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ABSTRACT N

S ‘.

s
N ,

The Poisson equation is used to model the flow under a sluice

gate, and a method using finite elements is developed to solvé the
s

flow field. The free surface is corrected using a term comted with

the Bernoulli equation. This .correction term is in terms of the

pressure head and the velocity head. Ahe velocity at the free surface |

is obtainedkusing a finite eleme model, taking ‘advantage -of the

previous finite element solUtion of the flow.

The drscharge is iterated - using a Newton -Raphson techn1que _

calculatmg .the numerical velocny at the tip of the gate _and

comparihg it with the velocity prescnbed by the energy level.

A d1scharge parameter in ‘terms of the gate opening and the

discharge per unit Width is defined. N
The " results obtamed usmg this model fot/\nentml flow

-

(Laplace equatlon) are in good agreement with numerical studles

done before. If VOI‘thlty is included, then the numerical results for'

the coefflclents are closer to the experimental results Qle effect of'

changing the amount of vomcxty, and the thickness of the\ vort1c1ty

layer on the coeff1c1ents has ' also been studied. ’ LT
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L- INTRODUCTION

A control is defined as any channel feature natural or man-
made Wthh fixes a. relatlonshlp between depth and discharge in its
neighborhood. Sharp crested weirs, overflow spillway$, free overfall
structures and underflo@ gates fall into the class of man-made
features. |

It is important to know the funCtioriing of the control itself and
what is the extent of its influence on the flow. Thus it is necessary to
know the discharge and the free surface proflle for . glven flow
conditions.

In the case of underflow gates, an appropriate analysis of the.
gravity flow is needed "with emphasis on the determination Of, the
free surface profile and the discharge for a given _total head and a
gate opening. v | |

According to Chow (1959) underflow gates may be classified as:
1) vertical sluice gates, 2) radial or Tainter gates and 2) rolling gates.
These structures may be used as controls ”at_ the crest of an overflow
spillway, or at the outlet from a lake to a river or irrigation canal etc.
In order to design these structu.res an accurate analysis has to be
done. This problem has been studied by a numbér of _in'vestigators :
since the beginning of the century. There has  been a logical
‘evelopment; in ’the beginning, experimental studies were made,
basically because these structures were being built and it was
_necessary to know if -.they were appropriate; later some. analyti cal

studies involving complex variable theory were done. When digital

Al
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cohputers were 1ntroduced the numencal analys1s became very‘
popular. Then after these studies were done shme people went back
to do laboratqrxd work in order to venfy the numerical .and analytical
results. At the present‘.time we are - again in the stage of
computatronal studles but more laboratory results are needed since

as it has been found the problem of gravrty flows is very complex

‘and every trme new . numerical work is done, new questions arise.

*Until now . the analytlcal and the numerlcal studres ‘had| always
somethrng in common the equation that was used to model t e flo

was Laplace equation, 1mpl'y1ng potential flow theory. All te

discrepancies between the experimental . re\‘u\us and the analytical or

-

numerical ones were sa1d to be because of the boundary layer on the
bed It. was' not until recently that this assumptlon was challenged
agaln because the laboratory experlments showed that it could not

be the only reason for these discrepancies. - This study has a new

approach and it is that the irrotational characteristic of the flow is

modiried, so the- equatron that is used to model the flow freld

Poisson equation.

~

The numerical studies can be d1v1ded ba51ca11y mto finite

~differences, finite elements and boundary elements models In recent

years both finite d1fferences and finite elements have been used but
there' are more references related to flmte eleme{rt ‘models. As will
be mentroned in chapter l the finite elements models that have been
used involve tremendous amount of. computer time and this is
because a great number of degrees of freedom are needed and since

the problem is non linear an 1terat1ve scheme has to be used. -

o,
~



The aim of this study was to develo‘pza model that could be
used to solve the sluice gate problem but could 'f_alSO' be easily
extended to solve dxfferent flow problems. The 'idga was to. try to
’\reduce the computatronal effort. involved so that the model could be -
Wtrahsferred frOm ‘a main frame 1nto a mic..computer. In order to"j

achieve this, the- model should grve good results with fewer degrees’

of freedom than - what “has bee commonly used The numerlcal'
"techmque that was used was the fiyite element and this techmq‘ne*
was preferred over the finite differences because of 1ts ease to model
COmplex ~geometries and -also because once a mathematical problem is

_solved it can be applred to dIfferent physrcal problems just by

1mposmg the correspondlng boundary cond1trons S8
; L

<

Th1s work is divided mto 4 chapters ‘the first one presents a
lrterature review that helps us to understand the development of the -
d:fferent solutions obtained and how. they were derived; it also .
presents the basrc equations and the mathematical formulatlon The
second chapter presents the numerrcal 1mplementat1on‘of the‘
'probfem; it also serves as an introduc.tz"on to chapter III which
- explains the computer program. Finally chapter IV deals with all the .
numerical results ,and also with the _analy_sis of"some experimental‘
results obtained by R'ajaratnam in a previous study (197:/). ¥

;Figure 1 shows the definition sketch used throughout this

I S - ‘

study. 5
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L1.- LITERATURE REVIEW OF EXPERIMENTAL STUDIES

The experimental analysis of flow under sluice-gates .goe's back
to the first quarter of this century, when studies were made for the
construction of the Assuan Dam. Hurst and Fraser (1923-1924)
reported some of the results that were obtained after more than 10
years of ~vork. Their ‘aim was mamly to describe the relations

between models and prototypes and hence their results 'were}
| presented as the differences found between what was measured in
the models and in"the real slni'ce-gates.. In the theoretical discussion

included - in their paper, they mention that the discharge can be

represented by the equation v ‘ N

’ N

-

Q=CyAV2g(H T

where Cqy is a coegflclent independent of the head bnt varymg w1thv
the slulce opening. F is a constant depending on the opemng, A is the
,_aren of the opening and H is the head above the floor of the intake. It
can be seen that this_'equation is similar to the one used ‘at the

present time although now the term (H - F) is replaced by the
. uﬂstream depth. } o J |
Afterb this - work, Addison (1937-1938) did more experiments

- also related to the constructibn of the Assuan Dam. The possible

- disposition of sluice-gates and the conditions of flow were classified

" as: - | - . . /



. _ N ,
1) Free flow through high-head . slulces (water dlschargmg

fre y 1nto air on the downstream side).

>

2) Submerged flow through h1gh head sluices (downstream

water” level above’ sluwe openmgs) ST L
3) Free flow’ through low- head s1u1ces B . B \‘

( 4) Submerged ﬂow through low head slulces T
. . o . : e ‘ )
| Addlson made a serles of exper1ments usmg a 1/25 scale
model of the: Assrut Barrage and a 3/100 scale model of the Assuan
type A" slu1ce He ‘noted that the formula proposed by Hurst was~ i
l

general appllcable but . that the proportions of the sluice and

leulceways had a marked effect on the values of the coefficierts Cd

pf

and F. The Value that he obtamed for Cq. (dlscharge coefficient). was

| constant for some of hrs experlments with a value of 0.615, but for
s some others the ya’rue was between 0.671 and 0729 as the slulce‘
gate openmg 1ncreased Add1son concluded that there was not a very
aclear correlatlon between the value of thé ratio F/a and the gatef
-...':opemng or the shape of the opemng In this study, the - value of "F"
.’was taken as the depth at -the vena contracta, whlle in Hurst.ﬁs study
(1923 2.4) tl’llS v\alue was not determmed Wlth that 1n mlnd\F/a is
.'the contractlon coeff1c1ent He also concluded that under - 1deal.\
_condltlons the values -of the contractron coeff1c1ent and the dlscharge.
.,'L'.J,f.coeff1c1ent would be numencally equal L |
Henry (1950) in his " dlscussron o“ ‘a, paper wntten by Albertson
\ et xal on Submerged Jets,® reported some results on free dlscharge
un_der ¥:! slurce gate He mentloned that at lower degrees of
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sueme;genee, (obviously(ee/dascharge would fall ua@r this
category; no submergence at™all), gravity has an 1mpact on the free -
surface and then the Froude number should be included‘ in the
zrnalysis. He published a graph shewin \ Yo/a versus a discharge

coefficient Cy4 defined as:

. Fg - q
C = W]th F =
~ d AR ) B a\]ga
) : ,

3

" "

being "q" the discharge per unit width. Substituting Fg into tﬁe
N .

equation for Cy we obtain:

1
o C_ E
d a\/a ,
a
and"
Cy=—d—

?av2gyo

so in fact Cd is the dlscharge coefficient defmed in the way that it -
has been used;smce then. |

According to hrs results, the dlscharge coefficient is asymptotrc
to 0.6 for hlgh ratios of yQ/a (gate closing) and for y,/a equal to 2, Cq4
is 0.5. He also performed an approximate thebretlcal analy51s

assuming hydrostatic pressure drstrlbutron throughout the flow no

-‘energy loss and umform velocuy upstream and downstream of the

gate to ver1fy the .trend of the curves that he. bbtained

experimerntally.



Lo

Benjamin (1956) publ1shed a paper discussing the effects of
placmg rigid obstacles in a channel and a sluice gate falls mto the
category of an obstacle changmg the flow from a subcrmcal stream to
a supercritical one. He developed a general method for calculating
the form of the receding stream when waves were absent and
presented an example usirtg the' sluice gate problem. The treatment
that he followed was based on ideal fluid theory and later ghe did
some experiments to test his theoretical results. He combined two
‘different. me\ih}ods,‘ one was used to calculate ,the. form of the
converging stream which issues from under the gate and the other to
calculate the" flow in the immediate nelghborhood of the gate. He
found that there is a variation of the contraction ratio with the
Froude number and established a relation between the. sluice
opening and the total discharge. .

In his experiments Benjamin" observed that the thickness of
the boundary layer was about one-fifteenth of the sluice opening and
concluded ‘that the frictional effects were far more significant than
the final error created by using the 1deal fluid flow theory, and that
the discrepancies observed with real flow were due to friction alone.
He did not report any results related to the discharge coefficient but
he presented a graph showing aly, versus the contraction
coefflclent . He did two series of experlments w1t)1 two d1fferent gate
opemng,s and varymg Yo- For both experrments the, results are above'
the theoretlcal curve. It seems that for small values of a/yo (less
than 0.1), the three curves converge but not for the rest.’ The curve
.for a- small gate opening lies above the one with a larger gate-

opening. As mentioned before he assumed that the dlscharge under

1



the sluice was -affected by frlctlon only and that the effectlve gate

opening shculd then be reduced to a-8 where 8 was considered to be

roughly equal' to the thickness of the boundary layer. The depth '

downstream was then also reduced by the same § so th.e discrepancy

~in the contraction ratio was approximately proportlonal to d/a. He

apphed this concept to the two serles of experiments that he had
done and he obtained quite a good agreemen: bit he did not pursue
this further, simply suggesting that further experimental work was
necessary espgcially on the boundary layer.

Rajaratnam and Subramtmya (1967) pnb_lished a paper where
they explained how they' developed an experimental curve'for the
discharge coefficient which could be used‘for both free and
submerged flows. They also ,compiied the results from various

/
investigators for the contractlon coefficient which’ was found to be a

. function only of afy, when the viscous effects were neglected By

applying the energy equz&tlon between a section before the gate and

a sﬁectiori”after, they derived an equation for the unit “discharge:
. "’1 ,
q= Yo YV 2gAH
: Yd.2
’\fa - ( ~)

-

where o is a kinetic enmergy correction factor. Furthermore, they

reduced the above equation to:

|

s - g=C4a\2gAH

e

~-

.

[



with

and

‘Cd.=

el

which is valid for both free and submerged flows.

~ Based on their ‘experiments they found that an average value -
for o« was 1.08 in the case of submerged flows and was close to the
unity for the free discharge. They approximated the value of « to I

and they also took 4_constant value for C. of 0.61, so finally their Cq
was: " | s

“

. 61 a1
C,= 0 and  C, :f[ = ]

0 .

© e

They alsokvﬁvorked ‘With the momentum equation in order to
help to solve the submerged flow problems and presented a graph to
determine the nature of the flow (free or submerged). |

Rajaratnam (1977) published another paper - lated to the “flow
immediately below sluice gates but this research was focussed more
on’ the contractlon coefficient and on the *free surface profile than on

the discharge coeff1c1ent He found that the profiles of the different

-experiments could be described by one dlmensmnless curve. To do

this he defined two length seales one for the y direction' and
.=

N\
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. another for the "x" ‘direction. The length scale for Y was equal to (a-

\

yd) and for X was the value of x in Wthh (a- y) was equal to 075Y

v

the X scale was chosen after some trials. It_ was notlced that the
nu(‘?erical values fo‘r. the contractio;l coefficient found -by several
‘inve\s(tigat\ors differed from the experimental ones.by as much as 14%
in some cases. After the comments by Benjamin he "dec\i?ied to work

(with the boundary layer and for some of his. experiments he

11

calculated the displacement thickness and found that the corrections '

~

‘l .
were rather minor and concluded ‘that they did not account for the

large observed differences between the theoretical and experlmental

values of C..

~



1.2.- BASIC EQUATIONS - ,,

The flow under sluice gates has always been considered as
] g y
. be’ing"”steady,’ two dimensional, incompressible and irrotational, and

[

hence it can be treated with' the Potential Flow theor
y

12

In this study the irrotational characteristic. is not consrdé?d SO

It s lrke having- a "rotational potential flow the govermng equation

for this type of flow is the Poisson. equatlon (for potential flow the -

governing equation. is Laplace equation) which .for the stfeam

function ¥ is:

QZ‘I’ aZ‘P
ax2. 8y2 =N .

!

1
where n ‘is the value for the vorticity, Wthh is defmed as:

C‘\
. dv  du

:aT- g
If potential flow is to be eonsidered then this value should be made

. equal to zero.

The boundary conditions" for this problem can be expressed as

[

D1rrchlet (essentlal) or Neumann (natural) boundary condrtrons In-

this" work the D1r1chlet type conditions were applied to the free
surface. This type of boundary condltlons 1mp11es that the value for

the stream function ¥ has to be specified. For the boundary where

the flow is<uniform the Neumann type were applied, this means that

-



the normal derrvatrve of the stream fupction has to be specrfled ‘The
boundary condltlons applred in this study are shown 1n figure 2.
Since - the free surface is a stream\l\m\eL‘we'_ may write the

. N T . -
Bernoulli equatron ’

P —+Y+'2—g—H 1.1.1
.01'"’ ‘
S V2 '
C=ZH-Y-— 1.1.2
. Y 2g
and B R INERL RIT
v=§ a3
‘SO
P S
S=H- Y- ngY o 1.1.4

where (P/y) is the pressure head, H is the. total head Y is the

depth q the discharge per umt width and g is the: acceleratlon of _

gravity. This equatlon w111 ‘be used ‘to compute the correction term’ =

for the free surface. -
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1.3 LITERATURE REVIEW OF ANALYTICAL AND NUMERICAL
STUDIES

The numerical methods to solve engineering problems go back

to the 1940‘5. Southwell and Vaisey (1940) published "Relaxation

15

Methods in Engineering - Science". After that Southwell  (1946)

published "Relaxation Methods in Theo.reticalltl’hysics", and there he

made ‘the distinction between ‘'orthodox' methods and ‘relaxation’

methods: - "for both, the point of departure is a physical or

engineering problem formulated in mathematical terms ...... faced

- with this mathema/trcal\problem 'orthodox’ analy51s appl1es to it the
methods of pure mathematics; they take no account of the
inescapable uncertainty of physical data, they do not in fact achieve
. the wanted generality, being restricted (usually) to  boundaries of
simple ¢ geometrical shdpe. For 'relaxation' metho‘dls, on the contrary,
the boundary shape has small i‘mportance; a prob‘lem solved for -one
couldgbe'solved for any. A price is paid in theoretical ‘precision,
" firetly because they substitute’ for the specified governing equation
an approximation in which its differentials are replaced by finite
differences, secondly because the approximation is not solved
exactiy. The principle which differentiates the relaxational approach
is that ’it 1S implemented by a technique which fixes attention not on
the wantéd functron but on the data of the problem seekmg to leave
unaccounted parts so small as to be comparable with errors of
observatlon. Thus stated this principle seems to have been first

applied in the "Moment Distribution Method" of Hardy Cross (1924).",_



This is similar to\:-;;x?e lefere\nces approach; in his book
~ Southwell defined a’ "net" and "nodes" vhere the fpncuon that it is
being looked for will ‘be calculated. A set of simultaneous algebraic
equations was obtained and then instead of attacking it by analytical
methods’ they studied the effects of standard "operations" upon
"residual forces" which constltuted errors. These ones had to be
"liquidated”. Obviously their methods involved a lot of work since the
use of computers was very limited, instead a lot of graphical work
'was done. The relaxation procedure itself was dependent on the
problem, understanding relaxation as the 1mp051t10n of

displacements. Relaxation Methods were applied to free gurface flows

and he mentioned that "free stream-line problems are among the

tardest (from a purely computational standpoint)‘ that have yet been
confronted, 'and no routine procedure can be guatanteed to. solve
every example."” |

Strelkoff (1964) proposed an analytical method to solve ‘highly
curvilinear gravity oflows' His approach involved iterative
numerlcal ‘solution of an integral equation (.derlved by conformal
mappmg and. smgularlty distribution. The method was applied to the
flow over ‘a sharp crested weir. He considered a potential flow and
the integr’al equation desciibed the influence _of the flow profile of
the three: primary variables: gravitational attraction, discharge and
channel geometry. o | *

Klassen (1967) proposed a solution for the slulce gate problem

usmg an integral equation. The * purpose of his method was to flnd the

free streamline and all other properties of the flow knowing the total

A
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head, the discharge and the gate opening; so it/ was meant just to

“calculate the contraction coefficient for a given flow.

Fangmeier and Strelkoff (1968) applied Strelkoff's method to
the flow under sluice gate. Their aim was to develop a general

program to solve the sluice gate problem that could be executed by a

 digital computer. The output would consist of tlle flow profile and

‘discharge coefficient for a given ratio of gate opening to total head,

which was the only data describing the flow that was supplied to the
computer. They worked  with four differenht planes: the physical
plane (Z), the complex potential plane (w), an auxiliary plane (§£), and
the circle plane /(/() The sluice gate problem was transformed into an
equivalent flovy about a flat plate and a solution was derived by
transforming that plate into a unit circle and applying tl‘te’Milne\—
Thomson circle theorem. After all the transformations, an integral
equat1on in terms of an unknown discharge and an unknown
distribution of elevation as a function of ve‘loculy potential resulted.
Then that equation was approximated by a non- lmear ordmary
differential equation which was solved by - an 1terat1ve numerlcal
step - method.

The way that the discharge "q" was obtained is interesting:
they had to guess a first "q" and then solve \the differential equation.
When a solution was obtained and the correct "q" was found the
value of the real part part of the complex variable T had to be zero..

It was noted that if "q" was too small, that value would be greater.

than zero, and if "q" was foo large that value would be smaller than
zero, su after each 1terat10n they monitored the value of "r" and as

soon as they noticed la tendency, the discharge was adjusted and the
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solution restarted. from 1n1t%ymnd1tlons. As the correct value of q

was approached, the solution behaved properly over a greater region

s

of integration.
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Their program was coded in FORTRAN and run on an IBM-

7040. The minimum computer time needed was "75 mlnutes They

g+
compared their results w1th the experimental results from Benjamin

.(1956) and found that their contraction coefficients were much
lower, Xhey were even lower than those by Pajer (1937), by Perry
(as quoted by BenJamm) and by Southwell (1946). Their discharge
coefficients were in very good agreement with the experimental ones
by Henry (1950).1 . ' _ -

Larock (1969) introduced another method; the way the flow
'was treated was as if it' were an extension of a telated gravity-free
flow. He neglected the effects of the upstream free surface and
gravrtyi so he considered the upstream free surface as a horizontal
line. He applied the complex function theory using the circular- -arc
hodograph plane His goals were to obtain a solution for the gravity-
affected flow from planar sluice gates to develop a solution which

would require only a modest amount of computer time ‘and that

would be applled for any gate inclination. The last ObjCCthC was the

one that made a big difference. He began with a ‘"reference depth.v

ratio" (Yo /yq ) and then for that ratio found the gate opening. -His
method was also an iterative method. In the first iteration gravrty
free flow was consrdered so a first est1mate of the free surface could
be obtalned then he computed a gravity term and adjusted the angle
of 1nclmat10n of the gate. The process was continued until a tolerance

was met. Usually three 1tera‘tlons were needed. The rapidity of
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- convergence was app'arently due to two causes: the pressure on the
free surface was imposed and then the - free surface was adjusted in
order to satisfy the other conditions; since the flow was described by

~ Laplace equation (elliptic) any change at one point on the boundary
would affect all the solution. In the same\’:vbay as Klassen (1967),

discharge was prescribed so his method was appropriate to solve a

particular flow. His ‘Yesults for C. were in good agreement with those

°

of Fangmeier and Strelkoff (1968) but also were lower than the
experlmental ones. He did not report anything about the dlschargev
coefficient because he used prescribed discharges. h

The first finite element'analysi(s for the flow under a sluice gate
was published by McCorquadale and Li (1971). They noted the
resttictions of the analytical solutions, especially those concerned
with the geornetry.of the gate and the consideration of having a
horizontal upstream free surface. The way that they proposed to
solve this problem wnsvsimilar to that of Southwell and Vaisey
(1946) but instéad of using finite differences they used finite
elements A variational principle proposed by Luke (1967) was used.
Af%br . applying the finite element theory it yielded a set of linear
algebraic 51multaneous equations which were solved by the
successive over—reiaxation procedure. In the first guess, they
eonsidexred a horiﬂzontai upstream free surface and for the
downstream free surface aﬁn elliptical curve was selected to describe
the ocutflow, then they calculated an error estimate using _the
computed and prescribed energies to adjust the free surfack. 'Then a
new value for the discharge was computed from the energy equation.

The adjustment of the free 'surface‘was determined by the values of
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nil}e conéténrs t_lla't' defined tlre‘- ellipse. 'l’lrese values Were chosen such
that they m'i'ni’mized ‘the’ error, in eﬁergy To do this drfferent
comblnatlons of the constants were trled computed and plotted the
'error This method 1nvolved a lot of graph1cal work in order to
determine these opt1mal values of the constants. - |

Chung (1972) usec_l conformal mapping, analyticnl continuation
and perktnrbation methods combined to obtain the solution for the
sluice gate problem correctly up to the second order H,e/mapped the
physical plane to the complex plane and this one-- t(the T plane>(un1t
circle). ‘The express1ons that he obtained for the discharge coefficient
and the contractron coeffrclent were:,

Cq = 0.61102 (I - 0.41152 a/H + (.).3031'1(a/H)2 + o )

C. = 0.61102 (1 - 0.10@{t)lfa/yo + 0.09833(afy, )2 + .... )
He considered the upstream free surface as being llorizontal. His
results for C_ are in very good agreement with those of Fangmeier
and Strelkoff (1964), but for the downstream free surface profile lhe
results differ a little bit, Chung obtained a lower profile. He also
applied his method to inclined sluice gates and derived expressions
for different angles of 1nclmat10n Finally he ment1oned that the
method could be applied to radial sluice gates.

- Chan, Larock and Herrmann (1973) developed a general
method for free surface 1deal fluid flows ‘using the finite element
technique. The properties  that they looked for in the method were: i't
should be able to analyze either confined or free surface flows in
either the presence or absence of gravitational effects; the method
should be versatile so that the problem - involving complicated solid

boundaries could be analvyzed directly; and the method should use a

-

20
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rational algorithm for ‘Calcula‘}ting “the free surface coor.dinates. They
dﬁ:ped ‘a variational principle which mathematically is equivalent
to the Laplace equatron/¥ ubject to. the natural boundary conditions
(the value of the derrvatrve of the functlon respect to the normal
direction is spec1f1ed on the boundary) the principle has two terms
physically the first term represents the total kinetic energy of the
moving fluid in the domam and the second term is related to the
amount of work done by an 1mpuls1ve pressure in -starting the
motion from rest. They divided the .flow dornain into linear elements.
The. system of equations obtained was solved by Gaus$ian

elimination. In the problems that they solved, the reference

'velocit?" was known, so the discharge was specified.

The importance of this work is that for the first time a
numerical algorithm to calculate the free surface was developed. In
their algorithm -they assumed a free surface and imposed constant\
pressure, then solved the flow using the finite - element method.
Obv1ously the velocity condition was not satlsfred so from the flmte‘

element solution they calculated the values .of the velocity

‘components for each- node and used a curved fitting scheme to find a

new free surface that would satisfy the velocity - condition (Bernoulli
equation). With that "improved" free surface they would solve again.

The procedure was repeated until a certain tolerance was met. One of

the examples that they solved was flow from a 450 slot, that could be

* compared with the flow from a 450 sluice gate if the upstream free

surface is considered horizontal. They compared their results with

those from Larock (1969) and found that they were ‘in good

~agreement. For problems 1nvolv1ng a free surface, 10.to 20 iterations
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were normally required. It is ir/n\portant to mention that the only
nodes that were adjusted were’ those on the free surface, the rest
remained in their original position ' |

Dlersch Schirmer and Busch (1977) developed a general finite
element model based on the Chan et. al. method (1973). They used
the same varlatlonal principle and the same algorithm to calculate
the free surface but they made it general, so it could be used in a
wider range of applications. One significant feature was that they
calculated the discharge which was not- prescribed in Chan's work.
Another interesting feature was the use of "flexible finite element
networks"; this means that the position for all the nodes was
recalculated after each iteration, thus making sure that ‘the net was
logical in the sense that there ‘was no overlapping of elements. The
movement of the net is specially dlfflcult in some cases, for example
in the flow over a spillway because the floor is not horizontal, so they
developed expressions to correct in both "x" and "y"' directions (Chan
et al. (1973) just corrected in the "y" direction). The way to iterate
the discharge was dependent on the location of the free surface using

the Bernoulli equatlon and continuity between the far upstream and

- far downstream sectlons For the sluice gate problem they usually

»

required 17 to 25 iterations using 1061 nodes. Results concerning the
dlscharge coefflc1ent only were reported which were very close to
Henry's (1950) exper1mental results and are supposed to be moTe %

accurate than the ones by Fangmeier and Strelkoff'(l968). It is

| important to note the large number of degrees of freedom that were

needed in order to get good accuracy.
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Isaac:; (1977) did some :work with finit;é elements but. he used
a"'ﬁcw appfoach. ‘He solved directly the Léplacé equation and did not
use any variational princ;iple. Also the element that he used was
different. He divided the flow domain in cubic triangular finite
elements, with the values of y and its first derivatives as nodal
pz;_ra\meters at the apex nodes and the value of ¥ as a nodal
parameter at the centroid. The algorithm that he used is: first he
. assumed a discharge "q;' and .computed the far upstream énd faf

downstream depths from the energy equationi! then as a boundary

.0 -_
condition downstream he calculated an estimate of ad as v=\/2g(H-y)

_ on
,he solved the flow field using the finite element method and
checked the other condition (y = q), in general it was not the same so

the free surface was altered according to:
§n =——1—Y C
g—w- E
on
.

‘and the flow was solved until convergence was met except at the tip

of the gate, ¢onvergencc‘ here occurs just for the riéht' "q" since the

BN

energy level there is controlled by the discharge, the program was

controlled interactively by the user and he would decide when to
_input a new trial fqr_v"q"._lsaacs did riot(l develop a method to compute
the cozrect discharge. It depended on the user's ability to correct the
initial discharge. Hé tried the method for a gate opening—head ratio of
0.3 and the results that he obtained were within 0.001 " of thé ones by

Fangmeier and Strelkoff (1968) and they were also way below from
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the experimental ones. He studied the boundary layer using the Von -

Karman—Pollhausen"method. and also concluded that it could not
explain the difference between' experimental and numerlcal results
for C. . His discharge coefficient was also in good agreement with
prev1ous analysis. The problem with this method was _essentially that
it was difficult to get the dlscharge The number, of degrees of
freedom were less than the number used by Diersch et. al.

Masliyah, Nandakumar, Hemphill and Fung (1985) reexamined

the finite difference scheme because of its conceptual ‘simplicity and

computational ease in implémentation. They developed a method
that involved body-fitted coordinates to treat the free surface,
overcommg one of the drawbacks of the finite differences methods.
The grid is generated as a system produced by the solution of a pair
| of elllptlc differential equatlons The method has the ability of
‘placing a large number of grid points ea511y around the gate opening.

The coordinate lines are n

the numerical implementatio are in terms of the unknown
discharge (Q) and the unknown free surface location (h); an
;assu-mption for these unknowns is made, then the stream 'function
values around the boundary are specified, a suitable ~grid is

generated and the Laplace equation is solved over the domain. The

orthogonal. The boundary‘condmons for

boundary condition at the tlp of the gate is used with the 1nter1or’

solution to update the value of Q. The Bernoulh equatlon along the

. free surface is used to improve the location of the free surface. In the -

reported results, they mentioned that if the grid is changed from 11
x 27 to 15 x 37 nodes the difference in the dlscharge coefficient is

just .0.2%. Their results are in good agreement with the cnes by

F
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Fangmeier and Strelkoff (1968)» but deviate more from the
_ experimental results than the ones by Diersch et al. (1977).

Heng, Mitsoulis and Prinos (1986) used finite elements with a
different iterative technique and boundary condition specification.
'They combined the natural and the essential boundary conditions;
upstream of the gate they specified essential .’bo‘undary conditions (y

18 spe01f1ed on the boundary) and downstream of the gate natural

)
boundary conditions (—W spemfled) To begin a dlscharge q was

~assumed and the far ‘downsiream depth located using the Bernoulli
equation, then they assumed a free surface between the far
downstream and the tip of the gate, the upstream surface was taken
horizontally for the f1rst iteration. The Laplace equatlon was solved
anlymg the proper boundary conditions, the constant pressure

condition on the free surface generally would not be satisfied so the

25

pressure there was cdmputed using again Bernoulli. The free surface

was updated with this results along with the velocity obtained from
the finite *element solution and the process repeated until

convergence for that diScharge. Usually 6 to 10 iterations were

required to obtain a free surface with relative changes of less than

10-4 of the downstream depth. Once -convergence was obtained the

value of the numerical velocny at the tip of  the gate was checked "

against the fixed value which is dictated by the energy level. If they
were not within certain tolerance a new discharge was computed
using a Newton-Raphson scheme. Since this is the algorithm used in
- this study, it is further described in the'next chapter. They found

that between 3 z})d 5 iterations for the discharge were needed. The
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elements that were ‘used in their study were (iuadrati(-/?ri—e;rl/%lé&
They found that with their method the dischafge énd contraction
coefficients (C4 and C.) were very sensitive to the density of the grid.
When .they used 975 nodes their results for Cq were different from
the expgrimental ones by Henry (1950) in about 4% but when 1455

nodes were used they were in very good agreement.



. IL.- THE FINITE ELEMENT METHOD APPLIED TO FLOW -
UNDER SLUICE GATES

IL.1.- IMPLICATIONS OF USING VORTICITY
In all the studie-s‘t;hat were consulted, the fn:}themati_cal
'modelling was done using the Laplaee equation; that is considering

potential flow. When potential flow = isy considered, the depth
determined upstteam of the gate (when the flow is uniform) is the
subcritical depth for that dlscharge and downstream of the gate the
depth is the supercrlt‘al one. These results glve lower contra((tlon
coefficients compared with = experimental measuremei:s. The-\
boundary layer was first considered to be an ixhportant factor .fo'r
this but as liy,aratnam (1977)\ showed the con51deratlon of the;
'dlsplacement thlckness does not make a 51gn1flcant difference when
*1t is added to the depth obta,med numerically.

In thIS study the 1rrotatlonal characteristic of the flow is taken
mto account. For potential flow the velocity proflle for a glven sectlon
is ‘uniform (fig. 3). In reality the _velocity profile is 11ke the ‘one shown :
in figure 4. The velocity profile assumed in - this study is shown in

L

fdfigure S.
"

.27
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The vorticity function is defined as:

Ea
"“ax"ay A

With potential flow, by definition:
L ] i ‘ n -— O

Near the (horizontal) bed of the channel we may. assurp¢ that .

v=0 and the velocity profile is assumed to be like the one in figure 5

then:

To start the solution potential flow is calculated, After each
_iteration the wall vorticity can be estimatc = for the élements along
the bed. The stream functic distribution is then resolved. When a
final solution for the ﬂ(oﬁw‘fieDd is obtained, the vortic‘ity would also
‘have been convérggd to. a certain value. In seétion 2.5 numerical

considerations and wall vorticity estimation are discussed.

In the following section the finite element hcthod will be
applied to the Poisson equatyibn in order to develop a numerical

~algorithm to solve the flow field.



o

subject to the boundary conditions shown in

11.2.- WEAK STATEMENT

Pl

 The equation to be solved is, as mentioned earlier: .

, {
o 2¥ 2y

o 9x2 + a—y;:--n 2.3.1

2

“figure 2.

The Finite Element theory is explained in several standard

'texftbooks (Martin (1973), Stasa (1985, Zienkiewicz (1977)). First

multiply equation 2.3.1 by a set of test functions, 'v;, and integrate

over the domain.

0 (¥ —18—”] 62 = - [vin do 232
Jvi(ax 8x)+ dy ayD s fvm | s
Q - Q , -

>

' The divergence theorem states that:

[VeVda = [Vedn 233
Q r ‘ o

Where 7
T, 2 |
- (ax‘+8yj) _ .
and thé Green—_Gauss theorem states:
(B(Vow) dQ = [Bw T dr - (VBewdQ | 2.3.4
Q r : Q - '
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B is a scalar function.

Now;"if it is considered that:

v, =B
and
— @Y. oY
“lox ' T 9y J)

then the Poiﬁon ‘equation may be written as:
1]

Jvi(Von_)dQ = Jvin dQ 235
Q Q

=

Applying these theorems equation 2.3.2 becomes the weak

statement for the Poisson equation (2.3.6):

Mo¥ Lio), 2o+ X Yar - ‘ dQ
ox ax dy ay | J (ax x T 3y "YJ T .[Vi"

Q , r - Q

In the finite element method the - stream function is

approximated by:

N | ]
Yy = Zf (x, y)‘I’ 2.3.7
j=1

where f- are a set of functions called "shape functions”. The ‘I’

values of y at- the nodes. If the above equatlon 1s substltuted into the

~weak statement the following equation is obtained:
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av, of av: of of. |
iy |, ovioly il - . ,
J(ax ox Tt dy a J J on j” vi dQ
:

o Q

s

The second term represents the natural boundary’ conditions. In this

case we set the shape functions for the essential boundary conditions

. 0 .
(v =0,y =q, and % = 0) as v;z0, so this term vanishes for the rest of

the boundary. After a solution for the flow vfield is dbtained this
term will be used again to compute the boundary’ velocities. After

ellmmatmg this term we obtain:

{(av; of; af, |

—L 1 _ 17 . _ .
ﬂax ax ‘PH 3y ox ‘PJ)dQ . fn vido . 2.3.8
Q Q

~

Since the ‘PJ- are not functions of "x" and "y", the last equation

can be written as:

v, 9f,  av, of, | |
— —L : = - -
,J(ax =L+ 5 B_Ly )dQ f” v; dQ 23.9
QO

4

In matrix form:

[X] {lpj'} = {F} 3 2.3.10



The first matrix is called the "stiffness matrix" and the {F}

vector is called the "force vector". ) ~ _ ‘
Once the equation is presented in this way theé shape and test
functions have to be determined. These functions can be the same set
- of fynctions in which case a Bubnov-Galerkin scheme is said to be
used. If the set of functions are different then a Petrov-Galerkin
scheme is used. In’ th‘is study the Bubnov-Galerkin a;;proach was

applied. So the functions v; and f; are the same and the equation

changes to:

of, 3f;  of, af) |

L1 -1 1 P . -
J{ * ayJ dQ ¥ j“ f, dQ 2311
K ‘ Q | ‘

v

Once the domain is divided into elements the 1ntegral is
evaluated fcr each element and then assembled. The above integral

-changes into:

Ne ((of, af - af, a_fl Ne |
=5 ax * 5y 5 dQeze;\:l- N f; dQ 2.3.12

Qc Q.

where the subindex "e" means element.

35

The shape functions are then spec1f1ed on an element basis. To -

do this each element is normalized into a local coordinate sy§tem (r S)
£}
as is shown in figure 6.
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Fig. 6 Local Coordinate System
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Equation 2.3.12 shows thiit the values‘that'are”needed lllave to

be a function‘of the glob;I coordinate system (x,y) so a relation
between tne local coordinate sy§tem and the 'global coordinate

system has to be found, this is done using’ the chain rule:

4 ‘!
) I I S A N i
or or or ox : ;
= , , 2.3.13
cart A )
os/ L. 9s Js oy

" 1 " "

any "x" and "y" may be expressed’as:

o

s

X:,fi]' XJ

where fj represents the set of shape functions and Xj and Yj'

represent the coordinates of the vertices of the elements. The

. . - '[ M . . -
derivatives in the Jacobian matrix of equation 2.3.13 can then be

\
calculated from: |
ox of. ox of.
———lx _X.z_ix.
dr or ") > g5 T 9s M
p) of. p) of.
-l;:—ly. —)-l-z—-ly.
or" or 4 9s 95 J

\

-?u&stitute 1n equation 2.3.13 to get



: of, of.  Tof.
or or X; arYJ ox :
of | | ar g of | 2314
os/ L gs X ds Yi dy

where repeated ~subscript indicates summation. The matrix in

the right hand side is called the Jacobian. Defining:

of;
I =3‘r‘LXj

of. \\ r , /
I22 =§Sle"

We can get the derivatives of the shape functions with respect

to the global coordinates as:

of, (€4 < , ,

ax Jir I 171 | or . o
R : o - » 2.3.15
ofi | 'L Jo1  Jpp of; | ‘

Jy ' as

or:



(af; (3
ox 1 Joo -Ji2 or
=TT 2.3.16
of; -J21 0 I of;
oy ds

Where | J | is the value of the determinant of the jacobian.
Finally, for each element:

v

dQ =dxdy =1J1drds

Once an element is chosen and the set of sltape functions is
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defined then the gntries ‘of the Jacobian can be calculated as well as, .

the partial ‘derivatives of the shape functions with respect to the
local coordinates (r,s). Knowing all this the integrand for cach
element is known. The integration that has to be computed is very
;:omplex SO nume'rica_l integration is required. The number of
integration p'oints required depends on the type of elémer‘lt.. In this
study quadraiic triangular elements were used thh 3 iniégration

points (Stasa, 1985).

Al



Figure 2 shows the boundary conditions. that are -applied in thé
. so’lution‘of this problem. At the free surface there is an extra
condition _that has to be satisfied, this condition comes from the
energy equation and it refers to the value of the tangential velocity,

which is equal to:
=V2g(H-y)

Since what it is going to be compared are the numerical
veiocities and the velocities obtained from the energy equation it i§
~ Very important to get good numerical velocities at the free surface.

The boundary | conditions may be summarizéd as:

i

On A-B, B-C and C-D el =
- On A-B and CcDb V= ‘/2g(H-y)
On F-E B ¥ =
‘ oy -
On A-F and D-E =~ o____.___ X _
' .- on |

At the free surface the value of the pressure head should be
equal to zero. To cstlmate a correction for Y when it is not, take the

. partial derivative with respect to thq depth Y from equation 1.1.4:
1P 9H 3(q2% ay

TIN50 T _q_2 - T ~ 2.3.1
Y dY dY -9y {2gY?) 5y _ -

or a
o . : Y
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which can be expressed as:
233

When the flow is solved for the first time the pressure at the
free surface will not be - equal to the atmospherlc pressure because
the values that were supposed (like the discharge and the initial
-guess for the free surface) are not correct. A correction from -
equation 2.3.3 can be made. First for the free surface control nodes
the pressure head has to be found using equation 1.1.4,. this can be
done because the total energy, the normal velocity and ‘the position
for the nodes are known. A tolerance is’ set in terms of the
summation of -the difference in 'pressure at all the free surface'
‘control nodes. Actually the correction made is not exactly AP it is AP
(oc<1) where o is a relaxation factor The relaxatlon factor is needed
because if all the AP is applled there is a risk that the solutlon w1ll
tend to jump to subcritical flow. T |

Tae flow field is solved for the discharge and the free surface
profile for a given gate opening "a" and energy level "H".

To begin, a discharge "q" and a'free surface profile have to be
guessc  Once the solution is found forl that particular discharge a

COITEC, 1s made. -
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IL4.- BOUNDARY VELOCITIES CALCULATIONS o

'/ /
. N _ S e f
The stream function is defined Such that: s . T
oy Sl sy
u=" ~and ", v—“a—- -
| AR -

‘where"-?u/‘ is - the ftream function o |

| To ‘have a veloc1ty tangentlal to the free surface means that tne.
.' der1vat1ve of the stream funct1on there has to be cor?iputed Anm
'approx1matlon for thls could be _]USt zzio take _the mcrements of the
stream funct1on at the nodes adJacent to the free surface ‘In fact tl’lIS o

is a common practlce 1n obtammg der1vat1ve calculatlons from f1n1te ;

v',

fielement solut1ons , . { : .
As’ mentloned before in th1s studl the tangentlal velocn&es at

‘the free surface need to be very accurate 50: - the 31mple qpproach ~
Aabove would not. be satlsfactory unless the gr1d spacmg were ‘very:
‘small ‘The formulatlon used in thlS study is® the one developed byJﬂ_{".

GFCarey (1982).. Thls techmque y1elds htghly accurate results as . has

_ ébeen demonstrated by Carey, Chow and Seager (1985) It 1s based in -
 the. fact ~that. the boundary der1vat1ve terms already appear in- t-h'ej?
weak statement as the natural boundary cond1t1ons Slnce in. thls
" problem D1r1chlet data- are used.. on the free surface port1on of ‘the
_jboundary, these terms were dlscarded But ‘now those are the values

Ihat need to b computed callmg the weak statement »
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Wigw dvigw) ¢ o[ @F ¥
o ox T dy dy . _[Vln o jvl(ax x dy n}'v

Q- ) Q r

Denote the normal derivative boundary_ terms (velocities) as

u". This velocity is a fun:etion of position on the boundary, so a-

lagrangian interpolation to this function would be:

PEE

where. g is a set of basis functions and U

-

S0 . %

uh(S) = Z Umgm(S)

m._

" "

m  are nodal values of

. Substitute this éxpression ‘into the weak statzment, as well as the

" . v ) ) . - ' :
approximation for the stream function mcntioned before to obtain:

off of;  3f; af \ M o
“lax ox T ooy a dQ ¥y fﬂ f; dQ = El( gm(s) fi(s)ds) Un

.

furthermore if the set of boundary basrs functlons "g" is' chosen to be

eqUal to the ‘one dimensional projection of the set of basis functions .

" then on an element basis:

z (ij fds)U = K;¥-F 2.4.1

with m=1,2,..M' M 1s the number ‘of bo&ﬂndary basis functlons

\1 12 -t is the number of boundary ngies‘ .
A N

£
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e

M.
"

‘containing "residu

jlsdetermlned o o

associated with Um

jis adummy index.

It is noted that Ki' J=12,...,n and F; are the preassembled entrics in

"

the finite element system for the. boundary. node "1? 4_but as

mentioned before . this values are discarded when the boundary

condmons arQ enforced "since the value of the stream funct1on at the

boundary nodes is known. Once the solutlon for the stream fUl’lCthH

—

is’ obtained then t:? mult1pllcat10n‘ is performed, resulting in a- vector

s", specified by the. rrght hand s1de of equat1on

2.4.1. It can be expressed as: _ ' - ‘

v

TU=r

where U will be the boundary velocmes tangentlal to- the boundary,‘

T is the matrix that is obtained when the left hand 31de of’ equatxon

A

2.4.1 1s assembled and r is the re31dual vector ment10ned before:

" .Once this . system of equations is solved very accurate 'veloerhes are o

S
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IL5.- WALL VORTI(;rij COMPUTATION )
| . r
~In this section it will be explamed how the . wall vort1c1ty ,15
estimated. " :S? : "f\;\‘

Recalling the definition of vorticity: -

. | L dv  du
- ' : = ay
uti «
| ov P I
u= 3y and v ™
S C | . /
so near a solid boundary: '
(" | | -. N . / ‘.
Ry Ry Ry U
'.,.n: W-*- Z\V: Wl’ g ‘ 2.6.1 .

§ oxZ 9y2 on? S~

- ~where "n’ is a vector normal to the boundary at pomt "s".

4'5

Con51der flgure 7 1f a central fmlte dlfference approx1mat10n is

l
i#

used then .

W1‘2W0+‘I’1
hQ

n, = 262




Fig.7.- Diagram to calculate the Wall Vorticity

-
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and from a no-slip boundary condition:

v _¥i-v _
on- 2n -0 = wvi=v,

SO:

-2
L zh_z_(\lfo ‘Wl)_ 2.6.3

where m, will be the "wall vorticitjr" at node "0".

Let us applied this to the sluice gate problem with the finite

element approximation.

~

Con51der figure 8 and take elements 1 and 2 for example

(f1g 9). Usmg equation 2.6.3 it can be noted that in thlS case, "y will

47

be zero at all the locations .whére the formula will be applied because_:'

node "0" will always be on the boundary Referring to figure 7, "h"
will be just the distance between node "0" and node "1": so taking the

first. node in the.example (node 1 in figure 9) we have:

-2
Ny =" (-y3)
1 y32 Y3

Note that node "3" is being used and not node "2", this is
because this "wall vorticity” will be applied within the whole element
so we think that it is more aEcurate to use the values for the extreme

nodes at the element.



1;4;P
o
JRRES
r
A

Fig. 9.- Close up from elements 1 and 2.
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yould be:
' 'e

13
3
Ky

-2
‘ Mg =" (-yg)
Y6 W

/

-

and for node "7"

__2(%7
377 2

Yo o,
3

What we have now is three values for the wall vorticity within

‘elements 1 and 2, so we take the average and use this value as the

the top of the element, the value of the vorticity would go from zero

49

‘to the value of the wall vorticity obtained, so a relaxation, factor is

used. Using half the wall vorticity would mean that a 'linear
interpolation is being mad.e between zero and the‘value obtained, the
results showed that, this value is still too high. Further research is
'needéd in order to calibrate. the model. The results obtained in this

study are shown in chapter 4.

s



IL6.- DISCHARGE ITERATION

Jo.

When the flow is solved I(or a given discharge, the velocity at
\nhwp of the gate- computed n

merically, may be different from the
_ velocltg’dlctatﬁ
be alt@red to brlh

e spec d energy level. The discharge has to

/ula'r‘eg nergy level%ser to the specified

-
one. Thys, is done usmg a Newto‘n

‘,;o $on method proposed by ‘Heéng
et al. (1986). The method con51sts of the followmg steps:
1.- Assume a dlscharge q; and solve the flow field until

converéwe’n’ce for the free surfice is obtained, then at the tip

of the gate compute:

©
f1 = Voum - Vcdcrgy)l ,
whe,re:'l 1
Venergy = V2g(H - y) - )

Vium is determined using a different method that for the
rest of the free surface. Once the flow field has a solution for
the given discharge, a refinement in the mesh is done in the
vicinity of the gate. The velocities at the integrazt'ion points
for the elements that contrlbute to the node that represents

the tip of the . gate are computed according to: .

and

50
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: df.
v=—ly
. ox

finally
' Voum= YuZ+vZ

2.- Alter the discharge by a small amount 8q, in this ca§¥i§‘it is

being multiplied by 0.99, and obtain:

fr = (Vaum - V

cnergy)Z

num

3.- Use q; and qp to find an improved value for q according to

Newton's method:

& ' _ ; fy
K : Qnew = ql"f 1
1
where:
f, - f
ff _ 2 1
92 - 4

'l}hé number of iterations needed depends on the tolerance and
on the first estimate for q. For a potential flow solution usually 5 +
iterations are needed. If vorticity is included, 7 to 9 iteratic  are

typically done.

51



IIl .- THE PROGRAM

i
’ Figure 10 shows the flow chart of the program, which consists
of 20 differc.;: subroutines Which can be divided as follows: , 4 (
1.- One mput subroutine (PARDEF)
2.- Three output\subroutmes (ENC, OUT, OoU TMAC)
3.- Two subroutines to create the ‘mesh (SUPMAS MESH?
' 4.- One global assembly subroutme A(ASEMBL).
T | 5.- Three local assembly subroutines (TRELEM,ELEM?2,

RECING).
6.- Two‘ boundary conditions subroutines (BDRY, SURF).
7.~ Two equation solvers (UACTCL SOLVE)

8.- One subroutine to calculate the integration points

(GAUSS). _ \\

9.- One -spbroutine to co‘mﬂpute the new coordinates <
(NEWCOR). o

10.- One subroutine to recalculate .the relaxation factor
(RELAX)

11.- One subroutine to compute the vorticity (DINVOR)
12.- Two subroutines to compute the new value for the

dlscharge (DIS, QCHAN)

Each of these subroutines is discussed below.

) : : %
59
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Input Data

z,+_

Generate Mesh

Impose Bdy. Conditions !

Assemble Global Subroutines

435

SoIYe for Stream Function

Potential

Flow
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Surface
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Discharge
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Vorticity
Correct free
Surface . '
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J
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s , -
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Fig. 10.- Flow chart.

Output Results
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II.1.- INPUT SUBROUTINE

III.1.1.- Subroutine PARDEF

In the 1nput subroutine PARDEF all the parameters that are
qsed in the program are read from the input. data file. Basically these

data ‘can be divided in three groups:

hd

a.- Data meant for the creation of the mesh

b.- Data corresponding to- the flow itself and
c.- General control data.

/ ‘ c
v 3

II1.1.1.a.- Mesh Data

",

The data that are used in the mesh generator are baswally

control parameters that indicate how many master elements are

going to be used, how many elements are wanted within each
master  element, and the coordinates of what in this study is called

the "supermaster elements" The information related to this that is

 read in PARDEF is:

NMASX Number of master elements in the "x" direction.
. NMASY.- Number of master elements in the "y" d1rect10n.
: ‘PARAM - It indicates what kind of elements are used, if it is 1
| | that means linear trlangles 2 for quadratic trlanglesl
:.\‘ o and 3 for 9 nodes rectangles

MOOTH Number of times. that the mesh will be 'smoothed".’

l
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NX().- Numbdr of elements within the master element "I" in

the "'x"" direction. |
NY(I).- Number \of elem»ents within the ma§ter eleme~t "I" in

the "y"dircction.
SUPX(L,J).- "x" cobrdinates for fhe super master element "I".
SUPY(I,J).- "y" coordina.tes for the super “master element "I".
PCTSI,J,K).- Percentage of Yo where we want to have the master

element "J" within the super master element "I".

II.1.1.b.~ flow Data

The flow data are those that are intrinsically related to the

Jydraulics of the problem and they are:

HEAVD(,- Is the total energy level.
SSS.-Is the slope of the channel.
VORIND.- Is the relaxation factor used for the vorticity.

VAL3.- Is the first guess for the discharge.



“"

I Control Data -
The g'%neral control data . are those that control '.which
subroutmes w1ll be called when the program wrll stop, and. some

geometrrc condrtlons that are not needed in the mesh gerrerator but C

that have to be specrfled 1n order\@ solve the problem

I .

NEBCR Number of master elements that are placed before the »

trp of the gate

.‘NEBG Number of master elements that are placed before the

a I

gate

‘ EXAM- Is the parameter that lndrcates wi “ ch kmd of eyample \
i ‘, 18 gomg ¢ be solved 1 for supercrrtlcal channels 2 for¢
. subcrrtrcal channels and 3 for slu1ce gates |
A_LFAI = Imtlal relaxatron factor used to correct the free . -
| | surface nodes. o . : | | .r
_..-VORFLG Flag that 1ndrcates 1f Laplace equauon (VORFLG )
Or Porsson equanon (VORFLG —l) will be used ) o
_AVGFLG Flag that 1nd1cates if the average procedure for the “

*.,. .

A

o velocrtres wrll be used

. ' : »T;"FLUMFLG Flag that 1ndlcates 1f lumped w@alues to compute the

| velocrtres are.. gomg to be used
_ "CIRFLG Flag that mdlcates if 01rculat10n wrll be computed
it VORFLG has to be set to 1 in order to use. CIRFLG,

';a ) v
ITER Maxrmuma\number of 1teratrons that are permrtted in,

. >
S A




order to- meet ‘the rpﬁurred tolerance for each d1scharge
o, y i )
If the tolerance for a dlscharge is not met then the
program stops. . #.° ' Co T e
t»,,.fl ¢:.. o . s ";" n

TOL.:- Is the tolerance requ1re'd 1n terms of a summatmp ol‘

d1fference m pressure at thoyﬁ‘ree surface control nodes

TOLQ Tolerance for the discharge. : - et

‘-rITERQ Number of® 1terat1ons permltted for the dlscharge

)SET How many integration. pomts w1ll be spec1f1ed if &node

2

 rectangular elements age used.
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- IIL2.- OUTPUT SUBROUTINES

~  IL2.1.- Subroutine ENC -
.- g 3

LY
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This subroutme pnnts the general information about ‘the

problem The 1nformat10n is~

- S , & (
. : . . . ..
B o B . B . N v
: TN Yo

NX(I).- Nuvrjnsber of' elemenfs 'in the__"x"- direction within ‘master’
| element (I) | | |
o NY(I) Number of elements in the "y". direction w1th1n master |
- element @M. | . |
ITER Maxrmum number of 1terat10ns for . eaoh dlscharge
PARAM Kind of elements that are used. .
SMOOTH Number of smoothing desired.
| NELM Total number of elements
' NNODE,- Total, number of nodes. -
%LFAI - Inmal relaxanon factor |
VORIND Relaxatlon factor for the. vort101ty w1th1n the
: 4. . elements along the bed
" : along the gate ,
TOL - lmtlal tolerance for the 1tera&ons
VAL3- Assumed drscharge o .
AVGFLG Flag that 1nd1cates 1f average velocmes are used
LUMFLG Flag that 1ndlcates If lumped values for the’ velocmes

are used

VORCIN Relaxauon factor for the vortrcrty w1th1n the elements



III_;2.2.- Subroutine ouT ’

Thisg, gg’brou‘;tine ,prints.th‘e.. final results in the following ‘way:.

I T o S
INode Number. | Y | X | Numerical Velocity | Total Head lVéTocitvl

.

It, also glves 1nfor(fnatlon such as how many 1terat1ons were

’needed. for that particular . dls‘charge _ and- what - was ‘the tota]

- difference in “pressure inthe free ’surfacev-nod‘es. The numerical

59

'velocity is the one that 1s\determ1ned through the numer]calw

&lgorlthm and the velocuy 1s the -one from the Energy Equatlon "the

total head is obtalned from the summatton “of the "y" coordinate plus -

the ve1001ty head using the numerlcal velocny

~_-".‘II\?I.’2.3'.-‘ Sdprom;ng~.'0'U‘TM_‘A'C. =

T
'
b

All the streamhnes and the mesh -are plotted usmg a program'

"*"'vjdeveloped by Dr. Peter Steffler from the Department of C1v11‘.

‘Englneermg at’ the Unlverslty of A]berta ThlS program is wrltten for

" the Macmtosh m1crocomputer so the output needs to - be adapted in

.such way that if ‘can be

Ny

‘d_ by thls program Baswally the
\:,‘.: S

' 1nformat10n that 1s wr1tten 1s

1

a).- Total nu"mfber' of element‘s’.
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b).- Total number of nodes. |
C).- NodesAnumbers and coordinates. ,

d).- Elements numbers, type of 'element and nodes belonging to

each element. |

y

It writes this information in a nondimensional form where the
sy coordinates go from "0" to "1", this is done by dividing the real
v»,é'écc‘gordmates over the total head "H". The "x." coordinates are also
| d1v1ded by "H" in order to have the same scale when the final results
are plotted. : | ‘ . "
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. {} :
I11.3,- MESH GENERATOR SUBROUTINES
II.3.1.- Subroutine SUPMAS

“In this subroutine we take the basic information read in
PARDEF and then";\fBreate the "master elements” that will be further
processed to form the mesh that will be solved.

~ The basic ,information that is given jis the coordinates of 5
nodes that give shapeu ro a rectangular "sup‘er master element”, by
linear interpolation and using the percentages that tell us where we
want the "master elements"”, al'l the 8 nodes per master elementv are
found and their cdordinates given. These information is passed and
go into the subroutine MESH where everything is reproc'ess‘ed.

(figure. 11) : “

II1.3.2.- Subroutine MESH

This subroutine.is the actual mesh generator, it is capable of

61

generating linear and quadratic triangles as well as _'linear and 9

nodes rectangles. B :

As pointed by. Thompson et al. (1985): the problem of
'generating a curvilinear c"’o'o;r‘dinate system can t;e formulzi'ted as a
problem of generatlng values of the cartesran coordmates in the
interior of' a rectangular transformed region from specified values in
the boundary. When thls is done by 1nterpolat1ng boundary values,

the method ‘is called "algebraic generatlon b

B
-
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)
What has to’ be done is to first change the physical domain into

¢

a transformed domain consisting of ‘patched” rectangles. In fact it

could be changed into one rectangle, ¢ . by using patched master

elements there is more control over the domain (fig 12)
Oncc we have the rectangles, that are called "master elements",
a local coordinate system for each master element is created. Then

the interpolation for the desired number of elements that are wanted

‘within each master element is done. This interpolation will be done
- by polynomials, - if linear elements are wanted, a first order

'fvf)'OIynomial is used to interpolate. If quadratic, a second order

-~

polynomial will be l.{SCd. ' ’ )

63

The local coordinate system will vary from ( 1,-1) to (1,1) so it .

will be somethmg similar to what is shown in figure 13.

For each master element some boundary values are needed.

‘The number of boundary values depends on the type of interpolation

that is used. If it's going to be first order then 4 boundary values
(global coordinates) per master element are needed . If ‘we  want

second order interpolation then 8 boundary values per master

element need to be specified. It is very important for the master

elements to be compatible, that means that if they have some

boundaries ' in common then those boundary values have to be the
' ’ R . : .

b

same. J

O
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e
.
ds ‘ As
(-1.1 (1,1) (-1,1 - (1,1)
r _»r
(-1,-1) (1-1)  (-1,-1) (1,-1)

Fig. 13 .- Local Coordinates for the Master Elements
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The polynomials that are used to map the local coordinates into
global coordinates are kept in a "SHAPE function". These polynomials

are: .

First Order, Interpolation.-

- S1 = ((1-)*(1-s)4)*Z(L,
S2 = ((1+r)*(1-s)/4)*Z(L,2) ’
3 = ((1+1)*(1+s)/4)*Z(L,3)
S4 = ((1-r)*(1+s)/4)*Z(L,4)
SHAPE = S1+82+53+454

Second Order Interpolation.- o \

ST = -((Lm)*(1-s)*(r+s+1)/4)*Z(L,1)
(82 = ((L41)*(1-5)*(r-5-1)/4)*Z(L,2) \
83 = ((1+1)*(1+s)*(r+s-1)/4)*Z(L3)

S4 - ((1-1)*(1+s)*(s-1-1)/4)*Z(L ,4)

S5 = ((1-1A2)*(1-s)/2)*Z(L 5)

S6 = ((1+1)*(1-sA2)/2)*Z(L.6)

ST = ((1-172)*(1+8)/2)*Z(L,7)

S8 = ((1-r)";(l-s’\’.Z)/Z)*Z(L,S)

SHAPE = S1+S2453+S4+55+56+57458 \

In both cases "Z(L,K)" refers to the "x" or "y" coordinate for the /\
| Figure 14 shows the

“master element "L" and the node number "K".
: - v

general procedure followed to generate the mesh.

r



Local Coordinates

Global Coordinates

& L7 0

6_ r
s —O—>
O0—0 O
1 5 2

Grid Mapped into the Global

Coordinate System - Grid in the Local Coordinate

' System

. Fig. 14.- Procedure to Generate a Grid.
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Now that we’have all the global coordinates we may 'war:t to
smooth the mesh. . This is done especially if- there are very abrupt
changes in gradation size and i\n the angle 'of the patching elements
(fig. 15) ‘

" The smoothing ‘may be done once or twice ‘but not more
because actu‘ally what it 1s done when smoothing is performed, is
tttke the average of adjacent node.s. There is a risk in smoothing, in

that if there are a lot of points very close to a 'sharp edge, the

"smoothing procedure" may cause some points to drift out of the

physical boundary. This has to be checked when the plot of the meslr

. 18 inspected.

| Once this is done what “we actually have is all the ‘nodes and
their respective global coordinates, but we still 'do not have the
actual elements. These elements have t:'o be created as well as a
"connectivity table". This means that the exact nodes belonging to

each element have to be defined. This is done according to the

parameter named PARAM which is the one ‘that tells us Wthh kind,

of elements &e being used. | )
When this subroutine is 'finished the mesh that is going to be
. used to solve the problem is generated It should be emphas1zed that
by using this mesh generator there is a lot of control about the size
and the number of elements- that will be used and very little input is

needed. This is due to the supermaster element and master element

concepts.

)

]



T
N/ . |
“Original Grid (no smoothing). Grid after smoothing'2 times.
e . ’ ;
g
« Grid after smoothing 4 times : © Grid after smoothing 10 times%
Fig. 15.- The Effect of Smoothing in a Grid. o
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" I4- GLOBAL ASSEMBLY SUBROUTINE .

NL4T.- Subrodtine ASEMBL

R [
L - v

SRS In. this su'bruu rnc the global stlffness matrix as well as the

co U'Inodal -force_ vectoy are created

&&)rage a great amount of memory can - be saved For example if a

70

another vector has to be created . ln order to locate

the” posrtr{\‘,f “the dragonal of the matrix.  With thls method of

v

‘341 nodes problem with a half—bandw1dth of 23 is solved ‘then

‘ "L16281 locatlons should be - needed if they are kept in a whole.

matr1x 7843 locat1 S if | :a. banded method is' used (prov1ded that the'

¥

"matrlx is symmetrrc) and 5801 usrng skylme In thlS example if half—

b,andwrdth is “used 35% more. space is needed There is na pomt in-.

companng w1th the storage needed af .the whole matr1x is kept the

adva,ntage ‘“ir's'. obV1ous Flgure 16 | shows a graph where  the

ik ’&’,

) compérrsOn between ‘half- bandw1dth and theoskyll scheme are

"-compared for the typical ‘meshes that were used in . this study. The

bandwrdth is a very 1mportant factor
Once the mesh has been specified; that ST the number Jof nodes

the type of' elements and the connect1v1ty table are- kn/own we can

/'proceed to creat’e the JDIAG vector whrch w1ll 1ocate 4/he posmon of

.

‘.-"_-drfference may differ - from: mesh to mesh, the value of the half-."

the dlagonal mn the skylme vector: - If the stream funet\on 1s “being - B

'solved then thq boundary subroutrne QBNDRY) and the meerrcal

mteoranon ‘subroutine (GAUSS) -are called After. domg that for each

5

3
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_element the respectlve local assembly subroutme is  alled. W1th the

values obtained from the local assembly subrout nes  the global

72

st1ffness matrlx is formed. The local assembly subroutmes ‘are -called .

accordmg to what elements are used and also accoromg tér what 1S .

being solved for (stream functron or veloc1t1es) 'I’hese local assembly'

subroutmes will be- drscussed later

&

When the global assembly subroutlne is fmlshed the whole -

"system of equatlons 18 ready and one, of the solvers 1ncluded in the. &

program ls used to solve it.



- parameter that 1nd1cates this is called "s

' IL5.- LOCAL ASSEMBLY SUBROUTINES

v

In the local assembly subroutines the lacobian the

determmant and the part1al derivatives that are needed to compute

- the entries for the stlffness matrix and for the force vector are

calculated.. The differences among this subroutines are determined

by the type of “element that i§ being used.
II1.5:1.- Subréutine TRELEM

"The subroutine TRELEM is the local assembly subroutine for

triangular quadratic t'riangles. It does a numerical integration using

gaussian quadrature with three integration points per element. With

_this number of points we can integrate with a great precision a

seventh order polynomial, and the ones that are obtained from the

weak statement of the -finite element method for the Poisson or

Laplace equations, are sixth order.

L3

1I.5.2.- Subroutine RECTNG

This subroutine is the equiva'lent of TRELEM but is used when .

9 node rectangular elements are used Thd major dlfference between
. x

these two subroutmeé%s that 1n}ha one there is a way to- 1ndrcate to

<‘r

~the program how : many 1ntegrat10n polnts are to be used. The



74
IT1.5.3.- Subroutine ELEM?2

This Asu»brou.tine is used for one -dimensional qﬁad_ratic
elements. These elements are used in the surface Velocity éaléulation.
A five point ‘integration rule is used to integrate the polynomials
obtained ‘fro.’rr.itmt}?le weak statement. Fewer infegration points gave

inferior results. - . ‘1

&
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II.6.- BOUNDARY CONDITIONS SUBROUTINES
IIL6.1.- Subroutine BNDRY .

In this problem, the boundary conditions numerically mean
that the values for the stream function at the .free,surface nodes, and
at the bed nodes have to be specified. This is done using the "penalty

ethod". .
| : Smce we know“that the stream function at the bottom 'is equal
1o zero, and at the free surface is equal to the assumed discharge, we.

w‘

give this, . Vallles the_ correspondmg nodes in the stiffness matrix

BN uinber. A_t ‘_the same time we give the same
‘vector” (right hand side of the equations) and
mu‘ltiply them by tghe same large number so when the system of
equau}ons is solved the large numbers cancel each other and the
" actual :!;—‘oundary values \/ill remain""

If thlS program should be .used to solve dlfferent types of flow
.then dlfferent boundary condltlons subroutmes would have to be .

written.

oy



II1.6.2.- Subroutine SURF

4 '

Once the solution for the stream function is found then the

tangentlal veloc1ty at the free surface nodes has to be found. To do
thlS the algorithm developed by Carey (1982) is used (see chapter
II). In this subroutine the multiplication"of the stiffness matrix by
the stream function is performed but just for the free surface nodes.

The result is kept in a "residual vector" which will be used to solve

the oné dimensional problem of the velocities.

At the tip of the gate: the normal velocity is. given by the
energy level as:

O

V=+2g(H-a)

and at the stagnation point V=20

These values will be given as the boundary conditions and the

. problem will be solved for the rest of the free surface nodes. The one

76

dimensional elements are also created in this subroutine, these

elements will be Linear or quadratic according to the two dimensional

-elements that are used.
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- IL7.- SOLVER SUBROUTINES

L7 'Subrout'ine" UACTCL
" This solver was first proposed by Zienkiewicz (19’7‘7).',It solves
a system of ‘equat’ions where the matrix is kept in a skyline vector.
‘This particular version solves asymmetric systems, so two skyline
vectors are used; vector A keeps the diagonal and the upper
elements of the matrix and vector C keeps the lower elements of the

matrix and "1" on the diagonal. It uses a -back substitution scheme.

L.7.2.- Subroutine SOLVE

'Thisﬁ.solé);er, is used if a lumped scheme is going to be applied to

solve for®'the velocities - What is done here is the lumpmg itself,

then the 'lumped" vector derlved 1S just d1v1ded by the "residual .

vector that was created m the SURF subroutlne ‘and thus the

velocities are obtained. Sin the dlagonal is heavy, there is not a
'con51derable dlfference in ugé

mng a, lumped scheme or the normal one .

'hut there is less computatlonal eff.crt involved when the lumped

scheme 18 used _Therefore this was . the method appged throughout

this stud}




~ subroutine. ThlS is done in th

IIL.8.- INTEGRATION POINTS SUBROUTINE

II.8.1.- Subroutine GAUSS "
Wh,en the local stiffness matrices are created for each element
a ‘h.u}neri_cal integration has to be performed. Since all the elements

in local coordinates are equal then all the mtegratlon points will be

the same for ale;the elements. It is more eff1c1ent to create a
subroutine that w1;g be called Just once before a particular problem,
that is for one dischgrge and for-one iteration, is solved that inserting
all the possible gaussmn mtegratlon pomts in each local assembly

subroutme GAUSS. Here, according to

the elements that ‘are used ﬁ": local coordinates for the integration

points are assigned and p

subroutine. The  call for thi ubroutme is made within the global

assembly subroutine,

> x_:";' \1 .

78

~to the respective local assembly a



II{.9.- NE™ COORDINATES SUBROUTINE. K

oA

II1.9.1.- Subroutine NEWCOR

This subroﬁ‘t‘ineﬂ‘ »_v‘c‘_;alcv:ulates . the ;ww coordinates for the free
surface control nodvés. dTo do this first a pointer array that keeps
track 0£;¥~ihe control nodes  has to be created. Then, if average
velocities will be used the proéedure to do this is applied. Average
“velocities are used because the convergence to the solution is not

——

stable and by taking a waighted avera‘ge of the velocities a better
convergence is obtainecd..-' .

Once this is done the correction for the po.sit'io/n,is made. Only
the "y" coordinate is corrected. The correction is made according to
the procedure described in chapter II. First, the velocity h‘ead for the
node that is Being considered is computed and the total head for that
node obtéined, ‘(velocity head plus elevation) using the numerical
velocity, then the difference in pressure is computed (original head
~minus numerical hea%l) and thevl correction calculated. This is done‘ for

all the free surface control nodes, after doing. thlS an upﬁa'@g,f

master elements is performed by subsututmg the values "‘%mgmaryv"

kept by the values )ust obtamed An error 1ndlcator is derlved bﬂyi*~

adding “thé "absolute value of lhﬁ differences” in pressure, §0rf all ,eﬁtex-"‘“

s AR

free -surface control nodes | S e




_" .

S »
I.10.- RELAXATION FACTOR SUBROUTINE

~
AN

II1.10.1.- Subroutine RELAX

The correction computed in the subroutine NEWCOR is relaxed
to have a better convergence. If the whole correction is applied there
is a risk that the solution will jump.‘This "relaxation” is applied

is not constant, but varies

through a "relaxation factor" which
according to the convergence that is being obtained. The difference in
pressure - of consecutive solutions -is analyzed. If this difference is
decr_easi'ng, the solution is converging and the relaxation f.<tor is
increased. Otherwise the relaxation factor is decreased. Th re are an
upper and a lower limit for the factor. Experlence showed that 15% is
a convement upper limit and correcting by .ess than 3% %fas no
meaning because the consecutive solutions would be almost 1dentlca1
When the lower limit is reached then the factor is upgraded to 7.5%.
Experience also showed that in most of the cases with this jump in
the solution, the rate of convergence suddenly increases. “If the upper

limit is reached then 1t stays steady at that value. Usually the initial

relaxation factor used was 10%. : y

80



III.11.- VORTICITY SUBROUTINE
IIT.11.1.- Subroutine DINVOR

DINVOR is a "dynamic vorticity" subroutine. This means that

after each iteration the wall vorticity for each element along the bed

is recalculated. It is dynamic because the value for the vorticity will

change with each iteration and at the end it will also converge. The

wall vorticity is also relaxed but at a constant rate all the time.

81

Further investigation is required in order to provide a valid

o .‘

relaxation factor. The value found was between 33% and 40% on the

a/H ratio.
There 1s a flag that indicates if the wall VOI‘thlty is to be

calculated in® ihe elements along the gate as well as in the elements

along the bed of-just in the last ones. The VORT vector that keeps the

values for Z\%e wall vorticity for each element is passed to :the&

ASEMBL sub outine where it is used in the assembly of the stlffness

matrlx and force vector

b

ooy I,
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11i.12.-_ DISCHARGE ITERATION SUBROUFINE - .

III.12.1.- Subroutine DIS

In this subroutine, a numerical calculation for the velocity at

the t1p of the gate is performed. This is done using the derivatives of

S

the stream function at the 1ntegrat10n points. Three points are ‘used,
. 'the ones closer to the tip ‘of the gate. Once the velocity at these points
 is obtained, an extrapolation is done. If the refinement ‘of the mesh is

appropriate, good estimations for the velocity are determined.

I11.12.2.- Subroutine QCHAN

bl

After a solution is obtained for a particular discharge, then

_iteration is performed in. order to obtain the right dlscharge This

done followmg a Newton Rapshon scheme proposed by Heng. et '
(1986) as) mentioned in the last chapter. With this algorlthm and
having a “tolerance of 0.0001 cfs/ft, usually 5 to 13 iterations” were

' needed. : >
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IV.-“ANALYSIS OF 'RESULTS

IV.1~ANALYSIS OF EXPERIMENTAL RESULTS.

b

It has been a common practice to define the discharge

coefficient as:

A

Cq.

A

and the' contraction coefficient as:

y

a

C

C

‘a

"

where is the gate opening, y, the

7" ”

q

acceleration due to gravity.

downstream depth, the discharge

- If thg experimental results are

-9
av2gy,

' far upstream ‘depth, ydﬁ the far

" "

per unit width and g

the

i}

’analyzed it can be noted thart

for different gate openings but equal gate openihnghead ratios,

different values for the coefficients may be obtained, especially for

. _
the contraction coefficient. Figure 17 shows the discharge coefficiénts

from the experimental results obtained by Rajaratnajn (1977). If the

energy equation is applied betweén a section far Upstréam of the

gate and a section far dowsstream it can be shown that:

&

2 B
_ I
H ‘aCc+2ga2_c2 or
H ¢ 1
a —CC+2ga3 CC2 -
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a

We can define a "discharge parameter” as

T

-

Nt
Car = 2gal

For' the same experimental results, a/H is plotted versus this

parameter ‘on figure 18. It- seems that ‘there is a better correlation

hal . . »
. R .

using this felation and it has the advantage over the “discharge

coefficient that the far upstream depth does not need to be known.
Figure 19 shows the contraction coefficients for the -same

~experimental results and again it may be observed that there is not a

unique correlation between a/H -and ‘C . If the results from Benjamin

(1956) and Rajaratnam (1977) for 2 different gate opemngs are .

plotted then: figure 20 is obtained. It 1s “‘noted that even for SImllar
gate epe‘nings” the r"esu‘.lt‘s“differ. In Rajaratnam’s experlments there
were made 4 sets of experiments each for a dlfferent gate opening.
‘The gate openmgs tﬁat were studled were 4, 3 2 and 1 inches. All

.. the detalls can be found- in the - original papers



-

. (161) SWNse) lUBWIEdXE .
swuresefey oy Jeloweied sbietosia g1 B

Y

0€0- .

B EGO0 =8
Y91 0="¢

YGg0="¢
YELEO =B

14

7

\
iaas dagaaaissn

ALl

P

el 2 X

\

“I1gjswered 9bieyvs|a

o e m.O

. t.0




87

L

v
(2461) synse. |eluswsdxe
s ,Wweujeieley wou} wEo_oEmoo co;om:coo ‘61 "Bi4 i
) H/e - ,
oro ge0 . 0€0 T A 0g0 SL0 010, G000 000

A Akl : Aok 2 A " " " el A 80

. n m ]
| g © ' 90

™ ]
G9'0
, > . , 99°0

B s
1290
WERO=B o 1890

] W/9L0=¢ m .
* .HGZ0=€ o - 690
A'4eeeo=e n ]l
: —Jos0
{ . AT
»\.\,v\‘,\w,.,

>

JUsp}a0) uonodeuo)




88

-

.f\

m::mw_

_mEmE:maxm Q.mm,: S Emwc“m_m_mm
pue (9G61) S c_EmEmm usamiaq
com:mano Ema_xmoo uonoBIUOY -'02 o_u_

- A

PEEFIE R ST S

090 -

290

$9°0

99'0
890
0.0

Ay

I H/e
ooo mmo omo mvo ov'0 GE'0- 060 G20 020 GL'O 010 moo 000
- .&.. Uy 1
o [-] ]
° ]
S q..z.:!!tb =] PS bl bl i ]
© , ® n 4
> ° E
. ]
: a 4
. o

. ® Emcﬁhm_.mm ‘YeEO0-2 =

T - ‘Yeeeo=2e o

uweluag ‘BGB00=%C o

. . WGLEZO=E o

©

L0

JUSI01}}90D UodeUOD




)

In order to verrfy the method proposed in thls study, 1t was
decided to- run some’ of the examples that had been studled before.
Smce all the studies done untrl now use models based on potent1al
l.flow theory, it 1rnplled that thlS model had" to be used w1th .ZETO
vort1c1ty ' o | | ) |

 The first run was done based on Isaaés' (1977) example. This
one was chosen because he reported the actual values for the free
surfaee that he obtamed so scalmg from graphs was avoided. -To
guess the f1rst dlscharge the standard plots that appear in "the'
,'l1terature (Chow 41959) Henderson (1966) ) are used The gate
| 'opemng head ratio was taken as 0.3 and the total energy head was
1.9 Vft. The tolerance imposed in this example was such that the
: summanon at all the free surface nodes of the - difference. between
the. prescribed and numerical energy levels. was lower than OOlS ft.
_The maximum difference at any node was 0.26% of the prescr1bed

energy level ‘Both results are shown in figure 21 and they are  in

- very good agreement It 1s 1nterest1ng *the number of degrees &\ _
. . \"\\
freedom ~used in thlS study 113 were used In ‘Isaacs' study the

N —

_,-number \of degrees of freed:om used were not reported but om the

'1t seems that about 284 were used that is 147%

more deglrees of‘ freedom \ﬁv usmg fewer ‘elements som/t1mes more
iterations ~are needed but it has the advantage that it may be
implemented in a smaller computer, si"nce._'the memory requirements

are less. o -

{
4
W
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After obtalmng these results,,drfferent, gate openmgs head 2

- ratros were tned and then compared wrth the results obtamed by _

Fangmeref and Strelkoff (1968) The results for the down’stream free .

urface proflles are’ shown in flgure 22 The Jones for the upstream ’

free surface proflles are. shown 1n flgure 23 The results fr,om

Fangmeler and Strelkoff were scajed from the flgures reporéted :

B 'Frgure 23, shows ‘that in» this studv there is. some problem with . the

. . upstream free surface for a gate openmg head rat1o of 0.4;- but that .
- %?ay be because few elemcnts were used in that portlon of the flow

- .freld ‘and in_ order to reach the stagnatlon pornt a steep slope 1s

R s

needed 1 .
“For some reason usually the drscharge coefflc1ent 18 plotted
versus a/yo instead of a/H Frgure 24 shows dlfferent results for the
drscharge coefflclent (Cd) 1nclud1ng the experrmental results from
"Henry (1950) and RaJaratnam (1977) a.'the 'analytrcal .and

numerrcal. studies were d.one usmg potent1a1 flOW' Figure 25 shows
. the dtscharge parameter for drfferent studres Flgure 26 shows ‘the
. Contraction coefflclents versus a/H for the analyttcal and numerrcal'
5 results In flgure 27 the experrmental results are also _plotted.

“When the flow fleld 1s solved the value of the stream functlon
at - the nodes 1s obtalned F1gure,28 shows the meshes ‘used to solve

“the potentlal flow e?amples for cl1fferent gate opemng head rat1os '

The streamlmes obtalned are shown m frgure 29 .

.o
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a/H =0.1
| —
aH =02 ’ |
Aa/H=03 .
| aH =04

, ‘F_ig~.,28.— Meshes used to solve different gate opening-head

ratios for potential flow problems.
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CaM=04 Y
Fig. 29.- Streamlines for different gate opening-head
' ratios for potential flow.
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S As mentioned before, an advantage of this method 'is that the

. number of | ‘el'emen'ts ~‘that are needed to get good results is

considerably  less than - what ‘has. been reported in cuicr studies; the -

same example (for a/H = 0.3) was fun.us.ing more elements and: the

results are:

# of elements #of no.des . Cvd’
44 115 0.5513
176~ - 405 05510

396 - 871 05509

’

«

0.9925
0.9920

- 0.9917

»

C.
0.5999
0.5996

0.5998

CPU

55_.
65s.
3005.

as we can see there is no considera‘b‘]e difference in the results, and . . =

* . Lo
the computational time that is saved is enormous.

&9

I
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IV.3 RESULTS WHEN VORTICITY IS INCLUDED. . -

As it W;IS'!' cntioned’ in earlierv ;:hapters .a new feature for this
study is the introduction of vortic‘iiy in\to‘the equations. When
- vorticity is used there is a tendency' for the downstream’ flow to rise,N
thus the contraction goefficients Vtha‘t are ‘obtain'evd are hig\ier than

or the

s

the ones,[\,'ob{tained when potential flow is considered.
.. discharge it seen;s ‘that there is n‘ot-v a considerabie difference,

) 'es‘peciall‘y“‘i‘f il'th'e discharge paramete- “(C_dz) is used instead of the
discharge coefficient (C). \ ' /

Two different experiments were done. In the first set, the
dischafge was” prescribed .according to t/pe rf:sults,6 from the potential
flow solution. It Was found that if tile percer_itage of vorticity is
Vincreme{nte.:d, the value for the contraction coefficient 'incr‘e‘ase's. This
s shown in figure 30. We supposé that the reason for this behavior is
the rota’tionality“ of the flow. As the flow develops downstream; the .
vorticity is increasing until it reaches a certain value where the flow
is uniform again. Figure 31 shows for thé case of a gate opening-head
ratio of 0.3 the values that were obtained with a percentage..;of
vorticity of 0.25. |

In the second_ set of experiments, ‘d“iffere_:‘nt configurations of
_ gate opening-head ratios were modelled using differe‘nt\percentage»svr‘—'?

of vorticity and the discharge - was also iterated.



Ly

102

.

:

- -(oB1eyosip pequosaid e Jo})
~‘Apnis Siy} Wwoiy pue (8961 ) HoXens pueiisiawbuey
‘(2£61) weujeleley woij SUSIOYB00 UORORAUOD -'0E ‘614

M - -~ HeE
Sy'0 oy'0 Ge'0- O0E0 Ge0 020 S0 010 .50°0 00
.-\.bm.... PURSY S T PR S S | PN S Y1 PR NI S S BT S S S PR T S U .u
&l =
1 | T
® ’ v

X - , nv

b 3

]

s | Gg'- = 'HOA

02~ = "HOA -
G- = "HOA

Apnis sl 0L~ ="LOA

_ 80'- = "UOA

MoOL-f [BNUSIOd
WEBOO=®

axa b axad aaad s daaadaaslaas o 4..1

‘0

650
090
190
290
£9°0
590
590
990
190
890
69°0

Y910=¢
weujelefey UGZ0="¢
. ‘yeeep=¢e
N EN TR _w_mEmcmm

|x+x<n10l+I

(AT

-2

040

| juald|}}e0s uo|loeIILO)D



o B f 103

N
N
’ f
S,
r—? o
T akl F
F n
TS :12 = "f“‘y4 !
- ' I ®
S \ N E
X @
o)
F o pat
- S
s £
- K oy
I = r
- )
< s 3
o =
= -9 ’.\J
5 -g Q
- o I >
o R 5 .
‘Ef\ =) — 0 ‘
- c @
5 D O
- E o
! S <
w
= D 2
- > o
. D=
5 D [
s 5
F o = y
- .
A EE"
- m N
o}
[ '- [}
5 A Q
- o . o S S o g o
o 20 o o o o o
Vo] <t m (oY) -
Aoiop -
5

N



B

It was noted 1»* there is: a sudden change in the coefficients

from the potentltﬂ flow solutlon to the ones with vorticity, but the

changes when different percentages of vort1c1ty are appplied. are - not
1}
large compared with the one that happens in the beimmng "It was

found ‘that there is an upper limit of .the vaiue that' may be used for

the vort1c1ty f0r a prescribed dlscharge This value is between 033_

and 04 Further research is needed in order to calibrate the model
The reason that a.relaxation factor has to be used is because the
velocity proflle assumed is not correct, so the value‘ of the vorticity

has to be reduced. Figures 32 and 33 show the var1at10n of ' the

(‘

" discharge par\ameter and the d1scharge ceefficient for different gate

opening-head ratios as the vorticity is increased. Figure 34 shows
the var;'ati’on of the contraction coefficient. ;

VIn figure" 35 the fq}lperimental results for the discharge
coefflcrent obtamed by Rajaratnam (1977) and by Henry (1950), are
plotted along w1th the results obtained in this study for different

percentages’ of vort1c1t.y The thickness of the-bottom layer was 0.10

of the depth For the same set of data, f1gure 36 shows the results for

,the discharge - parameter and figure 37 the results for the contraction

coefficient. - M

As mentioned in chapter II vorticity }is intr'oduced d};namically
as the solution is being -derived but just in the elements along the
bed." It is necessary to modify the - mesh that was to solve potentlal
flow because a thin layer of elements is needed along the bed. Flgure
38. shows the different meshes for d1fferent gate opening-head ratios
that were used when vort1c1ty was applied. The streamhnes obtained

from the solution of these meshes are shown in figure 39.
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Flg 38.- Meshes used to solve dlfferent gate openmg head ratlos

when vortlcaty IS mcluded
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Several thicknésses were 'tri\ed“ﬁl\qrder to get a feeling of the

 influence of this. For a preseribed discharge, it was found that "the

.

thicker the layer the larger the contraction coefficient this is because

the influence of the vort1c1ty extends over a larger domain, although'v

its absolute ‘value decreases Flgure ‘40 shows the effect of this w1th
respect to the contractlon coefflclent 7

Frgures 41, 42, "and ‘43 show the variation of the, different
cgefficient.s as the thickness . of -the bottom layer increases. The
dlscharge was’ not- f1xed and the vortlclty was prescribed. 3
. Finally, two runs ‘were made w1th actual results }rom the

,ﬂl"ho"'ttory The experlment 'is ‘the. one labelled A-IV- in the

publrcatlon hy RaJaratnam (1977) Onev‘of the runs was done g

con51der1ng potentlal flow, and the second one . with a- prescribed

vorticity of -0.25(du/dy). Frgure, 44 shows' the three downstream

profiles (experimental, potentidl flow, dynamic vorticity).

~
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V.- CONCLUSIONS

A finite element method to solve ithe flow under sluice gates
has been presented. | . .

By using Poisson equation instead of Laplace equation to model
the flow, higher contraction and discharge .coefficients have been
obtained, as well as the idischarge parameter. The changes were
greater in the contracction coefficients, so if the discharge is the main
unknown and the downstream free surface profile is not needed,
then a potential flow modeli is accurate enough to get results. On the
other hand, if the free surface profile is the main concern then it is
more accurate to use the vorticity model. It was found that if the
dischafge 1s fixed, there is an upper limit for the amount of vorticity
~that can be iﬁtroduced to .the model, and that the domain over where
it is applied has an important influence ink the overall results.

I/f the discharge is also iterated and vorticity introduced, there
is a sudden change from the potential flow solution, but then it does
not make a big difference wich amount of vorticity is used, or the
thickness of the bottom layer. The flow adjusts to the new
circimstances. Further research is needed to find which are the
~_correct values to use, thatv'me‘?.ins .to calibrate the model. '.

After analyzing the experimental results it is proposed a new
way to, describe the relation between the gate opening-head ratio
and the discharge, this is the discharge parametér as defined in

chapter IV.

r

[E2Y

119



~ ' _ 120
There are some speciai features in this model that make it eaS)'/ to
‘use and approprlate to 1mplement in a microcomputer: the mesh
generator is capable of producmg graded meshes. The den51ty of the
grid is controlled by means of patched master elements a}ld it can
- produce different kind of elements. Since in this problem the domain
c”hanges after each iteration it was needed "that the mesh generator
Coilld_ be capable of regenerating t&e whole ,mesh~without\losing the
relative proportion between elements. This was possible using super
master elements. The time used to generate the mésh is about 25% .of
the -total CPU. time. > | -

As mentiened-before, the.czi]cula_tion'of the boundary velocities
is very important.!By using the algorithm ‘preposed by Carey et al.
very accurate boundary velocities are determined. This helps the
free surface correction algorithm to get good values:v this is because
the algorithm used to update the free surface is based in the
calc,ulatior{ of the difference in pressure at those nodes, to get this AP
the velocity head is needed. An inaccurate velocity would gci'l;/e wrong
corfections and since the flow downstream of the gate is supercriti}:‘él
a wrong: velocity has a great influence; it is not the same upstream of'
“the gate where the veloeity is relatively small. The way to update' the
free surfa!iI is such that with a censiderably‘ less number of degrees
of freedom good results are vobtai—ned. This feature is fhe one that
makes the program accessible to ,a_microcomputer since the memery

: .
requirements are proportional to the number of unknowns.
| " The implementation’ of this model to other flow problems

seefms tc be quite direct although the boundar‘y\subroﬁtin'es WOuld_

have to be changed in order to satisfy the particular 'boun'dary
\
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conditions for eath problem. In the case of impllerflenting this model
~to solve spillway problems some features would have to be added to
the free surface. update subroutir/19: because now it just wgrks with a
horizontal bed. . |
| The model as it is may also be applied to inclined gates as well-

as radial -gates, it would be a matter of using the correct data file. )S

i \
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C
C
C * ALBERTO ALCARAZ *
-C * DEPARTMENT OF CIVIL ENGINEERING *
C * UNIVERSITY OF ALBERTA *
el * ID 165970 *
C * MSc. THESIS *
C
C
C

INTEGER ELEM(1500,9),PSMAS JISIAG(3000) PARAM,EL(1500,9),EXAM
. INTEGER.NX(50),NY(50),NEX(50),NEY(50), AVGFLG,VORFLG,POINT(101)
INTEGER SET,NELX(65), NELY(65) CIRFLG JNXX(50),NYY(50), NEXX(50),

% NEYY(50)
C o 1
C | | .
REAL COORL(3000,2),COORD(3000,2),X(50,8),Y(50,8),KEL(9,9)
REAL FEL(9),A(50000),C(50000),B(300.),A1(50000);R(300}"
REAL F1(3000),F(300),COR(3000,2),DPNOD(75),YY(50,8),VAL2(300)
REAL JDIAG1(300),VORT(1500),VORTIC(50),SUPX(20,5),SUPY (20.5)
REAL PCT(20 10,2),DNDR(16,9), DNDS(16 9
(o]
C .
. LOGICAL AFAC,BACK

NOoOOa

CALL PARDEF (NMASX,NMASY,NEBCR PARAM,EXAM HEAD,SSS,ITER, MOOTH,
STOL,NEBG,ALFA1,VORFLG,AVGFLG,LUMFLG,NPE,NPME,NMASNX,NY,VALI,
SVAL2,VAL3,NEX,NEY,NNX,NNY,NNODE,NELM,VORT,VOR1  TOLQ,ITERQ,

S$SET,SUPX,SUPY,NELX,NELY,NELXD,NF " .YD,CIRFLG,PCT,VOi.ND,VORCIN,
. SKOUT,TOLEND,NXX,NYYNEXX,NEYY, /XXNNYYNELM2NNODE?2)
- ERRQ=1..- '
KONTQ=1 . o _
K=0 | S
. ERRNOD=1. . :
DPN=1.
'FLG=0.

15 Mi=l
CALL SUPMAS (SUPX,SUPY,PCT,), ' NMASX,NMASY)

"CALL MESH(NX,NY,NMASX,NMASY,NMAS,X,Y,SHAPE,COORD,ELEM,NELM,
*NNODE,NNY,PARAM ,NEX,NNX,MOOTH,NEY) : -
. IF(KEQ.O)THEN ~

- CALL ENC (NMASX,NMASY NMAS,NX NY,ITER,PARAM,MOOTH,NELM,
$ NNODE,ALFA1 TOL VAL3,AVGFLG,LUMFLG,VORIND,VORCIN)
ENDJF :

c.
C
C

CALL ASEMBL (ELEM,COORD,NELM,NNODE,NNY,A, B,C,JDIAG,
* A1,F1,M1,NPE,VAL],VAL2 NUM4, EXAM,PARAM,NNX,VORT FLG,SET,
* DNDR,DNDS) : ‘

“



O

)

CALL UACTCL (A,C,BJDIAG,NNODE,AFAC,BACK)
IF (VORFLG.EQ.1) THEN
CALL DINVOR(NNX,NNY,COORD,B ,PARAM,CIRFLG,NEBG,NEBCR ,NELX,
& NELY ,NELXD,NELYD,VORT,NEX,NMASY,VORIND,VORCIN,KOUT,
& KELVOR,KELVC1,KELVC2)
ENDIF :
IF ((K.EQ.0.OR.K.EQ.ITER).AND.(ERRQ.LE. TOLQ.OR.KONTQ.EQ.
&ITERQ)) THEN
CALL OUTMAC (NNODE,NELM,COORD,ELEM, B, K,NX ,NY NEBCR,DPN,
$  TOL,PARAM,HEAD r/\1.3)
ENDIF
C
C
C ‘
CALL SURF (A1,B,R NNODE,ELEM,NNY,JDIAG,F1,NEX,NMASX EL,
*NELM,NOD,NEL,NPEL,NNX,COORD,COR,NEBCR , NUM4,NUM3,EXAM,NEBG,
*NMASY,PARAM,VAL3, HEAD,FLG)

Mi1=2

CALL ASEMBL(EL,COR,NEL,NOD NNY,A,B,C,JDIAG,A1,F1,Ml1,
& NPEL,VAL1,VAL2, NUM4,EXAM,PARAM,NNX,VORT,FLG,SET,
& "DNDR,DNDS)

IF (LUMFLG.EQ.0)THEN

CALL UACTCL (A,C,R,JDIAG,NOD,AFAC BACK)
ELSEIF (LUMFL.G.EQ.1)THEN

CALL SOLVE (A,R,JDIAG,NOD,NUM4,EXAM,VAL3,COORD)
ENDIF

\
Ve
A

o NPNe!

~>

K=K+1
108 FORMAT(/4X, FINAL SOLUTION AFTER ‘13, ITERATIONS.)
109 FEORMAT (//,4X, TOLERANCE OF 'F7.5,' NOT MET AFTER '3,
&' ITERATIONS',/4X'DPN IN LAST ITERATION = ' F9.5) °

oo Ne!

IF(K.LE.ITER.AND.DPN.GT. TOL) THEN
CALL NEWCOR (NX,NMASX,COR,X,Y,R,K,NNY,COORD, VAL3 .NEBCR,

ERRNOD,EXAM,HEAD,SSS,NEBG,ALFA1 NMASY,NOD,NEX,NUM4,PARAM,

&
& AVGFLG,DPNOD,POINT,NPOINT,ITER,SUPX,SUPY,KOUT)
DPN=DPNOD(K)
IF(K.GE.2)CALL RELAX (DPNOD,ALFA1,K.X,Y, YY NEBCR,NMASY,
& NMAS,NPME)
IF(DPN.LE.TOL)GO TO 16
GO TO 15

C
C
C
ELSEIF (DPN.LE.TOL) THEN

16 CALL OUT (COR,R,POINT NPOINT,K TOL DPN,HEAD DPNOD VORFLG,
$ CIRFLG,VORT,KELVOR,KELVC1,KELVC?2)

Mi=l
CALL MESHINXX,NYY,NMASX NMASY, NﬁAS X,Y,SHAPE,COORD,ELEM,

$  NELM2,NNODE2NNYY,PARAMNEXXNNXX MOOTHNEYY) .
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119

139

120

121
\\S

7

aoaOoO0aaoann

NUM3=0

DO 241 LL=1,NEBCR _
NUM3=NUM3+NEXX(NMASY*LL)-1
NUM3=(NUM3+1)*NNYY

CALL ASEMBL (ELEM,COORD,NELM2,NNODE2NNYY,A,B,CJDIAG,

A1,F1,M1,NPE,VAL1,VAL2, NUM4,EXAM,PARAM,NNXX,VORT,FLG,

SET,DNDR,DNDS)
CALL UACTCL (A,C,B,JDIAG, NNODE2 AFAC,BACK)
IF(ERRQ.LE.TOLQ.OR.KONTQ.EQ.ITERQ)THEN

CALL OUTMAC (NNODE,NELM,COORD,ELEM,B;K,NX NY NEBCR,

DPN,TQL,PARAM,HEAD,VAL3 NNY)
ENDIF
CALL DIS(NUM3,NNYLY,COORD,DNDR,DNDS,B,VG)
IF (ERRQ.GT.TOLQ. .KONTQ.LE.ITERQ)THEN

CALL QCHAN (COORD,VAL3,KONTQ,HEAD,ERRQ, VG JNUM3)

ALFA1=0.1

K=0

TOL=TOL/2.

IF (TOL.LT.TOLEND) TOL=TOLEND

DPN=1. ‘ l
DO 119 I=1,NNX
VAL2(I)=VAL3

DO 139 I=1,NELM
VORT(I)=0.

GO TO 15

ELSEIF (ERRQ.LE.TOLQ)THEN

WRITE(6,120) KONTQ,VAL3

FORMAT(//,FINAL DISCHARGE MET AFTER ' 13 ITERATIO,

‘NS Q= "F9.5)
GO TO 888

ELSEIF (ERRQ.GT.TOLQ) THEN

WRITE(6,121)KONTQ,VAL3

FORMAT(/, TOLERANCE FOR THE DISCHARGE NOT MET AFTER',

' I3," ITERATIONS, LAST Q= "F9.5)
GO TO 888 :
ENDIF '

ELSEIF (K.GT.ITER) THEN

WRITE(6,109)TOL, K DPN

ENDIF
888 STOP
END

Ak
*k
* %k

SUBROUTINE PARDEF-.IS THE INPUT SUBROUTINE AND ALSO

DEFINES THE DIFFERENT PARAMETERS USED IN MESH AND
THE VALUE OF THE VORTICITY FOR EACH ELEMENT.

* ok
* K
*k

SUBROUTINE PARDEF (NMASX ,NMASY NEBCR,PARAM,EXAM,HEAD,SSS,

$ITER,MOOTH,TOL,NEBG,ALFA1,VORFLG,AVGFLG,LUMFLG,NPE,NPME,

$NMAS,NX,NY,VAL1,VAL2,VAL3 NEX,NEY,NNX,NNY,NNODE,

$NELM,VORT,VORTIC,TOLQ,ITERQ,SET,SUPX,SUPY,NELX,NELY, NELXD
SNELYD,CIRFLG,PCT,VORIND, VORCIN,KOUT,TOLEND, NXX.NYY,NEXX,NEYY,

;

130
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$NNXX,NNYY,NELM2,NNODE2)
INTEGER PARAM,EXAM,NX(50),NY(50) NEX(SO),NEY(SO) AVGFLG,VORFLG
REAL VAL2(300), VORT(1500), VORTIC(50),PCT(20,10,2)
REAL SUPX(20,5),.SUPY(20,5)
INTEGER NELX(50),NELY(50),NELT(50),SET,CIRFLG,NXX(50),NYY(50),
& © NEXX(50),NEYY(50)

PARAM --- PARAMETER THAT TELLS IF IT IS A QUADRATIC
OR ‘A LINEAR. APPROXIMATION (1-LINEAR,2-QUAD)
EXAM -—--- PARAMETER THAT TELLS THE KIND OF EXAMPLE,
1-SUBCRITICAL CHANNEL,2-SUPERCRITICAL CHANNEL -
3-SLUICE GATE, 4-SPILLWAY
HEAD ----- THE INITIAL DEPTH UPSTREAM.
R J— SLOPE IN THE CHANNEL (FOR CHANNELS AND SLUICE)
ITER------ NUMBER OF ITERATIONS
MOOTH ---- NUMBER OF SMOOTHING DESIRED (0= NO SMOOTHING)
NEBG ----- NUMBER OF ELEMENTS BEFORE THE SLUICE GATE.
ALFAl ----- RELAXATION FACTOR.
AVGFLG --- IF 1, USES AVERAGE VELOCITIES.
LUMFLG -- IF 1, USES LUMPED MATRIX FOR THE VELOCITIES.
VORFLG --- IF 1, USES DINAMYC VORTICITY IN THE ELEMENTS.

READ (4,*)NMASX,NMASY,NEBCR,PARAM, EXAM, HEAD,SSS,ITER, MOOTH,
& TOL,TOLEND
IF (EXAM.EQ.3) THEN
READ(4,*)NEBG,ALFA1,VORFLG,AVGFLG,LUMFLG,CIRFLG, VORIND,VORCIN
ELSE
NEBG=NEBCR -
ALFAl=l.
AVGFLG=0 -
LUMFLG=0
VORFLG=0
CIRFLG=0 ‘
ENDIF ) : e
IF (PARAM.EQ.1) NPE=3
IF (PARAM.EQ.2) NPE=6
IF (PARAM.EQ.1) NPME=4
IF (PARAM.EQ.2.0R.PARAM.EQ.3) NPME=8 =
IF (PARAM.EQ.3) NPE=9
IF (PARAM.NE.1.AND.PARAM.NE.2. AND.PARAM.NE.3)THEN
WRITE (6,*) 'WRONG PARAMETER = ' JPARAM
GO TO 888 ‘ '
ENDIF
NMAS=NMASX*NMASY
READ (4,*) (NX(I),I=1,NMAS,NMASY)
‘READ (4,*) (NY(I),]=1,NMASY)
READ (4,*) (NXX(I),]=1,NMAS.NMASY)
READ (4,%) (NYY(I),I=1, NMASY)
DO 4 I=1,NMAS,NMASY -
DO 4 J=1,NMASY-1
NXX(I+D)=NXX(I)

>



4  NX(I+))=NX({D)
DO 6 J=1,NMAKY
" DO 6 I=1 NMASX: .
NYY((I-1)*NMASY+))=NYY(J)
6 NY((I-1)*NMASY+])=NY(J)
DO 10 I=1,NMASX
10 READ (4,%*) (SUPX(L)),SUPY(J),J=1,5),(PCT(1,J,1),PCT(1,J,2),
&J=1NMASY+1) :
READ (4,*) VAL1,VAL3,TOLQ,ITERQ,SET,KOUT

FIXING THE SUBCRITICAL DEPTH (UPSTREAM DEPTH)

oNONON®!

DIFER=1.
15 IF(DIFER.LE.0.000009)GO TO 20
VALO=SUPY(1,4)
SUPY(1,4)=HEAD-VAL3**2/(64.4*VALO**2)
DIFER=ABS(SUPY(1,4)-VALO)
GO TO 15 ;

DEFINITION OF PARAMETERS THAT GO INTO MESH

NMASY = NUMBER OF MASTER ELEMENTS IN THE Y DIRECTION.
‘NMAS = NUMBER OF MASTER ELEMENTS.

NNX = TOTAL NUMBER OF NODES IN THE X DIRECTION.

NNY = TOTAL NUMBER OF NODES IN THE Y DIRECTION.
NNODE = TOTAL NUMBER OF NODES.

NELM = TOTAL NUMBER OF ELEMENTS. :

COORD = ARRAY THAT KEEPS NODAL GLOBAL COORDINATES.
ELEM = ARRAY THAT KEEPS NODES PER ELEMENT.

Ao NnNnNO0nN

20 IF (PARAM.EQ.I)THEN
DO 25 1=1,NMAS
.NEX(D)=NX()
25 NEY(D=NY() -
ELSE
DO 30 I=1,NMAS
NEXX(D=2*NXX(I)-1
NEYY(D=2*NYY(I)-1
NEX(I)=2*NX(I)-1
30 NEY(D)=2*NY()-1
ENDIF
NNX=0
NNY=0
NNXX=0
NNYY=0
NUMX=NMAS/NMASY+1
NUMY=NMAS/NMASX+1
DO 35 '=1, NMAS,NMASY
NN XX=NNXX+NEXX(D)-1 :
35 NNX=NNX+NEX(I)-1 . N
DO 40 I=1, NMASY o s

NEX()= ARRAY THAT KEEPS NUMBER OF DIVISION PER MASTER ELEMENT. .
NEY(I)= ARRAY THAT KEEPS NUMBER OF DIVISION PER MASTER ELEMENT.

132



NNYY=NNYY+NEYY()-1
40 NNY=NNY+NEY(I)-1 ‘
‘NNX=NNX+1
~NNY=NNY+1
. NNXX=NNXX+1
GNNYY=NNYY#1
" NELM=0 -
NELM2=0
IF(PARAM.EQ.1.OR.PARAM.EQ.2) THEN
DO 45 I=1NMAS
'NELM2=NELM2+2*(NXX(D)-1)*(NYY(D)-1)
45 NELM=NELM+2*(NX(I)-1)*(NY(I)-1)
ELSEIF (PARAM.EQ.3) THEN .
DO 46 I=1 NMAS
46 NELM=NELM+(NX(D)- 1)*(NY(I) 1
ENDIF
NNODE=NNX*NNY
NNODE2=NNXX*NNYY
IF(PARAM.EQ.2.0R.PARAM.EQ. 3)THEN
NELXD=(NNX-1)/2
NELYD=(NNY-1)/2
ELSEIF(PARAM.EQ.1)THEN
NELXD=NNX-1
NELYD=NNY-1
ENDIF
DO 55 I=1,NNX " , y
55 VAL2(I)=VAL3
C

-C- ASSIGNING VORTICITY TO THE DIFFERENT ELEMENTS

C - J
IF(PARAM.EQ.2) THEN
DO 60 I=1,NMAS
NELX(D)=NX(I)-1
NELY(D)=NY/(D)-1
60  NELT(D=NELX(I)*NELY()*2
ENDIF
_ IF (PARAM.EQ.3) THEN -
DO 61 I=1,NMAS
NELX(D)=NX(I)-1
NELY(D=NY(I)-1
61 NELT(I)=NELX(I)*NELY(I)
ENDIF
DO 98 I=1,NELM
98 VORT()=0.0
888 RETURN-
END

C
C

133,

C

C ** SUBROUTINE SUPMASTER-. IT CREATES THE MASTER ELEMENTS THAT
C ** GO INTO "MESH", IT JUST REFINES THE ELEMENTS ALONG THE '

C ** "Y" DIRECTION.

* ok
Fk
*%

C T

‘c} Y
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C ‘ .
SUBROUTINE SUPMAS (SUPX,SUPY,PCT,X,Y NMASX,NMASY)
C
C
REAL X(50,8),Y(50,8),SUPX(20,5),SUPY(20,5),PCT(20,10,2)
C
C %
DO 20 I=1,NMASX
. DO 20 J=1,NMASY . / oo

KT1=J+(I-1)*NMASY
Y(KT1,1)=PCT(1,J,1)*SUPY(I,4)+SUPY(,1)
X(KT1,1)=((SUPX(1,4)-SUPX(I,1))*Y(KT1,1))/(SUPY(, 4-

9 & SUPY(1,1))+SUPX(I,1) »
Y(KT1,2)=PCT(I,J,2)*SUPY(I, 3)+supf(1,2) ' -
X(KT1,2)=((SUPX(I,3)-SUPX(I,2))*Y(KT1,2))/(SUPY(],3)-

& SUPY(1,2))+SUPX(1,2)
Y(KT1,3)=PCT(1J+1,2)*SUPY(1,3)+SUPY(I,2)
X(KT1,3)=((SUPX(1,3)-SUPX(I,2))* Y(XT1,3))/(SUPY(I,3)-

& SUPY(I,2))+SUPX(L2)

Y(KT1,4)=PCT(1,J+1,1)*SUPY(1,4)+SUPY(I,1)
X(KT1,4)=((SUPX(1,4)-SUPX(I,1))*Y(KT1,4))/(SUPY(1,4)-

& , SUPY(],1)+SUPX(,1)

o X(KT1,5)=(X(KT1,1)+X(KT1,2))/2.
Y(KT1,5)=(Y(KT1,D)+Y(KT1,2))/2.
X(KT1,6)=(X(KT1,2)+X(KT1,3))/2.
Y(KT1,6)=(Y(KT1,2)+Y(KT1,3))/2.
X(KT1,8)=(X(KT1,1)+X(KT1,4))/2.
Y(KT1,8)=(Y(KT1,1)+Y(KT1,4))/2.

IF(J.NE.NMASY) THEN
X(KT1,)=(X(KT1,3)+X(KT1.4)/2. . :
Y(KT1,7)=(Y(KT1,3)+Y(KT1,4))/2. : S ~— \

ELSEIF(J.EQ.NMASY)THEN : ‘

X(KT1,7)=SUPX(1,5)
Y(KT1,7)=SUPY(1,5)
ENDIF
20 CONTINUE
RETURN
END

et

ok SUBROUTINE ENC-. PRINTS THE GENERAL INFORMATION ok

ok ABOUT THE PROBLEM. v —— *x

i N .
o J
_ : J
SUBROUTINE ENC (NMASX,NMASY,NMAS,NX,NY,ITER,PARAM,MOOTH,NELM,
$NNODE,ALFA1 ,TOL,VAL3,AVGFLG,LUMFLG,VORH\ID,YQ?CIN)

OO0 0n

INTEGER NX(50),NY(50),PARAM,AVGFLG,LUMFLG .
REAL VORTIC (50)

INFORMATION ABOUT THE ELEMENTS

oNoNe!
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WRITE (6 106)
WRITE (6,101) (NX(D),I=NMASY NMAS NMASY)
101 FORMAT("**#¥sssskn NX(I)‘ 15(11 ARALELLLLL LD
WRITE(6,102)(NY(1),I=1 NMASY) :
102 FORMAT('#*#*s#%%ss» NY(D="312,).21 ‘ttttt#*#*')q,
WRITE (6,103) ITER,PARAM,MOOTH, NELM,NNODE,ALFA1 -
103 FORMAT("****#***++* NUMBER OF ITERATIONS= ,IZ.ZOX,'*"*"***',
&',/ xxxxrndns E] EMENTS TYPE= 'I1;' (1=LINEAR, 2=QUADRAT",
&'Ic)r,,;x’-uttmuttt"/,'tut*uttt NUMBER OF SMOOTHING= 111,
&22X Hxrnkandi j kkasnnsntkx NJJMBER OF ELEMENTS: '14,20X, . -
&Errkknhknx [ annrkssssx NUMBER OF NODES= '14,23Xkwkww
&'¥xdux! [ hkwkrrkenn INTTIAL RELAXATION FACTOR= ' F4.2,
S 13X, kkknskhkdT)
WRITE(6,1}08) VORIND, VORCIN
108 FORMAT (" #* %3 dkkxk RELAXATION FACTOR FOR THE VORTICITY !
&' hkkoniokkt [ Sokkokkkk s WITHIN THE ELEMENTS ALONG,
&' THE BED = "\F7.6, %% ¥akikdkk' | vikokokbdohs RELAXATION " ]
) &FACTOR FOR THE VORTICITY '*t****tt**"/,'******#*** " . !
&'WITHIN THE ELEMENTS ALONG THE GATE='F7.6, ***##kkx") )
WRITE(6,110)TOL
110 FORMAT (" ##*% 44 *% %% TOLERANCE',- JF7.5,26>.* uuu*ur)
WRITE(6,111)VAL3
111 FORMAT('*##*¥s%xxix% ASSUMED DISCHARGE ="F8.5,' CFS/FT',9X, o
&wu*uuu')
IF(AVGFLG.EQ.1)WRITE(6,104)
104 FORMAT('#****x*%%% {JSING AVERAGE VELOCIT[ES L20X, Rk kok ek k)
IF(LUMFLG.EQ.I)WRITE (6,105)
105 FORMAT("*******%%x JSING LUMPED VALUES FOR TH.. VELOCITIES',
C &6X ROk kT /
WRITE(6,106) - s
106 RORMAT( "

, &'*************’)
c . /

END

»

\ ' f

* - SHAPE FUNCTION - %

a0 0n

FUNCTION SHAPE (R,S,Z,L,PARAM) —
DIMENSION Z(50,8)
INTEGER PARAM

IF (PARAM.EQ.1)THEN
S1=(1.-R)*(1.-S)/4.*Z(L,1)
S2=(1.+R)*(1.-S)/4.*Z(L,2)
S3=(1.+R)*(1.+S)/4.*Z(L,3)
S4=(1.-R)*(1.+S)/4.*Z(L,4)
SHAPE=S1+S2+S3+S4

ELSEIF (PARAM.EQ.5) THEN , B

SN
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S1=(1.-R-S)*(2.*(1.-R-8)-1.)*Z(L,1)

S2=R*(2.*R-1.)*Z(L,2)

S3=S*(2.*S-1.)*Z(L,3) ~

S4=4 *R*(1.-R-S)*Z(L,4)

S5=4 *R*S*Z(L,5)

$6=4.*S*(1.-R-S)*Z(L,6)

SHAPE=S1+S2+S83+S4+55+S6
ELSE T
S1=-(1.-R)*(1.-S)*(R+S+1.)/4.*Z(L,1)
S2=(1.+R)*(1.-S)*(R-S-1.)/4.*Z(L,2)
S3=(1.+R)*(1.+S)*(R+S-1.)/4.*Z(L,3)
S4=(1.-R)*(1.S)*(S-R-1.)/4.*Z(L,4)
S5=(1.-R**2)*(1.-S)/2.*Z(L,5)
S6=(1.+R)*(1.-S**2)/2.*Z(L,6)
S7=(1.-R**2)*(1.48)/2.*Z(L,7)
S8=(1.-R)*(1.-S**2)/2.*Z(L,8)

S~
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C LOCAL COORDINATE GENERATION '

© ‘

C

K=0 Y : .
DO 15 I=1,NMAS,NMASY : .
DX=2./(NEX(I)-1) o /{:\//—»\ A .
IF (1.EQ.1)THEN yd
i (,
ELSE
K3=2
ENDIF
.UX=-1.
DO 15 IX=K3,NEX(I)
DO 15 J=1,NMASY
DY=2/(NEY(J)-1)
IF (J.EQ.1)THEN
K2=1
ELSE
K2=2
ENDIF ¢
UY=-1.
DO 15 1Y=K2,NEY(J)
K=K+1
COORL(K,1)=UX+DX*(IX-1)
_ COORL(K,2)=UY+DY*(IY-1) .
15- CONTINUE -
C .
C MAPPING TO GLOBAL COORDINATES FROM LOCAL COORDINATES
C.
K=0 .«' , ,
DO 18 =1, NMAS,NMASY ‘ a ¥
Ki=I-1 ‘
IF (1.EQ.1)THEN
K3=1 ‘ .
ELSE - «
- K3=2 ' ‘ '5
ENDIF
DO 18 IX=K3,NEX()
DO 18 J=1,NMASY
L=J+K1
IF (J.EQ.1) THEN
K2=1
ELSE - . ,
K2=2 ‘ s _ . o
ENDIF :
DO 18 IY=K2,NEY(J)
K=K+1
COORD(K,1)=SHAPE(COORL(K,1),COORL(K,2),X,L,PARAM)
‘ COORD(K,2)=SHAPE(COORL(K,1),COORL(K,2),Y,L,PARAM) -
18 CONTINUE . ’ .
c

C SMOOTHING PROCEDURE
C . .
'\ IF(MOOTH.NE.0)THEN
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DO 21 LL=1 MOOTH -
K1=NNX-2
K2=NNY-2
K3=NNY-1
O 21 I=1,K1
K3=K3+2
DO 21 J=1,K2
K3=K3+1
COORD(K3,1)= (COORD(K3+1 1)+COORD(K3 1,1)+COORD(K3+NNY,1)+
* -COORD(K3-NNY,1))/4. v
COORD(K3, 2) (COORD(K3+1 2)-»COORD(K3 1,2)+COORD(K3+NNY,2)+
* COORD(K3-NNY,2))/4. .
21 CONTINUE
ENDIF

DEFINE NODES PER ELEMENT ¢

anaan

K6=1

K5=1

IF (PARAM.EQ.2)THEN

. DO 70 I=1,NELM,2 .
ELEM(, 1)=K5

. ELEM(],2)=K5+2*NNY

ELEM(1,3)=K5+2
ELEM(I,4)=K5+NNY
ELEM(LS5)=K5+NNY+1 4
ELEM(L6)=K5+1

ELEM(I+1,1)=KS+NNY*2+2
ELEM(I+1,3)=K5+2*NNY
ELEM(I+1,2)=K5+2
ELEM(I+1,6)=K5+2*NNY+1
ELEM(1+1,5)=K5+NNY+1
ELEM(I+1,4)=K5+NNY+2

K5=K5+2*NNY :
IF (MOD(K5,NMX1).EQ. O) THEN
K5=K6+2

K6=K6+2 ‘ 4 S
NMX1=NMX1+2 ‘ \ ,

ENDIF _ o . - o
«~ 70  CONTINUE o
ELSEIF (PARAM.EQ.1)THEN ‘
DO 80 I=1,NELM,2
ELEM(],1)=K5
ELEM(I,2)=K5+NNY
ELEM(I,3)=K5+1

EPEM(1+1,1)=K5+NNY+1
ELEM(I+1,2)=K5+1 - . »
ELEM(I+1,3)=K5+NNY o o



o n_‘n_'hh nnnonaa
* % % L

; 0‘

K5=KS+NNY ' I A
IF(MOD(KS.NMXI).EQO)THEN ) T .
. K5=K6+1 - ‘
- K6=K6+1 ‘ S
. NMXI-NMX1+1 ) T
"ENDIF. T

80-" CONTWIUE . CL

.. ELEM(I,3)=K5+2*NNY+2 o L e

anaaGao nn d

ELSEIF (PARA EQ3)THEN P

ELEM(I,4)=K5+2 "
ELEM(1,5)=K5+NNY
- ELEM(L6)=K5+2*NNY:+1
ELEM(I,7)=K5+NNY+2
 ELEM(I,8)=K5+1"
ELEM(1,9)=K5+NNY+1

K5=K5+2*NNY ' L .
IF(MOD(K5,NMX1).EQ.0)THEN i R ’
K5=K6+2 -
K6=K6+2 - e
NMX1=NMX1+2 L e T
: ENDIF- = ' :
90 - CONT}NUE . Lo T e
ENDIF T R ) Co N S

= SUBROUTINETRELEM IS THE ELEMENT SUBROUTINE e
* . FOR QUADRATIC TRIANGLES, TO INTEGRATE IT USES ©~ **

et

REAL, COORD(SOOO 2), X(6) SR DNDR(16 9, DNDS(16 9N, KEL(9 9)
’ *FEL(9) .3,6),B(3,6),DET(. ,,J11(3), J12(3) 121(3) 122(3), '
*G(B 6,6),VI(16 9), VORT(1500)
INTEGER ELEN  700,9)

g

. u.1LGRATION POINTS. ;
INN - =ARRAYS THAT KEEP THA JACOBIAN FOR THE DIFFERENT
. INTEGRATION POINTS. .
DET = ARRAY THAT KEEPS THE VALUES OF THE DETERMINANT
KEL = ELEMENT "STIFFNES" MATRIX. - '
'FEL = RIGHT HAND SIDE ELEMENT VECTOR

) .NUM'ERICALINTEGRATIONTAKING'IHREE'POINTS T

SUBROUTINE TRELEM(ELEM COORD,N KEL FEL VORT DNDR DNDS VI NIP’I') .

DNDR DNDQ =  XAYS THAT KEEP THE PARTIAL DERIVATIVES FOR THE



s

- ’

' DO5I=l6 ‘
5 FEL(D=0, -
. DO 10 =16 - L » -
" X(D=COORD(ELEM(N,D),1) o L
L X(I)—COOFD(ELEM(NI)Z) S L .
.10 CONTINUE | R e N
~ "7/ DO12I=LNIPT " - o
S Inm=0. e .
112(1) 0. ) o . '
J21(1)=0
122(1)=0,
12 CONTINUE
DO 131=13 " . R R
\ " DO 13.J=1,6 ' Tl O T i
SF U IT(DE11 KD+DNDR(], J)*xcﬂ) o - .
L 2(H=J120)+DNDR(LI)*Y () Lo '
5 I2LM=I21(D+DNDSLX(D) L . S
, JZZ(I)-—J22(I)+DNDS(I J‘)*Y(J) TR : ST
13 CONTINUEJ-~ e . .
DO 20 I=1,3-- > o SEERI
-DET(I)= (111(1)*122(1)) (121(1)*112(1)) Cl L
DO3OI—13 . R \ LU s T /
‘ ‘D0-30 I=1,6 > SR T et - :
e AQD)= QZZ(I)*DNDR(TJ)JIZ(I)*DNDS(IJ))/DET(I) e,
<. UB(, J;—-(JI}(I)‘*DNDS(I - JZI(I)*DNDR(I J))/DET(I) ‘ L
:30 CONTINUE .- L ,
‘D040 K=1,3
© .0 DO 40 I=1,6 ;
R -7 DO40I=L6 - N\ T T
. R G(KIJ) A(KI)*A(KJ)+B(K 1}*13(1(1) S R
’ '.\40 CONTINUE- : A : c
L ,DOSOI—16 o
‘ 7 'DO50J=16" e R
50+ " KEL(L)=(G(1,L)*DET(l +G(2,'I,vJ)'*DET’(2)+.. B
' &G(3IJ)*DET(3))/6 ' I R
‘DO 701=1,6 - , I L
. DO 70J=13 -+ - o S
70 FELM=FEL(D+VIU,D*DETE) . . T T
 DO751=16 S e o
7 FEL(I) FEL(I)*VORT(N) R S S .
" WRITE(7,78)N" -~ S T : N
" FORMAT(//;" ELEMENT NUMBER 13 //) e
. »DO'76 I=1;6: - » . T S LT EERRR
76~ . WRITE(7,77). (KEL(IJ)J 16) T T L
77~ - FORMAT (6(2XF8 5)) T P
RETURN, "
CEND '
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C
C
C

_~SUBROUTINE ELEM?2 (ELEM, COORD ILKEL,FEL)
REAL COORD(3000,2),KEL(9,9), FEL(9)

INTEGER .ELEM(1500,9)
DO 10 1I=1,6

DO 10 JJ=1,6 -

10 KEL(LJJ))=0.

X1=COORD(ELEM(1,1),1) . -

Y 1=COORD(ELRM(, 1),2)
X2=COORD(ELEM(1,2),1)
Y2=COORD(ELEM(1,2),2)
- X3=COORD(ELEM(I,3),1) -
Y3=COORD(ELEM(I,3),2)

R=.932469514203152
W=.171324492379170

KT=1

+R+.5)*Y3)**2)

20 RAIZ—SQRT(((K‘S)*Xl 2*R*X2+(P)¢.5)*X33)j“"‘2+((R~.5)"‘Yl-2*R*Y2
L& ¢ .

e

F11=(R*R*R*R-2:*R*R*R+R*R)*RAIZ -
F12=(-(R*R*R*R)+R*R*R+R*R- R)”‘RAIZ
F13=(R*R*R*R-R*R)*RAIZ. .

F22=(R*R*R*R-2.*R*R+1.)*RAIZ

F23=({R*R*R*R)-(R*R*R)+R*R+R)*RAIZ °
- F33=(R*R*R*R+2.*R*R*R+R*R)*RAIZ
*_ KEL(1,1)=KEL(1;,1)4W*F11’

KEL(1,2)=KEL(1,2)+W*F12
KEL(1,3)=KEL(1,3)+W*F13

_KEL(Z 2)=KEL(2,2)+W*F22

" KEL(2,3)=KEL(2,3)+W*F23

¥,

KEL(3,3)=KEL(3,3)+W*F33

- KT=KT+1

IF (KT.EQ. 2}THEN

GOTO W e

~ELSEIF. (KT EQ. 3)THEN

R=.661209386466265
W=, 360761573048139
‘GO FO 20

- ' ELSEIF(KT.EQ4) THEN

R“’R Wy
GOTO2O

ELSEIF (KT.EQ: S)THEN .

. R=! 238619186083197
T W= 467913934572691
GOTO 20" N

ELSEIF (KT.EQ. 6)THEN '

I
ENDIF".

RER:
-GO TO 20" -

KEE(1, 1)’“KEL(1 1)/4
KEL(I 2)=KEL(1,2)/2.
KEL(I 3)—KEL(1 3)/4
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KEL@2=KELQ22) . & -
KEL(23)=KEL2,3)2. . | e
KEL(3;3)=KEL(3,3)/4. - ' . ‘

e KEL(2,)=KEL(1,2) - } B
: KEL(3,1)=KEL(1,3) . * '.. =
- KEL(3,2)=KEL(2,3) S i
FEL(1)=0. - T . B
FEL(2)=0. K
FEL(3)=0..
_ RETURN
,; X END‘:'
w  C ’
c .
C .
C
c R . "
C ** SUBROUTINERECI‘NG I CREATES THE LOCAL MATRIX FOR **
C ** RECTANGULAR QUADRA rIC ELEMENTS WITH 9 NODES. LAl
. C g '
C
C

- SUBROUTINE RECTNG(ELEM,COORD,N,KEL,FEL,VORT,SET,DNDR,DNDS,
" & VLNIPT,WI WJ)
C .
'REAL COORD(3000 2), X(9) Y(9), DNDR(16 9),DNDS(16, 9) KEL(9,9),
(&FEL(9),A(16,9),B(16:9),DET(16),111(16),J12(16), J21(88),
&322(16),G(16,9,9),VI(16, 9) VOR’I‘(IS()O) R(16), S(16) W1<16)
&WI(16),MR,MS .
INTEGER ELEM(1500, 9),SET
c
C SET=1 _ L
DO 5 1=1,9 5
5 FEL()=0. o
DO 10 1=1,9 - -
X(D=COORD(ELEM(N,I),1)
Y (I)=COORD(ELEM(N, 1),2)
10. CONTINUE :
DO 26 I=1,NIPT
J11(D)=0.
L J12(D=0. ‘
T 121(D=0. s
122(1)=0. .
26 -CONTINUE
DO 27 1=1,NIPT
DO 27 J=1,9
J11(1)=J11(1)+DNDR(I,])*X(J)
J12(H=J12(D)+DNDR(I,H*Y ()
121(D=J21(1)+DNDS(I,1)*X(J)
122()= J22(I)+DNDS(I N*YJ)
27 CONTINUE
" DO 28 I=1,NIPT
“LET)= (Jll(l)*J22(I)) (121(1)*112(17{
28 CONTINUE : .
DO 30 1=1,NIPT



DO 30 J=1,9
A(LY)=(J22(I)*DNDR(I,J)-J 12(I)*DNDS(I,1))/DET(I)
~ B(LY)=011(1)*DNDS(L))-J21(1)*DNDR (1, ))/DET(I)
30 CONTINUE 7
DO 41 K=1,NIPT
DO 40 I=1,9
DO 40 J=19
G(K,LN)=A(K,)* A(KJ)+B(K,D*B(K,])

40 CONTINUE

oNoNoEoNoNoNoNe)

o000 0n

41 CONTINUE
DO 50 1=1,9
DO 50 J=1,9
KEL(1,J)=0.
DO 50 K=1,NIPT ,
KEL(L))=KEL(I,J)+(G(K,1,J)*DET(K)*WI(K)*WJ(K))
50 CONTINUE ‘
. DO 70 1=1,9 '
'~ DO 70 J=1,NIPT
70 FEL(=FEL(D+VI(J,))*DET(J)

DO 75 I=1,9
75 FEL(I)=FEL(I)*VORT(N)
RETURN
END -
- SUBROUTINE BNDRY s
Nad
SUBROUTINE BNDRY (A,B,JDIAG,NNODE,NNY,F1,VALI,VAL2)
INTEGER BDY (4000),JDIAG(3000)
- REAL A(50000),B(3000),F1(3000),VAL2(300)
A = VECTOR THAT KEEPS ALL THE VALUES OF THE STIFFNES MATRIX.
B = RIGHT HAND SIDE VECTOR. ‘
IDIAG = VECTOR THAT KEEPS TRACK OF THE DIAGONAL IN THE SKYLINE
PROFILE. :
BDY = VECTOR THAT KEEPS THE NODE NUMBERS OF THE BOUNDARY PTS.
VAL1= BOUNDARY VALUE AT THE BOTTOM.
VAL2= BOUNDARY VALUE AT THE TOP.
" K=NNGDE-NNY+1
KONT=1
- DO 10 I=1,K,NNY
BDY(KONT)=I
B(I)=VAL1*100000000. *
F1(I)=VALI
10 KONT=KONT+1
KKK=0 -

DO 20 I=NNY ,NNODE,NNY
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OO000n

C

KKK=KKK+1
BDY(KONT)=1
B(I)=VAL2(KKK)*100000000.
F1()=VAL2(KKK)
20 KONT=KONT+1

KONT=KONT-1

DO 30 I=1,KONT
L=JDIAG(BDY(D))

30 A(L)=A(L)+100000000.

RETURN !
& N
x SUBROUTINE ASEMBL =~ *

SUBROUTINE ASEMBL (ELEM,COORD,NELM ,NNODE,NNY,A,B,C,JDIAG,
+ A1,F1,M1,NPE,VAL],VAL2 NUM4 EXAM,PARAM,NNX,VORT,FLG,SET,
+ DNDR,DNDS) ' '
INTEGER ELEM(1500,9),JDIAG(3000),HDIF(9)
INTEGER HDIF1(3000),M(8,9),EXAM,PARAM,SET
REAL A(50000),B(3000),COORD(3000,2),KEL(9,9),VORT(1500)
REAL FEL(9),C(50000),A1(50000),F1(3000),KKK(100,100)
REAL DNDR(16,9),DNDS(19,9),VI(16,9),WI(16),WJ(16)

LOCATION OF THE DIAGONAL IN THE SKYLINE VECTOR

IF(M1.EQ.1)KL1=2%*31-1 -
" JDIAG(1)=1 '
T KT5=1
DO 100 J=2,NNODE
KT1=1
KT5=KT5+1
DO 200 1=1,NELM
DO 300 K=1;NPE
IF(ELEM(],K).EQ.J))THEN
DO 400 K1=1,NPE
400 HDIF(K 1)=ELEM(],K)-ELEM(,K 1)
HDIF1(KT1)=NIMAX(HDIF,NPE)
"KT1=KT1+1
ENDIF
300 CONTINUE
200 ONTINUE
KT1=KT1-1 -
LCOL=NIMAX(HDIF1,KT1)
100 JDIAG(KT35)=JDIAG(KT5-1)+1+LCOL
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. s
C ASSEMBLY OF THE GLOBAL MATRIX
C
KK—JDIAG(NNODE) e
DO 415 1=1,KK
A(1)=0.
C(N)=0. o
415 A1(D=0. AET
DO 405 I=1,NNODE ‘
CUDIAG(D)=1. .
FI(D=0. ., ~ :
405 B(D=0. :
IF (M1.EQ.1) CALL BNDRY (A,B,JDIAG,NNODE,NNY,F1,VAL1,VAL2)
IF (M1EQ.1) CALL GAUSS (DNDR,DNDS,VL,PARAM,SET,NIPT,WI,WJ)
DO 500 I=1,NELM
IF(M1.EQ.1.AND.PARAM.EQ.2) THEN
CALL TRELEM (ELEM,COORD, 1 KEL,FEL,VORT,DNDR,DNDS, VI,
& NIPT)
K1=5
K3=6
ELSEIF(M1.EQ.1.AND.PARAM EQ.3)THEN
CALL RECTNG (ELEM,COORD,LKEL,FEL,VORT,SET,DNDR,
& : DNDS,VL,NIPT,WI,WJ) :
K1=8
K3=9 '
ELSEIF (M1.EQ.2.AND.(PARAM.EQ.2.0R PARAM.EQ.3)) THEN
K1=2
K3=3 .
CALL ELEM2 (ELEM, COORD,],KEL,FEL)
ENDIF
* DO 510 LL=1,NPE o
L1=ELEM(],LL)
JI=IDIAG(L1)
- A(D)=A(JJ)+KEL(LL,LL)
A1(J)=A1(J1)+KEL(LL,LL)
B(L1)=B(L1)+FEL(LL)
F1(L1)=F1(L1)+FEL(LL)
510 CONTINUE
DO 520 L=1,K1
K2=L+1 7
DO 520 J=K2,K3 ,
M(L,J)=MAX(ELEM(L,L),ELEM(L,J))
JJ=JDIAG(M(L,J))-ABS(ELEM(I,L)-ELEM(,J))
A(JT)=A(T)+KEL(L,J)
A1(JD)=A1(J1}+KEL(L,)
_ C(1)=CUIN+KEL(J,L)
520 CONTINUE
500 CONTINUE

/

C . :
C  CONDITION TO FIX THE VELOCITY AT THE SLUICE GATE
C

IF(MI.EQZANDEXAMEQ3ANDFLGNEIO) THEN s

JJ=IDIAG(NUM4)
A(JN)=AJ1)+100000000.
JJ=JDIAG(NUM4+1)
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A(D=AT1)+100000000.
ENDIF
RETURN
C
C Ry
FUNCTION NIMAX(VEC,NPTS)
DIMENSION IVEC(3000)
NIMAX=IVEC(1)
DO 100 I=2,NPTS
NDIF=NIMAX-IVEC(I) S/
100  IF(NDIF.LT.0)NIMAX=IVEC(I) ’
RETURN
END

*
*

KEPT IN A SKYLINE VECTOR. I;ROM STASA'S'WOOK. ok

1

AN OOO0ON
° *
*

L
SUBROUTINE UACTCL(A,C,B,JDIAG,NEQ,AFAC,BACK)
DIMENSION A(50000),B(3000),C(50000),JDIAG(3000)
LOGICAL AFAC,BACK : :

FACTOR A TO UT*D*U, REDUCE B TO U

oNeNe

- AFAC=.TRUE.
BACK=.TRUE.
JR=0
DO 310 J=1,NEQ

JD=IDIAG(J)
JH=JD-JR
IF(JH.LE.1) GO TO 300
1S=J+1-JH

IE=J-1

IF(.NOT.AFAC) ‘GO TO 250
K=JR+1

D=0 : -

ap ammT

o NON®]

REDUCE ALL EQUATIONS EXCEPT DIAGONAL

DO 200 I=IS,IE

IR=ID

IF(I.EQ.0) GO TO 175

ID=JDIAG()

IH=MIN(ID-IR-1,I-IS)

IF(IH.EQ.0) GO TO 150
A(K)=A(K)-DOT(A(K-IH),C(ID-IH),IH)
C(K)=C(K);DOT(C(K-IH),A(ID-IH),IH)

150 IF(A(ID).EQ.0.0) GO TO 175 -

C(K)=C(K)/A(ID)

175 K=K+1

SUBROUTINE UACTCL-. SOLVES THE SYST%F EQUATIONS ** .
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200 CONTINUE

REDUCE DIAGONAL TERM
A(JD)=A(JD)-DOT(A(JR+1),C(JR+1),JH-1)
C
C FORWARD REDUCE THE R.H.S.
C

250  IFCNOT.BACK) GO TO 300 {
B(J)=B(J)- DOT(C(JR+1)B(IS) JH-1) (

J=NEQ & ‘ NN :
JD=IDIAG() = . e
500 IF(A(D).EQ.0.0) GO TO 550
B(H=BU)/AJD) ,
550 D=B(J)
J=3-1
“ IFJ.LE.0) GO TO 939*”
JR=JIDIAG()
IF(UD-JR).LE.1) GO TO 700
1S=J-JD+JR+2
K=JR-IS+1 :
DO 600 I=IS,J
B)=B(-A(I+K)*D
600 CONTINUE
700 JD=JR
GOTOS00 = . ‘
999 RETURN : :
END

0.' IA

aon0onn
£
o
zZ
&
-

FUNCTION DOT(A,B,N)
DIMENSION A(50000), B(SOOOO)

DOT=0.0

DO 100 I=1,N

DOT=DOT+A(I)*B(I) . .
100 CONTINUE . 3 S
RETURN
END -

.

* SUBROUTINE SURF *

)

IeNeNeEeNe Ko Ne)
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SUBROUTINE SURF (A1,B,R NNODE,ELEM,NNY JDIAG,F1,NEX,NMASX,
*EL NELM,NOD,NEL,NPEL ,NNX,COORD,COR,NEBCR,NUM4,NUM3,
*EXAM,NEBG,NMASY,PARAM,VAL3,HEAD,FLG)
REAL A1(50000),B(3000),R(300),R1(800,40),COORD(3000,2)
REAL R2(800,40),F1(3000),F2(300),COR(3000,2) }
INTEGER JDIAG(3000),ELEM(1500,9),EL(1500,9),EXAM,NEX(50)
INTEGER PARAM , , t@
NOD=NNX
NLX=2*NELM,'NNY-1) '
KONT1=0 ‘

- PARAMETERS TO WORK THE SLUICE GATE EXAMPLE
NUMI MAY VARY ACCORDING TO THE NUMBER OF MASTER
ELEMENTS ALONG THE SLUICE GATE.

"IF (EXAM.EQ.3) THEN
NOD=0 ,
DO 5 I1=1,NEBG

5 NOD=NOD+NEX(NMASY *I)-1

NOD=NOD+1

NUM2=NOD*NNY

NUM3=NOD J
DO 6 I=NEBG+1,NEBCR

6 NUM3=NUM3+NEX(NMASY*I)-1

NUM3=NUM3*NNY s
DO 7 I=NEBCR+1,NMASX :

7 NOD=NOD+NEX(NMASY*])-1

C

C

NOD=NOD+1 .
NUM4=NUM2/NNY" 3

-
KR1=NOD
KR2=2*NNY+1 .
DO 10 I=1,KR1 _
DO 20 J=1,KR2 o
. R1(LDH=0.
20 R2(1,1)=0.
10 R(1)=0. ‘
KI=0
K1=NNY
K2=NNODE
IF (EXAM.EQ.3) K2=NUM2
K3=NNY
KK=0
15 DO 30 I=K1,K2,K3
KI=KI+1
KJ=0
K4=2*NNY+I
IF (K4.GT.NNODE)K4=NNODE
DO 25 J=I,K4
IFJDIAG(J)-(J-I).LE.JDIAG(J-1))GO TO 25
KJ=KJ+1 s
R1(KI,KD=A1(JDIAGU)-(J-I))*B(J)
 WRITE(6,*)KL,KJ,J,R1,B,JDIAG,Al =,KIKJ.J,RI(KLKJ),B(J),
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C %IDIAG(),A1(JDIAG(J)-(J-1)) :
25  CONTINUE
30 F2(KD=F1(J)
IF (KK EQ.0) THEN \
KI2=K1 : =
KI=0
ENDIF
IF (%K.EQ.1) KI=KI2
DO 40 1=K1,K2,K3
KI=KI+1 '
KJ=0
' L1=JDIAG{D-"
L2=JDIAG(I- )+ -
DO 40 J=L1,] 2,-1 "\
KJ=KJ+1 it
R2(KI,KJ)= A1(J)*Bq ~KJ)
C “ WRITE(6,*)'KI,KJ,J,R2/A1 B(I KI="KLKJ.JR2AKLK),A1(3),
C & B(I-KJ)
40 CONTINUE ' .
KK=KK+1 )
IF (EXAM.EQ.3.AND.KONT1.EQ.0) THEN < )
K1=NUM3 '
K2=NNODE-«.
« KONT1=KONT1+1
GO TO 15
ENDIF
DO . I=1KRIl
, DO 51 J=1,KR2
81 RI=RM+RI1(L,1+R2(LT)
C
C FIX VELOCITY AT THE SLUICE GATE, Vo= Q/Yo
C ACCORDING TO THE APPROACH VELOCITY IN THE UNIFORM FLOW.
gm’ ALSO FIX VELOCITY AT TOP NODE WHERE V=0. AND H=HO.

s

IF (EXAM.EQ.3.AND.FLG.NE.1,0)THEN
G2=64.4
V0=VAL3/COORD(NNY,2)
VEL=SQRT(G2*(HEAD-COORD(NUMS3,2)))
R(NUM4+1)=VEL*100000000.
. 'R(NUM4)=0.0
ENDIF
K1=NNY N .
K2=NNODE < a . _ .
IF (EXAM.EQ.3) K2=NUM2
K3=NNY
K4=1
KK=0
KT1=0
K=0
55 DO 60 1=K1,K2,K3
K=K+1 _
COR(K,1)=COORD(I, 1)
60 COR(K,2)=COORD(I,2)
IF (EXAM.EQ.3.AND.KONT1.EQ.1) THEN

£
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K1=NUM3
K2=NNODE
K5=K-1
& KONTI1=KONT1+1 ,
GO TO 55 ’ I .
ENDIF 4 .
[F (EXAM.NE.3) K5=K-1 :
K51=K-1 .
THE NEXT "IF" IS FOR CHOOSING LINEAR OR QUADRATIC
1-DIMENSIONAL ELEMENTS FOR THE VELOCI;I":InEs (PARAMI)

OO0 n

IF (PARAM.EQ.2.0R.PARAM.EQ.3) THEN -
61 DO 62 I=K4,K5,2
KK=KK+1 -
EL(KK,1)=I
EL(KK,2)=1+1
62 EL(KK,3)=1+2
IF (EXAM.EQ.3.AND. KONTI1 EQ.2)THEN"

Kd=1+1
K5=K51 . , {
KONT1=KONT1+1
GOTO 61 4

ENDIF

ELSEIF (PARAM.EQ.1) THEN | ‘
63 DO 64 I=K4,(K5-1) '

KK=KK+1 - "
_ EL(KK, 1)=I : . .
64  EL(KK,2)=I+1 . :

IF(KONT1.EQ.2)THEN ' ' .
"K4=I+1
K5=K51
KONT1=KONT1+1
GO TO 63
ENDIF- ‘ -
ENDIF : '
NEL=KK
IF (PARAM.EQ.2.0R.PARAM.EQ.3) NPEL=3
IF (PARAMEQ.1) NPEL=2

‘f"‘

RETURN
END
. C '
“C v
,‘;vmj M C i
N Ol SUBROUTINE NEWCOR-. CALCULATES THE NEW COORDINATES ok
C ** FOR THE CONTROL POINTS, IE. FOR THE FREE SURFACE ok
C ** MASTE&*ELEMENTS NODES. . - |
c e
c a0
c . iy
) SUBROUTINE NEWCOR (NX, NMASX,COR,X,Y,R,K,NNY,COORD,VAL2, NEBCR,
Wil & ERRNOD,EXAM,HEAD,SSS,NEBG,ALFA 1,NMASY,NOD,NEX,NUM4,PARAM,

& AVGFLG,DPNOD,POINT,NPOINT,ITER,SUPX,SUPY,KOUT)
INTEGER EXAM,NEX(50),NX(50),POINT(101),PARAM,AVGFLG

8

I
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REAL COR(3000,2),X(50,8),Y(50,8),R(300),COORD(3000,2),Q(100)
REAL DPNOD(75),SUPX(20,5),SUPY(20,5)
, ERR=0.- 7
; ERRNOD=0. P
DPNOD(K)=0. ¢
NTOT=NOD
NMAS=NMASX*NMASY

CREATING THE POINTER ARRAY THAT KEEPS TRACK OF THE CONTROL
NODES.

oNoNeNe!

J=NEBG*NMASY
KT1=NMASY
KT2=0
» POINT(1)=1 .
KK=0 ' )
24 DO 20 IsKT1,J,NMASY ‘
=KK+2
IF(KT2.EQ.1)THEN
KK=KK+1
KT2=KT2+1 \
»ENDIF .
NUM=(NX(I)*2-2)/2
DO 20 L=KK KK+1 L
POINT(L)=POINT(L-1)+NUM
20 CONTINUE _ v
IF (KT1L.EQ.NMASY) THEN
KT1=NEBCR*NMASY+NMASY A
KT2=KT2+1 . .
KT3=KK+3 , : 4 ’
POINT(KK+2)=POINT(KK+1)+1 )
J=NMAS ‘
GO TO 24
ENDIF
NPOINT=L-1
KK=KK+1

P

PROCEDURE TO).-AVERAGE THE VELOCITIES

IF (EXAM.EQ.3.AND.AVGFLG.EQ.1) THEN
DO 25 LL=KT3,KK

L=POINT(LL)

LO=POINT(LL-1)
: IF(LL.EQ.KK)GO TO 22
= .~ LH=POINT(LL+1)

D1=COR(L,1)-COR(LO,1)
D2=COR(LH, 1)-COR(L,1) '
Q)= (R(LO)*D1+R(LH)"‘D2+R(L)*(D1+D2))/(2 *(D1+D2))

C - *  WRITE(6,*)' OLD VELOCITY AT NODE 'L, = "R(L),
C $ “ 'Dl='Dl' D2="'D2 "
’ GO TO 25
22 CONTINUE :
C 22 .  WRITE{,*)' OLD VELOCITY AT NODE 'L, = "R(L)

QIL)=RLOM#2.*RL))/3.




25 CONTINT E
DO 27 L=KT3,KK
27 R(P INT(L))=Q(POINT(L))
ENDIF

™ p—

C
C . :
C

V=R(1)**2/2./32.2
C=HEAD
J=1-NNY :
IF (K.EQ.ITER.OR.KOUT. FQ 1) WRITE (6,51)
51 FORMAT (2X,'NODE'4X,'NEW Y',7X,'OLD Y'8X,'’X'9X,'VELOCI',
& "TY'4X,’ERR',9X,DP',7X, DEN',8X,'CORR',5X,'SQRT(2G*(H-Y)")
KK=0
ALFA=ALFAI1
KKK=1
» DO 10 I=1,NTOT -
KK=KK+1
U=R(I)**2/64.4
DP=COR(],2)+U-C

J=J+NNY it

»

LAS SIGUIENTES LINEAS TIENE QUE SER MODIFICADA, AHORITA ES
NADA MAS PARA EL EJEMPLO SENCILLO.

nO0onNOn

IF (COR(,1).LT.7500.)THEN
H=(COR(L,2)-(Y(1,1)-ABS((COR(I,1)-X(1, 1)))*555))**3
DEN=VAL2**2/32. 2/H-1.

_IF(DEN.EQ.0.00)THEN ’
WRITE(7,12) c\:omf 1),R)

ELSE .

YCO=COR(I,2)
COR(1,2)=COR(I,2)+(DP/DEN)*ALFA
ENDIF ’

. ENDIF

i ERR=ERR+ABS(YCO- COR(I 2)

12 FORMAT (/,3X,’X CRITIC = "F9.3,3X,” NORMAL VEL = ',F9.3)

© VS8=644*(C-YCO)
IF (VS.GE.0.0)THEN
VS=SQRT(VS)
ELSE ' ’
“VS=0:0
ENDIF
DPD=DP/DEN
IF (K.EQ.ITER.OR. PARAM.EQ.3.0R.KOUT.EQ.1) THEN
WRITE(6,50)1, C‘OR(I 2),YCO,COR(L1),R(I),ERR,DP,DEN,DPD, A
ENDIF
IF (KK.EQ. POINT(KKK))THEN
DPNOD(K)=DPNOD(K)+ABS(DP)
KKK=KKK+1
ENDIF v
10 CONTINUE . s
K1=NMASY

<«

@

L)
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IF(EXAM.EQS)THEN o -
. K2=NEBG*NMASY. - R - : ,
-~ KONT2=0 . ' o ' o

'ENDIF -

KGNTN_ ( ' ' S ‘ N
15 PF(PARAMEonRPARAMEQS) THEN . . -

DO 30 I=K1,K2NMASY -
L=l . - o ; . N
IF(EXAMEQ3ANDKONT2EQI) LeL- (NEBCR NEBG) . S
NUM=NX(D) % '

N ’KONTN-KONTN+NUM—

-NNZ-KONTN o : S

~ . IF,(EXAM.EQ.3.AND. KONTZEQIANDIEQ Kl) NN2 NN2+1- ‘

L+ 'NN1=NN2-NUM#I - e SR :
- NN3-NN1+NEX(I)1 ST IR ‘

. KONTN=NN3
_» J_,I' R - PRI

" ERRNOD= ERRNOQ+ABS(Y(J 4) COR(NNI 2))/, O

\,ERRNOD—ERRNOD#ABS(Y(J’?) -CORINN2,2)) Ce ST

ERRNOD.-ERR.NOD+ABS(Y(J 3)- COR(NN3 2)) P L .
e .Y(J4)—COR(NN12) T A -
LY ()=CORINNG,2) : o
CLYq, 3)—COR(NN3 2) P I
L YU,6)=(Y.(,35+Y(J, 2))/2.,»3;,,; AR
XUOHXEXADYZ T
YIR=(YTeYEAY2. 0 o
CX(L8)=(X4, 1)+X(J 4))/2L e
-~ KNY=J/NMAS S
SUPY(KNY 4)= Y(J 4) R
« SUPY(KNY,3)=Y(J,3) -

. . SUPY(KNY,5)= Y(J 7y

30" . CONTINUE RN L T

‘ ELSE,IF(PARAMEQl)THEN . N S
‘DO40 =K1 K2ZNMASY .~ Tl

“NN2=KONTN+NEX(D)-1 .. . - o

v : IF(EXAMEQBANDKONTZEQIANDIEQ K«;)NN —NN2+1 TR A N

© .- NNI=NN2-NEX(D+1 - o RN B A

; _KONTN=NN2 - : S R - ‘ '

<

’ ~ WRITE(6,*)'NNI;NN21 * NNlNNZI S oy
. Y(I4)—COR(NN1,4) e T

-Y(I,3)=COR(NN2,2) - e PR SR
" KNY=I/NMASY - - SR ‘ ‘ ’ '

SUPY(KNY,3)=Y(1,3) - R
_SUPY(KNY,4)=Y(L4) L A o
L ERRNOD—ERRNOD+AJSS(Y(J»4) COR(NN’I 2)) SR
T - ERRNOD—ERRNOD+ABS(Y(J 3)- COR(NN3 2) s
' - 40 .CONTINUE® o S .
ENDIF- - ™~ ' o . ‘

5 IF(EXAMEQSANDKONTzEQO)THEN T
' - K1=(NEBCR+1)*NMASY - STy L e T

" K2=NMASX*NMASY S PN
KONT2=KONT2+1 T TR :

= S GOTO 15 T, N o
v : o . - N ' y » ' \'.-3‘: ! Lo
-y - . - AL
‘
C oy ~ a .
5



’ bl

10 FORMAT(/,3X TRANSIENT- ANALYS’IS = 0'/,3X%, 'DIMENSION = 2‘

R R *:". t)7 )
ENDIF . = ' ' , SR
50 FORMAT(2X 13,4(2X, FlO 5, 2x FJ. 3 4(5,;?9 4)) S
WRITE(95,54) Co Tt
54 FORMAT(/, 6X,"""'***** NEW I'I'E‘RATION m«**' H
©'.DO 55 IELNMAS. - Vb e

IF (PARAMEQ. l)WRITE(95 56) . (%(LY), Y(I,\i?f

IF (PARAM/EQ.2)WRITE(95,57) (X(L)),Y(LD).J=Y

.. IF_(PARAM.EQ3)WRITE(95,57) (xdu) Y(LI), I 822
55" CONTINUE ~ - R »

757 “FORMAT (I6(F7.4,0,2010° . . e oo

'56: "FORMAT (8(F7.4,,),201,,) . e Ty

60 RETURN : o o g

END - ' Vo e ,

c ’ SR )
C gt . 5
C w .Y -
C SUBRGUTINE OUTMAC-. GENERATESTHEFILES THATARE = **.
C oK USEDTOPLOT WITHTHEMACIN'I‘OSH . o e
C 1]

SUBROUTINE OUTMAC (NNODE NELM COOR ELEM BB K, NX NY NEBCR, R
- & DPNOD,TOL,PARAM HEAD, VAL3 MNNY)

oF

REAL COORD(3000,2);B(3000):CHOR(3000,2), BB(SOOO) Do

INTEGER ELEM(15009),NX(S0)NV(S0)PARAM ,, "~ . )
Ko=x . - T S

IF- (PARAM.EQ.3)NNN= 0 - P s

IF (PARAMEQ.2)NNN=220 - . - S § e '
IF (PARAM.EQ.)NNN=210 ¢ . . .0 e
IE(DPNODLETOL)K=99 ~ . -~ .~ '~ = o
WRITE (K, 10)- L ,

L&/,3X, 'NUMBER OF VARJABLES = 1’ 13X, <K>3GOVERNING EQUAJ‘ION'
&' NUMBERS J11X,1',15X,'1",/,3X, NUMBER . OF PARAMETERS 0'
o;,,33( 'NUMBER OF BOUNDARY PARAMETERS 0) - T

P

 WRITE (K,20) NNODENELM '~ -

v,‘

20 FORMAT(3X, NUMBER OF NODES = ! 14,/ 3%, 'NUMBER OF ELEMENTS =,
\

&I15,/,3X, ER OF BOUNDARY ELEMENTS =17

"WRITE (K,30) .
30 FORMAT GhaX, 'NODE' 7X, 'x 11X, Y 11X, 'PSI /) : «
,’"C_ o ; -
N oS PROC}EDURE TO MAKETHECOORD AND STREAM
.~ “er - FUNCTION UNDIMENSIONAL R
e o
4 3

' Do 23 1% 1 NNODE )
. COORD,1)=COOR(I,1)/HEAD

. _ COORD(1,2)=COOR(L, 2)/HEAD . ‘
.23 B(I}—BB(I)/VALS o . : e
DO 40 T=1NNODE* - . e

,40 WRITE (K,50) 1 ;COORD(L1), COORD(I 2), B(I)
© 50 FORMAT (2X,I5 3(2x FlO@)\
WRITE (K,60) = :
(70 FORMAT(/,4X 'ELEMEN""S) ; 4
DO 70 I=1,NELM
IF(PA RAM EQ 2) THEN

Lot




0 WRITE (K,SO)I NNN.NNN ELEM(I 1) ELEM(I 4) ELEM(; 2)
L e ELEM(IS,)ELEM(I3)ELEM(I6) :

© . . ELSEIF(PARAM.EQ.1)THEN

- 70 CONTINUE® - .~ - - S . 4

.. WRITE(K,85)L,NNN;, NNN,ELEM(I 1),ELEM(1,2) ELEM(I 3)
' ELSEIF (PARAM.EQ.3) THEN
' WRITE(K,86)L,NNN,NNN ELEM(I 1), ELEM(I 5),ELEM(I 2),
. ELEM(L:6),ELEM(I;’ 3) ELEM(I 7),ELEM(1,4), ELEM(, 8).
* " ELEM(L9) -
' ENDIF

,

80 FORMAT (9(2X 16)) -

" 85 FORMAT.(62X.16). "  *.

C. . CD=VAL3x -7l wolt KRR
c CC—*COR( ST Ty : v
TQZEVALZMRY/ Ty s
. K—KO B AT L
C , S
. C ) Tt . BRI
L C o . A ; .
e *f" , SUBROUTINE SOLVE-: rrsox_vxss THE "LUMPED" SYSTEM L
% C **"" OFEQUATIONS GENERATED BY SUBROUTINE SURF, IT WORKS . ok,
C ** THE VELQCITIES ATTHE SURFACE NODES. . . wox
ok ; A ek
i SUBROUTINE SOLVE(A RJDIAG; NOD NUMA4, EXAM VAL3 ,COORD)
“REAL 'A(50000), R(300) 51(300 3), 52(300 3)’RR(300) :
‘ &coom(sooo 2) . S e
. INTEGER JDIAG(3000) EXAM oz C
-c. ,
“KR1=NOD {
‘_ DO 10 I=1,KR1 N
DO 2011=1,3 .. '
S SuALD=0.
‘20 s, J’)_o“ o ;
10 RR(I)—O N .\*“ S
©S1(1, )= A(l) S .
.n'! o -

o

490 PORMAT(/Z;X 'BOUNDARY ELEMENTS ,/3x 121 L 12103(2X,14),
&0y ' ;

.86 FORMAT (20X1) .

g IF(PARAM EQ. 2 OR. PARKM EQ. 3)THEN
~ . *N1=NNODE-NNY+41" .

L N2=(N1-Ly/2#) “ '  L >
- WRITE (K,90) TEN2NI AU P ,
ELSEIF(PARAM EQ. l)THEN o T

' WRITE(K 90)ELEM(»1 I) ELEM(I 2) ELEM(3
ENDIF o

WRITE (K,92) VAL3 . IR o

' 92 FORMAT .3X, 'DISCHARGE = ’F’95 CFS/FT )

155



S1(1,2)=A(2)
S1(1,3)=A(4)
KI=1 , ‘
DO 25 1I=2,NOD -
KI=KI+1
Bz
Ka=1+2

8. IF (K4 GT.NOD)K4=NOD

DO 25 J=LK4
. IF (JDIAG()-(J- I) LE.JDIAG(J-1))GO TO 25
KJ=KJ+1
S1(KI,KD)= A(JDIAG(J) a-n)

25 CONTINUE

KI=1 :
DO 40 1=2,NOD : '
KI=KI+1
KJ=0
L1=JDIAG(I)-1
L2=IDIAG(I-1)+1
IF (L2.GT.L1)GO TO 40
DO 40 J=L1,L2,-1
KJ=KJ+1
S2(KLKN=A(J)

. e

40 CONTINUE

oo lsioRoRoRo NS

DO 52 I=1,KR1 :
DO 52 J=1,3 T
52 RR()=RR()+S1(1,1)+52(, J) e
' DO 60 I=1,KR1 : :
60 R(I)= R(I)/RR(])
RETURN
END

* * SUBROUTINE RELAX-.TO ADJUST THE RELAXATION FACTOR
** “- "ACCORDING TO THE. CONVERGENCE OF THE ITERATIONS.

* ¥k

Tk

A

SUBROUTINE RELAX' (DPNOD ALFAI K, X Y, YY NEBCR NMASY NMAS,
& NPME,EXAM)
REAL D}?NOD(75) Y(50, 8? YY(50,8), X(SO 8)

DIF—DPNOD(K«I) D'PNOD(K)
IF(DIF.GT.0.AND.ALFA1.LT.1. om-HsQ

IF(K.LE.5)RELX=1.05 N
[F(K.GT.5.AND.K.LE.10) RELX-1.075
IF(K.GT.10.AND.K.LE.15) RELX=1.10
IF(K.GT.15.AND.K.LE.20) RELX=1.125 T
IF(K.GT.20)RELX=1.15
ALFA1=ALFA1*RELX

ELSEIF (DIF.LE.0.0) THEN

' 1FK.LE.5)RELX=1.075

156
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IF(K.GT.5.AND.K.LE.10) RELX=1.13
IF(K.GT.10.AND.K.LE.15) RELX=1.16
IF(K.GT.15.AND.K.LE.20) RELX=1.20_
IF(K.GT.20.AND.K.LE.25)RELX=1.25
IF(K.GT.25)RELX=1.30
- ALFA1=ALFA1/RELX
ENDIF
IF (ALFA1.GT.0.15.AND.EXAM.NE.1)ALFA1=0.15
IF (ALFA1.LT.0.025)ALFA1=0.075

RETURN , , ’
END '
c r ;
C
C .
D SE‘“ SUBROUTINE OUT-. JUST TO PRINT THE RESULTS FOR THE *x
v % CY**  FINAL SOLUTION. IT PRINTS THE FINAL COORDINATES AS **
" W+ . WELL AS THE FINAL VELOCITIES AND THE HEAD FOR THE ** ’
% i **  CONTROL NODES. N
- . C N ¢ *
C .
C

SUBROUTINE OUT (COR,R,POINT,NPOINT,K,TOL,DPN,HEAD,DPNOD,
$ VORFLG,CIRFLG,VORT KELVOR,KELVC] KELVC2)
REAL COR(3000,2),R(300);DPNOD(75), VORWOO)
INTEGER POINT(101), VORFLG,CIRFLG
C /.
5 FCRMAT (//,3X,FINAL SOLUTION AFTER \12,' ITERATIONS WITH', '
&' A TOLERANCE OF SUM.OF DP = ' F7.5,/,7X,'DPN IN LAST ITERA',
&TION = "F9.5,//,10X,/COORDINATES ', !
& AND VELOCITIES ON THE FREE SURFACE J/1,3X,'NODE',5X 'FINAL',
&' Y',10X,'X",8X,'VELOCITY'4X, TOTAL HEAD',2X;'VS=SQRT(2G*(, .
&H-Y)'.H ) : -
‘10 FORMAT(3X,13,5(2X,F10.5)) L

‘WRITE (6,5)K,TOL,DPN
-‘:wC:HEAD :
B oTo) 20 I=1,NPOINT
T .=POINT(I)
" H=R(L)**2/64.4+COR(L.,2)
' VS=64.4%(C-COR(L,2))
IF (VS.GE.0.0)THEN |
VS=SQRT(VS)
ELSE
VS$=0.0
ENDIF
20 WRITE(6,10)L,COR(L,2), COR(L D.R(L).H,VS N
WRITE (6,22) : :
’22 FORMAT(//,3X, TOTAL DIFFERENCE IN PRESSURE 1)
DO 30 I=1,K
=< 30 WRITE(6,40) ,DPNOD(I) o
40 FORMAT (2X,'DPNOD IN ITERATION # I3, = 'F9.6)
WRITE (6,42) s
' 42 FORMAT (//,3X,'VORTICITY WITHIN ELEMENTS' D
IF (VORFLG.EQ.1) THEN ' ,

b
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DO 50.1=1,KELVOR
50  WRITE(6,60) I,VORT(I)
ENDIF
IF (CIRFLG.EQ.1) THEN
DO 55 I=KELVC1,KELVC2
55  WRITE(6;60) I,VORT(I)
END .
60 FORMAT (3X,'VORTICITY WITHIN ELEMENT # I3, = ' F8.2)
RETURN ‘ .
END

)

»

c Y.

C**  SUBROUTINE QCHAN-. THIS SUBROUTINE CHANGES THE VALUE **

C**  OF THE DISCHARGE UNTIL IT CONVERGES, IT USES A NEWTON il

C RHAPSON'S TYPE SCHEME. f **
C ? ’ ]

. P C

n -

C

SUBROUTINE bCPMN (COORD,VAL3,KONTQ,HEAD,ERRQ,VG,NUM3)

REAL COORD(3000,2)
ALFA=10
" VELN2=VG »
VELOC2=SQRT(64.4*(HEAD-COORD(NUM3,2)))
Q2=VAL3
. IF (KONTQ.EQ.1) THEN
VELN1=VELN2
~ VELOC1=VELOC2 _ ' .
Q1=VAL3
F1=VELNI1-VELOCI
. VAL3=0.995*VAL3
GOTO 888 - "
ELSE
F2=VELN2-VELOG2 T ,
. FIP=(F2-F1)(Q2-Q) - = . o
QNEW=Q1- (Fl/FlP)*ALFA ‘
Q1=Q2 : . . :
FI=F2 o s o
ERRQ=ABS(VAL3-QNEW) ‘ ‘ -
VAL3=QNEW
ENDIF
888 WRITE(6,101)KONTQ
101 FORMAT (//,3X, ITERATION ' 12, FOR THE DISCHARGE)
KONTQ=KONTQ-+1 - L C
WRITE(6,100)Q2,VAL3 , - * ", : ) ‘ . :
100 FORMAT (/,2X,' Qi = "F8.5,' QNEW = ',F_8.5) .
ENDY B

oNoNoNP]
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** SUBROUTINE DINVOR .- IT COMPUTES THE VORTICITY WITHIN THE =~ **

C

C ** ELEMENTS ALONG THE BED AND ALONG THE GATE IF THE FLAG * ok
C *4 CIRFLG IS OPEN, THE COMPUTATION IS IN AN ELEMENT BASIS. *ok
C ot

C IR

C

SUBROUTINE DINVOR (NNX,NNY,COORD,PSLPARAM,CIRFLG,NEBG,NEBCR,
& NELXNELYNELXDNELYD, VORT,NEX,NMASY VORIND, VORCIN KOUT,
&  KELVOR,KELVC1,KELVC2) :

REAL COORD(3000 2), PSI(BOOO) VORT(1500) .
INTEGER PARAM,CIRFLG NELX(65),NELY(65) NEX(,SO)

KONT=1 : , o o .
DO 10 I=1,NNX-1,2 U S T e AR S
N1=(I-1)*NNY HEPEERE Gt
N2=I*NNY . : Cee ’ A
N3=(1+1)*NNY. : BRI
VO1=(PSI(N1+3)- PSI(N1+1))/((COORD(N1+3 2) COORD(N1+1 2)) '
& *%2) SR ot
VO2=(PSI(N2+3)-PSI(N2+1))/((COORD(N2+3, - COORD(N2+1 2))
& ttZ)
VO3=(PSI(N3+3)- PSI(N3+1))/((COORD(N3+3 2) COORD(N3+1 2))
*#2) S
VOT=((VO1+VO2+V03)/3.)*(- VORIND) ¥
IF (PARAM.EQ.2) THEN
ORT(KONT)=VOT : o -
VORT(KONT+1)=VOT _ e
KONT=KONT+2 ) o
ELSEIF (PARAM.EQ.3)THEN B , e - _
VORT(KONT)=VOT : ‘ - .
KONT=KONT+1 ' ‘ C ’
ENDIF
10 CONTINUE
IF (KOUT.EQ.1) THEN
DO 30 I=1,KONT-1' -
30 WRITE(6,35) I,VORT(I)
ENDIF ,
v 35 FORMAT(3X,'VORTICITY WITHIN ELEMENT # "I3, = ',F9.3) ’\
KELVOR=KONT-1 '
C ' ,
.C _ ~ o : ,
KELVC1=0
KELVC2=0 _
'IF (CIRFLG.EQ.1) THEN
NOD=0
NUMEL=0
DO 15 1=1,NEBG
NOD=NOD+NEX((I-)*NMASY+1)-1
. NUMEL=NUMEL+NELX((I-1)*NMASY+1)
15  CONTINUE
© NOD=(NOD+1)*NNY =
NUMEL=NUMEL+(NELYD-1)*NELXD+1

3,

o




HeXoleRoloRe o RoRe ke

IF (PARAM.EQ.2) NUMEL=NUMEL*2-1
KELVC1=NUMEL &g@:
DO 20 I=NEBG+1,NEBCR

VO1=(PSI(NOD-2)-PSI(NOD))/((COORL NOD,1)- COORD(NOD-2,1))

*%2)
NOD=NOD+NNY

VO2=(PSI(NOD-2)- PSI(NOD))/((COORD(N” M, -COORD(NOD-2,1))

*4)
NOD=NOD+NNY

VO3=(PSI(NOD-2)- PSI(NOD))/((COORD(NOD 1)-COORD(NOD-2,1))

*%2)
VOT=((VO1+VO2+V03)/3)*(-VORCIN)
IF (PARAM.EQ.2)THEN
VORT(NUMEL)=VOT
VORT(NUMEL+1)=VOT
IF (KOUT.EQ.1) THEN
WRITE(6,35) (NUMEL),VORT(NUMEL)
WRITE(6,35) (NUMEL+1),VORT(NUMEL+1)
ENDIF
NUMEL=NUMEL+2
ELSEIF (PARAM.EQ.3) THEN
VORT(NUMEL)=VOT :
IF (KOUT.EQ.1) WRITE(6,35) (NUMEL), VORT(NUMEL)
NUMEL=NUMEL+1
ENDIF
CONTINUE
IF (PARAM.EQ.2) KELVC2=NUMEL-2
IF (PARAM.EQ.3) KELVC2=NUMEL-1

ENDIF
RETURN
END

kk
kK
kK

. INTEGRATION POINTS. IT'S USED WITHIN ASEMBL AND THE

SUBROUTINE GAUSS.- IT COMPUTES THE VALUES OF THE

- RESULTS GO INTO THE ELEMENT SUBROUTINES.

Fot

* %
% %

ok

NP

! b

7

SUBROUTINE GAUSS (DNDR,DNDS,VI,PARAM,SET,NIPT, Wi, WJ)

REAL DNDR(16 9),DNDS(16,9),VI(16,9),WI(16), WJ(16) R(16)
"REAL S(16)
INTEGER PARAM,SET
IF- (PARAM.EQ.2)THEN

R(1)=1./6.
S(1)=2./3,:
R(2)=2./37%

-0 8(2)=1/6. .
. R(3)=1./6.
‘ S(3)=1_./6.
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L)

DO 11 1=1,3
DNDR(I, 1)=4.*R(I)+4.*S(D)-3.
DNDR(1,2)=4.*R(I)-1. '
DNDR,3)=0.
DNDR(1,4)=-8.*R(I)-4.*S(I)+4.
DNDR(I,5)=4.*S(I)
DNDR(16)=-4.4S() * .

DNDS(I, 1)=4.*S(I)+4.*R(I)-3.
DNDS(I,2)=0. R
DNDS(1,3)=4.*S(I)-1.
DNDS(1,4)=-4.*R(I)
DNDS(1,5)=4.*R{])
DNDS(I,6)=-8.*S(I)-4.*R(I)+4.

VI(L, 1)=(1.-R(I)-S(I)) *(2.*(1.-R(I)-S(I))-1.)
1(1,2)=(2.*R(D*RI)-R(D) ‘
VI, 3)=(2.*S(N)*S)-S(I)

VI(I,4)=4 *R(I)*(1.-R(1)-S(I)#
VI(L5)=4*R(D*S().
VI(I,6)=4*S(I)*(1.-R(I)-S(I))

_ NIPT=3 R

11 CONTINUE :
ELSEIF (PARAM.EQ.3) THEN "

[F (SET.EQ.1) THEN
DO 12 I=1,4

WI(D=1.

WI(D=1. o

R(I)=0.577350269189626
S(D=R(D) ‘ '

- 12 CONTINUE

"R(2)=(-R(1))
R(4)=R(2)
S(1)=R(2)
S(2)=S(1)
 NIPT=4 |
ELSEIF (SET.EQ.2) THEN N
DO 13 I=1,6 : -
WICH=1. :
Y WI(1)=0.555555555555556
13 CONTINUE .
WI(3)=0.888888888888889
WI(4)=WI(3)
R(1)=0,577350269189626
R(2)=(-R(1)) -
R(3)=R(1) - =
R(4)=R(2) :
R(5)=R(1)
R(6)=R(2)
S(1)=(-0.77459669241483)
S(2)=5(1) ‘ .
S(3)=0.
© S(4)=0.
S(5)=(-5(5))
S(6)=S(5)
NIPT=6 -
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20
21

22

31

32

33

34

ELSEIF (SET.EQ.3)THEN
DO 14 I=1,3
WI(I)=0.555555555555556
WID=WID)
CONTINUE
DO 15 1=4,6
. WI()=0.888888888888889
WI(D=WI()
CONTINUE Y
DO 16 1=7,9
WI(D=WI(1)
WI(D)=WI(I)
CONTINUE
DO 17 1=1,7,3
R(I)=0.77459669241483
DO 18 1=2,8,3
R(1)=0. .
DO 19 1=3,9,3
R(D)=(-R(1)) :
DO 20 I=1,3 .
S(H=(-R(1))
DO 21 1=4,6
S(D)=0.
DO 22 1=7,9
S(H=R(1).
NIPT=9
ELSEIF (SET.EQ.4) THEN
DO 31 I=1,4
WI(1)=0.347854845137454
WI(I+12)=WI()
. S(D=(-0.861136311594053)
S(I+12)=(-S(1))

- - DO 321=5,8

WI(1)=0.652145154862546
WI(1+4)=WI(I)
S(1+4)0.339981043584856
S(N=(-S(1+4))
DO 33 I=1,13,4
WI(D=WI(1)
WI(I+3)=WI(1)
R(D)=S(13)
R(I+3)=5(1)
DO 34 1=2,14,4
WI(D)=WI(6)
WI(I+1)=WI(6)
R(D=S(10)
R(1+1)=S(6)
NIPT=16
ENDIF

DO 25 I=1,NIPT
T=0.25
TR=2.*R(])
TS=2.*S(I)
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MR=1-R(I) -
MS=1.-S(I)
PR=1.+R(D)
PS=1.+S(D)
PMR=PR*MR
PMS=PS*MS

VI(1,3)=T*PR*PS*R(I)*S(I)
VI(1,2)=(-T*PR*MS*R(I)*S(I))
VI(I, 1)=T*RI)*MR*S()*MS
VI(1,4)=(-T*R(I)*MR*S(I)*PS)
VI(1,6)=.5*R())*PR*PMS -
VI(I,5)=(-.5*PMR*S(I)*MS)
VI(I,8)=(-.5*R(I)*MR *PMS)
VI(I,7)=5*PMR*S(I)*PS
VI(I,9)=PMR*PMS

DNDR(I,3)=T*S(I)*PS*(1.+TR)
v DNDR(],2)=(-T*S()*MS*(TR+1.))

DNDR(, D=T*S(1)*MS*(1.-TR) R

DNDR(%4)=(-T*S(I)*PS*(1.-TR))
DNDR(],6)=.5*PMS*(1.+TR)
DNDR(I,5)=R(I)*S(I)*MS
DNDR(I,8)=(-.5*(1.-TR)*PMS)
DNDR(I,7)=(-R()*S(I)*PS)
DNDR(1,9)=(-2.*R(I)*PMS)

DNDS(1,3)=T*R(I)*PR*(1.+TS)
DNDS(I,2)=(-T*R(I)*PR*(1.-TS))
DNDS(L,1)=T*R(I}*MR*(1.-TS)
DNDS(1,4)=(-T*R()*MR*(1.+TS))
DNDS(L,6)=(-S(D*R(D*PR) - ' ¢
DNDS(I,5)=(-.5*PMR*(1.-TS))
DNDS(1,8)=S(D*R()*MR
DNDS(1,7)=.5*PMR*(1.4+TS) ,

. DNDS(1,9)=(-2*S(D*PMR) . - <

25 CONTINUE ‘

ENDIF
.RETURN
~ END '
C
C
C ;
C ** SUBROUTINE DIS.- TO COMPUTE THE NUMERICAL VELOCITY AT ok
C ** THE TIP OF THE GATE, FROM HERE IT GOES TO 'QCHAN' WHERE ok
C ** THE DISCHARGE IS ITERATED. : ok
C
C
C.
SUBROUTINE DIS (NUM3,NNY,COORD,DNDR,DNDS,B,VG)
C

REAL COORD(3000,2),DNDR(16,9),DNDS(16,9),PS(3,6),J11B(3,3), *
% J12B(3,3),J21B(3,3),J22B(3,3),XX(50,8),YY(50,8),AA(3,3,6),
% BB(3,3,6),DETT(3,3),VV(3,3),UU(3,3),B(3000),CCX(3,3),



»
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% CCY(3,3),RC(3);5C(3),VELL(3,3)
EXTERNAL SHAPE

C

RC(1)=1./6.

RC(2)=23. ;

RC(3)=L1./6. |

SC(1)=2./3.

SC(2)=1./6.

SC(3)=1./6.

XX(1,1)=COORD(NUM3,1)

Y Y(1,1)=COORD(NUM3,2)
PS(1,1)=B(N" 'M3)
XX(1,2)=COORD(NUM3-2*NNY,1)
YY(1,2)=COORD(NUM3-2*NNY,2)
PS(1,2)=B(NUM3-2*NNY) ,
XX(1,3)=COORD(NUM3-2,1) Co.
YY(1,3)=COORD(NUM3-2,2) "

PS(1,3)=B(NUM3-2)

XX(1,4)=COORD(NUM3-NNY,1)

YY(1,4)=COORD(NUM3-NNY,2) _ ‘ ,
PS(1,4)=B(NUM3-NNY) ' T
XX(1,5)=COORD(NUM3-2*NNY-1,1)

YY(1,5)=COORD(NUM3-2*NNY-1,2)

PS(1,5)=B(NUM3-2*NNY-1)

XX(1,6)=COORD(NUM3-1,1) - _ .

YY(1,6)=COORD(NUM3-1,2) : -

PS(1,6)=B(NUM3-1) )

~

XX(2,1)=COORD(NUM3-2,1)
YY(2,1)=COORD(NUM3-2,2)
PS(2,1)=B(NUM3-2)
XX(2,2)=COORD(NUM3+2*NNY-2,1) - . :
YY(2,2)=COORD(NUM3+2*NNY-2,2) ‘ '
PS(2,2)=B(NUM3+2*NNY-2)
XX(2,3)=COORD(NUMS3,1) |
YY(2,3)=COORD(NUMS3,2)
PS(2,3)=B(NUM3)
XX(2,4)=COORD(NUM3+NNY-2,1)
YY(2,4)=COORD(NUM3+NNY-1,2)
PS(2,4)=B(NUM3+NNY-2)
- XX(2,5)=COORD(NUM3+NNY-1,1)
YY(2,5)=COORD(NUM3+NNY-1,2)
PS(2,5)=B(NUM3+NNY-1)
XX(2,6)=COORD(NUM3-1,1)
YY(2,6)=COORD(NUM3-1,2)
PS(2,6)=B(NUMS3-1)
¢ #
C N .
XX(3,1)=COORD(NUM3+2*NNY, 1)
YY(3,1)=COORD(NUM3+2*NNY,2)
PS(3,1)=B(NUM3+2*NNY)

o
3

X

T



"RX(3,2)=COORD(NUM3,1).
YY(3,2)=COORD(NUMS3,2)
PS(3,2)=B(NUM3)
XX(3,3)=COORD(NUM3+2*NNY-2,1)
YY(3,3)=COORD(INUM3+2*NNY-2,2)
PS(3,3)=B(NUM3+2*NNY-2)
XX(3,4)=COORDNUM3+NNY, 1)
YY(3,4)=COORD(NUM3+NNY,2)
PS(3,4)=B(NUM3+NNY)
XX(3,5)=COORD(NUM3+NNY-1,1)
YY(3,5)=COORD(NUM3+NNY-1,2)
PS(3,5=B(NUM3+NNY-1)
XX(3,6)=COORD(NUM3+2*NNY-1,1)
YY(3,6)=COORD(NUM3+2*NNY-1,2)
PS(3,6)=B(NUM3+2*NNY-1)

DO 12 K=1,3
DO 12 I=1,3
J1IB(K,D)=0.
J12B(K,D)=0.
J21B(K,1)=0.
J22B(K,1)=0.
UU(K,D)=0.
VV(K,D)=0.
| VELL(K,D)=0.
12 CONTINUE
DO 13 K=1,3
DO 13 I=1,3
DO 13 J=1,6
J11B(K,D=J11B(K,D+DNDR(LJ)*XX(K.J)
J12B(K,I)=J12B(K,)+DNDR(I,)*YY ‘K,J)
J21B(K,I)=J21B(K,)+DNDS(LJ)*XX(K,J)
J22B(K,[)=J22B(K, D+DNDS(LI)*YY(K.)-
13 CONTINUE
DO 20 K=1,3
DO 20 I=1,3
DETT(K,D=(J11B(K,[)*J22B(K,I))-(J21B(K,)*J 12B(K, D)
20 CONTINUE
DO 30 K=1,3
DO 30 I=1,3
DON30 J=1,6
AA(K,LN)=(J22B(K,[)*DNDR(I, 1)-J12B(K,D*DNDS(LJ))/DETT(K, I)
BB(K,L)=(J11B(K,)*DNDS(L,}):J21B(K,I)*DNDR(L}))/DETT(K, )
30 CONTINUE
PO 50 K=1,3
DO 41 I=1,3
DO 40 J=1,6
VV(K,D=VV(K,D+AA(K,]I J)*PS(KJ)
UUK.D=UU(K,D+BB(K,LI)*PS(K, J)
40 CONTINUE |,
VELL(K,I)=SQRT(VV(K, D**2+UU(K, 1)**2)
41  CONTINUE
50 CONTINUE
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T |
DO 70 K=1,3 ' o
DO 70 I=1,3 .

CCX(K,)=SHAPE(RC(I),SC(I),XX,K,5)

CCY(K,D=SHAPERC(I),SC(D.YY.K,5)

70 CONTINUE o
D1=SQRT((XX(1,1)-CCX(1,3))**2+(YY(1,1)-CCY(1,3))**2)
D2=SQRT((XX(1,1)-CCX(2,1))**2+(YY(1,1)-CCY(2,1))**2)
D3=SQRT((XX(1,1)-CCX(3,2))**2+(YY(1,1)-CCY(3,2))**2)
VG=(VELL(1,3)*D1+VELL(2,1)*D2+VELL(3,2)*D3)/(D1+D2+D3)

WRITE (6,*) 'VELOCITY AT THE GATE =',VG

RETURN

END

166



