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Abstract

Event-triggered control have increasingly become an active area of research in the last

decade, thanks to their potential capability in reducing data communication between

subsystems during control action. In this research we tackle some practical problems

encountered in this field and endeavor to improve the state of the art.

We first start by designing periodic event-triggered control (PETC) for both state

feedback and output feedback systems. PETC is a subclass of even-based systems, where

the triggering conditions (TCs) are verified on a clock-driven basis. Despite their efficiency

and advantages from practical of view, they have received less attention, compared to the

other classes of event-driven systems. we first consider designing state feedback PETC for

a class of nonlinear systems. We then, extend our result to the more challenging case of

output feedback systems where, two independent TCs (with different sampling rates) are

considered for plant and controller.

In the next part of this research we study the effect of noise in the implementation of

event-based systems. Basically, the destructive impact of noise has been largely ignored in

these class of systems. In this regard, first it is shown that how the output measurement

noise can easily trigger unnecessary samples and deteriorate the performance of the sys-

tems. Then a novel triggering mechanism is proposed which reduces the effect of noise in

the event-triggering scheme. Next, the same idea is extended to the observation problem,

and a noise effective event-based observer is designed for LTI systems which assures H∞

performance for the estimation error.

We then turn our attention to the fundamental problem of designing stable non-

conservative event-triggered systems. We claim that most of the work reported in the

literature is based on Lyapunov conditions that carry some intrinsic conservatism. We

propose a novel integral-based condition that relaxes the strong conditions previously
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reported and can reduce communication between plant and controller.

Finally, we consider decentralized event-triggered control for a class of nonlinear sys-

tems. We propose new decentralized TCs and show their efficiency compared to existent

results.
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Notation

R, Z The sets of real and integer numbers

R+, Z+ The sets of nonnegative real and integer numbers
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Rn×m The set of real n×m matrices

Lp Function space with well-defined p-norm
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∃ Existential quantifier
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x ∈ X x is an element of set X

X ⊂ Y X is a subset of Y

Aᵀ Transpose of matrix or vector A

A−1 Inverse of matrix A

tr(A) Trace of matrix A ∈ Rn×n, defined as tr(A) =
n∑

i=1
aii

I Identity matrix of appropriate dimension

‖ · ‖ or | · | Euclidean norm of a vector or matrix

‖z‖2 L2 norm of signal z : R+ → Rn, defined as ‖z‖2 = (
∫∞
0 |z(t)|2dt) 1

2

‖z‖2,T L2,T norm of signal z : R+ → Rn, defined as ‖z‖2,T = (
∫ T
0 |z(t)|2dt) 1

2

E{·} Expected value operator

N (μ, σ2) Normal distribution of a random variable with expected value μ and variance σ2
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Chapter 1

Introduction

1.1 Background

It is nowadays well accepted that most control systems are implemented digitally using

a computer. In a typical configuration, a sample device is placed at the plant output

and the resulting discrete-time signal is transmitted to the controller. The controller

operates in discrete-time and its output is fed to the plant through a hold device. In the

classical approach, the sampling process is periodic or time-triggered, and signals in the

loop are updated at each sampling instant. This natural approach makes control analysis

and design rather simple, at least for linear time-invariant (LTI) systems. Discrete-time

systems can be described using difference equations and control design can be carried out

in discrete-time in a manner that is analogous to the continuous time.

The primary inconvenience of time-triggered systems is that they are inherent in the

approach that information is transmitted from the sensors to the processor, and the control

task is computed and executed (by the actuator) at regular time intervals. This happens

regardless of whether measurement output changes require new data transmission and

re-execution of control action to maintain the stability and performance of the system.

For example, in a regulation-type problem under no disturbance action, a time-triggered

system would continue to update the control signal even after the plant has reached steady-

state. This issue may become critical in the systems where the sensors and processors have

constrained energy, provided by batteries, and consequently, an optimal usage of resources

is of a great importance.
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On the other hand, regular data transmission during control implementation can be

problematic where the subsystems are geographically distributed and exchange informa-

tion through a shared communication channel; e.g. wireless networks. Although using

such a network has several advantages such as low wiring cost, high reliabilities and re-

duced power requirement, it potentially introduces several challenges such as transmission

delay and packet dropouts [2].

A key idea to cope with these troubles and prevent waste of energy and communication

resources is to lower data transmission through the network channel. To achieve this goal,

rather than sending periodically, the data exchange between the subsystems can be carried

out based on an aperiodic and event-based scenario [3].

Fundamental idea in the event-triggered systems is that the data are sent through

the channel just when it’s inevitably needed. It can be argued that an event-triggered

mechanism constitutes the most natural approach to control of certain systems. Consider

for example biological systems, where the neurons interact by pulse transmission. In

biological systems, “Electrical stimuli changes ion concentration in the neuron and a pulse

is emitted when the potential reaches a certain level” [3]. Some efforts have been made to

mimic and use such models to implement simple control systems [4]. A plant controlled by

on-off relays is another example of event-based systems. In this system, the control action

value is not changed unless the control error passes a certain threshold (i.e. just as an

event occurs in the system) [5]. Event-triggered control is also applied where the control

actions are costly. For instance, consider control of production volume in a chemical

process. Since frequent changes in production rate is expensive and should be avoided,

an applicable control idea in such system is to apply an event-based mechanism: the

production rate would not be varied unless the production volume approaches the lower

or upper limit of the storage tank. As another example for application of event-triggering

mechanism, one can have a look at operation principle in typical accelerometers [6].

Mathematically speaking, in an event-based system the components do not exchange

information unless a triggering condition (TC) is violated. The TC can be defined in

different forms and varies depending on the nature of the system. For instance, in a power

grid, a fault can be considered as an event, triggering a control action in the system [7].

Generally speaking, in most of systems, the event happens just as an error (representing

2
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Figure 1.1: A general structure of event-based systems.

a specific performance of the system) exceeds a certain threshold [1]. In this regard, some

kind of event detector hardware is required to generate an interruption and release the

information through the network. Such a hardware should be devised locally for each

component in proper places before the transmission channel (Fig.1.1)

As mentioned earlier, in addition to efficient use of communication, computation and

energy resources, event-based systems results in less data transmission traffic, compared

to the time-triggered systems. To have a better comparison between time-triggered and

event-triggered control systems, one can refer to [8] which is one of the primary ideas

proposed for the event-driven systems.

1.2 Literature Survey

Early works on event-based systems were proposed in late 1990’s [9,10]. In [10], Arzen de-

fines a simple triggering condition based on the tracking error and converts the standard

PID control algorithm to an event-based form. The time-triggered and event-triggered

controller are evaluated and compared both in simulations and in laboratory experiments

for a double-tank process. The results confirm that using an event-based mechanism it is

possible to obtain large reductions in the control execution with only minor control perfor-
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mance degradation. In [9], Åström introduces one of the primary theoretical development

and evaluation for the event-triggered control systems. In the paper, he considers a first

order stochastic system and designs both event-based and periodic controller so that the

state stays close to the origin. He compares the results and analytically shows that for the

same average sampling rates, the event-based controller gives remarkably smaller output

variance than the periodic controller.

Over the following years, other researchers have extended the same principles for more

control systems. Because of the use of different triggering strategies, similar idea appear

in the literature under different names such as: level crossing sampling [11], event-driven

systems [12] and state-triggered feedback systems [13].

Reference [9] sparked much interest for the research on event-based systems and marked

the beginning of what has been an active area of research.

In [1], Tabuada studies asymptotic stability in the event-triggered control systems,

using a Lyapunov-based approach. In particular, he applies the input-to-state stability

(ISS) Lyapunov function and proposes a general framework for event triggering mechanism

design for the following nonlinear systems:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1.1)

In this work, following the idea of event-based control mentioned earlier, instead of

continuous information flow of states, it is assumed that the control law only receives

intermittent information of states and so is only updated at time instants ti (i ∈ N)

(where the TC is violated). The control input is held constant in between update times

(ti ≤ t ≤ ti+1) using a zero-order-hold (ZOH) module. The basic assumption made by

Tabuada is as follows: a feedback control

u = k(x) (1.2)

has been already designed such that the system

ẋ = f(x, k(x+ e)) (1.3)

is Input-to-State stable with respect to measurement error e and there exists a smooth

function V : Rn → R+, class K∞ functions ᾱ, α, α and γ such that

4



α(|x|) ≤ V (x) ≤ ᾱ(|x|) (1.4)

∂V

∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|). (1.5)

The measurement error is defined as the difference between the last state information

sent to the controller and current state value:

e = x(ti)− x(t) ti ≤ t ≤ ti+1. (1.6)

Having assumed the stability inequalities (1.4) and (1.5), the key idea to design event

generator condition is to maintain the Lyapunov function V decreasing. To this aim, the

following TC is proposed:

γ(|e|) ≤ σα(|x|) σ > 0. (1.7)

Substituting (1.7) in (1.5), it is readily obtained:

∂V

∂x
f(x, k(x+ e)) ≤ (σ − 1)α(|x|). (1.8)

Now, setting σ < 1 the time derivative of V is negative and so the system is stable.

Simulation results, provided in the paper, clearly show the effectiveness of event-triggered

control in data transmission reduction, while maintaining stability.

One of the important issues, related to hybrid dynamical systems in general, and

event-based systems in particular, is the so called Zeno behavior [14]. Zeno is a response

of system when infinite number of triggering happen in a finite amount of time. This

issue is clearly undesirable from an implementation point of view. So, it is crucial in an

event-based system that the designed TC guarantees a lower bound for the time intervals

between triggering instants, and consequently ensures that there is no Zeno behavior in

the system. This lower bound is also referred as minimum inter-event time.

Note that in [1], as another contribution of the work, the author analytically proves

that such a minimum exists for the system.

Reference [1] is limited to the study of stability for centralized nonlinear systems,

controlled by state feedback. References [15–23] extended the event-based idea for decen-

tralized and distributed control systems. The main challenge in these class of systems is

5



that the TC for each subsystem should only rely on its local information to trigger data

through the channel, as it does not have access to the other subsystem’s information.

In [15], using assumptions of Lp stability with respect to measurement error and also

weak interconnection between subsystems, Wang et. al. examine event-triggered data

transmission in distributed networked control systems (NCS). They propose an event-

triggering scheme, where a subsystem broadcasts its state information to its neighbors

only when a local triggering condition (defined similar to (1.7)) is violated. It is shown

how the decentralized event-triggering scheme ensures asymptotic stability of the entire

networked control system. However, no minimum bound on the inter-event times is guar-

anteed for the triggering modules. In [17], with a similar assumption of weakly cou-

pled subsystems and also ISS stability, the authors take a Zeno-free approach and prove

asymptotic stability of the distributed event-based system. In [18] and [19], the authors

consider decentralized event-triggering problem for systems with a specific structure. In

their models, it is assumed that the sensors are geographically distributed. However, the

overall system is controlled by a centralized control unit. Although the basic structures

of these two papers are almost the same, they exploit different forms of TCs and also

design tools to prove stability of the system. In [21], Postoyan et al. present a general

framework for the event-triggered control of distributed nonlinear systems. They take a

quite different approach and model the event-triggered systems as a hybrid model. Then,

they provide Lyapunov-based conditions to guarantee the stability of the resulting closed-

loop system and explain how these conditions can be utilized to synthesize event-triggering

rules. In [23], the authors investigate event-triggering design for output feedback control of

LTI systems. Because of utilizing a dynamic controller, they introduce decentralized trig-

gering modules for plant and controller sides, which guarantee global asymptotic stability

of the closed-loop system. In [22], a more general case is studied. In the paper, Donkers

and Heemels consider event-based scheme for disturbed LTI systems with dynamic out-

put feedback controller, where the distributed sensors and actuators are assumed to be

grouped into nodes. They model the proposed system in an impulsive form and then study

both L∞ performance and stability problem. In [24], Abdelrahim et al. design output

feedback event-triggered controllers for stabilization of nonlinear systems. Despite using

a centralized TC for the overall system, they develop a method to ensure minimum inter-
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event time for the scheme. Basically, they combine time-triggered and event-triggered

control techniques. “The idea is to turn on the event triggering mechanism only after a

fixed amount of time elapsed since the last transmission”.

Event-based scenario has also become much favorable in practical networked-based

applications. One of the most popular applications is multi-agent systems [25]. Generally,

in this class of systems each agent utilizes some local information and does a certain action

such that the overall structure achieves a specific goal (such as consensus). Multi-agent

systems can be categorized as a subset of distributed systems, where event-triggering

scheme can be a beneficial tool to avoid probable data transmission problems [26–32].

In addition to the regulation problem, event-based control have also been proposed

for the tracking control. In [33] and [34], Tallapragada and Chopra consider tracking

problem for affine, and then general nonlinear systems, respectively. In the mentioned

papers, they propose an event-based control algorithm which guarantees uniform ultimate

boundedness of the tracking error. In [35], The authors consider the effect of disturbance

and also network induced delay in the system dynamics, and examine the H∞ tracking

control problem for LTI systems. Applications of event-based tracking control can be

found in [36] and [37]

Most references on the subject follow an approach similar in spirit to Tabuada’s for-

mulation, [1], and design the TC by relying in keeping the Lyapunov function decreasing

along the system trajectories. In this regard, some attempts have been made to remove

some of the intrinsic conservatism existent in this condition. In [38], the author intro-

duces a dynamic mechanism and using an augmented Lyapunov function proves system

stability. In [39], Wang and Lemmon introduce a new TC, based on a logic function of the

Lyapunov function, which weakens the assumptions in [1] by considering an ISS approach

and assuming a lower bound on the derivative of the Lyapunov function. In [40], the

authors use a hybrid systems approach to model the event-based system in which the TC

is a function of the derivative of the Lyapunov function. The approach requires computing

the derivative of the Lyapunov function along system trajectories at all times.

In most of the works cited before, it is assumed that the TC is verified continuously

which may demand high level of resource utilization in practical application. Alternatively,

the TC can be checked periodically in a clock driven fashion [35, 41–44]. Periodic event-
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triggered control (PETC) systems are preferable, at least from an implementation point

of view, since they have simpler hardware requirements. In [35], the authors propose a

periodic triggering sampling scheme and use a delay system approach to study H∞ state

feedback control of linear systems. Using a similar idea, PETC have been designed for

different problems [45–48]. In [42], Heemels et al. use an impulsive system approach

to study the L2 gain properties of the proposed PETC system for LTI systems. In the

mentioned paper, because of dealing with dynamic controller, two decentralized TCs are

devised for the plant and controller. In [43], Meng and Chen study decentralized PETC

for output feedback sampled-data systems. In the reference, the authors first develop a

discretized model of the closed-loop system and then, propose a methodology for co-design

of TCs and the controller parameters. In [44], Postoyan et. al. study the PETC idea

for nonlinear systems. Reference [44] follows an emulation-based approach starting with

a known (continuously evaluated) event-triggered controller and provide a technique to

select the sampling period to approximately maintain the stability properties guaranteed

by the original controller.

Before going forward to our research contributions, it must be noted that event-based

control is an active area of research and in addition to the works reviewed in this section,

several other results have been published in different fields such as: optimal control [49–56],

and state estimation [57].

1.3 Research Motivation and Contributions

As discussed in the last section, several works have been conducted on different classes

of even-based systems. However, there still exist several problems which require more

study and research. In this thesis we have looked into some of these problems and made

contributions on different aspects of the event-based systems. A brief description on the

contributions of this research are given as follows. More detailed explanation on the results

can be found in the related chapters.

PETC is an interesting and practical subclass of event-based systems, in which the

triggering condition is verified in a clock-driven fashion. To the best of our knowledge,

most of the references dealing with the periodic event-based problem, have concentrated

on linear systems. Reference [44] proposes PETC for a class of nonlinear systems. In
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this reference, the authors use an emulation approach to turn a preexisting continuously

verified event-based controller into periodic-based one, such that asymptotic stability is

maintained. In the first part of our research, we focus on the PETC for nonlinear systems.

The nonlinear system considered in this part, is modeled as a linear system plus a nonlinear

term which satisfies a Lipschitz continuity condition, and is affected by some exogenous

disturbance. Lipschitz systems are important in the sense that most nonlinear systems

satisfy a Lipschitz condition, at least locally, and therefore can account for the effect of, at

least, mild nonlinearities. In this work, the introduced scheme provides a way to directly

design the state feedback control law and also the TC such that the stability and H∞

performance are guaranteed for the closed-loop system.

Decentralized PETC has been developed for LTI output feedback systems ( [42] and

[43]). In these works it is assumed that the triggering modules of plant and controller side

are synchronized in a way that their sampling rates and instants are exactly the same;

something which may cause difficulties from a practical point of view. In the second

part of this thesis our main interest is to address this issue. In particular, in this part,

we consider PETC for LTI systems with dynamic controllers, where two separate and

decentralized event modules are devised for the plant and controller sides, respectively.

However, contrary to the references cited before, in this thesis the TCs act with non-equal

sampling periods and in an asynchronous fashion. Therefore, here, it is not required to

synchronize the triggering modules. This fact not only ease the implementation task, but

also provides the flexibility to set each event-generator module sampling rate individually,

possibly based on the local requirements and also hardware limitations. Using Lyapunov

stability theorems the TCs are designed such that the stability and H∞ performance (in

the presence of disturbance) are ensured for the closed-loop system.

One issue of critical importance in event-triggered systems is the potential degradation

of performance due to measurement noise. Indeed, in an event-triggered system the trig-

gering mechanism directly depends on the instant values of the measured states, something

which is also clear in the TC (1.7), proposed in Tabuada’s general framework. Therefore,

noise in event-driven systems plays a more fundamental detrimental role than in classical

stochastic systems. Apart from output performance degradation, the existence of noise

can trigger unnecessary samples making the triggering mechanism potentially less effec-
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tive, an issue that has received very little attention in the literature. In [58], the authors

consider norm-bounded noise on the output measurement. However, they use of classical

forms of triggering schemes where the event generator condition depends on the instant

values of the output and so is influenced by noise. In [59], the event-triggering condition

for a single integrator multi-agent systems with noise is studied, but no modification is

considered to decrease the effect of the noise on the TC.

The main purpose of the third part of this research is to directly address the effect of

noise in the LTI event-triggered control systems. Our main contribution is a novel event-

based scheme with a periodic integral-based triggering condition (PIBTC) that reduces

the effect of noise in both the feedback loop and the triggering condition. We model

the event-triggered system using a delay system approach [35], and then show that it

is asymptotically stable in mean square sense. Finally, we propose a methodology to

obtain the parameters of the event triggering system, minimizing data transmission in a

networked-based control.

In the next part, this idea is extended to observer design. Generally, measurement

noise has always been an indispensable part of the observation problem. So, noise-related

issues can be more challenging in an event-based observer scheme, where an event gen-

erator module is located at the output of plant to trigger only necessary output samples

towards the observer. In this part, event-triggered observer design for LTI system in the

presence of disturbance and measurement noise is considered. We start by a traditional

Luenberger observer and then develop a noise effective event-based scheme for it, such

that the data transmission is efficiently reduced and also H∞ performance is guaranteed

for the estimation error.

As mentioned earlier in the previous section, most references in the literature follow

the same idea given in [1] to design TC, which (as explained) is somewhat conservative.

So, some works have been done to improve available event-based scenarios [38–40]. In

the fifth part of this research, we propose a different method and re-examine Tabuadas

main principle. Assuming that an analog controller has been designed and satisfies an ISS

condition (the same as assumptions in [1]), we propose an alternative, less conservative,

approach to the construction of the event-TC. The main idea consists of using an integral-

based triggering condition (IBTC) that allows the Lyapunov function to be non-decrescent
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between triggering instants (thus allowing the time derivative of the Lyapunov function to

have instantaneous positive values between triggering instants). Asymptotic stability of

the proposed closed-loop system is ensured by Lyapunov stability theorems. The existence

of a lower bound for the inter-event times is also proved and an explicit value for this bound

is provided for a specific class of non-linear systems. An additional contribution of this

work, is a rigorous proof showing that our proposed TC is more efficient than the existing

results in terms of communication exchanged between plant and controller.

Finally, the proposed IBTC in the previous part is extended for a class of decentral-

ized nonlinear PETC systems. Similar to the first part, the nonlinear term in the system

dynamics is assumed to satisfy Lipschitz condition. The general control scheme of the

system is similar to the one given in [18] and [19]. It is such that the sensors are geograph-

ically distributed; but their measurements are transmitted to a centralized control unit.

So, event triggering modules are designed for sensors in a decentralized way. Moreover,

the proposed form of TC is shown to be less conservative than the previous methods and

avoids excessive data transmission.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2: In this chapter, a method for designing PETC for Lipschitz nonlinear

systems is proposed such that the stability and H∞ performance are guaranteed. In

addition to solving the stability and performance problem, our proposed design tackles

the following objectives: 1- Enlarging the region of attraction which is directly related

to enlargement of Lipschitz constant; 2- Minimizing the amount of data transmitted over

the communication channel. In this regard using delay system approach [35], we present

a multi-objective optimization problem in which the stability and performance conditions

appear in the form of LMI constraints

Chapter 3: This chapter focuses on the PETC of output feedback systems with

external disturbance. Because of dealing with a dynamic controller, two independent,

decentralized triggering mechanisms are considered at the plant and controller output,

respectively, which act with non-equal sampling periods and in an asynchronous fashion.

The stability and performance conditions are provided in form of LMIs. Then, using a
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convex optimization approach, the event generator conditions are designed to reduce the

L2 performance gain, while lowering data communication through the channel.

Chapter 4: This chapter studies event-triggered control for LTI systems in the pres-

ence of measurement noise. As the main contribution, a periodic integral-based triggering

condition is proposed which is shown to be robust against measurement noise and reduces

the data transmission effectively. Moreover, an optimization problem with LMI constraints

is provided, which not only ensures the stability in the mean square for the closed-loop

system, but also designs optimal values for the TC parameter.

Chapter 5: In this chapter, event-based observer for disturbed LTI systems is de-

signed. To suppress the impact of measurement noise in the system, a TC, similar to the

one introduced in Chapter 3, is proposed. Then, an optimization-based methodology is

given to design the scheme parameters such that less data transmission, desired estimation

error convergence rate and disturbance attenuation level are achieved.

Chapter 6: In this chapter, a novel event triggering scheme is given for a general class

of nonlinear systems, which mainly improves the idea introduced by Tabuada [1]. The

proposed integral-based triggering condition is less conservative in the sense that it does

not require the derivative of Lyapunov function to be negative at all time instants. It is

shown that the IBTC ensures a minimum inter-event time for the system. In addition, a

well-proved comparison with traditional TC is given to represent the effectiveness of the

proposed system in data transmission reduction.

Chapter 7: In this chapter, we study periodic decentralized event-triggered systems

for nonlinear systems. It is assumed that the measurement sensors are geographically

distributed. So, a centralized controller is employed while decentralized event triggering

modules are used for each group of states. To avoid excessive data transmission, the

IBTC proposed in the previous chapter is developed for this class of systems. Similar to

the chapter 1, the class of nonlinear systems considered here is those whose nonlinear terms

satisfy a Lipschitz continuity condition, or simply, Lipschitz systems. The main limitation

encountered in this model is the size of the region of the space in which the Lipschitz

condition is satisfied, which in turn limits the region of attraction of the trajectories. We

propose a design procedure in the form of convex optimization problem to design the TC

parameters, such that the closed-loop system is asymptotically stable and the region of
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stability is enlarged.
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Chapter 2

Periodic Event-Triggered Control

of Nonlinear Systems

In this section, a periodic event-based controller design scheme is proposed for a class of

Lipschitz nonlinear systems. Using a delay system approach [35], the event-based system

is modeled in a continuous time form. Then, the controller and event generator design

methodology is formulated as a convex multi-objective optimization problem with LMI

constraints, where the admissible Lipschitz constant of the system is enlarged and data

communication between plant and controller is minimized simultaneously. Finally, the

proposed system is evaluated via simulations.

The rest of this chapter is organized as follows. Section 2.1 presents the problem

statement. In section 2.2, the proposed event-based system is modeled in a time delay

form which is followed by the stability and performance analysis in section 2.3. Section 2.4

contains the main result, where the controller and event generator design is given in the

form of an optimization problem. Simulation results are presented in section 2.5 to show

the efficiency of the proposed mechanism and finally section 2.6 summarizes the results of

this chapter.
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2.1 Problem Statement

Consider the following class of nonlinear systems⎧⎨
⎩

ẋ = Ax+Bu+ ϕ(x, u) +Bww

z = Cx
(2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, z(t) ∈ Rp is the

controlled output and w(t) ∈ Rl is an exogenous disturbance input which is assumed to

belong to L2[0,+∞) . Moreover, ϕ : Rn × Rm → Rn, satisfying ϕ(0, u) = 0 is a locally

Lipschitz function in its first argument on the region Ω ⊂ Rn (which contains the origin

in its interior), uniformly in u:

‖ϕ(x1, u)− ϕ(x2, u)‖ ≤ �‖x1 − x2‖ ∀x1, x2 ∈ Ω, u ∈ Rm, (2.2)

where � is called Lipschitz constant. Consider now the following aperiodic discrete time

control scheme: the controller receives fresh data of state values and updates the control

law only if an event generator condition is triggered. Otherwise, the controller uses the

previous received state information.

Based on this scenario, we consider a feedback controller of the form:

u = Kx̂, (2.3)

where x̂ is a piecewise constant signal, containing intermittent state information and as

defined in Subsection 2.1.1. A general block diagram of the proposed event-based controller

is shown in Fig.2.1

In this work, we assume that the event generator block is clock-driven, i. e. the event

generator condition is verified periodically with the period of ’h’. In this regard, as shown

in Fig.2.1 a sampler is used to feed the event generator block. A ZOH module located at

the plant input generates a piecewise constant signal.

2.1.1 Event Generator Structure and Triggering Condition

Similar to the work [1], in this paper the event condition is triggered and fresh data is

sent to the controller when the norm of the difference between the current state and the

latest transmitted value exceeds a certain threshold. In this regard, define {kj}∞j=1 as the

sequence of sample numbers at which the data is sent to the controller. Moreover, suppose

15



Plant

Event 
Generator 

SamplerZOH

K

w z
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Figure 2.1: General block diagram of the proposed event-based system

k1 = 1 and x(k1h) = x0 where x0 is the initial condition of system. For i ≥ kj define the

event generator function as:

f(x(ih), x(kjh)) := (x(ih)− x(kjh))
T (x(ih)− x(kjh))− xT (ih)βx(ih), (2.4)

where, β is a n×n positive definite matrix to be designed properly. Then, a fresh sample

of x (i.e. x(kj+1h)) is broadcast if the following periodic TC is violated :

f(x(i), x(kj)) ≤ 0, (2.5)

where, for simplicity we have denoted x(ih) and x(kjh) by x(i) and x(kj) respectively.

In the other words, one can say that the following inequality holds for kj ≤ i < kj+1

(x(i)− x(kj))
T (x(i)− x(kj)) ≤ x(i)Tβx(i). (2.6)

Having introduced x(kj) (j ∈ N) as the output of event generator block, the piecewise

constant signal x̂ is defined as:

x̂(t) := x(kjh) for t ∈ [kjh, kj+1h) , j = 1, 2, . . . (2.7)

2.1.2 Closed-Loop System Dynamics

Using the event-based controller (2.3), the closed-loop dynamics is given by:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = Ax+Bu+ ϕ(x, u) +Bww

u = Kx̂

z = Cx

(2.8)

Our goal is to design the state feedback controller K and the event generator function

(2.4) such that the system is asymptotically stable and for a given γ the H∞ criterion (de-

fined in Definition 2.1) is guaranteed while the following optimality criteria are achieved:

• Enlarging the region of attraction of the closed-loop system by enlargement of ad-

missible Lipschitz constant �. (Please refer to the last part of proof of Theorem 7.1

to see how increasing admissible � leads to region of attraction expansion.)

• Reducing the number of transmitted data over the communication channel by max-

imizing β.

The design procedure is formulated as a convex optimization problem with LMI con-

straints.

Definition 2.1. We say that H∞ performance is guaranteed for the system (2.8) with

gain γ if for any w(t) ∈ L2[0,+∞) the following inequality is satisfied:

‖z‖2 ≤ γ‖w‖2 + δ, (2.9)

where δ is a constant value that depends on the states initial condition.

In the next section the delay system approach is used to model the event-based system.

2.2 Modeling of the Event-Based System

In order to write the event-based system dynamics in a delay system form, an approach

similar to [35] is exploited. we break down the time interval [0,+∞) as

[0,+∞) =

+∞⋃
j=1

[kjh, kj+1h). (2.10)

Based on the equation (2.7), the dynamics of event-based system (2.8) for t ∈ [kjh, kj+1h)

can be written as:
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⎧⎨
⎩

ẋ = Ax+BKx(kjh) + ϕ(x, u) +Bww

z = Cx
(2.11)

Now, let lt be the latest sample number before time instant ‘t’ :

lt = max {i ∈ N : ih ≤ t} . (2.12)

Define

τ(t) := t− lth with 0 ≤ τ(t) ≤ h, (2.13)

et := x(kjh)− x(lth). (2.14)

Adding and subtracting BKx(lth) to the dynamics (2.11) and using above definitions,

the following time delay dynamics can be obtained:

⎧⎨
⎩

ẋ = Ax+Bet +BKx(t− τ(t)) + ϕ(x, u) +Bww

z = Cx,
(2.15)

Similarly, the event-TC is written in time delay form.

Regarding the definition of lt, for t ∈ [kjh, kj+1h) one can readily find that

kj ≤ lt < kj+1. (2.16)

So, based on equation (2.6) we have:

(x(lth)− x(kjh))
T (x(lth)− x(kjh)) ≤ x(lth)

Tβx(lth). (2.17)

Then, using definitions (2.13) and (2.14), the following triggering inequality holds for

t ∈ [kjh, kj+1h):

eTt et ≤ x(t− τ(t))Tβx(t− τ(t)). (2.18)

Having formulated the closed-loop dynamics and the periodic TC in a continuous-time

form, we are ready to give stability and performance conditions.
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2.3 Stability and Performance Analysis of The Proposed

Systems

Theorem 2.1 provides sufficient conditions in the form of LMIs to guarantee the asymptotic

stability andH∞ performance of the event-based system. First, we introduce three lemmas

which are used in the proof of our result.

Lemma 2.1. For any x, y ∈ Rn and D = DT ∈ Rn×n > 0, the following inequality is

satisfied:

2xT y ≤ xTDx+ yTD−1y. (2.19)

Proof : Introduce the matrix

G = (Dx− y)TD−1(Dx− y). (2.20)

Since G ≥ 0, inequality (2.19) immediately follows.

�

Lemma 2.2. ( [35]) For any ε ∈ R > 0, D = DT ∈ Rn×n > 0 and X= XT ∈ Rn×n > 0:

XD−1X ≥ −ε2D + 2εX. (2.21)

Proof : Introduce the matrix

G = (X − εD)D−1(X − εD). (2.22)

Since G ≥ 0, inequality (2.21) is trivially satisfied.

�

Lemma 2.3. Let Ai ∈ Rn×n, θi ∈ R (∀i ∈ {1, . . . , k}) and define

Conv(A1, . . . , Ak) = {θ1A1+· · ·+θkAk : θi ≥ 0 ∀i ∈ {1, . . . , k}, θ1+· · ·+θk = 1}. (2.23)

Then,

A > 0 ∀A ∈ Conv(A1, . . . , Ak),

if and only if Ai > 0, ∀i ∈ {1, . . . , k} .

19



Proof : Let A ∈ Conv(A1, . . . , Ak). Then:

xTAx = θ1x
TA1x+ · · ·+ θkx

TAkx (2.24)

for some arbitrary x ∈ Rn. Assume first that Ai > 0 ∀i ∈ {1, . . . , k}. Since θi > 0 ∀i ∈
{1, . . . , k} and x is arbitrary, we have that xTAx > 0 ∀x ∈ Rn.

For the converse assume that A > 0 and set θ1 = 1 and θ2 = · · · = θk = 0 in (2.23) to

obtain A = A1. Since A is positive definite, so is A1. In a similar way, positive definiteness

of Ai, ∀i ∈ {2, . . . , k} is also proved.

�

Theorem 2.1. The event-based system (2.15) with Lipschitz constant � and given periodic

TC (2.18) is asymptotically stable and H∞ performance (2.9) with gain γ is guaranteed

if there exist matrices P > 0, Q > 0, R > 0, Mand N with appropriate dimensions and

scalars η1 > 0 and η2 > 0 such that following LMIs are satisfied:

⎡
⎢⎢⎢⎢⎢⎢⎣

Γ0 + Γ1 + ΓT
1 � � �

ΓT
2i −R � �

Γ3 0 −Γ5 �

PJ1 0 0 −η1I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 for i = 1, 2, (2.25)

where:

Γ0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ01 PBK 0 PBw PBK

� β 0 0 0

� � −Q 0 0

� � � −γ2I 0

� � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.26)

Γ01 = ATP + PA+Q+ CTC + �2(η1 + hη2), (2.27)

Γ1 =
[
N M −N −M 0 0

]
, (2.28)

Γ21 =
√
hM, Γ22 =

√
hN, (2.29)

Γ3 =
√
hRΛ, Γ5 = R− η−1

2 R2, (2.30)

Λ =
[
A BK 0 Bw BK

]
. (2.31)
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Proof: Define the following Lyapunov-Krasovskii functional [35]

V = x(t)TPx(t) +
∫ t
t−h x

T (s)Qx(s)ds+
∫ t
t−h

∫ t
θ ẋ

T (s)Rẋ(s)dsdθ. (2.32)

For simplicity denote ϕ(x, û) by ϕ and define

ν(t) :=
[
xT xT (t− τ(t)) xT (t− h) wT eTt

]T
. (2.33)

Then, the time derivative of V along the trajectories of x for t ∈ [kjh, kj+1h) is derived

as:

V̇ = (Λν + ϕ)TPx+ xTP (Λν + ϕ) + xTQx− xT (t− h)Qx(t− h) + hϕTRϕ+ 2hϕTRΛν

− ∫ t
t−h ẋ(s)

TRẋ(s)ds+ hνTΛTRΛν.

(2.34)

Using Lemma 2.1, we can establish the following inequalities:

2hϕTRΛν ≤ hνTΛTRW2
−1RΛν + hϕTW2ϕ, (2.35)

2xTPϕ ≤ ϕTW1ϕ+ xTPW1
−1Px, (2.36)

where W1 = η1I > 0 and W2 = η2I − R > 0 are matrices of appropriate dimensions.

Furthermore, according to Leibniz-Newton formula, for anyM andN of proper dimensions

we have:

νTM(x(t− τ(t))− x(t− h)−
∫ t−τ(t)

t−h
ẋ(s)ds) = 0, (2.37)

νTN(x(t)− x(t− τ(t))−
∫ t

t−τ(t)
ẋ(s)ds) = 0. (2.38)

Using the above equations and inequalities (2.35) and (2.36) and the Lipschitz property

of ϕ we derive:

V̇ ≤ νTΛTPx+ xTPΛν + �2η1x
Tx+ �2hη2x

Tx+ xTQx− xT (t− h)Qx(t− h)

+νT (ΓT
1 + Γ1)ν + hνTΛTR(R−1 +W−1

2 )RΛν + η−1
1 xTP 2x

+(h− τ(t))νTMR−1MT ν + τ(t)νTNR−1NT ν,

(2.39)

where Γ1 is defined as (2.28).

To simplify the term R−1 +W−1
2 we proceed as follows [60]:

R−1 +W−1
2 = R−1 + (η2I −R)−1 = (η2I −R)−1((η2I −R)R−1 + I)

= (R− η−1
2 R2)−1 = Γ−1

5 .
(2.40)
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Now, using (2.40) and (2.18), by some calculation it can be shown that:

V̇ + zT z − γ2wTw ≤ νTΛTPx+ xTPΛν ++l2η1x
Tx+ l2hη2x

Tx+ xTQx

−xT (t− h)Qx(t− h) + xTCTCx− γ2wTw − eTt et

+x(t− τ(t))Tβx(t− τ(t)) + η−1
1 xTP 2x

+hνTΛTRΓ−1
5 RΛν + (h− τ(t))νTMR−1MT ν

+τ(t)νTNR−1NT ν + νT (ΓT
1 + Γ1)ν.

(2.41)

A sufficient condition to have

V̇ + zT z − γ2wTw ≤ 0 (2.42)

is that the right hand side of equation (2.41) is negative, which is equivalent to:

Γ0 + Γ1 + ΓT
1 + η−1

1 JT
1 P

2J1 + ΓT
3 Γ

−1
5 Γ3 + Γ̄ ≤ 0, (2.43)

where

Γ̄ =
(h− τ(t))

h
Γ21R

−1Γ21
T +

τ(t)

h
Γ22R

−1Γ22
T , (2.44)

and J1 is a transformation matrix of proper dimension, defined such that:

x(t) = J1ν(t). (2.45)

Noting the fact that Γ̄ is a convex combination of Γ21R
−1Γ21

T and Γ22R
−1Γ22

T and

using Lemma 2.3, and using Schur complement [61], inequality (2.43) is true if and only

if LMIs (2.25) hold.

Integrating (2.42) from kj to T ∈ [kjh, kj+1h) we have:

V (T ) ≤ V (kjh)−
∫ T

kjh
zT z + γ2

∫ T

kjh
wTw. (2.46)

In addition, integrating over the intervals [kih, ki+1h)(for i = 1, . . . , j) and noting x(t) and

so V (t) are continuous, we get:

V (T ) ≤ V (0)−
∫ T

0
zT z + γ2

∫ T

0
wTw. (2.47)

Regarding the fact that V (T ) > 0, one can achieve the following H∞ performance criteria:

∫ T

0
zT z ≤ V (0) + γ2

∫ T

0
wTw ∀ T > 0. (2.48)
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To prove asymptotic stability, set w = 0 and let

θ = λmin(Γ0 + Γ1 + ΓT
1 + ΓT

3 Γ
−1
5 Γ3 + Γ̄ + η−1

1 JT
1 P

2J1). (2.49)

By (2.41),

V̇ ≤ −θνT ν. (2.50)

So the system is asymptotically stable.

Note that to complete the proof, it should be ensured that x(t) does not leave the

region Ω where the Lipschitz condition applies. Using a similar approach to the last part

of proof of Theorem 7.1, conditions on initial condition and disturbance can be provided

to guarantee this issue.

�

2.4 Controller and Event Generator Design via Multi-Objective

Optimization

Suppose that the Lipschitz constant �, TC parameter β and the controller gain K are some

unknown variables. In this section our goal is to give a procedure to design K and β in

order to meet the following specifications while asymptotic stability and H∞ performance

are guaranteed.

• Enlarging � to enlarge the operation region, following the idea proposed in [60]

• Maximization of β which is related to reduction of data transmission

This leads to a multi-objective optimization problem in which the optimal point is a

trade-off between two optimality criteria.

Theorem 2.2. Consider the Lipschitz nonlinear event-based system (2.15) with the TC

(2.18). The closed-loop system is asymptotically stable with guaranteed H∞ gain γ and the

operating region and the data transmission through the feedback loop are simultaneously

enlarged and reduced respectively, if there exist matrices X > 0, Y > 0, Q̄ > 0, R̄ > 0,

β̄, M̄ , N̄ with proper dimensions and scalars α > 0, η1 > 0, η2 > 0, zβ > 0, zl > 0 and
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0 < λ < 1 such that the following optimization problem has a solution for some arbitrary

ε1 and ε2:

min λzβ + (1− λ)zl (2.51)

s.t.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̄0 + Γ̄1 + Γ̄T
1 � � � � �

Γ̄2i −R̄ � � � �

Γ̄3 0 −Γ̄5 � � �

I 0 0 −η1I � �

XJ1 0 0 0 −αI �

CXJ1 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

for i = 1, 2,

(2.52)

⎡
⎣ zβI X

X β̄

⎤
⎦ ≥ 0, (2.53)

zl ≥ α+ hη2 + η1, (2.54)

where

Γ̄0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ01 BY 0 Bw BY

� β̄ 0 0 0

� � −Q̄ 0 0

� � � −γ2I 0

� � � � −ε21I − 2ε1X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.55)

Γ01 = AX +XAT + Q̄, (2.56)

Γ̄1 =
[
N̄ M̄ − N̄ −M̄ 0 0

]
, (2.57)

Γ̄21 =
√
hM̄, Γ̄22 =

√
hN̄, (2.58)

Γ̄3 =
√
h
[
AX BY 0 Bw BY

]
, (2.59)

Γ̄5 = −ε22R̄+ 2ε2X − η2
−1I. (2.60)

Having solved this optimization problem, controller gain is obtained by

K = Y X−1, (2.61)
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and the optimal values for β and � are calculated as

β∗ := X−1β̄X−1, �∗ := 1√
α(hη2+η1)

. (2.62)

Proof: define new variable α as:

α−1 := �2(hη2 + η1). (2.63)

Using this new variable, inequality (2.43) can be rewritten as:

Γ′
0 + Γ1 + ΓT

1 + η−1
1 JT

1 P
2J1 + ΓT

3 Γ
−1
5 Γ3 + α−1JT

1 J1 + CTJT
1 J1C

+ (h−τ(t))
h Γ21R

−1Γ21
T + τ(t)

h Γ22R
−1Γ22

T ≤ 0,
(2.64)

where Γ′
0 is defined as

Γ′
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ′
01 PBK 0 PBw PBK

� β 0 0 0

� � −Q 0 0

� � � −γ2I 0

� � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.65)

with

Γ′
01 = ATP + PA+Q. (2.66)

To transform inequality (2.64) to LMI, let X := P−1 and pre and post-multiply this

inequality by X̄ = diag(X,X,X, I,X). Defining new variables

Y := KX, β̄ := XβX, Q̄ := XQX,

M̄ := X̄MX, N̄ := X̄NX, R̄ := XRX,
(2.67)

and using the following inequalities from Lemma 2.2 (similar to [35]):

−X2 ≤ ε21I − 2ε1X ∀ε1 > 0,

XR̄−1X ≥ −ε22R̄+ 2ε2X ∀ε2 > 0,
(2.68)

by some calculation it can be proved that LMIs (2.52) are sufficient conditions to

guarantee inequality (2.64).The rest of stability and the H∞ performance proof is the

same as the proof of Theorem 2.1.
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Now based on definitions (2.67), to maximize β, one can equivalently minimize the

term Xβ̄−1X. In order to express this objective in a convex form, define an auxiliary

variable zβ such that

zβI −Xβ̄−1X ≥ 0, (2.69)

and minimize zβ instead. Note that by Schur complement, inequality (2.69) is equiv-

alent to LMI (2.53).

On the other hand, to enlarge �, based on definition (2.63), we can shrink the summa-

tion term α+ hη2 + η1. So, defining the auxiliary variable zl we can consider this variable

as the objective while satisfying inequality (2.54).

Finally, having two optimality criteria, and using scalarization approach [61], we end

up with optimization objective (2.51) where λ varies between 0 and 1.

Remark 2.1. ε1 and ε2 are some design parameters which can be tuned properly using an

iterative algorithm. For more details one can refer to [35].

2.5 Simulation Results

In this section the effectiveness of the proposed method is illustrated by simulation results.

Consider the following unstable plant:

ẋ =

⎡
⎣ 0 1

−2 3

⎤
⎦x+

⎡
⎣ 0

−0.1(1− cos(x32))

⎤
⎦+

⎡
⎣ 0

1

⎤
⎦u, (2.70)

where, it is assumed that no disturbance is applied to the system and so we set Bw =

C = 0.

Now, consider the event-based controller scheme, depicted in Fig.2.1, for this system.

Suppose that the TC (2.5) is verified every h = 0.01 seconds. To design an optimal

feedback gainK and event generator parameter β to increase the closed-loop system region

of attraction and reduce data exchange between plant and controller, we set ε1 = ε2 = 10

and solve the convex optimization problem (2.51) for different values of 0 ≤ λ ≤ 1.

The trade-off curve between β∗ and �∗ over the range of λ is shown in Fig. 2.2. As

seen, the maximum value for λmin(β
∗) is 0.15, obtained for λ = 1, while the maximum

value of �∗ is 0.52 for λ = 0.
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Figure 2.2: Trade-off curve between the optimal points of objective variables λmin(β) and
�.
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Figure 2.3: Triggering time-intervals versus event sampling instants.

Assuming λ = 0.5, the maximum Lipschitz constant, the optimal event-TC parameter

and the state feedback gain are obtained as follows:

�∗ = 0.28, β∗ = diag(0.13, 0.13), K = [−6.93,−12.33]. (2.71)

The value of �∗ determines a neighborhood of x2, where the event-based system stability

and performance are guaranteed. In the other words, one can say that the system is locally

stable as long as the trajectory remains in the ball |x2| ≤ 3.1. simulation results for the

values (2.71) and initial condition x0 = [0.5, 0]T are shown in Figs.2.3 and 2.4.

In Fig. 2.3, time interval lengths [kj−1h, kjh) are plotted versus kjh (for j = 2, 3, . . . );

where the number of data transmitted from plant to the controller in 10 seconds is counted

to be only 49. Moreover, according to Fig. 2.4, system state trajectories tend to the origin

over the time which confirms the asymptotic stability of the system.
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Figure 2.4: x1 (solid) and x2 (dashed) go to zero over the time, showing that the system
is asymptotically stable using the proposed event-based mechanism.

2.6 Summary

Periodic event-based controller was investigated for a class of Lipschitz nonlinear systems.

The design process was formulated into a multi-objective optimization problem, which

enlarges the operating region of the system and decrease the information exchange between

the plant and controller simultaneously . At the end, the simulation was implemented for

a 2nd order unstable plant to show the efficiency of the event-based controller.
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Chapter 3

Asynchronous Event-Based H∞
Control for Output Feedback

Systems

In this chapter we study event-triggered control for output feedback linear systems. As-

suming a pre-existing control design for the continuous-time plant, we design a periodic

event generator that preserves stability and also the H∞ performance of the system. Due

to the dynamics of the output controller, two decentralized event generator modules are

employed acting at the both controller and plant sides. The proposed TCs have the ad-

vantage to operate with non-equal sampling rates. Consequently, the triggering instants

of the plant and controller event generators may be quite asynchronous. We first model

the proposed event-based system in a continuous-time form and then stability and per-

formance conditions are formulated using Linear Matrix Inequalities (LMIs). In addition,

event generator conditions are designed to decrease data transmission through the net-

work channel and also reduce the H∞ gain of the system. Simulation results are given to

illustrate the effectiveness of the proposed system.

The rest of the chapter is organized as follows: Section 3.1 introduces problem for-

mulation and also the system structure. Section 3.2 contains modeling and analysis, and

section 3.3 represents design issues for the proposed event-based system. Section 3.4 pro-

vides an illustrative example showing the efficiency of the proposed mechanism and finally

summary is given as the last part.
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3.1 Problem Formulation

Consider the following linear system

P :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋp = Apxp +Bpu+Bww

y = Cpxp

z = Hpxp

(3.1)

where xp(t) ∈ Rn is the plant state vector, u(t) ∈ Rm and y(t) ∈ Rq are plant control

input and measured output, respectively. z(t) ∈ Rp is the controlled output and w(t) is

an exogenous disturbance input which is assumed to belong to L2[0,+∞).

The system P is controlled using an output feedback controller C of the form

C :

⎧⎨
⎩

ẋc = Acxc +Bcy

u = Ccxc
(3.2)

where xc ∈ Rn is the controller state vector.

Consider now the following scenario: assume that instead of continuous communication

between plant and controller, data is transmitted asynchronously only upon the violation

of certain conditions. More explicitly; two decentralized TCs will be considered: a TC is

setup at the plant output and fresh data y is transferred to the controller only when the

plant TC is violated. A second, independent, TC is setup at the controller output, and an

updated controller signal is sent to the plant when the controller TC is violated. Based

on this scenario, the plant and control inputs are piecewise constant signals that will be

denoted û and ŷ, respectively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋp = Apxp +Bpû+Bww

ẋc = Acxc +Bcŷ

y = Cpxp

u = Ccxc

z = Hpxp

(3.3)

A general block diagram of the proposed event-based output feedback system is shown

in Fig.3.1.

In this work we consider two separate and asynchronous periodic event-TCs. More

precisely, we use two different samplers at the outputs of plant and controller , with

sampling times hp and hc, respectively (Fig. 3.1).
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ZOH
Cont. 

Sampler

Event 
Generator 
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Figure 3.1: LTI systems controlled using event-based output feedback controller

Controller Implementation: To implement the continuous-time controller for the event-

based system (3.3) on a digital platform we proceed by emulation; i.e. we find a discrete-

time approximation of the controller implemented via integration methods, using an inte-

gration period typically much smaller than the smallest sampling period in the feedback

loop.

In the following section we introduce the event generator mechanism applied in the

event-based system. Our goal is to design event generator blocks such that the proposed

event-based system remains stable and satisfies H∞ performance, defined as Definition

2.1.

3.2 Periodic Event-Triggered Control for Output Feedback

Systems

The first part of this section introduces the event triggering mechanisms used in the rest

of the chapter. We then exploit a delay system approach to model the event-based system,

and finally the stability analysis is given in section 3.2.3.

3.2.1 Event Generator Modules Structure

Plant Triggering Mechanism

As mentioned earlier, the plant event generator module samples the plant output periodi-

cally with period hp. An updated output value is sent from the plant to the controller only
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whenever the normalized value of the difference between the latest transmitted output and

the new sample surpasses a certain threshold. In other words, let ŷ be the latest plant

output value sent to the controller at time t = t̂p; Then, the plant event generator sends

a fresh sample of y at the sample time ihp > t̂p, if the following event triggering condition

is violated:

(y(ihp)− ŷ)T (y(ihp)− ŷ)− σpy
T (ihp)y(ihp) ≤ 0. (3.4)

In the above inequality, the scalar σp > 0 is the plant side TC parameter to be designed

to effectively reduce data communication from plant to controller.

Controller Triggering Mechanism

The TC on the controller side is also verified periodically; but with a different sampling

time, denoted hc. Let û be the latest controller output value sent to the plant at time

t = t̂c; Then the controller event generator sends a new sample of u at the sample time

jhc > t̂c, if the following event triggering condition is violated:

(u(jhc)− û)T (u(jhc)− û)− σcu
T (jhc)u(jhc) ≤ 0. (3.5)

As in the plant side, the scalar σc > 0 is the controller side TC parameters which should

be designed to effectively reduce data communication from controller to plant.

3.2.2 Formulating the event-based system using delay system approach

In order to write the event-based system dynamics (3.3) in a time-delay system form, let

the subsequence {ak}∞k=0 represent sample numbers at which data is broadcast from the

plant to the controller. Similarly, denote {bk}∞k=0 as the corresponding subsequence at

which data is sent from the controller to the plant. Then the inputs of the controller and

plant (shown in in Fig. 3.1) are expressed as follows:

ŷ(t) = y(akhp) for t ∈ [akhp, ak+1hp) , k = 1, 2, . . .

û(t) = u(bkhc) for t ∈ [bkhc, bk+1hc) , k = 1, 2, . . .
(3.6)

Now, let lpt be the latest sample number of the plant side before the time instant ‘t’ :

lpt := max {i ∈ N : ihp ≤ t} , (3.7)
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and define

τ1(t) := t− lpt hp with 0 ≤ τ1(t) < hp. (3.8)

In a similar way, define lct as the latest sample number of the controller side before the

time instant ‘t’:

lct := max {i ∈ N : ihc ≤ t} , (3.9)

and

τ2(t) := t− lcthc with 0 ≤ τ2(t) < hc. (3.10)

Adding and subtracting Bpu(l
c
thc) and Bcy(l

p
t hp) to the plant and controller dynam-

ics, respectively, in equation (3.3) and using above definitions, the following time delay

dynamics can be obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋp = Apxp +Bpe
c
t +Bpu(t− τ2(t)) +Bww

ẋc = Acxc +Bce
p
t +Bcy(t− τ1(t))

y(t) = Cpxp(t)

u(t) = Ccxc(t)

z(t) = Hpxp(t)

(3.11)

where:

ept := y(lpt hp)− ŷ(t),

ect := u(lcthc)− û(t).
(3.12)

Using the same approach, the event-TCs are also expressed in time delay form: Based on

the triggering mechanism introduced, the triggering inequalities (3.4) and (3.5) hold for

every sampling time of plant and controller side, respectively. So, in particular, for the

sample numbers lpt and lct we have:

(y(lpt hp)− ŷ(t))T (y(lpt hp)− ŷ(t)) ≤ σpy
T (lpt hp)y(l

p
t hp),

(u(lcthc)− û(t))T (u(lcthc)− û(lcthc)) ≤ σcu
T (lcthc)u(l

c
thc),

(3.13)

which can be readily expressed as:

ept
T
ept ≤ σpy

T (t− τ1(t))y(t− τ1(t)),

ect
T ect ≤ σcu

T (t− τ2(t))u(t− τ2(t)).
(3.14)

To put the event-based system equations in a compact form, define new variables

x :=
[
xTp , xTc

]T
, e :=

[
ept

T
, ect

T
]T

, (3.15)
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and new matrices

Ād1 :=

⎡
⎣ 0 BpCc

0 0

⎤
⎦ , Ād2 :=

⎡
⎣ 0 0

BcCp 0

⎤
⎦ , B̄ :=

⎡
⎣ 0 Bp

Bc 0

⎤
⎦ ,

B̄w :=

⎡
⎣ Bw

0

⎤
⎦ , H =

[
Hp, 0

]
,

(3.16)

β1 := diag(σpC
T
p Cp, 0) , β2 := diag(0, σcC

T
c Cc) , Ā := diag(Ap, Ac) . (3.17)

Then, for the interval [akh, ak+1h) the system equations (3.11) are expressed as:

ẋ = Āx(t) + Ād1x(t− τ1(t)) + Ād2x(t− τ2(t)) + B̄e+ B̄ww,

z(t) = Hxp(t),
(3.18)

where the following TC holds:

eT e ≤ x(t− τ1)
Tβ1x(t− τ1) + x(t− τ2)

Tβ2x(t− τ2). (3.19)

3.2.3 Stability analysis of the proposed event-based system

In this section we present Theorem 3.1, our main result. This theorem provides sufficient

conditions that guarantee asymptotic stability and H∞ performance of the event-based

system.

Theorem 3.1. Consider the system (3.3) with the asynchronous periodic TCs (3.4) and

(3.5). The event-based system is asymptotically stable with H∞ performance (2.9), if

there exist matrices P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, U1and U2 with appropriate

dimensions such that following LMIs are satisfied:

LU
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π+ ST + S � � �

Υi
21 −R1 � �

Υ31 0 −R2 �

ΥU
i 0 0 −Ri

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 for i = 1, 2,

LV
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π+ ST + S � � �

Υi
21 −R1 � �

Υ31 0 −R2 �

ΥV
i 0 0 −Ri

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 for i = 1, 2,

(3.20)
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where:

ΥU
i =

√
hp + hcUi, ΥV

i =
√

hp + hcVi,

Υ21 =
√

hpR1Σ, Υ31 =
√
hcR2Σ,

(3.21)

S =
[
V1 + V2, U1 − V1, U2 − V2, −U1, −U2, 0, 0

]
,

Σ =
[
Ā, Ād1, Ād2, 0, 0, B̄w, B̄

]
,

(3.22)

and

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 PĀd1 PĀd2 0 0 PB̄w PB̄

� β1 0 0 0 0 0

� � β2 0 0 0 0

� � � −Q1 0 0 0

� � � � −Q2 0 0

� � � � � −γ2 0

� � � � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.23)

with

Π11 = ĀTP + PĀ+Q1 +Q2 +HHT .

Proof: Consider the following Lyapunov-Krasovskii functional

V = xT (t)Px(t) +
∫ t
t−hp

xT (s)Q1x(s)ds+
∫ t
t−hp

∫ t
θ ẋ

T (s)R1ẋ(s)dsdθ

+
∫ t
t−hc

xT (s)Q2x(s)ds+
∫ t
t−hc

∫ t
θ ẋ

T (s)R2ẋ(s)dsdθ.
(3.24)

Define

ζ :=
[
xT , xT (t− τ1(t)), xT (t− τ2(t)), xT (t− hp), xT (t− hc), wT , eT

]T
.

(3.25)

Computing the time derivative of V along the trajectories of x, we have:

V̇ = ζTΣTPx+ xTPΣζ + xTQ1x+ xTQ2x− xT (t− hp)Q1x(t− hp)

−xT (t− hc)Q2x(t− hc) + hpζ
TΣTR1Σζ −

∫ t
t−hp

ẋ(s)TR1ẋ(s)ds

+hcζ
TΣTR2Σζ −

∫ t
t−hc

ẋ(s)TR2ẋ(s)ds.

(3.26)

Based on Leibniz-Newton formula the following equations hold for any U1, U2, V1 and V2

of proper dimensions.

Δ1 := 2ζTV1(x(t)− x(t− τ1(t))−
∫ t
t−τ1(t)

ẋ(s)ds) = 0,

Δ2 := 2ζTU1(x(t− τ1(t))− x(t− hp)−
∫ t−τ1(t)
t−hp

ẋ(s)ds) = 0,

Δ3 := 2ζTV2(x(t)− x(t− τ2(t))−
∫ t
t−τ2(t)

ẋ(s)ds) = 0,

Δ4 := 2ζTU2(x(t− τ2(t))− x(t− hc)−
∫ t−τ2(t)
t−hc

ẋ(s)ds) = 0.

(3.27)
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Adding above terms to the right hand side of (3.26), V̇ can be rewritten as

V̇ = ζTΣTPx+ xTPΣζ + xTQ1x+ xTQ2x− xT (t− hp)Q1x(t− hp)

−xT (t− hc)Q2x(t− hc) + hpζ
TΣTR1Σ+ hcζ

TΣTR2Σζ + ζT (ST + S)ζ

− ∫ t−τ1(t)
t−hp

(R1ẋ(s) + UT
1 ζ(t))

TR−1
1 (R1ẋ(s) + UT

1 ζ(t))ds+ τ1(t)ζ
TV1R

−1
1 V T

1 ζ

− ∫ t
t−τ1(t)

(R1ẋ(s) + V T
1 ζ(t))TR−1

1 (R1ẋ(s) + V T
1 ζ(t))ds+ τ2(t)ζ

TV2R
−1
2 V T

2 ζ

− ∫ t−τ2(t)
t−hc

(R2ẋ(s) + UT
2 ζ(t))

TR−1
2 (R2ẋ(s) + UT

2 ζ(t))ds

− ∫ t
t−τ2(t)

(R2ẋ(s) + V T
2 ζ(t))TR−1

2 (R2ẋ(s) + V T
2 ζ(t))ds

+(hp − τ1(t))ζ
TU1R

−1
1 UT

1 ζ + (hc − τ2(t))ζ
TU2R

−1
2 UT

2 ζ.

(3.28)

Using the above inequality and the TC (3.19), it is easy to see that:

V̇ + zT z − γ2wTw ≤ ζT (ST + S +Π+ΥT
21R

−1
1 Υ21 +ΥT

31R
−1
2 Υ31 +Υ)ζ, (3.29)

where :

Υ =
hp−τ1(t)
hp+hc

ΥU
1 R

−1
1 ΥU

1
T
+ τ1(t)

hp+hc
ΥV

1 R
−1
1 ΥV

1
T
+ hc−τ2(t)

hp+hc
ΥU

2 R
−1
2 ΥU

2
T

+ τ2(t)
hp+hc

ΥV
2 R

−1
1 ΥV

2
T
.

(3.30)

Equation (3.29) can be expressed as follows:

V̇ + zT z − γ2wTw ≤ ζT (
hp−τ1(t)
hp+hc

ῩU
1 + τ1(t)

hp+hc
ῩV

1 + hc−τ2(t)
hp+hc

ῩU
2 + τ2(t)

hp+hc
ῩV

2 )ζ, (3.31)

where:

ῩU
i = ST + S +Π+ΥT

21R
−1
1 Υ21 +ΥT

31R
−1
2 +ΥU

i R
−1
1 ΥU

i
T

for i = 1, 2,

ῩV
i = ST + S +Π+ΥT

21R
−1
1 Υ21 +ΥT

31R
−1
2 +ΥV

i R
−1
1 ΥV

i
T

for i = 1, 2.
(3.32)

Since :
2∑

i=1

[
hi − τi(t)

hp + hc
+

τi(t)

hp + hc
] = 1, (3.33)

using Lemma 2.3 and applying Schur complement [61], the right hand side of equation

(3.31) is negative definite if and only if LMIs (3.20) hold.

Now, define

−μ = max
0≤τ1(t)≤hp,0≤τ2(t)≤hc

[
hp−τ1(t)
hp+hc

θU1 + τ1(t)
hp+hc

θV1 + hc−τ2(t)
hp+hc

θU2 + τ2(t)
hp+hc

θV2 ] < 0, (3.34)

where:

θUi = λmax(Ῡ
U
i ), θVi = λmax(Ῡ

V
i ) for i = 1, 2. (3.35)
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Taking account of (3.31) and (3.34), we have that

V̇ + zT z − γ2wTw ≤ −μζT ζ ≤ −μxTx. (3.36)

Integrating above inequality from 0 to T , we get:

V (T )− V (0) ≤ −
∫ T

0
zT (s)z(s) + γ2

∫ T

0
wT (s)w(s). (3.37)

Since V (T ) > 0, if T → ∞, the H∞ performance criteria (2.9) is satisfied:

∫ ∞

0
zT (s)z(s)ds ≤ V (0) + γ2

∫ ∞

0
wT (s)w(s)ds. (3.38)

Assuming now that w = 0, the following inequality is achieved from (3.31):

V̇ ≤ −μζT ζ ≤ −μxTx. (3.39)

Then, it follows from Barballat’s lemma [62] that the origin is asymptotically stable. This

concludes the proof.

�

3.3 Design Issues

The primary design element in our formulation are the parameters σp and σc that controls

the trigger levels and indirectly controls the amount of data transferred over the network,

and also the H∞ gain γ. Considering σp, σc and γ2 as extra LMI variables in (3.20), we

can easily minimize the data transmission while lowering the impact of disturbance on the

output performance.

Let σ = diag(σp, σc). Based on (3.4) and (3.5), in order to achieve data transmission

reduction, we should maximize λmax(σ) or equivalently minimize λmin(σ
−1). To express

this objective in a convex form, define an auxiliary variable zσ such that

zσI − σ−1 ≥ 0, (3.40)

and minimize zσ instead. Note that by Schur complement, inequality (3.40) is equivalent

to:

Lσ =

⎡
⎣ zσI I

I σ

⎤
⎦ ≥ 0. (3.41)
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Having two optimality criteria, and using scalarization approach [61], we end up with

the following multi-objective optimization problem, where ε varies between 0 and 1.

min εzσ + (1− ε)γ2

LU
1 < 0, LV

1 < 0,

LU
2 < 0, LV

2 < 0,

Lσ < 0.

(3.42)

Remark 3.1. If we set hp = hc = 0 and also σp = σc = 0, the event-based system would

turn into the traditional output feedback control scheme. Therefore, since this traditional

system is already controlled and stabilized, it is expected that the optimization problem

(3.42) has solution, at least for small values of hp and hc.

To find proper values for the TC sampling periods, one can iteratively solve the op-

timization problem (3.42) for different values of hp and hc (up to the point where the

constraints become infeasible), to tune them appropriately, according to the optimization

results as well as hardware execution frequency limitations.

3.4 Simulation Results

To evaluate the operation of the proposed scheme, consider a satellite model, described

in [63]. This system contains two rigid bodies which are connected through a flexible

link. Modeling the link as a spring with torque constant ks and viscous damping f , the

equations of motion are given as follows:

J1θ̈1 + f(θ̇1 − θ̇2) + ks(θ1 − θ2) = u(t) + 0.1w(t),

J2θ̈2 + f(θ̇2 − θ̇1) + ks(θ2 − θ1) = 0,
(3.43)

where, J1 and J2 denote the moment of inertia of two bodies, θ1 and θ2 represent the

yaw angle of two bodies, and u(t) and w(t) are control torque and external disturbance,

respectively. Now, define the state variables as x =
[
θ1, θ2, θ̇1, θ̇2

]T
and consider the

output and controlled signals as y = x1 and z = 0.1x1 + 0.1x2, respectively. Choosing

J1 = J2 = 1, f = 0.09 and ks = 0.04, the state space dynamics are expressed in the form
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of equations (3.1), with the following parameters:

Ap =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−0.3 0.3 −0.004 0.004

0.3 −0.3 0.004 −0.004

⎤
⎥⎥⎥⎥⎥⎥⎦
, Bp =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, Bw =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0.1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Cp =

⎡
⎣1 0 0 0

0 1 0 0

⎤
⎦ , Hp =

[
0.1 0.1 0 0

]
.

(3.44)

This system is already controlled by the output feedback controller (3.2), with the following

matrices:

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2.9020 0.1727 1 0

0.0524 −2.8900 0 1

−6.7021 2.7198 −3.6691 −7.8290

0.2846 −2.0820 0.0040 −0.0040

⎤
⎥⎥⎥⎥⎥⎥⎦
, Bc =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.9020 −0.1727

−0.0524 2.8900

1.8440 −0.6144

0.0154 1.7820

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Cc =
[
−4.5581 1.8054 −3.6651 −7.8330

]
.

(3.45)

Assume now that instead of continuous data communication between plant and controller,

an event-based mechanism is inserted. Consider the periodic TCs (3.4) and (3.5) along

with the sampling periods of hp = 0.03 and hc = 0.02, respectively.

To design an optimal event-based mechanism for the above controller, The optimization

problem (3.42) is solved, using YALMIP Toolbox in MATLAB, for different values of

0 ≤ ε ≤ 1. Fig 3.2.(a) represents the trade-off curve between γ� and λmin(σ
�). Based

on the figure, it can be interpreted that the more data is exchanged between plant and

controller, the better disturbance attenuation level is achieved by the control scheme.

Now, the initial conditions are set to xp(0) = [2, 1, 0, 0]T , xc(0) = [0.1, 0.4, 0, 0]T and

the disturbance is considered as w(t) = e−0.3tsin(3t). Simulations are carried out for

different values of σ for 10 sec. Fig 3.2.(b) and (c) exhibit the number of data exchange

between plant and controller in each simulation. According to the figures, as expected

(since plant side sampling period is larger than the controller side’s one), number of data

transmitted from plant triggering module are quite smaller than the corresponding values

for the controller triggering module. In addition, these figures illustrate that how increase
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Figure 3.2: (a) Trade-off curve between optmial values of λmin(σ) and γ. (b) Number of
sampled data sent from plant to the controller. (c) Number of sampled data sent from
controller to the plant.

of σp and σc from 0 to 4 × 10−3 effectively results in more than 50% data transmission

reduction.

To evaluate the system state response performance, consider the optimization results

for the case ε = 0.4:

σp = σc = 3.4× 10−3, γ = 0.528.

Simulation results for this case are shown in Fig. 3.3. As seen in Fig. 3.3.(a), the

impact of the disturbance on the output signal is appropriately attenuated by the proposed

controller. Figs. 3.3.(b) and (c) represent inter-event sampling times for the plant and

controller sides. It is observed that the minimum inter-event time for the plant and

controller sides are equal to the sampling times hp = 0.03 and hc = 0.02, respectively,

and the corresponding maximum values are 0.33 and 0.64. In addition, based on the
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Figure 3.3: Simulation results for the case σp = σc = 3.4× 10−3 (a) Trajectory of output
signal z (solid) in the presence of disturbance w (dashed) (b) Inter-event sampling times
for the plant side (c) Inter-event sampling times for the controller side

obtained results, the average of only 29% and 46% of sampled data are sent from plant

and controller side respectively; something which validates the effectiveness of event-based

mechanism for efficient energy resources usage and data transmission reduction.

3.5 Summary

Periodic event generator design was investigated for output feedback linear systems with

disturbance. Two decentralized event generator schemes were considered at the controller

and plant sides, respectively, operating asynchronously with non-equal sampling rates. sta-

bility and H∞ performance analysis were carried out using LMIs. Both data transmission

and performance gain reduction were formulated as a multi-objective convex optimization
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problem. At the end, the simulation was implemented for a satellite model to show the

efficiency of designed event-based system.
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Chapter 4

Event-Based Controller Design for

LTI Systems in the Presence of

Measurement Noise

The presence of measurement noise in the event-based systems can lower system effi-

ciency both in terms of data exchange rate and performance. In this chapter a periodic

integral-based event-triggered control system is proposed for LTI systems with stochastic

measurement noise. We show that the new mechanism is robust against noise and effec-

tively reduces the flow of communication between plant and controller, and also improves

output performance. Using a Lyapunov approach, stability in the mean square sense is

proved. A simulated example illustrates the properties of our approach.

The rest of this chapter is organized as follows. In section 4.1, problem statement

and also the structure of the proposed system is provided. In section 4.2 the event-

triggered system is modeled using a delay system approach, [45], and then in section 4.3

the conditions for asymptotic stability in mean square sense are given in form of LMIs.

In section 4.4 we propose a convex optimization approach to obtain the parameters of

the event triggering system minimizing data transmission in a networked-based control.

Simulation results are represented in section 4.5 and finally, a summary of this chapter is

given in section 4.6.
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4.1 Problem Statement

Consider the following class of linear stochastic systems⎧⎨
⎩

ẋ = Ax+Bu

xν = x(t) + ν(t)
(4.1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control input. xν represent the

measured states, contaminated by noise ν(t), assumed to be zero mean white Gaussian

noise vector with the covariance matrix σ2I. Our main goal is to introduce an event-

based control scheme that reduces data communication between plant and controller and

is robust against measurement noise.

We begin by examining the traditional event-based paradigm and highlighting its pos-

sible shortcomings in the presence of noise. Following [1], the control law for the system

(4.1) is defined as:

u = Kx̂ν(t), (4.2)

where K is the state feedback gain and x̂ν(t) is the piecewise continuous signal containing

intermittent measured state information:

x̂ν(t) = xν(tk) ∀t ∈ [tk, tk+1). (4.3)

Here, tk (k ∈ N) represents the time instants when an event condition is violated and a

new state value is sent to the controller. Defining ( [1]),

eν := xν(t)− xν(tk), (4.4)

f(xν , eν) := eTν eν − xTν Qxν (4.5)

for some positive definite matrix Q; the TC can be defined as:

f(xν , eν) < 0. (4.6)

Equations (4.2) and (4.6) summarize the classical approach to event-triggered control.

One problem with this methodology is that in a noisy environment not only the feedback

value, but also the triggering instants directly depends on the instant values of the noise

with the consequent potential to affect system performance and, more importantly, trigger

unnecessary samples, making the event based control scheme less effective.

We now propose a novel event-triggered controller.
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4.1.1 Noise Effective Event Generator Structure

Similar to the previous chapters, throughout this chapter we assume that the event gen-

erator block is clock driven with the period of h. To cope with the effect of noise, instead

of instant measured values, our event-based mechanism consists of an average of the mea-

sured data over the past time interval Tint < h. Defining x̄ν(ih) as the input of event

generator, we have:

x̄ν(ih) :=
1

Tint

∫ ih

ih−Tint

xν(α)dα for i = 1, 2, . . . (4.7)

The event generator block transmits an updated value of x̄ν only when the normalized

value of the difference between the latest transmitted value and the new sample surpasses

a certain threshold. In the other words, let ˆ̄xν be the last value sent to the controller at

the time instant t̂. Then, the event generator transmits a new sample of x̄ν at the sample

time ih > t̂, if the following periodic integral based triggering condition is violated:

(x̄ν(i)− ˆ̄xν)
T (x̄ν(i)− ˆ̄xν)− x̄Tν (i)βx̄ν(i) ≤ 0, (4.8)

where, for simplicity we have denoted x̄ν(ih) by x̄ν(i). Note that β ∈ Rn×n > 0 is the TC

parameter to be designed.

Let the sequence {aj}∞j=1 represents the transmission instants when data is sent to the

controller. Then, the proposed event based control law is

u(t) = K ˆ̄xν(t), (4.9)

where

ˆ̄xν(t) := x̄ν(ajh) for t ∈ [ajh, aj+1h) , j = 1, 2, . . . (4.10)

A general block diagram of the proposed event based controller is shown in Fig. 4.1. To

represent the robustness of our proposed control paradigm against noise, define

x̄(i) :=
1

Tint

∫ ih

ih−Tint

x(α)dα, (4.11)

ν̄(i) :=
1

Tint

∫ ih

ih−Tint

ν(α)dα, (4.12)

and from (4.1) and (4.7), we have:

x̄ν(i) = x̄(i) + ν̄(i), thus (4.13)
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Figure 4.1: General block diagram of the event-based system

ˆ̄xν(t) = x̄(aj) + ν̄(aj) for t ∈ [ajh, aj+1h). (4.14)

According to equation (4.12), ν̄(i) can be approximated as

ν̄(i) ≈ Sn(i) =
1

ns

ns∑
j=1

νij , (4.15)

where the noise samples νij are independent random variables with distribution N (0, σ2)

over the interval [ih − Tint, Tint] and their number is ns. Based on Central Limit The-

orem [64], for large enough ns, the distribution of Sn approximates N (0, σ2/ns); i.e.,

ν̄(i) approximates zero as the number of samples ns increases. Thus, using the average

measured states values rather than instant values effectively reduces the impact of noise

on the both event triggering condition and feedback control law.

Remark 4.1. In the proposed triggering structure, we have assumed zero mean white

Gaussian noise as an important case encountered in many applications. Extensions are

straightforward for as long as the time average coincides with the expected value, and

the noise samples are independent and have the same distribution N (μ, σ2) (so that the

conditions of the central limit theorem are satisfied). In this case, we can reformulate the

PIBTC (4.8) and control law (4.9) as follows:

(x̄ν(i)− ˆ̄xν)
T (x̄ν(i)− ˆ̄xν)− (x̄ν(i)− μ)Tβ(x̄ν(i)− μ) ≤ 0, (4.16)

u(t) = K(ˆ̄xν(t)− μ). (4.17)

A discussion similar to the one above shows that exploiting (4.16) and (4.17) can effectively

reduce the effect of non-zero mean noise in the event-based system.

46



Having introduced the proposed event generator condition as (4.8) and the control

feedback law as (4.9), the objective of this paper can be stated as follows: Designing both

β and K such that the data transmission between plant and control units is effectively

reduced. In this regard, as the first step, in the next section, the closed-loop system is

modeled in continuous-time form.

4.2 Modeling The Event-Based System

Consider the system (4.1) with the proposed event-based controller (4.9). The closed-loop

dynamics is given by: ⎧⎨
⎩

ẋ = Ax+Bu

u = K ˆ̄xν(t)
(4.18)

To analyze the system dynamics using a delay system approach, the time interval [0,+∞)

is broken down as

[0,+∞) =
+∞⋃
k=1

[ajh, aj+1h). (4.19)

Based on (4.10) and (4.14), the dynamics of event-based system (4.18) for t ∈ [ajh, aj+1h)

can be written as:

ẋ = Ax+BKx̄(aj) +BKν̄(aj). (4.20)

Consider now the time instant t ∈ [ajh, aj+1h) and let lt be the latest sample number

before ‘t’ :

lt = max {i ∈ N : ih ≤ t} . (4.21)

Define

τ(t) := t− lth, 0 ≤ τ(t) ≤ h, and (4.22)

et := x̄(lt)− x̄(aj) . (4.23)

Adding and subtracting BKx̄(lt) to (4.20) and using the above definitions, we be obtain

the time-delay system:

ẋ = Ax−BKet +BKx̄(t− τ(t)) +BKν̄(aj). (4.24)
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Similarly, the proposed PIBTC can be written in time delay form as follows: Based on

(4.8) and (4.13) the following inequality is valid for aj ≤ i < aj+1:

eTt et + (ν̄(i)− ν̄(aj))
T (ν̄(i)− ν̄(aj)) + 2eTt (ν̄(i)− ν̄(aj))

≤ x̄T (i)βx̄T (i) + ν̄T (i)βν̄(i) + 2x̄T (i)βν̄(i).
(4.25)

From the definition of lt, for t ∈ [ajh, aj+1h) one can readily find that:

aj ≤ lt < aj+1. (4.26)

Therefore, based on (4.25) and definition (4.22) we have:

eTt et ≤ x̄(t− τ(t))Tβx̄(t− τ(t)) + ν̄T (t− τ(t))βν̄(t− τ(t)) + 2x̄T (t− τ(t))βν̄(t− τ(t))

−2eTt (ν̄(t− τ(t))− ν̄(aj))− (ν̄(t− τ(t))− ν̄(aj))
T (ν̄(t− τ(t))− ν̄(aj))

≤ x̄(t− τ(t))Tβx̄(t− τ(t)) + ν̄T (t− τ(t))βν̄(t− τ(t)) + 2x̄T (t− τ(t))βν̄(t− τ(t))

−2eTt (ν̄(t− τ(t))− ν̄(aj)). (4.27)

Based on Lemma 2.1 and inequality (4.27), one can achieve the following inequality:

eTt D1et ≤ x̄(t− τ(t))Tβx̄(t− τ(t)) + Δν(t), (4.28)

where

Δν(t) = ν̄T (t− τ(t))βν̄(t− τ(t))− 2eTt ν̄(t− τ(t)) + 2x̄T (t− τ(t))βν̄(t− τ(t))

+ν̄(aj)
T (I −D1)

−1ν̄(aj),
(4.29)

and D1 is a positive definite matrix satisfying I −D1 > 0.

Before proceeding with the stability analysis and to simplify the equations, we need

an approximation of the integral term x̄(t− τ(t)) appeared in the system dynamics (4.24)

and the triggering condition (4.28). Using the Simpson’s rule, [65], we have:

∫ t−τ(t)
t−τ(t)−Tint

x(α)dα ≈ Tint
6 [x(t− τ(t)− Tint) + 4x(t− τ(t)− Tint/2) + x(t− τ(t))].

(4.30)

The approximation error is given by 1
90(

Tint
2 )5|x(4)(ξ)|, where ξ is some point in the interval

[t−τ(t)−Tint, t−τ(t)]. A detailed discussion about the approximation error and precision

of this integration method is given in Remark 4.3. Using (4.11) and (4.30), the integral

term x̄(t− τ(t)) is approximated as follows:

x̄(t− τ(t)) ≈ α1x(t− τ(t)− Tint) + α2x(t− τ(t)− Tint/2) + α3x(t− τ(t)), (4.31)
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where α1 = 1/6, α2 = 2/3, and α3 = 1/6.

Note that there are several alternatives to the Simpson rule. In particular, using the

Trapezoidal rule results in the following approximation:

∫ t−τ(t)

t−τ(t)−Tint

x(α)dα ≈ Tint

2
[x(t− τ(t)− Tint) + x(t− τ(t))], (4.32)

with an approximation error given by
T 3
int
12 |x(2)(t−τ(t)−Tint)|. Therefore, if the integration

period is small enough, the trapezoidal rule can also provide a good approximation and has

the advantage of making the analysis rather simple (Please refer to Remark 4.3). Using

Trapezoidal rule, the integral term is written as equation (4.31) with the parameters

α1 = 1/2, α2 = 0, and α3 = 1/2.

Having formulated the event-based system in a time delay form, stability and perfor-

mance analysis are provided in the next section.

4.3 Stability and Performance Analysis of the Proposed Event-

Based System

Theorem 4.1 provides sufficient conditions in the form of LMIs to guarantee the asymptotic

stability (in the mean square sense) of the event-based system. Before proceeding to

theorem 4.1, the following lemma is expressed which is exploited in the proof.

Theorem 4.1. Consider the stochastic event-based system (4.18) with the proposed IBTC

(4.8). As ns (i.e. the number of samples over the integration period Tint) tends to infinity,

the system is asymptotically stable in the mean square sense, if for given D1 > 0 (satisfying

I−D1 > 0) and D2 > 0 there exist matrices P > 0, Qi > 0, Ri > 0, Ui and Vi (i = 0, 1, 2)
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with appropriate dimensions such that the following LMIs hold:

LU
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 + Γ1 + ΓT
1 � � � �

ΓR
0 −R0 � � �

ΓR
1 0 −R1 � �

ΓR
2 0 0 −R2 �

ΓU
j 0 0 0 −Rj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

LV
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 + Γ1 + ΓT
1 � � � �

ΓR
0 −R0 � � �

ΓR
1 0 −R1 � �

ΓR
2 0 0 −R2 �

ΓV
j 0 0 0 −Rj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

for j = 0, 1, 2,

(4.33)

where:

Γ0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ01 α1� α2� α3� 0 0 0 −� �

� α2
1β α1α2β α1α3β 0 0 0 0 0

� � α2
2β α2α3β 0 0 0 0 0

� � � α2
3β 0 0 0 0 0

� � � � −Q0 0 0 0 0

� � � � � −Q1 0 0 0

� � � � � � −Q2 0 0

� � � � � � � Γ08 0

� � � � � � � � Γ09

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ1 =

[
2∑

j=0
Vj U0 − V0 U1 − V1 U2 − V2 −U0 −U1 −U2 0 0

]
,

Γ01 = ATP + PA+

2∑
j=0

Qj , Γ08 = −D1, Γ09 = −D2,

Λ =
[
A α1BK α2BK α3BK 0 0 0 −BK BK

]
,� = PBK,

ΓU
j =

√
3h+ 3Tint/2Uj ,Γ

V
j =

√
3h+ 3Tint/2Vj ,Γ

R
j =

√
h+ jTint/2RjΛ, for j = 0, 1, 2.

Proof. Consider the following Lyapunov Krasovskii functional:

V =

3∑
i=1

Vi, (4.34)
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V1 = x(t)TPx(t),

V2 =
2∑

j=0

∫ t
t−h−jTint/2

xT (s)Qjx(s)ds,

V3 =
2∑

j=0

∫ h+jTint/2
0

∫ t
t−θ ẋ

T (s)Rj ẋ(s)dsdθ.

(4.35)

Let

ζ(t) �
[
x(t)T xTτ xTM eTt ν̄T

]T
(4.36)

with

xTτ =
[
xT (t− τ(t)) xT (t− τ(t)− Tint/2) xT (t− τ(t)− Tint)

]
,

xTM =
[
xT (t− h) xT (t− h− Tint/2) xT (t− h− Tint)

]
.

Computing the time derivative of Vi along the trajectories of x for t ∈ [ajh, aj+1h) we

have:

V̇1 = ζTΛTPx+ xTPΛζ,

V̇2 =
2∑

j=0
x(t)TQjx(t)−

2∑
j=0

xT (t− h− jTint/2)Qjx(t− h− jTint/2),

V̇3 =
2∑

j=0
(h+ jTint/2)(ζ

TΛTRjΛζ)−
2∑

j=0

∫ h+jTint/2
0 ẋ(t− θ)TRj ẋ(t− θ)dθ.

(4.37)

Using Leibniz-Newton formula, for any free weighting matrices Uj and Vj [66] of proper

dimensions we have:

ζTUj(x(t− τ(t)− jTint/2)− x(t− jTint/2− h)− ∫ t−jTint/2−τ(t)
t−jTint/2−h ẋ(s)ds) = 0, (4.38)

ζTVj(x(t)− x(t− jTint/2− τ(t))− ∫ t
t−τ(t)−jTint/2

ẋ(s)ds) = 0. (4.39)

Adding the above terms to the right hand side of the V̇3 in (4.37), we get:

V̇3 =
2∑

j=0
[(h+ jTint/2)ζ

TΛTRjΛζ] + ζT (Γ1 + ΓT
1 )ζ

+
2∑

j=0
[(h− τ(t))ζTUjR

−1
j UT

j ζ + (τ(t) + jTint/2)ζ
TVjR

−1
j V T

j ζ]

−
2∑

j=0
[
∫ t−jTint/2−τ(t)
t−jTint/2−h (UT

j ζ(t) +Rj ẋ(s))
TR−1

j (UT
j ζ(t) +Rj ẋ(s))ds]

−
2∑

j=0
[
∫ t
t−τ(t)−jTint/2

(V T
j ζ(t) +Rj ẋ(s))

TR−1
j (V T

j ζ(t) +Rj ẋ(s))ds],

(4.40)

which results in :

V̇3 ≤
2∑

j=0
[(h+ jTint/2)ζ

TΛTRjΛζ] + ζT (Γ1 + ΓT
1 )ζ

+
2∑

j=0
[(h− τ(t))ζTUjR

−1
j UT

j ζ + (τ(t) + jTint/2)ζ
TVjR

−1
j V T

j ζ].

(4.41)
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Now, since the triggering inequality (4.28) holds for all t ∈ [ajh, aj+1h), it can be derived

that:

V̇ ≤ ζT (Γ0 + Γ1 + ΓT1 )ζ +
2∑

j=0
(h+ jTint/2)ζ

TΛTRjΛζ

+
2∑

j=0
[(h− τ(t))ζTUjR

−1
j UT

j ζ + (τ(t) + jTint/2)ζ
TVjR

−1
j V T

j ζ] + ν̄(aj)
TD2ν̄(aj) + Δν(t),−

(4.42)

where D2 is some arbitrary positive definite matrix. Using definitions of ΓR
j ,Γ

U
j and ΓV

j ,

the above inequality can be rewritten as follows:

V̇ ≤ ζT Γ̄ζ + ν̄(aj)
TD2ν̄(aj) + Δν(t) , (4.43)

where

Γ̄ = Γ0 + Γ1 + ΓT
1 +

2∑
j=0

ΓR
j
T
R−1

j ΓR
j +

2∑
j=0

[ h−τ(t)
3h+3Tint/2

ΓU
j R

−1
j ΓU

j
T
+ τ(t)+jTint/2

3h+3Tint/2
ΓV
j R

−1
j ΓV

j
T
].

(4.44)

It follows from equation (4.43) that:

E{V̇ } ≤ E{ν̄(aj)TD2ν̄(aj)}+ E{Δν(t)}+ E{ζT (Γ0 + Γ1 + ΓT
1 +

2∑
j=0

ΓR
j
T
R−1

j ΓR
j + Γ̄)ζ}.

(4.45)

Since the elements of the random vector ν̄ are statistically independent, we have:

E{ν̄(aj)TD2ν̄(aj)} = tr(D2)σ
2/ns, (4.46)

E{Δν(t)} = (tr(β) + tr((I −D1)
−1))σ2/ns

+E{2x̄T (t− τ(t))βν̄(t− τ(t))− 2eTt ν̄(t− τ(t))},
(4.47)

From the system dynamic (4.24), we see that the vectors x̄(t−τ(t)) and et, possibly depend

on the noise samples ν(t′), where ‘t′ < t− τ(t)− h’. Consequently, they are independent

from ν̄(t− τ(t)) and so the last term in the above equation is equal to zero. Therefore:

E{Δν(t)}+ E{ν̄(aj)TD2ν̄(aj)} = cν/ns, (4.48)

cν = (tr(β) + tr((I −D1)
−1) + tr(D2))σ

2. (4.49)

Since
2∑

j=0

[
h− τ(t)

3h+ 3Tint/2
+

τ(t) + jTint/2

3h+ 3Tint/2
] = 1, (4.50)

then Γ̄ can be rewritten as:

Γ̄ =
∑2

j=0[
h−τ(t)

3h+3Tint/2
Γ̄U
j + τ(t)+jTint/2

3h+3Tint/2
Γ̄V
j ], (4.51)
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with

Γ̄U
j = Γ0 + Γ1 + ΓT

1 +

2∑
i=0

ΓR
i
T
R−1

i ΓR
i + ΓU

j R
−1
j ΓU

j
T
, (4.52)

Γ̄V
j = Γ0 + Γ1 + ΓT

1 +

2∑
i=0

ΓR
i
T
R−1

i ΓR
i + ΓV

j R
−1
j ΓV

j
T
. (4.53)

In other words, Γ̄ is a convex combination of Γ̄U
j and Γ̄V

j (for j = 0, 1, 2). So, based on

Lemma 2.3

Γ̄ < 0 (4.54)

is equivalent to

Γ̄U
j < 0, Γ̄V

j < 0, for j = 0, 1, 2, (4.55)

which in turn, using Schur complement, are equivalent to the LMIs (4.33).

Now, define:

−θUj := λmax(Γ̄
U
j ), −θVj := λmax(Γ̄

V
j ), for j = 0, 1, 2. (4.56)

Using (4.51) and (4.55), we have:

ζT Γ̄ζ ≤ −
2∑

j=0

[
h− τ(t)

3h+ 3Tint/2
θUj +

τ(t) + jTint/2

3h+ 3Tint/2
θVj ]‖ζ‖2. (4.57)

Defining 1

θ := min
0≤τ(t)≤h

2∑
j=0

[
h− τ(t)

3h+ 3Tint/2
θUj +

τ(t) + jTint/2

3h+ 3Tint/2
θVj ], (4.58)

then, we obtain:

E{V̇ } ≤ −θE{‖x(t)‖2}+ cν/ns. (4.59)

Taking ns to infinity in equation (4.59) results in:

E{V̇ } ≤ −θE{‖x(t)‖2}. (4.60)

Consequently, mean square asymptotic stability is ensured. This concludes the proof.

Remark 4.2. Theorem 4.1 assumes that the number of samples over the integration pe-

riod, ns → ∞. The assumption ensures the cancellation of the positive term in equation

1Based on (4.50) and (4.56) such minimum exists and is greater than zero.
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(4.59) used to prove asymptotic stability. In practice, ns is finite in any practical imple-

mentation, violating the conditions of the theorem. Nevertheless, by increasing ns, one

can easily take this term down to a small value. In this situation, the state trajectories of

the system are ultimately bounded in a (sufficiently small) region.

Remark 4.3. Theorem 4.1 requires the use of a numerical integration technique. Of the

many alternatives available, we chose the Simpson’s rule as a good compromise between

precision and simplicity. It is therefore an implicit assumption of Theorem 4.1 that the

approximation error 1
32×90T

5
int|x(4)| is negligible. This is reasonable assumption in any

application in which the state trajectories are bounded, provided that the sampling time T

is small enough. Theorem 4.1 can also be modified to accommodate a more elaborate inte-

gration technique such as, for example, the extended Simpson’s rule [67]. The use of this

approximation method, or any other more elaborate rule, will result in additional delayed

state terms in the system equations and consequently the LMIs introduced in Theorem 1

will have larger dimensions.

On the other hand, the Trapezoidal rule (4.32) provides a simpler solution that can

also be used to approximate the integral term in Theorem 4.1. In this case, the solution

contains only two delay terms and the LMIs can be easily simplified and reduced in size by

removing the extra terms and matrices generated for the term x(t − τ(t) − Tint/2). The

prize paid for the simplification is a larger approximation error.

4.4 Controller and TC Parameters Design

In this section, similar to Chapter 2, we assume that the state feedback gain K and the

PIBTC gain β are unknown parameters to be designed. To this end, we reformulate

Theorem 4.1 as an optimization problem, where effective data transmission reduction is

achieved by maximization of β. Theorem 4.2 provides a convex optimization problem with

LMI constraints to find optimal values for the control system parameters.

Theorem 4.2. Consider the stochastic system (4.1). As ns → ∞, there exist an event-

based control law (4.9) and a PIBTC (4.8) such that the closed-loop system is asymptot-

ically stable in the mean square if there exist matrices X > 0, Y > 0, Q̂j > 0, R̂j > 0,

(j = 0, 1, 2), Ûj and V̂j (j = 0, 1, 2) of appropriate dimensions, and scalar zβ > 0 such
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that the following optimization problem has solution for some εi > 0, D1 > 0 (satisfying

I −D1 > 0), D2 > 0:

min zβ (4.61)

s.t.

LÛ
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̂0 + Γ̂1 + Γ̂T
1 � � � �

Γ̂R
0 −Γ̂XR0 � � �

Γ̂R
1 0 −Γ̂XR1 � �

Γ̂R
2 0 0 −Γ̂XR2 �

Γ̂U
j 0 0 0 −R̂j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

LV̂
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̂0 + Γ̂1 + Γ̂T
1 � � � �

Γ̂R
0 −Γ̂XR0 � � �

Γ̂R
1 0 −Γ̂XR1 � �

Γ̂R
2 0 0 −Γ̂XR2 �

Γ̂V
j 0 0 0 −R̂j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

for j = 0, 1, 2,

(4.62)

⎡
⎣ zβI X

X β̄

⎤
⎦ ≥ 0, (4.63)

where:

Γ̂1 =

[
2∑

j=0
V̂j Û0 − V̂0 Û1 − V̂1 Û2 − V̂2 −Û0 −Û1 −Û2 0 0 0

]
,

Γ̂R
j =

√
h+ jTint/2Λ̂, Γ̂XRj = −ε2j R̂j + 2εjX,

Γ̂U
j =

√
3h+ 3Tint/2Ûj , Γ̂V

j =
√

3h+ 3Tint/2V̂j , for j = 0, 1, 2,

Λ̂ =
[
AX α1BY α2BY α3BY 0 0 0 −BY BY

]
.

In addition, Γ̂0 is defined in the same way as Γ0, given in theorem 4.1, where �, β,Qj ,Γ01,Γ08

and Γ09 are replaced by �̂, β̂, Q̂j , Γ̂01, Γ̂08 and Γ̂09, respectively, where:

Γ̂01 = XAT +AX +
2∑

j=0
Q̂j ,

Γ̂08 = ε23D
−1
1 − 2ε3X, Γ̂09 = ε24D

−1
2 − 2ε4X, �̂ = BY.

Having solved the optimization problem, the optimal values for controller gain and event

generator parameter are calculated as:

K = Y X−1, β = X−1β̂X−1. (4.64)

55



Proof. Considering β andK as optimization variables, the inequalities provided in The-

orem 4.1 are no longer in LMI form. To express the conditions of the theorem in LMI form

we use an approach similar to [35]. Let X := P−1, X̂ := diag(X,X,X,X,X,X,X,X,X)

and define new variables

Y := KX,

β̂ := XβX, Q̂j := XQX, Ûj := X̂UjX,

V̂j := X̂VjX, R̂j := XRjX, for j = 0, 1, 2.

(4.65)

Then, pre and post-multiply (4.54) by X̂. With this construction (4.54) is equivalent to:

ˆ̄Γ =

2∑
j=0

[
h− τ(t)

3h+ 3Tint/2
ˆ̄ΓU
j +

τ(t) + jTint/2

3h+ 3Tint/2
ˆ̄ΓV
j ] < 0, (4.66)

where

ˆ̄ΓU
j = Γ̂0 + Γ̂1 + Γ̂T

1 +
2∑

i=0

Γ̂R
i R

−1
i Γ̂R

i + Γ̂U
j R̂

−1
j Γ̂U

j , (4.67)

ˆ̄ΓV
j = Γ̂0 + Γ̂1 + Γ̂T

1 +

2∑
i=0

Γ̂R
i R

−1
i Γ̂R

i + Γ̂V
j R̂

−1
j Γ̂V

j . (4.68)

Using the Schur complement, Lemmas 2.2 and 2.3, necessary conditions to guarantee

inequality (4.66) are that LMIs (4.62) hold.

The rest of stability proof is the same as of the Theorem 1 and is thus omitted.

Based on definitions (4.65), maximizing β is equivalent to minimizing the termXβ̂−1X.

In order to express this objective in convex form, define an auxiliary variable zβ such that

zβI −Xβ̂−1X ≥ 0, (4.69)

and minimize zβ instead. Note that by the Schur complement, inequality (4.69) is equiv-

alent to LMI (4.63).

4.5 Simulation Results

In this section we present an illustrative example to substantiate the proposed approach.

Consider the unstable batch reactor system [68], with the following dynamics:

ẋ = Ax+Bu,
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

5.679 0

1.136 −3.146

1.136 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.70)

We assume that there are additive noise signals on the measured state values. To clarify

our main points and to provide a proper comparison, different noise distributions are

considered. To design the proposed event triggering control system for this plant, the

period of TC verification is set to h = 0.05, and the integration period is chosen as

Tint = 0.04. Since the integration period is small enough, the trapezoidal rule is exploited

to replace the integral term, and values α1 = 1/2, α2 = 0, and α3 = 1/2 are used in the

formulation (4.31). In order to solve the optimization problem (4.61) with the constraints

(4.62)-(4.63), the weighting matrices D1 and D2 are selected as D1 = D2 = 0.8I4×4.

Solving the optimization problem of Theorem 2, and using (4.64), the state feedback and

the TC parameter are as follows:

β =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0251 −0.0014 −0.0001 −0.0004

−0.0014 0.0501 0.0026 0.0065

−0.0001 0.0026 0.0252 0.0007

−0.0004 0.0065 0.0007 0.0267

⎤
⎥⎥⎥⎥⎥⎥⎦
, K =

⎡
⎣0.2965 −0.3730 0.1512 −0.4645

1.6031 −0.0269 0.9792 −0.7223

⎤
⎦ .

Note that to find proper optimal solutions, using the iterative bisection approach, the

coefficients ε1-ε4 are easily tuned, resulting in the values ε1 = ε2 = 1 and ε3 = ε4 = 19. To

simulate the results, the initial condition vector is set to x(0) = [−12, 6,−3,−12]T . First,

to represent the effect of the noise on the event generator module and also the output signal

performance in the traditional event-based scheme, the system is implemented using the

(classical) TC and feedback law:

(xν(i)− x̂ν)
T (xν(i)− x̂ν)− xν

T (i)βxν(i) ≤ 0,

u = Kx̂ν(t).
(4.71)

In the other words, instead of average values, instant values of the output are applied

in both TC and the state feedback law. Having set the parameters, the simulation is

implemented for 4 seconds, where the measurement noise distribution for all state channels

are assumed to beN (0, 0.052). To have a fair evaluation of the system, simulation is run 10
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Figure 4.2: State responses of the reactor, controlled by the traditional event-based system

times (as a typical value) and finally the mean number of triggered samples between plant

and controller is calculated. Based on the results obtained, the traditional event based

system sends an average of 69 data points during each implementation. In the other words,

almost 86% of the times that the TC was verified, it had been violated and data was sent

to the controller, something which can mainly be attributed to presence of the noise.

These conditions further deteriorate if the noise amplitude increases. Indeed, if standard

deviation of the noise is increased and the noise distribution is changed to N (0, 0.32),

the average data points transmitted increases to 77; i.e. the TC is violated at 96% of

verification instants. The state response of this system is shown in Fig. 4.2, where, as

expected, the existing noise has deteriorated the performance of output signals. Consider

now the proposed PIBTC (4.8) and the control law (4.9), instead of the traditional scheme.

Since calculation of the integral term x̄ν in our scheme directly depends on the sampling

rate of the measurement sensors, the simulation is carried out for different sensor sampling

frequencies. The results for two different measurement noise distributions are represented

and compared with the traditional case in Table 4.1.

Table 4.1: Number of data exchanged between the reactor and the controller, while using
event-based mechanism.

Traditional mechanism
Proposed mechanism with different sensor sampling rate
200 500 1000 2000 5000 10000 (Hz)

Noise distribution N (0, 0.32) 77 71 63 59 56 51 46
Noise distribution N (0, 0.052) 69 58 51 46 42 43 41
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Figure 4.3: State responses of the reactor controlled by the porposed event-based system

Similar to the previous part, for each specific frequency, the simulations are carried out

10 times and the average number of transmitted samples is provided. For the standard de-

viation 0.3, as the sampling frequency goes up, the number of data transmission decreases

gradually such that for a frequency 10 KHz the number of transmitted points is 40% less

than the value corresponding to the traditional mechanism. For the measurement noise

with the standard deviation 0.05 a similar trend is observed. However, since, with a high

probability, the amplitude of noise samples are too small in this case, for frequencies more

than 1 KHz no significant change happens in the calculation of the x̄ν , and so neither

does in the number of data communication points. Fig. 4.3 shows the state trajectories

of the proposed event triggering system assuming a sensor sampling rate of 2 KHz. As

shown, using this scheme, not only the states of the system are properly stabilized, but

also the impact of noise on signals quality has been effectively reduced.

Although, our proposed scheme relies on a Lyapunov-based approach, we have also

simulated an optimal-based event triggering scheme, introduced in [51], for the reactor

to compare the results. The scheme in [51] is designed for output feedback discrete-time

systems, where two separate event detector blocks are considered at plant and controller

sides, respectively.

To have a fair comparison, first an exact discrete-time equivalence of the systems

dynamics (4.70) is calculated for the sampling time 0.05. To save space, the obtained

difference equation is not provided here. Then, since our goal is to design a state feedback

scheme with a single event generator block at the plant side, the parameter λc (which

is the communication price for data transmission from controller to actuator link in the

59



0 10 20 30 40 50 60 70 80
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Time(s)

Figure 4.4: State responses of the discrete reactor model, controlled by the given event-
based system in (Li & Lemmon, 2011).

objective function) is set to zero. Taking the mentioned steps in [51], the state feedback

gain and the triggering condition are achieved as follows, respectively:

Kd =

⎡
⎣0.0973 −0.9805 −0.2342 −0.9905

3.1475 0.0711 2.1571 −1.5092

⎤
⎦ ,

eTd

⎡
⎢⎢⎢⎢⎢⎢⎣

12.1157 1.5311 7.4443 −4.0129

1.5311 3.2423 1.6684 1.1295

7.4443 1.6684 6.3916 −1.9978

−4.0129 1.1295 −1.9978 4.5811

⎤
⎥⎥⎥⎥⎥⎥⎦
ed ≤ 0.034,

where, ed is some measurement error defined in the paper.

Now, a zero white Gaussian Noise process v with variance 0.32 is considered as the

measurement noise and simulation is carried out for 80 iteration with the same initial con-

dition as the previous parts. The state responses are represented in Fig. 4.4. Based on the

obtained results, the triggering condition introduced in [51], triggers 58 data to generate

a convergence rate of state trajectories similar to our proposed scheme’s. According to

Table 4.1, this value is almost equal to the one achieved by our proposed scheme which

corresponds to the sampling rate 1 KHz. Note that, using our scheme, this number of

information exchange can be effectively reduced by raising the sensor sampling rate.
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4.6 Summary

A new event triggering mechanism was proposed for a class of noisy LTI systems. The

designed control system is able to significantly attenuate the effect of measurement noise

in the event generator module and also retrieve the output performance. Stability analysis

and controller parameter design were carried out based on Lyapunov-Krasovskii function-

als. Finally, simulations were implemented for an unstable batch reactor system to show

the efficiency of the system.

61



Chapter 5

An Event-Based Observer for

Linear Stochastic Systems

In this chapter observer design for LTI systems is studied in the presence of measurement

noise. Following the idea given in the last chapter, a novel form of TC is proposed

which is robust against noise and help lower data transmission from plant to the observer.

The proposed system is modeled in time delay form, similar to the one given in [69],

and performance analysis is given using Lyapunov Krasovskii functionals. In addition,

hierarchical steps are presented to design the parameters of the system in a proper fashion.

Finally simulation results are given to illustrate the efficiency of the introduced system.

The rest of this chapter is organized as follows. In section 5.1, problem statement is

given the structure of the proposed observer is presented. Sections 5.2 and 5.3 contain

modeling and performance analysis of the system, respectively. Section 5.4 introduces a

mechanism to design the parameters of the system. Simulation results are given in section

5.5 and finally, the chapter is summarized in section 5.6.

5.1 Problem Statement

Consider the following class of continuous-time linear systems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = Apx+Bpw

y(t) = Cpx(t) + ν(t)

z(t) = Hpx(t)

(5.1)
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where x(t) ∈ Rn is the state vector and w(t) ∈ Rm is the disturbance input, which is

assumed to be in L2[0,+∞). Moreover, y(t) ∈ Rp is the measured output contaminated

by some stochastic measurement noise ν(t) and z(t) is the signal to be estimated.

Assumption: The measurement noise ν(t) is a zero mean white Gaussian noise vector

with the covariance vector σ2I.

It is assumed the gain L in the following Luenberger observer has been already designed

such that Ap − LCp is Hurwitz and so the dynamics of estimation error eF = xF − x is

stable:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋF = ApxF + L(yF (t)− y(t))

yF = CpxF

zF = HpxF (t)

(5.2)

The goal of this paper is to modify the above-mentioned traditional observer by an

event-based mechanism, such that the transmission of output samples from plant side

to the observer side is effectively reduced, while the signal zF (t) estimates z(t) and the

following H∞ performance holds:

E{‖ez‖2,T } ≤ γ‖w‖2,T + ε, (5.3)

where ε is some constant value, ez = z − zF .

In the most Lyapunov-based references, provided for the event-based observation prob-

lem in the literature, the TC is basically defined based on the instantaneous sampled values

of the output. As an example, in [69], the main structure of the TC is as follows:

(y(t)− ŷ)T (y(t)− ŷ) ≤ βyT (t)y(t), (5.4)

where ŷ(t) is the last output sample, sent to the observer module. Using above TC, the

traditional observer (5.2) would turn into the following event-based format:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋF = ApxF + L(yF (t)− ŷ(t))

yF = CpxF

zF = HpxF (t)

(5.5)

As seen, if the TC (5.4) is utilized, it would trigger unnecessary samples, due to

presence of the stochastic measurement noise ν(t) on y(t) and also ŷ(t). So, although this
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form of TC is pretty simple to implement, it may not be efficient in practical cases, where

stochastic noise is present on the measured output.

In this regard, following the idea given in the last chapter, in the next section, we are

going to provide an event-based observer scheme, which is robust against measurement

noise and lowers the data communication between the plant and observer efficiently.

5.1.1 Proposed Event Triggering Mechanism and the Observer Scheme

The main structure of the proposed systems is as follows. An event generator block is

considered at the plant side, verified periodically with the period of h. Moreover, instead

of instant values, an average of measured data over the past time interval Tint is fed to

the event generator as its input. In the other words, defining ȳ(ih) as the input of event

generator, we have:

ȳ(ih) :=
1

Tint

∫ ih

ih−Tint

y(α)dα for i ∈ N. (5.6)

Then, the event generator block transmits an updated value of ȳ to the observer just

whenever the normalized value of the difference between the latest transmitted value and

the new sample exceeds a certain threshold. In the other words, let ˆ̄y as the last value sent

to the observer at the time instant t̂. Then, for the sample times ih after t̂ (i.e. ih > t̂

), the event generator transmits a new sample of ȳ if the following proposed triggering

condition is violated:

(ȳ(i)− ˆ̄y)T (ȳ(i)− ˆ̄y)− βȳT (i)ȳ(i) ≤ 0. (5.7)

In the above formulation, for simplicity we have denoted ȳ(ih) by ȳ(i). Moreover, β is a

scalar parameter which should be set to a proper value. This would be explained more

in section 5.4. Note that, defining the sequence {kj}∞j=1 as the sample numbers at which

data are sent to the observer, then the input to the observer is defined as ˆ̄y(t):

ˆ̄y(t) := ȳ(kj) for t ∈ [kjh, kj+1h) , j ∈ N. (5.8)

To show the robustness of our proposed observation paradigm against noise, define

x̄(i) :=
1

Tint

∫ ih

ih−Tint

x(α)dα, (5.9)
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and

ν̄(i) :=
1

Tint

∫ ih

ih−Tint

ν(α)dα. (5.10)

Now, using equations (5.1) and (5.6):

ȳ(i) = Cpx̄(i) + ν̄(i), (5.11)

and so

ˆ̄y(t) = Cpx̄(kj) + ν̄(kj) for t ∈ [kjh, kj+1h). (5.12)

According to equation (5.10), ν̄(i) can be approximated as

ν̄(i) ≈ Sn(i), (5.13)

with

Sn(i) =
1

ns

ns∑
j=1

νij , (5.14)

where the noise samples νij are some independent random variables with the distri-

bution N (0, σ2) which are taken over the interval [ih − Tint, Tint] and their number is

ns.

For large enough number ns, with a good approximation, the distribution of Sn can

be described as N (0, σ2/ns) (Central Limit Theorem [64]); i.e. with a high probability,

ν̄(i) takes the value in a very small region of origin. This issue means that using average

of measured states values rather than instant values would effectively reduce the impact

of noise on the event-TC.

5.2 Modeling The Event-Based System

Based on the structure, explained in the previous section, the dynamics of the observer is

expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋF = ApxF + L(yF (t)− ˆ̄y(t))

yF = CpxF

zF = HpxF (t)

(5.15)

where, ˆ̄y(t) is the output of the triggering module and the input to the observer.
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Defining eF (t) = x(t)− xF (t), using equations (5.1) and (5.15), the error dynamics is

obtained as:

ėF = (Ap − LCp)eF + LCpx(t)− Lˆ̄y(t) +Bpw,

ez(t) = HpeF (t),
(5.16)

where, ez = z − zF is the estimation error.

To analyze the dynamics of the system we will use delay system approach, similar

to [69]. In this regard, the time interval [0,+∞) is broken down as

[0,+∞) =
+∞⋃
k=1

[kjh, kj+1h). (5.17)

Using equations (5.8) and (5.12), the error dynamics (5.16) for t ∈ [kjh, kj+1h) can be

expressed as:

ėF = (Ap − LCp)eF + LCpx(t) +Bpw − LCpx̄(kj)− Lν̄(kj),

ez(t) = HpeF (t).
(5.18)

Now consider the time instant t ∈ [kjh, kj+1h) and denote κt as the latest sample

number before ‘t’ :

κt = max {i ∈ N : ih ≤ t} . (5.19)

Define

τ(t) := t− κth with 0 ≤ τ(t) ≤ h, (5.20)

and

et := Cp(x̄(κt)− x̄(kj)). (5.21)

Adding and subtracting LCpx̄(κt) to the dynamics (5.18) and using above definitions,

the following time delay equation is concluded:

ėF = (Ap − LCp)eF + LCpx(t) +Bpw − Let − LCpx̄(t− τ(t))− Lν̄(kj),

eZ(t) = HpeF (t).
(5.22)

Similarly, the event triggering condition is written in time delay form. The steps are

similar to the ones given in the last chapter:

According to the equations (5.7) and (5.11), the following inequalities are true for

kj ≤ i < kj+1:
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eTt et + (ν̄(i)− ν̄(kj))
T (ν̄(i)− ν̄(kj)) + 2eTt (ν̄(i)− ν̄(kj)) ≤ x̄T (i)CTβCx̄(i) + ν̄T (i)βν̄(i)

+2x̄T (i)CTβν̄(i).

(5.23)

Regarding the definition of κt, for t ∈ [kjh, kj+1h) one can readily find that

kj ≤ κt < kj+1. (5.24)

So based on equation (5.23) we have:

eTt et + (ν̄(κt)− ν̄(kj))
T (ν̄(κt)− ν̄(kj)) + 2eTt (ν̄(κt)− ν̄(kj)) ≤ x̄T (κt)C

TβCx̄(κt)

+ν̄T (κt)βν̄(κt) + 2x̄T (κt)C
Tβν̄(κt),

(5.25)

which, using definition (5.20), can be rewritten as:

eTt et ≤ x̄(t− τ(t))TCTβCx̄(t− τ(t)) + ν̄T (t− τ(t))βν̄(t− τ(t)) + 2eTt (ν̄(t− τ(t))− ν̄(kj))

+2x̄T (t− τ(t))CTβν̄(t− τ(t)).

(5.26)

Applying Lemma 2.1, the above inequality leads to the following formulation:

eTt D1et ≤ x̄(t− τ(t))TCTβCx̄(t− τ(t)) + Δν(t), (5.27)

where:

Δν(t) = ν̄T (t− τ(t))βν̄(t− τ(t)) + 2x̄T (t− τ(t))CTβν̄(t− τ(t))− 2eTt ν̄(t− τ(t))

+ν̄(kj)
T (I −D1)

−1ν̄(kj),

(5.28)

and D1 is an arbitrary positive definite matrix, satisfying I −D1 > 0.

Having formulated the event-based dynamics and the TC in a time-delay form, in the

next section the performance analysis is provided.
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5.3 Performance Analysis of the Proposed Event Based Sys-

tem

Before establishing the performance analysis, first it is noted that the integral term x̄(t−
τ(t)) is approximated by Trapezoidal rule:

∫ t−τ(t)

t−τ(t)−Tint

x(α)dα ≈ Tint

2
[x(t− τ(t)− Tint) + x(t− τ(t))]. (5.29)

It is proved that, the approximation error for this formulation would be [65]:

T 3
int

12
|x(2)(t− τ(t)− Tint)|.

Since a typical practical integration period is much less than 1, the above formulation

provides a trustful approximation, while making the analysis rather simpler. So, the

following equation will be used in the analysis of our system:

x̄(t− τ(t)) ≈ 1/2(x(t− τ(t)) + x(t− τ(t)− Tint)). (5.30)

Remark 5.1. Note that, as mentioned in section 4.2, there are some other alternatives

(such as Simpson rule [65]) to the above-mentioned Trapezoidal approximation, which

provide more accurate approximation of the integral term. However, exploiting these al-

ternatives would involve more delay terms in our formulation and consequently make the

analysis more complicated.

Since the error dynamics (5.22) contains the terms of x(t), the stability analysis should

be carried out by augmenting the plant model. In this regard, defining

X (t) =

⎡
⎣ x(t)

eF (t)

⎤
⎦ ,

the overall dynamics of the system can be expressed as follows:

Ẋ = AX (t) +Ad1X (t− τ(t)) +Ad2X (t− τ(t)− Tint) +Beet +Bww +Bν ν̄(kj),

ez = HeF ,

(5.31)
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where

A =

⎡
⎣ Ap 0

LCp Ap − LCp

⎤
⎦ , Ad1 =

⎡
⎣ 0 0

−α1LCp 0

⎤
⎦ , Ad2 =

⎡
⎣ 0 0

−α2LCp 0

⎤
⎦ , Be =

⎡
⎣0

L

⎤
⎦ ,

Bw =

⎡
⎣Bp

Bp

⎤
⎦ Bν =

⎡
⎣0

L

⎤
⎦ , H =

[
0 Hp

]
.

Theorem 5.1 provides sufficient conditions in the form of LMIs to guarantee the H∞

performance of the proposed event-based observer system.

Theorem 5.1. Consider the event-based observer (5.15) with the proposed TC (5.7). If

ns (i.e. the number of samples over the integration period Tint) tends to infinity, the H∞

performance (5.3) with gain γ is guaranteed for the system, if for given D1 (satisfying

I−D1 > 0) and D2 there exist matrices P > 0, Qi > 0, Ri > 0 (i = 0, 1) with appropriate

dimensions such that the following LMIs hold:

LU
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 +Π+ΠT � � � �

ΓR
1 −ΓW1 � � �

ΓR
2 0 −ΓW2 � �

ΓR
2 0 0 −ΓW3 �

ΓU
j 0 0 0 −Rj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 for j = 0, 1, (5.32)

LV
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 +Π+ΠT � � � �

ΓR
1 −ΓW1 � � �

ΓR
2 0 −ΓW2 � �

ΓR
3 0 0 −ΓW3 �

ΓV
j 0 0 0 −Rj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 for j = 0, 1, (5.33)
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where:

Γ0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ01 PAd1 PAd2 0 0 PBw PBe PBν

� Γ02 Γ04 0 0 0 0 0

� � Γ03 0 0 0 0 0

� � � −Q1 0 0 0 0

� � � � −Q2 0 0 0

� � � � � −γ2 0 0

� � � � � � −D1 0

� � � � � � � −D2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π =
[
V0 + V1 U0 − V0 U1 − V1 −U0 −U1 0 0 0

]
,

ΓU
j =

√
2h+ TintUj for j = 0, 1,

ΓV
j =

√
2h+ TintVj for j = 0, 1,

ΓR
j =

√
h+ jTintRjΛ for j = 0, 1,

Γ01 = ATP + PA+Q1 +Q2 +HTH,

Γ02 = α2
1βC

TC, Γ03 = α2
2βC

TC, Γ04 = α1α2βC
TC,

C =
[
Cp 0

]
,

Λ =
[
A Ad1 Ad2 0 0 Bw Be Bν

]
.

Proof. Consider the following Lyapunov Krasovskii functional:

V =

3∑
i=1

Vi, (5.34)

where

V1 = X (t)TPX (t), (5.35)

V2 =
1∑

j=0

∫ t

t−h−jTint

X T (s)QjX (s)ds, (5.36)

V3 =
1∑

j=0

∫ h+jTint

0

∫ t

t−θ
Ẋ T (s)RẊ (s)dsdθ. (5.37)

Define

ζ(t) :=
[
X (t)T X T

τ X T
M wT eTt ν̄T

]T
, (5.38)
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with

X T
τ =

[
X T (t− τ(t)) X T (t− τ(t)− Tint)

]
,

X T
M =

[
X T (t− h) X T (t− h− Tint)

]
.

Computing the time derivative of Vi along the trajectories of e and x for t ∈ [kjh, kj+1h)

we have:

V̇1 = ζTΛTPX + X TPΛζ,

V̇2 =
1∑

j=0
X (t)TQjX (t)−

1∑
j=0

X T (t− h− jTint)QjX (t− h− jTint),

V̇3 =
1∑

j=0
(h+ jTint)(ζ

TΛTRjΛζ)−
1∑

j=0

∫ h+jTint

0 Ẋ (t− θ)TRjẊ (t− θ)dθ.

(5.39)

Using Leibniz-Newton formula, for any Uj and Vj (for j = 0, 1) of proper dimensions

we have:

ζTUj(X (t− τ(t)− jTint)−X (t− jTint − h)−
∫ t−jTint−τ(t)

t−jTint−h
Ẋ (s)ds) = 0, (5.40)

ζTVj(X (t)−X (t− jTint − τ(t))−
∫ t

t−τ(t)−jTint

Ẋ (s)ds) = 0. (5.41)

Applying above equations we get:

V̇3 ≤
1∑

j=0
(h+ jTint)(ζ

TΛTRjΛζ)

+
1∑

j=0
[(h− τ(t))ζTUjR

−1
j UT

j ζ + (τ(t) + jTint)ζ
TVjR

−1
j V T

j ζ] + ζT (Π + ΠT )ζ.

(5.42)

Now, regarding that the triggering inequality (5.27) holds for all t ∈ [kjh, kj+1h), it

can be derived that:

V̇ − γ2wTw + eTz ez ≤ ζT (Γ0 +Π+ΠT )ζ +
1∑

j=0
(h+ jTint)ζ

TΛTRj(Rj)
−1RjΛζ

+
1∑

j=0
[(h− τ(t))ζTUjR

−1
j UT

j ζ + (τ(t) + jTint)ζ
TVjR

−1
j V T

j ζ] + ν̄(kj)
TD2ν̄(kj) + Δν(t),

(5.43)

where D2 is an arbitrary positive definite matrix.

The above inequality can be rewritten as:

V̇ − γ2wTw + eTz ez ≤ ζT Γ̄ζ + ν̄(kj)
TD2ν̄(kj) + Δν(t), (5.44)
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where :

Γ̄ = Γ0+Π+ΠT +
1∑

j=0

ΓR
j
T
Rj

−1ΓR
j +

1∑
j=0

[
h− τ(t)

2h+ Tint
ΓU
j R

−1
j ΓU

j
T
+

τ(t) + jTint

2h+ Tint
ΓV
j R

−1
j ΓV

j
T
].

(5.45)

Since :

1∑
j=0

[
h− τ(t)

2h+ Tint
+

τ(t) + jTint

2h+ Tint
] = 1, (5.46)

equation (5.45) can be expressed as follows:

Γ̄ =
1∑

j=0

[
h− τ(t)

2h+ Tint
Γ̄U
j +

τ(t) + jTint

2h+ Tint
Γ̄V
j ]. (5.47)

where:

Γ̄U
j = Γ0 + Γ1 + ΓT

1 + ΓU
j R

−1
j ΓU

j
T
+

1∑
j=0

ΓR
j
T
Rj

−1ΓR
j ,

Γ̄V
j = Γ0 + Γ1 + ΓT

1 + ΓV
j R

−1
j ΓV

j
T
+

1∑
j=0

ΓR
j
T
Rj

−1ΓR
j .

(5.48)

It follows from equation (5.44) that:

E{V̇ − γ2wTw + eTz ez} ≤ E{ζT Γ̄ζ},
+E{ν̄(kj)TD2ν̄(kj)}+ E{Δν(t)}.

(5.49)

Since the elements of the random vector ν̄ are statistically independent, we have:

E{ν̄(kj)TD2ν̄(kj)} = tr(D2)σ
2/ns, (5.50)

and for the last term:

E{Δν(t)} = (β+ tr((I−D1)
−1))σ2/ns+E{2x̄T (t− τ(t))CTβν̄(t− τ(t))−2eTt ν̄(t− τ(t))}.

(5.51)

From the equation (5.1), it can easily get that the plant dynamics does not depend on the

noise values. So, the vectors x̄(t − τ(t)) and et are independent from ν̄(t − τ(t)) and so

the last term in above equation is zero. Therefore:

E{Δν(t)}+ E{ν̄(kj)TD2ν̄(kj)} = cν/ns, (5.52)

with

cν = (β + tr((I −D1)
−1) + tr(D2))σ

2. (5.53)
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From (5.46) and (5.47), it is inferred that Γ̄ is a convex combination Γ̄U
0 , Γ̄

U
1 , Γ̄

V
0 and Γ̄V

1 .

So, using Lemma 2.3 and the Schur complement the LMIs (5.32) and (5.33)are equivalent

to

Γ̄ < 0. (5.54)

Then, from equation (5.49) it is obtained:

E{V̇ }+ E{eTz ez − γ2wTw} ≤ −θE{‖x(t)‖2}+ cν/ns, (5.55)

where

−θ := max
0≤τ(t)≤h

(

1∑
j=0

[
h− τ(t)

2h+ Tint
θUj +

τ(t) + jTint

2h+ Tint
θVj ]), (5.56)

with

θUj = λmax(Γ̄
U
j ), θVj = λmax(Γ̄

V
j ). (5.57)

To prove the H∞ performance, integrate both sides of (5.49) from kjh to T ∈ [kjh, kj+1h):

E{V (T )}−E{V (0)}+E{
∫ T

kjh
ez(t)

T ez(t)dt} ≤ γ2
∫ T

kjh
w(t)Tw(t)dt+cν(T−kj)/ns (5.58)

Repeating the integration operation over the intervals [ki, ki+1) (for i = 1, . . . , j − 1) and

since E{V (T )} is positive, we get:

E{‖ez‖22,T } ≤ γ2‖w‖22,T + E{V (0)}+ Tcν/ns, (5.59)

and this concludes the proof.

�

Remark 5.2. Practically speaking, because of the finiteness of the sample numbers ns,

the term Tcν/ns in (5.59) is not exactly equal to zero. However, this bias term can be

made sufficiently small by increasing the number of samples, used for the averaging.

5.4 Parameters Design

In the introduced event-based scheme, the observer gain L, sampling time h, integration

time Tint, triggering condition coefficient β and H∞ gain γ, are the parameters which can

be considered as design parameters. h and Tint are the parameters which mainly depend on

the system properties. The sampling time h represents the minimum possible transmission
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time between two consecutive data sent to the observer side. So, practically, this parameter

has to be chosen based on the network medium properties, such as transmission rate. Tint

plays a key role in suppressing noise impact on the TC. In the other words, depending

on the measurement sensor sampling rate, Tint has to be chosen such that ns (number

of samples in the integration interval) is large enough to make the averaging (5.14) more

effective.

Next, we will go through two separate steps to design L, β and γ. First, assuming

a traditional Luenberger observer, the gain L is found such that eigenvalues of A − LC

are located at desired places. Second, β and γ are designed as follows. Based on the

definition of the TC in (5.7), one can infer that the larger β, the less data is transmitted

through the network channel. However, lower convergence rate of estimation error and

less disturbance attenuation level (bigger γ) would be expected. In the other words there

is a trade-off in designing β and γ. So, to assign proper values for these variables, one

can iteratively solve the following optimization problem for different values of β (starting

form zero, to the value which constraints are infeasible) and find the trade-off curve.

min γ2

LU
0 < 0, LV

0 < 0,

LU
1 < 0, LV

1 < 0,

(5.60)

where, LU
j and LV

j (j = 0, 1) are defined as (5.32) and (5.33).

5.5 Simulation Results

Consider the following parameters of a quarter-car model with an active suspension, bor-

rowed from [69].

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1

0 0 0 1

−ks/ms 0 −cs/ms cs/ms

ks/mu ku/mu cs/mu −cs/mu

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

−2πq0
√
G0v

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C =
[
0 0 0 1

]
, H =

[
0 0 0.2 0

]
,

(5.61)
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Figure 5.1: Trade-off curve between β and γ

where ms = 973, ks = 42720, cs = 3000, ku = 101115, mu = 114, G0 = 512 ×
10(−6), q0 = 0.1, mu = 114. A detailed explanation of parameters are given in [70].

We are going to design and implement the proposed event-based observer for this sys-

tem. To this goal, first, we set the sampling and integration time to 0.05 and 0.02,

respectively. In order to have an acceptable convergence rate and based on the ap-

proach described in the Parameters Design section, the observer gain is set as L =[
−1.1320 −0.5994 24.6167 18.4649

]T
.

Now, the optimization problem (5.60) is implemented for different values of β, starting

from 0 to 1 (where the constraints become infeasible). The obtained values for γ versus β

are depicted in Fig.5.1. As expected, it is clear from the figure that a higher attenuation

level (smaller γ) requires more data transmission (smaller β).

To clarify the efficiency of our described method, the event-based observer is imple-

mented by our proposed TC (5.7) and compared with the case the where the traditional

TC (5.4) is in use. It is assumed that the output measurement is contaminated by a white

Gaussian noise with a distribution of N (0, 0.62), and the disturbance signal in the plant

dynamics is w(t) = 5e−0.1tsin(4t). The initial conditions are set to x(0) = [−12, 6, 3, 9]T

and xF (0) = [−3, 3, 0, 0]T and simulations are carried out for 8 seconds, using different

sensor sampling rates (to clarify the importance of this issue). The number of data trans-
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Figure 5.2: Estimation error trajectories for the cases β = 0.7 (solid) and β = 0.4 (dashed),
while using our proposed event-based observer

mission are given in Table 5.1 and the estimation error trajectories are shown in Fig.

5.2.

Table 5.1: Number of data sent from plant to the observer

Traditional mechanism
Proposed mechanism with different sensor sampling rate

200 700 1000 5000 (Hz)
β = 0.4 97 77 65 62 57
β = 0.7 81 61 49 42 36

The values given in Table 5.1 represent the number of data transmission from plant

side to the observer. As seen, for β = 0.7, the traditional event-based scheme, sends

81 data samples to the observer. In the other words, the TC is violated at 51% of the

verification numbers. However, utilizing our proposed TC (5.7), one is able to reduce this

triggering percentage down to 22.5%, depending on the sampling rate chosen for the event

generator module. A similar conclusion can be made for other values of β. Note that

form the table, increasing β one can reduce the number of triggering samples. However,

this would happen at the expense of lowering the estimation error convergence rate and

disturbance attenuation level, something which is clear in Fig.5.2.
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5.6 Summary

A novel event-based observer scheme was presented for LTI systems, in the presence of

measurement noise. The proposed scheme is able to effectively reduce the impact of noise

and prevent excessive data communication between pant and the observer. The overall

system was modeled in continuous-time form and performance analysis was carried out

using Lyapunov-Krasovskii functional. In addition, a mechanism was proposed to design

the parameters of the systems and finally simulation were given to show the efficiency of

the method.
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Chapter 6

Integral-Based Event-Triggered

Control for Nonlinear Systems

In this chapter, an integral-based event-driven mechanism is proposed for a general class

of nonlinear systems. The proposed scheme is less conservative than earlier work on the

subject and achieves asymptotic stability without forcing the derivative of the Lyapunov

function to be negative between samples. A rigorous proof is given, showing that the

proposed TC is more effective than the corresponding traditional approaches. Simulation

results are provided to illustrate the effectiveness of the proposed solution.

The rest of this chapter is organized as follows. Section 6.1 introduces the problem

statement. In section 6.2, the proposed event triggering mechanism is introduced and

asymptotic stability and existence of minimum inter-event time for the event-based system

is proved. Section 6.3 provides a comparison between the IBTC and traditional TC where

we show that our proposed scheme is more effective in the sense that it can significantly

reduce the data transferred between plant and controller. Section 6.4 presents illustrative

examples and Section 6.5 provides summary and final remarks.

6.1 Problem Statement

Consider the following nonlinear systems:

ẋ = f(x, u), ∀x ∈ R
n, u ∈ R

m (6.1)
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Throughout the rest of this chapter we assume that this system is controlled using a state

feedback law of the form

u = k(x), (6.2)

so that the closed-loop system

ẋ = f(x, k(x+ e)), (6.3)

is ISS with respect to measurement error e and there exist smooth function V : Rn → R+,

class K∞ functions ᾱ, α, α and γ such that

α(|x|) ≤ V (x) ≤ ᾱ(|x|), (6.4)

∂V

∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|). (6.5)

As mentioned in the introduction chapter, the primary reference dealing with stability

of event-driven systems is [1]. In this reference, Tabuada proposes an event condition

to maintain the Lyapunov function V decreasing along the system trajectories. In this

chapter we modify the assumptions and use an integral-based triggering mechanism that

relaxes the conditions set in [1]. We depart from the conjecture that to guarantee closed-

loop convergence to the origin it is enough to ensure that the value of the Lyapunov

function decreases from one triggering instance to the next, regardless the sign of V̇ in

between triggering instants. This condition is enforced provided that the integral of the

derivative of Lyapunov function satisfies the following inequality:

V (x(ti+1))− V (x(ti)) =

∫ ti+1

ti

V̇ (τ)dτ < −
∫ ti+1

ti

αe(|x(τ)|)dτ, (6.6)

where tj represents a triggering instance for each j ∈ N and αe is function belonging to

class K∞. We look for a TC not only satisfies equation (6.6) but also guarantees

V (x(ti)) > V (x(t)) ∀t ∈ (ti, ti+1]. (6.7)

In the other words, regardless of the sign of V̇ (t), V (t) remains upper bounded by

V (ti) over the interval (ti, ti+1].

The following Lemma formalizes this concept and shows how these two conditions

ensure asymptotic stability.

Lemma 6.1. Consider the nonlinear system (6.1) (with f : Rn × Rm → Rn continu-

ous) along with a control of the form (6.2) (with k : Rn → Rm continuous). Let T =
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{t1, t2, . . . , } be an infinite sequence of triggering instants, with min
i∈N

{ti+1 − ti} > κ > 0.

If there is a Lyapunov function satisfying conditions (6.6) and (6.7), then origin is an

asymptotically stable equilibrium point for the closed loop system.

Proof: Suppose that the system initial condition is x(t1) at the initial time t1. To

prove the stability of the system, assume that εV is given. Based on the equations (6.6)

and (6.7), and using (6.4) one can easily obtain:

α(|x(t)|) ≤ ᾱ(|x(t1)|) ∀t > t1. (6.8)

Hence, for any initial condition, satisfying |x(t1)| ≤ δV = ᾱ−1(α(εV )), we would have:

|x(t)| ≤ εV ∀t > t1, (6.9)

and so, the system is stable.

In the next step the convergence of the state trajectories to the origin is proved:

Condition (6.7) implies that for any ti ∈ T , there exists ξi > 0 such that

Ii = {x | V (x) + ξi ≤ V (x(ti))} (6.10)

is an invariant set containing the origin. Moreover, (6.6) implies that Ii+1 ⊂ Ii ∀i ∈ N. It

follows that Ii’s, so defined, constitute a shrinking sequence of invariant sets, denoted by

I = {Ii : i ∈ N}. To prove asymptotic convergence of state trajectories, it suffices to show

Ii → C as i → ∞, (6.11)

where C = {0} is the singleton containing the origin. We reason by contradiction and

assume that C contains at least a point υ �= 0 and assume that

V (x(ti)) → V (υ) > 0 as i → ∞. (6.12)

So:

V (x(ti+1))− V (x(ti)) → 0 as i → ∞.

Then, from condition (6.6) it is easily concluded that :

x(t) → 0 as t → ∞,

which contradicts the assumption. So, x converges asymptotically to the origin.
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Remark 6.1. Lemma 6.1 assumes that the sequence T of triggering instants contains

an infinite number of terms. To ensure that this is the case, this can be easily enforced

adding a simple algorithm to the triggering scheme. The following is an example of such

algorithm:

Let Ts be predefined time index and ti as the last triggering instant generated by an

existing triggering condition. If no triggering occurs after ti + Ts, then a fresh data would

be automatically sent from plant side to the controller after each t = Ts.

In the next section we propose a new event triggering mechanism that achieves stability

requiring fewer samples compared to previously published results.

6.2 Integral Based Event Triggering Mechanism

In this section, we endeavor to construct an event trigger control law based on the ideas of

the previous section. We will show that the new law achieves stability while significantly

reducing the amount of information sent between plant and controller. To this end, we

integrate (6.5) over the interval [ti, t):

V (t)− V (ti) ≤ −
∫ t

ti

α(|x|)dτ +

∫ t

ti

γ(|e|)dτ, (6.13)

and define the Integral-based triggering condition as follows:

∫ t

ti

γ(|e|)dτ ≤ σ

∫ t

ti

α(|x|)dτ t ≥ ti, (6.14)

In the above formulation e = x(t) − x(ti) is the measurement error and 0 < σ < 1 is an

arbitrary coefficient. Next execution time (ti+1 ∈ T ) is the time when above inequality is

violated; i.e. ∫ ti+1

ti

γ(|e|)dτ = σ

∫ ti+1

ti

α(|x|)dτ. (6.15)

In the following theorem, we show that the IBTC (6.14) preserves asymptotic stability

of the closed-loop system, while a minimum inter-event time is guaranteed for the scheme.

Theorem 6.1. Consider the continuous time nonlinear system (6.1) with the pre-defined

stable state feedback law (6.2) and assume that the following conditions, introduced in [1],

hold:
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1. f : Rn × Rm → Rn is Lipschitz continuous on compacts.

2. k : Rn → Rm is Lipschitz continuous on compacts.

3. There exists an ISS Lyapunov function for the closed-loop system, satisfying (6.4)

and (6.5) with α−1 and γ Lipschitz continuous on compacts.

Assume now that instead of continuous information flow from plant to the controller, the

control law updates based on an event-based scheme with IBTC (6.14). If 0 < σ < 1, then

we have the following properties for the event-based system:

(A) For any compact set S ⊂ Rn, containing the origin, there exists a lower bound τmin ∈
R+ such that for any initial condition in S we have

ti+1 − ti ≥ τmin ∀ ti, ti+1 ∈ T, (6.16)

where T = {ti : i ∈ N} is a sequence of the triggering instants.

(B) The origin is an asymptotically stable equilibrium point.

Proof.

(A) To show the existence of minimum inter-event time τmin, we introduce an auxiliary

system with the same dynamics as (6.3):

ζ̇ = f(ζ, k(ζ + e′)); (6.17)

but with the TC proposed in [1]:

γ(|e′|) ≤ σα(|ζ|). (6.18)

Assume now that both systems update their control law at time instant ti and also

have the same state values at this time, i.e.:

x(ti) = ζ(ti). (6.19)

Denote the next execution times of system (6.17) by t′i+1; i.e.

γ(|e′(t′i+1)|) = σα(|ζ(t′i+1)|), (6.20)

and

γ(|e′(t)|) < σα(|ζ(t)|) ∀t ∈ [ti, t
′
i+1). (6.21)
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Based on (6.19) we have

e′(t) = e(t) ∀t ∈ [ti, t
′
i+1). (6.22)

Integrating (6.21) from ti to t′i+1 and using (6.15), we can easily see that ti+1 > t′i+1.

Since the auxiliary system has lower bound for its execution time, [1], so does the

event-based system with IBTC (6.14).

(B) Substituting (6.14) in (6.13) we have

V (t)− V (ti) ≤ (σ − 1)

∫ t

ti

α(|x|)dτ, (6.23)

and so, for σ < 1:

V (t) < V (ti) ∀t ∈ [ti, ti+1), (6.24)

and asymptotic stability follows from Lemma 6.1.

�

6.2.1 Special Case: Linear Comparison Functions

In this subsection we consider the special case in which the functions α and γ are linear.

In this special case; namely, when the assumptions of Theorem 6.1, are satisfied with α

and γ linear; property B can be proved directly without using any auxiliary system.

If α and γ are linear, then for any ts, tf ∈ R the following hold:

∫ tf
ts

α(|x(τ)|)dτ = α(
∫ tf
ts

|x(τ)|dτ),∫ tf
ts

γ(|x(τ)|)dτ = γ(
∫ tf
ts

|x(τ)|dτ).
(6.25)

It then follows that the IBTC (6.14) can be rewritten as:

γ(

∫ t

ti

|e(τ)|dτ) ≤ σα(

∫ t

ti

|x(τ)|dτ). (6.26)

Now, the existence of a lower bound τmin for the execution time intervals is proved similar

to the proof, given in [1]:

Given S, select λ large enough such that S ⊂ Ω = {x ∈ Rn : V (x) ≤ λ}. As proved in

part A of the theorem, Ω is an invariant set for the event-based system. Define

x̄(t) :=
∫ t
tl
|x(τ)|dτ,

ē(t) :=
∫ t
tl
|e(τ)|dτ,

(6.27)
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where tl := max{a ∈ T : a ≤ t}. Moreover, let τmax := sup{ti+1 − ti : i ∈ N}1 and

rΩ := max{|x| : x ∈ Ω}. Then, Bx̄ := {x̄ ∈ Rn : |x̄| ≤ τmaxrΩ} is an invariant compact set

for x̄(t). Furthermore, define another compact set for ē as follows:

E := {ē ∈ R
n : ē ≤ γ−1(σα(x̄)), x̄ ∈ Bx̄},

and let Le to be the Lipschitz constant for the Lipschitz continuous function α−1(γ(·)/σ)
over the set E (containing the origin) so that α−1(γ(ē)/σ) ≤ Leē. Therefore, the following

conservative TC

Leē ≤ x̄ (6.28)

ensures that inequality (6.26) is satisfied. Note that based on Lipschitz continuity of f

and k on compacts, one can easily establish the following inequality on set Bx̄ × E for

some Lf > 0:

|f(x, k(x+ e))| ≤ Lf |x|+ Lf |e|. (6.29)

To find the lower bound τmin on inter-event times, we derive the dynamic of ω � ē/x̄

over the interval [ti, ti+1):

ω̇ = d
dt

∫ t
tl
|e(τ)|dτ

∫ t
tl
|x(τ)|dτ =

|e(t)| ∫ t
tl
|x(τ)|dτ−|x(t)| ∫ t

tl
|e(τ)|dτ

(
∫ t
tl
|x(τ)|dτ)2 ,

ω(ti) = 0.

(6.30)

Integrating equation (6.3) from ti to t and using inequality (6.29):

|e(t)| ≤
∫ t

ti

|f(x, k(x+ e))|dτ ≤ Lf [x̄+ ē] , (6.31)

then, from equation (6.30) we have:

ω̇ ≤ Lf (1 + ω). (6.32)

Based on the comparison lemma [71], the trajectory of ω over [ti, ti+1) is bounded by η,

driven by the following dynamic:

η̇ = Lf (1 + η), η(ti) = 0. (6.33)

In the other words, τmin is lower bounded by the time that η takes to travel from 0 to

1/Le, which is ln(1 + 1/Le)/Lf . This concludes the proof.

1By Remark 6.1 such a supremum always exists.
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Remark 6.2. Theorem 1 shows that the IBTC relaxes the assumptions in previously

established triggering mechanism based on which the derivative of Lyapunov function is

kept negative for time. In the next section we study the benefits of the new IBTC in terms

of transmission data between plant and controller, compared to the classical approach.

6.3 Comparison with traditional triggering scheme

In order to make a fair comparison between the proposed and traditional event triggering

schemes, in this section we consider two event-based systems with the same dynamic but

different triggering strategies and compare the resulting inter-event times. The following

theorem is the main result of this section.

Theorem 6.2. Consider the event-based nonlinear system (6.3) implemented using the

IBTC (6.14), and let the infinite sequence T = {ti : i ∈ N} denote the triggering instants.

Consider also the system (6.17) with the same dynamic but implemented using the classical

TC (6.18) and let T ′ =
{
t′j : j ∈ N

}
represent the triggering instants. Assuming that α is

Lipschitz continuous on compacts and that the conditions of Theorem 1 are satisfied, then

the following properties hold:

(A) Zero Triggering-Time State Difference: If x(tm) = ζ(t′n) for some tm ∈ T and t′n ∈ T ′,

then

tm+1 − tm > t′n+1 − t′n.

(B) Non-Zero Triggering-Time State Difference: For every t′n ∈ T ′, there exists ε > 0

such that if

|x(tm)− ζ(t′n)| < ε ∀tm ∈ T, (6.34)

then

tm+1 − tm > t′n+1 − t′n. (6.35)

Proof.

(A) The system dynamic (6.17) is time invariant over the interval [t′n, t′n+1) in the sense

that e′ only depends on the initial condition value ζ(t′n) and ζ(t). Therefore, without
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loss of generality, we assume t′n = tm and so ζ(tm) = x(tm) and e′(tm) = 0. Then, to

prove this part, it’s enough to show tm+1 > t′n+1, which has been shown in Part (B)

of Theorem 1.

(B) Similar to previous part and without loss of generality, we assume t′n = tm and will

show tm+1 > t′n+1.

For the sake of simplicity, denote ζ(t′n) and x(tm) by ζn and xm respectively. Since

t′n = tm, we have:

e′ = ζn − ζ(t) ∀t ∈ [t′n, tm+1),

e = xm − x(t) ∀t ∈ [t′n, t′n+1).
(6.36)

Define the following variables:

Δ(t) := x(t)− ζ(t), Δ0 := xm − ζn. (6.37)

Then, the dynamic of Δ for t ≥ tm is obtained as follows:

Δ̇ = f(x, k(x+ e))− f(ζ, k(ζ + e′)). (6.38)

Using (6.36) and (6.37), equation (6.38) can be rewritten as:

Δ̇ = f(x, k(x+ e))− f(x−Δ, k(x+ e−Δ0)). (6.39)

Based on the Lipschitz continuity of f and k on compacts, we have that:

˙|Δ| ≤ L′|Δ|+ L′|Δ0| (6.40)

for some L′ > 0. By the comparison lemma [71], we have:

|Δ| ≤ |Δ0|(2eL′(t−t′n) − 1). (6.41)

Now, consider the TC (6.18) over [t′n, t′n+1], where the following equations hold:

γ(|e′(t)|) < σα(|ζ(t)|) ∀t ∈ [t′n, t
′
n+1), (6.42)

γ(|e′(t′n+1)|) = σα(|ζ(t′n+1)|). (6.43)

Equation (6.42) can be reformulated as follows:

γ(|e′(t)|) + ε(ζ(t′n), t) ≤ σα(|ζ(t)|) ∀t ∈ [t′n, t
′
n+1), (6.44)
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in which ε : Rn × [t′n, t′n+1) → R+ is some continuous function . Next, By the

definitions (6.36) and (6.37) the above inequality can be re-written as follows:

γ(|e+Δ−Δ0|) + ε(t) ≤ σα(|x−Δ|), (6.45)

where, for simplicity, ε(ζ(t′n), t) is denoted by ε(t). Since γ(·) and α(·) are Lipschitz

on compacts, one can establish the following inequalities:

γ(|e|)− Lγ(|Δ−Δ0|) ≤ γ(|e+Δ−Δ0|),
σα(|x−Δ|) ≤ σα(|x|) + σLα|Δ|,

(6.46)

where Lγ and Lα are Lipschitz constants of the functions γ and α respectively. Sub-

stituting inequalities (6.46) into (6.45), we obtain:

γ(|e|) + ε(t) ≤ σα(|x|) + σLα|Δ|+ Lγ |Δ−Δ0|. (6.47)

Finally, using the equation (6.41) and integrating the above inequality yields:

∫ t′n+1

t′n
γ(|e(τ)|)dτ +

∫ t′n+1

t′n
ε(τ)dτ ≤ σ

∫ t′n+1

t′n
α(|x(τ)|)dτ + Cint|Δ0|, (6.48)

with

Cint �
∫ t′n+1−t′n

0
(Lγ + (σLα + Lγ)(2e

L′τ − 1))dτ. (6.49)

Note that, since the inter-event time t′n+1 − t′n is bounded below, then Cint > 0. So,

selecting

|Δ0| < ε = C−1
int

∫ t′n+1

t′n
ε(τ)dτ

from equation (6.48), we have:

∫ t′n+1

t′n
γ(|e(τ)|)dτ + ε′ < σ

∫ t′n+1

t′n
α(|x(τ)|)dτ, (6.50)

for some ε′ > 0. Remembering that tm+1 is the time instant when the equality

∫ tm+1

tm

γ(|e(τ)|)dτ = σ

∫ tm+1

tm

α(|x(τ)|)dτ (6.51)

holds and since tm = t′n, it is concluded that tm+1 > t′n+1.

�
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Remark 6.3. The importance of the foregoing theorem becomes clear when we note that

the origin is asymptotic stable equilibrium point of both systems. In the other words, after

a finite time, both state trajectories ζ and x reach a small neighborhood of each other and

stay close from that point on. In this situation, as proved, our proposed event triggering

mechanism transmits less data rather than the traditional scheme to guarantee the stability

of the system.

6.4 Simulation Results

In this section the effectiveness of the proposed method is illustrated by simulation.

Example 6.1. Consider the following LTI system:

ẋ = Ax+Bu, (6.52)

which is already stabilized using the control law u = kx. It can be easily verified that there

exists a Lyapunov function V = xTPx, satisfying the following properties [1]:

cs|x| ≤ V (x) ≤ c̄s|x|, (6.53)

∂V

∂x
(Ax+Bk(x+ e)) ≤ −cs|x|2 + ce|e||x|, (6.54)

where cs, c̄s, cs and ce are some positive constant parameters.

Define σl := σcs/ce. According to Theorem 6.1, applying the following IBTC:

∫ t

ti

|e(τ)||x(τ)|dτ ≤ σl

∫ t

ti

|x(τ)|2dτ ∀ 0 < σl < cs/ce (6.55)

(with ti, i ∈ N showing the triggering instants) the system is asymptotically stable.

Note that in [1], the following traditional TC was introduced for the linear systems:

|e(t)| ≤ σl|x(t)| ∀ 0 < σl < cs/ce. (6.56)

Now, to evaluate our event-based scheme numerically, consider a satellite system, dis-

cussed in [63], which is comprised of two rigid bodies, connected through a flexible link.

Modeling the link as a spring with torque constant ks and viscous damping f , the motion

equations are given as follows:

J1θ̈1 + f(θ̇1 − θ̇2) + ks(θ1 − θ2) = u(t),

J2θ̈2 + f(θ̇2 − θ̇1) + ks(θ2 − θ1) = 0,
(6.57)
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where, J1 and J2 represent the moment of inertia of two bodies, θ1 and θ2 denote the

yaw angle of two bodies and u(t) is the control torque. Now, define the state variables as

x =
[
θ1 θ2 θ̇1 θ̇2

]
and select J1 = J2 = 1, f = 0.09 and ks = 0.04. Then, the state

space equation is expressed in the following form:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−0.3 0.3 −0.004 0.004

0.3 −0.3 0.004 −0.004

⎤
⎥⎥⎥⎥⎥⎥⎦
x+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
u, (6.58)

ẋ = Ax+Bu. (6.59)

Suppose that the system is controlled using the state feedback controller:

u =
[
−2.9953 2.2955 −3.1650 −2.3398

]
x. (6.60)

It can be easily shown the Lyapunov function V = xTPx with:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

3.7236 1.0700 0.9544 8.8164

1.0700 4.1661 0.4746 5.7729

0.9544 0.4746 0.4623 2.6293

8.8164 5.7729 2.6293 32.8624

⎤
⎥⎥⎥⎥⎥⎥⎦

satisfies the inequalities (6.53) and (6.54) with the following parameters:

cs = λmin(P ) = 0.1938, c̄s = λmax(P ) = 36.6054,

cs = λmin(Q) = 1, ce = |PBk + kTBTP | = 25.0583,
(6.61)

where Q = (A+Bk)TP+P (A+Bk). Now, the initial condition is set to x0 =
[
1 0.4 0.2 0

]
and three different controllers are implemented for the system:

• Classic continuous time state-feedback controller with the feedback law (6.60).

• Our proposed event-based scheme with the IBTC (6.55).

• Traditional event triggering mechanism proposed in [1] with the TC (6.56).

Since we must have 0 < σl < cs/ce = 0.0399 to guarantee the stability of the systems,

this coefficient is set to σl = 0.039 for both above triggering conditions. Simulation results
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Figure 6.1: x1 and x2 trajectories of the plant, controlled by a traditional classic state
feedback controller (red dashed), traditional event-based controller (blue dashed) and the
proposed event-based controller (black solid).
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Figure 6.2: x3 and x4 trajectories of the plant, controlled by a traditional classic state
feedback controller (red dashed), traditional event-based controller (blue dashed) and the
proposed event-based controller (black solid).
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Figure 6.3: Control signal generated by classic state feedback controller (red dashed),
traditional event-based controller (blue dashed spikes) and the proposed event-based con-
troller (black solid spikes).
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Figure 6.4: Control signals generated by the three controllers over the time interval [2, 9].
As seen, for each two samples update made by the traditional event-based controller,
averagely just one sample update is made by our proposed controller.

are shown in Figs. 6.1-6.3. As seen in Figs. 6.1 and 6.2, all four states for the three

systems asymptotically approach to the origin over the time with similar performances.

Fig. 6.3 represents the controller signals for all three cases where the trends are similar

to each other. However, based on the obtained results, using our proposed integral-based

event triggering controller, only 88 samples are sent from plant to the controller over

30 sec., while using traditional event-based controller, the controller gets updated 176 times

over the same time interval. In the other words, to provide a similar performance, our

proposed controller requires approximately half as many samples as the traditional event-

based controller. Fig. 6.4 validates this issue and confirms our controller effectively reduces

the data transmission between plant and controller.

Example 6.2. As the second example, the proposed method is implemented for the fol-

lowing unstable plant:

ẋ = f(x, u) =

⎡
⎣ −x1 + x1x2

−x21 + x2 + u

⎤
⎦ , (6.62)

which is controlled by the following controller

u = k(x) = −2x2. (6.63)

Define the Lyapunov function V = 1/2(x21 + x22). Then , it is easily derived that:

∂V

∂x
(f(x, k(x+ e))) ≤ −|x|2 + 2|x||e|. (6.64)

Setting the parameter σ to 0.8, simulations are carried out for both traditional and the

proposed event-based mechanism. To have a fair evaluation of the system, simulations are
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run 10 times (as a typical value) for different initial conditions, varying in the interval

|x0| ≤ 3, and finally the mean number of triggered samples between plant and controller is

calculated. Based on the obtained results, using the traditional mechanism proposed in [1],

an average of 27.1 data points are exchanged between plant and controller over 10 sec.;

But, the corresponding value falls to 10.2, while the integral-based mechanism is in use.

6.5 Summary

A new integral-based event triggering condition was developed for a general class of nonlin-

ear systems. Beside the asymptotic stability, it was proved that the proposed event-based

system is more efficient and less conservative than the corresponding system, introduced

in [1]. At the end, simulations were implemented for both linear and nonlinear dynamics

to show the efficiency of the designed system.
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Chapter 7

Decentralized Summation-Based

Triggering Control for Nonlinear

Systems

In this chapter, event-based control for a class of decentralized nonlinear systems is stud-

ied. It is assumed that the measurement sensors are geographically distributed and so

local event generator modules are employed. Then, a novel periodic triggering condition

is proposed for each module which only uses local information to trigger data through the

communication channel. The proposed TC can be considered as an extension of IBTC,

given in the previous chapter. So, it can potentially reduce the information exchange

between subsystems compared to traditional control approaches, while maintaining closed

loop asymptotic stability. The TC parameters are designed through a convex optimiza-

tion problem with LMI constraints. Simulation results are carried out to illustrate the

performance of the introduced scheme.

The rest of this chapter is organized as follows. In the next section, problem statement

is given and in section 7.2 our proposed TC is introduced. Section 7.3 contains the

continuous-time modeling and stability analysis of the event-based system. In section

7.4 event generator design mechanism is provided. Simulation results are represented in

section 7.5 for both linear and nonlinear systems. Finally, the main results of the chapter

is summarized in 7.6.
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7.1 Problem Statement

Consider a class of nonlinear systems modeled by the following dynamics:

ẋ = Ax+Bu+ ϕ(x, u), (7.1)

where ϕ : Rn × Rm → Rn, satisfying ϕ(0, u) = 0, is a locally Lipschitz function in its

first argument on the region Ω ⊂ Rn (containing origin in its interior), uniformly in u:

‖ϕ(x, u)− ϕ(y, u)‖ ≤ �‖x− y‖, ∀x, y ∈ Ω, (7.2)

where � is the Lipschitz constant.

We assume that the control law

u = Kx (7.3)

has been already designed such that the closed-loop systems is asymptotically stable.

The schematic of this control system is such that the state measurement sensors are

geographically distributed and grouped into N decentralized nodes. The state vector

is written as x = [xT1 , x
T
2 , . . . , x

T
N ]T ∈ Rn, where xj ∈ Rnj denotes the state variables

belonging to the jth node and n =
N∑
j=1

nj is the total number of states. Contrary to

the sensor layouts, the controller unit is centralized and uninterruptedly receives state

information from the sensor nodes.

In this research, our goal is to design event triggering conditions for each node that

guarantee (local) closed-loop asymptotic stability with a large region of attraction. The

TCs operate in a decentralized manner such that each event generator module decides

when to send new data to the controller based only on local information. The controller,

on the other hand, computes the plant input based on the last received data and updates

its output whenever new data is received from any of the sensor nodes. In other words,

the control law (7.3) is implemented as follows:

u = Kx̂(t), (7.4)

where

x̂(t) = [x̂T1 (t), x̂
T
2 (t), . . . , x̂

T
N (t)]T , (7.5)

and x̂j(t) (for j = 1, 2, . . . , N) is a piecewise constant signal generated as the outputs of

the jth node event generator module.
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7.2 Proposed Summation-Based Triggering Condition

As mentioned earlier, in this chapter the TCs are assumed to be clock driven and verified

on a periodic basis. We will represent by iTs the sampling instants, where Ts is the

sampling period and i is the index set i = 0, 1, 2, 3, . . . . Denote the triggering sampling

instants of the jth node by
{
kjl

}∞
l=1

. For i > kjl , our proposed summation-based triggering

condition (SBTC) for the jth node is defined as follows:

fj(xj(i), xj(k
j
l )) :=

i∑
s=kjl

(xj(k
j
l )− xj(s))

Tβj(xj(k
j
l )− xj(s))−

i∑
s=kjl

xj(s)
Txj(s) < 0. (7.6)

In the other words, the jth node transmits a new pack of data to the controller whenever

inequality (7.6) is violated. Note that to simplify our notation we wrote x(i) instead of

x(iTs) in (7.6). The constants βj > 0 (for j = 1, 2, . . . , N) are design parameters to be

designed.

Considering x̂j(t) as the piecewise constant signal generated by the output of node jth

we have:

x̂j(t) = xj(k
j
l ) for t ∈ [kjl Ts, k

j
l+1Ts). (7.7)

Then, the SBTCs (7.6) can be rewritten in the following form:

fj(xj(i), x̂j) :=
i∑

s=αj

(x̂j − xj(s))
Tβj(x̂j − xj(s))−

i∑
s=αj

xj(s)
Txj(s) < 0 for j = 1, . . . , N,

(7.8)

where αj (j ∈ N) is defined as the last triggering sampling instant before i:

αj := max
{
kjl : k

j
l ≤ i

}
. (7.9)

Based on the definition of the TC, it can be easily inferred that the following inequalities

hold at every sampling time:

i∑
s=αj

(x̂j − xj(s))
Tβj(x̂j − xj(s))−

i∑
s=αj

xj(s)
Txj(s) < 0 for j = 1, 2, . . . , N. (7.10)

Remark 7.1. Note that, if one uses the traditional TC form, proposed in [1] (which has

been exploited in different papers), then the condition corresponding to the proposed SBTC

would be written as :

(x̂j − xj(i))
Tβj(x̂j − xj(i))− xj(i)

Txj(i) < 0. (7.11)
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Later on in section 7.3 we show that the SBTC proposed here is less conservative than the

above traditional TC.

In the next section, the proposed event-based system is modeled in a continuous-time

form and the stability analysis is carried out based on Lyapunov-Krasovskii functional.

7.3 Closed-Loop System Modelling and Stability Analysis

Using the event-based controller (7.4), the closed-loop dynamics is given by:

ẋ = Ax+BKx̂(t) + ϕ(x,Kx̂(t)). (7.12)

Denoting κt the last sampling instant before the time instant ‘t’, i.e.:

κt := max{i : iTs ≤ t}, (7.13)

and adding and subtracting BKx(κt) in the right hand side of equation (7.12) we have:

ẋ = Ax+BK(x̂(t)− x(κt)) +BKx(κt) + ϕ(x,Kx̂(t)). (7.14)

Defining the time-varying delay τ(t) as:

τ(t) := t− κtTs, 0 ≤ τ(t) ≤ Ts, (7.15)

the dynamics (7.14) can be rewritten as:

ẋ = Ax+BKe(t) +BKx(t− τ(t)) + ϕ(x,Kx̂(t)), (7.16)

where:

e = [eT1 , e
T
2 , . . . , e

T
N ]T , (7.17)

with

ej(t) = x̂j(t)− xj(t− τ(t)) for j = 1, . . . , N. (7.18)

In the following theorem, the conditions in the form of LMIs are given, under which

the asymptotic stability of the proposed system is guaranteed

Theorem 7.1. Consider the nonlinear system (7.1), controlled by the centralized feedback

law (7.4), implemented using the decentralized SBTCs (7.8). The closed-loop system is
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asymptotically stable if there exists matrices P > 0, Q > 0, R > 0, M1 > 0, M2 > 0, U1

and U2 of proper dimensions such that the following LMIs hold:

Γi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 + ST + S � � � �

�U
i −R � � �

�3 0 −M1 � �

�4 0 0 −M2 �

�5 0 0 0 −R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 for i = 1, 2, (7.19)

where:

S =
[
U2 U1 − U2 −U1 0

]
, (7.20)

�0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

�01 PBK 0 PBK

� I 0 0

� � −Q 0

� � � −β

⎤
⎥⎥⎥⎥⎥⎥⎦
, (7.21)

�01 = ATP + PA+Q+ �2(M1 + TsM2 + TsR), (7.22)

β = diag(β1, β2, . . . , βN ), (7.23)

�
U
1 =

√
TsU1, �

U
2 =

√
TsU2, (7.24)

�3 = P, �4 = �5 =
√

TsRΛ, (7.25)

Λ =
[
A BK 0 BK

]
. (7.26)

Proof. Consider the following Lypunov-Krasovskii functional:

V =

3∑
i=1

Vi, (7.27)

V1 = x(t)TPx(t),

V2 =
∫ t
t−Ts

xT (s)Qx(s)ds,

V3 =
∫ Ts

0

∫ t
t−θ ẋ

T (s)Rẋ(s)dsdθ.

(7.28)

Defining

ζ(t) �
[
x(t)T x(t− τ(t))T x(t− Ts)

T eT
]T

, (7.29)
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the time derivative of Vi along the trajectories of x is derived as:

V̇1 = ζTΛTPx+ xTPΛζ + 2ϕTPx

V̇2 = x(t)TQx(t)− xT (t− Ts)Qx(t− Ts)

V̇3 = Tsζ
TΛTRΛζ + Tsϕ

TRϕ+ 2Tsϕ
TRΛζ − ∫ Ts

0 ẋ(t− θ)TRẋ(t− θ)dθ,

(7.30)

where ϕ(x, u) is abbreviated by ϕ. Using Leibniz-Newton formula, for any U1 and U2 of

proper dimensions we have:

ζTU1(x(t− τ(t))− x(t− Ts)−
∫ t−τ(t)
t−Ts

ẋ(s)ds) = 0, (7.31)

ζTU2(x(t)− x(t− τ(t))− ∫ t
t−τ(t) ẋ(s)ds) = 0. (7.32)

Using above equations and exploiting Lemma 2.1 we have:

V̇ = V̇1 + V̇2 + V̇3 ≤ ζTΛTPx+ xTPΛζ + ϕTM1ϕ+ xTPM−1
1 Px+ x(t)TQx(t)

−xT (t− Ts)Qx(t− Ts) + Tsϕ
TRϕ+ (Ts − τ(t))ζTU1R

−1UT
1 ζ + τ(t)ζTU2R

−1UT
2 ζ

+Tsζ
TΛTRM−1

2 RΛζ + Tsζ
TΛTRΛζ + Tsϕ

TM2ϕ+ ζT (ST + S)ζ,

(7.33)

where M1 and M2 are some positive definite matrices.

Using Lipschitz property of the function ϕ and adding and subtracting the terms

e(t)Tβe(t) and x(t − τ(t))Tx(t − τ(t)) on the right hand side of above equation, it is

concluded that:

V̇ ≤ ζT (�0 + ST + S + Ū +�3M
−1
1 �T

3 +�T
4 M

−1
2 �4 +�T

5 R
−1�5)ζ

+e(t)Tβe(t)− x(t− τ(t))Tx(t− τ(t)),
(7.34)

where Ū is a convex combination of two terms �U
1
T
R−1�U

1 and �U
2
T
R−1�U

2 :

Ū =
(Ts − τ(t))

Ts
�

U
1
T
R−1

�
U
1 +

τ(t)

Ts
�

U
2
T
R−1

�
U
2 . (7.35)

So, using Schur complement, the first term on the right hand side of inequality (7.34) is

negative definite if the LMIs (7.19) hold.

Define:

−λ̄ := λmax(�0 + ST + S + Ū +�3M
−1
1 �

T
3 +�

T
4 M

−1
2 �4 +�

T
5 R

−1
�5). (7.36)

Then, from (7.34), it is easy to see that:

V̇ ≤ −λ̄ζT ζ +

N∑
j=1

eTj βjej −
N∑
j=1

xj(t− τ(t))Txj(t− τ(t)), (7.37)
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where ej and xj are the values correspond to the jth node. Integrating both sides of

equation (7.37), we get:

V (t) ≤ V (0)− λ̄

∫ t

0
ζ(s)T ζ(s)ds+

N∑
j=1

∫ t

0
(ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds.

(7.38)

Consider the integral terms on the right hand side. It is broken down at the triggering

instants for each node:

∫ t
0 (ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds =
mj−1∑
l=1

∫ kjl Ts

kjl−1Ts
(ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds

+
∫ t
kjmj

Ts
(ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds,

(7.39)

where mj is the last triggering sampling number of jth node before the time instant t.

Because of the identity of the delay given by equation (7.15) and also the definition of

error provided in equation (7.18), it can be inferred that ej(t) and xj(t−τ(t)) are constant

over each sampling interval. So, the above equation is rewritten as:

∫ t
0 (ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds =

Ts

mj−1∑
l=1

kjl∑
i=kjl−1

(ej(i)
Tβjej(i)− xj(i)

Txj(i))

+Ts

lt−1∑
i=kjmj

(ej(i)
Tβjej(i)− xj(i)

Txj(i)) + (t− ltTs)(ej(lt)
Tβjej(lt)− xj(lt)

Txj(lt)),

(7.40)

where lt is the last sampling time before the time instant ‘t’.

Now consider the last term on the right hand side. Since 0 < t− ltTs ≤ Ts,

• if ej(lt)
Tβjej(lt)− xj(lt)

Txj(lt) ≥ 0, we have:

∫ t
0 (ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds ≤

Ts

mj−1∑
l=1

kjl∑
i=kjl−1

(ej(i)
Tβjej(i)− xj(i)

Txj(i))

+Ts

lt∑
i=kjmj

(ej(i)
Tβjej(i)− xj(i)

Txj(i)).

(7.41)
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• if ej(lt)
Tβjej(lt)− xj(lt)

Txj(lt) < 0, then:

∫ t
0 (ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds ≤

Ts

mj−1∑
l=1

kjl∑
i=kjl−1

(ej(i)
Tβjej(i)− xj(i)

Txj(i))

+Ts

lt−1∑
i=kjmj

(ej(i)
Tβjej(i)− xj(i)

Txj(i)).

(7.42)

Based on the inequalities (7.10) which are guaranteed by the proposed SBTC, in both

cases above, the right hand side terms are negative and consequently:

∫ t
0 (ej(s)

Tβjej(s)− xj(s− τ(s))Txj(s− τ(s)))ds ≤ 0 for j = 1, . . . , N. (7.43)

Now, substituting above inequality in (7.38), we have:

V (t) ≤ V (0)− λ̄

∫ t

0
ζ(s)T ζ(s)ds. (7.44)

To prove the stability of the system, suppose that ε is given. With respect to the condition

(7.2), above proofs are valid as long as the state trajectory remain inside the region Ω

so that the Lipschitz condition is satisfied. Hence, to prove the stability of the system,

δ(ε) should be found such that for initial functions satisfying sup
s∈[−Ts,0)

|x(s)| < δ, not only

the state vector lies in the region |x(t)| < ε, but also x(t) remains inside Ω for all time

instants. In this regard, define Br := {x : |x| ≤ r}, rM = max{r : Br ∈ Ω} and let:

εmin = min{ε, rM}. (7.45)

The Lyapunov function (7.27) is lower bounded as:

V (x(t)) ≥ λmin(P )|x(t)|2, (7.46)

and upper bounded as:

V (x(t)) ≤ λmax(P )|x(t)|2+Tsλmax(Q) sup
s∈[−Ts,0)

|x(t+s)|2+ Ts
2

2
λmax(R) sup

s∈[−Ts,0)
|ẋ(t+s)|2.

(7.47)

So

λmin(P )|x(t)|2 ≤ V (x(t)),

≤ (λmax(P ) + Tsλmax(Q)) sup
s∈[−Ts,0)

|x(t+ s)|2 + Ts
2

2 λmax(R) sup
s∈[−Ts,0)

|ẋ(t+ s)|2. (7.48)
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From (7.44) and using (7.48), the following inequality holds:

a|x(t)|2 ≤ V (t) ≤ V (0) ≤ b sup
s∈[−Ts,0)

|x(s)|2, (7.49)

where

a = λmin(P ), b = λmax(P ) + Tsλmax(Q) + (2Lsys +
√
1/λmin(β)Lsys + �)2, (7.50)

with Lsys = ‖[A|BK]‖.
So, if δ is defined such that δ <

√
a
b εmin, then for the initial functions satisfying:

sup
s∈[−Ts,0)

|x(s)| ≤ δ (7.51)

we have:

x(t) ∈ Bε ∀ t ≥ 0, (7.52)

and so the system is stable. In addition, the convergence of states is proved based on

equation (7.38) and using Barballat’s lemma [62]. So the system is asymptotically stable

and this concludes the proof.

�

Remark 7.2. Suppose that instead of the SBTCs (7.8) the event-based system is im-

plemented by the traditional TCs (7.11). In this case, from equation (7.37), we would

have:

V̇ ≤ −λ̄ζT ζ (7.53)

the derivative of the Lyapunov function is negative and so the system is asymptotically

stable. However, if the SBTCs are in use, based on inequality (7.37), the derivative of

the Lyapunov function is not required to be negative at all time instants, while proving

asymptotic stability of the nonlinear system. So, our proposed system is potentially less

conservative than its corresponding traditional one and triggers less data transmission over

the communication channel.

7.4 Event Generator Design and Maximization of the Sta-

bility Region

In this section, the SBTC parameters βj (for j = 1, . . . , N) and the Lipschitz constant �

are assumed to be design variables. Then, an optimization-based design tool is provided
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such that:

1. � is enlarged to expand the operation region of the closed-loop system and

2. βj ’s are minimized to reduce the data transmission from sensors to the controller as

much as possible.

Theorem 7.2 contains the main results of this section where a multi-objective problem is

provided to achieve the mentioned criteria, while the asymptotic stability of the event-

based system is ensured.

Theorem 7.2. Consider the nonlinear system (7.1), controlled by the centralized event-

based feedback law (7.4), implemented the decentralized SBTCs (7.8). If βj’s (for j =

1, . . . , N) are obtained through the following optimization problem for some 0 < γ < 1,

then, the closed-loop system is asymptotically stable and the maximum admissible Lipschitz

constant is obtained as �� =
√

μ(ω1 + Tsω2)
−1

.

min γcl + (1− γ)cβ (7.54)

s.t.

Γ̄i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄0 + ST + S � � � �

�U
i −R � � �

�3 0 −ω1I � �

�4 0 0 −�d �

J1 0 0 0 −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 for i = 1, 2, (7.55)

cl ≥ μ+ ω1 + Tsω2, (7.56)

cβI ≥ β. (7.57)

In the above formulation, matrices P � 0, Q � 0, R � 0, βj (j = 1, . . . , N), U1, U2 and

the scalars ω1, ω2, cl, cβ and μ are the optimization variables, and

�̄0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ATP + PA+Q PBK 0 PBK

� I 0 0

� � −Q 0

� � � −β

⎤
⎥⎥⎥⎥⎥⎥⎦
, (7.58)
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�d = R− ω−1
2 R2, (7.59)

β = diag(β1, β2, . . . , βN ), (7.60)

and S, �U
1 , �

U
2 , �3 and �4 are defined as (7.20), (7.24), (7.25), respectively. Moreover,

J1 is a transform matrix which satisfies x = J1ζ with ζ defined as (7.29).

Proof. Consider the same Lyapunov function (7.27), and so the inequality (7.33) is

held for V̇ . Exploiting Lipschitz property of ϕ, from (7.33) we have:

V̇ = V̇1 + V̇2 + V̇3 ≤ ζTΛTPx+ xTPΛζ + �2xTM1x+ xTPM−1
1 Px+ x(t)TQx(t)

−xT (t− Ts)Qx(t− Ts) + Ts�
2xTRx+ (Ts − τ(t))ζTU1R

−1UT
1 ζ + τ(t)ζTU2R

−1UT
2 ζ

+Tsζ
TΛTRM−1

2 RΛζ + Tsζ
TΛTRΛζ + Ts�

2xTM2x+ ζT (S + ST )ζ.

(7.61)

Define M1 = ω1I, M2 = ω2I −R and

μ−1 := �2(ω1 + Tsω2), (7.62)

and add and subtract the terms e(t)Tβe(t) and x(t− τ(t))Tx(t− τ(t)) to the right hand

side of the equation (7.61). Then:

V̇ ≤ Ts−τ(t)
Ts

ζT (�̄0 + ST + S +�U
1 R

−1�U
1
T
+�3ω

−1
1 �T

3 +�T
4 (M

−1
2 +R−1)�4 + μ−1JT

1 J1)ζ

τ(t)
Ts

ζT (�̄0 + ST + S +�U
2 R

−1�U
2
T
+�3ω

−1
1 �T

3 +�T
4 (M

−1
2 +R−1)�4 + μ−1JT

1 J1)ζ

+e(t)Tβe(t)− x(t− τ(t))Tx(t− τ(t)).

(7.63)

Note that:

R−1 +M−1
2 = R−1 + (ω2I −R)−1 =

(ω2I −R)−1((ω2I −R)R−1 + I) = (R− ω−1
2 R2)−1 = �

−1
d .

(7.64)

Using Schur complement, the negativeness of the first two terms on the right hand side

of (7.63) is equivalent to the LMIs (7.55). The rest of stability proof is the quite similar

to the one, given in the proof of Theorem 7.1 and is thus omitted.

�
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Remark 7.3. As mentioned earlier, Theorem 7.2 tries to enlarge Lipschitz constant and

minimize βj’s simultaneously. In this regard, in order to enlarge the Lipschitz constant

�, one can minimize the auxiliary variable cl while satisfying the inequality (7.56). In

addition, to minimize βj(for j = 1, . . . , N), the auxiliary variable cβ is equivalently min-

imized while satisfying the inequality (7.57). Because of having two optimization criteria

the objective function is defined as (7.54), in which γ is a weighting parameter, varying

between 0 and 1.

Remark 7.4. In the above-explained event-based system, if Ts = 0 and βj’s tend to

infinity, we would deal with a traditional continuous-time control system which, based on

what assumed in the Problem Statement section, has been already stabilized by the feedback

gain K. Therefore, it is expected that, at least, for small values of Ts the provided LMIs

in the previous parts are feasible and the optimization problems have solution.

7.5 Simulation Results

In this section, the event-based control of previous sections is evaluated through simula-

tions. Since the proposed scheme is valid for linear systems (as a special case of Lipschitz

nonlinear systems), we present two examples consisting of (i) a linear system, and (ii) a

nonlinear system, respectively.

7.5.1 Linear Case

Consider the following unstable reactor dynamics [68]:

ẋ = Ax+Bu, (7.65)

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

5.679 0

1.136 −3.146

1.136 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which is stabilized by the following control gain:

K =

⎡
⎣0.1906 −0.0440 0.0411 −0.2474

1.0338 0.4534 −0.3662 0.7489

⎤
⎦ . (7.66)
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Two different event-triggered control schemes are implemented and compared for the

system. The first is a centralized scheme, where we assume that information from all the

sensors is sent to a central event generator module at every sampling time, and a single

TC is verified to decide whether a new pack of data is to be sent to the controller or not.

The second is a decentralized scheme, in which an independent TC is considered for each

sensor. In other words, each sensor relies only on its own data to decide whether to sent

a fresh data to the controller or not.

Centralized Scheme

Since the number of nodes is 1, only one event generator module is needed which, based

on the proposed formulation in (7.6), is defined as:

f(x(i), x̂) :=
i∑

s=α

(x̂− x(s))Tβ(x̂− x(s))−
i∑

s=α

x(s)Tx(s) < 0. (7.67)

We assume that the TC is verified every Ts = 0.001 sec. Since there is no nonlinear

term in the plant dynamics, the parameter γ is set to 0 and the optimization problem

(7.54) is solved, where the parameter β is obtained as follows:

β =

⎡
⎢⎢⎢⎢⎢⎢⎣

20.7784 0.9869 −0.7512 0.1979

0.9869 16.7562 −0.5021 1.2560

−0.7512 −0.5021 16.5575 −1.0660

0.1979 1.2560 −1.0660 19.8208

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.68)

To have a fair evaluation of the system, ten separate simulations were done using

different initial conditions varying in the region |x(0)| ≤ 7. Based on the obtained results,

The average of inter-event times for the proposed TC is 151 ms over 5 s. To show the

efficiency of the proposed method, the same set of simulations were implemented using

two other traditional event-based methods. In the first one, the TC (7.67) is replaced with

the corresponding periodic traditional condition used in previous references such as [45];

namely:

h(x(i), x̂) := (x̂− x(i))Tβ(x̂− x(i))− x(i)Tx(i) < 0. (7.69)

Second, the (continuously verified) TC proposed by Tabuada [1] is applied:

g(x(t), x̂) := |x̂− x(t)| − σ|x(t)| < 0, (7.70)
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Figure 7.1: State responses of the reactor, controlled in a centralized way, by means of the
proposed (solid-black) and the traditional periodic (dashed-red) and continuous (dotted-
blue) event-based scheme

where, based on the formulation given in this reference, σ is chosen as σ = 0.57.

According to the simulation results, using identical conditions as in the previous case,

the average inter-event times for the traditional periodic and continuous TCs are 73.5 and

96.2 ms, respectively. These values are remarkably smaller than the value provided using

the SBTC (7.67), due to conservatism existing in the traditional approaches. In addition,

the state responses for all three systems are shown in Fig. 7.1, where it is clear this data

exchange reduction, achieved by the proposed SBTC, does not result in any significant

change in system performance, and each state trajectory converges to the origin with

similar performance to its corresponding trajectory of the traditional systems.
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Decentralized Scheme

In this scheme, a separate, independent TC is considered for each sensor (i.e. N = 4),

and the TCs are defined as:

fj(xj(i), x̂j) :=

i∑
s=αj

(x̂j − xj(s))
Tβj(x̂j − xj(s))−

i∑
s=αj

xj(s)
Txj(s) < 0 for j = 1, . . . , 4,

(7.71)

where x1, x2, x3 and x4 are the states of the system. Similar to the centralized case,

the parameters are set as Ts = 0.001 and γ = 0 and the optimization problem (7.54) is

solved, resulting in the following TC parameters:

β1 = 21.5433, β2 = 21.5414, β3 = 21.5401, β4 = 21.5427. (7.72)

The initial conditions are chosen the same as the previous part and a set of ten separate

simulations were run for 5 seconds for both our proposed system and also system with the

following traditional periodic TCs:

hj(xj(i), x̂j) := (x̂j − xj(i))
Tβj(x̂j − xj(i))− xj(i)

Txj(i) < 0 for j = 1, . . . , 4. (7.73)

The average data transmission for these methods are given in Table 7.1. To have a

fair comparison, simulation results of the reference [19] are also represented in the table.

As mentioned in the introduction section, in this reference the authors have designed

decentralized (continuously verified) TCs and simulated it for the same reactor model.

Based on the numbers in the table, the average of inter-event times for the sensors

are [τ1, τ2, τ3, τ4] = [42, 67.6, 52.1, 49.5] ms. However, the corresponding values provided

by the traditional periodic and continuous mechanisms are [30.7, 38.5, 32.1, 38.2] ms and

[24.9, 27.7, 34.5, 34.2] ms, respectively. Fig. 7.2, representing the state trajectories for

the initial condition x(0) = [4, 7,−4, 3], shows very similar performances in the state re-

sponses of all three mechanisms, despite the larger inter-transmission times for the sensors,

obtained by our proposed SBTCs.

Comparing the results of the proposed centralized and decentralized approaches, it is

inferred that applying centralized approach the data transmitted from the event generator

module to the controller is much less than total data transmitted from the event generators
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Figure 7.2: State responses of the reactor, controlled in a decentralized way, by means
of the proposed (solid-black) and the traditional periodic (dashed-red) and continuous
(dotted-blue) event-based scheme
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Table 7.1: Number of data exchanged between the event generator modules and the
controller, while using different event-based mechanisms.

Centralized
Decentralized

1st 2nd 3rd 4th sensor
Proposed mechanism 33 119 74 96 101

Traditional periodic mechanism 68 163 130 156 131
Traditional continuous mechanism 52 205 180 144 146

in the decentralized scheme. However, if the sensors are geographically distributed and

a single centralized TC is in use, the data of all sensors should be sent to the event

generator module at every sampling time to verify the condition, something which can

result in a high level of usage of the communication bandwidth. Clearly, whenever sensors

are geographically distributed, the decentralized scheme is much more efficient thanks to

the ability of each sensor to communicate independently with the control unit.

7.5.2 Nonlinear Case

Consider the following inverted pendulum system dynamic:

mr2θ̈ −mgr sin(θ) = u(t), (7.74)

where θ represents pendulum angular displacement from vertical line, u(t) is the control

torque, m and r denote the mass and the length of the pendulum, respectively. Defining

x = [x1, x2]
T = [θ, θ̇]T and setting m = 1, r = 2, g = 9.8, the dynamic equations can be

written as follows:

ẋ =

⎡
⎣ 0 1

4.9 0

⎤
⎦x+

⎡
⎣ 0

4.9(sinx1 − x1)

⎤
⎦+

⎡
⎣ 0

0.25

⎤
⎦u,

y =
[
1 0

]
x.

(7.75)

Assume that the origin is stabilized using the following state feedback controller:

u =
[
−55.6 −24

]
x. (7.76)

Similar to the previous example, we now proceed to design centralized and decentralized

event-based controllers for this system.
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Figure 7.3: Trade-Off curve between �∗ and λmax(β
∗), as the solutions of the optmization

problem (7.54) for different values of γ.

Centralized Scheme

We begin considering a single TC of the form (7.67). To design an optimal event-based

mechanism, the TC sampling period is set to 0.001 and the optimization problem (7.54)

is solved for different values of 0 ≤ γ ≤ 1. Fig. 7.3 represents the trade-off curve between

λmax(β
∗) and �∗ where it is clear that the more data is exchanged between plant and

controller, the larger the region of stability that we obtain.

Consider the case γ = 0.1. The following values are derived by solving the optimization

problem:

β =

⎡
⎣ 15.96 4.64

4.64 7.22

⎤
⎦ , � = 0.466. (7.77)

Note that with this value of � the theorems are valid as long as |x1| = |θ| < 0.44. To

compare our results with the traditional methods used in the literature (i.e. using the TC

(7.69)), simulations are carried out for both schemes with the same value of β given in

(7.77), and initial condition x = [0.3, 0.5]. The state responses are given in Fig. 7.4, where

it is clear that both system are asymptotically stabilized. However, the number of data

transmission points over 3 seconds in our proposed scheme versus the traditional one are

13 and 24, respectively. In the other words, 46% data transmission reduction is achieved

by our method.
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Figure 7.4: State responses of the pendulum, controlled in a centralized way, by means of
the proposed (solid-black) and the traditional (dashed-red) event-based scheme

Decentralized Scheme

In this part, separate SBTCs are considered for each of the system states:

fj(xj(i), x̂j) :=
i∑

s=αj

(x̂j − xj(s))
Tβj(x̂j − xj(s))−

i∑
s=αj

xj(s)
Txj(s) < 0 for j = 1, 2.

(7.78)

Setting Ts = 0.001 and having solved the optimization problem (7.54), we obtain a trade-

off curve between max{β∗
1 , β

∗
2} and �∗ curve very similar to Fig. 7.3 and therefore the details

are omitted. To simulate the closed-loop, we consider the solution of the optimization

problem for the case γ = 0.05, which are β1 = β2 = 20.64 and l = 0.497. Again, the

event-based system is implemented using both SBTC’s (7.78) and also the traditional

TC’s:

hj(xj(i), x̂j) := (x̂j − xj(i))
Tβj(x̂j − xj(i))− xj(i)

Txj(i) < 0 for j = 1, 2. (7.79)

The state responses are given in Fig. 7.5

According to the simulation results, the numbers of transmitted data points by the

event-triggering modules in the traditional scheme are 33 and 67. However, the cor-

responding values in our proposed scheme are 18 and 42, something which confirm its
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Figure 7.5: State responses of the pendulum, controlled in a decentralized way, by means
of the proposed (solid-black) and the traditional (dashed-red) event-based scheme

effectiveness of our methods through 40% reduction in overall data transmission.

7.6 Summary

Decentralized event-triggering mechanism was designed for a class of Lipschitz nonlinear

systems, where sensors are assumed to be distributed. The proposed triggering conditions

are verified on a periodic basis and rely only on local information to transmit data to the

control block. They are also less conservative than the corresponding traditional condi-

tions and can effectively reduce data transmission through the communication channel.

The closed-loop system was modeled in a continuous time-delay form and asymptotic sta-

bility was proved. In addition, an optimization-based approach was formulated for TCs

parameters design. Finally, simulation results for both linear and nonlinear cases were

given to illustrate the efficiency of the method.
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Chapter 8

Conclusions and Future Works

In this thesis we consider event-based control systems under different scenarios. Event-

triggered control is currently and active area of research and a significant body of work has

been already produced. The primary goal of this thesis is to contribute to the advancement

of the understanding of the virtues and shortcoming of the event-triggered systems in

comparison to the better known traditional time-driven systems.

Chapter 2 investigates periodic event-triggered control (PETC) for a class of nonlinear

systems. PETC is advantageous, at least from an implementation point of view and so,

several contributions have been proposed on this topic in the last few years. However,

most of the works are dedicated to LTI systems. In this chapter, PETC was designed for

Lipschitz nonlinear systems, which are affected by disturbance. To this end, the system

was first modeled in a continuous-time form. Then, a convex optimization problem with

LMI constraints was provided to design state feedback gain and TC parameters. The

obtained PETC parameters from the optimization problem guarantee stability and H∞

performance of the closed-loop system. The design is effective in the sense that it lowers

data transmission through the network channel and enlarges the admissible Lipschitz

constant for the system nonlinear term.

Chapter 3, considers the important case of output feedback LTI systems. Because of

the use of a dynamic controller, two separate triggering modules were used at the plant and

controller sides. The proposed triggering conditions operate at different sampling rates

and consequently trigger in an asynchronous fashion. Similar to the previous chapter,

the system was modeled in continuous-time form, using delay-system approach. Then
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asymptotic stability andH∞ performance were proved by Lyapunov-Krasovskii functionals

and the conditions were provided in form of LMIs. In addition, a procedure was introduced

to design the triggering mechanism in an effective way.

Chapter 4 considers the implementation of event-triggered systems in the presence if

measurement noise. Basically, the effect of noise on the event-based systems have been

widely ignored throughout the literature. As one of the main contributions of this chapter,

an event-based mechanism was proposed which is effectively robust against measurement

noise. In the other words, the provided system, not only reduces the impact of noise on

the control law, but also it prevents excessive triggers, caused by the noise.

Chapter 5 studies event-based observer design for LTI systems. We assume that the

system dynamics is affected by some exogenous disturbance and the output measure-

ments contain stochastic noise. Then, using a similar idea to chapter 4, a noise-effective

triggering-based observer is proposed. Asymptotic stability and H∞ performance con-

ditions of estimation error were formulated in form of LMIs and then a procedure was

presented to design the observer parameters.

Chapter 6 goes back to the fundamental problem of designing stable event-triggered

systems. We argue that most of the work reported so far in the literature, based on

Lyapunov theory, is intrinsically conservative and therefore endeavor to reduce the con-

servatism associated with the existent ideas. Although our approach is also based on

Lyapunov approach, we propose an integral-based triggering condition which does not re-

quire the Lyapunov function to be monotonous decreasing at all time instants. The result

is a more efficient triggering mechanism which reduces data transmission compared to the

existing results. A rigorous proof is given to show that the inter-event times in the pro-

posed scheme is larger than in the corresponding scheme given in [1]. Simulation results

show that this data transmission reduction does not significantly affect the performance

of the states responses.

Finally, in chapter 7, we consider the important case of decentralized systems. We

consider nonlinear systems in which sensors are geographically distributed; but their data

are transmitted to a central controller. Since each sensor does not have access to other

sensor’s data, decentralized TCs are considered at each sensor, operating only based on

local information. One of the main contributions of this chapter a novel form of TC which
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is less conservative than previously published results and is more efficient in terms of data

transmission. This issue was illustrated through simulation.

The research results, provided in this thesis can be extended and pursued in the fol-

lowing areas:

• Periodic-event triggered control for nonlinear systems

As mentioned earlier, PETC has received more attention in the last few years. In

this research we designed this scheme for a class of Lipschitz nonlinear systems.

However, there still exist different form of nonlinear systems which this idea can be

studied for. Indeed, providing a general framework for PETC design for nonlinear

system can be an interesting area of research.

• Periodic-event triggered observer design for nonlinear systems

Going through literature, one can infer that Lyapunov-based event-driven state es-

timation has not received as much attention as its corresponding control problem.

In particular, because of potential advantages of periodic event triggering schemes,

they can be utilized and developed for state estimation of nonlinear systems.

• Performance problem in integral-based event-triggered control systems

In this research an integral-based triggering mechanism was proposed which, as

proved, is more efficient than its corresponding schemes from a data transmission

point of view. However, stability was the only aspect that was studied in this work.

In the other words, IBTC idea can be developed for the case disturbance is present

in the system and different forms of performance, including L2 may be studied.

• Integral-based event-triggered scheme for networked control systems

As another area of research, the proposed IBTC can be extended for a networked-

control structure. In this case, the constraints imposed by NCS, including time-delay

and packet dropouts, should be taken into account and the triggering mechanism

has to be redesigned in the way that desired stability and performance criteria are

guaranteed.
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