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Abstract

Large-scale complex chemical processes increasingly appear in the modern process industry

due to their economic efficiency. Such a large-scale complex chemical process usually consists

of several unit operations (subsystems), which are connected together through material and

energy flows. Because of the increased process scale and the significant interactions between

different subsystems, it poses great challenges in the design of automatic control systems

for such large-scale complex chemical processes which are desired to fulfill the fundamental

safety, environmental sustainability and profitability requirements. In recent years, pre-

dictive process control has emerged as an attractive control approach to handle the scale

and interactions of large-scale complex chemical processes. It has been demonstrated that

predictive process control can achieve improved closed-loop performance compared with

decentralized control while preserving the flexibility of the decentralized framework. How-

ever, almost all of the existing distributed predictive process control designs are developed

under the assumption that the state measurements of subsystems or the entire system are

available. This assumption does not hold in many applications.

This thesis presents a robust distributed moving horizon state estimation (DMHE)

scheme that is appropriate for output feedback distributed predictive control of nonlin-

ear systems as well as approaches for reducing the communication demand of the proposed

DMHE scheme and a strategy for handling delays in the communication between subsystem

estimators. First, the proposed robust DMHE scheme is presented for a class of nonlinear

systems that are composed of several subsystems. It is assumed that the subsystems in-

teract with each other via their states only. Subsequently, two triggered communication

algorithms are introduced for the proposed DMHE scheme to reduce the number of in-

formation transmissions between subsystems. Following this, an approach is proposed to

handle the potential time-varying delays in the communication between the subsystem es-

timators. The applicability and effectiveness of the proposed approaches are illustrated via

their applications to different chemical process examples.
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Chapter 1

Introduction

1.1 Motivation

Due to the increasing global competition, large-scale complex chemical processes is common

appearances in the modern process industry due to their economic efficiency. In recent years,

distributed predictive control has emerged as an attractive control approach to handle the

scale and interactions of large-scale complex chemical processes. It has been demonstrated

that distributed predictive control can achieve improved (sometimes the centralized) closed-

loop performance while preserving the flexibility of the decentralized framework. However,

almost all of the existing distributed predictive control designs were developed under the

assumption that the state measurements of subsystems or the entire system are available. It

is in general difficult to measure all the state variables in a process system. In order to main-

tain the structural flexibility of distributed predictive control, distributed or decentralized

state estimation systems should be used instead of centralized observers.

There are many existing results on decentralized deterministic observer designs for dif-

ferent classes of systems (e.g., [1, 2, 3, 4]) and distributed Kalman filtering based on con-

sensus algorithms with applications to sensor networks (e.g, [5, 6, 7, 8]). These results are

primarily developed in the context of linear systems. Recently, in [9], a distributed state

estimation approach for linear systems was developed in the framework of moving horizon

estimation (MHE) which was extended to nonlinear systems in [10]. However, these designs

are not appropriate for output-feedback control. Motivated by the above considerations, in

this thesis, we present a robust distributed MHE (DMHE) design for a class of nonlinear

systems with bounded output measurement noise and process disturbances. The proposed

DMHE design has the potential to be used in output-feedback control.
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1.2 Background

Large-scale complex chemical processes increasingly appear in the modern process industry

due to their economic efficiency. Such a large-scale complex chemical process usually consists

of several unit operations (subsystems), which are connected together through material and

energy flows. Because of the increased process scale and the significant interactions between

different subsystems, it poses great challenges in the design of automatic control systems

for such large-scale complex chemical processes which are desired to fulfill the fundamental

safety, environmental sustainability and profitability requirements. Traditionally, control

and state estimation of large-scale systems has been studied primarily within the centralized

and the decentralized frameworks. While the centralized framework is shown to provide the

best performance, it is not favorable from the computational and fault tolerance view points.

In a decentralized framework, the interactions between subsystems in general are either not

taken into account or accounted for in conservative fashions such as worst case scenarios

(e.g., [11, 12] and references therein). Decentralized framework in general has a reduce

complexity in the controller and observer design and implementation. However, it may lead

to deteriorated performance or even lost of closed-loop stability.

In recent years, distributed model predictive control (DMPC) has emerged as an attrac-

tive control approach to handle the scale and interactions of large-scale complex chemical

processes; please see [13, 14, 15] for reviews of results on DMPC. The existing DMPC al-

gorithms can be broadly classified into non-cooperative and cooperative DMPC algorithms

based on the cost function used in the local controller optimization problem [13]. In a non-

cooperative DMPC algorithm, each local controller optimizes a local cost function while in

a cooperative DMPC algorithm, a local controller optimizes a global cost function. Non-

cooperative DMPC algorithms include [16, 17, 18, 19, 20, 21]. Cooperative DMPC was first

proposed in [22] and was developed in [13, 23, 24]. Lyapunov-based cooperative DMPC

algorithms for nonlinear systems were also developed in [25, 26] in recent years. It has been

demonstrated that DMPC has the potential to achieve the performance of the centralized

control while preserving the flexibility of decentralized frameworks [23, 15]. In addition to

DMPC, other important work within process control includes the development of a quasi-

decentralized control framework for multi-unit plants that achieves the desired closed-loop

objectives with minimal cross communication between the plant units under state feedback

control [27]. However, almost all of the above results are derived under the assumptions

that the system states are available all the times or that a centralized state observer is
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available. These assumptions, however, either fail in many applications or are inconsistent

with the distributed framework which is not favorable from a fault tolerance point of view.

Therefore, it is desirable to develop state estimation schemes in the distributed framework.

In the literature, a majority of the existing results on state observer designs are derived

in the centralized framework. For linear systems, Kalman filters and Luenberger observers

are standard solutions. In the context of nonlinear systems, observer designs including

high-gain observers for different specific classes of nonlinear systems are available (e.g.,

[28, 29, 30, 31, 32, 33, 34, 35, 36, 37]). In a recent work [38], observers for systems with

delayed measurements were also developed. It is worth noting that the capability of high-

gain observers to be used in output feedback control designs has made high-gain observers

very popular in output feedback control of nonlinear systems (e.g., [39, 40, 41, 42, 43, 44]).

In another line of work, MHE has become popular because of its ability to handle

explicitly nonlinear systems and constraints on decision variables (e.g., [45, 46, 47, 48]).

In MHE, the state estimate is determined by solving online an optimization problem that

minimizes the sum of squared errors. In order to have a finite dimensional optimization

problem, the horizon (estimation window size into the past) of MHE is in general chosen to

be finite. At a sampling time, when a new measurement is available, the oldest measurement

in the estimation window is discarded, and the finite horizon optimization problem is solved

again to get the new estimate of the state [49, 45]. In a recent work [50], a robust MHE

scheme was developed which effectively integrates deterministic (high-gain) observers into

the MHE framework. The resulting robust MHE scheme gives bounded estimation error

and has a tunable convergence rate.

In order to maintain the structural flexibility of DMPC, distributed or decentralized

state estimation systems should be used instead of centralized observers. There are many

existing results on decentralized deterministic observer designs for different classes of sys-

tems (e.g., [1, 2, 3, 4]) and distributed Kalman filtering based on consensus algorithms with

applications to sensor networks (e.g, [5, 6, 7, 8]). These results are primarily developed

in the context of linear systems. Recently, in [9], a distributed state estimation approach

for linear systems was developed in the framework of moving horizon estimation (MHE)

which was extended to nonlinear systems in [10]. The distributed MHE (DMHE) schemes

developed in [9, 10] were also based on consensus algorithms which require the use of the

entire system model in each individual MHEs. Along this line of work, in [51, 52], DMHE

schemes based on subsystem models were developed for both linear and nonlinear systems.

Since the above DMHE schemes were developed based on the classical centralized MHE

3



[45, 46, 47], they maintain the advantages of MHE including the ability to handle nonlin-

earities, constraints and optimality considerations explicitly. However, as in the centralized

MHE, the convergence of the above DMHE schemes to the actual system state requires

a reliable approximation of the arrival cost. Even though different approaches including

the extended Kalman filtering [53], the unscented Kalman filtering [54] and particle filters

[55, 56] have been developed to approximate the arrival cost, it is in general a difficult

task to determine the arrival cost for constrained nonlinear systems. Also, when there are

bounded measurement noise and process disturbances, it is in general difficult to ensure the

boundedness of the estimation error [47]. Moreover, the convergence rates of the estimates

given by the above DMHE schemes to the actual system states are not tunable and is not

favorable from an output feedback control point of view.

1.3 Thesis outline and contributions

This thesis is organized as follows:

In Chapter 2, a robust DMHE design for a class of nonlinear systems with bounded

output measurement noise and process disturbances is presented. In this DMHE, each

subsystem MHE communicates with subsystems that it interacts with every sampling time.

In the design of each subsystem MHE, an auxiliary deterministic nonlinear observer is taken

advantage of to calculate a confidence region that contains the actual system state every

sampling time. The subsystem MHE is only allowed to optimize its state estimate within

the confidence region. This strategy was demonstrated to guarantee the convergence and

ultimate boundedness properties of the estimation error.

In Chapter 3, two algorithms are proposed to reduce the number of communications

between subsystem based on the DMHE framework developed in Chapter 2. In particu-

lar, event-triggered approach is adopted to reduce the number of communication between

subsystems. Specifically, in the first proposed algorithm, a subsystem sends out its current

information when a triggering condition based on the difference between the current state

estimate and a previously transmitted state estimate is satisfied; in the second proposed

algorithm, the transmission of information from a subsystem to other subsystems is trig-

gered by the difference between the current measurement of the output and its derivatives

and a previously transmitted measurement of the output and its derivatives. Because of

the triggered communication, a subsystem may not have the latest information of the other

subsystems. The application to a chemical process illustrates the effectiveness of the pro-

posed approaches in reducing the number of communications between the subsystems while
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maintaining the estimation performance.

In Chapter 4, the DMHE developed in Chapter 2 is extended to handle time-varying

communication delays. In particular, an open-loop state predictor is designed for each

subsystem to provide predictions of unavailable subsystem states. In the design of each

predictor, the centralized system model is used. Based on the state predictions, an auxil-

iary nonlinear observer is used to generate a reference subsystem state estimate for each

subsystem every sampling time. Based on the reference subsystem state estimate as well

as the local output measurement, a confidence region is constructed for the actual state of

a subsystem. A subsystem MHE is only allowed to optimize its state estimate within the

corresponding confidence region at a sampling time. The proposed DMHE is proved to give

decreasing and ultimately bounded estimation errors under the assumption that there is

an upper bound on the time-varying delay. The theoretical results are illustrated via the

application to a reactor-separator chemical process.

Chapter 5 summarizes the main results of this thesis and discusses future research

directions.
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Chapter 2

Distributed Moving Horizon State
Estimation for Nonlinear Systems
with Bounded Uncertainties∗

2.1 Introduction

In this chapter, we propose a DMHE scheme for a class of nonlinear systems with bounded

output measurement noise and process disturbances. Specifically, we consider a class of

nonlinear systems that are composed of several subsystems and the subsystems interact

with each other via their subsystem states. First, a distributed estimation algorithm is

designed which specifies the information exchange protocol between the subsystems and the

implementation strategy of the DMHE. Subsequently, a local MHE scheme is design for the

each subsystem. In the design of each subsystem MHE, an auxiliary nonlinear deterministic

observer that can asymptotically track the corresponding nominal subsystem state when the

subsystem interactions are absent is taken advantage of. For each subsystem, the nonlinear

deterministic observer together with an error correction term is used to calculate confidence

regions for the subsystem states every sampling time. Within the confidence regions, the

subsystem MHE is allowed to optimize its estimates. The proposed DMHE scheme is

proved to give bounded estimation errors. It is also possible to tune the convergence rate

of the state estimate given by the DMHE to the actual system state. The applicability and

effectiveness of the proposed DMHE are illustrated via the application to a reactor-separator

process example.

∗This chapter is a revised version of “J. Zhang and J. Liu, Distributed moving horizon state estimation
for nonlinear systems with bounded uncertainties. Journal of Process Control, 23:1281-1295, 2013.”
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2.2 Notation

Throughout this thesis, we operator | · | denotes Euclidean norm of a scalar or a vector

while | · |2Q indicates the square of the weighted Euclidean norm of a vector, defined as

|x|2Q = xTQx where Q is a positive definite square matrix. A function f(x) is said to be

locally Lipschitz with respect to its argument x if there exists a positive constant Lx
f such

that |f(x′) − f(x′′)| ≤ Lx
f |x′ − x′′| for all x′ and x′′ in a given region of x and Lx

f is the

associated Lipschitz constant. A continuous function α : [0, a) → [0,∞) is said to belong

to class K if it is strictly increasing and satisfies α(0) = 0. A function β(r, s) is said to

be a class KL function if for each fixed s, β(r, s) belongs to class K with respect to r, and

for each fixed r, it is deceasing with respect to s, and β(r, s) → 0 as s → ∞. The symbol

diag(v) denotes a diagonal matrix whose diagonal elements are the elements of vector v.

The symbol ‘\’ denotes set subtraction such that A \ B := {x ∈ A, x /∈ B}. The superscript

(s) denotes the s-th order time derivative of a function. The matrix (or vector) A+ denotes

the pseudoinverse of a matrix (or vector) A. The set I = {1, . . . ,m}.

2.3 System description

Throughout this thesis, we consider a class of nonlinear systems composed of m intercon-

nected subsystems where the i-th subsystem can be described by the following state-space

model:
ẋi(t) = fi(xi(t), wi(t)) + f̃i(Xi(t))
yi(t) = hi(xi) + vi(t)

(2.1)

where i ∈ I, xi(t) ∈ R
nxi denotes the vector of state variables of subsystem i, wi(t) ∈ R

nwi

denotes disturbances associated with subsystem i, and the vector function fi characterizes

the dependence of the dynamics of xi on itself and the associated disturbances. The vector

function f̃i characterizes the interactions between subsystem i and other subsystems. The

state vector Xi(t) ∈ R
nXi denotes the vector of states that involved in characterizing the

interactions. The vector yi ∈ R
nyi is the measured output of subsystem i and vi ∈ R

nvi is

the measurement noise vector. This system will also be used in Chapter 3 and Chapter 4.

In the following discussion, we use Ii ⊂ I, i ∈ I, to denote the set of subsystem indices

whose corresponding subsystem states are involved in Xi. For example, if X1 contains states

of subsystem 1, subsystem 3 and subsystem 4, then I1 = {1, 3, 4}. It is assumed that the

sets Ii, i ∈ I, are known.
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It is assumed that the subsystem states xi, i ∈ I, satisfy the constraint:

xi ∈ Xi (2.2)

where Xi, i ∈ I, are convex compact sets and the system disturbances and measurement

noise are bounded such as wi ∈ Wi and vi ∈ Vi, i ∈ I, where

Wi := {wi ∈ R
nwi : |wi| ≤ θwi}

Vi := {vi ∈ R
nvi : |vi| ≤ θvi}

(2.3)

with θwi and θvi , i ∈ I, known positive real numbers. The entire nonlinear system state

vector and measured output vector are denoted as x and y which are compositions of the

states and outputs of the m subsystems, respectively. That is, x = [xT1 · · ·xTi · · ·xTm]T ∈ R
nx

and y = [yT1 · · · yTi · · · yTm]T ∈ R
ny . The entire system can be described as follows:

ẋ(t) = f(x(t), w(t)) + f̃(x(t))
y(t) = h(x(t)) + v(t)

(2.4)

where f , f̃ , w, h, and v are appropriate compositions of fi, f̃i, wi, hi, and vi, i ∈ I,

respectively.

The outputs of the m subsystems, yi, i ∈ I, are assumed to be sampled synchronously

and periodically at time instants {tk≥0} such that tk = t0+kΔ with t0 = 0 the initial time, Δ

a fixed sampling time interval and k positive integers. For each subsystem, a state estimator

(observer) will be designed in the framework of MHE to estimate its state. It is assumed that

the estimator associated with subsystem i has direct access to the measurements of yi and

can communicate with the other subsystems when necessary to exchange their subsystem

output measurements and state estimates.

Remark 1 In order to illustrate the system model representation, consider the following

system with three one-dimensional subsystems:

ẋ1 = −x1 + x1x3 = f1(x1) + f̃1(X1)

ẋ2 = −0.5x2 + x2x1 + x23 = f2(x2) + f̃2(X2)

ẋ3 = −x3 + x1x2 + 0.1x32 = f3(x3) + f̃3(X3)

In this example, X1 = [x1, x3]
T with I1 = {1, 3}, X2 = [x1, x2, x3]

T with I2 = {1, 2, 3}
and X3 = [x1, x2]

T with I3 = {1, 2}. Note that in order to simplify the discussion but

without loss of generality, inputs of the system are not considered in (2.4).

2.4 Nonlinear observers

Throughout this thesis, an auxiliary local nonlinear deterministic observer for each subsys-

tem will be taken advantage of to calculate a confidence region for the actual system state

8



every sampling time. In the context of nonlinear systems, there are extensive studies on

nonlinear deterministic observers focusing on the design of centralized observers [57, 58,

31, 30, 29, 35, 59, 60, 37] with many successful applications to different areas including the

control and monitoring of nonlinear chemical processes [42, 43, 32, 33, 34, 61, 44]. One

important class of nonlinear observers is the so-called ‘high-gain’ observers [29, 30, 31, 39]

which allow for effective separation principles in output feedback control designs. However,

little attention has been paid to the design of nonlinear decentralized or distributed deter-

ministic observers. Taking this fact into account, we assume that there exists a nonlinear

deterministic observer for subsystem i, i ∈ I, of the following form:

żi(t) = Fi(zi(t), hi(xi(t))) (2.5)

such that if f̃i(Xi(t)) ≡ 0, wi(t) ≡ 0 for all t, then zi asymptotically approaches xi for all

the states xi ∈ Xi. This assumption implies that if f̃i(Xi(t)) ≡ 0, wi(t) ≡ 0 for all t, there

exists a KL function βi such that:

|zi(t)− xi(t)| ≤ βi(|zi(0)− xi(0)|, t) (2.6)

where zi(0) and xi(0) are the initial states of the observer and the subsystem. The above

observability assumption also implies that [62]:

rank(Oi(xi)) = nxi (2.7)

with Oi(xi) =
dΦi(xi)

dxi
for all xi ∈ Xi. Note that the convergence property of the nonlinear

observer (2.5) is obtained based on continuous noise-free output measurements. We also

assume that Fi, i ∈ I, are locally Lipschitz functions. It is further assumed that the entire

system of Eq. (2.4) is locally observable which essentially implies that the interactions

between the subsystems do not damage the collective observability of the subsystems.

Note that in the above assumption of the nonlinear observers, the interactions between

the subsystems are assumed to be absent (i.e., f̃i(Xi(t)) ≡ 0 for all t). Note also that the

convergence properties of the nonlinear observers are obtained based on continuous noise-

free output feedback. In the proposed DMHE discussed in the next section, we will discuss

in details on how to take advantage of observer (2.5) and to compensate for the interactions

between the subsystems using information exchanged between subsystems.

2.5 The DMHE scheme

A schematic of the proposed DMHE design which includes m local MHEs for the nonlinear

system of Eq. (2.4) is shown in Fig. 2.1. In the proposed DMHE design, each subsystem is

9



Figure 2.1: The proposed DMHE design.

associated with an MHE which is evaluated every sampling time. We also assume that a

local MHE has immediate access to the output measurements of its associated subsystem

and can communicate with the other subsystems to exchange their subsystem output mea-

surements and state estimates which are used to compensate for the interactions between

subsystems to improve their state estimates. The MHE associated with subsystem i (i ∈ I)

will be referred to as MHE i. In the remainder of this chapter, we will first introduce

the proposed distributed estimation algorithm; subsequently, we present the design of the

local MHEs and finally derive sufficient conditions under which the proposed DMHE gives

bounded estimation error.

2.5.1 Distributed estimation algorithm

The proposed DMHE uses the following distributed state estimation algorithm to get an

estimate of the entire system.

Algorithm 2 Distributed state estimation algorithm

1. At t0 = 0, all the MHEs are initialized with the initial subsystem state guesses x̂i(0),

i ∈ I, and the actual subsystem output measurements yi(0), i ∈ I.

2. At tk > 0, carry out the following steps:

2.1. Each MHE receives the output measurement of the subsystem that it is associated

with; that is, MHE i receives yi(tk).

2.2. Each MHE requests and receives the output measurements and subsystem state

estimates of the previous time instant from subsystems that directly affect its
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dynamics; that is, MHE i requests and receives yl(tk−1) and x̂l(tk−1) (which

denotes the state estimate of subsystem l at tk−1) for all l ∈ Ii.

2.3. Based on both the local measurement and information from other subsystems,

each MHE calculates the estimate of its subsystem’s state; that is, MHE i calcu-

lates x̂i(tk). The estimate of the entire system state is x̂(tk) = [x̂1(tk)
T . . . x̂m(tk)

T ]T .

2.4. Go to Step 2.1 at the next sampling time tk+1.

From Algorithm 2, it can be seen that it is a non-iterative algorithm. At a sampling

time, the MHEs are evaluated only once in parallel. This implementation compensates for

the interactions between subsystems based on the state estimates and output measurements

at the previous time instant. In addition, Algorithm 2 does not require an all-to-all commu-

nication between the MHEs. From Step 2.2, it can be seen that an MHE only communicates

with subsystems that it interacts directly. For example, if the subsystems are connected

in series, an MHE only has to receive information from its directly connected upstream

subsystem and to send information to its directly connected downstream subsystem.

Remark 3 Note that an iterative implementation algorithm may be used for the proposed

DMHE design based on the current output measurements and the state estimates obtained at

the previous iteration of the current sampling time. In this case, it is possible to achieve the

convergence property of the state estimates by redesigning the local MHEs accordingly. An

iterative implementation algorithm may lead to improved distributed estimation performance

if the iterations converge to the global optimum which, however, is not ensured for general

nonlinear systems due to the non-convexity of the optimization problems. Moreover, when an

iterative implementation algorithm is used, it may significantly increase the computational

complexity of the proposed DMHE design.

2.5.2 Local MHE design

In the design of a local MHE, the subsystem model of Eq. (2.1), the corresponding nonlin-

ear deterministic observer of Eq. (2.5) together with the information received from other

subsystems are used. A confidence region that contains the actual subsystem state will be

calculated every sampling time taking into account the boundedness of the measurement

noise and process disturbances. The local MHE is only allowed to optimize the subsystem

state estimate within the confidence region.
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Specifically, the proposed design of MHE i at time instant tk is formulated as follows:

min
x̃i(tk−N ),...,x̃i(tk)

k−1∑
q=k−N

|wi(tq)|2Q−1
i

+
k∑

q=k−N

|vi(tq)|2R−1
i

+ Vi(tk−N ) (2.8a)

s.t. ˙̃xi(t) = fi(x̃i(t), wi(tq)) + f̃i(X̂i(tq)), t ∈ [tq, tq+1], q = k −N, . . . , k − 1
(2.8b)

vi(tq) = yi(tq)− hi(x̃i(tq)), q = k −N, . . . , k (2.8c)

wi(tq) ∈ Wi, vi(tq) ∈ Vi, x̃i(tq) ∈ Xi, q = k −N, . . . , k (2.8d)

żi(t) = Fi(zi(t), yi(tk−1)) + f̃i(X̂i(tk−1)) +
∑
l∈Ii

Ki,l(x̂l)(yl(tk−1)− hl(x̂l(tk−1)))

(2.8e)

zi(tk−1) = x̂i(tk−1) (2.8f)

|x̃i(tk)− zi(tk)| ≤ κi|yi(tk)− hi(zi(tk))| (2.8g)

where N is the estimation horizon, Qi and Ri are the covariance matrices of wi and vi

respectively, Vi(tk−N ) denotes the arrival cost which summarizes past information up to

tk−N , x̃i is the predicted xi in the above optimization problem, x̂i is the optimal estimate

of xi at previous time instants, Ki,l for l ∈ Ii are gain matrices which are functions of x̂l,

and κi is a positive constant. The roles of Ki,l and κi will be made clear in the following

discussion.

Once problem (2.8) is solved, an optimal trajectory of the system states, x̃∗i (tk−N ), . . . , x̃∗i (tk),

is obtained. The last element x̃∗i (tk) is used as the optimal estimate of the state of subsys-

tem i at tk and is denoted as x̂i(tk). That is,

x̂i(tk) = x̃∗i (tk). (2.9)

Note that in the optimization problem (2.8), wi and vi are assumed to be piece-wise constant

variables with sampling time Δ to ensure that (2.8) is a finite dimensional optimization

problem.

In optimization problem (2.8), constraint (2.8a) is the cost function that needs to be

minimized. The arrival cost Vi(tk−N ) summarizes the past information that is not covered

in the estimation horizon. Constraint (2.8b) is the model of subsystem i. Because only state

estimates at the sampling times are available, f̃i(X̂i(tq)) is used to approximate f̃i(Xi(t))

from tq to tq+1. This also implies that each MHE should be able to store the previously

received information from other MHEs. Constraint (2.8d) are bounds on the disturbances,

noise and subsystem state.

Constraints (2.8e)-(2.8g) are used to calculate a confidence region that contains the

actual subsystem state based on the deterministic nonlinear observer, a correction term
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and the information received from other subsystems. The estimate of the current sub-

system state is only allowed to be optimized within the confidence region. Specifically,

constraint (2.8e) is an augmented nonlinear observer taking into account explicitly the in-

teractions between subsystem i and the other subsystems. The first term on the right-hand-

side of (2.8e) comes from observer (2.5); the second term on the right-hand-side of (2.8e) is

based on the interaction model and the previous state X̂i(tk−1) which is the latest available

information available to subsystem i; and the last term is used to correct the errors in the

interaction model. The gain Ki,l depends on x̂l and is calculated at each sampling time as

follows:

Ki,l =
∂f̃i
∂xl

(
∂hl
∂xl

)+
∣∣∣∣∣
x̂l(tk−1)

(2.10)

for l ∈ Ii and i ∈ 1, . . . ,m. The above calculation of Ki,l implies that the estimation error

caused by the interaction is compensated by its linearized approximation. This idea will be

made explicit in Section 2.5.3.

Constraint (2.8g) explicitly defines the confidence region based on the parameter κi and

the estimate given by the nonlinear observer (2.8e) as well as the actual output measurement.

The parameter κi depends on the properties of the system. Conditions that the value of κi

(i ∈ I) needs to satisfy will be derived in Section 2.5.3. It will also be proven in Section 2.5.3

that the proposed approach leads to bounded estimation errors.

Remark 4 In the proposed DMHE design, the interactions between subsystems (i.e., f̃i(Xi),

i ∈ I) are compensated for based on the interaction models as well as subsystem state es-

timates (i.e., X̂i). The error caused by the difference between X̂i and Xi is further com-

pensated for using the correction term
∑

l∈Ii Ki,l(yl(tk−1 − hl(x̂l(tk−1))) with Ki,l, l ∈ Ii,

determined following (2.10). The correction term with Ki,l essentially compensates for the

linear part of the error dynamics caused by the difference between X̂i and Xi and neglects

the higher order dynamics which will be made clear in the proof of Proposition 5 in Sec-

tion 2.5.3. In many applications, a first order correction term like the one used in the

present work is sufficient to achieve desired estimation performance. Please see Section 2.6

for the application of the proposed approach to a reactor-separator chemical process. If in

an application it is necessary to compensate for the higher order error dynamics in system

interactions, the proposed approach can be extended in a straightforward manner.

13



2.5.3 Stability analysis

In this section, we study the robustness and stability properties of the proposed DMHE.

Specifically, we first investigate the boundedness of the estimation error given by the nonlin-

ear observer (2.8e) with Ki,l determined following (2.10) taking into account measurement

noise and process disturbances. Following this, we state the stability and ultimate bounded-

ness of the estimation error of the proposed DMHE. Sufficient conditions will be provided.

Proposition 5 Consider the nonlinear observer of Eq. (2.8e) for subsystem i, i ∈ I, with

initial condition zi(tk) = x̂i(tk) and output measurement yi(tk). If Ki,l for i ∈ I and l ∈ Ii

are determined as in (2.10) and Ki,l are bounded, then the deviation of the observer state

zi in one sampling time Δ (i.e., at tk+1) from the actual subsystem state xi is bounded for

all xi ∈ Xi, i ∈ I, as follows:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + γi(Δ) +
∑
l∈Ii

Li,lΔ|ez,l(tk)|2 (2.11)

where ez,i = zi−xi, i ∈ I, and γi(τ) = Lyi
Fi
Lhi

Miτ
2/2+Lyi

Fi
θviτ+Lwi

fi
θwiτ+

∑
l∈Ii MKi,l

θvlτ+∑
l∈Ii L

xl

f̃i
Mlτ

2/2 and Li,l = H f̃i
i +MKi,l

Hhl
l with Lyi

Fi
, Lhi

, Lwi
fi
, and Lxl

f̃i
being the Lipschitz

constants of Fi with respect to yi, hi with respect to xi, fi with respect to wi, and f̃i with

respect to xl, respectively, and Mi, MKi,l
, i ∈ I and l ∈ Ii, being constants that bound ẋi in

Xi and Ki,l in Xl, respectively, and H f̃i
i , Hhl

l being positive constants that associated with

the Taylor expansions of f̃i and hl.

Proof: We consider the local MHE i of Eq. (2.8) (i ∈ I) and define ez,i = zi − xi where

zi denotes the trajectory of observer (2.8e) and xi is the state trajectory of the actual

subsystem of Eq. (2.1). In this proof, we consider the time interval from t = tk to t = tk+1

and the initial condition zi(tk) = x̂i(tk). The derivative of ez,i is evaluated as follows:

ėz,i(t) = Fi(zi(t), yi(tk))− fi(xi(t), wi(t))

+f̃i(X̂i(tk))− f̃i(Xi(t)) +
∑

l∈Ii Ki,l(x̂l)(yl(tk)− hl(x̂l(tk))).
(2.12)

From the Lipschitz properties of Fi, fi and hi, the fact that yi(tk) = hi(xi(tk))+ vi(tk), and

|vi(tk)| ≤ θvi , |wi| ≤ θwi , the following inequality can be obtained from (2.12):

|ėz,i(t)| ≤ |Fi(zi(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lhi

|xi(t)− xi(tk)|+ Lyi
Fi
θvi + Lwi

fi
θwi

+
∣∣∣f̃i(X̂i(tk))− f̃i(Xi(t)) +

∑
l∈Ii Ki,l(x̂l)(yl(tk)− hl(x̂l(tk)))

∣∣∣
(2.13)

where Lyi
Fi
, Lhi

and Lwi
fi

are the Lipschitz constants associated with Fi, hi and fi, respec-

tively.
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Using Taylor series expansion, the following inequalities can be obtained:

f̃i(Xi(tk)) = f̃i(X̂i(tk)) +
∑
l∈Ii

∂f̃i
∂xl

(xl(tk)− x̂l(tk)) +H.O.T f̃i
i ,

hl(xl(tk)) = hl(x̂l(tk)) +
∂hl
∂xl

(xl(tk)− x̂l(tk)) +H.O.T hl
l

(2.14)

where H.O.T f̃i
i and H.O.T hl

l are high order terms associated with the expansions of f̃i and

hl. These high order terms satisfy the following constraints:

H.O.T f̃i
i ≤ H f̃i

i |Xi(tk)− X̂i(tk)|2, H.O.T hl
l ≤ Hhl

l |xl(tk)− x̂l(tk)|2 (2.15)

for all xi ∈ Xi (i ∈ I) with H f̃i
i , i ∈ I, and Hhl

l , l = 1, . . . ,m, are positive constants.

Let us define Ai(tk) = f̃i(X̂i(tk)) − f̃i(Xi(tk)) +
∑

l∈Ii Ki,l(x̂l)(hl(xl(tk)) − hl(x̂l(tk))).

From (2.14), the following equation can be written:

Ai(tk) =
∑
l∈Ii

(
−∂f̃i
∂x̂l

(xl(tk)− x̂l(tk)) +Ki,l
∂hl
∂x̂l

(xl(tk)− x̂l(tk))

)
+
∑
l∈Ii

Ki,lH.O.T hl
l −H.O.T f̃i

i .

(2.16)

If Ki,l is determined following (2.10), from (2.15) and (2.16), it can be obtained that:

|Ai(tk)| ≤ H f̃i
i |Xi(tk)− X̂i(tk)|2 +

∑
l∈Ii

Ki,lH
hl
l |xl(tk)− x̂l(tk)|2. (2.17)

From (2.13), using the triangle inequality and taking into account (2.17), |Xi(tk)−X̂i(tk)|2 =∑
l∈Ii |xl(tk)− x̂l(tk)|2 as well as yl(tk) = hl(xl(tk))+vl(tk), and from the Lipschitz property

of f̃i with respect to xl (l ∈ Ii), the following inequality can be obtained:

|ėz,i(t)| ≤ |Fi(zi(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lhi

|xi(t)− xi(tk)|+ Lyi
Fi
θvi + Lwi

fi
θwi

+
∑
l∈Ii

(
H f̃i

i +Ki,lH
hl
l

)
|ez,l(tk)|2 +

∑
l∈Ii

Ki,lθvl +
∑
l∈Ii

Lxl

f̃i
|xl(t)− xl(tk)|

(2.18)

where ez,l(tk) = x̂l(tk)−xl(tk). Taking into account that zi(tk) = x̂i(tk) and condition (2.6)

and integrating (2.18) from t = tk to t = tk+1, the following inequality can be obtained:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + Lyi
Fi
Lhi

MiΔ
2/2 + Lyi

Fi
θviΔ+ Lwi

fi
θwiΔ

+
∑
l∈Ii

(
H f̃i

i +MKi,l
Hhl

l

)
|ez,l(tk)|2Δ+

∑
l∈Ii

MKi,l
θvlΔ+

∑
l∈Ii

Lxl

f̃i
MlΔ

2/2

(2.19)

where Mi, i ∈ I, are constants that bounds ẋi in Xi (i.e., |ẋi| ≤ Mi) and MKi,l
, l ∈ Ii, are

constants that bounds Ki,l in Xl (i.e., |Ki,l| ≤ MKi,l
). If γi(τ) and Li,l are defined as in

Proposition 5, (2.19) can be written in the form of Eq. (2.11). This proves Proposition 5.

�
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From the formulation of the local MHE of Eq. (2.8), it can be seen that observer (2.8e)

is operated in open-loop since only information at tk−1 is used. The result of Proposi-

tion 5 shows that within one sampling time, the estimation error given by the open-loop

observer (2.8e) is bounded and the upper bound depends on the Lipschitz properties of

the system, the property of observer (2.5), the sampling time, the uncertainties involved in

the system, and the interactions between the subsystems. Theorem 6 below takes advan-

tage of the boundeness property of observer (2.8e) and provides sufficient conditions on the

convergence and ultimate boundedness of the estimation error of the proposed DMHE.

Theorem 6 Consider system (2.4) with the outputs of its subsystems yi sampled at time

instants {tk≥0}. If the proposed DMHE implemented following Algorithm 2 with subsystem

MHE designed as in (2.8) based on deterministic nonlinear observers satisfying (2.6) and

Ki,l determined following (2.10) that are bounded, and if there exist concave functions gi(·),
i ∈ I, such that:

gi(|ei|) ≥ βi(|ei|,Δ) (2.20)

for all |ei| ≤ di and if there exist vector constants ds,i, di such that 0 ≤ ds,i ≤ di, and

positive constants ai ≥ 1 , bi > 0, and εi > 0, such that:

ds,i − ai

⎛
⎝gi(ds,i) + γi(Δ) +

∑
l∈Ii

Li,lΔd2l

⎞
⎠− biθvi ≥ εi (2.21)

for all i ∈ I, and if κi for all i ∈ I, are picked as follows:

0 ≤ κi ≤ min{(ai − 1)/Lhi
, bi}, (2.22)

then the estimation error |ei| = |x̂i − xi| (i ∈ I) is a decreasing sequence if |ei(0)| ≤ di for

all i ∈ I and is ultimately bounded as follows:

lim
t→∞ sup |ei(t)| ≤ di,min (2.23)

for i ∈ I with di,min = max{|ei(t +Δ)| : |ei(t)| ≤ ds,i} for all ei(0) ≤ di and xi ∈ Xi. This

also implies that the entire system state estimation error is ultimately bounded.

Proof: We prove that the evolution of the estimation error of each subsystem state

|ei| = |x̂i − xi|, i ∈ I, under the proposed DMPC with the local MHE of Eq. (2.8) is a

decreasing sequence and is ultimately bounded in a small region. The decrease and ultimate

boundedness of subsystem estimation errors imply the decrease and ultimate boundedness
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of the entire system state estimation error. Specifically, we first focus on MHE i, i ∈ I, for

the time interval from tk to tk+1 and then extend to the general case.

From constraint (2.8g) for MHE i, it can be written that:

|x̂i(tk+1)− zi(tk+1)| ≤ κi|yi(tk+1)− hi(zi(tk+1))|. (2.24)

From the Lipschitz property of hi, the fact that yi = hi(xi)+vi and |vi| ≤ θvi , it is obtained

that:

|x̂i(tk+1)− zi(tk+1)| ≤ κiLhi
|xi(tk+1)− zi(tk+1)|+ κiθvi (2.25)

where Lhi
is the Lipschitz constant of hi as defined in Proposition 5. Using the triangle

inequality |x̂i − xi| ≤ |x̂i − zi|+ |zi − xi|, it is obtained from (2.25) that:

|x̂i(tk+1)− xi(tk+1)| ≤ (1 + κiLhi
) |xi(tk+1)− zi(tk+1)|+ κiθvi . (2.26)

From Proposition 5 and (2.26), and noticing that ei(tk) = ez,i(tk), the following inequality

can be obtained:

|ei(tk+1)| ≤ (1 + κiLhi
)

⎛
⎝βi(|ei(tk)|,Δ) + γi(Δ) +

∑
l∈Ii

Li,lΔ|el(tk)|2
⎞
⎠+ κiθvi . (2.27)

If condition (2.20) is satisfied, from (2.27), it can be obtained that:

|ei(tk+1)| ≤ (1 + κiLhi
)

⎛
⎝gi(|ei(tk)|) + γi(Δ) +

∑
l∈Ii

Li,lΔ|el(tk)|2
⎞
⎠+ κiθvi . (2.28)

If there exists ds,i satisfy (2.21) and κi is picked following (2.22), then (2.21) holds for all

ds,i ≤ |e| ≤ di taking into account that gi(·) is a concave function; that is:

|ei| − (1 + κiLhi
)

⎛
⎝gi(|ei|) + γi(Δ) +

∑
l∈Ii

Li,lΔ|el|2
⎞
⎠− κiθvi ≥ εi (2.29)

for all ds,i ≤ |ei| ≤ di and |el| ≤ dl (l ∈ Ii). From (2.28) and (2.29), it can be obtained that:

|ei(tk+1)| ≤ |ei(tk)| − εi (2.30)

for all ds,i ≤ |ei| ≤ di. If |ei| ≥ ds,i for all the time from 0 to tk, using (2.30) recursively, it

can be obtained that:

|ei(tk)| ≤ |ei(0)| − kεi (2.31)

for all ds,i ≤ |ei(tk)| ≤ di. This implies that |ei| decreases every sampling time and will

become smaller than ds,i in finite steps. Once |es,i| < ds,i, it will remain to satisfy |ei(t)| ≤
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di,min which is ensured by the definition of di,min; that is, lim
t→∞ sup |ei(t)| ≤ di,min. Note that

the above proof holds for all i ∈ I.

The ultimate boundedness of subsystem state estimation error implies the ultimate

boundedness of the entire system state estimation error. This can be seen from the inequal-

ity |e| ≤
m∑
i=1

|ei| which implies that:

lim
t→∞ sup |e| ≤

m∑
i=1

di,min. (2.32)

This proves Theorem 6. �

Remark 7 The purpose of the introduction of gi as in condition (2.20) is to ensure that

when condition (2.21) is satisfied for |ei| = ds,i, it is also satisfied for ds,i ≤ |ei| ≤ d

which implies that if |ei| ≥ ds,i, |ei| will be decreasing. For many of the existing nonlinear

observers (e.g., [31, 30, 33, 37]) that provide exponentially convergence rates such that

|ei(t)| ≤ λi|ei(0)| exp(−αit) with λi and αi positive numbers, condition (2.20) can be easily

satisfied.

Remark 8 Referring to condition (2.21) in Theorem 6 (or (2.29) in the proof), the term

gi(|ei(tk)|) denotes an upper bound on the error value after one sampling time (i.e., |ei(tk+1)|)
if the initial error value is |ei(tk)| for the nominal subsystem i without interactions under

continuous output yi feedback; the term γi(Δ) represents the effects of sampled-and-hold

implementation of nonlinear observer (2.5), measurement noise and process disturbances;

the term
∑

l∈Ii Li,lΔd2l bounds the effect of subsystem interactions; and the term κiθvi rep-

resents the uncertainty introduced into condition (2.8g) due to measurement noise. Condi-

tion (2.21) essentially requires that the assumed nonlinear observer (2.5) for the nominal

system without interactions converges to the actual nominal subsystem state fast enough

such that its contribution to the decease of the estimation error dominates the effects caused

by other factors that contribute to the increase of the estimation error.

Remark 9 Note that Theorem 6 provides a set of sufficient conditions that essentially

decouple the error dynamics of each subsystem. Condition (2.21) involves the initial esti-

mation error dl, l ∈ Ii, of the interacting subsystems of subsystem i. This set of sufficient

conditions requires that the initial estimation errors of the subsystems should be sufficiently

small. In other words, the convergence rates of the nonlinear observers of Eq. (2.5) should

be high enough to reject the effects of the initial estimation errors.
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Remark 10 From Theorem 6 as well as Remark 8, it can be seen that the convergence rates

of the nonlinear observers of Eq. (2.5) for the nominal subsystems without interactions play

an important role in the convergence rate of the estimates of the proposed DMHE to the

actual system states. This implies that it is possible to tune the convergence rate of the

proposed DMHE by tuning the convergence rates of the nonlinear observers of Eq. (2.5).

By examining condition (2.21), it can be found that when we tune the nonlinear observers

to increase their convergence rates (i.e., gi(ei) decreases), the negative effects caused by the

sampled-and-hold implementation (i.e., γi(Δ)) increase at the same time which implies the

increase of the value of di,min. This is because with the increase of the convergence rates of

the nonlinear observers, their Lipschitz constants (i.e., Lyi
Fi
) increase.

In order to overcome the above issue, two approaches may be used. First, a nonlinear

observer of Eq. (2.5) with switched convergence rates is used in the design of the MHE

of Eq. (2.8) for each subsystem. Specifically, a high convergence rate is adopted when the

estimation error is large and a low convergence rate is used when the estimation error

is small. By applying this approach, a high convergence rate of each local MHE can be

achieved while keeping the value of di,min small [63]. A second approach that may be used

to further improve the performance of the first approach is to use/require continuous output

measurements for the time period when the high convergence rate is used in the evaluation

of the nonlinear observer of Eq. (2.5). This approach can significantly reduce the negative

effects caused by the sampled-and-hold implementation of the nonlinear observer in the case

of high convergence rate.

Remark 11 The proposed DMHE scheme integrates deterministic nonlinear observer de-

sign techniques and MHE. It can increase the robustness and reliability of the observer over

either deterministic observers or classical MHE as will be demonstrated in Section 2.6 (see

also [50, 64]). This is due to constraint (2.8g) in each subsystem MHE design which ensures

that the MHE inherits the robustness of the deterministic nonlinear observer. The proposed

approach, however, requires more efforts in the initial design stage and in the tuning of the

parameters.

Remark 12 Note that in this work, we consider a type of bounded model mismatch (i.e.,

process disturbances). Other types of model mismatches, such as uncertainties in model

parameters or model structure, can be considered in a similar fashion as long as the model

mismatches are bounded and the auxiliary nonlinear observers are designed following the

assumptions in Section 2.4. Note also that even we do not explicitly consider model mis-
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Figure 2.2: Reactor-separator process with a recycle stream.

matches in the interaction model, we would like to clarify that different uncertainties are

actually included since 1) estimates of subsystem states are used in the interaction model

in the design of the proposed DMHE, and 2) linear correction terms are used to compensate

for nonlinear error dynamics.

Remark 13 The results in Theorem 6 are conservative since the worst case scenario is

considered. It might be possible to derive less conservative conditions if real-time (instead of

the worst) interactions between the subsystems are considered. However, this will make the

sufficient conditions for subsystems coupled together and may complicate the design process

of the distributed estimation system.

2.6 Application to a reactor-separator process

2.6.1 Process description and modeling

In this section, the proposed distributed state estimation approach is applied to a reactor-

separator process which includes two connected continuous stirred tank reactors (CSTR)

and one flash tank separator as shown in Fig. 2.2. Similar processes have been studied in

[65] in the context of networked process control. The feed stream entering the first tank

contains pure reactant A at flow rate F10 and temperature T10. A is expected to become

the product B and there is also a second reaction which converts B to the side product

C: A → B, B → C. The effluent of CSTR 1 is fed into CSTR 2 at flow rate F1 and

temperature T1. There is also another flow of pure A that is fed into CSTR 2 at flow rate

F20 and temperature T20. The same reactions take place in CSTR 2. A portion of the

effluent of CSTR 2 is passed through a separator and recycled back to CSTR 1 at recycle
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flow rate Fr and temperature T3. Each reactor is equipped with a jacket to provide/remove

heat to/from the reactor. Based on standard modeling assumptions and mass and energy

balances, nine ordinary differential equations can be obtained to describe the dynamics of

the process:

dxA1

dt
=

F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1)− k1e

−E1
RT1 xA1 (2.33a)

dxB1

dt
=

F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1 (2.33b)

dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1)− ΔH1

cp
k1e

−E1
RT1 xA1 − ΔH2

cp
k2e

−E2
RT1 xB1 +

Q1

ρcpV1

(2.33c)

dxA2

dt
=

F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2)− k1e

−E1
RT2 xA2 (2.33d)

dxB2

dt
=

F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (2.33e)

dT2

dt
=

F1

V2
(T1 − T2) +

F20

V2
(T20 − T2)− ΔH1

cp
k1e

−E1
RT2 xA2 − ΔH2

cp
k2e

−E2
RT2 xB2 +

Q2

ρcpV2

(2.33f)

dxA3

dt
=

F2

V3
(xA2 − xA3)− (Fr + Fp)

V3
(xAr − xA3) (2.33g)

dxB3

dt
=

F2

V3
(xB2 − xB3)− (Fr + Fp)

V3
(xBr − xB3) (2.33h)

dT3

dt
=

F2

V3
(T2 − T3) +

Q3

ρcpV3
+

(Fr + Fp)

ρcpV3
(xArΔHvap1 + xBrΔHvap2 + xCrΔHvap3)

(2.33i)

It is assumed that there is a negligible amount of reaction taking place in the separator

and that the relative volatility for each of the components remains constant within the

operating temperature range. The algebraic equations modeling the composition of the

overhead stream relative to composition of liquid in the flash tank is described as follows:

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3

(2.34)

The definition of process variables and values of these parameters are given in Table 2.1 and

Table 2.2, respectively. Note that the reaction (1) and reaction (2) refer to the reactions

A → B and B → C, respectively.

The system is divided into three subsystems with respect to the three vessels in the

process, and the states are noted by xi = [xAi, xBi, Ti]
T , i = 1, 2, 3. For each subsystem,
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Table 2.1: Process variables for the reactors.

xA1, xA2, xA3 mass fractions of A in reactors 1, 2, 3
xB1, xB2, xB3 mass fractions of B in reactors 1, 2, 3
xC1, xC2, xC3 mass fractions of C in reactors 1, 2, 3
xAr, xBr, xCr mass fractions of A, B, C in the recycle stream
T1, T2, T3 temperatures in reactors 1, 2, 3
T10, T20 feed stream temperatures to reactors 1 and 2
F1, F2 effluent flow rates from reactors 1 and 2
F10, F20 steady-state feed stream flow rates to reactors 1 and 2
Fr, Fp flow rates of the recycle and purge streams
V1, V2, V3 volumes of reactors 1, 2, 3
E1, E2 activation energy for reactions (1) and (2)
k1, k2 pre-exponential values for reactions (1) and (2)
ΔH1, ΔH2 heats of reaction for reactions (1) and (2)
ΔHvap1, ΔHvap2, ΔHvap3 evaporating enthalpies for A, B, C
αA, αB, αC relative volatilities of A, B, C
Q1, Q2, Q3 heat inputs/removals into/from reactors 1, 2, 3
cp, R, ρ heat capacity, gas constant and solution density

Table 2.2: Process parameters for the reactors.

F10 = 5.04 m3/h ΔH1 = −6.0× 104 KJ/kmol
F20 = 5.04 m3/h ΔH2 = −7.0× 104 KJ/kmol
Fr = 50.4 m3/h ΔHvap1 = −3.53× 104 KJ/kmol
Fp = 5.04 m3/h ΔHvap2 = −1.57× 104 KJ/kmol
V1 = 1.0 m3/h ΔHvap3 = −4.068× 104 KJ/kmol
V2 = 0.5 m3/h k1 = 2.77× 103 s−1

V3 = 1.0 m3/h k2 = 2.6× 103 s−1

αA = 3.5 cp = 4.2 KJ/kg ·K
αB = 1.0 R = 8.314 KJ/kmol ·K
αC = 0.5 ρ = 1000.0 kg/m3

T10 = 300 K xA10 = 1
T20 = 300 K xB10 = 0
E1 = 5.0× 104 KJ/kmol xA20 = 1
E2 = 6.0× 104 KJ/kmol xB20 = 0
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there’s an external input to the corresponding vessel: Q1, Q2 and Q3. It is assumed

that the measured outputs of the process are the temperatures (i.e., T1, T2 and T3) and

the measurements are subject to bounded noise. The bounded noise in the measurements

is generated as normal distributed values with zero mean and standard deviation 1 but

the values are restricted to be in the interval [−2, 2]. In addition to the measurement

noise, bounded random disturbances are added to the right-hand-side of Eq. (2.33). The

random disturbances added to the dynamics of the temperatures are generated as normal

distributed values with zero mean and standard deviation 100 in the range [−200, 200]

while the disturbances added to the dynamics of the concentrations are generated as normal

distributed values with zero mean and standard deviation 1 in the range [−5, 5]. The process

has one unstable steady-state:

xs = [0.1763, 0.6731, 480.3165K, 0.1965, 0.6536, 472.7863K, 0.0651, 0.6703, 474.8877K]T

which is the desired operating point, corresponding to Qs = [2.9 × 106 KJ/h, 1.0 ×
106 KJ/h, 2.9 × 106 KJ/h]T . The process is stabilized around this operating point by

manipulating the three external inputs.

2.6.2 Local MHE design

First, a deterministic nonlinear observer is designed following [31] for each subsystem with-

out considering the interactions between them. The nonlinear observers take the following

form for i = 1, 2, 3:

˙̂xi(t) = fi(x̂i(t), 0) +Gi(x̂i(t))
−1Ko,i(yi(t)− ŷi(t)) (2.35)

where x̂i denotes the state of the observer, Gi =
dΦi(x̂i)

dx̂i
with Φi(x̂i) defined as:

Φi(x̂i) = [hi(x̂i),
∂hi(x̂i)

∂x̂i
fi(x̂i),

∂(∂hi(x̂i)/∂x̂i · fi(x̂i))
∂x̂i

fi(x̂i)]
T

and Ko,i is a gain matrix and its value is determined such that the eigenvalues of the matrix

Ao,i −Ko,iCo,i with Aoi =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ and Coi = [1 0 0] are placed at −0.1± i and −10.

These nonlinear observers can asymptotically track the nominal subsystem states when the

interactions between them are absent.

The above designed nonlinear observers are used in the design of the subsystem MHEs.

As shown in (2.8), these nonlinear observers are augmented with the interaction models and

the correction terms. From the process model of Eq. (2.33), it can be seen that I1 = {3},
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I2 = {1}, I3 = {2}. Following (2.10), the gains of these correction terms are determined as

follows:

K1,3 = [0, 0, 50.4]T , K2,1 = [0, 0, 110.88]T , K3,2 = [0, 0, 60.48]T .

In the design of the local MHEs, the sampling time is Δ = 0.005 h, moving horizon is N = 3,

the parameters κi (i = 1, 2, 3) are κ1 = κ2 = κ3 = 0.5 determined based on extensive offline

simulations. The bounds on subsystem states xi are determined as 0 < xAi < 1, 0 < xBi <

1, 350K < Ti < 650K. The weighting matrices in the cost function of each subsystem MHE

are Qi = diag([1 1 104]), Ri = 1 for i = 1, 2, 3. An extended Kalman filtering approach is

used to approximate the arrival cost in the subsystem MHEs [53]. These subsystem MHEs

are implemented following Algorithm 2 to estimate the entire system state in a distributed

fashion.

2.6.3 Simulation results

In this section, the proposed DMHE is compared with different estimation techniques to

illustrate its performance. Specifically, the proposed DMHE will be compared with 1) the

deterministic nonlinear observers in the form (2.8e) implemented the same as the proposed

DMHE, 2) a decentralized MHE in which the subsystem MHEs do not communicate and

the interactions between subsystems are compensated for using their steady-state values,

and 3) the proposed DMHE with the correction gains in (2.8e) being zero vectors (i.e.,

K1,3 = K2,1 = K3,2 = [0, 0, 0]T ).

First, we compare the performance of the proposed DMHE with the deterministic non-

linear observers of Eq. (2.8e) implemented following Algorithm 2 as well. The key difference

between the two approaches is that in the proposed DMHE, optimality considerations are

taken into account. The initial condition for the process is as follows:

x0 = [0.1939, 0.7404, 528.3482K, 0.2162, 0.7190, 520.0649K, 0.0716, 0.7373, 522.3765K]T

and initial guess for the proposed DMHE and the nonlinear observers of Eq. (2.8e) are the

same:

x̂0 = [0.1675, 0.7, 500.3 K, 0.18, 0.67, 500 K, 0.06, 0.68, 500 K]T .

Figure 2.3 shows the trajectories of the estimates given by the proposed DMHE and the

nonlinear observers of Eq. (2.8e). The corresponding trajectories of the norm of the esti-

mation error is shown in Fig. 2.4. From these figures, it can be seen that both the proposed

DMHE and the nonlinear observers of Eq. (2.8e) can track the actual system state. How-

ever, the proposed DMHE drives the estimates to a small region around the actual system
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Figure 2.3: Trajectories of the actual system state (solid lines), the estimates given by
the proposed DMHE (dashed lines) and the nonlinear observers of Eq. (2.8e) implemented
following Algorithm 2 (dash-dotted lines).
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Figure 2.4: Trajectories of the estimation error norm of the proposed DMHE (dashed line)
and of the nonlinear observers of Eq. (2.8e) implemented following Algorithm 2 (dash-dotted
line).
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Figure 2.5: Trajectories of the actual system state (solid lines), the estimates given by the
proposed DMHE (dashed lines) and a decentralized MHE in which the subsystem MHEs
do not communicate and the interactions between subsystems are compensated for using
their steady-state values (dash-dotted lines).

state much faster. This can be seen clearly from Fig. 2.4. This is because that even though

the stability property of the proposed DMHE is essentially inherited from the nonlinear

observers of Eq. (2.8e), in the proposed DMHE optimality considerations are taken into

account.

Next, we compare the performance of the proposed DMHE with a decentralized MHE in

which the subsystem MHEs do not communicate and the interactions between subsystems

are compensated for using their steady-state values. Figures 2.5 and 2.6 show the trajec-

tories of the estimates and the corresponding estimation error norms. From these figures,

it can be seen that the proposed DMHE can track the actual system state very well while

the decentralized MHE gives very unreliable estimates. This is due to the fact that in the

proposed DMHE, the interactions between the subsystems are compensated for using latest

estimates of the subsystem states communicated between the MHEs as well as additional

correction terms to compensate for the errors in the estimates. This strategy can signifi-

cantly improve the interaction compensation performance compared with the case that a

constant steady-state value is used for the interactions.

In this set of simulations, we compare the performance of the proposed DMHE with the

same proposed DMHE but with the correction gains in (2.8e) being zero vectors; that is,
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Figure 2.6: Trajectories of the estimation error norm of the proposed DMHE (dashed line)
and of a decentralized MHE in which the subsystem MHEs do not communicate and the
interactions between subsystems are compensated for using their steady-state values (dash-
dotted lines).
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Figure 2.7: Trajectories of the actual system state (solid lines), the estimates given by the
proposed DMHE (dashed lines) and the proposed DMHE with the correction gains in (2.8e)
being zero vectors (dash-dotted lines).
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Figure 2.8: Trajectories of the estimation error norm of the proposed DMHE (dashed line)
and of the proposed DMHE with the correction gains in (2.8e) being zero vectors (dash-
dotted line).

K1,3 = K2,1 = K3,2 = [0, 0, 0]T . Figures 2.7 and 2.8 show the trajectories of the estimates

given by the two approaches and the corresponding estimation error norms, respectively.

From Figs. 2.7 and 2.8, it can be seen that both the two approaches can track the actual

system states. However, the estimates given by the proposed DMHE with the correction

terms converge to the actual system states much faster than the estimates given by the

approach without the correction terms. Moreover, the estimates given by the proposed

DMHE without the correction terms have relatively larger fluctuations around the actual

system states. This set of simulations illustrate that if we use the correction terms to

compensate for the estimation errors, faster convergence rate and improved estimates can

be obtained.

Finally, we demonstrate the robustness of the proposed DMHE to the uncertainties in

model parameters. In this set of simulation, we consider that there are uncertainties in the

inlet reactant concentrations in flow F10. Specifically, we consider that the actual values

of the reactant concentrations are xA10 = 0.9 and xB10 = 0.1 but in the DMHE design

xA10 = 1 and xB10 = 0 are used; that is, in the DMHE design, pure A is thought to be

contained in F10. Figure 2.9 shows the simulation results. It can be seen from this figure that

the proposed DMHE can track the actual system states. This set of simulations illustrate

the robustness of the proposed DMHE with respect to model parameter uncertainties.

2.7 Conclusions

In this chapter, we developed a distributed state estimation approach in the framework of

moving horizon estimation for a class of nonlinear systems. In particular, we focused on a
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Figure 2.9: Trajectories of the actual system state (solid lines) and the estimates given by
the proposed DMHE (dashed lines) subject to model parameter uncertainties.

class of nonlinear systems that are composed of several subsystems and the subsystems in-

teract with each other via their subsystem states. First, a distributed estimation algorithm

was proposed which specifies how the different subsystem MHEs collaborate. Subsequently,

a local MHE scheme was designed for each subsystem. In the design of each subsystem

MHE, an auxiliary nonlinear deterministic observer that can asymptotically track the cor-

responding nominal subsystem state when the subsystem interactions are absent was taken

advantage of. For each subsystem, the nonlinear deterministic observer together with an

error correction term was used to calculate a confidence region for the subsystem state

every sampling time. Within the confidence region, the subsystem MHE was allowed to

optimize its estimate. Sufficient conditions under which the proposed DMHE scheme gives

bounded estimation errors in the case of bounded measurement noise and bounded process

disturbances were derived. The performance of the proposed DMHE was illustrated via

the application to a reactor-separator chemical process by comparing it with three other

distributed estimation approaches.
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Chapter 3

Two Triggered Communication
Algorithms for Distributed Moving
Horizon State Estimation∗

3.1 Introduction

In Chapter 2, we developed a DMHE strategy for a class of nonlinear system, which re-

quires information exchange every sampling time. In that strategy, for each subsystem,

a nonlinear observer of the form (2.5) is augmented with a correction term based on the

information communicated at the previous sampling time to calculate a confidence region

at each sampling time. Within the confidence region, the corresponding local MHE is al-

lowed to optimize its state estimates. The DMHE developed in Chapter 2 was proved to

give decreasing and ultimately bounded estimation error. However, the results in Chapter 2

were obtained based on information communication every sampling time. The frequent in-

formation transmission requirement may impede the application of the DMHE to processes

that have a shared communication network with limited capacity. Moreover, extensive in-

formation exchanging may reduce the robustness of the system due to data dropouts in

the communication network. Motivated by the above observations, in this chapter, we pro-

pose two algorithms to reduce the number of information transmissions between subsystem

based on the DMHE framework developed in Chapter 2 via event-triggered approaches.

Event-triggered approaches have been widely used in the design of control systems that

have shared communication and computation resources (e.g., [66, 67, 68]). When a trig-

gered strategy is used to reduce the frequency of communication of the distributed state

estimation system, the implementation algorithm and local MHE design in Chapter 2 need

∗This chapter is a version of “J. Zhang and J. Liu. Two triggered information transmission algorithms
for distributed moving horizon state estimation. Systems & Control Letters, 65:1-12, 2014.”
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to be redesigned to account for triggered communication between the subsystems in order

to achieve boundedness of the estimation error.

3.2 Modeling of measurements

In this chapter, we consider that the outputs of the m subsystems, yi, i = 1, . . . ,m, are

sampled synchronously and periodically at time instants {tk≥0} such that tk = t0 + kΔ

with t0 = 0 the initial time, Δ a fixed sampling time interval and k positive integers. It’s

also assumed that the measurements of the time derivatives of the outputs, ẏi, . . ., y
(n−1)
i ,

i = 1, . . . ,m, are available at each sampling time.

Note that the availability of the output time derivatives is only required in the design of

one of the two proposed triggered communication algorithms of the proposed DMHE. For

the other proposed triggered communication algorithm, it only requires the availability of

the output measurements (i.e., yi(t)). The difference of the two triggering conditions will

be discussed in Section 3.5.

In the distributed state estimation scheme, subsystem i is assumed to have direct and

immediate access to the corresponding local output and its derivatives. The subsystems

are assumed to be able to communicate with each other bi-directionally to exchange their

subsystem state estimates and measurements when necessary.

3.3 The DMHE scheme with triggered communications

In this chapter, we will discuss the proposed DMHE design with triggered communication

for the nonlinear system of Eq. (2.4) to minimize the communication cost of the distributed

state estimation system. The structure of this design is shown in Figure 3.1. In this scheme,

each subsystem has an MHE estimator and an communication trigger which determines if

the information of the subsystem should be sent out to other subsystems at a sampling time.

This implies that a subsystem does not necessarily send out information at each sampling

time, which can reduce the communication load of the distributed state estimation system.In

the first algorithm, the triggering condition is designed based on the difference between the

current sate estimate and the last sent state estimate. In the second algorithm, the triggering

condition is based on the difference between the sampled current output as well as its

derivatives and the last sent output as well as its derivatives. The remainder of this chapter

is organized as follows: first, an implementation algorithm for the DMHE with triggered

communication is presented which is followed by the first triggering condition; then, the
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Figure 3.1: Scheme of the proposed DMHE design with triggered communication.

design of local MHE taking into account triggered communication explicitly is introduced;

subsequently, the stability properties of the proposed DMHE with triggered communication

are analyzed based on the first triggering condition; finally, the second triggering condition

is proposed and the corresponding DMHE stability properties are proved.

3.4 DMHE with the first communication trigger

3.4.1 Implementation algorithm

In this section, we will discuss the proposed DMHE with the first triggered communication

approach in which the trigger of a subsystem is designed based on the difference between

the current and the previous sent state estimates of the subsystem. First, we propose the

implementation algorithm for this strategy in the following Algorithm 14:

Algorithm 14 Distributed state estimation algorithm 1

1. At the initial sampling time t0 = 0, MHE i, i ∈ I, is initialized with yi(t0), x̂i(t0) as

well as yl(t0), x̂l(t0) for l ∈ Ii.

2. At the current sampling time tk > 0, MHE i, i ∈ I, and its associated trigger carry

out the following steps:

2.1. MHE i receives the corresponding output measurement yi(tk).

2.2. MHE i calculates the current state estimate x̂i(tk) based on the local measure-

ments yi(tk+s−N ), s = 0, 1, . . . , N , and the latest received information x̂l(t
l
q) and
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yl(t
l
q) for l ∈ Ii, where tlq is the last time instant that MHE l sends information

to MHE i.

2.3. MHE i sends x̂i(tk) and yi(tk) to its trigger and the trigger checks the triggering

condition. If the condition is satisfied, the trigger updates tiq = tk and sends

x̂i(t
i
q) as well as yi(t

i
q) to subsystem j for all j ∈ Ci. If the triggering condition

is not satisfied, no information is transmitted to subsystem j from subsystem i

and subsystem j continues to use the last updated information x̂i(t
i
q) and yi(t

i
q).

3. Go to Step 2 at the next sampling time tk+1.

In the above algorithm, the communication occurs in Step 2.3 at the end of each sampling

time, implies that the current state estimate of a subsystem, if it is sent out to other

subsystems, will be used to compensate for the interactions between the subsystems at the

next sampling time. Moreover, the communication between subsystem is designed in a

parallel and non-iterative fashion.

3.4.2 The first triggering condition

From Step 2.3 of Algorithm 14, it can be seen that the triggering condition for each sub-

system is checked every sampling time after MHE i calculates its latest state estimate. The

first triggering condition is designed based on the difference between the current subsystem

state estimate and the last subsystem state estimate sent to other subsystems. Specifically,

the triggering condition of MHE i at time tk is designed as follows:

Si(tk) =

{
1, if |x̂i(tk)− x̂i(t

i
q)| ≥ εi

0, if |x̂i(tk)− x̂i(t
i
q)| < εi

(3.1)

where tiq is the last sampling time that MHE i sent information to other MHEs, x̂i(tk) is

the current state estimate of MHE i and x̂i(t
i
q) is the last sent state estimate of MHE i. εi is

a pre-determined threshold. When Si(tk) = 0, the triggering condition is not satisfied and

MHE i does not send out information so the other MHEs will continue to use x̂i(t
i
q) and

yi(t
i
q). When Si(tk) = 1, the triggering condition is satisfied and MHE i sends out x̂i(tk),

yi(tk) and updates tiq = tk.

It can be seen from (3.1) that the triggering condition of a subsystem is independent

from the states of other subsystems. This implies that the triggering conditions for different

subsystems may be satisfied at different time instants.
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3.4.3 Local MHE formulation

Due to the triggered communication of the DMHE, the subsystems may not transmit their

latest state estimates and output measurements every sampling time. Thus the local MHE

design developed in Chapter 2 which requires state estimates transmission every sampling

time needs to be modified in order to ensure the robustness and stability of the distributed

state estimation system under the proposed triggered implementation algorithms.

Before presenting the proposed local MHE design, we define the sampled state trajectory

zn,i(tk) which is obtained by integrating the following ordinary differential equation from

tk−1 to tk:

żn,i(t) = Fi(zn,i(t), yi(tk−1)) + f̃i(X̂i(tk−1)) +
∑

l∈Ii,l �=i

Ki,l(x̂l)(yl(t
l
q)− hl(x̂l(t

l
q)))

+μiKi,i(x̂i)(yi(tk−1)− hi(x̂i(tk−1)))

(3.2a)

zn,i(tk−1) = x̂i(tk−1) (3.2b)

where the values of tlq for l ∈ Ii are the updated ones at time tk−1. In (3.2a), μi is a variable

used to indicate if xi is included in Xi. If xi is included in Xi, then μi = 1; if xi is not

included in Xi, then μi = 0. X̂i(tk−1) is an approximation of Xi(t) and is composed of

x̂l(t
l
q) (l ∈ Ii, l �= i) and/or x̂i(tk−1). The evolution of zn,i(t) should be evaluated before the

evaluation of MHE i at the beginning of each sampling time based on the previous state

estimate and output measurement of subsystem i and the latest information received from

other subsystems. The information from other subsystems is not available every sampling

time, so the last updated information is used to approximate the information of the pervious

time instant. Specifically, the term x̂l(tk−1) and yl(tk−1) are approximated by x̂l(t
l
q) and

yl(t
l
q) for l ∈ Ii, l �= i, respectively.

In nonlinear observer (3.2a), the first term of the right hand side comes from nonlinear

observer (2.5), the second term explicitly describe the interactions between subsystem i and

its associated subsystems l based on the interaction model f̃i(Xi) and the last two terms

compensate for the error in the interaction model.

The gains Ki,l, l ∈ Ii associated with the correction terms are determined as follows:

Ki,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂f̃i
∂xl

(
∂hl
∂xl

)+
∣∣∣∣∣
xl=x̂l(tlq)

, if l �= i

∂f̃i
∂xi

(
∂hi
∂xi

)+
∣∣∣∣∣
xi=x̂i(tk−1)

, if l = i

(3.3)

for l ∈ Ii and i ∈ 1, . . . ,m. The gains of the corrections terms are picked to compensate for
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the error in the interaction model via its linear approximation which will be made explicit

in Section 3.4.4.

Based on zn,i(tk), the proposed local MHE for subsystem i accounting for triggered

communication at tk is designed as follows:

min
x̃i(tk−N ),...,x̃i(tk)

k−1∑
p=k−N

|wi(tp)|2Q−1
i

+
k∑

p=k−N

|vi(tp)|2R−1
i

+ Vi(tk−N ) (3.4a)

s.t. ˙̃xi(t) = fi(x̃i(t), wi(tp)) + f̃i(X̂i(tp)), t ∈ [tp, tp+1], p = k −N, . . . , k − 1
(3.4b)

vi(tp) = yi(tp)− hi(x̃i(tp)), p = k −N, . . . , k (3.4c)

wi(tp) ∈ Wi, vi(tp) ∈ Vi, x̃i(tp) ∈ Xi, p = k −N, . . . , k (3.4d)

|x̃i(tk)− zn,i(tk)| ≤ κi|yi(tk)− hi(zn,i(tk))| (3.4e)

where N is the estimation horizon, Qi and Ri are the covariance matrices of wi and vi

respectively, Vi(tk−N ) denotes the arrival cost which summarizes past information up to

tk−N , x̃i is the predicted xi in the above optimization problem, and κi is a design parameter.

Once the optimization problem (3.4) is solved, x̃∗i (tk−N ), . . . , x̃∗i (tk), an optimal trajec-

tory of the system states is obtained. The optimal estimate of the state of subsystem i at

tk is defined as:

x̂i(tk) = x̃∗i (tk). (3.5)

In optimization problem (3.4), constraint (3.4a) is the cost function that needs to be

minimized and Vi(tk−N ) is the arrival cost summarizing all the past information out of the

estimation horizon. Constraint (3.4b) is the model of subsystem i, fi(X̂i(tp)) is used to

approximate the function fi(Xi(t)), t ∈ [tp, tp+1]. Thus each MHE is expected to store the

previously received information of other subsystems within the estimation horizon. The

equation of constraint (3.4d) are constraints on process disturbances, measurement noise

and system state.

Constraint (3.4e) creates a confidence region (i.e., κi|yi(tk)− hi(zn,i(tk)|) taking advan-

tage of the reference state estimate provided by nonlinear observer (3.2a) (i.e., zn,i(tk)) and

the current output measurement (i.e., yi(tk)). The estimate of the MHE of Eq. (3.4) is only

allowed to be optimized within the confidence region. This method guarantees that the

proposed DMHE with triggered communication gives bounded estimation error when cer-

tain conditions are satisfied. The parameter κi is a design parameter whose value depends

on the system and observer (2.5) properties. Guidelines for picking κi will be provided in

Theorems 16 and 20.
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3.4.4 Stability analysis

In this subsection, the stability property of the proposed DMHE with triggered communica-

tion based on the first triggering condition (i.e., MHEs of Eq. (3.4) implemented following

Algorithm 14) is studied. First we study the boundedness of the estimation error of nonlin-

ear observer (3.2a) with Ki,l determined following (3.3) taking into account measurement

noise and process disturbances. Subsequently we derive sufficient conditions under which

the stability and ultimate boundedness of the estimation error of the proposed DMHE with

triggered communication are guaranteed.The following Proposition 15 gives an upper bound

on the deviation of zn,i from xi in one sampling time.

Proposition 15 Consider the nonlinear observer of Eq. (3.2a) for subsystem i, i ∈ I, in

the time interval t ∈ [tk, tk+1] with initial condition zn,i(tk) = x̂i(tk), output measurement

yi(tk) and the values of tlq, l ∈ Ii, determined following the triggering condition (3.1). If

Ki,l for i ∈ I and l ∈ Ii are determined as in (3.3) and Ki,l are bounded, then the deviation

of the observer state zn,i in one sampling time Δ (i.e., at tk+1) from the actual subsystem

state xi is bounded for all xi ∈ Xi, i ∈ I, as follows:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + γi(Δ) + LiΔ|ez,i(tk)|2 +
∑

l∈Ii, l �=i

αi,l(Δ, ez,l(tk), ez,l(t
l
q), εl)

(3.6)

where ez,i = zn,i−xi, i ∈ I, and γi(τ) = Lyi
Fi
Lhi

Miτ
2/2+Lyi

Fi
θviτ+Lwi

fi
θwiτ+

∑
l∈Ii MKi,l

θvlτ+∑
l∈Ii L

xl

f̃i
Mlτ

2/2 with Lyi
Fi
, Lhi

, Lwi
fi
, and Lxl

f̃i
being the Lipschitz constants of Fi with re-

spect to yi, hi with respect to xi, fi with respect to wi, and f̃i with respect to xl, respectively,

and Mi, MKi,l
, i ∈ I and l ∈ Ii, being constants that bound ẋi in Xi, and Ki,l in Xl,

respectively, and H f̃i
i , Hhl

l , and Hhi
i being positive constants that associated with the Tay-

lor expansions of f̃i, hl and hi, Li = μi(MKi,l
Hhi

i +H f̃i
i ), and αi,l(τ, ez,l(tk), ez,l(t

l
q), εl) =

Ki,lLhl
τ(|ez,l(tk)|+ |ez,l(tlq)|+ εl) + τ(Ki,lH

hl
l +H f̃i

i )(|ez,l(tk)|+ εl)
2.

Proof: We consider the nonlinear observer of Eq. (3.2a) and define ez,i = zn,i−xi where

zn,i denotes the trajectory of observer (3.2a) and xi is the state trajectory of the actual

subsystem of Eq. (2.1). The time derivative of ez,i is evaluated as follows:

ėz,i(t) = Fi(zn,i(t), yi(tk))− fi(xi(t), wi(t)) + f̃i(X̂i(tk))− f̃i(Xi(t))

+
∑

l∈Ii,l �=i

Ki,l(x̂l)(yl(t
l
q)− hl(x̂l(t

l
q)) + μiKi,i(x̂i)(yi(tk)− hi(x̂i(tk))) (3.7)
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From the Lipschitz properties of Fi, fi and hi, the fact that yi(tk) = hi(xi(tk))+ vi(tk), and

|vi(tk)| ≤ θvi , and |wi(t)| ≤ θwi , the following inequality can be obtained from (3.7):

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lhi

|xi(t)− xi(tk)|+ Lyi
Fi
θvi + Lwi

fi
θwi

+

∣∣∣∣∣∣
∑

l∈Ii,l �=i

Ki,l(x̂l)(yl(t
l
q)− hl(x̂l(t

l
q))) + μiKi,i(x̂i)(yi(tk)− hi(x̂i(tk)))

+f̃i(X̂i(tk))− f̃i(Xi(t))
∣∣∣

(3.8)

where Lyi
Fi
, Lhi

and Lwi
fi

are the Lipschitz constants associated with Fi, hi and fi, respec-

tively.

Using Taylor series expansion, the following inequalities can be obtained:

f̃i(Xi(tk)) = f̃i(X̂i(tk)) +
∑

l∈Ii,l �=i

∂f̃i
∂x̂l

(x̂l(t
l
q))(xl(tk)− x̂l(t

l
q))

+μi
∂f̃i
∂x̂i

(x̂i(tk))(xi(tk)− x̂i(tk)) +H.O.T f̃i
i

hl(xl(tk)) = hl(x̂l(t
l
q)) +

∂hl
∂x̂l

(x̂l(t
l
q))(xl(tk)− x̂l(t

l
q)) +H.O.T hl

l , ∀ l ∈ Ii, l �= i

hi(xi(tk)) = hi(x̂i(tk)) +
∂hi
∂x̂i

(x̂i(tk))(xi(tk)− x̂i(tk)) +H.O.T hi
i

(3.9)

where H.O.T f̃i
i , H.O.T hi

i and H.O.T hl
l are high order terms associated with the expansions

of f̃i, hi and hl, l ∈ Ii, l �= i. These high order terms satisfy the following constraints:

H.O.T f̃i
i ≤ H f̃i

i |Xi(tk)− X̂i(tk)|2, H.O.T hi
i ≤ Hhi

i |xi(tk)− x̂i(tk)|2
H.O.T hl

l ≤ Hhl
l |xl(tk)− x̂l(t

l
q)|2, ∀ l ∈ Ii, l �= i

(3.10)

for all xi ∈ Xi and xl ∈ Xl, l �= i with H f̃i
i , Hhi

i and Hhl
l , l ∈ Ii, l �= i, are positive constants.

DefineAi = f̃i(X̂i(tk))−f̃i(Xi(tk))+
∑

l∈Ii,l �=i

Ki,l(x̂l(t
l
q))(hl(xl(tk))−hl(x̂l(t

l
q)))+μiKi,i(x̂i)(hi(xi(tk))−

hi(x̂i(tk))). From (3.9), the following equation can be written:

Ai = μi

(
−∂f̃i
∂x̂i

(x̂i(tk))(xi(tk)− x̂i(tk)) +Ki,i
∂hi
∂x̂i

(x̂i)(xi(tk)− x̂i(tk))

)

+
∑

l∈Ii,l �=i

(
−∂f̃i
∂x̂l

(x̂l(t
l
q))(xl(tk)− x̂l(t

l
q)) +Ki,l

∂hl
∂x̂l

(x̂l(t
l
q))
(
xl(tk)− x̂l(t

l
q)
))

+
∑

l∈Ii,l �=i

Ki,lH.O.T hl
l + μiKi,iH.O.T hi

i −H.O.T f̃i
i

(3.11)

If Ki,l is determined following (3.3), from (3.10) and (3.11), it can be obtained that:

|Ai| ≤
∑

l∈Ii,l �=i

Ki,lH
hl
l |xl(tk)− x̂l(t

l
q)|2 + μiKi,iH

hi
i |xi(tk)− x̂i(tk)|2 +H f̃i

i |Xi(tk)− X̂i(tk)|2

(3.12)
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Using the triangle inequality |xl(tk) − x̂l(t
l
q)| ≤ |xl(tk) − x̂l(tk)| + |x̂l(tk) − x̂l(t

l
q)|, and

|Xi(tk)− X̂i(tk)|2 =
∑

l∈Ii,l �=i

|xl(tk)− x̂l(t
l
q)|2 + μi|xi(tk)− x̂i(tk)|2, (3.12) becomes:

|Ai| ≤
∑

l∈Ii,l �=i

(Ki,lH
hl
l +H f̃i

i )(|xl(tk)− x̂l(tk)|+ |x̂l(tk)− x̂l(t
l
q)|)2

+μi(Ki,iH
hi
i +H f̃i

i )|xi(tk)− x̂i(tk)|2
(3.13)

From (3.8) and the Lipschitz property of f̃i with respect to xl (l ∈ Ii), the following

inequality can be obtained:

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lhi

|xi(t)− xi(tk)|+
∑
l∈Ii

Ki,lθvl + Lyi
Fi
θvi

+Lwi
fi
θwi +

∑
l∈Ii

Lxl

f̃i
|xl(t)− xl(tk)|+

∑
l∈Ii,l �=i

Ki,lLhl
(|ez,l(tk)|+ |ez,l(tlq)|+ |x̂l(tk)− x̂l(t

l
q)|)

+
∑

l∈Ii,l �=i

(Ki,lH
hl
l +H f̃i

i )(|ez,l(tk)|+ |x̂l(tk)− x̂l(t
l
q)|)2 + μi(Ki,iH

hi
i +H f̃i

i )|ez,i(tk)|2

(3.14)

with ez,i(tk) = xi(tk)− x̂i(tk), ez,l(tk) = xl(tk)− x̂l(tk) and ez,l(t
l
q) = xl(t

l
q)− x̂l(t

l
q).

From the triggering condition of Eq. (3.1), it can be written for all l ∈ Ii that:

|x̂l(tk)− x̂l(t
l
q)| ≤ εl (3.15)

Using constraint (3.15), taking into account the boundedness of the system state and

condition (2.6), integrating (3.14) from t = tk to t = tk+1, the following inequality can be

obtained:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + Lyi
Fi
Lhi

MiΔ
2/2 + Lyi

Fi
θviΔ+ Lwi

fi
θwiΔ+

∑
l∈Ii

MKi,l
θvlΔ

+
∑
l∈Ii

Lxl

f̃i
Δ2/2 +

∑
l∈Ii, l �=i

Ki,lLhl
Δ(|ez,l(tk)|+ |ez,l(tlq)|+ εl)

+
∑

l∈Ii, l �=i

(Ki,lH
hl
l +H f̃i

i )Δ(|ez,l(tk)|+ εl)
2 + μi(Ki,iH

hi
i +H f̃i

i )|ez,i(tk)|2Δ

(3.16)

where Mi, i ∈ I, are constants that bounds ẋi in Xi (i.e., |ẋi| ≤ Mi), and MKi,l
, l ∈ Ii, are

constants that bounds Ki,l in Xl (i.e., |Ki,l| ≤ MKi,l
). If γi(τ), Li, and αi,l are defined as in

Proposition 15, (3.16) can be written in the form of Eq. (3.6). This proves Proposition 15.

�
Proposition 15 provides an upper bound on the estimation error of a subsystem state

between the nonlinear observer (3.2a) zn,i and the actual system state xi. This upper bound

is related to the accuracy of the initial estimate |ez,i(tk)|, Lipschitz properties of the system,

sampling interval Δ, magnitudes of noise and process disturbances, subsystem interactions
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|ez,l(tk)|, |ez,l(tlq)| and the triggering thresholds εl. From the formulation of the local MHE

of Eq. (3.4), it can be seen that observer (3.2a) is used to generate a reference estimate

zn,i(tk). Based on the reference estimate, a confidence region is calculated for the optimal

state estimate x̂i(tk). Theorem 16 below provides sufficient conditions for the convergence

and ultimate boundedness of the estimation error of the proposed DMHE with the first

triggered communication strategy.

Theorem 16 Consider system (2.4) with the outputs of its subsystems yi sampled at time

instants {tk≥0}. If the proposed DMHE implemented following Algorithm 14 based on the

triggering condition (3.1) with subsystem MHE designed as in (3.4) based on deterministic

nonlinear observers satisfying (2.6) and Ki,l determined following (3.3), and if there exist

concave functions gi(·), i ∈ I, such that:

gi(|ei|) ≥ βi(|ei|,Δ) (3.17)

for all |ei| ≤ di and if there exist constants ds,i, di such that 0 ≤ ds,i ≤ di and positive

constants ai ≥ 1 , bi > 0, and ηi > 0, such that:

ds,i − ai

⎛
⎝gi(ds,i) + γi(Δ) + LiΔd2s,i +

∑
l∈Ii, l �=i

αi,l(Δ, dl, dl, εl)

⎞
⎠− biθvi ≥ ηi (3.18)

for all i ∈ I, and if κi for all i ∈ I, are picked as follows:

0 ≤ κi ≤ min{(ai − 1)/Lhi
, bi}, (3.19)

then the estimation error |ei| = |x̂i − xi| (i ∈ I) is a decreasing sequences if |ei(0)| ≤ di for

all i ∈ I and is ultimately bounded as follows:

lim
t→∞ sup |ei(t)| ≤ di,min (3.20)

for i ∈ I with di,min = max{|ei(t +Δ)| : |ei(t)| ≤ ds,i} for all ei(0) ≤ di and xi ∈ Xi. This

also implies that the entire system state estimation error is ultimately bounded.

Proof: We prove that the evolution of the estimation error of each subsystem state

|ei| = |x̂i − xi|, i ∈ I, under the proposed DMHE with the local MHE of Eq. (3.4) im-

plemented following Algorithm 14 is a decreasing sequence and is ultimately bounded in a

small region around zero. The decrease and ultimate boundedness of subsystem estimation

errors imply the decrease and ultimate boundedness of the entire system state estimation
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error. Specifically, we first focus on MHE i, i ∈ I, for the time interval from tk to tk+1 and

then extend to the general case. From constraint (3.4e) for MHE i, it can be written that:

|x̂i(tk+1)− zn,i(tk+1)| ≤ κi|yi(tk+1)− hi(zn,i(tk+1))| (3.21)

From the Lipschitz property of hi, the fact that yi = hi(xi)+vi and |vi| ≤ θvi , it is obtained

that:

|x̂i(tk+1)− zn,i(tk+1)| ≤ κiLhi
|xi(tk+1)− zn,i(tk+1)|+ κiθvi (3.22)

where Lhi
is the Lipschitz constant of hi as defined in Proposition 15. Using the triangle

inequality |x̂i − xi| ≤ |x̂i − zn,i|+ |zn,i − xi|, it is obtained from (3.22) that:

|x̂i(tk+1)− xi(tk+1)| ≤ (1 + κiLhi
) |xi(tk+1)− zn,i(tk+1)|+ κiθvi (3.23)

From Proposition 15 and (3.23), and noticing that ei(tk) = ez,i(tk), the following inequality

can be obtained:

|ei(tk+1)| ≤ (1 + κiLhi
)

⎛
⎝βi(|ei(tk)|,Δ) + γi(Δ) + LiΔ|ei(tk)|2 +

∑
l∈Ii, l �=i

αi,l(Δ, ez,l(tk), ez,l(t
l
q), εl)

⎞
⎠

+κiθvi
(3.24)

If condition (3.17) is satisfied, from (3.24), it can be obtained that:

|ei(tk+1)| ≤ (1 + κiLhi
)

⎛
⎝gi(|ei(tk)|) + γi(Δ)LiΔ|ei(tk)|2 +

∑
l∈Ii, l �=i

αi,l(Δ, ez,l(tk), ez,l(t
l
q), εl)

⎞
⎠

+κiθvi
(3.25)

If there exists ds,i satisfy (3.18) and κi is picked following (3.19), then (3.18) holds for all

ds,i ≤ |ei| ≤ di. taking into account that gi(·) is a concave function; that is:

|ei|−(1 + κiLhi
)

⎛
⎝gi(|ei|) + γi(Δ)LiΔ|ei|2 +

∑
l∈Ii, l �=i

αi,l(Δ, dl, dl, εl) + LiΔ|ei|2
⎞
⎠−κiθvi ≥ ηi

(3.26)

for all ds,i ≤ |ei| ≤ di and |el| ≤ dl (l ∈ Ii). From (3.25) and (3.26), it can be obtained that:

|ei(tk+1)| ≤ |ei(tk)| − ηi (3.27)

for all ds,i ≤ |ei| ≤ di. If |ei| ≥ ds,i for all the time from 0 to tk, using (3.27) recursively, it

can be obtained that:

|ei(tk)| ≤ |ei(0)| − kηi (3.28)
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for all ds,i ≤ |ei(tk)| ≤ di. This implies that |ei| decreases every sampling time and will

become smaller than ds,i in finite steps. Once |es,i| < ds,i, it will remain to satisfy |ei(t)| ≤
di,min which is ensured by the definition of di,min; that is, limt→∞ sup |ei(t)| ≤ di,min. Note

that the above proof holds for all i ∈ I.

The ultimate boundedness of subsystem state estimation errors implies the ultimate

boundedness of the entire system state estimation error. This can be seen from the inequal-

ity |e| ≤
m∑
i=1

|ei| which implies that:

lim
t→∞ sup |e| ≤

m∑
i=1

di,min. (3.29)

This proves Theorem 16. �

Remark 17 Referring to the condition (3.18) in Theorem 16, the term gi(|ei(tk)|) is the

upper bound of the estimation error for the nominal subsystem after one sampling time

if the initial error term is |ei(tk)| when the interactions between subsystems are absent;

the term γi(Δ) denotes the effect of the sample-and-hold implementation of the nonlinear

observer of Eq. (3.2a), and process disturbances and measurement noise; the term αi,l is

related to system interactions and triggering thresholds; and the term biθvi characterizes the

uncertainty introduced into the condition (3.18) due to measurement noise.

3.5 DMHE with the second communication trigger

3.5.1 Implementation algorithm

In this section, we discuss the second design of the communication trigger as well as the

associated distributed state estimation algorithm.

Algorithm 18 Distributed state estimation algorithm 2

1. At t0 = 0, MHE i is initialized with Yi(t0), x̂i(t0) and yl(t0), x̂l(t0) for l ∈ Ii.

2. At tk > 0, MHE i and its trigger carry out the following steps:

2.1. MHE i receives the corresponding output and output time derivatives Yi(tk).

2.2. MHE i calculates x̂i(tk) based on yi(tk+s−N ), s = 0, 1, . . . , N , and the latest x̂l(t
l
q)

and yl(t
l
q) for l ∈ Ii.

2.3. MHE i sends Yi(tk) to its trigger and the trigger checks the triggering condition.

If the condition is satisfied, the trigger updates tiq = tk and sends x̂i(t
i
q) and
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yi(t
i
q) to subsystem j for all j ∈ Ci. If the triggering condition is not satisfied,

no information is sent out from subsystem i.

3. Go to Step 2 at the next sampling time tk+1.

Compared with Algorithm 14, Algorithm 18 has a similar algorithm structure but there

are slight differences in Step 1, Step 2.1, and Step 2.3. In these steps, MHE i receives the

output and its derivative measurements Yi and sends Yi to the corresponding trigger.

3.5.2 The second triggering condition

The second triggering condition for each subsystem is designed based on the difference

between the measurement of the current output and its derivatives and the last sent mea-

surement of the output and its derivatives. Specifically, the second triggering condition of

MHE i is designed as follows:

S2,i(tk) =

{
1, if |Yi(tk)− Yi(t

i
q)| ≥ ε2,i

0, if |Yi(tk)− Yi(t
i
q)| < ε2,i

(3.30)

where Yi(tk) is the current measurement of the output and its derivatives of subsystem i and

Yi(t
i
q) is the last sent information of Yi. ε2,i is a pre-determined threshold. When S2,i(tk) =

0, the triggering condition is not satisfied and MHE i does not send out information. When

Si,2(tk) = 1, the triggering condition is satisfied and MHE i sends out x̂i(tk), yi(tk) and

updates tiq = tk.

Note that the main difference between the two algorithms is the design of the triggering

conditions. Even though the two triggering conditions may generate different sequences of

tiq, i = 1, . . . ,m, the definition of zn,i and design of the local MHEs presented in Section

3.4.3 apply to both triggering conditions. However, the conditions derived in Theorem 16

are not sufficient to ensure the decrease and ultimately boundedness of the estimation error

of the DMHE with the second communication trigger. In the next subsection, we derive

another set of sufficient conditions for the DMHE with the second communication trigger.

3.5.3 Stability analysis

In this subsection, we study the stability property of the proposed DMHE implemented fol-

lowing Algorithm 18 and provide a set of sufficient conditions for the decrease and ultimate

boundedness of the estimation error.

Proposition 19 Consider the nonlinear observer of Eq. (3.2a) for subsystem i under the

DMHE with output communication of condition (3.30), i ∈ I, for t ∈ [tk, tk+1] with zn,i(tk) =
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x̂i(tk), measurement yi(tk) and the values of tlq, l ∈ Ii determined following the triggering

condition (3.30). If Ki,l for i ∈ I and l ∈ Ii are determined as in (3.3) and Ki,l are bounded,

then the deviation of zn,i in one sampling time Δ from xi is bounded for all xi ∈ Xi, i ∈ I,

as follows:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + γi(Δ) +
∑

l∈Ii, l �=i

λi,l(Δ, |ez,l(tlq)|, δl) + LiΔ|ez,i(tk)|2

(3.31)

where λi,l(τ, |ez,l(tlq)|, δl) = Ki,lLhl
τδl+τ(Ki,lH

hl
l +H f̃i

i )(δl+|ez,l(tlq)|)2, δl = LΦ,l (ε2,l + 2θΦ,l),

and the other constants are defined as in Proposition 15.

Proof: Define ėz,i and Ai as in Proposition 15, the inequality (3.12) can be rewritten

into

|Ai| ≤
∑

l∈Ii,l �=i

(Ki,lH
hl
l +H f̃i

i )(|xl(tk)− xl(t
l
q)|+ |xl(tlq)− x̂l(t

l
q)|)2

+μi(Ki,iH
hi
i +H f̃i

i )|xi(tk)− x̂i(tk)|2
(3.32)

with the triangle inequality |xl(tk)−x̂l(t
l
q)| ≤ |xl(tk)−x̂l(tk)|+|x̂l(tk)−x̂l(t

l
q)|, and |Xi(tk)−

X̂i(tk)|2 =
∑

l∈Ii,l �=i

|xl(tk)− x̂l(t
l
q)|2 + μi|xi(tk)− x̂i(tk)|2.

From (3.8) and the Lipschitz property of f̃i with respect to xl (l ∈ Ii), it is obtained

that:

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lhi

|xi(t)− xi(tk)|+ Lyi
Fi
θvi + Lwi

fi
θwi

+
∑
l∈Ii

Ki,lθvl +
∑
l∈Ii

Lxl

f̃i
|xl(t)− xl(tk)|+

∑
l∈Ii,l �=i

Ki,lLhl
|xl(tk)− xl(t

l
q)|

+
∑

l∈Ii,l �=i

(Ki,lH
hl
l +H f̃i

i )(|xl(tk)− xl(t
l
q)|+ |ez,l(tlq)|)2 + μi(Ki,iH

hi
i +H f̃i

i )|ez,i(tk)|2

(3.33)

with ez,i(tk) = xi(tk)− x̂i(tk), ez,l(tk) = xl(tk)− x̂l(tk) and ez,l(t
l
q) = xl(t

l
q)− x̂l(t

l
q).

Following the triggering condition of Eq. (3.30), it can be written for all l ∈ Ii that:

|Yl(tk)− Yl(t
l
q)| ≤ ε2,l (3.34)

From the definition of Y in Section 3.2, it can be obtained that:

xl(tk) = Φ−1(Yl(tk)− φl(tk)) (3.35)

Based on the Lipschitz property of Φ, the following inequality can be derived:

|xl(tk)− xl(t
l
q)| ≤ LΦ,l

(
|Yl(tk)− Yl(t

l
q)|+ |φl(tk)− φl(t

l
q)|
)

(3.36)

43



where LΦ,l is the Lipschitz constant of Φ−1. Taking into account the boundedness of φ(tk)

and constraint (3.34), it’s obtained that:

|xl(tk)− xl(t
l
q)| ≤ δl (3.37)

with δl = LΦ,l (ε2,l + 2θΦ,l).

Applying constraint (3.37), taking into account the boundedness of the system state and

condition (2.6), integrating (3.33) from t = tk to t = tk+1, the following inequality can be

obtained:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + Lyi
Fi
Lhi

MiΔ
2/2 + Lyi

Fi
θviΔ+ Lwi

fi
θwiΔ+

∑
l∈Ii

MKi,l
θvlΔ

+
∑
l∈Ii

Lxl

f̃i
Δ2/2 +

∑
l∈Ii

Lxl

f̃i
Mlτ

2/2 +
∑

l∈Ii, l �=i

Ki,lLhl
Δδl

+
∑

l∈Ii, l �=i

Δ(Ki,lH
hl
l +H f̃i

i )(δl + |ez,l(tlq)|)2 + Li|ez,i(tk)|2Δ

(3.38)

if Mi, MKi,l
, γi(τ), Li are defined as in Proposition 15 and 19. (3.38) can be written in the

form of Eq. (3.31), which proves Proposition 19. �

Theorem 20 Consider system (2.4) with Yi sampled at {tk≥0}. If the proposed DMHE

implemented following Algorithm 2 based on the triggering condition (3.30) with subsystem

MHE designed as in (3.4) based on deterministic nonlinear observers satisfying (2.6) and

Ki,l determined following (3.3), and if there exist concave functions gi(·), i ∈ I, as defined

in (3.17) for all |ei| ≤ d2,i, constants ds2,i, and d2,i such that 0 ≤ ds2,i ≤ d2,i, and positive

constants a2,i ≥ 1 , b2,i > 0, and η2,i > 0, such that:

ds2,i − a2,i

⎛
⎝gi(ds2,i) + γi(Δ) +

∑
l∈Ii, l �=i

λi,l(Δ, dl, δl) + LiΔd2s2,i

⎞
⎠− b2,iθvi ≥ η2,i (3.39)

for all i ∈ I, and if κi for all i ∈ I, are picked as follows:

0 ≤ κi ≤ min{(a2,i − 1)/Lhi
, b2,i}, (3.40)

then the estimation error |ei| = |x̂i − xi| (i ∈ I) is a decreasing sequences if |ei(0)| ≤ d2,i

for all i ∈ I and the whole system is ultimately bounded as follows:

lim
t→∞ sup |e| ≤

m∑
i=1

di,min2 (3.41)

for i ∈ I with di,min2 = max{|ei(t+Δ)| : |ei(t)| ≤ ds2,i} for all ei(0) ≤ d2,i and xi ∈ Xi.
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Proof: Similar to the proof in Theorem 16, to ensure the ultimate boundedness of the

estimation error for the whole system, we only need to prove that there exists a constraint

that makes the estimation error of each subsystem is decreasing and ultimately bounded in

a small region (i.e., |ei(tk)| ≤ |ei(0)| − kη2,i). Considering MHE i, i ∈ I, for t ∈ [tk, tk+1],

from Proposition 19 and (3.23), and if condition (3.17) is satisfied, it can be obtained that:

|ei(tk+1)| ≤ (1 + κiLhi
)

⎛
⎝gi(|ei(tk)|) + γi(Δ) +

∑
l∈Ii, l �=i

λi,l(Δ, |ez,l(tlq)|, δl) + LiΔ|ei(tk)|2
⎞
⎠+ κiθvi

(3.42)

If there exists ds2,i satisfy (3.39) and κi is picked following (3.40), then (3.39) holds for all

ds2,i ≤ |ei| ≤ d2,i. taking into account that gi(·) is a concave function; that is:

|ei|−(1 + κiLhi
)

⎛
⎝gi(|ei|) + γi(Δ) +

∑
l∈Ii, l �=i

λi,l(Δ, |el|, δl) + LiΔ|ei|2
⎞
⎠−κiθvi ≥ η2,i (3.43)

for all ds2,i ≤ |ei| ≤ d2,i and |el| ≤ d2,l (l ∈ Ii). From (3.42) and (3.43), we get:

|ei(tk+1)| ≤ |ei(tk)| − η2,i (3.44)

for all ds2,i ≤ |ei| ≤ d2,i. Following the proving procedure in Theorem 16, it proves Theo-

rem 20. �

Remark 21 Considering the condition (3.39) in Theorem 20, the terms gi(|ei(tk)|), γi(Δ),

biθvi in the left hand side have already been explained in Remark 17; the term λi,l is related

to system interactions and triggering thresholds ε2,l.

Remark 22 Referring to the triggering conditions provided in Proposition 15 and Proposi-

tion 19, they are both used in bounding the initial estimation errors of subsystem i as well as

its associated subsystems. However, their influences are quite different: condition (3.1) pro-

vides an upper bound on the difference between the current and last updated state estimate,

while condition (3.30) bounds the deviation of the current augmented output measurement

from its last sent one, which can be reduced to the actual state difference during two con-

secutive communication instants and is not directly related to the estimation error.

3.6 Application to the reactor-separator process

3.6.1 Simulation settings

A detailed modeling of the reactor-separator process can be found in Section 2.6. Based

on the estimates of the local MHEs, we design the first triggering condition as discussed in
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Section 3.4.2. In order to design the second triggering condition, we need time derivatives

of the temperature measurements. In the simulations, we use a finite difference method to

approximate the change of temperatures. Specifically, in the design of the second triggering

condition, Yi(tk), is evaluated as follows:

Yi(tk) = [Ti(tk), Ti(tk)− Ti(tk−1), Ti(tk)− 2Ti(tk−1) + Ti(tk−2)]
T

where i = 1, 2, 3.

3.6.2 Simulation results

In this section, the proposed DMHE with the two different communication triggers are

compared to illustrate their performances from a communication cost point of view. First

we carried out a set of simulations when the the thresholds of the two triggering conditions

are εi = 1.0 and ε2,i = 1.0, i = 1, 2, 3, respectively. In this set of simulations, the initial

state of the process is

x0 = [0.1939; 0.7404; 528.3482 K; 0.2162; 0.7190; 520.0649 K; 0.0716; 0.7373; 522.3765 K]T

and the initial guess in MHEs is

x̂0 = [0.1675; 0.7; 500.3 K; 0.18; 0.67; 500 K; 0.06; 0.68; 500 K]T

with input Qi = Qs,i + 109e−0.01tsin(0.1t) as shown in Figure 3.2. This type of inputs is

used to excite different change rates in the process state trajectories.

Figures 3.3 - 3.7show the simulation results. Figures 4 and 6 show the estimated state

trajectories obtained under the two different communication triggering conditions. Figures

5 and 7 show the time instants that the subsystems send out information under the two

triggering conditions. Figure 8 shows the evolution of the estimation errors under the two

triggering conditions. It can be seen from these figures that: 1) the proposed DMHE with

the two triggered communication approaches can track the actual system states very well

(Figs. 3.3 and 3.5); 2) the estimation errors decrease to values close to zero quickly and

maintain close to zero (Fig. 3.7); 3) the number of information exchange between the

subsystems is significantly reduced under both the two triggering conditions (Figs. 3.4 and

3.6); 4) the communication between the subsystem is more often when the states of the

process change fast than when the states of the process have small changes.

We also conducted another set of simulations to compare the two communication algo-

rithms in terms of the mean performance and number of communications between subsys-

tems with varying triggering thresholds. Specifically, simulations were carried out under
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Figure 3.2: Damped sinusoidal inputs to the three subsystems.
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Figure 3.3: State trajectories of the actual system state(solid lines) and the state estimates
given by the proposed DMHE implemented following Algorithm 14 based on triggering
condition (3.1) with εi = 1.0, i = 1, 2, 3 (dashed lines).
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Figure 3.4: Time instants when subsystem i, i = 1, 2, 3, sent out its information by the
proposed DMHE implemented following Algorithm 14 based on triggering condition (3.1) .
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Figure 3.5: State trajectories of the actual system state(solid lines) and the state estimates
given by the proposed DMHE implemented following Algorithm 18 based on triggering
condition (3.30) with ε2,i = 1.0, i = 1, 2, 3 (dashed lines).
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Figure 3.6: Time instants when subsystem i, i = 1, 2, 3, sent out its information by the
proposed DMHE implemented following Algorithm 18 based on triggering condition (3.30)
.
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Figure 3.7: Trajectories of the estimation error norm of the proposed DMHE implemented
following Algorithm 14 (dashed lines) based on triggering condition (3.1) and Algorithm 18
based on triggering condition (3.30) (solid lines).

49



0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

εi

C
om

m
un

ic
at

io
n 

nu
m

be
r

0 0.5 1 1.5 2 2.5 3
4000

6000

8000

10000

12000

εi

P
er

fo
rm

an
ce

Figure 3.8: Average number of communications and performance index of the proposed
DMHE implemented following Algorithm 14 based on triggering condition (3.1) with
εi, i = 1, 2, 3, varying from 0 to 3 (solid lines) and the dashed lines denote the number
of communications and performance of the proposed DMHE with the subsystems exchang-
ing information every sampling time.

different settings (initial conditions, random noise sequences and triggering thresholds) and

the performance index for MHE i is designed as follows:

Ji =

M∑
k=0

|x̂i(tk)− xi(tk)|2Q∗
i

(3.45)

where i = 1, 2, 3, t0 = 0 is the initial simulation time and tM = 2.0 h is the end of the

simulation time. The parameters Q∗
i , i = 1, 2, 3, are the factors to compensate for the dif-

ferent orders of magnitude of the states, and Q∗
i = diag[103, 103, 1], i = 1, 2, 3. The overall

performance is measured by J = J1 + J2 + J3. For each value of the triggering threshold,

10 simulation runs were used to calculate the average performance and number of commu-

nications between subsystems. Figures 3.8 and 3.9 show the simulation results. From these

figures, it can be seen that: 1) as the threshold increases, the number of communications

between the subsystems gets worse; 2) as the threshold increases, the performance of the

DMHE also decreases; 3) both of the two triggering strategies give similar trends. These

results imply that a balance between the number of communication and the estimation

performance should be reached for a specific application. From the above simulation re-

sults, it can be seen that the two algorithms both can lead to significant reduction in the

number of communications and maintain the estimation performance close to the case when
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Figure 3.9: Average number of communications and performance index of the proposed
DMHE implemented following Algorithm 18 based on triggering condition (3.30) with
ε2,i, i = 1, 2, 3, varying from 0 to 3 (solid lines) and the dashed lines denote the number of
communications and performance of the proposed DMHE with the subsystems exchanging
information every sampling time.

information is exchanged between the subsystem every sampling time if the thresholds are

chosen properly. In this application, the second algorithm based on triggering condition

(3.30) shows slightly superior than the first algorithm based on triggering condition (3.1)

in terms of reducing the number of communications while maintaining the performance

(see Figs. 3.4, 3.6, 3.8, 3.9). However, this approach requires the availability of the time

derivatives of the output measurements which may be difficult or expensive to obtain in

certain applications.

3.7 Conclusions

In this chapter, we presented two triggered communication algorithms for a DMHE scheme

to reduce the communication cost via decreasing the number of communications between

subsystems. In the first algorithm, the communication between subsystems is triggered by

the difference between the current subsystem state estimates and last transmitted state esti-

mations; in the second algorithm, the communication is triggered by the difference between

the current measurement of subsystem outputs and output derivatives and corresponding

last transmitted values. Sufficient conditions under which the convergence and boundedness
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of the estimation error for the whole system were derived. The proposed two algorithms

were compared from a performance and number of communication times point of view via

the application to a chemical process. Both proposed communication algorithms are capa-

ble of maintaining the estimation performance as well as greatly reducing the number of

communications with proper triggering thresholds.
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Chapter 4

Distributed Moving Horizon State
Estimation Subject to
Communication Delays∗

4.1 Introduction

In Chapter 2, an observer-enhanced DMHE design was developed for a class of nonlinear

systems with bounded process uncertainties. In this DMHE, each subsystem MHE commu-

nicates with subsystems that it interacts with every sampling time. In the design of each

subsystem MHE, an auxiliary deterministic nonlinear observer is taken advantage of to cal-

culate a confidence region that contains the actual system state every sampling time. The

subsystem MHE is only allowed to optimize its state estimate within the confidence region.

This strategy was demonstrated to guarantee the convergence and ultimate boundedness

properties of the estimation error. However, the results in Chapter 2 were derived under the

assumption that the communication between subsystems is flawless and there is no delay

in the information transmission. In practice, this assumption may not hold especially when

shared wireless communication network is used. Issues brought into the design by commu-

nication need to be carefully addressed [69]. Motivated by the above considerations, in this

chapter we proposed a DMHE scheme that is able to handle time-varying communication

delays in the DMHE network of Chapter 2. In the proposed design, a nonlinear observer-

enhanced MHE is designed for each subsystem and the distributed MHEs are assumed to be

able to communicate and exchange information with each other via a shared communication

network which may introduce communication delays. To handle time-varying delays in the

communication, the implementation algorithm and local MHE design in Chapter 2 need

∗This chapter is a version of “J. Zhang and J. Liu. Observer-enhanced distributed moving horizon state
estimation subject to communication delays. Journal of Process Control, in press.”
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to be revised to account for the communication delays between the subsystems in order to

achieve boundedness of the estimation error.

4.2 Modeling of measurements and communications

In this chapter, it’s assumed that each subsystem observer has direct and immediate access

to its local output measurements. We also assume that the subsystems can communicate to

exchange information via a shared communication network and the information transmitted

in the communication network is subject to time-varying communication delays. It is as-

sumed that output measurements of the m subsystems, yi, i ∈ I are sampled synchronously

and periodically at time instants tk = t0 + kΔ, where t0 is the initial sampling time, Δ

is a fixed sampling interval. To model delays in the communication, an auxiliary variable

di,j(tk), is introduced to indicate the delay associated with the information of subsystem j

available to subsystem i at time instants tk. The variable di,j(tk) takes values that are pos-

itive integers. For example, if at time tk, the latest information of subsystem j received by

subsystem i was sent at tk−q, then di,j(tk) = q. All the information are time-labeled, so the

delays are known in the communication network. In order to study the deterministic stabil-

ity property of the proposed distributed state estimation scheme, we assume that there is

an upper bound D on the delay di,j(tk). Since delays are time-varying, it is possible that no

new information is provided within two consecutive sampling periods. A subsystem stores

all the received information that was sent within a time period of DΔ from the current

time instant. At time tk, if the latest information of subsystem j received by subsystem i

was sent at tk−di,j(tk), a data package containing newer information about subsystem j will

be received by tk+D−di,j(tk) because the maximum possible delay is DΔ.

4.3 The DMHE scheme subject to communication delays

In this chapter, we present the proposed DMHE subject to communication delays. A

schematic of the proposed design is shown in Figure 4.1. In this design, each subsystem

has its own local state estimator and sends information to all the other subsystems when

the current state estimate and output measurement are available. However, due to commu-

nication delays in information transmission, a subsystem may not receive the information

from other subsystems synchronously. To address this issue, a predictor is embedded in

each subsystem to predict the states of other subsystems in open-loop based on previously

received information.
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Figure 4.1: Scheme of the proposed DMHE design considering communication delays.

In the rest of this chapter, we first present a distributed state estimation algorithm

accounting for communication delays; and then we discuss the design of the open-loop

predictor for each subsystem; subsequently, the calculation of confidence regions for the

state estimates is described which is followed by the design of local MHEs taking into

account communication delays explicitly; finally, the stability properties of the proposed

DMHE are analyzed.

4.3.1 Distributed state estimation algorithm

The proposed DMHE that is capable of handling communication delays is implemented

using the following algorithm:

Algorithm 23 Distributed state estimation algorithm

1. At t0 = 0, MHE i, i ∈ I, is initialized with system measurement at the initial time

y(t0), and the initial system state guess x̂(t0).

2. At tk > 0, carry out the following steps:

2.1. MHE i receives the local output measurement yi(tk).

2.2. If subsystem i receives any new data packages between the time interval tk−1 and

tk, it checks if they provide more recent information. If it does, update di,j(tk)

values and store the data packages ; Else, store the data packages.

2.3. If any di,j(tk) is greater than 1, the corresponding predictor of MHE i predicts the

system state xp,i(tk−1) based on previously received information. Based on the
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local measurement yi(tk), the state prediction xp,i(tk−1) and the received informa-

tion from other subsystems, a reference state estimate for subsystem i, zn,i(tk),

is calculated.

2.4. MHE i calculates current state estimate x̂i(tk) based on zn,i(tk) and sends the

current information x̂i(tk) to all the other subsystems and yi(tk) to subsystem j

for all j ∈ Ii, j �= i.

3. Go to Step 2 at the next sampling time tk+1.

From the above algorithm, it can be seen that information is sent out at Step 2.4

and the information will be used at a future sampling time. This implies that the delay

of one sampling time is unavoidable, i.e., di,j(tk) > 0; and data transmission may cause

additional delays. If the total delay is greater than one sampling time (i.e., di,j(tk) > 1),

the predictor will be used to calculate a prediction of the state at tk−1 and based on the

prediction, a subsystem MHE calculates the current subsystem state estimate. Compared

with Algorithm 2 in Chapter 2, Algorithm 23 accounts for communication delays explicitly.

Another important difference between Algorithm 23 and Algorithm 2 in Chapter 2 is that in

Algorithm 23, an all-to-all communication is required whereas in Algorithm 2 an estimator

only has to send information to a subset of the subsystems. The all-to-all communication

is needed because a centralized model is used in the design of the open-loop predictors.

4.3.2 State prediction

Consider subsystem i, i ∈ I, at time tk, when di,l(tk) > 1 for any l ∈ Ii (i.e., x̂l(tk−1) has

not been received by subsystem i due to communication delays), the nominal centralized

system model of Eq. (2.4) is used to generate a prediction of the entire system state at

tk−1, x
p,i(tk−1). In the notation xp,i, the superscript ‘p’ means prediction while ‘i’ means

that the prediction is calculated in subsystem i. The unreceived subsystem states will be

approximated by the subsystem states in xp,i(tk−1). The value of xp,i(tk−1) is calculated as

follows:

ẋp,i(t) = f(xp,i(t), 0) + f̃(xp,i(t)), t ∈ [ts, ts+1] (4.1)

with the initial condition xp,i(tq) = x̂(tq), where s = q, q+1, ..., k−2 and tq is the latest time

instant that all of the other subsystem state estimates have been received so that x̂(tq) is

available. In the worst case, tq = tk−D which is ensured because the maximum transmission

delay is D. Note that in evaluating xp,i recursively, its value should be updated with any

received state estimates between tq and tk−1 in order to get better state prediction. For
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example, at time ts, q < s < k − 1, once xp,i(ts) is obtained from (4.1), we should check if

there are any received state estimates at ts of all the subsystems. If there are any, xp,i(ts)

should be updated with those state estimates and the updated xp,i(ts) will be used to

evaluate the prediction at the next sampling time. Note that the predictions calculated

using (4.1) are obtained in open-loop in the sense that no output measurements have been

used in the calculation.

4.3.3 Reference state estimate calculation

For subsystem i, i ∈ I, an augmented observer based on observer (2.5) is designed. In this

design, estimates received without delays or predictions of the subsystem states involved

in Xi will be used to calculate an approximation of the interaction between subsystem i

and other subsystems. We assume that at tk, the information sent at tk−1 by subsystem

g, g ∈ Zi(tk) ⊂ Ii, is received without delay (i.e., di,g(tk) = 1, g ∈ Zi(tk)) and the

information sent at tk−1 by subsystem l, l ∈ Ii\Zi(tk) is delayed. Note that the set Zi(tk)

is a function of time. At tk, the main purpose of this augmented observer is to calculate a

reference state estimate zn,i(tk) for subsystem i. The observer is designed as follows:

żn,i(t) = Fi(zn,i(t), yi(tk−1)) + f̃i(X̂i(tk−1)) +
∑

g∈Zi(tk)

Ki,g(x̂g(tk−1))(yg(tk−1)− hg(x̂g(tk−1)))

(4.2a)

zn,i(tk−1) = x̂i(tk−1) (4.2b)

where zn,i(t) is the state of this augmented observer, X̂i(tk−1) is an approximation of Xi(t)

for t ∈ [tk−1, tk) and is composed of xp,il (tk−1) for l ∈ Ii\Zi(tk) and x̂g(tk−1) for g ∈ Zi(tk).

Note that xp,il is the portion of xp,i that corresponds to subsystem l. Moreover, Ki,g for

g ∈ Zi(tk) are gain matrices. Observer (4.2) should be evaluated before the evaluation of

MHE i at tk to generate a reference state estimate as specified in Step 2.3 in Algorithm 23.

In nonlinear observer (4.2a), the first term of the right hand side comes from nonlinear

observer (2.5), the second term explicitly describe the interactions between subsystem i

and other subsystems based on the interaction model f̃i(Xi) and the last term contains

corrections used to compensate for the error in the interaction model. Note that only

measurements received without delay are used in the corrections. The gainsKi,g, g ∈ Zi(tk),

in nonlinear observer (4.2a) are determined as follows:

Ki,g(x̂g(tk−1)) =
∂f̃i
∂xg

(
∂hg
∂xg

)+
∣∣∣∣∣
xg=x̂g(tk−1)

, ∀g ∈ Zi(tk) (4.3)
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The correction gains are picked to compensate for the interaction model mismatch (i.e.,

the difference between f̃i(X̂i(tk−1)) and f̃i(Xi(t))) via its linear approximation obtained by

Taylor series expansion. This point will be made clear in the proof of Proposition 26.

Remark 24 In the evaluation of the reference state estimate, zn,i(tk), in Eq. (4.2a), the

output measurements and subsystem state estimates/predictions at tk−1 are used to approx-

imate the output and the subsystem states over the time period t ∈ [tk−1, tk) because system

output measurements and state estimates are only available at periodic sampling time in-

stants. For example, the local output yi(t) is approximated by yi(tk−1) for t ∈ [tk−1, tk).

4.3.4 Subsystem MHE design

Based on the reference state estimate zn,i(tk) provided by observer (4.2), the proposed

design of local MHE for subsystem i at time instant tk subject to communication delays is

formulated as follows:

min
x̃i(tk−N ),...,x̃i(tk)

k−1∑
q=k−N

|wi(tq)|2Q−1
i

+
k∑

q=k−N

|vi(tq)|2R−1
i

+ Vi(x̃i(tk−N )) (4.4a)

s.t. ˙̃xi(t) = fi(x̃i(t), wi(tq)) + f̃i(X̂i(tq)), t ∈ [tq, tq+1], q = k −N, . . . , k − 1
(4.4b)

vi(tq) = yi(tq)− hi(x̃i(tq)), q = k −N, . . . , k (4.4c)

wi(tq) ∈ Wi, vi(tq) ∈ Vi, x̃i(tq) ∈ Xi, q = k −N, . . . , k − 1 (4.4d)

|x̃i(tk)− zn,i(tk)| ≤ κi|yi(tk)− hi(zn,i(tk))| (4.4e)

where x̃i is the predicted xi in the above optimization problem, Qi and Ri are positive

definite covariance matrices of wi and vi respectively, Vi(x̃i(tk−N )) is the arrival cost that

summarizes past information up to tk−N , X̂i is the best estimate of Xi at previous time

instants, N is the estimation horizon, and κi is a positive constant. The roles of these

parameters will be made clear in the following discussion. The optimal solution to prob-

lem (4.4) is denoted as x̃∗i (tk−N ), . . . , x̃∗i (tk), and only the last element x̃∗i (tk) is used as the

current optimal estimate of the state of subsystem i at tk and is denoted as x̂i(tk). That is,

x̂i(tk) = x̃∗i (tk). (4.5)

To ensure the optimization problem (4.4) is a finite dimensional one, wi and vi are assumed

to be piece-wise constant variables between two consecutive time instants.

In the above design, (4.4a) is the cost function to be minimized. Constraints (4.4b)-

(4.4c) are from the subsystem model of Eq. (2.1), and fi(X̂i(tq)) is used to approximate
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the function fi(X̂i(t)), t ∈ [tq, tq+1]. To this end, each MHE should be capable of storing

the previously received information of other subsystems within the estimation horizon.

Constraint (4.4d) contains constraints on process disturbances, measurement noise and

system state. Constraint (4.4e) is used to calculate a confidence region (i.e., κi|yi(tk) −
hi(zn,i(tk))|) by taking advantage of the current output measurement yi(tk) and the reference

state estimate zn,i(tk). The estimate of the current subsystem state is only allowed to be

optimized within the confidence region.

Note that constraint (4.4e) is imposed at tk only and constraint (4.4d) is imposed from

tk−N to tk−1. Since in the calculation of the confidence region the boundedness properties of

the process disturbance, measurement noise and the system state are taken into account, it

is not necessary to impose constraint (4.4d) at tk. Essentially, constraints (4.4d) and (4.4e)

do not conflict with each other. The reference state estimate, zn,i(tk), provided by nonlinear

observer (4.2) is always a feasible solution to constraint (4.4e).

4.3.5 Stability analysis

In this section, we study the stability properties of the proposed DMHE subject to com-

munication delays implemented following Algorithm 23. Proposition 25 below provides an

upper bound on the deviation of the state trajectory obtained with the nominal system

model from the actual state trajectory.

Proposition 25 Consider the following state trajectories:

ẋa(t) = f(xa(t), w(t)) + f̃(xa(t))

ẋb(t) = f(xb(t), 0) + f̃(xb(t))
(4.6)

then the following inequality holds for all xa(t), xb(t) ∈ X, w(t) ∈ W:

|xa(t)− xb(t)| ≤ fW (t− t0, |xa(0)− xb(0)|) (4.7)

where fW (τ, |e(0)|) = Lw
f θw

Lx
f + Lx

f̃

(e
(Lx

f+Lx
f̃
)τ − 1)+ |e(0)|e(Lx

f+Lx
f̃
)τ

with Lw
f , L

x
f being Lipschitz

constants of f with respect to w and x respectively and Lx
f̃
being a Lipschitz constant of f̃

with respect to x.

Proof: Define the error term e(t) = xa(t)− xb(t). The time derivative of the error is given

by:

ė(t) = f(xa(t), w(t))− f(xb(t), 0) + f̃(xa(t))− f̃(xb(t)) (4.8)
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Applying the Lipschitz property of f , f̃ and the boundeness of w such that |w| ≤ θw, it is

obtained that:

|ė(t)| ≤ Lw
f θw + (Lx

f + Lx
f̃
)|e(t)| (4.9)

for all xa(t), xb(t) ∈ X, w(t) ∈ W. Integrating Eq. (4.9) with the initial condition |e(0)| =
|xa(0)− xb(0)|, the following inequality holds:

|e(t)| ≤ Lw
f θw

Lx
f + Lx

f̃

(e
(Lx

f+Lx
f̃
)(t−t0) − 1) + |xa(0)− xb(0)|e(L

x
f+Lx

f̃
)(t−t0)

(4.10)

This implies that (4.7) holds if fW is defined as in Proposition 25. �
In the following Proposition 26, we study the evolution of the estimation error given

by nonlinear observer (4.2) with Ki,g determined following (4.3) in one sampling time (i.e.,

Δ). Proposition 26 provides an upper bound on the estimation error given by nonlinear

observer (4.2) taking into account model uncertainties and communication delays. In order

to proceed with the presentation, we define γi(τ) for i ∈ I as follows:

γi(τ) = Lyi
Fi
Lxi
hi
Miτ

2/2 + Lyi
Fi
θviτ + Lwi

fi
θwiτ +

∑
l∈Ii

Lxl

f̃i
Mlτ

2/2 +
∑
l∈Ii

MKi,l
θvlτ (4.11)

where Lyi
Fi

is the Lipschitz constant of Fi defined in (2.5) with respect to its second argument,

Lxi
hi

is the Lipschitz constant of hi with respect to its argument, Mi is a constant such that

|ẋi| ≤ Mi for all xi ∈ Xi with i ∈ I, Lwi
fi

is the Lipschitz constant of fi of its second

argument, Lxl

f̃i
is the Lipschitz constant of f̃i with respect to xl (noting that xl is one part

of Xi for l ∈ Ii), MKi,l
is a constant such that |Ki,l| ≤ MKi,l

for all xi ∈ Xi. Note that in

the definition of γi, it is assumed that |Ki,l| (l ∈ Ii) is upper bounded which will be formally

assumed in Proposition 26.

Proposition 26 Consider the nonlinear observer of Eq. (4.2) for subsystem i, i ∈ I, during

the time interval t ∈ [tk, tk+1] with initial condition zn,i(tk) = x̂i(tk) and output measure-

ment yi(tk). If Ki,l are determined as in (4.3) and is bounded such that |Ki,l| ≤ MKi,l
for

all xi ∈ Xi, l ∈ Ii, and
∂f̃i
∂xl

, l ∈ Ii, are bounded such that | ∂f̃i∂xl
| ≤ M l

f̃i
for all xl ∈ Xl, then the

deviation of the observer state zn,i in one sampling time Δ (i.e., at tk+1) from the actual

subsystem state xi is bounded for all xi ∈ Xi, i ∈ I, as follows:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + γi(Δ) +
∑
l∈Ii

Li,lΔ|ez,l(tk)|2 +Δαi((D − 1)Δ, |ez(tk−D+1)|)

(4.12)

where ez,i = zn,i−xi, Li,l = MKi,l
Hhl

l +H f̃i
i and αi(τ, s) =

∑
l∈Ii,l �=i

M l
f̃i
fW (τ, s)+H f̃i

i fW (τ, s)2

with Hhl
l , H f̃i

i being positive constants that associated with the Taylor expansions of hl, f̃i,

respectively.
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Proof: We focus on the time interval t ∈ [tk, tk+1] and define ez,i = zn,i − xi where zn,i

denotes the trajectory of observer (4.2) and xi is the actual state trajectory of subsystem i.

Based on the subsystem model (2.1) and the expression of observer (4.2),the time derivative

of ez,i is evaluated as follows:

ėz,i(t) = żn,i(t)− ẋi(t)

= Fi(zn,i(t), yi(tk))− fi(xi(t), wi(t)) + f̃i(X̂i(tk))− f̃i(Xi(t))

+
∑

g∈Zi(tk+1)

Ki,g(x̂g(tk))(yg(tk)− hg(x̂g(tk))).
(4.13)

Note that the state trajectory of observer (4.2), zn,i for t ∈ [tk, tk+1] is evaluated at time

tk+1. Therefore, Zi(tk+1) is known in the above evaluation. From the Lipschitz properties of

Fi, fi and hi, the fact that yi(tk) = hi(xi(tk)) + vi(tk), and |vi(tk)| ≤ θvi , and |wi(t)| ≤ θwi ,

the following inequality can be obtained from (4.13):

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lxi
hi
|xi(t)− xi(tk)|+ Lyi

Fi
θvi + Lwi

fi
θwi

+

∣∣∣∣∣∣f̃i(X̂i(tk))− f̃i(Xi(t)) +
∑

g∈Zi(tk+1)

Ki,g(x̂g(tk))(yg(tk)− hg(x̂g(tk)))

∣∣∣∣∣∣
(4.14)

where Lyi
Fi
, Lxi

hi
and Lwi

fi
are the Lipschitz constants associated with Fi, hi and fi, respec-

tively.

In order to find an upper bound on the right-hand-side of (4.14), we first expand the

interaction term at tk, f̃i(Xi(tk)), around its estimate X̂i(tk) and also expand hg(xi(tk))

around its estimate x̂i(tk). Recalling that X̂i(tk) is composed of the estimate of the state

of subsystem g for g ∈ Zi(tk+1) and the predictions of the state of subsystem l with l ∈
Ii\Zi(tk+1), the following expansion can be obtained using Taylor series expansion:

f̃i(Xi(tk)) = f̃i(X̂i(tk)) +
∑

l∈Ii\Zi(tk+1)

∂f̃i
∂xl

(xp,il (tk))(xl(tk)− xp,il (tk))

+
∑

g∈Zi(tk+1)

∂f̃i
∂xg

(x̂g(tk))(xg(tk)− x̂g(tk)) +H.O.T f̃i
i

hg(xg(tk)) = hg(x̂g(tk)) +
∂hg
∂xg

(x̂g(tk))(xg(tk)− x̂g(tk)) +H.O.T
hg
g

(4.15)

where H.O.T f̃i
i and H.O.T

hg
g are high order terms associated with the expansions of f̃i and

hg. These high order terms satisfy the following constraints:

H.O.T f̃i
i ≤ H f̃i

i |Xi(tk)− X̂i(tk)|2, H.O.T
hg
g ≤ H

hg
g |xg(tk)− x̂g(tk)|2 (4.16)

for all xi ∈ Xi, i = Ii with H f̃i
i and H

hg
g being positive constants. Let us define Ai =

f̃i(X̂i(tk)) − f̃i(Xi(tk)) +
∑

g∈Zi(tk+1)

Ki,g(x̂g(tk))(hg(xg(tk)) − hg(x̂g(tk))). Applying the ex-
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pansions in (4.15), Ai can be written in the following form:

Ai =
∑

g∈Zi(tk+1)

(
− ∂f̃i
∂xg

(x̂g(tk))(xg(tk)− x̂g(tk)) +Ki,g(x̂g(tk))
∂hg
∂xg

(x̂g(tk))(xg(tk)− x̂g(tk))

)

−
∑

l∈Ii\Zi(tk+1)

∂f̃i
∂xl

(xp,il (tk))(xl(tk)− xp,il (tk)) +
∑

g∈Zi(tk+1)

Ki,g(x̂g(tk))H.O.T
hg
g −H.O.T f̃i

i

(4.17)

If Ki,g for g ∈ Zi(tk+1) is determined following (4.3), the two terms in the first summation

of the right-hand-side of (4.17) cancel with each other. Applying (4.16) to the last two

terms in (4.17), it can be obtained that:

|Ai| ≤
∣∣∣∣∣∣

∑
l∈Ii\Zi(tk+1)

∂f̃i
∂xl

(xp,il (tk))(xl(tk)− xp,il (tk))

∣∣∣∣∣∣
+

∑
g∈Zi(tk+1)

|Ki,g(x̂g(tk))|Hhg
g |xg(tk)− x̂g(tk)|2 +H f̃i

i |Xi(tk)− X̂i(tk)|2
(4.18)

Considering that |xl(tk) − xp,il (tk)| ≤ |x(tk) − xp,i(tk)|†, l ∈ Ii\Zi(tk+1), the following in-

equality can be obtained by applying Proposition 25:

|xl(tk)− xp,il (tk)| ≤ fW (tk − tq, |x(tq)− x̂(tq)|) (4.19)

where tq is the latest time instant that all of the other subsystem state estimates have been

received by subsystem i so that x̂(tq) is available. The worst case is that tq = tk−D+1 since

the maximum possible delay is DΔ. This implies that:

|xl(tk)− xp,il (tk)| ≤ fW ((D − 1)Δ, |x(tk−D+1)− x̂(tk−D+1)|) . (4.20)

If
∣∣∣ ∂f̃i∂xl

(xp,il (tk))
∣∣∣ is bounded such that

∣∣∣ ∂f̃i∂xl
(xp,il (tk))

∣∣∣ ≤ M l
f̃i

with M l
f̃i

a positive constant for

all xl ∈ Xl, l ∈ I, and if |Ki,g(x̂g)| is bounded such that |Ki,g(xg)| ≤ MKi,g with MKi,g a

positive constant for all xg ∈ Xg, g ∈ I, (4.18) can be written as follows:

|Ai| ≤
∑

l∈Ii\Zi(tk+1)

M l
f̃i
|xl(tk)− xp,il (tk)|

+
∑

g∈Zi(tk+1)

MKi,gH
hg
g |xg(tk)− x̂g(tk)|2 +H f̃i

i |Xi(tk)− X̂i(tk)|2
(4.21)

Recalling that Xi is composed of two types of subsystem state elements: subsystem states

predicted by the open-loop predictor and estimated subsystem states received from other

†Note that we use the difference between the entire system state and its prediction as an upper bound
on the different between a subsystem state and its prediction. This approach is conservative but simplifies
the proof.
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subsystems without delay. It can be written that |Xi(tk)− X̂i(tk)|2 ≤
∑

g∈Zi(tk+1)
|xg(tk)−

x̂g(tk)|2 + |x(tk)− xp,i(tk)|2. Therefore, (4.21) becomes:

|Ai| ≤
∑

l∈Ii\Zi(tk+1)

M l
f̃i
|xl(tk)− xp,il (tk)|

+
∑

g∈Zi(tk+1)

(MKi,gH
hg
g +H f̃i

i )|xg(tk)− x̂g(tk)|2 +H f̃i
i |x(tk)− xp,i(tk)|2

(4.22)

From (4.14) and the definition of Ai and |Ki,g(x̂g(tk))vg(tk)| ≤ MKi,gθvi , it can be obtained

that:

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lxi
hi
|xi(t)− xi(tk)|+ Lyi

Fi
θvi + Lwi

fi
θwi

+|Ai|+ |f̃i(Xi(t))− f̃i(Xi(tk))|+
∑

g∈Zi(tk+1)

MKi,gθvi

(4.23)

From (4.22) and (4.23) and the Lipschitz property of f̃i as well as the fact that Xi is

composed of xl for l ∈ Ii, we have:

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lxi
hi
|xi(t)− xi(tk)|+ Lyi

Fi
θvi + Lwi

fi
θwi

+
∑
l∈Ii

Lxl

f̃i
|xl(t)− xl(tk)|+

∑
g∈Zi(tk+1)

MKi,gθvi +
∑

l∈Ii\Zi(tk+1)

M l
f̃i
|xl(tk)− xp,il (tk)|

+
∑

g∈Zi(tk+1)

(MKi,gH
hg
g +H f̃i

i )|xg(tk)− x̂g(tk)|2 +H f̃i
i |x(tk)− xp,i(tk)|2

(4.24)

Within one sampling time (e.g., t ∈ [tk, tk+1]), |xi(t) − xi(tk)| ≤ Mi(t − tk), i ∈ I, where

Mi is a positive constant that bounds the time derivative of xi in Xi such that |ẋi| ≤ Mi.

With the initial condition zn,i(tk) = x̂i(tk) and the definition of ez,i, it is known that

ez,i(tk) = xi(tk) − x̂i(tk), i ∈ I. Based on these results and (4.19) and Proposition 25, the

following upper bound on |ėz,i(t)| can be written:

|ėz,i(t)| ≤ |Fi(zn,i(t), hi(xi(t)))− fi(xi(t), 0)|+ Lyi
Fi
Lxi
hi
Mi(t− tk) + Lyi

Fi
θvi + Lwi

fi
θwi

+
∑
l∈Ii

Lxl

f̃i
Ml(t− tk) +

∑
g∈Zi(tk+1)

MKi,gθvi +
∑

g∈Zi(tk+1)

(MKi,gH
hg
g +H f̃i

i )|ez,g(tk)|2

+
∑

l∈Ii\Zi(tk+1)

M l
f̃i
fW ((D − 1)Δ, |ez(tk−D+1)|) +H f̃i

i fW ((D − 1)Δ, |ez(tk−D+1)|)2

(4.25)
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where ez,i(tk−D+1) = x(tk−D+1) − x̂(tk−D+1). Integrating (4.25) from t = tk to t = tk+1,

the following inequality can be obtained:

|ez,i(tk+1)| ≤ βi(|ez,i(tk)|,Δ) + Lyi
Fi
Lxi
hi
MiΔ

2/2 + Lyi
Fi
θviΔ+ Lwi

fi
θwiΔ+

∑
l∈Ii

Lxl

f̃i
MlΔ

2/2

+
∑

g∈Zi(tk+1)

MKi,gθviΔ+
∑

g∈Zi(tk+1)

(MKi,gH
hg
g +H f̃i

i )|ez,g(tk)|2Δ

+
∑

l∈Ii\Zi(tk+1)

M l
f̃i
fW ((D − 1)Δ, |ez(tk−D+1)|)Δ

+H f̃i
i fW ((D − 1)Δ, |ez(tk−D+1)|)2Δ

(4.26)

Note that when integrating (4.25) from t = tk to t = tk+1, the first term on the right-

hand-side of (4.25) leads to the first term on the right-hand-side of (4.26) which is from the

assumed property of observer (2.5); the second and fifth terms on the right-hand-side of

(4.25) are linear in time which lead to second order in time in (4.26); and the other terms

can be considered as constants when integrating with respect to time.

In (4.26), the set Zi(tk+1) is a time-varying set. The two extreme cases are Zi(tk+1) =

{i} which corresponds to the case that no other interacting subsystems’ information is

received without delay and Zi(tk+1) = Ii which corresponds to the case that all interacting

subsystems’ information is received without delay. If γi, Li,l, and αi (i ∈ I, l ∈ Ii) are

defined as in (4.11) and Proposition 26, (4.26) can be written in the form of (4.12). This

proves Proposition 26. �
In Proposition 26, the estimation error of a subsystem state between the nonlinear ob-

server (4.2a) zn,i and the actual system state xi is shown to be bounded and the upper

bound is associated with the Lipschitz properties of the system, the accuracy of the ini-

tial estimate |ez,i(tk)|, sampling interval Δ, magnitudes of noise and process disturbances,

subsystem interactions and maximum delay D. Theorem 27 below provides sufficient condi-

tions for the convergence and ultimate boundedness of the estimation error of the proposed

DMHE with communication delays.

Theorem 27 Consider system (2.4) with the outputs of its subsystems yi sampled at time

instants {tk≥0}. If the proposed DMHE implemented following Algorithm 23 with subsystem

MHE designed as in (4.4) based on deterministic nonlinear observers satisfying (2.6) and

the assumptions in Proposition 26 are satisfied, and if there exist concave functions gi(·),
i ∈ I, such that:

gi(|ei|) ≥ βi(|ei|,Δ) (4.27)

for all |ei| ≤ di and if there exist constants ds,i, di such that 0 ≤ ds,i ≤ di, D > 0 and
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positive constants ai ≥ 1 , bi > 0, and ηi > 0, such that:

ds,i − ai

⎛
⎝gi(ds,i) + γi(Δ) +

∑
l∈Ii

Li,lΔd2l +Δαi((D − 1)Δ, d)

⎞
⎠− biθvi ≥ ηi (4.28)

where d = [d1, . . . , dm]T for all i ∈ I, and if κi for all i ∈ I, are picked as follows:

0 ≤ κi ≤ min{(ai − 1)/Lxi
hi
, bi}, (4.29)

then the estimation error |ei| = |x̂i − xi| is a decreasing sequence if ds,i ≤ |ei(0)| ≤ di for

all i ∈ I and is ultimately bounded as follows:

lim
t→∞ sup |ei(t)| ≤ di,min (4.30)

for i ∈ I with di,min = max{|ei(t +Δ)| : |ei(t)| ≤ ds,i} for all ei(0) ≤ di and xi ∈ Xi. This

also implies that the entire system state estimation error is ultimately bounded.

Proof: We prove that the evolution of the estimation error of each subsystem state |ei| =
|x̂i − xi|, i ∈ I, under the proposed DMHE with the local MHE of Eq. (4.4) implemented

following Algorithm 1 is a decreasing sequence and is ultimately bounded in a small region

around zero. The decrease and ultimate boundedness of subsystem estimation errors imply

the decrease and ultimate boundedness of the entire system state estimation error. We first

focus on MHE i, i ∈ I, for the time interval from tk to tk+1 and then extend it to the general

case. From constraint (4.4e) for MHE i, it can be written that:

|x̂i(tk+1)− zn,i(tk+1)| ≤ κi|yi(tk+1)− hi(zn,i(tk+1))| (4.31)

Note that x̂i denotes the final optimal estimate obtained by MHE i. From the Lipschitz

property of hi, the fact that yi = hi(xi) + vi and |vi| ≤ θvi , (4.31) becomes:

|x̂i(tk+1)− zn,i(tk+1)| ≤ κiL
xi
hi
|xi(tk+1)− zn,i(tk+1)|+ κiθvi (4.32)

where Lxi
hi

is the Lipschitz constant of hi with respect to xi as defined before Proposition 26.

Using the triangle inequality |x̂i − xi| ≤ |x̂i − zn,i| + |zn,i − xi|, it is obtained from (4.32)

that:

|ei(tk+1)| ≤
(
1 + κiL

xi
hi

)
|ez,i(tk+1)|+ κiθvi (4.33)

with ei(tk+1) = xi(tk+1) − x̂i(tk+1) and ez,i(tk+1) = xi(tk+1) − zn,i(tk+1). From the design

of observer (4.2), it can be seen that in order to calculate a reference state estimate for

tk+1, it is initialized with zn,i(tk) = x̂i(tk). This implies that ei(tk) = ez,i(tk). Based on the
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upper bound on |ez,i(tk+1)| obtained in Proposition 26 and (4.33), the following inequality

can be written:

|ei(tk+1)| ≤
(
1 + κiL

xi
hi

)
(βi(|ei(tk)|,Δ) + γi(Δ) +

∑
l∈Ii

Li,lΔ|el(tk)|2

+Δαi((D − 1)Δ, |e(tk−D+1)|)) + κiθvi

(4.34)

If condition (4.27) is satisfied, βi(|ei(tk)|,Δ) in (4.34) can be replaced by gi(|ei(tk)|) and

the following inequality can be obtained:

|ei(tk+1)| ≤
(
1 + κiL

xi
hi

)
(gi(|ei(tk)|) + γi(Δ) +

∑
l∈Ii

Li,lΔ|el(tk)|2

+Δαi((D − 1)Δ, |e(tk−D+1)|)) + κiθvi

(4.35)

When examining condition (4.28) in Theorem 27, the left-hand-side can be considered

as a function of ds,i. The first term on the left-hand-side has a slope of 1 and the slope of gi

decreases with the increase of ds,i since gi is a concave function. Given that gi(0) ≥ 0 (which

is ensured by (4.27)), if there exists ds,i satisfying (4.28) which means the left-hand-side has

a positive value, then (4.28) holds for all ds,i ≤ |ei| ≤ di. That is,

|ei| − ai

⎛
⎝gi(|ei|) + γi(Δ) +

∑
l∈Ii

Li,lΔ|el|2 +Δαi((D − 1)Δ, |e|)
⎞
⎠− biθvi ≥ ηi (4.36)

for all ds,i ≤ |ei| ≤ di, |el| ≤ dl, l ∈ Ii and |e| ≤ d. If κi is picked following (4.29), it is

ensured that 1 + κiL
xi
hi

≤ ai and κi ≤ bi. This further implies that:

|ei| −
(
1 + κiL

xi
hi

)⎛⎝gi(|ei|) + γi(Δ) +
∑
l∈Ii

Li,lΔ|el|2 +Δαi((D − 1)Δ, |e|)
⎞
⎠− κiθvi ≥ ηi

(4.37)

for all ds,i ≤ |ei| ≤ di, |el| ≤ dl, l ∈ Ii and |e| ≤ d. Rearrange (4.37) and put it back into

(4.35), it can be obtained that:

|ei(tk+1)| ≤ |ei(tk)| − ηi (4.38)

for all ds,i ≤ |ei(tk)| ≤ di, |el(tk)| ≤ dl, l ∈ Ii and |e| ≤ d. If |ei| ≥ ds,i for all the time from

0 to tk, using (4.38) recursively, it can be obtained that:

|ei(tk)| ≤ |ei(0)| − kηi (4.39)

for all ds,i ≤ |ei(tk)| ≤ di. This implies that |ei| decreases every sampling time and will

become smaller than ds,i in finite steps. Once |ei(t)| < ds,i, there is no longer a guarantee

that the estimation error will decrease. However, it will remain to prove that |ei(t)| ≤ di,min
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given the definition of di,min; that is, limt→∞ sup |ei(t)| ≤ di,min. Note that the above proof

holds for all i ∈ I.

The ultimate boundedness of subsystem state estimation errors implies the ultimate

boundedness of the entire system state estimation error. This can be seen from the inequal-

ity |e| ≤
m∑
i=1

|ei| which implies that:

lim
t→∞ sup |e| ≤

m∑
i=1

di,min. (4.40)

This proves Theorem 27. �

Remark 28 Referring to the inequality (4.28) in Theorem 27, it characterizes the interplay

between different parameters. The first term in the bracket gi(ds,i) is the upper bound of the

estimation error for the nominal subsystem i without interactions after one sampling time

if the initial error term is |ei(tk)|; the term γi(Δ) indicates the effect of the sample-and-hold

implementation of the nonlinear observer of Eq. (4.2), process disturbances and measure-

ment noise; the term
∑
l∈Ii

Li,lΔd2l bounds the model mismatches in the interaction model due

to periodic measurements and information transmission; the term Δαi((D − 1)Δ, d) char-

acterizes the contribution of other subsystems in the interactions considering the maximum

delay D; and the term biθvi represents the effect of measurement noise. The inequality (4.28)

essentially requires that the nonlinear observer (2.5) converges fast enough and the inter-

actions between the subsystems are well compensated for such that the contribution of the

nonlinear observer (2.5) to the decrease of the estimation error dominates the effects caused

by other factors that contribute to the increase of the estimation error.

Remark 29 Note that the stability of the proposed DMHE with communication delays is es-

sentially from the deterministic nonlinear observers. The subsystem MHE design (4.4) inte-

grates the deterministic nonlinear observer into the framework of MHE via constraint (4.4e).

This integration brings some very interesting features into the design [50]: 1) characteriz-

able boundedness of the estimation error for bounded uncertainties which is a difficult task

for the traditional MHE; and 2) a potentially tunable convergence rate of the estimate to

the actual system state (via the tuning of the nonlinear observer) which in general is not

straightforward (or not possible) in the traditional MHE for nonlinear systems. These fea-

tures are very important from an output feedback control view point. Besides these features,

the MHE design adopted in this work essentially maintains the properties of the traditional

MHE such as optimality of the estimate since the analysis used to establish the optimality
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of the traditional MHE based on the cost function and the approximation of the arrival cost

may be applied to the MHE design in this work as well. The focus of our work is more on

the stability of the distributed MHE scheme subject to communication delays which relies

on the deterministic observers.

4.4 Application to the reactor-separator process

4.4.1 Simulation settings

In this section, the proposed DMHE design is demonstrated by the reactor-separator process

used in Chapter 2 and 3. A detailed description of the modeling of the process can be found

in Section 2.6. The temperature measurements (i.e., Ti, i = 1, 2, 3) are subject to bounded

noise. The measurement noise is generated as normal distributed values with zero mean

and standard deviation 1 but the values are bounded in [−1, 1]. Besides measurement noise,

random disturbances are also introduced to the right-hand-side of dynamic equations of the

process, which are generated as normal distributed values with zero mean and standard

deviation 100 in the range [−10, 10] for temperatures and normal distributed values with

zero mean and standard deviation 1 in the range [−1, 1] for species fractions.

The deterministic nonlinear observer (2.5) without considering interactions between sub-

systems are as in Section 2.6.2:

żi(t) = fi(zi(t), 0) +Gi(zi(t))
−1Ko,i(yi(t)− hi(zi(t))) (4.41)

the gain matrices Ko,i is determined such that the eigenvalues of the matrix Ao,i −Ko,iCo,i

are placed at −0.1 ± i and −5 with Aoi = [0 1 0; 0 0 1; 0 0 0] and Co,i = [1 0 0]. These

nonlinear observers are used in the design of observer (4.2) and in the design of the DMHE

schemes. In all the local MHE designs, the estimation horizon is N = 10. All the other

parameters can be referred in Section 2.6.

4.4.2 Simulation results

First, the proposed DMHE is compared with the DMHE scheme in Chapter 2 in which

communication delays are not taken into account explicitly as well as the deterministic

nonlinear observer (4.2) implemented following Algorithm 23. In this set of simulations, we

consider an extreme scenario in which the communication delays between subsystems always

equal to the maximum possible delay D with D = 5. In the proposed DMHE scheme as well

as in the nonlinear observer (4.2), when there are communication delays, the predictors are

used to generate predictions to minimize the effects of delays. While in the DMHE scheme
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Figure 4.2: Trajectories of the actual process states (solid lines) and the estimates given by
the proposed DMHE (dashed lines) when the communication delays between subsystems
always equal to the maximum possible delay D with D = 5.

in Chapter 2, when there is communication delays, the latest received information is used

to approximate the current information.

In this set of simulations, the same initial conditions, disturbances, noise sequences and

heat inputs are used in the two DMHE schemes and in nonlinear observer (4.2). The initial

condition of the process is:

x0 = [0.178; 0.680; 485.120 K; 0.199; 0.660; 477.514 K; 0.066; 0.677; 479.637 K]T

and the initial guess in the two DMHE schemes and observer (4.2) is

x̂0 = [0.168; 0.700; 487.000 K; 0.180; 0.700; 480.000 K; 0.060; 0.680; 476.000 K]T

with input Qi = Qs,i+106e−0.01tsin(0.1t) KJ . This type of inputs is used to excite different

changing rates in the process state trajectories. Note that when process inputs are present,

the inputs need to be taken into account in the design of the auxiliary nonlinear observer

as well as the DMHE schemes and should be assumed to be known.

The simulation results are shown in Figs. 4.2, 4.3, 4.4 and 4.5. Figures 4.2, 4.3, and 4.4

show the trajectories of the estimates given by the proposed DMHE, the DMHE in Chapter
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Figure 4.3: Trajectories of the actual process states (solid lines) and the estimates given by
the DMHE (dashed lines) in Chapter 2 when the communication delays between subsystems
always equal to the maximum possible delay D with D = 5.
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Figure 4.4: Trajectories of the actual process states (solid lines) and the estimates given by
nonlinear observer (4.2) (dashed lines) when the communication delays between subsystems
always equal to the maximum possible delay D with D = 5.
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Figure 4.5: Trajectories of the norm of the estimation errors of the proposed DMHE (solid
line) and the DMHE in Chapter 2 (dashed line) and nonlinear observer (4.2) (dash-dotted
line) when the communication delays between subsystems always equal to the maximum
possible delay D with D = 5.
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Figure 4.6: Communication delay sequences.

2 and nonlinear observer (4.2), respectively. From these figures, it can be seen that the

both the proposed DMHE and nonlinear observer (4.2) are able to track the actual system

states well while the DMHE in in Chapter 2 gives much poorer performance in tracking

the actual system states. Figure 4.5 shows the trajectories of the norm of the estimation

errors given by the three different schemes. From Fig. 4.5, it can be seen that the proposed

DMHE and nonlinear observer (4.2) is able to drive the estimation error to a small value

quickly and maintains the error in a small region close to zero while the estimation error of

the DMHE in Chapter 2 varies significantly. Even though both the proposed DMHE and

nonlinear observer (4.2) are able to tracking the actual states well, the proposed DMHE

gives a much smaller average error norm (0.2778) compared with the one (0.4561) given by

nonlinear observer (4.2). The average error norm reduction obtained by using the proposed

DMHE is about 40% in this set of simulations.

Next, a set of simulations is carried out to consider a normal scenario in which the

communication delays between subsystems are generated as random integers between 1 and

D with D = 5. Figure 4.6 shows the communication delays among the subsystems in the

simulations.
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Figure 4.7: Trajectories of the norm of the estimation errors of the proposed DMHE (solid
line) and the DMHE in Chapter 2 (dashed line) and nonlinear observer (4.2) (dash-dotted
line).

Figure 4.7 shows the trajectories of the norm of the estimation errors given by the two

DMHE schemes and nonlinear observer (4.2). Similar conclusions to the first set of simula-

tions can be concluded. That is, the proposed DMHE as well as nonlinear observer (4.2) are

able to drive the estimation error to a small region around zero quickly while the estimation

error of the DMHE in Chapter 2 varies significantly. Note that in this set of simulations, the

average error norm given by the proposed DMHE is 0.3972 while the one given by nonlinear

observer (4.2) is 0.5018. About 20% average error norm reduction is achieved by using the

proposed DMHE.

In another set of simulations, the effect of the maximum delay D on the size of the

set that ultimately bounds the estimation error is investigated. In this set of simulations,

the proposed DMHE scheme is simulated with different maximum communication delays.

In particular, the maximum delay D = 1, 2, 3, 5, 7 are considered. Figures 4.8(a)-(e) show

the corresponding trajectories of the norm of the estimation error for D = 1, 2, 3, 5, 7, re-

spectively. In each of these figures, the flat line is the approximated bound that ultimately

bounds the estimation error. Figure 4.8(e) shows these bounds in one figure for easy com-

parison. From these figures, it can be seen that (i) when D = 1 which corresponds to the

case that there is no communication delay, the estimation error is maintained in a relatively

smaller set compared with the other cases that there are communication delays; (ii) when

there is communication delay (i.e., D > 1), the value of the communication delay has a

relatively small effect on the size of the set that ultimately bounds the estimation error.

The superior performance when D = 1 is primarily due to the use of the correction terms in

observer (4.2a) for all the interacting subsystems. Note that when there is communication
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Figure 4.8: Trajectories of the norm of the estimation error of the proposed DMHE (solid
lines) and the approximated bound that ultimately bounds the estimation error (dashed
lines) when (a) D = 1, (b) D = 2, (c) D = 3, (d) D = 5, (e) D = 7; and (f) the bounds in
one figure.

Table 4.1: Mean evaluation times of the predictor, observer (4.2) and local MHE for each
subsystem.

Subsystem Predictor (sec) Observer (4.2) (sec) Local MHE (sec)

# 1 6.23× 10−4 1.79× 10−3 1.26
# 2 5.31× 10−4 1.42× 10−3 1.54
# 3 6.55× 10−4 1.42× 10−3 1.23

delay, some of the correction terms will become inactive.

Finally, the mean evaluation times of the predictor, observer (4.2) and the local MHE

for each subsystem are evaluated. The simulations are carried out in MATLAB using an

Intel Core i7 Computer at 3.4GHz with 8Gb RAM. The mean values shown in Table 4.1

are obtained from 100 simulations with estimation window horizon N = 10. From these

results, it can be seen that the evaluation times of the predictor for state prediction and

nonlinear observer (4.2) for reference state estimate calculation are negligible compared

with the evaluation times of local MHE schemes.
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4.5 Conclusions

In this chapter, we developed a DMHE scheme for a class of nonlinear systems in the pres-

ence of delays in the communication network. In the proposed design, an all-to-all commu-

nication is required and at each sampling time for each subsystem, an open-loop predictor is

used to generate predictions of delayed subsystem states which are used to calculate a refer-

ence state estimate as well as a confidence region for the local MHE. Under the assumption

that there is an upper bound on the communication delay, the proposed approach ensures

the convergence of the estimate to the actual system state and the ultimate boundedness of

the estimation. An chemical process example was used to illustrate the performance of the

proposed DMHE scheme compared with an existing DMHE without considering communi-

cation delays explicitly as well as a deterministic nonlinear observer. From the simulations,

it was demonstrated that the proposed DMHE had a superior performance than the DMHE

without considering the delays explicitly and had improved performance compared with the

deterministic observer.
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Chapter 5

Conclusions

In this thesis, distributed moving horizon estimation taking into account uncertainty, com-

munication delays and triggered implementation are presented for nonlinear systems. More-

over, its effectiveness and applicability are illustrated by a chemical process example.

Specifically, Chapter 2 proposed an observer-enhanced DMHE design for a class of non-

linear systems with bounded process uncertainties. In this DMHE, each subsystem MHE

communicates with subsystems that it interacts with every sampling time. In the design

of each subsystem MHE, an auxiliary deterministic nonlinear observer is taken advantage

of to calculate a confidence region that contains the actual system state every sampling

time. The subsystem MHE is only allowed to optimize its state estimate within the confi-

dence region. This strategy was demonstrated to guarantee the convergence and ultimate

boundedness properties of the estimation error.

However, this approach requires the subsystems to communicate and exchange infor-

mation every sampling time. The frequent communication requirement may impede the

application of the DMHE to processes that have a shared communication network with

limited capacity. Moreover, extensive information exchanging may reduce the robustness

of the system due to data dropouts in the communication network. Currently, there is no

systematic approaches available to reduce the communication burden of DMHE schemes.

To address the above issues, in Chapter 3 event-triggered approach is adopted to reduce

the number of communication between subsystems. Specifically, in the first proposed algo-

rithm, a subsystem sends out its current information when a triggering condition based on

the difference between the current state estimate and a previously transmitted state esti-

mate is satisfied; in the second proposed algorithm, the transmission of information from a

subsystem to other subsystems is triggered by the difference between the current measure-

ment of the output and its derivatives and a previously transmitted measurement of the
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output and its derivatives. Because of the triggered communication, a subsystem may not

have the latest information of the other subsystems. In order to ensure the convergence and

ultimately boundedness of the estimation error, the local MHE of a subsystem also needs

to be redesigned to account for the possible lack of state updates from other subsystems.

Sufficient conditions for the proposed DMHE implemented following the two algorithms to

ensure the convergence and ultimately boundedness of the estimation error are derived.

The results in Chapter 2 were derived under the assumption that the communication

between subsystems is flawless and there is no delay in the information transmission. In

practice, this assumption may not hold especially when shared wireless communication

network is used. Motivated by the above considerations, in Chapter 4 we proposed a DMHE

scheme that is able to handle time-varying communication delays. In the proposed design, a

nonlinear observer-enhanced MHE is designed for each subsystem and the distributed MHEs

are assumed to be able to communicate and exchange information with each other via a

shared communication network which may introduce communication delays. To handle

time-varying delays in the communication, an open-loop state predictor is designed for

each subsystem to provide predictions of unavailable subsystem states. In the design of

each predictor, the centralized system model is used. Based on the state predictions, an

auxiliary nonlinear observer is used to generate a reference subsystem state estimate for

each subsystem every sampling time. Based on the reference subsystem state estimate as

well as the local output measurement, a confidence region is constructed for the actual state

of a subsystem. A subsystem MHE is only allowed to optimize its state estimate within

the corresponding confidence region at a sampling time. The proposed DMHE is proved to

give decreasing and ultimately bounded estimation errors under the assumption that there

is an upper bound on the time-varying delay.
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[42] D. Muñoz de la Peña and P. D. Christofides. Stability of nonlinear asynchronous
systems. Systems & Control Letters, 57:465–473, 2008.

[43] M. Heidarinejad, J. Liu, and P. D. Christofides. State estimation-based economic model
predictive control of nonlinear systems. Systems & Control Letters, 61:926–935, 2012.

80



[44] M. Du and P. Mhaskar. Isolation and handling of sensor faults in nonlinear system.
In Proceedings of the American Control Conference, pages 6667–6672, Montreal, QC,
Canada, 2012.

[45] C. V. Rao, J. B. Rawlings, and J. H. Lee. Constrained linear state estimation - A
moving horizon approach. Automatica, 37:1619–1628, 2001.

[46] C. V. Rao, J. B. Rawlings, and D. Q. Mayne. Constrained state estimation for non-
linear discrete-time systems: Stability and moving horizon approximations. IEEE
Transactions on Automatic Control, 48:246–258, 2003.

[47] J. B. Rawlings and L. Ji. Optimization-based state estimation: Current status and
some new results. Journal of Process Control, 22:1439–1444, 2012.

[48] R. Huang, L. T. Biegler, and S. C. Patwardhan. Fast offset-free nonlinear model predic-
tive control based on moving horizon estimation. Industrial & Engineering Chemistry
Research, 49:7882–7890, 2010.

[49] K. R. Muske, J. B. Rawlings, and J. H. Lee. Receding horizon recursive state es-
timation. In Proceedings of the American Control Conference, pages 900–904, San
Francisco, CA, 1993.

[50] J. Liu. Moving horizon state estimation for nonlinear systems with bounded uncer-
tainties. Chemical Engineering Science, 93:376–386, 2013.

[51] M. Farina, G. Ferrari-Trecate, and R. Scattolini. Moving-horizon partition-based state
estimation of large-scale systems. Automatica, 46:910 – 918, 2010.

[52] M. Farina, G. Ferrari-Trecate, and R. Scattolini. Moving horizon estimation for dis-
tributed nonlinear systems with application to cascade river reaches. Journal of Process
Control, 21:767–774, 2011.

[53] C. V. Rao and J. B. Rawlings. Constrained process monitoring: Moving-horizon ap-
proach. AIChE J., 48:97–109, 2002.

[54] C. C. Qu and J. Hahn. Computation of arrival cost for moving horizon estimation via
unscented Kalman filtering. Journal of Process Control, 19:358–363, 2009.

[55] S. Ungarala. Computing arrival cost parameters in moving horizon estimation using
sampling based filters. Journal of Process Control, 19:1576–1588, 2009.

[56] R. Lopez-Negrete, S. C. Patwardhan, and L. T. Biegler. Constrained particle filter
approach to approximate the arrival cost in moving horizon estimation. Journal of
Process Control, 21:909–919, 2011.

[57] F. Thau. Observing the state of nonlinear dynamic systems. International Journal of
Control, 17:471–479, 1973.

[58] A. J. Krener and A. Isidori. Linearization by output injection and nonlinear observers.
Systems & Control Letters, 3:47–52, 1983.

[59] N. H. El-Farra and P. D. Christofides. Robust near-optimal output feedback control
of nonlinear systems. Int. J. Contr., 74:133–157, 2001.

81



[60] N. H. El-Farra and P. D. Christofides. Bounded robust control of constrained multi-
variable nonlinear processes. Chemical Engineering Science, 58:3025–3047, 2003.

[61] E. A. Garcia and P. M. Frank. Deterministic nonlinear observer-based approaches to
fault diagnosis: A survey. Contr. Eng. Prac., 5:663–670, 1997.

[62] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, Berlin-
Heidelberg, third edition, 1995.

[63] J. H. Ahrens and H. K. Khalil. High-gain observers in the presence of measurement
noise: A switched-gain approach. Automatica, 45:936–943, 2009.

[64] J. Zhang and J. Liu. Lyapunov-based MPC with robust moving horizon estimation
and its triggered implementation. AIChE Journal, 59:4273–4286, 2013.
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