39302 

Wilcoxon W 101656.5 65204.5 65180 
Z -1.336 -0.651 -0.665 

phpBB2 

Asymp. Sig. (2-tailed) 0.181 0.515 0.506 
Mann-Whitney U 5.49E+06 1.04E+07 6.62E+06 

Wilcoxon W 2.12E+08 2.16E+08 2.13E+08 
Z -38.54 -20.369 -33.547 

phpMyAdmin 

Asymp. Sig. (2-tailed) 0.000 0.000 0.000 

 

To further understand the relationship between seeding and 

generated vectors, a Mann-Whitney U test was preformed between the two 

populations for each application demonstrated to contain faults.  This 

analysis, summarized in Table 7-10, reveals a significant difference 

between the seed and generated test results for all applications with the 

exception of phpBB2.  These differences suggest that the evolutionary 

adaptive random testing vectors are providing unique test cases that are 

exercising the application in ways that the seeding vectors are not.  Given 

this result, it is recommended that when performing cookie collection 



 

  188 

 

testing, seeding vectors alone are insufficient, and adaptive-random 

vectors should be incorporated into an overall cookie testing strategy. 

 
Figure 7-20.  Box Plots of Test Result Reductions via Distinct Results 

7.2.5 Distinct Defects — A Proxy for Defect Identification 

As is customary for automated testing solutions, cookie collection testing 

has been demonstrated to produce large pools of testing data from which a 

tester has the difficult and costly task of determining the actual number of 

defects within a system.  Given the repetitious nature of the testing 

strategy, it is expected that multiple test cases will trigger the same 

underlying defect.  Techniques are therefore required to subsequently 

reduce the testing results into a manageable size from which conclusions 

about the system can be drawn.  To provide this level of granularity, the 

grouping of test results on the basis of distinct tree and context similarity 

pairs is proposed.  This metric, estimated by the number of distinct 

composite similarity values, provides a basis through which distinct test 

Web Application
phpMyAdminphpBB2GeekLoge107BugTracker.net

R
ed

uc
tio

n 
in

 T
es

t R
es

ut
s 

pe
r 

Te
st

 R
eq

ue
st

 (%
)

100

80

60

40

20

0

Page 1



 

  189 

 

results are identified.  The use of the composite similarity coefficient for 

defect identification was found to dramatically reduce the workload for 

analyzing test results, as summarized in Table 7-11 and Figure 7-20.   

Table 7-11.  Test Result Reduction via Distinct Results 

Statistic BugTracker.net e107 GeekLog phpBB2 phpMyAdmin 
Mean 16.5% 31.0% 33.6% 30.7% 13.7% 
Median 12.5% 31.3% 37.5% 25.0% 14.3% 
Minimum 3.1% 12.5% 1.6% 12.5% 1.9% 
Maximum 37.5% 62.5% 100.0% 75.0% 22.4% 

Table 7-12.  Distinct Defects per Test Request 

Distinct Defects 
Web Application 

Testing 
Vectors Median Min Max Total 

All 0 0 2 57 
Seeding 0 0 2 40 

BugTracker.net 

Generated 0 0 2 47 
All 1 0 8 92 
Seeding 0 0 3 40 

e107 

Generated 1 0 7 86 
All 0 0 6 83 
Seeding 0 0 3 55 

GeekLog 

Generated 0 0 4 42 
All 0 0 4 52 
Seeding 0 0 2 38 

phpBB2 

Generated 0 0 3 27 
All 5 0 16 1210 
Seeding 0 0 3 117 

phpMyAdmin 

Generated 5 0 16 1193 

 

A summary of the number of distinct defects found per test request 

is provided in Table 7-12.  The threshold values determined in Section 

7.2.3 were used to classify each defect.  The table presents a final tally of 

the number of distinct defects revealed within each application.  To 

augment this analysis, Table 7-13 provides a frequency analysis of the 

number of distinct defects triggered per testing request.  Further analysis 

of the data reveals a disparity between the faults uncovered by seeding 

vectors and generating vectors.  In two of the test applications, GeekLog 

and phpBB2, the number of distinct defects detected for seeding vectors 

was larger than that of generated vectors.  The opposite was true in the 



 

  190 

 

case of Bugtracker.net, e107, and phpMyAdmin, where the generated 

vectors revealed a larger number of distinct defects. 

Table 7-13.  Frequency Analysis of Distinct Defects per Test Request 

All Test Vectors Seeding Vectors Generated Vectors 
Web 

Application 

Number 
of 

Distinct 
Failures 

Frequency % Frequency % Frequency % 

0 84 63.6% 99 75.0% 92 69.7% 
1 39 29.5% 26 19.7% 33 25.0% 
2 9 6.8% 7 5.3% 7 5.3% 

BugTracker.net 

Total 132 100.0% 132 100.0% 132 100.0% 
0 27 47.4% 34 59.6% 27 47.4% 
1 7 12.3% 8 14.0% 7 12.3% 
2 8 14.0% 13 22.8% 8 14.0% 
3 5 8.8% 2 3.5% 5 8.8% 
4 4 7.0% 0 0.0% 6 10.5% 
5 2 3.5% 0 0.0% 2 3.5% 
6 2 3.5% 0 0.0% 0 0.0% 
7 0 0.0% 0 0.0% 2 3.5% 
8 2 3.5% 0 0.0% 0 0.0% 

e107 

Total 57 100.0% 57 100.0% 57 100.0% 
0 127 75.1% 128 75.7% 154 91.1% 
1 26 15.4% 30 17.8% 0 0.0% 
2 5 3.0% 8 4.7% 7 4.1% 
3 4 2.4% 3 1.8% 4 2.4% 
4 2 1.2% 0 0.0% 4 2.4% 
5 3 1.8% 0 0.0% 0 0.0% 
6 2 1.2% 0 0.0% 0 0.0% 

GeekLog 

Total 169 100.0% 169 100.0% 169 100.0% 
0 71 62.3% 77 67.5% 91 79.8% 
1 36 31.6% 36 31.6% 20 17.5% 
2 6 5.3% 1 0.9% 2 1.8% 
3 0 0.0% 0 0.0% 1 0.9% 
4 1 0.9% 0 0.0% 0 0.0% 

phpBB2 

Total 114 100.0% 114 100.0% 114 100.0% 
0 14 6.9% 121 59.6% 14 6.9% 
1 20 9.9% 49 24.1% 20 9.9% 
2 1 0.5% 31 15.3% 1 0.5% 
3 2 1.0% 2 1.0% 2 1.0% 
4 29 14.3% 0 0.0% 34 16.7% 
5 45 22.2% 0 0.0% 44 21.7% 
6 38 18.7% 0 0.0% 36 17.7% 
7 8 3.9% 0 0.0% 7 3.4% 
8 4 2.0% 0 0.0% 7 3.4% 
9 7 3.4% 0 0.0% 4 2.0% 

10 1 0.5% 0 0.0% 0 0.0% 
11 4 2.0% 0 0.0% 4 2.0% 
12 6 3.0% 0 0.0% 6 3.0% 
13 9 4.4% 0 0.0% 9 4.4% 
14 8 3.9% 0 0.0% 8 3.9% 
15 5 2.5% 0 0.0% 5 2.5% 
16 2 1.0% 0 0.0% 2 1.0% 

phpMyAdmin 

Total 203 100.0% 203 100.0% 203 100.0% 

 

To further classify the ability of seeding and generated vectors to 

uncover distinct defects, a case-by-case analysis was performed and is 

summarized in Table 7-14.  Generated vectors were found to trigger 

distinct defects not uncovered by seeding vectors in all of the applications.  



 

  191 

 

Conversely, in BugTracker.net, GeekLog, and phpBB2, the seeding vectors 

were observed to trigger distinct faults that were not uncovered by the 

generated vectors.  The largest disparity between faults triggered by 

generated and seeding vectors was observed in phpMyAdmin, where 

generated vectors found distinct defects in 83.3% of test requests, while 

seeding vectors did not uncover any defects not detected by the generated 

vectors.  The smallest disparity was observed within GeekLog, where 

generated vectors were found to trigger distinct faults in only 5.9% of test 

requests, and seeding vectors in 16.6% of test requests.  BugTracker.net 

was found to have the largest overlap between seeding and generated 

vectors, each uncovering the same number of distinct defects in 80.5% of 

test requests. 

Table 7-14. Distinct Defect Detection Seeding vs. Generated Test Vectors 

Classification BugTracker.net e107 GeekLog phpBB2 phpMyAdmin 

Generated > Seeding 17 12.8% 21 36.8% 10 5.9% 8 7.0% 169 83.3% 

Generated = Seeding 107 80.5% 36 63.2% 131 77.5% 86 
75.4

% 34 16.7% 

Generated < Seeding 9 6.8% 0 0.0% 28 16.6% 20 17.5% 0 0.0% 

 

7.3 Summary of Results and Key Findings 

To summarize the results and key findings of the Chapter, this section will 

present a brief answer to each of the research questions originally posed in 

Section 7.1.1. 

Q1. Can cookie collection testing reveal defects in web applications? 

In short, yes.  It has been demonstrated, through the manual inspection of 

100 test cases per web application, that the testing strategy triggered faults 

in the web applications.  This initial analysis lead to the creation of 

application-specific decision threshold classifiers which were in turn 

applied to the testing results and used to make a final pronouncement of 

the estimated defect detection rate and the number of distinct defects 

detected per application.  The testing strategy has not only been verified in 



 

  192 

 

its ability to detect faults, but has also been shown to have a substantial 

defect triggering rate amongst five of the six test applications. 

Q2. What is the relationship that exists between faults triggered by 

seeding and generated vectors? Are the two complementary, or 

does one supersede the other? 

Seeding and generated vectors were found to trigger faults in five of the six 

test applications.  In four of the five applications that were demonstrated 

to contain faults, the fault detection rate was higher amongst the 

generated vectors.  In terms of the number of distinct defects detected by 

seeding and generated vectors, it has been demonstrated that the defects 

triggered by seeding and generated vectors are not identical.  

Furthermore, in Section 7.2.4, significant differences were established 

between the seeding and generated vector test results in four of the five 

applications, providing the strongest evidence that seeding vectors and 

generated vectors should both be incorporated in an overall cookie 

collection testing strategy. 

Q3. How do web applications respond to cookie collection testing?  Are 

the responses uniform or application-specific? 

It has been demonstrated, through the Mann-Whitney U tests presented in 

Section 7.2.1, that the test result populations for each of the six 

applications are significantly different from one another.  This is further 

validated by the differences in ROC curves derived for each of the test 

applications.  Finally, the fault detection rates presented for each 

application further suggest that the interactions between cookie collection 

testing and the software under test are unique, and application-specific. 

Q4. Does a relationship exist between tree and context similarity 

coefficients?  

A large significant relationship (r>0.5) was found to exist between tree 

and context similarity metrics for each of the six applications under test in 

Section 7.2.2.  This relationship provides the strongest evidence that a 



 

  193 

 

large linear relationship exists between the tree and context differences 

when considering page-differences in web applications. 

Q5. Are the tree similarity and context similarity coefficients useful at 

detecting web application defects? Is one superior or is a 

composite metric most effective? 

The results of the ROC analysis performed in Section 7.2.3, specifically the 

area under the curve analysis, demonstrated that all three metrics are 

significant diagnostic tests.  The context and composite similarity 

coefficients were found to perform better than the tree similarity, and the 

composite similarity was found to be superior to both tree and context 

measures in all but one instance. 

 

 



 

  194 

 

Chapter 8 

 

Conclusions and 

Recommendations 
 

The objective of this research project was to investigate cookie usage 

within modern web applications and to provide an effective cookie-specific 

testing strategy.  Towards this end, an extensive Internet survey was 

conducted and a novel testing theory—cookie collection testing—has been 

formulated in response.  Furthermore, in support of cookie collection 

testing, the state-of-the-art of adaptive random testing has been extended 

through the incorporation of genetic algorithms and anti random 

techniques.  Finally, automated cookie collection testing has been 

demonstrated to be an effective testing strategy for web applications.  This 

chapter will provide a brief overview of the major contributions of this 

thesis and suggest avenues for future research. 

8.1 Summary of Key Contributions by Chapter 

8.1.1 A Precise Cookie Definition 

A precise grammatical definition of a cookie was formulated in this thesis.  

This definition is the result of an amalgamation of the available cookie 

specifications and browser-specific addendums—it represents the most 

complete up-to-date definition of a cookie within the literature. 

8.1.2 Cookie Deployment Survey 

An extensive survey of the most popular 100,000 Internet sites was 

conducted to understand the deployment of cookies across the Internet.  



 

  195 

 

The results of the investigation were analyzed from a number of distinct 

perspectives providing insights into the deployment of cookie technology.  

Cookie deployment was found to be approaching universal levels, 

confirming the need for relevant Web and Software Engineering 

processes—specifically testing strategies that actively consider cookies.  

The semi-automated investigation demonstrated that cookies were 

deployed by more than two-thirds of the sites studied.  The investigation 

specifically examined the use of first-party, third-party, sessional and 

persistent cookies within web applications, and identified the presence of 

P3P policies and dynamic web technologies as major predictors of cookie 

usage.  A number of real world examples confirmed the need for 

comprehensive testing strategies for web-based applications.  

8.1.3 Cookie Usage Amongst Nations 

The use of cookies and related web technologies with respect to their 

country of origin was studied by the augmenting the results obtained from 

the cookie deployment study with the geographic location of each site.  A 

number of significant relationships were established between the origin of 

the web application and cookie deployment.  Cookie usage amongst five 

popular dynamic web application frameworks was analyzed, providing a 

per-country breakdown of platform adoption, and a significant 

relationship was established between dynamic web technologies and first-

party and sessional cookies.  The prevalence of vendor-specific third-party 

technologies both globally and within specific countries was studied.  

Although global leaders emerged, a number of country-specific market 

leaders were discovered, suggesting that country-specific niche 

technologies are competing with the globally dominant technologies 

within specific markets.  Finally, a large association was identified between 

third-party persistent cookie usage and a country’s e-business 

environment—the strongest evidence that cookies form an integral part of 

the global e-commerce environment. 



 

  196 

 

 

8.1.4 Cookie Collection Testing 

In response to the cookie deployment study, a cookie-specific web testing 

strategy was formulated.  The cookie collection testing strategy was built 

upon anti random testing methodologies, with consideration of the results 

obtained from the cookie deployment study.  The collection of cookies 

maintained within a user-agent were explored in light of the anti random 

test suite reduction techniques and the grammatical definition of a cookie, 

culminating in the definition of seeding test vectors as the basis for a 

scalable test suite.  The automation of the testing methodology was 

outlined and the definition of test oracles and evaluation criterion was 

discussed.  The cookie collection testing strategy met the intended goal of 

verifying web application robustness against the modification—intentional 

or otherwise—of the cookies within a browsing environment.   

8.1.5 Evolutionary Adaptive Random Testing 

The cookie collection testing strategy envisaged anti random testing as the 

basis from which cookie collection testing could be applied.  However, the 

application of anti random testing to cookie collection testing was found to 

be computationally infeasible for many of the applications surveyed within 

the cookie deployment study.  In response to this reality, the novel 

application of an evolutionary search algorithm to the problem of adaptive 

random testing was proposed as a solution.  An extensive simulation study 

was undertaken to evaluate the novel evolutionary approach against the 

current state-of-the-art within the adaptive random literature—fixed size 

candidate set, restricted random testing, quasi-random testing, and 

random testing.  The evolutionary approach was demonstrated to be 

superior to the other methodologies amongst block pattern simulations.  

For fault patterns with increased complexity, the evolutionary approach 

was shown to be comparable to the current adaptive random testing 

strategies, and showed a modest improvement over quasi-random and 



 

  197 

 

random testing techniques.  A comparison of the asymptotic and empirical 

runtimes of the evolutionary search algorithm to the other testing 

approaches was also presented; the comparison provided further evidence 

that the application of an evolutionary search algorithm would be feasible, 

and within the same order of time complexity as the other adaptive 

random testing approaches.  Finally, the application of evolutionary 

adaptive random testing to the problem of cookie collection testing was 

presented, finalizing the automation of the web testing technique. 

8.1.6 Empirical Evaluations 

An empirical investigation of cookie collection testing was undertaken to 

evaluate the effectiveness of the testing methodology.  Six open source web 

applications were chosen as test subjects and an application-specific 

cookie collection testing suite was developed for each application.  Cookie 

collection testing was demonstrated to reveal defects within five of the six 

test subjects, and was found to have a substantial fault-triggering rate.  

Furthermore, the testing strategy was demonstrated to interact with each 

test application independently, indicating that the testing strategy was 

able to access the underlying application, not just the technological 

platform upon which the application was implemented.  Both seeding and 

evolutionary adaptive random generated vectors were found to be useful in 

triggering defects.  Neither of the two sets of vectors—seeding and 

generated—were found to supersede the other, demonstrating a synergetic 

relationship between seeding and generated vectors within cookie 

collection testing.  Finally, a large significant relationship was established 

between structural (tree) and content (context) similarity measures of web 

application responses.  Due to this relationship, the composite similarity 

metric (a combination of the tree and context measures) was observed to 

be superior for the detection of a fault between two web application 

responses. 



 

  198 

 

8.2 Recommendations for Future Research 

The work presented provides a number of avenues for future research 

within two distinct categories: web application testing and the more 

generalized field of adaptive random testing. 

8.2.1 Testing Web Applications 

The major contribution of this thesis was the definition of a cookie-specific 

web application testing strategy.  A number of subsequent avenues of 

research exist within the web testing community in relation to this work.  

Cookie collection testing is a viable web testing strategy given the nature of 

web applications, and the relationship that exists between client and 

server—more specifically the relationship between user-agent and server. 

Within this unique relationship, internal state information (cookies) are 

stored and implemented within the user-accessible browsing agent.  This 

relation differs significantly from traditional client-server relationship in 

which the internal state exists within an application itself and is not easily 

accessible to the end-user.  Although internal state values can be gleaned 

and modified through the use of reverse engineering techniques and code 

injection, these values have an inherent level of privacy afforded by the 

execution of compiled and/or obfuscated code.  This level of privacy is 

simply not present within a web environment, and although web 

obfuscation techniques exist for web technologies, it is trivial to intercept 

the values passed between client and server.  This inherently insecure 

environment is a reality of the client layer of web applications, and as 

demonstrated in the empirical evaluation, changes to the collection of 

cookies stored therein can trigger application defects.  Essentially, cookie 

collection testing describes a methodology for the modification of internal 

state values within an insecure operating environment—a novel idea with 

applications within a wide range of problem domains. 

Asynchronous Java and XML (AJAX) applications epitomize the 

execution of application components within the client layer.  These 



 

  199 

 

applications off-load large portions of the GUI onto the client layer in an 

effort to present a stateful event-driven GUI to the end-user.  These 

applications rely on client-layer code to drive the majority of interactions 

with a backend server.  These interactions ultimately result in HTTP 

requests being sent to the server which can be intercepted and modified, 

presenting the server with unpredictable requests.  This paradigm, similar 

to that of a typical HTTP request, is a prime candidate for future research 

in a similar vein to that of cookie collection testing.  How can a tester 

modify the internal state of an AJAX application?  Are there generalities, 

similar to the rules defined for seeding vectors, that can be applied to a 

broad range of AJAX applications?  These questions, and more 

importantly the answers to these questions, are of keen interest to future 

developments within the web engineering field. 

The field of web services, and more generally service oriented 

computing, presents further opportunities for the testing of insecure 

internal state values.  Web applications utilizing web services need to be 

verified against potentially damaging modifications of internal state 

values.  Although these requests are often handled within the server layer 

(that is, the backend server fires a request to an independent web service), 

the process relies heavily on an independent component, one that could 

potentially introduce errors within the internal state of an application.  

Although a web service is assumed to act in accordance with its WSDL 

specification, this assumption is not necessarily verified, and any 

application must be robust against errors introduced within web service 

responses.  Conversely, web services must also be able to handle a wide 

variety of inputs from an HTTP request.  A WSDL specification cannot 

fully encapsulate complex relationships existing between variables 

specified as inputs into a web service.  While these relationships may be 

specifically described within the documentation for a particular service, it 

is not wise to assume input compliance.  This interface between 

components within the service oriented computing paradigm requires 



 

  200 

 

specific testing considerations stemming from the investigations of the 

insecure internal state values of web applications.  This research has 

demonstrated defects within currently deployed web applications with 

regard to modifications of the internal state values; do the same type of 

defects exist within the service-oriented paradigm?  The academic 

community should seek the answer to this question, and any testing 

practitioner for a service-oriented system must verify the robustness of 

each computational component within the system. 

8.2.2 Adaptive Random Testing 

A number of avenues of future research exist in the field of adaptive 

random testing.  Specifically in relation to evolutionary adaptive random 

testing, future work should focus on identification of the specific genetic 

algorithm parameters that can increase testing effectiveness.  Although the 

maximum theoretical increase in testing effectiveness is bounded (T. Y. 

Chen & Merkel, 2008), it is clear from the simulation study that gains in 

testing effectiveness beyond those established in the literature are still 

possible. 

The fitness function is another component that requires further 

study; specifically, the development of a more sophisticated fitness 

function that could further increase testing effectiveness amongst more 

complex failure regions is of primary interest.  The observed tendency of 

evolutionary adaptive random testing to initially select boundary values 

suggests that the fitness function is not ideal, especially when detecting 

point pattern failure regions.  There may exist more appropriate fitness 

functions that can be applied within both the fixed size candidate set, and 

evolutionary random testing.  Future work within this area should include 

discussions on the selection of an appropriate fitness function, and 

possibly functions tailored for specific fault-patterns and input domains. 

Finally, although there have been empirical studies—including 

Chapter 7 of this thesis—demonstrating the effectiveness of adaptive 



 

  201 

 

random testing, further work is required to validate the use of these 

methodologies.  Given the previous use of genetic algorithms for the 

selection of test inputs based upon a white-box testing criterion (Harman 

et al., 2004; Michael et al., 2001; Xiao et al., 2007), future research could 

focus upon the synergies between the varying approaches.  Recent 

advances in genetic network programming are also of keen interest within 

the area of software testing.  Genetic network programming has been 

applied within other domains in which complex relationships exist 

between a large number of varying factors, such as the portfolio 

optimization problem (Y. Chen, Ohkawa, Mabu, Shimada, & Hirasawa, 

2009).  Given the complex relationships that often exist within the 

software input domain, and the demonstrated suitability of search-based 

heuristics with respect to adaptive random testing, adaptations of genetic 

network programming could prove to be a useful tool.  Such an adaptation 

could potentially provide increased effectiveness, leveraging both the 

current test suite, and the relationships that exist between input values. 

 



 

  202 

 

 

 

Bibliography 
 

Agrawal, V. D. (1978). When to Use Random Testing. IEEE Transactions 

on Computers, C-27(11), 1054-1055. 

Alalfi, M., Cordy, J. R., & Dean, T. R. (2009). Modeling Methods for Web 

Application Verification and Testing: State of the Art. Software 

Testing, Verification and Reliability, 19(4), 265–296. 

Alexa Internet Inc. (2006a). About the Alexa Traffic Rankings.   Retrieved 

March 4, 2006, from 

http://www.alexa.com/site/devcorner/top_sites 

Alexa Internet Inc. (2006b). Alexa Top Site Service.   Retrieved March 4, 

2006, from http://www.alexa.com/site/ds/top_sites 

Alvin, T. S. C. (2004). Cookies on-the-move: managing cookies on a 

smart card. Paper presented at the Proceedings of the 2004 ACM 

symposium on Applied computing.  

Ammann, P. E., & Knight, J. C. (1988). Data diversity: an approach to 

software fault tolerance. IEEE Transactions on Computers, 37(4), 

418-425. 

Andrews, A., Offutt, J., & Alexander, R. (2005). Testing Web Applications 

by Modeling with FSMs. Software Systems and Modeling, 4(3), 

326-345. 

Antonov, I. A., & Saleev, V. M. (1980). An economic method of computing 

LPτ - Sequences. Journal of Computational Mathematics and 

Mathematical Physics, 19, 252-256. 

Auger, R., Currudo, C., Huseby, S. H., Newman, A. C., Pompon, R., Groves, 

D., et al. (2005). Web Security Glossary.   Retrieved March 12, 

2008, from http://www.webappsec.org/projects/glossary/ 



 

  203 

 

Baker, L. (2007). Alexa Bias Exposed by Top Google Engineers.   Retrieved 

Jan, 2009, from http://www.searchenginejournal.com/alexa-bias-

exposed-by-top-google-engineers/4487/ 

Bellettini, C., Marchetto, A., & Trentini, A. (2005). TestUml: user-metrics 

driven web applications testing. Paper presented at the 

Proceedings of the 2005 ACM symposium on Applied computing.  

BlackHawk. (2007). RevokeBB Blind SQL Injection / Hash Extractor.   

Retrieved March 14, 2008, from 

http://archives.neohapsis.com/archives/bugtraq/2007-

06/0014.html 

Bradley, A. P. (1997). The use of the area under the ROC curve in the 

evaluation of machine learning algorithms. Pattern Recognition, 

30(7), 1145–1159. 

Bratley, P., & Fox, B. L. (1988). Algorithm 659: Implementing Sobol's 

quasirandom sequence generator. ACM Transactions on 

Mathematical Software, 14(1), 88-100. 

Bratley, P., Fox, B. L., & Niederreiter, H. (1994). Programs to generate 

Niederreiter's low-discrepancy sequences. ACM Transactions on 

Mathematical Software, 20(4), 494-495. 

CBS News. (2002). CIA Caught Sneaking Cookies.   Retrieved October 19, 

2006, from 

http://www.cbsnews.com/stories/2002/03/20/tech/printable5041

31.shtml 

Cgisecurity.com. (2002). The Cross Site Scripting FAQ.   Retrieved May 

20, 2005, from http://www.cgisecurity.com/articles/xss-faq.shtml 

Chan, F. T., Chen, T. Y., Mak, I. K., & Yu, Y. T. (1996). Proportional 

sampling strategy: guidelines for software testing practitioners. 

Information and Software Technology, 38(12), 775-782. 

Chan, K. P., Chen, T. Y., Kuo, F.-C., & Towey, D. (2004). A revisit of 

adaptive random testing by restriction. Paper presented at the 



 

  204 

 

Computer Software and Applications Conference, 2004. COMPSAC 

2004. Proceedings of the 28th Annual International. 

Chan, K. P., Chen, T. Y., & Towey, D. (2002). Restricted Random Testing. 

In Software Quality — ECSQ 2002 (pp. 321-330). 

Chan, K. P., Chen, T. Y., & Towey, D. (2006). Probabilistic Adaptive 

Random Testing. Paper presented at the Quality Software, 2006. 

QSIC 2006. Sixth International Conference on. 

Chen, T. Y., De Hao, H., Tse, T. H., & Zongyuan, Y. (2007). An Innovative 

Approach to Tackling the Boundary Effect in Adaptive Random 

Testing. Paper presented at the System Sciences, 2007. HICSS 

2007. 40th Annual Hawaii International Conference on. 

Chen, T. Y., Kuo, F.-C., & Merkel, R. (2006). On the statistical properties 

of testing effectiveness measures. Journal of Systems and 

Software, 79(5), 591-601. 

Chen, T. Y., Kuo, F. C., & Liu, H. (2007). Enhancing Adaptive Random 

Testing through Partitioning by Edge and Centre. Paper presented 

at the Software Engineering Conference, 2007. ASWEC 2007. 18th 

Australian. 

Chen, T. Y., Kuo, F. C., Merkel, R. G., & Ng, S. P. (2003). Mirror adaptive 

random testing. Paper presented at the Quality Software, 2003. 

Proceedings. Third International Conference on. 

Chen, T. Y., Leung, H., & Mak, I. K. (2004). Adaptive Random Testing. In 

Advances in Computer Science - ASIAN 2004 (pp. 320-329). 

Chen, T. Y., & Merkel, R. (2006). Efficient and effective random testing 

using the Voronoi diagram. Paper presented at the Software 

Engineering Conference, 2006. Australian. 

Chen, T. Y., & Merkel, R. (2007). Quasi-Random Testing. IEEE 

Transactions on Reliability, 56(3), 562-568. 

Chen, T. Y., & Merkel, R. (2008). An upper bound on software testing 

effectiveness. ACM Transactions on Software Engineering and 

Methodology, 17(3), 1-27. 



 

  205 

 

Chen, T. Y., Merkel, R., Wong, P. K., & Eddy, G. (2004). Adaptive random 

testing through dynamic partitioning. Paper presented at the 

Quality Software, 2004. QSIC 2004. Proceedings. Fourth 

International Conference on. 

Chen, T. Y., Tse, T. H., & Yu, Y. T. (2001). Proportional sampling strategy: 

a compendium and some insights. Journal of Systems and 

Software, 58(1), 65-81. 

Chen, Y., Ohkawa, E., Mabu, S., Shimada, K., & Hirasawa, K. (2009). A 

portfolio optimization model using Genetic Network Programming  

with control nodes. Expert Systems with Applications, 36(7), 

10735–10745. 

Chi, H., & Jones, E. L. (2006). Computational Investigations of 

Quasirandom Sequences in Generating Test Cases for 

Specification-Based Tests. Paper presented at the Simulation 

Conference, 2006. WSC 06. Proceedings of the Winter. 

Cliff, N. (1993). Dominance statistics: ordinal analysis to answer ordinal 

questions. Psychological Bulletin, 114, 494-509. 

Cliff, N. (1996). Ordinal methods for behavioral data analysis. New 

Jersey: Lawrence Erlbaum Associates. 

Cobham, A. (1964). The Intrinsic Computational Difficulty of Functions. 

Paper presented at the Proceedings of the 1964 Congress for Logic, 

Methodology, and the Philosophy of Science.  

Cohen, J. (1988). Statistical power analysis for the behavioural sciences 

(2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. 

comScore Inc. (2007a). comScore Releases March U.S. Search Engine 

Rankings.   Retrieved May, 2007, from 

http://www.comscore.com/press/release.asp?id=1397 

comScore Inc. (2007b). Cookie-Based Counting Overstates SIze of Web 

Site Audiencces.   Retrieved April 18, 2007, from 

http://www.comscore.com/press/release.asp?press=1389 



 

  206 

 

Cook, S. (2003). A Web developers guide to cross-site scripting.   

Retrieved July 26, 2006, from 

http://www.sans.org/reading_room/whitepapers/securecode/988.

php  

Cranor, L., Dobbs, B., Egelman, S., Hogben, G., Langheinrich, M., 

Marchiori, M., et al. (2006). The Platform for Privacy Preferences 

1.1 (P3P 1.1) Specification.   Retrieved May, 2007, from 

http://www.w3.org/TR/P3P11/ 

Di Lucca, G. A., Fasolino, A. R., Faralli, F., & De Carlini, U. (2002). Testing 

Web applications. Paper presented at the Proceedings. 

International Conference on Software Maintenance. 

Doyle, B., & Lopes, C. V. (2008). Survey of Technologies for Web 

Application Development [Electronic Version]. arXiv:0801.2618, 

43. Retrieved Jan 2009, from 

http://www.citebase.org/abstract?id=oai:arXiv.org:0801.2618 

Duran, J. W., & Ntafos, S. C. (1984). An Evaluation of Random Testing. 

IEEE Transactions on Software Engineering, SE-10(4), 438-444. 

Economist Intelligence Unit, & IBM Institute for BusinessValue. (2006). 

The 2006 e-readiness rankings [Electronic Version], 23,  

Elbaum, S., Rothermel, G., Karre, S., & Fisher Ii, M. (2005). Leveraging 

user-session data to support Web application testing. Software 

Engineering, IEEE Transactions on, 31(3), 187-202. 

Fawcett, T. (2003). ROC graphs: Notes and practical considerations for 

researchers  (Technical Report HPL-2003-4). Palo Alto, CA, USA: 

HP Laboratories. 

Fielding, R., Mogul, J. C., Frystyk, H., Masinter, L., Leach, P., & Berners-

Lee, T. (1999). RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1.   

Retrieved Sept. 4, 2007, from http://www.ietf.org/rfc/rfc2616.txt 

Finelli, G. B. (1991). NASA Software failure characterization experiments. 

Reliability Engineering & System Safety, 32(1-2), 155-169. 



 

  207 

 

Fogie, S. (2006). XSS, Cookies, and Session ID Authentication - Three 

Ingredients for a Successful Hack.   Retrieved August 14, 2006, 

from 

http://www.informit.com/articles/article.asp?p=603037&rl=1 

Fox, B. L. (1986). Algorithm 647: Implementation and Relative Efficiency 

of Quasirandom Sequence Generators. ACM Transactions on 

Mathematical Software, 12(4), 362-376. 

Free Software Foundation. (2008). GSL - GNU Scientific Library.   

Retrieved Sept., 2008, from http://www.gnu.org/software/gsl/ 

Garousi, V. (2008). Empirical analysis of a genetic algorithm-based 

stress test technique. Paper presented at the Proceedings of the 

10th annual conference on Genetic and evolutionary computation.  

Garousi, V., Briand, L. C., & Labiche, Y. (2008). Traffic-aware stress 

testing of distributed real-time systems based on UML models 

using genetic algorithms. Journal of Systems and Software, 81(2), 

161-185. 

GeekLog. (2010). GeekLog Documentation.   Retrieved Jan., 2010, from 

http://www.geeklog.net/docs/english/ 

Gilpin, A. R. (1993). Table for Converstion of Kendall's Tau to Spearman's 

Rho Within the context of measures of magnitude of effect for 

meta-analysis. Educational and Psychological Measurement, 53(1), 

87-52. 

Google. (2007). Google Analytics.   Retrieved May 7, 2007, from 

http://www.google.com/analytics/ 

Google. (2008). GMail.   Retrieved Jan 5, 2009, from 

https://mail.google.com 

Hanley, J. A., & McNeil, B. J. (1982). The Meaning and Use of the Area 

under a Receiver Operating Characteristic (ROC) Curve. Radiology, 

143, 29–36. 



 

  208 

 

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., et 

al. (2004). Testability transformation. IEEE Transactions on 

Software Engineering, 30(1), 3-16. 

Hess, M. R., Kromrey, J. D., Ferron, J. M., Hogarty, K. Y., & Hines, C. V. 

(2005). Robust Inference in Meta-Analysis: An Empirical 

Comparison of Point and Interval Estimates Using the 

Standardized Mean Difference and Cliff’s Delta. Paper presented at 

the Annual Meeting of the American Educational Research 

Association, Montreal. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An 

Introductory Analysis with Applications to Biology, Control, and 

Artificial Intelligence. University of Michigan. 

IP2Location.com. (2006). IP2Location.   Retrieved November 20, 2006, 

from http://www.ip2location.com/ 

Iron. (2008). EazyPortal <= 1.0 SQL Injection Exploit.   Retrieved March 

14, 2008, from http://milw0rm.com/exploits/5196 

ISO/IEC. (1996). Information technology -- Syntactic metalanguage -- 

Extended BNF  (ISO/IEC 14977:1996). 

Juels, A., Jakobsson, M., & Jagatic, T. N. (2006). Cache cookies for 

browser authentication. Paper presented at the IEEE Symposium 

on Security and Privacy. 

Kals, S. (2007, 2006). SecuBat.   Retrieved July, 2006, from 

http://www.secubat.org/ 

Kristol, D. (2001). HTTP Cookies: Standards, privacy, and politics. ACM 

Transactions on Internet Technology, 1(2), 151-198. 

Kristol, D., & Montulli, L. (1997). RFC 2109: HTTP State Management 

Mechanism.   Retrieved March 1, 2006, from 

http://www.ietf.org/rfc/rfc2109.txt 

Kristol, D., & Montulli, L. (2000). RFC 2965: HTTP State Management 

Mechanism.   Retrieved March 1, 2006, from 

http://www.ietf.org/rfc/rfc2965.txt 



 

  209 

 

Kromrey, J. D., Hogarty, K. Y., Ferron, J. M., Hines, C. V., & Hess, M. R. 

(2005). Robustness in Meta-Analysis: An Empirical Comparison 

of Point and Interval Estimates of Standardized Mean Differences 

and Cliff’s Delta. Paper presented at the American Statistical 

Association Joint Statistical Meetings. from 

http://luna.cas.usf.edu/~mbrannic/files/meta/Robust%20Estimat

es.pdf 

Kung, D. C., Liu, C., & Hsia, P. (2000). An Object-Oriented Web Test 

Model for Testing Web Applications. Paper presented at the 

Proceedings of the The First Asia-Pacific Conference on Quality 

Software (APAQS'00).  

Li, Z., Harman, M., & Hierons, R. M. (2007). Search Algorithms for 

Regression Test Case Prioritization. IEEE Transactions on 

Software Engineering, 33(4), 225-237. 

Loo, P. S., & Tsai, W. K. (1988). Random testing revisited. Information 

and Software Technology, 30(7), 402-417. 

Malaiya, Y. K. (1995). Antirandom testing: getting the most out of black-

box testing. Paper presented at the Software Reliability 

Engineering, 1995. Proceedings., Sixth International Symposium 

on. 

Mayer, J., & Schneckenburger, C. (2006). An empirical analysis and 

comparison of random testing techniques. Paper presented at the 

Proceedings of the 2006 ACM/IEEE international symposium on 

Empirical software engineering.  

McCormick, W. P., Lyons, N. I., & Hutcheson, K. (1992). Distributional 

properties of Jaccard's index of similarity. Communications in 

Statistics - Theory and Methods, 21(1), 51–68. 

Michael, C. C., McGraw, G., & Schatz, M. A. (2001). Generating software 

test data by evolution. IEEE Transactions on Software 

Engineering, 27(12), 1085-1110. 



 

  210 

 

Microsoft Corp. (2002). No Cookies for You! Internet Explorer Service 

Pack Helps Thwart Cross-Site Script Attacks.   Retrieved Sept. 5, 

2007, from 

http://www.microsoft.com/presspass/features/2002/oct02/10-

23xss-ie.mspx 

Microsoft Corp. (2007). Mitigating Cross-site Scripting With HTTP-only 

Cookies.   Retrieved Sept. 5, 2007, from 

http://msdn2.microsoft.com/en-us/library/ms533046.aspx 

Miniwatts Marketing Group. (2008). World Internet Users and Population 

Stats.   Retrieved Jan, 2009, from 

http://www.internetworldstats.com/stats.htm 

Mozilla Corporation. (2006). Firefox.   Retrieved March 4, 2006, from 

http://www.mozilla.com/firefox/ 

Mozilla Developer Center. (2009, Nov 20, 2009). Gecko DOM Reference.   

Retrieved Jan 5th, 2010, from 

https://developer.mozilla.org/en/Gecko_DOM_Reference 

Myers, G. J. (1976). The Art of Software Testing. New York: John Wiley & 

Sons. 

Net Applications. (2006). Browser Market Share.   Retrieved November 

18, 2006, from 

http://marketshare.hitslink.com/report.aspx?qprid=0 

Net Applications. (2007). Browser Market Share for Calendar Q3, 2007 

Retrieved Sept. 5, 2007, from 

http://marketshare.hitslink.com/report.aspx?qprid=0&qpmr=15&

qpdt=1&qpct=3&qptimeframe=Q 

Netscape Communications Corporation. (undated). Persistent Client State 

-- HTTP Cookies.   Retrieved Sept. 04, 2007, from 

http://wp.netscape.com/newsref/std/cookie_spec.html 

Nielsen//NetRatings. (2007). Nielsen//NetRatings Announces March U.S. 

Search Share Rankings.   Retrieved May, 2007, from 

http://www.netratings.com/pr/pr_070320.pdf 



 

  211 

 

Ntafos, S. C. (1998). On random and partition testing. Paper presented at 

the Proceedings of the 1998 ACM SIGSOFT international 

symposium on Software testing and analysis.  

Offutt, J., & Wu, Y. (2009). Modeling presentation layers of web 

applications for testing [Electronic Version]. Software Systems and 

Modeling, from 

http://www.springerlink.com/content/f1q564154110623x 

Offutt, J., Wu, Y., Du, X., & Huang, H. (2004). Bypass Testing of Web 

Applications. Paper presented at the The Fifteenth IEEE 

International Symposium on Software Reliability Engineering, 

Saint-Malo, Bretagne, France. 

Omniture Inc. (2007). Omniture SiteCatalyst. from 

http://www.omniture.com/products/web_analytics/sitecatalyst 

OneStat.com. (2007, July 2, 2007). Mozilla's Firefox global usage share is 

still growing according to OneStat.com.   Retrieved Sept. 5, 2007, 

from http://www.onestat.com/html/aboutus_pressbox53-firefox-

mozilla-browser-market-share.html 

Park, J. S., & Sandhu, R. (2000). Secure cookies on the Web. IEEE 

Internet Computing, 4(4), 36-44. 

PHP Group. (2008). The PHP Manual: Magic Quotes.   Retrieved March 

14, 2008, from http://ca.php.net/magic_quotes 

Port80 Software. (2007). Industry Surveys: Top Application Servers.   

Retrieved Jan, 2009, from 

http://www.port80software.com/surveys/top1000appservers/ 

Rathaus, N. (2004). PlaySMS SQL Injetion via Cookie.   Retrieved March 

14, 2008, from 

http://www.securiteam.com/unixfocus/5UP0F2ADPS.html 

Reay, I., Beatty, P., Dick, S., & Miller, J. (2006). Privacy Policies Versus 

National Culture and Legislation on the Internet. ACM 

Transactions on Computer-Human Interaction. 



 

  212 

 

Reay, I., Beatty, P., Dick, S., & Miller, J. (2007). A Survey and Analysis of 

the P3P Protocol's Agents, Adoption, Maintenance, and Future. 

Dependable and Secure Computing, IEEE Transactions on, 5(2), 

151-164. 

Ricca, F., & Tonella, P. (2001). Analysis and testing of Web applications. 

Paper presented at the Proceedings of the 23rd International 

Conference on Software Engineering.  

Romano, J., Kromrey, J., Coraggio, J., & Skowronek, J. (2006). 

Appropriate statistics for ordinal level data. Paper presented at the 

Florida Association for Institutional Research. 

Sachindra, J., Neeraj, A., Raghu, K., & Sumit, N. (2003). A bag of paths 

model for measuring structural similarity in Web documents. 

Paper presented at the Proceedings of the ninth ACM SIGKDD 

international conference on Knowledge discovery and data mining.  

Samar, V. (1999). Single sign-on using cookies for Web applications. 

Paper presented at the IEEE 8th International Workshop on 

Enabling Technologies: Infrastructure for Collaborative 

Enterprises. 

Schneck, P. B. (1979). Comment on "When to Use Random Testing". IEEE 

Transactions on Computers, C-28(8), 580-581. 

Secunia. (2005a). PaFileDB Administrative User Authentication SQL 

Injection Retrieved March 14, 2008, from 

http://secunia.com/advisories/16566/ 

Secunia. (2005b). phpCOIN SQL Injection and File Inclusion 

Vulnerabilities.   Retrieved March 14, 2008 

Secunia. (2006). e107 Cookie Parameter SQL Injection Vulnerability.   

Retrieved March 14, 2008, from 

http://secunia.com/advisories/20089/ 

SecuriTeam. (2004). Internet Software Sciences's Web+Center SQL 

Injection.   Retrieved March 14, 2008, from 

http://www.securiteam.com/windowsntfocus/5RP0N0ADGK.html 



 

  213 

 

SecuriTeam. (2008). MyBB SQL Injetion (Exploit).   Retrieved March 10, 

2008, from 

http://www.securiteam.com/exploits/5GP0E1PI0Y.html 

Security Space. (2006a). Internet Cookie Report.   Retrieved October 2, 

2006, from 

http://www.securityspace.com/s_survey/data/man.200609/cooki

eReport.html 

Security Space. (2006b). Technology Penetration Report.   Retrieved 

November 16, 2006, from 

http://www.securityspace.com/s_survey/data/man.200610/techpe

n.html 

Selkow, S. M. (1977). The tree-to-tree editing problem. Inf. Process. Lett., 

6(6), 184–186. 

Smith, R. M. (1999). The Web Bug FAQ.   Retrieved October 26, 2006, 

from http://www.eff.org/Privacy/Marketing/web_bug.html 

Sobol, I. M. (1967). Uniformly distributed sequences with additional 

uniformity properties. Journal of Computational Mathematics and 

Mathematical Physics, 16, 6. 

SourceForge.net. (2010a). e107.   Retrieved Jan., 2010, from 

http://sourceforge.net/projects/e107/ 

SourceForge.net. (2010b). phpBB.   Retrieved Jan., 2010, from 

http://sourceforge.net/projects/phpbb/ 

SourceForge.net. (2010c). phpMyAdmin.   Retrieved Jan., 2010, from 

http://sourceforge.net/projects/phpmyadmin/ 

Tappenden, A. F., Beatty, P., Miller, J., Geras, A., & Smith, M. R. (2005). 

Agile Security Testing of Web-Based Systems via HTTPUnit. Paper 

presented at the Agile 2005, Denver, Colorado. 

Tappenden, A. F., Huynh, T., Miller, J., Geras, A., & Smith, M. R. (2006). 

Agile Development of Secure Web-Based Applications. 

International Journal of Information Technology and Web 

Engineering, 1(2), 1-24. 



 

  214 

 

Tezinde, T., Murphy, J., Nguyen, H. C., & Jenkinson, C. (2001). Cookies: 

Walking the Fine Line between Love and Hate. Paper presented at 

the Western Australian Workshop on Information Systems 

Research.  

The Counter.com. (2006). Browser Stats.   Retrieved November 18, 2006, 

from 

http://www.thecounter.com/stats/2006/October/browser.php 

The Counter.com. (2007). Browser Stats.   Retrieved Sept. 5, 2007, from 

http://www.thecounter.com/stats/2007/August/browser.php 

The PHP Group. (2008). The PHP Manual: Magic Quotes.   Retrieved 

March 14,, 2008, from http://ca.php.net/magic_quotes 

Tonella, P., & Ricca, F. (2004). A 2-layer model for the white-box testing 

of Web applications. Paper presented at the Proceedings. Sixth 

IEEE International Workshop on Web Site Evolution. 

Trager, C. (2010). BugTracker.NET.   Retrieved Jan, 2010, from 

http://ifdefined.com/bugtrackernet.html 

United Nations Statistics Division. (2007). Standard Country and Area 

Codes Classifications.   Retrieved June, 2007, from 

http://unstats.un.org/unsd/methods/m49/m49regin.htm 

Verton, R. (2007). WebSpell Authentication Bypass and arbitrary code 

execution.   Retrieved March 24, 2008, from 

http://archives.neohapsis.com/archives/bugtraq/2007-

02/0426.html 

Vijayaraghavan, G., & Kaner, C. (2003). Bug Taxonomies: Use Them to 

Generate Better Tests. Paper presented at the STAR EAST 2003.  

Vind, J. (2007). Critical Sql Injection in NukeSentinel 2.5.12.   Retrieved 

March 11, 2008, from http://www.waraxe.us/advisory-58.html 

von Mayrhause, A., Chen, T., Hajjar, A., Bai, A., & Anderson, C. (1998). 

Fast antirandom (FAR) test generation. Paper presented at the 

High-Assurance Systems Engineering Symposium, 1998. 

Proceedings. Third IEEE International. 



 

  215 

 

W3 Schools. (2006). Browser Statistics.   Retrieved October 19, 2006, 

from http://www.w3schools.com/browsers/browsers_stats.asp 

W3C. (2005, Jan 19, 2005). W3C Document Object Model.   Retrieved 

Jan, 2010, from http://www.w3.org/DOM/ 

W3C. (2006). Platform for Privacy Preferences (P3P) Project.   Retrieved 

November 18, 2006, from http://www.w3.org/P3P/ 

Whittaker, J. A. (2000). What is software testing? And why is it so hard? 

IEEE Software, 17(1), 70-79. 

Xiao, M., El-Attar, M., Reformat, M., & Miller, J. (2007). Empirical 

evaluation of optimization algorithms when used in goal-oriented 

automated test data generation techniques. Empirical Software 

Engineering, 12(2), 183-239. 

Xu, L., Xu, B., & Jiang, J. (2005). Testing web applications focusing on 

their specialties. SIGSOFT Softw. Eng. Notes, 30(1), 10. 

Yahoo! Inc. (2006). Yahoo! Search Marketing.   Retrieved May 7, 2007, 

from http://www.content.overture.com/d/ 

Yang, W. (1991). Identifying Syntactic Differences Between Two Programs. 

Software—Practice and Experience, 21(7), 739–755. 

Yin, H., Lebne-Dengel, Z., & Malaiya, Y. K. (1997). Automatic test 

generation using checkpoint encoding and antirandom testing. 

Paper presented at the PROCEEDINGS The Eighth International 

Symposium On Software Reliability Engineering. 

Yue, C., Xie, M., & Wang, H. (2007). Automatic Cookie Usage Setting with 

CookiePicker. Paper presented at the Dependable Systems and 

Networks, 2007. DSN '07. 37th Annual IEEE/IFIP International 

Conference on. 

Zalewski, M. (2006). Cross Site Cooking.   Retrieved October 6, 2006, 

from 

http://www.securiteam.com/securityreviews/5EP0L2KHFG.html 



 

  216 

 

Zweig, M., & Campbell, G. (1993). Receiver-operating characteristic (ROC) 

plots: a fundamental evaluation tool in clinical medicine. Clin 

Chem, 39(4), 561–577. 

 

 



 

  217 

 

Appendix A  
 

National Cookie Usage 
 

Table A-1.  Cookie usage per site according to country 

Country 
Number Of 

Sites 
Sites Setting 

Cookies 

Site Setting 
1st Party 
Cookies 

Sites Setting 
3rd Party 
Cookies 

Sites Setting 
Sessional 
Cookies 

Sites Setting 
Persistent 

Cookies 

Sites Setting 
3rd Party 
Persistent 

Cookies 

United States   44,673  46% 29,589 66% 24,478 55% 16,639 37% 23,459 53% 22,822 51% 14,491 32% 

China   17,196  18% 12,193 71% 10,806 63% 5,802 34% 10,741 62% 7,672 45% 3,278 19% 

Japan   6,658  7% 3,431 52% 2,574 39% 1,730 26% 2,283 34% 2,678 40% 1,386 21% 

United Kingdom   3,493  4% 2,628 75% 2,297 66% 1,471 42% 2,143 61% 1,980 57% 1,299 37% 

Canada   2,527  3% 1,726 68% 1,402 55% 907 36% 1,357 54% 1,294 51% 790 31% 

Germany   2,411  2% 1,631 68% 1,271 53% 1,053 44% 1,381 57% 1,215 50% 858 36% 

France   1,837  2% 1,405 76% 1,006 55% 1,056 57% 1,000 54% 1,219 66% 992 54% 

South Korea   1,716  2% 1,311 76% 1,159 68% 544 32% 1,201 70% 618 36% 392 23% 

Netherlands   1,509  2% 1,016 67% 805 53% 666 44% 774 51% 809 54% 592 39% 

Hong Kong   1,401  1% 705 50% 583 42% 273 19% 529 38% 427 30% 197 14% 

Taiwan   1,298  1% 743 57% 641 49% 271 21% 651 50% 361 28% 185 14% 

Spain   1,222  1% 860 70% 708 58% 505 41% 733 60% 641 52% 439 36% 

Russian   768  1% 665 87% 499 65% 604 79% 466 61% 637 83% 595 77% 

Australia   766  1% 541 71% 469 61% 284 37% 436 57% 377 49% 248 32% 

Turkey   742  1% 551 74% 480 65% 239 32% 506 68% 280 38% 175 24% 

Sweden   699  1% 563 81% 496 71% 307 44% 488 70% 410 59% 284 41% 

Israel   670  1% 523 78% 469 70% 255 38% 476 71% 333 50% 206 31% 

Italy   634  1% 457 72% 367 58% 260 41% 348 55% 352 56% 240 38% 

Denmark   430  0% 353 82% 301 70% 209 49% 311 72% 276 64% 197 46% 

Brazil   399  0% 266 67% 245 61% 79 20% 233 58% 158 40% 65 16% 

Greece   321  0% 215 67% 188 59% 102 32% 184 57% 130 40% 75 23% 

Thailand   314  0% 225 72% 201 64% 126 40% 213 68% 183 58% 84 27% 

Switzerland   283  0% 199 70% 169 60% 104 37% 166 59% 139 49% 93 33% 

Czech Republic   269  0% 210 78% 146 54% 170 63% 143 53% 181 67% 159 59% 

Norway   261  0% 212 81% 173 66% 153 59% 195 75% 176 67% 140 54% 

Belgium   234  0% 192 82% 172 74% 121 52% 149 64% 157 67% 115 49% 

Poland   229  0% 167 73% 126 55% 121 53% 124 54% 137 60% 114 50% 

Austria   228  0% 167 73% 127 56% 104 46% 137 60% 120 53% 95 42% 

India   223  0% 135 61% 112 50% 57 26% 121 54% 57 26% 36 16% 

Singapore   212  0% 131 62% 103 49% 75 35% 98 46% 93 44% 60 28% 

Hungary  208  0% 169 81% 130 63% 132 63% 116 56% 145 70% 126 61% 

Mexico  179  0% 103 58% 91 51% 44 25% 81 45% 66 37% 39 22% 

Argentina  171  0% 126 74% 110 64% 73 43% 108 63% 93 54% 62 36% 

Finland  169  0% 132 78% 104 62% 96 57% 111 66% 104 62% 91 54% 

Malaysia  164  0% 99 60% 86 52% 40 24% 85 52% 59 36% 29 18% 

Lithuania  155  0% 144 93% 132 85% 47 30% 124 80% 136 88% 42 27% 

Saudi Arabia  132  0% 79 60% 63 48% 33 25% 72 55% 36 27% 25 19% 

Viet Nam  123  0% 98 80% 90 73% 30 24% 90 73% 47 38% 17 14% 

New Zealand  119  0% 91 76% 73 61% 66 55% 74 62% 75 63% 61 51% 

Egypt  114  0% 83 73% 77 68% 28 25% 79 69% 31 27% 17 15% 



 

  218 

 

Country 
Number Of 

Sites 
Sites Setting 

Cookies 

Site Setting 
1st Party 
Cookies 

Sites Setting 
3rd Party 
Cookies 

Sites Setting 
Sessional 
Cookies 

Sites Setting 
Persistent 

Cookies 

Sites Setting 
3rd Party 
Persistent 

Cookies 

Ireland  107  0% 85 79% 75 70% 47 44% 76 71% 60 56% 44 41% 

Romania  107  0% 91 85% 75 70% 78 73% 70 65% 84 79% 76 71% 

Portugal  99  0% 76 77% 67 68% 37 37% 62 63% 50 51% 31 31% 

Bulgaria  87  0% 71 82% 61 70% 45 52% 59 68% 55 63% 42 48% 

Ukraine  83  0% 44 53% 36 43% 34 41% 36 43% 38 46% 30 36% 

Chile  79  0% 55 70% 49 62% 35 44% 49 62% 42 53% 34 43% 

Uruguay  75  0% 36 48% 29 39% 16 21% 33 44% 23 31% 14 19% 

Virgin Islands, 
British  70  0% 23 33% 15 21% 13 19% 16 23% 15 21% 10 14% 

Venezuela  68  0% 47 69% 40 59% 17 25% 41 60% 26 38% 14 21% 

South Africa  67  0% 53 79% 48 72% 37 55% 46 69% 46 69% 34 51% 

United Arab 
Emirates 

 65  0% 52 80% 44 68% 22 34% 46 71% 24 37% 15 23% 

Indonesia  65  0% 46 71% 34 52% 18 28% 35 54% 22 34% 11 17% 

Slovenia  62  0% 52 84% 45 73% 32 52% 48 77% 40 65% 31 50% 

Slovakia  61  0% 48 79% 31 51% 36 59% 27 44% 43 70% 36 59% 

Serbia and 
Montenegro  55  0% 28 51% 23 42% 11 20% 23 42% 17 31% 9 16% 

Estonia  53  0% 41 77% 27 51% 28 53% 32 60% 33 62% 27 51% 

Costa Rica  43  0% 30 70% 27 63% 16 37% 22 51% 22 51% 15 35% 

Croatia  43  0% 23 53% 23 53% 14 33% 21 49% 16 37% 12 28% 

Philippines  32  0% 18 56% 18 56% 2 6% 17 53% 13 41% 2 6% 

Colombia  30  0% 15 50% 12 40% 10 33% 11 37% 12 40% 9 30% 

Panama  30  0% 20 67% 16 53% 8 27% 14 47% 16 53% 8 27% 

Peru  29  0% 14 48% 11 38% 7 24% 13 45% 5 17% 5 17% 

Latvia  26  0% 23 88% 20 77% 17 65% 21 81% 19 73% 16 62% 

Iceland  25  0% 21 84% 20 80% 15 60% 19 76% 18 72% 13 52% 

Jordan  24  0% 14 58% 10 42% 7 29% 10 42% 6 25% 4 17% 

Gibraltar  23  0% 20 87% 19 83% 15 65% 18 78% 18 78% 15 65% 

Kuwait  22  0% 18 82% 15 68% 4 18% 18 82% 2 9% 2 9% 

Malta  22  0% 13 59% 12 55% 3 14% 12 55% 7 32% 2 9% 

Dominica  21  0% 9 43% 9 43% 8 38% 8 38% 9 43% 8 38% 

Belize  19  0% 16 84% 16 84% 3 16% 14 74% 5 26% 3 16% 

Macao  19  0% 10 53% 7 37% 4 21% 9 47% 5 26% 2 11% 

Cyprus  19  0% 14 74% 13 68% 7 37% 13 68% 10 53% 6 32% 

Syrian Arab Republic  17  0% 10 59% 8 47% 3 18% 9 53% 3 18% 1 6% 

Luxembourg  17  0% 14 82% 13 76% 4 24% 12 71% 8 47% 4 24% 

Bermuda  16  0% 14 88% 14 88% 4 25% 14 88% 13 81% 4 25% 

Iran  15  0% 6 40% 6 40% 3 20% 6 40% 1 7% 1 7% 

Grenada  14  0% 9 64% 2 14% 8 57% 1 7% 9 64% 8 57% 

Pakistan  14  0% 8 57% 8 57% 3 21% 7 50% 4 29% 1 7% 

Dominican Republic  10  0% 8 80% 8 80% 4 40% 8 80% 6 60% 3 30% 

Ecuador  10  0% 6 60% 6 60% 1 10% 5 50% 2 20% 1 10% 

Puerto Rico  10  0% 7 70% 7 70% 4 40% 7 70% 4 40% 4 40% 

Lebanon  10  0% 8 80% 6 60% 3 30% 7 70% 5 50% 3 30% 

Morocco  9  0% 2 22% 2 22% 1 11% 2 22% 1 11% 1 11% 

Qatar  9  0% 5 56% 4 44% 1 11% 5 56% 1 11% 1 11% 

Netherlands Antilles  8  0% 6 75% 5 63% 3 38% 5 63% 4 50% 2 25% 

Antigua and Barbuda  7  0% 5 71% 5 71% 1 14% 5 71% 5 71% 1 14% 

Bosnia and 
Herzegovina  6  0% 6 100% 5 83% 4 67% 6 100% 4 67% 4 67% 

Tunisia  6  0% 4 67% 4 67% 1 17% 4 67% 1 17% 1 17% 

Bolivia  5  0% 1 20% 1 20% 1 20% 1 20% 1 20% 1 20% 

Bahamas  5  0% 2 40% 2 40% 2 40% 1 20% 2 40% 2 40% 

Guatemala  4  0% 3 75% 3 75% 0 0% 3 75% 2 50% 0 0% 

Sri Lanka  4  0% 3 75% 2 50% 1 25% 3 75% 1 25% 1 25% 

Mauritius  4  0% 4 100% 2 50% 3 75% 3 75% 2 50% 2 50% 



 

  219 

 

Country 
Number Of 

Sites 
Sites Setting 

Cookies 

Site Setting 
1st Party 
Cookies 

Sites Setting 
3rd Party 
Cookies 

Sites Setting 
Sessional 
Cookies 

Sites Setting 
Persistent 

Cookies 

Sites Setting 
3rd Party 
Persistent 

Cookies 

Yemen  4  0% 1 25% 1 25% 0 0% 0 0% 1 25% 0 0% 

Libyan Arab 
Jamahiriya  3  0% 1 33% 1 33% 0 0% 0 0% 1 33% 0 0% 

Algeria  3  0% 2 67% 2 67% 0 0% 1 33% 1 33% 0 0% 

Paraguay  3  0% 2 67% 2 67% 1 33% 2 67% 1 33% 1 33% 

Macedonia  0% 3 100% 3 100% 2 67% 3 100% 2 67% 2 67% 

Barbados  3  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Belarus  3  0% 2 67% 2 67% 1 33% 1 33% 2 67% 1 33% 

Moldova, Republic Of  3  0% 3 100% 3 100% 3 100% 3 100% 3 100% 3 100% 

Bahrain  3  0% 1 33% 1 33% 0 0% 1 33% 0 0% 0 0% 

Samoa  2  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Sudan  2  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Honduras  2  0% 1 50% 1 50% 0 0% 1 50% 0 0% 0 0% 

Saint Kitts and Nevis  2  0% 2 100% 2 100% 0 0% 2 100% 0 0% 0 0% 

Cote Divoire  2  0% 2 100% 1 50% 1 50% 1 50% 1 50% 1 50% 

Nicaragua  2  0% 1 50% 1 50% 1 50% 1 50% 1 50% 1 50% 

Myanmar  2  0% 1 50% 1 50% 1 50% 1 50% 0 0% 0 0% 

Guinea-Bissau  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Botswana  1  0% 1 100% 0 0% 1 100% 1 100% 0 0% 0 0% 

Trinidad and Tobago  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Cuba  1  0% 1 100% 1 100% 0 0% 1 100% 0 0% 0 0% 

Albania  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Fiji  1  0% 1 100% 1 100% 0 0% 0 0% 1 100% 0 0% 

Liechtenstein  1  0% 1 100% 1 100% 0 0% 1 100% 1 100% 0 0% 

American Samoa  1  0% 1 100% 0 0% 1 100% 0 0% 1 100% 1 100% 

Georgia  1  0% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 

Nigeria  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Holy See (Vatican 
City State) 

 1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Iraq  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Kazakhstan  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Oman  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Afghanistan  1  0% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 

Cambodia  1  0% 1 100% 1 100% 0 0% 1 100% 0 0% 0 0% 

El Salvador  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Brunei Darussalam  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Turks and Caicos 
Islands 

 1  0% 1 100% 0 0% 1 100% 1 100% 1 100% 1 100% 

Bangladesh  1  0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

Faroe Islands  1  0% 1 100% 0 0% 1 100% 1 100% 1 100% 1 100% 

Totals   97,050  100% 65,423 67% 54,616 56% 35,593 37% 53,064 55% 47,624 49% 29,029 30% 

 



 

  220 

 

 

Table A-2.  Cookie usage according to country 

Country 
Number of 
Cookies Set 

Number of 
1st Party 
Cookies 

Number of 
3rd Party 
Cookies 

Number of 
Sessional 
Cookies 

Number of 
Persistent 

Cookies 

Number of 
3rd Party 
Persistent 

Cookies 

United States  140,940 50% 78,615 56% 62,325 44% 52,074 37% 88,866 63% 14,491 10% 

China  47,205 17% 30,231 64% 16,974 36% 21,760 46% 25,445 54% 3,278 7% 

Japan  11,012 4% 6,226 57% 4,786 43% 4,231 38% 6,781 62% 1,386 13% 

United Kingdom  11,376 4% 6,735 59% 4,641 41% 4,423 39% 6,953 61% 1,299 11% 

Canada  7,081 2% 4,236 60% 2,845 40% 2,680 38% 4,401 62% 790 11% 

Germany  7,653 3% 3,755 49% 3,898 51% 2,704 35% 4,949 65% 858 11% 

France  6,495 2% 2,831 44% 3,664 56% 2,192 34% 4,303 66% 992 15% 

South Korea  4,584 2% 2,643 58% 1,941 42% 2,731 60% 1,853 40% 392 9% 

Netherlands  4,482 2% 2,378 53% 2,104 47% 1,627 36% 2,855 64% 592 13% 

Hong Kong  2,070 1% 1,339 65% 731 35% 1,032 50% 1,038 50% 197 10% 

Taiwan  2,374 1% 1,436 60% 938 40% 1,196 50% 1,178 50% 185 8% 

Spain  3,724 1% 2,131 57% 1,593 43% 1,365 37% 2,359 63% 439 12% 

Russian  4,373 2% 1,250 29% 3,123 71% 1,015 23% 3,358 77% 595 14% 

Australia  2,162 1% 1,346 62% 816 38% 931 43% 1,231 57% 248 11% 

Turkey  1,665 1% 1,068 64% 597 36% 888 53% 777 47% 175 11% 

Sweden  2,499 1% 1,344 54% 1,155 46% 940 38% 1,559 62% 284 11% 

Israel  2,092 1% 1,276 61% 816 39% 980 47% 1,112 53% 206 10% 

Italy  1,759 1% 1,006 57% 753 43% 600 34% 1,159 66% 240 14% 

Denmark  1,600 1% 790 49% 810 51% 660 41% 940 59% 197 12% 

Brazil  902 0% 708 78% 194 22% 450 50% 452 50% 65 7% 

Greece  651 0% 371 57% 280 43% 292 45% 359 55% 75 12% 

Thailand  1,140 0% 815 71% 325 29% 562 49% 578 51% 84 7% 

Switzerland  808 0% 475 59% 333 41% 326 40% 482 60% 93 12% 

Czech Republic  1,040 0% 327 31% 713 69% 279 27% 761 73% 159 15% 

Norway  1,240 0% 472 38% 768 62% 501 40% 739 60% 140 11% 

Belgium  879 0% 541 62% 338 38% 311 35% 568 65% 115 13% 

Poland  798 0% 294 37% 504 63% 213 27% 585 73% 114 14% 

Austria  757 0% 348 46% 409 54% 295 39% 462 61% 95 13% 

India  405 0% 226 56% 179 44% 187 46% 218 54% 36 9% 

Singapore  456 0% 253 55% 203 45% 172 38% 284 62% 60 13% 

Hungary 764 0% 273 36% 491 64% 173 23% 591 77% 126 16% 

Mexico 336 0% 193 57% 143 43% 147 44% 189 56% 39 12% 

Argentina 582 0% 338 58% 244 42% 231 40% 351 60% 62 11% 

Finland 626 0% 247 39% 379 61% 204 33% 422 67% 91 15% 

Malaysia 321 0% 218 68% 103 32% 155 48% 166 52% 29 9% 

Lithuania 754 0% 556 74% 198 26% 267 35% 487 65% 42 6% 

Saudi Arabia 239 0% 136 57% 103 43% 105 44% 134 56% 25 10% 

Viet Nam 263 0% 205 78% 58 22% 150 57% 113 43% 17 6% 

New Zealand 432 0% 165 38% 267 62% 171 40% 261 60% 61 14% 

Egypt 224 0% 173 77% 51 23% 129 58% 95 42% 17 8% 

Ireland 381 0% 222 58% 159 42% 145 38% 236 62% 44 12% 

Romania 522 0% 205 39% 317 61% 104 20% 418 80% 76 15% 

Portugal 346 0% 202 58% 144 42% 131 38% 215 62% 31 9% 

Bulgaria 245 0% 159 65% 86 35% 117 48% 128 52% 42 17% 

Ukraine 246 0% 94 38% 152 62% 57 23% 189 77% 30 12% 

Chile 266 0% 115 43% 151 57% 140 53% 126 47% 34 13% 

Uruguay 126 0% 78 62% 48 38% 66 52% 60 48% 14 11% 

Virgin Islands, 
British 

67 0% 37 55% 30 45% 36 54% 31 46% 10 15% 

Venezuela 129 0% 79 61% 50 39% 70 54% 59 46% 14 11% 

South Africa 404 0% 199 49% 205 51% 120 30% 284 70% 34 8% 



 

  221 

 

Country 
Number of 
Cookies Set 

Number of 
1st Party 
Cookies 

Number of 
3rd Party 
Cookies 

Number of 
Sessional 
Cookies 

Number of 
Persistent 

Cookies 

Number of 
3rd Party 
Persistent 

Cookies 
United Arab 
Emirates 

146 0% 79 54% 67 46% 79 54% 67 46% 15 10% 

Indonesia 126 0% 60 48% 66 52% 80 63% 46 37% 11 9% 

Slovenia 289 0% 135 47% 154 53% 108 37% 181 63% 31 11% 

Slovakia 190 0% 76 40% 114 60% 55 29% 135 71% 36 19% 

Serbia and 
Montenegro 

70 0% 42 60% 28 40% 30 43% 40 57% 9 13% 

Estonia 177 0% 74 42% 103 58% 74 42% 103 58% 27 15% 

Costa Rica 105 0% 66 63% 39 37% 41 39% 64 61% 15 14% 

Croatia 85 0% 61 72% 24 28% 43 51% 42 49% 12 14% 

Philippines 62 0% 51 82% 11 18% 27 44% 35 56% 2 3% 

Colombia 76 0% 31 41% 45 59% 24 32% 52 68% 9 12% 

Panama 80 0% 50 63% 30 38% 30 38% 50 63% 8 10% 

Peru 35 0% 15 43% 20 57% 28 80% 7 20% 5 14% 

Latvia 99 0% 44 44% 55 56% 34 34% 65 66% 16 16% 

Iceland 73 0% 51 70% 22 30% 39 53% 34 47% 13 18% 

Jordan 30 0% 12 40% 18 60% 23 77% 7 23% 4 13% 

Gibraltar 149 0% 105 70% 44 30% 52 35% 97 65% 15 10% 

Kuwait 36 0% 20 56% 16 44% 26 72% 10 28% 2 6% 

Malta 34 0% 24 71% 10 29% 22 65% 12 35% 2 6% 

Dominica 39 0% 13 33% 26 67% 24 62% 15 38% 8 21% 

Belize 31 0% 22 71% 9 29% 17 55% 14 45% 3 10% 

Macao 22 0% 18 82% 4 18% 14 64% 8 36% 2 9% 

Cyprus 47 0% 33 70% 14 30% 25 53% 22 47% 6 13% 

Syrian Arab Republic 26 0% 12 46% 14 54% 21 81% 5 19% 1 4% 

Luxembourg 43 0% 27 63% 16 37% 17 40% 26 60% 4 9% 

Bermuda 82 0% 69 84% 13 16% 24 29% 58 71% 4 5% 

Iran 16 0% 13 81% 3 19% 9 56% 7 44% 1 6% 

Grenada 17 0% 2 12% 15 88% 1 6% 16 94% 8 47% 

Pakistan 22 0% 11 50% 11 50% 15 68% 7 32% 1 5% 

Dominican Republic 48 0% 25 52% 23 48% 18 38% 30 63% 3 6% 

Ecuador 8 0% 7 88% 1 13% 6 75% 2 25% 1 13% 

Puerto Rico 37 0% 13 35% 24 65% 22 59% 15 41% 4 11% 

Lebanon 20 0% 15 75% 5 25% 11 55% 9 45% 3 15% 

Morocco 4 0% 2 50% 2 50% 2 50% 2 50% 1 25% 

Qatar 16 0% 4 25% 12 75% 13 81% 3 19% 1 6% 

Netherlands Antilles 16 0% 9 56% 7 44% 9 56% 7 44% 2 13% 

Antigua and Barbuda 25 0% 23 92% 2 8% 10 40% 15 60% 1 4% 

Bosnia and 
Herzegovina 

41 0% 16 39% 25 61% 19 46% 22 54% 4 10% 

Tunisia 14 0% 7 50% 7 50% 10 71% 4 29% 1 7% 

Bolivia 3 0% 1 33% 2 67% 2 67% 1 33% 1 33% 

Bahamas 7 0% 2 29% 5 71% 1 14% 6 86% 2 29% 

Guatemala 9 0% 9 100% 0 0% 5 56% 4 44% 0 0% 

Sri Lanka 6 0% 2 33% 4 67% 3 50% 3 50% 1 17% 

Mauritius 13 0% 3 23% 10 77% 4 31% 9 69% 2 15% 

Yemen 1 0% 1 100% 0 0% 0 0% 1 100% 0 0% 

Libyan Arab 
Jamahiriya 

1 0% 1 100% 0 0% 0 0% 1 100% 0 0% 

Algeria 3 0% 3 100% 0 0% 1 33% 2 67% 0 0% 

Paraguay 4 0% 2 50% 2 50% 3 75% 1 25% 1 25% 

Macedonia 12 0% 9 75% 3 25% 8 67% 4 33% 2 17% 

Barbados 0 0% 0  0  0  0  0  

Belarus 13 0% 7 54% 6 46% 1 8% 12 92% 1 8% 

Moldova, Republic 
Of 

20 0% 9 45% 11 55% 5 25% 15 75% 3 15% 

Bahrain 1 0% 1 100% 0 0% 1 100% 0 0% 0 0% 

Samoa 0 0% 0  0  0  0  0  



 

  222 

 

Country 
Number of 
Cookies Set 

Number of 
1st Party 
Cookies 

Number of 
3rd Party 
Cookies 

Number of 
Sessional 
Cookies 

Number of 
Persistent 

Cookies 

Number of 
3rd Party 
Persistent 

Cookies 

Sudan 0 0% 0  0  0  0  0  

Honduras 1 0% 1 100% 0 0% 1 100% 0 0% 0 0% 

Saint Kitts and Nevis 2 0% 2 100% 0 0% 2 100% 0 0% 0 0% 

Cote Divoire 4 0% 3 75% 1 25% 3 75% 1 25% 1 25% 

Nicaragua 8 0% 5 63% 3 38% 3 38% 5 63% 1 13% 

Myanmar 2 0% 1 50% 1 50% 2 100% 0 0% 0 0% 

Guinea-Bissau 0 0% 0  0  0  0  0  

Botswana 3 0% 0 0% 3 100% 3 100% 0 0% 0 0% 

Trinidad and Tobago 0 0% 0  0  0  0  0  

Cuba 1 0% 1 100% 0 0% 1 100% 0 0% 0 0% 

Albania 0 0% 0  0  0  0  0  

Fiji 2 0% 2 100% 0 0% 0 0% 2 100% 0 0% 

Liechtenstein 3 0% 3 100% 0 0% 1 33% 2 67% 0 0% 

American Samoa 3 0% 0 0% 3 100% 0 0% 3 100% 1 33% 

Georgia 6 0% 3 50% 3 50% 2 33% 4 67% 1 17% 

Nigeria 0 0% 0  0  0  0  0  

Holy See (Vatican 
City State) 0 0% 0  0  0  0  0  

Iraq 0 0% 0  0  0  0  0  

Kazakhstan 0 0% 0  0  0  0  0  

Oman 0 0% 0  0  0  0  0  

Afghanistan 7 0% 1 14% 6 86% 3 43% 4 57% 1 14% 

Cambodia 1 0% 1 100% 0 0% 1 100% 0 0% 0 0% 

El Salvador 0 0% 0  0  0  0  0  

Brunei Darussalam 0 0% 0  0  0  0  0  

Turks and Caicos 
Islands 4 0% 0 0% 4 100% 1 25% 3 75% 1 25% 

Bangladesh 0 0% 0  0  0  0  0  

Faroe Islands 2 0% 0 0% 2 100% 1 50% 1 50% 1 50% 

Totals  284,073 100% 160,770 57% 123,303 43% 111,495 39% 172,578 61% 29,029 10% 

 

 

 



 

  223 

 

Appendix B  
 

CookieCruncher: 

Cookie Collection Test Harness 
 

Cookie collection testing, as outlined in Chapter 5, involves the testing of a 

web application from the perspective of modifying the collections of 

cookies stored within a user-agent.  This testing strategy, based on the 

results of the extensive survey conducted in Chapter 3, employs the 

technique of anti random testing in the generation of testing vectors that 

can be used to verify a web application.  Due to the ability of this testing 

strategy to define large pools of testing data for any application, this 

process requires a computer-assisted testing harness that is capable of 

providing both a framework for test-data generation and an automated 

test execution and evaluation environment.   This appendix will provide an 

overview of the testing tool CookieCruncher developed to automate test 

input generation, execution, and evaluation. 

The remainder of this appendix will be organized as follows.  

Section B.1 will outline the manual process the test harness seeks to 

automate; Section B.2 will provide an overview of the testing harness; 

Section B.3 to B.5 will provide a detailed description of the instrumented 

browsing, test input generation, and test execution and evaluation 

processes highlighting the critical design decisions; Section B.6 will 

discuss the application-specific testing adaptations required to test real-

world web applications; Section B.7 will outline the extendibility of the 

framework, suggesting avenues for future collaborations, and Section B.8 

will summarize the chapter highlighting the key components of the testing 

harness.  



 

  224 

 

B.1 Cookie Collection Testing: The Manual Process 

Before any process can be automated, an accurate description of the 

underlying manual process that is to be performed is required.  Cookie 

collection testing is a four-step process: test case definition, test input 

generation, test execution, and evaluation.  To date, discussions of cookie 

collection testing have focused upon the second step within the process—

test input generation.  The remainder of this section will review the 

process of test input generation and fill in the blanks in regards to test-

case definition, test execution, and test evaluation. 

 
Figure B-1. The Four Step Cookie Collection Process 

B.1.1 Test Case Definition 

The test case definition is specified for cookie collection testing in Chapter 

5.4.1.   Table B-1 provides a brief summary of the definition of a test case 

within cookie collection testing. 

Test Case 
Definition 

Test Input 
Generation 

Test 
Execution 

Test 
Evaluation 



 

  225 

 

Table B-1. Test Case Definition 

Test Case ID 

Pre-Conditions: A list of HTTP Requests and associated inputs 
required bring an application to the known 
testing state. 

Test Request: The HTTP Request and associated inputs to be 
evaluated. 

Cookie Collection: A cookie collection representing the cookies 
present for to be sent with the Test Request. 

 

B.1.2 Test Input Generation 

The generation of cookie collection tests requires two artifacts: a test 

request, and the collection of cookies used within the web application.  

Using the test request (specifically the cookies sent along with the test 

request) and the global cookie collection for a given application, a tester 

can construct an anti random set of testing cookie collections against 

which the request can be verified.  The process of generating anti random 

cookie collections is outlined in detail in Chapter 5.3, and will only be 

briefly summarized here. 

Given the set GC of cookies present globally within an application, 

and the set RC of cookies presented within a test request, a set of seeding-

vectors can be constructed based on the following rules: 

Presence. Seeding vectors should be constructed based upon the 

presence and absence of cookies within the test request.  To this end, test 

vectors should be devoted to the intersection of GC and RC, and the 

complement of GC ∩ RC.  Essentially, there should be a seed containing all 

of the cookies present in RC, and all of the cookies except those present in 

RC. 

Global Cookies.  Two seeding vectors should always exist: GC 

and the complement of GC.  The set of testing vectors should contain a 



 

  226 

 

vector representing the presence of all of the cookies in GC, and the 

absence of all cookies in GC. 

Hostname.  Seeding vectors should be present that reflect the 

distinct hostnames from which cookies are present.  These vectors should 

include a first-party only vector, a third-party only vector, and a vector 

dedicated to cookies from each specific third-party host. 

Expiration.  Seeding vectors should be present that reflect the 

various expiration dates of the cookies within GC.  Two seeding vectors 

should be derived from the simple partition of sessional versus persistent 

cookies, as well as a seeding vector devoted to each specific expiration 

date. 

Secure.  Two seeding vectors should be devoted to the presence 

and absence of secure connections only cookies. 

HttpOnly.  Two seeding vectors should be devoted to the presence 

and absence of HttpOnly cookies. 

P3P Policy.  Seeding vectors should be derived from the usage of 

P3P policy in conjunction with third-party cookies. Vectors should be 

based upon each specific P3P policy encountered within GC, as well as a 

vector devoted to the absence of all third-party cookies without P3P 

policies. 

Path. Seeding vectors should be derived from cookies only valid for 

specific paths within the application.  Vectors should be generated for the 

presence and absence of each path encountered within GC. 

Once the seeding vectors have been generated for a particular test 

request, the process of anti random test data generation is applied to the 

collection of seeding vectors, resulting in a set of seeding and generated 

vectors that can be used to verify the web application for the specific test 

request. 

B.1.3 Test Execution 

The execution of a test case, as defined in Chapter 5.4.1, is a 

straightforward three-step process: 



 

  227 

 

1. All pre-conditions defined within the test case must be realized.  

This necessitates an interaction with the web application to place 

the system within a known state, and involves interaction with the 

web application as a series of HTTP requests. 

2. Once the system state is set, the cookie collection is modified to 

reflect the cookie collection defined within the test case.  Cookie 

collection modification is performed through the creation and 

deletion of cookies present within the current cookie collection.  A 

cookie is said to be present within a cookie collection based upon 

the following equivalence definition: two cookies are equivalent if 

and only if their name, path, and host values are identical (Kristol & 

Montulli, 1997, 2000). 

3. A test request is sent to the web application. The application's 

response to the test request constitutes the output from a test. 

B.1.4 Test Evaluation 

An HTTP response is the final output of the testing execution process.  

This response requires manual inspection to evaluate whether the test case 

has triggered a fault, or if the application has executed without error.  This 

decision requires the subjective discretion of the tester and should be 

made in concert with a comparison to the expected value of the output, 

which in cookie collection testing is often the response if cookie 

modification had not occurred, or if the test request was sent without any 

cookies present.  

B.2 CookieCruncher: An Automated Cookie Collection 

Testing Tool 

The survey conducted in Chapter 3 indicated that web applications within 

the 95th percentile were found to use anywhere between 0 – 10 cookies.  

Given a typical web application existing within this range, it is plausible 

that for each page, a possible 210 test cases could be defined—clearly the 

manual testing process outlined in Section B.1 requires an automated 



 

  228 

 

testing harness.  This section will introduce the testing tool 

CookieCruncher which has been developed to automate the testing tasks 

outlined in Section B.1. 

 
Figure B-2.  CookieCruncher's Three Step Testing Process 

CookieCruncher, like the manual process previously described, uses 

a three-stage testing process (Figure B-2) in which the test execution and 

test evaluation phases have been amalgamated.  CookieCruncher is 

completely automated, and only requires minimal user interaction 

between each of the three phases.  CookieCruncher has been developed as 

an extension to the Firefox web browser (Mozilla Corporation, 2006), 

allowing CookieCruncher to leverage the advanced technological platform 

offered by Firefox, the second most popular Internet browser (The 

Counter.com, 2006, 2007; W3 Schools, 2006).  The development of 

CookieCruncher as a Firefox extension also allows the testing tool to be 

platform independent and able to perform tests from any machine capable 

of running Firefox. 

B.2.1 CookieCruncher: An Overview of Basic Functionality 

To test a web application with CookieCruncher, a tester simply records a 

set of test cases through the use of an instrumented browsing session.  

Instrumented 
Browsing 

Test Input 
Generation 

Test Execution 
&  

Test Evaluation 



 

  229 

 

This recording process is performed as the tester interacts with a web 

application through the standard Firefox browser window.  During an 

instrumented browsing session, all of the requests and cookies are 

automatically recorded.  Once the tester has completed the recording of a 

test session, a record of the browsing session is produced and saved for 

processing.  A stored browsing session is used as input into the 

CookieCruncher test generator.  This module reads the browsing session, 

compiles the list of cookies used within the browsing session, and outputs 

a test report containing test cases generated for each request recorded 

within the browsing session.  Finally, the CookieCruncher Test Manager 

allows a tester to open a test report, and run a test suite upon a web 

application.  The Test Manager automatically fetches each result, modifies 

the cookie collection, and evaluates the output of the test based upon a 

comparison of the output to the original browser request. 

B.3 Instrumented Browsing 

The Instrumented phase of the testing process involves the automated 

recording of a browsing session.  Essentially CookieCruncher provides an 

interface in which a specific path23 through a web application can be 

recorded.  Figure B-3 describes the automated cycle that serves as the 

basis for the automatic recording of a browsing session. 

Before the Step 1 in the process is executed, the system must first 

initialize the browser environment to allow for an accurate recording of 

the browsing session.  First and foremost, all cookies present within the 

browsing environment must be removed, allowing for the detection of 

each and every cookie set by the web application.  The caching ability of 

the browsing environment must also be disabled before instrumented 

browsing can begin.  Disabling browser caching ensures that each and 

every request initiated by the tester reaches the web application.  Once the 

                                                   
23 A path through a web application is defined as an ordered series of HTTP requests with 
associated input values. 



 

  230 

 

browsing environment has been initialized, the three-step cycle begins and 

is implemented until the tester terminates the browsing session. 

 
Figure B-3.  The Three-Step Instrumented Browsing Process 

The first step in the process is to record the cookies present within 

the browsing environment.  This step, executed before any tester-initiated 

request is recorded, serves to record the cookies present that will be sent 

with the next request.  Step 1 is performed before each request is sent to 

the server and provides an accurate description of the cookies present at 

each request. 

The second step begins in response to a tester-activated request.  

Requests are generated anytime a tester clicks on a hyperlink, types a URL 

in the navigation bar, or submits a form.  When this event is triggered, the 

system records the request, including all data sent along with the request, 

and allows Firefox to process the request unhindered, just as if the request 

had been made from within an unmodified Firefox environment. 

The processing of a request is the final step within the cycle.  

Although the process is unhindered, it is instrumented to record any 

additional requests for HTML or XML documents.  This additional 

recording provides the ability for the system to record events triggered by 

1. Record 
Cookies 

2. Record 
User Activated 

Request 

3. Firefox 
Processes 
Request 



 

  231 

 

AJAX requests and frame objects.  Once the processing has stopped and 

Firefox has determined that the page has fully loaded—including images, 

embedded Flash objects, and JavaScript components—the process returns 

to Step 1 and records the cookies for the next test request. 

The strength of this recording process is the ability to accurately 

record requests generated from browsing a test application.  This 

automated process allows for the creation of detailed tests by simply 

interacting with the system under test.  Furthermore, because the 

application is accessed from within an actual browser environment, a 

number of web-specific testing conditions can be explored.  For example, 

web navigation can be accurately documented because of the ability to use 

the built-in forward and backward navigation capabilities of the Firefox 

browser.  Other notable web-specific capabilities that come built into the 

Firefox browser are: 

• The ability to load and execute JavaScript components within an 

HTML document; 

• The ability to intercept and record XMLHttpRequests—a 

fundamental component of AJAX applications; and 

• The integration of Cascading Style Sheets (CSS) directives within 

the final page presentation. 

This instrumented browsing process can be stopped after a request is fully 

loaded.  Once stopped, the browsing session is exported to an XML 

document containing a detailed account of the browsing session.  This 

document serves as the input to the next phase of the CookieCruncher test 

process—test input generation. 

B.4 Test Input Generation 

The test input generation phase of the testing process transforms a 

browsing report into a testing report.  This process involves the processing 

of a browsing session, the creation of seeding vectors for each test request, 

and the use of Evolutionary Adaptive Random (eAR) testing for the 



 

  232 

 

generation of each test suite.  The three-step process was implemented 

using a Ruby script to integrate the three processes and relied on a C++ 

implementation of eAR testing for test-case generation. 

 
Figure B-4.  CookieCruncher's Test Generation Process 

B.4.1 Browsing Report Analysis 

Browsing reports contain a statement of a series of HTTP requests and the 

cookie collections present at each request.  The processing of this 

document involves the creation of a global set of cookies, GC.  This global 

cookie collection is defined as  

  

€ 

GC = Ci
i=0

n

 , (B-3) 

where Ci is the cookie collection of the ith test request in the report, and n 

is the number of test requests defined in a browsing report.  The global list 

of cookies combined with the pre-existing cookies collections Ci is the 

basis for the creation of seeding vectors. 

B.4.2 Generation of Seeding Vectors 

The generation of seeding vectors is performed through the use of an 

automated script that is based upon the seeding vector definitions 

Browsing 
Report Analysis 

Creation of 
Seeding Vectors 

Evolutionary 
Adaptive 
Random  

Test Generation 



 

  233 

 

provided in Chapter 5.3 and summarized in Section B.1.2.  The output of 

this process is a collection of seeding vectors for each test request in the 

browsing report, and will be used as the basis for test input generation. 

B.4.3 Evolutionary Adaptive Random Testing 

The evolutionary adaptive random testing adaptations and definitions 

from Chapter 6.4.1 were adopted within CookieCruncher. 

B.5 Test Execution & Evaluation 

Within the CookieCruncher testing harness, the test execution and 

evaluation phases of the testing process are combined into a single 

process.  This combination allows for the evaluation of each test result 

natively within the Firefox browsing environment, providing the novel 

ability for the automated evaluation of a fully rendered HTML document.  

The test execution and evaluation phase is followed the five-step process 

outlined in Figure B-5.   

The first three steps within the process are identical to those 

outlined in Section B.1.3.  Essentially, the preconditions (a series of 

requests required to ensure test system state) are resolved, the cookie 

collection is modified to reflect the value of the test vector, and the final 

page is requested.  The output from these three steps is a fully rendered 

HTML document within the browsing environment, having requested all 

embedded contented including images, third-party content, and 

JavaScript components.  The final document is then evaluated against the 

built-in testing oracles and the testing result is stored.  Once a test case has 

been loaded, evaluated and recorded the testing framework restarts the 

process for the next test case. 



 

  234 

 

 
Figure B-5. Test Evaluation & Execution Cycle 

B.5.1 Testing Oracles 

An automated evaluation of each test case requires the definition of a 

built-in oracle that can be used to detect the presence of a fault within the 

underlying system under test.  To fulfill this requirement, the results of 

two specific test-vectors were selected as the basis against which all results 

would be subsequently measured.  As indicated in Chapter 5.4.2, a vector 

representing the original cookie collection present when a test request was 

recorded, and the zeros vector, were selected as test oracles.   These 

vectors were selected as representative of two distinct and plausible cookie 

collections—two cookie collections that every web application should 

handle correctly.  The vector representing the recorded cookie collection 

provides a base-case in which no cookie collection modification has 

occurred.  Essentially this vector represents the request recorded during 

the instrumented browsing session.  The zeros vector, on the other hand, 

2. Set Cookie 
Collection 

3. Fully Load 
the Test 
Request 

4. Evaluate 
Test Request 

5. Store Result 

1. Load 
Preconditions 



 

  235 

 

represents a direct contrast to the recorded vector.  The zeros vector 

presents the application with a browsing environment devoid of cookies; 

essentially this is equivalent to accessing the page from a browser with 

cookies disabled.  In practice, these two vectors have been found quite 

effective at capturing the valid outputs related to cookie collection 

modification within real-world web applications. 

B.5.2 The Tree, Context, and Composite Similarity Metrics 

The selection of testing oracles is a fundamental component of the testing 

harness; of equal importance is the method by which testing results are 

compared against the oracles.  Within CookieCruncher, two similarity 

coefficients were selected as a basis for test result evaluation.  The tree 

similarity and context similarity coefficients, first selected for HTML page 

difference detection by Yue, Xie and Wang (2007), have been adopted for 

use within CookieCruncher.  A detailed discussion of each of the metrics 

and the composite similarity metric is provided in Chapter 5.4.3. 

B.5.3 Test Result Interpretations 

For each test case executed and evaluated by CookieCruncher, a total of six 

results were returned: three (tree, context, and composite similarity) for 

each of the two testing oracles the system was evaluated against.  All six of 

the results were recorded and reported by CookieCruncher, however, the 

result with the highest composite similarity was chosen to represent the 

test case as the final result.  The testing oracle to which the test output was 

most similar was assumed to be the result for a given test case.  This 

assumption, valid for any test case not containing a fault, results in the 

presentation of the test result closest to a composite similarity value of 

one.  For test cases for which a fault was uncovered, the result and oracle 

against which the output had the highest composite similarity coefficient 

were reported, essentially providing an indication of which oracle the 

output was most similar to.  In practice this indication was found to be 

sufficient for the detection of defects, and the test oracle to which the 



 

  236 

 

output was most similar was found to be of particular interest when 

assessing the underlying error responsible for the defect. 

B.6 Testing Hooks & Application-Specific Considerations 

The testing of real-world web applications required the definition of 

application specific customizations to accurately reproduce tests.  These 

application specific customizations, subsequently referred to as testing 

hooks, were necessary for all of the web applications that CookieCruncher 

was evaluated against.  In the evaluation of the testing framework, two 

specific types of testing hooks were implemented: hooks that occurred 

once-per-test case; and hooks that occurred once-per-request within the 

test case. 

The most common test hook encountered required a single HTTP 

request sent to a server-side script, resetting the backend database to a 

known testing state.  This testing hook, an example of a once-per-test 

hook, was common to all applications for which CookieCruncher was 

evaluated against.  A once-per-test testing hook involves an action, 

typically a specifically crafted HTTP request, being executed once before 

the pre-conditions for a specific test case are resolved.  The use of this type 

of testing technique requires the creation of an associated server-side 

testing support script that is capable of performing the required task called 

for by the test hook. 

Testing hooks were also required to be executed in-between 

requests to the system under test.  These hooks were performed before 

each request within a test case, including those specified within the pre-

conditions.  These hooks where found in two varieties:  

• The definition of a timeout value; and 

• The manipulation of input values based upon the current server 

response.   

A timeout value, specified in milliseconds, was required for applications 

that employed anti web-robot techniques.  The presence of a timeout once-



 

  237 

 

per-request testing hook was found to successfully circumvent these 

security measures; however this technique did introduce a period of delay 

within each test case, increasing the overall amount of time required to 

run each test suite.  These delays could be avoided through the disabling of 

the anti web-robot measures within the application, which is 

recommended for large-scale system testing. 

The most common once-per-request testing hook involved the 

retrieval of specific variables from an HTTP response document, and the 

subsequent modification of a variable within the subsequent HTTP 

request.  These hooks were implemented within CookieCruncher through 

the use of tester-specified regular expressions, providing an application- 

and variable-specific interface through which these testing hooks could be 

defined.  In practice these once-per-request testing hooks were required to 

find specific variable=value pairs within a current cookie and/or the 

HTML form elements.  These values, extracted from the response 

document, were then implanted into the subsequent request through the 

values present in the GET, POST, COOKIE, and REFERRER variables.  It 

was found that without these testing hooks, the test cases recorded could 

not be reliably executed.  The definition of these testing hooks required 

manual analysis and was not automated. 

B.7 Extendibility and Future Plans 

CookieCruncher currently exists as a stand-alone testing framework for 

web applications.  However, CookieCruncher has been developed with 

interoperability as a fundamental goal of the system—specifically the XML 

interface between the Instrumented Browsing and Test-Input Generation 

components.  This interface, fundamental in supplying the test input 

generation module with an instrumented browsing session, is thought to 

be adaptable to a wide-array of currently defined web testing 

methodologies.  Through the adaptation of this interface, it is believed that 

the testing framework can process test cases derived from other web 



 

  238 

 

application testing strategies, providing an efficient and cost-effective 

method for applying cookie collection testing upon a set of pre-existing 

test cases. 

For example, consider the testing data collected through the 

analysis of the user-session data as prescribed by Elbaum, Rothermel, 

Karre, and Fisher (2005).  This web application testing strategy employs 

data mining techniques on the data stored within HTTP server logs to 

extract test cases based upon the identification of user-sessions.  The data 

extracted from the server logs is in the form of URL sequences (Elbaum et 

al., 2005) and is very similar to the test cases recorded by the 

Instrumented Browsing component.  This form of testing has been shown 

to complement current web application white-box testing techniques, and 

it is believed that the testing data extracted from HTTP server logs can 

form a basis for the input of test cases into CookieCruncher, allowing for 

the further amalgamation of web testing techniques. 

B.8 Summary 

This appendix presented the testing harness CookieCruncher, specifically 

developed to implement an automated evolutionary adaptive random 

cookie collection testing strategy for web applications.  All facets of the 

testing process and testing harness were discussed, detailing the specific 

design decisions associated with each component of the testing system, 

and providing a clear explanation of the techniques and algorithms 

implemented within each component of the test harness. 

Finally, a discussion of the adaptability and interoperability of the 

testing harness was presented.  The test harness has been developed to be 

adaptable to a wide array of web applications, and it is believed that the 

testing harness can itself be adapted to accept input from a wide array of 

current and future web application testing strategies. 



 

  239 

 

Appendix C  
 

Testing Six Real-World 

Web Applications 
 

The following appendix will provide a summary of the testing activities 

preformed on each of the testing applications. A basic description of the 

application and the testing environment in which it was executed, followed 

by a summary of the use-cases analysis and test suite generated will be 

presented for each application.  Finally, the application-specific testing 

modifications (testing hooks) required for the execution of each test case is 

presented. 

C.1 BugTracker.net 

BugTracker.net is a web application for the tracking of program defects 

and customer support issues.  According to the developer, Bugtracker.net 

is used by development and customer support teams around the world 

(Trager, 2010).  BugTracker.net allows users to manage large lists of issues 

and/or defects.  Each issue is configurable and can be associated with 

multiple users and user groups from both within and outside a particular 

organization. 

BugTracker.net is an open source application that is written using 

ASP.Net and C# and is implemented on top of a server running Microsoft 

IIS and Microsoft SQL Server.  This application was executed within a test 

environment running Windows Server 2008 (version 6.0.6002), Microsoft 

ISS (version 7.0.6000.1638), Microsoft SQL Server 2008 (version 

10.0.2531.0), and the Microsoft .NET framework (version 2.0.50727.400). 



 

  240 

 

BugTracker.net was the only testing application that used AJAX to 

fetch data from within the browser.  The use of asynchronous requests to 

fetch XML data was handled within the testing tool without modification.  

Essentially the tool recorded each AJAX request and allowed for the 

testing of both the application state that sent the AJAX request and each 

individual AJAX request. 

C.1.1 Decision Tree & Use-Case Descriptions 

A summary of the use-case analysis from which the testing suite was 

derived for BugTracker.net is provided in Table C-1.   This analysis is by no 

means complete and is only intended to access a wide range of system 

components; it is not a complete definition of the system. 

Table C-1.  BugTracker.net Decision Tree & Use-Case Description 

Decision Tree Brief Use-Case Description 

I. Administrator Log In A user logs into the system with administrator 
privileges, performs administrator tasks, and 
then logs out of the system. 

A. Reports An administrator can view the data stored 
within the application through a series of 
reports. 

1. Tickets by User An administrator can browse reports sorted by 
username. 

2. Tickets by Category An administrator can browse reports sorted by 
category. 

B. Add a user An administrator can add a user to the system. 

C. Delete a user An administrator can remove a user from the 
system. 

D. Add/Delete an Organization An administrator can add or delete 
organizations from the system. 

E. Add/Delete a Category An administrator can add or delete a issue 
category from the system. 

II. Regular User Log In A user logs into the system without 
administrative privileges, performs user tasks, 
and then logs out of the system. 



 

  241 

 

Decision Tree Brief Use-Case Description 

A. Browse Tickets A user can browse tickets by a variety of 
criterion. 

1. All A user can browser all of the tickets within the 
system. 

2. Tickets with Bugs A user can browse tickets that have an 
associated bug. 

3. Checked in Tickets A user can browse all of the tickets that have 
been checked into the system. 

4. Open Tickets A user can browse all of the tickets that have 
not been closed. 

5. Open & Assigned to Me A user can browser all of the tickets that are 
open and have been assigned to himself. 

B. Change a ticket A user can modify a ticket for which he has 
permission. 

1. Check in New Ticket A user can check in a new ticket. 

2. Close a New Ticket A user can close a new ticket. 

3. Close a Checked In A user can close a checked in ticket. 

4. Reopen a Closed Ticket A user can reopen a ticket that has been closed. 

C. Add a New Ticket A user can add a new ticket to the system 

D. Assign a Ticket  A user can assign a ticket to another user or 
himself. 

E. Link Tickets A user can link a ticket to another pre-existing 
ticket 

F. Search Tickets A user can search the system for bugs based on 
a number of different criterion. 

1. Who Reported A user can search the system for tickets based 
upon the user who reported the ticket. 

2. Category A user can search the system for tickets based 
upon the category assigned to the ticket 

3. Status A user can search the system for tickets based 
upon the status of the ticket. 



 

  242 

 

Decision Tree Brief Use-Case Description 

4. Multiple Fields A user can search the system for tickets based 
upon a combination of multiple criterion such 
as reporter, category, and/or status. 

G. Change Settings A user can change their personal settings. 

III. Multiple Users A system administrator logs into the system 
and then logs out.  Subsequently a non-
administrator logs into the system and then 
logs out. 

 

The use-cases were implemented through a series of eleven 

instrumented browser sessions (output from the instrument browsing 

component of CookieCruncher), and after processing resulted in a test 

suite of 1,440 tests. 

C.1.2 Testing Hooks 

The four testing hooks required to execute the BugTracker.net test suite 

derived in Section C.1.1 are summarize in Table C-2. 

Table C-2.  Bug Tracker.net Testing Hooks 

Name Type Description 

Reset DB Once per test Once, before each test case is 
implemented a request was made to a 
server-side script that reset the database 
to a known state. 

Replace EventValidation Each Request Before each request within a test case 
the value of the EVENTVALIDATION 
variable within the POST, GET, 
REFERRER and COOKIE variables. 

Replace ViewState Each Request Before each request within a test case 
the value of the VIEWSTATE variable 
within the POST, GET, REFERRER and 
COOKIE variables. 

Replace Timestamp Each Request Before each request within a test case 
the value of the snapshot_timestamp 
variable within the POST, GET, 
REFERRER and COOKIE variables. 

 



 

  243 

 

C.2 e107 

e107 is a web content-management system allowing organizations to 

produce a efficiently manage a content-based web site.  The application 

has been downloaded over 1.3 million times since 2002 (SourceForge.net, 

2010a).  The application is written in PHP and uses MySQL as a backend 

database.  Testing was preformed using an Apache HTTP server (version 

2.2.14) running PHP (5.3.1) with a backend MySQL database (5.1.41). 

C.2.1 Decision Tree & Use-Case Descriptions 

A summary of the use-case analysis from which a testing suite was derived 

for e107 is provided in Table C-1.   This analysis is by no means complete 

and is only intended to access a wide range of system components; it is not 

a complete definition of the system. 

Table C-3.  e107 Decision Tree & Use-Case Description 

Decision Tree Brief Use-Case Description 

I. Guest User A user can browse the site without being 
registered or logging in. 

A. Browse Site A guest user can look at the various news 
articles. 

B. Submit an Article A guest user can submit a news item for 
publishing.  If he does so, he will be asked to log 
into the site and will require a valid username 
& password. 

C. Create a User A guest user can signup for the site to become a 
registered user. 

II. Non-Privileged User A user can log into the site with a valid 
username and password and gain access to 
specific portions of the site.  The user has the 
option to be remembered by the site. 

A. Browse Profile A registered user can browse and modify his 
user profile. 

B. Submit an Article A registered user can submit a news item for 
publishing. 

C. Change Settings A registered user can change his settings. 



 

  244 

 

Decision Tree Brief Use-Case Description 

D. Homepage A registered user has his own specific home 
page 

E. Vote in Poll A registered user can participate in the poll by 
voting and posting comments. 

F. Post a Comment A registered user can post a comment related to 
any news item within the site. 

G. Browse Other Members A registered user can access the profiles of 
other members. 

III. Administrative User An administrator can log into the site with his 
username and password and provide access to 
the non-privileged user features and the 
administrator features.  The administrator has 
the option to be remembered by the site. 

A. Admin Area An administrator can access the admin area of 
the system through which he can access the 
administrative controls of the system. 

1. News An administrator can modify the news articles 
present within the site. 

a) View Submitted 

Articles 

An administrator can browse the news articles 
submitted to the site by registered users. 

b) Publish Articles An administrator can choose to publish an 
article submitted to the site. 

c) Reject Articles An administrator can reject an article 
submitted to the site. 

2. FrontPage An administrator can modify the content of the 
front page of the site. 

 

The use-cases were implemented through a series of six 

instrumented browse sessions (output from the instrument browsing 

component of CookieCruncher), and after processing resulted in a test 

suite of 1,024 tests. 

C.2.2 Testing Hooks 

One testing hook was required to execute the e107 test suite derived in 

Section C.2.1 is summarize in Table C-4. 



 

  245 

 

Table C-4.  e107 Testing Hooks 

Name Type Description 

Reset DB Once per test Once, before each test case is 
implemented a request was made to a 
server-side script that reset the database 
to a known state. 

 

C.3 GeekLog 

GeekLog is a content-management system "with support for comments, 

trackbacks, multiple syndication formats, spam protection, and all the 

other vital features of such a system" (GeekLog, 2010).  The application is 

written in PHP and uses MySQL as a backend database.  Testing was 

preformed using an Apache HTTP server (version 2.2.11) running PHP 

(4.4.9) with a backend MySQL database (5.1.45). 

C.3.1 Decision Tree & Use-Case Descriptions 

A summary of the use-case analysis from which a testing suite was derived 

for GeekLog is provided in Table C-5.  This analysis is by no means 

complete and is only intended to access a wide range of system 

components; it is not a complete definition of the system. 

Table C-5.  GeekLog Decision Tree & Use-Case Description 

Decision Tree Brief Use-Case Description 

I. Administrator A user logs into the system with administrator 
privileges, performs administrator tasks, and 
then logs out of the system. 

A. Submissions  An administrator can browse stories submitted 
by users and publish or reject the stories. 

B. Block Management An administrator can add, re-order, or remove 
blocks from a page within the system. 

C. Poll Management An administrator can create, modify and delete 
polls from the system. 

D. User Management An administrator can create, modify and delete 
users from the system. 



 

  246 

 

Decision Tree Brief Use-Case Description 

E. Topic Management An administrator can create, modify, and 
delete topics from the system. 

F. Story Management An administrator can search, create, edit, and 
modify a story within the system. 

II. Regular user A user logs into the system, interacts with the 
system and logs out. 

A. Post a comment A user can post a comment to any story, news 
item, or poll within the system 

B. Contribute A user can contribute a story to the system. 

C. Search Stories A user can search the stories stored within the 
system based on a variety of criterion including 
keywords, date, topic, type, and authors. 

D. Browse topics A user can select which topic he wants to view, 
and read the stories contained within the 
specific topic. 

E. Calendar A user can access a private calendar within the 
system. 

1. Add Event A user can add events to his calendar. 

F. My Account A user can access the My Account section of the 
system. 

1. Change Personal Details A user can modify his personal details 
including name, email address, and password.  

G. Poll  A user can vote and see the results of a poll. 

III. Anonymous User A guest user can access parts of the system 
without logging in. 

A. Poll A guest user can vote and view poll results. 

B. Contribute A guest user can contribute a story to the 
system. 

C. Search Stories A guest user can search the stories stored 
within the system based on a variety of 
criterion including keywords, date, topic, type, 
and authors. 

D. Browse topics A guest user can select which topic he wants to 
view, and read the stories contained within the 
specific topic. 



 

  247 

 

 

The use-cases were implemented through a series of fourteen 

instrumented browse sessions (output from the instrument browsing 

component of CookieCruncher), and after processing resulted in a test 

suite of 2,232 tests. 

C.3.2 Testing Hooks 

One testing hook was required to execute the GeekLog test suite derived in 

Section C.3.1 is summarized in Table C-5. 

Table C-6.  GeekLog Testing Hooks 

Name Type Description 

Reset DB Once per test Once, before each test case is 
implemented a request was made to a 
server-side script that reset the database 
to a known state. 

 

C.4 phpBB2 & phpBB3 

phpBB is a web forum application that allows users communicate over a 

series of thematically sorted bulletin boards.  According to its website, 

phpBB is "the most widely used open source forum solution" (The PHP 

Group, 2008).  phpBB has been downloaded over 18 million times since 

2000 (SourceForge.net, 2010b).  The application is written in PHP and 

uses MySQL as a backend database. 

The testing phpBB2 was preformed using an Apache HTTP server 

(version 2.2.11) running PHP (4.4.9) with a backend MySQL database 

(5.1.45).  phpBB3 was tested on a system using Apache HTTP server 

(version 2.2.14) running PHP (5.3.1) with a backend MySQL database 

(5.1.41).  phpBB2 required an older version of the PHP framework and so 

the two system were tested on two different test machines.  Despite the 

five-year gap between the two phpBB releases, phpBB2 and phpBB3 

present a very similar feature set, allowing for the same use-case analysis 

to be used for both versions. 



 

  248 

 

C.4.1 Decision Tree & Use-Case Descriptions 

A summary of the use-case analysis from which a testing suite was derived 

for phpBB2 and phpBB3 is provided in Table C-7.   This analysis is by no 

means complete and is only intended to access a wide range of system 

components; it is not a complete definition of the system. 

Table C-7.  phpBB Decision Tree & Use-Case Description 

Decision Tree Brief Use-Case Description 

I. Log in as Administrator A user logs into the system with administrator 
privileges, performs administrator tasks, and 
then logs out of the system.  A user can choose 
to have the system remember that his is logged 
in.  The user interacts with the system, then logs 
out. 

A. Administration Control Panel An administrator can access the administration 
control panel. 

B. Manage Forums An administrator can create, modify and delete 
forums from the system. 

1. Manage Categories An administrator can create, modify, and 
delete categories from forums within the 
system. 

C. Manage Groups An administrator can create, modify and delete 
groups of users within the system.  Users can be 
added or removed from groups. 

D. Manage Users An administrator can search, create, modify, 
and delete users from the system.  Users can be 
temporarily banned from the system or 
deactivated. 

II. Guest User A guest user can access parts of the system. 

A. Browse a forums A guest user can browse the forums. 

1. Post Reply A guest user can post a reply to a comment in a 
forum.  If he does so, he must log into the 
system with a valid username and password.  If 
he cannot provide the necessary credentials, he 
is not allowed to post. 

B. Search forum A guest user can search the forums based on a 
number of criterion including keyword, forum, 
category, and user. 



 

  249 

 

Decision Tree Brief Use-Case Description 

III. Log in as Regular User A user logs into the system, interacts with the 
system and logs out. A user has the choice to 
have the system remember that his is logged in.   

A. Browse a forums A user can browse the forums. 

1. Post Reply A user can post a reply to a comment in a 
forum. 

1. Create new topic A user can create a new topic within a category 
within a Forum. 

B. Search forum A user can search the forums based on a 
number of criterion including keyword, forum, 
category, and user. 

C. User Control Panel A user can access the user control panel from 
which he can modify his settings 

1. Manage profile A user can access and modify his profile. 

2. Add Friend / Foe A user can add another user as his friend or foe 
within the system. 

2. Board Preferences A user can manage his preferences for how he 
will interact with the system. 

a) Online Status A user can set a preference so that other users 
can not see when he is online. 

D. Delete Cookies A user has the option to delete all board cookies 
from his web browser. 

 

The use-cases were implemented through a series of seven 

instrumented browse sessions (output from the instrument browsing 

component of CookieCruncher), and after processing resulted in a test 

suite of 580 tests for phpBB2 and 2,080 for phpBB3.  This disparity was 

due to the large number of cookies used in phpBB3 and the extra testing 

requests required to navigate through phpBB3. 

C.4.2 Testing Hooks 

One testing hook was required to execute the phpBB2 test suite derived in 

Section C.4.1 is summarized in Table C-7. 



 

  250 

 

Table C-8.  phpBB2 Testing Hooks 

Name Type Description 

Reset DB Once per test Once, before each test case is 
implemented a request was made to a 
server-side script that reset the database 
to a known state. 

 

Table C-9.  phpBB3 Testing Hooks 

Name Type Description 

Reset DB Once per test Once, before each test case is 
implemented a request was made to a 
server-side script that reset the database 
to a known state. 

Replace sid Each request Before each request within a test case 
the value of the sid variable within the 
POST, GET, REFERRER and COOKIE 
variables. 

Replace creation_time Each request Before each request within a test case 
the value of the creation_time within the 
POST, GET, REFERRER and COOKIE 
variables 

Replace form_token Each request Before each request within a test case 
the value of the form_toekn variable 
within the POST, GET, REFERRER and 
COOKIE variables 

Replace Multipart 
creation_time 

Each request Before each request within a test case 
the value of the sid variable within the 
POST, GET, REFERRER and COOKIE 
variables 

Replace Multipart 
form_token 

Each request Before each request within a test case 
the value of the form variable within the 
POST, GET, REFERRER and COOKIE 
variables 

Replace sess Each request Before each request within a test case 
the value of the sess variable within the 
POST, GET, REFERRER and COOKIE 
variables 

Replace confirm_key Each request Before each request within a test case 
the value of the confirm_key variable 
within the POST, GET, REFERRER and 
COOKIE variables 



 

  251 

 

Delay Timeout Before each request within a test case a 
timeout of 1 second was applied. 

 

While the use-case analysis and subsequent test cases remained 

constant between the two versions of phpBB, phpBB3 required nine 

testing hooks to reliably execute the requests within test cases, 

summarized in Table C-9.  Seven of the nine testing hooks involved the 

search and replacement of application-specific variables present within a 

cookie, the request (GET or POST) or contained within the HTML 

document itself.  These seven variables were required to replay each test 

case, and provided a redundancy layer allowing the application to function 

without the presence of one or all of the application's cookies.  

C.5 phpMyAdmin 

phpMyAdmin is a web application that enables users to administer 

multiple MySQL databases over the Internet.  The application has been 

downloaded over 20 millions times since 2001 (SourceForge.net, 2010c).  

phpMyAdmin allows users to create and manage MySQL databases 

providing the ability to create, modify and delete tables, fields and rows. 

phpMyAdmin is an open source application that is written in PHP 

and requires a MySQL database to manage.  The testing of phpMyAdmin 

was preformed using an Apache HTTP server (version 2.2.14) running 

PHP (5.3.1) with a backend MySQL database (5.1.41).   

phpMyAdmin was the only application tested that used HTML 

frames.  The use of frames was handled within the testing tool without 

modification.  Essentially the tool recorded the HTTP request for each 

frame allowing for the testing of each frame. 

C.5.1 Decision Tree & Use-Case Descriptions 

A summary of the use-case analysis from which a testing suite was derived 

for phpMyAdmin is provided in Table C-10.   This analysis is by no means 



 

  252 

 

complete and is only intended to access a wide range of system 

components; it is not a complete definition of the system. 

Table C-10.  phpMyAdmin Decision Tree & Use-Case Description 

Decision Tree Brief Use-Case Description 

IV. Log in A user of the managed database can log into 
the system using his username and password 
for the database. 

A. Browse Databases A user can browse the various databases for 
which he has permissions within the MySQL 
server. 

1. Browse Tables A use can browse the Tables within a database, 
viewing the structure of the database and basic 
statistics such as number of rows and size on 
disk.  A user can browse the data contained 
within the table. 

a) Manage Fields A user can create, rename, modify, and delete a 
field within a table, provided he has sufficient 
database permissions.  Fields can be of various 
types including: Text, VarChar, int, DATE, etc. 

2. Manage Tables A user can create, rename, modify and delete a 
table within a database, provided he has 
sufficient database permissions. 

3. Export Tables A user can export the structure and/or data of 
a table to various formats including: a set of 
SQL statements, comma-separated values, and 
an excel worksheet. 

4. Search Tables A user can search the tables of a database to 
produce output that is the conglomeration of 
one or more tables. 

B. Manage Databases A user can create, rename, modify and delete a 
database, provided he has sufficient database 
permissions. 

C. Export Database A user can export the structure and/or data of 
a database to various formats including: a set 
of SQL statements, comma-separated values, 
and an excel worksheet. 

D. Customize Look A user can customize the look and feel of the 
web interface. 



 

  253 

 

Decision Tree Brief Use-Case Description 

1. Change Language A user can change the language in which the 
web interface is presented.  This change should 
be persistent across browsing sessions. 

2. Change Font Size A user can adjust the size of the text within the 
web application, specified as a percentage.  
This change should be persistent across 
browsing sessions. 

3. Change Theme A user can change the theme used to render the 
look of the system.  This change is persistent 
across browsing sessions.. 

 

The use-cases were implemented through a series of seven 

instrumented browse sessions (output from the instrument browsing 

component of CookieCruncher), and after processing resulted in a test 

suite of 21,701 tests. 

C.5.2 Testing Hooks 

 One testing hook was required to execute the phpMyAdmin test suite 

derived in Section C.5.1 is summarized in Table C-11. 

Table C-11.  phpMyAdmin Testing Hooks 

Name Type Description 

Reset DB Once per test Once, before each test case is 
implemented a request was made to a 
server-side script that reset the database 
to a known state. 

 

 


