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ABSTRACT 

 

Islet transplantation is a more physiological way to treat type 1 diabetes. 

However, shortage of donor tissue and chronic administration of immune 

suppressive drugs has limited the widespread application of this therapy for all 

patients with type 1 diabetes, particularly children suffering from this disease. 

Xenogeneic islet transplantation particularly neonatal porcine islets (NPI) holds 

promise for clinical transplantation because of the potentially unlimited supply of 

islets. New evidence suggests that monoclonal antibodies (mAbs) specific for 

immune cell surface molecules could be employed in the prevention of islet graft 

rejection as well as induction of immunological tolerance to the transplanted 

grafts without the need for continuous administration of harmful immune 

suppressive drugs. It was shown by our group that short-term administrations of a 

combination of anti-LFA-1 and anti-CD154 mAbs which targets both adhesion 

and costimulatory pathways of T cell activation, is highly effective in preventing 

NPI xenograft rejection. In this thesis, we determined whether short-term 

administration of a combination of anti-LFA-1 and anti-CD154 mAbs could 

induce tolerance to NPI xenografts. Our data show that this combination of mAbs 

can induce dominant, species and tissue specific tolerance to NPI xenografts 

which is mediated by regulatory T cells in non-autoimmune prone B6 mice. We 

also found that T cell subsets such as CD4+ and CD8+ T cells as well as antigen 

presenting cells (APC) play an important role in the induction and maintenance of 

tolerance to NPI xenografts. In addition we found that PD-1/PDL interaction is 



important for induction and maintenance of tolerance to NPI xenografts. Finally, 

we found that this combined mAb therapy was effective in preventing NPI 

xenografts rejection in autoimmune prone NOD mice when it was combined with 

anti-CD4 mAb. It is may hope that the research presented in this thesis will 

provide insight into the nature of the immune responses to xenogeneic islet 

transplantation in humans and aid in the development of effective, tolerance 

inducing therapies, so that patients with T1DM will once again know a life free 

from their disease. 
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1.1. DIABETES MELLITUS 

Diabetes mellitus (DM) is a chronic metabolic disease, which is 

characterized by high blood glucose levels termed as “hyperglycemia”.  DM 

develops due to a lack or low production of insulin, or resistance to the effect of  

insulin (1,2).  

 

1.1.1. History Of DM 

 The term “diabetes” is derived from the Greek word meaning “siphon” 

and was first coined by Aretaeus of Cappadocia in the 2nd century AD (1). This 

name was formed from the prefix dia-, “across, apart” and the verb bainein, “to 

walk, stand”. The word "siphon" gave rise to the use of diabetes as the name for a 

disease involving the discharge of excessive amounts of urine (1). While the name 

“diabetes” was not used until the 2nd century, the polyuric conditions of the 

disease were known to the Egyptians, and were published in Ebers papyrus 

(written between 300-1500 BC). Hindu physician Sushrut (6th century BC) 

identified diabetes with obesity and sedentary lifestyle, advising exercises to help 

cure it (1,2). He was believed to be the first to recognize the sweetness of diabetic 

urine by observing that ants were attracted to a diabetic person's urine, and called 

the disease “sweet urine disease”. A Persian physician, Avicenna (980-1037) 

provided a detailed account on diabetes mellitus in “The Canon of Medicine” 

describing the abnormal appetite and the collapse of sexual functions and he 

documented the sweet taste of diabetic urine (3). Diabetes is first recorded in 

English, in the form “diabetes”, in a medical text written around 1425. In 1675, 
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Thomas Willis added the word mellitus, from the Latin meaning “honey”, a 

reference to the sweet taste of the urine (1,2). In 1776, Matthew Dobson 

confirmed that the sweet taste was because of an excess of a kind of sugar in the 

urine and blood of people with diabetes. Although diabetes has been recognized 

since antiquity, pathogenesis of diabetes has only been understood experimentally 

since about 1900. The role for the pancreas in diabetes was described by Joseph 

von Mering and Oskar Minkowski, who in 1889 found that dogs whose pancreas 

was removed developed all the signs and symptoms of diabetes and died shortly 

afterwards (1,2). In 1910, Sir Edward Albert Sharpey-Schafer suggested that 

people with diabetes were deficient in a single chemical that was normally 

produced by the pancreas and he proposed calling this substance “insulin”, from 

the insula, meaning island, in reference to the insulin-producing islets of 

Langerhans in the pancreas coined by Laguesse in 1899 (4). The endocrine role of 

the pancreas in metabolism, and indeed the existence of insulin, was not further 

clarified until 1921, when Sir Frederick Grant Banting and Charles Herbert Best 

repeated the work of Von Mering and Minkowski, and went further to 

demonstrate they could reverse induced diabetes in dogs by giving them an 

extract from the pancreatic islets of Langerhans of healthy dogs. Banting, Best, 

and colleagues (especially the chemist James Collip and J.J.R Macleod) went on 

to purify the hormone insulin from bovine pancreases at the University of Toronto 

(1,5,6). This led to the availability of an effective treatment, insulin injections, 

and the first patient was treated in 1922. For this, Banting and laboratory director 

MacLeod received the Nobel Prize in Physiology or Medicine in 1923; both 
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shared their Prize money with others in the team who were not recognized, in 

particular Best and Collip. Banting and Best made the patent available without 

charge and did not attempt to control commercial production. Insulin production 

and therapy rapidly spread around the world, largely as a result of this decision. 

Banting is honored by World Diabetes Day which is held on his birthday, 

November 14th. The distinction between what is now known as type 1 diabetes 

and type 2 diabetes was first clearly made by Sir Harold Percival (Harry) 

Himsworth, and published in January 1936 (1,5,6). 

 

1.1.2. Epidemiology of DM 

The incidence of DM is increasing rapidly. Currently close to 246 million 

people suffer from diabetes worldwide, it is expected to raise this number to 380 

million by 2025 (7). Diabetes mellitus occurs throughout the world, but is more 

common (especially type 2) in the more developed countries. The greatest 

increase in prevalence is, however, expected to occur in Asia and Africa, where 

most patients will probably be found by 2030 (8). For at least 20 years, diabetes 

rates in North America have been increasing substantially. In Canada the number 

of patient with diabetes is expected to increase from the 2 million current patients 

to approximately 3 million patients by 2010 (7). In 2008 there were about 24 

million people with diabetes in the United States alone, from those 5.7 million 

people remain undiagnosed (8). The increase in incidence of diabetes in 

developing countries follows the trend of urbanization and lifestyle changes, 

perhaps most importantly a “Western-style” diet. This has suggested an 
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environmental (i.e., dietary) effect, but there is little understanding of the 

mechanism(s) at present, though there is much speculation, some of it most 

compellingly presented. The American Diabetes Association cite the 2003 

assessment that 1 in 3 Americans born after 2000 will develop diabetes in their 

lifetime (8). Diabetes mellitus prevalence increases with age, and the numbers of 

older persons with diabetes are expected to grow as the elderly population 

increases in number. The National Health and Nutrition Examination Survey 

(NHANES III) demonstrated that, in the population over 65 years old, 18% to 

20% have diabetes, with 40% having either diabetes or its precursor form of 

“impaired glucose tolerance” (9). According to the American Diabetes 

Association, approximately 23.1% (12.2 million) of Americans age 60 and older 

have diabetes (8). Indigenous populations in first world countries have a higher 

prevalence and increasing incidence of diabetes than their corresponding non-

indigenous populations. In Australia the age-standardized prevalence of self-

reported diabetes in Indigenous Australians is almost 4 times that of non-

indigenous Australians. About 5%–10% of diabetes cases in North America are 

type 1, with the rest being type 2. The fraction of type 1 in other parts of the world 

differs; this is probably due to both differences in the rate of type 1 and 

differences in the rate of other types, most prominently type 2. Most of this 

difference is not currently understood (8). 
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1.1.3. The Impact of DM 

DM has a negative impact on both individual patients and society as a 

whole. It appears to have been a death sentence in the ancient era. Hippocrates 

makes no mention of it, which may indicate that he felt the disease was incurable. 

Aretaeus did attempt to treat it but could not give a good prognosis; he 

commented that “life (with diabetes) is short, disgusting and painful” (2,5,6). At a 

personal level, patients with diabetes mostly have a low level of quality of life 

because they need to modify their diets, monitor the blood glucose level, and 

administer of insulin medications continuously, in addition to the risk of 

complications and chronic diseases which has direct effect on the economical and 

social aspects of their daily lives (10,11). Chronic hyperglycemia and fluctuation 

of blood glucose level can result in two types of secondary complications; acute 

and chronic complications which can result in the dysfunctions of a number of 

organ systems such as the kidneys, heart and blood vessels, eyes, and nerves (1,2). 

Diabetes ketoacidosis (KDA), hyperosmolar non-ketinic syndrome (HNS), 

hypoglycaemia and diabetic coma considered as acute and dangerous 

complications that are always a medical emergency. Long-term complications 

which are known as chronic complications can result in vascular diseases which 

represent the majority of the morbidity and mortality associated with DM 

(1,2,10,11). In diabetes, the resulting problems are grouped under “microvascular 

disease” (due to damage to small blood vessels) and “macrovascular disease” (due 

to damage to the arteries). The damage to small blood vessels leads to a 

microangiopathy, which can cause: i) Diabetic retinopathy; which can lead to 
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severe vision loss or blindness, ii) Diabetic neuropathy, which can lead to 

abnormal and decreased sensation, when combined with damaged blood vessels 

this can lead to diabetic foot which increases rates of skin ulcers and infection and 

delay wound healing, and in serious cases, necrosis and gangrene. It is the most 

common cause of non-traumatic adult amputation, usually of toes and or feet, iii) 

Diabetic amyotrophy, which is muscle weakness due to neuropathy, iv) Diabetic 

nephropathy, damage to the kidney which can lead to chronic renal failure, and v) 

Diabetic cardiomyopathy, damage to the heart, leading to diastolic dysfunction 

and eventually heart failure. Macrovascular disease leads to cardiovascular 

disease, to which accelerated atherosclerosis is a contributor for: i) Coronary 

artery disease, leading to angina or myocardial infarction,  ii) Stroke (mainly the 

ischemic type), iii) Peripheral vascular disease, which contributes to intermittent 

claudication as well as diabetic foot, and iv) Diabetic myonecrosis (1,2,12). DM is 

the fifth leading cause of death worldwide, claiming nearly 3 million lives 

annually (1,2). Direct patient costs for treating diabetes are estimated to range 

from $1,000 to $15,000 per year in Canada (7).  

On a societal level, DM has significant implications on health care 

spending. Over 2 million Canadians live with diabetes, which accounts for an 

estimated cost of the health care to 15.6 billion dollars in 2010 and is expected to 

reach $19.2 billion by 2020 which 25% is attributed to direct, medical 

expenditure, whereas 75% attributed to loss of production due to morbidity and 

mortality associated with the disease (13). Therefore effective treatments to 
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prevent DM and its complications are critical to control the rising individual and 

societal costs associated with this disease.  

 

1.1.4. Classification of DM 

Two major classes of DM are differentiated by distinct pathophysiologic 

processes which lead to a common hyperglycemic symptom; Type 1 and 2. The 

term "Type 1 DM" has universally replaced several former terms, including: 

“childhood-onset diabetes”, “juvenile diabetes”, and “insulin-dependent diabetes 

mellitus (IDDM)” (2,14). Type 1 DM which typically occurs in childhood and 

adolescence of juvenile onset, is characterized by the absence of insulin 

production. Two subgroups of type 1 DM exist: The more prevalent Type1a DM, 

is an autoimmune disease resulting in pancreatic β cell destruction and complete 

absence of insulin secretion. Type 1b DM, in contrast, lacks the presence of 

autoimmune markers yet presents with destruction of insulin secreting β cells by 

an unknown mechanism (2,14). Likewise, the term "Type 2 DM" has replaced 

several former terms, including: “adult-onset diabetes”, “obesity-related 

diabetes”, and “non-insulin-dependent diabetes mellitus (NIDDM)” (2,14). Type 

2 DM, on the other hand, can be caused by one or a combination of the following 

pathophysiologic processes: insulin resistance, impaired insulin secretion and/or 

increased glucose production leading to hyperglycemia. Type 2 DM most 

commonly presents during adulthood, however, the incidence of juvenile onset 

type 2 DM is increasing. Between 8-45% of new juvenile diabetics are being 

diagnosed as type 2 diabetics, depending on their location worldwide (15). The 
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risk of type 2 DM is increased with age, obesity, and sedentary lifestyle. Beyond 

these two types, there is no agreed-upon standard nomenclature. Various sources 

have defined “type 3 diabetes” as, among others, “gestational diabetes” which is 

another form of diabetes which occurs in pregnant females and is characterized by 

insulin resistance. This form of diabetes affects approximately 4% of pregnant 

females. “Insulin-resistant type 1 diabetes” or “double diabetes”, type 2 diabetes 

which has progressed to require injected insulin, and “latent autoimmune diabetes 

of adults” or “LADA” or "type 1.5" diabetes, and “maturity onset diabetes of the 

young” or “MODY” which is a group of several single gene (monogenic) 

disorders with strong family histories (2,14). 

 

1.2. TYPE 1 DM 

Type 1 Diabetes Mellitus (T1DM) has universally replaced several former 

terms, including: “childhood-onset diabetes”, “juvenile diabetes”, and “insulin-

dependent diabetes mellitus (IDDM)”. Recent trends suggest that the age of onset 

of T1DM is decreasing and it is not exclusively a childhood problem; the adult 

incidence of T1DM is noteworthy, many adults who contract this disease are 

misdiagnosed with type 2 due to confusion on this point (1). T1DM is an 

autoimmune disease that results in specifically destruction of insulin-producing β 

cells of the pancreas. It is characterized by an absolute lack of insulin secretion 

and treatment therefore centers on the replacement of insulin (1,16-18). Lack of 

insulin causes an increase of fasting blood glucose (around 70-120 mg/dl in non-

diabetic people) that begins to appear in the urine above the renal threshold (about 
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190-200 mg/dl in most people), thus connecting to the symptom by which the 

disease was identified such as glycosuria, polyuria, polydipsia, and polyphagia. 

These symptoms may develop quite rapidly (weeks or months) in type 1 diabetic 

patient, particularly in children. There is currently no clinically useful preventive 

measure against developing T1DM. Most people who develop T1DM were 

otherwise healthy and of a healthy weight on onset, but they can lose weight 

quickly (despite normal or even increased eating) and irreducible mental fatigue, 

if not promptly diagnosed (1,2). Although the cause of T1DM is still not fully 

understood, there is direct evidence of autoimmunity in the majority of patients 

with T1DM demonstrating that immunological, in addition to genetic and 

environmental factors play a role in the development of this disease. High 

glycemic lability, extreme sensitivity towards insulin, or hypoglycemic 

unawareness are the episodes which can be caused by large fluctuations of blood 

glucose levels as well as lack of adequate prodromic symptoms in the some 

severe cases of patients with T1DM. This can be extremely dangerous and 

concerning for patients as hypoglycemic episodes can lead to coma, seizures, or 

fatality (1,2). 

 

1.2.1. Epidemiology and Etiology of T1DM 

While T1DM comprises only 5-10% of patients with DM, an estimated 17 

million people are afflicted with T1DM with an increasing incidence of ~3% each 

year in most countries (1,12,16). The fraction of T1DM in different parts of the 

world differs; this is likely due to differences in both the rate of T1DM and other 
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types of DM, most prominently type 2. These suggest strong evidence for the 

roles of genetic and environmental factors in the etiology of T1DM (1). It is 

believed that a combination of genetic, environmental, and immunologic factors 

contribute to the onset of the disease.  

 

1.2.1.1 Genetic Factors 

T1DM is a polygenic disease, meaning many different genes contribute to 

its expression. Depending on locus or combination of loci, it can be dominant, 

recessive, or somewhere in between. It has been demonstrated that the 

susceptibility to the development of T1DM is most significantly influenced by 

human leukocyte antigen (HLA) class II genes (19). The strongest gene, IDDM1, 

is located in the HLA II region on chromosome 6, at staining region 6p21. This is 

believed to be responsible for the histocompatibility disorder characteristic of 

T1DM meaning insulin-producing beta cells display improper antigens to T cells. 

This eventually leads to the production of antibodies that attack the beta cells 

(19). Weaker genes are also located on chromosomes 11 and 18. There have been 

several mechanisms put forth to explain the functional differences between 

various HLA class II molecules, and the reason of some haplotypes appear to be 

protective and others are associated with an increased risk of T1DM. While the 

HLA-DQ6 genotype appears to protect against the development of T1DM, two 

HLA class II haplotypes in particular HLA-DR3 and HLA-DR4 have been 

associated with an increased risk of developing T1DM.  At least one of the HLA-

DR3 or HLA-DR4 genotypes is present in 95% of Caucasian patients with T1DM 
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(2). Specifically, possession of the HLA-DRB1*03.DQ2 and HLA-

DRB1*04.DQ8 predisposes individuals to T1DM; however the presence of these 

HLA risk haplotypes in no way guarantees the eventual onset of T1DM (20-23). 

One theory is that protective HLA molecules may bind strongly to self antigens to 

form stable complexes in the thymus consequently, facilitating the effective 

deletion of potentially auto-reactive T cells. Conversely, if an unstable complex is 

formed between self antigens and diabetic HLA haplotypes, it may permit the 

auto-reactive T cells to proliferate and allow these T cells to react with self 

antigens.  An alternative theory is that diabetic susceptible HLA molecules may 

bind to self antigens and activate auto-reactive T cells, whereas protective HLA 

molecules bind strongly to these antigens and compete with diabetic HLA 

haplotypes for binding sites. The third possibility is that HLA molecules, whether 

they be associated with T1DM or in the protection from T1DM, may interact 

differently with the T cell receptor of auto-reactive T cells and may affect whether 

the T cell goes on to be proinflammatory, regulatory or whether the T cell is 

activated or not (17-19,24-26).    

 

1.2.1.2. Environmental Factors 

Environmental factors can strongly influence expression of T1DM. 

Monozygotic twin studies have demonstrated that type T1DM concordance 

ranges between 30 and 70% (1,2,12,16). This shows that environmental factors, in 

addition to genetic factors, influence disease prevalence.  Enteroviral infections, 

breastfeeding, the early presence or absence of certain foods, birth weight, 
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childhood over-nutrition, maternal islet autoimmunity, and negative stressors have 

all been correlated with the prevalence of type 1 DM through observational 

studies (27-29). Many viral infections have been potentially identified in the 

etiology of T1DM, including, but not limited to, rubella, coxsackie, mumps, and 

cytomegalovirus (CMV) infections (27). Rubella infections that occur in utero 

typically result in the development of T1DM in 12-20% of individuals most likely 

by molecular mimicking of β cell antigens as presented to host immune system 

(30). Coxsackie infections are thought to induce T1DM through eliciting an 

immune response raised against the virus but which also cross-reacts with β cell 

specific antigens (31). Mumps virus infections are thought to contribute to the 

onset of diabetes via production of interleukins and by inducing increased 

expression of HLA class I and II by the β cell (32). Like rubella infections, CMV 

infections are believed to aid in the induction of diabetes through molecular 

mimicry of β cell specific antigens (33). Aside from viral infections, other 

possible environmental factors, which could contribute to the onset of T1DM 

have been implicated and include: early exposure to cow’s milk, exposure to 

nitrosamines, and exposure to wheat proteins.  Early exposure to cow milk or lack 

of breast milk proteins has been the most extensively studied dietary contributor 

to T1DM  (34-37). One of the leading hypotheses is that infants who were fed 

cow’s milk instead of human’s milk demonstrated an increase in the level of IgG 

antibodies during their first 9 months (38-40). This could be due to the incomplete 

induced oral tolerance to insulin as it found the human’s milk contains 

approximately four times the amount of insulin compared to cow’s milk (41,42). 
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Nitrosamine exposure has also been linked to T1DM.  Nitrate and nitrites are 

commonly found in foods and can readily react with amines and amides to 

produce N-nitroso compounds.  Therefore, foods which are high in nitrates and 

nitrites such as smoked meats are hypothesized to contribute to the onset of 

T1DM by damaging the β cells (43,44). Streptozotocin (STZ) which is used as an 

antibiotic and antineoplastic agent used in chemotherapy for pancreatic cancer is 

an N-nitroso compound and can induce diabetes in experimental animals by 

killing beta cells, resulting in loss of insulin production (43,44). Wheat proteins 

have been found to cause aberrant immune responses in susceptible individuals 

(i.e. Celiac’s disease). While there is little evidence linking wheat proteins to the 

development of T1DM, it has been found that 5-10% of people with T1DM have 

Celiac’s disease, which is a rate 17-33 times higher that of the general population 

suggesting a partial association of wheat proteins in the etiology of T1DM (45-

47). In the T1DM animal model, the BB rat, wheat gluten is a potent diabetic 

antigen (48,49). 

 

1.2.1.3.  Immunological Factors 

The autoimmune response in T1DM is targeted towards specialized 

insulin producing β cells, which are clustered in the islets of Langerhans within 

the pancreas.  It was hypothesized that an environmental trigger and an 

underlying genetic susceptibility initiates an autoimmune response, resulting in 

the progressive destruction of the β cells. The primary evidence for autoimmunity 

in T1DM includes insulitis and the presence of circulating autoantibodies. Beta 
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cell auto-antigens, dendritic cells, macrophages, T cells and B cells are known to 

be involved in the pathogenesis of autoimmune diabetes (50,51). Three major 

autoantigens have been identified namely: glutamic acid decarboxylase (GAD), 

insulin auto-antibodies (IAA), and certain islet tyrosine phosphatases (ICA512 or 

IAA and IA2β) (17,18,24). Beta cells are believed to play a role in the initial 

stages of disease progression as antigen presenting cells (APCs), and then later on 

via the secretion of auto-antibodies. It is estimated that >90% of newly diagnosed 

patients with T1DM have one or more antibodies against the specific autoantigens 

mentioned above in comparison to the 3.5-4% of patients withnot the disease, 

however this later group is at greater risk of developing T1DM (52). 

Autoantibodies themselves do not seem to be the cause of the condition as 

adoptive transfer of these autoantibodies does not result in the disease state 

whereas transfer of T cells does (52). Animal models of T1DM have 

demonstrated that T cells play a critical role as effector cells which directly 

mediate β cell killing (50,51). Cytokines secreted by macrophages and helper T 

cells (TH cells), are believed to polarize the immune response to either a TH1 or 

TH2 phenotype and cytotoxic T cells (TC cells) are believed to destroy β cells by 

apoptosis via Fas-Fas ligand and by granzyme and perforin (50,51).  

 

1.2.2. Pathophysiology of T1DM 

In T1DM, pancreatic β cells in the islets of Langerhans are destroyed or 

damaged sufficiently to effectively abolish endogenous insulin production. This 

etiology distinguishes T1DM from T2DM. The islets of Langerhans are located in 
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scattered clusters within the pancreas and are the secretory component of the 

endocrine function of the pancreas (53,54). The islets are typically most 

concentrated in the body and tail of the pancreas. In humans, islet cells supply all 

of the pancreatic endocrine secretions, despite being only 1-2% of the total 

pancreatic mass. The islet cell is further comprised of four major well known cell 

types: i) α cells which secret glucagon. Glucagon stimulates the hydrolysis of 

glycogen by the liver. ii) β cells which produce insulin. Insulin, 5,800 kD globular 

protein promotes the cellular uptake of glucose by peripheral tissues and the 

formation of glycogen by the liver and assists in the synthesis of proteins and fat. 

iii) δ cells which make somatostatin. Somatostatin dampens the effects of insulin 

and glucagon by suppressing the secretion of both insulin and glucagon. iv) 

Pancreatic polypeptide secreting cells (PP cells). Pancreatic polypeptide is 

expressed exclusively in the pancreas, however to date, its function remains 

unknown (1). In humans, the islet cell is composed of approximately 80% β cells 

which are arranged in a central core surrounded by a mantle of the other three cell 

types (53,55). It is widely speculated that only 10-30% of the endocrine cells are 

necessary for maintaining normoglycemia (56). Therefore the key to the 

pathophysiology of DM is insulin (57).  Insulin is an essential anabolic hormone 

that promotes growth, regulates fuel mobilization and storage by promoting 

glycogen synthesis, protein synthesis, lipogenesis, and stimulating cell growth and 

differentiation (2,58), and is required for the achievement of metabolic 

homeostasis. In a normal individual, blood glucose levels are maintained in a very 

strict balance.  Carbohydrate oxidation provides approximately 45% of all the 
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energy expended in a person at rest.  In the brain however, greater than 99% of 

the energy consumed is provided by carbohydrate oxidation.   

 

 

Figure 1.1: Schematic of cellular composition of rat and human pancreatic islets; 
shows fraction of dorsal and ventral pancreas as well as insulin, glucagon, PP 
(pancreatic polypeptide), somatostatin, and ghrelin cells (59). 

 
 

In an individual with T1DM, virtually no endogenous insulin is present, 

restricting the effectiveness of glucose as a fuel source.  This places increased 

demand on other sources of energy namely, fat (including ketone bodies) and 

protein (1,2). A prolonged period of insulin deprivation is associated with an 

increased production of ketone bodies which can lead to ketoacidosis, an 

important cause of morbidity and mortality in T1DM (60-62). In addition, the 
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increased demand on protein as an energy source can result in muscle wasting, 

during periods of prolonged insulin deficiency (63,64). Though the blood is 

replete with glucose, most of this glucose cannot be taken up by cells that require 

insulin dependent glucose uptake, resulting in urinary excretion of the 

carbohydrate (1,2).   

 

1.2.3. Diagnosis and Clinical Features of T1DM 

The diagnosis of T1DM, and many cases of T2DM, is usually prompted 

by recent-onset symptoms of polyuria, polydipsia, polyphagia, and often 

accompanied by weight loss (52). Patients may also initially present with diabetic 

ketoacidosis (DKA), an extreme state of metabolic dysregulation characterized by 

the smell of acetone on the patient's breath; nausea; vomiting and abdominal pain; 

and any of many altered states of consciousness or arousal (such as hostility and 

mania or, equally, confusion and lethargy). In severe DKA, coma may follow, 

progressing to death. The diagnosis of other types of diabetes is usually made in 

other ways. These include ordinary health screening; detection of hyperglycemia 

during other medical investigations; and secondary symptoms such as vision 

changes or unexplainable fatigue. DM is also diagnosed by: i) fasting plasma 

glucose level (defined as no caloric intake for eight hours prior to testing) at or 

above 126 mg/dL (7.0 mmol/l). ii)  plasma glucose at or above 200 mg/dl 

(11.1 mmol/l) two hours after a 75 g oral glucose load as in a glucose tolerance 

test (52). While not used for diagnosis, an elevated level of glucose irreversibly 

bound to hemoglobin (termed glycosylated hemoglobin or HbA1c) of 6.0% or 
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higher (the 2003 revised U.S. standard) is considered abnormal by most 

laboratories; HbA1c is primarily used as a treatment-tracking test reflecting 

average blood glucose levels over the preceding 90 days (approximately) which is 

the average lifetime of red blood cells which contain hemoglobin in most patients 

to confirm pre-existing hyperglycemia (52). The current recommended goal for 

HbA1c in patients with diabetes is <7.0%, which is considered good glycemic 

control, although some guidelines are stricter (<6.5%). People with diabetes who 

have HbA1c levels within this range have a significantly lower incidence of 

complications from diabetes, including retinopathy and diabetic nephropathy (52). 

The most definite laboratory test to distinguish T1DM from T2DM is the C-

peptide assay, which is a measure of endogenous insulin production since external 

insulin has not included C-peptide. During insulin biosynthesis, proinsulin is 

cleaved within secretory granules to insulin and C-peptide in a 1:1 ratio. This 

relationship is clinically significant in the quantification of insulin secretion. 

Insulin enters the portal venous system where approximately 50% is immediately 

metabolized by the liver (65). Insulin has a rapid plasma half-life and undergoes 

concentration dependent endocytosis and degradation in peripheral tissue making 

direct quantification. In contrast, C-peptide has a longer plasma half-life and is 

cleared by the kidneys in a concentration independent manner. As a result, 

quantification of insulin secretion can be accurately measured indirectly by 

plasma C-peptide levels. The presence of anti-islet antibodies, or lack of insulin 

resistance, determined by a glucose tolerance test, would also be suggestive of 

T1DM (2,57,65).  
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1.2.4. Treatment of T1DM 

T1DM is lethal unless treated with insulin. Continuous glucose monitors 

have been developed and marketed which can alert patients to the presence of 

dangerously high or low blood sugar levels. Hypoglycemia is an acute 

complication of several diabetes treatments. It is rare otherwise, either in diabetic 

or non-diabetic patients. The patient may become agitated, sweaty, and have 

many symptoms of sympathetic activation of the autonomic nervous system 

resulting in feelings akin to dread and immobilized panic. Consciousness can be 

altered or even lost in extreme cases, leading to coma, seizures, or even brain 

damage and death. In patients with diabetes, this may be caused by several 

factors, such as too much or incorrectly timed insulin injection, too much or 

incorrectly timed exercise (exercise decreases insulin requirements) or not enough 

food (specifically glucose containing carbohydrates). The variety of interactions 

makes cause identification difficult in many instances (1,2). Several alternative 

approaches for delivering insulin in response to fluctuating glucose levels have 

been attempted with varied success which can be categorized to i) insulin 

replacement therapies and ii) β cell replacement therapies (1,2,66). 

 

1.2.4.1. Insulin Replacement Therapy 

Using the purified insulin generated by Collip, a biochemist from the 

University of Alberta, Banting and Best were able to demonstrate the 

effectiveness of insulin in treating patient of T1DM (67). Injection is the 

traditional and still the most common method for administering insulin; jet 
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injection, indwelling catheters, and inhaled insulin has also been available. In 

1978, insulin became the first recombinant human protein to be manufactured 

(68) and today the most common types of insulin are biosynthetic products 

produced using genetic recombination techniques; formerly, due to the similar 

structure across species, bovine and porcine insulin have been extracted and used 

in the treatment of diabetes (57,67). Despite their similarities, occasionally 

complications were encountered from animal insulin, such as skin rashes (68). A 

combination of dietary and exercise modification and subcutaneous insulin 

delivery remains the standard therapy for patients with T1DM. Advances in 

insulin formulation continue to strive towards the optimal combination of basal 

and bolus administration to regulate blood glucose levels (69). Short-acting 

insulin formulations such as Novorapid, Humalog, and Aprida, are designed to be 

rapidly absorbed and coincide with post-prandial spikes in blood glucose levels, 

while long-acting insulin formulations such as Levemir and Lantus are aimed at 

controlling basal blood glucose levels for both bolus and maintenance 

requirements (70). New formulations, including inhaled insulin are designed to be 

rapidly absorbed and timed with meals (69). The safety and efficacy of inhaled 

insulin has been established (71) but clinical trials examining the ability to tightly 

control blood glucose levels using this delivery system are ongoing. An insulin 

pump provides a stable basal delivery of insulin; continuous subcutaneous insulin 

infusion is effective in decreasing the frequency of hypoglycaemic events (1), 

however, these devices are subject to potential malfunction and are more resource 

intensive than standard multiple injection insulin therapy (1). Microscopic or 
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nanotechnological approaches are under investigation as well, in one proposed 

case with implanted stores of insulin metered out by a rapid response valve 

sensitive to blood glucose levels. These are also in some sense, closed-loop 

integrated glucometer/insulin pump products, composed of three components: a 

glucose sensor, an insulin pump and a stable computer algorithm to control 

insulin delivery which could potentially increase the quality-of-life for some who 

have T1DM (66).  

 

1.2.4.2. β Cell Replacement Therapy 

Without careful blood glucose monitoring and dosage calculation the 

patient can still experience dangerous fluctuations in blood glucose levels which 

can have damaging, progressive effects on the body (72). Even in the most 

conscientious patient, bolus injections of insulin cannot compete with the kind of 

blood glucose control that is found in people with functional islets, and typically 

at least some detectable side effects can be found in patients with chronic diabetes 

(63). The major problem however was that intensive insulin therapy resulted in a 

three times higher incidence of hypoglycemic episodes, which is a major concern 

for patients as it can lead to coma, seizures, or death (73). This becomes even 

worse for these individuals with T1DM who already have an increased 

susceptibility for hypoglycemic episodes as well as patients who despite insulin 

therapy have inadequate glucose control. Thus, intensive insulin therapy is not 

suitable for all patients with T1DM, predisposing them for future complication. 

Due to the inability to control the development of secondary microvascular 
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complications with exogenous insulin therapy, more physiologic means of 

delivering insulin through β cell replacement via pancreatic or islet cell 

transplantation have been developed (73-76). Therefore, the focus of research has 

been primarily toward developing the methods and techniques required for the 

replacement of insulin producing tissue or the regeneration of insulin producing β 

cells. 

 

1.2.4.2.1. Whole pancreas and islet transplantation 

 Overall, while insulin therapy remains a life saving therapy for many 

patients with T1DM , a more physiological approach may be necessary in order to 

prevent future complications of diabetes for all patients suffering from the 

disease. In more extreme cases, a pancreas transplant can restore proper glucose 

regulation. However, the surgery and accompanying immunosuppression required 

is considered by many physicians to be more dangerous than continued insulin 

replacement therapy, and is therefore often used only as a last resort, such as 

when a kidney must also be transplanted, or in cases where the patient's blood 

glucose levels are extremely volatile. Given the favourable results seen in animal 

models (77,78), the first series of clinical whole pancreas transplant were 

performed at the University of Minnesota in 1966 (78). This initial series of whole 

pancreas transplantation were complicated by leakage of pancreatic exocrine 

secretions and transplant rejection, which continue to plague clinical pancreatic 

transplantation to this day  (76,78). Pancreas transplantation in diabetes is 

typically done as a simultaneous kidney and pancreas transplant (SKP), although 

 23



pancreas transplantation alone (PTA) and pancreas after kidney (PAK) 

transplantation are becoming more common.  Despite the morbidity associated 

with this major surgery, successful pancreatic engraftment results in euglycemia 

and normalization of glycosolated hemoglobin levels. SKP transplantation at 

present however, yields the best graft survival rate with complete insulin 

independence rates after 1 year at 85%.  The graft survival rate with complete 

insulin independence in PTA is less successful at only 60% at one year (79-82). 

Since then pancreas transplantation has blossomed and at present nearly 24,000 

pancreas transplants have been performed worldwide as reported by the 

International Pancreas Transplant Registry. Pancreas transplantation in general, 

has been associated with an improvement in diabetic retinopathy, nephropathy, 

neuropathy and vasculopathy, but as with major surgeries, carries with it a 

significant risk of morbidity (79,83-86). Similar to any other type of 

transplantation, patients which undergo pancreas transplantation are required to 

continuously take immunosuppressive drugs, which are associated with a number 

of harmful side effects.  This creates an ethical hurdle in patients with T1DM, 

who are able to successfully manage their diabetes with exogenous insulin 

administration, making it difficult to justify pancreas transplantation given the 

risks of surgery and immunosuppression. In the current era, morbidity associated 

with pancreatic transplantation ranges from 7.0% to 11.5% (87). All-cause 

mortality in transplant wait-list patients receiving conventional treatment, is 

equivalent to that of patients receiving simultaneous pancreatic transplantation 

and renal transplantation for end-stage diabetic nephropathy, but significantly 
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worse for patients receiving pancreatic transplantation alone or after kidney 

transplantation (87). Due to its relatively high morbidity, pancreatic 

transplantation is primarily offered to uremic patients who are undergoing 

simultaneous renal transplantation (76). Technical difficulty and requirement for 

immunosuppressive drugs contributes to the unsatisfactory nature of pancreas 

transplant as a cure. Islet cell transplantation is expected to be less invasive than a 

pancreas transplant which is currently the most commonly used approach in 

brittle T1DM patients. In this procedure, islet cells are injected into the patient's 

liver, where they take up residence and begin to produce insulin. The liver is 

expected to be the most reasonable choice because it is more accessible than the 

pancreas, and islet cells seem to produce insulin well in that environment. The 

patient's body, however, will treat the new cells just as it would any other 

introduction of foreign tissue, unless a method is developed to produce them from 

the patient's own stem cells or there is an identical twin available who can donate 

stem cells. Because the immune system will attack the cells, patients now also 

need to undergo treatment involving immunosuppressants, which reduce immune 

system activity. Islet transplnatation will be discussed further in section 1.3. 

 

1.2.4.2.2. Stem cell differentiation and gene therapy 

The search for an unlimited supply of insulin producing tissue has lead 

researchers to the study of stem cells as a potential therapy for T1DM.  It is 

believed that during embryonic development, a specific cell type, which is 

characterized by the expression of two transcription factors, PDX-1 and 
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neurogenin-3, gives rise to all islet cell types (88). The identification of a stem 

cell or precursor cell in the adult pancreas remains much more controversial.  

Recent evidence suggests that the pancreatic and hepatic cell types (hepatocytes, 

islet, acinar and ductal cells) have the ability to de- and trans-differentiate into 

each other under appropriate conditions (88). Several groups have reported 

successful differentiation of stem cells or precursor cells into insulin producing 

tissue (88-93). Two potential sources of stem cells exist, embryonic stem cells and 

mesenchymal stem cells. Embryonic stem cells (ESC) have the potential to 

differentiate into insulin producing β cells if guided along appropriate 

developmental pathways (94). A major hurdle in ESC research, however, are the 

ethical barriers surrounding ESC line procurement. Mesenchymal stem cells are 

derived from adult bone marrow, fat and several fetal tissues (95). Under 

appropriate environments, MSC are capable of differentiating into mesodermal, 

endodermal and ectodermal cells, including β cells. Several groups have 

demonstrated that nestin positive pancreatic ductal progenitor cells are capable of 

differentiating into insulin expressing cells both in vitro (96) and in vivo (97,98) 

with the ability to reverse hyperglycemia in diabetic mice (99). Stem cell research 

has also been suggested as a potential avenue for a cure since it may permit 

regrowth of islet cells which are genetically part of the treated individual, thus 

perhaps eliminating the need for immuno-suppressants (100). Gene therapy has 

been proposed as a treatment for T1DM. In order to evade β cell specific 

autoimmune attack, introduction of the insulin gene into non-β cells would 

theoretically result in subsequent autoimmune destruction of insulin producing 
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cells. Despite that fact that expression of biologically active transgenic insulin has 

been achieved (101), this strategy is currently limited by the inability to transfer to 

non- β cells complex glucose-sensing mechanisms required to secrete insulin 

within a narrow physiologic range (101).  

 

1.2.4.2.3. β cell regeneration 

The endocrine portion of the pancreas recently has been found to have the 

capacity to regenerate.  This has prompted researchers to investigate methods of 

regenerating β cells with the goal of increasing β cell mass to restore euglycemia.  

Increasing β cell mass can be accomplished through several ways including: β 

cell replication, increase in β cell size, decrease in β cell death, and β cell 

differentiation of existing β cell progenitors (102-105). Certainly a challenge in 

applying β cell regeneration to the treatment of patients with T1DM is the 

ongoing presence of autoimmunity. However, when autoimmunity is blocked, it 

has been demonstrated in humans (106-108) and rodents (109,110) that β cell 

function can partly recover. Using genetic lineage tracing, it has been 

demonstrated that regeneration of differentiated β cells, rather than differentiation 

of stem cells is the reason for β cell recovery (111). A major question which limits 

the applicability of β cell regeneration, is the issue of whether auto-reactive T 

cells would target and destroy newly regenerated β cells (103). Indeed studies 

have shown that auto-reactive T cells persist in the body of the diabetic patient 

which has been demonstrated by experiments in which healthy islet cells 

transplanted into syngeneic, long-term diabetic mice or humans were quickly 
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killed by these same auto-reactive T cells (112). Recently however, several 

studies have succeeded in regenerating β cells in the animal model for T1DM, the 

Non-obese diabetic (NOD) mouse (113). One study found that transient treatment 

of overtly diabetic NOD mice with anti-lymphocyte serum to prevent 

autoimmunity, and exendin-4, resulted in complete remission of diabetes in 88% 

of mice within 75 days.  This finding was accompanied by a progressive 

normalization of glucose tolerance, improved islet histology, increased insulin 

content in the pancreas, and insulin release in response to a glucose challenge 

(114). In another study, NOD mice that were treated with a combination of 

epidermal growth factor (EGF) and gastrin for 2 weeks, restored normoglycemia 

after diabetes onset in five of six mice (83%) for 10 weeks after the treatment was 

stopped.  It was found that the combination of EGF and gastrin increases 

pancreatic beta-cell mass and reverses hyperglycemia in acutely diabetic NOD 

mice (115). The same combination of EGF and gastrin was also found to increase 

β cell mass in adult human pancreatic islets (115). Clearly this is an area of rapid 

growth; however it is has yet to be demonstrated that β cell regeneration is an 

effective and safe approach in non-human primates and in patients with T1DM.   

 

1.2.4.2.4. The bio-artificial pancreas 

A biological approach to the artificial pancreas is to implant bioengineered 

tissue containing islet cells, which would secrete the amounts of insulin needed in 

response to sensed glucose. Encapsulation of the islet cells in a semi-permeable 

and protective coating has been developed to block the immune response to 
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transplanted cells, which relieves the burden of immunosuppression and benefits 

the longevity of the transplant (116). One concept of the bio-artificial pancreas 

uses encapsulated islet cells to build an “islet sheet” which can be surgically 

implanted to function as an artificial pancreas (116). This islet sheet design 

consists of i) an inner mesh of fibers to provide strength for the islet sheet; ii) islet 

cells, encapsulated to avoid triggering a proliferating immune response, adhered 

to the mesh fibers; iii) a semi-permeable protective layer around the sheet, to 

allow the diffusion of nutrients and secreted hormones; and iv) a protective 

coating, to prevent a foreign body response resulting in a fibrotic reaction which 

walls off the sheet and causes failure of the islet cells.  

 

1.3. ISLET TRANSPLANTATION 

With the improvements in islet isolation and the success seen in animal 

models, and compared with intensive insulin therapy, islet transplantation 

provided superior metabolic control, prevented hypoglycemic events and held the 

potential to decrease secondary complications of diabetes as well as required less 

invasive procedure and had lower risk of morbidity and mortality compared to 

whole pancreas transplantation (117,118). 

 

1.3.1. History of Islet Transplnatation 

In 1892 prior to the discovery of insulin, it was demonstrated by Von 

Mering and Minkowski that the pancreas was responsible for regulation of blood 

glucose as pancreatectomized dogs became hyperglycaemic (119). Minkowski 
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subsequently attempted to reverse diabetes in the diabetic dogs by 

autotransplanting fragments of the pancreas subcutaneously (120). In 1893, 

Watson-Williams and Harsant attempted to treat a young diabetic boy with 

subcutaneous implants of sheep pancreas fragments; while there was a temporary 

improvement in his glycosuria, the sheep pancreas xenograft was ultimately 

rejected and the boy died shortly thereafter (121). In 1964, Hellerstroem isolated 

islets for transplantation using a microdissection technique (122).The combined 

use of collagenase with mechanical force to disrupt the pancreas and liberate a 

greater proportion of islets for transplantation was first described by Moskalewski 

in 1965 (123) using chopped guinea pig pancreas. In 1967, Lacy and 

Kostianovsky used a method by distending the pancreatic duct prior to 

morcellation and collagenase digestion of rat pancreases (124). Using this 

technique, Lacy and Kostianovsky were able to isolate 300 islets from a single rat 

pancreas, demonstrating for the first time that an adequate number of viable islets 

could be isolated for transplantation. Lindall improved islet purity while 

preserving islet function by using differential density elutriation with Ficoll (125). 

In 1973, Scharp and colleagues refined the isolation of islets by substituting the 

use of a sucrose density gradient with a dialyzed Ficoll density gradient to 

separate unwanted acinar debris from rat islets (126).  Ficoll, which was felt to 

provide a better osmotic environment for the islets compared to sucrose, varied in 

its ability to isolate viable islets from lot to lot. Scharp and colleagues also were 

able to demonstrate the ability to produce a high yield of viable rat islets for 

transplantation (126). Younoszai and colleagues performed the first attempt at 
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transplanting isolated rodent islets which resulted in a temporary amelioration of 

hyperglycemia in a diabetic rat model (127). The first sustained reversal of 

chemically induced diabetes in a rodent model, however, was demonstrated by 

Ballinger and Lacy in 1972 by transplanting 400-600 isolated rat islets either into 

the peritoneal cavity or in the thigh muscle of rats. They showed that when the 

islet isograft was removed from the thigh muscle site, the recipient rats returned to 

a hyperglycemic state (128). The introduction of intraductal infusion of 

collagenase which permits collagenase to more effectively digest surrounding 

connective tissue permitted a greater yield of isolated islets (129,130).  

Several sites of transplantation have been investigated through the course 

of islet cell transplant development. Transplantation into intramuscular and 

intraperitoneal sites by Ballinger and Lacy (128) were successful in reversing 

diabetes, however, consistent results were difficult to achieve. Rechard and 

Barker later increased the number of rat islets transplanted to 800-1200 islets 

injected into the intraperitoneal cavity showing a complete reversal of diabetes for 

the first time (131).  Numerous other sites of transplantation have been 

investigated with varied success including intraperitoneal (128,132-135), 

intraportal (132,134,136-139), intrasplenic (140-142), omental pouch (143-145), 

renal subcapsular (140-142,145-150), thymus (151,152), testicles (153), ventricles 

of the brain (154) and bone marrow (155,156). Under normal circumstances, 

insulin is delivered from the pancreas into the portal vein. Therefore, intraportal 

transplantation may provide a more physiologic site for delivery of insulin by 

lower number of transplanted islets. In 1973, Kemp and colleagues demonstrated 
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that intraportal transplantation of islets could successfully and consistently 

normalize hyperglycemia in a diabetic rat model (136).  However there are major 

disadvantages with this site: i)  severe procedural complication include bleeding, 

thrombosis, biliary puncture, and a transient increase in aminotransferase and 

arteriovenous fistula, ii) infusion into the portal vein also increased portal pressure 

(157), iii) islets are in direct contact with the blood in this site, making them more 

susceptible to IBMIR and subsequent losses in engrafted islet tissue (158), iv) 

intrahepatic islets may also display abnormalities due to exposure to high 

concentrations of glucagon, diabetogenic immunosuppressive drugs and their 

metabolites, as well as toxins from the gastrointestinal tract (159), v) biopsies are 

also difficult to acquire, therefore monitoring the graft becomes both difficult and 

more risky (159). Thus, clearly a more optimal site for implantation will have to 

be looked at in order to increase the safety and efficacy of this procedure.   Small 

animal experiments demonstrated that the concept of β cell replacement by 

transplantation of isolated endocrine islets was indeed possible and opened the 

door for experiments to come. One of the major barriers to human clinical trials 

was the limitation of adoption of techniques to isolate rodent islets to be used in 

human islet isolation. Further refinements in human islet isolation process 

followed in the subsequent years with the introduction of indraductal infusion of 

Liberase, the development of a semi-automated dissociation chamber (160), and 

the utilization of COBE for islet purification (118,161). These developments 

allowed for procurement of viable islets with increased purity, and enhanced the 

reproducibility and consistency of the human islet isolation procedure. These 
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combined improvements facilitated the large-scale isolation and clinical 

applicability of the procedure (118).  

The first attempt at clinical islet transplantation occurred in 1977 and 

between 1977 and 1989 fifty-six cases of clinical islet transplantation were 

described with variable success in attaining transient C-peptide secretion (162). In 

1989, Warnock and colleagues from the University of Alberta reported for the 

first time the ability of islets from human cadaveric donors to result in sustained 

C-peptide secretion after a synchronous intraportal islet and orthotopic kidney 

transplantation (162). Shortly thereafter, Lacy and colleagues at Washington 

University reported the ability of intraportally transplanted human cadaveric islets 

to result in insulin-independence in a type 1 diabetic patient (163). These 

landmark studies answered a key question by demonstrating the ability of human 

islet allografts to maintain normoglycemia in immunocompromised patients with 

T1DM. Consistent and sustained insulin independence remained elusive in 

clinical islet transplants that were to follow throughout the 1990’s with only 

12.4% of 267 islet transplant recipients sustaining insulin independence for 1 

week and only 8.2% maintaining insulin-independence after 1 year (164). This 

was drastically changed in the year 2000 as a landmark study done by the 

Edmonton group demonstrated that seven out of seven patients were able to 

achieve and maintain normoglycemia for greater than one year post-

transplantation by using a sufficient amount of fresh isolated islets and a 

glucocorticoid-free immunosuppressive regimen was used (164). This trial, later 

referred to as Edmonton Protocol, utilized a mean of 11, 546 islet equivalents per 
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kilogram of human patient’s body mass, as well as an immunosuppressive 

protocol which included the use of sirolimus, tacrolimus, and anti-interleukin-2-

receptor antibody therapy to protect against rejection (164). A five year follow-up 

study by the Edmonton group has performed over 140 islet transplantations in 85 

patients. The patients that received islet transplantation revealed improved 

glucose stability and near prevention of hypoglycemic episodes.  Although after 

five years follow-up 87% of patients maintained insulin-independence for 1 year, 

however, only 9% of patients remained insulin-independent despite the fact that 

80% demonstrated some form of graft function through sustained C-peptide 

production and HbA1c levels were markedly improved  (157,165,166).At present, 

over 500 patients have received islet transplantations at over 50 institutions 

worldwide in the past 5 years (167,168), with an international multicenter trial 

demonstrating its feasibility and reproducibility (169).  

 

1.3.2. Barriers To Islet Transplantation 

There are several barriers to the successful widespread implementation of 

islet transplantation for all T1DM patients. The major barriers are: shortage of 

donor pancreatic tissue, the immune mediated rejection of the transplant and the 

requirement for continuous administration of immunosuppressive drugs, and the 

potential recurrence of autoimmunity.  
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1.3.2.1.  Shortage of Donor Tissue 

As in almost all types of clinical transplantation, the number of potential 

recipients far out numbers the number of donors. However, this shortage of donor 

pancreatic tissue is further compounded by the requirement of typically two or 

more donor pancreases to completely free patients from exogenous insulin 

administration (170-174). This requirement is due in part to the lack of 

engraftment of some of the transplanted islets.  The lack of engraftment can be 

attributed to a number of factors including: hepatic steatosis, ischemic injury, and 

instant blood-mediated inflammatory reaction (IBMIR) (158,175-178). Problems 

such as IBMIR, a thrombotic / inflammatory process, continue to be 

acknowledged as a major contributor toward the initial graft loss and subsequent 

engraftment. Briefly IBMIR happens when transplanted tissue comes in contact 

with host blood; inflammatory mediators (i.e. tissue factor and MCP-1) cause a 

rapid activation of the coagulation and complement systems, binding of platelets, 

and infiltration of polymononuclear granulocytes (179,180). This results in 

damaging of islets and thrombus formation which disrupts islet morphology and 

integrity. The clotting also prevents proper engraftment by preventing access to 

blood vessels (181). Different methods have been investigated to address this 

issue, including using low molecular weight dextran sulphate (176), heparin 

(179), compstatin (182), thrombin inhibitor (175), and other strategies that will 

prevent IBMIR such as genetic modification of donor in case of islet 

xenotransplnatation (158,183,184). One potential solution to the shortage of donor 

pancreatic tissue is the use of animal sources of insulin producing tissue, referred 
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to as xenotransplantation. Islet Xenotransplantation will be discussed further in 

section 1.4. 

 

1.3.2.2.  Immune Mediated Rejection of Transplanted Islet Grafts 

 To date all of the organ transplanted recipients require continuous 

administration of immune-suppressive drugs to prevent rejection process. Chronic 

administration of immunosuppressive drugs results in significant toxicity and 

harmful side effects, limiting the patient population for which this treatment is 

appropriate. Reported side effects of the immunosuppressive drugs used in 

clinical islet transplantation included mouth ulcers, ovarian cysts, diarrhea, acne, 

edema, anemia, and pneumonia (157,185). Thus, with the high level of side 

effects of the current anti-rejection therapies, islet transplantation remains limited 

to brittle patients with T1DM not all of the individuals with T1DM particularly 

children with this disease. Efforts are now being directed at discovering new ways 

of preventing the rejection of the transplanted islets that have fewer harmful 

effects to the patient and will be discussed further in section 1.5. 

 

1.3.2.3.  Autoimmunity 

 A major question which limits the applicability of islet transplantation is 

the issue of whether auto-reactive T cells are capable of recognizing and 

destroying a transplanted islet graft (103,186-188). Studies have shown that auto-

reactive T cells persist in the body of the diabetic patient indefinitely (112). 

Despite this finding, success has been achieved in preventing the autoimmune 
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destruction of transplanted islet grafts in NOD mice.  NOD mice that were 

transplanted with allo- and syngeneic islets and treated with anti-lymphocyte 

serum (ALS) followed by co-administration of donor pancreatic lymph node cells 

(PLNC) became normoglycemic and tolerated minor antigen-disparate islet grafts 

for >100 days and syngeneic islet grafts indefinitely (189). Another group found 

that a short course of anti-CD4 monoclonal antibody delayed the rejection of 

allogeneic islet grafts in diabetic female NOD mice.  However, this therapy was 

unsuccessful at protecting the islet grafts long term (190). Thus, in terms of graft 

rejection, it is often difficult to distinguish between immune mediated rejection 

and autoimmune mediated rejection. 

 

1.4. PORCINE ISLET XENOTRANSPLANTATION 

 The goal of future strategies to treat T1DM is to provide an unlimited 

source of islets while avoiding the need for immunosuppression which is 

currently required in islet cell transplantation protocols. It appears that 

transplantation of xenogeneic sources of islets may provide a near-term solution 

to the shortage of islet donors. Historically, the first attempt at clinical islet 

xenotransplantation was undertaken by Watson-Williams and Harsant in 1893 by 

using pancreatic fragments from a sheep transplanted in a fifteen year old patient 

suffered from fatal ketoacidosis (118). Other sources of xenogeneic islet tissue for 

transplantation which have been investigated are:  i) bovine islets (191-193) , ii) 

porcine islets (including fetal, neonatal, and adult) (194-196), and iii) fish 

Brockmann bodies (197-199). Pigs represent an attractive source of islets for at 
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least four reasons: First, pig and human islets are morphologically similar and pig 

insulin is structurally similar to human insulin (just one amino acid difference) 

and has been used clinically for the treatment of diabetes for years, demonstrating 

the efficacy of porcine insulin in reversing hyperglycemia in humans (200,201). 

Second, the supply of pigs is potentially unlimited because of shortened gestation 

and large litters (195). Third, genetically engineered pigs lacking antigens readily 

recognized by the human immune system could limit the extent of 

immunosuppression required to prevent rejection (183). Fourth, pigs can be 

housed in pathogen-free environments (202). 

 

1.4.1. Age of Porcine Islet Donors 

 Several groups have investigated the use of porcine islets to 

experimentally correct diabetes in a variety of animal models. While there is a 

support for using islets of porcine origin, the optimal age of pigs from which islets 

should be harvested is still being debated. Three main age groups have been 

investigated including adult, neonatal, or fetal. Advantages and disadvantages of 

each donor source can be identified, however, to date successful large animal islet 

allotransplantation (143,203) and non-human primate islet xenotransplantation 

has only been achieved using neonatal and adult porcine islets (204-206).  

 

1.4.1.1. Adult Porcine Islets 

In 1974, Najarian and his colleagues from the University of Minnesota 

described the first successful attempt at isolating intact islets from adult pigs, 
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using a technique modified from Lacy’s rodent islet isolations, involving duct 

dilation with cold Hank’ s solution, collagenase digestion and ficoll gradient 

separation. They demonstrated the presence of circulating insulin following 

autograft and allograft transplantation in pancreatectomized pigs (207). In 1986, 

Lacy and his colleagues further refined the process of adult porcine islet isolation 

by dilating the pancreatic duct with collagenase solution prior to morcellation and 

ficoll gradient separation (160). Using this technique, a high yield of purified 

islets were obtained which demonstrated function in vitro by glucose stimulation 

insulin assay and transient in vivo function when transplanted into 

immunosuppressed B6 mice (160). Using a modification of the automated system 

for human islet isolation, Ricordi and colleagues were able to obtain an average of 

255,000 islets per pancreas from 10 to 36 month old pigs with an islet purity of 

85-90% (196). Advantages of the use of adult porcine tissue argue that: i) a larger 

number of islets can be obtained from adult pancreases, ii) the islets are mature at 

the time of isolation, are larger in size, and the potential for engraftment is better 

and is able to reverse hyperglycemia immediately in rodent and non-human 

primate models (196,204,206,208-213). However adult porcine islets are more 

fragile and difficult to maintain in culture for the purposes of decreasing 

immunogenicity or cryopreservation  and are more susceptible to ischemic and 

hypoxic damages (196,208,214,215), iii) the quantity of islets that are isolated 

from an adult pancreas are dependent on the age, breed, and organ quality, as well 

as activity and lot of collagenase, all of which result in significant variability in 

islet yields (216-219), iv) are potentially more immunogenic furthering the need 
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for immunosuppression (204,220), v) logistically, maintaining pigs in pathogen-

free environments long-term becomes both difficult and costly, greatly limiting 

the applicability of this treatment (202,216), and lastly vi) it would become 

difficult to ensure pigs of a proper age are available for transplantation if you need 

to wait long periods of time before harvesting their pancreas (202,216).   

 

1.4.1.2. Neonatal Porcine Islets  

In 1996, Korbutt and colleagues translated the simplified procedure used 

for fetal porcine islet isolation to isolate neonatal porcine islets (NPI) from 1-3 

day old pigs with the goal of attaining a more functionally mature islet source 

(195). NPI were demonstrated to secrete insulin upon high-concentration glucose 

stimulation in vitro and transplantation of 2,000 NPI aggregates under the kidney 

capsule of an immune-deficient mouse was sufficient to reverse alloxan-induced 

diabetes (195). However, while postnatal maturation of NPI results in immediate 

in vitro insulin secretion, transplantation of NPI into immune-deficient mice 

results in delayed reversal of hyperglycemia at 8 weeks post-transplantation 

(195). Numerous studies have shown that NPI are capable of restoring 

normoglycemia in small and large animal models 

(143,144,195,196,203,205,214,221-227). It was shown that that Rhesus macaques 

that were transplanted and treated with a CD28-CD154 costimulation blockade 

regimen achieved sustained insulin independence for a median survival of  >140 

days (205). This study was the first to demonstrate that NPI are able to restore 

normoglycemia in non-human primates (205). A clinical trial of NPI and Sertoli 
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cell co-transplantation has also been performed in adolescent patients in Mexico, 

however, concerns were raised by the international community regarding the 

selection criteria of these transplant recipients as well as the results of this trial 

(228). Others believe that neonatal tissue constitutes the most ideal source of 

islets for human transplantation, which is based on five main reasons.  First, the 

neonatal pancreas is less fibrous and easier to isolate, and consequently better islet 

yields can be obtained per gram of pancreatic tissue (195). Second, neonatal islets 

maintain considerable growth capacity, and may increase in number after 

subsequent transplantation (143). Third, the porcine islet preparation is not 100% 

pure.  Ductal cells constitute a significant proportion of the isolated islet 

suspension, and these cells are hypothesized to be precursor cells of islet cells, 

giving rise to the potential for differentiation to insulin producing cells post-

transplantation (96,195,229). Fourth NPI are less susceptible to damage during 

culture and cryopreservation and are more resistance to hypoxia (214,215,225). 

Lastly neonatal pigs would require fewer facilities and resources to house and 

maintain prior to transplantation than adult pigs, particularly considering pathogen 

free facilities which would require months to mature (202). Some disadvantages 

associated with neonatal pancreatic tissue include: i) the inability of immature 

islets to immediately reverse hyperglycemia when transplanted as compared with 

mature islets, ii) the presence of potential antigens on the surface of the islets (i.e 

Galα(1,3)Gal) which could elicit an immune response by the recipient 

(214,222,230,231), and iii) the high number of donor piglets required for 
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transplantation and the limitations (i.e. labor-intensive nature of our current 

method) involved in preparing these cells for transplantation.  

 

1.4.1.3. Fetal Porcine Islets 

 A simplified protocol to isolate porcine fetal islet-like cell clusters (FICC) 

was described by Korsgren and colleagues in 1988 (232). This isolation protocol, 

based on a protocol developed by this same group to isolate human FICC (233), 

aims to digest the pancreas into small clusters using collagenase and omits the 

steps of ductal infusion of collagenase and ficoll gradient separation of islet cells . 

To separate endocrine and exocrine components of the isolate, FICC are cultured 

for 7 days with every other day media changes (232). While it was noted that 

insulin secretion was quite uniform, the functional ability of fetal porcine islets 

was quite immature and stimulation of islets with glucose and theophylline 

yielded only minimal amounts of insulin release. Fetal porcine islets can be 

maintained in culture for up to 30 days (234) and during this time fetal porcine 

islets mature resulting in increased insulin secretion (232). Because FICC are 

functionally immature, they require up to 8 weeks to exhibit function in immune-

deficient mice (194). In 1994, the Uppsala group transplanted porcine FICC 

intraportally into 10 insulin-independent diabetic renal transplant patients (235). 

While small amounts of porcine C-peptide were detected in the urine of these 

patients at 200-400 days post-transplantation, none of these patients attained 

insulin independence. Fetal porcine islets have many of the same attractive 

properties that neonatal porcine islets do including the ability of the immature 
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islets to proliferate and resist ischemic damage. Like NPI, fetal porcine islets also 

express Galα(1,3)Gal, which could potentially mediate hyperacute rejection once 

transplanted (236-238). The major limitation with fetal islets however, is that they 

consistently demonstrate low insulin secretary response to glucose in both in vitro 

and in vivo and take months to correct hyperglycemia in animal models (194). 

Even more, relatively lower numbers of islets can be isolated from a single fetal 

pancreas compare to neonatal pancreas, necessitating a greater quantity of fetal 

pig donors in order to isolate sufficient quantities of islets for transplanting a 

single recipient. For example, in the study mentioned above approximately 100 

pig fetuses were required to transplant each patient. 

 

1.4.2.  Porcine Islet Xenograft Rejection 

The second major obstacles limiting clinical application of porcine islet 

transplantation is finding a safe and effective way to evade host immunity and the 

potent cellular response mounted against xenogeneic tissue. This barrier is of 

immense importance as further usage of harmful immunosuppressive therapies 

would only further limit the applicability of islet transplantation. Thus, safe and 

effective ways to achieve xenograft protection must be discovered in spite of the 

potent immune response. At present many experimental models involving porcine 

tissue utilize mice as recipients, which represents a discordant relationship (239).  

Discordancy, is defined as the potential for hyperacute rejection when donor 

tissue is transplanted into a recipient.  Typically, a discordant relationship is one 

in which the donor is evolutionarily diverse when compared to the recipient 
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(240,241). Pigs and humans are more closely related than pigs and mice (242), 

consequently the type of immune response which is elicited in each situation is 

different.  It has been well established that the indirect pathway of antigen 

presentation dominates in discordant transplantation and that the direct pathway is 

increasingly active in the rejection of allogeneic transplants (243,244). Also the 

participation of autoimmunity in xenogeneic islet graft rejection is controversial.  

Some argue that xenogeneic islets could be targeted equally as efficiently by auto-

reactive T cells, as allo or auto-islets are by a person with T1DM (245). A study 

published in 2003 however, reported that pig islet xenografts following a short 

course of anti-CD4 monoclonal antibody therapy were resistant to autoimmune 

destruction by NOD mice (246). Unfortunately, no autoimmune model of diabetes 

exists in large animals, consequently, we can only extrapolate what role 

autoimmunity in patients with T1DM will have in the context of xenogeneic islet 

transplantation in the clinical setting. The process of porcine islet xenograft 

rejection comprises of IBMIR, as well as innate and antibody responses and cell 

mediated immune responses. 

 

1.4.2.1.  Instant Blood-Mediated Inflammatory Reaction  

Similar to human islets, porcine islet xenograft preparations are 

susceptible to instant blood-mediated inflammatory reaction (IBMIR) when 

exposed to both human blood in vitro and also when transplanted intravascularly 

in non-human primates (247). Without specific treatment to prevent IBMIR, 

porcine islets may be rejected within days post-transplantation and may explain 
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the acute rejection seen in some intraportal porcine transplant models (248,249), 

however, despite concomitant heparin therapy during intraportal infusion of 

porcine islets between 22-73% of islets are damaged at 24 hours post-

transplantation (209). A potential reason for IBMIR is the presence of preformed 

complement binding antibodies to α- galactosyl alpha (1–3) galactose (αGal), a 

carbohydrate moiety found on many mammalian cells. Komoda and colleagues 

have developed a transgenic pig that overexpresses Nacetyl glucosaminyl 

transferase- III (GnT-III), an enzyme which competitively glycosylates trans-

golgi carbohydrates and prevents the formation of αGal (208). When adult 

porcine islets from this transgenic model were transplanted into streptozotocin-

induced diabetic monkeys, it was found that islets from the GnT-III transgenic pig 

did not undergo hyperacute rejection and showed less humoral and cellular 

rejection (208). While nonhuman primate studies demonstrating the successful 

long-term survival of both NPI and adult porcine islets suggest that both αGal and 

non-αGal mediated IBMIR can be overcome (204-206), the need for 

extraordinary volumes of islets for transplantation (25,000-50,000 IE/kg) suggests 

the need to consider the use of transgenic αGal-deficient pigs and/or the 

development of further therapies to prevent IBMIR. However, islet xenograft 

destruction by activation of the complement cascade is not the sole means of 

IBMIR as depletion of complement components by cobra venom factor 

significantly reduces porcine islet xenograft destruction but is not sufficient to 

completely prevent IBMIR (250). 
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1.4.2.2.  Innate Immune Mediated Islet Xenograft Rejection 

The role of innate immune cells in the rejection of porcine islet xenografts 

at current time is incompletely defined. Examining the immune reaction 

associated with fetal porcine islet xenografts in murine models, numerous types of 

innate immune cells have been temporally associated with rejecting xenografts 

including macrophage, NK cells and eosinophils (251-253). While eosinophils are 

temporally associated with fetal porcine islet xenograft rejection, in the absence of 

eosinophils islet xenograft rejection kinetics are unaffected suggesting a 

negligible role of these innate immune cells in the rejection process (252). Several 

studies have demonstrated that macrophage depletion results in prolongation of 

porcine islet xenograft survival when transplanted under the renal capsule (253), 

intraportally (254) and also intraperitoneal transplantation of microencapsulated 

islets (255). It appears that macrophage can act as effector cell that carries out 

porcine islet rejection. Yi and colleagues demonstrated that if CD4+ T cell-

activated macrophage were transferred to NOD-SCID mice, they were capable of 

rejecting fetal porcine islet xenografts (256). In contrast, when unactivated 

macrophages were transferred in this model, islet xenografts were not rejected 

(256). The role of NK cells in islet xenograft rejection, on the other hand is less 

clear. However, after administering anti-NK 1.1 mAb in a discordant adult 

porcine islet xenotransplant model, Wu and colleagues did not find a significant 

prolongation in porcine graft survival in mice (253).  
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1.4.2.3.  T Cell Mediated Rejection 

In a transplantation setting, two pathways of antigen recognition by T cells 

are capable to be activated.  One, the direct pathway, wherein the host T cell 

recognizes antigen presented on the surface of donor antigen presenting cells APC 

(214).  In the second pathway, the indirect pathway, the T cell is activated by 

recognition of antigen that is presented by host APC (214). These two pathways 

of antigen recognition are both capable of T cell activation and lead to an immune 

response, which results in the destruction of the transplanted islet graft.  It has 

been well established that the indirect pathway of antigen recognition dominates 

when the phylogenetic disparity between the donor and recipient increase and that 

the direct pathway is increasingly active in the rejection of allogeneic transplants 

(243,244). The relatively disparate combination of porcine islets transplanted into 

mouse recipients, meanwhile, is completely dependent on the indirect pathway as 

MHC class II – deficient recipient mice are unable to reject their porcine islet 

xenografts indefinitely (244). Several studies in small-animal models using non-

depleting anti-CD4 monoclonal antibodies (257), depleting anti-CD4 monoclonal 

antibodies (258) and CD4+ T cell knock-out mice (259) have demonstrated the 

importance of CD4+ T cells in this rejection process. These findings demonstrate 

that CD4+ T cell activation by the indirect pathway is absolutely essential in 

porcine islet xenograft rejection in mouse animal models and consequently anti-

rejection therapies to date have focused on preventing this interaction from 

occurring. While CD4+ T cells play a central role in porcine islet xenograft 

rejection, CD8+ T cells may play a minor role in rejection in the presence of CD4+ 
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T cells (244). These results provided further evidence that porcine islet xenograft 

rejection relies predominantly on CD4+ T cells while CD8+ T cells are only 

minimally involved in xenograft rejection (244,260,261). Thus, as T cells 

particularly CD4+ T cells are mandatory for discordant islet xenograft rejection, 

therapies that specifically target this cell type/pathway without producing toxic 

side effects will need to be found. New ways of preventing the T cell mediated 

graft rejection are being investigated and will be discussed further in section 1.5. 

 

1.4.2.4.  Antibody Mediated Rejection 

Naturally occurring antibodies can be present in the serum of a transplant 

recipient which have specificity for antigens present on the transplanted graft.  

Typically this occurs from having prior exposure to the particular antigen or the 

antibody being capable of recognizing a similar antigen. When pre-formed 

antibodies in the recipient recognize antigens present within the graft, this can 

lead to process referred to as hyperacute rejection.  Antibody mediated hyperacute 

rejection of islet xenografts may occur by two possible mechanisms: complement 

mediated rejection and innate cell mediated rejection. Humans do not express 

Galα(1,3)Gal and consequently produce naturally occurring antibodies to 

Galα(1,3)Gal epitopes as a result of hypothesized sensitization by micro 

organisms which also co-express Galα(1,3)Gal epitopes (262,263). Pigs which 

represent the most attractive source of donor tissue to date contain an intact α1,3-

galactosyltransferase (α1,3GT) gene and consequently express Galα(1,3)Gal.  For 

solid organ transplantation this represents a major barrier to the use of xenogeneic 
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tissue, termed hyperacute rejection, which is characterized by the binding of 

circulating anti-Galα(1,3)Gal antibodies, rapid activation of complement and 

coagulation cascades and the destruction of the vasculature of the transplanted 

organ. Galα(1,3)Gal is primarily expressed on the endothelium of the vasculature 

of porcine tissues.  The expression of Galα(1,3)Gal on porcine islets remains 

controversial, however a recent study suggests that the expression of 

Galα(1,3)Gal on these islets is time dependent.  It was found that the expression 

of Galα(1,3)Gal was higher in less mature NPI and that this expression decreased 

over time as the islets matured, and that by 200 days after transplantation, 

Galα(1,3)Gal expression was undetectable (230). While the expression of 

Galα(1,3)Gal on porcine tissue represents a significant concern, a recent study 

involving the transplantation of neonatal islets into non-human primates, suggests 

that Galα(1,3)Gal mediated rejection may not prevent the use of porcine tissue in 

clinical islet transplantation.  In this study, no attempt to remove or block 

preformed Galα(1,3)Gal antibodies was made and it was found that no hyperacute 

rejection was observed and that of those recipients that eventually rejected the 

transplant, this rejection was not associated with an increase in Galα(1,3)Gal 

antibody titres (205). Strategies to prevent humoral mediated rejection typically 

target T cells as TH cells are required for the activation of B cells.  Newer 

approaches are also under development which target co-stimulatory molecules 

present on B cells (264). 
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1.4.2.5. Autoimmune Recognition of Islet Xenografts 

Given that the primary application of islet transplantation will ultimately 

be in patients with autoimmune diabetes, an important additional issue will be 

whether xenogeneic islets can be recognized by the pre-existing islet-specific 

autoreactive immune cells (261,265). There has been some indication that the 

autoimmune repertoire may be at least partially species specific. This is an 

important issue to resolve because the application of xenotransplantation, 

although attempting to solve the donor shortage, could have added biological 

benefit by introducing a tissue source that is relatively impervious to autoimmune 

recognition (261). This concept would predict that islet xenografts may enjoy 

preferential survival relative to allograft in some cases when grafted to 

autoimmune recipients (261). This property of enhanced islet xenograft survival 

has been shown in autoimmune diabetic NOD mice treated with anti-CD4 therapy 

(246,261). Such studies have been interpreted to mean that the autoimmune 

repertoire is relatively species specific (265). 

 

1.4.3. Clinical Application of Porcine Islet Xenotransplantation 

The progression from experimental rodent models of islet transplantation 

to clinical trials of islet transplantation occurred in an astonishingly short period 

of time during the 1970’s. The lack of large animal and non-human primate 

models of auto-immune diabetes, then and still presently, raises the question as to 

whether translation of results from these pre-clinical trials in chemical or 

surgically induced models of diabetes will accurately reflect the process in an 
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autoimmune diabetic human patient (118,168,266). Since that time, however, 

clinically applicable porcine islet xenotransplant models have been performed 

primarily in non-human primates. Despite the vast resources and expenses 

necessary, there is great interest in non-human primate models of porcine islet 

xenotransplantation as they likely represent a closer physiologic environment to 

that seen in humans. Soderlund and colleagues demonstrated that fetal porcine 

islets transplanted under the renal sub-capsule of cynomolgus monkeys underwent 

acute cellular rejection (267). When immunosuppressed with cyclosporine and 

15-deoxyspergualin (DSG), cellular infiltration was delayed but ultimately the 

graft underwent rejection by day 15. This model confirmed that similar to small 

animal models, porcine islet xenotransplantation in primates also undergo cellular 

rejection. Nevertheless, focus has shifted to models that utilize portal vein 

injection of islets to more closely approximate the clinical model of islet 

transplantation. Portal vein transplantation models in non-human primates 

demonstrated that porcine islet xenotransplantation was feasible but were also 

acutely rejected despite the use of powerful immunosuppressant regimes 

(248,249). Both studies, however, lacked specific treatment to guard against 

IBMIR and likely reflect a rejection mechanism not seen in small animal models. 

Despite the fact that xenografts were rejected acutely after only 1-2 days, they did 

transiently result in detectable C-peptide levels (248,249). In 2004, Hering and 

colleagues successfully transplanted adult porcine islets intraportally into rhesus 

macaques and were able to achieve euglycemia (209). When injected 

intraportally, these transplants were not subjected to hyperacute rejection, putting 
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into question the role of αGal mediated hyperacute rejection. Beginning at 24 

hours posttransplantation, however, these xenografts displayed evidence of 

cellular infiltration and subsequently were rejected with the infiltrate 

characterized by the presence of CD4+ T cells, CD8+ T cells and macrophage. The 

first published porcine islet xenotransplant trials were performed by Groth and 

colleagues in 1990 (235). Fetal porcine islets were transplanted in 10 insulin 

dependent diabetics who had previously or were undergoing renal transplantation. 

The fetal porcine islets were transplanted either via intraportal injection or under 

the kidney capsule. This pilot study demonstrated that islet grafts injected neither 

intraportally nor under the renal capsule resulted in immediate complications. 

Four of 10 patients did excrete porcine C-peptide several months post-transplant 

suggesting that hyperacute reaction did not occur and that survival of porcine islet 

xenografts is possible in human recipients. More recently, another human clinical 

trial was performed in Mexico by Valdes and his colleagues (228). Using a 

vascularized collagen sheath implanted subcutaneously, adolescents patients with 

T1DM were co-transplanted with NPI and Sertoli cells. Without 

immunosuppression it was reported that 50% of the transplanted patients saw a 

significant reduction in their insulin requirements and 2 of the 12 transplanted 

patients were transiently free of insulin injections. Given the fact that both NPI 

and adult porcine islets have been demonstrated to function in preclinical non-

human primate models (204-206), it has been suggested that these sources will 

serve as the donor sources for first iteration islet xenotransplantation clinical trials 

(268). Increased regulatory controls on materials involved in direct human 
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exposure will likely play a large role in selection of a porcine islet source for 

transplantation (269). Close control of porcine islet donor herds will be mandated 

by regulatory boards involved in clinical trials of porcine islet xenotransplantation 

and will involve donor animals being designated pathogen-free (269). Breeding 

colonies can be established by early weaning or delivery by caesarian derivation 

into a pathogen-free housing facility and subsequent testing for pathogen free 

status. Current recommendations are for animals to be housed for 2 generations 

prior to being released as sources for clinical transplantation.  Once born, islet 

donors will be maintained in pathogen-free conditions in compliance with Good 

Manufacturing Practice (GMP), fed pathogen free food and water and thoroughly 

some tested for bacterial, parasitic and viral pathogens (269).  Therefore, while 

utilization of NPI as an islet donor source would necessitate the use of large 

numbers of islet donors, only breeding pairs would be maintained under GMP 

conditions while donor animals would be processed for islet transplantation soon 

after birth. On the other hand, while only 6 adult porcine islet donors would be 

required for a single human islet recipient, all 6 donor animals would need to be 

housed and tested under GMP conditions for 10 to 36 months prior transplantation 

which may escalate costs. Regardless of the source of porcine islet donor chosen, 

if clinical islet xenotransplantation is to succeed, automated means of isolating 

porcine islets will need to be developed to provide adequate donor islets to meet 

the volume of diabetic patients around the world.  
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1.4.4. Xenozoonosis 

One of the major concerns in xenotransplantation is the risk of zoonotic 

diseases, specifically, the transmission of animal pathogens, particularly viruses, 

to recipients and the possible adaptation of such pathogens for human-to-human 

transmission (270). In the past decade concern over latent, endogenous infectious 

agents has been raised in the use of porcine tissue for xenotransplantation. In 

particular, Porcine Endogenous Retrovirus (PERV) is a C-type retrovirus which is 

incorporated into the porcine genome. Three subtypes of PERV exist, classified 

based on the env subfamily expressed within the virus. PERV A and B is found in 

the genome of all pigs while some strains of pigs lack PERV C (271). There are 

currently three accepted approaches for detecting PERV infectivity, i)detection of 

PERV DNA sequences via PCR, ii) detection of PERV RNA sequences via RT-

PCR and iii) immunologic assays detecting anti-viral antibody production using 

western blot analysis or ELISA (271). Detection of PERV DNA sequences is 

confounded by the presence of endogenous PERV sequences within porcine tissue 

samples. The use of real-time PCR improves sensitivity of this approach as PERV 

DNA sequences can be measured against porcine mitochondrial DNA sequences 

to rule out the presence of porcine tissue within a sample (271). Alternatively, 

RT-PCR may be used to detect transcribed PERV RNA sequences found in cells, 

infected tissue or packaged into viruses. However, expression of PERV RNA 

does not necessarily signal the release of viral particles as the majority of PERV 

loci within the pig genome contain frameshift mutations and stop codons 

preventing full transcription of the entire viral sequence (271). Lastly, detection of 
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anti-viral antibody production with various immunologic approaches is the most 

sensitive method for detecting ongoing PERV replication and infectivity. 

However, major drawbacks with immunological approaches are that other 

retroviral infections may result in false-positive tests and any anti-rejection 

therapies which downregulate B cell responses may also blunt the anti-viral 

antibody response (271). Evidence of PERV infecting human cells in vitro was 

first reported in 1997 (272). While it is not known what triggers expression of the 

retrovirus, in vitro (273) and in vivo (274,275) work suggests that mitogenic and 

post-operative hypoxic stress may trigger the expression of PERV. Despite 

experimental data to suggest the possibility of PERV transmission to 

xenotransplant recipients, retrospective reviews of human patients exposed to 

porcine tissue (276) and specifically porcine islets (277,278) have not identified 

cases of transplant recipients infected long-term with PERV. While current 

evidence suggests that PERV infection does not occur in vivo in human host cells, 

in this era of concern regarding zoonotic infections such as the avian flu and 

Creutzfeldt- Jakob disease, sensitive yet accurate testing for PERV is paramount 

as both true-positive and false-positive results of PERV infection in vivo would 

have a crippling effect on efforts at porcine islet xenotransplantation.  

 

1.5. STRATEGIES FOR PREVENTING THE IMMUNE REJECTION 

OF TRANSPLANTED ISLETS 

The goal to prevent islet graft rejection is to use of novel strategies or 

immunosuppressive and inflammatory blockade agents which can make 
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significant improvements to the outcome of clinical islet transplant program 

without having harmful side effects. These strategies and agents for preventing 

rejection of islet grafts should share four features in that they i) are non-

diabetogenic or reduce the need for more diabetogenic immunosuppressive 

agents, ii) reduce initial damage of islet cells and promote engraftment, iii) induce 

tolerance, and iv) aim to manage the underlying autoimmune nature of T1DM in 

addition to stopping allograft rejection processes.  

 

1.5.1. Immunosuppressive Drugs 

There are many classes of anti-inflammatory and immunosuppressive 

drugs including: corticosteroids, calcineurin inhibitors, anti-metabolites and the 

mammalian target of rapamycin (mTOR) inhibitors.  The majority of 

immunosuppressive drugs act in the induction phase of an immune response and 

inhibit the activation and/or proliferation of lymphocytes. Prior to the Edmonton 

protocol, immunosuppression of islet transplant recipients was governed by what 

was felt to be optimal therapy to sustain the existing solid organ graft. In that era, 

a combination of cyclosporine , corticosteroids, and azathioprine was 

administered to islet–kidney transplant recipients and to a limited number of islet-

alone transplant recipients (279). Cyclosporine is a fungal peptide which once 

absorbed, binds with the cytosolic protein, cyclophilin, to form a complex.  This 

complex binds and inhibits calcineurin, a protein which is critical for the 

activation of transcription factors for the IL-2 gene.  IL-2 has been found to be 

essential for the activation, proliferation and differentiation of T cells.  
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Consequently, agents which prevent or interfere with IL-2 signaling are potent 

immunosuppressants  (280-282). In the 1980s it was reported that cyclosporine 

induced insulin resistance (283), and later it was revealed that cyclosporine was 

actually diabetogenic due to its toxicity towards β cells. At present cyclosporine is 

rarely implemented in transplantation mainly due to its deleterious side effects the 

most serious of which is nephrotoxicity (284). Corticosteroids have a wide-spread 

immunosuppressive impact and are also particularly diabetogenic (285). The β 

cell toxic effects of cyclosporine and corticosteroids led many clinical islet 

programmes to pursue steroid-free immunosuppression for islet transplantation 

(286-288). At present, patients which undergo islet transplantation are placed on a 

novel immunosuppressive regimen which includes the combination of sirolimus 

(rapamycin) and tacrolimus, along with anti-CD25 mAb induction, which 

improved outcomes of clinical islet transplantation (289). Rapamycin is an anti-

fungal metabolite produced by the bacteria Streptomyces hygroscopicus  

(290,291). The target of rapamycin has been identified and incidentally, in 

mammals is referred to as the mammalian target of rapamycin (mTOR) (292). 

Rapamycin does not directly bind mTOR but elicits its effect by associating with 

FK-binding protein 12 (FKBP12), this complex then goes on to bind and inhibit 

mTOR (290,292,293). mTOR is a serine/threonine kinase, which regulates cell 

growth in response to nutrients, and has been reported to be a crucial regulator of 

protein synthesis and translation initiation (290). Rapamycin by blocking mTOR, 

prevents protein synthesis, arresting the cell in the G1 phase of the cell cycle.  It is 

a particularly potent inhibitor of T and B cell proliferation especially that which is 
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induced by the interleukins (290). Tacrolimus, a macrolide antibiotic, is another 

type of calcineurin inhibitor. Tacrolimus (FK506) has a similar structure as 

rapamycin and a very similar mechanism of action as cyclosporine with two main 

differences.  The first is that tacrolimus once absorbed, binds to FK-binding 

protein (FKBP) instead of cyclophilin, and this complex binds and inhibits 

calcineurin.  Tacrolimus is active at lower concentrations than cyclosporine, 

allowing physicians to administer the immunosuppressant with fewer associated 

side effects (290). 

 

1.5.2. Monoclonal Antibodies (mAbs) 

In order for the T cell to become fully activated in response to donor 

antigen, the delivery of two separate but complimentary signals is required. Signal 

1 is delivered during the cognate interaction between the T cell receptor 

(TCR)/CD3 complex and an MHC-bound peptide on an APC (294). The second 

signal is an antigen nonspecific signal triggered by the interaction of a pair of cell 

surface costimulatory molecules expressed on the T cell and APC which is termed 

Signal 2.  This signal augments and amplifies activation and this is accomplished 

via decreasing the threshold of activation, increasing expression of adhesion 

molecules, and preventing anergy. Overall, this process leads to the production of 

cytokines, as well as proliferation and differentiation of effector cells which leads 

to a full blown immune reaction (295,296). It is important to note that 

costimulatory molecules cannot trigger T cell activation on their own.  However, 

the interaction of costimulatory molecules is critical for proper T cell activation as 
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TCR engagement in the absence of effective costimulation often results in T cell 

anergy and/or apoptosis (295,297,298). It is now commonly accepted that full T 

cell activation and the type of response requires additional interaction of 

trafficking and costimulatory molecules present on the surfaces of T cells and 

APC (299). Targeting T cell activation pathways or blocking of these additional 

signals by targeting costimulatory and adhesion molecules using mAbs prevents 

complete activation of  T cells with the specificity of their targets and their 

propensity for fewer side effects, then represents an attractive therapeutic target of 

anti-rejection therapy (299-305). 

 

1.5.2.1.  T Cell-Depleting mAbs 

T-cell-depleting agents, such as alemtuzumab (Campath-1H; anti-CD52 

mAb), hOKT3γ1 (Ala-Ala, anti-CD3 mAb), anti-T-cell globulin (polyclonal 

antibody) and diptheria immunotoxin anti-CD3, are currently being investigated 

in primates and plans are progressing to evaluate these in human islet 

transplantation. Alemtuzumab is an anti-CD52 antibody found to deplete 

lymphocytes and prevent T-cell activation through the CD45 pathway. 

Alemtuzumab is effective in the management of autoimmune diseases, including 

acute vasculitides and multiple sclerosis, and has been shown to be effective as an 

induction agent for renal transplantation when used along side either low dose 

cyclosporine (306) or sirolimus (307,308). An alternative strategy to depleting T-

cells is the use of an Fc-receptor non-binding humanized anti-CD3 mAb 
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(hOKT3γ1, Ala-Ala), which has been used clinically in the single donor islet 

transplantation protocol in Minnesota with promising preliminary results (309). 

 

1.5.2.2.  T Cell Co-Stimulatory Receptor-Blocking mAbs  

The discovery that TCR stimulation without co-stimulation can induce 

anergy (310) has led to intensive evaluation of co-stimulatory blockade in the 

transplantation field. Targeting of T cells with mAb has represented the focus of 

many anti-rejection regimens. Two strategies of steric interference between 

costimulatory receptors and their ligands have been proposed: i) a non-depleting 

mAb to block receptors or ii) receptor–Ig fusion proteins, which bind co-

stimulatory ligands thereby precluding their binding to cognate co-stimulatory 

receptors on the T-cell. Many of the mAbs utilized in experimental models have 

not yet been applied clinically in islet transplantation; however mAbs to the IL-2 

receptor form part of the foundation of the anti-rejection regimen of the widely 

successful Edmonton Protocol (164). Anti-IL-2 receptor antibodies target the IL-2 

receptor complex on activated T cells, and disrupt IL-2 signaling.  This is in 

contrast to calcineurin inhibitors, which as discussed previously, exert their effect 

by inhibiting the calcineurin complex and preventing IL-2 gene activation (311).  

Combining antibodies to the IL-2 receptor with calcineurin inhibitors has resulted 

in greater graft survival in many types of transplantation (312-315), because of 

the ability of these anti-rejection therapies to act synergistically. Several 

compounds that specifically target T-cell co-stimulatory molecules, including the 

CD28 and CD40L (CD154) pathways, have been explored in islet transplantation. 
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Targeting of B7 co-stimulatory molecules with a soluble fusion protein, CTLA4 

(cytotoxic T-lymphocyte attenuator protein 4)-Ig was effective at preventing 

human islet graft rejection when transplanted into mice (316).  When CTLA4Ig 

therapy was combined with microencapsulation of neonatal porcine islets, graft 

function was prolonged and the sensitization of the host to the transplant was 

delayed (317). Overall however, the above information shows that targeting this 

receptor-ligand pair or pathway can greatly reduce the immune responses 

involved in graft rejection and may possibly lead to tolerance induction via 

blockade of imperative co-stimulatory signals. A new wave of interest in co-

stimulation blockade has emerged from the fusion protein CTLA4Ig and its even 

more potent analogue LEA29Y (Belatacept) (318). These fusion proteins bind to 

CD80 and CD86, blocking their interaction with the co-stimulatory receptor 

CD28 on T-cells. Results of a Phase III clinical trial in renal transplantation show 

reduced chronic allograft nephropathy in patients treated with LEA29Y when 

compared with cyclosporine (319).  

 

1.5.2.2.1. Anti-CD154 mAb 

CD40 is a transmembrane glycoprotein expressed on all APC (B-cells, 

dendritic cells, macrophages, among others), on activated T-cells, hematopoeic 

progenitor cells, as well as non-hematopoeic cells such as endothelial cells (320). 

Its ligand, CD154 (CD40L) is found on activated T and B cells, activated platelets 

(321), and on a number of other cells during inflammation such as peripheral 

blood mononuclear cells (322,323). CD40/CD154 interaction seems to provide 
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signals to both APC and T-cells directly. Binding to CD40 is critical for the 

maturation of APC, promoting the increased expression of co-stimulatory 

molecules (i.e. B7.1 and B7.2), adhesion molecules such as CD54 (ICAM-1), and 

antigen expression (320,324,325). Even more, APC have been shown to increase 

cytokine and chemokine production after CD40/CD154 interaction (320,325). For 

example, dendritic cells have been shown to secrete increased levels of TNF-

alpha, IL-12, IL-8, all of which are known to be pro-inflammatory (326). The 

binding of CD40 has been shown to be extremely important in B cell 

differentiation and maturation and a fundamental role in class switching of 

antibody isotypes (323). The targeting of CD154 on T cells has been studied 

extensively as a means of preventing islet graft rejection.  In allo-islet models, the 

blocking of CD154 along with Programmed Death 1 (PD-1) stimulation was 

successful at inducing long-term survival of MHC mismatched islet allograft 

(327). Targeting of CD154 in xenogeneic islet transplantation appears to be 

equally as efficacious (328). Treatment with (CTLA-4) is effective in preventing 

the rejection of NPI transplanted into CD154 knockout mice (329), and 

additionally anti-CD154 monotherapy was effective at inducing tolerance to 

human islets transplanted into mice (248). Treatment with anti-CD154 and 

CTLA-4 was also effective at inducing indefinite rat islet xenograft survival in 

mice (330). Initial studies of an anti-CD40L mAb in non-human primates 

promised long-term allograft survival including in islet transplantation (331,332). 

Most recently it has be shown that the addition of anti-CD154 mAb to the 

established immunosuppressive regimes effectively prolonged neonatal and adult 
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porcine islet xenotransplantation in non-human primates (204-206). However, 

clinical trials in islet transplantation were not pursued following Phase I trials 

which revealed unanticipated microthrombotic events and the death of one subject 

(295,333,334). It has been suggested that the thromboembolic complication, 

which is also seen in non-human primates treated with humanized anti-CD40L, 

results from platelet activation and aggregation rather than a response to T-cell 

co-stimulation blockade (295,333,334). Administration of heparin during this 

therapy did reduce thromboembolic events (334). Anti-CD154 mAb has also been 

shown to be partially effective in autoimmune transplant models. DR-BB 

autoimmune diabetic mice treated with hamster anti-rat CD154 mAb significantly 

prolonged graft survival with no recurrence of diabetes for up to 461 days post-

transplant (335). Allotransplantation of C57BL/6 mouse islets into spontaneously 

diabetic NOD female mice was significantly prolonged from a median 10 days 

with isotype control to 46 days with higher dose of anti-CD154 mAb (336).  

 

1.5.2.3.  Lymphocyte Trafficking Blockade mAbs 

An alternative approach to traditional immunosuppression, which has 

generally targeted lymphocyte activation, is to inhibit lymphocyte migration to 

their site of activation. It is now well understood that lymphocyte activation and 

effector responses occur in distinct anatomical compartments, the migration to 

which is controlled by chemokines (337). Inhibitors of lymphocyte trafficking 

have been gaining popularity as immunomodulatory agents. Emerging 

compounds of interest include FTY720, a potent inhibitor of lymphocyte exit 
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from the thymus and lymph nodes, which depends on several chemokine systems 

(338). FTY720 is a non-specific antitrafficking agent; newer agents which 

specifically target one chemokine receptor subsystem either in the form of 

antibody blockade of chemokine receptors or small molecule chemokine receptor 

antagonists are currently being tested in preclinical models of islet transplantation 

(339,340). FTY720 has been investigated in primate models of islet 

transplantation with promising results in terms of safety and efficacy when 

combined with basiliximab and everolimus (a corticosteroid- and calcineurin-

inhibitor-free immunosuppressive regimen) (341).  

 

1.5.2.3.1. Anti-LFA-1 mAb 

Leukocyte function associated antigen-1 (LFA-1, CD11a/CD18) is a 

member of a family of structurally and functionally similar leukocyte 

differentiation antigens (342,343) and was first identified in mice in 1981 (344). 

LFA-1 is widely expressed on hematopoietic cells including: T and B 

lymphocytes, natural killer cells, monocytes, macrophages and granulocytes 

(342,343,345-347). Its primary targets are ICAM-1 and ICAM-2 on endothelial 

cells, ICAM-1 and ICAM-3 on APC, and JAM-1 found at tight junctions of 

endothelial and epithelial cells (348,349). There are potentially important roles of 

this integrin which make it an attractive therapeutic target for evading immune 

rejection. The primary role of LFA-1 is as an integrin, and as such, is involved in 

the adhesion and migration of lymphocytes to endothelial cells in response to the 

activation of the immune system (350). Activated T cells migrate from the blood 
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into nonlymphoid tissues through a multistep process that involves cell rolling, 

arrest, and transmigration.  Rolling cells are arrested through a firm adhesion step 

mediated in part by LFA-1.  Once the cell has arrested against the endothelial 

wall, the cell begins to migrate through the endothelial wall and toward the site of 

immune activation (351-357). Therefore, antibodies to LFA-1 are also effective at 

preventing graft rejection, because they can disrupt lymphocyte homing to site of 

a transplanted graft (356). LFA-1 also provides signals that promote T cell 

activation and differentiation.  LFA-1 engagement contributes to CD3 and CD28 

costimulation through a distinct signalling pathway.  Upon engagement of LFA-1 

and ICAM-1, the β2 chain of LFA-1 becomes phosphorylated, which ultimately 

leads to the promotion of c-Jun phosphorylation and the activation of IL-2 

production (358-360). It has also been reported that LFA-1 engagement through 

this signalling pathway can polarize the T cell towards a TH1 phenotype (359). In 

the presence of antibodies to LFA-1, the previously mentioned pathway is 

blocked, as a result, the LFA-1 mediated costimulation is prevented, potentially 

preventing the activation of T cells (361). Thirdly, LFA-1 plays a critical role at 

the interface between APC and T cells (361). As the TCR binds to its specific 

antigen presenting MHC molecule, sustained periods of engagement are necessary 

in order to adequately activate T cells to proliferate and carry out more complex 

functions. Thus, additional adhesion molecules are required in order to sustain 

this interface. It was shown that a 10, 000 fold increases in TCR antigen 

presentation required to induce proliferation in the presence of LFA-1/ICAM-1 

interaction was still insufficient to induce proliferation in the absence of this 
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interaction (362,363). LFA-1 through a similar mechanism has also been shown 

to lower the threshold of B cell activation by facilitating B cell adhesion and 

synapse formation (361). Support for the co-stimulatory functions of LFA-1 also 

comes from studies demonstrating that LFA-1/ICAM-1 binding can lead to 

increased inositol phospholipid hydrolysis, appearance of the 

hyperphosphorylated p23 form of the TCR ζ chain, and sustained intracellular 

calcium levels and an increase in cytoplasmic calcium levels (361). Two distinct 

types of signaling have been recognized upon engagement of LFA-1 on T cells 

with its corresponding ligands on APC. First, is an inside-out signal which 

increases the avidity of the integrin. This signaling involves cytoplasmic proteins 

such as talin and cytohesin 1(364). The second signal is an outside-in signal 

believed to affect intracellular signalling (364). This process is believed to involve 

the transcription factor Jun activation domain binding protein or JAB-1 (shown to 

be involved in the cell cycle and regulation of the cytoskeleton), as well as 

cytohesin-1 (359,364,365). It has also recently been shown that engagement of 

LFA-1 with ICAM-1 in conjunction with TCR signaling greatly enhances Ras 

activation, an important regulator of T cell development, homeostasis, and 

proliferation. Overall, the net effect of these processes is a decrease in the 

threshold of T cell activation (300,366).  
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Figure 1.2: LFA-1 signaling pathways: LFA-1 engagement leads to two 
independent signaling pathways, both of which are dependent on PKCδ activity 
(360) . 

 

Numerous studies have demonstrated that antibodies directed towards 

LFA-1 inhibit T cell mediated killing, antigen-nonspecific natural killing and 

numerous other processes which are dependent upon cell to cell interaction for 

cellular function and ultimately improve islet graft survival (227,300,345,367-

371). It has been reported that treatment with anti-LFA-1 and anti-ICAM-1 

prevents the onset of diabetes in mice.  This finding emphasizes the importance of 

the interaction of LFA-1 and ICAM-1 in T cell activation and the initiation of the 

immune response in autoimmune diabetes (345,368). Antibodies to LFA-1 are 

normally combined with other costimulation blockade therapies in order to 

increase the potency of the anti-rejection regimen.  Anti-LFA-1 mAb combined 

with anti-CD154 mAb has been shown to protect NPI xenografts (227), and 

induce dominant transplantation tolerance to islet allografts in a mechanism which 

is independent of IFN-γ or IL-4 secretion, the two prototypic Th1 and Th2 
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cytokines (370,371). Anti-LFA-1 mAb has also been shown to be effective in islet 

xenograft models, both concordant and discordant. In a rat to mouse islet 

transplant model, Our group showed that short-term administration of anti-LFA-1 

mAb prevented islet xenograft rejection for >100 days in 27 out of 28 recipients 

(372). In contrast, in a discordant xenograft model where NPI were transplanted 

into diabetic C57BL/6 mice, only 7/15 mice achieved normoglycemia, with only 

6 of the 15 mice achieving long-term graft survival (227). This protection again 

however, was greatly enhanced with the addition of anti-CD154mAb to the anti-

rejection regimen as 12/14 mice receiving NPI achieved long-term graft survival 

with this combination of mAbs (227). Recently a humanized IgG1 form of the 

anti-LFA-1 antibody (Efalizumab) which targets the CD11a alpha chain, has 

become available (373). Efalizumab has shown marked efficacy in the treatment 

of psoriasis and is currently in phase IV of clinical trials however, has failed to 

provide consistent effectiveness.  Efalizumab treatment is associated with some 

side effects, which can include: headache, chills, fever, nausea, vomiting and 

myalgia, even more, higher doses were shown to increase the risk of developing 

lymphoproliferative disease. Following clinical reports, the FDA and Genentech 

Inc revised the safety warnings for this drug to include immune-mediated 

hemolytic anemia (373). Thus, though anti-LFA-1 mAb therapy has the potential 

to be a useful therapy, methods to improve its effectiveness with low doses, will 

need to be found (361). Currently, efalizumab is being tested as an anti-rejection 

therapy for islet transplant recipients.   
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1.5.3. Tolerance Induction 

The goal of transplant immunology is to achieve a tolerance specific to the 

transplanted graft without administrating of general immunosuppressive drugs. 

Tolerance is the specific immune unresponsiveness to an antigen or set of 

antigens which are normally immunogenic, while remaining immuno-sensitive to 

third party antigens, with the stipulation that there has been prior exposure to 

those specific antigens (374). There are two main approaches for the generation of 

tolerance, the generation of central tolerance and, the generation of peripheral 

tolerance.  While the generation of central tolerance is effective at negatively 

selecting against self reactive T cells and potentially, donor reactive T cells, it 

should be noted that a small but significant number of self reactive T cells escape 

negative selection only to be controlled by peripheral tolerance mechanisms, 

emphasizing the effectiveness of peripheral tolerance (375). Immunological 

tolerance will be discussed further in section 1.6. 

 

1.5.4. Immune Isolation Devices 

Many devices exist with the function of isolating the transplanted tissue 

from the immune system of the host including:  vascular perfusion devises, 

macroencapsulation, and microencapsulation (376,377). Vascular perfusion 

devices are tubular structures normally with a wide bore in the center, large 

enough to allow the insertion of a blood vessel through the center.  The transplant 

is then placed within a membrane which comprises the tubular structure 

surrounding the blood vessel.  The association of the device with the vasculature 
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ensures adequate oxygen and nutrient delivery to the transplanted tissue (378). 

There are several drawbacks to devices of this type including: induction of the 

coagulation cascade, poor glycemic control, as well as the requirement for major 

vascular surgery to implant the device (378,379). Macroencapsulation involves 

the implantation of islets into a single device, which can be comprised of various 

biocompatible materials.  These devices are designed to exclude larger immune 

cells which could potentially be harmful to the islets, while remaining permeable 

to insulin, glucose and other nutrients important for maintaining the viability of 

the islets (380). While macroencapsulation devices are capable of restoring 

euglycemia in diabetic experimental animals (381-386), there are several 

shortcomings including: overgrowth resulting from poor biocompatibility, 

membrane rupture, insufficient release of insulin long term, and necrosis due to 

poor diffusion of nutrients to the islets (379,380). Microencapsulation is perhaps 

the most favoured immunoisolation device in islet transplantation.  In 

microencapsulation, individual islets are surrounded by a thin spherical, 

polymeric membrane, normally composed of agarose or alginate. The porosity of 

the membrane permits the entry of nutrients and oxygen and the diffusion of 

insulin out of the capsule. Furthermore, the semi-permeable nature of the 

membrane prevents high molecular weight molecules, such as immune cells and 

antibodies from penetrating the capsule and coming into contact with the 

encapsulated islets (387-389). It has been previously shown that islets placed in 

alginate microcapsules can be effective in preventing the destruction of the islets 

mediated by human antibody and complement in vitro (390). In vivo, several 
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groups have shown that encapsulation can successfully protect allo- and 

xenogeneic islets from immune mediated and autoimmune mediated rejection 

(224,379,391-394). Despite these promising findings, islet microencapsulation is 

not without its drawbacks.  Although microcapsules physically separate the islets 

from the recipients’ immune cells, there is still the potential for islet antigens to 

cross the alginate microcapsule membrane and trigger an immune response.  

Indeed, it has been previously reported that when microencapsulated islets are 

transplanted into immune competent recipients, that over time, the capsules 

become overgrown with immune cells suggesting that the immune system has 

been alerted to the presence of the graft (224). In addition, experiments involving 

microencapsulated islets have often been difficult to reproduce due to variations 

within the encapsulation process, purity and biocompatibility of the materials, 

islet viability, and capsule diameter (387,389,395-397). 

 

1.5.5. Co-Transplantation with Sertoli Cells 

Another attractive method of preventing the immune rejection of 

transplanted islets involves co-transplanting Sertoli cells with islets to provide 

immunologic and trophic support to co-transplanted cells (398,399). Sertoli cells 

reside within the testes and form part of the seminiferous tubules.  Their role is to 

supply beneficial factors and support the developing germ cells as well as prevent 

the germ cells from being eliminated by the host immune system.  Sertoli cells are 

known to produce FasL, TGF-β, clusterin, and serine protease inhibitors (serpin) 
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(400-402), which are suspected to have immunoprotective, anti-inflammatory, 

and tolerizing properties (398,400-406).  

 

1.6. IMMUNOLOGICAL TOLERANCE  

Immune tolerance is a state in which the immune system is specifically 

unresponsive to antigens of interest.  In the case of organ and cell transplantation, 

tolerance denotes a state of specific immune unresponsiveness to the donor graft, 

with normal responses to other antigens (407). The ability to respond normally to 

other antigens contrasts sharply with the effect of nonspecific immunosuppressive 

agents that are used clinically to prevent rejection, which are associated with 

increased risks of infection and malignancy. Extensive investigation of tolerance 

induction has occurred over more than 50 years since the first report of tolerance 

induction in mice by Billingham, Brent and Medawar (408). Although 

experimental tolerance induction has been tantalizing in both small and large 

animal transplant studies, significant challenges remain for clinical translation.  

Achievement of transplantation tolerance is the “holy grail” in clinical 

transplantation for three major reasons. First, whilst improvements in nonspecific 

immunosuppressive therapy have markedly improved outcomes in organ 

transplantation, these drugs are associated with many specific organ toxicities as 

well as the life-long increased risks of infection and malignancy. Secondly, 

chronic rejection is a major factor contributing to constantly down sloping long-

term survival curves for organ grafts. The half-lives of this second, late phase of 

graft loss have not changed significantly with improvements in 
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immunosuppressive therapy over the last 25 years. Chronic rejection can be 

avoided by tolerance induction. Thirdly, there is a critical shortage of allogeneic 

organs for transplantation, which could be overcome by the use of other species as 

organ and tissue sources, i.e. xenografts. However, immune barriers to xenografts 

look like even stronger than those to allografts, and the induction of tolerance at 

both the humoral and the cellular level is likely to be needed for the successful 

application of xenotransplantation in humans. The discovery of immunological 

tolerance may be considered a relatively recent event in history and could be 

attributed mainly to the independent experimental studies of Owen (409), 

Medawar and colleagues (408), and Hasek (410) along with the postulation of a 

natural state of immunological tolerance by Burnet and Fenner (411-413). 

Tolerance has been readily achievable by using two alternative approaches: 

Central tolerance and Peripheral tolerance. 

 

1.6.1.  Central Tolerance 

T cell self-tolerance is attributed to a selection of T cells during or 

following their development, which involves the physical or functional 

elimination of those cells specific for self-antigens. Historically, central tolerance 

(tolerance induced in the thymus) has been considered to be largely responsible 

for shaping a T cell repertoire known for its specificity and its discriminatory 

nature. Thymocytes undergoing maturation and development in the thymus are 

subject to positive and negative selection. An overwhelming majority of 

thymocytes do not survive the selection events (414). In particular, negative 
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selection is important in regulating immune reactivity, as developing T cells 

bearing high-avidity TCRs specific for host antigens are eliminated in the thymus 

to prevent autoreactivity in the periphery. While studies relating to the 

autoimmune regulator (Aire) gene demonstrating the expression of peripheral 

tissue-specific antigens in the thymus provide renewed support for central 

tolerance as the sole necessary tolerance mechanism (415-418), they do not 

exclude the contribution by potential mechanisms of peripheral tolerance. The 

pattern of Aire-driven expression of peripheral tissue antigens by individual 

thymic medullary epithelial cells is highly heterogeneous, and is restricted both in 

terms of the frequency of cells that are able to present peripheral antigens and the 

number of antigens that individual cells express (419). Interestingly, thymic 

expression of certain peripheral tissue antigens is not driven by Aire (420). To 

make peripheral tolerance mechanisms dispensable, however, Aire and potentially 

other transcriptional regulators must clearly be able to regulate the expression of 

all relevant peripheral tissue antigens for which T cells specific for those antigens 

are able to recognize during development, but this remains unknown. Hence, 

tolerization of self-reactive T cells may occur during thymocyte maturation in the 

central lymphoid organs, as well as later in the periphery with mature T cells. 

What is not clear is whether these mechanisms, in addition to dealing with high-

avidity T cells specific to peripheral antigens not present in the thymus, could also 

be responsible for governing low-avidity T cells that escape central tolerance 

(despite the presence of their cognate antigens in the thymus) (421,422).  
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1.6.2. Peripheral Tolerance  

As indicated, some of the evidence in support of peripheral tolerance 

comes from transplant studies demonstrating the acceptance of an allogeneic graft 

given to the recipient as a peripheral tissue. However, the rules that govern the 

immunity/tolerance decision to a peripheral tissue-specific antigen have not yet 

been elucidated. An understanding of peripheral self-tolerance could lead to new 

avenues for therapeutic interventions in clinical transplantation of allogeneic 

cells/tissues for disease treatment. In particular, since CD4+ T cells control a 

considerable portion of both B cell and CD8+ T cell reactivity, elucidation of 

tolerance mechanisms in the CD4+ compartment will be crucial to understanding 

tolerance in general (423-426). Peripheral tolerance in CD4+ T cells represents a 

unique problem since these cells are only capable of recognizing antigen 

presented on the relatively few cell types that express MHC class II (APC) under 

normal circumstances, and the peptide antigens they recognize are derived largely 

from proteins taken up from the endocytic pathway, rather than from proteins 

made within the cell (427,428). Various models have been generated to explain 

the general rules determining peripheral CD4+ T cell tolerance versus immunity 

and the specific mechanisms of tolerance involved.  

 

1.6.3. Tolerance Induction in Transplantation 

As mentioned earlier there are two main approaches for the induction of 

tolerance, the induction of central tolerance and, the induction of peripheral 

tolerance.  Typically methods in transplantation aimed at induction of central 
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tolerance are chimerism induction and/or thymic grafting of donor antigens. In 

contrast, approaches that have focused on blocking costimulation, including the 

depletion of donor APC or host T cells, targeting of costimulatory/coinhibitory 

receptors/ligands by antibodies/fusion proteins, and removing the signals that lead 

to activation of APC and upregulation of costimulatory molecules, would be more 

relevant for understanding peripheral tolerance (375,407).  

 

1.6.3.1.  Mixed Chimerism 

The most successful method of inducing transplantation tolerance is 

through the generation of systemic chimerism with donor cells. The induction of 

tolerance to donor xeno-antigens via the development of mixed chimerism 

represents an attractive method of preventing the rejection of xenogeneic islets 

(429,430).  Many argue that the induction of chimerism is likely to be essential if 

xenotransplantation is to become widespread, given the vigorous immune 

response towards xenografts (431). However, the tolerance in this situation is 

predominantly central rather than peripheral. The development of chimerism 

would potentially allow islet transplant recipients to stop taking any form of 

immunosuppression and may prevent pre-existing autoimmunity from destroying 

the transplanted islet graft (189). Mixed chimerism in allo-transplant models has 

been firmly demonstrated, however inducing chimerism in a xenotransplant 

model has proven to be more challenging (432). One study reported that the 

generation of chimerism induced simultaneous tolerance among T cells and Gal-

reactive B cells, which is of particular importance in porcine to human 
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xenotransplantation (433). The induction of mixed xenogeneic chimerism thereby 

prevents hyperacute rejection, a delayed antibody-mediated form of rejection 

termed acute vascular rejection, as well as cell-mediated rejection of primarily 

vascularized cardiac xenografts. Anti-Gal-producing cells are tolerized by an 

early anergy mechanism and later by clonal deletion and/or receptor editing. 

Many protocols require the irradiation of the recipient, which would constitute a 

major hurdle to overcome ethically.  Another significant concern is the potential 

for the development of graft versus host disease (GVHD) in which donor T cells 

present within the graft, attack the recipient resulting in multi-organ attack and 

morbidity (434-436).  Clearly, further investigation is needed with safety 

assurances and demonstrated effectiveness in larger animal models and before this 

therapy can advance to the clinic. 

 

1.6.3.2. Intrathymic Grafting of Donor Antigens  

Intrathymic grafting typically involves the deliberate exposure of donor 

antigens in the thymus of the recipient in the hopes of re-educating the recipient’s 

immune system to treat the donor tissue as self. The rationale behind this 

approach is based on the observation that the avidity/affinity of the T-cell receptor 

(TCR) and major histocompatibility complex (MHC) self-peptide interactions 

control positive and negative selection of T-cells in the thymus, such that 

thymocytes bearing a TCR that has a high affinity for self antigens presented by 

self MHC, results in the deletion of that thymocyte (437,438). It has been 

proposed therefore, that introducing donor antigens into the thymus while T cells 
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are undergoing maturation may induce central tolerance via deletion of donor 

reactive T cells.  It has even been suggested that the thymus may represent an 

ideal site for the actual islet transplant (439). Intrathymic injection of 

allopeptides/allo-islets induces acquired tolerance in experimental animal models 

(440,441) and in some cases was successful in inducing permanent islet allograft 

survival (442,443). Progress using similar approaches in xenogeneic models has 

been less successful.  Porcine thymic tissue has been successfully transplanted 

into baboons and was capable of inducing xenogeneic hyporesponsiveness but 

was not successful at inducing tolerance (444). It has also been reported that 

xenogeneic swine thymic transplants can induce tolerance to swine antigens in 

mice, however this study demonstrated that T cells were tolerant of xenogeneic 

pig antigens in vitro only (445). Recently Yamamoto et al. reported a novel 

strategy for inducing xenogeneic tolerance via vascularized thymic lobe 

transplantation which was capable of promoting early thymopoiesis and donor-

specific cellular unresponsiveness, however again this was demonstrated in vitro 

only (446). Another study reported that porcine thymic tissue transplanted into 

thymectomized mice mediated positive selection of T cells and that expression of 

porcine MHC was not critical for the maintenance of memory CD4+ T cells found 

in the periphery (447).  

 

1.6.3.3. Costimulation-Based Models 

The discovery that T cell receptor stimulation without costimulation can 

induce tolerance has led to intensive evaluation of co-stimulatory blockade in the 
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transplantation field (310). Blockade of the CD28 co-stimulatory pathway can be 

achieved with specific mAb or with a soluble receptor for the B7-1 ⁄ B7-2 ligands. 

Another pathway that has been targeted recently involves the interaction between 

CD154 on activated T cells with the CD40 receptor on APC. This interaction 

plays an important role in allowing APC to achieve full activating capacity by 

upregulating B7 molecules, MHC, antigen processing pathways, cytokines and 

other molecules. Blockade of the CD40–CD154 pathway alone or in combination 

with CTLA4-Ig can achieve marked prolongation of fully MHC-mismatched skin 

graft survival in some mouse strain combinations (448-450). However, permanent 

tolerance of these grafts is not reliably achieved. These treatments can more 

reliably induce permanent acceptance of tolerogenic rodent allografts such as 

hearts (451). Anergy of donor-reactive cells and an important role for Treg have 

been implicated in such models (452). Despite the achievement of prolonged 

allograft survival (though not tolerance) in nonhuman primates (332,453-455), 

attempts to apply co-stimulatory blockade for the induction of tolerance clinically 

have not succeeded.  

 

1.6.3.4.  Coinhibition -Based Models 

The proposal that tolerance results from antigen encounter without an 

activating signal means antigen receptor engagement alone is a negative signal 

(tolerance is passively determined). Sinclair developed an alternative model in 

which the antigen receptor signal is positive. In this model costimulation serves to 

amplify an immune response rather than reverse an antigen receptor negative 
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signal; costimulation is counter balanced by receptors that mediate negative 

“coinhibitory” signals (tolerance is actively determined) (456). Coinhibition is a 

negative signal mediated by an antigen-nonspecific receptor working in concert 

with an antigen-specific signal through the antigen receptor. Under quiescent 

conditions, where costimulatory signals are limited, coinhibition may predominate 

(for example, due to the higher affinity of B7 for CTLA-4 compared to CD28) 

(457). Coinhibition was expanded to be part of a general model of immune 

regulation in T cells and B cells involving the balance between costimulation and 

coinhibition by numerous receptors, some examples include CTLA-4, Fas, PD-1, 

CD5, CD22, CD72 and interferon-gamma receptor. Thus, coinhibitory signals can 

be delivered by end products such as antibodies and cytokines or by 

receptor/ligand interactions between cells (458-460). There are now many studies 

that seem consistent with a role for coinhibitory receptors in peripheral CD4+ T 

cell tolerance, as demonstrated by blocking the coinhibitor or eliminating it by 

gene knockout (461-465). Moreover, coinhibition seems to have become the 

paradigm for CD4+ T cell tolerance and tolerance in general (466), and the signal 

1 alone models of peripheral tolerance are clearly antiquated. However, there 

needs to be developed a clear definition of what controls coinhibition if we are to 

fully understand how it contributes to the immunity/tolerance decision or other 

potential functions it may have (467).  
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1.6.4. Mechanisms of T-Cell Tolerance 

There are four major mechanisms of T-cell tolerance, including clonal 

deletion, anergy, ignorance and suppression (commonly referred to as 

“regulation”). These mechanisms may act alone or together to achieve tolerance 

and will be discussed in more details and in the context of transplantation. 

 

1.6.4.1.  Clonal Deletion  

Clonal deletion implies death of T cells with receptors recognizing donor 

antigens. Deletion is the major mechanism of self-tolerance induction during T-

cell development in the thymus (468-470). TCR with lower affinity for such 

complexes are more likely to survive this process, and other mechanisms are 

required to ensure their tolerance when they enter the periphery, particularly 

under conditions of inflammation and antigen upregulation (471-473). Mature T 

cells in the peripheral lymphoid tissues can also be deleted under certain 

conditions. Exposure of mature T cells to antigen in the periphery can also result 

in T-cell clonal deletion (474). Self antigen cross-presentation by lymph node 

dendritic cells under non-inflammatory conditions leads to deletion of tissue 

antigen-specific CD8+ cytotoxic T cells (CTL) (475). CD8+ cells may be deleted 

because of “exhaustion” in the presence of a large, persistent antigen load (476). 

As an alternative to global T-cell depletion, costimulatory blockade with anti-

CD154 can be used in combination with bone marrow transplantation (BMT) to 

achieve mixed chimerism and long-term central, deletional tolerance (477,478). In 

such animals, the preexisting alloreactive T-cell repertoire is not depleted with 
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mAb, and other mechanisms come into play. A similar phenomenon has been 

demonstrated for peripheral CD8 cells in mice receiving donor-specific 

transfusion (DST) combined with anti-CD154 (479). Peripheral T cell apoptosis 

has been demonstrated, though without specific markers for alloreactive T cells, 

in mice tolerized with anti-CD154 mAb, rapamycin and cardiac allografts (480). 

Recently, CD4−CD8− cytotoxic regulatory cells have been reported to delete 

alloreactive CD8+ T cells with the same specificity as the regulatory cells (481). 

 

1.6.4.2.  Anergy  

Anergy denotes the inability of T cells to proliferate and produce 

interleukin-2 (IL-2) in response to antigens they recognize. T cell anergy develops 

when T cells encounter peptide/MHC complexes without receiving adequate 

accessory or costimulatory signals (482). T cells can also be rendered anergic if 

they encounter peptide ligands for which they have low affinity (469). Certain 

APC, such as macrophages and tolerogenic dendritic cells that may be immature 

or matured in a specific manner have the capacity to induce T cell anergy, in part 

due to secretion of suppressive cytokines and lack of adequate costimulation 

(483,484). Anergy is associated with altered signalling and tyrosine 

phosphorylation patterns (482,485). T cell anergy can often (486), but not always 

(487,488), be overcome by providing exogenous IL-2. Anergy has been 

associated with TCR down-modulation (489). It should be borne in mind that 

anergy is reversible under pro-inflammatory conditions, including the presence of 

infection, so it is unlikely to be reliable as the sole long-term tolerance mechanism 
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(490,491). Deletion has followed induction of an anergic state in the continued 

presence of antigen in some, but not all, models (492,493). Anergic T cells may 

also down-regulate the activity of other T cells, so that they function as regulatory 

T cells (Treg), perhaps by conditioning APC such that they tolerize T cells 

recognizing the same or different antigens presented by these APC (494). 

Moreover, regulatory T cells can promote the induction of T cell anergy and may 

themselves have biochemical properties suggestive of an anergic state (495,496). 

 

1.6.4.3.  Ignoring Graft Antigens (Ignorance) 

In some situations, antigens may simply be ignored by T cells (489) or B 

cells (497) with receptors recognizing them. This may occur when antigens are 

presented by “nonprofessional APC” which are unable to activate T cells, or when 

T cells fail to migrate to the antigen-bearing tissue, as documented in murine solid 

tumour models (498). Several factors appear to determine such T cell behaviour, 

including the level of antigen expression, how recently the responding T cell has 

emerged from the thymus (489), and the presence or absence of proinflammatory 

cytokines (499) and co-stimulatory molecules in peripheral tissues (500). As 

might be easily imagined, ignorance is a precarious state which can be upset by 

additional immunological stimuli provoked by inflammation induced by 

infections or by presentation of antigen on professional APC (407,501,502). 
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1.6.4.4.  Active Suppression of T-Cell Responses (Regulation) 

Suppression, in which a cell population actively down-regulates the 

reactivity of T cells, has recently been implicated in many rodent transplantation 

tolerance models and in the maintenance of self-tolerance. It has become 

increasingly clear in recent years that several mechanisms exist to down-modulate 

immune responses once they are initiated, and that it is the balance of activating 

and modulating functions that determine the outcome of any response. Many 

mechanisms, including killing of APC by CTL, inhibitory effects of cytokines, 

activation-induced cell death, contribute to this down-modulation of immune 

responses. In addition, studies in the 1970s introduced the concept that T cells 

themselves could actively suppress immune responses. Whilst certain T cell and 

non-T cell populations were implicated in this suppression, it is only in the last 

decade or so that molecular markers of suppressive T cells have been identified 

and that suppressive cell populations have been isolated, cultured in vitro and 

adoptively transferred (407,468,471,503,504). 

 

1.6.4.4.1. Regulatory CD4+ T cells 

There has been an huge expansion of information and studies involving 

immunoregulatory cells in recent years. Numerous types of cells with a regulatory 

phenotype have been identified. It is clear from allo-islet transplantation models 

that regulatory cells play a critical role in tolerance. It has been well demonstrated 

that different protocols can induce tolerance to islet allografts when associated 

with the induction of CD4+CD25+ regulatory T cells (505-509). Suppressive 
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CD4+CD25+ T cells have been strongly implicated in the induction and 

maintenance of self-tolerance (510-514). Functional evidence for specific 

suppressor cells was obtained in early models of transplantation tolerance (515) 

and Hall et al. first identified CD4+CD25+ T cells as a specific suppressive 

population in rats receiving cardiac allografts with a short course of cyclosporine 

(516). Since then, Treg have been implicated in numerous models involving 

acceptance of vascularized allografts in rodents receiving an initial 

immunosuppressive treatment (517-522). It has been well demonstrated that 

different protocols can induce tolerance to islet allografts when associated with 

the induction of CD4+CD25+ regulatory T cells (514,523,524). In xenogeneic 

models, CD4+CD25+ regulatory T cells have been shown to suppress the secretion 

of inflammatory cytokines and IL-2 as well as suppress T cell cytolytic responses 

against xenogeneic porcine cells in vitro (525). More recent studies have shown 

that these cells are generated mainly in the thymus, require specific positive 

selection (471) and express Forkhead box P3 (FoxP3), a transcription factor that 

controls the genetic program associated with their suppressive activity (526,527). 

In vitro suppression by these T regulatory cells (T reg) seems to require cell-to-

cell contact (528). Transforming growth factor-β (TGF-β) is a cytokine that has 

been strongly implicated in the maintenance of Treg and as a mediator of their 

suppressive activity (529-531). Both CD4+ and CD8+ T cells are subject to 

suppression by Treg, and memory as well as naïve responses have been shown to 

be suppressed. Several reports indicate that Treg require specific antigen for their 

activation, but that the final effector mechanism of suppression is nonantigen 
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specific (517,532,533). Rechallenge with specific antigen induces γ-interferon 

(IFN-γ) expression by Treg, which appears to be critical for their function (534). 

Generation, expansion, survival and possibly the function of Treg is highly 

dependent on IL-2, which is not produced by the Treg themselves (535). 

Additional CD4+ T cell populations with suppressive function include FoxP3+ 

CD25+ cells that arise from FoxP3-CD25- cells in the periphery following antigen-

specific stimulation (“adaptive” Treg) (528), especially in the presence of TGF-β 

(536). Additionally, one type of T reg (type 1;'Tr1) are induced by chronic 

antigenic stimulation in the presence of IL-10 and can suppress autoimmune 

diseases in mice. These cells produce high levels of IL-10 and low amounts of IL-

2 (537), and immature dendritic cells can support their development in vitro (538). 

Both natural Treg and Tr1 cells are hyporesponsive to TCR-mediated stimulation 

but can be grown slowly in vitro in the presence of certain cytokines, including 

IL-2. The in vitro suppressive function of Tr1 is dependent on IL-10 and TGF-β 

(537). TGF-β is clearly an important cytokine for several suppressive populations. 

Besides maintaining peripheral Treg  populations and functions (531,539), TGF-β 

promotes adaptive Treg differentiation (540) and suppresses T-cell activation and 

TH1 differentiation through several Treg-independent mechanisms (539,541). It 

can also modulate dendritic cell function, rendering them tolerogenic for T cells 

(483). Suppressive T cells have been implicated in numerous experimental 

models leading to allograft tolerance (542,543). There is considerable evidence 

for a role for natural Treg in maintaining self-tolerance in humans. Congenital 

defects in FoxP3 in humans are associated with an autoimmune syndrome, 
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immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX), that 

resembles its counterpart in mice (the 'scurfy' mutant) (544). Defects in IL-2 

signalling through the STAT-5 transcription factor lead to similar defects in Treg 

in mice and humans (545,546). These and the above experimental results have led 

to considerable interest in the role of Treg in clinical transplantation, and 

correlative data have begun to emerge.  

 

1.6.4.4.2. Other suppressive cell populations 

In addition to the CD4+CD25+ T cell populations discussed above, other T-

cell and non-T-cell suppressive cell populations can down-modulate immune 

responses. Fully differentiated CD4+ helper (TH) cells may polarize their cytokine 

secretion patterns to that of the TH1 subset, which secretes IL-2 and IFN-γ, the 

Th17 subset that produces IL-17 (407,537) or the T-helper type 2 (TH2) subset 

that secretes IL-4 and IL-10 (547). TH1 cells promote the generation of cytolytic 

CD8+ T cells, whilst TH2 helps antibody responses but not CTL responses (547). 

A similar polarization of the pattern of cytokine secretion occurs in CD8+ 

cytolytic T cells (548). In the early 1990s, there was considerable interest in the 

concept that polarization to TH2 type of response from a pro-inflammatory TH1 

(IL-2- and IFN-γ-producing) response could promote allograft acceptance, and 

data associated TH2 responses with such acceptance (549). However, only a few 

studies directly demonstrated a role for TH2 cells in tolerance induction and it is 

now clear that TH2 cells and their cytokines can promote allograft rejection (549). 

Natural killer (NK) T cells (T cells that express NK cell-associated markers and 
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may utilize an invariant TCR-α chain) are another subset of T cells with 

regulatory activity, which may be mediated in part by TH2-type cytokines (550). 

NKT cells have recently been shown to depend on TGF-β for their development. 

NKT cells are enriched in bone marrow and can suppress GVHD (551,552), at 

least in part via an IL-4-dependent mechanism (552). A CD4−CD8− T cell 

population lacking NK cell markers that suppresses skin graft rejection by CD8 T 

cells with the same TCR has been described in a mouse model (481), but the 

importance of this cell population in other settings remains to be determined. 

Human CD8+CD28− T cells have been reported to suppress alloresponses and 

xenoresponses in vitro (553), and recent studies have implicated CD8+ T cells as 

regulatory cells in models of autoimmunity (554), heart graft acceptance(555), 

skin grafting (556) and GVHD (557-559). Another study found that regulatory T 

cells of a CD8+CD28- phenotype reduced the capacity of xenoreactive TH cells to 

secrete IL-2 and was capable of inducing anergy of these xenoreactive cells (560). 

“Natural”(559) and “adaptive”(557), FoxP3-expressing (555,559), TGF-β-

producing(561), and IL-10-producing (557) regulatory CD8+ T cells have been 

described, and extensive data are emerging on the role of these cells in various 

models. One mechanism of immune down-modulation mediated by CD8+ T cells 

is simply the killing by alloreactive CTL of critical donor APC populations (562). 

Some CD8+ CTL-mediated suppressive phenomena might be attributable to 

“veto” activity of these cells(563). Veto cells inactivate CTL recognizing antigens 

expressed on the veto cell surface(563), resulting in suppression of CTL responses 

to antigens shared by the veto cells. CTL, various bone marrow cell subsets and 
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NK cells have been reported to have such activity (563). Veto cells may promote 

GVH tolerance, promote allogeneic marrow engraftment and promote tolerance 

induction with DST (515,563). Veto activity has been suggested to involve TGF-β 

(564). Thus, whilst many types of Treg have been recently described, much 

remains to be learned about the relative importance of each of these, their 

potential in large animal models and the circumstances under which they can be 

optimally generated. Several groups are exploring the approach of expanding 

Treg in vitro and then administering them in vivo to suppress alloimmunity or 

autoimmunity. Whilst methods of nonspecifically (565,566) expanding mouse and 

human Treg ex vivo have recently been developed, animal studies suggest that 

antigen specificity is important for the achievement of effective suppression 

following adoptive transfer (566). As alloreactivity includes many different donor 

antigens and donor cells will not be available pretransplant for cadaveric donor 

transplantation, this approach may be difficult to apply (407,566). 

 

1.7. OBJECTIVES AND GENERAL OUTLINE 

Islet transplantation is a more physiological treatment alternative to 

T1DM. Unfortunately at present, the number of patients who could benefit from 

this therapy hugely outnumbers the supply of islets.  In addition, the harsh 

immunosuppression required to prevent the rejection of the transplanted islet graft 

creates an ethical barrier which prevents islet transplantation from being applied 

to patients who can successfully manage their diabetes with exogenous insulin 

administration particularly children with type 1 diabetes.  Xenotransplantation, 

 89



using NPI as a source of tissue for transplantation has the potential to improve the 

supply shortage of donor islets. It was shown by our group that transient 

perturbation of adhesion and co-stimulatory pathways using short-term 

administrations of a combination of anti-LFA-1 and anti-CD154 mAbs is highly 

effective in preventing NPI xenografts from rejection in B6 mice (227). We 

hypothesized that this combined mAb therapy could induce tolerance to NPI 

xenografts. Therefore the main objective of this thesis is to examine whether a 

combination of anti-LFA-1 and anti-CD154 mAbs could induce tolerance to NPI 

xenografts.  If so, the mechanism of induction and maintenance of tolerance will 

also be investigated.    

 In chapter 1 an introduction to diabetes mellitus, the field of islet 

transplantation, porcine islet xenotransplnatation, strategies for preventing 

immune rejection of tarnsplnated islets and immunological tolerance was 

presented. In Chapter 2, we determined whether this combination of mAb therapy 

could induce tolerance to NPI xenografts in B6 mice. In Chapter 3, we determined 

the specificity (species and tissue) of tolerance to NPI xenografts. We also 

investigated if tolerance could be extended to second party porcine islet 

xenografts in case human islet transplant recipients would require a second islet 

transplant to maintain insulin independence. We also determined if tolerance 

could be extended to different tissue or organ grafts (i.e. skin grafts) without any 

additional anti-rejection therapy. It is important because patients with type 1 

diabetes are susceptible to developing deleterious secondary tissue or organ 

complications that may require replacement by transplantation.   
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 In chapter 4, we determined if tolerance induced is dominant and also 

determined the role of CD4+ and CD8+ T cell substes in the induction and 

maintenance of tolerance to NPI xenografts. In chapter 5, we determined that PD-

1/PD-1L pathway is required for the induction and maintenance of tolerance to 

NPI xenografts by combined anti-LFA-1 and anti-CD154 mAbs. Lastly, in 

chapter 6 we determined the efficacy of combined anti-LFA-1 and anti-CD154 

mAb therapy in preventing the rejection of NPI xenografts in autoimmune prone 

NOD mice, which is an animal model of type 1 diabetes.  

 We hope that with the development of safe and effective anti-rejection 

agents which target adhesion and costimulatory pathways of T cell activation, the 

goal of widespread application of islet transplantation particularly for children 

with type 1 diabetes could be achieved. 
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2.1 INTRODUCTION 

Islet transplantation at present is a treatment alternative for a very select 

patient population, and is not available for children with type 1 diabetes partly due 

to the requirement for continuous use of harmful immunosuppressive drugs to 

prevent rejection of the islet grafts, and the severe shortage of human donor 

pancreatic tissue (1-3).  Although immunosuppressive drugs have been 

instrumental in controlling the immune responses to islet grafts, their harmful side 

effects such as infection, malignancy and drug-specific toxicities leave patients at 

risk (2-7).  Moreover, the shortage of human donor pancreatic tissue is further 

compounded by the requirement of typically two or more donor pancreases to 

completely free patients from exogenous insulin injection (8-12).   

Islets from neonatal pigs are being considered for clinical transplantation 

because they are easy to isolate and maintain in culture as well as abundant 

number of islets can be isolated from one neonatal pig pancreas (13).  In addition, 

neonatal porcine islets (NPI) have the inherent ability to proliferate and 

differentiate  as well as they are capable of reversing diabetes in both small  (13-

15) and large animals (16;17), including the pre-clinical non-human primate 

model (17).  A promising strategy that we previously found to be highly effective 

in preventing NPI xenograft rejection in mice is the combination of biologic 

agents in the form of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) 

(14).  We demonstrated that short-term administrations of a combination of anti-

LFA-1 and anti-CD154 mAbs promote long-term survival of NPI xenografts in 

B6 mice (14;15) and in spontaneously diabetic NOD mice (18).  These studies 
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suggest that both adhesion and co-stimulatory pathways of T cell activation are 

important components of NPI xenograft rejection and that simultaneous targeting 

of these pathways is beneficial for long-term survival of NPI xenografts.  The aim 

of this study was to determine whether interference of adhesion and co-

stimulatory pathways by transient administrations of a combination of anti-LFA-1 

and anti-CD154 mAbs could induce tolerance to phylogenetically disparate NPI 

xenografts in mice.  Our results show for the first time that short-term 

administrations of combined anti-LFA-1 and anti-CD154 mAbs result in a robust 

form of pig islet xenograft tolerance mediated by T regulatory cells in B6 mice.   

2.2 MATERIALS AND METHODS 

2.2.1 Animals 

One to 3-day-old Duroc cross-neonatal pigs (>1.5 kg body weight) from 

the University of Alberta (Edmonton, Alberta, Canada) were used as islet donors.  

Six to 8 week-old male B6 (C57BL/6J, H-2b) and B6 rag-/- (B6.129S7-

Rag1tm1Mom/J, H-2b) mice from Jackson Laboratory (Bar Harbor, ME, USA) were 

used as recipients of islet transplants.  These mice were rendered diabetic by a 

single intraperitoneal injection of 180 or 175 mg/kg body weight of streptozotocin 

(STZ, Sigma, St Louis, MO, USA) for B6 or B6 rag-/- mice, respectively.  Blood 

glucose levels of these mice were measured using a Precision glucose meter 

(ONETOUCH, Ultra, Lifescan, Milpitas, CA, USA).  All mice were fed standard 

laboratory food and cared for according to the guidelines established by the 

Canadian Council on Animal Care.  
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2.2.2 Islet isolation and transplantation 

NPI were isolated as described previously (13;14;18).  Briefly, neonatal 

pigs were anesthetized with halothane and subjected to laparotomy and 

exsanguination.  The pancreas was removed, placed in Hanks’ balanced salt 

solution (HBSS, Sigma, St Louis, MO, USA) cut into small pieces, and digested 

with 2.5 mg/ml collagenase (clostridiopeptidase A, type XI, Sigma-Aldrich, St. 

Louis, MO, USA).  Digested tissue was filtered through a 500 µm nylon screen 

then cultured for 7 days in HAM’s F10 medium (GIBCO Laboratories, Grand 

Island, NY, USA) containing 10 mmol/l glucose, 50 µmol/l 

isobutylmethylxanthine (ICN Biomedicals, Montreal, Canada), 0.5% bovine 

serum albumin (fraction V, radioimmunoassay grade; Sigma), 2 mmol/l L-

glutamine, 3 mmol/l CaCl2, 10 mmol/l nicotinamide (BDH Biochemical, Poole, 

England), 100 units/ml penicillin, and 100 µg/ml streptomycin at 37°C (5% CO2, 

95% air).  After 7 days of culture, NPI were counted for transplantation and a 

total of 2,000 NPI were transplanted under the left kidney capsule of B6 or B6 

rag-/- mice that had two consecutive non-fasting blood glucose levels of >20 

mmol/l 4 to 6 days after STZ injection (13;14).  Briefly, diabetic B6 or B6 rag-/- 

mice were anesthetized by inhalational isoflurane and the left flank was shaved 

and sterilized with 100% ethanol. A flank incision was made lateral to the left 

paraspinal muscles and the peritoneum was sharply divided to expose the left 

kidney. A sterile cotton swab was utilized to expose and produce the left kidney 

from the incision. A small incision was made in the kidney capsule with a 27-

gauge needle and a subcapsular pocket was expanded with the use of a sterile 

 145



Pasteur pipette. Aliquots of 2,000 NPI were aspirated into polyethylene (PE-50) 

tubing, pelleted by centrifugation and placed within the subcapsular pocket with 

the aid of a micromanipulator syringe. Once the tubing was removed, the kidney 

capsule was cauterized with a disposable high-temperature cautery pen (Aaron 

Medical Industries, St. Petersburg, FL, USA). Islet engraftment was considered 

successful when blood glucose levels of these mice reached ≤8.5 mmol/l.  Graft 

rejection was defined as the first of three consecutive days of hyperglycemia (>12 

mmol/l), and was confirmed by histological analysis of the graft.  Removal of the 

graft-bearing kidney was performed in recipients with long-term graft function 

(>150 days post-transplantation) to confirm that maintenance of normoglycemia 

was due to the presence of islet xenograft.  

2.2.3 Monoclonal antibody therapies 

B6 mouse recipients of NPI were randomly designated to receive short-

term administration of a combination of anti-LFA-1 mAb (KBA; rat IgG2a, 

prepared as ascites; 200 µg on days 0, 1, 7, and 14 post-transplantation) plus anti-

CD154 mAb (MR-1, hamster IgG, BioExpress, West Lebanon, NH, USA; 250 µg 

on days –1, 1 and 2 times a week for 4 weeks post-transplantation)  

intraperitoneally (i.p.). Some of the B6 mouse recipients of NPI with ling-term 

islet graft survival received i.p. injection of anti-CD25 mAb (PC6.1.5.3, rat IgG1, 

Bioexpress; 500 µg on 0, 2, 4 and 6 days post-administration starting at 150 days 

post-transplantation).  
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2.2.4 Oral glucose tolerance test 

At 150 days post-transplantation, an oral glucose tolerance test (OGTT) 

was performed in randomly selected B6 and B6 rag-/- mice transplanted with NPI 

that maintained long-term graft function as well as in naïve B6 mice (control 

group) following our previously described method (13).  Briefly mice were 

initially deprived of food for 16 hours and were given 50% solution of D-glucose 

(3 mg/g body weight) using an oral gavage.  Glucose levels were measured using 

a Precision glucose meter (ONETOUCH, Ultra, Lifescan) in blood samples 

obtained from the tail vein of mice before oral administration of glucose and at 15, 

30, 60, 90 and 120 min after oral glucose administration.  

2.2.5 Immunohistological analysis 

The presence of insulin-producing beta cells and immune cell infiltrate in 

the graft were examined by fixing one-half of the graft-bearing kidneys in 10% 

buffered formalin solution and embedding the tissue in paraffin.  Five 5 µm 

sections of the tissues were stained with guinea pig anti-porcine insulin primary 

antibody (1:1000 dilutions; DAKO laboratories, Mississauga, Ontario, Canada) 

for 30 min, followed by the addition of biotinylated goat anti-guinea pig IgG 

secondary antibody (1:200 dilutions; Vector Laboratories, Burlingame, CA, USA).  

Avidin-biotin complex/horseradish peroxidase (ABC/HP; Vector Laboratories, 

Burlingame, CA, USA) and 3, 3-diaminobenzidinetetrahydrochloride (DAB; 

BioGenex, San Ramon, CA, USA) were used to detect cell stained positive for 

insulin (brown color).  All paraffin-embedded sections were counter-stained with 

Harris’ hematoxylin and eosin.  The other half of the kidney was embedded in 
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OCT compound (Miles Scientific, Naperville, IL, USA) and kept frozen at –80°C 

to identify the foxp3 positive cells in the grafts.  Five-micron frozen sections were 

air dried for 10 min, fixed in acetone for 3 min at 4°C, incubated in 0.1% Triton 

X-100 in PBS for 10 min, and then washed in PBS. Non-specific binding was 

eliminated by incubating the tissue sections in 2% fetal bovine serum (FBS) in 

PBS for 30 min.  In addition, endogenous avidin and biotin or biotin-binding 

proteins present in the sections were also eliminated using the avidin/biotin 

blocking kit (Vector Laboratories, Burlingame, CA, USA).  Rat anti-mouse foxp3 

antibody (1:25 dilutions; eBioscience, San Diego, CA, USA) was applied to 

designated tissue sections for 60 min at room temperature.  Biotinylated goat anti-

rat IgG (1:200 dilutions; Southern Biotechnology Associates, Inc., Birmingham, 

AL, USA) secondary antibody was added and incubated for 30 min.  ABC/HP 

reagent (Vector Laboratories) and DAB were applied to produce a brown color.  

Sections were then counter-stained with Harris’ hematoxylin (14;18). 

2.2.6 RNA extraction and RT-PCR analysis 

Islet grafts and surrounding kidney parenchyma were collected using 

sterile instruments treated overnight with RNAse Away (Molecular Bio-Products, 

San Diego, CA, USA). Naïve B6 mouse kidney and thymus tissue was also 

collected as control tissue for RNA extraction and subsequent RT-PCR analysis. 

Tissue samples were immediately pulverized by hand with sterile, RNAse Away 

treated pestels, resuspended in Trizol (Sigma) and frozen at -80o C. mRNA was 

extracted from NPI xenograft-bearing kidneys using Trizol reagent following the 

manufacturer’s protocol (Invitrogen, Burlington, Ontario, Canada).  cDNA was 
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constructed from 1 µg of total RNA using Superscript RNase H- Reverse 

Transcriptase (Invitrogen) according to the manufacturer’s protocol and 1 µl of 

cDNA was amplified for 35 cycles using Taq DNA Polymerase (Invitrogen). The 

PCR conditions and the primer sequences were similar to what we have 

previously published (19).  The PCR conditions were as follows: 30 seconds 

denaturation at 94oC, 30 seconds annealing at 58oC, 30 seconds extension at 72oC 

and a final extension of 72oC for 10 min followed by a 4oC hold.  Products were 

separated on an ethidium bromide stained 2% agarose gel and images captured 

with Alpha Digidoc software (Perkin-Elmer, Boston, USA).  Primer sequences 

were outlined as follows: 5’- TGAGTGGCTGTCTTTTGACG-3’ (forward) and 

5’- TTGGTATCCAGGGCTCTCC-3’ (reverse) (mTGFβ1-269 bp; accession no. 

NM_011577), 5’-CAAACAAAGGACCAGCTGGAC-3’ (forward) and 5’-

GAGTCCAGCAGACTCAATAC-3’ (reverse) (IL10-406 bp, accession no. 

NM_010548), and 5’-AATCCCATCACCATCTTCCA-3’ (forward) and 5’-

GGCAGTGATGGCATGGACTG-3’ (reverse) (GAPDH-310 bp, accession no. 

NM_008084).  Positive control includes thymus cDNA from naïve B6 mice while 

the negative control includes kidney from these mice and water in place of 

experimental cDNA.  GAPDH primers (housekeeping gene) ensured the integrity 

of cDNA and all the primer pairs spanned at least one intron to make sure that no 

genomic DNA was detected during the amplification. Products were separated on 

an ethidium bromide-stained 2% w/w agarose gel and images were captured with 

Alpha Digidoc software (Perkin-Elmer, Boston, MA, USA).  
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2.2.7 Detection of anti-porcine IgG antibodies by flow cytometry 

The effect of combined mAb therapy on the humoral immune responses of 

B6 and reconstituted B6 rag-/- mice with NPI xenografts were determined by 

measuring the levels of mouse anti-porcine IgG antibodies in the serum samples 

of these mice using flow cytometry following our published method (14;18). 

Spleen cells (1x106) obtained from neonatal porcine islet donors were incubated 

with 1:128 dilutions of mouse serum for 1 h at 37°C, 5% CO2, and 95% air.  After 

incubation, spleen cells were then washed with PBS and incubated with 1:200 

dilutions of FITC-conjugated rat adsorbed goat anti-mouse IgG antibody 

(Southern Biotechnology Associates, Inc. Birmingham, Alabama, AL, USA) for 1 

h at 4°C.  The percentage of cells bound to the antibody was detected from single 

parameter fluorescence histograms on a BD FACS Calibur flow cytometry 

machine (BD Biosciences Pharmingen) after gating on viable lymphocytes.  

Controls for this experiment include porcine spleen cells alone and spleen cells 

incubated with secondary antibody without mouse serum. 

2.2.8 Characterization of lymphocytes by flow cytometry 

Spleen from B6 and reconstituted B6 rag-/- transplanted with NPI were 

harvested on the day of rejection or at the end of the study.  Spleen cells were 

isolated by dissociation of the tissue into single-cell suspension using mechanical 

disruption between rough edges of sterile glass slides.  Red blood cells were 

depleted by incubation of spleen cells in red blood cell lyses buffer, absolute 

lymphocyte numbers were determined by staining the cells with Trypan blue 

exclusion dye, and live cells were counted using a hemocytometer (20). Aliquots 
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of 1 x 106 spleen cells were incubated for 30 min at 4˚C with fluorescent 

conjugated antibodies (1:100 dilutions, eBioscience, San Diego, CA, USA) 

specific for particular lymphocyte markers.  Fluorescence histograms were 

created using a BD FACS Calibur flow cytometry machine (BD Biosciences 

Pharmingen, Mississauga, ON, Canada) and were used to determine the 

percentage of positive cells labeled with the corresponding antibodies.  Controls 

for this experiment include spleen cells from tolerant or naïve B6 mice that were 

or were not incubated with any of the antibodies. 

2.2.9 In vitro proliferation assays 

The in vitro proliferation of T cells from naïve non-transplanted and NPI 

transplanted B6 mice were determined after stimulation with mitogen, anti-CD3ε 

antibody or donor pig spleen cells.  Briefly, 5 x 105 B6 mouse recipient spleen 

cells were stimulated with Concanavalin A (ConA; 10 μg/ml, Sigma) or with 

mouse anti-CD3ε (10 μg/ml, eBioscience) or with irradiated (2,500 rads) donor 

neonatal pig spleen cells (3 x 105 cells).  The cells were cultured in 96-well flat-

bottom plates in a total volume of 0.2 ml of Eagle’s modified essential medium 

(EMEM, Invitrogen, Burlington, ON, Canada) supplemented with 10% v/v FBS 

(Invitrogen), 1 x 10-5 mol/l 2-mercaptoethanol, 2 x 10-3 mol/l L-glutamine and 1% 

antibiotics in triplicate at 37°C, 5% CO2 and 95% air.  After 1-6 days (for ConA 

and anti-CD3ε mAb stimulation assays) and three, 4, and 5 days of culture for 

mixed lymphocyte reaction (MLR) assays, T cell proliferation was determined by 

pulsing the cells of primary culture with one µCi [3H]-thymidine/well for 18 h.  

Cells were then harvested onto glass microfiber filters (Wallac, Turku, Finland), 
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and counts per minute (cpm) per sample were detected using the Wallac 

MicroBeta® TriLux luminescence counter (PerkinElmer, Waltham, MA, USA).  

2.2.10 Adoptive transfer experiments 

At 150 days post-transplantation, 50 x106 spleen cells from B6 mouse 

recipients of NPI that maintained long-term normoglycemia or from naïve non-

transplanted B6 mice were injected into the peritoneum of some B6 rag-/- mouse 

recipients of NPI.  Blood glucose levels of these mice were monitored three times 

a week for 60 days post-cell injection.  At the time of rejection or at 60 days post-

cell injection if mice remained normoglycemic, NPI xenografts were harvested 

and were examined for the presence of insulin positive cells as well as immune 

cells as described above.  The blood glucose levels of those B6 rag-/- mice that 

maintained normoglycemia for 60 days post-cell injection were measured after 

removal of the kidney bearing the NPI xenograft.  A return to the diabetic state 

was noted and the spleen cells of B6 rag-/- mouse recipients were isolated at the 

end of the study to confirm the presence of adoptively transferred immune cells 

using flow cytometry.   

2.2.11 CFSE labeling of adoptively transferred spleen cells 

Ten million per ml of spleen cells from B6 mouse recipients of NPI that 

maintained long-term normoglycemia or from naïve non-transplanted B6 mice 

were suspended in sterile PBS and incubated with 10 µM carboxyfluorescein 

diacetate succinimidyl ester (CFSE, Molecular Probes, Eugene, OR, USA) in the 

dark with periodic agitation at 37°C for 10 min.  Excess CFSE was quenched with 

5% v/v FBS (Sigma) and the cells were washed with PBS.  Fifty million CFSE 
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labeled spleen cells in a total volume of 200 µl were injected into the peritoneum 

of B6 rag-/- mouse recipients of NPI or naïve non-transplanted B6 rag-/- mice.  

On the day of rejection or at 60 days post-cell injection, spleen cells were 

collected as described above and were incubated with PE-Cy5 conjugated anti-

mouse TCR for two-color flow cytometric analysis. CFSE specific fluorescence 

histograms were created using a BD FACS Calibur flow cytometry machine (BD 

Biosciences Pharmingen) by gating on TCR+ T cells. 

2.2.12 Transplantation of a second party NPI 

Some B6 mice that maintained normoglycemia for more than 100 days 

post-transplantation were re-transplanted with a second party NPI under the right 

kidney capsule.  Blood glucose levels of these mice were monitored for another 

100 days (200 days after the first NPI transplant) and at this time, the left kidney 

bearing the first NPI xenograft was removed.  Blood glucose levels of these mice 

were measured for an additional of 100 days to monitor the function of the second 

party NPI xenograft.  After 100 days (300 days after transplantation of the first 

NPI), the remaining right kidney that contains the second NPI xenograft was 

removed to determine that maintenance of long-term normoglycemia was due to 

the presence of the second party NPI xenograft.  

2.2.13 Statistical analysis 

Statistical differences between groups were sought using Mann-Whitney 

U test in SPSS statistical software, version 13.0 for Windows (Chicago, IL, USA).  

A p value of less than 0.05 was considered to be statistically significant. 
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2.3 RESULTS 

2.3.1 Short-term administrations of a combination of anti-LFA-1 and anti-

CD154 mAbs result in indefinite NPI xenograft survival in B6 mice.   

To determine if short-term administrations of a combination of anti-LFA-1 

and anti-CD154 mAbs can induce durable NPI xenograft protection we lengthen 

the metabolic follow-up period of B6 mice up to 300 days post-transplantation.  

All 50 NPI transplanted mice treated with the combination of mAbs achieved 

normoglycemia within 70 to 98 days post-transplantation and they maintained 

normoglycemia for 100 days post-transplantation (Table 2.1).  At 150 days post-

transplantation, which defines our standard endpoint of the study, 39 of 40 mice 

maintained normoglycemia and one mouse became diabetic at 105 days post-

transplantation.  At this time point, the ability of some recipients to respond to 

glucose challenge in vivo was performed (Figure 2.1A).  The blood glucose levels 

of these recipients at the beginning of the challenge (time 0 min) and at the end of 

the challenge (time 90 and 120 min) were not significantly different with those 

observed in B6 rag-/- mouse recipients of the same NPI and naïve B6 mice.  

However, the blood glucose levels of both B6 and B6 rag-/- mouse recipients of 

the same NPI were significantly lower at 15, 30, and 60-min time points when 

compared with naïve B6 mice (n=5 in each group, p<0.008). At 200 days post-

transplantation, 18 of 20 mice remained normoglycemic while two mice returned 

to the diabetic state at 160 and 185 days post-transplantation.   
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Figure 2.1: Blood glucose levels of B6 mouse recipients of NPI (black squares) 
responding to oral glucose challenge at 150 days post-transplantation.  
Control groups are age-matched B6 rag-/- mouse recipients of the same NPI 
(black circles) and naïve non-transplanted B6 mice (black triangles).  n=5 in each 
group, * p< 0.008 vs. B6 and B6 rag-/- mouse recipients of NPI. 

 

Nine out of 10 mice maintained normoglycemia at 250 days post-

transplantation and one mouse became diabetic at 216 days post-transplantation.  

Finally, at 300 days post-transplantation, seven of eight recipients maintained 

normoglycemia and one recipient returned to hyperglycemic state at 266 days 

post-transplantation.  Removal of the NPI xenograft-bearing kidney from 

randomly selected mouse recipients that maintained long-term normoglycemia at 

various time points post-transplantation resulted in return to the diabetic state 

confirming that maintenance of normoglycemia is dependent on the islet 

xenograft (Table 2.1).  

NPI xenografts from B6 mice with long-term normoglycemia (Figure 

2.2A) showed intact islets composed of abundant insulin positive cells 

comparable to those observed in B6 rag-/- mice transplanted with the same NPI 

(Figure 2.2B).  In contrast, B6 mice that eventually became diabetic had massive 
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amount of mononuclear cell infiltrate with no intact islets remaining in the 

transplant site (Figure 2.2C)  

 

Table 2.1:  Long-term survival of NPI xenografts in B6 mice treated with 
short-term administration of a combination of anti-LFA-1 and anti-CD154 
mAbs.  
 

End point  
(days post-

transplantation) 
n 

Graft survival 
(days post-

transplantation) 

% Graft 
survival 

 
100 50 >100 (x50) 100 

150 40 >150 (x39), 105 97.5 

200 20 >200 (x18), 160, 185 90 

250 10 >250 (x9), 216 90 

300 8 >300 (x7), 266 85.7 

 

 

Moreover, we observed few immune cells surrounding the islet xenografts 

in B6 mouse recipients and further characterization of these cells revealed that 

they express foxp3 (Figure 2.3A).  However, we found little or no foxp3+ positive 

cells in the NPI xenografts of these mice (Figure 2.3B).  RT-PCR analysis of the 

NPI xenografts harvested from B6 mice with long-term graft function showed the 

expression of TGF-β1 and IL-10 transcripts (Figure 2.3C), suggesting that local 

production of these regulatory cytokines may be partly responsible for the 

protection induced by the combined mAb therapy. 
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Figure 2.2:  Insulin immunohistochemical staining of NPI xenografts in the 
B6 mice treated with short-term administration of a combination of anti-
LFA-1 and anti-CD154 mAbs. Representative islet grafts from B6 (A) and B6 
rag-/- (B) mouse recipients that had long-term normoglycemia contained intact 
islets with abundant insulin-positive cells (brown stain). Representative NPI 
xenografts from B6 mice that eventually rejected their grafts had no intact islets 
left at the graft site (C).  Scale bar represents 100 µm.   
 

A B 

  
C 

 
 

Figure 2.3: Immunohistological and RT-PCR characterization of the NPI 
xenografts. Immunohistological and RT-PCR characterization of the NPI 
xenografts from B6 mice with long-term graft function showed some foxp3+ cells 
(brown structures; A). However little or no foxp3+ cells in the islets grafts of the 
B6 mice which rejected the NPI xenografts eventually (B). Regulatory cytokine 
transcripts of TGFβ1 and IL-10 were detected on NPI xenografts from B6 mice 
with long-term normoglycemia at 150 days post-transplantation (C, n=8).  
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Positive control includes thymus cDNA from naïve non-transplanted B6 mice 
while the negative controls include kidney from naïve non-transplanted B6 mice 
and water in place of experimental cDNA. GAPDH serves as a housekeeping 
gene. 

 

The levels of anti-porcine IgG antibodies in B6 mice that maintained long-

term normoglycemia (Figure 2.4A) were comparable to the anti-porcine IgG 

antibody levels detected in naïve B6 mice (Figure 2.4B).  In contrast, the anti-

porcine IgG antibody levels of B6 mouse recipients that eventually rejected the 

NPI xenografts were significantly higher than those detected in B6 mice that 

maintained long-term normoglycemia (Figure 2.4C).   

 

A B C 

 
 
Figure 2.4: Mouse anti-porcine antibody levels in the treated B6 mouse 
recipients of NPI with mAbs. Representative histograms of the levels of anti-
porcine IgG antibodies in B6 mice that maintained long-term normoglycemia 
(1.69%-5.07%, n=25, A) were comparable to those detected in naïve non-
transplanted B6 mice (1.73%-4.57%, n=10, B) but were significantly (p<0.001) 
lower than those detected in B6 mice that eventually rejected the NPI (28.54%-
43.69%, n=5, C).  Controls for this experiment consisted of unstained spleen cells 
(dashed black line) and the spleen cells incubated just with secondary antibody 
without serum (solid gray line).  

 

Taken together, these results indicate that short-term administrations of 

combined anti-LFA-1 and anti-CD154 mAbs induce tolerance to NPI xenografts. 
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2.3.2 Combined anti-LFA-1 and anti-CD154 mAb therapy results in changes 

in CD4+ T cells expressing regulatory markers.   

The total number of immune cells and proportions of CD4+, CD8+ T cells 

and CD19+ B cells from spleen of tolerant B6 mice was comparable to those 

detected in naïve B6 mice (Table 2.2).  Although the total number of immune 

cells and CD19+ B cells in B6 mice that eventually rejected the graft was higher 

compared to those detected in tolerant B6 mice and naïve B6 mice, the difference 

was not statistically significant.  In addition, while the frequencies of CD4+ and 

CD8+ T cells were lower in B6 mice that rejected the NPI xenografts compared to 

those observed in tolerant B6 and naive B6 mice, the difference was not 

statistically significant (Table 2.2).   

 

Table 2.2: Phenotype of immune cells from B6 mouse recipients of NPI 
treated with a combination of anti-LFA-1 and anti-CD154 mAbs compared 
to the phenotype of the immune cells in naïve non-transplanted B6 mice and 
B6 mouse recipients of NPI that rejected their NPI xenografts.  
 

 
Mean composition of isolated spleen 

cells (%) ± SEM 
 

 
Group 

 
n 

 
Mean ± SEM 

Total No. 
(x106) 

CD4+ CD8+ CD19+

 
Naïve B6 

 
12 

 
89.61±2.15 

 
20.98 ±0.82 

 
13.04 ±0.40 

 
55.18 ±2.0 

 
Tolerant B6 

 
19 

 
86.02±2.34 

 
20.21 ±0.66 

 
13.32 ±0.47 

 
56.65 ±2.07

 
Rejected B6 

 
5 

 
94.33±4.46 

 
17.91 ±2.50 

 
10.45 ±2.21 

 
61.99 ±6.80
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However, we found significant differences in the percentage of cells 

expressing CD4CD25 and CD8CD25 T cells between tolerant B6 mice, naïve B6 

mice and B6 mice that eventually rejected the graft (Figure 2.5A).  Further 

analysis of CD4+CD25+ T cells show a significant increase in the frequencies of 

these cells from tolerant B6 mice expressing foxp3 and GITR compared to those 

found in naïve B6 mice and B6 mice that eventually rejected the graft (Figure 

2.5B).  Similarly, the frequencies of CD4+ T cells expressing PD-1 and CTLA-4 

but not BTLA co-inhibitory markers were also significantly increased in tolerant 

B6 mice compared to those detected in the other groups (Figure 2.5C). However 

no significant difference in the frequencies of total PD-1+, CTLA-4+ and BTLA+ 

spleen cells were found between tolerant B6 and naïve B6 mice (Figure 2.5D). A 

significant decrease of PD-1 and CTLA-4 but not BTLA expressions was detected 

in the spleen cells from B6 mice that eventually rejected the graft compared to 

those cells from tolerant and naïve B6 mice (Figure 2.5D). Collectively, these 

results indicate that combined anti-LFA-1 and anti-CD154 mAbs result in higher 

percentage of CD4+ T cells expressing regulatory markers suggesting that 

tolerance to NPI xenografts may be mediated by T regulatory cells. 
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Figure 2.5:  High frequency of CD4+ T cells expressing regulatory markers 
were detected in B6 mice with long-term graft function. The frequency of 
CD4+CD25+ (2.20±0.08%, n=19) and CD8+CD25+ (1.38±0.09%, n=19) T cells in 
B6 mice with long-term graft function (white bars) was significantly (p<0.0001) 
higher than those observed in naïve non-transplanted B6 mice (black bars, 
1.58±0.08% and 0.30±0.11%, respectively, n=12) and B6 mice that eventually 
rejected the graft (white downward diagonal bars, 1.04±0.25% and 0.26±0.07%, 
respectively, n=5, A). In this population there were also significantly more cells 
expressing foxp3 (1.29±0.08%, n=19, p=0.0013) and GITR (2.69±0.08%, n=19, 
p<0.0001) compared to those found in naïve non-transplanted B6 mice 
(0.92±0.03% and 1.76±0.05%, respectively, n=12) and B6 mice that eventually 
rejected the graft (white downward diagonal bars, 0.43±0.02% and 0.62±0.03%, 
respectively, n=5, B).  The frequencies of CD4+ T cells expressing PD-1 
(5.12±0.24%, n=19) and CTLA-4 (2.78±0.12%, n=19) but not BTLA 
(4.69±0.23%, n=19) co-inhibitory markers were also significantly (p<0.0001) 
increased in B6 mice with long-term NPI xenograft survival compared to those 
detected in naïve non-transplanted B6 mice (3.38±0.63%, 0.83±0.18%, 
4.79±0.55%, n=12, respectively) and B6 mice that eventually rejected the graft 
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(white downward diagonal bars, 2.68±0.13%, 0.31±0.06%, 5.01±0.11%, 
respectively, n=5, C). Significantly less (p<0.0001) cells expressing PD-1 
(15.15±1.60%, n=5) and CTLA-4 (0.61±0.01%, n=5) but not BTLA 
(70.36±1.22%, n=5) were detected in B6 mice that eventually rejected the graft 
(white downward diagonal bars) compared to those found in naïve non-
transplanted B6 mice (black bars,61.68±2.55%, 2.04±0.61% and 65.50±0.88%, 
respectively, n=12) and tolerant B6 mice (white bars, 67.82±0.79%, 5.01±1.13%, 
and 66.53±1.23%, respectively, n=19, D). 
 

 

2.3.3 Combined anti-LFA-1 and anti-CD154 mAb therapy result in T 

regulatory cell-mediated tolerance to NPI xenografts.   

To better define the role of T regulatory cells in protection generated by 

combined anti-LFA-1 and anti-CD154 mAbs, a group of tolerant B6 mice was 

treated with depleting anti-CD25 mAb beginning at 150 days post-transplantation.  

All normoglycemic recipients became diabetic at 25.3 ± 2.5 days post-injection of 

anti-CD25 mAb (n=7, Figure 2.6A).  NPI xenografts from these mice had 

infiltrating immune cells no insulin-positive cells remaining in the grafts (Figure 

2.6B).  The levels of mouse anti-porcine IgG antibody in these mice were 

significantly higher (Figure 2.6C) than those detected in tolerant B6 mice without 

anti-CD25 mAb treatment and naïve B6 mice (Figure 2.4A and B, respectively).   

These results further support that T regulatory cells mediate long-term 

immune protection of NPI xenografts rendered by combined anti-LFA-1 and anti-

CD154 mAb therapy. 
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Figure 2.6:  T regulatory cells mediate long-term immune protection of NPI 
xenografts rendered by combined anti-LFA-1 and anti-CD154 mAb therapy.  
All normoglycemic recipients (n=7) that received depleting anti-CD25 mAb on 0, 
2, 4 and 6 days post-administration beginning at 150 days post-transplantation 
(arrow) became diabetic at 175.3 ± 2.5 days post-transplantation (25.3 ± 2.5 days 
post-injection of anti-CD25 mAb; A).  NPI xenografts had infiltrating immune 
cells and absence of insulin-positive cells (B).  Scale bar represents 100 µm.  The 
levels of mouse anti-porcine IgG antibody in these mice were significantly 
(p<0.0001) higher (37.28±1.80%, n=7, C) compared to the levels detected in 
tolerant B6 mice not treated with anti-CD25 mAb and naïve non-transplanted B6 
mice (Figure 1G and H, respectively).  Representative histograms are shown and 
controls for this experiment consisted of unstained spleen cells (dashed black line) 
and spleen cells incubated just with secondary antibody without serum (solid gray 
line). 
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2.3.4 Lymphocytes from tolerant mice suppress the in vitro proliferation of 

pig-primed lymphocytes in a dose-dependent manner. 

Lymphocytes from spleen of tolerant B6 mice responded robustly after 

non-antigen specific stimulation with Con A and anti-CD3ε mAb (Figure 2.7A).  

The responses are comparable to the proliferative responses of lymphocytes from 

spleen of naïve B6 mice after addition of the same stimulator molecules (Figure 

2.7B).  Similar to what we have previously reported (21), we observed no 

measurable proliferation of lymphocytes from naïve B6 mice several days after 

stimulation with pig spleen cells (Figure 2.7C).  We also found that lymphocytes 

from spleen of tolerant B6 mice did not proliferate after stimulation with pig 

spleen cells from the islet donor (Figure 2.7C).  However, we found that initial 

priming of naïve B6 mice with pig spleen cells resulted in strong proliferation of 

lymphocytes from these mice when re-stimulated with pig spleen cells in vitro 

(Figure 2.7C).   

To determine whether lymphocytes from tolerant mice are capable of 

suppressing the proliferation of lymphocytes from pig-primed B6 mice, we mixed 

different ratios of the two cell populations.   
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Figure 2.7:  Lymphocytes from tolerant mice are unresponsiveness after 
stimulation with pig spleen cells in vitro.  Lymphocytes from tolerant B6 mice 
(n=9, A) responded robustly after stimulation with ConA (white squares) or anti-
CD3ε mAb (white  triangles) comparable to what was observed in lymphocytes 
from naïve non-transplanted B6 mice (black squares for ConA and black triangles 
for anti-CD3ε mAb, n=9, B).  Lack of proliferation was observed when these cells 
were not stimulated (white circles for lymphocytes from tolerant mice (A) and 
black circles for naïve mice (B)).  Lymphocytes from pig-primed B6 mice (n=6) 
responded robustly when stimulated with pig spleen cells (black triangles, C).  
While lymphocytes from tolerant B6 mice (white squares, n=9) and naïve non-
transplanted B6 mice (black circles, n=9) did not proliferate after stimulation with 
pig spleen cells from the islet donor (C).   
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Addition of lymphocytes from tolerant B6 mice resulted in a dose-

dependent inhibition of proliferation of lymphocytes from pig-primed B6 mice 

(Figure 2.8A).  At 1:1, 1:2, 1:4, and 1:8, but not 1:16 ratios of lymphocytes from 

tolerant B6 mice to lymphocytes from pig-primed B6 mice, we observed 

significant inhibition of proliferation of the latter cell population at 3 days post-

culture.  In contrast, addition of lymphocytes from naïve B6 mice to lymphocytes 

from pig-primed B6 mice at similar ratios did not result in the inhibition of 

proliferation but resulted in proliferation of lymphocytes from pig-primed B6 

mice (Figure 2.8B).  

A 

B 

 
Figure 2.8: Lymphocytes from tolerant mice suppress the in vitro 
proliferation of pig-primed lymphocytes in a dose-dependent manner.  
Lymphocytes from tolerant B6 mice significantly (*p<0.0005, n=3) inhibited the 
proliferation of pig-primed lymphocytes in a dose-dependent manner on day three 
post-culture (A).   However addition of lymphocytes from naïve B6 mice to 
lymphocytes from pig-primed B6 mice at similar ratios did not result in the 
inhibition of proliferation but resulted in proliferation of lymphocytes from pig-
primed B6 mice (B).  
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2.3.5 Tolerance rendered by combined anti-LFA-1 and anti-CD154 mAb 

therapy can be extended to second party NPI xenografts.   

All B6 rag-/- mice transplanted with first and second party NPI remained 

normoglycemic for more than 60 days after transfer of spleen cells from tolerant 

B6 mice (Table 2.3).  However, B6 rag-/- mice with established NPI xenografts 

reconstituted with spleen cells from naïve B6 mice rejected their grafts by 15 days 

post-cell transfer (Table 2.3).   

 
Table 2.3: Transfer of tolerance induced by a combination of anti-LFA-1 and 
anti-CD154 mAbs to NPI xenografts. 
 

Source of islets Source of spleen cells n Graft survival 
(days post- cell 

transfer) 
First or second party 

neonatal pig 
 

Naïve non-transplanted 
B6 mice 

8 10, 11(x2), 13(x2), 
15(x3) 

First party neonatal 
pig 

B6 mouse recipients 
with long-term 
normoglycemia 

 

9 >60(x9) 

Second party 
neonatal pig 

B6 mouse recipients 
with long-term 
normoglycemia 

10 >60(x10) 

 
 

CFSE labeling of T cells from spleen of these mice, revealed that they 

exhibit robust proliferation (Figure 2.9A).  In contrast, CFSE labeling of T cells 

from B6 mice tolerant to first party NPI xenografts showed that a large proportion 

of these cells did not proliferate robustly after injection into B6 rag-/- mice with 

established first (Figure 2.9B) and second (Figure 2.9C) party NPI xenografts.  
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However, in the absence of NPI xenografts, these cells were able to proliferate 

when injected into naïve B6 rag-/- mice (Figure 2.9D). 

   

A B 

  
C D 

 
 
Figure 2.9: Lymphocytes from tolerant mice show a limited proliferation in 
vivo. CFSE labeling of T cells from spleen of naïve B6 mice that rejected the NPI 
xenografts, showed robust T cell proliferation (A).  In contrast, CFSE labeling of 
T cells from B6 mice tolerant to first party NPI xenografts showed that a large 
proportion of these cells did not proliferate robustly after injection into B6 rag-/- 
mice with established first (B) and second (C) party NPI xenografts.  However, in 
the absence of NPI xenografts, these cells were able to proliferate when injected 
into naïve B6 rag-/- mice (D).   

 

The first (Figure 2.10A) and second (Figure 2.10B) party NPI xenografts 

from B6 rag-/- mice reconstituted with spleen cells from tolerant B6 mice had 

intact islets composed of abundant insulin positive cells and immune cells 

surrounding but not infiltrating the NPI xenografts.  However, massive immune 

cellular infiltrate and no insulin positive cells were detected in the NPI grafts from 

B6 rag-/- mouse recipients injected with spleen cells from naïve B6 mice (Figure 

2.10C).  

 168



A B C 

 
 
Figure 2.10: Insulin staining of the NPI xenografts from B6 rag-/- mice 
injected with lymphocytes from tolerant B6 mice. Representative first (A) and 
second (B) party NPI xenografts from B6 rag-/- mice injected with lymphocytes 
from tolerant B6 mice had intact islets composed of abundant insulin positive 
cells which were absent in B6 rag-/- mouse recipients reconstituted with spleen 
cells from naïve non-transplanted B6 mice (C).  Scale bar represents 100 µm.  
 
 

The humoral immune responses in B6 rag-/- mice with first (Figure 2.11A) 

and second (Figure 2.11B) party NPI xenografts that maintained normoglycemia 

for more than 60 days after injection of spleen cells from tolerant B6 mice were 

comparable.  The IgG antibody levels of these mice however, were significantly 

lower than those detected in B6 rag-/- mice that rejected the NPI xenografts after 

injection of spleen cells from naïve B6 mice (Figure 2.11C).   

 

A B C 

 
 
Figure 2.11: The humoral responses of lymphocytes from tolerant B6 mice 
injected into B6 rag-/- mouse recipients of NPI xenografts. The humoral 
immune responses of B6 rag-/- mouse recipients of first (A, n=9) and second 
party (B, n=10) NPI xenografts 60 days after reconstitution with lymphocytes 
from tolerant B6 mice were comparable (6.31±0.59% and 7.55±1.02%, 
respectively).  The IgG antibody levels from these mice were significantly 
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(p<0.0001) lower than the levels of anti-porcine IgG antibody levels of B6 rag-/- 
mice (67.42±5.38%, n=8) that rejected the NPI xenografts by 15 days post 
injection of lymphocytes from naïve non-transplanted B6 mice (C).  Controls for 
this experiment consisted of unstained spleen cells (dashed black line) and spleen 
cells incubated just with secondary antibody without serum (solid gray line).  
 
 

To confirm that tolerance to first party NPI xenografts can be extended to 

the second party NPI xenografts, tolerant B6 mice were re-transplanted with a 

second party NPI.  All of the mice transplanted with a second party NPI xenograft 

maintained normoglycemia for more than 100 days post-harvest of the first party 

NPI xenograft.  However, removal of the right kidney bearing the second party 

NPI xenograft resulted in the recurrence of diabetes in all B6 mouse recipients 

(Figure 2.12A) indicating that tolerance induced by combined anti-LFA-1 and 

anti-CD154 mAbs to first party NPI xenografts can be extended to second party 

NPI xenografts.  The first (Figure 2.12B) and second (Figure 2.12C) party NPI 

xenografts from tolerant B6 mice had intact islets composed of abundant insulin 

positive cells.  Low levels of anti-porcine IgG antibodies (Figure 2.12D) were 

detected in these mice at the end of the study (>300 and >200 days post-

transplantation of the first and second party NPI, respectively).   
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Figure 2.12: Tolerance provided by combined anti-LFA-1 and anti-CD154 
mAb therapy can be extended to second party NPI xenografts. Tolerant B6 
mice (n=5) maintained normoglycemia after re-transplantation of a second party 
NPI xenograft (first arrow, A) and remained normoglycemic after removal of the 
first party NPI xenograft (second arrow).  These mice became diabetic only after 
removal of the right kidney bearing the second party NPI xenograft (third arrow).  
Representative first (B) and second (C) party NPI xenografts from tolerant B6 
mice had intact islets composed of abundant insulin positive cells.  Scale bar 
represents 100 µm.  Low levels of anti-porcine IgG antibodies (3.95±0.52%, n=5) 
were detected in these mice at the end of the study (>300 and >200 days post-
transplantation of the first and second party NPI, respectively, D).  Representative 
histograms for porcine cells bound to mouse IgG antibodies are shown and 
controls for this experiment consisted of unstained porcine spleen cells (dashed 
black line) and the cells incubated just with secondary antibody without without 
serum (solid gray line). 
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2.4 DISCUSSION 

One of the major challenges in making xenotransplantation of NPI a 

clinical reality is overcoming the rejection barrier using safe anti-rejection 

regimens and eventually, tolerance induction strategies to minimize if not 

alleviate the continuous use of harmful immunosuppressive drugs.  Our study 

showed for the first time that targeting the adhesion and costimulatory pathways 

of T cell activation using short-term administrations of anti-LFA-1 and anti-

CD154 mAbs could induce robust tolerance to NPI xenografts in B6 mice.  

Tolerant B6 mice could respond well to glucose challenge and a significant 

decrease in the blood glucose levels of these mice as well as in B6 rag-/- mouse 

recipients was observed at early time points after glucose challenge compared to 

what was observed in naïve B6 mice.  This observation was perhaps due to the 

excess in β cell mass in the transplanted animals compared to the β cell mass that 

existed in the native pancreas of age-matched naïve B6 mice (13).  

 Long-term normoglycemia in tolerant B6 mice was associated with intact 

NPI xenografts containing numerous insulin-positive cells and mononuclear cells 

surrounding but not infiltrating the islet grafts.  These NPI xenografts contained 

foxp3+ cells as well as IL-10 and TGF β cytokine transcripts indicating the 

presence of T regulatory cells in the graft site (22-24).  In addition, tolerance to 

NPI xenografts is associated with lower levels of xenoreactive anti-porcine IgG 

antibodies comparable to those detected in naïve B6 mice.  We also found no 

significant difference in the total number of spleen cells and percentage of CD4+, 

CD8+ T cells as well as B cells from tolerant B6 mice compared to naïve B6 mice 

 172



suggesting that tolerance due to clonal deletion is unlikely.  However, further 

analysis of the phenotype of immune cells from tolerant B6 mice using flow 

cytometry showed higher percentage of CD4+ T cells, co-expressing cell surface 

markers for T regulatory cells  (22;25-28) compared to those observed in naïve 

B6 mice.  The importance of T regulatory cells in tolerance to NPI xenografts 

induced by the combined mAb therapy was further confirmed when tolerant B6 

mice became diabetic after depletion of CD25+ cells using mAb.  All tolerant B6 

mice became diabetic and their NPI xenografts had no insulin-positive cells but 

contained immune cells infiltrating the islet grafts.       

 We also demonstrate that by immunization of naïve non-transplanted B6 

mice with pig spleen cells for 30 days, mouse T cells could proliferate strongly 

after stimulation with the same pig cells in vitro.  We showed that T cells from 

tolerant B6 mice did not proliferate after stimulation with pig spleen cells.  

However, they were able of proliferating robustly after stimulation with non-

antigen-specific stimulation with Con A or anti-CD3ε mAb indicating that the in 

vitro unresponsiveness observed in T cells from tolerant B6 mice is specific to pig 

antigens.  Furthermore, cells from tolerant B6 mice were able to suppress the 

proliferative response of lymphocytes from B6 mice immunized with the same 

pig spleen cells that were used as stimulator cells in the MLR assays.  These 

results indicate that unresponsiveness of T cells from tolerant B6 mice is not due 

to their anergic condition but could be due their regulatory function (29;30).  Our 

results also showed for the first time that tolerance to first party NPI xenografts 

could be extended to second party NPI xenografts as demonstrated by transfer of 
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protection to NPI xenografts and survival of a second party NPI xenografts in 

tolerant B6 mice.  CFSE labeling of lymphocytes showed limited in vivo 

proliferation of a large proportion of T cells from tolerant B6 mice when 

transferred into B6 rag-/- mice with established first or second party NPI 

xenografts.  Taken together, our study demonstrates for the first time that 

targeting the adhesion and costimulatory pathways for T cell activation by short-

term administrations of anti-LFA-1 and anti-CD154 mAbs can induce tolerance to 

NPI xenografts in immune competent B6 mice through T regulatory cells.  

Combination of biologic agents that interferes with these pathways may be a 

promising strategy for induction of tolerance to islet xenografts and could form a 

significant component of future anti-rejection regimens in clinical islet 

xenotransplantation.   
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3.1 INTRODUCTION 

The widespread application of islet transplantation as treatment for type 1 

diabetes is currently limited by the shortage of human donor islets and the chronic 

use of harmful immunosuppressive drugs to prevent rejection (1,2).  Neonatal 

porcine islets (NPI) are being considered as an alternative source of islets for 

clinical transplantation because abundant number of islets can be easily isolated 

and maintained in culture (3).  In addition they are capable of reversing diabetes 

in both small (3-5) and large animals (6,7), including the pre-clinical non-human 

primate model (7).  We previously demonstrated that combined anti-LFA-1 and 

anti-CD154 monoclonal antibody (mAb) therapy resulted in a robust form of  NPI 

xenograft protection in B6 mice (4,5,8).  Recently, we also demonstrated in these 

mice that short-term administrations of combined anti-LFA-1 and anti-CD154 

mAbs induced tolerance to NPI xenografts that is mediated by T regulatory cells 

(8).  Tolerance to porcine islet xenografts is important to achieve so that the need 

for continuous use of harmful immunosuppressive drugs could be minimized or 

eliminated.  In addition, it is important to assess if tolerance induced could be 

extended to a second party porcine islet xenografts in case human islet transplant 

recipients would require a second islet transplant to maintain insulin 

independence.  It is also important to determine whether tolerance induced could 

be extended to different tissue or organ grafts without any additional anti-

rejection therapy since type 1 diabetic patients are susceptible to developing 

deleterious secondary tissue or organ complications that may require replacement 

by transplantation.  Thus, the aim of this study was to determine the species and 
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tissue specificity of tolerance induced by transient perturbation of adhesion and 

co-stimulatory pathways using short-term administrations of a combination of 

anti-LFA-1 and anti-CD154 mAbs.  Our results show that tolerance induced by 

this strategy is specific to neonatal porcine islet but not to porcine skin xenografts. 

3.2 MATERIALS AND METHODS 

3.2.1 Animals 

Six to 8-week-old male immune-competent B6 (C57BL/6J, H-2b) and 

immune-deficient B6 rag-/- (B6.129S7-Rag1tm1Mom/J, H-2b) mice were purchased 

from Jackson Laboratory (Bar Harbor, ME, USA) and were used as recipients.  

These mice were rendered diabetic by a single intraperitoneal injection of 180 or 

175 mg/kg body weight of streptozotocin (STZ, Sigma, St Louis, MO, USA) for 

B6 or B6 rag-/- mice, respectively and monitored following our published 

protocol (8).  All mice were fed standard laboratory food and cared for according 

to the guidelines established by the Canadian Council on Animal Care Committee.  

Islet or skin donors include 3-day-old Duroc cross neonatal porcine (>1.5 kg body 

weight), 8-10-week-old male BALB/c (BALB/c Cr//AltBM d, H-2 ) both were 

purchased from the University of Alberta (Edmonton, Alberta, Canada), and male 

Wistar-Furth rats (WF, RT1U , 200-300 g body weight) that were purchased from 

Harlan Laboratories (Indianapolis, IN, USA). 

3.2.2 Islet isolation and transplantation 

Islets were isolated as previously described (3,9-12).  Briefly, rodent islets 

were isolated via distension of the pancreas, followed by collagenase (Sigma, 

Oakville, ON) digestion, density gradient centrifugation with ficoll (Sigma, 
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Oakville, ON) and handpicking of the islets. Neonatal pigs were anesthetized with 

halothane and subjected to laparotomy and exsanguination.  The pancreas was 

removed, placed in Hanks’ balanced salt solution (HBSS, Sigma, St Louis, MO, 

USA) cut into small pieces, and digested with 2.5 mg/ml collagenase 

(clostridiopeptidase A, type XI, Sigma-Aldrich, St. Louis, MO, USA).  Digested 

tissue was filtered through a 500 µm nylon screen then cultured for 7 days in 

HAM’s F10 medium (GIBCO Laboratories, Grand Island, NY, USA) containing 

10 mmol/l glucose, 50 µmol/l isobutylmethylxanthine (ICN Biomedicals, 

Montreal, Canada), 0.5% bovine serum albumin (fraction V, radioimmunoassay 

grade; Sigma), 2 mmol/l L-glutamine, 3 mmol/l CaCl2, 10 mmol/l nicotinamide 

(BDH Biochemical, Poole, England), 100 units/ml penicillin, and 100 µg/ml 

streptomycin at 37°C (5% CO2, 95% air).  A total of 500 freshly isolated rodent 

islets or 7 days cultured 2,000 NPI were transplanted under the left kidney capsule 

of diabetic B6 or B6 rag-/- mice as described previously (3,8,9,13).  Briefly, 

diabetic B6 or B6 rag-/- mice were anesthetized by inhalational isoflurane and the 

left flank was shaved and sterilized with 100% ethanol. A flank incision was 

made lateral to the left paraspinal muscles and the peritoneum was sharply 

divided to expose the left kidney. A sterile cotton swab was utilized to expose and 

produce the left kidney from the incision. A small incision was made in the 

kidney capsule with a 27-gauge needle and a subcapsular pocket was expanded 

with the use of a sterile Pasteur pipette. Aliquots of 500 rodent islets or 2,000 NPI 

were aspirated into polyethylene (PE-50) tubing, pelleted by centrifugation and 

placed within the subcapsular pocket with the aid of a micromanipulator syringe. 

 181



Once the tubing was removed, the kidney capsule was cauterized with a 

disposable high-temperature cautery pen (Aaron Medical Industries, St. 

Petersburg, FL, USA). Engraftment was considered successful when blood 

glucose level reached ≤8.5 mmol/l.  Graft rejection was defined as the first of 

three consecutive days of hyperglycemia (>12 mmol/l), and rejection was 

confirmed by histological analysis of the graft. Nephrectomy of the graft-bearing 

kidney was performed on recipients with long-term graft function to confirm that 

normoglycemia was due to the islet xenograft. 

3.2.3 Monoclonal antibody therapies 

B6 mouse recipients of NPI were randomly designated to receive short-

term intra-peritoneal injections of anti-LFA-1 mAb (KBA; rat IgG2a) at 200 µg 

on days 0, 1, 7, 14 post-transplant plus anti-CD154 mAb (MR-1; hamster IgG1; 

Bio Express, West Lebanon, NH, USA) at 250 µg on days –1 and 1 and 2 times a 

week for an additional 4 weeks post-transplant. 

3.2.4 In vitro proliferation assays 

In vitro proliferation of lymphocytes from tolerant B6 mice were 

performed by combining 5x105 spleen cells from tolerant B6 mice with 

Concanavalin A (ConA; 10 μg/ml, Sigma) or with 3 x 105 irradiated (2,500 rad) 

spleen cells from naïve BALB/c mice, WF rats, from the same (first party) or 

different (second party) neonatal porcine donors used in B6 mice.  The cells were 

cultured in 96-well flat-bottom plates in a total volume of 0.2 ml of Eagle’s 

modified essential medium (EMEM, Invitrogen, Burlington, ON, Canada) 

supplemented with 10% FBS (Invitrogen), 1 x 10-5 mol/l 2-mercaptoethanol, 2 x 
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10-3 mol/l L-glutamine and 1% antibiotics in triplicate at 37°C, 5% CO2 and 95% 

air (14).  After three, 4, and 5 days of culture T cell proliferation was determined 

by pulsing the cells of primary culture with one µCi [3H]-thymidine/well for 18 h.  

Cells were then harvested onto glass microfiber filters (Wallac, Turku, Finland), 

and counts per minute (cpm) per sample were detected using the Wallac 

MicroBeta® TriLux luminescence counter (PerkinElmer, Waltham, MA, USA). 

In vitro proliferation of lymphocytes from naïve control B6 mice were detected 

after combining with the same stimulators. 

3.2.5 Adoptive transfer studies 

Streptozotocin-induced diabetic B6 rag-/- mice were transplanted with 500 

islets from BALB/c mice or WF rats, or 2,000 islets from first party or second 

party neonatal porcine.  At 150 days post-transplantation, all normoglycemic mice 

received intraperitoneal injection of 50x106 spleen cells in 200 μl PBS from 

tolerant B6 mice or from naive non-transplanted B6 mice.  Blood glucose levels of 

these mice were monitored three times a week after cell injection.  The graft-

bearing kidneys were removed for histological analysis at the time of rejection or 

at 60 days post-cell transfer if mice remained normoglycemic.  The blood glucose 

levels of the latter group of mice were monitored to confirm that normoglycemia 

was graft-dependent.  The presence of adoptively transferred immune cells was 

confirmed by flow cytometry. 

3.2.6 CFSE labeling of spleen cells 

Spleen cells from tolerant B6 mice or naïve non-transplanted B6 mice 

were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) 
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according to the manufacturer’s protocol (Molecular Probes, Eugene, OR, USA).  

Briefly, ten million per ml of spleen cells from B6 mouse recipients of NPI that 

maintained long-term normoglycemia were suspended in sterile PBS and 

incubated with 10 µM carboxyfluorescein diacetate succinimidyl ester (CFSE, 

Molecular Probes, Eugene, OR, USA) in the dark with periodic agitation at 37°C 

for 10 min.  Excess CFSE was quenched with 5% FBS (Sigma) and the cells were 

washed with  PBS.  Fifty million CFSE labeled spleen cells in 200 µl PBS were

injected into B6 rag-/- mice with established allogeneic BALB/c mouse or 

xenogeneic WF rat, first or second party NPI at 150 days post-transplantation.  On 

the day of rejection or at 60 days post-cell transfer, spleen cells from reconstituted 

B6 rag-/- mice were isolated and 1x106 cells were incubated with PE-Cy5 

conjugated anti-mouse TCRβ chain to determine the proliferative response of T 

cells in recipient mice. CFSE specific fluorescence histograms were created using 

a BD FACS Calibur flow cytometry machine (BD Biosciences Pharmingen, 

Mississauga, Ontario, Canada) by gating on TCRβ+ T cells. 

3.2.7 Skin transplantation 

Tolerant B6 mice were transplanted with full-thickness skin from 

allogeneic BALB/c mice or second party xenogeneic neonatal porcine.  Skin 

grafts were inspected daily until the time of rejection, which is defined as necrosis 

of the skin grafts.  In a parallel experiment, skin transplantation was also 

performed on naïve B6 mice and B6 rag-/- mice as positive and negative control 

groups, respectively. 

3.2.8 Immunohistological analysis 
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The presence of insulin-producing beta cells and foxp3+ immune cells in 

the grafts were examined following our published protocol (4,8,10). Graft-bearing 

kidneys were harvested and fixed in 10% buffered formalin solution and 

embedded in paraffin, then 5 µm sections were stained with guinea pig anti-

porcine insulin primary antibody (1:1,000 dilution; DAKO laboratories, 

Mississauga, Ontario, Canada) for 30 min, followed by the addition of 

biotinylated goat anti-guinea pig IgG secondary antibody (1:200 dilution; Vector 

Laboratories, Burlingame, CA, USA).  Avidin-biotin complex/horseradish 

peroxidase (ABC/HP; Vector Laboratories, Burlingame, CA, USA) and 3, 3-

diaminobenzidinetetrahydrochloride (DAB; BioGenex, San Ramon, CA, USA) 

were used to detect positive cells (brown color).  All paraffin sections were 

counter-stained with Harris’ hematoxylin and eosin. The other half of the kidney 

was embedded in OCT compound (Miles Scientific, Naperville, IL, USA) and 

kept frozen at -80°C to identify the foxp3 positive cells in the grafts.  Five-micron 

frozen sections of the graft were air dried for 10 min then fixed in acetone for 3 

min at 4°C.  Triton X-100 (0.1% in PBS) was added onto the sections and left for 

10 min at room temperature, and then the sections were washed in PBS.  Non-

specific binding was eliminated by incubating the tissue sections in 2% fetal 

bovine serum (FBS) in PBS for 30 min.  In addition, endogenous avidin and 

biotin or biotin-binding proteins present in the sections were also eliminated using 

the avidin/biotin blocking kit (Vector Laboratories, Burlingame, CA, USA).  Rat 

anti-mouse foxp3 antibody (1:25 dilution; eBioscience, San Diego, CA, USA) 

was applied to designated tissue sections for 60 min at room temperature.  
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Biotinylated goat anti-rat IgG (1:200 dilution; Southern Biotechnology Associates, 

Inc., Birmingham, AL, USA) secondary antibody was added and incubated for 30 

min.  ABC/HP reagent (Vector Laboratories) and DAB were applied to produce a 

brown color. Sections were then counter-stained with Harris’ hematoxylin 

Sections were counter-stained with Harris’ hematoxylin. 

3.2.9 Detection of anti-islet or anti-skin donor antibodies by flow cytometry 

The humoral immune response of the recipients to the donor grafts was 

determined by measuring the levels of mouse anti-islet or anti-skin donor IgG 

antibodies from blood serum of each transplant recipient using flow cytometry 

(4,8,10).  Peripheral blood samples from B6 or reconstituted B6 rag-/- mice that 

either rejected or accepted the grafts were collected, and sera were isolated.  

Spleen cells (1x106) obtained from the donors were incubated with serum from 

recipients of WF rat islets or pig islet and/or skin (1:128 dilution) or BALB/c 

mouse islets and skin recipients (1:64 dilution) for 1 hour at 37°C, 5% CO2, and 

95% air.  Spleen cells were then washed with PBS and incubated for 1 hour at 4oC 

with fluorescein isothiocyanate (FITC)-conjugated rat adsorbed goat anti-mouse 

IgG antibody (1:200 dilution, Southern Biotechnology Associates, Inc. 

Birmingham, Alabama, AL, USA) to detect the levels of mouse anti-porcine or 

mouse anti-rat IgG antibody.   FITC-conjugated affinity pure F(ab)2 fragment 

rabbit anti-mouse IgG, Fcγ fragment specific antibody (1:100 dilution, Jackson 

ImmunoResearch Laboratories, Inc., West Grove, PA, USA)  was used to detect 

the levels of mouse anti-mouse IgG antibody.  The percentage of cells bound to 

the antibody was determined from single parameter fluorescence histograms on a 
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BD FACS Calibur flow cytometry machine after gating on viable lymphocytes.  

Controls for this experiment include unstained spleen cells, and spleen cells 

incubated with secondary antibody alone without mouse serum. 

3.2.10 Characterization of lymphocytes by flow cytometry 

Spleen cells from reconstituted B6 rag-/- mouse recipients were isolated 

on the day of rejection or at >60 days post-cell transfer.  Spleen cells were 

isolated by mechanical disruption of spleen tissue between rough edges of glass 

slides. Erythrocytes from spleen cell suspension were depleted using red blood 

cell lyses buffer.  Absolute lymphocyte numbers were determined by staining the 

cells with Trypan blue exclusion dye, and live cells were counted using a 

hemocytometer (14).  One million spleen cells were incubated with fluorescent 

conjugated antibodies (1:100 dilution, eBioscience) for 30 min at 4oC.  Spleen 

cells were washed two times with PBS and suspended in 300 μl of FACS buffer 

(2% FBS in PBS).  Fluorescence histograms were created using a BD FACS 

Calibur flow cytometry machine and were used to determine the percentage of 

positive cells labeled with the corresponding antibodies.  Controls for this 

experiment include unstained spleen cells from the corresponding mice and spleen 

cells from non-transplanted naïve B6 mice that were either not incubated or 

incubated with the antibodies. 

3.2.11 Statistical analysis 

Statistical differences between groups in mixed lymphocyte culture assays 

and mouse anti-donor IgG antibody levels were determined using non-parametric 

Mann-Whitney U test.  Statistical differences in graft survival among the groups 
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were analyzed using the Kaplan-Meier Log rank test.  All statistical tests were 

performed using SPSS statistical software, version 13.0 for Windows (Chicago, 

IL, USA). A p value of < 0.05 was considered to be statistically significant. 

3.3 RESULTS 

3.3.1 Combination of anti-LFA-1 and anti-CD154 mAbs induces porcine 

specific unresponsiveness in vitro.   

The specificity of tolerance induced by the combined anti-LFA-1 and anti-

CD154 mAbs was examined in both in vitro proliferation assays and in vivo 

adoptive transfer of cells from tolerant B6 mouse recipients of NPI xenografts.  

On days 3, 4 and 5 of culture, lymphocytes from spleen of tolerant B6 mice 

responded robustly after stimulation with allogeneic BALB/c mouse (92,531 ± 

8,044, 49,892 ± 5,906, and 24,236 ± 2,929 cpm, respectively) or xenogeneic WF 

rat spleen cells (91,933 ± 2,815, 61,788 ± 4,161, and 28,647 ± 2,876 cpm, 

respectively, Figure 3.1A).  These responses were comparable to the proliferation 

of lymphocytes from spleen of naïve non-transplanted B6 mice stimulated with 

the same allogeneic BALB/c mouse (100,136 ± 7,775, 53,748 ± 5,857, and 

24,854 ± 3,688 cpm, respectively) and xenogeneic WF rat spleen cells (94,662 ± 

2,647, 65,769 ± 4,507, and 28,350 ± 1,890, respectively, Figure 3.1B) on days 3, 

4 and 5 of culture.   
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Figure 3.1: Lymphocytes from tolerant B6 mice showed a porcine specific 
unresponsiveness in vitro.  Lack of detectable proliferation was observed when 
lymphocytes from tolerant (A, white circles and inverted triangles, n=3 in each 
group) and naïve non-transplanted B6 mice (B, black circles and inverted 
triangles, n=3 in each group) were stimulated with spleen cells from first or 
second party porcine donors, respectively.  In contrast, lymphocytes from tolerant 
B6 mice (A) responded robustly after stimulation with ConA (white squares), 
allogeneic BALB/c mouse (white triangles) or xenogeneic WF rat spleen cells 
(white diamonds).  These results were comparable to what was observed in the 
responses of lymphocytes from naïve non-transplanted B6 mice (B) when co-
cultured with the same stimulators (black squares for ConA, black triangles for 
BALB/c mouse and black diamonds for WF rat spleen cells). 
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In contrast, no measurable proliferation of lymphocytes from tolerant B6 

mouse recipients of NPI were observed after stimulation with first party (560 ± 

128, 758 ± 98, and 1,291 ± 239 cpm, respectively) or second party (765 ± 77, 

1,570 ± 58, and 2,458 ± 216 cpm, respectively) porcine donors on 3, 4 and 5 days 

of culture (Figure 3.1A).  The responses observed in this group was comparable to 

those seen in lymphocytes from spleen of naïve non-transplanted B6 mice 

stimulated with the same cell populations on the same days of culture (465 ± 31, 

656 ± 34, and 1,068 ± 87, respectively, Figure 3.1B). 

3.3.2 Combination of anti-LFA-1 and anti-CD154 mAbs induces porcine 

specific unresponsiveness in vivo.  

All of the B6 rag-/- mice transplanted with islets, achieved and maintained 

normal blood glucose levels for more than 150 days post-transplantation (Figure 

3.2).  Those that received allogeneic BALB/c mouse or xenogeneic WF rat islets 

achieved normoglycemia within 1 day post-transplantation (Figure 3.2A and B, 

respectively) while those transplanted with first or second party xenogeneic NPI 

achieved normoglycemia at 78 days post-transplantation (Figure 3.2C and D, 

respectively).  

B6 rag-/- mice with established allogeneic mouse islet grafts that were 

reconstituted with spleen cells from tolerant B6 mouse recipients of first party 

NPI became diabetic within 14 and 25 days post-cell injection with a mean 

survival time (MST) of 20.3 ± 1.9 days post-cell injection (Table 3.1 and Figure 

3.2A).   
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Figure 3.2: Lymphocytes from tolerant B6 mice showed a porcine specific 
unresponsiveness in vivo.  Metabolic follow-up of B6 rag-/- mouse recipients of 
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allogeneic BALB/c mouse or concordant WF rat islets (n=12 in each group) 
showed that these mice achieved normoglycemia within 1 day after 
transplantation (A and B, respectively).  While mice transplanted with first (C) or 
second (D) party xenogeneic neonatal porcine islets (n=13 in each group) 
achieved normoglycemia at 78 days post-transplantation demonstrating the 
immature nature of the islets.  All B6 rag-/- mice with established allogeneic 
BALB/c mouse islet grafts that were reconstituted with 50x106 spleen cells from 
tolerant (black squares, n=7) or naive non-transplanted B6 mice (black triangles, 
n=5) became diabetic within 9 and 25 days post-cell injection.  Similarly all B6 
rag-/- mice with established xenogeneic WF rat islet grafts (B) reconstituted with 
50x106 spleen cells from tolerant (black squares, n=7) or naive non-transplanted 
(black triangles, n=5) B6 mice became diabetic within 8  and 15  days post-cell 
injection.  In contrast, reconstituted B6 rag-/- mouse recipients of first (C, black 
squares, n=9) and second (D, black squares, n=10) party NPI xenografts with 
spleen cells from tolerant B6 mice with first party NPI xenografts maintained 
normal blood glucose levels until the end of the study.  On the contrary, all B6 
rag-/- mouse recipients of first (C, black triangles, n=4) and second (D, black 
triangles, n=3) party NPI xenografts became diabetic at day 15 after receiving 
spleen cells from naïve non-transplanted B6 mice. 
 

Those that were with spleen cells from naïve non-transplanted B6 mice 

also became diabetic between 9 and 14 days post-cell injection (MST is 11.6 ± 0.8 

days, Table 3.1 and Figure 3.2A).  The difference in the rate of rejection between 

these two groups was found to be statistically significant (p<0.002).  Similarly, 

B6 rag-/- mice transplanted with rat islets and reconstituted with spleen cells from 

tolerant B6 mice with NPI xenografts rejected their grafts by 9.6 ± 0.6 days post-

cell injection (Table 3.1 and Figure 3.2B).  Those that received spleen cells from 

naïve non-transplanted B6 mice also rejected their grafts between 10 and 15 days 

with a MST of 12.0 ± 0.8 days post-cell injection (Table 3.1 and Figure 3.2B).  In 

contrast, B6 rag-/- mice with first or second party NPI xenografts that were 

injected with spleen cells from tolerant B6 mice with first party NPI xenografts 

maintained normal blood glucose levels until the end of the study (>60 days post-

cell injection, Table 3.1, Figure 3.2C and D, respectively).  This indicates that 

 192



cells from B6 mice tolerant to first party NPI xenografts are also unresponsive to 

the second party NPI xenografts.  On the contrary, all B6 rag-/- mouse recipients 

of first or second party NPI xenografts rejected their grafts by 12.3 ± 1.1 or 13.0 ± 

1.2  days after receiving spleen cells from naïve non-transplanted B6 mice, 

respectively (Table 3.1, Figure 3.2C and D). 

 
Table 3.1: Graft survival of allogeneic BALB/c mouse islets, xenogeneic WF 
rat islets, first party and second party NPI xenografts in B6 rag -/- mice 
injected with spleen cells from either tolerant B6 mouse recipients of first 
party NPI xenografts or naive non-transplanted B6 mice. 
 

Source of Islets Source of 
Spleen 
Cells 

n Graft Survival  Mean 
Survival Time 
(MST) ± SEM 

  (days post-cell 
injection) 

     
BALB/c mouse Tolerant B6 7 14, 15, 17, 21, 25(x3) 20.3 ± 1.9* 

 
BALB/c mouse Naive B6 5 9, 11, 12(x2), 14 11.6 ± 0.8* 

 
WF rat Tolerant B6 7 8 (x3), 10, 11(x3) 9.6 ± 0.6 

 
WF rat Naive B6 5 10, 11, 12 (x2), 15 12.0 ± 0.8 

 
First party NPI Tolerant B6 9 >60(x9) >60† 

 
Second party NPI Tolerant B6 10 >60(x10) >60† 

 
First party NPI Naive B6 4 10, 11, 13, 15 12.3 ± 1.1 

 
Second party NPI Naive B6 3 11, 13, 15 13.0 ± 1.2 

 
* p<0.002 between groups, †p<0.05 vs. other groups which just received naive 
cells, 

 

Mononuclear cell infiltrate and no islets were detected in the graft site of 

B6 rag-/- mice transplanted with BALB/c mouse (Figure 3.3A) or WF rat islets 

(Figure 3.3B).   
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Figure 3.3: NPI xenografts but not mouse islet allografts and rat islet 
xenografts in B6 rag-/- mouse recipients reconstituted with spleen cells from 
tolerant B6 mice remained intact with abundant insulin-positive cells.  
Representative allogeneic BALB/c mouse (A), xenogeneic WF rat (B) islet grafts 
from B6 rag-/- mice injected with lymphocytes from tolerant B6 mice had no 
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insulin positive cells but contain mononuclear cell infiltrate.  NPI xenografts from 
B6 rag-/- mice with established first (C) and second party (D) NPI xenografts 
reconstituted with spleen cells from B6 mice tolerant to first party NPI xenografts 
showed intact islets staining strongly positive for insulin.  In contrast, the first and 
second party NPI xenografts from B6 rag-/- mice reconstituted with spleen cells 
from naïve non-transplanted B6 mice had no insulin positive cells but contained 
mononuclear cell infiltrate (E).  Scale bar represents 100 µm. 

 
In contrast, the islet grafts from B6 rag-/- mice with established first 

(Figure 3.3C) and second party (Figure 3.3D) NPI xenografts reconstituted with 

spleen cells from B6 mice tolerant to first party NPI xenografts showed intact 

islets staining strongly positive for insulin.  While the grafts from B6 rag-/- mice 

with established first or second party NPI xenografts that were reconstituted with 

spleen cells from naïve non-transplanted B6 mice contained mononuclear cell 

infiltrate and no insulin positive cells (Figure 3.3E).   

The levels of allogeneic anti-mouse (38.8% - 45.2%, n=7, Figure 3.4A) 

and xenogeneic anti-rat (45.3% - 53.7%, n=7, Figure 3.4B) IgG antibodies 

detected in the B6 rag-/- mice with allogeneic mouse and xenogeneic rat islets, 

respectively reconstituted with tolerant B6 spleen cells were significantly higher 

than the levels of anti-porcine IgG antibodies in the B6 rag-/- mice with first 

(5.3% - 7.5%, n=9, Figure 3.4C) and second (5.0 % - 7.8%, n=10, Figure 3.4D) 

party NPI xenografts reconstituted with same spleen cells (p<0.003). In addition 

the level of anti-porcine IgG antibodies detected in the B6 rag-/- mouse recipients 

of first or second party NPI  that received spleen cells from tolerant B6 mice were 

significantly lower (p<0.003) than those observed in B6 rag-/- mouse recipients 

of NPI that received spleen cells from naïve non-transplanted B6 mice (58.3% - 

68.1%, n=5, Figure 3.4E). 
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Figure 3.4: Humoral responses of tolerant lymphocytes to the allogeneic 
mouse and xenogeneic rat and porcine islets in vivo. The levels of anti-porcine 
IgG antibodies from reconstituted B6 rag-/- mouse recipients of allogeneic 
(38.8% - 45.2%, n=7, A) and xenogeneic rat (45.3% - 53.7%, n=7, B) islets were 
higher than those detected in recipients of first (5.3% - 7.5%, n=9, C) and second 
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(5.0 % - 7.8%, n=10, D) party NPI xenografts.  The levels of anti-porcine IgG 
antibodies observed in B6 rag-/- mouse recipients of NPI that received spleen 
cells from naïve non-transplanted B6 mice were also significantly higher (58.3% - 
68.1%, n=7, E) than those observed in mice reconstituted with spleen cells from 
tolerant B6 mice. Representative histograms are shown and controls for this 
experiment consisted of unstained (dashed black line) and secondary antibody 
without serum (solid gray line). 

 

CFSE labeling of spleen cells from tolerant B6 mice revealed that T cells 

from tolerant B6 mice when injected into B6 rag-/- mice with established 

allogeneic mouse (Figure 3.5A) or xenogeneic rat (Figure 3.5B) islet grafts 

proliferate robustly.  The pattern of proliferation was similar to what was 

observed when T cells from naïve non-transplanted B6 mice were injected into B6 

rag-/- mice with established first or second party NPI xenografts (Figure 3.5E).  

In contrast, a large proportion of T cells from B6 mice tolerant to first party NPI 

xenografts did not proliferate robustly after injection into B6 rag-/- mice with 

established first and second party NPI xenografts (Figure 3.5C and D, 

respectively).  However, in the absence of NPI xenografts, these cells were able to 

proliferate when injected into naïve non-transplanted B6 rag-/- mice (Figure 3.5F). 

After rejection of the islet grafts has been established or at 60 days post-

cell injection if reconstituted B6 rag-/- mice remained normoglycemic, the 

immune cells from B6 rag-/- mice were recovered and examined by flow 

cytometry.  We found that the total number of immune cells from B6 rag-/- mice 

with allogeneic BALB/c mouse or xenogeneic WF rat islet grafts were not 

significantly different when these mice were reconstituted with spleen cells from 

either tolerant or naïve non-transplanted B6 mice (Figure 3.6A).   
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Figure 3.5: Adoptively transferred lymphocytes from tolerant B6 mice 
showed a limited porcine-specific proliferation in vivo.  CFSE labeled spleen 
cells from tolerant B6 mice injected into B6 rag-/- mouse recipients that rejected 
the allogeneic BALB/c mouse or xenogeneic WF rat islet grafts, showed robust T 
cell proliferation (A and B, respectively).  The pattern of proliferation was similar 
to what was observed when T cells from naïve non-transplanted B6 mice were 
injected into B6 rag-/- mice with established first or second party NPI xenografts 
(E).  In contrast, CFSE labeled T cells from B6 mice tolerant to first party NPI 
xenografts showed that a large proportion of these cells did not proliferate 
robustly after injection into B6 rag-/- mice with established first (C) and second 
(D) party NPI xenografts.  However, in the absence of NPI xenografts, these cells 
were able to proliferate when injected into naïve B6 rag-/- mice (F). 

 

In contrast, we found a significant (p<0.05) difference between the total 

numbers of immune cells recovered from B6 rag-/- mice with first and second 

party NPI xenografts that received spleen cells from tolerant B6 mice compared to 

those that received spleen cells from naïve non-transplanted B6 mice.  Similarly, 
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despite the observed proliferation of immune cells from tolerant B6 mice after 

reconstitution in naïve non-transplanted B6 rag-/- mice, the total number of 

immune cells in these mice was significantly (p<0.05) lower than those observed 

in naïve non-transplanted B6 rag-/- mice that received spleen cells from naïve 

non-transplanted B6 mice (Figure 3.6A).  Further characterization of immune 

cells show that the frequencies of CD4+ (Figure 3.6B) and CD8+ (Figure 3.6C) T 

cells in B6 rag-/- mouse recipients of first and second party NPI xenografts were 

significantly (p<0.05) less than those detected in B6 rag-/- mice that received 

spleen cells from naïve non-transplanted B6 mice.  These results correspond with 

the pattern of in vivo proliferation of CFSE-labeled immune cells seen in these 

mice (Figure 3.5C - E, respectively).  We also found a significant (p<0.05) 

decrease in CD19+ B cell population in B6 rag-/- mouse recipients of NPI after 60 

days post-reconstitution of tolerant immune cells compared to the same group of 

NPI recipients reconstituted with spleen cells from naïve non-transplanted B6 

mice (Figure 3.6D).  Taken together, these results show that tolerance induced by 

short-term administrations of anti-LFA-1 and anti-CD154 mAbs is specific to the 

porcine species. 
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Figure 3.6: Immune cells from tolerant or naïve non-transplanted B6 mice 
after reconstitution into B6 rag-/- mouse recipients of allogeneic BALB/c 
mouse islets, xenogeneic WF rat islets, first or second party NPI.  The total 
number of immune cells recovered from B6 rag-/- mice with allogeneic or 
xenogeneic rat islet grafts reconstituted with spleen cells from either tolerant or 
naïve non-transplanted B6 mice were not significantly different (A).  In contrast, a 
significant (p<0.05) difference was observed between the total numbers of 
immune cells recovered from B6 rag-/- mice with first and second party NPI 
xenografts that received spleen cells from tolerant B6 mice compared to those that 
received spleen cells from naïve non-transplanted B6 mice (A).  Similarly, the 
total number of tolerant immune cells recovered in naïve non-transplanted B6 
rag-/- mice was significantly (p<0.05) lower than those observed in naïve non-
transplanted B6 rag-/- mice that received spleen cells from naïve non-transplanted 
B6 mice (A).  Further characterization of immune cells show that the frequencies 
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+of CD4  (B) and CD8+ (C) T cells in B6 rag-/- mouse recipients of first and 
second party NPI xenografts were significantly less than those detected in B6 rag-
/- mice that received spleen cells from naïve non-transplanted B6 mice (p<0.05). 
Also a significant (p<0.05) decrease in CD19+ B cell population in B6 rag-/- 
mouse recipients of NPI was detected after 60 days post-cell transfer of immune 
cells from tolerant B6 mice compared to the same group of NPI recipients 
reconstituted with spleen cells from naïve non-transplanted B6 mice (D). 

 

3.3.3 Tolerance induced by combination of anti-LFA-1 and anti-CD154 mAbs 

is specific to porcine islet but not to porcine skin xenografts.   

All B6 mice treated with combined anti-LFA-1 and anti-CD154 mAbs achieved 

and maintained normal blood glucose levels for more than 100 days post-

transplantation (Figure 3.7A and B). However, these mice rejected the second 

party porcine skin xenografts by 15.8 ± 1.7 days post-transplantation (Table 3.2).  

All untreated B6 mice transplanted with the same porcine skin rejected their grafts 

significantly faster (6.8 ± 0.7 days post-transplantation, p<0.002, Table 3.2) 

compared to the rate of rejection observed in tolerant B6 mice.  While all B6 rag-

/- mice transplanted with the second party porcine skin maintained their skin 

grafts until the end of the study (>60 days post-transplantation, Table 3.2).  We 

also found that all tolerant B6 mice transplanted with full-thickness allogeneic 

BALB/c skin rejected their grafts by 10.8 ± 0.7 days post-transplantation similar 

to what was observed in untreated B6 mice (10.6 ± 0.8 days post-transplantation, 

Table 3.2).  Despite the rejection of second party porcine and allogeneic BALB/c 

mouse skin grafts, tolerant B6 mice remained normoglycemic until the end of the 

study (>200 days post-transplantation, Figure 3.7A and B, respectively) and they 

only became diabetic when the NPI xenografts were removed.  
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Figure 3.7: Tolerance provided by combined anti-LFA-1 and anti-CD154 
mAb therapy to porcine islets could not be extended to skin grafts.  All 
tolerant B6 mice transplanted with second party porcine (A) and allogeneic 
BALB/c mouse (B) skin grafts (first arrow) remained normoglycemic until after 
removal of the left kidney bearing the first party NPI xenograft (second arrow).   
 

 
Histological analysis of the NPI xenografts from these mice showed intact 

islets (Figure 3.8A and B) with immune cells expressing foxp3  that were 

surrounding but not infiltrating the NPI xenografts (Figure 3.8C and D). 
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Table 3.2: Graft survival of allogeneic BALB/c mouse or second party 
porcine skin grafts  transplanted in tolerant B6 mouse recipients of first 
party NPI xenografts, naive non-transplanted B6 or naive non-transplanted 
B6 rag-/- mice.  
 

Skin graft 
recipient 

Skin type n Graft survival Mean Survival 
Time (MST) ± 

SEM  
(days post-

transplantation) 
     

Tolerant B6 Porcine 5 11, 14, 16, 17, 21 15.8 ± 1.7* 
 

Naïve B6 Porcine 5 5, 6, 7(x2), 9 6.8  ± 0.7* 
 

Naïve B6 rag-/- Porcine 3 >60 (3) >60 
 

Tolerant B6 BALB/c 5 9, 10, 11(x2), 13 10.8 ± 0.7 
 

Naïve B6 BALB/c 5 8, 10, 11, 12 (x2) 10.6 ± 0.8 
 

Naïve B6 rag-/- BALB/c 3 >60 (x3) >60 
 

 
* p<0.002 between the groups  
 

 Despite the rejection of second party porcine skin grafts, the levels of IgG 

antibodies against the second party porcine skin donors were significantly lower 

(14.3% - 20.2%, n=5, p<0.01, Figure 3.9A) compared to the levels of IgG 

antibodies (57.3% - 64.1%, n=5) against the same porcine skin xenografts in 

untreated B6 mice (Figure 3.9B).  The levels of allogeneic anti-mouse IgG 

antibodies (Figure 3.9C) in tolerant B6 mice that rejected the allogeneic BALB/c 

mouse skin grafts were comparable to those detected in B6 mice that rejected the 

same allogeneic mouse skin grafts (Figure 3.9D).   
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Figure 3.8: Histological analysis of the NPI xenografts harvested from the 
tolerant B6 mouse recipients of allogeneic mouse or xenogeneic porcine skin 
grafts. Representative first party NPI xenografts from tolerant B6 mice with 
second party porcine (A) or allogeneic BALB/c mouse (B) skin grafts had intact 
islets composed of abundant insulin positive cells as well as foxp3+ cells (C and D, 
respectively).  Scale bar represents 100 µm.  
 
  

A B 

 
C D 

 
 
Figure 3.9: Humoral responses of tolerant B6 lymphocytes to allogeneic 
mouse and second party xenogeneic porcine skin donors. The levels of IgG 
antibodies against the second party porcine skin donors are significantly lower 
(14.3%-20.2%, n=5, p<0.01, A) compared to the levels of IgG antibodies against 
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the same porcine skin xenografts in untreated B6 mice (57.3%-64.1%, n=5, B).  
However, the levels of allogeneic anti-mouse IgG antibodies in tolerant mouse 
recipients of allogeneic BALB/c skin (43.6%-59.8%, n=5, C) were comparable to 
the levels of IgG antibodies detected in naive B6 mouse recipients of BALB/c 
skin that rejected the same allogeneic mouse skin grafts (44.3%-61.7%, n=5, D). 
Representative histograms are shown and controls for this experiment consisted of 
unstained (dashed black line) and secondary antibody without serum (solid gray 
line). 

 

Taken together, these results show that tolerance induced by combined 

anti-LFA-1 and anti-CD154 mAb therapy is specific to porcine islet xenografts 

but not to porcine skin xenografts and that, this tolerance could not be broken 

even when xenogeneic porcine or allogeneic mouse skin grafts were rejected. 

3.4 DISCUSSION 

Our previous studies demonstrated that transient therapies directed against 

T lymphocyte activation and function using mAbs resulted in long-term islet 

xenograft survival, especially regarding highly phylogenetically-disparate 

xenograft donors (4,5,8,10).  In particular, we recently showed that short-term 

administrations of a combination of anti-LFA-1 and anti-CD154 mAb therapy 

resulted in tolerance to NPI xenografts that is mediated by T regulatory cells (8).   

In the current study, we demonstrated that tolerance induced by this 

combined mAb therapy is specific to porcine islets from either first or second 

party donors. Similar to what we found, species-specific tolerance to islet 

xenografts was also reported earlier by other groups (15-17).  For example, Goss 

et al (18) showed that 50% of recipients that were treated with anti-lymphocyte 

serum (ALS) did not reject their third party Lewis rat islet xenografts.  Similarly, 

Gordon et al (19) demonstrated that the combination of donor-specific transfusion 

 205



(DST) and anti-CD154 mAb induces species-specific prolongation of rat islet 

xenografts.   Lehnert et al (20) also demonstrated that a combination of anti-

CD154 mAb with CTLA4Fc produced indefinite survival of rat islet xenografts in 

100% of mouse recipients.  It is possible that rat or porcine of different strains 

share a wide range of species-specific antigens that are recognized through 

indirect antigen presentation in the mouse host.  Thus, tolerance induced to the 

repertoire of indirect presented xenograft-associated antigens may demonstrate 

high degree of cross-reactivity with unrelated donors (21).  It is interesting to note 

that while islet allograft rejection has both MHC class II–dependent and –

independent mechanisms of rejection, the response to porcine xenografts appears 

to be greatly reliant on the indirect MHC class II–restricted pathway.  Despite 

being finite in nature, the indirect anti-xenograft response appears to be extremely 

virulent but once tolerance to the islet xenografts is achieved, the state of 

unresponsiveness appears to be universal to the species. 

Our results indicate that maintenance of tolerance induced by combined 

anti-LFA-1 and anti-CD154 mAbs requires the presence of porcine antigens 

responsible for induction of tolerance and suggest for a perpetual role for host 

antigen-presenting cells (APCs) in maintaining antigen exposure to T regulatory 

cells (22,23).  Similar to what was previously demonstrated, we showed that 

antigen-specific suppression can be adoptively transferred (24,25) as was found in 

our adoptive transfer experiments where suppression activity of T regulatory cells 

have been observed in B6 rag-/- mouse recipients of either first or second party 

NPI xenografts.  It is possible that due to the lack of porcine -specific antigens in 
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BALB/c mouse or WF rat islet grafts, the T regulatory cells were not activated 

and suppression did not take place.  Therefore, the antigen-specificity observed 

both in vitro and in vivo could be explained by the hypothesis that T regulatory 

cells are activated only in hosts that has the antigens for which they are specific. 

Unlike the previous study by Gordon et al (26), which showed that 

combined DST with anti-CD154 mAb therapy could be effective in prolonging 

the survival of rat skin xenografts we showed that tolerance to porcine islets 

induced by combined anti-LFA-1 and anti-CD154 mAbs could not be extended to 

porcine skin xenografts.  The rejection of skin may require different co-

stimulation pathways or additional pathways for T cell activation.  Gordon et al 

(27) suggested that such pathways might be mediated by APCs found in skin but 

not in islets, an example would be the epidermal Langerhans cells.  Our results 

suggest that tolerance to NPI xenografts induced by short-term administrations of 

combined anti-LFA-1 and anti-CD154 mAbs is specific to antigens that are 

common to porcine islets but not to porcine skin.  In addition, all of the tolerant 

B6 mice re-transplanted with second party allogeneic BALB/c skin or xenogeneic 

porcine skin maintained normoglycemia showing that tolerance to NPI xenografts 

could not be broken during the rejection process of mouse or porcine skin 

xenografts.  We sought evidence of T regulatory cells in the islet graft sites of 

these mice and showed the presence of foxp3+ cells surrounding the protected NPI 

xenografts. This finding suggests that cell-mediated regulation, at least in part, 

might be operating within the tolerated islet grafts.  As was suggested, foxp3+ T 

cells in the graft play a key role in dominant tolerance induced by combined DST 

 207



and anti-CD154 mAb (28).  It is possible that T regulatory cells in NPI xenograft 

site create a state of acquired immunological privilege site by which tissues are 

able to resist potentially damaging immune reactions during the rejection process 

of allogeneic BALB/c mouse or xenogeneic porcine skin grafts.  Such an idea has 

recently been advocated for how tumors may avoid immunological control (29).  

A significant delay however, in the rejection of porcine skin xenografts in tolerant 

B6 mice compared to the rejection of the same porcine skin grafts in untreated B6 

mouse recipients was observed which could be partially due to the expression of 

some porcine antigens that may be common between the porcine islets and 

porcine skin.  It remains to be determined whether tolerance to NPI xenografts 

induced by combined anti-LFA-1 and anti-CD154 mAbs is dominant. 

In conclusion, the data presented here indicate that tolerance induced by 

short-term administrations of a combination of anti-LFA-1 and anti-CD154 mAbs 

is species- and tissue- specific.  Our results suggest the possibility of development 

of clinical protocols using biologic agents that simultaneously target both 

adhesion and co-stimulation pathways for preventing rejection and induction of 

tolerance to NPI xenografts. 
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CELLULAR MECHANISM OF DOMINANT TOLERANCE TO 

NEONATAL PORCINE ISLET XENOGRAFTS INDUCED BY A 

COMBINATION OF ANTI-LFA-1 AND ANTI-CD154 MONOCLONAL 

ANTIBODIES IN MICE  
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4.1 INTRODUCTION 

Neonatal porcine islets (NPI) are an attractive alternative source for 

clinical islet transplantation due to their capacity to reverse hyperglycemia in 

small (1-6) and large animal models (7;8) including pre-clinical non-human 

primate models (8). Additionally, isolating a large number of islets from a 

neonatal porcine pancreas is easy and reproducible. Isolated NPI can be 

maintained in culture with the potential capacity for proliferation and 

differentiation (1). We previously demonstrated  that a combination of 

monoclonal antibodies (mAbs), particularly anti-LFA-1 and anti-CD154 mAbs, is 

highly effective in protecting NPI xenografts from rejection in non-autoimmune 

prone B6 mice (2;3). We also recently showed that this combined mAb therapy 

can induce species and tissue specific tolerance to NPI xenografts in B6 mice that 

is mediated by regulatory T cells (5;6). One of the major goals in the field of islet 

xenotransplantation is to develop safe and effective therapies that facilitate 

tolerance induction to NPI xenografts. Tolerizing regimens in clinical islet 

xenotransplantation is preferable as avoiding lymphocyte depletion may minimize 

the risks of malignancy and infection associated with T cell depletion therapy (9-

11) and sustained low CD4+ T cell counts (12;13). Additionally, optimal 

tolerizing regimens may require simultaneous modulation of immune cells such as 

CD4+ and CD8+ T cell subsets (14). In the current study our aims were to 

determine if a combination of anti-LFA-1 and anti-CD154 mAbs can induce 

dominant tolerance to NPI xenografts and also to determine the role of CD4+ and 

CD8+ T cell compartments in the induction and maintenance of tolerance to NPI 
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xenograft induced by this combined mAb therapy. Our results show that 

combined anti-LFA-1 and anti-CD154 mAbs therapy can induce dominant 

tolerance and CD4+ T cells play a more important role in the maintenance of 

tolerance to NPI xenografts in non-autoimmune prone B6 mice. 

4.2 MATERIALS AND METHODS 

4.2.1 Animals 

Six to 8-week-old male immune-competent B6 (C57BL/6J, H-2b) and 

immune-deficient B6 rag-/- (B6.129S7-Rag1tm1Mom/J, H-2b) were purchased from 

Jackson Laboratory (Bar Harbor, ME, USA) and were used as recipients.  These 

mice were rendered diabetic by a single intraperitoneal (i.p.) injection of 

streptozotocin (Sigma, St Louis, MO, USA) 180 or 175 mg/kg body weight for 

B6 or B6 rag-/- mice 4-6 days before transplantation, respectively.  Blood 

samples were obtained from the tail vein and glucose levels were monitored using 

a Precision glucose meter (ONETOUCH Ultra, Lifescan, Milpitas, CA, USA).  

All diabetic mice had two consecutive non-fasting blood glucose levels (BGLs) 

>20 mmol/l prior to islet transplantation.  All mice were fed standard laboratory 

food and cared for according to the guidelines established by the Canadian 

Council on Animal Care committee.  Three-day-old Duroc cross neonatal pigs 

(>1.5 kg body weight) were purchased from the University of Alberta (Edmonton, 

Alberta, Canada) as islet donors. 

4.2.2 Islet isolation and transplantation 

Neonatal porcine islets (NPI) were isolated as previously described (1). 

Briefly, neonatal pigs were anesthetized with halothane and subjected to 
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laparotomy and exsanguination.  The pancreas was removed, placed in Hanks’ 

balanced salt solution (HBSS, Sigma, St Louis, MO, USA) cut into small pieces, 

and digested with 2.5 mg/ml collagenase (clostridiopeptidase A, type XI, Sigma-

Aldrich, St. Louis, MO, USA).  Digested tissue was filtered through a 500 µm 

nylon screen then cultured for 7 days in HAM’s F10 medium (GIBCO 

Laboratories, Grand Island, NY, USA) containing 10 mmol/l glucose, 50 µmol/l 

isobutylmethylxanthine (ICN Biomedicals, Montreal, Canada), 0.5% bovine 

serum albumin (fraction V, radioimmunoassay grade; Sigma), 2 mmol/l L-

glutamine, 3 mmol/l CaCl2, 10 mmol/l nicotinamide (BDH Biochemical, Poole, 

England), 100 units/ml penicillin, and 100 µg/ml streptomycin at 37°C (5% CO2, 

95% air).  After 7 days of culture, NPI were counted for transplantation and a 

total of 2,000 NPI were transplanted under the left kidney capsule of B6 or B6 

rag-/- mice that had two consecutive non-fasting blood glucose levels of >20 

mmol/l 4 to 6 days after STZ injection (1;2).  Engraftment was considered 

successful when blood glucose level reached ≤8.5 mmol/l.  Graft rejection was 

defined as the first of 3 consecutive days of hyperglycemia (>12 mmol/l).  

Rejection was confirmed by histological analysis of the graft.  Nephrectomy of the 

graft-bearing kidney was performed on recipients with long-term graft function to 

confirm that normoglycemia was due to the islet xenograft.  

4.2.3 Monoclonal antibody therapies 

B6 mouse recipients of NPI were designated to receive short-term 

administration of anti-LFA-1 mAb (KBA; rat IgG2a; prepared as ascites; 200 µg 

on days 0, 1, 7, 14 post-transplant) and anti-CD154 mAb (MR-1; hamster IgG1; 
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Bio Express, West Lebanon, NH, USA; 250 µg on days –1 and 1 and 2 times a 

week for an additional 4 weeks post-transplant). Anti-CD4 mAb (GK1.5, rat 

IgG2b; BioExpress, 10mg/kg body weight on days -1, 0, 1, 2 post-transplantation) 

and/or anti-CD8 mAb (2.43, rat IgG2b; BioExpress,10mg/kg body weight on days 

-1, 0, 1, 2 post-transplantation) were administered alone or in combination with  

anti-LFA-1 and anti-CD154 mAbs as described above.  

4.2.4 Immunohistological analysis 

Insulin-producing beta cells and immune cell infiltrates were examined in 

sections of graft bearing kidneys by immunohistochemistry staining. Briefly, 

graft-bearing kidneys were harvested and fixed in 10% buffered formalin solution 

and embedded in paraffin, 5 µm sections were stained with guinea pig anti-

porcine insulin primary antibody (1:1,000; DAKO laboratories, Mississauga, ON, 

Canada) for 30 min, followed by the addition of biotinylated goat anti-guinea pig 

IgG secondary antibody (1:200; Vector Laboratories, Burlingame, CA, USA).  

Avidin-biotin complex/horseradish peroxidase (ABC/HP; Vector Laboratories, 

Burlingame, CA, USA) and 3, 3-diaminobenzidinetetrahydrochloride (DAB; 

BioGenex, San Ramon, CA, USA) were used to detect positive cells (brown 

color).  All paraffin sections were counter-stained with Harris’ hematoxylin and 

eosin.  

4.2.5 Detection of anti-porcine antibodies by flow cytometry 

Humoral immune response of B6 mouse recipients of NPI was determined 

by measuring serum levels of mouse anti-porcine IgG antibodies using flow 

cytometry.  Spleen cells (1x106) obtained from NPI donors were incubated with 
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1:128 dilutions of mouse serum for 1 h at 37°C, 5% CO2, and 95% air.  Spleen 

cells were then washed with PBS and incubated with 1:200 dilution of FITC-

conjugated rat adsorbed goat anti-mouse IgG antibody (Southern Biotechnology 

Associates, Inc. Birmingham, Alabama, AL, USA) for 1 h at 4°C.  The percentage 

of cells bound to the antibody was detected from single parameter fluorescence 

histograms on a BD FACS Calibur flow cytometry machine (BD Biosciences 

Pharmingen, Mississauga, ON, Canada) after gating on viable lymphocytes.  

Controls for this experiment include porcine spleen cells alone and spleen cells 

incubated with secondary antibody without mouse serum. 

4.2.6 Adoptive transfer assay 

At 150 days post-transplantation, 50 x 106 spleen cells or 10 x 106 purified 

CD4+ or CD8+ T cells from naïve non-transplanted B6 and/or tolerant B6 mouse 

recipients of NPI xenografts in a total volume of 200 µl PBS were injected into 

the peritoneum of NPI transplanted B6 rag-/- mice.  CD4+ and CD8+ T cells were 

purified using Cellect T cell immune affinity enrichment columns according to 

the manufacturer’s protocol (Cedarlane Laboratories, Hornby, ON, Canada). 

Blood glucose levels were monitored three times a week for 60 days post-cell 

injection.  At the time of rejection or at 60 days post-cell injection, NPI xenografts 

were harvested and were examined for the presence of insulin positive cells and 

immune cells. A survival nephrectomy was performed on B6 rag-/- mice that 

maintained normoglycemia for 60 days post-cell injection and a return to diabetic 

state confirmed graft function. Spleen cells were subsequently examined by flow 

cytometry to characterize the adoptively transferred immune cells. 
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4.2.7 Characterization of lymphocytes by flow cytometry 

Spleen cells from naïve non-transplanted B6 and tolerant B6 mouse 

recipients were isolated at different time points of post-treatment or at 100 days 

post-transplantation, respectively. Spleen cells were isolated by mechanical 

disruption of spleen tissue between rough edges of glass slides. Erythrocytes from 

spleen cell suspension were depleted using red blood cell lyses buffer.  Absolute 

lymphocyte numbers were determined by staining the cells with Trypan blue 

exclusion dye, and live cells were counted using a hemocytometer. One million 

viable spleen cells were incubated with fluorescent conjugated antibodies (1:100 

dilution, eBioscience, San Diego, CA, USA) for 30 min at 4oC.  Spleen cells were 

washed with PBS and suspended in 300 μl of FACS buffer (2% FBS in PBS).  

Fluorescence histograms were created using a BD FACS Calibur flow cytometry 

machine and were used to determine the percentage of positive cells labeled with 

the corresponding antibodies. Controls for this experiment include unstained 

spleen cells from the corresponding mice and spleen cells from non-transplanted 

naïve B6 mice that were either not incubated or incubated with the antibodies. 

4.2.8 Statistical analysis 

Statistical differences between groups in expression of cell markers and 

mouse anti-porcine IgG antibody levels were determined using nonparametric 

Mann-Whitney test. Statistical differences in graft survival among groups were 

analyzed using the Kaplan-Meier Log rank test. All statistical tests were 

performed using SPSS statistical software, version 13.0 for Windows (Chicago, 

IL, USA). A p value of less than 0.05 was considered to be statistically significant.  
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4.3 RESULTS 

4.3.1 Combination of anti-LFA-1 and anti-CD154 mAbs induces dominant 

tolerance to NPI xenografts.   

We previously showed that combination of anti-LFA-1 and anti-CD154 

mAbs can induce species and tissue specific tolerance to NPI xenograft through 

the regulatory T cell function (5;6). Therefore, to test our hypothesis that induced 

NPI xenograft tolerance is dominant, we performed an adoptive transfer assay 

using spleen cells from tolerant B6 mice alone or in combination with spleen cells 

from naive B6 mice and injected them into B6 rag-/- mouse recipients of NPI 

xenografts. Similar to what we previously reported (5;6) all B6 rag-/- mouse 

recipients of NPI xenografts that received 25×106 or 50×106 spleen cells from 

tolerant B6 mice protected their NPI xenografts and maintained normoglycemia 

for over 60 days post-cell transfer (Table 4.1). However, B6 rag-/- mouse 

recipients of NPI xenografts that received 25×106 or 50×106 spleen cells from 

naive B6 mice rejected their NPI xenografts and became diabetic by day 18 and 

15 post-cell transfer respectively (Table 4.1).  

To determine whether spleen cells from tolerant B6 mice could inhibit 

graft rejection by spleen cells from naive B6 mice, equal numbers of spleen cells 

from tolerant and naive mice (25×106 or 50×106 each) were co-transferred into B6 

rag-/- mouse recipients of NPI.  All of the B6 rag-/- mice that received combined 

spleen cells from tolerant and naive mice (1/1 ratio) maintained NPI xenograft 

survival for over 60 days post-cell transfer (Table 4.1). Moreover, majority of B6 

rag-/- mouse recipients of NPI that received 25×106 spleen cells form tolerant 
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mice combined with 50×106 spleen cells from naive B6 mice (1/2 ratio) had 

prolonged NPI xenograft survival for over 60 days post–cell transfer and only one 

mouse became diabetic at 55 days post-cell transfer (Table 4.1). Taken together, 

these results show that combination of anti-LFA-1 and anti-CD154 mAbs can 

induce dominant tolerance to NPI xenografts in B6 mice. 

 

Table 4.1: Graft survival of NPI xenografts in B6 rag -/- mice injected with 
spleen cells from either tolerant B6 and/or naive non-transplanted B6 mice. 
 

Source of Spleen Cells  n Graft Survival 
(Days post-cell transfer) 

50×106 tolerant B6 
 

5 >60(x5) 

25×106  tolerant B6 
 

5 >60(x5) 

50×106  naive B6 
 

5 11, 13, 15(x3) * 

25×106  naive B6 
 

5 13(x2), 15(x2), 18 * 

50×106 tolerant + 50×106 naive B6 
 

5 >60(x5) 

25×106 tolerant + 25×106  naive B6 
 

5 >60(x5) 

25×106 tolerant + 50×106  naive B6 5 55, >60(x4) 
 
* p<0.003 vs. other groups 
 
 
4.3.2 CD4+ T cells from tolerant B6 mice play a major role in transferring 

dominant tolerance to NPI xenografts induced by a combination of anti-LFA-1 

and anti-CD154 mAbs.  

To determine which subset of T cells (CD4+ or CD8+ T cells) can transfer 

tolerance to NPI xenografts, 10×106 purified CD4+ and CD8+  T cells (Purity 

>98% )from either tolerant and/or naive B6 mice were injected into the B6 rag-/- 
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mouse recipients of NPI. NPI xenograft survival of these mice was monitored by 

measuring blood glucose levels for over 60 days post-cell transfer. All of the B6 

rag-/- mouse recipients of NPI received 10×106 purified CD4+ or CD8+ T cells 

from tolerant B6 mice maintained NPI xenograft survival for 60 days post-cell-

transfer (Table 4.2). However, similar to what we reported previously (15) only 

B6 rag-/- mouse recipients of NPI that received purified CD4+ but not CD8+ T 

cells from naive B6 mice rejected their NPI xenografts by 22 days post-cell 

transfer (Table 4.2).  To examine the capacity of CD4+ or CD8+ T cells in 

transferring dominant tolerance, purified CD4+ or CD8+ T cells from tolerant B6 

mice in combination with 10×106 purified CD4+ T cells or 50×106 unpurified 

spleen cells from naive B6 mice were injected into the B6 rag-/- mouse recipients 

of NPI and islet graft survival were monitored for 60 days post-cell transfer. Only 

purified CD4+ but not CD8+ T cells from tolerant mice could inhibit the NPI 

xenograft rejection mediated by purified CD4+ T cells from naïve B6 mice (Table 

4.2). Both purified CD4+ and CD8+ T cells from tolerant mice could significantly 

(p< 0.003) suppress xenoreactivity of the spleen cells from naïve B6 mice that 

were injected into the B6 rag-/- mouse recipients of NPI (Table 4.2). A 

statistically significant difference (p<0.004) was determined between B6 rag-/- 

mice that received a combination of unpurified spleen cells from naive B6 mice 

with purified CD4+ or CD8+ T cells from tolerant B6 mice (Table 4.2).  

Collectively, these results indicate that tolerant CD4+ T cells play the major role 

in the transferring dominant tolerance to NPI xenografts induced by a 

combination of anti-LFA-1 and anti-CD154 mAbs. However tolerant CD8+ T 
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cells also are capable to inhibit NPI xenograft rejection mediated by naive B6 

spleen cells. 

 

Table 4.2:  Graft survival of NPI xenografts in B6 rag -/- mice injected with 
purified CD4+ and/or CD8+ T cells from either tolerant B6 or naive non-
transplanted B6 mice. 
 

Type of Transferred 
Cells 

No. of Cells n Graft Survival 
(Days post-cell transfer) 

Tolerant CD4+ T cells 
 

10×106 5 >60(x5) a

Tolerant CD8+ T cells 
 

10×106 5 >60(x5) b

Naïve CD4+ T cells 
 

10×106 5 13, 15, 18, 22(x2) * 

Naïve CD8+ T cells 
 

10×106 5 >60(x5) c

Tolerant CD4+ T cells 
+ Naïve CD4+ T cells 

 

10×106 (Each 
type) 

5 >60(x5) d

Tolerant CD8+ T cells 
+  Naive CD4+ T cells 

 

10×106 (Each 
type) 

5 10, 14, 17, 20 (x2) * 

tolerant CD4+ T cells +  
naïve spleen cells 

 

10 and 50 ×106 

(Respectively) 
5 51, 56, >60(x3) e

Tolerant CD8+ T cells 
+ Naïve spleen cells 

 

10 and 50 ×106 

(Respectively) 
5 24, 31, 42, 48, 51† 

Naive spleen cells 
 

50×106 5 11, 13, 15(x3) f * 

 
* p<0.004 vs. groups a, b, c, d, and e 
† p<0.003 vs. groups a, b, d, e, and f 
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4.3.3 Induction and maintenance of tolerance to NPI xenografts induced by a 

combination of anti-LFA-1 and anti-CD154 mAbs does not require CD4+ or 

CD8+ T cells.  

We explored the pattern of depletion and recurrence of new population of 

CD4+ and CD8+ T cells by using short-term administrations of depleting anti-CD4 

and anti-CD8 mAbs in naive non-transplanted B6 mice. Spleen cells from these 

mice were isolated and were analyzed for the presence of CD4+ and CD8+ T cells 

at different time points of post-mAb administration (n=3 in each time point per 

each group) using flow cytometry. The percentage of CD4+ and CD8+ T cells in 

naive B6 were reduced to <% 1.5 on day 6 post-injection of anti-CD4 and/or anti-

CD8 mAbs. However on day 56 post-injection new populations of CD4+ and/or 

CD8+ T cells were detected and on day 66 post-injection all of the mAb treated 

B6 mice had a comparable amount of CD4+ and/or CD8+ T cells with those 

detected in untreated B6 mice (Figure 4.1A and B, respectively).  To determine 

the role of CD4+ and/or CD8+ T cells in the induction of tolerance to NPI 

xenografts using short-term administration of a combination of anti-LFA-1 and 

anti-CD154 mAbs, B6 mouse recipients of NPI were simultaneously treated with 

a combination anti-LFA-1 and anti-CD154 mAbs plus anti-CD4 and/or anti-CD8 

mAbs. All B6 mouse recipients of NPI which were simultaneously treated with a 

combination of anti-LFA-1 and anti-CD154 mAbs alone or plus anti-CD4 and/or 

anti-CD8 mAbs achieved normoglycemia and maintained NPI xenograft survival 

for >100 days post-transplnatation (Table 4.3). 
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Figure 4.1: Frequency of CD4+ and CD8+ T cells in the spleen cells from 
naive non-transplanted B6 mice treated with short-term administrations of 
anti-CD4 and/or anti-CD8 mAbs. The percentage of both CD4+ and CD8+ T 
cells in the treated naive B6 micewere reduced to <% 1.5 on day 6 post injection 
of anti-CD4 mAb (black downward diagonal, 10mg/kg body weight on days 0, 1, 
2, and 3 post-injection), anti-CD8 mAb (black upward diagonal, 10mg/kg body 
weight on days 0, 1, 2, and 3 post-injection), or both (outlined diamond). 
However, on day 56 post injection new populations of CD4+ and/or CD8+ T cells 
were detected on day 66 post injection all of the treated non-transplanted B6 mice 
had a comparable amount of CD4+ and/or CD8+ T cells with untreated naive B6 
mice (A and B, respectively).  
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Table 4.3: Long-term survival of NPI xenografts in B6 mouse recipients of 
NPI treated with short-term administrations of anti-LFA-1 and anti-CD154 
mAbs alone or plus anti-CD4 and/or anti-CD8 mAbs.  
 

Group 
 

n Graft Survival 
(Days post-transplantation) 

Anti-LFA-1 + anti-CD154 
mAbs 

 

7 >100 (x7) 

Anti-LFA-1 + anti-CD154 + 
anti-CD4 mAbs 

 

8 >100 (x8) 

Anti-LFA-1 + anti-CD154 + 
anti-CD8 mAbs 

 

8 >100 (x8) 

Anti-LFA-1 + anti-CD154 + 
anti-CD4 + anti-CD8 mAbs 

 

8 >100 (x8) 

 
 

Histological analysis of the NPI xenografts harvested from mice that were 

treated with a combination of anti-LFA-1 and anti-CD154 mAbs alone or plus 

anti-CD4 and/or anti-CD8 mAbs showed intact islets with insulin producing cells 

and no immune cell infiltration (Figure 4.2A-D, respectively). hese 

characterization were comparable to what was seen in the NPI xenografts 

harvested from immune-deficient B6 rag-/- mice transplanted with same NPI 

(Figure 4.2E). In addition, the amount of anti-porcine antibody production of B6 

mouse recipients of NPI treated with a combination of anti-LFA-1 and anti-

CD154 mAbs alone or plus anti-CD4 and/or anti-CD8 mAbs to NPI xenografts 

(Figure 4.2F-I, respectively) were comparable to the amount detected in naive 

non-transplanted B6 mice (Figure 4.2J).  
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Figure 4.2: Representative NPI xenograft and anti-porcine Ab levels from B6 
mice treated with a combination of anti-LFA-1 and anti-CD154 mAbs alone 
or plus anti-CD4 and/or anti-CD8 mAbs. A-E: NPI xenografts in B6 mouse 
recipients treated with a combination of anti-LFA-1 and anti-CD154 mAbs alone 
(A) or plus anti-CD4 mAb (B) or anti-CD8 mAb (C) or combination of anti-CD4 
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and anti-CD8 mAbs (D) remained intact with abundant insulin-positive cells 
comparable to the NPI xenografts in immune-deficient B6 rag-/- mice(E).  Scale 
bar represents 100 µm.  H-J: The levels of IgG antibodies from tolerant B6 
mouse recipients of NPI treated with a combination of anti-LFA-1 and anti-
CD154 mAbs alone (5.3%-7.6%, n=7, A) or plus anti-CD4 mAb (5.9 % - 7.8%, 
n=8, B) or anti-CD8 mAb (4.9% -6.9%, n=8, C) or anti-CD4 and anti-CD8 mAbs 
(7.9%-8.6%, n=8, D) were comparable to the amount of anti-porcine IgG 
antibodies detected in the serum of naive non-transplanted B6 (4.9%-7.3%, n=5, 
D). Controls for this experiment consisted of unstained (dashed black line) and 
secondary antibody without serum (solid gray line).  
 

 

Further characterization of the spleen cells isolated from all of the treated 

groups showed comparable amount of T and B cells (Figure 4.3A). However 

significantly higher expression of regulatory markers namely CD25, foxp3 and 

GITR, and co-inhibitory markers such as PD-1 and CTLA-4 were detected in 

these mice (Figure 4.3B-D, respectively) compared to non-transplanted naive B6 

mice. Based on these results, induction of tolerance to NPI xenografts by a 

combination of anti-LFA-1 and anti-CD154 mAbs does not require the presence 

of CD4 or CD8 T cells. 
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Figure 4.3: Characterization of the spleen cells isolated from B6 mouse 
recipients of NPI treated with a combination of anti-LFA-1 and anti-CD154 
mAbs alone or plus anti-CD4 and/or anti-CD8 mAbs. Frequency of CD4+, 
CD8+ T and CD19+ B cells isolated from the spleen of B6 mouse recipients of 
NPI treated with a combination of anti-LFA-1 and anti-CD154 mAbs alone (black 
bars) or plus anti-CD4 (black downward diagonal) or plus anti-CD8 (black 
upward diagonal) or both (outlined diamond) were comparable with the 
percentages of these cells isolated from the spleen of naive-nontransplanted B6 
mice (A). The frequency of CD4+CD25+and CD8+CD25+, CD4+CD25+foxp3+ and 
CD4+CD25+GITR+ cells expressing regulatory and CD4+PD1+ and CD4+CTLA4+ 
cells expressing co inhibitory markers were significantly higher (p<0.001) in all 
different groups of mAbs treated B6 mouse recipients of NPI xenografts 
compared to those found in naive non-transplanted B6 mice (B-D).  
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While tolerance to NPI xenografts induced by a combination of anti-LFA-

1 and anti-CD154 mAbs does not require CD4+ and/or CD8+ T cells we further 

examined the role of CD4+ and CD8+ T cells in the maintenance of tolerance by 

treating some of tolerant B6 mice with anti-CD4 and/or anti-CD8 mAbs.  The 

majority (3 out of 5) of the tolerant B6 mice treated with anti-CD4 mAb 

maintained NPI xenograft survival for >100 days post-treatment (>250 days post-

transplantation) while two mice rejected their NPI xenografts on days 76 and 81 

post-treatment (226 and 231 days post-transplantation, respectively, Table 4.4). In 

contrast all of the tolerant mice treated with anti-CD8 mAb maintained NPI 

xenograft survival for >100 days post-treatment (>250 days post-transplantation, 

Table 4.4). All tolerant mice treated with a combination of anti-CD4 and anti-

CD8 mAbs rejected their NPI xenografts and became diabetic by day 88 post-

treatment (238 days post-transplantation, p=0.062 vs. anti-CD4 treated group and 

p<0.001 vs. untreated and anti-CD8 treated groups, Table 4.4). Taken together 

this results indicate that CD4+ and/or CD8+ T cells play an important role in the 

maintenance of tolerance to NPI xenografts induced by a combination of anti-

LFA-1 and anti-CD154 mAbs. 
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Table 4.4: NPI xenograft survival in tolerant B6 mice treated with short-term 
administration of anti-CD4 and/or anti-CD8 mAbs.  
 

Group  
 

n Graft Survival 
(Days post-transplantation) 

Untreated 
 

5 >250 (x5) 

anti-CD4 mAb treated 
 

5 226, 231, >250 (x3) 

anti-CD8 mAb treated 
 

5 >250 (x5)* 

anti-CD4 + anti-CD8 mAbs treated 
 

5 215, 220, 226, 236, 238 †‡§ 

 
* p=0.134 vs. untreated mice or treated mice with anti-CD4 mAb 
† p=0.062 vs. treated mice with anti-CD4 mAb 
‡ p<0.002 vs. treated mice with anti-CD8 mAb 
§ p<0.001 vs. untreated mice 
 

 

4.3.4 Immune modulation of antigen presenting cells by a combination of 

anti-LFA-1 and anti-CD154 mAbs can delay NPI xenograft rejection by naïve 

CD4+ T cells.   

We determined whether immune cells from tolerant B6 mice were 

remained bound by anti-LFA-1 (KBA, rat IgG2a) and anti-CD154 (MR-1; 

hamster IgG1) mAbs at day 150 post-transplantation using flow cytometry. 

Incubation of spleen cells from tolerant B6 mice with biotinylated anti-rat IgG 

and anti-hamster IgG mAbs resulted in undetectable binding (Figure 4.5A and B, 

respectively) meaning lack of the presence of anti-LFA-1 (KBA) and anti-CD154 

(MR-1) mAbs bound to the cells. However, incubation of those cells with anti-

LFA-1 (KBA) and anti-CD154 (MR-1) mAbs prior to incubation with 

corresponding secondary antibodies (biotinylated anti-rat IgG and anti-hamster 
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IgG mAbs, respectively) significantly higher percentages of cells bound by mAbs 

were detected  (Figure 4.4A and B, n=5, p<0.001, respectively). This pattern was 

comparable to the binding of the secondary antibodies to anti-LFA-1 and anti-

CD154 mAbs on spleen cells from naïve non-transplanted B6 mice (Figure 4.4C 

and D).   

 

A B 

 
C D 

 
 
Figure 4.4: Expression of LFA-1 and CD154 molecules on the spleen cells of 
tolerant and naive non-transplanted B6 mice. Incubation of spleen cells from 
tolerant B6 mice with biotinylated anti-rat IgG and anti-hamster IgG mAbs 
resulted in undetectable binding of anti-LFA-1 and anti-CD154 mAbs (solid gray 
line, 1.13%±0.07; A and 0.61%±0.07; B, n=5, respectively). However, when 
spleen cells from tolerant B6 mice were first incubated with anti-LFA-1 and anti-
CD154 mAbs prior to incubation with biotinylated secondary antibodies; 
significantly higher percentages of spleen cells (p<0.001) were detected bound by 
anti-LFA-1 and anti-CD154 mAbs (solid black line, 83.39%±1.50, A and 
4.85%±1.07, B, n=5, respectively). This binding was comparable to the binding of 
anti-LFA-1 and anti-CD154 mAbs detected on spleen cells from naïve non-
transplanted B6 mice (solid black line, 82.37%±1.76, C and 3.76%±0.82, D, 
respectively).  
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The percentage of spleen cells from tolerant and naïve non-transplanted 

B6 mice that were bound to anti-LFA-1 (KBA) were 83.39%±1.50 and 

82.37%±1.76 and for anti-CD154 (MR-1) were 4.85±1.07 and 3.76±0.82, 

respectively (n=5 in each group, Table 4.5). We were also interested to further 

characterize the phenotype of immune cells bound by anti-LFA-1 and anti-CD154 

mAbs using flow cytometry. We gated on LFA-1+ and CD154+ cells and we 

found that CD4+ and CD8+ T cells composed only a small portion of immune 

cells which bound by anti-LFA-1 and anti-CD154 mAbs (Table 4.5). In addition 

to T cells, CD19+ B cells, CD11c+ dendritic cells (DC), F4/80+ macrophages and 

NK1.1+ NK cells were detected to be bound by anti-LFA-1 and anti-CD154 mAbs 

(Table 4.5). Moreover,   significantly lower percentage of CD11c+CD154+ and 

CD11c+LFA-1+ cells were detected from tolerant B6 mouse compared to the same 

population from naive non-transplanted B6 mouse spleen cells (p<0.016, n=5, 

Table 4.5). In contrast significantly higher percentage of F4/80+CD154+ and 

F4/80+LFA-1+ were detected in spleen cells from tolerant B6 mice compared to 

the naive non-transplanted B6 mouse spleen cells (p<0.03, n=5 in each group, 

Table 4.5).  

To determine the effect of a combination of anti-LFA-1 and anti-CD154 

mAbs on antigen presenting cells (APC) particularly, DC and macrophages, 

immune deficient B6 rag-/- mice which has not functional T and B cells were 

transplanted with NPI and treated with a combined mAbs therapy. 
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Table 4.5: Characterization of the phenotype of immune cells from tolerant B6 and naïve non-transplanted B6 mice bound by 
anti-LFA-1 and anti-CD154 mAbs. 
 

 % of Total LFA-1+  Cells  Gated on LFA-1+  Cells 
 

  % CD4+ 

 
% CD8+ % CD19+ % CD11c+ % NK1.1+ % F4-80+

Tolerant B6 mice 83.39±1.50 22.54±0.90 
 

13.86±0.25 59.53±1.68 2.93±0.45* 0.19±0.11 6.77±0.30† 

Naive B6 mice 82.37±1.76 21.94±0.49 
 

13.34±0.70 57.49±0.89 4.88±0.39 0.08±0.02 5.10±0.45 

 % of Total CD154+  Cells  
 

Gated on CD154+  Cells 

  % CD4+ 

 
% CD8+ % CD19+ % CD11c+ % NK1.1+ % F4-80+

Tolerant B6 mice 4.85±1.07 10.30±0.40 
 

2.73±0.15 62.93±1.25 17.45±0.52* 0.85±0.09 10.27±0.96†

Naive B6 mice 3.76±0.82 9.46±0.33 
 

2.30±0.10 60.66±1.67 23.32±1.57 1.06±0.04 6.43±0.63 
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* p<0.016 vs. Naive B6 
† p<0.03 vs. Naive B6 
n=5 in each group 
 
 



The levels of anti-LFA-1 and anti-CD154 mAbs in the serum of these 

mice were detected in different time points using flow cytometry. At 60 days 

post-transplantation when the level of mAbs in the serum of the B6 rag-/- mouse 

recipients of NPI treated with a combination of anti-LFA-1 and anti-CD154 mAbs 

were undetectable the mice were injected with 10×106 purified CD4+ T cells from 

naive non-transplanted B6 mouse spleen cells and NPI xenograft survival were 

monitored for 60 days post-cell transfer. Majority (3 out of 5) of reconstituted B6 

rag-/- mouse recipients of NPI xenografts achieved normoglycemia and one 

mouse maintained normoglycemia for over 60 days post-cell transfer. The other 

two mice became diabetic on days 46 and 53 post-cell transfer (Table 4.6). 

However all of the B6 rag-/- mouse recipients of NPI which were not treated with 

a combination of anti-LFA-1 and anti-CD154 mAbs and received the same cell 

population from naive non-transplanted B6 mice did not achieve normoglycemia 

indicating NPI xenograft rejection (p<0.05, Table 4.6). Taken together, these data 

show that a combination of anti-LFA-1 and anti-CD154 mAbs could modulate the 

other parts of immune cell compartments except T and B cells such as APC. This 

immune modulation of APC could result in the delay of NPI xenograft rejection 

mediated by CD4+ T cells. 
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Table 4.6: Graft survival of NPI xenografts in B6 rag -/- mice treated with 
combination of anti-LFA-1 and anti-CD154 mAbs injected with 10×106 
purified CD4+ T cells from naive non-transplanted B6 mice. 
 

Group n Graft Survival (days 
post-cell transfer) 

No. of Mice 
Achieved 

Normoglycemia 
Untreated 

 
5 0(x5) 0 

anti-CD154 + anti-LFA-1 
 

5 0(x2), 46, 53, >60 * 3 

 
* p<0.05 vs. untreated group 
 

4.4 DISCUSSION 

We recently showed that short-term administrations of a combination of 

anti-LFA-1 and anti-CD154 mAb therapy resulted in species and tissue specific 

tolerance to NPI xenografts that is mediated by T regulatory cells (5;6).  In the 

current study, we demonstrated that tolerance induced by this combined mAb 

therapy is dominant and CD4+ T cells play a more important role than CD8+ T 

cells in transferring tolerance to NPI xenografts; a phenomena also shown using 

this mAb combination in an allogeneic model of islet transplantation (16). Similar 

to what we showed previously (5;6), all immune deficient B6 rag-/- mouse 

recipients of first or second party NPI xenografts reconstituted with spleen cells 

from tolerized mice maintained normoglycemia for >60 days post-cell transfer 

suggesting that immune cells in treated B6 mice do not have the capacity to reject 

the NPI xenografts. We also found that lymphocytes from tolerant mice are 

capable of suppressing the xenoreactivity of lymphocytes from naïve non-

transplnted B6 mice in a dose-dependent manner (1/1 and 1/2 ratio). The total 

number of combined spleen cells from tolerant and naive B6 mice reconstituted in 
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B6 rag-/- mice did not significantly alter the rejection rate (in concentrations of 

100×106 cells/mouse or 50×106 cells/mouse).  No significant difference was 

detected between the groups of B6 rag-/- mice that received either a combination 

of spleen cells from each tolerant and naive B6 mice of 50×106 (total 100×106) or 

25×106 (total 50×106), respectively.  

In an effort to delineate the specific T cell subsets responsible for 

tolerance we showed in the adoptive experiment that CD4+ T cells from tolerant 

B6 mice did not reject the established NPI xenografts healed in B6 rag-/- mice. 

We also found similar to what were reported by our group and others that naive 

CD4+ T cells but not CD8+ T cells play major role in islet xenograft rejection (17-

19). Our results further demonstrate that purified CD4+ T cells from tolerant mice 

can suppress the xenoreactive function of both purified CD4+ T cells and 

unpurified spleen cells derived from naive B6 mice. This phenomenon could be 

due to a higher percentage of CD4+ T regulatory cells in tolerant spleen cells 

which we have previously demonstrated to have higher expression of CD25, 

foxp3, GITR regulatory and co-inhibitory markers, PD1 and CTLA4 (5). 

Interestingly we found that tolerant CD8+ T cells can also significantly delay NPI 

xenograft rejection when combined with unpurified spleen cells but not in 

combination with purified CD4+ T cells from naive non-transplanted B6 mice. A 

possible mechanism for this phenomena could be due to the regulatory phenotype 

and function of CD8+ T cells from tolerant B6 mice (20) as we found a 

significantly higher percentage of CD8+CD25+ T cells in tolerant B6 mice 

compared to naïve non-transplanted B6 mice (5).  

 236



While CD4+ and CD8+ T cells may have tolerizing properties in treated 

mice, our results suggest that they are involved in the maintenance of tolerance to 

NPI xenografts induced by a combination of anti-LFA-1 and anti-CD154 mAbs. 

We showed an acute depletion and reoccurrence of new population of CD4+ and 

CD8+ T cells after using depleting anti-CD4 and anti-CD8 mAbs on day 6 and 56 

days post-treatment, respectively which was also reported by others (21;22). 

Depletion of CD4+ or CD8+ T cells from tolerant mice was not significantly 

effective in breaking tolerance to NPI xenografts. However depletion of both 

CD4+ and CD8+ T cells from tolerant mice resulted in the rejection of NPI 

xenografts (p<0.001) which was significant compared to the tolerant mice which 

did not received any depleting mAbs treatment. These data suggest that tolerant T 

cell subsets may compensate for the effect of each other in the maintenance of 

tolerance to NPI xenografts.  

In order to explore the role of CD4+ and CD8+ T cells in induction of 

tolerance to NPI xenografts by a combination of anti-LFA-1 and anti-CD154 

mAbs we treated B6 mouse recipients of NPI simultaneously with anti-LFA-1 and 

anti-CD154 mAbs plus anti-CD4 and/or anti-CD8 mAbs. No significant 

differences were detected in regards of T and B cell compartments, T cell subsets 

expressing regulatory and co inhibitory markers, amount of anti-porcine antibody 

production, and presence of insulin positive cells in the grafts site between the 

group of combined anti-LFA-1 and anti-CD154 mAb treated mice with or without 

anti-CD4 and/or anti-CD8 mAbs.  These data suggest that CD4+ and/or CD8+ T 

cells may not be required for induction of tolerance to NPI xenografts induced by 
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a combination of anti-LFA-1 and anti-CD154 mAbs. An indefinite NPI xenogaft 

survival and comparable T and B cell phenotypes and function amongst of all 

groups suggests that some other population of immune cells except T cell subsets 

could be targeted by the combination of anti-LFA-1 and ant-CD154 mAbs and 

those cells may support induction of tolerance to NPI xenograft by expanding of 

regulatory T cell subsets.  

Accessibility of the ligands for anti-LFA-1 and anti-CD154 mAbs on B 

cells, dendritic cells, macrophages, and NK cells from either tolerant or naive 

non-transplanted B6 mice could provide another evidence for the role of other 

components of immune cells besides T cell subsets in the induction of tolerance to 

NPI xenografts by a combination of anti-LFA-1 and anti-CD154 mAbs. 

Significantly lower percentages of CD11c+ LFA-1+ and CD11c+ CD154+ DCs and 

higher percentages of F4/80+ LFA-1+ and F4/80+ CD154+ from tolerant spleen 

cells in comparison to the same population of spleen cells from naive B6 mice 

could be considered as a possible phenotype for higher percentage of tolerogenic 

APC which could play a role in the induction of peripheral tolerance (23-30) and 

could induce an inhibitory feedback loop with T regulatory cells in the induced 

tolerance (31). However in our case it needs to be investigated further.  

To determine the possible effect of a combination of anti-LFA-1 and anti-

CD154 mAbs on APC in vivo, B6 rag-/- mouse recipients of NPI were treated 

with the tolerogenic combination of mAbs. The level of anti-LFA-1 (KBA) and 

anti-CD154 (MR-1) mAbs in the sera of the treated B6 rag-/- mouse recipients of 

NPI was undetectable on day 60 post-transplantation. Anti-CD154 mAb (MR-1) 
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has previously been demonstrated to have a half-life of 12 days in mouse serum 

(32;33). Anti-LFA-1 mAb  (M17/4.4.11.9, rat IgG2a isotype) demonstrated a 

half-life of 19 days in host serum and was undetectable at 60 days following 

transplantation (34). However analysis of anti-LFA-1 mAb (KBA, rat IgG2a 

isotype) in serum after treatment, to our knowledge, has not previously been 

reported. A significant improvement in the NPI xenograft survival was detected 

between the group of B6 rag-/- mouse recipients of NPI treated with a 

combination of anti-LFA-1 and anti-CD154 mAbs injected with purified naive 

CD4+ T cells with the group of untreated B6 rag-/- mouse recipients of same NPI 

injected with the same purified CD4+ T cells from naïve B6 mice. However a 

significant difference was detected in the NPI xenograft survival in the group of 

treated B6 rag-/- mice with mAbs injected with CD4+ T cells from naive B6 mice 

compared with the group of B6 mouse recipients of NPI treated with a 

combination of anti-LFA-1 and anti-CD154 mAb plus anti-CD4 and anti-CD8 

mAbs which could be due to the interaction of even very low amount of CD4+ or 

CD8+ T cells (<%1.5) in the treated B6 mice with the other immune cell 

compartments such as  DC and macrophages. Taken together this data show that a 

combination of anti-LFA-1 and anti-CD154 mAbs can induce dominant tolerance 

to NPI xenografts by targeting T cell sub populations as well as APC which to by 

a T cell-APS loop of interaction tolerance can be induced and maintained and this 

strongly suggest that this strategy may be useful in clinical islet 

xenotransplnatation.  
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PD-1/PD-L PATHWAY IS REQUIRED FOR THE INDUCTION AND 

MAINTENANCE OF TOLERANCE TO NEONATAL PORCINE ISLET 

XENOGRAFTS BY COMBINED ANTI-LFA-1 AND ANTI-CD154 
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5.1 INTRODUCTION 

Transplantation of pancreatic islets into patients with type 1 diabetes 

results in physiological glycemic control and insulin-independence when 

sufficient islets are implanted (1;2). However, the widespread clinical application 

of islet transplantation is limited by i) the shortage of human islet donors and ii) 

the long-term use of conventional immunosuppressive drugs that have harmful 

side effects and potential health risks to the transplanted patients. These factors 

have excluded the use of islet transplantation in children with type 1 diabetes. 

Therefore, alternative sources of islets particularly from xenogeneic sources such 

as pigs and safer anti-rejection therapies are being sought. Recent studies of  

neonatal porcine islet (NPI) xenotransplantation in small as well as large animal 

models including non-human primates (3-7) indicate that islet xenotransplantation 

could be an alternative treatment for human type 1 diabetes. One promising 

strategy to prevent rejection of islet xenotransplant without using the conventional 

immune suppressive drugs is the use of biological agents in term of monoclonal 

antibodies (mAbs) that be developed to target signaling pathways and molecules 

important for T cell activation. We previously showed that short-term 

administrations of a combination of mAbs particularly anti-LFA-1 and anti-

CD154 mAbs was highly effective in promoting long-term survival of NPI 

xenografts in B6 mice (7). Our recent data also showed that this combined mAb 

therapy induced dominant, species- as well as tissue-specific tolerance to NPI 

xenografts in B6 mice mediated by regulatory T cells (8-10). Characterization of 

spleen cells from tolerant B6 mouse recipients of NPI that were treated with anti-
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LFA-1 and anti-CD154 mAbs showed significantly higher expression of 

Programmed Death 1 (PD-1) co-inhibitory molecule by spleen cells particularly 

on CD4+ T cells compared to naïve non-transplanted B6 mice and treated B6 

mouse recipients of NPI that eventually rejected their islet grafts (8), suggesting a 

possible role for PD-1 con-inhibitory pathway in the induction or maintenance of 

tolerance to NPI xenografts.  

 PD-1 (CD279) is an inhibitory member of the CD28 co-stimulatory family 

that was discovered as a membrane bound protein up-regulated in a T cell 

hybridoma undergoing apoptotic cell death (11). PD-1 is transiently expressed on 

activated T cell subsets, natural killer cells, B cells and monocytes but 

constitutively expressed on immature thymocytes, NK cells, and 

macrophages(12;13). PD-1 binds to two distinct ligands, PD-L1 (B7-H1, CD274) 

and PD-L2 (B7-DC, CD273) (12;13). While the pattern of expression of PD-L2 is 

restricted to dendritic cells and macrophages, PD-L1 is constitutively expressed 

and inducible upon activation on B, T, macrophages and dendritic cells, but it is 

also expressed on endothelial and epithelial cells (13). PD-1 interaction with its 

ligands provides a negative signal when transmitted just at the same time with 

TCR signals but not in the absence of TCR signaling (12;13). It was shown that 

PD-1 pathway is important in the process of graft rejection or induction of 

tolerance in different models of transplantation such as murine skin (14), cardiac 

(15;16) allografts, and islet allo- (17) and xenografts (18) and moreover in a 

model of graft versus host disease (19). It was shown  that using a PD-L1 fusion 

protein which stimulates activated PD-1 expressing T cells can promote allograft 
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survival in murine models of cardiac (20), corneal (21), and islet (17) 

transplantation. With regards to autoimmunity, it was shown that PD-1-deficient 

mice develop different types of autoimmune disorders indicating that the PD-

1/PD-L pathway is implicated in the regulation of peripheral tolerance (22;23). 

Further, it was shown that blockade of the PD-1/PD-L1 can accelerate the 

progression and severity of both autoimmune diabetes and experimental 

autoimmune encephalomyelitis (24-29).  

 In the current study our aim was to determine the role of PD-1 pathway in 

the induction and maintenance of tolerance to NPI xenograft induced by a 

combination of anti-LFA-1 and anti-CD154 mAbs. Our results show that 

blockade of PD-1/PD-L interaction using long-term administration of anti-PD-1 

mAb not only prevent induction of tolerance but also can break tolerance to NPI 

xenografts induced by a combination of anti-LFA-1 and anti-CD154 mAbs. 

5.2 MATERIALS AND METHODS 

5.2.1 Animals 

Six to 8-week-old male immune-competent B6 (C57BL/6J, H-2b) and 

immune-deficient B6 rag-/- (B6.129S7-Rag1tm1Mom/J, H-2b) mice were purchased 

from Jackson Laboratory (Bar Harbor, ME, USA) and were used as recipients.  

These mice were rendered diabetic by a single intraperitoneal (i.p.) injection of 

streptozotocin (Sigma, St Louis, MO, USA) at a dose of 180 or 175 mg/kg body 

weight for B6 or B6 rag-/- mice 4-6 days before transplantation, respectively.  

Blood samples were obtained from the tail vein and glucose levels were 

monitored using a Precision glucose meter (ONETOUCH, Ultra, Lifescan, 
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Milpitas, CA, USA).  All diabetic mice had two consecutive non-fasting blood 

glucose levels (BGLs) >20 mmol/l prior to islet transplantation.  All mice were 

fed standard laboratory food and cared for according to the guidelines established 

by the Canadian Council on Animal Care Committee.  Three-day-old Duroc cross 

neonatal pigs (>1.5 kg body weight) were purchased from the University of 

Alberta (Edmonton, Alberta, Canada) as islet donors. 

5.2.2 Islet isolation and transplantation 

Neonatal porcine islets (NPI) were isolated as previously described (6). 

Neonatal pigs were anesthetized with halothane and subjected to laparotomy and 

exsanguination.  The pancreas was removed, placed in Hanks’ balanced salt 

solution (HBSS, Sigma, St Louis, MO, USA) cut into small pieces, and digested 

with 2.5 mg/ml collagenase (clostridiopeptidase A, type XI, Sigma-Aldrich, St. 

Louis, MO, USA).  Digested tissue was filtered through a 500 µm nylon screen 

then cultured for 7 days in HAM’s F10 medium (GIBCO Laboratories, Grand 

Island, NY, USA) containing 10 mmol/l glucose, 50 µmol/l 

isobutylmethylxanthine (ICN Biomedicals, Montreal, Canada), 0.5% bovine 

serum albumin (fraction V, radioimmunoassay grade; Sigma), 2 mmol/l L-

glutamine, 3 mmol/l CaCl2, 10 mmol/l nicotinamide (BDH Biochemical, Poole, 

England), 100 units/ml penicillin, and 100 µg/ml streptomycin at 37°C (5% CO2, 

95% air).    A total of 2,000 NPI were transplanted under the kidney capsule of 

diabetic B6 or B6 rag-/- mice as previously described (6;8) .  Engraftment was 

considered successful when blood glucose level reached ≤8.5 mmol/l.  Graft 

rejection was defined as the first of 3 consecutive days of hyperglycemia (>12 
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mmol/l), and rejection was confirmed by histological analysis of the graft. 

Nephrectomy of the graft-bearing kidney was performed on recipients with long-

term graft function to confirm that normoglycemia was due to the islet xenograft.  

5.2.3 Monoclonal antibody therapies   

 Diabetic B6 mice transplanted with NPI were randomly designated to 

receive i.p. injection of a combination of anti-LFA-1 mAb (KBA; rat IgG2a; 

prepared as ascites; 200 µg on days 0, 1, 7, 14 post-transplant) and anti-CD154 

mAb (MR-1; hamster IgG1; Bio Express, West Lebanon, NH, USA; 250 µg on 

days –1,  1 and 2 times a week for an additional 4 weeks post-transplant) alone or 

plus anti-PD-1 mAb based on one of the following regimens: i) short-term 

administration of anti-PD-1 (J43, hamster IgG2; Bio Express, 500  µg on day 0 

and 250 µg on days 2, 4, 6, 8 and 10 post-transplantation)(24), ii) long-term 

administration of anti-PD-1 mAb (J43, hamster IgG2; Bio Express, in a total of 8 

injections of 500 µg per injection every other day starting day 0 to 14 post-

transplantation), or long-term administration of anti-PD-1 mAb (4F10, rat IgG2a, 

kappa chain, kindly provided by Dr. Rodriguez-Barbosa; Leon, Spain, in a total 8 

injections 500 µg per injection every other day starting on day 0 to 14 post-

transplantation)(18).  

5.2.4 Immunohistological analysis 

The presence of insulin-producing beta cells and immune cell infiltrate in 

the graft were examined in sections of kidneys bearing the islet grafts.  Briefly, 

graft-bearing kidneys were harvested and fixed in 10% buffered formalin solution 

and embedded in paraffin, then 5 µm sections were stained with guinea pig anti-
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porcine insulin primary antibody (1:1000; DAKO laboratories, Mississauga, 

Ontario, Canada) for 30 min, followed by the addition of biotinylated goat anti-

guinea pig IgG secondary antibody (1:200; Vector Laboratories, Burlingame, CA, 

USA).  Avidin-biotin complex/horseradish peroxidase (ABC/HP; Vector 

Laboratories, Burlingame, CA, USA) and 3, 3-

diaminobenzidinetetrahydrochloride (DAB; BioGenex, San Ramon, CA, USA) 

were used to detect positive cells (brown color).  All paraffin sections were 

counter-stained with Harris’ hematoxylin and eosin.  

5.2.5 Detection of anti-porcine antibodies by flow cytometry 

 Humoral immune response of B6 mouse recipients of NPI was determined 

by measuring the levels of mouse anti-porcine IgG antibodies in the serum 

samples of these mice using flow cytometry.  Spleen cells (1x106) obtained from 

NPI donors were incubated with 1:128 dilutions of mouse serum for 1 h at 37°C, 

5% CO2, and 95% air.  After incubation, spleen cells were then washed with PBS 

and incubated with 1:200 dilutions of FITC-conjugated rat adsorbed goat anti-

mouse IgG antibody (Southern Biotechnology Associates, Inc. Birmingham, 

Alabama, AL, USA) for 1 h at 4°C.  The percentage of cells bound to the 

antibody was detected from single parameter fluorescence histograms on a BD 

FACS Calibur flow cytometry machine (BD Biosciences Pharmingen, 

Mississauga, Ontario, Canada) after gating on viable lymphocytes.  Controls for 

this experiment include porcine spleen cells alone and spleen cells incubated with 

secondary antibody without mouse serum. 
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5.2.6 Characterization of lymphocytes by flow cytometry. 

 Spleen cells from naïve non-transplanted B6 and B6 mouse recipients of 

NPI were isolated by mechanical disruption of spleen tissue between rough edges 

of the glass slides. Erythrocytes from spleen cell suspension were depleted using 

red blood cell lyses buffer.  Absolute lymphocyte numbers were determined by 

staining the cells with Trypan blue exclusion dye, and live cells were counted 

using a hemocytometer.  One million spleen cells were incubated with fluorescent 

conjugated antibodies (1:100 dilution, eBioscience, San Diego, CA, USA) for 30 

min at 4oC.  Spleen cells were washed two times with PBS and suspended in 300 

μl of FACS buffer (2% FBS in PBS).  Fluorescence histograms were created 

using a BD FACS Calibur flow cytometry machine and were used to determine 

the percentage of positive cells labeled with the corresponding antibodies. 

Controls for this experiment include unstained spleen cells from the 

corresponding mice and spleen cells from non-transplanted naïve B6 mice that 

were either not incubated or incubated with the antibodies. 

5.2.7 Statistical analysis 

 Statistical differences in expression of cell markers and mouse anti-donor 

IgG antibody levels between groups were determined using nonparametric Mann-

Whitney test. Statistical differences in graft survival among groups were analyzed 

using the Kaplan-Meier Log rank test. All statistical tests were performed using 

SPSS statistical software, version 13.0 for Windows (Chicago, IL, USA). A p 

value of less than 0.05 was considered to be statistically significant.  

 

 251



5.3 RESULTS 
 
5.3.1 Simultaneously short-term administration of a combination of anti-

LFA-1 and anti-CD154 plus anti-PD-1 mAbs did not prevent induction of 

tolerance to NPI xenografts. 

Since we previously showed that tolerant B6 mice to NPI xenografts have 

higher expression of PD-1 compared to the non-tolerant B6 mice that eventually 

rejected their NPI xcenografts and naïve non-transplanted B6 mice (8), we 

examined whether blockade of PD-1/PD-L interaction using short-term 

administrations of anti-PD-1 mAb (J43) could prevent the induction of tolerance 

to NPI xenografts induced by a combination of anti-LFA-1 and anti-CD154 mAbs. 

It was shown that blockade of the PD-1/PD-L1 using short-term administration of 

anti-PD-1 mAb (J43) can accelerate the progression and severity of autoimmune 

diabetes in NOD mice (24). All of the B6 mouse recipients of NPI simultaneously 

treated with short-term administrations of anti-PD-1 mAb plus a combination of 

LFA-1 and anti-CD154 mAbs achieved normal blood glucose levels and had 

prolonged NPI xenograft survival for over 100 days post-transplantation (Table 

5.1). Histological analysis of the NPI xenografts from these mice and B6 mice 

treated with anti-LFA-1 and anti-CD154 mAbs alone showed intact islets of 

insulin producing cells and no immune cell infiltration (Figure 5.1A and B, 

respectively). These observations were comparable to what was seen in the NPI 

xenograft harvested from immune-deficient B6 rag-/- mice transplanted with 

same islets (Figure 5.1C). In addition, the amount of anti-porcine antibodies 

production in B6 mouse recipients of NPI that were treated with anti-LFA-1 and 
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anti-CD154 mAbs alone or plus short-term administrations of anti-PD-1 mAb 

(Figure 5.2A and B, respectively) were comparable to the amount that was 

detected in naive non-transplanted B6 mice (Figure 5.2C).  

 

Table 5.1:  Survival of NPI xenografts in B6 mice treated with a combination 
of anti-LFA-1, anti-CD154 and anti-PD-1 mAbs. 

 
Group n Graft survival 

(days post-
transplantation)*

Number of mice 
that achieved 

normoglycemia 
anti-LFA-1+anti-CD154 

mAbs 
 

8 >100 (x8) 8 

anti-LFA-1+anti-CD154 
mAbs plus anti-PD-1 mAb 

(J43, short-term)  
 

8 >100 (x8) 8 

anti-LFA-1+anti-CD154 
mAbs plus anti-PD-1 mAb 

(4F10, long-term) *, † 
 

8 0(x8) 0 

anti-LFA-1+anti-CD154 
mAbs plus anti-PD-1 mAb 

(J43, long-term) * 
 

8 0 (x4), >100 (x4) 4 

 
*p<0.05 vs. the group of mice treated with short-term administration of anti-PD-1 
(J43) 
†p<0.05 vs. the group of mice treated with long-term administration of anti-PD-1 
(J43) 
 

Based on these results targeting PD-1/PD-L interaction using short-term 

administration of anti-PD-1 mAbs can not prevent induction of tolerance to NPI 

xenografts by a combination of anti-LFA-1 and anti-CD154 mAbs. 
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A B C 

 
 
Figure 5.1:  Representative NPI xenografts in B6 mice treated with a 
combination of anti-LFA-1 and anti-CD154 mAbs alone or plus short-term 
administrations of anti-PD-1 mAb. Islet grafts from B6 mouse recipients treated 
with tolerogenic regiman alone (A) or plus short-term administration of anti-PD-1 
(clone J43) mAb (B) contained intact islets with abundant insulin-positive cells 
(brown stain). NPI xenografts from B6 rag-/- mice transplanted with the same 
NPI xenograft (C).  Scale bar represents 100 µm. 

 

 

 

A B C 

 
 
Figure 5.2: Humoral responses of B6 mouse recipients of NPI treated with a 
combination of LFA-1 and anti-CD154 mAbs alone or plus short-term 
administrations of anti-PD-1 mAb. The levels of IgG antibodies from tolerant 
B6 mouse recipients of NPI treated with a combination of anti-LFA-1 and anti-
CD154 mAbs alone (5.1%-8.3%, n=8, A) or plus short-term administration of 
anti-PD-1 (J43) mAb (5.6 % - 8.5%, n=8, B) were comparable to the amount of 
anti-porcine IgG antibodies detected in the serum of naive non-transplanted B6 
mice (4.9%-7.3%, n=5, C). Representative histograms are shown and controls for 
this experiment consisted of unstained (dashed black line) and secondary antibody 
without serum (solid gray line).  
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5.3.2 Long-term administration of anti-PD-1 mAb in combination with anti-

LFA-1 and anti-CD154 mAbs can prevent the induction of tolerance to NPI 

xenografts. 

 We next assessed whether long-term administrations of a combination of 

anti-PD-1 mAb can prevent induction of tolerance to NPI xenografts by a 

combination of anti-LFA-1 and anti-CD154 mAbs. We used the regimen that was 

found effective in reversing the protective effect of anti-CD154 mAb 

administration in a model of concordant rat to mouse xenogeneic islets (18).  

None of the mice simultaneously treated with long-term administration of anti-

PD-1 mAb (4F10) plus a combination of anti-LFA-1 and anti-CD154 mAbs 

achieved normoglycemia, indicating of NPI xenograft rejection (Table 5.1). 

Histological analysis of the NPI xenografts harvested from the B6 mice treated 

with a combined anti-LFA-1 and anti-CD154 mAbs plus long-term administration 

of anti-PD-1 (4F10) revealed absence of insulin positive cells in the graft site and 

presence of abundant immune cells infiltrates (Figure 5.3A). In another set of 

experiment we also tried long-term administrations of anti-PD-1 (J43) which is 

commercially available, plus a combination of anti-LFA-1 and anti-CD154 mAbs 

to compare the effect of this anti-PD-1 mAb (J43) with previously used anti-PD-1 

mAb (4F10) in preventing induction of tolerance to NPI xenografts by a 

combination of anti-LFA-1 and anti-CD154 mAbs. Our data showed that 4 out of 

8 B6 mice treated with long-term administration of anti-PD-1 (J43) plus a 

combination of anti-LFA-1 and anti-CD154 mAbs achieved normoglycemia 

within 5-8 weeks post-transplantation and maintained normoglycemia for over 
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100 days post-transplantation (Table 5.1). NPI xenograft function from these mice 

was confirmed by removing the graft-bearing kidney, which was followed by a 

rapid return to hyperglycemia.  Immunohistochemical staining of NPI xenografts 

from the mice with long-term surviving graft revealed some insulin-producing β 

cells and mononuclear cell infiltration (Figure 5.3B). These results demonstrate 

that PD-1/PD-L pathway play an important role in the induction of tolerance to 

NPI xenografts (Table 5.1). The levels of anti-porcine IgG antibodies in all of the 

mice in these groups (Figure 5.4 C and D, respectively) were significantly higher 

than the levels of anti-porcine IgG antibodies detected in B6 mouse recipients of 

NPI that received a combination of ant-LFA-1 and anti-CD154 mAbs and naïve 

non-transplanted B6 mice (Figure 5.3B and C, respectively). 

 

A C 

 
B D 

 
 
Figure 5.3: Representative of NPI xenografts and humoral responses of mice 
treated with a combination of anti-LFA-1 and anti-CD154 mAbs plus long-
term administration of anti-PD-1 (4F10 or J43) mAbs. NPI xenografts in B6 
mouse recipients treated with a combination of anti-LFA-1 nad anti-CD154 mAbs 
plus long-term administration of anti-PD-1 mAb (either 4F10 or J43) revealed no 
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or few insulin positive cells in the graft site, respectively and abundant of immune 
cell infiltrates (A and B, respectively). Scale bar represents 100 µm. The levels of 
anti-porcine IgG antibodies from B6 mice treated with a combination of anti-
LFA-1 and anti-CD154 mAbs plus long-term administration of anti-PD-1 mAbs 
(33.65-46.56% for 4F10 treated group, and 16.58-23.53% for J43 treated group, 
n=8 in each group) were significantly higher than the levels of anti-porcine IgG 
antibody detected in the serum of B6 mouse recipients of NPI treated with a 
combination of anti-LFA-1 and anti-CD154 mAbs alone (5.1%-8.3%, n=8, Figure 
5.2A). Controls for this experiment consisted of unstained (dashed black line) and 
secondary antibody without serum (solid gray line).  
 

5.3.3 Combined anti-LFA-1 and anti-CD154 mAb therapy result in PD-1+ 

cell-mediated tolerance to NPI xenografts.   

To better define the role of PD-1 pathway in the maintenance of tolerance 

induced by combined anti-LFA-1 and anti-CD154 mAbs, a group of tolerant B6 

mice was treated with long-term administration of anti-PD-1 mAb (J43) 

beginning at 150 days post-transplantation.  All normoglycemic recipient mice 

became diabetic by 27 days post-injection of anti-PD-1 mAb (n=8, Table 5.2).  

NPI xenografts from these mice had infiltrating immune cells and no insulin-

positive cells remaining in the grafts (Figure 5.4A).  The levels of mouse anti-

porcine IgG antibodies in these mice were significantly higher (Figure 5.4B) than 

those detected in tolerant B6 mice that did not received anti-PD-1 mAb treatment 

and naïve non-transplanted B6 mice (Figure 5.2B and C, respectively).  These 

results indicate that PD-1/PD-L interaction is required for maintanence of 

tolerance to NPI xenografts induced by acombination of anti-LFA-1 and anti-

CD154 mAbs.  
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Table 5.2: NPI xenograft survival in tolerant B6 mice treated with long-term 
administrations of anti-PD-1 mAb.  
 

Group 
 

n Graft Survival 
(Days post-transplantation) 

No treatment 
 

5 >250 (x5) 

anti-PD-1 mAb 
 

8 166, 168, 171(x2), 173(x3),177* 

 
* p<0.01 vs. untreated mice  
 
 

 

A B 

 
 
Figure 5.4: Representative NPI xengrafts and humoral immune responses of 
tolerant B6 mice treated with anti-PD-1 mAb on day 150 post-
transplnatation. All tolerant B6 mice (n=8) that received long-term 
administrations of anti-PD-1 mAb beginning at 150 days post-transplantation 
became diabetic by day 27 post-injection. NPI xenografts had infiltrating immune 
cells and absence of insulin-positive cells (A).  Scale bar represents 100 µm.  The 
levels of mouse anti-porcine IgG antibodies in these mice were significantly 
(p<0.001) higher (46.36±3.61%, n=8, B) compared to the levels detected in 
tolerant B6 mice that were not treated with anti-PD-1 mAb and naïve non-
transplanted B6 mice (Figure 5.3A and C, respectively). Controls for this 
experiment consisted of unstained spleen cells (dashed black line) and spleen cells 
incubated with secondary antibody without serum (solid gray line). 

 

Further characterization of spleen cells from tolerant B6 mice using flow 

cytometery indicated that majority (90.39±0.88%) of CD4+CD25+ co-expressed 

PD-1foxp3 markers (Figure 5.5A). On the other hand, majority of CD4+PD-1+ 

cells (87.80±1.29%) from tolerant B6 mice co-express CD25foxp3 markers 
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(Figure 5.5B). Significantly higher frequencies of CD4+CD25+foxp3+PD-1+ T 

cells were detected tolerant B6 mice compared to those cells detected in naïve 

non-transplanted B6 mice (Figure 5.5 A and B).  
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Figure 5.5:  High frequency of CD4+CD25+PD-1+foxp3+ cells were detected in 
tolerant B6 mice. Tolerant spleen cells co-expressed significantly higher 
percentage of PD-1foxp3 markers (white bars, 90.39±0.88%, p<0.001, n=5) on 
CD4+CD25+ gated cells compared to same cell population from naïve non-
transplanted B6 mice (black bars, 31.20±2.54%, n=5, A). Higher percentage of 
CD25foxp3 markers (87.80±1.29%, n=5, p<0.001) were detected on CD4+PD-1+ 

gated cells from tolerant B6 mice than the same cell populations from naïve non-
transplanted B6 mice (17.38±1.41%, n=5, B). 
 

 

Collectively, these results suggest that CD4+CD25+foxp3+PD1+ regulatory 

T cells play an important role in the maintenance of tolerance to NPI xenografts 

induced by a combination of anti-LFA-1 and anti-CD154 mAbs. 

5.4 DISCUSSION 

 We showed previously that a combination of anti-LFA-1 and anti-Cd154 

mAbs is highly effective in induction of tolerance to NPI xenografts mediated by 
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regulatory T cells (8-10). Significantly lower expression of coinhibtiory 

molecules particularly PD-1 expression by spleen cells isolated from the B6 

mouse recipients of NPI treated with a combination of anti-LFA-1 and anti-

CD154 mAbs which eventually rejected their NPI xenografts as well as 

significantly higher expression of PD-1 particularly on CD4+ T cells of tolerant 

mice suggesting a possible role of PD-1 in the induction and maintenance of 

tolerance to NPI xenografts (8). Therefore the purpose of this study was to 

investigate the role of PD-1/PD-L interaction on induction and maintenance of 

tolerance to NPI xenografts induced by combined anti-LFA-1 and anti-CD154 

mAbs.  Our data show that PD-1/PD-L pathway is important in induction of 

tolerance to NPI xenografts as 100% and 50% of mice treated with long-term 

administration of anti-PD-1, clone 4F10 and J43 respectively did not achieve 

normoglycemia and rejected their islet xenografts. Abundant immune cells 

infiltrate in the NPI xenografts harvested from the normoglycemic mice treated 

with long-term administration of anti-PD-1 mAb (J43) provided evidence of NPI 

xenograft rejection. The difference seen between these two groups of mice treated 

with long-term administrations of anti-PD-1 (clone 4F10 and J43) could be due to 

the difference in the strength of negative signals considering the point that these 

two mAbs target the same epitope (18). We also showed that a short-term 

administration of anti-PD-1 mAb (clone J43) is not enough to prevent induction 

of tolerance to NPI xenografts induced by a combination of anti-LFA-1 and anti-

CD154 mAbs. The importance of PD-1/PD-L pathway have previously been 

reported in the induction and maintenance of peripheral tolerance(10;14;15;17;30-
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34). We showed previously the role of CD4+CD25+foxp3+ cells in maintaining 

tolerance to NPI  xenografts by depleting of CD25+ cells from the periphery (8) 

and by adoptively transferring a combination of spleen cells from tolerant and 

naïve B6 mice into immune-deficient B6 rag-/- mouse recipients of NPI to test for 

the presence of function of regulatory T cells (8;9). We addressed here the 

importance of PD-1-dependent mechanism in the maintenance of tolerance to NPI 

xenografts by targeting the PD-1 pathway using long-term administration of anti-

PD-1 mAb.  Similar time of graft survival between the tolerant mice treated with 

anti-PD-1 mAb (21.5 ± 1.2 days post-injection of anti-PD-1 mAb) and anti-CD25 

mAb (25.3 ± 2.5 days post-injection of anti-CD25 mAb (8))could be a possible 

reason of co-expression of these molecules on a same cell population. Further 

characterization of the spleen cells from tolerant mice indicated that >90% either 

CD4+CD25+ or CD4+PD-1+ cells also co-expressing PD-1+foxp3+ or 

CD25+foxp3+ cell markers, respectively. Taken together our data showed the 

critical role of PD-1/PD-L pathway in the induction and maintenance of tolerance 

to NPI xenografts induced by a combination of anti-LFA-1 and anti-CD14 mAbs. 
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6.1 INTRODUCTION 

Type 1 diabetes mellitus (T1DM) is caused by the autoimmune destruction 

of pancreatic islet β cells, which are required for the production of insulin (1).  It 

is an autoimmune disease that typically occurs in childhood and adolescence and 

has been estimated to account for 5% to 10% of all diagnosed cases of diabetes 

(2).  The non-obese diabetic (NOD) mouse has been used extensively as an 

animal model of human T1DM. These mice spontaneously begin to develop 

diabetes after 12 weeks of age and by 30 weeks, approximately 90% of female 

mice have diabetes (3).  Similar in humans, the development of diabetes in NOD 

mice has been attributed to the autoreactive T cells that infiltrate the pancreatic 

islets and specifically destroy the insulin-producing β cells.  The development of 

insulitis and diabetes in NOD mice has been shown to be dependent on both CD4+ 

and CD8+ T cells and facilitated by B cells (3,4).  In addition to T1DM, NOD 

mice develop spontaneous autoimmunity directed at other targets namely the 

thymus, adrenal gland, salivary glands, thyroid, testis, nuclear components, and 

red blood cells (3).  They also exhibit multiple immune system abnormalities 

including defect in antigen presenting cells, regulation of T cell repertoires, and 

natural killer cell function. Pancreatic islet transplantation is an attractive 

alternative treatment option for patients with T1DM as it has the potential to 

safely restore euglycemia (5).  Islet transplantation also allows stable glucose 

homeostasis in type 1 diabetic patients without exogenous insulin administration, 

thus avoiding the risk of developing life-threatening complications associated 

with diabetes (2).  However, the shortage of human cadaveric organs available for 
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transplantation and chronic administration of harmful immunosuppressive drugs 

(2,5) to prevent rejection are among the major barriers that currently limit the 

widespread clinical application of islet transplantation.  For islet transplantation to 

be widely applicable to individuals with diabetes, alternative sources of islets and 

safer anti-rejection strategies that will induce transplantation tolerance are needed.  

One potential solution to the shortage of human islets is the utilization of islets 

from animals, particularly the pig.  Animal size, availability, ease of husbandry, 

suitability for genetic manipulation, and the structural homology of porcine and 

human insulin all make the pig a strong candidate source for islets (6).  Adult 

porcine islets have been extensively studied (7-10), but in our experience, adult 

porcine islets are difficult to isolate and maintain in culture.  This constraint has 

led us to evaluate the potential of neonatal porcine islets (NPI) as an alternative 

islet source for clinical transplantation.  NPI are an attractive alternative source of 

insulin-producing cells, because they are easy to isolate and maintain in culture, 

have considerable capacity for growth and differentiation, and can correct 

hyperglycemia in immune-deficient animals (11-14) and in  large animals (15,16) 

including non-human primates (4). Our group and others have shown that NPI 

xenografts are rapidly rejected primarily by CD4+ T cells via the host MHC class 

II - restricted indirect pathway of antigen recognition (12,17,18). One strategy that 

was effective in preventing rejection of NPI xenografts is the strategic 

combination of monoclonal antibodies (mAbs) for blocking a variety of cell 

surface molecules involved in T-cell activation.  We showed that short-term 

administration of a combination of anti-LFA-1 and anti-CD154 mAbs promotes 
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long-term survival of NPI xenografts in immune-competent B6 mice (19).  Others 

have also demonstrated that this combined mAb therapy was effective in 

preventing the rejection of islet allografts in either chemically induced (20) or 

spontaneously diabetic NOD (21) mice and can induce a robust form of dominant 

allograft tolerance (20).  Therefore, the aim of this study was to determine the 

efficacy of combined anti-LFA-1 and anti-CD154 mAb therapy in preventing 

rejection of NPI xenografts in autoimmune prone NOD mice.  In addition, we 

determined the efficacy of anti-CD4 mAb alone or in combination with anti-LFA-

1 and anti-CD154 mAbs in promoting the survival of NPI xenografts in NOD 

mice since CD4+ T cells play a pivotal role in the onset of diabetes and generation 

of anti-graft responses, particularly against xenografts (22-29).   

6.2 MATERIALS AND METHODS 

6.2.1 Animals 

Seventeen to 35 weeks-old spontaneously diabetic female NOD mice 

(NOD/MrkTacfBR, H-2g7) from Taconic farms (Germantown, NY, USA) and 

NOD.129S7 (B6)-Rag1tm1Mom/J (NOD Rag-/-), from the Jackson Laboratory 

(BarHarbor, MD, USA) were used as recipients.  NOD rag-/- mice were rendered 

diabetic by a single intraperitoneal injection of 185 mg/kg streptozotocin (Sigma, 

St Louis, MO, USA).  NOD mice were screened weekly for diabetes and mice 

with three consecutive non-fasting blood glucose levels ≥25.0 mmol/l within 7 

days prior to islet transplantation were subsequently used as islet transplant 

recipients.  Glucose levels were measured from blood samples obtained from the 

tail vein using a Precision glucose meter (ONETOUCH, Ultra, Lifescan, Milpitas, 
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CA, USA).  All mice were housed under specific pathogen-free conditions and 

were fed standard laboratory food and cared for according to the guidelines 

established by the Health Sciences Animal Policy and Welfare Committee at the 

University of Alberta.     

6.2.2 Islet isolation and transplantation   

One to 3-day-old Landrace-Yorkshire (1.5 to 2.0 kg body weight) neonatal 

pigs were purchased from the University of Alberta farm and were used as islet 

donors.  NPI were isolated as previously described (11).  Briefly, neonatal pigs 

were anesthetized with halothane and subjected to laparotomy and exsanguination.  

The pancreas was removed, placed in Hanks’ balanced salt solution (HBSS, 

Sigma, St Louis, MO, USA) cut into small pieces, and digested with 2.5 mg/ml 

collagenase (clostridiopeptidase A, type XI, Sigma-Aldrich, St. Louis, MO, USA).  

Digested tissue was filtered through a 500 µm nylon screen then cultured for 7 

days in HAM’s F10 medium (GIBCO Laboratories, Grand Island, NY, USA) 

containing 10 mmol/l glucose, 50 µmol/l isobutylmethylxanthine (ICN 

Biomedicals, Montreal, Canada), 0.5% bovine serum albumin (fraction V, 

radioimmunoassay grade; Sigma), 2 mmol/l L-glutamine, 3 mmol/l CaCl2, 10 

mmol/l nicotinamide (BDH Biochemical, Poole, England), 100 units/ml penicillin, 

and 100 µg/ml streptomycin at 37°C (5% CO2, 95% air).  After 7 days of culture, 

NPI were counted for transplantation and a total of 2,000 NPI were transplanted 

under the left kidney capsule of spontaneously diabetic NOD mice as described 

previously (11).  In brief, spontaneously diabetic NOD mice were anesthetized by 

inhalational isoflurane and the left flank was shaved and sterilized with 100% 
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ethanol. A flank incision was made lateral to the left paraspinal muscles and the 

peritoneum was sharply divided to expose the left kidney. A sterile cotton swab 

was utilized to expose and produce the left kidney from the incision. A small 

incision was made in the kidney capsule with a 27-gauge needle and a 

subcapsular pocket was expanded with the use of a sterile Pasteur pipette. 

Aliquots of 2,000 NPI were aspirated into polyethylene (PE-50) tubing, pelleted 

by centrifugation and placed within the subcapsular pocket with the aid of a 

micromanipulator syringe. Once the tubing was removed, the kidney capsule was 

cauterized with a disposable high-temperature cautery pen (Aaron Medical 

Industries, St. Petersburg, FL, USA). Euglycemia was defined as blood glucose 

values <10 mmol/l and graft rejection was defined as the first of three consecutive 

days of hyperglycemia >10.0 mmol/l which was confirmed by histological 

analysis of the graft.  

6.2.3 Monoclonal antibody therapies   

Spontaneously diabetic NOD mice transplanted with NPI were randomly 

designated to receive intraperitoneal injection of the following mAb treatments: 1) 

Short-term administration of anti-LFA-1 mAb (KBA; rat IgG2a; 200 µg on days 0, 

1, 7, 14 post-transplant) plus anti-CD154 mAb (MR-1; hamster IgG1; Bio 

Express, West Lebanon, NH, USA; 250 µg on days –1,  1 and 2 times a week for 

an additional 4 weeks post-transplant); 2) Double dose administration of anti-

LFA-1 mAb (400 µg on days 0, 1 and 200 µg on days 7, 14 post-transplant) plus 

anti-CD154 mAb; 3) Long-term administration of anti-LFA-1 mAb (200 µg on 

days 0, 1, 7, 14 and once a week for an additional 8 weeks post-transplant) and 
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anti-CD154 mAb (250 µg on days –1, 1 and 2 times a week for an additional 10 

weeks post-transplant), 4) anti-CD4 mAb alone (GK1.5, rat IgG2b; Bio Express, 

20 mg/kg on days -4, -2, 0, 2 and 7 post-transplant), and finally 5) Triple therapy 

consisting of a combination of short-term administration of anti-CD4, anti-LFA-1, 

and anti-CD154 mAbs. 

6.2.4 Immunohistological analysis 

To examine the presence of insulin-producing β cells and immune cell 

infiltrate in the graft, kidneys bearing NPI xenograft were harvested and divided 

in two sections on the day of rejection or at the end of the study (>100 days post-

transplantation).  One half of the kidney was fixed in 10% buffered formalin 

solution and embedded in paraffin, then 5 µm sections were stained with guinea 

pig anti-insulin primary antibody (1:1000; DAKO laboratories, Mississauga, 

Ontario, Canada) for 30 min, followed by the addition of biotinylated goat anti-

guinea pig IgG secondary antibody (1:200; Vector Laboratories, Burlingame, CA, 

USA). Avidin-biotin complex/horseradish peroxidase (ABC/HP; Vector 

Laboratories) and 3, 3-diaminobenzidinetetrahydrochloride (DAB; BioGenex, San 

Ramon, CA, USA) were used to detect positive cells (brown color).  All paraffin-

embedded tissue sections were counter-stained with Harris’ hematoxylin and 

eosin.   

The other half of the kidney was embedded in OCT compound (Miles 

Scientific, Naperville, IL, USA) and kept frozen at –80°C to determine the 

presence of immune cells.  Five-micron frozen sections were air dried for 10 min, 

fixed in acetone for 3 min at 4°C, and then washed in PBS.  Non-specific binding 
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was eliminated by incubating the tissue sections in 2% fetal bovine serum (FBS) 

in PBS for 20 min.  In addition, endogenous avidin and biotin or biotin-binding 

proteins present in the sections were also eliminated using the avidin/biotin 

blocking kit (Vector Laboratories).  Rat anti-mouse CD4 antibody (1:100; BD 

Biosciences Pharmingen, Ontario, Canada), rat anti-mouse CD8a antibody (1:100; 

BD Biosciences Pharmingen), rat anti-mouse CD19 antibody (1:500; BD 

Biosciences Pharmingen) or rat anti-mouse CD11b antibody (1:500; BD 

Biosciences Pharmingen) was applied to designated tissue sections for 30 min at 

room temperature.  Biotinylated goat anti-rat IgG secondary antibody (1:200; 

Southern Biotechnology Associates, Inc., Birmingham, AL, USA) was added and 

incubated for 30 min.  ABC/HP reagent and DAB were applied to produce a 

brown color.  Sections were then counter-stained with Harris’ hematoxylin.  

6.2.5 Detection of anti-porcine and autoreactive antibodies 

To determine the effect of mAb therapies on the humoral immune 

response of NOD mice to NPI xenografts, the levels of mouse anti-porcine IgG 

antibodies from blood serum of each transplant recipient were determined using 

flow cytometry.  Peripheral blood samples from NOD mice that either rejected or 

accepted the islet xenografts were collected, and sera were isolated.  Porcine 

spleen cells (1x106) obtained from the same pig islet donors were incubated with 

mouse serum at 1:128 dilution for 1 h at 37°C, 5% CO2, and 95% air.  Spleen 

cells were then washed with PBS and incubated with a 1/200 dilution of 

fluorescein isothiocyanate (FITC)-conjugated rat adsorbed goat anti-mouse IgG 

antibody (Southern Biotechnology Associates, Inc. Birmingham, Alabama, AL, 
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USA) for 1 h at 4°C.  The percentage of cells bound to the antibody was detected 

from single parameter fluorescence histograms on a BD FACS Calibur flow 

cytometry machine (BD Biosciences Pharmingen, Mississauga, Ontario, Canada) 

after gating on viable lymphocytes.  Controls for this experiment include sera 

from non-transplanted naïve non-diabetic and diabetic NOD mice, unstained 

porcine spleen cells, and porcine spleen cells incubated with secondary antibody 

alone without mouse serum.   

To determine the effect of mAb therapies on the autoimmune humoral 

response of NOD mice similar procedure outlined above was followed except for 

the cells used were spleen or single islet cells from naïve non-diabetic NOD mice.  

These cells were incubated with 1:64 dilution of serum from NPI grafted 

recipients.  Autoreactive anti-mouse IgG antibodies in serum were detected using 

a 1/100 dilution of FITC-conjugated affinity pure F(ab)2 fragment rabbit anti-

mouse IgG, Fcγ fragment specific antibody (Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA, USA).  Controls for this experiment includes 

sera from naïve non-diabetic and diabetic NOD mice, NOD spleen cells and NOD 

single islet cells which were left non-incubated or incubated with secondary 

antibody alone without mouse serum.    

6.2.6 Detection of CD4+ T cell populations in NOD mice by flow cytometery 

Spleen cells (1x106) from naïve non-diabetic and diabetic NOD mice as 

well as NOD mice transplanted with NPI and treated with anti-CD4 mAb alone or 

with triple therapy were used to analyze the presence of CD4+ T cell populations.  

Spleen cells were incubated for 30 min at 4oC with a 1/100 dilution of 
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Phycoerythrin (PE)-conjugated anti-CD4 mAb (BD Pharmingen Biosciences), 

then washed 2 times with PBS, and suspended in 500 µl of PBS with 2% FBS.  

Fluorescence histograms were created using a BD FACS Calibur flow cytometry 

machine (BD Biosciences Pharmingen) and were used to determine the 

percentage of cells that expressed CD4 marker after gating on viable immune 

cells.  Controls for this experiment include unstained or stained spleen cells with 

PE-conjugated anti-CD4 mAb from naive non-diabetic and diabetic NOD mice.  

6.2.7 Statistical analysis 

Statistical differences in graft survival and function among treated groups 

were determined with the Kaplan-Meier log rank test and Fisher exact test 

analyses, respectively using SPSS statistical software, version 11.5 for Windows 

(Chicago, IL, USA).  A p-value <0.05 was considered to be statistically 

significant. 

6.3 RESULTS 

6.3.1 Short-term administration of a combination of anti-LFA-1 and anti-

CD154 mAbs did not promote long-term survival of NPI xenografts in NOD 

mice. 

We examined whether combined therapy of anti-LFA-1 and anti-CD154 

mAbs could prevent the rejection of NPI xenografts in spontaneously diabetic 

NOD mice.  None of the NOD mice transplanted with NPI and treated with short-

term administration of anti-LFA-1 and anti-CD154 mAbs achieved normal blood 

glucose levels after transplantation (Figure 6.1A and Table 6.1).  The majority 

(6/7) of recipients died between 21 and 60 days post-transplantation and the 
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remaining animal was sacrificed on day 22 post-transplantation due to poor health 

induced by diabetes.   

 
Table 6.1:  Survival of NPI xenografts in spontaneously diabetic NOD mice 
treated with mAbs. 
 

Treatment n Graft survival 
(days post-

transplantation)*

Number of mice 
that achieved 

normoglycemia 
Short-term administration 
(anti-LFA-1+anti-CD154) 

 

7 0, 0, 0, 0, 0, 0, 0 0 

Double dose administration 
(anti-LFA-1+anti-CD154) 

 

7 0, 0, 0, 0, 0, 0, 0 0 

Long-term administration 
(anti-LFA-1+anti-CD154) 

 

7 0, 0, 0, 0, 61, >100 
(x2) †

3 

Anti-CD4 
 

7 0, 0, 0, 0, 0, 28, 35 2 

Triple therapy 
(anti-LFA-1+anti-CD154 + 

anti-CD4) 

12 0 (x3), 45, 46, 56 
(x2), 59 (x2),  72, 

>100 (x2) ‡

9§

 
*Graft survival of 0 indicates that mouse did not achieve normal blood glucose 
level post-transplantation. 
† p=0.032, ‡ p<0.001, § p<0.003 vs. Short-term administration group 

 

We then assessed whether increasing the dose of anti-LFA-1 mAb could 

improve the survival and function of NPI in NOD mice since we previously 

showed that monotherapy of anti-LFA-1 but not anti-CD154 mAb prolonged NPI 

xenograft survival in nearly 50% of B6 mouse recipients (19).  Similar to what we 

observed in short-term administration, all mice remained diabetic throughout the 

study period (Figure 6.1B and Table 6.1), and the majority (6/7) of animals died 

between days 10 and 46 post-transplantation due to hyperglycemia.  In a parallel 

study, streptozotocin-induced diabetic NOD rag-/- mice transplanted with the 
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same NPI achieved normal blood glucose levels within 7 to 10 weeks post-

transplantation (Figure 6.1C).   

 
A 

B 

C 

 
 

Figure 6.1: Blood glucose levels of NOD mice transplanted with NPI and 
treated with mAbs.  NOD recipients treated with a short-term administration (A, 
n=7) or double dose administration (B, n=7) of anti-LFA-1 and anti-CD154 mAbs 
did not achieve normoglycemia post-transplantation. All streptozotocin-induced 
diabetic NOD rag-/- mice (n=5) achieved euglycemia within 7 to 10 weeks post-
transplantation and maintained normoglycemia until the end of the study (>100 
days, C). 
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Histological examination of the NPI grafts from NOD mice treated with 

short-term or double dose administration revealed mononuclear cellular infiltrate 

devoid of insulin-producing cells (Figure 6.2A and B, respectively).  The majority 

of the cellular infiltrate were identified as CD4+ T cells (Figure 6.3A and B, 

respectively) and macrophages (Figure 6.3C and D, respectively) with few CD8+ 

T cells (Figure 6.3E and F, respectively) and B cells (Figure 6.3G and H, 

respectively).  In contrast, numerous intact islets positive for insulin were present 

in NOD rag-/- mice (Figure 6.2C). 

 
A 

B 

C 

 
Figure 6.2: Insulin staining of NPI xenografts in NOD mice treated with 
short-term administration and double dose administration of a combination 
of anti-LFA-1 and anti-CD154 mAbs.  All grafts from spontaneously diabetic 
NOD mice treated with short-term administration (A) and double dose 
administration (B) of a combination of anti-LFA-1 and anti-CD154 mAbs 
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consisted of immune cells with no islets staining for insulin.  Intact islets with 
insulin-positive cells and absence of immune cell infiltrate were detected in NOD 
rag-/- mice (brown stain, C). Sections were counter stained with Harris’ 
hematoxylin and eosin.  Scale bar represents 100 µm. 
 

 

A B 

 
C D 

 
E F 

 
G H 

 
 
Figure 6.3: Characterization of immune cells infiltrated in the NPI 
xenografts in NOD mice treated with short-term administration and double 
dose administration of a combination of anti-LFA-1 and anti-CD154 mAbs. 
All grafts from spontaneously diabetic NOD mice treated with short-term 
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administration and double dose administration of a combination of anti-LFA-1 
and anti-CD154 mAbs infiltrated with CD4 T cells (A and B, respectively), 
macrophages (C and D, respectively), CD8 T cells (E and F, respectively), and B 
cells (G and H, respectively). Scale bar represents 100 µm. 
 
 
 
6.3.2 Long-term administration of a combination of anti-LFA-1 and anti-

CD154 mAbs improved survival and function of NPI xenografts in NOD mice. 

We next assessed whether long-term administration of a combination of 

anti-LFA-1 and anti-CD154 mAbs could improve the survival and function of 

NPI xenograft in NOD mice.  Indeed, we found that 3/7 mice achieved 

normoglycemia within 5-8 weeks post-transplantation indicative of functional 

NPI xenografts (Figure 6.4A and Table 6.1).  One mouse rejected the graft and 

became diabetic on day 61 and two of these mice maintained normoglycemia for 

more than 100 days post-transplantation.  One of the two mice that had long-term 

graft survival reverted to diabetes on day 110 post-transplantation.  NPI xenograft 

function was confirmed in the remaining mouse by performing a survival 

nephrectomy of the NPI xenograft-bearing kidney, which was followed by a rapid 

return to hyperglycemia.  Immunohistochemical staining of NPI xenograft from a 

mouse with long-term surviving graft revealed some insulin-producing β cells 

(Figure 6.4B) and mononuclear cell infiltration, consisting of CD4+ (Figure 

6.4C)and CD8+ T (Figure 6.4D)cells as well as B cells (Figure 6.4E) and 

macrophages (Figure 6.4F). These results demonstrate that long-term 

administration of a combination of anti-LFA-1 and anti-CD154 mAbs improved 

the survival and function of NPI xenografts in NOD mice compared to short-term 

and double dose administration of the mAbs (Table 6.1).  
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A B 

  
C D 

  
E F 

 
 
Figure 6.4: Blood glucose level and histological analysis of NPI xenografts 
from NOD mice treated with long-term administration of a combination of 
anti-LFA-1 and anti-CD154 mAbs.  Three of seven mice treated with long-term 
administration of a combination of anti-LFA-1 and anti-CD154 mAbs achieved 
normoglycemia within 5-8 weeks post-transplantation (A) indicative of functional 
grafts.  Two of these recipients maintained normoglycemia for over 100 days 
post-transplantation. One of these mice became diabetic on day 110 post-
transplantation and graft function was confirmed in the remaining mouse by 
nephrectomy (arrow) of the graft-bearing kidney, which was followed by a rapid 
return to hyperglycemia. NPI xenografts from NOD mice treated with long-term 
administration of a combination of anti-LFA-1 and anti-CD154 mAbs showed 
some CD4 T cells (C), CD8 T cells (D), B cells (E) , and macrophages (F) 
infiltration with few insulin-producing cells (brown stain, B). Scale bar represents 
100 µm. 
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6.3.3 Combination of anti-CD4 mAb with anti-LFA-1 and anti-CD154 mAbs 

resulted in long-term survival and function of NPI xenografts in the majority of 

spontaneously diabetic NOD mice. 

Since CD4+ T cells play an important role in the rejection of NPI 

xenografts (18,22,26,30) and in the pathology of autoimmune T1DM (25,31-33), 

we determined whether transient depletion of CD4+ T cells using mAb could 

prevent the rejection of NPI xenografts in NOD mice.  Treatment of NOD mice 

with depleting anti-CD4 mAb resulted in 2/7 recipients that achieved 

normoglycemia by 3 weeks post-transplantation (Figure 6.5A), but these mice 

eventually became diabetic on days 28 (which eventually died) and 35 post-

transplantation indicating rejection of the NPI xenografts (Table 6.1).  The 

majority of mice remained diabetic and two died on days 35 and 53 post-

transplantation.  The three remaining mice were sacrificed on days 42, 61 and 69 

post-transplantation due to poor health induced by diabetes.  Histological 

examination of the grafts showed very few insulin-producing β cells (Figure 6.5B) 

with intense mononuclear cell infiltration consisting of CD4+ (Figure 6.5C) and 

CD8+ T cells (Figure 6.5D) as well as B cells (Figure 6.5E), and macrophages 

(Figure 6.5F).   
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A B 

 
C D 

  
E F 

  
 
Figure 6.5: Blood glucose level and histological analysis of NPI xenografts 
from NOD mice treated with depleting anti-CD4 mAb. Treatment of NOD 
mice with depleting anti-CD4 mAb resulted in 2/7 recipients achieved 
normoglycemia within 3 weeks post-transplantation (A), but these mice 
eventually became diabetic on days 28 and 35 post-transplantation indicating 
rejection of the NPI xenografts. Short-term treatment of NOD mice with anti-CD4 
mAb resulted in intense CD4 T cells (C), CD8 T cells (D), B cells (E), and 
macrophages (F) infiltration with very few insulin-positive cells (arrows, B). 
Scale bar represents 100 µm.   
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The level of CD4+ T cells detected in the spleen of a mouse that had 

functioning graft but eventually became diabetic at 35 days post-transplantation 

was lower (15.86%) compared to those observed in both naïve non-diabetic 

(33.88% - 37.13%, n=3) and diabetic NOD mice (27.11% - 32.82%, n=3) (Figure 

6.6 C, A and B, respectively). 

 

A 

 
B 

C 

 
Figure 6.6: Recovery of CD4+ T cells after depletion with mAb in NOD mice.  
The level of CD4+ T cells detected in the spleen of a mouse that had functioning 
graft but eventually became diabetic at 35 days post-transplantation was lower (C, 
15.86%) compared to those observed in both naïve non-diabetic (A, 33.88% - 
37.13%, n=3) and diabetic NOD mice (B, 27.11% - 32.82%, n=3).  
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We then determined whether combining anti-CD4 mAb with short-term 

administration of anti-LFA-1 and anti-CD154 mAbs could promote long-term 

survival of NPI xenografts in NOD mice.  Triple combination therapy of short-

term administration of anti-CD4 mAb with anti-LFA-1 and anti-CD154 mAbs 

resulted in a significant improvement in NPI xenograft survival and function in 

the majority of NOD recipients compared to the other groups (Table 6.1).  Nine of 

twelve recipients achieved normoglycemia within 5 to 8 weeks post-

transplantation (Figure 6.7A).  Two of these recipients maintained 

normoglycemia for over 100 days post-transplantation and the remaining mice 

became diabetic on days 42, 45, 56, 59 and 72 days post-transplantation (Table 

6.1).  NPI xenograft function in mice with long-term normoglycemia was 

confirmed by performing a survival nephrectomy of the graft-bearing kidney, 

which was followed by a rapid return to hyperglycemia (Figure 6.7A).  

Histological examination of the NPI xenografts from NOD mice with long-term 

islet function (>100 days) showed more insulin-producing β cells remaining in the 

graft compared to the other groups (Figure 6.7B). Mononuclear cell infiltration, 

which includes CD4+ (Figure 6.7C) and CD8+ T cells (Figure 6.7D) as well as B 

cells (Figure 6.7E) and macrophages (Figure 6.7F) was also present in the NPI 

xenografts examined. 
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Figure 6.7: Blood glucose level and histological analysis of NPI xenografts 
from NOD mice treated with triple combination therapy of short-term 
administration of anti-CD4 mAb with anti-LFA-1 and anti-CD154 mAbs. 
Triple combination therapy of short-term administration of anti-CD4 mAb with 
anti-LFA-1 and anti-CD154 mAbs resulted 9/12 recipients achieved 
normoglycemia within 5 to 8 weeks post-transplantation (A).  Two of these 
recipients maintained normoglycemia for over 100 days post-transplantation and 
graft function was confirmed by nephrectomy (arrows) of the graft-bearing kidney, 
which was followed by a rapid return to hyperglycemia. Combined triple mAb 
therapy resulted in fewer infiltrating CD4 T cells (C), CD8 T cells (D), B cells (E), 
and macrophages (F) and numerous intact islets containing insulin-positive cells 
(brown stain, B) present in the NPI xenografts. Scale bar represents 100 µm. 
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The levels of CD4+ T cells in the spleen of these mice were lower (8.45% 

and 12.40%)  (Figure 6.8A and B, respectively) compared to those observed in 

both naïve non-diabetic (33.88% - 37.13%, n=3) and diabetic NOD mice (27.11% 

- 32.82%, n=3) (Figure 6.6A and B, respectively).   

 

A 

B 

 
 
Figure 6.8: Recovery of CD4+ T cells in the triple therapy treated NOD ice 
with long-term NPI xenograft survival. NOD mice with long-term NPI 
xenograft survival treated with triple therapy of anti-LFA-1, anti-CD154, and 
anti-CD4 mAbs displayed lower CD4+ T cells (8.45%, A and 12.40%, B) 
compared to naïve non-diabetic and diabetic NOD mice.  

 
 

Taken together, our data demonstrate that combination of anti-CD4 mAb 

with anti-LFA-1 and anti-CD154 mAbs significantly promotes long-term survival 

and function of NPI xenografts in spontaneously diabetic NOD mice. 
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6.3.4 Combination of anti-CD4 mAb with anti-LFA-1 and anti-CD154 mAbs 

inhibited the production of xenoreactive anti-porcine and autoreactive IgG 

antibodies in NOD mice. 

Since we observed function of NPI xenografts in some of the NOD 

recipients treated with long-term administration of anti-LFA-1 and anti-CD154, or 

monotherapy of anti-CD4, or a combination of short-term administration of these 

monoclonal antibodies (Triple therapy), we determined the production of mouse 

anti-porcine antibodies in NOD recipients treated with these regimens.  We found 

that the majority of porcine cells were bound with xenoreactive mouse IgG 

antibodies when porcine spleen cells from the same islet donor were incubated 

with sera from recipients treated with either anti-CD4 (40.29%, Figure 6.9C) or 

long-term administration of anti-LFA-1 and anti-CD154 mAbs (41.12%, Figure 

6.9D).  In contrast, mice treated with a combination of anti-CD4, anti-LFA-1 and 

anti-CD154 mAbs that had long-term islet xenograft survival (>100 days) 

displayed reduced levels of anti-porcine IgG antibodies (0.41% and 0.94%, Figure 

6.9E and F), even lower than the levels found in naïve non-transplanted non-

diabetic (1.32-2.44%, n=3, Figure 6.9A) and spontaneously diabetic NOD mice 

(1.97-4.93%, n=3, Figure 6.9B).  To determine the levels of autoreactive IgG 

antibodies in NOD recipients treated with a combination of anti-CD4, anti- LFA-1 

and anti-CD154 mAbs that had long-term islet xenograft survival, NOD spleen 

and islet cells were incubated with sera from these mice.  The anti-spleen (0.59% 

and 0.76%, Figure 6.10C and D, respectively) and anti-islet (5.71% and 9.91%, 

Figure 6.11C and D, respectively) cell IgG antibody levels of the NOD recipients 
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were comparable to those detected in naïve non-diabetic NOD mice (0.55% - 

1.27% and 5.93% - 9.32%, n=3 in each group, Figure 6.10A and 6.11A, 

respectively).  These levels were much lower compared to the anti-spleen 

(11.90% - 44.72%, n=3, Figure 6.10B) and anti-islet (41.52% - 74.50%, n=3, 

Figure 6.11B) cell IgG antibodies observed in spontaneously diabetic NOD mice.   

 

A B 

  
C D 

  
E F 

 
Figure 6.9: Combination of anti-CD4 mAb with anti-LFA-1 and anti-CD154 
mAbs inhibited the production of mouse anti-porcine IgG antibodies in NOD 
mice.  Neonatal porcine spleen cells (1×106) from islet donor pigs were incubated 
with 1:128 dilution of serum collected from non-transplanted naïve non-diabetic 
(1.50%, A) and spontaneously diabetic NOD mice  (2.96%, B) or NOD mice 
transplanted with NPI and treated with anti-CD4 mAb (40.29%, C), long-term 
administration (41.12%, D), or triple therapy (0.41%, E and 0.94%, F).  
Representative histograms of xenoreactive IgG antibodies from control naïve non-
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diabetic (1.32 - 2.44%, n=3) and spontaneously diabetic NOD mice (1.97- 4.93%, 
n=3) are shown.  Controls for this experiment consisted of unstained cells and 
cells incubated with secondary antibody without serum. 

 

A B 

 
C D 

 
Figure 6.10: Combination of anti-CD4 mAb with anti-LFA-1 and anti-CD154 
mAbs inhibited the production of autoreactive anti-spleen IgG antibodies.  
Naïve non-diabetic NOD spleen (1×106) were incubated with 1:64 dilution of 
serum from non-transplanted naïve non-diabetic (0.55%, A), diabetic (14.61%, B) 
or NOD mice treated with the triple therapy and had long-term NPI xenograft 
survival (0.59%, C and 0.76%, D), respectively.  Shown here are representative 
histograms of autoreactive IgG antibodies from control naïve non-diabetic (0.55% 
- 1.27%, n=3, A) and spontaneously diabetic NOD mice (11.90% - 44.72%, n=3, 
B).  Controls for this experiment consisted of unstained cells and cells incubated 
with secondary antibody without serum.  
 

Taken together, these results show that the levels of xenoreactive anti-

porcine and autoreactive IgG antibodies in NOD recipients treated with a 

combination of anti-CD4, anti-LFA-1 and anti-CD154 mAbs with long-term NPI 

xenograft function were inhibited.   
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Figure 6.11: Combination of anti-CD4 mAb with anti-LFA-1 and anti-CD154 
mAbs inhibited the production of autoreactive anti-islet IgG antibodies.  
Naïve non-diabetic NOD islet (1×106) cells were incubated with 1:64 dilution of 
serum from non-transplanted naïve non-diabetic (8.68%, A), diabetic (48.48%, B) 
or NOD mice treated with the triple therapy and had long-term NPI xenograft 
survival (5.71%, C and 9.91%, D), respectively.  Shown here are representative 
histograms of autoreactive IgG antibodies from control naïve non-diabetic (5.93% 
- 9.32%, n=3, A) and spontaneously diabetic NOD mice (41.52% - 74.50%, n=3, 
B). Controls for this experiment consisted of unstained cells and cells incubated 
with secondary antibody without serum.  
 

6.4 DISCUSSION 

Islet xenotransplantation is a possible solution to the shortage of human 

islets for transplantation provided immune cell-mediated rejection and recurrence 

of T1DM can be successfully prevented.  Our results show that short-term 

administration of a combination of anti-CD4 mAb with anti-LFA-1 anti-CD154 

mAbs promotes long-term survival and function of NPI xenografts in 

spontaneously diabetic NOD mice.  Seventy five percent (9/12) of NOD 

 291



recipients achieved normoglycemia and two mice maintained euglycemia for 

more than 100 days post-transplantation without additional treatment.  Numerous 

intact islets with insulin-positive β cells were present in the graft of these mice 

and the levels of xenoreactive anti-porcine, and autoreactive IgG antibodies were 

comparable to those detected in naïve non-diabetic NOD mice. 

Our results also demonstrate that short-term treatment with a combination 

of anti-LFA-1 and anti-CD154 mAbs which was highly effective in B6 mice 

(19,34) was not effective in prolonging islet xenograft survival in NOD mice even 

when the dose of anti-LFA-1 mAb was increased.  This result was not surprising, 

as other studies have demonstrated that anti-rejection therapies found highly 

effective in promoting long-term survival of islet grafts in non-autoimmune prone 

mice is not always equally effective in NOD mice.  The reason for this is not clear, 

however findings from several studies have indicated that the autoimmune disease 

in NOD mice might have contributed to the difficulty in achieving indefinite graft 

survival (35,36).  It has been proposed that NOD mice with spontaneous 

autoimmune diabetes have a generalized defect in their response to transplantation 

tolerance induction (37) which could be the result of and/or controlled by the 

same genes that predispose the NOD mice to autoimmunity (38).  Our data 

demonstrate that when a combination of anti-LFA-1 and anti-CD154 mAbs was 

administered for a longer period, modest improvement in NPI xenograft survival 

and but not inhibition xenoreactive antibody production were observed (Figure 

6.9D).  However, the majority of mice did not achieve normoglycemia suggesting 
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that this particular mAb regimen was not sufficient at inhibiting the xenograft 

rejection as well as the autoimmune responses in NOD mice.   

CD4+ T cells have been shown to be important in islet xenograft rejection 

and treatment of mice with depleting anti-CD4 mAb prolonged islet xenograft 

survival.  However, the effect was usually transient and this has been attributed to 

the rapid recovery of CD4+ T cells (26,28,39).  In our study, single therapy of 

anti-CD4 mAb did not result in significant prolongation of NPI xenograft survival.  

Two of the seven recipients achieved normoglycemia by 3 weeks post-

transplantation, but these mice rapidly returned to the diabetic state due to 

rejection of the islets, which was confirmed by immunohistochemical staining of 

the grafts.  The early graft function observed in this group suggests that CD4+ T 

cells play an important role in the early response to NPI xenografts.  When anti-

CD4 mAb was combined with anti-LFA-1 and anti-CD154 mAbs majority of the 

NOD recipients achieved normoglycemia, which was not observed in any other 

treatment.  These results indicate that initial depletion of CD4+ T cells in 

combination with peri-transplant administration of anti-LFA-1 and anti-CD154 

mAbs can effectively inhibit the xenograft and autoimmune responses in NOD 

mice resulting in the delay of rejection of NPI xenografts.  These results also 

indicate the importance of these molecules in both autoreactive and xenoreactive 

immune responses.  The recovery of CD4+ T cells may account for the rejection 

of NPI xenografts at later time points post-transplantation.  Our study also shows 

that despite the presence of numerous intact islets positive for insulin in NPI 

xenografts collected from NOD mice treated with triple mAb therapy that had 
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long-term islet graft function; mononuclear cell infiltration was not completely 

inhibited.  It will be important to determine in future studies whether the cellular 

infiltration will eventually destroy the entire NPI xenografts or will remain 

passive over time.   

Taken together, our data show that significant prolongation of NPI 

xenograft survival can be achieved in spontaneously diabetic NOD mice using a 

combination of anti-CD4 mAb with anti-LFA-1 and anti-CD154 mAbs.  This 

combination therapy inhibits both xenoreactive anti-porcine and autoreactive 

humoral immune responses suggesting that a collaborative interaction between 

CD4+ T cells and B cells may have been prevented in both responses.  This study 

also emphasizes the importance of CD4+ T cells and the interaction between LFA-

1 and CD154 with their ligands in the rejection of NPI xenografts in autoimmune 

prone NOD mice.  In conclusion, blockade of T-cell costimulation and adhesion 

using mAbs is a promising strategy for promoting long-term survival of NPI 

xenografts and slight modifications of this anti-rejection protocol may result in its 

full potential of preventing islet xenograft rejection and disease recurrence.   
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7.1 GENERAL DISCUSSION 

Autoimmune destruction of insulin producing β cells of the pancreas 

results in the incidence of type 1 diabetes mellitus (T1DM) which is characterized 

by hyperglycemia. Secondary chronic and acute complications of T1DM are 

associated with chronic hyperglycemia and fluctuating of blood glucose 

levels(1;2). Therefore, patients with T1DM require exogenous insulin to sustain 

their life and control the complications. The discovery of insulin in 1921 

dramatically changed the treatment of T1DM and transformed what was an 

acutely fatal illness, into a chronic disease (1;3;4).  However insulin injection as a 

gold-standard therapy for treatment of T1DM patients, could not provide a tight 

degree of glycemic control as it is in the normal physiological condition in people 

with functional β cells (1;2). As the life expectation of patients with T1DM 

increased, the number of complications such as foot ulcer, retinopathy, 

neuropathy, and nephropathy, associated with fluctuating glucose levels increased.  

These complications significantly diminish the quality of life, highlighting the 

need for better treatment alternatives for people with T1DM (5-15). Several 

alternative treatment options have been known for patients with T1DM including: 

whole pancreas transplantation (16;17), islet transplantation (18;19), stem cell 

differentiation (20-23), β cell regeneration (24;25), bioartificial pancreases (26) 

and gene therapy (27).  

Islet transplantation has recently gained worldwide attention as a viable 

treatment alternative for patients with T1DM. Successful islet transplantation in 

humans, however, did not occur until 1989 when the research team at the 
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University of Alberta demonstrated sustained C-peptide secretion following 

intraportal islet transplantation performed concurrently with orthotopic kidney 

transplantation (28). In 2000, the Edmonton Protocol was introduced as the first 

report of insulin independence in 100% of patients at 1 year following an 

allogeneic islet transplantation by the scientists at the University of Alberta (29). 

This success has thrust islet transplantation to the forefront of treatment 

possibilities for patients with T1DM.  Despite this dramatic progress, islet 

transplantation at present is not a viable treatment option for the majority of 

people with T1DM due to the two major barriers: i) shortage of donor pancreatic 

tissue, and  ii) the need for continuous immunosuppressive drugs to prevent the 

immune mediated rejection of the transplanted islet graft which have harmful side 

effects. These barriers have prompted investigators to look for new sources of 

insulin producing tissue as well as new methods of preventing the rejection of the 

transplanted islets which are not associated with the harmful side effects of the 

currently implemented immunosuppressive regimen (30;31).  

To overcome the first barrier shortage of islet donors, animal (xenogeneic) 

donors have been proposed as a potential source of pancreatic tissue for human 

islet transplantation.  While many xenogeneic sources of insulin producing tissue 

have been used experimentally, pigs are possibly the most ideal source for 

humans because of i) the structural similarity of porcine insulin to human insulin 

(32) which has been used clinically for more than 50 years (33), ii) the potentially 

unlimited supply of porcine tissue as they breed rapidly and have large litters (34), 

and iii) the potential to decrease the immunogenicity of the tissue by genetic 
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manipulation (35;36). Porcine islets from different age level of pig donors such as 

fetal, neonatal and adult have been extensively studied (37). Based on the 

literature only islets isolated from neonatal and adult pigs have been shown to be 

able to correct diabetes in large animal models as allografts  (38-40) or xenografts 

in non-human primates (41;42).  

The main challenges which should be met to make porcine islet 

xenotransplnatation a clinical reality included i) establishing a reproducible 

method for the efficient preparation of porcine islets, ii) considering the risk of 

transmission of porcine pathogens to humans, and iii) overcoming the rejection of 

transplanted porcine islets and ultimately strategies for induction of tolerance. 

Given the fact that both neonatal and adult porcine islets have been 

demonstrated to function in preclinical non-human primate models (41-43), it has 

been suggested that these sources will serve as the donor sources for first islet 

xenotransplantation clinical trials. Based on current non-human primate 

experience using 50,000 IEQs/kg body weight (BW) of neonatal porcine islets 

(NPI)(41), a 70 kg human undergoing islet xenotransplantation will require 3.5 x 

106 NPI. Given that the average 1-3 day old neonatal pig yields approximately 

50,000 islet aggregates, a minimum of 70 neonatal pigs will be required for a 

single human NPI xenotransplant. Considering the labor-intensive nature of our 

current method for NPI isolation and maintained of isolated islets in culture with 

media change every other day for 5-7 days pre-transplantation, currently renders 

NPI xenotransplantation unsustainable as a treatment for T1DM. The possible 

ways to overcome this challenge could be decreasing the number of islets required 
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for transplantation by using islets from older piglets in addition to developing an 

automated method for isolation and media change. With regards to adult porcine 

islets, a human undergoing adult porcine islet xenotransplantation will require 

1.75 x 106 islets (25,000 IEQs/kg BW) based on current non-human primate 

experience (42). A single adult pig may yield 255,000 islets, therefore an average 

70 kg human recipient will require adult porcine islets from at least 6 donors 

which economically it is not feasible (44). Identifying a suitable strain of pigs that 

yields on a consistent basis more than 350,000 viable, purified, and cultured islet 

equivalents from a juvenile donor could be a possible way to overcome this 

challenge (44).  

 Next challenge which needs to be considered for the application of porcine 

islet xenotransplantation for treating large numbers of patients with T1DM, is the 

concern for the potential risk of zoonotic diseases, particularly viral disease as a 

virology research documented that pig endogenous retrovirus (PERV) can be 

transmitted  in vitro from a porcine cell to a human cell-line (45). In addition, 

there is the potential for the transmission of infectious agents that may not 

normally be pathogenic in humans, but could become so in an 

immunocompromised patient. However none of the studies using neonatal or 

adult porcine islets in non-human primates (41;42) as well as fetal porcine islets 

in T1DM recipients (46) reported any PERV transmission in the peripheral blood 

or tissues harvested at necropsy. Since development of PERV-free pigs will not 

be practical with current technology, another strategy to minimize the risk of 

xenozoonosis in islet xenotransplant recipients is using the donor animals which 
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are designated to be pathogen-free and bred as well as maintained at a so-called 

“closed herd” in biosecure facilities (47). This means that in addition to the 

operation of facility in compliance with "Good Manufacturing Practice (GMP)", 

the assays for pathogens in the diagnostic laboratory need to be done in 

compliance with "Good Laboratory Practice (GLP)" (47). Therefore, while 

utilization of NPI as an islet donor source would necessitate the use of large 

numbers of islet donors, only breeding pairs would be maintained under GMP 

conditions while donor animals would be processed for islet transplantation soon 

after birth. On the other hand, while at least 6 adult porcine islet donors would be 

required for a single human islet recipient, all 6 donor animals would need to be 

housed and tested under GMP and GLP conditions for 10 to 36 months prior to 

transplantation which may escalate costs to prohibitive levels (48).  

The last challenge to make porcine islet xenotransplnatation a clinical 

reality is overcoming the rejection of transplanted porcine islets and ultimately 

strategies for induction of tolerance. As it was mentioned in chapter 1 the process 

of porcine islet xenograft rejection comprises of IBMIR, as well as innate,  

antibody and cell mediated immune responses. With regards to the contribution of 

IBMIR in porcine islet function, it was reported that porcine islets were destroyed 

(22 to 73%) after 24 hours of transplantation into non-immunesuppressed non-

human primate model (49). The grafts exhibited cell destruction with coagulation 

and complement components activation supporting that IBMIR contributed to the 

islet damage in this model (49). One of the possible reasons of IBMIR may be 

infusion of islet grafts through the intrahepatic vein which is known as only 
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accepted site for clinical islet transplantation (50).  It was shown that using cobra 

venom factor to inhibit complement activation pathway and low molecular weight 

dextran sulfate (LMW-DS) to prevent coagulation and clotting lead to significant 

improvements of survival of transplanted islets in small and large animal models 

(51-53). In addition, development of an alternative site for islet 

xenotransplantation most likely will prevent or reduce IBMIR and thereby 

promote islet engraftment. It will also enhance the efficacy of clinically applicable 

immunosuppressive therapy or tolerance-induction protocols. It will provide 

access for histological examination of islet xenograft engraftment, rejection or 

acceptance, and will allow excision if infection or cancer arise within the islet 

xenograft (54).  

Fortunately, with regards to innate and antibody dependent immune 

responses to porcine islet xenografts recent evidence suggests that, unlike most 

vascularized solid organ xenografts where hyperacute rejection result in 

immediate graft failure, the rejection of porcine islet xenografts in non-human 

primates is associated with a predominant T-cell mediated mechanism (41;42). 

One strategy to prevent T cell mediated rejection instead of using general immune 

suppressive drugs is targeting T cell activation pathways using highly specific 

monoclonal antibodies (mAbs) which was shown to be effective in prolonging 

porcine islet xenograft survival in non-human primates (41;42). It was shown by 

our group that short-term administrations of a combination of mAbs, particularly 

a combination of anti-LFA-1 and anti-CD154 mAbs is highly effective in 

prolonging long-term NPI xenograft survival in mouse model (43). In chapter 2 of 
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this manuscript it was shown that this combination can induce a stable protection 

of NPI xenografts for a long period time as well as induce tolerance mediated by 

regulatory T cells. In chapter 3 it was shown that tolerance induced to NPI 

xenografts by a combination of anti-LFA-1 and anti-CD154 mAbs is species-

specific that it can be extended to second party porcine islet xenografts. However 

it can not be extended to different tissue or organ grafts (tissue-specific). The 

clinical application of these findings can be useful as in case of human islet 

transplant recipients may require a second islet transplant to maintain insulin 

independence. These patients may also require other organ or tissue 

transplantation due to the deleterious secondary tissue or organ complications. 

Data reported in chapter 4 show that combined anti-LFA-1 and anti-CD154 mAbs 

therapy can induce dominant tolerance. It was also shown that CD4+ T cells play 

a more important role in the maintenance of tolerance and demonstrated a 

significant role of APC in the induction of tolerance to NPI xenografts by a 

combined anti-LFA-1 and nti-CD154 mAb therapy. With regards to the role of co 

inhibitory molecules particularly PD-1, from the data in chapter 5 it was shown 

that PD-1/PD-L interaction is required for the induction and maintenance of 

tolerance to NPI xenografts by the combined anti-LFA-1and anti-CD154 mAb 

therapy. Finally, in chapter 6 the efficacy of combined anti-LFA-1 and anti-

CD154 mAb therapy in preventing rejection of NPI xenografts in autoimmune 

prone NOD mice, which is known to be an animal model of T1DM in human, was 

determined. Additionally, the efficacy of anti-CD4 mAb alone or in combination 

with anti-LFA-1 and anti-CD154 mAbs in promoting the survival of NPI 
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xenografts in NOD mice was examined since CD4+ T cells play a pivotal role in 

the onset of diabetes and generation of anti-graft responses, particularly against 

xenografts. In this chapter it was shown that short-term administration of a 

combination of anti-LFA-1 with anti-CD154 plus anti-CD4 mAbs result in long-

term acceptance of NPI xenografts in spontaneously diabetic NOD mice, however 

short-term treatment with a combination of anti-LFA-1 and anti-CD154 mAbs 

that was highly effective in B6 mice did not produce any significant islet 

xenograft prolongation in NOD mice even when the dose of anti-LFA-1 mAb was 

increased. A moderate improvement in the NPI xenograft survival was observed 

when a combination of anti-LFA-1 and anti-CD154 mAbs was administered for a 

longer period.  

Taken together from the data reported in this thesis the combination of 

anti-LFA-1 and anti-CD154 mAbs can be considered a promising strategy for 

promoting long-term survival of NPI xenografts in mouse animal models 

including non-autoimmune prone B6 mouse and auto-immune prone NOD mouse 

models. Potential topics for future research in this subject could be: 1) elucidation 

the mechanism of the protective effects of this combination of mAbs, particularly 

looking at their effect on APC (i.e. dendritic cells and macrophages), 2) further 

characterization of intracellular signaling pathways modified by this combination 

of mAbs which could result in the induction of tolerance to NPI xenografts 

through the T regulatory cells.  

Given the significant clinical barrier to the use of humanized anti-CD154 

mAb therapy due to the thromboembolic events (55), using anti-CD40 can be 
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considered as an alternative strategy to block this important costimulation 

pathway to prevent graft rejection (56-59). Considering the availability of 

humanized form of anti-LFA-1 (CD11a), Efalizumab, and potential application of 

anti-CD40 mAb, targeting these pathways may result in its full potential of 

preventing islet xenograft rejection in clinical porcine islet xenotransplnation.  

 

7.2 CONCLUSION 

The success of the Edmonton Protocol has provided tremendous support 

for islet transplantation as a potential alternative therapy for patients with T1DM.  

However, despite these recent advancements, this therapy is not available to the 

vast majority of patients with T1DM because of the shortage of donor islets and 

the toxicity of the immunosuppressive regimen.  Xenogeneic islet transplantation 

holds promise for clinical transplantation because of the potentially unlimited 

supply of islets.  Porcine islets are a readily available source of donor tissue which 

can meet the demands of islet transplantation. However, careful control of porcine 

donor source tissue will be essential. In this thesis we have shown that short-term 

administrations of anti-LFA-1 and anti-CD154 mAbs can successfully prolong 

NPI xenograft survival indefinitely and induce dominant, species- and tissue-

specific tolerance mediated by regulatory T cells in non-autoimmune prone B6 

mice. It was also shown that this combination of mAbs is significantly effective in 

promoting NPI xenografts survival in autoimmune prone NOD mice when 

combined with anti-CD4 mAb. It is may hope that the research presented in this 

thesis will provide insight into the nature of the immune responses to xenogeneic 
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islet transplantation in humans and aid in the development of effective, tolerance 

inducing therapies, so that patients with T1DM will once again know a life free 

from their disease. 
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