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Abstract

Single-particle tracking (SPT) is a method used to study the diffusion of various molecules

within the cell. SPT involves tagging proteins with optical labels and observing their indi-

vidual two-dimensional trajectories with a microscope. The analysis of this data provides

important information about protein movement and mechanism, and is used to create mul-

tistate biological models. One of the challenges in SPT analysis is the variety of complex

environments that contribute to heterogeneity within movement paths. In this thesis, we

explore the limitations of current methods used to analyze molecular movement, and adapt

analytical methods used in animal movement analysis, such as correlated random walks and

first-passage time variance, to SPT data of leukocyte function-associated antigen-1 (LFA-1)

integral membrane proteins. We discuss the consequences of these methods in understand-

ing different types of heterogeneity in protein movement behaviour, and provide support to

results from current experimental work.



Proem and Poem

Throughout my journey in mathematical biology, I have witnessed a side of science whose
objective is not to declare, but to discover. While some parts of science are focused on finding
answers, others are devoted to asking questions. I recommend readers to view this thesis as
not only a case study of movement analysis or a collection of insights into the mechanism of
a specific biomolecule, but also an example of mathematical biology performing one of its
greatest roles; building bridges at the frontier of experimental and theoretical science, by
asking questions.

As a message to my future self; remember that this was only the beginning of an
adventure of A Noiseless Patient Spider.

A noiseless, patient spider,
I mark’d, where, on a little promontory, it stood, isolated;
Mark’d how, to explore the vacant, vast surrounding,
It launch’d forth filament, filament, filament, out of itself;
Ever unreeling them – ever tirelessly speeding them.

And you, O my Soul, where you stand,
Surrounded, surrounded, in measureless oceans of space,
Ceaselessly musing, venturing, throwing, – seeking the spheres, to connect them;
Till the bridge you will need, be form’d – till the ductile anchor hold;
Till the gossamer thread you fling, catch somewhere, O my Soul.

- Walt Whitman (1819-1892). Leaves of Grass. 1900.
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1 Introduction

Movement data is ubiquitous. In physics, movement data is used to describe the movement

of particles as a result of complex interactions between different forces. This movement

takes place within fluids, waves, or chemical reactions, varying in scale from subatomic

particles to planetary bodies. The analysis of movement data is widely used in ecology

for determining habitat preferences, wildlife conservation, migration patterns and predator-

prey relationships. Biochemical interpretations of movement data are usually significant for

describing inter- and intra-cellular interactions, which are fundamental for communicating

information throughout the human body. In public health and social sciences, understanding

the interactions between human beings and their spatial environment requires significant

data collection, usually requiring a vast number of sources and funding. Even in economics,

the stock market is sometimes viewed as a randomly walking entity, for which movement

data is essential for analysis and prediction.

It has thus become a vast and popular problem in research to understand movement

data. A number of techniques have been developed to extract patterns and descriptive

properties from movement data. However, it is a challenge to appropriately and effectively

utilize these techniques, so as to accurately infer the movement behaviour of individuals.

Due to the richness of movement data, a combination of different techniques is required to

fully understand convoluted movement processes, going beyond the extraction of a simple

diffusion rate. While detailed observational studies strive to piece together our understand-

ing of individual biological components or species, a number of situations arise where direct

observation is inefficient or unavailable. These difficulties are often due to the rate of move-

ment, size, or distance covered of the individual or particle. For example, a microscopic

object traveling very quickly over a large distance would be very difficult to observe with

the naked eye. On the other hand, observing a large object that moves very slowly over a

small distance would also be challenging. However, in view of recent developments in global

positioning and microscopy, the convenience of following the movement of an individual

indirectly has drawn interest to the phenomenon of associating movement with behaviour.

As a result, analysis relies on movement data collected by technological instruments such

as microscopes or satellites. This data is often in the form of movement trajectories, or, se-

quences of time-separated position coordinates. These indirect methods of observation have

increased the need for mathematical modeling and data analysis in quantitatively decrypt-
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ing movement trajectories to aid in detecting patterns, testing hypotheses, and building

biological models.

Throughout this project we explore and evaluate methods that are currently used

in movement data analysis, and attempt to provide insight into the utility of ecological

movement analysis techniques within a cellular biology framework. Many cellular compo-

nents travel within and around the cell, carrying out important basic functions that allow

the cell to play its larger physiological role. We focus on understanding the behaviour of

integrins, cell surface protein receptors, which diffuse across the cellular membrane and are

fundamental in performing intercellular signaling.

1.1 Problem Description

In this thesis, we focus on the data analysis of Single-Particle Tracking (SPT). SPT is a

microscopy technique used to visualize the movement of biomolecules, by labeling individual

particles with optical labels. Often, a single SPT data set can contain several types of non-

Brownian motion, which we recognize to occur in two main forms, macroheterogeneity and

microheterogeneity.

Macroheterogeneity, or heterogeneity between individual trajectories, is important in

understanding the variety of different movement behaviours in a population. In its simplest

form, macroheterogeneity consists of different diffusion rates across a population. These

differences are often found by measuring the variance of individual parameters across a

population (Saxton, 1997). Analyzing macroheterogeneity aids in understanding dominant

and subdominant behaviours of moving individuals under different conditions.

We define microheterogeneity as heterogeneity within individual trajectories. Un-

derstanding microheterogeneity can give insight into the exact diffusion processes and can

significantly contribute to understanding movement behaviour. Microheterogeneity is usu-

ally characterized by regions of concentrated movement, changes between diffusion rates,

or complicated autocorrelation between individual steps, aspects that cannot always be

understood by a clear analysis of macroheterogeneity.

Heterogeneity is the source of much difficulty in SPT data analysis. However, since

many proteins individually exhibit multiple movement behaviours based on their conforma-

tion, affinity, or environment (Cairo and Golan, 2007), many experimentalists believe that

breaking down movement heterogeneity can lead to a better understanding of movement
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behaviours of an individual protein.

Our protein of interest for this work is the leukocyte function-associated antigen

(LFA-1) integrin found on immune cells. LFA-1 is theorized to have different conforma-

tions that exhibit a variety of functions and movement behaviours (van Kooyk and Figdor,

2000). The distributions of diffusion rates provide evidence of rich heterogeneity among

LFA-1 populations and evidence for multi-state models (Cairo et al., 2006). However, these

conclusions are based solely on the initial rate of diffusion of each trajectory, and do not

include information about the specific differences between diffusion mechanisms from one

state to the next.

Microheterogeneity in SPT data is widely sought after as being key in understanding

the movement mechanisms of individual proteins. LFA-1 integrins are affected by cytoskele-

tal and external binding with variable affinities, cell-surface features such as corrals and

confinement zones, lipid rafts, and varying diffusion rates, all which may change throughout

a single trajectory. As a result, a vast number of diffusion models have been thought to

explain movement on cellular membranes, including combinations of transient confinement

zones (random appearances of confined diffusion) and hop diffusion (diffusion between spa-

tial regions of different shapes and sizes). In addition, LFA-1 proteins have been observed

to form receptor clusters (Cambi et al., 2006; van Zanten et al., 2010). A variety of methods

have been developed to investigate different elements of microheterogeneity. Simson et al.

(1995) have developed a method to detect non-random transient confinement zones by com-

paring the amount of time spent in a particular region to that of Brownian diffusion, based

on probability calculations. Variants of this method have been applied to a broader range

of confinement shapes and hop diffusion (Meilhac et al., 2006; Dietrich et al., 2002). Other

studies have relied on Markov Chain Monte Carlo methods to study microheterogeneity in

terms of switching between diffusion rates (Das et al., 2009). However, these methods are

often computationally difficult or rely on a number of data-specific parameters.

In view of this, we develop an approach to analyzing heterogeneity in SPT data, by

means of using mathematical techniques commonly applied in an ecological context. Using

this approach, we hope to:

1. better understand the macroheterogeneity of LFA-1 movement by testing SPT data

for different modes of motion (Brownian and non-Brownian),

2. detect and determine possible mechanisms that might affect the microheterogeneity

3



of individual LFA-1 movement trajectories,

3. evaluate the utility of methods commonly used in ecology in the context of cellular

biology, and

4. recommend further directions for SPT experimentation and data analysis.

In this thesis, the analysis of heterogeneity stated in the above objectives are embod-

ied by two major hypotheses.

A. Individual SPT trajectories of LFA-1 data follow a correlated random walk model.

B. Individual SPT trajectories of LFA-1 data contain areas of confined diffusion.

These hypotheses are tested by ecological methods, and the results are discussed in terms

of macro and microheterogeneity.

We believe that a clear understanding of these concepts could build on the multi-state

LFA-1 model described by Cairo et al. (2006). In addition, we anticipate these ideas could

be applied to other types of SPT experiments, and provide insights for more general studies

in movement modeling.

1.2 Thesis Overview

In Chapter 2, we begin by covering the fundamentals of movement analysis, which are

helpful in understanding the context of specific models. In particular, many current methods

of SPT data analysis rely on an understanding of simple random walks in one and two

dimensions, and their relationship to the diffusion coefficient, a parameter describing the

rate of diffusion. We discuss the different ways this parameter is estimated from the mean

squared displacement, and how the spread of diffusion coefficients is commonly used to

characterize diffusion in the SPT environment. In addition, we introduce the ecological

concepts of the correlated random walk (Patlak, 1953), and variance first-passage time

(Fauchald and Tveraa, 2003), and how they are applied to data.

In Chapter 3, we apply the fundamentals in testing individual SPT trajectories using

the CRW model (Patlak, 1953) which has been adapted to many different ecological applica-

tions (Kareiva and Shigesada, 1983; Turchin, 1998). In this way, we are able to understand

macroheterogeneity by classifying trajectories by their diffusion mechanism, rather than

only by their diffusion rate. In the context of microheterogeneity, we suggest using variance
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first-passage time, another ecological approach commonly used to identify regions of high

foraging or concentrated movement. We apply this method to LFA-1 protein to detect and

estimate the size of transient confinement zones, providing evidence for LFA-1 clustering in

accordance with Cambi et al. (2006) and van Zanten et al. (2010).

A common problem in interpreting movement data is the occurrence of error or bias.

Error often has detrimental effects on movement metrics (Jerde and Visscher, 2005; Hurford,

2009), that are often used in mathematical modeling. As a result, many different ecological

studies make note of behavioural, environmental, and human errors affecting their research

(Obbard et al., 1998; Ryan et al., 2004; Moen et al., 1996; Bowman et al., 2000) while

other studies are completely devoted to error analysis (D’Eon et al., 2002). Throughout this

thesis, we encounter a variety of different aspects of error and bias occurrence in SPT data,

and we have left the discussion of these features to Chapter 4.

Finally, in Chapter 5, we summarize the conclusions and discuss recommendations

for future work.
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2 The Fundamentals of Movement Analysis 1

In this chapter, we will discuss some of the basics of movement analysis. A clear understand-

ing of these concepts is important, as they will be used throughout the thesis for random

walk simulations, model testing, and the characterization of different types of movement. In

section 2.1, we will describe a couple of different preliminary models applied to movement

data. In section 2.2, we will describe a method for simulating random walks, commonly

used in model comparison and testing. Traditional methods used in SPT analysis will be

described in section 2.3. Finally in section 2.4, we will discuss some methods applied to

ecological movement data, which will set up our approach to analyzing SPT data.

2.1 Random Walk Models

Understanding the fundamentals of random walk modeling is important. First and foremost,

it provides an intuition of the underlying process by which a particle moves. There is no

better way to understand particle movement than to break it down, step by step. Secondly,

it provides a preliminary “recipe” for simulation. It gives an idea of parameters that can

be manipulated such that random walks of different types can be simulated. Lastly, ana-

lyzing the characteristics of random walks can provide insights for estimating parameters

from experimental data, such that the underlying process of a given experimental group of

moving particles can be better understood. In this section, we attempt to provide enough

fundamental knowledge of random walks so that we can successfully simulate random walks,

compare statistics between experimental data and simulated data, and develop and test hy-

potheses for related data sets. In sections 2.1.1 and 2.1.2, we derive the simple random

walk (SRW) in one and two dimensions, which are important for many applications. We

introduce the correlated random walk (CRW) model in section 2.1.3.

2.1.1 The Simple Random Walk in 1-D and Mean Square Displacement

The simple random walk (SRW) is summarized in countless papers and textbooks. In this

section, we use the 1-D lattice definition as described by Berg (1983).

The SRW can be described by a population of M particles starting at the origin,

each deciding to move left or right with equal probability (pl = pr = 1
2 ) and a step length

1Portions of this chapter have been submitted for publication.
Rajani V, Carrero G, Golan D, de Vries G, Cairo C 2010. Analysis of molecular diffusion by first-passage
time variance identifies the size of receptor clusters. Biophysical Journal, 36 manuscript pages.
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−δ δ0

x

Figure 2.1: Movement rules for a SRW on a 1-D lattice. Positions on the lattice are length
δ apart, and the probabilities of moving left pl and right pr are equal.

of δ (see Figure 2.1). Let xi(n) be the position of the ith particle after the nth step. Thus,

xi(n) = xi(n− 1) ± δ. (2.1)

From this formula, we can calculate the mean displacement of a particle. The mean

displacement is given by

〈x(n)〉 =
1
M

M∑

i=1

xi(n)

=
1
M

M∑

i=1

[xi(n− 1) ± δ]

=
1
M

(
M∑

i=1

xi(n− 1) +
M∑

i=1

±δ

)

=
1
M

M∑

i=1

xi(n− 1)

= 〈x(n− 1)〉. (2.2)

Here, in the limit as M → ∞, ±δ will average out to zero. This indicates that the mean

displacement remains zero between steps. In other words, particle spread remains centered

around the origin. Given this feature, it requires that we develop an expression for the

variance, or standard deviation, to measure particle spread. This quantity is conveniently

described through the Mean Square Displacement (MSD), a characteristic of random walks

that is typically used in many different applications. Using equation (2.1), we calculate

x2
i (n) = (xi(n− 1) ± δ)2 = x2

i (n− 1) ± 2δxi(n− 1) + δ2, (2.3)
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yielding

〈x2(n)〉 =
1
M

M∑

i=1

x2
i (n)

=
1
M

M∑

i=1

[x2
i (n− 1) ± 2δxi(n− 1) + δ2]

= 〈x2(n− 1)〉+ δ2. (2.4)

From this recurrence relation, we see that for a particle starting at the origin,

〈x2(0)〉 = 0,

〈x2(1)〉 = δ2,

〈x2(2)〉 = 2δ2,

...

〈x2(n)〉 = nδ2. (2.5)

Thus, the MSD increases linearly with step number. After executing n steps, each at a

frame-rate of τ , time t is given by t = nτ . Thus, the linear growth of MSD in (2.5) can be

rewritten as

〈x2(n)〉 = nδ2 =
(

t

τ

)
δ2 = 2

(
δ2

2τ

)
t. (2.6)

Defining D := δ2

2τ , we obtain

〈x2(n)〉 = 2Dt. (2.7)

Here, D is the diffusion coefficient [length2/time] and can be used as a single-

parameter descriptor of particle movement. We will talk about how the value of D can

be estimated from data in section 2.3, and how it traditionally utilized to describe the

movement of proteins. We will first describe the context of the diffusion coefficient in rela-

tion to the variance of a probability density function. This relationship will help illustrate

one method of simulating diffusing particles, and will elucidate the meaning of the diffusion

coefficient in terms of particle spread.

The probability that a particle takes k steps to the right in n trials is given by the

binomial distribution

P (k;n, p) =
n!

k!(n− k)!
pkqn−k, (2.8)
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where p is the probability that the particle moves to the right, and q = 1−p is the probability

that the particle moves to the left. Here, it can be shown that the mean and variance of

P (k;n, p) are given by (Berg, 1983)

µ = np, (2.9)

σ2 = npq. (2.10)

When n is large, the binomial distribution (2.8) approximates the normal distribution,

P (k;n, p) ≈ P (k)dk =
1√

2πσ2
e
−(k−µ)2

2σ2 dk, (2.11)

where P (k)dk is the probability that the number of steps taken to the right lies between k

and k + dk. Rewriting any given position, x(n), as the difference between the total distance

moved to the right (kδ) and the total distance moved to the left ((n− k)δ), we have

x(n) = [k − (n− k)]δ = (2k − n)δ. (2.12)

Solving for k, (2.12) becomes

k =
x

2δ
+

n

2
, (2.13)

yielding

dk =
dx

2δ
. (2.14)

With the identity 2Dt = nδ2 (combining (2.5) and (2.7)), we substitute (2.9), (2.10), (2.13)

and (2.14) into (2.11) yielding

P (x)dx =
1√

4πDt
e
−x2
4Dt dx, (2.15)

where the standard devation is given by

σ =
√

2Dt. (2.16)

2.1.2 The Simple Random Walk in 2-D

Many of the previous results can be generalized to two and three dimensional lattices. For

two dimensions, we start with a similar structure as in Figure 2.1, but assume that a particle
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can move in four directions with step size
√

2δ, starting at the origin (see Figure 2.2). Each

particle moves according to the following two independent movement equations

xi(n) = xi(n− 1) ± δ,

yi(n) = yi(n− 1) ± δ. (2.17)

If we measure displacement in terms of

(δ, δ)(−δ, δ)

(−δ,−δ) (δ,−δ)

Figure 2.2: Movement rules for a SRW on a 2-D lattice. A particle starting at the origin
can move in four directions of equal step length

√
2δ with equal probability.

r2 = x2 + y2, (2.18)

then using (2.4), the 2-D MSD calculation is simply

〈r2(n)〉 = 〈x2(n) + y2(n)〉

= 〈x2(n)〉+ 〈y2(n)〉

= 〈x2(n− 1)〉+ 〈y2(n− 1)〉+ 2δ2

= 〈x2(n− 1) + y2(n− 1)〉+ 2δ2

= 〈r2(n− 1)〉+ 2δ2. (2.19)
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As a result, we have a pattern similar to the 1-D case:

〈r2(0)〉 = 0,

〈r2(1)〉 = 2δ2,

〈r2(2)〉 = 4δ2,

...

〈r2(n)〉 = 2nδ2.

Once again, with t = nτ and D = δ2/(2τ),we obtain

〈r2(n)〉 = 2nδ2 =
(

t

τ

)
2δ2 = 4

(
δ2

2τ

)
t = 4Dt. (2.20)

Since x and y positions are independently generated we have

P (x, y)dxdy = P (x)dx · P (y)dy, (2.21)

and thus, P (x, y) is given by the 2-D normal distribution,

P (x, y) =
1

4πDt
e
−(x2+y2)

4Dt , (2.22)

where we have

σ =
√

4Dt. (2.23)

The final equations (2.22) and (2.23) provide us with a very important relationship

between a probability distribution and the diffusion coefficient. In section 2.3, we will discuss

in detail how to estimate this value.

2.1.3 The Correlated Random Walk

The SRW is the simplest random walk model for describing basic physical and chemical

processes. However, this model is not always sufficient for describing basic movement.

Animals are often observed to move with a Correlated Random Walk (CRW) that allows

for some degree of persistence or correlation between subsequent steps (Turchin, 1998).

For example, most particles have the ability to move in one direction, and then move in

the opposite direction almost instantaneously. Alternatively, to make this same change in
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direction, animals require a number of turns, taking place over a series of moves. As a result,

each individual step, when compared with the preceding step, will only show small changes

in direction. This short-term correlation will disappear on larger time scales (Codling et al.,

2008).

A popular approach to modeling CRWs is by using the Patlak model (Patlak, 1953).

The Patlak model assumes correlation between subsequent moves, described via turning

angles and step lengths. Turning angles are representations of changes in direction that

are measured as the clockwise angle differences between every pair of consecutive steps

(Figure 2.3). A description of the complete calculation is given in Appendix A.2. Step

lengths complement the description of move direction with information about the extent of

mobility. Larger move lengths in a movement path often imply a higher rate of movement,

while smaller step lengths often imply slow or restricted motion. As a result, for a given

!i−1

!i

θi

Figure 2.3: The definition of the turning angle. The turning angle θi is measured as the
clockwise angle difference between two subsequent steps, 'i−1 and 'i. A full description of
the calculation is given in Appendix A.2.

movement path, the characteristics of the collected turning angle distribution and length

distribution from empirical data can be used to describe the underlying movement process.

The Patlak model is

∂u

∂t
=

1
2
∇ ·




1 + c

(
2m2

1
m2
− 1

)

1− c
∇

(m2

2τ
u
)
− cm3

1

τm2 (1− c)
∇

(
m2

m1

)
u



 , (2.24)

where

m1 =
∫ ∞

0
'q(')d', (2.25)

m2 =
∫ ∞

0
'2q(')d', (2.26)

c =
∫ π

−π
cos θp(θ)dθ, (2.27)
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and p(θ) and q(') are the turning angle and step length distributions described above.

The extensive use of this model by experimentalists is largely due to the ease of applying

this model to discrete data. With the purpose of analyzing insect movement, Kareiva and

Shigesada (1983) derived a formula for Net Squared Displacement:

R2
n = nm2 + 2m2

1

[
(c− c2 − s2)n− c

(1− c)2 + s2
+

2s2 + (c + s2)(n+1)/2

((1− c)2 + s2)2
γ

]
, (2.28)

where

γ = ((1− c)2 − s2) cos((n + 1)α)− 2s(1− c) sin((n + 1)α),

and m1, m2, c and s can be estimated from data as

m1 =
1
N

N∑

i=1

'i, (2.29)

m2 =
1
N

N∑

i=1

'2i , (2.30)

c =
1
N

N∑

i=1

cos (θi) , (2.31)

s =
1
N

N∑

i=1

sin (θi) . (2.32)

Here, m1, m2, c and s are discretely calculated by averaging over every value, θi ∈ p(θ) and

'i ∈ q('), in the data set. Note that in the case that the turning angle distribution is

uniform, c = 0 and s = 0, and (2.28) reduces to

R2
n = nm2, (2.33)

which is the same as the MSD expression (2.5) for a SRW.

Given (2.28), we can estimate the theoretical MSD curve for CRWs. In section

2.4, we will discuss how to use this formula in CRW testing. In the following section, as a

prerequisite for understanding movement data, we will discuss the different types of methods

used for simulating random walks. These methods will be important for model testing and

investigating different analytical methods used to analyze data.
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2.2 Random Walk Simulations

A bulk of the computational work in this project is in simulating random walks. Unfortu-

nately, due to the lack of accepted framework, there is no single correct way of generating

random walks (Turchin, 1998). This causes random walk definitions and terminology to vary

from study to study. To prevent any misinterpretation, we will fully describe the process

by which we simulate different types of random walks.

Random walk simulations are important for a variety of reasons. They help in the

understanding of the movement rules of a given random walk process. As a result, it

is common to compare random walk data to different types simulated random walks, to

see which model could potentially describe the movement data. An example of such a

comparison will be discussed in section 2.4.1. First, we will discuss the simulation methods

used for this project. In section 2.2.1, we introduce our choice for simulating an unbiased,

two-dimensional simple random walk, without the confines of a lattice. Later, in section

2.2.2, we make modifications to the algorithm to introduce areas of confined diffusion.

2.2.1 SRW with Variable Move Lengths

In sections 2.1.1 and 2.1.2, we developed SRW models on 1-D and 2-D lattices. In reality,

moving individuals are not limited to a lattice, but are able to move in any direction on the

unit circle and with a distribution of step lengths (Codling et al., 2008). From equations

(2.22) and (2.23), given a diffusion coefficient, we could generate a distribution of all the

possible step lengths that might occur around a given position, allowing variable step lengths,

rather than a fixed step length. To preserve the realism of moving without a lattice, our

SRW simulations will utilize uniform angle and normal length distributions. As a result,

we define this as an unbiased, uncorrelated, brownian motion model. The ith position for

a random walker, (xi,yi), starting from a given point, (x0,y0), is given by the recurrence

relation

xi = xi−1 + cos (αi)'i, (2.34)

yi = yi−1 + sin (αi)'i, (2.35)

where the step length 'i is chosen from a normal distribution N(µ, σ) with zero mean (µ = 0)

and standard deviation σ =
√

4Dτ (where τ = 0.001s is the sampling rate), and an angle
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αi is chosen from a uniform distribution (α ∈ [−π, π]). Here, αi is related to the turning

angle θi via the relationship

αi = αi−1 − θi (2.36)

Equations (2.34)-(2.35) thus allow us to simulate random walks according to a prescribed

diffusion coefficient. In section 2.3.3, we discuss how to recover this diffusion coefficient from

MSD.

Turning angle and length distributions calculated from a typical random walk as gen-

erated via equations (2.34)-(2.35) (see Appendix A) are shown in Figure 2.4. As expected,

both distributions simply reflect the input. Note that the resulting length distribution is

normal, since calculating the resulting length based on the changes in x and y yields

√
(cos(αi)'i)2 + (sin(αi)'i)2 = 'i ∈ N(0,

√
4Dτ). (2.37)

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200
Angle Distribution

Turning Angle (Radians)

F
re

q
u
e
n
cy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

500

1000

1500

2000

2500

3000

3500
Length Distribution

Length (µ m)

F
re

q
u
e
n
c
y

Figure 2.4: Angle and length distributions of an SRW with variable move lengths. The walk
is 100,000 steps long and 'i ∈ N(0, 4Dτ) with D = 5 x 10−10 cm2/s .

2.2.2 Transient Confinement Zones

Building on this model, we can add parameters to make more complicated models of anoma-

lous diffusion. We simulate transient confinement zones (TCZs), or confined movement

within a small circular area, by allowing a particle to move into a confinement zone of

radius rc based on a fixed probability pi (see Figure 2.5). After a particle enters a confine-

ment zone, diffusion remains constant, but steps can only be taken within the radius of the

confinement zone rc. If a step is taken out of the confinement zone, then the particle will

leave with probability po. Otherwise, the extraneous step is retaken. The pseudocode in
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Algorithm 1 illustrates the method we used to simulate TCZs.












Figure 2.5: Transient confinement zone simulation.

2.3 Traditional Analysis of SPT Data

The most common way used to represent movement data is by N + 1 position coordinates,

p0 = (x0, y0),

p1 = (x1, y1),

p2 = (x2, y2),
...

pN = (xN , yN ), (2.38)

for a total number of N timesteps. Without loss of generality, we can assume that p0 = (0, 0)

(this can be done by a very simple translation). The most elementary picture representations

of this type of data are trajectory plots, which are created by plotting each coordinate on

an (x,y) coordinate plane and by joining subsequent points with a line. While trajectory

plots are the most intuitive way of visualizing movement paths, the stochastic nature of

random data can be misleading. For example, the SRW in Figure 2.6 is perceived to have

some degree of directional bias and regions of confinement, but neither are involved in the

actual diffusion process. Due to this visual bias, it is often required that analysis be pushed

to more unbiased quantitative methods where artifacts of randomness can be discounted by

robust techniques. For this reason, a wide range of tools for understanding movement have

been developed. While all of these tools can be applied to most data types, it is important

to understand the underlying assumptions involved in the use of each. Although the data

output is in a format very intuitive to understand, the analysis and interpretation of this
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Algorithm 1 Transient Confinement Zone Algorithm. The following algorithm will gener-
ate an N -step trajectory of a particle diffusing at rate D, moving in and out of confinement
zones of radius R based on probabilities po and pi

x0 = 0, y0 = 0
c = (x0, y0)
σ =

√
4Dτ

while i ≤ N + 2 do
i = i + 1
r1 = randn (normally distributed random number with µ = 0 and σ = 1)
r2 = 2π(rand)− π (uniformly distributed random number between −π and π)
xi = xi−1 + σ ∗ r1 ∗ cos(r2)
yi = yi−1 + σ ∗ r1 ∗ sin(r2)
s = ||(xi − c(1)), (yi − c(2))||
if s ≤ R then

r3 = rand (uniformly distributed random number in [0,1])
if r3 ≥ po then

i = i− 1
else

r4 = 1
while r4 ≥ pi do

i = i + 1
if i ≥ N + 1 then

break loop
end if
r1 = randn (normally distributed random number with µ = 0 and σ = 1)
r2 = 2π(rand)− π (uniformly distributed random number between −π and π)
xi = xi−1 + σ ∗ r1 ∗ cos(r2)
yi = yi−1 + σ ∗ r1 ∗ sin(r2)
c = (xi, yi)
r4 = rand

end while
end if

end if
end while
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Figure 2.6: The visual bias of a random walk. A SRW which can be misconstrued as having
anomalous properties. This SRW (N = 1000, D = 2 x 10−20 cm2/s) can be perceived to
have directional bias (left) or regions of confinement (right).

movement data remains to be mastered. We begin by discussing some of the more common

measures of SPT movement data.

Single particle tracking is a technique that is used to monitor the movement of indi-

vidual proteins along cellular membranes with computer-enhanced video microscopy. Single

particle tracking involves the tagging of individual proteins with colloidal gold, latex beads

or fluorescent particles, and recording the position of the label at fixed time step increments

within a spatial resolution of nanometers and a time resolution of milliseconds (Saxton

and Jacobson, 1997). This spatial resolution is the main advantage of this method, over

other approaches that measure the movement of entire populations (such as Fluorescence

Recovery After Photobleaching (FRAP)) as it allows to ask questions specifically regarding

the macroheterogeneity of different subpopulations, and the microheterogeneity within the

individual mechanisms of diffusing proteins.

In sections 2.3.1 and 2.3.2, we start by introducing an estimate for MSD, a quantity

that was theoretically described in section 2.1.2. Assuming linearity for MSD, one can esti-

mate diffusion coefficients, a method commonly used for breaking down macroheterogeneity

in movement data. This will be discussed in section 2.3.3. With this information, we can
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Figure 2.7: Distances used in the calculation of MSD with no internal averaging.

begin to explore macroheterogeneity with a diffusion profiling method, which we explain in

section 2.3.4 Note that the estimation of diffusion coefficients from MSD is based on the

underlying assumptions of a SRW, which we derived in section 2.1.

2.3.1 Mean square displacement without internal averaging

The square displacement d2(pi, pj) between two positions is defined as the squared Euclidean

distance between the two points pi and pj , with coordinates (xi, yi) and (xj , yj), respectively,

d2(pi, pj) = (xi − xj)2 + (yi − yj)2. (2.39)

Thus, with respect to the initial point, the square displacement r2(t) at a given time t = nτ

is given by

r2(t) = r2(nτ) ≈ d2(pn, p0) = (xn − x0)2 + (yn − y0)2. (2.40)

Given M trajectories, the simplest way of estimating MSD is by calculating the square

displacement for each time interval with respect to the initial starting point (see Figure 2.7)

in each individual trajectory. The MSD estimation is then achieved by averaging over all

the trajectories in the population. In particular, for n = 0, 1, 2, . . . , N ,

ρ(nτ) ≈ 1
M

M∑

m=1

r2
m(nτ),

where r2
m(nτ) describes the square displacement r2(nτ) of the mth trajectory.

It is important to note that this formulation of MSD is biased towards the initial position

as a reference point.
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2.3.2 Mean square displacement with internal averaging

The formulation of MSD with internal averaging discussed by Qian et al. (1991) and Saxton

(1997) allows for a change in reference point, and is no longer biased towards the initial start-

ing point. Internal averaging refers to the averaging of nτ time step increments throughout

each individual trajectory before averaging over the entire population of trajectories. How-

ever, for large n, the averages are based on fewer time step increments, and thus the MSD

calculation is less reliable (Saxton, 1997).

Using the Euclidean distance formula in R2 as in section 2.3.1, we average the squared

distance between position pairs separated by nτ for n = 1, 2, . . . , N (see Figure 2.8). Thus

the formula is given by (Qian et al., 1991),

r2(t) = r2(nτ) ≈
Np(n)−1∑

i=0

d2(pi, pi+n)
Np(n)

=
Np(n)−1∑

i=0

(xi+n − xi)2 + (yi+n − yi)2

Np(n)
,

where Np(n) is the number of position pairs separated by nτ . Since Np(n) = N − n + 1 for

a trajectory of N + 1 steps, the formula takes on a more convenient form (Saxton, 1997):

r2(nτ) ≈
N−n∑

i=0

(xi+n − xi)2 + (yi+n − yi)2

N − n + 1
(2.41)

Note that this calculation includes lengths that overlap each other (see Figure 2.8). For

example, for time separation 2τ , squared distances d2(p0, p2) and d2(p1, p3) are both included

in the average, even though they overlap. The alternative to this method is averaging only

over independent, non-overlapping pairs (see Figure 2.9). Instead of using Equation (2.41),

MSD is then estimated by

r2(t) = r2(nτ) ≈
Ni(n)∑

i=0

d2(pni, pni−n)
Ni(n)

=
Ni(n)∑

i=0

(xni − xni−n)2 + (yni − yni−n)2

Ni(n)
, (2.42)

where Ni(n) = [N
n ]. Here [·] denotes the greatest integer function (Saxton, 1997). The

reasoning for using the method of overlapping lengths, as opposed to the one with non-

overlapping lengths, is that averaging over all pairs utilizes all the data, and that the data

points are all weighted equally (Saxton, 1997). Similar to calculating MSD without internal
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Figure 2.8: Distances used in the calculation of MSD with internal averaging and overlapping
pairs. (a) Position pairs obtained with time separation τ . (b) Position pairs obtained with
time separation 2τ . (c) Position pairs obtained with time separation 3τ .
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Figure 2.9: Distances used in the calculation of MSD with internal averaging and non-
overlapping pairs. (a) Position pairs obtained with time separation τ . (b) Position pairs
obtained with time separation 2τ . (c) Position pairs obtained with time separation 3τ .
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Figure 2.10: MSD estimation using no internal averaging and internal averaging with and
without pair overlap. The MSD was calculated from a population of 10 simulated trajectories
with N = 4000, τ = 0.001 s, and a diffusion coefficient of D = 1 x 10−6 cm2/s.

averaging, given M trajectories, averaging over the population yields an estimate for MSD

ρ(nτ) ≈ 1
M

M∑

m=1

r2
m(nτ), (2.43)

where r2
m(nτ) describes the average square displacement (square displacement with internal

averaging) r2(nτ) of the mth trajectory.

To compare the different methods, we simulated a SRW with variable step lengths

as discussed in section 2.2.1, and calculated the MSD using each of the three methods.

See Figure 2.10 for the resulting plot. Notice that the smoothest MSD curve is given by

the calculation with internal averaging and overlap, due to the autocorrelation between

overlapping pairs. Also note that half way through the calculation, the MSD calculation

without internal averaging and the calculation without overlapping pairs both merge into

the same curve.
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2.3.3 Estimating Diffusion Coefficients

The diffusion coefficient, D, is estimated via a least squares fit of expression (2.20) to the

data. Assuming a zero y-intercept, the diffusion coefficient is calculated, by convention,

using one third of the MSD data.

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time step

M
S

D
 (

n
m

2
)

Figure 2.11: The definition of the diffusion coefficient. This figure depicts the fitting of
(2.20) to raw data for different definitions of D. The MSD of a simulated SRW (N = 100,
D = 5 x 10−16 cm2/s) is shown in black, and the fits for Dm = D(0 : 4) and DM = D(0 : N

3 )
are shown in blue and green respectively.

This scalar value depends on the number of tracks M , track length N and the defini-

tion of the diffusion coefficient (Saxton, 1997). The diffusion coefficient can be described in

various ways, depending on how many time points of the MSD data are included in the least

squares fit. Often two different definitions for D are implemented. A short-term diffusion

coefficient (often termed Dmicro or Dm) and long-term diffusion coefficient (termed Dmacro,

or DM ) are calculated by fitting (2.20) to different proportions of the MSD curve. While

specific definitions vary, Dm is found by fitting to the first few points of the MSD (in our

case, the first four points Dm = D(0 : 4)), while DM is found by fitting to a larger fraction

of the MSD (in our case, DM = D(0 : 1
3N).

Different definitions for D yield different forms of information. Since Dm is only

measured over the first few points, it provides an indication of the diffusion independent

of any anomalous traits which may only appear after long time periods. As such, Dm is

usually independent of directed motion, obstacles and corral boundaries (Saxton, 1997).

DM can yield more information; however, a clear framework for classifying different types

of behaviour in terms of DM has not been developed.

The MSD curve for cases of anomalous diffusion can usually result in a positive or

negative deflection from linearity for longer time scales. Positive deflection is likely due to
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the presence of flow or advection, while negative deflection is usually the result of a source

of hindrance; the presence of obstacles or confined diffusion (Qian et al., 1991). This is

reflected in the fact that for small N , sources of anomalous diffusion may not be detected.

To counter this issue, Saxton and Jacobson (1997) mention the formula

ρ(t) = 4Dtα, (2.44)

where a new parameter α, estimated by least squares fitting, is used to describe positive

concavity for α > 1 or negative concavity for α < 1. This MSD formula is used to describe

the stochastic process known as a Lévy flight, which is the product of a heavy-tailed prob-

ability distribution of step lengths (Benhamou, 2007). In addition to its wide use in SPT

analysis for analyzing macroheterogeneity in movement paths, (2.44) has also been applied

to determine the foraging behaviour of a number of different species (Edwards et al., 2007).

In the following section, we will discuss how the spread of diffusion coefficients can

be used to understand heterogeneity in a population.

2.3.4 Diffusion Profiling

To measure the degree of macroheterogeneity in movement data, the usual process is to

measure the diffusion profile, or spread of diffusion coefficients. Measuring the spread of

all the parameters in a population can be indicative of the extent of the heterogeneity

in diffusion mechanism (Saxton, 1997). For example, for a data set of M trajectories,

where some trajectories are simulated to diffuse with one rate D1 while others with D2, the

resulting distributions of estimated diffusion coefficients will exhibit macroheterogeneity.

Without the a priori knowledge of the simulation, one might hypothesize that there

are two distinct groups of diffusing populations, or one population with probabilities of

switching between two diffusion coefficients. In experimental data, this may be even more

complicated. While some differences can be seen in population distributions (Cairo et al.,

2006), without additional statistical testing, it is possible that conclusions are reliant on

the method of data representation rather than on the data itself. In addition, while differ-

ences can be seen between diffusion coefficients, this tells little about the actual movement

mechanism for the particle.

However, the advantages of this procedure do outweigh its shortcomings. While

conclusions are obscured in qualitative observation, this procedure supplies aspects of great
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importance to experimentalists in the field. As a result, there have been effective studies into

parameters that effect the scatter of D. Saxton (1997) describes the effect of M , N and the

definition of D on distributions estimated from simulated data. In addition, calculating and

analyzing distributions of diffusion coefficients is very simple to do. This method supplies

an efficient, effective and widely accepted and understood method for measuring population

structure in SPT data. The benefits of this method will be illustrated in application to

LFA-1 proteins in Chapter 3.

2.4 Ecological Approaches to Movement Data

Although the data format is very similar, the preliminary approaches to analyzing movement

data are different in ecology. In this section, we focus on introducing some methods from

an ecological context, and discuss how they are applied to movement data. In section 2.4.1,

we describe a bootstrapping procedure used to identify CRWs. From the perspective of

microheterogeneity, we describe the method of variance first-passage time in section 2.4.2,

which is used to understand areas of concentrated movement, a feature of random walks

that cannot be depicted by simpler models. The context of these methods in application to

SPT data will be described in the next chapter.

2.4.1 Correlated Random Walk Testing

The MSD calculations are important in a variety of different schemes throughout single-

particle tracking (as were be discussed in section 2.3). However, the calculations are also

useful in CRW model testing. Due to the stochastic nature of random walks, we use a

bootstrapping procedure described by Turchin (1998).

To test if data from a movement path (or a set of movement paths) could be created

under the assumptions of a CRW model, we begin by collecting all of the turning angle and

lengths from the data into distributions Θ̂ and Λ̂. Appendix A describes how to calculate

these from data. Ideally, a movement path following a CRW could be generated by merely

picking angles and lengths from these distributions at random, and generating a random

walk as described by equations (2.34) and (2.35). As prescribed, we simulate many groups

of trajectories, termed pseudopaths, or pseudotrajectories (Turchin, 1998). The number of

pseudotrajectories in a group will be the same as the number of trajectories in the data set

being tested. The next step in the process is to calculate the MSD (using (2.41)) of each
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group of pseudotrajectories, plotting each MSD curve on the same graph. The result will

be a family of curves, with gradually increasing variance with respect to time (see Figure

2.12a).
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Figure 2.12: Bootstrapping procedure prescribed by Turchin (1998). (a) The MSD of the
simulated groups of pseudotrajectories (blue) surrounding the MSD of the experimental
data (black) and theoretical net squared displacement (red). (b) The MSD of the pseudo-
trajectory groups are shown as a pseudotrajectory envelope for viewing purposes.

The highest and lowest values from the MSD curves comprise the pseudotrajectory

envelope (Figure 2.12b), the basis for rejecting or accepting the CRW model. A large

number of pseudotrajectory groups is preferable, as the larger the number, the more refined

the resolution of the envelope. Note that the theoretical net square displacement (2.28) from

the data is a curve approximating the mean of this envelope (Figure 2.12b). The last step

in this process is to finally decide whether to accept or reject the CRW model for the data.

For this final step, we compare the MSD curve (using (2.41)) of original data set to the

MSD envelope obtained from the pseudotrajectories. The MSD curve of the original data

set will either lie within the pseudotrajectory envelope, or parts (or all) of the trajectory

will lie outside the envelope. In the latter case, we reject the CRW model as being a process

capable of explaining the data.

As a word of caution, trajectories should not be grouped together in the testing of

the model unless they have been first tested for macroheterogeneity. CRWs grouped with

non-CRWs may result in a model rejection, but this does not mean that each individual

trajectory cannot be explained by a CRW. Due to this problem, in Chapter 3, we will

prescribe the use of bootstrapping for individual trajectories.
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2.4.2 Variance First-Passage Time

Variance of first-passage time is a method that has been developed to detect regions of

heterogeneity within paths, punctuated by changes in turning rates or movement speeds

(Johnson et al., 1992). First-passage time (FPT) refers to the number of steps that an

individual takes within a circle of a given radius r. Recording the first-passage time for a

circle with radius r centered on each step of a movement path yields a distribution, and

the variance of this distribution is a measure of the amount of heterogeneity at the spatial

scale of radius r (Fauchald and Tveraa, 2003). By varying r, one can determine the spatial

scale that exhibits the most heterogeneity. This significance of this spatial scale has been

described with respect to the searching and foraging behaviour of a number of different

species, such as the wandering albatross (Weimerskirch et al., 2007), the bottlenose dolphin

(Bailey and Thompson, 2006) and the Antarctic petrel (Fauchald and Tveraa, 2003), as the

scale at which animals change their movement most frequently. In effect, this measurement

provides an estimate for the size of confined or concentrated regions of movement.

The first-passage time Tr(n) of each path is calculated by counting the number of

steps taken within a circle of radius r, centered at each point (xn, yn) of the trajectory

(Fauchald and Tveraa, 2003). Increasing the radius size of the circle allows for more of the

trajectory to be captured within its frame of reference, and thus the more tortuous the path

segment, the larger the value of Tr(n) will be for that range. Measuring the variance of

these values over the entire trajectory, denoted by

S(r) = var[log(Tr(n))], (2.45)

gives an indication of the degree by which the particle changes its movement behavior

from linear to more tortuous movement. The log-transform is prescribed to make S(r)

independent of the mean first-passage time (Fauchald and Tveraa, 2003; Weimerskirch et al.,

2007). Since the value of Tr(n) is sensitive to changes in movement behavior, peaks in S(r)

describe spatial scales at which tortuous movement is concentrated.

To test this method, we decided to run the variance of FPT algorithm on a series

of simulated trajectories simulated with TCZs. We modified po, pi and rc to see the effect

on S(r). Figure 2.13 summarizes the findings of this test. When we varied rc for simulated

trajectories with the inability to leave confinement zones, we found that the location of

peaks in S(r) closely predicted the confinement radius for rc= 50, 100, and 200 nm. (Figure
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2.13A). However, for large confinement zones (rc = 500 nm, 1000 nm), we found that the

movement track was too short to detect confinement effects, thus the S(r) curves showed

no peak at this location.

Varying the probabilities po and pi, while keeping rc fixed, mainly changed the height

and width of the S(r) peak. The simulations showed that increasing pi resulted in a broader

peak, whose location slightly overestimated the actual confinement size of rc (Figure 2.13B).

Conversely, we found that lower po resulted in the individual spending more time in con-

finement, yielding higher peaks in S(r) (Figure 2.13C).

A few patterns are clear. The location of peaks in S(r) seems to give a rough

estimation of the size of confinement zones. While exact size may be difficult to predict,

spotting a peak in S(r) can be a useful way of detecting heterogeneity. In addition, we find

that the height of the peaks correlates with the amount of time spent in confinement zones.

For example, high pi and low po, both implying increased confinement, yield higher, more

intense peaks in S(r).

It is interesting to note, as has been done in other studies with various types of

confined diffusion (Fauchald and Tveraa, 2003), that the peak of S(r) can give an estimate

of the size of the simulated confinement zone within the same order of magnitude. When

particles are confined to spatial regions where the probability of leaving is po = 0, the

location of the peak in S(r) accurately reflects the size of the simulated confinement zone

(Figure 2.13A). If the spatial confinement zone radius is large with respect to the diffusion

rate, then the confinement zone may not be detected. As a result, a trajectory diffusing in a

very large confinement zone may be categorized as a CRW. When po and pi are manipulated

with rc fixed, we see changes in peak intensity, sometimes causing variations in the peak

position. The characteristics of peak intensity and peak width have yet to be explored in

relation to simulation parameters. In the next chapter, this technique will be applied to

SPT data obtained for the LFA-1 protein in order to determine the presence and size of

transient confinement zones.

In the next chapter, we will suggest using variance first-passage time as a tool in

detecting transient confinement behaviour in LFA-1 protein movement.
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Figure 2.13: First-passage time analysis of simulated trajectories. Each S(r) curve is av-
eraged over 20 trajectories, simulated with D = 5 x 10−9 cm2/s. The confinement radius,
rc, probability of leaving a confinement zone, po, and probability of entering a confinement
zone pi were varied. (A) pi = 1 and po = 0 while rc = 50 nm (red), 100 nm (green), 200
nm (blue), 500 nm (magenta) and 1000 nm (black). (B) po = 0.1 and rc = 50 nm while
pi = 0.05 (red), 0.2 (green), 0.4 (blue), 0.8 (magenta) and 1 (black). (C) pi = 0.1 and
rc = 50 nm while po = 0.05 (red), 0.2 (green), 0.4 (blue), 0.8 (magenta) and 1 (black). (D)
Sample trajectories from (A)-(C). The scale bar is 1 µm.
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3 Detecting Heterogeneity in Biomolecular Diffusion 2

In this chapter, we will discuss the use of the ecological methods in the context of SPT

data. In particular, we focus on a particular cell surface adhesion receptor, the leukocyte

function-associated antigen (LFA-1) protein. We begin by giving a short biological overview

of adhesion receptors in section 3.1. In section 3.2, we test LFA-1 SPT data for correlated

random walk behaviour, to determine the underlying movement mechanism of LFA-1 pro-

teins. To detect the presence of confined diffusion, in section 3.3 we apply the method of

variance first-passage time to LFA-1 data sets. As a result, we are able to better under-

stand the population structure (in terms of both macro and microheterogeneity) of LFA-1

proteins. Lastly, in section 3.4, we suggest future applications for first-passage time in SPT

data. We finish with an evaluation of our methods and findings in section 3.5.

3.1 Biological Framework

For animals, it makes sense that movement and behaviour are naturally linked. Therefore,

by analyzing the movement of animals, we can make predictions about the way animals

react with their environment to better understand their behaviour.

On the other hand, biomolecules such as proteins do not intuitively possess this

relationship between the way they move and behave. However, with SPT, we have been

able to view different forms of macro and microheterogeneity for biomolecules, resulting in a

variety of movement patterns. In the case of cell surface protein receptors, this movement is

thought to be strongly linked to protein function. In section 3.1.1, we give a brief overview of

the role of integrin protein receptors in the cell, and current biological models of how receptor

diffusion is connected to their function. In section 3.1.2, we specifically discuss current

biological models of LFA-1, developed from heterogeneity observed in SPT experiments.

3.1.1 Cell surface adhesion receptors

Cell surface adhesion receptors (integrins) help regulate activity between cells and the extra-

cellular matrix (Springer, 1990). They play a fundamental role in cell-cell signaling, and

allow individual cells to communicate with a variety of different environments. Integrin

receptors carry out cellular functions via a receptor-ligand relationship. These functions
2Portions of this chapter have been submitted for publication.

Rajani V, Carrero G, Golan D, de Vries G, Cairo C 2010. Analysis of molecular diffusion by first-passage
time variance identifies the size of receptor clusters. Biophysical Journal, 36 manuscript pages.
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are accomplished by conformational changes and chemical affinities of individual receptors

(Cairo et al., 2006), spatial organization (van Zanten et al., 2010), and receptor expression.

As their name suggest, in addition to relaying information between cells, adhesion

receptors are important in regulating adhesive structures which promote binding between

cells and their environment (Cairo and Golan, 2007). The spatial distribution of these

receptors is critical in facilitating receptor adhesion and cellular binding, and thus, there is

much interest in the lateral diffusion of adhesion receptors. A large number of experiments

have been conducted to understand different characteristics of receptor lateral mobility, in

particular, the hypothesized relationship between mobility and receptor affinity (Cairo et al.,

2006).

In the investigation of this hypothesis, anomalous diffusion has been observed in ad-

hesion receptor SPT data. Specifically, diffusion is observed to be slower than expected

rates, which can be attributed to any number of complex processes (Saxton and Jacob-

son, 1997). In the case of cellular adhesion receptors, anomalous diffusion could be due

to a variety of static and dynamic processes including receptor clustering (van Kooyk and

Figdor, 2000), microdomain formation (Edidin, 2003), cytoskeletal attachment (van Kooyk

et al., 1999; Cairo et al., 2006), membrane compartmentalization (Ritchie et al., 2005), and

receptor-ligand interactions (Cairo and Golan, 2007). On T-cells of the immune system,

these complex processes can be generalized to any combination of four major mobility reg-

ulating mechanisms: reorganization of lateral receptor association with microdomains and

other components, recruitment or clustering of receptors, dispersion of receptors to evenly

distribute binding sites, and anchoring by either cytoskeletal or cytoplasmic proteins (Cairo

and Golan, 2007). The large number of possible mechanisms proves anomalous diffusion to

be very complicated to decipher.

3.1.2 The Leukocyte Function-Associated Antigen

The leukocyte function-associate antigen (LFA-1) is an important adhesion receptor in the

immune system. It is an integrin protein; a transmembrane heterodimer made from non-

covalently linked α and β protein chains (van Kooyk et al., 1999) and is located on most

leukocytes, particularly on T-cells. LFA-1 is fundamental in triggering the immune response.

By binding with its ligand, the intercellular adhesion molecule (ICAM-1), LFA-1 facilitates

the movement of T-cells across the endothelium, and the formation of the immunological

synapse.
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As with other adhesion receptors, although LFA-1 is known to undergo anomalous

diffusion, the complete relationship between receptor affinity and lateral mobility is not

entirely known. During the formation of immune synapses, LFA-1 receptors undergo a com-

plex combination of the four processes listed above; reorganization, recruitment, dispersion

and anchoring (Cairo and Golan, 2007).

The model of LFA-1 is shown in Figure 3.1. The model illustrates four different

conformations of LFA-1: closed, open, intermediate, and ligated, in two different cellular

states: resting and activated. It was found that different conformations were either primarily

freely diffusing (high mobility) or bound to the cytoskeleton (low mobility) when in different

cellular states. The dominant state of mobility is indicated by the filled grey boxes in either

the resting or activated cell. This model was proposed by Cairo et al. (2006), based on the

diffusion profiling of different epitopes. Epitopes, or antigenic determinants, are different

structural configurations of proteins that are recognized by antibodies in the immune system.

Cairo et al. (2006) ran a series of SPT experiments by employing different epitopes of LFA-1.

Each epitope labels a different conformation of LFA-1. A diffusion coefficient was estimated

from the MSD of each movement track, and the diffusion coefficients were viewed as a

distribution (for details of this procedure, see section 2.3.4). The results of the study are

listed in Table 3.1. The activation of receptors was induced by the addition of phorbol-12-

myristate-13-acetate (PMA). PMA is a chemical that is known to stimulate protein receptor

activity (Constantin et al., 2000). The mobility of each configuration was based on the

observed population diffusion profiles. The results in Table 3.1 give much insight into the

Type Conformation Resting Mobility Activated Mobility
TS1/18 epitope open and closed primarily immobile primarily mobile
HI111 epitope closed primarily mobile not visible

MEM148 epitiope open primarily mobile primarily immobile
ICAM-1 ligated ligated primarily immobile totally immobile

Table 3.1: Configurations and mobility of LFA-1, as observed by Cairo et al. (2006). It
is important to note that the TS1/18 epitope blocks ICAM-1 adhesion, while HI111 and
MEM148 allow LFA-1 to remain open to ICAM-1 adhesion.

relationship between LFA-1 protein affinity and lateral mobility. The observation of multiple

subpopulations in diffusion profiling motivated a multiple state model for LFA-1 under both

resting and activated conditions. The link between affinity and mobility motivates further

study into heterogeneity both at the population and the individual level. In section 3.2,
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we apply a CRW model to help make the distinction between different types of LFA-1

movement. For our study, we make use of four of the same data sets utilized by Cairo et al.

(2006); TS1/18 and MEM148 labelled LFA-1 in both resting and PMA activated forms.3

Figure 3.1: LFA-1 model proposed by Cairo et al. (2006). The model displays four confor-
mations of LFA-1: closed, open, intermediate, or ligated. Each conformation was tagged
using different epitopes, on both resting and activated cells. Based on diffusion profiles, re-
ceptors were classified as either primarily mobile (detached from cytoskeleton) or primarily
immobile (attached to cytoskeleton), shown by the filled grey boxes. (Figure from Cairo
et al. (2006)).

3.2 Rejecting the CRW Model for LFA-1 Diffusion

As discussed in the previous chapter, there are a number of methods that can be used to

understand heterogeneity in SPT tracks. However, to our knowledge, the CRW model and

FPT analysis have not been applied to SPT data. In this chapter, we establish the role

that these methods can play in determining the mobility mechanisms of LFA-1 receptors.

The idea that cell surface receptors can encounter different types of spatial heterogeneity

(Cairo and Golan, 2007), and that LFA-1 proteins exhibit anomalous diffusion Cairo et al.

(2006), suggests that more complex models and data analysis methods should be used to

understand LFA-1 movement mechanisms. In order to test proteins for a random Brownian
3SPT data was acquired at 1000 FPS with a Fastcam Super 10K Camera (Photron USA, Inc., San Diego,

CA). Video data were processed with Metamorph (Universal Imaging, Downington, PA). See Cairo et al.
(2006) for full experimental details.
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motion model, we decided to start by using an approach commonly used in ecology; testing

for a CRW model.

Since the most popular descriptors for describing the diffusion of individual proteins

are given by diffusion coefficients, we decided to utilize the CRW model to evaluate the

appropriateness of a linear fit of (2.20) to the MSD. If a non-uniform turning angle dis-

tribution was collected from data, we would expect that the single parameter D would be

insufficient to completely describe the diffusion process of LFA-1. In Figure 3.2, turning

angle and length distributions are shown for TS1/18 and MEM148 labelled LFA-1, in both

resting and PMA activated states. It is clear that the turning angle distributions for none

of the experiments of LFA-1 are uniform, indicating perhaps some degree of persistence or

anti-persistence.

We would like to know if these distributions, by selecting angles and lengths at ran-

dom, can recreate the diffusion process observed in the LFA-1 SPT data sets. To answer

this question, we test the CRW model by the bootstrapping procedure described by Turchin

(1998) (described in section 2.4.1), to see if this algorithm for creating movement tracks is

limited to a two-step correlation (via a turning angle). Each data set was tested as a popu-

lation, using 500 groups of pseudotrajectories. Figure 3.3 shows that none of the individual

populations could be described by a CRW model. From the failure of the CRW test for each

data set, we can assume that most trajectories do not follow a CRW, and instead, there is

a more complicated process involved. More troubling is that the generality of the CRW (as

previously discussed) would not support this data being subjected to diffusion coefficient

estimation, unless higher correlations between steps were ignored or removed.

Due to the possibility of macroheterogeneity, we decided to repeat the CRW test

for individual trajectories, in the hope that some individual trajectories might be classified

as a CRW. The results are given in Table 3.2. Since trajectories which pass the CRW

test have higher rates of diffusion (increased MSD slopes to fit into the pseudotrajectory

envelope), we were able to successfully filter each population of trajectories into two separate

groups, identifying a dispersive class as those trajectories that followed the CRW model.

It is interesting to note that the activated TS1/18 trajectories had an increased number of

trajectories that passed the CRW model. Comparing with the results of Cairo et al. (2006)

shown in table 3.1, we find that this agrees with seeing a primarily mobile proportion of LFA-

1 trajectories with the addition of PMA. In addition, for MEM148 labeled LFA-1 activated

with PMA, the CRW test indicates that fewer trajectories can fit the pseudotrajectory
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Figure 3.2: Turning Angle and Length Distributions collected from SPT data. (a) Angle
distribution for TS1/18 labeled LFA-1 (control) (b) Length distribution for TS1/18 labeled
LFA-1 (control) (c) Angle distribution for TS1/18 labeled LFA-1 (PMA treated) (d) Length
distribution for TS1/18 labeled LFA-1 (PMA treated) (e) Angle distribution for MEM148
labeled LFA-1 (control) (f) Length distribution for MEM148 labeled LFA-1 (control) (g)
Angle distribution for MEM148 labeled LFA-1 (PMA treated) (h) Length distribution for
MEM148 labeled LFA-1 (PMA treated).

35



0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18
x 10

5

Time step

M
S

D
 (

n
m

2
)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18
x 10

5

Time step

M
S

D
 (

n
m

2
)

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Time step

M
S

D
 (

n
m

2
)

(c)

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15
x 10

5

Time step

M
S

D
 (

n
m

2
)

(d)

Figure 3.3: Rejecting the CRW model for population data sets. The CRW model was tested
for each data set, with 500 groups of pseudotrajectories. The black line in each figure depicts
the observed MSD of the population, the red line represents the net squared displacement
according to the CRW model, and the pseudotrajectory envelope is represented by the blue
error bars. (a) TS1/18 labeled LFA-1 (control); (b) TS1/18 labeled LFA-1 (PMA treated);
(c) MEM148 labeled LFA-1 (control); (d) MEM148 labeled LFA-1 (PMA treated).

envelope, admitting slower diffusion. This is in agreement with Cairo et al. (2006), which

shows a decreased dispersive class (decreased mobility).

By using the CRW model, we were able to explore another way of measuring macro-

heterogeneity. While other methods such as diffusion profiling only break down hetero-

geneity with respect to scalar values estimated from the slope of the MSD, the basis for

separating trajectories using CRW has much deeper context. Instead of separating trajec-

tories by the magnitude of their corresponding diffusion coefficient, trajectories are grouped

according to their diffusion process. There are shortcomings of this approach. Although we

were able to rule out a two-step correlation via a turning angle, as well as random brownian

motion, there is very little information revealed about the trajectories that fail the CRW

test.

In the next section, we apply another ecological technique, variance first-passage
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Data set NT CRW Accepted (%) CRW Rejected (%)
TS1/18 labeled (control) 75 13 87

TS1/18 labeled (PMA treated) 39 36 64
MEM148 labeled (control) 39 10 90

MEM148 labeled (PMA treated) 31 3 97

Table 3.2: Proportion of trajectories that passed/failed the CRW model in each data set.

time, to gain more insight into trajectories for which the CRW model was rejected.

3.3 Variance First-Passage Time Analysis of LFA-1 Receptors

While most macroheterogeneity was taken care of by the filtering procedure discussed in

section 3.2, the larger problem was understanding the microheterogeneity in trajectories

for which the CRW model was rejected. Motivated by the non-uniform angle distributions

(Figure 3.2), we decided to see if LFA-1 particles exhibited properties of the area restricted

search (ARS), by using the variance first-passage time (FPT) analysis (see section 2.4.2 for

details). A peak at π in the turning angle distribution indicates high direction reversal,

common in regions of confinement. The knowledge that LFA-1 receptors undergo immobile

states, as a result of cytoskeletal adherence, ICAM-1 binding or receptor clustering (recruit-

ment) justifies the use of variance FPT in LFA-1 data. Using variance FPT, we scanned

each trajectory for confined regions. Confined motion for a given receptor often yields het-

erogeneous areas of highly correlated turning angles and lengths, which are analogous to

animal searching in high prey density or resource rich areas. Due to these high correlations,

confined motion should cause the rejection of the CRW model.

With biological motivation for searching for regions of confined movement in SPT

data, we applied the variance FPT calculation to each individual trajectory within its re-

spective population. We calculated S(r) for each trajectory (see section 2.4.2), letting r

vary from 0 nm to 1500 nm. Each curve reflects the changes in variance FPT over different

spatial scales. Peaks in S(r) represent the occurrence of large changes in microheterogene-

ity, indicative of some degree of confined or concentrated diffusion, which transiently occur

throughout the trajectory. In addition to indicating higher correlation, the position of the

peak gives a good indication of relative confinement size (Fauchald and Tveraa, 2003). We

note that the trajectories which were identified as CRWs in the previous section do not

contain any higher correlation and lack peaks in the FPT curve.
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In section 3.3.1, we discuss in detail how the results of the variance FPT analysis allow

us to make conclusions about LFA-1 diffusion behaviour in response to PMA activation.

Following this discussion, in section 3.3.2, we speculate about the relevance of peaks in S(r)

with respect to receptor clustering.

3.3.1 Understanding Population Structure of LFA-1 Data Sets

In Figures 3.4 and 3.5, we summarize the results of applying the variance FPT method to

the four data sets of interest, namely TS118 labeled LFA-1 (control and PMA activated) and

MEM148 labeled LFA-1 (control and PMA activated). For each data set, we separated the

trajectories based on their peak locations using the peakdet algorithm written by Billauer

(2008). This algorithm detects peaks in curves by checking for a threshold difference between

a maximum and its surroundings. By measuring the height of a peak relative to adjacent

troughs, the algorithm is able to pick out meaningful maxima and minima in data series.

After individual CRW testing, each S(r) curve was binned into one of four categories based

on peak location: 0-50 nm, 50-150 nm, >150 nm, and those that were not rejected as a

CRW (little or no peak). For Figures 3.4(a)(b) and 3.5(a)(b), A-D show the S(r) curves

for each of these four categories, while F displays sample trajectories from each. Figure E

shows the average S(r) curve from each category. While the bin values for peak location

were chosen by convenience, the method is very useful for understanding the full range of

probable movement behaviours. It is interesting to note that the sample trajectories from

group D (CRWs) are much more diffusive and larger in size than the sample trajectories

from any other group. Figure 3.6C provides the overall percentages of each population

within each category. From this visualization, it is useful to see the population structure

change for different labels and under different conditions.

While the separation of curves based on peak location is revealing, the averaged

curve over the peaked S(r) curves (see Figure 3.6) demonstrates the method’s usefulness in

coordination with the model proposed by Cairo et al. (2006). Figures 3.6A and 3.6B both

provide a population view of the macroheterogeneity structure of LFA-1 proteins in different

data sets. Averaging over all the peaked S(r) curves allows us to view the overall effect of

PMA activation on LFA-1 protein receptors. For TS1/18 labelled LFA-1, in addition to the

overall increase in mobility with activation based on the CRW test (discussd in section 3.2),

we observe a shift to the right of the average variance FPT peak position upon activation.

This shift is indicative of an increase in the relative size of confinement zone, probably
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as a result of the decreased cytoskeletal interaction by the intermediate state of LFA-1 as

described by Cairo et al. (2006) in Figure 3.1. In addition to the decreased mobility observed

(discussed in section 3.2) for MEM148, there is a large increase in trajectories with peaks in

S(r) in the 50 nm range. In relation to the model in Figure 3.1, this provides evidence for

cytoskeletal binding, and provides a rough estimate for the spatial region of diffusion when

LFA-1 proteins undergo cytoskeletal adherence or clustering behaviour.

3.3.2 Estimating Relative Size of Confinement Zones

LFA-1 activation has been proposed to be a product of recruitment or ‘clustering’ of multiple

receptors within a spatial region (Cairo and Golan, 2007). However, there is a lack of

experimental evidence for the formation of these clusters on activated cells (Cambi et al.,

2006).

Motivated by the observation that monocytes readily bind to cells with ICAM-1, while

dendritic cells do not, Cambi et al. (2006) explored the membrane-receptor organization of

LFA-1 on these cells via Transmission Electron Microscopy (TEM). As a result, they found

three levels of avidity for LFA-1 proteins: (i) randomly distributed inactive molecules, (ii)

ligand-independent nanometer sized clusters, and (iii) ligand-triggered micrometer sized

clusters. By using a nearest neighbor algorithm, Cambi et al. (2006) divided distances into

three different classes, 0-50 nm, 50-100 nm and >100 nm, where clusters were defined when

two proteins were within 50 nm of each other. Cluster sizes were observed to be much larger

in size (with increased occurrence) for monocytes, than for dendritic cells.

In an alternate experiment, near-field scanning optical microscopy (NSOM) was used

to identify cluster domain sizes of LFA-1 within a resolution of 30 ± 6 nm (van Zanten

et al., 2010). The results of this study are shown in Figure 3.7. A bimodal distribution

of domain size was created based on 52 individually observed fluorescent spots, with the

main distribution centered at 72 ± 21 nm, and a smaller distribution around 130 nm. These

studies lend support to the hypothesis that spatial configuration and receptor density plays

a role in LFA-1 activation.

The size of confinement zones observed via the variance FPT method by the position

of the peak in S(r) have been predicted within multiple different ranges (see Figures 3.4 and

3.5). In particular, we observe that MEM148 labeled LFA-1, upon activation have a large

population of confined trajectories in the 50 nm range. Although this measurement does

not necessarily describe clustering, it describes the spatial scale at which single particles
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Figure 3.4: Variance FPT analysis for TS1/18 labeled LFA-1, (a) control and (b) PMA
treated. Each S(r) curve was categorized into one of four groupings based on peak location
(detected using Billauer (2008)): (A) peaks in the S(r) curve that occurred in the 0 - 50
nm range, (B) peaks in the S(r) curve that occurred in the 50 - 150 nm range, (C) peaks
that occurred > 150 nm or (D) trajectories that were not rejected as a CRW (no peak). (E)
The average S(r) curves for each category are overlaid for viewing. (F) Sample trajectories
from each category. The scale bar is 1 µm.
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Figure 3.5: Variance FPT analysis for MEM148 labeled LFA-1, (a) control and (b) PMA
treated. Each S(r) curve was categorized into one of four groupings based on peak location
(detected using Billauer (2008)): (A) peaks in the S(r) curve that occurred in the 0 - 50
nm range, (B) peaks in the S(r) curve that occurred in the 50 - 150 nm range, (C) peaks
that occurred > 150 nm or (D) trajectories that were not rejected as a CRW (no peak). (E)
The average S(r) curves for each category are overlaid for viewing. (F) Sample trajectories
from each category. The scale bar is 1 µm.
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Figure 3.6: Variance FPT analysis for LFA-1 populations. Average S(r) curves were cal-
culated for all the trajectories in the TS1/18 labeled (A) and MEM148 labeled (B) data
sets that were rejected by the CRW model. The control data sets are depicted by the black
solid line, while PMA activated data sets are shown by the dotted grey line. (C) Shows the
overall percentages for the category classifications made in Figures 3.4 and 3.5.

experience the greatest heterogeneity. Given that the clusters as observed with TEM and

NSOM are on spatial scales 20-60 nm, it is not surprising that the particle’s spatial scale

as measured with variance FPT is within the same range. Thus, our analysis supports

nanoscale diffusion changes within the range of the estimated cluster size, especially in PMA-

induced cell activation. Specifically, the variance FPT analysis agrees with the findings of

van Zanten et al. (2010), that the majority of cluster sizes lie in the range of 20-60 nm with

a smaller proportion of larger scale clusters.

This pinnacle of our findings admits an important role for variance FPT, as it is a

simple analysis that provides macroheterogeneity filtering as well as supplies microhetero-

geneity information, regarding cluster and confinement size.
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Figure 3.7: The occurences of cluster sizes of LFA-1 proteins as determined by van Zanten
et al. (2010) using NSOM. The main distribution is centered at 72 ± 21 nm, and the smaller
distribution around 130 nm. (Figure from van Zanten et al. (2010)).

3.4 Trajectory Colouring

We believe that with further research and numerical analysis, the FPT curve can tell us

much more about the microheterogeneity of diffusing particles. Since peaks in S(r) supply

an important parameter regarding spatial scale, we can review the discrete FPT distribution

at the spatial scale of the peak maximum r, to discern areas of confinement, or anomalous

diffusion.

A quick exploration of a discrete FPT distribution is shown in Figure 3.8. Areas of

high variability and high FPT in relation to other areas of the distribution were selected

by eye and coloured. The timespan of colouring was also identified within the trajectory

plot. We found that specific areas of the discrete distribution (those with a sustained high

FPT) correlated heavily with diffusion constrained to a small spatial region. Although tools

to automatically identify these regions need to be developed, we see a great potential for

analyzing anomalous diffusion on an individual scale to estimate parameters such as time

spent, frequency and functional response to clustering or binding to the cytoskeleton. These

fundamental parameters have not been easily estimated from other methods.

3.5 Evaluation of Methods and Results

In this chapter, we have demonstrated the utility of the CRW model and variances FPT

as ecological approaches to SPT data analysis. The CRW model was useful in filtering

trajectories which were limited to short term or no correlation between steps. However, it

was not useful in being able to detect more complicated movement patterns in behaviour.

This became much more concerning when we observed that there was a large majority of

trajectories that individually failed the CRW model. As a preliminary step for filtering het-
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Figure 3.8: Trajectory colouring for trajectory 22 from MEM148 labelled LFA-1 data (con-
trol). (a) The trajectory plot with coloured regions chosen from areas of sustained high
FPT. (b) The FPT vs time curve with an overlying average curve (calculated with a win-
dow of 50 points). The FPT was calculated with r = 21 nm, selected based on the location
of the S(r) peak of the trajectory. Regions of high FPT were chosen and coloured by visual
inspection.

erogeneity, however, the CRW model supplied us with two groups of trajectories, described

as dispersive (for those accepted as a CRW) and non-dispersive (those that are rejected as

a CRW), which reflected the results based on diffusion profiling found in Cairo et al. (2006).

In diffusion profiling (discussed in section 2.3.4), there are a number of parameters

that need to be correctly defined, thus making the method purely qualitative and difficult

to compare across different lab environments, where conventions might be different. For

example, varying definitions of Dm and DM can cause large discrepancies between different

data sets or experiments. Also, in the case of detecting multiple populations of closely posi-

tioned diffusion coefficient distributions (Dslow and Dfast), it can be difficult to determine

in which population certain proteins lie. While diffusion profiling has been very successful

in proposing biological models (Cairo et al., 2006; Saxton, 1997), it seems to fall short of

being able to accurately describe heterogeneity. On the other hand, the CRW model has a

larger underlying theoretical framework in which trajectories are explicitly separated based

on their diffusion process. Trajectories can not only be distinguished as CRWs based on
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their MSD curve positioning within the pseudotrajectory envelope, but the confidence of

accepting a trajectory or population of trajectories can be quantitatively determined by the

relative distance of the MSD curve to the edges of the envelope. As a result, we can accu-

rately characterize individual trajectories, not only based on their qualitative grouping in

relation to the single parameter Dm, but based on angle and length correlations throughout

the entire trajectory. As such, important information about anomalous diffusion that would

not otherwise be noted, is included in the analysis. Trajectories that pass the CRW boot-

strapping test (either as individual trajectories or as an entire population) contain further

information about the diffusion process via their turning angle and length distributions.

Trajectories that fail the test, however, give a strong indication for anomalous diffusion that

would not be detected in diffusion profiling.

As previously discussed, the CRW test is only really useful as a first step in analysis

for SPT data. For our particular SPT LFA-1 data sets, the CRW model fails for the majority

of the trajectories. This has property has also been noted in other data sets (Cairo CW, U

of A, pers. comm.). Whether this is due to more complex diffusion processes, or merely due

to the viscous and obstructed environment of the plasma membrane, is not known; further

analysis is required to assess microheterogeneity.

Variance FPT analysis seems to pick up where CRW leaves off. Through a simple

and intuitive analysis, we can determine the spatial scale at which heterogeneity occurs,

post data collection. This spatial scale is useful in a number of ways, providing insight into

the level and relative location of concentrated diffusion throughout an individual trajectory.

The location of peaks in the variance of FPT curve (S(r)) provide confinement size estimates

accurate within an order of magnitude. For a long enough SPT track length, the specificity

of this type of information has only previously been estimated by complex experimental

procedures (Cambi et al., 2006; van Zanten et al., 2010).

However, the novelty of this method has left a large number of unanswered questions.

The structure of S(r) curves has not been intensely explored in relation to different param-

eters (rc, po, pi) or to different types of diffusion processes and provides opportunities for

further work.
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4 Errors in Movement Data 4

Error in movement data is a research topic which has increased in popularity with the

development of new techniques and methods for data acquisition. Lab experiments and

field studies involve methods that rely on the measurement of position, state, or location of

an individual, which are translated via observational measurement into data. It is in this

translation that errors and biases are likely to occur from a variety of different causes.

The importance of being aware of error in data is largely due to the impact that

error can have on movement measurements, causing repercussions that can affect the va-

lidity of derived biological or mathematical models that are used in resource, conservation,

epidemiological or pharmaceutical planning. From an ethical standpoint, errors could also

lead to incorrect conclusions about cellular and physiological functions, spreading inaccurate

information throughout the scientific community. For this reason, the fear that small errors

in data could cause false conclusions and large miscommunications, error is no longer an

unwanted byproduct, but a commonly studied phenomenon.

In general, measurement error can often be described as either random or systematic

error (Taylor, 1997). Random error is defined as the reduction in precision of a single mea-

surement. It can cause natural variation around a true value, so that the mean of repeated

measurements converges to that true value. For example, position error, or uncertainty in

the measurement of a single position due to noise is a common form of random error. Often,

statistical methods can be used to reliably estimate the structure of random error (Taylor,

1997). Systematic error, on the other hand, can be defined as the reduction in accuracy

of a measurement. Thus, it is much more difficult to manage and identify. Rather than

causing variation around a single value, systematic error causes a non-random deviation in

all the estimated values of a true value, shifting the entire mean, thereby making the true

value unattainable. Since repeated measurements would also undergo the same amount of

systematic error, the true location cannot be identified by repeated measurements. Thus,

systematic error can lead to much more serious consequences than random error. While

random error naturally occurs due to experimental or environmental noise, systematic error

is usually a product of improper experimental design, incorrect sampling (Turchin, 1998),

or biases involving missed data points (Frair et al., 2004). As a result, the structure of
4Portions of this chapter were submitted in participation for a seminar course Biol 633: Advanced Tech-

niques in Biology taught by Dr. Mark Lewis and Dr. Evelyn Merrill at the University of Alberta, in the
Fall semester of 2009.
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systematic error can only be understood by evaluating measurement methods, technological

factors, and understanding the variables and specific nature of the data set.

Throughout this project, a common theme has been the link between models per-

taining to ecology and cellular biology. In this chapter, we discuss how error in movement

data, present in both GPS and SPT data, contributes heavily to this theme. Specifically, we

address movement error in relation to positional error, or error associated with measuring a

particular location (section 4.2), and sampling error, or false impressions created by using

the incorrect sampling interval to observe a movement track (section 4.3).

4.1 Causes of Error in Movement Data

We begin by discussing the context of movement error in terms of its causes. Due to their

similarity in form, the consequences of error in GPS and SPT data can be comparable.

However, the congruence in error causation within these environments is not as obvious. In

the next three sections, we discuss the sources of error that are shared by both types of

experiments; behavioural, environmental and human/technological.

4.1.1 Behavioural Causes of Error

The complex biological factors affecting the movement of individuals result in a variety of

sources of measurement error in GPS and SPT data. Often, the source of this error can be

attributed to the collared or labelled individual itself.

In ecological situations, animal behaviour can often disrupt the clarity of data ac-

quisition from the GPS collars or radio tags leading to missing data points. These missing

point biases have been documented in countless studies (D’Eon et al., 2002). Specifically,

the precise orientation of a collar or tracker on an animal can manipulate the accuracy or

precision of a true position. For example, foraging black bears often have a reduced GPS

fix rate (chance of successfully obtaining a position by satellite) due to the orientation of

their GPS collars while digging (Obbard et al., 1998), resulting in missing data points. In

other cases, moose and deer have been known to cause reduced fixed rates while in bedding

position (Moen et al., 1996; Bowman et al., 2000). Even animal movement speed can modify

the amount of error affecting movement data. It has been observed that animals, such as

deer, that roam more freely with higher motility have less position error than slower moving

animals (Bowman et al., 2000). Reasons for this particular error are related to sampling
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rates, and will be discussed later in section 4.3.

Funnily enough, many of these examples are very similar to situations that can occur

in SPT data. Protein receptors undergo a number of different diffusion behaviours that

can affect a clear SPT signal. Analogous to animal bedding or foraging, receptors can

undergo anomolously slow diffusion. If the slow diffusion is on the scale of the position

error, position error can largely affect measurements. Various types of confined motion

such as transient confinement zones, or obstructed or restricted motion due to cytoskeletal

adherence or obstacles in the plasma membrane can yield anomalously slow diffusion.

These behavioural challenges can cause a variety of problems in estimating relation-

ships to spatial features. For example, if lost fixes and high position error are associated

closely with bear foraging or deer bedding, there would be large biases in estimating the im-

portance of resources patches or habitats associated with these behaviours (Bowman et al.,

2000). In SPT, one might see similar problems for slowly moving protein receptors with high

position error. It would be difficult to understand the specific spatial aspects of confined

diffusion, e.g., confinement size or location, for a given receptor if position error was very

high.

4.1.2 Environmental Causes of Error

Environmental components, external to animal or receptor behaviour, can also cause large

error problems. Due to the widespread use of GPS for a variety of different animals in very

diverse and heterogeneous environments, the effects of terrain and canopy cover have been

studied thoroughly. D’Eon et al. (2002) showed that studies done in steep mountainous

terrain with mature coniferous forests admitted higher GPS error than studies done in

open clearings. It was also shown that the combined effects of terrain and canopy cover

could lead to a more serious error problem than in areas with only one of the two factors

(D’Eon et al., 2002). Without doing an environmental study of the organism, it is difficult

to understand changes in diffusion in behaviour which could be classified as erroneous.

However, modern studies involving spatial geographic information systems (GIS) allow the

overlay of a movement path with landscape features such as hills, mountains and various

types of forests, to supplement the knowledge of GPS error in these locations.

The cellular environment can also cause different types of error and biases. The

plasma membrane for example, is hardly an ideal medium for diffusion. It is full of twists

and turns, involving strange naturally occurring corrals or craters that greatly modify the
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diffusion behaviour of the protein. Without a way to capture an image of the surface of the

cell (akin to GIS), we have no way of determining the cause of these changes in diffusion, and

often these create a bias in determining a biological model for receptor behaviour. It is for

this reason that synthetic membranes admit higher rates of diffusion than naturally occurring

plasma membranes (Cairo, pers. comm.). In addition, the effect of surface roughness on

SPT has been noted (Hall, 2008). Other instances of environmental error include the loss

of SPT labels as protein receptors diffuse to the edge of the membrane only to continue

diffusing on the other side of the cell, out of our field of view. This can result in smaller

length tracks which, from previous discussion, can reduce the ability to detect confinement

zones, or can result in a loss of precision when detecting a diffusion coefficient D from the

MSD curve.

4.1.3 Human and Technical Causes of Error

Apart from the causes of error closely associated with the moving individual in question,

there are a number of sources of error that are caused directly by the methods of observation,

or biases that are directly a result of human interaction. In ecology, the malfunctioning of

GPS collars (Bowman et al., 2000) or short-lived battery life of GPS loggers (Ryan et al.,

2004) can cause missed point biases in movement data. Even until May 2000, the accuracy

of GPS had been intentionally degraded by the policy of Selective Availability, enforced by

the US Department of Defense, to prevent potential enemy use.

Among the different types of technical and microscopy sources of error, a large source

of unexplored bias in single-particle tracking exists in the selection and tagging of individual

protein receptors. Often faster particles are chosen based on their visibility (Cairo CW, U

of A, pers. comm.), biasing the macroheterogeneity by underestimating the presence of a

slower receptor population. Other errors and biases in SPT analysis are due to the effects of

SPT labels themselves, whether they are colloidal gold, latex beads or fluorescent particles

(Saxton and Jacobson, 1997). Issues include drag from interaction with the extra-cellular

matrix and cross-linked binding sites due to multivalent labels (Saxton and Jacobson, 1997).

Cross-linking often reduces the diffusion rate and causes hindrance for moving through

spatial features (Saxton and Jacobson, 1997). Problems with the loss of a clear SPT signal

using green fluorescent protein labels has also been noted (Dushek O, U of Oxford, pers.

comm.).

In the specific case of the data analyzed in this thesis, the size difference between
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the LFA-1 protein and polystyrene bead can also be a potential source of position error.

While the extracellular portion of LFA-1 is only approximately 15 nm (across) x 21 nm

(high) (van der Merwe et al., 2000), the label is substantially larger at 1 µm (Cairo et al.,

2006). Thus, it would reasonable to assume the presence of error attributed to detecting

small movements (at a resolution of tens of nanometers) of the center of the polystyrene

bead.

4.2 The Effects of Position Error

Position error in movement data affects each position throughout a movement trajectory

with a slight deviation. This may not seem to change the overall demeanor of a movement

track, however, it can cause large deviations in the calculation of movement metrics used in

the parameterization of mathematical models. Due to the widespread use of CRW models

(Turchin, 1998; Kareiva and Shigesada, 1983), the effects of error on step length and turning

angle distributions have been thoroughly explored (Hurford, 2009; Jerde and Visscher, 2005).

Figure 4.1: The effect of error on step lengths. In particular, for small step lengths, position
error may cause an overestimation or underestimation of the true step length (Jerde and
Visscher, 2005). In this figure, a measured step length L̂ is shown as an overestimation in
relation to the true step length L. (Figure from Jerde and Visscher (2005)).

Position error can cause overestimation or underestimation in step lengths (Jerde

and Visscher, 2005) based on the extent of error at each location. Figure 4.1 illustrates the

discrepancies that can occur, specifically for overestimation. For small step lengths, the error

distributions can overlap between locations, allowing for a larger chance for overestimation.

As a result, for stationary or slow moving animals (Jerde and Visscher, 2005; Ryan et al.,

2004), overestimation can be a serious problem.

For small step lengths within the magnitude of the position error, turning angle

calculations can also undergo large quantities of inconsistency. Hurford (2009) observed that

turning angle measurements for small step lengths are measured as spurious 180 degree turns,

which might imply that an animal is doing a large quantity of direction reversal commonly

characterized in foraging or encamped behaviour (Morales et al., 2004), or in terms of
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protein receptors, undergoing confined diffusion, clustering, or diffusion with adherence to

the cytoskeleton.

In view of the effects of error on step lengths and turning angles and our use of

these distributions in testing for CRWs, the existence of error is an important issue in the

analysis of SPT data of LFA-1. The turning angle and length distributions for the SPT data

of protein receptors exhibit features which could be interpreted as products of position error

and sampling errors. It should be noted that the turning angle distributions of LFA-1 data

(see Figure 3.2) contain two distinct peaks; a peak at 0 or 2π, indicative of persistence (or

false persistence caused by oversampling) and a peak at π, which could be spurious turning

angles caused by high levels of position error (Hurford, 2009). After our implementation

of the variance FPT analysis however, it could be understood that turning angles with a

peak around π are due to a process of confined diffusion. The element of persistence in the

turning angle distributions (peak at 0 or 2π) may be an artifact of oversampling, though it

may be that proteins naturally show some small degree of persistence in their movement,

which may be of interest to researchers in receptor membrane interactions. In addition, the

length distributions look to be very skewed from a normal distribution, as if smaller lengths

are less detected, which could be due to the fact that smaller lengths are overestimated in

the presence of error. However, it very well could be that the smaller step lengths are not

observed due to the minimum length size observable by microscopy.

The issue of strange peaks in the angle distributions was somewhat alleviated when

we inspected the turning angle distributions of individual trajectories rather than the entire

population. Results are shown in Figure 4.2. We found that the angle distributions for

trajectories experienced peaks only at π or 2π (Fig. 4.2(a) and (b)), while other distributions

had neither (Fig. 4.2(c)) or both peaks (Fig. 4.2(d)) in the distribution. Due to the

variety of characteristics for individual distributions, we were satisfied with the existence of

macroheterogeneity across distributions. This provided context and continued justification

for our work; to better understand the large variety of movement behaviours in LFA-1 data.

Measuring the structure of position error can provide the ability to detect and quan-

tify its effects on movement data. In section 4.2.1, we will discuss how the structure of

position error can be characterized. In section 4.2.2, we will apply this characterization to

the better understand the role that position error can play in SPT data.
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Figure 4.2: Turning angle distributions for individual trajectories. Angles are measured in
radians, as described in Appendix A.2. (a) Distribution with a peak at π; (b) Distribution
with a peak at 2π; (c) Distribution with a peak at both π and 2π (d) Distribution with no
peak.
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4.2.1 Describing the Structure of Position Error

After the reluctant admission of the possibility of the existence of position error in movement

data, often the next step is to attempt to quantify the error and to describe structure of

error in movement data. Since this has been realized in ecology for many years, a number

of ways to describe error structure have been established for GPS technology that can be

adapted to SPT data.

A common technique involved in measuring the structure of position error, is by

measuring the distribution of measured points around a stationary transmitter (GPS collar

or optical bead). A mathematically convenient way to categorize or quantify position error

is by fitting a suitable probability density function to this error distribution. Common

distributions used to fit the spread of error positions are the Normal distribution,

f(r) =
r

σ2
e
−r2

σ2 (4.1)

Laplace distribution,

f(r) =
r

β2
e
−r
β (4.2)

or Bessel distribution,

f(r) = rρ2K0(ρr) (4.3)

where f(r) is the probability of finding a point at a distance r from the true value, K0 is a

modified Bessel function of the second kind, and σ, β and ρ are estimated from maximum

likelihood methods (Hurford, 2009). The usefulness of this method is that it grants the

ability to generate randomly distributed position errors, so that they can be added to

simulated movement paths and can be studied more rigorously.

4.2.2 Position Error in SPT Data

To explore the effect of position error in the SPT environment, we used the calculation of

MSD to understand, given a fixed magnitude of error, the spectrum of diffusion coefficients

that would be most vulnerable to spurious peaks at π in the turning angle distribution. From

a fixed protein label, we first connected the measured locations in the order which they were

recovered (separated by a time step), and calculated the MSD based on the method by Qian

et al. (1991), discussed in section 2.3.2. As a result, we obtained an MSD curve, from which

we estimated a diffusion coefficient, Derror. From this diffusion coefficient, using formula
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2.22, we were able to generate a distribution of “error steps” that were added to each step

of a random walk simulated by a diffusion coefficient Dsim. Then, each step of the original

random walk was resampled to become the new measured position.

We ran simulations for different magnitudes of the diffusion coefficient and observed

an emergence in a central peak of the turning angle distribution, illustrating the possible

magnitude of error that might cause bias in estimating model parameters from the distribu-

tion. The results of this simulation are shown in Figure 4.3. We show the trajectory plot,

turning angle distribution and length distribution for trajectories with varying magnitudes

of error represented by the ratio Derror
Dsim

. We see that as we increase the amount of position

error in the simulated trajectory, the peak at π is more pronounced. This verified, through

an alternate means than described by Hurford (2009), that spurious turning angle peaks

could be caused by position error. However, it was difficult to determine if this was the case

for the LFA-1 data sets.

4.3 Sampling Error

A common feature of all types of movement lies in the resolution of the movement path,

which is usually set by the sampling interval of GPS or SPT measurements. The length

of a sampling interval is usually determined by a number of factors. The shortest length

of a sampling interval is limited by technological ability, i.e., the transmission speed of

a GPS collar, or the shutter speed of the camera on a microscope. Although there is

no real limitation to the longest sampling interval, the interval must be short enough to

capture meaningful movement patterns. It is with this dichotomy that experimentalists are

concerned, as choosing a correct sampling interval can be challenging. If not appropriately

chosen, an incorrect sampling rate can result in biases due to sampling error.

A high sampling rate, though it might seem preferable, can cause an autocorrelation

in step lengths and can give rise to a spurious turning angle peaks at 0 degrees (Turchin,

1998), giving an impression of false persistence. In ecology, this type of oversampling can

cause a large underestimation in home range patterns (Swihart and Slade, 1985). However,

Moorcroft and Lewis (2006) proposed that this can be easily corrected by sampling data

at longer intervals until positive correlation is removed. Although this may seem like a

good idea, especially in studies where persistence is deemed not important for the biological

questions being asked, it can cause many problems for studies where measuring possible
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(a)

(b)

(c)

Figure 4.3: The emergence of a spurious peak at π with an increased magnitude of position
error in simulated trajectories. Trajectories were simulated with a uniform turning angle
distribution and normal length distribution derived from a diffusion coefficient (Dsim) as
described in section 2.2. Error was then added to each position, with a deviation selected
from a normal distribution generated by a diffusion coefficient at a different magnitude
(Derror). The trajectory plots, length distributions and angle distributions are shown for
different magnitudes of error, (a) Derror

Dsim
= 0.001, (b) Derror

Dsim
= 0.01, (c) Derror

Dsim
= 0.1.
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persistence can be deemed a point of interest, as in SPT receptor movement. While animals

can be assumed to have a degree of persistence, the ability of receptors to under go persistent

movement is still debatable. Therefore, we cannot discount persistent peaks in the angle

distribution (around 0 or 2π) as artifactual or not important. In addition, for very small

step lengths or slow moving individuals, a high sampling rate can amplify the effect of GPS

or SPT position error, increasing the rate and quantity of false readings.

On the other hand, a low sampling rate, yielding longer sampling intervals, can also

result in biases from sampling error. For highly tortuous movement tracks, for example, a low

sampling rate can underestimate the distance traveled (Ryan et al., 2004). For these reasons,

Jerde and Visscher (2005) suggest that the choice of sampling interval should be based on the

motility of the individual, to prevent errors or biases in model parameterization. While this

may seem reasonable for animal studies, where observations about animal motility can be

made based on environment and resource surveys, there is still much debate surrounding the

appropriate sampling interval for different protein receptors. As a result, a common practice

in SPT has become to sample as much as possible (within the range of the technological

equipment) such that any lower sampling rate can be chosen for analysis. But the question

remains, which sampling rate allows for the best interpretation.

The issue of oversampling was explored in LFA-1 SPT data, by decreasing the sam-

pling rate so that less position points were used in bootstrapping procedures. Although the

turning angle peak at 0 disappeared after the data was resampled by taking only every 2nd

step, the CRW model was still rejected (see Figure 4.4). In fact, resampling the trajectories

by 100 and even 500 steps still resulted in a model rejection.

! " #

Figure 4.4: CRW test on resampled data. Despite the resampling of the TS1/18 labeled
LFA-1 data set by (A) 2 steps (B) 50 steps and (C) 100 steps, the CRW test was still rejected.
Each oversampled data set was tested with 500 groups of pseudotrajectories, forming the
pseudotrajectory envelope (blue). The observed MSD of the data (black) is significantly
different from the expected MSD of the model (red) in all cases.
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4.4 Summary of Error in LFA-1 SPT Data

In this section, we summarize our investigation of the existence of position and sampling

error in LFA-1 data. The difficult identification and removal of systematic error rely on a

better understanding of SPT and the cellular environment. Although there are no direct

methods derived from data analysis to deal with this type of error, we propose that improved

experimental techniques should reveal previously unnoticed factors causing systematic error.

In section 4.2, we identified some characteristics of the LFA-1 turning angle dis-

tributions that could imply position and sampling error. In particular, we identified the

existence of turning angle peaks at π which we verified can be caused by position error

(Hurford, 2009). However, when we looked at the turning angle distributions of individual

trajectories, we noted that despite possible position error, the richness of heterogeneity still

existed. In addition, we discovered the possibility of confined diffusion, which could also be

a reason for turning angle peaks at π. The peak at 0 or 2π could signify that the data is

being oversampled. However, the resampling of data points for the TS118 labeled LFA-1

(control) by every two steps reduced the data to half the size without yielding any new

information. Even undersampling by 100 steps resulted in CRW model rejection.

To counteract the high elements of error in movement data, a number of simple fil-

tering methods have been developed to reduce bias in conclusions made by mathematical

modeling. Since small step lengths are associated with spurious turning angles, methods

have been developed to filter step lengths below a certain threshold (Hurford, 2009). How-

ever, the overall result is a net loss in movement information. Removing pairs of points from

a data set can be costly. Where precision is increased by removing inaccurate measurements,

losing data can be also detrimental to modeling. In the case of LFA-1 SPT data, where the

mechanism of movement is still widely unknown, we decided against pursuing data filtering.

In addition, removing small step lengths would be detrimental to any diffusion process in-

volving the hypothesized “stationary” or “adhered state” for protein receptors. As a result,

we concluded that the filtering of data points was not worth the loss of information and lack

of benefits received by doing so.

However, once more information can be specifically observed about the cellular envi-

ronment and receptor behaviour, we propose that there could be other ways to appropriately

manage different types of error in SPT data. On the ecological front, studies on elephant

seals are prone to errors based on diving and ocean surface temperature gradients. However,
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new bootstrapping procedures have been developed that are based on a variety of charac-

teristics such as animal speed, direction, and landscape features (Tremblay et al., 2009). As

a result, these methods are used to more accurately recover movement paths. With more

technological improvements and better developed data acquisition techniques, it is possible

that additional helpful data (like cell surface characteristics) could be collected for protein

receptors and used for more accurately acquiring SPT trajectories.
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5 Discussion

In this thesis, we concerned ourselves with the analysis and interpretation of SPT movement

data of LFA-1 integrin protein receptors. The regulation of LFA-1 integrin plays an essential

role in the formation of the immune synapse and triggering the immune response. In view of

the observation that the formation of LFA-1 clusters is closely linked to LFA-1 binding (van

Kooyk and Figdor, 2000), many studies have focused on the diffusion properties of LFA-1,

to discern different molecular conformations and affinities (Cairo et al., 2006). Due to the

rich macro and microheterogeneity in LFA-1 movement processes (Cairo et al., 2006; Das

et al., 2009), we applied ecologically driven mathematical models to detect and understand

different types of movement mechanisms in LFA-1 data, and used this understanding to

build on the multi-state model of LFA-1. In section 5.1, we summarize our results and

conclusions in the context of our objectives. Lastly, in section 5.2, we recommend future

directions for research.

5.1 Summary and Conclusions

Understanding heterogeneity in movement data is key in building biological models of both

ecological and cellular environments. It is important to realize that the role of mathematical

movement models is not restricted to a single research area, but can be generalized as tools

for different scenarios, both macroscopic and microscopic. In chapter 2, we described the

general nature of mathematical movement models, and how current ecological and cellular

techniques are rooted on the same simple diffusion process. Since previous work on SPT

analysis mainly relied on the spread of diffusion coefficients (Saxton, 1997; Cairo et al., 2006),

based on the assumption that each individual trajectory followed a simple random walk

processes, we introduced more general techniques that allowed for persistence and confined

diffusion. We discussed the utility of the CRW model developed by Patlak (1953), adapted

for application by Kareiva and Shigesada (1983), as a first step in analysis to understand

the underlying movement process. In addition, we discussed variance first-passage time, and

how it can be used to detect and estimate the size of transient confinement zones.

In Chapter 3, we built on work done by Cairo et al. (2006) by developing a fresh

approach to analyzing single-particle tracking data. By using models primarily utilized in

ecology, we were able to view properties of LFA-1 diffusion that are not discernible by other

mathematical methods. In particular, we used the CRW model to detect non-Brownian
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motion and high degrees of autocorrelation, suggesting more complicated movement mech-

anisms. As a result, we were able to understand population structure based on diffusion

mechanism rather than by diffusion rate. We found each data set could not be collectively

described as following the CRW model, and that the majority of individual trajectories

failed the CRW bootstrapping test due to high degrees of correlation in turning angles and

step lengths. While trajectories that individually passed the CRW bootstrapping test are

described as dispersive, those that failed the test are thought to be a product of micro-

heterogeneity within individual trajectories.

This microheterogeneity was explored further using variance first-passage time, to

detect areas of concentrated diffusion and provide evidence for transient confinement zones

in LFA-1 data. Many individual trajectories were classified as having confined diffusion,

and we were able to analyze population structure based on the size of confinement zones

as determined by the location of peaks in S(r). By viewing an increase in intensity of

small confinement zones (≤50 nm) following PMA activation in MEM148 labeled LFA-1,

we conclude that this is possibly a result of cytoskeletal interactions inducing recruitment, or

the formation of clusters. This supports the observations made of LFA-1 clustering (Cambi

et al., 2006; van Zanten et al., 2010). The relative size of confinement zones as predicted

by peaks in the variance FPT curves, S(r), predict a similar spatial scale as size of clusters

observed by microscopy (Cambi et al., 2006; van Zanten et al., 2010).

In Chapter 4, we led a discussion of the role of error and bias in movement data.

Although we were not able to provide a solution for particular instances of error in SPT data,

we were able to provide an overview of different types of error and common solutions, raising

awareness of the universality of error and bias across ecological and cellular platforms.

In summary, this thesis demonstrates that some data analysis techniques from ecology

can be applied fruitfully in the context of cell biology. As a result, we provide a novel

approach into understanding macroheterogeneity and microheterogeneity of SPT data, and

insights into the mechanism of LFA-1 diffusion.

5.2 Future Work

In view of our results, there are a variety of future directions for understanding SPT data,

particularly for investigating the specific mechanism of LFA-1 movement.

For trajectories that were classified as CRWs, we recommend extensive analyses to be
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done on the angle and length distributions of the individual movement tracks. This would

enable further understanding of the dispersive class of LFA-1 proteins (Turchin, 1998). In

addition, it is possible that more could be learned from the spread of parameters (such as

the mean, variance, etc.) from the angle and length distributions.

We suggest that the use of variance FPT can be better adapted and refined for SPT.

Parameters involved in S(r) peaks such as peak height and width have not yet been explored,

and could be important in understanding exact diffusion processes. For specific processes

such as confined diffusion, it would be interesting to develop an analytical form of S(r) and

parameters of the diffusion process. Then, given a variance FPT curve, one could search

parameter space for all the parameter sets that could fit that particular curve. This could

help refine estimates of rc, po and pi (in the case of transient confinement zones).

Another approach would be to develop a colouring procedure more extensive than

the one provided in Figure 3.8. This technique could provide new information about the

relative location and time spent in confinement zones, by using numerical methods to spot

time intervals of high variance in FPT. These parameters would enrich our knowledge of

the LFA-1 protein mechanism and add to the model developed by Cairo et al. (2006). If

effective, these techniques could be applied to other types of SPT data.

Since there are many sources of error and bias still at large in microscopy, we believe

that further work can be done to better deal with to experimental error. While this has

been extensively researched in terms of GPS error and ecological systems, we see a large

motivation for study at the cellular level.

Lastly, our approach of using ecological methods to understand cellular phenomena

is far from exhaustion. There are a large number of techniques used in ecological data

analysis that could be applied at the cellular level. In addition, some instances in protein

movement, while currently unique to the cellular environment, could result in insights at the

ecological level. Due to the vastly different environments and varying methodologies, many

new beneficial techniques are being developed in each of the individual research areas that

could be shared between disciplines. There are helpful resources about movement modeling

that have crossed disciplines (Codling et al., 2008), and we hope that this understanding

can be adapted to future studies of movement.
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Appendices

A Calculating Lengths and Turning Angles

A.1 Length Calculation

!0
!1

!2 !3

!4
(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Figure A.1: Sample trajectory path. Each length 'i is calculated by the formula for Euclidian
distance.

Given a trajectory as in Figure A.1, step length, 'i is calculated via the formula for

Euclidean distance:

'i =
√

(xi+1 − xi)
2 + (yi+1 − yi)2

A.2 Turning Angle Calculation

To find the turning angle of a particular step length 'i, we first calculate αx
i , the angle of

the step to the nearest x-axis, where (xi, yj) is given by the origin (see Figure A.2 ). This

y

x

(xi+1, yi+1)

(xi, yi)

!i

αx

Figure A.2: Angle of the step to the nearest x-axis.

is calculated by

αx
i = cos−1

(
|xi+1 − xi|

'i

)
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Now, we transform this angle to an angle measured counterclockwise from the positive x-

axis, denoted by α. Depending on quadrant, we make the following calculations as shown

by Figure A.3.

y

x

(xi+1, yi+1)

(xi, yi)

!i

αx
α

(a)

y

x

(xi+1, yi+1)

(xi, yi)

!i

αx

α

(b)
y

x

(xi+1, yi+1)

(xi, yi)

!i

αx

α

(c)

y

x

(xi+1, yi+1)

(xi, yi)

!i

αx

α

(d)

Figure A.3: Calculation of α given αx, specific to each quadrant. (a) αx in Quadrant 1. (b)
αx in Quadrant 2. (c) αx in Quadrant 3. (d) αx in Quadrant 4.

Quadrant 1:

αi = αx
i

Quadrant 2:

αi = π − αx
i

Quadrant 3:

αi = π + αx
i

Quadrant 4:

αi = 2π − αx
i

We also have special cases of moving left, right, up or down. It is easily seen that:

• if the particle moves left, αi = π,

• if the particle moves right, αi = 0,
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• if the particle moves up, αi = π
2 , or,

• if the particle moves down, αi = 3π
2 .

Lastly, we calculate the turning angle in mod 2π: θi, given three cases (Figure A.4).

!i−1

!i

αi−1

αi

θi

(a)

!i−1

!i

αi

αi−1

θi

(b)

Figure A.4: Calculation of the turning angle θi. (a) Calculation of θ when αi > αi−1 (b)
Calculation of θ when αi < αi−1

1. αi > αi−1

θi = 2π + αi−1 − αi

2. αi < αi−1

θi = αi−1 − αi

3. αi = αi−1 (Trivial Case)

θi = 0

From these calculations we can create distributions of lengths and turning angles from the

experimental data to be used for random walk simulation or further anlaysis.
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