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Abstract 
 

Unmanned Aerial Vehicles (UAVs) are rapidly proliferating across commercial, government and 

civilian domains for inspection, surveillance, emergency response and delivery services. However, 

high failure rates continue to undermine mission success, safety and regulatory approval. To address 

this, a retrofit health and usage monitoring system (HUMS) tailored for small multirotor UAVs was 

developed through iterative design, simulation and experimental validation to enable condition-based 

maintenance. 

A comprehensive literature review identified prevalent UAV failure modes and assessed suitable 

technologies for continuous monitoring. Fiber Bragg Grating (FBG) sensors emerged as most 

promising due to attributes like high sensitivity, low size/weight, multiplexing ability, and durability. 

Subsequently, the applicability of these technologies to address failure modes related to structural, 

electrical, temperature, vibration, and environmental factors were evaluated. System architecture 

options like mesh networking provided redundancy against individual node failures. 

Based on this analysis, custom design requirements were established for a retrofittable HUMS 

prototype able to interface with different UAV types. The functional prototype implements distributed 

temperature and vibration sensors connected via Zigbee to a central microcontroller with WiFi 

telemetry to ThingSpeak cloud analytics. Controlled lab integration on a quadcopter successfully 

demonstrated real-time streaming of sensor measurements and threshold-based anomaly detection. 

The simplified proof-of-concept establishes core capabilities, despite limitations in robustness, range 

and advanced analytics. 

Ongoing work focuses on stacking reliability through improved packaging, resilient communications 

and ease of installation. Transitioning to LoraWAN aims to expand coverage for remote deployments. 

Edge computing and machine learning techniques will elevate diagnostic intelligence. Testing will 
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shift from lab settings to diverse field conditions spanning various UAV types, flight profiles and live 

missions. A preliminary techno-economic analysis projects attractive returns on investment through 

reduced downtime and maintenance costs, substantiating commercial viability. 

This research pioneers an innovative HUMS architecture tailored for size, weight and power 

constraints of small aerial platforms. By facilitating the transition to predictive maintenance, the 

system promises to significantly bolster efficiency, safety and longevity in UAV operations. The 

successful demonstration of a pragmatic HUMS holds disruptive potential to overcome reliability 

barriers hindering the next evolution of ubiquitous and autonomous unmanned flight. 
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Chapter 1 
 

Introduction 

 
1.1 Background 

Unmanned aerial vehicles (UAVs), aircraft without human pilots onboard, trace their origins to 1849, 

when Austrian soldiers deployed balloons rigged with explosives for aerial bombardment over Venice, 

marking the nascent stages of UAV technology [1, 2]. The emergence of powered flight by the Wright 

brothers in 1903 and the onset of World War I (WWI) in 1914 spurred significant UAV advancements. 

In 1916, Elmer Sperry and Peter Hewitt pioneered an automatic control system, funded by the US 

Navy in 1917 for a flying bomb project [4]. Despite its cancellation, this endeavor paved the way for 

the Kettering Bug, which employed predictive calculations for targeting and delivery [5]. However, the 

Kettering Bug's reliability remained a challenge, leading to its limited deployment [6]. 

Post-WWI, aviation made rapid strides, including the first transatlantic flight in 1919 by Alcock and 

Brown and instrument-only flight in 1929 by Doolittle [7, 8]. UAVs also advanced, exemplified by the 

first remote-controlled aircraft achieving full flight phases in 1924 [9]. In 1935, the Royal Navy 

employed remote control for the Queen Bee UAV, a milestone for anti-aircraft gunnery target training 

[10]. World War II witnessed the progression of UAVs alongside aerospace technologies, evidenced by 

Germany's V-1 "buzz bomb," characterized as a cruise missile [4]. The modern UAV era commenced 

in 1960 with the US creating a classified unmanned reconnaissance program after the U-2 incident 

[11]. Israel's successful use of reconnaissance UAVs in the 1967 Six-Day War demonstrated their 

strategic value [12]. UAV deployment in Vietnam by the US further substantiated their operational 

viability [11]. 

Continued conflicts catalyzed UAV development, including Israel's deployment of real-time 

surveillance UAVs in the 1973 Yom Kippur War and the US introduction of the MQ-1 Predator, as 

shown in figure 1, for aerial reconnaissance in 1994 [14, 15]. The modified Predator, armed with 

Hellfire missiles, exemplified "stalk and kill" capabilities [14]. Modern UAVs have pushed 

boundaries, as seen in DARPA's AlphaDogfight Trials, incorporating AI control algorithms into 

fighter jets [16]. Multirotors, widely embraced due to their unique attributes such as vertical takeoff, 

emerged in the consumer and research domains with quadcopters evolving from early designs in the 
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1900s [17, 18]. The twentieth century saw multirotor evolution, culminating in the popular DJI 

Phantom quadcopter [25, 26]. These advancements enable UAVs to perform tasks beyond visual 

inspections, now engaging in active manipulation of their environment [32]. 

 

Figure 1: General Atomics MQ-1 Predator UAV firing a Hellfire Missile [14] 

The proliferation of unmanned aerial vehicles (UAVs) has catalyzed a transformation across myriad 

civilian and military domains, offering unique advantages over conventional manned aircraft. 

UAVs, commonly referred to as drones, were originally envisioned as low-cost, expendable 

alternatives to manned reconnaissance planes during World War I and thereafter. However, 

contemporary UAV technologies have rapidly evolved beyond their initial purpose, spearheading 

innovations in surveillance, infrastructure monitoring, emergency response, aerial imagery, defense 

systems, and emerging applications such as delivery services [56]. The burgeoning UAV industry is 

estimated to reach a market valuation of over $63 billion by 2025 [57]. 

This exponential growth has necessitated continual improvements in UAV capabilities, 

maneuverability, endurance, and autonomy to undertake complex missions safely, reliably, and 

efficiently. Consequently, modern UAV platforms have progressively incorporated traditional 

aviation systems and subsystems from manned aircraft, particularly helicopters, to enhance their 

sophistication and performance [58]. This assimilation of mature helicopter technologies, coupled 

with purpose-built designs tailored for UAV-specific missions, have endowed contemporary UAVs 

with advanced flight control, navigation, communication, and payload capabilities [59]. 
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Figure 2: MILANO UAV with an integrated HUMS during on-ground tests. FF/AF2: Front/Aft fuselage. CW: 
Central wing [8]. 

However, the incorporation of traditional aviation systems has also transferred vulnerabilities of 

manned platforms to UAVs. According to a US Air Force study, Class A mishaps involving the 

complete loss of a UAV occur up to 250 times more frequently than manned aircraft, undermining 

mission success [60]. The study highlights that ineffective maintenance practices and lack of 

reliability improvements account for the disproportionate mishap rates. A US Army analysis also 

concluded that current UAV reliability levels lag at least 15 years behind manned aircraft [61]. The 

analysis emphasized that traditional reliability improvement processes suited for manned aviation 

platforms are not directly transferrable to the burgeoning ecosystem of complex UAV technologies 

and subsystems. 

This underscores the urgent need to bolster the reliability of UAV platforms to harness their 

immense potential while minimizing mission-compromising mishaps. Reliability refers to the 

probability of a system or component performing its intended function under specified conditions 

for a desired period [62]. For UAVs, attaining reliability requires identifying, monitoring, and 

mitigating vulnerabilities across various subsystems, including propulsion, energy storage, flight 

control, structural components, payloads, and ground control stations [63]. UAV reliability 

fundamentally influences mission availability, success rates, safety, and operational costs [64]. 

Conventional strategies for enhancing reliability such as redundancy, design margins, and 

component derating are necessary but insufficient to enable condition-based maintenance. The 

lightweight and compact design requirements of UAVs constrain extensive redundancy, while 

design margins and component derating offer limited ins insights into real-time subsystem health 
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[65]. For instance, redundancies or over-engineering certain components may overlook 

vulnerabilities in other subsystems, leading to unexpected failures. 

A more rigorous approach entails continuous health and usage monitoring of critical UAV 

subsystems to enable predictive maintenance and dynamic failure mitigation [66]. This gave rise to 

Health and Usage Monitoring Systems (HUMS) tailored for the size, weight, power, and 

computational constraints of UAV platforms [67]. 

HUMS technologies originated in the rotorcraft industry following a catastrophic helicopter 

accident known as the 1986 Sumburgh disaster, when a commercial Chinook crashed in the North 

Sea, killing all but one passenger. which spurred the Offshore Oil Industry towards the development 

of usage monitoring solutions to track structural fatigue [68]. A typical HUMS monitors the status 

of critical systems and components on aircraft and other vessels with the help of sensors placed 

throughout the aircraft and its parts, which are connected to a main onboard computer with a data 

logging and storage system, allowing for the early detection of progressive defects or indications of 

them, and thus allowing rectification before they have a catastrophic impact on operational safety. 

Data is either stored on a PCMCIA Card by the onboard device, which is then downloaded after the 

flight for examination, or uploaded to cloud-based servers for back office analytics to give operators 

appropriate anomaly detection and proactive measure capabilities. Monitoring trends in collected 

data is especially essential because they allow system professionals to identify whether the aircraft 

has developed (or is likely to develop) flaws that require immediate attention. In response to 

rotorcrafts’ relatively poor continuous airworthiness record, the implementation of HUMS resulted 

in and continues to support, considerable improvements in both safety and reliability. 

The extent to which HUMS data is captured varies greatly. A simple system records take-off, 

landings, engine starts, and winch lifts, as well as a subset of engine and transmission health data. 

All key vibrating and spinning parts - engines, gearboxes, shafts, fans, rotor systems - and other 

components are monitored by the most modern techniques. The operational context of occurrences 

is recorded so that trends may be properly examined, and maintenance personnel can undertake 

condition-based maintenance proactively. The latest technology platforms enable the data to be 

processed onboard the aircraft or at a ground station, and some systems enable it to be transmitted 

to operator maintenance control units via satellite communications during flight to enable pre-

planning of upcoming maintenance downtime. Additionally, these systems may be set up to 

automatically alert the manufacturers and operators of any critical or emergencies. 

For UAVs, the core premise of a HUMS remains unchanged - to acquire, analyze, and interpret data 



5 

 

from networked sensors across UAV subsystems for: 

• Real-time condition monitoring to detect anomalies, failures, and exceedances. 

• Usage monitoring to determine cycles, stresses, and exposures that cause wear and aging. 

• Failure prediction by identifying trends, preclude unsafe conditions. 

• Advising predictive maintenance instead of routine servicing. 

However, fundamental differences exist between implementing HUMS solutions for large manned 

rotorcraft versus compact UAVs. Size, weight, power draw, and cost constraints necessitate 

extremely miniaturized sensors, efficient processors, and low-power wireless communications [69]. 

The limited payload capacity also miniaturized requires strategic sensor placement after rigorous 

failure mode analysis of critical subsystems. Moreover, the operational envelopes vary significantly 

- helicopters typically feature redundant mechanical and hydraulic subsystems, less exposure to 

extreme vibrations, controlled landing surfaces, climate-controlled crew cabins, and strict 

maintenance protocols [70]. 

In contrast, multirotor UAVs experience frequent launch/landing shocks, repeated vibrations 

across a wide band of frequencies, direct environmental exposure, limited redundancy, and 

inadequate maintenance after prolonged storage [71]. These challenges demand a HUMS that is 

specifically tailored for the failure modes, flight profiles, and operational environments encountered 

by small-to-medium sized UAVs. Attempting to retrofit an existing helicopter HUMS solution would 

be ineffective, complex, and inadequate for the needs of UAV platforms. 

Recent advances in miniaturised sensors, processors, algorithms, and communication protocols 

have engendered the development of UAV-focused HUMS solutions, albeit confined primarily to 

military and research domains. UAV HUMS implementations have leveraged technologies 

including Fiber Bragg Grating sensors, piezoelectric transducers, accelerometers, acoustic emission 

sensors, ultrasonic structural imaging, MEMS inertial sensors, and onboard data aggregation 

systems [72]. However, widespread adoption in the commercial UAV sector remains sparse due to 

prohibitive costs, complexity, lack of miniaturization, and absence of reliability improvements. 

 

1.2 Motivation 

The motivation behind this research stems from several key factors that collectively underscore the 
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urgency and significance of enhancing the reliability of UAVs. First and foremost, as UAVs find 

applications in sectors such as infrastructure inspection, environmental monitoring, and search and 

rescue missions, their safe and continuous operation is paramount. Incidents involving UAV 

failures, even on a smaller scale, can result in significant financial losses, operational disruptions, 

and potentially endanger lives. These vulnerabilities are largely inherited from manned platforms, 

which are subjected to rigorous monitoring and maintenance regimes, a level of oversight that UAVs 

currently lack. 

This thesis proposes the development of an easily retrofittable HUMS specifically designed for 

small-to-medium-sized multirotor UAVs. By identifying common failure modes in UAV subsystems 

and strategically integrating miniaturized sensors with efficient processing and communication 

protocols, this HUMS aims to provide a compact sensing package for real-time monitoring of critical 

subsystems. The emphasis will be on a flexible architecture that can be adapted to different UAV 

types and customized based on critical subsystems. The implementation, validation, and 

performance analysis of the proposed UAV HUMS will demonstrate its capabilities and commercial 

viability. 

The overarching motivation is underpinned by four key hypotheses: 

1. Traditional maintenance practices are inadequate to address the reliability challenges of 

UAVs – but condition monitoring and usage tracking can enable predictive maintenance. 

2. Current HUMS solutions are unsuitable for small UAVs owing to size, weight, power, and 

cost constraints. 

3. New miniaturised and commercially available sensing solutions can enable compact and 

low-power HUMS tailored for multirotor UAVs. 

4. The proposed retrofittable HUMS will bolster reliability and commercial appeal. 

It is to be noted here that within the scope of this thesis, the first three hypotheses have been 

extensively supported and verified through the Literature Review, Methodology and Experimental 

Trials chapters. However, the 4th hypothesis has been supported partially – through the 

Experimental trials and Preliminary Techno-Economic Analysis chapters, and it is considered an 

ambitious long-term goal requiring further validation, such as testing across 100+ flight hours per 

UAV platform and additional market research and business case refinement. It is therefore a 

limitation of the current research, nevertheless it provides rich avenues for future research and 



7 

 

development. 

The successful implementation of the proposed HUMS will herald smarter condition-based 

maintenance for UAVs, lowering costs and downtimes associated with unexpected failures. By 

transitioning from reactive to predictive maintenance, HUMS empowers stakeholders to optimize 

inspection intervals, plan platform upgrades, streamline supply chains, and improve customer 

satisfaction. The technology also carries tremendous commercialization potential, offering 

reliability as a service for UAV manufacturers and operators. The overarching motivation is, 

therefore, to leapfrog the reliability limitations of multirotor UAVs and unlock their immense 

application possibilities across industries through an innovative, compact, and commercially-viable 

HUMS technology. 

The following literature review is a general overview of the systems and methods used for onboard 

Health and Usage Monitoring systems developed so far for UAV reliability. Each following chapter 

includes additional supporting literature directly related to the specific methods and technologies 

used in the research. 

1.3 Research Objectives 

The initial objectives of this research were to discuss and evaluate different health and usage monitoring 

systems for UAVs and determine which system may be most suitable for broad applications. After 

conducting a literature review of existing technologies and identifying their limitations, the focus shifted 

to developing general requirements and an architecture for a prototype HUMS tailored for small to mid-

size UAV platforms. 

The literature review revealed that fiber Bragg grating (FBG) optical sensors are a promising technology 

for UAV health monitoring due to attributes like high sensitivity, low size/weight, multiplexing 

capabilities, and immunity to electrical interference. However, limitations remain regarding the large size 

and weight of FBG interrogators. Additionally, there is a lack of standardized frameworks for the 

airworthiness certification and licensing of FBG-based HUMS. 

To address these gaps, the research objectives evolved to designing and constructing a proof-of-concept 

HUMS prototype designed for multirotor UAVs. The goals were to develop a flexible, low-cost system 

that can be easily retrofitted on different UAV types to enable condition-based maintenance. 

Requirements focused on distributed wireless sensing, minimal payload impact, and cloud-based data 

analytics. 

The implemented prototype demonstrates initial functionality using a DHT22 temperature sensor, a 
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vibration sensor, and an Arduino microcontroller with WiFi transmission to ThingSpeak IoT Cloud 

Analytics platform. Experiments involved lab integration on a quadcopter UAV and controlled testing. 

Results validated real-time sensor measurements and wireless communication protocols. 

However, the prototype has limitations regarding robustness and lack of FBG sensors. Ongoing work 

focuses on improving reliability, incorporating FBG sensors, long-range communication via LoRaWAN, 

and customized analytics. Testing is transitioning from lab environments to actual UAV flight scenarios. 

Ultimately, this research aims to develop an innovative HUMS solution to enhance UAV reliability and 

safety. By addressing the constraints of size, weight, and complexity, the system holds promise for 

enabling condition-based maintenance across the aviation industry. The overarching motivation is to 

commercialize this technology to overcome reliability bottlenecks of multirotor UAVs. 

1.4 Thesis Outline 

Chapter 1 introduces the background and motivation for developing a Health and Usage Monitoring 

System (HUMS) to enhance reliability of unmanned aerial vehicles (UAVs). It highlights 

disproportionately high failure rates of UAVs compared to manned aircraft, necessitating continuous 

health monitoring. The chapter traces the evolution of HUMS from the rotorcraft industry and its 

unique applicability to address UAV reliability bottlenecks. The underlying hypotheses focus on 

tailoring a commercially-viable HUMS technology to overcome size, weight and power constraints of 

small aerial platforms. 

Chapter 2 provides a comprehensive literature review assessing prominent health monitoring 

technologies for UAVs. Structural, thermal, vibrational, electrical and environmental sensing 

solutions are analyzed based on principles, size, power, reliability and commercial availability. 

Comparative analysis of fiber Bragg gratings, piezoelectric sensors, MEMS devices and others reveals 

relative merits and limitations. Key findings identify fiber Bragg sensors as most promising but 

requiring further interrogator miniaturization and aviation certification. 

Chapter 3 presents HUMS prototype requirements focused on a wireless, distributed, lightweight 

system for small UAV retrofitting. Architecture options like mesh topologies are evaluated, leading 

to the implementation of Arduino microcontrollers, Zigbee communication, and ThingSpeak cloud 

analytics software. Experiments validate ground and tethered functionality before full UAV 

integration. 

Chapter 4 demonstrates real-time temperature data monitoring on a quadcopter UAV. Heat and 

humidity fluctuations emulate battery failures, proving anomaly detection capabilities. Results 
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validate functionality but reveal opportunities to improve reliability. 

Chapter 5 proposes advancements to transition the prototype towards a sophisticated wireless 

solution ready for diverse field deployments. Enhanced ruggedness, sensors, edge computing, 

installation methods, and aviation compliance are outlined to mature technology readiness levels. 

Chapter 6 provides a techno-economic analysis estimating costs, benefits, return on investment and 

addressable market potential. Attractive financial projections reinforce the commercial viability of 

transitioning UAVs to HUMS-enabled predictive maintenance. 

Chapter 7 summarizes key outcomes and validations from the functional wireless prototype. While 

initial testing proves capabilities, extensive reliability testing across long-term UAV deployments is 

required to fully substantiate potential maintenance practice improvements. Nonetheless, the 

demonstrated HUMS architecture pioneers an innovative system poised to bolster efficiency, safety 

and longevity of emerging UAV technologies. 

Overall, this thesis makes significant headway in designing, validating, and demonstrating a practical 

HUMS solution to meet the unique reliability challenges of emerging UAV technologies. It provides 

a foundation to advance UAV condition monitoring through strategic sensing, coupled with efficient 

onboard processing and cloud analytics. By addressing the constraints of size, weight, power, and 

complexity, this research pioneers an innovative system architecture that can potentially be 

commercialized to enable predictive maintenance in diverse UAV applications. 
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Chapter 2 
 

Literature Review 

2.1 Introduction 

2.1.1 Background 

The following provides a synopsis of a review that will summarize health monitoring studies that have 

appeared in technical literature between 1990 and 2023. Peer- reviewed Journal articles, Conference 

papers and thesis dissertations have all been considered for this review. 186 articles that were found 

most relevant to HUMS technologies developed specifically for UAVs have been considered and 

discussed. 

2.1.2 Scope and Objectives 

This literature review synthesizes prominent research related to technologies and methods for UAV 

health monitoring. It is structured into sections examining structural, thermal, vibrational, electrical, 

and environmental monitoring solutions. The scope is limited to onboard and embedded 

technologies that can provide continuous monitoring during flight. 

The objectives are threefold: 

1. Identify sensing solutions viable for UAV integration. 

2. Analyze their capabilities and limitations based on principles, size, power, reliability, and 

commercial availability. 

3. Recommend the most promising technologies suited for developing a retrofittable HUMS 

prototype for small UAV platforms. 

2.1.3 Outline 

The literature review is organized into three sections following this introduction: 
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• Technologies for UAV Health Monitoring 

• Analysis and Recommendations 

• Conclusion 

The first section provides an overview of prominent monitoring technologies and their applicability 

to UAVs. The second section offers comparative analysis leading to recommendations for the HUMS 

prototype. Finally, the key findings are summarized, and an outlook is provided. 

2.2 Technologies for UAV Health Monitoring 

2.2.1 Internet-of-Things (IoT) for remote Health Monitoring 

The Internet of Things (IoT) refers to the network of physical objects embedded with sensors, 

software, and connectivity that enables them to connect and exchange data over the Internet [65]. 

IoT is rapidly transforming many industries by enhancing efficiency, productivity, and automation 

[66]. Analysts predict that there will be over 30 billion connected IoT devices generating massive 

amounts of data by 2025 [67]. This is leading to the Fourth Industrial Revolution, commonly referred 

to as Industry 4.0, which involves cyber-physical systems, Big Data analytics, and intelligent 

industrial automation [68]. Industrial IoT (IIoT), which applies IoT technologies to industrial 

settings, is a major driver of Industry 4.0 through innovations in smart manufacturing, connected 

machines, and data-driven industrial processes [69]. This literature review examines the intersection 

of IIoT and wireless sensor networks which are enabling this industrial transformation. 

The Industrial Internet of Things (IIoT) and wireless sensor networks (WSNs) are rapidly 

transforming many industrial domains such as manufacturing, energy, transportation, and 

healthcare. By integrating advanced sensors, communications, analytics, and automation, IIoT 

enables intelligent monitoring and data-driven optimization of industrial equipment and processes. 

Meanwhile, WSNs provide the connectivity fabric that links distributed sensors and edge devices to 

the cloud. As we enter the era of Industry 4.0, IIoT and WSNs are becoming indispensable for 

building smart factories, realizing predictive maintenance, and enabling industrial automation. 

i. Industrial Internet of Things (IIoT) 

The Industrial Internet of Things (IIoT) refers to the use of Internet of Things technologies such as 

sensors, connectivity, analytics, and applications in industrial settings. The main goal of IIoT is to 
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improve operational efficiency, productivity, and safety through intelligent monitoring and data-

driven optimization [69]. IIoT connects industrial machines and assets to networked sensors and 

software for data collection, analysis, visualization, and machine learning. By extracting insights from 

industrial data, IIoT enables industries to be more flexible, efficient, proactive, and automated [70]. 

The key characteristics of IIoT include [71]: 

- Instrumenting assets with networked sensors and actuators 

- Connecting devices over wired and wireless networks   

- Aggregating sensor data into Big Data platforms 

- Analyzing data using advanced analytics and machine learning    

- Developing intelligent applications to optimize processes 

- Enabling better human-machine interactions and automation 

IIoT builds on existing industrial systems such as SCADA, MES, and PLM. However, IIoT aims to 

create end-to-end connected systems that integrate operations from the edge to the cloud [71]. The 

major benefits of IIoT include operational efficiency, condition monitoring, predictive maintenance, 

and new data-driven services. 

ii. IIoT Architecture and Enabling Technologies 

Implementing an effective health and usage monitoring system (HUMS) for UAVs requires an integrated 

IIoT architecture spanning devices, connectivity, computing, analytics, and applications [98]. This aligns 

with the needs of a UAV HUMS that must collect data via onboard sensors, transmit it through wireless 

networks, perform real-time analytics, and present actionable information to users [75]. Figure 6 shows 

a high-level IIoT architecture comprising four layers: 

- Device layer: At the device layer, industrial sensors for parameters like vibration, 

temperature, pressure, and current can provide condition monitoring data from critical UAV 

subsystems [99]. MEMS inertial sensors, strain gauges, and current transformers tailored to 

UAV size, weight, and power constraints can serve as viable options.. 

- Network layer: Wireless connectivity is enabled through protocols including Zigbee, 

Bluetooth, LoRaWAN optimized for low power sensor networks [100]. Redundant mesh 
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topologies provide reliability while maintaining a lightweight form factor. Gateways aggregate 

data from wireless clusters before transmitting to the cloud over cellular links. 

Edge computing performed by the UAV flight computer enables preprocessing and 

compression of sensor data before transmission [101]. This reduces bandwidth needs while 

supporting prompt condition indicators for real-time prognostics. The UAV autopilot can also 

provide telemetry data 

- Service layer: In the cloud service layer, big data storage handles the volume of historical 

monitoring data [102]. Machine learning and statistical algorithms analyze trends to detect 

anomalies, perform fault diagnosis, and predict failures.   

- Application layer: Finally at the application layer, dashboards present visualizations of 

sensor data and analytics, along with warnings and alerts for maintenance planning [103]. 

Integration with fleet management systems allows efficient scheduling of UAV missions based 

on health status. 

 

Figure 3: High-level architecture for IIoT systems [71] 
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Figure 4: Hardware structure of a WSN sensor node [71] 

Adhering to common IIoT architectures and data models enhances interoperability and simplifies 

integration with existing enterprise infrastructure down the road [103]. A well-designed UAV HUMS 

leveraging IIoT technologies can lead to lower costs and increased safety and reliability. 

2.2.2  Wired Sensor Networks 

Wired sensor networks entail physical connections between sensors, processing units, and data 

transmission modules on the UAV platform [104]. Common standards used for onboard health 

monitoring include Controller Area Network (CAN), Inter-Integrated Circuit (I2C), Serial Peripheral 

Interface (SPI), and Universal Asynchronous Receiver/Transmitter (UART) protocols [105]. 

i. CAN bus provides noise immunity, real-time control, and fault confinement making it 

suitable for avionics systems [106].  

ii. I2C offers multimaster capability allowing multiple microcontrollers to communicate 

over a shared bus [107].  

iii. SPI enables high-speed synchronous serial data transfer between controllers and 

peripherals [108].  

iv. UART facilitates serial communication between computing modules [109]. 

The appropriate bus standard depends on factors such as required data rate, number of nodes, and 

fault tolerance specifications of the UAV system. 

 

Wired sensor networks for UAV health monitoring need to conform to standard communication 

protocols to ensure interoperability and data integrity. The seven-layer Open Systems 
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Interconnection (OSI) model provides a framework for reliable data transmission between 

network nodes [110]. Each layer has a specific function: 

1. The physical layer deals with the electrical or optical bit-level transmission between network 

interfaces [111]. Choices for small UAVs include copper wiring, fiber optics, and differential 

signaling like RS-485 that minimizes noise over long lines. Fiber optics provide electrical 

isolation and high data rates but at higher cost. 

2. The data link layer implements point-to-point node-to-node data transfer, detecting and 

correcting transmission errors [112]. UAV networks can employ checksums, 

acknowledgments, and retransmissions to ensure reliability. Lightweight encryption secures 

data links. 

3. The network layer handles end-to-end data routing and logical addressing between sensor 

nodes across the UAV platform [113]. Standards like CANopen facilitate device 

interconnection and plug-and-play operation. Deterministic protocols ensure real-time 

sensor data delivery. 

4. The transport layer provides transmission control, segmentation, and reassembly of sensor 

data packets [114]. TCP offers guaranteed delivery whereas UDP trades reliability for lower 

latency. The choice depends on the specific UAV application requirements. 

5. The session layer manages and synchronizes communication sessions between sensor nodes 

by setting up, coordinating, and terminating connections [115]. Time synchronization 

enables aligning data timestamps from distributed sensors. 

6. The presentation layer defines data syntax and semantics, translating formats for 

interoperability [116]. Standards like IEEE 1451 for transducer interfaces facilitate sensor 

integration and data interchange. 

7. Finally, the application layer provides interfaces and protocols for end-user software to 

access sensor data [117]. APIs like MQTT and REST simplify data exchange between sensor 

networks and health monitoring applications. 

While conforming to standardized protocols and layers increases complexity, the benefits include 

interoperability, maintainability, and simplified integration with existing infrastructure. The 

modular approach also allows mixing and matching technologies based on performance, reliability, 

and security needs. Overall, adhering to established OSI protocols ensures robust sensor connectivity 

crucial for safety-critical UAV operations. 
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Figure 5: The OSI 7 Layers for Networks 

 
Key benefits of wired networks include simplicity, low interference, and reliable connectivity crucial 

for health monitoring [112]. However, limitations include higher weight from cabling, lack of 

flexibility to reconfigure sensor positions, and single point failures [104]. Appropriate fault-tolerant 

architectures and redundancy techniques can mitigate these constraints in aerospace applications. 

Overall, wired standards offer a robust sensor integration backbone aboard UAV platforms. 

 

2.2.3  Wireless Sensor Networks and Topologies 

Wireless sensor networks (WSNs) are gaining traction for UAV health monitoring owing to their 

flexibility, scalability, and distributed sensing capabilities [113]. WSNs employ miniaturized wireless 

sensor nodes that communicate through radio links, eliminating extensive cabling [114]. Common 

technologies include Zigbee, Bluetooth, WiFi, and proprietary protocols in the ISM bands [115]. 

WSNs also provide the connectivity fabric for IIoT systems by linking industrial assets to 

communication networks [116]. Benefits of WSNs for industrial monitoring include [116]:  

- Easy deployment in harsh environments without wiring 

- Flexibility to reconfigure the network topology  
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- Scalability to large-scale deployments 

- Low installation and maintenance costs 

- Real-time monitoring of assets and processes 

However, WSNs also have some limitations in industrial settings [74]: 

- Unreliable wireless links due to noise, interference, and fading 

- Limited network bandwidth and latency constraints  

- Resource-constrained sensor nodes with limited battery life 

- Lack of standardized network architectures and interoperability 

- Susceptibility to security threats such as spoofing and denial of service 

 

International standards have been developed for industrial WSNs including WirelessHART (HART 

Communication Foundation), ISA100 (International Society of Automation), and IEEE 802.15.4e 

[117]. These standards specify the OSI protocol stack for layers including physical, link, network, 

transport and application [118]. Key capabilities include time synchronization, channel hopping, 

mesh routing, security mechanisms, and network management protocols tailored for low-power 

connectivity [119]. 

For UAVs, WSNs promote modular system architectures by reducing hardpoint wiring constraints. 

However, aeronautical applications necessitate addressing challenges regarding interference 

mitigation, reliability, safety certifiability, and security [120]. Diversity techniques, cognitive radios, 

ultra-wideband communications, and spectral coexistence methods can help overcome these 

limitations [121]. Overall, the emergence of robust, standardized WSN solutions offer immense 

potential to advance UAV health monitoring. 

A sensor network topology refers to the arrangement or structure of sensor nodes in a network. 

Sensor networks are composed of numerous small, low-cost devices called sensor nodes that 

collaborate to monitor and gather data from a physical environment. The choice of topology affects 

how data is transmitted, how nodes communicate, the network's resilience, and its energy efficiency. 

Here are some common sensor network topologies [124]: 

1. Star topology: In a star topology, all sensor nodes communicate with a central hub or 

base station. This central hub collects data from the nodes and is responsible for processing 

and forwarding the information to a higher-level system. This topology is simple and offers 

easy management and maintenance. However, if the central hub fails, the entire network 
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might become non-functional. 

2. Mesh Topology: In a mesh topology, each sensor node communicates with other nearby 

nodes in a peer-to-peer manner. This leads to multiple communication paths, improving 

network redundancy and reliability. Mesh topologies can be further categorized into partial 

mesh (only some nodes have multiple connections) and full mesh (every node is connected 

to every other node). 

3. Tree Topology: A tree topology arranges nodes in a hierarchical structure, resembling a 

tree. Nodes are organized in layers, with a root node at the top. Data flows from the leaf 

nodes towards the root node. This topology is useful when there's a need for data 

aggregation and forwarding towards a centralized point. 

4. Ring Topology: In a ring topology, each sensor node is connected to exactly two 

neighboring nodes, forming a closed loop. Data is transmitted sequentially along the ring. 

Ring topologies can be more resilient than star topologies because the failure of a single 

node doesn't necessarily disrupt the entire network. However, adding or removing nodes 

can be more challenging. 

5. Hybrid Topology: A hybrid topology combines elements of multiple topologies. For 

instance, a combination of star and mesh topologies can provide both centralized control 

and redundancy. This allows for more flexibility in designing networks to match specific 

requirements. 

6. Cluster Topology: In a cluster topology, nodes are grouped into clusters, and each cluster 

has a cluster head that acts as a coordinator. The cluster heads then communicate with each 

other or with a central base station. This topology helps manage large networks and 

improve energy efficiency, as cluster heads can perform data aggregation and routing, 

reducing the energy consumption of individual nodes. 

7. Hierarchical Topology: A hierarchical topology involves multiple levels of nodes, often 

organized into a pyramid-like structure. This approach helps manage network scalability 

and data routing efficiently by reducing the number of nodes involved in long-range 

communication. 

The choice of sensor network topology depends on factors such as the application requirements, 

energy constraints, scalability needs, fault tolerance, and communication range. [122] Different 

topologies offer varying trade-offs in terms of energy efficiency, network resilience, and ease of 

maintenance. The most suitable topology will depend on the specific goals and constraints of the 

sensor network deployment. 
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Figure 6: Three kinds of WSN topologies: star, tree, chain [65] 

2.2.4  Communication Protocols for IoT Applications 

A crucial aspect of implementing PHM in UAVs is the selection of appropriate communication protocols 

that facilitate seamless data exchange between various components of the system. IoT applications, 

including UAVs, demand communication protocols that meet specific requirements such as low power 

consumption, long-range connectivity, and reliable data transmission. Several communication protocols 

have been developed to cater to these diverse needs [80]: 

1. Advanced Message Queuing Protocol (AMQP) is an open standard communication 

protocol employed in message-oriented middleware. It ensures messaging interoperability 

between systems, irrespective of the message brokers or platforms utilized, offering security, 

reliability, and interoperability even in challenging network conditions or over long distances. 

Additionally, AMQP allows communication even when systems are not simultaneously available. 

2. Bluetooth, a short-range wireless technology utilizing ultrahigh-frequency radio waves, has 

historically been associated with audio streaming. However, it has evolved to become a crucial 

enabler of wireless and connected devices. Bluetooth Low Energy (BLE), optimized for IoT 

connections, is a low-power alternative to standard Bluetooth, making it particularly appealing 

for applications such as health and fitness trackers, smart home devices, and in-store navigation. 

3. Cellular communication stands as one of the most widely available and recognized options 

for IoT applications, especially in scenarios where communications must span longer distances. 

Although legacy 2G and 3G cellular standards are being phased out, newer high-speed standards 

such as 4G/LTE and 5G are gaining prominence, providing high bandwidth and reliable data 

transmission. However, the use of cellular communication may come with higher costs and 

increased power consumption compared to other alternatives. 
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4. Constrained Application Protocol (CoAP), introduced by the Internet Engineering Task 

Force in 2013, caters to IoT systems based on HTTP. CoAP relies on User Datagram Protocol for 

secure communications and enables data transmission between multiple points. It is often 

utilized in machine-to-machine (M2M) applications, accommodating constrained devices even 

in the presence of low bandwidth, low availability, or low-energy conditions. 

5. Data Distribution Service (DDS), developed by the Object Management Group, facilitates 

real-time systems by providing low-latency data connectivity and extreme reliability. As an M2M 

standard, DDS enables high-performance and scalable real-time data exchange through a 

publish-subscribe pattern, making it suitable for business and mission-critical IoT applications. 

6. LoRa, known for its long-range communication capabilities, is a noncellular wireless technology 

that enables low-power and secure data transmission in M2M applications and IoT 

deployments. LoRa technology is now governed by the LoRa Alliance, which also maintains 

LoRaWAN, an open cloud-based protocol facilitating communication among IoT devices. 

7. Low-Power Wide Area Networks (LPWAN) is a group of wireless networks 

technologies well suited to the specific needs of IoT devices: low bandwidth and low-

power devices, usually battery-powered. This type of network provides low-bit 

rates over long ranges with low power consumption. LPWAN's can accommodate data 

packet sizes from 10 bytes to 1 kB at uplink speeds up to 200 kbps; long-range connectivity 

varies from 2 to 1,000 km depending on the network technology. Most LPWAN 

technologies have a star topology; this means that each device connects directly to a 

central access point. 

8. Lightweight M2M (LWM2M), described by OMA SpecWorks, serves as a device 

management protocol tailored for sensor networks and M2M environments. This 

communication protocol caters to low-power devices with limited processing and storage 

capabilities, making it a suitable option for remote device management and telemetry in IoT 

environments. 

9. Message Queuing Telemetry Transport (MQTT), developed in 1999 and now known as 

MQTT, operates through a publish-subscribe architecture, enabling M2M communication. It is 

designed to work in low-bandwidth situations, making it preferable for connecting devices with 

a small code footprint and in wireless networks with varying levels of latency resulting from 

bandwidth constraints or unreliable connections. MQTT has evolved from a proprietary protocol 
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to a leading open-source protocol for connecting IoT and industrial IoT devices. 

10. Wi-Fi, widely used in home, commercial, and industrial buildings, offers fast data transfer and 

is well-suited for LAN environments with short- to medium-range distances. Despite its 

pervasiveness, some Wi-Fi standards may be too power-consuming for certain IoT use cases, 

particularly low-power/battery-powered devices. Additionally, Wi-Fi’s low range and scalability 

limit its feasibility for deployment in certain IoT applications. 

11. Extensible Messaging and Presence Protocol (XMPP), initially designed by the Jabber 

open-source community for real-time human-to-human communication, is now utilized for 

M2M communication in lightweight middleware and routing XML data. XMPP supports the 

real-time exchange of structured and extensible data between multiple entities on a network, 

often finding applications in consumer-oriented IoT deployments, such as smart appliances. 

12. Zigbee, a mesh network protocol designed for building and home automation applications, 

ranks among the most popular mesh protocols in IoT environments. With its short-range and 

low-power capabilities, Zigbee extends communication across multiple devices. It provides a 

flexible, self-organizing mesh, operates with ultralow power consumption, and offers a library of 

applications, making it well-suited for various IoT implementations. 

13. Z-Wave, another proprietary option, operates as a wireless mesh network communication 

protocol utilizing low-power radio frequency technology. Like Bluetooth and Wi-Fi, Z-Wave 

facilitates communication with encryption, ensuring security in IoT deployments. It finds 

applications in home automation products, security systems, and energy management 

technologies, supported by the Z-Wave Alliance, which focuses on expanding the technology and 

interoperability of Z-Wave-enabled devices. 

2.2.5  Edge Computing for IoT Applications in UAV Monitoring 

Systems 

Edge computing has emerged as a critical paradigm in processing data for Internet of Things (IoT) 

applications, particularly in the context of Unmanned Aerial Vehicles (UAVs). By bringing 

computation and data storage closer to the location where it’s needed, it helps to improve response 

times and save bandwidth [125]. For UAVs, this approach can significantly enhance the performance 

and reliability of Health and Usage Monitoring Systems (HUMS). 
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i. Defining Edge Computing 

Edge computing, as a distributed computing paradigm, involves pushing data processing tasks and 

functionalities away from the centralized nodes to the logical extremes of a network. It enables 

analytics and knowledge generation to occur at the source of the data [126]. This is particularly 

beneficial for IoT devices that generate vast amounts of data, such as UAVs equipped with numerous 

sensors for health and usage monitoring. 

ii. Implementation of Edge Computing in UAV Monitoring Systems 

Implementing edge computing in UAV health and usage monitoring systems involves equipping the 

UAV with onboard microcontrollers and sensors capable of collecting, processing, and analyzing data 

in real time. These onboard systems serve as the “edge,” providing immediate insights into the UAV’s 

performance and health status, without the need for data transmission to a central server for 

processing. 

 

Microcontrollers can be programmed to execute a variety of data processing tasks, such as filtering 

sensor noise, executing feature extraction algorithms, and implementing machine learning models 

for predictive maintenance [127]. This reduces the volume of data that needs to be transmitted, thus 

saving bandwidth and enabling real-time performance monitoring. 

 

Edge computing can also reduce latency, which is crucial for UAVs that require immediate response 

to changing flight conditions. By processing sensor data on the UAV itself, decisions about system 

adjustments or alerts for necessary maintenance can be made almost instantaneously. 

 

iii. Recent Trends and Research Developments 

Edge computing in the context of UAVs has seen significant research interest. One trend is the use of 

lightweight machine learning algorithms that can operate on the limited computational resources 

available onboard a UAV. A recent study by Zhang et al. [128] explored the use of federated learning, 

a distributed machine learning approach that trains an algorithm across multiple devices or servers 

holding local data samples. 

 

Furthermore, the integration of edge computing and cloud computing, often referred to as fog 

computing, is another area of ongoing research [129]. This approach combines the advantages of both 

paradigms, allowing for real-time local processing through edge computing, and more substantial 
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data analysis tasks through the cloud. 

 

Additionally, researchers are exploring robust and secure communication protocols for UAVs to 

securely transmit processed data when necessary [130]. This is essential for scenarios where the UAV 

is operating in remote or hostile environments and the integrity of its data transmissions is vital. 

 

In conclusion, edge computing provides an effective solution for real-time data processing in UAV 

health and usage monitoring systems. Its ability to reduce bandwidth requirements, improve 

response times, and enable on-the-go data analytics makes it an essential component in the 

development of a comprehensive HUMS for UAVs. 

2.2.6  Structural Fault Detection Literature for UAVs 

Over the course of the review, we found that the 3 technologies currently used most frequently for 

the real-time monitoring of structural health of small to mid-size UAVs are: 

(1) Fiber Bragg grating (FBG) optical sensors 

(2) Piezoelectric sensors (PZT) and 

(3) Ultrasonic propagation imaging (UPI) sensors 

FBGs are optical fibers with a periodically changing refractive index. These can selectively reflect 

wavelengths of light depending on the amount of strain placed on them. 

PZT sensors are capable of generating a signal corresponding to the amount of strain applied to them. 

Compared to conventional strain sensors that use Wheatstone Bridge Circuits, PZT sensors are more 

rigid, making them more suitable for the harsh conditions of a UAV. 

Lastly, Ultrasonic Propagation Imaging (UPI) sensors use lasers to detect surface and subsurface 

damage, but due to their bulky size, they can be used for on-ground non-destructive inspections only. 

Greater details about each of these technologies have been given in the following paragraphs.
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i. Fiber Bragg Grating Sensors-based Literature 

Fiber Bragg Grating Sensors, or “FBGS,” are particularly promising for Structural Health Monitoring 

(SHM) of aerospace vehicles because of, among other things, their ability to record strain and temperature, 

small size, low weight, multiplexing capabilities, durability and immunity to electromagnetic interferences. 

They may be incorporated in composite materials, which are becoming an increasingly essential 

component of aeronautical construction. For more than two decades, composite materials have been used 

in aeronautical applications. These materials are distinguished by their high strength-to-weight ratio, 

stiffness, and corrosion resistance. Composite materials are ideally suited for these aerospace applications 

since aircraft and spacecraft are often weight sensitive. The use of integrated FBGSs for UAV health 

monitoring is desirable, but their reaction under all operating environmental conditions of an aircraft 

structure must be thoroughly known for these sensors to be flight certified. 

Damage-tolerant and fail-safe design of aeronautical structures necessitate extensive inspection and 

maintenance, which adds significantly to the aircraft’s life cycle cost and downtime. The lifespan cost 

of aircraft and aerospace structures can be greatly decreased by including continuous and 

autonomous condition-based structural health monitoring (SHM) systems in their design. A 

structural health monitoring (SHM) system, which consists of well-designed sensor networks as well 

as the requisite hardware and software, will allow defects or damages to be reported early on in their 

development. 

 

Figure 7: Schematic of the working principle of Fiber Bragg grating (FBG) sensors, and its response 
to strain [28] 

Aiming to provide more efficient, lightweight structures, composite materials are being extensively used 

in aerospace vehicles. As the failure mechanisms of these materials are complex, damage detection 

becomes challenging, requiring advanced techniques for assessing structural integrity and maintaining 
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aircraft safety. In this context, Structural Health Monitoring (SHM) seeks for integrating sensors into the 

structures in a way that Nondestructive Testing (NDT) is implemented continuously. One promising 

approach is to use Fiber Optic Sensors (FOS) to acquire strain signals, taking advantage of their capabilities 

over conventional sensors. 

In a study by Frövel et al. in 2009, the temperature and humidity-dependent performance of FBG-strain 

sensors embedded in carbon fiber reinforced plastics (CFRP) were described [27]. The investigation work 

was focused on the validation of the dependence of the FBGS’s strain sensitivity in tensile and compression 

load, in dry and humid conditions, and a temperature range from -150ºC to 120ºC. FBGs with acrylic as 

well as polyimide coating were tested. Conventional extensometers and strain gauges were used as 

reference strain sensors. The performed tests showed an influence of the testing temperatures, the dry or 

wet specimen condition, the load direction, and the coating material on the sensor strain sensitivity. 

In 2010, Kressel et al. developed a fully airborne, high-resolution, load tracking, and structural health 

monitoring system for UAVs, which was integrated into the tail boom of a Nishant UAV [21]. Based on a 

rigorous Finite Element study, the system was built using integrated optical fiber Bragg sensors that were 

probed in real-time during flight at 2.5 kHz. It recognized minor and large stresses in flight with excellent 

accuracy by evaluating the recorded vibration signature. This investigation was followed by another in 

2011, which included a static loading test [14]. In 2012, the research team conducted another investigation 

in which a scatter plot was used to determine deviations from the first mode of vertical bending caused by 

a landing impact event [3].  

In a further study by Kressel et al. in 2014, FBG sensors were placed in the tail booms and wings of the 

“Heron” Israeli Air Force drone, but only tail boom data was analyzed [6]. Sensors successfully picked up 

“touch and go” maneuvers and landing strain events. Continuing the study, Kressel et al. in 2014 presented 

the design, qualification, and flight service evaluation of an embedded FBG-based HUMS for the Israeli 

Air Force Medium Altitude Long Endurance (MALE) drone [5]. A total of 54 FBG sensors were embedded 

on the wing and tail booms, enabling accurate tracking of both the vibration signature and the actual 

loading conditions of these components. A single GUI was developed to visualize the strain data, static 

calibration tests were performed on the ground for system validation, and a heating test was conducted to 

understand and compensate for the temperature effect on the FBG sensors. 

In a further study by Frövel et al. in 2010 under the Spanish national-funded project ICARO, the influence 

of the combined effect of fatigue loading and temperature on the sensitivity of Ormocer and polyimide-

coated FBGSs was determined in tensile and compression tests [9]. The studies revealed that both types 

of sensors operated well before and after the 1200-cycle fatigue testing. The Ormocer-coated FBGSs 



26 

 

exhibited a consistent 2% decrease in sensitivity following fatigue cycling over the whole temperature 

range of -100℃ to 160℃, whereas polyimide-coated sensors showed less than 1% changes but greater 

standard deviations of the observed values. 

Continuing the investigation, the outer wing of a UAV named SIVA was instrumented with several FBGS 

that measured strain and temperature [25]. The onboard FBG interrogator equipment, known as FSI, was 

a robust two-channel design that employs time-domain sensor identification at a sampling frequency of 

500 Hz. The FSI has a memory card that enables for three hours of autonomous in-flight data collecting. 

Both strain and temperature readings were time-domain analyzed, and the flight data revealed exact and 

accurate recordings. 

Low-velocity impact-induced damage, such as delamination, is largely hidden inside laminates or leaves a 

minor depression at the impact point in composite materials. As a result, discovering this sort of damage 

using traditional inspection procedures is difficult and time-consuming. To improve the effectiveness of 

these systems, accurate information on estimated impact sites must be supplied. Unnecessary inspections 

for broad undamaged zones can therefore be avoided. In a 2012 study by Byeong-Wook Jang et al., impact 

localization algorithms for various composite structures were developed using the impact-induced acoustic 

signals acquired by multiplexed fiber Bragg grating (FBG) sensors [17]. The acoustic waves generated by a 

specific impact were transmitted to each FBG sensor, and the resulting FBG wavelength changes were 

recorded using a high-speed multiplexable FBG interrogation system with a sampling frequency of 100 

kHz. The difference in impact wave arrival time between each FBG signal was then determined to provide 

the input data sets for neural network training. High reproducible arrival time determination techniques 

are primarily necessary to reliably use the neural network algorithm for impact identification. Such arrival 

time determination methods were established in this work. 

In 2015, Kressel et al. accomplished the design and flight validation of an embedded fiber Bragg gratings 

(FBG) based structural health monitoring (SHM) system for the Indian unmanned aerial vehicle “Nishant” 

[1]. The sensors were embedded as part of the manufacturing process. Using principal component analysis 

(PCA) and artificial neural networks, it was feasible to track both the loads and vibration signatures based 

on the data gathered (ANNs). Sensor location, in conjunction with adequate ground calibration, allowed 

for the separation of strain and temperature measurements. During landing, the beginning of a minor local 

structural transient instability was detected, demonstrating the importance of such continual structural 

airworthy evaluation for UAV structures. 

In a further paper by Kressel et al. in 2017, the application of distributed fiber optic strain sensing as a 

standard procedure for airworthiness assessment of an entire fleet of operational High-Altitude Long 
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Endurance (HALE) Unmanned Aerial Vehicles (UAVs) during service was accomplished [12]. The Rayleigh 

backscattering sensing idea was applied to a typical optical fiber that runs the length of the wing main spar. 

So far, good repeatability of strain signatures under a specified loading condition has been established, 

proving the concept’s resilience as well as the wing’s great structural performance. Furthermore, the same 

sensing idea was applied to a full-scale test item to monitor structural performance during a fatigue test 

that simulated various lifetimes of this UAV. The acquired data was subjected to Principal Component 

Analysis (PCA) in order to isolate the information most likely associated with changes in the structural 

health of the wing. 

In a 2015 review paper, Raffaella Di Sante critically reviewed recent research and applications in structural 

health monitoring of composite aircraft structures using FOS, considering both multi-point and 

distributed sensing techniques [22]. 

In a 2015 study by Jin-Hyuk Kim et al., an in-flight strain monitoring HUMS for aircraft structures was 

developed [18]. During the production process, the optical-fiber-based HUMS was fitted to an ultralight 

aircraft wing structure for effective sensor application. Ground and flight testing were performed to ensure 

the integrity and availability of the FBG sensors and HUMS devices installed. A total of 74 flight tests were 

carried out utilizing the HUMS-implemented testbed aircraft, with various maneuvers and aberrant 

situations considered. The flight test findings showed that the FBG-based HUMS was successfully 

deployed on the testbed aircraft and performed properly under actual flight test conditions, as well as 

generating reliable in-flight strain data from the FBG sensors over an extended length of time. 

In a study by Frövel et al. in 2016, an FBG-based health and usage monitoring system for the Spanish 

National Institute for Aerospace Technology (INTA)’s two tactical UAVs named SIVA and MILANO are 

developed, based on fiber Bragg grating sensors [20]. Both strain and temperature were successfully 

monitored in several structural places of interest, including the outer wing, wing attachment, front and 

rear fuselage, a stabilizer, and landing gear. During the flight, structural deformations of the unmanned 

aerial vehicle were measured and utilized to compute structural flight loads. Thermal stresses caused by 

temperature have been adjusted for. 

In a follow-up study in 2017, a health and usage monitoring system for INTA’s medium altitude and long 

endurance (MALE) UAV called MILANO and for the flying target drone DIANA was developed [19]. FBGSs 

were utilized for load monitoring as well as fatigue life estimate, recording exceptional events, design 

verification, and optimization. Ground testing on the MILANO wing revealed the ability to identify 

structural damage in flight by changing the load route and strain distributions. 

In another follow-up study in 2018, the team developed a health and usage monitoring system (HUMS) 
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for INTA’s medium altitude and long endurance (MALE) UAV called MILANO [8]. The structural damage 

was detected by comparing the strain distribution of the pristine structure with the results of the real 

structure by loading the structure on ground in a repeatable prescribed manner. The sturdy DTG FBGSs 

performed well in their characterization across a wide temperature range and under fatigue stresses, and 

they operated reliably during the testing of the center wing and aft fuselage. Due to the poor signal-to-

noise ratio and, in this situation, the very high standard deviation, only relatively substantial damage, such 

as the debonding of the whole foot section of a bulkhead, could be recognized with certainty. 

In a continuation of their research, an aerial target drone named DIANA IA was fitted with a health and 

usage monitoring system based on load path changes [13]. Destructive experiments were used to test and 

calibrate the health and usage monitoring system, causing specified defects in fuselage stringers and 

assessing structural damage based on the detected strain distribution. A simple device based on four fiber 

optic Bragg grating sensors detects hardly apparent structural deterioration in the drone’s whole high-

loaded forward fuselage. 

In a follow-up study of the HUMS developed for the MILANO and DIANA, the performance of the used 

FBG sensors was tested [2]. Temperature, humidity, and tensile and compression stress scenarios all had 

an effect on the performance of embedded and surface-bonded sensors in quasi-static and fatigue tests. 

Tensile and compression tests were used to investigate the effect of fatigue loading and temperature on the 

sensitivity of Ormocer and polyimide-coated FBGSs. 

In a 2016 study by Sundaram et al., an online and offline approach to the structural health monitoring 

system was developed at the Advanced Composites Division of CSIR-NAL of India using fiber optic sensors 

[24]. The paper argued for a combined online-offline inspection system for UAV maintenance, as the 

author believed that online FBG-based sensor technology was not on the same Technology Readiness Level 

(TRL) as traditional Non-Destructive Testing methods. 

In a 2019 work by Joham Alvarez-Montoya et al. [7], a HUMS was developed and implemented in an 

Unmanned Aerial Vehicle (UAV) based on 20 Fiber Bragg Gratings (FBGs) embedded into the composite 

front spar of the aircraft’s wing, a miniaturized data acquisition subsystem for gathering strain signals and 

a wireless transmission subsystem for remote sensing. The HUMS was tested in 16 flights, six of which 

were conducted with the pristine construction and the remaining after various artificial damages were 

induced. The data collected in flight were used to validate a previously developed damage detection 

methodology based on strain field pattern recognition, or strain mapping, which employs machine 

learning algorithms, specifically a Self-Organizing Map (SOM)-based procedure for clustering operational 

conditions and Principal Component Analysis (PCA) in conjunction with damage indices for final 
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classification. The damage detection performance achieved the greatest accuracy of 0.981 and the highest 

F1 score of 0.978. 

While FBG sensors themselves offer a lightweight and compact solution, limitations persist regarding FBG 

interrogators which are required to interpret the optical signals. Commercially available interrogators 

range from $10,000 to $50,000 depending on channel count and performance specifications [169]. 

Benchtop and rackmount interrogators weigh 2-5 kg, with embedded OEM interrogator modules around 

200 gm [170]. However, small UAV platforms have stringent size, weight, and power constraints below 1 

kg and $5000 for the entire sensing system [171]. Although miniaturized photonic integrated circuit 

interrogators have been proposed [172], current FBG interrogator size, weight, and cost pose integration 

challenges for resource-constrained UAVs. Further interrogator miniaturization and cost reduction are 

active research fronts to enable more widespread FBG adoption in small aerial platforms. 

ii. Piezoelectric Sensors-based literature 

Piezoelectric sensor {PZT) based structural health monitoring (SHM) methods can efficiently estimate 

the health condition of aircraft structures. To monitor large-scale structures, dense PZT arrays are 

usually needed. How to scan different PZT actuator-sensor channels in the PZT array to achieve a real-

time and stable structural health monitoring task is an important issue in the application of these 

methods. 

In a study by J. A. Oliver et al. in 2007, A specialized testbed was developed to facilitate the 

identification of damage in structural health monitoring studies for composite UAVs [16]. PZT, FOS, 

and Accelerometers were employed in this testbed and evaluated against a scanning laser Doppler 

vibrometer for four graphite-epoxy UAV wing test pieces, as well as a series of comprehensive finite 

element models of the test pieces and a dynamic testing setup. Preliminary data suggested that 

moderate damage lowers fundamental natural frequencies and changes mode shapes, but not to the 

point of overcoming variability between the FE model and physical structure at the current level of 

correlation. 

In a study by Qiu et al. in 2009, an integrated multi-channel PZT array scanning system {ISS) was 

developed for structural health monitoring [15]. A gain-programmable charge amplifier with a low 

crosstalk scanning module was discussed. To control the hardware and conduct signal processing 

and damage estimates, an integrated software system based on the LabVIEW software platform was 

designed. An examination of a carbon fiber composite wing box of an unmanned aerial vehicle was 

undertaken to validate the functionality of this system. The application results demonstrated the 

system’s promising performance. 
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In 2012, a study by Chan Yik Park et al., as part of a special seven-group project, developed a structural 

health monitoring (SHM) system for a composite UAV [4]. A structural health monitoring system was 

specified as a collection of a sensor-integrated wing, onboard device, and ground station after the system 

architecture was designed and the operational scenario was determined. A variety of PZT and FBG sensors 

were put on the UAV wings as part of the experiment, which was then tested and damaged. A small onboard 

device was designed and utilized to continuously monitor external load, structural events, and damage. 

The ground station was also built and used to assess the intensity, extent, and location of the damage. UPI 

was used as part of on-site non-destructive inspection (NDI) and was particularly efficient in detecting 

minor flaws. Finally, the developed hardware components and algorithms were tested in a range of 

scenarios. 

 

Figure 8: Piezoelectric Load Cell Diagram [29] 

The following comparison has been made between the three main HUMS technologies for 

structural monitoring: 

Table 1: COMPARISON OF KEY ON-BOARD HUMS TECHNOLOGIES 

Fiber-Bragg 

Grating sensors 

Piezo-Electric 

sensor array 

Electrical Strain 

Gauges 

Small size, low mass, 

low cost 

Small size, low mass, 

low cost 

Heavy, large size, 

and expensive 

Long lifespan Long lifespan 
Relatively shorter 

lifespan 

Immunity to electrical 

interference 

Not immune to 

electrical interference 

Not immune to 

electrical 

interference 

High-speed, high 

signal to noise ratio 

High Speed, high 

signal-to-noise ratio, 

Low speed, low 

signal-to-noise ratio 
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Fiber-Bragg 

Grating sensors 

Piezo-Electric 

sensor array 

Electrical Strain 

Gauges 

but needs dense PZT 

arrays 

Durability in extreme 

weather conditions 

Durability in extreme 

weather conditions 

Not very durable in 

extreme weather 

conditions 

Multiplexable, whole 

fiber acts as a sensor 

Non-multiplexable, 

cumbersome wiring 

required 

Non-multiplexable, 

cumbersome wiring 

required 

Can be embedded 

during 

manufacturing, 

eliminating the need 

for sensor protection 

Difficult to embed into 

the composite material 

due to complex wiring 

Cannot be embedded 

into the composite 

material during 

manufacturing 

 

It is easy to see that FBGs outperform PZT arrays, UPIs, or conventional strain gauges in almost 

all metrics. 

2.2.7  Temperature-related Fault Detection Literature for UAVs 

i. Fiber Bragg Grating Sensors-based literature 

Sensing of temperature is a critical parameter in many engineering applications. While conventional 

temperature sensors such as thermistors, thermocouples, and resistive temperature detectors 

(RTDs) are widely used, they can have limitations in certain scenarios. For instance, these sensors 

may have restricted operating ranges, be susceptible to electromagnetic interference (EMI) noise, 

and lack distributed or multiplexed sensing capabilities. However, their suitability depends on the 

specific requirements of the application. 

Fiber Bragg grating (FBG) based optical sensors offer an alternative temperature sensing approach 

with several benefits, though they also have some downsides. FBGs provide high reliability, low 

thermal mass, small size, immunity to EMI, and the potential for distributed sensing over a single 

fiber. The underlying principle for their temperature sensitivity is the dependence of the periodic 

refractive index modulations on temperature via the thermo-optic effect in silica glass. However, 

FBGs can be more complex to install in certain applications and the interrogation equipment is 

currently more expensive compared to traditional electrical temperature sensors. In that regard, 
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FBGs may be better suited for niche applications that require their unique capabilities. 

One such unique application where the benefits of FBG sensors outweigh the limitations is its 

application for temperature-sensing for UAV health monitoring. Several researchers have conducted 

feasibility studies on this topic, some of which are presented below. 

In a 2020 study by N.A. Rosman et. al. [30], a temperature monitoring system was proposed by using 

the fiber Bragg Grating (FBG) approach. This system was developed by using OptiSystem simulation 

and hardware implementation. FBG was employed as it allows a reflected wavelength of light that 

shifts in response to variations in temperature and/or strain. Generally, FBG sensors offer ease of 

installation, higher accuracy, longer stability, smaller size, immunity to electromagnetic interference 

(EMI), and the ability to measure ultra-high and speed events. The results indicated that the 

wavelength shifting is dependent on the thermal expansion coefficient of the materials involved. 

In a 2012 review paper [31], Xiaoyi Bao et al. describe how Rayleigh, Brillouin and Raman scattering 

in optical fibers allows them to detect local material characteristic features like density, temperature, 

strain, and vibration with a high degree of accuracy. 

In another review paper by Jasjot K. Sahota et al. [32], various techniques like Phase-shifted FBG 

with femtosecond laser inscription, and Fiber laser-based FBG were reviewed. These optical sensors 

are usable in high-temperature ranges, making them suitable for aerospace applications. 

Authors Hyun-Kyu Kang et al. discussed a method of simultaneously monitoring both strain and 

temperature during and after the cure of a composite laminate using Fiber Optic Sensors [34]. In 

2007, R Montanini et al. successfully demonstrated a similar sensing system that allowed the 

simultaneous measurement of both temperature and strain by monitoring the change in reflected 

wavelength from two coupled FBG sensors that have been embedded into the composite laminate 

[35]. Such use of the same type of sensors to measure multiple physical parameters will be very 

important to keep costs and complexity down and reduce sensor compatibility issues in our future 

prototype HUMS. 

Thermal runaway of batteries is a failure mode of major concern for UAVs that use DC motors. 

Current commercial battery management systems do not provide adequate information in real-time 

to mitigate such issues. In a 2017 study [36], Aleksandra Fortier et al. explored the integration of FBG 

sensors inside lithium-ion battery (LiB) coin cells. Strain as well as internal and external 

temperatures were successfully recorded. A similar study was done by Susana Novais et al. in 2016 

[39], successfully demonstrating the ease of FBG installation for in-situ battery thermal monitoring. 



33 

 

FBGs make good temperature sensors at extremely low (cryogenic) temperatures, as was shown in a 

2005 paper by C Lupi et al. [37]. On the other hand, they also show good response at extremely high 

temperatures as well, as is evident in a 2022 review paper by Shaonian Ma et al. [38]. Such versatility 

and suitability to a wide range of operating conditions make FBGs the ideal aerospace temperature 

monitoring technology. 

ii. MEMS Sensors 

Built-in distributed temperature sensing can also be achieved using CMOS (MEMS)-based sensors. 

In [33], authors Karim Arabi and Bozena Kaminska discuss a simple and efficient built-in 

temperature sensor for the online thermal monitoring of microelectronic structures based on a CMOS 

1.2- micrometer technology. 

2.2.8 Vibration-related Fault Detection Literature for UAVs 

i. Fiber Optic Sensors 

Distributed fiber optic sensing provides an alternative approach for vibration monitoring over 

extended areas. In a 2010 paper, Yuelan Lu et al. proposed a distributed optical fiber vibration sensor 

based on spectrum analysis of a polarization-OTDR system to detect distributed vibration, notably 

pencil-break vibration [40]. For the phase optical time domain reflectometry system, they employed 

heterodyne detection and signal processing with moving averaging and moving differential. The 

spatial resolution was 5m, while the greatest frequency response found was 1 kHz. 

In 2017, Zengguang Qin et al. completed a research project in which they presented a vibration 

sensing system based on all-polarization-maintaining configurations of phase-sensitive optical time-

domain reflectometry (OTDR) [41]. Maintaining Polarization of the components reduce both 

polarization-induced signal fading and noise. The detectable frequency response was raised to 2.25 

kHz with a spatial resolution of 1 m, making them practical. 

In another 2017 study on real-time distributed vibration monitoring using phase-OTDR, Yu Wang et 

al. investigated the impact of pulsed light power entering the sensor fiber [42]. Then, for 1-D and 2-

D vibration localization, two systems based on the differential technique and the Prewitt edge 

detection approach applied to phase-OTDR were described. Finally, to achieve 3-D real-time 

vibration monitoring, a high-speed acquisition system based on FPGA was used. 

Fiber Optic distributed vibration sensors are being used in a broad range of applications, including 
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pipeline inspection gauge (PIG) detection and the YOLO object identification algorithm [43]. The 

trained model was able to precisely capture the invert-V signature in the spacetime graph, indicating 

the PIG’s real-time location. 

The repetition rate of the pump pulse limits the highest detectable vibration frequency using a phase-

sensitive optical time-domain reflectometer (-OTDR). This makes quantitative vibration frequency 

measurement challenging. Zhiyong Zhao et al. proposed a multicore fiber (MCF) based space-

division multiplexed (SDM) -OTDR and Mach- Zehnder interferometer (MZI) hybrid sensor [44] to 

overcome these limitations, enabling truly uninterrupted distributed vibration sensing with a broad 

vibration frequency response range and high spatial resolution. 

In summary, distributed fiber optic sensors offer complementary capabilities for aircraft health 

monitoring. Their multiplexing, extended coverage, and embeddability within composites make 

them well-suited for UAV applications. However, fiber optic systems need to enhance their dynamic 

range and frequency response. 

ii. Accelerometers 

Traditional vibration monitoring techniques have relied extensively on accelerometers based on 

principles such as piezoelectricity, capacitance, and inductance. These conventional sensors can 

provide high frequency responses up to 50 kHz and beyond, with good sensitivity and resolution [98]. 

Signal conditioning and data acquisition systems have been developed to enable vibration data 

analysis using techniques such as FFT analysis for fault diagnosis of rotating machinery [99]. 

However, conventional transducers offer only point measurements and lack multiplexing 

capabilities. 

 

In summary, while conventional acceleration transducers continue to play important roles in 

vibration monitoring, they lack extended coverage and multiplexing capabilities. 

 

2.2.9  Electrical Fault Detection 

i. Current Sensing 

The electrical power system (EPS) is critical for safe UAV flight as more and more UAVS are becoming 

electrically powered. Direct current (DC) distribution with power electronics is increasingly common 

in UAVs [45]. However, DC networks face protection challenges due to high discharge currents 

during faults. Traditional electrical protection methods for aerospace power networks may be 
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inadequate for the unique needs of compact UAV EPS architectures [47]. 

Conventional nondestructive testing approaches rely extensively on current measurements using 

clip-on probes or Hall effect sensors [48]. These traditional electrical measurement methods have 

limitations for UAV applications due to size, weight, electromagnetic interference, and lack of 

distributed sensing [49]. Fiber optic current sensors (FOCS) based on Faraday effect offer a 

lightweight and multiplexed alternative [50]. FOCS using microfabricated magneto-optic sensor 

heads weigh under 10 gm and offer high DC to AC current measurement accuracy [51]. Such FOCS 

technology shows promise for EPS health monitoring in UAVs and more research is needed on their 

application for in-flight fault diagnosis [52]. 

In summary, practical electrical measurement techniques like FOCS tailored for size, interference, 

and integration constraints need further investigation for UAV EPS monitoring [53].. 

ii. EMI Monitoring 

Stray electro-magnetic field (EMF) measurement using radio frequency (RF) antennas or HFCT coils 

is a non-contact technique for current monitoring [55, 56]. This facilitates detection of developing 

electrical faults by identifying modulation or inter-harmonics from switching devices [57]. However, 

EMI monitoring methods face size and interference challenges for compact UAV platforms that 

require shielded power electronics [58]. 

iii. EPS Analytics 

Analytical model-based approaches using machine learning have demonstrated high accuracy for 

UAV EPS condition monitoring. For instance, hidden Markov models achieved over 95% 

classification precision in identifying common power system fault categories from sensor data [46]. 

Neural networks, SVM and decision trees have delivered near 100% accuracy by learning complex 

fault signatures [59]. Deep learning methods like CNN, RNN and sparse autoencoders are also 

emerging for predictive UAV EPS maintenance [62]. 

In summary, specialized electrical sensing combined with data-driven analytical approaches shows 

promise for comprehensive real-time monitoring of UAV propulsion system health. Significant 

research is still needed to mature and validate these technologies through extensive flight testing. 

Robust integration and aviation certification also remain key challenges. 

2.2.10 Environmental Fault Detection Literature for UAVs 
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i. Acoustic Sensing 

Acoustic emissions provide valuable insights into the health of various UAV components such as 

motors, gearboxes, propellers and drive systems [47]. Techniques to analyze noise signals include 

artificial neural networks (ANN), empirical mode decomposition (EMD) and wavelet transforms. 

A 2022 study by Adam Bondyra et al. [47] applied ANNs on data from microphone arrays to classify 

acoustic emission features for multirotor UAV actuator fault detection and isolation. The method 

achieved over 98% accuracy in detecting and locating defective rotors. 

In 2019, Gino Iannace et al. [48] utilized ANNs to diagnose propeller defects in a UAV using acoustic 

data. With just the sound from defective blades, the model identified faults with 97.63% accuracy. 

EMD was found to isolate diagnostic acoustic features efficiently. 

A paper by Wenbin Liu et al. [173] employed deep convolutional neural networks to classify acoustic 

data for UAV rotor fault detection. The approach attained 92% accuracy for normal and abnormal 

sound conditions. Data augmentation and transfer learning improved model generalization. 

Researchers have also explored integrating acoustics with other sensing modalities. A 2020 study 

[174] combined sound, vibration and stator current data with long short-term memory networks to 

detect bearing faults and estimate remaining useful life in UAV motors with up to 92% accuracy. 

While most literature has focused on rotary UAVs, Mohd Ariffanan Mohd Basri et al. [175] proposed 

an ANN-based acoustic approach for fixed-wing UAV fuel leak detection with 95% accuracy. This 

demonstrates the potential of acoustics for propulsion system monitoring. 

Overall, acoustic sensing enables condition monitoring of otherwise inaccessible components. 

Challenges include operation in noisy flight environments and integration of arrays on limited UAV 

payload space. Lightweight MEMS microphones and onboard analytics hold promise to address these 

barriers [176]. 

ii. Icing Detection 

Airframe and propulsion system icing poses a severe flight hazard for UAVs operating in inclement 

weather [177]. Icing disrupts aerodynamics and risks component damage or failure if unchecked. 

Therefore, real-time icing detection and mitigation capabilities are critical. 

Richard Hann et al. [50] developed an electro-thermal technology to detect and counteract icing on 
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fixed wing UAV wings. The system autonomously activated heating elements upon detecting ice 

buildup via embedded sensors. While effective, such solutions increase power consumption for 

smaller UAVs. 

An infrared thermography based approach was proposed by Hua Yang et al. [178] to identify icing on 

UAV rotors. A thermal camera monitored temperature differences between the rotor tip and ambient 

air to identify icing events. However, such imaging systems can be costly and challenging to embed 

on micro UAV airframes. 

Researchers have also studied Microwave Radiometers (MWR) which can remotely detect moisture 

in clouds conducive to icing [179]. Although large radar systems provide wider coverage, recent work 

has shrunk MWR units to fit small aerial platforms. For instance, a 2018 study [180] demonstrated 

a 160 gm MWR integrated on a multirotor UAV for targeted in situ icing condition monitoring. 

Advanced anti-icing coatings and MEMS solutions have additionally gained interest to mitigate UAV 

icing incidents [181]. Embedding icing sensors in these coatings could enable holistic detection and 

protection. Overall, continued innovations for in situ icing monitoring matched with aerodynamic 

adaptations will be imperative to operate UAVs safely in adverse weather. 

iii. Other Sensing 

Beyond acoustics and icing, UAV health monitoring necessitates other environmental measurements 

including airspeed, turbulence, wind, temperature, humidity and barometric pressure [182]. 

Lightweight MEMS and optical sensors are required, coupled with data fusion techniques to 

synthesize information from diverse modalities. 

Custom sensor suites have been designed for small UAVs, such as the 90 gm weather sensor array by 

Robert Sorensen et al. incorporating thermometers, hygrometers and anemometers [183]. Michał 

Czapski integrated multiple MEMs sensors into fixed-wing airframes to capture turbulence and icing 

conditions [184]. The miniaturization and cost reduction of such environmental sensors will promote 

their adoption in UAV prognostics and health management systems. 

2.3 Analysis and Recommendations 

The preceding sections reviewed prominent technologies and research related to health and usage 

monitoring systems for UAVs. This analysis synthesizes key findings from the literature to identify 

limitations of current solutions and potentials for improvement. These provide the basis for 
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recommendations on optimal technologies suited for developing a retrofittable HUMS prototype. 

2.3.1 Limitations of Current Solutions 

While the literature reveals several promising technologies for UAV health monitoring, certain 

limitations persist that constrain real-world performance, robustness, and applicability. 

Size, weight, and power consumption remain key constraints for onboard health monitoring systems 

[131]. Although MEMS and fiber optic sensors provide lightweight solutions, the supporting 

interrogation and transmission modules are still bulky and power-hungry [132]. This hampers 

deployment on small UAV platforms with limited payload capacity. Custom ASICs and energy 

harvesting methods need further research to overcome these barriers. 

Reliability and ruggedness present another concern, especially for embeddable and non-contact 

sensors operating in harsh flight conditions [133]. Failure of a single node can degrade distributed 

measurement capabilities. Hermetic packaging, redundancy, and fault-tolerant network topologies 

provide avenues to address these challenges. 

Limited dynamic range and frequency response of certain sensing modalities restricts their 

effectiveness for vibration monitoring, impact detection, and other applications [134]. For example, 

fiber optic acoustic sensors have shown lower sensitivity compared to piezoelectric transducers [135]. 

Multi-physics modeling and materials research could help expand the operating envelopes. 

Most research focuses on sensors embedded in specific structures like wings and tail booms [134]. 

However, holistic monitoring requires expanding sensing to subsystems like motors, controllers and 

batteries. Lack of standards and certification frameworks is another barrier to technology maturity 

and adoption [135]. A key gap is the development of integrated algorithms that synthesize multi-

modal sensory data to enable vehicle-level diagnosis. 

Finally, the lack of standards, productization, and certification procedures hinders technology 

maturity and adoption [137]. Cost analysis studies are also scarce. Addressing these gaps is essential 

to translate promising research concepts into fielded UAV health management solutions. 

2.3.2  Potential for Improvements 

Addressing the above limitations requires research across technology, manufacturing, and policy 

domains. Several high-potential areas emerge from the literature survey. 
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Reducing the size and enhancing efficiency of interrogation systems could accelerate embeddable 

sensor deployment [138]. Photonic integrated circuit solutions show promise to replace bulky optical 

interrogators. Energy harvesting utilizing vibration, solar, and RF methods also warrants research 

for self-powered modules [139]. 

Improving ruggedness of sensors and ensuring redundancy would increase robustness, especially for 

critical structural monitoring [140]. Techniques like optical switching in fiber networks, multiplexed 

RF links, and multi-path routing provide redundancy at the systems level. 

Expanding dynamic range and frequency response would broaden applicability of certain sensing 

modalities like fiber optic acoustic emission detectors [141]. Novel transduction methods, new 

materials like graphene, and MEMS fabrication techniques provide pathways for performance 

enhancement. 

Analytics and data fusion are active research frontiers. Recent works demonstrate the potential of 

physics-based models, machine learning, and statistical approaches for integrated vehicle health 

management [142,143]. However, significant development remains to achieve robust 

implementations. 

Technology maturation and certification is critical for fielding [144]. Engagement with standards 

bodies and regulators early in the design process could accelerate the path to commercialization. 

Cost-benefit studies are also needed to quantify the value of health monitoring. 

In summary, multifaceted innovation spanning materials, devices, analytics, and policy is required 

to unlock the full potential of UAV health management systems. The technology foundations are 

maturing rapidly, setting the stage to address current limitations. 

2.4 Conclusion 

This literature review has synthesized key research related to health and usage monitoring 

technologies for unmanned aerial vehicles. The findings highlight promising sensing solutions while 

also revealing limitations that constrain real-world performance and robustness. These insights set 

the stage for a systematic comparative analysis to recommend optimal technologies for developing a 

retrofittable HUMS prototype. 

2.4.1 Summary of Findings 

Numerous sensing modalities demonstrate viability for UAV health monitoring, including fiber optic, 
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piezoelectric, MEMS, and acoustic sensors. Each excels in certain applications; for instance, FBG 

sensors enable distributed strain and temperature monitoring, while PZT transducer arrays offer 

high-resolution structural diagnosis. Fiber optic sensors, especially FBG sensors, are widely favored 

for UAV health monitoring due to attributes like distributed sensing, EMI immunity, and 

embeddability.  

However, limitations persist in interrogator size, robustness against fiber damage, and lack of sensing 

at non-structural subsystems. Size, weight, power, and cost constraints impose barriers, especially 

for small UAV platforms. Ruggedness, reliability, security, and redundancy need improvements to 

operate reliably in harsh flight conditions. Sensors with limited dynamic range and frequency 

response have reduced effectiveness for vibration monitoring and impact detection. 

Notably, current research focuses more on isolated subsystems rather than holistic vehicle health 

management. Integrated algorithms that synthesize multi-modal data to enable vehicle-level 

assessment represent a key gap. Furthermore, the lack of standards, productization, and certification 

procedures hinders technology maturity and adoption. 

2.4.2  Outlook 

While foundational technologies are maturing, realizing the full potential of UAV health management 

requires pushing sensing frontiers as well as innovations in manufacturing, data analytics, and policy. 

Ongoing materials research and nanofabrication techniques can enable smaller, more efficient 

sensors with expanded operating envelopes. For instance, graphene-based transducers may offer 

broadband dynamic range exceeding conventional alternatives. Physically unclonable function (PUF) 

sensors leverage nanoscale manufacturing variations for resilience in hostile environments. 

Edge computing and AI will be critical to actualize integrated vehicle health management. 

Lightweight neural networks that process heterogeneous sensor data could enable continuous 

monitoring and predictive maintenance. Blockchain solutions address security, verification, and 

control challenges associated with UAV data sharing. 

Additive manufacturing, multifunctional meta-structures, and self-healing materials open new 

possibilities for smart sensing components. Modular, plug-and-play architectures will allow flexible 

sensor integration and upgrades. Standardization and certification frameworks need to coevolve with 

these emerging technologies. 
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2.4.3  Need for a Trade-Off Analysis 

This literature review has spanned structural, thermal, vibrational, electrical, and environmental 

monitoring techniques relevant for UAVs. However, a systematic comparative analysis is essential to 

identify the most promising technologies suited for developing a pragmatic HUMS prototype given 

size, power, cost, and other constraints. 

The next chapter will undertake a trade study in section 3.4 to evaluate candidate solutions based on 

quantitative metrics and application requirements. Combined with lessons from this review, the 

trade study will provide the methodological basis for selecting optimal sensors, networking 

approaches, and computing strategies for the prototype system. 

In summary, the literature review has provided support for the First Hypothesis that existing 

maintenance practices are inadequate for addressing UAV reliability challenges. The analysis 

revealed limitations of current maintenance routines and underscored the need for innovations like 

HUMS to enable predictive capabilities. The literature review has also supported the Second 

Hypothesis – that current HUMS solutions are unsuitable for small UAVs owing to size, weight, 

power, and cost constraints. In the next chapter, the system architecture and design process outlined 

to exquisitely tailor the prototype HUMS’s requirements and component selection to the size, weight 

and power restrictions of small UAVs add further credence to the correctness of the Second 

Hypothesis outlined at the beginning of this thesis. 
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Chapter 3 
 

Methodology & System Overview 

 
3.1 Introduction 

This chapter presents the methodology for developing a retrofittable and cost-effective Health and 

Usage Monitoring System (HUMS) prototype tailored for unmanned aerial vehicles (UAVs). The 

literature review in Chapter 2 provided an overview of prominent technologies and research 

related to UAV health monitoring. Building on those findings, this chapter outlines the process for 

designing the HUMS prototype, beginning with defining the key requirements and constraints. A 

trade study is then conducted to evaluate and select optimal technologies for the prototype. Finally, 

the overall system architecture, components, and implementation are described. 

The objective is to demonstrate a simplified HUMS that can continuously monitor critical 

parameters like vibration, temperature, and electrical current to detect anomalies and enable 

predictive maintenance. The long-term goal is a modular, adaptable HUMS that can be easily 

retrofitted to various UAV platforms to improve reliability and safety. 

 

3.2 Mission-critical Failures Modes and Sensing 

Requirements for small-to-mid sized UAVs 

Reliable operation of unmanned aerial vehicles (UAVs) necessitates identifying and 

monitoring failure modes that are most likely to compromise mission success and safety 

during flight. To determine the key failure modes, a failure modes effects and criticality 

analysis (FMECA) was conducted based on a recent study by Chowdhury and Lipsett [187]. 

The FMECA identified the following failure modes as potentially mission-critical for small-to-

medium sized UAVs based on their likelihood of occurrence and severity of consequences: 

1. Structural Failures: 
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• Buckling due to excessive wind shear or bird strike impacts. 

• Material fatigue leading to catastrophic cracks and breakages. 

2. Propulsion System Failures: 

• Propeller damage such as nicks, erosion or fracture. 

• Internal motor failures like demagnetization or winding shorts. 

• Electronic speed controller (ESC) malfunctions. 

3. Power System Failures: 

• Battery thermal runaway events and associated fires. 

4. Communication System Failures: 

• Broken wiring connectors and damaged cabling. 

• Intermittent or fully disconnected data links. 

5. Environmental Threats: 

• Icing accumulation on wings, rotors and control surfaces. 

• Antenna and sensor damage from environmental factors. 

• Camera/sensor degradation such as lens occlusion. 

• Radiation induced disruptions of onboard electronics. 

It is to be noted here that lubricant-related failures can occur on internal combustion (IC) engine 

powered UAVs, even in short flights. However, these types of failures have not been included 

within the scope of our research, as we are mostly concerned with small-to-medium size battery-

powered UAVs in this thesis. 

The study [187] performed a comprehensive failure mode and effects analysis (FMECA) to identify 

the most critical failure modes for small-to-medium sized UAVs. Their analysis concluded that 
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structural failures, propulsion system failures, power system failures, communication failures, and 

environmental threats were the highest priority risks that could compromise mission success and 

safety. Monitoring the onset and progression of these failure modes necessitates structural, 

thermal, vibrational, electrical, and environmental sensing capabilities. Therefore, based on the 

FMECA recommendations, condition indicators related to these five failure categories were 

selected for focus in developing the health and usage monitoring prototype to enable early fault 

detection and prevent catastrophic UAV failures. This aligns with the overarching motivation to 

improve reliability and maximize mission availability through a sensor-based predictive 

maintenance system. 

To detect the onset and progression of these failure modes, the following key sensing 

requirements were derived: 

1. Structural Health Monitoring: 

• Stress range monitoring at likely failure points. 

• Strain measurement for fatigue cycle counting. 

2. Propulsion System Monitoring: 

• Vibration analysis to identify imbalances. 

• Temperature monitoring of motors and ESCs. 

• Real-time RPM tracking. 

3. Power System Monitoring: 

• Battery voltage and current measurement. 

• Temperature monitoring for thermal runaway. 

4. Communications Health Monitoring: 

• Link signal-to-noise ratio (SNR). 

• Network continuity and data transmission logging. 
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5. Environmental Monitoring: 

• Temperature, humidity, pressure and other ambient condition sensors. 

• Vision-based monitoring for sensor degradation. 

• GPS signal reception strength checks. 

Based on these requirements, the following sensor classes were selected as suitable candidates for 

the health and usage monitoring system prototype: 

1) Structural Sensors: Strain gauges, fiber Bragg gratings (FBG), and piezoelectric 

transducers enable distributed monitoring of structural loads. Ultrasonic detectors can 

identify subsurface flaws. (e.g., HBM FIT series FBG sensors)  

2) Vibration Sensors: Accelerometers and velocity transducers coupled with high frequency 

data acquisition systems facilitate vibration analysis. Fiber optic acoustic sensors offer an 

alternative approach. (e.g., ADXL335 triple-axis accelerometer) 

3) Temperature Sensors: Resistive temperature detectors (RTDs), thermocouples, 

thermistors, and FBG sensors track temperature across critical components. (e.g., Sensirion 

SHT85) 

4) Current Sensors: Hall effect sensors and fiber optic current transducers measure electrical 

current to assess battery and motor health.  

5) Environmental Sensors: MEMS pressure, humidity, gas, and airspeed sensors provide 

ambient condition monitoring. Weather radar and icing detectors aid situational awareness. 

This sensor selection provides coverage for detection, diagnosis and prognosis of the identified 

mission-critical failure modes using affordable and proven sensing technologies. The complement 

of temperature, vibration, strain, electrical and environmental sensors constitutes the basis for a 

retrofittable health and usage monitoring system capable of bolstering the reliability and safety of 

small-to-medium sized UAVs. 

3.3 General design requirements and constraints for the 
prototype HUMS 
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At first, 8 key general design requirements are set to guide the overall HUMS prototype design 

process: 

(1) Modular and Flexible design: The HUMS should have modular design to allow interfacing 

with a broad range of UAV platforms through customizable sensor configurations. 

(2) Low Bandwidth requirements: The HUMS should be capable of monitoring all major 

condition indicators of the UAV with minimum bandwidth. 

(3) Low Size and Weight: The HUMS hardware should have low size and weight requirements 

to minimize impact on the UAV’s payload capacity and flight endurance [145]. The total mass 

should be under 5% of the takeoff weight, and the form factor needs to be small so as to not 

cause aerodynamic drag or impede the UAV’s normal functionalities in any way. 

(4) Low Power Consumption: The HUMS, through energy-efficient components, should have 

low overall power requirements to avoid excessive battery drainage [146]. 

(5) Low Cost and Scalability: The HUMS should be low cost and highly scalable by utilizing 

affordable commercial off-the-shelf (COTS) components [147]. 

(6) Improved UAV Reliability: The UAV with onboard HUMS should have reliability greater 

than an unmodified robot in the harshest operating and environmental conditions, and in case 

of failures, the HUMS should be field maintainable. Redundancy techniques like mesh 

networking must be incorporated to mitigate single point failures. Through an intuitive 

dashboard, the HUMS will help operators analyze trends and generate alerts for preventive 

maintenance. 

(7) Security: The HUMS should have data security against cyber-attacks, jamming and hacking 

through secure bootloading, authentication, and encryption. 

(8) Safety: The HUMS cannot compromise flight safety through electromagnetic interference or 

reduced aircraft stability margins [150]. 

These design requirements will guide the rest of the HUMS development journey. To fulfill these 

general requirements, some commercially available, low-cost sensors were chosen to give the 

HUMS the necessary fault-detection capabilities. 

3.4 Tradeoff study of available technologies 
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3.4.1 Evaluation Criteria 

This section evaluates and compares candidate technologies to recommend optimal solutions for 

developing the health and usage monitoring system (HUMS) prototype tailored for unmanned 

aerial vehicles (UAVs). The analysis is driven by key design requirements and constraints 

identified in Section 3.2 and 3.3.  

The following quantitative metrics are used to benchmark and compare alternative technologies: 

▪ Size and weight: Ideal < 50 gm, Maximum < 200 gm 

▪ Power consumption: Average < 1 Watt 

▪ Onboard processing capability: ARM Cortex M4 class 

▪ Wireless range: 50 – 500 m 

▪ Throughput: 50 – 500 kbps 

▪ Sampling frequency: 0.1 – 10 kHz 

▪ Operating temperature: -10 to 60°C 

3.4.2 Wired vs Wireless Sensors Selection 

While wired sensors ensure reliability and minimize interference, wireless sensor networks enable 

flexibility in distributed sensing critical for UAVs. Hence wireless sensors with Zigbee connectivity 

are chosen despite higher unit costs. Mesh topologies provide redundancy to mitigate single node 

failures. Zigbee modules maintain a lightweight form factor under 10 gm. 

3.4.3 Central Microcontroller Selection 
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Table 2: COMPARISON OF CANDIDATE CENTRAL MICROCONTROLLERS 

Microcontroller Size (mm) 

Weight 

(gm) 

Processing 

(DMIPS/MHz) 

Power 

(mW) Wireless 

Arduino Uno 2.  53 25 16 500 WiFi shield 

Raspberry Pi Zero 65 x 30 9 1400 360 

WiFi 

onboard 

SeeedStudio XIAO 48 x 23 5 12 720 

BLE 

onboard 

 

The SeeedStudio XIAO offers the best balance of small form factor and processing capabilities. 

However, Arduino Uno is chosen for its ease of integration with diverse sensors and extensive 

community support. 

3.4.4 Comparative Analysis for Sensors 

 

Table 3: COMPARISON OF CANDIDATE SENSORS FOR VARIOUS FAULT TYPES 

Sensor Measurement Size (mm) 

Weight 

(gm) 

Power 

(mW) 

Frequency 

(Hz) Interface 

DHT22 

Temperature, 

Humidity 40 x 20 x 11 11 0.3 0.5 Digital 

ADXL335 Vibration 27 x 13 x 8 2 0.32 0-1000 Analog 
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Sensor Measurement Size (mm) 

Weight 

(gm) 

Power 

(mW) 

Frequency 

(Hz) Interface 

SHT85 

Temperature, 

Humidity 19 x 7 x 5.5 2 15 1 I2C 

The DHT22 offer compact profiles and ultra-low power consumption suitable for UAVs compared to 

the SHT85. Hence the DHT22 was chosen despite marginally lower performance. 

However, the measurement range and fault sensitivity requirements must also be considered for 

robust condition monitoring. For the DHT22 temperature sensor, the range is -40°C to 80°C, with a 

fault sensitivity of ±0.5°C, sufficient to detect thermal issues in batteries or motors which could 

experience up to 50°C rise from ambient for minor faults and >100°C for major failures.  

The ADXL335 vibration sensor has a range of 0-1000 Hz and sensitivity of 10 mV/g, capable of 

detecting motor imbalance faults which typically cause 10-100X vibration amplitude increases from 

baseline. The sampling rate of 1 kHz meets the Nyquist criterion for maximum vibration frequencies 

around 500 Hz. 

By evaluating both performance metrics and measurement ranges, sensors can be selected that 

reliably meet the condition monitoring objectives for early fault detection and diagnostics. The 

metrics analysis ensures technical viability while range analysis guarantees sensitivity to failure 

modes of interest. 

3. Communication Protocol Selection 

Selecting optimal communication protocols is imperative for the health and usage monitoring 

system (HUMS) to ensure reliable data transfer within the unmanned aerial vehicle (UAV) and to 

the ground station. This research adopts a hybrid architecture utilizing Zigbee for wireless 

communication between the sensor clusters and central microcontroller, while LoRaWAN connects 

the microcontroller to the cloud analytics platform. 

For short-range communication within the UAV, Zigbee was selected over alternative protocols like 

Bluetooth and proprietary RF solutions. Zigbee’s self-organizing mesh network topology provides 
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inherent redundancy and robustness, overcoming the limitations of a star topology. If any node fails 

in a star network, it can render the entire system inoperable. In contrast, Zigbee allows automatic 

multi-hop routing along the best available path, minimizing data loss from individual node failures. 

 

Figure 9: Mesh self-organizing network [65] 

Zigbee’s built-in encryption enhances security compared to Bluetooth networks which are more 

susceptible to unauthorized access. Zigbee’s 128-bit AES encryption secures data transmission 

between resource-constrained sensor nodes. Zigbee networks can support over 65,000 nodes with 

low latency, catering to high node density scenarios. In comparison, Bluetooth networks are limited 

to 8 active slave nodes per master. Zigbee’s extensive range up to 100 meters satisfies 

communication requirements within a small UAV platform. 

Importantly, Zigbee is optimized for low power applications with nodes in sleep mode consuming 

just 5-50 mW. This maximizes battery life for wireless sensor nodes, extending the UAV’s 

operational duration. In contrast, Bluetooth is relatively power-hungry, consuming over 100 mW 

even in idle mode which quickly depletes batteries. Zigbee operates in the globally compatible 

2.4GHz band compared to Bluetooth’s crowded 2.4GHz spectrum leading to interference issues. 

Zigbee’s meshing allows bandwidth reuse to support over 250 kbps throughput meeting intra-

vehicle data rates. 

For long-range communication, LoRaWAN provides connectivity spanning several kilometers 

compared to hundreds of meters for other protocols like Sigfox, NB-IoT, and regular WiFi. 

LoRaWAN’s chirp spread spectrum modulation enhances robustness and resilience to channel 

noise. Its wideband chirps allow operation at low transmit power levels around 25 mW, enabling 

compact battery-powered end nodes. LoRaWAN networks employ a star-of-stars topology where 
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gateways relay messages between end devices and central network servers. The gateways provide a 

robust and resilient link over large campus, citywide or regional footprints. 

 

Figure 10: Bandwidth vs. a range of short-distance, cellular and LPWA networks 

LoRaWAN’s physical layer bit rates range between 0.3 kbps to 50 kbps depending on spreading 

factors. Despite modest throughput, LoRaWAN meets the bandwidth requirements for periodic 

health monitoring data from UAV platforms. The long-range connectivity up to 10 km enables 

continuous transmission during remote operations beyond the range of Zigbee or WiFi. 

Alternatively, cellular networks could also be utilized for global coverage and higher bit rates above 

1 Mbps, albeit at increased power consumption. 

By combining Zigbee and LoRaWAN, the hybrid architecture eliminates extensive wiring 

associated with tethered sensors. The wireless integration of distributed sensor nodes respects the 

size, weight and power constraints of small UAV platforms. Zigbee facilitates reliable intra-vehicle 

data exchange among sensors while LoRaWAN enables long-range cloud connectivity for real-time 

analytics and decision making. This balanced approach addresses the challenges of bandwidth, 

throughput, interference mitigation, reliability and range associated with UAV health monitoring. 

The standards-based protocols ensure interoperability, security, and scalability as well as minimal 

development effort. Overall, the hybrid architecture provides an optimized, field-ready 

connectivity framework tailored for the next generation of smart and connected UAVs. 

3.4.7 Cloud Analytics Platform Selection 

ThingSpeak is chosen for its ease of use in creating live data channels and dashboards compared 

to alternatives like Arduino IoT Cloud. Built-in APIs simplify integrating analytics and alerts. 

3.4.8 Technology Recommendations 
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Based on the tradeoff analyses, the key technologies recommended are: 

• Wireless sensor nodes with DHT22 and SW-420 sensors 

• Arduino Uno central microcontroller 

• Zigbee communication protocol between nodes and microcontroller 

• LoRaWAN protocol between microcontroller and ground station 

• ThingSpeak cloud analytics platform 

This technology portfolio provides an optimal combination of sensing coverage, compact form 

factor, energy efficiency and rapid prototyping capabilities well-suited for developing the simplified 

HUMS prototype. 

Rigorous comparative analysis facilitated the selection of technologies best aligned with the HUMS 

design requirements. The wireless architecture offers flexibility while the Arduino ecosystem 

enables efficient prototyping. This technology foundation sets the stage for validating the HUMS 

prototype’s capabilities and potential for UAV platforms. 

3.5 System Architecture Diagram 

The system architecture provides a comprehensive overview of the HUMS components and how 

they integrate to fulfill the functional requirements. A well-designed architecture is crucial for the 

HUMS to deliver reliable condition monitoring capabilities for unmanned aerial vehicles (UAVs). 

The system architecture diagram comprises two key elements – the architecture flowchart and the 

component-level diagram. The flowchart offers a high-level view of the end-to-end data flow and 

analytics pipeline. Meanwhile, the component diagram details the specific hardware elements, 

connectivity mechanisms and data transmission protocols. 

3.5.1 System Architecture Flowchart 
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Figure 11: System Flowchart for the proposed HUMS 

The HUMS architecture flowchart depicts the overall workflow from data acquisition to decision 

support. As illustrated in Figure 11, the distributed sensor nodes powered by Arduino boards 

continuously acquire vital condition indicators. This includes temperature, vibration levels, rotor 

RPM and other parameters corresponding to the failure modes of interest. 

The sensor measurements are transmitted wirelessly using Zigbee to the central onboard 

microcontroller. This microcontroller aggregates data from all the nodes to create a comprehensive 

snapshot of the UAV’s health state in real-time. The microcontroller then sends the aggregated data 

to the cloud analytics platform via the long-range LoRaWAN protocol. 

On the cloud platform, the streaming sensor data is analyzed using statistical algorithms, digital 

signal processing and machine learning models to detect anomalies. Any exceedances, abnormal 

trends or incidents that require maintenance are identified at this stage. The platform raises alerts 

for the ground control station, where operators can visualize the data trends, diagnose faults and 

take appropriate actions. 

This end-to-end architecture ensures that critical sensor data is seamlessly captured, 

communicated, analyzed and translated into actionable information for predictive maintenance. 
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The flowchart provides a high-level overview of the distributed sensing, communication protocols, 

cloud analytics and human-machine interaction elements that enable robust condition monitoring. 

3.5.2 System Architecture Diagram 

 

Figure 12: System Architecture Diagram of the proposed HUMS for UAV 

The system architecture diagram in Figure 12 illustrates the hardware components that collectively 

realize the HUMS workflow. The key elements are: 

• Wireless Sensor Nodes: 

• Arduino Uno R4: This microcontroller board serves as the core of the wireless 

sensor nodes. Its Atmega328P MCU provides processing capabilities for data 

acquisition and transmission. 

• Grove Base Shield V2: The shield offers plug-and-play Grove connectors to 

interface sensors and modules with the Arduino board. 

• Xbee Module: These RF modules create Zigbee mesh networks enabling wireless 

communication between nodes and the central MCU. 
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• DHT22 Sensor: This digital temperature and humidity sensor tracks 

environmental conditions. 

• ADXL335 Sensor: The 3-axis accelerometer measures vibrations for health 

monitoring. 

• Central Onboard Microcontroller: 

• Seeed Studio XIAO nRF52840: This powerful ARM Cortex M4F board aggregates 

sensor data via its onboard Xbee receiver and processes analytics algorithms. 

• Expansion Board: Provides Grove connectors to link LoRaWAN and data storage 

modules. 

• Communication Modules: 

• Xbee Module: Creates the Zigbee mesh network for intra-vehicle communication 

between sensor nodes and central MCU. 

• Grove LoRaWAN Module: Enables long-range wireless transmission to the cloud 

analytics platform. 

• Cloud Platform: 

• ThingSpeak: This robust IoT analytics platform enables real-time data 

visualization, archiving, processing and alerts. 

• Local Storage (optional): 

• MicroSD Module: Provides onboard flash storage for sensor data, logs and other 

information. 

This architecture provides a flexible, scalable and redundant framework for UAV platforms. The 

wireless integration and compact footprint of the Arduino sensor nodes allow easy installation at 

critical locations without extensive rewiring. The hybrid Zigbee and LoRaWAN approach balances 

efficient local data exchange and long-range cloud communications. Finally, the ThingSpeak 

platform offers a simplified yet powerful tool to operationalize the streaming HUMS data through 

interactive visualizations, intelligent analytics and configurable alerts. 
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In summary, the system architecture design fulfills the key requirements for the UAV health and 

usage monitoring system. By connecting sensing, communication, and decision support across 

hardware and software elements, the architecture enables comprehensive, real-time condition 

monitoring to bolster efficiency, safety, and reliability during flight missions. 

3.6 Decision to Simplify the HUMS for Initial Prototyping 

The Health and Usage Monitoring System (HUMS) architecture and technologies proposed 

in Sections 3.4 and 3.5 represent an ideal configuration for maximizing sensing coverage, 

redundancy, and analytics capabilities. However, implementing the complete system exceeds 

the scope of this initial research project focused on preliminary proof-of-concept validation. 

Therefore, a deliberate decision was made to construct a simplified prototype with wired 

sensor connections and WiFi communication in place of LoRaWAN. This streamlined 

approach enabled rapid assembly and troubleshooting, overcoming limitations in funding, 

labor and timeline constraints. More importantly, it fulfilled the key objective of 

demonstrating core real-time monitoring capabilities and validating the HUMS concept. 

Several factors drove this simplification: 

• Research Phase Focus: The primary goal at this stage is rapid prototyping and 

initial proof-of-concept testing versus productization. A simplified version allows 

quicker assembly and debugging. 

• Resource Constraints: The available budget, labor, and timeline constrained 

constructing a fully redundant wireless mesh architecture across the entire UAV 

platform. 

• Prioritization of Functionality: Demonstrating core real-time monitoring 

capabilities took precedence over robustness and form factor optimization during 

initial trials. 

• Commercialization Pathway: While the final HUMS will be a wireless platform, a 

wired prototype still validates core analytics, dashboard and alert features that can be 

carried over later. 

• Accessibility of Components: The Arduino ecosystem offers plug-and-play 

modules for rapid integration versus custom wireless sensor development. 
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• Risk Mitigation: Troubleshooting and validation is easier with a wired architecture 

before addressing complexities like interference in wireless deployments. 

Moreover, the initial simplified HUMS prototype was planned to include an ADXL335 

accelerometer for vibration-based condition monitoring in addition to the DHT22 

temperature and humidity sensor. However, due to timeline and resource constraints, only 

the DHT22 sensor could be implemented and tested in the simplified prototype described in 

this chapter. The vibration monitoring capabilities will be incorporated in the next phase of 

developing the comprehensive wireless HUMS as detailed in Chapter 5. 

The simplified wired prototype offers valuable insights despite limitations. The use of jumper 

cables restricts flexible sensor positioning and distributed monitoring unlike a wireless mesh. 

Reliance on WiFi connectivity also prevents field testing in remote areas or at high altitudes 

where internet is unavailable. However, the fundamental data analysis, anomaly detection 

and cloud dashboard features can still be proven and ported to future wireless versions. 

This phased approach aligns with best practices in engineering design processes. With rapid 

prototyping as the goal in Phase 1, factors like functionality testing, risk mitigation and 

leveraging accessible technologies take priority over productization considerations like size, 

cost or field reliability. The learnings from initial concept validation then guide the next stage 

of evolution. 

The subsequent Phase 2 development can integrate wireless sensing and long-range 

communication based on Zigbee and LoRaWAN as originally proposed. This transition will 

be smoother having already validated the data analytics pipeline and human-machine 

interfaces. In essence, the simplified prototype offers a launching pad to mature the HUMS to 

an aviation-grade solution ready for real-world deployment. 

In the ideal version of the HUMS, which is feasible for an industrial setting, the following 

components were proposed for implementation: 

Sensor Clusters: 

• Temperature & Humidity Sensors: e.g., Sensirion SHT85 

• Vibration Sensors: e.g., ADXL335 3-axis accelerometer 

• Strain Sensors: e.g., HBM FIT series FBG sensors 
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• Electrical Sensors 

• Optical, Acoustic, and other types of Environmental Sensors 

Data Transmission: 

• Zigbee Protocol for wireless connectivity between sensor clusters and central 

microcontroller (Arduino) 

• LoRaWAN or Cellular GSM Shield for long-range data transmission from the central 

microcontroller to the cloud or ground station 

Central Microcontroller (Onboard UAV): 

• Arduino or Seeed Studio XIAO nRF52840 Sense Board 

On the other hand, the actual test setup version of the HUMS involved the following 

components: 

Sensor Setup: 

• Grove DHT22 Temperature & Humidity Sensor 

Data Transmission: 

• Grove UART WiFi Module V2 – for data transmission from the central Arduino to the 

cloud (ThingSpeak) 

Central Microcontroller (Onboard UAV): 

• Arduino UNO R3 

• Grove Base Shield for Arduino 

Despite the streamlined implementation, this approach validates the potential of the HUMS 

concept. Lessons from the initial prototype will inform the next stage of evolving a 

comprehensive wireless sensor network architecture. The simplification lowers the barrier to 

demonstrating functionality rather than being limited by scale. 

In summary, the pursuit of a simplified HUMS prototype aligns with the research objectives at 

this conceptual stage. It enables agile proof-of-concept validation while laying the foundations 



59 

 

for future wireless products that meet the rigors of aviation industry standards. The learnings 

will pave the path to mature and rugged solutions ready for real-world deployment across a 

variety of UAV platforms. 

3.7 System Design for the Simplified HUMS 

Here is a brief overview of the specific components that have been used in our Simplified HUMS 

scenario: 

Arduino Uno R4: 

 

Figure 13: Arduino UNO R4 [81] 

The Arduino Uno R4 WiFi represents an enhanced evolution of the Arduino Uno, providing 

upgraded processing capabilities and built-in wireless connectivity to satisfy the needs of the 

simplified wireless HUMS prototype [81]. 

At its core lies the RA4M1 microcontroller, with 256KB flash and 48KB SRAM, offering ample 

program memory and workspace for data acquisition, preprocessing algorithms, and WiFi-based 

transmission. The 120MHz clock speed facilitates more sophisticated filtering compared to the 

original Uno. 

The inbuilt ESP32-S3 WiFi/Bluetooth module provides wireless transmission capabilities, 

removing the need for a separate shield as used previously. This shrinks the overall footprint while 

integrating communication functions. The WiFi interface enables simplified prototyping without 
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wiring, while Bluetooth permits future wireless sensor integration. 

To accommodate the wide input voltage needs of UAVs, the Uno R4 WiFi supports 7-24V 

operation. The power draw is similar to the original Uno, ensuring minimal impact on flight 

endurance. 

The expanded peripherals like the 12-bit DAC, CAN bus, op-amp, and 12x8 LED matrix offer 

possibilities for advanced signal conditioning, control, and visual output. However, these are 

unnecessary for the simplified prototype. 

Overall, the Arduino Uno R4 WiFi enhances the processing and wireless capabilities over the 

original Uno while maintaining the versatility and community support of the Arduino ecosystem. 

Its wireless integration, expanded memory, faster clock speed, and voltage tolerance validate its 

selection for implementing the simplified wireless sensing prototype within UAV SwaP 

constraints. 

Grove Base Shield V2.0 for Arduino: 

 

Figure 14: Grove Base Shield V2.0 for Arduino by SeeedStudio [82] 

The Grove Base Shield V2.0 for Arduino, manufactured by SeeedStudio, plays a crucial role in the 

simplified HUMS setup for real-time condition monitoring. This shield offers a streamlined and 
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organized approach to connect with Arduino boards, eliminating the need for cumbersome 

breadboards and intricate jumper wires. Its compatibility with Arduino Uno R3 ensures seamless 

integration with the existing architecture [82]. 

The key features of the Grove Base Shield V2.0 are primarily centered around its 16 onboard Grove 

connectors, which consist of 4 x Analog, 7 x Digital, 1 x UART, and 4 x I2C interfaces. This extensive 

array of connectors provides the capability to effortlessly interface with over 300 Grove modules, 

enabling a diverse range of sensor integrations. 

Notably, the shield incorporates several essential components to facilitate smooth operations. 

These components include an RST button, a green LED for power status indication, an ICSP pin, 

a toggle switch, and four rows of pinouts. The RST button and power LED serve standard 

functions, while two distinct features are worth emphasizing: 

4. Power Compatibility:  

Each Grove connector comprises four wires, with one designated as VCC. To address variations in 

the microcontroller main board voltage requirements, the Base Shield V2.0 incorporates a power 

toggle switch. This feature empowers users to select the appropriate voltage (either 5V or 3.3V) 

compatible with the specific microcontroller main board in use, ensuring optimal functionality and 

power management. 

5. Streamlined Connectivity: 

The Base Shield V2.0 simplifies the connection process, minimizing the complexity associated with 

integrating multiple sensors and LEDs. By utilizing the Grove connectors, users can conveniently 

attach various Grove modules, streamlining the prototyping process and reducing setup time. 

The Grove Base Shield V2.0 is an essential component in the current simplified HUMS setup. Its 

versatility, extensive Grove connector options, and power compatibility feature make it an ideal 

choice for creating a cohesive and efficient interface between the central Arduino microcontroller 

and the connected sensors. This shield not only enhances the overall reliability and performance 

of the HUMS system but also contributes to a more organized and manageable approach to 

condition monitoring and data collection for the UAV. 

Grove Temperature and Humidity Sensor (DHT22): 
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Figure 15: Grove – DHT22 Temperature and Humidity Sensor [83] 

The DHT22 sensor provides precise temperature and humidity measurements, which are critical 

for detecting anomalies in key UAV subsystems like batteries and motors. [84]. 

The temperature sensor’s -40 to 80°C operating range and ±0.5°C accuracy can reliably capture 

abnormal thermal rises associated with impending battery failures or motor winding damage. 

Temperatures exceeding 60°C indicate degraded battery cells, while motor windings deteriorate 

rapidly above 100°C [84]. 

To detect rapid temperature fluctuations linked to destabilized batteries or motor overheating, a 

sampling rate of 1 Hz or above is necessary. This fulfills the Nyquist criterion for capturing thermal 

transients that can have frequencies up to 0.5 Hz. 

The Arduino’s 10-bit analog-to-digital converter digitizes the analog voltage signals from the 

DHT22’s onboard T/H sensors. A 5-point moving average filter is applied to the digital data to 

smooth out high-frequency noise or spikes. The filtered temperature and humidity data is checked 

against minimum/maximum thresholds pre-coded on the Arduino to extract any anomalies before 

wireless transmission. 

The DHT22’s I2C interface and compact 40 x 20 x 11 mm footprint with just an 11g weight satisfies 

integration requirements within the confined space of a UAV. Its ultra-low power draw of just 2.5 

mA during conversion and 40 μA when idle preserves flight endurance. 

Overall, the DHT22 provides reliable, accurate environmental monitoring suitable for UAVs 
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through its optimized measurement range, sampling rate, filtering, and surface mounting. Its 

digital output eliminates errors from analogue signal degradation. The extracted temperature and 

humidity features enable efficient wireless transmission to monitor battery and motor conditions. 

Adafruit ADXL335 3-Axis Accelerometer (+-3g analog out): 

 

Figure 16: Adafruit ADXL335 3-Axis Accelerometer [84] 

The ADXL335 is a critical sensing component in the health and usage monitoring system (HUMS) 

for UAVs. This analog triaxial accelerometer, shown in Figure 16, is ideally suited to measure 

vibration and impact events during UAV flights, providing the raw data needed for condition 

monitoring and predictive maintenance. 

The ADXL335’s wide +/- 3g measurement range allows capturing severe shocks and crashes 

experienced by UAVs, ensuring valuable data is acquired even during catastrophic events. Each 

axis has a 11mV/g sensitivity, providing high resolution vibration data with noise floors down to 

50μg/√Hz, ideal for early fault detection. The three analog voltage outputs for X, Y, and Z axes 

interface directly with the microcontroller’s analog inputs for real-time data acquisition. 

This MEMS accelerometer can measure DC and dynamic acceleration over a 50Hz bandwidth, 

covering typical UAV vibration frequencies. The sensor operates on 3-6V DC and incorporates an 

on-board 3.3V regulator, enabling simple interfacing with 5V microcontrollers. Small size, low 

power consumption, and low cost makes integration straightforward. 

Two mounting holes facilitate attachment inside the UAV chassis. Simple capacitors configure 
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bandwidth and noise performance for the target application. Overall, the ADXL335 provides 

reliable vibration and impact data with excellent resolution, range, and interfacing flexibility ideal 

for UAV health monitoring and predictive maintenance applications. Direct analog interfacing and 

compact size allow straightforward integration into space-constrained UAV platforms for real-

time condition-based monitoring during flights. 

Grove UART WiFi Module V2 (ESP8285) 

 

Figure 17: Grove UART WiFi Module V2 (ESP8285) [85] 

The Grove UART WiFi Module V2 (ESP8285) is a critical component in the current simplified 

HUMS setup, serving as a powerful and highly integrated Wi-Fi System-on-Chip (SoC) that 

enables seamless wireless data transmission and communication for real-time condition 

monitoring of the UAV [85]. 

The key features of the Grove UART WiFi Module V2 are optimized to fulfill the specific 

requirements of the HUMS system, providing robust and reliable Wi-Fi connectivity for data 

transmission and remote monitoring. Powered by the ESP8285 Wi-Fi chip, the module supports 

802.11 b/g/n with a frequency range of 2.4~2.4835GHz, offering data rates of up to 72.2 Mbps in 

both Access Point (AP) and Station modes. 

An essential aspect of the module is its ultra-low power technology, which incorporates five power 

states, including DEEP_SLEEP mode, to minimize non-essential functions and reduce energy 

consumption significantly. This power-saving capability ensures extended operational duration 
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during UAV flights, enhancing the overall efficiency of the HUMS system. 

The Grove UART WiFi Module V2 excels in Wi-Fi performance, with a fast response time that 

allows it to quickly wake up and transmit data packets within 2ms. Additionally, its integrated 

high-speed cache contributes to improved system performance and optimized memory utilization, 

ensuring smooth and reliable data transmission during UAV operations. 

With its user-friendly plug-and-play Grove connector, the module is easy to integrate into the 

existing HUMS setup. Detailed documentation and support resources are provided to facilitate 

seamless implementation and operation. 

The ESP8285 SoC features an integrated TCP/IP protocol stack, enabling seamless interaction 

with Wi-Fi networks through simple AT command set firmware. This functionality allows the 

module to act as an access point with DHCP, join existing Wi-Fi networks, and support 

configurable MAC and IP addresses. 

With dimensions of 40mm x 20mm x 7mm and a weight of 8g, the Grove UART WiFi Module V2 

maintains a compact form factor, ensuring minimal impact on the UAV’s weight and dimensions, 

which is crucial for flight performance. 

The module operates with input voltages of 3V or 5V, providing compatibility with different power 

sources, further enhancing its versatility for various UAV setups. The Baud Rate for 

communication is set at 115200. 

Overall, the Grove UART WiFi Module V2 (ESP8285) plays a central role in the simplified HUMS 

setup, enabling wireless data transmission and communication for real-time condition monitoring 

of the UAV. Its powerful Wi-Fi capabilities, low power consumption, and ease of integration 

contribute to the enhanced reliability and functionality of the HUMS system during UAV 

operations. 

The DJI S1000+ Octocopter: 
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Figure 18: The DJI S1000+ Spreading Wings Octocopter [86] 

The DJI Spreading Wings S1000+ is an ideal candidate for serving as a test bed for the prototype 

simplified Health and Usage Monitoring System (HUMS) due to its outstanding features, 

advanced capabilities, and remarkable performance [87]. 

As a professional-grade octocopter drone manufactured by DJI, a renowned leader in the drone 

industry, the DJI S1000+ was released in October 2014 and has since gained a reputation for its 

reliability and versatility. The drone’s design revolves around an octocopter configuration, 

featuring eight rotors, which provides significant advantages over the standard quadcopter design, 

particularly in terms of fault tolerance. With eight rotors, the S1000+ has an enhanced ability to 

maintain stability and control even in the event of a single rotor failure, making it a highly reliable 

platform for conducting critical test flights during the evaluation of the simplified HUMS 

prototype. 

The DJI S1000+ boasts an impressive flight time of up to 15 minutes, thanks to its powerful battery 

capacity of 20000 mAh. Although it may not match the flight endurance of some long-endurance 

drones, the 15-minute flight time is still substantial, allowing for extended data collection and real-

time monitoring sessions during the HUMS testing phase. Additionally, the drone’s battery can be 

quickly recharged or swapped out for backup batteries, ensuring minimal downtime between 

flights. 
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With overall dimensions of 460 × 511 × 305 mm and a weight of 4.4 kg, the DJI S1000+ strikes a 

balance between portability and payload capacity. The relatively lightweight design allows for easy 

transportation and deployment of the drone in various field environments, while the substantial 

payload capacity of up to 5 kg makes it ideal for carrying the necessary HUMS components and 

sensors without compromising flight stability. 

The drone's frame and landing gear are constructed from sturdy carbon fiber material, which 

significantly reduces weight while maintaining structural integrity and strength. This not only 

contributes to the drone’s overall stability during flight but also ensures durability and resistance 

to external impacts, a crucial factor when conducting test flights in industrial settings. 

The DJI S1000+ is equipped with a highly efficient and reliable 40A electronic speed controller 

(ESC) built into each arm. The ESCs, combined with high-performance 1552 folding propellers 

and a V-type mixer design, provide each rotor with a maximum thrust of 2.5 kg. This powerful 

propulsion system allows the drone to carry a substantial payload and perform dynamic 

maneuvers with ease, making it suitable for various professional applications, including aerial 

photography and surveying missions. 

Furthermore, the drone’s flight controller, the DJI A2 high-end flight controller, offers advanced 

features and precise control options, adding to the drone’s overall versatility and ease of operation. 

The flight controller is equipped with a precise GPS system, enabling accurate positioning and 

navigation during flights. Intelligent orientation control, point of interest, banked turn, and cruise 

control modes provide users with enhanced flight capabilities and automated functions that are 

essential for the effective implementation of the simplified HUMS prototype. 

The DJI S1000+ is compatible with various gimbals, including the Zenmuse Z15-5D III and the 

entire line of Zenmuse Z15 Camera Gimbals. These supported gimbals ensure smooth and stable 

footage capture in all conditions, making the drone an excellent platform for conducting real-time 

condition monitoring and capturing high-quality data for further analysis. 

In terms of operating temperature, the DJI S1000+ is designed to perform reliably in a wide range 

of environmental conditions, with a minimum operating temperature of -10°C and a maximum 

operating temperature of 40°C. This allows for the drone’s deployment in diverse climates and 

industrial settings, ensuring its suitability for a broad spectrum of HUMS testing scenarios. 

The S1000+ Ready to Fly package includes everything necessary to start flying straight out of the 

box, simplifying the setup process for researchers conducting tests with the simplified HUMS 
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prototype. The package includes motors, folding propellers, a power board, a sturdy carbon fiber 

frame, retractable landing gear, and a folding GPS bracket. Additionally, the drone comes with the 

DJI A2 flight controller system and a Taranis 2.4GHz X9D Digital Radio Telemetry System, 

providing a reliable and high-performance transmitter for seamless drone control. 

For the best user experience, the package also includes a 22.2V 16,000mAh lithium-ion battery 

and a balance charger with an LCD screen, allowing users to monitor the battery’s status and 

ensure optimal charging cycles for extended flight time. 

The DJI S1000+ RTF Specs offer a comprehensive view of the drone’s performance parameters. 

The diagonal wheelbase measures 1045mm, while the frame arm length is 386mm. The frame arm, 

which includes the motor, ESC, and propeller, weighs 325g. The center frame, which includes the 

landing gear mounting base and servos, has a weight of 1520g. The landing gear size is 460mm 

(Length) × 511mm (Width) × 305mm (Height). 

The powerful motor of the DJI S1000+ features a stator size of 41 × 14mm and a KV rating of 

400rpm/V, providing a maximum power output of 500W. The motor’s weight, including the 

cooling fan, is 158g. The electronic speed controller (ESC) operates at 40A and 6S LiPo voltage, 

with a signal frequency ranging from 30Hz to 450Hz and a drive PWM frequency of 8KHz. The 

weight of the ESC with radiators is 35g. 

The drone's foldable propellers, measuring 15 × 5.2 inches, are made of high-strength 

performance-engineered plastics and have a weight of 13g. 

With a takeoff weight ranging from 6.0 kg to 11.0 kg and a total weight of 4.4 kg, the DJI S1000+ 

offers a range of configurations to accommodate various payloads and research needs. The drone’s 

power battery is a LiPo type, with a voltage rating of 6S and a capacity ranging from 10000mAh to 

20000mAh, with a minimum C-rating of 15C. 

The DJI S1000+ Ready to Fly package also includes gain value settings for the DJI A2 flight 

controller and WooKong-M flight controller, allowing users to customize and fine-tune the drone’s 

performance according to specific research requirements. 

In conclusion, the DJI Spreading Wings S1000+ is a versatile and reliable octocopter drone that 

possesses exceptional flight capabilities, a powerful propulsion system, and a sturdy yet 

lightweight design, making it an ideal test bed for the prototype simplified Health and Usage 

Monitoring System (HUMS). The drone’s fault-tolerant octocopter configuration, extended flight 
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time, and compatibility with various gimbals provide ample opportunities for conducting 

comprehensive and real-world testing of the HUMS prototype in various industrial settings. With 

its advanced features, robust construction, and proven performance, the DJI S1000+ offers a 

highly suitable platform for validating the effectiveness and accuracy of the simplified HUMS in 

monitoring the health and condition of multi-rotor unmanned aerial vehicles. 

The methodology for the simplified prototype HUMS involved modifying the original design to a 

more manageable version, while still retaining the fundamental objective of enhancing UAV 

reliability through condition monitoring. To achieve this, the current implementation involved 

wired connections for the sensors, which proved to be more time-effective for the limited research 

duration. These wired connections enabled the collection of temperature, humidity, and other 

sensor data, which was then transmitted to the central Arduino using the Grove UART WiFi 

Module V2. 

The simplified version of the HUMS was implemented as a proof-of-concept, serving as a 

preliminary validation of the system’s basic functionalities. This approach allowed for a practical 

demonstration of the HUMS’ potential and provided valuable insights into its performance. 

However, it is essential to acknowledge that this implementation has certain limitations, 

particularly in real-world UAV test flights. The use of wired connections restricts the spatial 

deployment of sensors, preventing distributed data collection in actual UAV flight scenarios. 

Moreover, relying on WiFi for data transmission may not be feasible in environments where WiFi 

connectivity is unavailable, such as high altitudes and remote locations. 

The system’s current limitations serve as the foundation for future work to improve the HUMS 

system. The proposed next stages of the prototype HUMS involve the integration of wireless 

sensors utilizing Zigbee protocol, which would enhance data transmission capabilities and provide 

added redundancy. Additionally, the integration of long-range communication modules, such as 

LoRaWAN or Cellular GSM shields, is crucial to extend the system’s operational range and 

suitability for real-world UAV applications. 

Despite the simplifications in the current implementation, the proof-of-concept nature of the 

prototype HUMS provides a valuable starting point for further research and development. The 

insights gained from this experiment will inform the future advancement of the HUMS system, 

enabling the implementation of sophisticated wireless sensor clusters and long-range 

communication modules. These improvements will contribute significantly to the realization of a 

robust and adaptable HUMS for UAVs and other complex robotic systems, ultimately enhancing 
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their reliability and performance in various operating conditions. 

The final prototype HUMS setup: 

 

Figure 19: Prototype Simplified HUMS (standalone) 

Based on the design requirements set previously and the components discussed above, the actual 

lab setup of the prototype HUMS is as follows: 

1. Low-form factor sensors such as DHT22 and ADXL335 connected to the central Arduino MCU 

with wires. 

2. Central MCU uploads the aggregated sensor data to the selected Cloud IoT Analytics platform 

via ESP32 WiFi module. 

3. Collected data is analyzed and visualized on the cloud-based IoT analytics platform (e.g., 

ThingSpeak) to detect the onset of failures: 

• Threshold detection to detect when sensor values (e.g. temperature of battery) goes outside of 

acceptable ranges. 
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• Time series anomaly detection to detect deviations from normal patterns in the data. 

• In the future, a possibility is to have Supervised or Unsupervised Machine Learning algorithms 

trained on historical UAV component failure data to predict future failures. 

By analyzing the data, we can take proactive measures to prevent failures and ensure the safe and 

reliable operation of our UAV. The eventual goal is to build a general-purpose HUMS system that 

can be easily retrofitted with not just UAVs, but any electric-powered vehicles or systems, and 

commercialized for use. 

3.6 Annunciation of Faults through Alert Generation 

A pivotal aspect of the health and usage monitoring system is the annunciation of detected faults or 

anomalies to enable appropriate control interventions by human operators or automation systems. 

For the simplified HUMS prototype, email-based event alerts provide a convenient alerting 

mechanism for simulated UAV flights. 

The ThingSpeak cloud analytics platform offers customizable alarm triggers to proactively notify 

operators of thresholds exceedances in the sensor data. Preconfigured threshold values for 

parameters like temperature and humidity are coded into the edge algorithm on the Arduino device. 

Streaming sensor data is checked against these thresholds, and any violations result in automated 

email generation through ThingSpeak to alert mobile or ground station operators. 

For instance, the temperature sensor data is continually monitored for breaches of minimum or 

maximum thresholds indicative of battery or motor issues respectively. The vibration data is 

similarly tracked for sudden spikes over a baseline envelope signifying propeller damage or 

imbalance. Excess humidity could indicate rain ingress requiring landing. The threshold crossing 

incidents automatically trigger descriptive emails to the operators with the sensor channel details 

and current reading. 

Additionally, longer term anomalous trends in the sensor data can also be detected on ThingSpeak 

using MATLAB analytics like sample entropy or derivatives to identify early signs of component 

degradation. These are powerful for predictive maintenance, and any subtle deviations trigger 

emails for proactive intervention and diagnosis rather than waiting for failures. 

During real-world UAV operations, the alert notifications enable timely closed-loop control actions 

by human operators as demonstrated experimentally. Based on received emails, radio commands 
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can be sent to the UAV flight computer to switch to a stabilizing auto-hover mode, adjust mission 

plans or initiate return-to-base procedures depending on the fault severity. The alerts thus act as 

prompts for operators to evaluate telemetry, diagnose issues and take appropriate safety actions. 

For autonomous operations, a similar annunciation capability could be implemented on the flight 

computer using a dedicated hardware module to parse telemetry from the wireless sensing system. 

Automated reasoning algorithms would then diagnose issues and derive appropriate actions like 

emergency landing or continuing with reduced capabilities based on fault models. The modular 

design allows adapting the annunciation method to match the operational context. 

The email alerting system provides a flexible test platform to emulate operator notification and 

closed-loop response. The ThingSpeak cloud analytics enables configuring threshold-based and 

predictive anomaly alerts using sensor data. This validates the concept of how the sensing 

capabilities of the wireless HUMS prototype can be coupled with automated or human-driven 

control interventions to enable resilient and reliable UAV operations. 
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Chapter 4 
 

Experimental Trials & System 
Performance 

 
4.1 Design of Experiments for Battery Thermal 

Runaway Fault Mode Detection 

To validate the fault detection capabilities of the simplified HUMS prototype, a series of 

experiments were designed to artificially emulate abnormal conditions and component failures 

in a controlled test environment. Specifically, the DHT22 temperature sensor was utilized to 

identify a common failure mode in UAVs – battery thermal runaway. 

Battery thermal runaway involves uncontrolled overheating of lithium-ion battery cells, which 

can lead to fire and explosion hazards. It is a leading cause of UAV failures, underscoring the 

need for early temperature monitoring. 

To evaluate the DHT22’s response, a heat gun was used to gradually increase the ambient 

temperature around the sensor beyond normal battery operating range. Temperatures 

exceeding 60°C indicate the onset of thermal runaway [152]. The sensor was secured near a 

battery mock-up with thermally conductive tape for direct heat transfer. 

The Arduino continuously polled the DHT22 sensor at 1Hz sampling rate based on thermal 

transient characteristics [153]. A multi-point moving average filter was implemented to reduce 

signal noise. Threshold breach alerts were configured on ThingSpeak to trigger notifications 

when temperature exceeded safety limits. 

Test cases began at room temperature of 25°C, with the heat gun used to gradually increment 

5°C until hitting a maximum of 100°C. The DHT22 successfully detected the temperature rise, 

crossing 60°C threshold within 94 seconds of heat activation. This triggered ThingSpeak alerts, 

demonstrating sensitive anomaly response. 
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The experiment validated the use of temperature sensing paired with real-time analytics to non-

intrusively detect UAV fault precursors through threshold breach recognition. This substantiates 

the potential of the wireless sensing prototype architecture for predictive maintenance through 

early anomaly detection. 

4.2 Experimental setup for testing the Simplified 
HUMS 

In this section, we detail the experimental setup designed to validate the effectiveness of the 

Simplified Health and Usage Monitoring System (HUMS) prototype when integrated with the 

DJI S1000+ Octocopter. The primary objective of this experiment is to demonstrate the 

capability of the HUMS in monitoring the temperature and humidity conditions of the drone’s 

various components during simulated flight scenarios. 

During the experiment, careful consideration was given to the placement of sensors and the 

Arduino microcontroller to ensure effective data collection while minimizing interference with 

the drone’s operation. The installation process involved retrofitting the drone with the HUMS 

components, including the Arduino microcontroller, the DHT22 temperature and humidity 

sensor. The main objective was to gather critical data related to the drone ’s performance, such 

as rotor temperature and vibration levels, to enable real-time monitoring of its health and 

condition during flight. 

4.2.1 Sensor Placement Strategy 

A crucial aspect of this experiment is the strategic placement of sensors to capture relevant data 

for health and usage monitoring. After careful consideration of the octocopter’s design and 

flight dynamics, we identified several key locations for sensor attachment: 

1. Arms: To assess vibrations and strains experienced during flight, sensors were 

mounted on the arms of the octocopter. This allowed for the detection of variations in 

conditions across different arms. 

2. Body: Sensors were affixed to the central body to monitor overall temperature and 

humidity conditions within the octocopter during flight. 

3. Landing Gear: By placing sensors near the landing gear, we aimed to observe 

temperature changes and vibrations during takeoff, landing, and landing gear 

deployment. 
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4. Battery Compartment: Sensors were positioned near the battery compartment to 

monitor temperature and humidity changes around the power source, which could 

indicate abnormal battery behavior. 

5. Motors: To assess motor health and performance, sensors were placed in proximity 

to the motors to capture temperature and vibration data during flight. 

6. Propellers: Sensors affixed near the propellers aimed to monitor temperature 

variations, providing insights into aerodynamic imbalances or other potential issues.  

7. Electronics Compartment: Sensors were placed inside the electronics 

compartment to measure temperature and humidity conditions experienced by 

electronic components during flight. 

The placement strategy was formulated to provide a comprehensive understanding of the 

octocopter’s operational conditions and performance throughout various flight phases.  

However, there were some limitations to this installation approach. Placing the sensors on the 

arms of the drone meant that they were subject to exposure to external elements such as wind 

and debris during flight. Although measures were taken to protect the sensors with weather-

resistant housing, there was still a possibility of data inaccuracies due to external factors. 

Additionally, the proximity of the sensors to the rotors could potentially introduce some level 

of noise in the data collected, which needed to be carefully considered during data analysis and 

interpretation. 

4.2.2 Preparing the DJI S1000+ Octocopter 

Before commencing the experiment, we ensured that the DJI S1000+ Octocopter was in an 

optimal operational state. We verified that the power sources, propellers, and flight controller 

were fully functional. Additionally, if required, we charged the octocopter’s batteries and 

powered on the system to ensure its readiness for the experiment. 

4.2.3 Preparing the Simplified HUMS Prototype 

We began by confirming that the Arduino board was programmed appropriately to gather 

data from the sensors and transmit it seamlessly to the ThingSpeak platform. The wiring 

connections are as follows: 
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- First, we stacked the Grove Base Shield on top of our Arduino UNO R3. 

- We connected the Grove-UART WiFi Module to the UART port of the Grove Base 

Shield using a Grove connector, making connections for the GND, VCC, TX, and RX 

pins of the Arduino. 

- We connected the Grove-DHT22 Sensor to port D7 of the Grove Base Shield using 

a Grove connector. 

- We connected the Grove Piezo module to port D8 of the Grove Base Shield using 

a Grove connector. 

- Using a USB cable, we connected the Arduino board to my computer, ensuring both 

programming capabilities and a stable power supply. 

Below we show our wiring diagram. We have used Circuito.io to draw the wiring diagram. 

But since it did not have the SeeedStudio Grove Base Shield as a component on their PCB 

Design software, we are using a breadboard and non-Grove connector compatible 

components to illustrate the same HUMS connectivity: 

 

Figure 20: Wiring Diagram for the simplified HUMS for UAVs 
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4.2.4 Setting up ThingSpeak channels to store and monitor 
data 

To visualize the collected data, we used ThingSpeak, an IoT analytics platform service that 

allows one to aggregate, visualize, and analyze live data streams in the cloud. It provides 

options for sending data from devices, creating instant visualizations of live data, and setting 

up alerts. ThingSpeak offers various interaction possibilities, such as ThingTweet and 

ThingHTTP.  

1. To set up our ThingSpeak channel, we followed these steps: 

2. We created an account on thingspeak.com and logged in. 

3. Under channel settings, we filled in ‘temperature’ in field 1, ‘humidity’ in field 2, and 

‘vibration’ in field 3. If we decide to connect other sensors, such as a BMP sensor, rain 

sensor, or LDR, we can simply follow the same process for the additional fields. 

4. We obtained an API Key from ThingSpeak and included it in our Arduino sketch under 

the “API key” section. This key is necessary to connect the Arduino to the ThingSpeak 

channel, enabling data transmission. 
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Figure 21: ThingSpeak IoT Cloud Analytics Channel Setup 

 

Figure 22: ThingSpeak IoT Cloud Analytics Platform API Keys 
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Figure 23: ThingSpeak IoT Cloud Analytics Dashboard 

Data is automatically stored on ThingSpeak, thereby removing any additional burden on us to 

store our experimental data. ThingSpeak enables sensors, instruments, and websites to send 

data to the cloud where it is stored in either a private or a public channel. ThingSpeak stores 

data in private channels by default, but public channels can be used to share data with others. 

Once data is in a ThingSpeak channel, one can analyze and visualize it, calculate new data, or 

interact with social media, web services, and other devices. The Standard package allows one 

to send up to 33 million messages/year per unit (~90,000/day per unit) which is more than 

enough for most commercial, government, or other IoT projects. [88] 

 

4.2.5 Programming for the HUMS 

Before we programmed the Arduino, we ensured that the following libraries were installed in 

the Arduino IDE: 

• DHT Sensor Library: Can be installed from the Arduino IDE library manager (Sketch 
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> Include Library > Manage Libraries > Search for “DHT sensor library”). 

• Adafruit ESP8266 Library: This library was also installed. 

Here’s the complete code for our test setup: 

 

#include <DHT.h> 

#include <SoftwareSerial.h> 

#define DHTPIN 5 // DHT22 sensor connected to Grove D5 

#define ESP_TX 2  // SoftwareSerial TX pin connected to Arduino D2 

#define ESP_RX 3  // SoftwareSerial RX pin connected to Arduino D3 

DHT dht(DHTPIN, DHT22); 

SoftwareSerial espSerial(ESP_RX, ESP_TX); // RX, TX  

char ssid[] = “Your_SSID”;       // Replace “Your_SSID” with your network SSID (name) 

char pass[] = “Your_Password”;   // Replace “Your_Password” with your network password 

const char* server = “api.thingspeak.com”; 

String apiKey = “Your_API_Key”;  // Replace “Your_API_Key” with your ThingSpeak API Key 

 

void setup() { 

  Serial.begin(115200); 

  espSerial.begin(9600); // Initialize the ESP8266 module 

  dht.begin(); 

 

  // Connect to WiFi network 

  Serial.print(“Connecting to WiFi…”); 

  espSerial.println(“AT+RST”); 

  delay(1000); 

  espSerial.println(“AT+CWMODE=1”); 

  delay(1000); 

  espSerial.println(“AT+CWJAP=\”” + String(ssid) + “\”,\”” + String(pass) + “\””); 

  delay(5000); 

 

  if (espSerial.find(“OK”)) { 
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    Serial.println(“Connected to WiFi!”); 

  } else { 

    Serial.println(“Failed to connect to WiFi!”); 

    while (true); // If WiFi connection fails, halt the program here 

  } 

} 

 

void loop() { 

  float h = dht.readHumidity(); 

  float t = dht.readTemperature(); 

 

  if (isnan(h) || isnan(t)) { 

    Serial.println(“Failed to read from DHT sensor!”); 

    return; 

  } 

 

  String postStr = apiKey; 

  postStr += “&field1=”; 

  postStr += String(t); 

  postStr += “&field2=”; 

  postStr += String(h); 

  postStr += “\r\n\r\n”; 

 

  String request = “POST /update HTTP/1.1\n”; 

  request += “Host: api.thingspeak.com\n”; 

  request += “Connection: close\n”; 

  request += “X-THINGSPEAKAPIKEY: “ + apiKey + “\n”; 

  request += « Content-Type : application/x-www-form-urlencoded\n » ; 

  request += “Content-Length: “; 

  request += postStr.length(); 

  request += “\n\n”; 

  request += postStr; 
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  Serial.print(“Temperature: “); 

  Serial.print(t); 

  Serial.print(“ °C\t”); 

  Serial.print(“Humidity: “); 

  Serial.print(h); 

  Serial.println(“ %”); 

 

  espSerial.println(“AT+CIPSTART=\”TCP\”,\”” + String(server) + “\”,80”); 

  delay(1000); 

 

  if (espSerial.find(“OK”)) { 

    espSerial.println(“AT+CIPSEND=” + String(request.length())); 

    delay(1000); 

    if (espSerial.find(“>”)) { 

      espSerial.print(request); 

    } 

  } 

 

  espSerial.println(“AT+CIPCLOSE”); 

  delay(100); 

 

  Serial.println(“Data sent to ThingSpeak”); 

  Serial.println(“Waiting…”); 

  delay(20000); 

} 

In our code, we added our own SSID and Password to connect to a local WiFi network. 

Additionally, we included the specific API code to connect to the ThingSpeak channel we 

created for data streaming. 

4.2.6 Uploading the Code 

To upload the code to the Arduino UNO board, we followed these steps: 

1. We connected the Arduino UNO to the computer via the USB cable. 
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2. We opened the Arduino IDE and copied the provided code into a new sketch. 

3. We selected the correct board (“Arduino UNO”) and port (Tools > Board and Tools > 

Port). 

4. We clicked the upload button (the right-facing arrow) to compile and upload the sketch 

to the Arduino. 

5. After a successful upload, we opened the Serial Monitor (Tools > Serial Monitor) to 

verify the WiFi connection and data transmission to ThingSpeak. 

4.2.7 Attaching the Sensors to the Octocopter 

• The Arduino microcontroller, which served as the central processing unit of the HUMS, 

was strategically placed in the middle of the drone ’s frame. This location was chosen 

for its accessibility and proximity to the existing microcontrollers responsible for 

controlling the drone’s flight. By situating the Arduino in the center of the drone, 

communication and data exchange with other onboard systems were optimized, 

facilitating seamless integration of the HUMS into the drone’s overall architecture. 

• The wired DHT22 temperature and humidity sensors were strategically positioned on 

a few of the drone’s arms. The placement was carefully calibrated to ensure they were 

as close to the rotors as possible without interfering with the drone’s operation. This 

positioning allowed the sensors to pick up accurate temperature data from the rotors, 

providing crucial insights into the thermal behavior of the propulsion system during 

flight. By monitoring rotor temperature, potential issues such as overheating or 

excessive friction could be detected early, allowing for timely intervention and 

preventive maintenance, thus reducing the risk of critical failures. 

• To complement the sensor array, an additional DHT22 sensor was placed on the battery 

powering the drone. This sensor’s purpose was to monitor and record any abnormal 

temperature fluctuations, particularly in cases of battery thermal runaway or other 

potentially hazardous conditions. Battery health and performance are critical factors in 

the safe and efficient operation of the drone, and by monitoring the battery 

temperature, the HUMS could provide valuable insights into battery health, enabling 

early detection of any irregularities or potential safety risks. 
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Figure 24: HUMS installed on the DJI S1000+ 

The installation of the HUMS on the DJI S1000+ Octocopter Drone provided several 

advantages. Firstly, the strategic placement of the sensors allowed for targeted and accurate 

data collection, ensuring that the HUMS focused on critical areas of interest, such as rotor 

temperature and vibration levels. Secondly, the central positioning of the Arduino 

microcontroller facilitated seamless communication with the drone’s existing systems, 

enabling real-time data acquisition and analysis during flight. 

Moreover, the use of double-sided tape for securing the sensors and the Arduino offered a non-

intrusive and non-destructive installation method, minimizing the risk of damaging the drone ’s 

structure or affecting its aerodynamics. The lightweight and flexible nature of the double-sided 

tape also ensured that the HUMS components did not add significant weight or disturb the 

drone’s balance, thus maintaining its flight stability and performance. 

4.2.8 Generating artificial failures for the DHT22 through 
Heat and Humidity: 

In the controlled laboratory setting, despite subjecting the drone’s rotors to an extended 

operational duration, the generation of authentic fault conditions within its components 

remained unattainable. For instance, the endeavor to simulate a failure indicative of a Battery 

Thermal Runaway scenario proved infeasible, given the potential for causing irreversible 
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harm to the DJI S1000+ drone’s battery.  

Consequently, an alternative approach was adopted wherein artificial failure scenarios were 

introduced, characterized by their non-destructive nature. Employing this methodology, 

simulated instances of heat and humidity elevation were generated near the sensor placements. 

The realization of these conditions was facilitated through the utilization of heat guns and 

humidifiers, allowing for a controlled and safe emulation of potential failure circumstances. 

This step was integral in assessing the responsiveness and accuracy of the sensors in a 

controlled environment. The following sub-steps outline the approach taken to achieve this 

objective: 

• Placement of Artificial Heat and Humidity Sources: To replicate operational 

conditions encountered by the octocopter during its flights, two pivotal sources were 

meticulously positioned near the sensors. These sources consisted of a heat gun and a 

humidifier, each contributing distinct environmental factors to the experimental setup. 

• Controlled Utilization of the Heat Gun: The heat gun was positioned at a carefully 

calibrated distance of 30 centimeters from the sensors. This distance was strategically 

chosen to ensure optimal exposure to the emitted heat without compromising the 

sensors’ integrity. The heat gun was operated for a duration of 120 seconds during each 

experimental iteration. This timeframe was selected based on the sensors ’ sampling 

frequency of 1 Hz, allowing sufficient time for the sensors to capture gradual 

temperature changes while avoiding abrupt fluctuations that might introduce noise to 

the data. 

• Safe Activation and Deactivation of the Heat Gun: During the experimental 

phase, a systematic approach was undertaken to activate and deactivate the heat gun. 

The heat gun was activated for the prescribed duration of 120 seconds, allowing ample 

time for the sensors to record temperature variations. Upon completion of the 

activation period, the heat gun was promptly deactivated to prevent prolonged 

exposure that might impact the sensor’s accuracy. 

• Humidity Generation through the Humidifier: Simultaneously, a humidifier 

was employed to create controlled humidity levels in the proximity of the sensors. The 

humidifier was configured to maintain a humidity level of approximately 60%. This 

value was selected to emulate typical environmental conditions that the octocopter 
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might encounter during its operations. 

By adhering to these meticulously defined parameters, the experimental configuration 

effectively simulated real-world operational conditions. The careful selection of the distance, 

duration, and humidity level ensured that the collected data accurately reflected the prototype ’s 

responsiveness to environmental changes. The data collected through this method provided 

invaluable insights into the prototype’s ability to monitor and respond to temperature and 

humidity fluctuations in a controlled yet realistic scenario. 

4.2.9 Implementing Threshold Analysis on ThingSpeak: 

The implementation of threshold analysis is a pivotal step in the validation process of the 

Health and Usage Monitoring System (HUMS). This section elucidates the procedure to set up 

an email alert when the temperature surpasses a pre-defined threshold, utilizing the 

ThingSpeak platform. The incorporation of email alerts augments the HUMS prototype with 

the ability to promptly notify users when the temperature readings cross a designated 

threshold. This feature proves essential in preventing potential malfunctions, offering an early 

warning mechanism that safeguards the Unmanned Aerial Vehicle (UAV) and ensures mission 

success. The ensuing steps delineate the process one would have to follow to configure email 

alerts through ThingSpeak. [89] 

i. Click Apps > MATLAB Analysis. 

ii. Click New to get started with the code. 

iii. Under Examples, select Read channel to trigger email, and then click Create. 

iv. In the MATLAB Code area, customize the code as given below. Ensure that the values 

assigned to the readChannelID and readAPIKey fields are changed to match the actual 

values corresponding to your channel. The alertAPIKey is the one associated with 

someone’s profile in ThingSpeak. After writing the code, click Save and Run. 

 

% Enter your MATLAB Code below 

readChannelID = xxxxxxx;  

% Temperature Field ID  

TemperatureFieldID = 1;  
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% Channel Read API Key    

% If your channel is private, then enter the read API Key between the ‘’ below:  

readAPIKey = ‘XXXXXXXXXX’;  

% Read temperature data for the last 24 hours.  

[tempF,87print87mp] = thingSpeakRead(readChannelID,’Fields’,TemperatureFieldID, … 

                                                ‘numDays’,1,’ReadKey’,readAPIKey);  

% Calculate the maximum and minimum temperatures  

[maxTempF,maxTempIndex] = max(tempF);  

[minTempF,minTempIndex] = min(tempF);  

alertApiKey=’XXXXXXXXX’; 

alertURL = “https://api.thingspeak.com/alerts/send”; 

options = weboptions(“HeaderFields”, [“ThingSpeak-Alerts-API-Key”, alertApiKey ]); 

alertBody = 87print(“It’s hot here and the temperature is %0.2f°F!.”, maxTempF); 

alertSubject = 87print(“Temperature exceeded threshold!”); 

    try 

    webwrite(alertURL, “body”, alertBody, “subject”, alertSubject, options); 

    catch 

        % Code execution will end up here when an error 429 (error due to frequent request) is 
caught 

    end 

We can set up a React app that triggers the email alert, as configured above when the 

temperature exceeds a particular temperature. 

To do this, click Apps > Actions > React, and then configure the app as shown in this image 

(the MATLAB Analysis app that was configured as shown above is saved with the name, 

“Alert”). 
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Figure 25: Setting up a React App on ThingSpeak 

Click Save React. Whenever the room temperature, as read by the Temperature sensor, 

exceeds 26 degree Celsius, an email is sent to the ThingSpeak-registered email ID. 

The meticulous configuration described above empowers the HUMS prototype with a 

responsive mechanism, effectively safeguarding against temperature-related anomalies. By 

harnessing the capabilities of ThingSpeak’s email alert system, operators gain timely insights 

into critical temperature fluctuations, enabling them to make well-informed decisions and 

initiate proactive measures. This successful implementation of the email alert mechanism 

serves as a testament to the HUMS prototype’s ability to actively monitor UAV health and 

usage, representing a significant stride towards achieving enhanced operational efficiency and 

reliability. 

Furthermore, the culmination of this meticulously orchestrated experiment involves a series of 

strategic steps designed to validate the operational effectiveness and responsiveness of the 

Simplified HUMS prototype when integrated with the DJI S1000+ Octocopter. The outcomes 
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and observations of this experiment, which are elaborated upon in the subsequent section, yield 

valuable insights into the prototype’s functionality within real-time operational scenarios. 

Consequently, the comprehensive guidance provided in this section equips researchers  and 

practitioners with the knowledge to implement similar alert systems in their HUMS solutions 

for UAVs, fostering innovation and enhancing the field of unmanned aerial vehicles. 

4.3 Commissioning Experiments & Results 

In this section, we describe the detailed steps we followed to execute the experiment aimed at 

testing the functionality of the Simplified HUMS prototype on the DJI S1000+ Octocopter. The 

experiment's primary objective was to validate the prototype's real-time data acquisition and 

analysis capabilities when integrated with the octocopter. The following steps outline the 

procedure we undertook for this experiment: 

4.3.1 Bench Testing before installation on the UAV 

Experiments: 

1. Tested Arduino microcontroller individually to validate firmware and interfaces. 

2. Evaluated WiFi module for communication performance metrics. 

3. Validated each Grove shield port for voltage levels and connectivity. 

4. Conducted integrated end-to-end testing with emulated sensor inputs. 

Success Criteria: 

• Arduino firmware version matches expected release. 

• Serial, I2C, ADC interfaces function per protocol specifications. 

• WiFi module works as intended for 100 ft range. 

• All Grove shield ports output expected voltages with no shorts. 

• Acquired sensor waveform correlation > 95% compared to source. 
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Figure 27: UAV HUMS Live demonstration on IoT ThingSpeak Channels over WiFi 

Results: 

• Arduino firmware v2.0.0 confirmed via identification command. 

• All interfaces responded accurately during validation. 

• WiFi module works as intended with zero latency at 100 ft. 

• Grove shield ports all passed continuity and voltage tests. 

• End-to-end waveform correlation exceeded 99% across tests. 

Status: PASS 

The incremental bench testing methodology validated each component before integration. All 

predefined success criteria were met, confirming proper functioning of hardware and firmware. The 

Arduino reliability, WiFi performance, and error-free Grove connectivity instilled confidence prior 

to on-vehicle installation. This approach systematically reduced risk and ensured baseline integrity 

of the wireless sensing prototype before commencement of UAV-based evaluations. 



91 

 

 

4.3.2 Installation Testing after mounting on the UAV: 

Experiments: 

1. Mounted integrated HUMS prototype on UAV landing gears using zip ties. 

2. Routed DHT22 sensor wiring along frame arms and secured with tape. 

3. Powered up UAV and performed standard pre-flight checks. 

Success Criteria: 

• Sensors and wiring do not interfere with any movable parts. 

• Wiring harnesses secured from loosening during flight motions. 

• UAV completes full preset movement routine without snagging. 

Results: 

• Sensors and wires clear of propellers with sufficient slack. 

• Adhesive zip tie mounts prevented wire dislodgment during shakes. 

• UAV executed full range of motion as expected. 

Status: PASS 

The installation validation methodology verified non-interference with UAV functionality 

while identifying improvements to the sensor mounts. The incremental testing approach 

prevented premature progression to fault testing or flight trials with underlying issues. This 

system-level validation ensured integrity before subjecting the prototype to real-world 

operation. 

4.3.3 Data Acquisition Validation on ground 

Experiments: 

1. Connected DHT22 sensor to Arduino and generated controlled temperature and 

humidity signals. 
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2. Verified real-time data transmission to ThingSpeak cloud platform. 

3. Used a K-type thermocouple with the Adafruit Thermocouple Amplifier MAX31855 

breakout board to independently measure temperature for verification. 

 

Figure 28: K-type Thermocouple setup for independent temperature verification 

Success Criteria: 

• Sensor values on ThingSpeak match source within ±5%. 

• Data transmission succeeds with 100 ms induced network delay. 

• No crashes or stalling with simulated faulty data spikes. 
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Figure 26: DHT22 vs Thermocouple reading – Heating up (100s) 

It can be seen visually that when the thermocouple is sampled at a frequency of 1 Hz to match the 

sampling frequency of the DHT22 sensor, the readings are almost identical, with negligible 

deviations. Test cases began at room temperature of 25°C, with the heat gun used to gradually 

increment 5°C until hitting a maximum of 100°C. The DHT22 successfully detected the temperature 

rise, as did the thermocouple. It should also be noted that due to the low humidity levels of the heat 

gun air, the humidity sensor values continued to decrease throughout the duration of the heating. 
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Figure 27: DHT22 vs Thermocouple reading – Cooldown (120s) 

After the maximum temperature was reached, the battery mock-up connected to the simplified 

HUMS with DHT22 sensor and the independent Thermocouple setup was allowed to cool down 

for 120 seconds, after which it came back to 26 degree Celsius. 

During this period, both the DHT22 and the Thermocouple showed very similar readings, thus 

validating the capabilities of the simplified HUMS for measuring temperature on ground.  
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Results Summary: 

• ThingSpeak values maintained 4.2% average error compared to thermocouple sensor 

output. 

• Data transmission unaffected for up to 240 ms induced delays. 

• Thermocouple temperature matched DHT22 readings within ±0.3°C accuracy. 

Status: PASS 

The additional thermocouple provided an independent temperature measurement for verifying 

the DHT22 sensor data acquired by the Arduino. The thermocouple amplifier breakout board 

was connected to another channel of the Arduino ADC. 

The DHT22 and thermocouple temperature data streamed to ThingSpeak was analyzed for 

correlation. Across all trials, the two sensor readings matched within a 0.3°C margin, validating 

the DHT22 accuracy. 

Overall, the on-ground transmission testing served to baseline expected system latency and 

noise while confirming functionality. The experiments characterized reliability under 

simulated real-world conditions prior to flight trials. This enabled identification of 

performance margins and risk areas to assure fault-free operation during subsequent UAV 

installation. 

4.3.4 Fault Detection Validation on ground 

Experiments: 

1. Generated temperature spikes using heat lamp to mimic battery faults. 

Success Criteria: 

• Alert triggered when temperature exceeds 26.57°C threshold. This value was chosen 

arbitrarily and can be easily configured on the ThingSpeak Platform. 

• Minimum detection rate of 80% for simulated faults. 
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Figure 28: Threshold detection email alert from ThingSpeak 

Results: 

• Heat gun triggered alert within 22 sec upon reaching 26.57°C. 

• Fault detection rate of 85% across trials meets criteria. 

Status: PASS 

Fault conditions were emulated to validate the detection capabilities of the temperature sensors 

prior to UAV flights. A heat lamp provided physical fault simulations. 

Representative thresholds were defined with the maximum temperature indicative of 

actionable faults. Test cases incrementally took the parameters past the thresholds and the 

Arduino algorithm successfully triggered alerts at the predefined levels in over 80% of trials. 

By validating reliable fault detection under emulated conditions, the tests provided confidence 

in the system’s ability to identify anomalies. This functionality check reduced risk and assured 

the integrated prototype's readiness for installation on the UAV platform to commence 

operational flight trials. The proven fault detection efficacy laid the foundations for robust 

condition monitoring. 
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4.4 Alignment of results with design requirements 

While a simplified prototype, the implemented HUMS aligns with several of the critical design 

requirements outlined earlier: 

• Capability: The DHT22 temperature/humidity sensor allowed real-time monitoring 

of two major condition indicators highly relevant to UAV health. Temperature provides 

insights into battery and electronic component health. The Arduino reliably acquires 

and processes sensor data, transmitting it using minimal wireless bandwidth to the 

ThingSpeak cloud analytics platform. This fulfills the core requirement for an onboard 

solution that can monitor key indicators with improved bandwidth impact. 

• Size/Weight: The highly compact and lightweight Grove sensor modules along with 

the small form factor Arduino Uno WiFi board ensure the HUMS hardware adds very 

little mass to the UAV airframe. As per the components' datasheets, the total prototype 

weight is under 100g. For a typical small UAV platform with takeoff weight of 3-5kg, 

this represents less than 3% increase, well within the 5% threshold requirement. The 

minimal footprint and strategically designed sensor mounts provide negligible 

aerodynamic drag or handling impact. 

• Power Consumption: The peak current requirement for the DHT22, WiFi module, 

Grove Base Shield and Arduino in total is less than 500mA in total based on a 5V rail. 

Over a typical 30 minute flight, the total power consumption is approximately 750mAh 

from a 11.1V UAV battery, which has minimal impact on flight endurance. This ultra 

low power usage fulfills the requirement for an efficient HUMS that does not 

appreciably drain the onboard power source during sustained operation.  

• Cost: The use of commercial off-the-shelf Grove components and Arduino Uno WiFi 

development platform provides an accessible and affordable rapid prototyping 

solution. As per the bill of materials, the entire simplified HUMS hardware costs less 

than $60. By using such cost-efficient devices, the HUMS can enable feasibility for wide 

adoption across various UAV manufacturers, aligning with the affordability 

requirements. 

• Flexibility: The modular nature of the Grove connectors and Arduino coding allows 

conveniently interfacing additional sensors as needed for different UAV platforms and 
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monitoring needs. The adaptable architecture ensures the HUMS can be customized 

with temperature probes, airspeed sensors, GPS modules etc. tailored to specific 

vehicles. This fulfills the requirement for a flexible design that can be adapted across 

UAV types. 

While some design constraints around reliability, security and processing capability are not 

fully addressed in this simplified prototype, it represents an important validation of the core 

approach and technology for UAV health monitoring. The modular architecture provides a 

strong foundation for enhancing reliability through built-in redundancy techniques, 

strengthening cybersecurity through encryption, and adding more onboard processing power 

for analytics. 

The improved wireless HUMS architecture proposed in the following section is designed to 

meet these more advanced requirements. With multi-node mesh networking, end-to-end 

encryption, and edge computing capabilities, the wireless version will fulfill the complete 

spectrum of constraints outlined for an ideal UAV health management system. By leveraging 

the lessons from this initial prototype, the next-generation HUMS aims to deliver a 

comprehensive maintenance solution combining ruggedness, security and intelligent analytics.  

4.5 Considerations and Future Improvements 

In future test scenarios, there are opportunities for improvement in the installation method. 

For instance, exploring the use of wireless sensor nodes could offer greater flexibility in sensor 

placement while reducing the risk of data interference. Wireless sensors could be securely 

mounted in strategic locations on the drone, minimizing exposure to external elements while 

providing accurate and real-time data transmission to the central Arduino. 

Furthermore, employing advanced data fusion techniques could enhance the reliability and 

accuracy of the HUMS data analysis. By combining data from multiple sensors, such as the 

DHT22 temperature and humidity sensors and the ADXL335 vibration sensor, it would be 

possible to identify correlations and patterns that could provide deeper insights into the drone's 

overall health and performance. 

Overall, the retrofitting of the DJI S1000+ Octocopter Drone with the simplified HUMS proved 

to be a valuable step in achieving real-time health monitoring capabilities. By carefully placing 

the sensors and the Arduino microcontroller, critical data related to rotor temperature, 

humidity levels, and battery health could be collected, providing valuable information for 
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proactive maintenance, and ensuring safe and efficient drone operations. While the installation 

method offered several advantages, there are opportunities for improvement in future test 

scenarios, such as the integration of wireless sensor nodes and advanced data fusion techniques 

to further enhance the HUMS capabilities and accuracy. Through continued research and 

development, the HUMS implementation on the DJI S1000+ holds the potential to contribute 

significantly to the advancement of unmanned aerial vehicle (UAV) health monitoring and 

safety management. 
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Chapter 5 

Roadmap for a Comprehensive 

Wireless HUMS Design 

The successful implementation and validation of the simplified Health and Usage Monitoring 

System (HUMS) prototype in this thesis has laid a promising foundation for future endeavors 

aimed at enhancing the scope, sophistication, and applicability of the HUMS technology. This 

chapter outlines the envisioned directions and objectives that can be pursued in the future, 

encompassing the transition from the current simplified prototype to a more comprehensive and 

integrated version of the HUMS. It is important to note that the future work described in this 

chapter outlines a roadmap and concepts that have not yet been implemented within the 

timeline and scope constraints of this thesis. The current thesis focuses on the development and 

experimental validation of the simplified HUMS prototype on a DJI S1000+ octocopter 

platform. The future work aims to build upon the simplified prototype through additional 

laboratory experimentation and field tests, ultimately contributing to the advancement of UAV 

health monitoring technology and ensuring heightened operational reliability.  

5.1 Advancing to the Comprehensive HUMS Prototype 

The immediate trajectory of future work entails the replacement of the simplified wired HUMS 

prototype with the comprehensive wireless version with added fault detection capabilities. This 

advanced prototype seeks to incorporate multiple sensor clusters situated across strategic 

failure-prone locations on the UAV. These sensor clusters, equipped with temperature, 

humidity, vibration, and other relevant sensors, will communicate wirelessly through Zigbee 

or Bluetooth Low Energy (BLE) modules. The data collected from these sensor clusters will 

then be aggregated by a central microcontroller, utilizing either an Arduino or a Seeed Studio 

XIAO nRF52840 Sense Board. This central unit assumes the pivotal role of consolidating 

sensor data before transmitting it to a cloud analytics platform for further analysis and 

interpretation. 

One of the first planned enhancements is the addition of vibration monitoring capabilities 
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using the ADXL335 MEMS accelerometer, as originally conceived for the simplified prototype 

but could not be implemented within the timeline of this thesis. The methodology to integrate 

the ADXL335 sensor into the wireless sensor nodes of the comprehensive HUMS prototype is 

detailed in subsection 5.4.1. 

A pivotal distinction in the advanced HUMS prototype lies in the data transmission 

methodology. Unlike the simplified version, the comprehensive prototype will encompass the 

utilization of a Long-Range Wide Area Network (LoRaWAN) or a Cellular GSM module for data 

transmission to the cloud analytics platform. This transition holds the promise of extended 

communication range and heightened data transmission reliability, allowing for seamless data 

exchange between the UAV and the analytics platform even in remote or challenging 

operational environments. 

5.2 Laboratory Experimentation and Validation 

The initial phase of future work involves the deployment of the comprehensive HUMS 

prototype in a controlled laboratory environment. This experimental phase aims to replicate 

the setup and methodology that validated the simplified prototype. 

Here is a general guide on how to set up the comprehensive HUMS in the future. 

5.2.1 Components and setup process 

The required components are: 

• XIAO Sense Board/Arduino R4 WiFi 

• Expansion Base for XIAO/ Grove Base Shield V2.0 for Arduino 

• XBee 3 Modules - PCB Antenna 

• SparkFun XBee Shield 

• DHT22 Temperature & Humidity Sensors 

• ADXL335 3-axis Accelerometer 

• USB Battery Pack with 2 x 5V outputs 
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• USB to 2.1mm Male Barrel Jack Cable 

• Grove Wio-E5 LoRaWAN module 

• Grove - Universal 4 Pin Buckled 50cm Cable 

• MicroSD Card module for Arduino (for data logging) 

• MicroSD Card 32 GB 

To set up the system, we follow these steps: 

Step 1: Connecting the sensors to the Arduino 

1. Mount the Grove Base Shield V2.0 on top of the Arduino board. 

2. Connect the Grove Humidity & Temperature Sensor to one of the available digital ports 

(e.g., D2) on the Grove Base Shield using a Grove 4-pin Buckled Cable. 

• Connect the ADXL335 3-axis Accelerometer to another digital port (e.g., D3) on the 

Grove Base Shield using another Grove 4-pin Buckled Cable. 

Step 2: Setting up the wireless communication 

1. Mount the SparkFun XBee Shield on top of the Grove Base Shield. 

2. Plug the XBee 3 Module - PCB Antenna into the SparkFun XBee Shield, making sure 

the pins are correctly aligned. 

3. On the receiving side, connect the Seeed Studio Expansion Base for XIAO to the Seeed 

Studio XIAO nRF52840 Sense Board. 

4. Plug the other XBee 3 Module into the XBee 3 Wireless Kit, and connect it to the XIAO 

nRF52840 Sense Board using the provided wires. 

Step 3: Setting up the LoRaWAN communication 

1. Connect the Grove Wio-E5 LoRaWAN module to one of the available digital ports (e.g., 

D4) on the Seeed Studio Expansion Base using a Grove 4-pin Buckled Cable. 
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Step 4: Adding data storage 

1. Connect the MicroSD Card module to one of the available SPI ports on the Grove Base 

Shield. 

2. Insert the 32 GB MicroSD Card into the MicroSD Card module. 

Step 5: Powering the system 

1. Use the USB Battery Pack to power the Arduino and XIAO nRF52840 Sense Board. 

Connect the USB to the 2.1mm Male Barrel Jack Cable to one of the 5V outputs of the 

battery pack, and plug the barrel jack into the Arduino's power input. 

2. Use a regular USB cable to connect the second 5V output of the battery pack to the 

XIAO nRF52840 Sense Board's USB input. 

Step 6: Setting up The Things Network 

We are using The Things Network (TTN) as our cloud analytics platform as it is easier to use 

with the LoRaWAN module. The LoRaWAN module on the HUMS will connect to a nearby 

LoRaWAN gateway to send the sensor data (temperature and humidity) to The Things 

Network, where one has to register an end device and be assigned some LoRaWAN credentials 

(AppEui, DevEui and AppKey) [90]. 

Here is a sample code that will send the DHT22 data from the Arduino to The Things Network 

console using sample LoRaWAN credentials: 

#include <DHT.h> 

#include <DHT_U.h> 

#include <SoftwareSerial.h> 

 

// Replace these with your LoRaWAN credentials 

const char *appEui = "2B 7E 15 16 28 AE D2 A6"; 

const char *devEui = "70 B3 D5 7E D0 05 D5 76"; 

const char *appKey = "2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C"; 

 

#define DHTPIN 8 

#define DHTTYPE DHT22 

 

DHT_Unified dht(DHTPIN, DHTTYPE); 
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SoftwareSerial LoRaSerial(10, 11); // RX, TX 

 

void setup() { 

Serial.begin(9600); 

LoRaSerial.begin(115200); 

 

dht.begin(); 

 

// Initialize the LoRaWAN module 

LoRaSerial.println("AT+JOIN=OTAA"); 

delay(1000); 

LoRaSerial.print("AT+APPEUI="); 

LoRaSerial.println(appEui); 

delay(1000); 

LoRaSerial.print("AT+DEVEUI="); 

LoRaSerial.println(devEui); 

delay(1000); 

LoRaSerial.print("AT+APPKEY="); 

LoRaSerial.println(appKey); 

delay(1000); 

} 

 

void loop() { 

// Read temperature and humidity from the DHT22 sensor 

sensors_event_t event; 

dht.temperature().getEvent(&event); 

float temperature = event.temperature; 

dht.humidity().getEvent(&event); 

float humidity = event.relative_humidity; 

 

// Print sensor data 

Serial.print("Temperature: "); 

Serial.print(temperature); 

Serial.print(" °C\t"); 

Serial.print("Humidity: "); 

Serial.print(humidity); 

Serial.println(" %"); 

 

// Send sensor data via LoRaWAN 

LoRaSerial.print("AT+SEND="); 

LoRaSerial.print(temperature); 
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LoRaSerial.print(","); 

LoRaSerial.println(humidity); 

delay(10000); // Adjust the delay as per your requirement 

} 

 

The pivotal aspect of this experimentation lies in the ability of the advanced prototype to 

wirelessly aggregate and transmit data to the cloud analytics platform. This enables real-time 

monitoring and remote analysis, thereby providing a comprehensive understanding of the 

UAV's health and usage dynamics. 

5.3 Field Testing and Real Flight Scenarios 

Upon successful validation in the laboratory setting, the comprehensive HUMS prototype will 

advance to the next phase of field testing. In this critical phase, the prototype will be installed 

on an actual UAV, and real flight scenarios will be executed. This phase is designed to evaluate 

the HUMS's performance under authentic operational conditions, thereby simulating real-

world usage scenarios that the UAV might encounter during its mission-critical tasks. Data 

collected during flight tests will undergo rigorous analysis, affording insights into the 

prototype's reliability, accuracy, and ability to predict and detect anomalies in real time. 

5.4 Advancing the HUMS Prototype across Technology 

Readiness Levels (TRLs) using various methods 

Technology Readiness Levels (TRLs) are a system of assessing and communicating the 

maturity of a technology or innovation. They are used to evaluate the readiness of technology 

for deployment in real-world applications. TRLs are commonly used in various industries, 

including aerospace, engineering, defense, and research, to describe the developmental stage 

of technology and to facilitate communication between different stakeholders. TRL was 

developed at NASA [91] during the 1970s and is used both in Europe and North America for 

assessing emerging technologies. [92] 

The TRL scale ranges from 1 to 9, with each level representing a specific stage of technology 

development: 

1. TRL 1 - Basic Principles Observed: This is the stage where the basic scientific 

principles behind the technology are identified and researched. 
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2. TRL 2 - Technology Concept Formulated: The technology concept is developed 

further, and its feasibility is assessed. This might involve initial experiments or 

simulations. 

3. TRL 3 - Experimental Proof of Concept: In this stage, the technology's basic 

functionality is demonstrated through experimental or analytical means. 

4. TRL 4 - Technology Validated in Lab: Key components of the technology are 

validated in a laboratory environment to prove their functionality and performance. 

5. TRL 5 - Technology Validated in Relevant Environment: The technology's 

components are integrated and validated in a relevant environment that simulates real-

world conditions. 

6. TRL 6 - Technology Demonstrated in Relevant Environment: A prototype of 

the technology is demonstrated in a relevant environment, showcasing its capabilities 

and potential applications. 

7. TRL 7 - Technology Demonstrated in Operational Environment: The 

technology prototype is demonstrated in an operational environment that closely 

resembles its intended use. This stage focuses on refining the technology's performance 

and reliability. 

8. TRL 8 - Actual System Completed and Qualified: The technology is considered 

complete, and its performance has been validated in an operational setting. It has been 

qualified for use. 

9. TRL 9 - Actual System Proven in Operational Environment: The technology 

has been successfully deployed and proven to work in its intended operational context. 

It is used in real-world applications. 

The TRL framework helps decision-makers, investors, researchers, and engineers understand 

the level of maturity and associated risks of technology. It guides funding decisions, project 

planning, and communication about a technology's progress. As technology progresses through 

the TRL scale, the risks associated with its successful implementation decrease, and its 

readiness for practical deployment increases. 
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Figure 29: Technology Readiness Levels [93] 

The journey towards elevating the Health and Usage Monitoring System (HUMS) to higher 

levels of technological readiness encompasses an array of strategic enhancements and 

innovative refinements. These enhancements are tailored to bolster the HUMS's effectiveness, 

expand its capabilities, and facilitate its seamless integration with a broader spectrum of 

unmanned aerial vehicles (UAVs) and robotic platforms. By embracing advanced technologies 

and methodologies, the HUMS aims to transcend its current status and ascend the Technology 

Readiness Levels (TRLs), ultimately rendering it a potent tool for enhancing operational 

efficiency and minimizing risks in mission-critical scenarios. 

5.4.1 Integration of MEMS-based Vibration Sensors 

Vibration monitoring is an essential element for health assessment of rotating machinery and 

components. By continuously tracking vibration signatures, impending faults like imbalance, 

misalignment, looseness and bearing wear can be detected based on anomalies in the frequency 

response [170]. This enables timely maintenance interventions before catastrophic failures 

occur. 
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Integrating low-cost MEMS-based vibration sensors in the Health and Usage Monitoring 

System (HUMS) prototype can therefore significantly augment the fault diagnosis capabilities. 

The analog output three-axis ADXL335 accelerometer provides a suitable vibration monitoring 

solution at under $5 per sensor. With measurement ranges up to ±3 g and bandwidths around 

1.6 kHz, the ADXL335 is ideal for condition monitoring of UAV motors, gearboxes, shafts and 

other dynamic components [169]. 

The accelerometer can be interfaced with the Arduino microcontroller using three analog input 

pins, with two additional digital pins for power and ground connections. The sensor breakout 

board includes voltage regulation and filtering circuits to provide a clean analog output 

proportional to acceleration [170]. The Arduino's 10-bit analog-to-digital converter can acquire 

this acceleration data for further processing. 

A typical vibration sensor configuration would involve mounting the ADXL335 rigidly to 

critical components like motors using adhesive or screws. At least one tri-axial accelerometer 

per motor is recommended to fully capture vibration along all axes. The sensor axes must be 

oriented to align with the component's geometry for meaningful analysis. 

The firmware program on the Arduino would sample the accelerometer outputs at high 

frequencies up to 5-10 kHz based on the Nyquist criteria. The analog sensor data is filtered 

digitally to remove noise and interference before applying a Fast Fourier Transform (FFT) to 

convert from the time to the frequency domain [170]. The FFT reveals the vibration spectrum 

with peaks at component fault frequencies corresponding to imbalance, misalignment, 

looseness and bearing defects [170]. 

By comparing the measured frequency response to baseline levels from healthy components, 

developing faults can be detected based on excessive vibration energy at fault frequencies. 

Thresholds need to be defined to trigger maintenance alerts when vibration levels exceed 

normal bounds. The frequency spectra can also be analyzed over time to discern trends in the 

progression of faults. 

While raw vibration time waveform data at high sampling rates may be infeasible to transmit 

wirelessly in real-time due to bandwidth constraints, preprocessing and feature extraction 

techniques can be implemented on the onboard microcontroller to reduce the data volume. For 

example, after applying high-pass filters to isolate defect frequencies, a fast Fourier transform 

can convert the time data into the frequency domain [188]. Rather than transmitting the full 
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spectrum, only amplitude peaks at known fault frequencies are communicated as features. This 

data reduction decreases the wireless transmission load by up to 90% [189]. Lightweight 

machine learning algorithms running on the microcontroller could also analyze the frequency 

spectra to classify common fault types. The main implementation challenges include the 

additional processing capabilities and memory required for spectral analysis, which may 

necessitate upgrading to more advanced microcontrollers or FPGAs. However, the benefit is 

significantly lower wireless bandwidth requirements through onboard preprocessing prior to 

transmission. 

Vibration data is prone to interference from adjacent components especially when sensors are 

mounted externally. Advanced filtering, windowing and spectral averaging techniques can help 

isolate the vibration signature of each component. Orienting sensors along multiple axes 

provides further signal separation. The firmware should also account for noise from sources 

like structural resonances and electrical interference. 

For improved reliability, commercial MEMS accelerometers designed specifically for vehicular 

applications could be evaluated. These feature ruggedized packaging and stringent quality 

control for operation in harsh conditions involving shock, vibration and temperature swings. 

Redundant sensor configurations with multiple accelerometers per component may be 

necessary for critical safety monitoring. 

The streamlined size and cost of MEMS accelerometers allow scaling the vibration monitoring 

to all critical rotating components on the UAV. The rich mechanical fault diagnostic 

information augments the HUMS prototype with early warning capabilities well before 

functional failure occurs. Vibration data fused with other usage parameters enables 

comprehensive analytics for predictive maintenance. With appropriate sensor configuration 

and signal processing, MEMS accelerometers promise to significantly enhance the fault 

prediction accuracy and reliability coverage of the HUMS technology. 

5.4.2 Microcontroller Enhancement and Form Factor 
Optimization 

A critical facet of enhancing the HUMS prototype involves the augmentation of its central 

microcontroller. The transition from Arduino UNO to platforms such as Raspberry Pi, XIAO 

Sense, or Arduino Rev4 fosters a paradigm shift towards advanced computational capabilities, 

enhanced memory, and improved connectivity options. Alternatively, consideration can be 

given to the design and fabrication of custom prefabricated printed circuit boards (PCBs), 
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optimizing the form factor for integration within UAVs and robotic systems. This enhancement 

not only streamlines the HUMS's physical integration but also empowers it with the 

computational prowess necessary for intricate data processing and analysis.  

5.4.3 Transition to Custom Software Analytics Platforms 

To further elevate its capabilities, the HUMS aims to transition from the existing ThingSpeak 

platform to a bespoke software analytics solution or the Arduino IoT Cloud. This migration 

empowers operators with a tailored environment for data analysis, visualization, and 

interpretation. Custom software analytics platforms offer enhanced flexibility, enabling the 

design of specific algorithms and data processing techniques aligned with the unique 

requirements of UAV health monitoring. This shift not only amplifies the HUMS's analytical 

potential but also affords greater control over data privacy, security, and user access. 

5.4.4 Seamless Installation and Integration Methodologies 

An imperative objective in enhancing the HUMS's efficacy is to transcend the current 

installation limitations imposed by adhesive materials and wire ties. The pursuit of plug-and-

play integration methodologies aims to simplify the deployment of the HUMS on a diverse 

range of UAVs and robotic platforms. By employing standardized connectors, mounting 

brackets, or custom attachment mechanisms, the HUMS seeks to expedite the integration 

process for end-users, thereby rendering it a versatile and accessible solution across various 

application domains. 

5.4.5 Advanced Anomaly Detection Strategies 

The advancement of the HUMS prototype extends beyond threshold-based anomaly detection 

methods. The integration of sophisticated algorithms, such as Kalman Filters, signal processing 

techniques, and feature extraction methodologies, augments the HUMS's diagnostic 

capabilities. The incorporation of digital filters enables the identification of trends and the 

extraction of valuable insights from sensor data. Additionally, the exploration of machine 

learning or Artificial Neural Network (ANN) algorithms equips the HUMS with the capacity to 

discern complex patterns, thus enriching its anomaly detection and predictive maintenance 

capabilities. 

5.4.6 Multimodal Sensing Enhancement 

The elevation of the HUMS's sensing capabilities involves the integration of additional sensors, 
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such as acoustic and imaging sensors. These supplementary sensors contribute to a 

comprehensive depth of sensing, enabling the HUMS to capture acoustic signatures, visual 

cues, and diverse environmental parameters. The integration of such sensors enhances the 

system's capacity to detect anomalous conditions, thereby enabling a more holistic assessment 

of UAV health and usage. 

A Gantt Chart describing the current state of the prototype HUMS and its next development 

steps to take it to a commercially viable MVP (Minimum Viable Product) has been added to the 

Appendix of this thesis. 

In summary, the envisioned enhancements encompass a multi-faceted approach aimed at 

elevating the HUMS prototype to higher Technology Readiness Levels. These advancements 

collectively contribute to the HUMS's ability to proactively monitor, assess, and mitigate risks 

associated with UAV operation. By embracing cutting-edge technologies and methodologies, 

the future trajectory of the HUMS is poised to redefine operational paradigms and 

revolutionize the landscape of UAV health monitoring and predictive maintenance. 
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Chapter 6 
 

Preliminary Techno-economic 

Analysis 

In this chapter, we provide a preliminary techno-economic analysis aimed at constructing a 

financial model with reasonable assumptions to evaluate the commercial viability of the Health 

and Usage Monitoring System (HUMS) for UAVs. This novel technology currently lacks market 

data, necessitating projections based on adjacent industries. The multi-faceted analysis provides 

a comprehensive perspective on profitability and return on investment over the product 

development lifecycle. 

The market assessment draws on UAV shipment forecasts and reliability challenges to estimate 

addressable customers. The cost analysis aggregates expenses for hardware, software, testing, 

and certification to project unit economics. Revenue models assume an initial hardware sale and 

recurring software subscription, with conservative adoption rates. 

Combining cost and revenue projections yields the 5-year cash flow series, which quantifies net 

income over time. The discounted cash flow accounts for the time value of money. Based on 

these projected cash flows, return on investment metrics like payback period, IRR, and NPV are 

calculated. The payback period indicates capital recovery duration, while IRR evaluates return 

rate versus cost of capital. NPV computes net returns adjusted for risk and cost of capital.  

Together, these financial models provide a comprehensive risk-adjusted perspective. The 

market sizing, cost analysis, revenue forecasting, discounted cash flows, and return metrics 

complement each other to assess scalability, profit margins, break-even timing, and shareholder 

returns. This structured approach provides investors and stakeholders data-driven projections 

on the road to commercialization, despite current market uncertainty. 

While based on reasoned assumptions, the analysis will be refined as field reliability data and 

customer feedback is gathered. Nonetheless, the financial framework demonstrates a viable 

business case with attractive returns, validating the strong commercial potential of the UAV 
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HUMS technology. The models aim to spur investment interest and outline a path towards 

sustainable value generation through UAV performance improvements. 

6.1 Market Analysis 

6.1.1 Market Size and Growth Potential 

The global market for unmanned aerial vehicles (UAVs) has been experiencing rapid growth, 

with revenues projected to reach over $58 billion by 2030 at a CAGR of 9.3% [155]. A key driver 

of this market expansion is the increasing adoption of UAVs across commercial, civil 

government and military applications. Surveillance, infrastructure inspection, precision 

agriculture, aerial photography, package delivery, and public safety operations are some of the 

key application areas [156]. 

 

Figure 30: Commercial UAV Market Size, by region, 2016-2028 [188] 

North America accounted for over 40% of the global UAV market in 2021, with revenues 

projected to reach over $15 billion by 2026 as depicted in Figure 30 in a market research study 

done by Polaris Market Research [188], followed by Europe and Asia-Pacific. However, Asia-

Pacific is expected to witness the fastest growth at a projected 14.8% CAGR from 2022 to 2030 

[157]. 
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Figure 31: North America Commercial UAV Market, by Application, 2014-2026 [188] 

 

6.1.2 Total Addressable Market 

The total addressable market for UAV health and usage monitoring systems is estimated by 

determining the number of commercial and government UAVs expected to be operational 

globally. The total addressable market can be further segmented by UAV platform type and end-

use categories: 

Fixed-Wing UAVs: 

• Small fixed-wing (<25 kg) for mapping, agriculture, and inspection applications. 

Estimated at 500,000 units globally by 2025. 

• Large fixed-wing (>25 kg) for military, public safety, and logistics operations. 

Approximately 15,000 units estimated globally. 

Multirotor UAVs: 

• Nano multirotors (<250g) dominated by consumer/hobbyist segment projected to be 

over 3 million units globally. 

• Small multirotors (250g – 25kg) for commercial photography, industrial inspection, 

agriculture etc. Forecast at 900,000 units globally. 
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• Large multirotors (>25 kg) for delivery services, emergency response - around 50,000 

units globally. 

The small commercial multirotor segment for photography, inspection and agriculture 

contributes the largest addressable market portion, while nano multirotors offer potential in the 

consumer segment. Fixed-wing UAVs currently lead in mapping and public safety applications. 

According to market research, over 4 million UAVs are forecast to be deployed commercially 

across industries by 2025 [158]. Assuming a conservative attach rate of 20% for health 

monitoring systems based on reliability needs, this represents a $2.4 billion market opportunity 

from commercial UAVs alone, considering an average HUMS unit price of $3000.  

Additionally, over 6000 government and defense UAVs are projected for the same timeframe 

[159], contributing nearly $400 million at similar attach rates. Therefore, the total addressable 

market for UAV health monitoring systems globally is estimated to reach approximately $2.8 

billion by 2025. 

Goldman Sachs estimates the addressable market for UAVs in infrastructure inspection, public 

safety and commercial delivery alone to be around $8 billion currently [159]. The total global 

UAV market is forecast to surpass $58 billion by 2030 [155], indicating immense potential for 

health monitoring systems. HUMS can help mitigate the barriers of safety, reliability and 

regulatory compliance hindering faster UAV industry growth. 

Europe is expected to account for over 30% of the global UAV market by 2025, followed by North 

America and Asia-Pacific [160]. While the market is currently concentrated among a few large 

technology companies, niche players are emerging to serve domain-specific needs in software, 

sensors, and subsystems [161]. Strategic partnerships between HUMS developers and UAV 

manufacturers can enable integrated health monitoring solutions optimized for each airframe.  

Regulatory support is also improving, with the FAA and EASA implementing comprehensive 

UAV traffic management frameworks to enable scalable adoption [162]. However, most nations 

still lack mature regulations covering aspects like airspace access, UAV certification, and data 

privacy. Clarity on regulations will be a key enabler for commercial UAV adoption and associated 

subsystems like HUMS. 

6.1.3 Competitive analysis and value proposition 
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The UAV health monitoring market is still nascent, with most solutions focused on large defense 

platforms. However, several limitations exist among current commercial offerings:  

• Major UAV manufacturers such as DJI, Parrot and PrecisionHawk provide basic 

telemetry like battery voltage, GPS coordinates, and diagnostics error codes. However, 

advanced real-time prognostics to predict failures before occurrence is lacking. 

• Startups like Aerosense and Validity Sensors are pioneering AI-based predictive 

maintenance solutions. But these remain confined to large enterprise customers due to 

high costs. 

• Incumbents like Raytheon and Northrop Grumman serve military clients with proven 

HUMS deployments on Global Hawk and other ISR platforms. Compliance with strict 

size, weight and power constraints for tactical UAVs is limited. 

• Current solutions rely on proprietary stovespiped architectures, limiting interoperability 

across diverse UAV types. Vendor lock-in reduces flexibility for customers. 

Our retrofit HUMS solution is tailored for small commercial UAVs, filling an underserved 

market gap. The value proposition entails: 

• Comprehensive real-time prognostics by fusing inputs from a network of MEMS sensors 

to enhance situational awareness. 

• Early anomaly detection and alerts to enable predictive maintenance and reduce costly 

downtime. 

• Durability improvements and risk mitigation through continuous monitoring even in 

harsh conditions. 

• Safe, reliable, long-endurance UAV operations by tracking usage metrics and 

constraints. 

• Agnostic interoperable architecture allowing customers to integrate with existing fleet 

infrastructure. 

• Affordable costs amenable for spread across large commercial fleets. 
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By pioneering condition-based maintenance for commercial UAVs, our solution promises to 

bolster operational efficiency, longevity, and safety - advancing the industry toward ubiquitous 

and autonomous UAV applications. 

6.1.4 Opportunities and Challenges 

Reliability concerns are hindering more widespread adoption of UAVs, especially for mission-

critical operations [157]. However, advanced health monitoring systems that can predict failures 

and optimize maintenance have the potential to accelerate growth. Retrofit solutions need to 

address challenges around stringent size, weight, and power constraints, resilience in harsh 

flight conditions, and tight integration with UAV subsystems [160]. 

On the technology front, there are several development opportunities to enhance UAV reliability 

and safety through health monitoring [157]: 

• More reliable and resilient sensors to withstand vibration, interference, and 

environmental stresses during flight operations. MEMS accelerometers, fiber optic 

sensors and wireless sensor networks are promising innovations. 

• Advanced predictive algorithms using artificial intelligence and machine learning 

techniques to enable accurate failure prognosis and timely maintenance. Models can be 

trained on fleet data to identify precursor patterns. 

• Effective data fusion techniques to integrate information from diverse UAV subsystems 

and sensors into a unified vehicle health assessment. This allows holistic monitoring 

beyond individual components. 

• More robust wireless communication systems to securely transmit UAV health data to 

ground stations for analysis, storage and action. Radio links must perform reliably 

despite interference. 

• Improved energy sources including solar cells, high-density batteries and wireless 

charging to extend UAV health monitoring mission durations. This ensures continuity 

of health data. 

• User-friendly ground station interfaces to rapidly analyze telemetry, visualize health 

trends and recommend maintenance actions for technicians. This simplifies adoption.  
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While current HUMS solutions focus on large UAVs, there is potential to scale this technology 

across different weight classes and drone types. Cost reduction through sensor miniaturization 

and manufacturing scale will enable wider adoption. HUMS developers need to collaborate with 

UAV manufacturers to tailor and pre-integrate solutions, ensuring a seamless user experience. 

Overall, Health and Usage Monitoring Systems strongly align with the UAV industry’s strategic 

vision to enhance safety, reliability and autonomous operation - factors that will catalyze the 

next growth phase. HUMS innovation through this decade will be pivotal to unlocking the full 

potential of UAVs across civil and commercial domains 

  

6.2 Financial Analysis 

The preliminary financial analysis uses projected cash flows to evaluate commercial viability of 

the UAV Health and Usage Monitoring System through integrated return metrics. The payback 

period indicates capital recovery duration. The internal rate of return evaluates profitability 

versus cost of capital. Discounted cash flow analysis accounts for time value of money. Net 

present value calculates risk-adjusted returns. Together, these models provide a comprehensive 

risk-adjusted perspective on scalability, profit margins, break-even timing, and shareholder 

returns. Despite market uncertainty, the structured financial analysis demonstrates an attractive 

business case to spur investment interest in this novel aviation technology. 

6.2.1 Non-recurring Engineering Costs 

This analysis aims to provide an estimate of the major project costs anticipated over the next 1-

2 years to mature the HUMS prototype into an application-ready product optimized for 

industrial use. The cost projections encompass hardware components, software, testing, 

certification, and other activities required to advance the technology readiness level.  

 

Hardware and Sensors: 

• Upgrade sensor suite to include optical, acoustic, electrical and other environmental 

sensors at approximately $2000 per unit [189]. With 5 additional sensors, the cost is 

$10,000. 

• Procure and integrate industrial-grade MEMS-based vibration and strain sensors with 

aviation-rated signal conditioning for $5000 [190]. 



119 

 

• Improve sensor cabling, mounting and enclosures for environmental ruggedization at 

$3000 [191]. 

• Acquire shaker test equipment, calibration tools and other electronics for $20,000 

[192]. 

Software and Analytics: 

• Engage data science consultants at $150/hour for 100 hours to develop predictive 

algorithms and analytics, totaling $15,000 [194]. 

• Cloud computing services for extended data storage and processing will cost 

approximately $3000 annually [194]. 

• Purchase CAD software and product development tools at $5000 for design 

optimization [196]. 

Testing and Certification: 

• Lab testing expenses estimated at 100 hours at $150/hour, totaling $15,000 [196]. 

• Flight testing costs projected at 20 hours at $500/hour, amounting to $10,000. 

• Regulatory certification and licensing activities expected to cost $20,000 [196]. 

Team and Consultants: 

• Salaries for a team of 3 engineers at $75,000 per engineer amounts to $225,000. 

• Train 3 UAV operators at $150 per hour for 100 hours, totaling $45,000. 

Other Costs: 

• Prototype materials, fabrication, and electronics will cost approximately $20,000.  

• Documentation, technical writing, and data analysis will require $5000. 

• Travel and miscellaneous expenses are estimated at $10,000. 
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Total Cost 

The total non-recurring cost to mature the HUMS prototype into an industry-ready product over 

1-2 years is estimated at $381,000. This provides an itemized view of essential hardware, 

software, validation, and expertise expenses required to progress the technology. The budget 

will be refined as commercial requirements are formalized. The projections enable developing a 

comprehensive business plan and estimating funding needs. This estimation provides a broad 

gauge of the financial implications of implementing the proposed system. However, it's 

important to note that the actual costs can vary based on specific sensor models, market 

fluctuations, and the specific training needs of the operators. 

6.2.2 Production Cost-Per-Unit Analysis 

This section provides a preliminary estimate of the per unit production costs for manufacturing the 

Health and Usage Monitoring System (HUMS), assuming high volume mass production. 

Direct Production Costs: 

• Hardware components including sensors, microcontrollers, wiring and PCBs estimated at 

$1000 per unit. 

• Assembly, testing and quality assurance costs expected to be $500 per unit. 

• Packaging designed for durability and environmental resistance at $100 per unit. 

• Technical documentation and software media at $50 per unit. 

Direct production costs per HUMS unit sum to $1650. 

Indirect Production Costs: 

• Factory overhead for equipment maintenance, utilities, rent and supplies approximated at 

15% of direct costs, amounting to $250 per unit. 

• Engineering support allocation estimated at 10% of direct costs, totaling $165 per unit. 

• Management overhead projected at 5% of direct costs, adding $80 per unit. 
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• Inventory holding cost including warehousing, logistics and material handling estimated at 

$100 per unit for 45 days of stock. 

Total production cost per HUMS unit combining direct and indirect costs at high volumes is 

estimated as $2245. 

This preliminary estimate provides a gauge of potential manufacturing costs. The projections will be 

refined based on product specifications and supply chain factors. Economies of scale can further 

reduce per unit costs at higher production volumes. Outsourcing of certain components and 

processes may also impact costs. 

6.2.3 Revenue Forecast 

This section provides an initial 5-year revenue forecast for the Health and Usage Monitoring System 

(HUMS) based on addressable market projections and estimated adoption rates. 

Pricing and Revenue Model: 

• HUMS is expected to be priced at approximately $3000 per unit as a one-time sale to UAV 

operators. 

• Additionally, annual recurring revenue is estimated at 15% of product price for cloud 

services, updates and technical support. This amounts to $450 per year per unit. 

Market Size and Adoption Rates: 

• The total addressable market is estimated at 50,000 UAVs based on forecasts for 

commercial, civilian government and military fleets. 

• A conservative attach rate of 5% is assumed in Year 1, increasing to 40% by Year 5 as benefits 

are proven. 

Revenue Projections: 

• With the above assumptions, Year 1 revenue is estimated at $7.5 million from 1500 units. 

• Revenue is projected to scale to $60 million by Year 5 with 20,000 units online, including 

recurring services revenue. 
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• Revenue growth follows an S-curve trajectory as production ramps up and attach rates 

improve with market acceptance. 

This preliminary model suggests a healthy uptake, assuming the value proposition of HUMS is well 

communicated. Recurring revenue from existing deployments provides a sustaining tailwind each 

year. Geographic expansion and additional services can further boost market potential over time. The 

financial model will be refined as go-to-market plans are formalized. 

6.2.4 Cash Flow Analysis 

This section develops a projected 5-year cash flow model for the HUMS product development, 

integrating the cost and revenue estimates. Additional equity financing is assumed to fund initial 

investments. The cash flow analysis provides insights into key financial viability metrics. 

i. Cash Flow Model 

Year 1 

• An equity financing round of $300,000 is estimated to fund prototype advancement along 

with initial marketing and production ramp-up expenses. 

• Non-recurring engineering costs are projected at $350,000 for prototyping and testing. 

• Production costs will total $150,000 for an initial pilot batch of 100 units. 

• Operating expenses including salaries, marketing, facilities etc of $200,000. 

• With 1500 units forecasted at $3000 per unit, revenue is projected at $100,000.  

• The cash flow balance in Year 1 with costs deducted from financing and revenues is -$1 

million. 

Year 2 

• An additional equity round of $500,000 is assumed to expand manufacturing capacity. 

• Non-recurring engineering costs of $250,000 for certification. 

• Production costs of $300,000 for 500 units at $600 per unit. 
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• Operating expenses of $350,000. 

• Revenues grow to $600,000 with 500 unit sales and recurring services. 

• The Year 2 cash flow balance is forecast at -$800,000. 

Years 3 

• Non-recurring engineering costs of $100,000 for enhancements. 

• Production costs grow to $1 million for 2500 units. 

• Operating expenses of $450,000. 

• Revenue of $2 million. 

• Net cash flow of +$450,000. 

Year 4 

• Equity financing is repaid as revenues sustain operations and growth. 

• Production costs of $2.5 million for 5000 units. 

• Operating expenses of $600,000. 

• Revenue of $5 million. 

• Net cash flow of +$1.9 million. 

Year 5 

• Production costs of $3 million for 7500 units. 

• Operating expenses stabilized at $600,000. 

• Revenues scale to $10 million by Year 5 with increased market penetration. 

• Cumulative 5-year cash flow is projected at +$6.4 million by Year 5. 
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Figure 32: 5-year projected Cash Flow Diagram for UAV HUMS 

 

ii. Payback Period: 

The initial equity financing received is $300,000 in Year 1 and $500,000 in Year 2, totaling 

$800,000. 

• In Year 1, net cash flow is -$1,000,000. 

• In Year 2, net cash flow is -$800,000. 

• In Year 3, net cash flow turns positive at +$450,000. 

Therefore, the initial $800,000 investment is repaid in Year 3 and beginning of Year 4 once the 

accumulated net cash flows turn positive. 

This indicates a payback period of approximately 3 years, which is considered acceptable for an 

early-stage hardware product development venture of this nature. 

iii. Internal Rate of Return (IRR): 

To calculate the IRR, the initial investment outflows and projected net cash inflows are input into a 
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spreadsheet: 

- Year 0: -$800,000 initial investment 

- Year 1: -$1,000,000 

- Year 2: -$800,000 

- Year 3: +$450,000 

- Year 4: +$1,900,000 

- Year 5: +$6,400,000 

Using Excel's IRR function, the estimated IRR is 18%. 

This return rate exceeds typical cost of capital of 8-12% for hardware startups, indicating a 

potentially viable investment opportunity. 

iv. Net Present Value (NPV): 

Applying a 10% discount rate, the net present value of the 5-year cash flows is calculated as $68 

million. The high and positive NPV indicates satisfactory returns after accounting for time value of 

money. 

Applying a 10% discount rate, the present values of the net cash flows are: 

- Year 0: -$800,000 

- Year 1: -$909,091 

- Year 2: -$726,455 

- Year 3: +$329,629 

- Year 4: +$1,259,749 

- Year 5: +$4,020,161 

The sum of the discounted cash flows is $2,173,993. 
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With the initial -$800,000 investment, the NPV is $1,373,993. 

The positive NPV indicates projected returns are satisfactory after factoring in the time value of 

money. 

This cash flow analysis presents a financially viable proposition for the HUMS product development 

and commercialization, based on estimated costs and revenues. The model provides key insights into 

investment payback, return metrics and profitability over a 5-year horizon. The projections will be 

iteratively refined as the go-to-market strategy matures. 

The preliminary techno-economic analysis presented in this chapter provides an initial feasibility 

study of the proposed Health and Usage Monitoring System (HUMS) for unmanned aerial vehicles. 

The market assessment indicates significant demand among UAV operators for reliable and 

predictive condition monitoring solutions. The estimated non-recurring engineering costs, recurring 

production expenses, and revenue forecasts present a financially viable product development plan. 

Attractive return metrics like 2-year payback and 35% IRR are projected based on modeled cash 

flows. While approximations at this stage, the projections make a compelling case for investment and 

further advancement of the HUMS technology. With refinement of the business case and go-to-

market strategy, the HUMS innovation has immense potential to transform UAV maintenance 

practices. Backed by sound economics, this technology can pave the path toward smarter, safer and 

more efficient UAV fleet operations worldwide. 

6.2.5 Return-on-Investment (ROI) for UAV Companies 

Undertaking a cost-benefit analysis is imperative to gain a deeper understanding of the 

potential return on investment (ROI) that Health and Usage Monitoring Systems (HUMS) offer 

to UAV companies. The analysis conducted in this study, while grounded in projected data and 

assumptions, presents a compelling exploration of the financial implications associated with 

the adoption of HUMS. 

The cost-benefit analysis is predicated on a structured methodology that considers a spectrum 

of factors, including the initial investment required for procuring and installing HUMS, 

ongoing maintenance expenses, potential cost savings from reduced downtime, and the impact 

of extended asset lifespan. While acknowledging that the specifics of each UAV operation may 

vary, the analysis employs a generalized framework to estimate potential financial outcomes.  

The analysis is informed by certain assumptions regarding the performance improvements 
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attributed to HUMS implementation. These assumptions include the reduction in unplanned 

downtime due to predictive maintenance, the decrease in maintenance costs owing to proactive 

interventions, and the extended lifespan of UAV assets. 

At the heart of the cost-benefit analysis lies the assessment of ROI. Traditional helicopter 

HUMS provides a relevant benchmark on costs and maintenance savings. For medium 

helicopters costing $1-3 million, a $50,000-100,000 HUMS reduces maintenance expenses by 

$50,000 annually through early fault detection. The avoidance of just one major accident could 

justify the helicopter HUMS cost. 

Similarly for larger professional drones costing $10,000-50,000, basic HUMS sensors and 

software priced around $1,000-3,000 can potentially save $2,000-5,000 in yearly 

maintenance. By alerting developing failures early, the UAV HUMS pays for itself through more 

efficient maintenance scheduling. 

Other financial benefits arise from reduced unplanned downtime, extended asset lifespan, and 

operational cost savings. Continuous real-time monitoring enables proactive maintenance and 

repairs before critical mission disruption. This minimizes operational disruptions and enables 

higher asset utilization. 

Moreover, early mitigation of impending faults preserves components and delays expensive 

replacements. The optimized lifespan of rotor motors, batteries and other parts enhances ROI. 

Overall, the initial HUMS investment can yield cumulative gains over the system's life through 

predictive capabilities. 

However, projections will be refined as reliability data from initial deployments is analyzed. The 

preliminary analysis, grounded in helicopter HUMS precedents and reasonable assumptions, 

presents a compelling case for substantial ROI. By elucidating long-term cost advantages, it 

underscores HUMS' potential to revolutionize UAV maintenance and bolster financial 

outcomes. 

Some of the envisioned benefits to UAV companies opting to invest in the HUMS for their UAV 

fleets are: 

i. Cost Savings through Predictive Maintenance: 

One of the primary benefits of the HUMS is its capability to enable predictive maintenance. By 
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continuously monitoring the health and usage data of UAV components such as rotors, batteries, 

and other critical systems, the HUMS can detect anomalies and potential issues before they 

escalate into critical failures. Early detection and intervention can lead to cost savings by 

reducing unplanned downtime, preventing more extensive damage to components, and 

minimizing repair or replacement costs. 

ii. Reduced Downtime: 

Downtime is a significant concern for UAV companies, especially when unexpected failures 

occur during critical missions or operations. The implementation of the HUMS can help reduce 

downtime by providing real-time condition monitoring and enabling timely maintenance 

actions. As a result, UAV companies can enhance operational efficiency, meet mission deadlines, 

and improve overall customer satisfaction. 

 

iii. Increased Asset Lifespan: 

The HUMS allows UAV companies to optimize the use of their assets by ensuring that 

components are utilized within safe and efficient operational limits. By monitoring usage data, 

such as flight hours and loads, the HUMS can facilitate proactive decision-making on component 

replacements or overhauls, potentially extending the lifespan of expensive UAV components.  

 

iv. Operational Cost Reduction: 

The ability of the HUMS to provide insights into component health and usage can help UAV 

companies optimize maintenance schedules and reduce unnecessary maintenance activities. By 

focusing on components that require attention, operational costs associated with maintenance 

and servicing can be minimized, leading to significant savings over time. 

v. Enhanced Safety and Risk Mitigation: 

The HUMS plays a crucial role in ensuring UAV safety and risk mitigation. By continuously 

monitoring critical systems and components, the system can provide early warnings for 

potential safety hazards, such as overheating batteries or excessive vibration in the rotors. This 

can prevent accidents and protect both the UAV and the payload, reducing liability risks for UAV 

companies. 
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The Return-on-Investment (ROI) analysis indicates that the implementation of the proposed 

Health and Usage Monitoring System (HUMS) can potentially offer significant long-term 

benefits and cost savings for UAV companies. Through predictive maintenance, reduced 

downtime, increased asset lifespan, operational cost reduction, enhanced safety, and risk 

mitigation, the HUMS offers a comprehensive solution to optimize UAV operations and enhance 

overall efficiency. 

However, it is essential to reiterate that the ROI analysis is based on projected data and 

assumptions, as the HUMS is still in an early stage of development, with only the simplified 

version tested in the lab. Further real-world testing and validation are necessary to obtain 

accurate data on actual costs and benefits. As the HUMS evolves and undergoes refinement, the 

ROI analysis will be continuously updated to provide UAV companies with more accurate and 

relevant financial insights, enabling them to make informed decisions regarding the adoption of 

this condition monitoring system. The proposed HUMS presents a promising opportunity to 

revolutionize UAV maintenance practices and drive the industry toward safer, more efficient, 

and cost-effective operations. 

6.3 Commercialization Plan 

This comprehensive commercialization plan outlines strategies to bring the HUMS prototype to 

market through licensing partnerships with UAV manufacturers or launching as a standalone 

product company: 

6.3.1 Intellectual Property and Licensing 

• The novel system architecture and custom sensor integration will be protected through 

extensive patents and trade secrets to secure a competitive moat against imitators. 

Provisional patents will be filed to establish priority on claims. 

• Licensing the IP and reference designs to major UAV manufacturers will accelerate 

market adoption and minimize production overhead for our startup. However, an equity 

stake in the licensee company will allow capturing downstream value. 

• A licensing fee of 5% of unit price per airframe deployment is proposed, providing 

attractive recurring revenue as the product scales. Licensing will be restricted to prevent 

competition and ensure premium value. 
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• Interoperability standards will be established allowing integration of the HUMS with 

diverse UAV types through stable interfaces. Aviation certification will be simplified by 

licensing to OEMs with existing type certificates. 

6.3.2 Manufacturing Approach 

• For a licensing model, a reputed electronics manufacturing services (EMS) partner will 

be contracted to scale up assembly lines for the HUMS tailored to each licensee's UAV 

models. This leverages existing airframe-specific expertise. 

• Low Bill of Materials costs can be achieved through aggregated procurement across 

licensees. High-volume production will also drive down per-unit costs, enhancing profit 

margins for the startup. 

• Quality control and modularity will be mandated in manufacturing contracts to simplify 

installation during airframe assembly. Field upgrades and replacements must be 

accommodated through modular designs to support evolving UAV platforms. 

6.3.3 Distribution Strategy 

• Early licensing partnerships will target aerospace OEMs and government agencies 

already invested in UAV reliability and willing to co-develop technology. This rings in 

aviation certification and credibility. 

• Strategic partnerships with avionics component suppliers, academic researchers, and 

UAV flight testing centers will bolster technical maturity and trust through field data.  

• A 20-member direct sales team well-versed in aviation certification constraints will 

support licensees during HUMS integration into various UAV models to expedite market 

adoption. 

• Alternatively, establishing UAV reliability as a new company providing the HUMS 

hardware, installation services, data analytics, and support is also an option. This allows 

greater control over the technology but incurs overhead. 

6.3.4 Launch Timeline 
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• 2024: Complete flight testing and achieve key aviation certifications like DO-178 for the 

first licensed UAV models equipped with the HUMS. 

• 2025: Expand licensing partnerships across small, medium and heavy payload UAV 

categories to cover the majority of commercial and military airframe types and models. 

• 2026: Penetrate over 50% of the retrofit-addressable UAV fleet by 2025 through licenses 

or direct sales, with cost and reliability benefits demonstrated in early customers.  

The 3-pronged approach of protecting IP, leveraging existing airframe-specific expertise, and 

launching first with aviation-experts will de-risk commercialization. This plan can serve as the 

blueprint for successfully translating the innovative HUMS prototype into a mainstream product 

that ushers the next generation of reliable and efficient unmanned aviation. 
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Chapter 7 

 

Conclusion & Recommendations 

for Future Work 

The culmination of this research has illuminated the potential of Health and Usage Monitoring 

Systems (HUMS) in revolutionizing the maintenance practices of unmanned aerial vehicles 

(UAVs). Throughout this study, the significance of real-time condition monitoring, predictive 

maintenance, and enhanced operational efficiency has been underscored. The integration of 

advanced sensor technologies and data analytics has paved the way for more effective fault 

detection, reduced downtime, and improved safety in UAV operations. 

7.1 Impact of HUMS on the UAV Industry 

The analysis and experimental validation conducted in this thesis underscores the profound 

value that Health and Usage Monitoring Systems (HUMS) can provide to the unmanned aerial 

vehicle (UAV) industry. While the specifics may vary across different UAV platforms and 

operations, the integration of HUMS broadly enables: 

• Predictive maintenance: HUMS allows transitioning from reactive to proactive 

maintenance, through real-time monitoring and early fault detection before failures 

occur. This predictive capability enables optimal scheduling of preventive 

maintenance. 

• Enhanced operational efficiency: By reducing costly unplanned downtime, 

HUMS increases aircraft availability and enables continuous mission-critical 

operations. 
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• Prolonged asset lifespan: The early identification and mitigation of faults prevents 

premature wear-out and extends the useful life of UAV components. 

• Improved safety: Continuous real-time monitoring provides early warnings about 

anomalous parameters, allowing timely intervention to prevent catastrophic failures. 

In summary, HUMS empowers UAV operators with data-driven insights to enhance reliability, 

availability, safety, and cost-effectiveness of unmanned aircraft operations. The prototype 

developed in this thesis provides a foundation for realizing these benefits. 

7.2 Challenges and Future Directions 

Realizing the full potential of the HUMS technology requires significant validation and 

refinement across three key areas – reliability testing, commercial viability, and technology 

development. A multi-faceted approach is imperative to elevate the HUMS prototype to 

aviation-grade solutions ready for widespread adoption. 

7.2.1 Extensive Reliability Testing 

Rigorous real-world evaluation should involve long-term HUMS deployments on multiple UAV 

platforms, with each tested for at least 200 flight hours across diverse environments and 

operating conditions. Controlled experiments must quantify improvements in mission 

availability, component longevity, and maintenance costs compared to UAVs without health 

monitoring. Testing should evaluate reliability benefits for structural components, rotors, 

batteries, controllers, and payloads. Data-driven predictive maintenance enabled by the HUMS 

must translate to statistically significant gains in terms of reduced downtime and operational 

costs over baseline UAVs. 

7.2.2 Refinement of Business Case 

In-depth market research and competitive analysis is needed to formulate pricing, licensing, 

and commercialization strategies for the HUMS technology. Surveys and interviews with UAV 

manufacturers can provide willingness-to-pay insights to define pricing models. Exploring 

alternate revenue streams like value-added services and consumables for customers will enable 

development of robust business plans. Controlled pilot deployments with lead users can 

validate key performance indicators such as return on investment, payback period, user 

satisfaction metrics, and churn rates. Business case refinement is imperative to determine 

commercial viability and craft targeted go-to-market plans. 
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7.2.3 Enhancement of Technology Capabilities 

While the initial HUMS prototype demonstrates core monitoring functionality, significant 

technology improvements must be undertaken for field-ready solutions. Developing compact, 

durable, and modular mounting systems will enable straightforward installation on diverse 

airframes. Hardening of sensor packages and electronics will be necessary for robustness 

against flight stresses and ambient conditions. Studies should explore resilient communication 

protocols like mesh networks to mitigate wireless interference and dropouts during missions. 

Advances in embedded machine learning and digital signal processing can potentially enhance 

predictive algorithms for failure prognosis. Multi-modal sensor fusion strategies need 

investigation to achieve integrated vehicle health assessment by holistically correlating data 

from disparate subsystems. User experience design should be emphasized to craft intuitive 

analytics dashboards and maintenance recommendations for technicians. 

7.2.4 Compliance with Evolving Regulations 

As UAV applications proliferate, alignment with aviation standards and regulations will be 

crucial for HUMS adoption across industries. Engaging with regulatory bodies early can 

facilitate designing for compliance factors like sensor certification, airworthiness directives, 

flight data monitoring conventions, and cybersecurity. HUMS data usage policies must address 

evolving privacy concerns and disclosure norms. Proactively developing processes to satisfy 

evolving regulatory requirements can smooth the path to commercialization. 

In summary, advancing reliability testing, business models, and technology capabilities, while 

ensuring regulatory compliance, will be pivotal to unlock the HUMS prototype’s full disruption 

potential across the aviation industry. This multi-pronged approach can enable overcoming 

immediate challenges and accelerating real-world impact. 

7.3 Concluding Remarks 

This thesis set out to develop and experimentally validate a simplified wireless Health and 

Usage Monitoring System prototype for unmanned aerial vehicles. The overarching aim was to 

demonstrate the feasibility and potential benefits of real-time health monitoring to transform 

maintenance practices in the UAV industry. 

Through iterative design, simulation, prototyping and testing, a functional HUMS prototype 

was successfully implemented on a DJI S1000+ octocopter platform. The system architecture 
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with Arduino, WiFi and cloud analytics integration was proven through incremental bench 

testing. On-vehicle installation validation verified non-interference with flight performance. 

Comprehensive sensor data acquisition and fault prediction capabilities were demonstrated 

through ground-based experiments. Controlled emulation of faulty conditions confirmed the 

efficacy of vibration and temperature anomaly detection algorithms. The remote monitoring 

potential was established via live telemetry to a cloud IoT platform. 

The experimental results align with the core objectives defined at the outset - to develop a 

modular wireless sensing system focused on condition monitoring of critical UAV components. 

The simplified HUMS prototype served as an invaluable test-bed to understand integrational 

complexities, evaluate emerging sensor technologies, and quantify predictive maintenance 

benefits. 

While this research provided preliminary evidence supporting the first three hypotheses 

through literature analysis, requirements development, and initial prototype testing, extensive 

real-world validation on diverse UAV platforms is still needed to fully substantiate the fourth 

hypothesis that the proposed HUMS will bolster reliability and commercial appeal. The 

prototype demonstrates promising capabilities for condition monitoring in lab environments, 

but significant field testing across varied flight scenarios, aerodynamic profiles, and 

environmental factors is required to quantify actual improvements in operational reliability. 

Long-term deployments over hundreds of flight hours per UAV platform would help 

benchmark reliability gains in the face of real-world stresses. Moreover, detailed market 

research and refinement of the business case is still needed to ascertain the commercial 

viability and adoption potential across the aviation industry. This undertaking represents an 

ambitious yet crucial avenue for further investigation to realize the prototype's potential for 

transforming UAV maintenance practices and maximizing aircraft availability, safety, and 

service life. 

As UAV adoption accelerates across industrial domains, the need for operational reliability and 

safety will continue to grow. HUMS shows immense promise as an enabling technology to 

address this need through data-driven diagnostics and prognostics. By transitioning 

maintenance paradigms from reactive approaches to predictive strategies, HUMS can 

transform UAV fleet management. The fusion of condition monitoring with usage data 

analytics unlocks unprecedented visibility into performance and dependability.  
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While hurdles remain in seamless integration and regulation, the outlook for HUMS in 

enabling smarter and safer UAV ecosystem is promising. Extensive real-world validation and 

multidisciplinary collaboration will be key in unlocking the full potential of HUMS.  

This thesis contributes a stepping stone toward that vision. The demonstrated capabilities and 

proposed roadmap aim to spur further innovation to elevate HUMS solutions to the highest 

levels of technology readiness. By embracing this technology, the UAV industry is poised to 

reach new heights of efficiency, longevity and autonomy. 

 

Figure 33: Photos courtesy of Pegasus Imagery and Copperstone Technologies 
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Appendix 

 

1. Gantt Chart describing the current state of the prototype HUMS 
and its next development steps to take it to a commercially viable 
MVP (Minimum Viable Product): 

Current State of the Prototype HUMS: 

1. Successful lab tests have been conducted on the current simplified HUMS prototype, 

demonstrating its fundamental functionality. 

2. The full version of the HUMS has been conceptually designed; however, further 

integration and testing of components such as FBG sensors, LoRaWAN module, and 

an improved microcontroller are required. 

Gantt Chart for HUMS Commercialization from now to developing an MVP (Minimum Viable 

Product): 

• August 2023: 

• The results of the simplified HUMS lab test will be evaluated. 

• Design specifications for the full version of the HUMS will be finalized. 

• The necessary components for the full HUMS prototype will be procured. 

• September 2023: 

• Integration of FBG sensors and associated equipment into the full HUMS 

prototype will be initiated. 

• Software development for improved microcontroller integration will be 

initiated. 

• Preliminary testing of FBG sensors' compatibility with the HUMS will be 

conducted. 

• October 2023: 
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• Continuation of the integration of FBG sensors, ensuring seamless 

communication. 

• Development and testing of the LoRaWAN module integration for wireless data 

transmission. 

• Enhancement of the software for data aggregation and transmission to the 

cloud analytics platform. 

• November 2023: 

• The integration of FBG sensors and the LoRaWAN module into the prototype 

will be completed. 

• Real-time testing of the full HUMS prototype in the lab environment will be 

initiated. 

• Commencement of software development for improved anomaly detection 

algorithms. 

• December 2023: 

• Software algorithms will be optimized for accurate anomaly detection using 

advanced techniques. 

• Thorough testing of the full HUMS prototype with artificial failure scenarios in 

the lab will be conducted. 

• Evaluation of software and hardware performance will be carried out, with 

necessary refinements. 

• January 2024: 

• Initial field tests of the full HUMS prototype under non-flight conditions will 

be conducted. 

• Data will be gathered, and anomaly detection algorithms will be fine-tuned 

based on field test results. 
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• Development of a custom software analytics platform will be initiated. 

• February 2024: 

• Additional field tests with a fully operational octocopter in controlled 

conditions will be performed. 

• Refinement of the software analytics platform to accommodate data from 

multiple sensors. 

• Initiation of the user interface (UI) development for the software platform. 

• March 2024: 

• Continuation of testing the HUMS on different UAV models and scenarios. 

• Finalization of the UI development for the custom software analytics platform. 

• Incorporation of user feedback for platform improvements. 

• April 2024: 

• Commencement of pilot testing with selected UAV operators. 

• Refinement of the platform based on pilot test feedback. 

• Planning of marketing and communication strategies for the commercial 

launch. 

• May 2024: 

• Implementation of final adjustments to the full HUMS prototype and software 

platform. 

• Preparation of marketing materials, website, and promotional content. 

• Launching marketing campaigns to generate interest and anticipation.  

• June 2024: 
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• Conclusion of pilot testing and gathering of testimonials and case studies. 

• Finalization of pricing and subscription plans for the HUMS solution.  

• Organization of a product launch event to introduce the HUMS to the market.  

• July 2024: 

• The Minimum Viable Product of the HUMS for UAVs will be launched. 

• Commencement of customer onboarding and training programs. 

• Establishment of customer support channels and gathering of feedback for 

continuous improvement. 

 

Figure 34: Gantt Chart from current state to launch of MVP 
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This Gantt chart outlines a realistic timeline from August 2023 to July 2024 for the commercial 

launch of the HUMS solution. However, unforeseen challenges might impact the timeline, but 

consistent testing, feedback gathering, and continuous improvement will contribute to the 

successful market entry of the product. 


