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Abstract

A fault in the system operation is deemed to occur when the system practically

experiences an abnormal condition, such as a malfunction in the actuators/sensors.

This situation is happening very often in many control process such as: Chemical

processes, Jet engine control, flight control, Robotics, temperature control, and etc.

Faults can cause catastrophic damages to control systems. Therefore, reliability

is one of the key requirements for process industries. Since many process control

loops are utilized, the fault-free operation of these control loops is strictly required.

For this purpose, effective model based Fault Detection and Isolation (FDI) has

to be developed. On the other hand, effective control and monitoring of a system

requires accurate information of internal behavior of the system. This internal be-

havior can be analyzed by system’s states. Practically, in many real systems, state

space variables are not fully available for measurements, or it is not practical to

measure all of them, or it is too expensive to measure all these state space variables.

Thus, one is faced with the problem of estimating system’s state space variables.

This can be done by constructing another dynamical system called state observer.

The two critical problems stated above have motivated significant research work in

the area of robust state and fault estimation. Fault reconstruction and estimation is

regarded as a stronger extension to FDI since accurate fault estimation automati-

cally implies fault detection. Fault reconstruction is excellent for directly detecting

and isolating the malfunctions within a system by reviling which sensor or actuator

is faulty and is useful for diagnosing incipient and small faults. Moreover, Fault

reconstruction finds solid applications in Fault Tolerant Control Systems (FTC).

Therefore, in this PhD thesis, we restrict our attention to design observers (esti-



mators) that can simultaneously estimate the system states and faults. It is worth

mentioning that both faults and disturbances considerably affect the state observa-

tion (estimation) and designing a robust observer which is insensitive to faults and

disturbances is of great interest for achieving an accurate state estimation.

It is well known that two promising control strategies to cope with vastly uncertain

control processes are H∞ Control and Sliding Mode Control. The robustness and

simple implementation of these two control theories introduce them as strong prac-

tical control methods. Sliding mode observers are very successful to deal with un-

certain faulty systems. Furthermore, in Robust FDI, the main objective is to design

residuals that can distinguish faults from disturbances/uncertainties by reducing the

effect of disturbances. However, in this thesis, we go one step further and we pro-

pose Robust Fault Reconstruction (RFR) by integrating H∞ filtering and Sliding

Mode Control. It is also shown how adaptive control can improve the robustness of

the observer based RFR by assuming that there is no information on the bound of a

fault and nevertheless the observer can still reconstruct the fault effectively.

Another open problem in the context of FDI and RFR is due to systems with multi-

ple faults at different system’s components since it is often the case where actuators

and also sensors suffer from faults during the course of the system’s operation.

Both actuators and sensors can suffer from faults either alone, at separate times or

simultaneously. In this case, detection and reconstruction of all faults is highly im-

portant. The co-existence of unknown fault at both some sensor(s) and actuator(s)

has not been addressed in any earlier design of fault reconstruction schemes. Thus,

in this Thesis, inspired by the theory of singular systems, we aim at solving this

open problem. Unknown Input Observers (UIOs) for estimation of unknown input

and sensor fault are also studied by proposing a new UIO structure. The application

of the proposed UIO for chaotic communication is also addressed. The class of sys-

tem which will be considered throughout this thesis is Lipschitz nonlinear systems

with fault and uncertainty. The reason behind focusing on Lipschitz system is that

Lipschitz systems constitute a very important and wide class, since any nonlinear



system with continuously differentiable nonlinearities can be locally expressed in

this form. As a conclusion, we design novel observers (estimators) which benefits

from the following main features:

• are robust and insensitive to faults

• minimize the effect of disturbances on the state and fault estimation

• are able of detecting unknown behavior-type faults via adaptive gain adjust-

ment

• can simultaneously estimate sensor(s) and actuator(s) fault

• have sensor fault reconstruction ability via the use of a reduced-order UIO
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Chapter 1

Introduction

It is often the case when dealing with complex systems requiring safe operation, that

some form of supervisory function is needed to indicate undesired process states or

faults. Faulty signals can exist in actuators, sensors and process components that

can deteriorate normal operation or even lead to instability. Taking immediate and

appropriate actions in order to preserve safe operation while avoiding the possibly

of catastrophic damages is crucial. In addition to safety concerns, fault detection is

critical from an economical perspective by preventing any unexpected total failure

that can potentially causes lose of revenues. From an environmental perspective,

incorporation of fault detection in industrial process can prevent catastrophic dam-

age to the environment. Thus, fault detection and isolation (FDI) is of significant

technical, economical and environmental importance. The nonlinear behavior ex-

hibited by most industrial processes, the presence of constraints on the operating

conditions, the presence of modeling uncertainty and disturbances, the possibility

of faults in a system’s components, and the unavailability of all the process states

have motivated significant research work in the area of nonlinear state and fault es-

timation. Fault reconstruction and estimation (abbreviated as FRE hereafter) may

be regarded as an extension to fault detection since accurate fault reconstruction

immediately imply fault detection and isolation (FDI). Furthermore, Fault recon-

struction and FDI are also very important in Fault -Tolerant Control (FTC). A FTC

is designed to preserve the control and stability of a system in the event of a set of

possible faults. FDI techniques automatically reconfigure the controller once a mal-

function has been detected. However, as a great advantage of FRE, the corrupted
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measured signals and actuator signals are corrected by FRE before being used by

the controller. Hence, there is no need of control reconfiguration and a relatively

simple and effective control method would still work by retaining its structure.

As mentioned above, effective controller design methods and monitoring of a sys-

tem requires accurate information of internal behavior of the system. This internal

behavior can be analyzed by system’s states. Practically, in many real systems,

state space variables are not fully available for measurements, or it is not practi-

cal to measure all of them, or it is too expensive to measure all these state space

variables. Thus, one is faced with the problem of estimating system’s state space

variables. Therefore, there is a need to design filters to estimate both states and

faults of a system coincidentally during the course of system’s operation. Now, we

briefly study the history of FDI and FRE.

1.1 Fault Detection and Isolation

Safety and reliability are two major concerns of modern control systems. Fault and

malfunction in a system’s components is the main reason behind the safety issues

of control systems. This problem can be dealt with if a supervisory action is taken

to monitor a system and detect faults, locate them and then isolate the faulty com-

ponent. Hence, Fault Detection and Isolation (FDI) is of great importance in a wide

variety of applications of control systems. There are two main approaches in FDI:

(i) signal-based FDI, (ii) model-based FDI. In signal-based FDI, some statistical op-

erations are employed on the measurements, or some artificial intelligent network is

trained using measurements to extract the information about the fault. For instance,

neural network has been the center of attention for signal-based FDI in research

[20],[48],[61],[73]. In model-based FDI, since its beginning in 1970s, the objective

is generally obtained by comparing the actual system’s behavior with the corre-

sponding behavior of it’s mathematical model. The difference of these behaviors,

referred to as residuals are sensitive to any fault. There are a large number of dif-
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ferent approaches developed through the years for model-based FDI [9]. However,

due to the high sensitivity of model-based FDI to the corresponding mathematical

models, a major downside is the need for the perfectly and idealistically accurate

mathematical models which is not often easy to derive. That is due to model uncer-

tainties, process complexities, noise and disturbances. Any discrepancies between

the actual process and its model cause misleading alarms of fault and therefore,

fault detection may become ineffective and useless. This problem has encouraged

a lot of control engineering research towards Robust FDI. A number of methods

proposed for robust FDI can be found in [21], [22], [50], [51]. With regard to the

fact that many systems and processes are highly nonlinear, it is of great interest to

develop method of nonlinear FDI. Regarding the inherent nonlinearity of many con-

trol systems and also the incorporation of mathematical models for FDI, an excel-

lent tool has been traditionally the use of nonlinear observers [9]. In observer-based

FDI, which is a subcategory of model-based FDI, the residual is constructed as a

weighted difference between the measured output and the observer-based estimated

output [9]. Due to the importance of robustness of FDI and also the nonlinearity of

systems, in this thesis, nonlinear robust observer design is performed to deal with

FDI.

1.2 Fault Reconstruction

Instead of generating residuals, fault reconstruction and estimation (FRE) scheme

attempts to reconstruct the fault. FRE is different from the majority of FDI methods

described previously in the sense that it not only detects and isolates the fault, but

provides an estimate of the fault. This approach is very useful for incipient faults

and slow drifts, which are very difficult to detect. Also, this approach is very useful

for FTC systems in the sense that instead of reconfiguration of the control system,

the faulty sensors or actuators can be corrected and the simple control method can

still be effectively used. Motivated by these useful features of FRE, in this thesis,

we are interested in performing observer-based FRE schemes for nonlinear systems

which finds applications in FDI systems.
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1.3 Overview and Statement of Contributions

In this thesis, we restrict attention to design novel filters to estimate both systems’s

states and also sensor and actuator faults simultaneously. It is very important to

mention that FRE schemes inherently require state estimation since the state esti-

mates play an important role in fault reconstruction. Due to the importance and

practicality of Lipschitz nonlinear systems, we consider this class of nonlinear sys-

tem throughout this thesis. Detailed discussions on the background of each prob-

lem and the literature surveys may be found in the introduction of each chapter.

The chapters are written in a self-sufficient format. We believe this improves the

readability of the thesis and greatly facilitates the partial readings which are most

probable for long documents such as PhD dissertations. The rest of the thesis is

organized as follows:

• Chapter 2: In this chapter, we survey the currently established results in

the context of Linear and Lipschitz Observer design problems. Next, we

introduce the principle of sliding mode control since this theory is one of the

main tools used extensively throughout this thesis. In the context of robust

observation, classical sliding mode observers are discussed in details. Finally,

singular system theory is studied since we will use this concept in Chapter 5.

• Chapter 3: This chapter presents a scheme to design robust sliding mode

observers (SMO) with H∞ performance for uncertain Lipschitz nonlinear

systems where both faults and disturbances are considered. We study the

necessary conditions to achieve insensitivity of the proposed sliding mode

observer to the unknown input (fault). The objective is to derive a sufficient

condition using LMI optimization for minimizing the H∞ gain between the

estimation error and disturbances, whilst at the same time the design method

guarantees that the solution satisfies the so-called structural matching con-

dition. The sliding motion affects only a part of the system through a novel

reduced-order switching gain. The structure of the observer gain is new in the

sense that it facilitates the design. Furthermore, the so-called equivalent con-

trol concept is discussed for fault estimation. Finally, a numerical example of
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MCK chaos demonstrates the high performance of the results compared to a

pure SMO.

• Chapter 4: In Chapter 3, we design the robust H∞ SMO using a change of

coordinates. Unlike Chapter 3, to further simplify the design, in this chap-

ter we develop a new parametrization based method to avoid any change of

coordinates. This chapter presents an adaptive sliding mode observer based

approach for nonlinear fault reconstruction using LMIs. A Nonlinear Lips-

chitz uncertain system is considered where the uncertainty (or disturbance)

is assumed to have a constant upper bound. The novelty of the proposed ap-

proach lies in the simplicity of the design since there is no need for any single

or multiple coordinate transformations. This interesting feature is made pos-

sible due to introducing a new solution for the so-called matching condition

on the original system. The upper bound of the fault signal is allowed to be

unknown since the variable structure gain adaptively adjusts itself to maintain

the ideal sliding motion on the defined sliding surface. The reconstruction

signal can approximate the fault to some degree of accuracy depending on

the size of the disturbances. Finally, a simulation study shows the effective-

ness of this approach.

• Chapter 5: The new SMOs presented in Chapters 3 and 4 can accomplish

only actuator fault reconstruction and they do not have the ability to solve

the fault estimation problem for the case of the coincidence of faulty sensors

and actuators. In this Chapter, a new filter for state and fault estimation in a

class of nonlinear systems is presented. The estimator benefits from both slid-

ing mode control and singular systems theory. The novelty of this approach

is based upon dealing with systems prone to faults at sensors and actuators

during the course of the system’s operation coincidentally. Conditions and

proofs of conversion for the proposed estimator are presented. A noticeable

feature of the proposed approach is that the state trajectories do not leave the

sliding manifold even in presence of sensor/actuator faults. This allows for

actuator faults to be reconstructed based upon information retrieved from the
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equivalent output error injection signal. Due to employing a generalized state

space form (singular system theory), the sensor faults are also estimated. A

simulation example based on a flexible joint robot arm demonstrates the ef-

fectiveness of the proposed estimator.

• Chapter 6: Inspired by the concept of unknown input observers (UIOs),

this chapter considers the problem of chaos secure communication. A new

scheme for chaos communication is presented which does not require any

feedback of the message signal into the chaotic dynamics. By introducing a

low pass filter, the message signal can be regarded as the unknown input to be

recovered. The chaos attractor acts as the transmitter and the new proposed

reduced-order UIO synchronizes the slave chaotic system at the receiver end.

Necessary and sufficient conditions for the existence and asymptotical stabil-

ity of the proposed UIO were established. The theoretical analysis and a nu-

merical simulation on Chua’s circuit verify the effectiveness of the proposed

scheme. Next, we extend the robust design of the proposed reduced-order

UIO for systems with disturbances using H∞ method. The proposed H∞-

UIO is employed to robustly estimate and detect sensor faults. The H∞-UIO

exists if an LMI optimization problem is solvable. The configuration of the

proposed sensor fault estimation and diagnosis is novel.

• Chapter 7: In this Chapter, concluding remarks are presented and future

research topics are proposed.
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Chapter 2

Background and Mathematical
Framework

2.1 State Observation

Practically, in many real systems, state space variables are either not fully available

for measurements, or it is not practical to measure all of them. In order to be able to

apply full state feedback control to a system, all of its state space variables should

be available at all times. Also, in some control system applications, one is inter-

ested in having information about system state space variables at any time instant

for monitoring purposes. Thus, one is faced with the problem of estimating system

state space variables. This can be done by constructing another dynamical system

called observer or estimator. Thus the problem of estimating the state of a dynami-

cal system from outputs and inputs, (commonly known as observing the state) is a

very important problem in the theory of control systems.

For linear systems it has been extensively studied, and has proven very useful, es-

pecially for control methods such as observer-based control design. For nonlinear

systems, the theory of observers is not nearly as complete or successful as is the

case for linear systems. Applying linear observer theory to nonlinear problems has

had some success as exemplified by Luenburger Observer [42] and the extended

Kalman filter (EKF) [60], but has by no means closed the book on nonlinear ob-

server design. Instead, attempts continue to be made to construct nonlinear ob-

servers using tools from nonlinear control system. In the following subsection, we
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briefly introduce the concept of observability.

2.1.1 Observability

Before studying the state observer design, we start with a brief introduction to ob-

servability which is a essential issue on state observer design. It is worthy to note

that the concept of observability is dual to that of controllability. Consider the fol-

lowing system

{
ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

y = Cx+Du, y ∈ Rp (2.1)

First we introduce the definition of observability.

Definition:[8] The state equation (2.1) is said to be observable if for any unknown

initial state x(0), there exists a finite t1 > 0 such that the knowledge of the input

u and the output y over [0, t1] suffices to determine uniquely the initial state x(0).

Otherwise, the equation is said to be unobservable.

It is well-known that the response of the above linear system excited by initial state

x0 and the input u(t) is derived as

y(t) = CeAtx(0) + C

t∫
0

eA(t−τ)Bu(τ)dτ +Du(t). (2.2)

In the study of observability, the output y and the input u are assumed to be known;

the initial state is only unknown. Thus the above definition can be modified as fol-

lows:

Definition:[8] Equation (2.1) is observable if and only if the initial state x(0) can

be determined uniquely from its zero-input, i.e.

ȳ(t) = CeAtx(0)

where

ȳ(t) := y(t)− C

t∫
0

eA(t−τ)Bu(τ)dτ −Du(t)
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is a known function. Thus the observability problem reduces to solving x(0). If

u ≡ 0, then ȳ(t) reduces to zero-input response CeAtx(0).

The following well-known theorem introduces the observability of the pair {A,C}

mathematically.

Theorem 2.1. [8] The pair {A,C} of the system (2.1) is observable if and only if

one of the following statements holds:

• The n× n matrix Wo(t) =
t∫
0

eA
T τCTCeAτdτ is nonsingular for any t > 0.

• The np× n observability matrix

O =


C
CA

...
CAn−1


has full column rank (rank n).

• The (n+p)×n matrix
[
A− λI

C

]
has full column rank at every eigenvalues,

λ, of A.

2.1.2 Linear Observer Design

Consider the following uncontrolled linear system:{
ẋ = Ax, x ∈ Rn

y = Cx, y ∈ Rp (2.3)

The problem of generating an estimate of the state, x , in (2.3) is usually referred to

as the problem of designing an observer for (2.3). In the early 1960’s, Luenberger

[42] gave the following result for the construction of an observer for (2.3):

” Let x̂ be our estimate of the true state, x , and assume x̂ obeys the following

dynamics.
˙̂x = Ax̂+ L (ŷ − y) , x̂ ∈ Rn (2.4)

ŷ = Cx̂, ŷ ∈ Rp
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where L ∈ Rn×p . Then if (A,C) is an observable pair, L may be chosen such that

x̂ will converge to x arbitrarily exponentially fast. To see that this is the case, we

consider the dynamics of the error between the state estimate x̂ and the true state

x. Denoting this error by e = x̂− x , we obtain

ė = (A+ LC) e (2.5)

The error dynamics is linear. Due to this, it is clear that if (A,C) is an observable

pair, then the eigenvalues of A+LC can be arbitrarily assigned, and hence placed

as far into the left half plane as desired, causing the error to decay to zero at any

desired exponential rate.”

At this point it is important to note that the observer structure and (2.3) will reveal

that observer dynamics are exactly those of the true system (2.3) except with an ad-

ditional linear function, L, of the difference between the estimated and true output,

ŷ − y , injected into the dynamics. This is a standard structure used throughout

observer design problem, and is commonly referred to as output injection [42].

2.1.3 Lipschitz Observer Design

Consider the class of Lipschitz nonlinear systems of the form{
ẋ = Ax+ Φ(x , u, t), x ∈ Rn

y = Cx, y ∈ Rp (2.6)

where f : Rn → Rn is continuous, A ∈ Rn×n , and C ∈ Rp×n . We also assume

that the pair (C,A) is observable. This allows us to find an L ∈ Rp×n such that

the eigenvalues of A + LC are in the open left half plane. The known nonlinear

function Φ(x, u, t) satisfies a Lipschitz condition locally on a set D ⊂ Rn in which

∥Φ(x1, u, t)− Φ(x2, u, t)∥ ≤ LΦ ∥(x1 − x2)∥ (2.7)

where x1, x2 ∈ D and LΦ ∈ R+ is a known positive constant called Lipschitz

gain or Lipschitz constant [43]. If D = Rn, the function Φ is said to be globally

Lipschitz. Throughout this thesis, we assume that the system to be addressed is at

least locally Lipschitz on a set D. This class of systems represents a very important
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category of nonlinear systems in general. The reason is that any nonlinear system

ẋ = g(x, u) can be expressed in the form of (2.6) if the nonlinear function g(x, u) is

continuously differentiable with respect to x, at least in a locality. Observer design

for this class of systems first introduced by Thau [68]. First, to have a better picture

of a possible observer design method for Lipschitz systems, we briefly describe

Thau’s design. Next, we study the well-known results on Lipschitz observers which

came out later to address difficulties of Thau’s design framework. In most of the

literature, the Lipschitz observer is built as{
˙̂x = Ax̂+ Φ(x̂ , u, t) + L (ŷ − y)
ŷ = Cx̂

(2.8)

Once again let e denote that error between the true state and our estimated state,

e = x̂− x, thus e satisfies

ė = (A+ LC) e+ Φ(x̂ , u, t)− Φ(x, u, t). (2.9)

The following theorem presents Thau’s results.

Theorem 2.2 [68] If the gain L is chosen such that

λmin (Q)

2λmax (P )
> LΦ (2.10)

with the Lyapunov equation (A+ LC)T P + P (A+ LC) = −Q, then the estima-

tion error is asymptotically stable.

Theorem 2.2 provides an important sufficient condition for the asymptotic stability

of the error dynamics. However, employing this condition in observer design is not

trivial and no design algorithm was proposed in [68]. Raghavan in [54] proposed an

iterative binary search procedure over finding a ε > 0 for the following Algebraic

Riccati Equation (ARE)

AP + PAT + P (L2
ΦI − ε−1CTC)P + (1 + ε)I = 0,

where the observer gain would be L = (2ε)−1PCT and P is a s.p.d solution for the

ARE. Unfortunately, this methods fails even for systems with an observable {A,C}
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pair and does not provide necessary conditions on (A−LC) to ensure the observer’s

error stability [55]. Rajamani, in his well-known article [55], derived a condition

on (A− LC) to get around the problem stated above. His result is as follows:

Theorem 2.3. [55] The observer gain L stabilizes the error dynamics in (2.9) if L

is chosen so as to ensure that (A− LC) is stable and such that

min
ω∈R+

σmin(A+ LC − j) > LΦ. (2.11)

Interestingly, the observer design can be framed as an H∞ problem by rewriting

the above condition as [55]

∥[sI − (A+ LC)]−1∥∞ < L−1
Φ .

Since all the above results consider a static observer approach for Lipschitz sys-

tems, such an observer may not always exist numerically. To relax this restriction,

recently in [53] a dynamical approach was presented. The Observer has extra dy-

namics, namely a dynamical compensator, which brings additional degree of free-

dom in the design. All the regularity assumptions of H∞ filtering hold and thus the

observer gain is computed in this framework straightforwardly. Due to the lengthy

technical background and formulation of the dynamical observer approach, read-

ers are referred to [53] for details. Most recently, based on convex optimization

and LMIs, [1] presented a method to tackle Lipschitz observer design problem. In

this method, for a given Lipschitz gain, an LMI feasibility problem must be solved

to compute the observer gain. Moreover, using LMI optimization, the admissible

Lipschitz gain can be maximized and hence the observer can tolerate more Lips-

chitzian nonlinearities [1]. We employ this latter concept to cope with Lipschitz

systems since it fits in the LMI optimization context. Therefore, we skip the details

for now. Details are fully provided in Chapters 4.

2.2 Sliding Mode Control

Variable structure systems (VSS) theory was first proposed in the early 1950s and

has been extensively developed since then [71] and [70]. VSS provides a system-
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atic solution to the problem of maintaining stability and consistent performance in

the face of bounded disturbances. The most popular operation regime associated

with VSS is known as sliding mode control, which is a nonlinear deterministic con-

trol with a high speed, nonlinear feedback that switches discontinuously in time on

a prescribed sliding surface. Many practical applications of sliding mode control

have been reported in the control literature including flight control, robotic manip-

ulators and servo systems ([70], [71] and [18]).

The reason for this popularity is the attractive properties of sliding mode control;

it is robust and in some cases insensitive to external disturbances and parameter

variations. It also provides fast error convergence characteristics by emulating a

prescribed reduced order system. In particular, it is of interest to explore the possi-

bilities of using mode control for robust state reconstruction. Considerable attention

has been paid to robust non-linear observer design problem (See [18] and references

there in). In general, the design of a sliding mode controller (SMC) involves the de-

termination of a sliding surface that represents the desired stable dynamics and the

description of a controller that guarantees the reaching condition of sliding mode.

The trajectories, starting from a given initial condition, tend towards the sliding

surface. Excellent robustness of sliding mode control systems motivate us to de-

sign robust nonlinear observers based upon this control strategy. Now, we illustrate

the principles of sliding mode control through an example. Consider the double

integrator given by [1]

ÿ(t) = u(t). (2.12)

Consider the switching control law

u(t) =

{
−1 if s(y, ẏ) ≥ 0
1 if s(y, ẏ) < 0

(2.13)

Where the switching function is defined by

s(y, ẏ) = my + ẏ (2.14)

and m is a positive design scalar. The term switching control is commonly used
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since the function given in equation (2.12) switches between two control structure

at any point (y, ẏ) in the phase plane. The expression in equation (2.13) is usually

written more concisely in the following form

u(t) = −sgn(s(t)) (2.15)

where sgn(.) is the sign function. Controller (2.15) represents a classic variable

structure controller. For values of ẏ satisfying the inequality m |ẏ| < 1, it follows

that

sṡ = s(mẏ + ÿ) = s(mẏ − sgn(s)) < |s|(m |ẏ| − 1) < 0.

Consequently, we can write

Lim
s→0+

ṡ < 0 and Lim
s→0−

ṡ > 0. (2.16)

It should be pointed out that the conditions in (2.16) are usually written as

sṡ < 0 (2.17)

which is referred to as the reachability condition. When m |ẏ| < 1 the system

trajectories on either side of the line

Ls = {(y, ẏ) : s(y, ẏ) = 0} (2.18)

move towards the line. The motion when confined to the line Ls satisfies the differ-

ential equation obtained from rearranging s(y, ẏ) = 0, namely

ẏ(t) = −my(t). (2.19)

This represents a first order decay and the trajectories will slide along the line Ls

to the origin. Such dynamical behavior is described as an ideal sliding mode or an

ideal sliding motion and the line Ls is termed the sliding surface [1]. Reachability

condition guarantees that the trajectories will slide onto the sliding surface and stay

there after a finite time. In this case, as argued earlier, the reachability condition is

only satisfied in a domain of the phase plane Ω = ({y, ẏ} : m |ẏ| < 1). In the next

14



section, we restrict attention to the generalization of sliding mode control for robust

observer design.

2.3 Sliding Mode Observers

The objective of this section is to address well-known classical sliding mode robust

observer design methods proposed by Utkin [71] and Walcott and Żak [72]. The

latter design does not necessitate exact knowledge of the system nonlinearities. The

aim is accomplished by employing the sliding mode approach. The downside of

these classical designs are also briefly discussed.

2.3.1 Walcott-Żak SMO

Consider the class of systems modeled by:

{
ẋ (t) = Ax (t) + f (t, x, u)
y (t) = Cx (t)

(2.20)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, the matrices A and C are of appropriate di-

mension, and the matrix C is of full rank. The function f (t, x, u) can be construed

as the uncertainties or disturbances in the plant. For existence purposes, we require

that f (t, x, u) be continuous in x . The problem is to design an observer with inputs

y and u whose output x̂ will converge to x (i.e., lim
t→∞

(x̂ (t)− x (t)) = 0). Consider

the following three assumptions for the system denoted in (2.20).

A1: The pair {A,C} is detectable which implies that we can find a matrix K ∈

Rn×p such that λ [A0] ⊆ C− where A0 = A−KC.

A2: There exists a symmetric, positive definite matrix Q ∈ Rn×n , and function h

where h (·, ·, ·) : R1
+ ×Rn ×Rm → Rp such that

f (t, x, u) = P−1CTF Th (t, x, u)

where P is the unique, positive definite solution to the Lyapunov equation AT
0 P +

PA0 = −Q.
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A3: There exists a positive scalar valued function, ρ such that∥h (t, x, u)∥ ≤ ρ (t, u)

for all t ∈ R+ and x ∈ Rn and u ∈ Rm.

Remark: It should be pointed out the the above model is a perturbed linear system

which can be represented as ẋ (t) = Ax (t) + Bh (t, x, u). Furthermore, the struc-

tural condition BTP = FC is known as matching condition [72].

Let the error difference between the observer estimate and the true state be denoted

by

e (t) = x̂ (t)− x (t)

Consider the following nonlinear observer dynamical equation:

˙̂x = A0x̂+ S (x̂, y, ρ) +Ky (2.21)

where

S (x̂, y, ρ) =

{
−P−1CTFTFCe

∥FCe∥ ρ (t, u) : e /∈ N

0 : e ∈ N

and N = {e : FCe = 0} is the sliding surface. Note that this observer design in-

corporates only the bound of the nonlinearities and/or uncertainties, ρ (t, u) , and

does not require exact knowledge of the plant’s uncertainties and disturbances ex-

cept that they satisfy Assumption A2. We now state the following theorem.

Theorem 2.4. [72] Given system (2.20) and the observer governed by (2.21), if

Assumptions A1-A3 are valid, then limt→∞ (x̂ (t)− x (t)) = limt→∞ e (t) = 0.

Proof. The error difference between the output of the observer and the true state

obeys the following differential equation:

ė = A0e−
P−1CTF TFCe

∥FCe∥
ρ (t, u)− P−1CTF Th (2.22)

Consider the following positive definite Lyapunov function candidate

V (e) = eTPe (2.23)

16



where P is defined in Assumption A2. The time derivative of this Lyapunov func-

tion candidate is given by

V̇ (e) = eT
(
AT

0 P + PA0

)
e−2

eTP
(
P−1CTF TFCe

)
∥FCe∥

ρ−2eTPP−1CTF Th (t, x)

(2.24)

which simplifies to

V̇ (e) = −eTQe− 2 ∥FCe∥ ρ− 2eTCTF Th(t, x). (2.25)

Taking the Euclidean norm of the last term and noting the Assumption A3 yield

V̇ (e) ≤ −eTQe− 2 ∥FCe∥ ρ+ 2 ∥FCe∥ ρ < 0 (2.26)

Therefore, the limt→∞ e (t) = 0. Theorem 2.4 shows that error difference between

the estimate and the true state asymptotically tends to zero. However, it is desirable

to know the rate at which the estimate converges since, if the time response of

the observer is of the same order or greater than the system’s response time, the

observer is of little use in an observer-controller configuration. We have

−V̇ (e)

V (e)
≥ eTQe

eTPe
(2.27)

or

V (e (t)) ≤ V (e0, (t0)) e
−η(t−t0) (2.28)

where η is the minimum eigenvalues of P−1Q . Thus, if we consider eTPe to be a

measure of the magnitude of the error, then the error will approach zero in magni-

tude exponentially, with a rate of decay that is at least as fast as e−ηt. However, The

major difficulty in designing the Walcott and Żak SMO is the computing of the ma-

trix pair {P, F} such that both the Lyapunov equation and the matching condition

are satisfied. Despite simple and novel structure of The Walcott and Żak SMO and

the appealing property of insensitivity of the observer to the matched uncertainties,

symbolically finding proper {P, F} is not practical for high order systems. From

a computational point of view, this is due to the manipulation and solution of the

associated constrained Lyapunov problem.
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2.3.2 Utkin SMO

Consider the linear system described by{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2.29)

Where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and p ≥ m. Assume that the matrices B

and C are of full rank and the pair {A,C} is observable. Consider the transforma-

tion x → Tx where

T =

[
ΘT

C

]
. (2.30)

Where the columns of Θ ∈ Rn×(n−p) span the null space of C. The output dis-

tribution matrix in the new coordinates is given by CT−1 = [0 Ip] and also we

obtain

TAT−1 =

[
A11 A12

A21 A22

]
, TB =

[
B1

B2

]
.

Then the nominal system can be written as

ẋ1(t) = A11x1(t) + A12y(t) +B1u(t) (2.31)

ẏ(t) = A21x1(t) + A22y(t) +B2u(t) (2.32)

Where Tx =

[
x1

y

]
. The observer proposed in [70] has the following from

˙̂x1(t) = A11x̂1(t) + A12ŷ(t) +B1u(t) + Lν (2.33)

˙̂y(t) = A21x̂1(t) + A22ŷ(t) +B2u(t)− ν (2.34)

Where (x̂1, ŷ) represent the state estimates for (x1, y), L ∈ R(n−p)×pis a static gain

and the discontinues vector ν is componentwise given by

νi = Msgn(ŷi − yi) (2.35)

Where M ∈ R+. Let e1 = x̂1 = x1and ey = ŷ − y. Therefore

ė1(t) = A11e1(t) + A12ey(t)− Lν (2.36)
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ėy(t) = A21e1(t) + A22ey(t)− ν (2.37)

From observability of the pair {A,C} we can conclude the observability of the

pair {A11, A21}. As a consequence, L can be chosen to assign the eigenvalues

of A11 + LA21 in C− . By Defining another change of coordinates and after some

manipulations (See [18] for details) it follows that inside a domain Ω [18] the reach-

ability condition

eTy ėy < −η ∥ey∥ (2.38)

is satisfied. Consequently, an ideal sliding motion will take place on the surface

So = {(e1, ey) : ey = 0} (2.39)

After some finite time ts , for all subsequent time, ey = 0 and ėy = 0. It follows

that

˙̃e1(t) = (A11 + LA21)ẽ1(t) (2.40)

where ẽ1 = e1 + Ly and consequently, x̂1 → x1 as t → ∞ by a proposer choice

of stabilizing gain L. The Utkin SMO does not have a static observer gain in its

structure and instead, the switching gain Lν plays the role of stabilizing the error

dynamics. However, the disadvantage of this sliding observer structure reveals it-

self when there exist uncertainties and disturbances. In this case, the observer can

only estimate the states with a bounded error and not asymptotically. Therefore,

The walcott-Żak SMO offers much more appealing features. Thus, throughout this

thesis, despite of proposing a new SMO structure to get around the major difficul-

ties of walcott-Żak SMO, we also aim at achieving the same appealing features of

it.

2.4 Singular Systems

Consider the system {
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2.41)
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where x ∈ Rn, u ∈ Rm and y ∈ Rp. When matrix E is nonsingular, system (2.41)

becomes

ẋ(t) = E−1Ax(t) + E−1Bu(t)

This system is referred to as normal system. However, if E is singular, i.e., rank(E) =

q < n, then this class of systems called singular (descriptor) systems [15]. In prac-

tical system analysis and control system design, many systems may be established

in the form of (2.41), while they could not be modelled as a normal system. In

many articles, singular systems are called descriptor variable systems, generalized

state space systems, semi-state systems, differential-algebraic systems, constrained

systems (See [15] and references there in). Singular systems theory includes many

systems, such as engineering systems (for example: power system, electrical net-

works), social economic systems, network analysis. To provide a touchable exam-

ple, we consider the following economical discrete-time system [15]:

Example. The fundamental dynamic Leontief model of economic is:

x(k) = Ax(k) + B[x(k + 1)− x(k)] +D(k) (2.42)

where x(k) represents the n dimensional production vector of n sectors; A input-

output (or production) matrix; Ax(k) the fraction of production required as input

for the current production, B the capital coefficient matrix, and B[x(k + 1)− x(k)]

is the amount for capacity expansion. D(k) is the vector that include demand or

consumption. Equation (2.42) may be rewritten as

Bx(k + 1) = (I −A+ B)x(k)−D(k).

Most of the elements in B are zero expect for a few of them. The reason is twofold:

(i) In multi-sector economic, production in one sector often doesn’t require the

investment from all other sectors, and (ii) in practical cases only a few sectors can

invest in other sectors. Hence B is very often singular. In this sense the system

(2.42) is a typical discrete-time singular system in economy. Now, some useful and

basic concepts of singular (descriptor) systems, needed in Chapter 5, are presented

[15], [33].
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System (2.41) is called regular if

det(sE − A) ̸= 0, s ∈ C (2.43)

which ensures that the plant (2.41) is solvable by possessing a unique solution for

any given initial value. The pair {E,A} (or equivalently the system (2.41)) is inter-

nally stable provided that

rank(sE − A) = n, ∀s ∈ C+ (2.44)

The pair {E,A} is impulse-free if

rank
[
E 0
A E

]
= n+ rank(E). (2.45)

This ensures that the system (2.41) does not exhibit any impulsive behavior. Now,

we present the observability concepts for singular systems.

Finite-Observability: The triple {E,A,C} is called finite-observable if

rank
[
sE − A

C

]
= n, ∀s ∈ C. (2.46)

Impulsive-Observability: The triple {E,A,C} is called impulsive-observable if

rank

 E 0
A E
C 0

 = n+ rank(E), ∀s ∈ C. (2.47)

Finally, the singular system (2.41) is called observable if it is finite-observable and

impulsive-observable. These definitions are crucial when we design observers in a

singular system framework.

2.5 Notation

The notation used throughout the thesis is fairly standard. R+ represents the set

of nonnegative real numbers, C− (C+) the set of complex numbers with nega-

tive (positive) real parts, C the set of all complex numbers.When A is square,

A > 0(≥ 0) denotes a symmetric positive definite (semi-definite) matrix, and

λ(A) denotes the eigenvalues of A. The symbol In represents the nth order unit
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matrix. The subscripts ”T ” and ”−1” stand for matrix transposition and matrix

inverse, respectively; Rn denotes n-dimensional Euclidean space. The space of

square-integrable vector functions over [0,∞) is denoted by L2[0,∞), and for

ω = {ω(t)} ∈ L2[0,∞), its norm is given by ∥ω∥L2
=

√∫∞
0

ωT (t)ω(t)dt. Fi-

nally, ∥.∥ denotes the Euclidean norm.
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Chapter 3

H∞ Sliding Mode Observers1

3.1 Background Results

In recent years the sliding mode discontinuous approach to control design of per-

turbed systems has attracted significant attention ([70], [71], [18]). A dual problem

is state reconstruction or observer design. In a typical control problem involving

systems described by state space realizations, one rarely has access to the full state

since that would require one sensor for each state variable. Observers are then used

to reconstruct the state from available measurements.

One of the principal sources of error in state reconstruction is the unavoidable devi-

ation between the trajectories of a real system and the predictions by its mathemat-

ical model. Moreover, disturbance signals exist in virtually all control applications

and the combined effect of these two problems generates the need to study observer

design techniques that are robust to disturbances and model uncertainties. Sliding

mode theory has been recognized as a promising robust control approach to con-

front uncertain or perturbed systems ([70], [71], [18]). When used in observer de-

sign, the sliding mode observer (SMO) forces the trajectories of the error dynamics

to stay on a sliding surface (in the error space) despite the existence of perturba-

1The results in this chapter have been accepted for publication in the article: R Raoufi, H. J.
Marquez and A. S. I. Zinober, ”H∞ Sliding Mode Observers for Uncertain Nonlinear Lipschitz
Systems with Fault Estimation Synthesis”, International Journal of Robust and Nonlinear Control,
John Wiley and Sons, Inc., 2009.
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tions, thus enabling the observer to reject disturbances when certain conditions are

satisfied.

[72] introduced the use of the sliding mode approach in observer design and used

Lyapunov theory to prove stability. [71] proposed an alternative approach to the de-

sign of sliding mode observers using a discontinuous sliding term fed back through

a suitable gain. SMOs for linear unknown input systems were studied in [32]. [66]

proposed a canonical sliding observer form design for linear systems in which a

sufficient condition for stability based on linear matrix inequalities (LMIs) was de-

rived. An LMI based SMO design method was proposed in [11] for a class of

multivariable linear uncertain systems with matched uncertainties. Observation of

linear systems with unknown inputs via high-order sliding-mode was addressed in

[27] and [5]. More recently development of sliding mode observers for unknown

input systems was proposed in [25]. For linear systems, necessary existence con-

ditions in conjunction with design methods for SMOs have been addressed in [32],

[66] and [11]. A more complex design procedure for SMO with less restrictive con-

ditions using a supplementary SMO can be found in [65].

It is worth pointing out that the previous work referred to above consider only lin-

ear systems. For nonlinear systems, the synthesis and computation of the proper

static and switching gains involved in the sliding mode observers are more chal-

lenging and complex. Sliding mode observers for Lipschitz nonlinear systems with

bounded disturbance were addressed in [37]. An SMO for nonlinear models with

unbounded noise and measurement uncertainties was studied by [75]. An adaptive

sliding mode observer with a boundary layer sliding term was also proposed by

[75]. In [24] the so-called super twisting step-by-step algorithm was employed to

design a sliding mode observer for nonlinear systems with unknown inputs.

In this chapter we introduce a new SMO structure to tackle matched disturbances

([18] and [72]) modelled as a fault for Lipschitz nonlinear systems. This formu-

lation commonly finds application in fault detection and estimation. Disturbances,
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that may not be matched, are also considered and a prescribed H∞ disturbance at-

tenuation level is integrated into the SMO design using LMI optimization.

[37] considered this problem without any disturbance and proposed a robust ob-

server design technique for Lipschitz nonlinear systems. The approach in [37] is

simple and direct, and provides an important step towards robust observers for Lip-

schitz systems. One shortcoming of this approach, however, is some level of con-

servatism and complexity that originates in simultaneously solving the so-called

matching condition and the Lyapunov equation. One way to overcome this prob-

lem is to introduce the use of coordinate transformations, first introduced in [13]

to facilitate this process, and is a key feature of the proposed SMO. Indeed, the

observer proposed in this chapter has the characteristic that, in the new coordinates,

the so-called structural matching condition is already satisfied by the novel struc-

ture of the switching gain proposed. A new structure for the observer static gain is

proposed to facilitate the sliding mode observer design and guarantee the stability

of the observer error dynamics. By extending the previous results regarding linear

systems, we derive the same necessary existence conditions for the nonlinear case.

The main contribution of our work is the following: Since we consider disturbances

without any structural or geometric conditions, the disturbances drastically corrupt

the state estimation although the fault can be rejected by SMO theory. However,

in recent papers in [53], [1], [2], the authors proposed H∞ observers for Lipschitz

nonlinear systems. In this article we extend the H∞ observer principle to the slid-

ing mode observer design. We obtain an LMI sufficient condition using convex

optimization to compute the observer static gain. We satisfy the so-called matching

condition and simultaneously maximize the disturbance attenuation level. There-

fore, the LMI optimization problem structure is multiobjective. This feature con-

siderably improves the state estimation.

Another important contribution of the proposed SMO is that the structure of the

variable structure gain is of reduced order when compared to the number of mea-
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surements. In other words, only a subspace of the measurement output is required

in the structure of the gain. Under the same assumptions, this novel feature gives

us the possibility to tackle a class of disturbances at the output where, unlike [64],

it is no imperative to use any state augmentation or low pass filtering.

After solving the observer design problem, we focus our attention on the problem

of fault reconstruction. It is well known that sliding mode observers are capable of

reconstructing unknown input or matched disturbances (For example [32], [64] and

[74]). Therefore, by analyzing the error dynamics in the sliding mode and the notion

of the equivalent control in the sliding mode, the potential of SMOs to reconstruct

the unknown input is investigated. The proposed observer is more robust compared

to the previous results addressed in [18], [32], [64] and [74], since the proposed

H∞-SMO is not only capable of estimating the states and the fault signal but also

successful in reaching a prescribed H∞ gain minimization. As a consequence it

follows that the sliding mode observer can endure both faults (modelled as matched

disturbances) and disturbances. In general, the accuracy of fault reconstruction di-

rectly depends on the state estimation. Thus, in the presence of disturbances, the

shape of a reconstructed fault is drastically distorted. However, as a consequence of

proposed H∞ filtering integrated into SMO, fault estimation is much more robust

against the disturbances and can preserve the fault signal shape effectively.

The remainder of this chapter is organized as follows; Section 3.2 provides some

preliminaries and assumptions on the class of nonlinear system addressed. Some

preliminary lemmas are introduced in Section 3.3. The design of the robust SMO

and the analysis of the stability of the error dynamics are given in Section 3.4. In

Section 3.5 the synthesis of the error system in the sliding mode is discussed. Fault

estimation is studied in Section 3.6. The effectiveness of the proposed SMO is stud-

ied with an example in Section 3.7. Finally some concluding remarks are presented

in Section 3.8.
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3.2 Preliminaries and Assumptions

Consider a dynamical systems of the form:{
ẋ(t) = Ax(t) +Bu(t) + Φ(x, t) + Ef(t) + ∆ξ(t)
y(t) = Cx(t) +Dω(t)

(3.1)

where x ∈ Rn represents the system state, u ∈ Rm the control input, y ∈ Rp the

measured system output and t ∈ R+. (A,B,C,E,∆, D) is the set of real constant

known matrices of appropriate dimensions where D ∈ Rp×(p−q). f(t) : R+ → Rq

denotes the fault (unknown input) that is bounded in the Euclidean norm

∥f(t)∥ ≤ ρ < ∞. (3.2)

The signal ξ(t) : R+ → Rr ∈ L2[0,∞) models the uncertainties and disturbances

where ∆ is the corresponding distribution matrix. ω(t) : R+ → Rp−q ∈ L2[0,∞)

represents the output disturbances where D is the corresponding distribution matrix

with full columns rank. Therefore, without lose of generality, we can assume the

following geometric condition associated with D:

D =

[
0
D2

]
(3.3)

where D2 ∈ R(p−q)×(p−q) and is invertible. The known nonlinearity Φ(x, t) satisfies

a locally Lipshitz condition as in (2.7). We make the following two well-known

assumptions:

Minimum Phase Condition: For every complex number s with nonnegative real

part

rank
[
sIn − A E

C 0

]
= n+ rank(E). (3.4)

Matching Condition: Assume that there exists an arbitrary matrix F ∈ Rq×p and

P = P T > 0 ∈ Rn×n satisfying

ETP = FC. (3.5)

3.3 Some Preliminary Lemmas

Lemma 3.1. [13] Given the system (1), we have
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rank(CE) = rank (E) = q (3.6)

if and only if there exist nonsingular transformation matrices T and S such that

TAT−1 =

[
A1 A2

A3 A4

]
, TE =

[
E1

0

]

SCT−1 =

[
C1 0
0 C4

]
, T∆ =

[
∆1

∆2

] (3.7)

where A1 ∈ Rq×q, A4 ∈ R(n−q)×(n−q), C1 ∈ Rq×q, C4 ∈ R(p−q)×(n−q), rank (E1) = q

and C1 is invertible.

Remark. Assume that p = q so that C4 ∈ {∅}. Then, from Lemma 3.1, it follows

that the minimum phase condition (3.4) holds for all s such that Re(s) ≥ 0 if and

only if the matrix A4 is asymptotically stable.

3.3.1 Computation of T and S:

In [32] and [13], for the case D = 0, different methods for computation of T and S

for linear systems were reported based on the Q-R decomposition and the singular

value decomposition respectively. Those method can be used for system (3.1) when

D = 0. Here, for the more general case where D ̸= 0, we present another method of

computing T and S that is straightforward. By assumption we have rank (E) = q.

Therefore, without loss of generality, we partition the matrix E as

E =

[
E1

E2

]
(3.8)

where E1 ∈ Rq×q with rank (E1) = q. Now, introduce a nonsingular coordinate

transformation

T1 =

[
Iq 0

−E2E
−1
1 In−q

]
(3.9)

then

T1E =

[
Iq 0

−E2E
−1
1 In−q

]
.

[
E1

E2

]
=

[
E1

−E2E
−1
1 E1 + E2

]
=

[
E1

0

]
(3.10)
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where E1 ∈ Rq×q is nonsingular. Now we partition CT−1
1 as CT−1

1 = (C̄1 C̄4).

Therefore

CE = CT−1
1 T1E = (C̄1 C̄4)

[
E1

0

]
= C̄1E1. (3.11)

Consequently, using Assumption rank(CE) = q and the nonsingularity of the ma-

trix E1, we conclude directly that

rank(C̄1) = q. (3.12)

Therefore, without loss of any generality, we partition C̄1 as follows

C̄1 =

[
C1

C21

]
, (3.13)

where C1 ∈ Rq×q and

rank(C1) = q. (3.14)

Consequently det (C1) ̸= 0. Let

S =

[
Iq 0

−C21C
−1
1 Ip−q

]
(3.15)

which yields

SC̄1 =

[
C1

0

]
. (3.16)

Therefore

SCT−1
1 =

[
C1 C12

0 C4

]
. (3.17)

Let

T−1
2 =

[
Iq −C−1

1 C12

0 In−q.

]
(3.18)

Then one obtains

SCT−1
1 T−1

2 =

[
C1 0
0 C4

]
. (3.19)

Finally, we obtain T from T = T2T1.

Lemma 3.2. [32] Consider the system (3.1) and assume that rank (CE) = rank (E).

Then the pair (A4, C4) is detectable if and only if

rank
[
sIn − A E

C 0

]
= n+ q (3.20)
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for all s such that Re(s) ≥ 0.

Lemma 3.3. Consider the system (1). There exists a solution P = P T > 0 such

that ETP = FC if and only if

rank(CE) = rank (E) (3.21)

Proof:

(proof of necessity)

Define the change of coordinate T̄ ∈ Rn×n as

T̄ :=

[
CT

⊥P
C

]
(3.22)

where C⊥ ∈ Rn×(n−p) is any full rank matrix whose columns span the null space of

C. This transformation is nonsingular. Then, with respect to the structural condition

(3.5), it follows that

T̄E =

[
CT

⊥P (P−1CTF T )
CE

]
=

[
0

CE

]
. (3.23)

Note that we use the property CC⊥ = 0. Since rank(E) = q and the nonsingular

transformation T̄ preserves the rank of T̄E, rank(CE) = m.

(proof of sufficiency)

Since rank(CE) = rank (E), using Lemma 3.1 it follows that there exist nonsingu-

lar similarity transformation matrices T, S satisfying

Ẽ := TE =

[
E1

0

]
, C̃ := SCT−1 =

[
C1 0
0 C4

]
and E1 is full row rank. Thus E = T−1Ẽ and C = S−1C̃T . Letting P = T T P̃ T

and F = F̃S where P̃ is symmetric, substituting P, F,E,C into the matching

condition (3.5) yields ẼT P̃ = F̃ C̃. We select

P̃ =

[
P1 0
0 P2

]
F̃ =

[
E1

TP1C
−1
1 0

]
(3.24)

Then, considering the structure of Ẽ and C̃, the matrix equality ẼT P̃ = F̃ C̃ always

holds. This completes the proof.
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Lemma 3.4. Under change of coordinate S defined in (3.15) we have SD = D.

Proof.

SD =

[
Iq 0

−C21C
−1
1 Ip−q

]
.

[
0
D2

]
=

[
0
D2

]
= D. (3.25)

3.4 Sliding Mode Observer Design

In this section, we propose a theorem to design the sliding mode observer. We

employ the nonsingular state transformations introduced in Lemma 3.1 as the key

to deal with the problem of H∞ SMO design. Based on Lemma 3.1, system (3.1)

in the new coordinates x̃ := (xT
1 , x

T
2 )

T = Tx and ỹ := (yT1 , y
T
2 )

T = Sy is

{
ẋ1 = A1x1 + A2x2 +B1u+ Φ1(T

−1x̃, t) + E1f(t) + ∆1ξ(t)
y1 = C1x1 (x1 ∈ Rq)

(3.26)

{
ẋ2 = A3x1 + A4x2 +B2u+ Φ2(T

−1x̃, t) + ∆2ξ(t)
y2 = C4x2 +D2ω(t) (x2 ∈ Rn−q)

(3.27)

where TΦ(x, t) := (ΦT
1 ,Φ

T
2 )

T . Also partition S as

S =

[
S̄1

S̄2

]
, S̄1 ∈ Rq×p, S̄2 ∈ R(p−q)×p.

So that the variable x1 can be obtained from the measured output y by

x1 = C−1
1 S̄1y(t) (3.28)

We will employ the above system structure in our observer design. Consider the

following sliding mode observer structure
˙̂x1 = A1x̂1 + A2x̂2 +B1u+ Φ1(T

−1 ˆ̃x, t)
+L1(y1 − ŷ1) + E1ν

ŷ1 = C1x̂1

(3.29)


˙̂x2 = A4x̂2 +B2u+ Φ2(T

−1 ˆ̃x, t)
+L3y1 + L4(y2 − ŷ2)

ŷ2 = C4x̂2

(3.30)

where the novel reduced-order sliding mode gain ν(t) and the observer gain L̃ are

respectively

ν(t) =

{
(ρ+ ρ0)

ET
1 P1(C

−1
1 S̄1y−x̂1)

∥ET
1 P1(C

−1
1 S̄1y−x̂1)∥

: C−1
1 S̄1y − x̂1 ̸= 0

0 : otherwise
(3.31)
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L̃ :=

[
L1 L2

L3 L4

]
:=

[
Ā1C

−1
1 0

A3C
−1
1 P−1

2 K

]
(3.32)

where ρ0 is some positive scalar. P1, P2 and K will be determined through the

stability proof and Ā1 = A1 − As
1 where As

1 represents a stable design matrix.

Furthermore, suppose that

z(t) = H

[
x1 − x̂1

x2 − x̂2

]
(3.33)

is the controlled output for the error system where H is a full rank design matrix

(See [1] and [2] and references therein) having the following structure

H :=

[
H1 0
0 H2

]
(3.34)

Consider the standard induced L2 gain between z and disturbances ϖ =

[
ξ
ω

]
(also known as H∞ gain )

∥H∥2∞ = γ = sup
∥ϖ∥L2

̸=0

∥z∥2L2

∥ϖ∥2L2

. (3.35)

We now present Theorem 3.1 which is the main result of this section. The impor-

tance of this theorem is that it establishes sufficient conditions for the existence of

a sliding mode observer with a prescribed H∞ performance for system (3.1) and

outlines a constructive design procedure.

Theorem 3.1. Given the nonlinear uncertain system (3.1) with assumptions (2.7),

(3.2), (3.4) and(3.5), consider the SMO structure (3.29)-(3.32). The observer error

dynamics is asymptotically stable for the case ϖ = 0 with an H∞ disturbance

attenuation level
√
γ > 0 subject to ∥H∥∞ ≤ √

γ if there exist matrices K, P T
1 =

P1 > 0 and P T
2 = P2 > 0 such that the following LMI optimization problem has a

solution:

minimize γ subject to P1 > 0, P2 > 0 and
Π11 P1A2 P1∆1 0 P1 0
AT

2 P1 Π22 P2∆2 KD2 0 P2

∆T
1 P1 ∆T

2 P2 −γI 0 0 0
0 DT

2 K
T 0 −γI 0 0

P1 0 0 0 −I 0
0 P2 0 0 0 −I

 < 0 (3.36)
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where

Π11 = P1A
s
1 + As

1
TP1 + L̃2

ΦIq +HT
1 H1 (3.37)

Π22 = A4
TP2 + P2A4 − (KC4 + C4

TKT ) + L̃2
ΦIn−q +HT

2 H2 (3.38)

Proof. Using the system structure in (3.26) and (3.27), and the observer equations

described by (3.29) and(3.30) along with the observer gain (3.32), it is observed

that the error dynamics in the new coordinate is

˙̃e = Ã0ẽ+T (Φ(T−1x̃, t)−Φ(T−1 ˆ̃x, t))+

[
E1

0

]
(f(t)−ν)+

[
∆1

∆2

]
ξ+

[
0

L4D2

]
ω

(3.39)

where

ẽ =

[
e1
e2

]
=

[
x1 − x̂1

x2 − x̂2

]
, Ã0 =

[
As

1 A2

0 A4 − L4C4

]
.

Therefore in the new coordinates, it can be easily verified that λ(Ã0) = λ(As
1) ∪

λ(A4 − L4C4). Consider the Lyapunov function V (ẽ) = ẽT (t)P̃ ẽ where

P̃ :=

[
P1 0
0 P2

]
, P1 ∈ Rq×q, P2 ∈ R(n−q)×(n−q) (3.40)

with symmetric P1 > 0, P2 > 0 are yet to be determined. ẽ = x̃ − ˆ̃x is defined as

the state estimation error. The derivative of V (ẽ) is

V̇ = ẽT (Ã0
T
P̃ + P̃ Ã0)ẽ+ ẽT P̃ T (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))

+(Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))TT T P̃ ẽ

+2ẽT P̃

[
E1

0

]
(f(t)− ν) + ẽT P̃

[
∆1 0
∆2 L4D2

]
ϖ +ϖT

[
∆1 0
∆2 L4D2

]T
P̃ ẽ

(3.41)

where ϖT =
[
ξT ωT

]
. From (3.40) we have

ẽT P̃

[
E1

0

]
= eT1 P1E1. (3.42)

From (3.28) it follows that e1 = C−1
1 S̄1y− x̂1. Then using the switching gain (3.31)

and (3.2) we obtain

ẽT P̃

[
E1

0

]
(f(t)− ν) = eT1 P1E1f(t)− (ρ+ ρ0)

∥eT1 P1E1∥2
∥eT1 P1E1∥

≤

ρ∥eT1 P1E1∥ − (ρ+ ρ0)∥eT1 P1E1∥ = −ρ0∥eT1 P1E1∥ < 0
(3.43)
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Moreover, using the Lipschitz condition (2.7) we have

ẽT P̃ T (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t)) + (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))TT T P̃ ẽ

≤ ẽT P̃ 2ẽ+ (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))TT TT (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))

= ẽT P̃ 2ẽ+
∥∥∥ T (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))

∥∥∥2

≤ ẽT P̃ 2ẽ+ ∥T∥2L2
Φ ∥e∥2 ≤ ẽT P̃ 2ẽ+ L̃2

Φ ∥ẽ∥2

(3.44)

where L̃Φ := ||T ||.||T−1||LΦ. Thus, substituting (3.43) and (3.44) into (3.41), it

follows that

V̇ ≤ ẽT (Ã0
T
P̃+P̃ Ã0+P̃ 2+L̃2

ΦI)ẽ+ẽT P̃

[
∆1 0
∆2 L4D2

]
ϖ+ϖT

[
∆1 0
∆2 L4D2

]T
P̃ ẽ

To attain robustness to the disturbances in L2 sense, we impose the following con-

straint on our stability criteria

V̇ + zT (t)z(t)− γϖT (t)ϖ(t) ≤ 0. (3.45)

Integration of both sides of the above condition with respect to t over the time

period [0,∞] gives

V (∞)− V (0) +

∫ ∞

0

[
zT (t)z(t)− γϖT (t)ϖ(t)

]
dt ≤ 0. (3.46)

Since V (∞) ≥ 0, with zero initial condition V (0) = 0, one obtains

√∫ ∞

0

zT (t)z(t)dt ≤ √
γ

√∫ ∞

0

ϖT (t)ϖ(t)dt : ∀t > 0 (3.47)

therefore we have √∫∞
0

zT (t)z(t)dt√∫∞
0

ϖT (t)ϖ(t)dt
≤ √

γ : ∀t > 0. (3.48)

Thus the definition of the induced L2 norm and (3.45) yields

∥H∥∞ ≤ √
γ (3.49)

In other words, (3.45) enforces the minimization of the worst case effect of the

disturbance on the estimation error. Let

Ã0
T
P̃ + P̃ Ã0 + P̃ 2 + L̃2

ΦI = −Q̃. (3.50)
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Then from (3.45), we have

V̇ + zT (t)z(t)− γϖT (t)ϖ(t)

≤ ẽT (−Q̃+HTH)ẽ+ ẽT P̃

[
∆1 0
∆2 L4D2

]
ϖ

+ϖT

[
∆1 0
∆2 L4D2

]T
P̃ ẽ− γϖT (t)ϖ(t)

Let

Q̃ :=

[
Q1 Q12

QT
12 Q2

]
. (3.51)

From the decomposed structure of Ã0 and P̃ in (3.40), after some algebraic manip-

ulation and simplifications, it can be verified that

−Q̃+HTH =

[
As

1
T 0

AT
2 AT

4 − CT
4 L

T
4

] [
P1 0
0 P2

]
+

[
P1 0
0 P2

] [
As

1 A2

0 A4 − L4C4

]
+

[
P 2
1 0
0 P 2

2

]
+

[
L̃2

ΦIq 0

0 L̃2
ΦI(n−q)

]
+HTH =

[
P1A

s
1 + As

1
TP1 + P 2

1 + L̃2
ΦIq +HT

1 H1 P1A2

AT
2 P1 −Q2 +HT

2 H2

]
(3.52)

where

(A4 − L4C4)
TP2 + P2(A4 − L4C4) + P 2

2 + L̃2
ΦI = −Q2. (3.53)

Thus we obtain

V̇ + zT (t)z(t)− γϖT (t)ϖ(t) ≤

 e1
e2
ϖ

T

×


P1A

s
1 + As

1
TP1 + P 2

1 + L̃2
ΦIq +HT

1 H1 P1A2 P1∆1 0
AT

2 P1 −Q2 +HT
2 H2 P2∆2 P2L4D2

∆T
1 P1 ∆T

2 P2 −γI 0
0 DT

2 L
T
4 P2 0 −γI


×

 e1
e2
ϖ

 .

(3.54)
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If the inner matrix of the righthand side of the above inequality is negative definite,

then V̇ + zT (t)z(t) − γϖT (t)ϖ(t) ≤ 0. The asymptotical stability of the obser-

vation error when ϖ = 0 is a direct result of the above optimization problem by

setting ∆1 = ∆2 = D2 = 0. Thus, the observer error dynamics is asymptotically

stable with the prescribed H∞ attenuation level
√
γ. Notice that the above matrix

inequality is nonlinear. From the structure of the observer gain L̃ in (3.32), it is

observed that L4 = P−1
2 K and consequently, by using the Schur complement [6],

we can express it in the Linear Matrix Inequality (LMI) form
Π11 P1A2 P1∆1 0 P1 0
AT

2 P1 Π22 P2∆2 KD2 0 P2

∆T
1 P1 ∆T

2 P2 −γI 0 0 0
0 DT

2 K
T 0 −γI 0 0

P1 0 0 0 −I 0
0 P2 0 0 0 −I

 < 0 (3.55)

where

Π11 = P1A
s
1 + As

1
TP1 + L̃2

ΦIq +HT
1 H1 (3.56)

Π22 = A4
TP2 + P2A4 − (KC4 + C4

TKT ) + L̃2
ΦIn−q +HT

2 H2 (3.57)

This completes the proof.

Notice that the necessary condition for the existence of any solution of the LMI

(3.36) is that the pair (A4, C4) must be detectable . According to Lemma 3.2, the

detectability of (A4, C4) has been guaranteed by Assumption (3.4). Furthermore,

the LMI optimization problem derived here seeks two main objectives. Technically

speaking, the first objective is the computation of the proper matrices P2 and K;

while the second objective is boosting the robustness of the sliding mode observer

against disturbances ϖ(t) by minimizing the H∞ gain between the controlled out-

put observation error z(t) and ϖ(t). It is clear that the smaller the computed γ is,

the more robust the sliding mode observer becomes.

Remark. Notice that in the error dynamics of e2, we have A3x1 − L3y1 = A3x1 −

A3C
−1
1 (C1x1) = 0. Therefore, we are able to cancel the appearance of the terms
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including A3 by design.

Remark. In the case that there is no disturbance at the output of the original system

(3.1), i.e ω(t) = 0, we have the following simplified LMI optimization which is a

direct result of Theorem 3.1 by setting D2 = 0.

minimize γ subject to P1 > 0, P2 > 0 and
Π11 P1A2 P1∆1 P1 0
AT

2 P1 Π22 P2∆2 0 P2

∆T
1 P1 ∆T

2 P2 −γI 0 0
P1 0 0 −I 0
0 P2 0 0 −I

 < 0 (3.58)

Π11 = P1A
s
1 + As

1
TP1 + L̃2

ΦIq +HT
1 H1 (3.59)

Π22 = AT
4 P2 + P2A4 − (KC4 + C4

TKT ) + L̃2
ΦIn−q +HT

2 H2 (3.60)

Remark. Recently, the sliding mode observer for Lipschitz nonlinear systems has

been studied in [74], where both faults and disturbances are assumed as matched

uncertainties. This assumption either can be very restrictive or, due to the structure

of disturbances, may fail. In comparison, in the proposed H∞-SMO, disturbances

ξ can be unmatched and H∞ filtering was introduced to cope with this problem.

Remark. According to the structure of the switching gain ν in (3.31), it follows

that ν ∈ Rq. We define

Y = {y ∈ Rp| y = Cx} (3.61)

Y1 = {y1 ∈ Rq| y1 = S̄1y} (3.62)

Y2 = {y2 ∈ Rp−q| y2 = S̄2y}. (3.63)

Thus in the case q < p, Y1 ⊂ Y and the variable structure gain ν needs only

the components of the output measurement y1. Therefore, any disturbances at the

output y2 are acceptable to exist since they are not involved in the structure of the
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sliding mode controller ν. To further elaborate on this feature, in [18], [32], [66],

[37], [64] and [74], the sliding mode controller has the following general form

ν = (ρ+ ρ0)
P0(y − Cx̂)

||P0(y − Cx̂)||

with order p. As mentioned earlier, the proposed sliding mode gain (3.31) is of

reduced order q.

Remark. References [18], [32], [66], [37], [64] and [74] studied the design of pure

sliding mode observers. Without integrating the H∞ filtering into the SMO design,

a pure SMO can also be designed based on the observer structure proposed in this

article. In such case, the observer error dynamics is ultimately bounded if the fol-

lowing standard LMI feasibility problem has a solution:

For given As
1 and L̃Φ > 0, find matrices P1 > 0, P2 > 0 and K such that

Π11 P1A2 P1 0
AT

2 P1 Π22 0 P2

P1 0 −I 0
0 P2 0 −I

 < 0 (3.64)

Π11 = P1A
s
1 + As

1
TP1 + L̃2

ΦIq (3.65)

Π22 = AT
4 P2 + P2A4 − (KC4 + C4

TKT ) + L̃2
ΦIn−q (3.66)

Using the above LMIs, the pure SMO performance will be compared to the pro-

posed H∞-SMO in the simulation example.

Remark. With regard to (3.40), the same Lyapunov quadratic form has been used

in previous results such as references [18], [32], [13], [64], and [74] for stability

analysis. Note that P̃ in the new coordinates is diagonal and since

P = T T P̃ T, P̃ =

[
P1 0
0 P2

]
the Lyapunov function in the original coordinates would be V = eTPe where the

matrix P is not necessarily diagonal.
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3.5 Synthesis of the Sliding Motion

It is well-known that, in order to confine an stable motion of a dynamical system

onto a sliding surface S, it is necessary to use a switching gain which is discontin-

uous about the surface S [18]. Therefore, due to the structure of the switching gain

(3.31) and the fact that N (E1) = {∅}, it follows that

S = {t ∈ R+ : s(t) = 0 | s(t) = C−1
1 S̄1y − x̂1}. (3.67)

Suppose that disturbances ξ(t), ω(t) are bounded subject to ∥ξ(t)∥ ≤ ξ0 < ∞ and

∥ω(t)∥ ≤ ω0 < ∞ respectively . The main result of this section will now be proved.

Theorem 3.2. Given the system (3.1) with assumptions (3.2)-(3.5) and the observer

(3.29)-(3.32), an ideal sliding motion takes place after some finite time on the hy-

perplane S if the convex optimization problem stated in Theorem 3.1 is solvable.

Proof. The error system with respect to the new coordinates can be written as{
ė1 = (A1 − Ā1)e1 + A2e2 + eΦ1 + E1(f(t)− ν) + ∆1ξ
ė2 = (A4 − L4C4)e2 + eΦ2 +∆2ξ + L4D2ω

(3.68)

where for simplicity we defined[
eΦ1

eΦ2

]
:= T (Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t))

If the optimization problem in Theorem 3.1 is solvable, then it implies that the error

dynamics is asymptotically stable with prescribed H∞ filtering attenuation γ. Thus

for some small ε∞ > 0, we have ∥ẽ∥ ≤ ε∞. We obtain

sT ṡ = eT1 ((A1 − Ā1)e1 + A2e2 + eΦ1 + E1(f(t)− ν) + ∆1ξ)

≤ ∥e1∥(∥A1 − Ā1∥∥e1∥+ ∥A2e2∥+ ξ0∥∆1∥+ L̃Φε∞)− ρ0∥ET
1 e1∥

≤ ∥E−T
1 ∥∥ET

1 e1∥(∥A1 − Ā1∥∥e1∥+ ∥A2e2∥+ L̃Φε∞ + ξ0∥∆1∥ − ρ0)

(3.69)

Therefore it follows that in the domain

Ω = {(e1, e2) : ∥As
1∥∥e1∥+ ∥A2e2∥+ L̃Φε∞ + ξ0∥∆1∥ < ρo − ρ̃} (3.70)
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where ρ̃ < ρ0 is some small positive constant, the well-known reachability condi-

tion [18]

sT ṡ < −ρ̃∥s∥ (3.71)

is satisfied. As a consequence, an ideal sliding motion will take place on the surface

S and after some finite time ts

e1 = ė1 = 0, ∀t > ts. (3.72)

3.6 Robust Fault Estimation

In this section the objective is to reconstruct the system fault f(t) by using the pro-

posed observer and the output information.

Corollary 3.1. Let all conditions of Theorem 3.1 hold and |H| ̸= 0, then

∥f(t)− veq∥L2 ≤ β∥ϖ∥L2 , (3.73)

where ϖ = [ξT ωT ]T , and

β =
√
γ[σmax(E

−1
1 A2) + σmax(E

−1
1 L̃Φ)]σmax(H

−1)
+σmax(E

−1
1 ∆1) + σmax(E

−1
1 L4D2).

(3.74)

Consequently, the unknown input (or fault) f(t) can be approximately estimated by

f̂(t) = (ρ+ ρ0)
ET

1 P1(C
−1
1 S̄1y − x̂1)

∥ET
1 P1(C

−1
1 S̄1y − x̂1)∥+ δ

. (3.75)

Proof. If all conditions of Theorem 3.1 are satisfied and the LMI optimization is

solved, then

∥z∥2L2
≤ γ∥ϖ∥2L2

(3.76)

for some γ > 0 and z = Hẽ, ẽ = [e1
T e2

T ]T . Next, according to Theroem 2 the

ideal sliding motion takes place on S in finite time and ė1 = e1 = 0. Consequently,

the error dynamics for e1 in sliding mode is given by

0 = A2e2 + eΦ1 + E1(f(t)− νeq) + ∆1ξ + L4D2ω, (3.77)
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where, in the sliding mode, the discontinuous signal ν in (3.31) must takes on the

average νeq (referred to as the equivalent output error injection [71]) to preserve the

sliding motion. Then

f(t)− νeq = −E−1
1 [A2e2 + eΦ1 +∆1ξ + L4D2ω], (3.78)

and

∥f(t)− veq∥L2 ≤ ∥E−1
1 [A2e2 + eΦ1 +∆1ξ + L4D2ω]∥L2

≤ σmax(E
−1
1 A2)∥e2∥L2 + σmax(E

−1
1 )L̃Φ∥e1∥L2

+σmax(E
−1
1 ∆1)∥ξ∥L2 + σmax(E

−1
1 L4D2)∥ω∥L2

≤ [σmax(E
−1
1 A2) + σmax(E

−1
1 L̃Φ)]∥ẽ∥L2

+[σmax(E
−1
1 ∆1) + σmax(E

−1
1 L4D2)]∥ϖ∥L2 ,

(3.79)

where σmax(A) for a matrix A denotes the maximum singular value of the matrix,

i.e.

σmax(A) =
√

max {λ(ATA)}.

The result (3.73) follows by substituting (3.76) into (3.79) and taking in mind that

∥ẽ∥L2 ≤ σmax(H
−1)∥z∥L2 . From the corollary, the L2 norm of the error f(t)− νeq

is proportional to the corresponding norm of the disturbance ϖ. Thus, the following

upper bound for the L2 gain of the fault estimation error is obtained

∥νeq − f(t)∥L2 ≤ ϵ (3.80)

where

ϵ := β∥ϖ∥L2 . (3.81)

Therefore, approximately, for some small ϵ

νeq ≈ f(t). (3.82)

And based on the concept of equivalent output error injection [71], the signal νeq

can be approximated to any degree of accuracy by

νeq ≈ (ρ+ ρ0)
ET

1 P1(C
−1
1 S̄1y − x̂1)

∥ET
1 P1(C

−1
1 S̄1y − x̂1)∥+ δ

(3.83)

where δ is a small positive scalar to smooth out the signal ν [18]. Therefore

f̂(t) = (ρ+ ρ0)
ET

1 P1(C
−1
1 S̄1y − x̂1)

∥ET
1 P1(C

−1
1 S̄1y − x̂1)∥+ δ

. (3.84)
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This completes the proof.

Remark: The prescribed H∞ performance of the SMO provides robustness against

the disturbances by minimizing the H∞ gain between the signals z = Hẽ and

ϖ and, as a direct consequence, β drops significantly and the SMO can recon-

struct/estimate the fault f(t) with more accuracy and robustness against ϖ(t). No-

tice that the size of the reconstruction error in (3.81) is directly related to distur-

bances by the term σmax(E
−1
1 ∆1) + σmax(E

−1
1 L4D2). This shows that, due to the

disturbances ξ(t) and ω(t), precise fault reconstruction is not possible. However,

in the case that the size of the error bound ϵ is considerably smaller than the fault

signal f(t), the sliding mode observer reconstruction scheme can still preserve the

fault signal shape effectively.

Remark: It is well known that the nonlinear control injection of a variable structure

control law is not smooth because of the intrinsic discontinuity. To obtain a contin-

uous sliding gain capable of estimating an unknown input, we need to smooth out

the signal ν. To cope with the discontinuity we can employ an arbitrary accurate

approximation of the discontinuous switching function with the small smoothing

term δ > 0. Using 0 < δ ≪ 1 a smooth sigmoid-like continuous approximation

of the signum function can be obtained [18]. This approximation is consistent with

the concept of equivalent output error injection and is essential for fault estimation

by the sliding mode observer.

Remark: Suppose the case that the geometric condition Im(E)∩ Im(∆) = {0}

holds. Then by using the nonsingular transformation T in (3.7) we have Im(TE)∩

Im(T∆) = {0} ⇔ Im(

[
E1

0

]
)∩ Im(

[
∆1

∆2

]
) = {0}. From the nonsingularity of

E1 it follows that ∆1 = 0 and the new upper bound for the fault estimation error re-

duces since β =
√
γ[σmax(E

−1
1 A2)+σmax(E

−1
1 L̃Φ)]σmax(H

−1)+σmax(E
−1
1 L4D2)

which is clearly smaller than β in (3.74).
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3.7 Design Example

Consider the MCK system [63] which behaves chaotically. In the form of system

(3.1) MCK is presented by with the following system matrices:

A =


0 −1 0 0
1 0.7 0 0
0 0 0 −10
0 0 1.5 0

 , B = 0, E =


0
1
1
0

,

∆ =


1
0
1
0

, C =

[
1 0 0 0
0 1 0 1

]
, D = 0

and the Lipschitz nonlinear term Φ(x) is

Φ(x) =


−1
0
10
0




−0.2 + 3(x1 − x3 − 1) : x1 − x3 > 1
0.2(x1 − x3) : −1 ≤ x1 − x3 ≤ 1
−0.2 + 3(x1 − x3 + 1) : x1 − x3 < −1

This system satisfies the rank condition (3.21) and Assumption (3.4). Therefore the

sliding mode observer exists. Nonsingular transformation matrices T and S exist

and we compute them by using the Q-R decomposition method given by [32] as

follows:

T =


0 −1.4142 0 −1.4142

−0.7071 0.5 −0.5 0
−0.7071 −0.5 0.5 0

0 0 0 1

 , S =

[
0 1
1 0

]
.

The new state space realization is

x̃ =


−1.4142(x2 + x4)

−0.7071x1 + 0.5(x2 − x3)
−0.7071x1 − 0.5(x2 − x3)

x4


We now transform the system into the new coordinates. The matrices engaged in

the SMO structure are

C1 = −0.7071, C4 =
[
−0.7071 −0.7071 0

]
, S̄1 =

[
0 1

]
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TAT−1 =

[
A1 A2

A3 A4

]
=


2.2000 3.1213 −1.1213 3.1113

−0.7475 −0.3536 −0.3536 3.9429
−0.2525 0.3536 0.3536 −5.3571
−1.0607 −1.5000 1.5000 −1.5000


[
∆1

∆2

]
=


0.0000
−1.2071
−0.2071
0.0000


with C1 invertible. In particular, in the new coordinates the unknown input distri-

bution matrix E is decomposed into

TE =

[
E1

0

]
=


−1.4142

0
0
0


We note that the pair (A4, C4) is detectable (Lemma 3.2). Letting L̃Φ = 0.1, Ā1 =

50 and

H =

[
0.2I1 0
0 0.5I3

]
,

the MATLAB LMI Toolbox solver, after 44 iterations, gives

P1 = 1.1000, P2 =

 0.6632 0.5619 0.0770
0.5619 1.0547 −0.0925
0.0770 −0.0925 1.0645

 , K =

 −21.6182
−21.9350
1.4796


and γ = 0.0730. Therefore, the guaranteed disturbance attenuation level is ∥H∥∞ ≤
√
γ = 0.2701. Using (3.32), we obtain the observer gain L̃ as

L̃ =

[
L1 L2

L3 L4

]
=


−70.7107 0.0000
1.0571 −28.3298
0.3571 −5.4453
1.5000 2.9658

 .

In the corresponding simulation, the constants in the expression ν (3.31) have been

selected to be δ = .05 and ρ0 = 20. Thus the observer design is complete. The

simulation was carried out with the disturbance ξ, assumed to be noise with variance

of 10, applied to the system from t = 0. The fault f(t) is a ramp signal applied

from t = 2 sec to t = 6 sec, with a positive slope from t = 2 sec to t = 4sec

and a negative slope from t = 4 sec until it settles to zero at t = 6 sec. It can be
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verified that the eigenvalues of A0 are {−0.7819± 3.8575i,−47.8000,−23.8188},

hence it is stable. For the pure SMO, the LMI feasibility problem (3.64) gives us

the following solution

P1 = 0.0211, P2 =

 0.2816 0.0641 0.1004
0.0641 0.2621 −0.0091
0.1004 −0.0091 0.5709

 , K =

 −0.1542
−0.5557
0.4234



L̃ =

[
L1 L2

L3 L4

]
=


−70.7107 0.0000
1.0571 −0.3679
0.3571 −2.0035
1.5000 0.7745

 .

Figs. 3.1 to 3.4 show the actual states (blue line) and their estimates by H∞-SMO

(black line) and pure SMO (red line) respectively. Fig. 3.5 depicts the signal s(t)

versus time indicating that an ideal sliding motion is taking place after a finite time

and remains on the surface S afterwards. Fig. 3.6 is concerned with the fault re-

construction. It shows that despite the presence of disturbances ξ(t), the proposed

sliding mode observer with H∞ performance can still reconstruct the fault signal

with relatively high accuracy (black line) compared to pure SMO (red line). It can

be seen that the reconstruction error bounds are small compared to the fault when

we use H∞-SMO. Therefore fault detection is easily achievable by setting appro-

priate thresholds. It is important to mention that the sliding mode observer design

must satisfy the so-called matching condition (3.5). The LMI convex optimiza-

tion problems, stated in Theorem 3.1 and 3.2, guarantee a valid solution for (3.5).

However, to further examine it, from the LMI solution for the H∞-SMO, it can be

verified that

P = T T P̃ T =


1.4208 0.1384 −0.1384 0.0110
0.1384 2.1485 −0.1485 2.0848

−0.1384 −0.1485 0.1485 −0.0848
0.0110 2.0848 −0.0848 3.0645


and as a consequence, ETP = FC = [0.0000 2.0000 0.0000 2.0000] in the

original coordinates.
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Figure 3.1: First state and its estimate

3.8 Summary

This chapter presents a new robust SMO with H∞ performance methodology for

uncertain Lipschitz nonlinear systems with unknown inputs. Our work generalizes

the known results of linear systems to Lipschitz nonlinear systems by using Lya-

punov stability theory and LMIs. A novel switching gain has been proposed to

satisfy automatically the matching condition in the new coordinates. The derived

LMI optimization problem results in calculating the maximum disturbance atten-

uation level so that the observer can tackle hard disturbances. It is demonstrated

that with the same necessary existence conditions for linear systems, one can build

SMO for Lipschitz nonlinear systems if the LMI optimization problem (3.36) is

feasible. The reconstruction of the fault (unknown input) is also addressed.
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Figure 3.2: Second state and its estimate
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Figure 3.3: Third state and its estimate
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Figure 3.4: Forth state and its estimate
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Figure 3.5: sliding motion s(t)
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Figure 3.6: Unknown input f(t) (blue line) and its reconstructions by ν(t) (black
and red lines)
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Chapter 4

A Parametrization Design for
Adaptive Sliding Mode Observers1

4.1 Background Results

The main focus of this chapter is in the application of new adaptive SMOs to the

problem of fault reconstruction and FDI. In essence, the SMO approach consists of

first defining a sliding surface and then using a variable structure control law, forc-

ing the error system trajectories to the sliding surface in finite time. Recently, [17]

and [18] proposed that using the variable structure control law of the SMO and the

concept of equivalent output injection, a fault can be reconstructed to any required

accuracy for linear systems. These two references consider the case of perfect mod-

eling without uncertainty or unmatched disturbance, hence precise fault reconstruc-

tion is feasible. Sensor fault reconstruction using SMO was studied by [64], further

extending the results for linear systems with disturbance and uncertainty. For non-

linear Lipschitz systems, [74] addressed SMO based fault reconstruction by assum-

ing that disturbances are matched and can be lumped into the so-called matching

condition. A robust fault detection method for nonlinear systems with disturbances

was studied by [23] where strict geometric conditions where exploited. Applica-

tions of SMO for fault tolerant control of linear systems were addressed by [19]

and [3].

1The results in this chapter have been submitted for publication in the article: R Raoufi and H.
J. Marquez ”A New Parametrization for Sliding Mode Observer Design with Fault Estimation and
Diagnosis”, submitted to IEEE Transaction on Automatic Control, November 2009.
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In this chapter, nonlinear Lipschitz systems with fault and disturbances are consid-

ered where the fault satisfies the so-called matching condition and the correspond-

ing rank condition. Firstly, it is shown that this rank condition is necessary and

sufficient for the existence of a solution for the so-called matching condition. The

main objective of this chapter is to design the sliding mode observer for fault re-

construction without using any change of coordinates. It should be pointed out that

in articles by [19], [74], [64] and [3] multiple coordinate transformations must be

utilized to design the SMO which adds to the complexity and conservativism in the

approach. To avoid coordinate changes we introduce a novel solution for the struc-

tural matching condition based on pseudo-inverse of the fault distribution matrix.

Next, a linear matrix inequality (LMI) convex optimization problem is exploited

for the original system. The solution of LMIs guarantees the stability of the error

dynamics and in addition, provides a valid solution for the matching condition. The

above solution guarantees an ideal sliding motion on the sliding surface in finite

time and there is no need of any multiple change of coordinates.

An important feature of our solution is the following: the solution presented in ref-

erences [19], [74], [64] and [3] assumes the upper bound of the fault to be known.

Technically speaking, this is undesirable since faults are inherently unknown and

the fault may exceed the assumed upper bound. In this case the sliding motion

breaks down and SMO is incapable of any fault reconstruction, resulting in instan-

taneous failure of fault reconstruction and diagnosis. We propose a new approach

and modify the formulation assuming that the fault is bounded, however the bound

is unknown. To cope with the unknown upper bound, an adaptive algorithm is em-

ployed to maintain the sliding motion on the sliding surface against any rapid and

unexpected increase in the fault. The SMO based fault reconstruction is imple-

mentable in real systems, since only state estimates and available output measure-

ment are used.

The remainder of this chapter is organized as follows; Section 4.2 provides some
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preliminaries and assumptions on the class of nonlinear system addressed. Some

preliminary lemmas are introduced in Section 4.3. The design of the robust adaptive

SMO and the analysis of the stability of the error dynamics are given in Section 4.4.

In Section 4.5 the stability of the sliding motion is discussed. Adaptive fault estima-

tion is studied in Section 4.6. A generalization of the proposed method for sensor

fault reconstruction is presented in Section 4.7. The effectiveness of the proposed

Adaptive SMO based fault reconstruction is studied with an example in Section 4.8.

Finally some concluding remarks are presented in Section 4.9.

4.2 Preliminaries and Assumptions

Consider a dynamical systems of the form:{
ẋ(t) = Ax(t) +B(u(t) + f(t)) + Φ(x, t) + ∆ξ(t)
y(t) = Cx(t)

(4.1)

where x ∈ Rn represents the system state, u ∈ Rm the control input, y ∈ Rp

the measured system output and t ∈ R+. f(t) : R+ → Rm is the unknown input

(actuator faults). ξ(t) : R+ → Rd denotes disturbances subject to ||ξ|| ≤ β < ∞.

(A,B,C,∆) is the set of real constant known matrices of appropriate dimensions.

B ∈ Rn×m is a full column rank matrix and C ∈ Rp×n is a full row rank matrix.

The known nonlinearity Φ(x, t) satisfies a Lipcshitz condition (2.7). The unknown

input f(t) is bounded in the Euclidean norm with an unknown upper bound subject

to (3.2). We also assume that the conditions (3.4) and (3.5)are satisfied. Further-

more, we have the following assumptions:

rank(CB) = rank (B). (4.2)

4.3 A Parametrization Lemma

We now present the following lemmas which are essential for the SMO design ap-

proach proposed in Section 4.4.
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Lemma 4.1. Assume that rank (CB) = rank (B). A solution P = P T > 0 for the

matching condition BTP = FC exists if and only if

P = ΘX1Θ+ CTX2C (4.3)

F = BTCTX2 (4.4)

Θ = In −BB+,Θ ∈ Rn×n (4.5)

where B+ = (BTB)−1BT and X1 = XT
1 , X1 ∈ Rn×n, X2 = XT

2 , X2 ∈ Rp×p are

arbitrary weight matrices.

Proof.

(proof of necessity)

Define a matrix Θ̄ ∈ R(n+m)×n as

Θ̄ =

(
B+

Θ

)
. (4.6)

Considering that

rank(Θ̄) =rank
(

Im 0m×n

B In

)
.

(
B+

Θ

)
= rank

(
B+

In

)
= n

it follows that rank(Θ̄) = n. We can always find a matrix Λ ∈ R(n−p)×n such that

rank
(

C
Λ

)
= n (4.7)

and, therefore, is nonsingular. Thus

rank
{(

C
Λ

)
.Θ̄T

}
= rank

(
C(B+)T CΘ
Λ(B+)T ΛΘ

)
= n . (4.8)

By definition of B+, we know C(B+)T = CB(BTB)−1. Since we assumed that

rank(CB) = m, it readily follows that rank(C(B+)T ) = m. As a consequence, the

matrix
(

C(B+)T

Λ(B+)T

)
∈ R(n×m) is full column rank with m independent columns.

Hence, from (4.8), we have

n−m ≤ rank
(

CΘ
ΛΘ

)
≤ n. (4.9)

Assumption rank(CB) = m gives m ≤ min {rank(B), rank(C)} = min {m, p}.

Therefore, we obtain m ≤ p and n − p independent columns of
(

CΘ
ΛΘ

)
can be
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pulled out to construct the matrix Λ1 ∈ Rn×(n−p). In other words, one can always

obtain the following partitioned structure

Θ

(
C
Λ

)T

:= (Λ1 | Λ2) . (4.10)

Also, the matrix Λ1 can be expressed by

Λ1 = Θ

(
C
Λ

)T

Λ, Λ ∈ Rn×(n−p). (4.11)

Since Λ1 is of rank n − p, we can introduce the nonsingular transformation matrix

T ∈ Rn×n as

T :=

(
ΛT

1

C

)
. (4.12)

Let P̄ :=

(
P1 0
0 P2

)
. Since any symmetric positive definite matrix P can be

expressed by

P = T T

(
P1 0
0 P2

)
T ⇒ P = T T P̄ T (4.13)

therefore, using (4.12), it follows that

P = Λ1P1Λ
T
1 + CTP2C . (4.14)

From the matching condition (3.5) and the derived structure of P in (4.14), we

obtain

BTΛ1P1Λ
T
1 +BTCTP2C − FC = 0

and consequently

(
BTΛ1P1 BTCTP2 − F

)
T = 0. (4.15)

Since T is nonsingular and BTΘ = 0(⇒ BTΛ1 = 0), it indicates that F =

BTCTP2. Substituting the structure of Λ1 from (4.11) into (4.14) yields

P = Θ
(
CTΛT

)
ΛP1Λ

T
(

C
Λ

)
Θ+ CTP2C. (4.16)

Letting
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X1 =
(
CT ΛT

)
Λ P1 Λ

T
(

C
Λ

)
(4.17)

X2 = P2 (4.18)

leads to the structure of P and F in (4.3)-(4.5). This completes the proof of neces-

sity.

(proof of sufficiency)

From the definition of Moore-Penrose pseudo-inverse matrix ,B+, we know that the

following criteria are satisfied

BB+B = B (4.19)

(BB+)T = BB+ (4.20)

therefore

BTΘ = 0. (4.21)

By substituting (4.3), (4.4) and (4.5) into matching condition (3.5), it simply fol-

lows that (3.5) holds. This completes the proof of sufficiency.

Remark. In reference [11], a different parametrization of the Lyapunov matrix P

was also considered which satisfy the matching condition. This proposed parametriza-

tion is of the form:

P = B⊥Y1B
T
⊥ + CTY2C

where Y1 and Y2 are arbitrary symmetric matrices with appropriate dimensions and

B⊥ is any permissable full rank matrix whose columns are from the basis of the null

space of the matrix BT , i.e. B⊥ is the orthogonal complement of B. In our pro-

posed parametrization of P , we have P = ΘX1Θ + CTX2C where the definition

of Θ is given in (4.5). Thus, these solutions are different. Notice that the dimension

of X1 and Y1 are also different. Two disadvantages of the proposed structure given

by [11] are as the following.
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First, while Θ is uniquely defined by formula (4.5), B⊥ of B is not a unique matrix

and may cause confusion on how to choose it for high order systems. Secondly and

more importantly, Y1 ∈ R(n−m)×(n−m) while X1 ∈ Rn×n. Therefore X1 brings

more additional freedom from a parametrization perspective. Notice that the level

of parametrization plays a very important role when an LMI feasibility problem

must be solved on the matrix P with the associated constraint attached to it. To

make this point more clear, lets consider the following example.

Example. Assume that B =

 1 0
3 2
0 1

. Then, we obtain

B⊥ =

 −3α
α

−2α

, ∀α ∈ R, Θ =

 0.6429 −0.2143 0.4286
−0.2143 0.0714 −0.1429
0.4286 −0.1429 0.2857

.
Consequently, X1 ∈ R3×3 and Y1 ∈ R are respectively parameterized as

X1 =

 x11 x12 x13

x12 x22 x23

x13 x23 x33

, Y1 = y11

Clearly, the parametrization of X1 is more flexible to solve an LMI numerically.

Summing up the parameterizations given in this chapter and [11], one can directly

conclude that the following Lemma also provides an acceptable solution for matrix

equation (3.5).

Lemma 4.2. Assume that rank (CB) = rank (B). A solution P = P T > 0 for the

matching condition BTP = FC exists if and only if

P = ΘX1Θ+ CTX2C +B⊥X3B
T
⊥ (4.22)

F = BTCTX2 (4.23)

Θ = In −BB+,Θ ∈ Rn×n (4.24)

where B+ = (BTB)−1BT , B⊥ is the orthogonal complement of matrix BT and

X1 = XT
1 , X1 ∈ Rn×n, X2 = XT

2 , X2 ∈ Rp×p, X3 = XT
3 , X3 ∈ R(n−m)×(n−m) are
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arbitrary weight matrices.

Lemma 4.1 established a specific and new solution for matrix equation (3.5). We

will employ this solution to build up the new robust sliding mode filter. Now, we

put forward the following lemma which links the existence of any solution for the

matching condition (3.5) with the rank condition (4.2). This Lemma 4.is a well-

known result in the literature of sliding mode observer design [18],[19],[74],[25].

Lemma 4.3. Consider the system (1). There exists a solution P = P T > 0 such

that BTP = FC if and only if

rank(CB) = rank (B) (4.25)

Proof. See the proof of Lemma 3.3.

4.4 Adaptive Sliding Mode Observer Design

In this section, a new robust adaptive sliding mode observer is proposed. The term

ξ(t) encapsulates all the disturbances. Consider the following adaptive sliding mode

observer structure

˙̂x = Ax̂+Bu+ Φ(x̂, t) + L(y − Cx̂) + ν(t)
ŷ = Cx̂.

(4.26)

Let s : Rn → Rm be a linear function represented as

s(t) = C(x− x̂). (4.27)

Next, let S be the hyperplane defined by

S = {t ∈ R+ : s(t) = 0} (4.28)

then the switching gain ν(t) is of the form

ν(t) =

{
(ρ̂(t) + ρ0)P

−1CT∥BTCTX2∥ s(t)
||s(t)|| : s(t) ̸= 0

0 : otherwise
(4.29)
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and the gain ρ̂(t) is updated by the following adaptive algorithm

dρ̂(t)

dt
= η||BTCTX2||||s(t)|| (4.30)

where η, ρ0 > 0 and X2 ∈ Rp×p is a design symmetric wight matrix as defined

in Lemma 4.1. The following theorem states a sufficient condition using LMIs to

guarantee the stability of the proposed observer error dynamics in conjunction with

the adaptive performance of the switching gain.

Theorem 4.1. Given the nonlinear uncertain system (4.1) with the associated as-

sumptions, consider the observer (4.26)-(4.29). The observer error dynamics is sta-

ble with maximized Lipschitz gain 1/
√
γ if there exist matrices X1 = XT

1 , X2 = XT
2

and L̆ such that the following LMI optimization problem has a solution:

minimize γ subject to

X2 > 0 (4.31)

ΘX1Θ+ CTX2C > I (4.32) M +MT ΘX1Θ+ CTX2C In
ΘX1Θ+ CTX2C −I 0

In 0 −γI

 < 0 (4.33)

where M = ATΘX1Θ+ ATCTX2C − L̆C. Then, the observer gain is

L = (ΘX1Θ+ CTX2C)−1L̆. (4.34)

Proof. Regarding (4.1) and (4.26), the error dynamical system is

ė = A0e+ eΦ +Bf(t)− ν(t) + ∆ξ(t)

where e = x − x̂ is the state estimation error, ρ̃ = ρ − ρ̂ and A0 = A − LC.

From (3.4), it follows that the pair (A,C) is observable. For simplicity, we define

eΦ = Φ(x, t)− Φ(x̂, t). Consider the Lyapunov function V = eTPe + η−1ρ̃2. The

derivative of V (e) is

V̇ = (A0e+ eΦ +Bfa(t)− ν(t) + ∆ξ(t))TPe
+eTP (A0e+ eΦ +Bf(t)− ν(t) + ∆ξ(t))

+2η−1ρ̃(− ˙̂ρ).

(4.35)

58



From (4.29), (4.30),(3.2) and (3.5) it yields

eTP (Bf(t)− ν(t)) + η−1ρ̃(− ˙̂ρ) = eTCTF Tf(t)

−eTPP−1CT∥BTCTX2∥(ρ̂(t) + ρ0)
s(t)

∥s(t)∥
+η−1ρ̃(−η||BTCTX2||||s(t)||)
≤ ρ||F ||||Ce|| − (ρ+ ρ0)∥Ce∥∥BTCTX2∥
= −ρ0∥Ce∥∥BTCTX2∥ < 0.

(4.36)

Therefore, using Assumption (2.7) it follows that

V̇ ≤ (A0e+ eΦ +∆ξ)TPe+ eTP (A0e+ eΦ +∆ξ)− eTΦeΦ + L2
Φe

T e . (4.37)

Suppose that disturbance ξ(t) is bounded subject to ∥ξ(t)∥ ≤ β < ∞. Hence,

V̇ ≤
(

e
eΦ

)T (
AT

0 P + PA0 + γ−1I P
P −I

)
︸ ︷︷ ︸

−Q

(
e
eΦ

)
+ 2β ∥P∆∥

∥∥∥∥( e
eΦ

)∥∥∥∥
(4.38)

where L−2
Φ = γ. Therefore, if −Q < 0

V̇ ≤
∥∥∥∥( e

eΦ

)∥∥∥∥(−λmin

(
Q
) ∥∥∥∥( e

eΦ

)∥∥∥∥+ 2β ∥P∆∥
)
. (4.39)

Thus, for
∥∥∥∥( e

eΦ

)∥∥∥∥ > 2β∥P∆∥
λmin(Q)

, we obtain V̇ < 0 which guarantees that the mag-

nitude of the error is ultimately bounded with respect to the set

Ωε=

{(
e
eΦ

)
:

∥∥∥∥( e
eΦ

)∥∥∥∥ <
2β ∥P∆∥
λmin

(
Q
) + ε, ε > 0

}
. (4.40)

On the other hand, matrix P > 0 must also satisfy the structural condition (3.5) as

well. From the solution (4.3)-(4.4) for P and F in Lemma 4.1 and using Schur com-

plement ([6]), the above inner matrix −Q can be expressed by the LMI in (4.33)

(which any solution for P > 0, obtained from the LMIs, satisfies the matching

condition (3.5) ) and the observer gain is defined in (4.34). Consequently, the LMI

optimization problem of Theorem 4.1 guarantees the ultimate boundedness of the

error dynamics and the minimization of γ implies that the observer would be tol-

erant against the Lipschitz nonlinearity up to max (LΦ) =
1√
γ

. This completes the

proof.
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Technically speaking, the concept of maximizing the Lipschitz gain for observer

design was proposed by [1]. It is shown that if the optimal solution is larger than

the actual Lipschitz gain, the observer remains stable in the presence of Lipschitz

nonlinear uncertainties (see [1] for details). The first objective of our LMI optimiza-

tion problem is the computation of the proper matrices X1, X2 and L̆. However, the

second objective is to boost up the tolerance of the sliding mode observer against

the system Lipschitz nonlinearities. Note that we assumed the Lipschitz condition

on Φ(x, t) with a known Lipschitz constant LΦ. The calculation of the maximum of

LΦ is obtained by solving the LMI optimization problem subject to (4.31)-(4.33).

If 1√
γ
≥ LΦ, then the sliding mode observer is capable of tackling the nonlinear

uncertain system (1).

4.5 Synthesis of the Sliding Motion

It is well-known that in order to confine a stable motion of a dynamical system onto

a sliding surface S, it is necessary to use a switching gain which is discontinuous

about the surface S ([18]). Let

S = {t ∈ R+ : s(t) = 0 | s(t) = Ce} (4.41)

then the employed structure of switching gain (4.29) meets the above requirement.

We now present Theorem 4.2, which is the main result of this section. To simplify

our notation, we define

ε∗ :=
2β ∥P∆∥
λmin

(
Q
) + ε. (4.42)

Theorem 4.2. Choose the gain ρ0 to satisfy

ρ0 ≥
ε∗(2||A0||+ γ||C||) + β||∆||+ η̃

||F ||||P||−1
, η̃ > 0. (4.43)

Then given system (4.1), satisfying the assumptions outlined in Section 2, an ideal

sliding motion takes place in finite time on the hyperplane S, defined in (4.41), if

the convex optimization problem (4.31)-(4.33) is solvable.

Proof. The error dynamics is

ė = A0e+ eΦ +Bf(t)− ν +∆ξ(t). (4.44)
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Define the change of coordinate T̄ ∈ Rn×n as

T̄ :=

(
CT

⊥P
C

)
(4.45)

where C⊥ ∈ Rn×(n−p) is any full rank matrix whose columns are from the basis of

the null space of the matrix C, Thus C⊥ is an orthogonal complement of the matrix

CT . The state estimation error in the new coordinate system is

˙̃e = T̄A0T̄
−1ẽ+ T̄ (eΦ +Bf − ν +∆ξ) (4.46)

where

ẽ =

(
e1
ey

)
= T̄ e.

From the definition of T̄ and the property CC⊥ = 0, it follows that

T̄A0T̄
−1 :=

(
Ao

11 Ao
12

Ao
21 Ao

22

)
, T̄∆ :=

(
∆1

∆2

)
(4.47)

T̄ ν =

[
0

(ρ̂(t) + ρo)CP−1CT ∥F∥ ey
∥ey∥

]
:=

[
0
ν̄

]
(4.48)

T̄B =

[
0

CP−1CTF T

]
(4.49)

T̄ eΦ :=

(
ϕ1

ϕ2

)
(4.50)

Hence, partitioning the error dynamics in the new coordinate yields

ė1 = Ao
11 e1 + Ao

12ey + ϕ1 +∆1ξ
ėy = Ao

21 e1 + Ao
22 ey + ϕ2 + CP−1CTF Tf(t)− ν̄(t) + ∆2ξ.

(4.51)

Now consider the Lyapunov function Vs =
1
2
( eTyPey + η−1ρ̃2),P ∈ Rp×p,P > 0.

The derivative along the trajectory is

V̇s = eTy (PAo
21 e1 + P Ao

22 ey + P ϕ2

+P CP−1CTF Tf −P ν̄(t) + P∆2ξ) + η−1ρ̃(− ˙̂ρ).
(4.52)

By assumption, the matrix C is full row rank . Therefore let

P = (CP−1CT )−1 (4.53)
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which is nonsingular. Thus (4.52) becomes

V̇s = eTy PAo
21e1 + eTyPAo

22ey + eTyP∆2ξ
+eTy F

Tf(t)− eTy (ρ̂(t) + ρo) ∥F∥ ey
∥ey∥ + eTyPϕ2 − ρ̃||F ||||s(t)||. (4.54)

Then

V̇s ≤ eTyPAo
21 e1 + eTyP Ao

22ey + eTyP ∆2ξ
+eTyPϕ2 + ∥F∥ ρ ∥ey∥ − (ρ̂(t) + ρo) ∥F∥ ∥ey∥ − ρ̃||F ||||s(t)||. (4.55)

Using the adaptation law (4.30)

V̇s ≤ ∥P∥ ∥ey∥ (∥Ao
21e1∥+ ∥Ao

22∥ ∥ey∥
+ ∥∆2∥ β − ρo ∥F∥ ∥P∥−1 + ∥C∥ γ

∥∥T̄−1
∥∥ ∥ẽ∥). (4.56)

From Theorem 4.1, in finite time e(t) ∈ Ω which implies that ||e|| < ε∗. And, from

the definition of ρ0 in (4.43)

V̇s ≤ −η̃ ∥P∥ ∥ey∥ ⇒ V̇s < 0

Therefore, an ideal sliding motion will take place on the surface S after some finite

time ts and consequently, for all subsequent time ey = ėy = 0. This completes the

proof.

Now, we present the following important proposition which shows the necessity of

the minimum phase condition (3.4) for the stability of the reduced order system in

sliding mode (the stability of the poles of the sliding motion).

Proposition 4.1. If the system triple {A,B,C} is minimum phase and rank(CB) =

rank(B), then the reduced-order system in sliding mode is stable.

Proof. When ideal sliding mode takes place, we have ey = ėy = 0 and the reduced

order system in sliding mode is given by

ė1 = Ao
11 e1 + ϕ1 +∆1ξ. (4.57)

Since the matrix Ao
11 appears in the reduced order system above, its eigenvalues are

the poles of the sliding motion. Moreover, from nonsingular change of coordinate
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T̄ , we obtain

T̄A0T̄
−1 :=

(
Ao

11 Ao
12

Ao
21 Ao

22

)
= T̄AT̄−1 − T̄LCT̄−1

=

(
A11 A12

A21 A22

)
−
(

CT
⊥PL
CL

)
(0 Ip) =

(
A11 A12 − CT

⊥PL
A21 A22 − CL

)
.

(4.58)

It follows that Ao
11 = A11 and the poles of the sliding motion are independent of the

linear observer gain L, Thus A11 must be stable. From the nonsingularity of P and

X2, we have

rank(CP−1CTF T ) =rank(P−1X2CB)=rank(CB) = m , (CP−1CTF T ∈ Rp×m)

(4.59)

then from (3.4) it follows that for every complex number s with nonnegative real

part

n+m = rank
[
sI − A B

C 0

]
= rank

[
T̄ 0
0 Ip

] [
sI − A B

C 0

] [
T̄−1 0
0 Im

]
= rank

[
sIn − T̄AT̄−1 T̄B

CT̄−1 0

]
= rank

 sIn−p − A11 −A12 0
−A21 sIp − A22 CP−1CTF T

0 Ip 0


= rank

[
sIn−p − A11 0

−A21 CP−1CTF T

]
+ p := Q(s) + p

(4.60)

and Q(s) = n+m− p. For m = p, we have

n = Q(s) = rank
[
sIn−p − A11

]
+m (4.61)

Thus, it is guaranteed that for every complex number s with nonnegative real part

we have

rank
[
sIn−p − A11

]
= n− p (4.62)

Hence A11 is always stable. For the case m < p, define a further change of coordi-

nates, dependent on design matrix L̄, by

T̃ =

[
In−p L̄
0 Ip

]
(4.63)

where

L̄ = [L̄1 0(n−p)×m] (4.64)
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Let ẽ1 = e1 + L̄ey. The error system with respect to the new coordinates can be

written as
˙̃e1 = (A11 + L̄A21)e1 + (A12 + L̄A22 − (A11 + L̄A21)L̄)ey
+(ϕ1 + L̄ϕ2) + (∆1 + L̄∆2)ξ + L̄(CP−1CTF Tf − ν̄)

ėy = Ao
21 e1 + Ao

22 ey + ϕ2 + CP−1CTF Tf(t)− ν̄(t) + ∆2ξ

(4.65)

In sliding mode, we have ey = ėy = 0 and the reduced order system in sliding mode

is given by

˙̃e1 = (A11 + L̄A21)e1 + (ϕ1 + L̄ϕ2) + (∆1 + L̄∆2)ξ + L̄(CP−1CTF Tf − ν̄).

(4.66)

Therefore, in this case, for a stable sliding motion, we need A11 + L̄A21 to be a

stable matrix. From assumption (3.4), it follows that for every complex number s

with nonnegative real part

n+m = rank
[
sI − A B

C 0

]
= rank

[
T̃ T̄ 0
0 Ip

] [
sI − A B

C 0

] [
T̄−1T̃−1 0

0 Im

]
= rank

 sIn−p − (A11 + L̄A21) −Ã12 L̄CP−1CTF T

−A21 sIp − A22 CP−1CTF T

0 Ip 0


= rank

[
sIn−p − (A11 + L̄A21) L̄CP−1CTF T

−A21 CP−1CTF T

]
+ p := Q̃(s) + p.

(4.67)

We partition A21 as

A21 =

[
A211

A212

]
↕ p−m
↕ m

(4.68)

Since rank(CP−1CTF T ) = m, therefore, without loss of generality, we partition

CP−1CTF T =

[
B̃1

B̃2

]
(4.69)

where B̃2 ∈ Rm×m and invertible. Thus

Q̃(s) = rank

 sIn−p − (A11 + L̄1A211) L̄CP−1CTF T

−A211 B̃1

−A212 B̃2


= rank

[
sIn−p − (A11 + L̄1A211)

−A211

]
+m

= rank
[
In−p −L̄1

0 −Ip−m

] [
sIn−p − A11

A211

]
+m = rank

[
sIn−p − A11

A211

]
+m.

(4.70)
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Therefore

rank
[
sIn−p − A11

A211

]
= n− p (4.71)

and consequently, the pair (A11, A211) is detectable and since A11 + L̄1A211 =

A11 + L̄A21, the matrix (A11 + L̄A21) is stable by a proper choice of L̄. This com-

pletes the proof.

Remark. It is important to note that the conditions stated in proposition for the

stability of the sliding motion are consistent with the conditions for the existence of

SMOs presented by [18],[19],[74],[64] and [25].

4.6 Robust Adaptive Fault Reconstruction

In this section we consider the problem of reconstructing the system fault (unknown

input), by using the adaptive sliding mode observer and the output information. It is

shown that the reconstruction is carried out online and is dependent only on avail-

able information.

Corollary 4.1. Given system (4.1) and observer (4.26)-(4.29), the fault f(t) can be

approximately reconstructed adaptively by

f̂a ≈ (ρ̂(t) + ρ0)(CB)†P−1∥BTCTX2∥
s(t)

||s(t)||+ δ
(4.72)

where ρ̂(t) = η∥BTCTX2∥
∫ t

0
||s(τ)||dτ , if the following optimization problem is

solvable:

minimize γ subject to (4.31)-(4.33).

Proof. The error dynamics for ey is given by

ėy = Ao
21 e1 + Ao

22 ey + ϕ2 + CP−1CTF Tf(t)
−ν̄(t) + ∆2ξ.

(4.73)

If the LMI optimization problem is solvable, then from Theorem 4.2, an ideal slid-
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ing motion takes place on S in finite time. Thus

ey = ėy = 0 (4.74)

which yields

Cνeq − CBf = Ao
21e1 + ϕ2 +∆2ξ (4.75)

where in the sliding mode the discontinuous signal ν in (4.29) takes on the aver-

age, νeq, ( referred to as the equivalent output error injection [71]) to preserve the

sliding motion. In addition, notice that Theorem 4.1 guarantees the error dynamics

evolution enters the domain Ω and therefore ||e|| < ε∗. As a consequence, one

obtains

∥Cνeq − CBf∥ ≤ (||Ao
21||+ ||C||LΦ)ε

∗ + β||∆2||. (4.76)

Therefore, we have the following upper bound for the fault reconstruction error

∥Cνeq − CBf∥ ≤ ϵ (4.77)

where ϵ := (||Ao
21||+ ||C||LΦ)ε

∗ + β||∆2||. For some small ϵ

Cνeq ≈ CBf(t). (4.78)

Notice the size of the error bound is directly related to the disturbances ξ(t), in-

dicating that precise fault reconstruction is not possible. However, in the case

that the size of the error bound ϵ is smaller compared to the fault signal f(t),

the sliding mode observer reconstruction scheme can still preserve the fault shape

effectively. As we assumed that rank(CB) = m, its pseudo-inverse is (CB)† =

((CB)TCB)−1(CB)T . Thus

f ≈ (CB)†Cνeq. (4.79)

Based on the concept of equivalent output error injection [71], the signal νeq can be

approximated to any degree of accuracy by

νeq = (ρ̂(t) + ρ0)P
−1CT∥BTCTX2∥

s(t)

||s(t)||+ δ
(4.80)
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where δ is a small positive scalar to smooth out the signal ν. Therefore

f ≈ (ρ̂(t) + ρ0)(CB)†P−1∥BTCTX2∥
s(t)

||s(t)||+ δ
. (4.81)

Remark. It should be pointed out that the signal νeq can be computed online by

available information, namely system output y and state estimates x̂.

Remark. In the case of no disturbances (ξ = 0), we obtain β = ε = 0 which

provides the asymptotical stability of the error dynamics. It follows that ϵ = 0 and

the precise fault reconstruction is possible by

f = (CB)†Cνeq (4.82)

4.7 A Generalization to Sensor Fault Reconstruction

In this section we generalize the concept proposed in this chapter for sensor fault re-

construction and detection. We introduce an Integral Adaptive SMO scheme when

the fault occurs at the measurement output. Consider a dynamical system of the

form: {
ẋ1(t) = A1x1(t) +B1u(t) + Φ1(x, t) + ∆1ξ(t)
y1(t) = C1x(t) +D1fs(t)

(4.83)

where x ∈ Rn1 represents the system state, u ∈ Rm1 is the control input, y ∈ Rp1

the measured system output and t ∈ R+. fs(t) : R+ → Rm represents the sen-

sor faults. ξ(t) : R+ → Rd1 denotes disturbances subject to ||ξ|| ≤ β < ∞.

(A1, B1, C1, D1,∆1) is the set of real constant known matrices of appropriate di-

mensions. D1 ∈ Rp1×m is a full column rank matrix

rank(D1) = m (4.84)

and C1 ∈ Rp1×n1 is a full row rank matrix. The known nonlinearity Φ1(x1, t)

satisfies a Lipcshitz condition

∥Φ1(x1, t)− Φ1(x2, t)∥ ≤ LΦ ∥(x1 − x2)∥ (4.85)
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where x1, x2 ∈ Rn1 and LΦ ∈ R+ is a known positive constant. The sensor fault

fs(t) is bounded in the Euclidean norm with an unknown upper bound subject to

∥fs(t)∥ ≤ ρ < ∞ (4.86)

The main idea here is to consider the integral variable

x2 =

∫ t

0

y1(τ)dτ (4.87)

as the new output and thus ẋ2 = y1(t). The augmented system is given by

d
dt

[
x1

x2

]
=

[
A1 0
C1 0

] [
x1

x2

]
+

[
B1

0

]
u+

[
Φ1(x1, t)

0

]
+

[
∆1

0

]
ξ +

[
0
D1

]
fs

(4.88)

Let n = n1 + p1 and

x =

[
x1

x2

]
, A =

[
A1 0
C1 0

]
, Φ(x, t) =

[
Φ1(x1, t)

0

]
Bu =

[
B1

0

]
,∆ =

[
∆1

0

]
, B =

[
0
D1

]
, C = [0 Ip1 ]

(4.89)

then system (4.83) can be rewritten in the form of system (4.1) with Bu replaced

by Buu. Since in observer design, the input signal u is not involved, it can be

ignored by setting u = 0. Therefore, augmented system above and system (4.1) are

identical. Consequently, if the LMI optimization problem stated in Theorem 4.1 is

solvable, then the adaptive sliding mode observer (4.26)-(4.29) exists for the system

(4.83) . And according to Therorem 2, the ideal sliding motion will take place on S

in finite time. Notice that the matching condition (3.5) must be satisfied for system

(4.83). As proved in Lemma 4.3, the rank condition (4.2) is necessary to satisfy

(3.5). Assuming rank(D1) = m, we have

rank(CB) = rank ([0 Ip1 ].

[
0
D1

]
) = rank(D1) = m (4.90)

Thus the rank condition (4.2) always holds and the adaptive SMO for sensor fault

case exists. From Corollary in Section 6 and the structure of the augmented system

above, it follows that the sensor fault fs can be reconstructed by

fs ≈ (ρ̂(t) + ρ0)(D1)
†P−1∥DT

1 X2∥
s(t)

||s(t)||+ δ
. (4.91)
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In the case that ξ = 0, we have precise sensor fault reconstruction via

fs = (D1)
†Cνeq. (4.92)

In such case, due to the integrator in series with the system output, the sliding

surface is given by

S = {t ∈ R+ : s(t) = 0 | s(t) =
∫ t

0

y1(τ)dτ − x̂2(t)}. (4.93)

4.8 Design Example

Consider the MCK system which behave chaotically ([63]). In the form of system

(4.1) MCK is presented by with the following system matrices:

A =


0 −1 0 0
1 0.7 0 0
0 0 0 −10
0 0 1.5 0

 , B =


0
1
1
0

 ,

∆ =


1
1
0
0

 , C =

[
1 0 0 0
0 1 0 1

]

and nonlinear function Φ(x) is

Φ(x) =


−1
0
10
0




−0.2 + 3(x1 − x3 − 1) : x1 − x3 > 1
0.2(x1 − x3) : −1 ≤ x1 − x3 ≤ 1
−0.2 + 3(x1 − x3 + 1) : x1 − x3 < −1

This system satisfies the rank condition (4.2). Therefore, Lemma 4.1 can be applied

to determine a solution for the structural condition (3.5) where

Θ = I4 −BB+ =


1 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 1

 .

Solving the LMI optimization problem (4.31)-(4.33), provides the maximum Lips-

chitz gain maxLΦ = 0.5429 and

X1 =


3.0419 −0.0001 0.0001 −0.9993

−0.0001 0.1061 −0.2123 0.1201
0.0001 −0.2123 0.1061 −0.1201

−0.9993 0.1201 −0.1201 1.1838


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X2 =

[
3.0419 0.2261
0.2261 2.9541

]
, L̆ =


52.1194 −2.0590
−0.5183 32.2650
−1.2592 3.6157
−1.5406 35.5010

 .

Hence, the observer gain (4.34) is

L = (ΘX1Θ+ CTX2C)−1L̆ =


10.0141 −0.51641
−9.8694 10.5098
−11.3728 34.4861

8.5014 1.6758


In the corresponding simulation, the constants associated with ν have been cho-

sen to be η = 0.1, δ = .02 and ρ0 = 10 which satisfies (4.43). Thus, the ob-

server design is complete. The simulation was carried out with the disturbance

ξ = 0.04sin(8t) + 0.05cos(40t) applied to the system from t = 0. The fault f(t)

is a ramp signal applied from t = 2 sec to t = 6 sec, with a positive slope from

t = 2 sec to t = 4 sec and declining with a negative slope from t = 4 sec until

it settles to zero at t = 6 sec. It can be verified that the eigenvalues of A0 are

{−8.4847 − 4.4766,−4.2692 ± 4.8315i}, hence, A0 is stable. Fig. 4.1 to Fig. 4.4

show the actual states (dash line) and their estimates (solid line). Fig. 4.5 depicts

the signal ∥s(t)∥ versus time, indicating an ideal sliding motion is taking place in

finite time and remains on the surface S afterwards. Fig. 4.6 is concerned with

the fault reconstruction, showing that, despite the presence of disturbances ξ(t),

the proposed sliding mode observer can still reconstruct the fault signal with a very

good accuracy and the reconstruction error bounds are small comparing to the fault.

Therefore, fault detection is easily achievable by setting appropriate thresholds. The

adaptive gain ρ̂(t) is shown in Fig. 4.7. It is important to mention that the sliding

mode observer design must satisfy the so-called matching condition (3.5). To fur-

ther examine (3.5), from the LMI solution above and Lemma 4.1, it can be verified

that

P = ΘX1Θ+ CTX2C =


6.0839 0.2260 0.0001 −0.7733
0.2260 3.1133 −0.1592 3.0742
0.0001 −0.1592 0.1592 −0.1201

−0.7733 3.0742 −0.1201 4.1379


and F = BTCTX2 =

[
0.2261 2.9541

]
. Thus

BTP = FC =
[
0.2261 2.9541 0 2.9541

]
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which shows the the structural condition (3.5) holds and the designed sliding mode

observer is valid.

4.9 Summary

A new scheme for nonlinear robust fault reconstruction has been studied based on a

sliding mode observer with an adaptive variable structure gain. The approach does

not need any change of coordinates and is quite straightforward. An LMI optimiza-

tion problem sufficiently guarantees the stability of the error dynamics. Unlike the

predecessor methods reported in the literature, the adaptive mechanism allows the

fault to have an unknown upper bound. Since there is no constraint on the dis-

turbances, an approximation of fault can be reconstructed. The accuracy of the

reconstruction directly depends upon the size of the disturbance. It is important to

note that in the absence of uncertainty or disturbance, precise fault reconstruction

is guaranteed by the approach. Simulations based on a nonlinear chaotic system

called MCK have shown effective performance of the proposed method. Based on

the approach presented here, design of fault tolerant control schemes are worth for

future study.
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Figure 4.1: First state and its estimate
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Figure 4.2: Second state and its estimate
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Figure 4.3: Third state and its estimate
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Figure 4.4: Forth state and its estimate
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Figure 4.5: The sliding mode quantity ∥s(t)∥
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Figure 4.6: Unknown input f(t) (dot line) and its reconstruction by ν(t) (solid line)
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Figure 4.7: The adaptive gain ρ̂(t)
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Chapter 5

Generalized Sliding Mode
Observers1

5.1 Background Results

This chapter deals with observer design for fault detection and estimation using

sliding mode observers (SMOs) in a generalized state space form inspired by sin-

gular system theory. Due to their ability to cope with model uncertainties, SMOs

offer great potential in fault detection applications [18].

The main focus of this chapter is to explain the design of sliding mode observers for

the problem of fault reconstruction and FDI. In essence, the SMO approach con-

sists of first defining a sliding surface and then using a variable structure control

law to force the error system trajectories to the sliding surface in finite time. Re-

cently, [17] and [18] proposed that using the variable structure control law of the

SMO and the concept of equivalent output injection, a fault can be reconstructed to

any required accuracy for linear systems. These two references consider the case

of perfect modeling without uncertainty or unmatched disturbance, hence precise

fault reconstruction is feasible. Sensor fault reconstruction using SMO was stud-

ied by [64], further extending the results for linear systems with disturbance and

1The results in this chapter have been submitted for publication in the article: R. Raoufi and
H. J. Marquez, ”Generalized Sliding Mode Estimator Design for State and Sensor/Actuator Fault
Estimation”, submitted to Automatica, August 2009, and also in the article: R. Raoufi and H. J.
Marquez , ”Generalized Sliding Mode Observers for State and Sensor/Actuator Fault Estimation”,
submitted to American Control Conference, IEEE, 2010.
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uncertainty. For nonlinear Lipschitz systems, [74] addressed SMO based fault re-

construction by assuming that disturbances are matched and can be lumped into the

so-called matching condition.

On the other hand, inspired by the theory of singular systems, [7] proposed a new

generalized state-space observer design to estimate unknown signals for a class of

nonlinear systems. In [28] an interesting method to design descriptor observers for

systems with measurement noise and application to sensor fault diagnosis was pro-

posed. State/noise estimator for descriptor systems with application to sensor fault

diagnosis was also studied by [29]. The approaches of these references play an im-

portant role in inspiring our observer design.

Fault reconstruction is excellent for directly isolating the flaws within a system by

revealing which sensor or actuator is faulty and is useful for diagnosing incipient

and small faults. The detailed knowledge of the fault’s shape, obtained from fault

reconstruction, can highly facilitate the fault tolerant control design. However, in

practical systems, it is often the case where actuators and also sensors suffer from

faults during the course of the system’s operation. Both Actuators and Sensors can

suffer from faults either alone, at separate times or simultaneously. In this case,

detection and reconstruction of all faults is highly important. The co-existence of

unknown fault at both some sensor(s) and actuator(s) has not been addressed in any

earlier design of the sliding mode observers or other fault reconstruction schemes.

Clearly the sensor fault corrupts measurement, therefore making it harder to recon-

struct the actuator faults. On the other hand, reconstruction of the sensor faults also

remain challenging and unsolved due to faulty actuators. Thus, fault reconstruc-

tion/identification brings important benefits to the system and thus in this chapter,

we aim at reconstructing the faults when they coexist at sensors and actuators dur-

ing the system operation.

What is unique about our approach is that it involves a new design of a robust

sliding mode observer in a generalized state space form when faults occur at both
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sensors and actuators coincidentally. To cope with the sensor faults, inspired by

[7], a generalized state space form is employed such that the augmentation results

in a descriptor system form. This singular (descriptor) formulation, provides the

possibility for sensor fault estimation. In this singular form, we define a sliding

surface and the proposed filter forces the trajectories of the estimation error to ap-

proach the sliding surface and remain there afterwards. The actuator fault satisfies

the so-called matching condition and is targeted by the sliding mode controller for

reconstruction. These features allow for actuator faults to be reconstructed based

on information retrieved from the equivalent output error injection signal. Thus,

not only the actuator faults but also sensor faults are reconstructed. In addition, the

states of the system are also estimated by the proposed robust observer which is

very important due to the corruption of the measurements by sensor faults. As a

result, the proposed observer will be called the generalized sliding mode observer

(GSMO) here on after.

Another important feature of our solution is the following: the solution presented

in references [19], [74], [64] and [3] assumes all the actuator fault/unknown inputs

are classified as matched disturbances. In these references, any unmatched distur-

bance can not be estimated. However, the proposed robust GSMO is novel due to

the ability of estimating a class of disturbances which are not matched. The class

of disturbance that can be dealt with is described in detail and has a common be-

havior with output disturbances (or sensor faults). The estimation of this class of

unmatched disturbances also benefits from the singular system model that arises in

our formulation. Research is underway to adopt this novel observer, GSMO, for

simultaneous senosr/actuator fault tolerant control. For a different approach on ro-

bust state observers compared to SMOs see [44], [45].

The remainder of this chapter is organized as follows; Section 5.2 provides some

preliminaries and assumptions on the class of nonlinear system addressed. Some

preliminary lemmas are introduced in Section 5.3. The design of the robust GSMO

and the analysis of the stability of the error dynamics are given in Section 5.4.

In Section 5.5 the stability of the sliding motion is discussed. Fault estimation is
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studied in Section 5.6. The effectiveness of the proposed GSMO based fault re-

construction is studied with an example in Section 5.7. Finally some concluding

remarks are presented in Section 5.8.

5.2 Preliminaries and Assumptions

Consider a dynamical system affected by sensor and actuator faults of the form:{
ẋ(t) = Ax(t) +B(u(t) + f(t)) +BΦΦ(x, t) + ∆ω(t)
y(t) = Cx(t) +Dω(t)

(5.1)

where x ∈ Rn represents the system state, u ∈ Rm the control input, y ∈ Rp

the measured system output and t ∈ R+. Throughout this chapter we assume that

p > m. The set (A,B,C,D) is of real constant known matrices of appropriate di-

mensions where D ∈ Rp×(p−m) and (A,C) is an observable pair. f(t) : R+ → Rm

denotes the fault (unknown input) that is bounded in the Euclidean norm as in (3.2).

The function ω(t) : R+ → Rp−m is the output disturbances (or sensor fault) where

D is the corresponding distribution matrix with full columns rank. Therefore, with-

out lose of generality, we can assume there exist a nonsingular change of coordinate

S0 (yet to be designed) which provides the following geometric condition associ-

ated with D:

S0D =

[
0
D2

]
(5.2)

where D2 ̸= 0, D2 ∈ R(p−m)×(p−m) and is invertible. This assumption implies

that certain sensors are prone to fault and not all of them. The known nonlinearity

Φ(x, t) satisfies a Lipshitz-like condition (2.7). We also assume that the minimum

phase condition (3.4) for the triple {A,B,C} and matching condition (3.5) for ma-

trices {B,P} hold. Suppose that

Im(B) ∩ Im(∆) = {∅} (5.3)

with

rank (C∆) < rank (∆). (5.4)
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5.3 Some Preliminary Lemmas

Lemma 5.1. [13] Consider the system (5.1). There exists a solution P = P T > 0

such that BTP = FC if and only if

rank(CB) = rank (B) (5.5)

Remark: Due to Lemma 5.1, the inequality

rank (C∆) < rank (∆)

implies that ∆ does not satisfy a matching condition of the form ∆TP = F∆C,

hence the term ∆ω(t) is categorized as class of unmatched uncertainties.

Lemma 5.2. Given the system (5.1) with rank(CB) = rank (B) and associated

assumption (3.4), there exist nonsingular transformation matrices T and S such

that

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

0

]
, T∆ =

[
0
∆2

]
,

TBΦ =

[
BΦ1

BΦ2

]
, SCT−1 =

[
C1 0
0 C4

]
, SD =

[
0
D2

] (5.6)

A1 ∈ Rm×m, A4 ∈ R(n−m)×(n−m), C1 ∈ Rm×m, C4 ∈ R(p−m)×(n−m), ∆2 ∈

R(n−m)×(p−m), B1, C1 and D2 are invertible.

Proof. We have rank (B) = m, therefore without loss of generality, by using a

nonsingular transformation T0, we partition the matrix B as

T0B =

[
B1

B2

]
(5.7)

where B1 ∈ Rm×m with rank (B1) = m. Now, introduce a nonsingular coordinate

transformation T1 as

T1 =

[
Im 0

−B2B
−1
1 In−m

]
(5.8)

then

T1T0B =

[
Im 0

−B2B
−1
1 In−m

]
.

[
B1

B2

]
=

[
B1

0

]
(5.9)
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where B1 ∈ Rm×m is nonsingular. Now we partition CT−1
0 T−1

1 as CT−1
0 T−1

1 =

(C̄1 C̄4). Therefore

CB = CT−1
0 T−1

1 T1T0B = (C̄1 C̄4)

[
B1

0

]
= C̄1B1 (5.10)

and consequently, using rank(CB) = rank (B) we have

rank(C̄1B1) = rank(CB) = rank(B1),

then from the nonsingularity of the matrix B1, we directly conclude that

rank(C̄1) = m. (5.11)

Without loss of any generality, using the proper nonsingular change of coordinate

S0, we partition C̄1 as follows

S0C̄1 =

[
C1

C21

]
(5.12)

where C1 ∈ Rm×m and

rank(C1) = m. (5.13)

Consequently det (C1) ̸= 0. Let

S1 =

[
Im 0

−C21C
−1
1 Ip−m

]
(5.14)

which yields

S1S0C̄1 =

[
C1

0

]
. (5.15)

Letting S = S1S0, we obtain

SCT−1
0 T−1

1 =

[
C1 C12

0 C4

]
. (5.16)

Let

T−1
2 =

[
Im −C−1

1 C12

0 In−m

]
(5.17)

and T = T2T1T0, then it is easy to obtain

TB =

[
B1

0

]
, SCT−1

0 T−1
1 T−1

2 =

[
C1 0
0 C4

]
(5.18)
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SD =

[
Im 0

−C21C
−1
11 Ip−m

]
.

[
0
D2

]
=

[
0
D2

]
. (5.19)

Suppose that T∆ =

[
∆1

∆2

]
. With regard to Assumption (5.3) and the fact that T

is nonsingular, it follows that

Im(TB) ∩ Im(T∆) = Im(

[
B1

0

]
) ∩ Im(

[
∆1

∆2

]
) = {∅}

which implies that ∆1 = 0. In the new coordinate, the matrices A and BΦ are trans-

formed as in (5.6). This completes the proof.

Lemma 5.3. [32] Consider the system (5.1) and assume that rank (CB) = rank (B).

Then the pair (A4, C4) is detectable if and only if

rank
[
sIn − A B

C 0

]
= n+m (5.20)

for all s such that Re(s) ≥ 0.

Lemma 5.4. Consider the system (5.1) and assume that rank (CB) = rank (B),

then the matching condition (3.5) always holds in the new coordinates of Lemma

5.1.

Proof. See the proof of Lemma 3.3.

5.4 SMO Design: A Descriptor Approach

In this section, we propose a theorem to design the new GSMO. We employ the

nonsingular state transformations introduced in Lemma 5.2 as the key to deal of our

design. Due to Lemma 5.2, system (5.1) in the new coordinates x̃ := (xT
1 , x

T
2 )

T =

Tx and ỹ := (yT1 , y
T
2 )

T = Sy is

{
ẋ1 = A1x1 + A2x2 +B1(u+ f(t)) +BΦ1Φ1(T

−1x̃, t)
y1 = C1x1 (x1 ∈ Rm)

(5.21){
ẋ2 = A3x1 + A4x2 +BΦ2Φ2(T

−1x̃, t)
y2 = C4x2 +D2ω(t) (x2 ∈ Rn−m)

(5.22)
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where TΦ(x, t) := (ΦT
1 ,Φ

T
2 )

T . Also partition S as

S =

[
S̄1

S̄2

]
, S̄1 ∈ Rm×p, S̄2 ∈ R(p−m)×p

So that the variable x1 can be obtain from the measured output y by

x1 = C−1
1 S̄1y(t). (5.23)

First, we employ following state augmentation x3 =

[
x2

ω

]
, x3 ∈ Rn+p−2m which

leads to the following descriptor plant with singular E ∈ R(n+p−2m)×(n+p−2m)

(rank(E) = n−m)

{
Eẋ3 = A4x3 +A3x1 + BΦ2Φ(x1, x2) +Mω
y2 = C4x3

(5.24)

where

E =

[
In−m 0
0 0

]
, A4 =

[
A4 ∆2

0 −Ip−m

]
, A3 =

[
A3

0

]
BΦ2 =

[
BΦ2

0

]
,M =

[
0

Ip−m

]
, C4 = (C4 D2) .

Subsystem (5.21) is rewritten as

ẋ1 = A1x1 +A2x3 +B1(u(t) + f(t)) +BΦ1Φ(x1, x3, t) (5.25)

where A2 =
(
A2 0m×(n−m)

)
.

To design an observer for the above subsystems, we first need to check the finite-

observability and impulsive-observability of the singular system . Regarding the

observability definitions in (2.46) and (2.47) for singular systems, we present the

following Lemma.

Lemma 5.5. The system (5.4) is observable, i.e,

rank

 E 0
A4 E
C4 0

 = (n+ p− 2m) + rank(E), ∀s ∈ C. (5.26)

and

rank
[
sE −A4

C4

]
= n+ p− 2m, ∀s ∈ C. (5.27)
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Proof. We have rank(E) = n−m and therefore

rank

 E 0
A4 E
C4 0

 = rank


In−m 0 0 0
0 0 0 0
A4 ∆2 In−m 0
0 −Ip−m 0 0
C4 D2 0 0


= 2(n−m) + (p−m) = (n+ p− 2m) + rank(E).

Thus according to (2.47), system (5.4) is impulsive-observable. In addition, we

have

rank
[
sE −A4

C4

]
= rank

 sIn−m − A4 −∆2

0 Ip−m

C4 D2

 = p−m+rank
[
sIn−m − A4

C4

]
.

From Lemma 5.3, we can conclude that if (A4, C4) is an observable pair, then

rank
[
sIn−m − A4

C4

]
= n−m, ∀s ∈ C, (5.28)

and according to the definition (2.46), the system (5.4) is finite-observable. Hence,

we conclude observability. This completes the proof.

We now put forward the following important Lemma.

Lemma 5.6. The inverse (E +KC4)−1 exists for some gain K ∈ R(n+p−2m)×(p−m).

Proof. We have

rank
[

E
C4

]
= rank

 In−m 0
0 0
C4 D2

 = n−m+ rank(D2)

= n+ p− 2m

(5.29)

then there exists gain K of appropriate dimension such that rank(E + KC4) =

n+ p− 2m, hence (E +KC4) is invertible.

By design, we adopt the following structure for gain K

K =

[
0(n−m)×(p−m)

K2

]
(5.30)

where K2 ∈ R(p−m)×(p−m) and full rank by design. Due to the structure of K ,it

follows that
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(E +KC4)−1 =

[
In−m 0
−C4 D−1

2 K−1
2

]
(5.31)

(E +KC4)−1M =

[
0

D−1
2 K−1

2

]
(5.32)

C4(E +KC4)−1K =

(C4 D2)

[
In−m 0
−C4 D−1

2 K−1
2

] [
0
k2

]
= In−m.

(5.33)

We will employ the system structures (5.21) and (5.4) in the new observer design.

Consider the following generalized sliding mode observer structure

(E +KC4)ż = A3x̂1 + (A4 − L4C4)z + L3(y1 − C1x̂1)
+A4(E +KC4)−1Ky2 + BΦ2Φ(x̂1, x̂3)

(5.34)

x̂3 = z + (E +KC4)−1Ky2 (5.35)

˙̂x1 = A1x̂1 +A2x̂3 + L1(y1 − C1x̂1) +B1ν(t) +BΦ1Φ(x̂1, x̂3) (5.36)

where the novel reduced-order sliding gain structure ν ∈ Rm and the observer gain

L̃ are respectively

ν(t) =

{
(ρ+ ρ0)

BT
1 P1(C

−1
1 S̄1y−x̂1)

∥BT
1 P1(C

−1
1 S̄1y−x̂1)∥

: C−1
1 S̄1y − x̂1 ̸= 0

0 : otherwise
(5.37)

L̃ :=

[
L1 L2

L3 L4

]
:=

[
Ā1C

−1
1 0

A3C
−1
1 (E +KC4)P−1

3 K

]
, λ > 0 (5.38)

where ρ0 is some positive scalar. P1, P3 and K will be determined through the

stability proof and Ā1 = A1 − As
1 where As

1 represents a stable design matrix.

Remark. The novelty if the proposed sliding mode controller ν is that under the

same assumptions used in [64] and references there in, the controller requires just

some components of the output y(t). Consequently its order is equal to m < p. In

[74] and [64], the gain ν has the following general form:

ν = (ρ+ ρ0)
P0(y − Cx̂)

||P0(y − Cx̂)||
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with order p. In our proposed GSMO, the controller ν is of order m < p. Inter-

estingly, due to this reduced-order structure of ν it is possible to tackle a class of

disturbances/faults at the output.

We now present Theorem 5.1 which is the main result of this section.

Theorem 5.1. Given the nonlinear uncertain system (5.1) with assumptions (3.2)-

(5.4), consider the GSMO structure (5.34)-(5.38). The observer error dynamics is

ultimately bounded with an arbitrary small upper bound if there exist matrices K,

P T
1 = P1 > 0 and P T

3 = P3 > 0 such that the following LMI feasibility problem

has a solution:

P1 > 0, P3 > 0 and AsT

1 P1 + P1A
s
1 + L̄Im P1A2 P1BΦ1

AT
2 P1 M22 + L̄In+p−2m P3ΛBΦ2

BT
Φ1P1 BT

Φ2Λ
TP3 −I

 < 0 (5.39)

where

L̄ = LΦ
2
∥∥T−1

∥∥2 (5.40)

Λ := (E +KC4)−1 (5.41)

M22 = P3ΛA4 −KC4 −AT
4Λ

TP3 − CT
4 K

T (5.42)

Proof. We define e1 = x1 − x̂1, e3 = x3 − x̂3 and eΦ = Φ(x1, x3) − Φ(x̂1, x̂3).

From (5.35), substituting z = x̂3 − (E +KC4)−1Ky2 into (5.34) yields

Λ−1(x̂3 − ΛKẏ2) = A3x̂1 + (A4 − L4C4)(x̂3 − ΛKy2)
+L3C1e1 +A4(E +KC4)−1Ky2 + BΦ2Φ(x̂1, x̂3).

(5.43)

Adding Kẏ to both sides of (5.4) and then subtracting it from the above equation,

one obtains

Λ−1ė3 = A3e1 − L3C1e1 + (A4 − L4C4)e3 +Mω + BΦ2eΦ (5.44)

By choosing L3 = A3C
−1
1 , it follows that

ė3 = ΛAo
4e3 + ΛMω + ΛBΦ2eΦ (5.45)
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where Ao
4 := (A4 − L4C4). From (5.32) the disturbance term is expressed as

ΛMω(t) =

[
0

D−1
2 K−1

2

]
consequently, by design, we can choose a high-gain K2 to reduce the amplifica-

tion of the bounded noise and disturbances ω(t) to any arbitrary low magnitude.

Furthermore, notice that ∀s ∈ C+,

rank
[
sIn+p−2m − ΛA4

C4

]
= rank

[
Λ−1 0
0 Ip−m

] [
sIn+p−2m − ΛA4

C4

]
= rank

[
sΛ−1 −A4

C4

]
= rank

[
In+p−2m sK

0 Ip−m

] [
sE −A4

C4

]
= rank

[
sE −A4

C4

]
= rank

 sIn−m − A4 −∆2

0 Ip−m

C4 D2


= p−m+ rank

[
sIn−m − A4

C4

]
.

From Lemma 5.3, we know the pair (A4, C4) is a detectable pair. Thus

rank
[
sIn+p−2m − ΛA4

C4

]
= n+ p− 2m, ∀s ∈ C+, (5.46)

which means that the pair (ΛA4, C4) is detectable and we can choose a matrix L̄4

such that (ΛA4 − L̄4C4) is a stable matrix. Let L4 = Λ−1L̄4, we obtain the stable

matrix ΛAo
4. From (5.21) and (5.36), we obtain

ė1 = (A1 − L1C1)e1 +A2e3 +B1f −B1ν(t) +BΦ1Φ(e1, e3) (5.47)

Let L1 = (A1 − As
1)C

−1
1 , then

ė1 = As
1e1 +A2e3 +B1(f − ν(t)) +BΦ1Φ(e1, e3) (5.48)

Consider V1 = eT1 P1e1 and V2 = eT2 P2e2. We define

V = V1 + V2.

Then the derivative of V1 and V2 are given by:
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V̇1 = eT1 (A
ST

1 P1 + P1A
s
1)e1 + eT1 P1A2e3 + eT3A

T
2 P1e1

+eT1 P1B̄Φ1eΦ1 + eΦ
T
1 B̄

T
Φ1P1e1

+eT1 P1B1(f − ν) + (f − ν)TBT
1 P

T
1 e1

(5.49)

V̇2 = eT3 (A0T

4 ΛTP3 + P3ΛA0
4)e3 + eT3 P3ΛMω(t)

+ωTMTΛTP3e3 + eT3 P3ΛB̄Φ2eΦ2 + eΦ
T
2 B̄

T
Φ2Λ

TP3e3
(5.50)

From (5.23) it follows that e1 = C−1
1 S̄1y− x̂1. Then using the switching gain (5.37)

and (3.2) we obtain

eT1 P1B1(f(t)− ν(t)) =

eT1 P1B1f(t)− (ρ+ ρ0)
∥eT1 P1B1∥2
∥eT1 P1B1∥

≤
ρ∥eT1 P1B1∥ − (ρ+ ρ0)∥eT1 P1B1∥ = −ρ0∥eT1 P1B1∥ < 0

(5.51)

Consequently, by choosing L̄4 = Λ−1P−1
3 K and with regard to (5.49), (5.50) and

(5.51), the stability criteria V̇ < 0 is equivalent to the following inequality

 e1
e3
eΦ

T  AsT

1 P1 + P1A
s
1 + L̄Im P1A2 P1BΦ1

AT
2 P1 M22 + L̄In+p−2m P3ΛBΦ2

BT
Φ1P1 BT

Φ2Λ
TP3 −I


×

 e1
e3
eΦ

+ eT3 P3ΛMω + ωTMTΛTP3e3 < 0

Thus if

−Q :=

 AsT

1 P1 + P1A
s
1 + L̄Im P1A2 P1BΦ1

AT
2 P1 M22 + L̄In+p−2m P3ΛBΦ2

BT
Φ1P1 BT

Φ2Λ
TP3 −I

 < 0 (5.52)

then

V̇ ≤ −

∥∥∥∥∥∥
e1
e3
eΦ

∥∥∥∥∥∥
λmin(Q)

∥∥∥∥∥∥
e1
e3
eΦ

∥∥∥∥∥∥− 2∥P3ΛM∥ω0


which guarantees that the magnitude of the error is ultimately bounded with respect

to the set:

Ωε=
 e1

e3
eΦ

 :

∥∥∥∥∥∥
 e1

e3
eΦ

∥∥∥∥∥∥ < 2∥P3ΛM∥ω0

λmin(Q)
+ ε, ε > 0

 (5.53)
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Using (5.32), we have

Ωε =


 e1

e3
eΦ

 :

∥∥∥∥∥∥
 e1

e3
eΦ

∥∥∥∥∥∥ < 2ω0

∥∥∥∥∥∥P3

 0
D−1

2 K−1
2

∥∥∥∥∥∥
λmin(Q)

+ ε, ε > 0

 . (5.54)

Thus, similar to the approach given by [28], the upper bound of the error can be

significantly dropped by arbitrarily choosing a high-gain K2. This completes the

proof.

5.5 Ideal Sliding Motion and Fault Reconstruction

It is well-known that, in order to confine an stable motion of a dynamical system

onto a sliding surface S, it is necessary to use a switching gain which is discontin-

uous about the surface S [18]. Therefore, due to the structure of the switching gain

(5.37) and the fact that N (B1) = {∅}, it follows that

S = {t ∈ R+ : s(t) = 0 | s(t) = C−1
1 S̄1y − x̂1}. (5.55)

The error system with respect to the new coordinates can be written as in (5.48) and

(5.45). If the optimization problem in Theorem 5.1 is solvable, then it implies that

the error dynamics is ultimately bounded with arbitrary small upper bound subject

to (5.54). For simplicity, define

ϵ := 2ω0

∥∥∥∥P3

[
0

D−1
2 K−1

2

]∥∥∥∥
λmin (Q)

+ ε. (5.56)

Consider the Lyapunov function Vs =
1
2
sTP1s. We obtain

V̇s = sTP1ṡ
= eT1 P1(A

s
1e1 +A2e3 +BΦ1eΦ +B1(f(t)− ν))

≤ ∥e1∥(∥As
1∥∥e1∥+ ∥A2e3∥+BΦ1eΦ)− ρ0∥BT

1 e1∥
≤ ∥B−T

1 ∥∥BT
1 e1∥((∥As

1∥+ ∥A2∥+BΦ1)ϵ− ρ0).

(5.57)

Choose the gain ρ0 to satisfy

ρ0 ≥ (∥As
1∥+ ∥A2∥+ ∥BΦ1∥)ϵ+ η0, η0 > 0 (5.58)
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Therefore it follows that V̇s < 0 and the well-known reachability condition [18] is

satisfied. As a consequence, an ideal sliding motion will take place on the surface

S and after some finite time ts

e1 = ė1 = 0, ∀t > ts. (5.59)

The subsystem (5.48)in sliding mode is given by

0 = A2e3 +B1(f − νeq) +BΦ1Φ(e1, e3) (5.60)

where in the sliding mode the discontinuous signal ν in (5.37) must takes on the

average νeq (referred to as the equivalent output error injection [71]) to preserve the

sliding motion. Thus

∥νeq − f(t)∥ ≤ κ (5.61)

where

κ = ∥B−1
1 A2 +B−1

1 BΦ1∥ϵ (5.62)

Therefore, approximately, for some small κ

νeq ≈ f(t). (5.63)

And based on the concept of equivalent output error injection [71], the signal νeq

can be approximated to any degree of accuracy by

νeq ≈ (ρ+ ρ0)
BT

1 P1(C
−1
1 S̄1y − x̂1)

∥BT
1 P1(C

−1
1 S̄1y − x̂1)∥+ δ

(5.64)

where δ is a small positive scalar to smooth out the signal ν [18]. Therefore

f̂(t) = (ρ+ ρ0)
BT

1 P1(C
−1
1 S̄1y − x̂1)

∥BT
1 P1(C

−1
1 S̄1y − x̂1)∥+ δ

. (5.65)

Next, From (5.54) and (5.56), it follows that ∥x3 − x̂3∥ ≤ ϵ. Thus

∥ω − ω̂∥ ≤ ϵ (5.66)

and for some small ϵ, we can directly conclude that

ω̂(t) ≈ ω(t). (5.67)

It should be pointed out that upper bound of the estimation error ϵ is arbitrarily

reduced by the choice of a high-gain K2.
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5.6 Sensor and Actuator Fault Estimation and Diag-
nosis

Now, we present the important feature of the proposed observer to deal with faulty

systems when the faults are prone in both sensor(s) and actuator(s) during the course

of the system’s operation. Consider system (5.1) with ω(t) = Wfs(t) and ∆ = 0

where W is a known constant matrix of appropriate dimension and full column

rank. Thus, we have{
ẋ(t) = Ax(t) +B(u(t) + f(t)) +BΦΦ(x, t)
y(t) = Cx(t) +DWfs(t)

(5.68)

where f(t) and fs(t) represent actuator and sensor faults respectively. Using the

proposed GSMO and with regard to Section 5.4, one can estimate the faults as fol-

lows:

Actuator Fault Estimation:

f̂(t) = (ρ+ ρ0)
BT

1 P1(C
−1
1 S̄1y − x̂1)

∥BT
1 P1(C

−1
1 S̄1y − x̂1)∥+ δ

(5.69)

Sensor Fault Estimation:

f̂s(t) = (W TW )−1W T [0 Ip−m]x̂3(t). (5.70)

Remark. In the case ∆ ̸= 0, the disturbance ω(t) which represents a class of

unmatched disturbances is estimated by ω̂(t) = [0 Ip−m]x̂3(t). This feature is also

unique about the proposed GSMO since the SMOs recently addressed in articles

are not able to estimate any unmatched disturbance (See [74], [64] and references

there in).
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5.7 Design Example

The nonlinear model of a single link flexible joint robot arm (Shown in Figure 5.1)

is described by following set of equations [56].

θ̇m = ωm

ω̇m = k
Jm

(θ1 − θm)− BR

Jm
ωm + Kτ

Jm
(u+ f(t))

θ̇l = ωl

ω̇l = − k
Jl
(θ1 − θm)− mgh

Jl
sin(θl)

Figure 5.1: Single link flexible joint robot schematic

where, θm and ωm are, respectively, the position and angular velocity of the DC

motor and θl and ωl represent those of the link. The DC motor is excited with u(t)

being the excitation signal. The variable f(t) denotes an actuator fault signal. It is

assumed that the motor position, motor velocity and the link position are measured.

Although, the sensors for motor position and link position are prone to faults, fs1

and fs2, in some time intervals. Thus, we can model the output, y, by

y =

 θm + fs1
ωm

θl + fs2

 .

The moment of inertia of the DC motor is denoted by Jm while that of the con-

trolled link is denoted by Jl . Parameter k symbolizes the torsional spring con-

stant. The length of the link is given by h while BR stands for the viscous friction

in the motor bearing. The values of these parameters are given in table I. The

aim of this study is to simulate faults in the excitation signal of the DC motor,

u(t) , and measurement output, y(t), and then reconstruct the faults . Further-

more states are also estimated for control/monitoring. For convenience, the flexible
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joint robot arm system can be described in the form of (5.1) with system states

xT = [x1 x2 x3 x4] := [θm, ωm, θl, ωl], system matrices

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

 , B =


0

21.6
0
0


BΦ =


0
0
0

−3.33

, C =

 1 0 0 0
0 1 0 0
0 0 1 0

 , D =

 1 0
0 0
0 1

 , ∆ = 0

and the Lipschitz nonlinear term is Φ(x) = sin(x3). We apply input u(t) = sin(t)

from t = 0. The actuator fault f(t) and sensor faults fs(t) =
[
fs1
fs2

]
respectively

are

f(t) =

{
0.1t− 1, 10 ≤ t ≤ 20
−0.1t+ 3, 20 < t ≤ 30

fs1 = sin(0.5t) + .2 sin(5t), 10 ≤ t ≤ 30

fs2 =

{
0.2t− 4, 20 ≤ t ≤ 25
−0.2t+ 6, 25 < t ≤ 30

Consequently, with regard to the distribution matrix D, the first and the third sensors

are prone to fault while the second sensor is assumed to be fault-free. Furthermore,

it is assumed that W = I2. Introduce transformations x̃ = Tx and ỹ = Sy with T

and S computed by the method given in Lemma 5.2 as follows

T =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , S =

 0 1 0
1 0 0
0 0 1

 .

It follows that S̄1 = [0 1 0] and

A =

[
A1 A2

A3 A4

]
=


−1.2500 −48.6 48.6 0
1 0 0 1
0 0.3536 0.3536 −5.3571
0 19.5000 −19.5000 0


[
B1

0

]
=


21.6
0
0

0.0000

 ,

[
BΦ1

BΦ2

]
=


0
0
0

−3.3300

 , ∆2 = 0
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[
C1 0
0 C4

]
=

 1 0 0 0
0 1 0 0
0 0 1 0

 ,

[
0
D2

]
=

 0 0
1 0
0 1


and therefore

E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , rank(E) = 3 < n(= 5)

A4 =


0 0 0 0 0
0 0 1 0 0

19.5 −19.5 0 0 0
0 0 0 −1 0
0 0 0 0 −1

 , C4 =
[
1 0 0 1 0
0 1 0 0 1

]
.

To design the proposed GSMO, choose

K =

[
0
K2

]
=


0 0
0 0
0 0
40 0
0 2.8


such that (E + KC4) is nonsingular. Let Ā1 = 150 and LΦ = 0.5. From the LMI

synthesis, after 10 iterations, we obtain

P1 = 0.7984,

P3 =


292.8041 −19.5106 −0.7537 −36.6898 −19.2042
−19.5106 369.2266 0.1833 20.8496 405.1866
−0.7537 0.1833 0.1879 0.4543 0.5946
−36.6898 20.8496 0.4543 331.2106 20.0682
−19.2042 405.1866 0.5946 20.0682 445.7535



K =


145.5688 11.9180
1.5400 170.8633
1.7497 −39.3617

146.6352 −5.5142
4.8638 14.7479

 .

Consequently, using (5.38), it follows that
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L̃ =

[
L1 L2

L3 L4

]
=


150 0.0000 0.0000
1 0.6371 4.8105
0 4.7302 487.4907
0 19.8012 748.8055
0 43.4589 19.8193
0 1.1822 122.6429

 .

Notice that this system satisfies necessary conditions (3.4) and (5.5). In the corre-

sponding simulation, the constants in the expression ν (5.37) have been selected to

be ρ = 1, δ = .05 and ρ0 = 5. Thus the observer design is complete. For the sim-

ulation study, we assume that system is initially (time t = 0 sec) at rest and fault

free. At this time the GSMO is switched on with different initial condition than that

of the system. The simulation was carried out for 50 seconds. It can be verified that

the eigenvalues of ΛA40 are {−40.0304,−0.0417,−1.0928,−2.0524 ± 4.8834i},

hence it is stable. Also, it can be verified that the above LMI solution satisfy the

structural matching condition (3.5), resulting that the numerical solution is valid to

maintain a stable sliding motion on the sliding surface S. Figs. 5.2 shows estima-

tion error of the actual states by GSMO. Fig. 5.3 is concerned with the actuator

fault reconstruction. It shows that despite the presence of disturbances at the output

(sensor faults), the proposed generalized sliding mode observer can still reconstruct

the fault effectively via the average of the sliding mode controller ν(t). Fig. 5.4

and Fig. 5.5 depict the estimation of the senors faults using the GSMO. As it was

discussed before, by choosing a high gain K2, the upper bound of the sensor fault

reconstruction error becomes relatively very small compared to the magnitude of

the faults. Hence, sensor fault estimation is effectively accomplished. Notice that

the actuator fault f(t) and sensor fault fs1 have been elaborately chosen to take

place in the same time interval, t ∈ [10, 30] sec, to show that the proposed GSMO

can still effectively estimate both faults as it was expected from Theorem 5.1.

5.8 Summary

This chapter presents a generalized sliding mode observer (observer) based fault

estimation approach for nonlinear Lipschitz systems when both sensor and actuator

faults exist coincidentally during the course of the system’s operation. The ap-
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SYSTEM PARAMETERS (Units) VALUE
Motor inertia, Jm (Kg m2) 3.7 ×10−3

Link inertia, Jl (Kg m2) 9.3 ×10−3

Pointer mass, m (Kg) 2.1 ×10−1

Link length, h (m) 3.0 ×10−1

Torsional spring constant, k (Nm rad−1) 1.8 ×10−1

Viscous friction coefficient, BR (Nm V−1) 4.6 ×10−2

Amplifier gain, Kτ (Nm V−1) 8 ×10−2

Table 5.1: Model parameters for the single link flexible joint robot arm

proach utilizes a sliding mode observer in a new generalized state space form. The

conditions for the stability of convergence are derived. Interestingly, distinguish-

able from its sliding mode observer predecessors, it was studied that the proposed

GSMO can estimate a class of disturbances which are not matched. The technique is

successfully implemented on a faulty single link flexible joint robot system subject

to simultaneous actuator and sensor faults. It is shown that the presented approach

can be easily used to design the GSMO for the detection and reconstruction of the

actuator and sensor faults and estimation of system states simultaneously.
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Figure 5.2: State estimation errors
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Figure 5.3: Actuator fault f(t) (dash line) and its reconstruction by equivalent slid-
ing mode controller νeq (solid line)
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Figure 5.4: Sensor fault fs1 (dash line) and its estimation by GSMO (solid line)
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Figure 5.5: Sensor fault fs2 (dash line) and its estimation by GSMO (solid line)
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Chapter 6

Reduced-Order Unknown Input
Observers1

6.1 Background Results

For the past two decades there has been significant interest in the use of chaotic

dynamics to realize secure communications (See [35],[36], [40],[34], [57] and ref-

erences therein). There are several features of chaotic signals, the trajectories of

chaotic dynamical systems, which make them attractive for use in secure communi-

cation systems. Chaotic trajectories are deterministic, noise-like signals with broad

bandwidth and aperiodic behavior. Another attractive feature of chaotic signals is

their high dependence on initial conditions; small changes can lead to dramatically

different behaviour over a short time interval. Therefore, long-term prediction be-

comes virtually impossible.

Early work on the synchronization of chaotic systems by Pecora and Carroll [52],

enforced trajectories of the so-called “slave” chaotic system, to track those of the

“master” system. Most of the work in this area is focused on synchronization of

chaotic systems to recover information signals [67]-[31]. In a typical chaotic syn-

chronization communication scheme the information to be transmitted is carried

1The results in this chapter have been submitted for publication in the article: R Raoufi and
H. J. Marquez, ”A New Chaotic Communication Scheme Using Reduced-order Unknown Input
Observers”, submitted to International Journal of Bifurcation and Chaos, World Scientific Pub-
lisher, August 2009, and also in the article: R. Raoufi and H. J. Marquez , ”A New Reduced-order
Unknown Input Observer-based Chaotic Communication”, Proceeding of American Control Con-
ference, IEEE, 2010.
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from the transmitter to the receiver by a chaotic signal through an analog channel

and decoding of the information can be carried out by means of synchronizing the

chaotic trajectories of both systems [31]-[34]. Recently, different observer-based

methods have been proposed to synchronize chaotic systems in the presence of a

message signal. Reference [7] proposed a generalized state-space observer design

method for chaotic communication which guarantees the synchronization of chaotic

dynamic. In [62] an adaptive chaotic communication scheme was used to cope with

the effect of channel noise. In reference [41] an adaptive observer was designed for

chaotic masking secure communication schemes. A sliding mode observer based

robust chaotic communication scheme was proposed in [57]. A new chaotic syn-

chronization method based on gain scheduling was studied in [38]-[39].

The chaotic masking methods recently given in [40] and [41] for the Lorenz attrac-

tor take the following form: ẋ =

 −p1 p1 0
p2 −1 0
0 0 −p3

 x+

 0
−yx3

yx2

+Ks(t)

y = Cx+ s(t)

where the first equation consists of the Lorenz attractor with the addition of the

information signal s(t) through the gain K. This approach consists of two steps.

First, the observer stabilizing gain is computed for a message-free chaotic synchro-

nization. Next, the information signal is added to the output and also injected into

the chaotic dynamics through the observer gain (Fig. 6.1). Despite of the attractive-

ness of this approach and its well established stability criteria, an inherent source of

limitation and deficiency in this approach is the following: chaos is a steady state

phenomena and, in general, there are no guarantees that the chaotic attractor used in

the implementation will remain chaotic after injecting the term Ks(t) which may

corrupt the chaotic attractor.

On the other hand, a powerful tool to tackle the problem of chaotic synchronization

in the presence of a message signal is the use of Unknown input observers (UIOs)

[10], [69]. The UIO synchronizes itself whit the master chaos while it treats the
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message signal as the unknown input (See [10] and [69] and reference there in).

Necessary and sufficient conditions for the stability can be found in [10] and [16].

The UIO based approach in [10] can cope with either differential message signal or

it needs the derivative of the estimation for message recovery. However, this prob-

lem has been completely solved in our proposed method by virtue of a novel UIO

design and a different recovery algorithm.

Figure 6.1: The existing chaotic masking scheme

Figure 6.2: The proposed chaotic masking scheme

Motivated by the problem described earlier in the approach given in [40] and [41]

and also inspired by UIOs for chaotic synchronization [10], [69], the primary goal

of this work is to develop a new chaotic communication scheme which preserves

the structure of the chaotic attractor without any additional inputs. We proceed to-

wards this goal inspired by the concept of unknown input observers (UIOs). In a

master-slave configuration, we introduce a low pass filter to create an augmented

system in which the information signal can be regarded as an “unknown” input. At

the receiver end our task is to design a new UIO (slave) to recover the “unknown”
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message. Fig. 6.2 shows the proposed scheme. It is observed that the chaotic trans-

mitter is free of any injection of the term Ks(t) into the chaos and the novel receiver

is composed of two main blocks: a low pass filter and a UIO. The new proposed

UIO is of reduced-order compared to the augmented system and exists under the

same existence conditions as the other UIOs (see, for example, [10]). The message

signal is recovered using only the chaotic masking output and the state estimate by

the UIO. It should be pointed out that the reduced-order UIO is designed in a new

coordinates and hence its structure is novel. Furthermore, we investigate the ability

of the proposed UIO for sensor fault estimation and diagnosis. Using static H∞

filtering, we develop a robust H∞-UIO and we study the ability of this kind of filter

for sensor fault estimation in the presence of process disturbance. Interestingly, the

configuration of the proposed sensor fault estimation scheme and chaotic commu-

nication scheme are similar, hence, the same UIO structure successes to deal with

both of these problems.

The remainder of this chapter is organized as follows; Section 6.2 provides some

preliminaries, assumptions on the class of nonlinear chaotic system to be consid-

ered. Section 6.3 introduces an important Lemma. In Section 6.4 we consider the

design of the new reduced-order UIO. In Section 6.5 details the process of recov-

ering the information signal. Section 6.6 considers an illustrative example. Section

6.7 studies the use of robust UIO for sensor fault estimation. Section 6.8 summa-

rizes this chapter.

6.2 Problem Formulation

Consider the following Chaotic system acting as the transmitter:

˙̄x = Āx̄+ B̄ΦΦ(x̄, t) (6.1)

where x̄ ∈ Rn̄ represents the system state and t ∈ R+. The set of (Ā, B̄Φ, C̄)

is known matrices of appropriate dimension. C̄ is a full row rank matrix. Φ(t) :
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Figure 6.3: Chaotic Transmitter

Rn̄ ×R+ → Rr represents the system nonlinearities which satisfies a Lipshitz con-

dition (2.7) locally. We perform the following chaotic masking on the information

signal s(t) : R+ → Rq

yM = ȳ(t) +Ms(t) (6.2)

where ȳ = C̄x̄ ∈ Rp is the measured output, yM ∈ Rp and M ∈ Rp×q is a full

column rank design matrix where q ≤ p, therefore,

rank(M) = q. (6.3)

Assume now that for every complex number s with nonnegative real part

rank
[
sIn − Ā 0

C̄ M

]
= n+ rank(M). (6.4)

Fig. (6.3) depicts the chaotic masking transmitter and Wn(t) represents the channel

noise. Next, We employ a low pass filter to theoretically modify the formulation of

the chaotic transmitter in a certain way which is explored now. We introduce the

filter F with xf ∈ Rp as

F : ẋf = −Afxf +Bfuf (6.5)

where Af ∈ Rp×p is a stable filter matrix and Bf ∈ Rp×p invertible. We define

the new augmented state as x :=

[
x̄
xf

]
∈ Rn̄+p and let uf = yM. Therefore, the

augmented system is described by


ẋ(t) =

[
Ā 0

Bf C̄ −Af

]
︸ ︷︷ ︸

A

x+

[
B̄ϕ

0

]
︸ ︷︷ ︸

Bϕ

Φ(x, t) +

[
0

BfM

]
︸ ︷︷ ︸

D

s(t)

y(t) =
[
0 Ip

]︸ ︷︷ ︸
C

x

(6.6)
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which it can be written as

ẋ = Ax+BΦΦ(x, t) +Ds(t)
y = Cx

(6.7)

Thus, the new augmented system is an unknown input system. We now present

the following Lemma which plays a key role in the structure of the observer-based

receiver (synchronizer).

Remark. The primary reason for using the filter F is to restructure the original

system as an unknown input augmented system for which the message s(t) is the

unknown input. This will be elaborated in details later on in Section V.

6.3 An Important Lemma

Lemma 6.1. Given the system (6.6) with rank(M) = q and associated assumption

(6.4), there exist nonsingular transformation matrices T and S such that

TAT−1 =

[
A1 A2

A3 A4

]
, TD =

[
D1

0

]
, TBΦ =

[
BΦ1

BΦ2

]
, SCT−1 =

[
C1 0
0 C4

]
(6.8)

where n = n̄+ p, A1 ∈ Rq×q, A4 ∈ R(n−q)×(n−q), C1 ∈ Rq×q, C4 ∈ R(p−q)×(n−q),

D1 and C1 are invertible and the pair (A4, C4) is detectable.

Proof. we have rank (D) = q, therefore without loss of generality, by using a

nonsingular transformation T0, we partition the matrix D as

T0D =

[
D1

D2

]
(6.9)

where D1 ∈ Rq×q with rank (D1) = q. Introducing a nonsingular coordinate trans-

formation T1 as

T1 =

[
Iq 0

−D2D
−1
1 In−q

]
(6.10)

we have that

T1T0D =

[
Iq 0

−D2D
−1
1 In−q

]
.

[
D1

D2

]
=

[
D1

−D2D
−1
1 D1 +D2

]
=

[
D1

0

]
(6.11)
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where D1 ∈ Rq×q is nonsingular. Now we partition CT−1
0 T−1

1 as CT−1
0 T−1

1 =

(C̄1 C̄4). Therefore

CD = CT−1
0 T−1

1 T1T0D = (C̄1 C̄4)

[
D1

0

]
= C̄1D1 (6.12)

and consequently, using CD = BfM we have

rank(C̄1D1) = rank(CD) = rank(BfM) = rank(M)

From this point, similar to the proof of Lemma 5.2, we can find nonsingular trans-

formations T = T2T1T0 and S = S1S0 to transform matrices A D, C and BΦ as in

(6.8). On the other hand, using Assumption (6.4), for any s ∈ C+ we have

n̄+ q = rank
[
sIn̄−Ā 0
C̄ M

]
= rank(

[
In̄ 0
0 Bf

] [
sI − Ā 0

C̄ M

]
)

= rank
[
sIn̄−Ā 0
Bf C̄ BfM

]
= rank

 sIn̄ − Ā 0 0
Bf C̄ sIp + Af BfM
0 Ip 0

− p

= rank
[
sIn − A D

C 0

]
− p

.

Thus

n̄+ q + p = rank
[
sIn − A D

C 0

]
= rank

[
T 0
0 S

] [
sIn − A B

C 0

] [
T−1 0
0 Iq

]

= rank
[
sIn − TAT−1 TD

SCT−1 0

]
= rank


sIq − A1 −A2 D1

−A3 sIn−q − A4 0
C1 0 0
0 C4 0


= rank

[
sIn−q − A4

C4

]
+ 2q

consequently, it follows that

rank
[
sIn−q − A4

C4

]
= n− q (6.13)

which implies that the pair (A4, C4) is detectable. This completes the proof.
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6.4 Reduced-Order UIO design for Chaos Synchro-
nization

Define the new coordinates as x̃ = Tx and ỹ = Sy, then system (6.6) can be

described as follows:

˙̃x = TAT−1x̃+ TBs(t) + TBΦΦ(T
−1x̃, t)

ỹ = SCT−1x̃
(6.14)

and in the new coordinate, the sets of partitioned states are

x̃ =

[
x1

x2

]
, ỹ =

[
y1
y2

]
where x1 ∈ Rq, x2 ∈ Rn−q , y1 ∈ Rq and y2 ∈ Rp−q, and the corresponding

transformed subsystems are{
ẋ1 = A1x1 + A2x2 +D1s(t) +BΦ1Φ(T

−1x̃, t)
y1 = C1x1

(6.15)

{
ẋ2 = A3x1 + A4x2 +BΦ2Φ(T

−1x̃, t)
y2 = C4x2

(6.16)

Also let us consider the partition of S as

S =

[
S̄1

S̄2

]
, S̄1 ∈ Rq×p, S̄2 ∈ R(p−q)×p.

From y1 = S̄1y, the variable x1 can be directly measured from the filtered output

y(t) = xf (t) by

x1(t) = C−1
1 S̄1y(t) (6.17)

Hence x1 is fully measurable and there is no need to estimate x1. Notice that the

information signal s(t) only appears at the first subsystem. By Considering the

information signal s(t) as an unknown input of the augmented system (6.6), this

interesting feature facilitates the design of a reduced-order unknown input observer.

Thus, the problem reduces to design a state observer for only the subsystem (6.16).

Consider the following reduced-order dynamical observer of order n− q

˙̂x2 = A3C
−1
1 S̄1y + A4x̂2 +BΦ2Φ(T

−1 ˆ̃x, t) + L(y2 − C4x̂2) (6.18)
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Let e2 = x2 − x̂2. Then the observer error dynamics of the system is

ė2 = Ao
4e2 +BΦ2ϕ (6.19)

where Ao
4 = A4 − LC4 and ϕ = Φ(T−1x̃, t)− Φ(T−1 ˆ̃x, t). Consider the Lyapunov

function V = e2
TP2e2 where P2 = P T

2 > 0, P2 ∈ Rn−q. The derivative of V is

V̇ ≤
[
e2
ϕ

]T [
P2A

o
4 + Ao

4
TP2 + L2

ΦI P2BΦ2

BΦ2
TP2 −I

] [
e2
ϕ

]
. (6.20)

We now sum up the above analysis and design in the form of the following theorem.

Theorem 6.1: Given the class of system (6.6) with associated assumptions, the

asymptotic reduced-order UIO (6.18) exists if there is a solution for the following

standard LMI feasibility problem:

For given LΦ, find symmetric P2 > 0 and K such that

[
P2A4 + A4

TP2 −KC4 − CT
4 K

T + L2
ΦI P2BΦ2

BΦ2
TP2 −I

]
< 0 (6.21)

Once the problem is solved the UIO gain is L = P−1
2 K.

Remarks:

• From Lemma 6.1 we know that the pair (A4, C4) is detectable and therefore,

there exists stabilizing gain L to assign the eigenvalues of Ao
4 to the open left

half complex plane.

• Assume that p = q so that C4 ∈ {∅}. Then, from Lemma 6.1, it follows that

the minimum phase condition (6.4) holds for all s such that Re(s) ≥ 0 if and

only if the matrix A4 is asymptotically stable.

• One can estimate the original state using

x̂ = T−1

[
C−1

1 S̄1y
x̂2

]
(6.22)

where only x̂2 is estimated by the reduced-order UIO. Furthermore, with re-

gard to the structure of T1 in (6.10), it can be verified that

T−1
1 =

[
Iq 0

D2D
−1
1 In−q

]
(6.23)
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thus

x̂ = T−1
0 T−1

1 T−1
2

[
C−1

1 S̄1y
x̂2

]
= T−1

0

[
Iq 0

D2D
−1
1 In−q

]
.

[
Iq −C−1

11 C12

0 In−q

] [
C−1

1 S̄1y
x̂2

]
= T−1

0

[
Iq −C−1

1 C12

D2D
−1
1 −D2D

−1
1 C−1

1 C12 + In−q

] [
C−1

1 S̄1y
x̂2

]
⇒ x̂ = T−1

0

[
C−1

1 S̄1y − C−1
1 C12x̂2

D2D
−1
1 C−1

1 S̄1y +Wx̂2

]
(6.24)

where W = −D2D
−1
1 C−1

1 C12 + In−q.

• From a practical standpoint, noise always exists in communication channels,

therefore, we consider additive channel noise n(t) of the following form:

ỹM = ȳ(t) +Ms(t) +Wn(t) (6.25)

where W is the distribution of noise of appropriate dimension. It is important

to note that a secondary benefit of introducing the low pass filter F is the

attenuation of high frequency noise n(t) of the communication channel, so

that the UIO can access a filtered version of the output for state estimation at

the receiver side. The bandwidth of the low pass filter (LPF) F should be de-

signed according to the bandwidth of the chaotic masking modulation yM(t).

In other words, LPF filter allows the necessary frequencies that contain the

information signal and chaotic output to pass through and cuts off the high

frequency noise.

6.5 The Recovery of information signal s(t)

The asymptotic reduced-order UIO acts as the synchronizer at the receiver side. Let

C̃ = [C̄ 0] and M+ = (MTM)−1MT . From (6.2) we have s(t) = M+(yM(t)−

C̄x̄) As a consequence, we can recover the information signal using

ŝ(t) = M+(yM(t)− C̃x̂). (6.26)

Therefore, by using output information y(t) and state estimate x̂2(t), we can directly

reconstruct the message via
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Figure 6.4: Receiver (Decoder)

ŝ(t) = M+

(
yM(t)− C̃T−1

0

[
C−1

1 S̄1y − C−1
1 C12x̂2

D2D
−1
1 C−1

1 S̄1y +Wx̂2

])
(6.27)

where W = −D2D
−1
1 C−1

1 C12 + In−q. And equivalently, when chancel noise is

considered, we have:

ŝ(t) = M+

(
ỹM(t)− C̃T−1

0

[
x1 − C−1

1 C12x̂2

D2D
−1
1 x1 +Wx̂2

])
(6.28)

Figure 6.4 depicts the structure of the receiver (Decoder). As shown in the configu-

ration of the receiver, the low pass filter F and the UIO in (6.18) play the main roles.

Due to the augmentation of filter F in (6.5) with the chaotic transmitter shown in

figure (6.3), the cascaded chaos-LPF system is seen as an unknown input system for

UIO in (6.18). Notice that the signal s(t) is the unknown. Then, the reduced order

UIO estimates x2 and using demodulation method given in (6.27), the message s(t)

is recovered.

Remarks: Recently in [10], a UIO filter was designed for a chaotic masking mod-

ulation scheme. In the sense that, in [10] there is no requirement to inject the mes-

sage signal into the chaos, it is similar to our approach. However, in that method,

the message signal either have to be differentiable (which is very restrictive) or if it
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Figure 6.5: Schematics of Chua’s circuit

is non-differentiable, the estimation of a signal and its derivative both are needed to

recover the original message. Interestingly, the approach presented here works for

non-differentiable message signals and there is no need to use any derivative. This

important feature is due to the novel structure of the reduced-order UIO in the new

coordinate.

6.6 Design Example

In this section, the numerical example is based on Chua’s circuit, which exhibits

a family of chaotic attractors and can be easily implemented in hardware [12]. As

shown in Fig 6.5, Chua’s circuit consists of a linear inductor L, a linear resistor

R, two linear capacitors C1 and C2 and a nonlinear resistor (the Chua’s diode) NR.

The state equations for Chua’s circuit are given by [12]
di
dt
= −L−1v2

dv2
dt

= C−1
2 (i−G(v2 − v1))

dv1
dt

= C−1
1 (G(v2 − v1)− iNR)

(6.29)

where v1, v2 and i are the voltage across C1, the voltage across C2 and the current

through L, respectively and G = R−1. The term iNR , the piece-wise linear v − i

characteristic of the Chuas diode, is given by

iNR = Gbv1 + 0.5(Ga −Gb)(|v1 + E| − |v1 − E|) (6.30)

where iNR is characterized by a slope equal to Ga in the inner region and Gb in the

Outer region and E is the breakpoint voltage of the Chuas diode. For the simulation
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results we have used the following change of variables ([12])

x̄1 =
v1
E
, x̄2 =

v2
E
, x̄3 =

i

GE
, α =

C2

C1

, β =
C2

LG2

a =
Ga

G
, b =

Gb

G
, t → t

RC2

which gives the following model in the form of system (6.1):

Ā =

 −α α 0
1 −1 1
0 −β 0

 , B̄Φ =

 −α
0
0

, C̄ =

[
1 0 0
0 1 0

]
where we assumed that the voltage across C1 and the voltage across C2 are mea-

sured and the nonlinear term Φ(x) corresponding to the Chua’s diode is given by

Φ(x̄) = bx̄1 + 0.5(a− b)(|x̄1 + E| − |x̄1 − E|).

We choose M =

[
1
0

]
which it can be shown that the triple (Ā,M, C̄) satisfies

rank condition (6.4). The filter matrices from (6.5) are chosen as Af = Bf = 20I2

and the Chua’s parameters are α = 8.3, β = 15.5811, a = −1.9, b = −0.68, E =

1. With regard to Lemma 6.1 and the computation method given in its proof, the

nonsingular change of coordinates T and S are

T =


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

 , S =

[
1 0
0 1

]

and consequently the augmented system in the new coordinates is described by

TAT−1 =

[
A1 A2

A3 A4

]
=


−20 0 0 20 0

0 −1.0000 1.0000 1.0000 0
0 −15.5811 0 0 0
0 8.3000 0 −8.3000 0
0 20 0 0 −20



TBΦ =

[
BΦ1

BΦ2

]
=


0
0
0

−8.3
0

 , TD =

[
D1

0

]
=


20
0
0
0
0


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SCT−1 =

[
C1 0
0 C4

]
=

[
1 0 0 0 0
0 0 0 0 1

]
where C1 and D1 are invertible (as proved in Lemma 6.1). Furthermore, from S, we

have S̄1 = [1 0] and we can directly measure x1 from y(t) by x1 = C−1
1 S̄1y(t) =

[1 0]y(t). Thus, only x2 needs to be estimated. It can be verified that the pair

(A4, C4) is observable as rank condition (6.4) holds (See Lemma 6.1). Letting

LΦ = 0.7, the MATLAB LMI Toolbox solver, after 6 iterations, gives the following

solution for LMI feasibility problem (6.21):

P2 =


7.1141 −0.7217 −0.2513 −1.0112

−0.7217 2.5053 0.0563 1.6732
−0.2513 0.0563 0.1814 −0.2547
−1.0112 1.6732 −0.2547 3.2849

 , K =


45.7942
−34.6047
3.7808

−36.8922

 .

Therefore

L =


6.2758

−12.4815
32.8685
−0.3929

 .

The simulation was carried out for 20 second with the channel noise n(t), assumed

to be noise with variance of 0.05, applied to the system from t = 0 and W =

[1 0.5]T . The information signal is chosen to bes(t) = 5 sin(0.5t). It can be

verified that the eigenvalues of A0
4 are {−15.9047,−6.3726 ± 8.5297i,−0.2572},

hence it is stable and the observer (6.18) is well-defined. State estimates of the

original system are obtained from Eq. (6.22). Fig. 6.6 shows the chaotic orbits of

Chua’s circuit. Actual states (dash line) and their estimates (solid line) are depicted

in Fig. 6.7. Fig. 6.8 shows the encrypted message signal yM1 passes through

the communication channel. Finally, Fig 6.9. is concerned with the recovery of

information signal s(t) using (6.26). The simulation validates the effectiveness of

the proposed UIO based chaotic communication scheme.

6.7 H∞-UIOs for Sensor Fault Reconstruction

In this section, we discuss the sensor fault estimation, detection and diagnosis prob-

lem by using the same designed UIO in this chapter. Compared to system (6.6), we

replace the message signal s(t) by sensor fault fs(t). However, in this case, due to
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disturbances ξ(t) in the system we integrate static H∞ filtering into the UIO design.

Consider the plant with the sensor fault and disturbance as follows

˙̄x = Āx̄+ B̄uu(t) + B̄ΦΦ(x̄, t) + ∆̄ξ(t)
ȳ = C̄x̄+Mfs(t)

(6.31)

where x̄ ∈ Rn̄ represents the system state, u ∈ Rmu the system input, ȳ ∈ Rp

the measured output. fs(t) : R+ → Rm denotes the sensor fault. The set of

(Ā, B̄u, B̄Φ, ∆̄, C̄,M) is known matrices of appropriate dimension. C̄ is a full row

rank matrix and M ∈ Rp×Rq is a full column rank matrix where q ≤ p. The signal

ξ(t) : R+ → Rq ∈ L2[0,∞) models the uncertainties and disturbances where ∆̄

is the corresponding distribution matrix. Φ(t) : Rn̄ ×R+ → Rr represents the

system nonlinearities which satisfies a Lipschitz-like condition (2.7) locally and

also the condition (6.4) holds. We again introduce the filter F with xf ∈ Rp as

F : ẋf = −Afxf +Bfuf (6.32)

where Af ∈ Rp×p is a stable filter matrix and Bf ∈ Rp×p invertible. We define

the new augmented state as x :=

[
x̄
xf

]
∈ Rn̄+p and let uf = ȳ. Therefore, the

augmented system of order n = n̄+ p is described by
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

ẋ(t) =

[
Ā 0

Bf C̄ −Af

]
︸ ︷︷ ︸

A

x+

[
B̄ϕ

0

]
︸ ︷︷ ︸

Bϕ

Φ(x, t) +

[
0

BfM

]
︸ ︷︷ ︸

B

fs(t)

+

[
B̄u

0

]
︸ ︷︷ ︸

Bu

u(t) +

[
∆̄
0

]
︸ ︷︷ ︸

∆

ξ(t)

y(t) =
[
0 Ip

]︸ ︷︷ ︸
C

x

(6.33)

Thus we can rewrite

ẋ = Ax+BΦΦ(x, t) +Buu(t) +Bfs(t) + ∆ξ(t)
y = Cx

(6.34)

Notice that (6.33)represents a system with an unknown input fs(t) so a H∞-UIO

driven by the signal xf can be designed. Using Lemma 6.1, we obtain the sub-

systems (6.15) and (6.16) we an additional disturbance terms ∆1ξ and ∆2ξ in the

state space dynamics. Once again Consider the proposed reduced-order UIO (6.18).
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Similar to the approach described for the recovery of the information signal, we can

directly state the following Theorem.

Theorem 6.2: Given the class of system (6.33) with associated assumptions, the

robust reduced-order robust UIO (6.18) with the prescribed disturbance attenua-

tion level
√
γ subject to ∥Hξz∥∞ ≤ √

γ exists if there is a solution for the following

LMI optimization problem:

min γ

subject to P2 > 0, K and P2A4 + A4
TP2 −KC4 − CT

4 K
T + L2

ΦI +HTH P2BΦ2 P2∆2

BΦ2
TP2 −I 0

∆2
TP2 0 −γI

 < 0

(6.35)

Once the optimization problem is solved the observer gain is L = P−1
2 K and the

original state and sensor fault estimates are respectively

x̂(t) = T−1
0

[
C−1

1 S̄1y − C−1
1 C12x̂2

B2B
−1
1 C−1

1 S̄1y +Mx̂2

]
, M = −B2B

−1
1 C−1

1 C12+In−m. (6.36)
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f̂s(t) = M+(ȳ(t)− C̃x̂) (6.37)

where C̃ = [C̄ 0p×p] and M+ = (MTM)−1MT .

It should be noted that the extension of using H∞ prescribed disturbance attenuation

level for the UIO is similar to the static H∞ filtering approach employed in Chapter

3. The method to reconstruct the sensor fault fS(t) is also similar to the recovery

of the message signal s(t). Hence, we skip the proof. For the purpose of further

elaboration, Figure 6.10 is included to depict the sensor fault reconstruction scheme

using the proposed H∞-UIO.

6.8 Summary

In this chapter, we addressed the problem of chaos secure communication by a new

master-slave scheme which does not require the injection of the message signal

through the observer gain into the chaotic system. A new reduced-order UIO was

proposed in new coordinates and necessary conditions for the exitance of the pro-

117



Figure 6.10: Sensor fault reconstruction scheme

posed chaos communication scheme was exploited. These necessary conditions are

satisfied by a proper choice of the chaotic masking matrix. The UIO stabilizing

gain was computed using an LMI feasibility problem in the new coordinate. It was

theoretically shown how the augmentation of a filter with the chaos can eliminate

the existing downside of chaotic masking schemes by removing the injection of

Ks(t) into the chaos. Hence, one can be sure that the chaos attractor will remain

chaotic regardless of the frequency and amplitude of the message signal and also

the amplification of the observer gain. As it was shown the combination of the LPF

and the new proposed UIO brings this important advantage to our design. A numer-

ical simulation based on Chua’s circuit was carried out to verify the effectiveness of

the proposed method. Using static H∞ filtering, we extend the use of the proposed

reduced-order UIO for sensor fault estimation.
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Chapter 7

Conclusions

This thesis explored the nonlinear observer-based approach for robust state estima-

tion and also fault estimation and diagnosis problem in a class of nonlinear control

systems, known as Lipschitz systems. The observer-based approach adopted in this

thesis falls in the category of sliding mode controllers. Mathematical modelling,

state estimation, H∞ filtering and singular system theory are employed for devel-

opment of new Robust Fault Reconstruction (RFR) schemes. The major advantages

of this approach is that it can be implemented online in software on any process

control only using the available information.

7.1 Summary of Contributions

The major contributions of this thesis are as follows:

1. A new robust SMO with H∞ performance methodology for uncertain Lipschitz

nonlinear systems with unknown inputs was introduced. Our work generalized the

known results of linear systems to Lipschitz nonlinear systems by using Lyapunov

stability theory and LMIs. We studied the necessary conditions to achieve insen-

sitivity of the proposed sliding mode observer to the unknown input (fault). The

objective was to derive a sufficient condition using LMI optimization for minimiz-

ing the H∞ gain between the estimation error and disturbances, whilst at the same

time the design method fulfilled that the solution satisfies the so-called structural

matching condition. The sliding motion affected only a part of the system through
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a novel reduced-order switching gain. A numerical example of MCK chaos demon-

strated the high performance of the results compared to a pure SMO.

2. An adaptive sliding mode observer based approach for nonlinear fault recon-

struction using LMIs was introduced. Importantly, the approach did not require

any change of coordinates and was quite straightforward due to introducing a new

parametrization of the Lyapunov matrix. The advantage of this parametrization

compared to a previously published result was also discussed. The upper bound

of the fault signal was allowed to be unknown since the variable structure gain

adaptively adjusts itself to maintain the ideal sliding motion on the defined sliding

surface. Hence, the adaptiveness of the proposed filtered enhanced the robustness of

the fault reconstruction scheme. The reconstruction signal approximated the fault

to some degree of accuracy depending on the size of the disturbances. Finally, a

simulation study showed the effectiveness of this approach.

3. It is often the case that both actuator fault and sensor fault may happen during the

course of the system’s operation. Hence, an estimator to estimate both of the faults

simultaneously wold be of great interest in many control applications. A new com-

bined sliding mode and descriptor filter for state and fault estimation in a class of

nonlinear systems was presented. The proposed observer performance for simulta-

neous estimation of sensor and actuator faults was studied. The approach utilizes a

sliding mode observer in a new generalized state space form. The conditions for the

stability of convergence are derived. Interestingly, distinguishable from its sliding

mode observer predecessors, it was studied that the proposed GSMO can estimate

a class of disturbances which are not matched. The technique is successfully im-

plemented on a faulty single link flexible joint robot system subject to simultaneous

actuator and sensor faults.

4. A new reduced order unknown input observer (UIO) was introduced. Applica-

tions of the UIO for a new chaotic communication and a novel sensor fault recon-

struction were discussed. First, we addressed the problem of chaos secure commu-
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nication by a new master-slave scheme which does not require the injection of the

message signal through the observer gain into the chaotic system. The UIO stabi-

lizing gain was computed using an LMI feasibility problem in the new coordinate.

It was theoretically shown how the augmentation of a filter with the chaos can elim-

inate the existing downside of chaotic masking schemes by removing the injection

of Ks(t) into the chaos. Hence, one can be sure that the chaos attractor will remain

chaotic regardless of the frequency and amplitude of the message signal and also

the amplification of the observer gain. Next, Using static H∞ filtering, we extended

the use of the proposed reduced-order UIO for sensor fault estimation of Lipschitz

systems.

7.2 Future Work

The following are suggested areas that could be pursued in future research.

• H∞-SMO design for networked control systems with channel time delay

and quantization error:

Networked systems have many advantageous over traditional systems, such

as efficiency in maintenance, practicality , energy consumption, installation,

cost and etc. From the estimation standpoint, since the channels between the

output of the system and the input of the filters (estimators) are not perfect,

the network system physically imposes some limitations such as channel time

delay and quantization error. The development of H∞-SMO for network

control systems with limited communication capacity is of great interest when

the networked system is prone to faults. The H∞-SMO brings insensitivity to

faults of the network and also robustness against disturbances. The network

faults can be reconstructed despite of the channel time delay and quantization

errors. However, little attention has been paid to the estimation problem of

faulty networked control systems and we believe the estimators designed in

the thesis have the potential to be extended for networked systems in future.

• SMOs for fault-tolerant output tracking controllers:
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Fault-Tolerant Control (FTC) is designed to preserve the control and stability

of a system in the event of a set of possible faults. Clearly, Fault Reconstruc-

tion and Estimation (FRE) scheme proposed in this thesis are very useful to

deal with faulty systems. The corrupted measured signals and actuator sig-

nals can be corrected by FRE before being used by the controller. Hence,

there is no need of control reconfiguration and a relatively simple and effec-

tive control method would still work by retaining its structure. Therefore, a

potential future work would be FRE based FTC systems. The proposed H∞-

SMO in Chapter 3 provides an excellent filter to be used in FTC schemes due

to its robustness to disturbances and insensitivity to faults. Furthermore, the

adaptive scheme studied in Chapter 4 is useful to handle FTC systems when

the fault is bounded with an unknown upper bound. The generalized SMO

proposed in Chapter 5 can deal with FTC systems where both actuators and

sensors are faulty and control reconfiguration is required for both of these

components.

• Sliding mode observer design for descriptor systems with application to

fault estimation and diagnosis:

Singular systems are very important since many real systems can be mathe-

matically modeled in singular state space form. It is not possible to model

some systems as a normal system. Therefore, estimation for singular systems

has long been an interesting problem. Consider a system which suffers from

faults and is singular as the following:

{
Eẋ(t) = Ax(t) +B(u(t) + f(t)) + ∆ξ(t)
y(t) = Cx(t)

(7.1)

where x ∈ Rn represents the system state, u ∈ Rm the control input, y ∈

Rp the measured system output and t ∈ R+. (A,B,C,E,∆) is the set of

real constant known matrices of appropriate dimensions. Function f(t) :

R+ → Rq denotes the fault (unknown input) that is bounded in the Euclidean

norm and E is singular

rank(E) = s < n
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If we employ sliding mode control to design an observer for this singular sys-

tem we face the following constraint Generalized Lyapunov Equation (GLE):

(A− LC)TP + P (A− LC) = −Q

ETP = P TE ≥ 0

BTP = FC

where Q = QT , Q > 0. The matrix L is the static observer gain. The sec-

ond matrix equation appears due to using the generalized Lyapunov stability

theory with the following Lyapunov function

V = eTP TEe

where e is the estimation error. The third matrix equation is the matching

condition for SMO design. An interesting and challenging future research

topic could be solving this problem using LMIs.
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