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Abstract

Offsite construction has become a viable alternative to traditional construction methods

by establishing controlled and automated manufacturing environments for construction

products. To reap the benefits of industrialized construction, manufacturing execution

and quality play an important role. However, most quality control processes remain

manual, relying on visual inspection and operator’s expertise. Automated manufactur-

ing processes in offsite construction facilities and their corresponding machinery would

benefit from smart manufacturing, information, and communication technologies to

control quality and, ultimately, reduce defects and optimize production.

This study presents a framework for the automatic inspection and quality as-

sessment of BIM-based construction products as a knowledge-based cyber-physical

system that bridges Industry 4.0 principles with zero-defect manufacturing and lean

techniques. The proposed methodology is based on the well-known 5C cyber-physical

architecture, adapted to a building information modeling environment. In this research,

light-gauge steel frame assemblies manufacturing is selected as the case study.

At first, a knowledge model for steel frame assemblies manufacturing is proposed

to link, at the design stage, product information, manufacturing operations, and

quality specifications. By enhancing building information models with the developed

ontology model, offsite practitioners can access quality information at the design

stage and prepare adequate quality control strategies beforehand. Then, a vision-

based cyber-physical inspection system is proposed that generates quality-related

information as required by the BIM model. The designed CPS system employs visual

sensors (cameras) to provide real-time inspection and quality control of the frame
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assembly manufacturing process, in addition to providing a platform for data storage

and future analysis of quality-oriented data. Finally, in an effort to integrate human

input and knowledge into the system, cognitive and supervisory roles are discussed.

The implementation of the proposed system enables quantification of quality issues,

as well as analysis of the source of defects in steel frame assemblies manufacturing.
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Quality is never an accident. It is always the result of an intelligent effort. There

must be the will to produce a superior thing.

- John Ruskin
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Chapter 1

Introduction

1.1 Background

During the last decade, offsite construction (OSC) has become increasingly popular

in North America as a viable alternative to traditional construction [1]. OSC refers

to a construction method that “brings onsite construction works into a climate-

controlled facility where advanced machinery and manufacturing technologies can

be used to prefabricate buildings in a standardized and efficient manner” [2] and

will serve as a platform to overcome the limits in growth, performance, quality and

productivity associated with conventional construction [3]. The growing attraction

of OSC from both industry and academia is explained by the shortened schedules,

higher efficiency, reduced waste, lowered health risks and physical extenuation of

the workforce, and increased productivity [4]. As modern markets impose mass

customization of products [5], OSC provides customers with the possibility of “one-of-

a-kind” flexibility. Given those benefits and combined with a stable and controlled

factory environment, digitization and automation of construction processes is in high

demand.

In an OSC facility, construction products are customized based on client require-

ments and various design parameters, as well as construction codes and specifications.

As such, the complexity of OSC projects lies on the number of professionals and

disciplines involved to manufacture the necessary components of the product. An
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established framework that would allow an input-to-output analysis of the OSC pro-

cesses at the project level, but more importantly, at the component level is still needed

[6]. In the past decades, Building Information Models (BIM) for OSC projects have

been developed to enhance design, improve data exchanges, and reduce waste [7].

However, limitations are encountered in the transition between the digital and the

physical worlds, and specially obtaining relevant feedback on the state of the project

[8].

Nonetheless, the implementation of BIM, a major unifying concept within the

construction industry nowadays, has been very important in raising awareness and

progressively changing construction practitioners mindsets, and the Architecture,

Engineering and Construction, and Facilities Management (AEC/FM) industry in

general, around the adoption of new technologies [9]. A swift transition to Construction

4.0, the counterpart of Industry 4.0 in the construction sector, seems necessary to

enable industry to move beyond the limits of the BIM approach as currently developed

[10]. The coming fourth industrial revolution, also named ”Industry 4.0”, presents

changes in manufacturing systems through integrated information systems, smart

technologies, and an advanced digitalization within factories [11]. Similar to other

industrial sectors, the OSC digital transformation is driven by a physical-digital-

physical connection enabled by the use of sensors, controls, augmented reality systems,

cognitive and high-performance computing [12] and finally allows to introduce different

technologies from the manufacturing domain onto the OSC domain [13].

Although digitization in the OSC sector is bringing improvements to quality of

construction elements, issues still remain. Given a recent survey in New Zealand, 68%

of new homeowners claimed that rework was needed in their homes at handover [14].

Moreover, it is reported that the cost of poor quality in offsite construction projects

remains high (8%-16% in New Zealand [14] and 8%-21% in the UK [15]). Quality of

construction outputs has always been criticized even with the great efforts that have

been done in the past decades to promote quality within the construction industry.
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Furthermore, evidence suggests the possible misconception that faster construction

time in OSC projects is a result of lower quality workmanship [16]. Considering that

most offsite practitioners identify quality as one of the main improvements when

switching from traditional stick-built to offsite construction methods [17], there is

a clear gap between the perspective of quality in offsite construction and the final

end-quality of the construction project as-is. Quality of offsite construction products

should be a selling point for the industry, however, that is not the case yet.

Conventional quality inspection methods in OSC facilities are manual, paper-based,

and error-prone. Such approaches are labor intensive and, sometimes, cost-prohibitive.

Moreover, manual inspections are typically based on sampling: a slow process that

opens up the chances of mistakes going downstream as only a few selected products

are inspected. Overall, the effects of relying on manual inspections for quality control

potentially suppose a loss of material due to defects, loss of production time, and

inefficient quality resolution actions. To improve quality of products and mitigate the

impact of defects in the production line, online automatic inspection has been promoted

in academia and industry alike [18]. A real-time quality control approach that has been

widely adopted by several industries, specially manufacturing, is computer vision [19].

Computer vision seeks to mimic human perception through the use of visual sensors.

These visual sensors and their corresponding systems are responsible to generate rich

data-sets that would enable an accurate digitization of construction components in

real-time. Such information would enable automated assessment of the quality of each

product within the production line, as well as support the mitigation or elimination

of defects during production.

In summary, quality control procedures in offsite construction facilities need to

be adapted to the new paradigm, introducing digital technologies, automating the

inspection systems, and providing quality engineers access to smart tools to trace

defects from the bay to its source. This thesis aims to research the development of a

framework that supports comprehensive inspection of offsite manufactured products
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that mitigates of the negative effects of defects in the production line and enables

a continuous improvement culture towards eliminating defects in the shop floor by

involving all the effecting agents of the end-product quality.

1.2 Motivation

One of the major concerns for the construction sector in the following decades is the

stagnant productivity. With current labor shortages and increased costs, workers’

health and safety or product quality may be compromised to compensate productivity

numbers. Regarding quality, a possible solution is the integration of automated

processes in the construction environment. Although adaptation of automation in

construction has been a slow process, principles of industrial automation are applicable

to this domain, especially in the prefabrication of construction components [20]. With

the development of intelligent automated systems within academia and their practical

implementations in other industries, such as automotive [21, 22] or aerospace [23],

the introduction of intelligent inspection systems to the offsite industry can be a step

forward towards a quantifiable increase in the product quality.

However, several challenges would need to be addressed in order to reach such goals:

� Production quality is a complex problem that is intertwined with many other

factors. To provide a comprehensive quality control procedure that considers

all potential sources of defects, information from those sources needs to be

accessible from a common framework. The information exchange regarding

quality in the context of offsite construction and its information workflow would

need to be researched to integrate in an automated manner the constraints of

quality specifications.

� Quality data is often generated via inspection systems. To have a continuous

flow of such data coming from offsite construction production lines, automated

inspection systems are required. Following other industries’ trends, vision-
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based algorithms need to be developed to accurately and contactlessly inspect

prefabricated construction products.

� Quality control procedures make use of inspection data to ensure conforming

products out of the production lines. Decision support systems can help machines

or operators to determine an optimal course of action to deal with potential

defects. Developing such decision support systems for offsite construction would

enable the mitigation and elimination of defects from the manufacturing phase.

� Certain actions need to be taken in order to mitigate the impact of defects

in the end-product. In cases like offsite construction, defects can be easily

addressed if they are detected on-time and rework procedures are in place. An

integrated system that monitor and control rework operations would be required

to maintain control over the quality of the end-product, and assist in eliminating

defects on the production line.

Regarding steel framing, it represents the most challenging engineering problem to

practitioners nowadays [17]. This is due to its various design patterns and assembly

complexity when compared to other options, such as wood-based frames. The inherent

complexity of steel frame assemblies presents a complex scenario for the various quality

control procedures needed. As an example, Figure 1.1 shows common quality issues

in light-gauge steel frame assemblies.

The following section explicitly addresses the research objectives presented in this

thesis based on the existing gaps in the academic literature and industrial practices.

1.3 Thesis Objectives

The main objective for this research is stated as follows:

”Provide an integrated framework for automated quality control and assessment of

steel frame assemblies manufacturing in offsite construction facilities”
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Figure 1.1: Example of potential quality issues in steel frame manufacturing. Left :
image of a finished non-squared frame. Right : image of a finished frame with a missing
screw.

As such, this research objective includes the following tasks (OX):

� O1: Develop a knowledge model to support automated identification of qual-

ity specifications within a BIM framework by formalizing the link between

construction-related products, manufacturing processes, and quality constraints.

� O2: Develop novel computer vision and machine learning algorithms for au-

tomatic offline/online real-time inspection of steel frame assemblies at its pre-

manufacturing, online, and post-manufacturing stages.

� O3: Develop decision-support and monitoring systems based on inspection

results for quality control operations in steel frame manufacturing.

� O4: Provide a smart approach to integrate and monitor rework operations in

offsite manufacturing of steel assemblies.
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1.4 Thesis Outline

This chapter provided a concise statement on the current state of offsite construction,

focusing on the limitations in light-gauge steel frame assemblies manufacturing, and

the motivations for undertaking this research. A brief statement on the objectives of

this thesis is also presented in this chapter.

Chapter 2 is a general state of the art summary on the main topics covered in this

thesis. First, the main contributions in the area of Construction 4.0 are discussed,

including building information modeling, knowledge modeling, cyber-physical systems,

and its impact on industrialized and offsite construction.

In chapter 3, the proposed framework towards improved quality and manufacturing

of light-gauge steel frame assemblies based on cyber-physical systems and zero-defect

manufacturing is presented. Starting by looking at current practices, the proposed

research methods and framework are explicitly reported.

Chapter 4 presents the knowledge model formulated for steel frame assemblies.

From its original BIM schema, knowledge is expanded towards manufacturing and

quality domains. Then, a full ontological model is presented and integrated back into

the BIM software that enables manufacturing and quality analysis of steel frames at

the design phase (O1).

Chapter 5 proposes a vision-based inspection system for light-gauge steel frame

assemblies. The proposed approach divides the inspection system in 3 steps: 1) pre-

manufacturing inspection; 2) online inspection; and, 3) post-manufacturing inspection.

For each system, the machine vision algorithms and their integration in the semi-

automated use case for steel frame assemblies manufacturing are presented (O2).

Chapter 6 describes the cyber-physical system built around the inspection systems

aforementioned. Each level of the cyber-physical system is identified and explicitly

described, including algorithms, information flowcharts, and decision-support systems

that support quality control and rework in offsite construction manufacturing of steel
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assemblies (O3 and O4).

Finally, chapter 7 summarizes the work done in the thesis and the resulting find-

ings. Furthermore, future research directions which build on the presented work are

discussed.
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Chapter 2

State of the Art

2.1 Construction 4.0

Modeled after the concept of Industry 4.0, the idea of Construction 4.0 is based on

a amalgamation of trends and technologies from different domains that promise to

reshape construction frameworks. Such a transformation is only possible through the

use of existing and emerging technologies that take part in the Industry 4.0 paradigm

[24]. Construction 4.0 uses the main core principles from Industry 4.0, such as cyber-

physical systems, and links it with the construction ecosystem of digital platforms, i.e.

building information model, to close the cyber-physical gap that exists in the built

environment [25]. The Construction 4.0 framework then provides a mechanism from

which digitalization of built assets and the use of such digital models support efficient

planning, design, and delivery of construction products.

With the necessary call to ’modernise or die’, the architecture, engineering and

construction (AEC) industry faces an urgent transformation and requires improvement

plans to reach modern society goals of sustainability, development, and performance

that Construction 4.0 is believed to solve [26]. Real-time progress monitoring, enhanced

quality and safety of construction operations, and improved communication between

stakeholders are just a few of the benefits that are expected to come. The following

subsections target the state of the art for the Construction 4.0 main themes discussed

in this thesis.

9



2.1.1 Building Information Modeling (BIM)

AEC models from diverse professional domains may possess some identical or related

parts, or, in some cases, link the results of other analysis. The variety and heterogeneity

of models with common features led to the idea of creating a universal model to be used

by several tools in construction projects. The solution was initially termed ’building

product modeling’ (BMP) [27], finally labeled as ’building information modeling’

(BIM). BIM itself has become an essential concept for modeling, visualization, analysis,

simulation, and documentation that covers a broad set of interacting policies, processes,

and technologies.

BIM brought the revolution of digitalization and informatization to the entire

construction industry. By digitizing and parameterize different building information,

it provides a clear visualization as a 3D model. BIM integrates models, databases,

assets, and material and spatial relationships into an environment capable of sim-

ulation, progress management, cost estimation, energy analysis, among others [28].

BIM enhances not only planning, design, construction, operation, and maintenance

processes, but also the whole project life cycle [29]. In summary, BIM is emerging as

the key technology for digitalization of the AEC industry [30].

Within BIM, the total sum of information about a building is provided in the form

of a model and a schema (or meta-model) [31]. The model is the digital representation

of an actual building (or project) over its whole life-cycle and the schema is the

non-linguistic data structure that describes the interactions, properties, and states

of the information within the model. A typical commercial BIM tool provides its

3D visualization using different constructs and features that are usually proprietary

(with some exceptions, such as OpenBIM [32]), however the exchange and use of data

is guaranteed by agreed formats and schemata. As such, BIM schema is the key to

harmonize data and information exchange, enabling interoperability between project

stakeholders.
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The focus of the BIM schema is to standardize the building-model data exchange.

Currently, the most extended approach for commercial BIM standardization is the

ISO/IFC STEP EXPRESS model [33], however, continuous efforts in the past decade

from academia and practitioners look to expand further the capabilities of information

exchange within BIM environments. By expanding the BIM schema through several

extra information layers, distributed and modeled using different approaches, the

capacity of BIM modeling to understand and visualize data increases. For example, an

IFC-based extension was presented to achieve building life-cycle management within

a BIM environment [34], or, more recently, geographic information system (GIS)

data could be retrieved through IFC scripts and linked to BIM data for improved

geo-localization of building elements [35]. Overall, expanding and modeling all the

required information for AEC projects is still a work in progress, however matching

newer data structures to current schema may prove itself a very tedious task as the

model grows [36].

To develop a novel extension for BIM requires to define a map between internal

and external schema. The internal schema is imposed by the BIM software chosen, i.e.

Autodesk Revit, and usually limits authors to comply with its features and interfaces

that follow a specific methodology or application programming interface (API). The

external schema, however, is left to the authors intentions, as long as it complies with

the specific standards, e.g. IFC, or the selected modeling language can be interpreted

correctly, such as XML Schema, RDF, UML, OCL, or Object-Z [37–40]. Alternatives

exist that can provide a better handling of contextual statements, narratives, and states

that could enable greater formal reasoning, i.e. OWL, to permit a larger semantic BIM

model. In fact, recent BIM developments have been centered around the development

of semantic knowledge models that are later integrated in the BIM environment. For

example, a formalization of risk knowledge management is linked to BIM through an

ontology model, a type of knowledge model, that enabled the authors to facilitate risk

analysis and prevention through BIM [41]. BIM and knowledge management are often
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treated as stand-alone processes that may interact at a cognitive or human level, but a

deeper integration and automation of exchange of knowledge may be required for more

complex domains, such as safety, offsite production, or quality. Recent research has

shown that extending BIM to a knowledge management base is capable of capturing,

sharing, reusing, and maintaining knowledge simultaneously with BIM collaborative

processes [42]. The integrated platform, baptized ’building knowledge model’ (BKM),

is still in very early stages and most approaches still prefer consolidated models.

2.1.2 Knowledge Modeling

The essence of knowledge modeling was defined in the late 80’s as a representation of an

object, i.e. system or operation, at an abstract level, targeting at the how and what an

object may know. Conceptually, a knowledge model is a complex set of facts, theories,

heuristics, explanations, justifications, and control of an object based on a predefined

structure [43]. All kinds of knowledge, including construction-related knowledge, can

be represented using one or more techniques. Users in the AEC industry, however,

find it difficult to clearly differentiate knowledge modeling from what they recognize

as data models [44]. Data models, such as BIM, have a clear conceptualization of a

product, i.e. building, while knowledge models provides multiple interpretations of a

product that factor in experiences and perspectives of a broad range of users [45].

These modeling techniques are interrelated knowledge elements, that can range

from primitives (frameworks, rule-sets, logical expressions, or procedures) to complex

knowledge elements. The complexity of a knowledge model is gained by aggregating

different combinations of primitive knowledge elements. By describing and formalizing

complex information processing systems, knowledge can be inferred to provide a

solution in regard to an specific task or goal. Knowledge modeling for that particular

task or goal is then facilitated by this task structure: the knowledge and strategies

required to achieve such task is required to be known, as well as the terms of analysis

to model the knowledge [46]. In this sense, the knowledge model eases the automation
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of complex tasks by simplifying and formalizing the information channels between

collaborative systems.

The usefulness of knowledge modeling is not, however, limited to the automation

of problem-solving. The analysis of the task itself requires a decomposition and

understanding of what kind of knowledge is needed. It is possible that some task may

require methods that are not available in a computer-processable form, specially in

human-machine cooperation [47]. Aiming at overcoming such limitations, interdisci-

plinary advancement of knowledge modeling in specific fields has helped lay the ground

to develop advanced knowledge techniques. These fields include intelligent agents,

ontology engineering, databases, among other major trends in computer engineering

and research.

On the one hand, intelligent agents, also known as smart or autonomous agents,

are computer systems that operate robustly in a rapidly changing, unpredictable, and

open environments, where there is a possibility that actions can fail. In general, agents

are able to perceive something out of the environment it is in, usually through sensory

input, and produces as output actions that affect it through a continuous action [48].

Although reactive in origin, intelligent agents have been used for real-time control

tasks since the 80’s and have been at the source of solving problems in knowledge-rich

domains, integrated as expert systems [49].

On the other hand, ontology is defined as the explicit and formal specification

of a concept, and can be used for various reasons: support interoperability of in-

formation in multi-domain knowledge models; consistency checking and reasoning

of knowledge models; and concepts can be mapped and represented in an intuitive

way [50]. Considering the heterogeneity and diversity in knowledge representation

and formalism, research in ontological engineering has provided a standard basis in

which to build higher-level knowledge models, with taxonomical and terminological

mismatches between different domains [51]. By providing a clear formulation and

declared representation of a subject, via defining classes, entities, properties, attributes,
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relationships, and function, the ontology model provides conceptual knowledge with a

standard vocabulary and logical terms about how information is related (or not) to

each other [52].

The two described techniques are the most common approaches to knowledge

modeling in modern applications for product-based manufacturing, however more

information regarding the development of such techniques can be found in [53, 54]

and summarized in the table below:

Table 2.1: List of knowledge modeling approaches and technologies.

Type Description Examples References

Linguistic
Knowledge Base

Modeling of the
knowledge of human

lexicon

FrameNet, WordNet,
ConceptNet

[55]

Expert Knowledge
Base

Modeling of
knowledge applied
to problem solving

(rule-set)

Prolog, WUENIC,
KnowRob, Fuzzy
Petri Net, Matlab

[56–58]

Ontology

Modeling of
knowledge as a
taxonomy of
concepts

Protégé
(RDF,OWL),
OntoLearn,

SymOntos, PRIMA,
OntoEdit

[59–62]

Cognitive
Knowledge Base

Model of knowledge
as dynamic neural

networks

Knowledge
Manipulation
Engine (KME)

[63]

In the actual context of Industry 4.0, manufacturing systems are being updated to

an intelligent level. Intelligent manufacturing benefits of advanced information and

manufacturing technologies to achieve flexible, smart, and re-configurable manufactur-

ing processes in order to address ever-changing and dynamic global markets [64]. The

development of autonomous intelligent manufacturing units is very important for the

future efficiency and integration of the manufacturing industry in a data-driven future

[65]. Such level of intelligence requires, however, certain expertise or knowledge in

order to enable machinery to vary and adapt their behaviors in response to different
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scenarios based on past experiences and learning capabilities [66]. Proper presentation

of the acquired knowledge to users support the correct decision-making and eases the

transfer of knowledge from experts to machinery and from the knowledge systems back

to users [67]. As such, the base of all ‘Industry 4.0’ smart manufacturing systems is the

knowledge acquisition and posterior decision-making systems regarding manufacturing

processes.

Applied to the construction industry, the richness of design information offered

by BIM has helped in the delivery of improved quality buildings. BIM itself is a

purpose-built, product-centric information database, and has proven itself as one of

the key enablers of Construction 4.0 [68]. Specific to off-site construction, the ability to

extract construction manufacturing specific information from a BIM model is critical to

support productive workplaces [69]. The complex and dynamic nature of construction

manufacturing and its off-site work patterns are widely known. However, in order

to take correct decisions, the appropriate knowledge needs to be captured, stored,

and analyzed afterwards: the requirements imposed by construction specifications

are known for both planning and quality control [70]. In fact, when considering the

multi-disciplinarity of offsite construction, selecting an adequate knowledge model

approach is key to obtain a streamlined performance.

The integration of intelligent systems on BIM-based construction processes has

facilitated a deeper understanding and control over the quality control of construction

related manufactured products. In regard to automated quality control processes,

several examples can be found in the literature showcasing the capacities of vision-

based intelligent systems [71–74]. However, most of these current systems, specifically

designed for the construction industry, are product-specific or task-specific and cannot

be utilized for general offsite manufacturing purposes. To address such shortcomings,

ontology models have proven effective in the construction environment by providing a

re-configurable and more generalistic approach. Several ontology-based models have

been proposed to formalize the knowledge in the offsite construction and manufacturing
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sectors [75–78].

Production quality is a paradigm of innovative and integrated quality control where

production logistics, maintenance design, management and control, as well as the

advanced manufacturing processes are involved [79]. For construction, BIM is a

necessary source of product knowledge that enables product-oriented manufacturing

[75]. However, an extension of the existent knowledge models is necessary in order to

target quality control of offsite construction elements from all the involved knowledge

domains, as seen in Figure 2.1. Initial knowledge-based systems have been developed

to bring robust advantages in manufacturing environments to facilitate real-time

inspection, condition monitoring and control–diagnosis at the shop floor [80], but

research is still needed to adapt such environments to the offsite working environment.

As an ’Industry 4.0’ approach, a knowledge model for quality analysis based on

computer-aided design (CAD) has enabled model-based definitions of defects for parts

at the design stage [81], however, the proposed rule-based models have a limited

effect on the shop floor when considering mitigation and prevention of defects. Rule-

based systems are a feed-forward communication method and bi-directional knowledge

models are targeted to provide not only detection and correction of defects, but also

traceability to its source.

2.1.3 Cyber-Physical Systems (CPS)

Intelligent manufacturing or smart manufacturing is a broad concept of manufacturing

with the purpose of optimizing production by making use of cutting-edge informa-

tion, communication and manufacturing technologies [82]. Such initiative falls under

the well-known Industry 4.0 strategies to upgrade manufacturing technologies by

cyber-physical systems (CPSs), the Internet of Things (IoT), and cloud computing

[83]. Providing manufacturing systems with monitoring capabilities and the pos-

sibility of taking smart decisions autonomously through real-time communication

and cooperation with humans is the goal of the Industry 4.0 era [84]. As such, the
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Figure 2.1: Summary of knowledge domains and relationships for quality control of
offsite construction products.

combination of embedded production technologies with real-time decision making

will fundamentally transform machinery first and, consequently, the manufacturing

industry. Cyber-physical production systems (CPPS) are the next step to further

integrate manufacturing science and technology with computer science, information

and communication technologies [85].

Cyber-physical systems are an intensive network of collaborative computational

entities that link the surrounding physical world and its on-going processes. It provides

at the same time data-driven insight onto the physical world by applying computational

approaches. As such, the intersection between the physical and digital world is the key

factor in the development of such systems [86]. A successful implementation of such

systems in industrial environments offer several advantages at three different levels: 1)

individual components or subsystems; 2) machines; and, 3) the production system

as a whole. CPSs are a multi-disciplinary emerging research area that will involve

the integration of multiple fields of science and engineering. For the last decade,

cyber-physical systems have been developed to cover a large range of applications,

from digital medical applications to control of energy distribution in complex grid
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systems, with potential huge economic benefits [87]. Current CPSs applications are

supported by trendy technologies for cyber applications, such as Internet of Things

(IoT), blockchain, 5G, virtual reality (VR), and artificial intelligence, as well as recently

developed physical devices such as UAVs, additive manufacturing (AM), RFID, or

robotics [88]. An overview is presented in Figure 2.2.

Figure 2.2: Supporting technologies for cyber-physical systems.

CPSs for manufacturing can be structured around a 5C level architecture, as shown

in Figure 3. This CPS architecture enables computational entities and systems to

collaborate and infer knowledge into the surrounding physical systems and their

on-going processes. As such, the CPS structured system designed using 5C structure

can monitor, control, coordinate, and communicate the status of the machine and its

manufacturing product in an automatic and fully integrated manner. However, the

defined interactions between the physical and cyber elements are the limiting factor

of such systems and of key importance to impact the performance of the machine

and product quality [89]. The 5C architecture provides a step-by-step guideline

for developing and deploying a CPS for manufacturing applications. In contrast to

generic CPS descriptions [90], the architecture presented clearly defines CPS systems
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by layers of functions and attributes. The architecture consists of 5 levels in a

sequential workflow manner and illustrates how to construct a CPS from the initial

data acquisition through analytics to the final value creation.

Figure 2.3: CPS 5C architecture, after [67].

However, the expectation towards CPS are manifold, sometimes exaggerated and

often unpractical, from robustness at every level to self-organization, self-maintenance,

and self-repair. The potential applications of such systems are almost endless but

its integration in current production lines and machinery may encounter difficulties

due to changes in the nature of the organization and control of production systems

[85]. At an industrial level, the investment necessary to implement CPS is not easily

justified and limits the advancement of CPS technology [91]. However, CPS is still

seen in industry as the solution to overcome limitations of the current operating
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machinery [92] and online automatic product inspection is a necessary requirement of

any manufacturing process nowadays [18], especially when internet-based connectivity

and communication are key codes in Industry 4.0.

In the construction industry, academics and practitioners alike have striven for

a deeper integration of virtual models and physical construction. The benefits of

such integration have been previously identified: extension of virtual modeling to

construction and operational phases, bi-directional consistency between virtual and

physical modeling of construction components, ease of coordination and management

of construction projects, and improved project monitoring and control [93]. Early

examples of CPSs integration in the industry are built around Industry Foundation

Classes (IFC) and the Building Information Model (BIM). IFC is becoming the

preferred method to exchange building information and BIM-based processes are

widely being integrated to automate repetitive construction activities, such as safety

operations. However, clear frameworks for the bidirectional integration of BIM and

CPSs are still in process [94].

In fact, BIM is currently considered the specific digitalization tool for the con-

struction industry, while most of the other technologies available have been adapted

from other sectors, mainly the manufacturing industry [88]. While the potential of

BIM to promote digitalization and revolutionize the industry is enormous, especially

if reinforced by Industry 4.0 technologies such as computer vision, the impact in

physical activities and construction processes is still limited to a few applications,

for example, structural [95, 96] or progress monitoring for masonry activities [97].

Considering that the advancement and deployment of CPSs has already had a great

impact in the manufacturing area [91, 98], a potential bridge that connects leading

CPSs research and the construction sector is the manufacturing activities that occur

in offsite construction facilities. Offsite construction (OSC) is an ideal mix of a

clearly identifiable and recognizable manufacturing environment embedded with the

complexity of construction products, information, and data structures.
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In summary, CPS consist of interconnected and integrated smart systems that

include both physical and digital parts. The physical and cyber environments are

reciprocally interconnected and synchronized through sensors and actuators. The key

potential of CPS is the opportunities that it provides towards data analytics that can

be performed over the sensory input. CPS is, then, the ”heart” of Construction 4.0

and will transform all phases of a project life from design intent to construction and

operation [25].

2.1.4 Industrialized & Offsite Construction

Industrialization has demonstrated countless times its capacity to offer mass cus-

tomized products at affordable prices. Almost all the products available today on

the market are produced in industrialized facilities. Whereas some construction com-

ponents are manufactured in such environments, i.e. trusses or joists, it is not the

case for most building components. Buildings are quite different from most other

industrialized products: its manufacture only can end at the construction site. As

such, industrialization of the construction sector can solely focus on the means and

systems that generate those buildings [99]. Nonetheless, industrialized construction

promotes the advancement of construction processes by employing mechanization and

automation. There are several intents behind such changes, such as increased labor

productivity, reducing costs, fast commissioning of new projects, lean construction,

ease the incorporation of novel technologies, and improving overall quality [100]. It is

projected that by 2035, the majority of buildings and construction projects will be con-

structed using industrialized construction, specially as manufacturing and construction

converge. Among other trends, offsite construction and prefabrication remains one of

the key enabler technologies for the future of the construction industry. By adapting

the fabrication of large building elements, i.e. walls or roofs, into a mechanized and

seamless process of assembly in offsite facilities, transportation, and onsite installation

of prefabricated parts, current issues that define the construction industry today may
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be circumvented [101]

During the last decade, offsite construction (OSC) has become increasingly popular

in North America as a growing alternative to traditional onsite construction. According

to a recent survey in the US, the market share of OSC will continue to increase in North

America in the near future due to a serious shortage of skilled labor in construction

and its built-in integrated design and manufacturing processes, with emphasis on

planning for efficient production [102]. The growing attraction of OSC from both

industry and academia is explained by shortened schedules, higher efficiency, reduced

waste, lowered health risks and physical extenuation of the workforce, and increased

productivity [4]. As modern markets impose mass customization of products [5], OSC

has become a viable solution for the construction industry that provides customers

with the possibility of increased flexibility [103]. Several analysis on culture and

market adaptation to OSC in different countries have been performed to understand

its acceptance as an alternative to traditional construction [104–107].

Among the driving technologies in OSC, BIM has been identified as a key component.

BIM research has synergized with OSC needs in several specific areas: BIM-based

logistic and assembly planning; BIM-enabled product design and manufacturing;

AI-based generative design for prefabrication; as-built BIM; data exchange through

cloud-BIM; robotics and 3D printing; and BIM-enabled big data analytics [7]. Improved

efficiency and quality of design, increased automation and productivity, reduced waste,

or to provide data-driven reasoning towards best practice are a few benefits that

BIM yields for OSC. In most cases, prefabricated components set the design decision-

making for OSC and BIM standards ease the communication between projects [108].

In summary, the level of BIM integration in OSC practices determines the level-

readiness for Construction 4.0 applications [109]. However, at present, an evaluation

of the impacts of Construction 4.0 in the offsite construction sector still needs to be

researched, from cyber-security issues related to the inter-connectivity of shared BIM

models to changes in the supply chain, organizational structures, and business models
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[13].

Modular construction is a form of OSC that involves the prefabrication of volu-

metric components, prior to their shipment and installation on construction sites.

Alternatively to other modular approaches and aiming to optimize transportation

and installation equipment costs, wall or floor components may be prefabricated in

panels. Panelized construction, in either wood, steel, or precast concrete, is currently

the preferred approach for residential and low-rise commercial buildings [110]. In such

facilities, however, the introduction of Construction 4.0 technologies on its manufactur-

ing floor has barely started. Challenges in material flow due to rapidly changing design

parameters were recently addressed by introducing state-of-the-art tracking approaches

in an IoT (Internet of Things) framework [111], but numerous other challenges still

remain unresolved: real-time monitoring of OSC activities or inventory control, to

name a few. In general, OSC practices cannot deal with manufacturing issues that

may arise in real-time. This lack of real-time information limits the impact of OSC

beneficial aspects, such as increased quality, and prevents quantifying the effects of

any attempted improvements in the short term.

2.2 Quality in Construction

2.2.1 Zero-defect Manufacturing

Zero-defect manufacturing (ZDM) was introduced more than 50 years ago as a

mentality, a philosophy, or a movement that aims to minimize the number of defects

in manufactured products and services as much as possible [112]. The ultimate aim is

to reduce the number of defected products to zero and to “do things right in the first

time”. The expected benefits of a complete integration of ZDM principles include a

higher productivity of manufacturing processes, reduced cycle times, provide feedback

information of production and process parameters to the product design phase, and

enable data-driven causality analysis on defects [113].
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The reasons why ZDM principles are interesting to industry are numerous, including:

1) it can considerably reduce the overhead costs related to the organization and

treatment of defective products, i.e. rework or increased inventory [114]; 2) it can

maximize productivity within the stream map of the production lines, eliminating any

non-added value processes, i.e. defective machines and tools, inefficient processes, etc.;

3) significant reduction of waste and therefore initial investment can be realized with

ZDM [115]; 4) continuous improvement within the manufacturing floor is enabled,

thus, product manufacturing would get closer to the initial goal of ZDM; and, 5) an

improved quality in final products strengthens customer satisfaction and soars client

fidelity [116].

One of the main conditions for the ZDM approach to be enabled is that all the factors

influencing quality around the whole process should be monitored and optimized as

far as possible. In the 90’s decade, a supervised learning methodology for ZDM was

already proposed to enforce quality-oriented process controls and integrated strategies

to deal with both, systematic and accidental, non-conforming products [117]. However,

the authors questioned the cost-effectiveness of such a complex and time-consuming

solution with their actual computational performance, thus it was primarily applied in

manufacturing processes of industries where the consequences of part failure suppose

an unacceptable risk, i.e. aerospace industry.

However, computational limitations should be less of an issue nowadays. In fact,

ZDM is becoming a common practice in the manufacturing domain to reduce and

minimize the number of defects and quality errors by using large data-sets and complex

knowledge discovery techniques, such as data mining [118]. ZDM has evolved since to

be a disruptive concept that is able to reshape entirely the manufacturing ideology

and can be implemented in two different levels: at the product level, where identified

defects are analyzed to find mitigating solutions, or at the process level, where the

manufacturing equipment is studied in relation to manufacturing results [119].

An overview of the ZDM concept and dual integration in manufacturing environ-
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Figure 2.4: Zero-defect manufacturing concept, after [119].

ments can be found in Figure 2.4. Considering the two levels aforementioned, namely

product and shop floor, both integrated approaches provide feedback to each other:

product quality is correlated to equipment health and vice-versa. Therefore, by having

a dual inspection system in place, zero defects may be achieved by predictive mainte-

nance routines and establish re-manufacturing and rework procedures. This concept

relies on an increase in the level of automation, 100% accurate equipment, and process

capabilities to reach its goal. However, minimizing the impact of human intervention

in manufacturing systems is not a realistic approach as long as human operators

are required to manually assemble components, handle or transport components, or

operate equipment and machinery. In fact, most construction operations are still a

manual process. Nonetheless, ZDM can be used to detect human errors, yet operators

are not usually involved in the development of this technology. A better integration of

ZDM is required that involves human knowledge and cognitive response from operators

[120].
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ZDM can be integrated using four different strategies, based on the concept shown

in Figure 2.4: ’detection’, ’repair’, ’prediction’, and ’prevention’ [119]. The most

dominant approach in literature due to its simplicity to integrate is the detection of

defects, mainly because it represents the starting point for implementing ZDM and

the foundation for the implementation of the other strategies. As of today, monitoring

systems for ZDM have been the most significant developments in the area [121],

whereas prediction of defects, repair strategies, and prevention of defects are very

difficult and complex tasks that require a vast amount of data in order to be accurate,

hence limited results can be found around such applications of ZDM. In most cases,

virtual prediction models are used in cases where the physical detection of defects is

not possible or not cost-efficient [122, 123].

Anyhow, the ZDM concept has been implemented partially so far due to numerous

technological limitations that were hindering its implementation in industry. With

higher computational power and data storage available at reasonable cost and the

evolution of Industry 4.0, ZDM is cheaper and easier to be implemented as a large

amount of data is required for techniques such as machine learning to work properly

[124–127]. Although applying ZDM principles to a single system is a straight-forward

process, multi-stage production systems (such as OSC assembly lines) bring more

complex challenges for defect compensation and inspection. In contrast to single

processes, defects occurring in multi-stage production lines propagate throughout the

system, making defect inspection system more sophisticated and complex [128, 129].

2.2.2 Quality in Lean Manufacturing Processes

Lean production has its origins in the philosophy of achieving continuous improvements

in the most economical ways, with special focus in reducing waste (or muda in

Japanese). To err is human, thus people can and will make unintentional mistakes,

despite their best intentions. Waste is then naturally generated in any human-thought

process. The concept of reducing waste became one of the most important concepts
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in quality improvement activities. This philosophy was widely known as Toyota

Production System and it became labeled as lean thinking later [130]. In fact, by

defining waste as the excess resources used compared to perfection, one can conclude

that waste is everywhere and that the aim of lean production is to eliminate all waste.

Initially, an index was defined to quantify the impact of poor quality in manufac-

turing lines, known as ”the cost of poor quality” (COPQ). COPQ was defined as the

sum of all costs, no matter its source, that would disappear if there were no quality

issues [131]. Quality control is then a holistic management philosophy that deals with

production from several aspects: from manufacturing processes or leadership to any

necessary services. Such practices have been developed from the initial Japanese total

quality management (TQM) methods, which can be found in most modern quality

improvement approaches such as six sigma quality or lean production [132].

In general, lean practitioners rely on mistake-proofing (or poka yoke in Japanese)

to deal with quality issues in their manufacturing processes. Mistake-proofing was

defined, in the early 80’s, as the use of any automated device or method that makes it

impossible for an error to occur or makes the error immediately obvious once it has

occurred [133]. Therefore, mistake-proofing can be applied both to prevent the causes

of defects, which will result in lesser subsequent occurrences of errors, and to carry

out control of the final conformity of end-products. Following such lean practices, the

monitoring and control of the quality issues should be autonomous, over the 100%

of the manufactured products, and inexpensive. However, ensuring eliminating all

errors is not always possible, hence it is necessary to have a framework that detects

errors as soon as possible, provides the inspection information (error signals) to the

relevant operators, and ultimately tries to eliminate the possibility of such error to

occur independently of the operator’s attention span [134].

However, since its first definition, several formulations for mistake-proofing applica-

tions have been given in literature. Grout defined a poka yoke process as a system

that had designed features to prevent errors or mitigate its negative impacts [135].
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Middleton defined it as a systematic practice of eradicating errors by locating its

root cause [136]. Plonka considered that a system with a mechanism for detecting,

eliminating, and correcting errors at the source, before reaching the customer, followed

the mistake-proofing approach [137]. More recently, Saurin defined poka yoke as a

device that either prevents or detects abnormalities that are detrimental to product

quality or to employees health and safety [138]. In this thesis, mistake-proofing systems

are understood as a system proactive or reactive to defect generation and that is

functional, namely having correct and prompt communication of any quality issues to

enable continuous improvement towards minimizing waste.

Poka yoke is based in six principles, starting from the most desirable one: elimina-

tion, prevention, replacement, facilitation, detection, and mitigation [139]. Each one

has a different impact at different points in time during the manufacturing operation(s)

of a product. Elimination aims to remove the chance of defects by redesigning the

operation or product. Prevention is to design and engineer the product or task so

that defects are not possible. Replacement is to substitute an operation with a more

reliable one to improve consistency and reduce quality issues. Facilitation is to ease

information usage to make fewer mistakes during the operation. Detection is to

identify the mistakes so that corrective operations can be performed. Mitigation aims

to minimize the effects of errors. A visual representation of the mistake-proofing

principles is shown in Figure 2.5.

As observed, the ease of data generation is inversely proportional to the desirability

of intervention of mistake-proofing principles: in other words, it is easier to generate

quality-oriented data by inspecting products looking for defects (quality-at-bay) that

it is to associate those defects from the planning stage of the work operation (quality-

at-the-source). Given that manufacturing approaches are leaning towards data-driven

decisions, prevention and elimination principles are rarely applied based on data, but

based on expert knowledge. In fact, academics and practitioners alike tend to link

poka yoke principles to other methodologies for ease of integration, such as the theory
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Figure 2.5: Poka yoke principles applied to manufacturing operations, after [140].

of inventive problem solving (TRIZ) [139], or plan-do-check-act (PDCA) continuous

improvement cycle [141]. In most cases, application of these principles is restricted

to qualitative measures that are not tangible and difficult to quantify. Considering

industrial needs and looking to provide a clear justification to investment in mistake-

proofing devices, cost models to implement such approaches have been designed [142,

143] and a discrete-event simulation model was proposed to estimate its impact on

production lines [144].

Nonetheless, most applications of mistake-proofing rely on robust detection and

mitigation methods. A tool for visualization, analysis, and design of quality assurance

methods, based on reliable data, is the innovative approach of quality value stream

mapping (QVSM). Based on the well-known design elements of value stream mapping

(VSM), the implementation of such approach supports and facilitates the identification

of effective (or ineffective) equipment, testing strategies, or quality control loops [145].

Another approach is the popularization of autonomation (jidoka in Japanese) and
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autonomated machinery is a clear example of poka yoke intervention in production

operations design. The concept of autonomation is a combination of automation and

autonomy. In general, autonomation prevents the production of defective products,

eliminates overproduction, by incorporating machinery with self-identifying systems

that allow the machine to stop when any malfunction or unusual process occurs

[146]. From a manufacturing perspective, human intervention is only required when

the quality issue cannot be self-rectified. Autonomation, then, can be integrated

as a sequential process into any machine logic: 1) detection of defects; 2) stop the

production sequence; 3) immediate corrective actions; and, 4) investigate root causes

and install countermeasures. Such approach is usually due to overproduction, waste of

time during the manufacturing of defective products, transport of defective materials,

and reprocessing, alongside with inventory waste.

In summary, lean principles consolidate and guide quality control procedures to

reduce waste, in a similar direction of the ZDM approaches reviewed in Section

2.2.1. However, current research shows areas where methodologies are still missing:

pro-active defect repair policies, correlation analysis between product quality and

system dynamics, or preventive maintenance, among others [79]. For example, digital

image acquisition systems are state of the art tools that can be used to facilitate

autonomation of certain manufacturing processes via mistake-proofing. The capacity

of visual inspection systems to provide the pertinent information is leading to the

increase in quality levels and reducing the amount of defects being produced [147].

In fact, technologies related to the Industry 4.0 have been integrated with lean

practices in order to ease its implementation in the industry. That is also true for

the construction sector, in which a synergy between BIM and lean practices has

been identified [148]. In most cases, newer technologies such as cloud databases or

cyber-physical systems have been useful to digitize lean tools and techniques. The

concept of Lean 4.0 represents the conceptual conjunction of lean manufacturing and

Industry 4.0 technology from the commonalities that both approaches have in industry
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applications [149]. As a general consensus, lean manufacturing has been considered as

an prerequisite and enabler of the digitalization of industrial facilities, but also the

introduction of Industry 4.0 principles has improved the effects of lean techniques [150].

Just-in-time 4.0 [151, 152], Heijunka 4.0 [153], Jidoka 4.0 [154], value stream mapping

4.0 [155], or Kanban 4.0 [156] are just a few examples of applications of Lean 4.0 that

can be found in the literature. In regards to advance the quality of manufacturing

using Lean 4.0, there is still not a fully integrated solution based on poka yoke 4.0,

although it has been recognized as a key component of future ’smart machines’ [157].

2.2.3 Automated Inspection Systems in Construction

The lack of automated manufacturing and installation quality inspection systems has

been identified in the past years as one of the main key elements missing in construction,

and more specifically, in industrialized construction [158, 159]. This lack dampers the

performance of industrialized construction methods and hinders the process of replacing

traditional approaches. To tackle the issue, there has been a dramatic increase in the

development of vision-based inspection systems for construction operations, in both

indoor and outdoor conditions [160]. The industrial need to monitor construction

operations with different purposes initiated a stream of research on data collection

using different forms of the subject media. As an example, image processing techniques

have been proven to be cost-effective and efficient for automated recognition and

tracking of construction resources [161], workers [162–164], construction equipment

[165, 166], classification of materials [167, 168], productivity analysis [169, 170],

recognition of structural elements [171, 172], and condition assessment [173]. While

most studies have focused on the use of computer vision techniques at job sites, the

indoor applications faces many challenges including highly cluttered scenes, occlusions,

and diverse illumination conditions [174, 175].

Previous works have generally improved the visualization and analysis of construc-

tion operations, enabling construction managers to take decisions with a better and
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more realistic view of site operations. A scientometric analysis is performed to visualize

the research maps on computer vision for the AEC industry (see A). As a result of

that analysis, very few inspection systems that target construction products can be

found in literature, and even fewer that work in indoor environments. For instance, an

algorithm was developed to detect concrete columns in images using a hybrid shape

and color approach [171]. Other important contributions include the recognition of

objects and construction elements, such as bricks [176], windows [177], doors [178],

or drywall sheets [179]. However, the use of such indoor inspection systems was to

provide reliable information of the construction status to facilitate maintenance or

construction operations.

In regard to inspection systems that target quality assessment or defect detection,

3D laser scanning is the widely accepted approach. The resulting point clouds contain

large amounts of data with high accuracy, high density, and a lower sensitivity to

changes in environmental conditions, e.g. lighting [180]. Because of this advantages, the

quality assurance procedures of several prefabricated components can be automated,

i.e. precast concrete panels [181] or modules [182]. However, due to the general large

sized components in construction, 3D reconstruction and digitization of such elements

are long quality processes. This makes the available automatic inspection systems

not viable for online continuous defect detection, which is a common solution for

several other manufacturing industries. Current OSC facilities would benefit of an

integrated framework that would provide real-time supervision and quality control

without hindering overall productivity.
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Chapter 3

Towards Zero-defect
Manufacturing of Steel Frame
Assemblies

3.1 Proposed Framework

The proposed framework aims to facilitate the integration of automatic quality in-

spection, assessment and control of construction elements or products as an extension

to the current established OSC manufacturing modus operandi. Given the litera-

ture review provided, existent frameworks can be improved for such purposes by

introducing novel principles of the Industry 4.0 era. Focusing on the construction

product and introducing the robust data architecture of cyber-physical systems, a

generic framework for defect detection and quality assessment in construction products

is proposed to enable continuous improvement towards zero-defect manufacturing

following, for example, poka yoke principles. An overview of the proposed framework

is illustrated in Figure 3.1.

Taking as the only input to the system the BIM model of the construction product,

the process proposed to integrate automatic quality inspection in OSC manufacturing

lines can be described as follows:

1. To assess product quality, following zero-defect manufacturing principles, a

product-centric cycle is proposed: 1) product inspection generates continuous
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Figure 3.1: Overview of the proposed construction product quality-oriented framework.

quality-oriented data; 2) obtained data is analyzed to understand the impact

of the manufacturing process on the quality of the product; and, 3) defect

mitigation through rework orders is supported and monitored.

2. The product level cycle is structured as a cyber-physical system, enhancing

the information transference and augmenting the interactivity between the

digital and physical worlds: 1) the vision-based product inspection serves as

a platform to digitize the product in real-time (data acquisition system); 2)
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data obtained can be rapidly analyzed with situational conditions to provide

real-time quality control on an individual basis; 3) quality-oriented historical

data may be stored so that knowledge discovery techniques (big data and/or

artificial intelligence approaches) can be applied; 4) data can be visualized

as a human-machine interface so that human input is considered; and, 5) a

supervisory agent monitors the system results to maintain quality levels at the

manufacturing line.

3. The BIM model is enhanced by incorporating manufacturing rules and quality

specifications as a knowledge model. This modeling enables dynamic information

sharing with the system developed through the middle layers of the cyber-physical

architecture and support dynamic decision support during inspection processes.

4. Continuous improvement of the quality of end-products in manufacturing lines

is enabled and monitored, allowing practitioners to implement data-driven

decisions that make the final goal of zero-defect manufacturing possible through

any quality principles, for example, poka yoke.

Therefore, the developed framework provides an integrated quality inspection system

for pre-designed offsite construction products, that extracts quality information from

a shareable and reusable knowledge-enhanced BIM model, and supports and monitors

rework operations in offsite manufacturing lines. Each one of the process components

aforementioned is presented in the following chapters.

3.2 Research Methodology

The research methodology adopted to achieve the goals proposed following the frame-

work presented is design science research (DSR). As a scientific problem-solving process,

DSR is based on the development of an artifact: something that is useful and improves

the problem identified through research gaps [183]. The process of developing an
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artifact deals with a rigorous procedure of, first, identifying gaps in the literature, then

developing the artifact while applying evaluation methods in a reproducible manner

and communicating its outputs clearly [184]. Further, limitations to the scientific

contributions made are to be stated and discussed. DSR has been proven to be a

suitable method for research in construction management, especially when developing

solution artifacts to problems and implementing those solution in the construction

domain [185, 186].

The methods applied in this research are demonstrated in Figure 3.2 and are divided

in four stages: 1) descriptive: identifying the necessary information to be extracted

or generated from quality specifications and the BIM model; 2) modeling: extracted

information, namely expert knowledge (or know-how), is modeled through knowledge

modeling techniques, and generated information is obtained through the digitalization

of the construction manufacturing process; 3) implementation: applying novel system

architectures, such as cyber-physical systems, the inspection systems required can be

developed; and, 4) evaluation: test the overall framework using virtual and/or real

scenarios as case studies.

Figure 3.2: Overview of the proposed research methods.
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For each one of the research objectives of the thesis, the following subsections

present the DSR methodology followed to achieve the expected outcomes. The DSR

methodology is presented following the guidelines as proposed by Hevner et al. [187]: 1)

design an artifact; 2) present the problem relevance; 3) design the artifact’s evaluation

procedures; 4) present the research contributions; 5) use rigorous methods to support

the application of the artifact; 6) provide the necessary means to reach the desired

implementation and evaluation of the artifact; and, 7) communicate the research

effectively.

Objective 1

The first artifact developed in this thesis consists of a knowledge model containing the

information links between quality, manufacturing, and product design in the offsite

construction domain. In possession of this artifact, OSC practitioners can access all the

relevant quality information from a common software tool that eases the traceability

of defects and other potential quality issues throughout all the knowledge domains

involved.

To start its development, a comprehensive literature review is performed around

knowledge models for related individual knowledge domains, i.e. BIM or manufacturing

operations. This step clearly allows to present the current state of knowledge models

in the area and identify which knowledge domains and links are missing. Hence, efforts

can be focused on the establishment of novel knowledge links from already tested

knowledge domains towards obtaining a comprehensive quality model.

Next, the required knowledge model is designed as an ontology model. Ontology

models are formal descriptions of knowledge as a set of concepts and the relationships

that hold between them. In this case, a knowledge graphical representation is used due

to the need of linking several types of relationships to a same concept, an impossible

task for other knowledge models such as relational databases or taxonomies. The

ontology is then expressed following open-source formats, such as the ontology web
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language (OWL), to be able to connect the knowledge model to the current construction

management workflow. For example, quality knowledge should be accessible from the

BIM design software used by practitioners.

Finally, a set of BIM products are designed to test the information flow of the

knowledge model. Each concept, relationship, and link is evaluated one-by-one to

check how the proposed ontology model is accurately representing the knowledge

domains and information flow. A quantitative approach is taken by using semantic

queries that can evaluate each concept relationship by pulling information at different

levels.

Objective 2

The second artifact developed in this thesis consists of several vision-based and machine

learning algorithms for automatic inspection of steel frame assemblies throughout its

manufacturing process in offsite construction facilities. In possession of this artifact,

quality-oriented data is generated in an individual, automated, and continuous fashion,

instead of the current manual sampling procedures.

First, an extensive literature review is performed to identify the previous vision-

based approaches in the area, specifically in the identification and measurement of

large construction components using monocular cameras. Once similar works are

identified, the algorithms used can be analyzed to extract the base image processing

techniques from which the proposed algorithms can be built upon.

Then, based on the manufacturing process studied (semi-automated steel framing),

an inspection setup is designed based on the features to be extracted as specified in

quality specifications. With the setup in place, resulting images can be obtained to

serve as an experimental setup for the developed algorithms. further images can be

obtained by simulating the setup results in CAD software. Those images then are

used to test the algorithms.

Finally, the inspection results are bench-marked against the minimum tolerance
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required out of the quality specifications. Then, a quantitative analysis on the

inspection results allow to measure the stochastic nature of the algorithms so that the

results’ variance can be considered.

Objective 3

The next artifact developed in this thesis consists on a decision-support system based

on inspection results for quality control of steel frame assemblies. With this artifact,

decisions regarding quality control, such as rework orders, corrective actions, and

defect mitigation, is supported by data-driven systems, reducing uncertainty in the

decision-making, as well as idle production time.

To obtain this artifact, an initial literature review on decision sciences for application

of quality tolerances is explored to understand the underlying decision-making required

in those instances. As a rule-based system, in this case, decision-support systems do

provide ’best probable course of action’ based on the available data. Such system can

be graphically visualized as flowcharts to ease understanding and implementation.

To evaluate the proposed decision-support system, the inspection data obtained

with the previous artifact is used. By introducing experimental data into the system,

a qualitative analysis of the results and final decision-making can be performed to

check the performance of the system proposed.

Objective 4

The last artifact developed in this thesis consists on an intelligent system that integrates

and monitors rework operations based on machine learning results and user input. In

possession of this artifact, OSC practitioners can automatically quantify the quality

of their manufacturing processes, understand its impact on the end-product in an

individual basis, and introduce suggested rework operations in the work flow. A

similar methodology has been successfully applied in recent studies to introduce

rework stations in regard to imperfect quality in monitored manufacturing operations
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[188, 189].

From the previous artifact, rework orders are automatically suggested. Those

suggestions can be followed by the operator or not. The rework operations are then

independent from the decision-support system and would benefit from a monitoring

system to track its effect on the end-product. To develop this last artifact, first,

current methods to monitor decision-making systems based on machine learning and

vision-based inspection data are explored. Common performance metrics for machine

learning algorithms should be continuously updated while production is on-going.

Then, a mathematical model is proposed to obtain from those performance metrics

quality indicators of the end-product, enabling management to monitor the current

manufacturing conditions. The results are analyzed from a quantitative perspective

to showcase the stochastic nature of the metrics obtained.
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Chapter 4

Steel Frame Assemblies Knowledge
Modeling

4.1 Overview

This chapter addresses the necessity of formalizing a link between quality inspection

systems and the designed construction product through knowledge modeling within a

BIM environment. Although Section 2.1.2 refers to quality as a domain connected to

manufacturing, maintenance, design, and logistics, the provided model only considers

design and manufacturing information due to limitations in the testing environment

available that would, otherwise, bias the model provided. The proposed approach

entails an ontology model that represents the steel frame assembly components, linked

to its BIM model, and that identifies the quality specs required to manufacture a

conforming product. Ontology is employed to enhance the steel frame model (in BIM)

in terms of domain semantics for quality, including: 1) domain terms, 2) properties,

and 3) interrelationships. Domain terms such as ’Stud’ or ’Track’ in the steel frame

building industry, which are not IFC complaint nomenclatures, are generalized in the

ontology model. Their relationships and properties are defined explicitly, providing

semantic foundation for the quality specification retrieval process, as well as including

industry specific vocabulary within the BIM model. This allows for construction

practitioners to semantically query a BIM design model for quality-related explicit and

implicit BIM data using their domain vocabularies without the need of understanding
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the technical structure of the underlying complex BIM schema.

The system architecture for implementing the proposed semantic quality approach

is presented in Figure 4.1. Generally, it includes a BIM design model (of a steel frame

assembly), a BIM data parsing tool, an ontology editor and reasoner, and a RDF

tool. In this case, the BIM design model is developed using Autodesk Revit, due

to its modeling flexibility and its available application program interface (API) to

develop add-ons. The ontology is formalized and established using Protégé, a free

open-source ontology editor from Stanford University. All the required BIM data

is parsed using the Revit API and the connection between BIM and the ontology

model is secured by employing dotNetRDF, an open-source .Net library that supports

the population of ontology individuals with extracted BIM information. A default

ontology reasoner in Protégé is used to infer new facts, i.e. implicit design features

such as frame connections, from the explicit BIM data. Finally, SPARQL (which

is supported by dotNetRDF) allows the end-user to query the ontology-augmented

BIM model for quality related information. A more detailed explanation of the BIM

schema and the ontology model proposed is presented in the following sections.

4.2 BIM Schema for Steel Frame Elements

Generally, building product information in the BIM model can be categorized into

three groups: geometric, spatial, and functional. Geometric information refers to

the vertices, edges, and other geometrical features that allow the full definition of

building components. Spatial information elaborates on the specific location and

relative position and spatial relationships between elements. Functional information

relates to additional attributes or properties that infer information that describes the

environment of the building element, such as the host information (element contained

within another element). For the software used in this study, Autodesk Revit, those

groups are identified as families (or classes) [190]. Namely, the geometric information

is stored within the ’GeometryObject’ family, the spatial information can be found
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Figure 4.1: Proposed ontology-based BIM architecture.

in the ’Location’ family, and the functional information is spread out between the

’HostObject’, ’Instance’, and ’ElementType’ families. The exact building element

information structure for each family and its categories and properties can be extracted

according to the class diagram found in Figure 4.2.

Taking the case study selected, steel frame assemblies, vital information comes from

the explicit information contained within an IFC wall element. In Revit, walls are

instances of ’Wall’ class and a subclass of ’Element’, hence all the generic available

information regarding geometry or location can be extracted, as well as functional

information such as ’Material’, ’ID’, or ’Name’. Within the open BIM schema, IFC,

all studs and tracks are represented as an ’IFCMember’. Without domain semantic

awareness, all the model elements for wall frame sub-components are identified as

the identical entity, as such, without understanding of the complex BIM schema

and human intervention by BIM experts, it is not possible to, for example, identify

correctly all the individual filter the frame elements contained in walls, including

cripple studs, king studs, and jack studs. Similarly, there is no modeling element
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Figure 4.2: Autodesk Revit BIM Schema in UML format.
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named ’Stud’ or ’Track’ in Revit. ’Structural Column’ and ’Structural Framing’, each

a type of ’FamilyInstance’, are IFC elements that haven been used by practitioners

to model, for example, ’Stud’ and ’Track’, and its geometric and spatial information

is described using its parametric ’Location’ and ’GeometryObject’. However, such

subjective decisions impede a streamlined potential automation of such processes.

To obtain a steel frame from its host element, a wall, an Revit add-on developed

by the Modular Construction Lab at the University of Alberta is used, FrameX

[191]. FrameX designs, for each host ’Wall’ element, the appropriate light-frame

components, in this case steel frame assemblies, as defined by some user-parameters

and by following the building code design rules for the spacing between elements,

connections, and framing specifications around openings. Once the frame is designed

and its geometric and spatial parameters defined, the information regarding the host

wall can be ignored moving forward as the knowledge model presented solely deals

with the frame components at this stage. This simplifies the amount of information

to be modeled by limiting the functional information associated to walls which is not

required moving forward.

Given the mentioned limitations of current IFC elements for frame components as

a sub-element of a wall and the underlying complexities of using alternative options

[192], the proposed knowledge-model approach defines and explicitly models each type

of steel frame sub-component with distinguishable entities. Based on the BIM schema

shown in Figure 4.2, an ontology model with initial set of classes, properties, and

interrelationships is required to extract the required data regarding any steel frame

using a similar structure. This not only allows to ease the data transfer between

models (BIM and ontology) but also enhances the model with knowledge that could

be inferred by the ontology reasoner. The ontology model proposed is defined in the

following section.

45



4.3 Ontology Model for Quality of Steel Frame As-

semblies

The ontology model proposed in this research is intended to allow construction practi-

tioners, particularly quality managers, to access quality specifications, i.e. geometric

and/or aesthetic constraints, directly from the construction packages and reduce work

effort in establishing quality control procedures. This model is established to align

the BIM environment with quality specifications, focusing on the design product, and

enable semantic querying in the domain of steel frame assemblies manufacturing. As

described in the previous section, the ontology augments the BIM model by adding

steel frame building terms and implicit design features such as the types of connections

available, as well as manufacturing and quality related information, including their

properties and interrelationships.

The proposed ontology establishes a formal link between the product, its manufac-

turing process, and quality specifications as illustrated in Figure 4.3 (inverse properties

not shown). Each knowledge domain is modeled individually and linked accordingly

based on expert knowledge. First, a model for construction products based on the

BIM schema is necessary and finding the correct design feature that enables the link

between product design, manufacturing, and quality is key. Next, manufacturing

operations are modeled from the design feature selected, the product element intersec-

tions of steel frame assemblies. Finally, quality knowledge is represented and linked

to both previous models. These models are explored in more detail in the following

subsections.

4.3.1 Construction Product Ontology

The ontology model presented in this subsection builds upon an already available

ontology model for light-weight structures, namely wood frames, found in the literature

[75]. This model reported an approach for quantity take-off of construction products
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Figure 4.3: General overview of the proposed ontology model for quality assessment
of construction manufactured products.

based on BIM models. On its the first step, BIM elements and its relevant information

are retrieved and the authors create a model that is able to detail relationships

between semantic domains in common construction vocabulary. For that, the authors

defined ’Element Parts’ such as ’Stud’, ’Plate’, or ’Cripple’. Similarly, the proposed

construction product ontology replicates the structure presented by Liu et al. but

focusing on steel frame assemblies. For this study, four ’ElementPart’ components

of steel frames are defined: ’Stud’, ’Track’, ’Header’, and ’Blocking’. For each class,

several sub-classes can be defined to provide further classification of frame elements.

For example, studs can be differentiated into ’Regular’, ’Jack’, ’King’, or ’Cripple’

studs. As such, all frame components can be uniquely identified and given unique

semantic domains.

Then, as observed in Figure 4.3, the ’ElementIntersection’ of steel frame needs

to be modeled. Intersections are defined as the physical space where two (or more)

’Element Part’ components overlap. Although previous authors identified intersections

as important elements of construction products, the modeling provided targeted wall
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intersections leaving sub-component intersections such as stud-to-stud intersections

unimportant. This ontology proposes a model for the intersections between element

sub-components as key to link design with manufacturing operations. By identifying

the types of connections existing between frame elements, a link can be established

between each ’Element Part’ extracted from the BIM model of the designed frame and

its corresponding ’ElementIntersection’ as designed. For steel frame assemblies, five

types of ’ElementIntersection’ are found: ’Perpendicular’ (or T-connection), ’Angled’,

’Double-Angled’, ’Lateral, and ’Crossing’. An illustration of each type of intersection

can be found in Figure 4.4, being the ’Perpendicular’ connection the most common in

steel frame assemblies.

Figure 4.4: Illustration of the interactions between steel frame members.

In steel frame assemblies, each intersection is related to certain combination of

sub-components and specially to which one is considered as the reference element

in the connection. The reference is selected based on the element that supports

the connection, as it would be done during manual assembly and usually are the

load-bearing elements of the frame. Table 4.1 lists the compositions of sub-elements

that define the intersections aforementioned.

As such, each sub-component of the frame assembly is characterized by the inter-

sections that link them to other members. Using the property ’hasIntersection’, each

individual of type ’ElementPart’ is linked to as many types of ’ElementIntersection’ as

is designed in the BIM model. In this regard, the proposed product ontology enhances
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Table 4.1: List of elements that define each ’ElementIntersection’ for steel frame
assemblies.

Element Intersection Reference Element
Non-reference

Element

Perpendicular
ElementPart.Track or
ElementPart.Header or

ElementPart.Stud

ElementPart.Stud or
ElementPart.Bracing

.Horizontal

Angled
ElementPart.Stud

.Regular
ElementPart.Bracing

.Diagonal

Double-Angled
ElementPart.Stud

.Regular
2×ElementPart.Bracing

.Diagonal

Crossing ElementPart.Stud
ElementPart.Bracing

.Horizontal

Lateral ElementPart.Stud ElementPart.Stud

the interrelationships among elements by explicitly defining them and specifying the

nature of the relationships among the domain term interrelationships. Ontology in

turn can create new information by reasoning/inferring about the explicit information.

More specifically, ontology reasoning can not only confirm and check “known knowns”,

but also shed light on some “known unknowns”. For example, ’connects’ is the inverse

property of ’hasIntersection’ in the proposed ontology. When a ’ElementPart’ has a

explicit ’ElementIntersection’ as extracted from the BIM information, the ontology

reasoning infers its inverse relationship and deduces the fact that the ’ElementInter-

section’ connects certain members of the type ’ElementPart’. The inferred fact is then

saved explicitly in the ontology, which boosts the efficiency of information extraction.

In summary, the modified construction product ontology based on Liu et al. model

[75] is illustrated in Figure 4.5.

Note that other types of intersections may exist in current practice, for example,

special connections for building corners in exterior walls. Those connections are not

modeled as they represent connections between different frame assemblies which are

not relevant in the studied manufacture process of single frame assemblies. However,
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Figure 4.5: Overview of the proposed construction product ontology model.

a single frame assembly analysis of design features, as performed, may limit the

knowledge modeling and establishment of connections between design, manufacturing,

and quality in the future. Anyhow, the used manufacturing environment modeled in

the following subsection cannot manufacture such exterior walls, thus for the study

presented the ontology model proposed is sufficient.

4.3.2 Manufacturing Ontology

In typical manufacturing processes, knowledge modeling has successfully enabled

decision making systems to be defined for such purposes. A proposal named MASON

(MAnufacturing’s Semantic ONtology) by Lemaignan et al. created a common semantic

net in the manufacturing environment using ontologies for general purposes [78]. This

approach successfully related product specifications with manufacturing resources

and operations. MASON set the foundation to link manufactured products to its
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environment. In this subsection, a steel framing manufacturing ontology is proposed

by adapting the generic structure reported by Lemaignan et al.

MASON described a manufacturing environment as a ”set of several systems that

carry out manufacturing operations”. As such, the construction resources used for the

assembly process of steel frames can be identified as ’Systems’ or ’Operations’. For

example, for steel frame assemblies, a possible manufacturing setup is that a screw

fastening manipulator (system) screw fastens (operation) steel members to create a

permanent connection (as shown in Figure 4.6). Thus, an inherent relationship exists

between the manufacturing systems available, the operations that can be performed

using those systems, and the location where those operations are needed for the correct

assembly of a product. This described relationship is the basis of the manufacturing

ontology model herein proposed for steel framing machinery.

Figure 4.6: Overview of the systems used and operations carried out for automated
steel frame assemblies. Left: schema of screw fastening operations on a track-stud
connection. Right: screw fastening system in the machine environment.

Then, as observed, systems and operations surrounding the manufacturing process

of steel frame assemblies need to be modeled. The ’System’ class defined represents,

as systems, the manufacturing capabilities of the machine environment selected. In

generic terms, the machine used in this study is reduced, from a manufacturing

perspective, to the smaller agents responsible of the manufacturing operations: the
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’Squaring System’ responsible of aligning the location of the frame connection with

the screw manipulator and the ’Screw Fastening System’ which carries a screw driver

capable of screw fasten steel members together. As the current machinery available

is really unique, the presented manufacturing model is quite simple. However, as

new machines appear and novel systems and operations are capable of assembling

steel frames, further systems and operations have to be introduced. For example, the

’Operation’ class not only may include the current operation used, namely ’Screw

Fastening’, but also other potential operations capable of permanently join steel

elements, such as ’Clinching’, ’Welding’, or ’Drilling’.

Then, each ’System’ is characterized by the operation it can perform. Using

the property ’performs’, each individual system of the machine is linked to one or

several operations it can perform automatically. Similarly, each ’ElementIntersection’

requires a permanent connection obtained at its location through a manufacturing

’Operation’. A ’requires’ property of ’ElementIntersection’ establishes the link between

designed steel frame assemblies and the available manufacturing operations in machine

environments. For example, a ’Double-Angled’ connection requires a ’Operation’ in the

overlapping area between the three steel members; however, an exception is made for

’Crossing’ connections as they do not require any manufacturing operation (pressure fit).

Additionally, as seen for the previous ontology model proposed, inverse relationships

are deduced for both properties: ’performedBy’ for ’performs’ and ’requiredBy’ for

’requires’. Remind that those inferred facts establish a stronger relationship between

knowledge domains and a more efficient information extraction. An illustration of the

steel frame assemblies manufacturing ontology model proposed is shown in Figure 4.7.

4.3.3 Quality Ontology

Finally, the quality ontology model presented plays a two-fold role: 1) formalizes

the modeling of quality specifications of pre-designed construction products; and 2)

establishes a clear link between product design, manufacturing processes, and quality
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Figure 4.7: Overview of the proposed manufacturing ontology model.

specifications. All the information modeled herein regarding quality control and

assurance of steel frame assemblies has been directly obtained from international,

national, provincial, and local standards, regulations, or codes. In this study, it is

assumed that Canada, Alberta, and Edmonton are the target regions for national,

provincial, and local regulations respectively.

For construction manufactured products, quality specifications are grouped into

three different classes that define potential defects in the product: ’Geometrical’,

’Physical’, and ’Aesthetic’. First, ’Geometrical’ specifications group all the constraints

and maximum deviations defined in regulations related to the geometrical end-shape

of the product, i.e. maximum deviation in stud positioning. Then, ’Physical’ specifi-

cations relate to the physical properties of the materials that support the connections’

integrity manufactured during the assembly process. Finally, ’Aesthetic’ groups all

53



the identifiable superficial non-conforming defects, such as scratches, tears, and so

forth, which is in most cases specific to each company. All those constraints are then

linked to an ’ElementIntersection’ and/or ’Operation’. Through the property ’defines’

(and its inverse ’definedby’), the link between quality with manufacturing and product

design is established. An illustration of the quality ontology model proposed is shown

in Figure 4.8.

Figure 4.8: Overview of the proposed quality ontology model.

Although the illustration above is generic for all construction products, some

assumptions are taken to populate the quality model for steel frame assemblies.

In regard to manufacturing operations, only the available option in the current

machine environment is considered, namely ’Screw Fastening’. A list of the identified

specifications for steel frame assemblies is provided in Table 4.2.

As reported, most construction regulations limit the geometric and physical defects

a conforming steel frame assembly may have, whereas aesthetic requirements are

not even considered. Quality requirements in can be automatically linked to specific

types of connections. On the one hand, geometric constraints are defined in relation
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Table 4.2: List of steel frame assembly quality specifications.

Source Identifier
Specification
Sub-class

Required by
’Element.Intersection’

ASTM
C1007-11a

Element
Misalignment

Geometrical
Connection.Perpendicular and

Connection.Angled and
Connection.Double-Angled

Lateral
Displacement

Geometrical

Connection.Perpendicular and
Connection.Angled and

Connection.Double-Angled
and Connection.Lateral

Frame
Squareness

Geometrical Connection.Perpendicular

CSA S136-
07/S1-10

Connection
Angle

Geometrical

Connection.Perpendicular and
Connection.Angled and

Connection.Double-Angled
and Connection.Crossing

Screw
Fastener
Type

Physical

Connection.Perpendicular and
Connection.Angled and

Connection.Double-Angled
and Connection.Lateral

Fastening
Depth

Physical

Connection.Perpendicular and
Connection.Angled and

Connection.Double-Angled
and Connection.Lateral

to the product design, hence heavily linked to the product ontology. For example,

Figure 4.9 represents the ’Element Misalignment’ and ’Lateral Displacement’ defects

for a perpendicular connection between steel frame members. On the other hand,

physical specifications are linked to the manufacturing operation performed. In this

case, only screw fastening related constraints are reported, however, in situations

where other operations may be used, additional quality regulations and, consequently,

specifications need to be introduced in the model.
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Figure 4.9: Example of geometric quality specifications over a stud-track perpendicular
connection.

4.4 Validation & Limitations

This section provides a use case for the ontology model defined in the previous section,

aiming to validate the information flow and knowledge modeling proposed. A single

steel frame assembly in designed in Autodesk Revit / FrameX with as many different

modeled components as possible, i.e. different types of studs, bracings, etc. As such,

the frame used in this case can visualize as much as possible the extent of the ontology

modeling performed. A 3-dimensional view of the frame and each sub-component

identified is shown in Figure 4.10 and a list of the frame sub-components as per the

BIM Schema is found in Table 4.3.
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Figure 4.10: Steel frame assembly model and identifiable element parts.

Table 4.3: List of the steel frame assembly element parts.

BIM
Element ID

Description
Ontology Model

Individual
Ontology

Element ID

1
Frame Top

Track
ElementPart.Track.TopTrack TTT 1

2
Frame

Bottom Track
ElementPart.Track.BottomTrack TBT 1

3 Frame Stud ElementPart.Stud.Regular SR 1

4
Frame King

Stud
ElementPart.Stud.King SK 1

5
Frame Jack

Stud
ElementPart.Stud.Jack SJ 1

(Table continues on next page...)
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BIM
Element ID

Description
Ontology Model

Individual
Ontology

Element ID

6
Frame Jack

Stud
ElementPart.Stud.Jack SJ 2

7
Frame King

Stud
ElementPart.Stud.King SK 2

8 Frame Stud ElementPart.Stud.Regular SR 2

9 Frame Stud ElementPart.Stud.Regular SR 3

10 Frame Stud ElementPart.Stud.Regular SR 4

11 Frame Stud ElementPart.Stud.Regular SR 5

12 Frame Stud ElementPart.Stud.Regular SR 6

13
Frame

Horizontal
Bracing

ElementPart.Bracing.Horizontal BH 1

14
Frame

Horizontal
Bracing

ElementPart.Bracing.Horizontal BH 2

15
Frame Cripple

Stud
ElementPart.Stud.Cripple SC 1

16
Frame Cripple

Stud
ElementPart.Stud.Cripple SC 2

17
Frame Cripple

Stud
ElementPart.Stud.Cripple SC 3

18
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 1

19
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 2

20
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 3

21
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 4

22
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 5

(Table continues on next page...)
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BIM
Element ID

Description
Ontology Model

Individual
Ontology

Element ID

23
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 6

24
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 7

25
Frame

Diagonal
Bracing

ElementPart.Bracing.Diagonal BD 8

26 Frame Header ElementPart.Header H 1

For each element of the steel frame designed, its data is extracted from the BIM

model in order to populate the ontology model. Through the dotNetRDF extension

of the Revit API, functions such as RDFGraph.Assert() allow to automatically write

BIM data onto the ontology file (.owl) and generate ontology individuals of specific

classes. As observed, all the elements of the steel frame are given a unique element

identifier. From there, once the ontology model contains individuals, the ontology

reasoner can be executed so that the rest of the model is populated following the

axioms, properties, and relationships explicitly defined.

First, the reasoner identifies the connections that exist between elements within

the steel frame. As stated, those connections identify the areas where manufacturing

is required in the overlapping locations between steel frame sub-components, as well

as specifying the location for quality inspection. A list of all the connections created

by the ontology reasoner can be found in Table 4.4.
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Table 4.4: List of the steel frame assembly connections inferred by the frame element
parts.

Ontology
Connection

Reference
Element

Non-reference
Element

Ontology ID

Perpendicular

TTT 1

SR 1 CP 1

SR 2 CP 2

SR 3 CP 3

SR 4 CP 4

SR 5 CP 5

SR 6 CP 6

SK 1 CP 7

SK 2 CP 8

SJ 1 CP 9

SJ 2 CP 10

SC 1 CP 11

SC 2 CP 12

SC 3 CP 13

TBT 1

SR 1 CP 14

SR 2 CP 15

SR 3 CP 16

SR 4 CP 17

SR 5 CP 18

SR 6 CP 19

SK 1 CP 20

SK 2 CP 21

SJ 1 CP 22

SJ 2 CP 23

H 1

SJ 1 CP 24

SJ 2 CP 25

SC 1 CP 26

SC 2 CP 27

SC 3 CP 28

SK 2 BH 1 CP 29

(Table continues on next page...)
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Ontology
Connection

Reference
Element

Non-reference
Element

Ontology ID

Perpendicular

SK 2 BH 1 CP 30

SR 5
BH 1 CP 31

BH 1 CP 32

Angled SR 3
BD 1 CA 1

BD 8 CA 2

Double-
Angled

SR 3

BD 2 and BD 3 CDA 1

BD 4 and BD 5 CDA 2

BD 6 and BD 7 CDA 3

SK 1

BD 1 and BD 2 CDA 4

BD 3 and BD 4 CDA 5

BD 5 and BD 6 CDA 6

BD 7 and BD 8 CDA 7

Crossing

SR 2
BH 1 CC 1

BH 2 CC 2

SR 3
BH 1 CC 3

BH 2 CC 4

SR 4
BH 1 CC 5

BH 2 CC 6

Lateral

SK 1 SJ 1 CL 1

SJ 1 SC 1 CL 2

SC 3 SJ 2 CL 3

SJ 2 SK 2 CL 4

SR 5 SR 6 CL 5

In total, the ontology model generates 52 connections throughout the frame by

linking location and geometric information: 32 instances of ’Perpendicular’ connection,

2 instances of ’Angled’ connection, 7 instances of ’Double-Angled’ connection, 6

instances of ’Crossing’ connection, and 5 instances of ’Lateral’ connection. For the

steel frame studied, all the connections are correctly identified and modeled accordingly.
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The knowledge of the distribution and quantity of ’Connection’ types is necessary

to understand the manufacturing and quality requirements of the designed frame.

For the case of steel frame assemblies, such connections can be performed by either

’Screw Fastening’, ’Drilling’, ’Clinching’, or ’Welding’ operations. The selection is

purely based on the manufacturing capacity of the shop floor as there is no actual

difference in the final functionality or design of the steel frame assembly. However,

such selection does alter the specifications to be used in the quality control procedures

of the product, i.e. different specifications are needed if welding or screw fastening

operations are the manufacturing choice.

For the remaining of this section, the example provided is tailored to the manufac-

turing environment available: the steel framing machine in the Modular Construction

Lab at the University of Alberta. Such machine is capable of automated top and

bottom screw fastening operations. These manufacturing constraints suppose: 1)

identified ’Lateral’ connections, which require lateral screw fastening, are ignored; and,

2) manufacturing solutions in the model, other than ’Screw Fastening’, are disabled

from the ontology reasoner. As all the connections are performed using the same

method, the quality specifications depend solely on the ’Connection’ class as shown in

Table 4.2. Thus, introducing appropriate queries, quality ’Specification’ and all the

information modeled under that class can be accessed from the BIM model. A sample

query with its resulting information extracted from the ontology model is shown in

Figure 4.11.

The query presented aims to showcase the capacity of the augmented BIM ontology

model to transfer and visualize quality information regarding steel frames in a BIM

environment. This example illustrates a query that lists all the ’Geometrical’ quality

specifications of any ’Connection’ type CA (’Angled’ connection), assuming ’Screw

Fastening’ operations only as discussed, and provides a 3-dimensional visualization

that highlights the ’Angled’ connections located in the frame. The results of the query

matches the list of quality specifications in this case as listed in Table 4.2, showcasing
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Figure 4.11: Example of semantic query through Revit add-on.

that the BIM data extraction and ontology model proposed are working as intended.

In summary, this chapter presents a knowledge model capable of establishing a link

between quality specifications of steel frame assemblies and its design features, via

manufacturing operations. The ontology model proposed is able to support identifying

the areas that require quality control procedures and listing the features that need

inspection in an automatic fashion. This data is specially interesting to plan the

posterior inspection procedures at different levels: in general, a list with the all

the required features to inspect per frame can be obtained, which helps defining

the necessary output of the algorithms; but also it can be obtained per connection,

supporting a dynamic smart inspection system that would adapt its outputs to the

type of connection inspected. In the following chapter (Chapter 5), the design and

development of vision-based algorithms that can provide quality information, inter

alia the identified quality specifications linked to the BIM model, is presented.
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Chapter 5

Vision-based Inspection Systems
for Steel Frame Manufacturing

5.1 Overview

In current steel framing machines and also in the selected machine, the assembly of the

light-gauge steel panels and the screw-fastening automatic operations are unsupervised,

therefore the quality of the final product can be compromised. As previously mentioned,

operator errors, machine accuracy failures, and supplies’ deficiencies are not considered

in the BIM, therefore not accounted for in the current manufacturing process of the

steel frame assembly. With the ontology-enhanced BIM model developed in Chapter

4, quality information can be obtained and inspection targets can be defined so that

the required features are measured. As such, the development of smart visual systems

would provide an accurate inspection of the actual state of the construction product

at different points in time during the manufacturing process and the quality of the

manufacturing process itself. In the presented study, based on the specifications

required, three inspection systems are included in the machine environment: 1) pre-

manufacturing inspection system, that generates information regarding the quality of

the manual assembly process; 2) online inspection system, which oversees the quality

during screw-fastening operations; and 3) post-manufacturing inspection system, which

confirms the conformance/non-conformance of the machine operations.

All the inspection systems proposed are visual in nature: visual sensors, namely
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cameras, and image processing algorithms are used to generate the quality-oriented

data. In the steel framing machine used, several cameras are installed for this purpose.

First, a wide-angle camera is positioned on top of the loading area of the machine for

the pre-manufacturing inspection. Then, short-range cameras are installed on each one

of the screw-fastening carriages, four in total, for the online and post-manufacturing

inspection systems. An overview of the proposed systems installed on the steel framing

machine is outlined in Figure 5.1.

Figure 5.1: Overview of the steel framing machine with the developed inspection
systems.

The following sections provide deep insight on the proposed inspection systems for

steel frame assemblies, from the models to the algorithms involved.

5.2 Pre-Manufacturing Inspection System

The system presented aims to automatically validate the manually assembled frame

components in the loading zone of the steel framing machine prototype (SFMP) using

2D images from the scene. The proposed vision-based algorithm is developed and

implemented in Python programming language (computation tool) integrated with a
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camera system. The Python (version 3.6.4) programming language was chosen due to

of its ability to generate, modify and structure data intuitively as well as simulate

and apply computer vision algorithms through widely available libraries.

5.2.1 Frame Pre-Inspection Algorithm

In the proposed inspection system, the frame pre-inspection algorithm aims to extract

the relevant information for the manufacturing process from a 2D image of the frame

assembly that ultimately captures the quantity and location of all input materials of

the process. The input materials are the components of each frame assembly, namely

light gauge steel studs. The input image can be obtained from the loading zone of the

machine or from the top view of a 3D CAD virtual environment. The completion of

the frame inspection outputs the relevant information of each stud in the assembly:

the stud’s intersection, the stud’s metrics and the stud’s relative position in the frame

assembly. Thus, for every steel frame assembly, a real-time pre-verification can be

obtained.

Regarding image processing techniques, the Hough Transform has been previously

used to detect vertical studs in wall assemblies [179]. The proposed frame inspection

algorithm is a novel Hough transform-based algorithm to detect and identify frame

components. It works with either real images from the machine environment or

images from the frame CAD model. The algorithm works in three sequential stages:

line detection, intersection detection and stud detection. The flowchart of framing

inspection is illustrated in Figure 5.2. It must be noted that all the following stud

dimensions and locations are in pixels. To obtain metric results, standard camera

calibration is expected [193].

Whereas CAD models might have artificial transparent or clear backgrounds, real

environments contain backgrounds that are proven to be extremely noisy for computer

vision algorithms due to changing lighting conditions, vibrations on the camera and

possible partial occlusions. To obtain a clearer result from the Hough Transform, the
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Figure 5.2: Flowchart of the pre-manufacturing frame inspection.

real images must be preprocessed to eliminate the background image and isolate the

frame assembly satisfying Equation 5.1. To ensure that the camera is stationary, the

structure that holds the camera on its correct position was separated from the general

structure of the SFMP. Using such setup, the background can be eliminated using

well-known techniques such as the frame-difference approach [194].

D(x, y,∆t) =| I(x, y, t)− I(x, y, T ) |, (x, y) ∈ ℜ3 (5.1)

where, I(x, y, t) and I(x, y, T ) are the real images obtained at the real time (t) and

the moment in which the template was obtained (T ). D(x, y,∆t) is the resultant frame-

difference image. Therefore, obtaining a template image with the static background of
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the loading area beforehand is necessary. In indoor industrial environments, keeping the

template updated is a key factor for the efficiency of the algorithm as the background

tends to constantly change with time. Updating the background template should be

added to the machine calibration routine and its updating schedule should be coded

within the machine logic each time the machine changes its settings, such as any

lateral adjustment of the table. Considering all of this, (∆t) must satisfy the following:

∀∆t,

{︄
∆t = t− T

0 ≤ ∆t ≤ Tmax

(5.2)

where (Tmax) is the maximum recommended elapsed time since the last template

update and is dependent on the activity surrounding the loading area of the steel

framing machine. At first, transforming the image into gray-scale is required to

apply the well-known Canny edge detector. Then, the Hough Transform is applied

to transform the detected edges into a set of two parameters (ρ, θ) that define the

detected line in polar coordinates as stated in Equation 5.3.

L(ρ, θ) :=

{︄
ρ =

√︁
x2 + y2

θ = tan−1 y
x

, (x, y) ∈ D (5.3)

where L(ρ, θ) is the set of lines detected by the Hough transform in polar coordinates

and (x, y) are the pixel coordinates of the undistorted image. This set represents then,

as lines, the edges reflected by the Canny algorithm, as illustrated in Figure 5.3.

The detected lines that define frame edges, however, should belong to a unique stud

or track. Thus, two unique clusters are generated using k-means clustering around the

value of (θ) of each line to differentiate between vertical and horizontal lines, (Vl) and

(Hl) respectively. Each cluster would then define to which stud or track each subset

of lines belongs to. For example, based on the orientation of the camera selected,

vertical lines would belong to either tracks or headers in window components, and

horizontal lines would belong to studs or bracings. Both subsets are complementary

and are defined satisfying the following system of equations:
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Figure 5.3: Example of line detection by Hough Transform, after [195].

⎧⎪⎨⎪⎩
Vl ⊆ L, Vl(ρ, θ) := {(ρ, θ) ∈ L | θ ≈ π

2
± kπ, k = 1, 2, ...}

Hl ⊆ L,Hl(ρ, θ) := {(ρ, θ) ∈ L | θ ≈ 0± kπ, k = 1, 2, ...}
Vl ∩Hl = ∅

(5.4)

Once the lines have been clustered, the intersections between each vertical and

horizontal line can be found following Equation 5.5, thus computing the coordinates

for all the intersection points, (Nl). The system of equations can be solved to obtain

all the (x, y) pair of coordinates for each pair of lines.

Nl(x, y) :=

{︄
x cos θ1 + y sin θ1 = ρ1

x cos θ2 + y sin θ2 = ρ2
, (ρ1, θ1) ∈ Vl, (ρ2, θ2) ∈ Hl (5.5)

Therefore, finding the intersections of the frame is reduced to solve the set of

systems of equations for each possible pair of vertical and horizontal lines on the form

of AX = B as defined in Equation 5.6. An example of results for the line detection,

line clustering, and intersection point estimation are shown in Figure 5.4.

A =

[︄
cos θ1 sin θ1

cos θ2 sin θ2

]︄
, B =

[︄
ρ1

ρ2

]︄
, X =

[︄
x

y

]︄
∈ Nl (5.6)
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Figure 5.4: Line detection, clustering and intersection points results on a light-gauge
steel frame modeled in Revit.

However, each detected line is projected over the whole 2D space. For short studs,

its detected edge lines create virtual intersections on the longer studs, usually in

window or door components. Those virtual intersections need to be removed in order

to accurately define the frame assembly. As such, we need to be able to identify

a feature of any real intersection area that can differentiate both. The proposed

solution is to use the Harris corner algorithm to detect the corners of the whole frame,

(xc, yc), and filter the intersection points that are further than a specific threshold

from the corner points. The threshold is a user-defined parameter that gives the

maximum width, (wmax), of any stud that can be used as input material for the SFMP.

The filtered intersection points, (Nfl), satisfy the conditions set in Equation 5.7. A

graphical representation of the virtual intersection removal is also shown in Figure 5.5.

∀k,N (k)
fl (x, y) = ∂kN

(k)
l (x, y)

∂k :=

{︄
1 if x− xc ≤ wmax or y − yc ≤ wmax

0 otherwise

(5.7)

Once the intersection points are fully defined and possible errors filtered out, an

iterative process is followed to generate the intersection areas. An intersection area,

(Narea), is defined as a rectangular area that represents the superposition of two studs,

generated from four different intersection points. It is assumed that each intersection
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Figure 5.5: Example of virtual intersections removal for a steel frame with a window
component.

point belongs to a unique intersection area. Then for each intersection area, its defining

intersection points are obtained as follows:

Narea : = {(x1, y1), ..., (x4, y4)}, (x1, y1), ..., (x4, y4) ∈ Nl

∀j, k ∈ 1, ...,
N

4
, j ̸= k,N j

area ∩Nk
area = ∅

(5.8)

where (N) is the number of intersection points found in the frame, and each pair of

coordinates for the intersection area are defined as follows:

(x1, y1) = {(x, y) | min(sgn(x)sgn(y)
√︁
x2 + y2)}

(x2, y2) = {(x, y) | min(sgn(x− x1)sgn(y − y1)
√︁

(x− x1)2 + (y − y1)2)}

(x3, y3) = {(x, y) | min(sgn(x− x1)sgn(y − y1)
√︁

(x− x1)2 + (y − y1)2)

∧ (x, y) ̸= (x1, y1)}

(x4, y4) = {(x, y) | min(sgn(x− x1)sgn(y − y1)
√︁

(x− x1)2 + (y − y1)2)

∧ (x, y) ̸= (x2, y2) ∧ (x, y) ̸= (x3, y3)}

(5.9)

A simplified pseudo-code and graphical representation (see Figure 5.6) of the

generation of intersection areas can be found below.

1. Sort the intersection points in ascending distance to the origin of the frame;
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2. Pick the first intersection point from the list that is not part of an intersection

area;

3. Calculate the distance to the remaining intersection points from the selected

point;

4. Sort the points by ascending distance;

5. Pick the first three points and create an intersection area;

6. Repeat from step 2 until all intersection points have been visited.

Figure 5.6: Overview of the intersection area generation algorithm.

Similarly, stud areas should be generated following an iterative process using the

intersection areas recently defined. A stud area, (Sarea), is defined as a rectangular

area that represents a stud. Acknowledging that each stud starts and finishes on

an intersection area due to the frame structure, the stud area would be generated

between both intersection areas, both included. It is assumed that a unique couple of

intersection areas can only generate one stud area, but an intersection area can be

part of several stud areas. Then, for each stud area, its defining intersection points

are obtained as follows:
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∀j, k ∈ {1, ..., R}, j ̸= k, Sarea = {(x1, y1), ..., (x4, y4)},

(x1, y1), (x3, y3) ∈ N j
area ∧ (x2, y2), (x4, y4) ∈ Nk

area

(5.10)

where (N j
area) is a random intersection area, (Nk

area) is an intersection area that

shares a vertical or horizontal line with (N j
area), and (R) is the number of detected

studs in the frame. An illustration of the stud generation algorithm is found in Figure

5.7.

Figure 5.7: Stud area generation algorithm overview.

Acknowledging that each stud starts and finishes on an intersection area due to the

frame structure, the stud area would be generated between both intersection areas,

both included. Note that, stud identification does not rely on predefined stud width

values and, as such, any detected stud can be in reality the junction of several studs.

However, the presence of a real stud between intersection areas might not be assured

in window or door components (as seen in Figure 5.8).

Thus, it is paramount to verify the stud continuity after reaching an intersection

area to fully define different studs that are aligned vertically or horizontally and

avoid defining studs on empty areas. Assuming that by definition stud intersections

cannot be generated in empty areas, stud continuity is considered when no important

image gradient is observed anywhere between both intersection areas. A stud area

is considered continuous when the pixels inside the area satisfy Equation 5.11. Let

(Dp) the difference image between both intersections and (∂p) the binary variable that

defines the continuity of the stud in an area. Then:
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Figure 5.8: Stud discontinuity between aligned intersection areas for window or door
components.

∇Dp(x, y) =

[︄
∂Dp

∂x
∂Dp

∂y

]︄

∂p =

{︄
0 if

√︂
∂Dp

∂x

2
+ ∂Dp

∂y

2
≥ T

1 otherwise

(5.11)

where (T ) is the maximum image gradient possible with stud continuity. In ideal

conditions, T ≈ 0, however the value of this threshold must be set considering the

lighting conditions. This step may give false stud areas if the threshold value is

comparable to the maximum gray-scale gradient value (T ≈ 255
√
2). Thus, low

lighting conditions on the loading area are recommended as steel has a high light

reflectance value. Finally, the stud metrics, such as stud width, (ws), and stud length,

(ls), can be directly calculated from the combination of intersection points of each

stud area as per Equation 5.12.

∀Sarea,

{︄
ws =

√︁
(x1 − x3)2 + (y1 − y3)2

ls =
√︁
(x1 − x2)2 + (y1 − y2)2

(5.12)

Thus, the pseudo-code for the proposed algorithm to generate the stud areas is as

follows:
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1. Select first/next intersection area and pick the first intersection point of the

intersection area and store it as the first point of the stud area P1: (x1, y1);

2. Make a list with the intersection points that belong to the same vertical line;

3. Calculate the distance between P1 and the selected points. If all values are

positive, pick the furthest one that ensures stud continuity and store it as the

second point in the stud area P2: (x2, y2); if any value is negative, the stud area

being defined is not a full stud, skip to step 8;

4. Check if the second intersection point of the first selected intersection area is in

the list: if yes, pick the third one; if not, pick the second one. Store the selected

point as the third point of the stud area P3: (x3, y3);

5. Select the intersection area of the intersection point found in step 3 and store

the fourth intersection point as the fourth point in the stud area P4: (x4, y4);

6. Store as stud width the distance between P1 and P3 (or P2 and P4) of the stud

area array;

7. Store as stud length the distance between P1 and P2 (or P3 and P4) of the stud

area array;

8. Make another list with the intersection points that belong to the same horizontal

line;

9. Follow steps 3 to 7 with the new list;

10. Repeat from step 1 until all intersection areas have been checked.

To summarize, the proposed frame inspection algorithm identifies four different

structures in any frame assembly from the Hough Transform results: edge lines,

intersection points, intersection areas, and stud areas.
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5.2.2 Results & Validation

This section illustrates the effects of various panel configurations on the results obtained

by the aforementioned inspection system. To represent the main components found in

design and drafting of steel frame assemblies, this study presents three different virtual

scenarios obtained from two commonly used CAD software (SolidWorks and Autodesk

Revit): one frame with only vertical studs, one frame with a door component, and

one frame with a window component. Relevant information obtained from the BIM

for each one of the case studies is shown in Table 5.1.

Table 5.1: Summary of frame assemblies information (case studies).

Frame Design Case 1 Case 2 Case 3

Shop Drawing

Frame Dimensions [mm]
*width (z) = 92

Length (x) =
2448; Height
(y) = 2439

Length (x) =
3048; Height
(y) = 2439

Length (x) =
2448; Height
(y) = 2439

Stud
Quantity

Single 10 12 10

Multiple 0 2 1

Total 10 16 12

Screw-
fastening
Operations
(per layer)

Left 8 10 10

Right 8 16 10

Total 16 26 20

These design cases based on a prefabricated home plan are studied to validate

the applicability of the proposed framework. The inspected product accuracy on the

stud count and screw-fastening operations (intersection areas) are compared with

the information obtained from the 3D-BIM models. Further, the algorithm time

performance is discussed in Table 5.2. The case studies are analyzed using a standard
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computer with Intel Core i7-6700 CPU with 16 GB RAM.

Table 5.2: Time performance for the pre-manufacturing inspection system on each
case study.

Case 1 Case 2 Case 3

Time
Performance

(mean ± std.dev.
of 7 runs, 100
loops each)

3.54 s ± 25.4 ms 3.61 s ± 28.4 ms 3.49 s ± 37.8 ms

As observed, there is not much difference between the time performance of the

algorithm for each case study. In fact, such difference could be the consequence of

fluctuations of work in the computer processor due to other background running

programs. It would be fair to assume that the complexity of the frame assembly does

not impact the processing time of the algorithm.

Figure 5.9 shows the results obtained by the pre-manufacturing inspection system.

As observed, for all frame assemblies, the number of studs detected and intersection

areas created match the frame information provided in Table 5.1.

Figure 5.9: Case study results from the pre-manufacturing inspection system on virtual
scenarios.

At last, a comparison between the results obtained with a simulated scenario and

its corresponding real scenario is presented. Figure 5.10 showcases the results obtained
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from both scenarios. Note that the real scenario original image has some perspective

as the camera mount was not perfectly positioned to obtain a clear top view of the

loading zone, however, it shows a more probable scenario and proves that perspective

does not alter the results obtained. Nevertheless, the measurements obtained need to

be corrected subject to camera angle and positioning via calibration beforehand.

Figure 5.10: Case study 3 results from virtual (left) and real (right) scenarios.

As observed, the real window component available for testing does not match

exactly with the 3D-BIM information. As both window components have the same

amount of studs and intersection areas, for comparison purposes solely both models

will be assumed similar. Given the presented results, the amount of studs detected

and intersection areas is identical. As each manual assembly is different and no ground

truth can be set on the real scenario, no metric comparison and accuracy analysis

are made between both models. For all the cases just mentioned, the inspection

system presented offers a clear insight on each individual component of the frame

by measuring the defining features of each stud. This available information confirms

that the current frame assembly standing on the loading zone of the SFMP matches

with the scheduled frame coming from the BIM information. With this methodology,
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industry manufacturers would benefit from an extra layer of security at the beginning

of their production line against operator errors in the selection or positioning of studs

and/or supplies’ deficiencies, as well as having machinery that take into consideration

the status of the input materials in their manufacturing process. This last point

will enable steel framing machinery to collect data in real-time and operate and take

decisions based on a virtual scenario created from a single image. Both principles,

real-time data generation and virtualization, are key components of Industry 4.0.

5.2.3 Discussion and Limitations

Eliminating the effects of artificial lighting in industrial environments and obtaining the

correct stud metrics from the rectangle fitting is no simple task after the background

differentiation. When encountering high intensity lighting, the light-gauge steel easily

reflects the light to the camera. When running the inspection system, the reflection

may in some cases affect the end results, especially when the light is reflected from

the edges of a stud. Empirical results showed that this inspection system would define

such studs incorrectly. Further, the slightest vibrations that alter the position of the

camera during either of the image shots generate blurry edges in the resulting frame,

therefore, inaccurate metrics are obtained. For industrial utilization purposes, the

vision-system has to be placed in an isolated environment, i.e. place the camera in an

isolated structure or design a motionless mount for the camera (gimbal), to allow the

system to operate correctly and obtain results that can match the specifications of

the industry standards. Otherwise, vibrations coming from the machine environment

or other sources may affect the image pre-processing and alter the metric results.

Moreover, some limitations are encountered in some wall panel designs when

dealing with multiple studs of different lengths, which may occur when complex panel

components are used. The edges of the stud with lesser length would be initially

detected, except the one in between both studs. As such, the detected geometry

for the possible multiple stud is not rectangular. As the algorithm is optimized to
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deal with rectangular forms, the stud of lesser length would be treated as noise and

therefore not detected. The results obtained for such panels from the frame inspection

algorithm are often incorrect.

The proposed framework allows for fast inspection, identification, and location of

frame components for steel frame assemblies within a few seconds on real and virtual

scenarios. While the estimated functional features seem located in the correct position,

future work could include an accuracy analysis comparing the obtained results to the

actual system [196]. This study might give further insight on the practical industrial

application and required precision of the functional features generated by the proposed

system.

Whereas the applicability of such framework is necessary in completely autonomous

systems, in semi-automated systems, where machine and operator work together, the

cost-effectiveness of the proposed solution can be questioned. As of today, panelized

construction is far from being a fully automated manufacturing process. Taking that

into consideration, a cycle time analysis on the manufacturing process is performed

and shown in Table 5.3. The duration shown for assembly, misplacement correction,

and substitution delays were obtained empirically in the machine environment. A

similar approach could be used for other framing machines to justify quality assessment

procedures from a cost perspective.

5.3 Online Inspection System

5.3.1 Model Description

The purpose of this online inspection system is to validate the quality of the light-

gauge steel frame during the screw-fastening operations in the steel framing machine

prototype environment. The workflow of the proposed system commences with visual

data acquired independently by different cameras. One camera is installed on each

screw-fastening carriage, as illustrated in Figure 5.11.
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Table 5.3: Cycle time analysis for quality assessment of steel frame assemblies manu-
facturing considering pre-inspection results.

Frame Design Case 1 Case 2 Case 3

Shop Drawing

Manufacturing
Time [min:sec]

Manual
Assembly

2:00 3:00 2:30

Screw
Fastening

1:03 1:48 1:39

Total Time 3:03 4:48 4:09

Manufacturing Time +
Inspection (no errors)

[min:sec]

3:07
(+2.19%)

4:52
(+1.39%)

4:13
(+1.61%)

Manufacturing
Time +

Inspection (1
error) [min:sec]

Manual
Misplacement
Correction

3:40
(+20.22%)

5:25
(+12.85%)

4:46
(+14.86%)

Manual
Substitution

4:40
(+53.00%)

6.25
(+33.68%)

5:46
(+38.96%)

The online inspection system is integrated within the sequential screw-fastening logic

and control of the machine. This system is triggered by each scheduled screw-fastening

operation, as planned by the CAM (computer-aided manufacturing) software [196].

The images are then processed to obtain the relevant quality information regarding

screw-fastening operations, estimating the squareness of the stud-track connection

and the adequate location of the screw-fastening operation itself. If needed, corrective

motions of the screw-fastening carriage are finally performed to ascertain quality

during the operation.

The strategy presented does not require complex coordinate frame transformations

because the distance and angle between the camera and the frame is fixed. Thus, the

camera would capture the intersection area (as defined in the previous chapter) as
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Figure 5.11: Overview of the location of visual sensors installed for online inspection
of screw-fastening operations.

the panel gets processed. Using the pinhole model for the camera, the relationship

between the global coordinates and the camera coordinates are shown below:

m = A[R|t]M, with A =

⎡⎢⎣α γ u0

0 β v0

0 0 1

⎤⎥⎦ (5.13)

where (m) is the homogeneous 2-dimensional image projection and (M) is the

homogeneous 3-dimensional coordinates; (A) is the camera intrinsic matrix with

(u0,v0) being the coordinates of the principal point, (α) and (β) the scale factors in

the image on the u and v axes respectively and (γ) the parameter describing the

skew of both image axes; and (R) and (t) are the rotation and translation matrices

respectively, called the extrinsic parameters of the system. The proposed model

schematic is shown in Figure 5.12.

As such, with the proposed configuration, the extrinsic parameters are fixed. The

matrix containing the rotation and translation transformations necessary for the
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Figure 5.12: Proposed online inspection model schematic.

proposed model is given then by Equation 5.14. For the setup used in this study,

α = 39.5◦, h = 550 millimeters, and l = 350 millimeters.

[R|t] =

⎡⎢⎣cosα − sinα 0 l

sinα cosα 0 0

0 0 1 h

⎤⎥⎦ (5.14)

5.3.2 Squareness Estimation Algorithm

The approach proposed in the present research for estimating the squareness of a

given frame component connection, i.e. stud-to-track connection, is based on the use

of the Hough transform. Squareness in the context of the present research is defined

as the angle between the steel components that are being connected through the

screw-fastening operation. It should be noted that detecting exclusively the edges of

the visible studs can be a challenging task, since the steel members used in light-gauge

steel construction are highly reflective and often contain numerous superficial marks

or dents. Hence, a large number of noisy edges are to be expected. In this context,
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the proposed algorithm to estimate the squareness of steel stud connections works in

a sequential process that is described in detail below.

First, as this algorithm will be dealing with geometric calculations to estimate the

squareness of the connection, standard camera calibration is required to mitigate the

impact of lens distortion on the final measurements [193]. Next, a mask is created

from the undistorted image using the automated threshold Canny edge detector [197].

This approach is widely known to be capable of optimizing the edge generation over

relevant features of an image and of reducing background noise. Then, the Hough

transform is applied to define the detected lines from the initial edges as a set of two

parameters (ρ, θ), as stated in Equation 5.3 and illustrated in Figure 5.13.

Figure 5.13: Example of the detection process of a line on a light-gauge steel track-stud
connection.

This set represents then, as lines, the edges reflected by the Canny algorithm.

The detected edges, however, must belong to a unique steel member. Thus, two

unique clusters are generated using k-means clustering around the value of (θ) of

each line to differentiate between the vertical and horizontal lines, (Vl) and (Hl),

respectively. Each cluster then defines the steel member to which each subset of lines

84



belongs. For example, vertical lines would belong to either tracks or headers in window

components, and horizontal lines would belong to studs or bracings. Both subsets

are complementary and are defined satisfying the system of equations presented in

Equation 5.4.

Once both sets are defined, and assuming that none of them is an empty subset, the

squareness is estimated to be the angle between the lines on each subset. Typically,

both subsets contain a few lines, as the Hough transform generates several lines for

each stud edge. In the present research, the squareness of the connection, (⊥), in the

image, is estimated using Equation 5.15. However, it should be noted that a more

complex statistical approach may yield better results if a larger number of lines are

detected.

⊥=

⃓⃓⃓⃓
1

m

m∑︂
i=1

θh −
1

n

n∑︂
i=1

θv

⃓⃓⃓⃓
(5.15)

where (m) and (n) are the numbers of lines in the horizontal and vertical line clusters,

respectively. An illustration of the squareness estimation result on a post-manufactured

stud-track connection is shown in Figure 5.14.

The squareness algorithm results and further discussion on the performance of this

proposed solution can be found in Section 5.4.

5.3.3 Screw Fastening Location Estimation Algorithm

The proposed screw fastening location estimation algorithm builds upon the initial

steps of the squareness estimation algorithm aforementioned (see previous subsection).

This decision is made solely to reduce computational time and optimize resource usage,

which is really limited in real-time online systems. This algorithm starts by taking

the result of the edge detector and cluster the edges in vertical and horizontal lines

(see Equation 5.4). For this study, two scenarios are presented: either the steel frame

components have been pre-drilled or not. Due to its ease of assembly, pre-drilled pilot

holes are commonly used in industry, but it requires extra machinery and space that
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Figure 5.14: Example of squareness estimation results for a light-gauge steel track-stud
connection.

is not always available. To support a flexible manufacturing process, the proposed

inspection system will assure screw-fastening quality in both scenarios. Initially, the

aim is to identify the pre-drilled pilot hole in the upcoming steel frame connection in the

boundary area that contains the connection between steel members (or intersection

area as defined in Section 5.2). An illustration of the boundary obtained by the

detected edges can be found in Figure 5.15. In the case that no pilot hole is found by

the aforementioned algorithm, the inspection system assumes that ’raw’ steel is used

for the inspected frame. The flowchart in Figure 5.16 showcases how the inspection

system determines what are the appropriate algorithms to use in each case. This is

key to obtain a real-time overall system performance.

Pre-drilled Pilot Hole Detection Algorithm

To detect the pilot hole, four steps are needed to process the image. Step (1): The

image is first converted to gray-scale to reduce its memory allocation, thus reducing

computational requirements, and then the well-known Canny edge detector is applied.

Step (2): Relevant contours are then defined from the resulting binary image as Suzuki
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Figure 5.15: Example of online inspection results on screw fastening of light-gauge
steel components. Left: ’raw’ steel. Right: pre-drilled studs.

Figure 5.16: Online inspection procedure flowchart.

and Abe described on their first algorithm [198]. As the order of magnitude of the

pilot hole is well known, this step allows for the reduction of most of the unwanted

edges obtained by the Canny edge detector, which can be quite numerous as shown in

Figure 5.17, by restricting the area of each contour to avoid detecting contours that

are too large or too small. Step (3): The detected contours are checked for a “circular”
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shape. The circularity of a contour, (ϕ), is defined in Equation 5.16.

ϕ =
P 2
c

4πAc

(5.16)

where (Pc) and (Ac) are the perimeter and the area of a contour respectively.

The contour will be considered elliptical enough for this problem if the value of the

circularity of a contour is between 0.8 and 1.2. Step (4): For the remaining contours, an

ellipse fitting algorithm is used to define the center of the pilot hole that will be noted

[u, v]T . The ellipse is defined using the algebraic distance with quadratic constraint

algorithm (B2AC) [25]. For a family of curves (C(a)), the algorithm searches the

value of (a) that minimizes the error function shown in Equation 5.17.

ϵ2 =
n∑︂

i=1

δ(C(a,x) (5.17)

where δ(C(a,x)) represents the distance metric from a point (x) of the contour to

the curve. An example of the results obtained at each step can be found in Figure

5.17.

To prove its efficiency and accuracy, our method is compared against three methods

for fast ellipse detection, namely the methods of Xie and Ji [199], its randomized

version of Basca et al. [200], and the most recent algorithm of Fornacieri et al. [201].

These methods have been selected due to their diffusion, declared efficiency, and

availability of source code. Since some methods do not provide a pre-processing step,

to guarantee the fairness of the comparison, all methods start from the same edge

mask. All the methods have been tested on the same dimpled LGS panel with 6

studs. The results of the visual detection of the pre-drilled pilot holes on the panel are

depicted in Table 5.4 for each different method in terms of accuracy and computational

time. Computational time is the average elapsed time over 10 runs with 1000 loops

each and has been computed on a PC with 16 GB of RAM and an Intel Core i7-6700

processor. The measurement error is the average absolute value of the error between
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Figure 5.17: Results obtained for pre-drilled pilot hole detection in a dimpled LGS
stud: (a) edge detection; (b) filtered contour detection; (c) ‘circular’ contour detection;
and (d) ellipse fitting and screwing point estimation.

the real center and the estimated center of the pilot hole. The real center is measured

with a mechanical caliber (0.02 mm precision). For each measurement, Figure 5.18

shows the accuracy box-plots per visual detection method.
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Table 5.4: Accuracy and computational time results for the detection of pre-drilled
pilot holes.

Method
Computational Time

(mean ± std.dev.)
Average

Measurement Error

Proposed Method 286.64 ± 42.39 ms 3.14 mm

Xie and Ji [199] 395612.87 ± 41632.27 ms 1.68 mm

Basca et al. [200] 32684.97 ± 8463.02 ms 25.38 mm

Fornacieri et al. [201] 71.21 ± 12.37 ms 7.36 mm

Figure 5.18: Accuracy box plot results per visual detection methodology.

As expected, the exhaustive search method of Xie and Ji guarantees good average

accuracy at the cost of a very high computational time. Its randomized version (Basca

et al.) is much faster but loses in accuracy. The point selection optimization in

Fornacieri et al. method gives a considerably faster computational time but sacrifices

some accuracy. Our method is computationally more demanding than the previous

one but offers a slightly better accuracy.

Due to the problem constraints, the algorithm for pilot hole detection should

be running in real-time and accurately determine the screwing location within the

90



pilot hole diameter. From a computational perspective, a real-time operation is

considered when no significant delay on the overall performance of the system is

introduced. In this case, the deadline is set around one second. As a result, both

Fornacieri’s algorithm and our proposed method proved that they can perform under

real-time constraints. From an accuracy perspective, only Basca et al. does not meet

the minimum requirements of detecting the pilot hole center within the pilot hole

dimensions. Such minimum requirements are necessary to ensure that the ellipse

detection algorithm is accurate enough to define the screwing operation within the

boundary of the pre-drilled pilot hole. When all things are considered, either our

method or Fornacieri’s method can be used for real-time detection of pre-drilled pilot

holes.

Centroid Estimation

For ’raw’ steel assemblies, the correct location for the screw fastener is defined as the

center of the area in which the track and stud steel members overlap. Considering

the computational effort made during the squareness algorithm to determine the

edges of the studs, this algorithm uses the already available information to ease the

calculations, and reduce computational time. From the already clustered edge lines

detected, an intersection area can be built as it was defined in the pre-inspection

system (see Section 5.2). As such, the coordinates of the centroid of the intersection

area are estimated following Equation 5.18.

∀(x, y) ∈ Narea,

{︄
XV = 1

4

∑︁4
i=1 xi

YV = 1
4

∑︁4
i=1 yi

(5.18)

To validate the proposed approach, a single light-gauge frame is manufactured

whilst the inspection system is running. Images are collected and the screw fastening

location for each stud-track connection is estimated using Equation 5.18. Table 5.5

summarizes the results obtained using the inspection system. Computational time is

the average elapsed time over 10 runs with 1000 loops each and has been computed on
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a PC with 16 GB of RAM and an Intel Core i7-6700 processor. The measurement error

is the average absolute value of the error between the real location and the estimated

centroid of the intersection area. The real location is measured with a mechanical

caliber (0.02 mm precision).

Table 5.5: Accuracy and computational time results for the location estimation of
screw fastening operations with ’raw’ steel.

Frame Design
Computational Time
per Operation (mean

± std.dev.)

Average
Measurement Error

115.37 ± 25.17 ms 3.44 mm

In the case of ’raw’ steel, no standard or specification determines the correct location

for the screw fastening operation. As such, to determine if the proposed algorithm is

accurate enough to perform such operations safely and providing good quality, certain

geometric restrictions are proposed: the screw fastening location should occur at a

certain distance from the edges of the track and the stud to maintain the connection

strength and structural integrity. For this study, the correct location for screw fastening

operations considers a 10% safety factor as is illustrated in Figure 5.19.

Figure 5.19: Illustration of geometrical restrictions on screw fastening locations for
steel stud-track connections.

Taking the smaller web sizes for studs, min(ws) = 2′ − 1/2” = 63.5 mm (250S),
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and tracks, min(wt) = 3′ − 1/2” = 88.9 mm (350T), the minimum precision for a

conforming screw fastening operation is 25.4 mm and 35.56 mm respectively. As such,

the average measurement error for the estimated location is sufficient to ensure safe

and conforming screw fastening operations.

5.3.4 Adaptive Screw Fastening Operations

From the initial set of coordinates obtained from the CAD shop drawings, the correction

approach aims to address possible errors in the position of the screw manipulator. For

each screw fastening operation, three sets of coordinates are available: the original

position set by the CAD model, [XCAD, YCAD], one set obtained from the proposed

inspection, [XV , YV ], and one set obtained from the motor encoders in the dragging

squares and screw fastening carriage respectively, [XF , YF ], that represent the real-time

position of the screw manipulator relative to the position of the steel frame. Assuming

the minimum performance necessary of the vision-based algorithm discussed in the

previous subsection, the screw manipulator needs to be aligned with the estimated

location to ensure a safe and accurate screw operation. The screw fastening operation,

under these circumstances, needs to always satisfy Equation 5.19, where (d) is the

maximum error admissible for the operation. For steel frames with pre-drilled pilot

holes, (d) is given by the diameter of the pilot hole, otherwise, the screw fastening

operation may miss the pilot hole, hit the steel stud, and possibly cause damage to

the frame and the screw manipulator.

(XV −XF )
2 + (YV − YF )

2 ≤ d2

4
(5.19)

Currently, the initial step for any screw fastening operation is to set the position of

the screw manipulator satisfying XF = XCAD and YF = YCAD. Then, machine vision

gives its estimate on the real position. If Equation 5.19 is not satisfied, then motors

engage on an extra corrective motion until XF = XV and YF = YV . Finally, the

algorithm runs again to check if the corrected position satisfies Equation 5.19. If that
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is not the case, the correction approach would restart with the most recent results of

the machine vision algorithm. A flowchart representing the corrective approach steps

can be found in Figure 5.20.

Figure 5.20: Complete screwing operation procedure flowchart.

5.4 Post-Manufacturing Inspection System

This section aims to provide insight of the proposed solution for post-manufacturing

inspection of light-gauge steel frame assemblies, that is, after the screw fastening

operation has occurred. For this system, a visual approach is used following the

model presented in Section 5.3. Two main metrics are automatically determined using

the algorithms presented in this section: (1) final squareness of the steel connection;

and, (2) quality assessment of the screw fastening operation. The first algorithm is

already presented in Section 5.3, as squareness estimation is required before and after

the screw fastening operation. Nonetheless, this section provides the analysis and

discussion over the use of the proposed squareness algorithm in a real scenario.

5.4.1 Automatic Screw Fastening Quality Assessment

Optical inspection is vital to ensuring that manufactured end-products satisfy the

given specifications, and, in the case of manufactured construction components, are

safe to use. While intensive industrial defect detection methods, such as feature

selection, can provide comprehensive results, such solutions remain limited to the

characteristics and features of the final product. Thus, if a new feature is introduced
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in the product, for example a change in the self-driving screw fastener, a new set

of problems may arise [202]. In contrast to manually engineered image processing

solutions, supervised learning approaches such as deep learning techniques may be used

to overcome the inherent limitations of the practice of manually redefining features

for each new inspection problem in a reactive manner.

The present study investigates the use of a Region-based Convolutional Neural

Network (R-CNN) [203] to provide automatic inspection of screw-fastening operations.

By taking images and object proposals from select searches as inputs, R-CNNs use

convolutional neural networks (CNNs) to extract features, and then locate and classify

objects based on the initial search parameters. This approach significantly improves

the accuracy of object detection in comparison to previous CNN-based methods, such

as sliding windows. The proposed approach has been previously used, for example, to

detect surface defects on steel and concrete structures, i.e., corrosion or cracks [204].

The following paragraphs describe in detail the data-set used to train the R-CNN, its

architecture, and the training/validation results.

First, to develop a database containing results of screw-fastening operations in

light-gauge steel members, 239 images (with a resolution of 659×454 pixels) are

collected using the system defined in Figure 5.11. Images are captured for different

steel members and lighting conditions. To annotate the labels of the inspection results

and the coordinates of their corresponding bounding boxes in images, the software

environment, MATLAB, is used to manually specify them. During the annotation

process, each image is assigned a single label. Two labels are used to determine

the conformity of the screw-fastening operation. Labeling is determined, it should

be noted, based on the need for rework after the operation is finished, as stated in

the Canadian specifications for the design of cold-formed steel structural members

(CSA S136-07/S1-10). For example, if the screw is loose enough to require tightening,

or if the screw is missing or tilted, the operation fails the quality inspection and is

assumed to be non-conforming. If no need for rework is identified, the screw-fastening
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operation requires no further action and is considered acceptable. Given that the

images are obtained using an automatic screw manipulator, the data-set is initially

biased towards ‘conforming screw-fastening operations. In fact, of the 239 images

obtained, only 21 images show screw-fastening operations that would require rework

in order to be considered acceptable. Therefore, data augmentation techniques are

applied to generate more images of poor screw-fastening operations in order to balance

the data-set. In this case, horizontal flipping and random rotation are used to generate

new images. Finally, the augmented data-set contains 228 and 160 images of correct

and failed screw-fastening operations, respectively. An example of images from the

data-set is shown in Figure 5.21.

Figure 5.21: Sample images with corresponding bounding boxes and labels.

Figure 5.22 presents the R-CNN architecture used in this study for screw detection

and classification. The R-CNN designed for use in this study is based on the pre-trained

ResNet-50 [205]. (Transfer learning, it should be noted, has proven to be effective in

reducing training time and computational demand and in providing accurate results,

even with small data-sets [206].) By skipping connections within the network, ResNet

enhances the detection of smaller objects in images, such as the screws for this study.

To adapt it to the context of this study, the last three layers of the ResNet-50 are

substituted by a fully connected layer, a SoftMax layer, and a classification layer,

themselves connected by average pooling. These layers are retrained for the purpose
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of screw detection and classification.

Figure 5.22: The schematic architecture of the R-CNN used.

To generate a training and validation data-set, images are randomly selected from

the labeled images such that each of the two label types—correct and failed screw-

fastening operations—represent at least 30% of the images contained in the validation

set. The remaining images not selected are used for training the R-CNN. Both training

and validation are performed using the open-source R-CNN library available within

MATLAB2019b. The neural network is trained using stochastic gradient descent,

with a momentum of 0.9, an initial learning rate of 10−4, and a batch size of 32.

The accuracy and loss function during both training and validation are recorded, as

presented in Figure 5.23. After approximately 10 epochs, the accuracy of the network

reaches over 93% for both the training and validation data.

5.4.2 Results and Discussion

This section aims to validate the proposed system in a real scenario. First, the

experimental setup is explicitly defined. Then, the results obtained from the inspection

system are presented. Finally, the results and limitations of the system are discussed
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Figure 5.23: Training and validation results.

in depth.

Experimental Setup

To test the trained inspection systems, an experiment is set up to provide results in a

machine environment. The purpose of this experiment is to ensure the accuracy of the

proposed systems, as well as the real-time performance of the inspection systems. A

panel frame is prepared to be used as a case study for this experiment. The relevant

information pertaining to the panel can be found in Table 5.6.

Table 5.6: Summary of panel information.

Frame Design

Frame Dimensions (mm) *Width(z) = 92
Length(x) = 2448
Height(y) = 2439

Stud Quantity 10

Screw-
Fastening
Operations

Left 8

Right 8

Total 16

To obtain relevant data for each possible scenario that the inspection systems can

encounter, the frame is manually assembled three times: (1) automatically fastened

98



correctly; (2) manually fastened incorrectly, and (3) not fastened at all. Scenarios 1

and 2 are needed in order to test the recall (true positives and false negatives), while

scenario 3 determines the algorithm’s specificity (false positives and true negatives).

For each assembly, all the steel connections are inspected. An example of the same

connection for each of the scenarios is presented in Figure 10.

Figure 5.24: Sample of testing data (images) for each scenario on the same panel
location.

Each scenario is tested using the same inspection process and the steel framing

machine prototype. For each connection, squareness is estimated before and after

the screw-fastening operation to check the impact on squareness, and each screw-

fastening connection is inspected individually. For the designed panel (see Table

5.6), the inspection system performs 32 squareness inspections and 16 screw-fastening

inspections per scenario, except for scenario 3 where the second round of squareness

inspection is ignored as there is no screw-fastening operation being executed. A total

of 80 squareness inspections and 48 screw-fastening inspections are performed to test

the performance of the algorithms presented.

Real-time Performance

The time performance of both algorithms is discussed in this subsection. Using an

Intel Core i7-6700 CPU with 16 GB RAM, the time performance results are presented

in Table 5.7. From a computational perspective, both algorithms should be running

in real-time to avoid unnecessary delays to production. However, the manufacturing
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process does need to pause for the inspection system to capture the appropriate image

of the connection before and after the screw-fastening operation. Once the image

is captured, the framing process can proceed and the image processing presented in

this study can be carried out in parallel. Nonetheless, the authors consider that, by

the time the frame is finished, the inspection results of the whole panel should be

available, so the quality control process is accelerated, thereby avoiding unnecessary

delays to the downstream manufacturing processes.

Table 5.7: Time performance for both algorithms in the post-manufacturing inspection
system.

Squareness
Estimation

Screw-fastening
Detection & Quality

Assessment

Time Performance
(mean ± std. dev. of 7
runs, 100 loops each)

0.72 ± 14.4 ms 4.87 ± 68.4 ms

For the steel framing machine prototype, in the current process for light-gauge

steel framing, a synchronous double screw-fastening operation occurs every 20 to 25

seconds (depending on the distance between operations). Within that time frame, four

squareness estimations and two screw-fastening detections are performed, requiring a

computational time of approximately 12 seconds. Therefore, the time performance of

both algorithms is sufficient for them to be run in real-time systems, and no delays are

introduced by implementing the inspection system proposed. It should be noted that,

in the present study, both algorithms are CPU-powered, and improved performance

can be expected by enabling and optimizing GPU, especially for the R-CNN detection.

Squareness Estimation Results

The results obtained for each scenario using the squareness estimation algorithm are

presented in Tables 5.8, 5.9, and 5.10. The ground truth (’real’) results are obtained,

by manual measurement, seconds before and after the screw-fastening operation (SFO)
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occurs without any further motion from the machine or changes to the frame. The

measurements are obtained using a protractor with 0.1 degrees of accuracy, assuming

that no deviation occurs on the steel member in close proximity to the connection of

concern.

Table 5.8: List of the results obtained in Scenario 1 by the squareness estimation
algorithm on the studied panel.

No.
SFO

Before SFO [deg] After SFO [deg]

Real Estimation Error Real Estimation Error

1 92.3 91.61 -0.69 91.1 93.17 2.07

2 95.1 96.28 1.18 94.5 96.92 2.42

3 97.3 98.49 1.19 95.3 94.79 -0.51

4 88.9 89.61 0.71 84.5 82.10 -2.40

5 88.2 88.05 -0.15 87.1 86.56 -0.54

6 90.7 89.74 -0.96 86.0 85.90 -0.10

7 84.9 88.64 3.74 82.3 81.45 -0.85

8 90.3 91.55 1.25 88.0 86.72 -1.28

9 96.1 97.55 1.45 93.5 91.70 -1.80

10 86.1 85.33 -0.77 85.1 86.96 1.86

11 88.5 88.47 -0.03 88.6 89.81 1.21

12 90.9 90.27 -0.63 92.3 92.25 -0.05

13 85.7 84.32 -1.38 85.2 84.29 -0.91

14 94.0 93.37 -0.63 92.8 94.75 1.95

15 95.7 96.98 1.28 98.7 97.65 -1.05

16 88.2 86.95 1.25 90.4 92.36 1.96

Based on the squareness results obtained, the performance of the algorithm can be

statistically analyzed. Table 5.11 shows the performance analysis of the algorithm

for each of the scenarios. For all the scenarios, the mean error, variance, and root

mean square error (RMSE) are calculated. As observed, the algorithm can estimate

the squareness of a light-gauge steel member connection with a margin of error of less

than two degrees.
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Table 5.9: List of the results obtained in Scenario 2 by the squareness estimation
algorithm on the studied panel.

No.
SFO

Before SFO [deg] After SFO [deg]

Real Estimation Error Real Estimation Error

1 89.0 87.80 -1.20 94.2 92.33 -1.87

2 97.4 98.73 1.33 87.4 88.89 1.49

3 95.4 94.67 -0.73 84.2 86.94 2.74

4 99.7 95.83 -3.87 85.7 83.62 -2.08

5 88.2 88.63 0.43 88.1 85.07 -3.03

6 82.1 81.58 0.52 85.2 87.06 1.86

7 87.7 89.54 1.84 89.2 86.36 2.84

8 84.2 86.96 2.76 91.8 93.66 1.86

9 86.8 89.59 2.79 87.6 89.73 2.13

10 90.4 92.37 1.97 96.6 93.29 -3.31

11 87.4 90.92 3.52 87.7 88.61 0.91

12 93.4 91.34 -2.06 83.2 84.29 1.09

13 86.6 86.09 -0.54 83.3 85.41 2.11

14 85.6 85.52 -0.08 92.6 91.87 -0.73

15 88.2 86.87 -1.33 87.0 90.45 -3.45

16 96.9 95.20 -1.70 96.6 98.74 2.14

Screw Fastening Quality Assessment Results

The results of the screw-fastening inspections on the test data-set are recorded in

Table 5.12. The confusion matrix provided below shows the prediction results of the

R-CNN against the actual label of the image. Although the R-CNN is trained as a

2-class output network, the third class in the matrix showcases the images obtained

from scenario 3 (missing screws).

As observed, the inspection algorithm proposed for quantifying the quality of screw-

fastening operations has an overall accuracy of 91.67%. For each class, correct SFO

detection has a precision of 100%, a recall of 93.75%, and a specificity of 100%; failed

SFO detection has a precision of 80%, a recall of 100%, and a specificity of 87.5%;
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Table 5.10: List of the results obtained in Scenario 3 by the squareness estimation
algorithm on the studied panel.

No.
SFO

Before SFO [deg]

Real Estimation Error

1 92.5 93.98 1.48

2 86.7 85.82 -0.88

3 91.6 87.45 -4.15

4 94.4 94.69 0.29

5 86.8 82.18 -4.62

6 86.1 88.14 2.04

7 91.4 89.07 -2.33

8 84.8 84.76 -0.04

9 89.7 88.72 -1.18

10 85.3 81.28 -4.02

11 88.8 88.13 -0.77

12 96.8 93.28 -3.52

13 94.0 94.74 0.74

14 94.6 97.27 2.67

15 90.1 90.42 0.32

16 90.8 89.72 -1.08

Table 5.11: Performance statistics of the squareness estimation algorithm.

Case
Mean Error

[deg]
Variance
[deg2]

RMSE
[deg]

Scenario 1
Before SFO 1.08 0.678 1.345

After SFO 1.44 1.072 1.772

Scenario 2
Before SFO 1.66 1.285 1.990

After SFO 2.10 0.6635 2.246

Scenario 3 1.86 2.298 2.372

Overall Performance 1.63 1.28 1.98

and missing screw detection (no SFO) has a precision of 100%, a recall of 81.25%,

and a specificity of 100%. The results of the screw-fastening inspection on the test
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Table 5.12: Confusion matrix for screw-fastening inspection test data.

n = 48
Predicted Class

Correct SFO Failed SFO No SFO

Actual
Class

Correct SFO 15 1 0

Failed SFO 0 16 0

No SFO 0 3 13

data shown in Figure 5.24 are illustrated in Figure 5.25.

Figure 5.25: Example of correct screw-fastening inspection results in images from the
testing data-set.

Given the importance of quality control in production lines, it is paramount to

minimize the number of false positives of conforming procedures to avoid unexpected

quality issues in subsequent processes. In the proposed inspection system, the precision

and specificity of the ‘good’ SFO are maximized for this purpose. Although the screw-

fastening inspection outputs satisfactory results, the confusion matrix is built on a

small data-set, and the performance metrics need to be understood with this in mind.

The inspection system will need to be installed in a continuous production line where

its performance can be monitored throughout a large number of light-gauge steel

connections.

To summarize, the proposed online inspection system generates quality-oriented

data accurately during the process of manufacturing light-gauge steel frame assemblies.
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The proposed system is able to assess, in real-time, the quality of the screw-fastening

operations and the final quality of the light-gauge steel panel, one stud at a time.

By the time the panel has been fully assembled, the results of the inspection process

and final quality assessment are available. However, some limitations are encountered

in the present study, as the proposed system does not address the real-time effect

of the inspection results during the manufacturing process. As an example, if a

screw-fastening operation has been flagged as incorrect due to the screw being missed,

the corrective action would be to repeat the screw-fastening operation by overriding

the current order of operations, rather than relying on the operator to manually

correct the detected deficiencies in the frame. However, such an approach requires a

deeper integration of the visual sensors into the machine environment and significant

modifications to the machine logic. A similar situation could be flagged if a non-

conforming screw fastening operation is detected, but the changes to machinery so

that automatic actions may address the issue are beyond the scope of this thesis. In

the future, such undertakings will be pursued.
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Chapter 6

Cyber-Physical System for Quality
Control & Assessment of Steel
Frame Assemblies

6.1 Overview

This section defines in detail each one of the levels in the 5C architecture of CPS for

the purpose of automated quality control of steel frame assemblies manufacturing.

Starting from the lowest level, the following subsections illustrate the hardware and

software elements, the data acquired or used and its potential use cases for the

proposed case study, and the interactions between the cyber and physical world on

each level. Standard 5C architecture defines the interaction between the physical and

digital worlds at the lowest and highest levels. However, considering the purpose of

this CPS, providing feedback information in extra layers increases its effectiveness.

For example, introducing an interaction at the data conversion level enables providing

real-time feedback to the manufacturing system, or both higher levels may exchange

information to adhere to user input and supervise quality control operations.

Figure 6.1 illustrates the proposed extended interactions between the CPS architec-

ture and the physical world. The system presented is centered around a machine or

production line (manufacturing system), from its input materials all the way to the

end product. Starting at the Smart Connection Level, raw visual data is acquired at
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Figure 6.1: CPS integration within a BIM-based manufacturing process.

the precise moments in which the construction product, in this case an light-gauge

steel frame, enters the machine environment or undergoes an irreversible (within the

same machine environment) manufacturing process. Such data is then sent to the

Data Conversion Level to be processed by several machine vision algorithms to extract

the relevant quality-oriented information. Such information may be used, then, to

provide real-time quality feedback to the machine operator. All the data is stored

then in a database, along with necessary BIM data. The Cyber Level provides offline

analysis of the structured data, with potential online applications. Then, inspection

results are visualized in the Cognitive Level through the human-machine interface, that

enables human intervention in the quality control process while the inspection results

support decision making regarding the conformity of construction products. Finally,

the Configuration Level outputs corrective actions and supervises the inspection results
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based on operator feedback.

6.2 Case Study: Steel Framing Machine

Recently, responding to the industry’s need for prefabricated light-gauge steel panels,

the manufacturing process was successfully automated [207]. A unique steel framing

machine was designed and prototyped at full-scale at the University of Alberta in

order to support the Canadian OSC industry. The most relevant parts and systems of

the machine are highlighted in Figure 6.2.

Figure 6.2: Steel framing machine model schematics.

The prototype consists of a semi-automated light-gauge steel (LGS) framing machine

that uses data from the building information model to safely and automatically

manufacture LGS frame assemblies. The manufacturing of the frame assembly is a

sequential process as follows. First, operators manually place all the frame elements

in the loading area (manual assembly phase), then mechanical actuators located in

the dragging squares (see Figure 6.2) ensure the squareness of the frame (squaring

phase). The dragging system consist of four electromagnetic squares, positioned along
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the corners of the steel frame, thereby allowing for proper squaring and synchronized

motion of the LGS panels. Finally, the soft-connected frame is dragged using front

and back dragging apparatus through a stationary gantry consisting of four automatic

screw fastening carriages. Each motion of the dragging system ensures that the frame

is positioned such that self-drilling screws can be added as required according to the

shop drawings. After the completion of the frame, the wall panel is manually inspected

and offloaded to the next stage of the wall panel construction.

The aforementioned prototype represents the capacities of the Industry 3.0 (third

industrial revolution) paradigm in terms of automation in construction. A manual

assembly process, such as the screwing operations required to manufacture LGS

frames, is replaced by servo-actuated screw manipulators driven by a programmable

logic controller. This supposes a interesting opportunity to test the capabilities

of Industry 4.0 principles when applied to construction machinery and in a digital

environment led by BIM data structures. Furthermore, the manual assembly of LGS

panels and their screw-fastening process are unsupervised, thus the quality of product

can be compromised. As automated quality inspection is a pending matter for most

construction manufacturing processes, the introduction of digital tools such as machine

vision or machine learning may provide a robust framework from which practitioners

can work towards reducing defects in OSC production lines while mitigating its

downside effects. Thus, for example, giving LGS frame manufacturers control over

the quality of their processes and adjusting their best practices accordingly. Following

the aforementioned guidelines to introduce CPS to current manufacturing systems, an

overview of the CPS integration in the studied machine is presented in Figure 6.3.

6.3 Smart Connection Level

The Smart Connection Level serves as the data acquisition layer for the cyber-physical

system to be implemented. In this study, the inspection process is a vision-based

system as presented in Chapter 5. Hence, visual sensors are placed at strategic locations
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Figure 6.3: Overview of the proposed CPS for quality control of steel frame assemblies
manufacturing process.

based on the needs for inspection during the manufacturing process. These locations

are decided based on the requirements of construction specifications and regulations

regarding the quality of steel frame assemblies. In this study, two areas have been

identified: the loading area where the manual assembly of the steel frame occurs

(labeled ’Assembly’ area) and the area under the gantry where the manufacturing

operations happen (labeled ’Fastening’ area).

Quality control, in this study, is defined as the establishment of evidence, i.e.

measurements, that satisfies and validates minimum requirements as predetermined

in specifications or quality attributes. Construction specifications, in most cases,

define minimum requirements and regulations that need to be inspected to determine

confirming products. Quality control requirements can be extracted from specifications

and the BIM model of the product when relevant manufacturing information is given

(see Chapter 4). For the proposed case study, Table 6.1 provides a list of elements

to be inspected as given in construction specifications by the Canadian Standards

Association (CSA) and the American Society for Testing and Materials (ASTM) or
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by expert knowledge (N/A).

Table 6.1: List of relevant inspection information and corresponding specifications.

Inspection
Target

Area of
Inspection

Occurrences
per Frame

Relevant
Specification

Frame Element
Location

Assembly m ASTM C1007-11a

Frame Element
Width

Assembly m ASTM C1007-11a

Frame Element
Length

Assembly m ASTM C1007-11a

Frame Squareness Assembly 1 ASTM C1007-11a

Connection Angle Fastening 2n
CSA

S136-07/S1-10

Screw Fastening
Operation
Location

Fastening 2n N/A

Screw Fastening
Operation Quality

Fastening n
CSA

S136-07/S1-10

Note that (m) and (n) represent the number of frame elements and screw-fastening

operations required respectively for the manufacture of any steel frame assembly. The

Frame Element Location defines the maximum displacement errors, in spacing and

alignment, for the placement of frame elements. The Frame Element Width and Frame

Element Length determine the maximum deviation in width and length respectively

from the element original description (BIM). The Frame Squareness defines the

maximum squareness error for the overall frame. The Connection Angle defines

the maximum angle deviation for connections between frame elements. Finally, the

Screw Fastening Operation Location and Screw Fastening Operation Quality describe

the correct location and aesthetic requirements respectively of a conforming screw

fastening operation. As showcased in Chapter 5, the inspection systems provide the

necessary data for quality assessment of steel frame assemblies.

As a summary, a total of five cameras are placed in the steel framing machine:
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one camera to inspect the whole assembly area (field of view: 10×8 ft., resolution:

3840×2160) and one camera on each screw fastening carriage to inspect each screw

fastening area (field of view: 6×4 in., resolution: 659×494), as shown in Figure 6.4.

The camera in the assembly area provides imaging of the whole assembly area after the

manual assembly is finished and the cameras in the fastening area feature a close image

of the screw fastening operation/location. The cameras are responsible for creating

a digital input from which the current status of the construction product and its

digital representation can be built. Based on the manufacturing process and machine

operations, each camera system is externally triggered to capture the appropriate

image at specific points in time. The specific instants are defined by the sequential

logic process in the programmable logic controller (PLC) of the machine. Two binary

signals are transmitted to the visual controller that proceeds to initialize the image

capturing routine. Details on those signals and all the connectivity signals used are

given in Table 6.2.

Table 6.2: List of trigger signals communicating between visual sensors, controller,
and main computer.

Location Signal Type Description

Programmable
Logic Controller

rqAsmbIns Binary
Request assembly
area inspection

data

rqFastnIns Binary
Request fastening
area inspection

data

insStat Binary

Displays the
inspection status

at the main
computer

Main
Computer

rqAsmbIns Binary
Synchronous copy
of ’rqAsmbIns’

rqFastnIns Binary
Synchronous copy
of ’rqFastnIns’
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The pre-allocated binary signals on the main controller are updated when logic

requires inspection data to continue with the manufacturing process. The associated

computer, which deals with heavy image processing algorithms and control of the visual

sensors, reads the values of such binary variables on the computer by synchronously

pinging the memory direction in the controller (via Ethernet/IP protocol). If any

binary variable switches to ’1’, the computer interprets that the controller is waiting

for inspection results. Then, images are grabbed from the cameras as necessary. The

camera context and handlers are hard coded as visual controllers, which are built from

the Python library Pypylon and connect to the cameras via Ethernet/IP protocol.

Once the requested images are taken, the computer updates the value of the ’insStat’

variable in the PLC using OPCServer access. Although time-inefficient (2-4 seconds

compared to 30 ms response in the Ethernet/IP communications), this approach

enables the computer to modify automatically variables allocated in specific memory

directions in the PLC. This method reduces drastically the amount of computational

power and memory storage required at the PLC, which is really limited, and reduces

the memory strain in the main computer compared to continuous acquisition from

the visual systems (video acquisition versus triggered frame acquisition).

A timeline with the steps for steel frame assemblies manufacturing, the specific

moments in which cameras are triggered, and sample images are presented in Figure

6.4. In summary, images are taken in two key moments during the manufacturing

process: 1) after the frame has been fully assembled and secured by the machine

squaring system, the camera in the assembly area captures the result of the assembly

process; and, 2) the cameras on each screw fastening carriage capture images just

before and after for each location where a screw fastening operation occurs. The time

between inspection events depends on the product size, the complexity of the manual

assembly process, and the tool-path selected.
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Figure 6.4: Overview of the steel frame assemblies manufacturing timeline with the
integrated inspection systems.

6.4 Data Conversion Level

The Data Conversion Level procures manufacturing and quality-oriented data using

image processing algorithms. The generated data is required to be able to procure

an estimation on the quality of the currently manufactured steel frame assembly. As

BIM data is considered the “ground truth” for all dimensional measurements, the

image processing algorithms offer estimations to provide a situational analysis based

on one-to-one comparisons. Table 6.3 provides a summary on the data generated by

each image processing algorithm, their relevant reported metrics, such as the root

mean square error (RMSE) of each measurement as reported in Chapter 5, and their

equivalent BIM data obtained from the Autodesk Revit API. An illustration of the

measurements made by the inspection systems proposed is shown in Figure 6.5.

As reported, the dimensional measurements obtained using the image processing

algorithms are accurate enough for the required manufacturing tolerances in steel

frame assemblies by the North American (ASTM C1007-11a) or Canadian (CSA

S136-07/S1-10) standards (see Table 6.1). For the frame element location, for example,

the ASTM specifies a maximum error of 1
2
inch (12.7 mm) for 8 feet long studs; or the
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Table 6.3: List of manufacturing and quality-oriented data generated from the image
processing algorithms.

Inspected Area
Data

Generated
RMSE

Equivalent
BIM Data

Assembly

Stud Location 5.487 mm
.Stud.Properties.
Coordinates

Stud Spacing 4.293 mm .Frame.Spacing

Stud Length 4.876 mm
.Stud.Properties.

Length

Stud Width 3.427 mm
.Stud.Properties.

Width

Frame Squareness 1.297 mm N/A

Fastening

Screw Fastening
Location

3.440 mm N/A

Stud Connection
Angle

1.98◦ N/A

Figure 6.5: Image processing algorithms results for inspection of steel frame assemblies
manufacturing.
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CSA limits the maximum acceptable deviation angle for steel member connections to

around 3.25◦. Thus, using these measurements, situational analysis of the results to

provide real-time quality control of the steel frame assembly being manufactured is

possible. For example, performing a simple rule-based condition, see Equation 6.1, poor

quality manufacturing operations are identified and can be corrected appropriately,

non-conforming frames are identified, and machine operators may be notified to

withdraw the frame from the production line.

| dact − dmeasured |≥ dtol − vderr (6.1)

where (dact), (dmeasured), and (dtol) are the actual, measured, and tolerance value

respectively for any inspection result (d), and (vderr) is the mean error for the image

processing algorithm that determines (d). If the result yields true, the product is

non-conforming based on measurement (d). At this point, operators can be notified

to withdraw the product from the production line due to quality issues or, if possible,

the CPS suggests corrective actions to ensure the quality of the product, for example,

online corrective motor motions can be implemented in real-time to accurately perform

screw-fastening operations.

To summarize, the proposed inspection algorithms identify different features in any

frame assembly: edge lines, intersection points, intersection areas, fastening areas, and

stud areas. To extract the relevant information from the proposed system, the different

structures are mapped into classes (see Figure 6.6). The storage and accessibility of

the information obtained from the algorithms is as vital to the inspection process as

the algorithms themselves.

6.5 Cyber Level

The Cyber Level is responsible for offline analysis of the data obtained in the Data

Conversion Level and other data collected from information sources, such as BIM
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Figure 6.6: UML diagram of system parametric objects.

or the machine environment. For the purpose of this study, a database is created

to manage and store the relevant manufacturing and quality-oriented data. This

database stores information for each steel frame manufactured in the steel framing

machine environment. A summary of the attributes stored in the database can be

found in Table 6.4.

Table 6.4: List and description of the quality database attributes.

Source Attribute Type Description

- Frame Class

High-level class containing all
the frame information:

element and connection IDs
that are contained in a specific
frame, as well as properties
(spacing and squareness)

Data
Conversion

Level -
Assembly

Area

Raw Image PNG
Raw image from the assembly
area (gray-scale - 1.35 MB

average)

Frame
Element

Class

Stores all the information
relevant to a specific frame
element (ID, length, width,

location)

Width Double
Defines the measured frame

element width

(Table continues on next page...)
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Source Attribute Type Description

Data
Conversion

Level -
Assembly

Area

Length Double
Defines the measured frame

element length

Location Array

Contains the four 2D
coordinates in the image

reference frame of the frame
element

Spacing List
Defines the measured frame

spacing between frame
elements in the same direction

Squareness Double
Defines the measured frame

squareness

Data
Conversion

Level -
Fastening

Area

Raw Image -
pre-SFO

PNG

Raw image from the fastening
area before the screw fastening
operation occurs (gray-scale –

435 kB average)

Raw Image -
post-SFO

PNG

Raw image from the fastening
area after the screw fastening
operation occurs (gray-scale –

435 kB average)

Frame
Connection

Class

Stores all the information
relevant to a specific frame
connection (ID, connection

angle, location)

Connection
Angle –
pre-SFO

Double

Defines the measured angle of
a specific connection before
the screw fastening operation

occurs

Connection
Angle –
post-SFO

Double

Defines the measured angle of
a specific connection after the
screw fastening operation

occurs

Screw
Fastening
Location –
pre-SFO

Array
Contains the 2D coordinates

of the estimated screw
fastening operation location

(Table continues on next page...)
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Source Attribute Type Description

Screw
Fastening
Location –
post-SFO

Array

Contains the 2D coordinates
of the bounding box and
centroid that identifies the
actual screw fastening
operation location

BIM

Frame
Properties

Class

Copied and extracted from
Revit API

Element.Frame.Properties.
Contains information relevant
to the frame, such as spacing,

length, width, etc.

Element
Properties

Class

Copied and extracted from
Revit API

Element.X.Properties, where
X is an IFC construction

element, i.e. a stud
(Element.Stud.Properties).

Contains relevant information,
such as location, length, width,

etc.

Machine
Environment

SFO
Conditions

Class

Stores all the information
relevant to a specific screw
fastening operation (motor

speed, SF speed)

Motor Speed Double

Contains the speed used to
move the screw fastener down
during the screw fastening

operation

Screw
Fastening
Speed

Double
Contains the rpm of the screw

fastener during the screw
fastening operation

With this database, knowledge discovery in databases (KDD) approaches can be

used. KDD is an interdisciplinary science whose goal is to extract useful and actionable

knowledge from large data repositories [208], such as the one designed in this study.

Mainly, given a set of data, a KDD process aims at finding patterns to classify data

or detect anomalies, as well as predict data behavior by creating associations or
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models. In the last decades, KDD has proven to be an essential element of engineering

research and machine learning and data mining are considered as its most recognizable

approaches.

Using the data stored, data analytics are enabled, and data-driven decisions can

support potential improvements to the steel frame assemblies manufacturing process

and continuous improvement of the end quality of steel frame assemblies. In this

study, two examples of applications of KDD approaches are presented. First, a data

analysis on the effect of screw fastening operations (SFO) on the connection angle is

given. Then, a machine learning approach is shown to provide real-time assessment of

the quality of SFO. At the time of publication of this study, over 200 entries populate

the database. Although only two examples of KDD are given, further research will be

reported at a later date as more experimental data is stored and deeper understanding

of the manufacturing process and its effect on end quality of steel frame assemblies is

gained.

6.5.1 Connection Angle Analysis

In the machine environment used for this study, the screw fastening operations (SFO)

rely on the applied pressure of the screw fastener driving mechanism to clamp the

frame. This approach was introduced to minimize the complexity of the system and

reduce the number of actuators. Such a design-driven decision needs to be analyzed

to understand its effect on the manufacturing process of the frame itself as vibrations

generated by the rotation of the screwdriver motor are directly transmitted to the

frame by contact (see Figure 6.7). These vibrations have a negative impact on the

SFO process and the location and orientation of the frame elements. As such, the

data obtained helps quantifying the effect of such vibrations and the pressure used

during the SFO.

The following data is obtained by setting up a constant motor speed and screw

driving rotation (constant SFO conditions) and measuring the connection angle before
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and after the SFO process. Let (αpre) and (αpost) be the measured connection angle pre-

SFO and post-SFO respectively, and (dα) the difference between both measurements.

The statistical overview of the data used for this study is presented in Figure 6.7. Note

that the connection angle is considered to have improved during the SFO if (αpost) is

closer to the ideal connection angle (90° for most cases) than (αpre) and vice versa.

Figure 6.7: Connection angle analysis overview.

As observed, SFO has a measurable impact on the connection angle of 3.35◦ on

average, in most cases (69%) worsening the connection. Considering a 95% confidence,

most angle connections can be found in the [80-100] degrees interval, which is not an

acceptable uncertainty based on current specifications. Hence, a deeper analysis might

be justified to study the need for a secondary clamp that secures the frame during

the SFO process aiming at stabilizing the connection angle throughout the whole

manufacturing process. Furthermore, (αpre) provides insight on the impact of the

manual placement of frame elements during the initial assembly process and the frame

dragging process. With almost 5◦ of standard deviation in the angle connection during

the manual assembly, a support system might be needed, such as laser projections or

placement pins. Both identified issues will be investigated in the near future.

121



6.5.2 Screw Fastening Operation Quality

Although the data provided by the visual systems is directly used for most quality or

manufacturing related issues, the quality of the screw fastening operation itself cannot

be directly measured accurately for each individual operation. In fact, quantifying the

quality of a SFO from a single image is not a simple task [209] and requires lateral

perspective which is not provided by the inspection system. Nonetheless, ensuring the

quality of the SFO remains one of the most important tasks of the quality control in

the frame assembly manufacturing process. To provide real-time assessment of the

quality of SFO, a Region-based Convolutional Neural Network (R-CNN) is trained to

classify conforming or non-conforming screw connections. Trained using the images

obtained from the fastening area after the SFO, the R-CNN expands the quality

control results from the Data Conversion Level. An example of the results of the

SFO inspection at each level described so far is illustrated in Figure 6.8 and further

details on the R-CNN architecture, results, and limitations can be found in Chapter 5,

Section 5.4.

Figure 6.8: Connection angle analysis overview.
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As observed, by the Data Conversion Level the information available support

identifying the presence and location of the screw fastener after the SFO. However,

including historical image data and using a deep learning approach, the quality of the

SFO can be assessed in real-time, determining the capacity of cyber approaches to

provide an extra layer of functionality regarding quality control.

6.6 Cognitive Level

The Cognitive Level provides the interface between the user and the cyber-physical

system (CPS). This interface enables human intervention on the inspection process and

serves as a critical layer for the inspection results, either to ratify or deprecate them.

In summary, this level provides decision support at the user level for quality control.

The interface builds upon the BIM information extracted of the panel currently being

manufactured: a graphical representation of the frame assembly can be shown as

originally modeled in BIM. Information from the database is accessible by the user by

clicking on the corresponding frame element, or directly showcased in the interface if

it pertains to the whole assembly, such as spacing or frame squareness measurements.

Frame elements that need attention are automatically highlighted in red, information

is automatically displayed, and non-conforming measurements are shown. Users

then decide to either take corrective action or proceed with the process ignoring the

inspection results given. If any corrective action is performed, the user notifies the

system and the CPS will restart the last inspection routine, either assembly inspection

(AI) or fastening inspection (FI). An overview of the user interface for the CPS is

illustrated in Figure 6.9.

Based on the system interface available, the machine operator visualizes the quality

control decisions taken by the CPS. Thus, the CPS inspection results stored at the

database act as a decision support system for the operator in regard to quality control

and rework operations for each steel frame assembly. As stated, the two inspection

routines require user input for each steel frame assembly. As such, data needs to be
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Figure 6.9: Overview of the cyber-physical system interface and information display.

prepared and visualized in an easy and comprehensible way to facilitate correct user

input and ensure quality of steel frame assemblies. The support system embedded

into the human-machine interface created is showcased in the flowchart shown in

Figure 6.10. For each inspection routine, either assembly inspection (AI) or fastening

inspection (FI), the data are contrasted one by one with ground truth results (BIM)

or tolerances from specifications, and in case of any defect detected warnings and

alerts with potential corrective actions are displayed. Finally, the system awaits user

action and awaits for its feedback based on what the user wants as following action:

restart the inspection, introduce data manually to override inspection results in the

database, or keep going with the remaining manufacturing operations. All of these

interactions are further explained in the following subsections.

6.6.1 Assembly Inspection Decision Support System

For each frame assembly, the BIM model offers an IFC-compliant bill of materials

(BoM), which lists all the components needed to manufacture such frame, as seen
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Figure 6.10: Flowchart of the visualization process for the inspection results of steel
frame assemblies manufacturing.
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in Section 4.2. That list defines each frame component by stud identification name,

stud width and length, and quantity [210]. All the components in the BoM comply

with the industry standard nomenclature for defining framing products specified in

the International Building Code (2012) and the North American Specification for the

Design of Cold-Formed Steel Structural Members (AISI S100-07) with the supplement

(S1-10). As such, all the structural members use a four-part designate that identifies

the web depth, style, flange width, and thickness, as well as identifying the element

length. Thus, relevant information can be parsed from the BoM for each frame element

and stored in the database.

Then, the measurement validation consists in matching one by one all the detected

studs with the BIM model components and labeling the detected studs by the assembly

inspection as needed. This process considers that the same stud has been detected

when all three metrics, height, length and width, match within the vision system

tolerance values, (vdtol), for each measurement (d) as per Equation 6.2. Further, the

validation algorithm compares the relative position between the matched stud and its

BIM counterpart. Similarly, the corresponding tolerance values are applied to this step.

Using the proposed inspection system, the tolerance solely depends on the camera

resolution; as such, at least medium resolution wide angular cameras are advised to

obtain accurate results.

Sarea = SBIM ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ws = wBIM ± vwtol
ls = lBIM ± vltol
hs = hBIM ± vhtol
(xi, yi) = (xBIM , yBIM)± vptol, i = 1, ..., 4.

(6.2)

A limitation in the frame inspection algorithm is the impossibility to detect multiple

studs (double or triple) which are quite common when door or window components are

present in a frame. Those multiple studs, in most occasions, do not have identifiable

or visible edges in between and, therefore, the algorithm detects them as a single

stud. As such, the detected stud will most probably not match with any of the studs
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found in the BIM information, thus, those studs are labeled as undefined. In any

case of undefined studs, the validation process checks for the possibility of those studs

being the combination of multiple studs. For a detected undefined stud, (uSarea), the

width is compared to any possible linear combination (up to 3 studs, due to the usual

structural combinations for steel frame assemblies) of all the remaining unmatched

studs from the BIM, (uSBIM ). The process tries first to generate double studs as they

are more common than triple studs.

∀i, j = 1, ..., U, uSarea = uSi
BIM + uSj

BIM ⇐⇒ wi + wj = W

∀i, j, k = 1, ..., U, uSarea = uSi
BIM + uSj

BIM + uSk
BIM ⇐⇒ wi + wj + wk = W

(6.3)

where (U) is the number of remaining unmatched studs from the BIM and (W )

is the total width of the detected undefined stud. If Equation 6.3 is satisfied, then

the detected stud is ‘divided’ to generate the correct studs. For example, the process

to divide into two new studs, (nS1) and (nS2), of different widths, (w1) and (w2), is

shown in Equation 6.4. A similar approach can be taken for triple studs of different

width.

nS1(x1, y1) = uSarea(x1, y1)

nS1(x3, y3) = nS2(x1,y1) = uSarea(x1, y1) + w1

nS2(x3, y3) = uSarea(x3, y3)

nS1(x2, y2) = uSarea(x2, y2)

nS1(x4, y4) = nS2(x2,y2) = uSarea(x2, y2) + w1

nS2(x4, y4) = uSarea(x4, y4)

(6.4)

To conclude, this support system offers the user three possible outcomes for each

stud: either it has been correctly matched and positioned, or it has been correctly

matched but misplaced, or it has been mismatched against the BIM model. The logic

flowchart of this module is shown in Figure 6.11.
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Figure 6.11: Flowchart for measurement validation of assembly inspection results.

Once the system has finished labeling the frame elements, decisions can be identified

as potential solutions for deficiencies in the manual assembly process. Whilst some

encountered problems give any doubt as to which solution should be offered, i.e.

a mismatched stud needs to be replaced, the measurement precision and standard

tolerances make offering a clear solution to misplaced studs slightly more complex.

Obviously, if no problems were encountered in the previous step, the system simply

allows the manufacturing process to start. In order to create an industry-level decision-

support system, the Standard Specification for Installation of Load Bearing Steel

Studs, ASTM C1007-11a (2015), is used to define the appropriate solutions for each

misplacing error, (ϵd). The previously mentioned standard defines two possible errors

for each stud placement: spacing error (lateral displacement) and vertical/horizontal

alignment error. Thus, a misplaced stud could be considered as correct by industry

standards if it is within tolerance values for both misplacement errors as per Equation
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6.5. Otherwise, the misplaced stud requires to be relocated.

∆(x, y) ≤ ϵd ↔ ∀i = 1, ..., 4, | Sarea(xi, yi)− SBIM(xi, yi) |≤ ϵd (6.5)

With the presented approach, the user can identify potential issues in the manually

assembled frame by looking at the digitized frame in the human-machine interface for

quality control purposes. Once results are presented, the user has the final say on the

actual rework operations that occur physically on the frame. If the user introduces

changes to the frame, the user should restart the assembly inspection process to

obtain a new set of data, however that still remains a user decision. The proposed

assembly inspection decision-support system cannot overcome user actions as it does

not monitor human intervention in the manual assembly process, hence it is biased

towards user input.

6.6.2 Fastening Inspection Decision Support System

For each frame, the fastening inspection provides information regarding the squareness

of each connection and an assessment of the screw fastening operation quality as

described in Sections 5.3 and 5.4. Each instance of fastening inspection provides

data from the last iteration of screw fastening operations and its corresponding frame

connections, usually a pair of connections due to the machine operating two screw

manipulators simultaneously. Then, the validation process consists in matching the

acquired data to the correct quality specifications so that appropriate tolerances can

be applied. Results obtained before the screw fastening operation occurs, such as

’Connection Angle pre-SFO’ or ’Screw Fastening Location pre-SFO’, are ignored in

this step. That is due to having more updated results from the post-manufacturing

inspection or that the Cyber Level upgraded the obtained results from a quality

perspective. As such, two sets of data are used for this decision-support system:

’Connection Angle post-SFO’ and the SFO quality assessment results from Section

6.5.2. Remind that CSA S136-07/S1-10 sets as 3.25◦ the maximum deviation for
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the connection angle and that quality of screw fastening operations, based on the

same CSA specification, is already considered during the labeling of classes during the

training process of the machine learning algorithm, hence, already considered in the

showcased results.

Therefore, decisions regarding the quality of the screw fastening operations can be

taken. This process considers that the inspection has passed for the fastening area if

all the connection angles are within the maximum tolerance as per Equation 6.1 and

the machine learning algorithm determines that all SFO are conforming. If that is the

case, the operator is informed and the suggested action is to continue with the next

set of screw fastening operations or, in case of this inspected set being the last one, to

proceed to the next panel as scheduled. In case of any errors beyond tolerances or

non-conforming quality assessments, results are visualized for the operator’s knowledge

and rework orders are suggested. The logic flowchart for this module is shown in

Figure 6.12.

Figure 6.12: Flowchart for measurement validation of fastening inspection results.

For a connection angle beyond tolerance values after the screw fastening operation
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has occurred requires a three-step process to be reworked: 1) removal of the SFOs

(top and bottom); 2) adjustment of the non-fixed connection element, usually studs,

until a correct angle is manually measured; and finally, 3) re-manufacturing of the

SFO. As the SFO needs to be re-manufactured, the initial quality assessment for those

steel frame connections is ignored. For the rest of the frame connections, the quality

assessment of the SFOs is still valid. For any non-conforming operation, reworking the

screw fastening process (in case of ’Non-conforming SFO’ prediction) or performing

an additional screw fastening process (in case of ’No SFO’) is required.

Similarly to the previous subsection, the operator (user) has the final say on

the rework operations that occur physically on the frame. Then, the final decision

regarding rework falls solely on the expert decision of the operator. If the user

introduces changes to the frame connection, either by reworking the connection angle

or the screw fastening operation, the user should restart the inspection process to

obtain an updated set of data that judges the quality of the rework process, however

that still remains a user decision as the proposed solution cannot identify if rework

has been performed or not.

6.7 Configuration Level

The Configuration Level acts as a supervisory agent to the user input and the CPS

results showcased in the human-machine interface. Currently, the supervisor role for

the proposed CPS is twofold: 1) tracks the performance of the Cyber Level predictions

and results over time, such as machine learning algorithm performance metrics; and

2) tracks the necessity for human intervention and the need for corrective actions

to the frame through quality key performance indicators (KPIs). First, tracking the

performance of cyber actions in the physical world enables the long-term evaluation

of models, simulations, and any machine learning applications developed. As the

data collection grows, and consequently the data-set too, models may deviate from

its original training purpose, i.e. a different model of screw can be used which
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features a different aesthetic look may alter the performance of the SFO quality

assessment algorithm aforementioned. Then, understanding and quantifying the effort

undertaken by operators working alongside the proposed CPS in frame rework supports

management decisions in regard to the continuous improvement of the studied machine

environment.

6.7.1 Monitoring of Machine Learning Predictors

For the example provided in Section 5.4, the machine learning performance metrics

may be updated following the results obtained and by analyzing user interaction with

the system. Let (N) be the 3Ö3-diagonal matrix such that [N1, N2, N3] be the number

of prediction results for the classes ‘Conforming SFO’, ‘Non-conforming SFO’, and

‘No SFO’ respectively. Therefore, for a total set number (n) of inspection results for a

frame, Equation 6.6 must always be satisfied.

tr(N) =
3∑︂

i=1

Ni = n (6.6)

Also, let (E) be the 3Ö3-matrix that represents the user intervention in the

quality of the construction product, such that the non-diagonal values, Ej,k =

[E1,2, E1,3, E2,1, E2,3, E3,1, E3,2], be the number of classification errors for a predicted

class (k) when the true class is (j), and the diagonal values represent the total amount

of prediction errors for a class. These diagonal values are calculated as the sum of the

values in the column, following the equation below:

Ei,i = −
3∑︂

j=1,i ̸=j

Ej,i (6.7)

Considering an inspection round for any frame assembly, the user is offered two

options, either proceed to the following panel or restart the inspection process. User

can introduce changes to the inspection results based on his/her own volition as well.

For each user interaction with the system, the prediction results are analyzed. In the
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first case, where the manufacturing process goes forward with the next frame, the

user is validating the ‘Conforming SFO’ predictions and ignoring/invalidating the

‘Non-conforming SFO’ and ‘No SFO’ predictions. Therefore, in these conditions, (E)

is defined as follows:

⎧⎪⎨⎪⎩
E2,1 = E2,3 = E3,1 = E3,2 = 0

E1,2 = N2

E1,3 = N3

⇐⇒ E =

⎡⎢⎣0 N2 N3

0 −N2 0

0 0 −N3

⎤⎥⎦ (6.8)

In the second scenario, the user has restarted the inspection process after performing

corrective actions as suggested by the inspection results or not. If suggested corrective

actions are followed, then E = 0 as user determines that the system was correct

in its predictions and assumptions. If alternative corrective actions were needed,

user input is required to provide a list of the SFO IDs that required rework and the

corresponding corrective action taken. The possible corrective actions to be taken

are limited to ‘Tighten SFO’ and ‘SFO Replaced’, as they represent the solution to

the non-conforming options that can be predicted. As those corrections were not

suggested due to the prediction confirming a ‘Conforming SFO’ or the suggestions

provided were incorrect, i.e. suggesting ‘Tighten SFO’ when ‘No SFO’ was the correct

prediction, each user correction needs to be evaluated individually depending on the

previous prediction. As such, (E) is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1,2 = a

E1,3 = b

E2,1 = c

E2,3 = d

E3,1 = e

E3,2 = f

S = a+ b+ c+ d+ e+ f

⇐⇒ E =

⎡⎢⎣−(c+ e) a b

c −(a+ f) d

e f −(b+ d)

⎤⎥⎦ (6.9)

where (S) is the number of extra corrective actions specified by the user: (a) and

(b) are the number of SFO that were predicted ‘Tighten SFO’ and ‘SFO Replaced’
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respectively and user did not perform any action, (c) and (e) are the number of SFO

that were predicted ‘Conforming SFO’ and the user performs ‘Tighten SFO’ and ‘SFO

Replaced’ respectively, (d) is the number of SFO that the system suggested ‘SFO

Replaced’ and the user performs ‘Tighten SFO’, and (f) is the number of SFO that the

system suggested ‘Tighten SFO’ and the user performs ‘SFO Replaced’. Then, using

both inspection results and user input, the confusion matrix (CM) can be updated

after an inspection round following Equation 6.10.

CMn+1 = CMn +Nn+1 + En+1 (6.10)

As defined, Figure 6.13 illustrates the process to update the confusion matrix of

the machine learning algorithm discussed based on user feedback.

Figure 6.13: Overview of the confusion matrix updating process based on current
predictions and user feedback.

By having a framework in which, for each classification label, true positives, true

negatives, false positives, and false negatives are updated as the machine learning

algorithm is used enables the supervisor agent to monitor its performance. In addition,

the algorithm’s accuracy, precision, recall, error-rate, or F1-score can be plotted over

time, providing a simple yet efficient tool to manage implemented machine learning

algorithms as drops in performance can be easily detected. (Accuracy) is an intuitive

performance metric that presents the ratio of correctly predicted observations over the
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total number of observations. (Precision) is the ratio of correctly predicted positive

observations for a specific label in regard to the total predicted results. (Recall)

or sensitivity is the ratio of corrected predicted positive observations for a specific

label to all the observations of that label. The (ErrorRate) is the ratio of incorrect

predicted observations to the total of observations obtained. The (F1) score is a

weighted average of precision and recall, that takes into consideration both positive

and negative observations, and results in a metric that represents the overall accuracy

of a specific label. Those metrics have been consistently used in academia to measure

neural network performances where a small number of positive instances for a label are

present, which is the case for this study. Those performance metrics can be obtained

from the confusion matrix values. In this case, for each label (i), the classification

performance is calculated following the equations below, after [211]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
TPi = Xi,i

TNi =
∑︁3

j=1,j ̸=i Xj,j

FPi =
∑︁3

j=1,j ̸=i Xj,i

FNi =
∑︁3

j=1,j ̸=iXi,j

(6.11)

Accuracyi =
TPi + TNi

TPi + TNi + FNi + FPi

(6.12)

Precisioni =
TPi

TPi + FPi

(6.13)

Recalli =
TPi

TPi + FNi

(6.14)

ErrorRatei =
FPi + FNi

TPi + TNi + FNi + FPi

(6.15)

F1,i =
2 ∗ Precisioni ∗Recalli
Precisioni +Recalli

(6.16)

where (Xi,j) are the values in the updated confusion matrix as illustrated in Figure

6.13.
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6.7.2 Supervision of Quality KPIs

In production systems, many raw measurements are monitored and collected, however,

when considering engineering and management interests, key performance indicators

(KPIs) can be derived and evaluated, for instance, efficiency or quality. Thus, the

directly monitored elements can become the supporting metrics for KPIs. These KPIs

mostly reveal a single aspect of system performance, as such named as basic KPIs.

To represent the overall performance, more comprehensive KPIs, supported by several

basic KPIs, can be obtained. To monitor quality performance, most comprehensive

KPIs (introduced later on) depend on quantity elements, referred to as logistical

elements in the ISO 22400-2 (2014) [212]. For the case study presented, the quantity

elements can be all obtained directly from inspection results and human intervention,

as presented in the previous subsection. Examples of supporting elements for quality

KPIs are:

� Good quantity (GQ): number of products that meet quality requirements in the

first time of an operation process and is obtained as the sum of true observations

for ’Conforming SFO’;

GQ =
3∑︂

i=1

X1,i (6.17)

� Processed quantity (PQ): total number of products that a machine (work unit)

has processed, including reworked products) and is calculated as the grand sum

of the confusion matrix;

PQ = grandsum(CM) =
3∑︂

i=1

3∑︂
j=1

Xi,j (6.18)

� Rework quantity (RQ): number of products that initially did not meet quality

requirements, but these can be met through reprocessing, repair, or other

re-manufacturing approaches, and can be obtained as the sum of the true
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observations for ’Non-conforming SFO’ and ’No SFO’;

RQ =
3∑︂

i=1

X2,i +X3,i (6.19)

� Scrap quantity (SQ): number of products that do not meet quality requirements

and have to be scrapped or recycled. For steel frame assemblies manufacturing,

all operation errors can be reworked and other potential errors not accounted

for cannot be identifiable with the proposed inspection system. As such:

SQ = 0 (6.20)

� Produced quantity in the first operation process (PQF): total number of products

that a machine (work unit) has processed for the first time. As no scrap is

considered in this manufacturing process, the total number of products processed

only once is identical to the number of products that meet quality requirements

at first, due to the rest requiring rework.

PQF = GQ =
3∑︂

i=1

X1,i (6.21)

Assuming that all rework operations are successful, meaning that are reworked

parts meet quality requirements, then a relationship exists between all the quantity

elements (basic KPIs) as shown in Equation 6.22. In practice, (PQF ) is the first time

quantity that is used to define quality in most industrial settings.

PQF = GQ+ SQ+RQ

PQ = PQF +RQ
(6.22)

Based on that, some important quality-related KPIs can be calculated (note that

scrap related KPIs are omitted due to the nature of this study). Those are defined as

follows:

� Rework ratio (RR): identifies the ratio of rework quantity to the processed

quantity;

RR =
RQ

PQ
=

∑︁3
i=1X2,i +X3,i∑︁3
i=1

∑︁3
j=1Xi,j

(6.23)
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� Quality rate (QR): notes the ratio of good quality parts leaving the manufacturing

process.

QR =
GQ

PQ
=

∑︁3
i=1X1,i∑︁3

i=1

∑︁3
j=1Xi,j

(6.24)

Considering the lack of scrap for this specific study, the relationship between both

ratios remains simple, as seen in Equation 6.25.

QR = 1−RR (6.25)

To summarize, quality KPIs obtained via the inspection systems proposed and the

cognitive interaction of the machine operators target rework operations as the main

concern quality-wise. However, as rework operations are suggested by an autonomous

process as well as independent human decision-making, current rework ratio only

computes the final result on the product. This ignores current efforts for rework

in conditions such as false rework suggestions by the proposed system or operator’s

expert decision to rework a part when the system considered it to be good enough. In

other words, rework is required to fix ‘Non-conforming SFO’ and ‘No SFO’, either due

to human decisions or as suggested by the inspection results. As such, an index is

proposed to monitor the human effort for rework operations (no matter if they happen

or not). Let the human effort for rework, (HR), be the ratio of human operations

required to assess and rework screw fastening operations to the total of processed

operations in steel frame assemblies, and can be determined by:

HR =
RR +X1,2 +X1,3

PQ
=

PQ−X1,1

PQ
= 1− X1,1

PQ
(6.26)

6.7.3 Validation Results

The results presented in this subsection showcase the monitoring of the performance

metrics of the machine learning algorithm designed for classification of screw fastening

operation (SFO) quality over the production of three frames. All the frames are
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designed with simple studs distributed over the length of the track. In total, 76 SFO

are considered. For each panel, first, the inspection results are obtained (N), then

the system awaits for human input and generates the error matrix accordingly (E).

Finally, the confusion matrix (CM) is updated after each frame, as proposed, and

the performance metrics monitored over the production process in order to finally

calculate the quality KPIs (rework ratio and human effort for rework). The initial seed

of the confusion matrix, from where all calculations of the performance metrics derive,

is obtained from the validation set during the training stage of the algorithm (labeled

‘Start Implementation’ in the figures below). As observed, classification metrics are

evaluated over the usage of the machine learning algorithm, enabling supervision of

its performance. For the quality KPIs, a differential approach is presented as shown

in Equation 6.27 for the rework ratio and human effort for rework after the nth frame.

This is due to the large amount of rework operations used for training purposes, which

would bias the results presented and would not represent accurately the manufacturing

behavior studied.

RRn = RR−RR0

HRn = HR−HR0

(6.27)

At the start of the system, considering the initialization of the Configuration Level

supervision, the confusion matrix, (CM), is obtained from the end results of the

training and validation steps. Remind that:

CM0 =

⎡⎢⎣15 1 0

0 16 0

0 3 13

⎤⎥⎦ (6.28)

With those results, Table 6.5 lists the performance metrics for each one of the

classes (’L1:Conforming SFO’, L2: ’Non-conforming SFO’, and L3: ’No SFO’) and

quality KPIs of screw fastening operations.

The first panel has 22 SFO and the inspection yields that 17 of those are conforming
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Table 6.5: List of values for the performance metrics and quality KPIs monitored at
the ’Start Implementation’ step.

A
cc
ur
ac
y

P
re
ci
si
on

R
ec
al
l

E
rr
or
R
at
e

F 1
Sc
or
e

R
R 0

H
R 0

L1 0.9778 1 0.9375 0.0208 0.9677

0 0L2 0.9167 0.8 1 0.0833 0.8889

L3 0.9362 1 0.8125 0.0625 0.8966

to quality requirements, 2 of those are non-conforming, and that 3 connections are

missing screws. After manual inspection and rework process, an extra connection had

a non-conforming SFO while the inspection system predicted that it was conforming.

Therefore, for this panel, it is obtained that:

N1 =

⎡⎢⎣17 0 0

0 2 0

0 0 3

⎤⎥⎦ , E1 =

⎡⎢⎣−1 0 0

1 0 0

0 0 0

⎤⎥⎦ (6.29)

Following Equation 6.10, the updated confusion matrix after the manufacture of

panel 1 is as follows:

CM1 = CM0 +N1 + E1

=

⎡⎢⎣15 1 0

0 16 0

0 3 13

⎤⎥⎦+

⎡⎢⎣17 0 0

0 2 0

0 0 3

⎤⎥⎦+

⎡⎢⎣−1 0 0

1 0 0

0 0 0

⎤⎥⎦

=

⎡⎢⎣31 1 0

1 18 0

0 3 16

⎤⎥⎦
(6.30)

Finally, the performance metrics and quality KPIs can be computed from the

updated confusion matrix. The obtained results are listed in Table 6.6.

Similarly, panel 2 has 30 SFO: 26 of which are conforming, 2 of those non-conforming,

and 2 missing SFO. However, after manual inspection, the operator corrects that all

the SFOs in this panel are actually conforming. Consequently, N2 and E2 are defined
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Table 6.6: List of values for the performance metrics and quality KPIs monitored after
panel 1 manufacturing process.

A
cc
ur
ac
y

P
re
ci
si
on

R
ec
al
l

E
rr
or
R
at
e

F 1
Sc
or
e

R
R 1

H
R 1

L1 0.9701 0.9688 0.9688 0.0286 0.9688

0.0857 0.0857L2 0.9286 0.8182 0.9474 0.0714 0.8780

L3 0.9559 1 0.8421 0.0429 0.9143

as follows:

N2 =

⎡⎢⎣26 0 0

0 2 0

0 0 2

⎤⎥⎦ , E2 =

⎡⎢⎣0 2 2

0 −2 0

0 0 −2

⎤⎥⎦ (6.31)

Again, the confusion matrix can be updated with the new set of results for panel 2:

CM2 = CM1 +N2 + E2

=

⎡⎢⎣31 1 0

1 18 0

0 3 16

⎤⎥⎦+

⎡⎢⎣26 0 0

0 2 0

0 0 2

⎤⎥⎦+

⎡⎢⎣0 2 2

0 −2 0

0 0 −2

⎤⎥⎦

=

⎡⎢⎣57 3 2

1 18 0

0 3 16

⎤⎥⎦
(6.32)

Thus, the performance metrics and quality KPIs are evaluated from the updated

confusion matrix and listed in Table 6.7.

At last, panel 3 requires 24 screw fastening operations. The inspection system

proposed identified 23 conforming SFOs, one non-conforming, and none missing.

However, the operator corrected that the non-conforming SFO is actually missing, so

the rework operation is corrected as such. Then, the process yields:

N3 =

⎡⎢⎣23 0 0

0 1 0

0 0 0

⎤⎥⎦ , E3 =

⎡⎢⎣0 0 0

0 −1 0

0 1 0

⎤⎥⎦ (6.33)
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Table 6.7: List of values for the performance metrics and quality KPIs monitored after
panel 2 manufacturing process.

A
cc
ur
ac
y

P
re
ci
si
on

R
ec
al
l

E
rr
or
R
at
e

F 1
Sc
or
e

R
R 2

H
R 2

L1 0.9381 0.9828 0.9194 0.06 0.95

0.06 0.10L2 0.9286 0.75 0.9474 0.07 0.8372

L3 0.9479 0.8889 0.8421 0.05 0.8649

The confusion matrix for this last panel, CM3, is updated as follows:

CM3 = CM2 +N3 + E3

=

⎡⎢⎣57 3 2

1 18 0

0 3 16

⎤⎥⎦+

⎡⎢⎣23 0 0

0 1 0

0 0 0

⎤⎥⎦+

⎡⎢⎣0 0 0

0 −1 0

0 1 0

⎤⎥⎦

=

⎡⎢⎣80 3 2

1 18 0

0 4 16

⎤⎥⎦
(6.34)

Finally, the end results for the performance metrics and quality KPIs after all the

three manufactured steel frame assemblies can be obtained. The resulting values are

listed in Table 6.8.

Table 6.8: List of values for the performance metrics and quality KPIs monitored after
panel 3 manufacturing process.

A
cc
ur
ac
y

P
re
ci
si
on

R
ec
al
l

E
rr
or
R
at
e

F 1
Sc
or
e

R
R 3

H
R 3

L1 0.950 0.9877 0.9412 0.0484 0.9639

0.0565 0.0887L2 0.9344 0.720 0.9474 0.0645 0.8182

L3 0.950 0.8889 0.80 0.0484 0.8421

Finally, Figure 6.14 and 6.15 illustrate the variation of the performance metrics

and quality KPIs discussed over the continuous production of the three steel frame
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assemblies. Regarding the monitoring of the machine learning algorithm, all rele-

vant metrics can be actively and dynamically monitored throughout the use of the

algorithm in real-time. For example, by introducing a minimum threshold for the

accuracy, precision, recall, and/or F1 score, or a maximum threshold for the error rate,

the Configuration Level can automatically deactivate the algorithm and notify the

appropriate personnel [213]. Machine learning algorithms would require, i.e. in case of

changes in its behavior, retraining on a new (updated) data-set to be re-implemented

in the environment. At that point, all the values of the performance metrics need to

be reset. Nonetheless, further work is necessary to showcase a complete integration of

a more complex supervisory control agent that does not block the production system,

such as the one described in [214], or commercial solutions such as MonitorML.

As observed, both discussed quality KPIs are plotted over time after each panel

manufacture has finished (quality rate, QR, is omitted due to its linear relationship

with the rework ratio, RR, is this study). In this machine environment, after three

frames manufactured, the rework ratio stands below 6%, representing a little over

1 screw fastening operation reworked per frame, while the human effort for rework,

(HR), stands around 9%. As defined, (HR) considers the uncertainty of rework orders

provided by the system proposed, whereas (RR) represents accurately the amount

of rework performed in the product. As such, considering an scenario where all the

rework orders proposed by the system are followed by the operator(s) then both

indexes provide identical results (see frame 1), however, those ideal situations only

occur in conditions where the system provides 100% accurate rework orders or where

false positives compensate false negatives. In other more probable situations, the

errors in rework orders come from false positives in ’Non-conforming SFO’ or ’No SFO’

predictions where the true label is ’Conforming SFO’, which are not considered by

the rework ratio as rework is deemed not necessary by the operator. Nevertheless, the

operator has to go and re-inspect the SFO that is flagged, and reassess the inspection

results.
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Figure 6.14: Evolution of performance metrics during continuous production of steel
frame assemblies.

From a management perspective, (HR) gives a more comprehensive insight on

the utilization of resources for rework operations than (RR) does. Potentially, when

including time studies on rework operations, (HR) could explain delays on certain

frame assemblies, for example, that had no rework done and where (RR) could

not help with. Although the proposed index looks promising to quantify rework in

semi-autonomous systems where rework orders are automatically suggested, it still

requires further integration with other supporting elements, i.e. time and maintenance

elements, to further understand the implications and limitations of common quality

KPIs as currently defined.
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Figure 6.15: Evolution of quality KPIs during continuous production of steel frame
assemblies.

6.8 Discussion & Limitations

In conclusion, the proposed cyber-physical system introduces the capability of current

steel framing machinery to perform automated quality control and assessment during

the manufacturing process. By relying on visual inspection and data analysis, steel

frames are manufactured in a more accurate and safer way, while its quality can be

judged and quantified. Based on the quality results obtained, the system enables the

opportunity for steel framing operators to perform data-driven rework, by following

(or not) the automated suggested corrective operations. The proposed system also

monitors the rework operations using user input and quality inspection results by

automatically computing relevant quality KPIs: rework ratio and a novel KPI intro-

duced that computes the total human effort for rework. This new indicator serves as

un upper boundary for rework monitoring that considers the uncertainty introduced

by the results obtained by the system’s algorithms.

In fact, the proposed system encounters several limitations regarding the proba-
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bilistic nature of its data. As most image processing and machine learning algorithms,

the resulting output contains a varying uncertainty that depends on several external

factors, for example, changes on lighting or introducing novel components onto the

screw fastening operations. As the main objective of the cyber-physical system devel-

oped is to support data-driven improvements to the manufacturing process and design

of steel frames, those altering changes to the environment modeled in this research

are inevitable. By introducing a culture of continuous improvement, the stochastic

processes defined herein would see their uncertainty potentially increase as changes

are introduced on the system. If that were to be the case, image processing algorithms

would need to be updated to match novel conditions and machine learning approaches

would need to be retrained on an updated data-set.

Figure 6.16: Quality relationship between window component and steel frame.

With those limitations in mind, the proposed cyber-physical approach can be gen-

eralized to other BIM-based manufacturing processes in offsite construction facilities,

assuming the necessary adaptations to inspection algorithms and knowledge models to

the selected environment. Following the inspection approach proposed in this thesis,

several similar products can be addressed in a similar fashion: products where square-
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ness or assembly assurance are the main quality concerns. For example, other types

of framing could benefit from such analysis such as wood framing or cross-laminated

timber panels, as well as other products that rely on frame squareness (or overall

quality) for its assembly processes such as windows or doors. An example of such

relationships is illustrated in Figure 6.16: deviation in frame opening squareness and

window squareness, as well as individual corner angles for the frame and window,

should be minimized to ensure fitting of the window in the opening and ease the

installation process, often manual and physically extenuating for workers.
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Chapter 7

Conclusions, Discussion, & Future
Work

7.1 Conclusions

Steel framing has become a popular solution for prefabricated commercial and mid-rise

buildings. As offsite construction develops as an alternative to traditional construction,

automation of construction processes is in demand in their facilities. In this context, the

research presented aims to introduce a framework adapted to the offsite construction

workflow for automatic inspection and quality assessment of steel frame assemblies.

The developed framework enables offsite construction practitioners to (a) prepare

their quality procedures from the design stage by establishing a link between design

elements and features and quality specifications; (b) providing real-time quality

control and assessment in an integrated manner with its manufacturing process; (c)

establishing a platform to support and automatically suggest rework operations in

the current manufacturing workflow; and, (d) supporting data-driven analysis of

manufacturing defects at bay to promote continuous improvement culture towards

zero-defect manufacturing in offsite construction facilities.

The framework proposed is evaluated for steel frame assemblies manufacturing in

a semi-automated environment where machine and human output impact the end-

product quality. Initially, a knowledge model for steel frame assemblies is developed

using ontologies that establishes a link between the product design, manufacturing,
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and quality domains. By looking at element intersections, a set of quality specifications

can be accessed by querying BIM models, therefore information regarding the quality

requirements of designed steel frames can be dynamically accessed from the BIM

software. Then, considering the list of features that need inspection as per quality

specifications, a vision-based inspection system is developed to generate quality-

oriented data at the pre-manufacturing, online, and post-manufacturing stage following

a cyber-physical approach. By applying novel image processing techniques, i.e. Hough

transform or edge fitting among others, geometrical measurements of the required

quality specifications can be obtained with sufficient accuracy. Those measurements

are first used for real-time quality control, providing machine operators with quality

information during the manufacturing process, and are stored in a database to enable

further offline analysis. Posterior analysis allows for more powerful and computationally

demanding approaches to be used, such as data mining or machine learning, that can

provide more robust quality information about the steel frame assembly manufacturing

process. For example, a deep learning model (R-CNN) is used to determine the correct

physical aspect (location and finishing) of a conforming screw fastening operation.

Finally, an interface is developed to visualize the inspection results to the machine

operator at several stages of the frame assembly manufacturing, as well as to suggest

rework operations based on those inspection results. The interface serves also as an

interactive platform with the operator, in which cognitive assessment of the inspection

results can be communicated. A supervisory agent is then developed to monitor the

inspection results and the final decisions taken by the operator in regard to the quality

of the frame. This agent can supervise the results provided by the cyber-physical

system over time and automatically computes quantity and quality key performance

indicators, hoping to quantify quality issues through lean metrics that can support

continuous improvement in the manufacturing process of steel frame assemblies.
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7.2 Research Contributions

The research presented in this thesis contributes several additions to the body of

knowledge of quality inspection systems for construction products designed in BIM,

as well as the manufacturing process of steel frame assemblies. Overall, the work

reported in this thesis supports the automation of quality control and assessment in

offsite construction facilities from the source to the bay. The main contributions of

this research are summarized below.

� Developed an ontology-augmented BIM environment that allows to visualize

and query quality information at the design stage. Formalized the relationship

between product design (BIM schema), manufacturing operations, and quality

specifications by determining key design features and key operations of the steel

frame assembly process.

� Designed novel machine vision algorithms for inspection of the steel framing

manual assembly process, previous to any manufacturing, that enables to measure

the overall features of the frame and each individual element: frame squareness

and element length, width, and spacing. As such, the system can identify each

frame element and match it against BIM model components to confirm the

correct manual assembly per quality specifications.

� Developed a vision-based approach to determine the correct feasibility of screw-

fastening operations in an automatic environment, providing online feedback

to the machine actuators and securing the conformity of the manufacturing

process from a quality perspective, i.e. screw fastening location, even in highly

constrained situations such as using pre-drilled studs for steel framing.

� Developed a novel real-time image processing technique to measure the squareness

of frame element connections before and after the connection is permanently

secured using self-drilling screw fasteners.
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� Integrated all the inspection systems within the available steel framing machinery

as a cyber-physical system.

� Evaluated the use of machine learning approaches to identify conforming and

non-conforming manufacturing operations in automated steel framing processes.

� Developed a user interface for quality inspection that displays inspection results,

and if needed, suggest corrective actions to rework the frame to conformity, and

enabling operators to interact with the system in case of mistaken suggestions,

overriding the system results.

� Developed a supervisory agent that monitors the automated inspection results,

specially from stochastic algorithms such as machine learning, and keeps track

of the additional human intervention for necessary rework of the steel frames

manufactured. This agent communicates its monitoring aspect to managers

through well-known metrics such as confusion matrices (for machine learning)

and quality KPIs (for rework operations).

7.3 Limitations and Future Research

Despite the successful achievement of its goals, the research presented in this thesis is

confronted by the following limitations that should be addressed by researchers in the

near future:

� The current knowledge model provided to establish a link between product

design, manufacturing, and quality specifications is tailored to the manufacturing

environment available. As such, the model provided is partially untested as

certain limitations were encountered when manufacturing capacity is to be

included: for example, how to identify if a connection can be manufactured with

certain systems available in a deterministic fashion. Whereas the knowledge

approach provided is sufficient to reach the goals set, it is dependent of current
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knowledge of the situation at the shop floor and does require an extensive

amount of work to adapt it to new manufacturing circumstances. Although the

re-configuration capability of ontology models will definitely ease the effort to

be performed, the approach provided is still limited when the main objective

remains to introduce a culture of continuous improvement (thus change) within

offsite construction facilities.

� Although the inspection systems and image processing algorithms are product-

centric, they are still developed tailored to the manufacturing capabilities of

the machine used. As such, several combinations and types of steel frames and

frame elements are not considered during this research, namely frame features

that relate to wall-to-wall connections. An extension of the algorithms used,

as well as the features targeted by the knowledge model, would be required to

adapt the current framework to a generic steel framing process.

� Considering the limited number of frames inspected to validate the proposed

approach, the models and analysis provided in this research represent just an

example of a more comprehensive analysis that can be performed using the

database created. On top of that, with currently around 200 entries in the

database, further experimentation would be necessary to expand on more generic

knowledge discovery approaches, i.e. data mining, that could provide more

insight on the inherent quality issues related to steel framing.

� Current supervisory agent to monitor the manufacturing process is developed

based on the inspection results only, providing mostly quantity elements that

enable to calculate certain quality KPIs. By introducing other mechanisms in

the framework, such as RFID for timing elements, more complex performance

indicators could be computed that would, theoretically, provide further insight

on the current manufacturing process. For example, including quality and

timing indicators, delays related to rework operations could be identified, thus,
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highlighting the cost of rework in steel frame assemblies manufacturing.

� Further work is needed to fully implement zero-defect manufacturing principles

as a whole in the proposed methodology: as stated in this thesis, product-centric

research is the focus; however, machine-centric inspection, i.e. tool inspection,

has been ignored. In the near future, such algorithms need to be developed to

provide machine information and finally correlate quality issues, i.e. defects,

with tool condition. As such, data-driven predictive maintenance of the studied

machine environment is enabled with a focus on quality.

� Although the culture of continuous improvement has been discussed in this

thesis, the data provided in this thesis has not been used for such purposes using

lean approaches, i.e. poka yoke. In the near future, discussion regarding the

application of poka yoke in Industry 4.0 (or Construction 4.0) manufacturing

environments will be addressed.
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Appendix A: Scientometric
Analysis of Computer Vision
Applications in Construction

A.1 Introduction

Image processing and computer vision have been used in numerous different scientific

fields to provide information or data as a substitute for human eyes. Due to the

decreasing cost of visual sensors and the availability of robust visual systems, the

integration of computer vision in industrial environments has grown exponentially

in the last decades in a broad range of sectors, such as retail, security, automotive,

healthcare, and agriculture. In the construction industry, computer vision has drawn

attention because it can be used for the automation of critical tasks that require

continuous object recognition, identification, and monitoring, or motion, behavior,

location estimation, and so forth. The rich data-set of information that can be

obtained from a construction-related scene by taking images or videos that facilitate the

understanding of complex construction tasks rapidly, accurately, and comprehensively.

However, the dramatic increase in the amount of literature published regarding the

development of computer vision-based systems for civil construction operations has

not had the desired impact on the construction industry. Despite their importance,

current practices are still time-consuming, costly, and error-prone.

In the last decades, computer vision research has been diverse as more emerging

technologies have been integrated into construction-related projects. Literature review

is regarded as an expedient approach to gain an in-depth understanding of a research

area. Existing review publications target relevant topics of computer vision applications

in civil construction. For example, computer vision technologies have been applied
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to monitor for unsafe conditions and actions with the aim of mitigating potential

hazards in construction projects in a timely manner. Although its application is

still premature, it demonstrates that major research contributions and challenges

for technical and practical automatic vision-based safety and health monitoring are

needed. Also, image processing techniques are the key factor in the research and

development of the most recent building information model (BIM)-based technologies

applied in construction. As-built modeling has proven to be a challenge that involves

both disciplines, computer vision and civil engineering, and an important effort is

being made to consolidate and integrate existing techniques, along with developing

new methods, to automatically generate a working BIM. The increasing demand on

intelligent technologies requires pragmatic and cost-effective methods that not all

the proposed methods provide for the construction industry. In fact, as-built BIM

automatically generates digital representations for existing assets from very different

visual techniques and devices, such as camera systems, laser scanners mounted on

mobile robots or flying unmanned aerial vehicles (UAV). These systems generate 3D

point clouds that provide detailed information to reconstruct the BIM model of an

existing element. BIM information is also collected using the same methods for project

control purposes, targeting the inspection and quality control of building elements.

Whereas existing review publications showcase detailed analyses on certain areas

of research, the application of computer vision methods has been diverse and with

varying degrees of complexity, thus a research effort is needed to provide a full scope

of the use and impact of computer vision in construction-related fields.

Scientometrics is defined as the “quantitative study of science, communication

in science and science policy”, and includes the measurement of research impact,

investigates the impact of institutions and journals in a certain field of research, and

provides deeper understanding of scientific citations. Scientometrics has been used for

the analysis of the latest research in other construction-related research fields, such as

construction engineering and management (CEM), or BIM. The study presented in this

paper attempts to conduct a scientometric review of the scientific literature relating

to computer vision in construction-related activities and to gain an overall description

of the developments in this research field over the past two decades (1999–2019). The

findings can provide researchers with a better understanding of the current state of
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visual applications and research in civil construction and identify the main topics in

the literature.

A.2 Research Methodology

To achieve the research objectives of this paper, academic publications within the field

were identified. The list of publications was obtained using Scopus database. Given

the difficulty of searching each related article, a delimitation of the research boundary

is frequently necessary. The main points of each publication will be determined by its

research title, objectives, methodology, and major contributions. The methodology

for this current study will be explained below and an overview can be found in Figure

A.1.

Figure A.1: Research methodology for the scientometric analysis.

A.2.1 Bibliometric Analysis

Data acquisition of existing literature is crucial in this research since it determines

the scientific articles from which any conclusions will be drawn. For this reason, the

database selection and searching strategy are carefully selected. For this study, Scopus
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database was selected as the literature database due to the wide range of coverage in

the domain of construction-related research compared with other databases such as

Web of Science, Google Scholar, and PubMed, among others. Scopus database is a

better choice for inter-disciplinary research topics, such as the one reviewed in this

paper, than the previously mentioned databases, and also has a wider range of journal

publications.

The existing literature related to computer vision applications in the construction

sector in this database was then retrieved by using keywords, i.e. ”computer vision*”

and ”construction*” (note that the wildcard character * is used to capture variations

of one keyword, such as ”vision system”, ”visual system”, and ”vision-based system”).

According to the objective of this review, the selected keywords were: (”Computer

vision*” OR ”Machine vision*” OR ”Vision systems*”) AND (”Construction*”). The

keyword search in Scopus was set as title/abstract/keywords in order to retrieve all

the publications containing the selected keywords in their title, abstract, or selected

keywords section. The search period was set to include the last 20 years, from

January 1999 to February 2019, which is suitable considering the development history

of computer vision within construction-related research. A screening process was

conducted successively for the purpose of refining the results to the relevant engineering

scope. For example, research papers within the subject area of medicine or agriculture

that may mention ”construction” in another sense of the word were excluded in this

step. Only papers in peer-reviewed English journals or conference proceedings were

considered for the review process and book reviews or editorials were also excluded so

that all the retrieved papers could be screened using an identical construct in terms

of research aims and methods. A further refining process was conducted by checking

the source title and abstract in order to exclude papers from irrelevant journals or

conference proceedings. Those remaining after the screening process were fed into

the bibliometric analysis. The initial search yielded over 3000 documents, while the

results after the manual screening filtered down the number of documents to 1158,

namely 325 journal papers and 833 papers published in conference proceedings. The

large number of irrelevant papers that needed to be filtered out can be explained by

the colloquial use of the word ”construction” in other contexts and research fields.
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A.2.2 Scientometric Analysis

The definition of scientometrics is first proposed by Mulchenko as ”a quantitative study

of the research on the development of science”. It can be considered as a technique that

measures research impact and citation processes and maps the current knowledge and

its evolution in a domain based on large academic data-sets. Due to the wide spectrum

of research topics related to computer vision in construction, there is little prospect

of characterizing the overall field through systematic literature analysis. Although

manual review provides insightful overview of the research field, it remains prone

to bias and is limited in terms of subjective interpretation. Therefore, the current

study proposes a holistic analysis of computer vision within construction-related

activities using the scientometric technique, a research method to ease visualization

and mapping of knowledge domains. This methodology applies bibliometric techniques

to published literature and is used to map the structure and evolution of numerous

subjects based on large-scale scholarly data sets. Through network modeling and

visualization, scientometric research aims to analyze the intellectual landscape of a

knowledge domain and to perceive questions that researchers may attempt to answer,

as well as methods that authors have developed to achieve their goals. Visualizing

the entire field of computer vision in construction will enable readers to gain a global

perspective of research patterns and trends in the field.

Keywords and abstracts are considered clear and concise descriptions of the research

contents, which require these keywords as units of analysis to identify prominent

groupings that affect the structure of the researched field. In this study, the literature

of computer vision for construction was analyzed in terms of keywords and abstract

terms to retain the opinions of the authors as much as possible. The following

methodologies were applied to reveal research patterns: Keyword co-occurrence

analysis and keyword clustering, co-author analysis and burst detection, country

co-occurrence and co-citation analysis, and abstract term cluster analysis. Firstly,

the keyword and author co-occurrence analysis makes an aggregate representation

of the research field and the network indicators provide evidence for the posterior

clustering analysis. Secondly, the burst detection sheds further insight on the relative

changes of significance over time to identify trends and changes in computer vision
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for construction, in contrast to the previous analysis that simply provides a static

description of the field as a whole. Finally, abstract term clustering indicates the

research patterns within the field in detail, as well as various specific research themes

associated to lay out the research conceptual framework. These techniques have been

recommended in previous studies of similar nature.

A.3 Results

A.3.1 Data Acquisition

The keyword search strategies aforementioned were employed to identify relevant

academic articles in journals and conference proceedings, which have been summarized

in Tables A.1 and A.2. The majority of academic publications on computer vision

applications for construction are found in journals related to both fields, including

Automation in Construction, Advanced Engineering Informatics, Journal of Computing

in Civil Engineering, International Journal of Computer Vision, Computer Vision and

Image Understanding and Machine Vision and Applications. Among these journals,

Automation in Construction is the journal that includes the most publications on this

topic. Similarly, conference proceedings that make considerable contributions to the

field are Proceedings of the IEEE Computer Science Conference on Computer Vision

and Pattern Recognition, and Proceedings of the IEEE International Conference on

Computer Vision. Notably, most of the selected journals and conference proceedings

contained one or two publications related to the researched field: 37.22% of the journal

articles and 79.84% of the conference proceedings were published in such conditions.

Table A.1: List of most widely read academic journals from January 1999 to February
2019 that published research related to computer vision applications for construction.

Journal Title
Number of Relevant

Articles
% Total Publications

Automation in
Construction

45 13.85%

Advanced Engineering
Informatics

18 5.54%

(Table continues on next page...)
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Journal Title
Number of Relevant

Articles
% Total Publications

Journal of Computing in
Civil Engineering

16 4.92%

International Journal of
Computer Vision

15 4.62%

Computer Vision and
Image Understanding

13 4.00%

Machine Vision and
Applications

11 3.39%

Advances in Intelligent
Systems and Computing

9 2.78%

Pattern Recognition and
Image Analysis

9 2.78%

Advanced Materials
Research

7 2.15%

Image and Vision
Computing

7 2.15%

Pattern Recognition 7 2.15%

Industrial Robot 6 1.85%

Applied Mechanics and
Materials

6 1.85%

IEEE Transactions on
Image Processing

5 1.54%

IET Computer Vision 4 1.23%

Journal of Intelligent and
Robotic Systems Theory

and Applications
4 1.23%

Procedia Computer
Science

4 1.23%

Journal of Visual
Communication and
Image Representation

3 0.92%

Pattern Recognition
Letters

3 0.92%

IEICE Transactions on
Information and Systems

3 0.92%

Procedia Engineering 3 0.92%

(Table continues on next page...)

176



Journal Title
Number of Relevant

Articles
% Total Publications

IEEE Transactions on
Cybernetics

3 0.92%

IEEE Transactions on
Robotics

3 0.92%

Autonomous Robots 3 0.92%

Table A.2: List of most widely read academic conference proceedings from January
1999 to February 2019 that published research related to computer vision applications
for construction.

Conference Title
Number of Relevant

Articles
% Total Publications

Proceedings of the IEEE
Computer Society

Conference on Computer
Vision and Pattern

Recognition

54 6.48%

Proceedings of the IEEE
Conference on Computer

Vision
45 5.40%

ACM International
Conference Proceeding

Series
15 1.80%

IEEE International
Conference on Intelligent
Robots and Systems

14 1.68%

Proceedings IEEE
International Conference

on Robotics And
Automation

13 1.56%

Proceedings International
Conference on Pattern

Recognition
5 0.60%

Congress on Computing
in Civil Engineering

Proceedings
4 0.48%

(Table continues on next page...)
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Conference Title
Number of Relevant

Articles
% Total Publications

Proceedings of the
International Joint

Conference on Neural
Networks

3 0.36%

Proceedings of the IEEE
International Conference
on Systems Man and

Cybernetics

3 0.36%

International Conference
on Signal Processing
Proceedings ICSP

3 0.36%

Canadian Conference on
Electrical and Computer

Engineering
3 0.36%

IEEE International
Conference on Image

Processing
3 0.36%

Proceedings of The
World Congress on

Intelligent Control and
Automation WCICA

3 0.36%

Figure A.2 shows how the number of publications, in either journals or conference

proceedings, on the research topic under review varies each year. Publications on

computer vision applications in construction show an overall upward trend since

2003-2004, showing two main bursts of publications in 2007-2008 (+87% number of

publications) and 2015 (+47% number of publications), that curiously match with

the initial development of BIM and big data techniques in construction, respectively.

Note that the study considers, for the year 2019, publications in the first two months

of the year, hence the lower number of publications in that year. If a linear regression

is performed, 2019 keeps the upward trend and estimates over 100 publications on the

reviewed topic.
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Figure A.2: Historical trend of published studies in computer vision for construction
(period 1999–2019).

A.3.2 Keyword Co-occurrence Analysis

Keywords represent the core content of the published documents and showcase the

range of areas researched within the boundaries of any domain. To construct and

map the knowledge domain between construction and computer vision, keyword co-

occurrence in the research area was obtained using VOSviewer. The visualization of the

keyword’s network was chosen to demonstrate the results of the bibliometric analysis of

the literature. The output of the VOSviewer software is a distance-based map in which

the distance represents the strength of the relation between two knowledge domains.

A bigger distance generally indicates a weaker relationship between the two items.

The item label size is directly proportional to the number of publications in which the

keyword was found and different colors represent different knowledge domains clustered

by the clustering technique of VOSviewer. The minimum number of occurrences was

set to 5 so that 44 of the 510 keywords meet the threshold. This threshold selection

was based on multiple experiments with other parameters to generate the optimal

clusters. Figure A.3 shows the network of co-occurring keywords with 44 nodes, 145

links, and a total link strength of 263. Table A.3 summarizes the keyword occurrences

and each individual node strength.
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Figure A.3: Network of co-occurring keywords related to computer vision application
in construction (1999–2019).

Table A.3: List of selected keywords and relevant network data.

Keyword Occurrences
Average
Year

Published
Links

Total Link
Strength

Computer
vision

237 2013 37 125

Image
processing

36 2011 17 39

Machine
learning

15 2016 10 22

3D Recon-
struction

20 2013 11 21

Construction
worker

6 2016 9 19

(Table continues on next page...)
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Keyword Occurrences
Average
Year

Published
Links

Total Link
Strength

Machine
vision

36 2011 10 18

Detection 5 2013 8 17

Pattern
recognition

10 2010 11 17

Tracking 10 2012 6 17

Construction 12 2013 7 14

Object
recognition

19 2013 8 14

Segmentation 12 2012 8 13

Automation 9 2014 7 12

Deep learning 8 2018 5’ 10

Virtual reality 10 2009 5 10

Imaging
techniques

5 2013 7 9

Monitoring 5 2013 5 9

Object
detection

11 2014 5 9

Photogrammetry 6 2012 5 9

Classification 6 2013 7 8

Construction
safety

7 2018 3 8

Point cloud 5 2016 6 8

3D Model 6 2013 5 7

Construction
Equipment

5 2015 7 7

Information
Technology

5 2013 5 7

Mobile robots 6 2010 5 7

Navigation 5 2009 5 7

Stereo vision 13 2013 7 7

Structure
from motion

7 2013 5 7

(Table continues on next page...)
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Keyword Occurrences
Average
Year

Published
Links

Total Link
Strength

Augmented
reality

8 2012 3 6

Convolutional
neural

networks
6 2018 3 6

Robotics 8 2009 6 6

Edge
detection

6 2011 4 5

Image
segmentation

7 2008 5 5

Motion 5 2011 5 5

Neural
networks

5 2007 5 5

Robot vision 7 2011 5 5

Action
recognition

9 2014 2 4

Feature
extraction

9 2012 2 4

Optical flow 8 2012 4 4

Pose
estimation

9 2014 2 4

Shape 5 2010 3 4

Reconstruction 6 2011 3 3

Vision system 6 2008 2 3

As shown in Table A.3, the occurrence shows the number of times each keyword

was retrieved in the existing literature from the author keywords. For example, other

than the main keyword ”Computer Vision”, ”Image Processing” is the keyword that

appears most frequently among all the keywords, which means that it has been widely

researched in this field. The average year published shows the average time period

in which a given keyword is used by researchers in their publications. For example,

studies involving mobile robots or robotics received more attention during the period

2009–2010, while studies involving construction workers or construction safety were
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published with greatest frequency in 2016 and 2018, respectively, indicating the latest

applications of computer vision in construction research. The links are the number of

linkages between a given node and others, while the total link strength reflects the

total strength linked to a specific item. For instance, the total link strength of ”Image

Processing” is 39, which is in the high level of all the keywords and indicates the

strong inter-relatedness between ”Computer Vision” and ”Image Processing”.

Keyword co-occurrence networks are static representations of the researched field

that do not consider changes over time. However, VOSviewer provides a time zone

perspective so that each node is represented by the average year in which the keyword

was used in literature. As shown in Figure A.4, the evolution of computer vision

application in the construction sector continued in the past decade. Notably, the first

applications (2006–2008) were related to ”robotics” and ”virtual reality”, tending to

focus on well-known techniques that required minimal integration within the construc-

tion field, and thus were easier to implement. Unsurprisingly, general keywords such as

”computer vision”, ”machine vision”, ”construction”, ”image processing”, and ”object

recognition” are represented in the middle spectrum (around 2010). This result could

be due to an emphasis on such topics around that period of time (2009–2011) or that

the topic was evenly researched during the whole period of time researched (1999–2019).

This last option is considered as the most plausible explanation. The latest research

topics relate to ”construction safety” and ”construction worker”, potentially indicating

a shift in the focus of research in this field. Whereas earlier contributions considered

the construction sector as a plausible target area of application for certain computer

vision applications, later publications target more specific problems in the construction

industry, while the computer vision methods and technologies used are relegated to

second place. An exception would be the keywords related to novel techniques such as

”machine learning” or ”deep learning”.

A.3.3 Co-author Co-occurrence Analysis

The information with respect to the article authors is available from the bibliographic

records, and, thus, identification of the leading researchers in the field, as well as

the collaborations between researchers, can be mapped. Then, a co-authorship

network can be generated. According to the number of publications, the top 10 most
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Figure A.4: Network of co-occurring keywords timeline related to computer vision
application in construction.

productive authors were identified first. As shown in Table A.4, I. Brilakis (University

of Cambridge), M. Golparvar-Fard (University of Illinois), and Z. Zhu (Concordia

University) occupied the top three positions.

Co-authorship networks can be generated in CiteSpace, as it can visualize and

analyze scientific knowledge to capture the notion of a logically and cohesively orga-

nized body of knowledge. Such an approach has been recognized as an advantageous

scientometric method to discover the hidden implications of a vast amount of infor-

mation. CiteSpace is strong in mapping knowledge domains through systematically

creating various accessible graphs. Therefore, it was used to generate and analyze

the co-author networks, country co-occurrence, and co-citations networks, as well as

generate the abstract clustering. In CiteSpace, the burst detection is based on the

algorithm developed by Kleinberg.

The co-authorship network is shown in Figure A.5, where each node represents an

author and the links between the authors represent collaboration established through

co-authorship in publications. The network pruning was used to remove excessive
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Table A.4: List of the top 10 most productive authors in the 1999–2019 time period.

Author Institution Country Count Percentage

I. Brilakis
University of
Cambridge

UK 13 1.12%

M. Golparvar-
Fard

University of
Illinois

USA 9 0.78%

Z. Zhu
Concordia
University

Canada 9 0.78%

M. Park
Myongji
University

South Korea 8 0.70%

S. Zafeiriou
Imperial
College
London

UK 8 0.70%

H. Kim
Yonsei

University
South Korea 7 0.60%

H. Li
Hong Kong
Polytechnic
University

Hong Kong 7 0.60%

H. Luo

Huazhong
University of
Science and
Technology

China 7 0.60%

B. Y.
McCabe

University of
Toronto

Canada 7 0.60%

K. K. Han

North
Carolina
State

University

USA 6 0.52%

links through Pathfinder, which is recommended in previous studies. Finally, there

were 153 nodes and 203 links in the generated network. The node size represents

the number of publications and the link thickness represents the level of cooperation

between authors. Table A.5 summarizes the overall characteristics of the presented

network. In particular, modularity Q and mean silhouette scores are two significant

metrics, yielded by CiteSpace, that determine the structural properties of the network.

Notably, a modularity Q of 0.9278 is high (Q ≥ 0.3), which indicates that the network

is reasonably divided into loosely coupled clusters, and a mean silhouette score of
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0.5625 suggests that the provided clustering for the network is quite heterogeneous.

Figure A.5: Network of co-authorship for publications related to computer vision
application in construction.

Table A.5: Characteristics of the co-authorship network.

Network Nodes Links Density Q
Mean Sil-
houette
Score

Co-
authorship

153 203 0.0175 0.9278 0.5625

In terms of collaboration, there are some small circuits in Figure A.5, indicating

that the researchers in these circuits have established strong collaborations, such as

the circuit of I. Brilakis, M. Golparvar-Fard and M. Park, or the slightly larger one
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led by H. Li and H. Luo. However, none of the circuits represented groups responsible

for ≥ 4% of the research in the field. In general, this research field could benefit from

more international research collaboration. Centrality is defined as the ratio of the

shortest path between two nodes, in this case authors, to the sum of all such shortest

paths. In this research field, the highest centrality node is H. Li (centrality = 0.02).

Such a low value justifies the need for further collaboration between researchers in

this field. However heterogeneous this field may be, several key contributors can be

identified by burst detection. Author bursts represent notable increases in citations

over a short period of time. Three bursts are identified within the network: I. Brilakis

(burst strength: 3.87 - 2011), M. Golparvar-Fard (burst strength: 3.40 - 2013) and

S. Zafeiriou (burst strength: 3.37 - 2014). These authors attracted an extraordinary

degree of attention in the corresponding years. It is also worth mentioning that no

bursts have been identified in the last 5 years, which is consistent with the fact that

the field has been getting world-wide attention in recent years. Thus, a single author

may find it difficult to receive high citations over a short period of time.

A.3.4 Network of countries/regions and institutions

Similarly, a network was produced based on the contributions of countries/regions

to explore the distribution of research publications on computer vision applications

in civil construction. This network includes 48 nodes and 55 links. As shown in

Figure A.6, the USA (335 articles), China (154 articles), United Kingdom (87 articles),

Japan (76 articles), France (65 articles), Canada (58 articles), Germany (56 articles),

and Australia (42 articles) have made major contributions to the publications in this

field of research. It is implied that the larger the number of publications, the more

advanced the research is in the country/region. In contrast to the co-author network

presented previously, the countries/regions network is quite homogeneous and efficient.

Nodes with high centrality were identified and highlighted with darker outer rings

(purple) in Figure A.6. Countries or regions such as Hong Kong (centrality = 0.80),

United Kingdom (centrality = 0.70), Canada (centrality = 0.60), United States of

America (centrality = 0.51), Netherlands (centrality = 0.46), France (centrality =

0.33), or Switzerland (centrality = 0.19) have occupied key positions in the network

and connected research activities between different countries/regions. Furthermore,
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citation bursts representing notable increases in citations over a short period of time

were found in some countries/regions. Citation bursts are summarized in Figure A.7.

Figure A.6: Network of countries/regions for publications related to computer vision
application in construction.

The contributions of institutions were also identified. Computer vision research for

applications in the construction sector has been quite active at institutions such as the

University of Michigan (22 publications), Carnegie Mellon University (20 publications),

and Georgia Institute of Technology (19 publications). However, similarly to co-

authorship, no relevant institutions can be considered as main centers of research

around the world as they represent a very low percentage of the world-wide research

(around 1%).

A.3.5 Author Co-citation Network

Author co-citation analysis can identify the relationship among authors, whose publi-

cations are cited in the same publications and analyze the evolution of the research

community for the studied field. Figure A.8 presents the author co-citation network,

containing 317 nodes and 657 links. The node size reflects the number of co-citations

of each researcher, and the links between authors represent indirect collaborations

established by co-citation frequency. Thus, the most highly cited authors were identi-

fied, including D. Lowe (frequency = 89, Canada), J. Yang (frequency = 58, China),
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N. Dalal (frequency = 52, USA), M. Golparvar-Fard (frequency = 51, USA), H. Bay

(frequency = 49, Switzerland), I. Brilakis (frequency = 48, United Kingdom), K.

Mikolajczyk (frequency = 46, United Kingdom), P. Viola (frequency = 42, USA), and

J. Gong (frequency = 42, USA). The diversity in the location of these most cited

authors demonstrate that this field of research had been widely performed around the

world.

Furthermore, several authors had citation bursts with rapid increases in citation

frequency over short periods of time. The top identified bursts in the network are

included in Figure A.9 Their articles, while not necessarily directly linked to the

research field, tended to affect in great measure the direction of computer vision in

construction research and were worth following.

A.3.6 Journal Co-citation Network

As shown in Table A.1, the top source journals and conference proceedings for

computer vision in construction were identified, according to the statistics from Scopus

database. The references cited in those publications were analyzed and then a journal

co-citation network with 337 nodes and 1195 links was generated to identify the most

cited journals, as indicated in Figure A.10. The node size denotes the co-citation

frequency of each source journal. With respect to co-citation frequency, the top most

influential journals were International Journal of Computer Vision (frequency = 287),

IEEE Transactions on Pattern Analysis and Machine Intelligence (frequency = 235),

Pattern Recognition (frequency = 160), Automation in Construction (frequency =

100), Journal of Computing in Civil Engineering (frequency = 85), Image and Vision

Computing (frequency = 68), Computer Vision and Image Understanding (frequency

= 65), and Advanced Engineering Informatics (frequency = 59). It is worth noting

that these journals were also among the top source journals in which publications

related to computer vision for construction were published. Thus, the journals with

more contributions to this research field also attracted more citations. However, it

is worth noting that this effect is multiplied in journals which focus on the civil

engineering field, as a lesser amount of source publications generated more citations

than regular computer vision journals.
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A.3.7 Document Co-Citation Network & Clustering

Document co-citation analysis enables underlying intellectual structures of a research

field and demonstrates the quantity and authority of references cited by publications.

In this section, a network of document co-citation is generated to represent the

relationship between citations at an individual level. According to Figure A.11, the

top 25 cited documents in the field are summarized in Table A.6. It is important to

note the low centrality of the most cited documents. Note that centrality is defined as

the ratio of the shortest path between two nodes, in this case publications, to the sum

of all such shortest paths. A node is considered central to a mapped network when its

centrality value is above 0.3. Meaning that even the most cited documents cannot be

considered as central for the co-citation network.

A network of document co-citations and co-citation clusters, which contains 315

nodes and 661 links, is presented in Figure A.11. Each node represents a publication

and its label shows the first author’s name and the publication year. Each link

represents the co-citation relationship between the corresponding publications. The

co-citation frequency between documents is represented by the node size. As seen

previously, centrality is represented by a darker outer ring (purple) and the selected

documents with high centrality are shown in Figure A.11. They can be seen as the

major intellectual turning points for the researched field, and almost all of them were

included in the top 25 most cited publications, as shown in Table A.6.

A total of 11 co-citation clusters were identified based on the abstract of each of

the documents cited in each cluster. Note that all the presented clusters are loosely

coupled but their boundaries are clearly defined. In Table A.7, alternative labels are

shown, such as the log-likelihood ratio (LLR) algorithm that selects cluster labeling

based on keywords and provides uniqueness and a decent coverage.

Given the data in Figure A.11 and Table A.7, in the first decade of the period studied

in this review, the research was focused on developing computer vision algorithms

that could be easily applied to construction tasks. As the reviewed research field

was starting to grow at the time, most of the initial cited documents were related

to previous computer vision algorithms or the image processing techniques used. As

such, cluster 4 (mean publication year = 2006) and cluster 2 (mean publication year =
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Table A.6: The top 25 most cited documents in the 1999–2019 time period.

Rank Article
Total
Cita-
tions

Q Rank Article
Total
Cita-
tions

Q

1
Memarzadeh
et al.

64 0.03 14
Yang et

al.
7 0.02

2
Brilakis
et al.

58 0.05 15
Golparvar-
Fard et

al.
6 0.05

3
Park et

al.
52 0.04 16

Gong et
al.

6 0.00

4
Seo et
al.

48 0.07 17
Yang et

al.
5 0.04

5
Golparvar-
Fard et

al.
46 0.21 18

Chi et
al.

5 0.08

6
Gong et

al.
43 0.04 19

Felzenszwalb
et al.

5 0.00

7
Cao et
al.

41 0.04 20
Han et
al.

5 0.03

8
Dalal et

al.
37 0.09 21

Navon
et al.

5 0.04

9 Lowe 31 0.04 22
Ray et
al.

5 0.03

10 Siebert 24 0.17 23
Bay et
al.

4 0.03

11
Cheng
et al.

17 0.06 24
Brilakis
et al.

4 0.00

12
Fang et

al.
9 0.04 25

Dimitrov
et al.

4 0.10

13
Park et

al.
7 0.04

2007) contain publications that are grouped by the use of either images or collections

of images and videos, respectively, to implement existing or novel computer vision

algorithms in construction activities.

The construction activities may vary from earth moving operations monitoring to
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Table A.7: Co-citation clusters of vision-based research for construction 1999–2019.

Cluster ID Size
Abstract
Cluster
Label

Mean
Publication

Year

Main
Documents

0 232 Workers 2012 Brilakis et al.

1 112 Tracking 2012
Memarzadeh

et al.

2 77 Videos 2007
Gong et al.,
Gong et al.

3 47
Visual

Monitoring
2011

Golparvar-
Fard et

al.

4 42 Key Frames 2006 Lowe

5 36 Activities 2013 Han et al.

6 34
Health

Monitoring
2016 Ding et al.

7 33 Workers 2014 Teizer et al.

11 27 Inspection 2015 Siebert et al.

12 24 Defects 2013 Bay et al.

16 5
Large

Concrete
Structures

2010
Silberman et

al.

equipment tracking and optimal utilization. Such variation in the research topics

makes their analysis more complicated. The publication in 2011 by Gong et al.

on object recognition and contextual decision making introduced the possibility of

productivity analysis from vision-based data in construction, thus opening the link

between previous computer vision work and the complexity of construction operations

and management. Since then, most researchers have focused on the integration of

computer vision within on-going construction operations (cluster 3, mean publication

year = 2011), in tracking resources (cluster 1, mean publication year = 2012 and

cluster 16, mean publication year = 2010), and ensuring safety within construction

sites (cluster 0, mean publication year = 2012 and cluster 7, mean publication year

= 2014). More recent work includes inspection and as-is modeling of construction

products (cluster 11, mean publication year = 2015) and the assessment of possible
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defects (cluster 12, mean publication year = 2013). Note that different clusters that

are located far away from each other in the network present similar cluster labels. For

example, cluster 0, cluster 6, and cluster 7 contain publications that target the safety

of operators, either by monitoring unsafe operations and personnel or by identifying on-

site operators not wearing personal protective equipment (PPE). Encountering similar

research topics with limited common co-citations shows that solutions targeting the

same problem are provided within the same research field using completely dissimilar

sources of information. Interestingly, different researchers using different literature are

proposing solutions to similar problems.

A.4 Current Research

Based on the data presented in Table A.7, this section will provide insight by reviewing

the most representative and recent works grouped by the previously mentioned clusters.

The analyzed research topics are ordered based on the overall research interest and

number of publications found in literature, starting from the most relevant topic.

A.4.1 Construction Safety & Personnel Monitoring

For construction safety and workers’ health, continuous monitoring of unsafe conditions

is essential in order to eliminate potential hazards in a timely manner. Computer vision

has been applied in this case as a robust and automated means of field observation.

Information and images extracted from site videos are regarded as effective solutions

complementary to manual observatory practices to mitigate safety risks. Safety at the

construction site has been the main target of many researchers in the past decades

and is the most researched and prolific area (publication wise) in the computer vision

field for construction. Three clusters were mapped in Table 6 around this research

area: cluster 0, cluster 6, and cluster 7. Cluster 0 is the biggest cluster in the map (see

Figure A.11) with 232 publications, while cluster 6 and cluster 7 are smaller, but no

less significant, with 34 and 33 publications, respectively. Looking at Figure A.11, the

three aforementioned clusters are closely located; however, the links between clusters

are not numerous. Namely, 5 publications from cluster 6 and 3 publications from

cluster 7 are cited by several publications in cluster 0. Given the size of the clusters,
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the number of co-citations between clusters is considered low.

First, the most representative work in cluster 0, published by Brilakis et al.,

suggests using vision systems to automatically track construction resources, such as

equipment, materials, and personnel. The suggested vision-based framework served

as the foundation for enhancing safety on site and monitoring health in real-time.

At the time of writing, this framework is still cited in the most recent construction

safety publications. For example, a real-time warning system was proposed to prevent

collisions between heavy equipment and people working on construction sites. To

address safety with respect to scaffold work platforms, verification of regulation

compliance was accomplished automatically using 3D point cloud data. To improve

current capabilities to monitor dynamic work-spaces and ensure worker safety, recent

AI-based detection and tracking algorithms were proposed.

Then, for cluster 6, its most representative work, published by Ding et al., proposes

applying computer vision and pattern recognition approaches to recognize unsafe

behaviors on construction sites. By focusing on spatial and temporal information, the

detection and recognition of workers’ actions were possible through the use of deep

learning methods. The proposed method of combining convolutional neural networks

(CNN) with long-short term memory architectures (LSTM) enabled very detailed

motion recognition in unsafe operations such as ladder climbing. In general, cluster

6 contains publications related to the use of new artificial intelligence algorithms in

this research field. For example, the use of CNN improved the approaches to assess

worker’s labor and health. By using more accurate detection and tracking algorithms,

a more complex and individual risk assessment is targeted.

Finally, cluster 7’s most representative work, published by Teizer and Vela, discusses

the possibility and need for tracking a workforce on construction job-sites using video

cameras. To gather the information and then store the relevant knowledge for the

purpose of recognizing unsafe behaviors and operations was a process first recognized

from a management perspective by Rezguiet al. However, due to the enormous amount

of data generated by onsite video cameras, ensuring workers’ safety has become a

knowledge modeling problem. To store and analyze the data and provide meaningful

changes to improve construction site safety is the current challenge.
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A.4.2 Resource Tracking & Activity Monitoring

Recordings of construction operations provide understandable data that can be used

for bench-marking and analyzing resource performance. Such recordings support

project managers in taking corrective actions on performance deviations and support

decision making to improve operational efficiency. Analysis of productivity in a

construction site requires tracking of resources and monitoring activities. Four clusters

were mapped in Table 6 around this research area: cluster 1, cluster 3, cluster 5, and

cluster 16. Keeping track of the available resources on a construction site and linking

that availability to the project schedule, site productivity, and construction activity

monitoring is a tedious task for project managers that researchers are aiming to

automatize. Cluster 1 is the second biggest cluster on the map, with 112 publications,

and is only linked to cluster 0 and cluster 5. The relationship between the clusters

has some significance, as safety, activity monitoring, and resource tracking have a

meaningful correlation. Current research publications highlight this relationship: 12

publications from cluster 5 and 38 publications from cluster 0 are cited by multiple

publications in cluster 1. Cluster 3 contains 47 publications and is interestingly quite

isolated from its ‘similar’ clusters and is only linked by 4 publications to cluster

0. Cluster 5 contains 36 publications and is connected to clusters 0, 1, and 7. As

mentioned previously, cluster 5 has a strong co-citation relationship with cluster 0 and

cluster 1. However, the co-citation links between cluster 7 and cluster 5 are limited to

3 publications. Finally, cluster 16 contains 5 publications and, similarly to cluster 3,

is only linked by 2 publications to cluster 0.

First, cluster 1 includes all the publications that pertain to research on visual

resource tracking, i.e. equipment or workers, and their effect on productivity on the

construction site. Cluster 1’s most representative works were published by Memarzadeh

et al. and Golparvar-Fard et al. The first publication proposes a vision-based algorithm

to detect construction workers and equipment from site video streams. The suggested

detector was based on histograms of oriented gradients and colors (HOG+C) and

support vector machine (SVM) classifiers and could differentiate between resources

performing construction activities or sitting idle. The second work presents a computer

vision-based algorithm to recognize earth-moving construction equipment actions. It
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showed successful results detecting, tracking, and identifying excavator and truck

activities on the construction site, introducing the application of such techniques for

construction activity analysis.

Then, cluster 3 groups the publications that aim at visual monitoring of on-

going construction activities or construction progress. Its main representative work,

published by Golparvar-Fard, employs observations of a concrete column and its

periphery to recreate the as-built status of the project and assess discrepancies

between the as-built and as-planned progress. Such an approach would facilitate the

decision making with respect to the necessary remedial actions and provide robust

means for recognition of progress and productivity on the construction site.

Next, cluster 5’s most representative publication, published by Han et al., employs

the use of stereo cameras to improve the accuracy and efficiency of motion analysis

by monitoring construction workers’ behavior and measuring the impact on safety

management.

Finally, cluster 16’s most representative work, published by Silberman et al.,

proposes a segmentation algorithm to support the analysis of indoor complex scenes,

such as indoor on-going construction scenarios. By using cameras inside construction

sites, real-time working conditions can be assessed and reconstructed in virtual 3D

scenarios. The capacity to observe and extract data from complex scenarios enabled

researchers to track and monitor activities in late stages of construction projects.

A.4.3 Surveying & As-Is Modeling

Building information models (BIM) are becoming the official standard in the archi-

tecture, engineering and construction (AEC) industry for storing and exchanging

information about current assets. Throughout the construction process, the ability to

use BIM to automatically generate asset’s representations is expected to have a big

impact on various construction stakeholders. Visual systems, as a data acquisition

platform, are becoming an important instrument for as-is modeling and surveying

applications. The surveying of construction sites helps to visually monitor work-in-

progress, which is particularly important in hard-to-reach areas. From static or mobile

platforms, such as unmanned aerial vehicles (UAVs), visual systems play an important

role in streamlining the collection, analysis, visualization, and communication of
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as-built infrastructure systems. All the relevant publications in this research area were

grouped into a single cluster: cluster 11. This cluster contains 27 publications and is

only connected loosely to cluster 0 by 2 publications with common co-citations.

The most representative publication, published by Siebert et al., develops a novel

platform for data acquisition of dense point clouds of large infrastructure projects

using UAVs. The presented work detailed the process by which UAV systems are

used as data acquisition systems and evaluated their performance against conventional

surveying methods. The system was successfully tested in excavation and earth-moving

construction sites. More recently, aerial photogrammetry has been used in construction

surveying for various tasks as the platform has grown more popular. For example, a

framework to automatically assess the structural condition and support the planned

maintenance of bridges was proposed based on UAV data. Additionally, a study by

Kang et al. used surveying methods to identify construction materials on construction

sites for on-going large-scale projects in order to monitor construction progress.

A.4.4 Inspection & Condition Monitoring

Computer vision techniques are advancing to support civil infrastructure inspection and

monitoring. Manual inspection is currently the main means of assessing the condition

of infrastructure, but manual inspection can be time-consuming, laborious, expensive

and/or dangerous. Adopting vision-based frameworks is a natural step forward and will

eventually replace manual visual inspections. The condition assessment is performed

by leveraging information obtained by inspection or monitoring processes. As such,

applications vary from damage detection, i.e. concrete cracks [76], to structural change

detection. In general, vision-based inspection algorithms are researched to support

real-time monitoring of critical systems in civil infrastructure systems. A total of 24

publications found in the literature delve into this research area and are grouped in

cluster 12. This cluster is the most isolated one on the map is only connected by a

single co-citation to cluster 0.

The most representative work in this area, published by Bay et al., presents a

novel detector and descriptor based on speeded-up robust features (SURF). This

detector and descriptor enables researchers to detect interest points on site images

based on predefined parameters. SURF has served as a base framework whereby
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researchers are evaluating the possible utilization of descriptors to recognize field

objects in construction applications. Given that the algorithms are less computationally

demanding and that the detectors and descriptors are optimized, on-site operators can

use mobile devices, such as smartphones, to update project information or interpret

what is happening on the construction site. However, civil infrastructure is usually

composed of a mixed environment of small and large components, which renders the

selection of distinctive features more difficult, and researchers end up selecting features

on a case-by-case basis.

A.5 Discussion & Future Trends

A.5.1 Overview

This study uses scientometric analysis in order to review the existing literature data-set

on computer vision applications for construction-related research. It extends earlier

partial review work of the field by complementing existing subjective critical and

integral studies with a strong quantitative approach delivered through science network

mapping tools.

Studies were first published in the field in the late 1980s but it was only in the

mid-late 1990s that double figures per year are seen. Indeed, almost two decades

later, publication numbers keep rising, reaching 91 publications in 2018. This trend

confirms the growing interest in research in the field of computer vision in construction.

However, publications are highly dispersed between 64 different journals and conference

proceedings. This is especially true for research studies presented at conferences,

where only 20.16% of the total number of publications are found in the top conference

proceedings (≥ 2 publications in the field) listed in Table A.2. Although journal

publications are equally dispersed, Automation in Construction seems to have published

the highest number of research studies in the field (13.85% of the total journal

publications). This suggests that researchers working on computer vision applications

for the construction sector encounter issues when deciding where to publish their work;

this is due especially to the lack of an international conference that gathers together

authors around the topic.

This study considered the relationships between key individual researchers, research
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journals, and the countries of research origin by means of co-citation network analysis.

The results of the co-citation network mapping, performed in the previous sections,

highlight the global and homogeneous interactions between researchers all around

the world. First, the USA is shown to be the lead country in terms of research

influence, along with, perhaps, China. In particular, the US maintains research links

with all the countries represented in Figure A.6; however, those links seem to be

weak with Germany, Japan, and the Russian Federation. Similarly, most of the

co-citations between researchers are focused around important journal papers in the

field of computer vision A.3 and then branch out from these initial contributions. This

concurs with the observation that initial contributions were focused on developing

computer vision algorithms with possible applications in construction and, in the end,

evolved over time into fully integrated solutions for the construction industry.

Finally, the story is more complex with regards to the publication outlets in which

research is published on computer vision applications for construction. An obvious

measure of a journal’s worth as a source of knowledge is the number of studies in the

field any particular journal publishes. In this respect, Automation in Construction has

published the largest number of articles on the reviewed topic, 45 in total. However,

other journals present a higher number of citations compared to Automation in

Construction, such as International Journal of Computer Vision, IEEE Transactions

on Pattern Analysis and Machine Intelligence, and Pattern Recognition. This is

explained by the importance that is given to the origins of the methods and algorithms

used in the research publications. Focusing only on civil engineering related journals,

Automation in Construction presents the higher number of citations, followed by the

Journal of Computing in Civil Engineering and Advance Engineering Informatics. In

a nutshell, Automation in Construction seems to be established as the main voice in

the field.

The limitations in this body of knowledge become apparent, however, when an-

alyzed for content. As previously presented and further analyzed in Section A.4,

publication keywords are representative of the core content of the publications in the

field. In general, the keyword co-occurrence map (A.3) shows weak links and detached

keywords reflecting how scattered the knowledge is within the field. The most relevant

applications of computer vision within construction activities, namely resource and
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safety monitoring, are on opposite sides of the network with minimal interconnections.

Furthermore, the document co-citation mapping generated provides more insight and

confirms the poor connection between some topics within the reviewed field, where, for

example, a single publication is the only existing link between cluster 0 and cluster 12

(see Figure A.11). This sharp compartmentalization, with little to no cross-fertilization

between the researched areas, limits the impact that the previous research could have

had in such an interdisciplinary field and its corresponding industry. While some

sub-fields within this field of research can be identified, the impact and interference

between sub-fields is almost negligible. Similarly, the co-authorship map explicitly

shows that most of the researchers in the field work in isolation; though some small

but relevant research circuits can be found led by I. Brilakis and H. Li. It is worth

mentioning that researchers in collaborative circuits, as small as they are, populate

the authorship of the most cited documents in the field (Table A.6) and are authors of

some important research documents associated with citation bursts, thus exhibiting

once more the importance and relevance of collaboration in research.

A.5.2 Future Trends

Although the knowledge seems to focus on all major themes in construction research,

such as operational and management issues, safety and resource optimization, inspec-

tion and monitoring of construction sites, and resource and activity tracking, rising

topics within the field and potential collaborations between research clusters can be

identified. This section proposes to extend the current agenda in the research field of

computer vision in construction to include the following topics.

Smart construction

In recent years, the terms Industry 4.0 or smart manufacturing have been introduced to

describe the trend towards digitization, automation of processes, and increasing use of

information and communications technology (ICT). In this context, the term Industry

4.0 comprises a variety of technologies to enable the development of a digital and

automated environment, as well as the digitization of the value chain. The expected

outcome is to bring improvements in product quality and a decrease in time-to-market

and costs by improving enterprise performance. The impact of Industry 4.0 has already
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been analyzed from the supply chain management perspective and its implications

with respect to the digitization of the construction industry have been examined.

Researchers aiming to develop smart construction sites will require systems that delve

with data related to workers and resources alike, as well as generated as-is models.

With real-time data provided by visual systems, a digital framework for a safe, efficient,

and connected construction site can be developed.

In cyber-physical processes, computer vision plays a very significant role as a data

generation and acquisition system, which is one of the key components in Industry

4.0. Targeting the integration of the current visual sensors, among others, into an

internet of things (IoT) network and enabling a new level of connectivity between the

construction site and other stakeholders should be a target for researchers in the near

future. As a paradigm of smart construction sites, computer vision algorithms would

provide real-time feedback to assess construction site status from all the perspectives

mentioned in Section A.4 in a general framework. Recently, an initial framework to

automate digital twinning, a digital replica of the real-world asset, was developed for

reinforced concrete bridges from 3D labeled point clusters. The proposed method

showed better results than manual inspection of large structural components, but

complex geometries are still a challenge. However, once these challenges are overcome,

the entire digital twinning process can be streamlined, and the cost-benefit ratio of

such techniques will be improved.

Furthermore, as computer vision systems are added to construction projects, the

cost to store all the obtained data will become a challenge. Many industries, including

the construction management sector, have developed ontology models to efficiently

manage the knowledge acquired by their systems. With newer visual systems in

place, current ontology models will need to be extended to include the knowledge

obtained. A few publications in the use of computer vision for manufacturing of

construction products have already been published, targeting the knowledge modeling

of manufacturing and quality information.

In summary, computer vision has an important role to play in the future research

of construction as the digital era pushes industries towards digitization and smart

construction based on Industry 4.0 principles.
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Quality Inspection for Construction Products

Computer vision is a real-time quality control technique that has been widely adopted

by several industries. The quality of construction components and the performance

of the infrastructure have always been criticized, both in regards to life expectancy

and maintenance requirements of the materials used. Although great efforts have

been made in past decades to promote quality within the construction industry, some

quality issues still remain. In residential housing, 68% of new homeowners claimed

that rework was needed in their homes at handover according to a 2011 survey in

New Zealand. The amount of rework needed to rectify issues is a critical area for

improvement.

Recent works can be found on the inspection of defects, quality control, and

assurance of construction products, and product-centric computer vision algorithms in

construction-related activities. For example, a vision system was developed recently

to automatically perform quality inspection of slate slabs based on construction

requirements. Other developments include automatic quality inspection for masonry

activities using photogrammetric point clouds, image processing to provide real-

time quality inspection of external wall insulation, a vision-based real-time quality

monitoring system for extruded products, and a visual framework for pre-inspection of

steel frames. However, given the enormous amount of different materials, shapes, and

products, in general, used in construction projects, research on this area has barely

started. As quality inspection and conformance assessment is a rule-based problem,

analogies between frameworks could exist between safety regulations and quality

specifications. Currently, automated check of compliance with safety regulations using

computer vision is a widely studied field, and a similar approach could be used for

quality inspection to deal with varying specifications and codes.

Off-site Construction

Cluster labeling is able to highlight how current research is heavily biased towards

the practicalities of computer vision applications in on-site construction. However,

in the last decade, there has been steady and growing interest in the adoption and

development of off-site construction (OSC) within the architecture, engineering and
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construction (AEC) industry. In fact, the research contributions associated with OSC

have spiked in the last 5 years. However, computer vision applications for OSC remain

under-researched. A quick search for publications related to computer vision and OSC,

following previous works to determine the keywords that define OSC correctly, yielded

two results. Recent work was published to ascertain the quality of steel framing in an

OSC environment. Considering the expansion of OSC in the construction industry,

researchers will need to address this gap to participate actively in the development

and improvement of the field and, thus, benefit the modular and off-site construction

knowledge domain.

A.6 Conclusions

Computer vision has started to transform certain key aspects of the construction

industry and has attracted increasing attention from researchers and practitioners. A

scientometric study was proposed to explore the status and global trends of computer

vision research related to construction applications. Although a number of literature

reviews have already been undertaken, this paper presents the first scientometric study

of the field as a whole, in which 1158 journal articles and conference proceedings

were examined using a ‘science mapping’ approach. The key scholars and institutions,

the state of the research field, and relevant topics on computer vision research for

construction were identified. Principally, the reviewed topic emphasizes traditional

on-site construction issues that historically have been addressed by manual means, such

as health and safety monitoring, resources and activity tracking, and surveying and

inspection of construction sites. Moreover, the research work in this area is conducted

largely in isolation; this is especially true when considered in terms of research themes

and researchers. The message to be drawn out is that future work would do well to

promote collaboration between researchers in order to enhance dialogue, debate, and

cross-fermentation of ideas and initiatives. Certainly, the enhanced understanding

that certain practices, mainly the use of computer vision for product-centric inspection

and defect detection, are neglected in the research may cultivate industry support

for deeper and more carefully focused research into the field, which in turn may aid

research planning and funding efforts by policy makers and practitioners. Moreover,
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this study provides valuable information to off-site construction researchers about the

current lack of initiative within the field with respect to research related to computer

vision.

Despite the contributions offered in this study, the findings are to be considered

in light of certain limitations. As discussed, the findings are circumscribed by the

initial selection of keywords and thus limit the coverage of the current literature. In

addition, given the objectives of the study, delving into the aspects of ”why” and

”how” research has been conducted so far remains beyond the scope of this paper.

Therefore, while several problems within the research domain are identified, pursuing

these problems to their source and providing solutions are study areas that may be

addressed in future research. Additionally, conducting similar studies at future crucial

junctures will continue to address the evolving nature of the researched field and help

monitor its development.
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Figure A.7: List of the relevant countries with citation bursts in the 1999–2019 time
period.
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Figure A.8: Network of author co-citations for publications related to computer vision
application in construction.
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Figure A.9: List of the top authors with relevant co-citation bursts.
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Figure A.10: Network of journal co-citations related to computer vision application in
construction.
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Figure A.11: Network of co-citations with abstract clustering.
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