
How Brain-Like is an LSTM’s Representation of
Nonsensical Language Stimuli?

by

Maryam Hashemzadeh

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Maryam Hashemzadeh, 2021

Abstract

The representations generated by many models of language (word embed-

dings, recurrent neural networks and transformers) correlate to brain activ-

ity recorded while people listen. However, these decoding results are usually

based on the brain’s reaction to syntactically and semantically sound lan-

guage stimuli. In this study, we asked: how does an LSTM (long short term

memory) language model, trained (by and large) on semantically and syntac-

tically intact language, represent a language sample with degraded semantic

or syntactic information? Does the LSTM representation still resemble the

brain’s reaction? We found that, even for some kinds of nonsensical language,

there is a statistically significant relationship between the brain’s activity and

the representations of an LSTM. More exceptional, a character-based LSTM’s

representation of pseudoword sentences is significantly correlated to EEG col-

lected while people listened to those sentences - even though the pseudowords

were not in the LSTM training data. This indicates that, at least in some

instances, LSTMs and the human brain handle nonsensical data similarly.

ii

Preface

Parts of this thesis appeared as a publication at the Proceedings of the 2020

Conference on Empirical Methods in Natural Language, Findings (EMNLP-

2020 [13]).

iii

Acknowledgements

First and foremost, I would like to thank my supervisors, Alona and Martha,

for their strong and consistent support in all facets of life as a graduate stu-

dent. They were looking out for my best interests and, for that, I cannot thank

them enough. I feel very fortunate to have had both of them as my supervisors

throughout these years and, without a doubt, it has been one of the most im-

portant factors contributing to my enjoyment of my Master’s studies. I would

also like to thank Carrie Demmans Epp for being on my thesis committee.

Finally, thank you to all the members of the Amii and RLAI groups who are

my wonderful friends with their countless thought-provoking discussions.

iv

Contents

1 Introduction 1
1.1 Contribution . 3
1.2 Related Work . 3

2 Background Material 5
2.1 Long Short-Term Memory Neural Network 5
2.2 Neural Language Model . 6

2.2.1 Bag-Of-Words Model 8
2.3 Dutch language . 9
2.4 Electroencephalography . 9

3 Materials and Methods 11
3.1 Data description . 11
3.2 Decoding model . 13
3.3 Measuring model accuracy . 16

4 Results 19
4.1 Experimental Questions . 19
4.2 Probing tasks . 20
4.3 Test for semantic and/or syntactic information (Analysis 1) . . 23
4.4 Swap the g(S) conditions (Analysis 2) 26
4.5 Swap R at test time only (Analysis 3) 29
4.6 Measuring model accuracy by mean-squared-error 30

5 Discussion 33

6 Conclusion 36

References 38

v

List of Tables

4.1 Data description for each analysis. Sen: Sentence, Jab: Jab-
berwocky, WL: Word-list. Analysis 1: EEG & g(S) from the
same condition. Analysis 2: g(S) swapped between conditions.
Analysis 3: EEG swapped between conditions at test time only. 20

4.2 Description of the probing tasks. “En” shows the English datasets
and “Du” shows the Dutch datasets. The gray and light green
colours determine the tasks for the semantic and syntactic re-
spectively. 22

4.3 Probing task accuracies. Each row shows the accuracies of a
specific probing task described in Table 4.2. Columns corre-
spond to the LSTM representation: “Embedding”: Embedding
layer, “Conv”: concatenation of Convolutional layers, “LSTM1-
3 ”: an LSTM layers. “Tense/En” and “Tense/Du” denote the
English and Dutch probing task for Tense, respectively. 23

vi

List of Figures

2.1 Scheme of CBOW and Skip-gram [25]. As it shows, CBOW is
trained to predict the centred word using surrounding words.
In contrast, Skip-gram uses the centred word to predict the
surrounding words. 8

2.2 Electroencephalography from [28]. EEG is measuring by the
electrical activity using electrodes that are fixed on the scalp.
For each electrode, signals are amplified and can be shown in a
monitor for other applications. 10

3.1 Concatenation of EEG signals in the model. For a given word,
the average signals over all of the subjects are calculated sep-
arately at each electrode (channel). Then, the first 200 time
steps of each channel are detached from the rest time steps to
concatenate to the same time step of other channels. 13

3.2 Decoding model. Each stimulus sentence is fed to a pre-trained
language model to create a non-linear context-based represen-
tation. The hidden representations for a sentence (S) are ex-
tracted from each layer g(S). Our ridge regression model is
trained to use the EEG signal R to predict g(S). 14

3.3 2 vs. 2 classification test to assess the performance. It separates
held-out samples into two groups. At each time, it takes one
sample from each group and finds its prediction. Then, if the
sum of cosine similarity of the true and corresponding predicted
vectors of these two samples, light blue and dark blue arrow, is
greater than the sum of cosine similarity of the true vectors and
their mismatched predictions, pink and red arrow, we count one
point for the 2 vs. 2 test. Its accuracy is equal to the percentage
of the correct tests. Chance in this classifier is 50%. 17

4.1 Average accuracies for the semantic/syntactic probing tasks us-
ing LSTM representations from Dutch or English LSTM lan-
guage models. 21

4.2 Analysis 1 (Test for semantic and syntactic information): 2
vs. 2 accuracy with g(S)/EEG from the same condition. The
x-axis denotes LSTM representation (g(S)). Legend denotes
EEG/LSTM representations used for train/test: (EEG condi-
tion, LSTM condition). “Sen”: Sentence, “Jab”: Jabberwocky
, “WL”: Word-list. ?: above chance (p < 0.05, FDR corrected).
Dots show the performance for the word vectors from Fast-
Text [11]. 24

vii

4.3 Results from Analysis 2 and 3. Analysis 1 results appear as
dashed lines. The x-axis denotes LSTM representation (g(S)).
Legend denotes EEG/LSTM representations used for train/test:
(EEG condition, LSTM condition). “Sen”: Sentence, “Jab”:
Jabberwocky , “WL”: Word-list. ?: above chance (p < 0.05,
FDR corrected). 28

4.4 Analysis 1 (Test for semantic and syntactic information): MSE
for g(S)/EEG from the same condition. The x-axis denotes
LSTM representation (g(S)). Legend denotes EEG/LSTM rep-
resentations used for train/test: (EEG condition, LSTM condi-
tion). “Sen”: Sentence, “Jab”: Jabberwocky , “WL”: Word-list.
?: below chance (p < 0.05, FDR corrected). 31

4.5 MSE results from Analysis 2 and 3. Analysis 1 results appear as
dashed lines. The x-axis denotes LSTM representation (g(S)).
Legend denotes EEG/LSTM representations used for train/test:
(EEG condition, LSTM condition). “Sen”: Sentence, “Jab”:
Jabberwocky , “WL”: Word-list. ?: below chance (p < 0.05,
FDR corrected). 32

viii

Chapter 1

Introduction

The human brain has a unique capacity to integrate information from one

word to the next word and from one context to the next context. With the

help of contextual information, humans are able to integrate the next words

or sentences or even infer other people’s thoughts. This ability is due to

the capability of the semantic meaning representation [3], [6], [36]. To find

how representations of semantic meaning are neurally encoded, we can use

a mapping from computational models of language (e.g. word embeddings,

neural network hidden representations) to patterns of human brain activation.

Language encoding models are a strong tool to interpret language processing

in the human brain as they can capture high-level semantic meaning that

incorporates context.

When people listen to or read a language, brain imaging studies have shown

us that the brain’s activity correlates to LSTM (Long Short Term Memory)

state representations for the same text [16], [33]. In those studies (and others

like them) the stimuli used to test for this correlation was based on language

with no errors. This implies that during language processing, for within-sample

data (i.e. well-formed sentences), LSTMs and the human brain show similar

representational patterns 1.

But what happens when language is out-of-distribution (e.g. nonsensical 2

sentences or pseudo-words)? Can we expect that an LSTM will still compute

contextual states in a way that resembles how the human brain reacts? I.e. is

1Here we speak of decoding studies only.
2Nonsensical language is often used when measuring Event Related Potentials.

1

there a correlation between LSTM representations and neural activity when

the stimuli is not a predictable language sample? Answering these questions

could provide evidence that an LSTM is able to generalize to new data in a

human-like way, even when the new data is unlike anything it encountered

during training. Our answers could also help psycholinguists reason about

the efficacy of nonsensical sentences and pseudo-words as syntax-only stimuli

controls.

Here we use brain imaging data (Electroencephalography, EEG) collected

in three conditions, Sentence: well-formed grammatical sentences, Jabber-

wocky : pseudo-word sentences that preserved word order, morphosyntax, and

sentential prosody without lexical or compositional semantics, and Word-list :

the words of the Sentence condition in a pseudo-random order without sentence

prosody, syntax, or compositional meaning. We ran a character-level LSTM

model on the stimuli, and trained a decoding model to predict the LSTM’s in-

ternal representations from EEG signals. Using data from the Sentence condi-

tion, we corroborated previous results and showed that LSTM representations

are correlated with brain activity for within-distribution language. But, when

it came to nonsensical language stimuli, it was unclear if LSTM representations

would still correlate to brain activity. Our original hypothesis was that LSTM

representations for out-of-distribution language would no longer correlate to

brain activity. However, we found that our decoding model worked quite well

even when all content words of the stimuli were pseudo-words (Jabberwocky).

In the following, we define some terms which we use in this text repeatedly.

• Decoding: here is a mapping function between stimuli and word repre-

sentation vectors.

• Nonsensical language: a language that have little or no meaning; or make

little or no sense.

• Out-of-distribution language: an irregular language or a language with

errors or not well-formed sentences.

2

1.1 Contribution

Our results show that there are similarities between the way the brain and an

LSTM represent stimuli from both the Sentence (within-distribution) and Jab-

berwocky (out-of-distribution) conditions. More specifically, the contributions

of this work include:

• Our decoding models work well in both the Sentence and Jabberwocky

conditions, but not in the Word-list condition. This shows there is a

relationship between the semantic and/or syntactic information as rep-

resented by the brain and by LSTM representations for a regular and

nonsensical language.

• The syntactic signatures available in Sentence and Jabberwocky LSTM

representations are similar and can be predicted from either the Sentence

or Jabberwocky EEG. The results also present evidence for the lack of

semantic information in Jabberwocky LSTM representations.

• For some LSTM representations, the decoding model’s weight maps gen-

eralize between Jabberwocky and Sentence EEG data. The results imply

that the brain’s representation for the syntax in both the Sentence and

Jabberwocky conditions takes a similar form, at least with respect to the

syntactic information represented in earlier and middle layers.

• From our results, we can infer which LSTM layers encode semantic

and/or syntactic information. We confirm using syntactic and semantic

probing tasks. The probing tasks show different LSTM layers encode the

different amounts of semantic and syntactic information.

1.2 Related Work

The first example of mapping brain responses onto corpus-derived represen-

tations appeared in [26]. This study encoded word meaning into vectors of

word co-occurrence features. The authors showed that a trained linear regres-

sion model could predict fMRI activation in response to single concrete noun

3

stimuli. From there, decoding models were shown to work with dependency-

parse-based representations [27] and with concept-relation-features extracted

from topic models [30]. Anderson et al. [2] demonstrated that decoding models

can learn the pattern of the brain’s response to abstract concepts/nouns.

Some of the first examples of decoding language in context were from

[34] and [14]. The first models used a combination of (non-contextual)

corpus-derived, acoustically-derived and/or hand-coded representations. Sev-

eral groups then began to experiment with encoding models based on contex-

tual language representations, like those in recurrent neural network (RNN)

language models [16], [33], [35]. These models showed that vectors incorpo-

rating contextual information could be decoded from brain imaging data, and

contextual models actually outperformed non-contextual word vectors. We

confirmed those findings here.

Though there are fewer decoding models trained on EEG, there are a few

recent examples. Hale et al. [12] showed that the operations performed by an

RNN-grammar trained to parse sentences correlated to EEG collected while

people listened to a story. Schwartz et al. [32] found connections between bi-

LSTM representations and the ERPs (event related potentials) more classically

used to study language in the brain. Our work adds to the new body of work

showing that EEG can be a powerful data source in this space.

4

Chapter 2

Background Material

In this chapter, we review the background of this thesis. Firstly, we introduce

Language Modeling (LM) and Long Short-Term Memory (LSTM) neural net-

works which are used to find representations of stimuli in this research. Then,

we describe Dutch language and Electroencephalography (EEG), an electro-

physiological monitoring method to record the electrical activity of the brain

which respond to auditory stimuli in our study.

2.1 Long Short-TermMemory Neural Network

A recurrent neural network is a type of artificial neural network in which

previous outputs are used as inputs beside the current feed of data. It is well-

suited for sequential or time-series data such as natural language processing,

language translation, speech recognition, and image processing. So, its outputs

are influenced by prior sequences of data as they take information from both

prior and current inputs. If ht−1 is the previous hidden state, and xt is the

current input (e.g. the word at time t), then the current hidden state ht is:

ht = f(xt, ht−1) (2.1)

where f is usually a nonlinear function.

Long Short-Term Memory (LSTM) neural network is a type of recurrent

neural network that avoids vanishing gradient problem. It can keep track

of the long-term appendices in the input sequences beside allowing gradients

to flow unchanged by a forget gate. A usual LSTM unit is comprised of a

5

memory cell, an input gate, an output gate and a forget gate. The memory

cell rem denoted by ct remembers information over time and the three gates

control the flow of the information into and out of the cell. The forget gate

denoted by ft decides how much information throw away from the cell state. It

uses a sigmoid function to produce a number between 0 and 1 where 0 means

completely throw away and 1 represents completely keep this.

ft = σ(Wf × [xt, ht−1] + bf) (2.2)

where Wf and bt are the matrix weights and bias vectors which need to be

learned during training. xt is the input vector to the LSTM unit and ht1 is

the hidden state vector at time-step t− 1.

Then by the input gate it, it regulates how much new information is going

to store in the cell state. It consists of two parts. The first part is a sigmoid

function called ”input gate” on xt and ht1 :

it = σ(Wi × [xt, ht−1] + bi) (2.3)

where Wi and bi are the matrix weights and bias vector. The second part is a

tanh layer creating a new candidate value, c̃t that is added to the state.

c̃t = tanh(Wc × [xt, ht−1] + bc) (2.4)

After that, it and c̃t are combined to create an update to the state.

ct = ft � ct−1 + it � c̃t (2.5)

In the last step, again a sigmoid layer on xt and ht−1 creates the output

gate ot. Then tanh(ct) multiplies by the output gate to produce the hidden

state ht.

ot = σ(Wo.[xt, ht−1] + bo)ht = ot � tanh(ct) (2.6)

2.2 Neural Language Model

A statistical language model is providing a probability distribution over a se-

quence of words used in a text. A trained language model can predict the prob-

ability of occurrence word wt given preceding words, w1, w2, w3, ..., wt−1. Lan-

guage models can be applied on character level, n-gram level, sentence level,

6

or even paragraph level. In an n-gram model, the probability p(w1, w2, ..., wt)

is approximated by the chain rule:

p(w1, w2, ..., wt) = Πt
i=1p(wi|w1, ..., wi−1) ≈ Πt

i=1p(wi|wi−(n−1), ..., wi−1) (2.7)

where

p(wi|wi−(n−1), ..., wi−1) =
count(wi−(n−1), ..., wi−1, wi)

count(wi−(n−1), ..., wi−1)
(2.8)

Then, to train the language model, it wants to maximize equation 2.7 which

is equivalent to maximize:

log p(w1, w2, ..., wt) =
t∑

i=1

log p(wi|w1, ..., wi−1). (2.9)

Also, to evaluate a language model, we normalize it and take natural ex-

ponential to find the word perplexity:

exp

(
1

t

t∑
i=1

log p(wi|w1, ..., wi−1)

)
. (2.10)

A neural language model is a language model based on neural networks,

utilizing their ability of continuous representation to alleviate the impact of

the curse of dimensionality when the number of unique words is increasing in

a corpus. The neural networks can be feed-forward or recurrent. Usually, they

are trained to learn a probabilistic classifier, probability distribution over a

vocabulary, to predict the probability of the next words given some context,

p(wt|context).

To train the neural network, it typically does back-propagation of the gra-

dient of the loss function with respect to the network parameters through the

network. The context can be a fixed-size window of previous or future words

with an arbitrary length T .

When a recurrent neural network is used, then the gradient is accumulated

over timestep and back-propagate through time (BPTT). Then it encounters

problems such as exploding gradient and vanishing gradient. To avoid this

problem, usually, they truncate the gradients to T timestep and then called it

T -step PBTT.

7

Input Projection Output InputProjectionOutput

CBOW Skip-gram

Figure 2.1: Scheme of CBOW and Skip-gram [25]. As it shows, CBOW is
trained to predict the centred word using surrounding words. In contrast,
Skip-gram uses the centred word to predict the surrounding words.

2.2.1 Bag-Of-Words Model

Bag-Of-Words (BoW) Model is a simple word representation that disregards

grammar or word order while keeping multiplicity. It counts the occurrence

of words within a document and then can be used as a feature of the given

text. Continuous Bag of Words Model (CBOW) and Skip-gram are two types

of BoW models in which the word representations is learned by using neural

networks.

• Continuous Bag of Words Model (CBOW): In this model, the centre

word is predicted by its surrounding words. So, it has a context passing

to a neural network to predict the target word.

• Skip-gram Model: This model takes a target word and tries to predict

its neighbouring words. For defining a neighbouring word, a window size

as a hyper-parameter is considered.

8

2.3 Dutch language

In this research, the stimuli are in Dutch. Dutch is a West Germanic language

spoken by the population of the Netherlands and about 60% of the population

of Belgium. It is the third most widely spoken Germanic language and is

close to English and German. Dutch orthography uses the Latin alphabet. It

consists of 26 letters of the basic Latin alphabet where five letters are vowels. It

also has a shallow orthography meaning that phonemes are highly predictable

by seeing letters. This property helps the language model to have a good

presentation when it is training by text instead of phonemes in this research.

For the vocabulary, it is German origin and because of that, it is very

similar to other German languages. For grammar, it is simpler than German.

Stress in Dutch words usually happens on the first syllable. This language has

two genders, common and neuter, and two numbers, singular and plural.

2.4 Electroencephalography

Electroencephalography (EEG) is an electrophysiological recording method to

capture the macroscopic activity of the brain in the study of human language

processing. It has a scalp holding electrodes that comprise small metal discs

and thin wires. The electrodes can detect very small oscillations coming from

the brain electric potentials. However, a generated electric potential of an

individual neuron is very tiny to recorded by EEG. Then, EEG activity reflects

the summation of the synchronous activity of millions of neurons which have

similar spatial orientation.

Recording signals are transmitted to an EEG system which has amplifiers,

filters, and a computer monitor. EEG has a broad application in clinical

circumstances to detect abnormal changes in brain activity that is helpful for

diagnosing or treating brain disorders such as epilepsy, brain tumour, brain

dysfunction, stroke, sleep disorders and more disorders.

9

Figure 2.2: Electroencephalography from [28]. EEG is measuring by the elec-
trical activity using electrodes that are fixed on the scalp. For each electrode,
signals are amplified and can be shown in a monitor for other applications.

10

Chapter 3

Materials and Methods

In this chapter, we describe the dataset used in this study. Also, we present

our decoding model which learns the correlation between LSTM representation

and EEG signals. Finally, an evaluation method is proposed to evaluate the

performance of the decoding model.

3.1 Data description

Our data was originally collected to contrast the brain’s response to language

samples that vary the amount of semantic and syntactic information [17]. The

dataset consists of EEG recordings (64 channels, 500 Hz sampling rate) of 27

native Dutch speakers (9 males; mean age= 23). The participants listened

to a native Dutch speaker in three conditions: Sentence, Jabberwocky, and

Word-list. Each condition has 80 sentences, and all Sentence and Jabberwocky

stimuli sentences share the same grammatical structure.

The Sentence stimuli contain two coordinate clauses and a conjunction with

the structure [Adj N V N Conj Det Adj N V N] where N denotes Noun, V

is V erb, Adj is Adjective, Conj is Conjunction, and Det is DefiniteArticle.

This condition contains lexical semantics, compositional semantics, and syn-

tax. Word-list consists of the same ten words as Sentence but in a pseudo-

random order with infeasible syntactic structures (either [V V Adj Adj Det

Conj N N N N], or [N N N N Det Conj V V Adj Adj]). The Word-list

condition leaves orthography/phonology intact and contains lexical semantics,

but not compositional semantics or syntax. For Jabberwocky, words from the

11

Sentence condition are replaced with pseudo-words created with the Wuggy

generator [18]. Crucially, the Jabberwocky pseudo-words appear in the

same order as the corresponding words in the Sentence condition.

The Wuggy generator alters words in a way that obeys the phonotactic and

morphosyntactic constraints of a language, but eliminates semantic meaning.

The Jabberwocky condition contains syntax and morphosyntax, which is pre-

served by Wuggy.

Amongst psycholinguists and cognitive neuroscientists, it is widely ac-

cepted that Jabberwocky does not contain lexical or compositional semantics,

and a Jabberwocky condition is often used to control for semantics [8], [9],

[15]. Anecdotally, native Dutch speakers typically cannot guess the true word

when presented with the pseudo-word.

Since the original stimuli are in Dutch, we also brought them in both

Dutch as the original ones and English. Here are stimuli examples on the

three conditions:

• Sentence: Lange mannen bouwen huisjes en de lieve honden brengen

planken. (Tall men build houses and the sweet dogs bring boards.) This

example has the structure of [Adj N V N Conj Det Adj N V N].

• Jabberwocky : Lalve wanzen botren raasjes en de reeve rorden brargen

sponken. This one has the same structure as the structure in the Sen-

tence condition, [Adj N V N Conj Det Adj N V N], but real words are

replaced with pseudo-words instead.

• Word-list : planken mannen huisjes honden de en bouwen brengen lange

lieve (boards men houses dogs the and build bring tall sweet). This

example has the structure of [N N N N Det Conj V V Adj Adj] where

it serves the real words while breaks the grammatical structure.

In the Jabberwocky condition the determiners and conjunctions are not

pseudo-words. To fairly compare the conditions, we removed these words

from all three conditions during our analyses. Due to the nature of spoken

language, the time-duration each of word/pseudo-word differs. To account for

12

...

The first 200 time points

The first 200 time points

Average signal over subjects for the
second word obtained from channel 1.

Average signal over subjects for the
second word obtained from channel 64.

...

Concatenation of all channels

Figure 3.1: Concatenation of EEG signals in the model. For a given word,
the average signals over all of the subjects are calculated separately at each
electrode (channel). Then, the first 200 time steps of each channel are detached
from the rest time steps to concatenate to the same time step of other channels.

this, we considered the first 400 ms of EEG after word/pseudo-word onset.

Before we tested it for 200 ms and 600 ms and we found 400 ms time duration

works better for LSTMS.

To improve the EEG’s signal to noise ratio, we average the EEG recording

for a given sentence across all subjects. Though this reduces participant-

specific signal, we have found it to be the best way to decode from EEG

data. For this data, models trained on only one subject did not perform

above chance. For each word of each stimulus sentence S, we concatenated

the recording from every electrode into one vector Rt ∈ R1×D where D is the

total number of readings across all sensors (here D = 12800: 64 sensors × 200

time points). Fig 3.1 shows more details.

3.2 Decoding model

The aim of a decoding model is to find a mapping function f(Rt) → g(S1:t)

between an EEG recordingRt of the brain’s response to word wt and a language

13

Word-list:
planken mannen huisjes honden

de en bouwen brengen lange lieve

Jabberwocky:
lalve wanzen botren raasjes en de

reeve rorden brargen sponken

Sentence:
lange mannen bouwen huisjes en
de lieve honden brengen planken

The three conditions
and example stimuli (S)

Vector g(S) extracted from
layers of the network

Train Ridge
Regression Model

β R=g(S) Using trained β

Testing EEG data (R)

Character-level network (Kim et al. 2016)
(pre-trained)

Training EEG data (R)Audio

Text

Figure 3.2: Decoding model. Each stimulus sentence is fed to a pre-trained
language model to create a non-linear context-based representation. The hid-
den representations for a sentence (S) are extracted from each layer g(S). Our
ridge regression model is trained to use the EEG signal R to predict g(S).

model’s representation of stimulus S1:t (the words of a sentence up to and

including word wt). Our methodology closely followed [16]. We instantiate

our mapping function in two steps:

• g(S1:t) ∈ R1×P : a contextual representation of the current word, wt. In

our model, it is an LSTM’s P -dimensional representation for word wt,

conditioned on context w1, . . . wt−1. This representation is a hidden layer

from an LSTM language model.

• f(Rt): a regularized linear regression to map the EEG signal Rt to

g(S1:t), f(Rt) = Rtβ where we use data to train weights β.

Figure 3.2 shows a schematic of the decoding model.

1- Specifying LSTM representations (g(S)): The Jabberwocky stimuli

are made of pseudo-words that are out-of-vocabulary referring to vocabulary

contained words that are not part of the normal/usual vocabulary lexicon in a

natural language processing environment, and therefore will always be misrec-

ognized. So we needed a language model that can handle out-of-vocabulary

input. Character-level language models can be a good candidate since the

input is character instead of word and then it can accept the inputs which

14

are out-of-vocabulary. Character-level language model leverages sub-word in-

formation which outperforms morphologically rich languages like Germanic

languages including Dutch.

We used a state-of-the-art character-level LSTM language model proposed

by [19], but we added one more LSTM layer to have three LSTM layers based

on the previous decoding work [16]. This model is able to encode rich semantic

and orthographic features from characters only. The LSTM operates on the

characters of incoming words (so it can handle pseudo-words), but it produces

predictions at the word level. Each input character has its own embedding,

which is concatenated and fed to convolutional layers. The convolved values

are passed to a highway network, whose output is fed through three stacked

LSTM layers before predicting the next word.

In the decoding analyses that follow, the g(S) vectors we analyze are (1)

the concatenation of the character embeddings called Embedding layer, (2) the

concatenation of the Convolutional layers called Conv, and ({3-5}) the three

LSTM layers called LSTM1-3. We will use the term LSTM to refer to the

full character-based model, LSTM representation to refer to any of the g(S)

vectors types, and LSTM layer or LSTM1-3 to refer specifically to the LSTM

layers within the larger LSTM model.

We trained the LSTM on one million sentences from Dutch Wikipedia.

We set the number of epochs to 40, batch size is 50, and sequence length is

20. We used a stochastic gradient descent optimizer with sparse categorical

cross-entropy loss. The initial learning rate is 0.8 with inverse time decay rate

0.5.

For Dutch Wikipedia, the average test perplexity of our model is 108.12.

When the inputs are the Sentence stimuli, the average perplexity is higher:

317.91. This is likely because the coordinate clauses within each stimulus are

only 4 words long, which reduces the effective context. When the inputs are

the Jabberwocky pseudo-words and the outputs are the corresponding Sen-

tence next word, the perplexity is 325.12. These Sentence and Jabberwocky

perplexities are not significantly different (p = 0.967). We calculated the aver-

age perplexity on the Word-list stimuli to be 1008.23, which indicates that (as

15

expected) the network cannot predict the next words in the Word-list stim-

uli. This also shows that while the Jabberwocky and Sentence perplexities

are higher than on Wikipedia, they are much lower than for stimuli with no

contextual information.

For comparison, we also experimented with non-contextual word embed-

dings from [11]. This 300-dimensional model is pre-trained on Dutch Wikipedia

using Continuous Bag of Words (CBOW) with position-weights.

2- Regularized linear regression (f(R)): We used ridge regression to

test if the EEG data correlates with the word/pseudo-word representations.

The regression function f(Rt) is a linear transformation of Rt to predict the

P -dimensional g(S1:t): f(Rt) = Rtβ where β ∈ RD×P .

3.3 Measuring model accuracy

We used Monte Carlo (MC) cross-validation to evaluate our decoding models.

MC cross-validation affords a more stable estimate of model accuracy, and

allows for statistically-sound comparisons of model performance. During each

of our 500 MC samples, we swept the regression regularization parameter

among the values in range [0.1, 200] using 5-fold cross-validation on the training

data only.

We use a 2 vs. 2 classification test to assess the performance of the learned

model [10], [26]. During each cross-validation trial we randomly create groups

of two from the held-out samples. Using a model fit to the training data, we

produce predicted representations for the held-out samples. For simplicity, let

yit = g(Si
1:t) be the contextual representation for word wt of sentence i. Then,

for each group of 2 test samples (Si
1:t1, S

j
1:t2), we perform a 2 vs. 2 test using

the true representations (y i
t1, y

j
t2) and predicted representations (ŷ i

t1, ŷ
j

t2). The

2 vs. 2 test compares the sum of cosine similarity for correctly matched the

true and predicted vectors:

cos(yit1, ŷ
i

t1) + cos(y j
t2 , ŷ

j
t2), (3.1)

to the sum of cosine similarity of the mismatched vectors:

16

True Predicted

+ > +
?

Cosine similarity of two vectors

Figure 3.3: 2 vs. 2 classification test to assess the performance. It separates
held-out samples into two groups. At each time, it takes one sample from each
group and finds its prediction. Then, if the sum of cosine similarity of the
true and corresponding predicted vectors of these two samples, light blue and
dark blue arrow, is greater than the sum of cosine similarity of the true vectors
and their mismatched predictions, pink and red arrow, we count one point for
the 2 vs. 2 test. Its accuracy is equal to the percentage of the correct tests.
Chance in this classifier is 50%.

cos(y i
t1, ŷ

j
t2) + cos(y j

t2 , ŷ
i

t1). (3.2)

If Eq 3.1 is greater than Eq 3.2, the 2 vs. 2 test passes. 2 vs. 2 accuracy is

the percentage of correct 2 vs. 2 tests, and chance 2 vs. 2 accuracy is 0.5 (see

Fig 3.3). In addition to 2 vs. 2 accuracy, we also report mean-squared-error of

the learned model to see the other evaluation methods.

To test for statistical significance, we used permutation tests. The LSTM

representations for the stimuli were randomly shuffled such that the true rep-

resentations g(St) were no longer correctly matched to the EEG data. We then

trained and tested our decoding models as described above using more than

1000 (> 1000) random permutations. These results represent the expected dis-

tribution of 2 vs. 2 accuracy when there is no relationship between the EEG

data and the LSTM representations. From that (null) distribution we can com-

pute p-values for our observed accuracy on the un-permuted representations.

We correct for multiple comparisons using the Benjamini-Hochberg-Yekutieli

False Discovery Rate (FDR) procedure [4] using α = 0.05.

17

For our models to perform above chance, there must be correlates of par-

ticular aspects of language (such as semantics or syntax) present in the brain

activation data R, and in the corresponding contextual representation (g(S)).

Furthermore, our decoding model assumes a linear relationship between R and

g(S). If our models do not perform above chance, any of the above conditions

may be violated; our analyses are not designed to differentiate between the

failure cases.

18

Chapter 4

Results

In this chapter, we are interested in comparing the representations generated

by an LSTM to that of the human brain, in response to both within- and

out-of-distribution language. To do so, we developed different analyses with

respect to the conditions and semantic and/or syntactic information.

4.1 Experimental Questions

Our Sentence stimuli, which represent within-distribution language, contain

semantic and syntactic information. We used two kinds of out-of-distribution

stimuli: Jabberwocky, which was designed to have syntactic information only,

and Word-list, which has only semantic information. We attempted to learn a

mapping from EEG to LSTM representations (to test if the LSTM and brain

handle the stimuli similarly). To begin, we examined the difference in the

semantic and syntactic information encoded by each of the LSTM representa-

tions. Then, we developed analyses to test for a similarity in the representation

of semantic and syntactic information across the experimental conditions. We

investigated using the following questions:

1. Is there a difference in the semantic/syntactic information captured by

the LSTM representations? (Probing tasks)

2. Can we learn a mapping from the EEG data to the LSTM representa-

tions in the Sentences, Jabberwocky, or Word-list conditions? Is there

a difference in performance across the different LSTM representations?

(Analysis 1: test for semantic and/or syntactic information)

19

Train Train Test Test
Analysis Case EEG g(S) EEG g(S)

1 Sen Sen Sen Sen
2 Jab Jab Jab Jab1
3 WL WL WL WL

1 Sen Jab Sen Jab
2

2 Jab Sen Jab Sen

1 Sen Sen Jab Sen
3

2 Jab Jab Sen Jab

Table 4.1: Data description for each analysis. Sen: Sentence, Jab: Jabber-
wocky, WL: Word-list. Analysis 1: EEG & g(S) from the same condition.
Analysis 2: g(S) swapped between conditions. Analysis 3: EEG swapped
between conditions at test time only.

3. If there is syntactic information present in the Sentences and Jabber-

wocky LSTM representations, is it exchangeable? (Analysis 2: swap the

g(S) conditions)

4. Do the actual patterns learned by the decoder generalize to EEG from

the other condition? (Analysis 3: swap R at test time only)

The EEG analyses are summarized in Table 4.1.

4.2 Probing tasks

Probing tasks are used to ask what kind of linguistic information a neural lan-

guage model is able to capture. Answering this question is not trivial as neural

language models have usually multiple layers with non-linear transformations.

Some benchmarks and downstream tasks are designed in a way to isolate some

specific linguistic phenomena in order to measure that linguistic information

encoded in a learned representation. If a probing classifier performs well on

a probing task, it comes out that the learned representation encoded the lin-

guistic information which the probing task has. Probing tasks also have been

referred to as diagnostic classifiers, auxiliary classifiers or decoding.

In language processing, previous works have found that LSTM layers en-

code differing amounts of information about the semantic meaning and syntac-

tic structure [24], [31]. To investigate the behaviour of our LSTM and find how

20

English Syntax
Dutch Syntax

English Semantics
Dutch Semantics

40

50

60

70

80
Ac

cu
ra

ci
es

40

45

40

46

50

56

51
55

67

73

63
6668

79

70
72

58

63 63 62

Embedding
Conv

LSTM1
LSTM2

LSTM3

Figure 4.1: Average accuracies for the semantic/syntactic probing tasks using
LSTM representations from Dutch or English LSTM language models.

much they capture different amounts of linguistic information, we used several

probing task benchmarks. Because there are more available benchmarks for

English, we used them besides a few available benchmarks for Dutch.

The English semantic and syntactic probing tasks are from [5], and the

Dutch from [7]. A description of each task is given in Table 4.2. The tasks are

from two categories, semantic and syntactic. For semantic, it includes Tense

(present and past), Subject number, Object number, and Coordinate inversion

(intact and modified). In Coordinate inversion, the dataset has sentences

comprising of two coordinate clauses. In 50% of the sentences, the order of

the clauses is inverted. The task is a binary task to indicate whether a sentence

is inverted or not. For syntactic, the tasks are Bigram shift, Tree depth, Top

constituent sequence, Number (singularity and popularity), Part of speech.

For the English benchmarks, we trained our LSTM architecture using En-

glish Penn Treebank (PTB) [21], to have the learned representation in English

21

Table 4.2: Description of the probing tasks. “En” shows the English datasets
and “Du” shows the Dutch datasets. The gray and light green colours deter-
mine the tasks for the semantic and syntactic respectively.

Name Description
Tense (En/Du) Tense of the main-clause verb (present/ past)
Subject number (EN) Number of the subjects of the main clause
Object number (EN) Number of the direct objects of the main clause
Coordination inversion (EN) Indicate if a sentence is intact or modified
Bigram shift (EN) Indicate having legal word orders
Tree depth (EN) Depth of the hierarchical structure of sentences
Top constituent (EN) Indicate top constituent sequence of sentences
Number (Du) Indicate singularity and plurality of N/Adj/V
Part of Speech (Du) Indicate the part of speech of a specific word

in addition to Dutch. We also checked the probing task results for consistency

against the Dutch results. For the Dutch benchmarks, the network is trained

on Dutch Wikipedia.

For each probing task, we trained a multilayer perceptron (MLP) classifier

with 2 hidden layers of 100 units. For the MLP input, we first find the learned

representation vectors of each word for all of the layers in the LSTM network.

Then, the average of these vectors for a sentence in a given probing task is

calculated and it is passed to the MLP. The output is the predicted class of

the sentence (e.g. past tense verb). Note that the sentences here are not from

our stimuli, but rather from the probing tasks themselves.

The accuracy for each task appears in Table 4.3. To summarize, we show

the average accuracies for the English and Dutch probing tasks in Fig. 4.1.

We were reassured to see the performance of the English and Dutch LSTMs

show similar patterns. Both the Embedding and Conv layers perform poorly

on the semantic and syntactic tasks. We see the strongest evidence for syntax

in LSTM1 and LSTM2, and the strongest evidence for semantics in LSTM2.

22

Table 4.3: Probing task accuracies. Each row shows the accuracies of a specific
probing task described in Table 4.2. Columns correspond to the LSTM repre-
sentation: “Embedding”: Embedding layer, “Conv”: concatenation of Convo-
lutional layers, “LSTM1-3 ”: an LSTM layers. “Tense/En” and “Tense/Du”
denote the English and Dutch probing task for Tense, respectively.

Layers # Embedding Conv LSTM1 LSTM2 LSTM3
Tense/En 43.2 53.2 63.2 70.7 63.9
Tense/Du 46.4 55.1 66.7 72.7 62.7
Subject number 38.8 53.5 65.5 72.1 64.3
Object number 39.5 52.1 66.8 71.7 65.8
Coord. Inv. 40.5 46.6 58.7 66.1 61.3
Bigram shift 43.1 53.1 70.8 69.4 58
Tree depth 39.3 45.6 56.3 58.6 54.3
Top constituent 38.5 53.8 75.5 76.1 64.1
Number 52.3 58.6 78.2 81.9 67.3
Part of Speech 39.6 53.7 69.8 76.1 60.3

4.3 Test for semantic and/or syntactic infor-

mation (Analysis 1)

To test for the correlation of semantic and/or syntactic information between

the EEG and LSTM representations, we measured the accuracy of a decoding

model trained with data from the same condition. This is Analysis 1 from

Table 4.1 where EEG and g(S) are coming from the same conditions in both

training and test. Lines in Fig. 4.2 show the results for this experiment.

Based on the probing results, for the Sentence stimuli we expected to see

the highest performance for LSTM2 (contains semantic and syntactic infor-

mation), and somewhat lower performance for LSTM1 (strong syntax perfor-

mance, but lower semantics). For the Jabberwocky condition, we expected to

see the strongest performance for the syntactically rich LSTM1 and LSTM2.

For the Word-list condition, we were unsure if the contextual representations

would work at all, given that the random ordering of words removes the sen-

tence’s context.

In the Sentences condition, the accuracy is statistically above chance for

LSTM layers 1-3 (0.581, 0.600, and 0.569 respectively, p < 0.05, FDR cor-

23

Figure 4.2: Analysis 1 (Test for semantic and syntactic information): 2 vs.
2 accuracy with g(S)/EEG from the same condition. The x-axis denotes
LSTM representation (g(S)). Legend denotes EEG/LSTM representations
used for train/test: (EEG condition, LSTM condition). “Sen”: Sentence,
“Jab”: Jabberwocky , “WL”: Word-list. ?: above chance (p < 0.05, FDR
corrected). Dots show the performance for the word vectors from FastText [11].

rected). This matched our predictions based on the probing tasks and shows

that LSTM3 has sufficient syntactic/semantic information for the decoding

task. In the Jabberwocky condition, only the accuracies of the LSTM1 and

LSTM2 are statistically above chance with (0.565 and 0.573 respectively, p <

0.05, FDR corrected), which again matched our predictions based on the prob-

ing tasks. The Sentence condition conveys both semantic and syntactic infor-

mation, and so the decoding model produces higher accuracy than the Jabber-

wocky condition, which lacks semantics. For both Jabberwocky and Sentence

conditions, LSTM2 shows accuracy higher than LSTM1 and LSTM3, which

is consistent with previous decoding work showing that middle LSTM layers

outperformed early and late layers [16], [33].

Previous work has found that LSTM layers carry information about both

the semantic meaning and syntactic structure [24], [31]. The EEG signals

24

from the Sentence condition are in response to regular sentences, and so have

both semantic and syntactic information. Because both information types are

present, the Sentence condition produces higher accuracy than Jabberwocky

condition. However Jabberwocky EEG does carry information, presumably

about the syntactic structure. The Jabberwocky stimuli maintained prosodic

rhythm, which supplies some hints as to e.g. part of speech. Our results show

Jabberwocky signals can still be used to predict the LSTM layers, and so some

of the information available in the EEG data correlates to what the LSTM is

encoding in its state vectors.

This finding is consistent with the theory that the Sentence condition

EEG/LSTM vectors contain both semantic and syntactic information, whereas

the Jabberwocky condition EEG/LSTM vectors contain only syntactic infor-

mation (thus there is less signal to be leveraged in the Jabberwocky stimuli,

and lower 2 vs. 2 accuracy as a result). The Jabberwocky stimuli were carefully

controlled to have a prosodic structure similar to the Sentence stimuli, and

so it is reasonable to expect some syntactic signature to appear in the cor-

responding EEG. We also note that the perplexity of the trained LSTM run

on the Jabberwocky stimuli to predict the next real word in the corresponding

Sentence stimuli (i.e. pseudo-words as input, true words as output) produced

perplexity very close to the same LSTM run on the Sentence stimuli (i.e. true

words as input and output). This implies that the pseudo-words retain some

correlates of word form, enabling the LSTM to produce somewhat reasonable

next-word predictions.

When the decoding model is trained on data from the Word-list condition,

no representation performs significantly different from chance (p > 0.05, FDR

corrected). The Word-list condition is a random ordering of words, so the

corresponding LSTM cannot leverage any contextual information. As partic-

ipants listened to the stimuli in the Word-list condition they also could not

predict upcoming words, as the stimuli lacked syntactic structure and carry

only the lexical-semantic information from the words out of context. Thus, it

is not surprising that the decoding accuracy for this condition is close to ran-

dom. Because of this poor performance, Analyses 2 and 3 do not consider the

25

Word-list condition. The accuracies for the Embedding and Conv layers are

not significantly above chance for any condition (p > 0.05, FDR corrected).

To compare the results with non-contextual word embeddings, we also

trained our decoding models with CBOW representations from FastText [11].

Word-list does not have context nor grammar structure, and so CBOW vectors—

which do not use context—should perform better than LSTM vectors, which

rely on context. We found the 2 vs. 2 accuracy to be 0.56 for the Sentence

condition, and 0.535 for the Word-list condition, which are above chance

(p < 0.05, FDR corrected). They are shown by dot on the left side of Fig 4.2.

Since the Jabberwocky stimuli are pseudo-words, we cannot test the 2 vs. 2

accuracy using this word-level model.

In this experiment, Sentence and Word-list word vectors are the same.

As we expected, in the Sentence condition, it performs worse than LSTM1-3

which is due to the non-contextual representation of CBOW. For Word-list ,

since the word vectors remain intact; then, it could work better versus LSTM

representations. The results for Word-list are statistically lower than Sentence

with a statistically significant p-value equal to 1.148e − 05 (p < 0.05, FDR

corrected). That is because of Word-list EEG signals which are noisier. This

result lets us conclude when we have stimuli with lexical-semantic meaning

without grammar structure, word vectors that are non-contextual have higher

performance.

4.4 Swap the g(S) conditions (Analysis 2)

Analysis 1 showed that some LSTM representations could be decoded in the

Sentence and Jabberwocky conditions. This tells us there is a relationship be-

tween the information in some LSTM representations and the corresponding

EEG data. But, the syntactic signatures that contribute to that relation-

ship could be condition-specific. That is, the syntactic EEG signals driven

by Jabberwocky could be fundamentally different from those in the Sentence

condition.

To test if the syntactic signatures in the Sentence and Jabberwocky condi-

26

tions are exchangeable (i.e. similar in some way), we examined the accuracy

of the decoding model in two cases: 1) using the EEG signals from the Sen-

tence condition to predict the g(S) vectors from the Jabberwocky stimuli, and

2) using the EEG signals from the Jabberwocky condition to predict the g(S)

vectors from the Sentences stimuli (see Table 4.1, Analysis 2). Because the

Jabberwocky LSTM representations do not contain semantic information, this

analysis will also tell us the degree to which the Sentences EEG/LSTM results

in Analysis 1 leveraged semantic information. Because it is so central to this

analysis, we again note that the Jabberwocky stimuli are composed of

pseudo-words derived from the Sentence stimuli, and the word or-

der is maintained. That is, the first word of sentence 1 in the Jabberwocky

condition is a pseudo-word transformation of the first word from sentence 1

of the Sentence condition. Thus, we can interchange the corresponding repre-

sentational vectors.

In Fig. 4.4 we see that the EEG signals from the Sentence condition

can be used to predict the Jabberwocky LSTM representations (case 1). The

accuracies for LSTM1-3 are 0.573, 0.578, and 0.560 which are all above chance

(p < 0.05, FDR corrected). For the most part, the accuracies for case 1 are

lower than the results from case 1 in Analysis 1 (EEG/LSTM representations

from the Sentence condition), and we find there is a significant difference in the

performance of LSTM2 (p = 0.0006). This is consistent with the hypothesis

that Jabberwocky LSTM representations contain only syntactic information.

Interestingly, the 2 vs. 2 accuracy when using Sentence EEG and Jabberwocky

LSTM representations is higher than Analysis 1, where Jabberwocky EEG was

paired with Jabberwocky LSTM representations. This is evidence that the

syntactic information encoded in the Sentence EEG signals may be less noisy.

In case 2, when we use the Jabberwocky EEG to predict the Sentence

LSTM representations, only the first LSTM layer shows above chance accuracy

(0.568, p < 0.05, FDR corrected). This implies that the EEG signals from

the Jabberwocky condition are not significantly correlated with the syntactic

information in LSTM2 and LSTM3 vectors derived from Sentence stimuli.

However, LSTM1 seems to encode syntactic information that is exchangeable.

27

Embedding Conv LSTM1 LSTM2 LSTM3
0.50

0.52

0.54

0.56

0.58

0.60

2
vs

. 2
 a

cc
ur

ac
y

Chance

Train:(Sen, Jab) Test:(Sen, Jab)
Train:(Jab, Sen) Test:(Jab, Sen)
Train:(Sen, Sen) Test:(Sen, Sen)
Train:(Jab, Jab) Test:(Jab, Jab)

Analysis 2 (Swap g(S) vectors): Solid lines show the 2 vs. 2 accuracy of the
decoding model that uses the Sentences EEG signals to predict the g(S)

vectors from the Jabberwocky stimuli, and vice versa.

Embedding Conv LSTM1 LSTM2 LSTM3
0.50

0.52

0.54

0.56

0.58

0.60

2
vs

. 2
 a

cc
ur

ac
y

Chance

Train:(Sen, Sen) Test:(Jab, Sen)
Train:(Jab, Jab) Test:(Sen, Jab)
Train:(Sen, Sen) Test:(Sen, Sen)
Train:(Jab, Jab) Test:(Jab, Jab)

(Swap R at test time): Solid lines show the 2 vs. 2 accuracy of the decoding
model trained with EEG data and LSTM representations from the same

condition, but tested with EEG data from the other condition.

Figure 4.3: Results from Analysis 2 and 3. Analysis 1 results appear as
dashed lines. The x-axis denotes LSTM representation (g(S)). Legend denotes
EEG/LSTM representations used for train/test: (EEG condition, LSTM con-
dition). “Sen”: Sentence, “Jab”: Jabberwocky , “WL”: Word-list. ?: above
chance (p < 0.05, FDR corrected).

28

Though we did not explicitly test the correlation of the LSTM vectors for

the Sentence and Jabberwocky conditions, Analysis 2 provides evidence that

the two may encode correlated syntactic information. In addition, recall that

the LSTM fed Jabberwocky can predict the next word of the corresponding

Sentence stimuli with perplexity close to that of an LSTM fed Sentence stimuli.

That predictability is another piece of evidence that the representations share

information that could be leveraged in across the two decoding tasks.

4.5 Swap R at test time only (Analysis 3)

This analysis tests if a trained decoding model can generalize to EEG data

from the other condition. For example, can a model trained with EEG signals

and LSTM representations both from the Sentence condition still predict the

Sentence vectors when tested on EEG from the Jabberwocky condition? This

is Analysis 3 in Table 4.1. If the pattern leveraged to predict LSTM represen-

tations is similar across the two conditions, the 2 vs. 2 accuracy will remain

above chance.

In Fig. 4.4, for case 1 (train on Sentence EEG, test on Jabberwocky EEG),

the accuracies of the LSTM1 (0.571) and LSTM2 (0.553) are statistically above

chance (p < 0.05, FDR corrected). Thus, the model trained using Sentence

EEG can predict Sentence vectors from the corresponding Jabberwocky EEG.

This implies that the brain’s representation for the syntax in both the Sen-

tence and Jabberwocky conditions takes a similar form, at least with respect

to the syntactic information represented in LSTM1 and LSTM2. However,

the performance of LSTM2 here is significantly lower than the performance of

LSTM2 in case 1 of Analyses 1 and 2 (p = 0.0001, p = 0.0005 respectively).

In fact, the performance for LSTM2 has dropped by a very large margin com-

pared to Analysis 1, presumably because the semantic information leveraged

in Analysis 1 is not available in the Jabberwocky EEG.

For case 2, (trained on Jabberwocky EEG/LSTM representations, but tested

on Sentence EEG), only LSTM1 can be predicted with above chance 2 vs. 2

accuracy (0.560 with p = 0.001). So, as we saw in case 1, the LSTM1 model

29

does generalize to EEG from the other condition. But, the same cannot be

said for LSTM2, which is not significantly above chance in this case. That

LSTM2 generalizes in one direction (case 1) but not the other (case 2) implies

that the Jabberwocky EEG data is noisier, leading to a less robust model. So

the pattern learned to predict the syntactic information in the Jabberwocky

LSTM1 representations does generalize, but the same cannot be said about

LSTM2.

4.6 Measuring model accuracy by mean-squared-

error

In addition to 2 vs. 2 accuracy, to see other validation methods, we also used

mean-squared-error (MSE) to assess the performance of the decoding model.

Here, the squared error is the difference between the predicted representations

and the true representations. Figs. 4.4 and 4.5 show the results of MSE for

analyses 1-3.

30

Embedding Conv LSTM1 LSTM2 LSTM3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

Train:(Sen, Sen) Test:(Sen, Sen)
Train:(Jab, Jab) Test:(Jab, Jab)
Train:(WL, WL) Test:(WL, WL)

Figure 4.4: Analysis 1 (Test for semantic and syntactic information): MSE for
g(S)/EEG from the same condition. The x-axis denotes LSTM representation
(g(S)). Legend denotes EEG/LSTM representations used for train/test: (EEG
condition, LSTM condition). “Sen”: Sentence, “Jab”: Jabberwocky , “WL”:
Word-list. ?: below chance (p < 0.05, FDR corrected).

31

Embedding Conv LSTM1 LSTM2 LSTM3
1.0

1.5

2.0

2.5

3.0

M
SE

Train:(Sen, Jab) Test:(Sen, Jab)
Train:(Jab, Sen) Test:(Jab, Sen)
Train:(Sen, Sen) Test:(Sen, Sen)
Train:(Jab, Jab) Test:(Jab, Jab)

MSE results from Analysis 2 (Swap g(S) vectors): Solid lines show the MSE
of the decoding model that uses the Sentences EEG signals to predict the

g(S) vectors from the Jabberwocky stimuli, and vice versa.

Embedding Conv LSTM1 LSTM2 LSTM3
1.0

1.5

2.0

2.5

3.0

M
SE

Train:(Sen, Sen) Test:(Jab, Sen)
Train:(Jab, Jab) Test:(Sen, Jab)
Train:(Sen, Sen) Test:(Sen, Sen)
Train:(Jab, Jab) Test:(Jab, Jab)

MSE results from Analysis 3 (Swap R at test time): Solid lines show the
MSE of the decoding model trained with EEG data and LSTM

representations from the same condition, but tested with EEG data from the
other condition.

Figure 4.5: MSE results from Analysis 2 and 3. Analysis 1 results appear as
dashed lines. The x-axis denotes LSTM representation (g(S)). Legend denotes
EEG/LSTM representations used for train/test: (EEG condition, LSTM con-
dition). “Sen”: Sentence, “Jab”: Jabberwocky , “WL”: Word-list. ?: below
chance (p < 0.05, FDR corrected).

32

Chapter 5

Discussion

Considering the results as a whole, several points become clear. There is a

relationship between the semantic and/or syntactic information as represented

by the brain and by LSTM representations, at least for the Sentence and

Jabberwocky conditions. The probing results are quite consistent with the

results of Analyses 1-3: LSTM1 has a strong signal for syntax, LSTM2 has

syntax and semantics, and LSTM3 has some syntax and/or semantic signal,

but the signal is weaker than for LSTM1-2.

LSTM1 shows only minor changes in performance in Analysis 2 and 3. So

the syntactic information encoded in this layer is fairly consistent for stimuli

from both the Sentence and Jabberwocky conditions, and it correlates well to

either EEG data source. There is likely not much semantic information to

leverage here, as the performance of models trained on Sentence EEG change

by only a small amount in Analysis 2 and 3.

In Analysis 2 we saw similar drops in LSTM2 performance for both Sen-

tence and Jabberwocky conditions. The drop in performance using the Sen-

tence EEG could be attributed to the lack of semantic information in the

Jabberwocky LSTM representations. However, we see a similar size drop in

performance for the Jabberwocky condition, which implies that there is a mis-

match even in the syntactic information available in LSTM2 for the two con-

ditions. In Analysis 3, when we swap the test data, the pattern learned to

predict LSTM2 in the Sentence condition (leveraging semantics and syntax)

is not as effective when tested on Jabberwocky data.

33

The performance of LSTM3 is harder to explain, possibly because it has

weaker semantic/syntactic signal (as evidenced by the probing tasks). There

is a small performance hit when training on Sentence EEG data in Analysis

2, but a very large drop in Analysis 3. This pattern could result if LSTM3’s

representations of syntax are similar for Sentence and Jabberwocky stimuli,

but the brain showed differing representations for the syntactic information in

the two conditions. Then, it is possible that only the Sentence EEG would

correlate to the syntactic information in LSTM3.

We wondered if there could be another explanation for our ability to de-

code in the Jabberwocky condition. One possibility is that the EEG and LSTM

layers contain a correlate of the position in a sentence (1st word, 2nd word,

etc.), and our models are using that information to decode (7/8 2 vs. 2 tests

will use words at different positions). To test for this possibility, we trained a

classifier to predict the ordering of two random words selected from a sentence,

as suggested by [1]. The input to the classifier is the LSTM representation

of the two words at their positions in a sentence, and the output is a binary

decision for which of the two words appears sooner in the sentence. A model

trained using our LSTM and the Sentence stimuli produced 80% accuracy on

this task. Thus, we cannot say unequivocally that our results are not due in

some part to positional information. However, our probing results are consis-

tent with there being semantic/syntactic information in the representations,

and those results are very consistent with the decoding analysis. This is strong

evidence that our results are not entirely due to positional information.

We wondered also if the lexical semantics of the Jabberwocky stimuli could

be leaking into the LSTM vectors, perhaps because the pseudo-words were

repaired in the convolution step of the LSTM. Note, however, that lexical

semantics are entirely intact in the Word-list condition, but the LSTM repre-

sentations are of no use in that condition. Morphosyntax and syntax are main-

tained in the Jabberwocky condition, which appears to be enough to drive the

correlation between LSTM representations and EEG recordings. The LSTM

may be picking up on bi- and tri-gram signals related to morphosyntax cueing

syntactic structure [22], [23], but more work is needed to rule out alternative

34

explanations.

Recall that the Sentence and Jabberwocky stimuli share some orthographic/

phonological information. Could our Jabberwocky results, and the results of

Analysis 2 (swap g(s)), be due only to the EEG encoding phonological or or-

thographic information? If our models were able to leverage such information,

we would expect to see comparable decoding results in Analysis 1 and the

Word-list condition, where the stimuli are perfect orthographic matches to

the EEG. However, that analysis did not produce significantly above-chance

accuracy. Furthermore, if the information leveraged in Analysis 2 was at the

character-level, we would expect to see significantly above-chance accuracy in

the character embedding or convolutional layers. However, it is not until the

first LSTM layer (where contextual information is first incorporated) that any

decoding model performs significantly above chance in any condition. This

is evidence that the information being leveraged is not simply phonological or

orthographic.

Our stimuli are composed of two conjoined sentences. How much compo-

sition have Dutch listeners done by the time when they get to the conjunction

word “en?” How does the processing differ between the first vs the second of

the conjoined sentences? Previous work on the brain’s processing of syntactic

structures and coordinate clauses proposed an “active structure maintenance

model”, where neural activity increases as a function of syntactic complex-

ity [20], [29]. They found that neural activity in certain left-hemispheric re-

gions indeed increased when more constituents had to be integrated, for both

sentences and jabberwocky stimuli. It may be that the second coordinate con-

stituent in our stimuli sentences elicit stronger neural activity than the first,

but more analysis would be required to verify this.

35

Chapter 6

Conclusion

In this study, we explored the correlation of a character-level LSTM with the

brain’s response for two kinds of out-of-distribution language. The Jabber-

wocky condition used pseudo-word translations of the Sentence stimuli (ablate

semantics, preserve syntax). The Word-list stimuli was a pseudo-random re-

ordering of the words in each of the Sentence stimuli (ablate syntax, preserve

semantics). We ran a character-based LSTM to create contextual embeddings

for the stimuli of each condition. Our linear-regression decoding models were

trained to predict the various LSTM representations from the EEG signals.

Our results showed that the LSTM layers of this character-based LSTM

do in fact correlate with EEG signals in both the Sentence and Jabberwocky

conditions, but not in the Word-list condition. By training models with various

alterations to the data, we were able to determine which LSTM representations

carry semantic and syntactic information. We verified those results using a

probing task on our Dutch LSTM, as well as an identical model trained on

English.

There are multiple avenues for future work. One direction is to see if these

results hold for different languages. Dutch has a fairly transparent phoneme-

grapheme correspondence; would our results still hold for a language with

deeper orthography? We were surprised to find that some LSTM represen-

tations resembled the Jabberwocky EEG signals. Are there other examples

of out-of-distribution language where this relationship holds? And, perhaps

more interestingly, where it does not hold?

36

Another avenue is to improve language modelling. Finding ways in which

the brain’s representations differ from an LSTM could help us to build models

closer to the true nature of human language processing. By doing this, we

might be able to improve natural language processing and language models.

Finding how the human brain can understand different concepts in different

languages besides translating would help natural language processing to de-

velop a translator with more similar to the human ability. Finding a way that

the human brain can generalize semantic meaning when it hears or reads new

words, e.g. nonsensical language, is beneficial to improve computational mod-

els. On the other side, we can build computational models which interpret

human language processing more truly to help psycholinguists, sociolinguis-

tics, and neurolinguistics more effectively. In this way, they would be able to

more effectively identify disorder patterns.

Note, in this research, our goal was to see the correlation and relationship

between the human brain’s activity recorded by EEG and a standard LSTM

representation. We might find more correlation, however, with additions to

the architecture, like auto-encoders, ELMO, or a multi-modal network in the

decoding model. By doing this, we may be able to identify representations

that are more similar to the brain’s activity.

37

References

[1] Y. Adi, E. Kermany, Y. Belinkov, O. Lavi, and Y. Goldberg, “Fine-
grained analysis of sentence embeddings using auxiliary prediction tasks,”
arXiv preprint arXiv:1608.04207, 2016.

[2] A. J. Anderson, D. Kiela, S. Clark, and M. Poesio, “Visually grounded
and textual semantic models differentially decode brain activity associ-
ated with concrete and abstract nouns,” Transactions of the Association
for Computational Linguistics, 2017.

[3] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a sys-
tematic comparison of context-counting vs. context-predicting semantic
vectors,” in Association for Computational Linguistics, 2014.

[4] Y. Benjamini and D. Yekutieli, “The control of the false discovery rate
in multiple testing under dependency,” Annals of statistics, 2001.

[5] A. Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni,
“What you can cram into a single $&!#* vector: Probing sentence em-
beddings for linguistic properties,” in Association for Computational
Linguistics, 2018.

[6] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, “Indexing by latent semantic analysis,” Journal of the Amer-
ican society for information science, 1990.

[7] M. Eichler, G. G. Şahin, and I. Gurevych, “LINSPECTOR WEB: A mul-
tilingual probing suite for word representations,” in Empirical Methods
in Natural Language Processing and International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP): System Demonstra-
tions, 2019.

[8] E. Fedorenko, A. Nieto-Castañon, and N. Kanwisher, “Lexical and syn-
tactic representations in the brain: An fmri investigation with multi-voxel
pattern analyses,” Neuropsychologia, 2012.

[9] A. D. Friederici, M. Meyer, and D. V. Cramon, “Auditory language com-
prehension: An event-related fmri study on the processing of syntactic
and lexical information,” Brain and Language, 2000.

[10] A. Fyshe, G. Sudre, L. Wehbe, N. Rafidi, and T. M. Mitchell, “The
lexical semantics of adjective–noun phrases in the human brain,” Human
Brain Mapping, 2019.

38

[11] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learn-
ing word vectors for 157 languages,” in International Conference on Lan-
guage Resources and Evaluation, 2018.

[12] J. Hale, C. Dyer, A. Kuncoro, and J. Brennan, “Finding syntax in human
encephalography with beam search,” in Association for Computational
Linguistics, 2018.

[13] M. Hashemzadeh, G. Kaufeld, M. White, A. E. Martin, and A. Fyshe,
“From language to language-ish: How brain-like is an lstm’s represen-
tation of atypical language stimuli?” In Empirical Methods in Natural
Language Processing: Findings, 2020.

[14] W. A. de Heer, A. G. Huth, T. L. Griffiths, J. L. Gallant, and F. E.
Theunissen, “The hierarchical cortical organization of human speech pro-
cessing,” Journal of Neuroscience, 2017.

[15] C. Humphries, J. R. Binder, D. A. Medler, and E. Liebenthal, “Syntactic
and semantic modulation of neural activity during auditory sentence
comprehension,” Journal of Cognitive Neuroscience, 2006.

[16] S. Jain and A. Huth, “Incorporating context into language encoding
models for fmri,” in Advances in Neural Information Processing Systems,
2018.

[17] G. Kaufeld, H. R. Bosker, S. Ten Oever, P. M. Alday, A. S. Meyer,
and A. E. Martin, “Linguistic structure and meaning organize neural
oscillations into a content-specific hierarchy,” Journal of Neuroscience,
2020.

[18] E. Keuleers and M. Brysbaert, “Wuggy: A multilingual pseudoword gen-
erator,” Behavior research methods, 2010.

[19] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neu-
ral language models,” in Association for the Advancement of Artificial
Intelligence, 2016.

[20] E. Lau and C.-H. Liao, “Linguistic structure across time: Erp responses
to coordinated and uncoordinated noun phrases,” Language, Cognition
and Neuroscience, 2018.

[21] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of English: The Penn Treebank,” Computational Lin-
guistics, 1993.

[22] A. E. Martin, “Language processing as cue integration: Grounding the
psychology of language in perception and neurophysiology,” Frontiers in
Psychology, 2016.

[23] A. E. Martin, “A compositional neural architecture for language,” Jour-
nal of Cognitive Neuroscience, 2020.

39

[24] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in transla-
tion: Contextualized word vectors,” in Advances in Neural Information
Processing Systems, 2017.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv:1301.3781, 2013.

[26] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave,
R. A. Mason, and M. A. Just, “Predicting human brain activity associ-
ated with the meanings of nouns,” science, 2008.

[27] B. Murphy, P. Talukdar, and T. Mitchell, “Selecting corpus-semantic
models for neurolinguistic decoding,” in Proceedings of the First Joint
Conference on Lexical and Computational Semantics, Proceedings of the
main conference and the shared task, Proceedings of the Sixth Inter-
national Workshop on Semantic Evaluation, Association for Computa-
tional Linguistics, 2012.

[28] S. Nagel, “Towards a home-use bci: Fast asynchronous control and ro-
bust non-control state detection,” Ph.D. dissertation, Universität Tübin-
gen, 2019.

[29] C. Pallier, A.-D. Devauchelle, and S. Dehaene, “Cortical representation
of the constituent structure of sentences,” Proceedings of the National
Academy of Sciences, 2011.

[30] F. Pereira, M. Botvinick, and G. Detre, “Using wikipedia to learn se-
mantic feature representations of concrete concepts in neuroimaging ex-
periments,” Artificial intelligence, 2013.

[31] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in North
American Chapter of the Association for Computational Linguistics,
2018.

[32] D. Schwartz and T. Mitchell, “Understanding language-elicited eeg data
by predicting it from a fine-tuned language model,” in North American
Chapter of the Association for Computational Linguistics, 2019.

[33] M. Toneva and L. Wehbe, “Interpreting and improving natural-language
processing (in machines) with natural language-processing (in the brain),”
Advances in Neural Information Processing Systems, 2019.

[34] L. Wehbe, B. Murphy, P. Talukdar, A. Fyshe, A. Ramdas, and T. Mitchell,
“Simultaneously uncovering the patterns of brain regions involved in dif-
ferent story reading subprocesses,” PloS one, 2014.

[35] L. Wehbe, A. Vaswani, K. Knight, and T. Mitchell, “Aligning context-
based statistical models of language with brain activity during reading,”
in Empirical Methods in Natural Language Processing, 2014.

[36] L. Wittgenstein, Philosophical investigations. John Wiley & Sons, 2009.

40

	Introduction
	Contribution
	Related Work

	Background Material
	Long Short-Term Memory Neural Network
	Neural Language Model
	Bag-Of-Words Model

	Dutch language
	Electroencephalography

	Materials and Methods
	Data description
	Decoding model
	Measuring model accuracy

	Results
	Experimental Questions
	Probing tasks
	Test for semantic and/or syntactic information (Analysis 1)
	Swap the g(S) conditions (Analysis 2)
	Swap R at test time only (Analysis 3)
	Measuring model accuracy by mean-squared-error

	Discussion
	Conclusion
	References

