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Abstract

Model-based predictive control (MPC) emerged in the late 1970s and has achieved 

tremendous success in industry. M ultirate systems such as distillation columns, reac­

tors. etc. are very common in chemical industry, but it is difficult to apply MPC to 

control such m ultirate systems since it is difficult to extract process information from 

multirate data. M ultirate model-based inferential control schemes have been studied 

a great deal. All the m ultirate model-based inferential control schemes assumed that 

the fast-sampled process model was available, bu t unfortunately, no method had been 

proposed to  estim ate the fast-sampled process model from m ultirate data which is 

often the only source to obtain the multirate process model. One of the purposes 

of this thesis is to  fill the gap by providing m ethods for estim ating the fast sampled 

single-rate process model from m ultirate input-output data.

In most of the industrial applications, MPC schemes have been applied to multi­

input and m ulti-output (MIMO) systems. It is well known th a t it is very efficient to 

represent a MIMO system in the sta te  space framework. Subspace based system iden­

tification involves estimating the  sta te  space model of a process from the input-output 

data directly. The proposed m ultirate identification schemes were first developed in 

subspace framework then discussed in the polynomial domain. The unique prob­

lems in m ultirate identification such as the accuracy of time-delay estimation, the 

observability in the presence of time-delay and the causality problem were discussed 

in detail. Three methods to ex tract a fast sampled model from the lifted model were 

presented. The multirate identification schemes have been applied to  both SISO and 

MIMO m ultirate systems. T he multirate identification algorithms were analyzed in 

frequency domain; this results in a  new and effective way to design excitation se­

quence for m ultirate identification. Experimental and simulation examples as well as 

industrial applications were used to  demonstrate the  m ultirate identification schemes.
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In multirate systems, some of the output sampling interval may be so large that 

some loops can not be closed, but other loops, for economic or safety reasons, are 

closed at the same time. Traditional subspace-based schemes can not be applied to 

such systems which have both opeii-loop and closed-loop sub-systems. A multirate 

identification algorithm which can estimate the fast-sampled process model is devel­

oped for such systems where some loops are closed but the others are open. The 

proposed algorithm can compute the fast-sampled model in either one step or two 

steps. This identification scheme can handle the most general class of processes in 

contrast to that other subspace-based schemes can only be applied to  the ARMAX 

(auto-regressive and moving-average, x denotes external input) type of processes.

A multirate inferential model-based predictive control scheme is proposed in both 

polynomial and s ta te  space domains. Model-plant mismatch (MPM) is inevitable 

in chemical industry due to various factors. Analysis of the robust stability and 

performance of the multirate inferential control systems in the presence of MPM is 

very important. The nominal performance and robust stability of a special class of 

mulitrate inferential control systems were theoretically analyzed. Experimental and 

simulation examples were explored to illustrate the performance and stability of the 

multirate inferential control schemes.
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Chapter 1 

Introduction

M ultirate (MR) systems are sampled-data systems with non-uniform sampling/hold 
intervals. Figure 1.1  shows a simplified block diagram of m ultirate systems. Mul­
tirate systems are very common in the chemical process industry; typical examples 
include distillation columns and reactors. In distillation columns or reactors, the 
primary measurements such as the composition, density or molecular weight distri­
bution measurements take several minutes or even several hours of analysis time; 
on the other hand, secondary measurements such as flow-rates, tem peratures and 
pressures are sampled at relatively fast rate; and usually the m anipulative variables 
can be adjusted at relatively fast sample rates. These naturally lead to  multirate 
sam pled-data systems.

Single-rate (SR) system s, whose signals are all sampled at one identical rate, can 
be considered as a special case of multirate systems. Single-rate systems are linear 
time-invariant (LTI) if the continuous systems are LTI; but m ultirate systems are 
time-varying regardless of the time-in\ariance of the continuous systems. Compared 
with single-rate systems, m ultirate systems are relatively more difficult in controller 
design and identification because the mathematical complexity involved in dealing 
with m ultirate systems is more intriguing than  that involved in dealing w ith single­
rate system s. This is the  main reason why control and system identification techniques 
for m ultirate systems have evolved at a much slower pace.

1.1 M ultirate Control

Study of multirate system s goes back to the early 1950’s. The first im portan t work 
was performed by Kranc in 1957 [43] on the switch decomposition technique; later, 
Friedland further developed the concept of lifting which converts a  periodic discrete- 
time system  into a  tim e-invariant system [24]. Since then, the lifting technique has

1
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Figure 1 .1 : .4 simplified block diagram o f a multirate sampled-data system

become an im portant and widely used tool for analysis of m ultirate systems. The 
fundamental idea of lifting technique can be explain by a  simple example: Consider 
a single-input single-output m ultirate system where the control interval is T  and the 
output sampling interval is n T . The lifting technique takes the n  control signals in 
time interval n T  as n independent components of a vector control signal with interval 
nT. the resulting fictitious system which relates the vector input to  the sampled 
output is single-rate and LTI but with increased input dimensionality. Clearly, by 
making use of the periodicity nature of the m ultirate systems, the lifting operator 
converts m ultirate systems to  fictitious single-rate systems; such fictitious single-rate 
systems is the so-called the name lifted systems. Single-rate control theory can then 
be modified and applied to  the  lifted systems, and this gives rise to  the lifted control 
theory. The lifting and inverse lifting operators provide a framework for controller 
design and analysis of m ultirate systems. Numerous optimal H2 and H-*- control 
algorithms have been developed for several classes of multirate systems [9. 11, 6 6 ], in 
the last decade.

Besides the lifted control schemes, inferential control scheme which estimates the 
inter-sample outputs and then feedback the estim ated inter-sample outputs to the 
controller is another way to  achieve fast control movements for m ultirate systems. 
Traditionally, the inter-sample estimation is based on the fast sampled secondary 
measurements. For example, in a  distillation column, since the measurement of the 
composition in the top tray  takes longer period of time, tem perature of certain tray 
which is supposed to be strongly correlated with the composition is used as the

2
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-si-cundary measurement to infer the primary composition measurement. The tradi­
tional inferential schemes has been applied in industry with some success [48], but 
the traditional inferential schemes which ignore the infrequently measured primary 
measurements often give biased estimates of the prim ary outputs in the presence 
of disturbances. Model-based inferential schemes which incorporate the infrequent 

primary’ ou tpu t measurements into estimation schemes were first presented by Dhul- 
ster et al. [17]. Lu and Fisher studied the inter-sample outputs estimation and 
inferential control for such multirate systems where the ratio between the uniform 
output sampling interval and the uniform control interval is an integer [57, 58]; their 
estimation m ethod is not based on the  process model a t interval T  bu t the relation­
ship between the future fast sampled outputs and past input-output measurements; 
they also showed the convergence properties of their method. G uilandoust et al. 
[29, 30] considered more general m ultirate models with slow sampled main outputs 
and showed th a t the inter-sample outputs can be estim ated with the aid of a fast 
sampled secondary output. Lee and Morari developed a  generalized inferential con­
trol scheme and discussed various optim al control problems in the LQG, MPC, and 
IMC framework [47], Gudi and Shah have developed an enhanced observability es­
timation m ethod for m ultirate processes [27], Oisiovici and Cruz have developed a 
model-based inferential controller and applied it to  a  batch distillation column; the 
model they used is a linearized first-principle model [64]. The three methods de­
veloped by G uilandoust et al. Lee and Morari. Gudi and Shah assume th a t a fast 
sampled model of the process is available. This in itself can be a nontrivial task, as 
it requires estim ation of the fast-sampled process dynamics from m ultirate data; one 
of the purposes of our work is to fill the  gap by providing methods of obtaining such 
fast single-rate models based on m ultirate data.

In the past two decades process control practice has progressed from simple PID 
controllers to advanced model-based predictive controllers (MPC) [16, 15, 67] capable 
of handling interactions and constraints. The basic idea in the strategy of MPC is to 
minimize the sum  of squares of future control errors over a finite-time horizon and at 
the same time pay attention to the incremental control energy required to minimize 
the control errors. In a receding horizon fashion, model based predictive controllers 
only implement the  first of the calculated control moves The ability to  deal with 
interactions and  constraints makes M PC widely accepted by the process industry.

M ultirate system s where the uniform output sampling interval is n T  and the 
uniform control interval is T  are one of the simplest classes of m ultirate systems, 
but it is non-trivial to implement model-based predictive controller with a control 
interval of T  even for such simple m ultirate systems. Clearly, if the single-rate fast-

3
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sampled process model is available, then we can easily design a single-rate M PC with 
interval T  which processes both the outputs measured every nT  and the estim ated 
inter-sample outputs: this is the basic idea of multirate inferential MPC. Dynamic 
Matrix Control (DMC) and Generalized Predictive Control (GPC) are two im portant 
and widely used classes of M PC applied in chemical industry. DMC and G PC  type 
m ultirate inferential M PC will be developed in Chapter 8 .

1.2 M ultirate Identification

Theoretically process models can be derived from basic physical laws. But in practice, 
it is very often that the input-output measurement is the only source to obtain process 
model. System identification [55] is concerned with identifying the model of a  process 
from input-output da ta . System identification in both the polynomial dom ain [55, 
68] and the state-space domain [45. 75. 79] has achieved much success. B ut these 
identification algorithms can be applied only to single-rate input-output data.

Traditionally, engineers interpolate tne inter-sample outputs from the slowly sam­
pled outputs, then estim ate fast single-rate models based on both the m easured and 
interpolated outputs [lj. The accuracy of the fast models estim ated by the traditional 
approach mainly relies on the accuracy of inter-sample interpolation which does not 
take process dynamics into account. Clearly, the more reasonable approach is to esti­
mate the fast model directly from the m ultirate input-output data; we use the  second 
approach in this thesis.

The estimation of fast single-rate models directly from m ultirate input-output da ta  
is a relatively new research area. Verhaegen and Yu presented a technique to estim ate 
lifted models of m ultirate systems in the state-space domain [82]. In their work, they 
represented m ultirate system s with periodic systems, and they estimated the lifted 
model with the multi-variable output-error state-space method; their m ethod can not 
handle the causality constraint which is crucial for identifying the lifted models. In 
our work, we handle the  lifted systems which are linear time-invariant, so we can 
apply most of the existing identification algorithms to estim ate the lifted systems 
with a little modification to  overcome the causality constraint: and we go one step 
further to extract fast sampled models from the lifted models. Identification of fast 
sampled state-space models of the single-input and single-output (SISO) and multi­
input and m ulti-output (MIMO) multirate systems will be discussed in C hapters 4 
and 5, respectively. M ultirate identification in the transfer function domain will be 
discussed in Chapter 6 .

For safety reasons in industry, it is quite often that modeling and identification

4
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can only be practiced under closed-loop conditions. The difficulty for closed-loop 
identification is that the control signals are correlated with the disturbances un­
der closed-loop conditions which violates the assumption of most identification algo­
rithms. Gustavsson and co-workers have surveyed some problems such as identifia- 
bility and accuracy etc. in closed-loop identification in the  polynomial dom ain [31]. 
Forssell and Ljung have studied the statistical properties of the closed-loop identifica­
tion in the prediction error framework [22]. Verhaegen has applied the multi-variable 
output-error state-space algorithm to closed-loop identification [78], bu t he identified 
the augmented system instead of the process model directly. All existing subspace 
identification algorithms have been developed for processes which can be represented 
by auto-regressive and moving-average (ARMA) models. A subspace-based closed- 
loop identification scheme for the most general class of processes [55] will be discussed 
in C hapter 7. and the proposed closed-loop identification algorithm is capable of pro­
cessing m ultirate data.

1.3 Robust Stability Analysis o f M ultirate Infer­
ential Control System s

Clearly model-plant mismatch is inevitable; the designed controllers generally work 
well for the nominal processes. However when the controllers are implemented on real 
processes which deviate from the nominal operating conditions, the performance may 
become much worse than  the desired performance, or the  closed-loop system s may 
even become unstable. It is important to make sure th a t  the closed-loop systems 
are stable when the controllers are implemented on all possible process operating 
conditions and that the performance is within a user specified range. This type of 
analysis and design m ethod is called robust stability and performance analysis [61]. 
Robust stability and performance analysis of single-rate systems has been studied 
extensively, but the robust stability and performance analysis of m ultirate systems 
with inferential controllers has not been studied in detail. Theoretical analysis and 
some interesting results will be presented in Chapter 9.

1.4 Thesis O utline

In this thesis, ŵe will focus on identification of m ultirate systems, m ultira te  infer­
ential control algorithms and robust stability and perform ance analysis of m ultirate 
inferential control systems. The thesis is organized as follows:

5
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First we will give a tutorial introduction of three popular subspace based i d e n t i f i c a ­

tion schemes in C hapter 2. All the three algorithms are illustrated with experimental 
and simulation examples.

Chapter 3 gives an introduction to the control of m ultirate systems. In this chap­
ter. a t first the lifting/inverse lifting operators and the lifted systems will be in­
troduced. then the lifted control schemes will be discussed and compared with the 
inferential control schemes.

C hapter 4 proposes the fundamental idea of the two-step multirate system iden­
tification strategy: estim ate the lifted model and then extract a fast sampled model 
from the lifted model. This chapter considers identification of the general class of 
SISO multirate processes where the ratio between the output sampling interval and 
control interval is a  rational number. This chapter will focus on the observability 
of the lifted model in the  presence of a  large time-delay, causality constraint on the 
lifted model, and the methods for extracting the fast sampled model from the lifted 
model. The final result of Chapter 4 is that a single-rate sta te  space model where the 
output is sampled as fast as the control interval can be estimated from the multirate 
data.

C hapter 5 extends the results in C hapter 4 to a special bu t practical class of MIMO 
m ultirate systems where all the control intervals are uniform, all the output sampling 
intervals are distinct, bu t all the output sampling intervals are integer multiples of the 
control interval. The most important result in Chapter 5 is that a single-rate state- 
space model of the process sampled with the control period can be estim ated from 
the m ultirate data. Simulation and experimental examples are included to validate 
the results in Chapters 4 and 5.

Identification of m ultirate systems in the transfer function domain is elaborated 
in C hapter 6 . This chapter consider only a special class of multirate systems where 
the ou tpu t period is an integer multiple of the control period. First, two methods 
to estim ate a fast sampled model from the multirate da ta  are developed. Providing 
another dimension of insight into the processes, analysis of identification schemes in 
frequency domain is important and practical. Analysis of the proposed multirate 
identification is an interesting part of this Chapter. An industrial application of the 
proposed m ultirate identification m ethod is presented at the end of this chapter.

In m ultirate systems, some of the output sampling intervals may be so large that 
some loops can not be closed, but other loops are closed a t the same time. Tradi­
tional subspace-based schemes can not be applied to such open-/closed-loop systems. 
M ultirate systems include both open loops and closed loops are not uncommon in 
chemical industry, so it is of great importance to develop subspace-based schemes

6
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for identifying such systems. C hapter 7 gives a subspace-based instrumental var iable 
method which can estimate the fast sampled model of the process under such open- 
/closed-loop conditions. One advantage of the proposed subspace-based identification 
method is th a t it can handle the most general class of processes. Another advantage 
is that it can handle m ultirate data, specifically, it can estimate the fast-sampled 
process model in either one step or two steps. Simulation and experimental examples 
are used to illustrate the proposed algorithm.

Theoretical analysis along with experimental work in Chapter 8  shows th a t the 
inferential control algorithm can be incorporated into the existing single-rate M PC 
such as DMC and GPC in both the state-space framework and the polynomial frame­
work. Experimental examples are included to demonstrate the performance of the 
m ultirate inferential MPC.

In Chapter 9. the performance and stability of the inferential control scheme in the 
absence of model-plant mismatch is first discussed. The focus of this chapter, stability 
robustness of inferential control systems in the presence of model-plant mismatch, is 
then elaborated. An illustrative example is included to validate the results given.

Chapter 10  gives an overall picture of the work in this thesis, and proposes some 
future work.

7
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Chapter 2 

Subspace-based Identification  
M ethods

2.1 Introduction

Control engineers in process industries have strong desire to obtain better knowledge 
of specific plants in order to  obtain improved control and thus lower operating cost, 
since it is well known th a t th e  performance of the advanced control schemes such as 
Smith predictor, H2-norm control, dynamic m atrix control (DMC) and generalized 
predictive control (GPC). e tc ., relies on the accuracy of the models they based. The­
oretically the dynamic process models can be derived from basic physical/chemical 
laws, but in practice, it is very often that the  input and output measurement is the 
only source to obtain process models.

System identification [55] is concerned with identifying the model of a  process from 
input-output data. Estim ation of the transfer function representation of a process has 
achieve tremendous success for a long time, especially after being applied to estim ate 
dynamic process models for the advanced model-based predictive control schemes. 
In most of the industrial applications, model-based predictive control schemes have 
been applied to  MIMO system s. It is well known that it is very efficient to represent 
and analyze MIMO system s in the state-space framework. Subspace based system 
identification involves estim ating the state-space models of processes from the input- 
output da ta  directly.

Subspace-based system identification is a  relatively new and active research area, 
and it has been very successful in industry after its advantage being understood. The 
subspace-based identification methods originate from the classical realization theory 
formulated by Ho and K alm an [34], and Kung [44]. A number of subspace identifica­
tion algorithms have been published. Larimore presented the CVA (canonical variate

8
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analysis) method in 1990 [45]. which is based on maximum likelihood estimation. 
Numerical algorithms for subspace s ta te  space system identification (N4SID) were 
developed by Van Overschee and De Moor [75. 76], the key idea of N4SID being or­
thogonal projection. MOESP (multi-variable output-error state-space) m ethods were 
presented and discussed by Verhaegen in a  series of his papers [79, 80]; MOESP is 
basically an instrumental variable method.

All the subspace identification algorithms share the same basic idea: extract the 
information of the sta te  from the space spanned by the  measured inputs and out­
puts. Specifically the subspace methods can be classified into two groups: one group 
estim ates the state from the space spanned bv the inputs and outputs first, then esti­
mates the state-space model (A, B .C , D) by solving a  least square problem [45, 76]; 
the other group estimates the extended observability m atrix  from the space spanned 
by the inputs and outputs, then compute the state-space model (A, B , C, D) [79], Van 
Overschee and De Moor have explored the similarities between the three algorithms 
(CVA. N4SID and MOESP), and have shown that all three methods are special cases 
of one unifying theorem [77],

Compared with identification algorithms in the polynomial framework, subspace- 
based identification methods are simple and numerically more stable; and subspace 
identification algorithms for SISO systems can be extended to MIMO systems natu­
rally. Another major advantage is th a t subspace-based identification algorithms are 
non-iterative, with no non-linear optimization part involved [77],

In this chapter we will first briefly introduce CVA, N4SID and M OESP methods, 
then use both simulation and experimental examples to  illustrate the three algorithms.

2.2 Canonical Variate Analysis

The Canonical variate analysis (CVA) method, presented in 1990 by Larimore [45], 
is the  first subspace-based identification algorithm. The key idea of the CVA iden­
tification method is to estimate the sta te  from the space spanned by the  inputs and 
ou tpu ts through canonical correlation analysis (CCA). Canonical correlation analy­
sis was first developed and applied in linear algebra by Jordan in 1875, and later 
was introduced into the statistical community by Hotelling in 1936 [35]. Before dis­
cussing of the CVA identification m ethod, we will first briefly introduce the  canonical 
correlation analysis.

9
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2.2 .1  C anonical C orrelation Analysis

Assume that there are two sets of random variables. The first set. which has m 
variables, is represented by the (m x 1 ) random vector AV The second set. which 
has I variables, is represented by the (/ x 1 ) random vector A'2 . We also assume that 
m < I. For simplicity we assume that all the variables have zero mean. Define

X  = Xi
x2

£  =  E ( X X t ) = £11 E 12

“ 21 £22

where E  represents the  statistical average. Define a linear combination in Afj and a 
linear combination in A'2 as

U =  a'A'i. V = b'X2.

where a and b are vectors w ith appropriate dimensions. The objective is to  seek a 
and 6 such that

q/£ i2 bCorr{U, V) =
y/a'^luay/b’T ^ b

is as large as possible. Define

W\ 4  E 11; £ 12£ 221£ 2i £ 115.

H '2 =  £ 222 £ 21^ 111^ 12 -̂'225-

Assume th a t 7 ? > 72 >  ■ • • >  7 ^  are the eigenvalues of , and e, is the eigenvector 
associated with -ff. It can be shown th a t 7 J. 72. • • •, 7 ^  are also the m  largest 
eigenvalues of the m atrix  £ 222 £ 2i£j"II£ i2£ 22:! corresponding eigenvectors f x. f \ .  
• - •. / m. Define

a ; =  =

U, =  a 'A \ . v; =  b [ X 2 .

Then
7 , =  Corr(Ut.Vt).

Ui and V, are the so called canonical variate, and have the following properties:

Var{Ui,Ui) = L Kar(K,K) = l 

Cov(U„Uj)=0,  i ? j

10
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Figure 2.1: Geometric interpretation o f  CCA

Cov{Vt, Vj) = 0, i j k j

Cov{Ui, V3) — 0. i ^ j

for i. j  =  l , 2 .....m . 71 is the largest Corr(U,V).  T he detail of the proof can be 
found in [3Sj. Assume tiia t m = I = 3, then we can give some geometric interpretation 
of the canonical correlation analysis (CCA): Consider the  projection as covariance, 
Figure 2.1 is the geometric interpretation of CCA. In Figure 2.1, x,,  i'=l,2,3, represent 
the i th  component of X \ :  y,, 1,2,3. represent the i th  component of A'2: original
variables in X\  and X 2 are dashed arrows: canonical variables are represented by solid 
lines. The canonical variables are uncorrelated, so they are orthogonal to each other; 
on the other hand, the  original variables are correlated so they  are not orthogonal.

2.2.2 CVA Identification A lgorithm

The CVA method has the  following assumptions:

•  The observations are equal spaced in time.

•  The system is finite-dimensional, linear and time-invariant.

•  The noise disturbances are finite dimensional Gaussian processes.

Consider the single-rate combined deterministic-stochastic sam pled-data system 
in Figure 2.2. In the block diagram, Pc is a continuous-time process with additive 
noise; the noise is generated by a continuous-time model N  with a white noise input 
e; the output of Pc is corrupted by th a t of N ,  and is sam pled by a  sampler S t  with 
period T ,  yielding the sampled output y(/c); the input to  P c is generated by a  zero- 
order hold with period T  processing the input sequence u(k) .  Both u(k)  and y(k)

11
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N

—  h , • — p, — *■:------* s. -_  !  £_ : !
Zero-Oroer-HoW Process Sampler

Figure 2.2: Block diagram of  a deterministic-stochastic sampled-data system

are discrete-time signals defined on the time set Z + := { 0 .1 .2 .---}  with underlying 
period T.  Assume th a t the discrete system in Figure 2.2 can be represented by the 
following sta te  space model

x (k  — 1 ) =  Ax(k) + Bu(k)  4- w(k)

y(k) — Cx(k)  4  Du(k)  — Fw{k)  +  v(k).

where x(k)  is a  nlh order Markov state, iv(k) and v(k) are white noise sequences th a t 
are independent with covariance matrices <5 and R, respectively; We have A  €  R 'ixn, 

Q e  Rnxn, B  e  Rnxm. C  6  Rixm. u €  RmxI. y , v  €  R 'xl and w  €  R nxl. The objective 
is to estim ate the coefficient matrices .4. B. C. D  and F  along with the covariance
matrices Q  and R  from the observed inputs u(k)  and outputs y(k).  Clearly if the
state x  can be estimated, then it is relatively easy to compute both the coefficient 
matrices and the covariance matrices.

We know that the basic idea of the CVA approach is to ex tract the information of 
the state  x from the space spanned by the outputs and inputs. The estimate of the 
state involves a fundamental concept in the CVA approach and other subspace-based 
methods: the past and future of a process. At each time instant kT .  a past vector pk 
consisting of past ou tputs and inputs occurring prior to time k T  and a future vector 
fk consisting of outputs and inputs at time k T  or later can be defined as follows

’  Vk-\
Vk

Vk—Q
Uk-l

Vk+1
, h  = Vk+2

.  Uk-a .
Vk+a- 1

where a ( >  n) is an integer. Assume that

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The canonical correlation m atrix  between the future and past is then

V  V - I V  V  2—22 —21 — n —12—'22 •

Singular value decomposition (SVD) of the canonical correlation m atrix  yields

E ^ E o ^ / E ^ E ^  =  ( l \  U, )
5 1 0 

0  S 2 m y

where S, contains the n largest singular values. L’i contains the  first n  columns of 
the left singular vector m atrix, and V f  contains the first n rows of the  right singular 
vector matrix. Larimore proved that

x(k)  =  U j p k

is the maximum likelihood estim ate of the true sta te  x(k)  [45], The input and output 
measurements together with the estimated s ta te  easily give the least square solution 
of the state-space coefficient matrices

.4 B Y  i ( k  + l) \ (  i (k )  Y
{ 5 :

Y  *(*) ^ ( m  y
C D A  y(k) J V u(k ) ) . A  “ (*) ) V “ (*) )

where

E
x (k  + 1 ) 

y(k)

E
x{k)
u(k)

x{k)
u(k)

m
u(k)

E

E

i ( i  +  1) 
V(i)

±(i)
u(i)

x( i )  V  
“ (*) /

x ( i ) 
u(i')

After estimating the coefficient matrices (.4, B. C, D ), it is straightforward to  esti­
m ate the covariance matrices. (Q, R),  and the coefficient m atrix F :

S n  S \2 
S2l S22 = E i { k ~  l ) \  f  +  1 )

y(k) )  - v y(k)
H ) X \ A B  

C  D e  [ ( v , " ) ■ (
and the coefficient matrix F , and the covariance matrices Q and R  are expressed as

F  =  S2iSjj 

Q = 5,1

R  = S22 — S2 i S \ \ S i 2.

where (Y denotes the pseudoinverse.
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2.3 N4 S I D

Van Overschee and De Moor developed the numerical algorithms for subspace sta te  
space identification (N4SID) in 1993 [76]. The N4SID approach is based on geometric
projections, specifically, the N4SID first projects the future ou tputs onto the past
outputs, past inputs and future inputs, then estimates the extended observability 
matrix from the  projection (which is also a space spanned by the inputs and outputs); 
after th a t th e  N4SID estimates the state-space model. Com pared with the CVA 
approach, the  N4SID approach is mathematically more involved.

The N4SID approach also studies the combined deterministic-stochastic sampled- 
data system  in Figure 2 .2 . The N4SID approach assumes th a t the discrete system in 
Figure 2 .2  can be expressed in terms of the following state-space model

x(ic-l-l) =  Ax(k)  +  Bu(k)  + w(k)

y(k)  — Cx(Ar) +  Du(k)  +  v(k).

with

Let the input u. ou tput y and sta te  x have the same dimensions as in the CVA 
approach. We can see tha t the model assumed by the N4SID approach looks a little 
different from th a t assumed by the CVA approach, but in fact, the model used by 
the N4SID approach can easily be transformed into that used by the CVA approach 
through the Kalman filter approach (6 8 ]. The following assumptions are assumed to 
be satisfied:

•  The observations are equal spaced in time.

•  The system  is finite-dimensional, linear and time-invariant.

•  The noise disturbances are finite dimensional Gaussian processes.

•  The pair (.4, C ) is observable, and [j4, { B Q l,!2)\ is controllable.

•  The determ inistic inputs are independent of the disturbances.

14
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In order to explain the geometric projections clearly, let us first divide the deterministic- 
stochastic model into two subsystems: the deterministic subsystem.

x d(k r  1) =  A x d(k) +  Bu{k)  

yd(k) = C x d(k) +  Du{k).

and the stochastic subsystem.

x , (k  r l )  =  Ax,(k)  +  ic(Ar) 

y,{k) = Cx,(k)  + v(k).

Define

(  u(0 ) u (l)
u (l)  u{2 )

V u(i -  !)
x d ( i )  i (  Xd( i )

(  c  \
C A

r .  = ,  H , =

K C A ' ~ X 1

u(J  -  1 ) ^
u(J)

u(i + J  -  2 ) J
x d{i + J  - I )  ) .

/ D
C B

0

D

and

^ C A '~ 2B CA '~3B  CA'~AB  

X  =  ( A ’- l B  A'~2B  ••• B  ) ,

0
0

D

where i(> n) is an integer. J  is the observation number and T , is the so called extended 
observability matrix. Define Vo|,_i and V^.-i b-v replacing u in UQ| , _ j  with y  and ya. 
respectively. It is easy to obtain the  relations:

Vo|,-i -  r,Xd(0) + H,Uo\,-i +  r0'i-i<
K\*-i  -  r tAd(i) +  HtUl[2,-i  +

A d{i) = A xX d{0) -i- A,l/o|,_i.

The N4SID approach also involves the  concepts, past and future. For example, 
denotes the ‘past’ inputs and denotes the ‘future’ inputs. The m ain project
performed in the N4SID approach is defined as

* -  w  ( )
7 _  V  / (  ^A + l  —  i . +  l | 2 i - l /  I  v  I ’

\  y»l i J
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where matrix division is defined as follows: for two matrices Mi  and .Mo of compatible 
dimensions.

M i / m 2 = M i M j  {M2m J  y l Mo.

The main projection together with the  assumption th a t the inputs u are independent 
of the noise /d isturbance gives

z, = r  <*(*) +jw.-p.-_! (2.1)
Z,+1 =  +  1) + H,-iUi+i\2i~i (2.2)

with
S R - ' U y x - i

X( i )  = ( A ' -  Q, r , I A, -  Q,H, I Q, ) ( t/ou-1 ) (2-3)
^ 0 | i - l

S R ~ 1U q\2i - \
X ( i  +  1) =  ( A ,+1 — Qt+1r i+i | A t+i — Q,~iHl+l | Qi+i ) j Up\j ) (2.4)

You

and

Q> = X iA  1 • Pd = E  (xrfxj)

P, = E  ( x , x Ta ) , G = A P ,C t  +  5

A? =  ( A ^ G  A‘~2G ••• G ) 

Xi = A ' (Pd - S R ~ lS T) r f  +  A ,5 

=  r  i i P t - S R - ' s ^ r T  + L’ .

The proof of equations (2.3) and (2.4) can be found in [76], Van Overschee and De
Moor proved th a t the j  columns of X,  are equal to  the outputs of a  bank of j  non­
steady state Kalman filters in parallel [76]. The proof will only be briefly illustrated 
here: Given x(0 ). P0. u(0 ). .... u(k  — 1 ), y(0 ). .... y(k  — 1 ) and all the system  matrices 
(.4, B , C. D, Q, S ,  R) .  then the non-steady state Kalman filter s ta te  x(k)  is defined 
by the following recursive equations,

x(k)  = A x ( k - l )  + B u ( k - l )  + K k- i [ y ( k - l ) - C x { k - l ) ~  D u ( k - l ) }  

K k.  1 =  (APk- i C T +  G)(Aq +  C P k- \ C T)~l 

Pk = A P k. i A T -  (APk^ C T + G)(A0 +  CPk- lC r )~I(APk- i C T +  G)r .

where
A0 =  E  (y ,y l )  .
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The Kalman state can be also expressed as

/  x(0) \

x(k) = ( A k -  Q kTk I A*.. -  QkH k I Qk ) u(k  — 1) (2.5)

\  y(k  -  l)  /

where

and

Q k  =  X k ^ k l

Xk =  A ' P o T l  +  A l

t'k = r , p 0r [  +  l i

Compare equations (2.3). (2.4) and (2.5), it is not difficult to conclude th a t  the j  
columns of X t are equal to  the  outputs of a  bank of j  non-steady sta te  Kalman filters 
in parallel. The detail of the  discussion is in [76], Prom equations (2.1), (2.3) and 
(2.4) we can get

koit-i
Z x =  ( LI | C; | L? )

v V i

Uou
Z i + i  =  (  L ]+1 I L I ,  I L I ,  )  (  Ut+,  1 2 , . !

Vo|,

( 2 .6 )

(2.7)

with

l \ = r ,( .4 i -  g , r , ) 5 ( / ? - 1)i|mi +  a ,  -  q .h , 

l \  =  Hi +  r,(.4 ' -  ( ? ,r 1)5 ( /? - l )mt+1|2m]

Ll = r  tQt .

Now it is evident that the  following matrices have the same column space as T,:

and

r ;  +  L ? i?

( i ;  I £?)  ( - 8 * ^
\  * 0 1 .-1

(2 .8 )

(2.9)

17
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Singular value decomposition of either (2 .8 ) or (2.9) can decide the model order n. 
and the extended observability matrix T,. From (2.1) and (2.2) it follows th a t

x(i)  = r\[zt -  //.I-;,*_>
X ( i  + l ) = rJ .jIZ i+ i - t  +  l | 2 i  — 1 j

( 2 .10)

(2 .11)

and

(2 . 12)

where (.)J- indicates a m atrix  whose row space is perpendicular to the row space of 
(.). Substituting (2.10) and (2.11) into ( 2.12) gives

K-i,
(2.13)

where

»■12

22

V
B ~ Ar' ( r

d - ^ U - . b ) - < * ( * “ , ) /
After estim ating n. F, and r ,_ ! which is part of T,. we can determine the least square 
solution. (.4. C. S?12. 9?22 )- ° f  equation (2.13). and also compute matrices (B . D)  from 
( » i 2 ,  9^22)- This method is called N4SID method (1). There is also an approximate 
solution which is called N4SID method (2). The difference between N4SID methods 
(1 ) and (2 ) is that in m ethod (2 ) the state  sequences are calculated by dropping the 
linear combinations of out of Z,, and the linear combinations of t/,+i|2,_i out
of Z,+1- In this way. the Kalman filter states of a different Kalman filter can be 
obtained. The resulting matrices are called r,A ”(z) and r,-_iA"(i +  1) where

T tX(i) = Z ,-L;Utl2l̂

and

r , - i A ( i  +  1) =  Z t+1 —

Equations (2 .6 ) and (2.7) yield

x ,  = [ (-41 -  QtTt) S ( R ~ % mi +  A, -  QlHl I Qi ]
Ton—i

Aj+i — [ (j4,+1 — Qi+lTi+1)S{R  1)i|m(i+i) +  Aj+i — Qi+iHi+i | Qi+i ] 

If one of the following conditions,
0|« J

18
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•  T —* OC,

•  u is a white noise.

•  the  system is purely deterministic, 

is satisfied, then

x  (k) = x(k)  

x (k  + 1) =  i(fc +  l).

The procedure of m ethod (2) can be summarized in the following steps:

•  Calculate the projection

Uo\i-l
Z i  =  V i | 2 i - l /  (

Vo|i-l

and

=  ( L\  | L \  [ L\ ) I Ut|2, - 1 

V b | , - i

U0{,
Z ,  + l — K + l | 2 i - l /  I

Koi,

Urn
= ( L\+x | L I ,  j L]+x ) Ui + m ^  

Y01,

•  Com pute the singular value decomposition

=  U* ] { S ' * ) ( ( $ ) •

The model order n  can be decided from the SVD (ideally n  should be equal to  
the  number of non-zero singular values, bu t due to disturbances, S2 is no t zero 
and we have to  choose the model order using certain criteria). The extended 
observability m atrix  is

r ,  =  UiSY1.
T,_i is simply p a rt of Tt .

19
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•  Estimate the states X, and JVt+i by calculating

X,  -  t H  H  \ H  ) ( « £ - )

and

•  Solve the least square problem,

and then

Q  =  P i P l

S  = p i p l  

R --- pnp2 -

2.4 M O ESP

The multi-variable output-error state-space identification algorithm (MOESP) was 
developed by Verhaegen in 1992 [80]. Similar to the  N4SID approach, the MOESP also 
first estimates the extended observability m atrix from the input-output space, then 
computes the state-space model. Compared with the N4SID, the M OESP is m ath­
ematically simpler and easier to  understand. Consider the combined deterministic- 
stochastic sam pled-data system in Figure 2.2, the  MOESP assumes th a t the discrete 
combined system can be represented by such a  s ta te  space model,

x (k  -(- 1) =  Ax{k)  -f Bu(k)  +  Fw(k)

y(k) = Cx{k)  + D u ( k ) + G w ( k )  + v{k).

with

w ( i ) 

v(i)
™{j) V 
v(j) J

<1 r q
s  ‘

= S'7" R
1 0

for i = j,  

for i ^  j.

Here, u, y  and x  have the same dimensions as in the CVA approach. The MOESP 
makes the following assumptions:

•  The observations are equal spaced in time.

•  The system is finite-dimensional, linear and time-invariant.

20
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• The noise disturbances are finite dimensional Gaussian processes.

•  The pair (A . C ) is observable, and [.4. ] is controllable.

•  The deterministic inputs are independent of the  disturbances.

•  The prucess is asymptotically stable.

Define
/ G

C F
0
G

0
0

C A ' ~ F  C A ‘~3F  CA'~4F

0 \  
0

G 1
and

X( i )  =  ( x(i) x ( i - h l )  ••• x ( i - i - J - l ) ) .

where i (> n) is an integer and J  is the observation num ber. It is straightforw ard to 
get the following equation

— r,A'(0) + t f . t / o i . - i  +  E i W ^ - x  +  V o | j _ i , (2.14)

where Vo|,_i and have been defined in the discussion of the N4SID approach.
Here H'oj,.! and 4 oj,—i can be obtained by replacing u  in Lo|i-i " ’ith w and v. respec­
tively. Applying QR decomposition to the input-output observations, we have

/ l ; 2 l  —  1 \

L o p —1

V /

/  R u  0  0

/?2l R 22 0 0
R%\ R 32 R 33 0

\  ^ 4 1  R &  R t f  R-14 J

0 \  f Q l \  
QT 
Q l

K Q J  J
(2.15)

Substituting (2.15) into (2.14) and its companion equation

1 C 2 1 - 1  =  r ,A  (i) — H , L - i -  F,!! +  l ' t | 2 i - i

vields

lim -t=V;|2,-i<32 = R 42 J—X V J

(2.16)

(2.17)

1
= lim — r , X ( i ) Q 2

J  — 0 0  y / J

and

lim —7=Vt|2i - i <?3 — R 43 
V J

(2.18)

1
=  lim — r , X ( i ) Q z . 

J~ oc V J
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from (2.17) and (2.IS) it follows that the extended observability matrix. 1',. and 
the matrix ( R 42 R 43 ) have the same eolunin space [79], So we can compute the 
extended observability m atrix  from the SYD of ( R42 R42 ). specifically

( R42 Ra3 ) = ( Ux U2 ) (  ^  ^  ^  )  ,

and then

r , = r1(51),;a.
After f , being calculated, we can take the first I rows of f ,  as m atrix C  and then 
calculate m atrix .4 by solving such a least square problem:

f , ( l  :n /.:) .4  =  f .(/ - 5 -  1 : (n -r  1)1.:), (2.19)

where n is the model order. The solution of (2.19) is clearly

.4 =  [f,r (l : nl. : ) f , ( l  : nl. : n l . : ) t ( l  + I : (n +  1)/.:). (2.20)

So if the pair (C. .4) is observable, then the m atrix A  computed from (2.20) is unique.
From (2.14). (2.16) and (2.15) it also follows th a t

lim 4= V b,.-!<?[ =  R3X (2 .2 1 )
J v J

=  lim -4 = (r ,.V (0 )g [  -f H , R ^ ) .
\ / J

lim 4 =r0|,-i< ?[ =  Z?33 ( 2 .2 2 )
x ' J

1 „ _ o 7 -

a n d

= lim -=(r,A'(0)(?4 + H ,R 22). 
v J

lim -L v '.!2, - iQ r  =  Rai (2-23)
x/J

1= lim -=(r,.V(t)<?{ + //,/?„).
y / J

Combining (2 .2 1 ). (2 .2 2 ) and (2.23) gives

l i m - L [ / ? 3i Ra2 r 4 1 ] = lim _L{r, [ X ( 0 ) Q l  X ( 0 ) Q j  X ( i ) Q \ § . 24)
\ / J  J-vc y/J

+ //, [ R 21 R 22 R\l ] }•
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Multiplying both sides of equation (2.24) by T,1 yields

lim - 7= ^  [ /?a 1 R30 R ai ] =  lim - y=Y fH ,  [ R-> 1 /?-•■> R u  I . (2.25)
J ~ x  v J  J ~ x  V i

If there is enough excitation then.

d* — {[ R 21 R 22 R\i  I [ R21 R 22 R u  J }

would be invertable. hence from (2.25) we can easily get

lim —= r r  f R 31 R 22 Rai ] [ R 21 R R u  1 * =  lim —■pzYfHl. (2.26)
v J  J~ x  \ / J

Since Ty. C. .4. and [ R 21 R 22 R~i\ ] [ R21 R 22 R u  ] T $ _1 have been computed,
so (2.26) is a linear equation of matrices B  and D.  It is straightforward to compute
B  and D from (2.26).

2.5 U nifying Framework

YanOverschee and DeMoor have explored the similarities between the  N4SID, CVA 
and MOESP. and shown that all the three algorithms are special cases of one uni­
fying theorem. Specifically, they proved that all of the  three schemes used the same 
subspace to determine the order and the extended observability m atrix, but used 
different weighting matrices to calculate the basis for the  column space of the observ­
ability matrix. Their results in [77] are summarized in this section.

For an (m x n) real matrix .4 =  [a*/], define
m  n

<t=i 1=1
the quantity |].4||f  is the so called Frobenius norm of .4. The projection of the row 
space of matrix B  onto the row space of matrix A  is defined as

B / A  4  B A t (AAt ) - ' A .

assuming the inverse exists. Let p represent the past inputs and outputs, u represent 
the future inputs and /  represent the future outputs. All the three subspace-based 
identification algorithms solve the same optimization problems

min ||H-’,($  —*)W 2|£ ,  (2.27)

but with different weighting matrices W : and W 2. $  in (2.27) is defined as follows:

$  =  \(f /u-L) (p /u± )T}[(p/u±) (p /u ± )T}-1p.
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the minimum-norm solution of of the optimization problem in (2.27) is 

The extended observability m atrix  is equal to

r ,  =  \ v - l i \ s l 2.

and the Kalman sta te  sequence x can then be recovered from

f  =  r ; $ .

The weighting matrices of the three algorithms are summarized in the following table.

.V4 S I D M O E S P CVA
w \ I I
\v 2 I

■ I V

Here ITU- is
n u.  =  (u*)r w /-(u -) ; r l i r .

2.6 Illustrative Exam ples

A simulation and an experimental example will be presented in this section to  illus­
tra te  the three subspace identification algorithms discussed in the former part of this 
chapter.

2.6.1 E xperim ental E xam p le

The block diagram of a stirred tank heater process is shown in Figure 2.3. This 
process is a computer-controlled experimental setup at the University of Alberta. 
The steam through the steam pipe is used to heat the water in the tank; the  cold 
water valve is used to  adjust the water level in the tank; and the water outlet valve is 
fixed. An air-bubble stirrer is used to  make the water in the tank well mixed. In this 
process, the two m anipulated variables are the positions of the cold water (u j) and 
the steam (u2) valves; the two measured variables are the water level (t/x) and water 
temperature (y2) in the tank. In this experiment, we use signal unit in milliampere

24
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?; Co*C water varte

Figure 2.3: Block diagram of  a stirred tank heater system

(mA) to quantify j/j. y2. ui and u2. The inputs and outputs of the stirred tank  heater
are summarized below:

Symbol Quantity Range
cold water valve 4 mA < ui  <  20 mA

u 2 steam valve 4 mA <  u 2 <  20 mA
yi water level 4 mA <  yi <  20 mA
V2 water tem perature 4 mA <  yo <  20 mA

A single-rate open-loop experiment was performed. In th is experiment, all the valve 
positions were updated every 4 seconds, all the outputs were sampled every 4 seconds. 
An random  binary vector sequence with 6000 data points was generated as excitation 
sequence. The normal output values were (14mA. 9mA). A to tal of 6000 experimental 
da ta  points were collect. The first 3000 d a ta  points were used to estimate the process 
model, and the last 3000 data  points were used for model validation. Three different 
process models were computed by using the CVA. N4SID and MOESP methods, 
respectively. One way to validate the estimated model is to insert an excitation 
sequence, as inputs, to both the process and the estimated model, then compare the 
process outputs and the  model outputs. The block diagram  of this model validation 
method is shown in Figure 2.4, where P  represents the estim ated model, u represents 
the excitation inputs, y  represents the sampled process ou tpu ts and y represents the 
model outputs.

The excitation inputs in the last 3000 da ta  points were inserted to the  model 
estim ated using the CVA method. The measured process outpu ts and model outputs 
are plotted in the same figure. For clarity, only 1000  out of the 3000 data  points are 
shown in Figures 2.5 and 2 .6 .

The validation results of the model estim ated by using the N4SID m ethod are

25
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Figure 2.4: Block diagram for  model validation

■»:300 BOO

Figure 2.5: The measuied water level and the output of the model estimated using the 
CVA method

TOOI O O

Figure 2 .6 : The measured water temperature and the output of  the model estimated 
using the CVA method
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Figure 2.7: The measured water lerel and the output o f  the model estimated using the
S d S ID  method

c

o

Figure 2.S: The measured water temperature and the output of  the model estimated 
using the N4 SID method

shown in Figures 2.7 and 2.8.
The outputs of the model estimated using the MOESP approach are compared 

with the true measurement in Figures 2.9 and 2 .1 0 .

2.6 .2  Sim ulation E xam ple

The following model.

2/1

. 2/2 .

0.1-116
2—0.9668
-0 .0 3 7 9

0
0.0595

U i

U o2 -0 .9 1 3  2 -0 .9 0 4 6  J

is used to represent the stirred tank heater in the experiment. A simulation system 
as shown in Figure 2 .2  is generated in SIMULINK. A random  binary vector sequence 
(RBS) was generated as excitation sequences. The signal to noise ratio is 5. A total 
of 3000 d a ta  points were collected. Three different models were estimated by using 
the CVA, N4SID and MOESP methods, respectively. The step responses of th e  true
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Figure 2.9: The measured water level and the output o f  the model estimated using the
M O E S P  method

■ao 200 500 SCO eoo I ooo400

Figure 2.10: The measured water temperature and the output of the model estimated 
using the MOESP method
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Figure 2.11: The step responses of the process from u\ to y\ and the model estimated 
using the CVA method

Figure 2.12: The step responses of  the process from Uj to y2 and the model estimated 
by using the CVA method

models and the estimated models were compared, see Figure2 2.11- 2.19.
The main purpose of this section not to  compare these three subspace-based iden­

tification methods, but to  show whether they work or not. From the experimental and 
simulation results, we can see tha t when there is enough excitation, all the subspace- 
based algorithms can give good results.
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Figure 2.13: The step responses of  the process from un to y-i and the model estnr.cted 
by using the CVA method

Figure 2.14: The step responses of  the process from U\ to y\ and the model estimated 
by using the N4 SID method

-O 4*1-----    — » « Io ' o j o s o « o a o f t c r o » o * o i a o

Figure 2.15: The step responses of the process from  U! to 3/2 and the model estimated 
by using the N4 SID method
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Figure 2.16: The step responses o f  the process from  Uo to j/2 and the model estimated
by using the N 4 SID  method

Figure 2.17: The step responses of the process from ui to yi and the model estimated 
by using the MOESP method

Figure 2.18: The step responses of the process from uj to 3/2 an(^ the model estimated 
by using the MOESP method
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Figure 2.19: The step responses of  the process from 112 to y2 and the model estimated 
by using the M O E S P  method
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Chapter 3 

Introduction to  M ultirate System s

Different sam pling/hold periods in one system give rise to a multirate system. A sim­
ple single-input single-output (SISO) m ultirate sam pled-data system shown in Fig­
ure 3.1 is the objective of study in this chapter. In Figure 3.1. u represents the control 
signal. Pc represents the continuous LTI process, y  represents the sampled output, 
H j  represents a  zero-order-hold with period T.  and S nr  represents an output sam­
pler with period nT.  High frequency dots represent fast-rate signals, low frequency 
dots represent slow-rate signals, and n(>  1) is an integer. The m ultirate system in 
Figure 3.1 is a m ultirate system with fast control movement and slow sampling which 
is typical (e.g.. distillation columns, bio-reactors) in chemical industry.

In this chapter, at first the lifting and inverse lifting operators will be introduced 
and applied to  analyzing two classes of multirate systems: then a brief discussion of 
the properties of the lifting and inverse lifting operators will be given; and finally three 
different control schemes for the  m ultirate system in Figure 3.1 will be discussed.

3.1 T he Lifting Technique and Lifted System s

Note that in Figure 3.1 both u(k)  and y(k)  are discrete-time signals defined on the 
time set Z T {0.1.2. • • • }: but their underlying periods are T  and nT,  respectively. 
Throughout the chapter we assum e Pc is LTI. However, the discrete-time system from 
u( k ) to y(k)  is linear periodically time-varying (LPTV). The LPTV nature  of mul-

to  get a trac tab le  model for th is m ultirate system, we use the lifting technique. The
tirate systems makes the control theory in the LTI framework inaccessible. In order

u y

Figure 3.1: Block diagram o f  a SISO multirate sampled-data system with fast hold
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Figure 3.2: Block diagram o f  a SISO lifted multirate sampled-data system

lifting technique wets first proposed by Kranc in 1957 [43] as the switch decomposition 
technique; later. Friedland further developed the concept of lifting which converts a 
periodic discrete-time system into a time-invariant system [24]; the  lifting framework 
widely accepted now was developed by Khargonekar et al. in 19S5 [42].

Let u(k) be a discrete-time signal defined on 2 +. The n-fold lifting operator Ln 
maps u to u (underline denotes lifting) as follows:

We write u =  L nu. Note th a t the dimension of the lifted signal u is n  times th a t of u. 
and the underlying period of u again is n times tha t of u. The inverse process. L~l . 
mapping u back to  u. is defined as.

u(0) u{n)
u(l) u(n +  1)

u(n — 1) u( 2 n — 1)

u( 0)

1---t

u ( l) u ( n -  1)

u(n — 1) u(2 n -  1)

(u(0). u (l). u (2 ) ....}.

It is easy to see th a t the following identities hold:

L~lL„ = I. LnL~ l = I .

The lifting operator is also norm-preserving:

i m 2  =  I M I 2

Because of L ~ xLn =  / ,  the multirate system in Figure 3.2 is equivalent to that in 
Figure 3.1.

u =  Lnu in Figure 3.2 is the lifted control signal. The fictitious system relating u 
and y  is the so called lifted system. Since both u and y have the same period. nT.  the 
lifted system is a  single-rate system. The lifted system can also be shown to be linear
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time-invariant [-42]. If the state-space model of the  fast-sampled process, S t PcHt ■ is 
known, then the state-space model of the lifted system can be derived easily: Assume 
that the state-space model for the system S j PcH t  is (.4. B .C .  D). then  the following 
equations etui be derived:

x (n k  -i- 1) =  Ax{nk)  -f Bu(nk)

x[nk  t 2 )  =  A 'x (n k )  -r ABu(nk)  +  Bn(nk  -j- 1)

x (nk  -f- n) = A nx(nk)  — A n~l Bu(nk)  + ... +  B u (n k  + n — 1)

y f ( nk )  =  C x { n k ) — Du(nk).

where yj  represents the fictitious fast-sampled output. Define

x(k)  =  x(nk) .  x ( k  -4- 1) =  x{nk ~  n)

U\(k) = u(nk). a2(k) =  u(nk + 1). ... , un(k) =  u(nk  +  n — 1)

y(k) ±  yf (nk).

Let P  represent th e  lifted system, x  the state of the lifted system, u =  [ u x ■■■ un ] r  
the input to this lifted system, and y the output of the lifted system. T he state-space 
model of the lifted system can then be written as

x ( f c + l)  =  A nx ( k ) + A n~l B u l (k) + ... + B u n{k) 

y(k) = Cx( k)  -f [ D 0 • • ■ 0 ] u.

The state-space matrices (A. 5 . C , D)  for the lifted system, P.  are given by

A B  ' ' A n A n-xB A n~2B  •• • B  '
C D C D 0 • 0

Though the continuous process is a SISO process, the lifted system is a  multi-input 
and single-output (MISO) system. Clearly, the lifting operation results in an in­
creased input-output dimensionality. Multirate system s with fast control rates and 
slow output sampling rates are the  common pa tte rn  in chemical industry, and this 
class of m ultirate systems is the focus of the study  in this chapter. However, for 
the sake of completeness, the case where control is slow-rate and ou tpu t sampling is 
fast-rate will be discussed in the rest of this section although it is rare in chemical 
industry.

For simplicity, we assume th a t the control period is an integer (n) m ultiple of the 
output sampling period. For some reasons, the control interval can only be relatively

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



u * H' ' \ - - ~ pc -  * s >: y •*

Figure 3.3: Block diagram of  a SISO multiratc sampled-data system with slow k<dd

Uttea system

. y

Figure 3.4: Block diagram o f  a lifted SISO multirate sampled-data system with slow 
hold

large, but a t  the  same time the output can be sampled at relatively fast rate. For such 
multirate system s it will be helpful if the inter-sample outputs are considered in the 
controller design. In order to obtain an LTI system which relates the slow-sampled
input to all the fast-sampled outputs, the lifting technique is applied to the m ultirate 
signals shown in Figure 3.3. This results in the system shown in Figure 3.4.

The state-space model of the lifted system can be derived from the state-space 
model of the  fast-sampled system: The following equations can be derived from the 
state-space model of the fast-sampled system:

x (nk  4 -  1 )  =  A x { n k ) - f  Buf ( nk)

x (nk  +  2) =  A 2x(nk)  4 -  ABuf ( nk)  — Buj { nk  4 -  1)

x{nk  4 -  n) = A nx(nk)  + A n~l Buf (nk)  4 -  . . .  4 -  B u f (nk 4 -  n  — 1 )

y(nk)  =  Cx( nk)  4 -  Dii f (nk)  

y{nk  4 -  1 )  =  CAx ( nk )  4 -  CBuf ( nk )  4 -  Du f ( n k  4 -  1 )

y(nk  4 -  n — I) =  C A n~lx ( n k ) 4 -  C A n~2Buf ( nk )  4 -  C A n~3Buf ( r i k  4 -  1) 4 -  •  •  •  4 -  Duf ( nk  4 - ti —

where Uf represents the fictitious fast-sampled control movement. During interval 
nT,  the control signal is constant, so

Uf (nk) =  Uf (nk  + 1) =  • • • =  u / ( n k  4 -  n — 1 )  =  u(k) .

Define

x ( k )  =  x(nk),  x ( k  + 1) = x (nk  + n ) ,

y i(k ) -  y(nk),  y2 (k) =  y{nk + 1),- • ■ , yn{k) = y (nk  4 -  n -  1).
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Let x  represent the s ta te  of the lifted system, u the input to this lifted system, and 
y = T y\ ■■■ !/n \ the output of the lilted system. The state-space model of the
lifted system can then he written as:

t ( I c + 1 ) = A nT(k)  + (An~lB  + B ) u ( k )
c D -

C .4
x(k)  A

C B a D

1
1e

___
I _ C A n~2B  -  C A n~3B  a  - ■a D

The state-space model of the lifted system. P . is given by

A '1 A n~lB  A  ~ B
C D

C A C B  a  D

C A 71- 1 C A n~2B  A C A n~3B + •■• +  £>

3.2 M ultirate Control

Since discrete-time m ultirate systems from u(k)  to y(k)  are linear periodically time- 
varying. the controller design for m ultirate systems is more complicated than th a t of 
the single-rate systems. In this section, we will use the m ultirate  system in Figure 3.1 
as an example to illustrate three control strategies for m ultirate systems.

3.2.1 S low -R ate C ontrol

A possible way to control the multirate system in Figure 3.1 is to design a single­
rate controller. K s. with control interval nT,  as shown in Figure 3.5. For a general 
MIMO m ultirate system, we can design a single-rate controller with an interval which 
is the least common multiple of all the output sampling intervals and hold periods. 
The advantage of this strategy is tha t it is simple because now the system becomes 
a single-rate system. B ut in this case, the capacity of the  equipment is not fully 
explored; and the inter-sample performance may be very poor.

3.2 .2  Lifted C ontrol

Lifting techniques are powerful tools in analyzing m ultirate systems because of their 
capability of converting m ultirate systems into single-rate LTI systems. Another 
strategy to  overcome the  LPTV drawback is to  design a lifted control scheme. The
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Figure 3.5: Block diagram of a SISO multirate sampled-data system with a slow SR  
controller

Figure 3.6: Block diagram of a SISO multirate sampled-data system with a multirate 
controller

lifted control scheme has three steps. The first step is to lift all the input-output sig­
nals with different sampling rates to fictitious signals at one uniform sampling rate.

ality. The second step involves designing a controller for the lifted system. Since 
the output of the lifted controller is the lifted control moves, the lifted control moves 
have to be inverse lifted to obtain the fast-rate input signals to the process. The

control scheme for the simple m ultirate system in Figure 3.1; this results in a multi- 
rate control system  as shown in Figure 3.6. Numerous advanced control algorithms 
using the lifted control strategy have been developed for several classes of multirate 
systems [9. 11. 66! in the last decade.

The idea of the lifted control strategy is simple, and the lifted control scheme 
can achieve b e tte r performance compared with the slow-rate control strategy, but 
there are a few constraints in the lifted control strategy. The first constraint is 
the causality constraint. We will use a simple example to illustrate the causality 
constraint problem: Consider a SISO multirate system where the control interval is 
2T  and the ou tpu t sampling interval is 37\ In order to  obtain the lifted system, the 
input and ou tpu t signals have to  be lifted as follows:

Assume th a t the reference signal is zero, then the controller designed for the lifted

This step results in fictitious lifted systems with increased input-output dimension-

fundamental idea of the lifted control scheme can be illustrated by designing a lifted

u(0)
u(0) =  u(2T)  , y{ 0) =

u(4T)

y (0 )  
y(3 T)
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system should be
G u G jj 

IL  =  — G o j  G 22 y .

G 31 G 30

It is evident that a t tim e instant 0. ou tput y(3T) is unknown: and at time instant 
2T. output y(3T) is also unknown. So G 21 and G22 should have at least one sample 
time-delay otherwise the past control moves. u(0 ) and u(2T).  would depend on the 
future output, y(3T), and clearly such controller is not causal.

Another constraint is the gain constraint. In order to  avoid the inter-sample 
ripples in the fast-sampled outputs, the  gains of the lifted controller should satisfy 
certain constraint [71], We can use the m ultirate system in Figure 3.1 to  briefly 
illustrate the gain constraint problem. Let G represent the m ultirate controller in 
Figure 3.6. Clearlv G  should have such structure:

G =
G;

G n

For simplicity, we assume here that GI; i = 1..... n. are all constants (This means that 
all the controllers in the  lifted controller are proportional controllers); and the closed- 
loop system with lifted controller is also stable. When the closed-loop system reaches 
steady-state, at sampling interval T  the inputs to the process are u(nkT  + (i —1)7'; = 
G ,e(oo),i =  1.2. ...,n . where e(oc) is the  steady-state control error. In order to avoid 
the inter-sample ripples. u(nkT)  =  u (n k T  -i- T) = ... =  u (n k T  + (n — 1 )T) should 
be satisfied. This means th a t the gains of G,. i —  1 (since G,,z =  1, . . . , n are 
constants, G ,,i =  l , . . . ,n  are also the gains of G,), should be uniform in order to 
avoid inter-sample ripples. More detailed analysis can be found in [71].

It is evident that these constraints make the lifted control schemes complicated 
to design. Moreover it is also more difficult to  analyze the lifted control systems due 
to the increased dimensionalitv.

3 .2 .3  Inferential Control

As explained in Section 1.1, if the unmeasured inter-sample outputs are estimated, 
then the estimated inter-sample outputs can be used for the control purpose. This 
is the  principle of inferential control schemes, and clearly inter-sample estimation is 
the key to inferential control schemes. All the inter-sample estimation methods can 
be classified into two cases: model-based inter-sample estim ation and non-model- 
based inter-sample estimation. The inference model can be, for example, the  fast- 
sampled model of the process, the empirical model relating the primary variables and
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► H,r

Figure 3.7: Block diagram o f  a SISO multirate sampled-data system with an inferential 
controller

the secondary variables, etc.. The empirical model-based inferential control schemes 
have been practiced in chemical industry (e.g.. distillation columns, polymerization 
reactors) for a  long time. The fast-sampled model of a process can be obtained by 
either fast discretization of a continuous-time model or estim ating from multirate 
data. In most cases, it is impossible to know the continuous-time models. However 
it is feasible to estimate the fast-sampled model from m ultirate da ta  only after a 
two-step m ethod developed by Li et. al in 1999 [50].

Figure 3.7 shows the block diagram of the m ultirate system  in Figure 3.1 with the 
inferential control scheme. In Figure 3.7. P  represents the  estim ated fast-sampled 
model, the  switch connects with the slow output sampler every period, nT, and 
connects with the fast-sampled model during the inter-sample instants (n T  +  T, n T  +
2T  n T  -r (n — 1)T). Fast-sampled model-based inferential control schemes, as
shown in Figure 3.7, are applied to  chemical industry only recently [51]. Details of this 
industrial application will be discussed in Chapter 8. The advantage of the inferential 
control scheme is that it is simple since all the single-rate control techniques can be 
applied to it. Compared with the slow-rate control scheme, the inferential control 
scheme can achieve better performance since it provides fast-rate control moves. The 
inferential control scheme does not have such constraints as the lifted control scheme 
has. and the  inferential control scheme also enjoys smaller dimensionality compared 
with the lifted control scheme. The disadvantage of the inferential control scheme is 
that it requires a fast-sampled process model, but fortunately, this disadvantage has 
been overcome by the two-step estimation method proposed by Li et. al [49].
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Chapter 4

Subspace-based Identification of  
SISO M ultirate system s

4.1 Introduction

In Chapter 3. we introduced three methods for controlling the m ultirate systems. The 
last two methods, lifted control strategy and the inferential control strategy, are more 
popular, since they provide better performance compared with the slow-rate control 
strategy. The lifted model-based predictive control stra tegy  is based on the lifted 
model; and the inferential control strategy always requires the fast-sampled process 
model. It is quite often th a t the the input-output measurement is the only source to 
obtain the model. The objective of this chapter is to  develop a practical method to 
estim ate the lifted model and the fast-sampled model from the input-output data.

We know that even if a processes only have single input and single output, the 
lifted system is a MISO or MIMO system. Evidently it is very efficient to  represent 
a MIMO system with a state-space model. So it is a natural choice to  identify the 
lifted system in the state-space framework. Subspace based system identification is 
relatively new. but it has achieved tremendous success since it was first developed 
a t the beginning of the  last decade. A number of subspace identification algorithms, 
for example the CVA. N4SID and MOESP etc. have been published. Compared 
with the identification algorithms in the polynomial framework, the subspace based 
identification m ethods are non-iterative, with no non-linear optimization part involved 
[77], and numerically more stable.

Identifying the dynam ic models of multirate systems is still an relatively new area, 
not much research work has been done in this field. Continuous-time identification 
m ethods [73, 25, 33] have drawn much attention recently; bu t the identified continuous 
model is always biased in the presence of noise [25, 33] except when the  output is
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corrupted only by white noise ,14j. It is well known that based on sampled data, one 
cannot uniquely identify the continuous-time model. Verhaegen and Yu presented a 
technique to estimate lifted models of m ultirate systems in the state-space domain 
[S2;. In their work, they represented m ultirate systems with periodic systems which 
are difficult to be understood by engineers, and they could estim ate the lifted model 
with only the MOESP approach. Our objective is to develop a strategy which can 
apply most of the existing subspace-based identification algorithm s to estimating the 
lifted models. In this chapter we will focus on a general class of single-input and single­
output m ultirate systems where the ratio between the ou tpu t sampling interval and 
control interval is a rational number; and present a two-step m ultirate identification 
algorithm: estim ate the lifted process model and then extract a fast sampled model 
from the lifted model.

This chapter is organized as follows. In Section 2 we present the lifting technique 
and lifted m ultirate systems in state-space forms. In Section 3 we show that in the 
presence of tim e delays, observability of lifted systems may be lost, depending on 
how large the time delays are. In Section 4 we give a method for estimating the time 
delay of the process from the lifted model, and analyze the accuracy of this estimation 
process. In Section 5 we discuss the causality issues involved in the lifted models and 
propose a subspace-based algorithm for identifying the state-space models of the lifted 
systems, respecting the causality constraint. In Section 6 we present two methods 
for extracting fast-rate models based on the lifted ones. Section 7 summarizes a 
procedure we propose for identifying a fast-rate model from the m ultirate data, based 
on the results studied in the preceding sections. We illustrate and validate the results 
of this chapter in Section 8 on a simulation example. Finally, the concluding marks 
are given in Section 9.

4.2 Lifted System s

Consider the m ultirate sam pled-data system in Figure 4.1. Here, Pc is a continuous- 
time process w ith additive noise: the noise is generated by a continuous-time model 
N  with a white noise input e; the output of Pc is corrupted by th a t of N ,  and is 
sampled by a  sampler S„t  with period n T ,  yielding the sampled output t/(Ar); the 
input to Pc is generated by a zero-order hold with period m T  processing the input 
sequence u(k).  W ithout loss of generality, we assume that the two integers m and n 
are co-prime, for otherwise, we can absorb any common factor of m and n into T, 
a positive real number called the base period. As mentioned before, such m ultirate 
systems arise often in industry; the practically interesting case is when m  < n, where
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Zeto-Odef-Hoia Process Sampler

Figure 4.1: Block diagram of a SISO multirate sampled-data system

Lifted process

I ...  .      _____  * ____
“--- ► L  L  ' H„ PC s. j—; L. rr L .- ' ► y

1 ZOH Process Sampler ,

Figure 4.2: The lifted SISO multirate system

the control rate  is faster than the  sampling rate. From now on. we will focus on this 
case.

Note th a t both u(k) and y(k)  are discrete-time signals defined on the tim e set 
:= {0.1. 2. • - ■ }: but their underlying periods are m T  and nT ,  respectively. 

Throughout the chapter we assume Pc is LTI. However, the  discrete-time system 
from u(k) to y{k). with e =  0, is linear periodically time-varying. In order to  get a 
tractable model for this m ultirate system, we use the lifting technique.

Let u(k) be a discrete-time signal defined on Z+. The n-fold lifting operator L n 
maps u to u (underline denotes lifting) as follows:

[ u(0) u(n)

{ u (0 ) ,  u ( l ) ,  u ( 2 ) . ...} —  |
u ( l )

7
u(n  +  1)

I u{n  -  1) u(2n — 1)

We write u =  L nu. Note th a t the dimension of the lifted signal u is n times th a t of u , 
and the underlying period of u again is n times th a t of u. For the  m ultirate system 
from u to y in Figure 4.1, we intend to lift the input and o u tpu t to  get a  single-rate 
system with underlying period m nT;  and hence we need to  lift u  by L„ and y  by 
Lm to arrive a t  Figure 4.2, where the lifted m ultirate system P  takes u =  L nu into 
y = Lmy  and is defined via

P  = LmSnTPcHmTL - 1. (4.1)
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This P_ can bo shown to be LTI. In older to dviive a state-space model for P_. we 
discretize Pc via the zero-order hold method with the sampling period T  to get PT 
St PcHt ■ S t  and H r  being the sampler and zero-order hold with period T . and assume 
that Pr  has a state-space model

D + C {: I  -  A '~ l B =
.4 B  '
C D (4.2)

It is not hard to derive th a t a state-space model for the discretization with period 
m T. PmT =  S rnf  PcH mt ■ is given by

r.r(-
-4mr BmT

C D
(4.3)

with

A mT = A m. BmT = I /  + .4 - • • •  +  .4m- ') 5 .  (4.4)

P ro p o s it io n  1 .4 state-space model for the lifted multirate system P_ is given by

r •C r f l-n r  •• BmT
C D 0

P(=) = C A n C A n~mB mT • 0

C.4*m_1)n C A mn~n~mBmT •• 0

(4.5)

Observe that certain blocks in the D-m atrix axe zero; this reflects the causality 
constraint.

P ro o f  o f  P ro p o s it io n  1 From (4.1 ) and the identities S nr  — SnTH rSj  and 
Hmr  = H T S rH mT , we can write

P  — LmSnTHT{STPcHT)STHmr L - 1

= LmS nTHjL'^nL mnPTLf^nLmnSTHmTL'fi 

=  S P t H.

the last equality following from the definitions:

5  =  LmSnTH TL ^  R t  = LmnpTLmn- R- =  LmnSrHmTL~X.

Now based on the state-space model of Pt  in (4.2), a  state-space model for R T is 
given by [42]:

A mn a ™ - xb A™ ~2B . . .  b  '

C D 0 . . .  o

£ r(* )  = C A C B D . . .  o

C A ™ ' 1 C A ™ ~2B C A ™ ~ZB . . .  d

(4.6)
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Also, it can be shown that 5  and H_ are constant matrices given by

5  =

I o . . . 0 0 0 . . 0 . . . . . .  0 0 . . . 0

■ 
o o . . . o / 0 . . 0 . . . . . .  0 0 . . . 0

I---
-- o 

• •

o . . . 0 0 0 . . 0 . . . ... I 0 . . . 0
m x ( m n )  blocks

H =

/  0  0  0  ••

I  0 0 0 ••
0 /  0 0 • •

0 I  0 0 -•

0  0  0 0 • •

0 0 0 0 -

0
0

0

I

I

771

m

771

( m n ) x n  blocks

(Here, the identity matrices /  reduce to 1 if P  is a SISO process.) Pre- and post- 
multiplying the transfer matrix in (4.6) by S and H_. respectively, gives a state-space 
model for P.

Amn ( V m"-1 A l)B • ( £ i r 0> ) - B
c D 0 0

C A n C ( E £ - m A ')B D + c ( ^ : 0m- l A ')B  •• 0

C ^(m-l)n 0

This model simplifies to (4.5) by noting (4.4). ■

As a special case, when m =  1. the state-space model for P  in Proposition 1 
simplifies to

(4.7)

Lifting the noise model is simpler and so we only briefly discuss the result. Dis­
cretize the continuous-time noise model N  in Figure 4.1 with sam pling period n T  to 
get N„t  which takes a  white noise e(k) into v(k); assume a state-space model

' .4" A n~2B  •• • B  '
c D  0 ' 0

N n T ( z )  =
An Bn
CN Dn
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Since the deterministic system is lifted to interval mnT. we lift . \ nT by L,n: Define 
v — Lmv and e — L me to  get that the lifted noise model. .Y :=  . maps r
to v and admits a state-space model

Am A T l B s A™~2B y • •  B y
CN D s Q •• 0

M - )  = C \ A \ C y B y D y • • 0

1 £
 

h* 
••

Cy A™~2B y CyA™.~3B y  • • •  D y

Thus we get the overall lifted model as follows:

y = P n  + X*i- (4.S)

Both P  and N_ are now LTI, but u and e have higher dimensions. Note th a t most 
statistical properties of e(k)  are preserved after lifting: If e(k) is a white noise, so is
e(k): if e(k) is Gaussian, so is e(k): and so on.

4.3 O bservability in the Presence o f Time D elay

When is the state-space model for the lifted multirate system in (4.5) controllable 
and observable? To answer this question, our standing assumption in this section is 
that the state-space model for Pt  in (4.2) is minimal, i.e.. (.4. B)  is controllable and 
(C. .4) is observable. N ote that this assumption is guaranteed if the continuous-time 
process with no time delay is controllable and observable and if the sampling period 
T  is non-pathological [10]. Controllability of P  in (4.5) can be achieved under a  mild 
condition [10, 23]; so let us focus on observability. We need the following sufficient 
condition.

C o n d itio n  1 For every eigenvalue A of A. none of the mn  — 1 points

Ae2*fcj/nm k = L 2 . . . .  , m n -  1.

is an eigenvalue of A.

Under Condition 1, observability of (C, .4) implies that of (C ,A mn) [23], which in 
turn implies observability of P  in (4.5).

Now we restrict our attention to Pc being SISO. In the time-delay case, let the 
time delay in Pc be dcT ,  dc being a real positive number. Suppose dc > 1. It follows 
that the discretized system  Pt  has a t least two poles at z =  0; and hence A  has at 
least two eigenvalues a t z  =  0. Thus Condition 1 fails in this case. We will prove 
that surprisingly, we lose observability of the model in (4.5).
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P ro p o s it io n  2 The state-space model in (4-5) fo r  P_ is unobservable i f  dc > 1; it is 
observable if  0 <  dc <  1 and i f  Condition 1 is satisfied.

P r o o f  The second p a rt follows readily from [23. 10]. We now prove the hist part.
Let d be the sm allest integer such that dc < d. It follows that d  >  2 since dc > 1. 

The discretized system  P j  has d poles at c =  0. W ithout loss of generality, we can 
assume that the state-space model of P j  in (4.2) is in the controllable canonical form: 
in th is case, the A -m atrix is of the form

I

.4 =

a i Q.0
1 0
0  1

0  0

a; 0 
0  0 
0  0

0 0

0 0 
0 0 
0 0

1 0

-4m
0

0
.4oo

where the dimensions of ,4n and .4 22 are / x / and d x d. respectively. It follows easily 
th a t for k  > 2. the last two columns of A 22 are zero: so are those of A k.

Now we express the  observability matrix for the state-space model in (4.5) in 
term s of .4 and C :

C 
C A n

r = c a 2ti ̂o

Because n > m > 1 . even ' row in r o except the hrst one has a t least two zero elements 
a t the  end: so the rank of r o is at most I -rd  — I. Therefore we loose obsen'ability. ■

Loss of observability would cause problems for some applications of the identified 
lifted models, e.g.. making it impossible to extract fast single-rate models from the 
identified lifted models. In order to  understand the time-delay related observability 
problem clearly, let us see the following example: There is a single-input single-output 
system  with control interval 1 unit of time and output sampling interval 3 units of time 
(tha t is the special case where m =  1 ). The single-rate process model w ith sampling 
interval 1 unit of tim e is 3 °^ 9. The state-space model with sampling interval 1 unit 
of tim e is

A  =
'  0.9 0 0 ' ’ 1 '

1 0 0 , B  = 0
0 1 0 0

C  = 0  0  0 .1  , 
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Figure 4.3: Comparison between the true fast model and the fa st model extracted by
using the controllability approach

The lifted model in the form of equation (4.7) is

'  0.729 0 0 0.81 0.9 1 ‘

A  = 0.81 0 0 • s  = 0.9 1 0
0.9 0 0 1 0 0

c  = 0 0 0.1 . D = [ 0 0 0 ] . (4.9)

We can see th a t the pair (C. A)  is not observable. The minimum realization form of 
the lifted model is

.4 -
0.729 0 

0.9 0 . B  =
0.81

1
0.9 1 
0 0

C = [ 0  0.1 j . D = [ 0 0 0 ] . (4.10)

Since the lifted model in (4.9) is not observable, we could only estim ate the lifted 
model in (4.10). From the lifted model in (4.10). we can extract fast-sampled models 
(model with sampling interval 1 unit of time) by using the methods in Section 4.6 
(we could not use the eigenvalue approach since an eigenvalue of A  is zero). The 
extracted fast-sampled models are then compared with the true fast-sampled model 
in Figures 4.3 and 4.4. Clearly thev do not agree.

From the comparison we can see that we could not obtain the true fast-sampled 
model if observability of the lifted model in 4.7 is lost. One remedy is as follows: In 
the next section we will show th a t based on the m ultirate input-output data, we can 
estimate the time delay dcT  w ith accuracy T ; say, the estimated time delay is ddT  
with dd an integer and 0 < dc — dd < 1. Since m and n  are co-prime, we can always 
find integers ki and k2 such th a t

dd = k^m + k2n.
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Figure 4.4: Comparison between the true fast model and the fast model extracted by 
using the matrrr roots approach

Next we shift the input data to the left by k\ samples and the output da ta  to the 
right by k2 samples, so that the shifted input-output d a ta  gives rise to a new system 
with time delay no larger than T.  The lifted model identified from the shifted data 
will be observable under a mild condition (Proposition 2).

4.4 Tim e-Delay Estim ation

In this section we study how to estim ate the time delay (dcT ) of the continuous-time 
process Pc using m ultirate data. If (discrete) time delays for the subsystems of the 
lifted multirate process P  can be estimated -  a s tandard  problem, we will show a 
method for estim ating dcT  with accuracy T.

The lifted process model w ith noise is given in (4.8). Suppose Pc is SISO: the 
lifted process P  has a m x n transfer matrix:

£ 1=) =

PDo(-) 
Pw(:) Pi i(-~)

P o . n - i (  =  )

P l . n - l ( ’ ) 

£ n - I . r . - l ( = )

(4.11)

Pm-l,o(-) Pm -m ( ')  ’

Time delays in P,_,(-) can be estim ated by identifying the impulse response matrix 
for P  using the standard  correlation analysis between u  and y [55, 68], which we 
summarize below:

1. Design a vector input sequence u(k) whose components are independent to each 
other and satisfy proper excitation requirement [55]; inverse lift u(k) by L ~ l and 
input to the multirate process; measure the ou tp u t y(k)  and lift by L m to get 
y(k). (Measurement noise is assumed to be w hite and independent of u.)
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2. Compute

1 •V_I
Ry»(i) = Jim T 7 V i/(fc  +  i)«T(*)-

-V—oc . V —

Ruu(i) =

k=Q 
.V —I

im -^7 V '  u(k + i)y^  (k ) .
—  DC A

*r=0

where superscript T  means transpose. These are usually approximated by suf­
ficiently large N.

3. If u(k)  is a vector white noise. fi™(0) is an invertible m atrix  and Ruu(i) = 0 
for i 7= 0. The impulse response matrix for P  is then calculated to be

E(i) =  ^ ( 0 ^ ( 0 ).

Now we assume that time delays for the subsystems of P  in (4.11) are computed: 
P_, (-) contains a time delay of being a nonnegative integer. (Thus the first
non-zero element in the impulse response of P tJ is p(lt:).) Knowing such a time-delay 
matrix:

^00 loi • • • lo.n—1

ho hi h,n-i
(4.12)

£m  —1.0 ^m —1.1 ^ m  — l . n  — l

how do we estimate dcT l
The lifted system P  maps u to y. both having period m n T : and the subsystem PT] 

maps Uj to y^. Note th a t during the first interval [0. mnT), Uj occurs at time j { m T )  
and y  ̂ a t tim e i(nT): so the actual time delay from u ; to y^, incorporating th a t due 
to lifting, is

TtJ =  dcT  -f- j m T  — inT. (4.13)

From we can only estim ate T,: within one sample period which is m nT  for the
lifted system:

(l,j — l)m n T  < Tl;) < l^mnT.

Substituting (4.13) into the above, we get m n  inequalities for estim ating dc:

(ltJ — 1 )mn  +  in — j m  < dc < l^m n  4- in  — jm ,  i = 0 , 1 .  - • • , m — 1.

j  =  0 , 1 .  • • • , n - l .  (4 .14 )

These inequalities combined give much better accuracy for estim ating dc. To this 
end. we need the following claim based on the co-primeness of vn and n.
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C la im  .4 5 i goes from 0  to m  — 1 and j  from 0  to n — 1 , i n — j m  takes nm  different
integer values.

P r o o f  Suppose, for a contradiction, th a t there exist and (z2, j 2) with 0 <
z'i. in < m  — 1 and 0 <  j x. j 2 <  n — 1 such that

i \n  — j \ m  — i2n — j 2m.

Then
(z'i -  i2)n = — j 2 )m.

The co-primeness of m and n and the inequalities fy — z2| < m  and |y'i — j 2\ <  n 
imply immediately that t'j -  i2 = 0 and j \  — j 2 =  0. Hence the claim is proven. ■

Over an interval of 2mn  integers, based on the claim, the m n  lower limits in 
(4.14) are all different and fill th e  lower half of the interval, whereas the  m n  upper 
limits in (4.14) fill the upper half. Thus the difference between the maximum of the 
lower limits and the minimum of the  upper limits is only 1 -  we can estim ate dc with 
accuracy 1 and hence dcT  with accuracy T\

Let us illustrate this with a concrete example. Take m  = 2 and n  =  3; assume 
the time delay of the continuous-time process is 8.57\ i.e.. dc =  8.5. Based on these, 
the time delay m atrix  as in (4.12) should be

0̂0 Iqi I02 ' 2 2 3 '
lio 111 h i 1 2 2

Inequalities in (4.14) reduce to the  following:

6  < dc < 12. 4 <  dc < 10. 8 <  dc < 14.
3 < dc < 9 .  7 < dc < 13. 5 < dc < 11.

These six inequalities are equivalent to 8 <  dc < 9: hence we can estim ate the time 
delay within an interval of T : ST  < dcT  < 9T.

4.5 Identification o f  Lifted M odels

The lifted model with noise is given in (4.8). where both P  and N_ are MIMO but 
LTI. and the noise e satisfies the same standard assum ptions as e does. One might 
think th a t identifying a state-space model for P  based on da ta  u and y  is straightfor­
ward by applying subspace identification techniques; bu t this is not the case due to 
causality constraints on the P-matrLx in state-space models of P(z).  Because of this
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complication, the subspace algorithms need to be re-derived from the least-square 
optimization, which is the focus of this section.

Suppose the continuous-time process involves a time delay of dcT. From our dis­
cussion in the preceding section. dcT  can be estim ated within accuracy T. With 
this information, by shifting the m ultirate input and output data properly (as dis­
cussed towards the end of Section 2.4). we can assume without loss of generality that 
0 < dc <  1 in this section.

Let P  have the following state-space model

.4 I B  '
P (  = ) = C D (4.15)

The m x n matrix D_ relates u(0) to t/(0) as follows:

2/(0) Dqq A l A .n-1
2/(1) — Dio A i  • D\m — 1

_ y(ru - 1) Dm —1,0 Dm— 1.1 Dm — l.n—1

u ( 0 )

u ( l )
(4.16)

u(n — 1)

Note that DXJ takes the  input u(j)  a t time t =  j m T  to  the output y(i) which occurs 
at time t =  m T .  Because of the time delay of dcT  in the system, causality requires 
that D,j — 0 if Jm T  -f- dcT  > m T .  Since 0 < dc < 1. we can write the  causality 
constraint as follows:

D,j — 0. whenever j m  > in. (4.17)

For example, if m =  2 and n = 3. the structure of D_ is given by

D =
0

D\o
0

A l

In general, the causality condition implies that D_ must be block lower triangular: 
Given 0 < i < m — 1. define J, as the largest j  satisfying j m  < in: it follows that 
D,j == 0 for j  < J,. otherwise Dv — 0. Defining

A  — [ A ,o  A . i  ■ • • A  j ,  ] ■

we get th a t a causal D_ takes the following form:

i =  1. 2. • • • , m — 1. (4.IS)

D =

0
A

Dm- 1 0

(4.19)

Note th a t the first row is zero because of the time delay; the zero blocks in (4.19) 
may have different sizes. This structure of zero blocks needs to be enforced in the
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identification process to guarantee causality. Next we discuss how to modify the 
Miiispace identification algorithm s to incorporate this constraint on 12- 

Lot us start with the lifted state-space model

Z (frd -l)  =  £ l [ k )  + B u {k )

y{k) =  Q.x(k) 4- D.u{k) +  v(k).

where v is the output from the lifted noise model AT. Suppose we have N  (lifted) data  
points. We first estimate the  state  vector x(k)  using the CVA or N4SID algorithm:
the causality constraint on D_ does not affect the sta te  estimation. Next, we solve the
least-square optimization problem to find a state-space model:

min S '
A , B , C . D  A ^Ar=0

x (k  -j- 1) .4 B *(k) ] Y l x (k  -f 1) '  A B  ‘ '  z ( * )  '

C D . n ( k )  J )  i y_{k) C D u (k )

In this optimization process, we now incorporate the causality condition in D_. 
Corresponding to  (4.19). we partition C. u and y:

C  =

C o 2 / o
C i

U = ■ y  =
2 / i

C m -  1 U „ - l V m — 1

(4.20)

From here we define partial vectors for u according to the structures in (4.18):

Uq

Ul

UJ>

i — 1.2. • • • . m — 1.

The least-square problem is equivalent to minimizing over {A.B_, C ,. D ,} the quantity

T

Y 2 -  ) “  [ £  £  ]
‘ t=o I. ^

x(k)
u(k)

x{k)
u{k)

+  [yo(fc) ~  0>x(A:)f [2/o(fc) -  C0x(k)]

i=i ) r ( » w - [ a i [ * w

The least-square solutions for A, B_, Co and C , ,A  (i =  1,2, ••• ,m  — 1) can be
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computed by setting all the partial derivatives to zero:

-y ^  ( k H I ) -  f i  B
k=Q 
A ' - l

•V-l

uik'  j

^ Y . [ y o ( k ) - c 0x(k) ]T(k)T = 0.
k = 0  

1 A’_ I  (
i f E  i i * ) - [ c  a ]

L ikl I 'I [ £\k)
u( k)

= 0 .

k= 0

r
-------

H
I

*

'  T ( k )  ‘

L *!/.(*> J J =  o . =  1 . 2 . . m — 1.

Solving the above equations, we find the optim al solution: Defining the square m a­
trices

* -  v £
k = 0  

1 'v_1
* 0  =  y  5 2  £ (* 'k (* )r -

:  k = 0  
. V - l

*• -

. v - l iS
TH

I

t i

I
S

. .

*■=0 L

■ x(k)  ■ x{k)
. 2U. (fc) .

. 2 =  1.2. • • • .777 -  1 .

(note th a t under proper excitation conditions, these matrices should be nonsingular), 
we have

[ A  B  ] =  [ ±  x{k  -r l ) i ( k ) T j* X{k + 1 )u {k )T j < T ‘.

Co =
k—0

-1

i c * D A  =  { ^ k ^ v m x i k Y  iE L "oy .(fc )Jt/.(fc )r ] V .  i =

We rem ark that this state-space model computed is the optim al causal one in the 
least-square sense.

4.6 Com puting Fast Single-Rate M odels

In the preceding section, we proposed a modified subspace identification algorithm for 
estim ating a state-space model of the lifted multirate process: the  model obtained is 
guaranteed to  satisfy the causality constraint. In this section, we go one step further 
and show how to compute a single-rate model with sampling period m T  (the control 
period) based on the lifted model. Such a single-rate model operates at the faster 
rate (m <  n); as a special case, if m = 1, working at a  ra te  which is n times the 
output sampling rate, this model can be used to estimate the  missing output samples 
for inferential control applications [47, 27],
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4.6.1 C ontrollab ility  Approach

We start with a state-space model for P_ in (4.15). Knowing the matrices (A.B_. C . D ). 
we would like to compute the state-space model for P,„r =  Sm7- P / /mr: specifically, 
from (4.5). we would like to compute the matrices ( . 4 „ , r .  Bmr .C .  D). According to 
lifting, partition C  and D as in (4.20) and (4.16). respectively, and B_ as follows:

R  -  [ B 0 B x • • •  P n - ! ] .  ( 4 . 2 1 )

From Proposition 1. B mj . C  and D can be read off directly:

B,nT — Bn— 1 C  =  Co D  =  Dqq.

Thus the question reduces to how to compute .4m7 from the given data. We will 
discuss two methods for doing this.

The first approach to compute .4mr  is based on the hypothesis that (AmT- Bmr)  
is controllable. Given A  and B  in (4.21). Proposition 1 implies that

- 4mT =  A. B mT — B n- i .  A m j B m T  =  B n- 2 , • ■ • . B mT = B q.

Multiplying A  to Br  A2 to B0. and so on. we can get A kmTB mT for any k > 0. Thus 
we can form the following two matrices

-  [ B m T  -4m r B m x  A pmj B m T ] ,

4* =  [ - 4 m r B m T  -4m r B m T  ■ ■ ■ A VmTBmT  ] •

where p is the dimension of AmT- The m atrix <J>C is the controllability matrix for the 

pair (AmT- BmT)- Note that
4* =  .4mr4>c.

The controllability assumption implies that 4>c has full row rank: therefore A mT can 
be uniquely computed by

A mT = * * Te ( * M r ' .

4.6.2 E igenvalue A pproach

The second approach to compute A mT is based on an eigen-problem for A, for which 
we assume A  has distinct eigenvalues. The steps involved are summarized below:

1. Compute the eigenvalues and eigenvectors for A  to get

K - M V ^ d ia g U o ,- - -

where columns in V  are the eigenvectors.
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2. Pre-multiply B,,^\ and 2. the last two columns in B_. by I ' 1 to got twi 
column vectors

« 0

r

O
>

0

1

a l
. V - ' B n - 2  =

bx
(4

U p — 1 bp— 1

Let the eigenvalues of A mr  be A,, i — 0 , 1. • • • ,p  — 1 . The matrices ,4 m7- and A 
share the same eigenvector matrix:

V~xA mTV -  diag{A0. • • • . Ap_ ,}.

Since 5 „ _ 2 =  A mr B n-\  (Proposition 1). we can compute the eigenvalues A, 
from the two vectors in (4.22):

A, =  bi/a,, i =  0.1. ■ • • . p — 1.

3. Thus we get A mr
A mT =  Kdiag{A0 . - .Xp- i } V ~ l .

4 .6 .3  M atrix  R oots Approach

Note th a t if a unique A mr  can be obtained from .4£,r , then the single-rate model with 
sampling interval m T  is available. But we know that a  unique A mT from A ^ T can not 
always be obtained directly by taking the n th root of .4" T. Assume that q  is a pole of 
the continuous process Pc{s). The corresponding pole of the system discretized with 
interval m T  is

a, =  emTn

and the corresponding pole of a system discretized w ith interval nm T  is

n m T aPi = e

p, can be expressed as:

Pi =  re'0. —it < 8  < ~

where r  is the magnitude of p, and 8  is the main angle of p,. There are a  total of n 
roots of pp.

^ e ,{2kT+0)ln, k = O , l . . . . , n - l

Assume th a t

a  =  7  -i-ir/ 
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then

t̂unT<*   J»:n:Ti)

_m T c k  __e =  e e

2J -  + 9. - -  < 6  < 1r

where J  is an integer >  0 . a is unknown and J  is unknown, so a unique a, can not 
be computed from p,. a , and p, are eigenvalues of m atrix A mp and A ^ t  respectively, 
this means that m atrix A mr  can not be computed uniquely from matrix -4^r . If we 
know th a t J  is zero, then matrix A mr  can be computed uniquely from m atrix . 4 ^ .

P ro p o s it io n  3 .4 fast-sample model with interval m T  can be computed from a lifted 
model with sampling interval n m T  directly i f  the following requirement is satisfied

\nmTj]\ <  ~

where i] is the largest imaginary part of the poles of the continuous process.

P r o o f  First we assume that the m atrix  .4mr  is diagonalizable. then

A mT = V S V ~ 1. A : tT = V S n\ '~ I

The eigenvector m atrix V  of the m atrix  .4 m7- can then be computed from the similarity 
decomposition of m atrix A ^ j .  Because we also assume th a t \nmTr)\ < tt. then S  can 
be computed from 5 ” uniquely. This means that m atrix A mT can be computed 
uniquely from m atrix A^-p.

Now we assume that the matrix .4mj- is not diagonalizable. this means th a t some 
of the eigenvalues of m atrix A mr  are the same and the algebraic multiplicity of the 
multiple eigenvalue is larger than the geometric multiplicity of the multiple eigenvalue 
[26]. For simplicity let A mj  be a  m atrix  with I repeated eigenvalues a t A. We know 
th a t m atrix A mr  can be expressed as

A mr  = C f 1 J \C  i
" A 1 0  • • 0 0  '

0 A 1 • • 0 0

0 0 0  • • A 1
0 0 0  • • 0 A
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where Ci is an I x / invertible m atrix and J\ is the Jordan canonical form can
be expressed as.

.4" T = A mT x A mT x • • • x A mr  

= C f ^ C ,

=  c r ' ^ c ,

where

'  An (n + l)An_I nAn~2 ■ 4A2 3A
0 A" (n + l)An_1 ■ - 5A3 4A2

0 0 0 • A" (n +  1)A"-1
0 0 0 0 A"

Jo =

And .4 ^,7. can also be decomposed as:

A" 1 0 . . .  0 0
0 An 1 . . .  0 0

An —
A m T  ~  2 C2

0 0 0 • ■ • A” 1

0 0 0 . . .  0 A"

be decomposed in the Jordan form as:

II C3

An 1 0 0 0

0 A" 1 •• 0 0

J3 =
0

OO

A" 1

0

OO

•• 0 A"

Therefore.

A n  _  p -  l p - l
^ m T  ~  ° 1  ^ 3

'  A" 1 0 •- 0 0
0 A" 1 •• 0 c

0 0 0 •• • An 1
0 0 0 0 An

C3C]

This means:
C2 — C3C 1

We know m atrix A ^ T , so we can compute matrices C2 and J 3. FVom the assumption, 
\nmTj]\ <  7t, it is obvious that A can be computed from A" uniquely, Jo can then be
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formed and m atrix C3 can be computed from m atrix J j .  After matrices C2 and C3 

are known, m atrix C x can be computed as follows.

C l = C j-'C j

Once matrices C\ and J\ are obtained m atrix .4mr  is known.
If the condition \nmTT]\ < 7r is satisfied, a unique A mj  can then be obtained from 

directly; and the input and the output matrices, B mr ,  C  and D, respectively, 
can be easily obtained from the appropriate partitions of the estim ated lifted model 
P . hence the single-rate model with sampling interval m T  can be com puted from the 
estimated lifted model P . ■

The condition for the controllability method is relatively easy to  satisfy; but when 
the condition num ber of the controllability m atrix of the fast-sampled model is large, 
the estimation error of the controllability approach will also be large. The condi­
tions for the eigenvalue approach and the m atrix roots approach may not be always 
satisfied. Usually the matrix roots approach can give the best estim ation.

4.7 Procedure Summary

In this section we summarize what we have studied in the preceding sections for identi­
fying a fast-rate state-space model from the m ultirate data , when the continuous-time 
process is time-delayed.

S te p  1 Estimate the time delay dcT  of the continuous-time process based on mul­
tirate input-output data (Section 4); the error of this estim ation can be as 
small as T ,  assuming m and n  are co-prime.

S te p  2 Suppose dc is estimated to be within the interval (dd. dd -f 1], where dd is a
nonnegative integer. There always exist integers k { and k2 such that

dd =  k \ m  -f- koTi;

then we shift the input data  to the left by k x samples and the  output data to 
the right by k2 samples, so th a t the shifted input-output d a ta  gives rise to a
new system with time delay no larger than  T.

S te p  3 Identify a  lifted state-space model based on the shifted m ultirate da ta  using 
the modified subspace identification algorithm  th a t we proposed in Section 5; 
this guarantees the modei satisfies the causality constraint, and is both con­
trollable and observable under a  mild condition on sampling (Section 3).
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Figure 4.5: Step responses o f the actual (solid) and estim ated (star) fast-rate models

S tep  4 Extract a fast siugle-rate model with sampling period m T  from the lifted 
model, using either the controllability or eigenvalue approach (Section 6 ).

S tep  5 Incorporate the tim e delay estimated in Step 1 to the fast-rate model.

4.8 Sim ulation Example

An illustrative example is given in this section; this example is a simple SISO system 
and the study  is based on computer simulation.

E x am p le  1 . In view of Figure 4.1. take the process and noise models to be

e-5’ 1
Pc(s) = ^ — r. -V(S) -

2 0 s +  1 ' ' 10s -I- 1

The control period is 2 s: and the sampling period is 3 s (m =  2. n — 3. T  — 1). Thus 
the lifted m ultirate system has 3 inputs and 2 outputs.

First, we generate a vector white noise sequence of length 3000 as the lifted input, 
measure the output with noise (the signal-to-noise ratio is 3:1); and then estim ate 
the time delay. Next, we generate a (vector) lifted low-frequency excitation sequence 
of length 3000, again m easure the output with signal-to-noise ratio 3:1. Shifting 
the input-output data, we estim ate a lifted model and then a  fast-rate model. Fi­
nally, we incorporate the tim e delay into the fast-rate model. Figure 4.5 compares 
step responses for the actual and estimated models with sampling period 2 s: Given 
the signal-to-noise ratio and the input excitation conditions, the estimation is fairly 
accurate.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.9 Conclusion

In this chapter we have shown by a theoretical analysis and a sim ulation example, 
that a fast single-rate model in which the sampling interval is the sam e as the con­
trol interval of the m ultirate system can be estim ated from multirate d a ta  collected 
from the general class of SISO m ultirate systems. The most general case of a SISO 
m ultirate system is one in which the ratio between the output sampling interval and 
the control interval is a  rational number. The proposed methods for estim ation have 
been successfully applied and evaluated on a sim ulated system. The results in this 
chapter differ from those by Verhaegen and Yu [82] in th a t we tackle the  causality 
constraint explicitly in the optimization, analyze the observability of th e  lifted model 
and identify not only a lifted model for the m ultirate process but also a  fast single-rate 
model, based on multirate input-output data.
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Chapter 5

Subspace-based Identification of 
MIMO M ultirate System s

5.1 Introduction

In the  chemical process industry, most processes are multi-input and m ulti-output 
(MIMO) systems. Strong interaction in the MIMO systems makes it difficult to 
control them with traditional single loop controllers such as PID ones. Model-based 
predictive controllers can handle the interaction, and th a t is one of the reasons why 
M PC has been widely accepted in the chemical process industry.

It is well known that the state space framework for single-rate SISO systems 
can be extended naturally to represent single-rate MIMO systems, hence subspace- 
based identification algorithms for single-rate SISO systems can be extended to single­
rate  MIMO systems directly. Researchers have shown that in the identification of 
MIMO systems, there are numerically ill-conditioned mathematical problems in the 
polynomial identification framework. However there are no such problems in the 
subspace-based identification framework.

In Chapter 4 we discussed the identification of SISO multirate systems. In this 
chapter we will discuss the identification of MIMO m ultirate systems. There are 
m any classes of MIMO multirate systems: and we will only focus on one special class 
of MIMO m ultirate systems where ail the control intervals are uniform, the output 
sampling intervals may be different, but are integer multiples of the control interval.

5.2 Identification of MIMO M ultirate System s

Consider the m ulti-input and multi-output m ultirate sampled-data system shown 
in Figure 5.1. Here, Pc is a continuous-time process with additive disturbances; 
the disturbances are generated by the continuous-time model N  with white noise
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Figure 5.1: Block diagram o f a M IM O  multirate sampled-data system

inputs e0, •••.  em_ i ; the outputs are sampled by m  samplers 5, with periods J fT ,
i =  0 . 1  m  — 1 . yielding the sampled outputs yz(k), i =  0 , — 1; the inputs
to Pc are generated by zero-order holds with period T  processing the input sequences 
u,{k).i = 0 . 1  n — 1. We assume th a t J, is an integer (>1). for all i =  0 .1 ..... m — 1.

Both Ui(k) and y: {k) are discrete-time signals defined on the time set Z +
{0 . 1.2. ■ • • }: but their underlying periods are T  and J jT ,  respectively. Define

UQ yo
IL = * y =

^n— 1 Vm-1

Assume that Pc is linear time-invariant (LTI). The discrete-time system from u to 
y (with et =  0, k  =  0. ...,m  -  1). is linear and periodically time-varying. In order 
to get a tractable model for this m ultirate system, we use the lifting technique. For 
the multirate system from u to y  in Figure 5.1, we lift the inputs and outputs to 
get a single-rate system  with underlying period J T , where J  is the least common 
multiple of Jo, J \ . .... J m- 1; and hence we need to lift u, by L j ,  and y_, by Lk} to arrive 
at Figure 5.2, where k3 — j-. Let S j tt  represent a sampler with interval J,T,  so 
S, = S j tr .  For simplicity we assume th a t n >  m. Define
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*■. L.' r— Ht Sr —  — L--

■ S„.t •

Figure 5.2: The lifted MIMO mvltirate system

L j { u 0 ) Lk0(yo)
u  — • k =

Lj{lln~ 1 ) Lkr,.-1 (l/7n—l )

The lifted multirate system P  takes u into y and is defined via

Lkl>
P  =

L k

‘ 50 '  L J 1
Pc

Sm-i L~Jl .

£-00

£ 1 0

£m-l.l

£o,n-l

p
— m  —l , n  —1

(5.1)

5.2 .1  Lifted M IM O  M ultirate  System s

The P  defined in equation (5.1) can be shown to be LTI. In order to derive a state- 
space model for P . we discretize Pc via the zero-order hold with the sampling period 
T  to  get P7- := S j PcHt ■ S j  and H t  being the sampler and zero-order hold with 
period T. PT can be expressed as

P r  =

Pq, 0
£ . 0

£0.1 
Pi. 1

pQ.n-l
P 1.71-1

Pm —1,1 P m  —l,7 i—1

(5.2)
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and can be represented by the state-space representation in the (.4. B . C. D) form:

.4 B o B x B n- i
Co Do.o Do. i D o .n - l
C , D \ .o D u D l .n- l

C m - \ D m — 1.0 D m -1.1 D m —l,n — 1

(5.3)

P ro p o s itio n  4 .4 state-space model for  the lifted multirate system P_ is given by

£ o o  £ o , n - i

£ l 0  E . l .n -1

£ m - 1 .0  R m - l . n - 1

where

P  = (5.4)

A J A J ~ l B , A J ~ 2 B , ■ B i

C j D t . j 0 0

II■«->

a
.1 C : A J ' C j A J , ~ l B , C j A J ' ~ 2 B i 0

C j A ^ - W ' C J A J - J ' ~ 1 B , C j A J - J ' - 2 B i 0

P r o o f  o f P ro p o s it io n  4 From (5.2 ) and the identities 5j, j  =  S j,t H t St . i = 
0  m -  1 . we can write

' L k0 S jqtH t '  L I '
p  = St PcH t

-1 1
1 *->I

LkaSj0 t H t

The identity L j lL j  = I  gives

L k o S j o T H r L j '  L j P q q L J 1

PO.O -.. P o .n - l '  l ; 1

P m —1,0 •*. P m — l.n — 1 l ~j1 .

Lkm_lSjrn_lTHTL j 1LjPo,n- i L j l 

LkoSj^HrL] 1 LjPm-i'oLj1 ... Lkm_lSjrn_lTHrLf1

:  p ,;  :

the last equality following from the  definitions,

- L kxS j tTHTL f l 
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It can be shown that 5, is a  static system with constant m atrix representation:

Jx J x J,

I  r . . .  o " o  o ^ ... o '    'o  o ~ ... o '
0  0  ... 0  /  0  ... 0  0  0  ... 0

^  ^  I
0 0 ... 0 0 0 ... 0   I  0 ... 0

J k, X . /

Now based on the state-space model of P j  in (5.3). a state-space model for P_r .. is 
given by [42]:

1

A J~]B, A J~2 B, A  1

A A , 0 0
CjA CjB, A , 0

CjAJ C jA J~2B x C jA J~3Bt A ,  .

Pre-m ultiplying the transfer matrix in (5.5) by 5, gives a state-space model for P  :

AJ A J~l B, A J ~ 2 B X •• B, 1
A A j 0 0

C)A J' C3A j'~ 'B x C jA j,~2B, 0

C jA ^ - 'V - C jA J~Jt~l B , C j A J - J'~ 2B t 0

The state-space model for the lifted m ultirate system P_ can then be written as

A J A J~1B0 .. Bo Bn-\
Co O

• 
o © 0 0

CqAj ~ J(>" 1 B 0 0 0

An-1 BQ'Tti — I 0 0

Cm_ 1A J~J°~l Bo 0 0

After discussing lifting as applied to  deterministic systems, we now study how- to 
lift noise models. Here we assume that in Figure 5.1 et is the  output of et(/c) processed
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by a zero-order-hold with period J ,T .  i = 0 ,1  m  — 1: so the noise process becomes
a system with m  distinct input sampling periods and m  distinct output sampling 
periods; and we can lift the noise model by using the results in chapter 2. If we 
assume that the disturbance model AT is a general transfer function matrix;

A  0 . 0  A r0.1 • • •  A ro . m _ l

Am—1.0 Am—1,1 ■*' Am — i.TTi—l

then we need to discretize the noise model with sampling period T. and the lift­
ing procedure becomes complicated since all the input periods are distinct and all 
the output sampling periods are distinct. For simplicity, we assume th a t N  can be 
represented by a diagonal transfer function matrix;

No

Am-l

( 5 . 6 )

This is not a restrictive assumption and most of the identification functions in MATALB 
such as ARX, ARMAX, BJ, ... make the same assumption.

In order to obtain the lifted noise model, based on the assumption th a t  e, is the 
output of e,(k) processed by a zero-order-hold with period J,T.  we first discretize the 
continuous-time noise model N , in (5.6) with sampling period J ,T  to get A y j.r  which 
converts the white noise term e,(k) into vt(k)] assume a state-space model.

A ) =

2 =  0 ,1  m -  1. Since the deterministic system is lifted to interval J T ,  we lift
A’i.j.r by Lt,. Defining v, =  LkV,  and e± — Lk,e, to obtain the lifted noise model. 
JV, := LkiN. j iTL ^ 1, such that it maps to and admits a state-space model:

---
1

> B u  1

i— p .s Ay, J

A kS 2 B, j . •• BUl 1
Ct,J. Di,j. 0 0

N{z )  = Q j . A u , D u , 0

C  r 4*'_I B lJt • • DtJ , _

Define
L k 0e  o L k 0vo

e = , V =

L k m- i e m - l B k m_ l VTn—l
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The lifted noise model is

‘  Lk,
K  =

’ W ' o K 1

and can be obtained by combining the models of A\, z =  0.1. m  — 1. Thus we get 
the overall lifted model as follows:

y  =  P_u 4- X_e. (5.71

Both P  and N_ are LTI: and all statistical properties of e,(fc) are preserved after lifting.

5.2 .2  E xtractin g  Fast S ingle-rate M odels

In Chapter 4 we discuss the obervability of the lifted system in the  presence of time 
delay, and show th a t the lifted state-space model derived from the fast-sampled state- 
space model will lose observability when the time delay of the process is larger than 
the control interval. The issues of observability in the presence of tim e delay are much 
more complex for MIMO systems. So for simplicity, in this chapter we assume that 
the time delay of the process is less than  or equal to  the control interval.

A method similar to the method discussed in Chapter 4 can be applied to overcome 
the causality constraint when we estim ate the lifted model. Let P  have the following 
state-space model

'  A B  '
C D

After estim ating the lifted model, we need to go one step further to  compute the 
fast model with sampling interval T  from the lifted model; specifically, from (5.4). we 
would like to  compute matrices (A. B. C. D ) in the following form:

A Bo B n- \
Co fa O O Do,n-1

C m ~ i ^ m —1,0 —l , n —1

Define /  =  t îe lifted system has n J  inputs and /  outputs. According to
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the lifted inputs and outputs, partition B. C_ and D_ as:

C n
c  =

D =

B =  [ S c  ••• B nJ_ l ]

G.f-\ j
Boo

B /~ 1.0

B o . n J - l

From Proposition 4, matrices B. C  and D  can be read off directly as:

Bo - B_J-l■ B\ = B_2J-\-: ' ' ' ■ B n- 1 — B n j _ {

Co — Qjo• C i = C ko, - - - ,  C m _ i  —

Do.o = B o o • An =  Bjo.j- ' ' '  • o =  D _ f _ k m  l 0, - ■ ■ , =  B f _ k m_x, ( n - i ) .

Now the question that arises is how to compute matrix ,4 from the lifted model.
Clearly with the results in Chapter 4 we know’ that if the condition

\JTV\ <  *

(where r? is the largest i magi n a n - part of the  poles of the continuous process P c). 
is satisfied, we can compute matrix A  directly from matrix A:  or if A  has distinct 
eigenvalues, then we can also compute m atrix A  directly from m atrix A. In this 
section we will discuss only how to compute matrix A  through the controllability 
approach: First we assume th a t the pair (.4, B) is controllable. Given A  and B_ in 
(5.4), Proposition 4 implies that

=  A, B =  [ B j _ x ••• B n j . i  ]

A B  = [ B j _ 2 B n J _ 2 A j ~1B =  [B o B_in —1)7

Multiplying A to .4' lB.  ^4" to .4' l B. and so on. we can get A kB  for any k  >  0. 
Thus we form the following two matrices.

=  [ B A B  A p~l B  ]

and
4> =  [ A B  A 2B  ■■■ A PB  ] ,

where p is the dimension of A. The m atrix 4>c is the controllability m atrix for the 
pair (.4. B ). Note that

4> =  A $ e.

The controllability assumption implies that 4>c has full row rank; therefore A  can be 
uniquely computed by
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-  True modi • Estimated

0 50 100 150 200 250 300 350 400 450 500

Figure 5.3: Step responses of the true model ( G i l )  and the estimated model

5.3 Sim ulation and Experim ental Examples

5.3 .1  A  S im ulation  E xam ple

A 2-input and 2-output simulation sam pled-data system is generated SIMULINK; the 
interval of holds is 1 unit of time; one of the output is sampled every unit of time, but 
the other is sampled every 5 units of time. The process model with sampling interval 
unit of tim e is

0  1 4 1 6 :* 1 - 0 . 03 ; - * 0 . 11 ; - * - 0  03 ; - *

y(k) = 1- 0 . 9868 ; - *  

— 0 . 0379 ;  ~ *

1- 0 . 97 ; - *

0 . 0595 ; - *
u ( k )  +

1 - 0 . 97 ; - *

- 0 . 02 ; - *
1- 0 . 95 ; - *

0 . 04 ; - *

1- 0 .9131 ; - * 1- 0 . 9 0 4 8 ;- 1 1- 0 . 9 ; - ' 1- 0 . 88 ; - *

A total of 10000 input-output data were collected with a random binary input se­
quence. The signal to noise ratio is 5. From this multirate da ta  set we identified a 
fast-sampled single-rate model with a sampling interval of 1 unit of time, by applying 
the techniques developed in this chapter. The state-space model identified is of order 
4. and the step responses of the true fast models and the estimated fast models are 
compared in Figures 5.3 to 5.6. The comparison shows that the estimated fast models 
are close to  the true process models.

5 .3 .2  A n  E xp erim enta l E xam ple

The MIMO process shown in Figure 5.7 is a computer-controlled experimental setup 
a t the University of A lberta and is concerned with tem perature and water level reg­
ulation in a continuously stirred tank heater.

In this process, the two manipulated variables are the positions of the cold water 
(u i) and the steam  (u2) valves; the two measured variables are the water level (y\ )
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Figure 5.4: Step responses of the true model (Gl2)  and the estimated model
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Figure 5.5: Step responses of  the true model (G21) and the estimated model
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Figure 5.6: Step responses of the true model (G22) and the estimated model
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Cote w ater 
valve

_b

Figure 5.7: Experimental setup of a stirred tank heater

and water tem perature (y2) in the tank. For this study, the two valve positions are 
updated even' 4 second, the water level and water tem perature are sampled every 20 
second and 4 second, respectively. Around the operating point with y\ — 12 mA and 
j/2 =  10 niA. the inputs and outputs of the stirred tank heater are summarized below:

Symbol Q uantity Range

v-i cold water valve 4 mA <  ui < 20 mA
u2 steam valve 4 mA <  u2 < 20 mA
2/i water level 4 mA <  yi <  20 mA
Z/2 water tem perature 4 mA <  y2 < 20 mA

We use mA to quantify both y x and y2 since there are simple linear relationships to 
transla te  these units to actual physical units. We collected the input-output da ta  
over 4 hours with a random binary input sequence. From this multirate data set we 
identified a fast-sampled single-rate model with a sampling interval of 4 second, by 
applying the techniques developed in this chapter. The state-space model identified 
is of order 4. Then we changed the sampling interval of the water level to 4 second, 
and collected the input-output da ta  over 1 and half hours with a random binary 
input sequence. We used this fast-sampled data set to validate the estimated fast 
model. The model ou tputs and the actual process outputs (measured) are compared 
in Figures 5.8 and 5.9. It is clear from this validation test that the fast-rate model 
obtained from the m ultirate da ta  captures the process dynamics very well.
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Figure 5.8: W ater level p lo t« fo r  the model (s ta rj and the actual process (solid)

Figure 5.9: Water temperature plots for the model (dot) and the actual process (solid)
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5.4 Conclusion

This chapter discusses a special case of MIMO m ultirate systems, where all the control 
intervals are uniform, all the output sampling intervals may be different, but integer 
multiples of the control interval. The analysis in this chapter shows that the lifted 
systems can be identified and single-rate models in which all the sampling intervals 
are the same as the control interval can be extracted from the lifted models.
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Chapter 6

M ultirate System  Identification in 
the Polynomial Domain

6.1 Introduction

Identification of dynamic process models in the polynomial domain from measured 
input-output da ta  is a  well developed area; literature on this topic is extensive. Most 

of the research work in this area can be divided into two classes: prediction error 
methods (PEM) and instrumental variable (IV) m ethods. Prediction error methods 
have been widely accepted and practiced in industry. A m ajor advantage of prediction 
error methods is th a t the method and its results can be interpreted in the frequency 
domain; and hence adds another dimension to the process insight.

Clearly the selection of a parameterized set of models is vital for the prediction 
error method. The simple ARX (AR refers to the auto-regressive part and X to the 
extra input) models have been widely studied for a  long tim e [2, 60, 36], The ARMAX 
models were introduced into system identification by Astrom and Bohlin [3] and have 
been since then treated  as simple models. Box and Jenkins developed the Box and 
Jenkins (BJ) models [6] which are more general th an  the ARMAX models. ARX 
models. ARMAX models and O utput error (OE) models [39, 21] can be considered 
as the simplified forms of the most general family of B J models [54!. The convergence 

and consistency for prediction-error estimates have been analyzed by Hannan [32], 
Ljung [52, 53] and Caines [8],

The frequency-domain expressions for the prediction-error criteria were first pre­
sented by W hittle in 1951 [85]; W hitte’s work only dealt with the input-free case. 
Solo [70], Ljung and Glover [56] considered the case where there are ex tra  inputs. 
More details on this topic can be found in [55].

The instrumental-variable (IV) methods were first introduced into statistics and
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econometrics [65] and then applied to param eter estimation of dynamic systems [S9. 
S6. 59]. Soderstrom  and Stoica [69] analyzed the convergence and consistency aspects 
of the IV' m ethods in a very comprehensive manner.

The m ethods mentioned are all single-rate based. For m ultirate systems. Lu and 
Fisher [57] considered a SISO multirate system where the  output-sampling interval 
is an integer multiple of the  control interval, and developed a method to estim ate 
the relation between the future fast-sampled output and the measured inputs and 
outputs in the  polynomial domain. Not much work has been done to estimate lifted 
models or fast-sampled models for multirate systems in the  polynomial domain.

In C hapters 4 and 5 we proposed a two-step strategy in the  state-space framework 
to estim ate the lifted model from input-output data and then  extract a fast-sampled 
model from the lifted model. We have shown th a t the lifted state-space model derived 
from the fast-sampled state-space model will lose observability when the tim e delay 
of the process is larger than  the control interval. So in order to extract the  fast- 
sampled model from the estim ated lifted model when the tim e delay is large, we need 
to estim ate the time delay first. But in practice, due to  poor signal-to-noise ratio 
and other difficulties, it is not easy to estim ate the time delay accurately. In order 
to overcome this disadvantage, we develop a two-step m ultirate identification m ethod 
in the polynomial domain: identify lifted models from input-output measurements 
and then ex tract fast-sampled models. We will prove th a t the two-step m ultirate 
identification m ethod in the polynomial domain does not have the time-delay-related 
observability problem. For simplicity we will only consider a  special class of m ultirate 
systems where the ratio between the output sampling period and the control period 
is an integer.

This chapter is organized as follows. In Section 2 we present a m ultirate system 
identification scheme in the transfer function framework. In Section 3 we analyze the 
multirate identification algorithm in the frequency domain. Then we illustrate and 
validate the  results of this chapter in Section 4 on an industrial case study. Finally 
concluding rem arks are given in Section 5.

6.2 M ultirate System  Identification in the Trans­
fer Function Domain

Consider the  m ultirate sampled-data system in Figure 6.1. Here, Pc is a continuous­
time process w ith additive noise; the noise is generated by a  continuous-time model N  
with a white noise input e; the  output of Pc is corrupted by th a t  of N ,  and is sampled 
by a sampler S nr  with period nT .  yielding the  sampled o u tpu t y{k)\ the input to  Pc
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ZeroOder-Hott Process Sampler

Figure 6.1: Block diagram o f a special SISO multirate sampled-data system

is generated by a zero-order hold with period T  processing the input sequence u(k).  
Here we assume that n(>  1) is an integer which is a special but practical case of 
m ultirate systems. From now on, we will focus on this special case.

In chapter 4 we showed th a t if the single-rate model of the process Pc sampled 
with interval T  is

D  +  C ( z l  — A)~lB  =

( 6 . 1 )

Discretize the continuous-time noise model N  in Figure 6.1 with sampling period n T  
to get .Vn7-. Thus we get the overall lifted model as follows:

‘ A B  '
C D

then the model of the lifted system  P  can be expressed as 

D + C ( zI - A ) ~ ' B  =
' A n A n - lB  A n-2B  . . • B  ■

C D 0 ■ 0

y(k) = P ( z ~ l )u(k) + N nT( z - l )e{k). (6 .2 )

Both P  and N nr  are LTI. so the  identification algorithms in the polynomial domain 
can be applied to estimate the lifted model.

There is also a causality constraint when estim ating the lifted transfer function 
model: Assume th a t the lifted model can be represented by a transfer function matrix:

[PoOO P ,(z) ••• P n - i i z ) ] .

Equation (6.1) means that transfer functions Pi(z) ,  ..., Pn- i ( z )  should have a t least 
first-order tim e delay. This causality constraint can easily be overcome by setting the 
time-delays of Pi(z),  ..., Pn_j(z) to  numbers larger than  or equal to  1.

If the model of a lifted m ultirate system in Figure 6.1 can be estimated, then the 
natural question to  ask is: can one determine the model of the fast-rate system from 
the estimated lifted model? T he answer to this question is in the affirmative; this 
problem has been solved in the  state-space domain [49]; and in this section we will
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present a method for extracting a fast model in the transfer function domain: We 
start with a model for P  in equation (6.1). Knowing the transfer function P_(z). we 
would like to compute the model for P r  =  St PcH t '. specifically, from equation (6.1). 
we would like to com pute the transfer function Pr(~)- P  has n inputs, so P  has n 
sub-systems:

P = [ P 0 P, ••• Pn_, ] .

Equation (6.1) means th a t

Po(z) = D  +  C ( z l  -  A n)~1A n~1B  

Pi(z) = C ( z l  — A n)~1A n~2B

Pn-i{z )  = C ( z I - A n)~l B.  (6.3)

After estimating the transfer function of the lifted system , we can formulate a new 
transfer function, >f(z). as follows

<f(z) = p 0 {zn) ^ z P l(zn) + --- + zn- lPn_ 1(zn) 

= C { z nI - A n) - l {An- '  + z A n - 2 + --- +  zn- l I]B + D. (6.4)

Since
- " /  _  A n = (A "-1 4- z A n ~ 2 -f • • • -  zn~ l l ) ( z l  -  A).  

equation (6.4) can be reduced to

<p(z) = C { z I - A ) ~ lB  + D.

Clearly, <p(z) is exactly the single-rate model of the process sampled at the fast rate.
In Chapter 4 we concluded that when the time delay of the process is larger than 

the control interval, then the lifted model in equation (6.1) is not observable, and
hence models of Po(c) Pn-i(z)  will not have the s truc tu re  in equation (6.3). As
shown in Chapter 4. one of the solutions is to estimate the  time-delay and then shift 
the input-output sequences according to the estimated time-delay, the lifted model in 
(6.1) of the new system is then observable. But in the polynomial domain this input- 
output shifting is unnecessary, and we can still calculate the  fast-sampled model of 
the process from the models of the subsystems P0, P j, ..., Pn-\-  This can be proved 
through the following arguments: Assume th a t transfer function P t (z )  represents the 
discrete model of process P  with sampling interval T; we know that P t {z ) can be 
expressed as:

P t ( z )  = p{ 0) +  2- l p (l)  +  z~2p{ 2) +  ....
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where c is the  forward shift operator. Using the polyphase decomposition [74]. we 
define

Po(zn) = p(0 ) + z~np(n) + z~2np(2 n) + ... 

P^z") = p(l) + 0 ( "  + l) + ^ > ( 2 n + l )  +  -

Pn- i ( z n) =  p(n -  1) +  z~np(2n -  1) +  z_2np(3n -  1) +  ... .

Clearly. P\{z),  Pi{z),  •••. and Pn- \{ z )  are the models of systems Pq, Pi,  ..., Pn- i ,  and 

r t z )  = P0 ( zn) + z - lPl(zn) + ... + z l- nPn. l (zn)

= Pt (z ) (6.5)

Since the derivation of equation (6.5) is independent of the time-delay, so <p(z) is the 
fast sampled model even when the time-delay of the process is larger than T.

6.3 A nalysis in th e  Frequency D om ain

Frequency domain analysis is of great importance, since it provides additional insight 
into the process dynamics. We will briefly analyze the proposed m ultirate identifica­
tion iu the frequency domain in th is section.

Assume th a t a  process model,

y(k)  =  Pu(k) +  NnTe (k ) ,  ( 6 .6 )

is estimated from the  multirate input-output data, where P  represents the estimated 
lifted determ inistic model, and N  represents the estim ated disturbance model. Equa­
tion (6.6) can be used to predict the output. Let y(k\6 ) represent the predicted
output, we have

y(k\0) = Pu(k)  +  (NnT -  \ )e  

= Pu{k)  + {NnT- \ ) ^ - { y - P u { k ) )  
N nT

= y - - ^ - ( y - P u ( k ) ) ,  (6.7)
JVnT

so the prediction error is

e(k) = y(k)  -  y(k\9) = 4 - [y ( fc )  -  £«(*)]. (6.8)
NnT
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Substituting (6.2) and (6.7) into (6.8) gives

e(k) =  -i-[Pu(k) + NnT€(k) -  £u(*)]
AnT

= - ^ - [ ( P - P M k ) - r N nTe(k)]
A„r

=  - £ ) « ( * ) + ^ ( f c ) -
* n T  - ' n T

Prediction error methods try  to minimize the sum of the  square of the prediction 
error.

1 M
6  =  arge min —  ^ ( e ( f r ) ) 2- (6.9)

fc=i
Define

R u{t ) =  Jim l n ( t ) u T(t -  t ).
A/—oc . \1

t = l
oc

<?± -  Ru(T)e~J~'r■
T — - O C

For simplicity we assume th a t u(k) is independent of e(k).  As the number of data 
points M  —* oc. we can apply Parseval's theorem to equation (6.9) and have

6  =  asgff min [ '  — - ----- ^ { [ £ ( ^ ) - P ( ^ ) ] < ? Ji[Pr ( ^ ) - P r ( ^ ) ] + |A ; r ( ^ ) | 2 d>c}du;,
“ “ A„r(e>-*-)J

where <?e is defined similarly. Since u is an n  x 1 vector. is an n x n matrix. 
Singular value decomposition (SVD) of o± yields

<K = U S V T,

where 5  is a  diagonal m atrix of the same dimension as and with nonnegative di­
agonal elements in decreasing order; U and I'' are unitary m atrices. <?u is a symmetric 
matrix which implies th a t U and V  are identical, hence

du =  U S U T.

If
P (e ,u') — P (e7w) =  [ 0 ••• 0 1 ]£ /-* ,

then

'  0

=
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Figure 6.2: A special SISO multirate sampled-data system with the "vectorized” exci­
tation

and

^  {[P(e-'“')L
A  T

cL l '

- L
- V n T < e ] ~ )

where an is the smallest singular value of e v  We know th a t

u(k) =
u(nk)

u(nk  -f- n — 1)

if
u(nk)  =  • • • =  u(nk + n — 1)

for most of the time (k = 1, • • • , A/), then there is not enough excitation, and an —> 0. 
When there is not enough excitation, those m ethods in the polynomial domain may 
give wrong results. In order to  avoid this, we have developed a “vectorized” excitation 
method: The objective is to  design a vector input sequence u ( k ) whose components 
are independent to each other, and inverse lift u(k)  by L ~ l before it is inserted into 
the m ultirate process. The block diagram of this method is shown in Figure 6.2. The 
quantity for the ‘“vectorized” excitation is a diagonal m atrix , and with a good 
signal to noise ratio, good identification results are guaranteed.

6.4 Industrial Case Study

In this section we will use an industrial case study  to validate the  results presented 
in this chapter.

The octane content is an important quality criterion in the  gasoline production 
units. The continuous catalytic reforming (CCR) unit is responsible for upgrading
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the research octane number (RON) of a naphtha feed stream. The increase in RON 
is accomplished by conversion of a naphthene and paraffin m aterial to aromatic. 
Therefore, it is an indication of the severity of the CCR reaction. The CCR reactor 
consists of 4 beds with continuous catalyst circulation and regeneration. Because 
the reforming reactions are largely endothermic, heat must be added to the reactor 
feed prior to  entering each bed. The heat is provided by a 4 cell balanced draft fired 
heater w ith a common convection section. The reactor bed volumes are different and 
increase w ith each successive bed. Currently, a weighted average inlet tem perature 
(WAIT) QDM C application is used to control the reactor severity.

There are also many other variables, affecting the RON. inside the unit such as 
loop pressure, reactor tem peratures and outside the unit such as the  feed composition 
changes. For instance, as the amount of feed precursors is decreased, the RON will 
also decrease for a given severity. If this change is measured, increasing the reactor 
weighted average inlet tem perature (WAIT) can offset the decrease in RON. By im­
plementing RON control, the  effect of process disturbances can be minimized. The 
WAIT can also be m anipulated to  compensate for other critical operating variables 
such as decreased catalyst activity.

Usually^ the octane is sam pled and tested in the plant laboratory on a daily basis. 
Good octane control needs online and frequent measurements of the octane content 
which requires expensive analytical equipment. There are limited technologies in the 
market b u t all require large capital investment and extensive maintenance efforts. As 
a  tradeoff of performance and investment, an octane GC analyzer was installed in 
the process environment to  measure the composition of the CCR product stream and 
the octane is validated and calculated for online measurement. It provides the octane 
reading every 2.5 hours. Though it seems slow for a typical control application, it is 
certainly a  big step forward towards plant optimization. Currently', the WAIT target 
is set by operators based on the slow sampled octane measurement and the desired 
octane requirem ent, i.e. the plant runs under ’open loop'.

The m ain objective of th is control application is to close the loop for octane 
control. Due to the slow sam pling rate of the analyzer, an inferential octane model 
has to be developed to allow the control application to  make moves a t a faster rate. 
Reactor W AIT is the m anipulated variable and is desired to be adjusted every' 30 
minutes. All other disturbance variable measurements are also available to estim ate 
the octane a t  inter-sampling intervals. Therefore, the first step is to  identify the 
dynamic models from all input variables to the output octane variable; clearly this is 
a  m ultirate model identification problem.

For the purpose of convenience, we use y to represent the output, u to represent
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Figure 6.3: Output and manipulated variable measurements

the manipulated variable, and dt (i =  1. • • ■ 7) to represent the disturbances. A to­
ta l of '205 output d a ta  are collected a t a  rate of 150 minutes. The corresponding 
input/disturbances are collected a t  a  fast rate of 30 minutes. The detrended out­
put/m anipulated  variables are shown in Figure 6.3. Three disturbances are shown in 
Figure 6.4 (the reason why only three disturbances are shown will be sta ted  later).

There are 1 output and 8 inputs (manipulated variable and disturbances), and the 
ratio  between the ou tpu t sampling interval and control interval is 5; so if we lift the 
inputs in order to get a single-rate lifted system, there  will be 40 inputs in the lifted 
system. Our objective is to estimate the  model of the  lifted system and then extract a 
fast sampled model from the lifted model; clearly it is difficult to estim ate the model 
of the system with 40 inputs from only 200 data points. So before we estimate the 
model, we ask a question: Do all the inputs affect the  output significantly? If some 
of the inputs do not affect the o u tpu t much, then we can ignore these inputs and 
estim ate a model between the ou tpu t and the im portant inputs. In order to answer 
the question, we formulate two d a ta  sets, the ou tput set Y  and the lifted input set 
U , in the following way:

Y  = y(5k)

U =  [ u(5k)  u(5fc +  l) ••• u(5fc +  4) d 7 (5k) ••• d7(5k +  4) ] ;

knowing canonical correlation analysis (CCA) can quantify  the relations between two 
sets of variables [35], we compute the CCA relations between V' and U. The CCA 
relations show th a t only the m anipulated variable and 3 other disturbances affect the
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Figure 6.4: Three disturbances

output significantly (th a t is why only three disturbances were shown in Figure 6.4). 
Hence we estimate the model between the output and 4 inputs (the m anipulated 
variable and 3 disturbances which affect the output significantly) giving us 20 inputs 
to the lifted system.

We assume that the system can be represented by an ARX model [55], and then 
formulate a  quadratic optimization problem which satisfies the causality constraint. 
We solve the optimization problem and get the lifted model, and then ex tract a fast 
sampled model from this lifted model. Because the d a ta  set is too small, again we 
use the same data set to validate the estim ated fast model. Ideally another data 
set should be used to validate the model if there are enough data. The comparison 
between the output measurement and the prediction of the model is shown in Figure 
6.5.

The modeling result is reasonable with variance of the prediction error being 
0.04. The models can be further improved by collecting more data with more input 
excitations. As mentioned above, a d a ta  set of 205 data  points is relatively small for 
estim ating a model with 20 inputs. Figures 6.3 and 6.4 also show that the changes in 
both the manipulated variable and disturbance variables are not rich enough. There 
are other unmeasured disturbance/noise in the  data set as well. So, all these factors 
would affect the quality of the model obtained.

The inferential models were implemented into a QDMC control application with 
a control interval of 30 minutes. The controller is m ulti-rate which makes optimal 
moves a t a  fast rate of 30 minutes while the output variable is measured every 2.5
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Figure 6.5: The output measurement (solid line) and the prediction of the fast  model 
(dashdot line

hours. When the slow sampled output measurement is available, it is used for bias or 
feedback correction. If not. the model gives an output estim ate for control. After one 
week of online operation, the control variance is shown in Figure 6.6 and compared 
with manual (open-loop) control in the past. It can be seen th a t the controller has 
reduced the output variance by 40%. Therefore, significant economic benefits have 
been achieved.

6.5 Conclusion

In this chapter we have shown by a theoretical analysis and industrial application, 
that a fast single-rate transfer function model in which the sampling interval is the 
same as the control interval of the multirate system can be estimated from m ultirate 
data  collected from a special but practical class of multirate systems where the output 
sampling period is an integer multiple of the control period. The multirate esitmator 
was used under QDMC control of the research octane num ber in an industrial appli­
cation with significant control improvement. Compared w ith m ultirate identification 
in the state-space domain, m ultirate identification in the polynomial domain has two 
advantages: there is no time-delay-related observability problem, and it is easier to 
compute the fast-sampled model from the lifted model in the  polynomial domain.
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Figure 6.6: Comparison of performance before and after implementing automatic 
trol
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Chapter 7

System  Identification of 
Closed-loop M ultirate System s

7.1 Introduction

In m ultirate systems, some of the output sampling intervals may be so large that some 
loops can not be closed. The CCR reactor we studied in C hapter 6 is an example of 
such a system. In the industrial case study in Chapter 6. the C C R  unit is only an 
open-loop system. But o ther situations do exist where some of the  loops are closed 
for economic or safety reasons. Most of the traditional subspace-based schemes can 
not be applied to such system s which have both open-loop and closed-loop processes. 
The M OESP in the EIV case developed by Chou and Verhaegen can be applied to 
both open and closed-loop systems assuming that there is a first-order delay in the 
feedback loop [13]. M ultirate systems with both open loops and closed loops are not 
uncommon in the chemical industry. Clearly the m ultirate inferential control scheme 
can close the loops for such multirate systems, and hence improve the performance 
of such systems [57. 63. 47]. It is well known that the key to the m ultirate inferential 
control strategy is the fast-sampled process model, so it is of great importance to 
develop subspace-based schemes for identifying fast-sampled models of such m ultirate 
systems.

Identification with ou tpu t feedback has received much atten tion  in the transfer 
function domain. The closed-loop identification methods in the transfer function do­
main fall into two main groups: the direct approach and the indirect approach. The 
direct approach applies the  basic prediction error method in a straightforward man­
ner: use th e  output of the  process and the input to the plant in the same way as 
for open loop identification. Assuming th a t the regulator is known, the indirect ap­
proach identifies the closed-loop system from reference inputs or d ither signals added
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to the control signal to the process outputs, and retrieves the process model iron-, 
the closed-loop model. The direct identification methods work well regardles> of the 
complexity of the regulator, and do not require special algorithms: but the approach 
needs good noise models which are sometimes very difficult to param eterize, hence not 
all the open-loop methods can be applied to the direct approach. All the open-ioop 
identification m ethods can be applied to the indirect approach, because the indirect 
approach basically handles an open-loop problem: the major disadvantage with the 
indirect approach is th a t it requires the information of the regulator. Gustavsson 
and co-workers [31] have surveyed some problems in closed-loop identification (iden- 
tifiability and accuracy etc.) in the polynomial domain. Forssell and Ljung [22' 
have studied the statistical properties of the closed-loop identification in the predic­
tion error framework. Extensive work in the area of closed-loop identification in the 
polynomial domain has been summarized in Ljung s book [55].

In the tutorial introduction of the N4SID and MOESP in C hapter 2. it is evident 
th a t one of the basic assumptions of the two algorithms is that the inputs are inde­
pendent of the disturbances. The subspace methods typically will not give consistent 
estim ates when applied to closed-loop data [55]. This is one of the m ajor disadvan­
tages of the subspace methods. Researchers have tried to apply subspace methods to 
closed-loop identification in different ways; for example. Yerhaegen [78] has applied 
the M OESP algorithm  to closed-loop identification: in his work, he used the indirect 
approach. Subspace-based closed-loop identification is still a relatively new and active 
area.

Most of the subspace methods have been developed for the processes which can 
be represented by ARM AX models (auto-regressive moving-average and exogenous). 
But ARMAX models do not adequately represent general class of processes [55]. 
Subspace-based m ethods which can be applied to the representation of a general 
class of processes, therefore they are more practical than  the ARMAX model.

In this chapter we will present a subspace-based identification m ethod which con­
sider the most general class of processes, and give consistent estim ates of the deter­
ministic parts of processes under both  open-loop and closed-loop conditions. When 
applied to  a m ultirate system where some loops are closed, this m ethod can estimate 
the lifted model for the multirate system; given some conditions, this method can 
even compute the  fast sampled model directly from m ultirate data.

This chapter is organized as follows. Section 2 gives state-space models for an 
ARMAX process and a general process, and discusses the difference of the two models. 
M ethods to estim ate the  state-space model of the deterministic parts  of the general 
class of single-rate systems under open-loop and closed-loop conditions are outlined
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Figure 7.1: Block diagram of a general combined deterministic-stochastic sampled- data 
system

in sections 3 and 4. respectively. In section 5. the single-rate method in sections 3 and 
4 will be extended to  identify m ultirate systems, where some loops are closed. The 
effect of the noise/disturbance on the estimation results is discussed in section 6. The 
consistency aspects of the proposed algorithm are discussed in section 7 followed by 
both simulation and experimental examples to illustrate application of the proposed 
algorithm in section 8. Concluding remarks are given in section 9.

7.2 Prelim inaries

In this section we describe the linear time-invariant (LTI) system th a t is the subject 
of this study. The block diagram of the open-loop system we will consider in this 
chapter is shown in Figure 7.1.

The process in Figure 7.1 is a combined deterministic-stochastic LTI sampled- 
data system. Here. Pc is a continuous-time process with an additive noise: the noise 
is generated by a continuous-time model .Yc with a white noise input e: the output 
of Pc is corrupted by th a t of Nc. and is sampled by a sampler S j  with a period T. 
yielding the sampled output y{k): the input to Pc, u. is generated by a zero-order 
hold with a period T  processing the input sequence u(k).  Define

yd =  Pcu. ys = N ce.

so

y = yd + y, = Pcu + Nce.

Let P  represent th e  discrete deterministic system. S t PcH t , and N  the discrete 
stochastic system, S t N cH t - Then

y(k) =  Pu(k)  +  Ne(k).
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Most of the subspace-based identification algorithms, such as CVA [45]. N4SID VanOver- 
schee:? and MOESP [T91. assume that the sampled combined system can be repre­
sented by such a model as follows.

x( fc- f l )  = Ax(k)  Bu(k)  +  Ke(k )  

y(k) = Cx{k)  + D u { k ) + e { k ) .

where K  is the so called Kalman gain matrix. This model is equivalent to  a transfer 
function model:

y{k) = [C(zl -  A )~ l B + DW(k)  +  \C{zI  -  A ) ~ l I\ + /]e(k). (7.1)

Clearly equation (7.1) can be written as

^  = W ) u{k) + W ) e lk ) ’

which is exactly an ARMAX model [55]. The ARMAX model assumes th a t the deter­
ministic and stochastic systems have the same poles. But in practice, this assumption 
may not always hold. If the deterministic and stochastic systems have different poles, 
then the combined sampled-data system can only be represented bv

y{k) = j ( ^ u(fc)+i § e(fc)- (7'2)

Equation (7.2) is a Box-Jenkins model (BJ) [6] which is more general than an ARMAX
model. In this chapter we focus on processes represented by BJ models, so we assume
th a t the system in Figure 7.1 is a BJ process. We will develop the discrete state-space
model for the BJ process in Figure 7.1 via the following steps: Assuming th a t the
state-space model of P  is

Xd(k + 1 ) =  AjXd(k) + Bdu(k)

i jd(k) =  C d X d (k )  +  D d u { k } ,

and the state-space model of the discretized stochastic process N  is

x s{k +  1) =  A ,x ,( k )  + B se(k)

ys(k) = C,x , (k)  + DJe(/r).

where e(k) is the discretized white noise sequence. The combined sam pled-data sys­
tem  can then be expressed by the following discrete state-space model,

x(k  +  1) =  Ax(k)  -t- B\u(k)  +  )

y(k) = Cx(k)  +  Ddu(k) + D,e(k) ,  (7.3)
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with

id ' A d 0
X  =

s

II -  Vs- .4 = 0 -4‘ .

Bi  = ' Bd 
0 ■ Bo =

0
B, ,C  = [ c d c ,

where r d 6 R". y  6  Rm. u 6 R; , e £ R3, R" denoting the space of n x 1 vectors, etc.

7.3 Identification o f Open-loop Single-rate System s

The objective of this section is to develop a method for estim ating the state-space 
model of the determ inistic system. S t PcHt . in Figure 7.1, from the input-output 
measurements under open-loop condition. Assume that the  pair (Cd, A d) is observ­
able. the combined system is stable, the input u(k)  and the ou tpu t y(k)  are measured. 
Define

y(k)
m  a y(k + *) y»(A:) =

_ y(k  +  q -  1)

where a  is a positive integer larger than n which is the dimension of the deterministic 
process. Similarly we can define ua(k) and ea(k). After some straightforward alge­
braic m anipulations and recursive substitutions, we can get the following equation 
from equation (7.3).

where

and

H i  =

=

Dd
CdB d

Ts(k) +  H daua{k) +  H^ea

c d
CdA d

Cd(Ad)a~l _

0 . . .  0
Dd . . .  0

Cd(Ad)a~3B d . . .  Dd

7-4)

r 3 can be obtained by replacing A d and Cd in by A,  and C,,  respectively. Similarly 
H ‘q can be obtained by replacing A d, B d, Cd and Dd in H * by B„, Cs and D,, 
respectively. is the so called extended observability m atrix  of the deterministic
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system, and H'l is the impulse response matrix. Define the output and sta te  Hankel
matrices as follows.

where J  is the observation number. Similarly we can define Uaj(k ) .  E aj ( k )  and 
X ’ j (k ) .  Hence we can write an equation similar to equation (7.4):

where J  is a positive integer larger than or equal to a . If we can find an instrumental 
variable which is independent of the noise e(k). but correlated with the sta te  x(k) 
and input u(k). then we can remove the effect of the noise [68. 12]. Usually we can 
assume th a t  the excitation input u(k) is independent of the noise e(k), so u(k)  can be 
a natural choice as the instrumental variable. Post-multiplying both sides of equation

where z is the forward shift operator. Equation (7.9) and the  definitions of X f j ( k + 3 ) 
and UQ j ( k )  give

Yaj ( k )  ±  \ y a(k) yQ(k -r 1) ya(k + J - 1) ]

X f j k )  ±  l x d(k) x d(k + 1) . . .  x d(k +  J  -  1) ].

(7.5)

(7.6)

It follows from the definitions of Eaj ( k  + 3) and UQ,j(k)  th a t

where

t - = i

The state-space model of the stochastic part of the process is

■r,{k +  1) =  A sx s{k) -f B,e(k)  

ys(k) = C,x . (k)  + D,e(lc).

The equivalent transfer function model is

x,(k) = ( z I - A s) - l B ae(k), (7.9)

lim ^ X t j ( k  +  0 ) U l j { k )  = ( z l  -  A , ) ~ lB s [ 7eu(/J) • • • 7„(/?  -  o  +  1) ] .
J —*OC J
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Since e is independent of u, we have

:.„ (* )  =  0. k =  0 .1 .2 ......

If the stochastic system is stable, then r* and H * are finite. Hence

1
lim 1 r aX t j ( k  + i3 )U lA k)  = 0 ,

J — oc J

and

hm -HlElj{k + 3)UUk)=  0.
J — o c  J

Clearly when J  — oc. equation (7.S) can be reduced to:

lim ^ y a. j (k  +  W L W  = 1  K ^ t j k  +  3) +  H daUaj { k  +  3 )}U l j (k ) .  (7.10)J—OC J J

If J  is not infinitely large, then:

tT  ( 1  f W  v dj Y a,j (k  -r .tf)l/0r .,(*) =  ,( /: + 3) +  +  /?)]*£.,(*) +  E( J ),

where

E( J )  =  j[H'aE aj ( k  -  3) + n x t ' j ( k  +  W l A W -

In sections 3. 4 and 5. we assume that J  is infinitely large. The case when J  is finite 
will be discussed in section 6. In the remaining part of this section, we will introduce a 
method to estim ate the state-space model. (.4a- Bd. Cd, Dd), based on equation (7.10).

7.3.1 E stim ation  o f Ad and Cd

In practice, input and output can be measured, so Yaj ( k  +  3 ) U j j ( k )  and Uaj ( k  — 
3)L'Jj(k)  in equation (7.10) are available. But (7.10) is not a linear equation of the 
system matrices. (.4a. Bd, Cd. Dd) .  One possible way to  compute (.4a, Bd,  Cd. Dd)  is to 
calculate first. This can be done by getting rid of the last part, H*Uaj ( k  -f- 
3 W l A k ) ,  in equation (7.10). Clearly a m atrix which is correlated to Yaj ( k  + 
3)U£j(k)  but orthogonal to Ua<j ( k  -f 3)U£j(k)  can do the job. In order to gen­
erate such a m atrix, we first formulate a matrix

Ua,j(k  + 3 ) U l j { k )  
. Ya J (k + 3 ) U l j ( k )

and then perform the following QR factorization [46]

1 '  UaJ(k + 3)Ul j (k) - \ R Jn 0 1 ' ( Q i f '
1 Ya,j(k + 3)uZj(k) dJ dJ 

“ 21 “ 22 . (QDT .
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Being con-elated with ) „ j ( k  — -'l)L’a j{k)  and independent of L'a, j (k  + 3 ) l :[ j ( k ) ,  Qt  
is the m atrix we need. Post-multiplying both sides of equation (7.10) bv Qd gives

\H x (Q i ) T *  R U Q i ) TW i  =  j ^ t X i A k  + 3 ) U L ( k ) Q i  + H daR Jn {Qi)TQi.  (7.11) 

Because (Q { ) TQ i  =  0 and {Q i ) TQ i  = I. equation (7.11) becomes

lim R h  =  \ r i x U k +  W l A Q Q i -  (7-12)J — OC J

Define

Z j ^ ) x i J {k + 3 )U lJ { k ) Q l  

The singular value decomposition (SVD) [46] of R i ,  yields

R i  = [ U JX U( ] 0 So
W )

J \ T

■J\TW )

where S x contains the n largest singular values. Ux contains the first n columns of the 
left singular vector matrix, and {V\J )T contains the first n rows of the right singular 
vector m atrix. From equation (7.12) we know that if J  goes to infinity, then the rank 
of m atrix Rdo is no larger than  the rank of m atrix r£ , and this means that the rank 
of the m atrix Rd2 <  n. From the assumption we know that a  > n. so

lim Sd  =  0
J  —  OC

lim Rd, = UdSHV-d)T . (7.13)
J — X

From equations (7.12) and (7.13) it follows that

lim r i * j  = U f S t ( \ \ J )T. (7.14)
J — OC

where r *  €  E o m x " .  $ j  €  R n x o m .  €  R o m x r i .  and ( V ' / ) 7 '  €  R n x o m  ( R ° ™ x "

denotes the space of am  x n  matrices). Then multiplying both  sides of equation 
(7.14) by V d gives

lim I ' / 5 /  =  r ^ j l Y 7- (7.15)
J — x

The state-space model of the deterministic process can also be expressed as (A.4rfA_1. 
i \Bd, C,jA-1 , D d), and the extended observability m atrix as T^A-1 . with A being a 
full rank square matrix. So if $  j V ^  is a full rank m atrix (we will prove this in section
5), then Ux Sd  is the  extended observability matrix. In practice J  can not be infinitely
large, and the corresponding S 2 is typically non-zero and contains noise information. 
But the components in S x will be significantly larger than those in 5 /  when the signal
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to noise ratio is large (this will be discussed in section 6). M atrices Ad and Ca- can 
be computed from C dS d: one of the simplest m ethods for estim ating (Ad-Cd) is to 
take the first m rows of i ' dS d as m atrix Cd. then com pute the m atrix Ad through the 
following steps. F irst formulate two matrices.

Cd CdAd
CdAd CdA2d

• r 2 —

C d A r 1 _
.  C*A* .

from the estim ated extended observability matrix U dS j7. Clearly

r2 -  r,.4d.

so Ad can be com puted as

.4rf = (r[rlr Ir fr 2.

If the pair (Cj. Ad) are observable, then matrix Ad can be com puted uniquely: and 
this is a least square solution.

7.3.2 E stim ation  o f Bd and Dd

Define

( r ^ 4 / - r ^ [ ( r ^ r l ] - 1( r* )7\

After pre-multiplying both sides of equation (7.10) by ( r ^ ) x , we have

lim - A T i ) ^ Y Qj { k  +  P ) U l j { k )  = j ( T i ) x H daUQ j (k +  3 W l j ( k ) .
J  —  OC J  J

and

Jim j { T dy y aj { k  -  3 ) U l j { k ) [ j U a.j{k + 3 ) U j j ( k ) ) ~ l = (rda) ~ H dQ. (7.16)

Define

H, ± Jim i ( r i ) l Ya J {k + 3 ) U l A k ) [ j U aA k  + 3 W l j ( k ) } - 1.

Here j U aj ( k  + 3)U%j{k)  is assumed to be invertable, and this should be guaranteed 
when the excitation being designed. Matrices r£ , Yaj ( k  + 0), Ua J(k)  and Uaj ( k + 0 )  
are known, so the left hand side of equation (7.16), Hi,  can be computed. Observing 
the structure of H d given earlier, we have

Dd 1 '  / 0
CdBd

—
0 c d

_ Cd(Ad)a- 2Bd _ 0 Cd(Ad)a~2 _
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Define two matrices ;is follows

H r

'  i 0
0 G

< r l > -

6 C d( A d Y '~ 2

'  I 0

( r  i ) L

0 C d( A d ) ° - 3 _

and

H l

first block column of H : 
the last (a -  l )w  rows of the second block column of H\

the last m rows of the last block column of H\ 

Consequently, it follows from equation (7.16) that

H r  =  H r
Dd 1

. B* J '
which results in

Dd 
Bd

A similar method to compute matrices (A d . B d. C d . D d ) was first developed by Ver- 
haegen in the MOESP approach [SO. S I’.

7.4 Identification of Closed-loop Single-rate Sys­
tem s

Consider the  closed-loop sampled-data system in Figure 7.2. Here r(k) is the setpoint. 
f (k )  is the excitation sequence. G  is the controller and u(k)  is the ou tpu t of the 
controller; u(t).  the input into the process Pc. is generated by a zero-order hold with 
period T  processing the discrete sequence u(k): the ou tput of Pc is corrupted by that 
of Nc. and is sampled by S j .  yielding the sampled ou tpu t y(k).  Our method requires 
the assum ption that f ( k )  is independent of the disturbance. For simplicity we assume 
that r(k)  is 0. The state-space models of sampled-data systems. P  and N,  have been 
given in section 3. The discrete system relating u(k)  to y(k)  can be expressed by a 
state-space model,

x ( k  +  1) = Ax(k)  + Biu(k)  + l?2e(k) 

y(k)  =  Cx(k)  + Ddu(k) + D,e(k),
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| Digital Zero-orfler Process
| Controller -notd

Figure 7.2: The block diagram o f  a SR  closed-loop sampled-data system

where e(k)  is the discretized white noise sequence. Assume th a t (Cd, Ad) is an observ­
able pair, and that both  the open-loop and the closed-loop systems are stable. The 
objective is to estimate the state-space model (.4<*. B^.Cd, Dd) of the system from the 
measured u(k). f ( k )  and y(k).  It is routine to get an equation similar to  equation 
(7.7):

Ya J (k + 3)  =  T i X i j { k  + 9) + r aX l j { k + p )  + HiUaA k  + 0 ) + H*aEa J ( k + 0 ). (7.17)

Clearly if we can find an instrumental variable which is independent of the noise 
sequence e(k). but correlated with the sta te  x(k)  and input u(k).  then we can remove 
the effect of the noise. Substituting

u(k) =  ( /  +  GP)~lG P f ( k )  -  ( /  +  G P r ' G N e i k )  (7.1S)

into (7.17) gives

Ya. j ( k - 3 ) F Z j ( k )  = r i x i j ( k  + 3) + H i d +  G P ) - lG P F o J (k + 3 ) + m . l 9 )

where

E  =  r aX l j ( k  + 3)  -r H ‘ Ea,j(k + 3) -  H da(I + G P )~ 1G N E atJ(k + 3).

Being correlated with e(k).  u(k)  can not be used as an instrumental variable. Equa­
tion (7.19) indicates th a t f ( k )  can be the instrumental variable if it is independent of 
e(k). At the  beginning of this section we assumed that f ( k )  is independent of e(k). 
Hence we can choose f ( k )  as the instrum ental variable. Fa^j(k) can be obtained by 
replacing y(k)  in Ya^ ( k )  with f (k) .  Post-multiplying both  sides of equation (7.19) 

by 7 F l A k )  gives

lim -rYa,j(k + 3)F?j(k) = lim j(k + 3) + H da {I  +  GP)~lGPFa,j{k + 3)
J —• oc J  J —oc J

+E )F l j ( k ) .  (7.20)
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It follows from the definitions of k -  3) and F ^ j ( k )  that

~cf{3i ••• •',/( j  -  u t  i

-■£/(J  -  a 1)
lim - E a J {k -  3 )F l j { k )

J — oc J

where
1 >

Ff{3) =  Jim -  e(- k' + 3 ) f ( k )-
k= 1

■yr f {3  -  q -  1). ]

Substituting equation (7.9) into A”j' j {k  -f 3 )F ^ j (k )  yields 

lim \ x ? j ( k  + 3 ) F j j ( k )  =  ( z l  -  A.)~ lBt \ %/(*?) •
J — oc J

Since e is independent of / .

-!t f (k) = 0. it =  0 .1 .2 ......

If the open-loop and closed-loop systems are stable, then F’ and H* are finite. Hence 

lim ^ r aX l j ( k  + 3 ) F l j ( k ) =  0. lim - . H faE l j { k ^  3 ) U l  j{k)  = F
J — o c  J  J — o c  J

and

lim ~ H da(I + G P ) - ' G X E a J (k +  3 ) F ^ ( k )  = 0.
J — OC J

We can conclude that when J  goes to infinity, equation (7.20) reduces to

lim - Y a J ( k ^ 3 ) F l j ( k ) ^  lim - [ r daX t j ( k  + 3 ) ^  H da( I ~ G P r l Fa J (k+ 3)}F[ j( k ) .
J — o c  J  J — o c  J

(7.21)
In order to get rid of the second part on the right hand side of (7.21). we need a m atrix 
which is correlated with Ya. j ( k + 3 ) F a j i k ) but orthogonal to Fa j{ k  — 3 ) F j j ' k ) .  Once 
again we perform  the following Q R factorization:

J
Fa. j(k + 3 ) F l j { k ) 1 
Ya,j (k + 3 ) F l j ( k )

* / . ,  o
Roi.c ^22.c

( Q L f
L ( Q l c ) T

Because (Q{C)TQ i c =  0 anc* (Qi.c)TQic — I- post-multiplying both sides of equation
(7.21) by gives

1.
lim R ^ e = 7 r i X l j ( k  +  3 ) F l j ( k ) Q i c.

J — OC J

Singular value decomposition of R 22,c yields

*2J2, =  u i s n v t f

=  [ K c  O

(7.22)

' S t  0 ( V i f  1
.  0  S t . .  (vl f .
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Figure 7.3: The block diagram of  a closed-loop sampled-data system

where S / c contains the n  largest singular values. l rdc contains the first n columns of 
the left, singular vector m atrix  Ud. and ( \ \JC)T contains the  first n rows of the  right 
singular vector m atrix (\'eJ)T . From equation (7.22) we know that if data length J  
goes to infinity, the rank of matrix Ri^ c < n. From the assumption th a t a  > n, it 
follows tha t

Hm U l X c  = T i \ i  (7.23)
J  —  X

where

A dc  = lim ± X i A k  -  3 ) F l j ( k ) Q J2 cVcJ - (7-24)
J — OC J

i Ti cS dc is the extended observability m atrix if and only if . \d is a full rank m atrix. In 
section 5 we will prove th a t Kd is a full rank matrix provided th a t certain conditions 
are satisfied. We can first calculate matrices A d  and C d  from U \ C S { C .  then it is 
straightforward to calculate matrices Bd and Dd-

In some cases it is more convenient to add excitation sequence on the setpoint 
(see Figure 7.3). In such case the control signal u(k) can be expressed as

u{k) =  ( /  +  G P )~XG f ( k )  -  ( /  -  G P y ' G X e i k ) .

Since f ( k )  can be assumed to be independent of e(k). and f ( k )  is obviously correlated
with the sta te  x(k)  and input u(k). we can also choose f ( k )  to  be the instrumental
variable. The way to estim ate the state-space model (Ad, Bd, Cd, Dd) is the same as 
that discussed in the earlier part of this section.

7.5 Identification of C losed-loop M ultirate System s

In this section we will discuss identification of a special case of multirate systems 
where all the control intervals are uniform, all the output sampling intervals are
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Figure 7.4: The block diagram o f a closed-loop M R sampled-data system

distinct, but they are all integer multiples of the control interval. In such m ultirate 
system some loops sure closed. The objective of this section is to  develop a method for 
estimating the fast sampled model where the output is sampled as fast as the input 
from the measured input-output data. For simplicity, we will use a simple 2-input 
and 2-output multirate system  to illustrate our method. Consider the sampled-data 
system in Figure 7.4: the continuous process. Pc. is an LTI system with two inputs 
and two outputs: all the holds in the system have uniform interval. T: one of the 
output is sampled even- period nT.  but the other output is sampled every period T. 
The output with sampling inten-al n T  is manually controlled by u j: at the same time, 
the output with sampling inten-al T  is controlled bv a controller G.

If we can estimate the discrete model of Pc sampled every interval T, then we 
can design an inferential controller to control the two outputs. In order to identify 
the fast model, we have to  make a few assumptions: (1) u\ is independent of e i and 
e2: (2) an excitation sequence. / .  is added on the setpoint of the  controller. G. and 
/  is independent of both ei and e2. The m ultirate system shown in Figure 7.4 is 
a periodically time-varying system, so it can be transformed into a time-invariant 
system through the lifting operator. In order to  arrive at a  single-rate system, we 
have to lift u x, u2 and y2 by L n. Define,

2/1W u x(k n ) ex{kn)
y2(fcn) u2 (kn) e2(kn)

y2(kn  +  1) • u(k) =
ui(kn + n — 1)

• e(/r) =
ex(kn + n — 1)

_ y2(kn + n -  1) _ u2(kn  -i- n -  1) e2(kn n  — 1)
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Let P  represent the lifted deterministic system, and X _  represent the lifted stochastic 
system. Hence

y  -  P u  +  AV.

From the appropriate partitions, we have

C d  =
C l

c 2 ■ D d = [ D i  D o  ]  .

where Ci relates to y x, C 2  to  y2. D \  relates u : . and D 2  to  u2. The state-space model 
4d I BdV, I „  of P  can be derived bv using proposition 1 in C hap ter 5:
L d I L>d

k*
J

[ C d Dd J

r -43 -4 r lBd -4 r 2Bd

1

c d Dd 0 0
C2Ad C2Bd d 2 0

c 2a t 1 C2Ad~2Bd C2Ad~3Bd • d 2

The state-space model r a. B, 1
l£± D. J of N  can be similarly derived. It is not difficult

to formulate the following equation.

L>.Ak+3) = (7.25)

where Y ^ j  can be obtained by replacing y  in Yaj  defined in equation (7.5) by y :  T ^  

can be obtained by replacing A d and Cd in T ^  by Ad  and Cd. respectively. Similarly

i .j ■ H i  - anc  ̂ £ q . j  can t*e obtained. Define

/

uj(0)
/ ( 0)

u ,(n  -  1) 
f { n  -  1)

m

f ( k  + a -  1)

and

£o.j(fc) =  [ U k + 1) ••• L ( k + J ~ i y\-

Multiplying both sides of equation (7.25) by j E ^ j W  yields 

lim \ Y a' j{k  + i3)FZ'J{ k ) =  lim ^ X i J (k + 3 )  + H ^ lE l J (k + 3 ) } F ^ J k ) .  (7.26)
J  — o c  J  J — OC J

It is straightforward to calculate from equation (7.26), and th en  compute ( Ad, Bd, 
Cd. Dd); then with the techniques discussed in Chapter 5, we can extract m atrices
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[Ad. B d , C d, Dd)  from matrices (A*.  Bd. Cd, Dd). But the question th a t naturclly 
arises is: can we calculate matrices. Ad- Bd, Cd. Dd.  directly from equation (7.26). 
The answer is in the affirmative under certain conditions: Notice that

Cd
C-iAd

r i  =

Cd
CdAd

Cd(Ad) Q— 1

c 2. 4 r !
CdA nd

C2A T 1

C o A 2° - ‘

At first we take the first 2 rows of r f  as matrix Cd. and formulate the following two 
matrices.

r R =

'  C l C 2A d
C  i A d C 2 A I

C 2A nd ~ l
C2.43 . r L = c 2a t x

C2A nd
C 2A T 1 c 2 a t x

ino-2L c 2-4rf J . C - 2 A T - 1 .
Clearlv

hence

-4d =  ( r TRr Rr lr TRr L. (7.27)

If the pair (C2. Ad)  are observable, then is a full rank matrix and the solution 
in equation (7.27) is unique. For a 2-input and 2-output system, it is restrictive to 
assume that (C2. Ad) are observable. But in case where there are many outputs 
and only one of the outputs is sampled at slow rate, then the assumption that the 
sta te  can be observed from the fast-sampled outputs is not so restrictive. Pre- and 
post-multiplying both sides of equation (7.26) by ( r ^ ) -1 and { j lLa j ik  + t f )F^j(k)}~x 
gives

Jim  j ( T i ) ^ j ( k  + 3 ) E l j ( k ) { j U ^  j (k  + P ) F ^ j ( k ) } - 1 =  ( £ ) x / £ .  (7.28)

After matrices r^ . C d, A d,C d  and Ad been calculated, it is straightforward to  compute 
the left hand side of equation (7.28); the right hand side of equation (7.28) is a linear 
combination of m atrices Bd and A d. So matrices Bd and Ad can be computed from 
equation (7.28) by solving a set of linear equations.
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7.6 N oise Effect On Estim ation

In earlier sections we assumed that J  approaches infinity, bu t in practice J  can only be 
finite. In this section we will discuss how the noise/disturbance affects the estimation 
of the process model when J  is finite. We will discuss first the  open-loop identification 
case, and then the closed-loop identification case in the la tte r part of this section.

7.6.1 O pen-loop Case

In section 3 we notice th a t when J  is finite, after post-m ultiplying both sides of 
equation (7.7) by j U j j ( k ) ,  it follows that

Applying the QR decomposition shown in section 7.4 to  equation (7.29) and post- 
multiplying both sides of equation (7.29) by Q i , give

because {Q{)TQ i  — 0 and (Q i ) TQi  =  R  The SVD decomposition of Ri 2 yields

where

E( J)  =  j [ H ’aEa J (k + 0) + r oX i j { k  -r- . W l A V -

Rio =  + 3 ) U l j { k ) Q i  +  E ( J )Q i

=  j Y i { z I - A d) - ' B dUhj{k  + 0 ) U l j { k ) Q i  + E { J ) Q j2,

(7.30)

R i 2 = u i s ^ v i f  +  u i s i ( v 2J f .

where Sj7 contains the n largest singular values of Rj2. Define 

(7.31)

±  j ( z l  -  Ad) - l Bdl \ j { k  +  0 W l j { k ) Q i .

From equations (7.30) and (7.31) it follows th a t

(7.32)

where
e{J)  = £ { J ) Q i - U i S J2 {V j )T]VlJ 

Since {V2 )T V i  =  0, equation (7.33) becomes

(7.34)

(7.33)
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Substituting equation (,7.34) into equation (7.32) gives

i \ ' S ^ j { T i ( = I - A / r l B di \ j ( k + 3 )  + H^EQA k + 3 ) + r aX l A k + 3 ) } U l j ( k ) Q i \ \ J.
(7.35)

From equation (7.34). it is clear that the estimation error e{J)  is proportional to E;.7). 
Hence we can say that the larger J  is. the smaller the estimation error is. Equation
(7.35) indicates th a t the larger the signal to noise ratio  is. the relatively small the 
estimation error is.

7.6 .2  C losed-loop  Case

When J  is finite, post-multiplying both  sides of equation (7.17) by F j j { k )  yields

j Y a. j ( M ) F Z j i k )  =  j \ T i X t A k + 3 ) F l j ( k ) + H i U a. j ( M ) F l J(k]+Ec(J) .  (7.36) 

where

Ec( J) =  j [  H'aEa.j(k + 3) + VaXl j ( k  +  3)}Flj(k) .

After applying the QR decomposition shown in Section 7.4 to j Y a j ( k  +  3)F^ j(k )  
and post-multiplying both sides of equation (7.36) by Q i c. equation (7.36) becomes

F J22,  =  j l l A :?j(k  + 3 ) F l j ( k ) Q i c + E c( .J )Q L  (7.37)

because (Q{C)TQ{X =  0 and (Qix)TQi:C = /. Substituting the SVD decomposition 

of -R-22 .C'

& 2 ,  =  u t s U ^ c f  +  U l c S L ( K ) T - ("38)

where 5 / c contains the largest n singular values of R h  c. into equation (7.37). gives

Lr?.este = rdn.\de+£e(j).
with

A f  =  jX1.Ak-r3)FlAk)QieVeJ

=  j i z l  -  A d) - l B d[{I + G P ) ~ lGFl.k -  (I  + G P ) - lG M E l,k\ F l J ( k ) Q i cVcJ 

£e(J) = [ = ( J ) Q L - u i cs i 3 v l c)T]\\Jx

= s c{ J )Q icv xJ,-

Again, we can draw a  similar conclusion th a t the larger J  is, the smaller the estima­
tion error £C(J)  is: and the larger th e  signal to noise ratio  is, the relatively smaller
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the estimation error is. U dS d and UdrS d c are the estim ated extended observability 
matrices in the open-loop and closed-loop cases, respectively. W hen the observation 
number and the signal to noise ratio are large, the singular values in S d (or S / c) 
are much larger than those in S 2 (or 5^ c); i r2 S2 (V2 )T (or D2 CS2 c(VlJc)T) mainly 
contains noise information and s <3C (or sc « ; I^A)?). So UdS d (or ^.JA )
can catch most of the information in the extended observability matrix. YVhen the 
observation number. J . is finite, the analysis of the noise effect on estimating matrices 
Bj  and is quite involved, and hence is beyond the scope of this thesis.

7.7 C onsistency Analysis

If the da ta  length J  goes to infinity then the estimated model will converge to  the 
true process model, and such estimation is defined to be consistent. In this section we 
will discuss the consistency aspects of the proposed algorithm  under both open-loop 
and closed-loop conditions.

7.7.1 Open-loop Analysis

Consistent estimation aspects of some open-loop subspace identification algorithms 
have been analyzed by Viberg [S3], Jansson and W:ahlberg [37], In this sub-section we 
will analyze the consistency of the open-loop instrumental variable method presented 
in this chapter. From the derivation of the algorithm, we know that the key to 
consistent estimation is to estim ate the extended observability matrix consistently. 
From equation (7.15) we know that Lr/ S /  is the estim ated extended observability 
matrix, and

lim u f s t  =  rJ —oc
Define

A** =  lim $ jV ,J .
J — OC

Clearly Ud5 /  is the true extended observability matrix if and only if \ d is a  full rank 
m atrix. From linear algebra theories we know that

det[(A<i)7'Ad] =  [det(Ad)]2, (7.39)

where det(Arf) is the determ inant of m atrix Ad. Equation (7.39) implies th a t if m atrix 
(Ad)TAd is a full rank m atrix so is m atrix A d, and vice versa. In the following 
equations we will prove th a t given certain conditions (Ad)TAd is a full rank m atrix.
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The definition ui' A'1 g i v e s  

(A")r Ad =  lim ( \ 'j ') 7 (T„-J—tc
1

= lim — < \ \J r -  O '  }TU0 j ( k ) i X ‘ j< k -  3))TX ? j ( k  -r 3 ) i ^ j ( k ) Q ^ V \ J .
J — -c  J -  . . . .  -

It is straightforward to get that

x dlk) =  ( z l  -  A d ) - 1 B du(k) (7.40)

and

where

>zI - A 4 ) - ' B h =

Q (~~-M =

a( - 1) ' 

Adj (z l  — Ad)Bd

= Q i Z - ' + Q o z - (7.41)

and

r__i _  d e t( r /  -  A d)
a{z~L) =

Define
1

a„:

;. vt. ( i ) =  lim ^ X l j { k  -  3)U^ j(k)  
J —oc. J

(7.42)

Substituting equations (7.40) and (7.41) into equation (7.42) gives

u(k +  3 — n)

T v e ( ^  =  • • •  Q l ] E {
u(k -r 3 — 1)

UT(k) ,T(k — a — 1 ) 1}.

For general processes, we assume that the excitation sequence is an ARMA(n<.-,np) 
sequence.

Q(=-')u(k) =  K \ z ~ x)v(k).

where n q  is the order of Q ( z ~ l ) .  n k  is the order of K ( z ~ l ) .  and v(k) is a  white 
noise. Then by using Lemma 13 in Jansson and Wahlberg (1998) [37] and condition 
II of Lemma A3.8 in Soderstrom and Stoica (1983) [69], we can derive the following 
sufficient conditions for consistent estimation:

1. (Ad, Bd) is reachable.
2. Q ( z ~ x )  and K ( z ~ l )  are stable.
3. m a x ( / 3  —  a  +  n  +  n k ,  n  +  n q )  <  a .
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7.7.2 C losed-loop  A nalysis

Ir is straightforward to show that the estimation is consistent if and only if A ' i s  a 
full rank matrix. From equations (7.24) and (7.23) we have

f . \ ' ) 7' . \ '  =  l i m  I j X l  Jk  -  +  3)Fl j ( k)QiXJ}
J — OC J  J

=  lim ^ I Q l ' V / ? K A V l X i j ( k  +  m TX i j { k  + t1 )F l j ( k )Q ic\ t fA3)
J — OC J “

Define

-,VF(d) =  lim \ x i j ( k  + 3 ) F l j ( k ) .
J  —  OC J

For general processes, we assume that the excitation sequence is an ARMA(nt ,np) 
sequence.

Q ( z ~ l )u(k) = K (z~ ' )v ( k ) .

and the order of closed-loop system is nc. From Lemma 13 in Jansson and Wahlberg 
(1998) [37] and condition II of Lemma A3.8 in Soderstrom and Stoica (1983) [69]. it 
follows that the sufficient conditions for the closed-loop consistent estimation are

1. (Ad. B d) is reachable.
2. Q (--1 ) and K ( z ~ l) are stable.
3. max(3  — a  n + nk.n  + nc + nq) < a

7 . 8  Illustrative Exam ples

A simulation and an experimental example will be presented in this section to demon­
strate the proposed closed-loop identification algorithm.

7.8.1 Experim ental Exam ples

The block diagram of a stirred tank heater process is shown in Figure 7.5. This 
process is a computer-controlled experimental setup a t the University of Alberta. 
The steam through the steam pipe is used to  heat the water in the tank; the cold 
water valve is used to adjust the water level in the  tank; and the water outlet valve is 
fixed. An air-bubble stirrer is used to mix the w ater in the tank. In this process, the 
two manipulated variables are the  positions of the  cold water (tq) and the steam (1x2) 
valves; the two measured variables are the water level (jq ) and water tem perature ( 1/ 2 ) 

in the tank. In this experiment, we use signal units of milliampere (mA) to quantify 
2/ i , 1/2 , iq and U2 . The inputs and outputs of the  stirred tank heater are summarized 
below:
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Figure 7.5: Block diagram of a stirred tank heater system

Symbol Quantity Range
iq cold water valve 4 mA <  iq < 20 mA
u 2 steam valve 4 mA < u2 < 20 mA
y\ water level 4 mA <  yi < 20 mA
V2 water tem perature 4 mA <  i/2 <  20 mA

A single-rate closed-loop experiment and a m ultirate closed-loop experiment will 
be performed.

Single-rate C losed-loop Experiment

For this study, the two valve positions were updated every 4 seconds, the water level 
and water tem perature were also sampled every 4 seconds. The controller is a simple 
PI controller given by:

'  1 +  yrrhr 0
° *  1.5 4 -  p r p r

We designed Random Binary Sequence (RBS) as the excitation input signal, and 
added the excitation sequence to the setpoint. The nominal outputs, water level 
and temperature, were (14 mA. 9 mA). A total of 1566 experimental input-output 
da ta  points were collected; the first 1000 data points were used to estim ate a state- 
space model with sampling interval of 4 seconds; and the last 566 da ta  points were 
used for model validation purpose. We then used the controller and the estimated 
process model to sim ulate the closed-loop stirred-tank process; the last 566 points of 
the excitation sequence we used in the experiment were added to the setpoint in the 
simulation; 566 sim ulation data points were collected and compared with the last 566 
measured experimental da ta  points.

Figures 7.6 and 7.7 show the simulated outputs and the actual measurements for 
model validation purpose. The values shown in Figures 7.6 and 7.7 are deviation
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Figure 7.6: Measured and simulated water levels
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Figure 7.7: Measured and simulated water temperatures

values. From the comparison between the simulation and experimental results we 
can see th a t the estimated model can catch most of the dynamics of the true process.

M ultirate Closed-loop Experim ent

In this study, all the control periods are 4 seconds: the tem perature is measured every 
4 seconds, but the water level is measured every 20 seconds. A multirate inferential 
PI controller.

’ 1 +  i r r r r  0
0 ‘ 1.5 +  ‘

is designed to control the two outputs. The block diagram of the stirred tank  heater 
system with a MR inferential control scheme is shown in Figure 7.8.

In Figure 7.8, P  represents the estimated fast-sampled model which relates the 
sampled water level and cold water valve position; y, represents the estim ated water 
level; ri and r2 are the setpoints; f l and / 2 are the excitation sequences. In this 
experiment, the water level controller G i uses both the level measured every 20 sec­
onds and the  inter-sample w ater level predicted by the fast model estimated from the 
single-rate closed-loop experim ent. The excitation, a random binary vector sequence,
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Figure 7.8: Block diagram o f  ihe stirred tank heater system -with an inferential control 
scheme
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Figure 7.9: Measured and simulated water level

is added to the setpoint. The nominal setpoints for water level and tem perature were 
14 mA and 9 mA respectively. Experimental multirate da ta  over 6.6 hour was col­
lected. The data set over the last 4.4 hours was used to estim ate the process model 
with sampling interval 4 seconds (fast model); the data set over the first 2.2 hours was 
used for model validation purpose. The estim ated process model together with the 
inferential PI controller simulated the closed-loop stirred-tank system; the excitation 
sequence over the first 2.2 hours in the experiment was added to the setpoint in the 
simulation. The model ou tpu t and the experimental measurement were compared 
at the fast rates (every 4 seconds). For the  sake of clarity, only 500 points (over 33 
minutes) are shown in Figures 7.9 and 7.10.

The values shown in Figures 7.9 and 7.10 are deviation values. An unconstrained 
multirate inferential generalized predictive controller (GPC) [15] in state space frame­
work was designed based on the estim ated state-space model of the process. The
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Figure 7.10: Measured and simulated w ater temperature
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Figure 7.11: Performance of  the stirred tank heater with an MR inferential GPC 

parameters of this G PC  are summarized below:

Param eters Values
Prediction horizon 20

Control horizon 3
O utput weighting matrix Identity matrix
Control weighting matrix Identity matrix

Several step changes in the setpoint were made, and the output measurements over 
3200 seconds are shown in Figure 7.11.

From the performance of the inferential GPC, and the comparison between the 
simulation and experimental results we can see that the estimated fast-sampled model 
works well for inferential estimation and control of the true  process.

7.8.2 Sim ulation Exam ples

A closed-loop system shown in Figure 7.2 is generated as a  SIMULINK block diagram. 
The controller is G(z)  = y rfrr; the process model is with a  unit time delay;

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7.12: Step response o f the true system  and the estim ated system
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Figure 7.13: Bode plot o f  the true system and the estimated system

and the disturbance is generated by a continuous-time model, , with a white 
noise input e. The sample period is 1 second, and the setpoint is 0. A random 
binary sequence with 3000 points was generated and added to the control signal as 
the excitation. The magnitude of the excitation signal was ±1 . and the signal to 
noise ratio was 2.5 : 1. The control, excitation and output signals were collected, 
and a process model was estim ated by using the proposed closed-loop identification 
algorithm. The results of the closed-loop identification are shown in Figures 7.12 
and 7.13. Figure 7.12 is the step  response curves of the true process model and the 
estimated process model, and Figure 7.13 shows the Bode plots of the  true process 
model and th e  estimated process model. Figures 7.12 and 7.13 indicate that the 
estimated model is very close to  the  true model.
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Figure 7.14: The step responses of the process (relating the water level to the cold 
water valve) and the estimated model

Simulated Stirred Tank H eater System

A model.
2/1

. 2/2 .

0.1-116 
r —0.9868 
-0 .0 3 7 9

0
0.0595

t q

. u 2  .2 -0 .9 1 3  2-0 .90-18

is used to represent the experimental stirred-tank heater process ju st discussed. A 
simulation system  shown in Figure 7.4 is generated in SIMULINK. The tem perature 
t/2 is sampled every unit of time (4 seconds): the water level y x is sam pled every 5 units 
of time (20 seconds); all the holds have uniform period, 1 unit of time. A single-rate 
PI controller. G =  1.5 +  . with sampling interval of 1 unit of tim e (4 seconds),
manipulates the steam valve and controls the tem perature; a RBS sequence is added 
to the setpoint of the controller. The water level loop is not closed, and another RBS 
sequence is used to  manipulate the cold water valve. A stochastic process,

t ' l

Vo

0.11
1 -0 .9 7 2  -0.02

0
0.04

e l

. e 2  .l - 0 . 9 2 - ‘ 1 - 0 .8 8 2 - 1

is added to the output of the stirred tank heater process as disturbance. The signal 
to noise ratio  is 5. Simulation data  over 5000 units of time was collected and used 
to  estimate the  fast model (with period of 4 seconds). The step responses of the true 
fast model and the estimated fast model are shown in Figures 7.14, 7.15 and 7.16. 
The figures show th a t the estim ated model can represent the tru e  process very well.

7.9 Conclusion

From the results and discussions in this chapter, it is clear th a t the  proposed instru ­
mental variable method can estim ate state-space models of the determ inistic systems
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Figure 7.15: The step responses of the process (relating the water temperature to the 
cold water valve) and the estimated model
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Figure 7.16: The step responses of  the process (relating the water temperature to the 
steam valve) and the estimated model
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under both open-loop and closed-loop cases even if processes are general BJ type. The 
proposed instrumental variable methods can also identify the fast-sampled model of a 
m ultirate system under closed-loop conditions. From th e  derivation of the  algorithms 
we can see th a t this method can be applied to a wide variety of plants, since no 
specific noise distribution is assumed. Theoretical analysis in this chapter also shows 
tha t the proposed identification algorithm can give consistent estimation under both 
open-loop and closed-loop conditions provided tha t mild conditions on the system 
and the input sequence are satisfied.
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Chapter 8 

M ultirate Inferential M PC

8.1 Introduction

Developed towards the end of 1970's, model-based predictive controllers (M PC) llG. 
15, 67; capable of handling interactions and constraints have been widely accepted by 
the  process industry. The basic idea in the MPC strategy is to minimize the sum of 
squares of future control errors over a finite-time horizon and at the same tim e take 
into account the incremental control energy required to minimize the control errors. 
In a receding horizon fashion, model based predictive controllers only implement the 
first of the calculated control moves.

In Chapter 3 we presented three strategies for controlling multirate systems: slow 
single-rate control, m ultirate control with the lifting technique, and fast-rate control 
with inferential estim ation. All the three strategies can be adopted by M PC. Let 
us use a  simple example to illustrate three classes of model-based predictive control 
schemes for m ultirate systems. Consider a SISO m ultirate system where the output 
sampling interval is n T  and the control interval is T. In such a case we can estimate 
a single-rate model of the process with sampling interval n T  and implement a single­
rate  MPC with period nT.  The lifted control strategy can be applied to developing a 
M PC for this m ultirate system. The lifted MPC is based on the estimated model of 
the  lifted system: the  lifted control moves and outputs of the lifted MPC are inverse 
lifted to obtain the fast-rate input signals to the process. The block diagram of such 
a control strategy is shown in Figure 8.1. The basic idea of the inferential M PC is 
to  build a single-rate MPC with interval T  which uses both  the measured o u tpu t and 
the  inter-sample ou tpu ts predicted by the fast-sampled model.

The major drawback of the slow-rate approach is th a t it does not fully exploit 
the  capacities of th e  equipment and the inter-sample performance may be very poor 
when the least common multiple of the sampling and hold intervals is large. The
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Lilted Ptocts

Figure S.l: Block diagram of  a SISO mult irate sampled-data system with a lifted MPC  

r — ► K ► Ht — *- Pc — *- Snr- y -

J - __
1

► p

Figure S.2: Block diagram of  a SISO multirate sampled-data system urith an inferential 
M PC

difficulties for lifted MPC as shown in Figure 8.2 are the causality constraint and 
the gain constraint [72]. The gain constraint exists for all kinds of multirate sys­
tems: there is no causality constraint for a special class of m ultirate systems where 
all the control intervals are uniform, all the output sampling intervals are also uni­
form. and the output sampling period is an integer multiple of the control interval. 
So far no methods have been presented to overcome either of the constraints in the 
lifted MPC framework. If the fast-sampled model is available, then it is straight­
forward to generate an inferential MPC as shown in Figure 8.2. The only difference 
between the first single-rate M PC and the inferential M PC is that the inferential MPC 
uses the estimated inter-sample outputs but the fast single-rate MPC only uses the 
measured inter-sample outputs. Kalman-filter-based inferential MPC algorithms are 
quite popular ([47], [64], [28]), but other statistical-technique^-based inferential MPC 
algorithms have also been applied successfully ([84], [40]). In this chapter, instead 
of developing a new multirate inferential MPC, we extend one of the most popular 
industrial MPC to the m ultirate inferential control framework.

In this chapter we will only consider a special but practical class of multirate 
systems where all the hold periods are uniform and all the  output sampling intervals 
are integer multiples of the control interval. This chapter is organized as follow’s. 
F irst an inferential MPC is developed in section 2 for processes where the outputs 
are corrupted by integrated wffiite noises. Section 3 presents an inferential MPC for 
another class of disturbances. Experimental evaluation of the proposed inferential
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MPC is presented in the last section.

8.2 Inferential M PC

In th is section we will focus on one specific class of processes, namely, processes 
where the  process output is corrupted by an additive integrated white noise. When 
we implement the M PC to dual-rate systems, the output sampling period n T  limits 
the performance of M PC. Knowing the model for the system  sampled with period 
T. we can then use this fast sampled model to estimate the inter-sample outputs
[y(nkT  4  T ) . y ( n k T  4 -  2T )  y(nkT  + (n — 1)7')1. a n d  d e s i g n  a n  MPC b a s e d  o n  t h i s

fast sam pled model using both the measured outputs at sampling instant n T  and the 
estim ated outputs at the inter-sample instants. This is the basic idea of the model 
based-inferential control algorithm.

For simplicity. y(k) represents y<kT) in the rest of this chapter. The model of the 
process sampled with period T  is

y ( k ) =  4  7 - ^ r p  (S-i)
1 - g  1

where q~l is a backward shift operator; Pr(q~l ) is a strictly proper transfer function: 
u(k) is the  control signal: y(k)  is the sampled output: e(k) is a  white noise input: u(k). 
y(k) and e(k)  are discrete-time signals defined on the tim e set Z + := {0,1,2. • • •} 
with underhung period T.  In the rest of this section, we will develop a dual-rate 
inferential control algorithm for the system in equation (S .l) in both the transfer 
function domain and the sta te  space domain.

8.2.1 Inferential C ontrol A lgorithm  in th e  Transfer Function  
D om ain

Consider the system in equation (S.l) at tim e instant n k T .  The future output can 
be expressed as:

y ( n k  ~ j )  = PT(q~l )u(nk  4  j )  -  (1 4  q~l 4  q~2 4  .. .)e(nk + j )  (S.2)

=  Pr{q~l)u(nk  4  j ) 4  e(nk  4  j )  +  ... 4  e(nk  + 1 ) 4  -— ^-e(nA:).
1 -  q

Since
e(nk)  =  (1 -  7 -1)[y(n/:) -  Pr (g- I )u(n/:)], (S.3)

substitu ting equation (8.3) into (8.2) gives

y(nk + j )  =  Px{q~l )u{nK + j )  +  e{nk 4  j )  4  ... 4  e(nk 4  1) 4  y(nk)  -  PT(q~1)u(nk).
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Because e(nk)  is a white noise signal, the minimum variance prediction of y(nk  — j )  
at time n k T  is

ijynk ~ j \ nk)  =  Pr{(j~l )u(uk -  j )  -  y{nk) -  P r i g ' 1 )u(nk).  t S . 4 )

Rewrite (S.4) as

P t  (<7—") P t  (Q~^)y(rik -r j|nfc) =  ----—----Au(nk  -r j )  — y ( n k ) --------— Au(nk) .  \S.5)

where A =  1 -  q~x. Let

P r i g ' 1) —i . -2 —---- = aiq - a 2q ~  .... ^ .6 )

Substituting (S.6) into (S.5) yields

y ( n k ~ j \ n k )  = a : A u ( n k  -r j  -  1) -  ... — ajAu(nk)  -r ... -r y{nk)

— a 1Au(n/: — 1) — a2A u ( n k  — 2) — ...
J X

= ^  o,Aii(nfc + j  — i) ■f  y{nk)  +  — a, )Au(nk  — i)(8.7)
1=1 i = i

The first term  [£^=1 a ,A u (nk  -+- j  — z); is the effect of future inputs, and the last 
term \y(nk)  — y ) ) t i(ai+j — a,)Au(nk  — 1)] represents the expression tha t defines the
free response. We know that when i is large enough, a,_j % a, % K g ( K g is the
steady-state gain of the system ), so assume that a, as K g when i >  N  (where .V is 
a sufficiently large integer). Equation (8.7) can then be approxim ated as

j .v
y \ nk  — j \nk)  ~  ^  a, Au(nk  ~  j  — 2 ) - f  y(nk)  -  ^ ( a , _ -  a , )Au(nk — f ) ( S . 8 )

1=1 1=1

3

~  atA u ( n k  -f j  — i) + f ( n k  + j \nk ) .
1=1

where .v
f ( n k  4- j \ n k )  = y{nk) +  ^ ( a t+J -  a ,)A u ( n k  -  i)

1=1

denotes the output at tim e (nk  + j ) T  due to  the free response starts  from tim e n k T . 
Assume th a t the control action u is constant after time instant (nk  +  m — 1)7", i.e..

u(nk + nr — 1) =  u(nk  +  m) =  ... =  u(nk  +  h  — 1),
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w h e r e  h a n d  m  a r e  l l i e  s o  c a l l e d  p r e d i c t i o n  h o r i z o n  m i d  c o n t r o l  h o r i z o n ,  r e s p e c t i v e l y .  

N o w  c o n s i d e r  t h e  p r e d i c t i o n  o f  t h e  o u t p u t  t r a j e c t o r i e s  o v e r  t h e  i n t e r v a l s  ( v k ~  1 )T t o  

(nk -r h)T.

y(nk + l|nA:) =  f ( n k  -f l|nk ) + a^Au(nk)

y(nk  4  h\nk) - f ( n k  -f h\nk)  4  ahAu(nk)  4  ... 4  a^-m+iAu(nk  — m -  1 V 

T h e  a b o v e  e q u a t i o n s  c a n  b e  w r i t t e n  i n t o  a  c o m p a c t  v e c t o r  f o r m  a s

V =  F AAU.

w h e r e

y(nk + l|n /;) f ( n k  +  l|nAr) Au(nk)
Y  =

y(nk  +  h|nA:)
. r  =

f ( n k  4- /z|nAr)
. A U  =

A u ( n k  ~  m — 1)

a n d

Q i 0 0 0

a 2 a i 0 0

d j n —l d m —2 a l

d h a h -  1 d h - 2 d h  — m  —

A  s e t  o f  c o n t r o l  a c t i o n s  c a n  b e  c a l c u l a t e d  b y  m i n i m i z i n g  t h e  f o l l o w i n g  q u a d r a t i c  

o b j e c t i v e  f u n c t i o n

J(AU) = ( f -  Y ) TQ(f  -  V ')  -r A U t RAU.  ( S . 9 )

w i t h  t h e  c o n s t r a i n t

Y  = F + AAU.

w h e r e  Q a n d  R  a r e  s y m m e t r i c  o u t p u t  w e i g h t i n g  a n d  c o n t r o l  w e i g h t i n g  m a t r i c e s ,  

r e s p e c t i v e l y ;  a n d  f  i s  a  v e c t o r  c o n t a i n i n g  t h e  h d e s i r e d  f u t u r e  o u t p u t s .  T h e  s o l u t i o n  

o f  t h i s  o p t i m i z a t i o n  p r o b l e m  is

A U  =  (ATQA + R ) - lA TQT( f - F )  = K c( f - F ) .  

K c = (At QA + R ) - xA t Q t .

Since the MPC is a receding horizon based algorithm , only the first control action 
Au(nk )  is implemented. This M PC algorithm which was first developed by Cutler 
and Ramaker [16] is also know as dynamic m atrix control.
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From the  M PC algorithm we can see th a t the output is needed every time the 
control action is calculated. But in the dual-rate system the output is measured 
only every sample period of n T : if we want to implement M PC every period T.  one 
option is to  estim ate the (n — 1) inter-sample outputs between two successive output 
measurements. The minimum variance estimation of the (n — 1) inter-sample outputs 
from tim e n k T  to  (n -f 1 ) kT  can be derived from equation (8.8) as follows:

.v
y{nk  -f 1) =  y{nk) +  ^ ( a t+i — a,)Ati(nfc — i) +  axAu(nk)

i-i

y ( n k ~ n -  1) =  yjnk) + y ^ ( a , ^ n_x -  a,)A ii(nf- -  ;)
1 = 1

n —2
- r ^ T  On-J_t A u (n k  -hi).

1 = 0

T h e  u n c o n s t r a i n e d  i n f e r e n t i a l  M P C  a l g o r i t h m  t h e n  c o n s i s t s  o f  t h e  f o l l o w i n g  s t e p s :  

Step 1 C a l c u l a t e  K c = (A TQ A  +  R)~1A TQT.

Step 2  C a l c u l a t e  t h e  p r e d i c t i o n  o f  t h e  o u t p u t  t r a j e c t o r i e s  o v e r  t h e  p r e d i c t i o n  h o r i z o n  

o f  i n t e r e s t .  A t  t i m e  i n s t a n t  k n T  t h e  o u t p u t  i s  m e a s u r e d ,  a n d  t h e  f r e e  r e s p o n s e  

c a n  b e  c a l c u l a t e d  a s  f o l l o w s .

.v
f ( n k  + j \nk)  = y(nk)  -f ^ ( a l+J -  a , )A u (nk  -  i) j  = 1.... h.

i= 1
A t  t i m e  i n s t a n t  t =  k n T  +  IT. 1 <  I <  n. t h e  o u t p u t  i s  n o t  m e a s u r e d ;  b u t  w e  

c a n  e s t i m a t e  t h e  i n t e r - s a m p l e  o u t p u t

.v
y { n k ~ l ) =  y(nk)  -f -  a ,) Au(nk  -  i) +

i=i
atA u (n k  4- 1) +  ... +  a xA u ( n k  +  / — 1):

a n d  t h e n  c o m p u t e  t h e  f r e e  r e s p o n s e  b a s e d  o n  y (nk  -f i),
N

f ( n k  -f-1  -r j \ n k  +  /) = y(nk  + I) + ^ ( a , +J — a^)Au(nk + I — i),
i=i

w h e r e  j  — 1 , 2 , . . . ,  h.

Step 3  C a l c u l a t e  o n l y  t h e  n e x t  c o n t r o l  a c t i o n

Au(t) -  k x( f  -  F),  

w h e r e  k x i s  t h e  f i r s t  r o w  o f  t h e  c o n t r o l l e r  m a t r i x  K c-
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8.2.2 Inferential Control A lgorith m  in th e  State-Space D o­
m ain

T h e  s y s t e m  i n  e q u a t i o n  ( S . l )  c a n  b e  r e p r e s e n t e d  a s

w h e r e

y{k)  =  p T ( 9 - i ) i [ A u ( t ) ]  +  i e ( f c )  

=  Vd{k) +  yf (k).

y A V  = [PT( q - l W][An{k)}

(S.10)

y,{k) = TTe( '̂)-1 - <T>

yd(k)  a n d  ys (k)  a r e  t h e  o u t p u t s  o f  t h e  d e t e r m i n i s t i c  a n d  s t o c h a s t i c  p a r t s  o f  t h e  p r o c e s s ,  

r e s p e c t i v e l y .  T h e  s t a t e - s p a c e  m o d e l  o f  Pr(<?_1) j  c a n  be e a s i l y  c o m p u t e d  f r o m  t h e  

s t a t e - s p a c e  m o d e l  o f  P r { q ~ x). A s s u m e  Pr{q~x) \  c a n  be r e a l i z e d  b y  t h e  f o l l o w i n g  

s t a t e - s p a c e  m o d e l .

+  1 )  =  AjXd(k) +  Bi Au(k)  

yd(k) =  C , T d(k).

C o n s i d e r  t h e  p r e d i c t i o n  o f  t h e  h f u t u r e  o u t p u t s  a t  t i m e  nkT.  a n d  d e f i n e

y ( nk  -f l |n t )
Y{nk)  =

y ( nk  +  h\nk)

T h e  p r e d i c t i o n s  c a n  t h e n  b e  e x p r e s s e d  a s

Y(nk) =  Yd(nk)  - f  Y,(nk).

w h e r e

yd{nk  - f  l\nk) y , {nk  +  l\nk)
Yd{nk)  = . Y ( n k )  =

yd{nk  +  h\nk) y„(nk +  h\nk)

I t  i s  s t r a i g h t f o r w a r d  t o  d e r i v e  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  Yd{nk).  

Yd ink) —

'  C i A t ' C , B i  0 0 A u{nk)
C i  A 2,

i  d(nk) +
C /.4/S ; CjB j 0 A  u(nk  +  1 )

1
-C*-<

c
j C , A hr l B j  C , A hr 2 B , • C i B i A  u{nk  +  h — 1 )

(8.11)
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When the control horizon is m.

A u (n k  -f- m) — A u (n k  m  + 1) =  • • ■ =  A u(nk  -f n — 1) =  0: 

in which case equation (8.11) becomes

Yd(nk) — Fxd(nk) - r  HAL/,

where

r  =

C fAj C ;B j 0 0
Ci.4?

. H  =
C [A jB i C B 0

, A U  =

.  C ' A ! . C iA hr l B , C t A ^ B i  • • C ,A h, - mB ,

(8.12)

A u(nk)
A u{nk +  1)

A u(nk + m -  ]

and H  is the so called step response coefficient m atrix. It is true th a t

y(nk) = C ix d(nk) +  y ,(n k ),

so
ys(nk) = y(nk) -  C i id(nk).

Since the disturbance is an integrated white noise.

ys{nk + j )  = ys{nk) -  e(nk  +  1) +  • • • +  e (n k  +  j)

=  y(nk) — C[Xd(nk) + e { n k -r I) + ■ ■ ■ ~  e ( n k  + j )  (S.13)

Combining equations (8.12) and (8.13) gives the minimum variance prediction of 
Y (n k )  at time instan t n kT  .

Y (nk) = T xd(nk) +  H A U (nk)  +  Ya(nk ),

where
y(nk) -  C ixd(n k )

Ys(nk) = : (8.14)
y(nk) -  C ixd(nk)

The solution of the  minimization problem (8.9) is

A l ' ( n k )  = (H t Q H  -  R ) - lH TQT\f -  Txd(nk) -  fynfc)!-

where f . Q and R  ax'e as before. In the dual-rate system case, the o u tp u t is measured 
only every nT. but we can estimate the (n -  1) inter-sample ou tpu ts as follows:

yd(nk + l \nk)  = C[A[Xd(nk) + C [B[Au(nk) + y(n k ) — C[Xd(nk)

n— 1

yd(nk + n -  l|nAr) =  C/.4" lx d(nk) + ^  C jA) xB iA u (n k  +  i — 1) -f y (n k ) — C[Xd(nk).
i=i

After estimating th e  inter-sample outputs, we can implement the d ual-ra te  inferential 
MPC in a straightforw ard way.
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Figure 8.3: Experim ental setup o f a stirred tank heater

8.3 Experim ental Evaluation

The MIMO process shown in Figure 8.3 is a computer-controlled experimental setup 
at the University of A lberta and is concerned with tem perature and water level reg­
ulation in a continuously stirred tank  heater.

In this process, the two manipulated variables are the positions of the cold water 
(u i) and the steam  (u2) valves; the two measured variables are the water level (2/1) 
and water tem perature (y2) in the tank. For this study, the two valve positions are 
updated even.- 4 second, the water level and water tem perature are sampled every 20 
second and 4 second, respectively. Around the operating point with y\ = 12 mA and 
y2 =  10 mA. the inputs and outputs of the stirred tank heater are summarized below:

Symbol Quantity- Range

'“ I cold water valve 4 mA < u ; <  20 mA
u2 steam  valve 4 mA < u2 < 20 mA
J/i water level 4 mA <  i/i <  20 mA
2/2 water tem perature 4 mA < y2 < 2 0  mA

We use mA to quantify both 2/1 and y2 since there are simple linear relationships 
to translate these units to actual physical units. From the m ultirate input-output 
da ta  a single-rate model with sampling interval of 4 seconds was identified(details in 
chapter 3). We changed the water level sampling period to  40 seconds and kept the 
other sampling rates to 4 seconds. Based on this fast sampled model, we designed 
an inferential M PC and applied it to  the multirate system. The param eters of this
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Figure 8.4: The measured water level
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Figure 8.5: The measured water temperature 

inferential M PC are summarized below:

Parameters Values
Prediction horizon 12

Control horizon 3
O utput weighting matrix Identity m atrix
Control weighting matrix Identity m atrix

We made several step changes in the setpoint, Figures 8.4 and  8.5 show trajectories 
of the outputs measured every 4 seconds (the inferential controllers uses the water 
level sampled every 40 seconds).

There is some noise in the temperature measurement, th a t  is because the stirrer, 
which makes the water in the  tank well mixed, was broken when we did this exper­
iment. Some ripples in the measured water level and water tem perature are due to 
interaction in the system.
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8.4 Conclusion

In this chapter we used both theoretical analysis and experimental results to  show 
that the m ultirate inferential control algorithms work well m a  model-based predictive 
control framework.
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Chapter 9 

Analysis of M ultirate Inferential 
System s

9.1 Introduction

Instability of the feedback system has been one of the most serious problems af­
ter the first autom atic feedback controller was used in the industry. This in tu rn  
prompted m athem atical analysis of feedback systems; Maxwell (1868) and Vyshne- 
gradskii (1877) were pioneers in analyzing the stability of feedback control systems. 
The observed stability problems of the negative feedback control systems were ex­
plained through the frequency domain analysis techniques developed by Nyquist [62] 
and Bode [5] and Black [4]. Youla and co-workers [87. 88] showed th a t all stabilizing 
controllers for a  particular system can be parametrized in an effective manner. The 
Youla param etrization simplifies the task of searching for a good stabilizing controller 
dramatically. Brosilow [7] used the Internal Model Control structure  to  explain the 
special case of Youla param etrization. In practice, no model is a perfect representa­
tion of the process, so model-plant mismatch is inevitable. The robust stability (i.e., 
stability of the feedback systems in the presence of model uncertainty) and robust 
performance (i.e., performance of the feedback systems in the presence of model un­
certainty) have attracted  much attention because of their practical importance. Doyle 
developed a powerful tool (the structured singular value) for testing robust stability 
and robust performance [18, 19].

Multirate inferential control algorithms have been applied to  chemical industrial 
processes. Intuitively, the nominal performance and stability of the m ultirate system 
with an inferential controller should be close to  those of the single-rate system a t 
the fast rate  when the model is a perfect representation of the fast-sampled process. 
However model-plant mismatch (MPM) is inevitable in the chemical process industry
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duo to factors such as scaling, fouling, varying catalyst activity (pn chemical reactors), 
equipment degradation with time. etc. So it is im portant to know the stability of the 
dual-rate inferential system in the presence of model-plant mismatch. No work has 
been reported on robust performance and stability of the m ultirate inferential systems. 
For simplicity we focus here on a special but practical class of dual-rate systems where 
the output sampling interval is an integer multiple of the control interval. The main 
objective of this chapter is to develop a framework for the performance and stability 
analysis of the dual-rate system with an inferential estim ation algorithm for feedback.

This chapter is organized as follows. In Section 2 we briefly introduce lifting 
techniques and lifted systems in the transfer function framework. The dual-rate in­
ferential control scheme is introduced in Section 3. The performance of the inferential 
control scheme in the absence of model-plant mismatch is visited in Section 4. Sec­
tion 5 discusses stability  robustness of inferential control systems in the presence of 
model-plant mismatch. In Section 6 we give an illustrative example to demonstrate 
the results given in Section 5. Finally we discuss some extension to the result given 
in Section 5 followed by the concluding marks.

9.2 Prelim inaries

Assume that the transfer function Pt (z ) represents the discrete model of process P 
w ith sampling interval T: we know that Pt {z) can be expressed as:

PT(z) = p(0) +  z-1p(l) +  z~ 2p{ 2) +  ...,

where c is the forward shift operator. Using polyphase decomposition [74], we define

Po{=n) =  p{0 ) + z - np(n) + : - 2”p{2 n) + ...

Pd=n) = P(l)  -f =-nP(n -  1) +  z~2np{2n + 1) 4- ...

Pn-i(~n ) =  p ( n - l ) - t - r - np ( 2 n - l )  +  r - 2np ( 3 n - l )  + ....

Then P t {~)  can be written as

Pt (z ) = Po{zn) +  z~ l P ,{zn) +  ... +  z l~nPn^ ( z n).

Define

P  = LnPTL~l .
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Figure 9.1: The sampled-data smgle-rate control system .

d

r  ► ► K ► P  ^ — r - ^  y

Figure 9.2: The discrete-time single-rate control system.

The lifted system P  can be expressed as [42]

P0(r) ... :~ l P i(z)

Pn_2(-) ... Po(-)

9.3 D ual-R ate Inferential Control Schem e

First, let us consider a  single-input, single-output single-rate control system shown in 
Figure 9.1. where Pc is a continuous-time LTI plant and K  a digital controller. The
two system s Pc and K  are interfaced by the A /D  and D/A converters, modeled by S f .
the ideal sampler, and H j. the zero-order hold (ZOH). respectively, both operating 
with the  fast period T . This is a single-rate sampled-data control system which 
involves two exogenous signals, the discrete-time reference r(k )  and the continuous­
time disturbance dc(t). The measured continuous-time output is yc(t). Define P  as 
the ZOH equivalent model of Pc (P  =  S jP cH f)  and discretize dc(t) a t the fast rate: 
d(k) = dc(kT ). Thus Figure 9.1 is equivalent to  a  pure discrete-time control system 
in Figure 9.2, which involves only discrete-time signals [10].

Suppose th a t due to  physical constraints, we cannot sample the output as fast 
as we wish and thus we have to replace S f  in Figure 9.1 by a  slow sampler S ,  with 
a sampling period n T ,  where n  is a positive integer: n > 1. In order to maintain 
single-rate control, one option is to adopt a slow zero-order hold H„ with period
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Figure 9.3: The sampled-data in ferential control system.

n T  and obtain a single-rate control system operating at the  slow rate: however, the 
disadvantage is tha t performance degradation could be significant. The option that 
we propose is the inferential control scheme shown in Figure 9.3. where the output 
sampling is now slow (5 ,). but the fast zero-order hold H j  and the fast single-rate 
controller K  are still in place. For such a scheme to work, we assume that a model P 
for the fast single-rate system  P  is available. In order to feed back to the controller K  
a  fast rate signal v(k), representing the o u tpu t y(k), we use th e  slow sampled output 
(y>(k ) =  yc[fc(nD]) every n T  period, giving t/(0). y(n). and y(2n). etc., and use the 
model P  to get the estim ated output y(k) to  fill in the missing samples in y(k). Such 
a process is depicted in Figure 9.3 by a periodic switch which connects to y, a t times 
t = j (n T ) .  and connects to  y(k) at t — j{ n T )  + iT . i =  1. 2. • • • . n — 1. Thus the 
output of the switch is a fast rate signal given by

=  J  y*0 ')- k  = J n >
1 y{jn  +  i). k  = jn  +  i, 0 < i  < n.

Since Ss is the same as S f  followed by the periodic switch shown in Figure 9.3, 
it is easy to see that the equivalent discrete-time model for Figure 9.3 is Figure 9.4. 
Here. P. d and y are as before. Due to the  periodic switch, the fictitious fast rate
signal y(k) is fed back only once every n samples. Therefore

v (k) = S k = J n -
\  yU n ~ 0- k — j n  + i , 0  ^  i < n.

To summarize, the dual-rate inferential control scheme uses a fast-rate plant 
model, a fast single-rate controller, and a  periodic switch. It is conceptually sim­
ple. easy to implement in digital computers, and practical for industry. Later we will 
show th a t in comparison with the fast single-rate control system  in Figure 9.1, we 
may lose some performance; but we will gain robustness.

Note that the inferential control scheme assumes availability of a fast single-rate 
model P.  There are two ways of obtaining P:  (1) if a model for the continuous-time
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d

Kr

Figure 9.4: The discrete-time inferential control system.

plant P  is available. P  can be computed easily by discretization: (2) if not. we need 
to invoke the results in chapter 4 to identify such a fast model based on m ultirate 
input-output data.

Next we will compare the inferential control system in Figure 9.4 with the single­
rate system in Figure 9.2 in tracking and disturbance rejection performance (Sec­
tion 4) and in stability robustness (Section 5). Conclusions are given in the last 
section.

9.4 Nom inal Perform ance

Consider the dual-rate inferential control system in Figure 9.4. Assume in this section 
th a t there is no MPM; thus P  — P. If furtherm ore there is no disturbance in the 
system, i.e., d(k) =  0. then y(k) — y(k) and hence v(k) = y (k ). Thus the dual-rate 
system is equivalent to the single-rate system in Figure 9.2. We thus conclude that:

•  W ithout MPM. closed-loop stability of the dual-rate system in Figure 9.4 is 
equivalent to that of the single-rate system in Figure 9.2.

•  W ithout MPM and disturbances, the tracking performance (y following r) of 
Figure 9.4 is the same as th a t of Figure 9.2.

This is the main reason why the proposed dual-rate inferential control scheme is 
attractive: In the ideal situation, we can expect to recover the  performance of the 
fast single-rate system.

We now examine the disturbance rejection capability of the  two system involved
when a disturbance is present (d ^  0). First, let us look a t th e  single-rate system in
Figure 9.2. Defining the system from d to  y as G „, we get

G ,r = (I  + P K ) - 1. (9.1)
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We can use the H ^  norm to quantify the effect of d on y as follows: Suppose the 
significant frequency components in d are captured by the pass-band of a pre-filter 
U 2: the quan tity  ||G ,r lf'slloc is then appropriate as a worst-case measure of the effect 
of disturbance. The best achievable disturbance rejection performance, denoted *j r . 
is obtained by minimizing ||C’j r i r 2!|oc over the class of controllers providing closed- 
loop stability -  a standard Hoc optimization problem. In the special case when P  is 
already stable, we can parametrize the set of stabilizing controllers via

K  =  (7 -  Q P )~ lQ  (9.2)

with Q stable and LTI. Substituting 9.2 into 9.1 gives

[I -r PA ')-1 =  (7 T P {I -  Q P )~ ]Q)~l 

= I - P Q .

since

(7 + P ( I - Q P ) ~ ' Q ) ( I - P Q )

= I - P Q  + P ( I -  Q P )~ l {I -  QP)Q  

=  7 .

Thus we arrive at the following model-matching problem:

=  min HG^U olloc

=  m ra ||( 7 -P g ) H '2 |U . (9.3)

The minimization is done over the class of stable and LTI Q's. The quantity ".,r 
can be thought of as a measure of disturbance rejection capability of the single-rate 
system in Figure 9.2.

Next, we look at the dual-rate system in Figure 9.4. Define G^r as the closed-loop 
system from d to y in Figure 9.4. Thus

~;dT = min ||GdrW2||oc

represents the  disturbance rejection capability of the  dual-rate system  in Figure 9.4.
Because of the presence of the switch, the system in Figure 9.4 is linear and 

periodically time-varying. In order to derive a model for <?*., we use the standard 
lifting technique [41, 10].
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Figure 9.5: The lifted inferential control system.

Let x(k)  (0 < k  <  oc) be a discrete-time signal. The lifted signal x is defined as

x  =

x(0) x(n)
x (l) x(n + 1)

x(2n — 1)

Note that after lifting, the signal dimension is increased by a factor of n, as is the 
underlying period.

Lifting all the signals involved in Figure 9.4 to get y for y. y for y. etc.. we can 
derive a simple model for the periodic switch which relates t> to y and y in the lifted 
domain:

v = R iy  + R2y ■ (9.4)

Here R i and R 2 are s ta tic  systems given by the following matrices:

(9.5)

’  1 o •

1o l
O o •

f 
■o

II 0 0  •

• • 
o

■ #2 = ■ * 
o l  • • 0

1 O 
• ■ 

o

1
• 

o

n x n

• 
o

1

• 
o

• 1

The lifted svstems

K  =  LK L -i P  = LPL .P  = L P L - l

together with (9.4) give rise to the lifted closed-loop system in Figure 9.5, which 
is the equivalent model under lifting for the dual-rate structure in Figure 9.4. The 
advantage is that we are now dealing w ith an LTI system.

Specializing to our discussion in this section. wre set r =  0 and P  = P . The lifted 
system Gdr := LGdTL ~ l , or equivalently, the system from d to  y in Figure 9.5, can be 
derived as follows. F irst, compute the system from d t o u  (noting th a t R \  +  R 2 = I):

u = - ( I  + K P )~ lK R ld.
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Thi'ii  since ;/ =  </— P_u. wo have

G j r =  I - P ( I +  K P ) ~ l K R i -  ( 9 . 6 )

If P  is stable, we can use (9.2) for controller param etrization; the lifted version is

K  =  U  - Q E r ' Q -

Substituting th is into (9.6) yields:

G *  = I  -  P ( I  + K P ) - lK R ,

=  / - £ [ /  +  ( / -  Q P T l Q P \ - l ( I  -  Q P ) ~ l Q R i  

=  I  - P ( I  - Q P ) ( I  - Q P ) ~ l Q R i  

=  I - P Q R i -

Since lifting preserves norms, we have

-dr = min U ^ I T a lU  =  min ||( /  -  £ Q ^ i ) I i I 2IU- (9-7)

where the la tte r minimization is over the class of stable and LTI Q's.
In order to  compare -,sr and -)dr, "'e lift the systems involved in (9.3) to get

-;,T =  min IKZ-PgjlLall*.

Now suppose Q" is the optimal solution for the minimization in (9.7). i.e..

^ r  =  IK Z -Z Q -flO i^ llo c .

(If -)dr is not attainable, we can use a sequence of Q 's  so that th e  performance 
converges to -)dr. and the argument to follow is similar.) Define Q i — Q 'R i-  The 
corresponding Q \ is stable but not LTI; it is in fact linear and periodic with period 
n (because R\ does not correspond to an LTI system before lifting). However, since 
for LTI plants, linear periodic control does not offer any advantage over LTI control
[41]. we conclude

Id , =  Il(/ -  P Q x)]V2i u  >  min ||(7 -  P g ) l £ 2||oc =

This result can be summarized as follows:

Proposition 5 When P  is stable and there is no MPM. the disturbance rejection 
capability o f the dual-rate system in  Figure 9.4 is no better than that o f the single-rate 
system  in Figure 9.2.

Proposition 5 perhaps makes sense intuitively; b u t it is not clear if it is still valid 
when P  is unstable. In the next section, we give a  somewhat surprising result on 
stability robustness.
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Figure 9.6: The inferential control system with additive uncertainty.

9.5 Stability R obustness

In this section we assume that there is MPM in the dual-rate  system in Figure 9.4. 
and hence P  ^  P. We will study issues related to stability  robustness. We treat 
P  as uncertain and P  as the nominal plant model: we assume a standard additive 
uncertainty model [20j, i.e.. P  belongs to the uncertainty class given by

{P +  A H ',:  HAHscCl}.

The MPM is represented by AHri. where A is the perturbation, assumed to  be stable 
and LTI. with norm less than  1 (normalized), and H'[ is a fixed frequency weighting 
filter which is stable and LTI. The inferential control system  with this uncertain 
structure is depicted in Figure 9.6. Our goal is to find a condition under which the 
closed-loop system is stable for all admissible A.

P ro p o s it io n  6 Assume that K  stabilizes P  (nominal stability). Let IF j, K_, and P  
be the lifted systems o f \ \ \  . K . and P.respectively. The dual-rate system in Figure 9.6 
is closed-loop stable fo r all admissible A i f

U K i d  + K P r ' K B i ' ^  < 1. (9.S)

where the matrix R j was defined in (9.5).

P ro o f  Similar to what we did in Section 3. we lift the system  in Figure 9.6 to get 
Figure 9.7.

Isolating A, we can reconfigure Figure 9.7 into Figure 9.8, where M_ is given by

M  = - W l {I + K P ) ~ l K R l .

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 9.7: The lifted inferential control system  unth additive uncertainty.

► A

M

Figure 9.S: The equivalent system o f Figure 9.7.

It follows easily from the nominal stability assumption that M  is a stable system. 
Applying the small-gain condition to the feedback system in Figure 9.S. we conclude 
that the elosed-loop system is stable for all admissible A if

mu • mu  <  i .
which is true for all admissible A (IIAJIao < 1) if ||MIIdc < 1 -  ■

Now we compare the robustness condition in Proposition 6 with that for the 
single-rate system of Figure 9.2. Such a condition was well-known [20]: The elosed- 
loop system in Figure 9.2 is stable for all admissible A if

l | i r , ( /  + A ’P j - ' A ’ Hoc <  1.  

which is equivalent to the following after lifting:

\\Kl( i + K P r lK\u<i .

The quantity on the left, denoted 0sr, can be used as a measure of stability robustness 
for the single-rate system [20]: The smaller the 0„  is. the more robust the system is. 
Similarly, the quantity  on the left of (9.8), denoted is a  robustness measure for
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the dual-rate inferential control system. Examining the two quantities, we get

d r  = [ U' ,(I  + h ' P r ' K R ,
l

<  | | i l , ( / + £ P ) - i a : m

< fllili(l  + E P ) ~ lK

<  A r -

and hence we conclude:

C o ro lla ry  1 The fast single-rate control system is no more robust than the dual-rate 
inferential control system.

This result still leaves room for doubt: Can the dual-rate control structure be 
better in stability robustness than the fast single-rate one? T he answer is positive; 
and we illustrate this wirh an example in the next section.

9.6 Illustrative Example

E x am p le  Consider a nominal plant P  with a PI controller K :

P{z) =
0.15

2 - 0 .9 ' A'(c) =  3 +
0.5

1

Suppose the actual plant P. different from P, is given by

0.13
P(z)  =

c3(c -  0.92)'

Clearlv.

P (c) -  P(z) < 0.15c4 -  0.13Sc3 -  0.13c +  0.117

so we can define

IV, =

c3(c — 0.9)(c — 0.92) 

0.15c4 -  0.138c3 -  0.13c +  0.117

z=eJu

c3(c — 0.9)(c — 0.92)

We can see th a t the conditions for Proposition 6 are satisified. W ith th is P  in 
place, it can be shown that the fast single-rate system (Figure 9.2) is elosed-loop 
unstable, while the dual-rate inferential control system (Figure 9.4) with n  =  4 is 
elosed-loop stable. This is shown in the closed-Ioop step responses in Figures 9.9 and 
9.10. This shows th a t the dual-rate inferential system is indeed more robust th an  the 
corresponding fast single-rate system!
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Figure 9.9: Step response in y for the fast single-rate system.

40 ftG OO 70 SO '  OO

Figure 9.10: Step response in  y for the dual-rate inferential control system.
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9.7 Conclusion

In the preceding sections, we showed that the absence of model-plant mismatch, the 
multirate inferential control system  is as stable as the fast single-rate system, and the 
multirate inferential control system  can recover the performance of the fast single-rate 
system. We also studied the stability  robustness of the dual-rate inferential control 
system assuming an additive uncertainty model. We point out here th a t similar result 
holds if a multiplicative uncertainty model is used; in this case P  belongs to the class

{ ( /  +  A1I'1)P : IIAIloo <  1}.

Similar to the condition in (9.8) in Proposition 6. the robust stability  condition for 
this case is

\ \K iE { I  + K t ' ~ lKRi\\oo < 1.

Based on this, we can make the same conclusion th a t the dual-rate inferential control 
scheme is advantageous in stability  robustness over the fast single-rate control scheme.
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Chapter 10 

Conclusions and Future Work

10.1 Conclusions

The main contributions of this thesis are:

•  A tutorial introduction to  three popular subspace based identification schemes. 
All the three algorithms are illustrated with experimental and simulation ex­
amples.

•  An overview of the m ultirate control schemes.

•  Development of a two-step m ultirate identification scheme based on the follow­
ing steps (1) estimation of the lifted model and (2) computation of the fast 
sampled model from the lifted model. The unique problems in multirate iden­
tification, for example, the accuracy of time-delay estimation, the observability 
in the presence of time-delay and the causality problem, are discussed in detail. 
This m ultirate identification scheme has been applied to SISO multirate systems 
where the ratio between the  output sampling interval and control interval is a 
rational number; and to MIMO multirate systems where all the control inter­
vals are uniform, all the ou tp u t sampling intervals are distinct but are integer 
multiples of the control interval. The subspace-based m ultirate identification 
schemes are demonstrated w ith both experimental and simulation examples.

•  Estimation of the fast sam pled transfer function model from multirate data: 
Frequency analysis of the m ultirate identification in the polynomial domain 
demonstrates the importance of the design of the excitation sequence. Industrial 
application shows that the proposed scheme works well even with a relatively 
small d a ta  set.
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•  Presentation of a m ultirate elosed-loop identification scheme: A m ultirate elosed- 
loop identification algorithm  which can estim ate the fast-sampled process model 
in either one step or two steps is developed. This identification scheme can han­
dle the most general class of processes.

•  A m ultirate inferential model-based predictive control scheme is proposed. This 
control scheme is discussed in both  the polynomial and state-space domains. 
An experimental example is explored to  evaluate the model-based multirate 
inferential control scheme.

•  Analysis of the nominal performance and robust stability of the multirate in­
ferential control systems. It can be proved theoretically that the multirate 
inferential control system  may lose a little in performance but at the same time 
gain in stability robustness. This result is validated by a simulation example.

This thesis proposed a practical way to estimate fast-sampled process models from 
m ultirate data, and hence m ade it possible to control the industrial m ultirate pro­
cesses effectively with the model-based inferential control schemes.

10.2 Future W ork

The following problems are interesting, im portant, and worthy of furthur investiga­
tion:

•  Validation o f estim ated  fast-sam pled models: In the experimental and 
simulation examples, we used the slowly sampled output to estim ate the fast- 
sampled model, and the fast-sampled outputs to validate the fast-sampled 
model. But in industry, the fast-sampled output measurement is not avail­
able in m ultirate systems. It is challenging and of great importance to develop 
a method to validate the fast-sampled model only based on the slowly sampled 
output measurements.

• Analysis o f subspace-based identification algorithm s in the frequency 
domain: Subspace based identification schemes are natural choices for mod­
eling multi-input and m ulti-output systems which are common in chemical in­
dustries. Providing another dimension of insight into the processes, analysis of 
identification schemes in the frequency domain is im portant and practical. So 
far, little work has been done in analyzing subspace-based identification schemes 
in the frequency domain.
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•  Constrained system  m odeling and identification: Currently, all the iden­
tification algorithms, in both the polynomial domain and state-space domain, 
treat the processes as black boxes. In practice, these schemes require inserting 
excitation signals into the processes. Excitation is not desired in chemical in­
dustries because they degrade the performance of control loops. On the other 
hand, operational data  are abundant in industries. It would be economical to 
estimate process models from operational data. But unfortunately, it is diffi­
cult to do so, since usually operational da ta  does not contain enough excitaion 
which is necessary for the black-box schemes. Incorporating the knowledge of 
the operators and engineers about the processes into the modeling schemes, con­
strained identification schemes provide a new and promising way for estimating 
dynamic models from operational data. Theoretical analysis of the constrained 
schemes such as identifiablity, convergence and consistency would provide solid 
ground for applying constrained identification schemes in industries.

•  Robust stability  and performance analysis of m ultirate inferential 
control system s: Model-plant mismatch (MPM) is inevitable in the chem­
ical process industry due to factors such as scaling, fouling, varying catalyst 
activity (in chemical reactors for example), equipment degradation with time. 
The stability  of a  special class of MR inferential control system s in the presence 
of MPM has been investigated, but the stability of more general MR inferential 
control system s in the presence of MPM should also be analyzed. This will 
constitute an extension to the work reported in Chapter 9.

•  Numerical robust stability analysis o f identification algorithms: Many 
of the identification problems can be solved as optimization problems. Ide­
ally all the identification schemes can give good results, bu t in practice many 
schemes can not even give reasonable results because of the existence of process 
disturbances and measurement noises. Numerical analysis shows that numeri­
cal structures of many identification algorithms are sensitive to  poor excitation, 
process disturbances and measurement noises. Research shows that sensitiv­
ity of many identification algorithms can be improved by formulating modified 
optimization problems. Robust stability analysis of the identification schemes 
is of great importance since process disturbances and measurement noises are 
unavoidable in practice.
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