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ABSTRACT :

This investigation attempts to develop approximate
methods for the second-order alastic analysis of multistorey
frames. Because a frame under gravity and la%eral loads can
be analyzed as a non-sway frame and a sway frame with the
final f;rce resultants obtained by superposition, non-sway
frames, sway frames ‘and combination of both were |
investigated separately. Based on analysis of the behavior
of elastic non-sway frames and a critical examination of the
problems and rationale behind the ACI design method for nong
sway slender columns, modifications in this method are
suggested. Various approximate second-order aﬁa‘iﬁes for
elastic sway frames are derived and their assumptions are
discussed in the light of the results of the behavioral
study. The approximate analyses were compared to complete
second-order analyses of frames to determine the range of
application of the approximate methods. A rational ﬁethcd@
which is more accurate than the current approaches, is
proposed to combine the non-sway and sway moments in a
column. Finally recommended procedures far the second-order
elastic analysis of frames subjected to both gravity and
lateral loads or gravity loads only are proposed, and

modifications to the ACI Code design procedure for slender

columns are suggested.



s

. ACKNOWLEDGEMENTS

The author would like to express his sincere
appreciation to Dr. James G. MacGregor, chaifman of the

-
supervisory committee, for his indispensable guidance and

The author is grateful to Dr. Jostein Hellesland (visiting
research engineer from Norway), who has given invaluable
help to the author in understanding the subject at the early
stages of this investigation.

The author also wishes to thank Dr. Roger Green

(Professor of Civil Pngineering, Universi*y of Waterloo),

Dr. Donald G. Bellow (Professor of Mechanical Engineering),
~

Dr. Peter F.G. Adams (Dean of Engineering), Dr. David

W. Murray, and Dr. Sidney H. Simmonds for their helpful

(o

te

comments as members of the examining commi

Financial aid provided by the National Research Council

of Canada is acknowledged. !
The author cannot fully express his appreciation to his

fiancée, Henriette Kaji-Yee Shen, for her sustaining

encouragement during the author's stay in Canada. Finally,

the author is greatly indebted to his parents, Mr. and Mrs.

uthor

Kui-Sing Lai, for their sacrifices which make the

]

4
tudies in Canada possible, and to them this book is

\uﬁ‘

ratefully dedicated.



Chapter
1.1
1.2

1.3

1. INTRO

ODUCTION

TABLE OF

Background

Objectives and scope

Outline

CONTENTS

o
-4
[T o]
)

[t

~

2. _BASIC THEORIES AND ASSUMPTIONS FOR ELASTIC
FRAMES

Exact second-order elastic analysis 17

Effects of axial fogxces in the beams 23

Elastic critical load and failure load 27

Non-sway and sway frames . 31

3. BEHAVIOR OF ELASTIC NON-SWAY FRAMES e

Geometr

Pin-ended column

ic effects

Single restrained columns 42 -

Single-=s

torey frames

Multistorey frames

Summary

4. APPROXIMATE SECOND-ORDER ANALYSIS OF ELASTIC
NON=-SWAY FRAMES

Pin-ended columns

64

64

Effective length method for single

restrai

ned columns

ACI method
Single restrained columns 85
Multistorey frames 94

4.3.1
4.3.2

vi

73

85



Wood's method

Discussion

4.5.1 Pin-ended .columns

4.5.2 Single restrained columns
4.5.3 Multistorey frames

4.5.4 Concluding fg?afk!

EEHAVIDR OF ELASTIC SWAY FRAMES ;

Geometric effeita

Multistorey frames

Summary

Sin4le-storey frames
5.2.1 An example frame
5.2.2 1Individual column behavior

APPROXIMATE SECOND-ORDER ANALYSIS OF ELASTIC

SWAY

S,ﬁl

6.2

FRAMES

Iterative methed

Storey magnifier method
Overturning moment method
Frame magnifier method

ACI method

"‘1

Moment=correction factors

6.8.1 Introductory remarks

6.8.2 AISC approach

6.8.3 Hellesland and MacGregor approach

6.8.4 Moment-correction factors for
multistorey frames

Summary

vii

100
102
102
104
110
112
193
113

116

- 116

120

185
185
186
189

[t
b
™



EVALUATION OF THE APPROXIMATE METHODS FOR

SWAY FRAMES 203
7.1 Introduction 203
7.1.1 Problem statement 203
7.1.2 Method of evaluation , , 204
7.2 Single-storey structures 205
7.2.1 #Supported sway columns 205
7.2.2 Assumption concerning inflection
points 208
7.3 Low-rise multistorey structures 211
7.3.1 Problems : 211
7.3.2 Structures studied 211
‘7.3.3 Results 213
7.3.4 Concluding remarks 222
7.4 High-rise multistorey structures 223
7.4.1 Problems and structures studied 223
7.4.2 Results 230
7.4.3 Concluding remarks 238
7.5 Proposed methods 239
PROCEDURES FOR SECOND-ORDER ELASTIC ANALYSIS 241
8.1 Introduction 241
8.2 Combination of non-sway and sway moments 241
8.2.1 Current approaches 241
8.2.2 Proposed approach 244
8.3 Deflections e to gravity load moments 250
8.4 Out-of-plumbs ' 255
8.5 Summary of the pryposed procedures for
second-order analybkis .256
8.5.1 Introductory remarks 257
8.5.2 Storey magnifier method 257
8.5.3 Frame magnifier method 262
8.5.4 Modified iterative method 263
8.5.5 Modified negative brace method 265
8.6 Modifications to the ACI Code procedure 266
8.6.1 Modified formulae 266
8.6.2 Definitions of braced frames and
unbraced frames 269

SUMMARY 272

viii



REFERENCES
APPENDIX A -
APPENDIX B
4
]
e
»

275

282



Load-deflection equations

.Fixed-end moments

k'q\

ormulae for the flexibility factor

Suggested values for the average
flexibility factor .

\ru\
]
e}



(™)

w
-

L%

oo

LIST OF FIGURES .

Procedure of approximation

Equilibrium of an element

"

Load-deflection relationship

Symbols and sign convention for the
slope-deflection equation

Stability functions

Element stiffness matrix for a second-order
elastic analysis

Element stiffness matrix for a second-order
elastic aﬁaly51s (virtual work approach)
Effects of axial forces in the beam

A frame subjected to any loading

Principle of superposition

Deformations and moments in a pin-ended
column

Jﬂ

Load-deformation retationship for a pin-
ended column

Deflected shapes and bending moments of
pin-ended calgmna under increasing
compression

Maximum moment in a pin-ended column

Symbols and sign convention for a
restrained column

Variatign éf internal end m@ments lﬁ

in:reaslng c@mpress;aﬁ

ending moments and deflected shapes of
mmetrically restrained columns under
ncreasing compression

o
%

e

Effects of unsymmetrical restralnts on the
end moments

xi

o
[+ ]

W

ot
=

13

14

20
24

29

39

40

40

43

44

46

48



.10

.11

.12

.13

.14

.15

.10

.11

.Maximum moments in a restrained column

A single-storey frame

Horizontal interaction between columns for
ro = 0.6 L)

Horizontal interaction between columns for
Io = ~0.6

A simple two-storey frame
Variation of maximum moments in the top
(str~ng) column of the frame shown in

Fig. .13

Variation of maximum moments in the bottom
(weak) column of the frame shown in
Fig. 3.13 :

Comparison of theoretical C, with
approximate eguations

Comparison of approximate with theoretical
magnification factor

Comparison of approximate with theoretical
magnification factor

Effective length method for single
restrained columns

Required end moments in an equivalent
pin-ended column

Examination of the effective length method
for K|, = K, and rg = 1.0

Examination of the effective length method
for K; = K, and rg < 1.0

Examination of the effective length method
for K;/K, = =« and rg < 1.0

Types of columns corresponding to upper and
lower bounds of the maximum moments

Comparison of approximate with theoretical
magnification factor for ro = 1.0

Comparison of approximate with theoretical
magnification factor for rgj = 0.5

xii

49

52

54

55

58

60

61

67

70

72

73

77

79

82

84

87

88 .

89



6.8

609

Comparison of approximate with theoretical

magnification factar for rg = 0.0

Comparison of approximate with theoretical
magnification factor for rg = =0.5

Comparison of approximate with theoretical
magnification factor for rg = -1.0

A column isolated from a non-sway frame

"

Effective length factors for non-sway
single columns

Inelastic columns
Geometric effects due to axial loads
Single-storey frame with rigid beams

A non-gway frame with imposed lateral
deformation

Variation in B values with axial loads for
a column with flexible restraints

w
Hh
o]
La

Variation in B values with gxial load
a column with stiff restraints *

‘Vertical interaction due to N-a effects
Sway forces in the jiterative method

A frame with different column heights in
the bottom storey

N-a shear of an inclined bracing member
Vertical displacement of column distortion

The potential energy in a deformed bracing
member

Upper limit of the flexibility factor
Column bent by end moments
A column isclated from the frame

Modified negative brace method

20

[
[ 8]
o

[
o]
Lo n ]

[
‘w
-

—
[ %]
o



6.13

6.14

Loadings and deformation of a shear beam
and a bending beam

A storey isolated from the frame (ACI
method)

Concept in AISC approach for By,

Approximate values for B, ,, and B,

A laterally deformed non-sway multistorey
frame

Major assumptions in the approximate
methods of second-order analysis for sway
frames '

Supported sway column

Evaluation of the approximate methods for
single~-gtorey structure

Low-rise structures studied

Approximate ve. exact results for a low-
rise structure with strong beams

Evaluation of the moment correction factor
re

for a 3-storey frame with strong beams

Approximate vs. exact results for a low-
rise structure with weak beams

Deflection and moment magnification from
3-gtorey frame with weak beams

Approximate vs. exact results for a low-
rise shear wall

Structure A: A frame with weak beams at
the bottom

Structure B: A frame with a flexible shear

wall of constant stiffness

Structure C: A frame with a flexible shear

wall of two discrete

Structure D: A frame with a flexibl
- a

e
discontinuous shear wall

xiv

et
-~
.

i -
) ~J
o o

Lad
w‘
Lm

Lo
[7s)
~J

201

206

209

212



Structure E: A frame
columns
bottom

Approximate vs. exact
Structure A

Approximate vs. exact
frame in Structure B

with very strong
(weak beams) at the

sclutions for

solutionse for the

Bending moments in the shear wall of

Structure B

Approximate vs. exact
Structure C

Approximate vs. exact
Structure D

Approximate vs. exact
Structure E

Schematic development

soclutiona for

eolutions for

solutions fo

(=1

of the propdsed

approach for combining the non-sway and

sway moments

Combination of the non-sway and sway

moments

Holding shears in a non-sway frame with

imposed displacements

LN
Ko
o

[ ¥]
')
~



BOTAT ION

Roman letters, capital

[-1\

I'.'lu‘g‘

¥ 4

'

moment (or shear) correction factor for sway columns

stability function in the slope-deflection equation
(Eq. 2.3)

moment gradient correction factor
flexural stiffness of a column
flexural stiffness of a beam

ratio of column stiffness to beam stiffness defined
in Eg. 6.16

larger value of G for a given column

smaller value of G for a given column

horizontal load applied at the joint

sway force applied at the joint

rotational restraint stiffness at the end of a column

column length

beam length

moment in & column

external moment applied at the joint

sum of the overturning moments of the horizontal
loads about the base of a structure

axial force in a column (positive for compression)
Euler load defined by x2E1/L2

free-to-sway critical load of an elastic column
non-sway critical load of an elastic column
?Egbiéi§¥ function in the slope-deflection equation

shear at the end of a column

xvi



Roman

r,

ro

Greek

letters, lower case

sway deflection of the upper end of a column (or a
storey) relative to the lower end

vertical displacement of the upper end of a column
relative to the lower end due to flexural shortening

of the column

vertical displacement of a rigid column due to the
rigid body rotation of the column length

sway deflection magnifier defined by a/ag
symbol in formulation of approximate equations for B.

effective length factor of an elastic free-to-sway
column

effective length factor of an elastic non-sway column

.

modified effective length factor used in the
effective length method for non-sway columns®to give
exact solutions

total number of storeys

ratio of end-moments, =M;/M,

ratio of first-order end-moments, -Mg1/Mg2

letters

axial load index, N/He

axial load index, H/Hfs

axial load index, N/N__
t/N?Ne
x/N/N

ns

moment magnification factor, Mg,./M»

6 corresponding to r = 1.0 R

moment magnification factor for a restrained non- sway
column, Mmax/Moz

horizontal displacement of a floor from the original
position

flexibility factor



average flexibility factor

=<

0 end-rotation of a column (except in Fig. 6.3 or 6.6)

A Ioad factor

Ao critical load factor

¢ ratio of column stiffness to beam stiffness defined
in Fig. 5.3(4)

Subscripts

1, 2 indicate ends of a column

ma x maximum moment

ns non-sway column

0] first-order effects (for N = 0)
8 sway column

t total

w wall

xviii



1. INTRODUCTION

1.1 Background

TEQ!mﬂjﬂf difficulties in the analysis and design of
slender reinforced concrete frames result from:

- the 'material non-linearity' caused by the inelastic

properties of materials, and

the 'geometric non-linearity' caused by the effects of
displacement on the equilibrium of individual members
and of the whole structure.

A structural analysis which includes these non-linearities
is referred to as second-order inelastic analysgis. A
second-order elastic analysis, which includes the geometric
non-linearity only, assumes elastic fespgnse’af the

simplest type of structural analysis is a

‘m‘

structure. Th

'U\

first-order elastic analysis, which neglects both non-
linearities.

The first-order elastic analysis is the most widely
used technique in current design practice. As a result, the
current design approaches for slender concrete columns are
based on approximate methods to include the effects of the
two non-linearities by modifying the first-order elastic
analysis (MacGregor et al., 1970). This is because the
modified first-order elastic analysis is currently much
simpler and less time-consuming than the other two analyses,
especially in a design :iﬁuatian where iteration, and trial

and error are usually involved. A significant advantage of



the approximate methods is that the significant parameters
affecting the end results are normally apparent during the
calculations, allowing the designer more control over the
final selection of dimensions and the final distribution of
forces in the structure. This is seldom the case with
complex analysis techniques. .

In deriving the final approximate method, two distinct
steps are generally involved, as shown in Fig. 1.1. 1In step
1, the stiffness parameter EI of individual membere is
considered. The EI values used in the second-order elastic
analysis are selected in such a way that the results

obtained are close to those from the second-order inelastic
analysis corresponding to a defined limit state of ultimate
strength. This modified EI of a particular member should be
regarded as the effective EI for the entire length of that
member, accounting for all the inelastic effects. This has
been discussed by MacGregor (1972). 1In step 2, the first-
order elastic analysis is modified to obtain results close
to those from the second-order elastic analysis. Note that
the effective EI values selected in step 1 are used in both

analyses in step 2. As apparent from the above procedure,

the effects of the two non-linearities

re approximated
independently of each other.

In step 1, it has been tacitly assumed that the
inelastic structure behaves in a way that can be represented
by the elastic behavior modified with the effective EI. 1In

fact, this is the basic assumption in the present American



Second order @ Second order @ First order
inelastic elastic - elastic
analysis analysis l analysis

Effective E! Modifying
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approximate
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Fig. 1.1 Procedure of approximation




Concrete Institute Code (1977), which allows the use of
elastic theory in analysis. The ultimate strength limit
state, implicit in the ACI Code, is defined by the reaching
of the first plastic hinge or the simultaneous occurrence of

plastic hinges in several critical sections.

[
g
[ ]

generally believed that the elastic analysis is still
reasonable at this limit state (or strictly speaking,
immediately prior to the occurrence of this limit state).
Several investigators (Kordina, 1972; Hage, 1974:
Ha:Gf;gé” Oelhafen and Hage, 1975) have suggested simple
expressions for the effective EI of concrete beams and
columns. -Wood and Shaw (1979) have suggested a more
complicated approximate method to determine the effective EI
for a restrained concrete column bent in symmetrical single-
curvature. The results from their method were shown in

lutio

U“

‘D‘

excellent agreement with 'exact' analytical s

The modification of the first-order analysis in step 2
(Fig. 1.1) is the primary objective of the present study.
Here a number of approximate methods are available to
account for the effects of the geometric non=linearity (or
geometric effects), notably the traditional effective length
factor approach in the current ACI Code (1977) procedure for
designing slender columns. As a part of this investigation,
the ACI Code approach and other current approaches are

critically reviewed.
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1.2 Objectives and scope
The present investigation is concerned with step 2 in
Fig. 1.1, and thereby only elastic frames are considered.
The objectives of this study are:
- to analyze the geometric effects on the behavior of
the elastic single and multi-storey frames,
~ to develop approximate methods for the second-order
analysis of elastic multi-storey frames. 7
The present study is limite?! to plane frames and static )
loads. Unless stated otherwise, the type of structures to
be considered is as follows: The structure can include
bracing elements which may be shear walls or inclined
bracing elements such as diagonal braces. In general, no
distinction will be made between a column and a shear wall
unléss stated otherwise. 1Inclined bracing eleme;ta are

assumed to be pin-ended. A joint can be either rigid or

pinned. All individual members must be prismatic.

Two types of loadings are considered gravity loads
and horizontal loads. The horizontal loads are assumed to

be concentrated loads applied at the joints.

1.3 Outline

The theories and basic assumptions used to study the
geometric effects in columns and frames are reviewed in
Chapter 2. Ig\y%ll be shown in this chapter that a general
frame can be decgmposed into a non-sway frame subjected to

external moments at the joints and column axial forces, plus



a sway frame subjected to lateral loads and column axial
forces. The non-sway frame is studied in Chapters 3 and 4,
and the sway frame is studied in Chapters 5, 6 and 7. The
combination of the load effects from the non-sway and sway
frames is studied in Chapter 8, which also concludes the

investigation. The whole study is summarized in Chapter 9.



2. BASIC THEORIES AND ASSUMPTIONS FOR ELASTIC FRAMES

Introduction

I
s

The basic theories and assumptions used to study
geometric effects in columns and frames are reviewed in this

chapter. The standard assumptions and the basic equations

L]

for the elastic analysis of individual members and of a

n Sect. 2.2, which also includes the

[ s

frame are presented

m
\HU‘
]

discussion of the principle of superposition. The ‘'exact’
second-order elastic analysis is described in Sect. 2.3. 1In
addition to the standard assumptions mentioned in Sec. 2.3,
it will be assumed that the effect of axial forces in the
beams can be neglected in the analysis. This is discussed
in Sect. 2.4.

In the analysis of elastic frames, the terms ‘'elastic
critical load' (or buckling load) and 'elastic failure lead’

are frequently encountered. THeir relationship is discussed

n Sect. 2.5. The theorem developed in Sect. 2.5 will serve

Lad

as a basis for subsequent investigation on the behaviour of
elastic frames. In Sect. 2.6, it will be shown that a frame
under gravity and lateral loads can be analyzed as a non-
sway frame and a sway frame with the final force resultants
obtained by superposition. The study on elastic frames in

subsequent chapters are based on this principle.



2.2 Basic equations¥ms

The basic equation for in-plane elastic analysis of a
member subjected to axiai loads and lateral loads is derived
from an infiritesimalielement as shown in Fig. 2.1. By

taking the equilibrium of moments and forces, and using

Eq. 2.1, Eq. 2.2 can be obtained (Timoshenko & Gere, 1961).
M= - EIy" (2.1)
(Ely*)" + Ny" = g (2.2)

All the symbols have been defined in Fig. 2.1. The second
term in Eq. 2.2 gives the effect of geometry on the moments
and deflections. 1t is referred to as the geometric non=
linearity. The appiicatién of the above equations in an
Analysis is often called a second-order analysis. A first-
order equation would result if the contribution of the axial
force N in the moment equilibrium, i.e., the geometric
effect, were neglected (Fig. 2.1).

Several assumptions are required to derive Egs. 2.1 and
2.2 (Chen & Atsuta, 1976):
Material is linearly elastic.
2. Shear deformations are neglected.
3. Effects of Poisson's ratio are neglected.

4. Deformations are assumed to be small.
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v ‘(T\)'ﬁ‘_"ﬁ‘ I

veav

LMoment = 0 V = M - Ny (second order)
V = M (first order)
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Assumption 1 is the basic condition. Assumptions 2 and
3 are valid for elements with lateral dimensions that are
sma'll compg;ed to their length. As to assumption 4,
apparent conflicts occur when the elastic critical 1load
elastic failure load of a structure is reached. The ms
elastic critical load and elastic failure load refer to the
values from the small-deflection analysis. Based on the
small-deflection theory, the deflection of a straight column
is indeterminate at the critical locad. For an initially
bent column the deflections become infinite when the elastic
failure is"reached. To examine this problem, a more exact
analysis that takes into account the effects of large
deflections is compared in Fig. 2.2 (from Chen & Atsuta,
1976) to the analysis based on Eq. 2.2. In this figure, the

mid-height deflections of a pin-ended column with different

-

magnitudes of initial imperfection are compared. .

For an initially straight column, it is seen from the
figure that the deflection is determinate in the large
deflection analysis. When the load is only slightly in
excess of the critical load, the deflections become
extremely large, though the bent configuration is in stable
equilibrium. For initially bent columns, it is apparent and
shown from the figure that the small-deflection theory
breaks down when the deflections are no longer small.
Nevertheless, similar to the case of the initially straight
column, the deflections at the elastic failure load are very

large, although the column can remain stable for loads

i

L
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higher than the failure load. The above observations
suggest that the elastic critical load or elastic failure
load serves as a good indicater of the load at which the
structure undergoes very large deformations. In the
following study on elastic columns, it is assumed that the
deformations are small up to loads slightly less than the
elastic failure load. Although the small-deflection
analysis fails to predict the magnitudes of loading effects
in the vi;inity of the failure load, it is beliegeﬂ that the
trends of behavior can be reasonably predicted and the
failure load serves as a practical upper limit of the
loading. In other words, the study of elastic columns will
not be extended to the post-failure region.

When Eq. 2.2 is solved with appropriate end conditions,
the slope deflection equation relating the end moments and
deformations (Fig. 2.3) for a prismatic member can be
derived (Bleich, 1952):

EI

M, = = [cle, - o) + 8(6, - p)] (2.3)

The terms C and S are functions of N/N_, and referred to a
stability functions. The term N, is defined as izEI/L2§ In
a first-order analysis, the values of C and § are taken as 4
and 2, respectively, corresponding to N = 0.

The physical significance of the C and § functions can

be shown using a member with a hinged end and a fixed end

(Fig. 2.4). The term C+EI/L represents the rotational



Fig. 2.3 Symbols and sign convention for
the siope-deflection equation
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stiffness for moment applied at the hinged end and S§/C is

o+
x

carry-over factor. These terms are plotted in Fig.
2.4. The figure shows that the stiffness at the hinged end
of the member decreases with increase in compression and
becomes zero at elastic failure, followed by an increase in
negative stiffness. The negative stiffness implies that the
end moment acts in the opposite direction to the end
rotation. Such moment is often called restraining moment.
For this to happen, the column has to b% connected at its
ends to other members capable of supplying the restraint.
The carry-over factor S/C, however, increases with
increasing compressive load and becomes infinite at
failure. withiiﬁcreasing tensile load, the member stiffngsa
is strengthened and the carry-over factor is reduced.

Table 2.1 shows the load-deflection equations for
severdl loading cases which were developed by solving
Eq. 2.1 or 2.2 with appropriate boundary conditions. All
three equations indicate the linearity of the relationship
between applied forces and deformation for a given location
and a constant axial force N. This justifies the
application of the principle of superposition to a sequence
of operations provided the axial forces in the members are
held constant in each operation. Therefore, a more general

of

slope deflection equation which includes the effect

lateral loads acting between the ends is possible:

15



Table 2.1 Load-deflection equations (from Timoshenko & Gere, 1961)
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My = M+ [ClO, - p) + s(e, - p)] (2.4)

where M;, is the fixed-end moment. The equations for two
common loadings are shown in Table 2.2. The fi:eﬂ-ggé
moment increases with an increase in compression and
theoretically becomes infinite at N = 4N, . With an increase

in tension, the fixed-end moment decreases gradually.

2.3 Exact second-order elastic analysis
In this study, the second-order elastic frame analysis

is based primarily on the slope-deflection equation (Eq.

2.4). The solution is obtained by considering force
‘equilibrium and geometric compatibility at the joints .

ol
Furthermore, the shear equilibrium equations are formulated

in the deformed configuration of the frame. The geometric

effects’ due to the axial forces in the beams are neglected
in the analysis. This will be shown to be a reasonable
assumption in Sect. 2.4.

The load effects resulting from the above analysis are

nsidered as exact solutions. The 'first-order' load

[}
o]

effects are those from a first-order elastic analysis where
C =4 and S = 2 are used in the slope-deflection equation
and where the formulation of shear equilibrium equations is
based on the undeformed configuration of the frame. The
term 'first-order' will always actompany the first-order
load effects, and the symbol for any of these load effects

will have a subscript O (implying N = 0).



[
m

When large multistorey frames are analyzed, a finite-

element program will be used. The element stiffness matrix
for a second-order elastic analysis can be derived using the
slope-deflection equation (Eq. 2.3) and following the same

tandard procedure for a first-order element stiffness

matrix except that the shear equilibrium ies formulated in a

deformed configuration. The matrix developed in this way is

shown in Fig. 2.5. Wwhen the element axial force N is set

]

[ %]
-
[a]

equal to zero (i.e., C = 4, S also), it can be seen that
the stiffness matrix becomes a firat-order stiffness matrix.
A second apprcoach to determine the stiffrness matrix is
to make use of the virtual work principle and to assume a
third-degree polynomial for the deflection. (Note that the
third-degree polynomial is only exact for the first-order
deflection.) The matrix so obtained is composed of a first-
order element stiffness matrix [Kg) and a geometric element
stiffness matrix [Kg] which is a function of the element
axial load N, as shown in Fig. 2.6. When the éxial load

equals zero, the geometric matrix vanishes. The stiffness

matrix from the latter approach (Fig. 2.6) is derived in

approach is used in this study for easier pr@gramming.

Using simple elastic structures, Aas-Jakobsen (1973) has
testé& the second approach. It was found that the solutions
are converged to very accurate results when a member is

divided into two elements for analysia. In this study, a
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member is divided into four elements for analysis, which
should guarantee sufficiently accurate results. For

o referred

implicity, the results from such analysis are als
to as . 'exact’ values. The finite-element program for the

second-order elastic analysis was obtained by modifying a

first-order elastic analysis program for plane frame

developed by EL-Zanaty and Murray (1980).

After obtaining the end-moments and axial forces from
the exact second-order frame analysis, the method of
determining the maximum moment in any member can be derived
as follows: Solving Eq. 2.2 with a given set of end moments
and end displacements and applying Eq. 2.1 gives an equation
for the bending moment M at any point x along the column.
The maximum moment Mma;, determined by setting d4M/dx = 0,

can be written in the’ fafm of (Galambos, 1968):

Mpax = & Mg (2.5)
and

é - = 717,, :7 " (356)
‘ cos (8 %)

L
where x is the location of Mpax and defined by
: Xy _r - cos f ,
tan (p f) " ain (2.7)



The term 6 is the magnification factor by which the
numerically larger end moment M, is modified to obtain the

maximum moment. The symbols r and B are defined by:

le
N

B = x /N/N

The sign convention and other symbols have been defined in
Fig. 2.3.
For N ¢ N,, it can be shown (Galambos, 1968) from Eq.

2.7 and some trigonometric manipulation that

=+~/1+r2-2rcosj (2.8)
sin B *-

Since x may not be negative, the limit occurs when r = cos B

as shown in Eq. 2.7. In other words,

6 = 1.0 for r < cos B (2.9)

and Eq. 2.8 is usel when r > cos B.

For N > N, it is possible to have more than one root in
Eq. 2.6. Nevertheless, if % < B % < n is assumed, Eq. 2.8
will result. This has been shown graphically by Wood
(1953). This assumptdion can be shown to be valid for

N < 4 Ng by a cumbersome calculation which computes all

possible roots and determines the maximum one within the



region 0 ¢ x < L. Note that the limit given by Eq. 2.9 is

not required for N > N, .

2.4 Effects of axial forces in the beams

In this study, the geometric non-linearities resulting
from the axial forces in the beams are neglected in the
analysis of elastic frames. The axial fafce?in a beam is a
function of the lateral and gravity loads. It is
arbitrarily assumed that the lateral loads are not large

enough to produce any significant axial forces in the

beams . 'Far the gravity loads, which not only produce axial
forces in the columns but may also induce axial forces in
the beamardue to the gravity load moments, the problem is
more complicated. (The first-order gravity load moments

will be referred to as primary bending moments.) An attempt

will be made to examine this problem by investigating the

behavior of the simp elastic non-sway frame shown in Figq.

nditions. A similar problem has been

[
o]
=

2.7(a) under several
discussed by Masur etrali (1956), Lu (1961), Horne and
Merchant (1965), and McGuire (1968).

The non-sway portal frame in Fig. 2.7(a) is assumed to
rarry simultaneously a uniform distributed load w and

concentrated loads P applied at the top of the columns. The

ncentrated load is related to the distributed load by a
rti1.nal constant nodefined i the fiaure. The
irametrer o noattempts to siralate the nurter f storeys ab

23
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moments become less dominant. Note that the column axial
force N is also related’to w (Fig. 2.7(a)).

Because the frame is a symmetrical structure with
symmetrical loading, the framed column can be simplified to
a single restrained column, also shown in Fig. 2.7(a). The
elastic spring st;ffness K and the externally applied moment
My, which is equal to the fixed-end moment due to the

ear functions of the axial

o]

distributed load, become non-1i
force in the beam, which in turn is equal to the horizontal
base reaction H.

Based on the single restrained column, the solution can
be formulated using the slope-deflection equation (Eq. 2.3)
and fixed-end moments (Table 2.2), considering force
equilibrium and rotation compatibility at the joint. The
solution obtained by iteration leads to the relationship
between the column axial load N and the horizontal base
reaction H or the end moment M, described in Fig. 2.7(b) for
a low wide frame with a span 2.5 times the column height.
The results are given for different values'éf n.

In Fig. 2.7(b), the curve for n = 0 indicates that the
column axial force N reaches a peak value and then decreases
as the axial force in the beam increases. In this case, the

maximum load (0.328 N,) is é@nsiéerably less than the

failure load (1.144 N,) predicted by neglecting the axial

Pas

force in the beam. Such a small maximum load is attributed
to the rapid decrease of the beam stiffness caused by the

significant compression of the beam due to the horizontal

[ ]



reactions. The figure also shows that the column end-moment

]

increases more rapidly than the first-order moment. This

for the same frame and same loading condition (n = 0). The
very large joint rotation at the maximum load implies an

nconsistency with the small-deflection assumption in the

(8

analysis. Although this should not affect the trend of the

behavior, a practical consideration is that the large

o

deformation produced by the dominant bending moments would

ring about a material failure long before the geometric

o
A

effects become important.

A higher maximum load is obtained for n = 1 (Fi

[To]

2.7(b)), since the primary bending moments become less
significant. For n = 2, the end-moment M; initially
increases slighély more than the first-order value but later
drops rapidly due to a more rapid decrease in column
stiffness than beam stiffness. It becomes zero at N = N..
With further increase in N, the end moment changes direction
and thus causes tension in the beam, thereby stiffening it.
At the failure load, the end moment theoretically approaches
infinity, and thus induces an infinitely large tension in
the beam and hence an infinitely stiff beam. The failure
load so obtained would be the same as that of a column with
a fixed support at the upper end. This, however, is
incorrect because the large-deflection analysis (Fig. 2.2)

indicates that the internal forces (or deformations) never



approach infinity. It appears more reasonable to assume
that the failure load is equal to that predicted by

neglecting the beam axial force. Pigure 2.7(b) alsoc shows

that when the beam axial force is neglected in the analysis
for n = 2, the end-moment is underestimated before the
moment changes direction. Better agreement is expected for

higher values of n.

The results of an an

]

lysis of a frame with shorter span

(Lg = 1.5 L) and n = 0 are shown in Fig. 2.7(d). Here the

beam is stiffer. The exact curve compares reasonably well
with the one which ignores £he axial force in the beam.

In conclusion, the above observations suggest that the
geometric effects due to the axial forces in the beams can
be neglected in the analysis except for very low wide frames
with dominant primary bending moments. In such frames, the
e defl

lar ctions induced by the bending moments, however,

]
»

would bring about a material failure long before the
geometric effects become significant. Hence, the

exceptional case should pose no practical problems.

v

2.5 Elastic critical load and failure load .

The 'elastic critical load’' #s the load at which an
elastic frame with initially straight members buckles (i.e.,
bifurcation of equilibrium). Such a frame must only carry

concentrated loads at the joints in such a manner that the



For a normal structure with
ilure load' is

o
-

f

[
n

1 members .
'elast

loads in the
ocutset, the

axial

deformations from the

attained when the structure undergoes indefinitely large
the relationship between the

In this section,

deformations.
elastic failure load and the elastic critical load is

examined.
The first-order deflection yp at any point

to any loading.
of the frame can be expressed as an infinite series of the

form:
?

L]
\% m
-

y, =
° =
is the elastic critical deflection mode i
The coefficient

L
ci

where Yi

corresponding to critical factor
Cpi is the magnitude of critical mode 1.
factors are obtained from the modified state of lpoading of

load

The critical load

the frame in which the only inéernal forces acting are the
as shown in Fig. 2.8(b). The axial
A such that when A = 1,

member axial forces,
] load factor

the axial loads in the members are equal to those in the
original frame. The load factor is increased to lci for*
buckling of the frame in critical mode i. Based on the

developed

by Horne (1962), and the principle of minimum potential
found that the total deflection y of the frame

energy, |
under the action of both vertical and lateral loads
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(Fig. 2.8(a)) is equal to:

v - Coi - .
y = I —1 Yy (2.11)
i=1 1 -

kc:i
The axial deformations of members are neglected in the
derivation of the above equation. The complete derivation

s shown in Appendix B.

-

Equation 2.11 indicates that the elastic failure load
of a frame is defined by the corresponding lowest critical
load X,L which makes y equal to infinity. Furthermore, the
elastic failure mode is equal to the lowest critical mode
since the first term in Eq. 2.11 will predominate.

To explain more gpe:ificaily for a single column,
regardless of the type of loading imposed on the structure,
the elastic failure load is equal to the lowest critical
load of the column. The failure mode will reach the lowest
critical mode, regardless of the initialidefafmaticﬂ
produced by the first-order 1load gffects.k

For a multi-column frame, the critical load factors in

Eq. 2.11 also become a function of the ratio of the axial

loads in the members (Fig. 2.8(b)). 1In other words, the

-

elastic failure load is equal to the lowest critical load

that corresponds to “the ratio of the axial forces in the
members at the elastic fajlure of the frame. Suppose that
the beam axial forces are neglected and the ratio of the

column axial thrusts is held constant as the column axial

loads increase; the critical load for a given frame and a



given ratio of the column axial loads is a constant
quantity. In this way, the above conclusion for a single
column also applies to a multi-column frame, that is, the .
elastic failure load and the failure mode of the frame are
the same as the lowest critical load and the lowest critical
mode, respectively, regardless of the initial condition of

loading and” deformation.

In the following chapters, the elastic failure load of

a single column will be referred to as the elastic critical
load (the lowest one is implied) since it is understood that

they are equal. For a frame with a given ratioc of column
axial loads, the term elastic critical load will also be

used in place of the term elastic failure load.

2.6 Non-sway and sway frames

Any frame sustaining gravity loads and lateral loads
can be decomposed into a non-sway frame which carries the
gravity loads only, and a sway frame which resists the
original lateral loads plus the holding forces from the non-
sway frame, as shown in Fig. 2.9(a). Furthermore, the non-
sway frame can be decomposed into a non-sway frame with
supports which are fixed against rotation at the/jcintg. and
a non-sway frame with external joint moments Equél to the
unbalanced fixed-end moments due to the gravity loads. This

is illustrated in Fig. 2.9(b). According to the principle

of superposition (Sect. 2.2), the axial forces N in the

members of the sway and non-sway frames must be equal to
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those of the original frame as indicated in the figure.
Consequently, the holding force becomes a non-linear
function of the axial loads in the m;mberg; in addition to
being a linear function of the gravity loads. Similarly,
the external joint moment in the non-sway frame is a non-
linear function of the corresponding axial forces in the

beams. The total load effects for the columns are equal to

the sum of those from the non-sway frame with external jéiﬁﬁ
moments and those from the sway frame. These two . types of
frames are those to be investigated in following chapters.
For simplicity, the non-sway frame subjected to external
joint moments is termed the non-sway frame.

The geometric effects due to axial forces in the beams
are neglected in this study. This assumption also implies
that the external moments in the non-sway frame become
independent of the geometric effects. Note that this
assumption has been discussed in Sect. 2.4.

It should be noted that the concentrated vertical loads
at the joints of the sway frame indicated in Fig. 2.9 are
only diagrammatic indications that the Qalqmn axial loads N

tric non-=

[ 1
ﬂ\

should be considered in the analysis for the g
linearity, but N should not be used for calculating the
axial deformations of the columns. If the effects of
deformation are included in the analysis, such as for the
compatibility relationship, the axial deformations should be
calculated based on the column axial loads arising from the

shear forces in the beams, similar to a first-orde r analysis
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of a frame that only carries lateral loads. Similarly, in
the non-sway frame with the external moments, the

concentrated vertical loads are fictitioffls too. It is

pparent from Fig. 2.9 that the actual vertical loads are

placed on the non-sway frame with the supports fixed against

rotation at the joints. The fixed-end moments could include
the effect of the axial deformations due to the actual
vertical loads.

In the following chapters, the effects of the axial
deformation in columns and beams are neglected in the

analysis of elastic non-sway and sway frames. This is

considered a valid assumption for two reasons. First, the

load effects are non-dimensionalized by dividing by the
first-order load effects, and therefore the errors of
neglecting the axial deformations in both load effects are
offsetting. Second, the axial deformations produced by the
actual' column axial loads arising from the beam shear
forces resulting from the geometric effects are relatively
insignificant.

The next five chapters discuss the geometric behavior
and approximate second-order analysis of non-sway and sway

frames. In these chapters, the load effects will be non-
dimensionalized by dividing by the corresponding first-order
load effects (as mentioned before), so that the results are

independent of the magnitudes of the external moments in the

non-sway frame, or the lateral loads (including the holding



forces) in the sway frame. The combination of the non-sway

and sway load effects

will be discussed in Chapter 8.



3. BEHAVIOR OF FLASTIC NON-SWAY FRAMES

3.1 Geometric effects

In a non-sway elastic frame, the deformations along the
length of a column, which are caused by the primary bending
moments, introduce secondary bending moments contributed by
the axial load. The secondary bending moments readjust the
deflections and redistribute the end-moments at a joint.
The redistribution of end-moments also affects the column
deformations. ‘The new deformations, in turn, bring about
new secoridary bending moments, and possibly a change in the
axial load. This process continues until equilibrium is
achieved. Instability occurs when~equilibrium is not
attainable (small-deflection_theory). It can’be qéfn that
the whole process is complicated by the redistribution of
internal end-moments, which is reflected by the stability
functions, C and S, in the slope-deflection equation (Eq.
2.3). |

An attempt will be made in this chapter to examine the
above problem by investigating the behavior of simple

elastic structures.

3.2 Pin-ended columns

Figure 3.1 shows a pin-ended column subjected to
constant end-moments M; and My, where M) is the numerically
larger end-moment. The total bending moment in the column

is the sum of the first order moment, Mo, and the secondary

36
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moment which is equal to the product of the axial
compression and the deflection. Since the moment in the
column is magnified by the secondary moment, the
deformations increase at a faster rate than the locad and
hence become a non-linear function of the axial force N
(Fig. 2.2). The same is irue of all the other functions of

N: end-rotations, bending moments and shears.

Iy

According to the theorem in Sect. 2.5, the failure load
of an elastic pin-ended column is equal to its critical
load, i.e., the Euler load N, and regardless of the initial
deformations, the failure mode is the critical mode of
symmetrical single-curvature. The process of the change
"from initial mode to the critical mode is shown in Figs. 3.2
and 3.3 for different ratios of end-moments, r (= - M;/M3).

ingle-curvature)

]
[

The ratio r may vary from +1 (symmetrical
to -1 (antisymmetrical double-curvature). It should be noted
for the special case of r = ~1, the anti-symmetrical end-
moments force the column to bend into two identical half
waves for which the elastic critical load is 4:N,. From Eq.
2.11 in Sect. 2.5, it can be seen that a minute imperfection
of the antisymmetry (i.e., Cn; # 0.0) will cause failure at

N representing a bifurcation of equilibrium. This is

e'
illustrated by the curve for r = -0.99 in Fig. 3.2.

Figure 3.2 shows the change in end rotations of a

hinged column as the axial load approaches the critical

load, N,. Based on Fig. 3.2, the deflected shapes under

increasing compression are shown schematically in Fig. 3.3.
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Fig. 3.4 Maximum moment in a pin-ended column
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The 1gft—ha;g parts of Figs. 3.3(a), (b) and (c) represent
the deflections, the right-hand parts the moment diagrams.
It should be noticed that for any values of r, the end
rotation 92 always increasds in the same direction as M5 .

For 1 » r » 0 (Fig. 3.3(a)), 9 and 8, both increase in
the same direction as the end moments. For O > r » -0.5
(Fig. 3.3(b)), the member deflects to one side of the line
joining thee two ends although there is an inflection point
in the column. As the compression increases, 8, increases
in the direction opposite to M; and the inflection point
shifts towards the nearest end. When the critical load is
reached, the deformations are so large that the inflection
poirt is in effect at the end. As a result, the column
fails in single curvature.

For -0.5 > r » -1 (Fig. 3.3(c)), the column is
initially bent into reversed curvature. As the compression
increases, 0, decreases (except for r close to -1
where 91 initially increases very slightly but later drops
rapidly) until it reverses direction and increases in the
direction opposite to M;. The inflection point moves
towards the nearest end, and finally the deflection changes
to single curvature at fajlure. The change of reversed
curvature to single curvature is often referred to as
unwinding (Ketter, 1961). For r close to -1, unwinding
occurs quite suddenly.

When the column is being compressed, the maximum moment

in the column may also shift away from the end (Fig. 3.3).
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For r = 1, the maximum moment is always located at mid-
span. Forlather values of r, the maximum moment starts to
differ from M, at a particular load level, as shown by the
maximum moment curves, Mp,,/Ms, in Fig. 3.4. The curves

also show that the maximum moment increases most rapidly

when r = 1, although all curves approach infinity at the

critical load. For any value of r, the location of the
maximum moment tends to approach mid-span as the compression
increases.
3.3 single restrained columns

Figure 3.5 shows a single restrained column subjected
to externally applied jcini moments M,; and M,5, and axial
compression N. The linearly ‘elastic springs represent the

»
rotational restraints at the ends. The related symbols and

sign convention are also defined in the figure.
Figure 3.6 describes éhe changes of column/ end-moments,
M; and M;, under increasing compression for different values
of ro for a symmetrically restrained column with a non-sway
effective length factor, k,,, equal to 0.75. The ratio ro

and the effective length factor knhg are defined by:

4
Mo
0 Moo
2 2E1
Nns = 7. .2
(k_ L)
nsa

where M01 and Mps are the first-order end-moments of the

&

42



N
N
)
\ Elastic
Spnng
(Stitfness = K,)
|
L .
|
' / K‘
4
i @t
Nw
N N

Restrained column internal forces
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column, and Mgy, is the numerically larger one. The term Nog
is the non-sway critical load of the restrained column.

Note that khg is a function of the end-restraints only, and
therefore the value of kKnhg 2180 defines the magnitude of the
equal end-restraints. Although rop may vary from +1 to =1,
-0.99 is‘used as the lower limit in Fig. 3.6 to introduce
small imperfections, as discussed previously.

Based on Fig. 3.6, the variation of moments and
deflections with increasing compression is schematically
described in Fig. 3.7. As already stated in Sect. 2.5, the
deflection mode of a single restrained column will
ultimately change to its critical mode as the compressive
force is increased. The critical mode for a column
restrained at both ends is triple curvature, i.e., two
inflection points occur between the ends. The process to
attain to the final mode is described below.

For 1 > ro > 0 (Pig. 3.7(a)), M; and M, both decrease
from the beginning and then reverse direction and increase
negatively. For O > ro > -0.9 (the value of -0.9 is
approximate as it would depend on the magnitude of the end-
restraints, but it is expected to be close to -1), My
increases with increasing axial load while M, decreases at
the outset (Fig. 3.7(b)). After a change of direction, Mo
starts to increase in that direction. For -0.9 > ry 2 =1
(Fig. 3.7(c)) both M; and M, decrease gradually at the
beginning. As the critical load is approached, My rapidly

increases, and M, rapidly decreases, changes direction and
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Fig. 3.7 Bending moments and deflected shapes of symmetrically
restrained columns under increasing compression
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increases in the negative direction. This drastic change

Y

from double curvature to triple curvature is often referred
to as 'unwrapping' (Baker et al., 1956). The phenomenon is

analogous to the unwinding of a pin-ended column.
(Kl # K;); Compared to the case of equal end-restraints for

the same rg and k,,, the end-moments at the stronger

restraints change more rapidly under increasing compression,
while the moments at the weaker restraints change less
rapidly. 'In the extreme case of a hinged end, the end-
moment does not change.

The variations of enéératati@ns with increasing
compression for the cases shown in Fig. 3.6 are similar to .
those for the pin-ended column shown in Fig. 3.2 except that

the critical load should be compatible with the restrained

column. A closer comparison of Figs. 3.2 and 3.6 reveals

the restraining effects offered by the elastic restraints
As the axial load is increased, the end moments change in

the opposite direction to the change of end rotations for

"
o o
m

[ ]

the same rn (or r in Fig. 3.2). 1In other words, the chang
of end-moments restrains the column deformations, as shown
schematically in Fig. 3.7. Hence the restraining action
results in a larger critical load for a restrained column
than for a pin-ended column.

Because of the restraining action, the maximum moment

in a restrained column is less than if it were unrestrained.

The solid lines in Fig. 3.9(a) describe the variation of
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maximum moments in a symmetrically restrained column. (The
dotted lines will be discussed in Sect. 4.2.) For rg = 1,
the maximum moment begins to increase at the start of

loading although the end-moments are decreasing, as shown in

Fig. 3.9(a). For other values of ro, the maximum moment,

initially equal to M,, decreases at lower load levels, but’
later departs from M; and increases thereafter. For smaller

values of the first-order moment ratio, rg, a higher axial

oad is necessary to cause the maximum moment to move away

I~

from the end. Note that the maximum moment always maintains
the same sign and the point of maximum moment tends to
approach mid-~-height of the symmetrically restrained column
(Fig. 3.7).

For columns having the same non-sway effective length

k the effects of unequal end-restraints on the maximum

ns’
moment are jillustrated in Fig. 3.9(b). The effects are

negligible for rg = 1. The curves for two different values
of stiffness ratio follow very closely. This continues up
to the critical load, though not shown in the figure. The

_effects of unequal end-restraints are more si nt for

ro = -0.5. Compared to the curve of equal restraints at the

load level, the maximum moment in the column is smaller

m
m

am
when K; is stronger than K; (see Fig. 3.5 for definitions of
K, and Kj), but it is larger when K, is weaker than K;.

& rapidly with an increase

[
[ 1
[ ]

This is because M, decreases
in axial lcocad for the case of weaker Ky . It is shown that

the maximum moment is not only a function of ry and kg but
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also a function of the relative values of K, and K,.

3.4 Single-storey frames

The study of single restrained columns in the previous
section assumes that the stiffness of an end-restraint
remains constant as the axial load increases. When a column
is a component of a frame, the end-restraints of any column
may become a function of the deflected shape of the beams
resulting from interaction between the columns. To shed

n between

\U\

some light on the effects of horizontal interacti
the columns, the behavior of the simple symmetrical frame
shown in Fig. 3.10(a) is investigated for two different
cases .

In the first case, the frame is subjected to
symmetrical external moments so that the beams are bent into
symmetrical single-curvature, as shown in Fig. 3.10(b), and
the ratio of first-order end-moments, rp, for each column is
equal to 0.6. In the second case, the external moments are
antisymmetrical (Fig. 3.10(c)) so that the beams are bent
into antisymmgt:ical!daubLEEEurvaturéi The ratio rg for
each column is -0.6. In both cases, one column is lightly
loaded (strong column) and the other one is heavily loaded
(weak column). The ratio between the two axial loads is
kept constant during loading with N; = 1.5N; as shown in
Fig. 3.10(a).

As state?! 1n Sect. 2.5, for a given frame and a given

ratio of column axial forces, the elastic failure mode is
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identical to the elastic critical mode. This critical mode
is independent of the initial deflected shape. As a resul
the critical mode for both cases is the same and is shown in
Fig. 3.10(d). It can be seen that in the first case, the
stiffnesses of end-restraints do not change as much as in

the second case. The process of the changes is showh in

My

Fig. 3.11 for the first case and Fig. 3.12 for the second

case. In both cases the exact moments, shown by solid
lines, are compared to those obtained by assuming constant

/L for single curvature and 6EI/L

[
-

end-restraints equal to 2E
for antisymmetric curvature. In this way, the change in the
end-restraints and the corresponding effects on moments can
be observed.

In Fig. 3.11 for rg = 0.6, the end-restraints remain
quite stationary until fairly high load levels, as shown by
the close correspondence of the M, curves. For the stronger
column, the maximum moment increases more rapidly than the
one estimated using the first-order end-restraints. 1In
effect, the strong column is losing end-restraints. On the
@tﬁgg hand, the weak column is gaining end-restraints. This
indicates that the strong column is assisting the weak
column through the mechanics of horizontal interaction. The
overall trend of the behavior is essentially the same as
that predicted by assuming consetant end-restraints, however.

For the antisymmetric loading case, rg = -0.6, the

indicate that the first-order

L

moments plotted in Fig. 3.1

losely approximate the exact

n

values of the end-restraints

r
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re:tra?};u until N/N_, approaches 1.0. In this case,
however, both columns ultimately lose end-restraintsf because
the change from the initial anti-symmetric mode to the
approximately symmetrical critical mode brings about a
drastic decrease in the effective stiffness of the beams
(from double to single curvature). The changes in the
behavior of the weak column develaﬁ gradually and the trend
of behavior does not differ from that predicted by assuming
constant end-restraints. For the strong column, the changes
are insignificant until a drastic change of behavior occurs

the elastic critical load of the frame is approached.

[+ ]
[

This rapid change is brought about by the extremely large
end-moments in the weak column, or in other words, the
elastic failure of the whole frame is initiated by the
elastic failure of the weak column. In an actual structure,
these extremely large moments will not occur since the
members will fail by material failure, and conseguently the
snaé*;hrcugh change of deflected shape of the strong column
will stop shS;t before thtre are any significant differences
from the curves based on constant end-restraints.

In summary, the above twoc cases suggest that even in a
, frame with mixed strong and weak columns (the words 'strong'
column refer to one having a high EI/L or stiff end
restraints or low N/N, ratio, 'weak' column means vice
versa), the end-restraints of any é&olumn are quité

insensitive to the geometric action, except when thg column

is carrying a high axial load. At the high load levels at



impending elastic failure, the behavior of an individual

column becomes complicated, as it is a function of the
~
at elastic failure and the initial condition of the end-

restraints.

st
W

Multistorey frames
In a multistorey structure where continuity.of columns
exists between storeys, the vertical interaction of columns
due to geometric effects is a function of the relative
stiffnesses of columns and the stiffnesses of the beams that
connect the storeys. As the axial loads alter the relative
stiffnesses of columns, they also affect the distribution of
moments between columns. However, if the beams are stiff
relative to the columns, any changes in the end-moments of a
column will be absorbed primarily by the beams and therefore
will not affect significantly the columns above or below.
Qn the other hand if the beams are very flexible, any
changes in one column will affect directly the bther storeys
through the continuous columns.

An attempt is made in this section to observe the \
significance of the above two factgfs,rbut for beams of
intermediate stiffnesses which are considered to be more

typical. The horizontal interaction of columns is

neglected. The simple two-storey frame shown in Fig. 3.13
is the model to be examined. The bottom column of the frame

is a distinctly weaker column than the upper column, because



58

EIl] AN

=

N,: 15N,

2
fo =00 (both columns)
Stiff Beam Eig = 2EI
Flexible Beam EI_ - 04 EJ
- B =

Fig. 3.13 A simple two-storey frame



not only is it less restrained but also because the axial
load it carries is 1.5 times that iﬁ the top column. Two
cases will be studied. The beam that separates the two
storeys in the first case is 5 times that in the second
case, as shown in Fig. 3.13. 1In both cases, the first-order
ratio of end-moments r; is equal to zero for both the upper
and lower columns, and the column end-moments at the mid-
height of the structure are equal.
The variation of the maximum moments with increasing

xial loads are shown in Fig. 3.14 for the top (strong)
column for both cases, and in Fig. 3.15 for the bottom
(weak) column. 1In all the figures, the maximum moments are
also compared to those obtained by assuming first-order
(constant) end-restraints. Since the first-order column
end-moments are distributed egqually at the mid-height, the

equal to half of

corresponding first-order end-restraint i
the effective stiffness of the beam. Note that )\ is the

load factor (Fig. 3.13), and e is the critical load

M\

tor

ﬂw

.Y
of the frame.

From tﬁe two figures, it is seen that the strong column
is ;ssistiﬁg the weak column as the axial loads increase.
This phenomenon is more pronocunced for the frame with the
flexible beam between the sto reys. It should be noted that

this effect became quite appreciable even at early stages of

In a multistorey frame where both vertical and

horizontal interaction of columns mgy occur, it is likely
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that the vertical interaction would play a more significant

e
My

part. The significance is, obviously, a function of the

the effects

oM

tha

"

he cas

=4
]
m

factor

discussed previousl

r

ly .
of both interactions are significant, it seems that the
combined effects are too complicated to be traced in a

general discussion.

3.6 Summary
The change of the deflected shape of a pin-ended column
from its initial mode to Iits critical mode has been

described. As the critical leoad i

approached, the

inflection point (if any) in the pin-ended column moves to

m
[ ]
Ing
[a]

the nearest end, while the point of maximum moment mov
mid-height of the column.

The changes in éig end-moments of a symmetrically
restrained column due to increasing compression have been
deacribed. These show how the column changes from its

initial mode to its critical mode of triple curvature, and

how the change of end-moments restrains the column

ad than if the

L
o]

deformations resulting in a larger critical 1
column were unrestrained. The differences between the

=

behavior of columns having unequal end-restraints and equal

Increasing axial compression will reduge the maximum
moment in a restrained column if the maximum remains at the
end of the column. With further increase in the compressive

force, the maximum moment will be forced away from the end,



and the maximum moment will increase theresf-er The

process depends on the first-order moment ratic (rg), the

o}
L
]
La !
]
[+ 3
\I’f
a]
[
[
pa |
r
o

load level and the magnitudes of the end

The horizontal interaction of columns has been

discussed with the help of two illustrations They suggest

that even in a single-storey frame with mixed strong and

weak columns, the end-restraints of a given column are gquite

action, except at impending

. | S X .
insensitive to the.geometri

Ly}

elastic failure of the frame.

The two cases illustrating the vertical interaction

between columns indicated that stronger columns assist

m
—
\Dw

weaker columns as the ad levels increase. This phenomenon

is more pronou

=y

ced for a frame with more flexible beams

between the storeys.
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4. APPROXIMATE SECOND—ORDER ANALYS1S OF ELASTIC NON-SWAY

FRAMES

4.1 Pin-ended columns

M =& M, (4.1)
where M, is the numerically larger end-moment and & is the
magnification factor which is generally separated into two

terms:
6 = Cm 61 _ (4.2)

where 61 is the value of & corresponding to symmetrical end-
moments (r = 1.0), and C; is the correction factor employed
to account for r # 1.0. The unsymmetrical end-momentg can
be visualized as being replaced by equivalent sy@@etrical
end-moments equal to C My, which will give rise to the same
maximum moment as occurs under the actual loading. From Eq.

2.8 and some trigonometric operations:

61 = geC % ) (4.3)

-

" and
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. 2
- l +r =2r cos B .
e (4.4

For a column subjected to end-moments, Eg. 4.3 can be

approximated by (Wang and Salmon, 1973):

1o

1+
6 ==

iza a (4.5)
where g = H/Ne‘ The approximation is derived by assuming a
sine curve for the deflected shape of the column and
applying the conventional moment-area method. Another
approximation of 6, similar to Eq. 4.5, can be obtained by
using the energy method considering only one sine term of

the Fourter series (Galambos, &P68):
(4.6)

When the average of Egqs. 4.5 and 4.6 (given in Eq. 4.7) is
caﬁpared to the exact solution given by Egq. 4.3, the errors
are within +0.2% and =-0.1% for N < 0.5 Ne, and -2% for

N < No. Therefore it may be concluded that éq. 4.7 is a

very good approximation for éi.

5, =1 *0:.250a (4.7)

In the design codes AISC (1978) and ACI (1977), it is

implied that Eq. 4.3 can be approximated by:

65
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6, = T (4.8)
(discussed in the Guide ed. Johnston, 1976 and MacGregor et
al., 1970). This approximation is unconservative and the
error can be as high as -11% for N = 0.5 N,. This will be
discussed further in Sect. 4.5.1.

Due to the limitation on & imposed by Eq. 2.9, the
values of C, for N < N, have an upper bound which is
obtained by substituting r = cos 8 into Eq. 4.4. The lower
bound is»determined corresponding to N = N,. These two

bounds are plotted in Fig. 4.1 together with curves for

different values of N/N, computed using Eq. 4.4. An
approximation for C,;, neglecting the dependence on N/Ne, was
suggested by Austin (1961):

*

Cm = 0.6 + 0.4 r for 1.05>r > -0.5
and ~ '  (4.9)
Cm = 0.8+ 0.8 7r for -0.5>r » -1.0

Equation 4.9 isjalso plotted in Fig. 4.1. The equation
is applicable for the case of in-place bending. Massonnet
(1959) developed a similar relationship for the case of
elastic lateral-torsional buckling of an I-shaped, bi-
symmetrical, pin-ended column. The column is eccentricaliy

loaded at the ends to produce bending about the strong axis
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and assumed to fail by combined bending and twisting. The
unequal end-moments are reﬁlaeed by equivalent symmetrical
end-moments Mgo which will give fise}% the same lateral-

torsienal buckling load as occurs unée; the actual loading.

Using the energy method, Massonnet expressed Heq as follows:

M —
ﬁiﬂ: Jo3+04r +0.3 1%
2

(4.10)
Equation 4.10 is approximate in the sense that the
dependence on the axial load and some torsional parameters
are neglected. (The derivation of Eq. 4.10 and the
assumptions involved are thoroughly described by McGuire,
1968.) The soundness of this equation has been corroborated

by Horne (1956) and Salvadefi (TQ56) although they based

their solutions on different assumptions.
In order to extend Eq. 4.9 to include the case of

lateral-thiional buckling, Au:tiﬁi(lgél) proposefi th;

following équation (adopted by the current ACI (1977) and

AISC (1978) Codes):
Cm = 0.6 + 0.4 r > 0.4 (4.11)
which closely approximates Massonnet's equation (Eq.

4.10). With the limitation of Ch 2 0.4, Eq. 4.11 becomes

overly conservative for values of r close to -1 for in-plane

bending (Fig. 4.1). On the other hand, for r > -0.5, the

equation may underestimate C, by up to 20% (Fig. 4.1). The



unconservative errors can be considerably reduced, however,
if the approximate magnification factor, & = Cp &, is
limited to values greater than or equal to 1.Q. This will
be shown in the following paragraphs.

If Egqgs. 4.B and 4.11 are combined with the limit of

6 > 1.0, the approximate magnification factor becomes:

c
m s
§ = y—— > 1.0 ‘

and (4.12)

Cm-'O.G*D-i r » 0.4

4

which is the basic equation for calculating the maximum
moment in a non-sway slender column specified in the ACI
Code (1977). The errors in Eq. 4.12, compared to the exact
elastic solution (Egqs. 2.8 and 2.9), are shown in Fig. 4.2.
The approximate ‘equation appears significantly
unconservative in éany cases because Eq. 4.8 itself is

unconservative. If Eq. 4.7 and 4.11 are used instead such

that:

and W ' . . (4.13)

ém-o.e-n- O.4r > 0.4
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the unconservative errors are considerably reduced, as shown
in Fig. 4.3. The error is always less than 4% on the
unconservative side for N < N_,. For N ¢ 0.5 N, the error
is within +8% and -4%. For N > 0.5 Ne: Eq. 4.13 becomes
increasingly conservative. It should be noted that for
design purposes, the overconservative estimates at very high
axial compressions are not of practical importance because

the magnitudes of the design moment would be very small, as

if the lower 1limit of

to neglect the lower

limit if lateral /torsionali buckling is not a consideration
such as in the design of reinforced concrete columns. This
will be discussed further in Sect. 4.5.
4.2 Effective length method for single restrained columns
The current design approach in the United States (AISC,
ACI) and Canada (CSA) for restrained non-sway beam-columns
proceeds as follows: The restrained beam-column is replaced
by an equivalent pin-ended beam-column whose length is equal
to the effective length of the real restrained column, k,,L
(Fig§E4.4(a))i This equivalent pin-ended column is then
’naly:-difar the axial compression plus the first-order i
internal end-moments of the real column. The use of kng 18
intended to take into account the effects of the end

restraints on the end moments discussed in Sect. 3.3.
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This method appears to ‘have little theoretical basis
except in the case of a column subjected to uniform first-
order moment shown in Fig. 4.4(b). With increasing axial
load the end moments decrease as shown in Fig. 3.7(a). The

actual moment curve intersects the first-order moment at two

points where the actual moments are identical to the first-

rder end-moments. The column can then be considered as a

4]

pin-ended column subjected to end-moments equal to the
first-order end-moments of the real restrained column, wi'th

a column length equal to the distance between the two

however, as will be studied later in this section. In the
case of non-uniform first-order moment (Fig. 4.4(c)) where

the first-order end-moments, the method loses its
ratianali}y- Therefore, in general, the effective length
method can only be justified on an empirical basis.

The application of the effective 1Eﬁgthsmgthad to bga;=
columns was proposed by Winter (1954) based on the work of
Lee (1949) and Bijlaard et al. (1953)~ Lee (1949) suggested
that the maximum moment in a restrained elastic column with
equal end-restraints and symmetrical joint moments can be

approximated using the effective length method. Bijlaard et

0

al. (1953) extended Lee's approach with some modification t
determining the collapse load of an inelastic column with

elastic restraints. Since this sectic&, deals with elastic
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aspects of column behavior, discussion of Bijlaard's and
Winter's papers is given in Sect. 4.5.2.

The following summarizes the development of Lee's
method (1949). The restrained column studied, and the
definition of related symbols have been gh!bn in Fig. 3.5.
For a restrained column with equal end-restraints K and

symmetrical joint moments M;, the internal end-moment, M,

deflection equation (Eq. 2.3), considering f@rce equilibrium
W 5
and rotation compatibility at the joints, and is given by

M 1 B
i: - 1 + K__ tan (p/2) ! (4.14)
EI/L B
where ) !
B = x /N?Ne
2

x EI

&e ™ T3

L

From Eq. 4.3, the maximum moment M .. in the column is equal

to:
- (g/2)
ma x sec (p/2 7 )
t 1l + K ‘Wtani(gjij . (4.15)
EI/L B

If the restrained column is replaced by an equivalent pin-
ended column with a length equal to the effective length

k,gL, then, also frcﬁgﬁq, 4.3, the maximum moment is equal



tos
M
DAX . gec £
M 2
where

(4.16)

The fictitious end-moments M that should be applied at the

ends of the equivalent pin-ended column can be obtained by

equating Egs. 4.15 and 4.16:

[

lzl

X

The effective length factor kns

t sec (B/2) et%ﬂﬁ(ﬁ/ﬂ)

is used in Eq.

(though not explicitly stated by Lee), so that Eq.

] ElE

.16

3
gives the same elastic critical load as that of the real

restrained column.

The value of M for different magnitudes

of end-restraints (or k,,) under incseasing compression are

plotted in Fig.
’

4.5 (from Lee's thesis,

The end-

moment M increases gradually except in the vicinity of the

buckling load at which M drops

suggested that for simplicity,

abruptly to zero.

Lee (1949)

one may consider M as a

constant equal to Mg which is the value of M when the column

axial thrust is equal to zero.

That is,

Mo is the internal
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Fig. 4.5 Required end moments in an equivalent pin-end column
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end-moment of the real restrained column determined from a

__XLirst-order analysis. The maximum moment is therefore

approximated by i\ . Ea
max . gec B (4.18) '

The errors introduced by Eq. 4.18 for different values
of kns’afe shown in Fig. 4.6 as a function of the axial
compression N divided by the critical load Nng+ It should
be noted that alth@ugh both the apraximéte value given by
Eq. 4.18 and the theoretical value from the exact analysis
become infinite“at N = N_ ., mathematically speaking, they
afe not equal, as shown in Fig. 4.6. From the figure, the
effective length method is shown to be unconservative for
this case. The errors increase with iﬁ:regsing axial
compression. With stronger restraints (or lower k,g,)., the
errors are larger at a given E/Eﬁg. For instance, the error
at N '-Q'SNng for k;s = 0.85 is approximately -4% and for
kng = 0.75 is ~B%. For lower values of khg+ Which may be
regarded as &ncémman in practice, the eggars are
considerably larger.

A modified effective length factor kn which gives exact
values of the maximum moment when used in Eq. 4.18 is
plotted in Fig. 4.6(b). Because the first-order bending
moment is uniform along the column, kLl is identical to the

=

intersection length according to the previols discussion

e

(Fig. 4.4(b)). Figure 4.6(b) shows that wikh increasing
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‘compression, X, approaches the value of knhs+ and is
extremely close to k., at the critical load. The ratio
km/kng vVaries from appfa:imgﬁgiy 1.06 to 1.0 and 1.03 to 1.0
for kpg = 0.75 and D.Eé; regpectively.
When Figs. 4.6(a) and 4.6(b) are examined together,
they indicate that s#ithough k.s becomes a more accurate

approximation at higher axial lcdads, the resultant errors in
the maximum moment increase. This is also indicated in the
extreme condition of N = N, at which the ratio kp/k,e is
extremely close to 1.0 (Fig. 4.6(b)), while the difference
in the moments is still distinct (Fig. 4.6(a)). This is
because the maximum moment given by Eq. 4.18 increases very
rapidly with increasiné compressiorf (Fig. 3.4), and hence
the change in M;,, becomes more sensitive to the change in
N/N,g (i.e., k,g) when the axial load is larger. !
The above observation suggests that a small
overestimation of k,, can eliminate the unccnservétive S
errors in the maximum moment for some particular cases. An
example of k,, = 0.75 shows that if the value of kng 18 !
overestimated by about 3.5% (Fig. 4.6(b)), the maximum
moment for N = O.5N_ . can be accurately determined using the
effective length method (Eq. 4.18). On the other hand, if

kn’ is underestimated, the maximum moment will be

underestimated to a much larger degree.

£

The above results for columns ‘with equal end restraints
are also applicable to the unequal end restraints if the

first-order moment is uniform. In Section 3.3 (Fig. 3.9) it
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4

was shown that.the maximum moments are essentially -

independent of the ratio of end-restraints for a given value

/

of kng and uniform first-order moment.

: When the effective length method is extended to non®
.

uniform first-order moments (r; * 1.0), from Eqs. 2.8 and

2.9, the maximum moment is approximated by: -
» ? - —
Mmax +~ 1 + ry 2 r, cos ] _
M = — for ry cos B
02 sin B ’
(4.19)
= 1.0 for r, < cos B

Equal end—rcstraints’are first studied for the case of
kng = 0.75 in Fig. 4.7. The theoretical maximum moment is
determined using the exact elastic analysis described in
Sect. 2.3. For r5 < 1.0, Eq. 4.19 gives conservative
results up to a‘ad level that depends on the value of ro.
as shown in Fig. 4.7(a). For smaller values of ro. the
method tends to be conservative up to a larger axial load.
This can be explained by noting Fig. 3.9(a), which shows
that the ratio M;,,/Mgy for rg < 1.0 initially diminishes
due to the axial load, whereas the value of Mmax/qoz
determined by Eq. 4.15 (shown in Fig. 3.9(a) as dotted
lines) is always greater than or equal to 1.0. when the
ratio Mp,y/Mg2 is equal to 1.0, the value of ky which gives
exact results when used in Eq. 4.19 becomes immaterial (Fig.
4.7(b)). As expected from Fig. 4.6, the case of ro = 1.0

(for equal end-restraints) gives unconservative values of

-
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Fig. 4.7 Examination of the effective length method
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moment for all values of axial load and forms a lower bound
on the other curves. For resatraint magnitudes other than

Kng = 0.75, t*- esults are similar except that the

magnitude of the errors will be larger for stronger
restraints and smaller for weak®r restraints.

For the case of the unequal end-restraints, Fig. 3.9(b)
Ké at the end where the moment M, acts and strong Ky
(symbpls defined in Fig. 3:5) has the greatest maximum
moment at any axial load for a given k., and ry value. The

extreme case

o]

f K = 0.0 (a hinge), showniin Fig. 4.8,

4

indicates tha; for rg < 1.0 the maximum moment approximated
by Eq. 4.19 is accurate up to a certain load level

the maximum moment occurs at the end (Mp,y = My = Mgy,).
When the maximum moment occurs between the ends of the
column, the approximate values become unconservative.
Unlike the previous case, the approximate vafqes tend to be
much more unconservative for smaller values of rg. This is
also reflected by the values of k, in Fig. 4.8(b).

In conclusion, the maximum moment in a column subjected
to uﬁifarm first-order moment analyzed by the effective
length method, which can only be considered empirical, is
always less than the theoretical elastic value. For columns
subjected to first-order moment gradient, with weak K, and
strong K,, the errors could be even greater. On the other
hand, the method may produce :qﬁgEEvative resultas in cases

where the actual maximum moment in a column is less than the
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larger first-order end-moment. (This condition cannot be
predicted by the effective length ﬂgthod.) The.errors
increase with smaller kng and with larger axial load. 1In a
design situation where the maximum moments need to be
estimated, khe above results suggest that a restrained
elastic column analyzed by the effective length method may
have a safety factor less than that implied for a pin-ended

¥

column.

4.3 ACI method
4.3.1 single restrained columns

According to the current ACI Code (1977), the maxiﬁgm
moment (Mp. ) ;n a single restrained non-sway column with

given internal first-order end-moments (Mgy. MOZ) can be

determined by the following equation:

5 = ——0 5 1.0 (4.20)

where

Cm = 0.6 + 0.4 ro > 0.4

The moment magnifier 5.8 is defined as M_,,./Mg,, and a.s i8

N/an.
In the ACI‘Code Nhg 18 actually written as ¢ an where
¢ accounts for variability in an. Since this dAiscussion

dealas with ideal elastic members, ¢ will be taken equal to

85
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1.0. The derivation of Eq. 4.20 is an approximation of the -
elastic solution based on a pin-ende& column (Eq. 4.12 in
léct. 4.1) and it is e;trapolaied to‘a eingle restrained
column by incorporating the effective length factor Kns
(Sect. 4.2, MacGregor et al., 1970). |
P ;
The moment magnification from Eq. 4.20 is compared Fg

* the upper and lower bounds of M ,,/Mg; from the theoreteical
elastic solutions for a given N/N, ., in Figs. 4.10 to 4.14
for rp = 1.0, 0.5, 0.0, -0.5, and -1.0, respectively. As
mentioned in Sect. 3.3, for a given N/an, the maximum
moment in an elastic column is a function of khg and the
relative magnitudes of the two end-restraints. Based on the

bservations made in Sects. 3.3 and 4.2, the upper and lower

unds of the maximum moments occur in the columns shov- in
Fig. 4.9. Each of the column types shown was studied, and
the uppér and lower bound values were selected.

For rg = 1.0, the upper bound on the maximum moments
corresponds to columns with infinitely stiff beams at both
ends, and the lower bound corresponds to columns with beams
of zero stiffness (see Fig. 4.6(&)).\\XAcolumn with an
infinitely stiff beam at one end and a hinge, at the other
end produces the upper bound values for ro = -1.0 (see Fig.
4.8(a)), whereas a column with infinitely stiff beams at
both ends produces the lower bound values (see Fig. 3.9).
For intermediate values of ro, the governing types of
columns depend on the ratio rp as well as_the magnitude of

N/an. In many cases, the column with an infinitely stiff
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Note The internal moments (M,. M,) and deformations are arbitrarily
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Fig. 4.9 Types of columns corresponding to upper and
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Fig. 4.10 Comparison of approximate with theoretical
magnification factor for r, = 1.0
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Fig. 4.11 Comparison of approximate with theoretical
magnification factor for r, = 0.5
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magnification factor for r, = -0.5
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91



S

Fig. 4.14 Comparison of approximate with theoretical
magnification factor for r, = -1.0
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beam at one end and-a hinge at the other end is the dominant
»

case for upper or lower bqund values. It should be noted
that in determining the upper bound values, the larger
first-order end-moment M, is applied at the hinge (i.e.,.M>p
= M5, for any values of N/an), whereas for lowér bound
values, Mgps is induced by the infinitely stiff beam (see
Fig. 3.9(b)). From Figs. 4.10 to 4.14, it can be oeenvthat
the difference between the two bounds increases with
increasing values of N/N_..

In the case of rg = 1.0,'the maximum moments from Eq.
4.20 fall below the lower bound values for all values of
N/Nns because qf the following two reasons. First, the term
[6.25 N/Np.] has been neglected in Eq. 4.20'(§ee Eq. 4.7).
If it were included, Eq. 4.20 would be almost the same as
the lower bound curve. Secand, the use of effective length
method itself makes the solutions unconservative as’
discussed in Sect. 4.2. For smaller values of ro. Eq. 4.20
approaches to, the lower bound‘gnd moves into the "bounded
region. This is because as r decreases, Eq. 4.20, which is
deriVeé from #fe approximate equation (Eq. 4.12) for a pin-
ended column, approaches closer to the theoretical equation
for a pin-ended column as shown in Fig. 4.2. 1In addition,
the effective length approach leads to conservative results
up to certa{; load levels for lower bound cases a: shown in
Sect. 4.2. For rg = -0.5, Eq. 4.20 becomes virtually the
mean curve of the two bounds. For rg = -1.0, Eq. 4.20.

predicts values even higher than the upper bound at larger



axial loads due to the limit of Cn > 0.4 imposed on the

equation.

4.3.2 Multistorey frames

As discussed in the previFQQ sections, the current ACI
Code (1977) method for calculating the maximum moment in a
non-sway column (Eq. 4.20) is developed for single
restrained cgiumns whose magnitudes of end-restraints are
unaffected by the geometric effects. In order to extend thé
method to restrained columns in a non-sway multistorey
frame, it is necessary to assume that the end-restraints of
any column in the frame remains unaffected ‘by the geometric
effects: As a result of this assumption, any column can be
isolated from the frame, as shown schematiaally}én Fig.
4.15, such that the end-restraints for the isclated column
are equal to the first-order end-restraints.

In the Commentary to the ACI Code, the end-restraints

are expressed in terms of the ratios of column to beam

he

o]

n

stiffnesses. The following analysis, based
assumption in the above paragraph, is a necessary step
preceding the method suggested in the ACI Commentary. The
restraint offered by a beam is a function of the signs of
the moments at its ends (Eq. 4.22, to follow), and the

restraint is distributed to the upper and the lower column

end-moments at that joint. Thus the first-order end-

restraints can be determined from the first-order moments.

yV
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Fig. 4.15 A column isolated from a non-sway frame



The restraint stiffness K, at joint 2 of the isolated column

(Fig. 4.15) obtained in this way is equal to:

K, = 1% 02 ‘I m E) (4.21)
[ %jcol "B  beam
4
where
m = 3
. 1 Mo . (4.22)
T2 M
“oJg

and (ZMO)col denotes the sum of first-order column end-
moments at joint 2, M5y is the first-order beam moment at
jJoint 2, and Mgy is the first-order moment at the far endgaf
the beam (Fig. 4.15). The symbol (z)beam d2ﬁc£es summation
for all beams rigidly conneéted to joint 2. Note that the
first-order beam moments are those determined from the
unbalanced fixed-end moments at the joints in the non-sway
frame before the superposition of non-sway and sway effects
(Fig. 2.9). The restraint stiffness H; at the other joint
is given by the above equations with Mgy replaced by Moi .
and the summation of column moments and beam stiffnesses

taken at joint 1.

d from the frame and the

Once a column has been isoclat

end-restraints are given by the above equations, the ACI
Code treats it in the same way am discussed before for a &
’ vy

single restrained column. In short, the effetctive length
factor required in the ACI method for a restrained column in

a multistorey frame should be determined based on the

96



corresponding first-order end-restraints. It is emphasized
here that this assumption is a necessary step to extend the
ACI Code design method to a column in a frame.

The assumption of constant end-restraints, i.e.,
neglecting the horizontal and vertical interaction of
columns due to geometric effects, is reasonable for large
regular multistorey frames where the member atiffnesses and
axial loads of neighbouring columns do not vary appreciably
(Sects. 3.4 and 3.5). 1In case the vertical interaction is

significant, as discussed in Sect. 3.5, the assumption that
a column can be isoclated is conservative for weak columns
(Fig. 3.15), but unconservative for strong columns (Fig.
3.14). For horizontal interaction, the further assumption
introduced in the following paragraph will make the solution
tend to be conservative. -

The current ACI Commentary (1977) recommends a further

restraints in calculating the effective length factor by

making the following assumptions:

Yos = 7 Mor - S (4.23)
o2 | _EyL |
(T o1 (7572)7 (4.24)
° " L ‘col
where (I %l)cal denotes summation of columns rigidly

cgunected to that joint. By substituting Eq. 4.23 into Eq.

4.22, m becomes equal to 2.0. Substituting m = 2 and Eq.
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4.24 into Eq. 4.21, Eq. 4.25 is obtained:’

2E1 (4.25)

0

where

‘m‘
]
T
™~
I
"«_‘/‘

Similarly K; is a function of G;. Consequently, the

effective length factor for any column in the frame can b
computed after obtaining the values of G; and G,. An
effective length factor alignment chart, which is

onstructed according to the above assumptions and therefore

is a function of G; and G5, is given in the ACI Commentary
ny

(1977), as well as in ma other design codes.
The assumption in Eq. 4.23 that the beam effective

stiffness is equal to 2:EIg/Lp tends to be conservative and

[

n fact safeguards the unconservative errors due to
neglecting the horizontal interaction of columns (Sect.
.4

). The other gssumptian.(zqi 4.24) that the ratio of

3

column end-moments at the joint is equal to the ratio of

their stiffness parameters EI/L is reasonable if the far
ends of the upper and the lower column are in similar

condition. It can be seen that these two assumptions appear
reasonable for a regular multistorey frame with regular

loading pattern.
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If the far end of the beam that is framed into the
column under consideration is hinged (HDF = 0.0), m becomes
equal to 3. 1In order to use the alignment chart that is
based on m = 2, the beam length should be multiplied by 2/3
when calculating the value of G. Similarly for a beam with
the far end fixed against rotation, the beam length should
be multiplied by 0.5. This correction is mentioned in the
AISC Commentary (1978) but not in the ACI Commentary (1977).

It should be noted that the derivation of the present
form of the ACI method, as applied to multistorey frames, is
unclear in the commentary, or the source paper (MacGregor,
et al., 1970). 1It is believed the above description is a
logical presentation of the assumptions involved.

The assumptions and simplifications involved in

development of the ACI method 5ugges€ that it is not

necessary to perform a rigorous elastic stability analysis

1

for the whole frame 40 find the 'exact' effective length

factoras. (Of course, one would not do this in practice

r than an exact

since a stability analysis is no simpl
second-order analysis.) This point, however, is unclear in
the present ACI Code and Commentary .

In the ACI Commentary, it is also suggested that the
effective length factors used in the ACI method (Eq. 4.20)

can be taken as the lesser of:

(4.26)
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) 4 = 0.85 + 0.05 G < 1.0
ns

where Gy is the smaller of G) and G,. This equation is a
conservative empirical appfaximati’n for the effective
‘length factors determined based on the previous assumptions
(Eqs. 4.23-4.25). The formula was developed by Cranston
(1972), and is -recommended by the current British Code for
concrete (CP 110, 1972).

The resultp from Eq. 4.26 are compared in Fig. 4.16
(from Cranston, 1972) with those from an exact analysis of a
single restrained column with end-restraints given by
Eq. 4.25 (i.e., the same results as those from the
conventional effective length factor alignment chart). It
is shown that the approximate equation (Eq. 4.26) always
errs on the conservative side with errors ranging from 5% to
20%, mostly 108, for k. > 0.7. Equation 4.26 has a lower

limit of k,g > 0.7, which will be discussed in Sect. 4.5.3.

4.4 Wood's method

In determining the maximum moment in a single
restrained column from the first-order end-moments, Wood
(1974) proposed to use empirical Eugves which depend only on
N/Nn' for a given value of ry. The curves were intended to
represent the mean values of the upper and lower bounds, but
they tend to be closer to the upper bound curves, as shown
in Figs. 4.10-4.14. These curves will be incorporated in

the new British Code for steel design (BS 449, Roberts and
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Yam, 198l1). Such curves provide conservative results in

lmost all practical cases since the types of columns

u\

orresponding to the upper bound are rare in practice, but
inevitably are overconservative in many cases.
For restrained columns in a multistorey frame, the

assumptions in the ACI method are also followed except that

(i.e., m =4 in Eq. 4.22) in determining the effective
length factor (Wood, 1958, 1974). The different assumption
is less conservative than the one in the ACI method, and

appears unconservative in many practical loading cases when

a—

due to the

o]

the beams are bent into single curvature

unbalanced fixed-end moments).

4.5 Discussion

The major objective in this section is to discuss the
accuracy of the ACI (1977) method in predicting the
geometric non-linearity of non-sway columns. Since the ACI
design rule is based on pin-ended columns, such columns will
be discussed first. The discussion on the methods of
extending the design rule for pin-ended columns to single
restrained columns and restrained columns in multistorey

frames will follow in the next two sections.

]

4.5.1 Pin-ended columns
The ACI (1977) design equation (Eq. 4.12) for pin-ended

columns omits the term 0.25a included in the more accurate
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Eq. 4.13. The omission of this term, however, has been
shown in Fig. 4.2 to be unconservative. As discussed in

Sect. 1.1, the derivation of the present ACI Code (1977)
procedure for designing slender columns basically follows
the procedure of approximation shown in Fig. 1.1 (MacGregor

et al., 1970). That is, the inelastic effects and geometric

this assumption is strictly followed, it appears more
reasonable to include the term 0.25a in the ACI equation.

As shown in Sect. 4.1, the limit of Cm > 0.4 in the ACI

since this limit was derived for lateral-torsional buckling.
In fact, this was realized by MacGregor et al. (1970) when
developing the ACI (1977) design equation, but the limit was

still employed because of "the uncertainty of frame action

when values of r are between -0.5 and -1.0". The
"uncertainty of frame action" referred to the unwinding

problem mentioned in Sect. 3.2. Tests of pin-ended

reinforced concrete columns bent in double curvature
(r = -1) carried out by Martin et al. (1966) and Ha:G%egDr

et al. (1966) have indicated that under high axial %?Eﬂs the
%"55, -
column may unwind rather suddenly with the column collapsing
[
in the instability mode. Since, in the derivation of the

\W

ACI (1977) equation, it was assumed that 'material failu

rather than ‘'stability failures' would occur, it appears

dvisable to retain the limit to safeguard against an

instability mode of failure.
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It can be seen that the limit of C > 0.4 is also
applicable even if the exact elastic equations (Egs. 2.8 and

2.9) are used to calculate the maximum moment. After all,
this limit becomes effective only when the axial load in a
column is greater than 0.6N,, which is a high axial load for

result the limit

bl

a pin-ended column in practice, and as

hould seldom have effect in design.

[
(o7

éis_zissingle reastrained columns

The discussion on single restrained columns is divided
into four parts. In part (a), the guestion of whether a
restrained column can be designed as a pin-ended column when

the internal end-moments can be exactly determined at the

onset of failure will be discussed. 1In part (b), the study

of the effective length method carried out by Bijlaard et
al. (1953) for steel beam-columns will be discussed. In
part (c), a conservative estimate of the effective length
factor using Cranston's equation (Eq. 4.26) will be
suggested. In part (d), it will be suggested that the limit

of C,, » 0.4 for restrained columns is still required.

(a) Equivalent pin-ended columns
Theoretically, a pin-ended column can be considered as

olumn with known end conditions provided the axial load

[p]

a
is less than the critical load of a pin-ended column, and
Vthe maximum moment in the column can be computed.

Similarly, a restrained non-sway column can be treated in
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the same way if the internal end-momdie can be accurately
determined at the onset of failure. It should be emphasized
here that the end-restraints strengthen the column b?
changing its internal end-moments dur}ng loading to act in
the opposite direction to the deflection caused by the
increasing compression (Sect. 3.3). 1In other words, when
the exact internal end-moments in a column at the onset of
failure are used in the analysis, the restraining effects
are also included automatically.

The above reasoning is based on a consideration of
geometric effects only. This is not necessarily the case
when the effect of inelastic action is taken into account,
as discussed in the following. Figure 4.17(a) shows the
a given axial load N; and joint moments M; . The moment M,
is resisted by Mg and M.. Note that for an elastic column
the moment-rotation relationship would be straight; the
curve shown reflects inelastic action in the column. For
the sake of discussion, the column is assumed tﬁ‘be
symmetrically restrained and symmetrically loaded.

As shown in Fig. 4.17(a) the maximum applied joint
moment, Mynays, OCcCurs when the internal end-moment of the
column is equal to M.; which is less than the peak value

M If the column were unrestrained and subjected to

cmax *®

t

end-moments M_.;. in general it would fail by instability
an axial load (N;) different from N;, as shown in Fig.

4.17(b). (In order for the column to fail at N;, it should



‘r

Moment

106

N
| Ny
)Mc1 N2 * N,
-0
| —_—
' gven M _
YR —
(3]
! () 9

Fig. 4.17 inelastic Columns



be subjected to end-moments M_....) The discrepancy occurs
because the end-restraints allow the internal end-moments in
the column to decre;ae after the maximum value M .y 18
reached though the applied joint moments M, are still
increasing (Fig. 4.17(a)), whereas a pin-ended column fails
at the maximum values of the end-moments. As a result, in
this case a restrained column with known end-moments at the
onset of failure cannot be treated as a pin-ended column
subjected to those end-moments.

Figures 4.17(c) and (d) indicate cases where an
inelastic column can still be treated like a pin-ended
column if the internal end-moments at the onset of failure
are known. In’'Fig. 4.17(c), the beam has yielded before the
column end-moment M. reaches the peak value Memax * In this
c:;e the maximum joint moment, M, .,, Ooccurs when M. is
equal to Mqn.y- If this column were unrestrained and
subjected to M.pma.x 3t both ends, it would also have the same
maximum axial load as the actual restrained column. In Fig.
4.17(d), the maximum joint moment for the restrained
inelastic column is reached at the material failure of the
column. The corresponding end-moments M.), when applied to
a similar but unrestrained column, would also lead toc the
same maximum axial load provided the unrestrained column
also collapsed by material failure.

In the ACI design approach, the column is assumed to

collapse by material failure (as mentioned earlier), thereby

corresponding to Fig. 4.17(4). Following the above
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reasoning and the assumptions made in Sect. 1.1 (Fig. 1.1),
once the end-moments in the column have been obtained from a

second-order elastic analysis (or other methods that take

"+

into account the geometric non-linearity) with appropriate
effective EI values, the restrained reinforced concrete
column can be designed as a pin-ended column using kg = 1.0
provided N < N,. This approach is limited to N < N, because
a pin-ended column can never sustain a load greater than N..

The behavior of columns with N Ne has been di ssed in

Sect. 3.3.

(b) Work of Bijlaard et al. (1953)
Bijlaard et al. (1953) extended the effective length

method (Sect. 4.2), derived for elastic columns, tci

W

inelastic non-sway steel beamééalumns with symmetrical
elastic end-restraints and symmetrical joint moments, and
proposed that a reduced EI for the column should be used to
account for the inelaatic effecta in calculating the first-

order end-moments .and the effective iEﬂgth factor kg,
(Winter (1954) simplified further the method by suggesting
that the gross EI, rather than the reduced EI, can be used,
resulting in a conservative determination of end-moments and
effective length factors in all cases for steel beam-
columns.) The reduced EI was determined by assuming that a
restrained column could be replaced by an equivalent pin-

ended column with its length equal to the effective length

of the real restrained column and subjected to the first-
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order end-moments. The values of EI used in calculating the

first-order end-moments and kg were selected in such a way
that the ultimate axial load of the equivalent pin-ended
column was equal to the exact ultimate axial load of the
actual restrained column. The study was largely empirical,
and it ‘~es not offer a theoretical or rational basis for
the use of the ;EEEétive length factor in the ACI design

approach.

(c) Cranston's equation

The effective length method has been shown in Sect. 4.
to be unconservative in many cases. On the other hand,
Figs. 4.6 to 4.B have sh@@n that a small increase in the
effective length factor can eliminate the unconservative
errors inherent in the effective length method. As
mentioned in Sect. 4.3.2, the effective length factor given
by Cranston®s equation (Eq. 4.26) is a conservative
approximation for a single restrained column with restraint
i rfraes x = REI o o 2EI . N
stiffnesa Kl il o and Ki &1 For kg > 0.7, the

1 2
effective length factor is overestimated by about 5% to

b

O%. As a result, the values of k,, obtained from
Cranston's equation, when used in the ACI equation, should
yield conservative results in most cases provided the term
D-ZS&EE has also been included. Although Cranston's
equation may appear too conservative in some cases, this
conservatism appears to be justified when applied to column

in a multistorey frame, as discussed in the next section.

2
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The limit of G, > 0.4 (in termd of r() is also required

for restrained columns since unwrapping can occur near 1

failure (Sect. 3.3, MacGregor and Barter, 1966), similar to

the unwinding of a pin-ended column (Sect. 4.5.1).

4.5.3 Multistorey frames

For restrained columns in a multistorey frame, the

assumption of constant end-restraints and further \\

simplifying assumptions in determining the effective length

factors are required 1n he ACI method. The relevant

L
o]
o]

n light

-

problems have been discussed in Sect. 4.3.2,.
those problems plus the problems discussed in the following
paragraphs, the use of Cranston's equation (Eq. 4.26), which
may tend to be too conservative for sindle restrained
columns, appears to be justified when applied to restrained
columns in a multistorey frame.

In all the previous discussions, the use of the

effective length factor in the ACI appr@é%h assumed that the

beams maintain their assumed stiffness throughout the
loading up to the instant of collapse of the restrained

column. In"order that the beam can be expected to behave
this way, a designer needs to know the first-order Ealumni
end-moments as well as the column ultimate end-moments. The
ultimate end-moments, however, are unknown to the

designer. Consequently, whether the beam can remain as

stiff as asmsumed becomes uncertain. This situation is most
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severe when the restraining beam is designed for moments
which equilibrate the column moments, as may be the case for
beams restraining the exterior columns in a frame or the
columns in a single-storey frame. 1If in such a case the
beam is designed to equilibrate the first-order end-moments
of the columns, at the ultimate locad a beam mechanism forms
and the column end-moments remain equal to the first<order
end-moments. In this case, the use of kx,, < 1.0 is
unconservative and the use of k,, = 1.0 is more reasonable.

For interior columns in a multibay multistorey frame,
the column is designed assuming the worst load pattern. The
beam, however, is designed assuming full gravity dead load
plus live load acting on the beam; or even more
conservatively based on a moment-envelope required in the
ACI Code (1977). Consequently, the beam so designed can be
adapted to considerable amount of change in the column end-
moments before the beam would form a mechanism. The reserve
of strength in the beam may justify the use of kg < 1.0.

It has been shown in Sect. 3.3 that when the axial load
Patio N/Ne is close to or greater than 1.0, the column end-
moments may reverse the direction and therefore induce beam
moments in the opposite direction to the first-order
values. Since this will not be accounted for in the design

.
of beams, it seems advisable to safeguard against such an
occurrence. Because axial loads as high as N, can only
happen in a column with very strong restraints, it is

reasonable to limit the effective length factor. The



implicit 1limit of k,, > 0.7 in Cranston's equation (Eq.
4.26) seems reasonable. The normal range of k,, from 0.75
to 0.95 suggested by the ACI Commentary (1977) indicates
that an actual value of k,, < 0.7 should seldom be

encountered in design.

4.5.4 Concluding remsarks
The previous studies have described the rationale and
problems behind the ACI method for restrained non-sway
columns. The design procedure could be improved with
respect to the geometric non-linearity if Eq. 4.20 were
rewritten as follows:
(1 + 0.25a_.)

5.6 = Cp — > 1.0 (4.27)
ns .

where

x EI

ns
(kn.L)

The term C is given in Eq. 4.20 including the lower limit

"of 0.4, and k,, is given by Cranston's equation (Eq. 4.26).



5. BEHAVIOR OF ELASTIC SWAY FRAMES

5.1 Geometric effect

Figure 5.1(a) shows a column, which can be an£ column
in a frame, subjected to internal forces acting at the
ends. A straight line joining the ends of the column will
form an angle equal to a/L with respect to the vertical.
The symbols are defined in the figure. The axial load N may
be replaced with its horizontal and inclined cc-ponents
(Fig. 5.1(b)). The first of these is equal to N-ra/L, the
second one acts parallel to the line joining the ends of the
column and, assuming small deformations, is equal to N.
Consequently, the total shear acting at the end of the
column is the sum of the original end-shear V resisting the
external lateral loads and the N-a shear (Na/L) resulting
from the moments induced by N acting through the deflection
a. This is the system to be considered in this chapter for
the sake of understanding the geometric effect

Accordingly, the geometric effects due to the axial
\ijféad can be decomposed into two types as shown in Fig.
5?1(2). First are effects due to the N-a shear which are
termed the N-a effects. The N-a shear produces an
overturning moment in the direction of 1
and therefore it tends to increase the lateral displacement.
The second type of geometric effects occurs due to secondary
moments produced by N times the displacements from the chord

line. These will be termed the C and S effects because the
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Fig. 5.1 Geometric effects due o axiel loads

/N an

114



axial load N acting in this way changes the C and S values
in the slope-deflection equation (Eq. 2.3). 1In effect, the
values of C and S5 take into account the additional bending
moments within a column contributed by the axial load (the
inclined lcad N in this case). The geometric effects in

N-a

m

this respect have been discussed in Sect. 3.1. Th

effects take into account the additional moments at the ends

=

of the column contributed by the vertical axial load. 1In a
first-order analysis, both of these effects are neglected.
An analysis including these two types of effects is called

n exact second-order analysis (Sect. 2.3).

w

The two types of effects shown in Fig. 5.1(c) are
interrelated. The C and S effects have bgén studied in
detail in Chapter 3, where it was shown that the end-
rotational stiffness of a column is a function of the axial
load, and therefore the lateral stiffness is also affected

hear increases the lateral

by the axial load. The N-a
deflection which is also a function of the column lateral
stiffness.

The above relationships can be better understood by
considering a storey in a multistorey frame. The total
shear iﬁ\that storey is the sum of the original storey
shears due to the lateral loads plus the sum of N-a shears
from each column. The total shear is distributed to each
column in proportion to the relative lateral stiffnesses
including the C and § effe;tsg The moment at the end of a

column in that storey is a function of the end-shear that is
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distributed to that column and the end-rotational stiffness
of that end relative to the other end, also including the C
and S effects. Note that, in the final solution, the N-a
shears should be compatible with the lateral displacement.
In the case that the frame reaches elastic failure the N-a
shears cannot attain equilibrium with the deflection, which
therefore increases indefinitely (in sm;ll deflection
theory) .

. To sum up, the axial load effects relative to the
first-order effects occurring in a storey cause: (a) an
increase in the overturning moment and the lateral
deflection-due to the N-a effects, and (b) cause a
redistribution of the total shears (lateral load shears plus
N-a shears) and column end-moments according to the changing
stiffnesses of individual columns due to the C and §
effects. Because of moment equilibrium at any joint, the

end-moments of the beams connected to the joint are also

changed accordingly.

5.2 Single-storey frames
5.2.1 An example frame

The mechanical behavior of geometric non-linearity
discussed in Section 5.1 can be illustrated using a simple
single-storey frame subjected to late a. and vertical loads
(Fig. 5.2(a)). It is assumed that -~ ax -1 load in a
column is equal to the vertical load above it, the beam is

rigid, and the stiffness parameter EI is constant for all
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Fig. 5.2 Single-storey frame with rigid beams
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the columns. The first-order lateral stiffness is therefore

equal for all the columns. In the absence of vertical

loads, i.e., first-order effects only, a lateral load H

4:Vy produces a shear of Vg in each of the columns, and the

frame undergoes a lateral deflection as as shown in Fig.

5.2(b). The end-moment My is equal in all the columns.
To study the N-a effects alone, the C and S effects are
1
first neglected (i.e., C = 4 and S

2 in the analysis).
The vertical loads are replaced by a horizontal force equal
to the sum of N-a shears from all the columns, as shown in
Fig. 5.2(c). With this additional force, the sway of the

frame is increased to a

+hl

Since the lateral

:H

5 20°
stiffness of each column remains unaffected, the shear

resisting the total horizontal forces in each column becomes

f VD' and the end-moment in each celuﬁg is also equal to
fsﬁ - The shear resisting the lateral load H in each
column, as presented in Fig. 5.2(b), can be obtained by
subtracting the N-a shear for that particular column from
the total shear ?svDi As the N-a shear is different for
each column, the lateral load shears have been
redistributed, compared to the first-order shears in Fig.
5.2(b). Since the total shear ? Vo in each column is the
same, the capacity of a column to resist the lateral load
becomes dimipished with a higher axial load.

When the C and S effects are incorporated in the

=
w

- gﬁalygig; i.e., an exact analysis, the sway of the fra

increased further to a = fEaD because the lateral

“"1
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are

stiffnesses of those columns subjected to axial load
reduced to the values shown in Fig. 5.2(d). The stiffness
reduction increases with higher axial lcads. Since the
total horizontal forces are resisted by the columns in
proportion to their relative lateral stiffnesses, the total
shear in each célumﬁ:is different. The shear in the column

without any axial load is equal to f_ V5, whereas the total

shear in each of the axially loaded columns is less than”
fgVg:. The weakest column (i.e. the most highly loaded

column) resists the least amount of shear. Similarly, the
end-moment is equal to f_My for the column which is not
axially loaded, and smaller for the others. The moment
diagrams for the axially loaded columns are non-linear due
to the C and S effects, compared toc the linear moment
distribution which results if only the N-a term is
coneidered (Fig. 5.2(c)). 1In the most highly loaded column,
the maximum mémEﬁt occure away from the end.

The lateral load shear in each column is also presented
in Fig. 5.2(d). As stated earlier, the reduced stiffness of
the axially loaded columns reduces their ability to resist

the lateral loads. C@naequentlygg%ﬂre lateral load shear is

th

[fpmitn

added to the stronger columns. In fact, the columns w

loads equal to 1.0 N, and 1.2 N, would have failed,

vertic

]
-

had they been free to sway independently of the other
columns. However, elastic failure of these columns is
prevented since all columns must undergo an equal lateral

displacement a. In this process the lateral load shear in



the weaker columns will be redistributed to the stronger
columns (Figs. 5.2(c) and (d)). For the column with a
vertical load of N,, the column does not offer any
resistance to the lateral load, because N, is equal to the
free-to-sway critical load of that column. For the column
with a vertical load greater than No,. the lateral load shear

has reversed direction, indicating that a negative shear is .

-~

Hellesland and
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required to brace it from failing laterall

MacGregor (1982) have defined two types of columns:
'supporting sway columns’' which contribute to resisting
lateral loads and to bracing other columns, and 'supported
sway columns’' which need lateral support from the frame in
order neot to fail sideways.

The length of the above discussion for the simple
structure in Fig. 5.2(a) reflects the complexity of the
geometric effects. This arises primaﬁily from the C and §

effects which not only reduce the 1 ral stiffness of the

Xy
e a redi

ution of the moments

whole frame, but also cau

and the total shears (the lateral load shears plus the N-a
shears). The next section will elaborate on the latter

phenomenon .

5.2.2 Individual column behavior

To study the moment and shear response of a column in a
frame to the axial loads, the following simple method is
used. The method employed originated from the work of

Hellesland and MacGregor (1982).
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A general frame subjected to vertical and lateral loads
is.shown in Fig. 5.3(a). Under the combined action of these
loads, it undergoes a total displacement of a = fgag, where
ag is the first~order deflection caused by H and f, is the
‘deflection magnifier'. The frame can be assumed to reach
equilibrium in the deflected shape in two stages. First,
the frame is displaced laterally a = fgap in the absence of
vertical loads (strictly speaking, in the absence of column
axial forces), as shown in Fig. 5.3(b). A force R is
required at the bracing point to hold the structure in this
position. The moments and shears in a typical column
increase from the values Mp and Vg due to H to fgMp and f_ Vg
due to H + R, as shown by the moment diagram in Fig.

5.3(b). The total shear in all the columns equals f_H which
is equivalent to H + R. In the second stage, the vertical
loads gj to P4 are applied to the structure held in the
deflected position, as shown in Fig. 5.3(c). As the
vertical loads are applied, the force R decreases to zero so
that the final load effects in the Fig. 5:3(c) are identical
to those in the frame in Fig. 5.3(a). The shears and

moments in a typical column become:

Hl = El f’ﬂ HDI (5.2)
Hz = Bz fE MGE - (5-3)
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Fig. 5.3 A non-sway frame with imposed lateral deformation



;/ﬂﬁax * Bhax fg Mp2 (5.4)

where Mg, is the numerically larger of the first-order end-

moments in the column. As shown in Fig. 5.3(c), the bending
moment distribution becomes non-linear and Mnaxy may occur
between the énds of the column.

1

-

The deflection magnifier fg = a/ay is equal for a

for

columns in the frame. The values of B,, B;, B, and Bha

E

a particular column, in general different from those for
other columns, reflect the changes induced by the vertical

loads for a given constant end-displacement a. For a column

which 1

[
[
]

no xially loaded, all the B values equal 1.0.

f the C and S effects are neglected, By, B, and

It

Note that

B

-

nax Will also be equal to 1.0. If the lateral load shear V
ma x eq

8 replaced by the total shear (lateral load

-

in Eg. 5.1
shear plus the N-a shear), By will also be equal to 1.0 when
C and S effects are neglected (Fig. 5.2(c)). It can be seen
that the redistribution of moments and shears due to the C
and S effects (the change from Fig. 5.3(b) to Fig. 5.3(c))
The product of the terms B and f, quantifies the

geometric effects for the moments and shear in a particular
column. It has been shown in Sect. 5.2.1 that the lateral

8 of the

the total vertical load and the lateral stiffne
frame. The structure shown in Fig. 5.2 has demonstrated

ufficiently the factors concerned. Henceforth, the
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emphasis will be to examine the significance of th
coefficients, and the laterally deformed non-sway frame in
Fig. 5.3(c) will be studied.

It is assumed that the end-rotational restraints of the
columns remain unaffected by the geometric action. In other
words, it is assumed that the inflection points in the beams
remain stationary during loading. If this is done, a column
in the deformed non-sway frame can be represented by a
single non-sway célumﬁ with known constant end-restraints
and an imposed end-displacement a, as shown in Fig. 5.3(d4).
(The assumption of constant end-restraints will be discussed
later.) The B values determined for the single column are
only a function of the end-restraints and the axial load
level. As a result, Egqs. 5.1 to 5.4 reflect that the shears
and moments in an individual column are a function of both
the behavior of the }rame as a whole, as implied by fg, and
the behavior of the column itself, as implied by B.

In fact, the moments in the laterally deformed non-sway

column shown in Fig. 5.3(d) behave identically to those in

the non-sway column subjected to external joint moments
studied in Chapter 3, provided the end-restraints and the
[

irst-order gradient r, are identical in both cases. By

s

noting this restriction, the results and discus;f%n in

s}

Chapter 3 can also be applied here for the B coefficients
with the firat-order end-moment Mg in Chapter 3 being

replaced by f My. Two particular cases are presented in the
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following paragraphs to illustrate the effect of the B

coefficients.

The B values determined for the single column shown in’
Fig. 5.3(d) are plotted as a function of the axial load in
Fig. 5.4. rThis column has relatively flexible and unequal
end-restraints, 4, = 6 at end 1 and 4, = 2. (The term ¢ is
defined in Fig. 5.3(d).) The dashed line shows that the
coefficient B, decreases with in:reasingtaxial load in order
to maintain the displacement fgap. It decreases to zero and
thereafter becomes negative. Zero lateral load shear is the
failure criterion for an elastic é®1u$§ that is free to
sway . Negative values of B, mean that the shear must change
direction to support the column in the displaced position.
The required negative lateral load shear must be provided by
the rest of the structure to maintain the equilibrium of the
column as well as the whole frame. In short, when B, is
positive, the cofamn is a supporting sway column (as defined
previously), and when B, is negativé, the c@lu%n is a
supported sway column.

The coefficient B; for the moment at the end with the
more flexible restraint initially remains quite stationary
with increasing axial load, although it finally increases
indefinitely as the non-sway critical load is approached.
The coefficient B,, however, decreases continuously as the
load level increases. At a cert&iﬁ load level, B, changes
direction and finally approaches infinity in the new

direction at the non-sway critical load. The coefficient
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Fig. 5.4 Variation in B values with axial loads for a
column with flexible restraints
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Bhax for the maximum moment in the column initially equals
By, i.e., the maximum moment occurs at the end. At a
certain load level, Bmax'becomes greater than B, and later
rises as the axial load increases further. This occurs when
the maximum moment moves away from the end of the column.
This, however, happens after the column has become a
supported sway column (Hellesland and MacGregor, 1982). At
a rather high axial 1load, Bnax even exceeds 1.0. The =
bending moment diagrams corresponding to different load
levels are similar to those shown in Figs. 3.7(b) and (c)
except that Mg in Fig. 3.7 should be replaced by fgMg -

Figure 5.4 has illuﬁtrated the case with initial
moments My, and Mg, which are quite different.' When the
magnitudes of the two end-restraints are close, or when the
more flexible restraint (¢1) is in fact considerably stiffer
than the column, the initial moments are nearly equal. This
is demonstrated in Fig. 5.5 by a column with stiffer
restraints than in Fig. 5.4. Although the end-restraints
are quite different, the initial moments' are very close.
Compared to Fig. 5.4, the value of Bhax in Fig. 5.5 drops
more severely before it increases. In addition, By follows
B> quite closely until the non-sway critical load is
approached, when it reverses the trend and increases
rapidly.

In summary, the value of B, is reduced by increasing

axial load, and B ,, is equal to B, when the column is a

supporting sway column. In the range of a supported sway
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Fig. 5.5 Variation in B values with axial ioads for a
column with stiff restraints
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column, Bhax May be greater than B, or even greater than
1.0, but for this to happen, the column must be able to
sustain a very high axial load. For a column with flexible
restraints, B; is quite insensitive to the axial loads
except at high load levels. For stiff restraints, B; is
decreased by axial loads until rather high axial loads are
reached. ,

The validity for the assumption of constant end-
restraints has been indirectly discussed for non-sway frames
in Section 3.4. In particular, Fig. 3.12 is representative
for this case since the be7As of a laterally deformed non-
sway frame with rigid joints always bend into double T
curvatures. The observations from Fig. 3.12 are therefore
applicable here. 1In other words, the assumption is
reasonable even for a frame with mixed strong and weak
columns except when the non-sway elastic failure load is
approached. In the case of a particularly heavily axially

loaded column (which must be sufficiently braced), the

assumption of constant end-restraints will underestimate the
change of the B values, as indicated by Fig. 3.12, but the

trend is correctly estimated.

5.3 Multi-storey frames
The horizontal interaction between columns has been

studied in the previous sections. An attempt is made in

this section to illustrate the vertical interaction between

columns due to the geometric action. In the same manner as



before, the N-a effects and the C and S effects are dealt
with separately.

The:v=ftical interaction due to the N-a effects is
explained with the aid of Fig. 5.6. A two-storey frame with
a completely rigid beam connecting the two storeys is shown
in Fig. 5.6(a). Only the bottom storey is loaded. It can
be seen that the N-a effects are localized to the bottom
storey and do not affect the upper storey. In Fig. 5.6(b)
another extreme case is represented by a completely flexible
beam (pin-ended) connecting the two storeys. Again, only
the bottom storey is loaded, but in this case the N-a

effects obviously increase the deformation in the upper

torey. In fact, the N-a effects in the bottom storey are

also affected by the lateral stiffness of the upper

storey. If the top beam were made stiffer, for example, the
deformation in the bottom storey would also be reduced.
These effects suggest that the storeys tend to assist each

tse .

N

other to resist the geometric effe
The observations made in Section 3.5 with reégard to the
C and S effects for non-sway frames are also applicable
Wereg The variables involved are the stiffnesses of the
beams that connect the storeys and the relative stiffness of
the upper and lower columns. In Section 3.5 it was ocbserved
that when the beams are rigid, the C and S effects are
localized, and when the beams are more flexible, the

stronger columns tend to assist the weaker columns. This is

the same observation made in Fig. 5.6 for the N-a effects.
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Fig. 5.6 Vertical interaction due to N-a effects
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In summary, when the beams that connect the storeys are
stiff, the geometric behavior in one storey is independent

of the behavior in other storeys. However, when the beams
&

are flexible, the storeys tend to interact with each other.

5.4 Summary

The geometric effects in a sway frame can be decomposed
into two types: (a) the N-a effects which cause an increase
in the lateral deflection and overturning moment in a
storey, and (b) the C and S effects which reduce the lateral
stiffness of a storey and cause a redistribution of end-
moments and total shears (lateral load shears plus the N-a
shears) in that storey. A single-storey frame has been used
to illustrate these two types of effects.

The geometric effects in an individual column in a

single-storey frame have been expressed as the product of a

coefficient B and the deflection magnifier fs (Egs. 5.1~

5.4) . The deflection magnifier fg = a/ap, constant for all

columns in a single-storey frame, is a function of the total

vertical load and the lateral stiffness of the frame. The

[y

coefficient B is primarily a function of N/N,g of aiglvén
column, reflecting the redistribution of end-moments a;zzg
shear in that column due to ghe C and S effects. The
properties of the B coefficients have been described.

In a multistorey fréme with stiff beams between
storeys, the geometric effects in one storey will not

influence other storeys. However, when the beams are



flexible,

resist the geometric effects.

=

b

L



6. APPROXIMATE SECOND-ORDER ANALYSIS OF ELASTIC SWAY

Various methods of approximate second-order analysis of

elastic sway frames are reviewed in this chapter. Although

most methods presented are based on the work of others, the

differ in one way or another from the original presentation.
In particular, all the necessary assumptions in each method
are explicitly stated. 1In many cases this is not clearly
done elsewhere. It is believed the presentation provides
insight into the validity of different methods. Finally,
most of the methods of analysis are improved, and extended

to more general types of frames than originally intended.

6.1 Iterative method

This method of second-order analysis, often referred to
as the P-Delta analysis, is the most well known. It will be
first developed for frames consisting of only vertical and
horizontal members, where all the columns in the same storey
are of equal height. It is then extended to a frame with
different column heights in the bottom storey. Finally it
is also extended to a frame with inclined bracing elements
in any storey.

As mentioned in Chapter 5, the first-order analysis

neglects the N-a and the C and S effects. The iterative

[
w
.9
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effects but neglects the C and S effects. According to Fig.
5.1, an equivalent shear N-a/L is added at the end of each
column to represent the N-a effects. For a storey with
identical column heights, the total additional storey shears
become (IN):a/L. The symbols L and a are the storey height
and the relative storey deflection (the deflection of the
top of the storey relative to the bottom of the storey),
respectively. The summation term IN is the sum of the
column axial loads in that storey. To produce the required
N-a shears (IN)-a/L in each storey of a multistorey frame,
fictitious lateral loads, commonly called sway forces, are
added to the lateral loads. The sway force at a given floor
level is equal to the algebraic sum of the N-a shears from
the columns above and below the floor, as shown in Fig.
6.1. The frame subjected to the lateral loads and the sway
forces is then analyzed according to the first-order theory.
Since the lateral deflections are not known in advance,
the deflections from the analysis without the sway forces
(first-order deflections) are used as starting values. The
analysis is then iterated until convergence is achieved.
Generally one or two cycles of iteration are adequate for
frames of practical stiffnesses. It should be noted that
the analysis using the sway forces gives a column shear
equal to the sum of lateral load shear plus the N-a shear.
The lateral load shear in a column can be obtained by
subtrafting the N-a shear of that column from the total

shear, 8 illustrated in Sect. 5.2.1.



Sway Force
g‘i V: - v| +1

Fig. 8.1 Sway Forces in Iterative Method
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The procedure of the iterative analysis has been
presented by Iffland (1972) and Adams(1972). The
application of this method to the design of steel frames has
been studied by Springfield and Adams (1972), Wood, Beaulieu
and Adams (1976a), and Wood (1978a). This method is also
recommended in tﬁe Canadian Code for steel design (CSA,
1974). MacGregor and Hage (1977) and Furlong (1979) also
suggested the use of this method for the design and analysis
of reinforced concrete frames. ‘

In the case of a frame with different column heights in
the bottom storey (Fig. 6.2(a)) or a single-storey frame of
unequal column heights, as often occur in bridges (Fig.
6.2(b)), the iterative method can also be used with some
modification. Since the N-a shear for each column is equal
to Na/L, with different column heights in the bottom storey,
the sum of N-a shears in the bottoﬁ storey becomes (IN/L)-a.
Because the axial load N in a givep column should not differ
significantly from the first-order axial load N; which is
obtained from the first-or@er analysis of the frame
subjected to both gravity and lateral loads, it is
reasonable to assume N equal to Ny to simplify the
calculation. Corrections, however, can be made successively
during the iterative analysis, if found necessary.

In the case that a frame includes inclined bracing
members, whieh are assumed pin-ended, the same methodology
can be used, as shown schematically in Fig. 6.3. It can be

seen that the 'N-a' shear for the inclined member is also



(a)

Fig. 6.2 A frame with ditferent column heights in the

bottom storey

(b)

7
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, (FBinB)-%iN‘—iMT ’
/T

deformed
member

undeformed
member

Note: End-shears are not shown

Fig. 6.3 N-a shear of an inclined bracing member



equal to Nea/L, but N is redefined as the vertical force
component of the axial force in the member and L the
vertical projection of the member length. (Note that N is
positive for compression in the bracing member.) When the
entire storey is considered, it can be seen that IN is
generally defined as the total vertical load in a storey
regardless of the existance of any inclined bracing
elements. The exception occurs for a storey of unegual
column heights with or without inclined bracing members.
Here the value of N must be known for each member, and it
can be reasonably assumed to be equal to Ny, as mentioned

before.

6.2 Modified iterative method

| Section 5.2.1 has shown that neglecting the C and S
effects will result in underestimating the lateral
deflections. The sum of column end-moments in a storey and
the bracing forces for the bracing members (if any) obtained
from the iterative method are also underestimated. In other
words, the method is unconservative. A modified iterative
method which is more accurate than the iterative method
described in Sect. 6.1 is presented in this section. In
subsequent discussions the iterative method will not be
considered any more. As before, the modified iterative
method is first developed for regular rectangular

rames

Hy

multistorey frames before it is extended to tho

with unequal column heights in the bottom storey. Finally,



it is also extended to a frame with inclined bracing members

in any of the storeys.

6.2.1 The method

Figure 6.4(a) shows a rectangular multistorey frame
subjected tg lateral loads H and vertical loads P at the
joints. Figure 6.4(b) shows the same frame subjected to the
same lateral loads H plus the sway forces Hg, which together
produce the same lateral deflections as occur under the

actual loading shown in Fig. 6.4(a). The total potential

restricting the consideration to the strain energy due to
the bending moments and the potential energy of the lateral
loads and the column axial forces.

The total pgtential energy I, of the system in Fig.
6.4(a) is equal to the sum of the strain energy U, and the

potential energy of the lateral and vertical loads:

n n m
n =u -t (£V),a, = £ (f N.e,), (6.1)
L T P ey g 30

where m denotes the total number of columns in any storey i,
and n is the total number of storeys. The term (IV),
represents the sum of lateral load shears in storey i, Hj is
the axial compressive force in column j in storey i, and e

is the amount by which the upper end of column j descends

relative to the lower end due to the flexural shortening of
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(b)

Detormed shape due to

(?)

Deformead shape due to

interal loads plus sway forces

6.4 Assumption in the modified iterative method

-
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column j.» Note that the last term in the above equation
results from the consideration of geometric effects.
Estimates of e are obtained by considering the

deflected shape of the columns. It is written in the form:
e = y e (6.2)

where e, is the vertical displacement of a rigid columé or a
pin-ended column due to the rigid body rotation of the
column length (Fig. 6.5(a)). The tefm y is referred to as
the flexibility factor because it accounts for the actual
curved deflected shape of a column, i.e., the flexibility of
the coiumn (Fig. 6.5(b)). The factor ranges from 1.0 to
1.22 and will be examined in the next section. The factor

e_ can be obtained from simple trigonometry, and e can also

r

be written as:
2
a.
e.-O.Sr‘iyj (6.3)

which is then substituted into BEg. 6.1.

For the system shown in Fig. 6.4(b), the total
potential energy Hb is equal to the sum of the strain energy
Uy and the potential energy of the lateral loads H and the

sway forces Hg:

(6.4)
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Fig. 6.5 Vertical displacement of column distortion



145

where 8, is the horizontal displacement of floor i from the

original position. An alternative form of the equation is:

n n
N, = U_ - ¢ (cV), a, = £ (V). a. (6.5)
b b i=1 i “i i=1 - . |

where (}:V)i is the sum of storey shears in storey i due to
lateral loads H, and therefore identical with the term (ZV)i
in Eq. 6.1. The term ():Vs)i is the sum of storey shears in
storey i due to the sway forces Hg -

It is assumed that the deformed shape in both systems
is equal, and as a result Uy is equal to Up. According to
the principle of minimum total potential energy (i.e.,
6Ha = 0 and 5nb = 0) and equating both Egs. 6.1 and 6.5

after performing the differentiation, the sway shear (Z?E)i

is obtained: ;f
- a; ,
():V’)i = (IyN)i E; (6.6)

which differs from/the former N-a shears by introducing éhe
flexibility factor. (Note that the subscript j is discarded
in the above equation for simpliéity.) The sway shear
defined by the above equation is termed the modified N-a
shear . The sway force becomes the algebraic sum of the
modified N-a shears from the columns above and below, and
the analysis is iterative as discussed before. The method
based on the modified N-a shears is referred to as the

modified iterative method. The column axial force N in



Eq. 6.6 can be reasonably assumed equal to Ny to simplify
the calculation. This will not introduce any significant
errors since the summation sign will offset the errors.
Here, as in the conventional iterative method, the lateral
load shear in a column is obtained by subtracting the
modified N-a shear.of that column frén the shear obtained
from the analysis.

The introduction of the flexibility factor into the
conventional N-a shears was suggested by Rubin (1973) (see
also p. 248 of ECCS Mannual, 1976), but the derivation of
the method and the assumptions involved were not shown in
the paper.

It will be shown in Sect. 6.2.3 that an average
flexibility factor y for a.storey -or an entire frame may be
used in order to c@nsiderabl?“siﬁglif? the calculation. The

.,
modified N-a shear can be written as:

(6.7)

™1
<|
™
[}
- |
=
-,
)]

and the value of IN for any storey can be easgily obtained.
The modified iterative method can be extended to a
frame with différ3ﬁ€ column heights in the bottom storey
(Fig. 6.2). Following the same derivation as before except
that the storey height Ly in Eq. 6.3 is replaced by
individual column heights Lj. the modified N-a shear in the

L]
bottom storey becomea:



tV, = (z 1) a (6.8)

The method can also be extended to a frame including
Vo
inclined bracing elements. First, the work due to the axial
deformation of the bracing elements must be included. As
demonstrated previously in Fig. 6.3, the axial force in the
bracing member can be resolved into two components which are

also shown in Fig. 6.6. The potential “energy Vp of these

two force components is equal to:

]

(6.9)

Vt“‘m o

V. = = F (a-cos 8) - % (Fegin 0)

; where F is the axial force in the bracing member (positive
for compression). The derivation of the above equation is
obvious from the geometry shown in Fig. 6.6. The symbols

e also d%fined in the figure. Note that when the member

a

L

i

is inclined in the other direction, the same equation will

result as long as the sign convention is followed.

m

The first term in Eq. 6.9 is the potential energy du

eformation of the member, and in effect is the

et

to the axia
potential energy of the horizontal component of the member

axial force« Since the term (ZV)i in Eq. 6.1 or 6.5 is

f . d shears in storey i, i.e.,

defined as the aum of lateral loa

n ;
egqual to I Hi’ the potential energy of this type of load

.

effects for all bracing members in storey i will be included

automatically.
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undeformed
member

_ a
Vb=-F-ac059 -L (Fsin@ )-Tda

Fig. 6.6 The potential energy in a deformed bracing member
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The second term in Eq. 6.9 results from the

consideration of geometric effects. The potential energy of

this type of load effects will also be included in Eq. 6.1

(after Eq. 6.3 has been substituted) if the term N includes

is the

Il

the vertical component of the axial force F,

b

vertical projection of the member length, and y is equal to
1.0 for the bracing member.

Consequently, the modified interative method is also
applicable for a frame with inclined bracing members in any
storey by noting the definition of the terms N and L, and
using y equal to 1.0 for those members.

In deriving the modified jterative method, the deformed
shape of the frame is assumed equal to that produced by
horizontal loads (Fig. 6.4). It follows that the prediction
of storey deflections from this method would be as accurate
as the assumption itself. In other words, when there is
only a small error in the assumption (as is generally the
case), the errors in the computed storey deflections are
also small. On the other hand, this may not be the case for
the bending moments in the columns. Because the bending
moment at any section of the column is a function of the
second derivative of the deflection curve (M = EIy"), the
moments are relatively sensitive to any error in the
assumption of the deflected shape. As a result, the column

end-moments from the modified iterative method may not be as

accurate as the deflections.
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The above phenomenon can be better understood by
explaining the physical significance of introducing the
flexibility factor into the N-a shears. As discussed in
Chapter 5, the C and S effects produce two consequences:
fur ther increasing the lateral deflections, and
redistributing the total shears or the storey moments. The
former is artificially looked after by the introduction of
the flexibility factor. (Note that y = 1.0 if C and S
effects were neglected.) The latter, however, is not
directly taken into account and is a source of possible
errors in the moments. These will be dealt with in Sect.
6.8. On the other hand the flexibility factor can serve the
intent as stated above, provided the basic assumption that
the deflected shape under lateral and gravity loads can be
represented by the deflected shape due to lateral loads plus
sway forces is reasonably valid. The validity of this basic

v

assumption will be examined in Sect. 7.2.1.

6.2.2 Flexibility factor
—

In Fig. 6.5 the vertical displacement of a bent column
is related to that of a rigid column by the flexibility
factor y. This factor accounts for the effects of bending
between the ends of the column.

The lower limit on the flexibility factor is 1.0 if the
column remains straight, as shown in Fig. 6.5(a). The upper
limit is derived in the following. 1If the basic assumption

in the modified iterative method that the deflected shape of



a fram

under vertical and lateral loads can be represented

by the deflected shape produced by horizontal loads only
(i.e., first-order deflected shape) is followed, a column is

most deflected or the vertical displacement e is maximum

when the attached beams are completely rigid, as shown in

*x

ig. 6.7(a).

=

f a first-order deflected shape is assumed for the
column, the flexibility factor is the ratio of e) in Fig.
6.7(a) to e, in Fig. 6.5(a) or 1.20. If a sine curve is
assumed for the column corresponding to the deflected shape
of a column when the axial load is equal to No, the
flexibility factor becomes 1.2337. The two values differ
only by 2.7%, indicating the similarity of the two deflected
shapes. Therefore, the flexibility factor i

assumed to
vary from 1.0 to 1.22 which is the average of the above two

values. It is emphasized here that the upper limit as well

st

as the formulae developed later are effective only within
the bounds of the validity of the assumption behind the
modified iterative method.

In the case of a supported sway column (Sect. 5.2),

which may deflect in a mode as shown in Fig. 6.7(b), the

value of e may be larger than the rigid-beam case. This

cagse, however, is outside the assumption behind the modified
iterative method since this 'supported-sway' mode is ;¥;5
considérably different from the first-order deflected 25;?"

"

shape. Therefore, it will not be discussed in determining

the flexibility factor, but it will be studied in Sect.
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Fig. 6.7 Upper limit of the flexibility factor



7.2.1 to examine the b%ﬁhd: of the validity of this
assumption-

A general expression for the flexibility factor is
derived in the following by assuming a first-order deflected

shape for the column. The deflection is therefore given by:

. 3 2
1 Fyay L . oy X x xL ax -
y = gy [(M] + M) gp = M) 3=+ (2M) - My) =] + ¢~ (6.10)

The symbols are defined in Fig. 6.8. The vertical

displacement e can be found by (Timoshenko and Gere, 1961):

1 L qu.2
e =3 fD (%) dx (6.11)

y =& b (6.12)

where e, is equal to 0.5 gi/L (Fig. 6.5(a)). Hence from

Egs. 6.10, 6.11 and 6.12, y can be expressed as:

1 1?2, \2 -
y=1+1-§6(ﬁ) [4 (Hzéﬁl)'*ﬁlﬂz] | (6.13)

* The above formula is the same as the one given by Rubin
%1973) (see also Massonnet, 1978).
Since M and a in Eq. 6.13 are the final results of the
modified iterative analysis, the calculation of y based on

Eq. 6.13 becomes also iterative. By making the following
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Fig. 6.8 Column bent by énd moments



e
]

:,1 B i:, . . . a
e  (6.14)

Eq. 6.13 can be rewritten as:

2 2

] 2 PN 2 3
y = 1 + ?%6 (%7 [4 (Mgy = Mgy) " + Mg Mg, ] (6.15)
B0 ‘a, , 1

[t

which can be readily obtained from the results of a first-
order analysis. Because of the small range of variation in
the flexibility factor, the assumption given by Eq. Egi4 is
considered reasonable. Note that this assumption is exact

for a single storey frame subjected to a lateral load plus

the sway forc

Based on Eq. 6.15, the flexibility factor can also be

more conveniently expressed as a function of end-restraints

with the aid of the assumptions that (a) the end-rotational

]

beam stiffness is equal to SiEiE/Lfi and (b) the column end-
moments at the joints are distributed between the column
above and the column below in the ratio of the EI/L values

of the two columns. These assumptions will be discussed

=y

later and they will be considered reasonable as far as the

flexibility factor is concerned. As a result of these
assumptions, any storey can be separated from the frame and
the end-rotational restraints of any column in the storey
will become a function of G, and G, as shown in Fig.

6.9(b). The stiffness ratio Gy at one end of the column is

£
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Fig. 6.9 A column isolated from the frame



defined by:

(2 %%) col |
Gl = F1 . . (6.16)

(x -f—)

beam h

where I denotes summation of columns or beams rigidly
connected to the joint, and similarly for G, at the other
end. For a given end-displacement ag (Fig. 6.9(b)), the
end-moments Mg; and Mg, can be calculated as a function of
Gy and G;. The expressions of Mg] and Mg, are substituted

into Eq. 6.15. After ag and other terms are cancelled out,

the flexibility factor becomes: $

2
4 (G -Gz) + (Gl+3)(Gz+3)

2

1
[(c,+2) (G +2) - 1]

y =1+ 0.2 (6.17)

which can be assessed directly from the properties of the
frame. )

The upper limit of y given by Eq. 6.17 is 1.20 when G;
= Gy = 0 (rigiad bgams) or Gy = « (hinged) and G; = 0. The
same limits are implied by Eq. 6.15. To“increase the'ugper

limit to the value of 1.22 obtained previously, the factor

0.2 in Eq. 6.17 is changed to 0.22, that is,

2
4 ‘Gz) + (G1+3)(Gz+3)

1f2

e
1

y =1+ 0.22 |
[(Gl+2)(62+2) -

(6.18)

If the columnn is hinged at both ends (G = G, = =), either
Eq. 6.17 or 6.18 gives y = 1.0. For the special case of a

column with equal end-restraints (G; = G, = G), Eq. 6.18 is
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simplified:

y = 1 + __Q;ZZ_E . (6.19)
(1 + G) -

For a column restrained at one end and hinged at the other

end (Gl = -):

y =1+ —9:22 (6.20)
(1 + 5%)

The flexibility factor can also be determined from the
following method. 1In adddition to the previous assumptions,
it is assumed that the axial force in a coiumn is equal to
‘its free-to-sway critical load Ng . As indicated earlier in
this section, the flexibility factor is quite independent of
the axial force in the column. Therefore, Ehis assumption
is only for the sake of obtaining a means to determine the
flexibility factor, and the solution should not be
restricted to this assumption. For an isolated storey
(according to the previous assumptions) subjected to the
lateral load shears plus the modified N-a shears, the shear
in a column is equal to (a/ag)+Vy where Vo is the first-
order shear of the column. When a column is sustaining its
free-to-sway critical load Nggy, the lateral load shear of

that column must be equal to zero. Therefore, the following

relation results:

= 0 | (6.21)



-~

which can be simplified to:

VO L
A (6.22)
fs O

For given values of G; and G,, the relationship between Vo

and ag (Fig. 6.9(b)) can be obtained from a first-order

analysis. Hence, Eq. 6.22 can be expressed as:
v o= (——kfa 2 [z (Z EZ;GE)G+636+§] (6.23)
* 1772 172
where kg, is the effective length factor defined by:
2
N, = —*EI_ (6.24)
f8  (x,.1)?
fs

The value of k¢, is only a function of G; and G, and can be
obtained from the conventional effective length factor
alignment chart which is available in many textbooks or
commentaries to the design codes.

LeMessurier (1977) also developed Eq. 6.23 in yet
another way. He preseﬁted a‘chart for the values of (y - 1)
as a function of G, and G,. The values of y éiven by Eq.

6 .23 ranges from 1.0 to 1.22, g%e same range as given by Eq.
6.18. The comparison of the y values given by Egg 6.18 with
those given by Eq. 6.23 (with the aid@ of LeMessurier's
chart) shows the differencé is never greater than 0.5%.

Prior to LeMessurier, Hellesland in 1976 developed a

graph of y as a function of end-restraints based on Eq. 6.22
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with additional simplifying assumptions in calculating Neg

The values of y obtained from Hellesland's chart are close

to those from LeMessurier's (1977).

Hellesland and MacGregor (1982) also suggest the

following equation:

0.108 [1 + (1 - 0.5 GP)~)

where the power p = 1 for Gl < 2 and p = -1 for Gl >. 2. The

terms Gl and Gg refer to the larger and smaller values of G,
respectively. Equation 6.25 is an empirical approximation
for the values of y given by Egq. 6.23. The errors in

Eq. 6.25 are at most -2.5% when compared to the exact values
given by Eq. 6.23. The different expressions for the
flexibility factor are summarized in Table 6.1.

The above formulae of the flexibility factor as a
function of G; and G, are based on the two assumptions
mentioned previously. The assumption of mid-span inflection
points is reasonable for beams with both ends rigidly
connected to columns which undergo similar deformations. 1In
the case that the far end of a beam that is rigidly
connected to the column under consideration is hinged, the
beam length should be multiplied by 2 when calculating the
corresponding value of G before substituting into the
equation. For a beam with faf end fixed against rotation,

the beam length should be multiplied by 1.5,

¥
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4 (G,=G,)" + (G,+3)(G,+3)

1+ 0.22 {— Xt 27 1 Pg
[(6,+2)(G,+2) - 1]°
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n z (Glﬁsz) + G
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The second assumption regarding the relationship
between storeys is reasonable for stiff beams with relative
storey deflections between the upper and the lower storey
about the same. This is easily observed from the slope-
deflection equation (Eq. 2.3). For a multistorey frame with
stiff beams where the lateral stiffness and loading of a
given storey do not differ significantly from the storey
above or below, this assumption should be considered

reasonable. In other words, this assumption is most valid
for the values of the flexibility factor close to the upper
limit. For a frame with flexible beams, this assumption is
susceptible to vioclation, but its effect is proportionally
reduced since the values of the flexibility fa#tor become
smaller. This offsetting effect is best reflected by the

extreme case of a shear wall. For a shear wall, the

assumption completely breaks down but for G approaching

‘H

Ler

m

Eq. 6.18, 6.23 or 6.25 gives y = 1.0. This is a

easonable answer since a shear wall within a storey

"

deflects in a very similar manner to a rigid column.
Therefore, it can be seen that this assumption leads to
reasonable values of y although it may not represent the

actual behavior in the case of flexible beams.

6.2.3 Average flexibility factor
: All the equations developed in the previous section
require the evaluation of the flexibility factor for each

borious for a large multistorey

\ﬂl
‘U‘

column. This would be lz
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frame. 1In recognition of the small range of the values of

exibility factor, it may be preferable to use a single

the f1l

ntire frame or a storey, when a precise

value of y for the
calculation is deemed unnecessary. Based on Eq. 6.18 (or

LeMessurier's chart), Table 6.2 shows the range of the

values of the flexibility factor corresponding to a given

range of Gg (Gg is the smaller value of G for a given
column). The range of G from 0.1 to 10 is believed to
include most common cases. Thus, for example, AISC permits
a hinge to be approximated by G = 10. An average
flexibility factor y which tends to be on the conservative
side is also suggested for a given range of the values of
From the table, the average flexibility factor can be

GEF

r the entire frame. Since

o
"

roughly estimated for a storey

Gg will rarely be less than 0.1 in practical frames, a

conservative value of y = 1.15 can be used for any frame and

conesiderable simplicity in the calculation will be achieved.
6.3 Modified negative brace method

iterative method but it allows a direct calculation of the
results without any ite;Qtiﬁni A fictitious pin-ended
bracing member with a negative value of AE is inserted in
each storey as shown in Fig. 6.10. The negative value of AE
implies that the bracing member will lengthen under

compression or shorten under tension. Wwhen a frame

including the negative braces is analyzed for the lateral

=



Table 6.2 Buggested values for the average flexibility

factor
Gg 0.1-0.4 0.4-1.0 1.0-10
Y 1.09-1.18" 1.05-1.12" 1.0-1.07"
Y 1.15 1.10 1.05
* The highest y value corresponds to the minimum value in
the range of G,.
Note:

0.1 < G < 10 is the range of G considered and G, is
the smaller value of G for a given column. )



E i
, === —=~— Negative bracing members

Fig. 6.10 Modified negative brace method
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loads acting alone (i.e., a first-order analysis), the
results are very close to those from the modified iterative

»analysis. The values of AE required for the negative braces
are derived as follow: .
If the negative brace elongates under lateral loads,
the horizontal component of the cémpri:iive force F (tensile
force if it shortens) in the brace is set equal to
(LyN)+a/L in order that the total shears in that storey

become equal to the lateral load shears plus the modified

N-a shears. Hence,

Fecos a = (IyN) % ‘ (6.26)

where a is the angle of elevation (Fié_ 6.10). PFrom the

geometric relationships,

FL ’ .
- XEE = a.¢08 a \ (6.27)

’

where L, is the length of the negative brace. Equating Egs.

6.26 and 6.27 .gives:

(TyN)e
AE = - —-—-—zb'i . (6.28)

Lecos™a

which is the value of AE required for the negative brace in
* .
a storey. &

For a ‘frame with unequal column heights in the

storey %Fig.l6,2),'the term (ZyE)/L in Eq. 6.26 should
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replaced by I(yN/L) where L is the individual column height.
Therefore, the value of AE for the negative brace in the
bottam storey becomes:

(LyN/L)-
AE = - “p (6.29)

cO8 a

Note that the calculation of AE (Eq. 6.28 or 6.29) can be
3 -

simplified by using an average flexibility factor (Sect.

l

——

6.2.3)% —

Nixon et al. (1975) who derived Eq. 6.28 using a different .
analysis neglecting the flexibility facgﬁr.

A frame analysis using negative braces gives slightly
incorrecé ?xial forces in the columnsldue to the vertical
force components of the negative braces. For this reason
this method gives slightly different results from the
modified iterative method when the effects of the axial
deformations of the column are also considered. The
difference, however, is trivial, and the error of the axial
forces in the columns can be minimized by using a maximum

member length for the negative brace, as illustrated in Fig.

6.10.

6.4 ey magnifier method
is method is a further simplification of the modified
iterative method based on the additional assumption that a

storey can behave independently of other storeys. This is a
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reasonable assumption for a frame with stiff beams but may
not be valid for flexible beams (Sect. 5.3). As a result of
this assumption, any storey in a frame which is subjected to
lateral loads plus the sway forces can be treated like a
single-storey frame subjected to lateral load shears [V plus
the modified N-a shears of that storey. Because the
deflection of a single-storey sway frame under horizontal
forces only is directly proportional to the applied

horizontal force, the following relation is obtained:

]

a_ _ IV + (3yN) - a/L VN ,

0]

where ay is the first-order deflettion of the storey. After
rearranging the terms in the above equation, the deflection
magnifier fg, which is defined as a/ap, is equal to:

(6.31)"

£ = 1
s (fiN)ao
! -wwT
Because the moments in a single-storey frame subjected to
horizontal forces are directly proportional to the

!
deflection, the column end-moments M are equal to:

M = f. M (6.32)
Similarly, if there are any inclined bri:ing members, the
$irst- ordcr axial forces in the bracing m-mbar- are also

magnified by f,.



The deflection magnifier given by Eq. 6.31, which can
be calculated directly from the first-order results, needs
to be é;aluated for each storey. After the column end-
moments are magnified by the corresponding fa, the beam
moments should also be increased properly to equilibrate the
column end-moments. The lateral load shear in a column can
be obtained by subtracting the modified N-a shear (yNa/L) of
that .column from fgVo where Vg is the first-order shear in
that column. If an average flexibility factor (Sect. 6.2.3)
is used in Eq.fE_Blg the calculation of f, will be further
simplified.

In the case of a frame with unequal column heights in
the bottom storey (Fig. 6.2), the deflection magnifier for

the bottom storey be:&mes:

!

[ ]

1 : o -
s = Ty *j (6.33)
1 -

The above ;quatién is obtained using the modified N-a shears
for such a case (Siét; 6.2.1). .

The approximate method based on Eq. 6.31 or 6.33 is
referred to as the 'storey magnifier method'. Rosenblueth
(1965) and Fey (1966) each derived an expression similar to
Eq. 6.31 in a way different from the one presented here.
Hgglaéting the flexibility factor, Parme (1966) and Goldberg
(1973) also developed a similar expression. Hellesland
(1976) developed thd more general Eq. 6.33 in a different

way. Similar method was proposed by LeMessurier (1977) for
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) It has been discussed in Sect. 6.2.1 that the modified

iterative method is more accurate in predicting the

[

deflections than the moments. Since the derivation of the
storey magnifier method is based on the modified iterativ‘l
method, the same situation will result. This is why fg.is
termed the defle:;ién magnifier {gth;r than the moment
magnifier. The accuracy of the storey magnifier method,
ho@ever, is alsoc subject to the additional as;umptian that a
storey can be treated independently of other storeys. The

[ )

accuracy of this method will be examined in Chapter 7.

6.5 Overturning moment igﬁhad -—

This method is a further simplifieatign of the modified
iterative method by introducing an additional assumption:
the horizontal displacement at any flé@fuaf a structure is
assumed to be directly proportional ﬁ@ the, sum of the
overturning moments of the horizontal loads about the base
of the structure. Iﬁ other words, horizontal loads with
different force distributions gféSQEe the same displacement
at any floor, provided the overturning moments about the
base are the same. It follows that a single deflection

magnifier f, for the entire structure can be obtained:

—w s (6.34)
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in which LMy, is the sum of the overturning moments of the
lateral loads H about the base of the structure, and ZH! is
the sum of the overturning moments of the sway forces which
are calculated using the first-order deflections (i.e., the
deflections due to H acting alone). Note that the above
equation is the same as Eq. 6.31 for a single-storey i
frame. Since the deflection is increased by the same ratio
in every storey, the column end-moments, beam end-moments,
and the axial forces in the inclined bracing elements (if
any) are also megnified by the value of f, given by Eq.
6.34. The analysis based on Eq. 6.34 is referred to as the
'overturning moment method‘ . Uaiike the modified iterative
method, this method cannot be applied to frames with unequal
column heights in the bottoﬁ storey. The simplifying
-assumption for this method will be explained later.
This method can be further simplified when an average

flexibility factor (Sect; 6.2.3) is used for the entire

structure. Then Eq. 6.34 can be rewritten in an alternate

form:

1

] _ n
y £ (LP), & (6.35)
- 1 %oi
T My

of

r

in which Aoi is the first-order horizontal displacemen

floor i from the original position (Fig. 6.4), (tP)i is the

s ig
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sum of floor loads on fléar‘i (Fig. 6.4), and n is the tétal
number ?f storeys.

To avoid complex equations, only the derivation of Eg.
6 .35 is shown here although the general equation (Eq. 6.34)
can be derived in a similar way. The derivation basit:gllyi‘
follows an iterative method. The total displacement A,y at
any floor i in iteration k due to the lateral loads plus the

sway forces which are calculated using the displacements

8(x-1)i from the iteration k-1 is given by: : *
f0i — 7 ,
Bg = Bo; *omo Y I LER AL ;] (6.36)
H i=1
1
The second term in the above eguation calculates the
additional displacement due to the sway forces, which are

functions of the total displacements, according to the

revious assumption about displacements being proportional

e

o the overturning moment at the base of the structure. In

[ad

he first iteration, i.e., k = 1, A(kil)i is equal to 8oy

rt

and therefore the final displacement 8y corresponding to k
= = can be obtained by successive iteration, which results
in an infinite geometric series Qf‘géi‘ The infinite series
can be condensed to Eq. 6.35 when f, is also defined
as éiléeii

The assumption relating displacements to the
overturning moment originated by Perez-V (1977). Perez-V.
(1977) developed Eq. 6.35 in a somewhat different way and

did not consider the flexibility factor in his derivation.
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His underlying assumption was drawn from observations about

the first-order elastic deflections of idealized structures

and loadings shown in Fig. 6.l11. A cantilever shear beam
which undergoes shear deformation and no bending deformation

(Fig. 6.11) represents a structure with iégid beams relative
to the columns. A cantilever bending beam (Fig. 6.11),
neglecting the shear deformation, represents a structure
with very flexible beams. Uniform stiffness and linearly
varying stiffness (zero stiffness at the top) of the beams

were considered. Because the foregoing assumption was found

valid within small limits for each of these models and
loadings, it was extrapolated to real structures, as used in
the overturning moment method.

This method gives an averéll magnifier for the entire
structure. This may be reasonabile for a structure with

flexible beams in which the storeys tend to assist each

other to resist the geometric effects (Sect. 5.3). This,

h@wev;r, needs to be proven and will be examined in

Chapter 7. Although the shear beam used iﬁ‘%evelapiﬂg the
assumption for this method was meant to represent a real
structure with stiff beams, the points along the shegr beam
are interrelated and hence this model is not able to
represent a real structure H;:£ stiff beams in which the
behavior of one storey can be independent of other storeys
(Sect. 5.3). 1In other words, if the magnification due to
geometric effects in one storey can be very much different

from that in the other storeys, especially far away storeys,
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=
e
Loadings Shear beam Bending beam

Fig. 6.11 Loadings and deformation of a shear beam and a bending beam

/
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this method will be inaccurate. This will also be shown in

- .Chapter 7. . 4

6.6 Prame magnifier méthod

This method is a further simplification of the modified
iterative method in which the additional gssumptian is made
that the ratic a/ag is equal for all the storeys of the
fra;e subjadcted to lateral loads H plus sway forces. In
other words, the total lateral deflections of the frame are
those produced by the lateral loads fgH, where f, = a/ap.
A$ a result, the energy stored in the structure due to the
lateral loads plus the sway forces is identical with the

. A R

- Cois . )
energy resulting from the lateral loads fg,H. This is .

expressed as:

: | o, 2 ] : [ )
L L (yN), =—— + (V) a | = ¢ L (xv), a . (6.37)
4=1 i Ly i %t 8 i=1 i i

By setting a; equal to f rapi, the above equation can be

rearranged to give the deflection magnifier f, equal to:

f - 'li
s n ) 2/
I (tyN), - a../L, :
R S (6.38)
n F -
I (}:V)i a5
i=]

the deflection magnifier isggqual to:
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- ~
f = —11—:7;,:77 —
8 n 2 .
L (};v'H/L)i a0y : )
R - S (6.39) - *
n .
’ .:LE (ZV); agy

V4
If an average flexibility factor is used, the above
equations can be fur ther simplified. Since all the

nd gince this

deflections are increased by the same ratio,
method is based on the modified iterative method, the column
end-momente are egqual to fsMD‘ Note that this method gives

the same equation as the other methods presented earlier for

o]

a single-storey frame.

The critical load factor implied by Eq. 6.38 (i.e., -
= ») is similar to thé one presented by Stevens
(1967) although derived in a different manner. ’

Although this method and the overturning moment method
both give a single magnifier for the entire structure, the
derivation of this method is based on a more direct
assumption. The overturning moment method implies the same

assumption but it requires the additional assumption that

the defilections are proportional to the overturning moments

at the base (Sect. 6.5). Hence if the assumption that an

overall magnifier can be used is valid (the condition that

ssumption may or may not be valid has been mentioned

this a p
in Sect. 6.5), the framépmagnifiEf method gives the same or
better results than the overturning moment method, as

demonstrated in Chapter 7. *

!
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4

6.7 ACI method

The following is an attempt to formulate fatiéﬁally the
current ACIg(lgiﬁ);methgd for sway frames although the
original ‘derivation was semi-empirical (MacGregor et al.,
1970). This method can be considered a further .
simplification of the modified iterative method, but it hasi
the regéfietian that the frame to be considered cannot
include any distinct bracing elements such as shear walls or

inclined bracing members., This will be shown when

developing the method.

(in addition to the assumption that the deformed shape of
the structure under }ateral and ve%tiﬁal loads can be
represented by the deformed shape under lateral loads plus
sway forces made in the modified iterative method) arne |
introduced as follows:
1. The end-rotational stiffness of each beam is equal
to EQEIE/LE for that beam. -

2. The restraining moments provided by the beams at one
end of a column are distributed betweerf. the column
above and the column below in proportion to the EI/L
value of the two columns.

walls

Assumption 2 precludes the existance of any shea

La ]

in a structure. The above two assumptions will be discussed
later. These two assumptions permi;ig storey to be isolated
from the frame with the column end-rotational restraintes

expressed as a function of G; and G, as shown in Fig. 6.12.
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Fig. 6.12 A storey isolated from the frame (ACI method)
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For an isolated singl;ést@ray frame (Fig. 6.12), the

modified iterative method is simplified to Eq. 6.31 atated

[ ]
[t

in Section 6.4. The deflection magnifier given by Egq. 6.

is rewritten as followa:

(6.40)

Q= d7 T — (6.41)
=1 °- o
where VDj is the first-order end-shear in column j, and m is
the number 65 columns in the storey. It is tacitly assumed
that there are no inclined bracing elements in the storey.
The free-to-sway critical load Ng, of a column, from Eq.

6.22 (Sect. 6.2.2), is equal to:

N, = —— (6.42)

By substituting Eq. 6.42 into Eq. 6.41, Eq. 6.41 becomes:
Q= Lt X1 H (6.43)

Note that the subscript j is discarded for simplicity.

Therefore the deflection magnifer is alsc equal to:

£ - ~ L (6-44)



and the end-moments of any column in the storey is equal to
fgMg (Sect. 6.4). If it is assumed that the flexibility
or is equal for all columns in the storey, it can be

sncelled out in the above equation and Egq. 6.44 is

o 1 _
fs = X —IN _ (6.45)
ZNfs
which is the form of egquation given in the ACI Code {1977).

Due to the small range in the values of the flexibility

factor, the assumption of a constant y is relatively minor,
L] 4

and the consequence of errors introduced by this assumption

should be considered insignificant. ‘
The free-to-sway effective length factor kg, which is

a function of G; and G, only, can be obtained from an
effective length factor alignment chart given in the ACI
Commentary (1977). Approximate formulae to determine kg,
are also given in the ACI Commentary. The approximate;

second-order analysis based on Eq. 6.45 and the alignment

hart is referred to as the ACI method. Note that f, needs

]
(]

to be evaluated for each storey.

The ACI method can be modified to be applied to the
type of frames with different column heights in the bottom
storey. According to Eq. 6.33 (Sect. 6.4), Eg. 6.4]1 is

rewritten as:



——

— ; - (6:46)

By substituting Eq. 6.42 into the abbve equation and making
« :
the assumption that y can be cancelled out, the deflection

\

magnifier for the bottom storey becomes:

(6.47)

The above equation was given by Hellesland (1976) but the
derivation was not shown in his paper.
The two assumptions stated érEVi@usly e examined in
thEKlelQHiﬁg; Assumption 1 is reasonable for beams rigidly
-
connected to columns. In fact, the summation of Ngg for all
columns in a storey offsets some of the error resulting from

the inflection points not occurring exactly in mid-span of

(]

the beams. This will be demonstrated in Sect. 7.2.2. n
the!cage that the far end of a beam framed intg the column
under caﬁsidEfati@n is hinged or fixed, the beam length
should be multipled by 2 or 1.5, respectively when
calculating the corresponding value of G, in order to obtain
the correct value of kg, from the alignment chart. This,
however, is not mentioned in the ACI Commentary (1977).

The second assumption, which permits a storey to be

separated from the frame, has been discussed when deriving

the flexibility factor in Sect. 6.2.2 where it was shown

"

that this is a reasonable assumption for a regular
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multistorey frame with stiff beams and regular locading. It

should be noted, however, that the significance of the

magnifier given by the ACI method is much greater than when

evalua i ng the flexibility factor (Sect. 6.2.2), since «the
free-to-sway effective length factor can vary from 1.0

to = while the flexibility factor varies from 1.0 to 1.22.
This is clearly reflected by the case of a shear wall or
stiff column which bends into single curvature within a

storey. The value of Ng. for the shear wall with G

approaching infinity is very small, and therefore the very

=y

erred by the shear wall is

substantial lateral resistance of

Ly

neglected. The errors resulting from this assumption will
be demonstrated in Chapter 7.

Although the storey magnifier method is based on a

similar assumption that a storey can be treated like a
single-storey frame, the ACI method requires the additional

assumption of idealized end-restraints for each column.

Hence  the ACI method is less accurate than the storey

shown in Chapter 7.
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The ACI Code appears to permit replacement of the term

Ng, in Eq. 6.45 by IN_, i.e., e

_ 1 ..
£f = asg-ﬁf (6.48)
S l -j 'fN:' ! * ]



8 the exact elastic critical load,of a
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r words, a designer may per form a rigorous
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stability analysis to Qélculgﬁe the exact critical load for

each column (strictly speaking, a critical load factor 1:

for the entire frame), and substitute the values into the §

a
above equation. Of caurseg one would not do this in

practice since a ltébility analygi: is generally more
complicated than an exact second-order analysis.
Nevertheless, it is still of interest to examine this
alternative because the gquestion is often asked whether an
effective length factor (which results in an exact
critical load) is better than the 'approximate’ value
obtained from the conventional alignment chart. Discussion
of this alsoc entails another question abut what values of

f the

[a]

the axial forces should be used (i.e., what values
vertical loads should be applied at the joints) when the
load factor A i§ equal to 1.0. Because the ACI Code or
Commentary (1977) 1is not specific in this respect, the
following is a reasonable attempt to discuss this approach.
The alternative ACI method can b4 derived on the basis
of Egqs. 2.10 and 2.11 developed in Sect. 2.5. Consider a
multistorey frame subjected to lateral and vertical loads
applied at the joints. Assume that the first-order
- deflection yg can be adequately represented by the lowest
sidesway critical mode y with the critical load factor Aos
while the other critical modes in Eq. 2.10 are negligible.

Then according to Eq. 2.11, the total deflection y due to
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the action of vertical and lateral loads is found to be:

b4 _ .

y = l—i.—j?— (6.49)
-
C

It follows that a sfngle deflection magnifier f, for the

entire frame is also equal to:

of the axial forces in the beams are assumed to be
neglected. Consequently, when calculating XE; the frame is
only subjected to vertical locads at the joints such that the
only internal forces acting are the column axial forces
(Sect. 2.5). According to the derivation of Eq. 2.11, from
which Eq. 6.50 was derived, the axial forces N in the
columns for A = 1.0 are equal to those from the original
state of loading, i.e., gravity and lateral loads acting

6 .48 is written

5

together (Fig. 2.8). Thus, when N. in
as \ N, Eq. 6.48 becomes identical with Eq. 6.50. It is
also apparent that the summation sign in Eq. 6.48 is not
necessary since kc is constant for each column. As a
result, the alternative ACI method in fact implies a single
magnifier for the entire structure given by Eq. 6.50.
Although the validity of the assumption made for Eq.
6.50 that the deformed shape due to lateral loads can be

represented by the sidesway critical deflection mode is
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uncertain, it is certain that an overall magnifier is not

valid for the case where a storey is not sensitive to the -
behavior of other storeys as discussed before in Sect. 6.5.
In fact it will be shown in Chapter 7 that if a frames does

not have any distinct shear walls (as implied in the ACI

Code for ‘'unbraced’' frames), an overall magnifier is not p
justified. Hence, it can be seen that the exact (

)

guarantee any better results (in fact, may be worse) ghan

determination of the effective length factors may not
the use of the effective length factors from the
conventional alignment chart in the case of approximate

second-order analysis.

6.8 Eﬁaentiggfre¢tiaﬁ factors
6.8.1 Int:aﬂﬁctary femarks

In Sect. 6.2.1 it was mentioned that the modified
'terative method is more accurate in predicting the
deflections thidn moments. This is because the
redistribution of egd—maments for individual columns due to

i
he C and S effects (Chapter 5) has not been considered. An

rt

attempt is made in this section to rectify this error by
introducing moment-correction factors. The derivation of
these factors is based on the assumption that the lateral

deflections are exactly determined.

order analysis discussed in this chapter is derived from the

modified iterative method, the above error exists in all of

-
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these methods. The additional assumptions made in these

methods of second-order analysis are assumed valid in order
that the moment-correction factors can also be applied. 1In
other words, the deflections determined from these methods

re alsoc assumed to be exact. The validity of the .

o>

o
o
n

additional assumptions in each of these methods will

examined in Chapter 7.

The moment-correction factor implied in the AISC (1978)

approach for sway frames will be discussed first to

ad
=
o]
pa
']
-
e
'™
]

illustrate the problem and to show the limitati
procedure. The Hellesland and MacGregor approach (1982)
which is developed on the basis of single-storey frames is
used here and extended to multistorey frames. It should be

11 the methods

ik--

noted that except for the ACI method,
converge to the same method for single-gtorey frames as

indicated in the development of the methods.

6.8.2 AISC approach

The AISC Commentary (1978) suggests a corr

AIS rection factor

Bphax (the original text uses Cp) to modify the deflection
magnifier fg su:ﬁ that

Hmax = Ema: fs ch (6.51)
where

B __=1-20.18 o (6.52)

“max N CTT N :

fs



The free-to-sway critical load” Ng, is a function

G5, the same as in the ACI method. According to

Commentary, under the combination of compression
L4
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of G, and
the AISC

*

gstress and

bending stress most affected by the moment magnifier

5 : Y

term in Eq. 6.52, giving a constant value of Bha x

a value of 0.15 can be substituted for the latter

0.85.

This, however, is questionable, since the value of 0.85

corresponds to N = 0.83 Ng. which is a very high

for & beam-column.

=

axial load

Eqﬁaticﬁ 6.52 is obtained by considering a single free-

to-sway column with an infintely rigid beam at one end (Fig.

6.13(a)). The maximum moment occurs at the end attached to

the rigid beam. In the derivation the column is

replaced,

as shown in Fig. 6.13, by an eq%ivalent pin-ended beam-

k]

column subjected to the lateral load and the axial load
[

equal to those of the original column. The equivalent beam-

column has a length equal to the free-to-sway effective

length kg L of the column. It has been assumed that the

deflected shape of the column due to the lateral
alone and the deflected shape due to the lateral
the axial load acting together are both the same

curve as the buckled shape of the column. Since

mw
[Te]

ig. 6.13(a) is rigid and therefore the slope of

load acting
load and

type of \
the beam in

the

deflected shape is zero at the column end, the lateral load

acts at mid-span of the beam-column in Fig. 6.13(b). Based

on the assumption that the final deflected shape

igs a sine
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inflection
point

inflection
point

(a) (b)

Fig. 6.13 Concept in AISC approach for B,



189

-curve, the bending moment at mid-span of the beam-column
which corresponds to the maximum moment in the actual column
is found as given by Egqs. 6.51 and 6.52. A complete
derivation for the beam-column in Fig. 6.13(b) is given by
Wang and Salmon (1973).

It is apparent that the moment-correction factor Bra x
given by Eq. 6.52 is only applicable to a free-to-sway
column attached to an infintely rigid beam, but this is not
explicitly stated in the AISC Commentary. In fact, the next
gection will show that this approach and particularly the
constant value of 0.85 is unconservative in most other

casges.

6.8.3 Hellesland and MacGregor gﬁ%r@ach (for single-storey

equations of B ,, which are developed on the basis of

single-storey frames:

oo
il
ot
I
o}

f C 1.0 (6.54)
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The load indices a, and o __ are defined by N/Ngg and N/Np,,

respectively, where the critical loads Ngg &nd N, are
determined on the basis of the first-order inflection points

of the beams (first-order .end-restraints) rigidly connected

i

to the column under consideration. The moment gradient rj
has been defined previa sly as - My;/Mg,- The stiffness
ratio ¢, EF joifit 2 of the column (note éz < ¢,) is defined

N - . : ,
ETELLL:! “where L_ is the distance from the joint to the
LEIL/ 2L, B

‘B B
st-order ti
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and (d)). After Brax is determ for the column in

‘m

question, the maximum moment in the column can be calculated

according to Egq. 6.51, in which f_, can be obtained from any

of the approximate methods discussed previously. =~
_ _ = « - . ) E,_:;‘i?!»
The equations for B ,, were based on the observation '\,

that the geometric effects in a single-storey frame can be

deflection magnifier f_ as indicated previously by Egs. 5.1
.4, It 1s assumed that f_  can be exactly determined,
=+ 1 +trerefore the B coefficients are estimated using a
iterally deformed non-sway column (Fia. 5.3(4d)).

.esLant oand Macgre s r (198B2) have observel that the s' «
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with increasing axial load until fairly high axial loads are

jonl

reached. Since, by definition of elastic sway buckling,
is equal to zero when Ty = 1.0 (Fig. 5.4), B, can be

reasonably approximated by:

(6.57)

<
H
[ 1

The linear approximation of B, is very good for e ¢ 1.0.

For a > 1.0, the error increases although Eq. 6.57 remains

fs

conservative. The total end moment, IM = Ml + Hzi of a

column is equal to:

IM = - Ev fB VD L -N f‘ ag (6.58)

Substituting Eq. 6.57 into Egq. 6.58 and noting IMy = - V4L

gives
[N

IM = (1 - gag) £, IM; (6.59)

where

(6.60)

Using Eq. 6.22 for the flexibility factor y (Sect. 6.2.2),

Eq. 6.60 can also be expressed as;

(6.61)

o
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The coefficient g varies from zero for y = 1.0 to 0.18 for

%

y = 1.22. Fargzﬁgﬁfésg of equal end-restraints, {.e., ), =

¢, (and M; = My, Mg) = Mgy), M; (or M;) is given by:

where 7
i 0.22 ,

0.22 (1 + ¢,)

which are obtained by substituting Eq. 6.19 (the equation of

y for equal end-restraints) into Eq. 6.61. (Note that if

LE is equal to half of the beam length, then ¢ is equal to

the term G defined by Eq. 6.16). If a column is restrained
at one end and hinged at the other end (¢1 = =), EQ. 6.62 is

alsg derived with g5 given by:

. 0.22 ) N
T AR T (6.64)
0.22 + (1 + Ea)

obtained by sﬁbatituting Eq. 6.20 into Eq. 6.61. Hellesland
and MacGregor (1982) replaced the term in brackets in Eq.

6.62 with:

%
Ez = 1 - gz L. (6.65)

They also observed that the lower limit of g, at Teg = 1.0



[l
[V

is defined by Eq. 6.63 and the upper limit is closely
defined by Eq. 6.64. Since the difference in the values of
g, computed from Eqs. 6.63 and 6.64 was not significant for
practical values of ¢, Eq. 6.56 was determined as an average

of the two limiting equations and the error at Teg = 1.0 was

found to be within * 2.5% for practical values of 4.

Apparently the expression of g; given by Eq. 6.56 was

hJm
w

derived on the basis of a s - 1.0. From Figs. 5.4 and

Iy

it can be seen that B, decreases almost linearly for

ey € 1.0 and the linear approximation of B, given by Egs.

6.65 and 6.56 is accurate for Teg © 1.0. For Ceg > 1.0, the
error increases on the conservative side.

For a supporting sway column the maximum moment always
occﬁrs at the end (Sect. 5.2.2), and therefore B ,, is equal
to By (by definition My, > Mg;), as indicated by Eq. 6.53.
For a supported sway column ( Teq > 1.0), the maximum moment
may occur away from the end and initially B ,, can be
assumed to be constant with the axial load, as given by Eq.

L
6 .54 (Fig. 6.14, to follow). For a very h

<
e

gh axial load

(N > 0.5 N, as suggested by Hellesland and MacGregor,
1982), My.x can be found by the conventional ACI method for
a non-sway column (Sect. 4.3) except that the limits in the
original equation (Eq. 4.20) are discarded as shown by Eq.

6.55.
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the rigid-beam case. The values of B;,, from Egqs. 6.53 to

6 .56 are compared to the exact solution for a typical
laterally deformed non-sway column in Fig. 6.14. The values
of Bpay implied by the AISC Code (1978) and the ACI Code
(1977) are superimposed. As far as B;,, is concerned (i.e.,
is conservative in the load range of most practical
interests. The AISC procedure, however, is unconservative
in the load range of a supporting sway column which is the
most common design situation.

In addition to the maximum column moment needed to
proportion the column, the column end-moments M; and M, are
needed to determine the moments required in the attached
beams. The coefficient B, has been defined by Eq. 6.65 with
go given by Eg. 6.56, also illustrated in Fig. 6.14.
Hellesland and MacGregor (1982) have observed that B; stays
almost stationary with increasing axial léad for a column
with flexible restraints (as illustrated by Fig. 5.4), but
follows C, for stiff restraints (Fig. 5.5). Therefore B; is

approximated by:

(6.66)

e 9, = 0.0 for ¢, > 1.0
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V,=075, ¥,=05

————"Exact (from a single column) /

- — Helles!and & MacGregor /

£




0.22
0.22 + (1 + wl)z

9, *
Note that the above equation for g; is similar to Eg. 6.63.
Hellesland and MacGregor method can be simplified as
regards the calculation of ¢, andf¢2 by making the .
conventional assumption that the inflection points occur in .
mid-span of the beamg that are rigidly connected to columnsa.
when this is done, the values of Ng, and N, can also be
directly obtained from the effective length factor alignment
chart given in the ACI Commentary by noting that G = ¢ (fér
N¢g) and G = ¢/3 (for N,.). In fact, it will be suggested

in Sect. 6.8.4 that G = ¢ for calculating Nj

6.8.4 Moment-correction factors for multistorey frames

This section attempts to extend Hellesland and
MacGregor's method to multistorey frames and to discuss the
assumptions involved.

Figure 6.15(a) shows a multistorey frame which is
braced at the joints against sidesway with imposed lateral
deformations equal to the exact displacements produced by
the combined action of the vertical and lateral loads.
Holding forces R are required to hold the frame in the
deformed shape. The moments in the laterally deformed
columns are denoted as My. According to the assumption r. iv
in Sect. 6.8.1 that the deflections are exactly Adeterrmina’
the values of My are equal to those from the approxi- -«

e+t ods of second-order analysis. ot o 1ge
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Fig. 6.15 A laterally deformed non-sway multistorey frame
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modified iterative method or modified negative brace method,

My can be directly obtained from the analysis. For the

assumed equal to f ,Mp. Note that this assumption is based
on the assumption that a storey behaves gndepenaently of
other storeys (stiff beams) or the ratio a/ag is equal in
all the storeys. Obviously, these are the same assumptions
made in deriving the various deflection magnifiers.

The vertical loads are then applied to the deformed

non-sway frame as shown in Fig. 6.15(b). The resulting load

loading. By making the same assumptions as for the ACI
method (assumptions 1 and 2 in Sect. 6.7), any column in the
frame can be isolated from the frame with end-restraints as
a function of G; and G,, as shown in Fig. 6.15(c). These-
assumptions will be discussed later. It is apparent that
the whole process is conceptually the same as the previous
case for a single-storey frame (Fig. 5.3) except that fgMg
is being replaced by a more general term My. Therefore,
Helleslan; and MacGregor method is alsc applicable for
multi-storey frames with f M, replaced by My, ¢ replaced by
G, and the values of Ng, and N, calculated accordingly.
The assumption of mid-span inflection points in the
beams has beeniaiscusaed before. The major problem lies in
the assumption regarding the relati%nship between atoreys.
Sections 6.2.2 and 6.7 have shown that this assumption is

reasonable for a frame with stiff beams, and this will be



demonstrated in the next chapter. For flexible beams, this

assumption can be violated. Nevertheless, Hellesland and
MacGregor's equations indicate that the moment-correction

factors are only significant for stiff beams (i.e., for low

values of ¢, in Eq. 6.56). For more flexible beams, the

become closer to 1.0 and therefore the

correction factor
consequence of the assumption becomes less significant. 1In
other words, although the assumption is less valid for more
flexible beams, its effect is prop«rtionally reduced. For
example, this assumption breaks down for a shear wall with
G, approaching infinity but the values of the correction
factors approach 1.0, which is a reasonable answer.

For a very heavily loaded column, it has been shown
that B, .,y may be greater than 1.0. Equation 6.55 guggested
by Hellesland and MacGregor may be unconservative in this

range because the effective atiffness af the end-restraints

may be decreased drastically by a shift in the- “paknt of

nflection in the beam at high axial loads

sed in

Hlﬂ

s di

o

Sect. 5.2.2. It would seem prudent to base the calculation
of N,g, on the assumption that the end-rotational stiffness
of the beam is equal to 2EIgp/Lp rather than on the first-
order inflection point or 6EIg/Lyp. In addition, B,,, may
exceed 1.0 for a column attaéhed to weak beams. Due to the

uncertainty of the validity of the g;;umptign concerning the

el

a}
[ ]

tionship between storeys in frames with weak beams as

mentioned earlier (Sect. 6.2.2), a conservative egtimate
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would seem more appropriate. This suggestion will be

explicitly stated in Chapter 8.

6.9 Summary

Various approximate methods of second-order analysis
for elastic sway frames have been reviewed in this Chapter.
The major assumptions in each method are summarized in Fig.
6.16. Note that all approximate methods are shown to grow
out of the modified iterative method. 1In terms of accuracy,
the modified iterative method and the modifigd negative
brace method are obviously the best. However, in terms of
simplicity the other methods (not including the iterative
method) are more appealing.

The frame magnifier method and the overturning moment
method, both of which give an overall magnifier for the
entire structure, appear to be valid for a frame with
flexible beams relative to columns. The storey magnifier
method, which gives a magnifier for each storey, is most
valid for a frame with stiff beams. The ACI method, which
also gives a magnifier for each storey,/is the only method
which cannot be applied to a frame.13§ﬂ bracing elements.
The AC] method is most valid for a frame with stiff beams
but it is less accurate than the storey magnifier method
because of additional assumptions required in the ACI method
(Fig. 6.16). In short, the validity of the four approximate
methods, which are simplifications of the modified iterative

method, appears to depend on the stiffnesses of the beams
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relative to the columnas. These will be evaluated in the

next chapter.
The basic error (resulting from the assumption stated

at th op of Fig. 6.16) in all the approximate methods in

i
o

estimating the column moments is rectified by introducing
the moment-correction factora. The other sources of errors
inherent in some of the methods as discussed in the above

paragraph, however, still limit their appli:abilityf This

will be examined in the next chapter.



7. EVALUATION OF THE APPROXIMATE METHODSE FOR SWAY FRAMES
7.1 Introduction
7.1.1 Problem statement

The approximate methods of second-order analysis of
elastic sway frames, including the moment-correction factors
B (Sect. 6.8.4), are as follows: In the modified iterative
method or the modified negative brace method, the
deflections are obtained directly from the analysis, but the
column moments are obtained by multiplying the column end- -
moments from the analysis by the corresponding moment-
correction factors. In the other methods, namely, the
storey magnifier, frame magnifier, overturning moment and
ACI methods, which give deflection magnifiers f,, the

deflections and column moments are given by:

a=f =+ a (7.1
s 0 )
M= 1 . £ . M (% 2)
s
et ermine and corpare the ac-ura o 2
At oy o f Iifferent approxic o

g6 1A le mett o ools fog o poes
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7.1.2 Method of evaluation
The errors in the approximate methods are due to the

ptions involved. The major sources of

errors are derived from:

¥

The basic assumption that the deformed shape of the

frame subjected to lateral loads and vertical loads
can be represented by the deformed shape due to
lateral loads plus sway forces (see Fig. 6.16).

- The major additional assumption required in each of
the methods which are simplified from the modified
iterative method (see Fig. 6.16).

- The assumptions of mid-span inflection points and
idealized vertical relationship between continuous

columns made in the moment-correction factors (Sect.

6.8.4).
¥ *# that the last source of errors is relatively minor, as
1s-ussed in Sect. €.8.4., An attempt is made in the
f . .owin3 sections to determine the limits and conditions

«*17% the errors resulting from the above a

"]
o
C
3
\PU\
o+
-
]
.
o

3 entatle. In effect, the applicability of different

s+, *re assumption about the deformed shape will be
e 1 Sect . 7.2.1 with the aid of a supported sway
e assarption of mid-span inflection points
LT =arry ol and in the derivation of the morer:* -

© e

*ore wlL. he exatiiel = 1oAa 817



magnifier, overturning moment, and ACI methods all require
assumptions to idealize the vertical relationship between
storeys (the second source of errors as stated previously).
SimilarIy, the moment-correction factors also require an
stgfeyo. This type of assumption will be checked with
multistorey structures, first with low-rise structures in
Sect. 7.3, and then with high-rise structures in Sect.

7.4. Finally, in Sect. 7.5, recommended methods of second-

order analysis of sway frames will be proposed.

7.2 éingle-storey structures
7.2.1 Supported sway columns

The basic assumption of all the approximate methods
developed’in Chapter 6 is that the deformed shape of the
structure due to vertical and lateral loads is equal to that
due to the lateral loads plus sway forces (see Fig. §.16).

The validity of this assumption is uncertain in the case of

2. This

(]

supported sway columns, as mentioned in Sect. 6.

r
L)
o

protler is examined with the aid of a simple elastic frame
shown 1in the inset to Fig. 7.1(b). The frame consists of a
Larnocarrying an axial force and a much stiffer co!l arn
Aarrying nn oaxial force. In the approach of the elas' ;-
T e frare, e weakw o lumn wil., leflect 11

el lerarly AL flprpre Foom kb o oaceemed 3o e
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valid.

In Fig. 7.1(b), the exact ratio a/ay is compared with
the deflection magnifier from the approximate method. Note
that all approximate methods give the same results for this
particular case when y = 1.22 is used. The two curves agree
reasonably well far beyond the stage when the weak column
has become a'supported sway column. When the weak column
reaches a deflected shape very different from the
assumption, e.g., at N > N,, the approximate curve becomes

less accurate. The figure, however, indicates tha

rt

for
fg < 1.5, which is considered a very'large value ir
practice, the two curves are almost indistinguishable. This
indicates that the approximate methods are not sensitive to
the basic assumption in tle practical ranges of f, values.

In Fig. 7.1(c), the.end-moment and the maximum moment
in the weak column are compared with those based on the
moment-correction factors and the exact a/agi The two sets
of curves agree reasonably well. The approximate curve for
M, tends to be conservative because of the linear
approximation of B, (Sect. 6.8.3). This figure also
demonstrates the previous discussion (Sect. 6.2.1) that the
deflection maénifier is better in estimating the deflections
than the column moments. The moment-correction factors are
shown to rectify the error.

The above 1llustration is believed to represent a

"rce foor the assumption examined because the
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increase in the deflection of the frame is solely produced
by the axial force in the weak column. If the stiff column
also carried a vertical load, the agreement between the
deflegt*pn magnifier and the exact a/ap would be very good
up torfs greater than 1.5. 1In the case of a multistorey
multi-bay frame, it is likely that the majority of the
columns are supporting sway columns, and the limit of the
accuracy of fg sho&ld be far greater than 1.5. 1In short,
the basic assumption of the approximate methods is
considered valid in the case of supported sway columns when
fgs is less than about 1.5. For multistorey multibay frames
where most columns are supporting sway columns, this limit
is likely to be much higher.
7.2.2 Assumption concerning inflection points

In the alfénment chart used to calculate the effective
length factors for use in the ACI method (Sect. 6.7), the
inflection points in the beams are assumed to occur at mid-
span. As mentioned in Sect. 6.7, the deflection magnifier
(Eq. 6.45) given by the ACI method should not be sensitive
to this assumption because the ;dhmation of Ngo for all
columns in a ?torey tends to offset the errors. This is
illustrated using a frame shown in Fig. 7.2(a). Since the
inflection point in a beam is a function of the relative
stiffnesses of the adjacent columns and the stiffness of the

beam relative to the columns, the middle column of the frame

was chcse to he twice as s8+*iff as the other twa - . .~ns
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while the stiffnesses of the beams are arbitrarily chosen to
introduce irregularity. In Fig. 7.2(b), the magnifier from

the ACI method is compared with the exact a/ag. The

greater than 3%.

The assumption of mid-span inflection points is also
made in determining the moment-correction factors. This is
also evaluated in Fig. 7.2(b) by comparing the ratio My /Mg2
in the end column with B ,.*a/ag based on the Exa:t‘a/ag
values. Note that the maximum moment occurs at the end of
the column, i.e., M, = Mpmax ®nd Bp.y = B, because i'he column
is a supportipg sway column. The difference is minimal,
suggesting that the moment-correction factor Bhax 18
insensitive to the assumption of mid-span inflection
points. In fact, this should have been expected because in
the case of a supporting sway column, the moment-correction
factors only vary in a small range of 0.81 to 1.0 (Sect.
6.8.3).

The deflection magnifier obtained from the storey
magnifier method (Eq. 6.31) is also compared with the ex&
*'a- in Fig. 7.2(b). Although an average flexibility fac:
£ 1.10, which is roughly estimated from Table 6.2, is us. '

the storey magnifier method, the difference from the

XAt a a, 1s very small. If an 1individual flexibility

Fe ot LT ves W L bty

i’;}.—@ gt v oatag L
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certainly valid for supporting sway columns, as implied by

the conclusion in the preceding section.

7.3 Low-rise multistorey structures
7.3.1 Problems

| The stbrey magnifier, frame magnifier, overturning
moment, and ACI methods are evaluated in this section. The
most significant assumption in each of these methods
concerns the vertical relationship between storeys. (Note
that the other assumptions have been shown to be valid
within practical values of f; in previous sections.) The
errors resulting from this type of assumption are examined
in the following paragraphs for each method in the fealm of
low-rise structures. An attempt will also be mag; to
determine the applicability of each method.

As part of the investigation, the assumption concerning

the vertical relationship made in the moment-correction

factors will also be examined.

7.3.2 Structures studied
Tre multi-storey structures shown :irn Fig. 7.3 are use!
a*terpting to solve the problems stated in the preceding
€ s 171, The structure in Fig. 7.3(a) has stiff beams. Tre
~w»all s*ru~ture shown in Fig. 7.3(c¢) represents an

1

ase £ - s lerely flex it e NenaTte ™e srtear w’
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Fig. 7.3(b), where the beams are weak relative to the
columns.

The loadings in each structure are also shown in Fig.
7.3. The ratios of the axial forces in the columns are kept

constant during loading.

7.3.3 Results
(a) Strong beams
In Fig. 7.4, the 5efle§tian magnifiers obtained from

the approximate methods for the structure with the strong
beams (Fig. 7.3(a)) are compared with the exact values of
a/ag in each storey. The results are plotted as a function
of the axial forces in the columns. Since the axial loads
are in a constant ratio, points corresponding to a given
stage in the loading history plot on the same vertical line
in all three parts of Fig. 7.4. An average flexibility
factor of 1.15, which is estimated from Table 6.2, was used
in the approximate analyses. The exact curves indicate that
the ratio a/ap in one storey is markedly different from that
in the other storeys, and therefore the overall magnifier
given by the frame magnifier or overturning moment method
fails to give generally good results. The storey magnifier
method has the best agreement with the exact solutions. If
1t 1s assumed that the -xi1» ~ value of fg should not be
te=*er than 1.5 in ar stor , of the structure, the

ieerent 1s excellent. The ACI method is not as good as

"oy ragnifier method but it gives reasonably good
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- The above situation occurs because each storey of

result

(7

the structure behaves quite independently of other storeys

h

[

due to the strong beams. The lateral stiffness of ea
storey is essentially the same as the other Btoreys, but the
total vertical load changes from storey to storey.
Consequently, the geometric effects in each storey are
different from other storeys.

In Fig. 7.5, the column maximum moments, which occur at
the ends of the columns, are compared with the values of

max'a/ap based on exact a/ag. The agreement is good. This

(e}

o

ndicates that the assumption regarding the vertical

-

[

e

ationship made in the moment-correction factor Bhax 18
valid for the structure with gtiff beams. In effect, this

demonstrates the discussion made in Sect. 6.8.4 concerning
i N

t’;

the assumptions concerned. The same conclusion can be drawn
for M) (the smaller end-moment in a column) although it is

not shown in Fig. 7.5.

(b) weak beams

(]
\P‘]‘

n Fig. 7.6, the deflection magnifiers from the )
approximate methods for the structure with weak beams (Fig.
7.3(b)) are compared with the exact values of a/ag. An
average flexibility facfor of 1.05 (Table 6.2) was used in
the approximaté analyses. (In the storey magnifier method,
Yy = 1.20 was used for the bottom storey.) It is shown that
at a given stage in the loading of the frame, the ratio a/ag

in one storey is very close to that of other storeys. The

(¥,
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overall magnifiers given by the frame magnifier method or
the overturning moment method agree closely with the exact
values of a/aa. The storey magnifier method is generally

le accurate. The ACI method is shown toc be the worst and

the errors are considerable. The above situation results

from the occurrence of vertical interaction (Sect. 5.3) in

weaker storey (storey 2).

It is of interest to compare the storey magnifier
method and the ACI method. Although both methods are
iﬁéliﬂedlté be accurate for frames with stiff beams, the
storey mJgnifier method is shown to behave much better than

ams. This is because

g

the ACI method in this case of weak

o

the ACI method requires the additional assumption of
idealized end-restraints for each column, as mentioned i-

Se~+. 6.7 (see Fi 6.16). For f, (from the exact a’'ag)

[Te]

lmes than 1l5, the errors of the values from the storey
"i1fier method are shown to be less than 7%, which may
iered acceptable in many cases. The errors of the
wever, are considerably larger than those 1 t

“orrnifier method,

the exa-t values o
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Bmax'°/‘0 approximation can be seen by comparing the a/gg
curves with those for HE/HDE and M;/Mg;. The end-moments in 7
the top two storeys are very close to a/ag as predicted
except M;/Mgp; in the top storey. To explain the discrepancy
of the exceptional case, the assumption of Mg = faMg (Fig.
6.15) made in Sect. 6.8.4 needs to be recalled. Although
the assumption that the ratio a/ay is equal in all the
storeys is fairly well satisfied in this case, the amall
value of M; in the top storey, which is about 1/4 of the
moment M; at the other end, is relatively sensitive to the
deviation fraé this assumption. The small value of M.,
however, plays a much less significant part in the design of

the column since the maximum moment in the column will

dominate the design.

(c) Completelx! weak beams

In Fig. 7.8, the deflection magnifiers from the
arrroximate methods for the shear-wall structure (Fig.
" .3(c)) are compared with the exact values of a/ay and
¥, M ;. The symbols P and EI (implied in N_) in Fig. 7.8

e
reter ¢ those in Fig. 7.3(c). An average flexibility

[Te]

t+ ¢+ r »f 1.0 was used. The ACI method is unable to harile

s *vpe of structure, and therefore it is not shown in the

;e . Note that this structure (Fig. 7.3(c)) can te
A rivTel asina the molified jrerartive ~orb 0
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agree very well with the exact values of a/ag, while those
given by the overturning moment method are less accurate.
This is because the overturning moment method involves more
assumptions than the frame magnifier method, as mentioned in
Sect. 6.6 (see Fig. 6.16). The storey magnifier method is
not acceptable in this case.

The values of the moment-correction factors are equal
to 1.0 for this case, and therefore the column moments are
assumed equal to f My. As explained in the previous case
(Fig. 7.7), the smaller values of mamgngg;are less
accurate. The largest error occurs at the top storey in

base.

which M, is about 1/6 of the moment at th
Nevertheless, for fs < 1.5, the error is less than 8% which
may be considered acceptable due ta its small value relative

to the bottom moment in the case of a shear wall.

7.3.4 Concluding remarks
Several conclusions can be drawn from the above
ves*igation for the low-rise structures studied:
wWren the beams become more flexible, the values of
a ac, 1n all the storeys tend to be closer.
¥'r a structure without any distinct shear walls,

e st rey magnifier methris! may he used with

"
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3. For a structure with distinct shear walls, the frame

magnifier method may be used with sufficient

=

accuracy if fg is limited to be less than 1.5.
7.4 High-rise multistorey structures
7.4.1 Problems and structures studied

This section extends the investigation stated in Sgct?;
7.3.1 into the realm of high-rise structures. It is
apparent that there is little need for further study on
structures with strong beams which can be handled
effectively by the storey magnifier method or the ACI
method. Therefore, the emphasis in this section is given to
structures with weak beams. The following five structures
are considered:

Structure A (Fig. 7.9) - This 24-storey frame is
characterized by a constant beam size throughout the
height. As a result the relative stiffness of the beams is
smallest in the lower storeys. The exterior columns in the
bottom storey are bent into single curvature.

Structure B (Fig. 7.10) - The 24-storey frame ie
attached to A shear wall of constant stiffness. It :c
interest to observe th% effect of the shear wall-frar.
‘nteraction, and therefore the shear wall is made qui‘e

Tlexitle. It carries about 50% of the latera)l lcais.
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half of that for the lower half of the shear wall.

Structure D (Fig. 7.12) - The 24-storey frame is
attached to a discontinuous flexible shear-wall. The upper
eight storeys are not attached to the shear wall.

Structure E (Fig. 7.13) - This 24-storey frame is
characterized by very strong columns (or very weak beams) in
the lower storeys. The columns in the four bottom storeys
are bent into single curvature as shown by the first-order
bending moment diagram in Fig. 7.13. In the region of the
lower storeys, the strong columns are essentially
indistinguishable from a shear wall.

In the analysis of the above structures, the effects of
the joint width of the shear wall were neglected by the use
of hinged link beams. This assumption does not introduce
serious errors because the load effects will be non-
dimensionalized by dividing by the first-order load effects.
As a result, the errors due to neglecting the joint-widths
in both load effects are offset.

1.5 was established in the

[y
[
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Treviois section, the loadings were selected so that the
“iest values of f_ would be in the vicinity of 1.5. For
s*: ictures and the loading selected, all the columns are

sway columns, and therefore the maximum moment in

"

-surs at the end, 1i.e., Mmai = My. In all cases
t--orrection factors for the strucures studied were
A1 *herefore the ¢olurmn morents 1n the

~ = T -

rrlvses have beer nma s Cohe eqial to f Mg,
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7.4.2 Results

In all cases the average flexibility factor y has been
taken equal to 1.05 in the approximate methods in these
comparisons, except that y = 1.20 was used in the bottom
storey in the storey magnifier method to recognize the fixed
base of the columns.

The results for structure A are shown in Fig. 7.14.
The bounds of M;/Mg;, which are not shown in the figure, are

lar to those of HE/HDE shown in the figure. Similarly,

e

sim

a/ag alsb follows closely with My/Mg,. It is apparent from
good results. The ACI method also gives good results except

at discontinuities such as at the bottom storey, and at the

storeys where the column stiffness changes abruptly. The
discrepancies, obviously, are due to viclation of the .
assumption regarding the vertical relationship made in the
ACI method. The frame magnifier and overturning moment
methods are unacceptable in this case.
The results for the frame in structure B are showr i:n
£}

Fig. 7.15. The values of M;/Mgy;, which are not shown 1:.
fiiure, are similar to those of M;/Mg,. From Fia. 7.17,
~ar. he seen that the values of a/ag are very close 1n

"w storeys. The overall magnifier given by the frare

vm1fier method or the overturning moment method aqares

Wt . w3t the vy 5 | 1 & The gt "re mann: £
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The bending moments in the shear wall of structure B
are shown in Fig. 7.16. In this figure XQH is the sum of
the overturning moments of the lateral loads about the base
of the structure. The results predicted by the frame
magnifier method (or the overturning moment method) agree
sufficiently well with the exact solutions. The accuracy of
the storey magnifier metho& is good except at the bottom
levels at which the bending moments are largest.

For structure C, the results from the approximate
analyses are compared with the exact a/ao in Fig. 7.17. The
values of a/ap are also}considered representative of the
moments in the columns and in the shear wall. Similar to
the observations for structure B, the frame magnifier method
or the overturning moment method gives gcceptable results,
while the storey magnifier method gives less accurate
results.

The results for structure D are shown in Fig. 7.18.

"r *the upper part of the structure which does not have the
svear wall, the storey magnifier method gives very good
e lts. For the lower part which is attached to the shear
'+ frame magrnifler or overturning moment method g
s 1martes .
e resiits for structure E are shown in Fia. 7.19.
st reys where the columns are bent 1in s.:

T et res T rn it ier et ne e
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points occur within each storey, the storey magnifier method

gives reasonable results. The ACI method errs considerably

at the storeys where the column stiffness changes. The
frame magnifier or overturning moment method is not

acceptable for this case.

7.4.3 Concluding remarks

Two specific conclusions can be drawn from the above

study for high-rise structures subject to fg < 1.5:

1. 1If an inflection point exists at or between the

ends of each column in a given storey, the storey

magnifier method may be used for that storey.
2. For a structure with a distinct shear wall
extendipg from the base to the top of the
structure, the frame magnifier method or thre
cverturning moment method may be used.

!¢ s aprarent that tke above two conclusions are very

s:7ilar ¢t thcese made in Sect. 7.3.4 for low-rise
- ¢ resg
e +terr 'lilstinct shear wall' is mentioned above
e . T.1.4. A distinct shear wall 1s defined tere
tt ver+ri-al elerment which has only one point of
AT N RS T N W S B It als~ in-~ludes the cc-

~ w0 crere 18 no point of contraflexure (Fia. 7.3(«¢

ISR D s -



magnifier, frame magnifier, overturning moment and ACI

methods can give generally good results.

7.5 Proposed methods

The proposed methods

are as follows:

1 L]

If an inflection point occurs at or t

g

tween

ends of each column in every storey of the

and the corresponding conditions

the

%]

structure, the storey magnifier method may be used

provided the maximum value of fg in the structure

g8 less than 1.5.
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chapter, the stdérey magnifier method can also be used for
this type of structures provided the conditions stated in
the above point 1 plus the condition that the sway
deflections due to the axial deformations of the columns are
insignificant relative to the flexural deflections are
satisfied. In the case that the sway deflections induced by
axial deformations of the columns are dominant (commonly
called cantilever action), the storey magnifier method,
which assumes that each storey behaves independently of
other storeys, may not be applicable becahse the increase jin
the axial forces in the bracing elements in one storey due
to the geometric effects will increase the axial
deformations of the columns in the other storeys. 1If
cantilever action dominates, the modified iterative method
or modified negative brace method should be used and the
effect of axial deformations should be included in the

analysis.



8. PROCEDURES FOR SECOND-ORDER ELASTIC ANALYSIS
i
8.1 Introduction
Once sway moments and non-sway moments have been

computed in a frame, they must be combined before the
columns can be designed. The major difficulty arises from
the fact that the column end-moments in the non—swa; frame
are not exactly known (Sect. 4.5.3). A rational method,
which is more accurate than the current design approaches,
will be proposed in this chapter. The effects of
deflections due to gravity 1load moments and out-of-plumb -
construction will be included in the second-order analysis
in a practical way. The balance of this chapter summarizes
the findings and observations from this study in the form of
step-by-step procedures for second-order analysis, and
proposes modifications to the current ACI Code (1977)

procedure if the current effective length approach is

desired to be retained.

8.2 Combination of non-sway and sway moments
B.2.1 Current approaches
Rasically, there are three current approaches of
“ranina the non-sway and sway moments. The first approach
s tte ore recommended 1n the current ACI (1977) gr AISC

e LU AN 1T A moarernt,



M = £« (M. + M (8.1)

‘max 8 " 'Ons DE)Z
where f, is the sway magnifier, Mg,, is the first-order end-
moment of the column from the non-sway analysis, and Mgg is
the first-order end-moment from ‘the sway analysis. Note

that the summation of the two end-moments is per formed at

the two ends, denoted by the subscript 2, is used. This,
obviously, is not a rational approach because the sway
magnifier is only applicable for Mg, (Chap. 6).

The second approach, suggested by Gouwens (1976), is to
and

combine directly the non-sway maximum moment, Mns ,max’

the sway maximum moment, Mg ..., Of a given column, namely:

(8.2)

4

.y = M o+ M ,
ma x ns,max s,max

two maximum values must be greater than or equal to the
actual maximum moment. The same approach is suggested by
Ford, et al. (198l1) for reinforced concrete columns. This
approach, - however, may be overconservative in éértain cases
when the two maximum mamEﬁtg-@ciur in different sections and
the two values are comparable. This will be demonstrated in
Sect. 8.2.2.

The third approach is based on the assumption that C

and S effects can be neglected. As a result of this
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enl-moments are equal to the firs: -



order values. The sway end-moments can be obtained from the
approximate methods of sway analysis by considering the
flexibility factor and the moment-correction factors all
equal to 1.0. This simplification is consistent with the
assumption that the C and S effects can be neglected.
Consegquently, the ené;mcments of the non-sway and sway
frames can be added algebraically at each end of the

column. Once this is done, the maximum moment in the column
with the known end-moments can be determined as inga pin-
ended column (Sect. 4.5.2). This approach can be expressed

as:
(8.3)

where fg; Mgy is thwy, end-moment from the approximate method

-

of second-order analysis for sway frames and the subsacript
refers to y = 1.0. The term & is the moment magnifier for a
pin-ended column, and can be determined according to Eg. 4.2

with Mg equal to the sum of Mong and f Hogg This approach

appears to be first mentioned by Iffland (1972) for use with
the iterative method (Sect. 6.1). MacGregor and Hage (1977)
also adopted this approach for use with other approximate
methods of second-order analysis.

According to the principle of superposition that the
load effects should be superimposed at the same®section, the
third approach (Eq. 8.3) is more rational than the second

one (Eq. 8.2). Nevertheless, the second approach can take
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into account the C and S effects, which the third approach
cannot. The approéch proposed in the next section is
similar to the third one, satisfying the principle of
superposition, while an attempt will be made to include the

C and S effects.

8.2.2 Proposed approach
A method of combining the non-sway and sway moments is

developed schematically i; Fig. 8.1. This procedure is
conceptually similar to that shown in Fig. 6.15 in deriving
the moment-correction factors. A frame subjected to
external moments, lateral loads and column axial forces is
shown in Fig. 8.1(a). In Fig. 8.1(b) the same frame,
subjected to external moments only, is braced against sway
with lateral deformations, a, equal to those in the original
state of loading (Fig. 8.1(a)). This frame can be
decomposed into a non-sway frame subjected to external
moments and a laterally deformed non-sway frame with forced
deformations a, as shown in Fig. 8.1(c). Therefore, it «a:
e seen that the column end-moment of the frame in Fig

.Y} 1s equal to the sum of Mong and My. The term M
- sare as 1in Fig. 6.15, and therefore it can be obta:... .

.

ter trhe modified iterative method or the modified nega* :.+
e reth ol For nther second-corder analysis methods w'.@ -

-
'

cre el e v o mamflier f M. 1s asc med e Al ¢

ley o+ + < 4 v v v vy s vy e N~
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Fig R 1 Schematic development of the proposed approach tor c by
the non-sway and sway moments
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7.5), the general term My will be replaced by f My which
corresponds to the definition of the moments from the
modified iterative method or negative brace method. When
the frame in Fig. 8.1(b) is subjected to the column axial
forces (Fig. 8.1(d)), the resulting load effects are

identical with those in the original state of loadin

[ ]

Therefore, it can be seen that the maximum moment Mrma x in a

column can be given by:

M =5 © My ¢ £ .Mog) (8.4)
where 6ns is the moment magnifier for the restrained non-
sway column with given first-order end-moments. The
approximate formula for 6ns suggested in Sect. 4.5.4 (Eq.
4.27) is used here with Mo equal to the sum of My,. and
fgMpg- Note that the summation is performed separately at
each end of the column and the numerically larger value for
*he *we enis (denoted by the subscript 2 in Eq. B.4) is
"Litarpiied by éns .
T.e retically, the approach developed in the ab v«
.% .. assumptions other than those required in tt.«
x1vate methods for the analysis of non-sway and swa*
TraTees . In other words, if 6ns and f_Mp, were exact ir

non-sway anl! sway analysis, respectively, the value ¢ M.

.4 woull alsn be exact . Fror (harter 4,
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conservative. This is the major source of errors in this

approach, and will be discussed in the following paragraphs

for two cases. First, the limiting case of Mons equal to

zero is considered. Second, an intermediate case with Mons

is studied. It should be noted that the

When M., is equal to zero, éns theoretically should be
equal to the moment-correction factor Bnayx defined in Sect.

6.8.3. Compared with Bhax 9iven by Eqs. 6.53 to 6.56, &

or greater than 1.0 while B_,, is less than 1.0 in some

casgses. On the other hand, éns is simpler to calculate than

[wn]

max‘ In the same manner as Brax’ éﬁs takes into account

the possibility that the maximum moment may occur away fraom

he end for a heavily loaded column. Note that end-

rt
2]
m

rotational restraints of the beams implied in éﬁs is

[
I
.

o

=

s+ +his has been shown to be a desirable assury*:

t. 6.8.4.
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f°7v a reavily loaded co e
F: the case of My, . equal to Mog: the proposed
¥ 1s exarined with the help of an example showr 1

“... The exarple 1s intendel! to represent a typica

“riorocolurn in a large multistorey frame. The columr

TettioaL.y restrained with end-restraints defined by

*te . -sway analysis anl! 6 Fly 'Ip 1 the sway
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\
moments, and therefore the maximum non-sway moment always
occurs at mid-height. The maximum non-sway moment Mns,max’
which is non-dimensionalized by dividing by the first-order
end-moment Mgy,.. is plotted in Fig. 8.2(a) as a function of
the column axial force. Using the same concept as in the
moment-correction factors (Sect. 6.8.3), the ratio
Mg, max/ £sMOs for the eway column is also shown in Fig. .
8.2(a). For the range of axial forces considered, the
maximum moment Mg,max occurs at the end.
In Fig. 8.2(b), the results of combining the n§n=swa§

and sway moments are presented for Mons = 'Mpg: The sway
magnifier fg is kept equal to a constant value of 1.5 as the
axial force increases. This implies that the column sway
deflection is held constant as N/NE varies as was done in
Sect. 5.2.2. From Fig. 8.2(a), it can be seen that the non-
sway mo&ent magnification ranges from 1.0 to about 2.5. The
results from the direct combination of the non-sway and gway
Taximum moments (Eg. 8.2) and the proposed approach (Eq.
~.4) are compared with the exact maximum of the combine?

Terts, M in Fig. B8.2(b). 1Initially, the maximur

‘max’
me:.* decreases as the axial force increases althougt -+
- sway maximum moment increases from the ocutset. This 1-

tecacse the maximum of the combined morment still occurs at
"o end, even though the non-sway end-moment M__ is

ns

istel by +he axial force. With further increase 1 ¢



shown inWig. 8.2(b) where M,,, departs from M,.
Thereafter, the maximum moment increases. This whole

process is completely ignored by the direct combination of

[n]

[+ 7]

the non-sway and sway maximum moments, which is extremely

conservative for this case. The proposed approach, which

theoretically takes into account this process, gives much

r‘l'
]
r*

better results, although it too tends to be conse
certain values of the axial force
As a conclusion, it may be stated that although the

- proposed approach gives somewhat conservative results, it is

g

ore rational and more accurate than the current approaches

Jl, S,

(Sect. B.2.2).

8.3 Deflections due to gravity load moments
In Sect. 2.6, where the principle of superposition was

iscussed, it was shown that the holding forces resulting

fror the gravity load moments in the non-sway frame (Fig.

7 mus* be added to the actual lateral loads when the sway

'2"e 158 analyzed. The holding forces are assumed herein to

#:.al to those from a first-order

"
m\

lysis of the nor-
'~y frare, thereby neglecting the C and S effects. Thris
s it iornn 18 based on the normal condition that the
"rernal moments resulting from the holding forces are «

>ad moments or the gravity [ 1

m

"parel 1. the lateral 1

€0 e I L L Y - B TR O S-S O SR T
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Frequently, it is more convenient to perform a first-
order analysis for gravity loads without bracing the
structure against sidesway. The results of such an analysis
can be used in the load superposition by following the
procedure described belpw. For simplicity, this procedure
is derived using a single-storey frame, but it can be
generalized to apply to multistorey frames.

A single-storey frame, subjected to external moments
only, displaces a distance aog - It is then braced against
"further sway while the column axial forces are applied, as
shown in Fig. 8.3(a). The first-order moments in the
resulting non-sway frame are those obtained from a first-
order gravity load analysis of the frame without bracing the
structure against sway. This frame can be decomposed into
the two frames‘shown in Figs. 8.3(b) and (c¢). The frame 1in
Fig. 8.3(b) is a non-sway frame, subjected to external
roments and column axial forces, with a zero displacement at
‘ne Joint. The holding force in this frame is denoted by
“ .. The frame in Fig. 8.3(c) 1is a non-sway frame, subjec* « !

tumn axial forcés, with an 1mposed displacement of a

*Ye toint. The holiin: force 1s denoted by V. In t':s

~1y, *he holiing fc: . U oot e crr ol frare (Fial
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For the frame shown in Fig. 8.3(c), the column axial
forces are assumed to be replaced by a horizontal load equal
to (ZyN/L)aog'(Fig. 8.3(d)) where I denotes summation for
all the columns in the storey. This can be derived based on
the same assumption and method as in the modified iterative
method (Sect. 6.2) except that a is replaced by apg
Consequently, the holding force V (Fig. 8.3(c)) is assumed

equal to:

—_ - _ IE.
Vo= Vogq (2 ) 20g (8.6)

where Vg, is the first-order value of Vg (Fig. 8.3(b)). By

substituting Eq. 8.6 into Eq. 8.5 and making the assumption

that V. = V. as discussed before, Vo 1s therefore equal to:
= - YN
= T3 a5, (8.7)

v+ rrorizontal force which must be added to the
3. .ateral loads in the sway analysis. To apply Eqg. ».
meltistorey frame, the holding force V4 should be

»1 18 hnlling shear which is added to the lateral lo:

the sway analysis. In other words, the total
4. .cal at a given floor level 1s equal to the actu
w3l Lcal plus the alagetralc sur of the holidina shear

PO S -
! o T o
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In the modified iterative method (Sect. 6.2), the

holding shears can be included more conveniently by writing

the modified N-a shear IV (Eq. 6.8) as:

Note that the term 'a' still represents the final value of
the deflection of the structure.

In the storey magnifier method (Sect. 6.4), the
procedure can be simplified. For a single-storey frame
subjected to the lateral load shear plus the %@éifiea N-a
shear as assumed in the storey magnifier method, the
deflection is directly praéartianal to thé-hafizantal load
arrlied at the joint. Noting this condition, the following

» .30, tasel on Egq. 6.33, car Ye derive i

] 0:
- £ + (f - l) .z { ¢ 3
s! st a
1
v T
NI
- -
¥
S goand TV repr e e e s T ler at "
: H !
1 Al the tntai st rey slear, respectively,
'votre actal lateral l-als B - Ssirmilarly
LM L it tre ama velg tor tYe osay frare g5 ce
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a.
M, f o+ (£ - 1)+29
s Os aH sH asy

(8.11)

X
[ ]
e
™
+

] Moy

where Mgy is the moment from a first-order analysis of the
frame subjected to the actual lateral loads H only.
Equation 8.11 is also applicable for the ACI method (Sect.
6.7) except that f,y is equal to fy given by Eq. 6.45 (or
Eq. 6.47).
8.4 Out-of-plumbs
In real structures, the centroid of the top of a column
frequently is not directly over the centroid at the other
end due to construction errors. In other words, columns are
frequently 'out-of-plumb'. As a result, the gravity loads
acting through the initially inclined columns generate
additional forces within the structure. Although the
current ACI Code (1977) does not require consideration of
*tis effect, other design requlations do. Beaulieu and
“tavs 11977) have done an extensive review and investigation
"vis area. Based on their work and limited measurement
‘Tete structures, MacGregor (1979) has proposed a
v.iie lesia formula for the magnitude of the out-of-plumbs
wriorete gtructures.
es13n purposes, all columns in the same storey are
*te same Jdirection with the

T



inclusion of the effect of out-of-plumbs in the second=-order
analysis is derived in the following paragraph.

joints of a structure can produce the prescribed initial

umbs . It is understood that the first-order

(o]
et

out-of-p
moments caused by these fictitious external moments do not

xist, and therefore only those caused by the column axial

La,]

or

La |
N
"

es acting through the out-of-plumbs are considered. The

methodology follows the one for the gravity load defléctions
(Sect. 8.3). 1In Fig. 8.3, t;e term agg is replaced by ag,
which denotes the initial out-of-plumb for any storey.
Consequently, the holding shear, which should be added to
the lateral load ;hear in the sway analysis of an initially
unde formed stfucture;ris equal to (LVN/L)EDP for a storey.
Note that the real first-order moments in the non-sway frame

(Fig. 8.3(a)) with the lateral displacement equal to agp are

zero. The additional moments caused by the column

)]
wd
=
[+
[
Tl
[a]

axial forces in the non-sway frame are assumed negligible.
In short, the out-of-plumbs are included in the

analfsis in the same way as the gravity load deflections.

In other words, the term a0g in Sect. 8.3 is simply replaced

by (apg + agp) in the sway analysis.

[
o

Summary of the proposed procedures for second-order

analysin
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8.5.1 'Introductory reamarks
This section summarizes the proposed procedures for the
second-order analysis of an elastic structure subjected to
gravity loads and wind loads. The essential equations will
also be repeated. While the approximate second-order
analysis is based on the modifications to the first-order
analysis, the first-order analysis should include the

effects of axial deférmgtiaﬁs of columns, foundation

””” finite joint widths. The
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resistance factors (¢ factors) will not be mentioned in the
following procedures, but the ¢ factors should be included

in design according to the design regulations.

B.5.2 Storey magnifier method
The storey magnifier method is used subject to two

conditions:

l. An inflection point occurs at or between the ends

of each column in every storey of the structure

when it is subjected to lateral loads.

The maximum value of the sway magnifier f, in the

L%

structure is less than 1.5. For this case, f, is

equivalent to f,, which will be defined later.

A second-order analysis based on the storey magnifier
involves the following steps:
l. Analyze the structure for gravity loads to compute
column end-moments Mog: column axial forces N@gg
and relative deflections a0g in each storey.



Analyze the structure for wind loads to compute .
column end-moments Mg, column axial forces Ng,.,
relative deflection ag, in each storey, and the
storey shear ZVHQ

Estimate the deflection magnifier f_, for each

storey:

]
£ w1 (8.12)
BW (ETN/L)EDw i
l -— .
’ LV
w _
where y can be Eanservati§ely taken as 1.15 or :

roughly estimated from Table 6.2. If a more

r
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formulae in Table 6.1 can be used. Note that in
the case of an inclined bracing element, N is the
vertical force camp@nentjaf the axial force in the
bracing element (positive for compression), L is
the vertical projection of the member length,

and y is equal to 1 for the bracing memberk The
same definitions are used in the modified iterative
method or the modified negative brace method for
inclined bracing members.

Determine the modified deflection magnifier ?s for

each storey: «

7 ao, * 7@,,
. "0p o
£, = £, * €, - 1) ———F (8.13)



259

' Determine the column axial forces N:

(8.14)

If the values of N given by Eq. B.14 are too
different from the estimates of N in the deflection

magnifier f,, (Eq. 8.12), go back to step 4 and

‘iterate.

Determine the maximum moment Mna x in each column.

First, by defining:

Mel = (MOg + EEMQW)l (8.15)
- Q

where subscripts 1 and 2 refer to the individual
ends of a column, and M., is numerically larger

than M,;. The maximum moment is then given by:

Mmax = 6ns Mez 7 (8.17)
where
1 + 0.253“3 . 7 B )
6ns = T = Cm > 1.0 (8.18)
ns
C = 0.6 + 0.4 rE > 0.4 (8.19)
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x’E1

(k gL)"

|

ns

and the effective length factor k,g 18 the lesser

of:

kna = 0.7 + 0.05 (Gl + GE) £ 1.0
(8.20)
k = 0.B5 + 0.05 G_ < 1.0
ns 8
where Gg is the smaller of G) and G,. Note that if
the far end of the beam that is framed into the »

column under consideration is hinged or fixed, the

Ing

beam length should be multiplied by 2/3 or 0.5,

correspondihg

respectively, when calculating th
value of G.

Magnify the wind load moments in the beams to

equilibrate the column end-moments, Mg, given by:

M = B, 'EBH (8.21)

sl Owl

where B; and B; can be conservatively taken as 1.0
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or the values given by Eq. 6.65 (with g, given by
Eq. 6.56) and Eq. 6.66, respectively, with ¢
replaced by G. Note that Mg,o, is numerically
larger than Mg,,) for a given column.

The relative deflection, a, of any storey is equal

to:

(8.23)

nl

s 20w

If the structure includes inclined bracing
elements, the axial force F in a given bracing

element is equal to:

F = Fag + ‘f‘g Fow (8.24)

where FDg and Fq, are the values from the gravity

load analysis (step 1) and wind load analysis (step

=

Y-

2), respective
Because of different load factors, it is often
necessary to consider the loading case involving

gravity loads only. With due attention to the

difference in load factors, the steps in this case
follow essentially the same as above, except the
modified deflection magnifier ?E which should be

written as:

a. + a
¢ o= (fF - 1) ;gi_?__QE (8.:29)
8 BwW a.

Ow
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Note that the wind load effects, Moy« ZVH and ag,,.

r

which are available fram the wind load analysis

(step 2), are fictitious for this case.

8.5.3 Frame magnifier method

The frame magnifier method is used subject to two

1. The structure includes a distinct shear wall
extending from the base to the top of the ‘
Btructure.

2. The sway magnifier fg is less than 1.5.

A second-order analysis based on the frame magnifier
method involves the following steps:

1. Follow steps 1 and 37in the storey magnifier
method .

2. Analyze the structure for wind loads plus the.

- , p
P hor ieontal forces H, given by:
Hai ™ Va,i ~ Va,isl (8.26)
where

for H_. and

The subscript | refere to floor level a

storey level for V,. The storey below floor i is

storey i. From this analysis, the column end-
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moments Mp,, column axial forces Ny,, relative

deflections apg in each storey, and the storey

~ shear ZV‘ can be obtained.
3. Estimate the overall magnifier

f = —

-3 n 7\ 2
£ (IyN/L), a,_

L . i=1 1 0si (8.27)

= —
r (tvV.), a._
{=1 8’1 "0si

where n is the total number of storeys in the
structure.
4. Follow steps 6, 7, 8 and 9 in the storey magnifier

method with f_ replaced by f, and subscript w
replaced by s. "'Note that in step 8, the wind load
moments should be replaced by the lateral load
moments .

5. \For the loading case involving gravity loads only,
follow the Bame procedure as above except that the

wind loads are neglected in step 2.

8.5.4 Modified jterative method

The modified iterative method (or the modified negative
brace method, which gives essentially the same results) is
recommended, when the structure cannot be handled by the
Btorey magﬁifié% method or the frame magnifier method.

A second-order analysis based on the modified iterative

method involves the following steps: )

;



method.

Analyze the structures

forces Hg given by:

where

-
Z

I\

T, = (5 E9a, *feog * oop)

L

for wind loads plus the sway

(E;ZSS

where a_ is the storey deflection from the previous

iteration. 1In the first iteration, ag is equal to
Sl
agg which is the Btorey deflection produced by the

wind loads plus the sway forces Hg (Eq.

~which the values of a,

are equal to zero.

a

converged. From the final iteration, th
i

end-moments Mg, the column axial forces

others can be obtained.

8.28) 1n

The

nalysis is jiterative until the values of a, are

e column

Ns and

Follow steps 6 and 7 in the storey magnifier method

with ?SN replaced by

Ow
Hﬂ .

The column end-moments

Ng, and ?SHQH rep

in the sway frame

laced by

are equal
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which are basically the same as Eqs. 8.21 and
8.22. 1If B); and B, are taken as 1.0, the end-
moments in the beams are equal to those from the
analysis in step 2. If more economical values of
B; and B, are used (Egqs. 6.65 and 6.66), the
moments in the beams (from step 2) can be reduced
accordingly.

2+ The deflections of the structure and the axial
forces in the inclined bracing elements (if any) .

from the direct superposition of

gravity load analysis and the
horizontfal load fanalysis in step 2.

loading case involving gravity lgads.@nly,
follow the same steps as above except that the wind

loads are neglected in step 2.

B.5.5 Modified negative brace method

The modified negative brace method is an alternative to
the modified iterative method. A second-order analysis
based on this method follows the same steps as given for the
modified iterative method except step 2 which should be
~hanged to:

2. Analyze the structure with an inserted diagonal

'race of negative AE given by Eq. 6.29 (Sect. 6.1

1n each storey for wind loads plus the horizontal



forces H, given by Eq. 8.26. The column end-
moments My, the column axial forces N, and others
are obtained from the analysis.

8.6 Proposed modifications to the ACI method

If the effective length approach for the design of

=y

slender columns is retained, the modifications to the
current ACI Code (1977) procedure proposed in this section
are desirable. In addition, the definitions of 'braced’
fggmeg and ‘'unbraced’ frames, necessary in the effective
length approach, will be discussed. The resistance factors
for slender columns will not be considered here but they
should be included properly in design.

{

8.6.1 Modifi

2

formulae

The maximum moment M_.. in a column is determined by:

4
[}
X

max Sne Me2 (8.31)

where & ] is a function of Ma1+ Mg> and others, as given by

Fgs. 8.18 to 8.20, and
(8.32)
M o=

Mog * TeMon)2

The term Mog i8 the firs* -orler column end-moment due to



[
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gravity loads, and Mgy is the first-order column end-moment
due to applied lateral loads such as wind loads. The
subscripts 1 and 2 refer to the individual ends of the
column. In other words, in each case the summation is

carried out at the same section of the column. Note that by

definition M,, is numerically larger than Ma1 . .

For a 'braced' frame, defined later, the value of fi is
assumed equal to 1.0. In most cases, Moy }s assumed
negligible for the *slender columns in the analysis of a
bracéd frame, but this is not necessarily so.

For an ‘'unbraced' frame, defined later, the value of

?s should be determined by:

o=+ (g, - 1) =P (8.34)
. OH -
-
where
-
1 ( £
fS = L TN o (% .35)
N
L fs
A
.. - anI
.“‘
P ()( L)Z .
fs PY
1 Kgg 18 the free-to-sway effective length fac¢tor, which

alignment chart in the ACI Commentary-. ‘The apprcximgtg
formulae for kg, given in the ACI Commentary (1977) can also

ne used. If the far end of a"pam framed into the column
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under consideration is hinged or fixed, the beam length
should be multiplied by 2 aor 1.5, respectively, when
calculating the corresponding value of G. The sign [
denotes summation for all columns in a storey. The term 30qg
is the first-order relative lateral deflection of the storey
due to the gravity loads, A0p is the assumed initial out-of-
plumb of the storey, and a,y is the first-order relative
lateral deflection of the storey due to the applied lateral
loads. Frequently, the second term in Eq. B.34 is small
enough to be neglected when compared to the first term, and
therefore f_ can be assumed equal to f,. Nevertheless, it
is felt that such sZmplifi:atiaﬁ should be left to the
designer's juéggment.

In the case of a structure with different column

heights in the bottom storey, the value of fg for the bottom

storey should be determined by:

(8.36)

For the loading case involvind gravity loads only, the

value of fs given by Eq. 8.34 becomes: ™.
1
— a + ED I R
fg = £y - 1) —5— - (8.37)
) OH

Neete that the wind load effects, Myy and apy, which can '«
**ained from the routine lateral load analysis, are

. '1t1018 Mere. : 5
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8.6.2 Definitions

braced frames and unbraced ﬁfiﬁ;},/

Lo, ]

In the effective length approach for sway frames (Eq.
8.35) it is necessary to be able to distinguish between
'braced’ frames and 'unbraced’ frames. This is elaborated

in the following.

Braced frames

Literally, a braced frame must include some type of

, . . i , . _
bracing elements. As indicated in Sect. 6.7, the effective

inadequate to handle a

length approach for sway frames i
frame with bracing elements. Consequently, for this type of
frame, it ies necessary that the sway deflections due to the
geometric effects are negligible. In other words, the
deflection magnifier f, must be close to 1.0. It should be
noted that fg can never be equal to 1.0 except when the
structure cannot sway under the action of external loads, or
when the columns do not carry any loads. These cases, of

course, Warely occur in actual structures. Nevertheless, it

is a common practice that a 5% tolerance in moments i
acceptable, and based on this a structure is assumed to be a
'braced' structure when f;, is less than 1.05.

Two types of bracing elements are considered separately

to derive a parameter that is used to limit fga ¢ 1.05. The

first type is & distinct shear wall extending from the base

to the top of the structure. The second type is truss

elements which are assumed pin-ended. Based on the frame

magnifier method (Eq. 8.27), which is applicable for a
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structure with a shear wall, a stability index Q, for a

shear-will structure is defined:

n . 2
7 1i1 (ZH/L)l a0ui o
g_ - 4 (8.38)
T (Zv.). a_
i=1 H'1 OHi

where EDH} is the first-order relative lateral deflection of

[

storey i, and LV 8 the total storey shear, both due to the

H
applied lateral loads. By assuming an average flexibility

factor Y equal to 1.15 (Sect. 6.2.3), f, will be less than

1.05 when Qg < 0.043. This can be rounded off to 0.04. It
has bégn tacitly assumed that the second-order sway
deflections due to the gravity load moments and out-of-
plumbs are negligible. In short, a shear-wall structure is

considered braced w&en Qg < 0.04,

For a structure with truss elements or inclined bracing

umed (as discussed in Sect. 7.5) that the

=

L

i

rt

elements, i as

storey magnifier method can be applied. By defining the
]

stability index Q. for a storey with truss elements,

(tN/L) a_., .
/ OH 4
R . .. (8.39)
t sz
F

and applying the assumptions similar to the above for shear-
wall structure, f, is less than 1.05 when Q. < 0.04. 1In
other words, a storey with truss elements is considered

braced when Q < 0.04. <
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The stability index Q, and the limit of 0.04 are
recommended in the ACI Commentary (1977) but Q, is also
recommended for shear-wall structures. As shown from
studies in Chapter 7, the parameter Q; is not suitable for a

shear-wall structure and the parameter Qg given by Eq. 8.38

Literally, an unbraced frame must not include any
bracing elements. Sometimes, it is, however, difficult to

distinguish a shear wall from a column. Hence, a more
specific definition of unbraced frames is suggested as
follows: A storey, without any inclined bracing elerents,
is considered 'unbraced' if an inflection point occurs at
the end or between the ends of every column in the storey
when the structure is subjected to lateral loads only. :

Obviously, this is similar to the condition specified for

the storey magnifier method (Sect. 8.5.2). It should be

noted that this definition of unbraced frames does not
guarantee consistently good results from the effective

length approach, as demonstrated in Chapter 7.

Nevertheless, tﬁis test indicates that if a storey is not
‘unbraced’', the effective length %ipraach for sway fr;m;; -

will give very poor results.



9. SUMMARY

The primary objective of this investigatiqn was to
dévelop approxl;::; methods fSr the second-order elastic
analysis of multistorey frames. The Pasis of the study was
an examination of geometrié effects on the behavior of
elastic m&ltiltorey frames subjected to gravity and lateral
loads. Because a frame under gravity and lateral loads can-
be analyzed separately as a non-sway frame and a sway frame
with the f;nal force resultants obtained by superposition,
this study was divided into three distinct parts: (a) non-
sway frames, (b) sway frames and (c) combination of load
effects from non-sway and sway frames.

The behavior of pin-ended columns and restrained non-
sway columns was examined to show how the geometric non-
linearity affects deformations, end-moments and maximum
moments, and to analyze the factors concerned. The
horizontal and vertical interaction of geometric effects in
adjacent bays or storeys of non-sway multistorey frames were
also discussed.

Approximate formulae for calculating the maximum moment
in a pin-ended column were derived and the effective length
design method was evaluated. In the effective length method
a restrained non-sway column is replaced by a pin-ended
column with its length equal to the effective length of the

actual restrained column. This pin-ended column is

subjected to thewfirst-order end-moments of the actual
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_ L - , .
restrained column. Based on these two separate studies, the

ACI deaigﬁ method for predicting the maximum moments in
single restfainsd non-sway columns was examined. The

assumptions required to extend the ACI method, originally

develéped for .single columns, to non=sway multistorey frames

and the problema involved in this method were also
¥

discussed.

Finally, modifications to the present ACI design
method for non-sway columns QZE suggested. (

The geometric effects in a sway frame can be separated
into two types: (a{rthe N-a (PA) effects which cause an
increase in the lateral ‘deflection and overturning moment in
a storey, and (b) the C and S effects which reduce the
lateral stiffness of a storey and cause a redistribution af
internal forces. A siﬁgleist@rey frame was used to
illustrate these two types of effects. In particular the
redistribution of internal forces due to the C and S effects
was g:amineﬂﬂusing a }aterally deformed non-sway column.

The vertical interaction between columns in successive
storeys was also discussed.

Various approximate methods of second-order analysis
far?sway frames were derived and the assumptions in each of
the methods were discussed. Aégarding to the assumptions
involved, the accuracy of approximate methods was evaluated

using single-storey frames, low-rise multistorey frames and

high-rise multistorey frames. Based on these studies,

certain calculation procedures are recommended and the

conditions limiting the use of these procedures are stated.
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A rational method f@riéaﬁbining the non-sway and swaly
moments is proposed. This method is more accurate than the
cufrentiéeéggn approaches. The proposed method entails no
as;ugptiaﬁ: other than those required in the approximate
méth@dg for the second-order analysis of non-sway and sway
frampes. A practical method of including the effects cf?sway
deflections due to gravity load moments and out-of-plumb

construction in the approximate second-order analysis was

o

derived. As a conclusion the recommended methods of
approximate second-order elastic analysis of frames
subjected to both gravity and lateral loads or gravity loads
only are summarized in the form of step-by-step procedures,
and the modifications to the present ACI Code (1977)
procedure are sujgested if %t is decided that the current
effective length approach fcr sway frames ghauldibe

retained.
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APPENDIX A

DERIVATION OF AN ELEMENT STIFFNESS MATRIX

Let u and v be the displacements parallel and
perpendicular to an element, respectively. The virtual work
equation for the element shown at the top of Fig. 2.(’can be
written as: A

-

J (EAu‘'Su' + EIv"sv")dx - [ Nv'sv'dx - <Q@>{sq) = O (A.1)
L L

Note that the second term in the above equation accounts for

the effect of geometry on the external work done by the

axial force N.

The displacements u and v may be approximated in terms

of the nodal displacements <qg> as

3

u = <;) <q1, q4>T . (A-Z)

v

and

v = <$> <q2, d3. Qg qG)T (A.3)

y

Standard linear shape functions are used for <¢> and cubic

shape functions for <¢>. The shape functions are expressed
)

in terms of the non-dimensional coordinate ¢ whicﬂ is

defined‘as §E = 2 % - 1. The shape functions are:

282
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o> = <- L (g-1) 1 (E+1)> (A.4)
‘ = 2 . 72 § . : VA- '

and

c

<o> = {% (§+2)(E=1)2, 3 (E*l)(E*l)zg

1, oy 2 2 , ,
7 (2-0)(E+)?, & (2-1)(£+1) %> (A.5)
-/
By differentiating the above shape functions, the
derivatives of Egs. A.2 and A.3 are obtained, before they
are substituted into the virtual work equation (Egq. A.1l).

After carrying out the integration and cancelling {6q}, Eq.

A.l caﬁ be written
(K] (q} = {Q

where the element stiffness matrix [K]) is given in Fig. 2.6.
The geometric stiffness matrix Eﬁgj results from the second

term in Eg. A.l.



APPENDIX B ’ .

DERIVATION OF EQUATION 2.11 IN SECTION 2.5

gf‘

The following derivation is drawn heavily fraom the work
of Horne (1962). Let u and v be the displacements parallel

and perpendicular to any -member respectively, and subscript

O denotes a corresponding firstamfﬁeriquaﬁtity- The

displacements can be expressed in terms of the critical

modes Eif ;i corresponding to the modified state of loading

shown in Fig. 2.8(b):
Ug = 'Z cDi uy 4 (B.1) -

Vg = i CDi vy , (B-2)

L]

u= ¢ Qi uy (B.3)

=
where Ch; and C; are magnitydes of the critical modes. The

orthogonal relations of the critical modes developed by

Horne (1962) are stated as follows: For i # 73,

L fﬁii dx = 0 (B.5)
m L )

__H n‘ L]
I [ EI 4, u, dx =0 , (B.6)
m L
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and similarly for v. The symbol I denotes summation for all
m
members, and L is the length of any member.

(a) Buckling of the frame shown in Fig. 2.8(b)

The strain energy U, during buckling in the i%h mode is -
~

equal to:

m
<

- 1 =" )
U, =" % | EI (vi)2 dx _ (
m L

The work W, done by the axial loads during buckling is given

[ - f

[N ()2 ax = 4 (B.9)

L kci
N
, . £’
where

£, = [ EI (v.)? ax  (B.10)

1 L 1

(b) Work done by the first-order load effects N
Let any external load P (Fig. 2.8(a)) be divided into
components S parallel and T perpendicular to the member.

Where a load is applied at a joint, it may be considered as

applied to the end of a particular member at that joint.



[ EI (v5)2 dx (B.11)

- \

and the work Wy done by the external loads is:

wyf =

g ™

W, = EL (u )1 +

0 0

o |

L
) |

where I denotes summation for all loading points. The total
1 =

potential energy My is given by:

(B.13)

=
W
-
I

z

Equation B.2 is substituted into Eq. B.ll, and the
orthogonal relation B.6 is needed to simplify the
equation. Then Egs. B.l and B.2 are substituted into Eq.
B.12, and finally Egs. B.ll and B.l12 into Eq. B.13.

According to the principle of minimum potential energy,

0 .o (B.14)

Eq. B.15 results:

- 1
W
fod
Mt
+

o 11
u—]\
<)
1}
\ﬂ\
-
m\
—
iy

0i

3 ™
(o

where f. is gi1ven by Fg. B.10, and subscrij;* . lenstes the
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ith critical mode.
(c) work done by the total load effects i

Similarly to Part (b),

U =7z %[ EI (v*)? ax (B.16)

The effect of geometry (flexural shortening) on the work
done by the axial force N introduces the last term in Eq.

B.17.

— = 0 (B.19)

By substituting the related equations into the above

formulae and applying both orthogonal relations B.5 and B.6,
ol )

the following equation is obtained:

(W), + T, (3,),) - ¢,/ N )% ax = 0 (B.20)
1 m L

By substituting Egs. B.9 and B.1l5 into Eq. B.20 and

rearranging the terms, the final result is derived, 1i.e.,
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