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Abstract

In the process industry, certain quality variables cannot be measured regularly due

to technical limitations or economic constraints. Consequently, the industry relies on

laboratory analysis to measure such quality variables. However, laboratory analysis

introduces long time-delays in obtaining measurements due to the need to collect

representative samples, transport them, and conduct the analysis. The associated

delay can pose challenges in terms of timely decision-making and real-time control.

Therefore, fast-rate measurements in the process industry are crucial for real-time

quality monitoring and control. By obtaining real-time data, industries can improve

efficiency, meet customer expectations, and minimize risks associated with the quality

variables.

Data-driven predictive models, also known as soft sensors, have emerged as valu-

able tools in predicting quality variables in the process industry. The predictive mod-

els employ advanced data analysis techniques to predict the values of quality variables

using different data sources including regularly measured variables by online sensors

and visual information provided by video cameras. By leveraging historical data and

identifying patterns, the models can provide fast-rate predictions of quality variables.

This capability enables proactive decision-making and facilitates timely interventions

to maintain product quality and process control, and contribute to process optimiza-

tion.

In this thesis, we develop predictive models based on both conventional sensor

measurements and image data, each with its own advantages. The first two contri-

butions are related to conventional sensors data and the following two contributions
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are concerned with image data as a means to develop predictive models. The main

contributions of this thesis are listed as follows.

The first contribution involves developing a statistical predictive model for quality

variables with simultaneous consideration of time-varying time-delays, time-varying

sample collection periods, and varying operating points. A non-parametric distribu-

tion is used to describe the distributions of the time-delays, sample collection periods,

and switching of different operating modes, eliminating the need for prior knowledge

about the distributions. Furthermore, the work enables online updating of the model

parameters using a recursive Expectation-Maximization (EM) algorithm.

Then, we extend the linear time invariant predictive model to a linear parameter

varying (LPV) predictive model, and enhance robustness to outlying output obser-

vations through the use of t-distribution. Additionally, uncertainty of the unknown

model parameters is estimated using variational Bayesian (VB) algorithm.

Development of a computer vision model to predict quality variables is the third

contribution. A modified Kalman filter is formulated to restore degraded images

caused by factors like lighting conditions changes and camera noise. Additionally,

to estimate the predictive model parameters, a robust-to-outlier EM algorithm is

developed. The proposed model was validated on a tailing flotation process.

In the last contribution, the development of a computer vision model that en-

ables fast-rate prediction of quality variables is considered. To address the impact

of environmental conditions like steam and lighting on images, an atuoencoder-based

image inpainting algorithm is developed to fill in the missing regions in the images.

The restored images, along with slow-rate sampled measurements, are then used in

conjunction with the EM algorithm to construct an auto-regressive with eXogenous

input (ARX) predictive model.

All the proposed models in this thesis have been validated through experimental

studies.
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Chapter 1

Introduction

1.1 Motivation

Real-time and accurate measurement of key variables are crucial to process con-

trol and optimization applications. Certain industrial processes, such as chemical

processes, often encounter technical or economical limitations in measuring quality

variables, such as chemical product concentration. As a result, the measurement of

quality variables only occurs at a slow rate in laboratory (lab) settings. The lack of

frequent measurement for quality variables hampers the implementation of effective

control and optimization strategies, impeding timely adjustments, deviation identifi-

cation, and prompt response to changing conditions. As a result, process performance

may be suboptimal, quality may be impaired, and resources may be overused.

To address this issue, the development of predictive models becomes essential. By

leveraging advanced data analytics techniques, predictive models can be developed

based on different data sources, primarily sensor measurements and image data, to

provide fast-rate predictions for the slow-rate (quality) variables. The primary ob-

jective of predictive models is to bridge the gap between slow-rate measurements and

the real-time demands of control and optimization applications. Through accurate

predictions of quality variable values at a fast rate, these models facilitate monitoring,

control, and optimization of industrial processes.

Our research aims to tackle the difficulties presented by slow-rate measurements
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of quality variables in industrial processes. The main focus is on the development

of predictive models that use two different sources of data, namely sensor data and

image data, then employ advanced data analysis techniques. By offering timely mea-

surement of important quality variables, these models enable timely decision-making

and efficient resource allocation, and ultimately drive advancements in industrial op-

erations.

Predictive model

Time-series models Computer vision models

Figure 1.1: Data-driven predictive models based on the input data

1.2 Predictive Model Development

Predictive models, also referred to as soft sensors or inferential sensors, are essential

tools used in the process industry to predict the hard-to-measure or non-measurable

variables based on historical data, including sensor data and image data. These

models leverage statistics, machine learning, and artificial intelligence to make in-

formed predictions. By analyzing the data, they establish connections between input

variables and target variable(s), enabling decision-makers in the process industry to

gain valuable insights, predict trends, and make proper decisions [1]. According to

the source of data used, i.e. sensor data and image data, we have divided predic-

tive models into two categories: time-series predictive models and computer vision

models, as shown in Figure 1.1.

1.2.1 Time-Series Models

Generally, there are three approaches for predictive model development, namely first-

principles, data-driven, and gray-box models. The latter combines both. In order to

2



develop first-principles models, theoretical knowledge about the underlying mecha-

nisms is required [2]. The use of first-principles models is useful, but it is difficult

to obtain due to the complexity and lack of thorough understanding of some pro-

cesses. The use of data-driven models is common when a physical understanding of a

process under investigation is lacking or incomplete. Data-driven models, which are

constructed based on the historical relationships between the existing sensor mea-

surements and target variable(s) measurements, thereby avoiding the investigation

of complex chemical and physical phenomena [3]. These models incorporate statisti-

cal and machine learning techniques such as partial least squares (PLS) [4], support

vector regression (SVR) [5], Gaussian process regression (GPR) [6]. Also, deep archi-

tectures such as stacked autoencoders [7], long short-term memory (LSTM) networks

[8] are widely used to estimate variables of interest based on the sensor measurements

[9], enabling continuous monitoring and control of critical process parameters. We

will discuss some challenges associated with the data-driven approach in 1.3.

1.2.2 Computer Vision Models

With the advancement of artificial intelligence (AI), the gap between humans and

machines is narrowing rapidly. There are numerous researchers and enthusiasts ex-

ploring different aspects of AI and achieving remarkable innovations. Computer vision

stands out as one of these innovations. A key objective of computer vision is to enable

machines to perceive the world similar to what humans do. It covers a wide range of

tasks, such as object detection, tagging, recognition, classification, and analysis, as

well as natural language processing [10].

In the process industry, monitoring cameras can be mounted in a proper position

in order to visualize certain process behaviors, as has been demonstrated in numerous

studies [11–14]. It enables non-intrusive and cost-effective monitoring and estimation

of variables that are otherwise difficult or impossible to measure directly, offering valu-

able insights for process optimization and control. Computer vision models leverage
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image processing and machine learning techniques to predict the slow-rate sampled

variables [15]. Through the analysis of images, the models can relate the relevant

image features or patterns to the target process variables [16]. The advantage of

computer vision predictive models lies in their non-intrusive nature, as they do not

require physical contact with the subject. Moreover, they can capture spatial and

temporal information, enabling real-time or near-real-time monitoring and control,

and mimicking human visual perception to some degree. Accurate vision-based pre-

dictions, however, require high-quality images.

1.3 Common Problems and Related Works

This section reviews the common problems associated with sensor data and image

data, as well as solutions that have been proposed to address the issues. Several

of these challenges are common to both time-series and computer vision predictive

models, but some of them are unique to the latter.

1.3.1 Sampling Rate

Instantaneous values of variables such as flow rate and temperature are routinely

recorded using online sensors. On the other hand, it is technically or economically

difficult to acquire the instant values of some quality variables. Samples of quality

variables are commonly sent to lab for offline analysis. The lab measurements are

generally more accurate compared with the routinely recorded measurements using

online instruments. However, due to the sample collection time, transportation, and

long processing time in lab, the measurements are available at a slow rate with con-

siderable delays. Cement industry and oil sands processes are two examples among

various industries where some quality variables are often measured through the lab

analysis. A multirate data problem therefore occurs by the difference in measurement

sampling rates.

The modeling of multirate systems has gained a significant attention by researchers
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[17–19]. Down-sampling is one of the most frequently used methods in dealing with

multirate systems where fast-rate data samples are downsampled in accordance with

slow-measured variables, which will synchronize samples between the number of in-

put and output data [20]. Based on this technique, [21] proposed a dynamic PLS

model to predict the bottom composition of a pilot-scale distillation column utiliz-

ing online measurements of other process variables. In this straightforward method,

some information will be lost, resulting in less accurate models. The authors in [22]

combined the expectation-maximization (EM) algorithm with the Kalman filter (KF)

to conduct state-space model identification from multirate data in the presence of ir-

regularly sampled outputs. The work was concerned with linear time-invariant (LTI)

systems. The EM-based identification method was further extended to nonlinear mul-

tirate systems with irregularly missing observations, where particle filter was used to

approximate the required density functions [17]. In [23], the modeling of multirate

processes are discussed in more detail.

1.3.2 Time-Delay

Time-delay often exists in industrial processes due to time-consuming lab analysis,

unavoidable transport delays, etc, and can be divided into constant delay and time-

varying delay categories. Common methods to estimate the time-delay are through

the overparameterization method, non-parametric methods like step response and

correlation analysis, gradient-based optimization, grid searching method, etc. In these

methods, the estimation of model parameters is carried out independent of estimation

of time-delays. The incorrect estimation of the delay will lead to biased parameter

estimation [24]. To avoid this issue, the delay can be regarded as a hidden variable

with a prior distribution such as uniform distribution over a relatively large range. An

EM and generalized EM (GEM) have been used to solve the problem in [25] and [26],

respectively. The complexity and uncertainty of offline analysis or communication

network often lead to outputs with varying time-delays. The traditional identification
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algorithms such as least square (LS) are not applicable for handling systems with time-

varying time-delays [27]. On the other hand, statistical methods are widely used to

cope with incomplete data or missing variable problems. In [28], the EM algorithm

was used to estimate the parameters of a dual-rate finite impulse response (FIR) model

in which varying time-delays were assumed to follow a uniform distribution. However,

[29] and [30] claimed that the variations in time-delays are not completely random,

and there is a correlation between subsequent time-delays. Hence, a Markov chain

was utilized to model the delays and the correlations between them. The EM and

variational Bayesian (VB) algorithms were employed to estimate the parameters of

a slow-rate model in [29] and [30], respectively. In [31] a VB algorithm for processes

described by Auto-regressive with eXogenous input (ARX) model was studied to

estimate the parameters of a multirate system subject to varying time-delays. The

main difference between [31] and other aforementioned methods in handling the time-

delays is that in [31] it is assumed that the accurate time-delay interval is unknown

but the upper bound of the time-delay is known. In this statistical approach, the

occurrence probability of different time-delays was determined by introducing a set

of significance coefficients. Furthermore, the identification problem in the presence

of time-varying time-delays has been addressed in other works [32]. A number of

methods have been proposed to estimate time-delays [27, 33].

1.3.3 Integrated Samples

Chemical process samples are usually collected over a certain period of time, and then

sent to a lab for analysis. This type of sampling is known as integrated sampling [34,

35]. Although integrated sampling is a common practice in chemical processes, most

of the proposed solutions have ignored the integration in multirate modeling prob-

lem. Recently, this topic is gaining attention in process control research. [34] solved

state estimation problem for states with infrequent, delayed, and integrated measure-

ments. In [34], an augmented state-space model, consisting of fast-rate and integrated
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states, was defined. By fusing the fast and slow-rate measurements and applying a

variable dimension unscented Kalman filter (UKF), the states were estimated. The

state estimation and fusion problem in the presence of integrated outputs have been

investigated in [36] as well. In [36], a modified KF called integrated measurement

KF (IMKF) was utilized to estimate the integration of variables at a slow rate. After

extracting fast-rate samples by a smoothing technique, the fusion of slow-rate state

estimates and other fast-rate measurements improved the estimation results. Further-

more, the state estimation problem of the processes with integrated measurements in

the presence of parametric uncertainties was addressed in [37]. The convergence prop-

erties of the proposed filter were derived in the work. The integrated measurement

problem was investigated for nonlinear systems under the framework of Bayesian state

estimation [38] where particle filter was used to deal with the estimation problem.

Moreover, controller design for quality variables with integrated measurements was

addressed in [39]. Recently, model identification problem of such processes was con-

sidered in [40]. In this work, FIR and ARX model structures were selected to model

the fast-rate values of the integrated outputs where the EM algorithm was used to

estimate the unknown parameters.

1.3.4 Outliers

The presence of outliers is another problem in data-driven modeling. An outlier is

a data point that significantly differs from other observations, commonly occurring

in real processes. Outlier can be caused by various factors, such as sensor malfunc-

tions, unusual measurement noise, equipment failures, human errors, and unantici-

pated temporary disturbances, among others. Simply discarding outlier data points

can lead to biased estimation [41]. To handle outliers, robust solutions have been

proposed, including both deterministic and probabilistic approaches. The Gaussian

distribution, commonly used as a noise model, lacks robustness to outliers. Various

distributions, such as the t-distribution, contaminated Gaussian distribution, and
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Laplace distribution, have been used to model data contaminated by outliers. The

contaminated Gaussian distribution combines Gaussian distributions with different

noise variance levels and weights [42]. However, the method is suitable only for mod-

eling data with a limited degree of freedom. The t-distribution due to its longer tails,

with a adjustable degree of freedom, is a more general approach to model the effect of

abnormal data and has been widely used to cope with outliers in different applications

[30, 43].

1.4 Image Processing

1.4.1 Image Representation

A digital picture is made up of tiny dots called pixels, and each pixel has a number

that shows how bright it is. These numbers usually go from 0 to 255 for pictures that

use 8-bit numbers. The higher the intensity value is, the higher is the brightness of

the pixel. Therefore, each image can be defined as a two-dimensional matrix I, where

I(x, y) indicates the pixel intensity at position (x, y). In a gray-scale image, every

pixel is represented by a single value, whereas in color images like red-green-blue

(RGB) images, they are defined by a vector comprising three components. While

color images offer additional information, they also bring about increased complexity

when subjected to image processing and analysis.

Various forms of color images exist, each with its own way of representing and

conveying visual information. The most common type is RGB, where each pixel

is composed of three color channels that blend together to create a full spectrum

of colors. It is widely used in digital displays, cameras, and computer graphics.

In addition to RGB, there is also HSV (hue-saturation-value), which allows you to

adjust and control colors more intuitively, which is useful in editing and manipulating

images. Figure 1.2 shows a single image in three different representations. Further,

infrared and thermal images, often used in scientific and industrial applications, reveal
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temperature variations through color variations. Furthermore, hyperspectral and

multispectral images capture information that is not visible to the naked eye. In

diverse industries and creative endeavors, each type of color image serves a specific

purpose.

(a) Gray-scale image (b) RGB image (c) HSV image

Figure 1.2: Different representations of an image

1.4.2 Image Degradation

Real-world visual data often suffers from certain degradation. Some common exam-

ples of image degradation are shown in Figure 1.3. Image degradation in industrial

settings can stem from various factors, including poor lighting conditions, dust and

debris on cameras or lenses, occlusions, motion blur, and compression artifacts during

data transmission or storage [44]. This issue can significantly impact the accuracy and

efficiency of computer vision algorithms, leading to erroneous results and potentially

compromising critical processes. Image restoration, also called image reconstruction,

techniques, therefore, become critical in these scenarios [45]. By employing advanced

algorithms for denoising, deblurring, and enhancing image resolution, computer vi-

sion systems can effectively counteract the detrimental effects of image degradation

to certain degree. High-quality image restoration ensures that relevant features are

preserved, enabling more accurate image analysis. Ultimately, incorporating image

restoration into computer vision models in industrial applications can boost produc-

tivity, enhance product quality, and strengthen safety measures, making the overall

processes more efficient, reliable, and cost-effective. A detailed description of image
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restoration methods can be found in [46, 47].

(a) (b) (c) (d) (e) (f)

Figure 1.3: Image degraded by: (a) Text (b) Reflection (c) Cloud (d) Rain (e) Un-
wanted object (f) Artificial steam.

1.4.3 Image Restoration

Image restoration is an essential part in the field of computer vision, which aims at

predicting and filling the missing or damaged parts of images to achieve satisfactory

visual effects. The restoration process uses mathematical algorithms and statistical

models to correct various distortions like noise, blur, occlusion, artifacts and so on. In

order to enhance visual quality, recover lost details, and improve overall perceptual

clarity, restoration techniques analyze degradation factors and understanding how

images form. Medical imaging, satellite imagery, historical documents, and indus-

try all require accurate and unaltered visual information to be analyzed, diagnosed,

and interpreted. For image restoration, a variety of approaches have been proposed,

including traditional methods and deep learning techniques.

• Traditional image restoration methods: The traditional approach to image

restoration relies on the principles of maintaining texture coherence and pre-

serving content similarity. Based on mathematical and physical principles, these

methods adapt based on the extent of image damage. When dealing with mi-

nor image distortions, the restoration process involves reconstructing geometric

models and synthesizing textures to restore the image. When addressing signifi-
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cant image degradation, this approach, however, lacks semantic comprehension,

leading to challenges such as incomplete semantics and indistinct content.

• Deep learning-based image restoration: In recent years, a range of emerg-

ing image restoration methodologies have been introduced and applied as a

result of the rapid advancement of machine learning techniques, notably deep

learning. In addition to excelling at image processing, convolutional neural net-

works (CNNs) can also capture and articulate intricate image characteristics.

Image restoration techniques involving autoencoders and variational autoen-

coders are derived from CNNs. In addition, generative adversarial networks

(GANs) have progressively gained significant attention as a method for learn-

ing generative models that align with data distributions. By leveraging deep

learning methodologies, semantic insights can be extracted from images and

absent semantic content can be predicted, thus overcoming the limitations of

traditional techniques. Consequently, image restoration results are more likely

to reflect objective reality.

1.5 Thesis Objectives

In this thesis, the primary goal is to construct predictive models tailored for multirate

processes, ensuring the reliable and regular prediction of variables with slower rates.

Diverse data sources, encompassing conventional sensors and image data, are used

to achieve this objective. To enhance the applicability of these models, practical

challenges, notably integration intervals, often overlooked in existing literature, time-

delays, changing operating conditions and degradation in image data are carefully

taken into account. The regular and timely predictions predicted by these models

hold significant potential for a range of applications in process industry control and

optimization.
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1.6 Thesis Outline and Contributions

In Chapter 2, a background to the problems of parameter estimation, state estimation,

and image feature extraction is provided. The thesis continues by explaining each of

the specific contributions that will be presented in the following chapters. The rest

of the thesis is organized as follows.

Chapter 3 focuses on the development of predictive models, both offline and online,

for quality variables in multirate systems with switching operating modes. These

models specifically account for slow-rate integrated measurements that experience

time-varying time-delays as well as variable integration periods. The main contribu-

tions of Chapter 3 are as follows:

• Formulating the multirate process identification problem considering time-varying

integration periods, time-varying time-delays, switching operating modes, si-

multaneously.

• Using a nonparametric form of distribution with no requirement of prior knowl-

edge to model the integration periods, delays, and switching between different

operating modes.

• Online prediction of the slow-measured variables.

Chapter 4 addresses the development of a robust model for predicting quality

variables. This model aims to tackle multiple practical challenges along with those

discussed in the previous chapter. The main contributions of this work, building upon

the findings of Chapter 3, can be summarized as follows:

• Developing a global linear parameter varying (LPV) model for the processes

with the slow-rate integrated output measurements.

• Improving robustness to outlying output observations using t-distribution.
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• Considering the time-varying integration intervals, time-varying time-delays,

and uncertainties of the unknown parameters, simultaneously, using the VB

algorithm.

Chapter 5 presents the third contribution to predict flotation froth cumulative con-

centration using a computer vision model, taking into account contaminated images

and outlier affected observations. A regression model with multiple inputs is consid-

ered to estimate the output. The EM algorithm is used to estimate the unknown

parameters of the model. The principal contributions of this chapter are as follows.

• Restoration of the contaminated images with bright lighting spots using a mod-

ified spatial-based KF.

• Extraction of deep froth image features using CNN and transfer learning, and

integrating features over the batch with unique attention weights assigned to

successive frames.

• Development of a robust-to-outlier model for cumulative bitumen content pre-

diction of each batch based on image features.

Chapter 6 presents the final contribution of the thesis in which we propose another

computer vision model for predicting slow-measured variables at a fast rate. The

main contributions of chapter 6 include:

• Development of an autoencoder-based algorithm to inpaint images with rela-

tively large missing portions of images.

• Development of an ARX model using image data and slow-measured output to

predict the output at a fast rate.

• Integration of the Rauch-Tung-Striebel (RTS) smoother into the KF framework,

coupled with the utilization of the EM algorithm, thereby enabling estimation

of unknown model parameters.
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Chapter 7 summarizes the conclusions drawn from the developed models and al-

gorithms. The possible future work is also outlined in the chapter.
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Chapter 2

Background

2.1 Parameter Estimation

In this section, we delve into a detailed explanation of two highly recognized algo-

rithms that are commonly employed to address the challenge of parameter estimation

in scenarios where hidden or latent variables are present, or when dealing with missing

data. These algorithms serve as powerful tools to navigate through complex modeling

situations and offer effective solutions to estimate the unknown parameters involved.

2.1.1 Introduction to the EM Algorithm

The EM algorithm is a powerful computational technique widely used in statistical

modeling and machine learning. It provides an elegant solution to problems involving

incomplete or missing data, where the goal is to estimate the parameters of a prob-

abilistic model. The EM algorithm was first introduced in [48], and has since then

become a fundamental tool in various fields such as signal processing, natural lan-

guage processing, and computer vision. At its core, the EM algorithm is an iterative

optimization method that seeks to find the maximum likelihood estimates (MLE) or

maximum a posteriori (MAP) estimates of the parameters in a statistical model. EM

algorithm addresses scenarios where the presence of missing data prevents the direct

application of traditional optimization techniques.

The key idea behind the EM algorithm is to iteratively alternate between two
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steps: the expectation step (E-step) and the maximization step (M-step). The E-

step provides the expectation of the complete data likelihood based on the current

model parameters and observed data. In the M-step, the algorithm updates the model

parameters by maximizing the expected complete data likelihood obtained in the E-

step. This step is often a straightforward optimization problem, as the complete

data likelihood is usually easier to optimize than only the observed data likelihood.

By iteratively repeating these two steps, the EM algorithm converges to a set of

parameter estimates that maximize the observed data likelihood, in the presence of

missing data.

The mathematical formulation of the EM algorithm can be expressed through the

following steps. Assume a complete dataset that is comprised of an observed part

Dobs and a hidden part Dhid.

E-step: In this step, expectation of the log-likelihood function of the complete

data with respect to the conditional distribution of the hidden variables given the

observed data and the parameters estimated at the previous iteration is derived.

Q(Θ|Θh) = EDhid|Dobs,Θh [log(p(Dhid, Dobs|Θ))] , (2.1)

where Θh stands for the estimated parameters at the previous iteration.

M-step: In this step, the parameters are updated by maximizing the Q function

with respect to each corresponding parameter. That is to find:

Θh+1 = arg max
Θ

Q(Θ|Θh). (2.2)

Convergence: If the following relative change of parameter estimates is less than

a prespecified small tolerance, then the algorithm is completed.

||Θh+1 −Θh||2

||Θh||2
≤ ε (2.3)
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The performance of the EM algorithm can be influenced by the initial values of the

model parameters. As the algorithm iterates and optimizes a likelihood function,

different solutions may be reached with different initial parameter values. To miti-

gate the impact of initialization, the EM algorithm is commonly executed multiple

times with various initial guesses. Researchers may employ strategies like random

initialization, leveraging prior knowledge for informed initial guesses, or conducting a

grid search across a range of values to enhance the likelihood of obtaining an optimal

solution.

It is important to note that although the EM algorithm guarantees convergence

under specific assumptions, it may still converge to a local maximum rather than the

global maximum of the likelihood function [48, 49]. Consequently, careful selection

of appropriate initial values and exploration of multiple starting points remain vital

considerations to achieve reliable results with the EM algorithm.

2.1.2 Introduction to the VB Algorithm

The VB algorithm is a computational method that facilitates approximate Bayesian

inference in complex probabilistic models. It offers an efficient and scalable solution

for estimating the posterior distribution of latent variables and model parameters.

VB is particularly useful when exact inference is intractable due to the complexity

of the model or the size of the dataset [50]. The VB algorithm is rooted in Bayesian

statistics, which provides a principled framework for modeling uncertainty and mak-

ing probabilistic inferences. Bayesian inference aims to compute the posterior distri-

bution, which represents the updated belief about the unknown variables given the

observed data and prior knowledge. In many cases, obtaining the exact posterior dis-

tribution is analytically or computationally challenging. The VB algorithm addresses

this challenge by approximating the true posterior with a simpler distribution that

belongs to a parameterized family of distributions. This approximation is achieved by

minimizing the Kullback-Leibler (KL) divergence between the true posterior and the
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approximating distribution. The VB algorithm offers several advantages, including

its ability to handle large datasets and complex models, and its computational effi-

ciency compared to more computationally demanding methods such as Markov chain

Monte Carlo (MCMC). It has been successfully applied to a wide range of problems,

including Bayesian inference, Bayesian neural networks, and latent variable modeling

[51].

The VB algorithm transforms the inference problem into an optimization problem.

In this algorithm, the parameters of the approximating distribution are iteratively

updated by maximizing the evidence lower bound (ELBO). Maximizing the ELBO

is equivalent to minimizing the KL divergence between the true posterior and the

approximating distribution. The optimization process of the VB algorithm typically

involves two steps [52]. In the first step, the algorithm computes the posterior dis-

tribution of the hidden variables given the current values of the model parameters.

This step involves calculating the expected sufficient statistics of the hidden vari-

ables under the current approximating distribution. In the next step, the algorithm

updates the posterior distribution of model parameters by maximizing the expected

complete log-likelihood based on the current posterior distribution of the hidden vari-

ables. This step involves optimizing the ELBO with respect to the model parameters

poterior distribution. By iteratively repeating these steps, the VB algorithm refines

the approximating distribution and improves the lower bound on the log marginal

likelihood. The algorithm continues until convergence, where the changes in the pa-

rameters and the ELBO become negligible.

Denote ∆ as the model structure. In Bayesian estimation, the marginal likelihood

of observed data given the model structure, p(Dobs|∆), can be evaluated through

integration over hidden variables and unknown parameters as:

p(Dobs|∆) =

∫︂∫︂
p(Dobs, Dhid,Θ|∆) dDhid dΘ. (2.4)
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Due to the complexity of the above integral and its high dimension, the log marginal

likelihood can be expanded by introducing a free distribution q(Dobs, DΘ),

log p(Dobs|∆) = log

∫︂∫︂
q(Dobs|∆)

p(Dobs, Dhid,Θ|∆)

q(Dobs|∆)
dDhid dΘ. (2.5)

Then by applying Jensen’s inequality,

log p(Dobs|∆) ≥
∫︂∫︂

q(Dobs|∆) log
p(Dobs, Dhid,Θ|∆)

q(Dobs|∆)
dDhid dΘ. (2.6)

The difference between log p(Dobs|∆) and the lower bound is the KL divergence which

is defined as follows.

KL(q||p) =
∫︂
q(Dhid,Θ) log

q(Dhid,Θ)

p(Dhid,Θ|Dobs,∆)
dDhid dΘ (2.7)

Thus, (2.6) can be rewritten as

log p(Dobs|∆) ≥ log

∫︂∫︂
q(Dobs|∆)

p(Dobs, Dhid,Θ|∆)

q(Dobs|∆)
dDhid dΘ ≡ F∆(q(Dhid)q(Θ))

(2.8)

Therefore, maximizing log(Dobs|∆) is shifted to maximizing F∆(q(Dhid)q(Θ)) over

q(Dhid) and q(Θ). This will lead to the following updating equations.

• Updating posterior distribution of hidden variables

q(Dhid) =
exp

(︁
⟨log p(Dobs, Dhid,Θ|∆)⟩q(Θ)

)︁∫︁
exp

(︁
⟨log p(Dobs, Dhid,Θ|∆)⟩q(Θ)

)︁
dDhid

(2.9)

• Updating posterior distribution of model parameters

q(Θ) =
exp

(︁
⟨log p(Dobs, Dhid,Θ|∆)⟩q(Dhid)

)︁∫︁
exp

(︁
⟨log p(Dobs, Dhid,Θ|∆)⟩q(Dhid)

)︁
dΘ

(2.10)

where ⟨.⟩Y denotes the expectation with respect to Y . The aforementioned steps are

iteratively updated until a convergence condition is met.
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2.2 State Estimation

In this section, we present an introduction to the KF, which serves as a widely utilized

tool for addressing linear state estimation problems. The KF is a powerful algorithm

that allows for optimal estimation of the hidden or unobservable states in a linear

dynamical system.

2.2.1 Kalman Filter

The KF is a powerful tool for estimating the state of a dynamic system based on noisy

measurements. It provides an optimal recursive solution to the problem of state es-

timation in linear dynamic systems, combining information from both measurements

and predictions [53]. The KF is based on Bayesian estimation principles and has since

become a fundamental technique in various fields, including control systems, signal

processing, robotics, and navigation.

To illustrate the KF, we consider a standard linear state-space model, which can

be represented as follows:

xk = Axk−1 +Buk + wk (2.11)

yk = Cxk + vk (2.12)

where:

• xk is the state vector at time k

• A is the state transition matrix

• B is the control input matrix

• uk is the control input at time k

• wk is the process noise with covariance Q

• yk is the measurement at time k

20



• C is the measurement matrix

• vk is the measurement noise with covariance R

The KF involves two steps: the prediction step and the update step. In the prediction

step, we predict the state and its uncertainty based on the previous state estimate

and current control input. The predicted state estimate x̂−k and the predicted error

covariance P−
k can be computed as follows:

x̂k|k−1 = Ax̂k−1|k−1 +Buk (2.13)

Pk|k−1 = APk−1|k−1A
T +Q (2.14)

In the update step, we incorporate the measurement to refine the state estimate

based on the measurement’s reliability and the predicted state estimate. The Kalman

gain Kk is computed as:

Kk = Pk|k−1 − CT (CPk|k−1C
T +R)−1 (2.15)

Using the Kalman gain, the updated state estimate x̂k|k−1 and the updated error

covariance Pk|k are given by:

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) (2.16)

Pk|k = (I −KkC)Pk|k−1 (2.17)

These equations reflect the essential steps of the KF. The filter starts with an initial

state estimate x̂0|0 and error covariance P0|0, and then iterates through the prediction

and update steps for each time step k.

The KF provides an optimal solution for estimating the state of a dynamic system

based on noisy measurements. By combining predictions and measurements while

considering uncertainties, it allows for accurate and adaptive state estimation. With

its broad applicability and solid theoretical foundations, the KF serves as a funda-

mental tool in state estimation and data fusion applications.
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2.3 Image Feature Extraction

Images are valuable sources of information with diverse applications. They offer

insights in areas like medical diagnostics, agriculture, security, creative arts, and

artificial intelligence. The visual nature of images makes them indispensable for un-

derstanding complex phenomena and making informed decisions. The extraction of

image features is an integral part of computer vision and image processing, involving

the capture of relevant and distinctive information from digital images. In order to

interpret visual content efficiently, raw pixel data must be converted into a compact

and meaningful representation. As a result of this extraction of key features, a variety

of tasks are possible, including object recognition, image classification, image anal-

ysis, and image retrieval. For feature extraction, a number of techniques have been

developed, such as edge detection, color histograms, texture feature extraction, and

deep learning-based techniques. Computer vision applications across diverse indus-

tries and domains are empowered by image feature extraction, which identifies key

patterns, shapes, textures, and other distinctive characteristics.

2.3.1 Common Image Feature Extractors

Image feature extractors can be categorized into different groups based on their under-

lying methodologies and applications. Following is a categorization of some commonly

used image feature extractors:

1. Edge detection: Edge detection stands as a technique for extracting features,

aiming to pinpoint object boundaries within an image. This procedure bears

resemblance to the notion of enhancing image clarity. As noted, pixel inten-

sity values tend to exhibit consistency within regions occupied by objects of

the same kind. Substantial alterations occur solely along object perimeters,

where distinct changes become evident. The following is an example of an edge

22



(a) Original image (b) Feature map after edge detection

Figure 2.1: Image edge detection

detector:

Gx =

⎡⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎥⎦ ∗ I

Gy =

⎡⎢⎢⎢⎣
−1 −2 −1

0 0 0

1 2 1

⎤⎥⎥⎥⎦ ∗ I

where Gx and Gy are the gradients in the horizontal and vertical directions

respectively, and I represents the image. The magnitude of the gradient can be

obtained as:

Gradient Magnitude =
√︂
G2

x +G2
y

This magnitude highlights regions with significant changes in intensity, corre-

sponding to edges. By utilizing such equations, edge detection algorithms can

effectively identify object boundaries based on these intensity fluctuations. Fig-

ure 2.1 shows the results of edge detection on a sample image using the above

equations.

2. Handcrafted feature extractors:

23



• Gray level co-occurrence matrix (GLCM): It is a statistical method

used in image processing for texture analysis. A wide range of texture

features can be extracted from digital images using this technique. GLCM

captures the spatial relationships between pixel intensities by analyzing

the co-occurrence of gray levels within different pixel positions within an

image.

• Local binary pattern (LBP): LBP determines the local texture patterns

of an image, making it useful for identifying texture patterns and analyzing

facial features.

• Gabor Filters: These filters are spatial frequency filters that analyze

image regions at different orientations and scales to capture texture infor-

mation.

3. Frequency domain techniques:

• Fast Fourier transform (FFT): This method converts images into fre-

quency domain representations, highlighting patterns that may not be eas-

ily seen in the spatial domain. Compression and denoising of images are

examples of its use.

• Wavelet transform: This technique is useful for detecting edges and

analyzing textures, since it breaks down an image into different frequency

components.

4. Deep learning-based extractors:

• Convolutional neural networks (CNNs): These deep neural networks

use convolutional layers to automatically learn features from images. In im-

age processing and image analysis, CNNs are widely used for tasks such as

image classification, object detection, and semantic segmentation. VGG,

ResNet, and MobileNet are networks developed based on CNNs.
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• Siamese networks: Siamese networks are used to compare and iden-

tify similarities between pairs of images, often in tasks such as similarity

analysis.

5. Transfer learning and pre-trained models:

• Feature extractors from pre-trained CNNs: Transfer learning in-

volves using pre-trained CNNs as feature extractors for other tasks. For

example, features from intermediate layers of networks like VGG or ResNet

can be used for various tasks.

In this thesis, we use GLCM and a pre-trained CNN, VGG16, for the extraction

of image features. Hence, we provide a detailed description of these two techniques.

2.3.2 Gray Level Co-occurrence Matrix

Texture analysis aims in finding a unique way of representing the underlying char-

acteristics of textures and represent them in some simpler but unique form, so that

they can be used for robust, accurate classification and segmentation of objects. The

statistical texture analysis determines texture features by analyzing how intensities

vary at each position relative to others in an image. There are three types of texture

statistics: first order, second order, and higher order statistics. GLCM is used to ex-

tract second-order statistical texture features from images [54]. The GLCM operates

on the principle of examining the spatial relationships between pixel intensity values

in an image. GLCM calculates the frequency of pairs of pixels with a specific value

and offset within a gray-level image, and it is a G∗G matrix where G is the number of

gray levels in the image. The matrix element p(i, j|∆x,∆y) is the relative frequency

where i and j represent the intensity and both are separated by a pixel distance

∆x,∆y. Image textural features such as energy, entropy, contrast, homogeneity, cor-

relation, dissimilarity, inverse difference moment, and maximum probability can be

computed using GLCM. The numerical features computed from GLCM can be used
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to represent, compare, and classify textures. Therefore, the GLCM is used in this pa-

per to extract flotation froth image textural features. Once the GLCM is computed,

a variety of statistical measures including entropy, contrast, energy and homogene-

ity can be derived from it. The following is a description of these features. These

measures quantify the relationship between pixel intensity pairs and reveal essential

textural information about the image [55].

Energy =
G∑︂
i=1

G∑︂
j=1

p(i, j)2

Contrast =
G∑︂
i=1

G∑︂
j=1

(i− j)2 · p(i, j)

Homogeneity =
G∑︂
i=1

G∑︂
j=1

1

1 + |i− j|
· p(i, j)

Entropy = −
G∑︂
i=1

G∑︂
j=1

p(i, j) · log(p(i, j)) (2.18)

Here G is the number of gray levels in the image. Also, p(i, j) is the probability of

the co-occurrence of pixel intensities i and j in the GLCM matrix.

2.3.3 Convolutional Neural Network

CNNs, inspired by the human visual cortex, have revolutionized computer vision

tasks, especially in image processing. A CNN is a type of deep neural network mainly

used to analyze visual images. In contrast to a feed-forward neural network, where

each input element has its unique set of weights, CNN operates by sharing parameters

across the input pixels. Their hierarchical feature learning and translation invariance

enable them to extract meaningful patterns from raw data. A typical CNN architec-

ture usually consists of convolutional layers, activation layer, pooling layer, and fully

connected layer, as shown in Figure 2.2. The layers of the CNN are listed below,

along with a description of their functions.

26



Figure 2.2: An architecture of a CNN

• Convolutional layer: In the convolution layers, trainable filters (kernels) are

convoluted with the input image to extract specific features, starting from basic

characteristics like edges and shapes in initial layers to more complex patterns

in deeper ones. Proper adjustment of convolution kernel parameters is essential

to match the input image’s size and architecture of the network [56]. The sparse

connectivity of neurons in the convolution layer allows them to share weights in

response to overlapping receptive field regions, ensuring comprehensive coverage

of the visual area.

• Activation layer: This layer introduces non-linearity to the network by ap-

plying an activation function to the output of the convolutional layer. The

most commonly used activation function is the Rectified Linear Unit (ReLU),

which replaces negative values with zero, allowing the network to learn complex

relationships between features.

• Pooling layer: Also known as downsampling layer, it reduces the spatial di-

mensions of the feature maps while retaining their essential information [57].

Pooling helps decrease the computational complexity and makes the network

more robust to variations in object position and size. Common pooling methods

include max-pooling and average-pooling.
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• Fully connected (FC) layer: After several convolutional and pooling layers,

the feature maps are flattened and fed into one or more FC layers. The FC

layers are responsible for generating the final output by combining the abstract

features learned from the previous layers. In classification tasks, the FC layer

produces the probabilities for each class.

It should be noticed that when only feature extraction is desired, the FC layer needs

to be removed from the network.

In summary, CNNs offer several advantages that have made them popular, includ-

ing:

1. The sharing of weights in convolutional layers substantially reduces the number

of trainable parameters in the network. This makes CNNs computationally

efficient, making them applicable to large-scale datasets.

2. During training, CNNs automatically learn relevant features from the input

data and discover hierarchical representations for complex visual tasks, rather

than relying on handcrafted features. This allows CNNs to understand complex

relationships within the data.

3. Training CNNs on large datasets (e.g., ImageNet) can be fine-tuned and used

on other tasks, reducing the need for massive amounts of data.

4. CNNs can also be used just as feature extractors which can then be used for

any other further applications.
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Chapter 3

Predictive Model for Switching
Multirate Processes with Varying
Delays and Integrated
Measurements 1

3.1 Introduction

Multirate data, which can be seen as a special case of the missing data problem, is

a common problem in practice. Modeling of multirate processes with time-varying

time-delays has been addressed in numerous studies [24, 28, 29, 31, 58, 59]. The

EM algorithm is commonly used for solving the parameter estimation problem in

the presence of hidden variable(s) [60–62]. For instance, it was used to estimate the

unknown parameters of a fast-rate FIR model in [28], output error (OE) model in

[24, 58], state-space model in [59], and a slow-rate ARX model in [29]. While [24, 28,

58, 59] assumed that the measurement time-delays follow a uniform distribution, [29]

claimed that the variations in time delays are not completely random, and there is

a correlation between subsequent delays. Hence, a Markov chain was used to model

the delays and the correlations between them. In [31], a fast-rate ARX model was

proposed for multirate processes without relying on a prior distribution for modeling

1This chapter has been published as: Y. Salehi and B. Huang, “Offline and Online Parameter
Learning for Switching Multirate Processes with Varying Delays and Integrated Measurements,” in
IEEE Transactions on Industrial Electronic, vol. 69, no. 7, pp. 7213-7222, July 2022.
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the delays. In that work, the contribution of the different delays was determined by

introducing a set of occurrence probabilities.

In addition, in certain processes such as in the cement industry and chemical pro-

cesses, the samples of quality variables are often collected over a significant time

interval and then transported to the lab for analysis. These integrated samples con-

tain information of material over the time interval of collection, not a single instant.

The time interval for collecting the material which might vary, is defined as the inte-

gration period. In most of the current multirate process identification practices, the

integrated measurement problem is not considered. Although integrated measure-

ment is common in practice, there exist limited theoretical studies on this subject

[37, 39, 40, 63–65].

Furthermore, processes are typically operated in different operating modes [66],

thus a single model may not perform well in capturing all the dynamics of the multi-

mode processes. Data-driven process modeling techniques and detection of different

operating conditions have been explored in the literature [67, 68]. For example,

this problem has been considered in [69] where the data classification and parameter

estimation problem are solved simultaneously. Also, adaptive methods are well-known

approaches to update the parameters when the operating conditions of the systems

are changing [70]. In this category, the recursive form of the EM algorithm [71] is

a popular method which can perform efficiently in dealing with changing operating

conditions. In [40], an ARX model was selected to predict the fast-rate values of

the slow-rate sampled variables where the EM algorithm was used to estimate the

unknown parameters. The main shortcomings of the work are, however, that the

slow-rate measurements are assumed to be delay free, as well as having a fixed, known

integration period. Moreover, the system is assumed to work in a single operating

mode with no changes in the operating conditions.

The results in [37], [39], and [40] show the importance of considering integration

periods in multirate modeling and control. Furthermore, in most of the existing
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literature for multirate systems, the time-delays are modeled by specific probability

distribution functions. However, the delays may not follow the same distribution for

the entire process. Hence, it is desirable to develop a nonparametric-based approach

to deal with time-varying time-delays. Thus, the main contributions of this work are:

1. Formulating the multirate process modeling considering time-varying integra-

tion periods, time-varying time-delays, and switching operating points, simul-

taneously.

2. Using a nonparametric form of distribution with no requirement of prior knowl-

edge to model the integration periods, delays, and switching of different oper-

ating modes.

3. Updating the model parameters in real time using a recursive EM algorithm.

3.2 Problem Statement

The following is the mathematical representation of a dual-rate augmented regression

model in the presence of varying time-delays along with varying integration periods:

xt = ϕ(1)tθ
m
(1) + ϕ(2)tθ

m
(2) + · · ·+ ϕ(R)tθ

m
(R) (3.1)

yTi
=

1

ℓi

ℓi−1∑︂
s=0

xTi−λi−s + vTi
(3.2)

where ϕ(r)t =
[︁
u(r)t, u(r)t−1, · · · , u(r)t−nr

]︁
r=1,2,...,R

(i.e. each input variable is aug-

mented by its lagged values) and R is the number of input variables. Note that

{u(r)t}t=1,··· ,Nf
denotes the rth input variable which is available at every fast sam-

pling time tf , and xt is the fast-rate output of interest. {θm(r)}
m=1,2,··· ,M
r=1,2,··· ,R ∈ R1×(nr+1)

denotes the parameter vector where nr is the known order of the augmented regressor

associated with the rth input variable, and M stands for the number of operating

modes that is given. {yTi
}i=1,2,··· ,Ns

represents the slow-rate integrated output that is
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available only at every Ti × tf . Nf and Ns are the number of the fast-rate input data

(for each input variable) and slow-rate output data, respectively, where Nf/Ns = ∆.

Also, li and λi are, respectively, the varying integration periods and the varying time

delays. The measurement noise term vTi
is an independent, identically distributed

(i.i.d) Gaussian sequence with mean zero and an unknown variance σ2. Figure 3.1

shows the system with delayed integrated measurements.

Figure 3.1: System with delayed integrated measurements

For simplicity in notation, the model representation in (3.1) and (3.2) can be

rewritten as follows:

xt = ϕ̃tθ̄
m

(3.3)

yTi
= ϕ̄

(ℓi)
Ti−λi

θ̄
m
+ vTi

(3.4)

where

ϕ̃t =
[︁
ϕ(1)t, ϕ(2)t, · · · , ϕ(R)t

]︁
(3.5)

θ̄
m
=
[︁
θm(1), θ

m
(2), · · · , θm(R)

]︁T
(3.6)

ϕ̄
(ℓi)
Ti−λi

=
1

ℓi

ℓi−1∑︂
s=0

ϕ̃Ti−λi−s (3.7)

Most of the existing modeling approaches for varying random delays rely on a

specific form of the probabilistic distribution. Thus, the results may not be reliable

when the delays follow a distribution that is different from the assumed distribution.
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Despite the previous research such as [28, 58], and [29], the integer measurement

delays arising from transportation time and manual processing do not have to follow

a specific distribution. Therefore, in this work, the unknown varying time-delays are

modeled by a nonparametric distribution which is more flexible. The upper possible

bound for the delays, represented by J , is assumed to be known but it does not need to

be precise. For each of the possible delays j ∈ {1, 2, · · · , J}, an occurrence probability

βj is assigned that shows the probability for specific delay value j to occur. The set

of the time-delay occurrence probabilities is indicated by β = {β1, β2, · · · , βJ} where
J∑︁

j=1

βj = 1 and βj ∈ [0, 1]. For the extreme cases, βj = 1 indicates that a delay equal

to j is the only possible value. In contrast, βj = 0 means that the delay equal to j

does not occur.

Also, the integration periods are usually unknown and time varying. In this regard,

the same proposed method for modeling the delays is used to model the varying

integration periods. A set of occurrence probabilities α = {α1, α2, · · · , αK} is assigned

to the integration periods k ∈ {1, 2, · · · , K} with the constraint that
K∑︁
k=1

αk = 1. To

comply with the physical possibility, it is assumed that K+J ≤ ∆ holds. However, if

K+J ≤ ∆ increases, the number of parameters to estimate increases, making it more

difficult to calculate parameters using the parameter estimation algorithms. Thus, if

this upper bound is high, traditional methods based on prior distributions may be

preferable since they require fewer parameters.

Furthermore, the systems usually switch between different modes. To solve the

parameter estimation problem, the data need to be classified into different modes.

We will classify the data using the same idea as for the delays and integration peri-

ods. Thus, a set of occurrence probabilities γ = {γ1, γ2, · · · , γM} is assigned to the

operating points m ∈ {1, 2, · · · ,M} with the constraint that
M∑︁

m=1

γm = 1. The true

upper bound for the number of modes, i.e. M , is assumed to be known, and the

identity of each local model is denoted by I. In this setting, the observed variables
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(Dobs), hidden variables (Dhid) and parameters to be estimated (Θ), are defined as

Dobs = {Y, U} = {yT1:TNs
, u(1)1:Nf

, · · · , u(R)1:Nf
} (3.8)

Dhid = {I,Λ, L} = {I1:Ns , λ1:Ns , ℓ1:Ns} (3.9)

Θ = {θ̄m, σ2, γ, β, α}m=1,2,...,M (3.10)

A list of the key notation used in the problem formulation along with the corre-

sponding descriptions are given in Table 3.1.

The goal is to develop an EM algorithm to solve the parameter estimation problem

for multirate sampled processes subject to varying time-delays along with varying

integration periods in the presence of multiple operating modes. Then, a recursive

EM algorithm will be developed to update the parameters to predict the variables of

interest in real time and at a fast rate.

Table 3.1: List of variables and their corresponding description

Notation Description

x Unmeasured fast-rate output

u(r) rth input variable

nr Order of dynamics in the rth input

y Slow-rate integrated measurement

v Measurement noise

λ varying time-delay

βj Occurrence probability of λ = j

ℓ Varying integration period

αk Occurrence probability of ℓ = k

θ̄
m

Model parameter vector

ϕ̃ Augmented regressor vector

I Identity of each local model

γm Occurrence probability of I = m
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3.3 Offline Parameter Learning

In this section, a batch EM algorithm is derived for switching augmented regres-

sion models with the delayed and integrated output measurements to estimate the

unknown parameters.

The EM algorithm is an iterative optimization algorithm to compute the MLE or

MAP estimate of the unknown parameters in the presence of incomplete data [48].

In the EM algorithm, starting with an initial value of the unknown parameters, the

E-step and M-step are repeated until the convergence of the parameters. Convergence

of the EM algorithm has been proven in [48, 49]. Assume that a complete data set

consists of an observed part Dobs and a hidden part Dhid. Then, the mathematical

formulation of the EM algorithm can be expressed through the following steps.

3.3.1 Expectation Step

In this step, the expectation of the log-likelihood function of the whole data, which

is known as the Q-function, including the missing data, with respect to the condi-

tional distribution of the missing data given the observed data and the parameters

estimated at the previous iteration is

Q(Θ|Θh) = EDhid|Dobs,Θh [log(p(Dhid, Dobs|Θ))] (3.11)

where E is the expectation operator and Θh is the estimated parameters at the previ-

ous iteration. According to the definition of the Q-function in (3.11) and the complete

data set represented by (3.8)-(3.10), the following Q-function is obtained for the prob-

lem of interest, that is,

Q(Θ|Θh) = EI,Λ,L|Y,U,Θh [log(p(Y, U, I,Λ, L|Θ))] (3.12)

Based on the probability chain rule, the likelihood function of the complete data
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set can be decomposed as

p (Y, U, I,Λ, L|Θ) = p (Y |U, I,Λ, L,Θ) p (I|Λ, L, U,Θ)

× p (Λ|L,U,Θ) p (L|U,Θ) p(U |Θ) (3.13)

Since the input values are known and deterministic, the last term in (3.13) is inde-

pendent of Θ. Thus, this term can be denoted as p(U |Θ) ≡ C where C1 is a constant

with respect to Θ.

For the set of Ns observations, according to (3.4), the probability of the obser-

vations is independent of each other and takes the distribution of the measurement

noise which can be expressed by the product of all output marginal distributions as

p (Y |U, I,Λ, L,Θ) =
Ns∏︂
i=1

p(yTi
|ϕ̄(ℓi)

Ti−λi
, λi, ℓi,Θ

Ii) (3.14)

where every individual marginal distribution takes the form of

p
(︂
yTi

|ϕ̄(ℓi)
Ti−λi

, λi, ℓi,Θ
Ii
)︂
=

1√
2πσ2

exp

(︃
−

(︂
yTi

− ϕ̄
(ℓi)
Ti−λi

θ̄
Ii
)︂2

2σ2

)︃
(3.15)

Furthermore, the modes, measurement time-delays, and integration periods can be

considered jointly independent of each other and independent of the inputs as well

owing to the fact that these variables do not affect each other, and their corresponding

nonparametric distributions are given as

p (I|Λ, L, U,Θ) =
Ns∏︂
i=1

p(Ii|Θ) (3.16)

p (Λ|L,U,Θ) =
Ns∏︂
i=1

p(λi|Θ) (3.17)

p (L|U,Θ) =
Ns∏︂
i=1

p(ℓi|Θ) (3.18)

where γm, βj, and αk are, respectively, the probability that the operating mode m,

the delay j, and the integration period k occur. So, for each slow-rate data point i

we have

p(Ii = m) = γm (3.19)
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p(λi = j) = βj (3.20)

p(ℓi = k) = αk (3.21)

Substituting (3.14) and (3.16)-(3.18) into (3.12) and noting that the expectation

operator can be moved into the summation yields

Q(Θ|Θh) =EI,Λ,L|Y,U,Θh

[︃
log(C)

Ns∏︂
i=1

p(yTi
|ϕ̄(ℓi)

Ti−λi
,ΘIi)p(Ii)p(λi)p(ℓi)

]︃

=
Ns∑︂
i=1

EI,Λ,L|Y,U,Θh

[︃
log(p(yTi

|ϕ̄(ℓi)
Ti−λi

,ΘIi)) + log(p(Ii))

+ log(p(λi)) + log(p(ℓi))

]︃
+ log(C)

(3.22)

Substituting (3.15) and (3.19)-(3.21) into (3.22) gives

Q(Θ|Θh) =
Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

(p(Ii = m,λi = j, ℓi = k)|yTi
, ϕ̄

(ℓi)
Ti−λi

, (ΘIi)h)

×
[︃
log(p(yTi

)|ϕ̄(ℓi)
Ti−λi

, λi = j, ℓi = k,ΘIi , Ii = m)

]︃
+

Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

(p(Ii = m,λi = j, ℓi = k)|yTi
, ϕ̄

(ℓi)
Ti−λi

, (ΘIi)h)

×
[︃
log p(Ii = m) + log p(λi = j) + log p(ℓi = k)

]︃
+ log(C)

(3.23)

In order to further simplify the Q-function obtained in (3.23), the weight wimjk

denotes the joint posterior distribution of the hidden variables as

wimjk = p((Ii = m,λi = j, ℓi = k)|yTi
, ϕ̄

(ℓi)
Ti−λi

,Θh)

=
p
(︁
yTi |ϕ̄

(k)
Ti−j ,λi=j,ℓi=k,(ΘIi=m)h

)︁
γh
mβh

j α
h
k

M∑︁
m=1

J∑︁
j=1

K∑︁
k=1

p
(︁
yTi |ϕ̄

(k)
Ti−j ,λi=j,ℓi=k,(ΘIi=m)h

)︁
γh
mβh

j α
h
k

(3.24)

Thus, by considering the defined weight for the joint posterior distribution of the

hidden variables in (3.24), as well as substituting (3.15) and (3.19)-(3.21) into (3.23),

the Q-function becomes

Q(Θ|Θh) =
Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk

[︃
− log

√
2πσ2 − 1

2σ2
[yTi

− ϕ̄
(k)
Ti−j θ̄

m
]2
]︃

+
Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk[log γm + log βj + logαk] + log(C) (3.25)
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3.3.2 Maximization Step

In this step, the parameters are updated by maximizing the Q-function with respect

to each corresponding parameter, that is,

Θh+1 = arg max
Θ

Q(Θ|Θh) (3.26)

Therefore, by taking the derivative of the Q-function with respect to the correspond-

ing parameters and setting them equal to zero, that is,

∂Q

∂θ̄
m =

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wimjk

[︃
− 1

σ2
(ϕ̄

(k)
Ti−j)

T [yTi
− ϕ̄

(k)
Ti−j θ̄

m
]

]︃
= 0, (3.27)

the update equation for the unknown model parameters is obtained as

(θ̄
m
)h+1 =

[︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wimjk(ϕ̄
(k)
Ti−j)

T ϕ̄
(k)
Ti−j

]︃−1[︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wimjk(ϕ̄
(k)
Ti−j)

TyTi

]︃
(3.28)

Also, for the noise variance we have

∂Q

∂σ2
=

Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk

[︃
− 1

2σ2
+

1

2σ4
[yTi

− ϕ̄
(k)
Ti−j θ̄

m
]2
]︃
= 0 (3.29)

which gives the following update equation:

(σ2)h+1 = 1
Ns

[︃ Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk[yTi
− ϕ̄

(k)
Ti−j θ̄

m
]2
]︃

(3.30)

To calculate the update equation of the occurrence probabilities, i.e. γ, β and α, we

need to, respectively, include the constraints
M∑︁

m=1

γm = 1,
J∑︁

j=1

βj = 1 and
K∑︁
k=1

αk = 1,

and then solve a constrained optimization problem. Thus, we have

∂

∂γm

{︃ Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk[log γm + log βj + logαk]

+ Lγ

(︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

γm − 1

)︃}︃
= 0 (3.31)

∂

∂βj

{︃ Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk[log γm + log βj + logαk]

+ Lβ

(︃ Ns∑︂
i=1

M∑︂
m=1

K∑︂
k=1

βj − 1

)︃}︃
= 0 (3.32)
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∂

∂αk

{︃ Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

K∑︂
k=1

wimjk[log γm + log βj + logαk]

+ Lα

(︃ Ns∑︂
i=1

M∑︂
m=1

J∑︂
j=1

αk − 1

)︃}︃
= 0 (3.33)

where Lγ, Lβ and Lα are the Lagrangian multipliers. Solving the above optimization

problems provides the update equations for the modes, delays, and integration periods

occurrence probabilities, respectively, as

γh+1
m =

Ns∑︁
i=1

J∑︁
j=1

K∑︁
k=1

wimjk

Ns∑︁
i=1

M∑︁
m=1

J∑︁
j=1

K∑︁
k=1

wimjk

(3.34)

βh+1
j =

Ns∑︁
i=1

M∑︁
m=1

K∑︁
k=1

wimjk

M∑︁
m=1

J∑︁
j=1

K∑︁
k=1

Ns∑︁
i=1

wimjk

(3.35)

αh+1
k =

Ns∑︁
i=1

M∑︁
m=1

J∑︁
j=1

wimjk

Ns∑︁
i=1

M∑︁
m=1

J∑︁
j=1

K∑︁
k=1

wimjk

(3.36)

It is important to note that in the proposed method, the above solutions are the

probabilities of occurrences. If the point estimation of the actual mode, delay, and

integration period is desired, using the idea of MAP, they can be determined by

finding the largest wimjk among all the possible values.

The proposed offline identification algorithm, which we call batch EM (B-EM), is:

1. Initialization: Set h = 0. Assign random values to Θh = {θ̄m, σ2 β, α}m=1,··· ,M

and a small positive value to ε.

2. Compute wimjk, i = 1, 2, ...Ns, m = 1, 2, · · · ,M , j = 1, 2, · · · , J and k =

1, 2, · · · , K using (3.24).

3. Compute (θ̄
m
)h+1, (σ2)h+1 using (3.28) and (3.30), respectively.
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4. Compute {γh+1
m }m=1,2,··· ,M , {βh+1

j }j=1,2,··· ,J and {αh+1
k }k=1,2,··· ,K using (3.34),

(3.35), and (3.36), respectively.

5. Set h = h + 1. If ||Θh+1−Θh||2
||Θh||2 ≤ ε, terminate the procedure; otherwise, go back

to step 2.

3.4 Online Parameter Learning

The solution obtained so far addresses offline parameter estimation. It may be more

desirable to predict the fast-rate values of variables with slow measurements in real

time. In this regard, an online parameter learning algorithm is developed to update

the parameters once a new measurement has arrived. Thus, changes in the parameters

arising from changes in the operating conditions can be captured in real time. In this

work, based on the idea of EM algorithm in [71] for latent data models, an iterative

version of recursive EM, which makes better use of each data point [29], is obtained.

The main idea of the proposed algorithm in [71] is to replace the E-step with a

stochastic approximation step, while the M-step remains unchanged. Consider the

following recursive Q-function:

Q̂n+1(Θ) = Q̂n(Θ) + ηn+1

(︃
EDn+1

hid
[log f(Xn+1,Θ)|Yn+1]− Q̂n(Θ)

)︃
(3.37)

where Yn+1 is the new data point that has arrived at the n + 1th slow-rate sampling

instant, Xn+1 is the complete data and η is the step size. In this formulation, the

expectation of the log distribution of the new data point is taken with respect to the

hidden variables, given the updated parameters Θ̂n for the observation Yn+1. The Q-

function introduced in (3.37) is the lower bound of the log-likelihood, and maximizing

it with respect to the parameters leads to parameter estimation. To use an iterative

version of this recursive algorithm, we can set Θ0
n+1 = Θ̂n and iteratively maximize

Q̂n+1(Θ) to improve parameter estimation at each iteration [29].
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Q̂n+1(Θ|Θh
n+1) =

n+1∏︂
p=2

(1− ηp)
J∑︂

j=1

K∑︂
k=1

w1jk

[︃
− log

√
2πσ − 1

2σ2

(︃
yT1 − ϕ̄

(k)
T1−j θ̄

)︃2]︃

+
n+1∏︂
p=2

(1− ηp)
J∑︂

j=1

K∑︂
k=1

w1jk

[︃
log p(λ1 = j) + log p(ℓ1 = k)

]︃

+
n∑︂

i=2

n+1∑︂
p=i+1

(1− ηp)ηi

J∑︂
j=1

K∑︂
k=1

wijk

[︃
− log

√
2πσ − 1

2σ2

(︃
yTi

− ϕ̄
(k)
Ti−j θ̄

)︃2]︃

+
n∑︂

i=2

n+1∑︂
p=i+1

(1− ηp)ηi

J∑︂
j=1

K∑︂
k=1

wijk

[︃
log p(λi = j) + log p(ℓi = k)

]︃

+ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk

[︃
− log

√
2πσ − 1

2σ2

(︃
yTn+1 − ϕ̄

(k)
Tn+1−j θ̄

)︃2]︃

+ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk

[︃
log p(λn+1 = j) + log p(ℓn+1 = k)

]︃
(3.38)

3.4.1 Expectation Step

According to the aforementioned solution, the recursive Q-function for the multirate

processes with varying time-delays and integration periods is constructed as

Q̂n+1(Θ|Θh
n+1) =(1− ηn+1)Q̂n(Θ)

+ηn+1EDn+1
hid

[︁
log p(yTn+1 , ϕ̄

(ℓn+1)
Tn+1−λn+1

,Θ|yTn+1 , ϕ̄
(ℓn+1)
Tn+1−λn+1

)
]︁

(3.39)

By expanding the previous Q-function, the n + 1th recursive Q-function can be

written as (3.40).
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Q̂n+1(Θ|Θh
n+1) =

n+1∏︂
p=2

(1− ηp)
J∑︂

j=1

K∑︂
k=1

w1jk

[︃
− log

√
2πσ − 1

2σ2

(︃
yT1 − ϕ̄

(k)
T1−j θ̄

)︃2]︃

+
n+1∏︂
p=2

(1− ηp)
J∑︂

j=1

K∑︂
k=1

w1jk

[︃
log p(λ1 = j) + log p(ℓ1 = k)

]︃

+
n∑︂

i=2

n+1∑︂
p=i+1

(1− ηp)ηi

J∑︂
j=1

K∑︂
k=1

wijk

[︃
− log

√
2πσ − 1

2σ2

(︃
yTi

− ϕ̄
(k)
Ti−j θ̄

)︃2]︃

+
n∑︂

i=2

n+1∑︂
p=i+1

(1− ηp)ηi

J∑︂
j=1

K∑︂
k=1

wijk

[︃
log p(λi = j) + log p(ℓi = k)

]︃

+ ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk

[︃
− log

√
2πσ − 1

2σ2

(︃
yTn+1 − ϕ̄

(k)
Tn+1−j θ̄

)︃2]︃

+ ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk

[︃
log p(λn+1 = j) + log p(ℓn+1 = k)

]︃
(3.40)

3.4.2 Maximization Step

The derivative of the recursive Q-function in (3.40), with respect to the model pa-

rameters, is set equal to zero. Then, the updated parameter estimates are calculated

as

θ̄
h+1
n+1 = (θ̄

h+1
n+1,Den)

−1
(θ̄

h+1
n+1,Num) (3.41)

where

(θ̄
h+1
n+1,Num) = (1− ηn+1)(θ̄

h
n+1,Num) + ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk (ϕ̄
(k)
Tn+1−j)

TyTn+1

(θ̄
h+1
n+1,Den) = (1− ηn+1)(θ̄

h
n+1,Den) + ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk (ϕ̄
(k)
Tn+1−j)

T (ϕ̄
(k)
Tn+1−j)

The subscripts Num and Den denote the numerator and denominator, respectively.

The variance of measurement noise is updated by taking the derivative of the Q-

function in (3.40), with respect to the noise variance, and setting it equal to zero

gives

(σ2)h+1
n+1 = (1− ηn+1)(σ

2)hn+1 + ηn+1

J∑︂
j=1

K∑︂
k=1

wn+1jk

(︁
yTn+1 − ϕ̄

(k)
Tn+1−j θ̄

h+1
n+1

)︁
(3.42)
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Also, the delay occurrence probabilities are updated using

(βj)
h+1
n+1 = [(βj)

h+1
n+1,Den]

−1
[(βj)

h+1
n+1,Num] (3.43)

where

(βj)
h+1
n+1,Num = (1− ηn+1)(βj)n,Num + ηn+1

Ns∑︂
i=1

K∑︂
k=1

wijk (3.44)

(βj)
h+1
n+1,Den = (1− ηn+1)(βj)n,Den + ηn+1

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk (3.45)

Moreover, the integration period occurrence probabilities are updated by

(αk)
h+1
n+1 = [(αk)

h+1
n+1,Den]

−1
[(αk)

h+1
n+1,Num] (3.46)

where

(αk)
h+1
n+1,Num = (1− ηn+1)(αk)n,Num + ηn+1

Ns∑︂
i=1

J∑︂
j=1

wijk

(αk)
h+1
n+1,Den = (1− ηn+1)(αk)n,Den + ηn+1

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk

We call this algorithm recursive EM (R-EM). The proposed R-EM is a computation-

ally more efficient method since in the E-step, it does not require to calculate the

Q-function using historical data. Also, in the M-step, only a simple update of the

unknown parameters is required. In contrast to the B-EM, no prior information is

required regarding the number of operating modes except that the modes should not

switch before the minimum number of data required for parameter estimation have

arrived.

3.5 Experimental Verification

The developed methods are tested on a lab-scale hybrid three-tank process. The

experimental setup of the hybrid three-tank system is shown in Figure 3.2. The
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system consists of three tanks connected through six valves, i.e., V1 - V4, V6, and

V8. At the bottom of Tanks 1, 2, and 3, three outlet valves, i.e., V5, V7 and V9, are

provided. The two pumps feed the water into the two side tanks. In this experiment,

all the valves are open. The inlet flow from left-hand-side pump and right-hand-side

pump are considered as the inputs which are sampled at a fast rate. The level of the

middle Tank 2 is the output sampled at a slow rate.

Figure 3.2: The hybrid three-tank system experimental setup

In the study, the fast-rate sampling interval is 20 s. The right-hand-side input signal

is selected as a pseudorandom binary signal (PRBS) with levels [-0.3, 0.3] and with two
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different steady-state values 4.5 ℓ/min and 5.5 ℓ/min. Also, the left-hand-side input

signal is selected as a PRBS with levels [-0.3 0.3] with a fixed steady-state value equal

to 5.5 ℓ/min. Thus, due to the change in the steady-state value of the inlet flow of the

right-hand-side input, the system switches between two different operating points. In

total, there exist 3500 fast-rate input training data and 350 slow-rate output training

data where 55.7% and 44.3% belong to the first and second mode, respectively. The

output data are integrated and delayed with λi ∈ {1, 2, 3} and ℓi ∈ {3, 4, 5, 6} where

the generated delays and integration periods vary frequently. The true occurrence

probabilities of the delays and integration periods are given in Table 3.3. Also, a zero-

mean Gaussian noise with variance 0.001 is added to the delayed integrated outputs

to generate the lab measurement noise. The collected fast-rate and slow-rate training

data points are shown in Figure 3.3. As described earlier, ignoring integration periods

and assuming constant delays for lab measurements is common in the literature,

which contradicts reality. To see the significance of considering integration periods

and delays in multirate systems, the results are compared with the case in which

integration periods are neglected and the delays are considered as a constant. We

call this conventional method the neglected integration fixed delay EM (NIFD-EM).

In this study, to have a fair comparison, the most likely delay value, i.e., j = 1,

is used as the fixed delay for NIFD-EM. Moreover, both algorithms start from the

same random initial values for the unknown model parameters. Like the persistence

excitation order of the input signals, selection of the initial values for the unknown

parameters can affect the convergence of the estimated parameters. For evaluation,

the root mean square error (RMSE) as well as the coefficient of determination (R2)

values are used. The definition of these metrics are:

R2 = 1−

Nf∑︁
i=1

(xi − x̂i)
2

Nf∑︁
i=1

(xi − x̄)2
(3.47)
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RMSE =

⌜⃓⃓⎷ 1

Nf

Nf∑︂
i=1

(xi − x̂i)2 (3.48)

where xi is the true value, x̂i is the estimated output value, and x̄ denotes the mean

value of the true output.
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Figure 3.3: Training input and output data points

3.5.1 Parameter Learning Using the B-EM Algorithm

Applying the proposed B-EM algorithm and considering an augmented regression

model with the lagged value of order 1 for each input, the validation results for the

predicted fast-rate output samples are shown in Figure 3.4. In this study, while the

true upper bounds of delays and integration periods are 3 and 6, respectively, we

assume that the upper bounds are not exactly known. So, here J = 4 and K = 7 are

arbitrarily chosen as the assumed upper bounds. From Figure 3.4 and the reported

RMSE and R2 values in Table 3.2, it can be seen that the model obtained can predict

the unmeasured fast-rate outputs well. From Figure 3.4, it can also be seen that
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the output prediction in mode 2 is slightly less accurate than mode 1 due to fewer

training data being available in mode 2. Comparing the RMSE and R2 values with

the NIFD-EM method shows the advantages of the proposed B-EM method, due to

the consideration of the integration periods and varying time-delays. In this example,

the R2 is improved by 4.1%. This improvement will be clearer for larger values of

integrations and delays. Nevertheless, the data with larger values of integrations and

delays may degenerate the performance of both algorithms since more parameters

need to be estimated. It is worth noting that even if mode switching occurs with

higher frequencies, like that of delays and integration periods, the offline algorithm is

still able to handle the problem efficiently. Furthermore, Table 3.3 shows the evolution

of estimated occurrence probabilities of integration periods, delays, and modes. The

initial values selected for parameters of each particular hidden variable are set equal

to each other. Table 3.3 shows that, after around 80 iterations, all the parameters

converge to the neighborhood of the true values. Also, we can see that the occurrence

probabilities of the nonexisting integrations, i.e., k = {1, 2, 7}, and the nonexisting

delays, i.e., j = 4, converge to zero. This means even if the lower and upper bounds

are not exactly known, the algorithm can identify them, and the bounds can be

adjusted accordingly. The adjusted bounds can be useful for the online algorithm.

As the initially assumed bounds may not be close to their true values, the estimation

results can be degraded considerably. However, using the proposed algorithm, the

wrongly assumed bounds can be further adjusted and then the algorithm can be used

again to improve the results.

Table 3.2: RMSE and R2 of offline fast-rate output prediction

Proposed B-EM NIFD-EM

RMSE 0.079 0.093

R2 0.894 0.853
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Figure 3.4: Offline fast-rate output prediction using the B-EM

Table 3.3: Estimated occurrence probabilities of the hidden variables

Hidden variables Parameters
Iteration

True values1 20 40 60 80

Integration periods

α1 0.142 0.102 0.020 0.000 0.000 0
α2 0.142 0.129 0.052 0.000 0.000 0
α3 0.142 0.209 0.144 0.078 0.099 0.1
α4 0.142 0.233 0.278 0.201 0.192 0.2
α5 0.142 0.188 0.368 0.349 0.305 0.3
α6 0.142 0.093 0.115 0.364 0.403 0.4
α7 0.142 0.044 0.021 0.006 0.000 0

Delays

β1 0.25 0.586 0.644 0.520 0.501 0.5

β2 0.25 0.257 0.235 0.309 0.311 0.3

β3 0.25 0.133 0.118 0.170 0.187 0.2

β4 0.25 0.023 0.002 0.000 0.000 0

Modes
γ1 0.5 0.501 0.242 0.455 0.527 0.553
γ2 0.5 0.498 0.757 0.544 0.472 0.447

3.5.2 Real-time Output Prediction Using the R-EM Algo-
rithm

In this evaluation, the data set from the previous section is used and there is no need

to partition the data into training and validation parts. The algorithm starts with
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the assumption that 20 slow-rate output data points are already available, and the

updating rate ηn+1 is fixed and equal to 0.03. First, the derived B-EM is used for

the available data and then the developed R-EM is applied to the subsequent data

points. The predicted and true fast-rate outputs are shown in Figure 3.5. As it can

be seen in Figure 3.5, the proposed R-EM has a reliable performance in real time

prediction of outputs at a fast rate. Once the mode jumps to a new condition, it

takes some time for the parameters to converge. Thus, the predicted results do not

reach the true ones immediately after jumping to a new mode. As time passes and

more observations arrive, the prediction is improved. This observation can be seen in

Figure 3.5. The results for the RMSE and R2 of the R-EM and NIFD-EM methods

are given in Table 3.4 which shows the advantages of the R-EM algorithm developed

in this study. Furthermore, the online estimates of the occurrence probabilities of

integration periods and delays are shown in Figure 3.6, where it can be seen that

the estimate is improved as more measurements become available. However, there

is still bias in the estimation of these parameters, as the proposed algorithm is an

approximated method, and the number of parameters to be estimated is relatively

large.

Table 3.4: RMSE and R2 of online fast-rate output prediction

Proposed R-EM NIFD-EM

RMSE 0.005 0.008

R2 0.939 0.898

3.6 Conclusion

This study explored a data-driven modeling approach for fast-rate identification of

multirate systems described by augmented regression models. The problem was for-

mulated by taking into consideration important practical issues including switching
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Figure 3.5: Online fast-rate output prediction using R-EM
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Figure 3.6: Online estimated occurrence probabilities of the hidden variables
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operating modes, unknown varying measurement delays, and unknown varying inte-

gration periods. First, an offline algorithm was developed to classify the data and

estimate the unknown parameters related to the local models and the hidden vari-

ables. The identified local models are capable of predicting the slow-rate sampled

variables at fast rates. Furthermore, an online algorithm was proposed to recursively

update the parameters and then predict the fast-rate outputs in real time. Without

being confined by a specific probability distribution, a nonparametric-distribution-

based method was proposed in modeling the hidden variables. The experimental

results show that the R2 value for the fast-rate output prediction improves by 4.1%.

This improvement can be more significant for the processes with larger integration

periods and delays.
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Chapter 4

Robust Variational Bayesian-Based
Predictive Model for LPV
Processes with Delayed and
Integrated Output Measurements 1

4.1 Introduction

The lack of frequent measurements for the quality variables can deteriorate the perfor-

mance of control and optimization and also may make them infeasible. Hence, a soft

sensor model for predicting quality variables is essential for a variety of control appli-

cations. In addition to multirate data, a switching multi-model soft sensor [72] cannot

capture the transitions between the modes. However, LPV modeling is a promising

technique which consists of two general approaches [73], namely local approach and

global approach. In the local approach, the model parameters are estimated based

on an interpolation between multiple models. In contrast, in the global approach,

the LPV model is identified directly using a global dataset sampled from the process

working on a wide range of operating conditions. The former is preferred when the

dataset is collected near the steady-state conditions, but the latter is suggested when

the working conditions change frequently [74]. In this work, the global approach is

1This chapter has been published as Y. Salehi and B. Huang, “Robust Variational Bayesian-
Based Soft Sensor Model for LPV Processes with Delayed and Integrated Output Measurements,” in
IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-10, 2022, Art no. 1006310,
doi: 10.1109/TIM.2022.3200098.
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considered.

The authors in [60] proposed an EM algorithm to develop a local-based LPV model

in the presence of missing output measurements. Also, [61] used an EM algorithm

to estimate the parameters of an FIR model for LPV multirate data. The model in

[62] was an OE model, and it employed the GEM algorithm. Additionally, a robust

version of the EM algorithm was proposed in [24] to address the outliers problem

using Laplace distribution since it has adjustable-longer tails compared to Gaussian

distribution. Also, [75] proposed a robust version of the EM algorithm to derive

an LPV soft sensor model for predicting the slow-rate variable in multirate process

modeling. t-distribution was chosen for the slow-rate output distribution to improve

the robustness against outliers in the work. The chief limitation in the above works is

that the developed EM-based algorithms only give the point estimate of the unknown

parameters. However, the VB algorithm can also consider the uncertainties of the

unknown parameters. In [31], a VB-based algorithm was proposed for multirate ARX

models. However, it assumed that the process operates at only a single operating

point. Then, [76] proposed a VB-based algorithm for the switching FIR models with

missing output data. Further, [50] extended this work to LPV processes considering

outliers and following a global approach.

The integration period problem in multirate process modeling was first addressed

in [63] and later further considered in [40] using the EM algorithm. In [40], the

improvement of the parameter estimation resulting from considering the integration

periods for the slow-rate variables is confirmed. However, [40] addressed only LTI

systems and delay-free measurements with a known and fixed integration period.

Later, [77] proposed an EM algorithm for nonlinear multirate processes based on

particle filter. In that work, the slow-rate integrated measurements were used as

additional data, which are considered to be more accurate, to improve the estimation

results. Recently, the parameter estimation of a regression model for the multirate

processes was further developed by taking into account other critical practical issues
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including switching operating conditions, unknown and varying integration periods

and delays [72]. The work also used a non-parametric approach to model the delays

and integration periods, which is more flexible.

One shortcoming of [72], however, is that the transition between the operating

conditions has been disregarded. Omitting the effect of outliers is another deficiency

in that work. Also, as the EM algorithm is used in the work, the uncertainties of

the model parameters have not been considered. Thus, the current chapter aims at

developing a predictive model for quality variables considering all the above challenges

simultaneously. The main contributions of this work, which extend that of [72], are

listed as

1. Developing a global LPV predictive model for the processes with slow-rate in-

tegrated output measurements.

2. Improving robustness to outlying output observations using t-distribution.

3. Considering the time-varying integration periods, time-varying delays, and un-

certainties of the unknown parameters, simultaneously, using the VB algorithm.

4.2 Problem Statement

An augmented regression model (each input variable contains its lagged values) for

LPV multirate processes is given below:

xt =

nb∑︂
n=0

b(m)n(st)u(m)t−n (4.1)

yTi
=

1

ℓi

ℓi−1∑︂
p=0

xTi−λi−p + eTi
(4.2)

where

b(m)n(st) = b(m)n,0 +

nβ∑︂
g=1

b(m)n,gηg(st), n = 1, 2, · · ·, nb. (4.3)
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Table 4.1 contains the notations used in the problem formulation. The input

variables (ut) and the scheduling variable (st) are assumed to be available at each

frequent (fast) sampling time instant tf . The output measurements {yTi
}i=1,2,··· ,Ns

are

available only at every Ti × tf . Nf and Ns are the number of samples for each of the

input variables and the slow-rate output, respectively. Also, ηg(st) is a meromorphic

function, such as polynomial function, of the scheduling variable.

To clarify the formulation in (4.1)-(4.3), consider the following illustrative example:

xt = (1.1+2.3st)u(1)t−(0.5+0.8st)u(1)t−1+(1.5+3.4st)u(2)t−(0.7+0.9st)u(2)t−1 (4.4)

yTi
=

1

ℓi

ℓi−1∑︂
p=0

xTi−λi−p + eTi
, ℓi ∈ {1, 2, 3}, λi ∈ {1, 2} (4.5)

The augmented regression model in (4.4) contains two input variables, i.e. u(1) and

u(2), with one lagged value for each of the inputs. Also, the regression model co-

efficients are linear combinations of the first order polynomial functions and of the

scheduling variable.

For notation simplicity, (4.1) and (4.2) can be rewritten as follows.

xt = ϕtθ (4.6)

Table 4.1: List of the notations used in the formulation

Notation Description

x Unmeasured fast-rate output

u(m)t mth input variable at time instant t

n Lag of historical data for the mth input

M Total number of input variables

b(m)n LPV model coefficients for mth input variable

s Scheduling variable

ηg(st) Meromorphic function

y Slow-rate integrated output

e Measurement noise

λ Delay

ℓ integration period
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yTi
= ϕ̄

(ℓi)
Ti−λi

θ + eTi
(4.7)

where

ϕt = [ϕ(1)t, ϕ(2)t, · · · , ϕ(M)t] (4.8)

ϕ(m)t =[u(m)t, η1(st)u(m)t · · · ηnβ
(st)u(m)t · · ·u(m)t−1, η2(st)u(m)t−1 · · · ηnβ

(st)u(m)t−1,

u(m)t−nb
· · · ηnβ

(st)u(m)t−nb
]

(4.9)

θ = [θ(1), θ(2), · · · , θ(M)]
T (4.10)

θ(m) = [b(m)1,0:nβ
b(m)2,0:nβ

· · · b(m)nb,0:nβ
] (4.11)

ϕ̄
(ℓi)
Ti−λi

=
1

ℓi

ℓi−1∑︂
p=0

ϕTi−λi−p (4.12)

As an illustration, based on the rewritten formulation, the augmented regression

vector and model parameters of the illustrative example introduced in (4.4)-(4.5) can

be written as:

ϕt = [u(1)t stu(1)t u(1)t−1 stu(1)t−1 · · ·u(2)t stu(2)t u(2)t−1 stu(2)t−1] (4.13)

θ = [1.1 2.3 − 0.5 − 0.8 1.5 3.4 − 0.7 − 0.9]T (4.14)

Gaussian distribution is widely used in noise characterization. However, it is sensi-

tive to the outliers owing to its short distribution tails. To make the modeling robust

against outliers, the measurement noise eTi
is assumed to follow a t-distribution with

the mean zero, unknown precision δ, and degrees of freedom v. Accordingly, the

slow-rate output variable follows a t-distribution, that is:

p(yTi
|ϕ̄(ℓi)

Ti−λi
θ, δ, v) =

∫︂
N (yTi

|ϕ̄(ℓi)
Ti−λi

θ,
1

δri
)G(ri|

v

2
,
v

2
)dri (4.15)

where N and G denote the Gaussian distribution and Gamma distribution, respec-

tively.

The delays are often modeled based on some probabilistic distributions like uni-

form distribution [58]. Also, hidden Markov model is commonly used to characterize
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the correlations between the sequential delays [29]. However, in reality, the lab mea-

surement delays may not necessarily follow such a specific form. Therefore, in the

current work, the delays are modeled through a nonparametric-based method which is

preferred for modeling arbitrary delay distributions [72]. It is assumed that an upper

bound, denoted by J , for the delays is known. If it is unknown, a more conservative

larger bound may be chosen. An occurrence probability βj is assigned to each of

the possible delay values j ∈ {1, 2, · · · , J} to indicate the probability of occurring a

specific delay value j. The set of the time-delay occurrence probabilities is indicated

by β = {β1, β2, · · · , βJ} where
J∑︁

j=1

βj = 1 and βj ∈ [0, 1].

The same procedure is followed to model the integraion intervals. So, a set of

occurrence probabilities α = {α1, α2, · · · , αK} is assigned to the different integration

periods k ∈ {1, 2, · · · , K} subject to
K∑︁
k=1

αk = 1 and αj ∈ [0, 1].

4.3 Robust LPV Predictive Model

For the problem of interest, the observed variables (Dobs) and the hidden variables

(Dhid) are defined as

Dobs = {Y, U, S} = {yT1:TNs
, u1:Nf

, s1:Nf
} (4.16)

Dhid = {R,Λ, L} = {r1:Ns , λ1:Ns , ℓ1:Ns} (4.17)

Also, the unknown parameters are Θ̃ = {Θ, v, β, α} where Θ = {θ, δ}, β = {β1, β2, . . . , βJ},

and α = {α1, α2, . . . , αK}. The joint prior distribution for the unknown parameters

can be written as follows.

p(Θ) = p(θ|b)p(δ|c, d) (4.18)

with

p(θ|b) = N (0, bIRnβ(nb+1)), p(δ|c, d) = G(c, d) (4.19)

where b, c, and d are constant values, and IR.nβ .(nb+1) is an identity matrix. To ensure

that a close form solution can be obtained, the prior distributions are chosen as given
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in (4.19).

4.3.1 VB Algorithm

The VB algorithm can be used to estimate the posterior distributions of the unknown

parameters and the hidden variables. This algorithm introduces the aforementioned

posterior distributions by maximizing the log-likelihood function [78], that is:

log p(Dobs) = log
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)q(Θ)

p(Dobs,Λ, L,Θ)

q(L,Λ)q(Θ)
dRdΘ (4.20)

However, solving this problem directly is difficult and may not be feasible. By apply-

ing Jensen’s inequality, we have

log p(Dobs) ≥
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)q(Θ) log

p(Dobs,Λ, L,Θ)

q(R,L,Λ)q(Θ)
dRdΘ

:= F [q(R,Λ, L), q(Θ)] (4.21)

Thus, the problem turns to maximizing the lower bound denoted by F [q(Λ, L), q(Θ)]

rather than the original log-likelihood function. To begin with, the lower bound in

(4.21) can be further decomposed into the summation of several terms using the

probability chain rule as

F [q(R,Λ, L), q(Θ)] =
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)q(Θ) log p(Dobs|R,Λ, L,Θ)dRdΘ

+
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)q(Θ) log p(Λ|β)dRdΘ

+
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)q(Θ) log p(L|α)dRdΘ

+
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)q(Θ) log p(R|v)dRdΘ+

∫︂
q(Θ) log p(Θ)dΘ

−
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L) log q(R,Λ, L)dRdΘ−

∫︂
q(Θ) log q(Θ)dΘ

(4.22)

The VB algorithm iterates between two steps. In the first step, the lower bound

is maximized with respect to the posterior distribution of hidden variables, i.e.
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q(R,Λ, L), assuming the posterior distribution over the unknown parameters, i.e.

q(Θ), is fixed. In the second step, the lower bound is maximized with respect to q(Θ),

by assuming that q(R,Λ, L) is fixed. These iterations are executed until convergence

[79]. Before the derivations, the likelihood terms are required to be determined, that

is:

p(Dobs|R,Λ, L,Θ) =
Ns∏︂
i=1

p(yTi
|U, S, ri, λi, ℓi,Θ) (4.23)

p(R|v) =
Ns∏︂
i=1

p(ri|v) (4.24)

p(Λ|β) =
Ns∏︂
i=1

p(λi|β) (4.25)

p(L|α) =
Ns∏︂
i=1

p(ℓi|α) (4.26)

Also, the probability density function (pdf ) for the slow-rate output, noise variance,

delay and integration period at each sampling instant i is given as (4.27)-(4.30),

respectively.

p(yTi
|U, S, ri, λi, ℓi,Θ) =

√
δri√
2π

exp

(︃
− δri

2
[yTi

− ϕ̄
(ℓi)
Ti−λi

θ]2
)︃
CU,S (4.27)

p(ri|v) =
(v
2
)
v
2 (ri)

( v
2
−1)

Γ(v
2
)

exp
(︁
− v

2
ri
)︁

(4.28)

p(λi = j) = βj, j = 1, ..., J (4.29)

p(ℓi = k) = αk, k = 1, ..., K (4.30)

where CU,S is the probability of data sampled from input and scheduling variables

that is a constant term with respect to the unknown parameters and hidden variables.

Updating posterior distributions of the hidden variables

In this step, by treating q(Θ) as a fixed distribution, the lower bound in (4.21) can

be written as
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F [q(R,Λ, L), q(Θ)] =
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L)⟨log p(Dobs|R,Λ, L,Θ)⟩q(Θ)

+
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L) log p(R|v)dR

+
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L) log p(L|α)dR

+
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L) log p(Λ|β)dR

−
∑︂
Λ

∑︂
L

∫︂
q(R,Λ, L) log q(R,Λ, L)dR + CΛ,L,R (4.31)

where ⟨.⟩q(Θ) indicates the expectation operator over q(Θ) and CΛ,L,R represents the

terms that are independent of the hidden variables which is treated as a constant

value. By maximizing F [q(R,Λ, L), q(Θ)] in (4.21) with respect to q(R,Λ, L) such

that
∑︁
Λ

∑︁
L

∫︁
q(R,Λ, L)dR = 1, we obtain

q(R,Λ, L) =
p(R|v)p(Λ|β)p(L|α) exp

(︁
B
)︁∑︁

Λ

∑︁
L

∫︁
p(R|v)p(Λ|β)p(L|α) exp

(︁
B
)︁
dR

(4.32)

whereB = ⟨log p(Dobs|R,Λ, L,Θ)⟩q(Θ). Next, the posterior distribution of each hidden

variable is derived.

• Variational posterior of R given Λ, L: By integrating out R from the joint

density q(R,Λ, L), the joint density of Λ and L is obtained as

q(Λ, L) =

∫︁
p(R|v)p(Λ|β)p(L|α) exp

(︁
B
)︁
dR∑︁

Λ

∑︁
L

∫︁
p(R|v)p(Λ|β)p(L|α) exp

(︁
B
)︁
dR

(4.33)

Therefore, the conditional density q(R|Λ, L) is calculated as

q(R|Λ, L) = q(R,Λ, L)

q(Λ, L)
=

p(R|v) exp
(︁
B
)︁∫︁

p(R|v) exp
(︁
B
)︁
dR

=
Ns∏︂
i=1

p(ri|v) exp
(︁
Bi

)︁∫︁
p(ri|v) exp

(︁
Bi

)︁
dri
(4.34)

To simplify (4.34), we need to take expectation of the log-likelihood in (4.27)

at time instant i, resulting in:

Bi = − log
√
2π +

1

2
δ̃ + log

√
ri −

δ̄ri
2
gijk + logCU,S (4.35)
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where

δ̃ = ⟨log δ⟩q(δ) (4.36)

δ̄ = ⟨δ⟩q(δ) (4.37)

gijk = yTi

2 − 2yTi
ϕ̄
(k)
Ti−j θ̄ + ϕ̄

(k)
Ti−j⟨θθT ⟩q(Θ)(ϕ̄

(k)
Ti−j)

T (4.38)

θ̄ = ⟨θ⟩q(θ) (4.39)

q(ri|λi = j, ℓi = k) =
p(ri|v) exp

(︁
Bi

)︁∫︁
p(ri|v) exp

(︁
Bi

)︁
dri

=

exp

(︃
− ri

v+δ̄gijk
2

)︃
(ri)

( v+1
2

−1)

∫︁
exp

(︃
− ri

v+δ̄gijk
2

)︃
(ri)

( v+1
2

−1)dri

=
1

Γ(v+1
2
)

(︃
v + δ̄gijk

2

)︃ v+1
2

(ri)
v+1
2

−1 exp

(︃
− ri

v + δ̄gijk
2

)︃
∼ G

(︃
v + 1

2
,
v + δ̄gijk

2

)︃
(4.40)

Therefore, the variational posterior of ri given λi = j and ℓi = k is derived as

(4.40). Based on (4.40) and according to the property of Gamma distribution,

we can obtain the expectation of the conditional posterior distribution over ri

and log ri, which yields

r̄ijk = ⟨ri⟩q(ri|λi=j,ℓi=k) =
v + 1

v + δ̄gijk
(4.41)

r̃ijk = ⟨log rijk⟩q(ri|λi=j,ℓi=k) = Ψ

(︃
v + 1

2

)︃
− log

(︃
v + δ̄gijk

2

)︃
(4.42)

where Ψ is the derivative of the logarithm of the gamma function, i.e., Ψ(v) =

∂Γ(v)
∂v

1
Γ(v)

.

• Variational joint posterior of the delay and integration period:

Now, based on (4.33), the variational joint posterior of {λi = j, ℓi = k} for j =

1, 2, · · · , J and k = 1, 2, · · · , K, which we indicate by wijk, is obtained as
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wijk := q(λi = j, ℓi = k) =

∫︁
p(ri|v)p(λi = j)p(ℓi = k) exp

(︁
Bi

)︁
dri

K∑︁
k=1

J∑︁
j=1

∫︁
p(ri|v)p(λi = j)p(ℓi = k) exp

(︁
Bi

)︁
dri

=

∫︁
p(ri|v) exp

(︁
Bi

)︁
driβjαk

K∑︁
k=1

J∑︁
j=1

∫︁
p(ri|v) exp

(︁
Bi

)︁
driβjαk

(4.43)

where for each time instant i∫︂
p(ri|v) exp

(︁
Bi

)︁
dri = Cri

∫︂ (︃
− ri

v + δ̄gijk
2

)︃
(ri)

v−1
2 dri = Cri

(︃
v + δ̄gijk

2

)︃− v+1
2

(4.44)

where Cri contains the constant terms.

Updating posterior distribution of the model parameters

So far, the posterior distributions of the hidden variables, i.e. noise variance, delay

and integration period have been obtained. The objective of this step is to maximize

the lower bound in (4.21) with respect to q(Θ) by fixing q(R,Λ, L) and finally obtain

the posterior distributions of the unknown parameters. Then, we get

F [q(R,Λ, L), q(Θ)] =

∫︂
q(Θ)⟨log p(Dobs|R,Λ, L,Θ)⟩q(R,Λ,L)dΘ

+

∫︂
q(Θ) log p(Θ)dΘ−

∫︂
q(Θ) log q(Θ)dΘ+ CΘ (4.45)

where CΘ includes all the terms that are constant with respect to Θ. Here, for

notation simplicity, we define

D = ⟨log p(Dobs|R,Λ, L,Θ)⟩q(R,Λ,L) (4.46)

By maximizing F [q(R,Λ, L), q(Θ)] with respect to q(Θ) such that
∫︁
q(Θ)dΘ = 1,

we have

q(Θ) =
p(Θ) exp

(︁
D
)︁∫︁

p(Θ) exp
(︁
D
)︁
dΘ

(4.47)
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where D can be computed as

D =

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk

[︃
− log

√
2π + log

√
δ +

1

2
r̃ijk −

δr̄ijk
2

(yTi
− ϕ̄

(ℓi)
Ti−λi

θ)2 + logCU,S

]︃
(4.48)

To obtain q(Θ), we take the derivative of F [q(R,Λ, L), q(Θ)] considering
∫︁
q(Θ)dΘ =

1, and then get

q(θ) =
1

Cθ

p(θ|b) exp
(︁
⟨D⟩q(δ)

)︁
=

1

Cθ

p(θ|b) exp
(︃ Ns∑︂

i=1

J∑︂
j=1

K∑︂
k=1

wijk(−
δ̄r̄ijk
2

)(yTi
− ϕ̄

(ℓi)
Ti−λi

θ)2
)︃

=
1

Cθ

exp

(︃
− 1

2b
θT Iθ

)︃
exp

(︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk(−
δ̄r̄ijk
2

)(yTi
− ϕ̄

(ℓi)
Ti−λi

θ)2
)︃

=
1

Cθ

exp

(︃
− 1

2
θT
[︁
b−1I +

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijkδ̄r̄ijkϕ̄
(ℓi)
Ti−λi

ϕ̄
(ℓi)
Ti−λi

]︁
θ

+
Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijkδ̄r̄ijkyTi
θT (ϕ̄

(k)
Ti−j)

T

)︃
(4.49)

This expression indicates that q(θ) is amount to a Gaussian distribution with the

following mean and variance, respectively.

θ̄ = var(θ)
Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijkδ̄r̄ijkyTi
(ϕ̄

(k)
Ti−j)

T (4.50)

var(θ) =

[︃
b−1I +

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijkδ̄r̄ijk(ϕ̄
(k)
Ti−j)

T ϕ̄
(ℓi)
Ti−λi

]︃−1

(4.51)

Therefore, we have

⟨θθT ⟩q(θ) = var(θ) + θ̄θ̄
T

(4.52)

The same procedure is followed to maximize F [q(R,Λ, L), q(Θ)] with respect to q(δ)

subject to
∫︁
q(δ)dδ = 1. Solving this maximization problem yields the following ex-

63



pression for q(δ).

q(δ) =
p(δ|c, d)
Cδ

exp
(︁
⟨D⟩q(Θ)

)︁
=
p(δ|c, d)
Cδ

exp

(︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk[
1

2
log δ − δr̄ijkgijk

2
]

)︃

=
dcδc−1 exp

(︁
− dδ

)︁
CδΓ(c)

δ
Ns
2 exp

(︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk(−
δr̄ijkgijk

2
)

)︃

=
δc+

1
2
Ns−1

Cδ

exp

(︃
− [d+

1

2

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijkr̄ijkgijk]δ

)︃
(4.53)

The obtained expression for q(δ) indicates a Gamma density function with the

parameters given below:

δ̄ =
2c+Ns

2d+
Ns∑︁
i=1

J∑︁
j=

K∑︁
k=1

wijkr̄ijkgijk

(4.54)

δ̃ = ψ(
2c+Ns

2
)− log(

2d+
Ns∑︁
i=1

J∑︁
j=1

K∑︁
k=1

wijkr̄ijkgijk

2
) (4.55)

Furthermore, to update the hidden variables-related parameters, i.e. {v, β, α}, the

lower bound in (4.45) can be expressed as given in (4.56).

F [q(R,Λ, L), q(Θ)]

= ⟨log p(R|v)⟩q(R|Λ,L)q(Λ,L) + ⟨log p(L|α)⟩q(L|Λ)q(Λ) + ⟨log p(Λ|β)⟩q(Λ) + Cv,β,α

=
Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk

(︃
− log Γ(

v

2
) +

v

2
log(

v

2
) + (

v

2
− 1)r̃ijk −

v

2
r̄ijk

)︃

+
Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk(logαk + log βj) + Cv,β,α (4.56)

By taking the derivative of (4.56) with respect to β and α subject to constraints
J∑︁

j=1

βj = 1 and
K∑︁
k=1

αk = 1, respectively, we have

∂

∂βj

{︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk log βj + Lβ

(︃ J∑︂
j=1

βj − 1

)︃}︃
= 0 (4.57)
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∂

∂αk

{︃ Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk logαk + Lα

(︃ K∑︂
k=1

αk − 1

)︃}︃
= 0 (4.58)

Then, solving the above optimization problems, in which Lα and Lβ are the La-

grangian multipliers, gives the point estimate of αk and βj as follows.

βj =

Ns∑︁
i=1

K∑︁
k=1

wijk

Ns∑︁
i=1

J∑︁
j=1

K∑︁
k=1

wijk

(4.59)

αk =

Ns∑︁
i=1

J∑︁
j=1

wijk

Ns∑︁
i=1

J∑︁
j=1

K∑︁
k=1

wijk

(4.60)

Solving the derivative of the lower bound in (4.56) with respect to v yields

Ns∑︂
i=1

J∑︂
j=1

K∑︂
k=1

wijk

[︃
− ψ(

v

2
) + log(

v

2
) + 1 + r̃ijk − r̄ijk

]︃
= 0 (4.61)

Since (4.61) is a nonlinear equation, it needs to be solved numerically. We have

used the MATLAB nonlinear solver fslove for this purpose. v then is updated.

The procedure for the proposed robust VB-based algorithm is summarized as given

in Algorithm 1.

Algorithm 1 Robust VB-based LPV predictive model

1: Set h = 0. Assign random values to Θh, and random positive values to v, b, c, d.
2: Update r̄ijk and r̃ijk, using (4.41) and (4.42), respectively.
3: Update the joint posterior distribution of the delays and integration periods,
q(λi = j, ℓi = k), using (4.43).

4: Update θ̄, var(θ) and ⟨θθT ⟩q(Θ) using (4.50)-(4.52), respectively.

5: Update δ̄ and δ̃ using (4.54) and (4.55), respectively.
6: Update the occurring probabilities {βj}j=1,2,··· ,J and {αk}k=1,2,··· ,K using (4.59)

and (4.60), respectively.
7: Update the degree of freedom, v, by solving (4.61).

8: If ||Θh+1−Θh||2
||Θh||2 ≤ ε, terminate the procedure; otherwise, let h = h+ 1 and go back

to step 2.
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4.4 Experimental Verification

In this section, validity of the proposed algorithm for developing a robust predictive

model for LPV multirate processes is explored through the same lab-scale hybrid

three-tank system described in Chapter 3. The figure and details about the hybrid

three-tank system were given in 3.5. As shown in Figure 3.2, this system consists

of two pumps, nine valves and three tanks. Water is fed into tank 1 and tank 3 via

pump 1 and pump 2, respectively. Also, water is fed into the middle tank (tank2) as

it is connected to the side tanks through the valves V1-V4, V6 and V9. Valves V5,

V7 and V9 connect the tanks to the storage tank located at the bottom of the tanks.

Water level in the tank relative to the locations of the valves can put the system on

different operating conditions. Thus, the system behavior varies depending on the

water level in the tanks.

In this experiment, it is assumed that all the valves are open except V6 and V8.

The inlet flow rates of the pumps are considered as the input variables and their data

are recorded every 10 seconds. The right-hand-side flow rate is a PRBS. The flow rate

signal is varying between two steady-state values equal to 4.9 ℓ/min and 6 ℓ/min,

respectively, with same variations [−0.3, 0.3]. Moreover, the left-hand-side flow rate

signal is chosen as a PRBS with a fixed steady-state value equal to 5.5 ℓ/min with

variations [−0.3, 0.3]. Thus, the system experiences two operating modes with a

transition in between. In this study, the scheduling variable is water level in tank 3

as it reflects the changes in operating modes. Also, water level in tank 2 is the output

of interest recorded every 100 seconds, i.e. it is updated at a slow-rate. Then, the

slow-rate data are artificially integrated over ℓi ∈ {2, 3, 4, 5} and are measured with

the artificially introduced delays λi ∈ {1, 2, 3}. The generated integration periods

and delays change randomly between the given values and their actual occurrence

probabilities are reported in Table 4.3. In this study, it is assumed that the upper

bounds for the integration period and delay are K = 5 and J = 4, respectively.
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Also, to evaluate the robustness of the developed model against the outliers, the

slow-rate output is corrupted with 2% and 10% outliers, respectively. The data used

for training, which include 3000 fast-rate data and 300 slow-rate ones, are shown in

Figure 4.1. While 59% of the training data belong to the first operating condition,

37% belong to the second operating condition. The rest of the data are sampled from

the transitions. To verify the performance of the proposed model, the coefficient of

determination (R2) and RMSE are used.

Using the proposed robust VB-based model for LPV multirate processes contam-

inated with the stated practical issues above, the fast-rate output for the testing

dataset is reconstructed as shown in Figure 4.2. From Figure 4.2 it can also be seen

that the accuracy of predictions at the second working condition is less than the first

one due to fewer training data available in the second mode. The RMSE and R2 val-

ues are reported in Table 4.2. For 2% outlier ratio, it is observed that the VB-based

model gives R2 = 86.15% while the robust one further improves it to 89.41%. It can

also be seen that the estimation accuracy is decreased when there exist 10% outliers

among the process output data. However, the superiority of the proposed robust soft

sensor model over the other model becomes further highlighted. The results have also

been compared with a VB-based soft sensor model that does not consider the inte-

gration periods and treats the delay as a fixed value (called VB-ignore in this paper).

This comparison is conducted since ignoring existence of the integration period and

assuming a fixed delay is a common practice in most of the existing techniques. For

a fair comparison, the most occurring delay, i.e. λ = 2, has been selected for the

VB-ignore algorithm and same initial values have been selected for the parameters of

the models. Table 4.2 shows that the estimation accuracy is considerably degraded

by disregarding the integration period and using a fixed delay.

Table 4.3 shows the occurrence probabilities for each of the possible integration

period and delay values after the convergence. The results verify a satisfactory es-

timation for the parameters. It is seen that some of the probabilities are estimated
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Figure 4.1: Input and output data points for training

with a slight bias because we have assumed that the true upper and lower bounds are

not known. Furthermore, the number of unknown parameters is to some extent large

in this study. Being an advantage of the developed soft sensor model, the existing

integration periods and delays along with their occurrence probabilities are obtained

even if their actual bounds are not known. This observation can be seen in Table 4.3

where the estimated occurrence probabilities of the non-existing integration periods,

i.e. k = 1, and delays, i.e. j = 4, are close to zero. Now that once the true bounds

have been estimated, these values can be updated and then run the algorithm again

to improve the results as now the number of unknown parameters have decreased.

4.5 Conclusion

This study developed a robust VB-based soft sensor model for LPV processes with

slow-rate integrated output measurements. Several important practical issues includ-

ing unknown varying integration period, unknown varying time-delay and presence
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Table 4.2: RMSE and R2 values of the output prediction at fast rate

Outlier ratio Index VB ignore VB Robust VB

2%
RMSE 0.1322 0.1185 0.1012

R2 0.7763 0.8615 0.8941

10%
RMSE 0.1612 0.1485 0.1187

R2 0.7119 0.8017 0.8622
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Figure 4.2: Output prediction at the fast rate

Table 4.3: Estimated parameters of the hidden variables in presence of 10% outlier
output data

Hidden variables Parameters True values VB Robust VB

integration periods

α1 0 2×10−4 4×10−5

α2 0.05 0.032 0.039
α3 0.1 0.073 0.083

α4 0.15 0.115 0.122
α5 0.7 0.790 0.761

Delays

β1 0.2 0.141 0.163

β2 0.5 0.540 0.531

β3 0.3 0.252 0.262

β4 0 0.061 0.042

Relative error 0.158 0.107
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of outliers were considered in the problem. The proposed VB algorithm estimates

the parameters of the predictive model and noise variance along with their uncer-

tainties. Moreover, the algorithm is robust against outlier measurements by using a

t-distribution rather than the commonly used Gaussian distribution for measurement

noise characterization. Furthermore, the probability of occurrence of each of poten-

tial integration period and time-delay was estimated based on a nonparametric-based

approach. The validation results on a hybrid three-tank lab-scale system showed a

reliable prediction for the quality variables at a fast rate. While large integration

periods and time-delays increase the number of unknown parameters, the importance

of considering these issues is evident from this work.
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Chapter 5

A Vision Predictive Model with
Application to Quality Variable
Prediction in Flotation Process 1

5.1 Introduction

A flotation process is commonly used in mining industry to separate valuable minerals

from the unwanted ones. The properties of the froth, such as its stability, color and

texture, can have a significant impact on the efficiency of the flotation process and

the final product quality. In Figure 5.1, a schematic of a flotation process can be

seen. In oil sands operation, which is one of the main oil resources in Canada, a

primary separation cell (PSC) separates bitumen from the gangue using water-based

gravity separation. In consequence, PSC generates froth, middling, and tailings. The

froth, middling, and tailings layers should contain only bitumen, water, and solids,

respectively. However, depending on the process operating conditions, the three layers

are often a mixture of bitumen and gangue. It is common for the froth layer to contain

contaminants such as water and solids. For further separation, the froth needs to be

sent to a flotation cell. The tailings also contain residual bitumen. Residual bitumen

1This chapter has been accepted for publication as Yousef Salehi, Kaiyu Zhou, Biao Huang,
Xuehua Zhang, “Image restoration and analysis with application to quality variable prediction in
flotation process”, in Journal of Process Control, Sept. 2023.
A short version of this chapter has also been accepted for publication as Yousef Salehi, Amir
Mohseni, Kaiyu Zhou, Biao Huang, Xuehua Zhang, “A computer vision system for bitumen content
estimation in flotation froth with degraded images”, in IFAC World Congress, 2023.

71



can contribute to bitumen loss and emissions during disposal of the waste [80, 81].

Thus, tailings are sent to a flotation cell to extract residual bitumen. Bitumen should

be extracted from the flotation cell’s froth as much as possible while preserving the

flotation stability. To accomplish this, many variables need to be adjusted timely

(e.g. air flow rate, reagent dosage, froth depth). It is therefore essential to measure

the concentration of the froth components on a regular basis.

It is often difficult and costly to measure the bitumen concentration of the froth

(froth of the flotation cell), which is relatively small. A lab analysis is commonly

performed on samples collected across the batch for measuring the concentration.

Although lab result is accurate, it can take several hours to complete [82]. The long

delay associated with lab analysis will directly affect the effectiveness of the process

control solutions. A visualization of froth also provides valuable information about

the concentrate grade and the flotation performance. Operators adjust the opera-

tion variables based on visual features, such as the color and size of the bubbles.

But maintaining optimal flotation performance over long periods of time is difficult

since continuous human monitoring is required [83]. There may also be errors asso-

ciated with this type of monitoring since different operators may interpret the same

conditions differently.

The use of computer vision has become popular for the analysis of different flota-

tion froth processes using image features [84–86]. Essentially, various features can

be extracted to either build a regression model or classify the froth concentration

grade [16]. Color, texture, bubble size distribution, froth stability and velocity are

among the numerous features that can be extracted from the froth images [86]. Thus,

many tools have been developed to extract features from images. A classical way to

extract texture features such as homogeneity, entropy, and contrast is through the

use of gray-level co-occurrence matrix (GLCM) [54]. Moreover, CNNs can automati-

cally extract numerous low and high-level features. However, the deep features lack

physical meanings, are heavily dependent on data sample size, and require a lot of
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computation. This may not be feasible due to the high costs of labeling the froth

concentration. To avoid the training from scratch, a pre-trained CNN on an exist-

ing large data set can be used for the task by using transfer learning [87]. In this

regard, numerous CNN-based machine vision systems have been developed to mon-

itor and control the flotation process [86, 88]. In [89], AlexNet, a pre-trained CNN,

was used to extract froth features to predict the froth condition. Further, [85] de-

signed a feature reconstruction with a weight-shared kernel network, and the features

then were used as inputs for a fully connected network to monitor the flotation froth

performance. In [84], the authors investigated the importance of image frames in a

sequence as well as appearance and motion features of froth for developing soft sensor

models. To improve the prediction accuracy, [90] designed a hybrid neural network

combined with three different CNNs to extract the deep features. A real-time soft

sensor model based on the extracted image features was developed in [82] to predict

the bitumen froth grade and recovery rate. However, it ignored the possible froth

image degradation. Further, a commercial software was used to directly provide cer-

tain features such as froth velocity, stability and so on. Despite the benefits and

multiple features that commercial systems offer [83], their higher cost and the neces-

sity for regular calibration and maintenance to ensure accuracy and reliability can

be limiting factors. An overview of the recent advances in froth image analysis can

be found in [15]. While most of the discussed works assume high-quality images, it

is essential to acknowledge that images can be affected by various sources including

camera noise, varying lighting conditions, marks, unwanted objects and so on. In

this regard, an image restoration should be performed before feature extraction. For

instance, illumination variation of the froth surface was considered in [91]. In addi-

tion, errors due to instruments malfunction or humans may lead to inaccurate labels

of froth concentration. Therefore, a modeling process may need to take into account

froth concentration observations outliers.

In the present study, we estimate the froth concentration using computer vision
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Figure 5.1: Schematic drawing of a flotation column

technology, taking into account contaminated images and outliers. A model with

multiple image features is considered to estimate the concentration. An EM algorithm

is used to estimate the unknown parameters of the model. The principal contributions

of this study are as follows.

1. Restoration of the contaminated images with bright lighting spots using a mod-

ified spatial-based KF.

2. Extraction of deep froth image features using CNN and transfer learning, and

integrating features over the batch with unique attention weights assigned to

successive frames.

3. Development of a robust-to-outlier predictive model for cumulative bitumen

content of each batch based on image features.

5.2 Image Restoration Using Kalman Filter

Various factors can degrade an image, including environmental conditions, transmis-

sion channel interference, and compression artifacts. Therefore, a restoration step
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is necessary to improve the quality of the image for further processing. Due to the

two-dimensional nature of images, it is challenging to directly apply classical filtering

approaches [92], such as KF. Thus, it is necessary to formulate a proper state vector

to filter the images [93]. In this section, a state-space framework is introduced to

model a two-dimensional contaminated gray-scale image following the approach pro-

posed in [93]. Afterward, the state-space model is used to restore an estimate of true

image from the image contaminated by bright lighting spots and camera noise.

5.2.1 Image Model

Consider an M by N image where M and N are the number of rows and columns

of the image frame, respectively. A state at any given time instant is represented by

nine pixels shown in Figure 5.2, and the process of horizontal state propagation can

be seen in Figure 5.3. Once the state propagation in the horizontal direction from

left to right is completed for each strip, the same procedure will be followed for the

next strip by sliding one row down. The goal is to estimate the middle pixel, i.e. the

blank pixel in Figure 5.2, since it can use neighboring pixels’ estimations. The local

state-space model for the image is written as:

X(k + 1) = AX(k) +W (k) (5.1)

Y (k) = CX(k) + V (k) (5.2)

that is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(k + 1)

x2(k + 1)

.

.

x9(k + 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(k)

x2(k)

.

.

x9(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1(k)

w2(k)

.

.

w9(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.3)
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 A6,5 A6,6 A6,7 0 0

0 0 0 0 0 0 A7,7 0 0

0 0 0 0 A8,5 0 A8,7 A8,8 0

A9,1 A9,2 A9,3 A9,4 A9,5 A9,6 0 A9,8 A9,9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.4)

C = [0 0 0 0 0 0 0 0 1] (5.5)

and, X is the current state vector, while Y indicates the observed image. The state

noise and observation noise, which are assumed to be white Gaussian noises, are

represented by W and V , respectively.

The unusual numbering of these blocks is solely for the sake of easier formulating

and programming [93]. It is assumed that pixels 1, 2, 3, and 4 only repeat the values

in their previous spatial position while their corresponding state noise is zero. To

make it clearer, for example, x1(k + 1) = x2(k). The support pixels for other pixels

are given in Table 5.1. Thus, the transition matrix A is obtained as given in (5.4).

Table 5.1: Region of support for the pixels

Pixel Support pixels

x6(k + 1) xi(k), i = 5, 6, 7

x7(k + 1) xi(k), i = 7

x8(k + 1) xi(k), i = 5, 7, 8

x9(k + 1) xi(k), i = 1, 2, 3, 4, 5, 6, 8, 9

The strip is advanced one row down in each strip. As the state propagates from

left to right, blocks 1, 2, 3, 4, and 5 are shifted from the previous state. Blocks 6, 7,

8, and 9 are evaluated using four concurrent estimators. It should be noted that the

filtered estimate of pixel 9 with a full plane of support is the only pixel estimate that

is saved [93].
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Figure 5.2: Image scanning

Figure 5.3: State movement by one block

5.2.2 Image Model Parameter Estimation

The parameters of the state-space image model introduced in the previous section

can be obtained based on Yule-Walker equations [93]. Among these parameters are

some elements of the state transition matrix and their corresponding state noise

covariances. This section describes how to estimate the parameters of the state-space

model. From (5.3) we have:

x7(k + 1) = A7,7x7(k) + w7(k) (5.6)

77



Post-multiplying (5.6) by x7(k), taking the expectation, and using the following or-

thogonality principle:

E[w7(k)x7(k − 1)] = 0 (5.7)

yields

ρ7,7(t) = A7,7ρ7,7(t− 1) +Qw7,7δ(t) (5.8)

where E indicates the expectation operator, and ρi,j(t) ≜ E[xi(n)xj(n − t)] is the

correlation between pixels i and j. Also, Qwi,j
denotes the variance of the state noise,

i.e. variance of wi,j. Additionally, δ is the Dirac delta function.

Transposing (5.8) and using the property ρTi,j(t) = ρj,i(−t) gives

ρ7,7(−t) = ρ7,7(1− t)AT
7,7 +Qw7,7δ(t) (5.9)

Plugging t = 0, 1 in this equation gives the following Yule-Walker equation⎡⎣ρ7,7(0) ρ7,7(1)

ρT7,7(1) ρ7,7(0)

⎤⎦⎡⎣ 1

−AT
7,7

⎤⎦ =

⎡⎣Qw7,7

0

⎤⎦ (5.10)

The solution to (5.10) yields A7,7 and Qw7,7 .

Similarly, we have

x6(k + 1) =
[︂
A6,5 A6,6 A6,7 A6,8

]︂
⎡⎢⎢⎢⎢⎢⎢⎣
x5(k)

x6(k)

x7(k)

x8(k)

⎤⎥⎥⎥⎥⎥⎥⎦+ w6(k) (5.11)

Yule-Walker’s vector equation can be expressed as follows using the orthogonality

principle.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ6,6(0) ρ6,5(1) ρ6,6(1) ρ6,7(1) ρ6,8(1)

ρ6,5(1) ρ5,5(0) ρ5,6(0) ρ5,7(0) ρ5,8(0)

ρ6,6(0) ρ6,5(0) ρ6,6(0) ρ6,7(0) ρ6,8(0)

ρ6,7(1) ρ7,5(0) ρ7,6(0) ρ7,7(0) ρ7,8(0)

ρ6,8(1) ρ8,5(0) ρ8,6(0) ρ8,7(0) ρ8,8(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−AT
6,5

−AT
6,6

−AT
6,7

−AT
6,8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qw6,6

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.12)
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The solution of (5.12) provides Qw6,6 and A6,5:8. The same procedure is followed for

the rest of the parameters. It should be noted that

ρi,i(0) = ρj,j(0), i ̸= j (5.13)

ρi,j(−t) = ρTj,i(−t), t any integer (5.14)

By using these equivalences, considerable computation time can be saved. So far, we

have explained how to estimate the elements of A and the diagonal elements of Q. To

complete the parameter estimation process, the off-diagonal elements of Q need to be

determined. For Qw6,7 , post-multiplying both sides of (5.11) by xT7 (k) and using the

orthogonality principle, E[w7(k)x
T
7 (k − 1)] = 0, gives

Qw6,7 = ρ6,7(0)−
[︂
A6,5 A6,6 A6,7 A6,8

]︂
⎡⎢⎢⎢⎢⎢⎢⎣
ρ5,7(−1)

ρ6,7(−1)

ρ7,7(−1)

ρ7,8(−1)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.15)

The procedure for determining Qw8,7 and Qw6,8 is similar. For Qw6,9 we obtain

Qw6,9 = ρ6,9(0)− [ρ6,1(1) ρ6,2(1) ρ6,3(1) ρ6,4(1)ρ6,5(1) ρ6,6 ρ6,7(1) ρ6,8(1) ρ6,9]A
T
9

(5.16)

The same applies to Qw8,9 and Qw7,9 . The remaining off-diagonal elements can be

obtained by the relationship Qwj,i
= QT

wi,j
. For i ∈ [0, 4], j ∈ [1, 9] and i ∈ [6, 9], j ∈

[1, 5] we have Qwi,j
= 0 since the shifting process produces the corresponding blocks.

This work uses measurement noise covariance as a tuning parameter. A detailed

explanation can be found in [93].

5.2.3 KF Algorithm in the Presence of Missing Observations

Many approaches have been proposed to solve state estimation problems in literature.

Among them, the KF gives the optimal state estimation for linear systems when the

state noise and measurement noise both follow a Gaussian distribution with zero mean
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and variances Q and R, respectively, with appropriate dimensions. In the current

study, however, some parts of the images are obscured by bright lighting spots. The

image pixels corrupted by the bright lighting spots are considered missing pixels. To

restore the degraded image, we adopt a modified version of the KF algorithm that can

handle missing observations [94]. Consider η as a binary matrix with the same size

as the image where its elements are equal to one except for the spatial position of the

bright lighting spots where zero is assigned to the corresponding elements, meaning

the corresponding pixel observation is missed. The steps for image restoration using

a modified KF are provided in (5.17)-(5.21).

X̂k+1|k = AX̂k|k (5.17)

Pk+1|k = APk|kA
T +Q (5.18)

Kk+1 = Pk+1|kC
T (CPk+1|kC

T +R)−1 (5.19)

X̂k+1|k+1 = X̂k+1|k + ηk+1Kk+1(yk+1 − CX̂k+1|k) (5.20)

Pk+1|k+1 = Pk+1|k − ηk+1Kk+1CPk+1|k (5.21)

where P and K denote the estimation error covariance matrix and Kalman gain,

respectively.

As shown in (5.20), when the current pixel observation is missing, only the previ-

ously estimated value is used as an update. A convergence analysis of the KF in the

presence of missing observations has been given in [94]. The one-directional recursion

of the above image restoration algorithm is one of its limitations. In this work, we

propose to use three other KFs simultaneously to restore the image by propagating

the state along different directions, i.e. from right to left, top to bottom, and bottom

to top. When the four KFs have been applied, the final image quality is determined

by fusing the four filtered images together. For each restored image, the inverse of

the error covariance matrix is used as the weight [35] as given below.

X̂ =
P−1
LRX̂LR + P−1

RLX̂RL + P−1
TBX̂TB + P−1

BT X̂BT

P−1
LR + P−1

RL + P−1
TB + P−1

BT

(5.22)
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where the subscripts LR, RL, TB, and BT indicate left to right, right to left, top to

bottom and bottom to top, respectively.

5.3 Image Feature Extraction

Various visual features can be extracted from the captured froth images. This section

explains how color and statistical texture features can be extracted. A CNN-based

network is also described as a tool for extracting other complex visual features. A

combination of the extracted features serves as inputs for the following regression

model.

5.3.1 Color and Statistical Features

Color of the froth is a basic, yet informative feature about the froth concentration.

This study takes into consideration the HSV color space for its more robustness

against illumination variations when defining a color image. Mean values of the three

channels, i.e. H, S, and V, are set as the color features. Based on the intensity

of each position in the image, texture features are determined. Three types of tex-

ture statistics exist: first order, second order, and higher order. The GLCM can be

used to extract image statistical texture features such as energy, entropy, contrast,

homogeneity, correlation, dissimilarity, and inverse difference moment [54].

5.3.2 CNN-Based Features

CNN models have greatly improved computer vision tasks, particularly for image

processing [95]. VGG16 [96] is a pre-trained CNN, trained on a large data set of

images, allowing it to learn to recognize a wide variety of objects and scenes. This

pre-trained model can be used as a starting point for other computer vision tasks, such

as fine-tuning it on a smaller data set for a specific task or using its learned features

to train another model. This is a common practice in the field of computer vision

and it is known as transfer learning, which can save training time and computational
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resources. As the convolution layers progress, more complex features are extracted,

with a fully connected layer of the VGG16 network being used to extract global

semantic information of an image. However, we do not use the fully connected layer

and only use the extracted features in this work.

5.4 Model Development

We consider a batch wise image processing for a froth sampling process. Froth is

mixture of oil and water. In this work, we are interested in building a model to predict

froth concentration using images. In the experiment setup, froth is collected batch-

wise, and its concentration is measured through lab analysis. Each batch contains

only one label for the froth concentration of the entire batch and J consecutive image

frames taken within the batch. Thus, for every input variable (i.e., feature extracted

from image) to a model, there are J values. For each feature, an integration of the

feature values across the J frames is calculated using a unique attention weight. Due

to the fact that froth concentration decreases as batch progresses (see Figure 5.4),

the weight is assumed to follow an exponential decaying function [81]. The fast-rate

inputs are therefore transferred to the slow-rate inputs by integrating each input over

the batch with its corresponding frame’s weight. Then, a regression model at a slow

rate is built between the output and integrated inputs as:

Um
i =

1∑︁J
j=1 cj

J∑︂
j=1

cju
m
i,j (5.23)

yi = ϕT
i θ + ei (5.24)

where

cj = λ1 + exp
(︁
− λ2j

)︁
, j = 1, 2, . . . , J (5.25)

ϕT
i = [U1

i U2
i . . . UM

i 1] (5.26)

θT = [θ1 θ2 . . . θM θbias] (5.27)
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Figure 5.4: Sequential froth images recorded every 1 min
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Table 5.2: List of variables in the problem formulation

Notation Description

yi Output measurement for batch i.

umi,n mth feature of the nth frame in batch i

Um
i mth integrated feature in batch i

M Total number of features (input variables)

θ Model parameters

e Measurement noise

σ2 Measurement noise variance

υ Degree of freedom

r Measurement noise scaling parameter

λ1, λ2 Tuning parameters of the attention weights

assigned to image frames in a batch

cj The attention weight assigned to jth image frame

J Total number of frames in a batch

cj is the associated attention weight for the jth image frame. Also, e shows the output

measurement noise. Gaussian distribution is widely used in noise characterization.

However, it cannot handle outliers due to its short tails. For robustness against

outliers, the measurement noise e is assumed to follow a t-distribution with the mean

zero, variance σ2, and the degree of freedom v [72]. A list of the notation used in

the problem formulation is provided in Table 5.2. For the EM algorithm problem

formulation, the observed variables (Dobs), hidden variables (Dhid) and parameters to

be estimated (Θ), are identified as

Dobs = {Y, U} = {y1:N , U1
1:N , · · · , UM

1:N} (5.28)

Dhid = {R} = {r1:N} (5.29)

Θ = {θ, σ2, υ} (5.30)

We aim to develop an EM algorithm that solves the parameter estimation problem

for the regression model in the presence of outlying output observations. The EM
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algorithm is a powerful method for finding the maximum likelihood estimate (MLE)

of the parameters in a statistical model. It is particularly useful when the data is

incomplete. The algorithm is an iterative method that alternates between the E-

step and M-step. The E-step estimates the expected value of the complete data

log-likelihood function given the current estimates of the parameters. The M-step

maximizes the expected value of the complete data log-likelihood function computed

in the E-step with respect to the parameters. This step estimates new parameters

that maximize the expected likelihood of the data. Beginning with an initial value

of the unknown parameters, the EM algorithm repeats its steps until convergence is

achieved. The EM algorithm has been shown to converge [49].

5.4.1 Expectation Step

The expectation of the log-likelihood function of the complete data defined in (5.28)-

(5.29), known as Q-function, is

Q(Θ|Θh) = EDhid|Dobs,Θh [log(p(Dhid, Dobs|Θ))] (5.31)

where Θh shows the estimated parameters at the hth iteration. According to the

definition of the Q-function in (5.31), we obtain Q-function for the problem of interest

as follows:

Q(Θ|Θh) = ER|Y,U,Θh [log(p(Y, U,R|Θ))] (5.32)

It is possible to decompose the likelihood function of the complete data set as follows

using the probability chain rule.

p (Y, U,R|Θ) = p (Y |U,R,Θ) p (R|Θ) p(U |Θ) (5.33)

Given the set of N observations, the probability of the observations is independent of

each other and assumes the measurement noise distribution, which can be expressed

as the product of the marginal distributions for each output, that is,

p (Y |U,R,Θ) =
N∏︂
i=1

p(yi|ϕT
i , ri,Θ) (5.34)
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The marginal distributions are each expressed as follows:

p
(︁
yi|ϕT

i , ri,Θ
)︁
= N (yi|ϕiθ,

σ2

ri
) (5.35)

where

p (ri|υ) = G(
υ

2
,
υ

2
) (5.36)

and, N and G represent the Gaussian distribution and Gamma distribution, respec-

tively. Substituting (5.33)-(5.36) into (5.32) yields (5.37).

Q(Θ|Θh) = ER|Y,U,Θh [log(p(Y, U,R|Θ))] =
N∑︂
i=1

∫︂
p(ri|Dobs,Θ

h) log p(yi|ϕT
i , ri,Θ)dri

+
N∑︂
i=1

∫︂
p(ri|Dobs,Θ

h) log p(ri|υ)dri +
N∑︂
i=1

∫︂
p(ri|Dobs,Θ

h) log p(Ui|Θh)dri

=
N∑︂
i=1

∫︂
p(ri|Dobs,Θ

h)

(︃
− 1

2
log 2πσ2 +

1

2
ri −

(yi − ϕθ)2

2σ2

)︃
dri

+
N∑︂
i=1

(︃
υ

2
log

υ

2
+ (

υ

2
− 1)

∫︂
p(ri|Dobs,Θ

h) log ridri

− υ

2

∫︂
p(ri|Dobs,Θ

h)ridri − log Γ(
υ

2
)

)︃
+ C (5.37)

where Γ denotes Gamma function.

As the input values are known and deterministic, the last term in (5.37) is inde-

pendent of Θ. Thus, p(U |Θ) ≡ C1 where C1 is a constant value with respect to Θ.

Furthermore, we have:

⟨ri⟩ =
∫︂
p(ri|Dobs,Θ

h)ridri =
1 + υh

(yi−ϕiθh)2

(σ2)h
+ υh

(5.38)

⟨log ri⟩ =
∫︂
p(ri|Dobs,Θ

h) log ridri = − log

(︃ (yi−ϕiθ
h)2

(σ2)h
+ υh

2

)︃
+ ψ

(︃
1 + υh

2

)︃
(5.39)

where ⟨.⟩ indicates the expectation and ψ is the derivative of the logarithm of the

Gamma function, i.e., ψ(υ) = ∂Γ(υ)
∂υ

1
Γ(υ)

.
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The Q function in (37) will then be rewritten as follows:

Q(Θ|Θh) = −N
2
log 2πσ2 +

1

2

N∑︂
i=1

(︃
⟨log ri⟩ −

⟨ri⟩(yi − ϕθ)2

σ2

)︃

+
Nυ

2
log

υ

2
−N log Γ(

υ

2
) +

υ

2

N∑︂
i=1

(︃
⟨log ri⟩ − ⟨ri⟩

)︃

−
N∑︂
i=1

⟨log ri⟩ + C (5.40)

where C is a constant term.

5.4.2 Maximization Step

To update the parameters, we maximize the Q-function with respect to each param-

eter, that is,

Θh+1 = argmax
Θ

Q(Θ|Θh) (5.41)

As a result, when we take the derivative of the Q-function with respect to the model

parameters and set them to zero, we obtain:

θh+1 =

[︃ N∑︂
i=1

⟨ri⟩ϕT
i ϕi

]︃−1[︃ N∑︂
i=1

⟨ri⟩ϕT
i yi

]︃
(5.42)

The noise variance can also be estimated by taking gradient with respect to σ2 and

setting it to zero, resulting in

(σ2)h+1 =
1

N

N∑︂
i=1

⟨ri⟩(yi − ϕiθ)
2 (5.43)

In addition, the degree of freedom can be estimated by taking the gradient of Q with

respect to υ and equating it to zero.

N∑︂
i=1

(⟨log ri⟩ − ⟨ri⟩) +N

(︃
log

v

2
− ψ(

υ

2
) + 1

)︃
= 0 (5.44)

Solving the nonlinear equation in (5.44) gives υ. We also need to estimate the atten-

tion weight parameters, λ1 and λ2. Taking the derivative of (5.45) with respect to λ1

and λ2, respectively, yields λ1 and λ2.

F (λ1, λ2) =
N∑︂
i=1

(︁
⟨ri⟩(yi − ϕiθ)

2
)︁

(5.45)

87



Equations (5.23) and (5.26) show that ϕ is a function of λ1 and λ2. We have solved

(5.45) using the nonlinear functions in MATLAB.

5.5 Experimental Verification

The massive mining production of oil sands ores has generated a large amount of

oil sands tailings. Residual bitumen in the tailings is a source of greenhouse gases

emissions. Efficient residual bitumen recovery benefits the environment as well as the

oil recovery. The proposed method is evaluated in this section by estimating bitumen

concentration in a lab-scale tailings flotation plant. A pipeline loop was utilized to

recover the residual bitumen from the oil sands tailings, which is composed of 0.2 wt

% bitumen, 50 wt % solids and 49.8 wt % process water was prepared. Figure 5.5

shows a schematic of a lab-scale oil sands flotation used in the experimental work

[97]. On the right side of the loop, there is a power unit with a progressive cavity

pump that allows the tailings to circulate steadily. In this experiment, the tailings

stream was controlled to flow at 2 m/s. The glass trough near the power unit has

multiple functions, including the inlet of oil sands tailings, froth sample collection

and image capturing of the recovered froth. The experimental oil sands tailings were

injected to the loop from the trough first. The heat exchanger at the bottom was set

to the desired temperature of 42°C to heat the circulated tailings for approximate 20

minutes to achieve 42°C. After that, 30% hydrogen peroxide solution of 6 mL and 12

mL was injected into the tailings from the trough at various rates to investigate the

bitumen recovery. The froth formed at the top of the trough as a result of continuous

decomposition of bitumen, solids, and water. The recovered froth containing bitumen,

solids, and entrapped water was formed in the trough. A camera was positioned at

a height of 30 cm above the recovered froth surface. In addition, one piece of tinfoil

was used to minimize light reflection on the froth surface by shading the scattered

light in the environment. However, the images were still unavoidably affected by

lighting conditions. Subsequently, the collected froth was transferred to the lab to
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Figure 5.5: Schematic of the experimental setup

determine the solids, water, and bitumen contents for labeling using Dean-Stark.

Figure 5.4 shows the visual changes in the froth over time within a batch. There is

clearly more bitumen at the beginning of the batch, and less bitumen as the batch

progresses. Hence, we assign a unique attention weight to each frame as considered

in the proposed model in (5.23).

5.5.1 Data Expansion

The experiment involved 106 flotation batches, each lasting for eight minutes. In every

batch, the operator tried ten times to collect the bitumen from the froth’s surface and

poured it into a container each time. Meanwhile, images were continuously captured

throughout each batch. However, in this study, we only used the images taken right

before each of the ten bitumen collections, i.e. we used ten images per batch, as only

those sub-samples were accumulated and analyzed in the laboratory. Consequently,
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the concentration label of the cumulative froth sample over each batch used in the

study is related with those ten images. To generate additional images artificially from

the collected images, many classical and deep learning-based methods exist [98]. This

study uses several traditional methods, including flipping, scaling, adding noise, and

rotating images. The utilization of these conventional techniques led to the creation

of 212 additional batches.

5.5.2 Results

Mean values of the three color channels are considered as color features. In addition,

homogeneity, contrast, energy, and correlation are extracted from each image using

GLCM, representing textural features. To further enhance the analysis of the images,

VGG16 is used to extract deep features. Due to label limitations that may deterio-

rate the parameter estimation accuracy, we have selected only 10 mostly correlated

deep features using principal component analysis (PCA). We use the coefficient of

determination (R2) and RMSE to test the performance of the proposed soft sensor

model.

All the images need to be restored. The restoration process begins by automatically

detecting bright lighting pixels and setting their corresponding η value to zero. Then

the proposed KF in (5.17)-(5.22) is applied. Figure 5.6 displays a contaminated

image along with its corresponding restored image. As can be seen, the froth image

pixels affected by the lighting have been filtered satisfactorily. It is important to note

that the restoration process becomes challenging when there is a significant absence

of connected pixels, as the KF applies spatial filtering technique.Fig. 5.7 and Fig.

5.8 exhibit two additional examples used to assess the performance of the proposed

restoration algorithm when images are subject to a Gaussian noise with a variance

of 0.04 and the presence of marks on the image surface, respectively. These figures

demonstrate that the algorithm effectively mitigates the impact of degradation with

satisfactory accuracy. Once the images are restored, the proposed EM algorithm is
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applied and parameters of the regression model are estimated. The proposed vision

model is validated using leave-one-out cross-validation. Cross-validation with leave-

one-out is a special type of cross-validation that equating the number of folds by

the number of instances in the data set. Using this method, the learning algorithm

is applied to every instance, with the other instances acting as training sets and the

selected instance acting as test. Fig. 5.9 shows the scatter plot for both predicted and

true (laboratory result) bitumen concentration. The corresponding R2 and RMSE

values are given in Table 5.3. It is seen that R2 = 64.12% is obtained using the

proposed robust EM (REM) algorithm. We also compared the results with the REM

algorithm applied to the degraded images without using restoration. It was noted

that excluding the restoration process resulted in a decrease in accuracy of 4.08%.

In order to illustrate the impact of considering deep features, we used the REM

algorithm but with only the color and GLCM features (called REM-GLCM in this

paper). As a result, the accuracy exhibited a decrease of 3.01% in comparison to the

developed REM with image restoration. Further, we compared the results with those

obtained when Gaussian distribution was used rather than the t-distribution. An R2

of 58.61% was achieved using the regular least squares (LS) algorithm. Additionally,

the proposed model, including the image restoration step, can estimate the cumulative

bitumen content over a batch in less than two minutes using MATLAB R2019b on

a CPU of frequency 2.60 GHz, eight cores, and 16-GB memory instead of taking a

couple of hours as using Dean-Stark in the laboratory. The only associated cost is to

fine-tune the model.

Table 5.3: RMSE and R2 of the validation output estimation

Index LS REM-GLCM REM without restoration Proposed REM

RMSE 0.0539 0.0512 0.0558 0.0492

R2 0.5861 0.6111 0.6004 0.6412
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Figure 5.6: Reducing the effects of bright lighting spots using the modified KF

5.6 Conclusion

We propose a computer vision model to estimate the froth concentration grade in

batch flotation processes. Due to the common disturbances such as lighting and

camera noise, a modified KF-based algorithm is used to restore the images. Froth

color, texture and deep features are then extracted and integrated from the restored

images using GLCM and a pre-trained deep learning algorithm, VGG16. The highly

correlated features are selected using PCA and used to construct a model to estimate

the froth concentration. To estimate the model parameters, an EM algorithm is ap-

plied. Moreover, to improve the model robustness against outliers, the t-distribution

is used in modeling the noise. A laboratory-scale bitumen flotation experiment data

is used to assess the proposed algorithm’s efficiency. An R2 of 64.12% is achieved in

estimating the concentration of the froth. Employing the identical algorithm without

the restoration step leads to a decrease in accuracy, resulting in an R2 of 60.04% for

estimating the concentration. Moreover, excluding only deep features from the pro-
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Figure 5.7: Noise reduction result using the modified KF

posed model reduces the R2 to 61.11% which supports the importance of considering

deep features. Further, the proposed vision based algorithm is more time efficient

compared to the laboratory analysis.
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Froth image degraded by text

Restored froth image

Figure 5.8: Text removal result using the modified KF

Figure 5.9: Scatter plot for the validation results
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Chapter 6

Robust Computer Vision Model
for Predicting Process Variables
with Slow-Rate Measurements 1

6.1 Introduction

Computer vision models are powerful tools in process monitoring and control [11–13].

Vision models leverage image processing and machine learning techniques to predict

process variables that are not directly measured due to technical or economic con-

straints. The detection of certain objects or variables in real-time is another industrial

application of vision-based models [99, 100]. Through the analysis of images, the pre-

dictive models can relate the relevant features or patterns to the target process vari-

ables. The advantage of vision predictive models lies in their non-intrusive nature, as

they do not require physical contact with the subject. Additionally, they can capture

spatial and temporal information at a lower cost, enabling real-time monitoring and

control. However, developing accurate vision predictive models requires appropriate

images of sufficient quality. In practical applications, an image can be corrupted by

a variety of sources, resulting in a degraded visual representation. Physical damage,

such as marks or scratches can distort images. Furthermore, environmental factors

such as lighting conditions, steam, fog, dust, and rain can have a significant impact

1This chapter is under review as Yousef Salehi, Ranjith Chiplunkar and Biao Huang, “Robust-
to-Occlusion Machine Vision Model for Predicting Quality Variables with Slow-Rate Measurements”,
in Computers and Chemical Engineering, 2023.
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on image quality by reducing clarity and introducing unwanted artifacts, leading to

a decline in the visual information [44]. Understanding the common sources of im-

age degradation is essential to mitigate such issues and employ appropriate methods

for image restoration. In this regard, image inpainting involves restoring the com-

pleteness of an image by filling in missing or degraded regions. Image inpainting

methods aim to reconstruct the missing or damaged regions in a way that seamlessly

blends with the surrounding areas, creating visually coherent and convincing results

[101]. Traditional image inpainting approaches rely on patch-based or texture syn-

thesis methods to infer missing information based on the surrounding context [102].

However, recent advancements in deep learning, particularly with the use of CNN,

have revolutionized the field of image inpainting [103, 104]. The deep learning meth-

ods have shown remarkable capabilities in capturing the high-level semantics and

structures of images, enabling them to generate more realistic and visually satisfy-

ing inpainted results. Autoencoders have also proven to be effective tools for image

inpainting tasks [105]. Autoencoders provide an end-to-end framework for inpaint-

ing, allowing them to directly learn to fill in missing regions without manual feature

engineering. Autoencoders-based inpainted images are often visually coherent and se-

mantically meaningful because they preserve important features and structures in the

original image. Furthermore, autoencoders consider relationships between different

regions to produce realistic and cohesive inpaintings. This study uses autoencoders

to complete the degraded images caused by environmental factors.

Images and, therefore, their features are commonly available at a fast rate, but the

desired process variable (output) is available only at a slow rate. A variety of model

structures have been considered as predictive models where ARX model captures

underlying dynamics while preserving simplicity of model structure [31]. The model

can provide predictions of the output variable based on the input(s) and past output

values. In this study, we develop a fast-rate ARX model for the output variable in

the presence of multirate data with inclusion of images. To estimate the unknown
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Image Inpainting Feature extraction Fast-rate prediction

Slow-rate measurement

ARX model

Figure 6.1: Flowchart of the proposed computer vision model

parameters of the model, we use the EM algorithm that is commonly used [106].

Figure 6.1 is a flowchart of the proposed method.

In summary, we propose a computer vision model for predicting slow-rate sampled

variables at a fast rate. The main contributions of this chapter include:

1. Development of an autoencoder-based algorithm to inpaint images with rela-

tively large missing portions.

2. Development of an ARX model using image data and slow-rate sampled output

to predict the output at a fast rate.

3. Integration of the Rauch-Tung-Striebel (RTS) smoother into the KF framework,

coupled with the utilization of the EM algorithm, thereby enabling estimation

of unknown model parameters.

4. Evaluation of the proposed method through an experimental study.

6.2 Image Inpainting Using Autoencoder

Image inpainting techniques address the task of filling in relatively large missing re-

gions in images. By training on sufficient amounts of available images, deep learning

models can learn the underlying patterns, textures, and structures of images, enabling

them to generate coherent and realistic content for the missing regions. Autoencoders

have proven to be effective tools for image inpainting tasks. An autoencoder is a type

of neural network architecture that is primarily designed to learn efficient represen-

tations of input data. In the context of image inpainting, an autoencoder can be
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trained to reconstruct complete and visually coherent images from partially degraded

input images. An architecture of autoencoder is presented in Figure 6.2. The en-

coder part of the network learns to extract relevant features from the available image

information, while the decoder fills in the missing or degraded regions based on the

learned features. By training the autoencoder on a dataset of ground-truth images

and their corresponding degraded versions, it learns to capture the underlying pat-

terns and structures of the images, enabling it to reconstruct the missing regions.

The use of autoencoders for image inpainting has demonstrated impressive results in

various applications, including removing unwanted objects, restoring damaged areas,

and filling in occluded regions.

In this work, the encoder consists of two convolutional layers where the first layer

has 32 kernels of size (3, 3), and rectified linear unit (ReLU) activation. The second

convolutional layer has 64 kernels of size (3, 3), and ReLU activation. After each

convolutional layer, there is a max-pooling layer with a pool size of (2, 2).

The decoder mirrors the encoder architecture with two convolutional layers and two

upsampling layers where the first and second convolutional layer has 64 and 32 kernels,

respectively, of size (3, 3) followed by ReLU activation. After each convolutional layer,

there is an upsampling layer with a size of (2,2). The output layer of the decoder has

3 kernels of size (3, 3) and sigmoid activation. It is designed to match the number

of channels in the input image. An autoencoder is trained using the principle of

Inpainted image

Encoder

Degraded image

Decoder

Latent space (Z)

Figure 6.2: Architecture of autoencoder for image inpainting
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minimizing the reconstruction loss. In other words, if we denote the ground-truth

images as X and the reconstructed images as X̂, the goal of autoencoder is to find

the optimal parameters of the neural networks, denoted by θae, that minimize the

difference between the ground truth and reconstructed images. The reconstruction

loss is commonly measured using the mean squared error (MSE) between X and X̂:

LMSE =
1

n

n∑︂
i=1

(Xi − X̂ i)
2 (6.1)

where n is the number of image samples.

To update the network parameters θae, we use gradient descent. The gradient of

the reconstruction loss with respect to the parameters can be computed using back-

propagation. Let E represent the error between X and X̂:

E = X − X̂ (6.2)

The gradients of the reconstruction loss with respect to the parameters can be com-

puted as

∂LMSE

∂θae
=

2

n

n∑︂
i=1

Ei
∂X̂ i

∂θae
(6.3)

∂X̂ i

∂θae
=
∂X̂ i

∂Zi

∂Zi

∂θae
(6.4)

where Z represents the latent space of the autoencoder.

To complete the training process, we update the parameters using the gradient

descent update rule:

θnewae = θoldae − η
∂LMSE

∂θae
(6.5)

where η is the learning rate.

6.3 ARX Predictive Model

In this section, a dual-rate ARX model is formulated where the color and texture

features of the images are available at a faster rate, but only slow-rate measurements
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are available for the output. The objective is to predict the fast-rate values of the

slow-rate sampled output. Thus, we have:

xk =
na∑︂
n=1

anxk−n +
M∑︂

m=1

nb∑︂
n=1

bm,num,k−n + wk (6.6)

yTi
= xTi

+ vTi
(6.7)

In the problem formulation, xk is the fast-rate output that is hidden. The index k,

ranging from 1 to Nf , represents the instant of fast sampling. We have assumed M

input variables (image features) are available and the term {um,k}k=1,··· ,Nf
denotes

the mth input variable, which is available at every fast sampling time, i.e. k× t, with

bm,n being their corresponding coefficients. Further, {an}n=1:na is the coefficient for

the nth lag of x. {yTi
}i=1,2,··· ,N represents the slow-rate output that is available only

at every Ti × t. Nf and N are the number of fast-rate images and slow-rate output

data, respectively. The process noise wk and measurement noise vTi
are assumed to

be independent, identically distributed (i.i.d) Gaussian sequences with mean zero and

unknown variances σ2
w and σ2

v , respectively.

For the notation simplicity, we rewrite (6.6) as:

xk = ϕT
k θ + wk (6.8)

where,

ϕT
k = [xk−1 · · ·xk−na , u1,k−1:k−nb

, u2,k−1:k−nb
· · · , uM,k−1:k−nb

] (6.9)

θ = [a1, a2 · · · ana , b1,1:nb
, · · · , bM,1:nb

]T (6.10)

Thus, a complete representation of the data is as follows:

Dobs = {Y, U} = {y1:N , u1,1:n, u2,1:Nf
, · · · , uM,1:Nf

} (6.11)

Dhid = X = {x1:Nf
} (6.12)

Θ = {a1:na , b1:M,1:nb
, σ2

w, σ
2
v} (6.13)
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where Dobs is the observed data, Dhid is the hidden data and Θ denotes the unknown

parameters. We use the EM algorithm to estimate the unknown parameters given

the incomplete data.

6.3.1 Expectation-Maximization Algorithm

The EM algorithm performs MLE of the parameters of a model with missing or hidden

data. Due to the missing data, maximizing the likelihood as such is not possible, and

hence a lower bound to the likelihood function is maximized. The complete data

likelihood which includes both Dobs and Dhid is expressed as follows:

p (Y,X, U |Θ) = p(Y |X,U,Θ)p(X|U,Θ)p(U |Θ) (6.14)

In this work, U is independent of Θ, and hence p(U |Θ) is a constant and can be

dropped from the above expression. As mentioned earlier, EM algorithm involves

maximizing a lower bound of the above likelihood, and the details are presented in

the subsequent sections.

6.3.2 Expectation Step

This step involves evaluating the expected value of the logarithm of the likelihood

function given in section (6.14) with respect to the posterior distribution of the hidden

variables. The resulting function is called the Q-function and is expressed as follows:

Q(Θ|Θh) =EDhid|Dobs,Θh [log(p(Dhid, Dobs|Θ))]

=EX|Y,U,Θh [log(p(Y,X|Θ, U))] . (6.15)

Here, Θh represents the estimated parameters at hth iteration of the EM algorithm.

With wk and vTi
being Gaussian white noise, the following results are obtained.

p (Y |X,U,Θ) =
N∏︂
i=1

N (yTi
;xTi

, σ2
v) (6.16)

p (X|U,Θ) =

Nf∏︂
k=n∗+1

N (xk;ϕ
T
k θ, σ

2
w) · N (x̃;µ0,Σ0) (6.17)
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Here, n∗ = max(na, nb) and N (x;µ,Σ) represents a Gaussian distribution for variable

x with mean µ and covariance Σ. Additionally, x̃ = xn∗:n∗+1−na represents the initial

conditions. The complete data log-likelihood can be written as follows:

log p(Y,X|Θ, U) = −N log(σv)−
1

2

N∑︂
i=1

(yTi
− xTi

)2

σ2
v⏞ ⏟⏟ ⏞

q1

−(Nf − n∗) log(σw)−
1

2

Nf∑︂
k=n∗+1

(xk − ϕT
k θ)

2

σ2
w⏞ ⏟⏟ ⏞

q2

−1

2
log(det(Σ0))−

1

2
(x̃− µ0)

TΣ−1
0 (x̃− µ0)⏞ ⏟⏟ ⏞

q3

+ c (6.18)

Here, c accounts for the proportionality constants of the involved distributions. Fi-

nally, the expected value of the above expression is taken which results in the following

expressions. For simplicity, EX|Y,U,Θh [·] is represented as ⟨·⟩.

Q1 = ⟨q1⟩ = −N log(σv)−
1

2

N∑︂
i=1

y2Ti
− 2yTi

⟨xTi
⟩+ ⟨x2Ti

⟩
σ2
v

(6.19)

Q2 = ⟨q2⟩ = −(Nf − n∗) log(σw)−
1

2

Nf∑︂
k=n∗+1

⟨x2k⟩ − 2⟨xkϕT
k ⟩θ + θT ⟨ϕkϕ

T
k ⟩θ

σ2
w

(6.20)

Q3 = ⟨q3⟩ = −1

2
log(det(Σ0))−

1

2

(︁
Tr(Σ−1

0 ⟨x̃x̃T ⟩)
)︁
− 1

2

(︁
−2µT

0Σ
−1
0 ⟨x̃⟩+ µT

0Σ
−1
0 µ0

)︁
(6.21)

Here Tr(·) represents the trace operator. It can be observed that Q = Q1 + Q2 +

Q3 + c.

6.3.3 Evaluating the Posterior Distribution

It must be noted that the expressions in (6.19) - (6.21) contain the expected value of

the hidden variables with respect to the posterior distribution of p(X|Y, U,Θ). This

is essentially a state estimation problem with the state evolving according to an ARX

model. It can be recast into the standard state estimation problem by converting the
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ARX model into the state-space form as expressed by the following equations.

zk = Azk−1 +Bũk−1 + w̃k

yTi
= CzTi

+ vTi
(6.22)

The definitions of the states and parameters in (6.22) are given as below:

zk =

⎡⎢⎢⎢⎢⎢⎢⎣
z
(1)
k

z
(2)
k

...

z
(na)
k

⎤⎥⎥⎥⎥⎥⎥⎦
na×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
xk

xk−1

...

xk−na+1

⎤⎥⎥⎥⎥⎥⎥⎦
na×1

; ũk−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
u1,k−1:k−nb

u2,k−1:k−nb

...

uM,k−1:k−nb

⎤⎥⎥⎥⎥⎥⎥⎦ (6.23)

A =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 a2 . . . ana

1 0 . . . 0

0 1 . . . 0
...

... . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦
na×na

C =
[︂
1 0 . . . 0

]︂
1×na

B =

⎡⎢⎢⎢⎣
b1,1:nb

b2,1:nb
. . . bM,1:nb

0 0 . . . 0
...

... . . . 0

⎤⎥⎥⎥⎦
na×(M ·nb)

(6.24)

Here, 0 represents a nb dimensional row vector of zeros. The noise w̃k is Gaussian

white noise defined as follows:

w̃k ∼ N (w̃k; [0]na×1,Σw = diag([σ2
w 0 . . . 0])na×na) (6.25)

With the above definitions, one can use the standard KF and Rauch-Tung-Striebel

(RTS) smoother to obtain the posterior distribution of the states zk [107]. The filter-

ing and smoothing algorithms are summarized in the following set of equations.
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Kalman filtering:

ẑk|k−1 = Aẑk−1|k−1 +Bũk−1

P̂ k|k−1 = AP̂ k−1|k−1A
T + Σw

if yk is available,

Kk = P̂ k|k−1C
T (CP̂ k|k−1C

T + σ2
v)

−1

ẑk|k = ẑk|k−1 +Kk(yk − Cẑk|k−1)

P̂ k|k = (I −KkC)P̂ k|k−1

if yk is unavailable,

ẑk|k = ẑk|k−1

P̂ k|k = P̂ k|k−1 (6.26)

RTS smoothing:

Jk = P̂ k|kA
T P̂

−1

k+1|k

ẑk|N = ẑk|k + Jk(ẑk+1|N − ẑk+1|k)

P̂ k|N = P̂ k|k + Jk(P̂ k+1|N − P̂ k+1|k)J
T
k

Vk|N = Jk−1P̂ k|N (6.27)

Here, ẑ, P̂ , K, and V represent the estimated mean of the states, the estimated

covariance matrix of the states, Kalman gain, and covariance of zk and zk−1 respec-

tively. It must be noted that the identification of the ARX model, also discussed in

[31] and [108], uses a modified KF to estimate the hidden states. The modified KF is

equivalent to the standard KF implementation after recasting the ARX model into a

state-space model. Unlike the approach taken in [31] and [108], we have integrated the

RTS smoothing step into the filtering process to refine the state estimation results.
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Finally, with the distribution of the states estimated as given in (6.27), the expected

value of the quantities related to the hidden variables in (6.19) - (6.21) are estimated

as given in the following equations.

• It can be noted that xk is nothing but the first element of zk. Thus, the moments

of xk are represented as follows:

⟨xk⟩ = ẑ
(1)
k|N

⟨x2k⟩ = P̂
(1,1)

k|N + ⟨xk⟩2

(6.28)

• Form the definition of ϕk in (6.9), it can be noted that

ϕk =

⎡⎣zk−1

ũk−1

⎤⎦ (6.29)

Thus, we have the following results for expectations of quantities related to ϕk.

⟨xkϕT
k ⟩ =

[︂
⟨xkzTk−1⟩ ⟨xk⟩ũk−1

]︂
⟨xkzTk−1⟩ = V̂

(1,:)

k|N + ⟨xk⟩ẑTk−1|N

⟨ϕkϕ
T
k ⟩ =

⎡⎣⟨zk−1z
T
k−1⟩ ẑk−1|N ũ

T
k−1

ũk−1ẑ
T
k−1|N ũk−1ũk−1T

⎤⎦
⟨zk−1z

T
k−1⟩ = P̂ k−1|N + ẑk−1|N ẑ

T
k−1|N (6.30)

Substituting the above expressions in (6.19) - (6.21) completes the E-step of the

algorithm.

6.3.4 Maximization Step

In the M-step, the Q-function is maximized with respect to the parameters of the

model as represented below.

Θh+1 = arg max
Θ

Q(Θ|Θh) (6.31)

The derivation of the M-step to obtain Θh+1 is summarized in the following points.
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• Updating σ2
v: Since σ

2
v appears only in Q1,

∂Q1

∂σv
= 0 =⇒ σ2

v =
1

N

N∑︂
i=1

(︁
y2Ti

− 2yTi
⟨xTi

⟩+ ⟨x2Ti
⟩
)︁

(6.32)

• Updating σ2
w: Similarly, the expression for σ2

w is obtained as

σ2
w =

1

Nf − n∗

Nf∑︂
k=n∗+1

(︁
⟨x2k⟩ − 2⟨xkϕT

k ⟩θ + θT ⟨ϕkϕ
T
k ⟩θ
)︁

(6.33)

• Updating θ: It can be observed that θ appears only in Q2. Thus, the following

result is obtained.

∂Q2

∂θ
= 0 =⇒ θ =

(︄
N∑︂

n∗+1

⟨ϕkϕ
T
k ⟩

)︄−1(︄ N∑︂
n∗+1

⟨ϕkxk⟩

)︄
(6.34)

In addition to the model parameters, the parameters of the distribution of the initial

states x̃ can also be estimated. This is achieved by differentiating Q3 with respect to

µ0 and Σ0 which results in the following expressions

µ0 = ⟨x̃⟩

Σ0 = ⟨x̃x̃T ⟩ − 2µ⟨x̃T ⟩+ µ0µ
T
0 (6.35)

It can be observed that x̃ is nothing but zn∗ . All the expectations in (6.31) - (6.35)

are evaluated as given in 6.3.3.

6.4 Experimental Verification

This section presents an assessment of the proposed method through the estimation

of interface level in a lab-scale PSC. The experimental setup is illustrated in Figure

6.3 where oil and distilled water are used to create an insoluble interface. The figure

depicts a main cell and two side tanks containing water and oil. The pumps located at

the bottom of the setup enable water and oil to be pumped into and out of the main

cell. Due to its lower density compared to water, the oil forms a top layer analogous

to the froth layer found in a typical indutria-scale PSC. Conversely, the distilled water
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Figure 6.3: PSC lab experimental setup

is analogous to the middlings layer of the PSC. The level of the interface between the

two phases can be regulated by controlling the inlet and outlet flows of both water

and oil. There is a camera installed adjacent to the PSC tank to capture color images

at a resolution of 1280 × 720. To control the process and record data, MATLAB

and OPTO22 are used as the implementation platforms. In this experiment, the

PSC images were recorded every five seconds for two and a half consecutive hours,

resulting in 1800 images. To avoid unnecessary processing and reduce computation

time, the region of interest (ROI) is limited to the main cell only. Additionally, the

cropped images are resized to 530 × 260 pixels to enhance computational efficiency.

The recorded images have relatively small stains and noise, so they are used as the

ground truth. Afterwards, all the images were occluded by relatively large artificial

masks with a combination of dark and bright colors that mimicked real-life objects

affecting images. A series of ground-truth and occluded images of the experiments

are shown in Figure 6.4. The color and texture features of the training images are

significantly altered by the occlusions, making it difficult to visualize the interface
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(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5 (f) Image 6

Figure 6.4: Six sequential images of PSC with distortion in some images

level. In the testing phase, the first objective is to inpaint the testing images so that

clear images of the PSC are obtained. The ultimate goal is to predict interface level

at a fast rate from the inpainted images.

6.4.1 Image Inpainting Results

In this subsection, results of the proposed image inpainting algorithm are presented.

A total of 1350 pairs of ground-truth and degraded images were used for training

the autoencoder, and 450 pairs independent of the training images were used for

testing. By training the autoencoder on the partially occluded images along with

their corresponding ground-truth images, we enable the model to learn meaningful

representations and reconstruct images that closely resemble the original one. The

training process was implemented by Keras in Python. Two typical examples of the

validations results are shown in Figure 6.5. As can be seen, the algorithm performs

satisfactorily in filling in the degraded regions of images. Thus, the algorithm can

indeed recover the relatively large missing areas. Moreover, the transitions between

inpainted regions and surrounding areas in the inpainted images are smooth. In ad-

dition to recovering the missing regions, the inpainting algorithm also removes the

minor noises and stains on the image. The experimental outcomes highlight the

potential of autoencoder-based image inpainting as a promising solution for image

inpainting tasks. The algorithm, however, cannot recover an entirely blocked image,
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as expected. To further demonstrate the effectiveness of the inpainting algorithm,

we have conducted a comparison of the mean values of three color features, i.e. red,

green, and blue (RGB) values, for testing images where 15% of images are randomly

degraded and the rest remain intact. Namely, we compare between contaminated

images and their ground truth. The obtained results are presented in Figure 6.6.

The visual evidence indicates that the inpainted images closely resemble their cor-

responding ground-truth images in terms of color characteristics. In contrast, the

non-inpainted images show noticeable variations in the color features when compared

to their corresponding ground-truth images.

(a) (b) (c) (d)

Figure 6.5: Sample inpainting results. (a) Degraded. (b) Inpainted of a. (c) De-
graded. (d) Inpainted of c.

6.4.2 Interface Prediction

As described earlier, the primary objective of this paper is to predict the slow-

measured variables at a fast-rate using an ARX model and image features. RGB

values of the images were used as inputs to the dual-rate ARX model. As in the

inpainting algorithm, 1350 images were used for training and the rest for testing. We

manually labeled the corresponding interface level at every five sampling instants.

This slow-rate labeling mimics the lab analysis in industrial settings. Gaussian noise

with mean zero and standard deviation of 0.025 was added to the slow-rate measure-

ments. The model uses mean of RGB values of each image as image features. Using

the slow-rate interface level labels, fast-rate image features, and applying the EM

109



Figure 6.6: Inpainting results for the sequence of validation images

algorithm introduced in 6.3, the following ARX model was obtained.

x̂k = 0.90x̂k−1 − 0.85u1,k − 1.03u1,k−1 + 1.46u1,k−2 + 1.04u2,k − 1.24u2,k−1

+ 1.16u2,k−2 − 0.18u3,k + 1.46u3,k−1 − 1.83u3,k−2 (6.36)

To evaluate the performance of the prediction model, we randomly introduced

degradation in 15% of the testing images, while the remaining 85% are left unaf-

fected. The model is used for predicting the PSC interface level at a fast rate, as

shown in Figure 6.7. A promising performance can be seen in the tracking of inter-

face level by the proposed ARX model with inpainting. The results have also been

compared with the same ARX modeling algorithm but without inpainting the de-

graded images. We observed that lack of the inpainting step significantly degraded

the prediction accuracy. The code was run 50 times with different noise realizations.

Table 6.1 presents the average RMSE and coefficient of determination (R2) values for
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Figure 6.7: Validation results for interface level prediction in PSC with 15% degraded
images

the competing algorithms discussed. In the presence of 15% degraded images, it can

be observed that the proposed algorithm achieves an accuracy of 87.78%, whereas

excluding the inpainting process results in an accuracy of 38.01%. We have also

compared the results when the ground-truth images are used as the testing images

directly. It is evident from Table 6.1 that the results are almost the same. The slight

superiority of the ARX with inapinting is due to removing the small noises from the

ground-truth images as the ground-truth images in this experiment are not flawless.

To further evaluate the performance, we considered a larger percentage of degraded

testing images, which is 25%. As a result, the performance of the model without

inpainting is drastically affected. However, the model with inpainting images still

shows satisfactory robustness against image deterioration, highlighting the impor-

tance of inpainting. A comparison of two different image degradation ratios shows

that as the image degradation ratio increases, the prediction accuracy decreases but

the one with inpainting shows more robustness.
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Table 6.1: Validation results for the fast-rate prediction

Image
Metric

ARX with ARX with ARX without

degradation ratio ground-truth inpainting inpainting

15%
RMSE 0.0179 0.0177 0.0421

R2 0.8722 0.8778 0.3801

25%
RMSE 0.0179 0.0240 0.1612

R2 0.8722 0.7853 0.0901

6.5 Conclusion

In this work, we proposed a computer vision model that enables fast-rate prediction

of variables that are measured only at a slow rate. Considering that images can

be affected by various sources including environmental factors, we used an autoen-

coder algorithm to inpaint images with relatively large missing portions. Then, the

inpainted image features were extracted and utilized as input variables for an ARX

multirate model. The unknown parameters of the model were estimated using an

EM algorithm coupled with the KF and RTS smoother. Experimental validation

conducted on a lab-scale PSC proved the effectiveness of the image inpainting pro-

cess. Furthermore, the proposed vision model was able to predict the interface level

accurately.
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Chapter 7

Concluding Remarks

This chapter outlines the conclusions drawn from the proposed methods and their

implementations in the experimental case studies. Additionally, potential future di-

rections of research in this domain are also outlined.

7.1 Conclusion

In conclusion, this thesis develops four models for predicting quality variables while

taking important practical challenges into account. In the first two contributions,

predictive models are developed using regular sensor data, while the last two use

image data. Both types of data are available at a fast-rate and used for building

the respective predictive models. Accordingly, important practical challenges are

addressed to make them useful for actual applications.

The first contribution focuses on formulating a statistical multirate model identifi-

cation problem, considering integration periods, time-delays, and switching operating

points. By employing a non-parametric distribution, the model captures unknown

and time-varying integration periods, delays, and operating modes with no require-

ment of prior knowledge. This model enables fast-rate offline and online prediction

of the slow-rate measured variables. The accuracy of this model has been verified by

experiments on a hybrid three-tank system.

To incorporate the transition between operating modes, the second contribution
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extends the first one by developing a global LPV model. The model also enhances

robustness to outlying output observations by utilizing the t-distribution and consid-

ers uncertainties of unknown parameters using the VB algorithm. This model shows

promising results in experiments.

The third contribution focuses on developing a computer vision model that utilizes

image features to predict the quality variables in batch processes. The proposed model

uses a modified KF to restore the degraded images caused by factors like lighting and

noise. Further, a robust-to-outlier EM algorithm for parameter estimation is pre-

sented. Validation of the proposed vision model on a flotation column demonstrated

its effectiveness in predicting the cumulative bitumen content over each batch.

The last contribution is about the development of a computer vision model that

enables fast-rate prediction of quality variables. To overcome the impact of envi-

ronmental factors on images, an image inpainting algorithm is utilized to restore

significant missing regions in the images. The restored images along with the slow-

rate sampled measurements, are then used in conjunction with the EM algorithm to

construct a hybrid vision-statistical predictive model, offering an efficient approach

for quality variable prediction. An experimental evaluation confirms the method’s

reliability.

Overall, the contributions of this thesis have advanced the field of predictive mod-

eling for quality variables by addressing various key practical problems and incorpo-

rating novel techniques. The proposed models and methodologies have demonstrated

promising performance in their respective applications, paving the way for further

advancements in process optimization and control.
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7.2 Future Scope

7.2.1 Advanced Image Inpainting Techniques

It is important to take into account additional image degradation sources that may

be encountered in industrial applications, such as image reflections. In industrial

settings, reflections can often occur due to the presence of shiny or reflective sur-

faces, which can adversely affect the quality and accuracy of captured images. In

addition, there are several other common sources of image degradation encounters in

various applications. These include blurred images, low resolution images and color

distortions.

To address such problems, it is suggested to explore more advanced image restora-

tion techniques like GANs as they have shown promising results in generating supe-

rior and realistic inpainted outputs. Through adversarial training, GANs encourage

the generator to create high-quality inpainted images that align visually with the

surrounding context. Compared to traditional methods, GAN-based inpainting tech-

niques excel in capturing intricate details, preserving textures, and delivering visually

appealing results, significantly improving the quality and accuracy of inpainted image.

7.2.2 Video Inpainting

It is recommended to incorporate temporal information along with the spatial infor-

mation during the process of image inpainting. This is known as video inpainting,

and it leverages temporal data to improve the inpainting results, especially when

most of the image is missing. In such cases, temporal information becomes invaluable

for restoring the missing content. Relying solely on spatial information may not be

sufficient to achieve effective inpainting results.
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7.2.3 Classification Approach

In future work, it is recommended to consider developing classification models for

assessing quality variables, considering the limited availability of labeled quality data

in practical applications. By categorizing quality variables into classes or levels,

classification models can provide acceptable practical predictions based on the avail-

able data. To enhance the performance of these models, exploring more advanced

techniques such as ensemble learning, deep learning, and transfer learning can be

beneficial.
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