
University of Alberta

Q u e r y P r o c e s s i n g
in

W i r e l e s s S e n s o r N e t w o r k s

by

✓ " “ ■ N / \
Alexandru Coman \ W /

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-32942-9
Our file Notre reference
ISBN: 978-0-494-32942-9

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Wireless sensor networks are made of autonomous devices, called nodes, that can collect,

store, process and share data with other nodes. Users can issue queries over such sen

sor networks to retrieve data from nodes in applications such as environmental monitoring

and surveillance. Query processing is an essential research problem in sensor networks as

the usefulness of this new technology depends on its capability to gather and provide data

efficiently and effectively when required. In this thesis we investigate query processing

techniques for queries over historical sensor observations in a peer-to-peer sensor network.

We propose novel techniques for in-network processing of three types of queries: spatial

range queries, both exact and approximate and join queries. Due to the limited power sup

ply of the sensor nodes, one of the main challenges of sensor network research is extending

the lifetime of the sensor network, and this is the main optimization goal for our tech

niques. We show, both analytically and through extensive experiments, that our techniques

reduce significantly the energy cost of query processing compared to previously existing

techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Basic C o n c e p ts .. 2

1.1.1 Sensor N e tw o rk s .. 3
1.1.2 Data Storage in Sensor Networks .. 5
1.1.3 Data Model for Sensor Networks .. 5
1.1.4 Query Types for Sensor N e tw o rk s .. 6
1.1.5 Challenges and Opportunities ... 8

1.2 Our Sensor Network E nvironm ent... 9
1.2.1 Radio/Energy M o d e l ... 10
1.2.2 Experimental Setup and P aram eters... 11

1.3 Motivating Applications ... 12
1.4 Our Contributions.. 13

1.4.1 Processing of Spatial Range Q ueries... 14
1.4.2 Processing of Join Q u e rie s ... 14
1.4.3 Processing of Queries with Approximate Answers 15

1.5 Thesis Organization... 15

2 Related Works 16
2.1 Data R o u t in g ... 16
2.2 Data Storage.. 17
2.3 Query P rocessing .. 18

2.3.1 Processing of Queries Without Jo in s ... 18
2.3.2 Processing of Queries with Jo in s ... 20
2.3.3 Query Processing with Approximate A nsw ers..................................... 21

2.4 Other Relevant Is su e s .. 24

3 In-network Processing of Spatial Range Queries 26
3.1 Introduction.. 26
3.2 The Spatial Range Q u e ry ... 27
3.3 Basic Query Processing S tra teg y .. 28
3.4 Strategies for Query Processing... 29

3.4.1 SWIF Phase 1: Greedy R o u tin g .. 31
3.4.2 SWIF Phase 2: WinFlood A lg o rith m .. 32

3.5 Analytical M odels for Query P r o c e ss in g .. 33
3.5.1 Estimating the Cost of SWIF ... 35
3.5.2 Estimating the Cost of hTAG ... 38
3.5.3 Dynamic Selection of the Query Processing s t r a te g y 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.4 Finding the Best Coordinator.. 40
3.6 Discussion and E x ten sio n s.. 42
3.7 Evaluation... 43

3.7.1 Impact of Network D ensity... 44
3.7.2 Impact of Size of Query R e g io n .. 45
3.7.3 Impact of Query Selectivity .. 46
3.7.4 Impact of Data A ggregation .. 47
3.7.5 Impact of Large Query Region .. 48

3.8 Related W o r k ... 49
3.9 S u m m a ry ... 50

4 In-network Processing of Join Queries 51
4.1 Introduction • • • • 51
4.2 The Spatial Join Q u e ry .. 52
4.3 Strategies for Processing Join Q u e r ie s ... 53

4.3.1 Problem S ta tem en t.. 53
4.3.2 External J o i n .. 55
4.3.3 Local J o in .. 56
4.3.4 Mediated Jo in .. 56
4.3.5 Join Processing with Sem i-Joins.. 58
4.3.6 Discussion ... 60

4.4 Evaluation .. 62
4.4.1 Impact of Network D ensity... 63
4.4.2 Impact of Size of Query Regions.. 64
4.4.3 Impact of Join Selectivity F ac to r.. 65
4.4.4 Impact of Realistic Communications... 67
4.4.5 Impact of the Estimation Accuracy for the Join Selectivity Factor . 68
4.4.6 Impact of the Location of the Query Regions and Originator Node . 69
4.4.7 S u m m ary .. 69

4.5 DIJ: A Distributed Algorithm for Theta Joins ... 69
4.5.1 DIJ: A Distributed Join Processing A lgorithm 70
4.5.2 Selecting the Relation to Be D istributed... 75
4.5.3 Cost Model E valuation.. 77
4.5.4 S u m m ary .. 81

4.6 Selecting a Join Location and a Join A lg o rith m ... 82
4.7 Related W o r k ... 82
4.8 S u m m a ry ... 84

5 In-network Processing of Approximate Queries 85
5.1 Introduction.. 85
5.2 The STDMAP Q u e ry ... 86
5.3 Strategies for Query Processing... 88

5.3.1 Processing Solutions for STDMAP Q u e rie s .. 89
5.3.2 Aggressive Flood Strategy (A F M).. 89
5.3.3 Energy-aware Flood Strategy (EFM) .. 91
5.3.4 Map-guided Search Strategy (MSM) .. 93
5.3.5 Coping with Sensor Failure .. 94

5.4 Experimental E v a lu a tio n ... 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.1 Impact of Network D ensity.. 97
5.4.2 Impact of Size of Query R e g io n ..100
5.4.3 Impact of Non-Uniform Query D istribution .. 102

5.5 Related W o r k ...103
5.6 S u m m a ry ... 104

6 Conclusions 106

Bibliography 109

A The Average Advance Towards Destination over a Hop 117

B The Average Distance From a Relevant Node to the Coordinator Node 119
B.l General Formula .. 119
B.2 Solving the In teg ra l... 119

C Finding the Optimal Join Location for the Mediated Join 122

D Estimating the number of nodes within h-hops from a node 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 A possible logical view of a sensor network d a ta b a s e 6
1.2 Parameters of the sensor network and other n o ta tio n s 11
1.3 Energy cost of accessing common sensors [MFHH03]..................................... 11

3.1 Notations used in the definitions of the analytical m o d e ls 34
3.2 Parameters of query and sensor n e tw o rk ... 43

4.1 Parameters of query and sensor n e tw o rk ... 62
4.2 Cost model p a ram ete rs ... 78

5.1 Parameters of query and sensor n e tw o rk ... 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 User interaction with the sensor netw ork .. 9

3.1 The hTAG strategy - message f lo w ... 28
3.2 Query routing ex a m p le ... 30
3.3 Neighbor selection in G reedy ... 30
3.4 The message flow in the SWIF strategy for a given coordinator................... 32
3.5 The average advance a/j0p for a hop .. 36
3.6 Dynamic selection of the processing strategy .. 39
3.7 Possible paths for returning the query answ ers.. 40
3.8 The impact of network density for queries without aggregation.................... 44
3.9 The impact of size of query region for queries without aggregation 45
3.10 The impact of query selectivity for queries without aggregation.................... 46
3.11 The impact of data aggregation ... 47
3.12 The impact of large query region for queries without aggregation................ 49

4.1 Query tree and notations .. 53
4.2 Join processing at the user station (external) - data flow and s te p s 55
4.3 In-network join processing (w/o semi-join) - data flow and s t e p s 57
4.4 Join alternatives with semi-join - data f lo w ... 58
4.5 The impact of network d e n s i ty .. 63
4.6 The impact of the size of the query regions... 65
4.7 The impact of join selectivity factor (J S F) ... 66
4.8 The impact of packet delivery success r a t e ... 67
4.9 The impact of the estimation error of JSF ... 68
4.10 Memory allocation sch e m e ... 73
4.11 States of a node during tuple ro u tin g ... 74
4.12 Join tuples information at nodes ... 75
4.13 Energy cost ratio when R d = A and R d = B for variations in the relative

size of the join relations.. 78
4.14 Size of join region (R j) in number of hops when R d — A and R d = B for

variations in the relative size of the join relations...... .. 79
4.15 Energy cost ratio when R d = A and R d — B for variations in the size of

available memory at the nodes in R j ... 80
4.16 Energy cost ratio when R d = A and R d = B for variations in the network

density ... 81
4.17 A join optimizer for queries in sensor n e tw o rk s ... 82

5.1 Example of a map answ er.. 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 The coverage of sensors... 88
5.3 Extended query area .. 88
5.4 The impact of network density on the percentage of relevant nodes that

answer the query (from the total number of relevant n o d e s) 98
5.5 The impact of network density on the total energy used for processing the

query ... 99
5.6 The impact of the query region size on the percentage of relevant nodes that

answer the query (from the total number of relevant n o d e s) 100
5.7 The impact of query region size on the total energy used for processing the

query ..101
5.8 The impact of the distribution of the queries on the energy variation among

relevant n o d es ... 103

A.l The average advance aiwp for a h o p ... 117

C.l Finding the optimal join lo ca tio n ..122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Today’s sensors are no longer just simple sensing devices wired to a central monitoring
site, but they have computation, storage and wireless communication capabilities. Once
deployed, these new breed of sensing devices can be organized into networks capable of
distributed sensing and processing. Technological advances, decreasing production costs
and increasing capabilities have made the sensor networks practical for many applications,
including environmental monitoring, biological contamination detection, warehouse man
agement, traffic organization and battlefield surveillance. Most sensing devices are battery
operated, which highly constrains their lifetime, as it is often not possible to replace their
power source. Energy efficient data processing and networking protocols must therefore be
developed to make the long-term use of such devices possible.

While the network research community has studied energy efficient solutions in the
context of wireless ad-hoc networks, the database community has been confronted mostly
with time and storage constraints, but rarely with energy limitations. Therefore, the ability
to apply traditional query processing techniques in sensor networks is limited, and different
solutions must be found. Query processing is much more difficult in distributed environ
ments than in centralized ones, due to the large number of parameters that affect the perfor
mance of distributed queries [OV99]. Distributed query processing has been studied in the
context of distributed databases, where the total execution time or the response time of the
query are considered good measures of processing cost. These measures are still relevant
for the sensor network environment, but the total energy use during query processing be
comes of utmost importance. Lower energy use extends the lifetime of the sensor network,
making it cost effective for extended monitoring periods.

In spite of its current limitations, the potential benefits of the sensor network technology
for real applications have been shown in several test-bed deployments. Intel has used a sen
sor network to monitor the environmental conditions in a vineyard [Mar03]. By monitoring
the vineyard micro-climate, the farmers can determine when and where to irrigate the plants
to grow best quality grapes for producing ice wine and other vintages. Intel has also suc
cessfully tested the technology in other scenarios, such as detecting faults in machinery at
its Oregon chip-fabrication plant by monitoring vibrations [Ric05] and keeping track of vis
itors and exhibits at a theme park [Mar03]. The Great Duck Island project [MPS+02, GRE]
studies the usage patterns o f nesting burrows for storm petrels with the help o f the sen
sor network technology, as well as the environmental parameters of burrows and surface
during the breeding season. The sensor network technology allows researchers to obtain
fine-grain information about the birds’ breeding patterns with a much lower impact than

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

human observation, which would cause high mortality rates among eggs and chicks. To
understand the role of trees in regulating and controlling the environment, a small sensor
network was deployed at Berkeley Botanical Garden [GM04], The sensor nodes were at
tached to a single redwood tree to measure its micro-climate at different heights. There are
several other scenarios in which the usefulness of the sensor network technology has been
tested [Ric05, AFF+03, NL04], a few of which are discussed in Section 1.3.

In this thesis we investigate query processing in the sensor network environment. In
our research we focus on query processing in peer-to-peer sensor networks over historical
sensor observations, while many of the current research efforts are directed toward sensor
networks where there is some form of central administration or the sensor observations are
collected in response to a query request. Query processing in peer-to-peer sensor networks
is important for many applications due to its scalability and robustness, but little research
has focused on query processing in this environment.

The outcome of our research consists of a set of techniques for query processing in
peer-to-peer sensor networks. The techniques can be divided into three categories, based
on the type of queries they are targeted for. The first category incorporates techniques for
efficient processing of spatial range queries. The second category of techniques focuses on
lowering the processing cost of queries with joins, where the sensor observations from two
network regions must be combined to answer the query. The third category studies query
processing from a different perspective, that is, query processing with approximate answer
ing. While the approximate query answer is likely to differ from the exact answer that the
techniques from the first two categories generate, the user may consider an approximate
answer acceptable if, for instance, the approximate answer can be guaranteed to be close to
the exact answer and the cost to obtain it is much lower than for obtaining the exact answer.
Disregarding the type of processing, the ultimate goal of each technique is to reduce the
energy consumed by the sensor network during query processing.

1.1 Basic Concepts

In this section we cover essential concepts for the understanding of this thesis. We first de
scribe several characteristics of sensor networks, and we use them to divide the types of sen
sor networks into categories. Then we discuss data storage solutions for sensor networks.
Finally, we introduce several query types that are used for extracting useful information
from a sensor network. Before introducing these concepts, we define some key terms that
we use in this thesis:

• Sensor [ZG04]: “A transducer that converts a physical phenomenon into electrical or
other signals that may be further manipulated by other apparatus”.

• Sensor observation: The state of a physical phenomenon as recorded by a sensor at a
time instant.

• Sensor node [ZG04]: “A basic unit in a sensor network, with on-board sensors, pro
cessor, memory, wireless modem and power supply”. We also refer to it as node.

• Sensor network: A set of sensor nodes organized into a network that pool their re
sources together for user-defined tasks (e.g.: monitoring).

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Network topology: A graph representation of the sensor network, where the nodes
are representing the sensor nodes and the edges are representing the direct communi
cation links between the sensor nodes.

1.1.1 Sensor Networks

Technological advances have lead to the production of a new breed of sensor devices. Be
sides one or more sensors, the new sensor devices have also units for data storage and
processing, as well as wireless communication capabilities. The continuous reduction in
production costs will soon make feasible their deployment in large numbers (from hundreds
to tens of thousands). Once deployed in a region of interest and activated, the sensor de
vices start communicating with each other, thus forming a network of sensors nodes over the
monitored region. A sensor node can communicate directly only with other nodes located
within its wireless communication range. With nodes located farther away, the communi
cation can be done through one or more intermediate nodes, a process called multi-hop1
routing.

In spite of the relative novelty of the architecture and the small number of real-life de
ployments, sensor networks are considered a highly promising technology that will change
the way we interact with our environment [Ric05], Typical sensor networks will be formed
by hundreds to tens of thousands of small, radio-enabled, sensing nodes. Each node is capa
ble of observing the environment, storing the observed values, processing them and sharing
them through wireless communication. While most of these capabilities are expected to
rapidly grow in the near future, the energy source, be it either a battery or some sort of
energy harvesting [JPC05, RKH+05], will remain the main limitation of these devices due
to the relatively slow progress in energy storage and harvesting technologies. Nowadays
sensor nodes have a large variance in capabilities, ranging from the bulky and powerful
Sensoria nodes [Sen] to the small but limited Mica Motes [Cro].

There are several characteristics that can be used for differentiating the types of sen
sor networks. In this thesis we differentiate the sensor networks based on the following
characteristics: the availability of network information at nodes, the node mobility, and the
strategy used for information collection.

When the availability of network information at nodes is considered, there are two basic
types of networks:

• Centralized sensor networks. In this type of sensor networks, information about all
sensor nodes is available at one node (called base station), or at several nodes. Many
research works assume the existence of a base station, which is a network node with
increased storage, battery and processing capabilities [DKR04], Typically the base
station is a computer connected to an regular power source (e.g.: power grid). The
information collected by the sensor network can only be obtained through this node.
An advantage of this centralized solution is that data can be extracted from the sensor
network in an efficient manner as the base station knows the network topology. Thus,
the best way of contacting a node can be determined off-line without accessing the
sensor network. A disadvantage of this solution is that the sensor nodes located closer
to the base station are prone to shorter lifetimes as they are subject to more traffic than
the nodes located farther away from the base. In addition, gathering and updating the

'Two nodes communicating directly are considered one hop away from each other.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

topology information at the base station for a large-scale sensor network can be very
costly, or even unfeasible when the network is very dynamic.

• Peer-to-peer sensor network. Unlike the centralized sensor network, in peer-to-peer
sensor networks no node has global knowledge of the network. Similar to the wired
peer-to-peer networks for data/file sharing, a sensor node is only aware about a small
subset of the network nodes, called peers. Different from the wired networks, a node’s
peers are selected based on their location rather than their identifier or stored data.
Typically, the peer subset is formed by the other nodes located within the wireless
communication range of a node, called neighbours. This type of organization has
several advantages: a) it is flexible, with any dynamics of the nodes being dealt with
only locally; b) it is more resource balanced, as typically all sensor nodes have similar
capabilities and any node could be used to access the network; c) it is more robust
and secure, the corruption of one node having only a reduced effect on the overall
network; d) it is scalable, an increase in the number of sensor nodes producing an
increase in the network’s resources with typically no increase on the resource usage
of a particular node. These benefits come with increased costs and complexity for
information collection and processing. Peer-to-peer sensor networks may be the only
way to achieve the large scale needed for some applications [ZG04].

Hybrid sensor networks which borrow some characteristics from each of the two basic
types are also possible, with some sensor nodes having more resources and information
than others. No sensor network organizations is best for all situations, the best type of
sensor network is application specific.

A second criteria for differentiating the sensor networks is the mobility of the nodes:

• Fixed nodes. The sensor nodes do not change their location. Nodes do not have
to update their location information, and a node’s neighbours are the same over its
lifetime. Transient or permanent failures among a node’s neighbours are possible,
and therefore the sensor nodes may still need to update their neighbours’ information
occasionally, or to inform the base station on the failure.

• Moving nodes. The nodes can change their location, which leads to possibly rapid
changes in the network topology. Thus, the sensor nodes may need to regularly up
date their information about their neighbours. Also, node mobility in centralized
sensor networks may incur high costs for updating the nodes’ locations at the base
station.

The strategy used for collecting the information from the sensor network can be also
used for differentiating the types of sensor networks:

• Pull-based collection. In this type of information collection, data is retrieved from the
network in response to queries from users. A user issues a query, which is introduced
in the network through the base station or through one of the sensor nodes. The query
is then processed by the network and its answer is returned to the user.

• Push-based collection. In sensor networks with push-based information collection,
the sensor nodes initiate the data retrieval in response to certain events. When the
sensor nodes detect an event of interest, the nodes announce the event to the user
by sending a notice of the event to a predefined node (e.g., the base station) or a set

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of nodes. A network using push-based information collection can be seen as being
pull-based, with queries for the events of interest being continuously executed.

A sensor network could also allow both strategies for information collection if some sensor
observations are available in response to queries from users, while other observations are
pushed to the users when they occur.

1.1.2 D ata Storage in Sensor Networks

The purpose of sensor nodes is to observe the environment around them. The environmental
sensing can be done either automatic or in response to queries from users. In turn, the
automatic sensing can be periodical (typical for monitoring phenomena), or triggered by
actions in the environment (e.g., motion for surveillance applications). Once an observation
is performed at a sensor node, there are three main possibilities for data storage:

• External storage. When an observation is acquired, it is immediately sent for storage
and processing to a location external to the sensor network, such as a base station.
This solution simulates the behaviour of traditional sensing systems with nodes not
capable of storage and processing, and it incurs high communication costs for trans
mitting wirelessly every observation to a remote location. Nevertheless, this solution
should be considered when the majority of sensors’ observations are required by the
user. In this solution the queries are answered outside the network.

• Local storage. Each sensor node stores its observations locally for further processing
or future retrieval. A sensor node with 1 megabyte of memory observing once every
5 minutes a phenomenon and storing its value in 4 bytes together with a 4-byte time
stamp could store more than 1 year of raw data, which is likely beyond the expected
lifetime of a typical sensor node. This solution has the advantage of reducing the cost
of storage compared to the external storage solution, but, on the other hand, the cost
of retrieving the data for answering a query is higher.

• Network storage. Instead of storing their own observations locally, sensor nodes send
them for storage to other nodes, possibly determined with a hash function applied to
the observations collected by the sensors [RKY+02]. Even though the cost of send
ing each observation to another sensor node could be quite high, the cost of query
processing is reduced. This is due to the use of the same hash function during query
ing, which provides the sensor nodes (or their location) that hold the observations
required for answering a query. This storage solution is suitable when the number of
observations stored in the network is low and many queries are issued [RKY+02].

Sensor network applications require different utilizations of network resources. The number
of collected observations together with the number and the type of queries used for their re
trieval determine the resource usage patterns, which in turn determine the most appropriate
storage solution for an application [SRK+02],

1.1.3 Data M odel for Sensor Networks

So far we have discussed how the observations of a sensor node are performed and where
they are stored. A complementary issue is what is stored to make the collected observations
useful. A sensor node can have several sensors (e.g., temperature, humidity, light), each

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sensor node location Sensor type Time of observation Value of observation

N53.30567, W 113.20795 temperature 11:55:06 07/05/2004 17.4
N53.30567, W 113.20795 humidity 11:56:44 07/05/2004 56.5%
N53.30579, W 113.20790 light 11:55:06 18/05/2004 9751
N53.30579, W113.20790 temperature 11:55:06 07/05/2004 17.6
N53.30572, W113.20787 temperature 11:56:06 07/05/2004 17.5
N53.30567, W 113.20792 humidity 11:56:44 07/05/2004 56.7%

Table 1.1: A possible logical view of a sensor network database

sensor working independently from the others. Each observation has attached to it the time
stamp corresponding to the time of observation, and the type of sensor that has recorded it.
In addition, the location of the sensor node that recorded the observation is added when
the observation is sent to a different node than where it was recorded. For most scenarios,
users are interested in the observations of several sensor nodes. If these observations must
be combined (e.g., to obtain aggregations), the observations recorded at the same time by
the sensor nodes must have attached the same time-stamp. In any case, some level of time
synchronization is required to capture the temporal relation among the observations of the
sensor nodes. Several algorithms [SY04] have been proposed for time synchronization
at the sensor nodes. Another solution is the use of a GPS [Kap96] device to ensure the
synchronization.

Considering the above model for storing each observation and disregarding the exact
storage solution adopted, the database within a sensor network can be seen logically as a
relation whose tuples describe the sensor observations (e.g., see Table 1.1). The relation is
continuously updated with new sensor observations, and it is append-only. The advantage
of such a logical view is that it separates the user from the details of the actual organization
and implementation of data storage in the sensor network.

When the observations are stored at the sensor nodes (either local or network storage),
the storage capacity is very small compared to external storage. If a node’s storage space
becomes full, there are two typical solutions for freeing up the storage space. When the
users are only interested in the recent sensor observations, the older sensor observations can
be discarded (e.g., using a FIFO policy) without affecting the answers to the user queries.
When the users are interested that queries about the more distant past can be also answered
in some form, the sensor nodes can store statistical summaries of the older data that it has
been discarded. For instance, one could adopt the data stream storage solutions for fixed
storage space such as those proposed in [ZGTS03]. The solution uses temporal aggregations
over the data stream at multiple time granularities. The aggregation level for a data record
is dependent on the age of the record, with only the most recent data fully stored. The
aggregation levels and their granularity would be decided before the network deployment
and are dependent on the observed data and the storage size. Similar to any approximation
technique, this storage solution would influence the accuracy of some of the query answers
as older data is aggregated, and therefore some information is lost.

1.1.4 Query Types for Sensor Networks

Sensors can generate large amounts of data, and it is typically not possible to collect all
the data for external processing or storage due to the high cost of retrieval and the limited

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

energy resources sensor nodes have. In this respect, the role of queries is important for
extracting useful information from the sensor network. In the following we list several
query types used for querying sensor networks:

• Historical queries. When local or network storage of sensor observations is used, this
type of query selects for retrieval certain observations or events of interest that have
been collected in the past and are stored in the network. An example of a historical
query is: “What temperature observations have been collected so far?”.

• Continuous queries (also called long-running). This type of query is useful when a
user needs real-time data about the monitored region. Typically, sensor nodes start
collecting sensor observations from the moment they receive the continuous query.
It is common that no data is locally stored, but the collected observations are sent
immediately to the user. An example of a continuous query is: “What are the tem
perature observations for the next 10 minutes?”. Push-based data collection in sensor
networks can be seen as a continuous query for an event over infinite time.

• Temporal range queries. A sensor can collect large amounts of data and users may be
interested only in a subset of these data. Using a temporal query the user can specify
a time range (in the past or future), expressing its interest in the sensor’s observa
tions recorded during that time range. Most queries used in sensor networks have a
temporal component since typically the interest of users is on the sensor observations
taken in a time range. An example of a temporal range query is: “What temperature
observations have been collected yesterday between 3pm and 4pm?”.

• Spatial range queries. In some applications users are interested in retrieving at differ
ent moments sensor observations taken in subregions of the entire monitored region.
In this case the user specifies the region where the observations to be retrieved should
belong to. An example of a spatial range query is: “What temperature observations
have been collected in region 21?”.

• Join queries. Individual observations cannot provide the desired information in some
applications. Several observations from one or more sensor nodes must be combined
to find the query answer. An example of a join query that could be used for tracking
is: “What animals have been detected in both regions 17 and 21?”.

• Status queries. This type of query is different from the previous types in the sense that
it is not concerned with the sensor observations, but with the sensor nodes themselves.
They are generally used for monitoring the status of the sensor network. A possible
query is: “How many sensor nodes are active?”.

When the sensor observations are not needed in the form they are generated or the cost
of retrieving them is prohibitive, two solutions are typically considered:

• Queries with aggregate answers. Aggregation is a data summarization technique
where statistics such as minimum, maximum, sum, average and count are applied to
the sensor observations. The size of most aggregations is very small compared to the
size of the aggregated data, and it is typically independent of the size of the data.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Queries with approximate answers. Approximation is a data reduction technique
where the sensor observations are replaced by approximated values. While the ap
proximations may be used to reconstruct the original sensor observations (with a
certain quality loss), this is typically not possible with aggregations. For approxi
mation there is a trade-off between the quality of approximation and the number of
values used for representing the sensor observations, where an important factor is the
amount of redundancy and correlation in the sensor observations.

The query types presented above are not mutually exclusive. Typically, a query belongs
to more than one query type. For instance, you can have continuous temporal aggregate
queries such as “What is the average temperature each hour for the next 10 hours?” or
historical spatiotemporal join queries such as “What animals have passed through both
regions 17 and 21 yesterday?”.

To harness the power of the sensor network technology, we believe that a sensor network
should not be restricted to just one type of query, but allow several query types be executed
in the sensor network. For instance, a user may use a continuous query to collect the real
time sensor observations from an area of interest and a historical query with aggregation to
gather statistics of the sensor stored data from the entire network. Processing techniques
designed to the specifics of each query type are essential in order to preserve the limited
resources sensor nodes have.

1.1.5 Challenges and Opportunities

Sensor networks represent a challenging environment due to their limited resources and
distributed nature. The ultimate goals are to maintain their scalability and robustness, while
extending their lifetime through energy-efficient operation. Several important issues that
must be considered when designing new query processing solutions for sensor networks
are:

• Energy conservation. As previously discussed, this issue is essential for the success
of the sensor network technology. The lifetime of the sensor nodes must be extended
to allow the long-term operation of the sensor network.

• Scalability. As the network size increases, the costs of operating the network should
scale well. In addition, the network operation should not become concentrated at any
sensor node(s) with the network size increase.

• The dynamic nature o f sensor networks. A sensor network should be able to accom
modate additional re-deployments, for instance, to extend the network capability or
lifetime. Sensor node failures (permanent or transient) are expected given the limited
energy source, as well as the unfriendly operating environment in most applications.

• Flexibility o f topology. Any solution for sensor networks should consider this issue.
Realistic node deployments cannot guarantee any particular topologies. The dynamic
nature of sensor networks may also cause changes in the network topology.

• Fairness. No node (or set of nodes) should be a concentration point of communica
tion over the lifetime of the sensor network. Such nodes would deplete their energy
resources much faster than most other nodes, which would lead to their early failure.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

®x • • sensor node•
£ • •

• • • • 11 query originator

• •
• j T . 2 mobile user station

• X 11 • /M •

J J • D •

Figure 1.1: User interaction with the sensor network

• Redundancy and correlation in sensors’ observations. As sensors observe the sur
rounding environment, it is natural to consider the correlation between the monitored
phenomena, and the redundancy of the measured observations at sensor nodes located
in the proximity of each other. Query processing solutions should take advantage of
such correlation and redundancy to reduce the cost of query processing.

1.2 Our Sensor Network Environment

In this thesis we consider a peer-to-peer sensor network formed by a large number of fixed
sensor nodes, where no global knowledge of the network is available. Each node has sev
eral sensing units (e.g., temperature, humidity, RFID reader), a processor, internal and flash
memory, a fixed-range wireless radio and it is battery operated. These characteristics en
compass a wide range of sensor node hardware, which extends the applicability of our
research. Each node is aware of the nodes located within its wireless range, which form its
neighbourhood. A node can address a message to one of its neighbours (unicast) or it can
address the message simultaneously to all its neighbours (broadcast), and it can communi
cate with nodes other than its neighbours using a multi-hop routing protocol over the wire
less network. Each node is aware of its location, as well as the location of its neighbours
(acquired during its activation in the network). The location information is periodically
refreshed to account for any network dynamics (e.g., node failures and new deployments).

Sensor nodes collect observations periodically and store them locally. The periodicity
of observations could be predetermined or set through a special message sent to each node.
Each sensor node has several sensors, each sensor with its own periodicity of observations.
Each observation has attached to it a time-stamp corresponding to the time of measurement.
Since each observation stored in a node’s database has associated a time of acquisition and
each node has a location, the sensor networks is, on a global view, a distributed database
storing spatiotemporal data, where the data is partitioned horizontally on the location at
tribute, with each partition stored locally in a node’s database. Note that a sensor node with
1 megabyte of memory measuring once every 5 minutes a phenomenon stored as a 4-byte
value together with a 4-byte time-stamp could store more than 1 year of raw data. If the
application requires high sensing rates or long-term storage is expected, data stream storage
solutions for fixed storage space can be used (e.g., see [ZGTS03]).

As sensor nodes are not designed for user interaction, users access the sensor network
through user stations, which connect to one of the sensor nodes in their vicinity (Figure 1.1).
The sensor node communicating with the user station acts as a gateway in the sense that the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node receives the user queries from the user station and returns the query answer to it,
without other nodes being aware of the user station. We call this node query originator in
the following.

Similar to other works on query processing in sensor networks [MFH02, YG02], we
consider a declarative SQL-like language for the user to express queries over the sensor
network, where the data collected and stored in the sensor network is represented by one
virtual append-only relation, denoted as R *. For instance, the following query can be used
to find the average temperature and the lowest humidity collected each day by the sensor
nodes located in the area represented by the bounding rectangle (< x i , y i > ,< X2 ,y 2 >)
during the time range (t i , <2) when the temperature was above freezing (0 °C).

SELECT DAY(i?*.time), avg(J7*. temperature), min(i?*.humidity)
FROM R*
WHERE R *.location IN (< x \ , y \ > , < X2 , 2/2 >) AND

R* .temperature > 0
GROUP BY DAY(72* .time)
HAVING DAY(R* .time) IN (tu t 2)

As nodes store the acquired data locally, each node holds the values of the observations
recorded by its sensing units and the time when each recording was performed. On a con
ceptual level, the schema of the relation stored at a node N j is R j(locj, time, s 1, - . . , ss),
where locj denotes the location of the sensor node N j, s, is a recorded value for sensing
unit i and S is the number of sensing units. The virtual relation R* is the union of the node
relations R* <— [}Rj , j = 1..7V, where N represents the number of sensors nodes. Note
that an actual implementation may use a different organization. For instance, locj should
be stored only once in Nj.

1.2.1 Radio/Energy M odel

Sensor nodes are formed by several units, each with its own energy requirements. As sensor
nodes spend most of their energy supply during communication [ASSC02], we are only
considering the communication cost in this thesis. In addition, our work focuses mostly on
reducing the amount of communication, while the operation of other sensor units is only
marginally affected.

In order to compare the performance of different query processing strategies, we need
a model to represent the energy used for communication by the radio unit. According to
Rappaport [Rap96], the energy used to transmit a bit in wireless communication is given
by:

E t = a + y x <T, (1.1)

while the energy used for receiving a bit the cost is:

E r = 0 , (1.2)

where d, is the distance to which a bit is being transmitted, n is the path loss index, a and (3
capture the energy dissipated by the communication electronics and 7 represents the energy
radiated by the power amplifier. In [HeiOO] the following values are used to model a sensor’s
radio: a = (3 — 50 nJ/bit, n = 2 with 7 = 10 pJ/bit/m2 when the wireless range is less then
87 meters, and n = 4 with 7 = 0.0013 pJ/bit/m4 for ranges over 87 meters. We consider a

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1.2: Parameters of the sensor network and other notations
Notation Description Value

R a Sensor network region 1000x1000 meters
W Wireless communication range 50 meters
N Number of sensor nodes varies
N n Average number of neighbours varies
Et Energy required to transmit a bit 75 nJ/bit
E r Energy required to receive a bit 50 nJ/bit

Table 1.3: Energy cost of accessing common sensors [MFHH03]
Sensor Energy (nJ/sample)

Light, temperature 90
Accelerometer 180
Magnetometer 1500

simple radio device that transmits all messages as far as the wireless communication range2.
For consistency with other sensor network research [YG03], we use in our simulations a
wireless range of 50 meters. Plugging the numerical values into equations (1.1) and (1.2) we
obtain the following energy costs for communication: E t = 75 nj/bit and E r = 50 nJ/bit.

1.2.2 Experim ental Setup and Param eters

In our evaluation, we consider that the sensor nodes’ placement follows a uniform distri
bution over a two dimensional region, denoted by R a - The number of sensor nodes is
denoted with N . The wireless range of a node is equal to 50 meters and it is denoted with
W . The sensor network parameters and common notations used in our investigations are
summarized in Table 1.2. Note that for some parameters the value varies in our evaluation.

In our experimental evaluation all measurements are averaged over 100 randomly gen
erated sensor networks, with 10 random queries executed over each network. We focus
on the energy efficiency of the query processing solutions only, making the measurements
independent of the characteristics of the MAC layer (for instance 802.11 radios consume
as much energy in idle mode as for receive mode, while other radios may switch to a low-
energy state when idle). We assume that the message delivery is instantaneous, which allow
us to simulate sensor networks with thousands of nodes. In reality, some techniques may
incur a delay due to packet contention on the wireless communication channel. In our eval
uation we do not include the cost of acquisition for the sensed values. These values are
recorded periodically independently of the strategy used for query processing. Table 1.3
presents the cost of acquisition for some typical sensors (costs obtained from [MFHH03]).

2As typical sensor nodes do not have sophisticated communication electronics capable of varying the trans
mission range [DGR+ 03], we consider that all messages are transmitted as far as the wireless communication
range. This is an ideal case, as in reality the environment affects the wireless range differently on each direction
for the same transmission power.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Motivating Applications

The wide range of sensor networks configurations allows their use in many applications [Ric05,
Mar03, GRE], In the context of the definitions introduced above we present several appli
cations that require the use of queries over the historical sensor observation stored at the
nodes in a peer-to-peer sensor network environment.

Environmental Monitoring. Protecting the nature reserves is the focus of many agencies.
The existing monitoring techniques are typically limiting due to either cost (i.e., satellites or
manpower) or scale of application. Sensor network technology could provide new ways for
monitoring the environment, with potentially low-cost for large-scale monitoring. A sensor
network is deployed over a nature reserve, with the task of monitoring various phenomena
(e.g.: temperature and humidity) and well as observe the animals (sound, video or RFID
sensing). Park rangers patrolling through the monitored region can query the network for
information of interest through any sensor node in their proximity using a mobile computing
device. The network’s querying capabilities should allow the ranger to express several query
types and query processing should be optimized for energy-efficient processing of each
query type. For instance, when certain events such as vegetation diseases or small fires
are observed in an area, the ranger could query the network about historical observations,
which may help one understand what have caused such events or learn about other areas
that are threatened by similar events. To understand what may have caused a small fire in
a forest patch, the ranger could ask the query “What were the temperature and humidity
conditions in the patch for the past 72 hours?”, which is a historical spatial range query.
On the other hand, if several forest patches are affected by small fires, the ranger could ask
the join query “What were the common conditions in all the affected patches?" to check if
there were any common temperature and humidity conditions that could have triggered the
small fires. Yet another query could be “What was the temperature distribution in the last 6
hours over the western region o f the reserve?” to determine what other patches are at risk
and require immediate attention. Upon finding a forest patch at risk, the ranger could ask
the continuous query “Send me all temperature reading higher that 45 °C from the patch
at risk when humidity is lower than 20% in the same patch” to continuously monitor the
forest patch at risk. Similar environmental monitoring could be used in other applications
as well, such as farm monitoring in agriculture.

Traffic Monitoring. Traffic monitoring is very important for large metropolitan areas,
not only for controlling the traffic flow but also for enforcing traffic laws or monitoring
criminal activity. As the cost of installing power and communication lines is very high,
the city police and administration could use an autonomic wireless solution for detailed
large scale monitoring. Each monitoring device would consists of a camera for sensing,
computation and storage, specialized hardware for image processing (e.g, for detecting cars
or license plates), equipment for wireless communication and a solar-rechargeable power
source. The cameras could take snapshots periodically and store them locally. The collected
snapshots could expire after a predefined time frame. The monitoring devices would form
a distributed network. W hile the nodes o f this sensor network have more capabilities than
those used in the environmental monitoring application, they are still constrained on the
energy resource available at any given time. The city administration could use a historical
spatial range query such as “How many cars have passed through intersection 29 every

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

morning o f last week in each direction?" to optimize the street lights’ timings and obtain a
better traffic flow. The city police could ask the historical spatial range query “What cars
have passed through intersection 29 yesterday around midnight?” to find the suspects of a
nearby burglary. Then they could used a continuous query such as “Alert when the car with
license plate 4R5T3 is detected” to find the suspects. Using a join query such as “When
did the buses with license plates in a given list have passed through intersection 29 last
week" could be used by the public transportation administration to inform the public more
accurately on the bus schedule.

Warehouse Management. The condition of storage and transportation for many goods
is important for guaranteeing their quality at the time of sale. When leaving the production
line, each sensitive product can have attached a sensor node monitoring its temperature and,
for instance, suffered shocks. Before a sale, the warehouse management may want to check
if the products to be sold were handled appropriately since the last check was performed
(e.g., when the product was bought by the warehouse). While the products’ condition could
be checked for each product manually, it is an unfeasible procedure for large warehouses
with tens of thousands of products sold daily. Using the sensor network technology, the
check could be performed using a historical spatial range query. The query’s spatial win
dow would correspond to the area where the products in the current sale are located in the
warehouse and the temporal range would be between the last time the products’ status was
checked and the current time. Products would have to be handled individually only when
the associated sensor nodes report problems.

Military Surveillance. Assessing the conditions of a territory in conflict zones is impor
tant for the safety of friendly units. A sensor network can be deployed over the conflict
region to monitor the presence and movement of military units. When a friendly unit must
move to a different area in the conflict region, a query can retrieve the observations of the
sensor nodes located in the area of interest. The observations can provide information about
past or current presence of unfriendly units in the area or in its neighbourhood. Past ob
servations can also tell about the movement of units and provide insight on their possible
actions. While information about the conflict areas can be obtained through satellite surveil
lance, sensor networks can provide more accurate information at substantially lower costs.
Smart sensor node deployments can also help detect units not visible to a satellite’s line of
sight. In addition, the sensor network could be used for multiple tasks, such as detection of
biochemical hazards and inter-unit communication.

Our query examples for the motivating applications cover several types of queries. We
believe that real sensor network deployments will have multiple roles, ranging from long
term monitoring to event alerts. It is unlikely that a processing solution could perform
best for all query types. As the energy efficiency is of primary concern, each type of query
should be optimized differently and several processing solutions will coexist in the network.

1.4 Our Contributions

The purpose of a sensor network is to observe the environment and collect data. Neverthe
less, sensor networks are useful only if users are able to extract these information from the
network, which is typically done through querying. Query processing is essential to most

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications of sensor networks and our research efforts have focused in this direction.
There are several types of sensor networks configurations (introduced in Section 1.1.1) and
several types of queries (introduced in Section 1.1.4). In our research we have studied the
processing of three types of queries over historical sensor data in the peer-to-peer sensor
network environment detailed in Section 1.2.

1.4.1 Processing o f Spatial Range Queries

Most query processing solutions in the literature consider that each query is targeted on
retrieving data from the entire monitored region (e.g., [YG02, MFH02]). While this as
sumption may hold for small-to-medium scale sensor networks, it is unrealistic for large
scale networks. For such networks, users will rather focus their interests on subregions of
the network region at a given time to answer region-related questions. Thus, the queries will
be targeted on retrieving sensor data from only small subsets of the sensor network. The
spatial constrain is typically expressed in the query by specifying the spatial range where
the sensor data must belong to.

In this thesis we focus on energy-efficient processing of queries with spatial range predi
cates. We propose several query processing solutions that use the spatial range predicate for
reducing the cost of query processing. Our adaptive processing solution performs substan
tially better for small-to-medium spatial range queries than the typical processing solution
that does not take advantage of the spatial range constrains. For large spatial range queries,
including queries covering the entire network region, our adaptive solution approaches the
behaviour and performance of the typical solution, ultimately degenerating into it. Our
preliminary results on processing spatial range queries have been published in [CNS04].

1.4.2 Processing o f Join Queries

A common type of query in traditional database systems is the join query. In the case of
sensor networks such a query would allow one to find correlations in data between different
network regions or to filter the sensor reading using a predefined relation. Join queries
are more complex to process in sensor networks than other queries due to the distributed
nature of the environment. When the join operator is not processed in the network, users
can use queries wihtout joins (such as spatial range queries) to extract the data participating
in the join and process the join externally. Such an approach may be cost effective for joins
generating much data, but may incur a substantial overhead compared to the in-network
join processing when the join is highly selective.

In this thesis we investigate where and how to process join queries in sensor networks.
We propose several join processing strategies and compare them with respect to the network
location where the join is processed. We construct cost models for each strategy that allows
a query optimizer to select the best processing strategy and location for a given join query.
We also describe in detail a distributed in-network join algorithm that could be used by
most join processing strategies to execute the join operation. The strategy adapts to the
characteristics of the query and sensor network to minimize the energy cost of processing.
Our results on processing of join queries have been published in [CNS07, CN07].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4.3 Processing o f Q ueries with Approxim ate Answers

When sensors observe physical phenomena (e.g., temperature), the observations may not
vary greatly over short periods of time and over small areas, and they are typically corre
lated. Retrieving all sensor observations relevant to a query may not be necessary in this
case. By selectively collecting only some of the relevant sensor observations, a query an
swer can still be provided. While the answer will be only approximate, it may be sufficient
to the user. Reducing the size of the data that is transferred by the network during query
processing lowers the cost of communication, leading to increased network lifetime.

In this thesis we investigate a query that requires an approximated answer in the form of
a data distribution map. Considering a user specified threshold with respect to the accuracy
of the map data, we propose three query processing strategies that are able to construct
the query answer using only a subset of the relevant nodes. These strategies substantially
reduce the energy cost of query processing over a typical solutions while providing the user
with a query answer within the required accuracy threshold. Our results on processing of
queries with approximate answers have been published in [CNS05].

1.5 Thesis Organization

The thesis is organized as follows. Chapter 2 surveys existing works on query processing
in sensor networks, as well as other relevant topics to our problem. Chapter 3 focuses
on the processing of spatial range queries and introduces algorithms and models for its
energy efficient processing. In Chapter 4 we investigate several processing solutions for
join queries. We introduces cost models that allow a query optimizer to select the most
energy efficient processing solution for a given join query. Chapter 5 studies a special type
of an approximate query. The processing solutions proposed in the same chapter use only
a subset of the relevant sensor nodes to answer the query, thus reducing the energy cost
of processing. Experimental evaluation for each type of query is presented and discussed
within the corresponding chapters. Chapter 6 concludes our thesis and discusses several
future research directions.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Works

Sensor network technology lays at the confluence of many disciplines, including data man
agement, networking and distributed systems. Current research efforts address various as
pects with different perspectives on the existing issues. From the plethora of publications
investigating sensor networks, we present mostly research works on query processing in
sensor networks, as this is the focus of our thesis. Nevertheless, data storage and data ex
change affect in a great measure the processing of queries. Thus, we also discuss several
works focusing on data routing and storage in wireless sensor networks.

2.1 Data Routing

In the area of networks research, much work has been done in ad-hoc wireless networks,
and, more recently, in the networking aspects of sensor networks. One of the most relevant
issues for efficient query processing in sensor networks is position based routing, that is,
message routing when the destination node is known and addressed by means of its loca
tion. There are several surveys [MWH01, Sto02, GSB03] on techniques for position based
routing in ad-hoc networks. Most position based routing algorithms cannot be readily re
used in peer-to-peer sensor networks since sensor nodes are only aware of their neighbours
and the position of the destination node is not known. Another related topic is geocast
ing [Mai04, Sto04], which is the problem of routing a message from a node to a group of
nodes based on their location (typically within the same area of interest). While geocasting
algorithms can disseminate a query to the relevant sensor node, they do not consider the en
ergy cost for returning its answers, which is typically much higher. Thus, most geocasting
algorithms are not suitable for efficient processing of queries.

A position based routing algorithm with guaranteed delivery is GPSR [KKOO]. Each
node participating in the routing only needs to know the location of its neighbours, which
makes GPSR suitable for peer-to-peer sensor networks. GPSR incorporates two routing
algorithms: a greedy algorithm that forwards the message closer to the destination location
at each hop, and a perimeter algorithm that forwards the message as long as the greedy
algorithm fails to find a suitable node for forwarding. In greedy forwarding, the current
node forwards the message to its neighbour that is located closest to the destination, as long
as its own location is not closer to the destination. When greedy forwarding fails, GPSR
switches to perimeter routing, where the message is forwarded to a neighbour selected using
the right-hand rule1. The perimeter routing is done on a planar subgraph of the network

1 The right hand rule states that one can visit every wall in a maze by keeping the right hand on the wall

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

topology, such as the Gabriel [GS69] or the relative neighbourhood [Tou80] graphs. Once
a node located closer to the destination is reached, GPSR switches back to greedy routing.
While GPSR requires a node at the destination location to exist, this cannot be guaranteed
in peer-to-peer sensor networks due to the lack of global information. A nice property of
GPSR is that, with a slight variation presented in [RKY+02], a message can be delivered to
the closest node to the destination location. Frey and Stojmenovic [FS06] discuss in details
several routing algorithms that combine greedy and perimeter routing. Other algorithms
with guaranteed-delivery for power-aware localized routing are discussed in [SD04].

2.2 Data Storage

The location of data in a sensor network affects the decision on how to process a query.
Several data storage strategies are compared in [SRK+02, RKY+02]: external storage, local
storage, data-centric (network) storage and combinations of them. The authors consider a
sensor network scenario where the sensor observations are combined into events, and either
a large portion of them or just a summarization is retrieved. They propose a data centric
storage scheme based on geographic hash tables, called GF1T, which performs best in their
scenario. For network environments like ours where many observations are stored with only
a small subset of them being retrieved, the local storage of observations is shown to perform
the best [RKY+02].

Gummadi et al. [GLG+05] improve the data-centric storage proposed in [SRK+02,
RKY+02] on both the storage and querying fronts. Based on analytical models they show
how to vertically decompose into sub-relations the sensor relation given a query workload.
The authors conclude that in most cases the sensor relation should be fully decomposed to
minimize the energy costs incurred for data storage and query retrievals. To improve the
performance of query processing, two techniques are employed: query planning with de
centralized join ordering and query execution with optimistic join caching. Query planning
comes into play when the query contains attributes from different partitions that must be
combined to generate the query answer. The authors construct a query plan with an optimal
join ordering based on locally stored histogram-based estimations of data distribution. Dur
ing query execution the authors propose the use of a local caching technique for the results
of partial join across sub-relations at each sensor node.

He et al. [HZGS05] investigate in-network storage and querying of data based on the
time attribute. They propose the use of a subset of nodes (called rendezvous nodes) to store
the readings of the nodes in their neighbourhood. Only these nodes participate in query
processing, while other nodes can be in a low-power state. The election and rotation of
the rendezvous nodes is done in a localized fashion accounting for the trade-off between
energy/storage utilization and load balancing at nodes. Their storage and querying schemes
are constructed around the time attribute only, making them unsuitable for efficient process
ing of queries with several attributes part of the query predicates.

Omotayo et al. [OHB06] study the problem of using the memory of the nodes as a
shared resource. The authors consider the problem of using the memory of some nodes
to store or buffer the observations of other nodes with the goal of maximizing the size of
the history that is stored in the network. The base-station allocates the sensor observations
to nodes using global knowledge on the available memory of each node and the nodes’
probabilities of observing phenomena.

while walking forward [BMSU01].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Query Processing

We start by reviewing several works that investigate query processing solutions for retriev
ing the sensor observations and their aggregations. Then we discuss several works address
ing the problem of processing queries with join in a sensor network. Finally, we present
several research works focusing on query processing with approximate answering.

2.3.1 Processing o f Q ueries W ithout Joins

Directed Diffusion [IGE+03] proposes a data-centric framework for query processing in a
peer-to-peer sensor network. Nodes do not store historical data and sensing is only per
formed in response to a query (continuous queries). In Directed Diffusion, the query orig
inator node requests data by sending interests for specific data. The data is then collected
by the source nodes and shipped to the originator node. Intermediate nodes can cache and
aggregate data, as well as direct new interests based on the cached data. Directed Diffusion
uses flooding to find paths from the query originator node to the data source nodes. Path
reinforcements are used for selecting a small number of “good-paths” over which the sensor
observations are returned. This scheme creates multiple paths for delivery, which increases
the robustness of delivery at increased energy costs.

In [MF02], the authors focus on processing continuous queries in a sensor network
environment where the information about the existing sensor nodes is available in a catalog
at a base station. Sensor nodes do not store historical data but simply collect and transmit
the raw data to resourceful proxy nodes that are in charge of further processing and routing
the answers to the users. The authors aim at minimizing the used energy by adapting the
sensors’ sampling and data packet transmission rates. They introduce the Fjord architecture
for management of multiple queries. Designed for Berkeley Mica motes and running on
top of Tiny OS, TinyDB [MFHH03] is an acquisitional query processor that runs on each
of the sensor nodes. The acquisitional query processor has the task to decide where, when
and how often data is acquired and delivered to the query processing operators [MFHH03].
The focus is on optimizing data acquisition for long-running queries, no data being stored
locally at the nodes. The base station optimizes the query by selecting the ordering of
sampling and selections before the query is disseminated to the sensor nodes. TinyDB
supports both continuous queries and push-based data collection. To reduce the energy
consumption, the TAG aggregation technique for continuous queries in networks of TinyOS
motes is proposed in [MFH02], Spatial aggregation is performed in the network by the non
leaf nodes of the query routing tree. Each node combines its data with the answers of its
children as the sensors’ observations are returned to the base station.

The Cougar project [YG02] investigates techniques for query processing in a centralized
sensor network where the location of all sensor nodes is known. In [BGS01] the authors
focus on defining a sensor database model for processing continuous queries, which are
modelled as persistent views over the distributed sensor database. A central optimizer has
the tasks of building a query plan and disseminating it to the relevant sensor nodes. In
a similar environment but with emphasis on energy efficient query processing, the Cougar
project is extended in [YG03] to address problems such as routing and crash recovery, basic
query plans and in-network aggregation.

A typical assumption for calculating spatial aggregations is that the locations of the sen
sor nodes providing the spatially aggregated values are uniformly distributed in space. This
assumption may not hold in reality. In [SS04, SS06], the authors investigate how to weight

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the sensor measurements in an aggregation, such as average, to obtain a more accurate esti
mation of the real phenomenon. Among the investigated spatial interpolation methods, the
area of a node’s Voronoi cell provides the best weight toward accurate aggregation values.
They propose a local algorithm for creating and maintaining an approximated Voronoi cell
of a node during the lifetime of a continuous query.

DIMENSIONS [GEH02, GGP+03] investigates query processing over historical data.
The authors focus on multi-resolution summarization of data using the wavelet transform
and construct a sensor node hierarchy over the network. Temporal summarization is per
formed in each node, and each level in the sensor node hierarchy deals with another res
olution of summarization. DIMENSIONS is suitable for applications where a query can
first look at the data at a coarse resolution and then focus on a region of interest at a finer
resolution. The hierarchical scheme is applied in a sensor network deployed in a grid lay
out where the nodes storing coarser resolution in the sensor node hierarchy are dynamically
selected based on their location in the grid.

Redundancy removal for sensor nodes capable of range sensing is studied in [NHZ04,
ZNH04]. Zou et al. [ZNH04] consider a peer-to-peer sensor network where nodes do not
know their location, and sensor observations are collected at a sink node. The overlap in the
sensing areas creates redundancy of observations at the sensor nodes. To save energy, the
redundant observations are not returned to the sink, but discarded within the network along
the data collection tree rooted at the sink. Several solutions are investigated for constructing
the data collection tree. The most energy-efficient tree is obtained when each node chooses
as its parent the neighbour located closest to itself among those with lower hop-distances to
the sink node. However, this tree does not take into account that nodes may have different
energy levels. In [ZNH05], the authors propose the ENCAST algorithm that ensures that the
low energy nodes are leaves in the collection tree so that they do not participate in the data
routing. Low energy nodes are only allowed to be internal tree nodes when they are needed
to ensure that all sensor nodes are connected to the tree. In addition, ENCAST uses a series
of energy thresholds to automatically re-adjust the data collection tree when some nodes
are over-utilized in the current tree and reach critical energy levels. While the collection
cost may no longer be minimal as in [ZNH04], ENCAST ensures that the lifetime of the
sensor network is further extended. Another possible direction for dealing with unbalanced
workload at nodes is the use of data flow splitting during data collection. However, the
problem with data flow splitting is that aggregations become more difficult or inefficient to
process. In [ZNH06], the authors investigate combining data aggregation for redundancy
removal with data flow splitting. To allow data aggregation, the data is transmitted over
one path for the first hop toward the sink, where it is aggregated with the data held by the
parent node in the collection tree. Once aggregated, the data is split into and transmitted
over multiple flows toward the sink to ensure a balanced workload at the routing nodes.

Many query processing algorithms (e.g.: [MFHH03, YG03]) use for data collection a
routing tree rooted at the sink node, which is maintained for the duration of a continuous
query. An alternative solution is the use of an itinerary based collection path/tree such as
the ones proposed in [XLXM06]. Xu et al. [XLXM06] propose three itineraries for query
propagation and data aggregation for processing spatial window queries. After the query
message reaches the query window, it is propagated within the window based on a pre
defined itinerary. Once the window has been fully covered, the query answer is sent to the
sink node. Data collection and aggregation are performed simultaneously with the query
message propagation, which reduces the number of messages that are transmitted during
query processing. Another advantage of the itinerary-based dissemination/collection is that

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no communication infrastructure needs to be maintained during query processing. The
proposed itineraries are only efficient for data aggregation, otherwise the path length over
which answers are transmitted to the sink node makes the use of itineraries inefficient.

Silberstein et al. [SBY06] focus on reducing the energy cost of collecting all sen
sor measurements with continuous queries by using the spatial and temporal correlations
present in the monitored data. They introduce two types of constraints for eliminating re
dundant reports. A node will trigger a report only if its value changes. An edge triggers
a report if the difference between the values at its nodes changes. By chaining these two
constraint types, their system builds a network of locally maintained constraints that can
provide a global view of the changes in the network with minimal energy cost. For net
works prone to node failures and message losses, the authors propose the use of redundant
constraints.

For applications where the main task is the continuous monitoring of extreme values
(MIN and MAX), Silberstein et al. [SMY06] use the history of values to prevent nodes
from transmitting. In their HAT scheme, the authors employ localized constraints (in the
form of thresholds) for reducing the communication. For its threshold policy setting, HAT
exploits the aggregation during different reporting rounds. Moreover, in HAT the thresholds
increase monotonically from the leaf nodes toward the base station, each node’s threshold
acting as a threshold bound for the sub-tree rooted at the node.

Hammad et al. [HAE03] focus on sensor data processing, and propose solutions for
data stream joins over the sensor data in tracking and monitoring applications. Demirbas
and Ferhatosmanoglu [DF03] propose one of the first index structures for sensor networks.
The solution is based on the R-tree and it seems to be energy and time efficient, but no
evaluation is presented. Xu and Lee [XL03] propose a window-based query processing
technique in a network of moving sensor nodes that do not store historical data but answer
continuous queries. Though interesting, their solution has no evaluation.

2.3.2 Processing o f Q ueries with Joins

Bonfils and Bonnet [BB03] consider the problem of processing a correlation operator (i.e.,
a special join) at a node in the network. The solution starts with a random placement
of the operator at a network node. The position is progressively refined by moving the
operator to the nodes with lower processing cost during the lifetime of the continuous query.
Two important assumptions are that the operator can be fully processed on one node and
that the lifetime of the query is sufficiently long to refine the operator position from a
random location to an optimal one. An advantage of the refinement is that the operator
placements adapts to the change is data during the query lifetime. For short continuous
queries their solution would perform much worse than the optimal cost due to the initial
random placement, while the solution is inadequate for historical queries. The authors focus
on the operator’s placement problem, assuming that each node that will hold the operator is
able to handle the flow and processing of data alone.

Chowdhary and Gupta [CG05] propose an algorithm for performing joins in-network
over a processing region with several sensor nodes participating in the join processing. The
authors focus on the self-join problem, where two subsets of tuples of the sensor relation
R* are joined. The processing algorithm, called distribute-broadcast join, is a form of
distributed block-nested loop join, where each node in the join area holds one block of the
outside relation while the inside relation is broadcast over the join region. The authors do
not investigate the allocation of memory at the nodes in the join region and the synchronized

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data flow. The authors consider a special shape for the join region and argue that this region
is optimal. Along the same line, Pandit and Gupta [PG06] propose two algorithms for
in-network processing of the range-join operator. One algorithm is a distributed form of
a hash-join algorithm, while the other is a distributed form of index-join and uses a B-
tree structure distributed at the sensor nodes. Both works [CG05, PG06] consider that the
optimal join location is the weighted centroid of the triangle. The centroid has the property
that it minimizes the weighted sum of the squared distances, and thus it is not optimal, as
we will show in Chapter 4.

Yu et al. [YLZ06] investigate the processing of self-join queries with equi-joins over
historical data in sensor networks. In their solution they constructs a synopsis (e.g., a his
togram) of each relation involved in the join. The synopsis are transmitted to an interme
diate in-network location, where they are used for finding which tuples of the two relation
will certainly not join. This information is returned to the sensor nodes storing the relation,
which will use it to select only the join relevant tuples to participate in the join. The join
is then performed in network at a second intermediate location. The solution performs best
when the join selectivity is high. The join of the synopsis is performed in a square join
region whose size is determined based on the size of the synopsis, the network density and
the average memory available at the join nodes. When allocating the synopsis to the join
partition, they fail to consider the memory available at the individual nodes in their hash-
based allocation scheme, which would cause buffer overflows and invalidate the join result.
They also assume that nodes have sufficient memory when performing the final join of the
filtered tuples.

The external join problem where the sensor relation is joined with a relation stored at the
user station is studied by Abadi et al. [AML05]. The external relation is basically a relation
containing filters to be applied on the sensor tuples. If the external relation is small, it is
flooded in the network and the join occurs locally at each node. When the external relation
is too large to be stored in the network, the authors propose three techniques (bloom filters,
partial joins and cache diffusion) that help filter part of the sensor tuples. Non-filtered tuples
are then join externally after reaching the base station. An intermediate situation is when
the external relation fits into a group of nodes.

The join operation in the context of streaming sensor data is studied in [AAK06, SFL05].
Ali at al. [AAK06] study the use of a multi-way join operator for detecting and tracking phe
nomena. Nodes are grouped in clusters and the join operator is first processed at the each
cluster-head for the cluster-generated tuples. The cluster-head will then send the result of
the join to the other cluster-heads for inter-cluster join processing. Schmidt at al. [SFL05]
focus on re-sampling the sensor streams to allow meaningful temporal joins.

2.3.3 Q uery Processing with Approxim ate Answers

Query processing with approximate answering in sensor networks has raised much interest
from the research community due to its potential to substantially reduce the query process
ing costs.

In [DGM+04] the query answers are estimated using a statistical model for the sensor
observations, where the model captures the redundancy and correlation in sensor observa
tions. The statistical model is constructed at the base station using historical sensor obser
vations and knowledge of the network’s topology. Once constructed, the model is used for
answering the queries, where the queries are not introduced in the sensor network as most
query processing techniques do. The sensor nodes are only interrogated to help refine the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model during query answering when the uncertainty of estimates is high. This approach
reduces substantially the query processing costs. The user can specify in the query its tol
erance for the uncertainty of the model in its approximations.

The authors of [SBLC03, BSLC03] exploit the temporal redundancy in a sequence of
sensor observations to reduce the energy cost of aggregation during query processing. Their
solution, called TiNA, allows the user to specify a temporal coherency tolerance when an
approximate answer is sufficient, which lowers the energy costs. TiNA is designed for a
sensor network environment where the sensor nodes answer continuous queries, with no
data storage involved.

To improve the fault tolerance of query processing for aggregations, duplicate insensi
tive sketches are used in [CLKB04] to produce accurate approximations of the aggregate
answers. Sketches are bitmaps representations of the data participating in an aggregation.
When the answers of the sensor nodes are returned over one routing tree, the failure of a
link or node in the tree affects the result of aggregation. When multiple paths are used for
returning the answers, the energy cost of computing the aggregations is high, as well as the
complexity of combining the answers in the case of in-network aggregations. By employ
ing sketches, the cost and complexity of in-network aggregation over multiple return paths
is reduced, and the approximation error of aggregate answers in the case of link and node
failures is low.

A solution that combines the advantages of tree-based and multi-path approaches used
for data aggregation in continuous query processing is Tributary-Delta [MNG05]. The so
lution dynamically adapts the aggregation scheme to the loss rate in a network region: a
tree-based scheme is used typically by the nodes far from the base station and the multi-
path scheme is employed near the base station. The advantage of trees is their low approx
imation error and short messages, but they do not work well under high loss rates. Multi-
path schemes are more robust under message losses, but they incur higher communication
costs and introduce more approximation errors. By combining these two communication
schemes, Tributary-Delta is able to outperform both approaches in networks where message
losses occur at varying loss rates in different regions of a network.

In [DKR04], the authors exploit the correlation and temporal redundancy among the
observations on the same sensor node to compress the short-term historical observations.
Once compressed, the observations are transmitted to a base station for further processing
and long-term storage. The authors use a base signal to encode the correlations among the
observations of a node’s sensors. They propose the Self-Based Regression (SBR) algorithm
with the following tasks: construct the base signal from sensors’ observations, reduce the
size of the base signal, and approximate the sensors’ observations using the base signal.

Caching of sensors’ observations is used in [DNGS03] to reduce the cost of retrieving
the sensor data, where users specify in the query their tolerance for stale data. The authors
focus on XML-based sensor databases, where sensor nodes are distributed over wide spatial
areas that can be grouped hierarchically (e.g., neighbourhood, city, county). Using a site
naming scheme based on the hierarchy, the queries can “jump” closer to the sites holding
the answers.

Kotidis [Kot05] introduces the snapshot queries as a different solution for approximate
answering of queries. A snapshot query is a query over a subset of the query relevant
nodes, where the nodes in the subset are representatives of their neighbours. Obtaining the
answers of the representative nodes gives the user a picture of the distribution of locations
and values in the network, and a quick approximate answer. Different from [DGM+04]
which uses a global statistical model, a statistical model is used at each sensor node to

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represent its correlation with the observations of its neighbour nodes. The models are used
for selecting in a localized fashion the set of representative nodes.

Another work using statistical models is [SPP+06J. The models are built in a distributed
fashion with the goal of detecting outlier measurements. Each node constructs a model
of the distribution of its values based on a window of past measurements. The authors
use a hierarchical organization of the sensor network to combine the nodes’ models so
that outlier values can be identified. Different from [DGM+04], the solution can capture
special characteristics of the data distribution. Also, in [SPP+06] all data values need to
be observed for outliers to be detected, whereas [DGM+04] observes only a few values to
refine the centrally constructed model when uncertainty is high.

Chu et al. [CDHH06] propose a system that uses two probabilistic models, one at the
base station and the other within the sensor network. By keeping the two models synchro
nized, the sensor nodes can detect within the network when the approximated sensor values
reported to the user by the base station model differ (within an approximation bound) from
their measured values. When this happens, the sensors send their measurements to the base
station and the models are re-calibrated and re-synchronized. The models take advantage
of both spatial and temporal correlations to minimize the cost of model updates. Differ
ently from [DGM+04], the use of the in-network model allows the sensor network to detect
outlier measurements.

The correlation between the measurements from different sensed attributes within a
sensor node is exploited in [DGHM05] to generate conditional query plans, where low cost
attributes are used to determine the best plan for acquiring the high cost sensor measure
ments.

Event detection based on contour maps is studied in [XLCL06]. A contour map displays
the distribution of attribute values over the network. The authors assume a grid on top of the
network with at most one node per grid cell. For the cells without nodes, their values in the
contour map is interpolated from the values of the neighbouring cells. The system detects
three types of events based on the distribution of values in the contour maps. To reduce
the high cost of building the contour map for a given time snapshot, the authors propose a
scheme for incremental map update during the lifetime of the continuous query.

Spatial and temporal correlation in sensor data is exploited in [YS05, YS07] to reduce
the cost of in-network data aggregation. The authors propose clusters of nodes as the ba
sic unit of data reporting, where all nodes in the cluster sense similar values and only the
cluster-head reports its sensed value. For snapshot queries the spatial correlation is used for
cluster formation, while for continuous queries the temporal correlation is used as well for
cluster updates. In addition, for continuous queries the cluster size is used for weighting
the reported value in order to improve the accuracy of data aggregates. The user must spec
ify in the query an upper-bound error threshold, which is used for measuring the nodes’
intra-cluster similarity of sensed values. The proposed algorithm, called CAG, provides an
approximate aggregation result with a small and bounded error, while substantially improv
ing the energy efficiency of in-network data aggregation compared to TAG [MFH02],

The problem of retrieving only the top-k measurements from a sensor network is stud- -
ied in [SBE+06, WXTL06]. In [WXTL06], the authors propose a technique using expected
value ranges at each sensor node for monitoring top-k queries. The non-overlapping ranges
tell the base station which nodes are in the top-k answer. When a new measured values falls
outside the expected range for a node, it is sent to the base station where the value ranges
are globally re-adjusted. Since only the out-of-range values are reported to the base-station,
the cost of maintaining the top-k nodes with values is reduced. In [SBE+06], the authors

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

argue that using probabilistic models such as those proposed in [DGM+04] is very expen
sive for top-k queries. They propose the use of models based on past samples, since such
models allow inexpensive use and maintenance. The proposed algorithms construct linear
programming-based query plans using the models stored at the base station, the network
topology and the energy constraints. The generated plans allow approximate top-k query
answering with the highest possible accuracy within a targeted energy budget.

2.4 Other Relevant Issues

A topic relevant to query processing in sensor networks is that of query processing in tradi
tional distributed database systems. Query processing is much more difficult in distributed
databases than the centralized ones, due to the large number of parameters that affect the
performance of distributed queries [OV99]. Distributed query processing [KosOO] has been
studied in the context of traditional distributed databases, where the query optimization cri
teria are the total execution time or the response time of the query. The problem of query
processing can itself be decomposed into several problems: query decomposition, data lo
calization, global query optimization and local query optimization [OV99]. For traditional
distributed databases, the first three problems are addressed at a central site, with only the
last solved at the local sites.

The peer-to-peer sensor network environment further increases the complexity of query
processing, making the global query optimization not practical, while the other three prob
lems require distributed solutions. Major differences from traditional distributed databases
is that in a sensor network the database relations are distributed over devices with limited
capabilities and hard constrains on the energy resources, that the amount of information
available at each sensor node about the other partitions of the data (data location, distribu
tion of values, etc.) is limited (if not null), and that the nodes communicate wirelessly, with
all the issues this communicating environment brings into play. Nevertheless, there are also
a number of similarities with respect to query processing: the query processor needs to se
lect the partitions of the relation that must be used to construct the query answer; the query
optimizer must choose the location (server, node or neighbourhood) where each operator
needs to be processed; and the optimizer has to use cost models to choose the best plan
and estimations affect these models. Several issues and solutions for query processing in
traditional distributed database systems are presented in [LOT94],

The most common way of expressing queries for a sensor network is using a declarative
language. Most works use modified versions of SQL, which allows special constructs for
describing the continuous query [YG03, MFHH03] or the the queried event [XLCL06].
Chu et al. [CTH06] propose the use of SNlog language, which is a variant of Datalog. They
argue that SNlog allows the rapid, flexible and efficient construction of sensor applications.
For instance, using SNlog the user is able to easily compose high level events from the
sensor measurements.

As more software and hardware platforms become available, application development
becomes a time-consuming task. In addition, the heterogeneity of platforms makes fast de
ployment of new sensor networks difficult, and re-deployment of new types of nodes within
an existing network likely impossible. Middleware technology is an attractive solution for
dealing with the heterogeneity of sensor platforms. In [AHS06], the authors propose the
Global Sensor Networks (GSN) middleware. GSN provides flexible integration of sensor
platforms and provides distributed querying, filtering and combination of sensor data. The

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

main level of abstraction used in GSN to allow these functionalities is virtual sensors. A
virtual sensor abstracts from implementation the access to sensor data and corresponds to
data streams either received from real sensor nodes or derived from other virtual sensors.
By hiding the data sources behind the virtual sensor abstraction, GSN provides a uniform
access to heterogeneous architectures. An infrastructure that provides a unified view of data
provided by sensor networks with data from other types of devices (such as wired in-situ
sensors and remote sensors) is GeoSWIFT [LCT05]. GeoSWIFT contains three layers, i.e.,
Sensor Layer, Communication Layer and Information Layer, which provide the necessary
level of abstraction for the integration of multiple types of sensing.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

In-network Processing of Spatial
Range Queries

3.1 Introduction

In this chapter we focus on energy efficient processing of spatial range queries in sensor
networks. Spatial range queries are queries that specify a spatial area1 the answers must
belong to, such as “What was the lowest humidity recorded yesterday morning in the Lake
Annete area?” Such a query can be processed by flooding the sensor network with the query,
followed by the collection of the query answer from the sensor nodes satisfying the spatial
range constraint. As the query regions are typically smaller than the whole monitored area,
this is clearly an inefficient solution. Due to the spatial nature of the data collected in the
sensor network, we argue that any query processing strategy should treat the spatial range
predicate differently than other query predicates in order to reduce the cost of processing
the query. Since the energy required by sensing and computation is three to four orders
of magnitude less than the energy used for communication [MFHH03, ZG04], we focus
on minimizing the energy cost of communication during query processing. We study this
problem in the peer-to-peer sensor network environment introduced in Section 1.2.

We propose the SWIP (spatial window processing) framework for processing spatial
range queries in peer-to-peer sensor networks. Our framework has two phases. In the first
phase, a path from the query originator node to a suitable sensor node located in the query
region must be located. Due to its role in the second phase, we call the located node the
query coordinator. For the second phase, the coordinator node disseminates the query to
the sensor nodes located within the query region, collects the query answers from them,
and returns the answers to the originator node on the path discovered during the first phase.
Within this framework, we propose the SWIF (spatial window flooding) approach formed
by two algorithms, one for each phase. We use a greedy routing algorithm in the first phase,
while for the second phase we propose an algorithm that uses a constrained flooding to
contact the nodes located within the query region. We use an analytical model that captures
the behaviour of the proposed strategy for finding the most energy efficient position for the
coordinator node. Having analytical models for query processing strategies is important
as they can be used to dynamically select the most energy efficient strategy for a given
query, allowing a greater flexibility for the query processing. While the SWIP framework
(detailed in Section 3.4) accommodates both historical and continuous queries, we focus on

‘We refer to the spatial area covered by the query as the query region.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

historical queries in our presentation.
Our contributions in this chapter are the following:

1. We propose the SWIP framework for processing spatial range queries in sensor net
works.

2. Within the SWIP framework, we propose the SWIF processing strategy.

3. We construct analytical models to capture the energy costs of the SWIF strategy and
the typical network flooding.

4. The cost model of SWIF is developed further to choose the best coordinator location
for a given query.

5. We show how to select at query time the best query processing strategy using the
analytical models, further reducing the energy cost of query processing.

We evaluate analytically and experimentally the performance of the investigated strategies
and show how our cost-model based strategy provides significant reductions in energy costs
over the typical network flooding.

The remainder of this chapter is organized as follows. Section 3.2 presents the char
acteristics of the spatial range query. Section 3.3 presents a typical query processing strat
egy for sensor networks. Section 3.4 introduces our strategy for processing spatial range
queries. In Section 3.5 we construct analytical models for the investigated strategies and
show how they can be used to dynamically select the most energy-efficient processing strat
egy for a given query. The analytical model of SWIF is developed further in Section 3.5.4
to determine the best coordinator location. We discuss several issues relevant to our tech
niques in Section 3.6. Section 3.7 presents the analytical and experimental evaluation of the
investigated strategies. Section 3.8 discusses research works related to our contribution and
Section 3.9 concludes the chapter.

3.2 The Spatial Range Query

In this chapter we focus on the energy-efficient processing of spatial range queries (without
joins, which are discussed in Section 3.6), which can be expressed as SQL queries with
a spatial range selection predicate in the WHERE or HAVING clauses. Along the spatial
range selection predicate, we allow selection predicates on other attributes (time and sensed
values), incremental aggregation operators (min, max, sum, average, count) and grouping.
Several works [MFH02, MFHH03, YG03] have investigated energy efficient query pro
cessing, but the proposed strategies do not exploit the spatial properties of the sensor data
during the query dissemination and answer collection. We detail this issue in Section 3.3
when we present the network flooding strategy, which is typically used in query processing.

Similar to other works on query processing in sensor networks [MFH02, YG02], we
adopt a declarative SQL-like language for the user to express queries over the sensor net
work, where the data collected and stored in the sensor network is represented by one
virtual append-only table, denoted R *. For instance, the following spatial range query can
be used to find the average temperature and the lowest humidity collected each day by
the sensor nodes located in the area represented by the rectangle with the opposite comers
(< x \ ,y i > , < £2 , 2/2 >) during the time range (i i , *2) when the temperature was above
freezing (0 °C).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• sensor node

® query originator
— - query message

- — answer message

l l query region

O wireless range

Figure 3.1: The hTAG strategy - message flow

SELECT DAY(R* .time), avg(f?* .temperature), min(i?* .humidity)
FROM R*
WHERE R *.location IN (< x \ , y-\ > , < £ 2 , 3/2 >) AND

R* .temperature > 0
GROUP BY DAY(R* .time)
HAVING DAY(R* .time) IN (t\ , t2)

3.3 Basic Query Processing Strategy

A naive implementation for query processing in sensor networks would simply collect all
sensor observations at the user station and answer the queries off-line. While this strategy
may be suitable when the users require all the sensors’ observations and the queries are
issued through the same user station, this is rarely the case in sensor networks. An efficient
processing strategy should only collect the query answers at the user station, pushing most
of the processing into the sensor network if it reduces the amount of data that has to be
transmitted.

A typical strategy used in locating and collecting the query answers is contacting every
network node. The query originator node broadcasts the query to its neighbours, which
in turn broadcast the query to their neighbours, and so on, until all nodes have received
the query. When a node receives a query message for the first time, it chooses the sender
as its parent and re-broadcasts the message. Next, the node selects the locally stored data
relevant to the query (if any), and, after waiting and receiving its neighbours’ answers, it
merges them with its own. Finally, it returns the answer to its parent. Once the query
originator node has received answers from all its neighbours, it can answer the query. Due
to the broadcast of the query message, each node will receive the same query several times.
For each query, a node processes only the first message received, discarding subsequent
query messages. For queries with a spatial range selection predicate, only the sensor nodes
located within the query region will satisfy the query and may have a query answer to return
to their parent (subject to the selectivity of other selection predicates in the query).

TAG [MFH02] uses such a processing strategy to disseminate the query and construct
the routing tree. As TAG focuses on continuous queries, the routing tree is built once, with
the sensors’ observations flowing through their parents toward the query originator for the
duration of the query. While all sensor nodes receive a query, only the nodes satisfying

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the spatial range selection predicate (if any) return their answers. TinyDB [MFHH03] uses
the same basic strategy to build a semantic routing tree (SRT), which is used to determine
which nodes need to participate in the continuous query. For historical queries, only one
answer is sent from each node to its parent and, consequently, to the query originator. We
consider this typical strategy as the basic processing strategy, and we will refer to it in the
following as hTAG (historical TAG). Differently from TAG whose aggregations are only in
the spatial domain, hTAG also allows other aggregations to be performed in-network over
the historical sensor observations. The flow of the messages used by the hTAG strategy is
shown in Figure 3.1.

The hTAG strategy is guaranteed to find the answer to a spatial range query for a con
nected sensor network, but it may have a substantial overhead for contacting all nodes. The
strategy is similar to a parallel breadth first search in a network graph where sensor nodes
are vertices and edges represent direct communication links between sensors. Assuming
there is no communication latency, the query will reach each node on the shortest path
(with respect to the number of hops) from the query originator. As query messages are
broadcast along all paths, the first message reaching a node must have travelled over the
shortest path. After a query is processed locally, a node returns the answer to its parent, and
therefore answers are returned over the shortest path to the query originator.

3.4 Strategies for Query Processing

When there is only one node relevant to the query, the optimal strategy is contacting only the
relevant node on the shortest path from the query originator and returning the query answers
over the same path. However, when there are several query relevant nodes, communicating
with these nodes on the shortest path between the query originator and each of them may
not be optimal. Figure 3.2 shows an example. Forwarding the query over the shortest paths
(routes (a) and (c)) requires 6 query messages in order to reach both relevant nodes, while
route (b) requires only 5 messages. On the other hand, returning the nodes’ answers over
the shortest paths (routes (a) and (c)) is still optimal if no spatial aggregation on the data
is performed. As the energy used in communication is proportional to the message size
and the same amount of answers must be transferred over any of the possible return paths,
sending the answers over the shortest path is the most energy efficient strategy. This is not
true when spatial aggregation is required, in which case the best return paths for the answers
depend on the size of the aggregated data. Pushing the aggregation operators as close as
possible to the data sources minimizes the amount of data that must be communicated, and
thus the energy use. For such queries returning the answers over the shortest path may no
longer be optimal. Finding an optimal strategy would require that each query originator
node obtains and stores information about the whole network, as well as performs possibly
expensive local computation for finding the optimal route for processing each query. Due
to the limitations of the sensor nodes, this is not feasible for large sensor networks.

A heuristic solution for query processing is contacting only the query relevant nodes,
plus a few extra nodes for routing the query and the answer if the query originator is not
located within the query region. A heuristic contacting only a subset of all network nodes
should use a lower number of messages than hTAG, which may lead to a lower energy con
sumption. In addition, if only a subset of the network nodes is involved in processing each
query, then several queries could be efficiently processed in different parts of the network
without interfering with each other. The SWIP (spatial window processing) framework for

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2: Query routing example

<advance>

wireless range

candidates for forwarding

coordinator

selected for forwarding

Figure 3.3: Neighbor selection in Greedy

processing spatial range queries allows such a heuristic to be implemented. In this frame
work, we divide the query processing into two phases, one for locating a path from the
query originator node to a sensor node located inside the query region, the other for gath
ering the answers from the relevant nodes (and possibly performing data aggregation) and
returning the answer to the query originator.

The SWIP Framework:

• Phase 1: Given a spatial range query at the originator node, find a path to a suitable
node located in the query region and send the query over this path. The located node
becomes the query coordinator for Phase 2.

• Phase 2: The coordinator node initiates the query processing within the query region.
All relevant nodes are contacted during processing and the query relevant data is
transmitted (possibly aggregated) to the coordinator node. The coordinator will then
return the answer to the originator node on the routing path discovered in Phase 1.

These two phases form a general query processing framework, where various algo
rithms can be used in each phase. In the following we present two algorithms, one for
each phase of the SWIP framework. These algorithms together form a complete process
ing strategy within the SWIP framework, called SW IF (spatial window flooding) in the
following.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1: SWIF Phase 1 - Greedy Routing Algorithm

Input : Current Node N, NeighborList NL
1 Receive query Q, destination D from neighbour NB
2 Nbest t— N /*best node for forwarding*/
3 advNbest <r- 0 /*advance to destination for best node*/
4 foreach node N.t in NL do
5 i f d is ta .n c e (N i,D)< d is ta n c e (N ,D) &

a d v a n c e(Nt,N,D)> advNbest then
6 N b e s t N i

7 |_ advNbest a d v a n ce (Nt,N,D)

8 if N best ± N then
/*forward query to the best neighbor*/

9 Send query Q, destination D to Nbest
to Wait for query answer QA from Nbest

else
/*no good neighbour is found for forwarding the query*/

11 if NJocation in Q.spatialRange then
12 L Initiate Phase 2 /*N will be the coordinator node*/

13 Return answer QA to NB

3.4.1 S W IF Phase 1: Greedy Routing

The Greedy routing uses a greedy strategy to find a routing path from the query originator
node to a virtual2 coordinator node located in the query region (finding the best location for
the coordinator node is studied in Section 3.5.4). The query originator forwards the query
to its neighbour with the greatest advance toward the desired coordinator location, where
the advance is defined as the length of the projection of the line connecting the originator
and its neighbour onto the line connecting the originator and the coordinator location (see
Figure 3.3). In turn, the neighbour forwards the query to its neighbour with the greatest
advance toward the coordinator, and so on. Each node considers for forwarding only its
neighbours which are closer to the coordinator location than itself to ensure the query will
get closer to the destination at each step. The query forwarding path will eventually reach
a sensor node that is closer to the coordinator location than any of its neighbours, in which
case the query is no longer forwarded. If the reached node is located in the query region, the
node assumes coordinator role and initiates Phase 2, otherwise an empty answer is returned.
Note that the actual coordinator location is generally different from the targeted one since
the lack of knowledge about the network topology prevents one to pinpoint an actual sensor
node for the coordinator role. The pseudo-code for the Greedy algorithm is presented in
Algorithm 1.

The flow of the messages used by the Greedy algorithm is depicted in Figure 3.4(a).
There are many greedy strategies for next hop neighbour selection (e.g., [Fin87, KSU99,
TK84]) in routing algorithms, and Greedy is closest in spirit to [TK84], While most such
strategies are similar in performance, the presented one allows a more accurate analytical

2The originator node only knows its neighbours, and therefore there may be no sensor node located at the
targeted location of the coordinator node.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• sensor node
0 query originator

<e> query coordinator
—- query message

answer message
□ query region
o wireless range

(a) Greedy (b) WinFlood

Figure 3.4: The message flow in the SW IF strategy for a given coordinator

modelling, as we shall see in Section 3.5.1. The Greedy algorithm uses a small number of
messages, but it does not guarantee that a routing path to a node in the spatial range of the
query will be found. Greedy-based routing techniques have been shown to nearly guarantee
delivery for dense networks [Sto02] as it is typically the case of sensor networks. For
low density sensor networks, more robust strategies that guarantee the message delivery
for connected networks (e.g., based on GPSR [KKOO]) could be used to improve route
discovery in this phase. We discuss our choice for Greedy over GPSR-like techniques in
Section 3.6.

3.4.2 SW IF Phase 2: W inFlood A lgorithm

The WinFlood algorithm consists of a constrained flooding, where a node broadcasts the
query to its neighbours only if its own location is inside the query region. The flooding
starts at the coordinator node and stops when the query reaches nodes located outside the
query region. Once a node receives the query, it processes the query over its locally stored
observations. After waiting and receiving the answers of its neighbours, its merges them
with its local answer and processes the query again over the merged answers (e.g., to per
form partial aggregations). Finally, it returns its answer to the neighbour it first received
the query from. The pseudo-code for the WinFlood method is presented in Algorithm 2.
Figure 3.4(b) shows the query and answer messages used during query processing. Similar
to hTAG, some nodes will receive the same query from more than one neighbour. To pre
vent answering the same query request more than once, each node keeps a list of the recent
queries it has processed, and only returns the query answer to the first neighbour that it has
received the query from. To all the other neighbours, an empty (null) answer is returned.
This answer policy ensures that only one copy of a node’s relevant data is transferred by the
network, avoiding communication redundancy.

Due to the distributed nature of the data, the query is decomposed into fragments. This
is a common step in distributed query processing [OV99]. In our case the decomposition
generates three fragments. The first fragment consists of the spatial range predicate of the
query and it is used by nodes to check if their answer is required (Algorithm 2, line 3).
The second fragment consists of the query operations that are applied on the local sensor
database. Such operations are selection predicates in the WHERE clause and grouping
(and selection predicates on groups) on other attributes than location, as well as non-spatial
aggregation. For instance, for the example query in Section 3.2, this query fragment is:

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 2: SWIF Phase 2 - WinFlood Algorithm

Input : Current Node N, NeighbourList NL, QueryList QL
1 Receive query Q from neighbour NB
2 Query Answer QA <— 0
3 i f (N.location in Q.spatialRange) a n d (Q.id not in QL) then
4 Add Q.id to QL /*save query ID*/
5 Broadcast query Q
6 QA t— p r o c e s s Q u e r y L o c a l (Q, N.data) /*process local data*/
7 foreach node Ni in NL do
8 Wait for answer QAt from node TV,
9 _ QA {— QA U QAi /*collect answers from neighbours*/

10 [_ QA t— p r ° c e s s Q u e r y C o m b in e d (Q, QA) /*process collected answers*/

11 Return answer QA to NB

SELECT DAY(s.time) AS day, sum(s .temperature) AS sumT,
count(s.temperature) AS countT, min(s.humidity) AS minH

FROM LocalSensorData s
WHERE s.temperature > 0
GROUP BY DAY (s.time)
HAVING DAY(s.time) IN (L , t 2)

In the WinFlood algorithm this query fragment is executed on the local sensor observa
tions while the node waits to receive the answers of its neighbours (Algorithm 2, line 6).
The third fragment consists of spatial aggregation and grouping on sensor data from dif
ferent nodes. This fragment is applied on the concatenation of the local answer (generated
by the previous fragment) with the answers received from the neighbours. For the query in
Section 3.2, this query fragment is:

SELECT u.day AS day, sum(u.sumT) as sumT,
sum(u.countT) as countT, min(u.minH) as minH

FROM UnionOfAnswers u
GROUP BY u.day

In the WinFlood algorithm the third query fragment is executed before the answer of
the node is returned to the node’s parent (Algorithm 2, line 9).

3.5 Analytical Models for Query Processing

Since there are several alternative strategies for processing a query, choosing the most
energy-efficient processing strategy for each query becomes a critical decision with di
rect consequence on the lifetime of the sensor network. Having the proper information, the
originator node could decide which strategy processes a query at a lower energy cost. In
this section we propose analytical cost models for SW IF and hTAG that can be used by the
query originator node to decide which one is the best strategy for processing a query. The
models use only the information available locally at a node to estimate the processing cost.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: Notations used in the definitions of the analytical models
Parameters of query
and sensor network

Description

R a Area of the monitored region
N Number of sensor nodes
W Wireless communication range
Q a Area of the query’s spatial range

Q s (in bits) Size of the query message
0S (in bits) Size of the empty answer message

E u (per bit) Energy used for unicast
Ef, (per bit) Energy used for broadcast
E t (per bit) Energy used for receive

Other notations Description

N K x i iV i) Node i located at (X i , y i)
0 { p x , Oy) Query originator node
C (CX i Cy) Coordinator node (for SWIF)

N r Number of relevant nodes
N n Average number of neighbours per node
W A Area covered by a node’s wireless range
R i Local observations stored in relevant node
A t A relevant node’s answer based on query and R{

d o c Distance between 0 and C
h o c Number of hops from O to C
h N iC Average number of hops from IVs to C
h N iQ Average number of hops from TV'1 to 0
Qfiop Average advance for one hop

In the following two sections we focus on the construction of the analytical models, while
in Section 3.5.3 we discuss the dynamic selection of the best strategy.

Before proceeding to the analytical models, we introduce several notations and estimate
some basic values used in the models. Three important values for the models are the number
of sensor nodes, denoted by TV, the number of nodes relevant to the query, denoted by N r,
and the average number of neighbours each node has, denoted by N n . In our models we
assume nodes are uniformly distributed over the monitored area. The area3 covered by the
wireless communication range W of a node is W a — w W 2. Each point in the monitored
area is covered on average by the wireless ranges of N ̂ nodes, where R a is the area of
the monitored region. Each sensor node is covered by the wireless ranges of its neighbours,
therefore the average number of neighbours that each node has is N n = IV ̂ — 1. Due
to the uniform node distribution, the number of relevant nodes is proportional to the area
covered by the query region from the monitored region and it can be estimated as N r =
IV where Q a is the area covered by the spatial range of the query. If the sensor nodes
do not know how many sensor nodes (N) are used for monitoring, each node IV* can use
the number of its neighbours N'!n (acquired as part of network activation) to estimate N as
N est = (IV* + 1) Table 3.1 summarizes the notations used in the analytical models.

3As discussed in 1.2, we consider that all messages are transmitted as far as the wireless communication
range.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.1 Estim ating the Cost o f SW IF

The energy cost of SWIF is determined by several costs: for sending the query from the
originator node 0 to coordinator C, for distributing the query from C to the relevant nodes,
for collecting the query answers from the relevant nodes to C, and finally for sending the
answers to the originator node. The analytical model of SWIF is independent of an ex
act location for the coordinator C, with the constraint that C (cx ,cy) is located within the
query region (in conformity with the SWIP framework). We show in Section 3.5.4 how to
determine the best coordinator location for a given query. We estimate the cost of SWIF
separately for its two phases:

EsW IF — EGreedy T EWinFlood

Estimating the Cost of Greedy

The Greedy algorithm is responsible for finding a path between the query originator O and
a coordinator node C, and sending the query over this path during its discovery. For each
hop of this path, a node transmits the query, while another node receives it. Therefore, the
energy used by Greedy is equal to

$ Greedy ~ (E'u f E r ĵQs^ O C

where E u and E r represent the energy used to transmit and, respectively, receive one bit
of information, Q s is the size of a query message and h o c represents the number of hops
between O and C. Assuming a dense sensor network, one can approximate h o c by the
Euclidean distance d o c between O and C divided by the average advance a/,op toward C
for a hop (i.e., the advance for a neighbour selected for forwarding):

i d o c
h o c = ------ •

Q>hop

The query originator node O knows both its location and the targeted destination location
of the coordinator C: d o c = \ J (°x ~ cx)'2 + (oy — cy)2. Let us denote with a a the area
of the the circular segment within the wireless range circle where the neighbour with the
greatest advance must be located (see Figures 3.3 and 3.5). The size of the network area
corresponding to each node is equal to Sjf-. Since a a is the smallest circular segment such
that there is exactly one node inside (assuming uniform node distribution), we have that
a a = ■ The area of the circular segment a a is also equal to W 2 arccos(M̂)/t) — (W -
h)V%Wh - h2, where h is the height of the arced portion. From the equality of the two
expressions of a a we can find h since the other terms are known, and thus the coordinates
for the circular segment. The selected neighbour could be located anywhere within a a -
The average advance a hop of the neighbour selected for forwarding toward C is the sum of
the advances for all possible locations for this neighbour divided by the number of these
locations (see Appendix A for details):

_ I IgA V dxdy _ l & W h - h2) j

ah0P I faA d x d v a A

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hop

Figure 3.5: The average advance a ^ p for a hop

Estimating the Cost of WinFlood

The energy cost of WinFlood has three components: for forwarding the query to the relevant
nodes (E q), for these nodes to return their answer to the coordinator node (E c), and for the
coordinator node to return the query answer to the originator node O (E o)■

E WinFlood = E q + E q + E o -

During query forwarding, each relevant node will broadcast the query once, and receive
the query from all its neighbours4. The energy used for forwarding the query consists of
the energy to broadcast the query plus the energy to receive the broadcast messages:

E q = E b Q s N r + E r Q s N r N n .

Even though E q grows quadratically in N , for small query regions the slope of the increase
is small, since the fractions in N r and N n are small.

There are two situations to consider when calculating the cost of returning the answers.
The first situation is for queries without spatial aggregation. In this case, the query answers
generated by each relevant node over its locally stored data are concatenated with the an
swers received from the other nodes and returned toward the coordinator node. Thus, the
local answer A L generated by a node is returned over the shortest path (in number of hops)
to the query coordinator. The average distance between the coordinator C located in the
query region and a relevant node N z can be computed as the sum of the distances from C
to all possible locations for the relevant nodes divided by the number of these locations:

f I q a \J (x ~ c*)2 + ~ cy f d x d y
d»'c ~ TkJUdy '

The solution for the analytical formula of d N%c is derived in Appendix B. The average
advance toward C over a hop for any node N % is a,hop (as calculated for the Greedy al
gorithm5). Therefore, the average number of hops that the answer A l travels between a
relevant node N l and C is hNiC = As the coordinator is also a relevant node, only

a hop
N r — 1 nodes send their answer A j to the coordinator node. Under a relational storage

4We do not consider the boundary effects at the query region.
5 As messages reach the destination over the shortest path when fboding, the neighbour with the greatest

advance must be used over each hop. This is similar to the neighbour selection in Greedy.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model, the average size of the local answer A i of a relevant node N % to a given query Q can
be estimated as:

s i z e (A i) = agg(R i) s e l (Ri) card(JR j) le n g th (f? j) ,

where agg(.Rj) is the query’s aggregation factor over relation R , (Ri is the local relation
storing the observations of a relevant node and it is a horizontal fragment of the global
virtual relation R* over sensor network’s data as discussed in Section 1.1.3), s e l (Ri)
is the query’s selectivity factor over relation R i, c a r d (Ri) is the cardinality of /?,; and
le n g th (iZ J is the length in bits of a tuple in R, . We discuss in Section 3.6 how one can
determine the selectivity and aggregation factors. In total, the energy used for gathering the
answers at the query coordinator node C for a query with no spatial aggregation (nsa) is:

E ncsa = (Eu + E r)(Nr - l)hNics i z e (A i) .

The second situation is for queries with spatial aggregation. In this case, the local
answer Ai of each node is aggregated into one answer with the other answers the node
receives. In addition, each answer generated by a node is only transmitted one hop (that
is, to a node’s parent in the routing tree), where it is aggregated again with other answers.
Thus, the energy used for gathering the answers at the query coordinator node C for a query
with spatial aggregation (sa) is:

E% = (Eu + E r)(N r - l) s i z e(A i).

For returning the query answer from the coordinator node to the originator, the size
of the answer is also estimated differently for the two cases. If the query has no spatial
aggregation, the size of the query answer can be estimated as N rs iz e (A i) , which leads to
the following cost:

E%sa = (Eu + E r)h0 c N rs i z e (A i) ,

while for queries with spatial aggregation the coordinator node aggregates all the answers
of the relevant nodes (including its own), and we have:

E g = (E u + E r)h o c s i z e (A i) .

Overall, the cost of WinFlood for queries without spatial aggregation is:

Tpnsa_______________ _ jp i Tpnsa > jp u s a
a WinFlood — E q + E q + E q

= EbQsN r + E rQsN rN n + (E u + E r)(N r — l)h w iQ s ize (A i) +
(Eu + E r)hocNrs i z e (A i)

and for queries with spatial aggregation we have:

ip sa ip i jp s a I jp sa
& WinFlood ~ & Q + & C +

— EbQsN r + E rQsN rN n + (E u + E r)(N r — l) s iz e (y l j) +
(Eu + E r)h0 cs±ze(Ai) .

The cost of returning the query answers increases linearly in N , Q a (due to N r) and
s iz e (J4j). E q is quadratic in N , but the fractions in N r and N n are typically small. Thus,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the size of Ai determines which of the three costs has a larger weight in the total cost of
WinFlood. When Q s < size(A ,;) the cost of WinFlood is dominated by the cost to return
the query answers.

3.5.2 Estim ating the Cost o f hTAG

To estimate the cost of the basic query processing strategy hTAG, we split the energy use
into three components: for forwarding the query to all nodes (E q) , for returning the empty
answers which signal that the query has already been processed or no answers are available
(E q) , and for returning the query answers from the relevant nodes to the query originator O

(Eo)'
EhTAG = E q + E q + E o -

hTAG uses network flooding for query forwarding. Each node will broadcast the query
once, and receive the query from all its neighbours. Thus, the cost of disseminating the
query is:

E q = E b Q s N + E r Q s N N n .

Once the query is received, all nodes except the relevant nodes will return an empty
answer to all their neighbours, while the relevant nodes will return the query answer to one
of their neighbours and the empty answer to every other neighbour:

EQ = (Eu + E r)<bs (N N n - N r).

For returning the answers to the query originator node, the shortest path (in number of
hops) between each relevant node and the originator O is used. The average number of hops
between O and a relevant node N l can be estimated by the average distance d Ni0 from a
relevant node N l to the originator O divided by the average advance toward originator over
a hop ahop ■ h N,Q = <̂ lQ- (the average advance over a hop was calculated as part of the“ ĥop
cost estimation for the Greedy routing). The average distance from a relevant node to the
originator node is equal to the sum of the distances from O to all possible locations for the
relevant nodes divided by the number of these locations:

/ JQa \J (x — ox)2 + (y — oy)2dxdy

Ni° ~ S S Q A dxdy •

The solution for the analytical formula for d Nio can be derived using similar steps as for
d^fic (see Appendix B). Since we consider peer-to-peer sensor networks where knowledge
of the network topology is not available, we cannot estimate if any partial spatial aggrega
tion can be performed on the paths over which the answers are collected. Differently from
the WinFlood algorithm where each node participating in the return of the answers to the
coordinator node was itself a relevant node holding answers, in hTAG a node’s answers
may be returned to the originator node over a path that is only used by that node. We con
sider that no spatial aggregation can be performed in the network over the answer return
paths. Thus, our cost estimation is correct for queries without spatial aggregation and it is
only an upper bound for the cost of queries with spatial aggregation. Since each node on the
path between the query originator and a relevant node will receive and transmit the answer

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

declarative query

sensor networkquery in

ex
44

query parser

best cost plan
MOB

hTAG

cost estimator

SWIF others

query processor

Figure 3.6: Dynamic selection of the processing strategy

of that node, the energy used for returning the answers is:

E o = (E u + E r)h^iQ N rsi.7.B(AiJ).

Both E q and Eg, costs depend quadratically on N , and Eg, is also affected by the size
of the query area Q a (but not affected by s ize (A z ,)). Thus, for denser networks a large
increase in these costs is expected. The E o cost is linear in all three variables. Different
from WinFlood, both A l and Qa affect the weights of the three costs of hTAG. When
query area is small, the cost of hTAG is dominated by the cost of query forwarding, while
for queries over large areas with no aggregation the cost of returning the answers prevails.

3.5.3 Dynam ic Selection o f the Q uery Processing strategy

In the previous sections we have developed analytical models to estimate the cost of query
processing for the SWIF and hTAG processing strategies. We expect that other strategies
will be proposed in the future for processing spatial range queries due to the importance
of this query type and the increased interest from both academia and industry in the sensor
network technology [Ric05]. As for most problems, there is no strategy that is a clear
winner for all situations and application scenarios. Thus, it is important to find automatic
ways to select the best strategy for a particular situation.

In the case of query processing in sensor networks, we propose to use the analytical
models to estimate the cost of each available query processing strategy, and, based on the
cost estimation, to select the most promising one to be used for processing each query. As
suming the cost models are accurate, this can lead to an overall lower energy consumption
and extended lifetime of the network. In our case we want to find the best strategy for a
given sensor network and a given query. Figure 3.6 shows the execution blocks of a query
processor that dynamically selects the query processing strategy to be executed in the sensor
network. We have denoted with MOB (model-based) the most energy efficient processing
strategy as suggested by the analytical models.

There are several issues that are important when using the analytical models in the query

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) hTAG (b) SWIF

Figure 3.7: Possible paths for returning the query answers

processor shown in Figure 3.6:

• Existence o f the analytical model. In order to include a processing strategy in the
dynamic decision of a query processor, that strategy must have an analytical model
for estimating its cost. We have proposed analytical models for the SWIF and hTAG
strategies and demonstrated how to estimate certain parts of a processing strategy.
Our cost estimations may help in developing the analytical model for a new strategy
as we expect certain aspects to be common among strategies.

• Accuracy o f the analytical model. The dynamic selection of a query processing strat
egy is only as good as the analytical models used for the decision. When one (or
more) of the analytical models differ largely from the actual query processing cost, a
possibly expensive processing strategy may be selected. We will show in Section 3.7
that our models are accurate.

• Complexity o f the analytical model. While the analytical models are computed only
once, before the query is processed in the sensor network, the computational com
plexity of some models may be beyond the processing capabilities of sensor nodes.
In such cases the models cannot be computed in the query originator node, but their
calculation must be done at the mobile user station, which is typically a more re
sourceful machine. While the dependence of a sensor network on external, more
powerful, machines is undesirable in our opinion, it may be worthwhile in some ap
plications for the benefit of selecting the most energy efficient processing strategy for
a query.

3.5.4 Finding the Best Coordinator

The SWIP framework is flexible with respect to the position of the coordinator node, re
quiring the coordinator only to be located within the query region without specifying a
particular location. In this section we show how the best location for the coordinator node
can be found, given the location of the query originator node and the parameters of the
query and the sensor network.

Assuming no communication latency, hTAG forwards the query in parallel over all
possible paths to nodes, and therefore each node receives the query first over the shortest
path from the originator node. As the same path is also used for returning a node’s answer,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the query answer is returned to the originator node over the shortest path in hTAG (see
Figure 3.7(a)). When considering only the cost of returning the answers to queries without
spatial aggregation, hTAG must have the lowest cost for returning the answers. For queries
with spatial data aggregation, hTAG performs partial6 spatial aggregation in-network (when
the paths over which the answers are returned intersect), while full spatial aggregation is
guaranteed only at the originator node once all the answers of the relevant nodes have been
returned. On the other hand, if we force all return paths to intersect at a coordinator node
(see Figure 3.7(b)), this node can perform full spatial aggregation of the answer. The result
of the aggregation would be a potentially smaller answer to be sent to the originator node,
thus saving on the cost of returning the query answer. In addition, we are interested not
only in the cost of collecting the query answers, but also in the cost of disseminating the
query.

Finding the optimal location for the coordinator node is not trivial since several sep
arate costs are involved. Minimizing these costs individually will indicate different good
locations for the coordinator node. We take advantage of the analytical model of SWIF
introduced in Section 3.5.1 to find the best coordinator location. The cost of SWIF is
E sw if — E qreedy + EwinFiood■ Given a sensor network, a query and an originator node, the
cost of Eswif depends only on the position of the coordinator C (cx ,cy). Minimizing this
cost function allows us to obtain the position of the coordinator C for which the cost of
SWIF is minimal.

After eliminating the constant terms (with respect to the position of the coordinator
node), we obtain the following objective functions:

m in [Es w if] = m in[(Q s + N rs iz e (A L))doc + (N r - l) s iz e (A L)dAric]
and

min[e s w i f \ = min[doc]-
For spatial aggregation, the minimum of the function E ^ i f depends only on the po

sition of the originator node and the location of the query region (as C must be located
within the region). This is expected since the answer of each relevant node is transmitted
only to the node’s parent in the routing tree. Therefore, finding the best coordinator lo
cation to minimize the cost of E g\yIF is greatly simplified: the coordinator position that
minimizes the cost of SWIF for spatial aggregation is the point of the query region closest
to the originator node.

For queries without spatial aggregation, the best coordinator location is the location of
C that minimizes the cost of equation The best coordinator location depends
on the weights of the terms containing d o c and dNiC as the other factors are independent
of C. If we consider only the term containing d o c , the best location is the point of the
query region closest to the originator node. If we consider only the term containing d ^ c ,
the best location is the centre of the query region. In our sensor network simulator we
use an iterative solution for finding the location for the coordinator node the minimizes
the function E ^ IF . Finding the minimum of the cost function E ^ may be beyond
the computational capabilities of some sensor platforms. Subject to the type of platform
used for the sensor nodes, we see two possible situations: for platforms with advanced
CPUs (e.g., Sensoria WINS platform [Sen]), the best coordinator location can be found at

6The cost savings due to partial spatial aggregation cannot be modelled accurately without knowledge of
the sensor network layout, which is not available in peer-to-peer sensor networks.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the originator node; for platforms with reduced CPU capabilities (e.g., Crossbow MICA
motes [Cro]), the mobile user station can help find the best coordinator location. In the
latter case, the mobile user station should either be familiar in advance with the analytical
model of SWIF, or accept computation tasks from the originator node.

3.6 Discussion and Extensions

We have focused so far on the core of the adaptive techniques that we have proposed for
processing spatial range queries. In the following we discuss several issues related to our
techniques, as well as some open problems.

Joins. The SWIF strategy does not process queries with joins. We see two possible
cases for processing joins using SWIF. If the join of the R* relation is with relations stored
at the mobile user station, such joins could be processed at the station once the relevant
sensor data is extracted from the network using SWIF. Processing self-joins of the R*
relation is a far more challenging problem. For instance, consider joining the sensor data
collected in two non-overlapping regions. While a trivial strategy is to collect the relevant
data from both regions using SWIF and perform the join operation at the user station, it
may be cheaper to send the data from one region to the other, perform the join on-the-fly,
and return the join result only to the user. Finding a good plan is challenging due to the lack
of global network knowledge at sensor nodes in peer-to-peer sensor networks. Chapter 4
investigates the processing of join queries in sensor networks.

Greedy vs. GPSR. The Greedy algorithm uses a small number of messages, but it
does not guarantee that a routing path to a node in the query’s spatial region will be found.
While properties such as guaranteed delivery are desirable, our preliminary studies have
shown that the simple Greedy algorithm successfully reaches the query’s spatial region for
more than 98% of the queries in the sensor networks considered in our experiments. In
addition, routing strategies with guaranteed delivery such as GPSR [KKOO] may require
knowledge of the network layout for accurate cost estimation, while one can find a good
cost estimate for the Greedy algorithm (see Section 3.5.1). For instance, the cost of the
GPSR algorithm could be estimated as the cost of its greedy forwarding7, which GPSR
uses as its main routing algorithm, plus the cost of the perimeter forwarding that GPSR
uses to recover when the greedy forwarding fails. The number of nodes contacted during
the perimeter forwarding could vary anywhere from 0, if the greedy forwarding does not
fail, to the number of sensor nodes, if all nodes are on one face of the network graph. Thus
one cannot find a good estimate of the GPSR cost without knowledge of the network layout,
which is unavailable in our network scenario.

The selectivity and aggregation factors of a query. The query originator node must
estimate the selectivity and aggregation factors of a query in order to use the analytical
models developed in Section 3.5. In the case of traditional distributed databases, statistics
on databases play an important role in estimating the cost of query operators [OV99]. Due
to the nature of the peer-to-peer sensor network environment, nodes cannot obtain statistics
about other nodes, but only general statistics about the data stored in the sensor network.
Such statistics can be obtained using the locally stored data and the answers to queries that
a node has seen in the past. When no statistics about certain attributes are available, nodes
can use predetermined values for the reduction factors. For instance, the System R query

7The greedy routing in GPSR uses a different neighbour selection rule than our Greedy routing algorithm.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Parameters of query and sensor network
Parameter Default Value
Average number of neighbours (N n) 15 (iV = 2050)
Tuple size <value, time-stamp> 8 bytes
Query message size (Q s) 32 bytes
Size of query’s spatial region (Q a) 5% (of R a)
Size of query’s answer for a node (Al) 60 tuples

optimizer for traditional relational database systems uses a reduction factor of 0.1 for col-
umn-value selection predicate when no index or statistics on column is available [RG00].

Sensor node failures. In sensor network deployments the nature of the environment
and energy constraints can cause transient or permanent failures of the sensor nodes. Deal
ing with sensor failures is a complex problem which has not yet been thoroughly investi
gated in the related works. Most systems employ solutions suitable only for specific appli
cation settings. In this context let us consider the sensor node failure in the environmental
application scenario introduced in Section 1.3, where the sensor network is deployed for
long-term monitoring with only occasional queries introduced in the network. If one as
sumes that most sensor failures would occur when the network is idle, the problem is less
severe as the network will adapt itself during the periodical neighbour look-up performed
for maintenance. Otherwise, i.e., when a node participating in processing a query fails, a
simple mechanism such as heartbeat notification messages [SBLC04] can be used to recog
nize the failure at the node’s neighbours in the query forwarding tree. The parent node in
the forwarding tree re-initiates the query processing from that point forward, while the child
nodes drop the processing of the initial query. In addition, answer caching at intermediate
nodes can be used to reduce the cost of re-processing the query. On the one hand, if the
probability of node failure during query processing is very low, partially re-processing a
query has a small impact on the lifetime of the sensor network. On the other, re-processing
a query is not an efficient solution in environments where the failure rate and query load are
high. Nonetheless, how to efficiently and effectively handle sensor failures is complemen
tary to our processing strategies presented in this chapter.

3.7 Evaluation

We implemented a sensor network simulator to study the performance of the presented
strategies and evaluate our cost models. As discussed in Section 1.2, in our evaluation we
focus on the energy cost of communication only. The sensor nodes’ placement follows a
uniform distribution over a two dimensional region. We express the size of the query region
as a percentage of the size of the monitored region. For the selectivity of other query opera
tors, we use 60 tuples as the number of tuples that are selected from a node’s database (A l)
for the query answer. For instance, if we consider temporal selection only, this number
would correspond to an 1 hour temporal range if sensors take 1 observation every minute,
or an 1 month temporal range for 1 observation taken every 12 hours. The query and sen
sor network parameters and their default values used in our evaluations are summarized in
Tables 1.2 and 3.2. Similar to other works (e.g., [RKY+02]), in our sensor network sim
ulator the message delivery is instantaneous and error-free between nodes communicating
directly.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~T>
E,
■a
cu«

3
>O)
Q)
C
LU

+-•o

2500

2000 -

1500

1000 -

500

hTAG
random

center
adaptive

10 15 20 25 30
Average Number of Neighbors

(a) analytical models

“3
E,

T3
0tn
3
>o>i—
0c
Lll

o

2500 -

2000 -

1500

1000

500

hTAG
random

center
adaptive

10 15 20 25 30
Average Number of Neighbors

(b) experimental simulations

Figure 3.8: The impact of network density for queries without aggregation

We evaluate the performance of the adaptive SWIF strategy against two other strate
gies based on SWIF: a baseline strategy (random), where the coordinator location is se
lected at random within the query region; and a preliminary strategy that we have proposed
in [CNS04] (center), where the coordinator location is at the centre of the query region. We
also compare the SWIF strategies against the hTAG, the typical strategy for query process
ing used in sensor networks. We denote by MOB the method that dynamically selects the
most efficient of the hTAG and the adaptive SW IF strategies for a given query and origina
tor location as determined by the analytical models. MOB is only shown in a graph when
its cost differs from the most efficient strategy in the graph.

3.7.1 Im pact o f Network Density

We first investigate the performance of the strategies when the query does not require aggre
gations. Figure 3.8(a) shows the effect of node density on the strategies using the analytical
models. hTAG is affected the most by the increase in the node density due to the overhead

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“D
E,
"D(1)W
>D)
OC
LU
«
O

. hTAG
random

center
- adaptive

2 4 6 8 10
Size of Query’s Spatial Region (% of area)

(a) analytical models

. hTAG
random

center
- adaptive

"O0
CO
=)
o>
a>c
LU
15 ■+—« o

2 4 6 8 10

Size of Query’s Spatial Region (% of area)
(b) experimental simulations

Figure 3.9: The impact of size of query region for queries without aggregation

for sending the query to a larger number of non-relevant nodes and the increased query
message redundancy as each network node will receive the query from more neighbours.
All strategies show slightly higher processing costs in the experimental simulations (Fig
ure 3.8(b)). This is due to an underestimation of the number of hops between two nodes in
the cost models. Another effect in the experimental simulations is that there are no nodes
located exactly at the targeted coordinator locations, thus all SWIF strategies use coordina
tor nodes located at nearby locations, leading to higher costs than predicted. By adaptively
selecting the best coordinator location for each query, the adaptive SWIF reduces the query
processing cost by up to 50% compared to hTAG, and up to 15% and 10% compared to the
random and center SWIF.

3.7.2 Im pact o f Size o f Query Region

Figure 3.9 shows the behaviour of the strategies for small to medium spatial-range queries.
For small query region, all SWIF strategies substantially reduce the cost of processing

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1600
1400
1200
1000
800
600
400
200

' hTAG —
- random —-

center
adaptive

”3
E
T3CDOT
D
>o>
L _
0c
LU

O
I-

1 30 60 90 120
Size of Answer for a Node (#tuples)

(a) analytical models

^ bUU - hTAQ

E, 1400 - random
tT ipnn - center
g adaptive
D 1000 -
o5 800 -

I
5 400 ■ , , , #
£ 200 -

1 30 60 90 120
Size of Answer for a Node (#tuples)
(b) experimental simulations

Figure 3.10: The impact of query selectivity for queries without aggregation

compared to hTAG, the adaptive SWIF reducing the cost of hTAG by 80% for a 1%
region (not shown). For medium query regions, the performance of the random and center
SWIF approaches that of hTAG. As the size of the query region increases, the size of the
answers that must be returned to the originator node increases. This effect favours hTAG
as the answers are returned over the shortest path, while the overhead payed by the SWIF
strategies for returning answers through the coordinator node increases their cost. The
adaptive SWIF selects a coordinator node located closer to the originator node compared
to the coordinators used by the random and center SWIF and thus its difference in the path
length from the shortest path is smaller than for the center and random SWIF.

3.7.3 Im pact o f Q uery Selectivity

Figure 3.10 shows the behaviour of the strategies when the size of a node’s answer based
on its local observations (A l) is varied. As the size of the answer increases, the cost of
returning the answers starts dominating the total cost of hTAG, the fixed cost payed for

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hTAG
adaptive

£? 1000
E,
T3 800a)(0
3 600

CDc
LU

400

co 200o
I-

20 160 40
Size Answer for a Node (#tuples)

(a) analytical models

hTAG
adaptive

S ' 1000
E.

800■aa)<n
D 600>a>1_a)c
LU

400

COo
I-

200

20 160 40
Size of Answer for a Node (#tuples)
(b) experimental simulations

Figure 3.11: The impact of data aggregation

query forwarding reducing its weight on the total cost. In this case hTAG benefits from
returning the answer over the shortest path. When the user is interested in retrieving the
observations taken at a time point (i.e., a single tuple for a node), the SWIF strategies
reduce the cost of processing by 93% compared to hTAG.

3.7.4 Im pact o f D ata Aggregation

Figure 3.11 shows the effect of the data aggregation on the adaptive SWIF and hTAG. We
consider aggregations where observations taken at the same time (or aggregations over the
same time range) are aggregated into one measurement over all relevant sensor nodes (full
spatial aggregation). For the aggregation on the local sensor data, we vary the aggregation
factor between no aggregation (60 tuples) and full aggregation (1 tuple), where all obser
vations taken by the same sensor node are aggregated into one. As the main component
of the query processing cost for the adaptive SWIF is the cost of returning the answers,
aggregation drastically reduces its cost. The random and center SWIF have a much higher

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost than the adaptive SWIF and are not shown in the graphs. Compared to the cost of
processing queries with no aggregations, the adaptive SW IF reduces its cost by 90% for
spatial-only aggregation, followed by 70% cost reduction in cost for full aggregation. The
cost of processing spatial range queries is lowered by 92.5% to 95% for the adaptive SWIF
compared to hTAG. hTAG is not able to benefit as strongly as the SWIF strategies from the
query aggregation as the full spatial aggregation may only be performed at the originator
node, while for SWIF the full aggregation is performed at the coordinator node. Also, the
decreasing costs for returning the answers favours more the SWIF strategies than hTAG
due to the higher cost payed by hTAG to disseminate the query.

The analytical models capture well the behaviour of the strategies. The models underes
timate the actual processing costs for all strategies since the network topology is unknown.
For the SWIF strategies, the under-estimation is also due to the cost difference between
the desired coordinator location and the location of the actual coordinator node. Due to
the adaptive selection of the best coordinator position for each query, the adaptive SWIF
performs better than the random and center SWIF for all situations. The performance of
the adaptive SWIF is also better than that of hTAG for all scenarios investigated so far.
Thus, the cost of MOB, the method that selects the best processing strategy based on the
analytical models, is identical to the cost of the adaptive SWIF and it was not shown in the
graphs.

3.7.5 Im pact o f Large Q uery Region

We have shown so far that the adaptive SW IF substantially reduces the cost of processing
small to medium spatial range queries compared to hTAG. Nevertheless, some sensor net
work applications may require queries of all sizes. Figure 3.12 shows the performance of
the adaptive SWIF relative to hTAG for spatial range queries covering from 1% to 100% of
the monitored region. For queries larger than 30%, hTAG performs better than the adaptive
SWIF, but the cost difference is small (up to 2.5% in the experimental evaluation). For
large queries, the cost of returning the query answers dominates the total processing cost
for both strategies. This works to the advantage of hTAG as the effect of its overhead for
contacting every network node is compensated by the short return paths. When considering
the cost of returning the answers only, the difference in cost between returning the answers
over the shortest path as in hTAG and the cost of returning them through a coordinator
node as in SWIF increases with the answer size. When the spatial region reaches 100%,
both strategies use the same amount of energy since the adaptive SWIF degenerates to
hTAG. For query sizes where the most efficient of the hTAG and adaptive SW IF depends
on the location of the originator and query region, MOB processes the query using the
most efficient o f the two strategies as determined using the cost models, which leads to a
lower average cost of MOB than both the adaptive SWIF and hTAG (Figure 3.12(b)). This
behaviour shows the potential of MOB for selecting the best processing strategy for each
query when the costs of the strategies are close.

Summary

Overall, the adaptive SW IF reduces substantially the cost of query processing compared
to hTAG for small to medium query regions, while it cost is only slightly higher than for
hTAG for large query regions. Thus, we also recommend the adaptive SWIF for reducing
the cost of query processing in sensor network scenarios where the spatial range queries

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CD<

Q)>
03
CD
cc
CDOc
(0
E
ot
CD
CL

CD<
h-.c

0) > '■+—*
_cg
CD

cr
CDOc<0
E
ot
CD
CL

hTAG
adaptive

1 10 20 30 40 50 60 70 80 9 0100
Size of Query’s Spatial Region (% of area)

(a) analytical models

1.1

1.05

1

0.95

0.9

0.85

0.8
f

hTAG
adaptive

MOB

1 10 20 30 40 50 60 70 80 9 0100
Size of Query’s Spatial Region (% of area)

(b) experimental simulations

Figure 3.12: The impact of large query region for queries without aggregation

contain a mix of region sizes and the dynamic selection of the best query processing strate
gies is not available.

3.8 Related Work

Directed Diffusion [IGE+03] proposes a data-centric framework for query processing. Their
sensor network environment is similar to ours in the sense that the query can be originated
at any node, and nodes are only aware of their neighbourhood. Differently from us, nodes
do not store historical data and sensing is only performed in response to a query request.

The Cougar project [YG02] investigates techniques for query processing in a centralized
sensor network where the location of all sensor nodes is known. In a similar environment
but with emphasis on energy efficient query processing, the Cougar project is extended
in [YG03] to address problems such as routing and crash recovery, basic query plans and
in-network aggregation. Madden et al. [MFHH03] propose TinyDB, which is a distributed
query processor that runs on each of the sensor nodes. The authors’ focus is on optimiz-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing data acquisition for continuous queries, no data being stored locally at the nodes. To
reduce the energy consumption, they also propose TAG [MFH02], an aggregation service
for networks of TinyOS motes. Only spatial aggregation is performed in the network by
the non-leaf nodes of the query routing tree: each node combines its data with the answers
of its children as the sensors’ observations are returned to the base station. All these works
focus on processing continuous queries and are not suitable for the query type investigated
in this chapter.

He et al. [HZGS05] investigate in-network storage and querying of data based on the
time attribute. Their work complements ours by investigating the efficient processing of
temporal queries. Their storage and querying schemes are constructed around the time
attribute only, making them unsuitable for efficient processing of queries with several at
tributes part of the query predicates.

Silberstein et al. [SBY06] focus on reducing the energy cost of collecting all sensor
measurements for continuous queries by using the spatial and temporal correlations present
in the monitored data. They introduce two types of constraints for eliminating redundant
reports. By chaining the constraints at a network scale, their system can provide a global
view of the changes in the network with local energy cost. The system is not capable of
handling query predicates as it is directed toward collecting all sensor measurements.

Xu et al. [XLXM06] propose the use of itineraries for covering the spatial window of
the query. For queries with aggregations, their solution could be used in the second stage
of SWIP. However, for queries without aggregations, the use of itineraries substantially
increases the number of hops over which the query answers will reach the originator node,
which, in turn, would cause a substantial increase in the energy cost of query processing.

In [CSN05] we have constructed analytical models for capturing the average perfor
mance of hTAG and a preliminary SWIF strategy [CNS04] (using a fixed, centrally located
coordinator) given a query size and a sensor network. The analytical models presented in
Section 3.5 capture the performance of the investigated strategies for each individual query,
allowing us to select at query time the most energy efficient processing strategy.

3.9 Summary

In this chapter we have investigated the energy efficient processing of spatial range queries
in a peer-to-peer sensor network. We proposed the SWIP query processing framework and,
within this framework, the SWIF strategy. We constructed an analytical model to estimate
the query processing cost of SWIF. We used the model to select the best coordinator lo
cation at query time, improving the energy efficiency of SWIF compared to a preliminary
version [CNS04] that was using a fixed, centrally located, coordinator.

We showed both analytically and experimentally that the cost of query processing is
reduced up to 10-times when the adaptive SW IF is used for small to medium spatial range
queries compared to hTAG, the typical processing strategy. Only for large query regions
hTAG uses less energy than SWIF (up to 2.5%). We have also shown that the analytical
models can be used to dynamically select at query time the most energy efficient processing
for a given query and originator node.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

In-network Processing of Join
Queries

4.1 Introduction

The sensor network queries investigated in the literature typically have one or more of the
following operators [ZG04]: selection, projection, union, grouping and aggregations. Con
tinuous queries also allow special operators that specify the duration of the query [YG02,
MFHH03] and, sometimes, the sensing frequency. The join operator has been mostly ne
glected in the literature. Recently, a few works tackled some aspects of the join processing
problem. Bonfils and Bonnet [BB03] consider the problem of placing a correlation oper
ator (i.e., a special join) at a node in the network. Pandit and Gupta [PG06] propose two
algorithms for processing a range-join operator in the network and Yu et al. [YLZ06] pro
pose an algorithm for processing equi-joins. These works study the self join problem where
subsets of the sensor relation are joined. Abadi et al. [AML05] propose several solutions
for the external join problem, where the sensor relation is joined with a relation stored at
the user station. A third type of join is the internal join where the sensor relation is joined
with relations stored locally at the nodes, such as historical statistics or preloaded relations.

In this chapter we focus on the processing of the join operator in sensor networks. In
Section 1.3 we have discussed some applications where joins are an important operation for
satisfying the users’ information need. We are interested in minimizing the energy cost of
communication during the processing of the join query, and we study this problem in the
peer-to-peer sensor network environment introduced in Section 1.2.

There are two important questions that come to mind when considering the processing
of join queries: “Where should the join be processed?” and “How to process the join at a
given location?’’. In this chapter we try to address both questions. We start by investigat
ing several strategies for processing join queries with respect to the location where the join
operator is processed. Our investigation is constructed in such a way as to be decoupled
(within reasonable limits) from how the join operator is actually processed at the join loca
tions under discussion. This is reasonable as different types of join operators (e.g., theta-,
range- or equi-join) would employ different algorithms (i.e., “how”) for their processing,
while the location where such algorithms are executed would be the same in most cases for
all join operator types. To answer the “how” questions, we propose and discuss in details an
algorithm for in-network processing of theta-join operators given a location where to pro
cess the operator. We then analyze the relation between the “where ” and “how ” problems

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and suggest how to combine the solutions to the two problems to process a join query.
Our contributions in this chapter are the following:

1. We analyze several strategies for processing join queries with respect to the location
where the join operator should be processed. We investigate their suitability for a
given scenario (i.e., a combination of query and network characteristics) and their
performance under various conditions.

2. We develop cost models to estimate the processing cost of each strategy. We use
these models in a query optimizer to dynamically select the most energy efficient
processing strategy for a given query and sensor network.

3. In an extensive experimental evaluation we show that each processing strategy per
forms best under certain conditions. We also show that dynamic strategy selection by
the model-based query optimizer outperforms any processing strategy investigated in
this chapter if it is used all the time. Moreover, the optimizer makes close to optimal
strategy selections in most cases.

4. We develop and analyze in detail a distributed algorithm for in-network processing
of theta-join operators. We construct a model that captures the cost of the algorithm
and allows one to determine the join order (i.e., A txi B or B ix A) of lowest cost.

The remainder of this chapter is organized as follows. Section 4.2 presents the charac
teristics of the join query investigated in our work. Section 4.3 details the problem statement
and presents four solutions for processing the join operator in the sensor network. We also
build cost models for each of the presented solutions in this section. The evaluation of the
investigated solutions is presented in Section 4.4. Section 4.5 introduces our algorithm for
in-network processing of the theta-join operator. We discuss in Section 4.6 the relation be
tween “where” and “how” to process the join operator and how the solutions to the two
problems should be combined. Section 4.7 describes some of the research work related to
ours and Section 4.8 concludes the chapter.

4.2 The Spatial Join Query

In this chapter we analyze the join processing problem in sensor networks for join queries
having the sensor relation R* as one of the join relations, while the other relation could be
R* (self join), a relation stored at the user station (external join) or a relation stored in the
network (internal join). For clarity of presentation, in the following we consider self join
queries only . In Section 4.3.6 we show that our analysis of the self join problem applies to
the external and internal joins as well.

We impose no restrictions on the join conditions, that is, any tuple from a relation
could match any tuple of the other relation. For each occurrence of the R* relation we
consider that the query also contains a spatial selection predicate constraining the tuples
of the relation to belong to a region. For instance, the query “What animals have been in
both region R a and. R b around the times o f interest?” that can appear in the context of
an environmental monitoring application such as the one introduced in Section 1.3 can be
expressed in an SQL-like language as:

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

° P SA | O pSA

/ O p S A \

A

‘m

Figure 4.1: Query tree and notations

B

SELECT
FROM
WHERE

AND
AND
AND
AND

S.animallD
R* as S, R* as T
S.location IN Region R a
T.location IN Region R b
S.time IN TimeRange Ta
T.time IN TimeRange Tg
S.animallD = T.animallD

Let us denote with A the restriction of R* to the sensor nodes in region R a and with
B the restriction of R* to the sensor nodes in region R b - In our presentation we will refer
to the joined relations as A and B , but they are in fact restrictions of the R* relation to
the respective areas as specified in the query. The query may also contain other operators
(selection, projection, etc.) on each tuple of R* or the result of the join. Since our focus
is on join processing, we consider the relations A and B as the resulting relations after
the operators that can be applied on each node’s relation have been applied. We consider
operators that can be processed locally by each sensor node N j on its stored relation R j
and thus they do not involve any communication. We denote with J the result of the join
of relations A and B , including any operators on the join result required by the query:
J = opsj{A txi B). We consider operators on the join result can be processed in a pipeline
fashion immediately following the join of two tuples. Figure 4.1 shows a general query tree
and the notations we use.

4.3 Strategies for Processing Join Queries

4.3.1 Problem Statem ent

We are interested in evaluating the merits of several join processing strategies and deriving
the conditions under which a strategy performs best. In our analysis we categorize the
strategies based on the location where the join operation is carried and if a semi-join is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used. We analyze the following processing strategies:

• External Join: the join is processed externally ;

• Internal Join: the join is processed at the location of one of the join relations;

• Mediated Join: the join is processed in the network at a location other than the
locations of either join relations;

• Local Semi-Join: the join is processed using a semi-join at the location of one of the
join relations;

• Mediated Semi-Join: the join is processed using a semi-join at a location other than
the locations of one of the join relations.

Before we proceed on discussing the join processing strategies, let us model the energy
cost E of exchanging data in the sensor networks. As done before in this thesis, these costs
will be used as building blocks for modelling the cost of each strategy. Let us first introduce
the following definitions:

Definition 1: The distance between sensor nodes Ni and Nj in the sensor network is
the Euclidean distance between their locations L., and Lj . We denote this distance with
dNiNj

Definition 2: The location L a of a relation A distributed over the sensor nodes in a
region R a is the centroid Ca of the region R a *

Definition 3: The distance between a sensor node N i and a region R a is the average
f R dNf Nj ARa

distance between JV* and a node N j in R a - d ^ iRA = —Area(RA)— ‘ ^or t*ie 'ar8e scale
sensor networks considered in our work, most queries will involve the sensor relation con
strained to relatively small regions from the network. We approximate the location of a a
query region R a by the location of its centroid Ca - Thus, we have d ^ {nA — d ^ %c A

Definition 4: The distance between two relations A and B in the sensor network area
is the Euclidean distance between their locations L a and Lb- We denote this distance with
dAB

The cost of transmitting data D from node N{ to node N j using unicast multi-hop
routing is directly proportional to the size of the data s o , the energy cost to transmit (Et)
and receive (Er) one bit of information over one hop and the number of hops between the
two nodes fijVi iv,:

E (N , Nj , s d) = (Et + E r) s o h^iN, ■ (4.1)

The number of hops is equal to the distance djVjjV, between nodes N and Nj divided by
the average advance towards destination over one hop a hop. We denote with ku the terms
independent of Ni and Nj , i.e. ku = (Et + E r) /ahop- Note that ku is independent of the
query and it is network specific. We have:

B(Ni , N j , s o) = ku s o dffiffj . (4.2)

To transmit relation A distributed over R a to node Nj , we transmit the subset of A stored
at each node in R a to Nj . We have:

n a

E(A, N j , S A) = SAt dffiNp (4-3)
i = l

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

Figure 4.2: Join processing at the user station (external) - data flow and steps

where N A is the number of sensor nodes in region R a and A l is the partition of A stored at
the node N t . We approximate d ^ N , with dApj- (see Definitions 2 and 3) and we obtain:

n a

E {A , N j , s^) = ku J 2 sAi dANj = ku sA d ANj • (4.4)
i—1

Finally, to transmit relation A to the nodes in R b , we multicast relation A to region R b -
A is unicast to the centroid of the region R b and distributed from there over R b using
broadcasting. Each node in R b transmits A once (possibly using several messages) and
receives it from every neighbor during broadcasting. Let N„ be the average number of
neighbors and N b the number of nodes in R b - Thus, we have:

E (A , B , sA) = E (A , Cb , Syi) + (E t + N nE r) s .4 N b - (4.5)

Let kb = {Ei + N nE r), which is independent of A and B . Note that kb is independent of
the query and it is network specific. From Equations 4.1-4.5 we obtain:

E (A ,B ,s A) = ku sA d A B + h N B- (4.6)

We will use this notations when estimating the cost of each join processing strategy.

4.3.2 External Join

Most query processing solutions focus on processing efficiently the selection, projection
and aggregation operators in the network, with the resulting data collected at the user sta
tion. For these solutions we can process a join by separately processing the query over the
two relations, collecting the results (i.e., A and B) at the user station and performing the
join externally. Figure 4.2 shows the data flow (query Q and relations A and B) and the
processing steps for this solution. The solution is a straightforward way for extending the
current query processors to handle joins and it would require no (or very little) modifica
tions to existing algorithms. We denote with O the location of the query originator node.
The cost E sx t of processing the join is equal to the sum of the costs of processing the two
queries:

EExt — E (A , O, s^) + E (B , O, s b) = kusAdAo + kuSBdso-

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The external join is advantageous when the size of the relation J resulting from the join
is larger than the sum of the two relations A and B or the data extracted from the sensor
network is re-used for other tasks, such as external storing, other joins or building a model
of the monitored environment. However, if the join selectivity factor is low (highly selective
join), the network would waste energy for transmitting unnecessary tuples to the originator
node and user station.

4.3.3 Local Join

An alternative for processing the join is transmitting one of the relations to the location of
the other relation, performing the join locally at the sensor nodes holding this relation and
returning the join result to the originator node. At first, it may seem that it is advantageous
to move the smaller relation to the location of the larger one. However, as discussed next,
this may not be the most efficient case due to the cost of returning the join result to the
originator node. Figure 4.3(a) shows the flow of data (query Q, relation B and join result
J) and the steps of the Local Join solution. The energy cost is:

E loc{A) = E (B , A , s b) + E (A , O, s j) = kussdA B + ^ s b N a + kusjd,Ao-

As each node in R a receives all of relation B in this strategy, each node can process locally
the join between its local partition of A and B . Thus, in the Local Join all join types (e.g.,
theta- or equi-joins) can be processed this way. Note that the joins processed within each
node in R a can be performed in a distributed, pipeline fashion; as soon as a node in R a

receives a packet containing a subset of B ’s tuples it joins them with the local partition of
A and it can send the join tuples to the originator node. Thus, each node requires only two
buffers for the received and outgoing packets to process the join. We do not include the cost
of the local processing in the total cost as it does not involve communication.

Similarly, when performing the join at the location of relation B we have:

E l o c (B) = E (A , B , sA) + E (B , O, s j) = kuSA<lAB + H s a N b + kusjdBO-

By comparing the costs E l 0C{A) and E jj0C(B) we obtain that when the relation located
closer to the originator node is also larger in size, it is more efficient to process the join
at that location to minimize the cost. Otherwise, the two costs must be estimated and
compared to decide the best join location. We discuss in Section 4.3.6 how the originator
node (or user station) may estimate the parameters used in the cost models and how the
accuracy of the estimates affects the decision. For now, we assume these estimates are
available.

4.3.4 M ediated Join

A third alternative for processing the join is performing the join at a location different than
the location of the originator node and the locations of the join relations. To process the
join, relations A and B are collected at location R j where they are joined and the resulting
relation J is transmitted to the originator node. Figure 4.3(b) shows the data flow (query Q,
relations A, B and J) and the order of the processing steps. The cost of processing the join
at the intermediate location R j is:

EMed , = E (A , J , S a) + E (B , J , S b) + E (J , 0 , S j)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. 0

(a) Local Join (b) Mediated Join

Figure 4.3: In-network join processing (w/o semi-join) - data flow and steps

A&AJ “b huSB^BJ “b huS jd jQ .

Note that the External Join is in fact an instance of the Mediated Join where locations R j
and O coincide. In the general case, the challenge is to find the optimal position for the
join location such that the cost of processing the join is minimized. We need to locate the
optimal R j such that it minimizes the weighted sum of the distances from R j to A, B
and 0 , where the weights are the sizes of the data involved in the join. This problem is
known as the the weighted Fermat1 problem, where one wants to find the point with the
property that the weighted sum of the distances from the point to the vertexes of a triangle
is minimized. To find the optimal join location, we use the solution proposed by Greenberg
and Robertello [GR65]. The main points of the solution are:

• The locations of A, B and O form a triangle where each location has assigned a
weight equal to the amount of data it sends (sa or sg) or receives (sj).

• If the weight at a location is greater than the sum of the weights at the other locations,
then the join should be processed at that location.

• If the weights are equal and one of the angles of the triangle is larger than 27r/3, the
join location is at the vertex where the angle occurs.

• Otherwise, the location R j lies in the triangle. The derivation of the optimal location
involves non-trivial trigonometry and analytical geometry, but the terms expressing
the optimal join location are computationally inexpensive. For further details see
Appendix C and [GR65].

In [CG05, PG06] the authors also investigate finding the optimal join location for this
scenario. They consider that the optimal join location is the weighted centroid of the triangle
formed by A, B and O. The centroid has the property that it minimizes the weighted sum
of the squared distances, and thus it is not optimal.

As we have previously discussed, in this section our analysis and cost models have
focused on where to perform the join, that is, where should region R j be located in the net
work. We do not discuss here what shape and size region R j should have and how would

1 This problem is also know as the three factory problem, the three villages problem and the weighted Steiner
problem. Steiner has analyzed it in a general context involving three or more locations.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.0 . 0

(a) Local Semi-Join (b) Mediated Semi-Join

Figure 4.4: Join alternatives with semi-join - data flow

the join operator be performed in this region. There are three reasons that motivates this
approach. First, different types of join operators (e.g.: theta- or equi-joins) would be pro
cessed very differently and our current analysis is meant to be independent of a particular
join operator and associated processing algorithm, and focused on the choice of location
for the processing of the join. A second reason is that the cost of processing the join over
the region R j depends on the algorithm used for its processing and dynamic sensor param
eters such as the memory available at nodes at the time of processing. Finally, the cost of
processing the join over R j should be low, under our assumption for the query and network
environment, compared to the cost of moving the relations between network locations. In
fact, the communication cost of processing the join operator in R j for many join queries
could be as low as zero if the join operator is processed in just one node. However, when
the cost of a particular algorithm used for processing the join operator in R j is substantial
relative to the cost EMed> this cost should be added to the overall cost of the Mediated Join.
In Section 4.5 we discuss a distributed algorithm for processing a theta-join operator at a
given network location, et al. propose an index-based and a

4.3.5 Join Processing w ith Sem i-Joins

For highly selective join conditions it is often the case that many tuples of one relation will
not match any tuple of the other relation. Since transporting the tuples over the network
is costly, one wants to avoid transporting tuples that do not join. A technique commonly
used in distributed databases for reducing the cost of moving non-matching tuples over the
network is the semi-join [KosOO]. In a semi-join, for each tuple only the attributes appearing
in the join condition together with a tuple identifier are used for evaluating the join. Only
this subset of a relation must be transported over the network to evaluate the join. Once
the join is evaluated, the tuple identifiers for the joined tuples are returned to the location
of the original relation. The full tuples for the joined tuples are then transmitted to the join
location or the query result destination. The semi-join technique assumes that the size of
the subset of attributes transmitted plus the size of the identifiers for the joined tuples is
much smaller than the size o f the original relation.

As most sensor nodes have several sensing units, sensor tuples tend to have a large
number of attributes. If the join condition involves only some of these attributes, it may be
more cost efficient to employ the semi-join technique when processing joins over the sensor

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data. In the following we discuss how semi-joins can be used with local and mediated join
processing.

Local Semi-Join

We consider first the case when the join is performed locally at the relation A. If the join
condition is highly selective, sending the entire relation B at Ra may be unnecessary and
expensive. When using semi-joins, part of each tuple of B is sent to Ra, where it is joined
locally at each node in R a with the local partition of A as for the Local Join. For each
semi-tuple of B matching a tuple of A, its identifier is returned to B. To obtain the query
result at the query originator, the entire tuples of the matching semi-tuple of B must reach
the originator. It is more efficient to send these entire tuples directly to the originator node
than through A. After the semi-join has been fully processed at Ra, the tuples of A that
have joined one or more of the semi-tuples of B are also sent to the query originator. Once
the joined tuples from both A and B have reached the query originator, they can be joined
externally at the user station. Figure 4.4(a) shows the data flow and the processing steps.
The cost of the processing is:

EsjLoc(A) = E (B , A , s Bs j) + E (A , B , s Bs j) + E (A , 0 , S A :i) + E (B , 0 , S B j)
j

— ($a b T k b^ A _\ T k‘, i. s d , \ i i T h f r S E b T
3 3

k u S A jd ,A O + k u S B jd ,B O

where B S3 represents the vertical partition of B required for the semi-join, B s-3 represents
the tuple identifiers for the tuples of B s} joined with tuples of A, and Aj and Bj are the
tuples of A, respectively B, that joined during the semi-join. Similarly, if the join is per
formed at B, the processing cost is:

E s j L o c { B) — E (A , B , S A s j) + E (B , A , s . s j) + E (B , 0 , S B j) + E (A , 0 , S A j)
j

— k u s a ^j (Ia b T kfrSa s3 E b T k u s A s j d A B T k ^ s A s j N a T
3 3

k u S B j d B O + k u s A j d A O

Note that the difference in cost between E sjL0c(A) and E sjLoc(B) is given by the semi
join part of the cost, as the cost of sending matching tuples to the query originator is the
same. As the size of the tuple identifiers for the semi-joined tuples is much smaller than
the semi-join partitions, the cost difference is determined mostly by A 33 and B 33. If A33
is larger than B 33, then Ra should be the semi-join region, otherwise Rb should be the
semi-join region.

Mediated Semi-Join

In this approach both relations A and B send semi-tuples to an intermediate location R j
where these tuples are joined. Once the semi-tuples are joined, the identifiers of the tuples
participating in the join result are returned to the locations of the joined relations. Then
the nodes send the tuples contributing to the join result to the query originator, where they
are joined again to generate the query result. Figure 4.4(b) shows the data flow and the

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing steps. The cost of the processing is:

E s j M e d — E (A , J , S A s j) + E (B , J , S B s j) + E (J , A , S A s j) +
3

E(J, B, S g S j) + E(A, O, S A j) + E(B, O , s B j)
j

= k u s A s j d A j + k u s B s j d B j + k u s A sj d A j +
3

k u s g s j d B j + k u s B j d B o + k u s A j d A o -
3

To obtain the optimal join location that minimizes the cost of processing we need to mini
mize E sjMed- The costs of sending the joined tuples from A and B to O is independent of
the join location. Thus, the cost we need to minimize is:

m in (E sj Me d) = ^ ^ (s A s j d A j + s B s j d B j + s , s j d A j + s g a j d B j)
3 3

If sAsj + sAsj > s B.rj + sBsj, we re-write this equation as:
3 3

(S B 33 T s gsj S B s 3 + s b V \

 j — {dAj + dBj) + (1 ---------- ;-----—)dAj , (4 .7)

s Asj + s Asj s Asj + s Asj /
j 3 /

and if s A s j + s A s j < s B S j + s B s j , we re-write it as
3 3

(
S A 83 + S A SJ S A s 3 4- S A s j \
 — — — (d A j + d B j) + (1 ----------- — — —) d B j ■ (4 .8)

S B s 3 * S B s j ~T~ $ 3 J
j 3 /

Note that all terms have positive values. Since A, B and J form a triangle, we have the
triangle inequality d A j + d B j > d A B - To minimize Equations 4 .7 and 4 .8 , we obtain that
the optimal join location is on the segment A B, in which case the first term of Equations 4 .7

and 4 .8 does not depend on the location of J. Considering the remaining terms in Equations
4 .7 and 4 .8 , we have that the join location should be at A (R A) if sA.,j + sA,j > sBsj + sR,j
and the join location should be B (R B) otherwise. Since the optimal join location is either
R a or R b , this approach is similar to the Local Semi-Join approach.

Other Strategies with Semi-Joins

For both semi-join techniques discussed above, the resulting relations after the semi-join
(Aj and Bj) are joined at the user station. Another option is to perform the final join
between Aj and Bj in the network using one of the join solutions without semi-join (e.g.,
the Mediated Join). The decision on which join strategy to use for the final join would
depend on A j and B j rather then A and B. Our goal is to identify the best join strategies
with respect to the join location. Since the performance of such hybrid strategies is due to
the locations where the semi-join and the final join are performed, we do not analyze such
hybrid strategies in this work.

4.3.6 Discussion

In this section we discuss some issues that are relevant to our work, namely: performing
the join at a mediated location; the estimation of the join selectivity; reliability of routing;

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

region approximation; and processing external and internal joins.
Mediated Join. For the Mediated Join solution we have presented the problem in terms

of finding the best location for performing the join. A first issue is that nodes are located
at discrete location and there may be no node located at the best location. This issue is
trivially solved by assigning the task of processing the join operator to the closest node to
the best location. The nodes located in regions R a and R b do not actually need to know
the location of this node as the geographic routing algorithm [KKOO, BMSU01] used for
packet routing will route the packets destined for the best join location to the nearest located
node. A second issue is the amount of storage the node performing the join has available. If
the relations to be joined are small (or at least one of them), the node may store locally the
smaller relation and perform a block-nested loop join [OV99, RGOO] in a pipelined fashion,
in which case only very little buffer space is required for the second relation and the join
result. However, if the relations to be joined are large, more nodes must participate in the
join processing. We thoroughly analyze these issues in Section 4.5 where we propose a
distributed algorithm for processing theta-joins. We also refer the reader to [PG06] for two
distributed algorithms for processing queries with range-joins.

Estimation of Join Selectivity. Accurate estimation of join selectivity is important
for any query processor as the query optimizer uses the estimate to choose the most cost-
effective processing plan. For our problem in particular, estimation errors may lead to
using an expensive solution for processing the query, which, in turn, would reduce the
network lifetime. The cost of obtaining the estimation itself must also be considered, and
it is typically a trade-off of estimation accuracy. In our context, a communication-free
solution is using past query answers to estimate the join cardinality for new queries, but it
may not be very accurate. A more accurate solution is using samples of the query relevant
data, at the added cost of transferring these samples to the query originator node or user
station. End-biased samples [EN06] is a particularly attractive solution as it provides highly
accurate estimations with small sample sizes for correlated data, a typical characteristic of
sensor data. In any case, the cost of estimating the join selectivity is very low compared to
the cost of query processing, considering that very few data must be communicated for the
estimation.

Reliability. In this work no routing tree is built and maintained, but rather geographic
routing is used for routing data. This effectively means that every data packet is sent to a
destination location rather than a specific node and data stops at the nearest located node.
In addition, data sent from node N i to node N j could follow a different route than data
send back from Nj to N as no routes are maintained. This approach alleviates the network
reliability issue in part as a node on the route from N j to a destination could die, but another
route to the same destination will be discovered and used when the next data packet is
sent. In our evaluation we use GPSR/GFG [KKOO, BMSU01] for geographic routing which
guarantee packet delivery if a route exist. A heartbeat technique [MFH02] ensures that the
neighbour lists are updated regularly to account for transient or permanent node failures.

External and Internal Joins. In our presentation we have focused on processing the
join between the data located at two regions in the network area. Nevertheless, we analyzed
five general techniques that should apply equally well if only one of the relations is a subset
of the sensor relation R*. The other relation could be located externally at the user station
or internally at one or more of the sensor nodes. Let us consider that relation A is the
subset of the sensor relation R* and B is the external or internal relation. If B is an external
relation, we have that dgo = 0 . Fitting this case into the cost models it is easy to see that
the external relation B should be moved in the network and the join should be performed

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Param eter Default Value
Average number of neighbours (N n) 12 (N = 1655)
Link quality (%) 100
Size of each query region 0.5% (of R a)
Number of tuples per node 100
Join selectivity factor(JSF) 0.001
JSF estimation error 0
Number of attributes per join tuple 6
Number of attributes per semi-join tuple 2

Table 4.1: Parameters of query and sensor network

at the location of relation A if the size of A is larger than the size of the external relation B
plus the join result J. REED [AML05] discusses several situations for joining the sensor
relation with an external relation. In the case of the join with an internal relation stored at
the sensor nodes (different than the sensor relation R*), we have two cases. If the subset A
of the sensor relation and the internal relation are located at the same set of nodes, the join
can be performed in the common region. Even more, if the join involves equality conditions
on the spatial attribute, the join is trivially performed locally at each node and no data needs
to be communicated during the processing (except for the join result). If the subset A of the
sensor relation and the internal relation are located in different regions, the join processing
problem reduces to a setting similar to the one analyzed in this chapter.

4.4 Evaluation

We implemented a sensor network simulator in C++ to study the performance of the solu
tions and evaluate the cost models. The sensor nodes’ placement follows a uniform distri
bution over a two dimensional region. The query consists of a join operation over the data
from two query regions from the network area. We express the size of the query regions
as a percentage of the size of the monitored region. The query originator is a sensor node
selected at random and the query regions are distributed at random in the network area.
A summary of query and sensor network parameters and their default values used in our
evaluations are presented in Tables 1.2 and 4.1.

A parameter particularly important in the evaluation is the ratio of the sizes of relations
A , B and J . We consider that the query selects a constant number of tuples from each
relevant node’s relation (e.g., a temporal selection for a constant size interval). At first it
may seem that this setting results in relations A and B having the same size due to the
uniform node distribution. This is true only in average. In our evaluation, for a particular
query with default sizes of query regions, the ratio of the sizes of the relations A and B
is up to 3 due to the small size of the query regions and the sparseness of the nodes in the
network area. The default value for the selectivity of the join operator is 0.001 which results
in the size of the join relation J being close to the sum of the sizes of relation A and B for
the default query parameters. We further detail this aspect when we discuss the impact of
the join selectivity factor on the performance of the solutions.

We compare the solutions in terms of the average energy used per network node for
communication while processing a query. We evaluate the performance of the External
Join (Ext), Local Join (Loc), Mediated Join (Med) and Local Semi-Join (sjLoc) solutions.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
Ext -
Loc —■

sjLoc
Med

80
—’ c g>
o
jfc
LU
wo

8 12 16 20
Average Number of Neighbors

(a) Most efficient (% of queries)

4.5
Ext
Loc

sjLoc
Med

Model

caE
3.5•*—< Q.o

00
D 2.5

0c
LU

8 12 16 20
Average Number of Neighbors

(b) Relative energy use vs. Optimal

Figure 4.5: The impact of network density

In addition, we evaluate the cost of the Model-Based Join solution (Model) that uses our cost
models to choose and execute the most cost-efficient solution among the four on a per query
basis. We compare the cost of the investigated solutions against an Optimal Join solution
(Optimal) that would process every query using the most efficient of the four solutions.

We evaluate the impact of several parameters on the performance of the solutions. Two
of the parameters are characteristics of the sensor network: the network density and the
packet delivery success rate. We also investigate the effect of two query characteristics on
the performance of the algorithms: the size of the query’s spatial range and the selectivity
of the join operator.

4.4.1 Im pact o f Network Density

We investigate first the effect of network density on the performance of the join processing
solutions. Figure 4.5(a) shows the percentage of queries for which each solution performs
best. The Local Semi-Join processing performs substantially better than the other solutions

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when the network density is small. When the network density increases, the External Join
and Mediated Join perform better than the Local Semi-Join. For very dense networks with
20 or more neighbors per node, the External Join becomes the most efficient one for a
majority of queries. This is due to the larger number of nodes in the query regions. As more
data participates in the join and more join tuples are generated, it becomes more efficient to
send the relevant data to the user station and process the join there. In addition, in the case
of the Local Join and Local Semi-Join solutions, the cost of distributing the semi-join tuples
to the nodes in the query regions increases substantially for higher network density. This
effect can be better seen in Figure 4.5(b), where we show the cost ratio of each processing
solution against the cost of the Optimal Join. In spite of the simple cost models, the Model-
Based Join performs best for all network densities, choosing a solution close or equal to the
most efficient one for processing the join. In fact, the cost of the Most-Based Join solution is
within 7% of the cost of the Optimal Join for all network densities, while the External Join
performs up to 327% worse, the Median Join up to 250% worse and the Local Semi-Join
up to 192% worse than the cost of the Optimal Join. The Local Join performs poorly for all
network densities, in average between 380% and 602% worse than the cost of the Optimal
Join, performing best for less than 2% of the queries (Figure 4.5(a)). There are two reasons
for this poor behaviour: large relations are transferred over longer paths (e.g., A from R a
to R b and J from R b to O) than for other solutions; and broadcasting an entire relation
over a region (e.g., A over R b) is much more costly than broadcasting just a partition of it
(e.g., ASJ over R g as the Local Semi-Join does).

4.4.2 Im pact o f Size o f Q uery Regions

We varied the size of the query regions between 0.5% and 2% of the network area for each
query region (Figure 4.6). The increase in the size of query’s range has a strong effect on the
performance of the algorithms. For queries with regions larger than 1% of the network area
the External Join performs best for a majority of queries (Figure 4.6(a)). The Model-Based
Join solution outperforms all solutions for all query sizes (Figure 4.6(b)), but for query
regions of 1.5% or larger its cost is very close to the cost of the External Join solution. As
the External Join performs best for most queries with query regions larger than 1.5% of the
network area and the Model-Based Join solution captures this behaviour, the performance
of the two solutions converge. The cost of the Mediated Join converges as well to the same
value, since the best mediator position approaches or matches the position of the originator
node for large query regions. The increase in the size of the query regions causes more
nodes to be relevant to the query, and thus the amount of data that participates in and is
generated by the join increases. Therefore it becomes more efficient to send the data to
the user station over the shortest path (as in the External Join) compared to moving it in
the network over longer paths. In addition, as we do not vary the the join selectivity factor
in this experiment, the query reaches a point where the size of the data resulting after the
join becomes larger than the participating relations. For our default join selectivity ratio
(0.001), this effect occurs when each query region covers 20 or more nodes. It is easy to
see that in this situation sending the data to the user station is the best solution, behaviour
well captured by the Mediated Join which moves the join location to the originator node.
Local Join performs poorly again for the reasons discussed in the previous experiment. In
addition, its cost increases sharply with the increase in the size of query regions as a larger
relation is broadcast over a larger region.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

^1_oc -
sjLoc
Med

80

c0)
o
i t
LU

60

40
tt>o

20

0.5 1 1.5 2
Size of Query’s Spatial Range (% of area)

(a) Most efficient (% of queries)

4.5
Ext
Loc

sjLoc
Med

Model

(0
E

3.5CL
O

2.5

£
LU

1 1.5 20.5
Size of Query’s Spatial Range (% of area)

(b) Relative energy use vs. Optimal

Figure 4.6: The impact of the size of the query regions

4.4.3 Im pact o f Join Selectivity Factor

To evaluate the effect of the join selectivity factor (JSF) on the performance of the solutions,
we varied the factor between 0.0005 and 0.01. The lower range corresponds to 5 tuples be
ing generated by the join of the data from each pair of nodes from the two query regions,
while the higher range corresponds to 100 tuples being generated for each pair of nodes.
Considering our default size of the query regions and network density, this effectively trans
lates overall into the size of the join result being smaller than the joined data for the lower
join selectivity factor (highly selective join condition), and larger for the higher selectivity
factor. While we do not evaluate directly the impact of joins followed by aggregations, the
behaviour of the solutions for small JSFs is similar to that of aggregations applied on top
of joins with larger JSFs. What matters in both cases is the size of relation J compared
to the sizes of A and B . Also note that the join selectivity factor has no effect on the cost
of the External Join as the join is performed at the user station, and only a small effect on
the cost of the Local Semi-Join as the joining tuples from each query region are joined at

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
Ext -
Loc —

sjLoc
Med

80

c
0
o
i tLU 40

20

510 25 10050

m
E
Q.o
0w
D
>O)
0cLU

Join Selectivity Factor (x0.0001)
(a) Most efficient (% of queries)

Mode

510 25 50 100
Join Selectivity Factor (x0.0001)

(b) Relative energy use vs. Optimal

Figure 4.7: The impact of join selectivity factor (JSF)

the user station as well. The solution most affected by the size of the join selectivity factor
is the Local Join since the join is performed at one of the query regions and the join data
is then transferred to the user station. While the Mediated Join also performs the join at a
location in the network, the mediated location is dynamically selected at query time and it
coincides for some queries with the location of the query originator when the size of the join
data grows larger. When this effect occurs the Mediated Join and the External Join behave
similarly (Figure 4.7(b)), and in the efficiency graph (Figure 4.7(a)) we consider that the
External Join is the most efficient solution between the two. The experimental evaluation
also shows that the Mediated Join performs best for small selectivity factors, closely fol
lowed by the Local Semi-Join. With the increase in the join selectivity factor (less selective
join condition), the Mediated Join approached the External Join in behaviour and perfor
mance, and the Local Semi-Join is only slightly affected. The Model-Based Join solution is
able to pick these effects on the solutions, performing best and within 8% of the cost of the
Optimal Join for all join selectivity factor sizes. The performance of the Local Semi-Join
decreases slowly for increasing selectivity sizes, and in our setup it is the most efficient of

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
Ext -
Loc —

sjLoc
Med

c0)
'g
it=
LU
-+—*
COo

10050 75

CCS
E‘■4-̂Q.
O
asco
Z)
>»o>
0c
LU

Packet Delivery Success Rate
(a) Most efficient (% of queries)

4.5

4

3.5

3

2.5

2

1.5 t

1

Ext
_„_JLpc

sjLoc :*::
Med a

Model —

 B—-

50 75 100
Packet Delivery Success Rate

(b) Relative energy use vs. Optimal

Figure 4.8: The impact of packet delivery success rate

the four solutions for a majority of queries when the size of the join selectivity factor is
larger than 0.001.

4.4.4 Im pact o f Realistic Com m unications

Up to this point in our experiments we have considered a reliable communication environ
ment, where no messages (packets) are lost during transmission. This assumption allowed
us to investigate the performance of the solutions independent of the communication en
vironment. Unfortunately, the typical environments where sensor networks operate affect
the quality of transmission negatively, with packet delivery failing at times. To capture
this unreliable conditions, we have set each communication link between two nodes with
a packet delivery success rate. In addition, the quality o f communication links is typi
cally not symmetric, so we varied the delivery rate with up to 10% for the two directions
of each communication link. When a packet does not reach its destination in a one hop
transmission, the source node re-transmits it until it receives acknowledgement of receival.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

co
'o
it=
LU
•4-̂<0o

CO
E
Cl
O
CD
CO
=)
>O)
i—
CDc

LU

100

80

60

40

20

0

Ext — -
Loc —■

sjLoc *
Med a

-20 -10 10
Estimation Error (%

4.5

4

3.5

3

2.5

2

1.5

1
-20

20

(a) Most efficient (% of queries)

1
Ext — i—

- Loc -
sjLoc * *
Med a

-

Model

1
'-s--------- is •

20-10 0 10
Estimation Error (%)

(b) Relative energy use vs. Optimal

Figure 4.9: The impact of the estimation error of JSF

Figure 4.8 represents the performance of each solution under three packet delivery success
rates. Each success rate represents the lower bound in terms of success rate for the links be
tween two nodes located within the wireless communication range of each other, while the
higher bound is the 100% delivery (no packet loss). The delivery success rates are randomly
distributed in this interval. While the energy cost of each solution increases for decreasing
delivery rates, the relative performance of the solutions remains unchanged. This suggests
that the relative performance of the solutions is not affected by unreliable communication
mediums and the cost model can be used to capture the relative performance of the solutions
regardless of the reliability of the communication environments.

4.4.5 Im pact o f the Estim ation Accuracy for the Join Selectivity Factor

The cost models used in all solutions, except the External Join, use the join selectivity
factor to estimate the size of the resulting join relation. In our previous experiments we have
considered that this factor is estimated correctly to reduce the influence of its error (if any)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the effects of the other parameters. In this experiment we consider that the estimation
of the factor is not accurate, and we investigate the effect that the estimation error has on
the performance of the solutions. We consider both the underestimation and overestimation
errors, varying the error of the estimated join selectivity factor from —20% to +20% from
the actual factor. Figure 4.9 shows the effect of this variation on the investigated solutions.
While quantitatively the cost of all solutions with JSF estimation error varies from their cost
with accurate JSF estimation, the relative performance of the solutions is very stable with
respect to the JSF estimation error.

4.4.6 Im pact of the Location o f the Query Regions and O riginator Node

Our previous experiments have considered a setup where the query originator could be
located anywhere in the network and there is no restriction on the location of the query
regions. We have investigated the performance of the solutions on three more setups. In
one of these setups the query originator is located in the upper-left corner of the network
area and the query regions can be anywhere (a typical setup when using one fixed base-
station). In the other two setups considered, one with a randomly distributed originator and
the other with a comer originator, we restricted the locations of the query regions so that
they are far away from each other and the originator. The experimental evaluation on these
three setups has shown qualitatively similar behaviours of the solutions as for the setup
discusses in details above. This suggests that the relative performance of the solutions is
not affected by the relative locations of the query originator and query regions and that the
cost models, while simple, are sufficient for correctly predicting the relative performance
of the solutions regardless of the application scenario.

4.4.7 Sum mary

Overall, the evaluation shows that no join processing solution performs best for all queries.
The Local Semi-Join is especially suitable when the query regions are small and the network
density is low. The External Join performs best for dense networks and large query regions,
while the Local Join does not perform well under any investigated condition. The Mediated
Join adapts well to the query characteristics and it is a good alternative to the External Join
and Local Semi-Join solutions if performing the join at the user station is not acceptable.
In any case, as energy is a vital resource of the network, one should not settle to use only
one solution for processing all queries, but rather select for each query the best solution.
We have shown that using simple cost models to capture the relative performance of the
investigated solutions is an effective way of selecting an efficient solution for each query,
and it outperforms by a large margin processing all queries with the same solution.

4.5 DIJ: A Distributed Algorithm for Theta Joins

In this section we focus on how to process the join between two relations A and B at a
given network location, where the relations are distributed over subsets of network nodes.
In Section 4.3 we have investigated several join processing solutions with respect to the
location of the network region where the join is performed.

Most join processing strategies presented in the literature (including those discussed
in Section 4.3) either assume that nodes have sufficient memory to buffer the partition of
the join relations assigned to them for processing, or that the amount of memory available

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at each node is known in advance and the assigned data partitions can be set accordingly.
This assumptions are unrealistic for most scenarios. It is well known that sensor networks
are very constrained on main memory and the energy cost of using their flash storage (for
those devices that have it) is rather prohibitive for data buffering during query processing.
In addition, in large scale sensor networks, it is not feasible for the sensor nodes or the user
station to be aware of up-to-date information on memory availability of all network nodes.

4.5.1 DIJ: A Distributed Join Processing Algorithm

Join processing in sensor networks is a highly complex operation due to the distributed
nature of the processing and the limited memory available at nodes. We discuss some of
the requirements of an effective and efficient join processing algorithm for sensor networks,
namely: distributed processing, memory management and synchronized communication.

• Distributed processing. In large scale sensor networks the join operator must be
processed in a distributed manner using localized knowledge. For some queries no
single node can buffer all the data required for the join. In addition, no node (or user
station) has global network knowledge to find the optimal join strategy. As nodes
have information only about their neighbourhood, the challenge is to take correct and
consistent decisions among nodes with respect to processing the join operator. For
instance, when the join operator is evaluated over a group of nodes, each node in
the group must route and buffer tuples such that each pair of join tuples is evaluated
exactly once in the join.

• Memory management. Each node participating in the processing of the join oper
ator must have sufficient memory to buffer the tuples that it joins and the resulting
tuples. For some join queries the join relations are larger than the available memory
of a single node. Typically, several nodes must collaborate to process the join op
erator, pooling their memory and processing resources together. A join processing
algorithm should pool these resources together and allocate tasks and data among the
participating nodes such that the efficiency of the processing is maximized.

• Synchronized data flow. Inter-node communication must be synchronized such that
a node does not receive new tuples to process when its memory is full. Otherwise, the
node would have to drop some of the buffered or new tuples, which is unacceptable
as it may invalidate the result of the join. Thus, each node must fully process the join
tuples it holds before receiving any new tuples. A similar problem occurs also for
the nodes routing the data. A parent node routing data for multiple children may not
be able to buffer all received data before it can forward it. Thus, a join processing
algorithm should carefully consider the flow of data during its execution.

In this section we propose and detail a distributed join processing algorithm which
considers the above requirements. In our presentation we focus on the join between two
restrictions (A and B) of the R* relation, where the join condition is general (theta-join).
Thus, every pair of tuples from relations A and B must be verified against the join condition.
Relations A and B are located within regions R a and R g and they are joined in the network
in a join region, denoted by R j . This setup is similar to the one used in Section 4.3. Again,
the problem of finding where (i.e., the network location) to process the join operator is
orthogonal to our problem of how to process the join operator and it has been investigated

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Section 4.3 and elsewhere [CG05, YLZ06]. In fact, our algorithm is general with respect
to the join relations and their locations and could be used within the core of other previously
proposed join solutions (e.g., the Mediated Join), including solutions for processing semi
joins (e.g., [YLZ06]). For clarity of presentation we describe our algorithm for processing
the join operator in the context of the Mediated Join strategy introduced in Section 4.3.4.

Let us briefly review the Mediated Join strategy: relations A and B are sent to the
join region (Rj) where they are joined and the resulting relation J is transmitted to the
query originator node. Figure 4.3(b) shows in overview the query processing steps and
the data flow. The Mediated Join strategy seems straightforward based on this high-level
description, but there are several issues that must be carefully addressed in the low-level
sensor implementation to ensure the correctness of the query result:

• How to ensure that both relation A and B are transmitted to the same region Rj ' l

• How large should region R j be to have sufficient resources, i.e., memory at nodes, to
process the join?

• How should A and B be transmitted such that the join is processed correctly at the
nodes in R j ?

• How to process the join in R j such that the join is processed correctly using minimum
resources?

A typical algorithm for processing theta-joins in traditional database systems is the
block-nested loop join (BNLJ). If A and B are the join relations, the steps of BNLJ are:

FOREACH block B a of tuples in A DO
FOREACH block B b of tuples in B DO

Join tuples in B a with tuples in B b

Since this strategy goes over relation B for each block B a of A, relation B must be
“read” multiple times. In a distributed environment such as sensor networks, “read” mul
tiple times translates into communicated multiple times. Such a strategy would increase
dramatically the communication cost. Our join processing technique is inspired by this
strategy, with the major difference that each join relation is communicated only once.

We now describe in details DU, our join processing technique, in the context of the
Mediated Join strategy. The steps of the DIJ technique are:

1. Multicast the query from originator node O to nodes in R a and R B. Designate
the nodes closest to the centres Ca and CB of the regions R a , respectively R B, as
regional coordinators. Designate the coordinator location C j for join region R j .
Disseminate the information about the coordinators along with the query.

2. Construct routing trees in regions R a and R B rooted at their respective coordinators
Ca and CB.

3. Collect information on the number o f query relevant tuples for each region at the
corresponding coordinators. Each coordinator sends this information to coordinator
C j of the join region R j .

4. Construct the join region. C j constructs R j so that it has sufficient memory space at
its nodes to buffer A.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Distribute A over R j .

(a) C j asks Ca to start sending packets with tuples. Once C j receives A's tuples
(in packets), it forwards them to a node in R j with available memory.

(b) Upon receiving a request for data from C j, Ca asks for relevant tuples from its
children in the routing tree. The process is repeated by all internal tree nodes
until all relevant tuples have been forwarded up in the tree.

6. Broadcast B over R j

(a) Once C j receives a signal from C a that it has no more packets (i.e., tuples) to
send, C j asks for one packet with tuples from Cb ■ When the packet is received,
it is broadcast to nodes in R j .

(b) Each node in R j joins the tuples in the packet received from B with its local
partition of A, sending the resulting tuples to O. Once the join is complete, each
node asks for another packet of B ’s tuples from C j.

(c) Upon receiving a request for tuples from C j, Cb asks for a number of join
tuples from its children in the routing tree. The process is repeated by internal
tree nodes if they cannot satisfy the request alone.

(d) Once C j receives requests for B ’s tuples from all nodes in R j , Step 6 is re
peated unless C b signals that it has no more packets (i.e., tuples) to send.

In the steps above we chose, only for the sake of presentation, that relation A is dis
tributed over the nodes in R j and relation B is broadcast over the nodes in R j . Although
the steps above are symmetric if the roles of A and B are switched, the order does matter.
In Section 4.5.2 we explore this issue and show how to determine which relation should be
distributed and which should be broadcast in order to minimize the cost of the processing
the join operator.

Let us draw a parallel between DIJ and BNLJ techniques. In BNLJ, relation A is “read”
once block by block into memory. In DIJ, each block of relation A is communicated once.
Differently from BNLJ, each block of relation A is not joined immediately with B , but
it is stored at a node in region R j . In B N U , each block of relation B is “read” several
times, once for each block on A. In DIJ, each block of tuples in B is transmitted only once
from R b to R j . Then, each block of B is broadcast over the nodes holding A ’s blocks
and the join is performed in parallel at the nodes. One may see DIJ as an extreme case of
BNU, where the external loop of B N U is replaced by a distribution of tuples at the nodes
in R j. The great advantage of the distribution is that B is transmitted only once and the
join executes in parallel at the nodes in R j .

Steps 1-3 of DIJ are typical to in-network query processing and do not present particular
challenges. In Step 4, the join coordinator C j must request and pool together the memory
of other nodes in its vicinity for allocating relation A to these nodes (in Step 5a). This is a
non-trivial task as C j does not have information about the nodes in its vicinity (except its
1-hop neighbours). Steps 5 and 6 also pose a challenge, that is, how to control the flow of
tuples efficiently without buffer overflows, ensuring correct execution of the join. We detail
these steps in the following.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Memory

State Buffer
v (ID, Location, neighbors, etc.)

Transmit / Receive Buffer

Q uery P rocessing B uffer

C Query M anager)

(Query 1) /

r Query 2
i .

•
•
•

(Query N)

Other buffers

Events Cache

Observations / Events

Q u e ry 2 - Jo in

State In fo
(query, originator, parent, etc) J

Join Tuples
(A ’s partition)

Join Tuples Result Tuples
(B’s partition) (J’s partition)

Figure 4.10: Memory allocation scheme

Constructing the join region (Step 4)

Once node C j receives the size of the join relations A and B from Ca and Cb (in Step
1), it must find the nodes in its vicinity where to buffer relation A. DIJ uses the following
heuristic for this task, which we refer to as k-hop-pooling:

k-hop-pooling. If C j alone does not have sufficient memory to buffer relation
A, C j asks its 1-hop neighbours to report how much memory they have avail
able for processing the query. If relation A is smaller than the total memory
available at the 1-hop neighbours, C j stops the memory search. Otherwise,
C j asks its 2-hop neighbours to report their available memory. This process is
repeated for k-hops, where k represents the number of hops such that the total
memory available at the nodes up to k hops away from C j plus the memory
available at C j is sufficient to buffer relation A.

An interesting question is how much memory should a node allocate for processing a
particular query. If the sensor network processes only one join query at a time (e.g., there
is a central point that controls the insertion of join queries in the network), then nodes can
allocate all the memory they have available for processing the join. However, if nodes al
locate all their memory for a query, but several join queries are processed simultaneously
in the network, it may happen that a coordinator C j will not find any nodes with available
memory in its immediate vicinity, forcing it to use farther away nodes during processing,
and, thus, consuming more energy. For networks where multiple queries may coexist in the
network, nodes should allocate only a part of their available memory for a certain query,
reserving the rest for other queries. How to actually best allocate the memory of an in
dividual node is orthogonal to our problem. In this work we assume that nodes report as
available only the memory they are willing to use for processing the query that the memory
was requested for. Figure 4.10 shows a possible memory allocation scheme at a node.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wait for
tuple

request

Send local
tuples

Receive and
buffer tuples,
update tuple
info for child

Request tuples

from a child

Figure 4.11: States of a node during tuple routing

Distributing A over R j (Step 5)

In this step two tasks are carried out concurrently: C a requests and gathers relevant tuples
(grouped in data packets) from R a , and C j distributes the packets received from Ca over
R j .

Once the set of k-hop neighbours that will buffer A has been constructed, C j asks
for relation A from C a , packet by packet, and distributes each packet of A 's tuples in a
round-robin fashion to its neighbours, ordered by their hop distance to C j. When deciding
to which node to send a new packet with A ’s tuples, a straightforward packet allocation
strategy would be for C j to pick a node from its list and send to it all new packets with
A ’s tuples until its allocated memory is full. This strategy has two disadvantages. As all
packets use the same route (for most routing algorithms) to get to their destination node,
their delivery will be delayed if there is a delay on one of the links in the route. Also,
consecutive packets may contain tuples with values such that they all (or many of them)
will join with the same tuple in S . In this case, the node holding all these tuples will
generate many result tuples that have to be transmitted, delaying the processing of the join.
The hop-based round-robin allocation also ensures that all k-hop neighbours have a fair
chance of having some free memory at the end of the allocation process, memory that can
be used to process other queries.

Once node Ca receives a request for tuples from C j, it has to gather relevant tuples
from Ra- If Ca would simply broadcast the tuple request in the routing tree constructed
over R a , nodes in R a will start sending these tuples toward C a - A s each internal tree node
has (likely) several children, it should receive and buffer many packets before being able to
send these packets out. Some nodes may not be able to handle such a data flow due to lack
of buffer space, possibly dropping some of the packets. To ensure that no packets are lost
due to lack of buffer space, we propose a flow synchronization scheme where each node
will only buffer one packet. In this scheme, the request for A ’s tuples is transmitted one
link at a time. Each node in the routing tree is in one of the following states during the
synchronized tuple flow (Figure 4.11):

• Wait for a tuple request from the parent node (or C j in the case of C a) in the routing
tree constructed in Step 2.

• Send local tuples (from the local storage or receive buffer) to the parent node.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{local: 2 tup les) {local: 3 tup les) {local: 0 tu p les) {local: 3 tuples)

Figure 4.12: Join tuples information at nodes

• If buffer space has been freed and there are relevant tuples available at the children
nodes in the routing tree, request tuples from a child node that still has tuples to send.
Figure 4.12 shows the routing tree for a region and the information maintained in
each node of the tree as tuples are routed from either R a or R b to R j . Note that the
number of tuples that each child node will provide has been collected in Step 3.

• Receive tuples from the child, buffer the tuples and update the number of tuples that
child still has available.

Once a node has forwarded to its parent all of 21’s tuples from its routing sub-tree, it can
free all buffers used for processing the query.

Broadcasting B over R j (Step 6)

The collection of B ’s tuples proceeds much like the collection of A’s tuples, with one
important difference. Whereas Ca gathers and sends all of the relevant tuples of A as a
a result of a single tuple request from C j, Cb only sends one packet with tuples for each
request it receives from C j. This way, C j can broadcast such a packet of tuples to all nodes
in R j , wait until all nodes fully process the local joins and send the results, and then request
a new packet of tuples from R b when each node in the join region R j is ready to receive
and join a new set of tuples.

4.5.2 Selecting the Relation to Be Distributed

In the previous discussions we have assumed for clarity of presentation that relation A is
distributed over the nodes in region R j and B is broadcast over the nodes in the region. An
interesting question is which of the two join relation should be distributed and if the choice
makes a major difference in cost.

Let us focus first on which of the two join relation should be distributed and, sub
sequently, which should be incrementally broadcast. To decide on this matter, the query
optimizer has to estimate the cost of the two options (i.e., distribute A or B) and compare
their costs to decide which alternative is more energy efficient. For generality, we derive
in the following a cost model for processing the join by distributing relation R j and broad
casting relation i?/,. The actual relations A and B can then be substituted into R j and Rf,
(or vice-versa) to estimate the processing costs.

Considering the steps of DIJ, the cost of query processing can be decomposed into a
sum of components, with one component associated to each step. Several of these com
ponents are independent of the choice of the relation that is distributed. Thus, they do not

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

affect the decision of which relation to distribute and do not need to be derived. For in
stance, we have the cost for disseminating the query in regions A and B (Step 1) and the
cost for constructing the routing tree over regions R a and R b (Step 2). These costs are
identical when processing the join by distributing A or B and do not affect the decision.
The steps that have different costs when A or B are the distributed relation R ^ are the con
struction of the join region R j (Step 4), the distribution of the relation Rd (Step 5a) and the
broadcast of the relation Rb (Step 6a). Note that we are only interested in differences in the
communication cost between the two alternatives.

Constructing the join region (Step 4)

As discussed in Section 4.5.1, we use the k-hop-pooling strategy to construct the join
region R j . In each round of memory allocation, C j broadcasts its request for memory
in a hop-wise increasing fashion, until sufficient nodes with the required buffer space are
located.

During a round h, each node within ft-hops from C j broadcast the memory request and
its 1-hop neighbours receive the request message. Thus, the total energy cost is:

C mre? = J 2 (E *N n M r + E rN * N ln M r),
h=0

where N% represents the average number of nodes within h hops from a node, £) and E r
represents the energy required to transmit, respectively receive, one bit of information and
M r represents the size of the memory request message (in bits). is a network-dependent
value independent of our technique and it is derived in the Appendix D.

When a node receives a memory request message for the first time, it allocates buffer
space in its memory and sends the memory information to C j. The nodes located ft-hops
away from C j perform two tasks: they send their own memory information to the nodes
located h — 1 hops away; and they forward the information they have received from the
nodes located between h + 1 and k hops away from C j. If we denote by Mj the size of
the memory information for one node, the total energy cost of collecting the information on
available memory is:

E ~ n f ° = ((Et + E r)(N% - N * - l)Mi
h=1
+{Et + E r){ N * -N %)M i)

k - 1
= (E t + E r)(kN rkl ~ Y , N n)M l

h=1

Note that (TV* — AT*-1) represents the number of nodes /i-hops away and (N ^ — JV * '1)
represents the number of nodes located more than h and up to k hops away from C j. The
total energy cost of the fourth step of DIJ is:

 j j j m e m r e q j ^ m e m i n f o

Note that the costs of the Step 4 do not depend on the join relations directly, but through k
which determines the size of the join region R j and it is determined by the size of the join

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relation R d.
Let B s be the average size (in bits) of the buffer space that each node in R j can allocate

for processing the query. The minimum number of nodes that must be used to store relation
R d in region R j is where \\R\\ denotes the size (in bits) of relation R. Since nodes
are added to R j in groups based on their hop distance, k is the lowest number of hops such
that the nodes within k hops from C j have sufficient buffer space to buffer R d:

k = {min h \ N%BS > ||f?d||}.

Distributing R d over R j (Step 5a)

In Step 5a of DIJ, C j receives and distributes relation R d at the nodes in R j . Nodes located
h hops away from C j receive from the nodes located h — 1 hops away from C j partitions
of R d of size B s for buffering. They also route toward their destination the partitions B s
allocated to the nodes between h 4-1 and k — 1 hops away from C j, as well as the partitions
allocated to the nodes k hops away. Note that nodes located k hops away will only buffer
whatever is left of R d instead of B s as the other nodes do. Therefore, the total energy cost
of distributing R d at the nodes in R j is:

E ba = £ (+ E r) (N n ~ N n ^) B s
h=1
+ (Et + E r) (N t 1 - N *) B s

+ (Et + E r)(\\Rd\ \ - N t 1B s))
k - 2

= (Et + Er) ((k - l) \ \ R d\ \ - B s J 2 K) -
h=0

Broadcasting Rf> over R j (Step 6a)

In Step 6a of DIJ, C j broadcasts relation R d (packet by packet) over the nodes in R j , where
it is joined with the buffered partitions of R d. Note that only the nodes in R j up to k - 1
hops away from C j need to broadcast R d so that all nodes participating in the join receive
it. The total energy cost of the broadcast is:

E 6a = E tN t 1\\Rb\\ + E rN t 1K \ \ R b\\. (4.9)

Discussion

Using the cost models for Steps 4, 5a and 6a of DIJ, C j can determine which of the two join
relation should be R d and which should be Rf,. To calculate the energy costs, C j need to
know the value of the parameters used in the models. C j learns the size of the join relation
A and B in the Step 3 of DIJ. C j can estimate B s based on the size of the available memory
at itself and its 1-hop neighbours. We show in the Appendix D how can be estimated.
The other parameters used in the cost model are network or algorithm constants.

4.5.3 Cost M odel Evaluation

The cost model developed in Section 4.5.2 allows C j to choose which of the join relation
should be distributed (Rd) in the the join region R j and which should be broadcast (Rb)

7 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Cost model parameters
Parameter Default Value
Average number of neighbours (N^) 12 (N = 1655)
Number of tuples in A 500
Number of tuples in B 500
Number of tuples per node in R j (B s/Ts) 25
Size of a tuple (T s) 192 bits
Size of a memory request message (M r) 8 bits
Size of a memory information record (M,) 80 bits

<
ii

T3
DC
LU

0.9
0.8
0.7
0.6
0.5

3 4 6 71 2 5

l|B|| / ||A||

Figure 4.13: Energy cost ratio when R () = A and R rj = B for variations in the relative size
of the join relations

to minimize the cost of processing the join operator. In this section we further investigate
the behaviour of DIJ based on the cost model. In our evaluation we consider a sensor
network with nodes uniformly distributed over a two dimensional region. We are interested
in evaluating the relative performance of two alternatives: distributing relation A in R j and
broadcasting relation B over R j (denoted by Rd = A)\ and distributing relation B in R j
and broadcasting A over R j (denoted by Rd = B). Our measure of efficiency is the energy
used for communication while processing the join operator. Thus, we compare the energy
cost E(Rd = A) of DIJ when A is the distributed relation with the cost E {R d = B) when
B is distributed. We only consider the energy costs of the Steps 4, 5a and 6a as they are
the ones that determine the difference between the two options of DIJ for which relation
to distribute and which to broadcast. Figures 4.13, 4.15 and 4.16 evaluate the relative cost
of DIJ when Rd = B compared to the cost when Rd = A: E (Rd = B) / E (R d = A).
When the cost ratio is equal to 1, both alternatives for which relation to distribute have the
same cost. When the cost ratio is lower than 1 it is more efficient to distribute relation B
(Rd = B) and broadcast relation A , while for cost ratios higher than 1 relation A should be
the distributed relation (Rd — A). The cost model parameters and their default values used
in our evaluation are presented in Table 4.2.

In the first experiment, we evaluate the relative costs of the Steps 4, 5a and 6a for
different ratios between the sizes of the join relations. We keep relation A fixed and we vary

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5
w
CLo
X
c

Rd=A
Rd=B4.5

co
' t o

CD
cc
c
o—)

3.5

2.5
o
a)
N

CO

l|B|| / ||A||

Figure 4.14: Size of join region (R j) in number of hops when R d — A and R d = B for
variations in the relative size of the join relations

B such that it is between 1 to 7 times larger than A. We evaluate the join processing costs
when relation A, respectively B, is the relation distributed over the join region (R d = A or
Rd = B). Figure 4.13 shows the relative performance of the two join alternatives. When
both relations have the same size (||B ||/ | |A || = 1), the cost of the processing the join
operator is the same for both alternatives, as one would expect. For rations | |i?| |/ | | A \| up to
6, the best relation to distribute changes with variations in the ratio. For ratios higher than
6 (we only show ratios up to 7 in the graph), the smaller relation (^4) is always the relation
that should be distributed for lower join processing costs. The sharp changes in the cost
ratio are caused by the increase in the number of hops (k) that are required so that R j is
sufficiently large to store R d. When k increases, the cost of broadcasting relation Rb in Step
6a increases substantially as another set of nodes are added to Rj . Note that k does not vary
for Rd = A as the size of A does not change, but it does vary between 2 and 5 for R d = B
as shown in Figure 4.14. For instance, when B is between 1.8 to 3.5 times larger than A,
nodes up to k = 3 hops away from Cj are required to buffer relation B when distributed
over Rj . As k stays constant for these ratios, the cost of broadcasting relation A over R j
stays constant as well. At the same time, as the size of B increases, the cost of distributing
A over R j and broadcasting B increases. Thus, the cost ratio E(Rd = B) / E(Rd = A)
decreases and it becomes more efficient to distribute B when | |5 | | / | |A || is between 2.9 and
3.5. When ||13 ||/||A | reaches 3.6, Cj must contact another “hop” of nodes (k = 4) so that
R j is sufficiently large to buffer B. Not only that the cost of distributing B increases with
the addition of new nodes, but the cost of broadcasting A over the 4-hop neighbourhood is
substantially higher than the cost of broadcasting it over the 3-hop neighbourhood. When
this happens, it becomes more efficient to distribute A over the smaller R j (k = 2) required
to buffer it and broadcast the larger relation B over the smaller region. In general, the cost
of Step 6a (broadcasting) dominates by a large margin the costs for Steps 4 and 5a. Thus,
distributing the smaller relation and broadcasting the larger one over the join region R j
performs better for most ratios than broadcasting the smaller relation. The reason is that the
cost of broadcasting increases quadratically as the size of R j increases (see Equation 4.9).
It is only when the size of R j must be increased to accommodate a larger relation that the
processing cost increases drastically, causing a sharp change in the cost ratio.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<II
T3
DC
LU

CD

■a
DC
LU

0.8
10 15 20 25 30 35

Number of tuples per node

Figure 4.15: Energy cost ratio when Rd = A and Rd = B for variations in the size of
available memory at the nodes in R j

Figure 4.15 shows the relative performance of the two alternatives for distributing the
join relations when the size of allocated buffer space at nodes (B s) varies. The variation
of B s affects the size of the join region R j (through the number of hops k required to
reach sufficient nodes) and thus the performance of the two processing alternatives. We
show the relative costs for three ratios between the sizes of the join relations. Note that
when the two relations are equal in size (||B ||/ ||y l || = 1), the processing costs of the two
alternatives are equal as well. The relative performance of the alternatives has a similar
trend for the three ratios of the relation sizes and, thus, we discuss in detail the behaviour
for ||B ||/ | |A || = 3. Consistent to the results shown in Figure 4.13, distributing the smaller
relation A and broadcasting the larger relation B is most efficient for more buffer sizes
(B a) due to the large weight of the cost of broadcasting in the total cost. The exception is,
again, when the size of R j is modified (through k). When the number of tuples that can
be stored at a node (B a/T s) increases from 20 to 25, the number of hops k required for
distributing relation B over the nodes in R j decreases from 4 to 3, while it stays constant
for distributing relation A (k — 2). Thus, the cost of the alternative that distributes B
decreases substantially due to the much reduced cost of broadcasting A over the smaller
number of nodes. At the same time, the cost of the alternative distributing A over R j varies
only slightly as more of A ’s tuples can be stored closer to C j (but still up to k = 2 hops
away from C j), causing a sharp change in the relative performance of the two solutions.
When B s/T s varies from 15 to 20 and 25 to 35, the number of hops required for distributing
Rd (be it A or B) does not change, and, thus, there is only a small variation in the relative
performance of the two alternatives caused by the slightly lower cost of distributing Rd-
Similar trends can be observed for ||JB ||/||A || = 5 and | |B ||/ | |A || = 7 .

Another parameter affecting the relative performance of the two alternatives is the net
work density. The variation of network density directly affects the size of the join area R j
as nodes farther (in terms of hop-count), or closer, to C j are required for storing the relation
that is distributed when the density decreases, respectively increases. Figure 4.16 shows the
effect of the network density on the relative performance of the two solutions. We evaluate
again the relative cost for three ratios of join relation sizes. As the relative performance
of the two alternatives shows similar trends for all three ratios, we focus our discussion on

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

_ 1.8
<
4 1.6

CQ
11 1■a i

ac
uT 0-6

0.6

8 12 16 20
Average number of neighbors

Figure 4.16: Energy cost ratio when = A and Rd = B for variations in the network
density

||B ||/j[A || = 3. When the average number of neighbours (N ^) is between 8 and 18, only
nodes up to k = 2 hops are required to buffer relation A in R j . This effectively means
that the cost of the alternative distributing A in R j varies only slightly, while the alternative
that distributes B decreases its cost at a faster rate as k decreases from 4 to 3 when the
increases from 10 to 12. When the number of neighbours is 20, the network is sufficiently
dense so that C j uses only its 1-hop neighbours (k = 1) to store A. As such, the cost
of broadcasting B decreases sharply, causing a similar decrease in the overall processing
cost. Note that for k = 1, only one node (C j) need to broadcast relation Rb- This is a
sharp decrease in the number of broadcasts since for N ^ = 18 and k = 2 the number of
nodes broadcasting Rb is 19 (C j plus 18 1-hop neighbours). On the other hand, the cost
of the alternative distributing B varies only slightly when the increases from 18 to 20.
Therefore, there is a sharp change in the relative performance of the two solutions, and it
becomes substantially more efficient to distribute A than to distribute B when = 20.

4.5.4 Sum m ary

In this section we have discussed in details a technique (DIJ) for processing the theta-join
operator in a sensor network. The strength of the technique is that we take into account
the memory available at the sensors nodes and the synchronization of the data flow. Both
issues have been overlooked or simplified in the existing literature as we shall discuss in
Section 4.7. We have also developed a cost model that allows our technique to be optimized
with respect to the size of the join relations and the amount of available memory at the nodes
processing the join. Another important aspect is that our technique is general in the sense
that it can be re-used in the core of other previously proposed join solutions for relaxing their
assumptions on memory availability at nodes. Finally, we studied the technique’s behaviour
through the cost models under several combinations of query and network parameters. We
have shown that the size of the region over which the join is processed (represented by k)
has a strong impact on the cost of the processing.

81

B / A =3
B / A =5
B / A =7

■4-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

query plan
(without join)

Join Optimizer

Processing Solutions - Cost M odels

External M ediated Local Other
Join Semi-JoinJoin

In-netw ork Algorithms - Cost M odels/ j o m \
/ algorithm s,
is required andV
s i ts cost is n o t / y e s
X in c lu d e d /

H ash-Join
[PG06]

OtherDIJ

query plan
(with join)

Figure 4.17: A join optimizer for queries in sensor networks

4.6 Selecting a Join Location and a Join Algorithm

In the previous sections we have discussed two problems relevant to processing a join query
in a sensor network: where should the join be performed (Section 4.3) and how to process
the join operator in a distributed manner at a network location (Section 4.5). Since these two
problems are complementary to each other, we have analyzed them separately. However,
processing a join query involves both these issues simultaneously. Thus, we discuss in this
section how to combine the solutions to these two issues for efficient processing of join
queries.

Given a join query, the query optimizer must find first the location where the join opera
tor should be processed. For that, the optimizer should evaluate the cost of each processing
solutions using, for instance, our cost models derived in Section 4.3. If the most efficient
processing solution as suggested by the cost models requires in-network processing, the
optimizer should find the type of join operator (e.g.: theta- or equi-join) involved in the
query. Assuming that the optimizer is aware of several algorithms (such as DIJ) for pro
cessing each operator type, the next step is for the optimizer to estimate the cost. Once
the lowest cost algorithm has been determined, its cost should be added to the cost of the
selected processing solution and the best solution should be re-evaluated. The reason is
that the cost of the join algorithm plus the cost of the processing solution may prove to be
larger than other solutions that do not require any join algorithm (such as the External Join).
Once the most efficient processing solution is determined, the query optimizer informs the
query processor, which initiates the processing. An overview of this process is shown in
Figure 4.17.

4.7 Related Work

Research on query processing in sensor networks has mostly focused on processing of selec
tion, unions, grouping and aggregation operators [GM04]. Recently, a few works addressed

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the processing of join queries.
Bonfils and Bonnet [BB03] consider the problem of processing a correlation operator

(i.e., a special join) at a node in the network. The solution starts with a random placement
of the operator at a network node. The position is progressively refined by moving the
operator to the nodes with lower processing cost during the lifetime of the continuous query.
Two important assumptions are that the operator can be fully processed on one node and
that the lifetime of the query is sufficiently long to refine the operator position from a
random location to an optimal one. An advantage of the refinement is that the operator
placements adapts to the change in data during the query lifetime. For short continuous
queries their solution would perform much worse than the optimal cost due to the initial
random placement and the solution is inadequate for historical queries. The authors focus
on the operator’s placement problem, assuming that each node that will hold the operator is
able to handle the flow and processing of data alone.

Chowdhary and Gupta [CG05] propose an algorithm for performing the self-join in-
network over a processing region with several sensor nodes participating in the join. The
processing algorithm, called distribute-broadcast join, is a form of distributed block-nested
loop join, where each node in the join area holds one block of the outside relation while
the inside relation is broadcast over the join region. The algorithm is similar in spirit to
DIJ, but the authors do not investigate the allocation of memory at the nodes in the join
region and the synchronized data flow. Different from us, the authors consider a special
shape for the join region and argue that this region is optimal. Along the same line, Pan
dit and Gupta [PG06] propose two algorithms for in-network processing of the range-join
operator. One algorithm is a distributed form of a hash-join algorithm, while the other is
a distributed form of index-join and uses a B-tree structure distributed at the sensor nodes.
Both works [CG05, PG06] consider that the optimal join location is the weighted centroid
of the triangle formed by the originator node and the query regions. The centroid has the
property that it minimizes the weighted sum of the squared distances, and thus it is not
optimal.

Yu et al. [YLZ06] investigate the processing of self-join queries with equi-joins over
historical data in sensor networks. In their solution they constructs a synopsis (e.g., a his
togram) of each relation involved in the join. The synopsis are transmitted to an intermedi
ate location, where they are used for finding which tuples of the two relations will certainly
not join. This information is returned to the sensor nodes storing the relation, which will use
it to select only the join relevant tuples to participate in the join. The join is then performed
in network at a second intermediate location. The solution performs best when the join
selectivity is high and it is closest to our Mediated Semi-Join. The join of the synopsis is
performed in a square join region whose size is determined based on the size of the synop
sis, the network density and the average memory available at the join nodes, which we also
use in our approach. When allocating the synopsis to the join partition, they fail to consider
the memory available at the individual nodes in their hash-based allocation scheme, which
would cause buffer overflows and invalidate the join result. They also assume that nodes
have sufficient memory when performing the final join of the filtered tuples.

The external join problem where the sensor relation is joined with a relation stored at the
user station is studied by Abadi et al. [AML05], The external relation is basically a relation
containing filters to be applied on the sensor tuples. If the external relation is small, it is
flooded in the network and the join occurs locally at each node. When the external relation
is too large to be stored in the network, the authors propose three techniques (bloom filters,
partial joins and cache diffusion) that help filter part of the sensor tuples. Non-filtered tuples

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are then joined externally after reaching the base station. An intermediate situation is when
the external relation fits into a group of nodes. While multiple groups of nodes are formed
in REED, this solution is closest to our Local Join.

4.8 Summary

Many works have focused on processing queries over the sensor network, but they limited
their focus on processing the selection and aggregation operators over the sensor relation
R *. Such queries were mostly filtering the sensor data in-network, with any further pro
cessing done off-line. In this chapter we have argued that the join operator allows one to
pose important queries on the sensor data. We have also shown that the join operator can be
pushed in-network together with the other operators previously studied. We have analyzed
several solutions for in-network processing of the join between two relations with respect to
the location where the join operation should be performed. We have shown empirically that
no join processing solution performs best for all queries. Using our cost models to choose
at query time the most efficient processing solution, we are able to reduce the cost of join
processing with up to 83% compared to processing every query with the same solution, and
also perform within 7% of the optimal processing cost. We have also proposed a technique
for processing the theta-join operator in a sensor network. Our technique takes into account
the memory available at the sensors nodes and the synchronization of the data flow. Both
issues have been overlooked or simplified in the literature. We have developed a cost model
that allows our technique to be optimized with respect to the size of the join relations and
the amount of available memory at the nodes processing the join.

In this chapter we have investigated the processing of queries with one join operation.
An interesting open problem is in-network processing of queries joining multiple sensor
relations. The challenge is finding the best order for joining the relations and, for each join,
the most energy efficient processing solution. Any decision on what solution to use for pro
cessing a particular join operator in the query tree should consider its effect on processing
of the other join operators in the tree. In our investigations we have assumed that the query
regions are much smaller than the distance between the regions and the originator. As such,
we approximated each region by the location of its centroid when building the cost models.
For larger query regions or small distances to the originator node such an approximation
may not be sufficient. Using more realistic approximations of the query regions and their
effect on join processing and the cost model is an open problem.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

In-network Processing of
Approximate Queries

5.1 Introduction

In domains such as GIS [BC99], a typical query involves building a map of values for a
given area, e.g., “find the temperature for each point of lot X12 at 2pm yesterday.” Since
it is not practical to have a sensor in each point of the monitored region, one has to settle
for some approximated value for those points where a sensor is not present. This leads to
the notion of an approximate answer for a query where a map is built with values for each
point in the map, but also with a confidence level in the accuracy of the value associated
to a map point. In fact, this leads to two maps, one with the requested values and another
one with the confidence associated with those values. In a more general case, the values of
interest could form a set of maps, for different time granularities, e.g., “find the approximate
hourly temperature values for the past 12 hours of lot X I2 so long as the reported value has a
confidence above 40%”. We call this type of query a SpatioTemporal Data Map (STDM ap)
query. An important fact to note is that in the same way some points of the queried map are
“covered” by one or more sensors, sensor themselves can also be covered by other sensors.
In effect this means that some nodes may take advantage of such coverage redundancy and
not participate in the query’s processing without loss of the answer’s quality. We study this
problem in the peer-to-peer sensor network environment introduced in Section 1.2.

Our contribution in this chapter is the proposal of three techniques to address the prob
lem of approximate query processing in sensor networks, namely:

1. the AFM technique, which employs parallel flooding of the queried region where
each node decides, based on sound criteria, whether it should participate or not in the
query’s answer;

2. the EFM technique, which is a energy-aware parallel flooding, where nodes decide
about their participation considering also the amount of energy they have;

3. the MSM technique, which uses the completion of the queried map itself as a guide
to traverse the region’s nodes.

All three techniques aim at taking advantage of the redundancy mentioned earlier, i.e.,
process the query so that not all relevant node need to participate (depending on the required
level of confidence). Through extensive experimental evaluation, we show that in-network

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: Example of a map answer

processing of STDMAP queries reduces by up to twenty times the energy use compared to
the typical solution that retrieves the raw sensor measurements and assembles the STDM ap
answer off-line.

The remainder of the chapter is organized as follows. Section 5.2 details the STDM ap
query. Section 5.3 presents our three algorithms for processing STDMAP queries in the
peer-to-peer sensor network environment. The performance of the proposed processing
solutions is evaluated in Section 5.4. Section 5.5 discusses research works related to our
contribution and Section 5.6 concludes the paper.

5.2 The STDMap Query

A common representation of information in environmental remote sensing [BC99] is in
the form of a map capturing the spatial distribution of data (Figure 5.1), where each map
point represents a spatial area and its associated value represents the state of the observed
phenomenon in the area corresponding to the point. Query support for such a representation
is important for applications where the spatial distribution of data is more important than
individual data values. The map representation for sensor network data can be constructed
by first collecting the sensor measurements from all sensors located in the region of interest,
followed by the construction of the map off-line. However, collecting the measurements
from all these sensors (called relevant nodes) may not be necessary, as the measurements
from only a subset of the relevant nodes may be sufficient to construct the map. This is
possible if the answers of some nodes can be approximated by the answers of other nodes.
There are two reasons for considering answer approximation. First, it is not practical to have
a sensor in each point of the monitored region, and therefore the values used for most of the
map points must be approximated1 using the answers of the sensors located nearby. Second,
due to the inherent correlation among the states of physical phenomena at close locations,
the measurement of any sensor can be approximated by the measurement of other sensors
located nearby with a certain degree of confidence.

Let us consider two locations where we are interested in the state of a monitored phe
nomenon: location s where a sensor node S exists and location I where there is no sensor.

’in this work we consider sensors that observe the state of a monitored phenomenon at the sensor location
only. This is different from range sensing (e.g., movement sensing used in tracking [FZG02]), which measures
the state of an entity not necessarily located at a sensor’s position, but in its vicinity.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S can provide a measurement for the monitored phenomenon only at location s. For loca
tion I, we can approximate a state with the measurement for location s, with some degree of
confidence. We model the confidence of a node as a function C (s, I), which represents the
confidence of the sensor S that a measurement taken at location s is the same at location I.
Depending on the monitored phenomenon and the capabilities of the sensing unit, the func
tion C(s, I) could be very simple or highly complex, constant over the lifetime of the sensor
node or adaptive to various conditions (e.g., time of day). Naturally, the confidence of S
for a location decreases with the distance to that location. The concept of confidence is also
used in [DGM+04] to capture uncertainty, but, differently from us, their confidence repre
sents the uncertainty with respect to approximated sensor readings, while ours captures the
uncertainty in the validity of an actual sensor reading for a different spatial location than
where it was acquired.

The SpatioTemporal Data Map (STDM ap) query supports the map representation of
the sensor network data. Assuming a confidence function C(s, I), which is dependent of the
sensor network setting but it is query-independent, we denote the query by STDMAPfsw,tw,ct),
with the following characteristics:

• The answer of a STDM ap query is a set of map layers representing the approxi
mations of the sensor measurements with confidence above the minimum confidence
threshold ct for the spatial region .vw, with each layer corresponding to one time
point within the query’s time window tw. The confidence threshold ct represents
the minimum confidence that a user is willing to accept in the query answer for the
approximation of a value at a map location.

• Each point of a map layer corresponds to an area within the query’s spatial window,
with its value equal to the approximated state of the monitored phenomenon in the
corresponding area. Figure 5.1 shows an example of a map layer.

Note that each sensor node has a confidence in approximating the state of the moni
tored phenomenon with its measurement for every possible location. Unfortunately, inter
polating the measurements of all sensors for each location using their confidences is very
difficult, possibly requiring information from every sensor node. Distributed regression is
used in [GBT+04] to model spatiotemporal redundancy in sensors’ measurements, where
the user is responsible for providing the location of kernels and the set of basis functions.
This is not feasible for large sensor network deployments. In this chapter we associate
with a map point the measurement with the highest confidence among all approximations
obtained during query processing, reserving the problem of interpolating the sensors’ ap
proximations for future work.

Before going further let us introduce the following definitions which are necessary for
the remainder of the chapter:

Definition 1. Given a confidence function and a confidence threshold, the coverage area
o f a sensor node is the area around the sensor in which the sensor’s data is relevant to the
query (i.e., the confidence o f the sensor is above the threshold for every point in the area).

Definition 2. Assuming the confidence function o f a sensor is isotropic2 and stationary, the
coverage range cr o f a sen so r is the rad ius o f the circle cen tred a t the sen so r w h ich fo r m s
its coverage area.

2While the variation of physical phenomena may be different on each direction due to the environment,
sensor nodes may not able to detect this variation and adjust the confi dence function accordingly.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

covered sensor

coverage area

coverage range

Figure 5.2: The coverage of sensors

query’s spatial window

„ extended query area

sensor’s coverage area

Figure 5.3: Extended query area

As sensors’ coverage areas can overlap (dependent on the inter-sensor distance, the con
fidence function and the confidence threshold), the coverage areas of some sensors may be
covered by other sensors (see Figure 5.2 for an example). In this situation, the STDMAP
query can be answered using a subset of the relevant sensor nodes, thus saving communi
cation and processing costs. This is possible as the STDM ap query does not require in its
answer the measurement with the highest possible confidence, but with a confidence higher
than or equal to the confidence threshold ct. Note that a sensor’s coverage area depends on
both the confidence function C(s, I) and the query (via the user specified confidence thresh
old ct). This is different from the sensing area that some range sensor types (i.e. motion
sensors) provide, where the sensed area is a characteristic of the sensing device.

5.3 Strategies for Query Processing

Since the coverage areas of the sensors located in the proximity of the query’s spatial win
dow may intersect the query window, finding the query answer for a location inside the
query window may require contacting nodes located outside the query window.

Definition 3. The extended query area is the area where the sensor nodes whose coverage
areas intersect the query’s spatial window can be located.

Algorithms for processing STDM ap queries must be able to contact the nodes located

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the extended query area. Given a confidence function C(s, l) and a confidence threshold
ct, the extended query area is formed by the extension of the query’s spatial window in
every direction with the coverage range, as shown in Figure 5.3.

Due to the nature of the environment where the sensors are deployed, it is possible that
the assumed measurements of two neighbouring sensors for the same location are incon
sistent. This suggests possible obstacles affecting the expected variation of the monitored
phenomenon. In this situations nodes could mark the affected areas as not covered by their
neighbour that provides the inconsistent approximation. We leave the problem of inconsis
tent approximations for future work, and we assume in this work that the nodes covering a
certain location provide consistent approximations for the location.

5.3.1 Processing Solutions for S T D M a p Queries

This section presents three algorithms for processing STDMap(sw,tw,ct) queries. In large
scale sensor deployments, the user is typically interested at a given time in a spatial win
dow (sw) of the whole monitored region and a temporal window (tw) of the measurements
collected by a sensor. We have shown in Chapter 3 that for spatial range queries a two-
phase query processing approach is more efficient than the typical network flooding. By
forwarding the query to all network nodes, the network flooding contacts many nodes in
addition to those that hold the query answers, which increases substantially the energy cost
of processing.

Due to its lower cost, we use a similar two-phase approach for processing STDMAP
queries. We break each processing algorithm into two phases: one for finding a routing
path from the query originator node to the query window sw, the other for collecting the
query answers from the relevant nodes and returning the answers to the originator node. For
the first phase, we use a simple greedy approach (presented in Section 3.4.1) to discover a
routing path from the query originator node to a node located near the centre of the query’s
spatial window, called coordinator node. As the proposed algorithms use the same routing
algorithm in their first phase, we detail in the following only the second phase for each
query processing algorithm.

5.3.2 Aggressive Flood Strategy (A F M)

For its second phase, the Aggressive Flood for STDM ap (AFM) algorithm uses parallel
flooding to distribute the query to all nodes located within the extended query area. How
ever, not all nodes will contribute to the answer. Each node decides locally if its answer is
required by the coordinator node to assemble the STDM ap answer. The decision is based
on the coverage areas and the states of its neighbour nodes. Each one of a node’s neighbours
can be in any of three states: OPEN, if the node has no information about its neighbour’s
state; SEND, if the neighbour has decided that its answer is required; or SKIP, if the neigh
bour has decided that its answer is not required. The OPEN state is the state assigned by
a node to itself and all its neighbours upon receiving the query for the first time. A node
decides its final state between SEND or SKIP after receiving broadcasts of the query from
one or more of its neighbours, but before sending its own query broadcast. Nodes send their
state (SEND or SKIP) along with the query broadcast. Once a node makes a decision, it
can filter out the other broadcasts of the same query based on their header. A node decides
to send its answer and changes its state to SEND if its coverage area is not fully covered
by its neighbours in OPEN or SEND state. Otherwise, the node does not send its answer

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and changes its state to SKIP, as other nodes will cover its area. A node that decides its an
swer is required (SEND state) returns its answer to the neighbour it first received the query
from. The second phase of the AFM algorithm running in each relevant node is presented
in Algorithm 3.

Algorithm 3: AFM Algorithm - Phase 2

Input : Current Node N, N ’s Neighbour List NB
1 Receive query Q, PNB. state from parent neighbour PNB
2 if N.location not in Q.extArea then STOP
3 Initialize status of all nodes in NB to OPEN state
4 Update status of node PNB in NB to PNB. state
5 Construct coverage N.coverArea using N.location, Q.extArea, Q.ct
6 Check if nodes in NB with SEND or OPEN states cover N.cover Area
7 while N.cover Area is not covered & new broadcasts received do
8 Update status in NB for broadcasting neighbours
9 L Check if nodes in NB with SEND or OPEN states cover N.cover Area

to if N.coverArea is covered then
11 N. State i— SKIP /* N ’s answ ers are n o t requ ired */

12 Broadcast Q, N. state
else

13 N. State t— SEND /* N ’s answ ers are requ ired *1
14 Broadcast Q, N. state
15 |_ Return (N.data in Q.tw) to PNB I* return answer *i

Using AFM, each node receives the query message from several neighbours and sends
one broadcast (Algorithm 3, line 12). Depending on the overlap of the coverage areas, only
a subset of the relevant nodes will return their answers to the query coordinator node. After
the query coordinator gathers the nodes’ answers, it constructs the STDMAP answer and
returns it to the query originator node over the path discovered in the first phase of query
processing. Due to the limited information each node has, if a node is covered with the
help of other nodes than its neighbourhood, the overlap is not detected. As the query is
forwarded in parallel over all paths, each node is reached over the shortest path from the
coordinator. Thus, the answers are returned to the coordinator node over the shortest path
by the nodes that decide their answer is required.

When a node changes its state to SKIP, it may force its neighbours in OPEN state
to cover its area. Assuming no communication delay latency, these neighbours must have
smaller or equal hop-count distances from the coordinator node, and therefore the algorithm
allows nodes closer to the coordinator node to skip answering and force their neighbours
farther away to cover their area. This behaviour may create in unbalance in nodes’ energy
levels, leading to the early death of some nodes. The AFM algorithm is an aggressive
strategy, in the sense that a node decides to skip answering with only partial knowledge
of its neighbours decision, thus forcing other nodes to answer on its behalf. For the AFM
algorithm to function correctly, it must be implemented on top of a wireless protocol using
control frames and virtual channel sensing (such as those presented in [BDSZ94]). Such
protocols ensure that neighbouring nodes do not broadcast their messages at the same time3.

3Before a node is able to reserve the communication channel to broadcast the query and its state, the channel

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If such protocol is not used, two neighbours that count on each others coverage could broad
cast the query and their decision simultaneously. It would be too late for the two nodes to
change and re-broadcast their decisions, as their non-common neighbours reached by the
first broadcast may have already processed the original decisions. The correctness of the
AFM algorithm is showed in the following lemma:

Lemma 1. Any point from the query’s spatial window covered by sensors will be covered
in the final answer using the AFM algorithm.

Proof. We assume the network within the extended query area is connected and every point
within the query’s spatial window it covered by the coverage areas of one or more sensor
nodes. Let us assume there is an area A from the query’s spatial window that is covered
by each node in the set of nodes { N i , ..., N^} and only those, and A is not covered in the
answer, i.e., none of the nodes N i , ..., is sending its answer to the coordinator node.
Thus all nodes TVj,.... TV/, are in SKIP state. However, there is a node N j (j £ 1 ...k) such
that Nj broadcasts the query and its status the last among its neighbours covering A. Node
N j must have received broadcasts from all its neighbours covering A before deciding its
status. Thus node N j knows that its neighbours covering A are in SKIP state (all neighbours
covering A must be among JVi,..., AT/.), so node Nj cannot find any neighbour to count on
for the coverage of A. Therefore, node N j must be in SEND state, and area A is covered in
the final answer. □

5.3.3 Energy-aw are Flood Strategy (E F M)

The Energy-aware Flood for STDMAP (EFM) algorithm uses also a flooding strategy in
its second phase, but, differently from the AFM algorithm, its correct execution does not
require any specific support from the wireless network protocol used in the sensor network.
While AFM is an aggressive strategy, EFM is a passive strategy, where a node makes a
decision aware of the state of its neighbours. For the state information of all neighbours to
be available, a node must receive all the broadcasts of its neighbours and send two broad
cast messages to provide additional information about its status. While all three proposed
algorithms try to reduce the energy used during query processing, EFM uses information
about the amount of energy nodes have in order to decide which nodes should participate
in query answering. Thus, EFM is an energy-aware processing strategy.

Query processing starts when the coordinator node broadcasts the query to its neigh
bours. A node receiving a query for the first time checks if its coverage area is covered
by its neighbours. If it is not covered, the node decides that its answer is required and sets
its state to SEND. If the area is covered, the node does not have yet sufficient information
about its neighbours to safely decide to skip answering, and therefore sets its own state to
OPEN. Next, the node broadcasts the query and its current state.

Once a node has received the query broadcast from all its neighbours, it checks if its
neighbours that have decided to answer are covering its area, i.e., if its area is covered
by nodes in SEND state. If its area is covered, the node can safely skip answering and it
sets its state to SKIP. After this check, each node broadcasts a state update message to its
neighbours and waits for the state updates from its neighbours. If a neighbour B of a node A
has changed its state from OPEN to SKIP, it means that B is fully covered by its neighbours

may be used by some of its neighbours for their broadcasts, which the node will receive and consider in its
decision.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in SEND state, and thus any overlap it has with A is also covered. Consequently, a node
can safely skip answering if its area is fully covered by its neighbours in SEND or SKIP
states. Such a node changes its state to SKIP, but this information is not exchanged. Not
exchanging the information on this status update is safe, as any node that is counting on the
coverage of its neighbour in SKIP state remains covered (through transitivity) by the nodes
covering its neighbour.

At this point, a node can be in any of the three possible states (SEND, SKIP or OPEN).
If a node’s state is SEND, the node returns its answer to the neighbour it first received
the query from. If its state is SKIP, nothing has to be done as the node’s coverage area is
covered by other nodes that will answer. If its state is OPEN, the node must decide based
on the information about its neighbours whether to send or to skip. To determine correctly
whether it has to send its answer, however, it needs to know whether information about its
own area that is covered by neighbours that are also in OPEN state will be sent (by the
neighbours directly or by other nodes covering the neighbours). This is a potential problem
as the covering relation is symmetric4. Two nodes in OPEN state which partially cover
each others areas have to independently make a consistent decision. In particular we must
avoid that two nodes decide to skip and no other node will send information about their
overlapping area. The information about the current state of its neighbours is not sufficient
to take a consistent decision.

We use the amount of energy left in nodes to determine which one of a pair of nodes
in OPEN state with overlapping coverage areas will ensure the coverage of the overlap (the
energy information can be exchanged during the broadcasting of the state update message).
For each pair, the node with more energy will be responsible for the coverage of the over
lapping area. Thus, a node A in OPEN state with more energy will not count on a neighbour
B in OPEN state with less energy to cover its area, and vice versa, B will count on the cov
erage by A, i.e., B will consider A to be in SEND state. This policy guarantees that for
each pair of neighbouring nodes in OPEN state with overlapping areas only one node will
assume that the overlap is covered by the other node. If two nodes have the same amount
of energy left, they can use their unique node identifier as a tie-breaker.

After each node updates its local representation of the state of the OPEN neighbours
according to the above policy, it checks again if its area is covered by neighbours in SEND
or SKIP states. If its area is not covered, the node will assume its answer is required and
sends it to the coordinator node. Otherwise, if its area is covered, it skips answering. Note
that if a node A skips answering, this does not affect a neighbour B with less energy that
counts on A for covering their overlap, since other nodes will answer for A ’s area. The
pseudo-code for the second phase of the EFM algorithm is listed in Algorithm 4, and the
correctness is shown in Lemma 2.

Lemma 2. Any point from the query’s spatial window covered by sensors will be covered
in the final answer using the EFM algorithm.

Proof We assume the network within the extended query area is connected and every point
within the query’s spatial window it covered by the coverage areas of one or more sensor
nodes. Let us assume there is an area A from the query’s spatial window that is covered
by each node in the set of nodes {iVi,..., N fc} and only those, and A is not covered in the
answer, i.e., none of the nodes N \ , ..., is sending its answer to the coordinator node.

4If the coverage areas of two neighbours overlap, each node may consider the other node covering the
overlapping area.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4: EFM Algorithm - Phase 2

Input : Current Node N, N ’s NeighbourList NB
1 Receive query Q, PNB. state from ParentNeighbour PNB
2 if N.location not in Q.extArea then STOP
3 N B E <r- 0 /* list o f neighbours in Q’s ex tended area */
4 foreach node Ni in NB do
5 if Ni in Q. ext Area then
6 L Add N i to N B E

7 Initialize status of all N B E nodes to OPEN state
8 Update status of node PNB in NBE to PNB.state
9 Construct coverage N.coverArea using N.location, Q.extArea, Q.ct

10 Check if all ABE' nodes cover N.coverArea
11 if N.coverArea is covered then
12 | N. state t— OPEN

else
13 L N. state t— SEND

14 Broadcast Q, N.state /* s e n d | o p e n state */
15 Wait for broadcasts of Q, status from all NBE nodes
16 Update status for all NBE nodes based on broadcasts
17 Check if NBE nodes with SEND state cover N.coverArea
18 if N.coverArea is covered then
19 L N.state <— SKIP

20 Broadcast N.state, N.energy /* s e n d |o p e n |S K IP sta te */

21 Wait for broadcasts of status, energy from all NBE nodes
22 Update status, energy for all NBE nodes
23 foreach node Ni in NBE do
24 if N ^ state = OPEN & Ni.energy > N.energy then
25 |_ Change status of Ni in NBE to SEND state

26 Check if NBE nodes in SEND or SKIP state cover N .coverArea
27 if N.coverArea is not covered then
28 |_ Return (N.data in Q.tw) to PNB

Thus nodes N \, . . . , N k are in SKIP state. However, there is j e 1 ...k such that N j has
maximal energy among N \ , N^. The node N j cannot skip. There is no neighbour N*
of N j covering A having higher energy so that node N j could count on N* to cover A (if
such a node would exist, it would be among J Vj , J V* , and N j would not be the node with
the highest energy in that set). Therefore, node N j must be in SEND state, and area A is
covered in the final answer. □

5.3.4 M ap-guided Search Strategy (M SM)

The third solution we propose for processing the STDM ap queries is the Map-guided
Search (MSM) algorithm. Differently from the previous two algorithms, MSM uses a
partial query answer for guiding the query processing. The algorithm finds the STDMAP

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

answer by forwarding the query using the current partial STDM ap answer. At each step,
the current sensor node selects for query forwarding its neighbour that can provide values
with confidence above the confidence threshold ct for the largest map area without assigned
values. If a neighbour of the current node has a coverage area where every location has
already been covered with confidence higher than ct, then the neighbour is not contacted at
all during query processing.

The query message received by a node contains both the query and the partial STDM ap
coverage map as obtained so far. The node first processes the query by adding its answers to
the STDM ap coverage map. Before forwarding the query to any neighbour, the neighbours
that are not located within the extended query area are discarded from the list of candidate
neighbours. The algorithm goes iteratively through the candidate neighbours and forwards
the new partial STDM ap coverage map to the best of them until either the query area is
fully covered or there are no more candidate neighbours. The best candidate neighbour is
the one that covers the largest area that does not have associated approximated measurement
values. The query answering is considered complete when STDMAP’s map layers have
associated approximated values for every location. The correctness of MSM algorithm is
shown in the following lemma:

Lemma 3. Any area from the query’s spatial window covered by sensors will be covered in
the final answer using the MSM algorithm.

Proof. By construction of the MSM algorithm. We assume the network within the extended
query area is connected and every area within the query’s spatial window it covered by the
coverage areas of one or more sensor nodes. The MSM algorithm uses sequential depth-
first forwarding to contact nodes and therefore all nodes within the query extended area are
contacted until all of the query area is covered. □

Since the query forwarding is done in a sequential depth-first-like manner, only one
node is processing the query at each point in time. This process ensures that only one
copy of the partial STDM ap coverage map is available in the network, and each node
processing the query is aware of the contribution to the STDM ap coverage map of the
nodes previously involved in the query answering. While this strategy is likely to result
in slower query answering for each individual query than the previous two algorithms, it
facilitates several queries being processed simultaneously by the same group of relevant
sensors. The second phase of MSM algorithms is listed in Algorithm 5, where the gain
function evaluates the size of the map area that is covered by a node and it doesn’t have any
approximated measurement associated yet.

5.3.5 Coping with Sensor Failure

Quite often sensor networks operate in harsh environments, where permanent or transient
sensor failures are expected. In addition, the energy source of sensor nodes is limited,
leading to their failure after a period of operation. Regardless of the reason, node failures
should be rare events during most of the network lifetime, otherwise the use of sensor
network technology is not practical. In the following we discuss solutions for dealing with
node failures during the processing of STDMAP queries.

We first consider the MSM algorithm, where the communication takes place only be
tween two nodes at a time. When a node tries to send the query to one of its neighbours, the
neighbour should acknowledge receiving the query message as part of the network protocol.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5: MSM Algorithm - Phase 2

Input : Current Node N, N’s NeighbourList NB
1 Receive query Q, map M from ParentNeighbour PNB
2 Update M using N. location, N.data and Q
3 CNB = 0 /* candidate neighbours for forwarding */
4 foreach node Ni in NB do
5 if N j . location in Q.extArea then
6 L Add N j to CNB

7
8
9

10

11

12

13

14
15
16
17

while CNB not empty & M not full do
BN — 0 /* best neighbour */

foreach node Nj in CNB do
if g a in (N , M) = 0 then

L Remove N.t from CNB

if gain(N , M) > gain(BN,M) then
L BN f - Ni

if BN / 0 then
Send Q, M to BN
Wait for M from BN

_ Remove BN from CNB

18 Return map M to PNB

If the neighbour does not confirm receiving the query, the node assumes that its neighbour
has failed and selects another neighbour for query forwarding. If the neighbour acknowl
edges receiving the query, the node periodically checks the availability of its neighbour
until an answer is returned. If the neighbour appears unavailable during several successive
checks, the node assumes its neighbour has failed and selects another neighbour for query
forwarding. This solution is consistent with the sensor network environment we assumed
(in the sense that nodes are only aware of their neighbours) and it guarantees that the query
answer will be found5. If a node fails during the first phase of query processing, the fail
ure can be treated similarly, since the greedy solution we use in the first phase of all three
algorithms also uses communication between two nodes at a time.

When flooding is used for forwarding the query (in the second phase of AFM and EFM
algorithms), node failures cannot be addressed locally in the neighbourhood of the failed
nodes due the the parallel nature of the query processing. Node failures could be detected
by using time-outs when waiting for replies from the neighbours in the neighbour list or
periodic heartbeats notification messages [SBLC04], In this case, nodes detecting a failure
should report the location of the failed node to the coordinator node. If the coordinator
node does not receive any answers to the STDM ap query for the regions where the failed
nodes were located, it is possible that some of the neighbours of the failed nodes may have
counted on the coverage of the failed nodes. Thus, the coordinator will restart the query
processing in the query area. An optimization is for the coordinator node to restart the

5We assume that the network density remains high despite node failures. If the sensor network density
decreases substantially, the network graph may become disconnected, making the network unusable.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Param eter Default Value

Average number of neighbours (N n) 15 (N — 2050)
Spatial window (sw) 4% (of region)
Temporal window (tw) 60 measurements
Confidence threshold (ct) 0.40 and 0.80
Size of query message 256 bits
Size of a measurement tuple 64 bits

Table 5.1: Parameters of query and sensor network

query processing only for the affected query area, coordinator node will learn about other
In both situations discussed above, it may happen that a neighbour has forwarded the

query before failing and the query is already being processed in the network. Forwarding
the query to a different neighbour or restarting the query processing at the coordinator node
would cause the query to be processed twice, or even multiple times if several nodes fail
after forwarding the query. This may be not desirable given the limited energy resources
that sensors have. Coping with nodes failure may require trading energy efficiency for
increased robustness of query processing against failures. Finding techniques to cope with
sensor failure and integrating them with the proposed algorithms is an open problem.

5.4 Experimental Evaluation

We implemented a sensor network simulator to study the performance of the presented
algorithms. The placement of the sensor nodes follows a uniform distribution over a two
dimensional region. We represent a STDM ap query by the coordinates of a spatial window
Csw), a temporal window (tw), a confidence threshold (ct) and a query identifier (qlD). The
query’s spatial window covers 4% of the monitored region (that is 20% on each spatial
coordinate), unless otherwise noted. The query’s temporal range covers 60 measurements
(one hour of sensor measurements for a measurement rate of one per minute, or two months
of measurements for one daily measurement). For the answer of the STDM ap query, each
cell (i.e., pixel) of a map layer represents 1 m 2 square area in the query’s spatial window.
If a different map granularity is required, the granularity could be added as a parameter to
the STDM ap query. The query originator and the centre of the query’s spatial window are
uniformly distributed over the monitored region. The query and sensor network parameters
and their default values used in our experimental evaluation are summarized in Tables 1.2
and 5.1. Similar to other works (e.g., [RKY+02]), in our sensor network simulator the
message delivery is instantaneous and error-free between nodes communicating directly.

While our algorithms are general with respect to the confidence function C(s ,l) used
by the sensor nodes, an explicit confidence function is required in the evaluation. We use

— d (a , f)

the Gaussian distribution function C(s ,l) = e to model the confidence function,
where d(s, l) represents the Euclidean distance between the sensor node located at s and
a location I in the network area and a 2 is the variance of the function. Gaussian functions
have been used before [DG M +04] to capture the behaviour o f physical phenomena and
the correlation in sensor measurements. Using this function, the confidence of a sensor is
high in its proximity and decreases rapidly with increasing distance. Given a confidence
function C(s ,l) and a confidence threshold ct, a sensor’s coverage area is determined by
the confidence range cr (see Section 5.2). When cr is smaller than half of the wireless range

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W , the sensors that cover a sensor’s area are among its neighbours. Thus, the coverage can
be checked easily at the node. When cr is larger than half of the wireless range W , the
sensors that cover a sensor’s area may be located outside its wireless range. Thus, a node
cannot find out if it is covered by checking only its neighbours. To capture both situations in
our evaluation, we use a = 50 for the function C(s, I) in combination with two confidence
thresholds: ct = 0.4 and ct = 0.8. When ct = 0.4 we have that cr w 44 m > y , and when
ct — 0.8 we have that « 2 2 r o < y .

We compare the performance of the algorithms using two metrics. The first metric
evaluates the algorithms for their capability to reduce the number of relevant sensors needed
to answer the STDMAP query. Finding a smaller number of nodes to answer the query
may increase the energy cost of processing due to an increase in the communication cost
for the control messages. Thus, we use the total energy used during query processing as
our second metric. Since we are interested in energy-efficient query processing, we are
mainly interested in the energy metric, but the first metric allows us to better understand
the behaviour and trade-offs of the algorithms. In our experiments we only measure the
energy used to transmit and receive messages during query processing, which includes the
messages used for query forwarding, for returning the answers and for status updates.

To capture the relative performance of our algorithms against the typical query process
ing solution, we implemented a simple network flooding with spatiotemporal constrains,
called STF. In STF, the query originator node sends the query to all the sensor nodes, but
only those located in the extended query area answer the query, returning the raw sensor
measurements collected within the query’s time window to the originator. Once the mea
surements reach the originator node (or the user station), the map answer to the STDM ap
query can be constructed off-line. Note that in STF all query answers are returned to the
originator node over the shortest paths. In the case of our solutions, there are two alterna
tives for storing the partial answers to the STDM ap query. One alternative is to use the raw
measurements as for STF, and construct the STDM ap answer off-line. Another alternative
is to take advantage of the map representation in the network and store the partial answers
as image maps. Storing the partial answers as images may be more size-efficient (and thus
energy-efficient due to the smaller message sizes) than storing the raw measurements if the
images use a compressed format as most image formats do. Investigating the trade-off be
tween these two storage formats is an open problem. In our evaluation our algorithms also
store the map layers as the raw measurements from which the layers can be constructed for
consistency with STF.

5.4.1 Im pact o f Network Density

Figure 5.4 shows the percentage of relevant nodes that answered the query for each algo
rithm. Note that for the STDMAP query the relevant nodes are the nodes located within the
extended query area. The STF method retrieves the raw measurements from all the relevant
nodes (i.e., 100%), and therefore it is not shown in the graphs. The AFM and EFM meth
ods forward the query to all relevant nodes, with only some of these nodes answering the
query. The MSM algorithm contacts only the nodes that are used in answering the query.
As the number of neighbours increases, all algorithms except STF select a smaller percent
age of the relevant nodes to cover the query window. In the case of MSM, each node has a
larger set of neighbours to choose from for the next step of the algorithm, which leads to a
better selection of the nodes used for covering the query area. For the AFM and EFM algo
rithms, a larger set of neighbours increases the probability that a node’s confidence area is

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
CD

CC>0
0
cr

AFM -
EFM -
MSM

I 50
w
< 40
D)Cc
=3*-<
0
CC

10 15 20 25 30

w

>
0
0cr
o ©
0s*

Average Number of Neighbors
(a) ct = 0.40

o 0
C <D 0 5
W 0 c c <

O) C'c

70
AFM —
EFM -
MSM

60

50

40

30

20
10

0
10 15 20 25 30

Average Number of Neighbors
(b) ct = 0.80

Figure 5.4: The impact of network density on the percentage of relevant nodes that answer
the query (from the total number of relevant nodes)

covered, which reflects on the lower percentage of nodes that answer the query. The aggres
sive strategy of the AFM algorithm leads to a smaller percentage of nodes that answer the
query compared to the energy-aware solution used in EFM. The increase in the confidence
threshold reduces the coverage range, which has a double effect on the query processing
performance: both the extended query area and each sensor’s confidence area are smaller.
A smaller extended query area contains a smaller number of relevant nodes, but, on the
other hand, the smaller coverage areas force more sensors to answer the query in order to
cover the query area. Overall, the increase in confidence threshold forces a larger portion
of the relevant sensors to answer the query in all our algorithms. This effect is amplified
in the MSM algorithm because of the reduced overlap among the sensors that MSM uses
for query processing. For the AFM and EFM algorithms, the overlap of sensors’ coverage
areas is high for ct = 0.4, which allows these methods to have a smaller increase than
MSM in the number of relevant sensors used for answering the query when ct = 0.8.

Figure 5.5 shows the variation of the total energy used for processing a query when the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4000 ------------1------------ 1------------ 1------------
^ AFM — ^
■g 3500 - EFM - -
^ 3000 - MSM A <
<d STF -A
" 2500 -
>j 2 0 0 0 -

£ 1500 - ,
LJJ
- = 1000 “
TO _ , ------------------------ _ | I

o 500 ^
0 1 ^ 1 ''

10 15 20 25 30
Average Number of Neighbors

(a) ct = 0.40

4000 ------------ .-------------.-------------1-----------
- . AFM
E 3500 ' EFM -~®— ‘
^ 3000 - MSM......
(U STF
« 2500 -

| 2 0 °° • .
g 1500 •
^ 1000 'r •............... -
s ____ --&■— ? ----------- 1:
o 500 il-----------■----------- ■----------- -

0 ---------- 1-----------1-----------1---------
10 15 20 25 30

Average Number of Neighbors
(b) ct = 0.80

Figure 5.5: The impact of network density on the total energy used for processing the query

network density increases. The STF algorithm is the most affected due to the linear increase
in the number of relevant sensors that return answers with the increase in density. Our
algorithms use only a few more relevant sensors to answer the STDMAP query for denser
networks, which reflects in their slow increase in the energy usage. The EFM algorithm
uses two floods of the query window, which causes a slightly higher energy increase than
for the AFM algorithm. On the other hand, the AFM algorithm forces nodes located farther
away from the coordinator node to answer, which increases its energy cost for gathering the
answers. Nevertheless, AFM has the lowest energy cost among the investigated algorithms.

The MSM algorithm uses less nodes than the AFM and EFM algorithms to answer
the query, which is reflected on the its lower energy costs when ct = 0.4. When nodes’
coverage areas are small (ct = 0.8) and the network density is low, MSM contacts a large
percentage of the relevant nodes. This leads to a high energy cost for MSM, even higher
than STF. There are two reasons: first, the cost of transferring the STDM ap partial answer
to every contacted node in order to keep track of the already covered area is not negligible;
second, MSM uses a depth-first strategy for query forwarding resulting in a very tall and

99

—I
AFM

■ EFM ~-®— -
MSM*

-
STF ..

-
....A-' ’

~
. . .A .. -

C --..
- • - -•................. *..............*-

_o ---------- «
b---

1 1 1

-
1 ' "

AFM —
EFM '
M S M A •...
STF-

A'”

-
..A""’

-

.......*
L ----- ----------- -

1 I 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2% 4% 6% 8% 10%
Size of Query’s Spatial Window (%)

(a) ct = 0.40

« £2 c 0
0 g

CO 5 c
® —> D)
Q? E0 C
CC 3
.. -H*
O®.o cc

r-----

i
AFM *
EFM -

MSM •

^ __
J

- -

- -

-
i • 1

80

70

60

50

40
30

20
10

0
2% 4% 6% 8% 10%

Size of Query’s Spatial Window (%)
(b) ct = 0.80

Figure 5.6: The impact of the query region size on the percentage of relevant nodes that
answer the query (from the total number of relevant nodes)

narrow tree over which the nodes communicate, and thus the STDMAP’s partial answers
are returned to the coordinator node over longer paths than in AFM and AFM. Overall, the
AFM and EFM algorithms are the least affected by the increase in network density. While
MSM uses the least energy for low confidence thresholds (up to twenty times less than
STF) and the least number of sensors to answer the STDM ap query, it is more sensitive
to the network density, using more energy than STF for a combination of low density and
high confidence threshold.

5.4.2 Im pact o f Size o f Q uery Region

In the second set o f experiments, we kept all other parameters constant, while varying the
size of the query’s spatial window between 2 and 10 percent of the size of the monitored
region. Figure 5.6 shows the effect of query size on the percentage of relevant sensors that
answer the STDMAP query. The AFM algorithm takes advantage of the increase in the

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T 3
0
CO
3
>g>
CD
c

H I
Too

2500

2% 4% 6% 8% 10%

Size of Query’s Spatial Window (%)
(a) ct = 0.40

2500
■oo
co
3
>
CD
0
c

H I
0
O

2% 4% 6% 8% 10%
Size of Query’s Spatial Window (%)

(b) ct = 0.80

Figure 5.7: The impact of query region size on the total energy used for processing the
query

query size and forces the nodes farther away to cover the nodes closer to the query, which
leads to a slight decrease in the percentage of relevant nodes that answer the query. The
EFM algorithm uses each node’s neighbourhood to decide which nodes should answer, and
therefore it is not affected by the size of the query area and uses about the same percentage
of relevant nodes to answer the query for all query sizes. In the case of MSM, larger query
sizes are more difficult to cover efficiently, and thus the percentage of relevant nodes that
answer the query increases with the query size. When the confidence threshold is higher,
all algorithms except STF use a larger set of sensors to cover the query area since the area
that each sensor covers is smaller. Consistent with our observation when investigating the
effect of network density, the higher confidence threshold leads to a larger relative increase
in the percentage of relevant nodes used by the M SM algorithms compared to the AFM
and EFM algorithms.

Figure 5.7 shows the total energy used during query processing for the investigated
algorithms when the size of the query’s spatial window is varied. The MSM algorithm is

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

affected the most by the increase in query size due to the the larger number of nodes that
it contacts and the increased height of the tree over whose paths these nodes are contacted
and the answers are returned. The increase in the query size also leads to an increase in the
energy used by the flood-based algorithms as the number of relevant nodes increases and
more nodes must answer the query to cover the larger query area. In addition, the EFM
algorithm uses two floods over the relevant sensors for updating the sensors’ status, which
causes a larger increase in its energy usage compared to the AFM algorithm for larger query
areas. AFM and EFM are the least sensitive among the four algorithms to the confidence
threshold ct. That reason is that they do not take full advantage of large coverage range
when ct = 0.4 as MSM does. STF is more sensitive to the variation of ct as the variation
in the extended query area combined with the variation of the query region has a substantial
impact on the number of nodes that will answer the query.

Overall, the MSM uses the least energy for a combination of low confidence threshold
and small query region, but its costs increases sharply with the increase in the size of the
query region (Figure 5.7(b)). The AFM and EFM algorithms behave better than MSM, the
increase in the query area causing a smaller increase in their energy costs. In addition, they
use two to five times less energy than STF for processing the STDM ap queries.

5.4.3 Im pact o f Non-Uniform Q uery Distribution

To test out intuition that the EFM algorithm produces a more balanced energy use at the
nodes within the extended query region than the AFM algorithm, we compared the effect
of the two methods on the nodes’ energy levels over several executions of the same query.
Further on, to check the effect of the energy-based tie-braking used in EFM, we also com
pared it against a similar technique, called RFM, that uses a random tie-braking. We fixed
the position and size of the query’s spatial window while we allowed the originator node to
be randomly selected among the network’s nodes. We only measured the energy used by
the three algorithms for collecting the answers in their second phase. Before initiation the
query processing, we set all nodes with similar energy levels. After each set of 100 execu
tions of the query, we calculated the average energy left in the nodes within the extended
query area, and the standard deviation of energy from the average for the same nodes. We
use the standard deviation to evaluate the energy balance among the sensor nodes.

Figure 5.8 shows the standard deviation of energy for the nodes within the extended
query area. As more queries are processed, EFM produces a more balanced energy use
compared to AFM and RFM. This benefit of EFM is likely to extend the quality of the
query processing in the long-run since more nodes will be available for a longer period.
AFM forces some nodes to use more energy than their neighbours, which leads to their early
failure, likely creating gaps in the network’s coverage. When RFM is used, both nodes in
each pair of nodes in the OPEN state covering each other have the same chance of answering
the query. While the random tie-braking policy may ensure fairness in terms of what node
is responsible of covering a certain area, it does not ensure fairness in terms of overall
lifetime as EFM does since one of the nodes may participate more in other processing
tasks as well such as answer routing. With the increase in the confidence threshold ct, the
difference in the nodes’ energy levels increases due to the increase in the extended query
area, which affects both EFM and AFM. On the other hand, the increase diminishes the
effect of the tie-braking policy used in EFM and RFM on the nodes’ overall energy levels,
leading to a smaller difference between the energy variation at nodes produced by EFM
and RFM. Overall, the better energy balance of EFM is likely to extend the quality of

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
AFM -
EFM -
RFM -

20

0 200 400 600 800 1000
No. of Queries

(a) ct = 0.40

100
AFM —
EFM —
RFM - m

q «
□ <= 4= 0
c0(f)

i- 0 0 > C 0
UJ q

cr

40

20

0 200 400 600 800 1000
No. of Queries

(b) ct = 0.80

Figure 5.8: The impact of the distribution of the queries on the energy variation among
relevant nodes

query processing in the long-term since more nodes will be available, as well as leading to
an increased network lifetime.

5.5 Related Work

Query processing with approximate answering in sensor networks has raised much interest
from the research community due to its potential to substantially reduce the query process
ing costs. In [DGM+04] the query answers are estimated using a statistical model for the
sensors’ readings, where the model captures the redundancy and correlation in sensor mea
surements. The sensors are interrogated just to help refine the model when the uncertainty
is high, which reduces substantially the query processing costs. Sharaf et al. [SBLC03]
exploit the temporal redundancy in a sequence of sensor readings to reduce the energy cost
of aggregation during query processing. To improve the fault tolerance of query processing
for aggregations, duplicate insensitive sketches are used in [CLKB04] to produce accurate

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approximations of the aggregate answers. In [DKR04], the authors exploit the correlation
and temporal redundancy among the readings of each sensor to compress the short-term
historical measurements. Once compressed, the measurements are transmitted to a base
station for long-term storage. Caching the sensors’ readings is used in [DNGS03] to reduce
the cost of retrieving the sensor data, with the users specifying their tolerance for stale data
in the query. This chapter complements the previous works in three directions: (1) we in
vestigate the processing of STDM ap queries over the historical sensor data stored at the
nodes, (2) we study this problem in a peer-to-peer sensor network, (3) we exploit the spatial
redundancy of sensor readings created by dense sensor network deployments, which allows
us to use only a subset of nodes to answer the query.

Recently, Xue et al. [XLCL06] study event detection based on contour maps. Similar to
our map answer to the STDM ap query, a contour map displays the distribution of attribute
values over the network. Differently from us, the map does not have associated a layer to
express the confidence in the validity of a map value. In their work, the authors assume a
grid on top of the network with at most one node per grid cell. For the cells without nodes,
their values in the contour map is interpolated from the values of the neighbouring cells.
Differently from us, the proposed scheme applies to continuous queries and takes advantage
of the temporal correlation in sensors’ measurements by using an incremental map update
during the lifetime of the query.

5.6 Summary

In this chapter we have introduced the STDM ap query which exploits the redundancy of
sensor measurements on the spatial dimension. We proposed three strategies for processing
STDM ap queries (MSM, AFM and EFM) in a peer-to-peer sensor network environment.
We showed that the STDM ap query can be effectively answered by only a subset of the
relevant nodes, using in some cases less than 10% of the relevant nodes to answer the query.

In an extensive experimental evaluation, we studied the performance of the proposed
algorithms under several conditions. The MSM algorithm is best suited for queries where
the coverage range cr is larger than half the wireless range. In this case MSM answers
the STDMAP query using a smaller subset of nodes than both AFM and EFM and has a
lower processing cost. The AFM algorithm is the most energy-efficient for most scenarios,
closely followed by EFM. While the AFM algorithm requires support from the protocol
layer, the EFM algorithm is independent of the underlying protocol, which recommends
it for most applications. A secondary benefit of the EFM algorithm is that it provides a
balanced energy use at the sensor nodes, an important advantage in applications where the
queries are not uniformly distributed. In all our experiments EFM has shown low energy
usage and consistent performance with respect to various network and query parameters,
and therefore we also recommend it for processing queries with similar characteristics to
the STDM ap query.

Our investigations have revealed several issues that require further analysis. The harsh
environment where sensor networks typically operate raises the issue of sensors’ transient
or permanent failure. The trade-off between the robustness and energy-efficiency of query
processing in the case o f sensor failures requires further attention. The natural medium
may also cause measurement inconsistencies among sensors and solutions for handling
them are in our focus. In this paper we considered as the most reliable approximation
the one with the highest confidence. Combining the approximations of several sensors

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based on their confidence is an open problem that has potential for improving the quality
of approximations. A possible solution is the use of a weighted scheme based on a node’s
Voronoi cell such as the one proposed in [SS06] for spatial aggregations.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions

While the technological advances have lead to sensors with reduced sizes and increased
capabilities, the sensor data management is still in its incipient stages. Different from the
traditional databases, the time efficiency of query processing is no longer the main opti
mization goal, the focus moving toward energy efficiency or a combination of both time
and energy. The challenges are multiple due to the distributed nature of query processing
and the limited resources available at the sensor nodes. In this thesis we have focused on
energy-efficient query processing over historical observations stored at the sensor nodes. In
particular, we have investigated three types of queries: spatial range queries, queries with
joins, and a special type of approximate queries, that is, the spatiotemporal data distribution
map queries.

Energy-efficient processing of spatial range queries in peer-to-peer sensor networks has
been the topic of Chapter 3. We have introduced a general framework for processing such
queries and, within the framework, the SWIF processing solution. In its first phase, SWIF
finds a path from the query originator node to a coordinator node in the query region. In the
second phase, the coordinator node contacts all relevant nodes using a constrained flooding
strategy, collects the query relevant data and constructs the query answer, and returns this
answer to the originator node. SWIF uses cost models to adapt its behaviour to the specifics
of the query and sensor network. That is, the cost models are used to determine the most
cost-effective location for the coordinator node. Empirical evaluation shows that SWIF
reduces by up to 10-times the cost of processing small to medium spatial range queries
when compared to hTAG, the typical processing solution. We have also shown that the cost
models we have constructed for SWIF and hTAG can be used to select at query time the
most energy efficient processing solution for a given query and originator node. Preliminary
results from this chapter have been published in [CNS04].

In Chapter 4 we have analyzed several solutions for in-network processing of the join
between two relations with respect to the location where the join operation should be per
formed. The investigated strategies perform the join at the user station (External Join), at
the location of one of the join relations (Local Join), at an intermediate network location
(Mediated Join) and in-network using the semi-join technique (Local Semi-Join and Me
diated Semi-Join). We have shown empirically that no join processing strategy performs
best for all queries. The L oca l Sem i-Jo in is especially suitable when the query regions are
small and the network density is low. The External Join performs best for dense networks
and large query regions, while the Local Join does not perform well under any investigated
scenario. The Mediated Join adapts well to the query characteristics and it is a good alter-

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

native to the External Join and Local Semi-Join if performing the join at the user station is
not acceptable. Using our cost models to choose at query time the most efficient process
ing strategy, we are able to reduce the cost of join processing with up to 83% compared
to processing every query with the same solution and perform within 7% of the optimal
processing cost (i.e., if we would know beforehand which strategy will perform best). We
have also analyzed in detail an algorithm for processing the theta-join operator in a sen
sor network. Our algorithm takes into account the memory available at the sensors nodes
and the synchronization of the data flow. We have developed a cost model that allows our
algorithm to be optimized with respect to the size of the join relations and the amount of
available memory at the nodes processing the join. Our proposed algorithms can be com
bined to generate a full-fledged solution for join processing in sensor networks and their
cost models can be used in a join query optimizer. Results from this chapter have been
published in [CNS07, CN07],

Chapter 5 has introduced the spatiotemporal data distribution map (STDM ap) query
which exploits the redundancy of sensor measurements on the spatial dimension. We have
shown that the STDM ap query can be answered using only a subset of the relevant nodes
and we have proposed three strategies (MSM, AFM and EFM) for its processing. The
MSM strategy uses a depth first technique for query forwarding. This approach allows
MSM to use the information on what nodes have already answered the query to select what
other nodes should be contacted. The goal is to contact as few nodes as possible while
proving a correct answer to the query. The AFM strategy uses a constrained flooding tech
niques to contact all relevant sensor nodes. The contacted nodes will decide to participate
or not in the query answering based on partial information regarding the answering deci
sion of their neighbours, which makes AFM an aggressive strategy. On the other hand, in
the EFM strategy, nodes are aware of the decisions their neighbours take with respect to
answering the query and base their decision on this information. In addition, the nodes’
energy is used to decide which one in a pair of nodes covering each other should answer,
which makes EFM an energy-aware strategy. In our empirical evaluation we have shown
that the AFM algorithm is the most energy-efficient for most scenarios, closely followed
by EFM. A secondary benefit of the EFM algorithm is that it provides a balanced energy
use at the sensor nodes, an important advantage in applications where the queries are not
uniformly distributed. The MSM algorithm is best suited for queries where the coverage
range is larger than half the wireless range. In all our experiments EFM has shown low
energy usage and consistent performance with respect to various network and query param
eters, and therefore we recommend it for processing queries with similar characteristics to
the STDMap query. Results from this chapter have been published in [CNS05].

We have discussed several future research directions closely related to our investiga
tions for each type of query in the respective chapters. In addition, we see several other
related topics for future work. In our work we have focused on minimizing the cost of
each individual query. A challenging problem is how to optimize query processing when
multiple queries are processed in the network. Caching techniques (at the nodes or user-
stations) could be used to reduce the cost of processing queries over historical data that has
been queried before. When multiple queries are processed simultaneously, query rewrit
ing combined with caching may help avoid retrieving the same data multiple times. In
our investigations we have made a few steps toward building cost-based query optimizers.
It would be interesting to see how to construct a general optimizer capable of combining
multiple strategies for processing complex queries. The algorithms and their cost models
should be created or modified to allow an incremental construction of a processing strategy

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a complex query from basic processing blocks. Since query optimizers rely heavily
on estimates, much work needs to be conducted on the efficient gathering of estimates in
sensor networks, as well as on the trade-off between their accuracy and collection costs.
Samples, data summaries and the use of past query answers are a few of the possible strate
gies for generating estimates. Sensor network applications are very dynamic by nature and
query processing should be able to adapt to the change in conditions (e.g., selectivity, node
availability, network load, energy levels). Interesting opportunities for research exist when
investigating the adaptivity of operator ordering and placing, data rates, and granularity of
aggregation. One possible solution may be the re-evaluation of the query plan (or strategy)
as the query is forwarded into the network and more information or better estimates be
come available. A tighter integration of techniques for addressing sensor failures with our
proposed techniques is another avenue of future research.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[AAK06]

[AFF+03]

[AHS06]

[AML05]

[ASSC02]

[BB03]

[BC99]

[BDSZ94]

[BGS01]

[BMSU01]

[BSLC03]

M.H. Ali, W.G. Aref, and I. Kamel. Scalability management in sensor-network
phenomenabases. In Proceedings o f the International Conference on Scientific
and Statistical Database Management (SSDBM), pages 91-100, 2006.

A. Ailamaki, C. Faloutsos, P.S. Fischbeck, M J . Small, and J. VanBriessen. An
environmental sensor network to determine drinking water quality and secu
rity. SIGMOD Record, 32(4):47-52, 2003.

K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible
sensor network deployment. In Proceedings o f the International Conference
on Very Large Databases (VLDB), pages 1199-1202, 2006.

D. Abadi, S. Madden, and W. Lindner. REED: robust, efficient filtering and
event detection in sensor networks. In Proceedings o f the International Con
ference on Very Large Databases (VLDB), pages 769-780, 2005.

I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks, 38(4):392-422, 2002.

B J . Bonfils and P. Bonnet. Adaptive and decentralized operator placement for
in-network query processing. In Proceedings o f the International Conference
on Information Processing in Sensor Networks (IPSN), pages 47-62, 2003.

E.C. Barret and L.F. Curtis. Introduction to Environmental Remote Sensing.
Stanley Thornes, 1999.

V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: a media
access protocol for wireless LAN’s. SIGCOMM Computer Communications
Review, pages 212-225, 1994.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In
Proceedings o f the International Conference on Mobile Data Management
(MDM), pages 3-14, 2001.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad-hoc wireless networks. Wireless Networks, 7(6):609-616, 2001.

J. Beaver, M.A. Sharaf, A. Labrinidis, and P.K. Chrysanthis. Power-aware in-
network query processing for sensor data. In Proceedings o f the Hellenic Data
Management Symposium, pages 1-17, 2003.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CDHH06]

[CG05]

[CLKB04]

[CN07]

[CNS04]

[CNS05]

[CNS07]

[Cro]

[CSN05]

[CTH06]

[DF03]

[DGHM05]

[DGM+04]

D. Chu, A. Deshpande, J.M. Hellerstein, and W. Hong. Approximate data
collection in sensor networks using probabilistic models. In Proceedings o f
the International Conference on Data Engineering (ICDE), page 48, 2006.

V. Chowdhary and H. Gupta. Communication-efficient implementation of
join in sensor networks. In Proceedings o f the International Conference
on Database Systems for Advanced Applications (DASFAA), pages 447-460,
2005.

J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation tech
niques for sensor databases. In Proceedings o f the International Conference
on Data Engineering (ICDE), pages 449-460, 2004.

A. Coman and M. A. Nascimento. A distributed algorithm for joins in sensor
networks. In Proceedings o f the International Conference on Scientific and
Statistical Database Management (SSDBM), 2007. (To Appear).

A. Coman, M.A. Nascimento, and J. Sander. A framework for spatio-temporal
query processing over wireless sensor networks. In Proceedings o f the Inter
national Workshop on Data Management fo r Sensor Networks (DMSN) (with
VLDB), pages 104-110, 2004.

A. Coman, M.A. Nascimento, and J. Sander. Exploiting redundancy in sensor
networks for energy efficient processing of spatiotemporal region queries. In
Proceedings o f the ACM Conference on Information and Knowledge Manage
ment (CIKM), pages 187-194, 2005.

A. Coman, M.A. Nascimento, and J. Sander. On join location in sensor net
works. In Proceedings o f International Conference on Mobile Data Manage
ment (MDM), 2007. (To Appear).

Crossbow Technology Inc. MICA sensors, www.xbow.com.

A. Coman, J. Sander, and M.A. Nascimento. An analysis of spatio-temporal
query processing in sensor networks. In Proceedings o f the International
Workshop on Networking Meets Databases (NetDB) (with ICDE), pages 45-
50, 2005.

D. Chu, A. Tavakoli, L. Popa 0002, and J.M. Hellerstein. Entirely declarative
sensor network systems. In Proceedings o f the International Conference on
Very Large Databases (VLDB), pages 1203-1206, 2006.

M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial queries in sensor
networks. In Proceedings o f the International Conference on Peer-to-Peer
Computing (P2P2003), pages 32-39, 2003.

A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting correlated
attributes in acquisitional query processing. In Proceedings o f the Interna
tional Conference on Data Engineering (ICDE), pages 143-154, 2005.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-
driven data acquisition in sensor networks. In Proceedings o f the International
Conference on Very Large Databases (VLDB), pages 588-599, 2004.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.xbow.com

[DGR+03]

[DKR04]

[DNGS03]

[EN06]

[Fin87]

[FS06]

[FZG02]

[GBT+04]

[GEH02]

[GGP+03]

[GLG+05]

[GM04]

[GR65]

A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao. Energy-efficient
data management for sensor networks. In Proceedings o f the Upstate New York
Workshop on Sensor Networks, 2003.

A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing historical
information in sensor networks. In Proceedings o f the SIGMOD Conference
on Management o f Data (SIGMOD), pages 527-538, 2004.

A. Deshpande, S. Nath, RB. Gibbons, and S. Seshan. Cache-and-query for
wide area sensor databases. In Proceedings o f the SIGMOD Conference on
Management o f Data (SIGMOD), pages 503-514, 2003.

C. Estan and J.F. Naughton. End-biased samples for join cardinality estima
tion. In Proceedings o f the International Conference on Data Engineering
(ICDE), page 20, 2006.

G.G. Finn. Routing and addressing problems in large metropolitan-scale inter
networks. ISI Res. Rep. ISU/RR-87-180, University of Southern California,
1987.

H. Frey and I. Stojmenovic. On delivery guarantees of face and combined
greedy-face routing algorithms in ad hoc and sensor networks. In Proceedings
o f the ACM International Conference on Mobile Computing and Networking
(MobiCom), pages 390-401, 2006.

Q. Fang, F. Zhao, and L. Guibas. Counting targets: Building and managing
aggregates in wireless sensor networks. Technical Report P2002-10298, Palo-
Alto Research Center, 2002.

C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed
regression: an efficient framework for modelling sensor network data. In Pro
ceedings o f the International Conference on Information Processing in Sensor
Networks (IPSN), pages 1-10, 2004.

D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need
a new data handling architecture for sensor networks. In Proceedings o f the
Workshop on Hot Topics in Networks (HotNets), 2002.

D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An
evaluation of multi-resolution storage for sensor networks. In Proceedings
o f the Conference on Embedded Networked Sensor Systems (SenSys), pages
89-102, 2003.

R. Gummadi, X. Li, R. Govindan, C. Shahabi, and W. Hong. Energy-efficient
data organization and query processing in sensor networks. In Proceedings
o f the International Conference on Data Engineering (ICDE), pages 157-158,
2005.

J. Gehrke and S. Madden. Query processing in sensor networks. P e r v a s iv e

Computing, Jan. 2004.

I. Greenberg and R.A. Robertello. The three factory problem. Mathematics
Magazine, 38(2):67—72, 1965.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[GRE]

[GS69]

[GSB03]

[HAE03]

[HeiOO]

[HZGS05]

[IGE+03]

[JPC05]

[Kap96]

[KKOO]

[KosOO]

[Kot05]

[KSU99]

[LCT05]

[LOT94]

The Great Duck Island Project, www.greatduckisland.net.

HK.R. Gabriel and R.R. Sokal. A new statistical approach to geographic vari
ation analysis. Systematic Zoology, 18:259278, 1969.

S. Giordano, I Stojmenovic, and L. Blazevic. Position based routing algo
rithms for ad-hoc networks: A taxonomy. In Ad-Hoc Wireless Networking.
Kluwer, 2003.

M.A. Hammad, W.G. Aref, and A.K. Elmagarmid. Stream window join:
Tracking moving objects in sensor-network databases. In Proceedings o f the
International Conference on Scientific and Statistical Database Management
(SSDBM), pages 75-84, 2003.

W. Heinzelman. Application-Specific Protocol Architectures for Wireless Net
works. PhD thesis, MIT, 2000.

G. He, R. Zheng, I. Gupta, and L. Sha. A framework for time indexing in
sensor networks. ACM Transactions on Sensor Networks, 1(1): 101—133, 2005.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Di
rected diffusion for wireless sensor networking. IEEE Transactions on Net
working, 11(1):2—16, 2003.

X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sen
sor networks. In Proceedings o f the International Conference on Information
Processing in Sensor Networks (IPSN), pages 463-468, 2005.

E.D. Kaplan, editor. Understanding GPS: Principles and applications. Artech
House Publishers, 1996.

B. Karp and H.T. Kung. Greedy perimeter stateless routing for wireless net
works. In Proceedings o f the International Conference on Mobile Computing
and Networking (MobiCom), pages 243-254, 2000.

D. Kossmann. The state of the art in distributed query processing. ACM Com
puting Surveys, 32(4):442—469, 2000.

Y. Kotidis. Snapshot queries: towards data-centric sensor networks. In Pro
ceedings o f the International Conference on Data Engineering (ICDE), pages
131-142, 2005.

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.
In Proceedings o f the 11th Canadian Conference on Computational Geometry,
pages 51-54, 1999.

S.H.L. Liang, A. Coritoru, and C.V. Tao. A distributed geo-spatial infras
tructure for smart sensor webs. Computers and Geosciences, 31(2):221-231,
2005.

H. Lu, B.C. Ooi, and K.-L. Tan, editors. Query processing in parallel rela
tional database systems. IEEE Computer Society Press, 1994.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.greatduckisland.net

[Mai04]

[Mar03]

[MF02]

[MFH02]

[MFHH03]

[MNG05]

[MPS+02]

[MWH01]

[NHZ04]

[NL04]

[OHB06]

[OV99]

[PG06]

[Rap96]

C. Maihofer. A survey of geocast routing protocols. IEEE Communications
Surveys, 6(2): 32-42, 2004.

K. Marron. Ice wine and cool technology. The Globe and Mail, May 21, 2003.

S. Madden and M.J. Franklin. Fjording the stream: An architecture for queries
over streaming sensor data. In Proceedings o f the International Conference on
Data Engineering (ICDE), pages 555-566, 2002.

S. Madden, M.J. Franklin, and J.M. Hellerstein. TAG: a tiny aggregation ser
vice for ad-hoc sensor networks. In Proceedings o f the Symposium on Oper
ating Systems Design and Implementation (OSDI), pages 131-146, 2002.

S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In Proceedings o f the SIG
MOD Conference on Management o f Data (SIGMOD), pages 491-502, 2003.

A. Manjhi, S. Nath, and P.B. Gibbons. Tributaries and deltas: Efficient and
robust aggregation in sensor network streams. In Proceedings o f the SIGMOD
Conference on Management o f Data, pages 287-298, 2005.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
sensor networks for habitat monitoring. In Proceedings o f the International
Workshop on Wireless Sensor Networks and Applications (WSNA), pages 88-
97, 2002.

M. Mauve, J. Widmer, and H. Hartenstein. A survey on position based routing
in mobile ad-hoc networks. IEEE Network Magazine, 15(6):30-39, 2001.

I. Nikolaidis, J. Harms, and S. Zou. On sensor data aggregation with redun
dancy removal. In Proceedings o f the Queen’s Biennial Symposium on Com
munications (QBSC), 2004.

B.G. Nickerson and J. Lu. A language for wireless sensor webs. In Proceed
ings o f the Conference on Communication Networks and Services Research
(CNSR), 2004.

A. Omotayo, M.A. Hammad, and K. Barker. Efficient data harvesting for trac
ing phenomena in sensor networks. In Proceedings o f the International Con
ference on Scientific and Statistical Database Management (SSDBM), pages
59-70, 2006.

M.T. Ozsu and P. Valduriez. Principles o f distributed database systems.
Prentice-Hall, Inc., 1999.

A. Pandit and H. Gupta. Communication-efficient implementation of range-
join in sensor networks. In Proceedings o f the International Conference
on Database Systems for Advanced Applications (DASFAA), pages 859-869,
2006.

T. Rappaport. Wireless Communications: Principles and Practice. Prentice-
Hall Inc., 1996.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[RGOO]

[Ric05]

[RKH+05]

[RKY+02]

[SBE+06]

[SBLC03]

[SBLC04]

[SBY06]

[SD04]

[Sen]

[SFL05]

[SMY06]

[SPP+06]

R. Ramakrishnan and J. Gehrke. Database Management Systems - 2nd ed.
McGraw-Hill, 2000.

A. Ricadela. Sensors everywhere. Information Week, Jan. 24, 2005.

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design
considerations for solar energy harvesting wireless embedded systems. In Pro
ceedings o f the International Conference on Information Processing in Sensor
Networks (IPSN), pages 457-462, 2005.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage. In Proceedings o f
the International Workshop on Wireless Sensor Networks and Applications
(WSNA), 2002.

A. Silberstein, R. Braynard, C. Schlatter Ellis, K. Munagala, and J. Yang. A
sampling-based approach to optimizing top-k queries in sensor networks. In
Proceedings o f the International Conference on Data Engineering (ICDE),
page 68, 2006.

M.A. Sharaf, J. Beaver, A. Labrinidis, and P.K. Chrysanthis. TiNA: A scheme
for temporal coherency-aware in-network aggregation. In Proceedings o f the
International Workshop on Data Engineering for Wireless and Mobile Access
(MobiDE), pages 69-76, 2003.

M.A. Sharaf, J. Beaver, A. Eabrinidis, and P.K. Chrysanthis. Balancing energy
efficiency and quality of aggregate data in sensor networks. VLDB Journal,
13(4):384-403, 2004.

A. Silberstein, R. Braynard, and J. Yang. Constraint chaining: on energy-
efficient continuous monitoring in sensor networks. In Proceedings o f the
SIGMOD Conference on Management o f Data, pages 157-168, 2006.

I. Stojmenovic and S. Datta. Power and cost aware localized routing with
guaranteed delivery in unit graph based ad-hoc networks. Wireless Communi
cations and Mobile Computing, 4(2): 175—188, 2004.

Sensoria Corp. WINS sensor platform, www.sensoria.com.

S. Schmidt, M. Fiedler, and W. Lehner. Source-aware join strategies of sensor
data streams. In Proceedings o f the International Conference on Scientific and
Statistical Database Management (SSDBM), pages 123-132, 2005.

A. Silberstein, K. Munagala, and J. Yang. Energy-efficient monitoring of ex
treme values in sensor networks. In Proceedings o f the SIGMOD Conference
on Management o f Data, pages 169-180, 2006.

S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunop-
ulos. Online outlier detection in sensor data using non-parametric models.
In Proceedings o f the International Conference on Very Large Databases
(VLDB), pages 187-198, 2006.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sensoria.com

[SRK+02]

[SS04]

[SS06]

[Sto02]

[Sto04]

[SY04]

[TK84]

[Tou80]

[WXTL06]

[XL03]

[XLCL06]

[XLXM06]

[YG02]

[YG03]

S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric
storage in sensornets. In Proceedings o f the Workshop on Hot Topics in Net
works (HotNets), 2002.

M. Sharifzadeh and C. Shahabi. Supporting spatial aggregation in sensor net
work databases. In Proceedings o f the ACM International Symposium on Ad
vances in Geographic Information Systems, pages 166-175, 2004.

M. Sharifzadeh and C. Shahabi. Utilizing voronoi cells of location data streams
for accurate computation of aggregate functions in sensor networks. Geoln-
formatica, 10(1):9—36, 2006.

I. Stojmenovic. Position based routing in ad hoc networks. IEEE Communi
cations Magazine, 40(7): 128-134, 2002.

I. Stojmenovic. Geocasting with guaranteed delivery in sensor networks. In
Proceedings o f the Workshop on Theoretical and Algorithmic Aspects o f Sen
sor, AD-HOC Wireless and P2P Networks, 2004.

F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey.
IEEE Network, 18(4):45-50, 2004.

H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly
distributed packet radio terminals. IEEE Transactions on Communications,
32(3):247-256, 1984.

G. Toussaint. The relative neighborhood graph of a finite planar set. Pattern
Recognition, 12(4):261268, 1980.

M. Wu, J. Xu, X. Tang, and W.C. Lee. Monitoring top-k query inwireless
sensor networks. In Proceedings o f the International Conference on Data En
gineering (ICDE), page 143, 2006.

Y. Xu and W.C. Lee. Window query processing in highly dynamic sensor
networks: Issues and solutions. In Proceedings o f the Workshop on GeoSensor
Networks, 2003.

W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour map matching for event de
tection in sensor networks. In Proceedings o f the SIGMOD Conference on
Management o f Data, pages 145-156, 2006.

Y. Xu, W.C. Lee, J. Xu, and G. Mitchell. Processing window queries in wire
less sensor networks. In Proceedings o f the International Conference on Data
Engineering (ICDE), page 70, 2006.

Y. Yao and J. Gehrke. The Cougar approach to in-network query processing in
sensor networks. SIGMOD Record, 31 (3):9—18, 2002.

Y. Yao and J. Gehrke. Query processing in sensor networks. In Proceedings
o f the International Conference on Innovative Data Systems Research (CIDR),
2003.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[YLZ06]

[YS05]

[YS07]

[ZG04]

[ZGTS03]

[ZNH04]

[ZNH05]

[ZNH06]

H. Yu, E.P. Lim, and J. Zhang. On in-network synopsis join processing for
sensor networks. In Proceedings o f International Conference on Mobile Data
Management (MDM), pages 32-39, 2006.

S.H. Yoon and C. Shahabi. Exploiting spatial correlation towards an energy
efficient clustered aggregation technique (CAG). In Proceedings o f IEEE In
ternational Conference on Communications (ICC), pages 3307- 3313, 2005.

S.H. Yoon and C. Shahabi. The clustered aggregation (CAG) technique lever
aging spatial and temporal correlations in wireless sensor networks. ACM
Transactions on Sensor Networks (TOSN), 3(1), 2007.

F. Zhao and L. Guibas. Wireless sensor networks: an information processing
approach. Morgan Kaufmann, 2004.

D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger. Temporal and spatio-
temporal aggregations over data streams using multiple time granularities. In
formation Systems, 28:61-84, 2003.

S. Zou, I. Nikolaidis, and J. Harms. Efficient data collection trees in sen
sor networks with redundancy removal. In Proceedings o f the International
Conference on Ad-Hoc Networks & Wireless (ADHOC-NOW), pages 252-265,
2004.

S. Zou, I. Nikolaidis, and J. Harms. ENCAST: Energy-critical node aware
spanning tree for sensor networks. In Proceedings o f the Annual Communi
cation Networks and Services Research Conference (CNSR), pages 249-254,
2005.

S. Zou, I. Nikolaidis, and J. Harms. Extending sensor network lifetime via first
hop data aggregation. In Proceedings o f the IEEE International Performance
Computing and Communications Conference (IPCCC), pages 397^105, 2006.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

The Average Advance Towards
Destination over a Hop

We assume the nodes are uniformly distributed in the monitored region, and therefore a
node’s neighbours are also uniformly distributed within its wireless range. Let us denote
with cla the area of the circular segment within the wireless range circle where the neigh
bour with the longest advance must be located (see Figures 3.3 and A.l). The size of the
network area corresponding to each node is equal to ^ under uniform distribution. Since
a a is the smallest circular segment such that there is exactly one node inside (from a prob
ability perspective considering the uniform node distribution), we have that aA —
From basic geometry we also have that the area of the circular segment a a is equal to
WF2 arccos(^j=^) - (W - h)\/2 W h - h2, where h is the height of the arced portion.

From the equality of the two expressions of a a we can find h since the other terms are

known, and thus the coordinates for the circular segment. The neighbour located in a a
could be located anywhere within a a , and, thus, we need to find the advance (in average)
that such a neighbour would produce. The average advance a,h0p of the neighbour selected

i x

hop

Figure A .l: The average advance a,hop for a hop

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for forwarding toward C is equal to the sum of the advances for all possible locations for
the selected neighbour divided by the number of these locations (see Figure A .l):

_ / !aA v dxdv
l l d x i ,

The integral / / dxd y is equal to the size of the area where the points in a a are and
it is equal to a a - For the upper term we have:

r r r V 2 W h - h 2 r V W 2 - x 2
y dxdy = / / y dydx

J JaA J- V2 W h -h 2 J w cos(§)

1 f y/2 W h - h 2 Q
= 9 ,______ A W * - X * - W 2 cos2(-)) dx

Z J - V 2 W h - h 2 2,

= \ { 2 W h - h *) i
O

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

The Average Distance From a
Relevant Node to the Coordinator
Node

B.l General Formula

We assume the nodes are uniformly distributed in the monitored region, and therefore the
relevant nodes are also uniformly distributed within the query region. We consider that the
spatial range of the query forms a rectangular area (Q a), specified by its opposite comers
(< x \ , 2/1 > , < x 2, 2/2 >) ■ The average distance from a relevant node to the coordinator can
be computed as the sum of the distances from the coordinator C to all possible locations of

the relevant nodes divided to the number of these locations:

f x i f y i \ J { x - c x)2 + (y - C y) 2d y d x

Ni° ~ IZtfdydx

fm \ A g ~ c*)2 + (y ~ £y?dydx
(x2 - x 1)(y2 - y\)

B.2 Solving the Integral

Finding a solution for the integral j2 J^2 \J{x — cx)2 + (y — cy)2dydx is non-trivial and
cannot be obtained directly with integration solving software, and therefore we will show
its solution here. To solve the integral using standard anti-derivatives, we need x — cx > 0

and y - cy > 0 over the integrating area. Since the coordinator node C(cx ,Cy) is located
in the query region, we have x \ < cx < x 2 and y\ < cy < y2. Therefore we brake the

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

integral into subintervals. We have:

rx 2 rV2 /-----------------------------
d N *c = / / V 1(x ~ c*)2 + (2/ - Cy)2d y d x

* C-x C y

nCx I>y2 ---------------------------------
+ / / {cx - x)2 + (y - C y) 2 d y d x

J X \ J C y

+ f [\ J { X ~ Cx)2 + (cj, - y) 2 d y d x
Jcx Jy 1Cx ^2/1

+ [[\ / (c* - a;)2 + (^ - y)2dydx.
Jx 1 J j r i

Using simple substitutions, we can express by a sum of the same integral I(u,v) for
different values of u and v, with u ,v > 0. For simplicity of presentation, we solve the
indefinite integral I(u,v):

I (u ,v) = J j y/u2 + v2dvdu

= J ^ v y / u 2 + v2 + ^ u 2 ln(u + y /u 2 + du

 ̂ ______ 2_________________ ̂ p
= - u v y /u 2 + v2 + - t ;3 ln(ti + y /u 2 + v2) + - / u 2 ln(w + y/u2 + v2)du

For clarity of solution, let us denote the remaining integral by I \{u,v) and solve it sepa
rately:

I i (u ,v) — J u2 ln(w + y/u2 + v2)du

= - u 3 ln(u + y/u2 + v2) — - f . U — du3 3 J (v + y/u2 + v2)y/u2 + v 2

We denote the remaining integral by I2(u,v) and solve it separately:

h { u , v)

h { u ,v)

h (u ,v)

_ f u iJ (v + y/u2 + v 2)y/u2 + v 2

substitute y/u2 + v 2 = s

/<* — v) y / s2 — v2ds

 ̂(s2 - v 2) 2 - v [S ^ S 2 V - ~ ln(s + y / s 2 - v 2)\

substitute back s = y/u2 + v2

- u 3 - - u v y / u 2 + v 2 + ^ v 3l n (u + y / u 2 + v 2)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Substituting l 2 {u,v) in I\ (it. v) and I\ (u, v) in I(u. v) and reducing terms, we obtain:

I (u ,v) = - u v \ f u 2 + v2 H— v3ln(u + \]v? + v2) H— u 3ln(v + \ / u 2 + v2) n 3
3 6 6 18

The final analytical formulas for and dNiC contain numerous terms and are not shown.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Finding the Optimal Join Location
for the Mediated Join

In Section 4.3.4 we have introduced the Mediated Join solution for in-network processing
of join queries. To find the optimal location for the join location, we have used the solution
proposed by Greenberg and Robertello [GR65] for finding the weighted Fermat point. We
have outlined the solution for several trivial cases in Section 4.3.4. We detail the solution

(according to [GR65]) when the optimal join location J falls inside the triangle formed by
the locations of the relations A and B and the query originator 0 . (see Figure C.l). Let us
denote with a , b and j the size of relations A, B and J and with d x Y the Euclidean distance
between locations X and Y . We want to find the optimal join location J such that:

(mIa j + bd,Bj + jd jo is minimized.

The interior angles of the triangle A A B O sum to 27r and are all less than 7r. Thus, at
least two of the central angles must be obtuse. Let us assume L A JB is obtuse. Since J
lies in the triangle, we can determine its location from the locations of A, B and O and the

o

A B

Figure C.l: Finding the optimal join location

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

angles L J A B and L J B A (note that both these angles are acute). According to [GR65],
we have:

d s o cos(a) sin (a + 8 + 2 ta n -1 (c -? —))
tan (/J A B) = ----------- — -----— ------------ \ s - d AO" ----------

dAB cos(P) - d so cos(a) cos(a + f3 + 2 tan 1(g _ ^ p))

and
I J B A = - - a - J A B

2

where a, j3, S and T are defined as:

a2 + b2 — j 2
Sin<0) = 2ab

o2 _i

sin(/3) =
j 2 + b2 - a2

2 jb ’

S = dAB + dAO 4- dBo) and

_ j I (S — dAB){S — dAo){S - d so)

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Estimating the number of nodes
within h-hops from a node

In this section we estimate the average number of nodes located up to h hops away from a
network node. We estimate this value here as it is a network dependent value and indepen
dent of our algorithm.

Let A n be the area of the network, N the number of sensor nodes uniformly distributed

over the network area and S the node whose h hop neighbors we try to determine. The
number of nodes located up to h-hops away from S is equal to the number of sensor nodes

located in an area equal in size to the area where these nodes are located. Let us denote this
area with Ah- We have that N% = for h > 1. For h = 0 we have N® = 1 to account
for S.

We need to find the size of the area Ah- For the 1-hop neighbours, A i is equal to the
circle of wireless range radius W and we have = N 1̂ - . The average distance from
S to its 1-hop neighbours is dihop = f Jai dsNtdAi = |f L , where dsNt represents the
distance between S and a 1-hop neighbour IV*. Since the 1-hop neighbours are located in
average at distance dihop away from S, and the neighbours of the 1-hop neighbours could
be located as far as W , we have that the 2-hop neighbours of S are located in average
within a circle of radius dihop + W = § W . Generalizing this result for Ii-hop neighbours,
we have that they are located within a circle of (h - l)d ih op + W = ^ i ± l w radius from
S. Therefore, we have:

. Th + i f W 2 ^. . , ^ 1
N„ = — T1 N for h > 1.

9 A n

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

