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Abstract

In this thesis, we propose a general framework to model animal group forma-

tion and movement based on how individuals receive information from neigh-

bors, and the amount of information received. In particular, we construct and

analyze a new one-dimensional nonlocal hyperbolic model for group formation,

with application to self-organizing collectives of animals in homogeneous en-

vironments. The model investigates the effects of nonlocal social interactions

(that is, attraction towards neighbors that are far away, repulsion from those

that are near by, and alignment with neighbors at intermediate distances) on

the emergence of group patterns. These nonlocal interactions can influence

individuals’ speed and turning behavior.

We demonstrate that this one-dimensional model can generate a wide range

of spatial and spatiotemporal patterns. In particular, depending on the as-

sumptions regarding how individuals receive information, the model displays

at least 21 different patterns. Some of these patterns are classical, such as sta-

tionary pulses, traveling pulses, or traveling trains. However, the majority of

these patterns are novel, such as the patterns we call zigzag pulses and feath-

ers. To investigate these patterns, we use numerical and analytical techniques

such as bifurcation theory, linear and nonlinear analysis.

This modeling framework presents a unitary approach for animal group

formation and movement. All the patterns obtained with other parabolic and

hyperbolic models existent in the literature can also be obtained with the

model we propose in this thesis. In addition to this, we obtain a variety of

new and interesting patterns.
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Chapter 1

Introduction

1.1 Problem description

Pattern formation is one of the most studied aspects of animal communities

(see for example [1, 4, 24, 35, 58, 71, 79, 89, 94, 96, 108, 121, 126] and the

references therein). Some of the most remarkable examples of patterns ob-

served in animal groups are related to the behavior displayed by these groups

[94]. Stationary aggregations formed by resting animals, migrating herds of

ungulates, zigzagging flocks of birds, and milling schools of fish are only a few

of the patterns.

There are two types of factors that influence group formation: (a) external

factors that, for example, give rise to chemotaxis, phototaxis or thermotaxis

[54], and (b) internal factors, which are social interactions that act among indi-

viduals [7, 13, 58, 114, 133]. These second factors lead to self-organized animal

aggregations. In this research, we will focus only on this type of aggregations

since it represents the main interest of complexity theory [94].

There are different possible reasons for which animals self-organize into ag-

gregations. For example, being in a group might increase chances of survival

[45, 130]. Also, it increases the possibility of finding a mate, as well as the

foraging efficiency [94, 102]. However, there are still some fundamental issues

regarding these aggregations that have to be addressed. For example, it is

still unknown what factors decide the shape of an aggregation, and how is this

shape maintained over a certain period of time [21]. Also, what triggers the

transitions between different patterns? Another important aspect that has to
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be considered when trying to understand these aggregations is animal commu-

nication. Empirical results suggest that there might be a relation between how

individuals receive information from conspecifics, the quantity of information,

and the social interactions between group members [34]. However, this aspect

has not been investigated yet. It should be mentioned that understanding

these aggregations has not only theoretical significance, but also more practi-

cal applications. For example, understanding schooling behavior can be useful

in establishing fishing strategies [93, 105], while understanding desert locust

aggregations can be useful in managing and controlling this species’ outbreaks

[114, 125].

The main question that scientists are trying to answer in regard to these

animal aggregations is how do we integrate what we know at individual level

to understand the group level behaviors [94, 96, 120, 132]. Mathematical

models can shed a light on this aspect, by identifying which individual-level

mechanisms lead to the spatial and spatiotemporal group patterns observed

in animal communities. These models fall into two frameworks: Lagrangian

models (individual-based models), and Eulerian models (continuum models).

A summary of some of these models is shown in Tables 1.1 and 1.2. In the

following two sections, we will give an overview of some of the Lagrangian and

Eulerian models that had a great impact on the direction of the research in

this area. In Section 1.2, we will review some of the Lagrangian models that

have been most successful at obtaining patterns similar to those observed in

nature. In Section 1.3, we will focus on the Eulerian models and discuss the

parabolic versus hyperbolic modeling approaches, and the resulting spatial

and spatiotemporal patterns. In Section 1.4, we will discuss an important

aspect of animal ecology that is only indirectly considered by both Lagrangian

and Eulerian models, namely animal communication, and its relation to group

behavior. In Section 1.5, we give an outline of this thesis.
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Author Lagrangian models Dimension
attr., align. attr., rep.,
rep. align.

[1]Adioui, et. al.,2003
√

(L) 2D
[5]Aoki,1982

√
2D

[7]Beecham,Farnsworth,1999
√

2D
[11]Borner et. al.,2006

√
1D

[17]Buhl et. al.,2006
√

1D
[24]Couzin,2002

√
3D

[37]Gazi,Passino,2002
√

3D;nD,n ≥ 1
[42]Gueron et. al.,1996

√
2D

[46]Helbing,Molnar,1995
√

2D
[50]Hemelrijk,Kunz,2004

√
2D

[49]Hemelrijk,Hildenbrandt,2008
√

3D
[51]Hensor et. al.,2008

√
2D

[58]Huth,Wissel,1994
√

2D
[61]Inada,2001

√
2D

[64]Kunz,Hemelrijk,2003
√

2D
[81]Mogilner et. al.,2003

√
1D;2D

[89]Niwa,1994
√

3D
[107]Reuter,Breckling,1994

√
2D

[108]Reynolds,1987
√

3D
[128]Vicsek et. al.,1995

√
2D

[132]Viscido et. al.,2005
√

2D

Table 1.1: A summary of some of the Lagrangian mathematical models existent in the literature.
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Author Eulerian models Dimension
rep. attr., align. attr., rep., dependent

rep. align.
[1]Adioui, et. al.,2003

√
(L) 2D

[15]Bressloff,2004
√

(N) 2D
[20]Burger et. al.,2007

√
(N) nD, n ≥ 1

[30]Eftimie et. al.,2007
√

(N) 1D
[29]Eftimie et. al.,2007

√
(N) 1D

[35]Flierl et. al.,1999
√

(L) 2D
[41]Grunbaum, Okubo,1994

√
(L) 1D,2D

[39]Grunbaum,1994
√

(L)
√

(L) 2D
[40]Grunbaum,1998

√
(L) 2D

[59]Igoshin et. al.,2001
√

(L) 1D,2D
[60]Igoshin et. al.,2004

√
(L) 2D

[28]Edelstein-Keshet, et. al.,1998
√

(L) 1D
[69]Lutscher,2002

√
(L) 1D

[70]Lutscher,2003
√

(L) 1D
[71]Lutscher,Stevens,2002

√
(L) 1D

[76]Mogilner, Edelstein-Keshet,1995
√

(N) 2D
[77]Mogilner, Edelstein-Keshet,1996

√
(N) 1D

[80]Mogilner, Edelstein-Keshet,1999
√

(N) 1D
[83]Morale et. al.,2004

√
(N) nD,n ≥ 1

[101]Pfistner,Alt,1990
√

(N) 2D
[99]Pfistner,1990

√
(N) 1D

[100]Pfistner,1995
√

(N) 1D
[122]Topaz, Bertozzi,2004

√
(N) 2D

[123]Topaz et. al.,2006
√

(N) 1D,2D

Table 1.2: A summary of the Eulerian mathematical models existent in the literature. L represents local model, while N
represents nonlocal model.
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1.2 Lagrangian models for group formation and
movement

In the Lagrangian approach, a set of decision rules that govern the movements

of individuals is given (see for example [5, 24, 42, 50, 58, 81, 95, 107, 108, 126]

and the references therein). Most of these models are in two or three spatial

dimensions, and include three types of social interactions that can alter the

position of an individual: attraction towards individuals that are far away,

repulsion from those that are in close vicinity, and a tendency to align with

those neighbors that are at intermediate distances [5, 24, 50, 58, 107, 108].

In two spatial dimension, the ranges over which the interactions have effect

are concentric (as in [50, 58, 95]), while in three dimensions they are spherical

[24]. Note that the social interactions are introduced in an additive manner

(see the reviews in [41] and [95]). We should stress here that the majority of the

Lagrangian models assume that individuals’ behavior is influenced by all three

social interactions (see for example [5, 24, 49, 50, 58, 107]). These interactions

can affect the direction of movement of an individual, as well as its speed.

However, most of the Lagrangian models existent in the literature concentrate

only on the direction changes, and assume that the speed is constant or random

(as in [24, 50, 58, 126, 129, 133] and the review in [96]).

To understand the effect of the social interactions, the models investigate

the structure of the groups (e.g., geometry of the group, degree of polarization,

etc.) through numerical simulations. In this context, Aoki [5] and Niwa [89]

showed that the group structure and movement depend on the attractive and

alignment interactions. In particular, both the attraction and alignment are

necessary for polarized groups to form and maintain their cohesion.

In general, the simulations with constant (or random) speed and density-

dependent directional changes show very close agreement between the group

structures obtained numerically and those observed in nature [24, 58, 108,

126]. Couzin et. al.[24], for example, described four types of groups: swarm,

torus, dynamic parallel groups and highly parallel groups. This particular

paper changed the direction of the research in the Lagrangian approach, by

5



investigating the transition between these types of group structures as the size

of the interaction zones is varied. Moreover, this model shows that depending

on the values of the parameters, there is a hysteresis phenomenon between

different group structures.

A very few models assume that also the speed is influenced by the inter-

actions with neighbors [17, 42, 49, 108]. For example, Gueron et. al. [42]

considered that individuals have an intrinsic speed which is complemented

by a second component determined by the social interactions with neighbors.

Thus, individuals accelerate or decelerate in response to neighbors that are

within the repulsion or attraction ranges. The results show that this variable

speed can account for the splitting and merging behavior observed in different

animal groups (e.g., herds and fish schools). Moreover, group splitting can

also occur if the size of the attraction range is too small.

Buhl et. al [17] derived a one-dimensional model which assumes that in-

dividuals turn to align with their neighbors, and adapt their velocity to the

average velocity of these neighbors. The model shows a phase transition be-

tween disordered movement and highly aligned collective movement. This

transition, which is caused by an increase in the total group density, was also

confirmed empirically through experiments using locust nymphs.

Similar phase transitions are obtained with traffic models [112], and models

for pedestrian-movement [46], where cars/pedestrians accelerate and deceler-

ate due to interactions with other cars/pedestrians. The models exhibits phase

transitions between free flow and traffic jams, and again, these phase transi-

tions are determined by the density of vehicles/pedestrians.

Due to analytical difficulties in studying Lagrangian models, as well as some

computational limitations, this approach is applied mostly to small groups of

organisms. The formation and movement of large, dense groups of organisms is

described by Eulerian models. We will discuss some of these models in the next

section. Before this, we should mention that there are models that try to bridge

the gap between Lagrangian and Eulerian approach (see for example [35, 39,

92, 83]). These models start with a Lagrangian formulation of the interactions

between individuals, and in the limit, under reasonable approximations, an

6



Eulerian model is obtained. Note that the resulting continuum models are

usually described by parabolic equations [1, 10, 20, 35, 39, 83, 92]

1.3 Eulerian models for group formation and
movement

Eulerian models are used to study the dynamics of the density of individ-

uals, which is typically described by partial differential equations. Usually,

these models are applied to large populations of insects, fish, bacteria, and so

forth. Eulerian models for animal aggregations can be divided into two cat-

egories: parabolic and hyperbolic equations. These models also incorporate

social interactions, namely attraction towards neighbors, repulsion from them,

and alignment with others. However, compared to the Lagrangian models

which usually incorporate all three interactions, the Eulerian models gener-

ally focus on attractive and repulsive interactions alone [77, 80, 123], or on

alignment interactions alone [71, 99]. There are very few models that incor-

porate all three social interactions [15, 60, 79], and these models are usually

two dimensional.For both parabolic and hyperbolic models, the social inter-

actions between group members can be local, when immediate neighbors or

local effects of the environment are important [27, 69, 71], or nonlocal, when

distant individuals or nonlocal effects of the environment play an important

role [15, 77, 80, 122, 123].

In the following, we will overview some of these models and the spatial and

spatiotemporal patterns that they generate.

1.3.1 Parabolic models

The great majority of the Eulerian models for animal group formation and

movement are described by parabolic equations (advection-diffusion equations,

or advection-diffusion-reaction equation) [3, 15, 35, 59, 60, 75, 76, 77, 78, 80,

82, 91, 122, 123]. These models can be derived using a correlated random walk

approach [67, 124], or using Fick’s law [41, 59]. They usually take the form

ft = ∇(D∇f) −∇(V f) + G(f), (1.1)

7



where f(x, t) is the population density, D is the diffusion coefficient, and V

is the advection coefficient. Some models also include a reaction term G(f),

which describes the contributions of population dynamics to the changes in

density [75]. In the following, we will assume that organisms’ growth happens

on a much larger time scale compared to the formation of groups and their

movement, and therefore we will ignore the reaction term.

One of the most intriguing questions that scientists have tried to answer

in regard to some moving animal groups (such as swarms of locusts), is the

long-time existence of these groups. Note that these groups also have well

defined boundaries, with the population density dropping to zero at the edges.

Mathematically, this can be described by traveling pulses. To solve this trav-

eling pulse problem, researchers focused first on local mathematical models

that incorporated biologically realistic assumptions [28]. When these models

failed to exhibit traveling pulses, scientists directed their attention to nonlocal

models [80, 122, 123]. In one dimension, these models are described by the

following equations

ft = (Dfx − V (f)f)x , (1.2)

where f denotes the swarm density, D is the diffusion coefficient, and V (f) is

the nonlocal, density-dependent velocity. The earliest integral formulations of

the density flux define

V (f) = K ∗ f =

∫

D

K(x − x′)f(x′, t)dx′, (1.3)

where K is an antisymmetric convolution kernel [41]. Mogilner and Edelstein-

Keshet [80] extended this model to include also a local and a nonlocal group

drift. Also, the convolution kernel is considered to have two components: an

attractive and a repulsive component. The velocity is therefore described by

the following equation

V (f) = aef + Aa(Ka ∗ f) − Arf(Kr ∗ f), (1.4)

with the odd kernels

Kr(x) = −
x

2r3
e−x2/2r2

, Ka(x) = −
x

2a3
e−x2/2a2

. (1.5)
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Here a and r are the spatial ranges for the attractive and repulsive interactions,

Ar and Aa are the coefficients of these interactions, while Kr and Ka are

the kernels modeling the interactions. The term ae gives the effect of local

interactions on the velocity. Both analytical and numerical results have shown

that when diffusion is density-independent, it is not possible to obtain a true

traveling pulse solution, even if the groups can persist for a long time. The

authors then introduced an even, nonlocal drift term:

V (f) = aef + (Aa − Arf)(K0 ∗ f) + Ae(Ke ∗ f), (1.6)

where K0 is an odd nonlocal kernel, while Ke is an even nonlocal drift kernel.

The numerical results show that in this case very few individuals get lost,

and thus the swarm is preserving quite well its initial shape. It should be

mentioned here that their results with different types of kernels suggest that

the symmetry of the kernel, rather than the particular form of the kernel, is

important for the final pattern.

Mogilner and Edelstein-Keshet [80] also studied analytically the effect of

density-dependent diffusion. In this case, the results show that it is possible

to obtain a true traveling pulse solution.

Considering these models as a starting point, different authors have in-

vestigated other types of spatial and spatiotemporal patterns that arise in

nonlocal models with attractive and repulsive fluxes. For example, Topaz

and Bertozzi [122] derived a two-dimensional model that shows vortices and

stationary clumps, depending on the type of interaction kernels used (i.e.,

kernels for rotational motion, and kernels for motion towards and away from

concentration density). Topaz et. al. [123] derived a one-dimensional model

that incorporates density-dependent diffusion, and only nonlocal attraction

(i.e., the repulsion is considered to arise as an anti-crowding mechanism). The

model shows stationary pulses that have well defined boundaries. Moreover,

the authors extended the model to higher dimensions, and the results were

similar.

A different type of social aggregation that captivated scientists is observed

in Myxobacteria colonies. Under starvation conditions, these organisms ag-

9



gregate and form stationary aggregations called ”fruiting bodies”. However,

during the initial phase of aggregation, they display what is called a rippling

behavior: right-moving and left-moving waves that appear to pass through

each other. In an attempt to understand this behavior, researchers focused

on local mathematical models that can describe the interaction between cells

moving in opposite directions, and that meet head-on [59, 60]. Note that the

interaction depends only on the contact between cells, with no signals that dif-

fuse. The resulting parabolic equations show remarkable agreement with the

experiments: waves that pass through each other, giving rise to the rippling

behavior. Note that the models proposed in [59, 60] are described in terms

of diffusion, convection, and also an alignment component due to reversals

caused by interactions with cells moving in opposite direction.

There are a very few other parabolic models that also incorporate align-

ment, two such examples being proposed by [77] and [15]. Both models are

two dimensional and show three types of spatial patterns: alignment without

aggregation, aggregation without alignment, and patches of aligned objects.

1.3.2 Hyperbolic models

Since the parabolic models show the unrealistic effect of infinite propagation

speed, a few authors focused on hyperbolic models to study animal movement

(e.g.,[44, 69, 70, 71, 99, 100, 101]). In all these cases, the basic equations are

derived using the classical Goldstein-Kac theory for correlated random walks

(see [38, 62]). To exemplify this theory, let us divide the domain into intervals

of length ∆x, and consider the time step ∆t. Define p+(x, t) (p−(x, t)) to be

the probability that a right-moving (left-moving) individual is at (x, t), and

λ+ (λ−) be the probability of turning if the individual is moving right (left).

Then, the probability that a right-moving individual is positioned at x at the

next time step t + ∆t is given by

p+(x, t + ∆t) = p+(x − ∆x, t)(1 − λ+∆t) + p−(x + ∆x, t)λ−∆t. (1.7)
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Similarly, the probability that a left-moving individual is positioned at x at

the next time step t + ∆t is given by

p−(x, t + ∆t) = p−(x + ∆x, t)(1 − λ−∆t) + p+(x − ∆x, t)λ+∆t. (1.8)

Expanding these two equations in Taylor series about (x, t) leads to

p+
t (x, t) +

∆x

∆t
p+

x (x, t) = −λ+p+(x, t) + λ−p−(x, t) + ∆xλ+p+
x + ∆xλ−p−x ,

p−t (x, t) −
∆x

∆t
p−x (x, t) = λ+p+(x, t) − λ−p−(x, t) − ∆xλ+p+

x − ∆xλ−p−x .(1.9)

For ∆x → 0, ∆t → 0, such that ∆x
∆t → γ, we obtain

p+
t (x, t) + (γp+(x, t))x = −λ+p+(x, t) + λ−p−(x, t),

p−t (x, t) − (γp−(x, t))x = λ+p+(x, t) − λ−p−(x, t). (1.10)

Note that now p+(x, t) and p−(x, t) are interpreted as probability density func-

tions for the right-moving and left-moving individuals [135]. These individuals

move at a constant speed γ, and change direction randomly according to Pois-

son processes with rates λ± (i.e., the probability not to change direction within

the time interval [0, t) decreases as e−λ±t).

Almost all the hyperbolic models for animal group formation assume that

individuals turn in response to interactions with other neighbors, that is, the

turning rates λ± are density-dependent. The majority of these models consider

local interactions with neighbors [69, 70, 71]. Only a few hyperbolic models

assume that the turning rates are influenced by distant neighbors [99, 100].

For example, Lutscher and Stevens [71] investigated the rippling behavior

in Myxobacteria colonies using turning rates that have a random (µ) and a

directed component (µ±): λ± = µ + µ±(u+, u−). The authors discuss analyt-

ical and numerical results obtained with different types of turning functions

µ±. When the turning rates are equal and depend only on the left-moving

neighbors (i.e., µ±(u+, u−) = f(u−)), the results show ripples and stationary

aggregations.

Modeling the behavior of the same Myxobacteria swarms, Pfistner [99]

started with equations (1.10) and assumed that cells turn only as a result of the
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interactions with distant cells. More precisely, cells turn to align themselves

with other neighbors within a perception interval [−R, R]. The turning rates

are defined by the following nonlocal terms:

λ+ = Λ

(
∫ R

−R

(α(s)u+(x + s, t) + β(s)u−(x + s, t))ds

)

λ− = Λ

(
∫ R

−R

(α(s)u−(x − s, t) + β(s)u+(x − s, t))ds

)

, (1.11)

where α and β are weight functions for the surrounding densities, and the

functional Λ is monotone increasing and positive. The results show stationary

swarms. Later, Pfistner modified this model to incorporate moving boundaries

for the swarm edges [100]. The dynamics of the swarm is thus analyzed numer-

ically through the retraction and expansion of the boundaries. An extension

of this model in two spatial dimensions can be found in [101].

The models we mentioned above assume that the speed is constant, while

the turning rates are determined by the alignment interactions with local or

nonlocal neighbors. However, it is known that some organisms also adapt

their speed to their neighbors’ speed [57]. Such a model, which assumes that

individuals adapt both their speed and direction to that of their neighbors, was

introduced in [70]. The equations for the movement of individuals are similar

to (1.10), where λ+ = λ− = λ(u+, u−), and the speeds for the right-moving and

the left-moving individuals are described by γ+ and γ−, respectively. These

speeds are assumed to depend not only on the local density of individuals,

but also on the gradient of this density. In particular, the speeds satisfy the

following elliptic equations

βγ+
xx = γ+ − E(u+, u+

x ),

βγ−
xx = γ− − E(u−,−u−

x ). (1.12)

Numerical simulations were performed only for right-moving individuals, with

the speed satisfying a parabolic equation of the form τγ+
t = βγ+

xx − γ +

E(u+, u+
x ). The results show traveling pulses.

To summarize the results of this section, the one-dimensional continuum

models that investigate animal aggregations fail to account for the multitude
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of complex patterns that one can observe in nature. Generally, the patterns

exhibited by these models are simple: local parabolic models do not support

traveling waves [27], but can give rise to ripples [60], while nonlocal parabolic

models can give rise to stationary pulses [123], or to traveling pulses, provided

that diffusion is density-dependent [80]. Hyperbolic models give rise to rip-

ples [71], aggregations [71],[100], and traveling pulses [70]. Considering that

one-dimensional models have not explained the complexity of the patterns ob-

served in biological systems, scientists have directed their attention towards

two-dimensional models. The results are more complex (e.g., ripples [60],

stationary aggregations [123], vortex-like groups [122], patches of aligned indi-

viduals [15, 77] ), but they still cannot account for the multitude of observed

patterns.

One possible reason for this failure is that the assumptions considered by

these models do not fully describe the social interactions between individuals

governing group formation. More precisely, these models consider that the so-

cial interactions depend only on the distances between individuals. However,

this assumption might not be sufficient since different species use different

signals and communication mechanisms. It is very likely that these mecha-

nisms influence the social interactions between individuals. We will discuss

this aspect in more detail in the next section.

1.4 Animal communication

The movement decisions made by small or large groups are based on the local

and global communication used by these animal groups [22]. In the litera-

ture, there is a lot of information regarding the communication mechanisms

involved at individual level (e.g., [32, 33, 113]). For example, Endler and Ba-

solo [33] discuss 9 different stages in the communication between a sender and

a receiver :

(1) the generation and the emission of the signal;

(2) signal transmission which is influenced by environmental properties;

(3) signal reception which is determined by the structure of the sense organs;
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(4) signal transduction;

(5) signal design and content;

(6) signal perception;

(7) classification of the perceived signals;

(8) extraction of critical information from the signal;

(9) the decision in response to the signal;

While there is much information regarding the individual-level communica-

tion, the group-level communication is less understood [22]. As mentioned in

[23], understanding the behavior of an individual in isolation, does not neces-

sarily mean that we understand the behavior of that individual within a group,

because of the nonlinear interactions with neighbors. However, the only way

to probe animal communication is to focus on the changes in the behavior of

an individual upon the reception of signals from conspecifics [73]. In particu-

lar, the reception of a signal can cause movement towards or away from the

signaler’s position [73]. For this reason, in this thesis we will focus only on the

signal perception (i.e., stage (6) in the classification by Endler and Basolo),

and the movement decisions made in response to these signals (stage (9)).

Animal communication uses different signals, such as visual, acoustic, chem-

ical or tactile signals, and combinations of these signals [32, 73, 97]. Both

emission and reception of signals can be unidirectional or omnidirectional,

depending on the signal. Moreover, the reception of signals is affected by en-

vironmental conditions and the receiver’s physiological limitations, and there-

fore different species make use of different signals and reception mechanisms

[31, 32]. However, since we focus not only on signal reception but also on the

decisions made in response to these signals, which in turn, will generate signals

received by other neighbors, we prefer to use the term “communication mech-

anisms” instead of “reception mechanisms”. Moreover, throughout this thesis

we assume that through communication, individuals gain knowledge about the

number, position, and direction of movement of their neighbors.

In regard to these communication signals, we should also mention that dif-

ferent signals act on different ranges. For example, depending on the species,

visual signals can be used for close-range communication, while chemical and
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sound signals can be used for medium or long-range communication [73]. More-

over, same type of signals (such as sound signals, for example), can sometimes

be used on short ranges to increase animal spacing, while other times they

can be used on long ranges to decrease spacing and promote aggregation [111].

Therefore, there is a very close relation between animal behavior, and the

signals and the communication mechanisms these animals use.

We should stress here that different species use different communication

mechanisms. As an example, it is known that some species of birds use direc-

tional sound signals (which require the emitter to face the receiver) to coordi-

nate the flock movements, and omnidirectional signals (with emitters moving

in any direction) to attract mates or to repel intruders [134]. For Mormon

crickets, the movement seems to be influenced by the signals received from

conspecifics approaching from behind, and from those positioned ahead and

moving away [115]. The movement direction of some fish is more frequently

influenced by the movement direction of the neighbors positioned ahead of

them than those at their side [127]. Therefore, one can expect to see differ-

ent species displaying different behaviors and group patterns, corresponding

to these different communication mechanisms. Unfortunately, the literature

(either mathematical or biological) is lacking a framework to characterize the

relationship between animal communication and the resulting group patterns.

A few individual-based models (e.g., [24, 49, 58, 61]) take into account that

individuals may not receive information from behind because of a so-called

“blind spot”. However, as we mentioned, there are many other ways individ-

uals can receive information from conspecifics.

The purpose of this thesis is therefore to find a way to incorporate into a

mathematical model how individuals receive information from conspecifics and

the amount of information received. In particular, we use the directionality

of the signals, as well as the ranges on which signals have effect, to define the

social interactions. Then, we can use this model to investigate the resulting

group patterns. Moreover, analytical analysis of the patterns can help us

understand the effect of the communication mechanisms on the group-level

patterns. We will discuss these aspects in more detail in the next section,
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when we give an outline of the thesis.

1.5 Thesis outline

As shown in the previous sections, different mathematical models use different

assumptions and in consequence, display different spatial and spatiotemporal

patterns. In particular, the patterns obtained with Eulerian models are quite

simple, the models failing to account for the multitude of patterns observed

in nature. Some of the questions that arise in regard to these results are: Can

we find a unitary framework to explain all these different patterns? Moreover,

can animal communication provide such a framework? Can this framework be

tailored to specific animal species that use different signal reception mecha-

nisms? Can an Eulerian model display patterns similar to those obtained with

Lagrangian models (such as the splitting-merging behavior observed in some

animal groups)? Can we obtain different, more interesting group patterns?

What analytical tools can we use to better understand the effect of the social

interactions on the resulting group patterns?

To answer these questions, we will derive a mathematical model for group

formation and movement that takes into account how individuals receive in-

formation from conspecifics, and how this information influences the social

interactions among them. In particular, we will start with the hyperbolic

model proposed by Pfistner [99], and modify it to incorporate some of the

ideas found in Lagrangian models (such as directional changes as a result of

all three social interactions), as well as different communication mechanisms.

The outline of this thesis is as follows. In Chapter 2, we carefully describe

the new nonlocal hyperbolic model we will use to investigate the formation and

movement of animal groups. The model assumes density-dependent turning

rates and constant speed. Also in this chapter we give a derivation of this

model using correlated random walk. This provides the link between the

behavior of an individual as determined by its interactions with its neighbors,

and the behavior of the entire group. In Chapter 3, we investigate some

theoretical aspects regarding this hyperbolic system. In particular, we discuss

16



the existence of mild solutions, and the reduction of this hyperbolic models to

some well known nonlocal parabolic models for group formation. In Chapter

4, we perform a linear analysis of the model, to investigate the stability of

the homogeneous steady states and the possibility of having heterogeneous

patterns. In Chapter 5, we use these linear results to investigate numerically

the spatial and spatiotemporal patterns displayed by this hyperbolic model.

Then, in Chapter 6, we use weakly nonlinear theory to analyze the mechanisms

that give rise to some of these patterns. Also, we study the effect of the social

interactions on the structure of these patterns. In Chapter 7, we extend the

model introduced in Chapter 2 to account for attractive and repulsive speeds.

In Chapter 8, we conclude with a discussion of the results. In particular,

we draw a parallel between our analytical and numerical results, and some

empirical results obtained different animal groups. Also, we discuss some open

problems and future work.
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Chapter 2

Model derivation in one
dimension

2.1 Introduction

In this chapter1, we derive a new nonlocal, one-dimensional hyperbolic model

used to describe the formation and movement of animal groups. As seen in

Chapter 1, the one-dimensional continuum models for animal aggregations

that exist in the literature, fail to account for the multitude of complex pat-

terns one can observe in nature. These models consider that the social in-

teractions depend only on the distances between individuals. However, this

assumption might not be sufficient. In support of this statement, we pro-

pose a nonlocal mathematical model that focuses on distance-dependent and

direction-dependent social interactions, facilitated by animal communication.

The basic equations for this model are derived using the classical Goldstein-

Kac theory for correlated random walks (see equations (1.10)) [62],[99]. These

equations describe the evolution of right-moving and left-moving individuals

1A version of this chapter has been published.

R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, (2007) Modeling group formation and

activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-

1566.

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Complex spatial group patterns result from

different communication mechanisms, Proc. Natl. Acad. Sci., 104, 6974-6979.
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who change direction randomly according to a Poisson process. As seen in the

Introduction, some previous nonlocal hyperbolic models [99] assumed biased

turning, that is, individuals turn only to align with their neighbors. However,

not all animal movements are in response to their conspecifics. It is very likely

that there is a balance between random and directed motion, depending on the

group behavior. In this thesis we will combine these two modeling approaches,

and assume that individuals not only turn randomly, but also they turn in

response to other neighbors. Moreover, based on biological observations, we

propose to incorporate two other social interactions that affect these turning

rates: repulsion and attraction. We therefore assume that individuals turn to

approach other neighbors that are far away, turn to avoid collision with those

neighbors that are nearby, or turn to align with others. To incorporate these

social interactions, we focus on communication. We use the directionality

of the communication signals, as well as the ranges on which signals have

effect, to define the social interactions. In particular, we formulate simple

rules by which the perceived signals are translated into movement behavior.

Moreover, as mentioned in the Introduction, throughout this thesis we assume

that through communication, individuals gain knowledge about the number,

position, and direction of movement of their neighbors.

In section 2.2, we carefully construct the model for a specific case of animal

communication. We focused on this particular case to show how can we incor-

porate both omnidirectional and directional signals. More precisely, we assume

that both attraction and repulsion involve omnidirectional signals, while align-

ment involves only unidirectional signals. For this particular case, we describe

the nonlocal attractive, repulsive and alignment interactions, and show how

can we incorporate them into the turning rates. To complete the derivation

of the model, we discuss different possible boundary conditions required if the

model is defined on a bounded domain.

In Section 2.3, we expand our study to focus on different animal commu-

nication signals. In this context, we discuss five hypothetical sub-models for

signal reception. These sub-models are examples that illustrate how environ-

mental and physiological constraints can be represented with this modeling
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paradigm.

In Section 2.4, we show how this nonlocal model can be derived using the

correlated random walk framework. We will propose a new way to incorpo-

rate different communication mechanisms into a Lagrangian model. As the

space step and the time step used to discretize the domain approach zero, this

Lagrangian model converges to the Eulerian model previously discussed.

2.2 Model derivation

We start with the following system of conservation laws that describes the

evolution of densities of right-moving (u+(x, t)) and left-moving (u−(x, t)) in-

dividuals (see [99],[100]):

u+
t (x, t) + (γu+(x, t))x = −λ+[u+, u−]u+(x, t) + λ−[u+, u−]u−(x, t),

u−
t (x, t) − (γu−(x, t))x = λ+[u+, u−]u+(x, t) − λ−[u+, u−]u−(x, t),

u±(x, 0) = u±
0 (x), x ∈ R. (2.1)

Here, γ is their constant speed, and λ+ (λ−) is the turning rate for the in-

dividuals that were initially moving to the right (left) and then turn to the

left (right). We assume that these turning rates depend on the density of

left-moving and right-moving neighbors.

A similar model has been proposed in [99] to describe the alignment be-

havior in Myxobacteria colonies. There, the authors assumed that the turn-

ing rates depend only on the alignment interaction. We will modify their

assumption to include also the dependence on the attractive and repulsive in-

teractions. In the following, we will carefully describe this dependence. In

Subsection 2.2.1 we will discuss the random and directed components of the

turning rates. Then, in Subsection 2.2.2, we will show how to incorporate sig-

nal reception into the turning rates. To complete the definition of the model,

in Subsection 2.2.3 we discuss possible boundary conditions.
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2.2.1 Turning rates

To define the turning rates, we start with the hypothesis made by many La-

grangian models, namely that each individual interacts with its neighbors via

three social forces, attraction, repulsion, and alignment [24, 58, 95, 108]. We

further assume that each of these forces has a different interaction range (Fig-

ure 2.1(a)). More specifically, we assume that an individual changes direction

to approach other individuals if they are within its attraction range, or to

avoid collision if they are within its repulsion range. Moreover, an individual

turns to match its orientation to its neighbors’ direction of movement (i.e.,

to align) if they are within its alignment range. Since we derive a 1D model,

srep.

attraction

0

rep. align. attr.

(a) (b)

a
alignment

r s sal 

Figure 2.1: Illustration of the repulsion (sr), alignment (sal), and attraction (sa) zones:

(a) 2D case; (b) 1D case. It is biologically realistic to have sr < sal < sa.

the concentric circles that usually describe the interaction ranges in 2D La-

grangian models (Figure 2.1(a)) are replaced by intervals on the real number

line (Figure 2.1(b)).

While model (2.1) is formally identical with the model introduced in [99],[100],

the biological processes considered in the turning functions differ considerably.

Pfistner [100] only modeled alignment and used turning functions that were

positive, unbounded and increasing functions of the signals perceived from

neighbors within a certain perception distance. We, on the other hand, as-

sume that all three social interactions influence the turning rates, so that λ±

models attraction, repulsion, and alignment as a response of an individual to

the signals perceived from its neighbors. We assume that stronger interaction
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forces lead to higher turning rates (to avoid collision, for example, in case of

high repulsion), and consider the turning rates to be bounded, positive, mono-

tone functions of the perceived signals y±, which are emitted by individuals

moving to the right (u+) and to the left (u−) :

λ±(y±[u+, u−]) = λ1 + λ2f
(

y±[u+, u−]
)

= (λ1 + λ2f(0)) + λ2

(

f(y±[u+, u−]) − f(0)
)

, (2.2)

where λ1 + λ2f(0) is a base-line random turning rate, and λ2 (f(y±) − f(0))

is a bias turning rate. We choose f to be a dimensionless, bounded and in-

creasing function of the dimensionless functionals y±[u+, u−] which incorporate

nonlocal interaction terms:

y±[u+, u−] = y±
r [u+, u−] − y±

a [u+, u−] + y±
al[u

+, u−]. (2.3)

Here, y±
r , y±

al and y±
a denote the repulsion, alignment, and attraction terms

that influence the likelihood of turning to the left (+) or to the right (−). We

will specify the dependence of these terms on u+ and u− in Section 2.2.2. The

three interactions are introduced in an additive manner, with repulsive and

attractive terms having opposite effects. Throughout this chapter, as well as

Chapters 4, 5, and 6, we use the following turning function (Figure 2.2):

f
(

y±[u+, u−]
)

= 0.5 + 0.5 tanh
(

y±[u+, u−] − y0

)

, (2.4)

where the constant y0 is chosen such that f(0) ( 1 and the random turning

dominates the movement. In this case, the base-line turning can be approxi-

mated by λ1, and the change in turning rate due to interactions by λ2f(y±).

2.2.2 Modeling repulsive, attractive, and alignment in-

teractions

In order to describe the dependence of the social interactions, y±
r , y±

al and y±
a ,

on u+ and u−, we look at the way organisms perceive and integrate informa-

tion. We assume that both the direction and the spatial range of the signals
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Figure 2.2: A turning function that satisfies our assumptions: increasing, positive and

bounded. The constant y0 shifts the graph to the right such that for y± = 0, there is only

a small random turning.

define the social interactions. We introduce four parameters that measure the

information received from the right or left, p±
r and p±l , respectively. The su-

perscript (±) refers to the direction in which the sender of the information

moves, and the subscript (r, l) refers to the direction from which the signal is

received (right, left) (Figure 2.3). Later, for the sake of simplicity, the analysis

will concentrate on special cases.

By way of example, suppose that the individual positioned at (x, t) moves

to the right (+) (Figure 2.3(a)), and that it receives information from other

individuals located to its right, at x+ s, and located to its left, at x− s. Also,

suppose that this individual perceives a stronger signal from the right than

from the left, that is, (p+
r u+ + p−r u−)(x + s) > (p−l u− + p+

l u+)(x − s). If the

signal comes from within the repulsion zone, then it will turn to avoid those

neighbors that are to its right, regardless of their orientation. If the signal

comes from within the attraction zone, it will continue moving in the same

direction.

For simplicity, we choose p+
r = p−r = pr and p+

l = p−l = pl. If we sum the

information from all neighbors (s ∈ (0,∞)), we can translate the diagrams

from Figure 2.3 into the following nonlocal terms that describe the social
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Figure 2.3: Description of possible turning functions. Cases (a)-(b) depict a switch in

movement direction from right to left, while cases (a’)-(b’) depict the switch in movement

direction from left to right. Cases (a), (a’) describe attraction and repulsion, while (b)

and (b’) describe alignment. Here u+ (u−) represents the density of individuals moving

right (left), and λ+ (λ−) is the probability of turning to the left (right), when initially the

individual at x was moving to the right (left). The other parameters, p±
l and p±r , represent

signals received from the left (subscript l) and the right (subscript r), from other neighbors

that are moving to the left (superscript ”–”) or to the right (superscript ”+”).

interactions:

y+
r,a[u

+, u−] = qr,a

∫ ∞

0

Kr,a(s) (pru(x + s) − plu(x − s)) ds, (2.5)

y−
r,a[u

+, u−] = qr,a

∫ ∞

0

Kr,a(s) (plu(x − s) − pru(x + s)) ds, (2.6)

y+
al[u

+, u−] = qal

∫ ∞

0

Kal(s)
(

pru
−(x + s) − plu

+(x − s)
)

ds, (2.7)

y−
al[u

+, u−] = qal

∫ ∞

0

Kal(s)
(

plu
+(x − s) − pru

−(x + s)
)

ds, (2.8)

where Kj(s), j ∈ {a, r, al} are interaction kernels, with support inside the in-

terval [0,∞), that describe how signals from different distances are weighed.

The parameters qa, qr, and qal represent the magnitudes of the attraction,

repulsion, and alignment forces, respectively. For attraction and repulsion,

the total density of organisms at a specific position in space is important:

u(x± s, t) = u+(x± s, t)+u−(x± s, t), s > 0. We assume here that as long as
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the individual located at x moves towards neighbors that are in the repulsion

zone, it will turn to avoid collision, no matter what the movement direction of

those neighbors is. Similarly, the individual is attracted by neighbors within

its attraction zone, regardless of their orientation. For alignment, on the other

hand, we assume that an individual responds only to neighbors moving to-

wards it. For example, for y+
al (equation (2.7)), we assume that a right-moving

individual at point x will turn around only if pru−(x + s) is large relative to

plu+(x − s).

In summary, the right-hand sides of equations (2.5) – (2.8) describe how

the individual at (x, t) weighs information received from its right and left

neighbors. The only difference between the repulsion term (y±
r [u+, u−]) and

the attraction term (y±
a [u+, u−]) is in the range over which the two kernels

Kr(s) and Ka(s) have influence (Figure 2.4). Recall that since repulsion and

attraction have opposite effects, these two terms enter the turning function

(equation (2.3)) with different signs.

s0

repulsionrepulsion
alignment
attraction

alignment
attraction

(a) (b)

0s sr al s a s r sal sa
s

Figure 2.4: Examples of kernels used for social interactions. These kernels describe how

signals from different distances are weighed. (a) translated Gaussian kernels for attraction,

repulsion and alignment, described by equations (2.9); (b) odd kernels for attraction and

repulsion, and a translated Gaussian kernel for alignment (equations (2.11) and (2.9)). Both

types of kernels are defined on (−∞,∞). The interaction ranges on which these kernels have

an effect, satisfy sr < sal < sa. The sr, sal and sa represent half the length of the interaction

ranges depicted in Figure 2.1.

A possible choice for the interaction kernels is translated Gaussian kernels
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(Figure 2.4(a)):

Kj(s) =
1

√

2πm2
j

exp
(

−(s − sj)
2/(2m2

j )
)

, j = r, a, al, s ∈ [0,∞), (2.9)

with mj = sj/8 (j = r, al, a) representing the width of the interaction kernels,

and si (j = r, al, a) representing half the length of the interaction ranges, for

the repulsion, alignment, and attraction terms, respectively. For a biologically

realistic case, we consider sr < sal < sa. The constants mj are chosen such

that the support of more than 98% of the mass of the kernels is inside the

interval [0,∞): mj = sj/8, j ∈ {r, al, a}. In this case, the integrals defined on

[0,∞) can be approximated by integrals on (−∞,∞).

To simplify the model equations for the purpose of analysis, we choose

pl = pr (the case pl *= pr will be discussed in Chapters 3 and 5). Moreover,

these parameters will be incorporated into the magnitudes of repulsion qr,

alignment qal, and attraction qa. Then, if we extend Kr and Ka to odd kernels

on the whole real line, equations (2.5) and (2.6) can be rewritten as

y±
r,a[u

+, u−] = qr,a

∫ ∞

−∞
Kr,a(s)u(x ± s)ds. (2.10)

A second possible choice, similar to [80], is to define the attraction and

repulsion kernels by (Figure 2.4(b))

Kj(s) =
s

2s2
j

exp
(

−s2/(2s2
j)
)

, j = a, r, s ∈ (−∞,∞). (2.11)

The two model formulations (kernels on the half-line, and odd extensions on

the full line) are equivalent. Equation (2.10) together with Figure 2.4(b) show

that if a right- or left-moving individual perceives many neighbors ahead of

it, the likelihood of turning will increase in case of repulsion, or decrease in

case of attraction. Conversely, the perception of many neighbors behind that

individual will lead to a decrease in the turning rates in case of repulsion, or

to an increase in these rates in case of attraction. Since an individual needs to

distinguish movement directions and not just densities of its neighbors (i.e.,

u+, u− vs. u ) in order to align, we do not use odd alignment kernels.
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Altogether, equations (2.3)-(2.11) describe aspects of how an organism at

(x, t) makes the decision to turn: it turns to avoid collision if the majority of

the stimuli received originate within the repulsion zone, or to approach other

individuals if the majority of the stimuli received originate within the attrac-

tion zone. If the majority of the stimuli originate within the alignment zone,

the individual will turn to align itself according to the prevailing movement

direction of the neighbors moving towards it.

The full model has 14 parameters, summarized in Table 2.1. While nondi-

mensionalizing allows us to reduce the number of parameters to 10, the analysis

is no more difficult when dealing with the dimensional form, which we will do

in the following. Moreover, the original parameters are biologically motivated.

It is easier to interpret the results of the model (Chapters 4, 5, and 8) by

talking about the model using these parameters in their original biological

context.

2.2.3 Boundary conditions

Throughout most of the chapters, we study system (2.1) on a finite domain

of length L, that is x ∈ [0, L]. To complete the model, we therefore have to

define the boundary conditions. Note that since the system is hyperbolic, we

have to follow the characteristics of the system when imposing these boundary

conditions. For this reason, u+ is prescribed only at x = 0, while u− is

prescribed only at x = L [44]. In the following, we discuss five types of

possible boundary conditions.

• Periodic boundary conditions

These boundary conditions model the movement on a circular domain.

Individuals leave the domain at one end, and enter it again at the other

end. The conditions are described by the following equations:

u+(0, t) = u+(L, t), u−(L, t) = u−(0, t). (2.12)

Throughout this thesis, we use only periodic boundary conditions to al-

low for comparison with other models. For example, Igoshin et. al. [60]

27



Parameter Description Units Fixed value

γ Speed S/T no: γ ∈ (0.015, 0.1)

λ1 Turning rate. It approximates the 1/T no: λ1 ∈ (0.2, 1.33)

baseline turning rate: λ1 + λ2f(0)

λ2 Turning rate. It approximates the 1/T no: λ2 ∈ (0.9, 6)

bias turning rate: λ2 (f(y±) − f(0))

y0 Shift of the turning function 1 (nondim.) yes: y0 = 2

qa Magnitude of attraction S/N no: qa ∈ (0, 15)

qal Magnitude of alignment S/N no: qal ∈ (0, 2)

qr Magnitude of repulsion S/N no: qr ∈ (0, 2)

sa Attraction range S yes: sa = 1

sal Alignment range S yes: sal = 0.5

sr Repulsion range S yes: sr = 0.25

ma Width of attraction kernel S yes: ma = 1/8

mal Width of alignment kernel S yes: mal = 0.5/8

mr Width of repulsion kernel S yes: mr = 0.25/8

A Total population size N yes: A = 2

Table 2.1: A summary of the model parameters. The two parameters for

the strength of information received from left/right, namely pl/pr, are already

incorporated into the magnitudes of attraction qa, alignment qal, and repul-

sion qr. The last column specifies if the parameter will be kept fixed during

the analysis of the model (Chapters 4 and 6), and the numerical simulations

(Chapter 5). Note: T represents unit time, S is unit space, and N is number

of individuals.
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obtained rippling behavior on a periodic domain, and compared their

results with the experimentally observed patterns. Further, Buhl et. al.

[17] used a one-dimensional individual-based model with periodic bound-

ary conditions to study the transition from disordered to ordered move-

ment. Their results show remarkable agreement between the theoretical

results and the biological observations. Also, as we will see in Chapter

5, the periodic boundary conditions allow us to observe traveling pulses,

a pattern which could not be observed with a nonlocal parabolic model

with constant diffusion [80]. Note that a bounded domain with periodic

boundary conditions can be treated as an infinite domain.

• Neumannn boundary conditions

The Neumann boundary conditions are used to model the reflection of

the boundaries. Individuals that arrive at the boundary will turn around

immediately and move in the opposite direction:

u−(L, t) = u+(L, t), u+(0, t) = u−(0, t). (2.13)

These boundary conditions can be used when the animal group is trapped

inside a closed domain (e.g., a swarm of insects inside a closed room).

• Dirichlet boundary conditions

This type of boundary conditions assumes that the individuals that ar-

rive at the boundaries are absorbed, and no other individuals emerge

here:

u+(0, t) = 0, u−(L, t) = 0. (2.14)

These conditions can be used if the habitat outside the domain of interest

is so hostile that animals reaching the boundaries perish immediately

[124].

• Open boundary conditions

This type of boundary conditions are used in traffic equations because

they are more realistic than the periodic boundary conditions [47]. The

conditions assume that there is a fixed rate at which particles enter the
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system through one boundary. The particles leave the system as soon as

they reach the other boundary.

u+(0, t) = c1, u−(L, t) = c2. (2.15)

Note that, to keep the total density conserved, the rate of entering the

domain has to be equal to the rate of leaving it, that is, c1 = c2.

These boundary conditions work for local interactions, but may pose

a problem for the nonlocal terms. If we inject individuals at one end

of the boundary, we implicitly assume that there are other individuals

outside the domain. The movement directions of an individual inside

the domain but close to the boundary will therefore be influenced by the

moving directions of those neighbors that have left the domain, but are

still within its repulsion/alignment/attraction range. Hence, to describe

the behavior of those individuals inside the domain, we have to know

the behavior of their neighbors that are outside the domain.

On the other hand, if we assume that there are no other individuals

outside the domain, we can follow the evolution of the groups inside

the domain only for a short period of time, until these groups reach

the boundary. An alternative to open boundary conditions is to apply

periodic boundary conditions on a domain that is much larger than the

domain of interest [47].

• Moving boundary conditions

The previous four types of boundary conditions are commonly employed

by most of the mathematical models for traffic, and group formation

and movement [29], [30], [47], [60], [71], [123]. There are, however, some

one-dimensional hyperbolic models that use a different type of boundary

conditions, namely moving boundary conditions [43], [65], [100]. In this

case, the formation and movement of animal groups is studied through

the expansion and retraction of the boundaries. However, this requires

extra equations for the moving boundaries. It is beyond the scope of this

research to study this case. Nevertheless, it will be an interesting case
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for further study.
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Figure 2.5: Five sub-models for signal reception. A reference right-moving individual is

positioned at x. Its right-moving (u+) and left-moving (u−) neighbors are positioned at

x + s and x − s. M1: for attraction and repulsion, the information is received from all

neighbors, while for alignment the information is received only from those moving towards

the reference individual. M2: information is received from all neighbors (for attraction,

repulsion and alignment). M3: information received only from ahead (with respect to

the moving direction of the reference individual). M4: information received from ahead

and behind, but only from those neighbors moving towards the reference individual. M5:

information received only from ahead, and only from those neighbors moving towards the

reference individual.

2.3 Alternative sub-models based on different

communication mechanisms

In the previous section, we have discussed a particular case of signal recep-

tion. More precisely, we considered omnidirectional signals for attractive and
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repulsive interactions, and directional signals for alignment interactions. How-

ever, there is evidence suggesting that not all animals receive and respond in

a similar manner to the signals coming from their neighbors. For example, we

mentioned in Introduction that for some species (e.g., the Mormon crickets)

the movement is likely influenced by signals received from behind, while for

other species (e.g., fish) the movement is influenced by signals received from

ahead.

In the following, we focus on some different hypothetical sub-models for

signal reception. In the previous three subsections, we chose the attractive

and repulsive interactions to depend on information received from all neigh-

bors, no matter whether they are moving away from, or towards an individual.

Alignment, on the other hand, depends only on the information received from

those neighbors moving towards an individual. The question that arises im-

mediately is: what happens if we consider different reception mechanisms? A

few individual-based models (e.g., [24, 58]) assume that individuals may not

receive information from behind because of a so-called “blind spot”. We go fur-

ther and derive five hypothetical communication sub-models, to describe how

an individual can receive information from its neighbors. These sub-models

are examples that illustrate how environmental and physiological constraints

can be represented with our modeling paradigm.

The five sub-models (M1-M5) are described in Figure 2.5. We focus here

on a reference right-moving individual that is positioned at x, whereas its

neighbors are potentially positioned at x + s (ahead), and at x − s (behind).

The sub-models are defined as follows:

• M1: the attractive and repulsive interactions depend on the stimuli re-

ceived from all neighbors, whereas the alignment depends only on the

stimuli received from those neighbors moving towards the reference in-

dividual (this case was studied in the previous three subsections);

• M2: all three social interactions depend on the stimuli received from all

neighbors;

• M3: the social interactions depend only on the information received from
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Model Attraction and Repulsion Alignment

M1 y±
r,a = qr,a

∫∞
0 Kr,a(s)(u(x ± s) − u(x ∓ s))ds y±

al = qal

∫∞
0 Kal(s)(u∓(x ± s) − u±(x ∓ s))ds

M2 y±
r,a = qr,a

∫∞
0 Kr,a(s)(u(x ± s) − u(x ∓ s))ds y±

al = qal

∫∞
0 Kal(s)(u∓(x ± s) + u∓(x ∓ s)−

u±(x ± s) − u±(x ∓ s))ds

M3 y±
r,a = qr,a

∫∞
0 Kr,a(s)(u(x ± s))ds y±

al = qal

∫∞
0 Kal(s)(u∓(x ± s) − u±(x ± s))ds

M4 y±
r,a = qr,a

∫∞
0 Kr,a(s)(u∓(x ± s) − u±(x ∓ s))ds y±

al = qal

∫∞
0 Kal(s)(u∓(x ± s) − u±(x ∓ s))ds

M5 y±
r,a = qr,a

∫∞
0 Kr,a(s)u∓(x ± s)ds y±

al = qal

∫∞
0 Kal(s)u∓(x ± s)ds

Table 2.2: The nonlocal terms used to describe the social interactions. The terms y+
r,a and y+

al are the translation of the diagrams

from Figure 2.5 into mathematical equations, when we sum up the information received from all neighbors (s ∈ [0,∞)). The

terms y−
r,a and y−

al are obtained through a similar process, when we consider a left-moving reference individual. We define qa,

qr, and qal to be the strength of the attraction, repulsion, and alignment forces. Also, we define u to be the total density

u = u+ + u−.
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ahead (with respect to the moving direction);

• M4: the social interactions depend on the stimuli received from ahead

and behind, only from those neighbors moving towards the reference

individual;

• M5: the social interactions depend on stimuli received only from ahead,

and only from neighbors moving towards the reference individual.

We emphasize here that for attractive and repulsive interactions, these five

communication mechanisms convey only the position of the neighbors. For

alignment, on the other hand, they convey also the direction of movement of

those neighbors located within the alignment range.

Note that model M2 is the immediate generalization of model M1. For

example, M2 can describe the situation where individuals receive information

from all their neighbors via omnidirectional sound or chemical signals. Model

M3 can describe the situation where individuals use only unidirectional visual

signals. They can see neighbors in front of them, but they cannot see anyone

behind them. Model M4 can describe the situation where individuals use

unidirectional sound signals. In this case, individuals only hear the sounds

produced by those neighbors moving towards them. They do not receive any

information from neighbors moving away from them. Model M5 is a particular

case of model M3. Here, the turning rates depend only on the information

received from neighbors moving in the opposite direction. This assumption

can describe the communication mechanisms in colonies of Myxobacteria [59],

[71].

Table 2.2 describes the nonlocal terms obtained by summing up the infor-

mation from all neighbors (s ∈ (0,∞)), as depicted in the diagrams of Figure

2.5. As in Section 2.2, the total density at (x, t) is u(x, t) = u+(x, t)+u−(x, t).

The interaction kernels are described by equations (2.9).

We emphasize again that these five sub-models are not the only possible

ones. The aim here is not to describe all the possible ways of receiving informa-

tion from neighbors. Rather, it is to give the reader a flavor of the possibilities

offered by such a modeling procedure.

35



2.4 Model derivation from correlated random

walk

In Section 2.2, we derived the model by starting with a known hyperbolic

model, and changing the nonlocal turning rates to incorporate different social

interactions and communication mechanisms. In the following, we show how

the nonlocal system (2.1) can be derived from a correlated random walk.

Let us discretize space into small intervals of length ∆x, and time into

intervals of length ∆t. For a population of size N , the probability of a randomly

chosen right or left-moving individual to be found on the interval [x−∆x/2, x+

∆x/2) at time t, is defined as [41, 67],

p±(x, t) =
1

N

∫ x+∆x/2

x−∆x/2

u±(s, t)ds −→
∆xu±(x, t)

N
when ∆x → 0. (2.16)

The classical Goldstein-Kac theory for correlated random walk (equations

(1.9)) assumes that the probability of changing direction has only a random

component. We, on the other hand, will assume that the probability to change

direction has two components: a random component and a directed compo-

nent. Therefore, the probability of a right-moving (left-moving) individual to

turn left (right) is given by

λ± = probability of turning randomly +

probability of turning left/right in response to distant neighbors

=
λ1

2
+

λ2

2
F±. (2.17)

Here, F± are nondimensional, increasing, uniformly continuous functions of

the difference between the right-moving and left-moving neighbors that are

located far away. We choose 0 < λ1, λ2, F± < 1. To make things simpler, we

will assume for now that individuals turn only to align with neighbors located

within the alignment range. We will discuss the attractive and repulsive inter-

actions at the end of this section. Moreover, we consider the communication

mechanism introduced in Section 2.2, that is, the mechanism used for model

M1. For this, we assume that the probability that an individual changes di-

rection will increase if there are more distant neighbors in front of it, who
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Figure 2.6: The movement of (a) a right-moving individual, and (b) a left-

moving individual. The decision to change direction depends on the previous

position at time t: the individual was either at x−∆x, or at x + ∆x. Also, it

depends on the movement direction of those neighbors positioned at x −∆xj

and x+∆xj, for some j , 1. In particular, an individual positioned at x+∆x

and moving left (case (a)), can turn randomly, or can turn if there are more

neighbors in front of it, at x−∆xj, moving in the opposite direction. A similar

explanation holds for (b).
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are moving in the opposite direction, than neighbors behind it, moving in the

same direction (see Figure 2.6). The probability will decrease if there are more

distant neighbors behind it, who are moving in the same direction. Hence, F±

will be defined in terms of the difference between right-moving and left-moving

neighbors that are within the alignment range.

Before giving the expression for F±, we will make one more assumption.

In particular, we will assume that all other individuals have the same probabil-

ities p±(x, t), independent of the location of the right-moving or left-moving

individual chosen previously (see equations (2.16)). Hence, if the chosen indi-

vidual is at point x, then the expected number of individuals at distance j∆x,

that are moving right or left, is Np±(x + j∆x, t). Under these assumptions,

the probability of turning in response to distant neighbors is described by

F± = F

(

±N
∞
∑

j=−∞

Kal(j∆x)
(

p−(x + j∆x, t) − p+(x − j∆x, t)
)

)

, (2.18)

where F is a uniform continuous function of the difference between the left-

moving and right-moving neighbors positioned within the alignment range.

The kernels Kal are described by equations (2.9). Substituting (2.17) and

(2.18) into equations (1.9), leads to

p+
t +

∆x

∆t
p+

x = −p+

(

λ1

2
+

λ2

2
F

(

N
∞
∑

j=−∞

Kal(j∆x)(p−(x + j∆x, t) − p+(x − j∆x, t))

))

+ p−
(

λ1

2
+

λ2

2
F

(

−N
∞
∑

j=−∞

Kal(j∆x)(p−(x + j∆x, t) − p+(x − j∆x, t))

))

+ O(∆x) terms

p−t −
∆x

∆t
p−x = p+

(

λ1

2
+

λ2

2
F

(

N
∞
∑

j=−∞

Kal(j∆x)(p−(x + j∆x, t) − p+(x − j∆x, t))

))

− p−
(

λ1

2
+

λ2

2
F

(

−N
∞
∑

j=−∞

Kal(j∆x)(p−(x + j∆x, t) − p+(x − j∆x, t))

))

− O(∆x) terms. (2.19)

Now let ∆x, ∆t → 0, such that ∆x
∆t → γ. Since we assumed that F is uni-

formly continuous, we can interchange the limit and the function. Multiplying
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equations (2.19) by N , and using equation (2.16), we obtain

u+
t + γu+

x = −u+

(

λ1

2
+

λ2

2
F

(
∫ ∞

−∞
Kal(s)(u

−(x + s, t) − u+(x − s, t))

))

+ u−
(

λ1

2
+

λ2

2
F

(

−
∫ ∞

∞
Kal(s)(u

−(x + s, t) − u+(x − s, t))

))

u−
t − γu−

x = u+

(

λ1

2
+

λ2

2
F

(
∫ ∞

−∞
Kal(s)(u

−(x + s, t) − u+(x − s, t))

))

− u−
(

λ1

2
+

λ2

2
F

(

−
∫ ∞

−∞
Kal(s)(u

−(x + s, t) − u+(x − s, t))

))

.

(2.20)

Here, u± are probability density functions.

In a similar way, one can incorporate attraction and repulsion. The result-

ing turning rates will be defined as

λ± =
λ1

2
+

λ2

2
F

(

±N
∞
∑

j=−∞

Kr(j∆x)(p(x + j∆x, t) − p(x − j∆x, t))

∓ N
∞
∑

j=−∞

Ka(j∆x)(p(x + j∆x, t) − p(x − j∆x, t))

± N
∞
∑

j=−∞

Kal(j∆x)(p−(x + j∆x, t) − p+(x − j∆x, t)),

)

(2.21)

with p = p+ +p−. This definition of the turning rates corresponds to the com-

munication mechanism proposed for model M1 (and discussed in Section 2.2).

However, one can consider different mechanisms corresponding to models M2-

M5 (see Figure 2.5), and incorporate them into this random-walk approach.

Therefore, this modeling framework presents a straightforward way to in-

corporate animal communication into a Lagrangian model. Moreover, there

is a clear connection between this Lagrangian model and the corresponding

limiting Eulerian model. This allows us to tie the resulting group properties to

different individual behaviors. However, we have not investigated the behavior

of this random walk model. This is a subject for future research (see Chapter

8).
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2.5 Discussion

In this chapter, we have discussed a one-dimensional nonlocal hyperbolic model

that we will use to study the formation and movement of animal groups. The

starting point was a model proposed by Pfistner and Alt to study the align-

ment behavior in Myxobacteria colonies [99]. We modified this model by

changing the nonlocal turning rates to incorporate the assumptions made by

many Lagrangian models, namely that individual behavior is determined by

three social interactions: attraction, repulsion, and alignment. The way these

social interactions were incorporated depended on some assumptions that we

made about animal communication. In particular, we assumed that an or-

ganism changes its movement direction only after weighing the information

received from left and right. Moreover, the received information depends on

the type of communication signals used by those organisms. The social inter-

actions were thus defined in terms of communication and distances, and not

just distance alone.

The resulting model presents a straightforward way to incorporate differ-

ent animal communication mechanisms. We can easily incorporate information

that comes from all neighbors, as well as information that comes only from

particular neighbors. To demonstrate this, we then derived five hypothetical

sub-models for signal reception. These sub-models can account for different

communication mechanisms used by different animal communities. It should

be specified that these sub-models do not describe all the possible ways of

receiving information. The aim here was to give a glimpse of the many possi-

bilities offered by such a modeling procedure. The model can be easily adapted

to account for other types of reception mechanisms. For example, one may

assume that individuals can see all their neighbors that are in front of them,

and can hear only those neighbors that are behind and moving towards them.

In Chapter 4, we will show that these sub-models exhibit a wide variety of

previously undescribed spatial and spatiotemporal patterns.

Moreover, in this chapter we proposed a new approach to derive the non-

local hyperbolic model using the correlated random walk framework. This
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approach allows us to incorporate animal communication into a stochastic

individual-based model. Also, it provides the connection between the La-

grangian and Eulerian frameworks. In general, the advantage of Lagrangian

models is that they can be related to experimental data. For small time and

space steps, the Lagrangian model we propose here converges to the Eulerian

model introduced in Section 2.2. Therefore, using this modeling approach,

one can try to go further, and relate the Eulerian model with experimental

data. Finally, this approach allows us to connect the resulting group patterns

to individual behaviors.

In the following chapter, we begin to analytically investigate the hyper-

bolic model discussed here. In particular, we will focus on the existence of

solutions for this hyperbolic system, and the reduction of this model to a well

known nonlocal parabolic model used to study animal group formation (equa-

tions (1.2)). In Chapter 4, we will start investigating analytically the patterns

displayed by this hyperbolic model. In particular, we will analyze the local

stability of the spatially homogeneous steady states. In Chapter 5, we will

investigate numerically the spatial and spatiotemporal patterns displayed by

system (2.1). We conclude the analysis of this model in Chapter 6, when we

will perform a nonlocal analysis of these patterns.
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Chapter 3

Theoretical aspects regarding
the hyperbolic model

3.1 Introduction

In this chapter, we focus on some analytical results for the new hyperbolic

system we introduced in Chapter 2. In Section 3.2, we present an existence

result for the mild solutions of system (2.1). This result will be particularly

useful in Chapter 6, when we analyze analytically some of the spatial and

spatiotemporal patterns of this system. In the mathematical literature, there

are results regarding the existence and uniqueness of solutions for hyperbolic

systems of the form (2.1), with local turning rates defined as λ+(u+, u−) =

λ−(u−, u+) (see [69]), or λ± = λ±(S, Sx), where S is an external stimulus that

depends on u± (see [55]). In contrast to these cases, the model introduced in

the previous chapter has nonlocal turning rates. This requires a more careful

discussion of the nonlocal terms.

In Section 3.3, the focus will be on the reduction of the hyperbolic model

(2.1) to a well known nonlocal parabolic equation introduced by Mogilner and

Edelstein-Keshet [80]. The parabolic equation described in [80] has generated a

lot of interest in these past years (see equations (1.2)-(1.4) and the correspond-

ing discussion in Chapter 1). The reason for this is that the model displays

biologically realistic groups, with well defined boundaries and a constant in-

terior density. We will show that when the speed becomes very large and the
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individuals turn very frequently, system (2.1) formally reduces to an equation

similar to (1.2)-(1.4). In this case, the convective movement is the result of the

difference between the right and the left turning rates. However, compared

to (1.2)-(1.4), our limiting equation does not have a local drift term. We will

argue that because of this, the groups do not move. We will address this issue

by showing that an asymmetry in the signal reception (caused, for example,

by some environmental factors) induces a small nonlocal drift in the velocity

of the limiting parabolic equation. This drift can lead to group movement.

We conclude with a discussion in Section 3.4.

3.2 Existence of mild solutions

In this section, we discuss the existence of solutions of system (2.1). For this,

we assume that the turning rates (equations (2.2)) are continuously differen-

tiable functions of the signals y±. This implies that they are uniform contin-

uous functions of y±. Note that this assumption was necessary in Chapter 2,

when we derived system (2.1) using a correlated random walk approach. More-

over, the turning function we will consider in the following chapters, namely

the function defined by equations (2.2)-(2.4), satisfies this assumption. Also,

to make things easier, we assume that the nonlocal interactions are described

by equations (2.5), (2.7), and (2.8). The other cases can be dealt with in a

similar manner.

For this hyperbolic system, the characteristic equations are

dζ+

ds
= γ,

dζ−

ds
= −γ. (3.1)

Let ζ± = Ξ±(s; x, t) be the solution of this differential system, passing through

the point (x, t). If we set U±(s) = u(Ξ±(s; x, t), s), we can rewrite the hyper-

bolic system (2.1) as

dU+

dt
(s; x, t) = −λ+[U+(s), U−(s)]U+(s) + λ−[U+(s), U−(s)]U−(s),

dU−

dt
(s; x, t) = λ+[U+(s), U−(s)]U+(s) − λ−[U+(s), U−(s)]U−(s). (3.2)
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Integrating (3.2) along the characteristics gives

U+(ζ+) = U+(ζ0) +

∫ ζ+

ζ0

(

−λ+[U+, U−]U+ + λ+[U+, U−]U−) (y)dy,(3.3)

U−(ζ−) = U−(ζ0) +

∫ ζ−

ζ0

(

λ+[U+, U−]U+ − λ−[U+, U−]U−) (y)dy. (3.4)

Note that a pair of functions (u+(x, t), u−(x, t)) ∈ L∞ (R × [0, t0)) which

satisfies equations (3.3)-(3.4) is called a mild solution of system (2.1).

Theorem 3.2.1. Let us assume that the initial data is u±
0 ∈ L∞(R), the

turning rates are continuously differentiable as functions of the signals y±,

and the kernels Kj ∈ L1(R), j = a, r, al. Then there exists a unique mild

solution u± ∈ L∞ (R × [0, t0)) of system (2.1), for some t0 > 0. Moreover,

the solution exists on L∞ (R × [0,∞)), which implies global existence.

Proof: To prove this existence result, we define the operator G(U+, U−) =

(G1(U+, U−), G2(U+, U−)), where G1 and G2 are described by the two expres-

sions on the right hand side of equations (3.3), and (3.4), respectively. Then,

finding a unique mild solution of (2.1), reduces to finding a fixed point of the

map (U+, U−) .→ G(U+, U−).

Let us consider the Banach spaces X := L∞(R×[0, t0)) with norm ‖u‖X :=

sup ‖u(·, t)‖∞, and X̄ := L∞(R). On X×X we have the norm ‖(u, v)‖X×X :=

max(‖u‖X, ‖v‖X). We also define B = B(R, X) := {u ∈ X : ‖u(x, t)‖X ≤ R}.

Following the same steps as in [55, 69], for all ω ∈ X with ω±(0, ·) = u±
0 ∈

L∞(R), we consider the following Cauchy problem

u+
t + γu+

x = −λ+[ω+, ω−]ω+ + λ−[ω+, ω−]ω−,

u−
t − γu−

x = λ+[ω+, ω−]ω+ − λ−[ω+, ω−]ω−,

u±(0, x) = u±
0 (x). (3.5)

This problem can be solved along the characteristics (3.1), with respect to the

new variables ζ±. For this, we prove that the operator G(ω+, ω−) defined by

equations (3.3)–(3.4) is a contraction:
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1. G : XR ×XR .→ XR ×XR (where XR is a closed subset of Banach space

X)

2. For (ω+, ω−), (θ+, θ−) ∈ XR × XR:

‖G(ω+, ω−) − G(θ+, θ−)‖XR×XR
≤ ε‖(ω+, ω−) − (θ+, θ−)‖XR×XR

.

To prove that G maps a closed subset of a Banach space into itself, we only

have to assume that u±
0 is bounded in ‖.‖XR

by a constant M∗. We then choose

R ≥ M∗ + ε1, for some ε1 > 0. For (ω+, ω−) ∈ B, with ω±(0, ·) = U±
0 , we

have

‖G1(ω
+, ω−)‖X ≤ ‖U±

0 ‖X̄ +

∫ ζ+

ζ0

‖
(

−λ+[ω+, ω−]ω+ + λ−[ω+, ω−]ω−) (y, t)‖
X

dy

≤ M +
∣

∣ζ+ − ζ0

∣

∣

(

supBλ+[ω+, ω−]‖ω+‖X

+ supBλ−[ω+, ω−]‖ω−‖X

)

≤ M∗ + γt0R
(

supBλ+[ω+, ω−] + supBλ−[ω+, ω−]
)

.

In Chapter 2, we assumed that the turning rates λ± are bounded functionals.

Let us then define K = supBλ+(ω+, ω−) + supBλ−(ω+, ω−), and choose t0 ≤
ε1

γRK = T1. This way, we obtain the bound ‖G1(ω+, ω−)‖X ≤ M∗ + ε1 ≤ R. A

similar result holds for G2.

To prove the contraction condition, consider (ω+, ω−), (θ+, θ−) ∈ B, with

ω±(0, ·) = θ±(0, ·) = U±
0 . Then,

‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X = ‖
∫ ζ+

ζ0

(

λ+[θ+, θ−]θ+ − λ+[ω+, ω−]ω+

+λ−[ω+, ω−]ω− − λ−[θ+, θ−]θ−
)

(y, t)dy‖X

=
1

2
‖ −

∫ ζ+

ζ0

(

λ+[ω+, ω−] + λ+[θ+, θ−]
)

(ω+ − θ+)(y, t)dy

+

∫ ζ+

ζ0

(

λ−[ω+, ω−] + λ−[θ+, θ−]
)

(ω− − θ−)(y, t)dy

+

∫ ζ+

ζ0

(

λ+[θ+, θ−] − λ+[ω+, ω−]
)

(ω+ + θ+)(y, t)dy

−
∫ ζ+

ζ0

(

λ−[θ+, θ−] − λ−[ω+, ω−]
)

(ω− + θ−)(y, t)dy‖
X

. (3.6)
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We assumed that the turning rates are continuously differentiable functions of

the perceived signals y±. Therefore, they are locally Lipschitz continuous as

functions of y±. Let L± be the Lipschitz constants. Using equations (2.2), we

obtain

‖λ±[ω+, ω−] − λ±[θ+, θ−]‖X×X = ‖f(y±[ω+, ω−]) − f(y±[θ+, θ−])‖X×X

≤ L±(R)‖y±[ω+, ω−] − y±[θ+, θ−]‖X×X

= L±(R)‖
∫ ∞

0

(±qrKr(s) ∓ qaKa(s)) (ω(x± s, t) − θ(x ± s, t) − ω(x∓ s, t)

+ θ(x ∓ s, t)) ds ±
∫ ∞

0

qalKal(s)
(

ω−(x + s, t) − θ−(x + s, t) − ω+(x − s)

+ θ+(x − s)
)

ds‖X

≤ L1,2(R) max(‖ω+ − θ+‖X , ‖ω− − θ−‖X)

= L1,2(R)‖(ω+, ω−) − (θ+, θ−)‖X×X . (3.7)

Here L1,2(R) = L±(R)C(qr, qa, qal), where C(qr, qa, qal) is a constant that de-

pends on the magnitudes of the social interactions. Hence, λ± are locally

Lipschitz continuous as functions of ω±, θ±, with L1(R) and L2(R) the Lips-

chitz constants. We therefore have

‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X ≤
1

2

∣

∣ζ+ − ζ0

∣

∣ 2supBλ+(ω+, ω−)‖ω+ − θ+‖X

+
1

2

∣

∣ζ+ − ζ0

∣

∣ 2supBλ−(ω+, ω−)‖ω− − θ−‖X

+
1

2

∣

∣ζ+ − ζ0

∣

∣ ‖ω+ + θ+‖XL1(R) max(‖θ+ − ω+‖X , ‖θ− − ω−‖X)

+
1

2

∣

∣ζ+ − ζ0

∣

∣ ‖ω− + θ−‖XL2(R) max(‖θ+ − ω+‖X , ‖θ− − ω−‖X). (3.8)

Since ‖ω± + θ±‖X ≤ 2R, we obtain

‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X ≤ γt0 (K + L1(R)R

+ L2(R)R) ‖(ω+, ω−) − (θ+, θ−)‖X×X .(3.9)

Let us define T2 = ε2
γ(K+L1(R)R+L2(R)R) , for some ε2 > 0, and choose t0 ≤ T2.

We then obtain

‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X ≤ ε2‖(ω+, ω−) − (θ+, θ−)‖X×X .

46



A similar estimate holds for G2. Then, for t0 ≤ min(T1, T2) we have

‖G(ω+, ω−) − G(θ+, θ−)‖X×X ≤ ε‖(ω+, ω−) − (θ+, θ−)‖X×X , (3.10)

which implies that G is a contraction. Therefore, G has a unique fixed point

(u+, u−) ∈ X × X. Replacing ω± in (3.3)–(3.4) with U±, results in:

‖U+(ζ+)‖X ≤ ‖U+(ζ0)‖X̄ + ‖
∫ ζ+

ζ0

(

−λ+[U+, U−]U+ + λ−[U+, U−]U−) (y)dy‖
X

,

‖U−(ζ−)‖X ≤ ‖U−(ζ0)‖X̄ + ‖
∫ ζ−

ζ0

(

λ+[U+, U−]U+ − λ−[U+, U−]U−) (y)dy‖
X

,

and therefore

‖U+‖X + ‖U−‖X ≤ ‖u+
0 ‖X̄ + ‖u−

0 ‖X̄ + 2γt0 (K + (L1(R) + L2(R))R)
(

‖U+‖X+

+ ‖U−‖X

)

. (3.11)

Hence

‖U+‖X + ‖U−‖X ≤
1

1 − ε
(‖U+

0 ‖X̄ + ‖U−
0 ‖X̄), (3.12)

which implies that u± ∈ L∞(R × [0, t0 )).

To prove that the solution is defined for all time, it is enough to show that

‖U±‖X are bounded on any bounded interval [0, T ]:

d

ds
‖U±(s, ·)‖L∞(R) ≤ ‖

d

ds
U±(s, ·)‖

L∞(R)

≤ ‖λ+(U+, U−)U+‖L∞(R) + ‖λ−(U+, U−)U−‖L∞(R)

≤ M2(‖U+‖L∞(R) + ‖U−‖L∞(R)), (3.13)

where M2 is the upper bound for λ±. Therefore

‖U+‖L∞(R) + ‖U−‖L∞(R) ≤ (‖U+
0 ‖L∞(R) + ‖U−

0 ‖L∞(R))e
M2s. (3.14)

Since U±(t, ·) are bounded on any bounded interval [0, T ], the solution exists

for all time. ♣
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Note that since d
dt

∫∞
−∞ (u+(x, t) + u−(x, t))dx = 0 it follows that if the ini-

tial condition satisfies u±
0 ∈ L1(R), then u± ∈ L1(R).

Throughout chapters 4 to 6, we will investigate analytically and numeri-

cally some of the patterns displayed by system (2.1) when we consider a finite

domain with periodic boundary conditions. In this context, it can be proved

that if the initial data u±
0 (x) is periodic, then the mild solution u± is periodic.

Theorem 3.2.2. Consider the bounded domain Ω = [0, L]. If u±
0 ∈ L∞(Ω),

the turning rates are uniform continuous as functions of the signals y±, and

the kernels Kj ∈ L1(Ω), j = a, r, al, then there exists a unique mild solution

u± ∈ L∞ (Ω × [0,∞)) of system (2.1).

Proof: Let us extend the initial data u±
0 by periodicity to the entire real

line: ū±
0 (x) = u±

0 (x mod L), with x ∈ R. Using the previous theorem, there

exists a unique solution ū± ∈ L∞ (Ω × [0,∞)) of system (2.1). Let us now

define w±(x, t) = ū±(x + L, t). Then, w± is also a solution of system (2.1).

For example, for w+ we have

w+
t (x, t) + γw+

x (x, t) = ū+
t (x + L, t) + γū+

x (x + L, t)

= −ū+(x + L, t)λ+[ū+(x + L, t), ū−(x + L, t)]

+ ū−(x + L, t)λ−[ū+(x + L, t), ū−(x + L, t)].(3.15)

Note that, since

∫ ∞

0

Kj(s) (ū(x + L + s, t) − ū(x + L − s, t)) ds

=

∫ ∞

0

Kj(s) (w(x + s, t) − w(x − s, t)) ds, j = r, a, where w = w+ + w−,

and
∫ ∞

0

Kal(s)
(

ū−(x + L + s, t) − ū+(x + L − s, t)
)

ds

=

∫ ∞

0

Kal(s)
(

w−(x + s, t) − w+(x − s, t)
)

ds,

(3.16)
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we actually obtain

λ±[ū+(x + L, t), ū−(x + L, t)] = λ±[w+(x, t), w−(x, t)]. (3.17)

Therefore,

w+
t (x, t)+γw+

x (x, t) = −w+(x, t)λ+[w+(x, t), w−(x, t)]+w−(x, t)λ−[w+(x, t), w−(x, t)],

(3.18)

and hence w+ is a solution of system (2.1) with the initial condition w+(x, 0) =

ū+(x + L, 0) = ū+(x, 0). A similar result holds for w−. Uniqueness of solu-

tions on R implies that the solution ū±(x, t) is periodic. Therefore, it can be

restricted to Ω with periodic boundary conditions.♣

There are two remarks in regard to the semi-linear system (2.1):

1. First, we should note that if the initial data u±
0 is continuous, then the

mild solution of system (2.1) is a continuous function (see [14]).

2. As a result of Theorem 3.2.1, since the right-hand side of system (2.1)

satisfies a bound of the form

|− u+λ+[u+, u−] + u−λ−[u+, u−]| ≤ C(|u+| + |u−|), (3.19)

then the solution (u+(·, t), u−(·, t)) will remain bounded for all t ≥ 0.

Since the system (2.1) is semi-linear, as long as the solution is bounded,

its gradient remains bounded [14].

All these results will be useful later, in Chapters 5 and 6, when we will

investigate numerically and analytically the solutions of system (2.1). In par-

ticular, these results ensure that the solutions will be continuous, and will not

blow up.

3.3 Formal parabolic limit

In this section, we focus on the reduction of the hyperbolic model (2.1) to the

parabolic equation (1.2)-(1.4) introduced in [80]. Recall that this parabolic
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model assumes only attractive and repulsive interactions. For this reason, we

also focus only on these two interactions (i.e., qr, qa *= 0, and qal = 0). At the

end of this section we will briefly discuss the case when alignment is nonzero.

Throughout this section, we focus on the model introduced in Section 2.2.

There, we assumed that the these interactions depend on the information that

comes from all neighbors (Figure 2.3), so that the interactions are defined in

terms of u = u+ + u−. Because of this, we can rewrite the signals received

from right- and left-moving individuals as y±[u+, u−] = y±[u] (see equations

(2.2)-(2.3)). Moreover, to compare our results with other results existent in

the literature (see [80]), we use kernels defined by equations (2.11).

Let us rewrite the turning rates

Λ+[u] := λ+[u+, u−] = λ1 + λ2f(y+[u]),

Λ−[u] := λ−[u+, u−] = λ1 + λ2f(y−[u]). (3.20)

Adding and subtracting the first two equations of system (2.1), leads to

(u+ + u−)t + γ(u+ − u−)x = 0,

(u+ − u−)t + γ(u+ + u−)x = −2u+Λ+[u] + 2u−Λ−[u]. (3.21)

Define v = u+ − u−, α[u] = Λ−[u] − Λ+[u], and β[u] = Λ−[u] + Λ+[u]. Sys-

tem (3.21) can thus be rewritten as

ut + γvx = 0, (3.22)

vt + γux = uα[u] − vβ[u]. (3.23)

Differentiating equation (3.22) with respect to t and equation (3.23) with re-

spect to x, assuming zero flow at the boundaries, and taking into account that

v = − 1
γ

∫ x
∂tu (from (3.22)), leads to the following hyperbolic equation

γ2uxx = utt + γ(uα[u])x + β[u]ut + (β[u])x

∫ x

∂t[u]. (3.24)

To transform this equation into a parabolic equation, one can scale the speed

and the turning rates, or equivalently, scale the space and the time [53]. We

focus here on the first approach, and assume that the speed as well as the
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turning rates become very large. Note that, in this case, we have to scale

not only the random turning rate, but also the directed turning rate. In the

following, we introduce a new dimensionless parameter ε > 0, and consider

the following parameter scaling:

(a) λ1 =
λ0

1

ε2
, λ2 =

λ0
2

ε2
;

(b) γ =
γ0

ε
;

(c) f(y±[u]) = εf 0(y±[u]). (3.25)

We let ε → 0 in such a way that

(γ0)2

2λ0
1

= D, and
γ0λ0

2

2λ0
1

= B. (3.26)

Here D and B are constants. This scaling means that when ε → 0, (a) the

individuals turn very frequently, (b) move very fast, and (c) the previous two

behaviors result in a reduced sensitivity to the environment. Let

α[u] =
λ0

2α
0[u]

ε
, with α0[u] = f 0(y−[u]) − f 0(y+[u]), (3.27)

and

β[u] =
2λ0

1

ε2
+

2λ0
2β

0[u]

ε
, with β0[u] = f 0(y−[u]) + f 0(y+[u]). (3.28)

Equation (3.24) now reads

γ2
0

ε2
uxx = utt +

λ0
2γ0

ε2
(uα0[u])x +

(

2λ0
1

ε2
+

2λ0
2β

0[u]

ε

)

ut +
(2λ0

2β
0[u])x

ε

∫ x

utdx.

(3.29)

After multiplying with ε2 and taking the formal limit ε → 0, we obtain the

parabolic equation

ut = Duxx − B(uα0[u])x. (3.30)

The diffusion coefficient D and the advection coefficient B are given by (3.26).

Note that the diffusion is constant, while the advection is the result of the

difference between the nonlocal right (λ+) and left (λ−) turning rates. This is

caused by α0[u] which, in expanded form, can be written as

α0[u] = −f

(

qr

∫ ∞

−∞
Kr(s)u(x + s, t)ds − qa

∫ ∞

−∞
Ka(s)u(x + s, t)ds

)

+ f

(

−qr

∫ ∞

−∞
Kr(s)u(x + s, t)ds + qa

∫ ∞

−∞
Ka(s)u(x + s, t)ds

)

.(3.31)
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A similar result could have been obtained rescaling the time and the space (as

in [53]).

Equation (3.30) is quite similar to parabolic equation (1.2)-(1.4), intro-

duced by Mogilner and Edelstein-Keshet [80] to study the formation and move-

ment of animal groups. However, compared to (1.2)-(1.4), equation (3.30) does

not contain a local drift term. This suggests that (3.30) will not support trav-

eling pulses, since the nonlocal odd kernel (2.11) cannot make the group move

(see the discussion in [80]).

Note that the velocity term α0[u] is a nonlinear function of the nonlocal

interactions. However, to simplify the analysis, the majority of the results

existent in the literature consider a linear dependence on the social interactions

(see for example, [67], [78], [80], [122], [123]). This can be addressed if we

assume that the repulsive and attractive interactions balance each other, that

is, f(y±[u]) ≈ f(0). In this case, we can linearize the nonlocal term α0[u], and

keep only the first approximation, namely

α0[u] ≈ −2f 0′(0)

(

qr

∫ ∞

−∞
Kr(s)u(x + s, t)ds − qa

∫ ∞

−∞
Ka(s)u(x + s, t)ds

)

.

(3.32)

We assume here that f 0′(0) *= 0. Then, equation (3.30) can be written as

∂tu = D∂2
xu+B∂x

(

u

(

qr

∫ ∞

−∞
(Kr(s)u(x + s, t)ds) − qa

∫ ∞

−∞
(Ka(s)u(x + s, t)ds)

))

,

(3.33)

where the diffusion coefficient D is given as before, while the advection coeffi-

cient is B = 2γ0λ0
2f0′(0)
λ0
1

.

Therefore, in the absence of alignment, we can formally derive the parabolic

model (1.2)-(1.4) from the hyperbolic system (2.1). Hence, when the speed

and the turning rates are very large, two different biological assumptions,

namely (i) velocity described in terms of attractive and repulsive interactions

(as in [80]), and (ii) turning rates described in terms of attractive and repulsive

interactions (this hyperbolic model), lead to similar behavior.

The relationship between the parabolic model (1.2)-(1.4) and the hyper-

bolic model (2.1) can be investigated not only through the parabolic limit,

but also through the steady state equations. For the rest of the chapter, we
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return to the more general parabolic equation (3.30). Note that the stationary

pulses of this equation coincide with the stationary pulses of the hyperbolic

system (2.1) when attraction and repulsion are the only social interactions.

More precisely, for the parabolic equation (3.30), the zero-flux heterogeneous

steady-state solution that satisfies u(±∞) = 0 is described by

ux =
B

D
uα0[u]. (3.34)

On the other hand, the steady-state equations for the hyperbolic system (2.1)

are

γu+
x = −u+

(

λ1 + λ2f(y+[u])
)

+ u− (λ1 + λ2f(y−[u])
)

, (3.35)

−γu−
x = u+

(

λ1 + λ2f(y+[u])
)

− u− (λ1 + λ2f(y−[u])
)

. (3.36)

Therefore, u+
x = u−

x . When there is no flow at the boundaries, that is when

u+(±∞) − u−(±∞) = 0, we obtain u+ = u−. In this case, equations (3.35)-

(3.36) are reduced to

γu+
x = −u+λ2

(

f(y+[u]) − f(y−[u])
)

, (3.37)

which is exactly the equation (3.34). Hence, the stationary pulses of limiting

parabolic equation (3.30) coincide with the stationary pulses of hyperbolic

system (2.1).

Recall that in the above treatment, alignment was absent. When alignment

influences the turning rates, a formal parabolic limit cannot be obtained. In

this case, the alignment term depends on the flux v = u+−u−. However, there

is no second equation for v. An eventual substitution for v =
∫ x

ut(s, t)ds leads

to an equation similar to (3.30), with ut defined implicitly (α0[u] := ᾱ0[u, ut]),

although this is not a classic parabolic equation.

During the rescaling process we assumed that the random and directed

turning rates approach infinity with the same speed, that is λ1 = λ0
1

ε2 , and

λ2 = λ0
2

ε2 . However, one can assume that the individuals turn more often as

a response to external stimuli than they turn randomly, that is λ1 = λ0
1
ε , and

λ2 = λ0
2

ε2 . In this case, the term β[u] changes slightly:

β[u] =
2λ0

1

ε
+

2λ0
2β

0[u]

ε
. (3.38)
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As ε → 0, the hyperbolic equation (3.24) reduces to the following elliptic

equation

uxx =
1

γ0λ0
2

(uα0[u])x. (3.39)

If, on the other hand, we assume that the random turning dominates the

motion, that is λ1 = λ0
1

ε2 and λ2 = λ0
2
ε , we obtain the diffusion equation

ut =
γ2

0

2λ0
1

uxx. (3.40)

Therefore, different scaling for the directed and random turning rates leads to

either parabolic or elliptic equations. A similar result has been obtained when

considering different time scales [53]. For this case, it has been shown that

the parabolic equation arises on a slow time scale, while the elliptic equation

arises on a fast time scale.

3.3.1 Formal parabolic limit with a drift term

As previously mentioned, equation (3.30) does not contain a local drift term.

The nonlocal odd kernels alone cannot make the group move, since individuals

at the front and at the rear edge move towards the center of the group [80].

Therefore, equation (3.30) might not support traveling pulses. However, in

Chapter 2, we have seen that it is possible to introduce environmental drift

by considering asymmetry in the communication mechanism (see equations

(2.5)-(2.8), where pr *= pl). In this case, the nonlocal attractive and repulsive

interactions can be rewritten as

qr,a

∫ ∞

0

Kr,a(s) (pru(x + s, t) − plu(x − s, t)) ds =

qr,apr

∫ ∞

−∞
Kr,a(s)u(x + s, t)ds + qr,a(pr − pl)

∫ ∞

0

Kr,au(x − s, t)ds.(3.41)

Let q∗r,a = qr,apr and drop the asterisk. Then, equation (3.30) reduces to

ut = Duxx − B

(

−uf

(
∫ ∞

−∞
K(s)u(x + s, t)ds + (pr − pl)

∫ ∞

0

K(s)u(x − s, t)ds

)

+

uf

(

−
∫ ∞

−∞
K(s)u(x + s, t)ds − (pr − pl)

∫ ∞

0

K(s)u(x − s, t)ds

))

x

, (3.42)
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where K(s) = qrKr(s)−qaKa(s). Here we consider pr−pl ( 1. Therefore, the

nonlocal term (pr − pl)
∫∞
0 K(s)u(x − s, t)ds can be seen as a small drift. To

show that this drift can make the group move, we follow the approach proposed

in [80]. In particular, let us assume that there exists a rectangular group of

width L0 and density A. In Chapter 2, we assumed that the interaction kernels

Kr,a(s) have the support inside the interval [0,∞). These kernels can actually

be approximated by kernels with the support inside the interval [0, 6j), j = sr,a.

We will discuss this approximation in more detail in Chapter 5. Note that the

attractive and repulsive kernels (2.11) satisfy

∫ 6sr

0

Kr(s)ds = 1,

∫ 6sa

0

Ka(s)ds = 1. (3.43)

Therefore, the odd kernel K will satisfy

∫ 6sa

0

K(s)ds = −(qa − qr), and

∫ 0

−6sa

K(s)ds = (qa − qr). (3.44)

Note that if the kernel K would be even, both integrals in (3.44) would be

positive. We will come back to this result at the end of this section. An

individual positioned at the front edge of the group (that is, at x = L0), and

that can sense its neighbors up to a distance 6sa (where 6sa < L0), will have

a velocity

Vf = −u(x, t)f

(
∫ 6sa

−6sa

K(s)u(x + s, t)ds + (pr − pl)

∫ 6sa

0

K(s)u(x − s, t)ds

)

+

u(x, t)f

(

−
∫ 6sa

−6sa

K(s)u(x + s, t)ds − (pr − pl)

∫ 6sa

0

K(s)u(x − s, t)ds

)

= −u(x, t)f

(
∫ x+6sa

x−6sa

K(y − x)u(y, t)dy + (pr − pl)

∫ x

x−6sa

K(x − y)u(y, t)dy

)

+

u(x, t)f

(

−
∫ x+6sa

x−6sa

K(y − x)u(y, t)dy − (pr − pl)

∫ x

x−6sa

K(x − y)u(y, t)dy

)

.

When x = L0, there are no individuals inside the interval (L0, L0 +6sa). Since

the group density is u(L0, t) = A, we obtain
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Vf = −Af

(

A

∫ L0

L0−6sa

K(y − L0)dy + A(pr − pl)

∫ L0

L0−6sa

K(L0 − y)dy

)

+

Af

(

−A

∫ L0

L0−6sa

K(y − L0)dy − A(pr − pl)

∫ L0

L0−6sa

K(L0 − y)dy

)

= −Af

(

A

∫ 0

−6sa

K(z)dz + A(pr − pl)

∫ 6sa

0

K(z)dz

)

+

Af

(

−A

∫ 0

−6sa

K(z)dz − A(pr − pl)

∫ 6sa

0

K(z)dz

)

= −Af (A(qa − qr) (1 − (pr − pl))) + Af (−A(qa − qr) (1 − (pr − pl))) .

(3.45)

Similarly, one can calculate the speed of an individual positioned at the back

edge (x = L0). Note that in this case there are no individuals inside the

interval (L0 − 6sa, L0), and hence, the second integral vanishes:

Vb = −Af

(

A

∫ L0+6sa

L0

K(y − L0)dy

)

+ Af

(

−A

∫ L0+6sa

L0

K(y − L0)dy

)

= −Af (−A(qa − qr)) + Af (A(qa − qr)) . (3.46)

We observe that for pr = pl, we obtain

Vf = −Af (A(qa − qr)) + Af (−A(qa − qr)) = −Vb. (3.47)

In this case, the individuals at the front and the back edge of the group move

with opposite velocities. In Chapter 2, we assumed that f is a positive,

bounded, and increasing function. Therefore, if qa ≥ qr, f (−A(qa − qr)) <

f (A(qa − qr)), and we obtain Vf < 0 and Vb > 0. Hence, the individuals move

towards the center of the group, and the group will be stationary. On the other

hand, if qr > qa, then Vf > 0 and Vb < 0, and the group will disperse. Since the

stationary pulses displayed by the limiting parabolic equation (3.34), coincide

with the stationary pulses displayed by the hyperbolic system (2.1), we con-

clude that the odd kernels have a similar effect on the hyperbolic system. We

will come back to this result in Chapter 5. There, we will analyze numerically

the solutions displayed by system (2.1). In particular, we will discuss the type

of solutions that arise with only attractive and repulsive interactions.
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We assumed that f(y±[u]) is a monotone increasing function, and so is

f(y±[u]) − f(−y±[u]). This suggests that when pr *= pl, the two velocities are

slightly different: |Vf | *= |Vb|. In particular, since pr − pl ( 1 and A(qa − qr) >

A(qa − qr) (1 − (pr − pl)), it implies that for qa > qr, we obtain Vf < 0, Vb > 0,

and |Vf | < |Vb|. Therefore, individuals at the front of the group will move

slightly slower than those at the back of the group. This gives rise to a group

drift, at least for a short period of time. Note that this difference between the

velocity of the front and the back of the group is caused by large attraction,

which influences especially those individuals positioned at the front. When

qr = qa, we obtain Vb = Vf = 0, and the group is motionless.

Note that throughout this investigation we assumed that pr − pl ( 1.

However, if pr − pl , 1, and in particular pr − pl = 2, we obtain

Vf = Vb = −Af (−A(qa − qr)) + Af (A(qa − qr)) . (3.48)

In this case, the front and the back of the group move with the same veloc-

ity. Therefore, it requires a strong asymmetry in the reception of signals to

overcome the strong attraction which slows down the front of the group.

These results show that it does not matter the particular shape of the

turning function f . Only the monotonicity of f is important. If f is not

monotone, then it is possible to find some values of qr, qa, and A, such that

Vb = −Vf . In this case, the group will be stationary (even if pr *= pl).

Mogilner and Edelstein-Keshet [80] showed that a nonlocal velocity with

an odd kernel leads to stationary groups, while an even kernel gives rise to a

group drift. This is true when the interactions are linear, that is when α0[u]

is a linear function of the nonlocal terms, as in equation (3.33). However, for

nonlocal interactions defined by turning functions that are neither linear nor

monotone, it is possible to have stationary groups when the kernel is even. For

example, when K(s) is even,
∫ 0
−6sa

K(s)ds=
∫ 6sa

0 K(s)ds= (qr − qa)/2. Then,

the front and the back edge of the group are given by

Vf = −Af

(

A(qr − qa)

2

)

+ Af

(

−
A(qr − qa)

2

)

= Vf . (3.49)

If f is not monotone, then it is possible to find some qr, qa, and A, such that

Vf = Vb = 0, even for qa > qr > 0.
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3.4 Discussion

In this chapter, we started analyzing the nonlocal hyperbolic model. In par-

ticular, we focused on the existence of mild solutions, and the reduction of

this model to a well know parabolic model existent in the literature. The im-

portance of the existence of solutions in L∞ will be more clear in Chapter 6,

when we will perform a weakly nonlinear analysis. This analysis will require

solutions to belong to L2. It is known that on a bounded domain, a solution

bounded in the L∞-norm, is also bounded in the L2-norm [110].

In the second part of this chapter, we ignored the alignment interactions

and formally connected the hyperbolic model (2.1) with the nonlocal parabolic

model (1.2)-(1.4).This connection was made by assuming that both the speed

and the turning rates approach infinity. The results show that the differ-

ence between the right and left turning rates leads to a nonlocal advection.

Since the resulting parabolic equation does not have a local drift term, and

the kernels are odd, the groups will be stationary. A similar result holds for

the hyperbolic system (2.1). If asymmetry in the reception of communication

signals is included, then this leads to a small, nonlocal drift term in the ve-

locity, which can induce group movement. We will come back to this aspect

in Chapter 5, when we will investigate numerically the effect of asymmetry in

the communication on the patterns displayed by the hyperbolic system (2.1),

and show that a similar result holds for it.

The condition that ensures the group movement is the monotonicity of the

turning function. If the turning function is not monotone, one can obtain

stationary groups even with nonlocal drift term in the velocity. In particular,

when the kernels are even, the absence of this monotonicity assumption can

lead to stationary groups. This results extends a results by Mogilner and

Keshet [80] in regard to the effect of even and odd kernels on the velocities of

individuals inside a group.

In the following chapter, we start investigating these patterns by studying

the spatially homogeneous steady states and the temporal evolution of small

perturbations of these states.
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Chapter 4

Linear stability analysis

4.1 Introduction

A standard approach in the study of animal self-organization is to assess the

possibility of pattern formation via linear stability analysis. In this chapter1,

we use this stability analysis to begin exploring the effect of social interactions

on the group patterns. In particular, we will focus on the model described in

Section 2.2, with interaction kernels defined by equations (2.11) (for attractive

and repulsive interactions), and equation (2.9) for alignment. In Section 4.2,

we first identify all the possible spatially homogeneous steady states. Then, in

Section 4.3, we determine conditions under which these states lose their stabil-

ity via growth of small spatial perturbations. The loss of stability through real

or complex eigenvalues suggests a means by which aggregation or respectively,

dispersive waves, can occur.

It is known that the observed group patterns depend on the scale of the

social interactions [122]. Moreover, these scales depend on the type of com-

munication signals used by animals [2, 134], the quality of the resources, and

1A version of this chapter has been published.

R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, (2007) Modeling group formation and

activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-

1566.

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Complex spatial group patterns result from

different communication mechanisms, Proc. Natl. Acad. Sci., 104, 6974-6979.
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the predation threat [7]. For example, the repulsion range decreases in case

of predation, or when food resources are tightly packed. Another example

is the range of a chemical signal. This range depends on the environmental

conditions, but can be modified by an animal by varying the height at which

the signal is emitted [2]. Motivated by these observations, in Section 4.4 we

will use the stability results to investigate the effect of different interaction

ranges on the formation of patterns. For simplicity, we will focus here on the

particular communication mechanism introduced in Section 2.2 (model M1),

and study the stability of the spatially homogeneous steady states as we vary

the social interaction ranges.

In Section 4.5, we will go back to the five different hypothetical communi-

cation mechanisms, and investigate the conditions for full alignment within a

population of individuals that is spread evenly over the domain. Previous re-

sults show that alignment makes animal groups more effective at finding food

sources [40]. More precisely, because of the alignment, information regarding

the surrounding environment propagates through the group much quicker, and

therefore, the movement decisions are faster. It seems likely that the commu-

nication mechanisms used by different animal groups will play a role in these

movement decisions. We will address this issue by answering the following

question: how does the strength of the alignment force required for group po-

larization in each of the five sub-models depend on the amount of information

an individual receives from its neighbors?

We conclude with a discussion in Section 4.6.

4.2 Spatially homogeneous steady states

To start, we assume that individuals are spread evenly over the domain, and we

look for the spatially homogeneous steady states u+(x, t) = u∗ and u−(x, t) =

u∗∗, with constant total density A = u∗ + u∗∗. This leads to the following

steady-state equation for system (2.1),
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h(u∗; qal, λ, A) = 0, (4.1)

where h is being defined as

h(u∗; qal, λ, A) := −u∗ (1 + λ tanh(Aqal − 2u∗qal − y0)) +

(A − u∗) (1 + λ tanh(−Aqal + 2u∗qal − y0)) , (4.2)

where

λ =
0.5λ2

0.5λ2 + λ1
. (4.3)

Although the model involves a large number of parameters, only five of them

arise in this steady-state equation: A, λ1, λ2, qal, and y0. Only the first

four parameters will be varied, y0 being fixed by our choice for the turning

function. We look at the effect of varying A since we expect that the higher the

population density, the stronger the inter-individual interactions. Therefore,

we expect A to influence the aggregation process. A similar explanation holds

for qal. Intuitively, the turning rates also influence the formation of population

clusters. The effects of varying all these parameters are presented in Figure

4.1.

From (4.2), we conclude that the only social interaction that determines

the number of possible steady states is alignment. This follows from the choice

of kernels Kr,a, which we have chosen to be odd, so that

∫ ∞

−∞
Kr,a(s)(u

∗ + u∗∗)ds = 0. (4.4)

Hence, the attraction and repulsion terms vanish in equation (4.2). When

qal = 0, the only steady state is (u+, u−) = (A/2, A/2). Figure 4.1 (a) shows

that this steady state does not depend on qa. Actually, it does not depend

on any of the other parameters describing the social interactions. However,

as we will see in Section 4.3, the stability of this state will depend on these

parameters. For qal *= 0, equation (4.1) can have one, three, or five solutions

(Figure 4.1 (b)-(d)), depending on the values of λ. More precisely, there is a

threshold value
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Figure 4.1: Bifurcation diagrams for the steady-state equation. (a) Bifurcation diagram

when qal = 0. The only steady state is u∗ = u∗∗ = A/2. (b) Two-parameter bifurcation

diagram in (qal, λ) space: the threshold values λ∗, Q∗ and Q∗∗ determine the number of

possible steady states. Here A = 2 and y0 = 2 are fixed parameters. (c) Bifurcation

diagram in the five steady-state regime (i.e., λ < λ∗): ū∗ and ū∗∗ = A − ū∗ are the two

critical states that appear at Q∗ as we increase qal. These two states can take up to 5 values

each: ū∗ ∈ {u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5}, and ū∗∗ = A − ū∗. Here A = 2, and λ is given by equation

(14), with λ1 = 0.2 and λ2 = 0.9. (d) Two-parameter bifurcation diagram in (qal, A) space:

qal and A have similar effects on the number of spatially homogeneous solutions. Here

λ1 = 0.2, λ2 = 0.9.
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λ∗ =
−1 + 3 tanh(y0)2

2 tanh(y0)
(4.5)

such that for λ > λ∗ (i.e., for λ1 much smaller than λ2), there are up to three

solutions, while for λ < λ∗, there are up to five solutions (Figure 4.1 (b)).

We will denote these five solutions by u∗
i , i = 1..5. Therefore, the spatially

homogeneous steady states generically denoted by (u∗, u∗∗) = (u∗, A−u∗), can

be any of the following pairs: (u∗
1, u

∗
5), (u∗

5, u
∗
1), (u∗

2, u
∗
4), (u∗

4, u
∗
2), or (u∗

3, u
∗
3).

In the remainder of this chapter, we fix the ratio λ1/λ2 with λ1 << λ2, so

that λ < λ∗, which implies that there can be up to five steady states (Figure

4.1 (b) and (c)). The other two threshold values for qal from Figure 4.1 (b),

namely Q∗ and Q∗∗, are as follows: Q∗∗ is given explicitly by

Q∗∗ =
−1 + λ tanh(y0)

λA (−1 + tanh(y0)2)
, (4.6)

while Q∗ is a decreasing function of λ, defined implicitly by

∂3h(A/2; Q∗, λ, A)

∂q3
al

= 0. (4.7)

The dependence of u∗ on qal is shown in Figure 4.1 (c), in the five steady states

regime. As alignment becomes very large, and in particular qal → ∞, the three

homogeneous steady states are u± ∈ {A(1 − λ)/2, A/2, A(1 + λ)/2}. Figure

4.1 (d) illustrates the dependence of the number of steady states on both A

and qal, again in the five steady states regime. This last figure suggests that

qal and A have similar effects on the number of steady states: for small qal or

A, it is possible to have only one steady state (u∗, u∗∗) = (A/2, A/2), while for

large qal or large A, there are three steady states. For intermediate values of

qal or A, there are five steady states.
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4.3 Linear stability analysis: dispersion rela-

tion

Once we know the possible homogeneous steady states, the next step is to

study the local stability of these solutions under small perturbations caused

by spatially nonhomogeneous terms: u+(x, t) = u∗ + up(x, t) and u−(x, t) =

u∗∗ + um(x, t), with (u∗, u∗∗) being the generic notation for the spatially ho-

mogeneous steady states. We approach the problem of pattern formation by

choosing to define equation (2.1) on a bounded domain of length L with wrap-

around boundary conditions for the nonlocal influence terms. This yields a

problem with a discrete spectrum, and also approximates the process of pat-

tern formation on an unbounded domain when L is large. In this case, the

interaction kernels are, as in [109],

Γj(s) =
+∞
∑

n=−∞

Kj(s + nL), j ∈ {r, al, a}. (4.8)

The Fourier transform of the kernel Kj(s) is given by

K̂j
±
(k) =

∫ ∞

−∞
Kj(s)e

±iksds. (4.9)

Also, we define

Γ̂j
±
(k) :=

∫ L/2

−L/2

Γj(s)e
±iksds. (4.10)
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For large L, and in particular for L → ∞, Γ̂j
±
(k) can be approximated by

K̂j
±
(k). More precisely, we have the following:

lim
L→∞

∫ L/2

−L/2

Γj(s)e
±iksds = lim

L→∞

∫ L/2

−L/2

(

n=−1
∑

n=−∞

Kj(s + nL) + Kj(s)+

∞
∑

n=1

Kj(s + nL)

)

e±iksds

= lim
L→∞

∫ L/2

−L/2

Kj(s)e
±iksds + lim

L→∞

∫ L/2

−L/2

(

n=−1
∑

n=−∞

Kj(s + nL) +

n=∞
∑

n=1

Kj(s + nL)

)

e±iksds,

where the kernels decrease exponentially as L → ∞ (see equations (2.9) and

(2.11)). For large L, the terms containing the sums are approaching zero and

therefore,

lim
L→∞

∫ L/2

−L/2

Γj(s)e
±iksds = K̂j

±
(k). (4.11)

Due to this correspondence, we will work on a large finite domain [0, L],

and use K̂j(k) to approximate interactions on finite domain by interactions on

infinite domain. Throughout this chapter, we will use the interaction kernels

defined by equation (2.9) (for alignment) and equation (2.11) (for attraction

and repulsion). The kernels are chosen such that the support of more than

98% of the kernels is small with respect to the length of the domain. The

periodic boundary conditions that complete the description of the model on a

finite domain are given by (2.12).

We let up,m(x, t) ∝ eσt+ikx, with the discrete wave number kn = 2nπ/L,

n ∈ N, and the growth rate σ. Because of the conservation of the total density,

k0 = 0 is not an allowable wave number and hence, n ∈ N+. We substitute the

expressions for up,m(x, t) into system (2.1) to obtain the dispersion relation:

σ2 + σC(k) + D(k) = 0, (4.12)
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where

C(k) = L1 + L2 − M5qal(K̂
+
al(k) + K̂−

al(k)),

D(k) = γ2k2 + γik
(

L2 − L1 + M5qal(K̂
−
al(k) − K̂+

al(k))
)

−2M5γik
(

qr(K̂
+
r − K̂−

r ) − qa(K̂
+
a − K̂−

a )
)

,

L1 = λ1 + λ20.5 + λ20.5 tanh(M1 − y0),

L2 = λ1 + λ20.5 + λ20.5 tanh(−M1 − y0),

P1 = λ20.5(1 + tanh2(M1 − y0)),

P2 = λ20.5(1 + tanh2(−M1 − y0)),

M1 = qal(u
∗∗ − u∗),

M5 = P1u
∗ + P2u

∗∗. (4.13)

Here, K̂j, j ∈ {a, r, al} are the Fourier transforms of the interaction kernels

(2.11) (for attraction and repulsion) and (2.9) (for alignment):

K̂j
+
(k) =

∫ ∞

−∞
Kj(s)e

iksjds = iksj exp(−k2s2
j/2), j = a, r, (4.14)

K̂al
±
(k) =

∫ ∞

−∞
Kal(s)e

±iksalds = exp(±isalk − k2m2
al/2). (4.15)

Equations (4.12)-(4.13) show that the steady state (u∗, u∗∗) is locally un-

stable, i.e., Re(σ(k)) > 0, when C(k) > 0 or D(k) < 0. The first term, C(k),

is positive when λ2 is large. For D(k) to be negative, it requires either (a) a

large λ2, or (b) attraction to be larger than repulsion: qaK̂a(k) > qrK̂r(k). If

we focus now on each of the five solutions of equation (4.1) u∗
i , i = 1..5, we

notice that equation (4.12) is important for the stability of u∗
1,5 (for qal > Q∗),

and of u∗
3 (for qal < Q∗∗). In this case, when λ2 is large, the unstable modes

are those with large k. When attraction is larger than repulsion, the modes

with small k are unstable. However, the stability of u∗
2,4, as well as u∗

3 when

qal > Q∗∗, is given not only by (4.12), but also by the domain length L. When

the domain length becomes very large, and in particular L → ∞, the first

wave number k1 = 2π/L approaches zero. Consequently C(k1) approaches

C(0) = L1 + L2 − 2M5qal. (4.16)
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Figure 4.2: The dispersion relation σ(k) for five possible spatially homogeneous steady

states: u∗
1, u∗

2, u∗
3, u∗

4, u∗
5. The continuous line represents the real part of σ, while the

dashed line represents the imaginary part. Cases (a) and (c) show the dispersion relation

when attraction (qa) is large. In this case, the critical wave number is k = k1. Cases (b) and

(d) show the dispersion relation for large turning rates (λ2). The critical wave number that

emerges is k = kj , for some j $ 1. Shown here is k = k15. Note that for the steady state u∗
3

(when qal < Q∗∗), the imaginary part of the dispersion relation is zero at the critical wave

number, whereas for u∗
1 and u∗

5, it is always nonzero. Cases (e) and (f) show the dispersion

relation for u∗
2 and u∗

4 when qal ∈ (Q∗, Q∗∗), and for u∗
3 when qal > Q∗∗. In these cases, the

critical wave number that emerges is k1.
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In this case, u∗
2 and u∗

4, as well as u∗
3 for qal > Q∗∗, are always unstable. More

precisely, for u∗ = u∗
3, the condition qal > Q∗∗ is equivalent to C(0) > 0, which

means that u∗
3 is locally unstable. The steady state u∗ = u∗

2 (or u∗ = u∗
4) and

u∗∗ = A − u∗ is given implicitly as a solution of the system

h(ū∗; Q∗, λ, A) = 0,
∂h(ū∗; Q∗, λ, A)

∂qal
= 0. (4.17)

By studying the graph of h(u), it can be deduced that the condition

qal ∈ (Q∗, Q∗∗) requires that ∂h(u;qal,λ,A)
∂qal

> 0, for any u ∈ (ū∗, A/2). But

this inequality is nothing else than C(0) > 0, which again leads to instabil-

ity. Therefore, for large L, u∗
2,3,4 are locally unstable, even in the absence of

attraction, or for small turning rates. This ensures that we have a standard

subcritical pitchfork bifurcation, as shown in Figure 4.1(c).

Figure 4.2 (a)-(f) shows examples of the dispersion relation for system

(2.1). The solid curve represents Re(σ), while the dashed curve represents

Im(σ). Note that, for graphical purposes, we have replaced the discrete wave

numbers with a continuum of values k. We observe that for cases (c), (d),

and (e), Im(σ(k)) *= 0, while for (a), (b), and (f), Im(σ(k)) = 0 for some

k > 0. We recall that for the total density to be preserved, k = 0 is not an

allowable wave number. Therefore, cases (e) and (f) do not contradict the

conservation of the total density. The emergence of the first wave number

k1 (i.e., Re(σ(k1)) > 0) (see Figure 4.2 (a) and (c)) is the result of large

attraction, while the emergence of ki, i , 1 (Figure 4.2 (b) and (d)) is the

result of large turning rates. Therefore, when attraction is large, we would

expect the emergence of one group. When the turning rates λ1 and λ2 are

large, we would expect the emergence of i small groups, where i , 1. The last

two cases (Figure 4.2 (e) and (f)) show the dispersion relation corresponding

to u∗
2,4 for qal ∈ (Q∗, Q∗∗), and to u∗

3 for qal > Q∗∗. As we can see here, the

first wave number k1 is always unstable, provided that the domain length L is

large enough. In this case, k1 is very close to 0 (but greater than 0), and we

have already seen that C(0) > 0, which implies instability.

We can now connect the stability results shown in Figure 4.2 with the
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Figure 4.3: Bifurcation diagrams for the steady-state equation. (a) Zero alignment

(qal = 0); the only steady state is u∗
3 = A/2. (b) Nonzero alignment (qal %= 0);

(u∗
3, u

∗
3) = (A/2, A/2) is always a steady state; at the critical value qal = Q∗, four new

steady states appear through a saddle-node bifurcation. These states can be any of the

following pairs: (u∗
1, u

∗
5), (u

∗
5, u

∗
1), (u

∗
2, u

∗
4), (u

∗
4, u

∗
2). At a second critical value of the align-

ment parameter, qal = Q∗∗, two of these spatially homogeneous steady states (u∗
2 and u∗

4)

disappear through a subcritical pitchfork bifurcation. (c) A particular case of (b), obtained

for a different parameter space. In all three cases, the solid lines denote the stable solution,

while the dashed lines denote the unstable solution (with respect to spatial perturbations).

Shown here is the stability of the steady states to small spatial perturbations when: (a)

qal = 0, qr = 2.2, λ1 = 0.2, λ2 = 0.9, γ = 0.1, A = 2; here qa is the bifurcation parameter;

at qa = q0
a there is a real bifurcation; (b) qa = qr = 0, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1,

A = 2; (u∗
3, u

∗
3) undergoes a real bifurcation at qal = q0

al, while (u∗
1, u

∗
5) undergoes an imag-

inary bifurcation at qal = q1
al; (c) qa = qr = 0, λ1 = 2.0, λ2 = 9.0; at qal = q0

al there is an

imaginary bifurcation

69



spatially homogeneous steady states u∗
1...u

∗
5 described in Figure 4.1 (a) and

(c). We can summarize the results as follows:

• Combining Figure 4.1(a) and Figure 4.2(a) leads to Figure 4.3(a). More

precisely, when there is no alignment, the stability of the steady state

u∗
3 is determined by the magnitude of attractive interactions. There is a

critical value of attraction qa = q0
a such that the steady state u∗

3 is stable

for qa < q0
a, and unstable otherwise.

• Combining Figure 4.1(c) and Figures 4.2(a)-(f) gives Figures 4.3(b), (c),

and (d). For example, if we focus on attraction (which influences the

wave number k1), then Figures 4.3 (b), (c), and (d) correspond to large,

medium, and small values of attraction. Similarly, if we focus on the

turning rates (which influence the large wave numbers ki, i , 1), these

figures correspond to large, medium, and small turning rates. In each of

these cases, the spatially homogeneous steady state undergoes a bifurca-

tion as we increase the value of alignment. The relative position of the

bifurcation point depends on the parameter space. For example, Figure

4.3 (b) shows that for large attraction or turning rates, there exists a

critical value of alignment q0
al < Q∗ such that for qal < q0

al, the solution

u∗
3 is stable, while for qal > q0

al it is unstable. Moreover, there is there

exists a second critical value q1
al > Q∗ such that for qal < q1

al, the solu-

tions u∗
1 and u∗

5 are unstable, while for qal > q1
al they are unstable. Figure

4.3 (c) shows that for medium attraction or turning rates, u∗
3 changes

stability at qal = Q∗∗, while u∗
1 and u∗

5 change stability at a critical value

q0
al > Q∗. Figure 4.3 (d) shows that for small attraction or turning rates,

the only steady state that changes stability is u∗
3. The bifurcation point

is qal = Q∗∗.

It should be noted that equation (4.12) is complex when u∗ *= u∗∗, but

real when u∗ = u∗∗. This has implications for the type of the eigenvalues of

system (2.1). For the first case, all eigenvalues are complex. For the second

case, the eigenvalues can be real or complex, depending on the values of the

parameters. We will come back to this aspect in Chapter 6, when we will
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Figure 4.4: Spatially homogeneous steady states and their stability, as inter-individual

attraction, qa, increases: (a)-(c) show bifurcations in the (qal,u) plane, while (d)-(f) show

bifurcations in the (A, u) plane. Solid curves represent the stable steady states, while the

dotted curves represent the unstable steady states, as given by Re(σ1(k1)) ≥ 0. The magni-

tude of attraction is increased from qa = 0.1 for (a) and (d), to qa = 2 for (b) and qa = 1 for

(e), and to qa = 10 for both (c) and (f). As a result, the parameter range for the unstable

steady states (i.e., the dotted curve) is also increasing.

perform a nonlinear analysis in the neighborhood of some bifurcation points

at which the steady states become unstable.

The results concerning the steady states and the effect of the attraction,

alignment and total population size on their stability are summarized in Figure

4.4. The solid curve represents stable steady states, while the dashed curve

represents unstable steady states. Cases (a)-(c) show the effect of alignment

and attraction on the stability of the steady states, whereas cases (d)-(f) show

the effect of total population size and attraction on this stability. The values of
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the turning rates are the same for all cases. The threshold values Q∗, Q∗∗, A∗

and A∗∗ determine the number of spatially homogeneous steady states. How-

ever, the stability of these steady states is greatly influenced by attraction

and, not shown here, by the turning rates. One can see that an increase in

the magnitude of attraction, from qa = 0.1 for (a) and (d) to qa = 10 for (c)

and (f), leads to an increase in the parameter range (A and qal) for the unsta-

ble steady states. If we look at the total population size, for instance, these

results suggest that unless there is a very strong attraction, large number of

individuals do not aggregate. Therefore, we conclude that both alignment and

total population size have similar qualitative effects on the number of steady

states (Figure 4.1(d)) as well as their stability (Figure 4.4).

We should also note that for small attraction (qa ≤ qr) and large turning

rates, it is possible to have a hysteresis phenomenon (Figure 4.4 (a) and (d)).

More precisely, if we start for example with a very small qal, then the only

possible steady state is (u∗
3, u

∗
3), and it is stable. As we increase alignment,

this state will lose stability at qal = Q∗∗ (Figure 4.4 (a)). Depending on initial

conditions, the system will choose one of the two other solutions: (u∗
1, u

∗
5) or

(u∗
5, u

∗
1), both of which are stable. However, if we now decrease the alignment

beyond Q∗∗, the system will not return immediately to (u∗
3, u

∗
3). It will return

later, when u∗
1 and u∗

5 lose stability at Q∗. A similar phenomenon is observed

when increasing and decreasing the total population size A.

4.4 The effect of different social interaction

ranges on group formation

We now use the dispersion relation (4.12) to study the effect of the three

interaction ranges, sr, sal and sa on group formation. We investigate the

stability of the spatially homogeneous steady state (u∗
3, u

∗
3) by increasing (or

decreasing) the size of these ranges while keeping all other parameters constant.

At the end, we will briefly discuss the effect of these ranges on the stability of

u∗
i , i = 1, 2, 4, 5. It should be mentioned that if for some j we have Re(σ(kj)) >
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Figure 4.5: The effect of the interaction ranges sr, sal and sa, on the local stability of

homogeneous steady states u∗
i , i = 1..5. The plots show Re(σ1(k)). The arrows show what

happens with the graph of Re(σ1) as we increase the interaction ranges. For u∗
3, an increase

in the repulsion range (case (a)) or the alignment range (case (b)) leads to stability of the

steady state. For example, for case (a), let us assume that initially the mode that emerges is

the one with the wave number k1. As we increase the repulsion range sr, making sure at the

same time that sr < sa, we see that this mode becomes stable (Re(σ1(k1)) < 0). Increasing

sr even more (i.e., sr > sa), the mode that emerges is the one with the wave number ki,

i > 1. A similar explanation holds for (b). An increase in the attraction range (case (c))

results in a shift to the left of the wave number that will emerge. For u∗
i , i = 1, 2, 4, 5, an

increase in the alignment range leads to the same shift to the left (case (d)).
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0, while for all other i *= j we find Re(σ(ki)) < 0, then the linear analysis

predicts that j groups will emerge.

If we graph the dispersion relation, we see that an increase in the repulsion

range, sr, while keeping everything else constant, leads to the stability of

u∗
3 (Figure 4.5(a)). Increasing it even further would lead to the biologically

unrealistic situation sr > sa. For alignment (Figure 4.5(b)), the results are

similar to those obtained for the repulsion case. In particular, as we increase

the alignment range sal, making sure at the same time that sal < sa, the mode

with the wave number k1 becomes stable (Re(σ(k1)) < 0). Increasing sal even

more (i.e., sal > sa), leads to the emergence of some mode with the wave

number ki, i > 1.

If we increase the attraction range, the dispersion relation shows a transla-

tion to the left of the wave number that becomes unstable (Figure 4.5(c)). For

example, suppose k2 is the unstable wave number initially (correspondingly,

there are two groups). After increasing the attraction range, k1 is the unstable

wave number (correspondingly, there is one group). Biologically, this makes

sense since when sa is increased, individuals perceive information over larger

distances. Two separate groups now can sense each other and merge.

The stability of the other four steady states u∗
i , i = 1, 2, 4, 5, does not seem

to be influenced significantly by alterations in the size of the attraction or

repulsion ranges. More precisely, neither the location nor the amplitude of the

leading eigenmode varies much as the corresponding interaction ranges sa and

sr vary. However, an increase in the alignment range results in a translation

to the left of the wave number that emerges (Figures 4.5 (d)). This means

that when there are more individuals moving in one direction than the other

(i.e., the steady states (u∗, u∗∗) with u∗ *= u∗∗), the attempt to match one’s

movement direction to the movement direction of those neighbors that are

farther away causes small groups of individuals to come together and form

larger aggregations.
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Figure 4.6: Bifurcation diagram comparing the spatially homogeneous steady

states (u∗, A−u∗) displayed by the five models M1 - M5, as alignment increases

(total density A = 2, qa = 1.5, qr = 1.1, λ1 = 0.2, λ2 = 0.9). We see that for

M2, a small qal value already leads to polarization (i.e., the steady state is

(u∗, A − u∗), with u∗ *= A/2). M3, on the other hand, requires a larger value

for qal. For M5, only intermediate values of qal lead to some polarization.

4.5 Relation between animal communication

and alignment

It has been previously shown that while attraction and repulsion lead to the

formation of animal aggregations [80, 123], alignment facilitates group move-

ment by ensuring that the information propagates faster through the group

[40]. However, how information propagates through the group depends on

the communication signals (directional or omnidirectional) that animals use.

Therefore, the question that arises is: what is the relation between alignment

and the different communication mechanisms?

In the following, we investigate conditions under which a population of

individuals that is evenly spread over the domain has most of its members
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aligned in the same direction. That is, we look for spatially homogeneous

steady states of the form (u∗, A − u∗), with u∗ *= A/2. For this, we focus on

the relation between the strength of the alignment force required in each of

the five sub-models M1-M5 introduced in Chapter 2 (see table 2.2), and the

amount of information an individual receives about its neighbors. Figure 4.6

shows the relationship between the strength of this force (qal) and the spatially

homogeneous steady states that arise in each of the sub-models. Depending on

how much information it receives about its neighbors, an individual requires

different levels of alignment. For example, we see that for M2, small qal al-

ready leads to polarization. In this case, the individuals receive all possible

information about neighbors positioned ahead and behind them (see Figure

2.5). For M3, on the other hand, only a large qal value leads to polarization. In

this case, the individuals receive information only from ahead. By comparing

M3 and M4, we see that group polarization occurs for smaller values of align-

ment (qal) when receiving partial information from both ahead and behind

(M4), as compared to receiving full information only from ahead (M3). How-

ever, receiving information only from ahead, and only from neighbors moving

in one direction (M5), leads to a lower level of polarization. Moreover, this

polarization happens only for some intermediate values of qal.

We conclude that there is an inverse relation between the amount of in-

formation received and the strength of alignment force required to fully align

with neighbors. A similar result holds also for the turning rates.

4.6 Discussion

In this chapter, we performed a linear analysis of the model (2.1). First, we

investigated the spatially homogeneous steady states, and showed that there

is only one steady state independent of the parameters describing the social

interactions. All other steady states depend on the magnitude of alignment,

and therefore, they undergo saddle-node and pitchfork bifurcations, as this

alignment parameter is varied.
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The stability of all steady states depends on the magnitude of the interac-

tion parameters, as well as the magnitude of the turning rates. In particular,

attraction influences mainly the emergence of the first wave number k1, while

the turning rates influence the emergence of large wave numbers ki, i , 1. In

Chapter 6 we will come back to this result, when we will investigate some of

the spatial and spatiotemporal patterns displayed by system (2.1).

The length scale of the interaction ranges also plays an important role in

self-organization, as shown by analyzing the stability of the spatially homo-

geneous steady states when we vary these interaction ranges. However, the

implications of these results are more complex. It is known that some com-

munication signals (such as omnidirectional sound signals) act on long ranges,

while other signals (such as directional sound signals) act on short ranges

[134]. It is possible that understanding the effect of changing the interaction

ranges on the resulting group patterns would offer important information on

which communication signals are involved in the formation of these patterns.

However, this aspect has not been investigated here.

Furthermore, the results suggest that there is an inverse relation between

the amount of information received by an organism (due to environmental or

physiological limitations), and the strength of the alignment that leads to a

polarized population. More precisely, the more information one receives, the

less alignment is necessary to form a polarized group. On the other hand, it

is well known that animal signals and behaviors are not evolutionary inde-

pendent traits [31]. On the contrary, since their functions are related, they

will influence each other’s evolution. Therefore, our analytical results suggest

that there might be a possible evolutionary connection between the different

communication mechanisms employed by various animals and the magnitudes

of the social interactions required by group behaviors.

In the next chapter, we will use the stability results discussed here to

investigate numerically the spatial and spatiotemporal patterns displayed by

system (2.1).
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Chapter 5

Numerical results

5.1 Introduction

Due to the complexity of the hyperbolic system (2.1), it is very difficult, if

not impossible, to find an analytical solution. We therefore have to focus our

attention on numerical solutions. In this chapter1 , we perform numerical sim-

ulations for the two types of kernels we discussed in Chapter 2: (i) odd kernels

for attractive and repulsive interactions, and translated Gaussian kernels for

alignment (equations (2.11)), and (ii) translated Gaussian kernels for all three

social interactions (equations (2.9)). Note that the first type of kernels have

been used by Mogilner and Edenstein-Keshet [80] to model the long-range at-

tractive and repulsive interactions in a parabolic model. We will use these

kernels to compare the effect on the patterns displayed by our hyperbolic sys-

tem with their results (see also the discussion in Chapter 3). However, these

kernels have overlapping ranges, as in Figure 2.4(b). It might be more realis-

tic to consider more distinct interaction ranges. For this reason, we will also

perform simulations with the second type of kernels.

1A version of this chapter has been published.

R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, (2007) Modeling group formation and

activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-

1566.

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Complex spatial group patterns result from

different communication mechanisms, Proc. Natl. Acad. Sci., 104, 6974-6979.
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In the introductory chapter, we discussed the parabolic and hyperbolic

models existent in the literature, none of which can account for the multitude

of complex patterns that one can observe in nature. We recall that none of

the one-dimensional models presented there incorporate all three social in-

teractions, namely attraction, repulsion, and alignment. For example, the

stationary pulses reported in [80, 123] were obtained with only attractive and

repulsive interactions, whereas those reported in [71] were obtained with only

alignment interactions. Also, the ripples reported in [59, 71] were the result of

alignment interactions alone. In this chapter, we investigate the social interac-

tions that are necessary for the formation of these spatial and spatiotemporal

patterns. In particular, to allow for comparison with the previous models, we

investigate the types of patterns that arise in the following three cases: (a) only

attraction and repulsion; (b) only alignment; (c) full model with attraction,

repulsion and alignment.

In Section 5.2, we discuss the numerical methods we use to simulate the so-

lutions. Then, in Section 5.3, we begin investigating the patterns displayed by

system (2.1). First, we focus on the communication mechanism introduced in

Section 2.2 (and which corresponds to model M1), and thoroughly analyze this

case. For comparison with other models existent in the literature, we use the

kernels defined by (i). In Section 5.4, we broaden our investigation and discuss

some of the patterns obtained with all five sub-models introduced in Chapter

2. To study the effect of non-overlapping interaction ranges on the resulting

spatial and spatiotemporal patterns, we will consider the kernels defined by

(ii) (that is, translated Gaussian kernels for all interactions). Therefore, for

the communication mechanisms described in model M1, we can compare the

patterns obtained with both types of kernels. Since the parameter spaces for

which the solutions of the five sub-models are unstable do not coincide, we

will focus only on some parameter subspaces. Note that we could also have

studied models M2-M5 with kernels defined by (i). However, kernels (ii) seem

more biologically realistic. For this reason we will use them throughout the

rest of this thesis.

In Section 5.5, we investigate numerically the effect of introducing asym-
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metry in the reception of signals. This aspect was discussed analytically in

Chapter 3, when we derived the limiting parabolic equation. Here, we present

some numerical results for the hyperbolic system.

We conclude with a discussion in Section 5.6.

5.2 Numerical method

To understand the behavior of system (2.1), we investigate numerically the evo-

lution of small perturbations of the spatially homogeneous solutions (u∗, u∗∗)

discussed in Chapter 4. To discretize equations (2.1), we first write them as

ut + (F(u))x = s(u), (5.1)

where u = (u+, u−)T , the flux term F(u) = (γu+,−γu−)T , and the source

term s(u) = (−u+λ+[u+, u−] + u−λ−[u+, u−], u+λ+[u+, u−] − u−λ−[u+, u−])T .

We discretize the space-time plane choosing a space step ∆x = h, and a time

step ∆t = k. Also, we define the discrete mesh points (xj , tn) = (jh, nk),

j, n ∈ N. The solutions u1n
j and u2n

j are seen as approximations of the cell

averages of u±(x, tn):

u1n
j =

1

h

∫ xj+1/2

xj−1/2

u+(x, tn)dx, u2n
j =

1

h

∫ xj+1/2

xj−1/2

u−(x, tn)dx. (5.2)

Moreover, we define the discrete flux F n
j = F(u1n

j , u2n
j ), and the discrete source

terms sn
j = s(u1n

j , u2n
j ).

Since the eigenvalues of the Jacobian matrix of F (u) have fixed signs (±γ),

we will use the following first-order upwind schemes to propagate the solution

at the next time step (e.g., [47, 66]):

u1n+1
j = u1n

j −
k

h
(F n

j − F n
j−1) + ksn

j , (5.3)

u2n+1
j = u2n

j −
k

h
(F n

j+1 − F n
j ) + ksn

j . (5.4)

This numerical scheme is known to produce numerical diffusion, which smooths

the shock fronts [66]. However, for the semi-linear system (2.1), the solutions

have bounded gradients (see [14]), and eventual discontinuities can arise only
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from the initial data. Moreover, higher-order schemes are not necessarily more

accurate than the first-order schemes [47]. Based on these two facts, we prefer

to use the upwind method throughout this chapter.

It should be specified that there are two types of instabilities associated

with this numerical scheme [47]. First, there is a convective instability, when

the Courant-Friedrichs-Lewy (CFL) condition is not satisfied, that is, when the

time step k is such that |γ|k/h > 1. Second, because of the nonlocal turning

rates, there is a relaxation instability determined by the eigenvalues of the

matrix for the source term (that is, the right-hand-side of equations (2.1)).

This second instability causes further restrictions on the time step k. The

restrictions will depend on the maximum density of individuals. Throughout

the simulations, we use the space step h = 0.01, and the time step k = 0.038

chosen such that it satisfies the CFL condition | ± γ|k/h = 0.38 < 1 (here

γ = 0.1). Note that this time step is enough to ensure that there is no

relaxation instability.

To calculate the source terms sn
j , we approximate the infinite integrals (2.5)

– (2.8) by integrals on finite domains: 0 < x < 6j, j = sr, sa, for attractive

and repulsive kernels, and 0 < x < 2sal for alignment. The approximation is

accurate to order 10−8:
∣

∣

∣

∣

∫ ∞

0

Kj(s) (u(x + s, t) − u(x − s, t)) ds−
∣

∣

∣

∣

∫ 6sj

0

Kj(s) (u(x + s, t) − u(x − s, t)) ds

∣

∣

∣

∣

≤ 10−8, j = r, a
∣

∣

∣

∣

∫ ∞

0

Kal(s)
(

u∓(x + s, t) − u±(x − s, t)
)

ds −
∣

∣

∣

∣

∫ 2sj

0

Kal(s)
(

u∓(x + s, t) − u±(x − s, t)
)

ds

∣

∣

∣

∣

≤ 10−8. (5.5)

These finite integrals are further discretized using Simpson’s method [118].

Moreover, we choose the domain length L such that 6j ( L, j = sr, sa. We

will perform simulations with both types of kernels Kj , j = r, al, a (i.e., kernels

described by equations (2.11), and kernels described by equations (2.9)).

As mentioned in Chapter 2, we use periodic boundary conditions through-

out this thesis to allow for comparison with other models (see [17, 60]). This
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requires the nonlocal interaction terms to wrap around the boundaries. More

precisely, we define

u±(x + s) = u±(0 + s) if x + s ≥ L, and

u±(x − s) = u±(L − s) if x − s ≤ 0. (5.6)

A discussion of other types of boundary conditions for nonlocal transport

problems can be found in [47].

To check the validity of the results obtained via linear stability analysis

(Chapter 4), we choose the initial conditions to be small random perturbations

of the spatially homogeneous steady states. The parameters for the domain

length and interaction ranges are chosen to be L = 10, sr = 0.25, sal = 0.5,

and sa = 1. These four parameters, as well as y0, mal, ma, mr and A, are

kept fixed during the simulations (see Table 2.1). All other parameters will be

varied at some point. The parameters that are varied are precisely those that

can be used to characterize animal groups during different behaviors.

We verified the numerical results by comparing with analytical predictions

obtained via linear stability analysis, which predicted the wave numbers of

perturbations which are unstable (see the discussion in Chapter 4). In par-

ticular, for predicted unstable wave numbers, the numerical simulations show

pattern formation, while for stable wave numbers, there is no pattern. More-

over, the number of groups that arise in the simulations agree with the wave

number that becomes unstable: kj = 2jπ/L, j ∈ N+.

To exclude the effect of the boundaries, we doubled the domain size. More-

over, to exclude possible artifacts of the numerical scheme, we refined the grid

mesh. The results showed no significant differences.

The upwind scheme is sufficient for the results in this chapter. However,

in Chapter 6 we will identify some bifurcation points for the spatially homo-

geneous steady states, and perform a weakly nonlinear analysis in the neigh-

borhood of these points. Because of the diffusivity of the upwind scheme,

it cannot be used to exactly identify the points where the steady states lose

their stability. The points are identified with an accuracy of O(10−1) only. To
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increase the accuracy with which these points are identified, in Chapter 6 we

will use a second-order McCormack scheme [47]:

ū1n
j = u1n

j −
k

h
(F n

j − F n
j−1) + ksn

j ,

u1n+1
j = 0.5

(

ū1n
j + u1n

j −
k

h
(F̄ n

j+1 − F̄ n
j ) + ks̄n

j

)

, (5.7)

ū2n
j = u2n

j −
k

h
(F n

j − F n
j−1) + ksn

j ,

u2n+1
j = 0.5

(

ū2n
j + u2n

j −
k

h
(F̄ n

j+1 − F̄ n
j ) + ks̄n

j

)

. (5.8)

This scheme can identify the bifurcation points with a O(10−2) error. Note

that the final patterns obtained with this McCormack scheme are similar to

those obtained using the upwind scheme.

5.3 Spatial and spatiotemporal patterns ob-

tained for model M1 with odd attractive

and repulsive kernels

We start the analysis of the spatial and spatiotemporal patterns displayed by

system (2.1) by thoroughly investigating the model M1 introduced in Section

2.2, with kernels defined by (2.11). We should mention that all the patterns

we will present in this section describe the long-time behavior of the solutions.

In Section 5.4, we will also investigate some transitory patterns.

The numerical simulations show four types of possible behavior: station-

ary pulses, traveling pulses, traveling trains and zigzag pulses (Figures 5.1

and 5.2). By stationary pulses (Figure 5.1 (a) and (d)), we mean spatially

nonhomogeneous steady states. Traveling pulses (Figure 5.1 (b)) are defined

as spatially nonhomogeneous solutions that have a fixed shape and move at

a constant speed c: u±(x, t) = U±(z), z = x − ct, and U±(±∞) = 0. The

periodic boundary conditions allow us to treat the domain as infinite, and

therefore it makes sense to consider traveling pulses. Traveling trains (Figure

5.1 (c)) are periodic solutions of the form u±(x, t) = U±(z), z = x − ct, with
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U± periodic functions of z. The zigzag pulses (Figure 5.2) are traveling solu-

tions that periodically change direction. Moreover, compared to the case of

traveling pulses, where the shape of the solutions does not change, for zigzag

pulses the shape changes slightly when the entire group turns around.

A first observation is that both stationary and moving groups have clearly

defined boundaries, where the population density drops to zero very quickly.

Moreover, in the case of moving groups (Figure 5.1(b)), the profile is steeper

at the leading edge of the group, and shallower at the back. This phenomenon

is caused by attraction towards other individuals. Under the influence of the

attractive force, organisms at the front of the group have the tendency to turn

around more often, to stay in contact with the others. Therefore, they move

slower than those at the rear of the group, and this leads to crowding at the

leading edge of the group.

In what follows, we present the results in three separate cases: (a) a case

that contains only attraction and repulsion, (b) a case with only alignment,

and (c) a case that takes into consideration all three social interactions. The

types of solutions that can be obtained in each of these cases are summarized

in Table 5.1, and discussed below. These results were simulated with fixed

parameters sampled from the ranges described in Table 5.2.

(i) Only attraction and repulsion. For qal = 0, the only possible spa-

tially homogeneous solution is (u+, u−) = (u∗
3, u

∗
3) (as described by Figure 4.3

(a)). In the parameter range where it is unstable, if we start with small random

perturbations of this steady state as initial conditions, we obtain stationary

pulses (Figure 5.1 (a)). We sampled a large number of parameter combina-

tions (from the parameter space where u3 is unstable), and the results always

showed stationary pulses. These results suggest that attraction and repulsion

are sufficient to cause group formation, but not sufficient to make the group

travel.

(ii) Only alignment. When alignment is the only social force considered,

it is possible to have up to five spatially homogeneous solutions (u∗
i , i =

1..5) (Figure 4.3). Locally unstable steady states (Figure 4.2 (d) and (b))
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Figure 5.1: Examples of long-time behavior displayed by model M1, with odd attractive

and repulsive kernels: (a) Stationary pulses obtained for qa > qr and no alignment: qa = 10,

qr = 0.1, qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9; (b) Traveling pulse: qa = 3.2, qr = 1.0,

qal = 2.6, γ = 0.1, λ1 = 0.2, λ2 = 0.9; (c) Traveling trains obtained for qal = 2.0, qa = 0,

qr = 0, γ = 0.1, λ1 = 0.4, λ2 = 1.8; (d) Stationary pulses, obtained for qal = 2, qa = 0,

qr = 0, γ = 0.1, λ1 = 1.33, λ2 = 6.
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Figure 5.2: Zigzag movement obtained for model M1, with odd attractive and repulsive

kernels. The brighter the color, the higher the population density. Here qa $ qr . Case (a)

shows the pattern for small turning rates, whereas (b) shows the pattern for large turning

rates. The following parameters are the same for all these two cases: qr = 1.2, qa = 15.0,

qal = 2.0, γ = 0.1. The turning rates are as following: for (a) λ1 = 0.2, and λ2 = 0.9; for

(b) λ1 = 0.33, λ2 = 1.5. The structure of a turn during zigzag movement is determined

by the turning rates. For small individual turning rates, the density is higher during the

turn (i.e., the group is more compact), while for large individual turning rates (especially

for large λ2), the density is higher between the turns.
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Case Social Traveling Traveling Stationary Zigzag

interactions trains pulses pulses pulses

(i) Only attraction No No Yes No

and repulsion

(ii) Only alignment Yes No Yes No

(iii) Attraction, Yes Yes Yes Yes

repulsion, and

alignment

Table 5.1: A summary of the different types of possible solutions exhibited

by model M1 under the influence of three different sets of social interactions:

traveling trains, traveling pulses, stationary pulses, and zigzag pulses. The

patterns represent the long-time behavior of the solutions.

Activity γ λ1, λ2 qal qr qa

Traveling large small large small large

Foraging medium, large large medium large small

Rest small medium small medium medium

Table 5.2: Examples of magnitudes of model parameters that characterize

animal behavior corresponding to different activities. The magnitudes cor-

respond to parameters varying within the following ranges: γ ∈ (0.01, 0.1),

λ1 ∈ (0.2, 2), λ2 ∈ (0.9, 9), qal ∈ (0, 3), qr ∈ (0.1, 3), qa ∈ (0.1, 3).

are possible when the turning rates are large, and these solutions evolve into

either traveling trains (Figure 5.1 (c)) or stationary pulses (Figure 5.1 (d)).

More precisely, traveling trains are possible when the initial conditions are

perturbations of (u+, u−) = (u∗
1, u

∗
5), whereas stationary pulses are obtained
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when we start either with perturbations of (u∗
3, u

∗
3), or with perturbations of

(u∗
1, u

∗
5) and very large turning rates.

(iii) Attraction, repulsion and alignment. The most complex behav-

ior is obtained when all three social interactions take place. In addition to the

behaviors described above, we observe zigzag pulses in this case (Figure 5.2

(a), (b)). This behavior is caused by high inter-individual attraction (qa , qr).

Note that for the zigzag movement, the lengths of the paths are correlated

with the turning rates, λ1 and λ2. In Figure 5.2 (a), the turning rates are small

(i.e., λ1 = 0.2, λ2 = 0.9), and we observe short path lengths. In contrast, when

we increase the turning rates (e.g., λ1 = 0.33, λ2 = 1.5), we observe longer

path lengths, as shown in Figure 5.2 (b). The explanation for this is that when

these rates are small, the individuals in the middle part of the group as well

as those at the back do not turn very often. However, due to large attraction,

those at the front of the group turn around to make sure they are still with the

rest of the group. This leads to a steep increase in the number of individuals at

the leading edge of the group, who move in the opposite direction. As a result,

the entire group turns around. On the other hand, when the turning rates are

large, the straight paths between group turning maneuvers are much longer.

The individual turns help organisms to move away from their neighbors, and

keep them well spaced for a longer time.

Another important aspect of the zigzag movement that should be men-

tioned is the structure of the turn. More precisely, small turning rates (Figure

5.2 (a)) lead to a very compact group during the turns, while large turning

rates (Figure 5.2 (b)) make the group more compact before the turning ma-

neuver, but less compact during and after the turn.

Zigzag movement can be understood to be a transitory type of behavior

between traveling pulses, obtained when attraction is small, and stationary

pulses, obtained when attraction is extremely large compared to repulsion,

as shown in Figure 5.3. If we increase attraction, the model shows a tran-

sition from one type of solution to another. For attraction taking small to

medium values compared to repulsion, the system displays traveling pulses (as
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Figure 5.3: An illustration of the possible types of solutions and the transitions between

them as one varies the attraction parameter qa. Initially, there is a traveling pulse, and

as attraction increases, it starts moving in a zigzag manner. A very large attraction force

keeps all individuals together, hindering the group movement.

in Figure 5.1(b)). As the magnitude of attraction increases, these groups start

moving back and forth, in a zigzag manner (as in Figure 5.2). When this so-

cial interaction becomes extremely strong (for example qa = 20, and qr = 0.1,

and all other parameters as specified in Figure 5.2), the aggregations become

stationary.

A similar transitory type of behavior can be obtained when varying multiple

parameters. For example, the model could be used to describe the succession of

daily activity patterns exhibited by different groups of animals. Usually, these

transitions from one activity to another can be influenced by internal factors

(e.g., hunger, necessity to rest, etc.) or external ones (e.g., temperature [125]

or light [48]). These factors have an impact on group parameters, such as

motility, and this translates into different turning rates and speed [125].

To exemplify this transitional process, we look at the following succession

of activities: forage → rest → travel → forage. The initial conditions for forage

are random perturbations of spatially homogeneous steady state (u∗
1, u

∗
5). For

the next three activities, the initial conditions for the simulations are the

densities generated by the previous activity. Table 5.2 summarizes possible

relative magnitudes for model parameters.

Figure 5.4 shows the outcome of the numerical simulation which describes

this succession of activities. Initially, there are many small clusters that travel

for a while, and then stop. During the resting period, the groups are sta-

tionary, with the peak of total local densities decreasing. However, as both
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attraction and alignment increase to simulate travel, all animals gather into

one large aggregation, which moves towards a new site. Once arrived there,

parameters are changed to simulate foraging and the group spreads again. It

should be noted that even though we use the same parameters to simulate

the two foraging behaviors, the initial conditions play a very important role.

Initially, the small groups that form during foraging are moving through the

domain. When we change the parameters from travel back to foraging, the

groups that arise are now stationary. A similar hysteresis phenomenon was

obtained in [24], with a Lagrangian model.

It was previously shown [37, 40] that group polarization helps populations

to improve their searching behavior, by climbing noisy gradients faster. Our

model shows that without alignment and in the absence of external environ-

mental cues, group movement does not occur. Group movement is possible

with alignment, but it depends on the magnitude of the turning rates: high

individual turning rates make it impossible for the group to move as an entity.

Therefore, we can say that alignment appears to be a necessary ingredient,

but not a sufficient one for group movement.

In conclusion, the model shows that interactions between different social

factors give rise to a wide range of patterns. We have seen, for example, that

medium attraction combined with repulsion and alignment leads to traveling

pulses, while large attraction plus repulsion and alignment leads to zigzag

pulses. None of these two types of solutions can be obtained with alignment

alone, nor with attraction and repulsion alone. They are the result of all three

social interactions.

5.4 Spatial and spatiotemporal patterns for

different communication mechanisms

We now focus on the patterns displayed by the hyperbolic model (2.1) when

we consider five different communication mechanisms. Here, we will consider

the interaction kernels defined by equations (2.9).
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Figure 5.4: The figure shows a ”bird’s eye view” for the total population

density during the succession of three activities: forage → rest → travel →

forage. The lighter the color, the higher the population density. Parameter

values are chosen in accordance with Table 2. During foraging ( qr = 2.0,

qa = 0.1, qal = 1.9, γ = 0.089, λ1 = 1.3, λ2 = 6), individuals turn frequently

and attraction is smaller than repulsion, which leads to many small groups

moving around the domain. During rest (qr = 0.10, qa = 2.1, qal = 0.5,

γ = 0.015, λ1 = 0.286, λ2 = 1.286), the individuals slow down and turn less

frequently. The groups have now a tendency to disperse. To travel (qr = 0.5,

qa = 4.1, qal = 2.0, γ = 0.1, λ1 = 0.2, λ2 = 0.9), the attraction increases and

all the individuals come together to form one large group that moves around

the domain. To forage again, the group splits into multiple small groups that

spread over the domain.
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As in the previous section, we investigate the types of spatial patterns that

arise in three cases: (a) only attraction and repulsion; (b) only alignment; (c)

full model with attraction, alignment and repulsion. Moreover, compared to

Section 5.3, where we investigated only the patterns that represent the long-

time behavior of the solutions, in this section we also discuss some transitory

patterns that occur at intermediate times.

For the numerical simulations, we focused on the parameter space where

the wave numbers of the perturbations are unstable, as predicted by the linear

stability analysis. However, since there are so many parameters (even after

nondimensionalization), and the parameter spaces corresponding to the five

sub-models do not overlap perfectly, we have sampled only some parameter

subspaces.

• Case (a): we fix qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9, and A = 2. The

sampled parameter subspace is (qa, qr), with qa, qr ∈ [0.5, 9]. For the

initial conditions we consider u∗ = u∗∗.

• Case (b): we fix qa = qr = 0, γ = 0.1, A = 2, and investigate the

influence of the turning rates on the group structure. For this, we define

λ1 = 0.2/τ , λ2 = 0.9/τ , and vary τ . The sampled parameter subspace is

(qal, τ), with qal ∈ [0.5, 10], and τ ∈ [0.006, 1]. As initial conditions, we

consider u∗ *= u∗∗.

• Case (c): we fix γ = 0.1, λ1 = 0.2, λ2 = 0.9, A = 2. The sampled param-

eter subspace is (qa, qr), with qa, qr ∈ [0.5, 10]. As initial conditions, we

consider u∗ = u∗∗.

It should be specified that the obtained patterns are robust to parameter

changes, in the sense that each pattern is observed for a range of parameters.

The numerical simulations reveal ten types of spatial and spatiotemporal

patterns, shown in Figures 5.5 and 5.6: (1) stationary pulses formed of small,

high-density subgroups; (2) stationary pulses that have a relatively constant

internal density; (3) ripples; (4) feathers; (5) traveling pulse; (6) traveling

train ; (7) zigzag pulses; (8) breathers; (9) traveling breathers; (10) semi-
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zigzag pulses. Patterns (1)-(3), and (5)-(6) are classic patterns (see [85] and

[60]). The other five patterns are new for this area of animal group formation.

In the following we give a short characterization of all of these patterns.

• Stationary pulses. As mentioned in Section 5.3, the stationary pulses

(Figure 5.1(a),(d), and Figure 5.5(1),(2)) are spatially nonhomogeneous

steady states that are motionless in time. Note that, compared to the

pulses obtained in Section 5.3, here we can also obtain pulses formed of

high-density subgroups. These pulses are the result of considering very

localized attractive and repulsive interactions.

• Traveling pulses. Traveling pulses (Figure 5.1(b) and Figure 5.5(5))

are defined as spatially nonhomogeneous solutions that have a fixed

shape and move at a constant speed c: u±(x, t) = U±(z), z = x−ct, and

U±(±∞) = 0. With this definition, we can understand the stationary

pulses as as being traveling pulses that move with zero speed (c = 0).

• Traveling trains. Traveling trains (Figure 5.1(c) and Figure 5.5(6))

are periodic solutions of the form u±(x, t) = U±(z), z = x− ct, with U±

periodic functions of z. We should specify here that the traveling train

is a pattern that doubles the number of its peaks when we double the

domain size. A traveling pulse, on the other hand, has the same number

of peaks when we double the domain size.

• Ripples. Ripples (Figure 5.5 (3)) are left-moving and right-moving

traveling waves that pass through each other [60]. Note that the pattern

show in Figure 5.5 (3) is a transient pattern. For very large time, the

individuals aggregate into a stationary group.

• Feathers. We call feathers (Figure 5.5 (4)) those stationary pulses that

lose and gain subgroups of individuals at the edge.

• Breathers. Breathers (Figure 5.5 (8)) are stationary pulses that pe-

riodically expand and contract. This leads to a periodic change in the

amplitude of the solutions.
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• Traveling breathers. Traveling breathers (Figure 5.5 (9)) are breather-

like groups that travel through the domain.

• Zigzag pulses. As mentioned in Section 5.3, the zigzag pulses (Figure

5.2, and Figure 5.5 (7)) are traveling solutions that periodically change

direction. Moreover, compared to the case of traveling pulses, where the

shape of solutions does not change, for zigzag pulses the shape changes

slightly when the entire group turns around ([30]).

• Semi-zigzag pulses. The semi-zigzag pulses (Figure 5.6 (a),(b)) are

pulses characterized by movement in one direction, alternated by rest.

These pulses are a temporal transition between traveling trains (at the

start of the simulations) and stationary pulses (after the simulations run

for a long time). It should be mentioned that it is possible to obtain these

pulses also for the case discussed in Section 5.3 (i.e., model M1 with type

(i) kernels). In that section, we focused only on the long-time behavior

of solutions, and therefore this pattern was not discussed there. As we

will shortly see, the patterns are obtained when alignment is the only

social interaction. Therefore, it does not matter what type of kernels we

consider for attractive and repulsive interactions.

Table 5.3 shows a summary of the patterns observed in the three cases:

(a) only attraction and repulsion, (b) only alignment, (c) attraction, repulsion

and alignment. The dashes indicate that the pattern was not observed. Since

we do not sample the entire parameter space, we note that Table 5.3 might not

be complete. Moreover, it is likely to find other new and interesting patterns,

in different parameter subspaces. Such an example will be discussed in Section

5.5. Our aim here is not to find all patterns, but to open the door towards the

numerous possibilities offered by our modeling procedure.

By fixing all the parameters, we can investigate the role of different model

assumptions (M1 versus M2, etc.) in determining the resulting spatial pattern.

We do this in the context of all three social interactions: attraction, repulsion,

and alignment (i.e., case (c)). We set qr = qa = 4, qal = 2 (that is, attraction
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Figure 5.5: Examples of spatial patterns displayed by models M1-M5 (shown

is total density u = u+ + u−): (1) stationary pulses formed of small, high-

density subgroups (shown M1: qal = 0, qa = 2, qr = 2.4, λ1 = 0.2, λ2 = 0.9);

(2) stationary pulses (density even distributed over the group) (shown M2:

qal = 0, qa = 4, qr = 0.5, λ1 = 0.2, λ2 = 0.9); (3) ripples (shown M5: qal =

2, qa = 1.5, qr = 1.1, λ1 = 0.2, λ2 = 0.9); (4) feathers (shown M3: qal =

0, qa = 6, qr = 6.4, λ1 = 0.2, λ2 = 0.9); (5) traveling pulse (shown M1: qal =

2, qa = 1.6, qr = 0.5, λ1 = 0.2, λ2 = 0.9); (6) traveling trains (shown M3:

qal = 2, qa = 0, qr = 0, λ1 = 6.67, λ2 = 30.0); (7) zigzag pulses (shown M4:

qal = 0, qa = 2, qr = 2, λ1 = 0.2, λ2 = 0.9); (8) breathers (shown M4: qal =

0, qa = 2, qr = 1, λ1 = 0.2, λ2 = 0.9); (9) traveling breathers (shown M4:

qal = 2, qa = 4, qal = 4, λ1 = 0.2, λ2 = 0.9). The rest of the parameters are:

γ = 0.1, sr = 0.25, sal = 0.5, sa = 1.0, mr = sr/8, mal = sal/8, ma = sa/8. For

these simulations, we choose the function f in equation [2.3] to be described by

f(x) = 0.5 + 0.5 tanh(x− 2). The initial conditions are random perturbations

of amplitude 0.01 of the spatially homogeneous steady states (u∗, A−u∗). For

patterns (1)-(2), and (4)-(9), simulations were run for 200, 000 time steps, and

we plot here the last 20 to 80 time steps. For pattern (3) simulations were run

for 10, 000 time steps.
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Figure 5.6: Semi-zigzag pattern (10). (a) Initially, all subgroups move to the

left. After approximatively 20 time steps some groups of individuals (shown

here to be positioned in space around the mark 50) become stationary for a very

short time (approximately 10-20 time steps). This leads to other neighboring

groups, which are positioned at their left, to become stationary for a short

period of time. This stationary behavior propagates to the left, in a wave-

like manner. Moreover, the behavior is superimposed on the movement to

the left displayed by these groups. (b) As time progresses, the groups remain

stationary longer, and so, the temporal length of this wave increases. For

example, the groups positioned at the right-end of the domain are stationary

for about 120 time-steps. Eventually, the spatially nonhomogeneous solution

will be formed only of high density stationary groups. The parameters are:

qa = qr = 0, qal = 2.2, λ1 = 0.667, λ2 = 3.0, γ = 0.1, sr = 0.25, sal = 0.5, sa =

1.0, mr = sr/8, mal = sal/8, ma = sa/8. The simulations were run for 200, 000

time steps (up to time t=3900). Here we plot (a) some 300 time steps at the

beginning of the simulations, and (b) the last 180 time steps.
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Model Travel. Travel. Stat. Zigzag Semi-zigzag Breather Travel. Feather Ripples

train pulse pulse pulse pulse breather

M1 (b) (c) (a),(b),(c) – (b) – – – –

M2 (b),(c) (b),(c) (a),(c) (c) – – – – –

M3 (b) (c) – – – – – (a),(c) –

M4 (b) (c) (a),(b),(c) (a),(c) (b) (a) (a),(c) – –

M5 – – (b) – – – – – (a),(c)

Table 5.3: A summary of the different types of possible solutions exhibited by the five models, M1 - M5. Here (a), (b), and

(c) represent the three discussed cases: (a) only attraction and repulsion, (b) only alignment, (c) attraction, repulsion, and

alignment. The dashes mean that the pattern has not been observed. We focused on the parameter space where the wave

numbers of the perturbations are unstable, as predicted by the linear stability analysis. However, since this parameter space

is very large, we have sampled only some parameter subspaces. Case (a): fix qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9, and A = 2.

The sampled parameter subspace is (qa, qr), with qa, qr ∈ [0.5, 9]. For the initial conditions we consider u∗ = u∗∗. Case (b):

fix qa = qr = 0, γ = 0.1, A = 2, and investigate the influence of the turning rates on the group structure. For this, we define

λ1 = 0.2/τ , λ2 = 0.9/τ , and vary τ . The sampled parameter subspace is (qal, τ), with qal ∈ [0.5, 10], and τ ∈ [0.006, 1]. For the

initial conditions we take u∗ *= u∗∗. Case (c): fix γ = 0.1, λ1 = 0.2, λ2 = 0.9, A = 2. The sampled parameter subspace is (qa, qr),

with qa, qr ∈ [0.5, 10]. For the initial conditions we consider u∗ = u∗∗. The obtained patterns are robust to parameter changes,

in the sense that each pattern is observed for range of parameters.
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and repulsion greater than alignment), and λ1 = 0.2, λ2 = 0.9. The rest of

the parameters are given in the caption of Figure 5.5. Models M1 and M2

yield stationary pulses, as shown in Figure 5.5, pattern (1). This suggests

that for this particular case (i.e., qr, qa > qal), it does not matter whether the

signals received from within the alignment range come only from neighbors

moving towards the reference individual (M1), or from neighbors moving in

both directions (M2). Model M3 shows feathers, as in Figure 5.5, pattern (3).

In this case, the group as a whole is stationary. However, those individuals

positioned at the edge, facing away from the group, leave and do not turn

around. This happens because the individuals do not receive information from

behind. Model M4 shows traveling breathers, as in Figure 5.5, pattern (9).

This behavior is the result of two factors. First, since repulsion has the same

magnitude as attraction, individuals can escape the group. These individuals

move faster than the rest of the group. The rest of the group executes a sort of

zigzag (those very high density patches displayed by pattern (9)). Second, the

boundary conditions are periodic. That is, individuals that have left the group

now are joining it again. This leads to expanding and contracting moving

groups (i.e., traveling breathers). Model M5 shows ripples, as in Figure 5.5,

pattern (3). In this case, the individuals react only to signals coming from

ahead. This way, when two left-moving and right-moving waves approach

each other, the majority of individuals within each group turn around, to

avoid collision. However, there are some individuals that continue moving in

the same direction. This behavior leads to the appearance that the waves pass

through one another.

5.5 Spatiotemporal patterns caused by drift

in communication

The patterns shown in Table 5.3 are likely not the only possible patterns.

There are two main reasons for this. First, we have focussed only on the five

sub-models M1-M5. However, it is possible to consider different communica-
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tion mechanisms and to derive corresponding sub-models. Second, we have

not sampled the entire parameter space. It may be possible to obtain new

patterns in different parameter subspaces. For example, as discussed in Chap-

ter 2, one can consider an asymmetry in the communication mechanisms by

assuming that the information received from the right is more intense than the

information received from the left (pr > pl). The assumption makes sense if we

consider environmental effects (e.g., the wind blowing from the right). Figure

5.7 shows some examples of spatiotemporal patterns obtained for models M1,

M3, M4, and M5, when we assume a drift in communication: (a) traveling

feathers, obtained for model M3; (b) traveling zigzags obtained for model M1;

(c) a different type of traveling breathers, obtained for model M4; (d) trav-

eling pulses, obtained for model M1, in the absence of alignment. Note that

patterns (a), (b), and (c) are new.

In Sections 5.3 and 5.4, we have seen that in the absence of external stimuli,

attractive and repulsive interactions alone cannot lead to a traveling pulse (see

Tables 5.1 and 5.3). These results are consistent with the analysis presented in

Chapter 3, when we investigated the effect of an odd kernel. There, we have

seen that neither the hyperbolic system nor the limiting parabolic equation

can display moving groups in the absence of alignment. However, for the

parabolic equation (3.33), destroying the symmetry of the kernel by assuming

a drift in the communication mechanism can make the groups move. Figure

5.7(d) suggests that a similar effect is obtained for the hyperbolic system (2.1).

When pr = pl = 1, the group does not move (the resulting pattern being similar

to the one shown in Figure 5.5 (2)). However, when pr = 1.1 and pl = 0.9, the

group does move (as shown in Figure 5.7(d)). Comparing these two patterns,

we conclude that in the absence of alignment, asymmetry in the reception of

signals can lead to moving groups.
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Figure 5.7: Examples of patterns obtained when we assume asymmetric com-

munication. In the following, we choose pr = 1.10, pl = 0.9. (a) traveling feath-

ers, obtained for model M3; qal = 2.0, qa = 1.91, qr = 2.05, λ1 = 0.2, λ2 = 0.9.

(b) traveling zigzags obtained for model M1; qr = 1.2, qa = 15.0, qal = 2.0,

γ = 0.1, λ1 = 0.2, λ2 = 0.9. (c) a different type of traveling breathers, ob-

tained for model M4; qal = 0, qa = 2, qr = 1, λ1 = 0.2, λ2 = 0.9. (d) traveling

pulse, obtained for model M1, in the absence of alignment; qal = 0, qa = 2.4,

qr = 0.1, λ1 = 0.2, λ2 = 0.9.
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5.6 Discussion

In this chapter, we investigated numerically the spatial and spatiotemporal

patterns displayed by the hyperbolic system (2.1). Since the one-dimensional

models existent in the literature consider either only attractive and repulsive

social interactions, or only alignment interactions, we studied the patterns that

occur in three different cases: (a) only attractive and repulsive interactions;

(b) only alignment interactions; (c) attractive, repulsive, and alignment inter-

actions. We showed that alignment is a necessary ingredient for the movement

in the absence of external environmental cues. More precisely, attraction and

repulsion alone lead to stationary groups. However, when alignment is in-

cluded, moving groups are possible. An alternative to including alignment is

to consider an environmental drift, which induces asymmetry in the reception

of signals. This assumption, too, can lead to moving groups.

We also investigated the patterns obtained considering different communi-

cation sub-models. The results show at least 13 different emergent patterns.

We should note that the described new patterns hold scientific interest. To our

knowledge, some of these patterns (e.g., feathers) have never been previously

observed. The results also show that the way organisms receive information

may play a central role in the emergence of complex patterns observed in

biological aggregations.

In this chapter, we performed simulations with two types of kernels: odd

kernels and translated Gaussian kernels. Comparing the patterns obtained in

Section 5.3 with the patterns displayed by model M1 in Section 5.4, we observe

that the long-time behavior is similar, no matter what type of kernels we use.

In both cases, we obtain stationary pulses, traveling pulses, traveling trains,

and zigzag pulses.

Also, we have studied the transitions between different daily activities, as

the model parameters are varied. This is the first time that transitions are

studied in the context of a continuum model. Similar transition results were

previously obtained with an individual-based model [24].

To verify that the patterns are not artifacts of the periodic boundary condi-
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tions, we also performed simulations with homogeneous Neumann, Dirichlet,

and open boundary conditions (not shown here). For Neumann boundary

conditions, it was not possible to obtain traveling trains, or traveling pulses,

both of which require an infinite domain. However, the other patterns were

qualitatively similar to those obtained with periodic conditions. For Dirichlet

and open boundary conditions, the results were similar only for a quite short

period of time, until the moving groups leave the domain.

In the following chapter, we will investigate analytically some of these pat-

terns. The linear analysis performed in Chapter 4 gives conditions on the

parameters that determine when the steady states become linearly unstable

and form spatial and spatiotemporal patterns. The spatially homogeneous

solutions that become unstable when σ(k) > 0 are eventually bounded by

nonlinear terms. It is precisely these terms that determine the final patterns

we have investigated numerically in this chapter. In Chapter 6, we will take

into consideration these nonlinear terms and use them to derive amplitude

equations that govern the behavior of the solutions for large time. In par-

ticular, we will use weakly nonlinear theory to understand the mechanisms

involved in the formation of these patterns.
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Chapter 6

Weakly nonlinear analysis of the
model

6.1 Introduction

The results of the previous chapter show that the hyperbolic model (2.1) dis-

plays a wide variety of complex spatial and spatiotemporal patterns. In the

following1, we will investigate the mechanisms involved in the formation of

some of these patterns.

The linear stability analysis we discussed in Chapter 4 is only valid for

small time and infinitesimal perturbations. For large time, the nonlinear terms

dominate the growth of the unstable modes. To study the influence of these

nonlinear terms on the final heterogeneous pattern, we will employ the classi-

cal method of weakly nonlinear analysis (see [74, 119]). It is weakly nonlinear

since, although it incorporates the nonlinear terms, it only involves pertur-

bation about the critical points obtained through linear stability [117]. This

analysis has been originally developed in a fluid dynamics context (e.g., the

Bénard problem [74]). However, the method is now widely applied in different

areas, such as physics [9], mathematical biology [68, 88, 117], etc. The method

uses separate time scales to study how the amplitude of the heterogeneous so-

1A version of this chapter has been submitted for publication.

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Weakly nonlinear analysis for a hyperbolic

model for animal group formation, J. Math. Biol.
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lution varies with time. More precisely, there is a fast time scale and a slow

time scale. The fast time scale is represented by the initial time region (t),

where the solution starts to develop. This is the time scale where the linear

stability analysis is valid. The slow time scale is represented by a second time

region (T = ε2t), where the effects of the nonlinear terms become important.

Here, the amplitude of these heterogeneous patterns varies slowly. The two

time variables t and T are considered to be independent as ε approaches zero.

In the following, we will focus on one of the communication sub-models

proposed in Chapter 2, namely model M1, with interaction kernels defined by

(2.9). We will investigate the mechanisms that lead to the formation of some

of the patterns displayed by this model. In Section 5.4, we showed that this

particular model can display at least four different spatial and spatiotemporal

patterns (see Table 5.3, and Figure 5.5): stationary pulses, traveling trains,

semi-zigzag pulses, and traveling pulses. Here, we will investigate the emer-

gence of two of these patterns: stationary pulses and traveling trains. Both

patterns occur near bifurcation points of the spatially homogeneous steady

states. The semi-zigzag pulses are a temporal transition from traveling trains

to stationary pulses. The fourth pattern, traveling pulses, seems to occur far

from the bifurcation point.

Figure 6.1 shows two patterns that emerge through a real bifurcation ((a)

and (b)), and two patterns that emerge through an imaginary bifurcation ((c)

and (d)). Figure 6.1(a) corresponds to a single stationary pulse obtained for

large attractive interactions (qa). Figure 6.1(b) corresponds to multiple sta-

tionary pulses which are obtained for large turning rates (λ2). Figure 6.1(c)

corresponds to a traveling train formed of one peak, obtained for large at-

traction. Figure 6.1(d) corresponds to a traveling train formed of 17 peaks,

and obtained for large turning rates. As mentioned in Chapter 5, we define a

traveling train to be a pattern that doubles the number of its peaks when we

double the domain size. A traveling pulse, on the other hand, has the same

number of peaks when we double the domain size. By this definition, the

pattern shown in Figure 6.1(c) is a traveling train, since doubling the domain

size leads to the formation of two moving groups.
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Figure 6.1: Patterns exhibited by model M1. Shown is the total density u(x, t) = u+(x, t)+

u−(x, t). (a) Stationary pulses; qa = 0.93, qr = 2.2, qal = 0, λ1 = 0.2, λ2 = 0.9, γ = 0.1.

(b) Stationary pulses; qr = qa = 0, qal = 0.85, λ1 = 2.0, λ2 = 9.0, γ = 0.1. (c) Traveling

train; qa = 1.0, qr = 0.1, qal = 2.45, λ1 = 0.2, λ2 = 0.9. (c) Traveling trains; qa = qr = 0,

qal = 2.08, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1.
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In Sections 6.2 and 6.3, we focus on the situation when the bifurcation

occurs at a real eigenvalue, as seen in Figure 4.3(a) at qa = q0
a, and in Figure

4.3(b) at qal = q0
al. Here, the focus will be on the spatially homogeneous

steady state (u∗, u∗∗) = (u∗
3, u

∗
3). We first analyze system (2.1) when only

attractive and repulsive interactions are present (that is, qr, qa *= 0, qal = 0).

In this case, we know from the results in Chapter 5 that it is possible to obtain

stationary heterogeneous patterns, such as the single stationary pulse shown

in Figure 6.1(a). At the end of Section 6.3, we will briefly discuss the case

when qa = qr = 0 and qal *= 0. In this case, it is possible to obtain multiple

stationary pulses, such as those shown in Figure 6.1(b).

In Sections 6.4 and 6.5, we will study a bifurcation that occurs at a purely

imaginary eigenvalue, as seen in Figure 4.3 (b) at q1
al, and in Figure 4.3 (c)

at q0
al). Now, the focus will be on the steady state (u∗, u∗∗) = (u∗

1, u
∗
5). To

keep the results tractable, we will consider the situation when alignment is

the only social interaction (that is, qal *= 0, qa = qr = 0). In this case,

we obtain spatiotemporal patterns described by traveling trains, as shown in

Figure 6.1(d). At the end of Section 6.5, we will briefly discuss the situation

when we include repulsive and attractive interactions. The traveling train

pattern that results in this case is shown in Figure 6.1(c).

We should specify that throughout this chapter, we will ignore the steady

states (u∗
2, u

∗
4) and (u∗

4, u
∗
2). First, as seen in Chapter 4, these states are al-

ways unstable. Moreover, the numerical simulations suggest that the solutions

perturbed from u∗
2 and u∗

4 go to the same attractor as the solutions perturbed

from the other three steady states (u∗
1, u∗

3, and u∗
5).

6.2 Weakly nonlinear analysis in the neigh-

borhood of a real bifurcation

In this section, we will consider only attractive and repulsive social interactions

(that is, qal = 0). The only spatially homogeneous steady state is (u∗, u∗∗) =

(A/2, A/2). We are interested in the stability of this steady state as we increase
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the magnitude of attraction (qa). Let us denote by q0
a the critical value of qa

for which the dispersion relation satisfies σ(q0
a, kc) = 0 (the case is depicted in

Figure 4.2(a) and Figure 4.3(a)). Let k = kc be the critical wave number. A

solution of (2.1) near the bifurcation point is given by

u±(x, t) ∝ eσt+ikcx + c.c., (6.1)

where “c.c.” stands for “complex conjugate”. We perform a perturbation

analysis in a neighborhood of the critical value (q0
a):

qa = q0
a + νε2, 0 < ε ( 1, ν = ±1. (6.2)

Writing the dispersion relation in a power series about q0
a, namely

σ(qa, kc) = σ(q0
a, kc) +

∂σ(q0
a, kc)

∂qa
ε2ν + O(ε4), (6.3)

and substituting it into (6.1), gives us

eσ(qa,kc)t+ikcx = eikcx+
dσ(q0

a,kc)
dqa

νε2t ≈ eikcxα(ε2t). (6.4)

The amplitude α depends on the slow time ε2t. This suggests we introduce a

new time variable T = ε2t and consider fast and slow time scales, t∗ and T ,

respectively:

t → t∗ + T.

In the limit ε → 0 we treat these two time scales as being independent [84].

We denote ũ±(x, t∗, ε, T ) = u±(x, t). For notational simplicity, we drop the

asterisk and the tilde, and assume the following formal expansion

u+(x, t, ε, T ) = u∗ + εu+
1 + ε2u+

2 + ε3u+
3 + O(ε4),

u−(x, t, ε, T ) = u∗∗ + εu−
1 + ε2u−

2 + ε3u−
3 + O(ε4). (6.5)

Throughout this chapter, we consider the turning rates to be defined by equa-

tion (2.4). We then expand the nonlinear function tanh(y±[u+, u−] − y0) =

tanh(y±[u∗, u∗∗] +
∑

j εjy±[u+
j , u−

j ] − y0) in a Taylor series about y±[u∗, u∗∗].

The turning functions (2.2) can therefore be written as

λ± = L1,2 + P1,2

∑

j

εjy±[u+
j , u−

j ] + S1,2(
∑

j

εjy±[u+
j , u−

j ])2 +

T1,2(ε
j
∑

j

y±[u+
j , u−

j ])3 + O(ε4), j = 1, 2, 3..., (6.6)
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with L1,2 and P1,2 defined by (4.13), and

S1 =
λ2

2
tanh(M1 − y0)

(

1 − tanh2(M1 − y0)
)

,

S2 =
λ2

2
tanh(−M1 − y0)

(

1 − tanh2(−M1 − y0)
)

,

T1 =
λ2

12

(

−(1 − tanh(M1 − y0)
2)2 + 4 tanh(M1 − y0)

2(1 − tanh(M1 − y0)
2)
)

,

T2 =
λ2

12

(

−(1 − tanh(−M1 − y0)
2)2 + 4 tanh(−M1 − y0)

2(1 − tanh(−M1 − y0)
2)
)

.

Since we consider qal = 0, this implies that M1 = 0, L1 = L2, P1 = P2,

S1 = S2, and T1 = T2.

The nonlinear system (2.1) can be written as

N(u) = 0, (6.7)

with u = (u+, u−)T . Substituting expressions (6.5)-(6.6) into this equation

leads to N(
∑

j=1 εjuj)=
∑

j Nj(uj)εj. At each O(εj), we can write Nj(uj) =

L(uj) − Nj − Ej. Here L(uj) represents the linear part of the system (2.1),

Nj contains the nonlinear terms formed of u±
j−1, u±

j−2, etc., and Ej contains

the slow time derivatives ∂T u±
j−2, (j ≥ 3) and the terms multiplied by ν. The

linear operator L is the same at each O(εj) step, whereas Nj and Ej have to

be calculated every time. Therefore, Nj(uj) = 0 reduces to

L(uj) = Nj + Ej , j = 1, 2, 3, .... (6.8)

Since the eigenvalues are real, the spatially homogeneous steady state becomes

linearly unstable to spatial patterns, and therefore, the linear operator L is

defined as

L(u) =

(

γ∂x + L1 + M5K ∗ · −L1 + M5K ∗ ·
−L1 − M5K ∗ · −γ∂x + L1 − M5K ∗ ·

)(

u+

u−

)

, (6.9)

where the convolution K ∗ · is defined by

K ∗ u± = qr

(

K̃r ∗ u± − Kr ∗ u±
)

− q0
a

(

K̃a ∗ u± − Ka ∗ u±
)

, (6.10)

with K̃r,a(s) = Kr,a(−s), and (Kr,a∗u±)(x) =
∫∞
−∞ Kr,a(s)u±(x−s)ds. Through-

out the analysis, we will use the operator Lkc , which is obtained by applying

L to solutions of the form eikcx:

Lkc =

(

γikc + L1 + M5K̂+(kc) −L1 + M5K̂+(kc)
−L1 − M5K̂+(kc) −γikc + L1 − M5K̂+(kc)

)

. (6.11)
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Here we define

K̂+(kc) = qr

(

ˆ̃K+
r (kc) − K̂−

r (kc)
)

− q0
a

(

ˆ̃K+
a (kc) − K̂−

a (kc)
)

, (6.12)

where K̂±
j , j = r, a are the Fourier transforms (4.14). Later, we will also

use K̂−(kc) = −K̂+(kc), K̂+(2kc), and K̂−(2kc) = −K̂+(2kc). At O(ε1), the

nonlinear terms are N1 = E1 = 0, and therefore, equation (6.7) reduces to

solving

L(u1) = 0, (6.13)

where u1 = (u+
1 , u−

1 )T =α(T )veikcx + c.c., with v = (v1, v2)T , and “c.c.” de-

noting the complex conjugate terms. The components v1 and v2 are given

by:

v1 =
L1 − M5K̂+

γik + L1 + M5K̂+
, v2 = 1. (6.14)

The linear equation (6.13) has a nontrivial solution. Therefore, for O(εj), j ≥

2, the nonlinear equation (6.8) has a solution if and only if Nj + Ej satisfies

the Fredholm alternative [106]. Hence, Nj + Ej has to be orthogonal to the

bounded solution of the adjoint homogeneous problem

L∗(û) = 0. (6.15)

Let us consider this solution û = (û+, û−)T to be defined by

û = β1(T )Weikcx + β2(T )W̄e−ikcx. (6.16)

Then, equation (6.15) results in

L̄T
kc

(û) = 0, (6.17)

with the adjoint operator defined as

L̄T
kc

=

(

−γikc + L1 + M5K̂−(kc) −L1 − M5K̂−(kc)
−L1 + M5K̂−(kc) γikc + L1 − M5K̂−(kc)

)

In Chapter 2, we have seen that the solution is bounded in L∞, which implies

that it is also bounded in L2 [110]. Throughout this section, as well as Section
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6.4, we will assume that u+, u− ∈ L2(Ω), where Ω = {(x, τ)|x ∈ [0, L], τ ∈

[0,∞)}. On this space, we define the following inner product

〈v,w〉 = lim
T→∞

1

T

∫ T

0

∫ L= 2π
kc

0

(v1w̄1 + v2w̄2)dxdτ, (6.18)

with v = (v1, v2)T ,w = (w1, w2)T . Moreover, u+ and u− are bounded on Ω.

The orthogonality condition reads

〈û, (Nj + Ej)〉 = 0. (6.19)

We are interested only in those terms of Ni +Ei that contain e±ikcx since these

terms give rise to secular solutions. However, these terms do not appear at

O(ε2). Here, the nonlinear terms are E2 = 0, and

N2 =

(

u+
1 P1K ∗ u1 + u−

1 P1K ∗ u1

−u+
1 P1K ∗ u1 − u−

1 P1K ∗ u1,

)

, (6.20)

where K+ is defined by (6.10). Actually, N2 can be rewritten as

N2 = α2(T )e2ikcxQ(1) + |α|2Q(2) + c.c., (6.21)

with Q(1) = (Q(1)
1 , Q(1)

2 )T and Q(2) = (Q(2)
1 , Q(2)

2 )T described by

Q(1)
1 = P1(v1 + v2)

2K̂+, Q(1)
2 = −Q(1)

1 , (6.22)

Q(2)
1 = |v1 + v2|2(K̂+ + K̂−), Q(2)

2 = −Q(2)
1 . (6.23)

Hence, N2 does not contain terms of the form e±ikcx. Equation L(u2)+N2 = 0

is then solved for u2 = (u+
2 , u−

2 )T , where

u2 = α1(T )v0e
ikcx + α2(T )v(1)e2ikcx + |α|2v(2) + c.c., (6.24)

with v(1) = (v(1)
1 , v(1)

2 )T , and v(2) = (v(2)
1 , v(2)

2 )T satisfying the following two

equations

L2kc(v
(1)) + Q(1) = 0, (6.25)

L0(v
(2)) + Q(2) = 0. (6.26)

Solving system (6.25) gives us

v(1)
1 =

−Q(1)
1

2γik + 2M5K̂
+
2

, v(1)
2 = v(1)

1 . (6.27)
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Here we define K̂+
2 = qr(

ˆ̃K+
r (2kc)−K̂−

r (2kc))−q0
a(

ˆ̃K+
a (2kc)−K̂−

a (2kc)). System

(6.26) reduces to one equation in two unknowns. To solve it for v(2)
1 and

v(2)
2 , we have to impose the conservation of the total density on the interval

[0, L] = [0, 2π
kc

]. This condition requires that v(2)
2 = −v(2)

1 . We therefore have

v(2)
1 =

−Q(2)
1

2L1
, v(2)

2 = −v(2)
1 . (6.28)

At O(ε3), we obtain terms that can lead to secular solutions. In this case,

the nonlinear interactions N3 + E3 are described by

N3 + E3 =
∂α

∂T
eikcxR(3) +

∂ᾱ

∂T
e−ikcxR̄(3) + αeikcxνR(2) + ᾱe−ikcxνR̄(2) +

α|α|2eikcxR(1) + ᾱ|α|2e−ikcxR̄(1) + other terms, (6.29)

where “other terms” describe those terms of the form e±2ikcx, e±3ikcx, etc. The

coefficients R(j), j = 1, 2, 3, are described by the following expressions:

R(1)
1 = P1v̄v(1)K̂− + P1vv(2)K̂+ + P1v̄v(1)K̂+

2 + S1(v̄1 − v̄2)v
2(K̂+)2 +

2S1v̄v(v1 − v2)K̂
+K̂− + 3T1Av̂v2K̂−(K̂+)2,

R(1)
2 = −R(1)

1 ,

R(2)
1 = −M5v( ˆ̃Ka − K̂+

a )(kc),

R(2)
2 = −R(2)

1 ,

R(3)
1 = v1,

R(3)
2 = v2. (6.30)

We define here v = v1 + v2, and v(1) = v(1)
1 + v(1)

2 . The solution W of the

adjoint equation (6.17) is given by

W1 = 1, W2 =
γik − L1 − M5K̂−(kc)

−L1 − M5K̂−(kc)
. (6.31)

Then, the orthogonality condition (6.19) can be written as

lim
T→∞

1

T

∫ T

0

∫ 2π
kc

0

(β1(T )Weikcx + β2(T )W̄e−ikcx)
(

R(1)α|α|2eikcx + R̄(1)ᾱ|α|2e−ikcx

+R(2)α eikcxν + R̄(2)ᾱe−ikcxν + R(3) dα

dT
eikcx + R̄(3) dᾱ

dT
e−ikcx

)

dxdT = 0.
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Since
∫

2π
kc

0 e∓2ikcxdx = 0, we obtain

W̄ ·R(1)α|α|2 + W̄ · R(2)αν + W̄ · R(3) dα

dT
= 0, (6.32)

and its complex-conjugate

W · R̄(1)ᾱ|α|2 + W · R̄(2)ᾱν + W · R̄(3) dᾱ

dT
= 0. (6.33)

Equation (6.32) can be rewritten as

dα

dT
= −ναY − α|α|2X, (6.34)

where

Y =
W̄ ·R(2)

W̄ ·R(3)
, X =

W̄ · R(1)

W̄ · R(3)
. (6.35)

We can verify that

Y =
dσ

dqa
=

γikM5(K̂+
a − K̂−

a )

L1
. (6.36)

Therefore the linear approximation of this amplitude equation agrees with the

linear prediction given by the dispersion relation (equation (6.3)).

The amplitude equation (6.34) is complex. To obtain a real equation, let

us define α(T ) = R(T )eiθ(T ), with real terms R(T ) = |α| and θ(T ). Thus,

equation (6.34) can be rewritten as

dR

dT
= −νR6(Y ) − R36(X), (6.37)

dθ

dT
= −ν7(Y ) − R27(X), (6.38)

with 6 and 7 denoting the real and imaginary parts of the two coefficients

X and Y . The two steady-state solutions of (6.37) are R = 0 and R =
√

−ν6(Y )/6(X). To study the stability of these solutions, we write R =

R0+Rδ, where R0 is the steady state and Rδ is a small perturbation. Equation

(6.37) then becomes

dRδ

dT
= Rδ

(

−ν6(Y ) − 2R2
06(X)

)

. (6.39)

We can observe that the trivial state R0 = 0 is stable if ν6(Y ) > 0, and

unstable otherwise. The nontrivial state R0 =
√

−ν6(Y )/6(X) is unstable if

ν6(Y ) > 0, and stable otherwise.
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To compare the results of the nonlinear analysis with the numerical results,

we substitute α into the expressions for u±
1 , and derive a formula for the actual

amplitude of the spatial patterns:

max(u)−min(u) = ε(max(u+
1 +u−

1 )−min(u+
1 +u−

1 )) = ε46((v1+v2)α). (6.40)

The dashed curve in Figure 6.2 shows the variation of the amplitude for

the stationary pulses described in Figure 6.1(a). For u∗
3 = A/2 = 1, qr = 2.2,

qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9, the bifurcation to spatial patterns occurs

at q0
a = 1.008. The coefficients that appear in the amplitude equation (6.34)

are both negative: 6(X) < 0, 6(Y ) < 0. Therefore, when ν = −1, the curve

|α|2 = −ν6(Y )/6(X) > 0 is unstable, while |α| = 0 is stable. Hence, the

nonzero amplitude (the dashed curve) bifurcates subcritically to the left. In

the next section, we perform numerical simulations to verify these analytical

results.

6.3 Numerical results for a real bifurcation

To verify the results of this weakly nonlinear analysis, we perform numerical

simulations. The numerical scheme we use is the second-order McCormack

scheme described in Section 5.1. The initial conditions are perturbations

of the spatially homogeneous steady states (u∗, u∗∗) with terms of the form

0.02 cos(kcπx), x ∈ [0, L]. For the parameter values specified in the previous

section, the final heterogeneous pattern is similar to the one described in Figure

6.1(a). Figure 6.2 shows the amplitude of the total density, as determined by

max(u+ +u−)−min(u+ +u−). The solid circles represent the stable numerical

solution, while the open circles represent the unstable numerical solution.

For qa > q0
a, the spatially homogeneous steady state (|α| = 0) bifurcates

numerically to a large amplitude solution (solid circles). However, as we de-

crease qa, we observe hysteresis behavior: the solution does not return to the

spatially homogeneous steady state when qa = q0
a. It will eventually return to

this steady state for some qa < q0
a. This is consistent with the previous ana-

lytical results regarding the existence of an unstable amplitude that bifurcates
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Figure 6.2: The amplitude of the spatially heterogeneous solution u(x, t) = u+(x, t) +

u−(x, t) as we perturb the magnitude of attraction qa. The dashed curves represent the

unstable branch obtained using the weakly nonlinear analysis. The solid circles represent

the stable branch obtained numerically, whereas the open circles represent the unstable

branch obtained numerically. The critical value of qa is q0
a = 1.008. The other parameters

are: λ1 = 0.2, λ2 = 0.9, γ = 0.1, qr = 2.2, qal = 0, y0 = 2. For qa < q0
a, the zero amplitude

branch (corresponding to |α2| = 0) is stable (continuous line). For qa > q0
a it becomes

unstable (dashed line). When qa < q0
a, the curve formed by the open circles marks the

boundary of the stability region, as determined numerically. Perturbations with amplitude

on or above this curve grow to the upper branch (solid circles), while perturbations with

amplitude below this curve decay to zero.
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subcritically. We checked numerically the existence of this branch by choosing

the initial conditions to be perturbations of the spatially homogeneous steady

states with terms of the form Â cos(kcπx), where Â is the variable amplitude.

For qa < q0
a, the curve formed of open circles represents the unstable branch.

This curve represents a threshold: perturbations with amplitude Â on or above

this curve grow until the solution reaches the upper stable branch, whereas

perturbations with amplitude below this curve decay to zero. Since the spa-

tially homogeneous steady state is (u∗
3, u

∗
3) = (1, 1), imposing the condition

that the initial solution is positive, forces us to use Â ≤ 2. This happens for

qa ∈ [0.915, 1.008].

There are two remarks regarding Figure 6.2. First, it is known that for

subcritical bifurcations, the cubic amplitude equation (6.34) can give only a

qualitative behavior of the solutions [25]. However, this qualitative behavior

is enough for the biological questions we want to address in this thesis. We

note here that for qa < q0
a, the two unstable curves (the analytical and the

numerical one) agree acceptably well, especially near the bifurcation point.

Second, the high-amplitude solution drops to zero far from the bifurcation

point (i.e., at qa = 0.83). However, the weakly-nonlinear analysis does not

hold near the point where the solution drops to zero. Therefore, we do not

expect here the stable high-amplitude curve and the unstable analytical curve

to match. To study the behavior of the solution far from the bifurcation point,

one can derive “phase equations” [87].

Figure 6.2 can be used to investigate the effect of attraction on the struc-

ture of stationary groups. Since the bifurcation is subcritical, the stable high-

amplitude solution gives us the effect of the attractive interactions. More

precisely, we notice that increasing the strength of the attraction (qa) leads

to larger amplitudes for the total density u. This means more compact groups.

Moreover, for attraction less than q0
a, solutions with amplitude less than

√

−ν6(Y )/6(X)

will decay. This suggests that groups that have a density less than a certain

threshold will eventually disperse. Of course, this threshold depends not only

on qa, but also on all other parameters.

If we now consider qr = qa = 0 and large turning rates (λ1, λ2), we obtain
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similar results. However, in this case, the bifurcation parameter is the magni-

tude of alignment qal. The final heterogeneous pattern is described in Figure

6.1(b). Figure 6.3 shows the amplitude of the stationary pattern that bifur-

cates subcritically to the left at q0
al = 0.845. Therefore, when the individual

turning rates are very large, but at the same time organisms align with their

neighbors, increasing the strength of alignment leads to higher amplitude so-

lutions. Again, this means that the groups become more compact. Moreover,

there is a similar threshold for the total density below which the groups will

disperse.

m
ax
(u
)−
m
in
(u
)

Numerical (unstable)

Numerical (stable)

Analytical (unstable)

Analytical (stable)

0

2

4

6

8

0.6 0.7 0.8 0.9 1 1.1

qalalq
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Figure 6.3: The amplitude of the spatially heterogeneous solution u(x, t) = u+(x, t) +

u−(x, t) as we perturb the magnitude of alignment qal. The solid circles represent the

stable branch obtained numerically, while the open circles represent the unstable branch

obtained numerically. The dashed curve represents the unstable branch obtained using

weakly nonlinear analysis. For qal < q0
al, the zero amplitude branch (corresponding to

|α2| = 0) is stable (the continuous curve). For qa > q0
a it becomes unstable (the dashed

curve). The parameters are: q0
al = 0.845, kc = k14 = 8.867, λ1 = 2.0, λ2 = 9.0, γ = 0.1,

qr = 0, qa = 0, y0 = 0.

116



6.4 Weakly nonlinear analysis in the neigh-

borhood of an imaginary bifurcation

In the following, we consider the case when the bifurcation to spatial het-

erogeneous patterns occurs at an imaginary eigenvalue. To keep the results

tractable, we will assume that alignment is the only social interaction (that

is, qa = qr = 0). This corresponds to the pattern shown in Figure 6.1(d).

Consequently, we will fix all other parameters and assume that the bifurcation

to spatially nonhomogeneous patterns occurs as qal passes through a critical

value q0
al. At the critical point (q0

al, kc), the two eigenvalues of the dispersion

relation (4.12) are σ1(q0
al, kc) = iω, and σ2(q0

al, kc) = ω0 + iω, with ω0 < 0. As

mentioned before, this happens when the spatially homogeneous steady state

is any of the pairs (u∗
1, u

∗
5), or (u∗

5, u
∗
1). Throughout this section, we will assume

that (u∗, u∗∗) = (u∗
1, u

∗
5) and study what happens in this case. Since the second

eigenvalue has always a negative real part, we ignore it and focus only on the

first eigenvalue. A solution of system (2.1) near the bifurcation point (q0
al, kc)

has the form

u±(x, t) ∝ eiωt+ikcx + c.c. (6.41)

As before, we perturb qal away from the critical value q0
al,

qal = q0
al + ε2ν, 0 < ε ( 1, ν = ±1.

Note that the spatially homogeneous steady state (u∗
3, u

∗
3), which we discussed

in the previous section, does not depend on the bifurcation parameter. How-

ever, as shown in Figure 4.3 (b) and (c), the spatially homogeneous steady

state (u∗
1, u

∗
5) does depend on the magnitude of alignment (qal): as we increase

qal, u∗ increases while u∗∗ decreases. Therefore, in this case, a perturbation of

qal will induce a perturbation of these steady states:

u∗ = u∗
0 − ε2ν|

du∗(q0
al)

dqal
|, u∗∗ = u∗∗

0 + ε2ν|
du∗(q0

al)

dqal
|, (6.42)

where
∂u∗(q0

al)

∂qal
= −

M5(u∗∗ − u∗)

L1 + L2 − 2q0
alM5

, (6.43)
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and the constants L1, L2 and M5 are given by (4.13). For notational simplicity,

we will drop the index “0” from the spatially homogeneous steady states u∗
0

and u∗∗
0 . Therefore, the left- and right-moving densities can be written as

u+(x, t, ε, T ) = u∗ − ε2ν|
du∗(q0

al)

dqal
| + εu+

1 + ε2u+
2 + ε3u+

3 + O(ε4),

u−(x, t, ε, T ) = u∗∗ + ε2ν|
du∗(q0

al)

dqal
| + εu−

1 + ε2u−
2 + ε3u−

3 + O(ε4).(6.44)

Expanding the dispersion relation in power series leads to

σ(qal, kc) = σ(q0
al, kc) +

∂σ(q0
al, kc)

∂qal
ε2ν + O(ε4). (6.45)

To calculate the O(ε2) term that appears in equation (6.45), we use equation

(4.12):

∂σ(q0
al, kc)

∂qal
=

−iω
∂C(q0

al,kc,u∗)

∂qal
− ∂D(q0

al,kc,u∗)

∂qal

2iω + C(q0
al, kc, u∗)

. (6.46)

Because u∗ and u∗∗ = A−u∗ depend on qal, the terms ∂C
∂qal

and ∂D
∂qal

are given in

terms of the derivative of u∗ with respect to qal. Hence, when σ(q0
al, kc) = iω,

we obtain

∂σ

∂qal
=

−(u∗∗ − u∗)P − M7∆ − 2q0
al(u

∗∗−u∗)M5

L1+L2−2q0
alM5

(P + ∆(P1 − P2 − 4q0
al(u

∗S1 − u∗∗S2)))

2iω + L1 + L2 − M5q0
al(K̂

+
al + K̂−

al)
,

(6.47)

where

P = P1(iω − γikc) − P2(iω + γikc),

∆ = K̂+
al(iω + γikc) + K̂−

al(iω − γikc),

M7 = M5 + 2q0
al(u

∗∗ − u∗)(u∗S1 − u∗∗S2), (6.48)

while the rest of the constants are given by (4.13).

Since the eigenvalues are imaginary, the spatially homogeneous steady

states become unstable to spatiotemporal patterns, and therefore, the linear

operator associated to system (2.1) is given by

L(u) =





∂t + γ∂x + L1 + M5q0
alKal ∗ · −L2 + M5q0

alKal ∗ ·

−L1 − M5q0
alKal ∗ · ∂t − γ∂x + L2 − M5q0

alKal ∗ ·





(

u+

u−

)

.

(6.49)
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However, throughout the analysis, we will use Lω,kc which is obtained by ap-

plying the operator L to solutions of the form (eiωt+ikcx):

Lω,kc =





iω + γikc + L1 − M5q0
alK̂

−
al −L2 + M5q0

alK̂
+
al

−L1 + M5q0
alK̂

−
al iω − γikc + L2 − M5q0

alK̂
+
al



 .

(6.50)

The corresponding adjoint operator L̄T
ω,kc

is described by

L̄T
ω,kc

=





−iω − γikc + L1 + M5q0
alK̂

+
al −L1 − M5q0

alK̂
+
al

−L2 + M5q0
alK̂

−
al −iω + γikc + L2 − M5q0

alK̂
−
al



 .

(6.51)

As in Section 6.2, we start collecting the terms with equal powers of ε. At

O(ε) we have

u1 = αveiωt+ikcx + c.c., (6.52)

where α = α(T ), u1 = (u+
1 , u−

1 )T , and v = (v1, v2)T =((−iω + γikc)/(iω +

γikc), 1)T . At O(ε2), E2 = 0 and

N2 =







(u+
1 P1 + u−

1 P2)q0
alKal ∗ (u−

1 − u+
1 ) + (u∗S1 − u∗∗S2)(q0

al)
2(Kal ∗ (u−

1 − u+
1 ))2

−(u+
1 P1 + u−

1 P2)q0
alKal ∗ (u−

1 − u+
1 ) − (u∗S1 − u∗∗S2)(q0

al)
2(Kal ∗ (u−

1 − u+
1 ))2






.

After some calculations, we can rewrite the nonlinear terms N2 + E2 as

N2 + E2 = α2e2iωt+2ikcxQ(1) + ᾱ2e−2iωt−2ikcxQ(2) + |α|2Q(3). (6.53)

Therefore, the solution of the nonlinear problem L(u2) = N2 + E2 can be written

as

u2 = α1v0eiωt+ikcx + α2e2iωt+2ikcxG
(1)
0 + ᾱ2e−2iωt−2ikcxG

(2)
0 + |α|2G(3)

0 .

The constants G
(j)
0 , j = 1, 2, 3, are calculated by requiring them to verify the follow-

ing equations:

L2ω,2kcG
(1)
0 = −Q(1), L−2ω,−2kcG

(2)
0 = −Q(2), L0,0G

(3)
0 = −Q(3).(6.54)

The equation for N2+E2 does not contain terms of the form e±iωt±ikcx, and therefore

the Fredholm Alternative is satisfied. However, at O(ε3) we have to impose the
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condition that the solution verifies the Fredholm Alternative. Let us define the

solution of the adjoint homogeneous problem to be û= β1(T )Veiωt+ikcx + c.c.. This

leads to the amplitude equation,

dα

dT
= −ναY − α|α|2X, (6.55)

where

Y =
V̄ ·R(2)

V̄ ·R(3)
, X =

V̄ · R(1)

V̄ · R(3)
. (6.56)

The coefficients R(j), j = 1, 2, 3, that appear in this equation are given by

R(1)
1 = v1,

R(1)
2 = v2,

R(2)
1 = (M5 + 2q0

al(u
∗∗ − u∗)(u∗S1 − u∗∗S2))b1 + (u∗∗ − u∗)e1 + 2q0

ale1 + q0
alJ11b1 −

q0
al(P1 − P2 − 4q0

al(u
∗S1 − u∗∗S2)b1),

R(2)
2 = −R(2)

1 ,

R(3)
1 = 2(u∗S1 − u∗∗S2)(q

0
al)

2(b1G
(3)
0 + b̄1G

(1)
0 ) + 3(u∗T1 + u∗∗T2)(q

0
al)

3(b1)
2b̄1 +

q0
al(e1G

(3)
0 + ē1G

(1)
0 ) + (q0

al)
2(f̄1(b1)

2 + 2f1b1b̄1) + q0
al(J1b̄1 + J9b1),

R(3)
2 = −R(3)

1 . (6.57)

We define here

b1 = K̂+
alv2 − K̂−

alv1, e1 = P1v1 + P2v2, f1 = S1v1 − S2v2,

Jj = G(j)
1 P1 + G(j)

2 P2, j = 1..10,

G(1)
0 = G(1)

02
K̂+

al(2kc) − G(1)
01

K̂−
al(2kc), G(2)

0 = G(2)
02

K̂−
al(2kc) − G(2)

01
K̂+

al(2kc),

G(3)
0 = G(3)

02
− G(3)

01
. (6.58)

After some lengthy computations, we can verify that

Y =
dσ(q0

al)

dqal
, (6.59)

with dσ
dqal

given by equation (6.47). Therefore the linear approximation of this am-

plitude equation agrees with the linear prediction given by the dispersion relation

(equation (6.45)).
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Similar to the results presented in Section 6.2, the steady-state solutions for the

magnitude of the amplitude equation are given by

|α| = 0, |α| =
√

−ν#(Y )/#(X). (6.60)

The zero state |α| = 0 is stable if ν#(Y ) > 0, and unstable otherwise. The state

|α| =
√

−ν#(Y )/#(X) is unstable if ν#(Y ) > 0, and stable otherwise.

For qr = qa = 0, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1, and kc = k17 = 10.55, the

two coefficients that appear in equation (6.60) are #(Y ) > 0 and #(X) < 0. Hence

|α|2 = −ν ((Y )
((X) > 0 if ν > 0, which means that solution bifurcates to the right.

Moreover, since ν#(Y ) > 0, the zero-amplitude steady state is stable, whereas

the nonzero-amplitude solution is unstable. Figure 6.4 shows this bifurcation. The

continuous curve represents the stable solution, whereas the dashed curve represents

the unstable solution obtained using weakly nonlinear analysis.

6.5 Numerical results for the imaginary bifur-

cation

To confirm the validity of these results, we perform numerical simulations. Again,

the initial conditions are perturbations of the spatially homogeneous steady states

with terms of the form Âcos(kcπx). Figure 6.4 shows the amplitude of the spa-

tiotemporal solutions as we perturb the magnitude of alignment qal. As before,

the spatial homogeneous solution bifurcates subcritically to spatial heterogeneous

solutions represented by the traveling trains (seen in Figure 6.1(d)). The solid cir-

cles represent the stable numerical solution, while the open circles represent the

unstable numerical solution. For qal ≥ q0
al, the branch described by the open cir-

cles represents a threshold: perturbations with amplitude below this curve decay to

zero, while perturbations with amplitude on or above this curve grow to the upper

branch. Therefore, the numerical results are consistent with the analytical results.

We notice that increasing the magnitude of alignment leads to a slight decrease
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Figure 6.4: Amplitude of the spatially heterogeneous solution as we perturb the magnitude

of alignment qal. The solid circles represent the stable numerical solution, while the open

circles represent the unstable numerical solution. The continuous curve represents the stable

analytical solution, while the dashed curve represents the unstable analytical solution. The

critical value of qal is q0
al = 2.088. The other parameters are: λ1 = 0.2/0.7, λ2 = 0.9/0.7,

γ = 0.1, qr = qa = 0, L = 10.12, kc = 10.55, y0 = 2.
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in the amplitude of the solutions. This suggests that moving groups become more

elongated, as alignment is increased. This is opposite to the effect observed in

the case of stationary groups. There, the alignment makes the group more com-

pact. As before, there is a certain threshold for the total density, corresponding to

|α|2=−ν ((Y )
((X) . Groups with total density greater than this threshold will become

more dense and persist for a long time, while groups with the density below this

threshold will disperse.

As mentioned in Chapter 4, introducing attractive and repulsive interactions

leads to the emergence of the first wave number, k1, as shown in Figure 4.2 (a). In

this case, the result is a traveling train formed only of one group (see Figure 6.1(c)).

Figure 6.5 shows the subcritical bifurcation obtained in this case. The stable high-

amplitude branch (the solid circles) corresponds to the solution shown in Figure

6.1(c). The effect of alignment on the moving group is similar to the previous case.

6.6 Discussion

In this chapter, we have analyzed two spatial and spatiotemporal patterns displayed

by model M1, introduced in Chapter 2. The investigated patterns are stationary

pulses and traveling trains. We have performed a weakly nonlinear analysis to

study the amplitudes of these two patterns. The stationary pulses arise through a

real bifurcation from the spatially homogeneous steady state (u∗
3, u

∗
3). The traveling

trains arise through an imaginary bifurcation from a different steady state, namely

(u∗
1, u

∗
5). In both cases, the bifurcations are subcritical. It should be mentioned that

while the steady state (u∗
3, u

∗
3) is constant, the steady state (u∗

1, u
∗
5) depends on the

bifurcation parameter.

It is known that for subcritical bifurcations, the unstable branch obtained using a

cubic amplitude equation gives only qualitative information about the solution [25].

A more accurate result can be obtained by adding higher-order terms to obtain a

quintic amplitude equation. Moreover, far from the bifurcation point, one can only
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Figure 6.5: The amplitude of the spatially heterogeneous solution as we perturb the

magnitude of alignment qal, while taking into consideration the attractive and repulsive

interactions. The solid circles represent the stable numerical solution, while the open circles

represent the unstable numerical solution. The dashed curves represent the unstable ana-

lytical solution. The critical value of qal is q0
al = 2.472. The other parameters are: λ1 = 0.2,

λ2 = 0.9, γ = 0.1, qr = 0.1, qa = 1.0, L = 10, kc = 0.628, y0 = 2.
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derive “phase equations” to study the behavior of the solution. However, due to the

complexity of our system, as well as the type of questions we are addressing (that is,

the effect of the social interactions on the amplitude of spatial and spatiotemporal

patterns), it is sufficient to derive a cubic amplitude equation.

We then used the bifurcation diagrams for the amplitude of the solutions to

study the effect of social interactions on the structure of the aggregations. As

expected, increasing inter-individual attraction leads to more compact stationary

groups. This kind of behavior can be observed in schools of fish [18, 116], when a

nearby predator leads to increased attraction towards neighbors which causes the

group to form very tight stationary aggregations. On the other hand, alignment

has dual effects, depending on whether the group is stationary or moving. We

have seen that in the case of stationary groups with high individual turning rates,

alignment has an aggregative effect, with the groups becoming more dense. However,

in case of moving groups, the effect of alignment is opposite: the density decreases

as the groups become more elongated. When alignment becomes very large, the

groups disintegrate. However, empirical observations of fish schools show that highly

polarized groups are tight [98, 131]. Nevertheless, it is clear that moving groups

have to be less dense than the stationary compact groups because of the need for

manoeuvering.

The subcritical bifurcation suggests that there is a threshold group density,

such that groups with densities below this threshold will disperse, while groups

with densities above this threshold will become even more dense and persist for

a longer time. This transition between the disordered behavior represented here

by the homogeneous solution, and the ordered behavior represented by the high-

density stationary or moving groups, is particularly important for the area of animal

group formation and movement. It is known that some insect species (such as ants

[8], or locusts [17]), and fish (such as young Tilapia fish [6]), exhibit transitions

between disordered and ordered activity behaviors, and these transitions depend

on animal density. For example, Buhl et. al. [17] have shown experimentally and
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numerically (using an individual-based model) that as the density of locusts in a

group increases, there is a transition from disordered movement to collective motion

of aligned groups. Understanding such transitions has potential applications to

understanding and controlling the outbreaks of different insect pests, such as locusts.

Here, we have analyzed the patterns displayed by only one of the five sub-models

described in Chapter 2. It is possible that other patterns, corresponding to the other

four sub-models, arise through supercritical bifurcations (i.e., bifurcation to a small,

stable, amplitude solution). However, this aspect has not yet been investigated.

Still, we can conclude that the subcritical bifurcations seem to play an important

role in the understanding of the effects of biological parameters to the formation and

persistence of certain animal groups (such as insects). A supercritical bifurcation

would suggest that increasing a certain parameter would lead to the formation of

denser, well coordinated groups. This may be the case for some animal groups, but

not necessarily for insects like locusts or ants. A subcritical bifurcation, on the other

hand, suggests the existence of a density threshold below which well coordinated

groups cannot persist. Moreover, this type of bifurcation helps us connect the

threshold for the total animal density to different behaviors. More precisely, this

threshold depends on different parameter values which characterize different group

behaviors.

In the previous five Chapters (2 to 6), we have investigated the case when the

individuals move at a constant speed and turn in response to the signals received

from their neighbors. In the following chapter, we will focus on a new model which

assumes that individuals speed up or slow down in response to their neighbors’

behavior. In particular, we will compare the resulting spatial and spatiotemporal

patterns obtained with this new model, to the patterns obtained with the model

introduced in Chapter 2.
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Chapter 7

Possible alternative models with
density-dependent speed

7.1 Introduction

Throughout the previous five chapters we assumed that individuals move with a

constant speed and turn to approach, to avoid, or to align with their neighbors.

This approach is consistent with other Eulerian [59, 71, 99, 100] and Lagrangian

models [50, 126] for animal group formation and movement. However, organisms

do not always move with a constant speed [58]. They speed up or slow down to

catch up with their neighbors, or to avoid collisions. This, in addition to turning in

response to their neighbors’ behaviors.

In the mathematical literature, there are many examples of local and nonlocal

parabolic models for animal movement that consider density-dependent velocities

(see for example [67, 77, 80, 122, 123], and the references therein). There are also

some local hyperbolic models which assume that individuals speed up or slow down

in response to local population density and its gradient [54, 70]. However, there are

no one-dimensional continuum models which assume that both the speed and the

turning rates have a nonlocal character. This generalization makes perfect sense

since if individuals can speed up or slow down as a result of the interactions with

neighbors far away (as in [80], for example), they can also turn as a result of these

interactions. In the following, we will address this issue by starting with the model
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we introduced in Chapter 2, and then incorporating attractive and repulsive inter-

actions into the individuals’ speed.

In Section 7.2, we carefully describe this new hyperbolic model with density-

dependent speed and turning rates. In particular, we will focus on two cases: (a)

the turning rates depend only on alignment interactions, and (b) the turning rates

depend on all three social interactions, namely attraction, repulsion, and alignment.

In the first case, the speeding behavior is separated from the turning behavior. In

the second case, the two behaviors are coupled through the attractive and repul-

sive interactions. In Section 7.3, we take a formal parabolic limit to investigate the

connection between this model and other parabolic models with density-dependent

speed that exist in the literature. In this context, we compare the limiting parabolic

equations corresponding to cases (a) and (b). In Section 7.4, we perform a linear

stability analysis of the model, and further investigate the differences between these

two cases in terms of the emerging wave numbers. Then, in Section 7.5, we inves-

tigate numerically some of the spatial and spatiotemporal patterns obtained with

this new hyperbolic model. We conclude with a discussion in Section 7.6.

7.2 Model derivation

In this section, we derive an alternative model for the situation when the speed

depends on attractive and repulsive interactions. For simplicity, we focus here on

the particular communication mechanism discussed in Chapter 2, namely model M1.

More precisely, we assume that for attractive and repulsive interactions, individuals

use information received from all neighbors. For alignment, on the other hand,

individuals use only the information received from those neighbors moving towards

them.

The general model describing the movement of right-moving (u+) and left-
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moving (u−) individuals is given by the following equations:

∂tu
+(x, t) + ∂x(Γ+[u+, u−]u+(x, t)) = −λ+[u+, u−]u+(x, t) + λ−[u+, u−]u−(x, t),

∂tu
−(x, t) − ∂x(Γ−[u+, u−]u−(x, t)) = λ+[u+, u−]u+(x, t) − λ−[u+, u−]u−(x, t),

u±(x, 0) = u±
0 (x), x ∈ R. (7.1)

where Γ±[u+, u−] are the density-dependent speeds, and λ±[u+, u−] are the density-

dependent turning rates. The turning rates have already been described in Chapter

2, Section 2.2. Here, we will focus on the speed and consider it to be a positive,

bounded, and increasing function of the perceived signals (see Figure 7.1). Such an

example is the function 1+tanh(y±), where y± denote the perceived signals (see also

the discussion in Section 2.2). In particular, we assume that the speed depends on

the communication signals received from neighbors positioned within the attractive

and repulsive interaction ranges (that is, y± = y±a − y±r ). For example, in case of

attraction, individuals speed up to join a larger group in front of them, or slow

down to allow those behind them to catch up. In case of repulsion, individuals slow

down to avoid collision with those in front of them, or speed up to avoid collision

with those behind them. Throughout this chapter, we will assume that the nonlocal

speeds are described by the following terms:

Γ+[u+, u−] = γ

(

1 + tanh

(

qa

∫ ∞

0
Ka(s) (u(x + s, t) − u(x − s, t)) ds

−qr

∫ ∞

0
Kr(s) (u(x + s, t) − u(x − s, t)) ds

))

,

Γ−[u+, u−] = γ

(

1 + tanh

(

−qa

∫ ∞

0
Ka(s) (u(x + s, t) − u(x − s, t)) ds

+qr

∫ ∞

0
Kr(s) (u(x + s, t) − u(x − s, t)) ds

))

. (7.2)

As in the previous chapters, u(x ± s, t) = u+(x ± s, t) + u−(x ± s, t) describes the

total density at (x ± s, t), while qa and qr represent the magnitudes of attractive

and repulsive interactions. Also, we choose γ to be a constant “base-line” speed. If

there is no attraction or repulsion, tanh(0) = 0 and therefore, the individuals move

at a constant speed γ (as assumed in Chapter 2). When the attractive or repulsive
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interactions play a role, the speed varies between 0 and 2γ. To understand equa-

tions (7.2), let us focus for example on the attractive interactions, and assume that

the signals received by a right-moving individual (u+) from neighbors positioned

ahead, at x + s, are becoming more intense than the signals received from neigh-

bors positioned behind, at x − s. This means that the attractive term is positive:

qa
∫ ∞
0 Ka(s)(u(x+s, t)−u(x−s, t))ds > 0. Therefore Γ+ is increasing, which implies

that this right-moving individual will speed up to join the neighbors that are ahead.

If, on the other hand, the signals received from behind are more intense than those

received from ahead, the integral is negative. Therefore, this individual will slow

down to allow those neighbors behind him to catch up. A similar explanation holds

for the repulsion term. However, since this term has a negative sign in front of it,

the effect is opposite.

Similarly, one can describe the speeding behavior of a left-moving individual (the

second equation of (7.2)). To complete the description of equations (7.2), it should

be mentioned that the interaction kernels Kr,a,al are described by the translated

Gaussian kernels (2.9) (see Section 2.2).

In Chapter 2, we assumed that the turning rates λ±[u+, u−] depend an all three

social interactions: attraction, repulsion, and alignment. Here, we consider attrac-

tive and repulsive speeds, and for the turning rates we investigate the following two

cases:

(a) individuals turn only to align with neighbors within the alignment range;

(b) individuals turn to avoid collision with neighbors within the repulsion range, to

approach neighbors within the attraction range, or to align with those neighbors

within the alignment range.

Since both cases are defined in terms of the same communication mechanism, namely

model M1, we will refer to case (a) as model M1I , and to case (b) as model M1II .

Table 7.1 summarizes all these models.

Note that for model M1I , the speed and the turning rates are independent from

each other. The speed acts on the spatial ranges for attractive and repulsive inter-
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Figure 7.1: The speed function Γ±[u+, u−] = γ(1 + tanh(y±[u+, u−])) (shown here is γ =

0.1). As in Chapter 2, y± denote the signals received as a result of social interactions: y± =

y±
a − y±

r (where y±
a and y±

r describe the attractive and repulsive interactions, respectively).

When there are no attractive and repulsive interactions, y± = 0 and the speed is constant

(γ). When the social interactions play an important role (i.e., y± %= 0), the speed varies

between 0 and 2γ.

actions, while the turning rates act on the spatial range for alignment interactions.

However, for model M1II , the speed and the turning rates are not independent

anymore. They are connected through the attractive and repulsive interactions. To

understand this connection, let us focus on the behavior of a right-moving individual

u+(x, t). In particular, let us assume that we are within the attraction range. If the

signals received from neighbors positioned at x+s are more intense than the signals

received from neighbors positioned at x − s (that is, u(x + s, t) − u(x − s, t) > 0),

then the individual located at x will keep moving in the same direction (since λ+

is decreasing), and will speed up to approach the neighbors at x + s (since Γ+ is

increasing). If, on the other hand, the signals coming from neighbors positioned at

x + s are less intense than the signals coming from those positioned at x − s (that

is, u(x + s, t) − u(x − s, t) < 0), the individual located at x will turn around (since

λ+ is increasing), and will slow down (since Γ+ is decreasing). Now, the individual
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Model Speed Turning rates

M1 Γ = ±γ =const. λ± = λ±
(

y±
r − y±

a + y±
al

)

M1I Γ = Γ±[u+, u−] λ± = λ±
(

y±
al

)

M1II Γ = Γ±[u+, u−] λ± = λ±
(

y±
r − y±

a + y±
al

)

Table 7.1: A summary of the behaviors that can be influenced by the nonlocal

social interactions. The speed Γ also depends on the nonlocal interactions:

Γ=Γ±[u+, u−]=Γ(±y±
a ∓ y±

r ). The terms y±
r,a,al are described by equations

(2.5)-(2.8), when pr = pl (see Chapter 2).

will be moving to the left (u−). Because u(x + s, t) − u(x − s, t) < 0, the speed

Γ− is increasing, and the individual will be speeding up to join the neighbors at

x − s. Therefore, two different processes, namely turning and speeding up/slowing

down, determine the behavior of an individual through interactions with its neigh-

bors that are within the attraction range. A similar explanation holds if we focus

on the repulsion range.

7.3 Formal parabolic limit

In the following, we take a formal parabolic limit to investigate the connection be-

tween the hyperbolic model (7.1) and other parabolic models with density-dependent

speed that exist in the literature. To investigate the parabolic limit of this hyper-

bolic system we assume, as in Chapter 3, that there is no alignment (that is, qal = 0).

Note that the attractive and repulsive interactions are defined in terms of the total

density u(x, t) = u+(x, t)+u−(x, t). Therefore the speed, as well as the turning rates,

will depend only on this total density. Moreover, since the nonlocal speeds (7.2) are

defined in terms of an odd function (tanh(y±[u]) = tanh(±y+[u]) = ± tanh(y+[u])),

we can write them as

Γ+[u+, u−] = γ(1 + g[u]), Γ−[u+, u−] = γ(1 − g[u]), (7.3)
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where g[u] = tanh(y+[u]). Recall that the turning rates can be rewritten as λ±[u+, u−] =

λ1 + λ2f(y±[u]) (see equation 2.2).

Adding and subtracting the first two equations in (7.1), leads to the following

system:

ut + (γv + γg[u]u)x = 0, (7.4)

vt + (γu + γg[u]v)x = α[u]u − β[u]v. (7.5)

Here we define v = u+−u−, α[u] = λ−[u+, u−]−λ+[u+, u−], and β[u] = λ−[u+, u−]+

λ+[u+, u−]. Note that for model M1I , the turning rates are λ+ = λ− = const. (since

qal = 0), and therefore α[0] = 0. In the following, we will focus on model M1II

(that is, α[u] &= 0). If we differentiate the first equation of (7.5) with respect to t,

and the second equation with respect to x, we obtain

utt + γvxt + γ(g[u]u)xt = 0,

vtx + γuxx + γ(g[u]v)xx = (uα[u])x − vxβ[u] − v(β[u])x. (7.6)

Eliminating vtx from these two equations, assuming that the flow v is zero at the

boundaries, and using equation (7.4) to replace v with v =
∫ x(− 1

γ ut − (g[u]u)x)dx,

and vx with vx = − 1
γ ut − (g[u]u)x, we obtain the following second-order equation:

utt + γ (g[u]u)xt − γ2uxx + γ(g[u])xx

∫ x

(ut)dx + γ2(g[u])xx

∫ x

((g[u]u)x)dx +

γg[u]utx + γ2g[u](g[u]u)xx + 2γ(g[u])xut + 2γ2(g[u])x(g[u]u)x +

γ(uα[u])x + β[u]ut + γβ[u](g[u]u)x + (β[u])x

∫ x

(ut)dx +

γ(β[u])x

∫ x

(g[u]u)x)dx = 0 (7.7)

We observe that when g[u] = 0, equation (7.7) reduces to equation (3.24). We now

introduce a small dimensionless parameter ε, and set

(a) λ1 =
λ0

1

ε2
, λ2 =

λ0
2

ε2
,

(b) γ =
γ0

ε
,

(c) f(y±[u]) = εf 0(y±[u]), and g[u] = εg0[u]. (7.8)
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This means that as ε → 0, (a) the individuals turn very frequently, and (b) move

very fast. These two behaviors lead to (c): a reduced sensitivity to the environment.

Note that (c) leads to the following scaling of the functionals α[u] and β[u]:

α[u] =
λ0

2εα
0[u]

ε2
=

λ0
2α

0[u]

ε
, with α0[u] = f 0(y−[u]) − f 0(y+[u]), (7.9)

β[u] =
2λ0

1 + 2λ0
2εβ

0[u]

ε2
, with β0[u] = f 0(y−[u]) + f 0(y+[u]). (7.10)

Moreover, the speed is rescaled to

Γ±[u+, u−] =
γ0

ε
+ γ0g

0[u]. (7.11)

Substituting these terms into (7.7), multiplying with ε2, and taking the limit ε → 0,

leads to the parabolic equation

ut = Duxx − B(α0[u]u)x − γ0(g
0[u]u)x, (7.12)

where D =
γ2
0

2λ0
1
, and B =

γ0λ0
2

2λ0
1

. Note that for qa ( qr, both g0[u] and α0[u] are

positive (see Figure 7.2). Similarly, for qa ) qr, g0[u] and α0[u] are both negative.

Therefore, the nonlocal component of the individuals’ speed, namely g[u], gives rise

to a drift which is added to the drift that results from the difference between the

different turning rates: λ+ and λ−. This is true only for model M1II . For model

M1I , α0[u] = 0 and therefore, the drift is caused only by the nonlocal component

of the speed:

ut = Duxx − γ0(g
0[u]u)x. (7.13)

Also, recall that for model M1, the drift was caused only by the difference between

the turning rates (see equation (3.30)).

Note that if we use ”tanh” function to describe both the turning rates and the

speed (see equations (2.4) and (7.2)), then the parabolic equations (3.30), (7.12),

and (7.13) are qualitatively similar. It should be emphasized that the functions α

and g have similar shapes: they are both bounded and increasing as functions of

the perceived signals (see Figure 7.2). Therefore, for large speeds and large turning

rates, it does not really matter if the social interactions influence only the turning
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rates, only the speed, or both the turning rates and the speed. In all these cases,

the behavior of the limiting parabolic equation is qualitatively similar.

+

–2

–1

1

2

–10 –8 –6 –4 –2 2 4 6 8 10

+−(y   [u])α

−y   [u]+

g(y  [u])−

Figure 7.2: The nonlocal components for the speed and the turning rates functions. The

continuous curve describes g[u] = tanh(y±[u+, u−]) = tanh(±y+[u+, u−]) (as a function of

the perceived signals y±). The curve formed of crosses describes the difference between the

right and left turning α[u] = f(y∓[u] − y0) − f(y±[u] − y0). Note that both functions are

increasing and bounded.

Recall that in Chapter 3, we discussed conditions for the limiting parabolic

equation that lead to moving groups. In particular, we started with a rectangular

pulse and investigated the speed of the front and back edges. The results showed that

in order to have moving groups, the function describing the nonlocal interactions

has to be monotone. Following the same approach as there, it can be shown that

equations (7.12) and (7.13) can support moving groups if the speed is a monotone

function of the perceived signals.

In the following, we will assume that the diffusion coefficient is small enough, that

is D ≈ 0. This can happen when γ0 ) λ0
1. To ensure that the advection coefficient

still plays an important role in the movement (that is, B ( 0), we assume that

λ0
1 ) λ0

2. Under these assumptions, (7.12) and (7.13) can be approximated by the

135



following hyperbolic equations:

ut + (Bα0[u]u + γ0g
0[u]u)x = 0, (7.14)

ut + γ0(g
0[u]u)x = 0. (7.15)

We assume that the initial condition for these equations is a rectangular pulse of

density A, and investigate the speed at which its edges are traveling. For simplicity,

let us focus first on equation (7.15), and assume that its left edge is at x = 0.

Therefore, u(x, 0) = 0 for x < 0, and u(x, 0) = A for x ≥ 0. Then, the speed of the

left edge of the pulse is given by the Rankine-Hugoniot jump condition

s =
γ0(g0[A]A − g0[0]0)

A − 0
= γ0g

0[A]. (7.16)

The nonlinear term g0[A] is described by

g0[A] = tanh(A

∫ ∞

0
K(y − x)dy − A

∫ ∞

0
K(x − y)dy), x ≥ 0. (7.17)

As before, we denote K(s) = qaKa(s) − qrKr(s). Similarly, we can assume that its

right edge is at x = 0, that is, u(x, 0) = A for x ≤ 0, and u(x, 0) = 0 for x > 0.

The speed of this discontinuity satisfies the same equation (7.16), with the nonlinear

term g0[A] described by

g0[A] = tanh(A

∫ 0

−∞
K(y − x)dy − A

∫ 0

−∞
K(x − y)dy), x ≤ 0. (7.18)

Note that, if the speeds of the right and left edges of the rectangular pulse have

opposite sign, the pulse will contract or expand. If the speeds have similar sign, the

pulse will undergo a translation, and hence, the group will move.

In a similar manner, the jump condition for equation (7.14) is given by

s = Bα0[A] + γ0g
0[A]. (7.19)

The nonlinear term g0[A] is described by equations (7.17) or (7.18), whereas α0[A]

is described by

α0[A] = − tanh(−A

∫ ∞

0
K(y − x)dy + A

∫ ∞

0
K(x − y)dy − y0) +

tanh(A

∫ ∞

0
K(y − x)dy − A

∫ ∞

0
K(x − y)dy − y0), x ≥ 0, (7.20)
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if the left edge of the pulse is at x = 0, or by

α0[A] = − tanh(−A

∫ 0

−∞
K(y − x)dy + A

∫ 0

−∞
K(x − y)dy − y0) +

tanh(A

∫ 0

−∞
K(y − x)dy − A

∫ 0

−∞
K(x − y)dy − y0), x ≥ 0, (7.21)

if the right edge of the pulse is at x = 0.

Comparing the shape of g0[u] and α0[u] (Figure 7.2), we observe that the magni-

tudes of attractive and repulsive interactions (which appear in K(s)) lead to quali-

tatively similar effects on the movement direction of the jump discontinuity (i.e., the

sign of the speed is the same). However, the quantitative effect (i.e., the magnitude

of the speed) is slightly different because of the different magnitues for g0[u] and

α0[u].

Returning to the parameter scaling, recall that in Chapter 3, we observed that

if we chose a different scaling for the directed and the random turning rates, we

obtain an elliptic equation. A similar result is obtained when we consider density

dependent speed. More precisely, for ε → 0, the scaling λ1 =
λ0
1
ε and λ2 =

λ0
2

ε2 leads

to exactly the same elliptic equation

uxx =
1

γ0
(uα0[u])x. (7.22)

We assumed here that individuals turn more often in response to external stimuli

(λ2), than they turn randomly (λ1). Similarly, we can distinguish between a “base-

line” speed γ, and a speed due to social interactions γ̄g[u] (as in [42]):

Γ± = γ ± γ̄g[u], with γ̄ ≤ γ. (7.23)

Assuming that the speed resulting from social interactions (γ̄ = γ̄0
ε2 ), increases faster

than the “base-line” speed (γ = γ0

ε
√

ε
), we obtain the following elliptic equation:

uxx =
2λ0

1γ̄0

γ2
0

(g0[u]u)x. (7.24)

Previous results [53] show that using different time scales, θ = tε and θ = tε2,

leads to elliptic and parabolic equations, respectively. We showed here that using
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different scales for the directed and the random turning rates, or the directed and

the “base-line” speed, leads to a similar case of parabolic versus elliptic equations.

7.4 Linear stability analysis

In this section, we begin exploring the effects of the social interactions on the emer-

gence of the group patterns. For models M1I and M1II , the spatially homogeneous

steady states (u+, u−) = (u∗, u∗∗) satisfy the same steady-state equation as model

M1 (see equations (4.1)-(4.2)). As shown in Figure 4.1, there are two critical values

for alignment, namely Q∗ and Q∗∗, which determine the number of possible steady

states. More precisely, depending on the magnitude of the alignment (qal), the spa-

tially homogeneous steady states can be one of the following pairs: (u∗
1, u

∗
5), (u∗

2, u
∗
4),

(u∗
3, u

∗
3), (u∗

4, u
∗
2), and (u∗

5, u
∗
1). Perturbations of these steady states with terms of

the form eσt+ikx lead to the following dispersion relations corresponding to models

M1I and M1II , respectively:

σ2
M1I

+ σM1I

(

L1 + L2 + γikK̂A − M5qal(K̂
−
al + K̂+

al)
)

+ γ2k2 −

γ2k2K̂(u∗∗ − u∗) + γik(L2 − L1) + γikM5qal(K̂
−
al − K̂+

al) +

γikK̂A(L1 + L2) − γikM5AqalK̂(K̂+
al + K̂−

al), (7.25)

σ2
M1II

+ σM1II

(

L1 + L2 + γikK̂A − M5qal(K̂
−
al + K̂+

al)
)

+ γ2k2 −

γ2k2bK̂(u∗∗ − u∗) + γik(L2 − L1) + γikM5qal(K̂
−
al − K̂+

al) +

γikK̂A(L1 + L2) − γikM5AqalK̂(K̂+
al + K̂−

al) +

2γikM5K̂. (7.26)

Note that the only difference between equations (7.25) and (7.26) is the extra term

2γikM5K̂ (i.e., the last term in equation (7.26)). We will investigate shortly the

effect of this term on the emergence of unstable modes. Here K̂ = qaK̂a − qrK̂r,

where K̂j , j = r, a are the Fourier transforms of the interaction kernels (2.9). The

rest of the constants are given by equations (4.12)-(4.13)). Recall that the constant
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y0 has been introduced in Chapter 2 to ensure that for qa = qr = qal = 0, the

turning rates are mainly random.

Figure 7.3 shows examples of the dispersion relation for models M1I and M1II ,

when we perturb the spatially homogeneous steady state (u∗, u∗∗) = (u∗
3, u

∗
3). When

we perturb any of the other four steady states u∗
1, u∗

2, u∗
4, or u∗

5, the graphs of the

dispersion relations look similar to the ones described in Chapter 4, Figure 4.2.

For this reason, we will not discuss them here. In Figure 7.3, the continuous curve

represents the real part of the dispersion relations (7.25) and (7.26), while the dashed

curve represents the imaginary part. Cases (a)-(d) correspond to model M1I , while

cases (a’)-(d’) correspond to model M1II . Cases (a) and (d) show the dispersion

relation when attraction (qa) is large. In this case, the critical wave number is

k = k1. Cases (b) and (c) show the dispersion relation when repulsion (qr) is large.

The critical wave number that emerges is k = kj , for some j ( 1 (shown is k = k14

and k = k31). In particular, case (c) corresponds to the situation when repulsion is

larger than attraction, while the turning rates are relatively small. Recall that in

Chapter 4, we have seen that when the speed is constant, spatial perturbations of

the steady state u∗
3 lead only to real bifurcations (as in Figure 7.3 (a), (b), (a’) and

(b’)). However, for the density-dependent speed, perturbations of u∗
3 can lead also

to imaginary bifurcations, as shown in Figure 7.3 (c), (d), (c’) and (d’). Therefore,

depending on the parameter values, it is possible to have Hopf bifurcations (that is,

Re(σ(kc)) = 0, Im(σ(kc)) &= 0).

Comparing the graphs of these two dispersion relations for different parameter

values (that is, cases (a)-(d) versus cases (a’)-(d’)), we conclude that the extra term

which appears in equation (7.26) (and does not appear in equation (7.25)), does not

have a considerable influence on the emerging wave number k, or on the amplitude

of the leading eigenmode. Therefore, the linear behavior of the system (7.1) is not

influenced significantly by the presence of attractive and repulsive interactions in

the turning rates. In Section 7.5, we will analyze numerically the effect of these

social interactions on the nonlinear behavior of the system.
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Figure 7.3: Examples of dispersion relations σ(k) for system 7.1, when we perturb the

steady state (u∗, u∗∗) = (u∗
3, u

∗
3). Cases (a)-(d) correspond to model M1I , while cases (a’)-

(d’) correspond to model M1II . The solid curve represents Re(σ(k)), while the dashed curve

represents Im(σ(k)). For cases (a), (b), (a’) and (b’), the imaginary part of the dispersion

relation is zero at the critical wave number, whereas for cases (c), (c’), (d), and (d’) it is

always nonzero. The parameters are as follows (for both M1I and M1II): (a) qr = 0.1,

qa = 0.2, qal = 0, λ1 = 0.4, λ2 = 1.8; (b) qr = 0.05, qa = 0.05, qal = 2.0, λ1 = 2.0, λ2 = 9.0

; (c) qr = 0.1, qa = 0.05, qal = 0.0, λ1 = 0.25, λ2 = 1.125; (d) qr = 0.05, qa = 0.2, qal = 3.5,

λ1 = 0.4, λ2 = 1.8.;
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If we focus on the effect of the social interactions on the bifurcation of solu-

tions from the spatially homogeneous steady state (u∗
3, u

∗
3), we observe that when

Im(σ(k)) = 0, increasing repulsion suppresses the emergence of heterogeneous pat-

terns (see Figure 7.3 (a) and (b)). This effect is similar to the one observed for

constant speed (see Chapter 4, for the discussion about model M1). However, when

Im(σ) &= 0, increasing repulsion leads to the emergence of modes with very large

wave numbers (see Figure 7.3 (c)). Therefore, large repulsion causes individuals to

speed up and/or slow down, which in turn leads to a large number of small groups.

Large attraction leads to either a small number of large groups (as in Figure 7.3

(a)), or to a very large number of small groups (as in Figure 7.3 (b)).

7.5 Numerical results

In the following, we will investigate numerically some of the spatial and spatiotempo-

ral patterns displayed by the hyperbolic model (7.1). We recall that the semi-linear

system (2.1) could not exhibit shocks when the initial data was continuous. For this

reason, the numerical methods used in Chapters 5 and 6 were appropriate. System

(7.1), on the other hand, can exhibit shocks for continuous initial conditions. More-

over, the nonlinear flux terms can cause numerical instabilities. This requires the

use of high-resolution numerical schemes. In particular, to obtain a stable, second

order accurate method, we will use a time-splitting approach which deals with the

advection term and the source term separately (see for example, [63],[66]). More

precisely, for the source term we will use a fourth order Runge-Kutta method. For

the advection term we will use a second order, non-oscillatory, central difference

scheme introduced by Nessyahu and Tadmor [86]. The advantage of this numeri-

cal scheme is that, unlike the Godunov-type methods, it is not necessary to solve

Riemann problems, which can be a very expensive task.

In Section 7.5.1, we describe in detail the numerical method we use to discretize

system (7.1). In Section 7.5.2, we investigate some of the patterns displayed by this
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hyperbolic model. In particular, we use these numerical results to understand the

effect of attractive and repulsive speeds on the resulting group structures. Also, we

will investigate the effect of attractive and repulsive turning rates on the nonlinear

behavior of system (7.1). For this, recall that in Section 7.4 we showed that the

linear behavior of models M1I and M1II is qualitatively similar. In Section 7.5.2

we will investigate if a similar result holds when we consider the effect of nonlinear

terms.

7.5.1 Numerical method

To discretize model (7.1), we use a time-splitting approach. More precisely, let us

rewrite system (7.1) as

ut + (F (u))x = s(u), (7.27)

where we define u = (u+, u−)T , the flux term F (u)=(F1(u), F2(u))=(Γ+[u+, u−]u+,

−Γ−[u+, u−]u−), and the source term s(u)=(−u+λ+[u+, u−]+u−λ−[u+, u−], u+λ+[u+, u−]−

u−λ−[u+, u−])T . To compute the solution of system (7.1), we deal with the source

term and the advection term separately. First, we focus on the source term, and

solve the following ordinary differential equation:

ut = s(u). (7.28)

Let Sx,t be the solution operator of this equation. Hence, the solution of this problem

can be written as ū(x, t) = Sx,tū(x, 0). We then use this solution as the initial

condition for the advection term

ut = (F (u))x. (7.29)

Similarly, let Ax,t be the solution operator of this advection equation. Therefore,

the final solution of the hyperbolic system (7.27) can be written as

u(x, t) = Ax,tSx,tu(x, 0). (7.30)

To use this approach in a numerical method, we replace the solution operators Sx,t

and Ax,t with the numerical schemes S̄x,k and Āx,k which solve equations (7.28) and
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(7.29) over time steps of length ∆t = k [66]. Therefore, the numerical solution of

(7.1) at the next time step (Un+1) is given by

Un+1 = Āx,kS̄x,kU
n. (7.31)

To implement this method, we discretize the space-time plane choosing a space

step ∆x = h, and a time step ∆t = k. Also, we define the discrete mesh points

(xj , tn) = (jh, nk), with j = 0..N − 1 (where N − 1 = L/h is the number of

mesh points), and n ∈ N. To solve equation (7.28), we use a classical fourth order

Runge-Kutta method. As mentioned in Chapter 5, the nonlocal terms are first

approximated with finite integrals on [0, L], and then these integrals are calculated

using Simpson’s method. Moreover, as in Chapter 5, the numerical solutions of

equation (7.28), u1n
j and u2n

j , are seen as approximations of u+(x, t) and u−(x, t)

over the cells [xj−1/2, xj+1/2] (see equations (5.2)).

To solve the advection equation, we use a high-resolution method introduced by

Nessyahu and Tadmor (the NT scheme) [86]. This scheme is based on a staggered

form of a Lax-Friedrichs scheme. Therefore, in this case the solutions are seen as

approximations over the cells [xj , xj+1]:

u1n
j+1/2 =

1

h

∫ xj+1

xj

u+(x, tn)dx, u2n
j+1/2 =

1

h

∫ xj+1

xj

u−(x, tn)dx. (7.32)

Let us define the vector vn
j = (u1n

j , u2n
j ). The numerical scheme is described by the

following equation:

vn+1/2
j = vn

j −
k

2
(Fn

j )′,

vn+1
j+1/2 =

1

2
(vn

j + vn
j+1) +

h

8

(

(vn
j )′ − (vn

j+1)
′) −

k

h

(

F (vn+1/2
j+1 ) − F (vn+1/2

j )
)

.(7.33)

Here (F n
j )′ =

(

(F1n
j )′, (F2n

j )′
)T

approximates the derivative of the flux (F (u))x=((F1(u))x,

(F1(u))x), while (vn
j )′=

(

(u1n
j )′, (u2n

j )′
)T

approximates the slopes ux=(u+
x , u−

x )T . To

calculate these derivatives, we use the so-called min-mod limiter:

(vn
j )′ = minmod(

vn
j − vn

j−1

h
,
vn
j+1 − vn

j

h
),

(Fn
j )′ = minmod(

Fn
j − Fn

j−1

h
,
Fn

j+1 − Fn
j

h
), (7.34)
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where

minmod(a, b) =
1

2
(sgn(a) + sgn(b)) min(|a|, |b|). (7.35)

Componentwise, equations (7.34) can be written as

(u1n
j )′ = minmod(

u1n
j − u1n

j−1

h
,
u1n

j+1 − u1n
j

h
),

(u2n
j )′ = minmod(

u2n
j − u2n

j−1

h
,
u2n

j+1 − u2n
j

h
), (7.36)

and

(F1n
j )′ = minmod(

F1n
j − F1n

j−1

h
,
F1n

j+1 − F1n
j

h
),

(F2n
j )′ = minmod(

F2n
j − F2n

j−1

h
,
F2n

j+1 − F2n
j

h
). (7.37)

Alternatively, we can use the more accurate UNO (Uniformly Non-Oscillatory) lim-

iter [86]:

(vn
j )′ = minmod

(

vn
j − vn

j−1

h
+

1

2h
minmod(vj − 2vj−1 + vj−2, vj+1 − 2vj + vj−1) ,

vn
j+1 − vn

j

h
−

1

2h
minmod(vj+1 − 2vj + vj−1, vj+2 − 2vj+1 + vj)

)

,

(Fn
j )′ = minmod

(

Fn
j − Fn

j−1

h
+

1

2h
minmod(Fj − 2Fj−1 + Fj−2, Fj+1 − 2Fj + Fj−1) ,

Fn
j+1 − Fn

j

h
−

1

2h
minmod(Fj+1 − 2Fj + Fj−1, Fj+2 − 2Fj+1 + Fj)

)

. (7.38)

Recall that the Runge-Kutta scheme used to discretize equation (7.28), computes

the solution at (xj , tn), j = 0..N − 1. Since the numerical scheme (7.33) computes

the solution at an intermediate point (xj+1/2, tn), we have to apply it twice to obtain

the value of the solution at (xj, tn).

To complete the description of the numerical scheme, we have to specify the

boundary conditions. In particular, we will use periodic boundary conditions to be

able to compare the patterns obtained when the speed is density-dependent, with the

patterns obtained in Chapter 5, when the speed was constant. Note that because of

the staggered NT scheme (7.33), we have to pay attention to the implementation of

these boundary conditions. In particular, after applying the scheme twice, we obtain

the solution at points (xj+1, tn), j = 0..N − 1. To make sure that the boundary
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conditions are applied at the end points of the interval [0, L] (that is, at (x0, tn)

and (xN−1, tn)), we have to translate the solution one space-step back. This way,

the solution will be calculated at (xj, tn), j = 0..N − 1, and we can implement the

periodic boundary conditions.

Throughout the simulations we will use the space step h = 0.01, and the time

step k = 0.018. Note that this time step is enough to ensure that there is no nu-

merical instability. Moreover, in this section we will focus only on the spatially

homogeneous steady state (u∗
3, u

∗
3), and choose the initial conditions to be random

perturbations of this state. The following parameters will be fixed during the sim-

ulations: the domain length (L = 10), the length of the interaction ranges for the

repulsion (sr = 0.25), alignment (sal = 0.5), and attraction terms (sa = 1.0), the

width of the interaction kernels mj = sj/8 (j = r, al, a), and the constant component

of the speed (γ = 0.1).

At the beginning of this section, we mentioned that we first solve the source

equation (7.28), and then use the solution to solve the advection equation (7.29).

However, it should be specified that it does not matter which of the two equations

is solved first. We have performed simulations where we first solved the advection

equation, and then solved the source equation. The results were qualitatively similar.

Also, qualitatively similar results were obtained when using either the min-mod

limiter (7.34), or the UNO limiter (7.38).

7.5.2 Spatial and spatiotemporal patterns

Before starting the investigation of the spatial and spatiotemporal patterns dis-

played by system (7.1), we should stress that the parameter space for this system

is very large, and a thorough analysis of all possible patterns is not a trivial task.

However, our purpose here is not to identify all these patterns, but to investigate

the effect of density-dependent speed on the resulting group patterns. Also, we are

interested in the behavior of the groups when considering turning rates that depend

only on the alignment interactions, versus turning rates that depend on all three
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social interactions. For this reason, we will investigate only the following arbitrary

parameter subspaces: (1) qal = 0, qr = 0.1, and qa ∈ [0.1, 0.9]; (2) qal = 2, qr = 0.1,

and qa ∈ [0.1, 0.9]; (3) qal = 0, qr ∈ [0.1, 0.7], and qa = 0.1; (4) qal = 3.5, qr = 0.05,

and qa ∈ [0.1, 0.7]. Note that for cases (1)-(3), the alignment parameter is such

that qal < Q∗∗. This corresponds to the dispersion relations shown in Figure 7.3

(a)-(c) and (a’)-(c’). In case (4), the alignment parameter satisfies qal > Q∗∗. This

corresponds to the dispersion relation shown in Figure 7.3 (d)-(d’).

Figures 7.4 and 7.5 describe some of the patterns displayed by system (7.1). It

should be specified that all these patterns can be obtained with either model M1I or

model M1II . Moreover, the parameter ranges for which these patterns are obtained,

are quite similar.

Figure 7.4 (a) shows the patterns displayed by system (7.1) for large values of

attraction, and in the absence of alignment. In this case, the groups are stationary,

with individuals evenly spread over the entire group. As we further increase the

attraction, the speeding-up/slowing-down behavior leads to the formation of a large

number of small, high-density groups. The pattern is shown in Figure 7.4 (b). This

pattern is also specific to the case when repulsion is much larger than attraction.

Note that both patterns are similar to patterns obtained for constant speed (see

Figures 5.5(1), and (2)).

For small to intermediate values of attraction, the speeding-up/slowing-down

behavior leads to the formation of very high density subgroups. These subgroups

can form larger stationary groups (as shown in Figure 7.4 (c)), or can form traveling

groups that split and merge again (as shown in Figure 7.4 (d)). Note that this

splitting and merging behavior is consistent with the results of some Lagrangian

models that consider density-dependent speed and direction changes [42].

In Section 7.4 we observed that for large repulsion, it is possible to obtain moving

groups, at least for small time and infinitesimal perturbations (see Figure 7.3 (c)).

Figures 7.4 (e) and (f) show two patterns that are obtained when the dispersion

relation is similar to the one shown in Figure 7.3 (c). Case (e) describes an irregular
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Figure 7.4: Examples of patterns displayed by system (7.1). The parameters are: (a)

qr = 0.1, qa = 0.5, qal = 0; (b) qr = 0.1, qa = 0.7, qal = 2; (c) qr = 0.1, qa = 0.3, qal = 2;

(d) qr = 0.05, qa = 0.2, qal = 3.5; (e) qr = 0.5, qa = 0.1, qal = 0; (f) qr = 0.1, qa = 0.1,

qal = 0. The turning rates are λ1 = 0.2 and λ2 = 0.9. The simulations are run for time up

to t = 150. The plots show the last 25 to 100 time steps.
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Figure 7.5: Examples of transient patterns displayed by system (7.1). The parameters

are: (a) qr = 0.1, qa = 0.3, qal = 0, λ1 = 0.2, λ2 = 0.9;( time t < 50) (b) qr = 0.1, qa = 0.2,

qal = 0, λ1 = 0.2, λ2 = 0.9;(time t < 100) (c) qr = 0.05, qa = 0.2, qal = 3.5, λ1 = 0.4,

λ2 = 1.8, M1I , u∗
3;time t ≤ 60; (d) qr = 0.05, qa = 0.2, qal = 3.5, λ1 = 0.4, λ2 = 1.8; time

62 ≤ t ≤ 80. The plots show the last 35-70 time steps.

pattern obtained when repulsion is larger than attraction. Note that if the repulsion

is much larger than attraction, then the final pattern is described by Figure 7.4(b).

Case (f) describes a periodic pattern obtained when attraction and repulsion have

similar magnitudes. This pattern arises when very high density left-moving and

right-moving subgroups pass through each other.

Note that the patterns described in Figure 7.4 do not change their structure at

least up to time t = 200. It is possible that for very large time they will evolve into

different patterns. However, this aspect was not investigated here.

Moreover, studying the evolution of solutions up to time t = 200, we observed

that system (7.1) displays also transient patterns. Four of these are shown in Figure
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7.5. For example, the initial pattern obtained when attraction is larger than repul-

sion, is similar to the one shown in Figure 7.5(a). For larger time, this pattern evolves

into the pattern shown in Figure 7.4(c). Figure 7.5(b) shows left-moving and right-

moving high-density subgroups of individuals that pass through each other. Note

that compared to the pattern displayed in Figure 7.5(f), which shows more individ-

uals moving in one direction than in the other, here there is approximately the same

number of individuals moving left or right. Because of this, even if the groups move,

the pattern as a whole is stationary. Recall that similar behavior was obtained for

the communication mechanism M5, when we assumed constant speed. However, in

that case the groups were larger, with individuals uniformly spread over the entire

group. As time increases (in particular for t > 100), pattern (b) evolves into the

pattern shown in Figure 7.4(c). Figure 7.5(c) shows a type of pattern obtained for

initial time, when alignment is very large. As time progresses, this pattern evolves

into the traveling train shown in Figure 7.5(d). Note that compared to the traveling

train discussed in Chapter 5 (Figure 5.5(6)), which was periodic only in space, here

the pattern is periodic in both time and space. For very large time, this pattern

evolves into the splitting and merging behavior shown in Figure 7.4(d).

7.6 Discussion

In this chapter, we introduced a new model which assumes that both the speed

and the turning rates depend on the social interactions. To simplify the analysis,

we focused only on the reception mechanisms introduced in Chapter 2, Section 2.2

(model M1). Since individuals can respond to signals received from neighbors within

the attraction and repulsion ranges by changing direction, as well as speeding up or

slowing down, we focused on two cases. More specifically, model M1I assumes that

the speed depends on the attractive and repulsive interactions, while the turning

rates depend only on the alignment interactions. Model M1II assumes that both

the speed and the turning rates depend on the attractive and repulsive interactions.
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In addition, the turning depends also on the alignment interactions.

Throughout this chapter, we compared these two models using analytical and

numerical results. In particular, formal parabolic limit suggests that for large speed

and large turning rates, there are no significant differences between the models

with density-dependent speeds or density-dependent turning rates. The limiting

parabolic equations are qualitatively similar. Moreover, when the speed is density-

dependent, turning in response to attractive and repulsive interactions, or turning

randomly, has similar effects.

Linear stability analysis of model (7.1) shows that for small time and infinites-

imal perturbations, the effect of turning in response only to alignment interactions

versus turning in response to all three social interactions, is insignificant. This sug-

gests that the speed is more sensitive to these interactions than are the turning

rates. Therefore, the behavior is mainly influenced by the speed, unless both the

attraction and alignment are very large. This result is also supported by the nu-

merical simulations. The patterns discussed in Section 7.5 were obtained for both

models M1I and M1II .

Comparing the patterns obtained for density-dependent speed, with the patterns

obtained for constant speed (see Chapter 5), we note that the attractive and repul-

sive speed leads to groups formed of very high density subgroups. In particular, if

alignment is strong (i.e., qal > Q∗∗), then variations in the speed can cause these

groups to split and merge again. It should be mentioned that this behavior can also

be obtained for qal < Q∗∗, when we perturb the spatially homogeneous steady state

(u∗
1, u

∗
5). Note that this steady state implicitly assumes a certain degree of group

polarization. A similar splitting/merging behavior was previously obtained with a

Lagrangian model that incorporates density-dependent speed and density-dependent

turning rates [42]. However, the Eulerian models existent in the literature focus only

on pattern coarsening (see for example [35, 123]). This can explain the merging of

animal groups, but not the splitting. We show here that nonlocal attractive and

repulsive speeds, combined with nonlocal turning rates, can explain both behaviors.
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Numerical results also show that in case of density-dependent speed, it is possible

to obtain moving groups even in the absence of alignment. This behavior could not

be observed for constant speed. Moreover, these moving groups become stationary

if attraction is very large.

In Chapter 5, we observed that the rippling behavior was possible only when

considering a particular communication mechanism (M5). We should stress that

the assumptions made for this communication mechanism were consistent with the

assumptions of other models existent in the literature (see [59, 71] and the discussion

in Chapter 8). The numerical results presented in this chapter show that it is possible

to obtain a similar rippling behavior if we assume that individuals respond to their

neighbors by changing their movement direction, as well as speeding up or slowing

down. These results suggest that taking into consideration different communication

mechanisms, as well as density-dependent speed and turning rates, can give an

explanation for the multitude of spatial and spatiotemporal patterns observed in

nature. However we still do not have a clear answer regarding which patterns are

generated by density-dependent speed alone, by density-dependent turning rates

alone, and which are generated by a combination of speed and turning rates. This

requires a thorough analysis of the parameter space, which is beyond the scope of

this research. Nevertheless, this is the first continuum model with density-dependent

speed that displays such a wide variety of patterns. Also, it is the first continuum

model which discusses the spliting/merging behavior of animal groups, and not just

the coarsening of the patterns.
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Chapter 8

Discussion

In this thesis we developed a general framework for modeling animal group formation

and movement based on how animals receive information from their conspecifics and

the amount of information received. This framework presents a straightforward way

to incorporate different social interactions, and communication mechanisms.

Starting with the same modeling procedure as Pfistner [99] (that is, a hyperbolic

model with nonlocal turning rates), we considered three social interactions that af-

fect the turning behavior of an individual: attraction towards individuals that are

far away, repulsion from those that are nearby, and alignment with those neighbors

that are at intermediate distances. Moreover, to account for the different ways ani-

mals receive information about their neighbors’ position and direction of movement,

we incorporated different communication mechanisms (sub-models M1-M5). Note

that the mechanisms presented in this thesis are not the only possible ones. Start-

ing with different assumptions about the communication signals, one can derive a

multitude of new mechanisms. Therefore, this modeling framework can be tailored

to specific animal species that use particular signal reception mechanisms.

Using this framework, we demonstrated the importance of adapting speed and

direction of movement, to the emergence of different types of group behaviors and the

corresponding group structures that can be found in nature. Moreover, we showed

that this framework can explain the different patterns obtained by all other parabolic

and hyperbolic models for group formation, that exist in the mathematical literature.
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Therefore, the model introduced in this thesis presents a unitary approach for animal

group formation and movement: all these different patterns can be understood

as being caused by different communication mechanisms. In support of this idea,

we mention the parabolic [59, 60] and hyperbolic models [71] that investigate the

rippling behavior in Myxobacteria colonies. Note that all these models consider

interactions of individuals with neighbors moving in opposite direction. This is

consistent with the reception mechanism we considered in sub-model M5. Moreover,

all these models show rippling patterns similar to the one presented in Figure 5.5.

Also, we should mention that for the hyperbolic models, it does not matter the

shape of the turning rate functions (compare [71] and [30]). The only important

thing seems to be the movement direction of the neighbors. This result allows us

to postulate that other group patterns (if not all) might be the result of different

mechanisms involved in signal reception.

In addition to this, we should stress that our modeling framework can be used to

obtain a variety of new and interesting spatial and spatiotemporal group patterns.

Some of these patterns (such as the splitting-merging behavior) were previously

obtained only with Lagrangian models. However, the majority of the patterns de-

scribed here are novel.

Moreover, the modeling procedure introduced in this thesis suggests that the

use of different communication signals can play an important role in the fluid pat-

terns observed in some animal groups. In particular, the switch between different

communication signals, sometimes as a result of environmental factors, can lead to

the transitions between different patterns observed in animal groups.

In the following two sections we will summarize the results presented in this

thesis. In Sections 8.1 we will focus on the mathematical results, while in Section

8.2 we will summarize the biological results. In particular, we will draw a parallel

between our results and some empirical observations. In Section 8.3, we will present

some open problems and discuss future work.

153



8.1 Discussion of mathematical results

In this thesis we derived a new semi-linear hyperbolic model with nonlocal turning

rates. First, we focused on the case when the speeds are constant. In an attempt

to bridge the gap between the Lagrangian and Eulerian approaches, we showed how

can we derive this model using a correlated random walk approach.

In regard to this hyperbolic model, we first showed the existence of solutions on

infinite as well as finite domains with periodic boundary conditions. Note that in

the mathematical literature there are existence results for local hyperbolic models.

However, our nonlocal model requires a more careful discussion of the turning rates.

Then, we have taken a formal parabolic limit to reduce this hyperbolic model to a

well known parabolic model for animal group formation. The results showed that for

large speeds and large turning rates, two biological approaches namely attractive

and repulsive turning rates, and attractive and repulsive speeds, lead to similar

results.

The complexity of this new model can be easily seen in the multitude of the spa-

tial and spatiotemporal patterns displayed by it. Previous parabolic and hyperbolic

models for animal group formation and movement usually displayed 1-2 patterns.

Only two of the two-dimensional parabolic models displayed 4 different patterns

(see [15, 77]). However, our nonlocal hyperbolic model (with its five sub-models)

can display at least 13 different patterns. Moreover, these results are obtained with

a one-dimensional model. To understand some of these patterns, we used bifurca-

tion and perturbation theory. In particular, the nonlinear behavior of the system

was investigated near bifurcation points using weakly nonlinear analysis. The anal-

ysis shows the existence of subcritical bifurcations to large amplitude heterogeneous

patterns.

To understand the effect of the variations in the animals’ speed due to attractive

and repulsive interactions, we then introduced a new quasi-linear hyperbolic model.

A formal parabolic limit shows that for large speeds and turning rates, the results
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are similar to those obtained for constant speed. More precisely, when the speeds

and large turning rates are very large, it does not really matter if the attractive and

repulsive interactions influence the speed, the turning rates, or both. In all cases the

results are qualitatively similar. In terms of spatial and spatiotemporal patterns,

this quasi-linear model is even more complex than the previous model with constant

speed. More precisely, numerical investigations of only one of the communication

mechanisms described in Chapter 2 (i.e., the mechanism corresponding to model

M1) showed at least 10 different patterns.

In summary, these results show that analytical methods such as bifurcation

and perturbation analysis, or weakly-nonlinear analysis, can be used to investigate

different biological questions regarding the structure of animal aggregations.

8.2 Parallel between analytical and empirical
results

In this section, we discuss how the complex patterns that emerge in the hyperbolic

model introduced in this thesis, relate to the empirical observations. In particular,

the emphasis will be on the biological mechanisms that can explain the different

group structures observed in animal aggregations.

We begin the discussion on the mechanisms that cause different group struc-

tures, by analyzing the shape of the aggregations. In Chapter 5, we saw that groups

are well defined, that is, the density outside the group is essentially zero. Moreover,

our results show an increased density at the leading edge of the moving groups, due

to leading individuals turning around to return to the group under the influence

of attraction forces. These results seem to agree with empirical studies [19, 125].

Uvarov [125], observes that “a noticeable feature of a band marching in frontal for-

mation is the greater density of hoppers at its leading edge”, a possible explanation

for this being that “the leading hoppers may hesitate because there are no other

hoppers in their anterior field of vision and they may even return to the front after

jumping beyond it; the hoppers behind are, therefore likely to catch up with the
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moving front causing a concentration” (vol. II, pp. 164).

Focusing now on the types of spatial patterns displayed by our model, we ob-

serve that traveling pulses and stationary pulses correspond to moving (e.g., trav-

eling schools of fish, flocks of birds) and stationary (e.g., resting) groups of ani-

mals. Breathers might be associated to the anti-predatory behavior observed in

some schools of fish [36] or flocks of birds [72], when the groups expand and then

contract. Uvarov [125] offers an illustrating example of oscillations (i.e., traveling

trains) exhibited by animal groups. Commenting on the inter-individual interactions

of locust hoppers, Uvarov describes how “a jump by a disturbed hopper leads to an

outburst by others; this spreads through the group or band, and eventually subsides

in a way reminiscent of ripples on the surface of water caused by a pebble”(vol. II,

pp. 165). Other examples of oscillations can be observed in some bird flocks [16]

or fish schools [105]. Moreover, at the beginning of this chapter we mentioned the

rippling behavior observed in Myxobacteria colonies. Note that this behavior is a

transient behavior during the aggregation process that leads to the formation of

fruiting bodies. Our numerical results show similar transient rippling behavior that

leads to stationary groups.

Zigzag movement is seen in flocks of birds [16, 26, 56] that rapidly change direc-

tion, making sharp turns of 1800 [26]. Potts [104] observed that birds do not turn

simultaneously, but the maneuver is initiated by birds banking towards the flock,

and not by those that turn away from the flock. The movement then propagates

like a wave throughout the flock. On the other hand, Davis [26] suggested that some

birds may signal their intention to change direction, and when a certain number of

birds make the same decision, the entire flock turns.

The empirical results also differentiate between two types of group structure

during the turning behavior. Studying the turning behavior in Rock Dove flocks,

Pomeroy and Heppner [103] noticed that the flock became more compact just before

turning, and then it expanded. They also pointed out that this type of turning is

different from what is observed in fish, where groups are usually compact, and they
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expand as they make a turn. Moreover, the authors suggested that this difference

may be explained by the inter-individual distances that are smaller in fish schools,

compared to those in bird flocks. Partridge et. al. [98] discussed the relationship

between the inter-individual distance in fish schools, and the fish body structure

which causes the maneuverability of individuals. They noticed that the fish that are

more maneuverable (such as cod and saithe) have smaller inter-individual distances,

whereas a “stiff-bodied” fish (such as herring) has larger inter-individual distances.

As we have seen in Chapter 5, our mathematical model shows the same two types

of group structure during the turning behavior. The mechanisms that determine

these types of group structure are the different individual turning rates exhibited

by animals. Consequently, the model suggests that it might be possible to explain

the two types of group structure in terms of individual turning behavior. However,

these results show that there is need for a more in-depth analysis that correlates the

compactness of the observed aggregations with the individual turning rates.

Another pattern that can be connected to the observed group behaviors is the

splitting and merging of the groups. In particular, numerical simulations show

that the splitting and emerging pattern can be obtained just by assuming that

individuals turn around, speed up or slow down in response to the behavior of close

or distant neighbors. These splitting and merging behaviors are usually discussed

in the presence of predators (see [56, 72, 90, 126]) However, there are examples of

animal groups that split and merge again even in the absence of predators [36]. We

show here that this behavior can be explained through a combination of density-

dependent speeds and turning rates.Indirectly, the speed can be related to the anti-

predatory behavior.

The results presented in this section were all obtained using numerical meth-

ods. However, analytical results too can provide valuable biological information.

For example, the subcritical bifurcation obtained through weakly nonlinear analy-

sis suggests that there is a threshold group density. Groups with densities below

this threshold will disperse, while groups with densities above this threshold will
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become even more dense and persist for a longer time. This transition between the

disordered behavior and the ordered behavior represented by the high-density sta-

tionary or moving groups, is important for the understanding of the formation and

movement of animal groups. For example, Buhl et. al. [17] have shown experimen-

tally and numerically that as the density of locusts in a group increases, there is a

transition from disordered movement to collective motion of aligned groups. Under-

standing such transitions has potential applications to understanding and controlling

the outbreaks of different insect pests, such as locusts.

While the biological patterns we described here are complex two- and three-

dimensional phenomena, the simulation results show that our one-dimensional model

nonetheless captures essential features of these patterns. This one-dimensional

model can approximate the behavior of animal groups in higher dimensions if they

move in a domain which is much longer than wide.

Because of the complexity of the animal aggregations, it has been difficult to

quantify the different types of groups and animal movements. One step forward

was made in [17], where the results of an individual based model were compared

with laboratory experiments. The results we presented in this thesis invite further

observations and experimental investigations involving the manipulation of commu-

nication in animal groups.

8.3 Future work

The hyperbolic model we introduced in this thesis is extremely rich. To investigate

it, we used numerical and analytical results such as bifurcation theory and pertur-

bation theory. However, there are so many more problems regarding this new model

that are worth investigating. In the following we present some of these issues.

• In Chapter 2, we derived the nonlocal hyperbolic model from a correlated

random walk. It would be interesting to investigate if the results obtained

with the random walk model match the patterns displayed by the continuum
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model (2.1).

• In Chapter 4, we have seen that if the domain L is sufficiently large, u∗
2 and u∗

4

are always unstable. Moreover, the numerics show that perturbations of the

steady states u∗
2 and u∗

4 go to the same attractor as the perturbations of u∗
1, u∗

3,

and u∗
5. Therefore, to better understand this hyperbolic system, it would be

helpful to find this attractor, at least for some particular parameter spaces.

Such existence results were obtained for local hyperbolic systems [52]. For

example, following similar steps as in [12], Hillen [52] constructed a Liapunov

function via a variational approach, and use it to find the global attractor of a

reaction random walk system. However, the application of this method to our

system is greatly complicated by the nonlocal terms. Moreover, the attractor

will depend on all model parameters.

• The spatial and spatiotemporal patterns displayed by this hyperbolic model

are very rich and, most of them, novel. Therefore, it will be interesting

to derive analytical techniques to investigate these patterns (for example,

the feathers, the breathers, or the zigzag patterns). However, the nonlo-

cal terms complicate the analysis. It should be mentioned that even the

classical patterns, such as traveling pulses, are difficult to investigate be-

cause of these nonlocal terms. For example, a traveling pulse ansatz (i.e.,

u±(z) = U±(x − ct), U±(±∞) = 0) transforms the hyperbolic system (2.1)

into a integro-differential equation with respect to the variable z:

u(z)z = C1(c)u(z) + C2(c)u(z)(C3(c)f(y+[u(z)]) − f(y−[u(z)])), (8.1)

where C1, C2, and C3 are constants that depend on the speed c, and y±[u(z)]

are the nonlocal terms described in Chapter 2. The difficulty of solving this

equation resides in the fact that the derivative, as well as the nonlocal terms,

are taken with respect to the same variable z.

• In terms of pattern formation, it would be interesting to compare the pat-
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terns displayed by the limiting parabolic equation (3.30), with the patterns

displayed by the hyperbolic system (2.1). In particular, it will be interest-

ing to investigate the effect of different communication mechanisms on the

parabolic equation (3.30).

• From a biological point of view, it would be helpful to extend the model to

two spatial dimensions. This way, we can compare the theoretical results with

empirical results. The local interactions will be described by a double integral:

over space, and over a turning angle. However, this makes more difficult to

discriminate between different communication mechanisms.
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